41 #ifndef BT_GENERIC_6DOF_CONSTRAINT2_H
42 #define BT_GENERIC_6DOF_CONSTRAINT2_H
51 #ifdef BT_USE_DOUBLE_PRECISION
52 #define btGeneric6DofSpring2ConstraintData2 btGeneric6DofSpring2ConstraintDoubleData2
53 #define btGeneric6DofSpring2ConstraintDataName "btGeneric6DofSpring2ConstraintDoubleData2"
55 #define btGeneric6DofSpring2ConstraintData2 btGeneric6DofSpring2ConstraintData
56 #define btGeneric6DofSpring2ConstraintDataName "btGeneric6DofSpring2ConstraintData"
57 #endif //BT_USE_DOUBLE_PRECISION
108 m_enableMotor =
false;
109 m_targetVelocity = 0;
110 m_maxMotorForce = 0.1f;
111 m_servoMotor =
false;
113 m_enableSpring =
false;
114 m_springStiffness = 0;
115 m_springStiffnessLimited =
false;
117 m_springDampingLimited =
false;
118 m_equilibriumPoint = 0;
120 m_currentLimitError = 0;
121 m_currentLimitErrorHi = 0;
122 m_currentPosition = 0;
156 if(m_loLimit > m_hiLimit)
return false;
197 m_lowerLimit .
setValue(0.f , 0.f , 0.f );
198 m_upperLimit .
setValue(0.f , 0.f , 0.f );
199 m_bounce .
setValue(0.f , 0.f , 0.f );
200 m_stopERP .
setValue(0.2f, 0.2f, 0.2f);
201 m_stopCFM .
setValue(0.f , 0.f , 0.f );
202 m_motorERP .
setValue(0.9f, 0.9f, 0.9f);
203 m_motorCFM .
setValue(0.f , 0.f , 0.f );
205 m_currentLimitError .
setValue(0.f , 0.f , 0.f );
206 m_currentLimitErrorHi.
setValue(0.f , 0.f , 0.f );
207 m_currentLinearDiff .
setValue(0.f , 0.f , 0.f );
209 for(
int i=0; i < 3; i++)
211 m_enableMotor[i] =
false;
212 m_servoMotor[i] =
false;
213 m_enableSpring[i] =
false;
215 m_springStiffness[i] =
btScalar(0.f);
216 m_springStiffnessLimited[i] =
false;
218 m_springDampingLimited[i] =
false;
219 m_equilibriumPoint[i] =
btScalar(0.f);
220 m_targetVelocity[i] =
btScalar(0.f);
223 m_currentLimit[i] = 0;
241 for(
int i=0; i < 3; i++)
261 return (m_upperLimit[limitIndex] >= m_lowerLimit[limitIndex]);
274 #define BT_6DOF_FLAGS_AXIS_SHIFT2 4 // bits per axis
313 void calculateLinearInfo();
314 void calculateAngleInfo();
315 void testAngularLimitMotor(
int axis_index);
320 btConstraintInfo2* info,
int row,
btVector3& ax1,
int rotational,
int rotAllowed =
false);
338 virtual void getInfo1 (btConstraintInfo1* info);
339 virtual void getInfo2 (btConstraintInfo2* info);
340 virtual int calculateSerializeBufferSize()
const;
341 virtual const char* serialize(
void* dataBuffer,
btSerializer* serializer)
const;
348 void calculateTransforms();
379 for(
int i = 0; i < 3; i++)
385 for(
int i = 0; i < 3; i++)
391 for(
int i = 0; i < 3; i++)
392 angularLower[i] = m_angularLimits[i].m_loLimit;
397 for(
int i = 0; i < 3; i++)
398 angularLower[i] = -m_angularLimits[i].m_hiLimit;
403 for(
int i = 0; i < 3; i++)
409 for(
int i = 0; i < 3; i++)
415 for(
int i = 0; i < 3; i++)
416 angularUpper[i] = m_angularLimits[i].m_hiLimit;
421 for(
int i = 0; i < 3; i++)
422 angularUpper[i] = -m_angularLimits[i].m_loLimit;
463 return m_linearLimits.
isLimited(limitIndex);
465 return m_angularLimits[limitIndex-3].
isLimited();
473 void setBounce(
int index,
btScalar bounce);
475 void enableMotor(
int index,
bool onOff);
476 void setServo(
int index,
bool onOff);
477 void setTargetVelocity(
int index,
btScalar velocity);
478 void setServoTarget(
int index,
btScalar target);
479 void setMaxMotorForce(
int index,
btScalar force);
481 void enableSpring(
int index,
bool onOff);
482 void setStiffness(
int index,
btScalar stiffness,
bool limitIfNeeded =
true);
483 void setDamping(
int index,
btScalar damping,
bool limitIfNeeded =
true);
484 void setEquilibriumPoint();
485 void setEquilibriumPoint(
int index);
486 void setEquilibriumPoint(
int index,
btScalar val);
490 virtual void setParam(
int num,
btScalar value,
int axis = -1);
491 virtual btScalar getParam(
int num,
int axis = -1)
const;
621 dof->m_angularLowerLimit.m_floats[3] = 0;
622 dof->m_angularUpperLimit.m_floats[3] = 0;
623 dof->m_angularBounce.m_floats[3] = 0;
624 dof->m_angularStopERP.m_floats[3] = 0;
625 dof->m_angularStopCFM.m_floats[3] = 0;
626 dof->m_angularMotorERP.m_floats[3] = 0;
627 dof->m_angularMotorCFM.m_floats[3] = 0;
628 dof->m_angularTargetVelocity.m_floats[3] = 0;
629 dof->m_angularMaxMotorForce.m_floats[3] = 0;
630 dof->m_angularServoTarget.m_floats[3] = 0;
631 dof->m_angularSpringStiffness.m_floats[3] = 0;
632 dof->m_angularSpringDamping.m_floats[3] = 0;
633 dof->m_angularEquilibriumPoint.m_floats[3] = 0;
674 #endif //BT_GENERIC_6DOF_CONSTRAINT_H
btVector3FloatData m_angularUpperLimit
void getAngularUpperLimitReversed(btVector3 &angularUpper)
btTransformDoubleData m_rbBFrame
char m_angularSpringDampingLimited[4]
void getAngularLowerLimitReversed(btVector3 &angularLower)
btVector3 m_maxMotorForce
btVector3FloatData m_linearBounce
btVector3DoubleData m_linearEquilibriumPoint
btVector3 m_springStiffness
void testLimitValue(int limitIndex, btScalar test_value)
void setValue(const btScalar &_x, const btScalar &_y, const btScalar &_z)
char m_linearServoMotor[4]
btTypedConstraintData m_typeConstraintData
Jacobian entry is an abstraction that allows to describe constraints it can be used in combination wi...
btVector3DoubleData m_linearMotorCFM
btVector3FloatData m_linearSpringStiffness
btVector3FloatData m_linearEquilibriumPoint
btVector3DoubleData m_linearSpringDamping
btVector3FloatData m_linearLowerLimit
void setLimit(int axis, btScalar lo, btScalar hi)
btTransform & getFrameOffsetB()
btTransformFloatData m_rbBFrame
btVector3DoubleData m_linearUpperLimit
btVector3FloatData m_linearTargetVelocity
btGeneric6DofSpring2Constraint & operator=(btGeneric6DofSpring2Constraint &)
char m_angularSpringStiffnessLimited[4]
btTransformDoubleData m_rbAFrame
const btTransform & getFrameOffsetA() const
bool m_springStiffnessLimited[3]
btVector3DoubleData m_angularMotorERP
btScalar btGetMatrixElem(const btMatrix3x3 &mat, int index)
void setAngularLowerLimitReversed(const btVector3 &angularLower)
bool m_springStiffnessLimited
char m_linearEnableSpring[4]
btVector3FloatData m_angularLowerLimit
btVector3 m_springDamping
btTypedConstraintDoubleData m_typeConstraintData
const btTransform & getFrameOffsetB() const
btVector3DoubleData m_angularEquilibriumPoint
btVector3FloatData m_angularServoTarget
void getLinearLowerLimit(btVector3 &linearLower)
#define SIMD_FORCE_INLINE
btVector3DoubleData m_angularServoTarget
btVector3 getAxis(int axis_index) const
bool m_springDampingLimited[3]
btVector3FloatData m_angularMaxMotorForce
btVector3FloatData m_angularBounce
btVector3DoubleData m_linearTargetVelocity
btVector3DoubleData m_angularStopCFM
btVector3FloatData m_angularMotorCFM
btTranslationalLimitMotor2 m_linearLimits
btVector3DoubleData m_linearBounce
btRotationalLimitMotor2(const btRotationalLimitMotor2 &limot)
RotateOrder getRotationOrder()
btTransform & getFrameOffsetA()
btVector3DoubleData m_linearMotorERP
btVector3 m_currentLinearDiff
void getAngularUpperLimit(btVector3 &angularUpper)
void getLinearUpperLimit(btVector3 &linearUpper)
btVector3 m_calculatedLinearDiff
btVector3FloatData m_linearMaxMotorForce
char m_angularEnableMotor[4]
btVector3FloatData m_linearMotorCFM
char m_angularEnableSpring[4]
btVector3DoubleData m_angularLowerLimit
btScalar m_currentLimitError
btTranslationalLimitMotor2 * getTranslationalLimitMotor()
bool m_springDampingLimited
btVector3FloatData m_linearUpperLimit
btVector3FloatData m_angularStopCFM
char m_linearSpringStiffnessLimited[4]
bool isLimited(int limitIndex)
btVector3DoubleData m_linearMaxMotorForce
void serialize(struct btVector3Data &dataOut) const
btVector3 m_currentLimitErrorHi
btTransform m_calculatedTransformB
btScalar m_currentLimitErrorHi
The btRigidBody is the main class for rigid body objects.
btVector3DoubleData m_linearLowerLimit
char m_angularServoMotor[4]
char m_angularEnableMotor[4]
btTransform m_calculatedTransformA
char m_linearServoMotor[4]
char m_linearSpringStiffnessLimited[4]
void setLinearUpperLimit(const btVector3 &linearUpper)
btVector3 m_equilibriumPoint
btRotationalLimitMotor2 * getRotationalLimitMotor(int index)
this structure is not used, except for loading pre-2.82 .bullet files
btScalar m_targetVelocity
void setLinearLowerLimit(const btVector3 &linearLower)
void setAngularLowerLimit(const btVector3 &angularLower)
btVector3DoubleData m_angularMaxMotorForce
void setRotationOrder(RotateOrder order)
const btTransform & getCalculatedTransformB() const
btVector3FloatData m_angularTargetVelocity
btVector3FloatData m_linearMotorERP
virtual void buildJacobian()
internal method used by the constraint solver, don't use them directly
btVector3 m_currentLimitError
btVector3 can be used to represent 3D points and vectors.
#define ATTRIBUTE_ALIGNED16(a)
char m_linearEnableMotor[4]
btVector3FloatData m_linearSpringDamping
char m_angularSpringStiffnessLimited[4]
btVector3FloatData m_linearStopCFM
btScalar btNormalizeAngle(btScalar angleInRadians)
btVector3FloatData m_linearServoTarget
#define btGeneric6DofSpring2ConstraintDataName
RotateOrder m_rotateOrder
bool matrixToEulerXYZ(const btMatrix3x3 &mat, btVector3 &xyz)
MatrixToEulerXYZ from http://www.geometrictools.com/LibFoundation/Mathematics/Wm4Matrix3.inl.html.
char m_angularServoMotor[4]
btVector3DoubleData m_linearServoTarget
btTransformFloatData m_rbAFrame
btVector3FloatData m_angularMotorERP
const btTransform & getCalculatedTransformA() const
btVector3FloatData m_angularEquilibriumPoint
TypedConstraint is the baseclass for Bullet constraints and vehicles.
virtual const char * serialize(void *dataBuffer, btSerializer *serializer) const
fills the dataBuffer and returns the struct name (and 0 on failure)
void getAngularLowerLimit(btVector3 &angularLower)
char m_linearEnableMotor[4]
btVector3 m_targetVelocity
btVector3DoubleData m_angularUpperLimit
#define BT_DECLARE_ALIGNED_ALLOCATOR()
btScalar m_equilibriumPoint
btVector3DoubleData m_angularSpringStiffness
virtual const char * serialize(void *dataBuffer, btSerializer *serializer) const
fills the dataBuffer and returns the struct name (and 0 on failure)
#define btGeneric6DofSpring2ConstraintData2
bool isLimited(int limitIndex)
btVector3DoubleData m_angularMotorCFM
btRotationalLimitMotor2 m_angularLimits[3]
void setAngularUpperLimitReversed(const btVector3 &angularUpper)
btVector3FloatData m_angularSpringStiffness
btVector3DoubleData m_linearSpringStiffness
btVector3DoubleData m_angularStopERP
btVector3DoubleData m_angularSpringDamping
The btMatrix3x3 class implements a 3x3 rotation matrix, to perform linear algebra in combination with...
btScalar getRelativePivotPosition(int axis_index) const
void testLimitValue(btScalar test_value)
btScalar m_currentPosition
void setAngularUpperLimit(const btVector3 &angularUpper)
btVector3DoubleData m_angularBounce
char m_angularSpringDampingLimited[4]
btVector3FloatData m_linearStopERP
char m_linearEnableSpring[4]
char m_linearSpringDampingLimited[4]
btScalar m_springStiffness
btVector3FloatData m_angularStopERP
void setLimitReversed(int axis, btScalar lo, btScalar hi)
virtual int calculateSerializeBufferSize() const
btTranslationalLimitMotor2()
btVector3 m_calculatedAxisAngleDiff
btVector3DoubleData m_angularTargetVelocity
char m_linearSpringDampingLimited[4]
char m_angularEnableSpring[4]
btVector3DoubleData m_linearStopERP
btRotationalLimitMotor2()
btVector3FloatData m_angularSpringDamping
float btScalar
The btScalar type abstracts floating point numbers, to easily switch between double and single floati...
btTranslationalLimitMotor2(const btTranslationalLimitMotor2 &other)
btVector3DoubleData m_linearStopCFM
btScalar getAngle(int axis_index) const