Gradle User Guide

Version 4.4.1

Copyright © 2007-2017 Hans Dockter, Adam Murdoch
Copies of this document may be made for your own use and for distribution to others, provided that you do

not charge any fee for such copies and further provided that each copy contains this Copyright Notice,
whether distributed in print or electronically.

Table of Contents

|. About Gradle

=

2.

16.
17.
18.
19.
20.
21.
22.
23.
24.
25.
26.
27.
28.
29.
30.
31.
32.
33.
34.
35.
36.
37.
38.
39.

Introduction
Overview

Working with existing builds

. Installing Gradle

. Using the Gradle Command-Line
. The Gradle Console

. The Gradle Wrapper

. The Gradle Daemon

. Dependency Management Basics
. Introduction to multi-project builds

. Continuous build

. Composite builds

. The Build Environment

. Troubleshooting

. Embedding Gradle using the Tooling API
. Build Cache

Writing Gradle build scripts

Build Script Basics

Build Init Plugin

Writing Build Scripts

More about Tasks
Working With Files

Using Ant from Gradle
The Build Lifecycle
Wrapper Plugin

Logging

Dependency Management
Multi-project Builds

Gradle Plugins

Standard Gradle plugins
The Project Report Plugin
The Build Dashboard Plugin
Comparing Builds
Publishing artifacts

The Maven Plugin

The Signing Plugin

Ivy Publishing (new)
Maven Publishing (new)
The Distribution Plugin
The Announce Plugin

The Build Announcements Plugin

IV. Extending the build

40
41

. Writing Custom Task Classes
. Writing Custom Plugins

42. The Java Gradle Plugin Development Plugin
43. Organizing Build Logic

44. Lazy Configuration

45. Initialization Scripts

46. The Gradle TestKit

V. Building JVM projects

47. Java Quickstart

48. The Java Plugin

49. The Java Library Plugin
50. Web Application Quickstart
51. The War Plugin

52. The Ear Plugin

53. The Jetty Plugin

54. The Application Plugin
55. The Java Library Distribution Plugin
56. Groovy Quickstart

57. The Groovy Plugin

58. The Scala Plugin

59. The ANTLR Plugin

60. The Checkstyle Plugin
61. The CodeNarc Plugin
62. The FindBugs Plugin
63. The JDepend Plugin
64. The PMD Plugin

65. The JaCoCo Plugin

66. The OSGi Plugin

67. The Eclipse Plugins

68. The IDEA Plugin

VI. The Software model

69. Rule based model configuration

70. Software model concepts

71. Implementing model rules in a plugin
72. Building Java Libraries

73. Building Play applications

74. Building native software

75. Extending the software model

VII. Appendix

A. Gradle Samples

B. Potential Traps

C. The Feature Lifecycle
D. Gradle Command Line
E. Documentation licenses

List of Examples

4.1. Executing multiple tasks

4.2. Excluding tasks

4.3. Abbreviated task name

4.4, Abbreviated camel case task name

4.5, Selecting the project using a build file

4.6. Selecting the project using project directory

4.7. Forcing tasks to run

4.8. Obtaining information about projects

4.9. Providing a description for a project

4.10. Obtaining information about tasks

4.11. Changing the content of the task report

4.12. Obtaining more information about tasks

4.13. Obtaining detailed help for tasks

4.14. Obtaining information about dependencies
4.15. Filtering dependency report by configuration
4.16. Getting the insight into a particular dependency
4.17. Information about properties

6.1. Running the Wrapper task

6.2. Wrapper task

6.3. Wrapper generated files

6.4. Specifying the HTTP Basic Authentication credentials using system properties
6.5. Specifying the HTTP Basic Authentication credentials in di stri buti onUr |
6.6. Configuring SHA-256 checksum verification

8.1. Declaring dependencies

8.2. Definition of an external dependency

8.3. Shortcut definition of an external dependency
8.4. Usage of Maven central repository

8.5. Usage of JCenter repository

8.6. Usage of a remote Maven repository

8.7. Usage of a remote Ivy directory

8.8. Usage of a local Ivy directory

8.9. Publishing to an Ivy repository

8.10. Publishing to a Maven repository

9.1. Listing the projects in a build

11.1. Dependencies of my-app

11.2. Declaring a command-line composite

11.3. Declaring a separate composite

11.4. Depending on task from included build

11.5. Build that does not declare group attribute
11.6. Declaring the substitutions for an included build
11.7. Depending on a single task from an included build
11.8. Depending on a tasks with path in all included builds
12.1. Setting properties with a gradle.properties file
12.2. Configuring an HTTP proxy

12.3. Configuring an HTTPS proxy

14.1. Using the tooling API

15.1. Configure the local cache

15.2. Pull from HttpBuildCache

15.3. Configure remote HTTP cache

15.4.
15.5.
15.6.
15.7.
16.1.
16.2.
16.3.
16.4.
16.5.
16.6.
16.7.
16.8.
16.9.

16.10.
16.11.
16.12.
16.13.
16.14.
16.15.
16.16.

18.1.
18.2.
18.3.
18.4.
18.5.
18.6.
18.7.
18.8.
18.9.
18.10
18.11
19.1.
19.2.
19.3.
19.4.
19.5.
19.6.
19.7.
19.8.
19.9.
19.10
19.11
19.12
19.13
19.14

Allow untrusted SSL certificate for HttpBuildCache
Recommended setup for Cl push use case
Consistent setup for buildSrc and main build

Init script to configure the build cache

Your first build script

Execution of a build script

A task definition shortcut

Using Groovy in Gradle's tasks

Using Groovy in Gradle's tasks

Declaration of task that depends on other task
Lazy dependsOn - the other task does not exist (yet)
Dynamic creation of a task

Accessing a task via API - adding a dependency
Accessing a task via API - adding behaviour
Accessing task as a property of the build script
Adding extra properties to a task

Using AntBuilder to execute ant.loadfile target
Using methods to organize your build logic
Defining a default task

Different outcomes of build depending on chosen tasks
Accessing property of the Project object

Using local variables

Using extra properties

Configuring arbitrary objects

Configuring arbitrary objects using a script
Groovy JDK methods

Property accessors

Method call without parentheses

List and map literals

. Closure as method parameter

. Closure delegates

Defining tasks

Defining tasks - using strings for task names
Defining tasks with alternative syntax

Accessing tasks as properties

Accessing tasks via tasks collection

Accessing tasks by path

Creating a copy task

Configuring a task - various ways

Configuring a task - with closure

. Defining a task with closure

. Adding dependency on task from another project
. Adding dependency using task object

. Adding dependency using closure

. Adding a 'must run after' task ordering

19.15.
19.16.
19.17.
19.18.
19.19.
19.20.
19.21.
19.22.
19.23.
19.24.
19.25.
19.26.
19.27.
19.28.
19.29.
19.30.
19.31.
19.32.
19.33.
19.34.
19.35.
19.36.
19.37.
19.38.
19.39.
19.40.
19.41.

20.1.
20.2.
20.3.
20.4.
20.5.
20.6.
20.7.
20.8.
20.9.

20.10.
20.11.
20.12.
20.13.
20.14.
20.15.
20.16.
20.17.
20.18.

Adding a 'should run after' task ordering

Task ordering does not imply task execution

A 'should run after' task ordering is ignored if it introduces an ordering cycle
Adding a description to a task

Overwriting a task

Skipping a task using a predicate

Skipping tasks with StopExecutionException

Enabling and disabling tasks

Custom task class

Ad-hoc task

Ad-hoc task declaring a destroyable

Using runtime API with custom task type

Using skipWhenEmpty() via the runtime API

Inferred task dependency via task outputs

Inferred task dependency via a task argument

Declaring a method to add task inputs

Declaring a method to add a task as an input

Failed attempt at setting up an inferred task dependency
Setting up an inferred task dependency between output dir and input files
Setting up an inferred task dependency with files()

Setting up an inferred task dependency with builtBy()
Ignoring up-to-date checks

Runtime classpath normalization

Task rule

Dependency on rule based tasks

Adding a task finalizer

Task finalizer for a failing task

Locating files

Creating a file collection

Using a file collection

Implementing a file collection

Creating a file tree

Using a file tree

Using an archive as a file tree

Specifying a set of files

Copying files using the copy task

Specifying copy task source files and destination directory
Selecting the files to copy

Copying files using the copy() method without up-to-date check
Copying files using the copy() method with up-to-date check
Renaming files as they are copied

Filtering files as they are copied

Nested copy specs

Using the Sync task to copy dependencies

Creating a ZIP archive

20.19
20.20
20.21
20.22
21.1.
21.2.
21.3.
21.4,
215.
21.6.
21.7.
21.8.
21.9.

21.10.
21.11.
21.12.
21.13.
21.14.
21.15.
21.16.
21.17.

22.1.
22.2.
22.3.
22.4.
22.5.
22.6.
22.7.
22.8.
24.1.
24.2.
24.3.
24.4,
24.5.
24.6.
25.1.
25.2.
25.3.
25.4,
255.
25.6.
25.7.
25.8.
25.9.
25.10

. Creation of ZIP archive

. Configuration of archive task - custom archive name
. Configuration of archive task - appendix & classifier
. Activating reproducible archives

Using an Ant task

Passing nested text to an Ant task

Passing nested elements to an Ant task

Using an Ant type

Using a custom Ant task

Declaring the classpath for a custom Ant task

Using a custom Ant task and dependency management together
Importing an Ant build

Task that depends on Ant target

Adding behaviour to an Ant target

Ant target that depends on Gradle task

Renaming imported Ant targets

Setting an Ant property

Getting an Ant property

Setting an Ant reference

Getting an Ant reference

Fine tuning Ant logging

Single project build

Hierarchical layout

Flat layout

Modification of elements of the project tree

Adding of test task to each project which has certain property set
Notifications

Setting of certain property to all tasks

Logging of start and end of each task execution
Using stdout to write log messages

Writing your own log messages

Using SLF4J to write log messages

Configuring standard output capture

Configuring standard output capture for a task
Customizing what Gradle logs

Definition of a configuration

Accessing a configuration

Configuration of a configuration

Module dependencies

Artifact only notation

Dependency with classifier

Iterating over a configuration

Client module dependencies - transitive dependencies
Project dependencies

. File dependencies

25.11. Generated file dependencies

25.12. Gradle API dependencies

25.13. Gradle's Groovy dependencies

25.14. Excluding transitive dependencies

25.15. Optional attributes of dependencies

25.16. Collections and arrays of dependencies

25.17. Dependency configurations

25.18. Dependency configurations for project

25.19. Configuration.copy

25.20. Accessing declared dependencies

25.21. Configuration.files

25.22. Configuration.files with spec

25.23. Configuration.copy

25.24. Configuration.copy vs. Configuration.files

25.25. Adding central Maven repository

25.26. Adding Bintray's JCenter Maven repository

25.27. Using Bintrays's JCenter with HTTP

25.28. Adding Google Maven repository

25.29. Adding the local Maven cache as a repository

25.30. Adding custom Maven repository

25.31. Adding additional Maven repositories for JAR files
25.32. Accessing password protected Maven repository
25.33. Flat repository resolver

25.34. lvy repository

25.35. Ivy repository with named layout

25.36. Ivy repository with pattern layout

25.37. lvy repository with multiple custom patterns

25.38. Ivy repository with Maven compatible layout

25.39. lvy repository

25.40. Declaring a Maven and lvy repository

25.41. Providing credentials to a Maven and Ivy repository
25.42. Declaring a S3 backed Maven and Ivy repository
25.43. Declaring a S3 backed Maven and lvy repository using IAM
25.44. Declaring a Google Cloud Storage backed Maven and Ivy repository using default application
credentials

25.45. Configure repository to use only digest authentication
25.46. Configure repository to use preemptive authentication
25.47. Accessing a repository

25.48. Configuration of a repository

25.49. Definition of a custom repository

25.50. Forcing consistent version for a group of libraries
25.51. Using a custom versioning scheme

25.52. Blacklisting a version with a replacement

25.53. Changing dependency group and/or name at the resolution
25.54. Substituting a module with a project

25.55. Substituting a project with a module

25.56. Conditionally substituting a dependency

25.57. Specifying default dependencies on a configuration
25.58. Enabling dynamic resolve mode

25.59. 'Latest' version selector

25.60. Custom status scheme

25.61. Custom status scheme by module

25.62. lvy component metadata rule

25.63. Rule source component metadata rule

25.64. Component selection rule

25.65. Component selection rule with module target

25.66. Component selection rule with metadata

25.67. Component selection rule using a rule source object
25.68. Declaring module replacement

25.69. Dynamic version cache control

25.70. Changing module cache control

26.1. Multi-project tree - water & bluewhale projects

26.2. Build script of water (parent) project

26.3. Multi-project tree - water, bluewhale & krill projects

26.4. Water project build script

26.5. Defining common behavior of all projects and subprojects
26.6. Defining specific behaviour for particular project

26.7. Defining specific behaviour for project krill

26.8. Adding custom behaviour to some projects (filtered by project name)
26.9. Adding custom behaviour to some projects (filtered by project properties)
26.10. Running build from subproject

26.11. Evaluation and execution of projects

26.12. Evaluation and execution of projects

26.13. Running tasks by their absolute path

26.14. Dependencies and execution order

26.15. Dependencies and execution order

26.16. Dependencies and execution order

26.17. Declaring dependencies

26.18. Declaring dependencies

26.19. Cross project task dependencies

26.20. Configuration time dependencies

26.21. Configuration time dependencies - evaluationDependsOn
26.22. Configuration time dependencies

26.23. Dependencies - real life example - crossproject configuration
26.24. Project lib dependencies

26.25. Project lib dependencies

26.26. Fine grained control over dependencies

26.27. Build and Test Single Project

26.28. Partial Build and Test Single Project

26.29. Build and Test Depended On Projects

26.30. Build and Test Dependent Projects

27.1. Applying a script plugin

27.2. Applying a core plugin

27.3. Applying a community plugin

27.4. Applying plugins only on certain subprojects.
27.5. Using plugins from custom plugin repositories.
27.6. Plugin resolution strategy.

27.7. Complete Plugin Publishing Sample

27.8. Applying a binary plugin

27.9. Applying a binary plugin by type

27.10. Applying a plugin with the buildscript block
30.1. Using the Build Dashboard plugin

32.1. Defining an artifact using an archive task
32.2. Defining an artifact using a file

32.3. Customizing an artifact

32.4. Map syntax for defining an artifact using a file
32.5. Configuration of the upload task

33.1. Using the Maven plugin

33.2. Creating a standalone pom.

33.3. Upload of file to remote Maven repository
33.4. Upload of file via SSH

33.5. Customization of pom

33.6. Builder style customization of pom

33.7. Modifying auto-generated content

33.8. Customization of Maven installer

33.9. Generation of multiple poms

33.10. Accessing a mapping configuration

34.1. Using the Signing plugin

34.2. Signing a configuration

34.3. Signing a configuration output

34.4. Signing a task

34.5. Signing a task output

34.6. Conditional signing

34.7. Signing a POM for deployment

35.1. Applying the “ivy-publish” plugin

35.2. Publishing a Java module to vy

35.3. Publishing additional artifact to Ivy

35.4. customizing the publication identity

35.5. Customizing the module descriptor file

35.6. Publishing multiple modules from a single project
35.7. Declaring repositories to publish to

35.8. Choosing a particular publication to publish
35.9. Publishing all publications via the “publish” lifecycle task
35.10. Generating the lvy module descriptor file
35.11. Publishing a Java module

35.12. Example generated ivy.xml

36.1. Applying the 'maven-publish’ plugin

36.2. Adding a MavenPublication for a Java component
36.3. Adding additional artifact to a MavenPublication

36.4. customizing the publication identity

36.5. Modifying the POM file

36.6. Publishing multiple modules from a single project

36.7. Declaring repositories to publish to

36.8. Publishing a project to a Maven repository

36.9. Publish a project to the Maven local repository

36.10. Generate a POM file without publishing

37.1. Using the distribution plugin

37.2. Adding extra distributions

37.3. Configuring the main distribution

37.4. publish main distribution

38.1. Using the announce plugin

38.2. Configure the announce plugin

38.3. Using the announce plugin

39.1. Using the build announcements plugin

39.2. Using the build announcements plugin from an init script
40.1. Defining a custom task

40.2. A hello world task

40.3. A customizable hello world task

40.4. A build for a custom task

40.5. A custom task

40.6. Using a custom task in another project

40.7. Testing a custom task

40.8. Defining an incremental task action

40.9. Running the incremental task for the first time

40.10. Running the incremental task with unchanged inputs
40.11. Running the incremental task with updated input files
40.12. Running the incremental task with an input file removed
40.13. Running the incremental task with an output file removed
40.14. Running the incremental task with an input property changed
40.15. Creating a unit of work implementation

40.16. Submitting a unit of work for execution

40.17. Waiting for asynchronous work to complete

40.18. Submitting an item of work to run in a worker daemon
41.1. A custom plugin

41.2. A custom plugin extension

41.3. A custom plugin with configuration closure

41.4. Evaluating file properties lazily

41.5. Mapping extension properties to task properties

41.6. A build for a custom plugin

41.7. Wiring for a custom plugin

41.8.
41.9.

Using a custom plugin in another project
Applying a community plugin with the plugins DSL

41.10. Testing a custom plugin

41.11. Using the Java Gradle Plugin Development plugin
41.12. Nested DSL elements
41.13. Managing a collection of objects

42.1.
42.2.
43.1.
43.2.
43.3.
43.4.
43.5.
43.6.
43.7.
43.8.
43.9.
441,
44.2.
44.3.
44 .4,
45.1.
45.2.
45.3.
45.4.
46.1.
46.2.
46.3.
46.4.
46.5.
46.6.
46.7.
46.8.
46.9.

46.10. Reconfiguring the classpath generation conventions of the Java Gradle Development plugin

Using the Java Gradle Plugin Development plugin
Using the gradlePlugin {} block.

Using inherited properties and methods

Using injected properties and methods

Configuring the project using an external build script
Custom buildSrc build script

Adding subprojects to the root buildSrc project
Running another build from a build

Declaring external dependencies for the build script
A build script with external dependencies

Ant optional dependencies

Using a read-only and configurable property

Using file and directory property

Implicit task dependency

List property

Using init script to perform extra configuration before projects are evaluated
Declaring external dependencies for an init script
An init script with external dependencies

Using plugins in init scripts

Declaring the TestKit dependency

Declaring the JUnit dependency

Using GradleRunner with JUnit

Using GradleRunner with Spock

Making the code under test classpath available to the tests
Injecting the code under test classes into test builds

Injecting the code under test classes into test builds for Gradle versions prior to 2.8
Using the Java Gradle Development plugin for generating the plugin metadata

Automatically injecting the code under test classes into test builds

46.11. Specifying a Gradle version for test execution

46.12. Testing cacheable tasks

47.1.
47.2.
47.3.
47 4.
47.5.
47.6.
47.7.
47.8.

Using the Java plugin

Building a Java project

Adding Maven repository
Adding dependencies
Customization of MANIFEST.MF
Adding a test system property
Publishing the JAR file

Eclipse plugin

47.9.
47.10
47.11
47.12
47.13
47.14
48.1.
48.2.
48.3.
48.4.
48.5.
48.6.
48.7.
48.8.
48.9.

48.10.
48.11.
48.12.
48.13.
48.14.
48.15.
48.16.
48.17.
48.18.
48.19.
48.20.
48.21.

49.1.
49.2.
49.3.
49.4.
49.5.
50.1.
50.2.
51.1.
51.2.
52.1.
52.2.
54.1.
54.2.
54.3.
54.4.
54.5.
55.1.
55.2.

Java example - complete build file

. Multi-project build - hierarchical layout

. Multi-project build - settings.gradle file

. Multi-project build - common configuration

. Multi-project build - dependencies between projects
. Multi-project build - distribution file

Using the Java plugin

Custom Java source layout

Accessing a source set

Configuring the source directories of a source set
Defining a source set

Defining source set dependencies

Compiling a source set

Assembling a JAR for a source set

Generating the Javadoc for a source set

Running tests in a source set

Declaring annotation processors

Filtering tests in the build script

JUnit Categories

Grouping TestNG tests

Preserving order of TestNG tests

Grouping TestNG tests by instances

Creating a unit test report for subprojects
Customization of MANIFEST.MF

Creating a manifest object.

Separate MANIFEST.MF for a particular archive
Configure Java 6 build

Using the Java Library plugin

Declaring API and implementation dependencies
Making the difference between API and implementation
Declaring API and implementation dependencies
Configuring the Groovy plugin to work with Java Library
War plugin

Running web application with Gretty plugin

Using the War plugin

Customization of war plugin

Using the Ear plugin

Customization of ear plugin

Using the application plugin

Configure the application main class

Configure default JVM settings

Include output from other tasks in the application distribution
Automatically creating files for distribution

Using the Java library distribution plugin
Configure the distribution name

55.3.
56.1.
56.2.
56.3.
57.1.
57.2.
57.3.
57.4.
57.5.
57.6.
57.7.
58.1.
58.2.
58.3.
58.4.
58.5.
58.6.
58.7.
58.8.
58.9.

Include files in the distribution

Groovy plugin

Dependency on Groovy

Groovy example - complete build file

Using the Groovy plugin

Custom Groovy source layout

Configuration of Groovy dependency

Configuration of Groovy test dependency

Configuration of bundled Groovy dependency
Configuration of Groovy file dependency

Configure Java 6 build for Groovy

Using the Scala plugin

Custom Scala source layout

Declaring a Scala dependency for production code
Declaring a Scala dependency for test code

Declaring a version of the Zinc compiler to use

Forcing a scala-library dependency for all configurations
Forcing a scala-library dependency for the zinc configuration
Adjusting memory settings

Forcing all code to be compiled

58.10. Configure Java 6 build for Scala
58.11. Explicitly specify a target IntelliJ IDEA version

59.1.
59.2.
59.3.
60.1.
60.2.
60.3.
61.1.
62.1.
62.2.
63.1.
64.1.
65.1.
65.2.
65.3.
65.4.
65.5.
65.6.
65.7.
66.1.
66.2.
67.1.
67.2.
67.3.

Using the ANTLR plugin

Declare ANTLR version

setting custom max heap size and extra arguments for ANTLR
Using the Checkstyle plugin

Using the config_loc property

Customizing the HTML report

Using the CodeNarc plugin

Using the FindBugs plugin

Customizing the HTML report

Using the JDepend plugin

Using the PMD plugin

Applying the JaCoCo plugin

Configuring JaCoCo plugin settings

Configuring test task

Configuring violation rules

Configuring test task

Using application plugin to generate code coverage data
Coverage reports generated by applicationCodeCoverageReport
Using the OSGi plugin

Configuration of OSGi MANIFEST.MF file

Using the Eclipse plugin

Using the Eclipse WTP plugin

Partial Overwrite for Classpath

67.4.
67.5.
67.6.
68.1.
68.2.
68.3.
68.4.
68.5.
69.1.
69.2.
69.3.
69.4.
69.5.
69.6.
69.7.
69.8.
69.9.

69.10.
69.11.
69.12.
69.13.
69.14.
69.15.
69.16.
69.17.
69.18.
69.19.
69.20.
69.21.
69.22.
69.23.
69.24.
69.25.
69.26.
69.27.
69.28.

72.1.
72.2.
72.3.
72.4,
72.5.
72.6.
72.7.
72.8.
72.9.

Partial Overwrite for Project

Export Dependencies

Customizing the XML

Using the IDEA plugin

Partial Rewrite for Module

Partial Rewrite for Project

Export Dependencies

Customizing the XML

applying a rule source plugin

a model creation rule

a model mutation rule

creating a task

a managed type

a String property

a File property

a Long property

a boolean property

an int property

a managed property

an enumeration type property

a managed set

strongly modelling sources sets

a DSL example applying a rule to every element in a scope
DSL configuration rule

Configuration run when required

Configuration not run when not required

DSL creation rule

DSL creation rule without initialization
Initialization before configuration

Nested DSL creation rule

Nested DSL configuration rule

DSL configuration rule for each element in a map
Nested DSL property configuration

a DSL example showing type conversions

a DSL rule using inputs

model task output

Using the Java software plugins

Creating a java library

Configuring a source set

Creating a new source set

The components report

Declaring a dependency onto a library

Declaring a dependency onto a project with an explicit library
Declaring a dependency onto a project with an implicit library
Declaring a dependency onto a library published to a Maven repository

72.10. Declaring a module dependency using shorthand notation
72.11. Configuring repositories for dependency resolution

72.12. Specifying api packages

72.13. Specifying api dependencies

72.14. Main sources

72.15. Client component

72.16. Broken client component

72.17. Recompiling the client

72.18. Declaring target platforms

72.19. Declaring binary specific sources

72.20. Declaring target platforms

72.21. Using the JUnit plugin

72.22. Executing the test suite

72.23. Executing the test suite

72.24. Declaring a component under test

72.25. Declaring local Java installations

73.1. Using the Play plugin

73.2. The components report

73.3. Selecting a version of the Play Framework

73.4. Adding dependencies to a Play application

73.5. A Play 2.6 project

73.6. Adding Guice dependency in Play 2.6 project

73.7. Adding extra source sets to a Play application

73.8. Configuring Scala compiler options

73.9. Configuring routes style

73.10. Configuring a custom asset pipeline

73.11. Configuring dependencies on Play subprojects

73.12. Add extra files to a Play application distribution

73.13. Applying both the Play and IDEA plugins

74.1. Defining a library component

74.2. Defining executable components

74.3. Sample build

74.4. Dependent components report

74.5. Dependent components report

74.6. Report of components that depends on the operators component
74.7. Report of components that depends on the operators component, including test suites
74.8. Assemble components that depends on the passing/static binary of the operators component
74.9. Build components that depends on the passing/static binary of the operators component
74.10. Adding a custom check task

74.11. Running checks for a given binary

74.12. The components report

74.13. The 'cpp’ plugin

74.14. C++ source set

74.15. The 'c' plugin

74.16. C source set

74.17.
74.18.
74.19.
74.20.
74.21.
74.22.
74.23.
74.24.
74.25.
74.26.
74.27.
74.28.
74.29.
74.30.
74.31.
74.32.
74.33.
74.34.
74.35.
74.36.
74.37.
74.38.
74.39.
74.40.
74.41.
74.42.
74.43.
74.44.

75.1.
75.2.
75.3.
75.4.
75.5.
75.6.
75.7.
75.8.
75.9.

75.10.
75.11.
75.12.
75.13.
75.14.
75.15.
75.16.

The ‘assembler’ plugin

The 'objective-c' plugin

The 'objective-cpp' plugin

Settings that apply to all binaries

Settings that apply to all shared libraries
Settings that apply to all binaries produced for the 'main’ executable component
Settings that apply only to shared libraries produced for the 'main’ library component
The 'windows-resources' plugin

Configuring the location of Windows resource sources
Building a resource-only dll

Providing a library dependency to the source set
Providing a library dependency to the binary
Declaring project dependencies

Creating a precompiled header file

Including a precompiled header file in a source file
Configuring a precompiled header

Defining build types

Configuring debug binaries

Defining platforms

Defining flavors

Targeting a component at particular platforms
Building all possible variants

Defining tool chains

Reconfigure tool arguments

Defining target platforms

Registering CUnit tests

Running CUnit tests

Registering GoogleTest tests

an example of using a custom software model
Declare a custom component

Register a custom component

Declare a custom binary

Register a custom binary

Declare a custom source set

Register a custom source set

Generates documentation binaries

Generates tasks for text source sets

Register a custom source set

an example of using a custom software model
components report

public type and internal view declaration

type registration

public and internal data mutation

example build script and model report output

B.1. Variables scope: local and script wide

B.2. Distinct configuration and execution phase

Part I. About Gradle

1

Introduction

We would like to introduce Gradle to you, a build system that we think is a quantum leap for build technology
in the Java (JVM) world. Gradle provides:

A very flexible general purpose build tool like Ant.

Switchable, build-by-convention frameworks a la Maven. But we never lock you in!
Very powerful support for multi-project builds.

Very powerful dependency management (based on Apache lvy).

Full support for your existing Maven or Ivy repository infrastructure.

Support for transitive dependency management without the need for remote repositories or pom xm andi v

files.
Ant tasks and builds as first class citizens.
Groovy build scripts.

A rich domain model for describing your build.

In Chapter 2, Overview you will find a detailed overview of Gradle. Otherwise, the guides are waiting, have
fun)

1.1. About this user guide

This user guide, like Gradle itself, is under very active development. Some parts of Gradle aren’t
documented as completely as they need to be. Some of the content presented won't be entirely clear or will
assume that you know more about Gradle than you do. We need your help to improve this user guide. You
can find out more about contributing to the documentation at the Gradle web site.

Throughout the user guide, you will find some diagrams that represent dependency relationships between
Gradle tasks. These use something analogous to the UML dependency notation, which renders an arrow
from one task to the task that the first task depends on.

Page 20 of 680

https://guides.gradle.org
http://www.gradle.org/contribute

2

Overview

2.1. Features
Here is a list of some of Gradle’s features.
Declarative builds and build-by-convention

At the heart of Gradle lies a rich extensible Domain Specific Language (DSL) based on Groovy. Gradle
pushes declarative builds to the next level by providing declarative language elements that you can
assemble as you like. Those elements also provide build-by-convention support for Java, Groovy, OSGi,
Web and Scala projects. Even more, this declarative language is extensible. Add your own new language
elements or enhance the existing ones, thus providing concise, maintainable and comprehensible builds.

Language for dependency based programming

The declarative language lies on top of a general purpose task graph, which you can fully leverage in
your builds. It provides utmost flexibility to adapt Gradle to your unique needs.

Structure your build

The suppleness and richness of Gradle finally allows you to apply common design principles to your
build. For example, it is very easy to compose your build from reusable pieces of build logic. Inline stuff
where unnecessary indirections would be inappropriate. Don’t be forced to tear apart what belongs
together (e.g. in your project hierarchy). Avoid smells like shotgun changes or divergent change that turn
your build into a maintenance nightmare. At last you can create a well structured, easily maintained,
comprehensible build.

Deep API

From being a pleasure to be used embedded to its many hooks over the whole lifecycle of build
execution, Gradle allows you to monitor and customize its configuration and execution behavior to its
very core.

Gradle scales

Gradle scales very well. It significantly increases your productivity, from simple single project builds up to
huge enterprise multi-project builds. This is true for structuring the build. With the state-of-art incremental

Page 21 of 680

build function, this is also true for tackling the performance pain many large enterprise builds suffer from.
Multi-project builds

Gradle’s support for multi-project build is outstanding. Project dependencies are first class citizens. We
allow you to model the project relationships in a multi-project build as they really are for your problem
domain. Gradle follows your layout not vice versa.

Gradle provides partial builds. If you build a single subproject Gradle takes care of building all the
subprojects that subproject depends on. You can also choose to rebuild the subprojects that depend on a
particular subproject. Together with incremental builds this is a big time saver for larger builds.

Many ways to manage your dependencies

Different teams prefer different ways to manage their external dependencies. Gradle provides convenient
support for any strategy. From transitive dependency management with remote Maven and Ivy
repositories to jars or directories on the local file system.

Gradle is the first build integration tool

Ant tasks are first class citizens. Even more interesting, Ant projects are first class citizens as well.
Gradle provides a deep import for any Ant project, turning Ant targets into native Gradle tasks at runtime.
You can depend on them from Gradle, you can enhance them from Gradle, you can even declare
dependencies on Gradle tasks in your build.xml. The same integration is provided for properties, paths,
etc ...

Gradle fully supports your existing Maven or Ivy repository infrastructure for publishing and retrieving
dependencies. Gradle also provides a converter for turning a Maven pom xm into a Gradle script.
Runtime imports of Maven projects will come soon.

Ease of migration

Gradle can adapt to any structure you have. Therefore you can always develop your Gradle build in the
same branch where your production build lives and both can evolve in parallel. We usually recommend to
write tests that make sure that the produced artifacts are similar. That way migration is as less disruptive
and as reliable as possible. This is following the best-practices for refactoring by applying baby steps.

Groovy

Gradle’s build scripts are written in Groovy, not XML. But unlike other approaches this is not for simply
exposing the raw scripting power of a dynamic language. That would just lead to a very difficult to
maintain build. The whole design of Gradle is oriented towards being used as a language, not as a rigid
framework. And Groovy is our glue that allows you to tell your individual story with the abstractions
Gradle (or you) provide. Gradle provides some standard stories but they are not privileged in any form.
This is for us a major distinguishing feature compared to other declarative build systems. Our Groovy
support is not just sugar coating. The whole Gradle API is fully Groovy-ized. Adding Groovy results in an
enjoyable and productive experience.

Page 22 of 680

The Gradle wrapper

The Gradle Wrapper allows you to execute Gradle builds on machines where Gradle is not installed. This
is useful for example for some continuous integration servers. It is also useful for an open source project
to keep the barrier low for building it. The wrapper is also very interesting for the enterprise. It is a zero
administration approach for the client machines. It also enforces the usage of a particular Gradle version
thus minimizing support issues.

Free and open source

Gradle is an open source project, and is licensed under the ASL.

2.2. Why Groovy?

We think the advantages of an internal DSL (based on a dynamic language) over XML are tremendous when
used in build scripts. There are a couple of dynamic languages out there. Why Groovy? The answer lies in
the context Gradle is operating in. Although Gradle is a general purpose build tool at its core, its main focus
are Java projects. In such projects the team members will be very familiar with Java. We think a build should
be as transparent as possible to all team members.

In that case, you might argue why we don'’t just use Java as the language for build scripts. We think this is a
valid question. It would have the highest transparency for your team and the lowest learning curve, but
because of the limitations of Java, such a build language would not be as nice, expressive and powerful as it
could be.l! Languages like Python, Groovy or Ruby do a much better job here. We have chosen Groovy as
it offers by far the greatest transparency for Java people. Its base syntax is the same as Java's as well as its
type system, its package structure and other things. Groovy provides much more on top of that, but with the
common foundation of Java.

For Java developers with Python or Ruby knowledge or the desire to learn them, the above arguments don't
apply. The Gradle design is well-suited for creating another build script engine in JRuby or Jython. It just
doesn’'t have the highest priority for us at the moment. We happily support any community effort to create
additional build script engines.

[1] At http://www.defmacro.org/ramblings/lisp.html you find an interesting article comparing Ant, XML, Java
and Lisp. It's funny that the 'if Java had that syntax' syntax in this article is actually the Groovy syntax.

Page 23 of 680

http://www.gradle.org/license
http://www.defmacro.org/ramblings/lisp.html

Part Il. Working with
existing builds

3

Installing Gradle

3.1. Prerequisites

Gradle requires a Java JDK or JRE to be installed, version 7 or higher (to check, use j ava -ver si on).
Gradle ships with its own Groovy library, therefore Groovy does not need to be installed. Any existing
Groovy installation is ignored by Gradle.

Gradle uses whatever JDK it finds in your path. Alternatively, you can set the JAVA HOVE environment
variable to point to the installation directory of the desired JDK.

3.2. Download

You can download one of the Gradle distributions from the Gradle web site.

3.3. Unpacking
The Gradle distribution comes packaged as a ZIP. The full distribution contains:

The Gradle binaries.

The user guide (HTML and PDF).
The DSL reference guide.

The API documentation (Javadoc).

Extensive samples, including the examples referenced in the user guide, along with some complete and
more complex builds you can use as a starting point for your own build.

The binary sources. This is for reference only. If you want to build Gradle you need to download the source
distribution or checkout the sources from the source repository. See the Gradle web site for details.

3.4. Environment variables

For running Gradle, firstly add the environment variable GRADLE HOVME. This should point to the unpacked
files from the Gradle website. Next add GRADLE HOME/ bi n to your PATH environment variable. Usually,
this is sufficient to run Gradle.

Page 25 of 680

http://www.gradle.org/downloads
http://www.gradle.org/development

3.5. Running and testing your installation

You run Gradle via the gr adl e command. To check if Gradle is properly installed just type gradl e -v. The
output shows the Gradle version and also the local environment configuration (Groovy, JVM version, OS,
etc.). The displayed Gradle version should match the distribution you have downloaded.

3.6. JVM options

JVM options for running Gradle can be set via environment variables. You can use either GRADLE_COPTS or J
, or both. JAVA_OPTS is by convention an environment variable shared by many Java applications. A typical
use case would be to set the HTTP proxy in JAVA_OPTS and the memory options in GRADLE_OPTS. Those
variables can also be set at the beginning of the gr adl e or gr adl ew script.

Note that it's not currently possible to set JVM options for Gradle on the command line.

Page 26 of 680

A

Using the Gradle Command-Line

This chapter introduces the basics of the Gradle command-line. You run a build using the gradl e
command, which you have already seen in action in previous chapters.

4.1. Executing multiple tasks

You can execute multiple tasks in a single build by listing each of the tasks on the command-line. For
example, the command gradl e conpil e test will execute the conpil e and t est tasks. Gradle will
execute the tasks in the order that they are listed on the command-line, and will also execute the
dependencies for each task. Each task is executed once only, regardless of how it came to be included in
the build: whether it was specified on the command-line, or as a dependency of another task, or both. Let's
look at an example.

Below four tasks are defined. Both di st and t est depend on the conpi | e task. Running gradl e di st t
for this build script results in the conpi | e task being executed only once.

Figure 4.1. Task dependencies

compile compile Test dist
test

Page 27 of 680

Example 4.1. Executing multiple tasks

buil d. gradl e

task conpile {
doLast {
println 'conpiling source

task conpil eTest (dependsOn: conpile) {
doLast {
println "conmpiling unit tests

task test(dependsOn: [conpile, conpileTest]) {
doLast ({
println '"running unit tests

task dist(dependsOn: [conpile, test]) {
doLast {
println "building the distribution

}

Output of gradl e di st test

> gradl e dist test

:conpile

conpi |l i ng source
:conpi | eTest
conmpiling unit tests
itest

running unit tests
:di st

buil di ng the distribution

BU LD SUCCESSFUL in Os
4 actionable tasks: 4 executed

Each task is executed only once, so gradl e t est test is exactly the same asgradl e test.

4.2. Excluding tasks

You can exclude a task from being executed using the - x command-line option and providing the name of
the task to exclude. Let’s try this with the sample build file above.

Page 28 of 680

Example 4.2. Excluding tasks

Output of gradl e di st -x test

> gradle dist -x test

:conpile
conpi |l i ng source
 di st

buil ding the distribution

BUI LD SUCCESSFUL i n Os
2 actionabl e tasks: 2 executed

You can see from the output of this example, that the t est task is not executed, even though it is a
dependency of the di st task. You will also notice that the t est task’s dependencies, such as conpi | eTes!
are not executed either. Those dependencies of t est that are required by another task, such as conpi | €,
are still executed.

4.3. Continuing the build when a failure occurs

By default, Gradle will abort execution and fail the build as soon as any task fails. This allows the build to
complete sooner, but hides other failures that would have occurred. In order to discover as many failures as
possible in a single build execution, you can use the - - cont i nue option.

When executed with --conti nue, Gradle will execute every task to be executed where all of the
dependencies for that task completed without failure, instead of stopping as soon as the first failure is
encountered. Each of the encountered failures will be reported at the end of the build.

If a task fails, any subsequent tasks that were depending on it will not be executed, as it is not safe to do so.
For example, tests will not run if there is a compilation failure in the code under test; because the test task
will depend on the compilation task (either directly or indirectly).

4.4. Task name abbreviation

When you specify tasks on the command-line, you don’t have to provide the full name of the task. You only
need to provide enough of the task name to uniquely identify the task. For example, in the sample build
above, you can execute task di st by running gr adl e d:

Page 29 of 680

Example 4.3. Abbreviated task name

Output of gr adl e di

> gradl e di

:conpile

conpi |l i ng source

: conpi | eTest
conpiling unit tests
‘test

running unit tests
:di st

buil ding the distribution

BUI LD SUCCESSFUL in Os
4 actionable tasks: 4 executed

You can also abbreviate each word in a camel case task name. For example, you can execute task conpi | €
by running gr adl e conpTest orevengradle cT
Example 4.4. Abbreviated camel case task name

Outputofgradl e cT

> gradle cT

:conpile
conpi |l i ng source
:conpi | eTest

conpiling unit tests

BUI LD SUCCESSFUL in Os
2 actionabl e tasks: 2 executed

You can also use these abbreviations with the - x command-line option.

4.5. Selecting which build to execute

When you run the gr adl e command, it looks for a build file in the current directory. You can use the - b
option to select another build file. Example:

Example 4.5. Selecting the project using a build file

subdi r/ myproj ect. gradl e

task hello {
doLast {
println "using build file '$buildFile.nane' in '$buildFile.parentFile.nal

}

Outputofgradl e -g -b subdir/nyproject.gradle hello

> gradle -q -b subdir/nyproject.gradle hello
using build file "myproject.gradle' in 'subdir'.

Page 30 of 680

Alternatively, you can use the - p option to specify the project directory to use. For multi-project builds you
should use - p option instead of - b option.
Example 4.6. Selecting the project using project directory

Outputofgradle -gq -p subdir hello

> gradle -q -p subdir hello
using build file "build.gradle' in '"subdir'.

4.6. Forcing tasks to execute

Many tasks, particularly those provided by Gradle itself, support incremental builds. Such tasks can
determine whether they need to run or not based on whether their inputs or outputs have changed since the
last time they ran. You can easily identify tasks that take part in incremental build when Gradle displays the
text UP- TO- DATE next to their name during a build run.

You may on occasion want to force Gradle to run all the tasks, ignoring any up-to-date checks. If that's the
case, simply use the - - r er un-t asks option. Here’s the output when running a task both without and with -

Example 4.7. Forcing tasks to run

Output of gr adl e dol t

> gradl e dolt
:dolt UP-TO DATE

Outputofgradl e --rerun-tasks dolt

> gradle --rerun-tasks dolt
:dol t

Note that this will force all required tasks to execute, not just the ones you specify on the command line. It's
a little like running a cl ean, but without the build’s generated output being deleted.

4.7. Obtaining information about your build

Gradle provides several built-in tasks which show particular details of your build. This can be useful for
understanding the structure and dependencies of your build, and for debugging problems.

In addition to the built-in tasks shown below, you can also use the project report plugin to add tasks to your
project which will generate these reports.

4.7.1. Listing projects

Running gradl e projects gives you a list of the sub-projects of the selected project, displayed in a
hierarchy. Here is an example:

Page 31 of 680

Example 4.8. Obtaining information about projects

Output of gradl e -q projects

> gradle -qg projects

Root project 'projectReports'
+--- Project ':api' - The shared APl for the application
\--- Project ':webapp' - The Web application inplenentation

To see a list of the tasks of a project, run gradle <project-path>:tasks
For exanple, try running gradle :api:tasks

The report shows the description of each project, if specified. You can provide a description for a project by
setting the descri pti on property:

Example 4.9. Providing a description for a project

buil d. gradl e
description = 'The shared APl for the application'

4.7.2. Listing tasks

Running gr adl e t asks gives you a list of the main tasks of the selected project. This report shows the
default tasks for the project, if any, and a description for each task. Below is an example of this report:

Page 32 of 680

Example 4.10. Obtaining information about tasks

Output of gradl e -qg tasks

> gradl e -q tasks

Al'l tasks runnable fromroot project

Default tasks: dists

Bui |l d tasks

clean - Deletes the build directory (build)
dists - Builds the distribution

libs - Builds the JAR

Bui l d Setup tasks
init - Initializes a new G adle build.
wr apper - Generates Gradle wapper files.

Hel p t asks

bui | dEnvi ronnent - Displays all buildscript dependenci es declared in root project
conponents - Displays the conponents produced by root project 'projectReports'. |
dependenci es - Displays all dependencies declared in root project 'projectReport:
dependencyl nsight - Displays the insight into a specific dependency in root proj:
dependent Conponents - Di splays the dependent conponents of conponents in root pri
hel p - Displays a hel p nessage.

nodel - Displays the configuration nodel of root project 'projectReports'. [incul
projects - Displays the sub-projects of root project 'projectReports'.

properties - Displays the properties of root project 'projectReports'.

tasks - Displays the tasks runnable fromroot project 'projectReports' (some of i

To see all tasks and nore detail, run gradle tasks --all

To see nore detail about a task, run gradle help --task <task>
By default, this report shows only those tasks which have been assigned to a task group, so-called visible

tasks. You can do this by setting the gr oup property for the task. You can also set the descri ption
property, to provide a description to be included in the report.

Page 33 of 680

Example 4.11. Changing the content of the task report

buil d. gradl e
dists {
description = 'Builds the distribution

group = 'build

You can obtain more information in the task listing using the - - al | option. With this option, the task report
lists all tasks in the project, including tasks which have not been assigned to a task group, so-called hidden
tasks. Here is an example:

Example 4.12. Obtaining more information about tasks

Outputofgradl e -qgq tasks --al

> gradle -q tasks --all

Al'l tasks runnable fromroot project

Default tasks: dists

Buil d tasks

clean - Deletes the build directory (build)
api:clean - Deletes the build directory (build)
webapp: cl ean - Deletes the build directory (build)
dists - Builds the distribution

api :libs - Builds the JAR

webapp: libs - Builds the JAR

Bui l d Setup tasks
init - Initializes a new Gradle build.
wr apper - Cenerates Gadle wapper files

Hel p tasks

bui | dEnvi ronnent - Displays all buildscript dependenci es declared in root projec
api : bui I dEnvi ronment - Displays all buildscript dependenci es declared in project
webapp: bui | dEnvi ronnment - Di splays all buildscript dependencies declared in proji
components - Displays the conmponents produced by root project 'projectReports'.
api : conponents - Displays the conponents produced by project ':api [i ncubati ng
webapp: conponents - Displays the conmponents produced by project ':webapp'. [incu
dependenci es - Displays all dependenci es declared in root project 'projectReport
api : dependenci es - Displays all dependencies declared in project ':ap
webapp: dependenci es - Displays all dependencies declared in project ':webapp'.
dependencyl nsight - Displays the insight into a specific dependency in root proj:

Page 34 of 680

api : dependencyl nsight - Displays the insight into a specific dependency in proj el
webapp: dependencyl nsight - Displays the insight into a specific dependency in pri
dependent Conponents - Di spl ays the dependent conponents of components in root pri
api : dependent Conponents - Displays the dependent conponents of conponents in proj
webapp: dependent Conponents - Displays the dependent conponents of components in |
hel p - Di splays a hel p nessage.

api : hel p - Displays a hel p nessage.

webapp: hel p - Displays a hel p nmessage.

nodel - Displays the configuration nodel of root project 'projectReports'. [incul
api : model - Displays the configuration nodel of project ':api'. [incubating]
webapp: nodel - Displays the configuration nodel of project ':webapp'. [incubatin

projects - Displays the sub-projects of root project 'projectReports'.
api : projects - Displays the sub-projects of project ':api'.

webapp: proj ects - Displays the sub-projects of project ':webapp'.
properties - Displays the properties of root project 'projectReports'.
api : properties - Displays the properties of project ':api
webapp: properties - Displays the properties of project ':webapp'.

tasks - Displays the tasks runnable fromroot project 'projectReports' (some of |
api:tasks - Displays the tasks runnable fromproject ':api'

webapp: tasks - Displays the tasks runnable from project ':webapp'.

O her tasks

api:conpile - Conpiles the source files

Page 35 of 680

webapp: conpil e - Compiles the source files
docs - Builds the docunentation

4.7.3. Show task usage details

Running gradl e hel p --task someTask gives you detailed information about a specific task or multiple
tasks matching the given task name in your multi-project build. Below is an example of this detailed
information:

Example 4.13. Obtaining detailed help for tasks

Outputofgradl e -q help --task |ibs

> gradle -q help --task libs
Detailed task information for |ibs

Pat hs
capi:libs
:webapp: i bs

Type
Task (org.gradle. api. Task)

Descri ption
Buil ds the JAR

G oup
build

This information includes the full task path, the task type, possible command line options and the description
of the given task.

4.7.4. Listing project dependencies

Running gr adl e dependenci es gives you a list of the dependencies of the selected project, broken down
by configuration. For each configuration, the direct and transitive dependencies of that configuration are
shown in a tree. Below is an example of this report:

Page 36 of 680

Example 4.14. Obtaining information about dependencies

Output of gradl e -q dependenci es api : dependenci es webapp: dependenci es

> gradl e -g dependenci es api: dependenci es webapp: dependenci es

Project :api - The shared APl for the application

conpil e
\--- org.codehaus. groovy: groovy-all:2.4.10

test Conpil e
\--- junit:junit:4.12
\--- org. hantrest: hancrest-core: 1. 3

Project :webapp - The Wb application inplenentation

conpil e

+--- project :api

| \--- org.codehaus. groovy: groovy-all:2.4.10
\--- comons-io: conmmons-io: 1.2

test Conpil e

No dependenci es

Since a dependency report can get large, it can be useful to restrict the report to a particular configuration.
This is achieved with the optional - - conf i gur at i on parameter:

Example 4.15. Filtering dependency report by configuration

Output of gradl e -qg api : dependenci es --configuration testConpile

> gradl e -q api:dependencies --configuration testConpile

Project :api - The shared APl for the application

test Conpil e
\--- junit:junit:4.12
\--- org. hantrest: hancrest-core: 1.3

Page 37 of 680

4.7.5. Listing project buildscript dependencies

Running gradl e bui |l dEnvi r onment visualises the buildscript dependencies of the selected project,
similarly to how gr adl e dependenci es visualises the dependencies of the software being built.

4.7.6. Getting the insight into a particular dependency

Running gradl e dependencyl nsi ght gives you an insight into a particular dependency (or
dependencies) that match specified input. Below is an example of this report:

Example 4.16. Getting the insight into a particular dependency

Output of gr adl e -g webapp: dependencyl nsi ght --dependency groovy --configuration co

> gradl e -gq webapp: dependencyl nsi ght --dependency groovy --configuration conpile
or g. codehaus. groovy: groovy-al |l : 2. 4. 10
\--- project :api

\--- conpile

This task is extremely useful for investigating the dependency resolution, finding out where certain
dependencies are coming from and why certain versions are selected. For more information please see the
Dependencyl nsi ght Report Task class in the API documentation.

The built-in dependencylinsight task is a part of the 'Help' tasks group. The task needs to be configured with
the dependency and the configuration. The report looks for the dependencies that match the specified
dependency spec in the specified configuration. If Java related plugins are applied, the dependencylnsight
task is pre-configured with the 'compile' configuration because typically it's the compile dependencies we are
interested in. You should specify the dependency you are interested in via the command line '--dependency’
option. If you don't like the defaults you may select the configuration via the '--configuration' option. For more
information see the Dependencyl nsi ght Report Task class in the APl documentation.

4.7.7. Listing project properties

Running gradl e properties gives you a list of the properties of the selected project. This is a snippet
from the output:

Page 38 of 680

http://www.gradle.org/docs/4.4.1/dsl/org.gradle.api.tasks.diagnostics.DependencyInsightReportTask.html
http://www.gradle.org/docs/4.4.1/dsl/org.gradle.api.tasks.diagnostics.DependencyInsightReportTask.html
http://www.gradle.org/docs/4.4.1/dsl/org.gradle.api.tasks.diagnostics.DependencyInsightReportTask.html

Example 4.17. Information about properties

Output of gradl e -q api: properties

> gradle -qg api:properties

Project :api - The shared APl for the application

al |l projects: [project ':api']

ant: org.gradle.api.internal.project.Defaul t Ant Buil der @2345

ant Bui | der Factory: org.gradl e.api.internal.project. DefaultAntBuil derFact ory@234!
artifacts: org.gradle.api.internal.artifacts.dsl.DefaultArtifactHandl er_Decor at el
asDynam cObj ect: Dynami cObject for project ':api'

based asslLoader Scope: org.gradle.api.internal.initialization.DefaultC assLoaderSi
bui l dDir: /home/ user/ gradl e/ sanpl es/ user gui de/tutorial/project Reports/api/build
bui l dFi | e: /home/ user/ gradl e/ sanpl es/ usergui de/tutorial /projectReports/api/build.

4.7.8. Profiling a build

The - - profi | e command line option will record some useful timing information while your build is running
and write a report to the bui | d/ reports/ profil e directory. The report will be named using the time
when the build was run.

This report lists summary times and details for both the configuration phase and task execution. The times
for configuration and task execution are sorted with the most expensive operations first. The task execution
results also indicate if any tasks were skipped (and the reason) or if tasks that were not skipped did no work.

Builds which utilize a buildSrc directory will generate a second profile report for buildSrc in the bui | dSr ¢/ bu

directory.

Page 39 of 680

Profiled with tasks: -xtest build

Summary Configuration Task Exec
Total Build Time 2:01.164 | |: 2.804 | |:docs
Startup 0.313| |:docs 0.576 :docs:userguideSingleHtml
Settings and BuildSrc 4078 | | :core 0.203 :docs:userpuidePdf
Loading Projects 0074 | |:announce 0.084 :docs:checkstyleApi
Configuring Projects 3208 | 0.036 :docs:userguideStyleSheets
Total Task Execution 1:52.671 | | :openApi 0.035 :docs:groovydoc
‘maven 0.033 :docs:samples
:codeQuality 0.033 :docs:javadoc
‘wrapper 0.022 :docs:userguideFragmentSrc
eclipse 0.021 :docs:distDocs
lidea 0.021 :docs:samplesDocs
plugins 0.020 :docs:userguide X html
:launcher 0.020 :docs:userguideHtml
:antlr 0.017 :docs:userguideDochook
08¢ 0014 :docs:remoteUserguideDocbool
jetty 0.014 :docs:samplesDocbook
:scala 0.012 :docs:docs
:docs:userguide
‘core
:core:compileTestGroovy
:core:codenarcTest
:core:checkstyleMain
i W e VP I s GG O
4.8. Dry Run

Sometimes you are interested in which tasks are executed in which order for a given set of tasks specified
on the command line, but you don’t want the tasks to be executed. You can use the - moption for this. For
example, if you run “gradl e -m cl ean conpil e”, you'll see all the tasks that would be executed as part
of the cl ean and conpi | e tasks. This is complementary to the t asks task, which shows you the tasks
which are available for execution.

4.9. Summary

In this chapter, you have seen some of the things you can do with Gradle from the command-line. You can
find out more about the gr adl e command in Appendix D, Gradle Command Line.

Page 40 of 680

5

The Gradle Console

5.1. Overview

Nearly every Gradle user will experience the command-line interface at some point. Gradle’s console output
is optimized for rendering performance and usability, showing only relevant information and providing
visually appealing feedback.

Figure 5.1. The Gradle command-line in action

[] @ ewendelin@rydia: ~/srcftesting/gradie

Yy .fgradlew :core:compileTestGroouyl

5.2. Command-line feedback

Gradle displays information while the build is running so you can concentrate on the most important items of
interest. Each of the sections of Gradle’s console output help answer specific questions.

Is there anything | should know about my build right now e.g. tests have failed and emitted warnings?
When will my build finish?

What is Gradle doing right now?

Page 41 of 680

Are there other interesting outcomes e.g. tasks that have been skipped or were up-to-date?
5.2.1. Build output

Output from build script log messages, tasks, forked processes, test output and compile warnings is
displayed above the build progress bar.

Figure 5.2. Build output portion of the Gradle command-line

[] [Jgradlew :core:compileTestGroovy

} ./eradlew :core:compileTestGroovy
(Parallel execution is an incubating feature. N

> Configure project :
Using a single directory for all classes from a source set. This behavicur has been d
eprecated and is scheduled to be removed in Gradle 5.0

at jmh_bt759m7aBhvwiglOzer84adz4.run(/Usersfewendelin/src/testing/gradle/grad
\}eljmh.gradle:zsj y,

o > 18% EXECUTING [3s]
> i1baseServices:compilelava

> :toolingApi:processResources

> :docs:dslMetaData

> iresourcesHttp:processResources
|

Starting with Gradle 4.0, the volume of command-line console output has been reduced. The start and end
of each task is not displayed anymore or the outcome of the task (e.g. UP- TO- DATE). The task’s name is
only displayed if some output is emitted during task execution. Gradle also groups output originating from a
specific context together, e.g. all warnings from a compilation task, test execution or forked processes.
Grouped output is especially useful for parallel task execution, as it prevents interleaved messages that do
not clearly indicate their origin (see Section 26.8, “Parallel project execution”).

Note: Grouped console output and reduced console output only occurs with interactive and rich
console command-lines. Continuous integration servers and builds using - - consol e=pl ai n will
see console output similar to pre-Gradle 4.0. You can also set this option via or g. gr adl e. consol e
property, see Section 12.1, “Configuring the build environment via gradle.properties”.

The following console output shows grouped output for the configuration phase and the task : conpi | eJava

Page 42 of 680

> Configure project ':library'
Configuring project version for project

clibrary!

> Configure project ':consuner'
Configuring project version for project ':consumer'

> Task :conpil eJava
Note: Sone input files use unchecked or unsafe operations.
Note: Reconpile with -Xint:unchecked for details.

Gradle does not wait until a unit of work is fully completed before displaying its output. Gradle flushes output
to the console after a short amount of time to ensure that relevant information is made available as soon as
possible. When building in parallel, the output of long running tasks can be broken up by other tasks. Each
block of console output will clearly indicate which task it belongs to.

> Task :conpil eJava
Note: Sone input files use unchecked or unsafe operations.
Note: Reconpile with -Xint:unchecked for details.

> Task :generat eCode
CGenerating JAXB classed from XSD files.

> Task :conpil eJava
Note: Sone input files use or override a deprecated API.
Note: Reconpile with -Xlint:deprecation for details.

5.2.2. Build progress bar

The build progress bar gives you a very fast way of knowing if the build will be finished soon. As the build
performs work, the progress bar will fill from left to right. At any given time, the build progress bar also
renders the current phase of the build lifecycle (see Section 22.1, “Build phases”) and the overall time spent
during the build.

Page 43 of 680

Figure 5.3. Build progress bar portion of the Gradle command-line

[] [Jgradlew :core:compileTestGroovy

} .fgradlew :core:compileTestGroovy
Parallel execution 1is an incubating feature.

> Configure project :
Using a single directory for all classes from a source set. This behaviour has been d
eprecated and is scheduled to be removed in Gradle 5.8

at jmh_bt759m7aBhvwiglOzer84adz4.run(/Usersfewendelin/src/testing/gradle/grad
le/jmh.gradle:28)

IDLE
splatformdvm:compiledava
tlauncher:compilelava

(<====== ——————— > 68% EXECUTING [55])
=
>
>
> :platformNative:compilelava

|

The following examples shows the progress bar during the initialization, configuration and execution phase
of the build lifecycle:

Cemmmmmeiooo- > 0% | NI TI ALI ZI NG [2s]
e e > 25% CONFI GURI NG [4s]
SESSSSS =SSN > 64% EXECUTI NG [17s]

5.2.3. Work in-progress display

Gradle provides a fined-grained view of the actual work being performed directly underneath the The build
progress bar. Each line represents a thread or process that can perform work in parallel—resolving
dependencies, executing a task and running tests. If an available worker is not being used then it is marked
with | DLE. The number of available workers defaults to the number of processors on the machine executing

the build.

Page 44 of 680

Figure 5.4. Work in-progress portion of the Gradle command-line

[] [Jgradlew :core:compileTestGroovy

} .fgradlew :core:compileTestGroovy
Parallel execution 1is an incubating feature.

> Configure project :
Using a single directory for all classes from a source set. This behaviour has been d
eprecated and is scheduled to be removed in Gradle 5.8

at jmh_bt759m7aBhvwiglOzer84adz4.run(/Usersfewendelin/src/testing/gradle/grad
le/jmh.gradle:28)

¢===========--5> 91% EXECUTING [6s5]
:maven:compilelava

IDLE

tidePlay:compilelava

IDLE

WOW W W

Note: Parallel test execution is only displayed for JVM-based tests supported by Gradle core e.g.
JUnit and TestNG. Future versions of Gradle might support other testing tools and frameworks.

The following portion of the console output shows the work in-progress display with 8 concurrent workers:

<==========--- > 77% EXECUTI NG [10s]

. codeQual i ty: cl asspat hMani fest > Resol ve dependenci es :codeQuality:runti ned as:
sivy:classpat hMani f est > Resol ve dependencies :ivy:runtined asspath

| DLE

cantlr:classpat hMani fest > Resol ve dependencies :antlr:runtimedC asspath

: scal a: conpi | eJava > Resol ve dependenci es :scal a: conpi | eCl asspath

:bui ldlnit:classpat hvani fest > Resol ve dependencies :buildlnit:runtinmed asspat |
:jacoco: cl asspat hMani f est > Resol ve dependenci es :jacoco: runti ned asspath

| DLE

V V. V V V V V V

5.2.4. Build result

At the end of the build, Gradle will display the result of the build (successful or failed) and the number of
tasks that performed work and avoided work. The build result also displays the overall elapsed time it took to
execute the build. The number of tasks that performed work provides an indication of how out-of-date or
busy the build was.

Page 45 of 680

Figure 5.5. Build progress bar portion of the Gradle command-line

[] [Jgradlew :core:compileTestGroovy

} .fgradlew :core:compileTestGroovy
Parallel execution 1is an incubating feature.

> Configure project :
Using a single directory for all classes from a source set. This behaviour has been d
eprecated and is scheduled to be removed in Gradle 5.8

at jmh_bt759m7aBhvwiglOzer84adz4.run(/Usersfewendelin/src/testing/gradle/grad
le/jmh.gradle:28)

BUILD SUCCESSFUL in 8s
255 actionable tasks: 7 executed, 252 up-to-date

The following build result represents a successful build and the amount of tasks including their statuses:

BU LD SUCCESSFUL in 2m 10s
411 actionabl e tasks: 381 executed, 30 up-to-date

"Actionable" tasks are tasks with at least one action. Lifecycle tasks like bui | d (also called aggregation

tasks) do not declare any actions and are therefore not actionable.

5.3. Look & feel in non-interactive environments

By default, Gradle tries to enable rich console output by detecting the type of console the build is running
from. This enables color and additional console output formatting. Non-interactive environments fall back to
using plain console output. The plain output format does not support grouping of output. Tasks and
outcomes are always printed to be consistent with Gradle 3.x versions.

Note: Gradle builds executed from an IDE (e.g. Buildship and IntelliJ) or Continuous Integration
products (e.g. Jenkins and TeamCity) use plain console output by default.

The following output demonstrates the use of a plain console:

Page 46 of 680

: conpi | eJava

Note: Sone input files use unchecked or unsafe operations.
Note: Reconpile with -Xint:unchecked for details.
: processResour ces

. cl asses

) ar

:assenbl e

:conpi | eTest Java NO SOURCE

. processTest Resour ces NO SOURCE

:testd asses UP- TO DATE

:test NO SOURCE

: check UP- TO DATE

cbuild

BU LD SUCCESSFUL in 6s
11 actionable tasks: 6 executed, 5 up-to-date

Page 47 of 680

6

The Gradle Wrapper

Most tools require installation on your computer before you can use them. If the installation is easy, you may
think that's fine. But it can be an unnecessary burden on the users of the build. Equally importantly, will the
user install the right version of the tool for the build? What if they're building an old version of the software?

The Gradle Wrapper (henceforth referred to as the “Wrapper”) solves both these problems and is the
preferred way of starting a Gradle build.

6.1. Executing a build with the Wrapper

If a Gradle project has set up the Wrapper (and we recommend all projects do so), you can execute the build
using one of the following commands from the root of the project:

./ gradl ew <t ask> (on Unix-like platforms such as Linux and macOS)

gradl ew <t ask> (on Windows using the gradlew.bat batch file)

Each Wrapper is tied to a specific version of Gradle, so when you first run one of the commands above for a
given Gradle version, it will download the corresponding Gradle distribution and use it to execute the build.

IDEs

When importing a Gradle project via its wrapper, your IDE may ask to use the Gradle ‘all'
distribution. This is perfectly fine and helps the IDE provide code completion for the build files.

Not only does this mean that you don’t have to manually install Gradle yourself, but you are also sure to use
the version of Gradle that the build is designed for. This makes your historical builds more reliable. Just use
the appropriate syntax from above whenever you see a command line starting with gr adl e ...in the user
guide, on Stack Overflow, in articles or wherever.

For completeness sake, and to ensure you don’t delete any important files, here are the files and directories
in a Gradle project that make up the Wrapper:

gr adl ew (Unix Shell script)
gr adl ew. bat (Windows batch file)

gr adl e/ wr apper/ gradl e- wr apper . jar (Wrapper JAR)

Page 48 of 680

gradl e/ wr apper/ gr adl e- wr apper . properties (Wrapper properties)

If you're wondering where the Gradle distributions are stored, you'll find them in your user home directory
under $USER_HOWE/ . gr adl e/ wr apper/ di st's.

6.2. Adding the Wrapper to a project

The Wrapper is something you should check into version control. By distributing the Wrapper with your
project, anyone can work with it without needing to install Gradle beforehand. Even better, users of the build
are guaranteed to use the version of Gradle that the build was designed to work with. Of course, this is also
great for continuous integration servers (i.e. servers that regularly build your project) as it requires no
configuration on the server.

You install the Wrapper into your project by running the wr apper task. (This task is always available, even if
you don’t add it to your build). To specify a Gradle version use - - gr adl e- ver si on on the command-line.
By default, the Wrapper will use a bi n distribution. This is the smallest Gradle distribution. Some tools, like
Android Studio and Intellij IDEA, provide additional context information when used with the al | distribution.
You may select a different Gradle distribution type by using - - di stri buti on-type. You can also set the
URL to download Gradle from directly via - - gr adl e- di stri buti on-url . If no version or distribution URL
is specified, the Wrapper will be configured to use the gradle version the wr apper task is executed with. So
if you run the wr apper task with Gradle 2.4, then the Wrapper configuration will default to version 2.4.

Example 6.1. Running the Wrapper task

Output of gr adl e wr apper --gradl e-version 2.0

> gradl e wrapper --gradle-version 2.0
. Wr apper

BUI LD SUCCESSFUL in Os
1 actionable task: 1 executed

The Wrapper can be further customized by adding and configuring a W apper task in your build script, and
then executing it.
Example 6.2. Wrapper task

buil d. gradl e

task wrapper(type: Wapper) {
gradleVersion = '2.0'

After such an execution you find the following new or updated files in your project directory (in case the
default configuration of the Wrapper task is used).

Page 49 of 680

http://en.wikipedia.org/wiki/Continuous_integration
http://www.gradle.org/docs/4.4.1/dsl/org.gradle.api.tasks.wrapper.Wrapper.html

Example 6.3. Wrapper generated files

Build layout
si mpl e/
gradl ew
gr adl ew. bat
gr adl e/ wr apper/
gr adl e-wr apper. j ar
gradl e-wr apper. properties

All of these files should be submitted to your version control system. This only needs to be done once. After
these files have been added to the project, the project should then be built with the added gr adl ew
command. The gr adl ewcommand can be used exactly the same way as the gr adl e command.

If you want to switch to a new version of Gradle you don't need to rerun the wr apper task. It is good enough
to change the respective entry in the gradl e- wrapper. properties file, but if you want to take

advantage of new functionality in the Gradle wrapper, then you would need to regenerate the wrapper files.

6.3. Configuration

If you run Gradle with gr adl ew, the Wrapper checks if a Gradle distribution for the Wrapper is available. If
so, it delegates to the gr adl e command of this distribution with all the arguments passed originally to the gr
command. If it didn’t find a Gradle distribution, it will download it first.

When you configure the W apper task, you can specify the Gradle version you wish to use. The gr adl ew
command will download the appropriate distribution from the Gradle repository. Alternatively, you can specify
the download URL of the Gradle distribution. The gr adl ew command will use this URL to download the
distribution. If you specified neither a Gradle version nor download URL, the gr adl ew command will
download whichever version of Gradle was used to generate the Wrapper files.

For the details on how to configure the Wrapper, see the W apper class in the APl documentation.

If you don’t want any download to happen when your project is built via gr adl ew, simply add the Gradle
distribution zip to your version control at the location specified by your Wrapper configuration. A relative URL
is supported - you can specify a distribution file relative to the location of gr adl e- wr apper . properties
file.

If you build via the Wrapper, any existing Gradle distribution installed on the machine is ignored.

6.4. Authenticated Gradle distribution download

Security Warning

HTTP Basic Authentication should only be used with HTTPS URLs and not plain HTTP ones. With

Basic Authentication, the user credentials are sent in clear text.

The Gradle W apper can download Gradle distributions from servers using HTTP Basic Authentication. This
enables you to host the Gradle distribution on a private protected server. You can specify a username and

Page 50 of 680

http://www.gradle.org/docs/4.4.1/dsl/org.gradle.api.tasks.wrapper.Wrapper.html

password in two different ways depending on your use case: as system properties or directly embedded in
the di stri buti onUrl . Credentials in system properties take precedence over the ones embedded in di st

Using system properties can be done in the . gradl e/ gradl e. properti es file in the user's home
directory, or by other means, see Section 12.1, “Configuring the build environment via gradle.properties”.

Example 6.4. Specifying the HTTP Basic Authentication credentials using system properties

gradl e. properties.

syst enPr op. gr adl e. wr apper User =user nane
syst enPr op. gr adl e. w apper Passwor d=passwor d

Embedding credentials in the di st ri buti onUr | inthe gradl e/ w apper/ gradl e-w apper. properti
file also works. Please note that this file is to be committed into your source control system. Shared
credentials embedded in di stri buti onUrl should only be used in a controlled environment.

Example 6.5. Specifying the HTTP Basic Authentication credentials in di stri buti onUr |

gr adl e- wr apper . properties.
di stributionUrl =https://usernane: passwor d@onehost/ pat h/t o/ gradl e-di stri bution. zi

This can be used in conjunction with a proxy, authenticated or not. See Section 12.3, “Accessing the web via
a proxy” for more information on how to configure the W apper to use a proxy.

6.5. Verification of downloaded Gradle distributions

The Gradle Wrapper allows for verification of the downloaded Gradle distribution via SHA-256 hash sum
comparison. This increases security against targeted attacks by preventing a man-in-the-middle attacker
from tampering with the downloaded Gradle distribution.

To enable this feature, download the . sha256 file associated with the Gradle distribution you want to verify.

6.5.1. Downloading the SHA-256 file

You can download the . sha256 file by clicking on one of the sha256 links on whichever page you used to

download your distribution:

https://gradle.org/install
https://gradle.org/releases
https://gradle.org/release-candidate

https://gradle.org/nightly
The format of the file is a single line of text that is the SHA-256 hash of the corresponding zip file.

Add the downloaded hash sum to the gr adl e- wr apper. properti es using the di stri buti onSha256St

Page 51 of 680

https://gradle.org/install
https://gradle.org/releases
https://gradle.org/release-candidate
https://gradle.org/nightly

property.
Example 6.6. Configuring SHA-256 checksum verification

gr adl e- wr apper . properties.
di stri buti onSha256Sunr371cb9f bebbe9880d147f 59bab36d61eeel122854ef 8c9eelecf 12b8236!

6.6. Unix file permissions

The Wrapper task adds appropriate file permissions to allow the execution of the gr adl ew *NIX command.
Subversion preserves this file permission. We are not sure how other version control systems deal with this.
What should always work is to execute “sh gr adl ew’.

Page 52 of 680

v

The Gradle Daemon

From Wikipedia...

A daemon is a computer program that runs as a background process, rather than being under
the direct control of an interactive user.

Gradle runs on the Java Virtual Machine (JVM) and uses several supporting libraries that require a
non-trivial initialization time. As a result, it can sometimes seem a little slow to start. The solution to this
problem is the Gradle Daemon: a long-lived background process that executes your builds much more
quickly than would otherwise be the case. We accomplish this by avoiding the expensive bootstrapping
process as well as leveraging caching, by keeping data about your project in memory. Running Gradle builds
with the Daemon is no different than without. Simply configure whether you want to use it or not - everything
else is handled transparently by Gradle.

7.1. Why the Gradle Daemon is important for performance

The Daemon is a long-lived process, so not only are we able to avoid the cost of JVM startup for every build,
but we are able to cache information about project structure, files, tasks, and more in memory.

The reasoning is simple: improve build speed by reusing computations from previous builds. However, the
benefits are dramatic: we typically measure build times reduced by 15-75% on subsequent builds. We
recommend profiling your build by using - - pr of i | e to get a sense of how much impact the Gradle Daemon
can have for you.

The Gradle Daemon is enabled by default starting with Gradle 3.0, so you don’t have to do anything to
benefit from it.

If you run CI builds in ephemeral environments (such as containers) that do not reuse any processes, use of
the Daemon will slightly decrease performance (due to caching additional information) for no benefit, and
may be disabled.

7.2. Running Daemon Status

To get a list of running Gradle Daemons and their statuses use the - - st at us command.

Sample output:

Page 53 of 680

PI D VERSI ON STATUS
28411 3.0 | DLE
34247 3.0 BUSY

Currently, a given Gradle version can only connect to daemons of the same version. This means the status
output will only show Daemons for the version of Gradle being invoked and not for any other versions.
Future versions of Gradle will lift this constraint and will show the running Daemons for all versions of
Gradle.

7.3. Disabling the Daemon

The Gradle Daemon is enabled by default, and we recommend always enabling it. There are several ways to
disable the Daemon, but the most common one is to add the line

org. gradl e. daenon=f al se

to the file «USER_HOVE»/ . gr adl e/ gr adl e. properti es, where «USER_HOVE» is your home directory.
That's typically one of the following, depending on your platform:

C: \ User s\ <user nanme> (Windows Vista & 7+)
/ User s/ <user nanme> (macOS)

/ hone/ <user name> (Linux)

If that file doesn't exist, just create it using a text editor. You can find details of other ways to disable (and
enable) the Daemon in Section 7.5, “FAQ” further down. That section also contains more detailed
information on how the Daemon works.

Note that having the Daemon enabled, all your builds will take advantage of the speed boost, regardless of
the version of Gradle a particular build uses.

Continuous integration

Since Gradle 3.0, we enable Daemon by default and recommend using it for both developers'
machines and Continuous Integration servers. However, if you suspect that Daemon makes your ClI
builds unstable, you can disable it to use a fresh runtime for each build since the runtime is
completely isolated from any previous builds.

7.4. Stopping an existing Daemon

As mentioned, the Daemon is a background process. You needn’t worry about a build up of Gradle
processes on your machine, though. Every Daemon monitors its memory usage compared to total system
memory and will stop itself if idle when available system memory is low. If you want to explicitly stop running
Daemon processes for any reason, just use the command gr adl e - - st op.

This will terminate all Daemon processes that were started with the same version of Gradle used to execute
the command. If you have the Java Development Kit (JDK) installed, you can easily verify that a Daemon
has stopped by running the j ps command. You'll see any running Daemons listed with the name Gr adl eDau

Page 54 of 680

7.5. FAQ
7.5.1. How do | disable the Gradle Daemon?

There are two recommended ways to disable the Daemon persistently for an environment:

Via environment variables: add the flag - Dor g. gr adl e. daenon=f al se to the GRADLE_OPTS environment
variable

Via properties file: add or g. gr adl e. daenon=f al se to the «<GRADLE_USER HOVE»/ gr adl e. properti e

file

Note: Note, «GRADLE _USER HOVE» defaults to «USER HOVE»/ . gr adl e, where «USER_HOVE» is
the home directory of the current user. This location can be configured via the - g and - - gr adl e- user
command line switches, as well as by the GRADLE_USER_HOVE environment variable and or g. gr adl €
JVM system property.

Both approaches have the same effect. Which one to use is up to personal preference. Most Gradle users
choose the second option and add the entry to the user gr adl e. properti es file.

On Windows, this command will disable the Daemon for the current user:

(if not exist "9JSERPROFI LE% . gradl e" nkdir "%JSERPROFILEY% .gradle") && (echo. >:

On UNIX-like operating systems, the following Bash shell command will disable the Daemon for the current
user:

nkdir -p ~/.gradle & echo "org. gradl e. daenon=fal se" >> ~/.gradl e/ gradl e. properti

Once the Daemon is disabled for a build environment in this way, a Gradle Daemon will not be started
unless explicitly requested using the - - daenon option.

The - - daenpn and - - no- daenon command line options enable and disable usage of the Daemon for
individual build invocations when using the Gradle command line interface. These command line options
have the highest precedence when considering the build environment. Typically, it is more convenient to
enable the Daemon for an environment (e.g. a user account) so that all builds use the Daemon without
requiring to remember to supply the - - daenon option.

7.5.2. Why is there more than one Daemon process on my machine?

There are several reasons why Gradle will create a new Daemon, instead of using one that is already
running. The basic rule is that Gradle will start a new Daemon if there are no existing idle or compatible
Daemons available. Gradle will kill any Daemon that has been idle for 3 hours or more, so you don’t have to
worry about cleaning them up manually.

idle
An idle Daemon is one that is not currently executing a build or doing other useful work.

Page 55 of 680

compatible

A compatible Daemon is one that can (or can be made to) meet the requirements of the requested build
environment. The Java runtime used to execute the build is an example aspect of the build environment.
Another example is the set of JVM system properties required by the build runtime.

Some aspects of the requested build environment may not be met by an Daemon. If the Daemon is running
with a Java 7 runtime, but the requested environment calls for Java 8, then the Daemon is not compatible
and another must be started. Moreover, certain properties of a Java runtime cannot be changed once the
JVM has started. For example, it is not possible to change the memory allocation (e.g. - Xmx1024n), default
text encoding, default locale, etc of a running JVM.

The “requested build environment” is typically constructed implicitly from aspects of the build client’s (e.qg.
Gradle command line client, IDE etc.) environment and explicitly via command line switches and settings.
See Chapter 12, The Build Environment for details on how to specify and control the build environment.

The following JVM system properties are effectively immutable. If the requested build environment requires
any of these properties, with a different value than a Daemon’s JVM has for this property, the Daemon is not
compatible.

file.encoding

user.language

user.country

user.variant

java.io.tmpdir

javax.net.ssl.keyStore

javax.net.ssl.keyStorePassword

javax.net.ssl.keyStoreType

javax.net.ssl.trustStore

javax.net.ssl.trustStorePassword

javax.net.ssl.trustStoreType

com.sun.management.jmxremote

The following JVM attributes, controlled by startup arguments, are also effectively immutable. The
corresponding attributes of the requested build environment and the Daemon’s environment must match
exactly in order for a Daemon to be compatible.

The maximum heap size (i.e. the -Xmx JVM argument)
The minimum heap size (i.e. the -Xms JVM argument)
The boot classpath (i.e. the -Xbootclasspath argument)

The “assertion” status (i.e. the -ea argument)

Page 56 of 680

The required Gradle version is another aspect of the requested build environment. Daemon processes are
coupled to a specific Gradle runtime. Working on multiple Gradle projects during a session that use different
Gradle versions is a common reason for having more than one running Daemon process.

7.5.3. How much memory does the Daemon use and can | give it more?

If the requested build environment does not specify a maximum heap size, the Daemon will use up to 1GB of
heap. It will use the JVM'’s default minimum heap size. 1GB is more than enough for most builds. Larger
builds with hundreds of subprojects, lots of configuration, and source code may require, or perform better,
with more memory.

To increase the amount of memory the Daemon can use, specify the appropriate flags as part of the
requested build environment. Please see Chapter 12, The Build Environment for details.

7.5.4. How can | stop a Daemon?

Daemon processes will automatically terminate themselves after 3 hours of inactivity or less. If you wish to
stop a Daemon process before this, you can either kill the process via your operating system or run the gr ad
command. The - - st op switch causes Gradle to request that all running Daemon processes, of the same
Gradle version used to run the command, terminate themselves.

7.5.5. What can go wrong with Daemon?

Considerable engineering effort has gone into making the Daemon robust, transparent and unobtrusive
during day to day development. However, Daemon processes can occasionally be corrupted or exhausted.
A Gradle build executes arbitrary code from multiple sources. While Gradle itself is designed for and heavily
tested with the Daemon, user build scripts and third party plugins can destabilize the Daemon process
through defects such as memory leaks or global state corruption.

It is also possible to destabilize the Daemon (and build environment in general) by running builds that do not
release resources correctly. This is a particularly poignant problem when using Microsoft Windows as it is
less forgiving of programs that fail to close files after reading or writing.

Gradle actively monitors heap usage and attempts to detect when a leak is starting to exhaust the available
heap space in the daemon. When it detects a problem, the Gradle daemon will finish the currently running
build and proactively restart the daemon on the next build. This monitoring is enabled by default, but can be
disabled by setting the or g. gr adl e. daenon. per f or mance. enabl e- noni t ori ng system property to
false.

If it is suspected that the Daemon process has become unstable, it can simply be killed. Recall that the - - no
switch can be specified for a build to prevent use of the Daemon. This can be useful to diagnose whether or
not the Daemon is actually the culprit of a problem.

Page 57 of 680

7.6. Tools & IDEs

The Gradle Tooling API (see Chapter 14, Embedding Gradle using the Tooling API), that is used by IDEs
and other tools to integrate with Gradle, always use the Gradle Daemon to execute builds. If you are
executing Gradle builds from within you're IDE you are using the Gradle Daemon and do not need to enable
it for your environment.

7.7. How does the Gradle Daemon make builds faster?

The Gradle Daemon is a long lived build process. In between builds it waits idly for the next build. This has
the obvious benefit of only requiring Gradle to be loaded into memory once for multiple builds, as opposed to
once for each build. This in itself is a significant performance optimization, but that’s not where it stops.

A significant part of the story for modern JVM performance is runtime code optimization. For example,
HotSpot (the JVM implementation provided by Oracle and used as the basis of OpenJDK) applies
optimization to code while it is running. The optimization is progressive and not instantaneous. That is, the
code is progressively optimized during execution which means that subsequent builds can be faster purely
due to this optimization process. Experiments with HotSpot have shown that it takes somewhere between 5
and 10 builds for optimization to stabilize. The difference in perceived build time between the first build and
the 10th for a Daemon can be quite dramatic.

The Daemon also allows more effective in memory caching across builds. For example, the classes needed
by the build (e.g. plugins, build scripts) can be held in memory between builds. Similarly, Gradle can
maintain in-memory caches of build data such as the hashes of task inputs and outputs, used for
incremental building.

Page 58 of 680

8

Dependency Management Basics

This chapter introduces some of the basics of dependency management in Gradle.

8.1. What is dependency management?

Very roughly, dependency management is made up of two pieces. Firstly, Gradle needs to know about the
things that your project needs to build or run, in order to find them. We call these incoming files the
dependencies of the project. Secondly, Gradle needs to build and upload the things that your project
produces. We call these outgoing files the publications of the project. Let’s look at these two pieces in more
detail:

Most projects are not completely self-contained. They need files built by other projects in order to be
compiled or tested and so on. For example, in order to use Hibernate in my project, | need to include some
Hibernate jars in the classpath when | compile my source. To run my tests, | might also need to include
some additional jars in the test classpath, such as a particular JDBC driver or the Ehcache jars.

These incoming files form the dependencies of the project. Gradle allows you to tell it what the
dependencies of your project are, so that it can take care of finding these dependencies, and making them
available in your build. The dependencies might need to be downloaded from a remote Maven or Ivy
repository, or located in a local directory, or may need to be built by another project in the same multi-project
build. We call this process dependency resolution.

Note that this feature provides a major advantage over Ant. With Ant, you only have the ability to specify
absolute or relative paths to specific jars to load. With Gradle, you simply declare the “names” of your
dependencies, and other layers determine where to get those dependencies from. You can get similar
behavior from Ant by adding Apache vy, but Gradle does it better.

Often, the dependencies of a project will themselves have dependencies. For example, Hibernate core
requires several other libraries to be present on the classpath with it runs. So, when Gradle runs the tests for
your project, it also needs to find these dependencies and make them available. We call these transitive
dependencies.

The main purpose of most projects is to build some files that are to be used outside the project. For
example, if your project produces a Java library, you need to build a jar, and maybe a source jar and some
documentation, and publish them somewhere.

Page 59 of 680

These outgoing files form the publications of the project. Gradle also takes care of this important work for
you. You declare the publications of your project, and Gradle take care of building them and publishing them
somewhere. Exactly what “publishing” means depends on what you want to do. You might want to copy the
files to a local directory, or upload them to a remote Maven or lvy repository. Or you might use the files in
another project in the same multi-project build. We call this process publication.

8.2. Declaring your dependencies
Let's look at some dependency declarations. Here’s a basic build script:

Example 8.1. Declaring dependencies

bui I d. gradl e
apply plugin: 'java

repositories {
mavenCentral ()

dependenci es {
conpil e group: 'org. hibernate', nane: 'hibernate-core', version: '3.6.7.Fina
testConpile group: "junit', nanme: 'junit', version: '4.+

What's going on here? This build script says a few things about the project. Firstly, it states that Hibernate
core 3.6.7.Final is required to compile the project’s production source. By implication, Hibernate core and its
dependencies are also required at runtime. The build script also states that any junit >= 4.0 is required to
compile the project’s tests. It also tells Gradle to look in the Maven central repository for any dependencies
that are required. The following sections go into the details.

8.3. Dependency configurations

A Configuration is a named set of dependencies and artifacts. There are three main purposes for a
Configuration;

Declaring Dependencies

The plugin uses configurations to make it easy for build authors to declare what other subprojects or
external artifacts are needed for various purposes during the execution of tasks defined by the plugin.

Resolving Dependencies

The plugin uses configurations to find (and possibly download) inputs to the tasks it defines.
Exposing Artifacts for Consumption

The plugin uses configurations to define what artifacts it generates for other projects to consume.

With those three purposes in mind, let's take a look at a few of the standard configurations defined by the

Page 60 of 680

Java Library Plugin. You can find more details in Section 49.4, “The Java Library plugin configurations”.
implementation

The dependencies required to compile the production source of the project, but which are not part of the
api exposed by the project. This configuration is an example of a configuration used for Declaring
Dependencies.

runtimeClasspath

The dependencies required by the production classes at runtime. By default, this includes the
dependencies declared in the api, i npl enentation, and runti nmeOnly configurations. This
configuration is an example of a configuration used for Resolving Dependencies, and as such, users
should never declare dependencies directly in the r unt i meCl asspat h configuration.

apiElements

The dependencies which are part of this project’s externally consumable API as well as the classes
which are defined in this project which should be consumable by other projects. This configuration is an
example of Exposing Artifacts for Consumption.

Various plugins add further standard configurations. You can also define your own custom configurations to
use in your build. Please see Section 25.3, “Dependency configurations” for the details of defining and
customizing dependency configurations.

8.4. External dependencies

There are various types of dependencies that you can declare. One such type is an external dependency.
This is a dependency on some files built outside the current build, and stored in a repository of some kind,
such as Maven central, or a corporate Maven or lvy repository, or a directory in the local file system.

To define an external dependency, you add it to a dependency configuration:

Example 8.2. Definition of an external dependency

buil d. gradl e

dependenci es {
conpil e group: 'org. hibernate', nane: 'hibernate-core', version: '3.6.7.Fina

An external dependency is identified using gr oup, nane and ver si on attributes. Depending on which kind
of repository you are using, gr oup and ver si on may be optional.

The shortcut form for declaring external dependencies looks like “gr oup: name: ver si on”.

Page 61 of 680

Example 8.3. Shortcut definition of an external dependency

buil d. gradl e

dependenci es {
conpi l e 'org. hi bernate: hi bernate-core: 3.6.7.Final

To find out more about defining and working with dependencies, have a look at Section 25.4, “How to
declare your dependencies”.

8.5. Repositories

How does Gradle find the files for external dependencies? Gradle looks for them in a repository. A
repository is really just a collection of files, organized by gr oup, name and ver si on. Gradle understands
several different repository formats, such as Maven and lvy, and several different ways of accessing the
repository, such as using the local file system or HTTP.

By default, Gradle does not define any repositories. You need to define at least one before you can use
external dependencies. One option is use the Maven central repository:
Example 8.4. Usage of Maven central repository

buil d. gradl e

repositories {
mavenCentral ()

Or Bintray’s JCenter:

Example 8.5. Usage of JCenter repository

buil d. gradl e
repositories {
jcenter()

Or any other remote Maven repository:

Example 8.6. Usage of a remote Maven repository

bui I d. gradl e

repositories {
maven {
url "http://repo. myconpany. com maven2"

Or a remote vy repository:

Page 62 of 680

Example 8.7. Usage of a remote lvy directory

buil d. gradl e
repositories {
ivy {
url "http://repo. myconpany. com r epo”

You can also have repositories on the local file system. This works for both Maven and lvy repositories.

Example 8.8. Usage of a local lvy directory

buil d. gradl e
repositories {
ivy {
url "../local -repo”
}

A project can have multiple repositories. Gradle will look for a dependency in each repository in the order
they are specified, stopping at the first repository that contains the requested module.

To find out more about defining and working with repositories, have a look at Section 25.6, “Repositories”.

8.6. Publishing artifacts

Dependency configurations are also used to publish files.[?) We call these files publication artifacts, or
usually just artifacts.

The plugins do a pretty good job of defining the artifacts of a project, so you usually don’t need to do
anything special to tell Gradle what needs to be published. However, you do need to tell Gradle where to
publish the artifacts. You do this by attaching repositories to the upl oadAr chi ves task. Here's an example
of publishing to a remote lvy repository:

Example 8.9. Publishing to an Ivy repository

buil d. gradl e
upl oadAr chi ves {
repositories {
vy {
credentials {
user nanme "usernane"
password " pw'

}
url "http://repo. nyconpany. cont

Page 63 of 680

Now, when you run gr adl e upl oadAr chi ves, Gradle will build and upload your Jar. Gradle will also
generate and upload ani vy. xm as well.

You can also publish to Maven repositories. The syntax is slightly different.[] Note that you also need to
apply the Maven plugin in order to publish to a Maven repository. when this is in place, Gradle will generate
and upload a pom xm .

Example 8.10. Publishing to a Maven repository

buil d. gradl e

apply plugin: 'maven'

upl oadAr chi ves {
repositories {

mavenDepl oyer {
repository(url: "file://local host/tnp/ nyRepo/")

To find out more about publication, have a look at Chapter 32, Publishing artifacts.

8.7. Where to next?

For all the details of dependency resolution, see Chapter 25, Dependency Management, and for artifact
publication see Chapter 32, Publishing artifacts.

If you are interested in the DSL elements mentioned here, have a look at Pr oj ect . confi gurati ons{},
Proj ect.repositories{} and Proj ect. dependenci es{}.

Otherwise, continue on to some guides.

[2] We think this is confusing, and we are gradually teasing apart the two concepts in the Gradle DSL.

[3] We are working to make the syntax consistent for resolving from and publishing to Maven repositories.

Page 64 of 680

http://www.gradle.org/docs/4.4.1/dsl/org.gradle.api.Project.html#org.gradle.api.Project:configurations(groovy.lang.Closure)
http://www.gradle.org/docs/4.4.1/dsl/org.gradle.api.Project.html#org.gradle.api.Project:repositories(groovy.lang.Closure)
http://www.gradle.org/docs/4.4.1/dsl/org.gradle.api.Project.html#org.gradle.api.Project:repositories(groovy.lang.Closure)
http://www.gradle.org/docs/4.4.1/dsl/org.gradle.api.Project.html#org.gradle.api.Project:dependencies(groovy.lang.Closure)
https://guides.gradle.org

9

Introduction to multi-project builds

Only the smallest of projects has a single build file and source tree, unless it happens to be a massive,
monolithic application. It's often much easier to digest and understand a project that has been split into
smaller, inter-dependent modules. The word “inter-dependent” is important, though, and is why you typically
want to link the modules together through a single build.

Gradle supports this scenario through multi-project builds.

9.1. Structure of a multi-project build
Such builds come in all shapes and sizes, but they do have some common characteristics:

A settings. gradl e file in the root or nast er directory of the project
A bui | d. gr adl e file in the root or nast er directory

Child directories that have their own *. gr adl e build files (some multi-project builds may omit child project
build scripts)

The settings. gradl e file tells Gradle how the project and subprojects are structured. Fortunately, you
don’t have to read this file simply to learn what the project structure is as you can run the command gr adl e
. Here’s the output from using that command on the Java multiproject build in the Gradle samples:

Page 65 of 680

Example 9.1. Listing the projects in a build

Output of gradl e -q projects

> gradle -qg projects

Root project 'multiproject'

+--- Project ':api’

+--- Project ':services'

| +--- Project ':services:shared

| \--- Project ':services:webservice'
\--- Project ':shared

To see a list of the tasks of a project, run gradl e <project-path>:tasks
For exanple, try running gradle :api:tasks

This tells you that multiproject has three immediate child projects: api, services and shared. The services
project then has its own children, shared and webservice. These map to the directory structure, so it's easy
to find them. For example, you can find webservice in <r oot >/ ser vi ces/ webser vi ce.

By default, Gradle uses the name of the directory it finds the setti ngs. gradl e as the name of the root
project. This usually doesn’t cause problems since all developers check out the same directory name when
working on a project. On Continuous Integration servers, like Jenkins, the directory name may be
auto-generated and not match the name in your VCS. For that reason, it's recommended that you always set
the root project name to something predictable, even in single project builds. You can configure the root
project name by setting r oot Pr oj ect . nane.

Each project will usually have its own build file, but that's not necessarily the case. In the above example, the
services project is just a container or grouping of other subprojects. There is no build file in the
corresponding directory. However, multiproject does have one for the root project.

The root bui | d. gradl e is often used to share common configuration between the child projects, for
example by applying the same sets of plugins and dependencies to all the child projects. It can also be used
to configure individual subprojects when it is preferable to have all the configuration in one place. This
means you should always check the root build file when discovering how a particular subproject is being
configured.

Another thing to bear in mind is that the build files might not be called bui | d. gr adl e. Many projects will
name the build files after the subproject names, such as api . gradl e and servi ces. gradl e from the
previous example. Such an approach helps a lot in IDEs because it's tough to work out which bui | d. gr adl
file out of twenty possibilities is the one you want to open. This little piece of magic is handled by the settin
file, but as a build user you don’t need to know the details of how it's done. Just have a look through the child
project directories to find the files with the . gr adl e suffix.

Page 66 of 680

Once you know what subprojects are available, the key question for a build user is how to execute the tasks
within the project.

9.2. Executing a multi-project build

From a user’s perspective, multi-project builds are still collections of tasks you can run. The difference is that
you may want to control which project’s tasks get executed. You have two options here:

Change to the directory corresponding to the subproject you're interested in and just execute gr adl e <t ask

as normal.

Use a qualified task name from any directory, although this is usually done from the root. For example: gr adl
will build the webservice subproject and any subprojects it depends on.

The first approach is similar to the single-project use case, but Gradle works slightly differently in the case of
a multi-project build. The command gr adl e t est will execute the t est task in any subprojects, relative to
the current working directory, that have that task. So if you run the command from the root project directory,
you'll run t est in api, shared, services:shared and services:webservice. If you run the command from the
services project directory, you'll only execute the task in services:shared and services:webservice.

For more control over what gets executed, use qualified names (the second approach mentioned). These
are paths just like directory paths, but use “’ instead of ‘/’ or ‘\'. If the path begins with a *’, then the path is
resolved relative to the root project. In other words, the leading *:’ represents the root project itself. All other
colons are path separators.

This approach works for any task, so if you want to know what tasks are in a particular subproject, just use
the t asks task, e.g. gradl e : servi ces: webservi ce: tasks .

Regardless of which technique you use to execute tasks, Gradle will take care of building any subprojects
that the target depends on. You don’t have to worry about the inter-project dependencies yourself. If you're
interested in how this is configured, you can read about writing multi-project builds later in the user guide.

There’s one last thing to note. When you're using the Gradle wrapper, the first approach doesn’t work well
because you have to specify the path to the wrapper script if you're not in the project root. For example, if
you're in the webservice subproject directory, you would havetorun. ./ ../ gradl ew bui | d.

That's all you really need to know about multi-project builds as a build user. You can now identify whether a
build is a multi-project one and you can discover its structure. And finally, you can execute tasks within
specific subprojects.

Page 67 of 680

10

Continuous build

Note: Continuous build is an incubating feature. This means that it is incomplete and not yet at
regular Gradle production quality. This also means that this Gradle User Guide chapter is a work in
progress.

Typically, you ask Gradle to perform a single build by way of specifying tasks that Gradle should execute.
Gradle will determine the actual set of tasks that need to be executed to satisfy the request, execute them
all, and then stop doing work until the next request. A continuous build differs in that Gradle will keep
satisfying the initial build request (until instructed to stop) by executing the build when it is detected that the
result of the previous build is now out of date. For example, if your build compiles Java source files to Java
class files, a continuous build would automatically initiate a compile when the source files change.
Continuous build is useful for many scenarios.

10.1. How do | start and stop a continuous build?

A continuous build can be started by supplying either the - - cont i nuous or -t switches to Gradle, along
with the list of tasks, switches and arguments that define the work to do. For example, gradl e build --cc
. This will have the same effect as running gr adl e bui | d, but instead of Gradle exiting when done, it will
wait for changes to the build inputs. When a change occurs, gr adl e bui | d will be automatically executed
again and the process repeats.

If Gradle is attached to an interactive input source, such as a terminal, the continuous build can be exited by
pressing CTRL- D (On Microsoft Windows, it is required to also press ENTER or RETURN after CTRL- D). If
Gradle is not attached to an interactive input source (e.g. is running as part of a script), the build process
must be terminated (e.g. using the ki | I command or similar). If the build is being executed via the Tooling
API, the build can be cancelled using the Tooling API's cancellation mechanism.

10.2. What will cause a subsequent build?
Task file inputs

Task implementations declare their file system inputs by annotating their properties with
I nput Fi | es and other similar annotations. Please see Section 19.10, “Up-to-date checks (AKA
Incremental Build)” for more information.

Page 68 of 680

http://www.gradle.org/docs/4.4.1/javadoc/org/gradle/api/tasks/InputFiles.html
http://www.gradle.org/docs/4.4.1/javadoc/org/gradle/api/tasks/InputFiles.html

At this time, only changes to task inputs are noticed. Gradle will start watching for changes just before the
task starts to execute. No other changes will initiate a build. For example, changes to build scripts and build
logic will not initiate build. Likewise, changes to files that are read during the configuration of the build, not
the execution, will not initiate a build. In order to incorporate such changes, the continuous build must be
restarted manually.

Consider a typical build using the Java plugin, using the conventional filesystem layout. The following
diagram visualizes the task graph for gr adl e bui | d:

Figure 10.1. Java plugin task graph

javadoc

compileTestJava
processTeslResources

compileJava

test check

testClasses

uploadArchives
assemble 14

processResources

A

clean

The following key tasks of the graph use files in the corresponding directories as inputs:
compileJava
src/ main/java
processResources
src/ mai n/ resour ces
compileTestJava
src/test/java
processTestResources
src/test/resources

Assuming that the initial build is successful (i.e. the bui | d task and its dependencies complete without
error), changes to files in, or the addition/remove of files from, the locations listed above will initiate a new
build. If a change is made to a Java source file in sr ¢/ nai n/ j ava, the build will fire and all tasks will be
scheduled. Gradle’s incremental build support ensures that only the tasks that are actually affected by the
change are executed.

If the change to the main Java source causes compilation to fail, subsequent changes to the test source in sr
will not initiate a new build. As the test source depends on the main source, there is no point building until
the main source has changed, potentially fixing the compilation error. After each build, only the inputs of the
tasks that actually executed will be monitored for changes.

Page 69 of 680

Continuous build is in no way coupled to compilation. It works for all types of tasks. For example, the pr oces
task copies and processes the files from src/ mai n/ r esour ces for inclusion in the built JAR. As such, a
change to any file in this directory will also initiate a build.

10.3. Limitations and quirks

There are several issues to be aware with the current implementation of continuous build. These are likely to
be addressed in future Gradle releases.

10.3.1. Build cycles

Gradle starts watching for changes just before a task executes. If a task modifies its own inputs while
executing, Gradle will detect the change and trigger a new build. If every time the task executes, the inputs
are modified again, the build will be triggered again. This isn’t unique to continuous build. A task that
modifies its own inputs will never be considered up-to-date when run "normally" without continuous build.

If your build enters a build cycle like this, you can track down the task by looking at the list of files reported
changed by Gradle. After identifying the file(s) that are changed during each build, you should look for a task
that has that file as an input. In some cases, it may be obvious (e.g., a Java file is compiled with conpi | eJa
). In other cases, you can use - - i nf o logging to find the task that is out-of-date due to the identified files.

10.3.2. Restrictions with Java 9

Due to class access restrictions related to Java 9, Gradle cannot set some operating system specific
options, which means that:

On macOS, Gradle will poll for file changes every 10 seconds instead of every 2 seconds.

On Windows, Gradle must use individual file watches (like on Linux/Mac OS), which may cause continuous
build to no longer work on very large projects.

10.3.3. Performance and stability

The JDK file watching facility relies on inefficient file system polling on macOS (see: JDK-7133447). This can
significantly delay notification of changes on large projects with many source files.

Additionally, the watching mechanism may deadlock under heavy load on macOS (see: JDK-8079620). This
will manifest as Gradle appearing not to notice file changes. If you suspect this is occurring, exit continuous
build and start again.

On Linux, OpenJDK’s implementation of the file watch service can sometimes miss file system events (see:
JDK-8145981).

Page 70 of 680

https://bugs.openjdk.java.net/browse/JDK-7133447
https://bugs.openjdk.java.net/browse/JDK-8079620
https://bugs.openjdk.java.net/browse/JDK-8145981

10.3.4. Changes to symbolic links

Creating or removing symbolic link to files will initiate a build.

Modifying the target of a symbolic link will not cause a rebuild.

Creating or removing symbolic links to directories will not cause rebuilds.
Creating new files in the target directory of a symbolic link will not cause a rebuild.

Deleting the target directory will not cause a rebuild.

10.3.5. Changes to build logic are not considered

The current implementation does not recalculate the build model on subsequent builds. This means that
changes to task configuration, or any other change to the build model, are effectively ignored.

Page 71 of 680

11

Composite builds

Note: Composite build is an incubating feature. While useful for many use cases, there are bugs to
be discovered, rough edges to smooth, and enhancements we plan to make. Thanks for trying it out!

11.1. What is a composite build?

A composite build is simply a build that includes other builds. In many ways a composite build is similar to a
Gradle multi-project build, except that instead of including single pr oj ect s, complete bui | ds are included.

Composite builds allow you to:

combine builds that are usually developed independently, for instance when trying out a bug fix in a library
that your application uses

decompose a large multi-project build into smaller, more isolated chunks that can be worked in
independently or together as needed

A build that is included in a composite build is referred to, naturally enough, as an "included build". Included
builds do not share any configuration with the composite build, or the other included builds. Each included
build is configured and executed in isolation.

Included builds interact with other builds via dependency substituti on. If any build in the composite
has a dependency that can be satisfied by the included build, then that dependency will be replaced by a
project dependency on the included build.

By default, Gradle will attempt to determine the dependencies that can be substituted by an included build.
However for more flexibility, it is possible to explicitly declare these substitutions if the default ones
determined by Gradle are not correct for the composite. See Section 11.4, “Declaring the dependencies
substituted by an included build”.

As well as consuming outputs via project dependencies, a composite build can directly declare task
dependencies on included builds. Included builds are isolated, and are not able to declare task
dependencies on the composite build or on other included builds. See Section 11.5, “Depending on tasks in
an included build”.

Page 72 of 680

11.2. Defining a composite build

The following examples demonstrate the various ways that 2 Gradle builds that are normally developed
separately can be combined into a composite build. For these examples, the my- ut i | s multi-project build
produces 2 different java libraries (nunber-util s and string-util s), and the ny- app build produces

an executable using functions from those libraries.

The mny-app build does not have direct dependencies on my-utils. Instead, it declares binary
dependencies on the libraries produced by ny-util s.
Example 11.1. Dependencies of my-app

my-app/ bui | d. gradl e

apply plugin: 'java'
apply plugin: '"application
apply plugin: '"idea'

group "org.sanple"
version "1.0"

mai nCl assNane = "org. sanpl e. nyapp. Mai n"
dependenci es {

compil e "org. sanmpl e: nunber-utils:1.0"
conpile "org.sanple:string-utils:1.0"

repositories {
jcenter()

Note: The code for this example can be found at sanpl es/ conposi t eBui | ds/ basi ¢ in the ‘-all’

distribution of Gradle.

11.2.1. Defining a composite build via - - i ncl ude- bui | d

The - -incl ude- bui | d command-line argument turns the executed build into a composite, substituting
dependencies from the included build into the executed build.

Page 73 of 680

Example 11.2. Declaring a command-line composite

Outputofgradl e --include-build ../nmy-utils run

> gradle --include-build ../my-utils run

> processResour ces NO SOURCE
cmy-utils:string-utils:conmpileJava
sny-utils:string-utils:processResources NO SOURCE
cmy-utils:string-utils:classes
cny-utils:string-utils:jar
cmy-utils:nunber-utils:conpil elava
sny-utils:nunber-utils: processResources NO SOURCE
:my-utils:nunmber-utils:classes
smy-utils:nunmber-utils:jar

:conpi | eJava

: cl asses

jrun

The answer is 42

BUI LD SUCCESSFUL in Os
2 actionabl e tasks: 2 executed

11.2.2. Defining a composite build viasetti ngs. gradl e

It's possible to make the above arrangement persistent, by using
Settings.includeBuild(java. | ang. Obj ect) to declare the included build in the setti ngs. gradl e
file. The setti ngs. gradl e file can be used to add subprojects and included builds at the same time.
Included builds are added by location. See the examples below for more details.

11.2.3. Defining a separate composite build

One downside of the above approach is that it requires you to modify an existing build, rendering it less
useful as a standalone build. One way to avoid this is to define a separate composite build, whose only
purpose is to combine otherwise separate builds.

Example 11.3. Declaring a separate composite
settings.gradle

root Proj ect. name=" adhoc'

i ncludeBuild '../nmy-app'
includeBuild '../ny-utils'

In this scenario, the 'main’ build that is executed is the composite, and it doesn’t define any useful tasks to
execute itself. In order to execute the 'run' task in the 'my-app' build, the composite build must define a
delegating task.

Page 74 of 680

http://www.gradle.org/docs/4.4.1/dsl/org.gradle.api.initialization.Settings.html#org.gradle.api.initialization.Settings:includeBuild(java.lang.Object)
http://www.gradle.org/docs/4.4.1/dsl/org.gradle.api.initialization.Settings.html#org.gradle.api.initialization.Settings:includeBuild(java.lang.Object)

Example 11.4. Depending on task from included build

buil d. gradl e

task run {
dependsOn gradl e. i ncl udedBui | d(' ny-app').task(':run")

More details tasks that depend on included build tasks below.

11.2.4. Restrictions on included builds

Most builds can be included into a composite, however there are some limitations.
Every included build:

must have a set ti ngs. gr adl e file.

must not itself be a composite build.

must not have a r oot Pr oj ect . nane the same as another included build.

must not have a r oot Pr oj ect . nane the same as a top-level project of the composite build.

must not have a r oot Pr oj ect . nane the same as the composite build r oot Pr oj ect . nane.

11.3. Interacting with a composite build

In general, interacting with a composite build is much the same as a regular multi-project build. Tasks can be
executed, tests can be run, and builds can be imported into the IDE.

11.3.1. Executing tasks

Tasks from the composite build can be executed from the command line, or from you IDE. Executing a task
will result in direct task dependencies being executed, as well as those tasks required to build dependency
artifacts from included builds.

Note: There is not (yet) any means to directly execute a task from an included build via the
command line. Included build tasks are automatically executed in order to generate required
dependency artifacts, or the including build can declare a dependency on a task from an included
build.

11.3.2. Importing into the IDE

One of the most useful features of composite builds is IDE integration. By applying the idea or eclipse plugin
to your build, it is possible to generate a single IDEA or Eclipse project that permits all builds in the
composite to be developed together.

In addition to these Gradle plugins, recent versions of IntelliJ IDEA and Eclipse Buildship support direct
import of a composite build.

Importing a composite build permits sources from separate Gradle builds to be easily developed together.

Page 75 of 680

https://www.jetbrains.com/idea/
https://projects.eclipse.org/projects/tools.buildship

For every included build, each sub-project is included as an IDEA Module or Eclipse Project. Source
dependencies are configured, providing cross-build navigation and refactoring.

11.4. Declaring the dependencies substituted by an included build

By default, Gradle will configure each included build in order to determine the dependencies it can provide.
The algorithm for doing this is very simple: Gradle will inspect the group and name for the projects in the
included build, and substitute project dependencies for any external dependency matching ${ pr oj ect . gr ol

There are cases when the default substitutions determined by Gradle are not sufficient, or they are not
correct for a particular composite. For these cases it is possible to explicitly declare the substitutions for an
included build. Take for example a single-project build ‘unpublished', that produces a java utility library but
does not declare a value for the group attribute:

Example 11.5. Build that does not declare group attribute

buil d. gradl e
apply plugin: 'java

When this build is included in a composite, it will attempt to substitute for the dependency module
"undefined:unpublished" ("undefined" being the default value for pr oj ect . gr oup, and 'unpublished' being
the root project name). Clearly this isn’t going to be very useful in a composite build. To use the unpublished
library unmodified in a composite build, the composing build can explicitly declare the substitutions that it
provides:

Example 11.6. Declaring the substitutions for an included build

settings.gradle

root Proj ect. name = 'app

i ncludeBuil d('../anonynous-Ilibrary') {
dependencySubstitution {
substitute modul e(' org. sanpl e: nunber-utils') with project(':")

With this configuration, the "my-app" composite build will substitute any dependency on or g. sanpl e: numnbe
with a dependency on the root project of "unpublished".

11.4.1. Cases where included build substitutions must be declared

Many builds that use the upl oadAr chi ves task to publish artifacts will function automatically as an
included build, without declared substitutions. Here are some common cases where declared substitutions
are required:

When the ar chi vesBaseNane property is used to set the name of the published artifact.

When a configuration other than def aul t is published: this usually means a task other than upl oadAr chi v

Page 76 of 680

is used.
When the MavenPom addFi | t er () is used to publish artifacts that don’t match the project name.
When the maven- publish or ivy-publish plugins are used for publishing, and the publication

coordinates don’t match ${ pr oj ect . gr oup}: ${ pr oj ect . nane}.

11.4.2. Cases where composite build substitutions won’t work

Some builds won't function correctly when included in a composite, even when dependency substitutions are
explicitly declared. This limitation is due to the fact that a project dependency that is substituted will always
point to the def aul t configuration of the target project. Any time that the artifacts and dependencies
specified for the default configuration of a project don’t match what is actually published to a repository, then
the composite build may exhibit different behaviour.

Here are some cases where the publish module metadata may be different from the project default
configuration:

When a configuration other than def aul t is published.

When the maven- publ i sh ori vy- publ i sh plugins are used.

When the POMor i vy. xm file is tweaked as part of publication.

Builds using these features function incorrectly when included in a composite build. We plan to improve this
in the future.

11.5. Depending on tasks in an included build

While included builds are isolated from one another and cannot declare direct dependencies, a composite
build is able to declare task dependencies on its included builds. The included builds are accessed using
Gradl e. get I ncl udedBui | ds() or Gadle.includedBuild(java.lang.String), and a task
reference is obtained via the | ncl udedBui | d. t ask(j ava. | ang. Stri ng) method.

Using these APIs, it is possible to declare a dependency on a task in a particular included build, or tasks with
a certain path in all or some of the included builds.
Example 11.7. Depending on a single task from an included build

buil d. gradl e

task run {
dependsOn gradl e. i ncl udedBui |l d(' ny-app').task(':run")

Example 11.8. Depending on a tasks with path in all included builds

bui I d. gradl e

task publishDeps {
dependsOn gradl e. i ncl udedBui | ds*. t ask(' : upl oadArchi ves')

Page 77 of 680

http://www.gradle.org/docs/4.4.1/dsl/org.gradle.api.invocation.Gradle.html#org.gradle.api.invocation.Gradle:includedBuilds
http://www.gradle.org/docs/4.4.1/dsl/org.gradle.api.invocation.Gradle.html#org.gradle.api.invocation.Gradle:includedBuilds
http://www.gradle.org/docs/4.4.1/dsl/org.gradle.api.invocation.Gradle.html#org.gradle.api.invocation.Gradle:includedBuild(java.lang.String)
http://www.gradle.org/docs/4.4.1/dsl/org.gradle.api.initialization.IncludedBuild.html#org.gradle.api.initialization.IncludedBuild:task(java.lang.String)

11.6. Current limitations and future plans for composite builds

We think composite builds are pretty useful already. However, there are some things that don't yet work the
way we’d like, and other improvements that we think will make things work even better.

Limitations of the current implementation include:

No support for included builds that have publications that don’t mirror the project default configuration. See
Section 11.4.2, “Cases where composite build substitutions won't work”.

Native builds are not supported. (Binary dependencies are not yet supported for native builds).

Substituting plugins only works with the bui | dscri pt block but not with the pl ugi ns block.
Improvements we have planned for upcoming releases include:

Better detection of dependency substitution, for build that publish with custom coordinates, builds that
produce multiple components, etc. This will reduce the cases where dependency substitution needs to be
explicitly declared for an included build.

The ability to target a task or tasks in an included build directly from the command line. We are currently
exploring syntax options for allowing this functionality, which will remove many cases where a delegating
task is required in the composite.

Making the implicit bui | dSr ¢ project an included build.

Supporting composite-of-composite builds.

Page 78 of 680

12

The Build Environment

12.1. Configuring the build environment via gradle.properties

Gradle provides several options that make it easy to configure the Java process that will be used to execute
your build. While it's possible to configure these in your local environment via GRADLE_OPTS or
JAVA _OPTS, certain settings like JVM memory settings, Java home, daemon on/off can be more useful if
they can be versioned with the project in your VCS so that the entire team can work with a consistent
environment. Setting up a consistent environment for your build is as simple as placing these settings into a ¢
file. The configuration is applied in following order (if an option is configured in multiple locations the last one
wins):

from gr adl e. properti es in project build dir.
from gradl e. propertiesingradl e user hone.

from system properties, e.g. when - Dsone. pr operty is set on the command line.

When setting these properties you should keep in mind that Gradle requires a Java JDK or JRE of version 7
or higher to run.

The following properties can be used to configure the Gradle build environment:
org. gradl e. daenon

When set to t r ue the Gradle daemon is used to run the build. Since Gradle 3.0, daemon is enabled by
default and is recommended for running Gradle.

org. gradl e.java. home

Specifies the Java home for the Gradle build process. The value can be set to either a jdk orjre
location, however, depending on what your build does, j dk is safer. A reasonable default is used if the
setting is unspecified.

org. gradle.jvnargs

Specifies the jvmargs used for the daemon process. The setting is particularly useful for tweaking
memory settings. At the moment the default settings are pretty generous with regards to memory.

Page 79 of 680

org. gradl e. confi gur eondermand

Enables new incubating mode that makes Gradle selective when configuring projects. Only relevant
projects are configured which results in faster builds for large multi-projects. See the section called
“Configuration on demand”.

org. gradl e. parall el
When configured, Gradle will run in incubating parallel mode.
org. gradl e. wor ker s. max

When configured, Gradle will use a maximum of the given number of workers. See - - max- wor ker s for
details.

org. gradl e. |l oggi ng. | evel

When set to quiet, warn, lifecycle, info, or debug, Gradle will use this log level. The values are not case
sensitive. See Section 24.1, “Choosing a log level”.

org. gradl e. debug

When set to true, Gradle will run the build with remote debugging enabled, listening on port 5005. Note
that this is the equivalent of adding - agent | i b: j dwp=t r ansport =dt _socket, server =y, suspend:=
to the JVM command line and will suspend the virtual machine until a debugger is attached.

org. gradl e. daenon. performance. enabl e- noni tori ng

When set to false, Gradle will not monitor the memory usage of running daemons. See Section 7.5.5,
“What can go wrong with Daemon?”.

org. gradl e. cachi ng

When set to true, Gradle will try to reuse outputs from previous builds. See Section 15.1, “Overview”.
org. gradl e. consol e

When set to plain, auto or rich, Gradle will use different type of console. See Section 5.2.1, “Build output”.

12.1.1. Forked Java processes

Many settings (like the Java version and maximum heap size) can only be specified when launching a new
JVM for the build process. This means that Gradle must launch a separate JVM process to execute the build
after parsing the various gr adl e. properti es files. When running with the daemon, a JVM with the
correct parameters is started once and reused for each daemon build execution. When Gradle is executed
without the daemon, then a new JVM must be launched for every build execution, unless the JVM launched
by the Gradle start script happens to have the same parameters.

This launching of an extra JVM on every build execution is quite expensive, which is why if you are setting
either or g. gr adl e. j ava. homre or or g. gr adl e. j vimar gs we highly recommend that you use the Gradle

Page 80 of 680

Daemon. See Chapter 7, The Gradle Daemon for more details.

12.2. Gradle properties and system properties

Gradle offers a variety of ways to add properties to your build. With the - D command line option you can
pass a system property to the JVM which runs Gradle. The - D option of the gr adl e command has the

same effect as the - D option of the j ava command.

You can also add properties to your project objects using properties files. You can place a gr adl e. pr opert
file in the Gradle user home directory (defined by the “GRADLE_USER_HOVE” environment variable, which if
not set defaults to USER_HQOVE/ . gr adl e) or in your project directory. For multi-project builds you can place
files in any subproject directory. The properties set in a gr adl e. properti es file can be accessed via the
project object. The properties file in the user's home directory has precedence over property files in the
project directories.

You can also add properties directly to your project object via the - P command line option.

Gradle can also set project properties when it sees specially-named system properties or environment
variables. This feature is very useful when you don’t have admin rights to a continuous integration server
and you need to set property values that should not be easily visible, typically for security reasons. In that
situation, you can’t use the - P option, and you can’t change the system-level configuration files. The correct
strategy is to change the configuration of your continuous integration build job, adding an environment
variable setting that matches an expected pattern. This won't be visible to normal users on the system.[!

If the environment variable name looks like ORG_GRADLE _PROJECT_pr op=soneval ue, then Gradle will
set a pr op property on your project object, with the value of soneval ue. Gradle also supports this for
system properties, but with a different naming pattern, which looks like or g. gr adl e. pr oj ect. prop.

You can also set system properties in the gr adl e. properti es file. If a property name in such a file has
the prefix “syst enPr op. ", like “syst enPr op. pr opNane”, then the property and its value will be set as a
system property, without the prefix. In a multi project build, “syst enPr op. ” properties set in any project
except the root will be ignored. That is, only the root project’s gr adl e. pr operti es file will be checked for
properties that begin with the “syst enPr op. " prefix.

Page 81 of 680

Example 12.1. Setting properties with a gradle.properties file

gradl e. properties

gr adl eProperti esProp=gradl ePropertiesVal ue
sysProp=shoul dBeOver Wi ttenBySysProp
envProj ect Prop=shoul dBeOver Wi ttenByEnvProp
syst enPr op. syst enrsyst emval ue

buil d. gradl e
task printProps {
doLast {

println comrandLi neProj ect Prop
println gradl ePropertiesProp
println systenProjectProp
println envProjectProp
println System properties['systeni]

}

Output of gr adl e -g - PcommandLi nePr oj ect Pr op=commandLi nePr oj ect PropVal ue - Dorg. grad

> gradl e -g -PcommandLi nePr oj ect Prop=commandLi nePr oj ect PropVal ue - Dorg. gradl e. prt
commandLi nePr oj ect PropVal ue

gr adl eProperti esVal ue

syst enPr opert yVal ue

envPropertyVal ue

syst enmval ue

12.2.1. Checking for project properties

You can access a project property in your build script simply by using its name as you would use a variable.
If this property does not exist, an exception will be thrown and the build will fail. If your build script relies on
optional properties the user might set, perhaps in a gradl e. properti es file, you need to check for
existence before you access them. You can do this by using the method hasPr operty(' propertyNane')
which returns t rue or f al se.

12.3. Accessing the web via a proxy

Configuring an HTTP or HTTPS proxy (for downloading dependencies, for example) is done via standard
JVM system properties. These properties can be set directly in the build script; for example, setting the
HTTP proxy host would be done with Syst em set Property(' http. proxyHost', 'ww. sonmehost. or
. Alternatively, the properties can be specified in a gradle.properties file, either in the build’s root directory or
in the Gradle home directory.

Page 82 of 680

Example 12.2. Configuring an HTTP proxy

gradl e. properties

systenProp. http. proxyHost =www. sonehost . or g

syst enProp. http. proxyPort =8080

systenProp. http. proxyUser=userid

syst enProp. http. proxyPasswor d=password

syst enProp. htt p. nonPr oxyHost s=*. nonpr oxyr epos. conj | ocal host

There are separate settings for HTTPS.

Example 12.3. Configuring an HTTPS proxy

gradl e. properties

syst enProp. htt ps. pr oxyHost =www. sonehost . org

syst enProp. htt ps. proxyPort =8080

syst enProp. https. proxyUser =userid

systenProp. htt ps. proxyPasswor d=password

syst enProp. https. nonProxyHost s=*. nonpr oxyr epos. conj | ocal host

We could not find a good overview for all possible proxy settings. One place to look are the constants in a
file from the Ant project. Here’s a link to the repository. The other is a Networking Properties page from the
JDK docs. If anyone knows of a better overview, please let us know via the mailing list.

12.3.1. NTLM Authentication

If your proxy requires NTLM authentication, you may need to provide the authentication domain as well as
the username and password. There are 2 ways that you can provide the domain for authenticating to a
NTLM proxy:

Set the ht t p. proxyUser system property to a value like domai n/ user nane.

Provide the authentication domain via the ht t p. aut h. nt | m domai n system property.

[4] Jenkins, Teamcity, or Bamboo are some CI servers which offer this functionality.

Page 83 of 680

https://git-wip-us.apache.org/repos/asf?p=ant.git;a=blob;f=src/main/org/apache/tools/ant/util/ProxySetup.java;hb=HEAD
http://download.oracle.com/javase/7/docs/technotes/guides/net/properties.html

13

Troubleshooting

Note: This chapter is currently a work in progress.

When using Gradle (or any software package), you can run into problems. You may not understand how to
use a particular feature, or you may encounter a defect. Or, you may have a general question about Gradle.

This chapter gives some advice for troubleshooting problems and explains how to get help with your
problems.

13.1. Working through problems

If you are encountering problems, one of the first things to try is using the very latest release of Gradle. New
versions of Gradle are released frequently with bug fixes and new features. The problem you are having may
have been fixed in a new release.

If you are using the Gradle Daemon, try temporarily disabling the daemon (you can pass the command line
switch - - no- daenon). More information about troubleshooting the daemon process is located in Chapter 7,

The Gradle Daemon.

13.2. Getting help

The place to go for help with Gradle is http://forums.gradle.org. The Gradle Forums is the place where you
can report problems and ask questions of the Gradle developers and other community members.

If something’s not working for you, posting a question or problem report to the forums is the fastest way to
get help. It's also the place to post improvement suggestions or new ideas. The development team
frequently posts news items and announces releases via the forum, making it a great way to stay up to date
with the latest Gradle developments.

Page 84 of 680

http://forums.gradle.org

14

Embedding Gradle using the Tooling API

14.1. Introduction to the Tooling API

Gradle provides a programmatic API called the Tooling API, which you can use for embedding Gradle into
your own software. This API allows you to execute and monitor builds and to query Gradle about the details
of a build. The main audience for this API is IDE, ClI server, other Ul authors; however, the API is open for
anyone who needs to embed Gradle in their application.

Gradle TestKit uses the Tooling API for functional testing of your Gradle plugins.

Eclipse Buildship uses the Tooling API for importing your Gradle project and running tasks.

IntelliJ IDEA uses the Tooling API for importing your Gradle project and running tasks.

14.2. Tooling API Features

A fundamental characteristic of the Tooling API is that it operates in a version independent way. This means
that you can use the same API to work with builds that use different versions of Gradle, including versions
that are newer or older than the version of the Tooling API that you are using. The Tooling API is Gradle
wrapper aware and, by default, uses the same Gradle version as that used by the wrapper-powered build.

Some features that the Tooling API provides:

Query the details of a build, including the project hierarchy and the project dependencies, external
dependencies (including source and Javadoc jars), source directories and tasks of each project.

Execute a build and listen to stdout and stderr logging and progress messages (e.g. the messages shown in
the 'status bar' when you run on the command line).

Execute a specific test class or test method.

Receive interesting events as a build executes, such as project configuration, task execution or test
execution.

Cancel a build that is running.
Combine multiple separate Gradle builds into a single composite build.
The Tooling API can download and install the appropriate Gradle version, similar to the wrapper.

The implementation is lightweight, with only a small number of dependencies. It is also a well-behaved

Page 85 of 680

http://projects.eclipse.org/projects/tools.buildship
https://www.jetbrains.com/idea/

library, and makes no assumptions about your classloader structure or logging configuration. This makes the
API easy to embed in your application.

14.3. Tooling APl and the Gradle Build Daemon

The Tooling API always uses the Gradle daemon. This means that subsequent calls to the Tooling API, be it
model building requests or task executing requests will be executed in the same long-living process.
Chapter 7, The Gradle Daemon contains more details about the daemon, specifically information on
situations when new daemons are forked.

14.4. Quickstart

As the Tooling API is an interface for developers, the Javadoc is the main documentation for it. We provide
several samples that live in sanpl es/ t ool i ngApi in your Gradle distribution. These samples specify all of
the required dependencies for the Tooling APl with examples for querying information from Gradle builds
and executing tasks from the Tooling API.

To use the Tooling API, add the following repository and dependency declarations to your build script:

Example 14.1. Using the tooling API

buil d. gradl e

repositories {
maven { url 'https://repo.gradle.org/gradle/libs-rel eases' }

dependenci es {
conpile "org. gradl e: gradl e-tool i ng-api : ${t ool i ngApi Versi on}"

runtime 'org.slf4j:slf4j-sinple:1.7.10

The main entry point to the Tooling API is the Gr adl eConnect or . You can navigate from there to find code
samples and explore the available Tooling APl models. You can use Gradl eConnect or. connect () to
create a Proj ect Connecti on. A Proj ect Connecti on connects to a single Gradle project. Using the
connection you can execute tasks, tests and retrieve models relative to this project.

14.5. Gradle version and Java version compatibility
14.5.1. Provider side

The current version of Tooling APl supports running builds using Gradle versions 1.2 and later. However,
support for running builds with Gradle versions older than 2.6 is deprecated and will be removed in Tooling
APl version 5.0.

Page 86 of 680

http://www.gradle.org/docs/4.4.1/javadoc/org/gradle/tooling/GradleConnector.html
http://www.gradle.org/docs/4.4.1/javadoc/org/gradle/tooling/GradleConnector.html#connect()
http://www.gradle.org/docs/4.4.1/javadoc/org/gradle/tooling/ProjectConnection.html

14.5.2. Consumer side

The current version of Gradle supports running builds via Tooling API versions 2.0 and later. However,
support for running builds via Tooling API versions older than 3.0 is deprecated and will be removed in
Gradle 5.0.

You should note that not all features of the Tooling API are available for all versions of Gradle. For example,
build cancellation is only available when a build uses Gradle 2.1 and later. Refer to the documentation for
each class and method for more details.

14.6. Java version

The Tooling API requires Java 8 or later. Java 7 is currently still supported but will be removed in Gradle 5.0.
The Gradle version used by builds may have additional Java version requirements.

Page 87 of 680

15

Build Cache

Note: The build cache feature is ready to be used for Java, Groovy and Scala projects. Work
continues to make it available in more areas.

Note: The build cache feature described here is different from the Android plugin build cache.

15.1. Overview

The Gradle build cache is a cache mechanism that aims to save time by reusing outputs produced by other
builds. The build cache works by storing (locally or remotely) build outputs and allowing builds to fetch these
outputs from the cache when it is determined that inputs have not changed, avoiding the expensive work of
regenerating them.

A first feature using the build cache is task output caching. Essentially, task output caching leverages the
same intelligence as up-to-date checks that Gradle uses to avoid work when a previous local build has
already produced a set of task outputs. But instead of being limited to the previous build in the same
workspace, task output caching allows Gradle to reuse task outputs from any earlier build in any location on
the local machine. When using a shared build cache for task output caching this even works across
developer machines and build agents.

Apart from task output caching, we expect other features to use the build cache in the future.

Note: A complete guide is available about using the build cache. It covers the different scenarios
caching can improve, and detailed discussions of the different caveats you need to be aware of
when enabling caching for a build.

15.2. Enable the Build Cache
By default, the build cache is not enabled. You can enable the build cache in a couple of ways:
Run with - - bui | d- cache on the command-line

Gradle will use the build cache for this build only.

Put or g. gradl e. cachi ng=true in your gradl e. properties

Page 88 of 680

http://tools.android.com/tech-docs/build-cache
https://guides.gradle.org/using-build-cache/

Gradle will try to reuse outputs from previous builds for all builds, unless explicitly disabled with - - no- bui

When the build cache is enabled, it will store build outputs in the Gradle user home. For configuring this
directory or different kinds of build caches see Section 15.4, “Configure the Build Cache”.

15.3. Task Output Caching

Beyond incremental builds described in Section 19.10, “Up-to-date checks (AKA Incremental Build)”, Gradle
can save time by reusing outputs from previous executions of a task by matching inputs to the task. Task
outputs can be reused between builds on one computer or even between builds running on different
computers via a build cache.

We have focused on the use case where users have an organization-wide remote build cache that is
populated regularly by continuous integration builds. Developers and other continuous integration agents
should pull cache entries from the remote build cache. We expect that developers will not be allowed to
populate the remote build cache, and all continuous integration builds populate the build cache after running
the cl ean task.

For your build to play well with task output caching it must work well with the incremental build feature. For
example, when running your build twice in a row all tasks with outputs should be UP- TO- DATE. You cannot
expect faster builds or correct builds when enabling task output caching when this prerequisite is not met.

Task output caching is automatically enabled when you enable the build cache, see Section 15.2, “Enable
the Build Cache”.

15.3.1. What does it look like

Let us start with a project using the Java plugin which has a few Java source files. We run the build the first
time.

$> gradle --build-cache conpil eJava

Bui I d cache is an incubating feature.

Using local directory build cache for the root build (location = /hone/user/.gra
:conpi | eJava

: processResour ces

: cl asses

Djar

:assenbl e

BU LD SUCCESSFUL

We see the directory used by the local build cache in the output. Apart from that the build was the same as
without the build cache. Let’s clean and run the build again.

$> gradl e clean
:cl ean

BU LD SUCCESSFUL

Page 89 of 680

$> gradl e --buil d-cache assenbl e

Bui I d cache is an incubating feature.

Using |l ocal directory build cache for the root build (location = /honme/user/.qgrai
: conpi | eJava FROM CACHE

. processResour ces

: cl asses

) ar

:assenbl e

BU LD SUCCESSFUL

Now we see that, instead of executing the : conpi | eJava task, the outputs of the task have been loaded
from the build cache. The other tasks have not been loaded from the build cache since they are not
cacheable. This is due to : cl asses and : assenbl e being lifecycle tasks and : pr ocessResour ces and :
being Copy-like tasks which are not cacheable since it is generally faster to execute them.

15.3.2. Cacheable tasks

Since a task describes all of its inputs and outputs, Gradle can compute a build cache key that uniquely
defines the task’s outputs based on its inputs. That build cache key is used to request previous outputs from
a build cache or push new outputs to the build cache. If the previous build is already populated by someone
else, e.g. your continuous integration server or other developers, you can avoid executing most tasks locally.

The following inputs contribute to the build cache key for a task in the same way that they do for up-to-date
checks:

The task type and its classpath

The names of the output properties

The names and values of properties annotated as described in the section called “Custom task types”
The names and values of properties added by the DSL via Taskl nput s

The classpath of the Gradle distribution, buildSrc and plugins

The content of the build script when it affects execution of the task

Task types need to opt-in to task output caching using the €Cacheabl eTask annotation. Note that €Cachesz
is not inherited by subclasses. Custom task types are not cacheable by default.

Built-in cacheable tasks

Currently, the following built-in Gradle tasks are cacheable:
Java toolchain: JavaConpi | e, Javadoc

Groovy toolchain: Gr oovyConpi | e, G oovydoc

Scala toolchain: Scal aConpi | e, Scal aDoc

Testing: Test

Code quality tasks: Checkst yl e, CodeNar c, Fi ndBugs, JDepend, Pnd

Page 90 of 680

http://www.gradle.org/docs/4.4.1/javadoc/org/gradle/api/tasks/TaskInputs.html
http://www.gradle.org/docs/4.4.1/javadoc/org/gradle/api/tasks/CacheableTask.html
http://www.gradle.org/docs/4.4.1/javadoc/org/gradle/api/tasks/CacheableTask.html
http://www.gradle.org/docs/4.4.1/dsl/org.gradle.api.tasks.compile.JavaCompile.html
http://www.gradle.org/docs/4.4.1/dsl/org.gradle.api.tasks.javadoc.Javadoc.html
http://www.gradle.org/docs/4.4.1/dsl/org.gradle.api.tasks.compile.GroovyCompile.html
http://www.gradle.org/docs/4.4.1/dsl/org.gradle.api.tasks.javadoc.Groovydoc.html
http://www.gradle.org/docs/4.4.1/dsl/org.gradle.api.tasks.scala.ScalaCompile.html
http://www.gradle.org/docs/4.4.1/dsl/org.gradle.api.tasks.scala.ScalaDoc.html
http://www.gradle.org/docs/4.4.1/dsl/org.gradle.api.tasks.testing.Test.html
http://www.gradle.org/docs/4.4.1/dsl/org.gradle.api.plugins.quality.Checkstyle.html
http://www.gradle.org/docs/4.4.1/dsl/org.gradle.api.plugins.quality.CodeNarc.html
http://www.gradle.org/docs/4.4.1/dsl/org.gradle.api.plugins.quality.FindBugs.html
http://www.gradle.org/docs/4.4.1/dsl/org.gradle.api.plugins.quality.JDepend.html
http://www.gradle.org/docs/4.4.1/dsl/org.gradle.api.plugins.quality.Pmd.html

Jacoco: JacocoMer ge, JacocoReport

Other tasks: Val i dat eTaskProperties, WiteProperties
Caching native compilation

It is also possible to enable caching for the native toolchain. This can be done by setting the system property
org. gradl e. cachi ng. nati ve tot r ue. Caching is then enabled for CConpi | e and CppConpi | e.

Note: Caching native tasks is experimental.

C/C++ compilers embed absolute paths to sources into object files, so you may not be able to
debug object files which have been loaded from the cache.

Non-cacheable tasks

All other tasks are currently not cacheable, but this may change in the future for other languages (Kotlin) or
domains (native, Android, Play). Some tasks, like Copy or Jar, usually do not make sense to make
cacheable because Gradle is only copying files from one location to another. It also doesn’'t make sense to
make tasks cacheable that do not produce outputs or have no task actions.

15.3.3. Declaring task inputs and outputs

It is very important that a cacheable task has a complete picture of its inputs and outputs, so that the results
from one build can be safely re-used somewhere else.

Missing task inputs can cause incorrect cache hits, where different results are treated as identical because
the same cache key is used by both executions. Missing task outputs can cause build failures if Gradle does
not completely capture all outputs for a given task. Wrongly declared task inputs can lead to cache misses
especially when containing volatile data or absolute paths. (See Section 19.10.1, “Task inputs and outputs”
on what should be declared as inputs and outputs.)

Note: The task path is not an input to the build cache key. This means that tasks with different task
paths can re-use each other’s outputs as long as Gradle determines that executing them yields the
same result.

In order to ensure that the inputs and outputs are properly declared use integration tests (for example using
TestKit) to check that a task produces the same outputs for identical inputs and captures all output files for
the task. We suggest adding tests to ensure that the task inputs are relocatable, i.e. that the task can be
loaded from the cache into a different build directory (see €Pat hSensi ti ve).

In order to handle volatile inputs for your tasks consider configuring input normalization.

15.3.4. Known issues with task output caching

The task output caching feature has known issues that may impact the correctness of your build when using
the build cache, and there are some caveats to keep in mind which may reduce the number of cache hits
you get between machines. These issues will be corrected as this feature becomes stable.

Page 91 of 680

http://www.gradle.org/docs/4.4.1/dsl/org.gradle.testing.jacoco.tasks.JacocoMerge.html
http://www.gradle.org/docs/4.4.1/dsl/org.gradle.testing.jacoco.tasks.JacocoReport.html
http://www.gradle.org/docs/4.4.1/javadoc/org/gradle/plugin/devel/tasks/ValidateTaskProperties.html
http://www.gradle.org/docs/4.4.1/dsl/org.gradle.api.tasks.WriteProperties.html
http://www.gradle.org/docs/4.4.1/dsl/org.gradle.language.c.tasks.CCompile.html
http://www.gradle.org/docs/4.4.1/dsl/org.gradle.language.cpp.tasks.CppCompile.html
http://www.gradle.org/docs/4.4.1/dsl/org.gradle.api.tasks.Copy.html
http://www.gradle.org/docs/4.4.1/dsl/org.gradle.api.tasks.bundling.Jar.html
http://www.gradle.org/docs/4.4.1/javadoc/org/gradle/api/tasks/PathSensitive.html

Note that task output caching relies on incremental build. Problems that affect incremental builds can also
affect task output caching even if the affected tasks are not cacheable. Most issues only cause problems if
your build cache is populated by non-clean builds or if caching has been enabled for unsupported tasks. For
a current list of open problems with incremental builds see these Github issues.

Note: When reporting issues with the build cache, please check if your issue is a known issue or
related to a known issue.

Correctness issues

These issues may affect the correctness of your build when using the build cache. Please consider these
issues carefully.

Table 15.1. Correctness issues

Description Impact Workaround

Gradle currently tracks the major version of Java that is Only enable caching for builds that all use the
Tracking the used for compilation and test execution. If your build uses same Java implementation or manually add the
Java vendor several Java implementations (IBM, OpenJDK, Oracle, etc) Java vendor as an input to compilation and test
implementation that are the same major version, Gradle will treat them all as execution tasks by using the runtime api for
equivalent and re-use outputs from any implementation. adding task inputs.

Gradle currently tracks the major version of Java (6 vs 7 vs
8) that is used for compilation and test execution. If your

Tracking the build expects to use several minor releases (1.8.0_102 vs Manually add the full Java version as an input to
1.8.0_25), Gradle will treat all of these as equivalent and compilation and test execution tasks by using the

re-use outputs from any minor version. In our experience, runtime api for adding task inputs.

Java version

bytecode produced by each major version is functionally
equivalent.

Environment For tasks that fork processes (like Test), Gradle does not Declare environment variables as inputs to the

variables are track any of the environment variables visible to the process.t a s k with

not tracked as This can allow undeclared inputs to affect the outputs of the Taskl nputs. property(java. | ang. Stri ng,
inputs. task. java. |l ang. Obj ect) .

Changes i

: . n Gradle can produce different task output based on the file Set the UTF-8 file encoding on all tasks which
Sr::jtlj?nz t:j:t encoding used by the JVM. Gradle will use a default file allow setting the encoding. Use UTF-8 file

_encoding based on the operating system if f i | e. encodi ng encoding everywhere by setting fi | e. encodi ng
::j;t the build is not explicitly set. to UTF- 8 for the Gradle JVM.

Javadoc

ignores custom Gradle’s Javadoc task does not take into account any You can add your custom options as input
command-line changes to custom command-line options. properties or disable caching of Javadoc.

options

Page 92 of 680

https://github.com/gradle/gradle/issues?utf8=%E2%9C%93&q=is%3Aopen%20label%3Aa%3Abug%20label%3Ain%3Aincremental-build%20
https://github.com/gradle/gradle/issues/new?labels=in:build-cache
http://www.gradle.org/docs/4.4.1/javadoc/org/gradle/api/tasks/TaskInputs.html#property(java.lang.String, java.lang.Object)
http://www.gradle.org/docs/4.4.1/javadoc/org/gradle/api/tasks/TaskInputs.html#property(java.lang.String, java.lang.Object)
http://www.gradle.org/docs/4.4.1/javadoc/org/gradle/api/tasks/TaskInputs.html#property(java.lang.String, java.lang.Object)

Caveats

These issues may affect the number of cache hits you get between machines.

Table 15.2. Caveats

Description Impact Workaround

Overlapping If two or more tasks share an output directory or files,
outputs between Gradle will disable caching for these tasks when it Use separate output directories for each task.
tasks detects an overlap.

Gradle calculates the build cache key based on the MD5
hash of the build script contents. If the line endings are Check if your VCS will change source file line

Line endings in)])])
different between developers and the CI servers, Gradle endings and configure it to have a consistent line

build scripts files. |]])
will calculate different build cache keys even when all ending across all platforms.

other inputs to a task are the same.

Gradle provides ways of specifying the path sensitivity

for individual task properties (see €Pat hSensiti ve);
Absolute paths in however, it is common to need to pass absolute paths to
command-line tools or to tests via system properties or command line If possible, use relative paths (via
arguments and arguments. These kinds of inputs will cause cache Project.rel ativePath(java.|ang. Oj ect)
system misses because not every developer or Cl server uses). Further tooling will be provided later.
properties. an identical absolute path to the root of a build. Tasks

like Test include system properties and JVM arguments

as inputs to the build cache key.

The JaCoCo agent relies on appending to a shared
Using JaCoCo output file that may be left over from a different test
disables caching execution. If Gradle allowed Test tasks to be cacheable None.
of the Test task. with the JaCoCo plugin, it could not guarantee the same
results each time.

Adding new
actions to
cacheable tasks
in a build file Actions added by a plugin (from buildSrc or externally)

. . " Avoid adding actions to cacheable tasks in a build
makes that task do not have this problem because their classloader is

file.
sensitive to restricted to the classpath of the plugin.
unrelated
changes to the
build file.

o . It's possible to modify a task’s inputs or outputs during) o) .
Modifying inputs o ~ Use a configure task to finalize configuration for a
. execution in ways that change the output of a task. This . .
or outputs during given task. A configure task configures another

. breaks incremental builds and can cause problems with . .
task execution. task as part of its execution.

the build cache.

Page 93 of 680

http://www.gradle.org/docs/4.4.1/javadoc/org/gradle/api/tasks/PathSensitive.html
http://www.gradle.org/docs/4.4.1/dsl/org.gradle.api.Project.html#org.gradle.api.Project:relativePath(java.lang.Object)
http://www.gradle.org/docs/4.4.1/dsl/org.gradle.api.Project.html#org.gradle.api.Project:relativePath(java.lang.Object)

) Some tools are sensitive to the order of its inputs and
Order of input |)])
) will produce slightly different output. Gradle will usually)
files affects .))] _ Provide a stable order for tools affected by order.
Ut provide the order of files from the filesystem, which will
outputs.
P be different across operating systems.

When generating Java source code with ANTLR3 and
ANTLR3 the Chapter 59, The ANTLR Plugin, the generated If you cannot upgrade to ANLTR4 use a custom
produces output sources contain a timestamp that reduces how often template or remove the timestamp in a doLast
with a timestamp. Java compilation will be cached. ANTLR2 and ANTLR4 action.

are not affected.

15.4. Configure the Build Cache

You can configure the build cache by using the Setti ngs. bui | dCache(org. gradl e. api . Action)
block in setti ngs. gradl e.

Gradle supports a | ocal and a r enot e build cache that can be configured separately. When both build
caches are enabled, Gradle tries to load build outputs from the local build cache first, and then tries the
remote build cache if no build outputs are found. If outputs are found in the remote cache, they are also
stored in the local cache, so next time they will be found locally. Gradle pushes build outputs to any build
cache that is enabled and has Bui | dCache. i sPush() settotrue.

By default, the local build cache has push enabled, and the remote build cache has push disabled.

The local build cache is pre-configured to be a Di rect oryBui | dCache and enabled by default. The
remote build cache can be configured by specifying the type of build cache to connect to (
Bui | dCacheConfi guration.renote(java.l ang. d ass)).

15.4.1. Built-in local build cache

The built-in local build cache, Di r ect or yBui | dCache, uses a directory to store build cache artifacts. By
default, this directory resides in the Gradle user home directory, but its location is configurable.

Gradle will periodically clean-up the local cache directory to reduce it to a configurable target size. This
means that the local build cache directory may temporarily grow over the target size until the next clean-up is
scheduled.

For more details on the configuration options refer to the DSL documentation of Di r ect or yBui | dCache.
Here is an example of the configuration.

Page 94 of 680

http://www.gradle.org/docs/4.4.1/dsl/org.gradle.api.initialization.Settings.html#org.gradle.api.initialization.Settings:buildCache(org.gradle.api.Action)
http://www.gradle.org/docs/4.4.1/javadoc/org/gradle/caching/configuration/BuildCache.html#isPush()
http://www.gradle.org/docs/4.4.1/dsl/org.gradle.caching.local.DirectoryBuildCache.html
http://www.gradle.org/docs/4.4.1/dsl/org.gradle.caching.configuration.BuildCacheConfiguration.html#org.gradle.caching.configuration.BuildCacheConfiguration:remote(java.lang.Class)
http://www.gradle.org/docs/4.4.1/dsl/org.gradle.caching.configuration.BuildCacheConfiguration.html#org.gradle.caching.configuration.BuildCacheConfiguration:remote(java.lang.Class)
http://www.gradle.org/docs/4.4.1/dsl/org.gradle.caching.local.DirectoryBuildCache.html
http://www.gradle.org/docs/4.4.1/dsl/org.gradle.caching.local.DirectoryBuildCache.html

Example 15.1. Configure the local cache

settings.gradle

bui | dCache {
| ocal (Di rectoryBuil dCache) {
directory = new File(rootDir, 'build-cache")
target Si zel nMB = 1024

15.4.2. Remote HTTP build cache

Gradle has built-in support for connecting to a remote build cache backend via HTTP. For more details on
what the protocol looks like see Ht t pBui | dCache. Note that by using the following configuration the local
build cache will be used for storing build outputs while the local and the remote build cache will be used for
retrieving build outputs.

Example 15.2. Pull from HttpBuildCache

settings.gradle

bui | dCache {
renot e(Ht t pBui | dCache) {
url = "https://exanple.com 8123/ cache/"'
}
}

You can configure the credentials the Ht t pBui | dCache uses to access the build cache server as shown in
the following example.

Example 15.3. Configure remote HTTP cache

settings.gradle

bui | dCache {
renot e(Ht t pBui | dCache) {
url = "http://exanple.com 8123/ cache/"’
credentials {
username = 'buil d-cache-user'
password = ' sone-conpl i cat ed- passwor d'
}
}
}

Note: You may encounter problems with an untrusted SSL certificate when you try to use a build
cache backend with an HTTPS URL. The ideal solution is for someone to add a valid SSL certificate
to the build cache backend, but we recognize that you may not be able to do that. In that case, set
Ht t pBui | dCache. i sAl | owUnt rust edServer () totrue:

Page 95 of 680

http://www.gradle.org/docs/4.4.1/dsl/org.gradle.caching.http.HttpBuildCache.html
http://www.gradle.org/docs/4.4.1/dsl/org.gradle.caching.http.HttpBuildCache.html
http://www.gradle.org/docs/4.4.1/dsl/org.gradle.caching.http.HttpBuildCache.html#org.gradle.caching.http.HttpBuildCache:allowUntrustedServer
http://www.gradle.org/docs/4.4.1/dsl/org.gradle.caching.http.HttpBuildCache.html#org.gradle.caching.http.HttpBuildCache:allowUntrustedServer

Example 15.4. Allow untrusted SSL certificate for HttpBuildCache

Note: settings. gradl e

bui | dCache {
renot e(Ht t pBui | dCache) {
url = "https://exanple.com 8123/ cache/"'

al | owUnt rust edServer = true

This is a convenient workaround, but you shouldn’t use it as a long-term solution.

15.4.3. Configuration use cases

The recommended use case for the build cache is that your continuous integration server populates the
remote build cache with clean builds while developers pull from the remote build cache and push to a local
build cache. The configuration would then look as follows.

Example 15.5. Recommended setup for Cl push use case

settings.gradle
ext.isC Server = System getenv().contai nskKey("Cl")

bui | dCache {
| ocal {
enabl ed = !isC Server
}
renot e(Ht t pBui | dCache) {
url = "https://exanmpl e.com 8123/ cache/"

push = isC Server

If you use a bui | dSr ¢ directory, you should make sure that it uses the same build cache configuration as
the main build. This can be achieved by applying the same script to bui | dSrc/ setti ngs. gradl e and set

as shown in the following example.

Page 96 of 680

Example 15.6. Consistent setup for buildSrc and main build

settings.gradle
apply from new File(settingsDir, 'gradle/buildCacheSettings.gradle')

bui | dSrc/settings. gradle
apply from new File(settingsDir, '../gradle/buildCacheSettings.gradle')

gradl e/ bui | dCacheSettings. gradl e
ext.isC Server = System getenv().containsKey("Cl")

bui | dCache {
| ocal {
enabl ed = !isC Server
}
renot e(Ht t pBui | dCache) {
url = "https://exanple.com 8123/ cache/"

push = isC Server

It is also possible to configure the build cache from an init script, which can be used from the command line,
added to your Gradle user home or be a part of your custom Gradle distribution.
Example 15.7. Init script to configure the build cache

init.gradle
gradl e. settingsEvaluated { settings ->
settings. bui |l dCache {

renot e(Ht t pBui | dCache) {
url = "https://exanpl e.com 8123/ cache/’

15.5. How to set up an HTTP build cache backend

Gradle provides a Docker image for a build cache node, which can connect with Gradle Enterprise for
centralized management. The cache node can also be used without a Gradle Enterprise installation with
restricted functionality.

Page 97 of 680

https://hub.docker.com/r/gradle/build-cache-node/

15.6. Implement your own Build Cache

Using a different build cache backend to store build outputs (which is not covered by the built-in support for
connecting to an HTTP backend) requires implementing your own logic for connecting to your custom build
cache backend. To this end, custom build cache types can be registered via
Bui | dCacheConfi gurati on. regi sterBuil dCacheServi ce(java.l ang. Cl ass,

j ava. | ang. d ass) . For an example of what this could look like see the Gradle Hazelcast plugin.

Gradle Enterprise includes a high-performance, easy to install and operate, shared build cache backend.

Page 98 of 680

http://www.gradle.org/docs/4.4.1/javadoc/org/gradle/caching/configuration/BuildCacheConfiguration.html#registerBuildCacheService(java.lang.Class, java.lang.Class)
http://www.gradle.org/docs/4.4.1/javadoc/org/gradle/caching/configuration/BuildCacheConfiguration.html#registerBuildCacheService(java.lang.Class, java.lang.Class)
http://www.gradle.org/docs/4.4.1/javadoc/org/gradle/caching/configuration/BuildCacheConfiguration.html#registerBuildCacheService(java.lang.Class, java.lang.Class)
https://github.com/gradle/gradle-hazelcast-plugin
https://gradle.com/build-cache

Part Ill. Writing Gradle build
scripts

16

Build Script Basics

16.1. Projects and tasks
Everything in Gradle sits on top of two basic concepts: projects and tasks.

Every Gradle build is made up of one or more projects. What a project represents depends on what it is that
you are doing with Gradle. For example, a project might represent a library JAR or a web application. It
might represent a distribution ZIP assembled from the JARs produced by other projects. A project does not
necessarily represent a thing to be built. It might represent a thing to be done, such as deploying your
application to staging or production environments. Don’t worry if this seems a little vague for now. Gradle’s
build-by-convention support adds a more concrete definition for what a project is.

Each project is made up of one or more tasks. A task represents some atomic piece of work which a build
performs. This might be compiling some classes, creating a JAR, generating Javadoc, or publishing some
archives to a repository.

For now, we will look at defining some simple tasks in a build with one project. Later chapters will look at
working with multiple projects and more about working with projects and tasks.

16.2. Hello world

You run a Gradle build using the gr adl e command. The gr adl e command looks for a file called bui | d. gr
in the current directory.®! We call this bui | d. gr adl e file a build script, although strictly speaking it is a
build configuration script, as we will see later. The build script defines a project and its tasks.

To try this out, create the following build script named bui | d. gr adl e.

Example 16.1. Your first build script

bui I d. gradl e
task hello {
doLast {

println "Hello world!'

In a command-line shell, move to the containing directory and execute the build script with gradl e -q hel |

Page 100 of 680

What does - q do?

Most of the examples in this user guide are run with the - ¢ command-line option. This suppresses
Gradle’s log messages, so that only the output of the tasks is shown. This keeps the example output
in this user guide a little clearer. You don’t need to use this option if you don’t want to. See
Chapter 24, Logging for more details about the command-line options which affect Gradle’s output.

Example 16.2. Execution of a build script

Outputofgradle -q hello

> gradle -q hello
Hel l o worl d!

What's going on here? This build script defines a single task, called hel | o, and adds an action to it. When
you run gradl e hell o, Gradle executes the hel | o task, which in turn executes the action you've
provided. The action is simply a closure containing some Groovy code to execute.

If you think this looks similar to Ant's targets, you would be right. Gradle tasks are the equivalent to Ant
targets, but as you will see, they are much more powerful. We have used a different terminology than Ant as
we think the word task is more expressive than the word target. Unfortunately this introduces a terminology
clash with Ant, as Ant calls its commands, such as j avac or copy, tasks. So when we talk about tasks, we
always mean Gradle tasks, which are the equivalent to Ant's targets. If we talk about Ant tasks (Ant
commands), we explicitly say Ant task.

16.3. A shortcut task definition

Note: This functionality is deprecated and will be removed in Gradle 5.0 without replacement. Use
the methods Task. doFirst(org.gradl e. api.Action) and

Task. doLast (org. gradl e. api . Acti on) to define an action instead, as demonstrated by the
rest of the examples in this chapter.

There is a shorthand way to define a task like our hel | o task above, which is more concise.

Example 16.3. A task definition shortcut

bui I d. gradl e

task hello << {
println "Hello world!'

Again, this defines a task called hel | o with a single closure to execute. The << operator is simply an alias
for doLast .

16.4. Build scripts are code

Gradle’s build scripts give you the full power of Groovy. As an appetizer, have a look at this:

Page 101 of 680

http://www.gradle.org/docs/4.4.1/dsl/org.gradle.api.Task.html#org.gradle.api.Task:doFirst(org.gradle.api.Action)
http://www.gradle.org/docs/4.4.1/dsl/org.gradle.api.Task.html#org.gradle.api.Task:doLast(org.gradle.api.Action)
http://www.gradle.org/docs/4.4.1/dsl/org.gradle.api.Task.html#org.gradle.api.Task:doLast(org.gradle.api.Action)

Example 16.4. Using Groovy in Gradle's tasks

buil d. gradl e

task upper {
doLast {
String soneString =
println "Oiginal:
println "Upper case:

}

Output of gradl e -qg upper

> gradl e -qg upper
Oiginal: mY_nAnt
Upper case: MY_NAME

or

nY_nAnE'
+ soneString
+ soneString. t oUpper Case()

Example 16.5. Using Groovy in Gradle's tasks

buil d. gradl e

task count ({
doLast {
4.times { print "$it

}

Output of gradl e -qg count

> gradl e -q count
0123

)

16.5. Task dependencies

As you probably have guessed, you can declare tasks that depend on other tasks.

Page 102 of 680

Example 16.6. Declaration of task that depends on other task

buil d. gradl e
task hello {
doLast {
println 'Hello world!
}
}
task intro(dependsOn: hello) {
doLast {
println "I'm G adl e"
}
}

Outputofgradle -gq intro

> gradle -g intro
Hel I o worl d!
I'm G adle

To add a dependency, the corresponding task does not need to exist.

Example 16.7. Lazy dependsOn - the other task does not exist (yet)

bui | d. gradl e
task taskX(dependsOn: 'taskY') {
doLast {
println 'taskX
}
}
task taskY {
doLast {
println 'taskY
}
}

Output of gradl e -q taskX

> gradle -qg taskX
taskyY
t askX

The dependency of taskX to t askY is declared before t askY is defined. This is very important for
multi-project builds. Task dependencies are discussed in more detail in Section 19.5, “Adding dependencies
to a task”.

Please notice that you can't use shortcut notation (see Section 16.8, “Shortcut notations”) when referring to a
task that is not yet defined.

Page 103 of 680

16.6. Dynamic tasks

The power of Groovy can be used for more than defining what a task does. For example, you can also use it
to dynamically create tasks.

Example 16.8. Dynamic creation of a task

bui | d. gradl e

4.times { counter ->
task "task$counter” {
doLast {
println "I'"mtask nunber $counter"

}

Outputofgradl e -qgq taskl

> gradle -q taskl
I'"'mtask nunber 1

16.7. Manipulating existing tasks

Once tasks are created they can be accessed via an API. For instance, you could use this to dynamically
add dependencies to a task, at runtime. Ant doesn’t allow anything like this.

Example 16.9. Accessing a task via APl - adding a dependency

buil d. gradl e

4.times { counter ->
task "task$counter" {
doLast {
printin "I'mtask nunber $counter"

}
t askO. dependsOn task2, task3
Outputof gradl e -q taskO

> gradle -q taskO
' mtask nunber 2
I'mtask nunber 3
I'"mtask nunber O

Or you can add behavior to an existing task.

Page 104 of 680

Example 16.10. Accessing a task via API - adding behaviour

buil d. gradl e
task hello {
doLast {

println 'Hello Earth'

}
hel | 0. doFirst {

println 'Hello Venus'
}
hel | 0. doLast {

println '"Hello Mars'

}
hell o {
doLast {
println "Hello Jupiter’
}
}

Outputofgradle -q hello

> gradle -q hello
Hel | o Venus

Hello Earth

Hel l o Mars

Hell o Jupiter

The calls doFi r st and doLast can be executed multiple times. They add an action to the beginning or the

end of the task’s actions list. When the task executes, the actions in the action list are executed in order.

16.8. Shortcut notations

There is a convenient notation for accessing an existing task. Each task is available as a property of the
build script:

Page 105 of 680

Example 16.11. Accessing task as a property of the build script

buil d. gradl e
task hello {
doLast {

println "Hello world!'

}
hel | 0. doLast {

println "G eetings fromthe $hello. nane task."

}

Outputofgradle -q hello

> gradle -q hello
Hel l o worl d!
Greetings fromthe hello task.

This enables very readable code, especially when using the tasks provided by the plugins, like the conpi | e

task.

16.9. Extra task properties

You can add your own properties to a task. To add a property named myPr operty, set ext. nyProperty

to an initial value. From that point on, the property can be read and set like a predefined task property.

Example 16.12. Adding extra properties to a task

buil d. gradl e

task nmyTask {
ext.nyProperty = "myVal ue"

task printTaskProperties {
doLast {
println myTask. nyProperty

}

Outputof gradl e -qg print TaskProperties

> gradl e -q printTaskProperties
myVal ue

Extra properties aren’t limited to tasks. You can read more about them in Section 18.4.2, “Extra properties”.

Page 106 of 680

16.10. Using Ant Tasks

Ant tasks are first-class citizens in Gradle. Gradle provides excellent integration for Ant tasks by simply
relying on Groovy. Groovy is shipped with the fantastic Ant Bui | der. Using Ant tasks from Gradle is as
convenient and more powerful than using Ant tasks from a bui | d. xm file. From the example below, you

can learn how to execute Ant tasks and how to access Ant properties:

Example 16.13. Using AntBuilder to execute ant.loadfile target

buil d. gradl e

task loadfile {
doLast {
def files = file('../antLoadfil eResources').listFiles().sort()
files.each { File file ->
if (file.isFile()) {

ant.loadfile(srcFile: file, property: file.name)
println " *** $fjle.nane ***"
println "${ant.properties[file.nane]}"

}

Outputofgradl e -qg | oadfile

> gradle -q loadfile

*** agile.mani festo.txt ***

I ndi vidual s and interacti ons over processes and tools
Wor ki ng sof tware over conprehensive docunentation

Cust ormer col | aborati on over contract negotiation

Respondi ng to change over follow ng a plan

*** gradl e. mani festo.txt ***

Make the inpossible possible, make the possible easy and nake the easy el egant.
(inspired by Moshe Fel denkrai s)

There is lots more you can do with Ant in your build scripts. You can find out more in Chapter 21, Using Ant
from Gradle.

16.11. Using methods

Gradle scales in how you can organize your build logic. The first level of organizing your build logic for the
example above, is extracting a method.

Page 107 of 680

Example 16.14. Using methods to organize your build logic

buil d. gradl e

task checksum {
doLast {
fileList('../antLoadfil eResources').each { File file ->
ant . checksum(file: file, property: "cs_$file.nane")
println "$file.name Checksum ${ant.properties["cs_%$file.nanme"]}"

task |l oadfile {
doLast {
fileList('../antLoadfil eResources').each { File file ->
ant.loadfile(srcFile: file, property: file.name)
println "1'"mfond of $file.nanme"

File[] fileList(String dir) {
file(dir).listFiles({file -> file.isFile() } as FileFilter).sort()
}

Outputofgradle -q | oadfile

> gradle -q loadfile
I"mfond of agile.manifesto.txt
I'mfond of gradle.manifesto.txt

Later you will see that such methods can be shared among subprojects in multi-project builds. If your build
logic becomes more complex, Gradle offers you other very convenient ways to organize it. We have devoted
a whole chapter to this. See Chapter 43, Organizing Build Logic.

16.12. Default tasks

Gradle allows you to define one or more default tasks that are executed if no other tasks are specified.

Page 108 of 680

Example 16.15. Defining a default task

buil d. gradl e

defaul t Tasks 'clean', 'run
task clean {
doLast {
println '"Default C eaning!'

}
}
task run {
doLast {
println 'Default Running!'
}
}
task ot her {
doLast ({
println "I"mnot a default task!"
}

}

Outputofgradl e -q

> gradle -q
Def ault d eani ng!
Def aul t Runni ng!

This is equivalent to running gr adl e cl ean run. In a multi-project build every subproject can have its own
specific default tasks. If a subproject does not specify default tasks, the default tasks of the parent project
are used (if defined).

16.13. Configure by DAG

As we later describe in full detail (see Chapter 22, The Build Lifecycle), Gradle has a configuration phase
and an execution phase. After the configuration phase, Gradle knows all tasks that should be executed.
Gradle offers you a hook to make use of this information. A use-case for this would be to check if the release
task is among the tasks to be executed. Depending on this, you can assign different values to some
variables.

In the following example, execution of the di st ri buti on and r el ease tasks results in different value of

the ver si on variable.

Page 109 of 680

Example 16.16. Different outcomes of build depending on chosen tasks

buil d. gradl e
task distribution {
doLast {

println "W build the zip with versi on=$versi on"

task rel ease(dependsOn: 'distribution') ({
doLast {
println 'W rel ease now

gradl e. t askG aph. whenReady {taskG aph ->
i f (taskGaph. hasTask(rel ease)) {
version = '1.0'
} else {
versi on = ' 1. 0- SNAPSHOT'

}

Outputofgradl e -qg distribution

> gradle -q distribution
We build the zip with versi on=1. 0- SNAPSHOT

Outputofgradl e -qg rel ease

> gradle -q rel ease
We build the zip with version=1.0
W rel ease now

The important thing is that whenReady affects the release task before the release task is executed. This
works even when the release task is not the primary task (i.e., the task passed to the gr adl e command).

16.14. Where to next?

In this chapter, we have had a first look at tasks. But this is not the end of the story for tasks. If you want to
jump into more of the details, have a look at Chapter 19, More about Tasks.

Otherwise, continue on to the tutorials in Chapter 47, Java Quickstart and Chapter 8, Dependency
Management Basics.

[] There are command line switches to change this behavior. See Appendix D, Gradle Command Line)

Page 110 of 680

17

Build Init Plugin

Note: The Build Init plugin is currently incubating. Please be aware that the DSL and other
configuration may change in later Gradle versions.

The Gradle Build Init plugin can be used to bootstrap the process of creating a new Gradle build. It supports
creating brand new projects of different types as well as converting existing builds (e.g. An Apache Maven
build) to be Gradle builds.

Gradle plugins typically need to be applied to a project before they can be used (see Section 27.3, “Using
plugins™). The Build Init plugin is an automatically applied plugin, which means you do not need to apply it
explicitly. To use the plugin, simply execute the task named i ni t where you would like to create the Gradle
build. There is no need to create a “stub” bui | d. gr adl e file in order to apply the plugin.

It also leverages the wr apper task from the Wrapper plugin (see Chapter 23, Wrapper Plugin), which
means that the Gradle Wrapper will also be installed into the project.

17.1. Tasks

The plugin adds the following tasks to the project:

Table 17.1. Build Init plugin - tasks

Task name Depends on Type Description
init wr apper InitBuild Generates a Gradle project.
wr apper - W apper Generates Gradle wrapper files.

17.2. What to set up

The i ni t supports different build setup types. The type is specified by supplying a - - t ype argument value.
For example, to create a Java library project simply execute: gradl e init --type java-library.

If a --type parameter is not supplied, Gradle will attempt to infer the type from the environment. For
example, it will infer a type value of “ponft if it finds a pom xm to convert to a Gradle build.

Page 111 of 680

http://www.gradle.org/docs/4.4.1/dsl/org.gradle.buildinit.tasks.InitBuild.html
http://www.gradle.org/docs/4.4.1/dsl/org.gradle.api.tasks.wrapper.Wrapper.html

If the type could not be inferred, the type “basi c” will be used.

All build setup types include the setup of the Gradle Wrapper.

17.3. Build init types

Note: As this plugin is currently incubating, only a few build init types are currently supported. More
types will be added in future Gradle releases.

17.3.1. “poni (Maven conversion)

The “ponf type can be used to convert an Apache Maven build to a Gradle build. This works by converting
the POM to one or more Gradle files. It is only able to be used if there is a valid “pom xm " file in the
directory that the i ni t task is invoked in or, if invoked via the “-p” command line option, in the specified

project directory. This “poni type will be automatically inferred if such a file exists.

The Maven conversion implementation was inspired by the maven2gradle tool that was originally developed
by Gradle community members.

The conversion process has the following features:

Uses effective POM and effective settings (support for POM inheritance, dependency management,
properties)

Supports both single module and multimodule projects

Supports custom module names (that differ from directory names)
Generates general metadata - id, description and version

Applies maven, java and war plugins (as needed)

Supports packaging war projects as jars if needed

Generates dependencies (both external and inter-module)
Generates download repositories (inc. local Maven repository)
Adjusts Java compiler settings

Supports packaging of sources and tests

Supports TestNG runner

Generates global exclusions from Maven enforcer plugin settings

17.3.2. %] ava- appl i cati on”

The “j ava- appl i cat i on” build init type is not inferable. It must be explicitly specified.
It has the following features:

Uses the “appl i cat i on” plugin to produce a command-line application implemented using Java

Uses the “j cent er " dependency repository

Page 112 of 680

https://github.com/jbaruch/maven2gradle

Uses JUnit for testing
Has directories in the conventional locations for source code

Contains a sample class and unit test, if there are no existing source or test files

Alternative test framework can be specified by supplying a - - t est - f r anewor k argument value. To use a
different test framework, execute one of the following commands:

gradle init --type java-application --test-framework spock: Uses Spock for testing
instead of JUnit

gradle init --type java-application --test-framework testng: Uses TestNG for testing
instead of JUnit

17.3.3.“java-library”

The “j ava- | i brar y” build init type is not inferable. It must be explicitly specified.
It has the following features:

Uses the “j ava” plugin to produce a library Jar

Uses the “j cent er " dependency repository

Uses JUnit for testing

Has directories in the conventional locations for source code

Contains a sample class and unit test, if there are no existing source or test files

Alternative test framework can be specified by supplying a - - t est - f r anewor k argument value. To use a
different test framework, execute one of the following commands:

gradle init --type java-library --test-framework spock: Uses Spock for testing instead of
JUnit

gradle init --type java-library --test-framework testng: Uses TestNG for testing instead
of JUnit

17.3.4."“scal a-li brary”
The “scal a- | i br ar y” build init type is not inferable. It must be explicitly specified.
It has the following features:

Uses the “scal a” plugin to produce a library Jar
Uses the “j cent er " dependency repository
Uses Scala 2.10

Uses ScalaTest for testing

Has directories in the conventional locations for source code

Page 113 of 680

http://junit.org
http://code.google.com/p/spock/
http://testng.org/doc/index.html
http://junit.org
http://code.google.com/p/spock/
http://testng.org/doc/index.html
http://www.scalatest.org

Contains a sample scala class and an associated ScalaTest test suite, if there are no existing source or test
files

Uses the Zinc Scala compiler by default
17.3.5.“groovy-library”

The “gr oovy- | i brary” build init type is not inferable. It must be explicitly specified.
It has the following features:

Uses the “gr oovy” plugin to produce a library Jar

Uses the “j cent er " dependency repository

Uses Groovy 2.x

Uses Spock testing framework for testing

Has directories in the conventional locations for source code

Contains a sample Groovy class and an associated Spock specification, if there are no existing source or
test files

17.3.6. “groovy- appl i cati on”

The “gr oovy- appl i cati on” build init type is not inferable. It must be explicitly specified.
It has the following features:

Uses the “gr oovy” plugin

Uses the “appl i cat i on” plugin to produce a command-line application implemented using Groovy
Uses the “j cent er " dependency repository

Uses Groovy 2.x

Uses Spock testing framework for testing

Has directories in the conventional locations for source code

Contains a sample Groovy class and an associated Spock specification, if there are no existing source or
test files

17.3.7. “basic”

The “basi c¢” build init type is useful for creating a fresh new Gradle project. It creates a sample bui | d. gr ac
file, with comments and links to help get started.

This type is used when no type was explicitly specified, and no type could be inferred.

Page 114 of 680

http://spockframework.org
http://spockframework.org

18

Writing Build Scripts

This chapter looks at some of the details of writing a build script.

18.1. The Gradle build language

Gradle provides a domain specific language, or DSL, for describing builds. This build language is based on
Groovy, with some additions to make it easier to describe a build.

A build script can contain any Groovy language element.[®! Gradle assumes that each build script is encoded
using UTF-8.

18.2. The Project API

In the tutorial in Chapter 47, Java Quickstart we used, for example, the appl y() method. Where does this
method come from? We said earlier that the build script defines a project in Gradle. For each project in the
build, Gradle creates an object of type Pr oj ect and associates this Pr oj ect object with the build script. As
the build script executes, it configures this Pr oj ect object:

Getting help writing build scripts

Don't forget that your build script is simply Groovy code that drives the Gradle APIl. And the

Pr oj ect interface is your starting point for accessing everything in the Gradle API. So, if you're
wondering what 'tags' are available in your build script, you can start with the documentation for the Pr ¢
interface.

Any method you call in your build script which is not defined in the build script, is delegated to the Pr oj ect
object.

Any property you access in your build script, which is not defined in the build script, is delegated to the Pr oj
object.

Let’s try this out and try to access the nane property of the Pr oj ect object.

Page 115 of 680

http://www.gradle.org/docs/4.4.1/dsl/org.gradle.api.Project.html
http://www.gradle.org/docs/4.4.1/dsl/org.gradle.api.Project.html
http://www.gradle.org/docs/4.4.1/dsl/org.gradle.api.Project.html

Example 18.1. Accessing property of the Project object

buil d. gradl e

println nane
println project.nane

Output of gradl e -qg check
> gradl e -q check

pr oj ect Api

proj ect Api

Both pri nt | n statements print out the same property. The first uses auto-delegation to the Pr oj ect
object, for properties not defined in the build script. The other statement uses the proj ect property
available to any build script, which returns the associated Pr oj ect object. Only if you define a property or a

method which has the same name as a member of the Pr oj ect object, would you need to use the pr oj ect

property.
18.2.1. Standard project properties

The Proj ect object provides some standard properties, which are available in your build script. The
following table lists a few of the commonly used ones.

Table 18.1. Project Properties

Name Type Default Value

proj ect Proj ect The Pr oj ect instance

name String The name of the project directory.

path String The absolute path of the project.
description String A description for the project.
projectDir File The directory containing the build script.
bui I dDi r File projectDir/build

group oj ect unspeci fi ed

ver si on oj ect unspeci fi ed

ant Ant Bui | der An Ant Bui | der instance

Page 116 of 680

http://www.gradle.org/docs/4.4.1/dsl/org.gradle.api.Project.html
http://www.gradle.org/docs/4.4.1/javadoc/org/gradle/api/AntBuilder.html

18.3. The Script API

When Gradle executes a script, it compiles the script into a class which implements Scri pt . This means
that all of the properties and methods declared by the Scri pt interface are available in your script.

18.4. Declaring variables
There are two kinds of variables that can be declared in a build script: local variables and extra properties.

18.4.1. Local variables

Local variables are declared with the def keyword. They are only visible in the scope where they have been
declared. Local variables are a feature of the underlying Groovy language.
Example 18.2. Using local variables

buil d. gradl e
def dest = "dest"

task copy(type: Copy) {
from "source"

i nto dest

18.4.2. Extra properties

All enhanced objects in Gradle’s domain model can hold extra user-defined properties. This includes, but is
not limited to, projects, tasks, and source sets. Extra properties can be added, read and set via the owning
object’'s ext property. Alternatively, an ext block can be used to add multiple properties at once.

Page 117 of 680

http://www.gradle.org/docs/4.4.1/dsl/org.gradle.api.Script.html

Example 18.3. Using extra properties

buil d. gradl e
apply plugin: "java"

ext {
springVersion = "3.1. 0. RELEASE"
emai | Notification = "buil d@muaster. org"

sourceSets.all { ext.purpose = null }

sourceSets {

mai n {

pur pose = "production”
}
test {

pur pose = "test"
}
plugin {

pur pose = "production”
}

task printProperties {
doLast {
println springVersion
println email Notification
sourceSets. matching { it.purpose == "production” }.each { println it.nam

}

Outputof gradl e -qg printProperties

> gradle -q printProperties
3. 1. 0. RELEASE

bui | d@raster. org

mai n

pl ugi n

In this example, an ext block adds two extra properties to the proj ect object. Additionally, a property
named pur pose is added to each source set by setting ext . pur pose to nul |l (null is a permissible
value). Once the properties have been added, they can be read and set like predefined properties.

By requiring special syntax for adding a property, Gradle can fail fast when an attempt is made to set a
(predefined or extra) property but the property is misspelled or does not exist. Extra properties can be
accessed from anywhere their owning object can be accessed, giving them a wider scope than local
variables. Extra properties on a project are visible from its subprojects.

For further details on extra properties and their API, see the Ext r aPr operti esExt ensi on class in the

Page 118 of 680

http://www.gradle.org/docs/4.4.1/dsl/org.gradle.api.plugins.ExtraPropertiesExtension.html

API| documentation.

18.5. Configuring arbitrary objects
You can configure arbitrary objects in the following very readable way.

Example 18.4. Configuring arbitrary objects

bui | d. gradl e

task configure {
doLast {
def pos = configure(new java.text.FieldPosition(10)) {
begi nl ndex = 1
endl ndex = 5

}
println pos. beginl ndex
println pos. endl ndex

}

Outputof gradl e -qg configure

> gradle -q configure
1
5

18.6. Configuring arbitrary objects using an external script
You can also configure arbitrary objects using an external script.

Example 18.5. Configuring arbitrary objects using a script

buil d. gradl e

task configure {
doLast {
def pos = new java.text.Fiel dPosition(10)

apply from 'other.gradle', to: pos
println pos. beginl ndex
println pos. endl ndex

}

ot her.gradl e

1
|

begi nl ndex
endl ndex = 5

Outputof gradl e -qg configure

> gradle -q configure
1
5

Page 119 of 680

18.7. Some Groovy basics

The Groovy language provides plenty of features for creating DSLs, and the Gradle build language takes
advantage of these. Understanding how the build language works will help you when you write your build
script, and in particular, when you start to write custom plugins and tasks.

18.7.1. Groovy JDK

Groovy adds lots of useful methods to the standard Java classes. For example, | t er abl e gets an each
method, which iterates over the elements of the | t er abl e:

Example 18.6. Groovy JDK methods

buil d. gradl e

configurations.runtime.each { File f -> println f }

Have a look at http://groovy-lang.org/gdk.html for more details.

18.7.2. Property accessors

Groovy automatically converts a property reference into a call to the appropriate getter or setter method.

Example 18.7. Property accessors

bui | d. gradl e

println project.buildDr
println getProject().getBuildbDir()

project.buildDr = '"target'
getProject().setBuildDir('target')

18.7.3. Optional parentheses on method calls

Parentheses are optional for method calls.

Example 18.8. Method call without parentheses

bui I d. gradl e
test.systenProperty 'sone.prop', 'value
test.systenProperty(' sone. prop', 'value')

18.7.4. List and map literals

Groovy provides some shortcuts for defining Li st and Map instances. Both kinds of literals are
straightforward, but map literals have some interesting twists.

Page 120 of 680

http://docs.groovy-lang.org/latest/html/documentation/index.html
http://groovy-lang.org/gdk.html

For instance, the “appl y” method (where you typically apply plugins) actually takes a map parameter.

However, when you have a line like “apply plugin:'java'”, you aren’t actually using a map literal,
you're actually using “named parameters”, which have almost exactly the same syntax as a map literal
(without the wrapping brackets). That named parameter list gets converted to a map when the method is

called, but it doesn't start out as a map.

Example 18.9. List and map literals

buil d. gradl e

test.includes = ['org/gradle/api/**', "org/gradle/internal/**"]

List<String> list = new ArrayList<String>()
list.add('org/gradle/api/**")

list.add(' org/gradle/internal/**")
test.includes = |ist

Map<String, String> map = [keyl:'valuel', key2: 'value2']

apply plugin: 'java'

18.7.5. Closures as the last parameter in a method

The Gradle DSL uses closures in many places. You can find out more about closures here. When the last
parameter of a method is a closure, you can place the closure after the method call:

Example 18.10. Closure as method parameter

bui | d. gradl e

repositories {
println "in a closure"

}

repositories() { println "in a closure" }
repositories({ println "in a closure" })

18.7.6. Closure delegate

Each closure has a del egat e object, which Groovy uses to look up variable and method references which
are not local variables or parameters of the closure. Gradle uses this for configuration closures, where the de
object is set to the object to be configured.

Page 121 of 680

http://docs.groovy-lang.org/latest/html/documentation/index.html#_closures

Example 18.11. Closure delegates

buil d. gradl e

dependenci es {

assert del egate

proj ect. dependenci es

testConpile('junit:junit:4.12")
del egate.testCompile('junit:junit:4.12")

18.8. Default imports

To make build scripts more concise, Gradle automatically adds a set of import statements to the Gradle

scripts. This means that instead of using t hr ow new or g. gradl e. api . t asks. St opExecut i onExcept

you can just type t hr ow new St opExecut i onExcepti on() instead.

Listed below are the imports added to each script:

Gradle default imports.

i mport
i mport
i mport
i mport
i mport
i mport
i mport
i mport
i mport
i mport
i mport
i mport
i mport
i mport
i mport
i mport
i mport
i mport
i mport
i mport
i mport
i mport
i mport
i mport
i mport
i mport
i mport
i mport
i mport

org.
org.
org.
org.
org.
org.
org.
org.
org.
org.
org.
org.
org.
org.
org.
org.
org.
org.
org.
org.
org.
org.
org.
org.
org.
org.
org.
org.
org.

gradl e.
gradl e.
gradl e.
gradl e.
gradl e.
gradl e.
gradl e.
gradl e.
gradl e.
gradl e.
gradl e.
gradl e.
gradl e.
gradl e.
gradl e.
gradl e.
gradl e.
gradl e.
gradl e.
gradl e.
gradl e.
gradl e.
gradl e.
gradl e.
gradl e.
gradl e.
gradl e.
gradl e.
gradl e.

*

api .
.artifacts. *
.artifacts.cache.*
.artifacts.conponent.*

api
api
api

api .
.artifacts.ivy.*
.artifacts. maven. *
.artifacts. query.*
.artifacts.repositories.*
.artifacts.result.*

api .
.artifacts.type.*
.attributes.*

. conmponent . *
.credentials.*
.distribution.*
.distribution.plugins.*

api
api
api
api
api

api
api
api
api
api
api

api .
. execution.*
file *

api .
.initialization.dsl.*
api .
api .
.l oggi ng. *
api .
api .
. pl ugi ns. *

api
api

api

api

api

*

artifacts.dsl.*

artifacts.transform*

dsl.*

initialization.*

i nvocati on. *
j ava. ar chi ves. *

| oggi ng. configuration.*
nodel . *

Page 122 of 680

i mport org.gradle.api.plugins.announce. *

i mport org.gradle.api.plugins.antlr.*

i mport org.gradle.api.plugins. buildconparison.gradle.*
i mport org.gradl e. api.plugins.osgi.*

i mport org.gradle.api.plugins.quality.*

i mport org.gradl e.api.plugins.scala.*

i mport org.gradle. api.provider.*

i mport org.gradle. api.publish.*

i mport org.gradle.api.publish.ivy.*

i mport org.gradle.api.publish.ivy.plugins.*
i mport org.gradle.api.publish.ivy.tasks.*

i mport org.gradle.api.publish. mven. *

i mport org.gradl e.api.publish. maven. pl ugi ns. *
i mport org.gradle.api.publish. maven.tasks. *
i mport org.gradl e. api.publish. plugins.*

i mport org.gradle.api.publish.tasks.*

i mport org.gradle.api.reflect.*

i mport org.gradle.api.reporting.*

i mport org.gradle.api.reporting.conponents.*
i mport org.gradl e.api.reporting. dependenci es. *
i mport org.gradle.api.reporting. dependents. *
i mport org.gradl e. api.reporting. nodel . *

i mport org.gradle.api.reporting.plugins.*

i mport org.gradl e. api.resources. *

i mport org.gradle. api.specs.*

i mport org.gradle.api.tasks.*

i mport org.gradle.api.tasks.ant.*

i mport org.gradle. api.tasks. application.*

i mport org.gradl e.api.tasks. bundling.*

i mport org.gradle.api.tasks.conpile.*

i mport org.gradle.api.tasks. di agnostics.*

i mport org.gradle. api.tasks.increnental.*

i mport org.gradle.api.tasks.javadoc. *

i mport org.gradle. api.tasks.scal a.*

i mport org.gradle.api.tasks.testing.*

i mport org.gradle.api.tasks.testing.junit.*
i mport org.gradle.api.tasks.testing.testng.*
i mport org.gradle.api.tasks.util.*

i mport org.gradl e. api.tasks.w apper.*

i mport org.gradl e.authentication.*

i mport org.gradl e.authentication. awns. *

i mport org.gradle.authentication.http.*

i mport org.gradle.buildinit.plugins.*

i mport org.gradle.buildinit.tasks.*

i mport org.gradl e.caching.*

i mport org.gradl e.caching.configuration.*

i mport org.gradle.caching. http.*

i mport org.gradl e.caching.local.*

i mport org.gradl e.concurrent.*

Page 123 of 680

i mport
i mport
i mport
i mport
i mport
i mport
i mport
i mport
i mport
i mport
i mport
i mport
i mport
i mport
i mport
i mport
i mport
i mport
i mport
i mport
i mport
i mport
i mport
i mport
i mport
i mport
i mport
i mport
i mport
i mport
i mport
i mport
i mport
i mport
i mport
i mport
i mport
i mport
i mport
i mport
i mport
i mport
i mport
i mport
i mport
i mport
i mport
i mport
i mport

org.
org.
org.
org.
org.
org.
org.
org.
org.
org.
org.
org.
org.
org.
org.
org.
org.
org.
org.
org.
org.
org.
org.
org.
org.
org.
org.
org.
org.
org.
org.
org.
org.
org.
org.
org.
org.
org.
org.
org.
org.
org.
org.
org.
org.
org.
org.
org.
org.

gradl e.
gradl e.
gradl e.
gradl e.
gradl e.
gradl e.
gradl e.
gradl e.
gradl e.
gradl e.
gradl e.
gradl e.
gradl e.
gradl e.
gradl e.
gradl e.
gradl e.
gradl e.
gradl e.
gradl e.
gradl e.
gradl e.
gradl e.
gradl e.
gradl e.
gradl e.
gradl e.
gradl e.
gradl e.
gradl e.
gradl e.
gradl e.
gradl e.
gradl e.
gradl e.
gradl e.
gradl e.
gradl e.
gradl e.
gradl e.
gradl e.
gradl e.
gradl e.
gradl e.
gradl e.
gradl e.
gradl e.
gradl e.
gradl e.

ext erna

. j avadoc. *

i de. vi sual studio. *

i de. vi sual studi o. pl ugi ns. *
i de. vi sual studi o. tasks. *

i de. xcode. *

i de. xcode. pl ugi ns. *

i de. xcode. t asks. *

ivy.*
jvm*
j vm appl
j vm appl

i cation.scripts.*
i cation.tasks.*

jvmplatform*

jvm pl ug

ins.*

jvmtasks. *
jvmtasks. api . *

jvmtest

*

jvm tool chain.*

| anguage.
| anguage.
| anguage.
| anguage.
| anguage.
| anguage.
| anguage.
| anguage.
| anguage.
| anguage.
| anguage.
| anguage.
| anguage.
| anguage.
| anguage.
| anguage.
| anguage.
| anguage.
| anguage.
| anguage.
| anguage.
| anguage.
| anguage.
| anguage.
| anguage.
| anguage.
| anguage.
| anguage.
| anguage.
| anguage.
| anguage.

| anguage

assenbl er. *
assenbl er. pl ugi ns. *
assenbl er.t asks. *
base. *

base. artifact.*
base. conpile. *
base. pl ugi ns. *

base. sources. *

c.*

c.plugins. *
c.tasks.*

cof feescript.*

cpp. *

cpp. pl ugi ns. *

cpp. tasks. *

java.*
java.artifact.*
java. pl ugi ns. *

j ava.t asks. *
javascript.*

jvm*

jvm plugins. *
jvmtasks. *

nativepl atform *
nativepl at form t asks. *
obj ectivec. *

obj ecti vec. pl ugi ns. *
obj ectivec.tasks. *
obj ecti vecpp. *

obj ecti vecpp. pl ugi ns. *
obj ecti vecpp. tasks. *
.rc.*

Page 124 of 680

i mport
i mport
i mport
i mport
i mport
i mport
i mport
i mport
i mport
i mport
i mport
i mport
i mport
i mport
i mport
i mport
i mport
i mport
i mport
i mport
i mport
i mport
i mport
i mport
i mport
i mport
i mport
i mport
i mport
i mport
i mport
i mport
i mport
i mport
i mport
i mport
i mport
i mport
i mport
i mport
i mport
i mport
i mport
i mport
i mport
i mport
i mport
i mport
i mport

org.
org.
org.
org.
org.
org.
org.
org.
org.
org.
org.
org.
org.
org.
org.
org.
org.
org.
org.
org.
org.
org.
org.
org.
org.
org.
org.
org.
org.
org.
org.
org.
org.
org.
org.
org.
org.
org.
org.
org.
org.
org.
org.
org.
org.
org.
org.
org.
org.

gradl e.
gradl e.
gradl e.
gradl e.
gradl e.
gradl e.
gradl e.
gradl e.
gradl e.
gradl e.
gradl e.
gradl e.
gradl e.
gradl e.
gradl e.
gradl e.
gradl e.
gradl e.
gradl e.
gradl e.
gradl e.
gradl e.
gradl e.
gradl e.
gradl e.
gradl e.
gradl e.
gradl e.
gradl e.
gradl e.
gradl e.
gradl e.
gradl e.
gradl e.
gradl e.
gradl e.
gradl e.
gradl e.
gradl e.
gradl e.
gradl e.
gradl e.
gradl e.
gradl e.
gradl e.
gradl e.
gradl e.
gradl e.
gradl e.

| ang
| ang
| ang
| ang
| ang
| ang
| ang
| ang
| ang
| ang
| ang
mave
nmode
nat i
nati
nat i
nat i
nat i
nat i
nat i
nat i
nat i
nat i
nat i
nat i
nat i
nat i
nat i
nat i
nati
nat i
nat i

pl at
pl at
pl at
pl at

pl ay.
pl ay.
pl ay.
pl ay.
pl ay.
pl ay.
pl ay.

pl ug
pl ug
pl ug
pl ug
pl ug

uage. rc. pl ugi ns.
uage.rc.tasks.*
uage.routes.*
uage. scal a. *
uage. scal a. pl ugi

*

ns. *

uage. scal a. tasks. *
uage. scal a. t ool chai n. *

uage. swi ft.*
uage. swi ft. pl ugi

ns. *

uage. swi ft.tasks.*

uage.twirl.*

n.*

[.*

vepl atform *
vepl atform pl at f
vepl at f orm pl ugi

orm?*
ns. *

vepl atformtasks. *

vepl atformtest.
veplatformtest.
vepl atformtest.
veplatformtest.
vepl atformtest.
vepl atformtest.
vepl atformtest.
veplatformtest.
vepl atformtest.
veplatformtest.
vepl atformtest.
veplatformtest.
veplatformtest.

*

cpp. *
cpp. pl ugi ns. *
cunit.*

cunit. plugins.*
cunit.tasks.*
googl et est . *

googl et est . pl ugi ns. *

pl ugi ns. *

t asks. *

Xctest.*

xct est. pl ugi ns. *
xctest.tasks. *

vepl at f or m t ool chai n. *
vepl at f or m t ool chai n. pl ugi ns. *
normal i zati on. *

f orm base. *

form base. bi nary. *
f orm base. conponent . *
f orm base. pl ugi ns. *

*

distribution.*
platform*

pl ugi ns. *

pl ugi ns.ide. *

t asks. *

t ool chain. *

i n.devel . *

i
.devel . tasks. *
. managenent . *

. use. *

n
in
in
n

. devel . pl ugi ns. *

Page 125 of 680

i mport
i mport
i mport
i mport
i mport
i mport
i mport
i mport
i mport
i mport
i mport
i mport
i mport
i mport
i mport
i mport
i mport
i mport
i mport
i mport
i mport
i mport
i mport
i mport
i mport

org.
org.
org.
org.
org.
org.
org.
org.
org.
org.
org.
org.
org.
org.
org.
org.
org.
org.
org.
org.
org.
org.
org.
org.
org.

gradl e.
gradl e.
gradl e.
gradl e.
gradl e.
gradl e.
gradl e.
gradl e.
gradl e.
gradl e.
gradl e.
gradl e.
gradl e.
gradl e.
gradl e.
gradl e.
gradl e.
gradl e.
gradl e.
gradl e.
gradl e.
gradl e.
gradl e.
gradl e.
gradl e.

pl ug
pl ug
pl ug
pl ug
p!l ug
pl ug
pl ugi
pl ugi
pl ugi
pl ugi
pl ugi
pl ugi
pl ugi
pl ugi
pl ugi
pl ugi
pl ugi
pl ugi

testi
testi
testi
testi
testi

ns.
ns.
ns.
ns.
ns.
ns.
ns.
ns.

ns

ns.
ns.
ns.
ns.
ns.
ns.
ns.
ns.
ns.
process.

ng
ng
ng
ng
ng

ear.*

ear. descriptor.*

i de. api . *

i de. eclipse.*

i de.idea.*

j avascri pt . base. *
javascript.coffeescript.*
javascript.envjs.*
.javascript.envjs. browser. *
javascript.envjs. http.*
javascript.envjs.http.sinmple.*
javascript.jshint.*
javascript.rhino.*

si gni ng. *

si gni ng. signatory.*

si gni ng. si gnatory. pgp. *
si gning.type. *

si gni ng. type. pgp. *

. base. *

. base. pl ugi ns. *

. j acoco. pl ugi ns. *

. jacoco. tasks. *

.jacoco. tasks.rul es. *

testkit.runner.*

Page 126 of 680

i mport org.gradle.vcs.*
i mport org.gradle.vecs.git.*
i mport org.gradl e.workers. *

[6] Any language element except for statement labels.

Page 127 of 680

19

More about Tasks

In the introductory tutorial (Chapter 16, Build Script Basics) you learned how to create simple tasks. You also
learned how to add additional behavior to these tasks later on, and you learned how to create dependencies
between tasks. This was all about simple tasks, but Gradle takes the concept of tasks further. Gradle
supports enhanced tasks, which are tasks that have their own properties and methods. This is really
different from what you are used to with Ant targets. Such enhanced tasks are either provided by you or built
into Gradle.

19.1. Task outcomes

When Gradle executes a task, it can label the task with different outcomes in the console Ul and via the
Tooling API (see Chapter 14, Embedding Gradle using the Tooling API). These labels are based on if a task
has actions to execute, if it should execute those actions, if it did execute those actions and if those actions
made any changes.

Page 128 of 680

Table 19.1. Details about task outcomes

Outcome

label Description of outcome Situations that have this outcome
® Used whenever a task has actions and Gradle has determined they should be
(no | abel) executed as part of a build.
Task executed its actions.
or EXECUTED ® Used whenever a task has no actions and some dependencies, and any of the
dependencies are executed. See also Section 19.13, “Lifecycle tasks”.
® Used when a task has outputs and inputs and they have not changed. See
Section 19.10, “Up-to-date checks (AKA Incremental Build)".
® Used when a task has actions, but the task tells Gradle it did not change its outputs.
Task’s outputs did not
UP- TO- DATE * Used when a task has no actions and some dependencies, but all of the

change.
dependencies are up-to-date, skipped or from cache. See also Section 19.13,

“Lifecycle tasks”.

® Used when a task has no actions and no dependencies.

Task’s outputs could be))
. ® Used when a task has outputs restored from the build cache. See Chapter 15, Build
FROW CACHE found from a previous Cach
ache.

execution.

® Used when a task has been explicitly excluded from the command-line. See
Task did not execute its Section 4.2, “Excluding tasks”.

SKI PPED)
actions. ® Used when a task has an onl yI f predicate return false. See Section 19.9.1,
“Using a predicate”.
Task did not need o Used when a task has inputs and outputs, but no sources. For example, source files
NO- SOURCE

execute its actions. are . j ava files for JavaConpi | e.

19.2. Defining tasks

We have already seen how to define tasks using a keyword style in Chapter 16, Build Script Basics. There
are a few variations on this style, which you may need to use in certain situations. For example, the keyword
style does not work in expressions.

Page 129 of 680

http://www.gradle.org/docs/4.4.1/dsl/org.gradle.api.tasks.compile.JavaCompile.html

Example 19.1. Defining tasks

buil d. gradl e
task(hello) {
doLast {

println "hello"

task(copy, type: Copy) {
fronm(file(' srchDir'))
into(buildDr)

You can also use strings for the task names:

Example 19.2. Defining tasks - using strings for task names

buil d. gradl e
task(' hello') {
doLast {

println "hello"

task(' copy', type: Copy) {
from(file(srchDir'))
into(buildDr)

There is an alternative syntax for defining tasks, which you may prefer to use:

Example 19.3. Defining tasks with alternative syntax

buil d. gradl e

tasks. create(nanme: "'hello') {
doLast {
println "hello"

tasks. create(nanme: 'copy', type: Copy) {
fromfile('srcDir"))
i nt o(bui | dDi r)

Here we add tasks to the t asks collection. Have a look at TaskCont ai ner for more variations of the cr eat
method.

Page 130 of 680

http://www.gradle.org/docs/4.4.1/javadoc/org/gradle/api/tasks/TaskContainer.html

19.3. Locating tasks

You often need to locate the tasks that you have defined in the build file, for example, to configure them or
use them for dependencies. There are a number of ways of doing this. Firstly, each task is available as a
property of the project, using the task name as the property name:

Example 19.4. Accessing tasks as properties

bui I d. gradl e
task hello

println hello.name
println project.hello.name

Tasks are also available through the t asks collection.

Example 19.5. Accessing tasks via tasks collection

bui | d. gradl e
task hello

println tasks. hello.nane
println tasks[' hello'].nane

You can access tasks from any project using the task’s path using the t asks. get ByPat h() method. You
can call the get ByPat h() method with a task name, or a relative path, or an absolute path.

Example 19.6. Accessing tasks by path

buil d. gradl e
project(':projectA) {
task hello

task hello

println tasks. getByPath('hello').path

println tasks.getByPath(':hello').path

println tasks. getByPath(' projectA hello").path
println tasks.getByPath(':projectA hello').path

Outputofgradl e -qg hello

> gradle -q hello
‘hello

“hello

:projectA hello
:projectA hello

Have a look at TaskCont ai ner for more options for locating tasks.

Page 131 of 680

http://www.gradle.org/docs/4.4.1/javadoc/org/gradle/api/tasks/TaskContainer.html

19.4. Configuring tasks

As an example, let’s look at the Copy task provided by Gradle. To create a Copy task for your build, you can
declare in your build script:

Example 19.7. Creating a copy task

buil d. gradl e
task nyCopy(type: Copy)

This creates a copy task with no default behavior. The task can be configured using its API (see Copy). The
following examples show several different ways to achieve the same configuration.

Just to be clear, realize that the name of this task is “myCopy”, but it is of type “Copy”. You can have
multiple tasks of the same type, but with different names. You'll find this gives you a lot of power to
implement cross-cutting concerns across all tasks of a particular type.

Example 19.8. Configuring a task - various ways

buil d. gradl e

Copy nyCopy = task(nyCopy, type: Copy)

myCopy. from ' resources’

myCopy.into 'target’

myCopy.include(" **/*. txt', "**/*.xm"', '"**/* properties')

This is similar to the way we would configure objects in Java. You have to repeat the context (myCopy) in the
configuration statement every time. This is a redundancy and not very nice to read.

There is another way of configuring a task. It also preserves the context and it is arguably the most readable.
It is usually our favorite.
Example 19.9. Configuring a task - with closure

buil d. gradl e
task nyCopy(type: Copy)

my Copy {

from'resources'

into 'target'

include("**/*. txt', "**/*.xm', '"**/* properties')
}

This works for any task. Line 3 of the example is just a shortcut for the t asks. get ByNane() method. It is
important to note that if you pass a closure to the get ByNanme() method, this closure is applied to configure

the task, not when the task executes.

You can also use a configuration closure when you define a task.

Page 132 of 680

http://www.gradle.org/docs/4.4.1/dsl/org.gradle.api.tasks.Copy.html

Example 19.10. Defining a task with closure

buil d. gradl e

task copy(type: Copy) {
from'resources'

into 'target’
include('**/*. txt', "**/*.xm', '"**/* properties')

Don’t forget about the build phases

A task has both configuration and actions. When using the doLast , you are simply using a shortcut
to define an action. Code defined in the configuration section of your task will get executed during
the configuration phase of the build regardless of what task was targeted. See Chapter 22, The
Build Lifecycle for more details about the build lifecycle.

19.5. Adding dependencies to a task

There are several ways you can define the dependencies of a task. In Section 16.5, “Task dependencies”
you were introduced to defining dependencies using task names. Task names can refer to tasks in the same
project as the task, or to tasks in other projects. To refer to a task in another project, you prefix the name of
the task with the path of the project it belongs to. The following is an example which adds a dependency
from pr oj ect A: t askXto pr oj ect B: t askY:

Example 19.11. Adding dependency on task from another project

bui | d. gradl e
project('projectA) {
task taskX(dependsOn: ':projectB:taskY') {
doLast {
println 'taskX

project('projectB) {
task taskY {
doLast {
println 'taskY

}

Outputofgradl e -q taskX

> gradle -qg taskX
taskyY
taskX

Instead of using a task name, you can define a dependency using a Task object, as shown in this example:

Page 133 of 680

Example 19.12. Adding dependency using task object

buil d. gradl e
task taskX {
doLast {

println 'taskX

task taskY {
doLast {
println 'taskY

t askX. dependsOn t askY

Outputof gradl e -qg taskX

> gradle -qg taskX
taskyY
taskX

For more advanced uses, you can define a task dependency using a closure. When evaluated, the closure is

passed the task whose dependencies are being calculated. The closure should return a single Task or

collection of Task objects, which are then treated as dependencies of the task. The following example adds

a dependency from t askX to all the tasks in the project whose name starts with | i b:

Page 134 of 680

Example 19.13. Adding dependency using closure

buil d. gradl e
task taskX {
doLast {

println 'taskX

t askX. dependsOn {
tasks.findAll { task -> task.nanme.startsWth('lib") }

}
task libl {
doLast {
println "libl'
}
}
task lib2 {
doLast ({
println '"lib2
}
}

task notALib {
doLast {
println 'notALi b’

}

Outputofgradl e -q taskX

> gradle -qg taskX
libl
lib2
taskX

For more information about task dependencies, see the Task API.

19.6. Ordering tasks

Note: Task ordering is an incubating feature. Please be aware that this feature may change in later
Gradle versions.

In some cases it is useful to control the order in which 2 tasks will execute, without introducing an explicit
dependency between those tasks. The primary difference between a task ordering and a task dependency
is that an ordering rule does not influence which tasks will be executed, only the order in which they will be
executed.

Page 135 of 680

http://www.gradle.org/docs/4.4.1/dsl/org.gradle.api.Task.html

Task ordering can be useful in a number of scenarios:

Enforce sequential ordering of tasks: e.g. 'build’ never runs before 'clean'.

Run build validations early in the build: e.g. validate | have the correct credentials before starting the work for
a release build.

Get feedback faster by running quick verification tasks before long verification tasks: e.g. unit tests should
run before integration tests.

A task that aggregates the results of all tasks of a particular type: e.g. test report task combines the outputs
of all executed test tasks.

There are two ordering rules available: “must run after” and “should run after”.

When you use the “must run after” ordering rule you specify that t askB must always run after t askA,
whenever both t askA and t askB will be run. This is expressed as t askB. nust RunAf t er (t askA) . The
“should run after” ordering rule is similar but less strict as it will be ignored in two situations. Firstly if using
that rule introduces an ordering cycle. Secondly when using parallel execution and all dependencies of a
task have been satisfied apart from the “should run after” task, then this task will be run regardless of
whether its “should run after” dependencies have been run or not. You should use “should run after” where
the ordering is helpful but not strictly required.

With these rules present it is still possible to execute t askA without t askB and vice-versa.

Example 19.14. Adding a 'must run after' task ordering

bui | d. gradl e
task taskX {
doLast ({
println 'taskX
}
}
task taskY {
doLast {
println 'taskY
}
}

t askY. nust RunAfter taskX

Outputofgradl e -qg taskY taskX

> gradle -qg taskY taskX
taskX
taskY

Page 136 of 680

Example 19.15. Adding a 'should run after' task ordering

buil d. gradl e
task taskX {
doLast {
println 'taskX
}
}
task taskY {
doLast {
println 'taskY
}
}

t askY. shoul dRunAfter taskX

Outputof gradl e -g taskY taskX

> gradl e -qg taskY taskX
t askX
taskyY

In the examples above, it is still possible to execute t askY without causing t askX to run:

Example 19.16. Task ordering does not imply task execution

Outputofgradl e -qg taskY

> gradl e -qg taskY
taskY

To specify a “must run after” or “should run after” ordering between 2 tasks, you use the
Task. nust RunAfter (java. |l ang. Obj ect[]) and Task. shoul dRunAfter (java.l ang. Object[])
methods. These methods accept a task instance, a task name or any other input accepted by
Task. dependsOn(j ava. | ang. Obj ect[]).

Note that “B. nust RunAf t er (A) ” or “B. shoul dRunAft er (A) ” does not imply any execution dependency
between the tasks:

It is possible to execute tasks A and B independently. The ordering rule only has an effect when both tasks

are scheduled for execution.

When run with - - cont i nue, it is possible for B to execute in the event that A fails.

As mentioned before, the “should run after” ordering rule will be ignored if it introduces an ordering cycle:

Page 137 of 680

http://www.gradle.org/docs/4.4.1/dsl/org.gradle.api.Task.html#org.gradle.api.Task:mustRunAfter(java.lang.Object[])
http://www.gradle.org/docs/4.4.1/dsl/org.gradle.api.Task.html#org.gradle.api.Task:mustRunAfter(java.lang.Object[])
http://www.gradle.org/docs/4.4.1/javadoc/org/gradle/api/Task.html#shouldRunAfter(java.lang.Object[])
http://www.gradle.org/docs/4.4.1/dsl/org.gradle.api.Task.html#org.gradle.api.Task:dependsOn(java.lang.Object[])
http://www.gradle.org/docs/4.4.1/dsl/org.gradle.api.Task.html#org.gradle.api.Task:dependsOn(java.lang.Object[])

Example 19.17. A 'should run after' task ordering is ignored if it introduces an ordering cycle

buil d. gradl e
task taskX {
doLast {
println 'taskX
}
}
task taskY {
doLast {
println 'taskY
}
}
task taskzZ {
doLast {
println 'taskZ
}
}

t askX. dependsOn taskY
t askY. dependsOn taskZ
t askZ. shoul dRunAfter taskX

Outputof gradl e -qg taskX

> gradle -qg taskX
t askZ
taskY
taskX

19.7. Adding a description to a task

You can add a description to your task. This description is displayed when executing gr adl e t asks.

Example 19.18. Adding a description to a task

buil d. gradl e

task copy(type: Copy) {
description 'Copies the resource directory to the target directory.'

from'resources’
into 'target'
include('**/*.txt', "**/*. xm', '"**/* properties')

19.8. Replacing tasks

Sometimes you want to replace a task. For example, if you want to exchange a task added by the Java
plugin with a custom task of a different type. You can achieve this with:

Page 138 of 680

Example 19.19. Overwriting a task

buil d. gradl e
task copy(type: Copy)

task copy(overwite: true) {
doLast {
println('l amthe new one.")

}

Output of gradl e -qgq copy

> gradle -q copy
I amthe new one.

This will replace a task of type Copy with the task you've defined, because it uses the same name. When
you define the new task, you have to set the overw it e property to true. Otherwise Gradle throws an
exception, saying that a task with that name already exists.

19.9. Skipping tasks
Gradle offers multiple ways to skip the execution of a task.

19.9.1. Using a predicate

You can use the onl yl f () method to attach a predicate to a task. The task’s actions are only executed if
the predicate evaluates to true. You implement the predicate as a closure. The closure is passed the task as
a parameter, and should return true if the task should execute and false if the task should be skipped. The
predicate is evaluated just before the task is due to be executed.

Example 19.20. Skipping a task using a predicate

buil d. gradl e
task hello {
doLast {

println "hello world'

hell o.onlylf { !project.hasProperty('skipHello) }

Output of gradl e hel |l o - Pski pHel | o

> gradle hello -PskipHello
:hel | o SKI PPED

BUI LD SUCCESSFUL in Os

Page 139 of 680

19.9.2. Using StopExecutionException

If the logic for skipping a task can’'t be expressed with a predicate, you can use the
St opExecut i onExcept i on. If this exception is thrown by an action, the further execution of this action as
well as the execution of any following action of this task is skipped. The build continues with executing the
next task.

Example 19.21. Skipping tasks with StopExecutionException

bui | d. gradl e

task conpile {
doLast {
println 'W are doing the conpile.’

conpi |l e. doFirst {

if (true) { throw new StopExecuti onException() }

}
task nyTask(dependsOn: 'conpile') {
doLast ({
println 'l am not affected
}
}

Outputof gradl e -g nyTask

> gradl e -q nyTask
I am not affected

This feature is helpful if you work with tasks provided by Gradle. It allows you to add conditional execution of
the built-in actions of such a task.[”]

19.9.3. Enabling and disabling tasks

Every task has an enabl ed flag which defaults to t r ue. Setting it to f al se prevents the execution of any of
the task’s actions. A disabled task will be labelled SKIPPED.

Page 140 of 680

http://www.gradle.org/docs/4.4.1/javadoc/org/gradle/api/tasks/StopExecutionException.html
http://www.gradle.org/docs/4.4.1/javadoc/org/gradle/api/tasks/StopExecutionException.html

Example 19.22. Enabling and disabling tasks

buil d. gradl e
task disableMe {
doLast {

println 'This should not be printed if the task is disabled."’

}

di sabl eMe. enabl ed = fal se

Output of gr adl e di sabl eMe

> gradl e di sabl eMe
: di sabl eMe SKI PPED

BU LD SUCCESSFUL in Os

19.10. Up-to-date checks (AKA Incremental Build)

An important part of any build tool is the ability to avoid doing work that has already been done. Consider the
process of compilation. Once your source files have been compiled, there should be no need to recompile
them unless something has changed that affects the output, such as the modification of a source file or the
removal of an output file. And compilation can take a significant amount of time, so skipping the step when
it's not needed saves a lot of time.

Gradle supports this behavior out of the box through a feature it calls incremental build. You have almost
certainly already seen it in action: it's active nearly every time the UP- TO- DATE text appears next to the
name of a task when you run a build. Task outcomes are described in Section 19.1, “Task outcomes”.

How does incremental build work? And what does it take to make use of it in your own tasks? Let's take a
look.

19.10.1. Task inputs and outputs

In the most common case, a task takes some inputs and generates some outputs. If we use the compilation
example from earlier, we can see that the source files are the inputs and, in the case of Java, the generated
class files are the outputs. Other inputs might include things like whether debug information should be
included.

Page 141 of 680

Figure 19.1. Example task inputs and outputs

Green: inputs

Blue: outputs
Target JDK
version \
Source > JavaCompile | o (ass files
files task

Fork /
N\

An internal property - it may affect
the execution of the task, but never
the task outputs

An important characteristic of an input is that it affects one or more outputs, as you can see from the
previous figure. Different bytecode is generated depending on the content of the source files and the
minimum version of the Java runtime you want to run the code on. That makes them task inputs. But
whether compilation has 500MB or 600MB of maximum memory available, determined by the menor yMaxi
property, has no impact on what bytecode gets generated. In Gradle terminology, menor yMaxi nunfsi ze is
just an internal task property.

As part of incremental build, Gradle tests whether any of the task inputs or outputs have changed since the
last build. If they haven't, Gradle can consider the task up to date and therefore skip executing its actions.
Also note that incremental build won’t work unless a task has at least one task output, although tasks usually
have at least one input as well.

What this means for build authors is simple: you need to tell Gradle which task properties are inputs and
which are outputs. If a task property affects the output, be sure to register it as an input, otherwise the task
will be considered up to date when it's not. Conversely, don't register properties as inputs if they don't affect
the output, otherwise the task will potentially execute when it doesn’t need to. Also be careful of
non-deterministic tasks that may generate different output for exactly the same inputs: these should not be
configured for incremental build as the up-to-date checks won’t work.

Let’'s now look at how you can register task properties as inputs and outputs.
Custom task types

If you're implementing a custom task as a class, then it takes just two steps to make it work with incremental
build:

Create typed properties (via getter methods) for each of your task inputs and outputs
Add the appropriate annotation to each of those properties

Note: Annotations must be placed on getters or on Groovy properties. Annotations placed on

Page 142 of 680

setters, or on a Java field without a corresponding annotated getter are ignored.

Gradle supports three main categories of inputs and outputs:

Simple values

Things like strings and numbers. More generally, a simple value can have any type that implements Seri al i

Filesystem types

These consist of the standard Fi | e class but also derivatives of Gradle’s Fi | eCol | ecti on type and
anything else that can be passed to either the Proj ect.fil e(j ava. |l ang. Obj ect) method - for single
file/directory properties - or the Proj ect . fil es(j ava. | ang. Obj ect[]) method.

Nested values

Custom types that don’t conform to the other two categories but have their own properties that are inputs or
outputs. In effect, the task inputs or outputs are nested inside these custom types.

As an example, imagine you have a task that processes templates of varying types, such as FreeMarker,
Velocity, Moustache, etc. It takes template source files and combines them with some model data to
generate populated versions of the template files.

This task will have three inputs and one output:

Template source files
Model data
Template engine

Where the output files are written

When you're writing a custom task class, it's easy to register properties as inputs or outputs via annotations.
To demonstrate, here is a skeleton task implementation with some suitable inputs and outputs, along with
their annotations:

Example 19.23. Custom task class

bui | dSrc/ src/ mai n/javal or g/ exanpl e/ ProcessTenpl at es. j ava

Page 143 of 680

http://www.gradle.org/docs/4.4.1/javadoc/org/gradle/api/file/FileCollection.html
http://www.gradle.org/docs/4.4.1/dsl/org.gradle.api.Project.html#org.gradle.api.Project:file(java.lang.Object)
http://www.gradle.org/docs/4.4.1/dsl/org.gradle.api.Project.html#org.gradle.api.Project:files(java.lang.Object[])

package org.exanpl e;

inmport java.io.File;

i mport java.util.HashMap;

i mport org.gradle.api.?*;

i mport org.gradle.api.file.*;
i mport org.gradle. api.tasks.*;

public class ProcessTenpl ates extends Defaul t Task {
private Tenpl at eEngi neType t enpl at eEngi ne;
private FileCollection sourceFiles;
private Tenpl ateData tenpl at eDat a;
private File outputDir;

@ nput
public Tenpl at eEngi neType get Tenpl at eEngi ne() {
return this.tenplateEngine;

@nput Fil es
public FileCollection getSourceFiles() {
return this.sourceFiles;

@Nest ed
public Tenpl at eDat a get Tenpl at eDat a() {
return this.tenplateData;

@out put Di rectory
public File getQutputDir() { return this.outputbDir; }

@askAction
public void processTenpl ates() {

}

bui | dSrc/ src/ mai n/javal or g/ exanpl e/ Tenpl at eDat a. j ava

Page 144 of 680

package org. exanpl e;

i mport java.util.HashMap;
i mport java.util. Mp;
i mport org.gradle. api.tasks. I nput;

public class Tenpl ateData {
private String namne;
private Map<String, String> vari ables;

public Tenpl ateData(String name, Map<String, String> variables) ({
thi s. name = nane;
this.variables = new HashMap<>(vari abl es) ;

@ nput
public String getNanme() { return this.nane; }

@ nput
public Map<String, String> getVariables() {
return this.variables;

}

Output of gr adl e processTenpl at es

> gradl e processTenpl at es
: processTenpl at es

BU LD SUCCESSFUL in Os
1 actionable task: 1 executed

Output of gr adl e processTenpl at es

> gradl e processTenpl at es
. processTenpl ates UP- TO- DATE

BUI LD SUCCESSFUL in Os
1 actionable task: 1 up-to-date

There’s plenty to talk about in this example, so let’'s work through each of the input and output properties in
turn:

t enpl at eEngi ne

Represents which engine to use when processing the source templates, e.g. FreeMarker, Velocity, etc. You
could implement this as a string, but in this case we have gone for a custom enum as it provides greater type
information and safety. Since enums implement Seri al i zabl e automatically, we can treat this as a simple

value and use the @ nput annotation, just as we would with a St r i ng property.

sourceFil es

Page 145 of 680

The source templates that the task will be processing. Single files and collections of files need their own
special annotations. In this case, we're dealing with a collection of input files and so we use the @ nput Fi | e
annotation. You'll see more file-oriented annotations in a table later.

t enpl at eDat a

For this example, we're using a custom class to represent the model data. However, it does not implement Se
, SO we can't use the @ nput annotation. That's not a problem as the properties within Tenpl at eDat a - a
string and a hash map with serializable type parameters - are serializable and can be annotated with @ nput
. We use @Nest ed on t enpl at eDat a to let Gradle know that this is a value with nested input properties.

outputDir

The directory where the generated files go. As with input files, there are several annotations for output files
and directories. A property representing a single directory requires @ut put Di r ect ory. You'll learn about
the others soon.

These annotated properties mean that Gradle will skip the task if none of the source files, template engine,
model data or generated files have changed since the previous time Gradle executed the task. This will often
save a significant amount of time. You can learn how Gradle detects changes later.

This example is particularly interesting because it works with collections of source files. What happens if only
one source file changes? Does the task process all the source files again or just the modified one? That
depends on the task implementation. If the latter, then the task itself is incremental, but that's a different
feature to the one we’re discussing here. Gradle does help task implementers with this via its incremental
task inputs feature.

Now that you have seen some of the input and output annotations in practice, let's take a look at all the
annotations available to you and when you should use them. The table below lists the available annotations
and the corresponding property type you can use with each one.

Table 19.2. Incremental build property type annotations

Expected property

Annotation Description
type
@l nput Any serializable type A simple input value
€ nputFile Fil e* A single input file (not directory)
@ nputDirectory File* A single input directory (not file)
@ nputFiles Iterabl e<File>* Aniterable of input files and directories

Page 146 of 680

http://www.gradle.org/docs/4.4.1/javadoc/org/gradle/api/tasks/Input.html
http://www.gradle.org/docs/4.4.1/javadoc/org/gradle/api/tasks/InputFile.html
http://www.gradle.org/docs/4.4.1/javadoc/org/gradle/api/tasks/InputDirectory.html
http://www.gradle.org/docs/4.4.1/javadoc/org/gradle/api/tasks/InputFiles.html

€C asspat h

I terabl e<Fil e>*

€Conpi | e asspat h It erabl e<Fi | e>*

@Qut putFile

@Qut put Di rectory

€Qut put Fi | es

Fil e*
Fil e*
Map<Stri ng,

File>

An iterable of input files and directories that represent a Java classpath. This
allows the task to ignore irrelevant changes to the property, such as different
names for the same files. It is similar to annotating the property @at hSensi ti \
but it will ignore the names of JAR files directly added to the classpath, and it
will consider changes in the order of the files as a change in the classpath.
Gradle will inspect the contents of jar files on the classpath and ignore changes
that do not affect the semantics of the classpath (such as file dates and entry
order). See also the section called “Using the classpath annotations”.

Note: The @l asspat h annotation was introduced in Gradle 3.2. To
stay compatible with earlier Gradle versions, classpath properties
should also be annotated with @ nput Fi | es.

An iterable of input files and directories that represent a Java compile
classpath. This allows the task to ignore irrelevant changes that do not affect
the API of the classes in classpath. See also the section called “Using the
classpath annotations”.

The following kinds of changes to the classpath will be ignored:

Changes to the path of jar or top level directories.
Changes to timestamps and the order of entries in Jars.

Changes to resources and Jar manifests, including adding or removing
resources.

Changes to private class elements, such as private fields, methods and inner
classes.

Changes to code, such as method bodies, static initializers and field initializers
(except for constants).

Changes to debug information, for example when a change to a comment
affects the line numbers in class debug information.

Changes to directories, including directory entries in Jars.

Note: The @onpi | eCl asspat h annotation was introduced in Gradle
3.4. To stay compatible with Gradle 3.3 and 3.2, compile classpath
properties should also be annotated with @Cl asspath. For
compatibility with Gradle versions before 3.2 the property should also
be annotated with @ nput Fi | es.

A single output file (not directory)

A single output directory (not file)

An iterable of output files (no directories). The task outputs can only be cached

**or|terabl e<Fil e>

*

if a Map is provided.

Page 147 of 680

http://www.gradle.org/docs/4.4.1/javadoc/org/gradle/api/tasks/Classpath.html
http://www.gradle.org/docs/4.4.1/javadoc/org/gradle/api/tasks/CompileClasspath.html
http://www.gradle.org/docs/4.4.1/javadoc/org/gradle/api/tasks/OutputFile.html
http://www.gradle.org/docs/4.4.1/javadoc/org/gradle/api/tasks/OutputDirectory.html
http://www.gradle.org/docs/4.4.1/javadoc/org/gradle/api/tasks/OutputFiles.html

Map<String, File>

An iterable of output directories (no files). The task outputs can only be cached

€QutputDirectories*orlterabl e<File>

EDest roys

CLocal State

CNest ed

€Consol e

€l nt er nal

*

Fileorlterabl e<Fi

*

Fileorlterabl e<Fi

*

Any custom type

Any type

Any type

if a Map is provided.

Beecifies one or more files that are removed by this task. Note that a task can
define either inputs/outputs or destroyables, but not both.

Beecifies one or more files that represent the local state of the task. These files
are removed when the task is loaded from cache.

A custom type that may not implement Seri al i zabl e but does have at least
one field or property marked with one of the annotations in this table. It could
even be another @\est ed.

Indicates that the property is neither an input nor an output. It simply affects the
console output of the task in some way, such as increasing or decreasing the
verbosity of the task.

Indicates that the property is used internally but is neither an input nor an
output.

In fact, Fi | e can be any type accepted by Proj ect.fil e(java.lang. Object) and|terabl e<Fil ¢

can be any type accepted by Proj ect. fil es(java. |l ang. Qbj ect[]) . This includes instances of Cal

, such as closures, allowing for lazy evaluation of the property values. Be aware that the types Fi | eCol |

and Fi | eTree are |l t er abl e<Fi | e>s.

*%

Similar to the above, Fi | e can be any type accepted by Proj ect. fil e(java.l ang. Obj ect). The M

itself can be wrapped in Cal | abl es, such as closures.

Page 148 of 680

http://www.gradle.org/docs/4.4.1/javadoc/org/gradle/api/tasks/OutputDirectories.html
http://www.gradle.org/docs/4.4.1/javadoc/org/gradle/api/tasks/Destroys.html
http://www.gradle.org/docs/4.4.1/javadoc/org/gradle/api/tasks/LocalState.html
http://www.gradle.org/docs/4.4.1/javadoc/org/gradle/api/tasks/Nested.html
http://www.gradle.org/docs/4.4.1/javadoc/org/gradle/api/tasks/Console.html
http://www.gradle.org/docs/4.4.1/javadoc/org/gradle/api/tasks/Internal.html
http://www.gradle.org/docs/4.4.1/dsl/org.gradle.api.Project.html#org.gradle.api.Project:file(java.lang.Object)
http://www.gradle.org/docs/4.4.1/dsl/org.gradle.api.Project.html#org.gradle.api.Project:files(java.lang.Object[])
http://www.gradle.org/docs/4.4.1/dsl/org.gradle.api.Project.html#org.gradle.api.Project:file(java.lang.Object)

Table 19.3. Additional annotations used to further qualifying property type annotations

Annotation Description

Used with @ nput Fi | es or @ nput Di r ect ory to tell Gradle to skip the task if the corresponding files or

€Ski pWhenEnmpt directory are empty, along with all other input files declared with this annotation. Tasks that have been
P P ys.kipped due to all of their input files that were declared with this annotation being empty will result in a

distinct “no source” outcome. For example, NO- SOURCE will be emitted in the console output.

ot I Used with any of the property type annotations listed in the Opt i onal API documentation. This annotation
€Opt i ona
disables validation checks on the corresponding property. See the section on validation for more details.

Used with any input file property to tell Gradle to only consider the given part of the file paths as important.
CPat hSensi ti véror example, if a property is annotated with @at hSensi ti ve(Pat hSensi ti vity. NAME_ONLY), then
moving the files around without changing their contents will not make the task out-of-date.

Annotations are inherited from all parent types including implemented interfaces. Property type annotations
override any other property type annotation declared in a parent type. This way an @ nput Fi | e property
can be turned into an @ nput Di r ect ory property in a child task type.

Annotations on a property declared in a type override similar annotations declared by the superclass and in
any implemented interfaces. Superclass annotations take precedence over annotations declared in
implemented interfaces.

The Consol e and | nt er nal annotations in the table are special cases as they don’t declare either task
inputs or task outputs. So why use them? It's so that you can take advantage of the Java Gradle Plugin
Development plugin to help you develop and publish your own plugins. This plugin checks whether any
properties of your custom task classes lack an incremental build annotation. This protects you from
forgetting to add an appropriate annotation during development.

Using the classpath annotations

Besides @ nput Fi | es, for JVM-related tasks Gradle understands the concept of classpath inputs. Both

runtime and compile classpaths are treated differently when Gradle is looking for changes.

As opposed to input properties annotated with €l nput Fi | es, for classpath properties the order of the
entries in the file collection matter. On the other hand, the names and paths of the directories and jar files on
the classpath itself are ignored. Timestamps and the order of class files and resources inside jar files on a
classpath are ignored, too, thus recreating a jar file with different file dates will not make the task out of date.

Runtime classpaths are marked with €Cl asspat h, and they offer further customization via classpath

normalization.

Input properties annotated with €Conpi | eCl asspat h are considered Java compile classpaths. Additionally
to the aforementioned general classpath rules, compile classpaths ignore changes to everything but class

Page 149 of 680

http://www.gradle.org/docs/4.4.1/javadoc/org/gradle/api/tasks/SkipWhenEmpty.html
http://www.gradle.org/docs/4.4.1/javadoc/org/gradle/api/tasks/Optional.html
http://www.gradle.org/docs/4.4.1/javadoc/org/gradle/api/tasks/Optional.html
http://www.gradle.org/docs/4.4.1/javadoc/org/gradle/api/tasks/PathSensitive.html
http://www.gradle.org/docs/4.4.1/javadoc/org/gradle/api/tasks/Console.html
http://www.gradle.org/docs/4.4.1/javadoc/org/gradle/api/tasks/Internal.html
http://www.gradle.org/docs/4.4.1/javadoc/org/gradle/api/tasks/InputFiles.html
http://www.gradle.org/docs/4.4.1/javadoc/org/gradle/api/tasks/Classpath.html
http://www.gradle.org/docs/4.4.1/javadoc/org/gradle/api/tasks/CompileClasspath.html

files. Gradle uses the same class analysis described in Section 48.13, “Compile avoidance” to further filter
changes that don't affect the class' ABIs. This means that changes which only touch the implementation of
classes do not make the task out of date.

Runtime API

Custom task classes are an easy way to bring your own build logic into the arena of incremental build, but
you don’t always have that option. That's why Gradle also provides an alternative API that can be used with
any tasks, which we look at next.

When you don’t have access to the source for a custom task class, there is no way to add any of the
annotations we covered in the previous section. Fortunately, Gradle provides a runtime API for scenarios
just like that. It can also be used for ad-hoc tasks, as you'll see next.

Using it for ad-hoc tasks

This runtime API is provided through a couple of aptly named properties that are available on every Gradle
task:

Task. get | nput s() of type Taskl nput s
Task. get Qut put s() of type TaskQut put s

Task. get Dest r oyabl es() of type TaskDest r oyabl es

These objects have methods that allow you to specify files, directories and values which constitute the task’s
inputs and outputs. In fact, the runtime API has almost feature parity with the annotations. All it lacks is
validation of whether declared files are actually files and declared directories are directories. Nor will it create
output directories if they don’t exist. But that's it.

Let's take the template processing example from before and see how it would look as an ad-hoc task that
uses the runtime API:

Page 150 of 680

http://www.gradle.org/docs/4.4.1/dsl/org.gradle.api.Task.html#org.gradle.api.Task:inputs
http://www.gradle.org/docs/4.4.1/javadoc/org/gradle/api/tasks/TaskInputs.html
http://www.gradle.org/docs/4.4.1/dsl/org.gradle.api.Task.html#org.gradle.api.Task:outputs
http://www.gradle.org/docs/4.4.1/javadoc/org/gradle/api/tasks/TaskOutputs.html
http://www.gradle.org/docs/4.4.1/dsl/org.gradle.api.Task.html#org.gradle.api.Task:destroyables
http://www.gradle.org/docs/4.4.1/javadoc/org/gradle/api/tasks/TaskDestroyables.html

Example 19.24. Ad-hoc task

buil d. gradl e

task processTenpl at esAdHoc {
i nputs. property("engine", Tenpl at eEngi neType. FREEMARKER)
inputs.files(fileTree("src/tenplates"))
i nputs. property("tenpl at eDat a. nane", "docs")
i nputs. property("tenpl ateData. vari abl es", [year: 2013])
out puts. dir("$buil dbDi r/ genCut put 2")

doLast {

}

Output of gr adl e processTenpl at esAdHoc

> gradl e processTenpl at esAdHoc
: processTenpl at esAdHoc

BUI LD SUCCESSFUL in Os
1 actionable task: 1 executed

As before, there’s much to talk about. To begin with, you should really write a custom task class for this as
it's a non-trivial implementation that has several configuration options. In this case, there are no task
properties to store the root source folder, the location of the output directory or any of the other settings.
That's deliberate to highlight the fact that the runtime API doesn’t require the task to have any state. In terms
of incremental build, the above ad-hoc task will behave the same as the custom task class.

All the input and output definitions are done through the methods on i nput s and out put s, such as pr oper
,files(),anddir (). Gradle performs up-to-date checks on the argument values to determine whether
the task needs to run again or not. Each method corresponds to one of the incremental build annotations, for
example i nput s. property() mapsto @ nput and out puts. dir () mapsto @ut putDi rectory. The
only difference is that the file(), files(), dir() and dirs() methods don't validate the type of file
object at the given path (file or directory), unlike the annotations.

The files that a task removes can be specified through dest r oyabl es. regi ster ().

Example 19.25. Ad-hoc task declaring a destroyable

buil d. gradl e

task renoveTenpDir ({
destroyabl es.register("$projectDir/tnpDir")
doLast {
del ete("$projectDir/tnpDir")

One notable difference between the runtime APl and the annotations is the lack of a method that
corresponds directly to @\est ed. That's why the example uses two property() declarations for the

Page 151 of 680

template data, one for each Tenpl at eDat a property. You should utilize the same technique when using the

runtime API with nested values. Any given task can either declare destroyables or inputs/outputs, but cannot
declare both.

Using it for custom task types

Another type of example involves adding input and output definitions to instances of a custom task class that
lacks the requisite annotations. For example, imagine that the ProcessTenpl at es task is provided by a
plugin and that it's missing the incremental build annotations. In order to make up for that deficiency, you can
use the runtime API:

Example 19.26. Using runtime APl with custom task type

buil d. gradl e

task processTenpl at esRunti ne(type: ProcessTenpl at esNoAnnot ati ons) {
t enpl at eEngi ne = Tenpl at eEngi neType. FREEMARKER
sourceFiles = fileTree("src/tenpl ates")
tenpl ateData = new Tenpl ateData("test"”, [year: 2014])
outputDir = file("$buil dDir/genCutput3")

i nputs. property("engine",tenpl at eEngi ne)
i nputs.files(sourceFiles)
i nputs. property("tenpl at eDat a. nane", tenpl at eDat a. nane)
i nputs. property("tenpl ateDat a. vari abl es", tenpl at eDat a. vari abl es)
outputs.dir(outputDir)
}

Output of gr adl e processTenpl at esRunti e

> gradl e processTenpl at esRunti ne
. processTenpl at esRunti ne

BUI LD SUCCESSFUL in Os
1 actionable task: 1 executed

Output of gr adl e processTenpl at esRunti ne

> gradl e processTenpl at esRunti ne
. processTenpl at esRunti me UP- TO DATE

BUI LD SUCCESSFUL in Os
1 actionable task: 1 up-to-date

As you can see, we can both configure the tasks properties and use those properties as arguments to the
incremental build runtime API. Using the runtime API like this is a little like using doLast () and doFi r st ()
to attach extra actions to a task, except in this case we’re attaching information about inputs and outputs.
Note that if the task type is already using the incremental build annotations, the runtime API will add inputs
and outputs rather than replace them.

Page 152 of 680

Fine-grained configuration

The runtime API methods only allow you to declare your inputs and outputs in themselves. However, the
file-oriented ones return a builder - of type Taskl nput Fi | ePr opertyBui | der - that lets you provide
additional information about those inputs and outputs.

You can learn about all the options provided by the builder in its APl documentation, but we’ll show you a
simple example here to give you an idea of what you can do.

Let's say we don’t want to run the processTenpl at es task if there are no source files, regardless of
whether it's a clean build or not. After all, if there are no source files, there’s nothing for the task to do. The
builder allows us to configure this like so:

Example 19.27. Using skipWhenEmpty() via the runtime API

buil d. gradl e
task processTenpl at esRunti neConf (type: ProcessTenpl at esNoAnnot ati ons) {

sourceFiles = fileTree("src/tenplates") {
i nclude "**/*_ fni

i nputs.files(sourceFiles).skipwenEnty()

}

Output of gradl e cl ean processTenpl at esRunt i meConf

> gradl e cl ean processTenpl at esRunt i meConf
: processTenpl at esRunt i mreConf NO SOURCE

BUI LD SUCCESSFUL in Os
1 actionable task: 1 up-to-date

The Taskl nputs. fil es() method returns a builder that has a ski pWhenEnpt y() method. Invoking this
method is equivalent to annotating to the property with @ki p\WhenEnpt y.

Prior to Gradle 3.0, you had to use the Taskl nputs. source() and Taskl nputs. sourceDir ()
methods to get the same behavior as with ski pwhenEnpt y(). These methods are now deprecated and
should not be used with Gradle 3.0 and above.

Now that you have seen both the annotations and the runtime API, you may be wondering which API you
should be using. Our recommendation is to use the annotations wherever possible, and it's sometimes worth
creating a custom task class just so that you can make use of them. The runtime API is more for situations in
which you can’t use the annotations.

Page 153 of 680

http://www.gradle.org/docs/4.4.1/javadoc/org/gradle/api/tasks/TaskInputFilePropertyBuilder.html

Important beneficial side effects

Once you declare a task’s formal inputs and outputs, Gradle can then infer things about those properties.
For example, if an input of one task is set to the output of another, that means the first task depends on the
second, right? Gradle knows this and can act upon it.

We'll look at this feature next and also some other features that come from Gradle knowing things about
inputs and outputs.

Inferred task dependencies

Consider an archive task that packages the output of the pr ocessTenpl at es task. A build author will see
that the archive task obviously requires pr ocessTenpl at es to run first and so may add an explicit depend:
. However, if you define the archive task like so:

Example 19.28. Inferred task dependency via task outputs

buil d. gradl e

task packageFil es(type: Zip) {
from processTenpl at es. out put s

}

Output of gr adl e cl ean packageFil es

> gradl e cl ean packageFil es
. processTenpl at es
: packageFi | es

BUI LD SUCCESSFUL in Os
3 actionabl e tasks: 2 executed, 1 up-to-date

Gradle will automatically make packageFi | es depend on pr ocessTenpl at es. It can do this because it's
aware that one of the inputs of packageFiles requires the output of the processTemplates task. We call this
an inferred task dependency.

The above example can also be written as

Example 19.29. Inferred task dependency via a task argument

buil d. gradl e

task packageFil es2(type: Zip) {
from processTenpl at es

}

Output of gr adl e cl ean packageFi | es2

> gradl e cl ean packageFil es2
: processTenpl at es
: packageFi | es2

BUI LD SUCCESSFUL in Os
3 actionable tasks: 2 executed, 1 up-to-date

Page 154 of 680

This is because the fron{) method can accept a task object as an argument. Behind the scenes, f r on()
uses the proj ect. fil es() method to wrap the argument, which in turn exposes the task’s formal outputs
as a file collection. In other words, it's a special case!

Input and output validation

The incremental build annotations provide enough information for Gradle to perform some basic validation
on the annotated properties. In particular, it does the following for each property before the task executes:

@ nput Fi | e - verifies that the property has a value and that the path corresponds to a file (not a directory)
that exists.

@ nput Di rect ory - same as for @ nput Fi | e, except the path must correspond to a directory.

@out put Di rect ory - verifies that the path doesn’t match a file and also creates the directory if it doesn’t
already exist.

Such validation improves the robustness of the build, allowing you to identify issues related to inputs and
outputs quickly.

You will occasionally want to disable some of this validation, specifically when an input file may validly not
exist. That's why Gradle provides the @pt i onal annotation: you use it to tell Gradle that a particular input
is optional and therefore the build should not fail if the corresponding file or directory doesn't exist.

Continuous build

Another benefit of defining task inputs and outputs is continuous build. Since Gradle knows what files a task
depends on, it can automatically run a task again if any of its inputs change. By activating continuous build
when you run Gradle - through the - - cont i nuous or -t options - you will put Gradle into a state in which it

continually checks for changes and executes the requested tasks when it encounters such changes.

You can find out more about this feature in Chapter 10, Continuous build.
Task parallelism

One last benefit of defining task inputs and outputs is that Gradle can use this information to make decisions
about how to run tasks when the "--parallel" option is used. For instance, Gradle will inspect the outputs of
tasks when selecting the next task to run and will avoid concurrent execution of tasks that write to the same
output directory. Similarly, Gradle will use the information about what files a task destroys (e.g. specified by
the Dest r oys annotation) and avoid running a task that removes a set of files while another task is running
that consumes or creates those same files (and vice versa). It can also determine that a task that creates a
set of files has already run and that a task that consumes those files has yet to run and will avoid running a
task that removes those files in between. By providing task input and output information in this way, Gradle
can infer creation/consumption/destruction relationships between tasks and can ensure that task execution
does not violate those relationships.

Page 155 of 680

19.10.2. How does it work?

Before a task is executed for the first time, Gradle takes a snapshot of the inputs. This snapshot contains the
paths of input files and a hash of the contents of each file. Gradle then executes the task. If the task
completes successfully, Gradle takes a snapshot of the outputs. This snapshot contains the set of output
files and a hash of the contents of each file. Gradle persists both snapshots for the next time the task is
executed.

Each time after that, before the task is executed, Gradle takes a new snapshot of the inputs and outputs. If
the new snapshots are the same as the previous snapshots, Gradle assumes that the outputs are up to date
and skips the task. If they are not the same, Gradle executes the task. Gradle persists both snapshots for
the next time the task is executed.

Gradle also considers the code of the task as part of the inputs to the task. When a task, its actions, or its
dependencies change between executions, Gradle considers the task as out-of-date.

Gradle understands if a file property (e.g. one holding a Java classpath) is order-sensitive. When comparing
the snapshot of such a property, even a change in the order of the files will result in the task becoming
out-of-date.

Note that if a task has an output directory specified, any files added to that directory since the last time it was
executed are ignored and will NOT cause the task to be out of date. This is so unrelated tasks may share an
output directory without interfering with each other. If this is not the behaviour you want for some reason,
consider using TaskCut put s. upToDat eWhen(groovy. | ang. Cl osur e)

The inputs for the task are also used to calculate the build cache key used to load task outputs when
enabled. For more details see Section 15.3, “Task Output Caching”.

19.10.3. Advanced techniques

Everything you've seen so far in this section will cover most of the use cases you'll encounter, but there are
some scenarios that need special treatment. We'll present a few of those next with the appropriate solutions.

Adding your own cached input/output methods

Have you ever wondered how the f r on{) method of the Copy task works? It's not annotated with @ nput Fi
and yet any files passed to it are treated as formal inputs of the task. What's happening?

The implementation is quite simple and you can use the same technique for your own tasks to improve their
APIs. Write your methods so that they add files directly to the appropriate annotated property. As an
example, here’'s how to add a sour ces() method to the custom Pr ocessTenpl at es class we introduced

earlier:

Page 156 of 680

http://www.gradle.org/docs/4.4.1/javadoc/org/gradle/api/tasks/TaskOutputs.html#upToDateWhen(groovy.lang.Closure)

Example 19.30. Declaring a method to add task inputs

bui | dSrc/ src/ mai n/javal or g/ exanpl e/ ProcessTenpl at es. j ava
public class ProcessTenpl ates extends Defaul t Task {

private FileCollection sourceFiles = getProject().files();

@ki pwhenEnpt y

@nput Fil es

@rat hSensi tive(PathSensitivity. NONE)

public FileCollection getSourceFiles() {
return this.sourceFiles;

public void sources(FileCollection sourceFiles) {
this.sourceFiles = this.sourceFiles.plus(sourceFiles);

}

buil d. gradl e

task processTenpl ates(type: ProcessTenpl ates) {
t enpl at eEngi ne = Tenpl at eEngi neType. FREEMARKER
tenpl ateData = new Tenpl ateData("test", [year: 2012])
outputDir = file("$buildD r/genQutput")

sources fileTree("src/tenplates")

}

Output of gr adl e processTenpl at es

> gradl e processTenpl at es
: processTenpl at es

BUI LD SUCCESSFUL in Os
1 actionable task: 1 executed

In other words, as long as you add values and files to formal task inputs and outputs during the configuration
phase, they will be treated as such regardless from where in the build you add them.

If we want to support tasks as arguments as well and treat their outputs as the inputs, we can use the pr oj e
method like so:

Page 157 of 680

Example 19.31. Declaring a method to add a task as an input

bui | dSrc/ src/ mai n/javal or g/ exanpl e/ ProcessTenpl at es. j ava

public void sources(Task inputTask) {
this.sourceFiles = this.sourceFiles.plus(getProject().files(inputTask));

bui | d. gradl e

task copyTenpl ates(type: Copy) {
into "$buildDir/tnp"
from"src/tenpl ates"

task processTenpl ates2(type: ProcessTenpl ates) {

sour ces copyTenpl at es

}

Output of gr adl e processTenpl at es2

> gradl e processTenpl at es2
: copyTenpl at es
: processTenpl at es2

BU LD SUCCESSFUL in Os
2 actionabl e tasks: 2 executed

This technique can make your custom task easier to use and result in cleaner build files. As an added
benefit, our use of get Proj ect (). fil es() means that our custom method can set up an inferred task
dependency.

One last thing to note: if you are developing a task that takes collections of source files as inputs, like this
example, consider using the built-in Sour ceTask. It will save you having to implement some of the plumbing
that we put into Pr ocessTenpl at es.

Linking an @ut put Di rectory to an @ nput Fi | es

When you want to link the output of one task to the input of another, the types often match and a simple
property assignment will provide that link. For example, a Fi | e output property can be assignedtoa Fi |l e
input.

Unfortunately, this approach breaks down when you want the files in a task’'s @ut put Di r ect ory (of type F
) to become the source for another task’s @ nput Fi | es property (of type Fi | eCol | ecti on). Since the

two have different types, property assignment won’t work.

As an example, imagine you want to use the output of a Java compilation task - via the desti nati onDi r
property - as the input of a custom task that instruments a set of files containing Java bytecode. This custom
task, which we’ll call I nst runent , has a cl assFi | es property annotated with @ nput Fi | es. You might

Page 158 of 680

http://www.gradle.org/docs/4.4.1/dsl/org.gradle.api.tasks.SourceTask.html

initially try to configure the task like so:

Example 19.32. Failed attempt at setting up an inferred task dependency

bui | d. gradl e
apply plugin: "java"

task badl nstrunent C asses(type: Instrunment) {
classFiles = fil eTree(conpil eJava. desti nationDir)
destinationDir = file("$buildDir/instrumented")

}

Output of gr adl e cl ean badl nstrunent Cl asses

> gradl e cl ean badl nstrunent C asses
: cl ean UP-TO DATE
: badl nstrunment asses NO SOURCE

BU LD SUCCESSFUL in Os
1 actionable task: 1 up-to-date

There’s nothing obviously wrong with this code, but you can see from the console output that the compilation
task is missing. In this case you would need to add an explicit task dependency between i nst r ument C ass
and conpi | eJava via dependsOn. The use of fil eTree() means that Gradle can’t infer the task
dependency itself.

One solution is to use the TaskQut put s. fi | es property, as demonstrated by the following example:

Example 19.33. Setting up an inferred task dependency between output dir and input files

bui I d. gradl e

task instrunent C asses(type: Instrument) {
classFiles = conpil eJava.outputs.files
destinationDir = file("$buildDir/instrunmented")

}

Output of gradl e cl ean i nstrunment Cl asses

> gradl e clean instrunentd asses
: cl ean UP-TO DATE

:conpi | eJava

rinstrument Cl asses

BUI LD SUCCESSFUL in Os
3 actionable tasks: 2 executed, 1 up-to-date

Alternatively, you can get Gradle to access the appropriate property itself by using the proj ect.fil es()
method in place of proj ect.fil eTree():

Page 159 of 680

Example 19.34. Setting up an inferred task dependency with files()

buil d. gradl e

task instrunent Cl asses2(type: Instrunment) ({
classFiles = fil es(compil eJava)
destinationDir = file("$buildDir/instrumented")

}

Output of gradl e cl ean i nstrunent Cl asses2

> gradl e cl ean instrunmentCl asses?2
: cl ean UP- TO DATE

:conpi | eJava

sinstrunment Cl asses?

BUI LD SUCCESSFUL in Os
3 actionable tasks: 2 executed, 1 up-to-date

Remember thatfi | es() can take tasks as arguments, whereas fi | eTree() cannot.

The downside of this approach is that all file outputs of the source task become the input files of the target - i
in this case. That's fine as long as the source task only has a single file-based output, like the JavaConpi | e
task. But if you have to link just one output property among several, then you need to explicitly tell Gradle
which task generates the input files using the bui | t By method:

Example 19.35. Setting up an inferred task dependency with builtBy()

bui | d. gradl e

task instrunent C assesBuil tBy(type: Instrunent) {
classFiles = fil eTree(conpil eJava. destinationDir) ({
bui | t By conpil eJava

}

destinationDir = file("$buildDir/instrumented")

}

Output of gr adl e cl ean instrunent Cl assesBuil t By

> gradl e clean instrunentd assesBuil t By
: cl ean UP-TO DATE

:conpi | eJava

cinstrunment Cl assesBui | t By

BUI LD SUCCESSFUL in Os
3 actionable tasks: 2 executed, 1 up-to-date

You can of course just add an explicit task dependency via dependsOn, but the above approach provides
more semantic meaning, explaining why conpi | eJava has to run beforehand.

Page 160 of 680

Providing custom up-to-date logic

Gradle automatically handles up-to-date checks for output files and directories, but what if the task output is
something else entirely? Perhaps it's an update to a web service or a database table. Gradle has no way of
knowing how to check whether the task is up to date in such cases.

That's where the upToDat eWhen() method on TaskCQut put s comes in. This takes a predicate function
that is used to determine whether a task is up to date or not. One use case is to disable up-to-date checks
completely for a task, like so:

Example 19.36. Ignoring up-to-date checks

bui | d. gradl e

task al waysl nstrument C asses(type: Instrunment) {
classFiles = fil es(compil eJava)
destinationDir = file("$buildDir/instrumented")
out puts. upToDat eWhen { fal se }

}

Output of gradl e cl ean al waysl nstrunent Cl asses

> gradl e cl ean al waysl nstrument Cl asses
:conpi | eJava
:al waysl nstrunent Cl asses

BUI LD SUCCESSFUL in Os
3 actionable tasks: 2 executed, 1 up-to-date

Output of gr adl e al waysl nst runent Cl asses

> gradl e al waysl nstrunent C asses
: conpi | eJava UP- TO- DATE
:al waysl nstrunent Cl asses

BUI LD SUCCESSFUL in Os
2 actionable tasks: 1 executed, 1 up-to-date

The { false } closure ensures that copyResour ces will always perform the copy, irrespective of
whether there is no change in the inputs or outputs.

You can of course put more complex logic into the closure. You could check whether a particular record in a
database table exists or has changed for example. Just be aware that up-to-date checks should save you
time. Don’t add checks that cost as much or more time than the standard execution of the task. In fact, if a
task ends up running frequently anyway, because it's rarely up to date, then it may not be worth having an
up-to-date check at all. Remember that your checks will always run if the task is in the execution task graph.

One common mistake is to use upToDat eWhen() instead of Task. onl yI f () . If you want to skip a task on
the basis of some condition unrelated to the task inputs and outputs, then you should use onl yI f (). For
example, in cases where you want to skip a task when a particular property is set or not set.

Page 161 of 680

Configure input normalization

For up to date checks and the build cache Gradle needs to determine if two task input properties have the
same value. In order to do so, Gradle first normalizes both inputs and then compares the result. For
example, for a compile classpath, Gradle extracts the ABI signature from the classes on the classpath and
then compares signatures between the last Gradle run and the current Gradle run as described in
Section 48.13, “Compile avoidance”.

It is possible to customize Gradle’s built-in strategy for runtime classpath normalization. All inputs annotated
with €Cl asspat h are considered to be runtime classpaths.

Let's say you want to add a file bui | d-i nf o. properti es to all your produced jar files which contains
information about the build, e.g. the timestamp when the build started or some ID to identify the CI job that
published the artifact. This file is only for auditing purposes, and has no effect on the outcome of running
tests. Nonetheless, this file is part of the runtime classpath for the t est task and changes on every build
invocation. Therefore, the t est would be never up-to-date or pulled from the build cache. In order to benefit
from incremental builds again, you are able tell Gradle to ignore this file on the runtime classpath at the
project level by using Pr oj ect . nor mal i zati on(org. gradl e. api . Action):

Example 19.37. Runtime classpath normalization

bui I d. gradl e

normal i zati on {
runti med asspath {
i gnore 'build-info.properties’

The effect of this configuration would be that changes to bui | d-i nf o. properti es would be ignored for
up-to-date checks and build cache key calculations. Note that this will not change the runtime behavior of the
t est task - i.e. any test is still able to load bui | d-i nf o. properti es and the runtime classpath is still the
same as before.

19.10.4. Stale task outputs

When the Gradle version changes, Gradle detects that outputs from tasks that ran with older versions of
Gradle need to be removed to ensure that the newest version of the tasks are starting from a known clean
state.

Note: Automatic clean-up of stale output directories has only been implemented for the output of
source sets (Java/Groovy/Scala compilation).

19.11. Task rules

Sometimes you want to have a task whose behavior depends on a large or infinite number value range of
parameters. A very nice and expressive way to provide such tasks are task rules:

Page 162 of 680

http://www.gradle.org/docs/4.4.1/javadoc/org/gradle/api/tasks/Classpath.html
http://www.gradle.org/docs/4.4.1/dsl/org.gradle.api.Project.html#org.gradle.api.Project:normalization(org.gradle.api.Action)

Example 19.38. Task rule

buil d. gradl e

tasks. addRul e("Pattern: ping<iD>") { String taskName ->
i f (taskNanme.startsWth("ping")) {
task(taskNane) {
doLast {
println "Pinging: " + (taskNanme - 'ping')

}

Output of gradl e -qg pi ngServer1l

> gradl e -q pingServerl
Pi ngi ng: Serverl

The String parameter is used as a description for the rule, which is shown with gr adl e t asks.

Rules are not only used when calling tasks from the command line. You can also create dependsOn
relations on rule based tasks:

Example 19.39. Dependency on rule based tasks

buil d. gradl e

t asks. addRul e("Pattern: ping<IiD>") { String taskNanme ->
i f (taskNane.startsWth("ping")) {
task(taskNane) {
doLast ({
println "Pinging: " + (taskName - 'ping")

task groupPing {
dependsOn pi ngServer 1, pingServer?2
}

Output of gradl e -qg groupPi ng

> gradl e -qg groupPi ng
Pi ngi ng: Serverl
Pi ngi ng: Server?2

If you run “gradl e -q tasks” you won't find a task named “pi ngSer ver 1” or “pi ngSer ver 2", but this
script is executing logic based on the request to run those tasks.

19.12. Finalizer tasks

Note: Finalizers tasks are an incubating feature (see Section C.1.2, “Incubating”).

Page 163 of 680

Finalizer tasks are automatically added to the task graph when the finalized task is scheduled to run.

Example 19.40. Adding a task finalizer

bui | d. gradl e
task taskX {
doLast {
println 'taskX
}
}
task taskY {
doLast {
println 'taskY
}
}

taskX. finalizedBy taskY

Outputof gradl e -q taskX

> gradl e -qg taskX
taskX
t askY

Finalizer tasks will be executed even if the finalized task fails.

Example 19.41. Task finalizer for a failing task

buil d. gradl e
task taskX {
doLast {

println 'taskX
throw new Runti meException()

}
}
task taskY {
doLast ({
println 'taskY
}
}

taskX. finalizedBy taskY

Outputofgradl e -qgq taskX

> gradle -qg taskX
taskX
taskyY

On the other hand, finalizer tasks are not executed if the finalized task didn’t do any work, for example if it is
considered up to date or if a dependent task fails.

Page 164 of 680

Finalizer tasks are useful in situations where the build creates a resource that has to be cleaned up
regardless of the build failing or succeeding. An example of such a resource is a web container that is
started before an integration test task and which should be always shut down, even if some of the tests fail.

To specify a finalizer task you use the Task. finalizedBy(java.lang. Object[]) method. This
method accepts a task instance, a task name, or any other input accepted by
Task. dependsOn(j ava. | ang. Obj ect[]).

19.13. Lifecycle tasks

Lifecycle tasks are tasks that do not do work themselves. They typically do not have any task actions.
Lifecycle tasks can represent several concepts:

a work-flow step (e.g., run all checks with check)

a buildable thing (e.g., create a debug 32-bit executable for native components with debug32Mai nExecut al
)

a convenience task to execute many of the same logical tasks (e.qg., run all compilation tasks with conpi | eA

)

Many Gradle plug-ins define their own lifecycle tasks to make it convenient to do specific things. When
developing your own plugins, you should consider using your own lifecycle tasks or hooking into some of the
tasks already provided by Gradle. See the Java plugin Section 48.3, “Tasks” for an example.

Unless a lifecycle task has actions, its outcome is determined by its dependencies. If any of the task’s
dependencies are executed, the lifecycle task will be considered executed. If all of the task’s dependencies
are up-to-date, skipped or from cache, the lifecycle task will be considered up-to-date.

19.14. Summary

If you are coming from Ant, an enhanced Gradle task like Copy seems like a cross between an Ant target
and an Ant task. Although Ant’s tasks and targets are really different entities, Gradle combines these notions
into a single entity. Simple Gradle tasks are like Ant’s targets, but enhanced Gradle tasks also include
aspects of Ant tasks. All of Gradle’s tasks share a common API and you can create dependencies between
them. These tasks are much easier to configure than an Ant task. They make full use of the type system,
and are more expressive and easier to maintain.

[7] You might be wondering why there is neither an import for the St opExecut i onExcepti on nor do we
access it via its fully qualified name. The reason is, that Gradle adds a set of default imports to your script
(see Section 18.8, “Default imports”).

Page 165 of 680

http://www.gradle.org/docs/4.4.1/dsl/org.gradle.api.Task.html#org.gradle.api.Task:finalizedBy(java.lang.Object[])
http://www.gradle.org/docs/4.4.1/dsl/org.gradle.api.Task.html#org.gradle.api.Task:dependsOn(java.lang.Object[])
http://www.gradle.org/docs/4.4.1/dsl/org.gradle.api.Task.html#org.gradle.api.Task:dependsOn(java.lang.Object[])

20

Working With Files

Most builds work with files. Gradle adds some concepts and APlIs to help you achieve this.

20.1. Locating files

You can locate a file relative to the project directory using the Project.fil e(java.l ang. Qbj ect)
method.

Example 20.1. Locating files

buil d. gradl e

File configFile = file('src/config.xm")
configFile = file(configFile.absol utePat h)
configFile = file(new File('src/config.xm "))
configFile = file(Paths.get('src', 'config.xm"))

configFile = fil e(Paths. get(System get Property(' user.hone')).resolve(' gl obal -coni

You can pass any object to the fi | e() method, and it will attempt to convert the value to an absolute Fi | e
object. Usually, you would pass it a Stri ng, Fi | e or Pat h instance. If this path is an absolute path, it is
used to construct a Fi | e instance. Otherwise, a Fi | e instance is constructed by prepending the project
directory path to the supplied path. The fi | e() method also understands URLs, such asfi |l e: / sone/ pat

Using this method is a useful way to convert some user provided value into an absolute Fil e. It is
preferable to using new Fi |l e(sonePat h), as fil e() always evaluates the supplied path relative to the
project directory, which is fixed, rather than the current working directory, which can change depending on
how the user runs Gradle.

Page 166 of 680

http://www.gradle.org/docs/4.4.1/dsl/org.gradle.api.Project.html#org.gradle.api.Project:file(java.lang.Object)

20.2. File collections

A file collection is simply a set of files. It is represented by the Fi | eCol | ect i on interface. Many objects in

the Gradle APl implement this interface. For example, dependency configurations implement Fi | eCol | ect i

One way to obtain a Fi | eCol | ecti on instance is to use the Proj ect.fil es(java.l ang. Qbject[])

method. You can pass this method any number of objects, which are then converted into a set of Fi |l e

objects. The fi | es() method accepts any type of object as its parameters. These are evaluated relative to

the project directory, as per the fil e() method, described in Section 20.1, “Locating files”. You can also

pass collections, iterables, maps and arrays to the fi | es() method. These are flattened and the contents

converted to Fi | e instances.

Example 20.2. Creating a file collection

bui I d. gradl e

FileCollection collection = files('src/filel.txt",

new File('src/file2.txt"),

['src/file3.txt', "src/filed.txt'],

Paths.get ('src', '"fileb.txt"))

A file collection is iterable, and can be converted to a number of other types using the as operator. You can

also add 2 file collections together using the + operator, or subtract one file collection from another using the

operator. Here are some examples of what you can do with a file collection.

Example 20.3. Using a file collection

buil d. gradl e

collection.each { File file ->
println file.nane

Set set = collection.files

Set set2 = collection as Set

List list = collection as List
String path = collection.asPath
File file = collection.singleFile
File file2 = collection as File

def union = collection + files('src/file3.txt")
def different = collection - files('src/file3.txt")

You can also pass the fi | es() method a closure or a Cal | abl e instance. This is called when the contents

Page 167 of 680

http://www.gradle.org/docs/4.4.1/javadoc/org/gradle/api/file/FileCollection.html
http://www.gradle.org/docs/4.4.1/dsl/org.gradle.api.Project.html#org.gradle.api.Project:files(java.lang.Object[])

of the collection are queried, and its return value is converted to a set of Fi | e instances. The return value
can be an object of any of the types supported by the fi | es() method. This is a simple way to 'implement'
the Fi | eCol | ecti on interface.

Example 20.4. Implementing a file collection

bui I d. gradl e
task list {
doLast {

File srcDhir

collection = files { srcDir.listFiles() }

srcDir = file('src")
println "Contents of $srcDir.nane"
collection.collect { relativePath(it) }.sort().each { printlnit }

srchDir = file('src2")
println "Contents of $srcDir.nanme"
collection.collect { relativePath(it) }.sort().each { printlnit }

}

Outputofgradle -q |ist
> gradle -q |ist
Contents of src
src/dirl
src/filel.txt
Contents of src2
src2/dirl

src2/dir2

Some other types of things you can passtofil es():
Fi l eCol | ecti on

These are flattened and the contents included in the file collection.
Task

The output files of the task are included in the file collection.
TaskQut put s

The output files of the TaskOutputs are included in the file collection.

It is important to note that the content of a file collection is evaluated lazily, when it is needed. This means
you can, for example, create a Fi | eCol | ect i on that represents files which will be created in the future by,
say, some task.

Page 168 of 680

20.3. File trees

A file tree is a collection of files arranged in a hierarchy. For example, a file tree might represent a directory
tree or the contents of a ZIP file. It is represented by the Fi | eTr ee interface. The Fi | eTr ee interface
extends Fi | eCol | ecti on, so you can treat a file tree exactly the same way as you would a file collection.
Several objects in Gradle implement the Fi | eTr ee interface, such as source sets.

One way to obtain a Fi | eTr ee instance is to use the Project.fil eTree(java. util.Map) method.
This creates a Fi | eTr ee defined with a base directory, and optionally some Ant-style include and exclude
patterns.

Example 20.5. Creating a file tree

buil d. gradl e

FileTree tree = fileTree(dir: 'src/main")

tree.include '**/*. java'
tree. exclude ' **/ Abstract*'

tree = fileTree('src').include(' **/*.java')
tree = fileTree('src') {
include '**/*_ java'
}
tree = fileTree(dir: "src', include: "**/* java')
tree = fileTree(dir: 'src', includes: ['**/*. java', "**/*.xm"'])
tree = fileTree(dir: '"src', include: "**/* java', exclude: '**/*test*/**")

You use a file tree in the same way you use a file collection. You can also visit the contents of the tree, and
select a sub-tree using Ant-style patterns:

Page 169 of 680

http://www.gradle.org/docs/4.4.1/javadoc/org/gradle/api/file/FileTree.html
http://www.gradle.org/docs/4.4.1/dsl/org.gradle.api.Project.html#org.gradle.api.Project:fileTree(java.util.Map)

Example 20.6. Using afile tree
buil d. gradl e

tree.each {File file ->
println file

FileTree filtered = tree. matching {
i nclude 'org/gradl e/ api/**'

FileTree sum= tree + fileTree(dir: 'src/test')

tree.visit {elenment ->
println "$el enent.rel ativePath => $el enent.file"

Note: By default, the Fi | eTr ee instance fil eTr ee() returns will apply some Ant-style default
exclude patterns for convenience. For the complete default exclusion list, see Default Excludes.

20.4. Using the contents of an archive as afile tree

You can use the contents of an archive, such as a ZIP or TAR file, as a file tree. You do this using the
Project. zipTree(java.l ang. Object) and Project.tarTree(java.lang. Obj ect) methods.
These methods return a Fi | eTr ee instance which you can use like any other file tree or file collection. For
example, you can use it to expand the archive by copying the contents, or to merge some archives into
another.

Example 20.7. Using an archive as a file tree

bui | d. gradl e

FileTree zip zi pTree(' soneFile.zip')

FileTree tar = tarTree(' soneFile.tar")

Fil eTree sonmeTar = tarTree(resources. gzip(' soneTar.ext'))

Page 170 of 680

http://ant.apache.org/manual/dirtasks.html#defaultexcludes
http://www.gradle.org/docs/4.4.1/dsl/org.gradle.api.Project.html#org.gradle.api.Project:zipTree(java.lang.Object)
http://www.gradle.org/docs/4.4.1/dsl/org.gradle.api.Project.html#org.gradle.api.Project:zipTree(java.lang.Object)
http://www.gradle.org/docs/4.4.1/dsl/org.gradle.api.Project.html#org.gradle.api.Project:tarTree(java.lang.Object)

20.5. Specifying a set of input files

Many objects in Gradle have properties which accept a set of input files. For example, the JavaConpi | e
task has a sour ce property, which defines the source files to compile. You can set the value of this property
using any of the types supported by the files() method, which was shown above. This means you can set the
property using, for example, a Fi | e, Stri ng, collection, Fi | eCol | ecti on or even a closure. Here are
some examples:

Usually, there is a method with the same name as the property, which appends to the set of files. Again, this
method accepts any of the types supported by the files() method.

Page 171 of 680

http://www.gradle.org/docs/4.4.1/dsl/org.gradle.api.tasks.compile.JavaCompile.html

Example 20.8. Specifying a set of files

bui | d. gradl e
task conpil e(type: JavaConpil e)

/'l Use a File object to specify the source directory

compil e {
source = file('src/main/java')

}
/1l Use a String path to specify the source directory
conpile {
source = 'src/main/java'
}
/1l Use a collection to specify multiple source directories
conpile {
source = ['src/main/java', '../shared/java']
}
/1l Use a FileCollection (or FileTree in this case) to specify the source files
compil e {
source = fileTree(dir: 'src/main/java').mtching { include 'org/gradle/api/*
}
/'l Using a closure to specify the source files.
conpile {
source = {

/1l Use the contents of each zip file in the src dir

file('src').listFiles().findAl'l {it.name.endsWth('.zip')}.collect { zip

}

}

bui | d. gradl e

compil e {
/1l Add sonme source directories use String paths
source 'src/main/java', 'src/min/groovy'
/1 Add a source directory using a File object
source file('../shared/java')
/1 Add sonme source directories using a closure
source { file('src/test/").listFiles() }

}

Page 172 of 680

20.6. Copying files

You can use the Copy task to copy files. The copy task is very flexible, and allows you to, for example, filter
the contents of the files as they are copied, and map to the file names.

To use the Copy task, you must provide a set of source files to copy, and a destination directory to copy the
files to. You may also specify how to transform the files as they are copied. You do all this using a copy spec
. A copy spec is represented by the CopySpec interface. The Copy task implements this interface. You
specify the source files using the CopySpec. fron{(j ava.l ang. Cbject[]) method. To specify the
destination directory, use the CopySpec. i nt o(j ava. | ang. Obj ect) method.

Example 20.9. Copying files using the copy task

bui | d. gradl e

task copyTask(type: Copy) {
from'src/ min/webapp'
into 'build/expl odedVar'

The f r om() method accepts any of the arguments that the files() method does. When an argument resolves
to a directory, everything under that directory (but not the directory itself) is recursively copied into the
destination directory. When an argument resolves to a file, that file is copied into the destination directory.
When an argument resolves to a non-existing file, that argument is ignored. If the argument is a task, the
output files (i.e. the files the task creates) of the task are copied and the task is automatically added as a
dependency of the Copy task. The i nt o() accepts any of the arguments that the file() method does. Here
is another example:

Example 20.10. Specifying copy task source files and destination directory

buil d. gradl e
t ask anot her CopyTask(type: Copy) {

from' src/ mai n/ webapp'
from'src/staging/index. htm'

from copyTask

from copyTaskW t hPat t er ns. out puts
from zi pTree(' src/ mai n/ assets. zip')

into { getDestDir() }

You can select the files to copy using Ant-style include or exclude patterns, or using a closure:

Page 173 of 680

http://www.gradle.org/docs/4.4.1/dsl/org.gradle.api.tasks.Copy.html
http://www.gradle.org/docs/4.4.1/javadoc/org/gradle/api/file/CopySpec.html
http://www.gradle.org/docs/4.4.1/javadoc/org/gradle/api/file/CopySpec.html#from(java.lang.Object[])
http://www.gradle.org/docs/4.4.1/javadoc/org/gradle/api/file/CopySpec.html#into(java.lang.Object)

Example 20.11. Selecting the files to copy

buil d. gradl e

task copyTaskWthPatterns(type: Copy) {
from'src/ min/webapp'
into 'buil d/ expl odedWar'’
include "**/* htm'
include '**/*.jsp'
exclude { details -> details.file.name.endsWth('.html"') &&
details.file.text.contains('staging) }

You can also use the Proj ect. copy(org.gradle.api.Action) method to copy files. It works the
same way as the task with some major limitations though. First, the copy() is not incremental (see
Section 19.10, “Up-to-date checks (AKA Incremental Build)”).

Example 20.12. Copying files using the copy() method without up-to-date check

buil d. gradl e
task copyMet hod {
doLast {

copy {

from ' src/ mai n/ webapp'
into 'build/ expl odedWar'
include "**/*. htm"'
include '**/* . jsp'

Secondly, the copy() method cannot honor task dependencies when a task is used as a copy source (i.e.
as an argument to f ron()) because it's a method and not a task. As such, if you are using the copy()
method as part of a task action, you must explicitly declare all inputs and outputs in order to get the correct
behavior.

Page 174 of 680

http://www.gradle.org/docs/4.4.1/dsl/org.gradle.api.Project.html#org.gradle.api.Project:copy(org.gradle.api.Action)

Example 20.13. Copying files using the copy() method with up-to-date check

buil d. gradl e
task copyMet hodWt hExpli cit Dependenci es{

i nputs.files copyTask
outputs.dir 'sonme-dir’
doLast{

copy {

from copyTask
into 'sone-dir'

It is preferable to use the Copy task wherever possible, as it supports incremental building and task
dependency inference without any extra effort on your part. The copy() method can be used to copy files
as part of a task’s implementation. That is, the copy method is intended to be used by custom tasks (see
Chapter 40, Writing Custom Task Classes) that need to copy files as part of their function. In such a
scenario, the custom task should sufficiently declare the inputs/outputs relevant to the copy action.

20.6.1. Renaming files

Example 20.14. Renaming files as they are copied

buil d. gradl e

task rename(type: Copy) {
from'src/ min/webapp'
into 'buil d/ expl odedWar'

renane { String fileNane ->
fil eName.replace('-staging-', '")

rename ' (.+)-staging-(.+)"', '$1$2'
rename(/ (.+)-staging-(.+)/, '$1%$2")

Page 175 of 680

20.6.2. Filtering files

Example 20.15. Filtering files as they are copied

bui | d. gradl e

i nport org.apache.tools.ant.filters. FixCrLfFilter
i mport org.apache.tools.ant.filters. Repl aceTokens

task filter(type: Copy) {
from'src/ min/webapp'

into 'build/ expl odedWar'

expand(copyright: '2009', version: '2.3.1")
expand(proj ect. properties)

filter(FixCrLfFilter)
filter(Repl aceTokens, tokens: [copyright: '2009', version: '2.3.1'])

filter { String line ->

“[$line]"
}
filter { String line ->
line.startsWth('-") ? null : line
}
filteringCharset = ' UTF-8'

When you use the Repl aceTokens class with the “filter” operation, the result is a template engine that
replaces tokens of the form “@tokenName@” (the Apache Ant-style token) with a set of given values. The
“expand” operation does the same thing except it treats the source files as Groovy templates in which tokens
take the form “${tokenName}". Be aware that you may need to escape parts of your source files when using
this option, for example if it contains literal “$” or “<%” strings.

It's a good practice to specify the charset when reading and writing the file, using the fi | t eri ngChar set
property. If not specified, the JVM default charset is used, which might not match with the actual charset of
the files to filter, and might be different from one machine to another.

20.6.3. Using the Copy Spec class

Copy specs form a hierarchy. A copy spec inherits its destination path, include patterns, exclude patterns,
copy actions, name mappings and filters.

Page 176 of 680

http://docs.groovy-lang.org/latest/html/api/groovy/text/SimpleTemplateEngine.html

Example 20.16. Nested copy specs

buil d. gradl e

task nestedSpecs(type: Copy) {
into 'build/ expl odedWar'
exclude ' **/*stagi ng*’
from('src/dist') {
include "**/* htm"

}
into('libs") {
from configurations. runtine

20.7. Using the Sync task

The Sync task extends the Copy task. When it executes, it copies the source files into the destination
directory, and then removes any files from the destination directory which it did not copy. This can be useful
for doing things such as installing your application, creating an exploded copy of your archives, or
maintaining a copy of the project’s dependencies.

Here is an example which maintains a copy of the project’s runtime dependencies in the buil d/ | i bs

directory.

Example 20.17. Using the Sync task to copy dependencies

buil d. gradl e

task libs(type: Sync) {
from configurations. runtine
into "$buildDir/libs"

20.8. Creating archives

A project can have as many JAR archives as you want. You can also add WAR, ZIP and TAR archives to
your project. Archives are created using the various archive tasks: Zi p, Tar, Jar, War, and Ear . They all
work the same way, so let's look at how you create a ZIP file.

Page 177 of 680

http://www.gradle.org/docs/4.4.1/dsl/org.gradle.api.tasks.Sync.html
http://www.gradle.org/docs/4.4.1/dsl/org.gradle.api.tasks.bundling.Zip.html
http://www.gradle.org/docs/4.4.1/dsl/org.gradle.api.tasks.bundling.Tar.html
http://www.gradle.org/docs/4.4.1/dsl/org.gradle.api.tasks.bundling.Jar.html
http://www.gradle.org/docs/4.4.1/dsl/org.gradle.api.tasks.bundling.War.html
http://www.gradle.org/docs/4.4.1/dsl/org.gradle.plugins.ear.Ear.html

Example 20.18. Creating a ZIP archive

buil d. gradl e
apply plugin: 'java

task zip(type: Zp) {
from'src/dist'
into('libs") {
from configurations. runtine

Why are you using the Java plugin?

The Java plugin adds a number of default values for the archive tasks. You can use the archive
tasks without using the Java plugin, if you like. You will need to provide values for some additional
properties.

The archive tasks all work exactly the same way as the Copy task, and implement the same Copy Spec
interface. As with the Copy task, you specify the input files using the f r om() method, and can optionally
specify where they end up in the archive using the i nt o() method. You can filter the contents of file,
rename files, and all the other things you can do with a copy spec.

20.8.1. Archive naming

The format of pr oj ect Name- ver si on. t ype is used for generated archive file names. For example:

Example 20.19. Creation of ZIP archive

bui I d. gradl e
apply plugin: 'java

version = 1.0

task nyZip(type: Zip) {
from'sonedir'’

println myZip. archi veNane
println relativePath(myZzi p.destinationDir)
println relativePat h(myZi p. ar chi vePat h)

Outputofgradle -gq myZip

> gradle -q nyZip

zipProject-1.0.zip

bui | d/ di stributions

bui l d/ di stributions/zipProject-1.0.zip

This adds a Zi p archive task with the name nmyZi p which produces ZIP file zi pProj ect-1. 0. zi p. Itis

Page 178 of 680

important to distinguish between the name of the archive task and the name of the archive generated by the
archive task. The default name for archives can be changed with the ar chi vesBaseNane project property.
The name of the archive can also be changed at any time later on.

There are a number of properties which you can set on an archive task. These are listed below in
Table 20.1, “Archive tasks - naming properties”. You can, for example, change the name of the archive:

Example 20.20. Configuration of archive task - custom archive name

bui | d. gradl e

apply plugin: 'java'
version = 1.0

task nyZip(type: Zip) {
from' sonedir'
baseNanme = ' cust oniNane'

println myZip. archi veNane

Output of gradl e -q nyZip
> gradle -q nyZip
customNane-1.0.zip

You can further customize the archive names:

Example 20.21. Configuration of archive task - appendix & classifier

buil d. gradl e

apply plugin: 'java'
archi vesBaseNane = 'gradl e’
version = 1.0

task nyZip(type: Zip) {
appendi x = 'wr apper"'
classifier = "'src'
from ' sonedir'

println nyZp.archi veNane

Output ofgradl e -qgq nyZip
> gradle -q nyZip
gradl e-wrapper-1.0-src.zip

Page 179 of 680

Table 20.1. Archive tasks - naming properties

Property name Type Default value Description

baseNane- appendi x- versi on- cl assi fi er. extensi on
ar chi veNane String
If any of these properties is empty the trailing - is not added to the name.

The base file name of
the generated archive

. . . . ! . The absolute path of
ar chi vePat h File destinationDir/ archiveNanme .
the generated archive.

. The director to
. . .) Depends on the archive type. JARs and WARs go into pr oj ect . bui | dDi r/q I braries y .
destinationDir File)) . .) . . generate the archive
. ZIPs and TARs go into proj ect. bui | dDi r / di stri buti ons. int
into

The base name
baseNane String project.nanme portion of the archive
file name.

The appendix portion
appendi x Stringnull of the archive file
name.

The version portion of

version String project.version o
the archive file name.
The classifier portion
classifier Stringnull of the archive file

name,

. . Depends on the archive type, and for TAR files, the compression type as The extension of the
ext ensi on String . L
well: zi p,jar,war,tar,tgz ortbz2. archive file name.

20.8.2. Sharing content between multiple archives

You can use the Proj ect. copySpec(org. gradl e.api.Action) method to share content between

archives.

20.8.3. Reproducible archives

Sometimes it can be desirable to recreate archives in a byte for byte way on different machines. You want to
be sure that building an artifact from source code produces the same result, byte for byte, no matter when
and where it is built. This is necessary for projects like reproducible-builds.org.

Reproducing the same archive byte for byte poses some challenges since the order of the files in an archive
is influenced by the underlying filesystem. Each time a zip, tar, jar, war or ear is built from source, the order

Page 180 of 680

http://www.gradle.org/docs/4.4.1/dsl/org.gradle.api.Project.html#org.gradle.api.Project:copySpec(org.gradle.api.Action)
https://reproducible-builds.org/

of the files inside the archive may change. Files that only have a different timestamp also causes archives to
be slightly different between builds. All Abstract Archi veTask (e.g. Jar, Zip) tasks shipped with Gradle
include incubating support producing reproducible archives.

For example, to make a Zi p task reproducible you need to set Zi p. i sReproduci bl eFil eOrder () totrt
and Zi p.i sPreserveFil eTi nestanps() to fal se. In order to make all archive tasks in your build
reproducible, consider adding the following configuration to your build file:

Example 20.22. Activating reproducible archives

bui | d. gradl e

tasks. wi t hType(Abstract Archi veTask) {
preserveFi | eTi nestanps = fal se
reproduci bl eFil eOrder = true

Often you will want to publish an archive, so that it is usable from another project. This process is described
in Chapter 32, Publishing artifacts

20.9. Properties files

Properties files are used in many places during Java development. Gradle makes it easy to create properties
files as a normal part of the build. You can use the Wi t ePr operti es task to create properties files.

The Wit eProperti es task also fixes a well-known problem with Pr operti es. st ore() that can reduce
the usefulness of incremental builds (see Section 19.10, “Up-to-date checks (AKA Incremental Build)”). The
standard Java way to write a properties file produces a unique file every time, even when the same
properties and values are used, because it includes a timestamp in the comments. Gradle’s Wi t eProperti
task generates exactly the same output byte-for-byte if none of the properties have changed. This is
achieved by a few tweaks to how a properties file is generated:

no timestamp comment is added to the output
the line separator is system independent, but can be configured explicitly (it defaultsto ' \ n')

the properties are sorted alphabetically

Page 181 of 680

http://www.gradle.org/docs/4.4.1/dsl/org.gradle.api.tasks.bundling.AbstractArchiveTask.html
http://www.gradle.org/docs/4.4.1/dsl/org.gradle.api.tasks.bundling.Zip.html#org.gradle.api.tasks.bundling.Zip:reproducibleFileOrder
http://www.gradle.org/docs/4.4.1/dsl/org.gradle.api.tasks.bundling.Zip.html#org.gradle.api.tasks.bundling.Zip:preserveFileTimestamps
http://www.gradle.org/docs/4.4.1/dsl/org.gradle.api.tasks.WriteProperties.html

21

Using Ant from Gradle

Gradle provides excellent integration with Ant. You can use individual Ant tasks or entire Ant builds in your
Gradle builds. In fact, you will find that it's far easier and more powerful using Ant tasks in a Gradle build
script, than it is to use Ant's XML format. You could even use Gradle simply as a powerful Ant task scripting
tool.

Ant can be divided into two layers. The first layer is the Ant language. It provides the syntax for the bui | d. xi
file, the handling of the targets, special constructs like macrodefs, and so on. In other words, everything
except the Ant tasks and types. Gradle understands this language, and allows you to import your Ant bui | d.
directly into a Gradle project. You can then use the targets of your Ant build as if they were Gradle tasks.

The second layer of Ant is its wealth of Ant tasks and types, like j avac, copy or j ar . For this layer Gradle

provides integration simply by relying on Groovy, and the fantastic Ant Bui | der .

Finally, since build scripts are Groovy scripts, you can always execute an Ant build as an external process.
Your build script may contain statements like: "ant cl ean conpi | e". execut e() .8

You can use Gradle’s Ant integration as a path for migrating your build from Ant to Gradle. For example, you
could start by importing your existing Ant build. Then you could move your dependency declarations from the
Ant script to your build file. Finally, you could move your tasks across to your build file, or replace them with
some of Gradle’s plugins. This process can be done in parts over time, and you can have a working Gradle
build during the entire process.

21.1. Using Ant tasks and types in your build

In your build script, a property called ant is provided by Gradle. This is a reference to an Ant Bui | der
instance. This Ant Bui | der is used to access Ant tasks, types and properties from your build script. There
is a very simple mapping from Ant’'s bui | d. xm format to Groovy, which is explained below.

You execute an Ant task by calling a method on the Ant Bui | der instance. You use the task name as the
method name. For example, you execute the Ant echo task by calling the ant. echo() method. The
attributes of the Ant task are passed as Map parameters to the method. Below is an example of the echo
task. Notice that we can also mix Groovy code and the Ant task markup. This can be extremely powerful.

Page 182 of 680

http://www.gradle.org/docs/4.4.1/javadoc/org/gradle/api/AntBuilder.html

Example 21.1. Using an Ant task

buil d. gradl e
task hello {
doLast {

String greeting = "hello from Ant'
ant . echo(nmessage: greeting)

}

Output of gradl e hel | o

> gradle hello
thello
[ant:echo] hello from Ant

BUI LD SUCCESSFUL in Os
1 actionable task: 1 executed

You pass nested text to an Ant task by passing it as a parameter of the task method call. In this example, we
pass the message for the echo task as nested text:

Example 21.2. Passing nested text to an Ant task

buil d. gradl e
task hello {
doLast {

ant.echo('hello fromAnt")

}

Output of gradl e hel | o

> gradle hello
chello
[ant:echo] hello from Ant

BU LD SUCCESSFUL in Os
1 actionable task: 1 executed

You pass nested elements to an Ant task inside a closure. Nested elements are defined in the same way as
tasks, by calling a method with the same name as the element we want to define.

Page 183 of 680

Example 21.3. Passing nested elements to an Ant task

buil d. gradl e
task zip {
doLast {

ant.zip(destfile: "archive.zip') {
fileset(dir: "src') {
i nclude(name: '**.xm")
excl ude(nane: '**.java')

You can access Ant types in the same way that you access tasks, using the name of the type as the method
name. The method call returns the Ant data type, which you can then use directly in your build script. In the
following example, we create an Ant pat h object, then iterate over the contents of it.

Example 21.4. Using an Ant type

bui | d. gradl e
task list {
doLast {
def path = ant.path {
fileset(dir: "libs', includes: "*.jar")
}
path.list().each {
println it
}
}
}

More information about Ant Bui | der can be found in '‘Groovy in Action' 8.4 or at the Groovy Wiki

21.1.1. Using custom Ant tasks in your build

To make custom tasks available in your build, you can use the t askdef (usually easier) or t ypedef Ant
task, just as you would in a bui | d. xm file. You can then refer to the custom Ant task as you would a
built-in Ant task.

Page 184 of 680

http://groovy-lang.org/scripting-ant.html

Example 21.5. Using a custom Ant task

buil d. gradl e
task check {
doLast {

ant . t askdef (resource: 'checkstyl etask. properties') {
cl asspath {
fileset(dir: '"libs', includes: "*.jar")

}
ant . checkstyl e(config: 'checkstyle.xm ") {

fileset(dir: '"src')

You can use Gradle’s dependency management to assemble the classpath to use for the custom tasks. To
do this, you need to define a custom configuration for the classpath, then add some dependencies to the
configuration. This is described in more detail in Section 25.4, “How to declare your dependencies”.

Example 21.6. Declaring the classpath for a custom Ant task

bui | d. gradl e

configurations {
pmd

dependenci es {
pmd group: 'pnd', nane: 'pnd', version: '4.2.5

To use the classpath configuration, use the asPat h property of the custom configuration.

Example 21.7. Using a custom Ant task and dependency management together

bui I d. gradl e
task check {
doLast {

ant . t askdef (nane: ' pnd',
cl assname: ' net. sourceforge. pnd. ant. PMDTask' ,
cl asspath: configurations. pnd. asPat h)
ant . pnrd(shortFil enanes: 'true',
failonrul eviolation: "true',
rulesetfiles: file('pnd-rules.xm"').toURI().toString()) {
formatter(type: 'text', toConsole: 'true')
fileset(dir: "src')

Page 185 of 680

21.2. Importing an Ant build

You can use the ant . i nport Bui | d() method to import an Ant build into your Gradle project. When you

import an Ant build, each Ant target is treated as a Gradle task. This means you can manipulate and execute

the Ant targets in exactly the same way as Gradle tasks.

Example 21.8. Importing an Ant build

buil d. gradl e
ant.inmportBuild '"build. xm"'

bui | d. xni
<pr oj ect >
<target nanme="hell 0">
<echo>Hel | o, from Ant </ echo>
</target>
</ proj ect >

Output of gradl e hel |l o

> gradle hello
thello
[ant:echo] Hello, from Ant

BU LD SUCCESSFUL in Os
1 actionable task: 1 executed

You can add a task which depends on an Ant target:

Example 21.9. Task that depends on Ant target

buil d. gradl e
ant.inmportBuild '"build. xm"'

task intro(dependsOn: hello) {
doLast {
println '"Hello, from G adle'

}

Outputofgradl e intro

> gradle intro

:hello

[ant:echo] Hello, from Ant
cintro

Hello, from Gradle

BU LD SUCCESSFUL in Os
2 actionabl e tasks: 2 executed

Or, you can add behaviour to an Ant target:

Page 186 of 680

Example 21.10. Adding behaviour to an Ant target

buil d. gradl e
ant.inmportBuild 'build. xm"

hell o {
doLast {
println "Hello, from G adle'

}

Output of gradl e hel | o

> gradle hello

chello

[ant:echo] Hello, from Ant
Hello, from Gadle

BUI LD SUCCESSFUL i n Os
1 actionable task: 1 executed

It is also possible for an Ant target to depend on a Gradle task:

Example 21.11. Ant target that depends on Gradle task

buil d. gradl e
ant.inportBuild "build. xm"'

task intro {
doLast {
println '"Hello, from G adle'

}
}
bui I d. xm
<pr oj ect >

<target nane="hell 0" depends="intro">

<echo>Hel | o, from Ant </ echo>
</target>
</ proj ect>

Output of gradl e hel | o

> gradle hello

cintro

Hello, from Gradle

chello

[ant:echo] Hello, from Ant

BU LD SUCCESSFUL in Os
2 actionable tasks: 2 executed

Page 187 of 680

Sometimes it may be necessary to “rename” the task generated for an Ant target to avoid a naming collision
with existing Gradle tasks. To do this, use the AntBuil der.inportBuild(java.l ang. Qbj ect,
org. gradl e. api . Transf or mer) method.

Example 21.12. Renaming imported Ant targets

bui | d. gradl e
ant . i mportBuild(' build.xm"') { antTarget Nane ->

"a-' + ant Target Nane
}
bui | d. xm
<pr oj ect >

<target name="hell 0">
<echo>Hel | o, from Ant </ echo>
</target>
</ proj ect>

Outputof gradl e a-hell o

> gradle a-hello
ca-hello
[ant:echo] Hello, from Ant

BUI LD SUCCESSFUL i n Os
1 actionable task: 1 executed

Note that while the second argument to this method should be a Tr ansf or ner, when programming in
Groovy we can simply use a closure instead of an anonymous inner class (or similar) due to Groovy’s
support for automatically coercing closures to single-abstract-method types.

21.3. Ant properties and references

There are several ways to set an Ant property, so that the property can be used by Ant tasks. You can set
the property directly on the Ant Bui | der instance. The Ant properties are also available as a Map which you
can change. You can also use the Ant pr oper t y task. Below are some examples of how to do this.

Example 21.13. Setting an Ant property

bui I d. gradl e

ant.buildDir = buildDr

ant. properties.buildDir = buildDr

ant. properties['buildDir'] = buildDir

ant . property(name: 'buildDir', location: buildDir)
bui | d. xm

<echo>bui | dDir = ${buil dDir} </ echo>

Many Ant tasks set properties when they execute. There are several ways to get the value of these
properties. You can get the property directly from the Ant Bui | der instance. The Ant properties are also

Page 188 of 680

http://www.gradle.org/docs/4.4.1/javadoc/org/gradle/api/AntBuilder.html#importBuild(java.lang.Object, org.gradle.api.Transformer)
http://www.gradle.org/docs/4.4.1/javadoc/org/gradle/api/AntBuilder.html#importBuild(java.lang.Object, org.gradle.api.Transformer)
http://www.gradle.org/docs/4.4.1/javadoc/org/gradle/api/Transformer.html
http://mrhaki.blogspot.ie/2013/11/groovy-goodness-implicit-closure.html
http://mrhaki.blogspot.ie/2013/11/groovy-goodness-implicit-closure.html

available as a Map. Below are some examples.

Example 21.14. Getting an Ant property

bui I d. xm
<property name="ant Prop" val ue="a property defined in an Ant build"/>

buil d. gradl e

println ant.antProp
println ant.properties.antProp
println ant.properties['antProp']

There are several ways to set an Ant reference:

Example 21.15. Setting an Ant reference

buil d. gradl e

ant.path(id: 'classpath', location: 'libs")

ant . references. cl asspath = ant.path(location: 'libs")
ant.references['classpath'] = ant.path(location: '"libs")
bui | d. xn

<path refid="classpath"/>

There are several ways to get an Ant reference:

Example 21.16. Getting an Ant reference

bui | d. xn
<path id="antPath" |ocation="Ilibs"/>
bui I d. gradl e

println ant.references. antPath
println ant.references[' antPath']

21.4. Ant logging

Gradle maps Ant message priorities to Gradle log levels so that messages logged from Ant appear in the
Gradle output. By default, these are mapped as follows:

Page 189 of 680

Table 21.1. Ant message priority mapping

Ant Message Priority Gradle Log Level
VERBOSE DEBUG

DEBUG DEBUG

INFO | NFO

WARN WARN

ERROR ERROR

21.4.1. Fine tuning Ant logging

The default mapping of Ant message priority to Gradle log level can sometimes be problematic. For
example, there is no message priority that maps directly to the LI FECYCLE log level, which is the default for
Gradle. Many Ant tasks log messages at the INFO priority, which means to expose those messages from
Gradle, a build would have to be run with the log level set to | NFO, potentially logging much more output
than is desired.

Conversely, if an Ant task logs messages at too high of a level, to suppress those messages would require
the build to be run at a higher log level, such as QUI ET. However, this could result in other, desirable output
being suppressed.

To help with this, Gradle allows the user to fine tune the Ant logging and control the mapping of message
priority to Gradle log level. This is done by setting the priority that should map to the default Gradle LI FECYC
log level using the Ant Bui | der. set Li fecycl eLogLevel (j ava. |l ang. String) method. When this
value is set, any Ant message logged at the configured priority or above will be logged at least at LI FECYCLE
. Any Ant message logged below this priority will be logged at most at | NFO.

For example, the following changes the mapping such that Ant INFO priority messages are exposed at the L
log level.

Page 190 of 680

http://www.gradle.org/docs/4.4.1/javadoc/org/gradle/api/AntBuilder.html#setLifecycleLogLevel(java.lang.String)

Example 21.17. Fine tuning Ant logging

buil d. gradl e
ant.lifecycl eLogLevel = "I NFO'
task hello {
doLast {
ant . echo(l evel: "info", nessage:

}

Output of gradl e hel | o

> gradle hello
‘hello
[ant:echo] hello frominfo priority!

BU LD SUCCESSFUL in Os
1 actionable task: 1 executed

"hello frominfo priority!")

On the other hand, if the | i f ecycl eLogLevel was set to ERROR, Ant messages logged at the WARN

priority would no longer be logged at the WARN log level. They would now be logged at the | NFO level and

would be suppressed by default.

21.5. API

The Ant integration is provided by Ant Bui | der .

[€] In Groovy you can execute Strings. To learn more about executing external processes with Groovy have

a look in '‘Groovy in Action' 9.3.2 or at the Groovy wiki

Page 191 of 680

http://www.gradle.org/docs/4.4.1/javadoc/org/gradle/api/AntBuilder.html

22

The Build Lifecycle

We said earlier that the core of Gradle is a language for dependency based programming. In Gradle terms
this means that you can define tasks and dependencies between tasks. Gradle guarantees that these tasks
are executed in the order of their dependencies, and that each task is executed only once. These tasks form
a Directed Acyclic Graph. There are build tools that build up such a dependency graph as they execute their
tasks. Gradle builds the complete dependency graph before any task is executed. This lies at the heart of
Gradle and makes many things possible which would not be possible otherwise.

Your build scripts configure this dependency graph. Therefore they are strictly speaking build configuration
scripts.

22.1. Build phases
A Gradle build has three distinct phases.
Initialization

Gradle supports single and multi-project builds. During the initialization phase, Gradle determines which
projects are going to take part in the build, and creates a Pr oj ect instance for each of these projects.

Configuration

During this phase the project objects are configured. The build scripts of all projects which are part of the
build are executed. Gradle 1.4 introduced an incubating opt-in feature called configuration on demand. In
this mode, Gradle configures only relevant projects (see the section called “Configuration on demand”).

Execution

Gradle determines the subset of the tasks, created and configured during the configuration phase, to be
executed. The subset is determined by the task name arguments passed to the gr adl e command and
the current directory. Gradle then executes each of the selected tasks.

22.2. Settings file

Beside the build script files, Gradle defines a settings file. The settings file is determined by Gradle via a
naming convention. The default name for this file is setti ngs. gr adl e. Later in this chapter we explain
how Gradle looks for a settings file.

Page 192 of 680

http://en.wikipedia.org/wiki/Directed_acyclic_graph
http://www.gradle.org/docs/4.4.1/dsl/org.gradle.api.Project.html

The settings file is executed during the initialization phase. A multiproject build must have a set ti ngs. gr ac
file in the root project of the multiproject hierarchy. It is required because the settings file defines which
projects are taking part in the multi-project build (see Chapter 26, Multi-project Builds). For a single-project
build, a settings file is optional. Besides defining the included projects, you might need it to add libraries to
your build script classpath (see Chapter 43, Organizing Build Logic). Let’s first do some introspection with a
single project build:

Example 22.1. Single project build

settings.gradle
println "This is executed during the initialization phase."'

bui | d. gradl e

println '"This is executed during the configuration phase.'

task configured {
println '"This is also executed during the configuration phase.'

}
task test {
doLast {
println "This is executed during the execution phase.'
}
}
task testBoth {
doFirst {
println 'This is executed first during the execution phase.’
}
doLast {

println '"This is executed |last during the execution phase.'
}

println 'This is executed during the configuration phase as well .’

}

Output of gradl e test testBoth

> gradl e test testBoth

This is executed during the initialization phase.

This is executed during the configuration phase.

This is also executed during the configuration phase.
This is executed during the configuration phase as well.
ctest

This is executed during the execution phase.

:testBoth

This is executed first during the execution phase.

This is executed | ast during the execution phase.

BU LD SUCCESSFUL in Os
2 actionabl e tasks: 2 executed

Page 193 of 680

For a build script, the property access and method calls are delegated to a project object. Similarly property
access and method calls within the settings file is delegated to a settings object. Look at the Setti ngs

class in the APl documentation for more information.

22.3. Multi-project builds

A multi-project build is a build where you build more than one project during a single execution of Gradle.
You have to declare the projects taking part in the multiproject build in the settings file. There is much more
to say about multi-project builds in the chapter dedicated to this topic (see Chapter 26, Multi-project Builds).

22.3.1. Project locations

Multi-project builds are always represented by a tree with a single root. Each element in the tree represents
a project. A project has a path which denotes the position of the project in the multi-project build tree. In most
cases the project path is consistent with the physical location of the project in the file system. However, this
behavior is configurable. The project tree is created in the setti ngs. gr adl e file. By default it is assumed
that the location of the settings file is also the location of the root project. But you can redefine the location of
the root project in the settings file.

22.3.2. Building the tree

In the settings file you can use a set of methods to build the project tree. Hierarchical and flat physical
layouts get special support.

Hierarchical layouts

Example 22.2. Hierarchical layout

settings.gradle
i nclude 'projectl', 'project2:child , 'project3:childl

The i ncl ude method takes project paths as arguments. The project path is assumed to be equal to the
relative physical file system path. For example, a path 'services:api' is mapped by default to a folder
'services/api' (relative from the project root). You only need to specify the leaves of the tree. This means that
the inclusion of the path 'services:hotels:api' will result in creating 3 projects: 'services', 'services:hotels' and
'services:hotels:api'. More examples of how to work with the project path can be found in the DSL
documentation of Set ti ngs. i ncl ude(j ava.lang. String[]).

Flat layouts

Example 22.3. Flat layout

settings.gradle
i ncludeFl at 'project3', 'project4d

The i ncl udeFl at method takes directory names as an argument. These directories need to exist as
siblings of the root project directory. The location of these directories are considered as child projects of the
root project in the multi-project tree.

Page 194 of 680

http://www.gradle.org/docs/4.4.1/dsl/org.gradle.api.initialization.Settings.html
http://www.gradle.org/docs/4.4.1/dsl/org.gradle.api.initialization.Settings.html#org.gradle.api.initialization.Settings:include(java.lang.String[])

22.3.3. Modifying elements of the project tree

The multi-project tree created in the settings file is made up of so called project descriptors. You can modify
these descriptors in the settings file at any time. To access a descriptor you can do:

Using this descriptor you can change the name, project directory and build file of a project.

Example 22.4. Modification of elements of the project tree

settings.gradle

println rootProject.nane

println project(':projectA). name
settings.gradle

root Proj ect.name = 'nmain'
project(':projectA").projectDir = new File(settingsDir, '../nmy-project-a')
project(':projectA).buildFileNane = 'projectA gradle'

Look at the Pr oj ect Descri pt or class in the API documentation for more information.

22.4. Initialization

How does Gradle know whether to do a single or multiproject build? If you trigger a multiproject build from a
directory with a settings file, things are easy. But Gradle also allows you to execute the build from within any
subproject taking part in the build.[®! If you execute Gradle from within a project with no set ti ngs. gradl e
file, Gradle looks for a set ti ngs. gr adl e file in the following way:

It looks in a directory called nast er which has the same nesting level as the current dir.
If not found yet, it searches parent directories.

If not found yet, the build is executed as a single project build.

If asettings. gradl e file is found, Gradle checks if the current project is part of the multiproject hierarchy
defined in the found set ti ngs. gr adl e file. If not, the build is executed as a single project build. Otherwise

a multiproject build is executed.

What is the purpose of this behavior? Gradle needs to determine whether the project you are in is a
subproject of a multiproject build or not. Of course, if it is a subproject, only the subproject and its dependent
projects are built, but Gradle needs to create the build configuration for the whole multiproject build (see
Chapter 26, Multi-project Builds). You can use the - u command line option to tell Gradle not to look in the
parent hierarchy for a setti ngs. gradl e file. The current project is then always built as a single project
build. If the current project contains a setti ngs. gr adl e file, the - u option has no meaning. Such a build
is always executed as:

a single project build, if the set ti ngs. gr adl e file does not define a multiproject hierarchy

a multiproject build, if the set ti ngs. gr adl e file does define a multiproject hierarchy.

The automatic search for a settings. gradl e file only works for multi-project builds with a physical

Page 195 of 680

http://www.gradle.org/docs/4.4.1/javadoc/org/gradle/api/initialization/ProjectDescriptor.html

hierarchical or flat layout. For a flat layout you must additionally follow the naming convention described
above (“mast er ”). Gradle supports arbitrary physical layouts for a multiproject build, but for such arbitrary
layouts you need to execute the build from the directory where the settings file is located. For information on
how to run partial builds from the root see Section 26.4, “Running tasks by their absolute path”.

Gradle creates a Project object for every project taking part in the build. For a multi-project build these are
the projects specified in the Settings object (plus the root project). Each project object has by default a name
equal to the name of its top level directory, and every project except the root project has a parent project.
Any project may have child projects.

22.5. Configuration and execution of a single project build

For a single project build, the workflow of the after initialization phases are pretty simple. The build script is
executed against the project object that was created during the initialization phase. Then Gradle looks for
tasks with names equal to those passed as command line arguments. If these task names exist, they are
executed as a separate build in the order you have passed them. The configuration and execution for
multi-project builds is discussed in Chapter 26, Multi-project Builds.

22.6. Responding to the lifecycle in the build script

Your build script can receive notifications as the build progresses through its lifecycle. These notifications
generally take two forms: You can either implement a particular listener interface, or you can provide a
closure to execute when the notification is fired. The examples below use closures. For details on how to use
the listener interfaces, refer to the API documentation.

22.6.1. Project evaluation

You can receive a notification immediately before and after a project is evaluated. This can be used to do
things like performing additional configuration once all the definitions in a build script have been applied, or
for some custom logging or profiling.

Below is an example which adds a t est task to each project which has a hasTest s property value of true.

Page 196 of 680

Example 22.5. Adding of test task to each project which has certain property set

buil d. gradl e
al | projects {
afterEval uate { project ->
i f (project.hasTests) {
println "Adding test task to $project"”
project.task('test"') {
doLast ({
println "Running tests for $project”

}

proj ect A gradl e
hasTests = true

Outputofgradl e -qg test

> gradle -q test
Adding test task to project ':projectA
Running tests for project ':projectA

This example uses method Proj ect. aft er Eval uat e() to add a closure which is executed after the
project is evaluated.

It is also possible to receive notifications when any project is evaluated. This example performs some
custom logging of project evaluation. Notice that the af t er Pr oj ect natification is received regardless of
whether the project evaluates successfully or fails with an exception.

Example 22.6. Notifications

bui | d. gradl e
gradl e. afterProj ect {project, projectState ->
if (projectState.failure) {
println "Eval uation of $project FAILED
} else {
println "Eval uati on of $project succeeded"

}

Outputofgradl e -qg test

> gradle -q test

Eval uati on of root project 'buil dProjectEval uateEvents' succeeded
Eval uation of project ':projectA succeeded

Eval uati on of project ':projectB FAILED

You can also add a Pr oj ect Eval uati onLi st ener to the G adl e to receive these events.

Page 197 of 680

http://www.gradle.org/docs/4.4.1/javadoc/org/gradle/api/ProjectEvaluationListener.html
http://www.gradle.org/docs/4.4.1/dsl/org.gradle.api.invocation.Gradle.html

22.6.2. Task creation

You can receive a notification immediately after a task is added to a project. This can be used to set some
default values or add behaviour before the task is made available in the build file.

The following example sets the srcDi r property of each task as it is created.

Example 22.7. Setting of certain property to all tasks

buil d. gradl e

t asks. whenTaskAdded { task ->
task.ext.srcDir = 'src/main/java'

}

task a

println "source dir is $a.srchr"

Outputofgradle -q a
> gradle -q a
source dir is src/main/java

You can also add an Act i on to a TaskCont ai ner to receive these events.

22.6.3. Task execution graph ready

You can receive a notification immediately after the task execution graph has been populated. We have
seen this already in Section 16.13, “Configure by DAG”.

You can also add a TaskExecuti onGr aphLi st ener to the TaskExecuti onGraph to receive these
events.

22.6.4. Task execution
You can receive a notification immediately before and after any task is executed.

The following example logs the start and end of each task execution. Natice that the af t er Task notification
is received regardless of whether the task completes successfully or fails with an exception.

Page 198 of 680

http://www.gradle.org/docs/4.4.1/javadoc/org/gradle/api/Action.html
http://www.gradle.org/docs/4.4.1/javadoc/org/gradle/api/tasks/TaskContainer.html
http://www.gradle.org/docs/4.4.1/javadoc/org/gradle/api/execution/TaskExecutionGraphListener.html
http://www.gradle.org/docs/4.4.1/javadoc/org/gradle/api/execution/TaskExecutionGraph.html

Example 22.8. Logging of start and end of each task execution

buil d. gradl e
task ok

task broken(dependsOn: ok) ({
doLast {
t hrow new Runti neException(' broken")

gradl e. t askG aph. bef oreTask { Task task ->
println "executing $task ..."

gradl e. taskG aph. after Task { Task task, TaskState state ->
if (state.failure) {
println "FAl LED'

}
el se {

println "done"
}

}
Output of gradl e -qg broken

> gradl e -q broken
executing task ':ok
done

executing task
FAI LED

: br oken'

You can also use a TaskExecut i onLi st ener to the TaskExecut i onG aph to receive these events.

[°] Gradle supports partial multiproject builds (see Chapter 26, Multi-project Builds).

Page 199 of 680

http://www.gradle.org/docs/4.4.1/javadoc/org/gradle/api/execution/TaskExecutionListener.html
http://www.gradle.org/docs/4.4.1/javadoc/org/gradle/api/execution/TaskExecutionGraph.html

23

Wrapper Plugin

Note: The wrapper plugin is currently incubating. Please be aware that the DSL and other
configuration may change in later Gradle versions.

The Gradle wrapper plugin allows the generation of Gradle wrapper files by adding a W apper task, that
generates all files needed to run the build using the Gradle Wrapper. Details about the Gradle Wrapper can
be found in Chapter 6, The Gradle Wrapper.

23.1. Usage

Without modifying the bui | d. gr adl e file, the wrapper plugin can be auto-applied to the root project of the
current build by running “gr adl e w apper” from the command line. This applies the plugin if no task
named wr apper is already defined in the build.

23.2. Tasks

The wrapper plugin adds the following tasks to the project:

Table 23.1. Wrapper plugin - tasks

Task name Depends on Type Description

wr apper - W apper Generates Gradle wrapper files.

Page 200 of 680

http://www.gradle.org/docs/4.4.1/dsl/org.gradle.api.tasks.wrapper.Wrapper.html
http://www.gradle.org/docs/4.4.1/dsl/org.gradle.api.tasks.wrapper.Wrapper.html

24

Logging

The log is the main 'UI' of a build tool. If it is too verbose, real warnings and problems are easily hidden by
this. On the other hand you need relevant information for figuring out if things have gone wrong. Gradle
defines 6 log levels, as shown in Table 24.1, “Log levels”. There are two Gradle-specific log levels, in
addition to the ones you might normally see. Those levels are QUIET and LIFECYCLE. The latter is the
default, and is used to report build progress.

Table 24.1. Log levels

Level Used for

ERROR Error messages

QUIET Important information messages
WARNING Warning messages
LIFECYCLE Progress information messages
INFO Information messages

DEBUG Debug messages

Note: The rich components of the console (build status and work in progress area) are displayed
regardless of the log level used. Before Gradle 4.0 those rich components were only displayed at
log level LI FECYCLE or below.

24.1. Choosing a log level

You can use the command line switches shown in Table 24.2, “Log level command-line options” to choose
different log levels. You can also configure the log level using gradle.properties, see Section 12.1,
“Configuring the build environment via gradle.properties”. In Table 24.3, “Stacktrace command-line options”
you find the command line switches which affect stacktrace logging.

Page 201 of 680

Table 24.2. Log level command-line options

Option Outputs Log Levels

no logging options LIFECYCLE and higher

-qor--quiet QUIET and higher

-wor--warn WARN and higher

-ior--info INFO and higher

-dor--debug DEBUG and higher (that is, all log messages)

Table 24.3. Stacktrace command-line options

Option Meaning

No stacktraces are printed to the console in case of a build error (e.g. a compile error). Only in case of
No stacktrace options internal exceptions will stacktraces be printed. If the DEBUG log level is chosen, truncated stacktraces

are always printed.

Truncated stacktraces are printed. We recommend this over full stacktraces. Groovy full stacktraces

t ackt are extremely verbose (Due to the underlying dynamic invocation mechanisms. Yet they usually do not
-sor--stacktrace
contain relevant information for what has gone wrong in your code.) This option renders stacktraces for

deprecation warnings.

-Sor--full -stackt Thedull stacktraces are printed out. This option renders stacktraces for deprecation warnings.

24.2. Writing your own log messages

A simple option for logging in your build file is to write messages to standard output. Gradle redirects
anything written to standard output to its logging system at the QUI ET log level.
Example 24.1. Using stdout to write log messages

buil d. gradl e
println 'A nessage which is | ogged at QU ET | evel

Gradle also provides a | ogger property to a build script, which is an instance of Logger . This interface

extends the SLF4J Logger interface and adds a few Gradle specific methods to it. Below is an example of
how this is used in the build script:

Page 202 of 680

http://www.gradle.org/docs/4.4.1/javadoc/org/gradle/api/logging/Logger.html

Example 24.2. Writing your own log messages

buil d. gradl e

| ogger.quiet('An info | og nmessage which is always | ogged."')
| ogger.error('An error | og nessage.')

| ogger.warn(' A warni ng | og nessage. ')

| ogger.lifecycle('Alifecycle info | og nmessage.')

| ogger.info('An info | og nessage.')

| ogger . debug(' A debug | og nessage.')

| ogger.trace(' A trace | og nessage.')

You can also hook into Gradle’s logging system from within other classes used in the build (classes from the
directory for example). Simply use an SLF4J logger. You can use this logger the same way as you use the
provided logger in the build script.

Example 24.3. Using SLF4J to write log messages

bui | d. gradl e

i nport org.slf4j.Logger
i mport org.slf4j.LoggerFactory

Logger sl f4jLogger = LoggerFactory. getLogger (' sonme-| ogger')
sl f4j Logger.info('An info | og nessage | ogged using SLF4]')

24.3. Logging from external tools and libraries

Internally, Gradle uses Ant and Ivy. Both have their own logging system. Gradle redirects their logging output
into the Gradle logging system. There is a 1:1 mapping from the Ant/lvy log levels to the Gradle log levels,
except the Ant/lvy TRACE log level, which is mapped to Gradle DEBUG log level. This means the default
Gradle log level will not show any Ant/lvy output unless it is an error or a warning.

There are many tools out there which still use standard output for logging. By default, Gradle redirects
standard output to the QUI ET log level and standard error to the ERROR level. This behavior is configurable.
The project object provides a Loggi ngManager , which allows you to change the log levels that standard
out or error are redirected to when your build script is evaluated.

Example 24.4. Configuring standard output capture

bui | d. gradl e

| oggi ng. capt ur eSt andar dQut put LogLevel . | NFO
println 'A nessage which is | ogged at | NFO | evel’

To change the log level for standard out or error during task execution, tasks also provide a
Loggi ngManager .

Page 203 of 680

http://www.gradle.org/docs/4.4.1/javadoc/org/gradle/api/logging/LoggingManager.html
http://www.gradle.org/docs/4.4.1/javadoc/org/gradle/api/logging/LoggingManager.html
http://www.gradle.org/docs/4.4.1/javadoc/org/gradle/api/logging/LoggingManager.html

Example 24.5. Configuring standard output capture for a task

buil d. gradl e

task loglnfo {
| oggi ng. capt ur eSt andar dQut put LogLevel . | NFO
doFirst {
println 'A task nmessage which is |ogged at | NFO | evel'

Gradle also provides integration with the Java Util Logging, Jakarta Commons Logging and Log4j logging
toolkits. Any log messages which your build classes write using these logging toolkits will be redirected to
Gradle’s logging system.

24.4. Changing what Gradle logs

You can replace much of Gradle’s logging Ul with your own. You might do this, for example, if you want to
customize the Ul in some way - to log more or less information, or to change the formatting. You replace the
logging using the Gradl e. useLogger (j ava. | ang. Obj ect) method. This is accessible from a build
script, or an init script, or via the embedding API. Note that this completely disables Gradle’s default output.
Below is an example init script which changes how task execution and build completion is logged.

Page 204 of 680

http://www.gradle.org/docs/4.4.1/dsl/org.gradle.api.invocation.Gradle.html#org.gradle.api.invocation.Gradle:useLogger(java.lang.Object)

Example 24.6. Customizing what Gradle logs

init.gradle
uselLogger (new Cust onmEvent Logger ())

cl ass CustonkEvent Logger extends Buil dAdapter inplenents TaskExecuti onLi stener {

public voi d beforeExecute(Task task) {
println "[$task. name]"

public void afterExecute(Task task, TaskState state) {
println()

public voi d buildFini shed(Buil dResult result) {
println "build conpleted
if (result.failure !'= null) {
result.failure.printStackTrace()

}
}
}
Outputofgradle -1 init.gradle build
> gradle -1 init.gradle build
[compi | €]

conpi |l i ng source

[test Conpil e]
conpiling test source

[test]
running unit tests

[bui | d]

buil d conpl et ed
3 actionabl e tasks: 3 executed

Your logger can implement any of the listener interfaces listed below. When you register a logger, only the
logging for the interfaces that it implements is replaced. Logging for the other interfaces is left untouched.
You can find out more about the listener interfaces in Section 22.6, “Responding to the lifecycle in the build
script”.

Bui | dLi st ener
Proj ect Eval uati onLi st ener

TaskExecuti onG aphLi st ener

Page 205 of 680

http://www.gradle.org/docs/4.4.1/javadoc/org/gradle/BuildListener.html
http://www.gradle.org/docs/4.4.1/javadoc/org/gradle/api/ProjectEvaluationListener.html
http://www.gradle.org/docs/4.4.1/javadoc/org/gradle/api/execution/TaskExecutionGraphListener.html

TaskExecuti onLi st ener

TaskAct i onLi st ener

Page 206 of 680

http://www.gradle.org/docs/4.4.1/javadoc/org/gradle/api/execution/TaskExecutionListener.html
http://www.gradle.org/docs/4.4.1/javadoc/org/gradle/api/execution/TaskActionListener.html

25

Dependency Management

25.1. Introduction

Dependency management is a critical feature of every build, and Gradle has placed an emphasis on offering
first-class dependency management that is both easy to understand and compatible with a wide variety of
approaches. If you are familiar with the approach used by either Maven or Ivy you will be delighted to learn
that Gradle is fully compatible with both approaches in addition to being flexible enough to support
fully-customized approaches.

Here are the major highlights of Gradle’s support for dependency management:

Transitive dependency management: Gradle gives you full control of your project’s dependency tree.

Support for non-managed dependencies: If your dependencies are simply files in version control or a shared
drive, Gradle provides powerful functionality to support this.

Support for custom dependency definitions.: Gradle’'s Module Dependencies give you the ability to describe
the dependency hierarchy in the build script.

A fully customizable approach to Dependency Resolution: Gradle provides you with the ability to customize
resolution rules making dependency substitution easy.

Full Compatibility with Maven and Ivy: If you have defined dependencies in a Maven POM or an lvy file,
Gradle provides seamless integration with a range of popular build tools.

Integration with existing dependency management infrastructure: Gradle is compatible with both Maven and
Ivy repositories. If you use Archiva, Nexus, or Artifactory, Gradle is 100% compatible with all repository
formats.

With hundreds of thousands of interdependent open source components each with a range of versions and
incompatibilities, dependency management has a habit of causing problems as builds grow in complexity.
When a build’s dependency tree becomes unwieldy, your build tool shouldn’t force you to adopt a single,
inflexible approach to dependency management. A proper build system has to be designed to be flexible,
and Gradle can handle any situation.

Page 207 of 680

25.1.1. Flexible dependency management for migrations

Dependency management can be particularly challenging during a migration from one build system to
another. If you are migrating from a tool like Ant or Maven to Gradle, you may be faced with some difficult
situations. For example, one common pattern is an Ant project with version-less jar files stored in the
filesystem. Other build systems require a wholesale replacement of this approach before migrating. With
Gradle, you can adapt your new build to any existing source of dependencies or dependency metadata. This
makes incremental migration to Gradle much easier than the alternative. On most large projects, build
migrations and any change to development process is incremental because most organizations can't afford
to stop everything and migrate to a build tool’s idea of dependency management.

Even if your project is using a custom dependency management system or something like an Eclipse
.classpath file as master data for dependency management, it is very easy to write a Gradle plugin to use
this data in Gradle. For migration purposes this is a common technique with Gradle. (But, once you've
migrated, it might be a good idea to move away from a .classpath file and use Gradle’'s dependency
management features directly.)

25.1.2. Dependency management and Java

It is ironic that in a language known for its rich library of open source components that Java has no concept
of libraries or versions. In Java, there is no standard way to tell the JVM that you are using version 3.0.5 of
Hibernate, and there is no standard way to say that f 0o- 1. 0. j ar depends on bar - 2. 0. j ar . This has led
to external solutions often based on build tools. The most popular ones at the moment are Maven and Ivy.
While Maven provides a complete build system, lvy focuses solely on dependency management.

Both tools rely on descriptor XML files, which contain information about the dependencies of a particular jar.
Both also use repositories where the actual jars are placed together with their descriptor files, and both offer
resolution for conflicting jar versions in one form or the other. Both have emerged as standards for solving
dependency conflicts, and while Gradle originally used Ivy under the hood for its dependency management.
Gradle has replaced this direct dependency on Ivy with a native Gradle dependency resolution engine which
supports a range of approaches to dependency resolution including both POM and Ivy descriptor files.

25.2. Dependency Management Best Practices

While Gradle has strong opinions on dependency management, the tool gives you a choice between two
options: follow recommended best practices or support any kind of pattern you can think of. This section
outlines the Gradle project’'s recommended best practices for managing dependencies.

No matter what the language, proper dependency management is important for every project. From a
complex enterprise application written in Java depending on hundreds of open source libraries to the
simplest Clojure application depending on a handful of libraries, approaches to dependency management
vary widely and can depend on the target technology, the method of application deployment, and the nature
of the project. Projects bundled as reusable libraries may have different requirements than enterprise
applications integrated into much larger systems of software and infrastructure. Despite this wide variation of
requirements, the Gradle project recommends that all projects follow this set of core rules:

Page 208 of 680

25.2.1. Put the Version in the Filename (Version the jar)

The version of a library must be part of the filename. While the version of a jar is usually in the Manifest file,
it isn’'t readily apparent when you are inspecting a project. If someone asks you to look at a collection of 20
jar files, which would you prefer? A collection of files with names like conmons- beanutil s-1.3.jar ora
collection of files with names like spri ng. j ar ? If dependencies have file names with version numbers you

can quickly identify the versions of your dependencies.

If versions are unclear you can introduce subtle bugs which are very hard to find. For example there might
be a project which uses Hibernate 2.5. Think about a developer who decides to install version 3.0.5 of
Hibernate on her machine to fix a critical security bug but forgets to notify others in the team of this change.
She may address the security bug successfully, but she also may have introduced subtle bugs into a
codebase that was using a how-deprecated feature from Hibernate. Weeks later there is an exception on the
integration machine which can’t be reproduced on anyone’s machine. Multiple developers then spend days
on this issue only finally realising that the error would have been easy to uncover if they knew that Hibernate
had been upgraded from 2.5 to 3.0.5.

Versions in jar names increase the expressiveness of your project and make them easier to maintain. This
practice also reduces the potential for error.

25.2.2. Manage transitive dependencies

Transitive dependency management is a technique that enables your project to depend on libraries which, in
turn, depend on other libraries. This recursive pattern of transitive dependencies results in a tree of
dependencies including your project’s first-level dependencies, second-level dependencies, and so on. If you
don’t model your dependencies as a hierarchical tree of first-level and second-level dependencies it is very
easy to quickly lose control over an assembled mess of unstructured dependencies. Consider the Gradle
project itself, while Gradle only has a few direct, first-level dependencies, when Gradle is compiled it needs
more than one hundred dependencies on the classpath. On a far larger scale, Enterprise projects using
Spring, Hibernate, and other libraries, alongside hundreds or thousands of internal projects, can result in
very large dependency trees.

When these large dependency trees need to change, you'll often have to solve some dependency version
conflicts. Say one open source library needs one version of a logging library and a another uses an
alternative version. Gradle and other build tools all have the ability to resolve conflicts, but what differentiates
Gradle is the control it gives you over transitive dependencies and conflict resolution.

While you could try to manage this problem manually, you will quickly find that this approach doesn't scale. If
you want to get rid of a first level dependency you really can’t be sure which other jars you should remove. A
dependency of a first level dependency might also be a first level dependency itself, or it might be a
transitive dependency of yet another first level dependency. If you try to manage transitive dependencies
yourself, the end of the story is that your build becomes brittle: no one dares to change your dependencies
because the risk of breaking the build is too high. The project classpath becomes a complete mess, and, if a
classpath problem arises, hell on earth invites you for a ride.

Note: NOTE: In one project, we found a mystery LDAP related jar in the classpath. No code
referenced this jar and there was no connection to the project. No one could figure out what the jar

Page 209 of 680

was for, until it was removed from the build and the application suffered massive performance
problems whenever it attempted to authenticate to LDAP. This mystery jar was a necessary
transitive, fourth-level dependency that was easy to miss because no one had bothered to use
managed transitive dependencies.

Gradle offers you different ways to express first-level and transitive dependencies. With Gradle you can mix
and match approaches; for example, you could store your jars in an SCM without XML descriptor files and
still use transitive dependency management.

25.2.3. Resolve version conflicts

Conflicting versions of the same jar should be detected and either resolved or cause an exception. If you
don't use transitive dependency management, version conflicts are undetected and the often accidental
order of the classpath will determine what version of a dependency will win. On a large project with many
developers changing dependencies, successful builds will be few and far between as the order of
dependencies may directly affect whether a build succeeds or fails (or whether a bug appears or disappears
in production).

If you haven't had to deal with the curse of conflicting versions of jars on a classpath, here is a small
anecdote of the fun that awaits you. In a large project with 30 submodules, adding a dependency to a
subproject changed the order of a classpath, swapping Spring 2.5 for an older 2.4 version. While the build
continued to work, developers were starting to notice all sorts of surprising (and surprisingly awful) bugs in
production. Worse yet, this unintentional downgrade of Spring introduced several security vulnerabilities into
the system, which now required a full security audit throughout the organization.

In short, version conflicts are bad, and you should manage your transitive dependencies to avoid them. You
might also want to learn where conflicting versions are used and consolidate on a particular version of a
dependency across your organization. With a good conflict reporting tool like Gradle, that information can be
used to communicate with the entire organization and standardize on a single version. If you think version
conflicts don’t happen to you, think again. It is very common for different first-level dependencies to rely on a
range of different overlapping versions for other dependencies, and the JVM doesn't yet offer an easy way to
have different versions of the same jar in the classpath (see Section 25.1.2, “Dependency management and
Java”).

Gradle offers the following conflict resolution strategies:

Newest: The newest version of the dependency is used. This is Gradle’s default strategy, and is often an
appropriate choice as long as versions are backwards-compatible.

Fail: A version conflict results in a build failure. This strategy requires all version conflicts to be resolved
explicitly in the build script. See Resol uti onStr at egy for details on how to explicitly choose a particular

version.

While the strategies introduced above are usually enough to solve most conflicts, Gradle provides more
fine-grained mechanisms to resolve version conflicts:

Configuring a first level dependency as forced. This approach is useful if the dependency in conflict is
already a first level dependency. See examples in DependencyHandl er .

Page 210 of 680

http://www.gradle.org/docs/4.4.1/dsl/org.gradle.api.artifacts.ResolutionStrategy.html
http://www.gradle.org/docs/4.4.1/dsl/org.gradle.api.artifacts.dsl.DependencyHandler.html

Configuring any dependency (transitive or not) as forced. This approach is useful if the dependency in
conflict is a transitive dependency. It also can be used to force versions of first level dependencies. See
examples in Resol uti onStr at egy

Configuring dependency resolution to prefer modules that are part of your build (transitive or not). This
approach is useful if your build contains custom forks of modules (as part of Chapter 26, Multi-project Builds
or as include in Chapter 11, Composite builds). See examples in Resol uti onSt r at egy.

Dependency resolve rules are an incubating feature introduced in Gradle 1.4 which give you fine-grained
control over the version selected for a particular dependency.

To deal with problems due to version conflicts, reports with dependency graphs are also very helpful. Such
reports are another feature of dependency management.

25.2.4. Use Dynamic Versions and Changing Modules

There are many situations when you want to use the latest version of a particular dependency, or the latest
in a range of versions. This can be a requirement during development, or you may be developing a library
that is designed to work with a range of dependency versions. You can easily depend on these constantly
changing dependencies by using a dynamic version. A dynamic version can be either a version range (e.g. 2
) or it can be a placeholder for the latest version available (e.g. | at est . i nt egr ati on).

Alternatively, sometimes the module you request can change over time, even for the same version. An
example of this type of changing module is a Maven SNAPSHOT module, which always points at the latest
artifact published. In other words, a standard Maven snapshot is a module that never stands still so to speak,
it is a “changing module”.

The main difference between a dynamic version and a changing module is that when you resolve a
dynamic version, you'll get the real, static version as the module name. When you resolve a changing
module, the artifacts are named using the version you requested, but the underlying artifacts may change
over time.

By default, Gradle caches dynamic versions and changing modules for 24 hours. You can override the
default cache modes using command line options. You can change the cache expiry times in your build
using the resolution strategy (see Section 25.9.3, “Fine-tuned control over dependency caching”).

25.3. Dependency configurations

In Gradle dependencies are grouped into configurations. Configurations have a name, a number of other
properties, and they can extend each other. Many Gradle plugins add pre-defined configurations to your
project. The Java plugin, for example, adds some configurations to represent the various classpaths it
needs. see Section 48.5, “Dependency management” for details. Of course you can add custom
configurations on top of that. There are many use cases for custom configurations. This is very handy for
example for adding dependencies not needed for building or testing your software (e.g. additional JDBC
drivers to be shipped with your distribution).

A project’s configurations are managed by a confi gurati ons object. The closure you pass to the
configurations object is applied against its API. To learn more about this APl have a look at

Page 211 of 680

http://www.gradle.org/docs/4.4.1/dsl/org.gradle.api.artifacts.ResolutionStrategy.html
http://www.gradle.org/docs/4.4.1/dsl/org.gradle.api.artifacts.ResolutionStrategy.html
http://www.gradle.org/docs/4.4.1/dsl/org.gradle.api.artifacts.ConfigurationContainer.html

Confi gur ati onCont ai ner.
To define a configuration:

Example 25.1. Definition of a configuration

buil d. gradl e

configurations {
conpil e

To access a configuration:

Example 25.2. Accessing a configuration

buil d. gradl e

println configurations.conpile.nanme
println configurations['conpile'].nane

To configure a configuration:

Example 25.3. Configuration of a configuration

buil d. gradl e
configurations {
compile {
description = 'conpile classpath
transitive = true
}
runtime {
ext endsFrom conpi |l e
}
}
configurations.conpile {
description = 'conpile classpath'
}

25.4. How to declare your dependencies

There are several different types of dependencies that you can declare:

Page 212 of 680

http://www.gradle.org/docs/4.4.1/dsl/org.gradle.api.artifacts.ConfigurationContainer.html

Table 25.1.
Type

External
module
dependency

Project
dependency

File
dependency

Client
module
dependency

Dependency types

Description

A dependency on an external module in some repository.

A dependency on another project in the same build.

A dependency on a set of files on the local filesystem.

A dependency on an external module, where the artifacts are located in some repository but the module
meta-data is specified by the local build. You use this kind of dependency when you want to override the
meta-data for the module.

Gradle API A dependency on the API of the current Gradle version. You use this kind of dependency when you are

dependency

developing custom Gradle plugins and task types.

Local Groovy A dependency on the Groovy version used by the current Gradle version. You use this kind of dependency when

dependency

you are developing custom Gradle plugins and task types.

25.4.1. External module dependencies

External module dependencies are the most common dependencies. They refer to a module in an external

repository.

Example 25.4. Module dependencies

bui | d. gradl e

dependenci es {

runti
runti

runti

me group: 'org.springframework', nane: 'spring-core', version: '2.5
me 'org.springframework:spring-core: 2.5,

"org.springfranmework: spring-aop: 2.5
me(

[group: 'org.springfranmework', name: 'spring-core', version: '2.5'],
[group: 'org.springfranework', nane: 'spring-aop', version: '2.5"]

)

runti

me(' org. hi bernate: hi bernate:3.0.5") {

transitive = true

}

runti
runti

me group: 'org.hibernate', name: 'hibernate', version: '3.0.5, transiti
me(group: 'org. hibernate', name: 'hibernate', version: '3.0.5) {

transitive = true

Page 213 of 680

See the DependencyHandl er class in the APl documentation for more examples and a complete

reference.

Gradle provides different notations for module dependencies. There is a string notation and a map notation.
A module dependency has an APl which allows further configuration. Have a look at
Ext er nal Modul eDependency to learn all about the API. This API provides properties and configuration
methods. Via the string notation you can define a subset of the properties. With the map notation you can
define all properties. To have access to the complete API, either with the map or with the string notation, you
can assign a single dependency to a configuration together with a closure.

If you declare a module dependency, Gradle looks for a module descriptor file (pom xm ori vy. xnl) in the
repositories. If such a module descriptor file exists, it is parsed and the artifacts of this module (e.g. hi ber na
) as well as its dependencies (e.g. cglib) are downloaded. If no such module descriptor file exists, Gradle
looks for a file called hi ber nat e- 3. 0. 5. j ar to retrieve. In Maven, a module can have one and only one
artifact. In Gradle and Ivy, a module can have multiple artifacts. Each artifact can have a different set of
dependencies.

Depending on modules with multiple artifacts

As mentioned earlier, a Maven module has only one artifact. Hence, when your project depends on a Maven
module, it's obvious what its artifact is. With Gradle or Ivy, the case is different. Ivy’s dependency descriptor (
) can declare multiple artifacts. For more information, see the Ivy reference for i vy. xnl . In Gradle, when
you declare a dependency on an Ivy module, you actually declare a dependency on the def aul t
configuration of that module. So the actual set of artifacts (typically jars) you depend on is the set of artifacts
that are associated with the def aul t configuration of that module. Here are some situations where this

matters:

The def aul t configuration of a module contains undesired artifacts. Rather than depending on the whole
configuration, a dependency on just the desired artifacts is declared.

The desired artifact belongs to a configuration other than def aul t . That configuration is explicitly named as
part of the dependency declaration.

There are other situations where it is necessary to fine-tune dependency declarations. Please see the
DependencyHandl er class in the API documentation for examples and a complete reference for declaring
dependencies.

Artifact only notation

As said above, if no module descriptor file can be found, Gradle by default downloads a jar with the name of
the module. But sometimes, even if the repository contains module descriptors, you want to download only
the artifact jar, without the dependencies.l'®) And sometimes you want to download a zip from a repository,
that does not have module descriptors. Gradle provides an artifact only notation for those use cases - simply
prefix the extension that you want to be downloaded with ' @ sign:

Page 214 of 680

http://www.gradle.org/docs/4.4.1/dsl/org.gradle.api.artifacts.dsl.DependencyHandler.html
http://www.gradle.org/docs/4.4.1/javadoc/org/gradle/api/artifacts/ExternalModuleDependency.html
http://www.gradle.org/docs/4.4.1/javadoc/org/gradle/api/artifacts/ExternalModuleDependency.html
http://www.gradle.org/docs/4.4.1/dsl/org.gradle.api.artifacts.dsl.DependencyHandler.html
http://www.gradle.org/docs/4.4.1/dsl/org.gradle.api.artifacts.dsl.DependencyHandler.html

Example 25.5. Artifact only notation

buil d. gradl e

dependenci es {
runtime "org.groovy:groovy:2.2.0@ar"
runtime group: 'org.groovy', name: 'groovy', version: '2.2.0, ext:

j ar

An artifact only notation creates a module dependency which downloads only the artifact file with the
specified extension. Existing module descriptors are ignored.

Classifiers

The Maven dependency management has the notion of classifiers.'!] Gradle supports this. To retrieve
classified dependencies from a Maven repository you can write:

Example 25.6. Dependency with classifier

buil d. gradl e

conpile "org.gradle.test.classifiers:service:1.0:jdkl5@ar"
ot her Conf group: 'org.gradle.test.classifiers', name: 'service', version: '1.0',

As can be seen in the first line above, classifiers can be used together with the artifact only notation.
It is easy to iterate over the dependency artifacts of a configuration:

Example 25.7. Iterating over a configuration

bui | d. gradl e
task listJdars {
doLast ({
configurations.conpile.each { File file -> println file.nanme }

}

Outputofgradle -q listJars

> gradle -q listJars

hi bernate-core-3.6.7. Final.jar
antlr-2.7.6.jar

commons-col | ections-3.1.jar

domdj-1.6.1.jar

hi ber nat e- conmons- annot ati ons-3. 2. 0. Final . jar
hi ber nat e-j pa-2.0-api-1.0.1. Final.jar
jta-1.1.jar

slf4j-api-1.6.1.jar

25.4.2. Client module dependencies

Client module dependencies allow you to declare transitive dependencies directly in the build script. They
are a replacement for a module descriptor in an external repository.

Page 215 of 680

Example 25.8. Client module dependencies - transitive dependencies

buil d. gradl e

dependenci es {
runti me nodul e("org. codehaus. groovy: groovy: 2. 4.10") {
dependency(" conmons-cli:comons-cli:1.0") {
transitive = fal se

}
nodul e(group: 'org.apache.ant', nane: 'ant', version: '1.9.9") {
dependenci es "org. apache. ant: ant-1auncher:1.9.9@ar",
"org.apache.ant:ant-junit:1.9.9"

This declares a dependency on Groovy. Groovy itself has dependencies. But Gradle does not look for an
XML descriptor to figure them out but gets the information from the build file. The dependencies of a client
module can be normal module dependencies or artifact dependencies or another client module. Also look at
the API documentation for the Cl i ent Modul e class.

In the current release client modules have one limitation. Let’s say your project is a library and you want this
library to be uploaded to your company’s Maven or lvy repository. Gradle uploads the jars of your project to
the company repository together with the XML descriptor file of the dependencies. If you use client modules
the dependency declaration in the XML descriptor file is not correct. We will improve this in a future release
of Gradle.

25.4.3. Project dependencies

Gradle distinguishes between external dependencies and dependencies on projects which are part of the
same multi-project build. For the latter you can declare Project Dependencies.

Example 25.9. Project dependencies

bui | d. gradl e

dependenci es {
conpil e project(':shared")

For more information see the APl documentation for Pr oj ect Dependency.
Multi-project builds are discussed in Chapter 26, Multi-project Builds.

25.4.4. File dependencies

File dependencies allow you to directly add a set of files to a configuration, without first adding them to a
repository. This can be useful if you cannot, or do not want to, place certain files in a repository. Or if you do
not want to use any repositories at all for storing your dependencies.

To add some files as a dependency for a configuration, you simply pass a file collection as a dependency:

Page 216 of 680

http://www.gradle.org/docs/4.4.1/javadoc/org/gradle/api/artifacts/ClientModule.html
http://www.gradle.org/docs/4.4.1/javadoc/org/gradle/api/artifacts/ProjectDependency.html

Example 25.10. File dependencies

buil d. gradl e

dependenci es {
runtime files('libs/a.jar', "libs/b.jar")
runtinme fileTree(dir: '"libs', include: "*.jar")

File dependencies are not included in the published dependency descriptor for your project. However, file
dependencies are included in transitive project dependencies within the same build. This means they cannot
be used outside the current build, but they can be used with the same build.

You can declare which tasks produce the files for a file dependency. You might do this when, for example,
the files are generated by the build.

Example 25.11. Generated file dependencies

buil d. gradl e

dependenci es {
conmpile files("$buildDir/classes") {
builtBy 'conpil e’

task conpile {
doLast {
println 'conpiling classes'

task list(dependsOn: configurations.conmpile) {
doLast {
println "classpath = ${configurations.conpile.collect { File file -> fili

}

Outputofgradle -q |ist
> gradle -q |ist
conpi l i ng cl asses
classpath = [cl asses]

25.4.5. Gradle API Dependency

You can declare a dependency on the API of the current version of Gradle by using the
DependencyHandl er. gradl eApi () method. This is useful when you are developing custom Gradle
tasks or plugins.

Page 217 of 680

http://www.gradle.org/docs/4.4.1/dsl/org.gradle.api.artifacts.dsl.DependencyHandler.html#org.gradle.api.artifacts.dsl.DependencyHandler:gradleApi()
http://www.gradle.org/docs/4.4.1/dsl/org.gradle.api.artifacts.dsl.DependencyHandler.html#org.gradle.api.artifacts.dsl.DependencyHandler:gradleApi()

Example 25.12. Gradle API dependencies

buil d. gradl e
dependenci es {
conpi |l e gradl eApi ()

25.4.6. Local Groovy Dependency

You can declare a dependency on the Groovy that is distributed with Gradle by using the
DependencyHandl er. | ocal G oovy() method. This is useful when you are developing custom Gradle
tasks or plugins in Groovy.

Example 25.13. Gradle's Groovy dependencies

buil d. gradl e

dependenci es {
conpi |l e | ocal Groovy()

25.4.7. Excluding transitive dependencies

You can exclude a transitive dependency either by configuration or by dependency:

Example 25.14. Excluding transitive dependencies

bui | d. gradl e

configurations {
conpi | e. excl ude nodul e: ' conmons'
al | *. exclude group: 'org.gradle.test.excludes', nmodule: 'reports'

dependenci es {
conpil e("org. gradl e.test.excludes:api:1.0") {
excl ude nodul e: 'shared

If you define an exclude for a particular configuration, the excluded transitive dependency will be filtered for
all dependencies when resolving this configuration or any inheriting configuration. If you want to exclude a
transitive dependency from all your configurations you can use the Groovy spread-dot operator to express
this in a concise way, as shown in the example. When defining an exclude, you can specify either only the
organization or only the module name or both. Also look at the API documentation of the Dependency and
Confi gur ati on classes.

Not every transitive dependency can be excluded - some transitive dependencies might be essential for
correct runtime behavior of the application. Generally, one can exclude transitive dependencies that are
either not required by runtime or that are guaranteed to be available on the target environment/platform.

Page 218 of 680

http://www.gradle.org/docs/4.4.1/dsl/org.gradle.api.artifacts.dsl.DependencyHandler.html#org.gradle.api.artifacts.dsl.DependencyHandler:localGroovy()
http://www.gradle.org/docs/4.4.1/dsl/org.gradle.api.artifacts.dsl.DependencyHandler.html#org.gradle.api.artifacts.dsl.DependencyHandler:localGroovy()
http://www.gradle.org/docs/4.4.1/javadoc/org/gradle/api/artifacts/Dependency.html
http://www.gradle.org/docs/4.4.1/dsl/org.gradle.api.artifacts.Configuration.html
http://www.gradle.org/docs/4.4.1/dsl/org.gradle.api.artifacts.Configuration.html

Should you exclude per-dependency or per-configuration? It turns out that in the majority of cases you want
to use the per-configuration exclusion. Here are some typical reasons why one might want to exclude a
transitive dependency. Bear in mind that for some of these use cases there are better solutions than
exclusions!

The dependency is undesired due to licensing reasons.
The dependency is not available in any remote repositories.
The dependency is not needed for runtime.

The dependency has a version that conflicts with a desired version. For that use case please refer to
Section 25.2.3, “Resolve version conflicts” and the documentation on Resol uti onStrategy for a
potentially better solution to the problem.

Basically, in most of the cases excluding the transitive dependency should be done per configuration. This
way the dependency declaration is more explicit. It is also more accurate because a per-dependency
exclude rule does not guarantee the given transitive dependency does not show up in the configuration. For
example, some other dependency, which does not have any exclude rules, might pull in that unwanted
transitive dependency.

Other examples of dependency exclusions can be found in the reference for the Modul eDependency or

DependencyHandl er classes.

25.4.8. Optional attributes

All attributes for a dependency are optional, except the name. Which attributes are required for actually
finding dependencies in the repository will depend on the repository type. See Section 25.6, “Repositories”.
For example, if you work with Maven repositories, you need to define the group, name and version. If you
work with filesystem repositories you might only need the name or the name and the version.

Example 25.15. Optional attributes of dependencies

buil d. gradl e

dependenci es {
runtime ":junit:4.12", ":testng"
runti ne nanme: 'testng'

You can also assign collections or arrays of dependency notations to a configuration:

Page 219 of 680

http://www.gradle.org/docs/4.4.1/dsl/org.gradle.api.artifacts.ResolutionStrategy.html
http://www.gradle.org/docs/4.4.1/javadoc/org/gradle/api/artifacts/ModuleDependency.html
http://www.gradle.org/docs/4.4.1/dsl/org.gradle.api.artifacts.dsl.DependencyHandler.html
http://www.gradle.org/docs/4.4.1/dsl/org.gradle.api.artifacts.dsl.DependencyHandler.html

Example 25.16. Collections and arrays of dependencies

buil d. gradl e

Li st groovy = ["org.codehaus. groovy: groovy-all:2.4.10@ar",
"“comons-cli:conmons-cli: 1. 0@ar",
"org.apache.ant:ant: 1. 9. 6@ ar"|]

Li st hibernate = ['org. hi bernate: hibernate:3.0.5@ar",

' somegroup: soneorg: 1. 0@ ar']
dependenci es {
runti me groovy, hibernate

25.4.9. Dependency configurations

In Gradle a dependency can have different configurations (as your project can have different configurations).
If you don't specify anything explicitly, Gradle uses the default configuration of the dependency. For
dependencies from a Maven repository, the default configuration is the only possibility anyway. If you work
with Ivy repositories and want to declare a non-default configuration for your dependency you have to use
the map notation and declare:

Example 25.17. Dependency configurations

bui I d. gradl e

dependenci es {
runtime group: 'org.sonegroup', nane: 'sonedependency', version: '1.0', conf

To do the same for project dependencies you need to declare:

Example 25.18. Dependency configurations for project

buil d. gradl e

dependenci es {
conpi |l e project (path:

capi', configuration: 'spi')

25.4.10. Dependency reports

You can generate dependency reports from the command line (see Section 4.7.4, “Listing project
dependencies”). With the help of the Project report plugin (see Chapter 29, The Project Report Plugin) such
a report can be created by your build.

Since Gradle 1.2 there is also a new programmatic API to access the resolved dependency information. The
dependency reports (see the previous paragraph) are using this API under the covers. The API lets you walk
the resolved dependency graph and provides information about the dependencies. In future releases the API
will grow to provide more information about the resolution result. For more information about the API please
refer to the Javadocs on Resol vabl eDependenci es. get Resol uti onResul t (). Potential usages of
the Resol uti onResul t API:

Page 220 of 680

http://www.gradle.org/docs/4.4.1/javadoc/org/gradle/api/artifacts/ResolvableDependencies.html#getResolutionResult()
http://www.gradle.org/docs/4.4.1/javadoc/org/gradle/api/artifacts/result/ResolutionResult.html

Creation of advanced dependency reports tailored to your use case.

Enabling the build logic to make decisions based on the content of the dependency graph.
25.5. Working with dependencies
For the examples below we have the following dependencies setup:

Example 25.19. Configuration.copy

buil d. gradl e
configurations {
sealife
alllife
}
dependenci es {
sealife "sea. manmual s: orca: 1. 0", "sea.fish:shark:1.0", "sea.fish:tuna:1.0"
alllife configurations.sealife
alllife "air.birds: al batross: 1. 0"

The dependencies have the following transitive dependencies:
shark-1.0 -> seal-2.0, tuna-1.0

orca-1.0 -> seal-1.0

tuna-1.0 -> herring-1.0

You can use the configuration to access the declared dependencies or a subset of those:

Page 221 of 680

Example 25.20. Accessing declared dependencies

buil d. gradl e
task dependencies {
doLast {
configurations.alllife.dependencies.each { dep -> println dep.nanme }
println()
configurations.alllife.all Dependenci es. each { dep -> println dep. nane }
println()
configurations.alllife.all Dependencies.findAl { dep -> dep.nanme != "orc
.each { dep -> println dep.nanme }

}

Output of gradl e -g dependenci es

> gradl e -q dependenci es
al batr oss

al batr oss
orca
shar k
tuna

al batross
shar k
tuna

The dependenci es task returns only the dependencies belonging explicitly to the configuration. The al | De

task includes the dependencies from extended configurations.
To get the library files of the configuration dependencies you can do:

Example 25.21. Configuration.files

bui | d. gradl e
task allFiles {
doLast {
configurations.sealife.files.each { file ->
println file.nane

}

Outputofgradle -q all Files

> gradle -q allFiles
orca-1.0.jar
shark-1.0.jar
tuna-1.0.jar

seal -2.0.jar
herring-1.0.jar

Page 222 of 680

Sometimes you want the library files of a subset of the configuration dependencies (e.g. of a single
dependency).

Example 25.22. Configuration.files with spec

bui | d. gradl e

task files {

doLast {
configurations.sealife.files { dep -> dep.nane == 'orca' }.each { file -:

println file.nane

}
Outputofgradle -q files

> gradle -q files
orca-1.0.jar
seal -2.0.jar

The Confi guration. fil es method always retrieves all artifacts of the whole configuration. It then filters
the retrieved files by specified dependencies. As you can see in the example, transitive dependencies are
included.

You can also copy a configuration. You can optionally specify that only a subset of dependencies from the
original configuration should be copied. The copying methods come in two flavors. The copy method copies
only the dependencies belonging explicitly to the configuration. The copyRecur si ve method copies all the
dependencies, including the dependencies from extended configurations.

Example 25.23. Configuration.copy

buil d. gradl e
task copy {
doLast {
configurations.alllife.copyRecursive { dep -> dep.nane != "orca' }
. al | Dependenci es. each { dep -> println dep. nane }
println()
configurations.alllife.copy().all Dependenci es
.each { dep -> println dep.nane }
}
}

Output of gradl e -qgq copy

> gradl e -q copy
al batross

shar k

tuna

al batross

Page 223 of 680

It is important to note that the returned files of the copied configuration are often but not always the same
than the returned files of the dependency subset of the original configuration. In case of version conflicts
between dependencies of the subset and dependencies not belonging to the subset the resolve result might
be different.

Example 25.24. Configuration.copy vs. Configuration.files

bui | d. gradl e
task copyVsFiles {
doLast {
configurations.sealife.copyRecursive { dep -> dep.nane == 'orca' }
.each { file -> println file.name }
println()
configurations.sealife.files { dep -> dep.nane == 'orca' }

.each { file -> println file. nane }

}

Outputofgradl e -g copyVsFil es

> gradle -q copyVsFil es
orca-1.0.jar
seal -1.0.jar

orca-1.0.jar
seal -2.0.jar

In the example above, or ca has a dependency on seal - 1. 0 whereas shar k has a dependency on seal - .
. The original configuration has therefore a version conflict which is resolved to the newer seal -2. 0
version. The fi | es method therefore returns seal - 2. 0 as a transitive dependency of or ca. The copied
configuration only has or ca as a dependency and therefore there is no version conflict and seal - 1. 0 is
returned as a transitive dependency.

Once a configuration is resolved it is immutable. Changing its state or the state of one of its dependencies
will cause an exception. You can always copy a resolved configuration. The copied configuration is in the
unresolved state and can be freshly resolved.

To learn more about the API of the configuration class see the APl documentation: Conf i gur ati on.

25.6. Repositories

Gradle repository management, based on Apache Ivy, gives you a lot of freedom regarding repository layout
and retrieval policies. Additionally Gradle provides various convenience method to add pre-configured
repositories.

You may configure any number of repositories, each of which is treated independently by Gradle. If Gradle
finds a module descriptor in a particular repository, it will attempt to download all of the artifacts for that

Page 224 of 680

http://www.gradle.org/docs/4.4.1/dsl/org.gradle.api.artifacts.Configuration.html

module from the same repository. Although module meta-data and module artifacts must be located in the
same repository, it is possible to compose a single repository of multiple URLs, giving multiple locations to
search for meta-data files and jar files.

There are several different types of repositories you can declare:

Table 25.2. Repository types

Type Description

Maven central repository A pre-configured repository that looks for dependencies in Maven Central.

Maven JCenter repository A pre-configured repository that looks for dependencies in Bintray’s JCenter.

Maven Google repository A pre-configured repository that looks for dependencies in Google’s Maven repository.

Maven local repository A pre-configured repository that looks for dependencies in the local Maven repository.
Maven repository A Maven repository. Can be located on the local filesystem or at some remote location.
Ivy repository An lvy repository. Can be located on the local filesystem or at some remote location.
Flat directory repository A simple repository on the local filesystem. Does not support any meta-data formats.

25.6.1. Maven central repository

To add the central Maven 2 repository (https://repo.maven.apache.org/maven2) simply add this to your build
script:

Example 25.25. Adding central Maven repository

bui | d. gradl e

repositories {
mavenCentral ()

Now Gradle will look for your dependencies in this repository.

25.6.2. Maven JCenter repository

Bintray's JCenter is an up-to-date collection of all popular Maven OSS artifacts, including artifacts published
directly to Bintray.

To add the JCenter Maven repository (https://jcenter.bintray.com) simply add this to your build script:

Page 225 of 680

https://repo.maven.apache.org/maven2
http://bintray.com
https://jcenter.bintray.com

Example 25.26. Adding Bintray's JCenter Maven repository

buil d. gradl e
repositories {
jcenter()

Now Gradle will look for your dependencies in the JCenter repository. jcenter() uses HTTPS to connect to
the repository. If you want to use HTTP you can configure j cent er () :
Example 25.27. Using Bintrays's JCenter with HTTP

bui | d. gradl e
repositories {
jcenter {
url "http://jcenter.bintray.com"

25.6.3. Maven Google repository

The Google repository hosts Android-specific artifacts including the Android SDK. For usage examples
please the [relevant documentation](
https://developer.android.com/studio/build/dependencies.html#google-maven).

To add the Google Maven repository (https://dl.google.com/dl/android/maven2/) simply add this to your build
script:
Example 25.28. Adding Google Maven repository

buil d. gradl e
repositories {
googl e()

25.6.4. Local Maven repository

To use the local Maven cache as a repository you can do:

Example 25.29. Adding the local Maven cache as a repository

buil d. gradl e

repositories {
mavenLocal ()

Gradle uses the same logic as Maven to identify the location of your local Maven cache. If a local repository
location is defined in a set ti ngs. xnl , this location will be used. The setti ngs. xnm in USER_HOVE/ . n2
takes precedence over the settings. xm in M2_HOME/ conf . If no settings. xm is available, Gradle

Page 226 of 680

https://developer.android.com/studio/build/dependencies.html#google-maven
https://dl.google.com/dl/android/maven2/

uses the default location USER_HOVE/ . n2/ r eposi tory.

25.6.5. Maven repositories

For adding a custom Maven repository you can do:

Example 25.30. Adding custom Maven repository

bui | d. gradl e

repositories {
maven {
url "http://repo. nyconpany. com maven2"

Sometimes a repository will have the POMs published to one location, and the JARs and other artifacts
published at another location. To define such a repository, you can do:

Example 25.31. Adding additional Maven repositories for JAR files

buil d. gradl e
repositories {
maven {

url "http://repo2. nyconpany. conl naven2"

artifactUrls "http://repo. nyconpany. conjars"
artifactUrls "http://repo. myconpany. coni j ars2"

Gradle will look at the first URL for the POM and the JAR. If the JAR can’t be found there, the artifact URLS
are used to look for JARSs.

Accessing password protected Maven repositories

To access a Maven repository which uses basic authentication, you specify the username and password to
use when you define the repository:

Page 227 of 680

Example 25.32. Accessing password protected Maven repository

buil d. gradl e
repositories {
maven {
credentials {
user nane 'user'
password ' password'

}
url "http://repo. nyconpany. com nmaven2"

It is advisable to keep your username and password in gr adl e. properti es rather than directly in the
build file.

25.6.6. Flat directory repository

If you want to use a (flat) filesystem directory as a repository, simply type:

Example 25.33. Flat repository resolver

buil d. gradl e
repositories {
flatDir {
dirs '"[ib
}
flatDir {

dirs "libl, "lib2

This adds repositories which look into one or more directories for finding dependencies. Note that this type of
repository does not support any meta-data formats like lvy XML or Maven POM files. Instead, Gradle will
dynamically generate a module descriptor (without any dependency information) based on the presence of
artifacts. However, as Gradle prefers to use modules whose descriptor has been created from real
meta-data rather than being generated, flat directory repositories cannot be used to override artifacts with
real meta-data from other repositories. So, for example, if Gradle finds only j nxri-1.2. 1. ar in a flat
directory repository, but j nxri - 1. 2. 1. pomin another repository that supports meta-data, it will use the
second repository to provide the module. For the use case of overriding remote artifacts with local ones
consider using an Ivy or Maven repository instead whose URL points to a local directory. If you only work
with flat directory repositories you don’t need to set all attributes of a dependency. See Section 25.4.8,
“Optional attributes”.

Page 228 of 680

25.6.7. vy repositories

Defining an lvy repository with a standard layout

Example 25.34. lvy repository

bui | d. gradl e
repositories {
ivy {
url "http://repo. myconpany. com repo"

Defining a named layout for an lvy repository

You can specify that your repository conforms to the vy or Maven default layout by using a named layout.

Example 25.35. Ivy repository with named layout

buil d. gradl e
repositories {
ivy {
url "http://repo. nyconpany. com r epo"
| ayout "maven"

Valid named layout values are ' gradl e’ (the default), ' maven', 'ivy' and 'pattern'. See
IvyArtifact Repository.layout(java.lang.String, groovy.lang.C osure) in the API
documentation for details of these named layouts.

Defining custom pattern layout for an Ivy repository

To define an Ivy repository with a non-standard layout, you can define a 'pattern’ layout for the repository:

Example 25.36. vy repository with pattern layout

bui | d. gradl e
repositories {
vy {
url "http://repo. nyconpany. com r epo"
| ayout "pattern", ({
artifact "[nodule]/[revision]/[type]/[artifact].[ext]"

To define an Ivy repository which fetches Ivy files and artifacts from different locations, you can define
separate patterns to use to locate the Ivy files and artifacts:

Page 229 of 680

http://www.gradle.org/docs/4.4.1/dsl/org.gradle.api.artifacts.repositories.IvyArtifactRepository.html#org.gradle.api.artifacts.repositories.IvyArtifactRepository:layout(java.lang.String, groovy.lang.Closure)
http://www.gradle.org/docs/4.4.1/dsl/org.gradle.api.artifacts.repositories.IvyArtifactRepository.html#org.gradle.api.artifacts.repositories.IvyArtifactRepository:layout(java.lang.String, groovy.lang.Closure)

Each arti fact ori vy specified for a repository adds an additional pattern to use. The patterns are used
in the order that they are defined.

Example 25.37. lvy repository with multiple custom patterns

bui I d. gradl e
repositories {
ivy {
url "http://repo. myconpany. com repo”
| ayout "pattern", {
artifact "3rd-party-artifacts/[organisation]/[nmodule]/[revision]/[art
artifact "conpany-artifacts/[organisation]/[nodule]/[revision]/[artil
ivy "ivy-files/[organisation]/[nodule]/[revision]/ivy.xm"

Optionally, a repository with pattern layout can have its 'organisation' part laid out in Maven style, with
forward slashes replacing dots as separators. For example, the organisation ny. conpany would then be
represented as ny/ conpany.

Example 25.38. vy repository with Maven compatible layout

buil d. gradl e
repositories {
vy {
url "http://repo. myconpany. com r epo”
| ayout "pattern", {
artifact "[organisation]/[nodule]/[revision]/[artifact]-[revision].[1
n2compati ble = true

Accessing password protected Ivy repositories

To access an vy repository which uses basic authentication, you specify the username and password to use
when you define the repository:

Page 230 of 680

Example 25.39. lvy repository

buil d. gradl e
repositories {
vy {
url "http://repo. myconpany. con
credentials {
user name 'user'
password ' password'

25.6.8. Supported repository transport protocols

Maven and lvy repositories support the use of various transport protocols. At the moment the following
protocols are supported:

Table 25.3. Repository transport protocols

Type Credential types

file none

http username/password

https username/password

sftp username/password

s3 access key/secret key/session token or Environment variables

gcs default application credentials sourced from well known files, Environment variables etc.

To define a repository use the r eposi t ori es configuration block. Within the r eposi t ori es closure, a
Maven repository is declared with maven. An lvy repository is declared with i vy. The transport protocol is
part of the URL definition for a repository. The following build script demonstrates how to create a
HTTP-based Maven and Ivy repository:

Page 231 of 680

https://developers.google.com/identity/protocols/application-default-credentials

Example 25.40. Declaring a Maven and lvy repository

buil d. gradl e
repositories {
maven {
url "http://repo. myconpany. com maven2"

ivy {
url "http://repo. nyconpany. com r epo"

If authentication is required for a repository, the relevant credentials can be provided. The following example
shows how to provide username/password-based authentication for SFTP repositories:

Example 25.41. Providing credentials to a Maven and Ivy repository

bui I d. gradl e
repositories {
maven {
url "sftp://repo. myconpany.com 22/ maven2"
credentials {
user name 'user'
password ' password'

}
}
ivy {
url "sftp://repo. myconpany. com 22/ r epo”
credentials {
user name 'user'
password ' password’
}
}

When using an AWS S3 backed repository you need to authenticate using AwsCr edenti al s, providing
access-key and a private-key. The following example shows how to declare a S3 backed repository and
providing AWS credentials:

Page 232 of 680

http://www.gradle.org/docs/4.4.1/dsl/org.gradle.api.credentials.AwsCredentials.html

Example 25.42. Declaring a S3 backed Maven and Ivy repository

buil d. gradl e
repositories {
maven {
url "s3:// myConpanyBucket/ nmaven2"
credenti al s(AnsCredential s) {
accessKey "soneKey"
secret Key "soneSecret"”
/'l optiona
sessi onToken "soneSTSToken"

}
}
vy {
url "s3://nyConpanyBucket/i vyrepo"
credenti al s(AnsCredenti al s) {
accessKey "soneKey"
secret Key "soneSecret"
/'l optiona
sessi onToken "soneSTSToken"
}
}

You can also delegate all credentials to the AWS sdk by using the AwsimAuthentication. The following

example shows how:

Example 25.43. Declaring a S3 backed Maven and Ivy repository using IAM

buil d. gradl e
repositories {
maven {
url "s3://nmyConpanyBucket/ maven2"
aut henti cation {

aws| n{ Awsl mAut hentication) // |oad from EC2 role or

}
}
ivy {
url "s3://nyConpanyBucket/i vyrepo"
aut henti cation {
aws| n(Aws| mAut hent i cat i on)
}
}

env var

When using a Google Cloud Storage backed repository default application credentials will be used with no

further configuration required:

Page 233 of 680

Example 25.44. Declaring a Google Cloud Storage backed Maven and lvy repository using default app

buil d. gradl e
repositories {
maven {
url "gcs:// myConmpanyBucket/ maven2"

ivy {
url "gcs:// myConpanyBucket /i vyrepo"

S3 configuration properties

The following system properties can be used to configure the interactions with s3 repositories:

Table 25.4. S3 Configuration Properties

Property Description

. Used to override the AWS S3 endpoint when using a non AWS, S3 API compatible, storage
org.gradle.s3.endpoint .
service.

Specifies the maximum number of times to retry a request in the event that the S3 server
org.gradle.s3.maxErrorRetry) B)
responds with a HTTP 5xx status code. When not specified a default value of 3 is used.

S3 URL formats

S3 URL'’s are 'virtual-hosted-style' and must be in the following format s3: / / <bucket Nane>[. <r egi onSpe
e.g.s3:// myBucket . s3. eu-central - 1. amazonaws. com maven/ r el ease

myBucket is the AWS S3 bucket name.

s3. eu-central - 1. anazonaws. comis the optional region specific endpoint.

/ maven/ r el ease is the AWS S3 key (unique identifier for an object within a bucket)
S3 proxy settings

A proxy for S3 can be configured using the following system properties:

ht t ps. pr oxyHost
htt ps. proxyPort
htt ps. proxyUser
htt ps. proxyPassword

htt p. nonPr oxyHost s

Page 234 of 680

http://docs.aws.amazon.com/general/latest/gr/rande.html#s3_region

If the 'org.gradle.s3.endpoint' property has been specified with a http (not https) URI the following system
proxy settings can be used:

http. pr oxyHost
htt p. proxyPort
htt p. proxyUser
htt p. pr oxyPasswor d

htt p. nonPr oxyHost s
AWS S3 V4 Signatures (AWS4-HMAC-SHA256)

Some of the AWS S3 regions (eu-central-1 - Frankfurt) require that all HTTP requests are signed in
accordance with AWS’s signature version 4. It is recommended to specify S3 URL’s containing the region
specific endpoint when using buckets that require V4 signatures. e.g. s3: // sonebucket . s3. eu- cent r al

Note: NOTE: When a region-specific endpoint is not specified for buckets requiring V4 Signatures,
Gradle will use the default AWS region (us-east-1) and the following warning will appear on the
console:

Attempting to re-send the request to with AWS V4 authentication. To avoid this warning in the
future, please use region-specific endpoint to access buckets located in regions that require V4
signing.

Failing to specify the region-specific endpoint for buckets requiring V4 signatures means:
® Note: 3 round-trips to AW5, as opposed to one, for every file upload and downl

®* Note: Dependi ng on | ocation - increased network | atencies and sl ower builds.

® Note: I ncreased |ikelihood of transm ssion fail ures.

Google Cloud Storage configuration properties

The following system properties can be used to configure the interactions with Google Cloud Storage
repositories:
Table 25.5. Google Cloud Storage Configuration Properties

Property Description

Used to override the Google Cloud Storage endpoint when using a non-Google Cloud Platform,

org.gradle.gcs.endpoint . .
Google Cloud Storage API compatible, storage service.

Used to override the Google Cloud Storage root service path which the Google Cloud Storage client

org.gradle.gcs.servicePath
builds requests from, defaults to / .

Page 235 of 680

http://docs.aws.amazon.com/general/latest/gr/signature-version-4.html

Google Cloud Storage URL formats

Google Cloud Storage URL'’s are 'virtual-hosted-style' and must be in the following format gcs: / / <bucket N
e.g. gcs: // myBucket / maven/rel ease

myBucket is the Google Cloud Storage bucket name.

/ maven/ r el ease is the Google Cloud Storage key (unique identifier for an object within a bucket)
Configuring HTTP authentication schemes

When configuring a repository using HTTP or HTTPS transport protocols, multiple authentication schemes
are available. By default, Gradle will attempt to use all schemes that are supported by the Apache HttpClient
library, documented here. In some cases, it may be preferable to explicitly specify which authentication
schemes should be used when exchanging credentials with a remote server. When explicitly declared, only
those schemes are used when authenticating to a remote repository. The following example show how to
configure a repository to use only digest authentication:

Example 25.45. Configure repository to use only digest authentication

buil d. gradl e
repositories {
maven {
url '"https://repo. myconpany. coml maven2
credentials {
user nane 'user'
password ' password'
}
aut henti cation {
di gest (Di gest Aut henti cati on)

Currently supported authentication schemes are:

Table 25.6. Authentication schemes

Type Description

Basic access authentication over HTTP. When using this scheme, credentials are sent
preemptively.

Basi cAut henti cati on

Di gest Aut hent i cat i on Digest access authentication over HTTP.

Page 236 of 680

http://hc.apache.org/httpcomponents-client-ga/tutorial/html/authentication.html#d5e625
http://www.gradle.org/docs/4.4.1/dsl/org.gradle.authentication.http.BasicAuthentication.html
http://www.gradle.org/docs/4.4.1/dsl/org.gradle.authentication.http.DigestAuthentication.html

Using preemptive authentication

Gradle’s default behavior is to only submit credentials when a server responds with an authentication
challenge in the form of a HTTP 401 response. In some cases, the server will respond with a different code
(ex. for repositories hosted on GitHub a 404 is returned) causing dependency resolution to fail. To get
around this behavior, credentials may be sent to the server preemptively. To enable preemptive
authentication simply configure your repository to explicitly use the Basi cAut henti cat i on scheme:

Example 25.46. Configure repository to use preemptive authentication

buil d. gradl e
repositories {
maven {
url '"https://repo. myconpany. conl maven2
credentials {
user name 'user'
password ' password'

}

aut henti cation {
basi c(Basi cAut henti cati on)

25.6.9. Working with repositories

To access a repository:

Example 25.47. Accessing a repository

bui | d. gradl e

println repositories.|ocal Repository. name
println repositories['|ocal Repository']. nane

To configure a repository:

Page 237 of 680

http://www.gradle.org/docs/4.4.1/dsl/org.gradle.authentication.http.BasicAuthentication.html

Example 25.48. Configuration of a repository

buil d. gradl e
repositories {
flatDir {
name ' | ocal Repository'

}
repositories {
| ocal Repository {

dirs '"lib
}
}
repositories.|ocal Repository {
dirs "lib
}

25.6.10. More about Ivy resolvers

Gradle is extremely flexible regarding repositories:

There are many options for the protocol to communicate with the repository (e.g. filesystem, http, ssh, sftp

)

The protocol sftp currently only supports username/password-based authentication.

Each repository can have its own layout.

Let's say, you declare a dependency on the junit:junit: 3. 8. 2 library. Now how does Gradle find it in
the repositories? Somehow the dependency information has to be mapped to a path. In contrast to Maven,
where this path is fixed, with Gradle you can define a pattern that defines what the path will look like. Here
are some examples:['2

/1 Maven2 |ayout (if a repository is marked as Maven2 conpati bl e, the organizati:
somer oot /[organi sation]/[nodul e]/[revision]/[nodul e]-[revision].[ext]

/1 Typical layout for an Ivy repository (the organization is not split into subfi
somer oot/ [organi sation]/[nodul e]/[revision]/[type]s/[artifact].[ext]

/1 Sinple |ayout (the organization is not used, no nested folders.)
soneroot/[artifact]-[revision].[ext]

To add any kind of repository (you can pretty easy write your own ones) you can do:

Page 238 of 680

Example 25.49. Definition of a custom repository

buil d. gradl e
repositories {
ivy {
i vyPattern "$projectDir/repo/[organisation]/[nmodul e]-ivy-[revision].xm"
artifactPattern "$projectDir/repo/[organisation]/[nmodul e]-[revision](-[cl

An overview of which Resolvers are offered by Ivy and thus also by Gradle can be found here. With Gradle
you just don’t configure them via XML but directly via their API.

25.7. How dependency resolution works

Gradle takes your dependency declarations and repository definitions and attempts to download all of your
dependencies by a process called dependency resolution. Below is a brief outline of how this process
works.

Given a required dependency, Gradle first attempts to resolve the module for that dependency. Each
repository is inspected in order, searching first for a module descriptor file (POM or Ivy file) that indicates the
presence of that module. If no module descriptor is found, Gradle will search for the presence of the primary
module artifact file indicating that the module exists in the repository.

If the dependency is declared as a dynamic version (like 1. +), Gradle will resolve this to the newest
available static version (like 1. 2) in the repository. For Maven repositories, this is done using the naven- et
file, while for vy repositories this is done by directory listing.

If the module descriptor is a POM file that has a parent POM declared, Gradle will recursively attempt to
resolve each of the parent modules for the POM.

Once each repository has been inspected for the module, Gradle will choose the 'best' one to use. This is
done using the following criteria:

For a dynamic version, a 'higher' static version is preferred over a 'lower' version.

Modules declared by a module descriptor file (lvy or POM file) are preferred over modules that have an
artifact file only.

Modules from earlier repositories are preferred over modules in later repositories.

When the dependency is declared by a static version and a module descriptor file is found in a repository,
there is no need to continue searching later repositories and the remainder of the process is short-circuited.

All of the artifacts for the module are then requested from the same repository that was chosen in the
process above.

25.8. Fine-tuning the dependency resolution process

In most cases, Gradle’s default dependency management will resolve the dependencies that you want in
your build. In some cases, however, it can be necessary to tweak dependency resolution to ensure that your
build receives exactly the right dependencies.

Page 239 of 680

http://ant.apache.org/ivy/history/latest-milestone/settings/resolvers.html

There are a number of ways that you can influence how Gradle resolves dependencies.
25.8.1. Forcing a particular module version

Forcing a module version tells Gradle to always use a specific version for given dependency (transitive or
not), overriding any version specified in a published module descriptor. This can be very useful when
tackling version conflicts - for more information see Section 25.2.3, “Resolve version conflicts”.

Force versions can also be used to deal with rogue metadata of transitive dependencies. If a transitive
dependency has poor quality metadata that leads to problems at dependency resolution time, you can force
Gradle to use a newer, fixed version of this dependency. For an example, see the Resol uti onStrat egy
class in the APl documentation. Note that 'dependency resolve rules' (outlined below) provide a more
powerful mechanism for replacing a broken module dependency. See the section called “Blacklisting a
particular version with a replacement”.

25.8.2. Preferring modules that are part of the build

Preferring project modules tells Gradle to use the version of a module that is part of the build itself (as part of
Chapter 26, Multi-project Builds or as includes in Chapter 11, Composite builds). This allows the easy
inclusion of an individual fork (e.g. containing a bugfix) of a module - for more information see
Section 25.2.3, “Resolve version conflicts”.

25.8.3. Using dependency resolve rules

A dependency resolve rule is executed for each resolved dependency, and offers a powerful api for
manipulating a requested dependency prior to that dependency being resolved. This feature is incubating,
but currently offers the ability to change the group, name and/or version of a requested dependency,
allowing a dependency to be substituted with a completely different module during resolution.

Dependency resolve rules provide a very powerful way to control the dependency resolution process, and
can be used to implement all sorts of advanced patterns in dependency management. Some of these
patterns are outlined below. For more information and code samples see the Resol uti onSt r at egy class

in the APl documentation.
Modelling releasable units

Often an organisation publishes a set of libraries with a single version; where the libraries are built, tested
and published together. These libraries form a 'releasable unit', designed and intended to be used as a
whole. It does not make sense to use libraries from different releasable units together.

But it is easy for transitive dependency resolution to violate this contract. For example:

nodul e- a depends onr el easabl e-unit:part-one: 1.0

nodul e- b depends onrel easabl e-unit:part-two: 1.1

A build depending on both nodul e- a and nodul e- b will obtain different versions of libraries within the

releasable unit.

Page 240 of 680

http://www.gradle.org/docs/4.4.1/dsl/org.gradle.api.artifacts.ResolutionStrategy.html
http://www.gradle.org/docs/4.4.1/dsl/org.gradle.api.artifacts.ResolutionStrategy.html

Dependency resolve rules give you the power to enforce releasable units in your build. Imagine a releasable
unit defined by all libraries that have 'org.gradle’ group. We can force all of these libraries to use a consistent
version:

Example 25.50. Forcing consistent version for a group of libraries

buil d. gradl e

configurations.all {
resol uti onStrat egy. eachDependency { DependencyResol veDetails details ->
if (details.requested.group == 'org.gradle') {
details.useVersion '1.4'

Implement a custom versioning scheme

In some corporate environments, the list of module versions that can be declared in Gradle builds is
maintained and audited externally. Dependency resolve rules provide a neat implementation of this pattern:

In the build script, the developer declares dependencies with the module group and name, but uses a
placeholder version, for example: ' def aul t' .
The 'default’ version is resolved to a specific version via a dependency resolve rule, which looks up the

version in a corporate catalog of approved modules.

This rule implementation can be neatly encapsulated in a corporate plugin, and shared across all builds
within the organisation.

Example 25.51. Using a custom versioning scheme

buil d. gradl e

configurations.all {
resol uti onStrat egy. eachDependency { DependencyResol veDetails details ->
if (details.requested.version == "default') {
def version = findDefaultVersionlnCatal og(details.requested. group, di
detail s. useVersi on version

def findDefaultVersionlnCatal og(String group, String nane) {

"1.0"

Page 241 of 680

Blacklisting a particular version with a replacement

Dependency resolve rules provide a mechanism for blacklisting a particular version of a dependency and
providing a replacement version. This can be useful if a certain dependency version is broken and should
not be used, where a dependency resolve rule causes this version to be replaced with a known good
version. One example of a broken module is one that declares a dependency on a library that cannot be
found in any of the public repositories, but there are many other reasons why a particular module version is
unwanted and a different version is preferred.

In example below, imagine that version 1. 2. 1 contains important fixes and should always be used in
preference to 1. 2. The rule provided will enforce just this: any time version 1. 2 is encountered it will be
replaced with 1. 2. 1. Note that this is different from a forced version as described above, in that any other
versions of this module would not be affected. This means that the 'newest' conflict resolution strategy would
still select version 1. 3 if this version was also pulled transitively.

Example 25.52. Blacklisting a version with a replacement

bui I d. gradl e

configurations.all {
resol uti onStrat egy. eachDependency { DependencyResol veDetails details ->
if (details.requested.group == 'org.software’ && details.requested. nane :

detail s.useVersion '1.2.1'

Substituting a dependency module with a compatible replacement

At times a completely different module can serve as a replacement for a requested module dependency.
Examples include using ' gr oovy' in place of ' groovy-al |l ', orusing'| og4j-over-slf4j' instead of'
. Starting with Gradle 1.5 you can make these substitutions using dependency resolve rules:

Example 25.53. Changing dependency group and/or name at the resolution

buil d. gradl e

configurations.all {
resol uti onStrat egy. eachDependency { DependencyResol veDetails details ->
i f (details.requested. nane == 'groovy-all') {

detail s. useTarget group: details.requested.group, nane: 'groovy', vel
}

i f (details.requested. nane == 'l o0g4j"') {

detail s.useTarget "org.slf4j:1og4j-over-slif4j:1.7.10"

Page 242 of 680

25.8.4. Dependency Substitution Rules

Dependency substitution rules work similarly to dependency resolve rules. In fact, many capabilities of
dependency resolve rules can be implemented with dependency substitution rules. They allow project and
module dependencies to be transparently substituted with specified replacements. Unlike dependency
resolve rules, dependency substitution rules allow project and module dependencies to be substituted
interchangeably.

Note: NOTE: Adding a dependency substitution rule to a configuration changes the timing of when
that configuration is resolved. Instead of being resolved on first use, the configuration is instead
resolved when the task graph is being constructed. This can have unexpected consequences if the
configuration is being further modified during task execution, or if the configuration relies on
modules that are published during execution of another task.

To explain:
®* Note: A Configuration can be declared as an input to any Task, and that configuration can
include project dependencies when it is resolved.

®* Note: If a project dependency is an input to a Task (via a configuration), then tasks to build the
project artifacts must be added to the task dependencies.

®* Note: In order to determine the project dependencies that are inputs to a task, Gradle needs to
resolve the Confi gur ati on inputs.

®* Note: Because the Gradle task graph is fixed once task execution has commenced, Gradle needs
to perform this resolution prior to executing any tasks.

In the absence of dependency substitution rules, Gradle knows that an external module dependency
will never transitively reference a project dependency. This makes it easy to determine the full set of
project dependencies for a configuration through simple graph traversal. With this functionality,
Gradle can no longer make this assumption, and must perform a full resolve in order to determine
the project dependencies.

Substituting an external module dependency with a project dependency

One use case for dependency substitution is to use a locally developed version of a module in place of one
that is downloaded from an external repository. This could be useful for testing a local, patched version of a
dependency.

The module to be replaced can be declared with or without a version specified.

Page 243 of 680

Example 25.54. Substituting a module with a project

buil d. gradl e

configurations.all {
resol uti onStrategy. dependencySubstitution {
substitute nodul e("org.utils:api”) with project(":api")
substitute modul e("org.utils:util:2.5") with project(":util")

Note that a project that is substituted must be included in the multi-project build (via settings.gradle).
Dependency substitution rules take care of replacing the module dependency with the project dependency
and wiring up any task dependencies, but do not implicitly include the project in the build.

Substituting a project dependency with a module replacement

Another way to use substitution rules is to replace a project dependency with a module in a multi-project
build. This can be useful to speed up development with a large multi-project build, by allowing a subset of
the project dependencies to be downloaded from a repository rather than being built.

The module to be used as a replacement must be declared with a version specified.

Example 25.55. Substituting a project with a module

buil d. gradl e

configurations.all {
resol uti onStrat egy. dependencySubstitution {
substitute project(":api") with nodule("org.utils:api:1.3")

When a project dependency has been replaced with a module dependency, that project is still included in the
overall multi-project build. However, tasks to build the replaced dependency will not be executed in order to
build the resolve the depending Confi gur ati on.

Conditionally substituting a dependency

A common use case for dependency substitution is to allow more flexible assembly of sub-projects within a
multi-project build. This can be useful for developing a local, patched version of an external dependency or
for building a subset of the modules within a large multi-project build.

The following example uses a dependency substitution rule to replace any module dependency with the
group "org.example”, but only if a local project matching the dependency name can be located.

Page 244 of 680

Example 25.56. Conditionally substituting a dependency

buil d. gradl e

configurations.all {
resol uti onStrat egy. dependencySubstitution.all { DependencySubstitution depeni
i f (dependency. requested instanceof Mdul eConponent Sel ector && dependenc
def targetProject = findProject(": ${dependency. request ed. nodul e}")
if (targetProject !'= null) {
dependency. useTar get target Project

Note that a project that is substituted must be included in the multi-project build (via settings.gradle).
Dependency substitution rules take care of replacing the module dependency with the project dependency,
but do not implicitly include the project in the build.

25.8.5. Specifying default dependencies for a configuration

A configuration can be configured with default dependencies to be used if no dependencies are explicitly set
for the configuration. A primary use case of this functionality is for developing plugins that make use of
versioned tools that the user might override. By specifying default dependencies, the plugin can use a
default version of the tool only if the user has not specified a particular version to use.

Example 25.57. Specifying default dependencies on a configuration

bui I d. gradl e

configurations {
pl ugi nTool {
def aul t Dependenci es { dependencies ->
dependenci es. add(t hi s. proj ect. dependenci es. create("org. gradl e: ny-uti |

25.8.6. Enabling Ivy dynamic resolve mode

Gradle’s Ivy repository implementations support the equivalent to Ivy’s dynamic resolve mode. Normally,
Gradle will use the r ev attribute for each dependency definition included in an i vy. xnl file. In dynamic
resolve mode, Gradle will instead prefer the r evConst r ai nt attribute over the r ev attribute for a given
dependency definition. If the r evConst r ai nt attribute is not present, the r ev attribute is used instead.

To enable dynamic resolve mode, you need to set the appropriate option on the repository definition. A
couple of examples are shown below. Note that dynamic resolve mode is only available for Gradle's Ivy
repositories. It is not available for Maven repositories, or custom Ivy DependencyResol ver

implementations.

Page 245 of 680

Example 25.58. Enabling dynamic resolve mode

buil d. gradl e

repositories {
ivy {
url "http://repo. myconpany. com repo"
resol ve. dynam chMbde = true

repositories.wthType(lvyArtifactRepository) {
resol ve. dynam cMbde = true

25.8.7. Component metadata rules

Each module (also called component) has metadata associated with it, such as its group, hame, version,
dependencies, and so on. This metadata typically originates in the module’s descriptor. Metadata rules allow
certain parts of a module’s metadata to be manipulated from within the build script. They take effect after a
module’s descriptor has been downloaded, but before it has been selected among all candidate versions.
This makes metadata rules another instrument for customizing dependency resolution.

One piece of module metadata that Gradle understands is a module’s status scheme. This concept, also
known from Ivy, models the different levels of maturity that a module transitions through over time. The
default status scheme, ordered from least to most mature status, is i nt egrati on, m | est one, r el ease.
Apart from a status scheme, a module also has a (current) status, which must be one of the values in its
status scheme. If not specified in the (Ivy) descriptor, the status defaults to i nt egr at i on for lvy modules
and Maven snapshot modules, and r el ease for Maven modules that aren’t snapshots.

A module’s status and status scheme are taken into consideration when a | at est version selector is
resolved. Specifically, | at est . sonmeSt at us will resolve to the highest module version that has status sone
or a more mature status. For example, with the default status scheme in place, | at est . i nt egrati on will
select the highest module version regardless of its status (because i nt egrati on is the least mature
status), whereas | at est . r el ease will select the highest module version with status r el ease. Here is
what this looks like in code:

Page 246 of 680

Example 25.59. 'Latest' version selector

buil d. gradl e

dependenci es {
configl "org.sanple:client:latest.integration"
config2 "org.sanmple:client:|atest.rel ease”

task listConfigs {
doLast {

configurations.configl.each { println it.name }

println()

configurations.config2.each { println it.name }

}

Outputofgradl e -qg |istConfigs

> gradle -q listConfigs
client-1.5.jar

client-1.4.jar

The next example demonstrates | at est selectors based on a custom status scheme declared in a

component metadata rule that applies to all modules:

Example 25.60. Custom status scheme

bui | d. gradl e
dependenci es {
config3 "org.sanpl e: api:latest.silver”
conmponents {
all { Conponent Met adat aDetails details ->

if (details.id.group == "org.sanple" && details.id.nane == "api") {

details.statusSchenme = ["bronze",

"silver",

"gol d*,

"pl ati nunt']

Component metadata rules can be applied to a specified module. Modules must be specified in the form of

"group:module”.

Page 247 of 680

Example 25.61. Custom status scheme by module

buil d. gradl e

dependenci es {
config4 "org.sanple:lib:latest. prod"
components {
wi t hModul e(' org. sanple:lib") { Conponent Met adataDetails details ->
details.statusSchene = ["int", "rc", "prod"]

Gradle can also create component metadata rules utilizing lvy-specific metadata for modules resolved from
an lvy repository. Values from the lvy descriptor are made available via the | vyModul eDescri pt or
interface.

Example 25.62. lvy component metadata rule

buil d. gradl e

dependenci es {
configb "org.sample:lib:latest.rc"
conmponents {
wi t hMbdul e("org. sanpl e: i b") { Conponent Met adat aDetails details, |vyMdu
if (ivyModul e.branch == "testing') {

details.status = "rc

Note that any rule that declares specific arguments must always include a Conponent Met adat aDet ai | s
argument as the first argument. The second Ivy metadata argument is optional.

Component metadata rules can also be defined using a rule source object. A rule source object is any object
that contains exactly one method that defines the rule action and is annotated with @vut at e.

This method:

must return void.
must have Conponent Met adat aDet ai | s as the first argument.

may have an additional parameter of type | vyModul eDescri pt or.

Page 248 of 680

http://www.gradle.org/docs/4.4.1/javadoc/org/gradle/api/artifacts/ivy/IvyModuleDescriptor.html
http://www.gradle.org/docs/4.4.1/javadoc/org/gradle/api/artifacts/ComponentMetadataDetails.html
http://www.gradle.org/docs/4.4.1/javadoc/org/gradle/api/artifacts/ComponentMetadataDetails.html
http://www.gradle.org/docs/4.4.1/javadoc/org/gradle/api/artifacts/ivy/IvyModuleDescriptor.html

Example 25.63. Rule source component metadata rule

bui | d. gradl e
dependenci es {
configb "org.sanpl e: api : | atest. gol d"
components {
wi t hMbdul e(' org. sanpl e: api ', new Custontt at usRul e())

}
}
cl ass CustonfttatusRul e {
@ut at e
voi d set St at usSchene(Conponent Met adat aDetail s details) {
detail s.statusSchenme = ["bronze", "silver", "gold", "platinuni]
}

25.8.8. Component Selection Rules

Component selection rules may influence which component instance should be selected when multiple
versions are available that match a version selector. Rules are applied against every available version and
allow the version to be explicitly rejected by rule. This allows Gradle to ignore any component instance that
does not satisfy conditions set by the rule. Examples include:

For a dynamic version like '1.+' certain versions may be explicitly rejected from selection

For a static version like '1.4' an instance may be rejected based on extra component metadata such as the
Ivy branch attribute, allowing an instance from a subsequent repository to be used.

Rules are configured via the Corponent Sel ect i onRul es object. Each rule configured will be called with a
Component Sel ecti on object as an argument which contains information about the candidate version
being considered. Calling Conponent Sel ecti on.reject(java.l ang. String) causes the given
candidate version to be explicitly rejected, in which case the candidate will not be considered for the
selector.

The following example shows a rule that disallows a particular version of a module but allows the dynamic
version to choose the next best candidate.

Page 249 of 680

http://www.gradle.org/docs/4.4.1/dsl/org.gradle.api.artifacts.ComponentSelectionRules.html
http://www.gradle.org/docs/4.4.1/dsl/org.gradle.api.artifacts.ComponentSelection.html
http://www.gradle.org/docs/4.4.1/dsl/org.gradle.api.artifacts.ComponentSelection.html#org.gradle.api.artifacts.ComponentSelection:reject(java.lang.String)

Example 25.64. Component selection rule

buil d. gradl e

configurations {
rejectConfig {
resol utionStrategy {
conponent Sel ecti on {

all { Component Sel ection selection ->
if (selection.candidate.group == 'org.sanple' && selection.ci
selection.reject("version 1.5 is broken for 'org.sanple:;

dependenci es {
rejectConfig "org. sanpl e: api: 1. +"

Note that version selection is applied starting with the highest version first. The version selected will be the
first version found that all component selection rules accept. A version is considered accepted no rule
explicitly rejects it.

Similarly, rules can be targeted at specific modules. Modules must be specified in the form of
"group:module”.

Example 25.65. Component selection rule with module target

bui | d. gradl e
configurations {
targetConfig {
resol utionStrategy {
conmponent Sel ecti on {
wi t hModul e("org. sanpl e: api ") { Conponent Sel ecti on sel ection ->
if (selection.candidate.version == "1.5") {
selection.reject("version 1.5 is broken for 'org.sanple::

Component selection rules can also consider component metadata when selecting a version. Possible
metadata arguments that can be considered are Conponent Met adat a and | vyMbdul eDescri pt or.

Page 250 of 680

http://www.gradle.org/docs/4.4.1/javadoc/org/gradle/api/artifacts/ComponentMetadata.html
http://www.gradle.org/docs/4.4.1/javadoc/org/gradle/api/artifacts/ivy/IvyModuleDescriptor.html

Example 25.66. Component selection rule with metadata

buil d. gradl e

configurations {
nmet adat aRul esConfi g {
resol utionStrategy {
conponent Sel ecti on {

all { Component Sel ection sel ection, Conmponent Met adata netadata -:
if (selection.candidate.group == 'org. sanple' && mnetadata. st
selection.reject("don't use experinmental candidates from

wi t hModul e(" org. sanpl e: api ') { Conponent Sel ecti on sel ection, |vyl
if (descriptor.branch !'= "rel ease" && netadata.status !="m|
sel ection.reject("' org.sanpl e:api' mnmust have testing bral

Note that a Conponent Sel ecti on argument is always required as the first parameter when declaring a
component selection rule with additional vy metadata parameters, but the metadata parameters can be
declared in any order.

Lastly, component selection rules can also be defined using a rule source object. A rule source object is any
object that contains exactly one method that defines the rule action and is annotated with @/t at e.

This method:

must return void.
must have Conponent Sel ect i on as the first argument.

may have additional parameters of type Conponent Met adat a and/or | vyMbdul eDescri pt or.

Page 251 of 680

http://www.gradle.org/docs/4.4.1/dsl/org.gradle.api.artifacts.ComponentSelection.html
http://www.gradle.org/docs/4.4.1/dsl/org.gradle.api.artifacts.ComponentSelection.html
http://www.gradle.org/docs/4.4.1/javadoc/org/gradle/api/artifacts/ComponentMetadata.html
http://www.gradle.org/docs/4.4.1/javadoc/org/gradle/api/artifacts/ivy/IvyModuleDescriptor.html

Example 25.67. Component selection rule using a rule source object

buil d. gradl e
cl ass Reject TestBranch {
@aut at e
voi d eval uat eRul e(Conponent Sel ecti on sel ection, |vyMdul eDescriptor ivy) {
if (ivy.branch == "test") {
selection.reject("reject test branch")
}
}

configurations {
rul eSourceConfig {
resol utionStrategy {
conponent Sel ecti on {
all new Rej ect Test Branch()

25.8.9. Module replacement rules

Module replacement rules allow a build to declare that a legacy library has been replaced by a new one. A
good example when a new library replaced a legacy one is the "google-collections" -> "guava" migration.
The team that created google-collections decided to change the module name from
"com.google.collections:google-collections" into "com.google.guava:guava". This is a legal scenario in the
industry: teams need to be able to change the names of products they maintain, including the module
coordinates. Renaming of the module coordinates has impact on conflict resolution.

To explain the impact on conflict resolution, let's consider the "google-collections" -> "guava" scenario. It
may happen that both libraries are pulled into the same dependency graph. For example, "our" project
depends on guava but some of our dependencies pull in a legacy version of google-collections. This can
cause runtime errors, for example during test or application execution. Gradle does not automatically resolve
the google-collections VS guava conflict because it is not considered as a "version conflict". It's because the
module coordinates for both libraries are completely different and conflict resolution is activated when
"group" and "name" coordinates are the same but there are different versions available in the dependency
graph (for more info, please refer to the section on conflict resolution). Traditional remedies to this problem
are:

Declare exclusion rule to avoid pulling in "google-collections" to graph. It is probably the most popular
approach.

Avoid dependencies that pull in legacy libraries.

Upgrade the dependency version if the new version no longer pulls in a legacy library.

Page 252 of 680

Downgrade to "google-collections"”. It's not recommended, just mentioned for completeness.

Traditional approaches work but they are not general enough. For example, an organisation wants to resolve
the google-collections VS guava conflict resolution problem in all projects. Starting from Gradle 2.2 it is
possible to declare that certain module was replaced by other. This enables organisations to include the
information about module replacement in the corporate plugin suite and resolve the problem holistically for
all Gradle-powered projects in the enterprise.

Example 25.68. Declaring module replacement

buil d. gradl e

dependenci es {
nmodul es {
nmodul e(" com googl e. col | ecti ons: googl e-col | ections") {
r epl acedBy("com googl e. guava: guava")

For more examples and detailed API, please refer to the DSL reference for Conponent Met adat aHandl er .

What happens when we declare that "google-collections" are replaced by "guava"? Gradle can use this
information for conflict resolution. Gradle will consider every version of "guava" newer/better than any
version of "google-collections”. Also, Gradle will ensure that only guava jar is present in the classpath /
resolved file list. Please note that if only "google-collections" appears in the dependency graph (e.g. no
"guava") Gradle will not eagerly replace it with "guava". Module replacement is an information that Gradle
uses for resolving conflicts. If there is no conflict (e.g. only "google-collections" or only "guava" in the graph)
the replacement information is not used.

Currently it is not possible to declare that certain modules is replaced by a set of modules. However, it is
possible to declare that multiple modules are replaced by a single module.

25.9. The dependency cache

Gradle contains a highly sophisticated dependency caching mechanism, which seeks to minimise the
number of remote requests made in dependency resolution, while striving to guarantee that the results of
dependency resolution are correct and reproducible.

The Gradle dependency cache consists of 2 key types of storage:

A file-based store of downloaded artifacts, including binaries like jars as well as raw downloaded meta-data
like POM files and Ivy files. The storage path for a downloaded artifact includes the SHA1 checksum,
meaning that 2 artifacts with the same name but different content can easily be cached.

A binary store of resolved module meta-data, including the results of resolving dynamic versions, module
descriptors, and artifacts.

Separating the storage of downloaded artifacts from the cache metadata permits us to do some very
powerful things with our cache that would be difficult with a transparent, file-only cache layout.

Page 253 of 680

http://www.gradle.org/docs/4.4.1/dsl/org.gradle.api.artifacts.dsl.ComponentMetadataHandler.html

The Gradle cache does not allow the local cache to hide problems and create other mysterious and difficult
to debug behavior that has been a challenge with many build tools. This new behavior is implemented in a
bandwidth and storage efficient way. In doing so, Gradle enables reliable and reproducible enterprise builds.

25.9.1. Key features of the Gradle dependency cache

Separate metadata cache

Gradle keeps a record of various aspects of dependency resolution in binary format in the metadata cache.
The information stored in the metadata cache includes:

The result of resolving a dynamic version (e.g. 1. +) to a concrete version (e.g. 1. 2).

The resolved module metadata for a particular module, including module artifacts and module
dependencies.

The resolved artifact metadata for a particular artifact, including a pointer to the downloaded artifact file.

The absence of a particular module or artifact in a particular repository, eliminating repeated attempts to
access a resource that does not exist.

Every entry in the metadata cache includes a record of the repository that provided the information as well
as a timestamp that can be used for cache expiry.

Repository caches are independent

As described above, for each repository there is a separate metadata cache. A repository is identified by its
URL, type and layout. If a module or artifact has not been previously resolved from this repository, Gradle
will attempt to resolve the module against the repository. This will always involve a remote lookup on the
repository, however in many cases no download will be required (see the section called “Artifact reuse”,
below).

Dependency resolution will fail if the required artifacts are not available in any repository specified by the
build, even if the local cache has a copy of this artifact which was retrieved from a different repository.
Repository independence allows builds to be isolated from each other in an advanced way that no build tool
has done before. This is a key feature to create builds that are reliable and reproducible in any environment.

Artifact reuse

Before downloading an artifact, Gradle tries to determine the checksum of the required artifact by
downloading the sha file associated with that artifact. If the checksum can be retrieved, an artifact is not
downloaded if an artifact already exists with the same id and checksum. If the checksum cannot be retrieved
from the remote server, the artifact will be downloaded (and ignored if it matches an existing artifact).

As well as considering artifacts downloaded from a different repository, Gradle will also attempt to reuse
artifacts found in the local Maven Repository. If a candidate artifact has been downloaded by Maven, Gradle
will use this artifact if it can be verified to match the checksum declared by the remote server.

Page 254 of 680

Checksum based storage

It is possible for different repositories to provide a different binary artifact in response to the same artifact
identifier. This is often the case with Maven SNAPSHOT artifacts, but can also be true for any artifact which
is republished without changing it's identifier. By caching artifacts based on their SHA1 checksum, Gradle is
able to maintain multiple versions of the same artifact. This means that when resolving against one
repository Gradle will never overwrite the cached artifact file from a different repository. This is done without
requiring a separate artifact file store per repository.

Cache Locking

The Gradle dependency cache uses file-based locking to ensure that it can safely be used by multiple
Gradle processes concurrently. The lock is held whenever the binary meta-data store is being read or
written, but is released for slow operations such as downloading remote artifacts.

25.9.2. Command line options to override caching

Offline

The - - of fI i ne command line switch tells Gradle to always use dependency modules from the cache,
regardless if they are due to be checked again. When running with offline, Gradle will never attempt to
access the network to perform dependency resolution. If required modules are not present in the
dependency cache, build execution will fail.

Refresh

At times, the Gradle Dependency Cache can be out of sync with the actual state of the configured
repositories. Perhaps a repository was initially misconfigured, or perhaps a “non-changing” module was
published incorrectly. To refresh all dependencies in the dependency cache, use the - - r ef r esh- depender
option on the command line.

The - -refresh- dependenci es option tells Gradle to ignore all cached entries for resolved modules and
artifacts. A fresh resolve will be performed against all configured repositories, with dynamic versions
recalculated, modules refreshed, and artifacts downloaded. However, where possible Gradle will check if the
previously downloaded artifacts are valid before downloading again. This is done by comparing published
SHAL1 values in the repository with the SHA1 values for existing downloaded artifacts.

25.9.3. Fine-tuned control over dependency caching

You can fine-tune certain aspects of caching using the Resol ut i onSt r at egy for a configuration.

By default, Gradle caches dynamic versions for 24 hours. To change how long Gradle will cache the
resolved version for a dynamic version, use:

Page 255 of 680

Example 25.69. Dynamic version cache control

buil d. gradl e

configurations.all {
resol uti onStrat egy. cacheDynani cVer si onsFor 10, 'ninutes'

By default, Gradle caches changing modules for 24 hours. To change how long Gradle will cache the
meta-data and artifacts for a changing module, use:
Example 25.70. Changing module cache control

bui | d. gradl e

configurations.all ({
resol uti onStrat egy. cacheChangi nghbdul esFor 4, 'hours’

For more details, take a look at the APl documentation for Resol uti onSt r at egy.

25.10. Strategies for transitive dependency management
Many projects rely on the Maven Central repository. This is not without problems.

The Maven Central repository can be down or can be slow to respond.

The POM files of many popular projects specify dependencies or other configuration that are just plain wrong
(for instance, the POM file of the “conmons- htt pcli ent-3. 0" module declares JUnit as a runtime
dependency).

For many projects there is not one right set of dependencies (as more or less imposed by the POM format).

If your project relies on the Maven Central repository you are likely to need an additional custom repository,
because:

You might need dependencies that are not uploaded to Maven Central yet.
You want to deal properly with invalid metadata in a Maven Central POM file.

You don't want to expose people to the downtimes or slow response of Maven Central, if they just want to
build your project.

It is not a big deal to set-up a custom repository,!*3! but it can be tedious to keep it up to date. For a new
version, you always have to create the new XML descriptor and the directories. Your custom repository is
another infrastructure element which might have downtimes and needs to be updated. To enable historical
builds, you need to keep all the past libraries, not to mention a backup of these. It is another layer of
indirection. Another source of information you have to lookup. All this is not really a big deal but in its sum it
has an impact. Repository managers like Artifactory or Nexus make this easier, but most open source
projects don't usually have a host for those products. This is changing with new services like Bintray that let

Page 256 of 680

http://www.gradle.org/docs/4.4.1/dsl/org.gradle.api.artifacts.ResolutionStrategy.html
https://repo.maven.apache.org/maven2
http://bintray.com

developers host and distribute their release binaries using a self-service repository platform. Bintray also
supports sharing approved artifacts though the JCenter public repository to provide a single resolution
address for all popular OSS Java artifacts (see Section 25.6.2, “Maven JCenter repository”).

This is a common reason why many projects prefer to store their libraries in their version control system.
This approach is fully supported by Gradle. The libraries can be stored in a flat directory without any XML
module descriptor files. Yet Gradle offers complete transitive dependency management. You can use either
client module dependencies to express the dependency relations, or artifact dependencies in case a first
level dependency has no transitive dependencies. People can check out such a project from your source
code control system and have everything necessary to build it.

If you are working with a distributed version control system like Git you probably don’t want to use the
version control system to store libraries as people check out the whole history. But even here the flexibility of
Gradle can make your life easier. For example, you can use a shared flat directory without XML descriptors
and yet you can have full transitive dependency management, as described above.

You could also have a mixed strategy. If your main concern is bad metadata in the POM file and maintaining
custom XML descriptors, then Client Modules offer an alternative. However, you can still use a Maven2 repo
or your custom repository as a repository for jars only and still enjoy transitive dependency management. Or
you can only provide client modules for POMs with bad metadata. For the jars and the correct POMs you still
use the remote repository.

25.10.1. Implicit transitive dependencies

There is another way to deal with transitive dependencies without XML descriptor files. You can do this with
Gradle, but we don’t recommend it. We mention it for the sake of completeness and comparison with other
build tools.

The trick is to use only artifact dependencies and group them in lists. This will directly express your first level
dependencies and your transitive dependencies (see Section 25.4.8, “Optional attributes”). The problem with
this is that Gradle dependency management will see this as specifying all dependencies as first level
dependencies. The dependency reports won't show your real dependency graph and the conpi | e task
uses all dependencies, not just the first level dependencies. All in all, your build is less maintainable and
reliable than it could be when using client modules, and you don’t gain anything.

[10] Gradle supports partial multiproject builds (see Chapter 26, Multi-project Builds).
[11] http://books.sonatype.com/mvnref-book/reference/pom-relationships-sect-project-relationships.htmi
[12] At http://ant.apache.org/ivy/history/latest-milestone/concept.html you can learn more about ivy patterns.

[13] If you want to shield your project from the downtimes of Maven Central things get more complicated.
You probably want to set-up a repository proxy for this. In an enterprise environment this is rather common.
For an open source project it looks like overkill.

Page 257 of 680

http://jcenter.bintray.com
http://books.sonatype.com/mvnref-book/reference/pom-relationships-sect-project-relationships.html
http://ant.apache.org/ivy/history/latest-milestone/concept.html

20

Multi-project Builds

The powerful support for multi-project builds is one of Gradle's unique selling points. This topic is also the
most intellectually challenging.

A multi-project build in gradle consists of one root project, and one or more subprojects that may also have
subprojects.

26.1. Cross project configuration

While each subproject could configure itself in complete isolation of the other subprojects, it is common that
subprojects share common traits. It is then usually preferable to share configurations among projects, so the
same configuration affects several subprojects.

Let's start with a very simple multi-project build. Gradle is a general purpose build tool at its core, so the
projects don’t have to be Java projects. Our first examples are about marine life.

26.1.1. Configuration and execution

Section 22.1, “Build phases” describes the phases of every Gradle build. Let’'s zoom into the configuration
and execution phases of a multi-project build. Configuration here means executing the bui | d. gr adl e file
of a project, which implies e.g. downloading all plugins that were declared using ‘apply plugin’. By
default, the configuration of all projects happens before any task is executed. This means that when a single
task, from a single project is requested, all projects of multi-project build are configured first. The reason
every project needs to be configured is to support the flexibility of accessing and changing any part of the
Gradle project model.

Configuration on demand

The Configuration injection feature and access to the complete project model are possible because every
project is configured before the execution phase. Yet, this approach may not be the most efficient in a very
large multi-project build. There are Gradle builds with a hierarchy of hundreds of subprojects. The
configuration time of huge multi-project builds may become noticeable. Scalability is an important
requirement for Gradle. Hence, starting from version 1.4 a new incubating 'configuration on demand' mode is
introduced.

Configuration on demand mode attempts to configure only projects that are relevant for requested tasks, i.e.
it only executes the buil d. gradl e file of projects that are participating in the build. This way, the

Page 258 of 680

configuration time of a large multi-project build can be reduced. In the long term, this mode will become the
default mode, possibly the only mode for Gradle build execution. The configuration on demand feature is
incubating so not every build is guaranteed to work correctly. The feature should work very well for
multi-project builds that have decoupled projects (Section 26.9, “Decoupled Projects”). In “configuration on
demand” mode, projects are configured as follows:

The root project is always configured. This way the typical common configuration is supported (allprojects or
subprojects script blocks).

The project in the directory where the build is executed is also configured, but only when Gradle is executed
without any tasks. This way the default tasks behave correctly when projects are configured on demand.

The standard project dependencies are supported and makes relevant projects configured. If project A has a
compile dependency on project B then building A causes configuration of both projects.

The task dependencies declared via task path are supported and cause relevant projects to be configured.
Example: someTask.dependsOn(":someOtherProject:someOtherTask")

A task requested via task path from the command line (or Tooling API) causes the relevant project to be
configured. For example, building 'projectA:projectB:someTask' causes configuration of projectB.

Eager to try out this new feature? To configure on demand with every build run see Section 12.1,
“Configuring the build environment via gradle.properties”. To configure on demand just for a given build
please see Appendix D, Gradle Command Line.

26.1.2. Defining common behavior

Let’s look at some examples with the following project tree. This is a multi-project build with a root project
named wat er and a subproject named bl uewhal e.

Example 26.1. Multi-project tree - water & bluewhale projects

Build layout

wat er/
bui I d. gradl e
settings.gradle
bl uewhal e/

Note: The code for this example can be found at sanpl es/ user gui de/ mul ti proj ect/first Exang

in the ‘-all’ distribution of Gradle.

settings.gradle
i ncl ude ' bl uewhal €'

And where is the build script for the bl uewhal e project? In Gradle build scripts are optional. Obviously for a
single project build, a project without a build script doesn’'t make much sense. For multiproject builds the
situation is different. Let's look at the build script for the wat er project and execute it:

Page 259 of 680

Example 26.2. Build script of water (parent) project

buil d. gradl e

Closure cl = { task -> println "I'm $task. proj ect.nanme" }
task(' hello').doLast(cl)
project(':bluewhale) {
task(' hello').doLast(cl)
}

Outputofgradl e -qg hello

> gradle -q hello
I''mwat er
I m bl uewhal e

Gradle allows you to access any project of the multi-project build from any build script. The Project API
provides a method called pr oj ect (), which takes a path as an argument and returns the Project object for
this path. The capability to configure a project build from any build script we call cross project configuration.
Gradle implements this via configuration injection.

We are not that happy with the build script of the wat er project. It is inconvenient to add the task explicitly
for every project. We can do better. Let's first add another project called kri | | to our multi-project build.

Example 26.3. Multi-project tree - water, bluewhale & krill projects

Build layout

wat er/
buil d. gradl e
settings.gradle
bl uewhal e/
krill/

Note: The code for this example can be found at sanpl es/ user gui de/ mul ti proj ect/addKrill/v

in the ‘-all’ distribution of Gradle.

settings.gradle
i nclude 'bluewhale', "krill"

Now we rewrite the wat er build script and boil it down to a single line.

Page 260 of 680

Example 26.4. Water project build script

bui | d. gradl e
al | projects {
task hello {
doLast { task ->
println "I'm $task. proj ect. nane"

}

Outputofgradl e -qg hello

> gradle -q hello
I''m wat er

' m bl uewhal e
I"'mKkrill

Is this cool or is this cool? And how does this work? The Project API provides a property al | proj ects
which returns a list with the current project and all its subprojects underneath it. If you call al | pr oj ects
with a closure, the statements of the closure are delegated to the projects associated with al | pr oj ect s.

You could also do an iteration via al | pr oj ect s. each, but that would be more verbose.

Other build systems use inheritance as the primary means for defining common behavior. We also offer
inheritance for projects as you will see later. But Gradle uses configuration injection as the usual way of
defining common behavior. We think it provides a very powerful and flexible way of configuring multiproject
builds.

Another possibility for sharing configuration is to use a common external script. See Section 43.3,
“Configuring the project using an external build script” for more information.

26.2. Subproject configuration

The Project API also provides a property for accessing the subprojects only.

Page 261 of 680

26.2.1. Defining common behavior

Example 26.5. Defining common behavior of all projects and subprojects

buil d. gradl e
al | projects {
task hello {
doLast { task ->

println "I'm $task. proj ect. nang"
}
}
}
subproj ects {
hell o {
doLast {
println "- | depend on water"
}
}
}

Outputofgradle -qgq hello

> gradle -q hello
"' m wat er

I m bl uewhal e

- | depend on water
["mkril

- | depend on water

You may notice that there are two code snippets referencing the “hel | 0” task. The first one, which uses the
“t ask” keyword, constructs the task and provides it's base configuration. The second piece doesn’t use the *
" keyword, as it is further configuring the existing “hel | 0” task. You may only construct a task once in a
project, but you may add any number of code blocks providing additional configuration.

26.2.2. Adding specific behavior

You can add specific behavior on top of the common behavior. Usually we put the project specific behavior
in the build script of the project where we want to apply this specific behavior. But as we have already seen,
we don’t have to do it this way. We could add project specific behavior for the bl uewhal e project like this:

Page 262 of 680

Example 26.6. Defining specific behaviour for particular project

bui | d. gradl e
al | projects {
task hello {
doLast { task ->

println "1'm $task. proj ect. nanme"
}
}
}
subproj ects {
hell o {
doLast {
println "- | depend on water"
}
}
}
project(':bluewhale).hello {
doLast ({
println "- I'mthe [argest aninmal that has ever lived on this planet."
}
}

Output ofgradl e -g hello

> gradle -q hello

' m wat er

I " m bl uewhal e

- | depend on water

- I'"'mthe largest animal that has ever lived on this planet.
['"'mkril

- | depend on water

As we have said, we usually prefer to put project specific behavior into the build script of this project. Let's
refactor and also add some project specific behavior to the kri | | project.

Example 26.7. Defining specific behaviour for project krill

Build layout

wat er/
buil d. gradl e
settings.gradle
bl uewhal e/
buil d. gradl e
krill/
buil d. gradl e

Note: The code for this example can be found at sanpl es/ user gui de/ mul ti proj ect/ spreadSpec

in the ‘-all’ distribution of Gradle.

Page 263 of 680

settings.gradle
i nclude ' bluewhale', "krill

bl uewhal e/ bui | d. gradl e
hel | 0. doLast {

println "- I'mthe largest aninal that has ever lived on this planet."

}

krill/build.gradle
hel | 0. doLast {
println "- The weight of ny species in summer is twi ce as heavy as all human b

}

bui | d. gradl e
al | projects {
task hello {
doLast { task ->

println "I'm $task. proj ect. nang"
}
}
}
subproj ects {
hell o {
doLast {
println "- | depend on water"
}
}
}

Outputofgradl e -qg hello

> gradle -q hello

[''m wat er

' m bl uewhal e

- | depend on water

- I"'mthe largest animal that has ever lived on this planet.

['"'mkril

| depend on water

- The weight of ny species in sumer is twice as heavy as all hunman beings.

26.2.3. Project filtering

To show more of the power of configuration injection, let's add another project called t r opi cal Fi sh and
add more behavior to the build via the build script of the wat er project.

Page 264 of 680

Filtering by name

Example 26.8. Adding custom behaviour to some projects (filtered by project name)

Build layout

wat er/

bui I d. gradl e
settings.gradle
bl uewhal e/

bui I d. gradl e
krill/

bui I d. gradl e
t ropi cal Fi sh/

Note: The code for this example can be found at sanpl es/ user gui de/ nul ti proj ect/addTropi ce
in the ‘-all’ distribution of Gradle.

settings.gradle
i nclude 'bluewhale', "krill"', '"tropical Fish'

bui | d. gradl e

al I projects {
task hello {
doLast { task ->

println "I'm $task. proj ect. nane"
}
}
}
subproj ects {
hel l o {
doLast {
println "- | depend on water"
}
}
}
configure(subprojects.findAll {it.name != "tropical Fish'}) {
hell o {
doLast {
println'- | love to spend tinme in the arctic waters.'
}
}
}

Outputofgradle -q hello

Page 265 of 680

> gradle -q hello

"' m wat er

I m bl uewhal e

- | depend on water

-1 love to spend time in the arctic waters.

- I"'mthe largest animal that has ever lived on this planet.
I"mkril

| depend on water

-1 love to spend time in the arctic waters.

- The weight of ny species in sumer is twice as heavy as all hunman beings.
' mtropical Fi sh

| depend on water

The confi gure() method takes a list as an argument and applies the configuration to the projects in this
list.

Filtering by properties

Using the project name for filtering is one option. Using extra project properties is another. (See
Section 18.4.2, “Extra properties” for more information on extra properties.)

Example 26.9. Adding custom behaviour to some projects (filtered by project properties)

Build layout

wat er /

buil d. gradl e
settings.gradle
bl uewhal e/

bui | d. gradl e
krill/

bui I d. gradl e
tropi cal Fi sh/

bui I d. gradl e

Note: The code for this example can be found at sanpl es/ user gui de/ mul ti proj ect/tropi cal W

in the ‘-all’ distribution of Gradle.

settings.gradle
i nclude 'bluewhale', "krill', "tropicalFish'

bl uewhal e/ bui | d. gradl e

ext.arctic = true
hel | 0. doLast {
println "- I'mthe largest aninal that has ever lived on this planet."

}
krill/build.gradle

Page 266 of 680

ext.arctic = true
hel | 0. doLast {

println "- The weight of ny species in sumrer

}

tropi cal Fi sh/buil d. gradl e
ext.arctic = fal se

bui | d. gradl e
al | projects {
task hello {
doLast { task ->

is twice as heavy as all human

println'- | love to spend tinme in the arctic waters.' }

println "1'm $task. proj ect. nang"
}
}
}
subproj ects {
hell o {
doLast {println "- | depend on water"}
after Eval uate { Project project ->
if (project.arctic) { doLast {
}
}
}
}

Outputofgradl e -q hello

> gradle -q hello
' m wat er

' m bl uewhal e

- | depend on water

- I"'mthe largest animal that has ever lived on this planet.

- |1 love to spend tinme in the arctic waters.
I'"'mkril
| depend on water

- The weight of ny species in sumer is twice as heavy as all hunman bei ngs.

- | love to spend tinme in the arctic waters.
"' m tropical Fi sh
| depend on water

In the build file of the wat er project we use an af t er Eval uat e notification. This means that the closure

we are passing gets evaluated after the build scripts of the subproject are evaluated. As the property ar cti ¢

is set in those build scripts, we have to do it this way. You will find more on this topic in Section 26.6,

“Dependencies - Which dependencies?”

Page 267 of 680

26.3. Execution rules for multi-project builds

When we executed the hel | o task from the root project dir, things behaved in an intuitive way. All the hel | c
tasks of the different projects were executed. Let's switch to the bl uewhal e dir and see what happens if we

execute Gradle from there.

Example 26.10. Running build from subproject

Outputofgradl e -q hello

> gradle -q hello

I m bl uewhal e

- | depend on water

- I"'mthe largest animal that has ever lived on this planet.
-1 love to spend time in the arctic waters.

The basic rule behind Gradle’s behavior is simple. Gradle looks down the hierarchy, starting with the current
dir, for tasks with the name hel | o and executes them. One thing is very important to note. Gradle always
evaluates every project of the multi-project build and creates all existing task objects. Then, according to the
task name arguments and the current dir, Gradle filters the tasks which should be executed. Because of
Gradle’s cross project configuration every project has to be evaluated before any task gets executed. We
will have a closer look at this in the next section. Let's now have our last marine example. Let's add a task to
bl uewhal e and kri | | .

Page 268 of 680

Example 26.11. Evaluation and execution of projects

bl uewhal e/ bui | d. gradl e
ext.arctic = true

hell o {
doLast ({
println "- I'mthe [argest aninmal that has ever lived on this planet."
}
}

task distanceTol ceberg {
doLast {
println '20 nautical mles

}

krill/build.gradle
ext.arctic = true

hell o {
doLast {
println "- The weight of ny species in sumer is twice as heavy as all hi
}
}

task distanceTol ceberg {
doLast {
println '5 nautical niles'

}

Output of gradl e -qg di st anceTol ceberg

> gradl e -q distanceTol ceberg
20 nautical mles
5 nautical mles

Here’s the output without the - q option:

Example 26.12. Evaluation and execution of projects

Output of gr adl e di st anceTol ceberg

> gradl e di stanceTol ceberg

: bl uewhal e: di st anceTol ceberg
20 nautical miles
ckrill:distanceTol ceberg

5 nautical mles

BU LD SUCCESSFUL in Os
2 actionabl e tasks: 2 executed

The build is executed from the wat er project. Neither wat er nor t r opi cal Fi sh have a task with the

Page 269 of 680

name di st anceTol ceber g. Gradle does not care. The simple rule mentioned already above is: Execute
all tasks down the hierarchy which have this name. Only complain if there is no such task!

26.4. Running tasks by their absolute path

As we have seen, you can run a multi-project build by entering any subproject dir and execute the build from
there. All matching task names of the project hierarchy starting with the current dir are executed. But Gradle
also offers to execute tasks by their absolute path (see also Section 26.5, “Project and task paths”):

Example 26.13. Running tasks by their absolute path

Outputofgradle -q :hello :krill:hello hello

> gradle -q :hello :krill:hello hello

"' m wat er

I"'mkrill

- | depend on water

- The weight of ny species in sumer is twice as heavy as all hunman beings.
-1 love to spend time in the arctic waters.

"' m tropical Fi sh

| depend on water

The build is executed from the t r opi cal Fi sh project. We execute the hel | o tasks of the wat er, the kri |
and the t r opi cal Fi sh project. The first two tasks are specified by their absolute path, the last task is
executed using the name matching mechanism described above.

26.5. Project and task paths

A project path has the following pattern: It starts with an optional colon, which denotes the root project. The
root project is the only project in a path that is not specified by its name. The rest of a project path is a
colon-separated sequence of project names, where the next project is a subproject of the previous project.

The path of a task is simply its project path plus the task name, like “: bl uewhal e: hel | 0”. Within a project
you can address a task of the same project just by its name. This is interpreted as a relative path.

26.6. Dependencies - Which dependencies?

The examples from the last section were special, as the projects had no Execution Dependencies. They had
only Configuration Dependencies. The following sections illustrate the differences between these two types
of dependencies.

Page 270 of 680

26.6.1. Execution dependencies

Dependencies and execution order

Example 26.14. Dependencies and execution order

Build layout

nmessages/
buil d. gradl e
settings.gradle
consuner/
bui I d. gradl e
pr oducer/
buil d. gradl e

Note: The code for this example can be found at sanpl es/ user gui de/ mul ti proj ect/ dependenc

in the ‘-all’ distribution of Gradle.

bui I d. gradl e
ext . producer Message = nul

settings.gradle
i nclude ' consuner', ' producer

consurmer/bui |l d. gradl e

task action {
doLast {
println("Consum ng nessage: ${rootProject.producer Message}")

}

producer/ buil d. gradl e
task action {

doLast {

println "Produci ng nmessage: "

r oot Proj ect. producer Message = 'Watch the order of execution.'
}

}

Outputof gradl e -qg action

> gradle -q action
Consumi ng nessage: nul
Pr oduci ng nessage:

This didn’t quite do what we want. If nothing else is defined, Gradle executes the task in alphanumeric order.

Therefore, Gradle will execute “: consuner : acti on” before “: producer: acti on”. Let's try to solve this
with a hack and rename the producer project to “aPr oducer .

Page 271 of 680

Example 26.15. Dependencies and execution order

Build layout

messages/
bui I d. gradl e
settings.gradle
aProducer/
buil d. gradl e
consuner/
buil d. gradl e

buil d. gradl e
ext . producer Message = nul

settings.gradle
i ncl ude ' consuner', 'aProducer

aProducer/buil d. gradl e
task action {

doLast {

println "Produci ng nessage:"

r oot Proj ect. producer Message = 'Watch the order of execution.
}

}

consurmer/bui |l d. gradl e

task action {
doLast {
println("Consum ng nessage: ${rootProject.producer Message}")

}

Outputof gradl e -qg action

> gradle -q action
Pr oduci ng nessage:
Consum ng nmessage: Watch the order of execution

We can show where this hack doesn’t work if we now switch to the consuner dir and execute the build.

Example 26.16. Dependencies and execution order

Outputof gradl e -qg action

> gradle -q action
Consumi ng nessage: nul

The problem is that the two “act i on” tasks are unrelated. If you execute the build from the “nmessages”
project Gradle executes them both because they have the same name and they are down the hierarchy. In
the last example only one “act i on” task was down the hierarchy and therefore it was the only task that was
executed. We need something better than this hack.

Page 272 of 680

Declaring dependencies

Example 26.17. Declaring dependencies

Build layout

messages/
buil d. gradl e
settings.gradle
consuner/
bui I d. gradl e
pr oducer/
bui I d. gradl e

Note: The code for this example can be found at sanpl es/ user gui de/ nul ti proj ect/ dependenc

in the ‘-all’ distribution of Gradle.

buil d. gradl e
ext . producer Message = nul

settings.gradle

i nclude ' consuner', ' producer

consumner/ bui | d. gradl e

task action(dependsOn: ":producer:action") {
doLast {
println("Consum ng nmessage: ${rootProject.producer Message}")

}

producer/ buil d. gradl e
task action {

doLast {

println "Produci ng nessage:"

r oot Proj ect. producer Message = 'Watch the order of execution.'
}

}

Outputof gradl e -qg action

> gradle -q action
Pr oduci ng nessage:
Consum ng nmessage: Watch the order of execution

Running this from the consuner directory gives:

Page 273 of 680

Example 26.18. Declaring dependencies

Output of gradl e -q action

> gradle -q action
Pr oduci ng nessage:
Consuni ng nmessage: Watch the order of execution.

This is now working better because we have declared that the “act i on” task in the “consun®er ” project has
an execution dependency on the “act i on” task in the “pr oducer ” project.

The nature of cross project task dependencies

Of course, task dependencies across different projects are not limited to tasks with the same name. Let's
change the naming of our tasks and execute the build.

Example 26.19. Cross project task dependencies

consumer/ bui | d. gradl e

task consunme(dependsOn: ':producer: produce') {
doLast ({
println("Consum ng nessage: ${rootProject.producer Message}")

}

producer/buil d. gradl e
task produce {

doLast {

println "Produci ng nessage:"

r oot Proj ect. producer Message = 'Watch the order of execution.'
}

}

Output of gradl e -g consune

> gradle -q consune
Pr oduci ng nessage:
Consuni ng nmessage: Watch the order of execution.

26.6.2. Configuration time dependencies

Let's see one more example with our producer-consumer build before we enter Java land. We add a
property to the “pr oducer ” project and create a configuration time dependency from “consuner ” to “pr odut

Page 274 of 680

Example 26.20. Configuration time dependencies

consurmer/ bui |l d. gradl e
def nessage = root Project. producer Message

task consune {
doLast {

println("Consum ng nessage: " + nessage)
}
}
producer/ buil d. gradl e
r oot Proj ect. producer Message = 'Watch the order of evaluation.'

Outputof gradl e -g consune

> gradl e -q consune
Consum ng message: nul |

The default evaluation order of projects is alphanumeric (for the same nesting level). Therefore the “consum
" project is evaluated before the “pr oducer ” project and the “pr oducer Message” value is set after it is
read by the “consuner " project. Gradle offers a solution for this.

Example 26.21. Configuration time dependencies - evaluationDependsOn

consuner/bui |l d. gradl e
eval uati onDependsOn(' : producer")

def nessage = root Project. producer Message

task consune {
doLast ({
println("Consum ng nessage:

+ nessage)

}

Outputof gradl e -g consune

> gradl e -g consune
Consumi ng nmessage: Watch the order of eval uation.

The use of the “eval uat i onDependsOn” command results in the evaluation of the “pr oducer ” project

before the “consumer ” project is evaluated. This example is a bit contrived to show the mechanism. In this
case there would be an easier solution by reading the key property at execution time.

Page 275 of 680

Example 26.22. Configuration time dependencies

consurmer/ bui |l d. gradl e

task consune {
doLast {
println("Consum ng nessage: ${rootProject.producer Message}")

}

Output of gradl e -g consune

> gradle -q consune
Consuni ng nessage: Watch the order of eval uation.

Configuration dependencies are very different from execution dependencies. Configuration dependencies
are between projects whereas execution dependencies are always resolved to task dependencies. Also hote
that all projects are always configured, even when you start the build from a subproject. The default
configuration order is top down, which is usually what is needed.

To change the default configuration order to “bottom up”, use the “eval uati onDependsOnChi l dren()”

method instead.

On the same nesting level the configuration order depends on the alphanumeric position. The most common
use case is to have multi-project builds that share a common lifecycle (e.g. all projects use the Java plugin).
If you declare with dependsOn an execution dependency between different projects, the default behavior of
this method is to also create a configuration dependency between the two projects. Therefore it is likely that
you don't have to define configuration dependencies explicitly.

26.6.3. Real life examples

Gradle’s multi-project features are driven by real life use cases. One good example consists of two web
application projects and a parent project that creates a distribution including the two web applications. For
the example we use only one build script and do cross project configuration.

Page 276 of 680

Example 26.23. Dependencies - real life example - crossproject configuration

Build layout
webDi st/
settings.gradle
buil d. gradl e
dat e/
src/ mai n/ j aval
or g/ gradl e/ sanpl e/
Dat eServl et . j ava
hel I o/
src/ mai n/ j aval
or g/ gradl e/ sanpl e/
Hel | oServl et.java

Note: The code for this example can be found at sanpl es/ user gui de/ nul ti proj ect/ dependenci
in the ‘-all’ distribution of Gradle.

settings.gradle
i nclude 'date', 'hello'

bui I d. gradl e

al | projects {
apply plugin: 'java'
group = 'org.gradle.sanpl e’
version = '1.0'

subproj ects {
apply plugin: '"war'
repositories {
mavenCentral ()

}

dependenci es {
conpile "javax.servlet:servlet-api:2.5"

task expl odedDi st (type: Copy) {
into "$buil dDir/expl odedDi st"
subproj ects {
fromtasks.w thType(War)

We have an interesting set of dependencies. Obviously the dat e and hel | o projects have a configuration
dependency on webDi st, as all the build logic for the webapp projects is injected by webDi st. The
execution dependency is in the other direction, as webDi st depends on the build artifacts of dat e and hel |

Page 277 of 680

. There is even a third dependency. webDi st has a configuration dependency on date and hell o
because it needs to know the ar chi vePat h. But it asks for this information at execution time. Therefore we
have no circular dependency.

Such dependency patterns are daily bread in the problem space of multi-project builds. If a build system
does not support these patterns, you either can’t solve your problem or you need to do ugly hacks which are
hard to maintain and massively impair your productivity as a build master.

26.7. Project lib dependencies

What if one project needs the jar produced by another project in its compile path, and not just the jar but also
the transitive dependencies of this jar? Obviously this is a very common use case for Java multi-project
builds. As already mentioned in Section 25.4.3, “Project dependencies”, Gradle offers project lib
dependencies for this.

Example 26.24. Project lib dependencies

Build layout

j aval/
settings.gradle
buil d. gradl e
api /
src/ mai n/ j aval
or g/ gradl e/ sanmpl e/
api /
Per son. j ava
api | npl /
Per sonl npl . j ava
servi ces/ personServi ce/
src/
mai n/ j aval/
or g/ gradl e/ sanpl e/ servi ces/
Per sonServi ce. j ava
test/javal/
or g/ gradl e/ sanpl e/ servi ces/
Per sonServi ceTest . j ava
shar ed/
src/ mai n/ j aval
or g/ gradl e/ sanpl e/ shar ed/
Hel per.j ava

Note: The code for this example can be found at sanpl es/ user gui de/ nul ti pr oj ect/ dependenci

in the ‘-all’ distribution of Gradle.

We have the projects “shar ed”, “api ” and “per sonSer vi ce”. The “per sonSer vi ce” project has a lib
dependency on the other two projects. The “api ” project has a lib dependency on the “shar ed” project. “ser

" is also a project, but we use it just as a container. It has no build script and gets nothing injected by another

Page 278 of 680

build script. We use the : separator to define a project path. Consult the DSL documentation of
Settings.include(java.lang. String[]) for more information about defining project paths.

Example 26.25. Project lib dependencies

settings.gradle
i nclude "api', 'shared', 'services:personService'

buil d. gradl e
subproj ects {
apply plugin: 'java'
group = 'org.gradle.sanpl e’
version = '1.0'
repositories {
mavenCentral ()

}

dependenci es {
testConpile "junit:junit:4.12"

project(':api') {
dependenci es {
conpil e project(':shared")

proj ect(':services:personService') {
dependenci es {
conpile project(':shared'), project(':api")

All the build logic is in the “bui | d. gr adl e” file of the root project.[*>! A “lib” dependency is a special form of
an execution dependency. It causes the other project to be built first and adds the jar with the classes of the
other project to the classpath. It also adds the dependencies of the other project to the classpath. So you
can enter the “api ” directory and trigger a “gr adl e conpi | e”. First the “shar ed” project is built and then
the “api ” project is built. Project dependencies enable partial multi-project builds.

If you come from Maven land you might be perfectly happy with this. If you come from Ivy land, you might
expect some more fine grained control. Gradle offers this to you:

Page 279 of 680

http://www.gradle.org/docs/4.4.1/dsl/org.gradle.api.initialization.Settings.html#org.gradle.api.initialization.Settings:include(java.lang.String[])
http://www.gradle.org/docs/4.4.1/dsl/org.gradle.api.initialization.Settings.html#org.gradle.api.initialization.Settings:include(java.lang.String[])

Example 26.26. Fine grained control over dependencies

bui | d. gradl e

subproj ects {
apply plugin: 'java'
group = 'org.gradle.sanple’
version = '1.0'

project(':api') {
configurations {
spi
}
dependenci es {
compil e project(':shared")

}
task spiJar(type: Jar) {
baseNane = 'api-spi'
from sourceSet s. mai n. out put
i nclude(' org/ gradl e/ sanpl e/ api /**")
}
artifacts {
spi spiJdar
}

proj ect(':services:personService') {
dependenci es {
conpil e project(':shared")
conpile project(path: ":api', configuration: 'spi')
testCompile "junit:junit:4.12", project(':api')

The Java plugin adds per default a jar to your project libraries which contains all the classes. In this example
we create an additional library containing only the interfaces of the “api " project. We assign this library to a
new dependency configuration. For the person service we declare that the project should be compiled only
against the “api ” interfaces but tested with all classes from “api .

26.7.1. Disabling the build of dependency projects

Sometimes you don’t want depended on projects to be built when doing a partial build. To disable the build
of the depended on projects you can run Gradle with the - a option.

26.8. Parallel project execution

With more and more CPU cores available on developer desktops and ClI servers, it is important that Gradle
is able to fully utilise these processing resources. More specifically, parallel execution attempts to:

Page 280 of 680

Reduce total build time for a multi-project build where execution is 10 bound or otherwise does not consume
all available CPU resources.

Provide faster feedback for execution of small projects without awaiting completion of other projects.

Although Gradle already offers parallel test execution via Test . set MaxPar al | el For ks(i nt) the feature
described in this section is parallel execution at a project level. Parallel execution is an incubating feature.
Please use it and let us know how it works for you.

Parallel project execution allows the separate projects in a decoupled multi-project build to be executed in
parallel (see also: Section 26.9, “Decoupled Projects”). While parallel execution does not strictly require
decoupling at configuration time, the long-term goal is to provide a powerful set of features that will be
available for fully decoupled projects. Such features include:

the section called “Configuration on demand”.
Configuration of projects in parallel.

Re-use of configuration for unchanged projects.
Project-level up-to-date checks.

Using pre-built artifacts in the place of building dependent projects.

How does parallel execution work? First, you need to tell Gradle to use parallel mode. You can use the
command line argument (Appendix D, Gradle Command Line) or configure your build environment (
Section 12.1, “Configuring the build environment via gradle.properties”). Unless you provide a specific
number of parallel threads, Gradle attempts to choose the right number based on available CPU cores.
Every parallel worker exclusively owns a given project while executing a task. Task dependencies are fully
supported and parallel workers will start executing upstream tasks first. Bear in mind that the alphabetical
ordering of decoupled tasks, as can be seen during sequential execution, is not guaranteed in parallel mode.
In other words, in parallel mode tasks will run as soon as their dependencies complete and a task worker is
available to run them, which may be earlier than they would start during a sequential build. You should make
sure that task dependencies and task inputs/outputs are declared correctly to avoid ordering issues.

26.9. Decoupled Projects

Gradle allows any project to access any other project during both the configuration and execution phases.
While this provides a great deal of power and flexibility to the build author, it also limits the flexibility that
Gradle has when building those projects. For instance, this effectively prevents Gradle from correctly
building multiple projects in parallel, configuring only a subset of projects, or from substituting a pre-built
artifact in place of a project dependency.

Two projects are said to be decoupled if they do not directly access each other’s project model. Decoupled
projects may only interact in terms of declared dependencies: project dependencies (Section 25.4.3, “Project
dependencies”) and/or task dependencies (Section 16.5, “Task dependencies”). Any other form of project
interaction (i.e. by modifying another project object or by reading a value from another project object) causes
the projects to be coupled. The consequence of coupling during the configuration phase is that if gradle is
invoked with the 'configuration on demand' option, the result of the build can be flawed in several ways. The
consequence of coupling during execution phase is that if gradle is invoked with the parallel option, one

Page 281 of 680

http://www.gradle.org/docs/4.4.1/javadoc/org/gradle/api/tasks/testing/Test.html#setMaxParallelForks(int)

project task runs too late to influence a task of a project building in parallel. Gradle does not attempt to
detect coupling and warn the user, as there are too many possibilities to introduce coupling.

A very common way for projects to be coupled is by using configuration injection (Section 26.1, “Cross
project configuration”). It may not be immediately apparent, but using key Gradle features like the al | pr oj e:
and subpr oj ect s keywords automatically cause your projects to be coupled. This is because these
keywords are used in a bui | d. gr adl e file, which defines a project. Often this is a “root project” that does
nothing more than define common configuration, but as far as Gradle is concerned this root project is still a
fully-fledged project, and by using al | pr oj ect s that project is effectively coupled to all other projects.
Coupling of the root project to subprojects does not impact 'configuration on demand', but using the al | pr oj
and subpr oj ect s in any subproject’s bui | d. gr adl e file will have an impact.

This means that using any form of shared build script logic or configuration injection (al | pr oj ect s, subprc
, etc.) will cause your projects to be coupled. As we extend the concept of project decoupling and provide
features that take advantage of decoupled projects, we will also introduce new features to help you to solve
common use cases (like configuration injection) without causing your projects to be coupled.

In order to make good use of cross project configuration without running into issues for parallel and
‘configuration on demand' options, follow these recommendations:

Avoid a subproject’s bui | d. gr adl e referencing other subprojects; preferring cross configuration from the
root project.

Avoid changing the configuration of other projects at execution time.

26.10. Multi-Project Building and Testing

The bui | d task of the Java plugin is typically used to compile, test, and perform code style checks (if the
CodeQuality plugin is used) of a single project. In multi-project builds you may often want to do all of these
tasks across a range of projects. The bui | dNeeded and bui | dDependent s tasks can help with this.

Look at Example 26.25, “Project lib dependencies”. In this example, the “: servi ces: per sonservi ce”
project depends on both the “: api " and “: shar ed” projects. The “: api ” project also depends on the “: shar

" project.

Assume you are working on a single project, the “: api ” project. You have been making changes, but have
not built the entire project since performing a clean. You want to build any necessary supporting jars, but
only perform code quality and unit tests on the project you have changed. The bui | d task does this.

Page 282 of 680

Example 26.27. Build and Test Single Project

Output of gradl e :api: build
> gradle :api:build

: shar ed: conpi | eJava

: shar ed: processResour ces
: shared: cl asses
:shared:jar

»api: conpil eJava

:api : processResour ces
capi:classes

;api:jar

:api: assenbl e

:api: conpil eTest Java

:api : processTest Resour ces
;api:testd asses

D api:test
:api : check
capi:build

BU LD SUCCESSFUL in Os
9 actionable tasks: 9 executed

While you are working in a typical development cycle repeatedly building and testing changes to the “: api
project (knowing that you are only changing files in this one project), you may not want to even suffer the
expense of building “: shar ed: conpi | e” to see what has changed in the “: shar ed” project. Adding the “- a
" option will cause Gradle to use cached jars to resolve any project lib dependencies and not try to re-build
the depended on projects.

Example 26.28. Partial Build and Test Single Project

Outputofgradl e -a :api:build
> gradle -a :api:build

:api: conpil eJava

:api : processResour ces
;api:classes

capi:jar

:api:assenbl e

:api: conpil eTest Java

:api : processTest Resour ces
:api:testd asses

capi:test
. api : check
capi:build

BU LD SUCCESSFUL in Os
6 actionabl e tasks: 6 executed

If you have just gotten the latest version of source from your version control system which included changes

Page 283 of 680

in other projects that “: api ” depends on, you might want to not only build all the projects you depend on, but
test them as well. The bui | dNeeded task also tests all the projects from the project lib dependencies of the
testRuntime configuration.

Example 26.29. Build and Test Depended On Projects

Output of gr adl e : api : bui | dNeeded

> gradl e :api: buil dNeeded
: shar ed: conpi | eJava

: shar ed: processResour ces
: shared: cl asses
:shared:jar

»api: conpil eJava

:api : processResour ces
rapi:classes

;api:jar

capi:assenbl e

:api: conpil eTest Java

:api : processTest Resour ces
;api:testd asses

D api:test
. api : check
capi:build

: shar ed: assenbl e

: shar ed: conpi | eTest Java

: shar ed: processTest Resour ces
:shared: testd asses

: shared: t est

: shar ed: check

:shared: buil d

: shar ed: bui | dNeeded

:api : bui | dNeeded

BU LD SUCCESSFUL in Os
12 actionabl e tasks: 12 executed

You also might want to refactor some part of the “: api ” project that is used in other projects. If you make
these types of changes, it is not sufficient to test just the “: api " project, you also need to test all projects
that depend on the “: api ” project. The bui | dDependent s task also tests all the projects that have a
project lib dependency (in the testRuntime configuration) on the specified project.

Page 284 of 680

Example 26.30. Build and Test Dependent Projects

Output of gradl e : api : bui | dDependent s

> gradl e :api: buil dDependents
: shar ed: conpi | eJava

: shar ed: processResour ces
: shared: cl asses
:shared:jar

»api: conpil eJava

:api : processResour ces
:api:cl asses

;api:jar

:api: assenbl e

:api: conpil eTest Java

:api : processTest Resour ces
;api:testd asses

D api:test
:api : check
capi:build

. services: personService: conpi | eJava
:servi ces: personServi ce: processResour ces
: services: personService: cl asses

. services: personService:jar

1 services: personService: assenbl e

. servi ces: personServi ce: conpi | eTest Java
: services: personServi ce: processTest Resour ces
. services: personService: testC asses
:services: personService:test

. servi ces: personServi ce: check

:services: personService: build

: services: personServi ce: bui | dDependent s
:api : bui | dDependent s

BUI LD SUCCESSFUL in Os
17 actionable tasks: 17 executed

Finally, you may want to build and test everything in all projects. Any task you run in the root project folder
will cause that same named task to be run on all the children. So you can just run “gr adl e bui | d” to build
and test all projects.

26.11. Multi Project and buildSrc

Section 43.4, “Build sources in the bui | dSr ¢ project” tells us that we can place build logic to be compiled
and tested in the special bui | dSr ¢ directory. In a multi project build, there can only be one bui | dSrc
directory which must be located in the root directory.

Page 285 of 680

26.12. Property and method inheritance

Properties and methods declared in a project are inherited to all its subprojects. This is an alternative to
configuration injection. But we think that the model of inheritance does not reflect the problem space of
multi-project builds very well. In a future edition of this user guide we might write more about this.

Method inheritance might be interesting to use as Gradle’s Configuration Injection does not support methods
yet (but will in a future release).

You might be wondering why we have implemented a feature we obviously don't like that much. One reason
is that it is offered by other tools and we want to have the check mark in a feature comparison :). And we like
to offer our users a choice.

26.13. Summary

Writing this chapter was pretty exhausting and reading it might have a similar effect. Our final message for
this chapter is that multi-project builds with Gradle are usually not difficult. There are five elements you need
to remember: al | proj ect s, subproj ect s, eval uat i onDependsOn, eval uati onDependsOnChi | dre
and project lib dependencies.[8] with those elements, and keeping in mind that Gradle has a distinct
configuration and execution phase, you already have a lot of flexibility. But when you enter steep territory
Gradle does not become an obstacle and usually accompanies and carries you to the top of the mountain.

[14] The real use case we had, was using http://lucene.apache.org/solr, where you need a separate war for
p p p

each index you are accessing. That was one reason why we have created a distribution of webapps. The

Resin servlet container allows us, to let such a distribution point to a base installation of the servlet

container.

[15] We do this here, as it makes the layout a bit easier. We usually put the project specific stuff into the
build script of the respective projects.

[16] So we are well in the range of the 7 plus 2 Rule :)

Page 286 of 680

http://lucene.apache.org/solr
http://en.wikipedia.org/wiki/The_Magical_Number_Seven,_Plus_or_Minus_Two

217

Gradle Plugins

Gradle at its core intentionally provides very little for real world automation. All of the useful features, like the
ability to compile Java code, are added by plugins. Plugins add new tasks (e.g. JavaConpi | €), domain
objects (e.g. Sour ceSet), conventions (e.g. Java source is located at src/ mai n/java) as well as
extending core objects and objects from other plugins.

In this chapter we discuss how to use plugins and the terminology and concepts surrounding plugins.

27.1. What plugins do

Applying a plugin to a project allows the plugin to extend the project’s capabilities. It can do things such as:

Extend the Gradle model (e.g. add new DSL elements that can be configured)

Configure the project according to conventions (e.g. add new tasks or configure sensible defaults)

Apply specific configuration (e.g. add organizational repositories or enforce standards)

By applying plugins, rather than adding logic to the project build script, we can reap a humber of benefits.
Applying plugins:

Promotes reuse and reduces the overhead of maintaining similar logic across multiple projects

Allows a higher degree of modularization, enhancing comprehensibility and organization

Encapsulates imperative logic and allows build scripts to be as declarative as possible

27.2. Types of plugins

There are two general types of plugins in Gradle, script plugins and binary plugins. Script plugins are
additional build scripts that further configure the build and usually implement a declarative approach to
manipulating the build. They are typically used within a build although they can be externalized and
accessed from a remote location. Binary plugins are classes that implement the Pl ugi n interface and adopt
a programmatic approach to manipulating the build. Binary plugins can reside within a build script, within the
project hierarchy or externally in a plugin jar.

A plugin often starts out as a script plugin (because they are easy to write) and then, as the code becomes
more valuable, it's migrated to a binary plugin that can be easily tested and shared between multiple projects
or organizations.

Page 287 of 680

http://www.gradle.org/docs/4.4.1/dsl/org.gradle.api.tasks.compile.JavaCompile.html
http://www.gradle.org/docs/4.4.1/dsl/org.gradle.api.tasks.SourceSet.html
http://www.gradle.org/docs/4.4.1/javadoc/org/gradle/api/Plugin.html

27.3. Using plugins

To use the build logic encapsulated in a plugin, Gradle needs to perform two steps. First, it needs to resolve
the plugin, and then it needs to apply the plugin to the target, usually a Pr oj ect .

Resolving a plugin means finding the correct version of the jar which contains a given plugin and adding it
the script classpath. Once a plugin is resolved, its APl can be used in a build script. Script plugins are
self-resolving in that they are resolved from the specific file path or URL provided when applying them. Core
binary plugins provided as part of the Gradle distribution are automatically resolved.

Applying a plugin means actually executing the plugin’s Pl ugi n. appl y(T) on the Project you want to
enhance with the plugin. Applying plugins is idempotent. That is, you can safely apply any plugin multiple
times without side effects.

The most common use case for using a plugin is to both resolve the plugin and apply it to the current project.
Since this is such a common use case, it's recommended that build authors use the plugins DSL to both
resolve and apply plugins in one step. The feature is technically still incubating, but it works well, and should
be used by most users.

27.4. Script plugins

Example 27.1. Applying a script plugin

bui | d. gradl e
apply from 'other.gradle'

Script plugins are automatically resolved and can be applied from a script on the local filesystem or at a
remote location. Filesystem locations are relative to the project directory, while remote script locations are
specified with an HTTP URL. Multiple script plugins (of either form) can be applied to a given target.

27.5. Binary plugins

You apply plugins by their plugin id, which is a globally unique identifier, or name, for plugins. Core Gradle
plugins are special in that they provide short names, such as ' j ava' for the core JavaPl ugi n. All other
binary plugins must use the fully qualified form of the plugin id (e.g. com gi t hub. f 0o. bar), although
some legacy plugins may still utilize a short, unqualified form. Where you put the plugin id depends on
whether you are using the plugins DSL or the buildscript block.

27.5.1. Locations of binary plugins

A plugin is simply any class that implements the Pl ugi n interface. Gradle provides the core plugins (e.g. Ja\
) as part of its distribution which means they are automatically resolved. However, non-core binary plugins
need to be resolved before they can be applied. This can be achieved in a number of ways:

Including the plugin from the plugin portal or a custom repository using the plugins DSL (see Section 27.5.2,
“Applying plugins with the plugins DSL").

Including the plugin from an external jar defined as a buildscript dependency (see the section called

Page 288 of 680

http://www.gradle.org/docs/4.4.1/dsl/org.gradle.api.Project.html
http://www.gradle.org/docs/4.4.1/javadoc/org/gradle/api/Plugin.html#apply(T)
http://www.gradle.org/docs/4.4.1/javadoc/org/gradle/api/plugins/JavaPlugin.html
http://www.gradle.org/docs/4.4.1/javadoc/org/gradle/api/Plugin.html

“Applying plugins with the buildscript block”).

Defining the plugin as a source file under the buildSrc directory in the project (see Section 43.4, “Build
sources in the bui | dSr ¢ project”).

Defining the plugin as an inline class declaration inside a build script.
For more on defining your own plugins, see Chapter 41, Writing Custom Plugins.

27.5.2. Applying plugins with the plugins DSL

Note: The plugins DSL is currently incubating. Please be aware that the DSL and other
configuration may change in later Gradle versions.

The new plugins DSL provides a succinct and convenient way to declare plugin dependencies. It works with
the Gradle plugin portal to provide easy access to both core and community plugins. The plugins DSL block
configures an instance of Pl ugi nDependenci esSpec.

To apply a core plugin, the short name can be used:

Example 27.2. Applying a core plugin

bui | d. gradl e
pl ugi ns {

id'java'
}

To apply a community plugin from the portal, the fully qualified plugin id must be used:

Example 27.3. Applying a community plugin

bui | d. gradl e

pl ugi ns {
id'comjfrog.bintray' version '0.4.1'

See Pl ugi nDependenci esSpec for more information on using the Plugin DSL.
Limitations of the plugins DSL

This way of adding plugins to a project is much more than a more convenient syntax. The plugins DSL is
processed in a way which allows Gradle to determine the plugins in use very early and very quickly. This
allows Gradle to do smart things such as:

Optimize the loading and reuse of plugin classes.
Allow different plugins to use different versions of dependencies.

Provide editors detailed information about the potential properties and values in the buildscript for editing
assistance.

This requires that plugins be specified in a way that Gradle can easily and quickly extract, before executing

Page 289 of 680

http://plugins.gradle.org
http://www.gradle.org/docs/4.4.1/dsl/org.gradle.plugin.use.PluginDependenciesSpec.html
http://www.gradle.org/docs/4.4.1/dsl/org.gradle.plugin.use.PluginDependenciesSpec.html

the rest of the build script. It also requires that the definition of plugins to use be somewhat static.

There are some key differences between the new plugin mechanism and the “traditional” appl y() method
mechanism. There are also some constraints, some of which are temporary limitations while the mechanism
is still being developed and some are inherent to the new approach.

Constrained Syntax

The new pl ugi ns {} block does not support arbitrary Groovy code. It is constrained, in order to be
idempotent (produce the same result every time) and side effect free (safe for Gradle to execute at any
time).

The form is:

pl ugi ns {
id «plugin id» version «plugin version» [apply «fal se»]

Where «pl ugi n ver si on» and «pl ugi n i d» must be constant, literal, strings and the appl y statement
with a bool ean can be used to disable the default behavior of applying the plugin immediately (e.g. you
want to apply it only in subproj ect s). No other statements are allowed; their presence will cause a
compilation error.

The pl ugi ns {} block must also be a top level statement in the buildscript. It cannot be nested inside
another construct (e.g. an if-statement or for-loop).

Can only be used in build scripts

The pl ugi ns {} block can currently only be used in a project’s build script. It cannot be used in script
plugins, the settings.gradle file or init scripts.

Future versions of Gradle will remove this restriction.

If the restrictions of the new syntax are prohibitive, the recommended approach is to apply plugins using the
buildscript {} block.

Applying plugins to subprojects

If you have a multi-project build, you probably want to apply plugins to some or all of the subprojects in your
build, but not to the root or master project. The default behavior of the pl ugi ns {} block is to
immediately r esol ve and appl y the plugins. But, you can use the appl y f al se syntax to tell Gradle not
to apply the plugin to the current project and then use appl y pl ugi n: «pl ugi n i d» inthe subpr oj ect ¢
block:

Page 290 of 680

Example 27.4. Applying plugins only on certain subprojects.

settings.gradle

i ncl ude ' hel | oA
i ncl ude ' hel | oB'
i ncl ude ' goodbyeC

bui | d. gradl e

pl ugi ns {
id "org.gradle.sanple.hello" version "1.0.0" apply fal se
id "org.gradl e. sanpl e. goodbye" version "1.0.0" apply false

subproj ects { subproject ->
i f (subproject.nane.startsWth("hello")) {
apply plugin: 'org.gradle.sanple. hello'

}
i f (subproject.nane.startsWth("goodbye")) {

apply plugin: 'org.gradle. sanpl e. goodbye'

If you then run gr adl e hel | o you'll see that only the helloA and helloB subprojects had the hello plugin
applied.

gradl e/ subpr oj ect s/ docs/ src/ sanpl es/ plugi ns/ mul ti project $> gradle hello
Paral l el execution is an incubating feature.

:hel l oA hell o

:helloB: hello

Hel | o!

Hel | o!

BU LD SUCCEEDED
Plugin Management

Note: The pl ugi nManagenent {} DSL is currently incubating. Please be aware that the DSL and
other configuration may change in later Gradle versions.

Custom Plugin Repositories

By default, the pl ugi ns {} DSL resolves plugins from the public Gradle Plugin Portal. Many build authors
would also like to resolve plugins from private Maven or Ivy repositories because the plugins contain
proprietary implementation details, or just to have more control over what plugins are available to their
builds.

To specify custom plugin repositories, use the reposi tori es {} block inside pl ugi nManagenent {} in
the setti ngs. gr adl e file:

Page 291 of 680

https://plugins.gradle.org

Example 27.5. Using plugins from custom plugin repositories.

settings.gradle
pl ugi nManagenent {
repositories {
maven {
url 'maven-repo'

}
gr adl ePl ugi nPortal ()
ivy {
url "ivy-repo'
}

This tells Gradle to first look in the Maven repository at maven-r epo when resolving plugins and then to
check the Gradle Plugin Portal if the plugins are not found in the Maven repository. If you don't want the
Gradle Plugin Portal to be searched, omit the gr adl ePl ugi nPort al () line. Finally, the Ivy repository ati v
will be checked.

Plugin Resolution Rules

Plugin resolution rules allow you to modify plugin requests made in pl ugi ns {} blocks, e.g. changing the
requested version or explicitly specifying the implementation artifact coordinates.

To add resolution rules, use the r esol uti onStrat egy {} inside the pl ugi nManagenment {} block:

Example 27.6. Plugin resolution strategy.

settings.gradle
pl ugi nManagenent {
resol uti onStrategy {
eachPl ugin {
i f (requested.id.namespace == 'org.gradle.sample') {
useModul e(' org. gradl e. sanpl e: sanpl e-pl ugins: 1.0.0")

}
}
}
repositories {
maven {
url 'maven-repo'
}
gr adl ePl ugi nPortal ()
ivy {
url "ivy-repo'
}
}

Page 292 of 680

This tells Gradle to use the specified plugin implementation artifact instead of using its built-in default
mapping from plugin ID to Maven/lvy coordinates.

The pl ugi nManagenent {} block may only appear in the setti ngs. gr adl e file, and must be the first
block in the file. Custom Maven and Ivy plugin repositories must contain plugin marker artifacts in addition to
the artifacts which actually implement the plugin. For more information on publishing plugins to custom
repositories read Chapter 42, The Java Gradle Plugin Development Plugin.

See Pl ugi nManagenent Spec for complete documentation for using the pl ugi nManagenent {} block.
Plugin Marker Artifacts

Since the pl ugi ns {} DSL block only allows for declaring plugins by their globally unique plugin i d and ve
properties, Gradle needs a way to look up the coordinates of the plugin implementation artifact. To do so,
Gradle will look for a Plugin Marker Artifact with the coordinates pl ugi n. i d: pl ugi n. i d. gradl e. pl ugi n
. This marker needs to have a dependency on the actual plugin implementation. Publishing these markers is
automated by the java-gradle-plugin.

For example, the following complete sample from the sanpl e- pl ugi ns project shows how to publish a or g
plugin and a org. gradl e. sanpl e. goodbye plugin to both an Ivy and Maven repository using the
combination of the java-gradle-plugin, the maven-publish plugin, and the ivy-publish plugin.

Page 293 of 680

http://www.gradle.org/docs/4.4.1/dsl/org.gradle.plugin.management.PluginManagementSpec.html

Example 27.7. Complete Plugin Publishing Sample

bui | d. gradl e

pl ugi ns {
id'java-gradle-plugin'
id ' maven- publi sh'
id"ivy-publish'

group 'org.gradle.sanpl e’
version '1.0.0

gradl ePl ugin {

pl ugi ns {
hell o {
id = "org.gradl e. sanpl e. hel | 0"
i mpl ement ati onCl ass = "org. gradl e. sanpl e. hel | 0. Hel | oPl ugi n"
}
goodbye {

id = "org.gradl e. sanpl e. goodbye"
i mpl ement ati ond ass = "org. gradl e. sanpl e. goodbye. GoodbyePl ugi n"

}
}
}
publ i shing {
repositories {
maven {
url "../consum ng/ maven-repo"
}
ivy {
url "../consum ng/ivy-repo"
}
}
}

Running gr adl e publ i sh in the sample directory causes the following repo layouts to exist:

Page 294 of 680

/~ .Imaven-repo

groupld org.gradle.sample.hello groupld org.gradle.samplh
artifactld org.gradle.sample.hello.gradle.plugin artifactld sample-plugins
version 1.0.0 7 version 1.0.0
groupld org.gradle.sample.goodbye .
artifactld org.gradle. sample.goodbye. gradle. plugin sample |:Ill.|
version 1.0.0

_ 4

/— .[ivy-repo
org org.gradle. sample. hello org org.gradle. sample
module org.gradle.sample.hello.gradle. plugin module sample-plugins
rev 1.0.0 — rev 1.0.0

org org.gradle. sample.goodbye
module org.gradle. sample.goodbye.gradle. plugin
rev 1.0.0

'\ 4

27.5.3. Legacy Plugin Application

sample-plu

With the introduction of the plugins DSL, users should have little reason to use the legacy method of
applying plugins. It is documented here in case a build author cannot use the plugins DSL due to restrictions
in how it currently works.

Applying Binary Plugins

Example 27.8. Applying a binary plugin

buil d. gradl e
apply plugin: 'java'

Plugins can be applied using a plugin id. In the above case, we are using the short name ‘j ava’ to apply the
JavaPl ugi n.

Rather than using a plugin id, plugins can also be applied by simply specifying the class of the plugin:

Example 27.9. Applying a binary plugin by type

buil d. gradl e
apply plugin: JavaPl ugin

The JavaPl ugi n symbol in the above sample refers to the JavaPl ugi n. This class does not strictly need
to be imported as the or g. gradl e. api . pl ugi ns package is automatically imported in all build scripts
(see Section 18.8, “Default imports”). Furthermore, it is not necessary to append . cl ass to identify a class
literal in Groovy as it is in Java.

Page 295 of 680

http://www.gradle.org/docs/4.4.1/javadoc/org/gradle/api/plugins/JavaPlugin.html
http://www.gradle.org/docs/4.4.1/javadoc/org/gradle/api/plugins/JavaPlugin.html

Applying plugins with the buildscript block

Binary plugins that have been published as external jar files can be added to a project by adding the plugin
to the build script classpath and then applying the plugin. External jars can be added to the build script
classpath using the bui | dscri pt {} block as described in Section 43.6, “External dependencies for the
build script”.

Example 27.10. Applying a plugin with the buildscript block

bui | d. gradl e

bui | dscri pt {
repositories {
jcenter()

}

dependenci es {
classpath "comjfrog. bintray. gradl e: gradl e-bi ntray-pl ugin:0.4.1"

apply plugin: "comjfrog.bintray"

27.6. Finding community plugins

Gradle has a vibrant community of plugin developers who contribute plugins for a wide variety of capabilities.
The Gradle plugin portal provides an interface for searching and exploring community plugins.

27.7. More on plugins

This chapter aims to serve as an introduction to plugins and Gradle and the role they play. For more
information on the inner workings of plugins, see Chapter 41, Writing Custom Plugins.

Page 296 of 680

http://plugins.gradle.org

28

Standard Gradle plugins

There are a number of plugins included in the Gradle distribution. These are listed below.
28.1. Language plugins
These plugins add support for various languages which can be compiled for and executed in the JVM.

Table 28.1. Language plugins

Plugin Automatically Works -
. . Description
Id applies with

. . b Adds Java compilation, testing and bundling capabilities to a project. It serves as the basis for
ava ava- base -
: J many of the other Gradle plugins. See also Chapter 47, Java Quickstart.

groovy j ava, gr oovy--base Adds support for building Groovy projects. See also Chapter 56, Groovy Quickstart.
scal a java, scal a- base Adds support for building Scala projects.

antlr java - Adds support for generating parsers using Antlr.

28.2. Incubating language plugins

These plugins add support for various languages:

Page 297 of 680

http://www.antlr.org/

Table 28.2. Language plugins

Plugin Id Automatically applies Works with Description

assenbl er - - Adds native assembly language capabilities to a project.

c - - Adds C source compilation capabilities to a project.

cpp - - Adds C++ source compilation capabilities to a project.

obj ective-c - - Adds Objective-C source compilation capabilities to a project.
obj ecti ve-cpp - - Adds Objective-C++ source compilation capabilities to a project.
wi ndows- r esour ces - - Adds support for including Windows resources in native binaries.

28.3. Integration plugins
These plugins provide some integration with various runtime technologies.

Table 28.3. Integration plugins

. Automatically Works L
Plugin Id Description

applies with

applicationjava,distribution Adds tasks for running and bundling a Java project as a command-line application.

ear - java Adds support for building J2EE applications.
maven - j ava, waAdds support for publishing artifacts to Maven repositories.
osgi j ava- base java Adds support for building OSGi bundles.

) Adds support for assembling web application WAR files. See also Chapter 50, Web
war ava -
: Application Quickstart.

28.4. Incubating integration plugins

These plugins provide some integration with various runtime technologies.

Page 298 of 680

Table 28.4. Incubating integration plugins

Automatically ~ Works

Plugin Id
g applies with

Description

di stribution - - Adds support for building ZIP and TAR distributions.

.) Adds support for building ZIP and TAR distributions for a Java
java-library-distributionjava,distribution iib
ibrary.

. . j ava, This plugin provides a new DSL to support publishing artifacts to vy
i vy-publish - o o N
war repositories, which improves on the existing DSL.

) j ava, This plugin provides a new DSL to support publishing artifacts to
maven- publ i sh -

war Maven repositories, which improves on the existing DSL.

28.5. Software development plugins

These plugins provide help with your software development process.

Page 299 of 680

Table 28.5. Software development plugins

Automatically Works

Plugin Id
g applies with

announce - -

bui | d- announcenent s announce -

Description

Publish messages to your favourite platforms, such as Twitter or Growl.

Sends local announcements to your desktop about interesting events in
the build lifecycle.

Performs quality checks on your project’s Java source files using

checkstyl e j ava- base -
Checkstyle and generates reports from these checks.
Performs quality checks on your project’'s Groovy source files using
codenarc groovy- base -
CodeNarc and generates reports from these checks.
eclibse j ava,gr Gewgrates files that are used by Eclipse IDE, thus making it possible to
P , scal a import the project into Eclipse. See also Chapter 47, Java Quickstart.
Does the same as the eclipse plugin plus generates eclipse WTP (Web
. Tools Platform) configuration files. After importing to eclipse your
eclipse-wp - ear, war . . .
war/ear projects should be configured to work with WTP. See also
Chapter 47, Java Quickstart.
. . Performs quality checks on your project’'s Java source files using
fi ndbugs j ava- base - .
FindBugs and generates reports from these checks.
. . Generates files that are used by Intellij IDEA IDE, thus making it
i dea - j ava . . o
possible to import the project into IDEA.
. . Performs quality checks on your project’s source files using JDepend
j depend j ava- base -
and generates reports from these checks.
. Performs quality checks on your project’'s Java source files using PMD
pnd j ava- base -
and generates reports from these checks.
proj ect-report reporting-base - Generates reports containing useful information about your Gradle build.
si gni ng base - Adds the ability to digitally sign built files and artifacts.

28.6. Incubating software development plugins

These plugins provide help with your software development process.

Page 300 of 680

http://checkstyle.sourceforge.net/index.html
http://codenarc.sourceforge.net/index.html
http://eclipse.org
http://findbugs.sourceforge.net
http://www.jetbrains.com/idea/index.html
http://clarkware.com/software/JDepend.html
http://pmd.sourceforge.net

Table 28.6. Software development plugins

Automatically

Plugin Id . Works with Description
applies
bui I d- dashboard reporting-base - Generates build dashboard report.
. o Adds support for initializing a new Gradle build. Handles converting a
build-init wrapper - . .
Maven build to a Gradle build.

cunit - - Adds support for running CUnit tests.
j acoco reporting-base java Provides integration with the JaCoCo code coverage library for Java.

native
vi sual - studi o - language Adds integration with Visual Studio.

plugins
wr apper - - Adds a W apper task for generating Gradle wrapper files.

. . Assists with development of Gradle plugins by providing standard
j ava- gr adl e- pl ugi n java o
plugin build configuration and validation.

28.7. Base plugins

These plugins form the basic building blocks which the other plugins are assembled from. They are available
for you to use in your build files, and are listed here for completeness. However, be aware that they are not
yet considered part of Gradle’s public API. As such, these plugins are not documented in the user guide.
You might refer to their APl documentation to learn more about them.

Page 301 of 680

http://cunit.sourceforge.net
http://www.eclemma.org/jacoco/
http://www.gradle.org/docs/4.4.1/dsl/org.gradle.api.tasks.wrapper.Wrapper.html

Table 28.7. Base plugins
Plugin Id Description
Adds the standard lifecycle tasks and configures reasonable defaults for the archive tasks:

® adds build ConfigurationName tasks. Those tasks assemble the artifacts belonging to the specified
configuration.

® adds upload ConfigurationName tasks. Those tasks assemble and upload the artifacts belonging to the
base specified configuration.

® configures reasonable default values for all archive tasks (e.g. tasks that inherit from Abst r act Ar chi veTask).
For example, the archive tasks are tasks of types: Jar, Tar, Zi p. Specifically, dest i nati onDi r, baseNane
and ver si on properties of the archive tasks are preconfigured with defaults. This is extremely useful because it
drives consistency across projects; the consistency regarding naming conventions of archives and their location
after the build completed.

java-base Adds the source sets concept to the project. Does not add any particular source sets.
groovy-base Adds the Groovy source sets concept to the project.
scala-base Adds the Scala source sets concept to the project.

reporting-base Adds some shared convention properties to the project, relating to report generation.

28.8. Third party plugins

You can find a list of external plugins at the Gradle Plugins site.

Page 302 of 680

http://www.gradle.org/docs/4.4.1/dsl/org.gradle.api.tasks.bundling.AbstractArchiveTask.html
http://www.gradle.org/docs/4.4.1/dsl/org.gradle.api.tasks.bundling.Jar.html
http://www.gradle.org/docs/4.4.1/dsl/org.gradle.api.tasks.bundling.Tar.html
http://www.gradle.org/docs/4.4.1/dsl/org.gradle.api.tasks.bundling.Zip.html
http://plugins.gradle.org/

29

The Project Report Plugin

The Project report plugin adds some tasks to your project which generate reports containing useful
information about your build. These tasks generate the same content that you get by executing the t asks, di
, and properti es tasks from the command line (see Section 4.7, “Obtaining information about your build”).
In contrast to the command line reports, the report plugin generates the reports into a file. There is also an
aggregating task that depends on all report tasks added by the plugin.

We plan to add much more to the existing reports and create additional ones in future releases of Gradle.

29.1. Usage

To use the Project report plugin, include the following in your build script:

apply plugin: 'project-report’

29.2. Tasks

The project report plugin defines the following tasks:

Page 303 of 680

Table 29.1. Project report plugin - tasks

Task name

dependencyReport

ht M DependencyRepor t

propertyReport

t askReport

pr oj ect Report

29.3. Project layout

Depends on

Type

DependencyReport Task

Description

Generates the project
dependency report.

Generates an HTML
dependency and

Ht nl DependencyRepor t Task dependency insight report

Pr opert yReport Task

TaskReport Task

dependencyReport, propertyReport
Task

,taskReport, ht Ml DependencyReport

The project report plugin does not require any particular project layout.

29.4. Dependency management

The project report plugin does not define any dependency configurations.

29.5. Convention properties

The project report defines the following convention properties:

for the project or a set of
projects.

Generates the project
property report.

Generates the project task
report.

Generates all project
reports.

Page 304 of 680

http://www.gradle.org/docs/4.4.1/dsl/org.gradle.api.tasks.diagnostics.DependencyReportTask.html
http://www.gradle.org/docs/4.4.1/dsl/org.gradle.api.reporting.dependencies.HtmlDependencyReportTask.html
http://www.gradle.org/docs/4.4.1/dsl/org.gradle.api.tasks.diagnostics.PropertyReportTask.html
http://www.gradle.org/docs/4.4.1/dsl/org.gradle.api.tasks.diagnostics.TaskReportTask.html
http://www.gradle.org/docs/4.4.1/dsl/org.gradle.api.Task.html

Table 29.2. Project report plugin - convention properties

Property name Type Default value Description

The name of the directory to generate reports

report sDi r Nane String reports . . o
into, relative to the build directory.
! File . ! ! . .
reportsDir bui | dDi r / report sDi r Name The directory to generate reports into.
(read-only)

A one element set with the
proj ects Set <Pr oj ect > project the plugin was applied The projects to generate the reports for.
to.

The name of the directory to generate the project

proj ect Report Di r Name Stri ng pr oj ect . . .
report into, relative to the reports directory.
.) File !))))
projectReportDir (read-only) reportsDir/ proj ect Repor t Dhe Naeetory to generate the project report into.
read-only

These convention properties are provided by a convention object of type
Pr oj ect Report sPl ugi nConventi on.

Page 305 of 680

http://www.gradle.org/docs/4.4.1/dsl/org.gradle.api.plugins.ProjectReportsPluginConvention.html
http://www.gradle.org/docs/4.4.1/dsl/org.gradle.api.plugins.ProjectReportsPluginConvention.html

30

The Build Dashboard Plugin

Note: The build dashboard plugin is currently incubating. Please be aware that the DSL and other
configuration may change in later Gradle versions.

The Build Dashboard plugin can be used to generate a single HTML dashboard that provides a single point
of access to all of the reports generated by a build.

30.1. Usage

To use the Build Dashboard plugin, include the following in your build script:

Example 30.1. Using the Build Dashboard plugin

bui I d. gradl e
apply plugin: 'build-dashboard

Applying the plugin adds the bui | dDashboar d task to your project. The task aggregates the reports for all
tasks that implement the Repor t i ng interface from all projects in the build. It is typically only applied to the
root project.

The bui | dDashboar d task does not depend on any other tasks. It will only aggregate the reporting tasks
that are independently being executed as part of the build run. To generate the build dashboard, simply
include this task in the list of tasks to execute. For example, “gr adl e bui | dDashboard bui | d” will
generate a dashboard for all of the reporting tasks that are dependents of the bui | d task.

30.2. Tasks

The Build Dashboard plugin adds the following task to the project:

Table 30.1. Build Dashboard plugin - tasks

Task name Depends on Type Description

bui | dDashboard - Gener at eBui | dDashboard Generates build dashboard report.

Page 306 of 680

http://www.gradle.org/docs/4.4.1/dsl/org.gradle.api.reporting.Reporting.html
http://www.gradle.org/docs/4.4.1/dsl/org.gradle.api.reporting.GenerateBuildDashboard.html

30.3. Project layout

The Build Dashboard plugin does not require any particular project layout.

30.4. Dependency management

The Build Dashboard plugin does not define any dependency configurations.

30.5. Configuration

You can influence the location of build dashboard plugin generation via Repor t i ngExt ensi on.

Page 307 of 680

http://www.gradle.org/docs/4.4.1/dsl/org.gradle.api.reporting.ReportingExtension.html

31

Comparing Builds

Note: Build comparison support is an incubating feature. This means that it is incomplete and not
yet at regular Gradle production quality. This also means that this Gradle User Guide chapter is a
work in progress.

Gradle provides support for comparing the outcomes (e.g. the produced binary archives) of two builds.
There are several reasons why you may want to compare the outcomes of two builds. You may want to
compare:

A build with a newer version of Gradle than it's currently using (i.e. upgrading the Gradle version).

A Gradle build with a build executed by another tool such as Apache Ant, Apache Maven or something else
(i.e. migrating to Gradle).

The same Gradle build, with the same version, before and after a change to the build (i.e. testing build
changes).

By comparing builds in these scenarios you can make an informed decision about the Gradle upgrade,
migration to Gradle or build change by understanding the differences in the outcomes. The comparison
process produces a HTML report outlining which outcomes were found to be identical and identifying the
differences between non-identical outcomes.

31.1. Definition of terms
The following are the terms used for build comparison and their definitions.
“Build”

In the context of build comparison, a build is not necessarily a Gradle build. It can be any invokable
“process” that produces observable “outcomes”. At least one of the builds in a comparison will be a
Gradle build.

“Build Outcome”

Something that happens in an observable manner during a build, such as the creation of a zip file or test
execution. These are the things that are compared.

“Source Build”

Page 308 of 680

The build that comparisons are being made against, typically the build in its “current” state. In other
words, the left hand side of the comparison.

“Target Build”

The build that is being compared to the source build, typically the “proposed” build. In other words, the
right hand side of the comparison.

“Host Build”

The Gradle build that executes the comparison process. It may be the same project as either the “target”
or “source” build or may be a completely separate project. It does not need to be the same Gradle
version as the “source” or “target” builds. The host build must be run with Gradle 1.2 or newer.

“Compared Build Outcome”

Build outcomes that are intended to be logically equivalent in the “source” and “target” builds, and are
therefore meaningfully comparable.

“Uncompared Build Outcome”

A build outcome is uncompared if a logical equivalent from the other build cannot be found (e.g. a build
produces a zip file that the other build does not).

“Unknown Build Outcome”

A build outcome that cannot be understood by the host build. This can occur when the source or target
build is a newer Gradle version than the host build and that Gradle version exposes new outcome types.
Unknown build outcomes can be compared in so far as they can be identified to be logically equivalent to
an unknown build outcome in the other build, but no meaningful comparison of what the build outcome
actually is can be performed. Using the latest Gradle version for the host build will avoid encountering
unknown build outcomes.

31.2. Current Capabilities

As this is an incubating feature, a limited set of the eventual functionality has been implemented at this time.

31.2.1. Supported builds

Only support for comparing Gradle builds is available at this time. Both the source and target build must
execute with Gradle newer or equal to version 1. 0. The host build must be at least version 1. 2. If the host
build is run with version 3. 0 or newer, source and target builds must be at least version 1. 2. If the host
build is run with a version older than 2. 0, source and target builds must be older than version 3. 0. So if you
for example want to compare a build under version 1. 1 with a build under version 3. 0, you have to execute
the host build with a 2. x version.

Future versions will provide support for executing builds from other build systems such as Apache Ant or
Apache Maven, as well as support for executing arbitrary processes (e.g. shell script based builds)

Page 309 of 680

31.2.2. Supported build outcomes

Only support for comparing build outcomes that are zi p archives is supported at this time. This includes j ar

,war and ear archives.

Future versions will provide support for comparing outcomes such as test execution (i.e. which tests were
executed, which tests failed, etc.)

31.3. Comparing Gradle Builds

The conpar e- gr adl e- bui | ds plugin can be used to facilitate a comparison between two Gradle builds.
The plugin adds a Conpar eG adl eBui | ds task named “conpar eG adl eBui | ds” to the project. The
configuration of this task specifies what is to be compared. By default, it is configured to compare the current
build with itself using the current Gradle version by executing the tasks: “cl ean assenbl e”.

apply plugin: 'conpare-gradl e-builds'
This task can be configured to change what is compared.

conpar eG adl eBui | ds {
sourceBuild {
projectDir "/projects/project-a"
gradl eVersion "1.1"

}
targetBuild {

projectDir "/projects/project-b"
gradl eVersion "1.2"

The example above specifies a comparison between two different projects using two different Gradle
versions.

31.3.1. Trying Gradle upgrades
You can use the build comparison functionality to very quickly try a new Gradle version with your build.

To try your current build with a different Gradle version, simply add the following to the bui | d. gr adl e of
the root project.

apply plugin: 'conpare-gradl e-builds'

conpar eG adl eBui | ds {
target Bui |l d. gradl eVersi on = "«gradl e versi on»"

Then simply execute the conpar eG adl eBui | ds task. You will see the console output of the “source” and
“target” builds as they are executing.

Page 310 of 680

http://www.gradle.org/docs/4.4.1/dsl/org.gradle.api.plugins.buildcomparison.gradle.CompareGradleBuilds.html

31.3.2. The comparison “result”

If there are any differences between the compared outcomes, the task will fail. The location of the HTML
report providing insight into the comparison will be given. If all compared outcomes are found to be identical,
and there are no uncompared outcomes, and there are no unknown build outcomes, the task will succeed.

You can configure the task to not fail on compared outcome differences by setting the i gnor eFai | ur es
property to true.

conpar eG adl eBui | ds {
i gnoreFai lures = true

31.3.3. Which archives are compared?

For an archive to be a candidate for comparison, it must be added as an artifact of the archives
configuration. Take a look at Chapter 32, Publishing artifacts for more information on how to configure and
add artifacts.

The archive must also have been produced by a Zi p, Jar, War, Ear task. Future versions of Gradle will
support increased flexibility in this area.

Page 311 of 680

http://www.gradle.org/docs/4.4.1/dsl/org.gradle.api.tasks.bundling.Zip.html
http://www.gradle.org/docs/4.4.1/dsl/org.gradle.api.tasks.bundling.Jar.html
http://www.gradle.org/docs/4.4.1/dsl/org.gradle.api.tasks.bundling.War.html
http://www.gradle.org/docs/4.4.1/dsl/org.gradle.plugins.ear.Ear.html

32

Publishing artifacts

Note: This chapter describes the original publishing mechanism available in Gradle 1.0: in Gradle
1.3 a new mechanism for publishing was introduced. While this new mechanism is incubating and
not yet complete, it introduces some new concepts and features that do (and will) make Gradle
publishing even more powerful.

You can read about the new publishing plugins in Chapter 35, vy Publishing (new) and Chapter 36,
Maven Publishing (new). Please try them out and give us feedback.

32.1. Introduction

This chapter is about how you declare the outgoing artifacts of your project, and how to work with them (e.g.
upload them). We define the artifacts of the projects as the files the project provides to the outside world.
This might be a library or a ZIP distribution or any other file. A project can publish as many artifacts as it
wants.

32.2. Artifacts and configurations

Like dependencies, artifacts are grouped by configurations. In fact, a configuration can contain both artifacts
and dependencies at the same time.

For each configuration in your project, Gradle provides the tasks upl oadConf i gur ati onNare and bui | d¢
171 Execution of these tasks will build or upload the artifacts belonging to the respective configuration.

Table 48.5, “Java plugin - dependency configurations” shows the configurations added by the Java plugin.
Two of the configurations are relevant for the usage with artifacts. The ar chi ves configuration is the
standard configuration to assign your artifacts to. The Java plugin automatically assigns the default jar to this
configuration. We will talk more about the runti ne configuration in Section 32.5, “More about project
libraries”. As with dependencies, you can declare as many custom configurations as you like and assign
artifacts to them.

Page 312 of 680

32.3. Declaring artifacts
32.3.1. Archive task artifacts

You can use an archive task to define an artifact:

Example 32.1. Defining an artifact using an archive task
buil d. gradl e
task nyJar(type: Jar)

artifacts {
archi ves nyJar

It is important to note that the custom archives you are creating as part of your build are not automatically
assigned to any configuration. You have to explicitly do this assignment.

32.3.2. File artifacts

You can also use a file to define an artifact:

Example 32.2. Defining an artifact using afile

buil d. gradl e
def soneFile = file('build/ sonefile.txt")

artifacts {
archi ves soneFile

Gradle will figure out the properties of the artifact based on the name of the file. You can customize these
properties:

Example 32.3. Customizing an artifact

bui | d. gradl e

task nmyTask(type: MTaskType) {
destFile = file(' build/somefile.txt")

artifacts {
archives(nyTask. destFile) {
name 'ny-artifact’
type 'text'
bui | t By myTask

Page 313 of 680

There is a map-based syntax for defining an artifact using a file. The map must include a fi | e entry that
defines the file. The map may include other artifact properties:

Example 32.4. Map syntax for defining an artifact using a file

bui I d. gradl e

task generate(type: MTaskType) {
destFile = file(' build/sonmefile.txt")

artifacts {
archives file: generate.destFile, nane: 'ny-artifact', type: 'text', builtBy:;

32.4. Publishing artifacts

We have said that there is a specific upload task for each configuration. Before you can do an upload, you
have to configure the upload task and define where to publish the artifacts to. The repositories you have
defined (as described in Section 25.6, “Repositories”) are not automatically used for uploading. In fact, some
of those repositories only allow downloading artifacts, not uploading. Here is an example of how you can
configure the upload task of a configuration:

Example 32.5. Configuration of the upload task

buil d. gradl e
repositories {
flatDir {
name "fil eRepo”
dirs "repo"

upl oadAr chi ves {
repositories {
add project.repositories.fileRepo
ivy {
credentials {
user name "usernane"
password "pw!'

}
url "http://repo. myconpany. cont

As you can see, you can either use a reference to an existing repository or create a new repository. As
described in Section 25.6.10, “More about lvy resolvers”, you can use all the Ivy resolvers suitable for the

Page 314 of 680

purpose of uploading.

If an upload repository is defined with multiple patterns, Gradle must choose a pattern to use for uploading
each file. By default, Gradle will upload to the pattern defined by the ur| parameter, combined with the
optional | ayout parameter. If no ur | parameter is supplied, then Gradle will use the first defined arti f act
for uploading, or the first defined i vyPat t er n for uploading Ivy files, if this is set.

Uploading to a Maven repository is described in Section 33.6, “Interacting with Maven repositories”.

32.5. More about project libraries

If your project is supposed to be used as a library, you need to define what are the artifacts of this library and
what are the dependencies of these artifacts. The Java plugin adds a runti nme configuration for this
purpose, with the implicit assumption that the r unt i me dependencies are the dependencies of the artifact
you want to publish. Of course this is fully customizable. You can add your own custom configuration or let
the existing configurations extend from other configurations. You might have a different group of artifacts
which have a different set of dependencies. This mechanism is very powerful and flexible.

If someone wants to use your project as a library, she simply needs to declare which configuration of the
dependency to depend on. A Gradle dependency offers the conf i gur at i on property to declare this. If this
is not specified, the def aul t configuration is used (see Section 25.4.9, “Dependency configurations”).
Using your project as a library can either happen from within a multi-project build or by retrieving your project
from a repository. In the latter case, an i vy. xnl descriptor in the repository is supposed to contain all the
necessary information. If you work with Maven repositories you don’t have the flexibility as described above.
For how to publish to a Maven repository, see the section Section 33.6, “Interacting with Maven repositories”

[17] To be exact, the Base plugin provides those tasks. This plugin is automatically applied if you use the
Java plugin.

Page 315 of 680

33

The Maven Plugin

Note: This chapter is a work in progress

The Maven plugin adds support for deploying artifacts to Maven repositories.

33.1. Usage
To use the Maven plugin, include the following in your build script:

Example 33.1. Using the Maven plugin

buil d. gradl e
apply plugin: 'maven'

33.2. Tasks

The Maven plugin defines the following tasks:

Table 33.1. Maven plugin - tasks

Task .
Depends on Type Description
name
All tasks
that build Installs the associated artifacts to the local Maven cache, including Maven metadata
a ui
. generation. By default the install task is associated with the ar chi ves configuration. This
install the Upl oad])]))
ited configuration has by default only the default jar as an element. To learn more about installing to
associate
hi the local repository, see: Section 33.6.3, “Installing to the local repository”
archives.

33.3. Dependency management

The Maven plugin does not define any dependency configurations.

33.4. Convention properties

The Maven plugin defines the following convention properties:

Page 316 of 680

http://www.gradle.org/docs/4.4.1/dsl/org.gradle.api.tasks.Upload.html

Table 33.2. Maven plugin - properties

Property name Type Default value Description

' . . . } The directory where the generated
mavenPonDi r File ${proj ect. bui | dDi r}/g)oms ;
OMs are written to.

Instructions for mapping Gradle
configurations to Maven scopes. See
the section called “Dependency

mapping”.

conf 2ScopeMappi ngs Conf 2ScopeMappi ngCont ai ner n/ a

These properties are provided by a MavenPl ugi nConvent i on convention object.

33.5. Convention methods

The maven plugin provides a factory method for creating a POM. This is useful if you need a POM without
the context of uploading to a Maven repo.

Example 33.2. Creating a standalone pom.

buil d. gradl e
task writeNewPom {
doLast ({
pom {
project {
i nceptionYear '2008
i censes {
license {
name ' The Apache Software License, Version 2.0
url "http://ww. apache. org/licenses/ LI CENSE- 2. 0. t xt
di stribution 'repo
}
}
}

}.witeTo("$buil dDir/ newpom xni ™)

Amongst other things, Gradle supports the same builder syntax as polyglot Maven. To learn more about the
Gradle Maven POM object, see MavenPom See also: MavenP| ugi nConventi on

Page 317 of 680

http://www.gradle.org/docs/4.4.1/javadoc/org/gradle/api/artifacts/maven/Conf2ScopeMappingContainer.html
http://www.gradle.org/docs/4.4.1/dsl/org.gradle.api.plugins.MavenPluginConvention.html
http://www.gradle.org/docs/4.4.1/javadoc/org/gradle/api/artifacts/maven/MavenPom.html
http://www.gradle.org/docs/4.4.1/dsl/org.gradle.api.plugins.MavenPluginConvention.html

33.6. Interacting with Maven repositories
33.6.1. Introduction

With Gradle you can deploy to remote Maven repositories or install to your local Maven repository. This
includes all Maven metadata manipulation and works also for Maven snapshots. In fact, Gradle’'s
deployment is 100 percent Maven compatible as we use the native Maven Ant tasks under the hood.

Deploying to a Maven repository is only half the fun if you don’t have a POM. Fortunately Gradle can
generate this POM for you using the dependency information it has.

33.6.2. Deploying to a Maven repository

Let's assume your project produces just the default jar file. Now you want to deploy this jar file to a remote
Maven repository.

Example 33.3. Upload of file to remote Maven repository

buil d. gradl e
apply plugin: 'nmaven'

upl oadAr chi ves {
repositories {
mavenDepl oyer {
repository(url: "file://local host/tnp/ myRepo/")

That is all. Calling the upl oadAr chi ves task will generate the POM and deploys the artifact and the POM

to the specified repository.

There is more work to do if you need support for protocols other than fi | e. In this case the native Maven
code we delegate to needs additional libraries. Which libraries are needed depends on what protocol you
plan to use. The available protocols and the corresponding libraries are listed in Table 33.3, “Protocaol jars for
Maven deployment” (those libraries have transitive dependencies which have transitive dependencies).®!
For example, to use the ssh protocol you can do:

Page 318 of 680

Example 33.4. Upload of file via SSH

buil d. gradl e

configurations {
depl oyer Jars

repositories {
mavenCentral ()

dependenci es {
depl oyerJars "org. apache. maven. wagon: wagon- ssh: 2. 2"

upl oadAr chi ves {
reposi tories. mvenDepl oyer {
configuration = configurations. depl oyerJars
repository(url: "scp://repos. myconpany.conirel eases") {
aut henti cati on(user Nane: "

me", password: "myPassword")

There are many configuration options for the Maven deployer. The configuration is done via a Groovy
builder. All the elements of this tree are Java beans. To configure the simple attributes you pass a map to
the bean elements. To add bean elements to its parent, you use a closure. In the example above repository
and authentication are such bean elements. Table 33.4, “Configuration elements of the MavenDeployer”
lists the available bean elements and a link to the Javadoc of the corresponding class. In the Javadoc you
can see the possible attributes you can set for a particular element.

In Maven you can define repositories and optionally snapshot repositories. If no snapshot repository is
defined, releases and snapshots are both deployed to the r eposi t ory element. Otherwise snapshots are
deployed to the snapshot Reposi t ory element.

Page 319 of 680

Table 33.3. Protocol jars for Maven deployment

Protocol Library

http org.apache.maven.wagon:wagon-http:2.2

ssh org.apache.maven.wagon:wagon-ssh:2.2
ssh-external org.apache.maven.wagon:wagon-ssh-external:2.2
ftp org.apache.maven.wagon:wagon-ftp:2.2

webdav org.apache.maven.wagon:wagon-webdav:1.0-beta-2
file -

Table 33.4. Configuration elements of the MavenDeployer

Element Javadoc

root MavenDepl oyer

repository org.apache.maven.artifact.ant. RemoteRepository
authentication org.apache.maven.artifact.ant.Authentication
releases org.apache.maven.artifact.ant.RepositoryPolicy
shapshots org.apache.maven.artifact.ant.RepositoryPolicy
proxy org.apache.maven.artifact.ant.Proxy
shapshotRepository org.apache.maven.artifact.ant.RemoteRepository

33.6.3. Installing to the local repository

The Maven plugin adds an i nst al | task to your project. This task depends on all the archives task of the ar
configuration. It installs those archives to your local Maven repository. If the default location for the local
repository is redefined in a Maven set ti ngs. xml , this is considered by this task.

Page 320 of 680

http://www.gradle.org/docs/4.4.1/javadoc/org/gradle/api/artifacts/maven/MavenDeployer.html
http://www.docjar.com/docs/api/org/apache/maven/artifact/ant/RemoteRepository.html
http://www.docjar.com/docs/api/org/apache/maven/artifact/ant/Authentication.html
http://www.docjar.com/docs/api/org/apache/maven/artifact/ant/RepositoryPolicy.html
http://www.docjar.com/docs/api/org/apache/maven/artifact/ant/RepositoryPolicy.html
http://www.docjar.com/docs/api/org/apache/maven/artifact/ant/Proxy.html
http://www.docjar.com/docs/api/org/apache/maven/artifact/ant/RemoteRepository.html

33.6.4. Maven POM generation

When deploying an artifact to a Maven repository, Gradle automatically generates a POM for it. The gr oupl «
,artifactld, versi on and packagi ng elements used for the POM default to the values shown in the
table below. The dependency elements are created from the project’s dependency declarations.

Table 33.5. Default Values for Maven POM generation

Maven Element Default Value

groupld project.group

artifactld uploadTask.repositories.mavenDeployer.pom.artifactld (if set) or archiveTask.baseName.
version project.version

packaging archiveTask.extension

Here, upl oadTask and ar chi veTask refer to the tasks used for uploading and generating the archive,
respectively (for example upl oadAr chi ves and j ar). ar chi veTask. baseNane defaults to pr oj ect . ar ¢
which in turn defaults to pr oj ect . nane.

Note: When you set the “ar chi veTask. baseNane” property to a value other than the default,
you'll also have to set upl oadTask. r eposi tori es. mavenDepl oyer. pom artifactld to the
same value. Otherwise, the project at hand may be referenced with the wrong artifact ID from
generated POMs for other projects in the same build.

Generated POMs can be found in <bui | dDi r >/ pons. They can be further customized via the MavenPon
API. For example, you might want the artifact deployed to the Maven repository to have a different version or
name than the artifact generated by Gradle. To customize these you can do:

Example 33.5. Customization of pom

bui I d. gradl e
upl oadAr chi ves {
repositories {
mavenDepl oyer {
repository(url: "file://local host/tnp/ nyRepo/")
pomversion = '1. OMaven'
pomartifactld = ' nyMavenNane'

To add additional content to the POM, the pom pr oj ect builder can be used. With this builder, any element
listed in the Maven POM reference can be added.

Page 321 of 680

http://www.gradle.org/docs/4.4.1/javadoc/org/gradle/api/artifacts/maven/MavenPom.html
http://maven.apache.org/pom.html

Example 33.6. Builder style customization of pom

buil d. gradl e
upl oadAr chi ves {
repositories {
mavenDepl oyer {
repository(url: "file://local host/tnp/ nyRepo/")
pom proj ect {
licenses {
license {
name ' The Apache Software License, Version 2.0
url '"http://ww. apache. org/|icenses/ LI CENSE- 2. 0. t xt
distribution 'repo

Note: groupl d, arti fact!d, versi on, and packagi ng should always be set directly on the pomobject.

Example 33.7. Modifying auto-generated content

buil d. gradl e

def installer = install.repositories. mavenlnstall er
def depl oyer = upl oadArchives. repositories. mavenDepl oyer

[instal l er, deployer]*.pont.whenConfigured {pom ->
pom dependenci es. find {dep -> dep.groupld == 'group3' && dep.artifactld =="

If you have more than one artifact to publish, things work a little bit differently. See the section called
“Multiple artifacts per project”.

To customize the settings for the Maven installer (see Section 33.6.3, “Installing to the local repository”), you
can do:

Example 33.8. Customization of Maven installer

buil d. gradl e
install {
repositories. mavenlnstaller {
pomversion = '1. OMaven'

pomartifactld = ' nmyNane'

Page 322 of 680

Multiple artifacts per project

Maven can only deal with one artifact per project. This is reflected in the structure of the Maven POM. We
think there are many situations where it makes sense to have more than one artifact per project. In such a
case you need to generate multiple POMs. In such a case you have to explicitly declare each artifact you
want to publish to a Maven repository. The MavenDepl oyer and the Mavenlnstaller both provide an API for
this:

Example 33.9. Generation of multiple poms

buil d. gradl e

upl oadAr chi ves {
repositories {
mavenDepl oyer {
repository(url: "file://local host/tnp/ nyRepo/")
addFilter('api') {artifact, file ->

artifact.name == 'api'

}

addFilter('service') {artifact, file ->
artifact.name == 'service'

}

pon(' api').version = 'nySpeci al MavenVer si on'

You need to declare a filter for each artifact you want to publish. This filter defines a boolean expression for
which Gradle artifact it accepts. Each filter has a POM associated with it which you can configure. To learn
more about this have a look at Ponti | t er Cont ai ner and its associated classes.

Dependency mapping

The Maven plugin configures the default mapping between the Gradle configurations added by the Java and
War plugin and the Maven scopes. Most of the time you don’t need to touch this and you can safely skip this
section. The mapping works like the following. You can map a configuration to one and only one scope.
Different configurations can be mapped to one or different scopes. You can also assign a priority to a
particular configuration-to-scope mapping. Have a look at Conf 2ScopeMappi ngCont ai ner to learn more.
To access the mapping configuration you can say:

Example 33.10. Accessing a mapping configuration

bui I d. gradl e
task mappi ngs {
doLast {
println conf2ScopeMappi ngs. mappi ngs

Page 323 of 680

http://www.gradle.org/docs/4.4.1/javadoc/org/gradle/api/artifacts/maven/MavenDeployer.html
http://www.gradle.org/docs/4.4.1/javadoc/org/gradle/api/artifacts/maven/PomFilterContainer.html
http://www.gradle.org/docs/4.4.1/javadoc/org/gradle/api/artifacts/maven/Conf2ScopeMappingContainer.html

Gradle exclude rules are converted to Maven excludes if possible. Such a conversion is possible if in the
Gradle exclude rule the group as well as the module name is specified (as Maven needs both in contrast to
Ivy). Per-configuration excludes are also included in the Maven POM, if they are convertible.

[18] It is planned for a future release to provide out-of-the-box support for this

Page 324 of 680

34

The Signing Plugin

The signing plugin adds the ability to digitally sign built files and artifacts. These digital signatures can then
be used to prove who built the artifact the signature is attached to as well as other information such as when
the signature was generated.

The signing plugin currently only provides support for generating OpenPGP signatures (which is the
signature format required for publication to the Maven Central Repository).

34.1. Usage

To use the Signing plugin, include the following in your build script:

Example 34.1. Using the Signing plugin

bui | d. gradl e
apply plugin: 'signing

34.2. Signatory credentials

In order to create OpenPGP signatures, you will need a key pair (instructions on creating a key pair using
the GnuPG tools can be found in the GnuPG HOWTOS). You need to provide the signing plugin with your
key information, which means three things:

The public key ID (an 8 character hexadecimal string).

The absolute path to the secret key ring file containing your private key.

The passphrase used to protect your private key.

These items must be supplied as the values of properties si gni ng. keyl d, si gni ng. secr et KeyRi ngFi |
, and si gni ng. passwor d respectively. Given the personal and private nature of these values, a good

practice is to store them in the user gr adl e. properti es file (described in Section 12.2, “Gradle properties
and system properties”).

si gni ng. keyl d=24875D73
si gni ng. passwor d=secr et
si gni ng. secr et KeyRi ngFi | e=/ User s/ me/ . gnupg/ secri ng. gpg

Page 325 of 680

https://en.wikipedia.org/wiki/Pretty_Good_Privacy#OpenPGP
http://central.sonatype.org/pages/requirements.html#sign-files-with-gpgpgp
https://www.gnupg.org/
https://www.gnupg.org/documentation/howtos.html

If specifying this information (especially si gni ng. passwor d) in the user gr adl e. properti es file is not
feasible for your environment, you can source the information however you need to and set the project
properties manually.

i mport org.gradle. plugins. signing.Sign

gradl e. t askG aph. whenReady { taskG aph ->
if (taskGraph.all Tasks.any { it instanceof Sign }) {
/1 Use Java 6's console to read fromthe console (no good for
/1 a Cl environnent)
Consol e consol e = System consol e()
console.printf "\ n\nW have to sign some things in this build." +
"\ n\ nPl ease enter your signing details.\n\n"

def id = consol e.readLi ne("PGP Key 1d: ")
def file = consol e.readLi ne("PGP Secret Key Ring File (absolute path): "
def password = consol e. readPassword(" PGP Private Key Password: ")

al |l projects { ext."signing.keyld" =id }
al l projects { ext."signing.secretKeyRingFile" = file}
al | projects { ext."signing. password® = password }

consol e. printf "\ nThanks.\n\n"

Note that the presence of a null value for any these three properties will cause an exception.
34.2.1. Using OpenPGP subkeys

OpenPGP supports subkeys, which are like the normal keys, except they’re bound to a master key pair. One
feature of OpenPGP subkeys is that they can be revoked independently of the master keys which makes key
management easier. A practical case study of how subkeys can be leveraged in software development can
be read on the Debian wiki.

The signing plugin supports OpenPGP subkeys out of the box. Just specify a subkey ID as the value in the si
property.

34.3. Specifying what to sign

As well as configuring how things are to be signed (i.e. the signatory configuration), you must also specify
what is to be signed. The Signing plugin provides a DSL that allows you to specify the tasks and/or
configurations that should be signed.

34.3.1. Signing Configurations

It is common to want to sign the artifacts of a configuration. For example, the Java plugin configures a jar to
build and this jar artifact is added to the ar chi ves configuration. Using the Signing DSL, you can specify

that all of the artifacts of this configuration should be signed.

Page 326 of 680

https://wiki.debian.org/Subkeys

Example 34.2. Signhing a configuration

buil d. gradl e

si gning {
sign configurations. archives

This will create a task (of type Si gn) in your project named “si gnAr chi ves”, that will build any ar chi ves
artifacts (if needed) and then generate signatures for them. The signature files will be placed alongside the
artifacts being signed.

Example 34.3. Signing a configuration output

Output of gr adl e si gnAr chi ves
> gradl e signArchives
:conpi | eJava

. processResour ces

: cl asses

) ar

: si gnAr chi ves

BUI LD SUCCESSFUL in Os
4 actionable tasks: 4 executed

34.3.2. Signing Tasks

In some cases the artifact that you need to sign may not be part of a configuration. In this case you can
directly sign the task that produces the artifact to sign.

Example 34.4. Signing a task

buil d. gradl e

task stuffzip (type: Zip) {
baseNanme = "stuff"
from"src/stuff"

}

si gni ng {
sign stuffzp

}

This will create a task (of type Si gn) in your project named “si gnSt uf f Zi p”, that will build the input task’s
archive (if needed) and then sign it. The signature file will be placed alongside the artifact being signed.

Page 327 of 680

http://www.gradle.org/docs/4.4.1/dsl/org.gradle.plugins.signing.Sign.html
http://www.gradle.org/docs/4.4.1/dsl/org.gradle.plugins.signing.Sign.html

Example 34.5. Signing a task output

Output of gradl e signStuffZip

> gradle signStuffzp
cstuffZip
;signStuffzip

BU LD SUCCESSFUL in Os
2 actionabl e tasks: 2 executed

For a task to be “signable”, it must produce an archive of some type. Tasks that do this are the Tar, Zi p,

Jar, War and Ear tasks.

34.3.3. Conditional Signing

A common usage pattern is to only sign build artifacts under certain conditions. For example, you may not
wish to sign artifacts for non-release versions. To achieve this, you can specify that signing is only required
under certain conditions.

Example 34.6. Conditional signing

buil d. gradl e

version = ' 1. 0- SNAPSHOT'
ext.isRel easeVersion = !version. endsWt h(" SNAPSHOT")

signing {
required { isRel easeVersion && gradl e.taskG aph. hasTask(" upl oadAr chi ves") }
sign configurations. archives

In this example, we only want to require signing if we are building a release version and we are going to
publish it. Because we are inspecting the task graph to determine if we are going to be publishing, we must
set the signing.required property to a closure to defer the evaluation. See

Si gni ngExt ensi on. set Requi red(j ava. | ang. Qbj ect) for more information.

34.4. Publishing the signatures

When specifying what is to be signed via the Signing DSL, the resultant signature artifacts are automatically
added to the si gnat ures and ar chi ves dependency configurations. This means that if you want to
upload your signatures to your distribution repository along with the artifacts you simply execute the upl oad/
task as normal.

34.5. Signing POM files

Note: Signing the generated POM file generated by the Maven Publishing plugin is currently not
supported. Future versions of Gradle might add this functionality.

When deploying signatures for your artifacts to a Maven repository, you will also want to sign the published

Page 328 of 680

http://www.gradle.org/docs/4.4.1/dsl/org.gradle.api.tasks.bundling.Tar.html
http://www.gradle.org/docs/4.4.1/dsl/org.gradle.api.tasks.bundling.Zip.html
http://www.gradle.org/docs/4.4.1/dsl/org.gradle.api.tasks.bundling.Jar.html
http://www.gradle.org/docs/4.4.1/dsl/org.gradle.api.tasks.bundling.Jar.html
http://www.gradle.org/docs/4.4.1/dsl/org.gradle.api.tasks.bundling.War.html
http://www.gradle.org/docs/4.4.1/dsl/org.gradle.plugins.ear.Ear.html
http://www.gradle.org/docs/4.4.1/javadoc/org/gradle/plugins/signing/SigningExtension.html#setRequired(java.lang.Object)
http://www.gradle.org/docs/4.4.1/javadoc/org/gradle/plugins/signing/SigningExtension.html#setRequired(java.lang.Object)

POM file. The signing plugin adds a signing.si gnPom() (see:
Si gni ngExt ensi on. si gnPonm(org. gradl e. api . artifacts. maven. MavenDepl oynent,
groovy. |l ang. C osur e)) method that can be used in the bef or eDepl oynment () block in your upload

task configuration.

Example 34.7. Sighing a POM for deployment

buil d. gradl e

upl oadAr chi ves {
repositories {
mavenDepl oyer {
bef or eDepl oynent { MavenDepl oynent depl oynment -> signing. si gnPon(depl

When signing is not required and the POM cannot be signed due to insufficient configuration (i.e. no
credentials for signing) then the si gnPom() method will silently do nothing.

Page 329 of 680

http://www.gradle.org/docs/4.4.1/dsl/org.gradle.plugins.signing.SigningExtension.html#org.gradle.plugins.signing.SigningExtension:signPom(org.gradle.api.artifacts.maven.MavenDeployment, groovy.lang.Closure)
http://www.gradle.org/docs/4.4.1/dsl/org.gradle.plugins.signing.SigningExtension.html#org.gradle.plugins.signing.SigningExtension:signPom(org.gradle.api.artifacts.maven.MavenDeployment, groovy.lang.Closure)
http://www.gradle.org/docs/4.4.1/dsl/org.gradle.plugins.signing.SigningExtension.html#org.gradle.plugins.signing.SigningExtension:signPom(org.gradle.api.artifacts.maven.MavenDeployment, groovy.lang.Closure)

35

lvy Publishing (new)

Note: This chapter describes the new incubating Ivy publishing support provided by the “i vy- publ i sh
" plugin. Eventually this new publishing support will replace publishing via the Upl oad task.

If you are looking for documentation on the original vy publishing support using the Upl oad task
please see Chapter 32, Publishing artifacts.

This chapter describes how to publish build artifacts in the Apache lvy format, usually to a repository for
consumption by other builds or projects. What is published is one or more artifacts created by the build, and
an lvy module descriptor (normally i vy. xm) that describes the artifacts and the dependencies of the
artifacts, if any.

A published Ivy module can be consumed by Gradle (see Chapter 25, Dependency Management) and other
tools that understand the Ivy format.

35.1. The “i vy- publ i sh” Plugin
The ability to publish in the Ivy format is provided by the “i vy- publ i sh” plugin.

The “publ i shing” plugin creates an extension on the project named “publi shing” of type
Publ i shi ngExt ensi on. This extension provides a container of hamed publications and a container of
named repositories. The “i vy-publish” plugin works with | vyPubl i cation publications and
| vyArtifact Reposit ory repositories.

Example 35.1. Applying the “ivy-publish” plugin

bui | d. gradl e
apply plugin: "ivy-publish'
Applying the “i vy- publ i sh” plugin does the following:

Applies the “publ i shi ng” plugin

Establishes a rule to automatically create a Gener at el vyDescri pt or task for each | vyPubl i cati on
added (see Section 35.2, “Publications”).

Establishes a rule to automatically create a Publ i shTol vyReposi t ory task for the combination of each

Page 330 of 680

http://ant.apache.org/ivy/
http://www.gradle.org/docs/4.4.1/dsl/org.gradle.api.publish.PublishingExtension.html
http://www.gradle.org/docs/4.4.1/dsl/org.gradle.api.publish.PublishingExtension.html
http://www.gradle.org/docs/4.4.1/dsl/org.gradle.api.publish.ivy.IvyPublication.html
http://www.gradle.org/docs/4.4.1/dsl/org.gradle.api.artifacts.repositories.IvyArtifactRepository.html
http://www.gradle.org/docs/4.4.1/dsl/org.gradle.api.artifacts.repositories.IvyArtifactRepository.html
http://www.gradle.org/docs/4.4.1/dsl/org.gradle.api.publish.ivy.tasks.GenerateIvyDescriptor.html
http://www.gradle.org/docs/4.4.1/dsl/org.gradle.api.publish.ivy.IvyPublication.html
http://www.gradle.org/docs/4.4.1/dsl/org.gradle.api.publish.ivy.tasks.PublishToIvyRepository.html
http://www.gradle.org/docs/4.4.1/dsl/org.gradle.api.publish.ivy.IvyPublication.html

| vyPubl i cat i on added (see Section 35.2, “Publications”), with each | vyArti f act Reposi t ory added
(see Section 35.3, “Repositories”).

35.2. Publications

Note: If you are not familiar with project artifacts and configurations, you should read Chapter 32,
Publishing artifacts, which introduces these concepts. This chapter also describes “publishing
artifacts” using a different mechanism than what is described in this chapter. The publishing
functionality described here will eventually supersede that functionality.

Publication objects describe the structure/configuration of a publication to be created. Publications are
published to repositories via tasks, and the configuration of the publication object determines exactly what is
published. All of the publications of a project are defined in the
Publ i shi ngExt ensi on. get Publ i cati ons() container. Each publication has a unique name within the
project.

For the “i vy- publ i sh” plugin to have any effect, an | vyPubl i cati on must be added to the set of
publications. This publication determines which artifacts are actually published as well as the details included
in the associated Ivy module descriptor file. A publication can be configured by adding components,
customizing artifacts, and by modifying the generated module descriptor file directly.

35.2.1. Publishing a Software Component

The simplest way to publish a Gradle project to an lvy repository is to specify a Sof t war eConponent to
publish. The components presently available for publication are:

Table 35.1. Software Components

Name Provided By Artifacts Dependencies
j ava Java Plugin Generated jar file Dependencies from 'runtime' configuration
web War Plugin Generated war file No dependencies

In the following example, artifacts and runtime dependencies are taken from the j ava component, which is
added by the Java Pl ugi n.

Example 35.2. Publishing a Java module to lvy

bui | d. gradl e

publications {
i vyJava(lvyPublication) {
from conponents. j ava

Page 331 of 680

http://www.gradle.org/docs/4.4.1/dsl/org.gradle.api.publish.ivy.IvyPublication.html
http://www.gradle.org/docs/4.4.1/dsl/org.gradle.api.artifacts.repositories.IvyArtifactRepository.html
http://www.gradle.org/docs/4.4.1/dsl/org.gradle.api.publish.PublishingExtension.html#org.gradle.api.publish.PublishingExtension:publications
http://www.gradle.org/docs/4.4.1/dsl/org.gradle.api.publish.PublishingExtension.html#org.gradle.api.publish.PublishingExtension:publications
http://www.gradle.org/docs/4.4.1/dsl/org.gradle.api.publish.ivy.IvyPublication.html
http://www.gradle.org/docs/4.4.1/javadoc/org/gradle/api/component/SoftwareComponent.html

35.2.2. Publishing custom artifacts

It is also possible to explicitly configure artifacts to be included in the publication. Artifacts are commonly
supplied as raw files, or as instances of Abst r act Ar chi veTask (e.g. Jar, Zip).

For each custom artifact, it is possible to specify the nane, ext ensi on, type, cl assi fi er and conf
values to use for publication. Note that each artifacts must have a unique name/classifier/extension
combination.

Configure custom artifacts as follows:

Example 35.3. Publishing additional artifact to vy

bui | d. gradl e

task sourceldar(type: Jar) {
from sourceSets. main. java
classifier "source"

}
publi shing {
publications {

i vy(lvyPublication) {
from conmponents. j ava
artifact(sourcedar) ({

type "source"
conf "conpile"
}
}
}
}

See the | vyPubl i cati on class in the APl documentation for more detailed information on how artifacts
can be customized.

35.2.3. Identity values for the published project

The generated Ivy module descriptor file contains an <i nf 0> element that identifies the module. The default
identity values are derived from the following:

organi sati on - Proj ect.get G oup()
nmodul e - Proj ect . get Nane()

revi si on-Project.getVersion()
status - Proj ect. get Stat us()
branch - (not set)

Overriding the default identity values is easy: simply specify the or gani sati on, nodul e or revi si on
attributes when configuring the | vyPubl i cati on. The st at us and br anch attributes can be set via the de

Page 332 of 680

http://www.gradle.org/docs/4.4.1/dsl/org.gradle.api.tasks.bundling.AbstractArchiveTask.html
http://www.gradle.org/docs/4.4.1/dsl/org.gradle.api.publish.ivy.IvyPublication.html
http://www.gradle.org/docs/4.4.1/dsl/org.gradle.api.Project.html#org.gradle.api.Project:group
http://www.gradle.org/docs/4.4.1/dsl/org.gradle.api.Project.html#org.gradle.api.Project:name
http://www.gradle.org/docs/4.4.1/dsl/org.gradle.api.Project.html#org.gradle.api.Project:version
http://www.gradle.org/docs/4.4.1/dsl/org.gradle.api.Project.html#org.gradle.api.Project:status

property (see | vyMbdul eDescri ptor Spec). The descri pt or property can also be used to add
additional custom elements as children of the <i nf o> element.

Example 35.4. customizing the publication identity

bui | d. gradl e
publi shing {
publications {
i vy(lvyPublication) {
organi sation 'org.gradl e.sanpl e’
nmodul e ' proj ect 1- sanpl e
revision '1.1'

descriptor.status = 'mlestone'
descriptor.branch = '"testing'
descriptor.extralnfo 'http://ny. namespace', 'nyElenent', 'Sone val ue'

from conmponents. j ava

Tip: Certain repositories are not able to handle all supported characters. For example, the "'
character cannot be used as an identifier when publishing to a filesystem-backed repository on
Windows.

Gradle will handle any valid Unicode character for organisation, module and revision (as well as artifact
name, extension and classifier). The only values that are explicitly prohibited are ‘\’, ‘/ * and any ISO control
character. The supplied values are validated early during publication.

35.2.4. Modifying the generated module descriptor

At times, the module descriptor file generated from the project information will need to be tweaked before
publishing. The “i vy- publ i sh” plugin provides a hook to allow such modification.

Example 35.5. Customizing the module descriptor file

bui | d. gradl e
publications {
i vyCust on(| vyPubl i cation) {
descriptor.wi thXm {
asNode() . i nfo[0] . appendNode(' descri ption',
"A denonstration of ivy descriptor custol

In this example we are simply adding a 'description’ element to the generated Ivy dependency descriptor, but
this hook allows you to modify any aspect of the generated descriptor. For example, you could replace the
version range for a dependency with the actual version used to produce the build.

Page 333 of 680

http://www.gradle.org/docs/4.4.1/dsl/org.gradle.api.publish.ivy.IvyModuleDescriptorSpec.html

See | vyMbdul eDescri pt or Spec. wi t hXm (or g. gradl e. api . Acti on) in the APl documentation for
more information.

It is possible to modify virtually any aspect of the created descriptor should you need to. This means that it is
also possible to modify the descriptor in such a way that it is no longer a valid Ivy module descriptor, so care
must be taken when using this feature.

The identifier (organisation, module, revision) of the published module is an exception; these values cannot
be modified in the descriptor using the wi t hXM_ hook.

35.2.5. Publishing multiple modules

Sometimes it's useful to publish multiple modules from your Gradle build, without creating a separate Gradle
subproject. An example is publishing a separate API and implementation jar for your library. With Gradle this
is simple:

Example 35.6. Publishing multiple modules from a single project

bui I d. gradl e

task apiJar(type: Jar) {
baseName "publishing-api"
from sour ceSet s. mai n. out put
exclude " **/inpl/**

}
publi shing {
publications {
i mpl (1vyPublication) {
organi sation 'org.gradle.sanple.inpl'
nmodul e ' proj ect 2-i npl
revision '2.3'
from conmponents. java
}
api (1 vyPublication) {
organi sation 'org.gradle.sanpl e’
nmodul e ' proj ect 2- api
revision '2
}
}
}

If a project defines multiple publications then Gradle will publish each of these to the defined repositories.
Each publication must be given a unique identity as described above.

35.3. Repositories

Publications are published to repositories. The repositories to publish to are defined by the
Publ i shi ngExt ensi on. get Reposi tori es() container.

Page 334 of 680

http://www.gradle.org/docs/4.4.1/dsl/org.gradle.api.publish.ivy.IvyModuleDescriptorSpec.html#org.gradle.api.publish.ivy.IvyModuleDescriptorSpec:withXml(org.gradle.api.Action)
http://www.gradle.org/docs/4.4.1/dsl/org.gradle.api.publish.PublishingExtension.html#org.gradle.api.publish.PublishingExtension:repositories
http://www.gradle.org/docs/4.4.1/dsl/org.gradle.api.publish.PublishingExtension.html#org.gradle.api.publish.PublishingExtension:repositories

Example 35.7. Declaring repositories to publish to

buil d. gradl e
repositories {
ivy {

url "$buil dDir/repo”

The DSL used to declare repositories for publishing is the same DSL that is used to declare repositories for
dependencies (Reposit or yHandl er). However, in the context of Ivy publication only the repositories
created by the i vy() methods can be used as publication destinations. You cannot publish an | vyPubl i ca
to a Maven repository for example.

35.4. Performing a publish

The “i vy-publish” plugin automatically creates a Publi shTol vyRepository task for each
| vyPubl i cationandlvyArtifact Repository combination in the publ i shi ng. publ i cati ons and |
containers respectively.

The created task is named “publ i sh« PUBNAME»Publ i cati onTo« REPONAME»Reposi t ory”, which is “pt
" for this example. This task is of type Publ i shTol vyReposi tory.

Page 335 of 680

http://www.gradle.org/docs/4.4.1/dsl/org.gradle.api.artifacts.dsl.RepositoryHandler.html
http://www.gradle.org/docs/4.4.1/dsl/org.gradle.api.publish.ivy.tasks.PublishToIvyRepository.html
http://www.gradle.org/docs/4.4.1/dsl/org.gradle.api.publish.ivy.IvyPublication.html
http://www.gradle.org/docs/4.4.1/dsl/org.gradle.api.publish.ivy.IvyPublication.html
http://www.gradle.org/docs/4.4.1/dsl/org.gradle.api.artifacts.repositories.IvyArtifactRepository.html
http://www.gradle.org/docs/4.4.1/dsl/org.gradle.api.publish.ivy.tasks.PublishToIvyRepository.html

Example 35.8. Choosing a particular publication to publish

buil d. gradl e

apply plugin: 'java'
apply plugin: "ivy-publish'

group = 'org.gradle.sanpl e’
version = '1.0

publ i shing {
publications {
i vyJava(l vyPublication) {
from conponents. j ava

}
}
repositories {
ivy {
url "$buil dDir/repo"
}
}

Output of gr adl e publ i shl vyJavaPubli cati onTol vyRepository

> gradl e publishlvyJavaPubli cati onTol vyReposi tory
. gener at eDescri ptorFi | eForlvyJavaPubl i cati on

: conpi | eJava NO SOURCE

. processResour ces NO SOURCE

:cl asses UP- TO DATE

) ar

: publ i shl vyJavaPubl i cati onTol vyRepository

BU LD SUCCESSFUL in Os
3 actionable tasks: 3 executed

35.4.1. The “publ i sh” lifecycle task

The “publ i sh” plugin (that the “i vy- publ i sh” plugin implicitly applies) adds a lifecycle task that can be
used to publish all publications to all applicable repositories named “publ i sh”.

In more concrete terms, executing this task will execute all Publ i shTol vyReposi t ory tasks in the
project. This is usually the most convenient way to perform a publish.

Page 336 of 680

http://www.gradle.org/docs/4.4.1/dsl/org.gradle.api.publish.ivy.tasks.PublishToIvyRepository.html

Example 35.9. Publishing all publications via the “publish” lifecycle task

Output of gr adl e publ i sh

> gradl e publish

: gener at eDescri pt or Fi | eFor | vyJavaPubl i cati on
: conpi | eJava NO SOURCE

> processResour ces NO SOURCE

: cl asses UP- TO DATE

tjar
: publ i shl vyJavaPubl i cati onTol vyReposi tory
: publish

BU LD SUCCESSFUL in Os
3 actionabl e tasks: 3 executed

35.5. Generating the vy module descriptor file without publishing

At times it is useful to generate the Ivy module descriptor file (normally i vy. xm) without publishing your
module to an lvy repository. Since descriptor file generation is performed by a separate task, this is very
easy to do.

The “i vy-publish” plugin creates one GeneratelvyDescriptor task for each registered
| vyPubl i cati on, named “gener at eDescri pt or Fi | eFor « PUBNAME»Publ i cat i on”, which will be “ge
" for the previous example of the “i vyJava” publication.

You can specify where the generated Ivy file will be located by setting the dest i nati on property on the
generated task. By default this file is written to “bui | d/ publ i cat i ons/ « PUBNAME»/ i vy. xm ",

Example 35.10. Generating the Ivy module descriptor file

buil d. gradl e

nodel {
t asks. gener at eDescri pt or Fi | eFor | vyCust onPubl i cati on {
destination = file("$buildDir/generated-ivy.xm")

}

Output of gr adl e gener at eDescri pt or Fi | eFor | vyCust onPubl i cati on

> gradl e generateDescriptorFil eForlvyCustonPublication
: gener at eDescri ptorFi | eForlvyCust onPubl i cati on

BUI LD SUCCESSFUL i n Os
1 actionable task: 1 executed

Note: The “i vy-publish” plugin leverages some experimental support for late plugin

configuration, and the Gener at el vyDescri pt or task will not be constructed until the publishing
extension is configured. The simplest way to ensure that the publishing plugin is configured when

Page 337 of 680

http://www.gradle.org/docs/4.4.1/dsl/org.gradle.api.publish.ivy.tasks.GenerateIvyDescriptor.html
http://www.gradle.org/docs/4.4.1/dsl/org.gradle.api.publish.ivy.IvyPublication.html
http://www.gradle.org/docs/4.4.1/dsl/org.gradle.api.publish.ivy.IvyPublication.html

you attempt to access the Gener at el vyDescri pt or task is to place the access inside a nodel
block, as the example above demonstrates.

The same applies to any attempt to access publication-specific tasks like
Publ i shTol vyReposi t ory. These tasks should be referenced from within a nodel block.

35.6. Complete example

The following example demonstrates publishing with a multi-project build. Each project publishes a Java
component and a configured additional source artifact. The descriptor file is customized to include the
project description for each project.

Example 35.11. Publishing a Java module

bui | d. gradl e
subprojects {
apply plugin: 'java'
apply plugin: "ivy-publish'

version = '1.0'
group = 'org.gradle.sanple’

repositories {
mavenCentral ()

}

task sourcelar(type: Jar) {
from sourceSets. nai n. java
classifier "source"

project(":projectl") {
description = "The first project"

dependenci es {
compile "junit:junit:4.12", project(':project2')

project(":project2") {
description = "The second project"

dependenci es {
conpi | e ' comons-col | ecti ons: commons-col | ections: 3. 2. 2

subproj ects {
publ i shing {

Page 338 of 680

http://www.gradle.org/docs/4.4.1/dsl/org.gradle.api.publish.ivy.tasks.PublishToIvyRepository.html
http://www.gradle.org/docs/4.4.1/dsl/org.gradle.api.publish.ivy.tasks.PublishToIvyRepository.html

repositories {
ivy {
/'l change to point to your repo

e.g.

url "${rootProject.buildbDir}/repo"

}
publications {
i vy(lvyPublication) {
from conponents. j ava
artifact(sourcedar) {
type "source"
conf "conpile"

}

descriptor.w thXm {

http://ny.org/ repo

asNode().info[0].appendNode(' description', description)

Page 339 of 680

The result is that the following artifacts will be published for each project:

The Ivy module descriptor file: “i vy- 1. 0. xm .
The primary “jar” artifact for the Java component: “pr oj ect 1- 1. 0. j ar".

The source “jar” artifact that has been explicitly configured: “pr oj ect 1- 1. 0- sour ce. j ar”.
When pr oj ect 1 is published, the module descriptor (i.e. the i vy. xm file) that is produced will look like:

Tip: Note that «PUBLI CATI ON- TI ME- STAMP» in this example vy module descriptor will be the
timestamp of when the descriptor was generated.

Example 35.12. Example generated ivy.xml

out put-i vy. xm
<?xm version="1.0" encodi ng="UTF-8"?>
<i vy-nodul e version="2.0">
<i nfo organi sati on="org. gradl e. sanpl e" nodul e="proj ect1" revision="1.0" status:
<description>The first project</description>
</i nf o>
<confi gurations>
<conf nanme="conpile" visibility="public"/>
<conf name="default" visibility="public" extends="conpile,runtine"/>
<conf name="runtinme" visibility="public"/>
</ configurati ons>
<publ i cati ons>
<artifact name="projectl" type="jar" ext="jar" conf="conpile"/>
<artifact name="projectl"” type="source" ext="jar" conf="conpile" mclassifie
</ publicati ons>
<dependenci es>
<dependency org="junit" name="junit" rev="4.12" conf="conpile->defaul t"/>
<dependency org="org. gradl e. sanpl e" nane="project2" rev="1.0" conf="conpil e-.
</ dependenci es>
</i vy-nodul e>

35.7. Future features

The “i vy- publ i sh” plugin functionality as described above is incomplete, as the feature is still incubating.
In upcoming Gradle releases, the functionality will be expanded to include (but not limited to):

Convenient customization of module attributes (modul e, or gani sat i on etc.)
Convenient customization of dependencies reported in nodul e descri ptor.

Multiple discrete publications per project

Page 340 of 680

36

Maven Publishing (new)

Note: This chapter describes the new incubating Maven publishing support provided by the “naven- pu
" plugin. Eventually this new publishing support will replace publishing via the Upl oad task.

Note: Signing the generated POM file generated by this plugin is currently not supported. Future
versions of Gradle might add this functionality. Please use the Maven plugin for the purpose of
publishing your artifacts to Maven Central.

If you are looking for documentation on the original Maven publishing support using the Upl oad
task please see Chapter 32, Publishing artifacts.

This chapter describes how to publish build artifacts to an Apache Maven Repository. A module published to
a Maven repository can be consumed by Maven, Gradle (see Chapter 25, Dependency Management) and
other tools that understand the Maven repository format.

36.1. The “maven- publ i sh” Plugin
The ability to publish in the Maven format is provided by the “maven- publ i sh” plugin.

The “publ i shing” plugin creates an extension on the project named “publi shing” of type
Publ i shi ngExt ensi on. This extension provides a container of hamed publications and a container of
named repositories. The “maven- publ i sh” plugin works with MavenPubl i cati on publications and
MavenArti f act Reposit ory repositories.

Example 36.1. Applying the 'maven-publish’ plugin

buil d. gradl e
apply plugin: 'maven-publish’

Applying the “maven- publ i sh” plugin does the following:

Applies the “publ i shi ng” plugin

Establishes a rule to automatically create a Gener at eMavenPomtask for each MavenPubl i cat i on added
(see Section 36.2, “Publications”).

Establishes a rule to automatically create a Publ i shToMavenReposi t ory task for the combination of

Page 341 of 680

http://maven.apache.org/
http://www.gradle.org/docs/4.4.1/dsl/org.gradle.api.publish.PublishingExtension.html
http://www.gradle.org/docs/4.4.1/dsl/org.gradle.api.publish.PublishingExtension.html
http://www.gradle.org/docs/4.4.1/dsl/org.gradle.api.publish.maven.MavenPublication.html
http://www.gradle.org/docs/4.4.1/dsl/org.gradle.api.artifacts.repositories.MavenArtifactRepository.html
http://www.gradle.org/docs/4.4.1/dsl/org.gradle.api.artifacts.repositories.MavenArtifactRepository.html
http://www.gradle.org/docs/4.4.1/dsl/org.gradle.api.publish.maven.tasks.GenerateMavenPom.html
http://www.gradle.org/docs/4.4.1/dsl/org.gradle.api.publish.maven.MavenPublication.html
http://www.gradle.org/docs/4.4.1/dsl/org.gradle.api.publish.maven.tasks.PublishToMavenRepository.html

each MavenPublication added (see Section 36.2, “Publications”), with each
MavenArti f act Reposit ory added (see Section 36.3, “Repositories”).

Establishes a rule to automatically create a Publ i shToMavenLocal task for each MavenPubl i cati on
added (seeSection 36.2, “Publications”).

36.2. Publications

Note: If you are not familiar with project artifacts and configurations, you should read the
Chapter 32, Publishing artifacts that introduces these concepts. This chapter also describes
“publishing artifacts” using a different mechanism than what is described in this chapter. The
publishing functionality described here will eventually supersede that functionality.

Publication objects describe the structure/configuration of a publication to be created. Publications are
published to repositories via tasks, and the configuration of the publication object determines exactly what is
published. All of the publications of a project are defined in the
Publ i shi ngExt ensi on. get Publ i cati ons() container. Each publication has a unique name within the
project.

For the “maven- publ i sh” plugin to have any effect, a MavenPubl i cati on must be added to the set of
publications. This publication determines which artifacts are actually published as well as the details included
in the associated POM file. A publication can be configured by adding components, customizing artifacts,
and by modifying the generated POM file directly.

36.2.1. Publishing a Software Component

The simplest way to publish a Gradle project to a Maven repository is to specify a Sof t war eConponent to
publish. The components presently available for publication are:

Table 36.1. Software Components

Name Provided By Artifacts Dependencies
java Chapter 48, The Java Plugin Generated jar file Dependencies from 'runtime' configuration
web Chapter 51, The War Plugin Generated war file No dependencies

In the following example, artifacts and runtime dependencies are taken from the j ava component, which is
added by the Java Pl ugi n.

Page 342 of 680

http://www.gradle.org/docs/4.4.1/dsl/org.gradle.api.publish.maven.MavenPublication.html
http://www.gradle.org/docs/4.4.1/dsl/org.gradle.api.artifacts.repositories.MavenArtifactRepository.html
http://www.gradle.org/docs/4.4.1/dsl/org.gradle.api.artifacts.repositories.MavenArtifactRepository.html
http://www.gradle.org/docs/4.4.1/javadoc/org/gradle/api/publish/maven/tasks/PublishToMavenLocal.html
http://www.gradle.org/docs/4.4.1/dsl/org.gradle.api.publish.maven.MavenPublication.html
http://www.gradle.org/docs/4.4.1/dsl/org.gradle.api.publish.PublishingExtension.html#org.gradle.api.publish.PublishingExtension:publications
http://www.gradle.org/docs/4.4.1/dsl/org.gradle.api.publish.PublishingExtension.html#org.gradle.api.publish.PublishingExtension:publications
http://www.gradle.org/docs/4.4.1/dsl/org.gradle.api.publish.maven.MavenPublication.html
http://www.gradle.org/docs/4.4.1/javadoc/org/gradle/api/component/SoftwareComponent.html

Example 36.2. Adding a MavenPublication for a Java component

buil d. gradl e
publ i shing {
publications {
mavenJava(MavenPubl i cati on) {
from conponents. j ava

36.2.2. Publishing custom artifacts

It is also possible to explicitly configure artifacts to be included in the publication. Artifacts are commonly
supplied as raw files, or as instances of Abst r act Ar chi veTask (e.g. Jar, Zip).

For each custom artifact, it is possible to specify the ext ensi on and cl assi fi er values to use for
publication. Note that only one of the published artifacts can have an empty classifier, and all other artifacts
must have a unique classifier/extension combination.

Configure custom artifacts as follows:

Example 36.3. Adding additional artifact to a MavenPublication

bui I d. gradl e

task sourceldar(type: Jar) {
from sourceSets. mai n. al | Java

}
publ i shing {
publications {
mavenJava(MavenPubl i cati on) {
from conponents. j ava
artifact sourcedar ({
classifier "sources"”
}
}
}
}

See the MavenPubl i cat i on class in the APl documentation for more information about how artifacts can
be customized.

36.2.3. Identity values in the generated POM

The attributes of the generated POM file will contain identity values derived from the following project
properties:

Page 343 of 680

http://www.gradle.org/docs/4.4.1/dsl/org.gradle.api.tasks.bundling.AbstractArchiveTask.html
http://www.gradle.org/docs/4.4.1/dsl/org.gradle.api.publish.maven.MavenPublication.html

groupl d - Proj ect. get G oup()
artifactld-Project.getNane()

versi on - Proj ect. get Versi on()

Overriding the default identity values is easy: simply specify the groupld, artifactld or version
attributes when configuring the MavenPubl i cat i on.

Example 36.4. customizing the publication identity

buil d. gradl e
publ i shing {
publications {
maven(MavenPubl i cation) {
groupld 'org.gradle.sanpl e
artifactld 'projectl-sanple'
version '1.1'

from conponents. j ava

Tip: Certain repositories will not be able to handle all supported characters. For example, the "'
character cannot be used as an identifier when publishing to a filesystem-backed repository on
Windows.

Maven restricts 'groupld’ and ‘'artifactld’ to a limited character set ([A- Za-z0-9_\\-.]+) and Gradle
enforces this restriction. For 'version' (as well as artifact 'extension’ and 'classifier’), Gradle will ha