[BD08a] Bagchi, B. and Datta, B., Lower bound theorem for normal pseudomanifolds, Expo. Math., 26 (4) (2008), 327--351.
[BD08b] Bagchi, B. and Datta, B., On Walkup's class mathcalK(d) and a minimal triangulation of a 4-manifold (2008), {\tt arXiv:0804.2153v1 [math.GT]}, Preprint, 8 pages.
[Ban65] Banchoff, T. F., Tightly embedded 2-dimensional polyhedral manifolds, Amer. J. Math., 87 (1965), 462--472.
[Ban74] Banchoff, T. F., Tight polyhedral Klein bottles, projective planes, and M\"obius bands, Math. Ann., 207 (1974), 233--243.
[BK97] Banchoff, T. F. and K{\"u}hnel, W., Tight submanifolds, smooth and polyhedral, in Tight and taut submanifolds (Berkeley, CA, 1994), Cambridge Univ. Press, Math. Sci. Res. Inst. Publ., 32, Cambridge (1997), 51--118.
[BR08] Barakat, M. and Robertz, D., \tt homalg: a meta-package for homological algebra, J. Algebra Appl., 7 (3) (2008), 299--317.
[BABRBWP12] Benjamin A. Burton Ryan Budney William Pettersson, e. a., Regina: Software for 3-manifold topology and normal surface theory, Version 4.9.2 (1999--2012), {\tt http://\allowbreak regina.\allowbreak sourceforge.\allowbreak net/}.
[BL00] Bj{\"o}rner, A. and Lutz, F. H., Simplicial manifolds, bistellar flips and a 16-vertex triangulation of the Poincar\'e homology 3-sphere, Experiment. Math., 9 (2) (2000), 275--289.
[BK09] Brehm, U. and K\"uhnel, W.,
Lattice triangulations of E^3 and of the
3-torus
(2009)
({To appear in Israel J. Math.}).
[BK08] Brehm, U. and K{\"u}hnel, W., Equivelar maps on the torus, European J. Combin., 29 (8) (2008), 1843--1861.
[BL98] Breuer, T. and Linton, S., The GAP 4 type system: organising algebraic algorithms, in Proceedings of the 1998 international symposium on Symbolic and algebraic computation, ACM, ISSAC '98, New York, NY, USA (1998), 38--45.
[CK01] Casella, M. and K{\"u}hnel, W., A triangulated K3 surface with the minimum number of vertices, Topology, 40 (4) (2001), 753--772.
[Con09] Conder, M. D. E., Regular maps and hypermaps of Euler characteristic -1 to -200, J. Combin. Theory Ser. B, 99 (2) (2009), 455--459.
[Dat07] Datta, B., Minimal triangulations of manifolds, J. Indian Inst. Sci., 87 (4) (2007), 429--449.
[DKT08] Desbrun, M., Kanso, E. and Tong, Y., Discrete differential forms for computational modeling, in Discrete differential geometry, Birkh\"auser, Oberwolfach Semin., 38, Basel (2008), 287--324.
[DHSW04] Dumas, J. -.G., Heckenbach, F., Saunders, B. D. and Welker, V., Simplicial Homology, v. 1.4.2 (2004), {\url{http://www.cis.udel.edu/~dumas/Homology/}}.
[Eff11a] Effenberger, F.,
Hamiltonian submanifolds of regular polytopes,
Logos Verlag, Berlin
(2011)
(Dissertation, University of Stuttgart, 2010).
[Eff11b] Effenberger, F., Stacked polytopes and tight triangulations of manifolds, Journal of Combinatorial Theory, Series A, 118 (6) (2011), 1843 - 1862.
[For95] Forman, R., A discrete Morse theory for cell complexes, in Geometry, topology, \& physics, Int. Press, Cambridge, MA, Conf. Proc. Lecture Notes Geom. Topology, IV (1995), 112--125.
[Fro08] Frohmader, A., Face vectors of flag complexes, Israel J. Math., 164 (2008), 153--164.
[GJ00] Gawrilow, E. and Joswig, M., polymake: a framework for analyzing convex polytopes, in Polytopes---combinatorics and computation (Oberwolfach, 1997), Birkh{\"a}user, DMV Sem., 29, Basel (2000), 43--73.
[GS09] Grayson, D. R. and Stillman, M. E., Macaulay2, a software system for research in algebraic geometry, Version 1.3.1 (2009), \url{http://www.math.uiuc.edu/Macaulay2/}.
[Gr{03] Gr{\"u}nbaum, B.,
Convex polytopes,
Springer-Verlag,
Second edition,
Graduate Texts in Mathematics,
221,
New York
(2003),
xvi+468 pages
(Prepared and with a preface by Volker Kaibel, Victor Klee and
G{\"u}nter
M.\ Ziegler).
[Hak61] Haken, W., Theorie der Normalfl\"achen, Acta Math., 105 (1961), 245--375.
[Hau00] Hauser, H., Resolution of singularities 1860--1999, in Resolution of singularities (Obergurgl, 1997), Birkh\"auser, Progr. Math., 181, Basel (2000), 5--36.
[Hir53] Hirzebruch, F. E. P., \"Uber vierdimensionale Riemannsche Fl\"achen mehrdeutiger analyti\-scher Funktionen von zwei komplexen Ver\"anderlichen, Math. Ann., 126 (1953), 1 -- 22.
[Hop51] Hopf, H., \"Uber komplex-analytische Mannigfaltigkeiten, Univ. Roma. Ist. Naz. Alta Mat. Rend. Mat. e Appl. (5), 10 (1951), 169--182.
[Hud69] Hudson, J. F. P., Piecewise linear topology, W. A. Benjamin, Inc., New York-Amsterdam, University of Chicago Lecture Notes prepared with the assistance of J. L. Shaneson and J. Lees (1969), ix+282 pages.
[Hup67] Huppert, B., Endliche Gruppen. I, Springer-Verlag, Die Grundlehren der Mathematischen Wissenschaften, Band 134, Berlin (1967), xii+793 pages.
[KN11] Klee, S. and Novik, I., Centrally symmetric manifolds with few vertices (2011), {\tt arXiv:1102.0542v1 [math.CO]}, Preprint, 15 pages.
[Kne29] Kneser, H., Geschlossene Fl\"achen in dreidimensionalen Mannigfaltigkeiten, Jahresbericht der deutschen Mathematiker-Vereinigung, 38 (1929), 248--260.
[Kui84] Kuiper, N. H., Geometry in total absolute curvature theory, in Perspectives in mathematics, Birkh{\"a}user, Basel (1984), 377--392.
[K{\86] K{\"u}hnel, W., Higher dimensional analogues of Cs\'asz\'ar's torus, Results Math., 9 (1986), 95--106.
[K{\94] K{\"u}hnel, W., Manifolds in the skeletons of convex polytopes, tightness, and generalized Heawood inequalities, in Polytopes: abstract, convex and computational (Scarborough, ON, 1993), Kluwer Acad. Publ., NATO Adv. Sci. Inst. Ser. C Math. Phys. Sci., 440, Dordrecht (1994), 241--247.
[K{\95] K{\"u}hnel, W., Tight polyhedral submanifolds and tight triangulations, Springer-Verlag, Lecture Notes in Mathematics, 1612, Berlin (1995), vi+122 pages.
[KL99] K{\"u}hnel, W. and Lutz, F. H.,
A census of tight triangulations,
Period. Math. Hungar.,
39 (1-3)
(1999),
161--183
({D}iscrete geometry and rigidity ({B}udapest, 1999)).
[Lut03] Lutz, F. H., Triangulated Manifolds with Few Vertices and Vertex-Transitive Group Actions, Ph.D. thesis, TU Berlin (2003).
[Lut05] Lutz, F. H., Triangulated Manifolds with Few Vertices: Combinatorial Manifolds (2005), {\tt arXiv:math/0506372v1 [math.CO]}, Preprint, 37 pages.
[ManifoldPage] Lutz, F. H., The Manifold Page, {\url{http://www.math.tu-berlin.de/diskregeom/stellar}}.
[McK84] McKay, B., The nauty page (1984), {\url{http://cs.anu.edu.au/people/bdm/nauty/}}.
[Pac87] Pachner, U., Konstruktionsmethoden und das kombinatorische Hom\"oomorphieproblem f\"ur Triangulierungen kompakter semilinearer Mannigfaltigkeiten, Abh. Math. Sem. Uni. Hamburg, 57 (1987), 69--86.
[R\"07] R\"{o}der, M., GAP package polymaking (2007), {\url{http://www.gap-system.org/Packages/polymaking.html}}.
[Rin74] Ringel, G.,
Map color theorem,
Springer-Verlag,
New York
(1974),
xii+191 pages
(Die Grundlehren der mathematischen Wissenschaften, Band 209).
[RS72] Rourke, C. P. and Sanderson, B. J.,
Introduction to piecewise-linear topology,
Springer-Verlag,
New York
(1972),
viii+123 pages
(Ergebnisse der Mathematik und ihrer Grenzgebiete, Band 69).
[Sch94] Schulz, C.,
Polyhedral manifolds on polytopes,
Rend. Circ. Mat. Palermo (2) Suppl. (35)
(1994),
291--298
(First International Conference on Stochastic Geometry, Convex Bodies
and Empirical Measures (Palermo, 1993)).
[Soi06] Soicher, L. H.,
GRAPE - GRaph Algorithms using PErmutation groups
(2006)
({Version 4.3}),
{\url{http://www.gap-system.org/Packages/grape.html}}.
[Spa56] Spanier, E. H., The homology of Kummer manifolds, Proc. AMS, 7 (1956), 155--160.
[Spa99] Sparla, E., A new lower bound theorem for combinatorial 2k-manifolds, Graphs Combin., 15 (1) (1999), 109--125.
[Spr10a] Spreer, J.,
Blowups, slicings and permutation groups in combinatorial
topology
(2010)
(In preparation).
[Spr10b] Spreer, J.,
Partitioning the triangles of the cross polytope into
surfaces
(2010)
({T}o appear in {B}eitr. {A}lgebra {G}eom.),
{\tt arXiv:1009.2642v1 [math.CO]}, preprint, 12 pages, 1
figure.
[Spr11a] Spreer, J., Combinatorial 3-manifolds with a cyclic automorphism group (2011), Stuttgarter Math. Berichte, 2011/028.
[Spr11b] Spreer, J.,
Normal surfaces as combinatorial slicings,
Discrete Math.,
311 (14)
(2011),
1295--1309
({\tt doi:10.1016/j.disc.2011.03.013}).
[Spr13] Spreer, J.,
Combinatorial Seifert Fibred spaces with transitive cyclic
automorphism group
(2013),
459
({I}n preparation).
[SK11] Spreer, J. and K{\"u}hnel, W., Combinatorial properties of the K3 surface: Simplicial blowups and slicings, Experiment. Math., 20 (2) (2011), 201--216.
[Wee99] Weeks, J.,
SnapPea (Software for hyperbolic
3-manifolds)
(1999)
(\url{http://www.geometrygames.org/SnapPea/}).
[Zie95] Ziegler, G. M., Lectures on polytopes, Springer-Verlag, Graduate Texts in Mathematics, 152, New York (1995), x+370 pages.
generated by GAPDoc2HTML