Gradle User Guide

Version 2.9

Copyright © 2007-2015 Hans Dockter, Adam Murdoch

Copies of this document may be made for your own use and for distribution to others, provided that you do not
charge any fee for such copies and further provided that each copy contains this Copyright Notice, whether
distributed in print or electronically.

Table of Contents

1. Introduction
1.1. About this user guide

2. Overview
2.1. Features
2.2. Why Groovy?

3. Tutorials
3.1. Getting Started

4. Installing Gradle
4.1. Prerequisites
4.2. Download
4.3. Unpacking
4.4. Environment variables
4.5. Running and testing your installation
4.6. VM options

5. Troubleshooting
5.1. Working through problems
5.2. Getting help

6. Build Script Basics
6.1. Projects and tasks
6.2. Hello world
6.3. A shortcut task definition
6.4. Build scripts are code
6.5. Task dependencies
6.6. Dynamic tasks
6.7. Manipulating existing tasks
6.8. Shortcut notations
6.9. Extratask properties
6.10. Using Ant Tasks
6.11. Using methods
6.12. Default tasks
6.13. Configure by DAG
6.14. Where to next?

7. Java Quickstart
7.1. The Java plugin
7.2. A basic Java project
7.3. Multi-project Java build
7.4. Whereto next?

8. Dependency Management Basics
8.1. What is dependency management?
8.2. Declaring your dependencies
8.3. Dependency configurations
8.4. External dependencies
8.5. Repositories
8.6. Publishing artifacts
8.7. Whereto next?

9. Groovy Quickstart
9.1. A basic Groovy project
9.2. Summary

10. Web Application Quickstart
10.1. Building aWAR file
10.2. Running your web application

10.3. Summary

11. Using the Gradle Command-Line
11.1. Executing multiple tasks
11.2. Excluding tasks
11.3. Continuing the build when afailure occurs
11.4. Task name abbreviation
11.5. Selecting which build to execute
11.6. Obtaining information about your build
11.7. Dry Run
11.8. Summary

12. Using the Gradle Graphical User Interface
12.1. Task Tree
12.2. Favorites
12.3. Command Line
12.4. Setup

13. Writing Build Scripts
13.1. The Gradle build language
13.2. The Project API
13.3. The Script API
13.4. Declaring variables
13.5. Configuring arbitrary objects
13.6. Configuring arbitrary objects using an external script
13.7. Some Groovy basics

14. More about Tasks
14.1. Defining tasks
14.2. Locating tasks
14.3. Configuring tasks
14.4. Adding dependencies to atask
14.5. Ordering tasks
14.6. Adding a description to atask
14.7. Replacing tasks
14.8. Skipping tasks
14.9. Skipping tasks that are up-to-date
14.10. Task rules
14.11. Finalizer tasks
14.12. Summary

15. Working With Files
15.1. Locating files
15.2. File collections
15.3. Filetrees
15.4. Using the contents of an archive as afiletree
15.5. Specifying a set of input files
15.6. Copying files
15.7. Using the Sync task
15.8. Creating archives

16. Using Ant from Gradle
16.1. Using Ant tasks and typesin your build
16.2. Importing an Ant build
16.3. Ant properties and references
16.4. API

17. Logging
17.1. Choosing alog level
17.2. Writing your own log messages
17.3. Logging from external tools and libraries
17.4. Changing what Gradle logs

18. The Gradle Daemon

18.1. What is the Gradle Daemon?

18.2. Management and configuration

18.3. When should | not use the Gradle Daemon?

18.4. Tools & IDEs

18.5. How does the Gradle Daemon make builds faster?

19. Continuous build
19.1. How do | start and stop a continuous build?
19.2. What will cause a subsequent build?
19.3. Limitations and quirks

20. The Build Environment
20.1. Configuring the build environment via gradle.properties
20.2. Gradle properties and system properties
20.3. Accessing the web via a proxy

21. Gradle Plugins
21.1. What plugins do
21.2. Types of plugins
21.3. Applying plugins
21.4. Applying plugins with the buildscript block
21.5. Applying plugins with the plugins DSL
21.6. Finding community plugins
21.7. More on plugins

22. Standard Gradle plugins
22.1. Language plugins
22.2. Incubating language plugins
22.3. Integration plugins
22.4. Incubating integration plugins
22.5. Software devel opment plugins
22.6. Incubating software development plugins
22.7. Base plugins
22.8. Third party plugins

23. The Java Plugin
23.1. Usage
23.2. Source sets
23.3. Tasks
23.4. Project layout
23.5. Dependency management
23.6. Convention properties
23.7. Working with source sets
23.8. Javadoc
23.9. Clean
23.10. Resources
23.11. CompileJava
23.12. Incremental Java compilation
23.13. Test
23.14. Jar
23.15. Uploading

24. The Groovy Plugin
24.1. Usage
24.2. Tasks
24.3. Project layout
24.4. Dependency management
24.5. Automatic configuration of groovyClasspath
24.6. Convention properties
24.7. Source set properties
24.8. GroovyCompile

25. The Scala Plugin
25.1. Usage

25.2. Tasks

25.3. Project layout

25.4. Dependency management
25.5. Automatic configuration of scalaClasspath
25.6. Convention properties

25.7. Source set properties

25.8. Fast Scala Compiler

25.9. Compiling in external process
25.10. Incremental compilation
25.11. Eclipse Integration

25.12. IntelliJ IDEA Integration

26. The War Plugin
26.1. Usage
26.2. Tasks
26.3. Project layout
26.4. Dependency management
26.5. Convention properties
26.6. War
26.7. Customizing

27. The Ear Plugin
27.1. Usage
27.2. Tasks
27.3. Project layout
27.4. Dependency management
27.5. Convention properties
27.6. Ear
27.7. Customizing
27.8. Using custom descriptor file

28. The Jetty Plugin
28.1. Usage
28.2. Tasks
28.3. Project layout
28.4. Dependency management
28.5. Convention properties

29. The Checkstyle Plugin
29.1. Usage
29.2. Tasks
29.3. Project layout
29.4. Dependency management
29.5. Configuration

30. The CodeNarc Plugin
30.1. Usage
30.2. Tasks
30.3. Project layout
30.4. Dependency management
30.5. Configuration

31. The FindBugs Plugin
31.1. Usage
31.2. Tasks
31.3. Dependency management
31.4. Configuration

32. The JDepend Plugin
32.1. Usage
32.2. Tasks
32.3. Dependency management
32.4. Configuration

33. The PMD Plugin
33.1. Usage
33.2. Tasks
33.3. Dependency management
33.4. Configuration

34. The JaCoCo Plugin
34.1. Getting Started
34.2. Configuring the JaCoCo Plugin
34.3. JaCoCo Report configuration
34.4. JaCoCo specific task configuration
34.5. Tasks
34.6. Dependency management

35. The Sonar Plugin
35.1. Usage
35.2. Analyzing Multi-Project Builds
35.3. Analyzing Custom Source Sets
35.4. Analyzing languages other than Java
35.5. Setting Custom Sonar Properties
35.6. Configuring Sonar Settings from the Command Line
35.7. Tasks

36. The SonarQube Runner Plugin
36.1. SonarQube Runner version and compatibility
36.2. Getting started
36.3. Configuring the SonarQube Runner
36.4. Specifying the SonarQube Runner version
36.5. Analyzing Multi-Project Builds
36.6. Analyzing Custom Source Sets
36.7. Analyzing languages other than Java
36.8. More on configuring SonarQube properties
36.9. Setting SonarQube Properties from the Command Line
36.10. Controlling the SonarQube Runner process
36.11. Tasks

37. The OSGi Plugin
37.1. Usage
37.2. Implicitly applied plugins
37.3. Tasks
37.4. Dependency management
37.5. Convention object
37.6.

38. The Eclipse Plugins
38.1. Usage
38.2. Tasks
38.3. Configuration
38.4. Customizing the generated files

39. The IDEA Plugin
39.1. Usage
39.2. Tasks
39.3. Configuration
39.4. Customizing the generated files
39.5. Further thingsto consider

40. The ANTLR Plugin
40.1. Usage
40.2. Tasks
40.3. Project layout
40.4. Dependency management
40.5. Convention properties
40.6. Source set properties

40.7. Controlling the ANTLR generator process

41. The Project Report Plugin
41.1. Usage
41.2. Tasks
41.3. Project layout
41.4. Dependency management
41.5. Convention properties

42. The Announce Plugin
42.1. Usage
42.2. Configuration

43. The Build Announcements Plugin
43.1. Usage

44, The Distribution Plugin
44.1. Usage
44.2. Tasks
44 3. Distribution contents
44.4. Publishing distributions

45. The Application Plugin
45.1. Usage
45.2. Tasks
45.3. Convention properties

46. The Java Library Distribution Plugin
46.1. Usage
46.2. Tasks
46.3. Including other resources in the distribution

47. Build Init Plugin
47.1. Tasks
47.2. What to set up
47.3. Build init types

48. Wrapper Plugin
48.1. Usage
48.2. Tasks

49. The Build Dashboard Plugin
49.1. Usage
49.2. Tasks
49.3. Project layout
49.4. Dependency management
49.5. Configuration

50. The Java Gradle Plugin Development Plugin
50.1. Usage

51. The Gradle TestKit
51.1. Usage
51.2. Functionally testing with the Gradle runner

52. Dependency Management
52.1. Introduction
52.2. Dependency Management Best Practices
52.3. Dependency configurations
52.4. How to declare your dependencies
52.5. Working with dependencies
52.6. Repositories
52.7. How dependency resolution works
52.8. Fine-tuning the dependency resolution process
52.9. The dependency cache
52.10. Strategies for transitive dependency management

53.

54.

55.

56.

57.

58.

Publishing artifacts

53.1. Introduction

53.2. Artifacts and configurations
53.3. Declaring artifacts

53.4. Publishing artifacts

53.5. More about project libraries

The Maven Plugin

54.1. Usage

54.2. Tasks

54.3. Dependency management

54.4. Convention properties

54.5. Convention methods

54.6. Interacting with Maven repositories

The Signing Plugin

55.1. Usage

55.2. Signatory credentials
55.3. Specifying what to sign
55.4. Publishing the signatures
55.5. Signing POM files

Building native binaries

56.1. Supported languages

56.2. Tool chain support

56.3. Tool chain installation

56.4. Native software model

56.5. Parallel Compilation

56.6. Building alibrary

56.7. Building an executable

56.8. Tasks

56.9. Finding out more about your project
56.10. Language support

56.11. Configuring the compiler, assembler and linker
56.12. Windows Resources

56.13. Library Dependencies

56.14. Precompiled Headers

56.15. Native Binary Variants

56.16. Tool chains

56.17. Visual Studio IDE integration
56.18. CUnit support

56.19. GoogleTest support

The Play Plugin

57.1. Usage

57.2. Limitations

57.3. Software Model

57.4. Project Layout

57.5. Tasks

57.6. Finding out more about your project
57.7. Running a Play application

57.8. Configuring a Play application

57.9. Multi-project Play applications
57.10. Packaging a Play application for distribution
57.11. Resources

The Build Lifecycle

58.1. Build phases

58.2. Settingsfile

58.3. Multi-project builds

58.4. Initialization

58.5. Configuration and execution of a single project build
58.6. Responding to the lifecyclein the build script

59.

60.

61.

62.

63.

64.

65.

66.

67.

Multi-project Builds

59.1. Cross project configuration

59.2. Subproject configuration

59.3. Execution rules for multi-project builds
59.4. Running tasks by their absolute path
59.5. Project and task paths

59.6. Dependencies - Which dependencies?
59.7. Project lib dependencies

59.8. Pardllel project execution

59.9. Decoupled Projects

59.10. Multi-Project Building and Testing
59.11. Multi Project and buildSrc

59.12. Property and method inheritance
59.13. Summary

Writing Custom Task Classes
60.1. Packaging atask class
60.2. Writing asimple task class
60.3. A standalone project

60.4. Incremental tasks

Writing Custom Plugins

61.1. Packaging a plugin

61.2. Writing asimple plugin

61.3. Getting input from the build

61.4. Working with files in custom tasks and plugins
61.5. A standalone project

61.6. Maintaining multiple domain objects

Organizing Build Logic

62.1. Inherited properties and methods

62.2. Injected configuration

62.3. Configuring the project using an external build script
62.4. Build sourcesin the bui | dSr ¢ project

62.5. Running another Gradle build from a build

62.6. External dependencies for the build script

62.7. Ant optional dependencies

62.8. Summary

Initialization Scripts

63.1. Basic usage

63.2. Using an init script

63.3. Writing an init script

63.4. External dependencies for the init script
63.5. Init script plugins

The Gradle Wrapper

64.1. Configuration

64.2. Verification of downloaded Gradle distributions
64.3. Unix file permissions

Embedding Gradle

65.1. Introduction to the Tooling API

65.2. Tooling APl and the Gradle Build Daemon
65.3. Quickstart

Comparing Builds

66.1. Definition of terms

66.2. Current Capabilities
66.3. Comparing Gradle Builds

Ivy Publishing (new)
67.1. The“i vy- publ i sh” Plugin
67.2. Publications

67.3. Repositories

67.4. Performing a publish

67.5. Generating the lvy module descriptor file without publishing
67.6. Complete example

67.7. Future features

68. Maven Publishing (new)
68.1. The “maven- publ i sh” Plugin
68.2. Publications
68.3. Repositories
68.4. Performing a publish
68.5. Publishing to Maven Local
68.6. Generating the POM file without publishing

69. Rule based model configuration
69.1. Background
69.2. Motivations for change
69.3. Concepts
69.4. Rule sources
69.5. The “model DSL”
69.6. The Model Report
69.7. Limitations and future direction

70. Building Java Libraries
70.1. The Software Model
70.2. Usage
70.3. Creating alibrary
70.4. Source Sets
70.5. Tasks
70.6. Finding out more about your project
70.7. Dependencies between components
70.8. Platform aware dependency management
70.9. Custom variant resolution
70.10. Enforcing APl boundaries at compile time

A. Gradle Samples
A.l. Sample cust onBui | dLanguage
A.2. Samplecust onDi stri buti on
A.3. Samplecust onPl ugi n
A.4. Samplej aval/ mul ti proj ect

B. Potential Traps
B.1. Groovy script variables
B.2. Configuration and execution phase

C. The Feature Lifecycle
C.1. States
C.2. Backwards Compatibility Policy

D. Gradle Command Line
D.1. Deprecated command-line options
D.2. Daemon command-line options
D.3. System properties
D.4. Environment variables

E. Existing IDE Support and how to cope without it
E.1. Intellid
E.2. Eclipse
E.3. Using Gradle without | DE support

Glossary

List of Examples

6.1. Your first build script

6.2. Execution of abuild script

6.3. A task definition shortcut

6.4. Using Groovy in Gradl€'s tasks

6.5. Using Groovy in Gradle'stasks

6.6. Declaration of task that depends on other task
6.7. Lazy dependsOn - the other task does not exist (yet)
6.8. Dynamic creation of atask

6.9. Accessing atask via API - adding a dependency
6.10. Accessing atask via API - adding behaviour
6.11. Accessing task as a property of the build script
6.12. Adding extra propertiesto atask

6.13. Using AntBuilder to execute ant.|oadfile target
6.14. Using methods to organize your build logic
6.15. Defining a default task

6.16. Different outcomes of build depending on chosen tasks
7.1. Using the Java plugin

7.2. Building a Java project

7.3. Adding Maven repository

7.4. Adding dependencies

7.5. Customization of MANIFEST.MF

7.6. Adding atest system property

7.7. Publishing the JAR file

7.8. Eclipse plugin

7.9. Javaexample - complete build file

7.10. Multi-project build - hierarchical layout

7.11. Multi-project build - settings.gradle file

7.12. Multi-project build - common configuration
7.13. Multi-project build - dependencies between projects
7.14. Multi-project build - distribution file

8.1. Declaring dependencies

8.2. Definition of an external dependency

8.3. Shortcut definition of an external dependency
8.4. Usage of Maven central repository

8.5. Usage of aremote Maven repository

8.6. Usage of aremote lvy directory

8.7. Usage of alocal Ivy directory

8.8. Publishing to an lvy repository

8.9. Publishing to a Maven repository

9.1. Groovy plugin

9.2. Dependency on Groovy

9.3. Groovy example - complete build file

10.1. War plugin

10.2. Running web application with Jetty plugin
11.1. Executing multiple tasks

11.2. Excluding tasks

11.3. Abbreviated task name

11.4. Abbreviated camel case task name

11.5. Selecting the project using abuild file

11.6. Selecting the project using project directory
11.7. Obtaining information about projects

11.8. Providing a description for a project

11.9. Obtaining information about tasks

11.10. Changing the content of the task report
11.11. Obtaining more information about tasks
11.12. Obtaining detailed help for tasks

11.13. Obtaining information about dependencies
11.14. Filtering dependency report by configuration
11.15. Getting the insight into a particular dependency
11.16. Information about properties

12.1. Launching the GUI

13.1. Accessing property of the Project object

13.2. Using local variables

13.3. Using extra properties

13.4. Configuring arbitrary objects

13.5. Configuring arbitrary objects using a script
13.6. Groovy JDK methods

13.7. Property accessors

13.8. Method call without parentheses

13.9. List and map literals

13.10. Closure as method parameter

13.11. Closure delegates

14.1. Defining tasks

14.2. Defining tasks - using strings for task names
14.3. Defining tasks with alternative syntax

14.4. Accessing tasks as properties

14.5. Accessing tasks viatasks collection

14.6. Accessing tasks by path

14.7. Creating a copy task

14.8. Configuring atask - various ways

14.9. Configuring atask - with closure

14.10. Defining a task with closure

14.11. Adding dependency on task from another project
14.12. Adding dependency using task object

14.13. Adding dependency using closure

14.14. Adding a'must run after' task ordering
14.15. Adding a'should run after' task ordering
14.16. Task ordering does not imply task execution
14.17. A 'should run after' task ordering isignored if it introduces an ordering cycle
14.18. Adding a description to a task

14.19. Overwriting atask

14.20. Skipping atask using a predicate

14.21. Skipping tasks with StopExecutionException
14.22. Enabling and disabling tasks

14.23. A generator task

14.24. Declaring the inputs and outputs of atask

14.25. Task rule

14.26. Dependency on rule based tasks

14.27. Adding atask finalizer

14.28. Task finalizer for afailing task

15.1. Locating files

15.2. Creating afile collection

15.3. Using afile collection

15.4. Implementing afile collection

15.5. Creating afile tree

15.6. Using afile tree

15.7. Using an archive as afile tree

15.8. Specifying a set of files

15.9. Specifying a set of files

15.10. Copying files using the copy task

15.11. Specifying copy task source files and destination directory
15.12. Selecting the files to copy

15.13. Copying files using the copy() method without up-to-date check
15.14. Copying files using the copy() method with up-to-date check
15.15. Renaming files as they are copied

15.16. Filtering files as they are copied

15.17. Nested copy specs

15.18. Using the Sync task to copy dependencies

15.19. Creating a ZIP archive

15.20. Creation of ZIP archive

15.21. Configuration of archive task - custom archive name
15.22. Configuration of archive task - appendix & classifier
16.1. Using an Ant task

16.2. Passing nested text to an Ant task

16.3. Passing nested elements to an Ant task

16.4. Using an Ant type

16.5. Using a custom Ant task

16.6. Declaring the classpath for a custom Ant task

16.7. Using a custom Ant task and dependency management together
16.8. Importing an Ant build

16.9. Task that depends on Ant target

16.10. Adding behaviour to an Ant target

16.11. Ant target that depends on Gradle task

16.12. Renaming imported Ant targets

16.13. Setting an Ant property

16.14. Getting an Ant property

16.15. Setting an Ant reference

16.16. Getting an Ant reference

17.1. Using stdout to write log messages

17.2. Writing your own log messages

17.3. Using SLF4J to write log messages

17.4. Configuring standard output capture

17.5. Configuring standard output capture for atask

17.6. Customizing what Gradle logs

20.1. Setting properties with a gradle.propertiesfile
20.2. Configuring an HTTP proxy

20.3. Configuring an HTTPS proxy

21.1. Applying a script plugin

21.2. Applying abinary plugin

21.3. Applying abinary plugin by type

21.4. Applying a plugin with the buildscript block
21.5. Applying a core plugin

21.6. Applying a community plugin

23.1. Using the Java plugin

23.2. Custom Java source layout

23.3. Accessing a source set

23.4. Configuring the source directories of a source set
23.5. Defining a source set

23.6. Defining source set dependencies

23.7. Compiling a source set

23.8. Assembling a JAR for a source set

23.9. Generating the Javadoc for a source set

23.10. Running tests in a source set

23.11. Filtering tests in the build script

23.12. JUnit Categories

23.13. Grouping TestNG tests

23.14. Creating a unit test report for subprojects
23.15. Customization of MANIFEST.MF

23.16. Creating a manifest object.

23.17. Separate MANIFEST .MF for a particular archive
23.18. Separate MANIFEST.MF for a particular archive
24.1. Using the Groovy plugin

24.2. Custom Groovy source layout

24.3. Configuration of Groovy dependency

24.4. Configuration of Groovy test dependency
24.5. Configuration of bundled Groovy dependency
24.6. Configuration of Groovy file dependency
25.1. Using the Scala plugin

25.2. Custom Scala source layout

25.3. Declaring a Scala dependency for production code
25.4. Declaring a Scala dependency for test code
25.5. Enabling the Fast Scala Compiler

25.6. Adjusting memory settings

25.7. Activating the Zinc based compiler

26.1. Using the War plugin

26.2. Customization of war plugin

27.1. Using the Ear plugin

27.2. Customization of ear plugin

28.1. Using the Jetty plugin

29.1. Using the Checkstyle plugin

30.1. Using the CodeNarc plugin

31.1. Using the FindBugs plugin

32.1. Using the JDepend plugin

33.1. Using the PMD plugin

34.1. Applying the JaCoCo plugin

34.2. Configuring JaCoCo plugin settings

34.3. Configuring test task

34.4. Configuring test task

34.5. Using application plugin to generate code coverage data
34.6. Coverage reports generated by applicationCodeCoverageReport
35.1. Applying the Sonar plugin

35.2. Configuring Sonar connection settings

35.3. Configuring Sonar project settings

35.4. Glabal configuration in a multi-project build

35.5. Common project configuration in a multi-project build
35.6. Individual project configuration in a multi-project build
35.7. Configuring the language to be analyzed

35.8. Using property syntax

35.9. Analyzing custom source sets

35.10. Analyzing languages other than Java

35.11. Setting custom global properties

35.12. Setting custom project properties

35.13. Implementing custom command line properties

36.1. Applying the SonarQube Runner plugin

36.2. Configuring SonarQube connection settings

36.3. Configuring SonarQube runner version

36.4. Global configuration settings

36.5. Shared configuration settings

36.6. Individual configuration settings

36.7. Skipping analysis of a project

36.8. Analyzing custom source sets

36.9. Analyzing languages other than Java

36.10. setting custom SonarQube Runner fork options

37.1. Using the OSGi plugin

37.2. Configuration of OSGi MANIFEST.MF file

38.1. Using the Eclipse plugin

38.2. Using the Eclipse WTP plugin

38.3. Partia Overwrite for Classpath

38.4. Partial Overwrite for Project

38.5. Export Dependencies

38.6. Customizing the XML

39.1. Using the IDEA plugin

39.2. Partial Rewrite for Module

39.3. Partia Rewrite for Project

39.4. Export Dependencies

39.5. Customizing the XML

40.1. Using the ANTLR plugin

40.2. Declare ANTLR version

40.3. setting custom max heap size and extra arguments for ANTLR
42.1. Using the announce plugin

42.2. Configure the announce plugin

42.3. Using the announce plugin

43.1. Using the build announcements plugin

43.2. Using the build announcements plugin from an init script
44.1. Using the distribution plugin

44.2. Adding extra distributions

44.3. Configuring the main distribution

44 4. publish main distribution

45.1. Using the application plugin

45.2. Configure the application main class

45.3. Configure default VM settings

45.4. Include output from other tasks in the application distribution
45.5. Automatically creating files for distribution

46.1. Using the Javalibrary distribution plugin

46.2. Configure the distribution name

46.3. Include files in the distribution

49.1. Using the Build Dashboard plugin

50.1. Using the Java Gradle Plugin Development plugin
51.1. Declaring the TestKit dependency

51.2. Declaring the JUnit dependency

51.3. Using GradleRunner with JUnit

51.4. Using GradleRunner with Spock

51.5. Making the code under test classpath available to the tests
51.6. Injecting the code under test classes into test builds
51.7. Injecting the code under test classes into test builds
51.8. Specifying a Gradle version for test execution

52.1. Definition of a configuration

52.2. Accessing a configuration

52.3. Configuration of a configuration

52.4. Module dependencies

52.5. Artifact only notation

52.6. Dependency with classifier

52.7. lterating over a configuration

52.8. Client module dependencies - transitive dependencies
52.9. Project dependencies

52.10. File dependencies

52.11. Generated file dependencies

52.12. Gradle API dependencies

52.13. Gradle's Groovy dependencies

52.14. Excluding transitive dependencies

52.15. Optional attributes of dependencies

52.16. Collections and arrays of dependencies

52.17. Dependency configurations

52.18. Dependency configurations for project

52.19. Configuration.copy

52.20. Accessing declared dependencies

52.21. Configuration.files

52.22. Configuration.files with spec

52.23. Configuration.copy

52.24. Configuration.copy vs. Configuration.files

52.25. Adding central Maven repository

52.26. Adding Bintray's JCenter Maven repository

52.27. Using Bintrays's JCenter with HTTP

52.28. Adding the local Maven cache as a repository
52.29. Adding custom Maven repository

52.30. Adding additional Maven repositories for JAR files
52.31. Accessing password protected Maven repository
52.32. Flat repository resolver

52.33. Ivy repository

52.34. Ivy repository with named layout

52.35. Ivy repository with pattern layout

52.36. lvy repository with multiple custom patterns

52.37. Ivy repository with Maven compatible layout
52.38. Ivy repository

52.39. Declaring a Maven and lvy repository

52.40. Providing credentials to aMaven and vy repository
52.41. Declaring a S3 backed Maven and vy repository
52.42. Configure repository to use only digest authentication
52.43. Configure repository to use preemptive authentication
52.44. Accessing arepository

52.45. Configuration of arepository

52.46. Definition of a custom repository

52.47. Forcing consistent version for agroup of libraries
52.48. Using a custom versioning scheme

52.49. Blacklisting a version with a replacement

52.50. Changing dependency group and/or name at the resolution
52.51. Substituting a module with a project

52.52. Substituting a project with a module

52.53. Conditionally substituting a dependency

52.54. Specifying default dependencies on a configuration
52.55. Enabling dynamic resolve mode

52.56. 'Latest' version selector

52.57. Custom status scheme

52.58. Custom status scheme by module

52.59. lvy component metadata rule

52.60. Rule source component metadata rule

52.61. Component selection rule

52.62. Component selection rule with modul e target
52.63. Component selection rule with metadata

52.64. Component selection rule using a rule source object
52.65. Declaring module replacement

52.66. Dynamic version cache control

52.67. Changing module cache control

53.1. Defining an artifact using an archive task

53.2. Defining an artifact using afile

53.3. Customizing an artifact

53.4. Map syntax for defining an artifact using afile
53.5. Configuration of the upload task

54.1. Using the Maven plugin

54.2. Creating a stand alone pom.

54.3. Upload of file to remote Maven repository

54.4. Upload of file via SSH

54.5. Customization of pom

54.6. Builder style customization of pom

54.7. Modifying auto-generated content

54.8. Customization of Maven installer

54.9. Generation of multiple poms

54.10. Accessing a mapping configuration

55.1. Using the Signing plugin

55.2. Signing a configuration

55.3. Signing a configuration output

55.4. Signing atask

55.5. Signing atask output

55.6. Conditional signing

55.7. Signing a POM for deployment

56.1. Defining alibrary component

56.2. Defining executable components

56.3. The components report

56.4. The 'cpp’ plugin

56.5. C++ source set

56.6. The'c' plugin

56.7. C source set

56.8. The 'assembler’ plugin

56.9. The 'objective-c' plugin

56.10. The 'objective-cpp’ plugin

56.11. Settings that apply to all binaries

56.12. Settings that apply to all shared libraries

56.13. Settings that apply to all binaries produced for the 'main’ executable component
56.14. Settings that apply only to shared libraries produced for the 'main’ library component
56.15. The ‘windows-resources plugin

56.16. Configuring the location of Windows resource sources
56.17. Building aresource-only dll

56.18. Providing alibrary dependency to the source set
56.19. Providing alibrary dependency to the binary
56.20. Declaring project dependencies

56.21. Creating a precompiled header file

56.22. Including a precompiled header file in a source file
56.23. Configuring a precompiled header

56.24. Defining build types

56.25. Configuring debug binaries

56.26. Defining platforms

56.27. Defining flavors

56.28. Targeting a component at particular platforms
56.29. Building all possible variants

56.30. Defining tool chains

56.31. Reconfigure tool arguments

56.32. Defining target platforms

56.33. Registering CUnit tests

56.34. Registering CUnit tests

56.35. Running CUnit tests

56.36. Registering GoogleTest tests

57.1. Using the Play plugin

57.2. The components report

57.3. Selecting a version of the Play Framework

57.4. Adding dependencies to a Play application

57.5. Adding extra source setsto a Play application

57.6. Adding extra source setsto a Play application

57.7. Configuring Scala compiler options

57.8. Configuring routes style

57.9. Configuring a custom asset pipeline

57.10. Configuring dependencies on Play subprojects

57.11. Add extrafilesto a Play application distribution

58.1. Single project build

58.2. Hierarchical layout

58.3. Flat layout

58.4. Modification of elements of the project tree

58.5. Modification of elements of the project tree

58.6. Adding of test task to each project which has certain property set
58.7. Notifications

58.8. Setting of certain property to all tasks

58.9. Logging of start and end of each task execution

59.1. Multi-project tree - water & bluewhale projects

59.2. Build script of water (parent) project

59.3. Multi-project tree - water, bluewhale & krill projects
59.4. Water project build script

59.5. Defining common behavior of all projects and subprojects
59.6. Defining specific behaviour for particular project

59.7. Defining specific behaviour for project krill

59.8. Adding custom behaviour to some projects (filtered by project name)
59.9. Adding custom behaviour to some projects (filtered by project properties)
59.10. Running build from subproject

59.11. Evaluation and execution of projects

59.12. Evaluation and execution of projects

59.13. Running tasks by their absolute path

59.14. Dependencies and execution order

59.15. Dependencies and execution order

59.16. Dependencies and execution order

59.17. Declaring dependencies

59.18. Declaring dependencies

59.19. Cross project task dependencies

59.20. Configuration time dependencies

59.21. Configuration time dependencies - eval uationDependsOn

59.22. Configuration time dependencies

59.23. Dependencies - real life example - crossproject configuration
59.24. Project lib dependencies

59.25. Project lib dependencies

59.26. Fine grained control over dependencies

59.27. Build and Test Single Project

59.28. Partia Build and Test Single Project

59.29. Build and Test Depended On Projects

59.30. Build and Test Dependent Projects

60.1. Defining a custom task

60.2. A hello world task

60.3. A customizable hello world task

60.4. A build for a custom task

60.5. A custom task

60.6. Using a custom task in another project

60.7. Testing a custom task

60.8. Defining an incremental task action

60.9. Running the incremental task for the first time

60.10. Running the incremental task with unchanged inputs
60.11. Running the incremental task with updated input files
60.12. Running the incremental task with an input file removed
60.13. Running the incremental task with an output file removed
60.14. Running the incremental task with an input property changed
61.1. A custom plugin

61.2. A custom plugin extension

61.3. A custom plugin with configuration closure

61.4. Evaluating file properties lazily

61.5. A build for a custom plugin

61.6. Wiring for a custom plugin

61.7. Using a custom plugin in another project

61.8. Applying a community plugin with the plugins DSL

61.9. Testing a custom plugin

61.10. Using the Java Gradle Plugin Development plugin
61.11. Managing domain objects

62.1. Using inherited properties and methods

62.2. Using injected properties and methods

62.3. Configuring the project using an external build script
62.4. Custom buildSrc build script

62.5. Adding subprojects to the root buildSrc project

62.6. Running another build from a build

62.7. Declaring external dependencies for the build script

62.8. A build script with external dependencies

62.9. Ant optional dependencies

63.1. Using init script to perform extra configuration before projects are evaluated
63.2. Declaring external dependencies for an init script

63.3. An init script with external dependencies

63.4. Using pluginsin init scripts

64.1. Running the wrapper task

64.2. Wrapper task

64.3. Wrapper generated files

64.4. Generating a SHA-256 hash

64.5. Configuring SHA-256 checksum verification
67.1. Applying the “ivy-publish” plugin

67.2. Publishing a Java moduleto Ivy

67.3. Publishing additional artifact to Ivy

67.4. customizing the publication identity

67.5. Customizing the modul e descriptor file

67.6. Publishing multiple modules from a single project
67.7. Declaring repositories to publish to

67.8. Choosing a particular publication to publish
67.9. Publishing all publications viathe “publish” lifecycle task
67.10. Generating the lvy module descriptor file
67.11. Publishing a Java module

67.12. Example generated ivy.xml

68.1. Applying the 'maven-publish’ plugin

68.2. Adding a MavenPublication for a Java component
68.3. Adding additional artifact to a MavenPublication
68.4. customizing the publication identity

68.5. Modifying the POM file

68.6. Publishing multiple modules from a single project
68.7. Declaring repositories to publish to

68.8. Publishing a project to a Maven repository

68.9. Publish a project to the Maven local repository
68.10. Generate a POM file without publishing

69.1. an example of a simple rule based build

69.2. amanaged type

69.3. a String property

69.4. aFile property

69.5. aLong property

69.6. a boolean property

69.7. anint property

69.8. a managed property

69.9. an enumeration type property

69.10. a managed set

69.11. amanaged set

69.12. applying arule source plugin

69.13. amodel creation rule

69.14. amodel mutation rule

69.15. creating atask

69.16. the model ddl

69.17. aDSL creation rule

69.18. aDSL rule using inputs

69.19. model task output

70.1. Using the VM component plugins

70.2. Creating ajavalibrary

70.3. Configuring a source set

70.4. Creating a new source set

70.5. The components report

70.6. Declaring a dependency onto alibrary

70.7. Declaring a dependency onto a project with an explicit library
70.8. Declaring a dependency onto a project with an implicit library
70.9. Declaring target platforms

70.10. Declaring binary specific sources

70.11. Declaring target platforms

70.12. Specifying library api

B.1. Variables scope: local and script wide

B.2. Distinct configuration and execution phase

1

| ntroduction

We would like to introduce Gradle to you, a build system that we think is a quantum leap for build technology
in the Java (JVM) world. Gradle provides:

* A very flexible general purpose build tool like Ant.

® Switchable, build-by-convention frameworks ala Maven. But we never lock you in!

* Very powerful support for multi-project builds.

* Very powerful dependency management (based on Apache lvy).

® Full support for your existing Maven or vy repository infrastructure.

® Support for transitive dependency management without the need for remote repositoriesor pom xm andi vy.
files.

® Ant tasks and builds asfirst class citizens.

® Groovy build scripts.

® A rich domain model for describing your build.

In Chapter 2, Overview you will find a detailed overview of Gradle. Otherwise, the tutorials are waiting, have
fun:)

1.1. About this user guide

This user guide, like Gradle itself, is under very active development. Some parts of Gradle aren't documented as
completely as they need to be. Some of the content presented won't be entirely clear or will assume that you
know more about Gradle than you do. We need your help to improve this user guide. You can find out more
about contributing to the documentation at the Gradle web site.

Throughout the user guide, you will find some diagrams that represent dependency relationships between
Gradle tasks. These use something analogous to the UML dependency notation, which renders an arrow from
onetask to the task that the first task depends on.

Page 24 of 514

http://www.gradle.org/contribute

Overview

2.1. Features

Hereisalist of some of Gradl€e's features.

Declar ative builds and build-by-convention
At the heart of Gradle lies a rich extensible Domain Specific Language (DSL) based on Groovy. Gradle
pushes declarative builds to the next level by providing declarative language elements that you can assemble
as you like. Those elements also provide build-by-convention support for Java, Groovy, OSGi, Web and
Scala projects. Even more, this declarative language is extensible. Add your own new language e ements or
enhance the existing ones, thus providing concise, maintainable and comprehensible builds.

Language for dependency based programming
The declarative language lies on top of a general purpose task graph, which you can fully leverage in your
builds. It provides utmost flexibility to adapt Gradle to your unique needs.

Structureyour build
The suppleness and richness of Gradle finally allows you to apply common design principles to your build.
For example, it is very easy to compose your build from reusable pieces of build logic. Inline stuff where
unnecessary indirections would be inappropriate. Don't be forced to tear apart what belongs together (e.g. in
your project hierarchy). Avoid smells like shotgun changes or divergent change that turn your build into a
maintenance nightmare. At last you can create awell structured, easily maintained, comprehensible build.

Deep API
From being a pleasure to be used embedded to its many hooks over the whole lifecycle of build execution,
Gradle alows you to monitor and customize its configuration and execution behavior to its very core.

Gradle scales
Gradle scales very well. It significantly increases your productivity, from simple single project builds up to
huge enterprise multi-project builds. This is true for structuring the build. With the state-of-art incremental
build function, thisis also true for tackling the performance pain many large enterprise builds suffer from.

Multi-project builds
Gradle's support for multi-project build is outstanding. Project dependencies are first class citizens. We
allow you to model the project relationships in a multi-project build as they really are for your problem
domain. Gradle follows your layout not vice versa.

Gradle provides partial builds. If you build a single subproject Gradle takes care of building al the
subprojects that subproject depends on. You can also choose to rebuild the subprojects that depend on a
particular subproject. Together with incremental builds thisis abig time saver for larger builds.

Page 25 of 514

Many ways to manage your dependencies
Different teams prefer different ways to manage their external dependencies. Gradle provides convenient
support for any strategy. From transitive dependency management with remote Maven and Ivy repositories
tojars or directories on the local file system.

Gradleisthefirst build integration tool
Ant tasks are first class citizens. Even more interesting, Ant projects are first class citizens as well. Gradle
provides a deep import for any Ant project, turning Ant targets into native Gradle tasks at runtime. You can
depend on them from Gradle, you can enhance them from Gradle, you can even declare dependencies on
Gradle tasks in your build.xml. The same integration is provided for properties, paths, etc ...

Gradle fully supports your existing Maven or lvy repository infrastructure for publishing and retrieving
dependencies. Gradle aso provides a converter for turning aMaven pom xmi into a Gradle script. Runtime
imports of Maven projects will come soon.

Ease of migration
Gradle can adapt to any structure you have. Therefore you can aways develop your Gradle build in the same
branch where your production build lives and both can evolve in parallel. We usually recommend to write
tests that make sure that the produced artifacts are similar. That way migration is as less disruptive and as
reliable as possible. Thisis following the best-practices for refactoring by applying baby steps.

Groovy

Gradle's build scripts are written in Groovy, not XML. But unlike other approaches this is not for simply
exposing the raw scripting power of a dynamic language. That would just lead to a very difficult to maintain
build. The whole design of Gradle is oriented towards being used as a language, not as a rigid framework.
And Groovy is our glue that allows you to tell your individual story with the abstractions Gradle (or you)
provide. Gradle provides some standard stories but they are not privileged in any form. Thisisfor usamajor
distinguishing feature compared to other declarative build systems. Our Groovy support is not just sugar
coating. The whole Gradle API is fully Groovy-ized. Adding Groovy results in an enjoyable and productive
experience.

The Gradle wrapper
The Gradle Wrapper allows you to execute Gradle builds on machines where Gradle is not installed. Thisis
useful for example for some continuous integration servers. It is also useful for an open source project to
keep the barrier low for building it. The wrapper is aso very interesting for the enterprise. It is a zero
administration approach for the client machines. It also enforces the usage of a particular Gradle version
thus minimizing support issues.

Free and open source
Gradle is an open source project, and is licensed under the ASL.

Page 26 of 514

http://www.gradle.org/license

2.2. Why Groovy?

We think the advantages of an internal DSL (based on a dynamic language) over XML are tremendous when
used in build scripts. There are a couple of dynamic languages out there. Why Groovy? The answer lies in the
context Gradle is operating in. Although Gradle is a general purpose build tool at its core, its main focus are
Java projects. In such projects the team members will be very familiar with Java. We think a build should be as
transparent as possible to all team members.

In that case, you might argue why we don't just use Java as the language for build scripts. We think thisis a
valid question. It would have the highest transparency for your team and the lowest learning curve, but because
of the limitations of Java, such a build language would not be as nice, expressive and powerful asit could be. [1]
Languages like Python, Groovy or Ruby do a much better job here. We have chosen Groovy as it offers by far
the greatest transparency for Java people. Its base syntax is the same as Java's as well as its type system, its
package structure and other things. Groovy provides much more on top of that, but with the common foundation
of Java.

For Java developers with Python or Ruby knowledge or the desire to learn them, the above arguments don't
apply. The Gradle design is well-suited for creating another build script engine in JRuby or Jython. It just
doesn't have the highest priority for us at the moment. We happily support any community effort to create
additional build script engines.

[1] At http://www.defmacro.org/ramblings/lisp.html you find an interesting article comparing Ant, XML, Java
and Lisp. It's funny that the 'if Java had that syntax' syntax in this article is actually the Groovy syntax.

Page 27 of 514

http://www.defmacro.org/ramblings/lisp.html

3

Tutorials

3.1. Getting Started

The following tutorials introduce some of the basics of Gradle, to help you get started.

Chapter 4, Installing Gradle
Describes how to install Gradle.

Chapter 6, Build Script Basics
Introduces the basic build script elements: projects and tasks.

Chapter 7, Java Quickstart
Shows how to start using Gradl€'s build-by-convention support for Java projects.

Chapter 8, Dependency Management Basics
Shows how to start using Gradl€'s dependency management.

Chapter 9, Groovy Quickstart
Using Gradl€'s build-by-convention support for Groovy projects.

Chapter 10, Web Application Quickstart
Using Gradl€'s build-by-convention support for Web applications.

Page 28 of 514

A

Installing Gradle

4.1. Prerequisites

Gradle requires a Java JDK or JRE to be installed, version 6 or higher (to check, use j ava -versi on).
Gradle ships with its own Groovy library, therefore Groovy does not need to be installed. Any existing Groovy
installation isignored by Gradle.

Gradle uses whatever JDK it finds in your path. Alternatively, you can set the JAVA HOVE environment
variable to point to the installation directory of the desired JDK.

4.2. Download

Y ou can download one of the Gradle distributions from the Gradle web site.

4.3. Unpacking

The Gradle distribution comes packaged as a ZIP. The full distribution contains:

® The Gradle binaries.

® The user guide (HTML and PDF).

* TheDSL reference guide.

® The APl documentation (Javadoc and Groovydoc).

® Extensive samples, including the examples referenced in the user guide, along with some complete and more
complex builds you can use as a starting point for your own build.

® The binary sources. Thisis for reference only. If you want to build Gradle you need to download the source
distribution or checkout the sources from the source repository. See the Gradle web site for details.

4.4. Environment variables

For running Gradle, add GRADLE_HOME/ bi n to your PATH environment variable. Usually, this is sufficient
to run Gradle,

Page 29 of 514

http://www.gradle.org/downloads
http://www.gradle.org/development

4.5. Running and testing your installation

You run Gradle via the gradle command. To check if Gradle is properly installed just type gradle -v. The
output shows the Gradle version and also the local environment configuration (Groovy, VM version, OS, etc.).
The displayed Gradle version should match the distribution you have downloaded.

4.6. VM options

JVM options for running Gradle can be set via environment variables. You can use either GRADLE_OPTS or
JAVA OPTS, or both. JAVA OPTS is by convention an environment variable shared by many Java
applications. A typical use case would be to set the HTTP proxy in JAVA_OPTS and the memory options in
GRADLE_OPTS. Those variables can also be set at the beginning of the gradle or gradlew script.

Note that it's not currently possible to set VM options for Gradle on the command line.

Page 30 of 514

5

Troubleshooting

This chapter is currently awork in progress.

When using Gradle (or any software package), you can run into problems. Y ou may not understand how to use a
particular feature, or you may encounter a defect. Or, you may have a general question about Gradle.

This chapter gives some advice for troubleshooting problems and explains how to get help with your problems.

5.1. Working through problems

If you are encountering problems, one of the first things to try is using the very latest release of Gradle. New
versions of Gradle are released frequently with bug fixes and new features. The problem you are having may
have been fixed in anew release.

If you are using the Gradle Daemon, try temporarily disabling the daemon (you can pass the command line
switch - - no- daenon). More information about troubleshooting the daemon process is located in Chapter 18,
The Gradle Daemon.

5.2. Getting help

The place to go for help with Gradle is http://forums.gradle.org. The Gradle Forums is the place where you can
report problems and ask questions of the Gradle devel opers and other community members.

If something's not working for you, posting a question or problem report to the forums is the fastest way to get
help. It's aso the place to post improvement suggestions or new ideas. The development team frequently posts
news items and announces releases via the forum, making it a great way to stay up to date with the latest Gradle
devel opments.

Page 31 of 514

http://forums.gradle.org

6

Build Script Basics

6.1. Projects and tasks

Everything in Gradle sits on top of two basic concepts. projects and tasks.

Every Gradle build is made up of one or more projects. What a project represents depends on what it is that you
are doing with Gradle. For example, a project might represent a library JAR or a web application. It might
represent a distribution ZIP assembled from the JARs produced by other projects. A project does not necessarily
represent a thing to be built. It might represent a thing to be done, such as deploying your application to staging
or production environments. Don't worry if this seems a little vague for now. Gradl€e's build-by-convention
support adds a more concrete definition for what a project is.

Each project is made up of one or more tasks. A task represents some atomic piece of work which a build
performs. This might be compiling some classes, creating a JAR, generating Javadoc, or publishing some
archivesto arepository.

For now, we will ook at defining some simple tasks in a build with one project. Later chapters will look at
working with multiple projects and more about working with projects and tasks.

6.2. Hello world

Y ou run a Gradle build using the gradle command. The gradle command looks for afilecalled bui | d. gr adl e
in the current directory. (21 We call this bui | d. gr adl e file a build script, although strictly speaking it is a
build configuration script, as we will see later. The build script defines a project and its tasks.

To try this out, create the following build script named bui | d. gr adl e.

Example6.1. Your first build script
buil d. gradl e

task hello {
doLast {

println '"Hello world!

}

In a command-line shell, move to the containing directory and execute the build script withgradl e -q hel | o

Page 32 of 514

Example 6.2. Execution of a build script
Output of gradl e -q hello

> gradle -q hello
Hel 1 o worl d!

What's going on here? This build script defines a single task, called
hel | o, and adds an action to it. When you run gr adl e hel | o,
Gradle executes the hel | o task, which in turn executes the action
you've provided. The action is simply a closure containing some
Groovy code to execute.

If you think this looks similar to Ant's targets, you would be right.
Gradle tasks are the equivalent to Ant targets, but as you will see,
they are much more powerful. We have used a different
terminology than Ant as we think the word task is more expressive
than the word target. Unfortunately this introduces a terminology
clash with Ant, as Ant calls its commands, such asj avac or copy

, tasks. So when we talk about tasks, we always mean Gradle tasks, which are the equivalent to Ant's targets. If

we talk about Ant tasks (Ant commands), we explicitly say Ant task.

6.3. A shortcut task definition

What does - g do?

Most of the examplesin this user
guide are run with the -q
command-line option. This
suppresses Gradle's log
messages, so that only the output
of the tasks is shown. This keeps
the example output in this user
guide a little clearer. You don't
need to use this option if you
don't want to. See Chapter 17,
Logging for more details about
the command-line options which
affect Gradl€e's output.

There is ashorthand way to define atask like our hel | o task above, which is more concise.

Example 6.3. A task definition shortcut
buil d. gradl e

task hello << {
println 'Hello world!"

}

Again, this defines atask called hel | o with a single closure to execute. We will use this task definition style

throughout the user guide.

6.4. Build scripts are code

Gradl€e's build scripts give you the full power of Groovy. As an appetizer, have alook at this:

Page 33 of 514

Example 6.4. Using Groovy in Gradle'stasks
buil d. gradl e

task upper << {
String someString = ' n¥_nAnE

println "Original: " + someString
println "“Upper case: " + soneString.toUpper Case()

Output of gradl e -q upper
> gradle -q upper

Original: my_nAnE
Upper case: MY_NAME

or

Example 6.5. Using Groovy in Gradle stasks
buil d. gradl e

task count << {

4.times { print "$it

}

Output of gr adl e -qg count

> gradle -qg count
0123

6.5. Task dependencies

Asyou probably have guessed, you can declare tasks that depend on other tasks.

Example 6.6. Declaration of task that depends on other task
buil d. gradl e

task hello << {
println "Hello world!"

}

task intro(dependsOn: hello) << {
println "I'm G adl e"

}

Outputof gradle -q intro

> gradle -gq intro
Hel | o worl d!
I'"'m Gadle

To add a dependency, the corresponding task does not need to exist.

Page 34 of 514

Example 6.7. Lazy dependsOn - the other task doesnot exist (yet)
buil d. gradl e

task taskX(dependsOn: 'taskY') << {
println 'taskX

}
task taskY << {

println 'taskY

}

Output of gradl e -q taskX

> gradle -q taskX
t askY
taskX

The dependency of t askX to t askY is declared before t askY is defined. This is very important for
multi-project builds. Task dependencies are discussed in more detail in Section 14.4, “ Adding dependenciesto a
task”.

Please notice that you can't use shortcut notation (see Section 6.8, “ Shortcut notations’) when referring to a task
that is not yet defined.

6.6. Dynamic tasks

The power of Groovy can be used for more than defining what a task does. For example, you can also use it to
dynamically create tasks.

Example 6.8. Dynamic creation of a task

buil d. gradl e

4.tinmes { counter ->
task "task$counter" << {

println "I'mtask nunber $counter"

}

Output of gradl e -qg taskl

> gradle -q taskl
I'mtask nunber 1

6.7. Manipulating existing tasks

Once tasks are created they can be accessed via an API. For instance, you could use this to dynamically add
dependencies to atask, at runtime. Ant doesn't allow anything like this.

Page 35 of 514

Example 6.9. Accessing atask via API - adding a dependency

bui I d. gradl e

4.times { counter ->
task "task$counter" << {
println "I'mtask nunber $counter"

}

}
t ask0. dependsOn task2, task3

Output of gradl e -qg taskO

> gradle -q taskO
I'"mtask nunber 2
I'"mtask nunber 3
I'"mtask nunber O

Or you can add behavior to an existing task.

Example 6.10. Accessing a task via API - adding behaviour
buil d. gradl e

task hello << {

println 'Hello Earth'
}
hel | 0. doFi rst {

println 'Hello Venus'
}
hel | o. doLast {

println 'Hello Mars'
}
hello << {

println 'Hello Jupiter’

}

Output of gradl e -q hell o

> gradle -q hello
Hel | o Venus
Hello Earth
Hell o Mars

Hel 1l o Jupiter

The calls doFi r st and doLast can be executed multiple times. They add an action to the beginning or the
end of the task's actions list. When the task executes, the actions in the action list are executed in order. The <<
operator issimply an aliasfor doLast .

6.8. Shortcut notations

As you might have noticed in the previous examples, there is a convenient notation for accessing an existing
task. Each task is available as a property of the build script:

Page 36 of 514

Example 6.11. Accessing task as a property of the build script
buil d. gradl e

task hello << {
println 'Hello world!"

}
hel | o. doLast {
println "G eetings fromthe $hello. nane task."

}

Output of gradl e -q hello

> gradle -q hello
Hel 1 o worl d!
Greetings fromthe hello task.

This enables very readable code, especially when using the tasks provided by the plugins, like the comnpi | e
task.

6.9. Extratask properties

Y ou can add your own properties to atask. To add a property named nyPr operty, setext. myProperty to
an initial value. From that point on, the property can be read and set like a predefined task property.

Example 6.12. Adding extra propertiesto a task

buil d. gradl e

task myTask {
ext. myProperty = "nyVal ue"

}

task printTaskProperties << {
println myTask. myProperty

}

Output of gradl e -q print TaskProperties

> gradle -q printTaskProperties
nyVal ue

Extra properties aren't limited to tasks. Y ou can read more about them in Section 13.4.2, “Extra properties’.

6.10. Using Ant Tasks

Ant tasks are first-class citizens in Gradle. Gradle provides excellent integration for Ant tasks by simply relying
on Groovy. Groovy is shipped with the fantastic Ant Bui | der . Using Ant tasks from Gradle is as convenient
and more powerful than using Ant tasks from abui | d. xm file. From the example below, you can learn how
to execute Ant tasks and how to access Ant properties:

Page 37 of 514

Example 6.13. Using AntBuilder to execute ant.loadfile tar get

bui I d. gradl e

task loadfile << {
def files = file('../antLoadfileResources').listFiles().sort()
files.each { File file ->
if (file.isFile()) {
ant.loadfile(srcFile: file, property: file.nane)

println " *** $file. name ***"
println "${ant.properties[file.nanme]}"

Output of gradl e -q | oadfile

> gradle -q loadfile

*** agile.mani festo.txt ***

I ndividuals and interactions over processes and tools
Wor ki ng software over conprehensive docunmentation
Cust omer col | aboration over contract negotiation
Respondi ng to change over follow ng a plan

*** gradl e. mani festo. txt ***

Make the inpossible possible, make the possible easy and nake the easy el egant.

(i nspired by Mdshe Fel denkrai s)

There is lots more you can do with Ant in your build scripts. You can find out more in Chapter 16, Using Ant

from Gradle.

6.11. Using methods

Gradle scales in how you can organize your build logic. The first level of organizing your build logic for the

example above, is extracting a method.

Page 38 of 514

Example 6.14. Using methods to organize your build logic

bui I d. gradl e

task checksum << {
fileList('../antLoadfil eResources').each {File file ->
ant . checksum(file: file, property: "cs $file.nane")
println "$file. name Checksum ${ant.properties["cs_$file.name"]}"

}

task |oadfile << {
fileList('../antLoadfil eResources').each {File file ->
ant.loadfile(srcFile: file, property: file.nane)
println "I'mfond of $file.nane"

}

File[] fileList(String dir) {
file(dir).listFiles({file ->file.isFile() } as FileFilter).sort()
}

Output of gradl e -q | oadfile
> gradle -q loadfile

I'"'mfond of agile.manifesto.txt
I"'mfond of gradle. manifesto.txt

Later you will see that such methods can be shared among subprojects in multi-project builds. If your build
logic becomes more complex, Gradle offers you other very convenient ways to organize it. We have devoted a
whole chapter to this. See Chapter 62, Organizing Build Logic.

6.12. Default tasks

Gradle allows you to define one or more default tasks that are executed if no other tasks are specified.

Page 39 of 514

Example 6.15. Defining a default task
buil d. gradl e

def aul t Tasks 'clean', 'run'

task clean << {
println 'Default C eaning!’

}

task run << {
println 'Default Running!'

}

task other << {
println "I'mnot a default task!"

}

Output of gradl e -q

> gradle -q
Def aul t C eani ng!
Def aul t Runni ng!

Thisisequivalent to running gr adl e cl ean run. Inamulti-project build every subproject can have its own
specific default tasks. If a subproject does not specify default tasks, the default tasks of the parent project are
used (if defined).

6.13. Configure by DAG

Aswe later describe in full detail (see Chapter 58, The Build Lifecycle), Gradle has a configuration phase and an
execution phase. After the configuration phase, Gradle knows all tasks that should be executed. Gradle offers
you a hook to make use of this information. A use-case for this would be to check if the release task is among
the tasks to be executed. Depending on this, you can assign different values to some variables.

In the following example, execution of the di stri buti on and r el ease tasks results in different value of
thever si on variable.

Page 40 of 514

Example 6.16. Different outcomes of build depending on chosen tasks
buil d. gradl e

task distribution << {
println "We build the zip with version=3$versi on"

}

task rel ease(dependsOn: 'distribution') << {
println 'We rel ease now

}

gradl e. t askG aph. whenReady {taskG aph ->
i f (taskG aph. hasTask(rel ease)) {
version = '1.0'
} else {
version = ' 1. 0- SNAPSHOT'

}

Output of gradl e -q di stribution

> gradle -q distribution
We build the zip with version=1. 0- SNAPSHOT

Output of gradl e -q rel ease
> gradle -qg rel ease

We build the zip with version=1.0
W rel ease now

The important thing is that whenReady affects the release task before the release task is executed. This works
even when the release task is not the primary task (i.e., the task passed to the gradle command).

0.14. Where to next?

In this chapter, we have had a first look at tasks. But this is not the end of the story for tasks. If you want to
jump into more of the details, have alook at Chapter 14, More about Tasks.

Otherwise, continue on to the tutorials in Chapter 7, Java Quickstart and Chapter 8, Dependency Management
Basics.

[2] There are command line switches to change this behavior. See Appendix D, Gradle Command Line)

Page 41 of 514

v

Java Quickstart

7.1. The Java plugin

As we have seen, Gradle is a general-purpose build tool. It can build pretty much anything you care to
implement in your build script. Out-of-the-box, however, it doesn't build anything unless you add code to your
build script to do so.

Most Java projects are pretty similar as far as the basics go: you need to compile your Java source files, run
some unit tests, and create a JAR file containing your classes. It would be niceif you didn't have to code al this
up for every project. Luckily, you don't have to. Gradle solves this praoblem through the use of plugins. A plugin
is an extension to Gradle which configures your project in some way, typically by adding some pre-configured
tasks which together do something useful. Gradle ships with a number of plugins, and you can easily write your
own and share them with others. One such plugin is the Java plugin. This plugin adds some tasks to your
project which will compile and unit test your Java source code, and bundleit into a JAR file.

The Java plugin is convention based. This means that the plugin defines default values for many aspects of the
project, such as where the Java source files are located. If you follow the convention in your project, you
generally don't need to do much in your build script to get a useful build. Gradle alows you to customize your
project if you don't want to or cannot follow the convention in some way. In fact, because support for Java
projects is implemented as a plugin, you don't have to use the plugin at al to build a Java project, if you don't
want to.

We have in-depth coverage with many examples about the Java plugin, dependency management and
multi-project builds in later chapters. In this chapter we want to give you an initial idea of how to use the Java
plugin to build a Java project.

7.2. A basic Java project

Let'slook at asimple example. To use the Java plugin, add the following to your build file:

Example 7.1. Using the Java plugin

buil d. gradl e

apply plugin: 'java'

Note: The code for this example can be found at sanpl es/ j aval/ qui ckst art inthe‘-al’ distribution
of Gradle.

Page 42 of 514

This is al you need to define a Java project. This will apply the Java plugin to your project, which adds a
number of tasksto your project.

Gradle expects to find your production source code under sr ¢/ mai n/ j ava

and y.our test source cod.e under src/t est-/j av.a. In adc?ltlon, What tasks are

any fl_ls under src/ mai n/ r(_asour ces will be included in the available?

JAR file asresources, and any filesunder src/ t est / r esour ces

will be included in the classpath used to run the tests. All output Youcanusegradl e tasks to

files are created under the bui | d directory, with the JAR file list the tasks of a project. This

endingupinthebui | d/ | i bs directory. will let you see the tasks that the
Java plugin has added to your

7.2.1. Building the project project.

The Java plugin adds quite a few tasks to your project. However,

there are only a handful of tasks that you will need to use to build

the project. The most commonly used task is the bui | d task, which does a full build of the project. When you
run gr adl e bui | d, Gradle will compile and test your code, and create a JAR file containing your main
classes and resources:

Example 7.2. Building a Java proj ect
Output of gradl e build

> gradle build
:conpi |l eJava

: processResour ces
:cl asses

tjar

:assenbl e
:conpi |l eTest Java
. processTest Resour ces
:testC asses
itest

: check

cbuild

BU LD SUCCESSFUL

Total tine: 1 secs

Some other useful tasks are:

clean
Deletesthe bui | d directory, removing all built files.

assemble
Compiles and jars your code, but does not run the unit tests. Other plugins add more artifacts to this task.
For example, if you use the War plugin, this task will also build the WAR file for your project.

check
Compiles and tests your code. Other plugins add more checksto thistask. For example, if you usethe checkst

Page 43 of 514

plugin, this task will also run Checkstyle against your source code.

7.2.2. External dependencies

Usually, a Java project will have some dependencies on external JAR files. To reference these JAR filesin the
project, you need to tell Gradle where to find them. In Gradle, artifacts such as JAR files, are located in a
repository. A repository can be used for fetching the dependencies of a project, or for publishing the artifacts of
aproject, or both. For this example, we will use the public Maven repository:

Example 7.3. Adding Maven repository

buil d. gradl e

repositories {

mavenCentral ()

}

Let's add some dependencies. Here, we will declare that our production classes have a compile-time dependency
on commons collections, and that our test classes have a compile-time dependency on junit:

Example 7.4. Adding dependencies

buil d. gradl e

dependenci es {
conpi |l e group: 'comons-col |l ections', nane: 'commons-collections', version: '3
testConpile group: 'junit', nane: 'junit', version: '4. +

Y ou can find out more in Chapter 8, Dependency Management Basics.

7.2.3. Customizing the project

The Java plugin adds a number of properties to your project. These properties have default values which are
usually sufficient to get started. It's easy to change these values if they don't suit. Let's look at this for our
sample. Here we will specify the version number for our Java project, along with the Java version our source is
written in. We also add some attributes to the JAR manifest.

Example 7.5. Customization of MANIFEST.MF
bui I d. gradl e

sourceConpatibility =

version = '1. 0

jar {
mani fest {

attributes 'Inplenmentation-Title': 'Gadle Quickstart',
"I npl enent ati on-Version': version

The tasks which the Java plugin adds are regular tasks, exactly the
same as if they were declared in the build file. This means you can

Page 44 of 514

use any of the mechanisms shown in earlier chapters to customize What properti es are
these tasks. For example, you can set the properties of a task, add avallable?

behaviour to atask, change the dependencies of atask, or replace a
task entirely. In our sample, we will configure the t est task,
which is of type Test , to add a system property when the tests are

Youcanusegradl e properties
to list the properties of a project.
This will allow you to see the

executed:

properties added by the Java
Example 7.6. Adding a test system property plugin, and their defaullt values.
buil d. gradl e

test {

systenProperties 'property': 'val ue'

}

7.2.4. Publishing the JAR file

Usually the JAR file needs to be published somewhere. To do this, you need to tell Gradle where to publish the
JAR file. In Gradle, artifacts such as JAR files are published to repositories. In our sample, we will publish to a
local directory. You can also publish to aremote location, or multiple locations.

Example 7.7. Publishing the JAR file
buil d. gradl e
upl oadAr chi ves {

repositories {
flatDir {

dirs 'repos'

To publish the JAR file, run gr adl e upl oadAr chi ves.

7.2.5. Creating an Eclipse project

To create the Eclipse-specific descriptor files, like . proj ect , you need to add another plugin to your build
file:

Example 7.8. Eclipse plugin

bui I d. gradl e

apply plugin: 'eclipse'

Now execute gr adl e ecl i pse command to generate Eclipse project files. More information about the ecl i pse¢

task can be found in Chapter 38, The Eclipse Plugins.

7.2.6. Summary

Here's the complete build file for our sample:

Page 45 of 514

http://www.gradle.org/docs/2.9/dsl/org.gradle.api.tasks.testing.Test.html

Example 7.9. Java example - complete build file

bui I d. gradl e

apply plugin: 'java
apply plugin: 'eclipse

sourceConpatibility = 1.5
version = '1. 0
jar {
mani f est {
attributes 'Inplenentation-Title': 'Gadle Quickstart',
"1 npl enent ati on-Version': version

}

repositories {
mavenCent ral ()

}

dependenci es {
conpil e group: ' commons-col |l ections', nane: 'commons-col |l ections', version: '3
testConpile group: "junit', name: 'junit', version: '4.+

}

test {
systenProperties 'property': 'val ue'

}

upl oadAr chi ves {
repositories {
flatDir {
dirs 'repos'

7.3. Multi-project Java build

Now let'slook at atypical multi-project build. Below is the layout for the project:

Example 7.10. M ulti-project build - hierarchical layout
Build layout

mul ti project/
api /

servi ces/ webservi ce/
shar ed/
servi ces/ shared/

Note: The code for this example can be found at sanpl es/java/ nul ti project in the ‘-al’
distribution of Gradle.

Page 46 of 514

Here we have four projects. Project api produces a JAR file which is shipped to the client to provide them a
Javaclient for your XML webservice. Project webser vi ce isawebapp which returns XML. Project shar ed
contains code used both by api and webser vi ce. Project ser vi ces/ shar ed has code that depends on
the shar ed project.

7.3.1. Defining a multi-project build

To define a multi-project build, you need to create a settings file. The settings file lives in the root directory of
the source tree, and specifies which projects to include in the build. It must be called set t i ngs. gr adl e. For
this example, we are using a simple hierarchical layout. Here is the corresponding settings file:

Example 7.11. Multi-project build - settings.gradlefile

settings.gradle

i nclude "shared", "api", "services:webservice", "services: shared"

Y ou can find out more about the settings file in Chapter 59, Multi-project Builds.

7.3.2. Common configuration

For most multi-project builds, there is some configuration which is common to al projects. In our sample, we
will define this common configuration in the root project, using a technique called configuration injection.
Here, the root project is like a container and the subpr oj ect s method iterates over the elements of this
container - the projects in this instance - and injects the specified configuration. This way we can easily define
the manifest content for all archives, and some common dependencies:

Example 7.12. Multi-project build - common configuration
buil d. gradl e
subproj ects {
apply plugin: 'java'
apply plugin: 'eclipse-wp'

repositories {
mavenCentral ()

}

dependenci es {

testConpile '"junit:junit:4.12'

}

version = '1.0'

jar {
mani fest.attri butes provider: 'gradle

}

Notice that our sample applies the Java plugin to each subproject. This means the tasks and configuration
properties we have seen in the previous section are available in each subproject. So, you can compile, test, and
JAR all the projects by running gr adl e bui | d from the root project directory.

Page 47 of 514

Also note that these plugins are only applied within the subpr oj ect s section, not at the root level, so the root
build will not expect to find Java source files in the root project, only in the subprojects.

7.3.3. Dependencies between projects

Y ou can add dependencies between projects in the same build, so that, for example, the JAR file of one project
is used to compile another project. Inthe api build file we will add a dependency on the shar ed project. Due
to this dependency, Gradle will ensure that project shar ed aways gets built before project api .

Example 7.13. Muulti-project build - dependencies between projects

api / buil d. gradl e

dependenci es {
conpi l e project(':shared")

}

See Section 59.7.1, “Disabling the build of dependency projects’ for how to disable this functionality.

7.3.4. Creating a distribution

We also add a distribution, that gets shipped to the client:

Example 7.14. M ulti-project build - distribution file
api / buil d. gradl e

task dist(type: Zip) {
dependsOn spi Jar
from'src/dist'
into('libs") {
from spi Jar. ar chi vePat h
from configurations. runtime

}

artifacts {
ar chi ves di st

}

7.4. Where to next?

In this chapter, you have seen how to do some of the things you commonly need to build a Java based project.
This chapter is not exhaustive, and there are many other things you can do with Java projectsin Gradle. Y ou can
find out more about the Java plugin in Chapter 23, The Java Plugin, and you can find more sample Java projects
inthe sanpl es/ j ava directory in the Gradle distribution.

Otherwise, continue on to Chapter 8, Dependency Management Basics.

Page 48 of 514

8

Dependency M anagement Basics

This chapter introduces some of the basics of dependency management in Gradle.

8.1. What is dependency management?

Very roughly, dependency management is made up of two pieces. Firstly, Gradle needs to know about the
things that your project needs to build or run, in order to find them. We call these incoming files the

dependencies of the project. Secondly, Gradle needs to build and upload the things that your project produces.
We call these outgoing files the publications of the project. Let'slook at these two pieces in more detail :

Most projects are not completely self-contained. They need files built by other projects in order to be compiled
or tested and so on. For example, in order to use Hibernate in my project, | need to include some Hibernate jars
in the classpath when | compile my source. To run my tests, | might also need to include some additional jarsin
the test classpath, such as a particular JDBC driver or the Ehcache jars.

These incoming files form the dependencies of the project. Gradle allows you to tell it what the dependencies of
your project are, so that it can take care of finding these dependencies, and making them available in your build.
The dependencies might need to be downloaded from a remote Maven or Ivy repository, or located in alocal
directory, or may need to be built by another project in the same multi-project build. We call this process
dependency resolution.

Note that this feature provides a major advantage over Ant. With Ant, you only have the ability to specify
absolute or relative paths to specific jars to load. With Gradle, you simply declare the “names’ of your
dependencies, and other layers determine where to get those dependencies from. Y ou can get similar behavior
from Ant by adding Apache Ivy, but Gradle does it better.

Often, the dependencies of a project will themselves have dependencies. For example, Hibernate core requires
several other libraries to be present on the classpath with it runs. So, when Gradle runs the tests for your project,
it also needs to find these dependencies and make them available. We call these transitive dependencies.

The main purpose of most projectsis to build some files that are to be used outside the project. For example, if
your project produces a Java library, you need to build a jar, and maybe a source jar and some documentation,
and publish them somewhere.

These outgoing files form the publications of the project. Gradle also takes care of this important work for you.
You declare the publications of your project, and Gradle take care of building them and publishing them
somewhere. Exactly what “publishing” means depends on what you want to do. You might want to copy the
files to a local directory, or upload them to a remote Maven or Ivy repository. Or you might use the files in
another project in the same multi-project build. We call this process publication.

Page 49 of 514

8.2. Declaring your dependencies

Let'slook at some dependency declarations. Here's a basic build script:

Example 8.1. Declaring dependencies
buil d. gradl e
apply plugin: 'java'

repositories {
mavenCentral ()

}

dependenci es {
conpi l e group: 'org. hibernate', name: 'hibernate-core', version: '3.6.7.Final
testConpile group: "junit', name: 'junit', version: '4. +

What's going on here? This build script says a few things about the project. Firstly, it states that Hibernate core
3.6.7.Final is required to compile the project's production source. By implication, Hibernate core and its
dependencies are also required at runtime. The build script also states that any junit >= 4.0 is required to
compile the project's tests. It also tells Gradle to look in the Maven central repository for any dependencies that
arerequired. The following sections go into the details.

8.3. Dependency configurations

In Gradle dependencies are grouped into configurations. A configuration is simply a named set of
dependencies. We will refer to them as dependency configurations. You can use them to declare the external
dependencies of your project. Aswe will seelater, they are also used to declare the publications of your project.

The Java plugin defines a number of standard configurations. These configurations represent the classpaths that
the Java plugin uses. Some are listed below, and you can find more details in Table 23.5, “Java plugin -
dependency configurations’.

compile
The dependencies required to compile the production source of the project.

runtime
The dependencies required by the production classes at runtime. By default, also includes the compile time
dependencies.

testCompile
The dependencies required to compile the test source of the project. By default, also includes the compiled
production classes and the compile time dependencies.

testRuntime
The dependencies required to run the tests. By default, also includes the compile, runtime and test compile
dependencies.

Page 50 of 514

Various plugins add further standard configurations. Y ou can also define your own custom configurations to use
in your build. Please see Section 52.3, “Dependency configurations” for the details of defining and customizing
dependency configurations.

8.4. External dependencies

There are various types of dependencies that you can declare. One such type is an external dependency. Thisa
dependency on some files built outside the current build, and stored in arepository of some kind, such as Maven
central, or a corporate Maven or lvy repository, or adirectory in the local file system.

To define an externa dependency, you add it to a dependency configuration:

Example 8.2. Definition of an exter nal dependency
buil d. gradl e

dependenci es {

conpil e group: 'org.hibernate', nane: 'hibernate-core', version: '3.6.7.Final

}

An external dependency is identified using gr oup, nane and ver si on attributes. Depending on which kind
of repository you are using, gr oup and ver si on may be optional.

The shortcut form for declaring external dependencieslookslike“ gr oup: nane: ver si on”.

Example 8.3. Shortcut definition of an external dependency
buil d. gradl e

dependenci es {

conpil e 'org. hi bernat e: hi bernate-core: 3. 6. 7. Fi nal

}

To find out more about defining and working with dependencies, have alook at Section 52.4, “How to declare
your dependencies’.

8.5. Repositories

How does Gradle find the files for external dependencies? Gradle looks for them in a repository. A repository is
realy just a collection of files, organized by gr oup, nane and ver si on. Gradle understands several different
repository formats, such as Maven and vy, and severa different ways of accessing the repository, such as using
the locdl file system or HTTP.

By default, Gradle does not define any repositories. Y ou need to define at least one before you can use external
dependencies. One option is use the Maven central repository:

Page 51 of 514

Example 8.4. Usage of Maven central repository

bui I d. gradl e

repositories {

mavenCent ral ()

}

Or aremote Maven repository:

Example 8.5. Usage of a remote Maven repository
buil d. gradl e

repositories {
maven {
url "http://repo. nyconpany. conf naven2"

}

Or aremote Ivy repository:

Example 8.6. Usage of aremote | vy directory
buil d. gradl e

repositories {
ivy {
url "http://repo. myconpany. com repo"

}

Y ou can a'so have repositories on the local file system. Thisworks for both Maven and Ivy repositories.

Example 8.7. Usage of alocal Ivy directory
buil d. gradl e
repositories {

ivy {
/1 URL can refer to a local directory

url "../local -repo"

A project can have multiple repositories. Gradle will look for a dependency in each repository in the order they
are specified, stopping at the first repository that contains the requested module.

To find out more about defining and working with repositories, have alook at Section 52.6, “ Repositories’.

Page 52 of 514

8.6. Publishing artifacts

Dependency configurations are also used to publish files.[3l We call these files publication artifacts, or usually
just artifacts.

The plugins do a pretty good job of defining the artifacts of a project, so you usually don't need to do anything
special to tell Gradle what needs to be published. However, you do need to tell Gradle where to publish the
artifacts. Y ou do this by attaching repositories to the upl oadAr chi ves task. Here's an example of publishing
to aremote lvy repository:

Example 8.8. Publishing to an Ivy repository

buil d. gradl e

upl oadAr chi ves {
repositories {
vy {
credentials {
user nane "usernane"
password " pw'

}

url "http://repo. myconpany. conf

Now, when you run gr adl e upl oadAr chi ves, Gradle will build and upload your Jar. Gradle will also
generate and upload ani vy. xm aswell.

Y ou can aso publish to Maven repositories. The syntax is slightly different.l*] Note that you also need to apply
the Maven plugin in order to publish to a Maven repository. when this is in place, Gradle will generate and
upload apom xm .

Example 8.9. Publishing to a Maven repository

buil d. gradl e

apply plugin: 'nmaven'

upl oadAr chi ves {
repositories {

mavenDepl oyer {
repository(url: "file://Ilocal host/tnp/ nyRepo/")

To find out more about publication, have alook at Chapter 53, Publishing artifacts.

Page 53 of 514

8.7. Where to next?

For all the details of dependency resolution, see Chapter 52, Dependency Management, and for artifact
publication see Chapter 53, Publishing artifacts.

If you are interested in the DSL elements mentioned here, have alook at Pr oj ect . confi gurati ons{},
Proj ect.repositories{} andProj ect. dependenci es{}.

Otherwise, continue on to some of the other tutorias.

[3] We think thisis confusing, and we are gradually teasing apart the two conceptsin the Gradle DSL.

[4] We are working to make the syntax consistent for resolving from and publishing to Maven repositories.

Page 54 of 514

http://www.gradle.org/docs/2.9/dsl/org.gradle.api.Project.html#org.gradle.api.Project:configurations(groovy.lang.Closure)
http://www.gradle.org/docs/2.9/dsl/org.gradle.api.Project.html#org.gradle.api.Project:repositories(groovy.lang.Closure)
http://www.gradle.org/docs/2.9/dsl/org.gradle.api.Project.html#org.gradle.api.Project:repositories(groovy.lang.Closure)
http://www.gradle.org/docs/2.9/dsl/org.gradle.api.Project.html#org.gradle.api.Project:dependencies(groovy.lang.Closure)

9

Groovy Quickstart

To build a Groovy project, you use the Groovy plugin. This plugin extends the Java plugin to add Groovy
compilation capabilities to your project. Your project can contain Groovy source code, Java source code, or a
mix of the two. In every other respect, a Groovy project is identical to a Java project, which we have aready
seen in Chapter 7, Java Quickstart.

9.1. A basic Groovy project

Let'slook at an example. To use the Groovy plugin, add the following to your build file:

Example 9.1. Groovy plugin

bui I d. gradl e

apply plugin: 'groovy'

Note: The code for this example can be found at sanpl es/ gr oovy/ qui ckstart in the ‘-al’
distribution of Gradle.

This will also apply the Java plugin to the project, if it has not already been applied. The Groovy plugin extends
the conpi | e task to look for source files in directory sr ¢/ mai n/ gr oovy, and the conpi | eTest task to
look for test source files in directory sr ¢/t est/ gr oovy. The compile tasks use joint compilation for these
directories, which means they can contain a mixture of Java and Groovy source files.

To use the Groovy compilation tasks, you must also declare the Groovy version to use and where to find the
Groovy libraries. You do this by adding a dependency to the gr oovy configuration. The conpil e
configuration inherits this dependency, so the Groovy libraries will be included in classpath when compiling
Groovy and Java source. For our sample, we will use Groovy 2.2.0 from the public Maven repository:

Example 9.2. Dependency on Groovy

buil d. gradle

repositories {
mavenCentral ()

}

dependenci es {
conpi | e ' org. codehaus. groovy: groovy-al | : 2. 4.4

}

Page 55 of 514

Here is our complete build file:

Example 9.3. Groovy example - complete build file

buil d. gradl e

apply plugin: 'eclipse'
apply plugin: 'groovy

repositories {
mavenCentral ()

}

dependenci es {
conpi |l e ' org. codehaus. groovy: groovy-all:2.4.4
testConpile "junit:junit:4. 12

Running gr adl e bui | d will compile, test and JAR your project.

9.2. Summary

This chapter describes a very simple Groovy project. Usually, areal project will require more than this. Because
a Groovy project is a Java project, whatever you can do with a Java project, you can also do with a Groovy
project.

You can find out more about the Groovy plugin in Chapter 24, The Groovy Plugin, and you can find more
sample Groovy projectsin the sanpl es/ gr oovy directory in the Gradle distribution.

Page 56 of 514

10

Web Application Quickstart

This chapter isawork in progress.

This chapter introduces the Gradle support for web applications. Gradle provides two plugins for web
application development: the War plugin and the Jetty plugin. The War plugin extends the Java plugin to build a
WAR file for your project. The Jetty plugin extends the War plugin to allow you to deploy your web application
to an embedded Jetty web container.

10.1. Building aWAR file

To build aWAR file, you apply the War plugin to your project:

Example 10.1. War plugin
buil d. gradl e

apply plugin: "war’

Note: The code for this example can be found at sanpl es/ webAppl i cati on/ qui ckstart inthe
‘-al’ distribution of Gradle.

This also applies the Java plugin to your project. Running gr adl e bui | d will compile, test and WAR your
project. Gradle will look for the source files to include in the WAR file in src/ mai n/ webapp. Your
compiled classes and their runtime dependencies are also included in the WAR file, in the WEB- | NF/ cl asses
and VEEB- | NF/ | i b directories, respectively.

. Groovy web
10.2. Running your web e
application | .
You can combine multiple
To run your web application, you apply the Jetty plugin to your pluginsin asingle project, so you
project: can use the War and Groovy

plugins together to build a
Groovy based web application.
The appropriate Groovy libraries

Page 57 of 514

Example 10.2. Running web application with Jetty plugin will be added to the WAR file for

bui | d. gradl e you.

apply plugin: '"jetty'

This also applies the War plugin to your project. Running gr adl e j ett yRun will run your web application
in an embedded Jetty web container. Running gr adl e j et t yRunWar will build the WAR file, and then run
it in an embedded web container.

TODO: which url, configure port, uses source files in place and can edit your files and rel oad.

10.3. Summary

Y ou can find out more about the War plugin in Chapter 26, The War Plugin and the Jetty plugin in Chapter 28,
The Jetty Plugin. You can find more sample Java projects in the sanpl es/ webAppl i cati on directory in
the Gradle distribution.

Page 58 of 514

11

Using the Gradle Command-Line

This chapter introduces the basics of the Gradle command-line. You run a build using the gradle command,
which you have already seen in action in previous chapters.

11.1. Executing multiple tasks

Y ou can execute multiple tasks in a single build by listing each of the tasks on the command-line. For example,
the command gr adl e conpi |l e test will executetheconpi | e andt est tasks. Gradle will execute the
tasks in the order that they are listed on the command-line, and will also execute the dependencies for each task.
Each task is executed once only, regardless of how it came to be included in the build: whether it was specified
on the command-line, or as a dependency of another task, or both. Let'slook at an example.

Below four tasks are defined. Both di st andt est depend on the conpi | e task. Running gr adl e di st test
for this build script resultsin the conpi | e task being executed only once.

Figure 11.1. Task dependencies

compile compileTest (thu
test

Page 59 of 514

Example 11.1. Executing multiple tasks
buil d. gradl e

task conpile << {
println 'conpiling source'

}

task conpil eTest (dependsOn: conpile) << {
println 'conpiling unit tests'

}

task test(dependsOn: [conpile, conpileTest]) << {
println 'running unit tests'

}

task di st (dependsOn: [conpile, test]) << {
println '"building the distribution'

}

Output of gr adl e di st test

> gradl e dist test

:conpile

conpi l i ng source
:conpi | eTest
conpiling unit tests
‘test

running unit tests

2 di st

buil ding the distribution
BUI LD SUCCESSFUL

Total tine: 1 secs

Each task is executed only once, sogr adl e t est test isexactlythesameasgradl e test.

11.2. Excluding tasks

Y ou can exclude a task from being executed using the - x command-line option and providing the name of the
task to exclude. Let's try this with the sample build file above.

Example 11.2. Excluding tasks
Output of gradl e di st -x test

> gradle dist -x test

:conpile
conpi l i ng source
- di st

bui l ding the distribution
BUI LD SUCCESSFUL

Total tinme: 1 secs

Page 60 of 514

Y ou can see from the output of this example, that thet est task is not executed, even though it is a dependency
of the di st task. You will also notice that the t est task's dependencies, such as conpi | eTest are not
executed either. Those dependencies of t est that are required by another task, such as conpi | e, are still
executed.

11.3. Continuing the build when afailure occurs

By default, Gradle will abort execution and fail the build as soon as any task fails. This allows the build to
complete sooner, but hides other failures that would have occurred. In order to discover as many failures as
possiblein asingle build execution, you can usethe - - cont i nue option.

When executed with - - conti nue, Gradle will execute every task to be executed where all of the
dependencies for that task completed without failure, instead of stopping as soon as the first failure is
encountered. Each of the encountered failures will be reported at the end of the build.

If atask fails, any subsequent tasks that were depending on it will not be executed, asit is not safe to do so. For
example, tests will not run if there is a compilation failure in the code under test; because the test task will
depend on the compilation task (either directly or indirectly).

11.4. Task name abbreviation

When you specify tasks on the command-line, you don't have to provide the full name of the task. You only
need to provide enough of the task name to uniquely identify the task. For example, in the sample build above,
you can executetask di st by running gr adl e d:

Example 11.3. Abbreviated task name

Output of gr adl e di

> gradle di

:conpile

conpi | i ng source
:conpi | eTest
conpiling unit tests
(test

running unit tests

1 di st

buil ding the distribution
BUI LD SUCCESSFUL

Total tine: 1 secs

Y ou can a'so abbreviate each word in a camel case task hame. For example, you can execute task conpi | eTest
by running gr adl e conpTest orevengradl e cT

Page 61 of 514

Example 11.4. Abbreviated camel case task name
Output of gradl e cT

> gradle cT

:conpile
conpi l i ng source
:conpi | eTest

conpiling unit tests
BUI LD SUCCESSFUL

Total tinme: 1 secs

Y ou can also use these abbreviations with the - x command-line option.

11.5. Selecting which build to execute

When you run the gradle command, it looks for abuild file in the current directory. Y ou can use the - b option
to select another build file. If you use - b optionthen set ti ngs. gr adl e fileis not used. Example:

Example 11.5. Selecting the project using a build file

subdi r/ myproj ect. gradl e

task hello << {

println "using build file '$buildFile.name' in '$buildFile.parentFile.nane'."

}

Output of gradl e -q -b subdir/nyproject.gradle hello

> gradle -q -b subdir/myproject.gradle hello
using build file "myproject.gradle' in 'subdir'.

Alternatively, you can use the - p option to specify the project directory to use. For multi-project builds you
should use - p option instead of - b option.

Example 11.6. Selecting the project using project directory
Outputof gradle -q -p subdir hello

> gradle -gq -p subdir hello
using build file "build.gradle' in 'subdir'.

11.6. Obtaining information about your build

Gradle provides several built-in tasks which show particular details of your build. This can be useful for
understanding the structure and dependencies of your build, and for debugging problems.

In addition to the built-in tasks shown below, you can also use the project report plugin to add tasks to your
project which will generate these reports.

Page 62 of 514

11.6.1. Listing projects

Running gr adl e proj ects gives you a list of the sub-projects of the selected project, displayed in a

hierarchy. Here is an example:

Example 11.7. Obtaining infor mation about projects
Output of gradl e -q projects
> gradle -q projects

Root proj ect

Root project 'projectReports'
+--- Project ':api' - The shared APl for the application
\--- Project ':webapp' - The Web application inplenmentation

To see a list of the tasks of a project, run gradl e <project-path>:tasks

For exanple, try running gradle :api:tasks

The report shows the description of each project, if specified. You can provide a description for a project by

setting thedescri pti on property:

Example 11.8. Providing a description for a project
buil d. gradl e

description = ' The shared APl for the application'

11.6.2. Listing tasks

Running gr adl e tasks gives you a list of the main tasks of the selected project. This report shows the
default tasks for the project, if any, and a description for each task. Below is an example of this report:

Page 63 of 514

Example 11.9. Obtaining information about tasks
Output of gradl e -q tasks

> gradle -q tasks

Al'l tasks runnable fromroot project

Default tasks: dists

Bui |l d tasks

clean - Deletes the build directory (build)
dists - Builds the distribution

libs - Builds the JAR

Buil d Setup tasks
init - Initializes a new Gradl e build. [incubating]
wrapper - Cenerates Gradle wapper files. [incubating]

Hel p tasks

conponents - Displays the conmponents produced by root project 'projectReports'. [incu
dependenci es - Displays all dependencies declared in root project 'projectReports'.
dependencyl nsight - Displays the insight into a specific dependency in root project
hel p - Displays a hel p nessage.

nmodel - Displays the configuration nodel of root project 'projectReports'. [incubatin
projects - Displays the sub-projects of root project 'projectReports'.

properties - Displays the properties of root project 'projectReports'.

tasks - Displays the tasks runnable fromroot project 'projectReports' (some of the d

To see all tasks and nore detail, run gradle tasks --all

To see nore detail about a task, run gradle help --task <task>

By default, this report shows only those tasks which have been assigned to a task group. You can do this by
setting the gr oup property for the task. You can also set the descri pt i on property, to provide a description
to be included in the report.

Example 11.10. Changing the content of the task report

buil d. gradle

dists {
description = 'Builds the distribution'

group = 'build

Y ou can obtain more information in the task listing using the - - al | option. With this option, the task report
lists all tasks in the project, grouped by main task, and the dependencies for each task. Here is an example:

Page 64 of 514

Example 11.11. Obtaining moreinformation about tasks
Output of gradl e -q tasks --all

> gradle -q tasks --all

Al'l tasks runnable fromroot project

Default tasks: dists

Bui | d tasks
clean - Deletes the build directory (build)
api:clean - Deletes the build directory (build)
webapp: clean - Deletes the build directory (build)
dists - Builds the distribution [api:libs, webapp:!|ibs]
docs - Builds the documentation
api:libs - Builds the JAR
api:compile - Conpiles the source files
webapp: libs - Builds the JAR [api:|ibs]
webapp: conpile - Conpiles the source files

Buil d Setup tasks
init - Initializes a new Gradl e build. [incubating]
wrapper - Cenerates Gradle wapper files. [incubating]

Hel p tasks

conponents - Displays the conponents produced by root project 'projectReports'. [incu
api : components - Displays the conmponents produced by project ':api'. [incubating]
webapp: components - Displays the conponents produced by project ':webapp'. [incubatin
dependenci es - Displays all dependencies declared in root project 'projectReports'.
api : dependenci es - Displays all dependencies declared in project ':api'.

webapp: dependenci es - Displays all dependencies declared in project ':webapp'.
dependencyl nsight - Displays the insight into a specific dependency in root project
api : dependencyl nsight - Displays the insight into a specific dependency in project
webapp: dependencyl nsi ght - Displays the insight into a specific dependency in project
hel p - Displays a hel p nessage.

api :help - Displays a hel p nessage.

webapp: hel p - Displays a hel p nmessage.

nmodel - Displays the configuration nodel of root project 'projectReports'. [incubatin
api : model - Displays the configuration nodel of project ':api'. [incubating]
webapp: nodel - Displays the configuration nodel of project ':webapp'. [incubating]

projects - Displays the sub-projects of root project 'projectReports'.

api : projects - Displays the sub-projects of project ':api'.

webapp: proj ects - Displays the sub-projects of project ':webapp'.

properties - Displays the properties of root project 'projectReports'.

api : properties - Displays the properties of project ':api'.

webapp: properties - Displays the properties of project ':webapp'.

tasks - Displays the tasks runnable fromroot project 'projectReports' (some of the d
api :tasks - Displays the tasks runnable fromproject ':api'.

webapp: tasks - Displays the tasks runnable from project ':webapp'.

Page 65 of 514

11.6.3. Show task usage details

Running gradl e help --task soneTask gives you detailed information about a specific task or
multiple tasks matching the given task name in your multiproject build. Below is an example of this detailed
information:

Example 11.12. Obtaining detailed help for tasks

Outputof gradl e -q help --task libs

> gradle -q help --task libs
Detailed task information for |ibs

Pat hs
capi:libs
s webapp: |'i bs

Type
Task (org.gradle. api. Task)

Description
Bui l ds the JAR

G oup
bui | d

This information includes the full task path, the task type, possible commandline options and the description of
the given task.

11.6.4. Listing project dependencies

Running gr adl e dependenci es givesyou alist of the dependencies of the selected project, broken down
by configuration. For each configuration, the direct and transitive dependencies of that configuration are shown
in atree. Below isan example of this report:

Page 66 of 514

Example 11.13. Obtaining information about dependencies
Output of gr adl e -q dependenci es api : dependenci es webapp: dependenci es

> gradl e -q dependenci es api: dependenci es webapp: dependenci es

Root proj ect

Project :api - The shared APl for the application

conpi l e
\--- org.codehaus. groovy: groovy-all:2.4.4

test Conpi |l e
\--- junit:junit:4.12
\--- org. hantrest: hancrest-core: 1.3

Proj ect :webapp - The Wb application inplenentation

conpi l e

+--- project :api

| \--- org.codehaus. groovy: groovy-all:2.4.4
\--- commons-io: comons-io: 1.2

test Conpi |l e

No dependenci es

Since a dependency report can get large, it can be useful to restrict the report to a particular configuration. This
is achieved with the optional - - conf i gur at i on parameter:
Example 11.14. Filtering dependency report by configuration

Output of gradl e -q api : dependenci es --configuration testConpile
> gradle -q api:dependencies --configuration testConpile

Project :api - The shared APl for the application

test Conpi l e
\--- junit:junit:4.12
\--- org. hantrest: hancrest-core: 1.3

11.6.5. Getting the insight into a particular dependency

Running gradl e dependencyl nsi ght gives you an insight into a particular dependency (or
dependencies) that match specified input. Below is an example of this report:

Page 67 of 514

Example 11.15. Getting theinsight into a particular dependency
Output of gr adl e -q webapp: dependencyl nsi ght --dependency groovy --configuration

> gradl e -q webapp: dependencyl nsi ght --dependency groovy --configuration conpile
or g. codehaus. groovy: groovy-all:2.4.4
\--- project :api

\--- conpile

This task is extremely useful for investigating the dependency resolution, finding out where certain
dependencies are coming from and why certain versions are selected. For more information please see the
Dependencyl nsi ght Repor t Task classin the APl documentation.

The built-in dependencylnsight task is a part of the 'Help' tasks group. The task needs to configured with the
dependency and the configuration. The report looks for the dependencies that match the specified dependency
spec in the specified configuration. If Java related plugin is applied, the dependencylnsight task is
pre-configured with ‘compile’ configuration because typically it's the compile dependencies we are interested in.
Y ou should specify the dependency you are interested in via the command line '--dependency’ option. If you
don't like the defaults you may select the configuration via'--configuration' option. For more information see the
Dependencyl nsi ght Repor t Task classin the APl documentation.

11.6.6. Listing project properties

Running gr adl e properties givesyou alist of the properties of the selected project. This is a snippet
from the output:

Example 11.16. Information about properties
Output of gradl e -q api : properties
> gradle -q api:properties

Project :api - The shared APl for the application

all projects: [project ':api']

ant: org.gradl e.api.internal.project. DefaultAntBuil der @2345

ant Bui | der Factory: org.gradle.api.internal.project. Default AntBui |l der Fact ory@=2345
artifacts: org.gradle.api.internal.artifacts.dsl.DefaultArtifactHandl er_Decorated@?23
asDynam cObj ect: org.gradl e. api.internal.Extensi bl eDynam cObj ect @2345

baseCl assLoader Scope: org.gradle.api.internal.initialization.DefaultC assLoader Scope@
bui I dDi r: /hone/user/gradl e/ sanpl es/ usergui de/tutorial /project Reports/api/build

bui | dFi | e: /hone/ user/ gradl e/ sanpl es/ usergui de/ tutorial/projectReports/api/build.grad

11.6.7. Profiling a build

The- - pr of i | e command line option will record some useful timing information while your build is running
and write a report to the bui | d/ report s/ profil e directory. The report will be named using the time
when the build was run.

This report lists summary times and details for both the configuration phase and task execution. The times for
configuration and task execution are sorted with the most expensive operations first. The task execution results

Page 68 of 514

http://www.gradle.org/docs/2.9/dsl/org.gradle.api.tasks.diagnostics.DependencyInsightReportTask.html
http://www.gradle.org/docs/2.9/dsl/org.gradle.api.tasks.diagnostics.DependencyInsightReportTask.html
http://www.gradle.org/docs/2.9/dsl/org.gradle.api.tasks.diagnostics.DependencyInsightReportTask.html

aso indicate if any tasks were skipped (and the reason) or if tasks that were not skipped did no work.

Builds which utilize a buildSrc directory will generate a second profile report for buildSrc in the bui | dSr ¢/ bui |
directory.

Profiled with tasks: -xtest build

Summary Configuration Task E
Total Build Time 2:01.164 | |: 2.804 | | :docs
Startup 0.313| |:docs 0.576 :docs:userguideSingleHtm
Settings and BuildSrc 4078 | |:core 0.203 :docs:userguidePdf
Loading Projects 0074 | |:announce 0.084 :docs:checkstyleApi
Configuring Projects 3208 | i 0.036 :docs:userguideStyleSheet
Total Task Execution 1:52.671 | | :openApi 0.035 :docs:groovydoc
:maven 0.033 :docs:samples
:codeQuality 0.033 :docs:javadoc
wrapper 0022 :docs:userguideFragmentS
eclipse 0.021 :docs:distDocs
:idea 0.021 :docs:samplesDocs
:plugins 0.020 :docs:userguideXhtml
:launcher 0.020 :docs:userguideHuml
:antlr 0.017 :docs:userguideDocbook
0sgil 0014 :docs:remoteUserguideDo
jetty 0014 :docs:samplesDochook
:scala 0012 :docs:docs
:docs:userguide
‘core
:core:compileTestGroovy
:core:codenarcTest
:core:checkstyleMain

MN”‘W%MN

11.7. Dry Run

Sometimes you are interested in which tasks are executed in which order for agiven set of tasks specified on the
command line, but you don't want the tasks to be executed. Y ou can use the - moption for this. For example, if
yourun“gradl e -m cl ean conpil e”, you'll seeall the tasks that would be executed as part of the cl ean
and conpi | e tasks. Thisis complementary to thet asks task, which shows you the tasks which are available
for execution.

11.8. Summary

In this chapter, you have seen some of the things you can do with Gradle from the command-line. Y ou can find
out more about the gr adle command in Appendix D, Gradle Command Line.

Page 69 of 514

12

Using the Gradle Graphical User Interface

In addition to supporting a traditional command line interface, Gradle offers a graphical user interface. Thisisa
stand alone user interface that can be launched with the --gui option.

Example 12.1. Launching the GUI

gradl e --gui

Note that this command blocks until the Gradle GUI is closed. Under *nix it is probably preferable to run this as
abackground task (gradle --gui&)

If you run this from your Gradle project working directory, you should see atree of tasks.

Page 70 of 514

Figure12.1. GUI Task Tree

E Gradle

Task Tree | Favorites || Command Line || Semp|

[Refresh] [Execute | [Filter] [+] Show Description

[=E-multiproject S
+-api i
--services

=}-shared

~-huild Builds and tests this project

----- uilds and tests this project and all projects that depend on it

--huildieeded Builds and tests this project and all projects it depends on

~cean Deletes the build directory.

~-compile Compiles the main Java source,

--compileTest Compiles the test Java source, [%

-dists Builds all Jar, War, Zip, and Tar archives

-erlipse Generates an Edipse .project and . dasspath file.

-grlipseClean Deletes the Eclipse .project and . dasspath files,

-erlipseCp Generates an Edlipse .dasspath file,

-grlipseProject Generates an Edlipse .project file.

--eripseWtpModule Generates the Edlipse Wip files,

Execute 'shared:builldDependents' X

Completed successfully at 3:17:05 PM

(>

:Zervices:webservice:processEescurces
:Zervices:webservice:jer SEIEPEED
apisuploadDefeultInternal
Zervices::webservice::war
Zervices:webservice:liks
Zervices:webservice:dists
gervices:webservice:compileTest B
Zervices:webservice:processTestRescocurces
:Zervices::webservice:test

< | *

[%

It is preferable to run this command from your Gradle project directory so that the settings of the Ul will be
stored in your project directory. However, you can run it then change the working directory via the Setup tab in
the Ul.

The Ul displays 4 tabs al ong the top and an output window along the bottom.

12.1. Task Tree

The Task Tree shows a hierarchical display of all projects and their tasks. Double clicking atask executesit.

There is also a filter so that uncommon tasks can be hidden. You can toggle the filter via the Filter button.
Editing the filter allows you to configure which tasks and projects are shown. Hidden tasks show up in red.
Note: newly created tasks will show up by default (versus being hidden by default).

The Task Tree context menu provides the following options:

Page 71 of 514

® Execute ignoring dependencies. This does not require dependent projects to be rebuilt (same as the -a
option).

® Add tasksto the favorites (see Favorites tab)

¢ Hidethe selected tasks. This adds them to thefilter.

* Edit the build.gradle file. Note: this requires Java 1.6 or higher and requires that you have .gradle files
associated in your OS.

12.2. Favorites

The Favorites tab is a good place to store commonly-executed commands. These can be complex commands
(anything that's legal to Gradle) and you can provide them with a display name. Thisis useful for creating, say,
a custom build command that explicitly skips tests, documentation, and samples that you could call “fast build”.

Y ou can reorder favorites to your liking and even export them to disk so they can imported by others. If you edit
them, you are given options to “Always Show Live Output”. This only appliesif you have “Only Show Output
When Errors Occur”. This override always forces the output to be shown.

12.3. Command Line

The Command Line tab is where you can execute a single Gradle command directly. Just enter whatever you
would normally enter after 'gradle’ on the command line. This also provides a place to try out commands before
adding them to favorites.

12.4. Setup

The Setup tab alows configuration of some general settings.

Page 72 of 514

Figure 12.2. GUI Setup

E Gradle

| Task Tree | Favorites | Command Line | Setup |

Current Directory
|C:\deuelnment\samples\,jaua‘l.|11u|tipmject | [Browse. ..

Log Level
| Debug w

Stack Trace Qutput
() Exceptions Only
() Standard Stack Trace
() Full Stack Trace

] only Show Output When Errors Ocour

[] Use Custom Gradle Executor

Execute 'shared:builldDependents' X

Completed successfully at 3:23:29 PM

Zervices:webservice:test

(>

gervices:webservice:build
:shared:buildDlependents

BUILD SUCCESSFUL

Total time: ©.453 secs

<

Completed Successfully
£ >

® Current Directory
Defines the root directory of your Gradle project (typically where build.gradle is located).

® Stack Trace Output
This determines how much information to write out in stack traces when errors occur. Note: if you specify a
stack trace level on either the Command Line or Favorites tab, it will override this stack trace level.

® Only Show Output When Errors Occur
Enabling this option hides any output when atask is executed unless the build fails.

® Use Custom Gradle Executor - Advanced feature
This provides you with an alternate way to launch Gradle commands. Thisis useful if your project requires
some extra setup that is done inside another batch file or shell script (such as specifying an init script).

Page 73 of 514

13

Writing Build Scripts
This chapter looks at some of the details of writing a build script.

13.1. The Gradle build language

Gradle provides a domain specific language, or DSL, for describing builds. This build language is based on
Groovy, with some additions to make it easier to describe a build.

A build script can contain any Groovy language element. [5] Gradle assumes that each build scri pt is encoded
using UTF-8.

13.2. The Project API

In the tutorial in Chapter 7, Java Quickstart we used, for example, the appl y() method. Where does this
method come from? We said earlier that the build script defines a project in Gradle. For each project in the
build, Gradle creates an object of type Pr oj ect and associates this Pr oj ect object with the build script. As
the build script executes, it configures this Pr oj ect object:

® Any method you call in your build script which is not defined
in the build script, is delegated to the Pr oj ect object.

® Any property you access in your build script, which is not
defined in the build script, is delegated to the Pr oj ect object.

Getting help writing
build scripts

Don't forget that your build script
Let's try this out and try to access the name property of the issimply Groovy code that drives
Proj ect object. the Gradle API. And the

Proj ect interface is your
Example 13.1. Accessing property of the Project object starting point for accessing
bui I d. gradl e everything in the Gradle API. So,
if you're wondering what ‘'tags
are available in your build script,
you can start with the

println name

println project.name

Output of gradl e -q check documentation for the Pr oj ect
interface.
> gradle -q check
pr oj ect Api
pr oj ect Api

Page 74 of 514

http://www.gradle.org/docs/2.9/dsl/org.gradle.api.Project.html
http://www.gradle.org/docs/2.9/dsl/org.gradle.api.Project.html
http://www.gradle.org/docs/2.9/dsl/org.gradle.api.Project.html

Both pri nt | n statements print out the same property. The first uses auto-delegation to the Pr oj ect object,
for properties not defined in the build script. The other statement uses the pr oj ect property available to any
build script, which returns the associated Pr oj ect object. Only if you define a property or a method which has
the same name as a member of the Pr oj ect object, would you need to use the pr oj ect property.

13.2.1. Standard project properties

The Pr oj ect object provides some standard properties, which are available in your build script. The following
table lists afew of the commonly used ones.

Table 13.1. Project Properties

Name Type Default Value

pr oj ect Proj ect The Pr oj ect instance

name String The name of the project directory.

pat h String The absolute path of the project.
description String A description for the project.
projectDir File The directory containing the build script.
bui I dDi r File projectDir/build

group hj ect unspecified

version hj ect unspecified

ant Ant Bui | der ~ An Ant Bui | der instance

13.3. The Script API

When Gradle executes a script, it compiles the script into a class which implements Scr i pt . This means that
all of the properties and methods declared by the Scr i pt interface are available in your script.

13.4. Declaring variables

There are two kinds of variables that can be declared in a build script: local variables and extra properties.

13.4.1. Local variables

Local variables are declared with the def keyword. They are only visible in the scope where they have been
declared. Local variables are afeature of the underlying Groovy language.

Page 75 of 514

http://www.gradle.org/docs/2.9/dsl/org.gradle.api.Project.html
http://www.gradle.org/docs/2.9/javadoc/org/gradle/api/AntBuilder.html
http://www.gradle.org/docs/2.9/dsl/org.gradle.api.Script.html

Example 13.2. Using local variables
buil d. gradl e

def dest = "dest"

task copy(type: Copy) {

from "source"
into dest

13.4.2. Extra properties

All enhanced objects in Gradle's domain model can hold extra user-defined properties. This includes, but is not
limited to, projects, tasks, and source sets. Extra properties can be added, read and set via the owning object's ext
property. Alternatively, an ext block can be used to add multiple properties at once.

Example 13.3. Using extra properties

bui I d. gradl e
apply plugin: "java"

ext {
springVersion = "3.1. 0. RELEASE"
emai | Notification = "buil d@master.org"

}

sourceSets. all { ext.purpose = null }

sourceSets {
mai n {
pur pose = "production®
}
test {
pur pose
}
plugin {
pur pose “production"

}

}

task printProperties << {
println springVersion
println enmail Notification
sourceSets. matching { it.purpose == "production” }.each { println it.name }

Output of gradl e -q printProperties

> gradle -qg printProperties
3. 1. 0. RELEASE

bui | d@master. org

mai n

pl ugi n

Page 76 of 514

In this example, an ext block adds two extra properties to the pr oj ect object. Additionally, a property
named pur pose is added to each source set by setting ext . pur pose to nul | (null is a permissible
value). Once the properties have been added, they can be read and set like predefined properties.

By requiring specia syntax for adding a property, Gradle can fail fast when an attempt is made to set a
(predefined or extra) property but the property is misspelled or does not exist. Extra properties can be accessed
from anywhere their owning object can be accessed, giving them a wider scope than local variables. Extra
properties on a project are visible from its subprojects.

For further details on extra properties and their API, seethe Ext r aPr oper t i esExt ensi on classinthe API
documentation.

13.5. Configuring arbitrary objects

Y ou can configure arbitrary objects in the following very readable way.

Example 13.4. Configuring arbitrary objects
buil d. gradl e

task configure << {
def pos = configure(new java.text.FieldPosition(10)) {
begi nl ndex = 1
endl ndex = 5

}
println pos. begi nl ndex
println pos. endl ndex

Output of gradl e -q configure
> gradle -q configure

1
5

13.6. Configuring arbitrary objects using an
external script

Y ou can aso configure arbitrary objects using an external script.

Page 77 of 514

http://www.gradle.org/docs/2.9/dsl/org.gradle.api.plugins.ExtraPropertiesExtension.html

Example 13.5. Configuring arbitrary objectsusing a script

bui I d. gradl e

task configure << {
def pos = new java.text.Fiel dPosition(10)
/1 Apply the script

apply from ‘'other.gradle', to: pos
println pos. begi nl ndex
println pos.endl ndex

ot her.gradl e

/| Set properties.

begi nl ndex = 1
endl ndex = 5

Output of gradl e -q configure
> gradle -q configure

1
5

13.7. Some Groovy basics

Groovy provides plenty of features for creating DSLs, and the Gradle build language takes advantage of these.
Understanding how the build language works will help you when you write your build script, and in particular,
when you start to write custom plugins and tasks.

13.7.1. Groovy JDK

Groovy adds lots of useful methods to the standard Java classes. For example, | t er abl e gets an each
method, which iterates over the elements of the | t er abl e:

Example 13.6. Groovy JDK methods

bui I d. gradl e

/'l lterable gets an each() nethod

configurations.runtime.each { File f -> println f }

Have alook at http://groovy.codehaus.org/groovy-jdk/ for more details.

13.7.2. Property accessors

Groovy automatically converts a property reference into a call to the appropriate getter or setter method.

Page 78 of 514

http://groovy.codehaus.org/groovy-jdk/

Example 13.7. Property accessors

bui I d. gradl e

/1l Using a getter method
println project. buildDir
println getProject().getBuildDir()

/1l Using a setter method
project.buildDir = 'target'
getProject().setBuildDir('target')

13.7.3. Optional parentheses on method calls

Parentheses are optional for method calls.

Example 13.8. Method call without parentheses
buil d. gradl e

test.systenProperty 'sone.prop', 'value'
test.systenProperty(' sone. prop', 'value')

13.7.4. List and map literals

Groovy provides some shortcuts for defining Li st and Map instances. Both kinds of literals are
straightforward, but map literals have some interesting twists.

For instance, the “appl y” method (where you typicaly apply plugins) actually takes a map parameter.
However, when you have a line like “appl y pl ugi n:'java'”, you aren't actually using a map literal,
you're actually using “named parameters’, which have almost exactly the same syntax as a map literal (without
the wrapping brackets). That named parameter list gets converted to a map when the method is called, but it
doesn't start out as amap.

Example 13.9. List and map literals

buil d. gradl e

/1 List literal
test.includes = ['org/gradle/api/**", 'org/gradle/internal/**"]

List<String> list = new ArrayList<String>()
list.add(' org/gradle/api/**")

list.add(' org/gradle/internal/**")
test.includes = |ist

/1l NMap literal.
Map<String, String> map = [keyl:'val uel', key2: 'value2']

/1l Groovy will coerce named argunents
/1l into a single map ar gunment

apply plugin: 'java'

Page 79 of 514

13.7.5. Closures as the last parameter in a method

The Gradle DSL uses closures in many places. You can find out more about closures here. When the last
parameter of amethod is aclosure, you can place the closure after the method call:

Example 13.10. Closur e as method parameter

bui I d. gradl e

repositories {
println "in a cl osure"

}

repositories() { println "in a closure" }
repositories({ println "in a closure" })

13.7.6. Closure delegate

Each closure has adel egat e object, which Groovy uses to look up variable and method references which are
not local variables or parameters of the closure. Gradle usesthis for configuration closures, wherethe del egat e
object is set to the object to be configured.

Example 13.11. Closure delegates
buil d. gradl e

dependenci es {
assert del egate == proj ect.dependenci es
testConpile('junit:junit:4.12")

del egate.testConpile("junit:junit:4. 12")

[5] Any language element except for statement labels.

Page 80 of 514

http://groovy.codehaus.org/Closures

14

More about Tasks

In the introductory tutorial (Chapter 6, Build Script Basics) you learned how to create simple tasks. You also
learned how to add additional behavior to these tasks later on, and you learned how to create dependencies
between tasks. This was all about simple tasks, but Gradle takes the concept of tasks further. Gradle supports
enhanced tasks, which are tasks that have their own properties and methods. Thisis realy different from what
you are used to with Ant targets. Such enhanced tasks are either provided by you or built into Gradle.

14.1. Defining tasks

We have aready seen how to define tasks using a keyword style in Chapter 6, Build Script Basics. There are a
few variations on this style, which you may need to use in certain situations. For example, the keyword style
does not work in expressions.

Example 14.1. Defining tasks

buil d. gradl e

task(hell o) << {
println "hello"

}

task(copy, type: Copy) {
fromfile(' srchDir'))
i nto(buil dDir)

Y ou can a'so use strings for the task names:

Example 14.2. Defining tasks - using strings for task names
buil d. gradl e

task(' hello') <<

{

println "hello"

}

task(' copy', type: Copy) {
from(file('srchDir'))
i nto(buildDir)

Page 81 of 514

Thereis an aternative syntax for defining tasks, which you may prefer to use:

Example 14.3. Defining tasks with alter native syntax
buil d. gradl e

tasks. create(nane: 'hello") << {
println "hello"

}

tasks. create(nane: 'copy', type: Copy) {
from(file(srcDir'))
into(buildbir)

Here we add tasksto thet asks collection. Have alook at TaskCont ai ner for more variations of thecr eat e(’
method.

14.2. Locating tasks

Y ou often need to locate the tasks that you have defined in the build file, for example, to configure them or use
them for dependencies. There are a number of ways of doing this. Firstly, each task is available as a property of
the project, using the task name as the property name:

Example 14.4. Accessing tasks as properties

buil d. gradl e

task hello

println hello.nane
println project. hello.nane

Tasks are also available through the t asks collection.

Example 14.5. Accessing tasks via tasks collection
buil d. gradl e

task hello

println tasks. hel |l o. name
println tasks['hello'].name

Y ou can access tasks from any project using the task's path using the t asks. get ByPat h() method. You can
call theget ByPat h() method with atask name, or arelative path, or an absolute path.

Page 82 of 514

http://www.gradle.org/docs/2.9/javadoc/org/gradle/api/tasks/TaskContainer.html

Example 14.6. Accessing tasks by path
buil d. gradl e
project(':projectA) {

task hello

}

task hello

println tasks.getByPath(' hello').path

println tasks.getByPath(':hello').path

println tasks. getByPath(' projectA hello").path
println tasks.getByPath(':projectA hello').path

Output of gradl e -q hello

> gradle -q hello
chello

chello

:projectA hello
:projectA hello

Have alook at TaskCont ai ner for more options for locating tasks.

14.3. Configuring tasks

As an example, let's look at the Copy task provided by Gradle. To create a Copy task for your build, you can
declarein your build script:

Example 14.7. Creating a copy task

buil d. gradl e

task nyCopy(type: Copy)

This creates a copy task with no default behavior. The task can be configured using its API (see Copy). The
following examples show several different ways to achieve the same configuration.

Just to be clear, realize that the name of thistask is“myCopy”, but it is of type “Copy”. You can have multiple
tasks of the same type, but with different names. You'll find this gives you a lot of power to implement
cross-cutting concerns across all tasks of a particular type.

Example 14.8. Configuring a task - various ways

bui I d. gradl e

Copy nyCopy = task(nyCopy, type: Copy)
myCopy. from ' resour ces’

myCopy.into 'target’
myCopy.include(' **/*. txt', "**/*. xm"', "**/* properties')

Thisis similar to the way we would configure objects in Java. Y ou have to repeat the context (my Copy) in the

Page 83 of 514

http://www.gradle.org/docs/2.9/javadoc/org/gradle/api/tasks/TaskContainer.html
http://www.gradle.org/docs/2.9/dsl/org.gradle.api.tasks.Copy.html

configuration statement every time. Thisis aredundancy and not very nice to read.

There is another way of configuring a task. It also preserves the context and it is arguably the most readable. It
isusually our favorite.

Example 14.9. Configuring a task - with closure

bui I d. gradl e

task nmyCopy(type: Copy)

nmy Copy {
from ' resources'
into 'target’
include('**/*. txt', "**/*.xml', '"**/* properties')

Thisworks for any task. Line 3 of the example isjust a shortcut for the t asks. get ByNane() method. It is
important to note that if you pass a closure to the get ByName() method, this closure is applied to configure
the task, not when the task executes.

Y ou can a'so use a configuration closure when you define a task.

Example 14.10. Defining a task with closure

bui I d. gradl e

task copy(type: Copy) {
from'resources'

into 'target’
include('**/*.txt', "**/*.xnl"', '"**/* properties')

Don't forget about the

14.4. Adding dependenciestoa i phases

task

A task has both configuration and

There are several ways you can define the dependencies of a task. actions. When using the <<, you
In Section 6.5, “Task dependencies’ you were introduced to are simply using a shortcut to
defining dependencies using task names. Task names can refer to define an action. Code defined in
tasks in the same project as the task, or to tasks in other projects. the configuration section of your
To refer to a task in another project, you prefix the name of the task will get executed during the
task with the path of the project it belongs to. The following is an configuration phase of the build

examplewhlch adds a dependency from pr oj ect A: t askXto pr oj ect Begasdless of what task was
targeted. See Chapter 58, The

Build Lifecycle for more details
about the build lifecycle.

Page 84 of 514

Example 14.11. Adding dependency on task from another project
buil d. gradl e

project (' projectA) {
task taskX(dependsOn: ':projectB:taskY') << {
println 'taskX

}

}

project (' projectB) {
task taskY << {
println 'taskY

}

Output of gradl e -q taskX

> gradle -q taskX
taskY
taskX

Instead of using atask name, you can define a dependency using a Task object, as shown in this example:

Example 14.12. Adding dependency using task object
buil d. gradl e

task taskX << {
println 'taskX

}

task taskY << {
println 'taskY

}

t askX. dependsOn t askY

Output of gradl e -q taskX

> gradle -q taskX
taskyY
taskX

For more advanced uses, you can define a task dependency using a closure. When evaluated, the closure is
passed the task whose dependencies are being calculated. The closure should return asingle Task or collection
of Task objects, which are then treated as dependencies of the task. The following example adds a dependency
fromt askX to all the tasksin the project whose name startswith | i b:

Page 85 of 514

Example 14.13. Adding dependency using closure
buil d. gradl e

task taskX << {
println 'taskX

}

t askX. dependsOn {
tasks.findAll { task -> task.nane.startsWth('lib") }

}

task libl << {
println "libl
}

task lib2 << {
println 'lib2
}

task notALib << {
println 'not ALi b’

}

Output of gradl e -q taskX

> gradle -q taskX
libl

lib2

taskX

For more information about task dependencies, seethe Task API.

14.5. Ordering tasks

Task ordering is an incubating feature. Please be aware that this feature may change in later Gradle
versions.

In some cases it is useful to control the order in which 2 tasks will execute, without introducing an explicit
dependency between those tasks. The primary difference between atask ordering and atask dependency is that
an ordering rule does not influence which tasks will be executed, only the order in which they will be executed.

Task ordering can be useful in a number of scenarios:

* Enforce sequentia ordering of tasks: eg. 'build' never runs before ‘clean'.

* Run build validations early in the build: eg. validate | have the correct credentials before starting the work
for arelease build.

* Get feedback faster by running quick verification tasks before long verification tasks: eg. unit tests should
run before integration tests.

* A task that aggregates the results of all tasks of a particular type: eg. test report task combines the outputs of
all executed test tasks.

Page 86 of 514

http://www.gradle.org/docs/2.9/dsl/org.gradle.api.Task.html

There are two ordering rules available: “ must run after” and “ should run after”.

When you use the “must run after” ordering rule you specify that t askB must always run after t askA,
whenever both t askA and t askB will be run. Thisis expressed ast askB. nust RunAft er (t askA) . The
“should run after” ordering rule is similar but less strict as it will be ignored in two situations. Firstly if using
that rule introduces an ordering cycle. Secondly when using parallel execution and all dependencies of a task
have been satisfied apart from the “should run after” task, then this task will be run regardless of whether its
“should run after” dependencies have been run or not. Y ou should use “should run after” where the ordering is
helpful but not strictly required.

With these rules present it is still possible to executet ask A without t askB and vice-versa.

Example 14.14. Adding a 'must run after' task ordering
buil d. gradl e

task taskX << {
println 'taskX

}
task taskY << {

println 'taskyY

}
t askY. must RunAfter taskX

Output of gradl e -q taskY taskX

> gradle -qg taskY taskX
taskX
taskY

Example 14.15. Adding a 'should run after' task ordering
buil d. gradl e

task taskX << {
println 'taskX

}
task taskY << {

println 'taskyY

}
t askY. shoul dRunAfter taskX

Output of gradl e -q taskY taskX

> gradle -q taskY taskX
taskX
taskY

In the examples above, it is still possible to execute t askY without causingt ask X to run:

Page 87 of 514

Example 14.16. Task ordering does not imply task execution
Output of gradl e -q taskY

> gradle -q taskY
taskY

To specify a “must run after” or “should run after” ordering between 2 tasks, you use the
Task. must RunAfter () and Task.shoul dRunAfter () methods. These methods accept a task
instance, atask name or any other input accepted by Task. dependsOn() .

Note that “B. nust RunAfter(A)” or “B. shoul dRunAfter(A)” does not imply any execution
dependency between the tasks:

® |tispossibleto execute tasks A and B independently. The ordering rule only has an effect when both tasks
are scheduled for execution.
* Whenrunwith - - conti nue, itispossible for B to execute in the event that Afails.

Asmentioned before, the “should run after” ordering rule will beignored if it introduces an ordering cycle:

Example 14.17. A 'should run after' task ordering isignored if it introduces an ordering cycle
buil d. gradl e

task taskX << {
println 'taskX

}
task taskY << {

println 'taskY

}
task taskz << {

println 'taskZ

}
t askX. dependsOn t askY

taskY. dependsOn t askZz
t askZ. shoul dRunAfter taskX

Output of gradl e -q taskX
> gradle -q taskX
taskz

t askY
t askX

14.6. Adding a description to atask

Y ou can add a description to your task. This description is displayed when executing gr adl e t asks.

Page 88 of 514

http://www.gradle.org/docs/2.9/dsl/org.gradle.api.Task.html#org.gradle.api.Task:mustRunAfter(java.lang.Object[])
http://www.gradle.org/docs/2.9/dsl/org.gradle.api.Task.html#org.gradle.api.Task:mustRunAfter(java.lang.Object[])
http://www.gradle.org/docs/2.9/javadoc/org/gradle/api/Task.html#shouldRunAfter(java.lang.Object[])
http://www.gradle.org/docs/2.9/dsl/org.gradle.api.Task.html#org.gradle.api.Task:dependsOn(java.lang.Object[])

Example 14.18. Adding a description to a task

bui I d. gradl e

task copy(type: Copy) {
description 'Copies the resource directory to the target directory.'

from'resources'

into 'target’
include('**/*. txt', "**/*.xml', '"**/* properties')

14.7. Replacing tasks

Sometimes you want to replace a task. For example, if you want to exchange a task added by the Java plugin
with a custom task of a different type. Y ou can achieve this with:

Example 14.19. Overwriting a task
buil d. gradl e

task copy(type: Copy)

task copy(overwite: true) << {
println('l amthe new one.")

}

Output of gradl e -qg copy

> gradle -q copy
| amthe new one.

This will replace atask of type Copy with the task you've defined, because it uses the same name. When you
define the new task, you have to set the over wr i t e property to true. Otherwise Gradle throws an exception,
saying that a task with that name already exists.

14.8. Skipping tasks

Gradle offers multiple ways to skip the execution of atask.

14.8.1. Using a predicate

You can use the onl yI f () method to attach a predicate to a task. The task's actions are only executed if the
predicate evaluates to true. You implement the predicate as a closure. The closure is passed the task as a
parameter, and should return true if the task should execute and false if the task should be skipped. The
predicate is evaluated just before the task is due to be executed.

Page 89 of 514

Example 14.20. Skipping atask using a predicate

bui I d. gradl e

task hello << {
println 'hello world

}

hell o.onlylf { !project.hasProperty('skipHello") }

Output of gr adl e hel | o - Pski pHel | o

> gradl e hello -PskipHello
:hel l o SKI PPED

BU LD SUCCESSFUL

Total tinme: 1 secs

14.8.2. Using StopExecutionException

If the logic for skipping a task can't be expressed with a predicate, you can use the
St opExecut i onExcept i on. If this exception is thrown by an action, the further execution of this action as
well as the execution of any following action of this task is skipped. The build continues with executing the next
task.

Example 14.21. Skipping tasks with StopExecutionException

buil d. gradl e

task conpile << {
println 'W are doing the conpile.'

}

conpi | e. doFirst {
/! Here you would put arbitrary conditions in real life.

/1 But this is used in an integration test so we want defi ned behavi or.
if (true) { throw new St opExecuti onException() }

}
task myTask(dependsOn: 'conpile') << {

println 'l am not affected'

}

Output of gradl e -q nyTask

> gradle -qg nyTask
| am not affected

Thisfeature is helpful if you work with tasks provided by Gradle. It allows you to add conditional execution of
the built-in actions of such a task. (6]

Page 90 of 514

http://www.gradle.org/docs/2.9/javadoc/org/gradle/api/tasks/StopExecutionException.html
http://www.gradle.org/docs/2.9/javadoc/org/gradle/api/tasks/StopExecutionException.html

14.8.3. Enabling and disabling tasks

Every task has an enabl ed flag which defaultsto t r ue. Setting it to f al se prevents the execution of any of
the task's actions.

Example 14.22. Enabling and disabling tasks

bui I d. gradl e

task di sabl eMe << {
println 'This should not be printed if the task is disabl ed.

}

di sabl eMe. enabl ed = fal se

Output of gr adl e di sabl eMe

> gradl e di sabl eMe
- di sabl eMe SKI PPED

BU LD SUCCESSFUL

Total tinme: 1 secs

14.9. Skipping tasks that are up-to-date

If you are using one of the tasks that come with Gradle, such as atask added by the Java plugin, you might have
noticed that Gradle will skip tasks that are up-to-date. This behaviour is also available for your tasks, not just for
built-in tasks.

14.9.1. Declaring atask's inputs and outputs

Let's have alook at an example. Here our task generates several output files from a source XML file. Let's run it
acouple of times.

Page 91 of 514

Example 14.23. A generator task

bui I d. gradl e

task transform {
ext.srcFile file(' mountains.xm")
ext.destDir new Fil e(buildDir, 'generated")
doLast {
println "Transform ng source file."
dest Di r. nmkdi rs()
def mountai ns = new Xm Parser (). parse(srcFile)

nmount ai ns. nount ai n. each { nmountain ->
def name = nountai n. nane[0] . t ext ()
def hei ght = nmountain. height[0].text()
def destFile = new File(destDir, "${nanme}.txt")
destFile.text = "$nane -> ${hei ght}\n"

Output of gr adl e transform

> gradl e transform
:transform
Transform ng source file.

Output of gr adl e transform

> gradle transform
:transform
Transform ng source file.

Notice that Gradle executes this task a second time, and does not skip the task even though nothing has changed.
Our example task was defined using an action closure. Gradle has no idea what the closure does and cannot
automatically figure out whether the task is up-to-date or not. To use Gradl€'s up-to-date checking, you need to
declare the inputs and outputs of the task.

Each task hasan i nput s and out put s property, which you use to declare the inputs and outputs of the task.
Below, we have changed our example to declare that it takes the source XML file as an input and produces
output to a destination directory. Let'srun it a couple of times.

Page 92 of 514

Example 14.24. Declaring the inputs and outputs of a task
buil d. gradl e

task transform {
ext.srcFile = file(' muntains. xnm ")
ext.destDir = new File(buildDir, 'generated')
inputs.file srcFile
outputs.dir destDir
doLast {
println "Transform ng source file."
destDir. nkdirs()

def mountains = new Xl Parser (). parse(srcFile)
nmount ai ns. nount ai n. each { nmountain ->
def name = nountai n. name[0] . t ext ()
def hei ght = nmountain. hei ght[0].text()
def destFile = new File(destDir, "${nanme}.txt")
destFile.text = "$nane -> ${hei ght}\n"

Output of gradl e transform
> gradle transform

:transform
Transform ng source file.

Output of gradl e transform

> gradl e transform
:transform UP- TO- DATE

Now, Gradle knows which files to check to determine whether the task is up-to-date or not.

Thetask'si nput s property isof type Taskl nput s. Thetask'sout put s property is of type TaskQut put s

A task with no defined outputs will never be considered up-to-date. For scenarios where the outputs of a task
are not files, or for more complex scenarios, the TaskQut put s. upToDat eWien() method allows you to
calculate programmatically if the tasks outputs should be considered up to date.

A task with only outputs defined will be considered up-to-date if those outputs are unchanged since the previous
build.

14.9.2. How does it work?

Before atask is executed for the first time, Gradle takes a snapshot of the inputs. This snapshot contains the set
of input files and a hash of the contents of each file. Gradle then executes the task. If the task completes
successfully, Gradle takes a snapshot of the outputs. This snapshot contains the set of output files and a hash of
the contents of each file. Gradle persists both snapshots for the next time the task is executed.

Each time after that, before the task is executed, Gradle takes a new snapshot of the inputs and outputs. If the
new snapshots are the same as the previous snapshots, Gradle assumes that the outputs are up to date and skips
the task. If they are not the same, Gradle executes the task. Gradle persists both snapshots for the next time the

Page 93 of 514

http://www.gradle.org/docs/2.9/javadoc/org/gradle/api/tasks/TaskInputs.html
http://www.gradle.org/docs/2.9/javadoc/org/gradle/api/tasks/TaskOutputs.html
http://www.gradle.org/docs/2.9/javadoc/org/gradle/api/tasks/TaskOutputs.html#upToDateWhen(groovy.lang.Closure)

task is executed.

Note that if atask has an output directory specified, any files added to that directory since the last time it was
executed are ignored and will NOT cause the task to be out of date. This is so unrelated tasks may share an
output directory without interfering with each other. If this is not the behaviour you want for some reason,
consider using TaskQut put s. upToDat eWhen()

14.10. Task rules

Sometimes you want to have a task whose behavior depends on a large or infinite number value range of
parameters. A very nice and expressive way to provide such tasks are task rules:

Example 14.25. Task rule

buil d. gradl e

tasks. addRul e("Pattern: ping<ID>") { String taskName ->
if (taskNane.startsWth("ping")) {
task(taskNane) << {
println "Pinging: " + (taskNane - 'ping')

Output of gradl e -q pi ngServer1l

> gradle -q pingServerl
Pi ngi ng: Serverl

The String parameter is used as a description for the rule, which is shown with gr adl e t asks.

Rules are not only used when calling tasks from the command line. Y ou can also create dependsOn relations on
rule based tasks:

Page 94 of 514

http://www.gradle.org/docs/2.9/javadoc/org/gradle/api/tasks/TaskOutputs.html#upToDateWhen(groovy.lang.Closure)

Example 14.26. Dependency on rule based tasks
buil d. gradl e

t asks. addRul e("Pattern: ping<ID>") { String taskNane ->
if (taskNane.startsWth("ping")) {
task(taskNane) << {
println “Pinging: " + (taskNane - 'ping')

task groupPing {
dependsOn pi ngServer 1, pingServer2

}

Output of gradl e -q groupPi ng
> gradle -q groupPing

Pi ngi ng: Serverl
Pi ngi ng: Server2

If yourun“gradl e -q tasks” youwon't find atask named “pi ngSer ver 1” or “pi ngSer ver 2", but
this script is executing logic based on the request to run those tasks.

14.11. Finalizer tasks

Finalizers tasks are an incubating feature (see Section C.1.2, “Incubating”).

Finalizer tasks are automatically added to the task graph when the finalized task is scheduled to run.

Example 14.27. Adding a task finalizer
buil d. gradle

task taskX << {
println 'taskX

}
task taskY << {

println 'taskY

}

taskX. finalizedBy taskY

Output of gradl e -q taskX

> gradle -q taskX
taskX
taskY

Finalizer tasks will be executed even if the finalized task fails.

Page 95 of 514

Example 14.28. Task finalizer for afailing task
buil d. gradl e

task taskX << {
println 'taskX
t hrow new Runti neExcepti on()

}
task taskY << {

println 'taskyY

}

taskX. finalizedBy taskY

Output of gradl e -q taskX

> gradle -q taskX
taskX
taskY

On the other hand, finalizer tasks are not executed if the finalized task didn't do any work, for example if it is
considered up to date or if a dependent task fails.

Finalizer tasks are useful in situations where the build creates a resource that has to be cleaned up regardless of
the build failing or succeeding. An example of such a resource is a web container that is started before an
integration test task and which should be always shut down, even if some of the tests fail.

To specify afinalizer task you use the Task. fi nal i zedBy() method. This method accepts a task instance,
atask name, or any other input accepted by Task. dependsOn() .

14.12. Summary

If you are coming from Ant, an enhanced Gradle task like Copy seems like a cross between an Ant target and an
Ant task. Although Ant's tasks and targets are really different entities, Gradle combines these notions into a
single entity. Simple Gradle tasks are like Ant's targets, but enhanced Gradle tasks also include aspects of Ant
tasks. All of Gradle's tasks share a common APl and you can create dependencies between them. These tasks
are much easier to configure than an Ant task. They make full use of the type system, and are more expressive
and easier to maintain.

[6] You might be wondering why there is neither an import for the St opExecut i onExcept i on nor do we
access it via its fully qualified name. The reason is, that Gradle adds a set of default imports to your script.
These imports are customizable (see Appendix E, Existing IDE Support and how to cope without it).

Page 96 of 514

http://www.gradle.org/docs/2.9/dsl/org.gradle.api.Task.html#org.gradle.api.Task:finalizedBy(java.lang.Object[])
http://www.gradle.org/docs/2.9/dsl/org.gradle.api.Task.html#org.gradle.api.Task:dependsOn(java.lang.Object[])

15

Working With Files

Most builds work with files. Gradle adds some concepts and APIsto help you achieve this.

15.1. Locating files

Y ou can locate afile relative to the project directory using the Pr oj ect . fi | e() method.

Example 15.1. L ocating files
buil d. gradl e

/1 Using a relative path
File configFile = file('src/config.xm")

/1 Using an absol ute path

configFile = file(configFile.absol utePat h)

/1 Using a File object with a relative path
configFile = file(new File('src/config.xm"))

You can pass any object tothefi | e() method, and it will attempt to convert the value to an absolute Fi | e
object. Usually, you would passit a St ri ng or Fi | e instance. If this path is an absolute path, it is used to
construct a Fi | e instance. Otherwise, aFi | e instance is constructed by prepending the project directory path
to the supplied path. Thef i | e() method also understands URLSs, suchasfi | e: / sone/ pat h. xmi .

Using this method is a useful way to convert some user provided value into an absolute Fi | e. It is preferable to
using new Fil e(sonePath), asfile() aways evaluates the supplied path relative to the project
directory, which is fixed, rather than the current working directory, which can change depending on how the
user runs Gradle.

15.2. File collections

A file collection is simply a set of files. It is represented by the Fi | eCol | ect i on interface. Many objectsin
the Gradle API implement this interface. For example, dependency configurationsimplement Fi | eCol | ecti on

One way to obtain a Fi | eCol | ecti on instance isto use the Proj ect. fil es() method. You can pass
this method any number of objects, which are then converted into a set of Fi | e objects. Thefi | es() method
accepts any type of object asits parameters. These are evaluated relative to the project directory, asper thefi | e()

Page 97 of 514

http://www.gradle.org/docs/2.9/dsl/org.gradle.api.Project.html#org.gradle.api.Project:file(java.lang.Object)
http://www.gradle.org/docs/2.9/javadoc/org/gradle/api/file/FileCollection.html
http://www.gradle.org/docs/2.9/dsl/org.gradle.api.Project.html#org.gradle.api.Project:files(java.lang.Object[])

method, described in Section 15.1, “Locating files”. You can also pass collections, iterables, maps and arrays to
thefil es() method. These are flattened and the contents converted to Fi | e instances.

Example 15.2. Creating afile collection

bui I d. gradl e

FileCol l ection collection = files('src/filel.txt’

new File('src/file2.txt"),
['src/file3.txt', "src/filed.txt"'])

A filecollection isiterable, and can be converted to a number of other types using the as operator. You can also
add 2 file collections together using the + operator, or subtract one file collection from another using the -
operator. Here are some examples of what you can do with afile collection.

Example 15.3. Using afile collection
buil d. gradl e

/'l lterate over the files in the collection
collection.each {File file ->
println file.name

}

/1 Convert the collection to various types
Set set = collection.files

Set set2 = collection as Set

List list = collection as List

String path = col |l ection. asPath
File file = collection.singleFile
File file2 = collection as File

/1 Add and subtract collections
def union = collection + files('src/file3.txt")
def different = collection - files('src/file3.txt")

You can aso passthefi | es() method aclosureor aCal | abl e instance. Thisis called when the contents of
the collection are queried, and its return value is converted to a set of Fi | e instances. The return value can be
an object of any of the types supported by the fi | es() method. This is a simple way to 'implement’ the
Fi | eCol | ecti on interface.

Page 98 of 514

Example 15.4. Implementing a file collection
buil d. gradl e

task list << {
File srcDr

/Il Create a file collection using a closure
collection = files { srcDir.listFiles() }

srcDir = file('src')

println "Contents of $srcDir.nane'
collection.collect { relativePath(it) }.sort().each { printlnit }

srcDir = file('src2")
println "Contents of $srcDir.nane'
collection.collect { relativePath(it) }.sort().each { println it }

Outputof gradle -q Ii st

> gradle -q list
Contents of src
src/dirl
src/filel.txt
Contents of src2
src2/dirl
src2/dir2

Some other types of thingsyou can passtofi |l es():

Fil eCol | ection
These are flattened and the contents included in the file collection.

Task
The output files of the task are included in the file collection.

TaskQut put s
The output files of the TaskOutputs are included in the file collection.

It is important to note that the content of afile collection is evaluated lazily, when it is needed. This means you
can, for example, createa Fi | eCol | ect i on that represents files which will be created in the future by, say,
some task.

15.3. Filetrees

A file tree is a collection of files arranged in a hierarchy. For example, a file tree might represent a directory
tree or the contents of a ZIP file. It is represented by the Fi | eTr ee interface. The Fi | eTr ee interface
extends Fi | eCol | ecti on, so you can treat afile tree exactly the same way as you would a file collection.
Severa objectsin Gradle implement the Fi | eTr ee interface, such as source sets.

Oneway to obtain aFi | eTr ee instanceistousethe Proj ect . fi |l eTree() method. ThiscreatesaFi | eTr et
defined with a base directory, and optionally some Ant-style include and exclude patterns.

Page 99 of 514

http://www.gradle.org/docs/2.9/javadoc/org/gradle/api/file/FileTree.html
http://www.gradle.org/docs/2.9/dsl/org.gradle.api.Project.html#org.gradle.api.Project:fileTree(java.util.Map)

Example 15.5. Creating afiletree
buil d. gradl e

/Il Create a file tree with a base directory
FileTree tree = fileTree(dir: 'src/nmin')

/1l Add include and exclude patterns to the tree
tree.include '**/*. java'
tree. exclude ' **/ Abstract*'

/1l Create a tree using path
tree = fileTree('src').include('**/*.java')

/|l Create a tree using closure
tree = fileTree('src') {
include '**/* java'

eate a tree using a map

= fileTree(dir: 'src', include: '**/* java')
fileTree(dir: 'src', includes: ['**/*. java', "**/*.xnm"'])
fileTree(dir: '"src', include: '**/*. java', exclude: '**/*test*/**")

You use afile tree in the same way you use a file collection. You can also visit the contents of the tree, and
select a sub-tree using Ant-style patterns:

Example 15.6. Using afiletree
buil d. gradl e

/'l lterate over the contents of a tree
tree.each {File file ->
println file

}

/'l Filter a tree
FileTree filtered = tree. matching {
include 'org/gradl e/ api/**'

}

/1l Add trees together
FileTree sum = tree + fileTree(dir: 'src/test')

/1 Visit the elements of the tree
tree.visit {elenent ->
println "$el enent.rel ati vePath => $el enent.file"

}

15.4. Using the contents of an archive as afile tree

You can use the contents of an archive, such as a ZIP or TAR file, as afile tree. You do this using the
Proj ect. zipTree() and Proj ect.tar Tree() methods. These methods return a Fi | eTr ee instance
which you can use like any other file tree or file collection. For example, you can use it to expand the archive by
copying the contents, or to merge some archives into another.

Page 100 of 514

http://www.gradle.org/docs/2.9/dsl/org.gradle.api.Project.html#org.gradle.api.Project:zipTree(java.lang.Object)
http://www.gradle.org/docs/2.9/dsl/org.gradle.api.Project.html#org.gradle.api.Project:zipTree(java.lang.Object)
http://www.gradle.org/docs/2.9/dsl/org.gradle.api.Project.html#org.gradle.api.Project:tarTree(java.lang.Object)

Example 15.7. Using an archive asafiletree
buil d. gradl e

/|l Create a ZIP file tree using path
FileTree zip = zipTree(' soneFile.zip")

/'l Create a TAR file tree using path
FileTree tar = tarTree(' soneFile.tar")

//tar tree attenpts to guess the conpression based on the file extension
/I however if you nust specify the conpression explicitly you can
Fil eTree someTar = tarTree(resources.gzip(' soneTar.ext"))

15.5. Specifying a set of input files

Many objectsin Gradle have properties which accept a set of input files. For example, the JavaConpi | e task
has asour ce property, which defines the source files to compile. You can set the value of this property using
any of the types supported by the files() method, which was shown above. This means you can set the property
using, for example, a Fi | e, Stri ng, collection, Fi | eCol | ecti on or even a closure. Here are some
examples:

Example 15.8. Specifying a set of files
buil d. gradl e

/'l Use a File object to specify the source directory
conpi l e {
source = file('src/main/java')

}

/1 Use a String path to specify the source directory
conpi l e {
source = 'src/min/java

}

/1 Use a collection to specify multiple source directories
conpi l e {
source = ['src/main/java', '../shared/java']

}

/'l Use a FileCollection (or FileTree in this case) to specify the source files

conpi l e {
sour ce fileTree(dir: 'src/main/java).matching { include 'org/gradle/api/**

}

/1l Using a closure to specify the source files
conpi l e {
source = {
/1 Use the contents of each zip file in the src dir
file('src').listFiles().findAll {it.nane.endsWth('.zip')}.collect { zipTr

Page 101 of 514

http://www.gradle.org/docs/2.9/dsl/org.gradle.api.tasks.compile.JavaCompile.html

Usually, there is a method with the same name as the property, which appends to the set of files. Again, this
method accepts any of the types supported by the files() method.
Example 15.9. Specifying a set of files

buil d. gradl e

conpi l e {
/1 Add some source directories use String paths
source 'src/main/java', 'src/main/groovy

/1 Add a source directory using a File object

source file('../shared/java')

/1 Add some source directories using a closure
source { file('src/test/").listFiles() }

15.6. Copying files

Y ou can use the Copy task to copy files. The copy task is very flexible, and allows you to, for example, filter
the contents of the files as they are copied, and map to the file names.

To use the Copy task, you must provide a set of source files to copy, and a destination directory to copy the
filesto. Y ou may also specify how to transform the files as they are copied. You do al thisusing a copy spec. A
copy spec is represented by the Copy Spec interface. The Copy task implements thisinterface. Y ou specify the
source files using the CopySpec. from() method. To specify the destination directory, use the
CopySpec. i nt o() method.

Example 15.10. Copying files using the copy task

bui I d. gradl e

task copyTask(type: Copy) {
from' src/ mai n/ webapp

into 'buil d/ expl odedWar"'

Thef r on() method accepts any of the arguments that the files() method does. When an argument resolves to a
directory, everything under that directory (but not the directory itself) is recursively copied into the destination
directory. When an argument resolves to a file, that file is copied into the destination directory. When an
argument resolves to a non-existing file, that argument isignored. If the argument is a task, the output files (i.e.
the files the task creates) of the task are copied and the task is automatically added as a dependency of the Copy
task. Thei nt o() accepts any of the arguments that the file() method does. Here is another example:

Page 102 of 514

http://www.gradle.org/docs/2.9/dsl/org.gradle.api.tasks.Copy.html
http://www.gradle.org/docs/2.9/javadoc/org/gradle/api/file/CopySpec.html
http://www.gradle.org/docs/2.9/javadoc/org/gradle/api/file/CopySpec.html#from(java.lang.Object[])
http://www.gradle.org/docs/2.9/javadoc/org/gradle/api/file/CopySpec.html#into(java.lang.Object)
http://www.gradle.org/docs/2.9/javadoc/org/gradle/api/file/CopySpec.html#into(java.lang.Object)

Example 15.11. Specifying copy task sourcefiles and destination directory

bui I d. gradl e

task anot her CopyTask(type: Copy) {
/| Copy everything under src/nain/webapp
from ' src/ mai n/ webapp'
/'l Copy a single file
from'src/staging/index. htm'
/1 Copy the output of a task
from copyTask

/1l Copy the output of a task using Task outputs explicitly.
from copyTaskWt hPatt er ns. out put s

/'l Copy the contents of a Zip file

from zi pTree(' src/ main/assets. zip')

/1 Determine the destination directory |ater

into { getDestDir() }

Y ou can select the files to copy using Ant-style include or exclude patterns, or using a closure:

Example 15.12. Selecting the files to copy
buil d. gradl e

task copyTaskWthPatterns(type: Copy) {
from ' src/ mai n/ webapp'
into 'buil d/ expl odedWar'
include '**/* htm"'
include '**/* . jsp'
exclude { details -> details.file.nane.endsWth('.html"') &&
details.file.text.contains('staging') }

You can aso use the Pr oj ect. copy() method to copy files. It works the same way as the task with some
major limitations though. First, the copy() is not incremental (see Section 14.9, “Skipping tasks that are
up-to-date”).

Example 15.13. Copying files using the copy() method without up-to-date check

bui I d. gradl e

task copyMet hod << {
copy {
from ' src/ mai n/ webapp'
into 'buil d/ expl odedWar"’

include "**/* htm'
include '**/* jsp'

Secondly, the copy () method can not honor task dependencies when atask is used as a copy source (i.e. as an
argument to f r o)) because it's a method and not a task. As such, if you are using the copy() method as
part of atask action, you must explicitly declare al inputs and outputsin order to get the correct behavior.

Page 103 of 514

http://www.gradle.org/docs/2.9/dsl/org.gradle.api.Project.html#org.gradle.api.Project:copy(org.gradle.api.Action)

Example 15.14. Copying files using the copy() method with up-to-date check

bui I d. gradl e

task copyMet hodW t hExpl i ci t Dependenci es{
/'l up-to-date check for inputs, plus add copyTask as dependency
inputs.file copyTask
outputs.dir 'sone-dir' // up-to-date check for outputs
doLast {
copy {

/1 Copy the output of copyTask
from copyTask
into 'sonme-dir'

It is preferable to use the Copy task wherever possible, asit supports incremental building and task dependency
inference without any extra effort on your part. The copy() method can be used to copy files as part of a
task's implementation. That is, the copy method is intended to be used by custom tasks (see Chapter 60, Writing
Custom Task Classes) that need to copy files as part of their function. In such a scenario, the custom task should
sufficiently declare the inputs/outputs relevant to the copy action.

15.6.1. Renaming files

Example 15.15. Renaming files asthey are copied
buil d. gradl e

task renane(type: Copy) {
from' src/ mai n/ webapp'
into 'build/ expl odedWar'
/1l Use a closure to map the file nane
renane { String fil eName ->

fileName.replace('-staging-', '")

}

/1l Use a regular expression to map the file nane
rename '(.+)-staging-(.+)"', '$1$2
renane(/ (.+)-staging-(.+)/, '$1%$2")

Page 104 of 514

15.6.2. Filtering files

Example 15.16. Filtering filesas they are copied

bui I d. gradl e

i nport org.apache.tools.ant.filters. FixCrLfFilter
i mport org.apache.tools.ant.filters. Repl aceTokens

task filter(type: Copy) {
from ' src/ mai n/ webapp'
into 'build/ expl odedWar'
/1 Substitute property tokens in files
expand(copyright: '2009', version: '2.3.1")
expand(proj ect. properties)
/1l Use some of the filters provided by Ant
filter(FixCrLfFilter)
filter(Repl aceTokens, tokens: [copyright: '2009', version: '2.3.1'])
/1l Use a closure to filter each |ine
filter { String line ->
"[$line]"
}
/'l Use a closure to renove |ines
filter { String line ->
line.startsWth('-') ? null : line

}

When you use the Repl aceTokens class with the “filter” operation, the result is a template engine that
replaces tokens of the form “ @tokenName@” (the Apache Ant-style token) with a set of given values. The
“expand” operation does the same thing except it treats the source files as Groovy templates in which tokens
take the form “ ${ tokenName} ”. Be aware that you may need to escape parts of your source files when using this
option, for exampleif it contains literal “$” or “<%" strings.

15.6.3. Using the Copy Spec class

Copy specs form a hierarchy. A copy spec inherits its destination path, include patterns, exclude patterns, copy
actions, name mappings and filters.

Example 15.17. Nested copy specs
buil d. gradl e

task nestedSpecs(type: Copy) {
into 'build/ expl odedWar'
exclude ' **/*stagi ng*'
from('src/dist') {
include "**/* htm'
}
into('libs") {
from configurations. runtime

}

Page 105 of 514

http://docs.groovy-lang.org/latest/html/api/groovy/text/SimpleTemplateEngine.html

15.7. Using the Sync task

The Sync task extends the Copy task. When it executes, it copies the source files into the destination directory,
and then removes any files from the destination directory which it did not copy. This can be useful for doing
things such as installing your application, creating an exploded copy of your archives, or maintaining a copy of
the project's dependencies.

Here is an example which maintains a copy of the project's runtime dependencies in the bui | d/ I i bs
directory.

Example 15.18. Using the Sync task to copy dependencies
buil d. gradl e

task libs(type: Sync) {
from configurations. runtine

into "$buildDir/libs"

15.8. Creating archives

A project can have as many JAR archives as you want. You can also add WAR, ZIP and TAR archives to your
project. Archives are created using the various archive tasks: Zi p, Tar, Jar , \War , and Ear . They all work the
same way, so let'slook at how you create a ZIPfile.
Example 15.19. Creating a ZI P ar chive
bui I d. gradl e

apply plugin: 'java'

task zip(type: Zip) {
from'src/dist'

into('libs") {
from configurations. runtime

}

The archive tasks all work exactly the same way as the Copy task,
and implement the same Copy Spec interface. As with the Copy
task, you specify the input files using the f r om() method, and
can optionally specify where they end up in the archive using thei nt o()

Why are you using
the Java plugin?

method. Y ou can filter the contents of file, rename files, and all the The Java plugin adds a number

other things you can do with a copy spec. of default values for the archive

tasks. You can use the archive

15.8.1. Archive naming tasks without using the Java

plugin, if you like. You will need

The format of proj ect Nane- version. type is used for to provide values for some
generated archive file names. For example: additional properties.

Page 106 of 514

http://www.gradle.org/docs/2.9/dsl/org.gradle.api.tasks.Sync.html
http://www.gradle.org/docs/2.9/dsl/org.gradle.api.tasks.bundling.Zip.html
http://www.gradle.org/docs/2.9/dsl/org.gradle.api.tasks.bundling.Tar.html
http://www.gradle.org/docs/2.9/dsl/org.gradle.api.tasks.bundling.Jar.html
http://www.gradle.org/docs/2.9/dsl/org.gradle.api.tasks.bundling.War.html
http://www.gradle.org/docs/2.9/dsl/org.gradle.plugins.ear.Ear.html

Example 15.20. Creation of ZIP archive
buil d. gradl e
apply plugin: 'java'

version = 1.0

task nyZip(type: Zip) {

from' sonedir'

}

println myZip. archi veNane
println relativePath(nyZi p.destinationDir)
println rel ati vePat h(nyZi p. ar chi vePat h)

Output of gradl e -gq nmyZip

> gradle -q nyZip

zipProject-1.0.zip

bui |l d/ di stributions

bui I d/ di stributions/zipProject-1.0.zip

This adds a Zi p archive task with the name nyZi p which produces ZIP file zi pPr oj ect - 1. 0. zi p. Itis
important to distinguish between the name of the archive task and the name of the archive generated by the
archive task. The default name for archives can be changed with the ar chi vesBaseNane project property.
The name of the archive can aso be changed at any time later on.

There are a number of properties which you can set on an archive task. These are listed below in Table 15.1,
“Archive tasks - naming properties’. Y ou can, for example, change the name of the archive:

Example 15.21. Configuration of archivetask - custom archive name

bui I d. gradl e

apply plugin: 'java'
version = 1.0

task nmyZip(type: Zip) {
from' sonedir'
baseNane = 'cust onNane'

}

println nmyZ p. archi veName

Output of gradl e -gq nmyZip

> gradle -q nyZip
cust onName- 1. 0. zi p

Y ou can further customize the archive names:

Page 107 of 514

Example 15.22. Configuration of archive task - appendix & classifier
buil d. gradl e

apply plugin: 'java'
ar chi vesBaseName = 'gradl e
version = 1.0

task nyZip(type: Zip) {
appendi x = 'wrapper'
classifier = "src'
from' sonedir'

}

println myZip. archi veNanme

Output of gradl e -gq nmyZip

> gradle -q nyZip
gradl e-w apper-1.0-src.zip

Page 108 of 514

Table 15.1. Archivetasks - naming properties

Property name Type Default value Description

ar chi veNane String baseName-appendi x-ver si on-cl assi fi er. eXhebasediie
If any of these properties is empty the trailing - is name of the

not added to the name. generated
archive

ar chi vePat h File destinationDi r/ archi veNane The absolute
path of the
generated
archive.

destinationDir File Depends on the archive type. JARs and WARS go The
intoproj ect. buildDir/libraries.ZIPs directory to
and TARsgointo pr oj ect . bui | dDi r/ di st ri but gemesste the
archiveinto

baseNane String project.nanme The base
name portion
of the
archivefile
name.

appendi x String null The
appendix
portion of
the archive
file name.

version String project.version The version
portion of
the archive
file name.

classifier String null The
classifier
portion of
the archive
file name,

ext ensi on String Dependson the archive type, and for TAR files, the The
compression typeaswell: zi p,j ar,war ,tar,t gz extension of
ortbz2. the archive
file name.

15.8.2. Sharing content between multiple archives

You can usethe Pr oj ect . copySpec() method to share content between archives.

Page 109 of 514

http://www.gradle.org/docs/2.9/dsl/org.gradle.api.Project.html#org.gradle.api.Project:copySpec(org.gradle.api.Action)

Often you will want to publish an archive, so that it is usable from another project. This processis described in
Chapter 53, Publishing artifacts

Page 110 of 514

16

Using Ant from Gradle

Gradle provides excellent integration with Ant. You can use individual Ant tasks or entire Ant builds in your
Gradle builds. In fact, you will find that it's far easier and more powerful using Ant tasks in a Gradle build
script, than it isto use Ant's XML format. You could even use Gradle ssimply as a powerful Ant task scripting
tool.

Ant can be divided into two layers. The first layer isthe Ant language. It provides the syntax for the bui | d. xm
file, the handling of the targets, specia constructs like macrodefs, and so on. In other words, everything except
the Ant tasks and types. Gradle understands this language, and allows you to import your Ant bui | d. xm
directly into a Gradle project. Y ou can then use the targets of your Ant build asif they were Gradle tasks.

The second layer of Ant isitswealth of Ant tasks and types, like j avac, copy or j ar . For this layer Gradle
provides integration simply by relying on Groovy, and the fantastic Ant Bui | der .

Finally, since build scripts are Groovy scripts, you can aways execute an Ant build as an external process. Y our
build script may contain statements like:" ant cl ean conpi | e". execut e() .

You can use Gradle's Ant integration as a path for migrating your build from Ant to Gradle. For example, you
could start by importing your existing Ant build. Then you could move your dependency declarations from the
Ant script to your build file. Finally, you could move your tasks across to your build file, or replace them with
some of Gradle's plugins. This process can be done in parts over time, and you can have aworking Gradle build
during the entire process.

16.1. Using Ant tasks and types in your build

In your build script, a property called ant is provided by Gradle. This is a reference to an Ant Bui | der
instance. This Ant Bui | der isused to access Ant tasks, types and properties from your build script. Thereisa
very simple mapping from Ant'sbui | d. xm format to Groovy, which is explained below.

You execute an Ant task by calling a method on the Ant Bui | der instance. You use the task name as the
method name. For example, you execute the Ant echo task by calling the ant . echo() method. The
attributes of the Ant task are passed as Map parameters to the method. Below is an example of the echo task.
Notice that we can also mix Groovy code and the Ant task markup. This can be extremely powerful.

Page 111 of 514

http://www.gradle.org/docs/2.9/javadoc/org/gradle/api/AntBuilder.html

Example 16.1. Using an Ant task
buil d. gradl e

task hello << {
String greeting = 'hello from Ant'

ant . echo(nessage: greeting)

Output of gradl e hel | o
> gradle hello
“hello
[ant:echo] hello from Ant

BU LD SUCCESSFUL

Total tinme: 1 secs

Y ou pass nested text to an Ant task by passing it as a parameter of the task method call. In this example, we pass
the message for the echo task as nested text:

Example 16.2. Passing nested text to an Ant task

buil d. gradl e

task hello << {

ant. echo(' hello from Ant")

}

Output of gradl e hel | o

> gradle hello
“hello
[ant:echo] hello from Ant

BU LD SUCCESSFUL

Total tinme: 1 secs

Y ou pass nested elements to an Ant task inside a closure. Nested elements are defined in the same way as tasks,
by calling a method with the same name as the element we want to define.

Example 16.3. Passing nested elementsto an Ant task

buil d. gradl e

task zip << {
ant. zip(destfile: "archive.zip') {
fileset(dir: "src') {
i ncl ude(name: "**. xm")

excl ude(name: '**.java')

Page 112 of 514

You can access Ant types in the same way that you access tasks, using the name of the type as the method
name. The method call returns the Ant data type, which you can then use directly in your build script. In the
following example, we create an Ant pat h object, then iterate over the contents of it.

Example 16.4. Using an Ant type

buil d. gradl e

task list << {
def path = ant.path {
fileset(dir: '"libs', includes: "*.jar")

}
path.list().each {

println it

}

More information about Ant Bui | der can befound in'Groovy in Action' 8.4 or at the Groovy Wiki

16.1.1. Using custom Ant tasks in your build

To make custom tasks available in your build, you can use the t askdef (usually easier) or t ypedef Ant
task, just asyou would inabui | d. xm file. You can then refer to the custom Ant task as you would a built-in
Ant task.

Example 16.5. Using a custom Ant task
buil d. gradl e

task check << {

ant . t askdef (resource: 'checkstyl etask. properties') {

cl asspath {
fileset(dir: '"libs', includes: '"*.jar")

}

}

ant . checkstyl e(config: 'checkstyle. xm"') {
fileset(dir: '"src')

}

Y ou can use Gradl€'s dependency management to assemble the classpath to use for the custom tasks. To do this,
you need to define a custom configuration for the classpath, then add some dependencies to the configuration.
Thisis described in more detail in Section 52.4, “How to declare your dependencies’.

Example 16.6. Declaring the classpath for a custom Ant task

buil d. gradl e

configurations {
pnmd
}

dependenci es {
pnd group: 'pnd', nane: 'pnd', version: '4.2.5

}

Page 113 of 514

http://groovy.codehaus.org/Using+Ant+from+Groovy

To use the classpath configuration, use the asPat h property of the custom configuration.

Example 16.7. Using a custom Ant task and dependency management together

bui I d. gradl e

task check << {
ant . t askdef (name: ' pnd',
cl assnane: 'net.sourceforge. pnd. ant. PMDTask' ,
cl asspat h: configurations. pnd. asPat h)
ant . pnd(short Fi | enanes: 'true',
failonrul eviolation: '"true',

rul esetfiles: file(' pnd-rules.xm').toURI().toString()) {
formatter(type: 'text', toConsole: 'true')
fileset(dir: '"src')

16.2. Importing an Ant build

You can use the ant . i nport Bui | d() method to import an Ant build into your Gradle project. When you
import an Ant build, each Ant target is treated as a Gradle task. This means you can manipulate and execute the
Ant targets in exactly the same way as Gradle tasks.

Example 16.8. Importing an Ant build

bui I d. gradl e

ant.inportBuild 'build. xm'

bui | d. xmi

<proj ect >
<target name="hello0">
<echo>Hel | o, from Ant</echo>

</target >
</ pr oj ect >

Output of gradl e hel | o

> gradle hello

“hello

[ant:echo] Hello, from Ant
BU LD SUCCESSFUL

Total tinme: 1 secs

Y ou can add atask which depends on an Ant target:

Page 114 of 514

Example 16.9. Task that depends on Ant target
buil d. gradl e

ant.inportBuild 'build. xm"

task intro(dependsOn: hello) << {

println 'Hello, from G adl e’

}

Output of gradl e intro

> gradle intro

thello

[ant:echo] Hello, from Ant
iintro

Hello, from Gradle

BU LD SUCCESSFUL

Total tinme: 1 secs

Or, you can add behaviour to an Ant target:

Example 16.10. Adding behaviour to an Ant target
buil d. gradl e

ant.inportBuild 'build. xm'

hello << {
println "Hello, from G adl e’

}

Output of gradl e hel | o
> gradle hello
chello
[ant:echo] Hello, from Ant
Hello, from Gradle
BU LD SUCCESSFUL

Total tinme: 1 secs

It isaso possible for an Ant target to depend on a Gradle task:

Page 115 of 514

Example 16.11. Ant target that depends on Gradle task

bui I d. gradl e

ant.inportBuild 'build. xm"

task intro << {
println 'Hello, from G adl e’

}

bui | d. xm

<pr oj ect >
<target name="hel | 0" depends="intro">

<echo>Hel | o, from Ant </ echo>
</target>
</ pr oj ect >

Output of gradl e hel | o
> gradle hello
intro
Hello, from G adle

chello
[ant:echo] Hello, from Ant

BU LD SUCCESSFUL

Total tinme: 1 secs

Sometimes it may be necessary to “rename” the task generated for an Ant target to avoid a naming collision
with existing Gradle tasks. To do this, usethe Ant Bui | der . i nport Bui | d() method.

Example 16.12. Renaming imported Ant targets

buil d. gradl e

ant . inportBuil d(' build.xm ") { antTargetName ->

"a-' + ant Tar get Nane

}

bui | d. xmi

<proj ect >
<target name="hello0">
<echo>Hel | o, from Ant </ echo>

</target >
</ pr oj ect >

Output of gradl e a-hell o
> gradle a-hello
sa-hello
[ant:echo] Hello, from Ant
BUI LD SUCCESSFUL

Total tine: 1 secs

Page 116 of 514

http://www.gradle.org/docs/2.9/javadoc/org/gradle/api/AntBuilder.html#importBuild(java.lang.Object, org.gradle.api.Transformer)

Note that while the second argument to this method should be a Tr ansf or ner , when programming in Groovy
we can simply use a closure instead of an anonymous inner class (or similar) due to Groovy's support for
automatically coercing closures to single-abstract-method types.

16.3. Ant properties and references

There are several ways to set an Ant property, so that the property can be used by Ant tasks. You can set the
property directly on the Ant Bui | der instance. The Ant properties are also available as a Map which you can
change. You can also use the Ant pr oper t y task. Below are some examples of how to do this.

Example 16.13. Setting an Ant property

buil d. gradl e

.buildDir = buildDr
.properties.buildDir = buildDir

.properties['buildDir'] = buildDir
.property(name: 'buildDir', location: buildDir)

bui | d. xm

<echo>bui | dDi r = ${bui |l dDi r} </ echo>

Many Ant tasks set properties when they execute. There are several ways to get the value of these properties.
You can get the property directly from the Ant Bui | der instance. The Ant properties are also available as a

Map. Below are some examples.

Example 16.14. Getting an Ant property
bui I d. xm

<property nane="ant Prop" val ue="a property defined in an Ant build"/>

bui I d. gradl e

println ant.antProp
println ant.properties.antProp
println ant.properties['antProp']

There are several waysto set an Ant reference:

Example 16.15. Setting an Ant reference
buil d. gradl e

ant.path(id: 'classpath', location: 'libs")
ant . references. cl asspath = ant.path(location: 'libs")
ant.references[' classpath'] = ant.path(location: "libs")

bui | d. xni

<pat h refid="cl asspath"/>

Page 117 of 514

http://www.gradle.org/docs/2.9/javadoc/org/gradle/api/Transformer.html
http://mrhaki.blogspot.ie/2013/11/groovy-goodness-implicit-closure.html
http://mrhaki.blogspot.ie/2013/11/groovy-goodness-implicit-closure.html

There are several waysto get an Ant reference:

Example 16.16. Getting an Ant reference

bui | d. xm

<pat h id="antPath" |ocation="1ibs"/>

bui I d. gradl e

println ant.references. antPath

println ant.references['antPath']

16.4. API

The Ant integration is provided by Ant Bui | der .

[7] In Groovy you can execute Strings. To learn more about executing external processes with Groovy have a
look in 'Groovy in Action' 9.3.2 or at the Groovy wiki

Page 118 of 514

http://www.gradle.org/docs/2.9/javadoc/org/gradle/api/AntBuilder.html

17
L ogging

Thelog isthe main 'Ul' of abuild tool. If it istoo verbose, real warnings and problems are easily hidden by this.
On the other hand you need relevant information for figuring out if things have gone wrong. Gradle defines 6
log levels, as shown in Table 17.1, “Log levels’. There are two Gradle-specific log levels, in addition to the
ones you might normally see. Those levels are QUIET and LIFECYCLE. The latter isthe default, and is used to
report build progress.

Table17.1. Log levels

Level Used for
ERROR Error messages
QUIET Important information messages

WARNING Warning messages
LIFECYCLE Progress information messages
INFO Information messages
DEBUG Debug messages

17.1. Choosing alog level

You can use the command line switches shown in Table 17.2, “Log level command-line options’ to choose
different log levels. In Table 17.3, “Stacktrace command-line options’ you find the command line switches
which affect stacktrace logging.

Table 17.2. Log level command-line options

Option OutputsLog L evels

no logging options LIFECY CLE and higher
-qor--quiet QUIET and higher

-i or--info INFO and higher

-dor--debug DEBUG and higher (that is, all log messages)

Page 119 of 514

Table 17.3. Stacktrace command-line options
Option Meaning

No stacktrace options No stacktraces are printed to the console in case of abuild error (e.g. a
compile error). Only in case of internal exceptions will stacktraces be printed.
If the DEBUG log level is chosen, truncated stacktraces are always printed.

-sor--stacktrace Truncated stacktraces are printed. We recommend this over full stacktraces.
Groovy full stacktraces are extremely verbose (Due to the underlying dynamic
invocation mechanisms. Y et they usually do not contain relevant information
for what has gone wrong in your code.)

-Sor--full-stacktrackhefull stacktraces are printed out.

17.2. Writing your own log messages

A simple option for logging in your build file is to write messages to standard output. Gradle redirects anything
written to standard output to it's logging system at the QUI ET log level.

Example 17.1. Using stdout to write log messages

bui I d. gradl e

println 'A nessage which is | ogged at QU ET | evel"

Gradle also provides a | ogger property to a build script, which is an instance of Logger . This interface
extends the SLF4J Logger interface and adds afew Gradle specific methods to it. Below is an example of how
thisis used in the build script:

Example 17.2. Writing your own log messages

buil d. gradl e

.quiet('An info | og nmessage which is always | ogged.")
.error('An error |og nessage.')

.warn(' A warni ng | og nessage. ")
.lifecycle('Alifecycle info | og nessage."')

.info('An info | og nmessage."')
. debug("' A debug | og nessage. ')
.trace(' A trace | og nessage. ')

Y ou can aso hook into Gradle's logging system from within other classes used in the build (classes from the bui | d
directory for example). Simply use an SLFA4J logger. You can use this logger the same way as you use the
provided logger in the build script.

Page 120 of 514

http://www.gradle.org/docs/2.9/javadoc/org/gradle/api/logging/Logger.html

Example 17.3. Using SL F4J to write log messages
buil d. gradl e

i mport org.slf4j.Logger
i mport org.slf4j.LoggerFactory

Logger sl f4jLogger = LoggerFactory. getlLogger (' some-| ogger')
sl f4j Logger.info(' An info | og nessage | ogged using SLF4j"')

17.3. Logging from external tools and libraries

Internally, Gradle uses Ant and lvy. Both have their own logging system. Gradle redirects their logging output
into the Gradle logging system. There is a 1:1 mapping from the Ant/lvy log levels to the Gradle log levels,
except the Ant/lvy TRACE log level, which is mapped to Gradle DEBUG log level. This means the default
Gradle log level will not show any Ant/lvy output unlessit is an error or awarning.

There are many tools out there which still use standard output for logging. By default, Gradle redirects standard
output to the QUI ET log level and standard error to the ERROR level. This behavior is configurable. The project
object provides a Loggi ngManager , which allows you to change the log levels that standard out or error are
redirected to when your build script is evaluated.

Example 17.4. Configuring standard output capture

buil d. gradl e

| oggi ng. capt ur eSt andar dCut put LogLevel . | NFO

println 'A nessage which is | ogged at | NFO | evel '

To change the log level for standard out or error during task execution, tasks also provide a
Loggi ngManager .

Example 17.5. Configuring standard output capturefor atask

buil d. gradl e

task loglnfo {
| oggi ng. capt ur eSt andar dOut put LogLevel . | NFO
doFirst {

println 'A task nmessage which is | ogged at |INFO | evel'

}

Gradle also provides integration with the Java Util Logging, Jakarta Commons Logging and Log4j logging
toolkits. Any log messages which your build classes write using these logging toolkits will be redirected to
Gradl€'s logging system.

Page 121 of 514

http://www.gradle.org/docs/2.9/javadoc/org/gradle/api/logging/LoggingManager.html
http://www.gradle.org/docs/2.9/javadoc/org/gradle/api/logging/LoggingManager.html
http://www.gradle.org/docs/2.9/javadoc/org/gradle/api/logging/LoggingManager.html

17.4. Changing what Gradle logs

You can replace much of Gradle's logging Ul with your own. You might do this, for example, if you want to
customize the Ul in some way - to log more or less information, or to change the formatting. Y ou replace the
logging using the Gr adl e. uselLogger () method. Thisis accessible from a build script, or an init script, or
via the embedding API. Note that this completely disables Gradle's default output. Below is an example init
script which changes how task execution and build completion is logged.
Example 17.6. Customizing what Gradlelogs
init.gradle

uselLogger (new Cust omEvent Logger ())

cl ass CustonEvent Logger extends Buil dAdapter inplenents TaskExecutionLi stener {

public void beforeExecute(Task task) {
println "[$task. nane]"

}

public void afterExecute(Task task, TaskState state) {

println()

}

public void buil dFi ni shed(Bui |l dResult result) {
println "build conpleted
if (result.failure !'= null) {
result.failure.printStackTrace()

Outputof gradle -1 init.gradle build
> gradle -1 init.gradle build
[conpi | e]

conpi ling source

[test Conpil €]
conpi ling test source

[test]
running unit tests

[bui | d]

buil d conpl et ed

Your logger can implement any of the listener interfaces listed below. When you register a logger, only the
logging for the interfaces that it implements is replaced. Logging for the other interfaces is left untouched. Y ou
can find out more about the listener interfaces in Section 58.6, “ Responding to the lifecycle in the build script”.

® Bui |l dLi st ener
® Project Eval uati onLi st ener

Page 122 of 514

http://www.gradle.org/docs/2.9/dsl/org.gradle.api.invocation.Gradle.html#org.gradle.api.invocation.Gradle:useLogger(java.lang.Object)
http://www.gradle.org/docs/2.9/javadoc/org/gradle/BuildListener.html
http://www.gradle.org/docs/2.9/javadoc/org/gradle/api/ProjectEvaluationListener.html

®* TaskExecuti onG aphLi st ener
® TaskExecuti onLi st ener
®* TaskActi onLi st ener

Page 123 of 514

http://www.gradle.org/docs/2.9/javadoc/org/gradle/api/execution/TaskExecutionGraphListener.html
http://www.gradle.org/docs/2.9/javadoc/org/gradle/api/execution/TaskExecutionListener.html
http://www.gradle.org/docs/2.9/javadoc/org/gradle/api/execution/TaskActionListener.html

18

The Gradle Daemon

18.1. What is the Gradle Daemon?

From Wikipedia...

A daemon is a computer program that runs as a background process, rather than being under the direct
control of an interactive user.

The Gradle Daemon is a background process that does the heavy lifting of running builds, then stays alive
between builds waiting for the next build. This allows data and code that is likely to be required in the next
build to be kept in memory, ready to go. This dramatically improves the performance of subsequent builds.
Enabling the Gradle Daemon is an extremely cheap way to decrease build times.

It is strongly recommended that the Gradle Daemon be enabled on all developer machines. It is recommend to
not enable the Daemon for Continuous Integration and build server environments (see Section 18.3, “When
should | not use the Gradle Daemon?”).

Gradle manages the Daemon automatically. If the build environment is configured to leverage the Daemon,
Gradle will automatically start a Daemon process if none are available, or use any existing compatible daemons
that are not currently busy. If a Daemon process has not been used for 3 hours, it will terminate itself. Once a
development environment is configured to use the Daemon, it is typically transparent and able to be forgotten
about.

Page 124 of 514

18.2. Management and configuration

18.2.1. How do | enable the Gradle Daemon?

There are two recommended ways to enable the Daemon persistently for an environment:

® Via environment variables - add the flag - Dor g. gr adl e. daenon=true to the GRADLE_OPTS
environment variable

Viapropertiesfile- add or g. gr adl e. daenon=t r ue to the «<GRADLE_USER_HOVE»/ gr adl e. pr oper

file

Note, «GRADLE_USER HOVE» defaults to «USER_HOVE»/ . gr adl e, where «USER_HOVE» is the
home directory of the current user. Thislocation can be configured viathe - g and - - gr adl e- user - hone

command line switches, aswell as by the GRADLE_USER HOVE environment variable and or g. gr adl e. use

JVM system property.

Both approaches have the same effect. Which one to use is up to personal preference. Most Gradle users choose
the second option and add the entry to the user gr adl e. properti es file.

On Windows, this command will enable the Daemon for the current user:

(if not exist "%JSERPROFI LE% . gradl e" nkdir "%JSERPROFILEY% . gradle") && (echo org. (

On UNIX-like operating systems, the following Bash shell command will enable the Daemon for the current
user:

touch ~/.gradl e/gradle.properties & echo "org.gradl e. daenon=true" >> ~/.gradl e/ gr{

Once the Daemon is enabled for a build environment in thisway, all builds will implicitly use a Daemon.

The - - daenon and - - no- daenobn command line switches enable and disable usage of the Daemon for
individual build invocations when using the Gradle command line interface. Typicaly, it is more convenient to
enable the Daemon for an environment (e.g. a user account) so that all builds use the Daemon without requiring
to remember to supply the - - daenon switch.

18.2.2. How do | disable the Gradle Daemon?

The Gradle Daemon is not enabled by default. However, once it is enabled it is sometimes desirable to disable
for some projects or for some build invocations.

The - - no- daenpn command line switch can be used to force that a Daemon not be used for that build. Thisis
rarely used, but can sometimes be useful when debugging issues with certain builds or Gradle plugins. This

Page 125 of 514

command line switch has the highest precedence when considering the build environment.

18.2.3. How do | suppress the “please consider using the Gradle Daemon”
message?
Gradle may emit a warning at the end of the build suggesting that you use the Gradle Daemon. To avoid this

warning you can enable the Daemon via the methods above, or explicitly disable the Daemon. You can
explicitly disable the Daemon by using the - - no- daenbn command line switch as described above, or use

one of the methods for enabling the daemon mentioned above but using avalue of f al se for theor g. gr adl e. di

property instead of t r ue.

Asi it is not recommend to use the Daemon for Continuous Integration builds, Gradle will not emit the message
if the Cl environment variableis present.

18.2.4. Why is there more than one Daemon process on my machine?

There are several reasons why Gradle will create a new Daemon, instead of using one that is already running. A
new Daemon will be started if there are no idle, compatible, Daemons.

An idle Daemon is one that is not currently executing a build or doing other useful work.

A compatible Daemon is one that can (or can be made to) meet the requirements of the requested build
environment. The Java installation to use to run the build is an example of an aspect of the build environment.
Required JVM system properties for the build runtime is another example.

Some aspects of the requested build environment may not be able to be met by an aready running Java process.
If the Daemon is running with a Java 7 runtime, but the requested environment calls for Java 8 then the Daemon
is not compatible and another must be started. Moreover, certain properties of a Java runtime cannot be changed
once the VM has started. It is not possible to change the memory alocation (e.g. - Xmx1024m), default text
encoding, default locale, etc of arunning VM.

The “requested build environment” is typically constructed implicitly from aspects of the build client’s (e.g.
Gradle command line client, IDE etc.) environment and explicitly via command line switches and settings. See
Chapter 20, The Build Environment for details on how to specify and control the build environment.

The following VM system properties are effectively immutable. If the requested build environment requires
any of these properties, with a different value than a Daemon’s JVM has for this property, the Daemon is not
compatible.

¢ file.encoding

® user.language

® user.country

® user.variant

® com.sun.management.jmxremote

The following JVM attributes, controlled by startup arguments, are also effectively immutable. The
corresponding attributes of the requested build environment and the Daemon’s environment must match exactly
in order for a Daemon to be compatible.

® The maximum heap size (i.e. the -Xmx VM argument)

Page 126 of 514

® Theminimum heap size (i.e. the-Xms VM argument)
® The boot classpath (i.e. the -Xbootclasspath argument)
® The"assertion” status (i.e. the -ea argument)

The required Gradle version is another aspect of the requested build environment. Daemon processes are
coupled to a specific Gradle runtime. Working on multiple Gradle projects during a session that use different
Gradle versions is a common reason for having more than one running Daemon process.

18.2.5. How much memory does the Daemon use and can | give it more?

If the requested build environment does not specify a maximum heap size, the Daemon will use up to 1GB of
heap. It will use your the JVM's default minimum heap size. 1GB is more than enough for most builds. Larger
builds with hundreds of subprojects, lots of configuration, and source code may require, or perform better, with
more memory.

To increase the amount of memory the Daemon can use, specify the appropriate flags as part of the requested
build environment. Please see Chapter 20, The Build Environment for details.

18.2.6. How can | stop a Daemon?

Daemon processes will automatically terminate themselves after 3 hours of inactivity. If you wish to stop a
Daemon process before this, you can either kill the process via your operating system or runthe gr adl e - - st op
command. The - - st op switch causes Gradle to request that all running Daemon processes, of the same
Gradle version used to run the command, terminate themselves.

18.2.7. What can go wrong with Daemon?

Considerable engineering effort has gone into making the Daemon robust, transparent and unobtrusive during
day to day development. However, Daemon processes can occasionally be corrupted or exhausted. A Gradle
build executes arbitrary code from multiple sources. While Gradle itself is designed for and heavily tested with
the Daemon, user build scripts and third party plugins can destabilize the Daemon process through defects such
as memory leaks or global state corruption.

It is also possible to destabilize the Daemon (and build environment in general) by running builds that do not
release resources correctly. Thisis a particularly poignant problem when using Microsoft Windows as it is less
forgiving of programs that fail to close files after reading or writing.

If it is suspected that the Daemon process has become unstable, it can smply be killed. Recall that the - - no- daem
switch can be specified for a build to prevent use of the Daemon. This can be useful to diagnose whether or not
the Daemon is actually the culprit of a problem.

18.3. When should | not use the Gradle Daemon?

It is recommended that the Daemon is used in all developer environments. It is recommend to not enable the
Daemon for Continuous I ntegration and build server environments.

The Daemon enables faster builds, which is particularly important when a human is sitting in front of the build.
For CI builds, stability and predictability is of utmost importance. Using a fresh runtime (i.e. process) for each

Page 127 of 514

build is more reliable as the runtime is completely isolated from previous builds.

18.4. Tools & IDEs

The Gradle Tooling API (see Chapter 65, Embedding Gradle), that is used by IDEs and other tools to integrate
with Gradle, always use the Gradle Daemon to execute builds. If you are executing Gradle builds from within
you're IDE you are using the Gradle Daemon and do not need to enable it for your environment.

However, unless you have explicitly enabled the Gradle Daemon for you environment your builds from the
command line will not use the Gradle Daemon.

18.5. How does the Gradle Daemon make builds
faster?

The Gradle Daemon is a long lived build process. In between builds it waitsidly for the next build. This has the
obvious benefit of only requiring Gradle to be loaded into memory once for multiple builds, as opposed to once
for each build. Thisinitself isasignificant performance optimization, but that's not where it stops.

A significant part of the story for modern JVM performance is runtime code optimization. For example,
HotSpot (the VM implementation provided by Oracle and used as the basis of OpenJDK) applies optimization
to code while it is running. The optimization is progressive and not instantaneous. That is, the code is
progressively optimized during execution which means that subsequent builds can be faster purely due to this
optimization process. Experiments with HotSpot have shown that it takes somewhere between 5 and 10 builds
for optimization to stabilize. The difference in perceived build time between the first build and the 10th for a
Daemon can be quite dramatic.

The Daemon aso allows more effective in memory caching across builds. For example, the classes needed by
the build (e.g. plugins, build scripts) can be held in memory between builds. Similarly, Gradle can maintain
in-memory caches of build data such as the hashes of task inputs and outputs, used for incremental building.

18.5.1. Potential future enhancements

Currently, the Daemon makes builds faster by effectively supporting in memory caching and by the VM
optimizer making the code faster. In future Gradle versions, the Daemon will become even smarter and perform
work preemptively. It could, for example, start downloading dependenciesimmediately after the build script has
been edited under the assumption that the build is about to be run and the newly changed or added dependencies
will be required.

There are many other ways in that the Gradle Daemon will enable even faster builds in future Gradle versions.

Page 128 of 514

19

Continuous build

Continuous build is an incubating feature. This means that it is incomplete and not yet at regular Gradle
production quality. This also means that this Gradle User Guide chapter is awork in progress.

Typically, you ask Gradle to perform a single build by way of specifying tasks that Gradle should execute.
Gradle will determine the the actual set of tasks that need to be executed to satisfy the request, execute them all,
and then stop doing work until the next request. A continuous build differsin that Gradle will keep satisfying
theinitial build request (until instructed to stop) by executing the build when it is detected that the result of the
previous build is now out of date. For example, if your build compiles Java source files to Java class files, a
continuous build would automatically initiate a compile when the source files change. Continuous build is
useful for many scenarios.

19.1. How do | start and stop a continuous build?

A continuous build can be started by supplying either the - - cont i nuous or -t switches to Gradle, along
with the list of tasks, switches and arguments that define the work to do. For example, gr adl e build --conti
. Thiswill have the same effect as running gr adl e bui | d, but instead of Gradle exiting when done, it will
wait for changes to the build inputs. When a change occurs, gr adl e bui | d will be automatically executed
again and the process repeats.

If Gradle is attached to an interactive input source, such as a terminal, the continuous build can be exited by
pressing CTRL- D (On Microsoft Windows, it is required to also press ENTER or RETURN after CTRL- D). If
Gradleis not attached to an interactive input source (e.g. is running as part of a script), the build process must be
terminated (e.g. using the ki | I command or similar). If the build is being executed via the Tooling API, the
build can be cancelled using the Tooling API's cancellation mechanism.

19.2. What will cause a subsequent build?

At thistime, only changes that occur after the build has completed
(and Gradle has prompted that it is waiting for changes) are

noticed. No other changes will initiate a build. For example, T file InpUtS
changes to build scripts and build logic will not initiate build. Task implementations declare
Likewise, changes to files that are read during the configuration of their file system inputs by

annotating their properties with
I nput Fi | es and other similar

Page 129 of 514

http://www.gradle.org/docs/2.9/javadoc/org/gradle/api/tasks/InputFiles.html
http://www.gradle.org/docs/2.9/javadoc/org/gradle/api/tasks/InputFiles.html

the build, not the execution, will not initiate a build. In order to annotations. Please see
incorporate such changes, the continuous build must be restarted Example 14.24, “Declaring the
manually. inputs and outputs of a task” for

more information.
Consider a typical build using the Java plugin, using the

conventional filesystem layout. The following diagram visualizes
the task graph for gr adl e bui | d:

Figure 19.1. Java plugin task graph

/
compileTestJava
processTestResources |‘

compileJava

classes

test]1—[check

processResources testClasses

uploadArchives

assemble L‘-

1

clean

The following key tasks of the graph use filesin the corresponding directories as inputs:

compileJava
src/ main/java
processResour ces
src/ mai n/ resour ces
compileTestJava
src/test/java
processT estResour ces
src/test/resources

Assuming that the initial build is successful (i.e. the bui | d task and its dependencies complete without error),
changes to filesin, or the addition/remove of files from, the locations listed above will initiate a new build. If a
change is made to a Java source file in sr ¢/ mai n/ j ava, the build will fire and all tasks will be scheduled.

Gradle's incremental build support ensures that only the tasks that are actually affected by the change are
executed.

If the change to the main Java source causes compilation to fail, subsequent changes to the test sourcein src/ t est
will not initiate a new build. As the test source depends on the main source, there is no point building until the
main source has changed, potentially fixing the compilation error. After each build, only the inputs of the tasks
that actually executed will be monitored for changes.

Continuous build isin no way coupled to compilation. It works for all types of tasks. For example, the pr ocessRe
task copies and processes the files from sr ¢/ mai n/ r esour ces for inclusion in the built JAR. As such, a
change to any file in this directory will also initiate a build.

Page 130 of 514

19.3. Limitations and quirks

There are several issues to be aware with the current implementation of continuous build. These are likely to be
addressed in future Gradle rel eases.

19.3.1. Requires Java 7 or later

Gradle uses the JDK's Wat chSer vi ce to receive natification of changesto files between builds. This APl was
introduced in Java 7. As such, Gradle's continuous build is not currently supported when building with Java 6.

19.3.2. Performance and stability on Mac OS X

The JDK file watching facility relies on inefficient file system polling on Mac OS X (see: JDK-7133447). This
can significantly delay notification of changes on large projects with many source files.

Additionally, the watching mechanism may deadlock under heavy load on Mac OS X (see: JDK-8079620). This
will manifest as Gradle appearing not to notice file changes. If you suspect this is occurring, exit continuous
build and start again.

19.3.3. Changes to symboalic links

® Creating or removing symbolic link to files will initiate a build.

* Modifying the target of asymbolic link will not cause arebuild.

® Creating or removing symbolic links to directories will not cause rebuilds.

® Creating new filesin the target directory of a symbolic link will not cause arebuild.
* Dédleting the target directory will not cause arebuild.

19.3.4. Changesto build logic are not considered

The current implementation does not recal culate the build model on subsequent builds. This means that changes
to task configuration, or any other change to the build model, are effectively ignored.

Page 131 of 514

http://docs.oracle.com/javase/7/docs/api/java/nio/file/WatchService.html
https://bugs.openjdk.java.net/browse/JDK-7133447
https://bugs.openjdk.java.net/browse/JDK-8079620

20

The Build Environment

20.1. Configuring the build environment via
gradle.properties

Gradle provides several options that make it easy to configure the Java process that will be used to execute your
build. While it's possible to configure these in your local environment via GRADLE_OPTS or JAVA_OPTS,
certain settings like VM memory settings, Java home, daemon on/off can be more useful if they can be
versioned with the project in your VCS so that the entire team can work with a consistent environment. Setting
up a consistent environment for your build is as simple as placing these settingsinto agr adl e. properti es
file. The configuration is applied in following order (if an option is configured in multiple locations the last one
wins):

* fromgradl e. properties inproject build dir.
* fromgradl e. propertiesingradl e user hone.
® from system properties, e.g. when - Dsone. pr operty isset on the command line.

The following properties can be used to configure the Gradle build environment:

org. gradl e. daenon
When set to t r ue the Gradle daemon is used to run the build. For local developer builds thisis our favorite
property. The developer environment is optimized for speed and feedback so we nearly always run Gradle
jobs with the daemon. We don't run ClI builds with the daemon (i.e. a long running process) as the Cl
environment is optimized for consistency and reliability.

org. gradl e.java. hone
Specifies the Java home for the Gradle build process. The value can be set to either aj dk or j r e location,
however, depending on what your build does, j dk is safer. A reasonable default is used if the setting is
unspecified.

org.gradle.jvmargs
Specifies the jvmargs used for the daemon process. The setting is particularly useful for tweaking memory
settings. At the moment the default settings are pretty generous with regards to memory.

org. gradl e. confi gur eondemand
Enables new incubating mode that makes Gradle sel ective when configuring projects. Only relevant projects
are configured which results in faster builds for large multi-projects. See Section 59.1.1.1, “Configuration on
demand”.

org. gradl e. parall el

Page 132 of 514

When configured, Gradle will run in incubating parallel mode.

org. gradl e. wor ker s. nax
When configured, Gradle will use a maximum of the given number of workers. See - - max- wor ker s for
details.

20.1.1. Forked Java processes

Many settings (like the Java version and maximum heap size) can only be specified when launching a new JVvM
for the build process. This means that Gradle must launch a separate VM process to execute the build after
parsing the various gr adl e. properti es files. When running with the daemon, a VM with the correct
parameters is started once and reused for each daemon build execution. When Gradle is executed without the
daemon, then a new JVM must be launched for every build execution, unless the VM launched by the Gradle
start script happens to have the same parameters.

This launching of an extra JVM on every build execution is quite expensive, which is why if you are setting
either org. gradl e. java. honme or org. gradl e. j vmar gs we highly recommend that you use the
Gradle Daemon. See Chapter 18, The Gradle Daemon for more details.

20.2. Gradle properties and system properties

Gradle offers avariety of ways to add properties to your build. With the - D command line option you can pass a
system property to the VM which runs Gradle. The - D option of the gradle command has the same effect as
the - D option of the java command.

Y ou can aso add propertiesto your project objects using propertiesfiles. You can placeagr adl e. properti es
file in the Gradle user home directory (defined by the “ GRADLE_USER HQOVE” environment variable, which if
not set defaultsto USER_HOME/ . gr adl e) or in your project directory. For multi-project builds you can place
gradl e. properti es filesin any subproject directory. The properties set inagr adl e. properti es file
can be accessed via the project object. The properties file in the user's home directory has precedence over
property filesin the project directories.

Y ou can a'so add properties directly to your project object viathe - P command line option.

Gradle can also set project properties when it sees specially-named system properties or environment variables.
This feature is very useful when you don't have admin rights to a continuous integration server and you need to
set property values that should not be easily visible, typically for security reasons. In that situation, you can't use
the - P option, and you can't change the system-level configuration files. The correct strategy is to change the
configuration of your continuous integration build job, adding an environment variable setting that matches an
expected pattern. Thiswon't be visible to normal users on the system. (8]

If the environment variable name looks like ORG_GRADLE_PRQIECT _pr op=soneval ue, then Gradle will
set apr op property on your project object, with the value of soneval ue. Gradle also supports this for system
properties, but with a different naming pattern, which looks like or g. gr adl e. pr oj ect . prop.

Y ou can also set system propertiesin the gr adl e. pr operti es file. If aproperty namein such afile hasthe
prefix “syst enPr op. ", like “syst enPr op. pr opNane”, then the property and its value will be set as a
system property, without the prefix. In a multi project build, “syst enPr op. ” properties set in any project

Page 133 of 514

except the root will beignored. That is, only the root project's gr adl e. properti es file will be checked for
properties that begin with the“syst enPr op. ” prefix.

Example 20.1. Setting propertieswith a gradle.propertiesfile

gradl e. properties

gr adl ePr operti esProp=gradl ePropertiesVal ue
sysProp=shoul dBeOver Wi tt enBySysProp

envProj ect Prop=shoul dBeOver Wi t t enByEnvPr op
syst enPr op. syst enrsyst enVal ue

bui I d. gradl e

task printProps << {
printl n conmandLi nePr oj ect Prop
println gradl ePropertiesProp
println systenProjectProp

println envProject Prop
println System properties['systemn]

Output of gr adl e -q - PcommandLi nePr oj ect Pr op=commuandLi nePr oj ect PropVal ue - Dorg. gr

> gradl e -g -PconmandLi nePr oj ect Prop=conmandLi nePr oj ect PropVal ue - Dorg. gradl e. proj ect

conmandLi nePr oj ect PropVal ue
gradl ePropertiesVal ue

syst enPr opertyVal ue
envPropertyVal ue

syst enVal ue

20.2.1. Checking for project properties

Y ou can access a project property in your build script simply by using its name as you would use a variable. If
this property does not exist, an exception will be thrown and the build will fail. If your build script relies on
optional properties the user might set, perhaps in a gr adl e. properti es file, you need to check for
existence before you access them. Y ou can do this by using the method hasPr opert y(' propert yNanme')
whichreturnst rue or f al se.

20.3. Accessing the web via a proxy

Configuring an HTTP proxy (for downloading dependencies, for example) is done via standard VM system
properties. These properties can be set directly in the build script; for example, setting the proxy host would be
done with System set Property(' http. proxyHost', 'ww. sonehost.org'). Alternatively,
the properties can be specified in a gradle.properties file, either in the build's root directory or in the Gradle
home directory.

Page 134 of 514

Example 20.2. Configuring an HTTP proxy

gradl e. properties

syst enPr op. htt p. pr oxyHost =www. sonehost . org
syst enPr op. htt p. pr oxyPort =8080

syst enPr op. htt p. proxyUser =userid
syst enPr op. htt p. pr oxyPasswor d=passwor d
syst enPr op. htt p. nonPr oxyHost s=*. nonpr oxyr epos. conj | ocal host

There are separate settings for HTTPS.
Example 20.3. Configuring an HTTPS proxy

gradl e. properties

syst enPr op. htt ps. pr oxyHost =www. sonehost . org
syst enPr op. htt ps. pr oxyPort =8080

syst enProp. htt ps. proxyUser =useri d
syst enPr op. htt ps. pr oxyPasswor d=passwor d
syst enPr op. htt ps. nonPr oxyHost s=*. nonpr oxyr epos. conj | ocal host

We could not find a good overview for all possible proxy settings. One place to look are the constants in afile
from the Ant project. Here's a link to the Subversion view. The other is a Networking Properties page from the
JDK docs. If anyone knows of a better overview, please let us know viathe mailing list.

20.3.1. NTLM Authentication

If your proxy requires NTLM authentication, you may need to provide the authentication domain as well as the
username and password. There are 2 ways that you can provide the domain for authenticating to aNTLM proxy:

® Setthehttp. proxyUser system property to avaluelike domai n/ user nane.
® Provide the authentication domain viathe ht t p. aut h. nt I m donai n system property.

[8] Jenkins, Teamcity, or Bamboo are some Cl servers which offer this functionality.

Page 135 of 514

http://svn.apache.org/viewvc/ant/core/trunk/src/main/org/apache/tools/ant/util/ProxySetup.java?view=markup&pathrev=556977
http://download.oracle.com/javase/6/docs/technotes/guides/net/properties.html

21

Gradle Plugins

Gradle at its core intentionally provides very little for real world automation. All of the useful features, like the
ability to compile Java code, are added by plugins. Plugins add new tasks (e.g. JavaConpi | €), domain
objects (e.g. Sour ceSet), conventions (e.g. Java source islocated at sr ¢/ mai n/ j ava) aswell as extending
core objects and objects from other plugins.

In this chapter we will discuss how to use plugins and the terminology and concepts surrounding plugins.

21.1. What plugins do

Applying aplugin to aproject allows the plugin to extend the project's capabilities. It can do things such as:

® Extend the Gradle model (e.g. add new DSL elements that can be configured)
® Configure the project according to conventions (e.g. add new tasks or configure sensible defaults)
* Apply specific configuration (e.g. add organizational repositories or enforce standards)

By applying plugins, rather than adding logic to the project build script, we can reap a number of benefits.
Applying plugins:

® Promotes reuse and reduces the overhead of maintaining similar logic across multiple projects
* Allows ahigher degree of modularization, enhancing comprehensibility and organization
® Encapsulatesimperative logic and allows build scripts to be as declarative as possible

21.2. Types of plugins

There are two general types of plugins in Gradle, script plugins and binary plugins. Script plugins are
additional build scripts that further configure the build and usually implement a declarative approach to
manipulating the build. They are typically used within a build although they can be externalized and accessed
from a remote location. Binary plugins are classes that implement the Pl ugi n interface and adopt a
programmatic approach to manipulating the build. Binary plugins can reside within a build script, within the
project hierarchy or externally in aplugin jar.

21.3. Applying plugins

Plugins are said to be applied, which is done viathe Pr oj ect . appl y() method. The application of plugins
is idempotent. That is, the same plugin can be applied multiple times. If the plugin has previously been applied,
any further applications are safe and will have no effect.

Page 136 of 514

http://www.gradle.org/docs/2.9/dsl/org.gradle.api.tasks.compile.JavaCompile.html
http://www.gradle.org/docs/2.9/dsl/org.gradle.api.tasks.SourceSet.html
http://www.gradle.org/docs/2.9/javadoc/org/gradle/api/Plugin.html
http://www.gradle.org/docs/2.9/dsl/org.gradle.api.Project.html#org.gradle.api.Project:apply(java.util.Map)

21.3.1. Script plugins
Example 21.1. Applying a script plugin
buil d. gradl e

apply from 'other.gradle

Script plugins can be applied from a script on the local filesystem or at a remote location. Filesystem locations
are relative to the project directory, while remote script locations are specified with an HTTP URL. Multiple
script plugins (of either form) can be applied to a given build.

21.3.2. Binary plugins
Example 21.2. Applying a binary plugin
buil d. gradl e

apply plugin: 'java

Plugins can be applied using a plugin id. The plugin id serves as a unique identifier for a given plugin. Core
plugins register a short name that can be used as the plugin id. In the above case, we are using the short name ‘j ava
" to apply the JavaPl ugi n. Community plugins, on the other hand, use afully qualified form for the plugin id
(e.g.com gi t hub. f 0o. bar), although some legacy plugins may still utilize a short, unqualified form.

Rather than using aplugin id, plugins can also be applied by simply specifying the class of the plugin:

Example 21.3. Applying a binary plugin by type
buil d. gradl e

apply plugin: JavaPl ugin

The JavaPl ugi n symbol in the above sample refers to the the JavaPl ugi n. This class does not strictly
need to be imported as the or g. gr adl e. api . pl ugi ns package is automatically imported in all build
scripts (see Appendix E, Existing IDE Support and how to cope without it). Furthermore, it is not necessary to
append . cl ass toidentify aclassliteral in Groovy asitisin Java.

21.3.2.1. Locations of binary plugins

A plugin is simply any class that implements the PI ugi n interface. Gradle provides the core plugins as part of
its distribution so simply applying the plugin as above is al you need to do. However, non-core binary plugins
need to be available to the build classpath before they can be applied. This can be achieved in a number of ways,
including:

® Defining the plugin as an inline class declaration inside a build script.

* Defining the plugin as a source file under the buildSrc directory in the project (see Section 62.4, “Build
sourcesinthebui | dSr ¢ project”).

® Including the plugin from an external jar defined as a buildscript dependency (see Section 21.4, “ Applying

Page 137 of 514

http://www.gradle.org/docs/2.9/javadoc/org/gradle/api/plugins/JavaPlugin.html
http://www.gradle.org/docs/2.9/javadoc/org/gradle/api/plugins/JavaPlugin.html
http://www.gradle.org/docs/2.9/javadoc/org/gradle/api/Plugin.html

plugins with the buildscript block™).
® |ncluding the plugin from the plugin portal using the plugins DSL (see Section 21.5, “Applying plugins with
the plugins DSL").

For more on defining your own plugins, see Chapter 61, Writing Custom Plugins.

21.4. Applying plugins with the buildscript block

Binary plugins that have been published as external jar files can be added to a project by adding the plugin to
the build script classpath and then applying the plugin. External jars can be added to the build script classpath
usingthebui | dscri pt {} block asdescribed in Section 62.6, “ External dependencies for the build script”.

Example 21.4. Applying a plugin with the buildscript block
buil d. gradl e

bui I dscript {
repositories {
jcenter ()

}

dependenci es {

cl asspath "com jfrog. bintray. gradl e: gradl e-bi ntray-pl ugin: 0. 4. 1"

}
}

apply plugin: "comjfrog.bintray"

21.5. Applying plugins with the plugins DSL

The plugins DSL is currently incubating. Please be aware that the DSL and other configuration may
changein later Gradle versions.

The new plugins DSL provides a more succinct and convenient way to declare plugin dependencies. It works
with the new Gradle plugin portal to provide easy access to both core and community plugins. The plugins
script block configures an instance of Pl ugi nDependenci esSpec.

To apply acore plugin, the short name can be used:

Example 21.5. Applying a core plugin

buil d. gradl e

pl ugi ns {
id'java'

}

To apply acommunity plugin from the portal, the fully qualified plugin id must be used:

Page 138 of 514

http://plugins.gradle.org
http://www.gradle.org/docs/2.9/dsl/org.gradle.plugin.use.PluginDependenciesSpec.html

Example 21.6. Applying a community plugin

bui I d. gradl e

pl ugi ns {
id "comjfrog. bintray" version "0.4.1"

}

No further configuration is necessary. Specifically, there is no need to configure the buildscript classpath.
Gradle will resolve the plugin in the plugin portal, locate it, and make it available to the build.

See Pl ugi nDependenci esSpec for more information on using the Plugin DSL.

21.5.1. Limitations of the plugins DSL

The new way to add plugins to a project is much more than a more convenient syntax. The new DSL is
processed very differently to the old one. The new mechanism allows Gradle to determine the plugins in use
very early and very quickly. This allows Gradle to do smart things such as:

® Optimize the loading and reuse of plugin classes.

* Allow different plugins to use different versions of dependencies.

* Provide editors detailed information about the potential properties and values in the buildscript for editing
assistance.

This requires that plugins be specified in away that Gradle can easily and quickly extract, before executing the
rest of the build script. It also requires that the definition of plugins to use be somewhat static.

There are some key differences between the new plugin mechanism and the “traditional” appl y() method
mechanism. There are also some constraints, some of which are temporary limitations while the mechanism is
still being devel oped and some are inherent to the new approach.

21.5.1.1. Constrained Syntax

The new pl ugi ns {} block does not support arbitrary Groovy code. It is constrained, in order to be
idempotent (produce the same result every time) and side effect free (safe for Gradle to execute at any time).

Theformis:

pl ugi ns {

id «plugin id» version «plugin version»

}

Where «pl ugi n versi on» and «pl ugi n i d» must be constant, literal, strings. No other statements are
alowed; their presence will cause a compilation error.

Thepl ugi ns {} block must also be atop level statement in the buildscript. It cannot be nested inside another
construct (e.g. an if-statement or for-loop).

Page 139 of 514

http://www.gradle.org/docs/2.9/dsl/org.gradle.plugin.use.PluginDependenciesSpec.html

21.5.1.2. Can only be used in build scripts

The pl ugi ns {} block can currently only be used in a project's build script. It cannot be used in script
plugins, the settings.gradle file or init scripts.

Future versions of Gradle will remove this restriction.

21.5.1.3. Cannot be used in conjunction with subprojects{}, alprojects{}, etc

It is not possible to use the familiar pattern of applying a plugin to multiple projects at once using
subproj ects {}, etc at the moment. There is currently no mechanism for applying a plugin to multiple

projects at once. At the moment, each project that requires a plugin must declare soin the pl ugi ns {} block
in its buildscript.

Future versions of Gradle will remove thisrestriction.

If the restrictions of the new syntax are prohibitive, the recommended approach isto apply plugins using the buildsci

21.6. Finding community plugins

Gradle has a vibrant community of plugin developers who contribute plugins for a wide variety of capabilities.
The Gradle plugin portal provides an interface for searching and exploring community plugins.

21.7. More on plugins

This chapter aims to serve as an introduction to plugins and Gradle and the role they play. For more information
on theinner workings of plugins, see Chapter 61, Writing Custom Plugins.

Page 140 of 514

http://plugins.gradle.org

22

Standard Gradle plugins

There are anumber of pluginsincluded in the Gradle distribution. These are listed below.

22.1. Language plugins

These plugins add support for various languages which can be compiled for and executed in the VM.

Table 22.1. Language plugins

Plugin
Id

j ava

gr oovy

scal a

antlr

Automatically Works
applies with

j ava- base -

j ava, gr oovy- base

j ava, scal a- base

j ava -

Description

Adds Java compilation, testing and bundling capabilities to a
project. It serves as the basis for many of the other Gradle
plugins. See also Chapter 7, Java Quickstart.

Adds support for building Groovy projects. See also Chapter 9,
Groovy Quickstart.

Adds support for building Scala projects.

Adds support for generating parsers using Antlr.

22.2. Incubating language plugins

These plugins add support for various languages:

Page 141 of 514

http://www.antlr.org/

Table 22.2. Language plugins

Plugin Id Automatically Works Description
applies with

assenbl er - - Adds native assembly language capabilities to
aproject.

C - - Adds C source compilation capabilities to a
project.

cpp - - Adds C++ source compilation capabilitiesto a
project.

obj ective-c - - Adds Objective-C source compilation

capabilities to a project.

obj ecti ve-cpp - - Adds Objective-C++ source compilation
capabilities to a project.

Wi ndows- r esour ces Adds support for including Windows

resources in native binaries.

22.3. Integration plugins

These plugins provide some integration with various runtime technol ogies.

Page 142 of 514

Table 22.3. Integration plugins

Plugin Id Automatically Works Description
applies with
application java,distribution Adds tasks for running and bundling a Java project as

a command-line application.

ear - j ava Adds support for building J2EE applications.

jetty war - Deploys your web application to a Jetty web container
embedded in the build. See also Chapter 10, Web
Application Quickstart.

nmaven - j ava, Adds support for publishing artifacts to Maven
war repositories.

osgi j ava- base j ava Adds support for building OSGi bundles.

war j ava - Adds support for assembling web application WAR

files. See also Chapter 10, Web Application Quickstart

22.4. Incubating integration plugins

These plugins provide some integration with various runtime technol ogies.

Page 143 of 514

Table 22.4. Incubating integration plugins

Works
with

Plugin Id Automatically

applies

di stribution

java-library-distribution java,distribution

i vy-publish - j ava,
war

maven- publ i sh - j ava,
war

Description

Adds support for building ZIP
and TAR distributions.

Adds support for building ZIP
and TAR distributions for a Java
library.

This plugin provides a new DSL
to support publishing artifacts to
Ivy repositories, which improves
on the existing DSL.

This plugin provides a new DSL
to support publishing artifacts to
Maven repositories, which
improves on the existing DSL.

22.5. Software development plugins

These plugins provide help with your software devel opment process.

Table 22.5. Softwar e development plugins

Plugin Id Automatically Works
applies with

announce - -

bui | d-announcenents announce -

checkstyl e j ava- base -

Description

Publish messages to your favourite
platforms, such as Twitter or Growl.

Sends local announcements to your
desktop about interesting events in
the build lifecycle.

Performs quality checks on your
project's Java source files using
Checkstyle and generates reports
from these checks.

Page 144 of 514

http://checkstyle.sourceforge.net/index.html

codenarc groovy- base - Performs quality checks on your
project's Groovy source files using
CodeNarc and generates reports
from these checks.

eclipse - j ava,gr oov@enerates files that are used by
,scal a Eclipse IDE, thus making it possible

to import the project into Eclipse.

See also Chapter 7, Java Quickstart.

eclipse-wp - ear,war Does the same as the eclipse plugin
plus generates eclipse WTP (Web
Tools Platform) configuration files.
After importing to eclipse your
war/fear projects should be
configured to work with WTP. See
also Chapter 7, Java Quickstart.

fi ndbugs j ava- base - Performs quality checks on your
project's Java source files using
FindBugs and generates reports
from these checks.

i dea - j ava Generates files that are used by
Intellij IDEA IDE, thus making it
possible to import the project into
IDEA.

j depend j ava- base - Performs quality checks on your
project's source files using JDepend
and generates reports from these
checks.

prd j ava- base - Performs quality checks on your
project's Java source files using
PMD and generates reports from
these checks.

proj ect-report reporting-base - Generates reports containing useful
information about your Gradle build.

si gnhi ng base - Adds the ability to digitaly sign
built files and artifacts.

Page 145 of 514

http://codenarc.sourceforge.net/index.html
http://eclipse.org
http://findbugs.sourceforge.net
http://www.jetbrains.com/idea/index.html
http://clarkware.com/software/JDepend.html
http://pmd.sourceforge.net

sonar - javerbase, Provides integration with the Sonar
java, code quality platform. Superceeded
jacoco by thesonar - r unner plugin.

22.6. Incubating software development plugins

These plugins provide help with your software devel opment process.

Table 22.6. Softwar e development plugins

Plugin Id Automatically Works Description
applies with

bui | d- dashboar d reporting-base - Generates build dashboard report.

build-init wrapper - Adds support for initializing a new Gradle
build. Handles converting a Maven build to
aGradle build.

cunit - - Adds support for running CUnit tests.

j acoco reporting-base java Provides integration with the JaCoCo code

coverage library for Java

sonar - runner - javabase, Provides integration with the Sonar code
java, quality platform. Supersedes the sonar
jacoco plugin.

vi sual - st udi o - native Adds integration with Visual Studio.
language
plugins

wr apper - - Adds a W apper task for generating

Gradle wrapper files.
java-gradl e-plugin java Assists with development of Gradle plugins

by providing standard plugin build
configuration and validation.

Page 146 of 514

http://www.sonarsource.org
http://cunit.sourceforge.net
http://www.eclemma.org/jacoco/
http://www.sonarsource.org
http://www.gradle.org/docs/2.9/dsl/org.gradle.api.tasks.wrapper.Wrapper.html

22.7. Base plugins

These plugins form the basic building blocks which the other plugins are assembled from. They are available for
you to use in your build files, and are listed here for completeness. However, be aware that they are not yet
considered part of Gradle's public API. As such, these plugins are not documented in the user guide. Y ou might
refer to their APl documentation to learn more about them.

Table 22.7. Base plugins

Plugin Id Description

base Adds the standard lifecycle tasks and configures reasonable defaults for the archive tasks:

® addsbuild Conf i gur at i onNane tasks. Those tasks assemble the artifacts
belonging to the specified configuration.

¢ addsupload Conf i gur at i onNane tasks. Those tasks assemble and upload the
artifacts belonging to the specified configuration.

® configures reasonable default values for all archive tasks (e.g. tasks that inherit from
Abst ract Ar chi veTask). For example, the archive tasks are tasks of types. Jar ,
Tar , Zi p. Specifically, dest i nati onDi r, baseNane and ver si on properties
of the archive tasks are preconfigured with defaults. Thisis extremely useful because
it drives consistency across projects; the consistency regarding naming conventions of
archives and their location after the build compl eted.

java-base Adds the source sets concept to the project. Does not add any particular source sets.
groovy-base Adds the Groovy source sets concept to the project.
scala-base Adds the Scala source sets concept to the project.

reporting-base Adds some shared convention properties to the project, relating to report generation.

22.8. Third party plugins

You can find alist of external plugins at the Gradle Plugins site.

Page 147 of 514

http://www.gradle.org/docs/2.9/dsl/org.gradle.api.tasks.bundling.AbstractArchiveTask.html
http://www.gradle.org/docs/2.9/dsl/org.gradle.api.tasks.bundling.AbstractArchiveTask.html
http://www.gradle.org/docs/2.9/dsl/org.gradle.api.tasks.bundling.Jar.html
http://www.gradle.org/docs/2.9/dsl/org.gradle.api.tasks.bundling.Tar.html
http://www.gradle.org/docs/2.9/dsl/org.gradle.api.tasks.bundling.Tar.html
http://www.gradle.org/docs/2.9/dsl/org.gradle.api.tasks.bundling.Zip.html
http://plugins.gradle.org/

23

The Java Plugin

The Java plugin adds Java compilation along with testing and bundling capabilities to a project. It serves as the
basis for many of the other Gradle plugins.

23.1. Usage

To use the Java plugin, include the following in your build script:

Example 23.1. Using the Java plugin

bui I d. gradl e

apply plugin: 'java'

23.2. Source sets

The Java plugin introduces the concept of a source set. A source set is simply a group of source files which are
compiled and executed together. These source files may include Java source files and resource files. Other
plugins add the ability to include Groovy and Scala source files in a source set. A source set has an associated
compile classpath, and runtime classpath.

One use for source sets is to group source files into logical groups which describe their purpose. For example,
you might use a source set to define an integration test suite, or you might use separate source sets to define the
API and implementation classes of your project.

The Java plugin defines two standard source sets, called mai n and t est . The mai n source set contains your
production source code, which is compiled and assembled into a JAR file. Thet est source set contains your
test source code, which is compiled and executed using JUnit or TestNG. These can be unit tests, integration
tests, acceptance tests, or any combination that is useful to you.

23.3. Tasks

The Java plugin adds a number of tasks to your project, as shown below.

Table 23.1. Java plugin - tasks

Task name Dependson Type Description

Page 148 of 514

compi | eJava

pr ocessResour ces

cl asses

conpi | eTest Java

processTest Resour ces

test Cl asses

jar

j avadoc

t est

upl oadAr chi ves

cl ean

All tasks which produce the
compile classpath. This
includesthej ar task for
project dependencies
includedintheconpi | e
configuration.

Theconpi | eJava task and
thepr ocessResour ces
task. Some plugins add
additional compilation tasks.

conpi | e, plusall tasks
which produce the test
compile classpath.

conpi | eTest Java task

and pr ocessTest Resour ces

task. Some plugins add
additional test compilation
tasks.

conpile

conpile

conpi | e,compi | eTest,
plus all tasks which produce
the test runtime classpath.

The tasks which produce the
artifactsinthear chi ves
configuration, including j ar .

JavaConpi |l e

Copy

Task

JavaConpi |l e

Copy

Task

Jar

Javadoc

Test

Upl oad

Del et e

Compiles
production Java
source filesusing
javac.

Copies production
resources into the
production
resources directory.

Assembles the
production classes
and resources
directories.

Compilestest Java
source filesusing
javac.

Copiestest
resources into the
test resources
directory.

Assembles the test
classes and
resources
directories.

Assemblesthe JAR
file

Generates API
documentation for
the production Java
source, using
Javadoc

Runs the unit tests
using JUnit or
TestNG.

Uploads artifactsin
thear chi ves
configuration,
including the JAR
file.

Deletes the project
build directory.

Page 149 of 514

http://www.gradle.org/docs/2.9/dsl/org.gradle.api.tasks.compile.JavaCompile.html
http://www.gradle.org/docs/2.9/dsl/org.gradle.api.tasks.Copy.html
http://www.gradle.org/docs/2.9/dsl/org.gradle.api.Task.html
http://www.gradle.org/docs/2.9/dsl/org.gradle.api.tasks.compile.JavaCompile.html
http://www.gradle.org/docs/2.9/dsl/org.gradle.api.tasks.Copy.html
http://www.gradle.org/docs/2.9/dsl/org.gradle.api.Task.html
http://www.gradle.org/docs/2.9/dsl/org.gradle.api.tasks.bundling.Jar.html
http://www.gradle.org/docs/2.9/dsl/org.gradle.api.tasks.javadoc.Javadoc.html
http://www.gradle.org/docs/2.9/dsl/org.gradle.api.tasks.testing.Test.html
http://www.gradle.org/docs/2.9/dsl/org.gradle.api.tasks.Upload.html
http://www.gradle.org/docs/2.9/dsl/org.gradle.api.tasks.Delete.html

cl eanTaskNane - Del et e Deletesfiles
created by specified
task. cl eanJar
will delete the JAR
file created by thej ar
task, and cl eanTest
will delete the test
results created by
thet est task.

For each source set you add to the project, the Java plugin adds the following compilation tasks:

Table 23.2. Java plugin - sour ce set tasks

Task name Dependson Type Description

conpi | eSour cAibeasBawaich produce the source set's compile JavaConpi l e Compiles
classpath. the given
source set's
Java source
filesusing
javac.

pr ocessSour ceSet Resour ces Copy Copiesthe
given
source set's
resources
into the
resources
directory.

sour ceSet Cl aBleesonpi | eSour ceSet Java task and the pr ocess¥BagkceSet Resouhssesbles

task. Some plugins add additional compilation tasks the given

for the source set. source set's
classes and
resources
directories.

The Java plugin also adds a number of tasks which form alifecycle for the project:

Page 150 of 514

http://www.gradle.org/docs/2.9/dsl/org.gradle.api.tasks.Delete.html
http://www.gradle.org/docs/2.9/dsl/org.gradle.api.tasks.compile.JavaCompile.html
http://www.gradle.org/docs/2.9/dsl/org.gradle.api.tasks.Copy.html
http://www.gradle.org/docs/2.9/dsl/org.gradle.api.Task.html

Table 23.3. Java plugin - lifecycle tasks

Task name

assenbl e

check

buil d

bui | dNeeded

bui | dDependent s

bui | dConf i gNane

upl oadConf i gNane

Dependson

All archive tasks in the project,
including j ar . Some plugins add
additional archive tasksto the
project.

All verification tasksin the
project, including t est . Some

plugins add additional verification
tasks to the project.

check and assenbl e

bui | d and bui | dNeeded tasks
inall project lib dependencies of
thet est Runt i me configuration.

bui | d and bui | dDependent s
tasksin all projects with a project

Type
Task

Task

Task

Task

Task

Description

Assembles dl the archivesin
the project.

Performs al verification
tasksin the project.

Performs afull build of the
project.

Performs afull build of the
project and all projectsit
depends on.

Performs afull build of the
project and all projects which

lib dependency on this projectinat est Runt i me depend onit.

configuration.

The tasks which produce the
artifacts in configuration
Conf i gNane.

The tasks which uploads the
artifactsin configuration
Conf i gNane.

Task

Upl oad

The following diagram shows the relationships between these tasks.

Figure23.1. Java plugin - tasks

Assemblesthe artifactsin the
specified configuration. The
task is added by the Base
plugin which isimplicitly
applied by the Java plugin.

Assembles and uploads the
artifactsin the specified
configuration. Thetask is
added by the Base plugin
which isimplicitly applied by
the Java plugin.

Page 151 of 514

http://www.gradle.org/docs/2.9/dsl/org.gradle.api.Task.html
http://www.gradle.org/docs/2.9/dsl/org.gradle.api.Task.html
http://www.gradle.org/docs/2.9/dsl/org.gradle.api.Task.html
http://www.gradle.org/docs/2.9/dsl/org.gradle.api.Task.html
http://www.gradle.org/docs/2.9/dsl/org.gradle.api.Task.html
http://www.gradle.org/docs/2.9/dsl/org.gradle.api.Task.html
http://www.gradle.org/docs/2.9/dsl/org.gradle.api.tasks.Upload.html

23.4. Project layout

The Java plugin assumes the project layout shown below. None of these directories need exist or have anything
in them. The Java plugin will compile whatever it finds, and handles anything which is missing.

Table 23.4. Java plugin - default project layout

Directory Meaning

src/ main/java Production Java source

src/ mai n/ resour ces Production resources
src/test/java Test Java source
src/test/resources Test resources

src/ sourceSet/java Java source for the given source set
src/ sourceSet/resources Resources for the given source set

23.4.1. Changing the project layout

Y ou configure the project layout by configuring the appropriate source set. This is discussed in more detail in
the following sections. Here is a brief example which changes the main Java and resource source directories.

Example 23.2. Custom Java sour ce layout
buil d. gradl e
sourceSets {
mai n {

java {
srcDir 'src/java'

}

resources {
srcDir 'src/resources'

23.5. Dependency management

The Java plugin adds a number of dependency configurations to your project, as shown below. It assigns those
configurations to tasks such ascomnpi | eJava andt est .

Page 152 of 514

Table 23.5. Java plugin - dependency configurations

Name Extends Used by tasks Meaning

compile - compileJava Compile time dependencies

runtime compile - Runtime dependencies

testCompile compile compileTestJava Additional dependenciesfor compiling tests.

testRuntime runtime, test Additional dependencies for running tests only.
testCompile

archives - uploadArchives Artifacts (e.g. jars) produced by this project.

default runtime - The default configuration used by a project

dependency on this project. Contains the artifacts and
dependencies required by this project at runtime.

Figure 23.2. Java plugin - dependency configurations

uploadArchives task ————‘Uﬁﬁ'ﬁi“—
-

__——-atdsjar”
jar task

T -addsdar
N

default compilelava task

————tised-by——

testRuntime

testCompile

————tsed-by————| compileTestlava task

For each source set you add to the project, the Java plugins adds the following dependency configurations:

Table 23.6. Java plugin - sour ce set dependency configurations

Name Extends Used by tasks Meaning

conpi | eSour ceSet Jdvampile time dependencies for the
given source set

sour ceSet Conpi |-e

Runtime dependencies for the given
source set

sour ceSet Runt i reour ceSet Conpi I-e

23.6. Convention properties

The Java plugin adds a number of convention properties to the project, shown below. You can use these
propertiesin your build script as though they were properties of the project object.

Table 23.7. Java plugin - directory properties

Property name Type Default value Description

Page 153 of 514

reportsDi r Nane

reportsDir

t est Resul t sDi r Nane

testResultsDir

t est Report Di r Nane

test ReportDir

| i bsDi r Nane

i bsDir

di st sDi r Nane

distsDr

String

File
(read-only)

String

File
(read-only)

String

File
(read-only)

String

File
(read-only)

String

File
(read-only)

reports

bui | dDi r/ report sDi r Nane

test-results

The name of the
directory to
generate reports
into, relative to the
build directory.

The directory to
generate reports
into.

The name of the
directory to
generate test result
xml filesinto,
relative to the
build directory.

bui | dDi r/t est Resul t sDi r Nahee directory to

tests

generate test result
xml filesinto.

The name of the
directory to
generate the test
report into, relative
to the reports
directory.

reportsDir/testReport D r NBmedirectory to

l'ibs

bui 1 dDir/1i bsDi r Nanme

di stributions

bui | dDi r/ di st sDi r Nane

generate the test
report into.

The name of the
directory to
generate libraries
into, relative to the
build directory.

The directory to
generate libraries
into.

The name of the
directory to
generate
distributions into,
relative to the
build directory.

The directory to
generate
distributions into.

Page 154 of 514

docsDi r Nanme

docsDir

dependencyCacheDi r Name

dependencyCacheDi r

String

File
(read-only)

String

File
(read-only)

docs

bui | dDi r/ docsDi r Narre

dependency- cache

The name of the
directory to
generate
documentation
into, relative to the
build directory.

The directory to
generate
documentation
into.

The name of the
directory to use to
cache source
dependency
information,
relative to the
build directory.

bui | dDi r/ dependency Cache D meNdireetory to

use to cache
source dependency
information.

Page 155 of 514

Table 23.8. Java plugin - other properties

Property name Type Default value Description
sourceSet s Sour ceSet Cont ai ner Not null Containsthe
(read-only) project's
source sets.
sourceConpatibility JavaVersion.Canaso version of the current VM Javaversion
set using a String or a inuse compatibility
Number,eqg.' 1.5 orl.5 to use when
compiling
Java source.
targetConpatibility JavaVersion.Canaso sourceConpatibility Javaversion
set using a String or to generate
Number,eqg.' 1.5 orl.5 classesfor.
ar chi vesBaseNane String pr oj ect Nare The
basename to
use for
archives,
such as JAR
or ZIPfiles.
mani f est Mani f est an empty manifest The manifest
toincludein
al JARfiles.

These properties are provided by convention objects of type JavaPl ugi nConventi on, and
BasePl ugi nConventi on.

23.7. Working with source sets

You can access the source sets of a project using the sour ceSet s property. This is a container for the
project's source sets, of type Sour ceSet Cont ai ner. There is also a sourceSets { } script block,
which you can pass a closure to configure the source set container. The source set container works pretty much
the same way as other containers, such ast asks.

Page 156 of 514

http://www.gradle.org/docs/2.9/javadoc/org/gradle/api/tasks/SourceSetContainer.html
http://www.gradle.org/docs/2.9/javadoc/org/gradle/api/JavaVersion.html
http://www.gradle.org/docs/2.9/javadoc/org/gradle/api/JavaVersion.html
http://www.gradle.org/docs/2.9/javadoc/org/gradle/api/java/archives/Manifest.html
http://www.gradle.org/docs/2.9/dsl/org.gradle.api.plugins.JavaPluginConvention.html
http://www.gradle.org/docs/2.9/dsl/org.gradle.api.plugins.BasePluginConvention.html
http://www.gradle.org/docs/2.9/dsl/org.gradle.api.plugins.BasePluginConvention.html
http://www.gradle.org/docs/2.9/javadoc/org/gradle/api/tasks/SourceSetContainer.html

Example 23.3. Accessing a sour ce set
buil d. gradl e

/1l Various ways to access the main source set
println sourceSets. main.out put.classesDir
println sourceSets[' nain'].output.classesDir
sourceSets {

println main. out put.classesDir

}

sourceSets {
mai n {

println output.classesDr

}
}

/'l lterate over the source sets
sourceSets. all {
println name

}

To configure an existing source set, you simply use one of the above access methods to set the properties of the
source set. The properties are described below. Here is an example which configures the main Java and
resources directories:

Example 23.4. Configuring the sour ce directories of a sour ce set
buil d. gradl e

sourceSets {
mai n {
java {
srcDir 'src/java'

}

resources {
srcDir 'src/resources'

23.7.1. Source set properties

The following table lists some of the important properties of a source set. Y ou can find more details in the API
documentation for Sour ceSet .

Table 23.9. Java plugin - source set properties

Property name Type Default value Description

nane Stri ng (read-only) Not null The name of the
source set, used
to identify it.

Page 157 of 514

http://www.gradle.org/docs/2.9/dsl/org.gradle.api.tasks.SourceSet.html

out put

out put.classesDir

out put . resourcesDir

compi | ed asspat h

runti meCl asspath

j ava

java.srcDirs

Sour ceSet Qut put

(read-only)
File
File

Fil eCol | ection

Fil eCol | ection

Sour ceDi r ect or ySet
(read-only)

Set <Fi | e>. Can set
using anything described
in Section 15.5,
“Specifying a set of input
files'.

Not null

The output files
of the source set,
containing its
compiled classes
and resources.

bui | dDi r/ cl asses/ nahee directory to

generate the
classes of this
source set into.

bui | dDi r/ r esour ces/ Hamdirectory to

compi | eSour ceSet
configuration.

generate the
resources of this
source set into.

The classpath to
use when
compiling the
source files of
this source set.

out put +runti meSour Th&edbsspath to

configuration.

Not null

use when
executing the
classes of this
source set.

The Java source

files of this

source set.
Containsonly . j ava
filesfound in the
Java source
directories, and
excludes all

other files.

[proj ect Di r/ src/ nantiig souede

directories
containing the
Java source files
of this source
Set.

Page 158 of 514

http://www.gradle.org/docs/2.9/dsl/org.gradle.api.tasks.SourceSetOutput.html
http://www.gradle.org/docs/2.9/javadoc/org/gradle/api/file/FileCollection.html
http://www.gradle.org/docs/2.9/javadoc/org/gradle/api/file/FileCollection.html
http://www.gradle.org/docs/2.9/javadoc/org/gradle/api/file/SourceDirectorySet.html

resour ces

resources.srcDirs

al | Java

al | Source

Sour ceDi r ect or ySet
(read-only)

Set <Fi | e>. Can set
using anything described
in Section 15.5,
“Specifying a set of input
files'.

Sour ceDi r ect or ySet
(read-only)

Sour ceDi r ect or ySet
(read-only)

Not null

The resources of
this source set.
Contains only
resources, and

excludesany . j ava

filesfound in the
resource source
directories.
Other plugins,
such asthe
Groovy plugin,
exclude
additional types
of filesfrom this
collection.

[proj ect Dir/ src/ nantfe ssimgr ces]

j ava

resources + java

directories
containing the
resources of this
source set.

All . j avafiles
of this source
set. Some
plugins, such as
the Groovy
plugin, add
additional Java
source filesto
this collection.

All sourcefiles
of this source
set. Thisinclude
all resourcefiles
and al Java
sourcefiles.
Some plugins,
such asthe
Groovy plugin,
add additional
source filesto
this collection.

Page 159 of 514

http://www.gradle.org/docs/2.9/javadoc/org/gradle/api/file/SourceDirectorySet.html
http://www.gradle.org/docs/2.9/javadoc/org/gradle/api/file/SourceDirectorySet.html
http://www.gradle.org/docs/2.9/javadoc/org/gradle/api/file/SourceDirectorySet.html

23.7.2. Defining new source sets

To define a new source set, you simply referenceitinthe sour ceSet s { } block. Here's an example:

Example 23.5. Defining a sour ce set

buil d. gradl e

sourceSets {

i nt Test

}

When you define a new source set, the Java plugin adds some dependency configurations for the source set, as
shown in Table 23.6, “Java plugin - source set dependency configurations’. Y ou can use these configurations to
define the compile and runtime dependencies of the source set.

Example 23.6. Defining sour ce set dependencies

buil d. gradl e

sourceSets {
i nt Test

}

dependenci es {
intTestConpile "junit:junit:4. 12"
i nt TestRuntine 'org.ow2. asmasmall: 4.0

The Java plugin also adds a number of tasks which assemble the classes for the source set, as shown in
Table 23.2, “Java plugin - source set tasks’. For example, for a source set called i nt Test , compiling the
classes for this source set is done by running gr adl e i nt Test d asses.

Example 23.7. Compiling a sour ce set

Output of gr adl e i nt Test Cl asses
> gradl e intTestC asses
:conpi | el nt Test Java
: processl nt Test Resour ces
tintTest d asses

BU LD SUCCESSFUL

Total tine: 1 secs

23.7.3. Some source set examples

Adding a JAR containing the classes of a source set:

Page 160 of 514

Example 23.8. Assembling a JAR for a sour ce set

bui I d. gradl e

task intTestJar(type: Jar) {

from sourceSets. i nt Test. out put

}

Generating Javadoc for a source set:

Example 23.9. Generating the Javadoc for a sour ce set
buil d. gradl e

task intTestJavadoc(type: Javadoc) {
source sourceSets.intTest.allJava

}

Adding atest suite to run the tests in a source set:

Example 23.10. Running testsin a sour ce set
buil d. gradl e

task intTest(type: Test) {
testC assesDir = sourceSets.intTest.output.classesDir

cl asspath = sourceSets.intTest.runti meC asspath

23.8. Javadoc

The j avadoc task is an instance of Javadoc. It supports the core Javadoc options and the options of the
standard doclet described in the reference documentation of the Javadoc executable. For a complete list of
supported Javadoc options consult the APl documentation of the following classes: Cor eJavadocOpti ons
and St andar dJavadocDocl et Opt i ons.

Table 23.10. Java plugin - Javadoc properties

Task Property Type Default Value
cl asspath Fil eColl ection sourceSet s. mai n. out put +sourceSets. m
sour ce Fi | eTr ee. Can set using sour ceSet s. nai n. al | Java

anything described in
Section 15.5, “ Specifying a set

of input files’.
destinationDir File docsDir/javadoc
title String The name and version of the project

Page 161 of 514

http://www.gradle.org/docs/2.9/dsl/org.gradle.api.tasks.javadoc.Javadoc.html
http://download.oracle.com/javase/1.5.0/docs/tooldocs/windows/javadoc.html#referenceguide
http://www.gradle.org/docs/2.9/javadoc/org/gradle/external/javadoc/CoreJavadocOptions.html
http://www.gradle.org/docs/2.9/javadoc/org/gradle/external/javadoc/StandardJavadocDocletOptions.html
http://www.gradle.org/docs/2.9/javadoc/org/gradle/api/file/FileCollection.html
http://www.gradle.org/docs/2.9/javadoc/org/gradle/api/file/FileTree.html

23.9. Clean

Thecl ean task isan instance of Del et e. It simply removes the directory denoted by its di r property.

Table 23.11. Java plugin - Clean properties

Task Property Type Default Value

dir File bui |l dDi r

23.10. Resources

The Java plugin uses the Copy task for resource handling. It adds an instance for each source set in the project.
Y ou can find out more about the copy task in Section 15.6, “Copying files’.

Table 23.12. Java plugin - ProcessResour ces properties

Task Property Type Default Value

srcDirs hj ect . Can set using anything described in sourceSet . resour ces
Section 15.5, “ Specifying a set of input files’.

destinationDir Fi | e. Can set using anything described in sour ceSet . out put . resourc
Section 15.1, “Locating files’.

23.11. CompileJava

The Java plugin adds a JavaConpi | e instance for each source set in the project. Some of the most common
configuration options are shown below.

Table 23.13. Java plugin - Compile properties

Task Property Type Default Value
cl asspath Fil eCol | ection sour ceSet . conpi | ed ass
source Fi | eTr ee. Can set using anything described in sour ceSet. java

Section 15.5, “ Specifying a set of input files’.

destinationDir File. sourceSet . out put. cl ass

By default, the Java compiler runs in the Gradle process. Setting opt i ons. f or k tot r ue causes compilation

to occur in a separate process. In the case of the Ant javac task, this means that a new process will be forked for
each compile task, which can slow down compilation. Conversely, Gradle's direct compiler integration (see
above) will reuse the same compiler process as much as possible. In both cases, all fork options specified with opt i
will be honored.

Page 162 of 514

http://www.gradle.org/docs/2.9/dsl/org.gradle.api.tasks.Delete.html
http://www.gradle.org/docs/2.9/dsl/org.gradle.api.tasks.Copy.html
http://www.gradle.org/docs/2.9/dsl/org.gradle.api.tasks.compile.JavaCompile.html
http://www.gradle.org/docs/2.9/javadoc/org/gradle/api/file/FileCollection.html
http://www.gradle.org/docs/2.9/javadoc/org/gradle/api/file/FileTree.html

23.12. Incremental Java compilation

Starting with Gradle 2.1, it is possible to compile Java incrementally. This feature is still incubating. See the
JavaConpi | e task for information on how to enable it.

Main goals for incremental compilations are:

® Avoid wasting time compiling source classes that don't have to be compiled. This means faster builds,
especially when a change to a source class or ajar does not incur recompilation of many source classes that
depend on the changed input.

® Change as few output classes as possible. Classes that don't need to be recompiled remain unchanged in the
output directory. An example scenario when thisis really useful is using JRebel - the fewer output classes
are changed the quicker the jvm can use refreshed classes.

The incremental compilation at a high level:

® The detection of the correct set of stale classesis reliable at some expense of speed. The algorithm uses
bytecode analysis and deal s gracefully with compiler optimizations (inlining of non-private constants),
transitive class dependencies, etc. Example: When a class with a public constant changes, we eagerly
compile everything to avoid problems with constants inlined by the compiler. Down the road we will tune
the algorithm and caching so that incremental Java compilation can be a default setting for every compile
task.

* To makeincremental compilation fast, we cache class analysis results and jar snapshots. Theinitial
incremental compilation can be slower due to the cold caches.

23.13. Test

Thet est task is an instance of Test . It automatically detects and executes al unit testsin the t est source
set. It also generates areport once test execution is complete. JUnit and TestNG are both supported. Have alook
at Test for the complete API.

23.13.1. Test execution

Tests are executed in a separate VM, isolated from the main build process. The Test task's APl allows you
some control over how this happens.

There are a number of properties which control how the test process is launched. This includes things such as
system properties, VM arguments, and the Java executable to use.

You can specify whether or not to execute your tests in paralel. Gradle provides parallel test execution by
running multiple test processes concurrently. Each test process executes only a single test at a time, so you
generally don't need to do anything special to your tests to take advantage of this. The maxPar al | el For ks
property specifies the maximum number of test processes to run at any given time. The default is 1, that is, do
not execute the testsin parallel.

The test process sets the or g. gr adl e. t est . wor ker system property to a unique identifier for that test
process, which you can use, for example, in files names or other resource identifiers.

Page 163 of 514

http://www.gradle.org/docs/2.9/dsl/org.gradle.api.tasks.compile.JavaCompile.html
http://www.gradle.org/docs/2.9/dsl/org.gradle.api.tasks.compile.JavaCompile.html
http://www.gradle.org/docs/2.9/dsl/org.gradle.api.tasks.testing.Test.html
http://www.gradle.org/docs/2.9/dsl/org.gradle.api.tasks.testing.Test.html
http://www.gradle.org/docs/2.9/dsl/org.gradle.api.tasks.testing.Test.html

Y ou can specify that test processes should be restarted after it has executed a certain number of test classes. This
can be a useful alternative to giving your test process avery large heap. The f or KEver y property specifies the
maximum number of test classes to execute in atest process. The default is to execute an unlimited number of
testsin each test process.

The task has an i gnor eFai | ur es property to control the behavior when tests fail. The Test task always
executes every test that it detects. It stops the build afterwards if i gnor eFai | ur es is false and there are
failing tests. The default value of i gnor eFai | ur es isfase.

Thet est Loggi ng property alows you to configure which test events are going to be logged and at which
detail level. By default, a concise message will be logged for every failed test. See
Test Loggi ngCont ai ner for how to tune test logging to your preferences.

23.13.2. Debugging

The test task provides a Test . get Debug() property that can be set to launch to make the VM wait for a
debugger to attach to port 5005 before proceeding with test execution.

This can also be enabled at invocation time viathe - - debug- j vmtask option (since Gradle 1.12).

23.13.3. Test filtering

Starting with Gradle 1.10, it is possible to include only specific tests, based on the test name pattern. Filtering is

adifferent mechanism than test classinclusion / exclusion that will be described in the next few paragraphs (- Dt es

,test.include andfriends). The latter is based on files, e.g. the physical location of the test implementation
class. File-level test selection does not support many interesting scenarios that are possible with test-level
filtering. Some of them Gradle handles now and some will be satisfied in future rel eases:

® Filtering at the level of specific test methods; executing a single test method

* Filtering based on custom annotations (future)

* Filtering based on test hierarchy; executing all tests that extend ceratain base class (future)

® Filtering based on some custom runtime rule, e.g. particular value of a system property or some static state
(future)

Test filtering feature has following characteristic:

® Fully quaified class name or fully qualified method name is supported, e.g. “org.gradle.SomeTest”,
“org.gradle.SomeT est.someM ethod”

® Wildcard ** is supported for matching any characters

¢ Command line option “--tests’ is provided to conveniently set the test filter. Especially useful for the classic
'single test method execution' use case. When the command line option is used, the inclusion filters declared
in the build script are ignored.

® Gradletriesto filter the tests given the limitations of the test framework API. Some advanced, synthetic tests
may not be fully compatible with filtering. However, the vast majority of tests and use cases should be
handled nestly.

* Test filtering supersedes the file-based test selection. The latter may be completely replaced in future. We
will grow the the test filtering api and add more kinds of filters.

Page 164 of 514

http://www.gradle.org/docs/2.9/dsl/org.gradle.api.tasks.testing.logging.TestLoggingContainer.html
http://www.gradle.org/docs/2.9/dsl/org.gradle.api.tasks.testing.logging.TestLoggingContainer.html
http://www.gradle.org/docs/2.9/dsl/org.gradle.api.tasks.testing.Test.html#org.gradle.api.tasks.testing.Test:debug

Example 23.11. Filtering testsin the build script
buil d. gradl e
test {
filter {

//include specific nmethod in any of the tests
i ncl udeTest sMat chi ng " * U Check"

/linclude all tests from package

i ncl udeTest sMat ching "org.gradle.internal .*"

/linclude all integration tests
i ncl udeTest sMat ching "*I ntegTest"

For more details and examples please seethe Test Fi | t er reference.
Some examples of using the command line option:

® gradle test --tests org.gradl e. SoneTest. soneSpeci fi cFeature

® gradle test --tests *SomeTest.soneSpecifi cFeature

® gradle test --tests *SoneSpecificTest

® gradle test --tests all.in.specific.package*

® gradle test --tests *IntegTest

® gradle test --tests *IntegTest*ui*

® gradl e someTest Task --tests *Ui Test someQt her Test Task --tests *WebTest *ui

23.13.4. Single test execution via System Properties

This mechanism has been superseded by 'Test Filtering', described above.

Setting a system property of t askNane. si ngl e =t est NamePat t er n will only execute tests that match
the specified t est NanePat t er n. The t askNane can be a full multi-project path like “:subl:sub2:test” or
just the task name. The testNanmePattern will be used to form an include pattern of
“** [testNamePattern* .class’;. If no tests with this pattern can be found an exception is thrown. Thisis to shield
you from false security. If tests of more than one subproject are executed, the pattern is applied to each
subproject. An exception is thrown if no tests can be found for a particular subproject. In such a case you can
use the path notation of the pattern, so that the pattern is applied only to the test task of a specific subproject.
Alternatively you can specify the fully qualified task name to be executed. You can also specify multiple
patterns. Examples:

® gradle -Dtest.single=Thi sUni quel yNamedTest test

® gradle -Dtest.single=alb/ test

® gradle -DintegTest.single=*IntegrationTest integTest
® gradle -Dtest.single=:projl:test: Custonmer build

® gradle -DintegTest.single=c/d/ :projl:integTest

Page 165 of 514

http://www.gradle.org/docs/2.9/javadoc/org/gradle/api/tasks/testing/TestFilter.html

23.13.5. Test detection

The Test task detects which classes are test classes by inspecting the compiled test classes. By default it scans
dl . cl ass files. You can set custom includes / excludes, only those classes will be scanned. Depending on the
test framework used (JUnit / TestNG) the test class detection uses different criteria.

When using JUnit, we scan for both JUnit 3 and 4 test classes. If any of the following criteria match, the classis
considered to be a JUnit test class:

® Classor asuper class extends Test Case or G oovyTest Case
® Classor asuper classis annotated with @RrunW t h
® Classor asuper class contain a method annotated with @est

When using TestNG, we scan for methods annotated with @est .

Note that abstract classes are not executed. Gradle also scans up the inheritance tree into jar files on the test
classpath.

If you don't want to use test class detection, you can disable it by setting scanFor Test Cl asses to false.
This will make the test task only use includes / excludes to find test classes. If scanFor Test Cl asses is
false and no include / exclude patterns are specified, the defaultsare“**/ * Test s. cl ass”, “**/ *Test . cl ass
"and“**/ Abst ract *. cl ass” for include and exclude, respectively.

23.13.6. Test grouping

JUnit and TestNG allows sophisticated groupings of test methods.

For grouping JUnit test classes and methods JUnit 4.8 introduces the concept of categories. [9 Thet est task
alows the specification of the JUnit categories you want to include and exclude.

Example 23.12. JUnit Categories

buil d. gradl e

test {
useJUnit {
i ncl udeCat egories 'org.gradle.junit.CategoryA

excl udeCat egories 'org.gradle.junit.CategoryB

The TestNG framework has a quite similar concept. In TestNG you can specify different test groups. (19 The
test groups that should be included or excluded from the test execution can be configured in the test task.

Page 166 of 514

Example 23.13. Grouping TestNG tests

bui I d. gradl e

test {
useTest NG {
excl udeG oups 'integrationTests'

i ncl udeG oups 'unitTests'

23.13.7. Test reporting

The Test task generates the following results by default.

® AnHTML test report.

® Theresultsinan XML format that is compatible with the Ant JUnit report task. This format is supported by
many other tools, such as Cl servers.

® Resultsin an efficient binary format. The task generates the other results from these binary results.

There is dso a stand-alone Test Report task type which can generate the HTML test report from the binary
results generated by one or more Test task instances. To use thistask type, you need to defineadest i nati onDi

and the test results to include in the report. Here is a sample which generates a combined report for the unit tests
from subprojects:

Example 23.14. Creating a unit test report for subprojects

buil d. gradl e

subproj ects {
apply plugin: 'java'

/1l Disable the test report for the individual test task
test {
reports. htm . enabl ed = fal se
}
}

task test Report(type: TestReport) {
destinationDir = file("$buildDir/reports/all Tests")
/1 Include the results fromthe “test task in all subprojects
report On subproj ects*.test

You should note that the Test Report type combines the results from multiple test tasks and needs to
aggregate the results of individual test classes. This means that if a given test class is executed by multiple test
tasks, then the test report will include executions of that class, but it can be hard to distinguish individual
executions of that class and their output.

23.13.7.1. TestNG parameterized methods and reporting

TestNG supports parameterizing test methods, allowing a particular test method to be executed multiple times
with different inputs. Gradle includes the parameter values in its reporting of the test method execution.

Page 167 of 514

http://www.gradle.org/docs/2.9/dsl/org.gradle.api.tasks.testing.TestReport.html
http://testng.org/doc/documentation-main.html#parameters

Given a parameterized test method named aTest Met hod that takes two parameters, it will be reported with
the name: aTest Met hod(toStri ngVal ueX Paranil, toStringVal ueX Paran®). This makes
identifying the parameter values for a particular iteration easy.

23.13.8. Convention values

Table 23.14. Java plugin - test properties

Task Property Type Default Value

testd assesDir File sourceSets. test.output.classesDir
cl asspath FileCol lection sourceSets.test.runtined asspath
testResultsDir File testResultsDir

test ReportDir File test ReportDir

testSrcDirs Li st<Fi |l e> sourceSets.test.java.srcDirs

23.14. Jar

Thej ar task creates a JAR file containing the class files and resources of the project. The JAR file is declared
asan artifact in the ar chi ves dependency configuration. This means that the JAR is available in the classpath
of a dependent project. If you upload your project into a repository, this JAR is declared as part of the
dependency descriptor. You can learn more about how to work with archives in Section 15.8, “Creating
archives’ and artifact configurations in Chapter 53, Publishing artifacts.

23.14.1. Manifest

Each jar or war object has amani f est property with a separate instance of Mani f est . When the archive is
generated, a corresponding MANI FEST. MF file iswritten into the archive.
Example 23.15. Customization of MANIFEST.MF

buil d. gradl e

jar {
mani f est {
attributes("Inplenentation-Title": "G adle",

"l mpl enent ati on- Versi on": version)

You can create stand alone instances of a Mani f est. You can use that for example, to share manifest
information between jars.

Page 168 of 514

http://www.gradle.org/docs/2.9/javadoc/org/gradle/api/file/FileCollection.html
http://www.gradle.org/docs/2.9/javadoc/org/gradle/api/java/archives/Manifest.html

Example 23.16. Creating a manifest object.
buil d. gradl e

ext . sharedMani fest = nmani fest {
attributes("Inplenentation-Title": "G adle",
"I npl enent ati on- Ver si on": version)

}

task fooJdar(type: Jar) {
mani f est = project. mani fest {
f rom shar edMani f est

}

Y ou can merge other manifests into any Mani f est object. The other manifests might be either described by a
file path or, like in the example above, by areference to another Mani f est object.

Example 23.17. Separate MANIFEST .MF for a particular archive
buil d. gradl e

task barJar(type: Jar) {
mani fest {
attributes keyl: 'val uel
from shar edMani fest, 'src/config/basenanifest.txt'
from('src/config/javabasenani fest.txt',
"src/config/libbasemani fest.txt') {
eachEntry { details ->
if (details.baseValue != details. nmergeVal ue) {
detail s. val ue = baseVal ue
}
if (details.key == '"foo') {
det ai | s. excl ude()

}

Manifests are merged in the order they are declared by the f r omstatement. If the base manifest and the merged
manifest both define values for the same key, the merged manifest wins by default. Y ou can fully customize the
merge behavior by adding eachEnt ry actions in which you have access to a Mani f est Mer geDet ai | s
instance for each entry of the resulting manifest. The merge is not immediately triggered by the from statement.
It isdone lazily, either when generating the jar, or by callingwr i t eTo or ef f ecti veMani f est

Y ou can easily write a manifest to disk.

Example 23.18. Separate MANIFEST.MF for a particular archive

buil d. gradle

jar.mani fest.witeTo("$buil dDir/mymanifest.nf")

Page 169 of 514

http://www.gradle.org/docs/2.9/javadoc/org/gradle/api/java/archives/ManifestMergeDetails.html

23.15. Uploading

How to upload your archivesis described in Chapter 53, Publishing artifacts.

[9] The JUnit wiki contains a detailed description on how to work with JUnit categories:
https://github.com/junit-team/junit/wiki/Categories.

[10] The TestNG documentation contains more details about test groups:
http://testng.org/doc/documentati on-main.html#test-groups.

Page 170 of 514

https://github.com/junit-team/junit/wiki/Categories
http://testng.org/doc/documentation-main.html#test-groups

24

The Groovy Plugin

The Groovy plugin extends the Java plugin to add support for Groovy projects. It can deal with Groovy code,
mixed Groovy and Java code, and even pure Java code (although we don't necessarily recommend to use it for
the latter). The plugin supports joint compilation, which allows you to freely mix and match Groovy and Java
code, with dependencies in both directions. For example, a Groovy class can extend a Java class that in turn
extends a Groovy class. This makes it possible to use the best language for the job, and to rewrite any classin
the other language if needed.

24.1. Usage

To use the Groovy plugin, include the following in your build script:

Example 24.1. Using the Groovy plugin

bui I d. gradl e

apply plugin: 'groovy'

24.2. Tasks

The Groovy plugin adds the following tasks to the project.

Table 24.1. Groovy plugin - tasks

Task name Dependson Type Description

conpi | eG oovy conpi | eJava G oovyConpi | e Compiles production
Groovy source files.

conpi | eTest G oovy conpil eTestJava G oovyConpile Compilestest Groovy
sourcefiles.

conpi | eSour ceSet G oovynpi | eSour ceSet Ja@aoovyConpi |l e Compilesthe given source
set's Groovy sourcefiles.

gr oovydoc - G oovydoc Generates API
documentation for the
production Groovy source
files.

Page 171 of 514

http://www.gradle.org/docs/2.9/dsl/org.gradle.api.tasks.compile.GroovyCompile.html
http://www.gradle.org/docs/2.9/dsl/org.gradle.api.tasks.compile.GroovyCompile.html
http://www.gradle.org/docs/2.9/dsl/org.gradle.api.tasks.compile.GroovyCompile.html
http://www.gradle.org/docs/2.9/dsl/org.gradle.api.tasks.javadoc.Groovydoc.html

The Groovy plugin adds the following dependencies to tasks added by the Java plugin.

Table 24.2. Groovy plugin - additional task dependencies

Task name Dependson
classes compileGroovy
testClasses compileTestGroovy

sour ceSet Classes compileSour ceSet Groovy

Figure 24.1. Groovy plugin - tasks

[processResources
compileGroovy

processTestResources
CompileTestGroovy . '

testClasses

classes

compileTestJava

24.3. Project layout

The Groovy plugin assumes the project layout shown in Table 24.3, “Groovy plugin - project layout”. All the
Groovy source directories can contain Groovy and Java code. The Java source directories may only contain
Java source code. [11] None of these directories need to exist or have anything in them; the Groovy plugin will
simply compile whatever it finds.

Page 172 of 514

Table 24.3. Groovy plugin - project layout

Directory Meaning
src/ main/java Production Java
source
src/ mai n/ resour ces Production
resources
src/ mai n/ gr oovy Production Groovy sources. May also contain Java
sources for joint compilation.
src/test/java Test Java source
src/test/resources Test resources
src/test/groovy Test Groovy sources. May also contain Java sources
for joint compilation.
src/ sourceSet/java Java source for the

given source set

src/ sourceSet/resources Resources for the
given source set

src/ sour ceSet/ groovy Groovy sourcesfor the given source set. May also
contain Java sources for joint compilation.

24.3.1. Changing the project layout

Just like the Java plugin, the Groovy plugin allows you to configure custom locations for Groovy production
and test sources.

Example 24.2. Custom Groovy sour ce layout
buil d. gradl e

sour ceSets {
mai n {
groovy {
srcDirs ['src/groovy']
}
}

test {

groovy {
srcDirs ['test/groovy']

Page 173 of 514

24.4. Dependency management

Because Gradl€e's build language is based on Groovy, and parts of Gradle are implemented in Groovy, Gradle
aready ships with a Groovy library (2.4.4 as of Gradle 2.8). Nevertheless, Groovy projects need to explicitly
declare a Groovy dependency. This dependency will then be used on compile and runtime class paths. It will
aso be used to get hold of the Groovy compiler and Groovydoc tool, respectively.

If Groovy is used for production code, the Groovy dependency should be added to the conpi | e configuration:

Example 24.3. Configuration of Groovy dependency
buil d. gradl e

repositories {
mavenCent ral ()

}

dependenci es {
conpi l e ' org. codehaus. groovy: groovy-all:2.4.4

}

If Groovy is only used for test code, the Groovy dependency should be added to the t est Conpi l e
configuration:

Example 24.4. Configuration of Groovy test dependency
buil d. gradl e

dependenci es {

t est Conpi | e "org. codehaus. groovy: groovy: 2. 4. 4"

}

To use the Groovy library that ships with Gradle, declareal ocal Gr oovy() dependency. Note that different
Gradle versions ship with different Groovy versions; as such, using | ocal Gr oovy() is less safe then
declaring aregular Groovy dependency.

Example 24.5. Configuration of bundled Groovy dependency

buil d. gradl e

dependenci es {
conpi |l e | ocal G oovy()

}

The Groovy library doesn't necessarily have to come from a remote repository. It could also comefromalocal | i b
directory, perhaps checked in to source control:

Page 174 of 514

Example 24.6. Configuration of Groovy file dependency
buil d. gradl e
repositories {

flatDir { dirs 'Iib" }
}
dependenci es {

conpi | e nmodul e(' or g. codehaus. gr oovy: groovy: 2.4.4") {
dependency('asmasmal |l :2.2.3")

dependency('antlr:antlr:2.7.7")
dependency(' commons-cli:comons-cli:1.2")
nmodul e(' org. apache. ant:ant:1.9.4") {
dependenci es(' org. apache.ant:ant-junit:1.9.4@ar"',
‘org. apache. ant: ant -1 auncher: 1.9.4")

The “nodul e” reference may be new to you. See Chapter 52, Dependency Management for more information
about this and other information about dependency management.

24.5. Automatic configuration of groovyClasspath

The Gr oovy Conpi | e and G oovydoc tasks consume Groovy code in two ways: on their cl asspat h, and
on their gr oovyC asspat h. The former is used to locate classes referenced by the source code, and will
typically contain the Groovy library along with other libraries. The latter is used to load and execute the Groovy
compiler and Groovydoc tool, respectively, and should only contain the Groovy library and its dependencies.

Unlessatask's gr oovyC asspat h is configured explicitly, the Groovy (base) plugin will try to infer it from
thetask'scl asspat h. Thisis done asfollows:

® |[fagroovy-all (-indy) Jarisfoundoncl asspat h, that jar will be added to gr oovyC asspat h.

® |fagroovy(-indy) jarisfoundoncl asspat h, and the project has at least one repository declared, a
corresponding gr oovy(- i ndy) repository dependency will be added to gr oovyC asspat h.

® Otherwise, execution of the task will fail with amessage saying that gr oovyC asspat h could not be
inferred.

Note that the “- i ndy” variation of each jar refersto the version with i nvokedynani ¢ support.

24.6. Convention properties

The Groovy plugin does not add any convention properties to the project.

24.7. Source set properties

The Groovy plugin adds the following convention properties to each source set in the project. You can use these
propertiesin your build script as though they were properties of the source set object.

Page 175 of 514

Table 24.4. Groovy plugin - sour ce set properties

Property name Type Default value Description
groovy Sour ceDi r ect or ySet Not null The Groovy source files of this
(read-only) source set. Containsall . gr oovy

and . j ava filesfound in the
Groovy source directories, and
excludes all other types of files.

groovy.srcDirs Set<Fil e>. Canset [proj ect D r/ sThe soane/direoctovig$ containing
using anything described the Groovy source files of this
in Section 15.5, source set. May also contain Java
“Specifying a set of input source files for joint compilation.
files.

al | Groovy Fi | eTr ee (read-only) Not null All Groovy source files of this

source set. Contains only the . gr oovy
files found in the Groovy source
directories.

These properties are provided by a convention object of type Gr oovy Sour ceSet .
The Groovy plugin also modifies some source set properties:

Table 24.5. Groovy plugin - sour ce set properties

Property name Change
al | Java Addsall . j ava filesfound in the Groovy source directories.

al | Source Adds all source files found in the Groovy source directories.

24.8. GroovyCompile

The Groovy plugin addsa Gr oovyConpi | e task for each source set in the project. The task type extendsthe Jave
task (see Section 23.11, “CompileJava’). The Gr oovy Conpi | e task supports most configuration options of
the official Groovy compiler.

Page 176 of 514

http://www.gradle.org/docs/2.9/javadoc/org/gradle/api/file/SourceDirectorySet.html
http://www.gradle.org/docs/2.9/javadoc/org/gradle/api/file/FileTree.html
http://www.gradle.org/docs/2.9/dsl/org.gradle.api.tasks.GroovySourceSet.html
http://www.gradle.org/docs/2.9/dsl/org.gradle.api.tasks.compile.GroovyCompile.html

Table 24.6. Groovy plugin - GroovyCompile properties

Task Property Type Default Value
cl asspath Fil eColl ection sourceSet . conpi | ed asspath
source Fi | eTr ee. Can set using anything sour ceSet . gr oovy

described in Section 15.5, “ Specifying a

set of input files'.
destinationDir File. sourceSet. out put. cl assesDi r
groovyC asspath FileColl ection gr oovy configuration if

non-empty; Groovy library found on
cl asspat h otherwise

[11] We are using the same conventions as introduced by Russel Winder's Gant tool (http://gant.codehaus.org).

Page 177 of 514

http://www.gradle.org/docs/2.9/javadoc/org/gradle/api/file/FileCollection.html
http://www.gradle.org/docs/2.9/javadoc/org/gradle/api/file/FileTree.html
http://www.gradle.org/docs/2.9/javadoc/org/gradle/api/file/FileCollection.html
http://gant.codehaus.org

25

The Scala Plugin

The Scala plugin extends the Java plugin to add support for Scala projects. It can deal with Scala code, mixed
Scala and Java code, and even pure Java code (although we don't necessarily recommend to use it for the latter).
The plugin supports joint compilation, which allows you to freely mix and match Scala and Java code, with
dependencies in both directions. For example, a Scala class can extend a Java class that in turn extends a Scala
class. Thismakesit possible to use the best language for the job, and to rewrite any classin the other language if
needed.

25.1. Usage

To use the Scala plugin, include the following in your build script:

Example 25.1. Using the Scala plugin

buil d. gradl e

apply plugin: 'scala'

25.2. Tasks

The Scala plugin adds the following tasks to the project.

Table 25.1. Scala plugin - tasks

Task name Dependson Type Description
conpi | eScal a conpi | eJava Scal aConpi | e Compiles production Scala
source files.

conpi |l eTest Scala conpil eTestJava Scal aConpil e Compilestest Scala source
files.

conpi | eSour ceSet Scat@pi | eSour ceSet Jaswal aConpi |l e Compilesthe given source set's
Scala sourcefiles.

scal adoc - Scal aDoc Generates APl documentation
for the production Scala source
files.

The Scala plugin adds the following dependencies to tasks added by the Java plugin.

Page 178 of 514

http://www.gradle.org/docs/2.9/dsl/org.gradle.api.tasks.scala.ScalaCompile.html
http://www.gradle.org/docs/2.9/dsl/org.gradle.api.tasks.scala.ScalaCompile.html
http://www.gradle.org/docs/2.9/dsl/org.gradle.api.tasks.scala.ScalaCompile.html
http://www.gradle.org/docs/2.9/dsl/org.gradle.api.tasks.scala.ScalaDoc.html

Table 25.2. Scala plugin - additional task dependencies

Task name Dependson
cl asses conpi | eScal a
test d asses conpi | eTest Scal a

sourceSet Cl asses conpi | eSour ceSet Scal a

Figure 25.1. Scala plugin - tasks

S
compileScala

scaladoc

processTestResources
compileTestScala I '

testClasses

classes

compileTestJava

25.3. Project layout

The Scala plugin assumes the project layout shown below. All the Scala source directories can contain Scala
and Java code. The Java source directories may only contain Java source code. None of these directories need
to exist or have anything in them; the Scala plugin will ssimply compile whatever it finds.

Table 25.3. Scala plugin - project layout

Directory Meaning
src/ main/java Production Java
source
src/ mai n/ resour ces Production
resources
src/ mai n/ scal a Production Scala sources. May also contain Java
sources for joint compilation.
src/test/java Test Java source
src/test/resources Test resources
src/test/scal a Test Scala sources. May also contain Java sources
for joint compilation.
src/ sourceSet/java Java source for the

given source set

src/ sourceSet/resources Resources for the
given source set

src/ sourceSet/scal a Scalasourcesfor the given source set. May also
contain Java sources for joint compilation.

Page 179 of 514

25.3.1. Changing the project layout

Just like the Java plugin, the Scala plugin allows you to configure custom locations for Scala production and test
sources.

Example 25.2. Custom Scala sour ce layout

buil d. gradl e

sourceSets {
mai n {
scal a {
srcDirs ['"src/scala']

['test/scal a']

25.4. Dependency management

Scala projects need to declare ascal a- | i br ary dependency. This dependency will then be used on compile

and runtime class paths. It will also be used to get hold of the Scala compiler and Scaladoc tool, respectively. [12
]

If Scala is used for production code, the scal a-1i brary dependency should be added to the conpi | e
configuration:

Example 25.3. Declaring a Scala dependency for production code

bui I d. gradl e

repositories {
mavenCentral ()

}

dependenci es {
conpile 'org.scal a-1ang: scal a-library:2.11. 1

}

If Scalais only used for test code, the scal a- 1 i br ary dependency should be added to the t est Conpi | e
configuration:

Page 180 of 514

Example 25.4. Declaring a Scala dependency for test code
buil d. gradl e

dependenci es {

testConpile "org.scal a-l ang: scal a-library:2.11. 1"

}

25.5. Automatic configuration of scalaClasspath

The Scal aConpi | e and Scal aDoc tasks consume Scala code in two ways. on their cl asspat h, and on
their scal aCl asspat h. The former is used to locate classes referenced by the source code, and will typically
contain scal a- | i br ary along with other libraries. The latter is used to load and execute the Scala compiler
and Scaladoc tool, respectively, and should only contain the scal a- conpi | er library and its dependencies.

Unlessatask's scal aCl asspat h is configured explicitly, the Scala (base) plugin will try to infer it from the
task'scl asspat h. Thisisdone asfollows:

* |[fascal a-1i brary Jarisfound on cl asspat h, and the project has at least one repository declared, a
corresponding scal a- conpi | er repository dependency will be added to scal aCl asspat h.

® Otherwise, execution of the task will fail with amessage saying that scal aCl asspat h could not be
inferred.

25.6. Convention properties

The Scala plugin does not add any convention properties to the project.

25.7. Source set properties

The Scala plugin adds the following convention properties to each source set in the project. Y ou can use these
propertiesin your build script as though they were properties of the source set object.

Page 181 of 514

Table 25.4. Scala plugin - sour ce set properties

Property name Type Default value Description
scal a Sour ceDi r ect or ySet Not null The Scala source files of this
(read-only) source set. Contains all . scal a

and . j ava filesfoundin the
Scala source directories, and
excludes all other types of files.

scala.srcDirs Set<Fil e>. Canset [proj ect Di r/ sThe soaine/direatios s containing
using anything described the Scala source files of this
in Section 15.5, source set. May also contain Java
“Specifying a set of input source files for joint compilation.
files.

al | Scal a Fi | eTr ee (read-only) Not null All Scala sourcefiles of this

source set. Containsonly the . scal a
files found in the Scala source
directories.

These convention properties are provided by a convention object of type Scal aSour ceSet .
The Scala plugin also modifies some source set properties:

Table 25.5. Scala plugin - sour ce set properties

Property name Change
al | Java Addsall . j ava filesfound in the Scala source directories.

al | Source Adds all source files found in the Scala source directories.

25.8. Fast Scala Compiler

The Scala plugin includes support for fsc, the Fast Scala Compiler. f sc runsin a separate daemon process and
can speed up compilation significantly.

Example 25.5. Enabling the Fast Scala Compiler

bui I d. gradl e

conpi | eScal a {
scal aConpi | eOpti ons. useConpi | eDaenobn = true

/1 optionally specify host and port of the daenon:
scal aConpi | eOpt i ons. daenmonServer = "| ocal host: 4243"

Note that f sc expects to be restarted whenever the contents of its compile class path change. (It does detect
changes to the compile class path itself.) This makes it less suitable for multi-project builds.

Page 182 of 514

http://www.gradle.org/docs/2.9/javadoc/org/gradle/api/file/SourceDirectorySet.html
http://www.gradle.org/docs/2.9/javadoc/org/gradle/api/file/FileTree.html
http://www.gradle.org/docs/2.9/dsl/org.gradle.api.tasks.ScalaSourceSet.html
http://www.scala-lang.org/docu/files/tools/fsc.html

25.9. Compiling in external process

When scal aConpi | eOpti ons. fork isset totrue, compilation will take place in an external process.
The Ant based compiler (scal aConpi | eOpti ons. useAnt = true) will fork a new process for every
invocation of the Scal aConpi | e task, and does not fork by default. The Zinc based compiler (scal aConpi | eC
) will leverage the Gradle compiler daemon, and does so by defaullt.

Memory settings for the external process default to the defaults of the VM. To adjust memory settings,
configurethescal aComnpi | eOpti ons. f or KOpt i ons property as needed:

Example 25.6. Adjusting memory settings

buil d. gradl e

tasks. wi t hType(Scal aConpi |) {
confi gure(scal aConpi | eOpti ons. f orkOpti ons) {
menor yMaxi munti ze = ' 19’

jvmArgs = [' - XX: MaxPer nfSi ze=512m]

25.10. Incremental compilation

By compiling only classes whose source code has changed since the previous compilation, and classes affected
by these changes, incremental compilation can significantly reduce Scala compilation time. It is particularly
effective when frequently compiling small code increments, as is often done at devel opment time.

The Scala plugin now supports incremental compilation by integrating with Zinc, a standalone version of sbt's
incremental Scala compiler. To switch the Scal aConpi | e task from the default Ant based compiler to the
new Zinc based compiler, set scal aConpi | eQpt i ons. useAnt tof al se:

Example 25.7. Activating the Zinc based compiler

buil d. gradl e

tasks. wi t hType(Scal aConpi |) {
scal aConpi | eOpti ons. useAnt = fal se

}

Except where noted in the API documentation, the Zinc based compiler supports exactly the same configuration
options as the Ant based compiler. Note, however, that the Zinc compiler requires Java 6 or higher to run. This
means that Gradle itself hasto be run with Java 6 or higher.

The Scala plugin adds a configuration named zi nc to resolve the Zinc library and its dependencies. Gradle will
have a default version of the Zinc library, but if you want to override the Zinc version that Gradle uses, add an
explicit dependency like“ com t ypesaf e. zi nc: zi nc: 0. 3. 6” . Gradle will support version 0.3.0 of Zinc

Page 183 of 514

https://github.com/typesafehub/zinc
https://github.com/harrah/xsbt
http://gradle.org/docs/current/dsl/org.gradle.api.tasks.scala.ScalaCompile.html

and above, although due to a regression in the Zinc library, versions 0.3.2 through 0.3.5.2 cannot be used.
Regardless of which Zinc version is used, Zinc will always use the Scala compiler found on the scal aTool s
configuration.

Just like Gradle's Ant based compiler, the Zinc based compiler supports joint compilation of Java and Scala
code. By default, all Java and Scala code under sr ¢/ mai n/ scal a will participate in joint compilation. With
the Zinc based compiler, even Java code will be compiled incrementally.

Incremental compilation requires dependency analysis of the source code. The results of this analysis are stored
inthe file designated by scal aConpi | eOpt i ons. i ncrenent al Opti ons. anal ysi sFi | e (which has
a sensible default). In a multi-project build, analysis files are passed on to downstream Scal aConpi | e tasks
to enable incremental compilation across project boundaries. For Scal aConpi | e tasks added by the Scala
plugin, no configuration is necessary to make this work. For other Scal aConpi | e tasks that you might add,
the property scal aConpil eOpti ons.increnental Options. publi shedCode needs to be
configured to point to the classes folder or Jar archive by which the code is passed on to compile class paths of
downstream Scal aConpi | e tasks. Note that if publ i shedCode is not set correctly, downstream tasks may
not recompile code affected by upstream changes, leading to incorrect compilation results.

Due to the overhead of dependency analysis, a clean compilation or a compilation after a larger code change
may take longer than with the Ant based compiler. For Cl builds and release builds, we currently recommend to
use the Ant based compiler.

Note that Zinc's Nailgun based daemon mode is not supported. Instead, we plan to enhance Gradle's own
compiler daemon to stay alive across Gradle invocations, reusing the same Scala compiler. This is expected to
yield another significant speedup for Scala compilation.

25.11. Eclipse Integration

When the Eclipse plugin encounters a Scala project, it adds additional configuration to make the project work
with Scala IDE out of the box. Specifically, the plugin adds a Scala nature and dependency container.

25.12. IntelliJ IDEA Integration

When the IDEA plugin encounters a Scala project, it adds additional configuration to make the project work
with IDEA out of the box. Specificaly, the plugin adds a Scala facet and a Scala compiler library that matches
the Scala version on the project's class path.

[12] See Section 25.5, “ Automatic configuration of scalaClasspath”.

Page 184 of 514

26

The War Plugin

The War plugin extends the Java plugin to add support for assembling web application WAR files. It disables
the default JAR archive generation of the Java plugin and adds a default WAR archive task.

26.1. Usage

To use the War plugin, include the following in your build script:

Example 26.1. Using the War plugin

bui I d. gradl e

apply plugin: '"war'

26.2. Tasks

The War plugin adds the following tasks to the project.

Table26.1. War plugin - tasks

Task name Dependson Type Description

war conpil e War Assembles the application WAR file.

The War plugin adds the following dependencies to tasks added by the Java plugin.

Table 26.2. War plugin - additional task dependencies

Task name Dependson

assemble war

Figure 26.1. War plugin - tasks

classes H war]4—[

assemble

Page 185 of 514

http://www.gradle.org/docs/2.9/dsl/org.gradle.api.tasks.bundling.War.html

26.3. Project layout

Table 26.3. War plugin - project layout

Directory Meaning

src/ mai n/ webapp Web application sources

26.4. Dependency management

The War plugin adds two dependency configurations named pr ovi dedConpi | e and pr ovi dedRunt i ne.
Those two configurations have the same scope as the respective conpi | e and runt i me configurations,
except that they are not added to the WAR archive. It isimportant to note that those pr ovi ded configurations
work transitively. Let's say you add cormons- ht t pcl i ent: commons- htt pcli ent: 3. 0 to any of the
provided configurations. This dependency has a dependency on conmons- codec. Because this is a
“provided” configuration, this means that neither of these dependencies will be added to your WAR, even if the con
library is an explicit dependency of your conpi | e configuration. If you don't want this transitive behavior,
simply declare your pr ovi ded dependencieslike commons- htt pcl i ent: commons-httpclient: 3. 0@ ¢

26.5. Convention properties

Table 26.4. War plugin - directory properties

Property name Type Default value Description

webAppDi r Nanme String src/ mai n/ webapp The name of the web application source
directory, relative to the project directory.

webAppDi r File proj ect Di r/ webAppDImeNaerapplication source directory.
(read-only)

These properties are provided by aWar Pl ugi nConvent i on convention object.

26.6. War

The default behavior of the War task is to copy the content of sr ¢/ mai n/ webapp to the root of the archive.
Your webapp directory may of course contain a EB- | NF sub-directory, which may contain aweb. xm file.
Your compiled classes are compiled to VIEB- | NF/ cl asses. All the dependencies of the runti ne (13]
configuration are copied to VEB- | NF/ | i b.

TheWar classin the APl documentation has additional useful information.

Page 186 of 514

http://www.gradle.org/docs/2.9/dsl/org.gradle.api.plugins.WarPluginConvention.html
http://www.gradle.org/docs/2.9/dsl/org.gradle.api.tasks.bundling.War.html

26.7. Customizing

Here is an example with the most important customization options:

Example 26.2. Customization of war plugin
buil d. gradl e

configurations {
nor eLi bs

}

repositories {
flatDir { dirs "lib" }
mavenCent ral ()

}

dependenci es {

conpi |l e nmodul e(": conpile:1.0") {
dependency ":conpile-transitive-1.0@ ar"
dependency ": provi dedConpile-transitive:1.0@ar"

}

provi dedConpi |l e "j avax. servl et: servl et-api:2.5"

provi dedConpi | e nmodul e(": provi dedConpi | e: 1. 0") {
dependency ": provi dedConpile-transitive:1.0@ar"

}

runtime ":runtine: 1. 0"

provi dedRuntine ":provi dedRuntine: 1. 0@ ar"

testConpile "junit:junit:4. 12"

nmor eLi bs ": ot herLib:1.0"

{

from'src/rootContent' // adds a file-set to the root of the archive

weblnf { from'src/additional Wbinf' } // adds a file-set to the WEB-INF dir.
cl asspath fileTree(' additional Libs') // adds a file-set to the WEB-INF/Ilib dir]
cl asspath configurations.noreLibs // adds a configuration to the WEB-INF/|ib di
webXm = file('src/someWeb.xm ') // copies a file to WEB-|NF/ web. xm

Of course one can configure the different file-sets with a closure to define excludes and includes.

[13] Ther unt i me configuration extends the conpi | e configuration.

Page 187 of 514

27

The Ear Plugin

The Ear plugin adds support for assembling web application EAR files. It adds a default EAR archive task. It
doesn't require the Java plugin, but for projects that also use the Java plugin it disables the default JAR archive
generation.

27.1. Usage

To use the Ear plugin, include the following in your build script:

Example 27.1. Using the Ear plugin

buil d. gradl e

apply plugin: 'ear'

27.2. Tasks

The Ear plugin adds the following tasks to the project.

Table 27.1. Ear plugin - tasks

Task Dependson Type Description

name

ear compi | e (only if the Java pluginisaso Ear Assembles the application EAR
applied) file

The Ear plugin adds the following dependencies to tasks added by the base plugin.

Table 27.2. Ear plugin - additional task dependencies

Task name Dependson

assemble ear

Page 188 of 514

http://www.gradle.org/docs/2.9/dsl/org.gradle.plugins.ear.Ear.html

27.3. Project layout

Table 27.3. Ear plugin - project layout

Directory M eaning

src/ mai n/ application Earresources, such asaMETA-INF directory

27.4. Dependency management

The Ear plugin adds two dependency configurations: depl oy and ear | i b. All dependencies in the depl oy
configuration are placed in the root of the EAR archive, and are not transitive. All dependenciesintheearl i b
configuration are placed in the 'lib' directory in the EAR archive and are transitive.

27.5. Convention properties

Table 27.4. Ear plugin - directory properties

Property name Type
appDi r Nare String
['i bDi r Nane String

depl oynent Descri pt or org. gradl e. pl ugi ns.
ear . descriptor.
Depl oyment Descri pt or

Default value

src/ mai n/ application

lib

A deployment descriptor with

Description

The name of
directory, re
directory.

The name of
the generater

Metadata to

sensible defaults named appl i c alesaiptorril

These properties are provided by aEar Pl ugi nConvent i on convention object.

27.6. Ear

. If thisfile¢
then the exis
be used and
configuratiol
will beignot

The default behavior of the Ear task is to copy the content of sr ¢/ mai n/ appl i cati on to the root of the
archive. If your appl i cati on directory doesn't contain a META- | NF/ appl i cati on. xm deployment

descriptor then one will be generated for you.

The Ear classin the APl documentation has additional useful information.

Page 189 of 514

http://www.gradle.org/docs/2.9/dsl/org.gradle.plugins.ear.EarPluginConvention.html
http://www.gradle.org/docs/2.9/dsl/org.gradle.plugins.ear.Ear.html

27.7. Customizing

Here is an example with the most important customization options:

Example 27.2. Customization of ear plugin

buil d. gradl e

apply plugin: 'ear’
apply plugin: 'java'

repositories { mavenCentral () }

dependenci es {
/1l The foll owi ng dependencies will be the ear nodul es and
/1 will be placed in the ear root
depl oy project (' :war')

/1 The foll ow ng dependencies will becone ear |libs and wll
/1 be placed in a dir configured via the |ibDirName property
earlib group: 'log4]', nanme: 'log4]', version: '1.2.15, ext: 'jar'

{

appDi r Name ' src/main/app’ [/ use application nmetadata found in this folder
/'l put dependent libraries into APP-INF/Iib inside the generated EAR
I'i bDi r Name ' APP- | NF/ | i b’
depl oyment Descriptor { // customentries for application.xm:
fileName = "application.xm" // sanme as the default val ue
version = "6" [// same as the default val ue
appl i cati onName = "cust onear"
initializelnOrder = true
di spl ayNane = "Custom Ear" // defaults to project.nanme
/1l defaults to project.description if not set
description = "My custoni zed EAR for the G adl e docunentation”
l'ibraryDirectory = "APP-INF/lib" // not needed, above |ibDirNanme setting {
nmodul e("my.jar", "java") [/ won't deploy as my.jar isn't depl oy dependenc
webModul e("nmy.war", "/") [/ won't deploy as my.war isn't depl oy dependenc
securityRol e "adm n"
securityRol e "superadm n"
withXm { provider -> // add a custom node to the XM
provi der. asNode() . appendNode(" dat a- sour ce", "ny/datal/source")

Y ou can also use customization options that the Ear task provides, such asf r omand net al nf .

27.8. Using custom descriptor file

You may already have appropriate settings in a appl i cati on. xm file and want to use that instead of
configuring the ear . depl oynent Descr i pt or section of the build script. To accommodate that goal, place
the META- | NF/ appl i cati on. xm in the right place inside your source folders (see the appDi r Nane
property). The file contents will be used and the explicit configuration in the ear . depl oynent Descri pt or
will beignored.

Page 190 of 514

http://www.gradle.org/docs/2.9/dsl/org.gradle.plugins.ear.Ear.html

28

The Jetty Plugin

The Jetty plugin extends the War plugin to add tasks which allow you to deploy your web application to a Jetty

web container embedded in the build.

28.1. Usage

To use the Jetty plugin, include the following in your build script:

Example 28.1. Using the Jetty plugin

bui I d. gradl e

apply plugin: "jetty'

28.2. Tasks

The Jetty plugin defines the following tasks:

Table 28.1. Jetty plugin - tasks

Task name Depends Type
on
jettyRun conpile JettyRun
j ett yRunWar war Jet t yRunWar
jettyStop - JettyStop

Description

Starts a Jetty instance and deploys the exploded web
application to it.

Starts a Jetty instance and deploys the WAR to it.

Stops the Jetty instance.

Page 191 of 514

http://www.gradle.org/docs/2.9/dsl/org.gradle.api.plugins.jetty.JettyRun.html
http://www.gradle.org/docs/2.9/dsl/org.gradle.api.plugins.jetty.JettyRunWar.html
http://www.gradle.org/docs/2.9/dsl/org.gradle.api.plugins.jetty.JettyStop.html

Figure 28.1. Jetty plugin - tasks

jettyRun]

war]4—[jettyRunWar

[classes

[jettyStop]

28.3. Project layout

The Jetty plugin uses the same layout as the War plugin.

28.4. Dependency management

The Jetty plugin does not define any dependency configurations.

28.5. Convention properties

The Jetty plugin defines the following convention properties:

Table 28.2. Jetty plugin - properties

Property name Type Default value Description

contextPath String WAR file base The application deployment location within the

name Jetty container.
ht t pPor t I nt eger 8080 The TCP port which Jetty should listen for HTTP
requests on.
st opPor t I nt eger nul | The TCP port which Jetty should listen for admin
requests on.
st opKey String nul | The key to pass to Jetty when requesting it to stop.

These properties are provided by aJet t yPI ugi nConvent i on convention object.

Page 192 of 514

http://www.gradle.org/docs/2.9/dsl/org.gradle.api.plugins.jetty.JettyPluginConvention.html

29

The Checkstyle Plugin

The Checkstyle plugin performs quality checks on your project's Java source files using Checkstyle and
generates reports from these checks.

29.1. Usage

To use the Checkstyle plugin, include the following in your build script:

Example 29.1. Using the Checkstyle plugin

bui I d. gradl e

apply plugin: 'checkstyle'

The plugin adds a number of tasks to the project that perform the quality checks. Y ou can execute the checks by
running gr adl e check.

29.2. Tasks

The Checkstyle plugin adds the following tasks to the project:

Table 29.1. Checkstyle plugin - tasks

Task name Dependson Type Description

checkstyl eMain cl asses Checkstyl e RunsCheckstyle against the production
Java sourcefiles.

checkstyl eTest test d asses Checkstyl e RunsCheckstyle against the test Java
sourcefiles.

checkstyl eSour ceSedur ceSet Cl ass€&heckstyl e Runs Checkstyle against the given source

set's Java source files.

The Checkstyle plugin adds the following dependencies to tasks defined by the Java plugin.

Page 193 of 514

http://checkstyle.sourceforge.net/index.html
http://www.gradle.org/docs/2.9/dsl/org.gradle.api.plugins.quality.Checkstyle.html
http://www.gradle.org/docs/2.9/dsl/org.gradle.api.plugins.quality.Checkstyle.html
http://www.gradle.org/docs/2.9/dsl/org.gradle.api.plugins.quality.Checkstyle.html

Table 29.2. Checkstyle plugin - additional task dependencies

Task name Dependson

check All Checkstyletasks, including checkst yl eMai n and checkst yl eTest .

29.3. Project layout

The Checkstyle plugin expects the following project layout:

Table 29.3. Checkstyle plugin - project layout

File M eaning

confi g/ checkstyl e/ checkstyl e. xm Checkstyle configuration file

29.4. Dependency management

The Checkstyle plugin adds the following dependency configurations:

Table 29.4. Checkstyle plugin - dependency configurations

Name M eaning

checkstyl e The Checkstyle librariesto use

29.5. Configuration

Seethe Checkst yl eExt ensi on classin the API documentation.

Page 194 of 514

http://www.gradle.org/docs/2.9/dsl/org.gradle.api.plugins.quality.CheckstyleExtension.html

30

The CodeNarc Plugin

The CodeNarc plugin performs quality checks on your project's Groovy source files using CodeNarc and

generates reports from these checks.

30.1. Usage

To use the CodeNarc plugin, include the following in your build script:

Example 30.1. Using the CodeNar ¢ plugin

bui I d. gradl e

apply plugin: 'codenarc'

The plugin adds a number of tasks to the project that perform the quality checks. Y ou can execute the checks by

running gr adl e check.

30.2. Tasks

The CodeNarc plugin adds the following tasks to the project:

Table 30.1. CodeNarc plugin - tasks

Task name Depends Type

on
codenarcMai n - CodeNar c
codenar cTest - CodeNar c
codenar cSour ceSet- CodeNar c

Description

Runs CodeNarc against the production Groovy
source files.

Runs CodeNarc against the test Groovy source files.

Runs CodeNarc against the given source set's
Groovy source files.

The CodeNarc plugin adds the following dependencies to tasks defined by the Groovy plugin.

Page 195 of 514

http://codenarc.sourceforge.net/index.html
http://www.gradle.org/docs/2.9/dsl/org.gradle.api.plugins.quality.CodeNarc.html
http://www.gradle.org/docs/2.9/dsl/org.gradle.api.plugins.quality.CodeNarc.html
http://www.gradle.org/docs/2.9/dsl/org.gradle.api.plugins.quality.CodeNarc.html

Table 30.2. CodeNar ¢ plugin - additional task dependencies

Task name Dependson

check All CodeNarc tasks, including codenar cMai n and codenar cTest .

30.3. Project layout

The CodeNarc plugin expects the following project layout:

Table 30.3. CodeNar ¢ plugin - project layout

File Meaning

confi g/ codenar c/ codenar c. xmi CodeNarc configuration file

30.4. Dependency management

The CodeNarc plugin adds the following dependency configurations:

Table 30.4. CodeNar ¢ plugin - dependency configurations

Name M eaning

codenar c The CodeNarc libraries to use

30.5. Configuration

See the CodeNar cExt ensi on classin the APl documentation.

Page 196 of 514

http://www.gradle.org/docs/2.9/dsl/org.gradle.api.plugins.quality.CodeNarcExtension.html

31

The FindBugs Plugin

The FindBugs plugin performs quality checks on your project's Java source files using FindBugs and generates

reports from these checks.

31.1. Usage

To use the FindBugs plugin, include the following in your build script:

Example 31.1. Using the FindBugs plugin

bui I d. gradl e

apply plugin: 'findbugs'

The plugin adds a number of tasks to the project that perform the quality checks. Y ou can execute the checks by

running gr adl e check.

31.2. Tasks

The FindBugs plugin adds the following tasks to the project:

Table 31.1. FindBugs plugin - tasks

Task name Depends on Type

fi ndbugsMai n cl asses Fi ndBugs

fi ndbugsTest test d asses Fi ndBugs

fi ndbugsSour ceSesour ceSet Cl asseBi ndBugs

Description

Runs FindBugs against the production Java
source files.

Runs FindBugs against the test Java source
files.

Runs FindBugs against the given source set's
Java sourcefiles.

The FindBugs plugin adds the following dependencies to tasks defined by the Java plugin.

Page 197 of 514

http://findbugs.sourceforge.net
http://www.gradle.org/docs/2.9/dsl/org.gradle.api.plugins.quality.FindBugs.html
http://www.gradle.org/docs/2.9/dsl/org.gradle.api.plugins.quality.FindBugs.html
http://www.gradle.org/docs/2.9/dsl/org.gradle.api.plugins.quality.FindBugs.html

Table 31.2. FindBugs plugin - additional task dependencies

Task name Dependson

check All FindBugs tasks, including f i ndbugsMai n andf i ndbugsTest .

31.3. Dependency management

The FindBugs plugin adds the following dependency configurations:

Table 31.3. FindBugs plugin - dependency configurations

Name Meaning

fi ndbugs The FindBugs libraries to use

31.4. Configuration

See the Fi ndBugsExt ensi on classin the APl documentation.

Page 198 of 514

http://www.gradle.org/docs/2.9/dsl/org.gradle.api.plugins.quality.FindBugsExtension.html

32

The JDepend Plugin

The JDepend plugin performs quality checks on your project's source files using JDepend and generates reports
from these checks.

32.1. Usage

To use the JDepend plugin, include the following in your build script:

Example 32.1. Using the JDepend plugin

bui I d. gradl e

apply plugin: 'jdepend

The plugin adds a number of tasks to the project that perform the quality checks. Y ou can execute the checks by
running gr adl e check.

32.2. Tasks

The JDepend plugin adds the following tasks to the project:

Table 32.1. JDepend plugin - tasks

Task name Depends on Type Description

j dependMai n cl asses JDepend RunsJDepend against the production Java
source files.

j dependTest test d asses JDepend RunsJDepend against the test Java source files.

j dependSour ceSetsour ceSet Cl asseslDepend Runs JDepend against the given source set's
Java sourcefiles.

The JDepend plugin adds the following dependencies to tasks defined by the Java plugin.

Table 32.2. IDepend plugin - additional task dependencies

Task name Dependson
check All JDepend tasks, including j dependMai n and j dependTest .

Page 199 of 514

http://clarkware.com/software/JDepend.html
http://www.gradle.org/docs/2.9/dsl/org.gradle.api.plugins.quality.JDepend.html
http://www.gradle.org/docs/2.9/dsl/org.gradle.api.plugins.quality.JDepend.html
http://www.gradle.org/docs/2.9/dsl/org.gradle.api.plugins.quality.JDepend.html

32.3. Dependency management

The JDepend plugin adds the following dependency configurations:

Table 32.3. JDepend plugin - dependency configurations

Name Meaning

j depend The JDepend libraries to use

32.4. Configuration

See the JDependExt ensi on classin the APl documentation.

Page 200 of 514

http://www.gradle.org/docs/2.9/dsl/org.gradle.api.plugins.quality.JDependExtension.html

33

The PMD Plugin

The PMD plugin performs quality checks on your project's Java source files using PMD and generates reports
from these checks.

33.1. Usage

To use the PMD plugin, include the following in your build script:

Example 33.1. Using the PM D plugin

bui I d. gradl e

apply plugin: 'pnd

The plugin adds a number of tasks to the project that perform the quality checks. Y ou can execute the checks by
running gr adl e check.

33.2. Tasks

The PMD plugin adds the following tasks to the project:

Table 33.1. PMD plugin - tasks

Task name Dependson Type Description

prmdMai n - Prd Runs PMD against the production Java source files.
pmdTest - Prrd Runs PMD against the test Java source files.

prmdSour ceSet - Prd Runs PMD against the given source set's Java source files.

The PMD plugin adds the following dependencies to tasks defined by the Java plugin.

Table 33.2. PMD plugin - additional task dependencies

Task name Dependson

check All PMD tasks, including prdMai n and pndTest .

Page 201 of 514

http://pmd.sourceforge.net
http://www.gradle.org/docs/2.9/dsl/org.gradle.api.plugins.quality.Pmd.html
http://www.gradle.org/docs/2.9/dsl/org.gradle.api.plugins.quality.Pmd.html
http://www.gradle.org/docs/2.9/dsl/org.gradle.api.plugins.quality.Pmd.html

33.3. Dependency management

The PMD plugin adds the following dependency configurations:

Table 33.3. PM D plugin - dependency configur ations

Name Meaning

prmd The PMD librariesto use

33.4. Configuration

See the PmrdExt ensi on classin the APl documentation.

Page 202 of 514

http://www.gradle.org/docs/2.9/dsl/org.gradle.api.plugins.quality.PmdExtension.html

34

The JaCoCo Plugin

The JaCoCo plugin is currently incubating. Please be aware that the DSL and other configuration may
changein later Gradle versions.

The JaCoCo plugin provides code coverage metrics for Java code viaintegration with JaCoCo.

34.1. Getting Started

To get started, apply the JaCoCo plugin to the project you want to cal culate code coverage for.

Example 34.1. Applying the JaCoCo plugin

bui I d. gradl e
apply plugin: "jacoco"

If the Java plugin is also applied to your project, a new task named j acocoTest Report is created that
depends on the t est task. The report is available at $bui | dDi r / report s/ j acoco/ t est . By default, a
HTML report is generated.

34.2. Configuring the JaCoCo Plugin

The JaCoCo plugin adds a project extension named j acoco of type JacocoPl ugi nExt ensi on, which
alows configuring defaults for JaCoCo usage in your build.

Example 34.2. Configuring JaCoCo plugin settings

bui I d. gradl e

jacoco {
tool Version = "0.7.1.201405082137"

reportsDir = file("$buil dDir/customlacocoReportDir")

Page 203 of 514

http://www.eclemma.org/jacoco/
http://www.gradle.org/docs/2.9/dsl/org.gradle.testing.jacoco.plugins.JacocoPluginExtension.html

Table 34.1. Gradle defaultsfor JaCoCo properties

Property Gradle default

reportsDir “$bui | dDi r /reports/jacoco”

34.3. JaCoCo Report configuration

The JacocoReport task can be used to generate code coverage reportsin different formats. It implements the
standard Gradle type Repor t i ng and exposes areport container of type JacocoReport sCont ai ner.

Example 34.3. Configuring test task

bui I d. gradl e

j acocoTest Report {
reports {
xm . enabl ed fal se
csv. enabl ed fal se

htm . destination "${buildD r}/jacocoH m"

._EI 86 quickstart
t-'l quickstart

| quickstart

quickstart

Element Missed Instructions~ Cov. Missed Branches+ Cov.” Missed Cxty Missed
i org.gradle 100% n/a 0 5 0
Total 0of17 100% Oof0 n/a 0 5 1]

34.4. JaCoCo specific task configuration

The JaCoCo plugin adds a JacocoTaskExt ensi on extension to all tasks of type Test . This extension
allows the configuration of the JaCoCo specific properties of the test task.

Page 204 of 514

http://www.gradle.org/docs/2.9/dsl/org.gradle.testing.jacoco.tasks.JacocoReport.html
http://www.gradle.org/docs/2.9/dsl/org.gradle.api.reporting.Reporting.html
http://www.gradle.org/docs/2.9/javadoc/org/gradle/testing/jacoco/tasks/JacocoReportsContainer.html
http://www.gradle.org/docs/2.9/dsl/org.gradle.testing.jacoco.plugins.JacocoTaskExtension.html
http://www.gradle.org/docs/2.9/dsl/org.gradle.api.tasks.testing.Test.html

Example 34.4. Configuring test task

bui I d. gradl e

test {
jacoco {

append = fal se

destinationFile = file("$buildDir/jacoco/jacocoTest.exec")
classDunpFile = file("$buildDir/jacoco/cl asspat hdunps")

Table 34.2. Default values of the JaCoCo Task extension

Property Gradle default
enabled true

destPath $bui | dDi r /jacoco
append true

includes 11

excludes (1

excludeClassL oaders (1

sessionld aut o- gener at ed
dumpOnExit true

output CQut put . FI LE
address -

port -

classDumpPath -

jmx fal se

While all tasks of type Test are automatically enhanced to provide coverage information when the j ava
plugin has been applied, any task that implements JavaFor kOpt i ons can be enhanced by the JaCoCo
plugin. That is, any task that forks Java processes can be used to generate coverage information.

For example you can configure your build to generate code coverage using the appl i cat i on plugin.

Page 205 of 514

http://www.gradle.org/docs/2.9/dsl/org.gradle.api.tasks.testing.Test.html
http://www.gradle.org/docs/2.9/javadoc/org/gradle/process/JavaForkOptions.html

Example 34.5. Using application plugin to gener ate code cover age data
buil d. gradl e

apply plugin: "application”
apply plugin: "jacoco"

mai nCl assNanme = "org. gradl e. M\yMai n"

jacoco {

appl yTo run
}

task applicati onCodeCover ageReport (type: JacocoReport){
executi onbData run
sourceSet s sourceSets. nain

Note: The code for this example can be found at sanpl es/ t esti ng/j acoco/ applicati on inthe
‘-al’ distribution of Gradle.

Example 34.6. Coveragereports generated by applicationCodeCoverageReport
Build layout

appl i cation/
bui | d/
j acoco/

run. exec
reports/jacoco/ appl i cati onCodeCover ageReport/htm /
i ndex. ht n

34.5. Tasks

For projects that also apply the Java Plugin, The JaCoCo plugin automatically adds the following tasks:

Table 34.3. JaCoCo plugin - tasks

Task name Depends Type Description
on
j acocoTest Report - JacocoReport Generates code coverage report for the test
task.

34.6. Dependency management

The JaCoCo plugin adds the following dependency configurations:

Page 206 of 514

http://www.gradle.org/docs/2.9/dsl/org.gradle.testing.jacoco.tasks.JacocoReport.html

Table 34.4. JaCoCo plugin - dependency configurations

Name Meaning
j acocoAnt The JaCoCo Ant library used for running the JacocoReport and JacocoMer ge
tasks.

j acocoAgent The JaCoCo agent library used for instrumenting the code under test.

Page 207 of 514

35

The Sonar Plugin

This plugin has been deprecated and superseded by the official plugin from SonarQube. This plugin will
be removed in Gradle 3.0.

The Sonar plugin provides integration with Sonar, a web-based platform for monitoring code quality. The
plugin adds a sonar Anal yze task that analyzes the project to which the plugin is applied, as well as its
subprojects. The results are stored in the Sonar database. The plugin is based on the Sonar Runner and requires
Sonar 2.11 or higher.

The sonar Anal yze task is a standalone task that needs to be executed explicitly and doesn't depend on any
other tasks. Apart from source code, the task also analyzes class files and test result files (if available). For best
results, it is therefore recommended to run a full build before the analysis. In atypical setup, analysis would be
performed once per day on a build server.

35.1. Usage

At aminimum, the Sonar plugin has to be applied to the project.

Example 35.1. Applying the Sonar plugin

bui I d. gradl e

apply plugin: "sonar"

Unless Sonar is run locally and with default settings, it is necessary to configure connection settings for the
Sonar server and database.

Page 208 of 514

http://docs.sonarqube.org/display/SONAR/Analyzing+with+Gradle
http://www.sonarsource.org
http://docs.codehaus.org/display/SONAR/Analyzing+with+Sonar+Runner

Example 35.2. Configuring Sonar connection settings
buil d. gradl e

sonar {
server {
url = "http://ny.server. cont

}

dat abase {

url = "jdbc:nysql://ny.server.conl sonar"
driverC assNanme = "com nysql .| dbc. Driver"
usernane = "Fred Flintstone”

password = "very clever"

Alternatively, some or all connection settings can be set from the command line (see Section 35.6, “ Configuring
Sonar Settings from the Command Line”).

Project settings determine how the project is going to be analyzed. The default configuration works well for
analyzing standard Java projects and can be customized in many ways.
Example 35.3. Configuring Sonar project settings
buil d. gradl e
sonar {

project {
coberturaReportPath = file("$buil dDi r/cobertura.xm")

}

The sonar, server, dat abase, and pr oj ect blocks in the examples above configure objects of type
Sonar Root Mbdel , Sonar Ser ver, Sonar Dat abase, and Sonar Pr oj ect , respectively. See their AP
documentation for further information.

35.2. Analyzing Multi-Project Builds

The Sonar plugin is capable of analyzing a whole project hierarchy at once. This yields a hierarchical view in
the Sonar web interface with aggregated metrics and the ability to drill down into subprojects. It is also faster
than analyzing each project separately.

To analyze a project hierarchy, the Sonar plugin needs to be applied to the top-most project of the hierarchy.
Typically (but not necessarily) this will be the root project. The sonar block in that project configures an
object of type Sonar Root Model . It holds al global configuration, most importantly server and database
connection settings.

Page 209 of 514

http://www.gradle.org/docs/2.9/groovydoc/org/gradle/api/plugins/sonar/model/SonarRootModel.html
http://www.gradle.org/docs/2.9/groovydoc/org/gradle/api/plugins/sonar/model/SonarRootModel.html
http://www.gradle.org/docs/2.9/groovydoc/org/gradle/api/plugins/sonar/model/SonarServer.html
http://www.gradle.org/docs/2.9/groovydoc/org/gradle/api/plugins/sonar/model/SonarDatabase.html
http://www.gradle.org/docs/2.9/groovydoc/org/gradle/api/plugins/sonar/model/SonarProject.html
http://www.gradle.org/docs/2.9/groovydoc/org/gradle/api/plugins/sonar/model/SonarRootModel.html

Example 35.4. Glaobal configuration in a multi-project build

bui I d. gradl e

apply plugin: "sonar"

sonar {

server {
url = "http://ny.server.cont

}

dat abase {
url = "jdbc:nysql://ny.server.conl sonar"
dri verCl assName = "com nysql . j dbc. Driver"
usernane = "Fred Flintstone"
password = "very clever"

Each project in the hierarchy has its own project configuration. Common values can be set from a parent build
script.

Example 35.5. Common project configuration in a multi-project build

bui I d. gradl e

subproj ects {
sonar {
project {
sour ceEncodi ng = " UTF- 8"

Thesonar block in asubproject configures an object of type Sonar Pr oj ect Model .

Projects can also be configured individually. For example, setting the ski p property tot r ue prevents a project
(and its subprojects) from being analyzed. Skipped projects will not be displayed in the Sonar web interface.
Example 35.6. Individual project configuration in a multi-project build
bui I d. gradl e

project(":projectl") {

sonar {
project {

skip = true

Another typical per-project configuration is the programming language to be analyzed. Note that Sonar can only
analyze one language per project.

Page 210 of 514

http://www.gradle.org/docs/2.9/groovydoc/org/gradle/api/plugins/sonar/model/SonarProjectModel.html

Example 35.7. Configuring the language to be analyzed

bui I d. gradl e

project (":project2") {
sonar {
project {

| anguage = "groovy"

When setting only a single property at atime, the equivalent property syntax is more succinct:

Example 35.8. Using property syntax

buil d. gradl e

proj ect (":project2").sonar.project.|anguage = "groovy"

35.3. Analyzing Custom Source Sets

By default, the Sonar plugin will analyze the production sources in the mai n source set and the test sourcesin
thet est source set. This works independent of the project's source directory layout. Additional source sets can
be added as needed.

Example 35.9. Analyzing custom sour ce sets

buil d. gradl e

sonar . proj ect {
sourceDirs += sourceSets.custom al | Source. srcDirs

testDirs += sourceSets.integTest.all Source.srcDirs

35.4. Analyzing languages other than Java

To analyze code written in alanguage other than Java, install the corresponding Sonar plugin, and set sonar . pr oj
accordingly:

Example 35.10. Analyzing languages other than Java

buil d. gradl e

sonar . proj ect {

| anguage = "grvy" // set |anguage to G oovy

}

As of Sonar 3.4, only one language per project can be analyzed. Y ou can, however, set a different language for
each project in amulti-project build.

Page 211 of 514

http://www.sonarsource.com/products/plugins/languages/

35.5. Setting Custom Sonar Properties

Eventually, most configuration is passed to the Sonar code analyzer in the form of key-value pairs known as
Sonar properties. The Sonar Pr operty annotations in the APl documentation show how properties of the
plugin's object model get mapped to the corresponding Sonar properties. The Sonar plugin offers hooks to
post-process Sonar properties before they get passed to the code analyzer. The same hooks can be used to add
additional properties which aren't covered by the plugin's object model.

For global Sonar properties, usethewi t h@ obal Pr opert i es hook on Sonar Root Model :

Example 35.11. Setting custom global properties

buil d. gradl e

sonar. w t h@ obal Properties { props ->
props["sone. gl obal . property"] = "sone val ue"
/'l non-String values are automatically converted to Strings

props["ot her. gl obal . property"] = ["foo0", "bar", "baz"]

For per-project Sonar properties, usethewi t hPr oj ect Properti es hook on Sonar Pr oj ect :

Example 35.12. Setting custom pr oject properties
buil d. gradle

sonar . proj ect.w t hProj ect Properties { props ->
props["sone. proj ect. property"] = "some val ue"

/'l non-String values are automatically converted to Strings
props["other.project.property"] = ["foo", "bar", "baz"]

A list of available Sonar properties can be found in the Sonar documentation. Note that for most of these
properties, the Sonar plugin's object model has an equivalent property, and it isn't necessary to use a
wi t hd obal Properties or wi t hProj ect Properti es hook. For configuring a third-party Sonar
plugin, consult the plugin's documentation.

35.6. Configuring Sonar Settings from the
Command Line

The following properties can alternatively be set from the command line, as task parameters of the sonar Anal yze
task. A task parameter will override any corresponding value set in the build script.

® server.url

® dat abase. url

® dat abase. dri ver d assNane
® dat abase. user nane

® dat abase. password

Page 212 of 514

http://www.gradle.org/docs/2.9/groovydoc/org/gradle/api/plugins/sonar/model/SonarProperty.html
http://www.gradle.org/docs/2.9/groovydoc/org/gradle/api/plugins/sonar/model/SonarRootModel.html
http://www.gradle.org/docs/2.9/groovydoc/org/gradle/api/plugins/sonar/model/SonarProject.html
http://docs.codehaus.org/display/SONAR/Analysis+Parameters

®* showsql

® showSql Resul ts
® verbose

®* forceAnal ysis

Hereis acomplete example:

gradl e sonar Anal yze --server.url =http://sonar. myconpany.com

- -dat abase. passwor d=nyPassword --verbose

If you need to set other properties from the command line, you can use system properties to do so:
Example 35.13. Implementing custom command line properties

buil d. gradl e

sonar . proj ect {

| anguage = System get Property("sonar.|anguage", "java")

}

However, keep in mind that it is usually best to keep configuration in the build script and under source control.

35.7. Tasks

The Sonar plugin adds the following tasks to the project.

Table 35.1. Sonar plugin - tasks

Task name Depends Type Description
on
sonar Anal yze - Sonar Anal yze Analyzesaproject hierarchy and stores the results
in the Sonar database.

Page 213 of 514

http://www.gradle.org/docs/2.9/dsl/org.gradle.api.plugins.sonar.SonarAnalyze.html

36

The Sonar Qube Runner Plugin

This plugin has been deprecated and superseded by the official plugin from SonarQube. This plugin will
be removed in Gradle 3.0.

The SonarQube Runner plugin provides integration with SonarQube, a web-based platform for monitoring code
quality. It is based on the SonarQube Runner API, a SonarQube library that starts source code analysis, and
optionally publish all collected information to the SonarQube server. Compared to using the standalone
SonarQube Runner CL1I, the Gradle SonarQube Runner plugin offers the following benefits:

Automatic provisioning of Sonar Qube Runner
The ability to execute the SonarQube Runner via a regular Gradle task makes it available anywhere Gradle
is available (developer build, CI server, etc.), without the need to manually download, setup, and maintain a
SonarQube Runner installation.

Dynamic configuration from Gradle build scripts
All of Gradl€e's scripting features can be leveraged to configure SonarQube Runner as needed.

Extensive configuration defaults
Gradle already has much of the information needed for SonarQube to successfully analyze a project. By
preconfiguring the SonarQube Runner properties based on that information, the need for manual
configuration is reduced significantly.

36.1. SonarQube Runner version and compatibility

The default version of the SonarQube Runner used by the plugin is 2.3, which makes it compatible with
SonarQube 3.0 and higher. For compatibility with SonarQube versions earlier than 3.0, you can configure the
use of an earlier SonarQube Runner version (see Section 36.4, “ Specifying the SonarQube Runner version”).

36.2. Getting started

To get started, apply the SonarQube Runner plugin to the project to be analyzed.

Page 214 of 514

http://docs.sonarqube.org/display/SONAR/Analyzing+with+Gradle
http://www.sonarqube.org/
http://redirect.sonarsource.com/doc/analyzing-with-sq-runner.html

Example 36.1. Applying the Sonar Qube Runner plugin

bui I d. gradl e

apply plugin: "sonar-runner"

Assuming a local SonarQube server with out-of-the-box settings is up and running, no further mandatory
configuration is required. Execute gr adl e sonar Runner and wait until the build has completed, then open
the web page indicated at the bottom of the SonarQube Runner output. Y ou should now be able to browse the
analysis results.

Before executing the sonar Runner task, all tasks producing output to be analysed by SonarQube need to be
executed. Typicaly, these are compile tasks, test tasks, and code coverage tasks. To meet these needs, the
plugins adds a task dependency from sonar Runner ont est if the j ava plugin is applied. Further task
dependencies can be added as needed.

36.3. Configuring the SonarQube Runner

The SonarQube Runner plugin adds a Sonar Runner Root Ext ensi on extension to the project and a
Sonar Runner Ext ensi on extension to its subprojects, which allows you to configure the SonarQube
Runner via key/value pairs known as SonarQube properties. A typical base line configuration includes
connection settings for the SonarQube server and database.

Example 36.2. Configuring Sonar Qube connection settings
buil d. gradl e

sonar Runner {
sonar Properties {
property "sonar.host.url", "http://ny.server.cont
property "sonar.jdbc.url", "jdbc:mysql://my.server.con sonar"
property "sonar.jdbc.driverC assNane", "com nysql.jdbc.Driver"
property "sonar.jdbc. usernane", "Fred Flintstone"
property "sonar.jdbc. password", "very clever"

Alternatively, SonarQube properties can be set from the command line. See Section 35.6, “Configuring Sonar
Settings from the Command Line” for more information.

For a complete list of standard SonarQube properties, consult the SonarQube documentation. If you happen to
use additional SonarQube plugins, consult their documentation.

In addition to set SonarQube properties, the Sonar Runner Root Ext ensi on extension alows the
configuration of the SonarQube Runner version and the JavaFor kOpt i ons of the forked SonarQube Runner
process.

The SonarQube Runner plugin leverages information contained in Gradle's object model to provide smart
defaults for many of the standard SonarQube properties. The defaults are summarized in the tables below.
Notice that additional defaults are provided for projects that have the j ava- base orj ava plugin applied. For

Page 215 of 514

http://www.gradle.org/docs/2.9/dsl/org.gradle.sonar.runner.SonarRunnerRootExtension.html
http://www.gradle.org/docs/2.9/dsl/org.gradle.sonar.runner.SonarRunnerExtension.html
http://www.gradle.org/docs/2.9/dsl/org.gradle.sonar.runner.SonarRunnerExtension.html
http://redirect.sonarsource.com/doc/analyzing-with-sq-runner.html
http://www.gradle.org/docs/2.9/dsl/org.gradle.sonar.runner.SonarRunnerRootExtension.html
http://www.gradle.org/docs/2.9/javadoc/org/gradle/process/JavaForkOptions.html

some properties (notably server and database connection settings), determining a suitable default is |eft to the
SonarQube Runner.

Table 36.1. Gradle defaultsfor standard Sonar Qube properties

Property Gradle default

sonar.projectK ey “$project.group:$project.name” (for root project of analysed hierarchy; left to
SonarQube Runner otherwise)

sonar.projectName project.name

sonar.projectDescription project.description

sonar.projectVersion project.version
sonar.projectBaseDir project.projectDir
sonar.working.directory “$project.buildDir/sonar”
sonar.dynamicAnalysis “reuseReports’

Table 36.2. Additional defaultswhen j ava- base plugin isapplied

Property Gradle default
sonar.java.source project.sourceCompatibility

sonar.java.target project.targetCompatibility

Table 36.3. Additional defaultswhen j ava plugin isapplied

Property Gradle default

sonar.sources sourceSets.main.all Source.srcDirs (filtered to only include existing
directories)

sonar.tests sourceSets.test.all Source.sreDirs (filtered to only include existing directories)

sonar.binaries sourceSets.main.runtimeClasspath (filtered to only include directories)

sonar.libraries sourceSets.main.runtimeClasspath (filtering to only includefiles; rt . j ar

added if necessary)
sonar.surefirereportsPath test.testResultsDir (if the directory exists)

sonar.junit.reportsPath test.testResultsDir (if the directory exists)

Table 36.4. Additional defaultswhen j acoco plugin isapplied

Property Gradle default

sonar.jacoco.reportPath jacoco.destinationFile

Page 216 of 514

36.4. Specifying the SonarQube Runner version

By default, version 2.3 of the SonarQube Runner is used. To specify an alternative version, set the
Sonar Runner Root Ext ensi on. get Tool Ver si on() property of the sonar Runner extension of the
project the plugin was applied to to the desired version. Thiswill result in the SonarQube Runner dependency or g.
being used as the SonarQube Runner.

Example 36.3. Configuring Sonar Quberunner version

buil d. gradl e

sonar Runner {
tool Version = '2.3" // default

}

36.5. Analyzing Multi-Project Builds

The SonarQube Runner is capable of analyzing whole project hierarchies at once. This yields a hierarchical
view in the SonarQube web interface, with aggregated metrics and the ability to drill down into subprojects.
Analyzing a project hierarchy also takes less time than analyzing each project separately.

To analyze a project hierarchy, apply the SonarQube Runner plugin to the root project of the hierarchy.
Typicaly (but not necessarily) this will be the root project of the Gradle build. Information pertaining to the
analysis as awhole, like server and database connections settings, have to be configured in the sonar Runner
block of this project. Any SonarQube properties set on the command line aso apply to this project.

Example 36.4. Global configuration settings

bui I d. gradl e

sonar Runner {
sonar Properties {
property "sonar.host.url", "http://ny.server.cont
property "sonar.jdbc.url", "jdbc:mnmysql://my.server.con sonar”

property "sonar.jdbc. driverC assNane", "com nysql.jdbc.Driver"
property "sonar.jdbc.usernane", "Fred Flintstone"
property "sonar.jdbc. password", "very clever"

Configuration shared between subprojects can be configured in asubpr oj ect s block.

Page 217 of 514

http://www.gradle.org/docs/2.9/dsl/org.gradle.sonar.runner.SonarRunnerRootExtension.html#org.gradle.sonar.runner.SonarRunnerRootExtension:toolVersion
http://www.gradle.org/docs/2.9/dsl/org.gradle.sonar.runner.SonarRunnerRootExtension.html#org.gradle.sonar.runner.SonarRunnerRootExtension:toolVersion

Example 36.5. Shared configuration settings

bui I d. gradl e

subproj ects {
sonar Runner {
sonar Properties {

property "sonar.sourceEncodi ng", "UTF-8"

Project-specific information is configured in the sonar Runner block of the corresponding project.

Example 36.6. Individual configuration settings
buil d. gradl e

project(":projectl") {
sonar Runner {
sonar Properties {
property "sonar.| anguage", "grvy"

To skip SonarQube analysis for a particular subproject, set sonar Runner . ski pPr oj ect tot r ue.

Example 36.7. Skipping analysis of a project
buil d. gradl e

project (":project2") {
sonar Runner {
ski pProject = true

}

36.6. Analyzing Custom Source Sets

By default, the SonarQube Runner plugin passes on the project's mai n source set as production sources, and the
project's t est source set as test sources. This works regardless of the project's source directory layout.
Additional source sets can be added as needed.

Example 36.8. Analyzing custom sour ce sets

buil d. gradl e

sonar Runner {
sonar Properties {
properties["“sonar.sources"] += sourceSets.custom all Source.srcDirs

properties["sonar.tests"] += sourceSets.integTest.all Source.srcDirs

Page 218 of 514

36.7. Analyzing languages other than Java

As of SonarQube 4.2, multi-language projects are supported and each file language will be detected according to
its filename suffix. However, note that your SonarQube server has to have the SonarQube plugin that handles

that programming language. If you want to enforce a single language for your project, you'll need to set sonar . pr

accordingly.

Example 36.9. Analyzing languages other than Java
buil d. gradl e

sonar Runner {
sonar Properties {

property "sonar. | anguage", "grvy" // set |anguage to G oovy

}

36.8. More on configuring SonarQube properties

Let's take a closer look at the sonar Runner . sonar Properties {} block. Aswe have aready seen in
the examples, the property() method allows you to set new properties or override existing ones.
Furthermore, all properties that have been configured up to this point, including all properties preconfigured by
Gradle, are available viathe pr oper t i es accessor.

Entries in the pr operti es map can be read and written with the usual Groovy syntax. To facilitate their
manipulation, values still have their “idiomatic” type (Fi | e, Li st, etc.). After the sonarProperties block has
been evaluated, values are converted to Strings as follows: Collection values are (recursively) converted to
commarseparated Strings, and all other values are converted by calling their t oSt ri ng() method.

Because the sonar Properti es block is evaluated lazily, properties of Gradl€e's object model can be safely
referenced from within the block, without having to fear that they have not yet been set.

36.9. Setting SonarQube Properties from the
Command Line

SonarQube Properties can also be set from the command line, by setting a system property named exactly like
the Sonar property in question. This can be useful when dealing with sensitive information (e.g. credentials),
environment information, or for ad-hoc configuration.

gradl e sonar Runner -Dsonar. host. url =http://sonar. myconpany.com - Dsonar . j dbc. passwo

While certainly useful at times, we do recommend to keep the bulk of the configuration in a (versioned)
build script, readily available to everyone.

Page 219 of 514

http://www.sonarsource.com/products/plugins/languages/

A SonarQube property value set via a system property overrides any value set in a build script (for the same
property). When analyzing a project hierarchy, values set via system properties apply to the root project of the
analyzed hierarchy. Each system property starting with " sonar . " will taken into account for the sonar runner
setup.

36.10. Controlling the SonarQube Runner process

The SonarQube Runner is executed in aforked process. This allows fine grained control over memory settings,
system properties etc. just for the SonarQube Runner process. The f or kOpt i ons property of the sonar Runner
extension of the project that applies the sonar - runner plugin (Usualy the r oot Proj ect but not
necessarily) allows the process configuration to be specified. This property is not available in the
Sonar Runner Ext ensi on extension applied to the subprojects.

Example 36.10. setting custom Sonar Qube Runner fork options

bui I d. gradl e

sonar Runner {
forkOptions {
maxHeapSi ze = ' 512m

}

For a complete reference about the available options, see JavaFor kOpt i ons.

36.11. Tasks

The SonarQube Runner plugin adds the following tasks to the project.

Table 36.5. Sonar Qube Runner plugin - tasks

Task name Dependson Type Description

sonar Runner - Sonar Runner Analyzes a project hierarchy with SonarQube.

Page 220 of 514

http://www.gradle.org/docs/2.9/dsl/org.gradle.sonar.runner.SonarRunnerExtension.html
http://www.gradle.org/docs/2.9/dsl/org.gradle.sonar.runner.SonarRunnerExtension.html
http://www.gradle.org/docs/2.9/javadoc/org/gradle/process/JavaForkOptions.html
http://www.gradle.org/docs/2.9/dsl/org.gradle.sonar.runner.tasks.SonarRunner.html

37

The OSGI Plugin

The OSGi plugin provides a factory method to create an Osgi Mani f est object. Osgi Mani f est extends
Mani f est. To learn more about generic manifest handling, see Section 23.14.1, “Manifest”. If the Java
plugins is applied, the OSGi plugin replaces the manifest object of the default jar with an Osgi Mani f est
object. The replaced manifest is merged into the new one.

The OSGi plugin makes heavy use of Peter Kriens BND tool.

37.1. Usage

To use the OSGi plugin, include the following in your build script:

Example 37.1. Using the OSGi plugin

bui I d. gradl e

apply plugin: 'osgi'

37.2. Implicitly applied plugins

Applies the Java base plugin.

37.3. Tasks

This plugin does not add any tasks.

37.4. Dependency management

TBD

37.5. Convention object

The OSGi plugin adds the following convention object: Gsgi Pl ugi nConventi on

Page 221 of 514

http://www.gradle.org/docs/2.9/javadoc/org/gradle/api/plugins/osgi/OsgiManifest.html
http://www.gradle.org/docs/2.9/javadoc/org/gradle/api/java/archives/Manifest.html
http://www.gradle.org/docs/2.9/javadoc/org/gradle/api/java/archives/Manifest.html
http://www.aqute.biz/Bnd/Bnd
http://www.gradle.org/docs/2.9/dsl/org.gradle.api.plugins.osgi.OsgiPluginConvention.html

37.5.1. Convention properties

The OSGi plugin does not add any convention properties to the project.

37.5.2. Convention methods

The OSGi plugin adds the following methods. For more details, see the APl documentation of the convention
object.

Table 37.1. OSGi methods

Method Return Type Description

osgiManifest() Gsgi Mani f est Returns an OsgiManifest object.
osgiManifest(Closure Osgi Mani f est Returns an OsgiManifest object configured by the
cl) closure.

The classes in the classes dir are analyzed regarding their package dependencies and the packages they expose.
Based on this the Import-Package and the Export-Package values of the OSGi Manifest are calculated. If the
classpath contains jars with an OSGi bundle, the bundle information is used to specify version information for
the Import-Package value. Beside the explicit properties of the Osgi Mani f est object you can add
instructions.

Example 37.2. Configuration of OSGi MANIFEST.MF file
buil d. gradl e

jar {
mani fest { // the manifest of the default jar is of type Osgi Manifest

nanme = 'overwittenSpeci al Osgi Nane'

instruction 'Private-Package',
'org. myconp. packagel',
' org. nyconp. package2'

instruction 'Bundl e-Vendor', ' M/Conmpany'

instruction 'Bundl e-Description', 'Platforn2: Metrics 2 Measures Franmewor k'

i nstruction 'Bundl e-DocURL', 'http://wwmv. nyconpany. coni

}
}
task fooJdar(type: Jar) {
mani f est = osgi Mani fest {
i nstruction 'Bundl e-Vendor', ' M/Conpany'

}

The first argument of the instruction call is the key of the property. The other arguments form the value. To
learn more about the available instructions have alook at the BND tool.

Page 222 of 514

http://www.gradle.org/docs/2.9/javadoc/org/gradle/api/plugins/osgi/OsgiManifest.html
http://www.gradle.org/docs/2.9/javadoc/org/gradle/api/plugins/osgi/OsgiManifest.html
http://www.aqute.biz/Bnd/Bnd

38

The Eclipse Plugins

The Eclipse plugins generate files that are used by the Eclipse IDE, thus making it possible to import the project
into Eclipse (File - Import... - Existing Projects into Workspace). Both external dependencies (including
associated source and Javadoc files) and project dependencies are considered.

Since version 1.0-milestone-4 of Gradle, the WTP-generating code was refactored into a separate plugin called ecl i
. So if you are interested in WTP integration then only apply the ecl i pse-wt p plugin. Otherwise applying
theecl i pse pluginisenough. This change was requested by Eclipse users who take advantage of the war or ear
plugins, but who don't use Eclipse WTP. Internally, the ecl i pse-wt p plugin also applies the ecl i pse
plugin so you don't need to apply both of those plugins.

What exactly theecl i pse plugin generates depends on which other plugins are used:

Table 38.1. Eclipse plugin behavior
Plugin Description
None Generates minimal . pr oj ect file.
Java Adds Java configurationto . pr oj ect . Generates. cl asspat h and JDT settingsfile.
Groovy Adds Groovy configurationto . pr oj ect file.
Scala Adds Scalasupport to . pr oj ect and. cl asspat h files.
War Adds web application support to . pr oj ect file.

Ear Adds ear application support to . pr oj ect file.

However, the ecl i pse-wt p plugin always generates all WTP settings files and enhances the . pr oj ect
file. If a Java or War is applied, . cl asspat h will be extended to get a proper packaging structure for this
utility library or web application project.

Both Eclipse plugins are open to customization and provide a standardized set of hooks for adding and
removing content from the generated files.

38.1. Usage

To use either the Eclipse or the Eclipse WTP plugin, include one of the linesin your build script:

Page 223 of 514

http://eclipse.org

Example 38.1. Using the Eclipse plugin

bui I d. gradl e

apply plugin: 'eclipse'

Example 38.2. Using the Eclipse WTP plugin
buil d. gradl e

apply plugin: '"eclipse-wtp'

Note: Internally, theecl i pse- wt p plugin also appliestheecl i pse plugin so you don't need to apply both.

Both Eclipse plugins add a number of tasksto your projects. The main tasks that you will use arethe ecl i pse
and cl eanEcl i pse tasks.

38.2. Tasks

The Eclipse plugins add the tasks shown below to a project.

Table 38.2. Eclipse plugin - tasks

Task name Depends on Type Description
ecl i pse all Eclipse Task Generates al Eclipse
configuration
file
generation
tasks
cl eanEcl i pse al Eclipse Del ete Removes all Eclipse (
configuration
file clean
tasks
cl eanEcl i pseProj ect - Del et e Removesthe. pr oj
cl eankcl i psed asspath - Del et e Removesthe. cl as:
cl eanEcl i pseJddt - Del et e Removesthe. set t i
file
ecl i pseProj ect - Cener at eEcl i psePr oj ect Generatesthe. pr 0]
ecl i psed asspat h - Cener at eEcl i pseC asspath Generatesthe. cl as
ecl i pseJddt - CGener at eEcl i pseJdt Generatesthe. sett
file

Page 224 of 514

http://www.gradle.org/docs/2.9/dsl/org.gradle.api.Task.html
http://www.gradle.org/docs/2.9/dsl/org.gradle.api.tasks.Delete.html
http://www.gradle.org/docs/2.9/dsl/org.gradle.api.tasks.Delete.html
http://www.gradle.org/docs/2.9/dsl/org.gradle.api.tasks.Delete.html
http://www.gradle.org/docs/2.9/dsl/org.gradle.api.tasks.Delete.html
http://www.gradle.org/docs/2.9/dsl/org.gradle.plugins.ide.eclipse.GenerateEclipseProject.html
http://www.gradle.org/docs/2.9/dsl/org.gradle.plugins.ide.eclipse.GenerateEclipseClasspath.html
http://www.gradle.org/docs/2.9/dsl/org.gradle.plugins.ide.eclipse.GenerateEclipseJdt.html

Table 38.3. Eclipse WTP plugin - additional tasks

Task name

cl eanEcl i pseW pConponent

cl eanEcl i pseW pFacet

ecl i pseW pConponent

ecl i pseW pFacet

Depends Type
on

Del et e

- Del et e

- Cener at eEcl i pseW pConmponent Generatesthe.

38.3. Configuration

Table 38.4. Configuration of the Eclipse plugins

M od€l

Ecl i pseMbdel

Ecl i pseProj ect

Ecl i psed asspat h

Ecl i pseJdt

Ecl i pseW pConponent

Ecl i pseW pFacet

Description

Removesthe. s

Removesthe. s
file.

)]

- Cener at eEcl i pseW pFacet Generatesthe. s
file.
Reference name Description
ecli pse Top level element that enables

ecl i pse. proj ect

ecl i pse.cl asspath

eclipse.jdt

ecl i pse. wt p. conponent

eclipse. wp. facet

configuration of the Eclipse pluginin a
DSL -friendly fashion.

Allows configuring project information

Allows configuring classpath
information.

Allows configuring jdt information
(sourcef/target Java compatibility).

Allows configuring wtp component
information only if ecl i pse-wt p
plugin was applied.

Allows configuring wtp facet
information only if ecl i pse-wt p
plugin was applied.

38.4. Customizing the generated files

The Eclipse plugins alow you to customize the generated metadata files. The plugins provide a DSL for
configuring model objects that model the Eclipse view of the project. These model objects are then merged with
the existing Eclipse XML metadata to ultimately generate new metadata. The model objects provide lower level
hooks for working with domain objects representing the file content before and after merging with the model
configuration. They also provide a very low level hook for working directly with the raw XML for adjustment
beforeit is persisted, for fine tuning and configuration that the Eclipse and Eclipse WTP plugins do not model.

Page 225 of 514

http://www.gradle.org/docs/2.9/dsl/org.gradle.api.tasks.Delete.html
http://www.gradle.org/docs/2.9/dsl/org.gradle.api.tasks.Delete.html
http://www.gradle.org/docs/2.9/dsl/org.gradle.plugins.ide.eclipse.GenerateEclipseWtpComponent.html
http://www.gradle.org/docs/2.9/dsl/org.gradle.plugins.ide.eclipse.GenerateEclipseWtpFacet.html
http://www.gradle.org/docs/2.9/dsl/org.gradle.plugins.ide.eclipse.model.EclipseModel.html
http://www.gradle.org/docs/2.9/dsl/org.gradle.plugins.ide.eclipse.model.EclipseProject.html
http://www.gradle.org/docs/2.9/dsl/org.gradle.plugins.ide.eclipse.model.EclipseClasspath.html
http://www.gradle.org/docs/2.9/dsl/org.gradle.plugins.ide.eclipse.model.EclipseJdt.html
http://www.gradle.org/docs/2.9/dsl/org.gradle.plugins.ide.eclipse.model.EclipseWtpComponent.html
http://www.gradle.org/docs/2.9/dsl/org.gradle.plugins.ide.eclipse.model.EclipseWtpFacet.html

38.4.1. Merging

Sections of existing Eclipse files that are also the target of generated content will be amended or overwritten,
depending on the particular section. The remaining sections will be left as-is.

38.4.1.1. Disabling merging with a complete rewrite

To completely rewrite existing Eclipse files, execute a clean task together with its corresponding generation
task, like “gradl e cl eanEcli pse eclipse” (in that order). If you want to make this the default
behavior, add “t asks. ecl i pse. dependsOn(cl eanEcl i pse)” to your build script. This makes it
unnecessary to execute the clean task explicitly.

This strategy can also be used for individual files that the plugins would generate. For instance, this can be done
forthe®. cl asspat h” filewith“gr adl e cl eanEcl i pseC asspath ecli pseC asspath”.

38.4.2. Hooking into the generation lifecycle

The Eclipse plugins provide objects modeling the sections of the Eclipse files that are generated by Gradle. The
generation lifecycle is as follows:

1. Thefileisread; or adefault version provided by Gradleis used if it does not exist

2. Thebef or eMer ged hook is executed with a domain object representing the existing file

3. Theexisting content is merged with the configuration inferred from the Gradle build or defined explicitly in
the eclipse DSL

4. ThewhenMer ged hook is executed with a domain object representing contents of the file to be persisted

5. Thewi t hXm hook is executed with araw representation of the XML that will be persisted

6. Thefina XML is persisted

The following table lists the domain object used for each of the Eclipse model types:

Table 38.5. Advanced configuration hooks

M odel bef oreMerged { arg ->} whenMerged { arg ->} wthX
argument type argument type argume

Ecl i pseProj ect Pr oj ect Pr oj ect Xm Pr

Ecl i psed asspat h O asspat h Cl asspat h Xm Pr

Ecl i pseJdt Jdt Jdt -

Ecl i pseW pConponent W pConponent W pConponent Xm Pr

Ecl i pseW pFacet W pFacet W pFacet Xm Pr

Page 226 of 514

http://www.gradle.org/docs/2.9/dsl/org.gradle.plugins.ide.eclipse.model.EclipseProject.html
http://www.gradle.org/docs/2.9/groovydoc/org/gradle/plugins/ide/eclipse/model/Project.html
http://www.gradle.org/docs/2.9/groovydoc/org/gradle/plugins/ide/eclipse/model/Project.html
http://www.gradle.org/docs/2.9/javadoc/org/gradle/api/XmlProvider.html
http://www.gradle.org/docs/2.9/dsl/org.gradle.plugins.ide.eclipse.model.EclipseClasspath.html
http://www.gradle.org/docs/2.9/groovydoc/org/gradle/plugins/ide/eclipse/model/Classpath.html
http://www.gradle.org/docs/2.9/groovydoc/org/gradle/plugins/ide/eclipse/model/Classpath.html
http://www.gradle.org/docs/2.9/javadoc/org/gradle/api/XmlProvider.html
http://www.gradle.org/docs/2.9/dsl/org.gradle.plugins.ide.eclipse.model.EclipseJdt.html
http://www.gradle.org/docs/2.9/javadoc/org/gradle/plugins/ide/eclipse/model/Jdt.html
http://www.gradle.org/docs/2.9/javadoc/org/gradle/plugins/ide/eclipse/model/Jdt.html
http://www.gradle.org/docs/2.9/dsl/org.gradle.plugins.ide.eclipse.model.EclipseWtpComponent.html
http://www.gradle.org/docs/2.9/groovydoc/org/gradle/plugins/ide/eclipse/model/WtpComponent.html
http://www.gradle.org/docs/2.9/groovydoc/org/gradle/plugins/ide/eclipse/model/WtpComponent.html
http://www.gradle.org/docs/2.9/javadoc/org/gradle/api/XmlProvider.html
http://www.gradle.org/docs/2.9/dsl/org.gradle.plugins.ide.eclipse.model.EclipseWtpFacet.html
http://www.gradle.org/docs/2.9/groovydoc/org/gradle/plugins/ide/eclipse/model/WtpFacet.html
http://www.gradle.org/docs/2.9/groovydoc/org/gradle/plugins/ide/eclipse/model/WtpFacet.html
http://www.gradle.org/docs/2.9/javadoc/org/gradle/api/XmlProvider.html

38.4.2.1. Partial overwrite of existing content

A complete overwrite causes all existing content to be discarded, thereby losing any changes made directly in
the IDE. Alternatively, the bef or eMer ged hook makes it possible to overwrite just certain parts of the
existing content. The following example removes all existing dependencies from the Cl asspat h domain
object:

Example 38.3. Partial Overwritefor Classpath

buil d. gradl e

ecl i pse.classpath.file {
bef oreMerged { cl asspath ->
classpath.entries.removeAll { entry -> entry.kind == "'lib" || entry.kind =

}

The resulting . cl asspat h file will only contain Gradle-generated dependency entries, but not any other
dependency entries that may have been present in the origina file. (In the case of dependency entries, this is
also the default behavior.) Other sections of the . cl asspat h file will be either |eft as-is or merged. The same
could be done for the naturesin the . pr oj ect file

Example 38.4. Partial Overwrite for Project
buil d. gradl e

eclipse.project.file.beforeMerged { project ->
proj ect. natures. cl ear ()

}

38.4.2.2. Modifying the fully popul ated domain objects

The whenMer ged hook allows to manipulate the fully populated domain objects. Often this is the preferred
way to customize Eclipse files. Here is how you would export al the dependencies of an Eclipse project:

Example 38.5. Export Dependencies
buil d. gradl e

eclipse.classpath.file {
whenMerged { cl asspath ->
classpath.entries.findAll { entry -> entry.kind == "lib" }*.exported = fal

}

Page 227 of 514

38.4.2.3. Modifying the XML representation

Thewi t hXm hook allows to manipulate the in-memory XML representation just before the file gets written to
disk. Although Groovy's XML support makes up for a lot, this approach is less convenient than manipulating
the domain objects. In return, you get total control over the generated file, including sections not modeled by the
domain objects.

Example 38.6. Customizing the XML
buil d. gradl e
apply plugin: '"eclipse-wp'

eclipse.wtp.facet.file.withXm { provider ->

provi der.asNode().fixed.find { it. @acet == "jst.java" }.@acet = '|jst2.]ava

}

Page 228 of 514

39

The IDEA Plugin

The IDEA plugin generates files that are used by IntelliJ IDEA, thus making it possible to open the project from
IDEA (File - Open Project). Both external dependencies (including associated source and Javadoc files) and
project dependencies are considered.

What exactly the IDEA plugin generates depends on which other plugins are used:

Table 39.1. IDEA plugin behavior

Plugin Description

None Generates an IDEA module file. Also generates an IDEA project and workspace fileif the
project is the root project.

Java Adds Java configuration to the module and project files.

One focus of the IDEA plugin is to be open to customization. The plugin provides a standardized set of hooks
for adding and removing content from the generated files.

39.1. Usage

To use the IDEA plugin, include thisin your build script:

Example 39.1. Using the IDEA plugin

buil d. gradl e

apply plugin: 'idea'

The IDEA plugin adds a number of tasksto your project. The main tasks that you will use arethe i dea and cl ean
tasks.

39.2. Tasks

The IDEA plugin adds the tasks shown below to a project. Notice that the cl ean task does not depend on the cl ea
task. Thisis because the workspace typically contains alot of user specific temporary data and it is not desirable
to manipulate it outside IDEA.

Page 229 of 514

http://www.jetbrains.com/idea/

Table 39.2. IDEA plugin - Tasks

Task name Dependson Type Description

i dea i deaPr oj ect ,i deaMbdul e Generates al
,i deaWbr kspace IDEA
configuration
files

cl eanl dea cl eanl deaPr oj ect Del et e Removes all
, cl eanl deaModul e IDEA
configuration
files

cl eanl deaPr oj ect - Del et e Removes the
IDEA project
file

cl eanl deaMbdul e - Del et e Removes the
IDEA
modulefile

cl eanl deawr kspace - Del et e Removes the
IDEA
workspace
file

i deaPr oj ect - CGener at el deaPr oj ect Generates
the. i pr
file. This
task isonly
added to the
root project.

i deaMbdul e - Gener at el deaModul e Generates
the.im
file

i deaWwsr kspace - CGener at el deaWbr kspace Generates
the. i ws
file. This
task isonly
added to the
root project.

Page 230 of 514

http://www.gradle.org/docs/2.9/dsl/org.gradle.api.tasks.Delete.html
http://www.gradle.org/docs/2.9/dsl/org.gradle.api.tasks.Delete.html
http://www.gradle.org/docs/2.9/dsl/org.gradle.api.tasks.Delete.html
http://www.gradle.org/docs/2.9/dsl/org.gradle.api.tasks.Delete.html
http://www.gradle.org/docs/2.9/dsl/org.gradle.plugins.ide.idea.GenerateIdeaProject.html
http://www.gradle.org/docs/2.9/dsl/org.gradle.plugins.ide.idea.GenerateIdeaModule.html
http://www.gradle.org/docs/2.9/dsl/org.gradle.plugins.ide.idea.GenerateIdeaWorkspace.html

39.3. Configuration

Table 39.3. Configuration of theidea plugin

Model Reference name Description

| deaModel i dea Top level element that enables configuration of the idea
pluginin aDSL-friendly fashion

| deaPr oj ect i dea. proj ect Allows configuring project information
| deaModul e i dea. nodul e Allows configuring module information
| deaWor kspace idea.workspace Allows configuring the workspace XML

39.4. Customizing the generated files

The IDEA plugin provides hooks and behavior for customizing the generated content. The workspace file can
effectively only be manipulated via the wi t hXm hook because its corresponding domain object is essentialy
empty.

The tasks recognize existing IDEA files, and merge them with the generated content.

39.4.1. Merging

Sections of existing IDEA files that are also the target of generated content will be amended or overwritten,
depending on the particular section. The remaining sections will be left as-is.

39.4.1.1. Disabling merging with a complete overwrite

To completely rewrite existing IDEA files, execute a clean task together with its corresponding generation task,
like “gradl e cl eanl dea idea” (in that order). If you want to make this the default behavior, add “
tasks. i dea. dependsOn(cl eanl dea) ” to your build script. This makes it unnecessary to execute the
clean task explicitly.

This strategy can also be used for individual files that the plugin would generate. For instance, this can be done
forthe“. i m " filewith“gradl e cl eanl deaMbdul e i deaMbdul e”.

39.4.2. Hooking into the generation lifecycle

The plugin provides objects modeling the sections of the metadata files that are generated by Gradle. The
generation lifecycle is as follows:

1. Thefileisread; or adefault version provided by Gradleis used if it does not exist

2. Thebef or eMer ged hook is executed with a domain object representing the existing file

3. Theexisting content is merged with the configuration inferred from the Gradle build or defined explicitly in
the eclipse DSL

Page 231 of 514

http://www.gradle.org/docs/2.9/dsl/org.gradle.plugins.ide.idea.model.IdeaModel.html
http://www.gradle.org/docs/2.9/dsl/org.gradle.plugins.ide.idea.model.IdeaProject.html
http://www.gradle.org/docs/2.9/dsl/org.gradle.plugins.ide.idea.model.IdeaModule.html
http://www.gradle.org/docs/2.9/dsl/org.gradle.plugins.ide.idea.model.IdeaWorkspace.html

4. ThewhenMer ged hook is executed with a domain object representing contents of the file to be persisted
5. Thewi t hXm hook is executed with araw representation of the XML that will be persisted
6. Thefina XML is persisted

The following table lists the domain object used for each of the model types:

Table 39.4. Idea plugin hooks

M odel bef oreMerged { arg -> } whenMerged { arg -> } withxm { a
argument type argument type argument type
| deaPr oj ect Pr oj ect Pr oj ect Xm Provi der
| deaModul e Modul e Modul e Xm Provi der
| deaWr kspace Wor kspace Wor kspace Xm Provi der

39.4.2.1. Partial rewrite of existing content

A complete rewrite causes all existing content to be discarded, thereby losing any changes made directly in the
IDE. The bef or eMer ged hook makes it possible to overwrite just certain parts of the existing content. The
following example removes all existing dependencies from the Modul e domain object:

Example 39.2. Partial Rewritefor Module

bui I d. gradl e

i dea. modul e.im {
bef oreMerged { nodule ->
nmodul e. dependenci es. cl ear ()

}

The resulting module file will only contain Gradle-generated dependency entries, but not any other dependency
entries that may have been present in the original file. (In the case of dependency entries, thisis aso the default
behavior.) Other sections of the module file will be either left as-is or merged. The same could be done for the
module pathsin the project file:

Example 39.3. Partial Rewritefor Project
buil d. gradl e
i dea. project.ipr {

bef oreMerged { project ->
proj ect . nodul ePat hs. cl ear ()

}

39.4.2.2. Modifying the fully populated domain objects

The whenMer ged hook allows you to manipulate the fully populated domain objects. Often this is the
preferred way to customize IDEA files. Here is how you would export al the dependencies of an IDEA module;

Page 232 of 514

http://www.gradle.org/docs/2.9/dsl/org.gradle.plugins.ide.idea.model.IdeaProject.html
http://www.gradle.org/docs/2.9/groovydoc/org/gradle/plugins/ide/idea/model/Project.html
http://www.gradle.org/docs/2.9/groovydoc/org/gradle/plugins/ide/idea/model/Project.html
http://www.gradle.org/docs/2.9/javadoc/org/gradle/api/XmlProvider.html
http://www.gradle.org/docs/2.9/dsl/org.gradle.plugins.ide.idea.model.IdeaModule.html
http://www.gradle.org/docs/2.9/groovydoc/org/gradle/plugins/ide/idea/model/Module.html
http://www.gradle.org/docs/2.9/groovydoc/org/gradle/plugins/ide/idea/model/Module.html
http://www.gradle.org/docs/2.9/javadoc/org/gradle/api/XmlProvider.html
http://www.gradle.org/docs/2.9/dsl/org.gradle.plugins.ide.idea.model.IdeaWorkspace.html
http://www.gradle.org/docs/2.9/groovydoc/org/gradle/plugins/ide/idea/model/Workspace.html
http://www.gradle.org/docs/2.9/groovydoc/org/gradle/plugins/ide/idea/model/Workspace.html
http://www.gradle.org/docs/2.9/javadoc/org/gradle/api/XmlProvider.html

Example 39.4. Export Dependencies

bui I d. gradl e

i dea. modul e.inml {
whenMerged { nodule ->
nmodul e. dependenci es*. exported = true

}

39.4.2.3. Modifying the XML representation

The wi t hXm hook alows you to manipulate the in-memory XML representation just before the file gets
written to disk. Although Groovy's XML support makes up for a lot, this approach is less convenient than
manipulating the domain objects. In return, you get total control over the generated file, including sections not
modeled by the domain objects.

Example 39.5. Customizing the XML
buil d. gradl e
i dea. proj ect.ipr {
withXm { provider ->

provi der . node. conponent
.find { it. @ane == '\VcsDirectoryMppings' }

. mapping. @cs = 'Gt'

39.5. Further things to consider

The paths of dependencies in the generated IDEA files are absolute. If you manually define a path variable
pointing to the Gradle dependency cache, IDEA will automatically replace the absolute dependency paths with
this path variable. you can configure this path variable viathe “i dea. pat hVari abl es” property, so that it
can do a proper merge without creating duplicates.

Page 233 of 514

40

The ANTLR Plugin

The ANTLR plugin extends the Java plugin to add support for generating parsersusing ANTLR.

The ANTLR plugin supports ANTLR version 2, 3 and 4.

40.1. Usage

To use the ANTLR plugin, include the following in your build script:

Example 40.1. Using the ANTLR plugin

buil d. gradl e

apply plugin: "antlr'

40.2. Tasks

The ANTLR plugin adds a number of tasksto your project, as shown below.

Table40.1. ANTLR plugin - tasks

Task name Depends Type

on
gener at eG anmmar Sour ce - Ant | r Task
gener at eTest G ammar Sour ce - Ant | r Task
gener at eSour ceSet Gr anmar Source Ant | r Task

Description

Generates the source files for all
production ANTLR grammars.

Generates the source files for all
test ANTLR grammars.

Generates the source files for all
ANTLR grammars for the given
source set.

The ANTLR plugin adds the following dependencies to tasks added by the Java plugin.

Page 234 of 514

http://www.antlr.org/
http://www.gradle.org/docs/2.9/dsl/org.gradle.api.plugins.antlr.AntlrTask.html
http://www.gradle.org/docs/2.9/dsl/org.gradle.api.plugins.antlr.AntlrTask.html
http://www.gradle.org/docs/2.9/dsl/org.gradle.api.plugins.antlr.AntlrTask.html

Table40.2. ANTLR plugin - additional task dependencies

Task name Dependson
compileJava generateGrammar Source
compileTestJava generateTestGrammarSource

compileSour ceSet Java generateSour ceSet GrammarSource

40.3. Project layout
Table40.3. ANTLR plugin - project layout

Directory Meaning

src/main/antlr Production ANTLR grammar files. If the ANTLR grammar is organized in
packages, the structure in the antlr folder should reflect the package structure. This
ensures that the generated sources end up in the correct target subfolder.

src/test/antlr Test ANTLR grammar files.

src/ sour ceSet / antANTLR grammar files for the given source set.

40.4. Dependency management

The ANTLR plugin adds an ant | r dependency configuration which provides the ANTLR implementation to
use. The following example shows how to use ANTLR version 3.

Example 40.2. Declare ANTLR version

bui I d. gradl e

repositories {
mavenCent ral ()

}

dependenci es {
antlr "org.antlr:antlr:3.5.2" // use ANTLR version 3
/[l antlr "org.antlr:antlr4:4.5" // use ANTLR version 4

If no dependency is declared, ant | r: antlr: 2. 7.7 will be used as the default. To use a different ANTLR
version add the appropriate dependency to the ant | r dependency configuration as above.

40.5. Convention properties

The ANTLR plugin does not add any convention properties.

Page 235 of 514

40.6. Source set properties

The ANTLR plugin adds the following properties to each source set in the project.

Table40.4. ANTLR plugin - source set properties

Property name Type Default value Description
antlr Sour ceDi r ect or ySet Not null The ANTLR grammar files of this
(read-only) source set. Containsall . g or. g4

filesfound in the ANTLR source
directories, and excludes all other

types of files.
antlr.srcDirs Set<File>. Canset [proj ect Di r/ sThe soaine/dareciories containing
using anything described the ANTLR grammar files of this
in Section 15.5, source Set.
“Specifying a set of input
files'.

40.7. Controlling the ANTLR generator process

The ANTLR tool is executed in aforked process. This alows fine grained control over memory settings for the
ANTLR process. To set the heap size of a ANTLR process, the maxHeapSi ze property of Ant | r Task can
be used. To pass additional command-line arguments, append to the ar gunent s property of Ant | r Task.

Example 40.3. setting custom max heap size and extra argumentsfor ANTLR

buil d. gradl e

gener at eG amar Sour ce {
maxHeapSi ze = " 64nf

argunents += ["-visitor", "-long-nessages"]

Page 236 of 514

http://www.gradle.org/docs/2.9/javadoc/org/gradle/api/file/SourceDirectorySet.html
http://www.gradle.org/docs/2.9/dsl/org.gradle.api.plugins.antlr.AntlrTask.html
http://www.gradle.org/docs/2.9/dsl/org.gradle.api.plugins.antlr.AntlrTask.html

41

The Project Report Plugin

The Project report plugin adds some tasks to your project which generate reports containing useful information
about your build. These tasks generate the same content that you get by executing the t asks, dependenci es
,and pr oper ti es tasks from the command line (see Section 11.6, “Obtaining information about your build”).
In contrast to the command line reports, the report plugin generates the reports into a file. There is also an
aggregating task that depends on all report tasks added by the plugin.

We plan to add much more to the existing reports and create additional onesin future releases of Gradle.

41.1. Usage

To use the Project report plugin, include the following in your build script:

apply plugin: 'project-report'

41.2. Tasks

The project report plugin defines the following tasks:

Page 237 of 514

Table41.1. Project report plugin - tasks

Task name Dependson Type

Descri

dependencyReport - DependencyReport Task Generi

the prc
depenc
report.

ht M DependencyReport - Ht M DependencyReport Task Generi

propertyReport - Pr opert yReport Task

t askReport - TaskReport Task

pr oj ect Report dependencyReport , properTg&eport
,taskReport, ht m DependencyReport

41.3. Project layout

The project report plugin does not require any particular project layout.

41.4. Dependency management

The project report plugin does not define any dependency configurations.

41.5. Convention properties

The project report defines the following convention properties:

anHT
depenc
and

depenc
insight
report
the prc
orase
projec

Generi
the prc
proper
report.
Generi

the prc
task re

Generi
al pro
reports

Page 238 of 514

http://www.gradle.org/docs/2.9/dsl/org.gradle.api.tasks.diagnostics.DependencyReportTask.html
http://www.gradle.org/docs/2.9/dsl/org.gradle.api.reporting.dependencies.HtmlDependencyReportTask.html
http://www.gradle.org/docs/2.9/dsl/org.gradle.api.tasks.diagnostics.PropertyReportTask.html
http://www.gradle.org/docs/2.9/dsl/org.gradle.api.tasks.diagnostics.TaskReportTask.html
http://www.gradle.org/docs/2.9/dsl/org.gradle.api.Task.html

Table 41.2. Project report plugin - convention properties

Property name

report sDi r Nane

reportsDir

proj ects

proj ect Report Di r Nane

proj ect ReportDir

These convention

properties are

Type
String

Fi | e (read-only)

Set <Pr oj ect >

String

Fi | e (read-only)

Pr oj ect Report sPl ugi nConventi on.

provided

Default value

reports

Description

The name of the
directory to
generate reports
into, relative to
the build
directory.

bui | dDi r/ r epor t sDi r NaneThe directory to

A one element set with the
project the plugin was
applied to.

pr oj ect

generate reports
into.

The projectsto
generate the
reportsfor.

The name of the
directory to
generate the
project report
into, relative to
the reports
directory.

reportsDir/ proj ect ReporTi# diNztaey to

by a convention

generate the
project report
into.

object of type

Page 239 of 514

http://www.gradle.org/docs/2.9/dsl/org.gradle.api.plugins.ProjectReportsPluginConvention.html
http://www.gradle.org/docs/2.9/dsl/org.gradle.api.plugins.ProjectReportsPluginConvention.html

42

The Announce Plugin

The Gradle announce plugin alows you to send custom announcements during a build. The following
notification systems are supported:

* Twitter

® notify-send (Ubuntu)
® Snarl (Windows)

* Growl (Mac OS X)

42.1. Usage

To use the announce plugin, apply it to your build script:

Example 42.1. Using the announce plugin

buil d. gradl e

apply plugin: '"announce'

Next, configure your notification service(s) of choice (see table below for which configuration properties are
available):

Example 42.2. Configure the announce plugin

buil d. gradl e

announce {
user nane "yl d'
password " myPasswor d

}

Finally, send announcements with the announce method:

Page 240 of 514

http://twitter.com
http://manpages.ubuntu.com/manpages/gutsy/man1/notify-send.1.html
https://sites.google.com/site/snarlapp/home
http://growl.info/

Example 42.3. Using the announce plugin

bui I d. gradl e

task helloWorld << {

println "Hell o,

}

hel | oWor | d. doLast {
announce. announce("hel | oWorl d conpleted!", "twitter")
announce. announce(" hel | oWorl d conpleted!", "local")

wor | d!'"

The announce method takes two String arguments: The message to be sent, and the natification service to be
used. The following table lists supported notification services and their configuration properties.

Table 42.1. Announce Plugin Notification Services

Notification
Service

twitter

snarl
growl

notify-send

local

Operating
System

Any

Windows
Mac OS X

Ubuntu

Windows,
Mac OS X,
Ubuntu

Configuration

Properties

username,
password

42.2. Configuration

See the AnnouncePl ugi nExt ensi on classin the APl documentation.

Further Information

Requires the notify-send package to be installed. Use sudo
toinstal it.

Automatically chooses between snarl, growl, and
notify-send depending on the current operating
system.

Page 241 of 514

http://www.gradle.org/docs/2.9/dsl/org.gradle.api.plugins.announce.AnnouncePluginExtension.html

43

The Build Announcements Plugin

The build announcements plugin is currently incubating. Please be aware that the DSL and other
configuration may changein later Gradle versions.

The build announcements plugin uses the announce plugin to send local announcements on important events in
the build.

43.1. Usage

To use the build announcements plugin, include the following in your build script:

Example 43.1. Using the build announcements plugin

buil d. gradl e

apply plugin: 'build-announcenents'

That's it. If you want to tweak where the announcements go, you can configure the announce plugin to change
thelocal announcer.

Y ou can a'so apply the plugin from an init script:

Example 43.2. Using the build announcements plugin from an init script
init.gradle

root Proj ect {

apply plugin: 'build-announcenents’

}

Page 242 of 514

A4

The Distribution Plugin

The distribution plugin is currently incubating. Please be aware that the DSL and other configuration may
changein later Gradle versions.

The distribution plugin facilitates building archives that serve as distributions of the project. Distribution
archives typically contain the executable application and other supporting files, such as documentation.

44.1. Usage

To use the distribution plugin, include the following in your build script:

Example 44.1. Using the distribution plugin

buil d. gradl e
apply plugin: '"distribution'

The plugin adds an extension named “di stri buti ons” of type Di stri buti onCont ai ner to the
project. It also creates a single distribution in the distributions container extension named “nmai n”. If your build
only produces one distribution you only need to configure this distribution (or use the defaults).

You can run “gr adl e di st Zi p” to package the main distribution as a ZIP, or “gr adl e di st Tar” to
create a TAR file. To build both types of archivesjust run gr adl e assenbl eDi st . Thefileswill be created
at“$bui | dDi r / di stributions/ $project. name- $proj ect. versi on. «ext»”.

Youcanrun“gradl e i nstal | Di st” toassemble the uncompressed distributioninto “ $bui | dDi r /i nst al |

44.2. Tasks

The Distribution plugin adds the following tasks to the project:

Page 243 of 514

http://www.gradle.org/docs/2.9/dsl/org.gradle.api.distribution.DistributionContainer.html

Table 44.1. Distribution plugin - tasks

Task name Dependson Type
distZip - Zip
di st Tar - Tar

assenbl eDi st di st Tar, di st Zi Jask

install D st - Sync

Description
Creates a ZIP archive of the distribution contents
Creates a TAR archive of the distribution contents

Creates ZIP and TAR archives with the distribution
contents

Assembl es the distribution content and installs it on
the current machine

For each extra distribution set you add to the project, the distribution plugin adds the following tasks:

Table 44.2. Multiple distributions - tasks

Task name

${di stribution. nane}Di st Zi p

${di stribution. name} D st Tar

Dependson Type Description

- Zip Createsa
ZIP archive
of the
distribution
contents

- Tar Createsa
TAR
archive of
the
distribution
contents

assenbl e${di stri buti on. nane. capi tal i&fedi)§tDiishut i on. nane} Dl stask Assembles

,${distribution.nane}Distzip all
distribution
archives

instal | ${di stribution.name.capitalize()}D st Sync Assembles

the
distribution
content and
installsit on
the current
machine

Page 244 of 514

http://www.gradle.org/docs/2.9/dsl/org.gradle.api.tasks.bundling.Zip.html
http://www.gradle.org/docs/2.9/dsl/org.gradle.api.tasks.bundling.Tar.html
http://www.gradle.org/docs/2.9/dsl/org.gradle.api.Task.html
http://www.gradle.org/docs/2.9/dsl/org.gradle.api.tasks.Sync.html
http://www.gradle.org/docs/2.9/dsl/org.gradle.api.tasks.bundling.Zip.html
http://www.gradle.org/docs/2.9/dsl/org.gradle.api.tasks.bundling.Tar.html
http://www.gradle.org/docs/2.9/dsl/org.gradle.api.Task.html
http://www.gradle.org/docs/2.9/dsl/org.gradle.api.tasks.Sync.html

Example 44.2. Adding extra distributions
buil d. gradl e
apply plugin: "distribution’

version = '1.2
di stributions {
custom {}

}

Thiswill add following tasks to the project:

® customDistZip

® customDistTar

® assembleCustomDist
¢ installCustomDist

Given that the project nameis“mypr oj ect ” and version “1. 2", running “gr adl e cust onDi st Zi p” will
produce a ZIP file named “nypr oj ect - cust om 1. 2. zi p”.

Running “gr adl e instal | Cust onDi st ” will install the distribution contentsinto “$bui | dDi r /i nstal | /

44.3. Distribution contents

All of thefilesinthe“src/ $di stri buti on. nane/ di st ” directory will automatically be included in the
distribution. You can add additional files by configuring the Di st ri buti on object that is part of the
container.

Page 245 of 514

http://www.gradle.org/docs/2.9/javadoc/org/gradle/api/distribution/Distribution.html

Example 44.3. Configuring the main distribution
buil d. gradl e

apply plugin: "distribution’

di stributions {
mai n {
baseNane =
contents {
from{ 'src/readme' }

' soneNang'

apply plugin:' maven'

upl oadAr chi ves {
repositories {
mavenDepl oyer {
repository(url: "file://sone/repo")

In the example above, the content of the “sr ¢/ r eadne” directory will be included in the distribution (along
with thefilesinthe“sr ¢/ mai n/ di st ” directory which are added by default).

The“baseNane” property has also been changed. Thiswill cause the distribution archives to be created with a
different name.

44.4. Publishing distributions

The distribution plugin adds the distribution archives as candidate for default publishing artifacts. With the maven
plugin applied the distribution zip file will be published when running uploadArchives if no other default
artifact is configured

Example 44.4. publish main distribution

buil d. gradl e

apply plugin:' maven'

upl oadAr chi ves {
repositories {

mavenDepl oyer {
repository(url: "file://sone/repo")

Page 246 of 514

45

The Application Plugin

The Application plugin facilitates creating an executable VM application. It makes it easy to start the
application locally during development, and to packaging the application as a TAR and/or ZIP including
operating system specific start scripts.

Applying the Application plugin also implicitly applies the Java plugin. The mai n source set is effectively th