€2 GRAILS

Seethelight - agile, industrial strength, rapid web application development made easy

The Grails Framework - Reference Documentation

Authors. Graeme Rocher, Peter Ledbrook, Marc Palmer, Jeff Brown, Luke Daley, Burt Beckwith, Lari Hc
Version: 3.0.9

Table of Contents

1 Introduction
1.1 What'snew in Grails 3.0?
1.1.1 Core Features
1.1.2 Web Fesatures
1.1.3 Development Environment Features
1.1.4 Testing Features
2 Getting Started
2.1 Installation Requirements
2.2 Downloading and Installing
2.3 Creating an Application
2.4 A HelloWorld Example
2.5 Using Interactive Mode
2.6 Getting Set Upinan IDE
2.7 Convention over Configuration
2.8 Running an Application
2.9 Testing an Application
2.10 Deploying an Application
2.11 Supported Java EE Containers
2.12 Creating Artefacts
2.13 Generating an Application
3 Upgrading from Grails 2.x
3.1 Upgrading Plugins
3.2 Upgrading Applications
4 Configuration
4.1 Basic Configuration
4.1.1 Optionsfor the yml format Config

http://grails.org

4.1.2 Builtinoptions
4.1.3 Logging
4.1.4 GORM
4.2 The Application Class
4.2.1 Executing the Application Class
4.2.2 Customizing the Application Class
4.2.3 The Application LifeCycle
4.3 Environments
4.4 The DataSource
4.4.1 DataSources and Environments
4.4.2 Automatic Database Migration
4.4.3 Transaction-aware DataSource Proxy
4.4.4 Database Console
4.45 Multiple Datasources
45 Versioning
4.6 Project Documentation
4.7 Dependency Resolution
5 The Command Line
5.1 Interactive Mode
5.2 The Command Line and Profiles
5.3 Creating Custom Scripts
5.4 Re-using Grails scripts
5.5 Building with Gradle
5.5.1 Defining Dependencies with Gradle
5.5.2 Working with Gradle Tasks
5.5.3 Grailspluginsfor Gradle
6 Object Relational Mapping (GORM)
6.1 Quick Start Guide
6.1.1 Basic CRUD
6.2 Domain Modelling in GORM
6.2.1 Association in GORM
6.2.1.1 Many-to-one and one-to-one
6.2.1.2 One-to-many
6.2.1.3 Many-to-many
6.2.1.4 Basic Collection Types
6.2.2 Composition in GORM
6.2.3 Inheritance in GORM

6.2.4 Sets, Listsand Maps
6.3 Persistence Basics
6.3.1 Saving and Updating
6.3.2 Deleting Objects
6.3.3 Understanding Cascading Updates and Deletes
6.3.4 Eager and Lazy Fetching
6.3.5 Pessimistic and Optimistic Locking
6.3.6 Modification Checking
6.4 Querying with GORM
6.4.1 Dynamic Finders
6.4.2 Where Queries
6.4.3 Criteria
6.4.4 Detached Criteria
6.4.5 Hibernate Query Language (HQL)
6.5 Advanced GORM Features
6.5.1 Eventsand Auto Timestamping
6.5.2 Custom ORM Mapping
6.5.2.1 Table and Column Names
6.5.2.2 Caching Strategy
6.5.2.3 Inheritance Strategies
6.5.2.4 Custom Database Identity
6.5.2.5 Composite Primary Keys
6.5.2.6 Database Indices
6.5.2.7 Optimistic Locking and Versioning
6.5.2.8 Eager and Lazy Fetching
6.5.2.9 Custom Cascade Behaviour
6.5.2.10 Custom Hibernate Types
6.5.2.11 Derived Properties
6.5.2.12 Custom Naming Strategy
6.5.3 Default Sort Order
6.6 Programmatic Transactions
6.7 GORM and Constraints
7 TheWeb Layer
7.1 Controllers
7.1.1 Understanding Controllers and Actions
7.1.2 Controllers and Scopes
7.1.3 Modelsand Views

7.1.4 Redirectsand Chaining
7.1.5 DataBinding
7.1.6 XML and JSON Responses
7.1.7 More on JSONBuilder
7.1.8 Uploading Files
7.1.9 Command Objects
7.1.10 Handling Duplicate Form Submissions
7.1.11 Simple Type Converters
7.1.12 Declarative Controller Exception Handling
7.2 Groovy Server Pages
7.2.1 GSPBasics
7.2.1.1 Variablesand Scopes
7.2.1.2 Logic and Iteration
7.2.1.3 Page Directives
7.2.1.4 Expressions
7.2.2 GSPTags
7.2.2.1 Variablesand Scopes
7.2.2.2 Logicand Iteration
7.2.2.3 Search and Filtering
7.2.2.4 Linksand Resources
7.2.2.5 Formsand Fields
7.2.2.6 TagsasMethod Calls
7.2.3 Viewsand Templates
7.2.4 Layoutswith Sitemesh
7.2.5 Static Resources
7.2.6 Sitemesh Content Blocks
7.2.7 Making Changesto a Deployed Application
7.2.8 GSP Debugging
7.3 Tag Libraries
7.3.1 Variables and Scopes
7.3.2 Simple Tags
7.3.3 Logical Tags
7.3.4 lterative Tags
7.3.5 Tag Namespaces
7.3.6 Using JSP Tag Libraries
7.3.7 Tagreturn value
7.4 URL Mappings

7.4.1 Mapping to Controllers and Actions
7.4.2 Mapping to REST resources
7.4.3 Redirects In URL Mappings
7.4.4 Embedded Variables
7.45 Mapping to Views
7.4.6 Mapping to Response Codes
7.4.7 Mapping to HTTP methods
7.4.8 Mapping Wildcards
7.4.9 Automatic Link Re-Writing
7.4.10 Applying Constraints
7.4.11 Named URL Mappings
7.4.12 Customizing URL Formats
7.4.13 Namespaced Controllers
7.5 Interceptors
7.5.1 Defining Interceptors
7.5.2 Matching Requests with Inteceptors
7.5.3 Ordering Interceptor Execution
7.6 Content Negotiation
8 Traits
8.1 Traits Provided by Grails
8.1.1 WebAttributes Trait Example
9 Web Services
9.1 REST
9.1.1 Domain classes as REST resources
9.1.2 Mapping to REST resources
9.1.3 Linking to REST resources
9.1.4 Versioning REST resources
9.1.5 Implementing REST controllers
9.1.5.1 Extending the RestfulController super class
9.1.5.2 Implementing REST Controllers Step by Step
9.1.5.3 Generating a REST controller using scaffolding
9.1.6 Customizing Response Rendering
9.1.6.1 Customizing the Default Renderers
9.1.6.2 Registering Custom Objects Marshallers
9.1.6.3 Using Named Configurations for Object Marshallers
9.1.6.4 Implementing the ObjectMarshaller Interface

9.1.6.5 Implementing a Custom Renderer

9.1.6.6 Using GSP to Customize Rendering
9.1.7 Hypermedia as the Engine of Application State
9.1.7.1 HAL Support
9.1.7.2 Atom Support
9.1.7.3 Vnd.Error Support
9.1.8 Customizing Binding of Resources
9.2 SOAP
9.3 RSSand Atom
10 Asynchronous Programming
10.1 Promises
10.2 Events
10.2.1 Consuming Events
10.2.2 Event Notification
10.2.3 Reactor Spring Annotations
10.2.4 Eventsfrom GORM
10.2.5 Eventsfrom Spring
10.3 Asynchronous GORM
10.4 Asynchronous Request Handling
10.5 Servlet 3.0 Async
11 Vadidation
11.1 Declaring Constraints
11.2 Validating Constraints
11.3 Sharing Constraints Between Classes
11.4 Validation on the Client
11.5 Validation and Internationalization
11.6 Applying Validation to Other Classes
12 The Service Layer
12.1 Declarative Transactions
12.1.1 Transactions Rollback and the Session
12.2 Scoped Services
12.3 Dependency Injection and Services
12.4 Using Services from Java
13 Static Type Checking And Compilation
13.1 The GrailsCompileStatic Annotation
13.2 The GrailsTypeChecked Annotation
14 Testing
14.1 Unit Testing

14.1.1 Unit Testing Controllers
14.1.2 Unit Testing Tag Libraries
14.1.3 Unit Testing Domains
14.1.4 Unit Testing Filters
14.1.5 Unit Testing URL Mappings
14.1.6 Mocking Collaborators
14.1.7 Mocking Codecs
14.1.8 Unit Test Metaprogramming
14.2 Integration Testing
14.3 Functional Testing
15 Internationalization
15.1 Understanding Message Bundles
15.2 Changing Locales
15.3 Reading Messages
15.4 Scaffolding and i18n
16 Security
16.1 Securing Against Attacks
16.2 Cross Site Scripting (XSS) Prevention
16.3 Encoding and Decoding Objects
16.4 Authentication
16.5 Security Plugins
16.5.1 Spring Security
16.5.2 Shiro
17 Plugins
17.1 Creating and Installing Plugins
17.2 Plugin Repositories
17.3 Providing Basic Artefacts
17.4 Evauating Conventions
17.5 Hooking into Runtime Configuration
17.6 Adding Methods at Compile Time
17.7 Adding Dynamic Methods at Runtime
17.8 Participating in Auto Reload Events
17.9 Understanding Plugin Load Order
17.10 TheArtefact AP
17.10.1 Asking About Available Artefacts
17.10.2 Adding Y our Own Artefact Types
18 Grailsand Spring

18.1 The Underpinnings of Grails
18.2 Configuring Additional Beans
18.3 Runtime Spring with the Beans DSL
18.4 The BeanBuilder DSL Explained
18.5 Property Placeholder Configuration
18.6 Property Override Configuration

19 Grailsand Hibernate
19.1 Using Hibernate XML Mapping Files
19.2 Mapping with Hibernate Annotations
19.3 Adding Constraints

20 Scaffolding

21 Deployment

22 Contributing to Grails
22.1 Report Issuesin Github's issue tracker
22.2 Build From Source and Run Tests
22.3 Submit Patches to Grails Core
22.4 Submit Patches to Grails Documentation

1 Introduction

Java web development as it stands today is dramatically more complicated than it needs to be. Most moc
complicated and don't embrace the Don't Repeat Y ourself (DRY)) principles.

Dynamic frameworks like Rails, Django and TurboGears helped pave the way to a more modern way of tt
these concepts and dramatically reduces the complexity of building web applications on the Java platfol
does so by building on already established Java technologies like Spring and Hibernate.

Grails is a full stack framework and attempts to solve as many pieces of the web development puzzle
plugins. Included out the box are thingslike:

® Aneasy to use Object Relational Mapping (ORM) layer built on Hibernate
® Anexpressive view technology called Groovy Server Pages (GSP)
® A controller layer built on Spring MVC

® Aninteractive command line environment and build system based on Gradle

* Anembedded Tomcat container which is configured for on the fly reloading
® Dependency injection with the inbuilt Spring container
® Support for internationalization (i18n) built on Spring's core MessageSource concept

® A transactional service layer built on Spring's transaction abstraction

All of these are made easy to use through the power of the Groovy language and the extensive use of Dom

This documentation will take you through getting started with Grails and building web applications with tr

1.1 What's new in Grails 3.0?

This section covers the new features that are present in 3.0 and is broken down into sections coveri
persistence enhancements and improvements in testing. Note there are many more small enhancements ar
of the highlights.

1.1.1 Core Features

Groovy 2.4

Grails 3.0 comes with Groovy 2.4 which includes many new features and enhancements.

For more information on Groovy 2.4, see the release notes for more information.

Spring 4.1 and Spring Boot 1.2

Grails 3.0 comes with Spring 4.1 which includes many new features and enhancements.

In addition, Grails 3.0 is built on Spring Boot 1.2 which provides the ability to produce runnable JAR f
containers.

Gradle Build System

http://www.hibernate.org
http://www.spring.io
http://gradle.org
http://tomcat.apache.org
http://groovy-lang.org
http://groovy-lang.org/releasenotes/groovy-2.4.html
https://spring.io/blog/2014/09/04/spring-framework-4-1-ga-is-here
http://projects.spring.io/spring-boot/

Grails 3.0 deprecates the older Gant-based build system in favour of a new Gradle-based build that integra

See the new section on the new Gradle build for more information.

Application Profiles

Grails 3.0 supports the notion of application profiles via a new profile repository. A profile encapsule
plugins and capabilities. For example the "web" profile allows construction of web applications deploy
profiles will be developed targeting different environments.

See the new section on Profiles for more information.

Redesigned API based on Traits

The Grails API has been redesigned so that public API is correctly populated under the gr ai | s. packa
change can befoundintheor g. gr ai | s. package. The core API has also been rewritten and based arou

See the new documentation on Grails 3.0's core traits for more information.
1.1.2 Web Features
New Interceptors API

In previous versions of Grails, filters were used to define logic that intercepts controller action execution.

Asof Grails 3.0, this API is deprecated and has been replaced by the new Interceptor API. An example int

class Myl nterceptor {
bool ean before() { true }
bool ean after() { true }

void afterView) {
/'l no-op

1.1.3 Development Environment Features
New Shell and Code Generation API

Replacing Gant, Grails 3.0 features a new interactive command line shell that integrates closely with Gi
interact with Gradle and perform code generation.

The new shell integrates closely with the concept of application profiles with each profile capable definit
versions of Grails, plugins can define new shell commands that can invoke Gradle or perform code general

See the new guide on Creating Custom Scripts for more information.

10

http://gradle.org
http://plugins.gradle.org
https://github.com/grails/grails-profile-repository
http://groovy-lang.org/objectorientation.html#_traits
https://github.com/grails/grails-profile-repository/tree/master/profiles/web/commands

Enhanced IDE Integration

Since Grails 3.0 is built on Gradle, you can now import a Grails project using IntelliJ community editior
need for Grails specific tooling. Grails 3.0 plugins are published as ssimple JAR files greatly reducing 1
Grails.

Application Main Class

Each new Grails 3.0 project features an Appl i cat i on class that has atraditional stati ¢ void na
3.0 application from an IDE like IntelliJ or GGTS you can simply right-click on the Appl i cat i on class
Grails 3.0 tests can also just be run from the IDE directly without needing to resort to the command line (e

1.1.4 Testing Features

Integration and Geb Functional Tests

Grails 3.0 supports built in support for Spock/Geb functional tests using the create-functional-test comm
test running mechanism and load the application just once for an entire suite of tests. The tests can be rul
line.

Gradle Test Running

Since Grails 3.0 is built on Gradle the test execution configuration is much more flexible and can easily co

11

2 Getting Started

2.1 Installation Requirements

Before installing Grails 3.0 you will need as a minimum a Java Development Kit (JDK) installed version :
your operating system, run the installer, and then set up an environment variable called JAVA HOVE poini

To automate the installation of Grails we recommend the GVM tool which greatly ssmplifiesinstalling anc

For manual installation, we recommend the video installation guides from grail sexample.net:

* Windows
® | inux

® Mac OSX

These will show you how to install Grailstoo, not just the JDK.

& A JDK isrequired in your Grails development environment. A JRE is not sufficient.

On some platforms (for example OS X) the Java installation is automatically detected. However in many
location of Java. For example:

export JAVA HOVE=/ Li brary/ Java/ Horre
export PATH="$PATH: $JAVA HOVE/ bi n"

if you're using bash or another variant of the Bourne Shell.

2.2 Downloading and Installing
Thefirst step to getting up and running with Grailsisto install the distribution.

The best way to install Grails on *nix systems is with the GVM tool which greatly simplifiesinstalling anc

For manual installation follow these steps:

12

http://gvmtool.net
http://www.grailsexample.net/
http://www.grailsexample.net/installing-a-grails-development-environment-on-windows/
http://www.grailsexample.net/installing-a-grails-development-environment-on-linux/
http://www.grailsexample.net/installing-a-grails-development-environment-on-os-x/
http://gvmtool.net

* Download abinary distribution of Grails and extract the resulting zip file to alocation of your choice
® Set the GRAILS HOME environment variable to the location where you extracted the zip

® On Unix/Linux based systems this is typically a matter of adding sc
CGRAI LS HOME=/ pat h/ t o/ gr ai | s toyour profile

® On Windowsthisistypically amatter of setting an environment variable under My Conput er
® Then add the bi n directory to your PATH variable:

® On Unix/Linux based systems this can be done by adding export PATH="$PATH:. $GRAI L¢

® On Windows thisis done by modifying the Pat h environment variable under My Conput er/

If Grailsisworking correctly you should now be abletotypegrai | s -ver si on intheterminal windo

bc. Grailsversion: 3.0.0

2.3 Creating an Application

To create a Grails application you first need to familiarize yourself with the usage of the gr ai | s commar

grails [command nane]

Run create-app to create an application:

grails create-app helloworld

Thiswill create a new directory inside the current one that contains the project. Navigate to this directory i

cd helloworld

2.4 A Hello World Example

Let's now take the new project and turn it into the classic "Hello world!" example. First, change into the '

the Grails interactive console;

13

https://github.com/grails/grails-core/releases

$ cd helloworld
$ grails

Y ou should see a prompt that looks like this:

Graeme—-Rochers—iMac:helloworld graemerocher$ grails
I Enter a script name to run. Use TAB for completion:
qrails>

What we want is a simple page that just prints the message "Hello World!" to the browser. In Grails, wher
controller action for it. Since we don't yet have a controller, let's create one now with the create-controller

grail s> create-controller hello

Don't forget that in the interactive console, we have auto-completion on command names. So you can tyf
cr eat e- * commands. Type afew more letters of the command name and then <tab> again to finish.

The above command will create a new controller in the grail s-app/control
Hel | oControl | er. groovy. Why theextrahel | owor | d directory? Because in Java land, it's stron
packages, so Grails defaults to the application name if you don't provide one. The reference page for create

We now have a controller so let's add an action to generate the "Hello World!" page. The code looks like tt

package hel | oworl d
class Hell oController {

def index() {
render "Hello World!"
}

The action is simply amethod. In this particular case, it calls a special method provided by Grailsto rende

Job done. To see your application in action, you just need to start up a server with another command callec

grail s> run-app

14

This will start an embedded server on port 8080 that hosts your application. You should now be
http://localhost:8080/ - try it!

Note that in previous versions of Grails the context path was by default the name of the application. If you
acontext pathingrai | s- app/ conf/application.ym:

server:
"contextPath': '/helloworld

With the above configuration in place the server will instead startup at the URL http://localhost:8080/hello

& |f you see the error "Server failed to start for port 8080: Address already in use", then it mean
that port. You can easily work around this by running your server on a different port usin
'9090' isjust an example: you can pretty much choose anything within the range 1024 to 4915

The result will look something like this:

Welcome to Grails

APPLICATION STATUS Congratulations, you have successfully started your first Grails application! At the moment this
App version: 0.1 is the dafault page, feel free to madiy it to either redirect to a controller or display whatever
Grails version: 2.0.0.BUILD- content you may choose. Below is a list of controllers that are currently deployed in this
SNAPSHOT application, click on each to execute its default action:

Groowy version: 1.8.3-

SMARSHOT .

VM version: 1.6.0_26 A@ilahla cont.mllam,

Controllers: 1 » halloword HelloController

Domains: 0

Senvices: 2

Tag Libeares: 12

INSTALLED PLUGINS

logging - 2.0.0.BUILD-

This is the Grails intro page which is rendered by the gr ai | s- app/ vi ew i ndex. gsp file. It deteci
links to them. Y ou can click on the "HelloController”" link to see our custom page containing the text "Hel
Grails application.

One final thing: a controller can contain many actions, each of which corresponds to a different pag
accessible via a unique URL that is composed from the controller name and the action name: /<appnan
access the Hello World page via /helloworld/hello/index, where 'hello' is the controller name (remove
lower-case the first letter) and 'index’ is the action name. But you can also access the page via the same
'index’ isthe default action . See the end of the controllers and actions section of the user guide to find out

2.5 Using Interactive Mode

Grails 3.0 features an interactive mode which makes command execution faster since the VM doesn't |
interactive mode simple type 'grails from the root of any projects and use TAB completion to get alist of
for an example:

15

http://localhost:8080/
http://localhost:8080/helloworld/
http://localhost:8080/helloworld/hello/index

&8 00 bookstore — java — F4x22 e

Graeme-Rochers—iMac:bookstore graemerocher$ agrails
| Enter a script name to run. Use TAB for completion:
grails> create-s

create-script create-service
grails> create-service bockstore.Bock

For more information on the capabilities of interactive mode refer to the section on Interactive Mode in the

2.6 Getting Set Up in an IDE
IntelliJ IDEA

IntelliJ IDEA is an excellent IDE for Grails 3.0 development. It comesin 2 editions, the free community e

The community edition can be used for most things, although GSP syntax higlighting is only part of the ul
and Grails3.0simply gotoFi |l e / I nport Project andpoint IDEA at your bui | d. gr adl e file

Eclipse

We recommend that users of Eclipse looking to develop Grails application take alook at Groovy/Grails T¢
including automatic classpath management, a GSP editor and quick access to Grails commands.

Like Intellij you can import a Grails 3.0 project using the Gradle project integration.

NetBeans

NetBeans provides a Groovy/Grails plugin that automatically recognizes Grails projects and provides tf
code completion and integration with the Glassfish server. For an overview of features see the NetBean:
was written by the NetBeans team.

TextMate, Sublime, VIM etc.

There are several excellent text editors that work nicely with Groovy and Grails. See below for references:

16

http://www.jetbrains.com/idea
http://www.eclipse.org/
https://spring.io/tools/ggts
http://www.grails.org/NetBeans+Integration

A TextMate bundle exists Groovy / Grails support in Textmate

A Sublime Text plugin can be installed via Sublime Package Control for the Sublime Text Editor.

® Seethis post for some helpful tips on how to setup VIM as your Grails editor of choise.

An Atom Package is available for use with the Atom editor

2.7 Convention over Configuration

Grails uses "convention over configuration” to configure itself. This typically means that the name a
configuration, hence you need to familiarize yourself with the directory structure provided by Grails.

Hereis abreakdown and links to the relevant sections:
® grail s-app -toplevel directory for Groovy sources

¢ conf - Configuration sources.
® controllers -Webcontrollers- TheCin MVC.
¢ domai n - The application domain.
® | 18n - Support for internationalization (i18n).
® services - Theservicelayer.
® taglib-Taglibraries.
® util s - Grailsspecific utilities.

® vi ews - Groovy Server Pages- TheV in MVC.

® scri pts - Code generation scripts.
® src/ mai n/ groovy - Supporting sources

® src/test/groovy - Unit and integration tests.

2.8 Running an Application

Grails applications can be run with the built in Tomcat server using the run-app command which will load

grails run-app

Y ou can specify adifferent port by using the ser ver . port argument:

17

https://github.com/textmate/groovy-grails.tmbundle
http://macromates.com
https://github.com/osoco/sublimetext-grails
http://www.sublimetext.com
http://www.objectpartners.com/2012/02/21/using-vim-as-your-grails-ide-part-1-navigating-your-project/
https://atom.io/packages/atom-grails
https://atom.io

grails -Dserver. port=8090 run-app

Note that it is better to start up the application in interactive mode since a container restart is much quicker

$ grails

grail s> run-app

Server running. Browse to http://I| ocal host: 8080/ hel | owor | d
Application | oaded in interactive node. Type 'stop-app' to shutdown.
Downl oadi ng: pl ugi ns-1ist. xn

grail s> stop-app

| Stopping Gails server

grail s> run-app

Server running. Browse to http://I| ocal host: 8080/ hel | owor | d
Application | oaded in interactive node. Type 'stop-app' to shutdown.
Downl oadi ng: pl ugi ns-1i st. xn

More information on the run-app command can be found in the reference guide.

2.9 Testing an Application

Thecr eat e- * commands in Grails automatically create unit or integration tests for you within the sr ¢,
you to populate these tests with valid test logic, information on which can be found in the section on Testir

To execute tests you run the test-app command as follows:

grails test-app

2.10 Deploying an Application
Grails applications can be deployed in a number of different ways.

If you are deploying to a traditional container (Tomcat, Jetty etc.) you can create a Web Application Al
command for performing this task:

18

grails war

Thiswill produce aWAR fileunder thebui | d/ | i bs directory which can then be deployed as per your ¢

Note that by default Grails will include an embeddable version of Tomcat inside the WAR file, this ¢
version of Tomcat. If you don't intend to use the embedded container then you should change the scope o
to deploying to your production container in bui | d. gr adl e:

provi ded "org. springfranework. boot: spring-boot-starter-toncat"”

Unlike most scripts which default to the devel opnent environment unless overridden, the war comn
default. Y ou can override this like any script by specifying the environment name, for example:

grails dev war

If you prefer not to operate a separate Servlet container then you can simply run the Grails WAR fileasar

grails war
java -Dgrails.env=prod -jar build/libs/nywar-0.1.war

When deploying Grails you should always run your containers VM with the - ser ver option and with ¢
flags would be:

-server -Xnx768M - XX: MaxPer nSi ze=256m

19

2.11 Supported Java EE Containers
Grails runs on any container that supports Servlet 3.0 and above and is known to work on the following spr
¢ Tomcat 7
® GlassFish 3 or above
® Resin 4 or above
® JBoss 6 or above
® Jetty 8 or above
® Oracle Weblogic 12c or above
* |IBM WebSphere 8.0 or above

& It'srequired to set "-Xverify:none" in "Application servers > server > Process Definition > Ja
JVM arguments” for older versions of WebSphere. Thisis no longer needed for WebSphere v

Some containers have bugs however, which in most cases can be worked around. A list of known deployir

2.12 Creating Artefacts

Grails ships with afew convenience targets such as create-controller, create-domain-class and so on that w
for you.

& These arejust for your convenience and you can just as easily use an IDE or your favourite te

For example to create the basis of an application you typically need a domain model:

grails create-app helloworld
cd hel l oworl d
grails create-donmain-cl ass book

Thiswill result in the creation of adomain classat gr ai | s- app/ donai n/ hel | owor | d/ Book. gro

package hel | oworl d

cl ass Book {

}

20

http://grails.org/Deployment

There are many such cr eat e- * commands that can be explored in the command line reference guide.

&% To decrease the amount of time it takes to run Grails scripts, use the interactive mode.

2.13 Generating an Application

To get started quickly with Grailsit is often useful to use a feature called Scaffolding to generate the skele
gener at e- * commands such as generate-all, which will generate a controller (and its unit test) and the ¢

grails generate-all hell oworl d. Book

21

3 Upgrading from Grails 2.x
Grails 3.0 is a complete ground up rewrite of Grails and introduces new concepts and components for man
When upgrading an application or plugin from Grails 3.0 there are many areas to consider including:
® Remova of dynamic scaffolding from Grails 3.0.0 till 3.0.4 when it was re-introduced
® Removal of before and after interceptors
® Project structure differences
® Filelocation differences
® Configuration differences
® Package name differences
® [egacy Gant Scripts
® Gradle Build System
® Changesto Plugins

® Sourcevs Binary Plugins

The best approach to take when upgrading a plugin or application (and if your application is using severd
to create anew Grails 3.0 application of the same name and copy the source files into the correct locations

Removal of before and after interceptors

Before and after interceptors were removed. So all bef or el nt er ceptor andafter|nterceptor i

File Location Differences

File Location Differences

The location of certain files have changed or been replaced with other filesin Grails 3.0. The following tak
new locations:

22

grail s-app/ conf/Bui | dConfi g. groovy buil d. gradl e

grail s-app/ conf/ Confi g. groovy grail s-app/ conf/application. groovy

grail s-app/ conf/ Url Mappi ngs. groovy grail s-app/controllers/ Ul Mappi ngs. g

grail s-app/ conf/ Boot Strap. groovy grails-app/init/BootStrap.groovy

scripts src/ mai n/scripts

src/ groovy src/ mai n/ gr oovy

src/java src/ mai n/ gr oovy

test/unit src/test/ groovy

test/integration src/integration-test/groovy

web- app src/ mai n/ webapp or src/ mai n/ r esour ces/
*@G ai | sPl ugi n. groovy src/ mai n/ groovy

src/ mai n/ resour ces/ publ i ¢ isrecommended assr ¢/ mai n/ webapp only getsincluded in WA

For plugins the plugin descriptor (a Groovy file ending with "GrailsPlugin") which was previously locat
moved to the sr ¢/ mai n/ gr oovy directory under an appropriate package.

New Files Not Present in Grails 2.x

The reason it is best to create a new application and copy your original sources to it is because there ar
Grails 2.x by default. These include:

bui | d. gradl e The Gradle build descriptor |locate
gradl e. properties Properties file defining the Grails
grail s-app/ conf/| ogback. groovy Logging previously defined in Co
grail s-app/ conf/application.ynl Configuration can now also be del
grail s-app/init/PACKAGE PATH Application. groovy TheApplicati on classused B

Files Not Present in Grails 3.x

Some files that were previously created by Grails 2.x are no longer created. These have either been rem
following table lists files no longer in use:

23

appl i cation. properties The application name and version is now define
grai |l s-app/ conf/ Dat aSour ce. gr oovy Merged together into appl i cati on. ym
lib Dependency resolution should be used to resolv

web- app/ VEEB- | NF/ appl i cati onCont ext . xnl Removed, beans can be definedingr ai | s- af

src/ tenpl at es/ war/ web. xn Grails 3.0 no longer requires web.xml. Customi
web- app/ VEEB- | NF/ si t emesh. xmi Removed, sitemesh filter no longer present.
web- app/ VEB- I NF/ t | d Removed, can berestoredinsr c/ mai n/ web:

3.1 Upgrading Plugins

To upgrade a Grails 2.x plugin to Grails 3.x you need to make a number of different changes. This docum
upgrade the Quartz plugin to Grails 3, each individual plugin may differ.

Step 1 - Create a new Grails 3 plugin

Thefirst step isto create anew Grails 3 plugin using the command line:

$ grails create-plugin quartz

Thiswill create a Grails 3 plugininthe quar t z directory.

Step 2 - Copy sources from the original Grails 2 plugin

The next step is to copy the sources from the original Grails 2 plugin to the Grails 3 plugin:

first the sources

cp -rf ../quartz-2.x/src/groovy/ src/main/groovy

cp -rf ../quartz-2.x/src/javal src/main/groovy

cp -rf ../quartz-2.x/grails-app/ grails-app

cp -rf ../quartz-2.x/ QuartzGail sPl ugin.groovy src/min/groovy/grails/plugins/qua

then the tests

cp -rf ../quartz-2.x/test/unit/* src/test/groovy

nkdir -p src/integration-test/groovy

cp -rf ../quartz-2.x/test/integration/* src/integration-test/groovy

then tenplates / other resources
cp -rf ../quartz-2.x/src/tenplates/ src/min/tenplates

24

Step 3 - Alter the plugin descriptor

Y ou will need to add a package declaration to the plugin descriptor. Inthiscase Quart zG ai | sPl ugi r

/'l add package decl aration
package grails. plugins.quartz

cl ass QuartzGail sPlugin {
}

In addition you should remove the ver si on property from the descriptor asthisis now defined in bui | ¢

Step 4 - Update the Gradle build with required dependencies

The repositories and dependencies defined in gr ai | s- app/ conf/ Bui | dConfi g. gr oovy of the ol
inbui | d. gr adl e of the new Grails 3.x plugin:

conpil e("org. quartz-schedul er: quartz:2.2.1") {
exclude group: 'slf4j-api', nodule: 'c3p0

}

Step 5 - Modify Package Imports

In Grails 3.x all internal APIs can be found in the org. grails package and public fac
or g. codehaus. gr oovy. gr ai | s package no longer exists.

All package declaration in sources should be modified for the new location
or g. codehaus. groovy. grai |l s. commons. Grai | sApplicationisnowgrails.core. G

Step 5 - Migrate Plugin Specific Config to application.yml

Some plugins define a default configuration file. For example the Quart
grail s-app/conf/DefaultQuartzConfig.groovy. In Grals 3.x this default
grail s-app/ conf/application.ym anditwill automatically be loaded by Grails without requir

Step 6 - Register ArtefactHandler Definitions

In Grails 3.x ArtefactHandler definitions written in Java need to b
src/ mai n/ resources/ META-I NF/ grai |l s. factori es sincethese need to be known at compile

25

http://grails.github.io/grails-doc/3.0.x/api/grails/core/ArtefactHandler.html

& If the Art ef act Handl er is written in Groovy this step can be skipped as Grails w
grails. factori es fileduring compilation.

The Quartz plugin requires the following definition to register the Ar t r ef act Handl er :

grails.core. Artefact Handl er =grai | s. pl ugi ns. quart z. JobArt ef act Handl er

Step 7 - Migrate Code Generation Scripts

Many plugins previously defined command line scripts in Gant. In Grails 3.x command line scripts h
generation scripts and Gradle tasks.

If your script is doing simple code generation then for many cases a code generation script can replace an «

Thecr eat e-j ob script provided by the Quartz plugin in Grails 2.x was defined inscri pt s/ Cr eat e.

i ncludeTargets << grailsScript(" GailsCreateArtifacts")

target (createJob: "Creates a new Quartz schedul ed job") {
depends(checkVer si on, parseArgunents)

def type = "Job"
pronpt For Nanme(type: type)

for (name in argsMap. parans) {
nane = purgeRedundant Artifact Suffix(name, type)
createArtifact(nane: nanme, suffix: type, type: type, path: "grails-app/jo
creat eUni t Test (nane: nanme, suffix: type)
}
}

set Def aul t Target ' createJdob

A replacement Grails 3.x compatible script can be created using the cr eat e- scri pt command:

$ grails create-script create-job

Which creates anew script called sr ¢/ mai n/ scri pt s/ creat e-j ob. gr oovy. Using the new code

26

description("Creates a new Quartz schedul ed job") {
usage "grails create-job [JOB NAVE]"
argument nane: ' Job Nane', description:"The name of the job"

nmodel = nodel (args[0])

render tenplate:"Job. groovy"
destination: file("grails-app/jobs/$nodel.packagePat h/ ${ nodel . si npl eNane
nodel : nodel

Please refer to the documentation on Creating Custom Scripts for more information.

Migrating More Complex Scripts Using Gradle Tasks

Using the old Grails 2.x build system it was relatively common to spin up Grails inside the command line
application within a code generation script created by the create-script command.

Instead a new mechanism specific to plugins exists via the create-command command. The cr ea
ApplicationCommand, for example the following command will execute a query:

i mport grails.dev.commands. *

i nport javax.sql.*

i mport groovy.sql.*

i mport org.springframework. beans. factory. annotation. *

cl ass RunQueryComrand i npl enents Applicati onCommand {

@\ut owi r ed
Dat aSour ce dat aSour ce

bool ean handl e(Executi onCont ext ctx) {
def sgl = new Sgl (dat aSour ce)
println sql.executeQuery("select * fromfoo")
return true

With this command in place once the plugin is installed into your local Maven cache you can add the plt
classpath of the application'sbui | d. gr adl e file:

27

http://grails.github.io/grails-doc/3.0.x/api/grails/dev/commands/ApplicationCommand.html

bui | dscri pt {

aépendencies {
classpath "org.grails. plugins: nypl ugi n: 0. 1- SNAPSHOT"

}

aépendencies {
runtime "org.grails.plugins: nyplugin: 0. 1- SNAPSHOT"
}

Grails will automatically create a Gradle task called r unQuer y and a command named r un- query s
command:

$ grails run-query
$ gradl e runQuery

Step 8 - Delete Files that were migrated or no longer used

You should now delete and cleanup the project of any files no longer required by Grails 3.x (BL
Dat aSour ce. gr oovy €tc.)

3.2 Upgrading Applications

Upgrading applications to Grails 3.x will require that you upgrade all plugins the application uses first, he
section to first upgrade your plugins.

Step 1 - Create a New Application

Once the plugins are Grails 3.x compatible you can upgrade the application. To upgrade an application it i
using the "web" profile:

$ grails create-app nyapp
$ cd nyapp

Step 2 - Migrate Sources

The next step isto copy the sources from the original Grails 2 application to the Grails 3 application:
28

first the sources

cp -rf ../old _app/src/groovy/ src/main/groovy
cp -rf ../old _app/src/javal src/main/groovy
cp -rf ../old app/grails-app/ grails-app

then the tests

cp -rf ../old app/test/unit/ src/test/groovy

nkdir -p src/integration-test/groovy

cp -rf ../old app/test/integration/ src/integration-test/groovy

Step 3 - Update the Gradle build with required dependencies

The repositories and dependencies defined in gr ai | s- app/ conf/ Bui | dConfi g. gr oovy of the
definedinbui | d. gr adl e of the new Grails 3.x application.

Step 4 - Modify Package Imports

In Grails 3.x all internal APIs can be found in the org. grails package and public fac
or g. codehaus. gr oovy. gr ai | s package no longer exists.

All package declaration in sources should be modified for the new location
or g. codehaus. groovy. grai |l s. commons. Grai | sApplicationisnowgrails.core. G

Step 5 - Migrate Configuration

The configuration of the application will need to be migrated, this can normally be done by simply renan
to grails-app/conf/application.groovy and merging the content of grails-:
grail s-app/ conf/application. groovy.

Note however that Log4j has been replaced by grail s-app/ conf/| ogback. groovy for
grail s-app/ conf/ Confi g. groovy should be migrated to logback format.

Step 6 - Migrate web.xml Modifications to Spring

If you have amodified web. xm template then you will need to migrate this to Spring as Grails 3.x does|
haveoninsrc/ mai n/ webapp/ VEEB- | NF/ web. xm).

New servlets and filters can be registered as Spring beans or with ServletRegistrationBean and FilterRegis

Step 7 - Migrate Static Assets not handled by Asset Pipeline

If you have static assets in your web- app directory of your Grails 2.x application such as HTML files,
assets such as static HTML pages and so on these should goinsr ¢/ mai n/ r esour ces/ publ i c.

TLD descriptors and non public assets should goinsr c/ mai n/ r esour ces/ VEEB- | NF.

Asnoted earlier, sr ¢/ mai n/ webapp folder can also be used for this purpose but it is not recommended.

29

http://logback.qos.ch/manual/groovy.html
http://docs.spring.io/spring-boot/docs/current/api/org/springframework/boot/context/embedded/ServletRegistrationBean.html
http://docs.spring.io/spring-boot/docs/current/api/org/springframework/boot/context/embedded/FilterRegistrationBean.html

Step 8 - Migrate Tests

Once the package names are corrected unit tests will continue to run, however any tests that extend the
need to be migrated to Spock or JUnit 4.

Integration tests will need to be annotated with the Integration annotation and should not extend GroovyTe

30

http://grails.github.io/grails-doc/3.0.x/api/grails/test/mixin/integration/Integration.html

4 Configuration

It may seem odd that in a framework that embraces "convention-over-configuration” that we tackle this
actually develop an application without doing any configuration whatsoever, as the quick start demonstra
override the conventions when you need to. Later sections of the user guide will mention what configuratic
The assumption is that you have at least read the first section of this chapter!

4.1 Basic Configuration

Configuration in Grailsis generally split across 2 areas: build configuration and runtime configuration.

Build configuration is generally done via Gradle and the bui | d. gr adl e file. Runtime configural
grail s-app/conf/application.ym file

If you prefer to use Grails 2.0-style Groovy configuration then you can create an additional gr ai | s-
specify configuration using Groovy's ConfigSlurper syntax.

For Groovy configuration the following variables are available to the configuration script:

userHome Location of the home directory for the account that is running the Grails application.

grailsHome Location of the directory where you installed Grails. If the GRAI LS_HOVE environment vari

appName The application name as it appears in application.properties.

appVersion The application version as it appears in application.properties.

For example:

ny.tnp.dir = "${userHone}/.grails/tnp"

If you want to read runtime configuration settings, i.e. those defined in appl i cati on. ym , usethegr :
asavariable in controllers and tag libraries:

class MyController {
def hello() {
def recipient = grailsApplication.config.getProperty('foo.bar.hello")

render "Hello ${recipient}"
}

31

http://groovy.codehaus.org/ConfigSlurper
http://grails.github.io/grails-doc/3.0.x/api/grails/core/GrailsApplication.html

The confi g property of thegr ai | sAppl i cati on object is an instance of the Config interface and [
configuration of the application.

Notice that the Conf i g instance is a merged configuration based on Spring's PropertySource concept
system properties and the local application configuration merging them into a single object.

Grai | sAppl i cati on can beeasily injected into services and other Grails artifacts:

i mport grails.core.*

cl ass MyService {
Grail sApplication grail sApplication

String greeting() {
def recipient = grail sApplication.config.getProperty('foo.bar.hello")
return "Hello ${recipient}"”

}

Finally, you can also use Spring's Value annotation to inject configuration values:

i mport org.springframework. beans. factory. annotation. *

class MyController {
@/al ue(' ${foo. bar. hell o}")
String recipient

def hello() {
render "Hello ${recipient}"”
}

& In Groovy code you must use single quotes around the string for the value of the Val L
interpreted as a GString not a Spring expression.

Asyou can see, when accessing configuration settings you use the same dot notation as when you define tf

4.1.1 Options for the yml format Config

appl i cation. ym wasintroduced in Grails 3.0 for an alternative format for the configuration tasks.

Using system properties / command line arguments

Suppose you are using the JDBC_CONNECT! ON_STRI NG command line argument and you want to acce
the following manner:

32

http://grails.github.io/grails-doc/3.0.x/api/grails/config/Config.html
http://docs.spring.io/spring/docs/4.0.x/javadoc-api/org/springframework/context/annotation/PropertySource.html
http://docs.spring.io/spring/docs/4.0.x/javadoc-api/org/springframework/beans/factory/annotation/Value.html

33

producti on:
dat aSour ce:
url: ' ${JDBC_CONNECTI ON_STRI NG

Similarly system arguments can be accessed.

You will need to havethisin bui | d. gr adl e to modify theboot Run targetif grai |l s run-appist

run {
systenProperties = System properties

For testing the following will need to change thet est task asfollows

test {
systenProperties = System properties
}

4.1.2 Built in options

Grails has a set of core settings that are worth knowing about. Their defaults are suitable for most projec
because you may need one or more of them later.

Runtime settings

Ontheruntimefront, i.e. grai | s- app/ conf/ appl i cati on. ym , there are quite afew more core s

® grails.enabl e.native2ascii - Setthistofalseif you do not require native2ascii conversion

® grails.views. default.codec - Sets the default encoding regime for GSPs - can be one ¢
reduce risk of XSS attacks, set thisto 'html".

® grails.views.gsp.encoding - Thefile encoding used for GSP source files (default: 'utf-8').
® grails.mne.file.extensi ons - Whether to use the file extension to dictate the mimetypei

® grails.mne.types - A map of supported mime types used for Content Negotiation.

® grails.serverURL - A string specifying the server URL portion of absol
grails.serverURL="http://my.yourportal.com". See createl ink. Also used by redirects.

® grails.views.gsp.sitenesh. preprocess - Determines whether SiteMesh preprocessi
rendering, but if you need SiteMesh to parse the generated HTML from a GSP view then disabling
understand this advanced property: leave it set to true.

® grails.reload. excludes and grails.rel oad.incl udes - Configuring these directi\
specific source files. Each directive takes a list of strings that are the class names for project sourc
behavior or included accordingly when running the application in development with the r un- app cc
directive is configured, then only the classesin that list will be reloaded.

4.1.3 Logging

By default logging in Grails 3.0 is handled by the Logback logging frameworl
grail s-app/ conf /| ogback. groovy file.

& |f you prefer XML you can replacethe | ogback. gr oovy filewithal ogback. xni filei

For more information on configuring logging refer to the Logback documentation on the subject.

4.1.4 GORM
Grails provides the following GORM configuration options:

® grails.gormfail OnError - If set to true, causes the save() methc
grail s.validation.ValidationException if validation fails during a save. This o
representing package names. If the value is a list of Strings then the failOnError behavior will only
(including sub-packages). See the save method docs for more information.

For example, to enable failOnError for al domain classes:

grails:
gorm
fail OnError: true

and to enable failOnError for domain classes by package:

http://logback.qos.ch
http://logback.qos.ch/manual/groovy.html

grails:
gorm
fail OnError:
- com conpanynane. somepackage
- com conpanynane. soneot her package

® grails.gorm autoFl ush-If settotr ue, causes the merge, save and delete methods to flush t
usingsave(flush: true).

4.2 The Application Class

Every new Grails application features an Appl i cat i on classwitinthethegr ai | s-app/i nit directc
The Appl i cat i on class subclasses the GrailsAutoConfiguration class and featuresast ati ¢ void r
application.

4.2.1 Executing the Application Class

There are severa ways to execute the Appl i cat i on class, if you are using an IDE then you can simply
your IDE which will start your Grails application.

This is aso useful for debugging since you can debug directly from the IDE without having to connecl
- - debug-j vmcommand from the command line.

Y ou can also package your application into arunnable WAR file, for example:

$ grails package
$ java -jar build/libs/myapp-0.1.war

Thisisuseful if you plan to deploy your application using a container-less approach.

4.2.2 Customizing the Application Class

There are several ways in which you can customize the Appl i cat i on class.

Customizing Scanning

By default Grails will scan all known source directories for controllers, domain class etc., however if the
scan you can do so by overriding the packageNanes () method of the Appl i cat i on class:

35

http://grails.github.io/grails-doc/3.0.x/api/grails/boot/config/GrailsAutoConfiguration.html

class Application extends Gail sAut oConfiguration {

@verride
Col | ection<String> packageNanes() {
super . packageNanes() + ['ny.additional.package']

Registering Additional Beans

The Appl i cat i on class can also be used as a source for Spring bean definitions, simply define a me
object will become a Spring bean. The name of the method is used as the bean name:

class Application extends G ail sAut oConfi guration {
@ean

M/Type nyBean() {
} return new MyType()

4.2.3 The Application LifeCycle
The Appl i cat i on class aso implements the GrailsA pplicationLifeCycle interface which al pluginsimj

This means that the Appl i cat i on class can be used to perform the same functions as a plugin. You «
doW t hSpri ng,doW t hAppl i cati onCont ext and so on by overriding the appropriate method:

cl ass Application extends G ail sAutoConfiguration {
@verride
Cl osure doWthSpring() {
{->
nmy Spr i ngBean(MyType)

4.3 Environments

36

http://docs.spring.io/spring/docs/4.0.x/javadoc-api/org/springframework/context/annotation/Bean.html
http://grails.github.io/grails-doc/3.0.x/api/grails/core/GrailsApplicationLifeCycle.html

Per Environment Configuration

Grails supports the concept of per environment configuration. The application.ym ar
grail s-app/ conf directory can use per-environment configuration using either YAML or the synt
consider the following default appl i cat i on. ym definition provided by Grails:

envi ronnent s:
devel opnent :
dat aSour ce:
dbCreate: create-drop
url: jdbc: h2: mem devDb; M\WCC=TRUE; LOCK_TI MEOUT=10000; DB_CLOSE_ON_EXI T=
test:
dat aSour ce:
dbCreate: update
url: jdbc: h2: memtest Db; MWVCC=TRUE; LOCK_TI MEOQUT=10000; DB _CLOSE_ON EXI T
producti on:
dat aSour ce:
dbCreat e: update
url: jdbc: h2: prodDb; MWCC=TRUE; LOCK_TI MEOUT=10000; DB_CLOSE_ON_EXI T=FAL
properties:
j mxEnabl ed: true
initial Size: 5

The above can be expressed in Groovy syntax in appl i cati on. gr oovy asfollows:

dat aSour ce {
pool ed = fal se
driverCl assNane = "org. h2. Driver"
usernanme = "sa"
passwor d "

environnent s {
devel opment {
dat aSour ce {
dbCreate = "create-drop"
url = "jdbc: h2: mem devDb"

}

}
test {
dat aSour ce {
dbCreate = "update"
url = "jdbc: h2: memtest Db"

}

production {
dat aSour ce {
dbCreate = "update"
url = "jdbc: h2: prodDb"

37

http://groovy.codehaus.org/ConfigSlurper

Notice how the common configuration is provided at the top level and then an envi r onnent s blc
dbCr eat e andur | propertiesof the Dat aSour ce.

Packaging and Running for Different Environments

Grails command line has built in capabilities to execute any command within the context of a specific env

grails [environnment] [command nane]

In addition, there are 3 preset environments known to Grails: dev, prod, and t est for devel opne
create aWAR for thet est environment you wound run:

grails test war

To target other environments you can passagr ai | s. env variable to any command:

grails -Dgrails.env=UAT run-app

Programmatic Environment Detection

Within your code, such asin a Gant script or a bootstrap class you can detect the environment using the Er

i mport grails.util.Environment

switch (Environnment.current) {
case Environnent. DEVELOPMENT:
confi gur eFor Devel opnent ()
br eak
case Environnent. PRODUCTI ON:
confi gur eFor Producti on()
br eak

38

http://grails.github.io/grails-doc/3.0.x/api/grails/util/Environment.html

39

Per Environment Bootstrapping

It's often desirable to run code when your application starts up on a per-environmer
grai | s-app/ conf/ Boot Strap. groovy file'ssupport for per-environment execution:

def init = { ServletContext ctx ->
envi ronnment s {
production {

ctx.setAttribute("env", "prod")
devel opnment {
ctx.setAttribute("env", "dev")
}
ctx.setAttribute("foo", "bar")

Generic Per Environment Execution

The previous Boot St r ap exampleusesthegrai | s. uti |l . Envi ronnment classinternally to execute
your own environment specific logic:

Envi r onnment . execut eFor Cur r ent Envi ronment {
production {
/1l do sonething in production

devel opnent {
// do sonething only in devel opment
}

4.4 The DataSource

Since Grailsis built on Java technology setting up a data source requires some knowledge of JDBC (the
Connectivity).

If you use a database other than H2 you need a JDBC driver. For example for MySQL you would need Co

Driverstypically come in the form of a JAR archive. It's best to use the dependency resolution to resolvet
example you could add a dependency for the MySQL driver like this:

http://www.mysql.com/downloads/connector/j/

dependenci es {
runti me 'nysql: nysqgl -connector-java:5.1.29

If you can't use dependency resolution then just put the JAR in your project's| i b directory.

Once you have the JAR resolved you need to get familiar with how Grails manages its database configt
either grai | s-app/ conf/ appl i cati on. groovy or grail s-app/ conf/application. yn
which includes the following settings:

® driverd assNane - The class name of the JIDBC driver

® user name - The username used to establish a JDBC connection

® passwor d - The password used to establish a JDBC connection

® url -TheJDBC URL of the database

® dbCr eat e - Whether to auto-generate the database from the domain model - one of 'create-drop’, ‘cr
® pool ed - Whether to use a pool of connections (defaults to true)

® | 0gSql - Enable SQL logging to stdout

* format Sql - Format logged SQL

® di al ect - A String or Class that represents the Hibernate dialect used to communicate with the dat
available diaects.

® readOnly - If true makes the DataSource read-only, which results in the connection po
Connecti on

® transactional - If fal se leavesthe DataSource's transactionManager bean outside the chaine
This only applies to additional datasources.

® persi stencel nt ercept or - The default datasource is automatically wired up to the persistenc
automatically unlessthisissettot r ue

®* properties - Extraproperties to set on the DataSource bean. See the Tomcat Pool documentatior
of the properties.

* jnmxExport -If fal se, will disable registration of IMX MBeans for al DataSources. By default
j mxEnabl ed = true inproperties.

A typical configuration for MySQL inappl i cati on. gr oovy may be something like:

40

http://docs.jboss.org/hibernate/core/3.6/javadocs/org/hibernate/dialect/package-summary.html
http://tomcat.apache.org/tomcat-7.0-doc/jdbc-pool.html#Common_Attributes
https://tomcat.apache.org/tomcat-7.0-doc/api/org/apache/tomcat/jdbc/pool/PoolConfiguration.html
https://tomcat.apache.org/tomcat-7.0-doc/api/org/apache/tomcat/jdbc/pool/PoolConfiguration.html

dat aSour ce {
pool ed = true
dbCreate = "update"
url = "jdbc:nysql://1ocal host: 3306/ nmy_dat abase"
driverd assNane = "com nysql .jdbc. Driver"
di al ect = org. hi bernate. di al ect. MySQL5I nnoDBDi al ect
user name = "user nane"
password = "password"
properties {

j mxEnabl ed = true
initialSize =5
maxActive = 50
mnldle =5

maxl dle = 25
maxWait = 10000

maxAge = 10 * 60000

ti neBet weenEvi cti onRunsM I lis = 5000

nm nEvi ctabl el dl eTineMIlis = 60000

val i dati onQuery = "SELECT 1"

val i dati onQueryTi neout = 3

val i dationlnterval = 15000

test OnBorrow = true

testWileldle = true

test OnReturn = fal se

jdbcl nterceptors = "ConnectionSt at e; St at enent Cache(max=200) "
defaul t Transacti onl sol ati on = java. sql . Connecti on. TRANSACTI ON_READ COWM TT

@ When configuring the DataSource do not include the type or the def keyword before any of
Groovy will treat these as local variable definitions and they will not be processed. For examp

dat aSour ce {
bool ean pooled = true // type declaration results in ignored |ocal variable

Example of advanced configuration using extra properties:

41

dat aSour ce {
pool ed = true
dbCreate = "update"

url

= "jdbc: nysql ://1 ocal host: 3306/ my_dat abase"

driverd assName = "com nysql .jdbc. Driver"

di al ect = org. hi bernate. di al ect. MySQL5I nnoDBDi al ect
user name = "user name"

password = "password"

properties {

/1l Docunentation for Tontat JDBC Pool
/1 http://tontat.apache. org/tontat-7.0-doc/jdbc-pool . htm #Comon_Attri bute
/1l https://tontat.apache. org/tontat-7.0-doc/ api/org/apache/tontat/jdbc/ poo
j mxEnabl ed = true
initial Size =5
maxActive = 50
nmnldle =5
max| dl e 25
max\Wai t 10000
maxAge = 10 * 60000
ti meBet weenEvi cti onRunsM I'1is = 5000
m nEvi ctabl el dl eTimeM I 1lis = 60000
val i dati onQuery = "SELECT 1"
val i dat i onQuer yTi meout = 3
val idationlnterval = 15000
test OnBorrow = true
testWhileldle = true
testOnReturn = fal se
i gnor eExcepti onOnPreLoad = true
/1 http://tonctat.apache. org/tontat-7.0-doc/j dbc-pool . ht Ml #IDBC i nt er cept or
jdbclnterceptors = "ConnectionStat e; St at enent Cache(nax=200) "
defaul t Transacti onl sol ati on = java. sql . Connecti on. TRANSACTI ON_READ COWM TT
/1 controls for |eaked connections
abandonWhenPer cent ageFul | = 100 // settings are active only when pool is f
r enoveAbandonedTi meout = 120
renoveAbandoned = true
/1 use JMX console to change this setting at runtine
| ogAbandoned = fal se // causes stacktrace recordi ng overhead, use only for
/1 JDBC driver properties
/'l Mysql as exanple
dbProperties {
/'l Mysql specific driver properties
/1 http://dev.nysqgl.conl doc/connector-j/en/connector-j-reference-confi
/1 let Tontat JDBC Pool handl e reconnecting
aut oReconnect =f al se
/1 truncation behavi our
j dbcConpl i ant Truncati on=f al se
/'l nysql O0-date conversion
zer oDat eTi neBehavi or =" convert ToNul |
/1l Tontat JDBC Pool's StatenentCache is used instead, so disable nysql
cachePrepSt nt s=f al se
cacheCal | abl eSt nt s=f al se
/1 Tontat JDBC Pool's StatenentFinalizer keeps track
dont Tr ackOpenResour ces=t r ue
/1 performance optim zation: reduce nunber of SQLExceptions thrown in
hol dResul t sOpenOver St at enent Cl ose=t r ue
/1 enable MySQL query cache - using server prep stnts will disable que
useServer PrepSt nt s=f al se
/'l metadata caching
cacheSer ver Confi gurati on=true
cacheResul t Set Met adat a=t r ue
nmet adat aCacheSi ze=100
/1 timeouts for TCP/IP
connect Ti meout =15000
socket Ti meout =120000
/] timer tuning (disable)
mai nt ai nTi neSt at s=f al se
enabl eQuer yTi meout s=f al se
/1 msc tuning
noDat eti meStri ngSync=true

42

More on dbCreate

Hibernate can automatically create the database tables required for your domain model. Y ou have some:
the dbCr eat e property, which can take these values:

® create - Drops the existing schema and creates the schema on startup, dropping existing tables, index
® create-drop - Same as create, but also drops the tables when the application shuts down cleanly.

® update - Creates missing tables and indexes, and updates the current schema without dropping any te
many schema changes like column renames (you're left with the old column containing the existing di

* validate - Makes no changes to your database. Compares the configuration with the existing database

® any other value - does nothing

You can aso remove the dbCr eat e setting completely, which is recommended once your schema
application and database are deployed in production. Database changes are then managed through pr
migration tool like Liquibase (the Database Migration plugin uses Liquibase and is tightly integrated with

4.4.1 DataSources and Environments

The previous example configuration assumes you want the same config for all environments: production, t

Grails DataSource definition is "environment aware", however, so you can do:

dat aSour ce {
pool ed = true
driverd assNane = "com nysql .jdbc. Driver"
di al ect = org. hi bernate. di al ect. MySQL5I nnoDBDi al ect
/' other common settings here

}

envi ronnent s {
production {
dat aSour ce {
url = "jdbc:nysqgl://liveip.comliveDb"
/'l other environnment-specific settings here

}

4.4.2 Automatic Database Migration

The dbCr eat e property of the Dat aSour ce definition is important as it dictates what Grails shou
generating the database tables from GORM classes. The options are described in the DataSource section:

43

http://www.liquibase.org/
http://grails.org/plugin/database-migration

® create

® create-drop

® update

® validate

® novaue
In development mode dbCr eat e is by default set to "create-drop”, but at some point in development (
need to stop dropping and re-creating the database every time you start up your server.

It's tempting to switch to updat e so you retain existing data and only update the schema when your code
conservative. It won't make any changes that could result in data loss, and doesn't detect renamed column:
will also have the new one.

Grails supports migrations with Flyway or Liquibase using the same mechanism provided by Spring Boot.

4.4.3 Transaction-aware DataSource Proxy

The actual dat aSour ce bean iswrapped in atransaction-aware proxy so you will be given the connectir
Hibernate Sessi on if oneisactive.

If this were not the case, then retrieving a connection from the dat aSour ce would be a new connectic
haven't been committed yet (assuming you have a sensible transaction isolation setting, e.g. READ_COVM

The "real" unproxied dat aSour ce isstill available to you if you need accessto it; its bean nameis dat ¢

Y ou can access this bean like any other Spring bean, i.e. using dependency injection:

cl ass MyService {

def dat aSour ceUnpr oxi ed

}

or by pulling it from the Appl i cat i onCont ext :

def dat aSour ceUnpr oxi ed = ct x. dat aSour ceUnpr oxi ed

4.4.4 Database Console

The H2 database console is a convenient feature of H2 that provides a web-based interface to any databas
useful to view the database you're developing against. It's especially useful when running against an in-me

44

http://docs.spring.io/spring-boot/docs/current/reference/html/howto-database-initialization.html
http://h2database.com/html/quickstart.html#h2_console

You can access the console by navigating to http://localhost:8080/dbconsole in a browser.
grail s. dbconsol e. ur| Root attributeinappl i cati on. gr oovy and defaultsto’ / dbconsol ¢

The console is enabled by default in development mode and can be disabled or enabl¢
grai |l s. dbconsol e. enabl ed attributein appl i cat i on. gr oovy. For example, you could enabl¢

envi ronnents {
production {
grails.serverURL = "http://ww. changene. cont
grails. dbconsol e. enabl ed true
grails.dbconsol e. url Root '/ adm n/ dbconsol e’

devel opment {
grails.server URL

"http://1ocal host: 8080/ ${ appNane} "

}
test {
grails.server URL

"http://1ocal host: 8080/ ${ appNane}"

& If you enable the console in production be sure to guard access to it using a trusted security fre

Configuration

By default the console is configured for an H2 database which will work with the default settings if you hi
need to change the JDBC URL to j dbc: h2: mem devDB. If you've configured an external database (i
Saved Settings dropdown to choose a settings template and fill in the url and username/password informati

4.4.5 Multiple Datasources

By default all domain classes share a single Dat aSour ce and a single database, but you have the opti
more Dat aSour ces.

Configuring Additional DataSources

The default Dat aSour ce configurationingr ai | s- app/ conf/ appl i cati on. ynm looks somethin

45

dat aSour ce:
pool ed: true
j mXExport: true
driverd assNane: org. h2.Driver
user nane: sa
passwor d:

envi ronnent s:
devel opnent :
dat aSour ce:
dbCreate: create-drop
url: jdbc: h2: mnem devDb; MVCC=TRUE; LOCK_TI MEOUT=10000; DB_CLOSE_ON _EXI T=
test:
dat aSour ce:
dbCreat e: update
url: jdbc:h2: nemtest Db; MWVCC=TRUE; LOCK_TI MEQUT=10000; DB CLOSE ON EXI T
producti on:
dat aSour ce:
dbCreat e: update
url: jdbc: h2: prodDb; WCC=TRUE; LOCK_TI MEOUT=10000; DB_CLOSE_ON_EXI T=FAL
properties:
j mxEnabl ed: true
initial Size: 5

This configures asingle Dat aSour ce with the Spring bean named dat aSour ce. To configure extraC
the top level, in an environment block, or both, just like the standard Dat aSour ce definition) with a cus
asecond Dat aSour ce, using MySQL in the development environment and Oracle in production:

46

dat aSour ces:

dat aSour ce:
pool ed: true
j mKExport: true
driverC assName: org. h2.Driver
username: sa
passwor d:

| ookup:
di al ect: org. hi bernate.dial ect. MySQLI nnoDBDi al ect
driverd assName: com nysql . jdbc. Driver
user nanme: | ookup
password: secret
url: jdbc:nysql://local host/| ookup
dbCreate: update

envi ronnent s:
devel opnent :
dat aSour ces:
dat aSour ce:
dbCreate: create-drop
url: jdbc:h2: mem devDb; MVCC=TRUE; LOCK_TI MEOQUT=10000; DB_CLCSE_ON E
test:
dat aSour ces:
dat aSour ce:
dbCreate: update
url: jdbc:h2: memtest Db; MWVCC=TRUE; LOCK TI MEQUT=10000; DB _CLOSE_ON _
producti on:
dat aSour ces:
dat aSour ce:
dbCreat e: update
url: jdbc: h2: prodDb; WCC=TRUE; LOCK_TI MEOUT=10000; DB_CLOSE_ON_EXI T
properties:
j mxEnabl ed: true
initial Size: 5

| ookup:
di al ect: org. hi bernate.dial ect.O acl el0gDi al ect
driverC assNanme: oracle.jdbc.driver.O acl eDriver
user name: | ookup
password: secret
url: jdbc:oracle:thin: @ocal host: 1521: | ookup
dbCreate: update

47

Y ou can use the same or different databases as long as they're supported by Hibernate.

Configuring Domain Classes

If a domain class has no Dat aSour ce configuration, it defaults to the standard ' dat aSour ce' . Se
block to configure a non-default Dat aSour ce. For example, if you want to use the Zi pCode domain t
it like this:

cl ass Zi pCode {
String code

static mapping = {
dat asource ' | ookup'

A domain class can also use two or more Dat aSour ces. Usethedat asour ces property with alist of

cl ass Zi pCode {
String code

static mapping = {
dat asources([' |l ookup', "auditing'])
}

}

If adomain class uses the default Dat aSour ce and one or more others, use the special name' DEFAULT

cl ass Zi pCode {
String code

static mapping = {
dat asources([' | ookup', 'DEFAULT'])

If adomain class uses all configured Dat aSour ces use the special value' ALL' :

cl ass Zi pCode {
String code

static mapping = {
dat asource " ALL'

Namespaces and GORM Methods

If a domain class uses more than one Dat aSour ce then you can use the namespace implied by each C
particular Dat aSour ce. For example, consider this class which uses two Dat aSour ces:

cl ass Zi pCode {
String code

static mapping = {
dat asources([' |l ookup', "auditing'])
}

}

The first Dat aSour ce specified is the default when not using an explicit namespace, so in this case v
methods on the 'auditing' Dat aSour ce with the Dat aSour ce name, for example:

def zi pCode = Zi pCode. audi ti ng. get (42)
zi pCode. audi ti ng. save()

Asyou can see, you add the Dat aSour ce to the method call in both the static case and the instance case.

Hibernate Mapped Domain Classes

You can also partition annotated Java classes into separate datasources. Classes using t
grai |l s-app/ conf/ hi bernat e. cf g. xm . To specify that an annotated class uses a non-default de
for that datasource with the file name prefixed with the datasource name.

For example if the Book classisin the default datasource, you would register that ingr ai | s- app/ con

49

<?xm version="1.0" encoding=" UTF-8' ?>
<! DOCTYPE hi ber nat e-confi gurati on PUBLIC
' -/ / Hi bernate/ H bernate Configuration DTD 3.0//EN
"http://hibernate. sourceforge. net/hi bernate-configuration-3.0.dtd" >
<hi ber nat e- confi gur ati on>
<sessi on-factory>
<mappi ng cl ass=' org. exanpl e. Book' / >
</ session-factory>
</ hi ber nat e- confi gur ati on>

andif theLi br ary classisinthe"ds2" datasource, you would register that ingr ai | s- app/ conf/ ds

<?xm version="1.0" encodi ng=" UTF-8' ?>
<! DOCTYPE hi ber nat e- confi gurati on PUBLIC
"-// H bernat e/ Hi bernate Configuration DID 3.0//EN
"http://hibernate. sourceforge. net/ hi bernate-configuration-3.0.dtd" >
<hi ber nat e- confi gur ati on>
<sessi on-factory>
<mappi ng cl ass='org. exanpl e. Library'/>
</ sessi on-factory>
</ hi ber nat e- confi gurati on>

The process is the same for classes mapped with hbm.xml files - just list them in the appropriate hibernate.

Services

Like Domain classes, by default Services use the default Dat aSour ce and Pl at f or mlr ansact i
different Dat aSour ce, usethe static dat asour ce property, for example:

cl ass Dat aService {
static datasource = 'I ookup'
voi d someMet hod(...) {

}
}

A transactional service can only use asingle Dat aSour ce, so be sure to only make changes for domain
Service.

Note that the datasource specified in a service has no bearing on which datasources are used for domi
datasources in the domain classes themselves. It's used to declare which transaction manager to use.

50

What you'll seeisthat if you have a Foo domain class in dataSourcel and a Bar domain class in dataS
service method that saves a new Foo and a new Bar will only be transactional for Foo since they share the
instance. If you want both to be transactional you'd need to use two services and XA datasources for two-p

Transactions across multiple datasources

Grails uses the Best Efforts 1PC pattern for handling transactions across multiple datasources.

The Best Efforts 1PC pattern is fairly general but can fail in some circumstances that the developer m
involves a synchronized single-phase commit of a number of resources. Because the 2PC is not used, it ¢
often good enough if the participants are aware of the compromises.

The basic ideaisto delay the commit of all resources as late as possible in a transaction so that the only thi
(not a business-processing error). Systems that rely on Best Efforts 1PC reason that infrastructure failures
risk in return for higher throughput. If business-processing services are also designed to be idempotent, the

The BE1PC implementation was added in Grails 2.3.6. . Before this change additional datasources didn't
transactions in additional datasources were basically in auto commit mode. In some cases this might
performance: on the start of each new transaction, the BE1PC transaction manager creates a new transaci
additional datasource out of the BE1PC transaction manager by setting t r ansactional = fals
additional dataSource. Datasourceswithr eadOnly = tr ue will aso beleft out of the chained transact

By default, the BE1PC implementation will add all beans implementing the Spring Pl at f or nilr ansact
transaction manager. For example, a possible JMSTr ansact i onManager bean in the Grails applicatic
transaction manager's chain of transaction managers.

Y ou can exclude transaction manager beans from the BE1PC implementation with the this configuration o

grails.transaction. chai nedTransacti onManager Post Processor. bl acklistPattern = "'.*'

The exclude matching is done on the name of the transaction manager bean. The transaction managers of ¢
orreadOnly = true will be skipped and using this configuration option is not required in that case.

XA and Two-phase Commit

When the Best Efforts 1PC pattern isn't suitable for handling transactions across multiple transactional re
options available for adding XA/2PC support to Grails applications.

The Spring transactions documentation contains information about integrating the JTA/XA transaction r
case, you can configure abean withthenamet r ansact i onManager manually inr esour ces. gr oc

Thereis aso Atomikos plugin available for XA support in Grails applications.

4.5 Versioning
Detecting Versions at Runtime

Y ou can detect the application version using Grails support for application metadata using the GrailsA|
thereisan implicit grailsApplication variable that can be used:

51

http://www.javaworld.com/article/2077963/open-source-tools/distributed-transactions-in-spring--with-and-without-xa.html?page=2
https://en.wikipedia.org/wiki/Two-phase_commit
https://en.wikipedia.org/wiki/X/Open_XA
http://docs.spring.io/spring/docs/3.2.x/javadoc-api/org/springframework/transaction/PlatformTransactionManager.html
http://docs.spring.io/spring/docs/3.2.x/javadoc-api/org/springframework/jms/connection/JmsTransactionManager.html
http://docs.spring.io/spring/docs/3.2.x/spring-framework-reference/html/transaction.html#transaction-application-server-integration
http://grails.org/plugin/atomikos
http://grails.github.io/grails-doc/3.0.x/api/grails/core/GrailsApplication.html

def version = grail sApplication. nmetadata. get Applicati onVersion()

Y ou can retrieve the version of Grailsthat is running with:

def grailsVersion = grail sApplication. netadata. get Grail sVersion()

ortheGrail sUtil class:

import grails.util.GailsUti

def grailsVersion = GrailsUtil.grailsVersion

4.6 Project Documentation

Since Grails 1.2, the documentation engine that powers the creation of this documentation has been availat

The documentation engine uses a variation on the Textile syntax to automatically create project documente

Creating project documentation

To use the engine you need to follow afew conventions. First, you need to create asr ¢/ docs/ gui de ¢
will go. Then, you need to create the source docs themselves. Each chapter should have its own gdoc file
end up with something like:

src/ docs/ gui de/ i ntroducti on. gdoc

src/ docs/ gui de/ i ntroduction/ changes. gdoc

src/ docs/ gui de/ getti ngSt arted. gdoc

src/ docs/ gui de/ confi gurati on. gdoc

src/ docs/ gui de/ confi gurati on/ buil d. gdoc

src/ docs/ gui de/ configuration/build/ controllers. gdoc

++++ + +

52

http://txstyle.org/

Note that you can have all your gdoc filesin the top-level directory if you want, but you can also put sub-s
section - as the above example shows.

Once you have your source files, you still need to tell the documentation engine what the structure of your
src/ docs/ gui de/toc. ym file that contains the structure and titles for each section. This file is
structure of the user guide in tree form. For example, the above files could be represented as:

i nt roducti on:
title: Introduction
changes: Change Log
gettingStarted: Getting Started
configuration:
title: Configuration
bui | d:
title: Build Config
control l ers: Specifying Controllers

The format is pretty straightforward. Any section that has sub-sections is represented with the corres
followed by a colon. The next line should containti t | e: plus the title of the section as seen by the er
after thetitle. Leaf nodes, i.e. those without any sub-sections, declare their title on the same line as the sect

That'sit. You can easily add, remove, and move sections withinthet oc. yni to restructure the generates
section names, i.e. the gdoc filenames, should be unique since they are used for creating internal links anc
the documentation engine will warn you of duplicate section names.

Creating reference items

Reference items appear in the Quick Reference section of the documentation. Each reference item belo
located in the src/ docs/ r ef directory. For example, suppose you have defined a new controller me
Cont rol | er s category so you would create a gdoc text file at the following location:

+ src/docs/ref/ Controllers/render PDF. gdoc

Configuring Output Properties

There are various properties you can set within your grai |l s-app/ conf/application. gr
documentation such as:

53

http://www.yaml.org/

® grails.doc.title - Thetitle of the documentation

grails.doc.subtitle - The subtitle of the documentation

grails.doc.authors - The authors of the documentation

grails.doc.license - The license of the software
® grails.doc.copyright - The copyright message to display

® grails.doc.footer - The footer to use

Other properties such as the version are pulled from your project itself. If atitleis not specified, the applici
Y ou can a'so customise the look of the documentation and provide images by setting afew other options:
® grails.doc.css- Thelocation of adirectory containing custom CSSfiles (typej ava. i o. Fil e)
® grails.doc.js- Thelocation of adirectory containing custom JavaScript files (typej ava. i o. Fi | e)
® grails.doc.style - Thelocation of adirectory containing custom HTML templates for the guide (type |
® grails.doc.images - The location of a directory containing image files for use in the style templates .

(typej ava.io. File)

One of the simplest ways to customise the look of the generated guide isto provide avalue for grai | s.
corresponding directory. Grails will automatically include this CSSfile in the guide. You can also place a
you to override the styles for the PDF version of the guide.

Generating Documentation

Add the plugininyour bui | d. gr adl e:

apply plugin: "org.grails.grails-doc"

Once you have created some documentation (refer to the syntax guide in the next chapter) you can general
the command:

gradl e docs

This command will output an docs/ manual /i ndex. ht M which can be opened in a browser to view

Documentation Syntax

As mentioned the syntax is largely similar to Textile or Confluence style wiki markup. The following secti

Basic Formatting

Monospace: nonospace

@monospace@

Italic; italic

italic

Bold: bold

bol d

Image:

'http://grails.org/inmges/ new grail sl ogo_topNav. png!

You can aso link to internal images like so:

! soneFol der/ my_di agr am png!

This will link to an image stored locally within your project. There is currently no default location for
grail s. doc. i mages setting in application.groovy like so:

55

grails.doc.inmages = new Fil e("src/docs/imges")

In this example, you would put the my_diagram.png file in the directory 'src/docs/images/somefFolder'.
Linking

There are several ways to create links with the documentation generator. A basic external link can eitt
markup:

[Pivotal | http://ww. pivotal .ioloss]

or

"Pivotal ":http://ww. pivotal .io/oss

For links to other sectionsinside the user guide you can use the gui de: prefix with the name of the sectic

[I'ntro| guide:introduction]

The section name comes from the corresponding gdoc filename. The documentation engine will warn you

To link to reference items you can use a special syntax:

[render PDF| control | ers]

In this case the category of the reference item is on the right hand side of the | and the name of the referenc

56

Finally, to link to external APIsyou can usethe api : prefix. For example:

[String|api:java.lang. String]

The documentation engine will automatically create the appropriate javadoc link in this case. To add additi
ingrail s-app/ conf/application. groovy. For example:

grails.doc. api . org. hi bernat e=
“http://docs.|jboss. org/ hi bernate/stabl e/ core/javadocs"

The above example configures classes within the or g. hi ber nat e package to link to the Hibernate web

Listsand Headings

Headings can be created by specifying the letter 'h' followed by a number and then a dot:

h3. <space>Headi ng3
h4. <space>Headi ng4

Unordered lists are defined with the use of the * character:

* jitem1
** subitem 1
** subitem 2
* item 2

Numbered lists can be defined with the # character:

57

item1

Tables can be created using the t abl e macro:

Albert 46
Wilma 1348
James 12

{tabl e}

Code and Notes

Y ou can define code blocks with the code macro:

cl ass Book {
String title

{code}
cl ass Book {
String title

}
{code}

The example above provides syntax highlighting for Java and Groovy code, but you can also highlight XM

<hel | o>wor | d</ hel | 0>

{code: xn }
<hel | o>wor | d</ hel | o>
{code}

There are also a couple of macros for displaying notes and warnings:

Note:

 Thisisanotel

{not e}
This Is a note!
{not e}

Warning:

@ Thisisawarning!

{war ni ng}
This is a warning!
{war ni ng}

4.7 Dependency Resolution

59

Dependency resolution is handled by the Gradle build tool, all dependencies are defined in the bui | d. ¢
more information.

60

http://gradle.org
https://www.gradle.org/documentation

5 The Command Line

Grails 3.0's command line system differs greatly from previous versions of Grails and features APIsfor in
performing code generation.

When you type:

grails [command nane]

Grails searches the profile repository based on the profile of the current application. If the profileis for ¢
the web profile and the base profile which it inherits from.

Since command behavior is profile specific the web profile may provide different behavior for the r un
batch applications.

When you type the following command:

grails run-app

It resultsin asearch for the following files:

® PRQJECT_HOVE/ scri pt s/ RunApp. gr oovy
®* PROFI LE_REPOSI TORY_PATH profi | es/ web/ commands/ r un- app. gr oovy (if theweb
®* PROFI LE_REPOSI TORY_PATH profi |l es/ web/ commands/ run- app. ym (for YAML def

To get alist of al commands and some help about the available commands type:

grails help

which outputs usage instructions and the list of commands Grailsis aware of:

61

https://github.com/grails/grails-profile-repository

grails [environnent]* [target] [argunents]*'

| Exanpl es:
$ grails dev run-app
$ grails create-app books

| Avail abl e Commands (type grails help 'command-nane' for nore info):

| Conmmand Nane Command Descri ption
cl ean Cleans a Grails application's conpiled so

compi |l e Conpiles a Gails application

& Refer to the Command Line reference in the Quick Reference menu of the reference guid
individual commands

non-interactive mode

When you run a script manually and it prompts you for information, you can answer the questions and ¢
script as part of an automated process, for example a continuous integration build server, there's no way
--non-interactive switch to the script command to tell Grails to accept the default answer for ¢
missing plugin.

For example:

grails war --non-interactive

5.1 Interactive Mode

Interactive mode is the a feature of the Grails command line which keeps the VM running and allows f
interactive mode type 'grails at the command line and then use TAB completion to get alist of commands:

62

&8 00 bookstore — java — F4x22 "
bash bash

Gt S

Graeme-Rochers—iMac:bookstore graemerocher$ agrails
| Enter a script name to run. Use TAB for completion:
grails>= create-s

create-script create-service
grails> create-service bookstore.Book

If you need to open afile whilst within interactive mode you can use the open command which will TAB

S MNon Terrninal — java — Elx 17

graeme- r'cncher's macbook-pro:amazon gramerncherﬁ grails
| Enter a script name to run. Use TAB for completion:
grails> open target/test-

test-classes test-reports
grails> open target/test-reports/html/index.html

63

Even better, the open command understands the logical aliases 'test-report’ and 'dep-report’, which will o
respectively. In other words, to open the test report in a browser simply execute open test-report.’
test-report test/unit/MTests. groovy will open the HTML test report in your browser ¢
text editor.

TAB completion also works for class names after the cr eat e- * commands:

&, Mo, Terminal — java — 62x17

X, baskh LX) bash X bash X, baskh [x]
graeme-rochers-macbook-pro:amazon graemerocher$ grails
| Enter a script name to run. Use TAB for completion:
grails> create-

create-app create-controller
create-domain-class create-filters
create-hibernate-cfg-xml create-integration-test
create-plugin create-scaffold-controller

create-script create-service
create-tag-lib create-unit-test
grails> create-s

create-scaffold-controller create-script
create-service
grails> create-service amazon.Book

If you need to run an external process whilst interactive mode is running you can do so by starting the com

8MN6 Terminal — java — 62x17

x 3¢

% L i L

grails> |ls
application.properties
grails-app

lib

scripts

sSrc

target

test

web-app
grails:

Note that with ! (bang) commands, you get file path auto completion - ideal for external commands that
etc.

To exit interactive mode enter the exi t command. Note that if the Grails application has been run with
interactive mode console exits because the VM will be terminated. An exception to this would be if the
means the application is running in a different VM. In that case the application will be left running after
want to exit interactive mode and stop an application that is running in forked mode, use the qui t comr
application and then close interactive mode.

5.2 The Command Line and Profiles
When you create a Grails application with the create-app command by default the "web" profileis used:

grails create-app nyapp

Y ou can specify adifferent profile with the profile argument:

grails create-app myapp --profil e=web-plugin

65

Profiles encapsulate the project commands, templates and plugins that are designed to work for a give
Repository on Github.

Thisrepository is checked out locally and stored in the USER_HOVE/ . gr ai | s/ reposi t ory directory

Understanding a Profile's Structure

A profileis a simple directory that containsa pr of i | e. yml file and directorys containing the "comma
profile. Example:

* commands
* create-controller.ym
* run-app. groovy

* skel eton
* grails-app
* controllers

* bpuild. gradle
* tenpl ates
* artifacts
* Controller.groovy
* profile.ym

The above example is a snippet of structure of the 'web' profile. The profi | e. ym fileisdefined asfoll:

description: Profile for Wb applications
extends: base

Asyou can seeit contains the description of the profile and a definition of which profiles this profile exten

When the cr eat e- app command runs it takes the skeleton of the parent profiles and copies the skelei
overwrite files from the parent profile so if the parent definesabui | d. gr adl e then the child profile wil

Defining Profile Commands

A profile can define new commands that apply only to that profile using YAML or Groovy scripts. Below
defined in YAML:

66

https://github.com/grails/grails-profile-repository
https://github.com/grails/grails-profile-repository

descri ption:
- Creates a controller
- usage: 'create-controller [controller name]'
- conpleter: org.grails.cli.interactive.conpl eters. Domai nCl assConpl et er
- argunent: "Controller Nane"
description: "The nane of the controller"
st eps:
- conmand: render
tenpl ate: tenplates/artifacts/ Controller.groovy
destination: grails-app/controllers/artifact. package. path/artifact.naneContro
- command: render
tenpl ate: tenplates/testing/ Controller.groovy
destination: src/test/groovy/artifact.package. path/artifact.naneControl | er Spec
- command: nkdir
| ocation: grails-app/views/artifact. propertyNane

Commands defined in YAML must define one or many steps. Each step isacommand in itself. The availa
® render - Torender atemplate to a given destination (as seen in the previous example)
* nkdir - To make adirectory specified by thel ocat i on parameter
® execut e - To execute acommand specified by the cl ass parameter. Must be a class that impleme

® gradl e - To execute one or many Gradle tasks specified by thet asks parameter.

For example to invoke a Gradle task, you can define the following YAML.:

description: Creates a WAR file for deploynent to a container (like Tontat)
m nArgunents: 0

usage:

war

st eps:

- command: gradle

t asks:
- war

If you need more flexiblity than what the declarative Y AML approach provides you can create Groovy scr
from the GroovyScriptCommmand class and hence has all of the methods of that class available to it.

The following is an example of the create-script command written in Groovy:

67

http://grails.github.io/grails-doc/3.0.x/api/org/grails/cli/profile/Command.html
http://grails.github.io/grails-doc/3.0.x/api/org/grails/cli/profile/commands/script/GroovyScriptCommmand.html

description("Creates a Grails script") {
usage "grails create-script [SCRI PT NAVE]"
argunent name:' Script Nanme', description:"The nane of the script to create"
flag name:'force', description:"Wether to overwite existing files"

def scriptNane = args[0]
def nodel = nodel (scri pt Nane)
def overwite = flag('force') ? true : false

render tenplate: tenplate('artifacts/ Script.groovy'),
destination: file("src/min/scripts/${nodel.|owerCaseNane}. groovy"),
nodel : nodel ,
overwite: overwite

For more information on creating Groovy commands see the following section on creating custom Grails s

5.3 Creating Custom Scripts

Y ou can create your own Command scripts by running the create-script command from the root of your pt
createascript called src/ mai n/ scri pt s/ hel | o-wor| d. gr oovy:

grails create-script hello-world

& In general Grails scripts should be used for scripting the Gradle based build system and co
load application classes and in fact should not since Gradle is required to construct the applice

See below for an example script that prints 'Hello World'":

description "Exanpl e description", "grails hello-world"
printin "Hello Wrld"

The descri pti on method is used to define the output seen by grai | s hel p and to aid users of
example of providing adescription taken from the gener at e- al | command:

68

description("CGenerates a controller that perfornms CRUD operations and the associ
usage "grails generate-all [DOVAIN CLASS]"
flag name: ' force', description:"Wether to overwite existing files"
argurent nane: ' Domain C ass', description:' The name of the domain class'

}

Asyou can see this description profiles usage instructions, aflag and an argument. This allows the comma

grails generate-all MyClass --force

5.4 Re-using Grails scripts

Grails ships with alot of command line functionality out of the box that you may find useful in your owr
reference guide for info on al the commands).

Any script you create an invoke another Grails script smply by invoking a method:

test App()

The above will invokethet est - app command. Y ou can also pass arguments using the method argumen

test App(' --debug-jvm)

Invoking Gradle

Instead of invoking another Grails CL1 command you can invoke Gradle directory using the gr adl e prog

69

gradl e. conpi | eGroovy()

Invoking Ant

Y ou can aso invoke Ant tasks from scripts which can help if you need to writing code generation and autc

ant . nkdi r (dir:"path")

Template Generation

Plugins and applications that need to define template generation tasks can do so using scripts. A example
thegener at e- al | andgener at e- contr ol | er s commands.

Every Grails script implements the TemplateRenderer interface which makesit trivial to render templatest

The following is an example of the create-script command written in Groovy:

description("Creates a Grails script") {
usage "grails create-script [SCRI PT NAVE]"
argunent name:' Script Nanme', description:"The nanme of the script to create"
flag name: ' force', description:"Wether to overwite existing files"

def scriptNanme = args[0]
def nodel = nodel (scri pt Nane)
def overwite = flag('force') ? true : false

render tenplate: tenplate('artifacts/Script.groovy'),

destination: file("src/ min/scripts/${nodel.|owerCaseNane}. groovy"),
nodel : nodel ,
overwite: overwite

5.5 Building with Gradle

Grails 3.0 uses the Gradle Build System for build related tasks such as compilation, runnings tests and pro
recommended to use Gradle 2.2 or above with Grails 3.0.

The build is defined by the bui | d. gr adl e file which specifies the version of your project, the depender
find those dependencies (amongst other things).

70

http://grails.github.io/grails-doc/3.0.x/api/org/grails/cli/profile/commands/templates/TemplateRenderer.html
http://gradle.org

When you invoke the gr ai | s command the version of Gradle that ships with Grails 3.0 (currently 2.3) i<
Tooling API:

Equi valent to 'gradle classes'
$ grails conpile

Y ou can invoke Gradle directly using the gr adl e command and use your own local version of Gradle,
work with Grails 3.0:

$ gradl e assenbl e

5.5.1 Defining Dependencies with Gradle

Dependencies for your project are defined in the dependenci es block. In general you can foll
management to understand how to configure additional dependencies.

The default dependencies for the "web" profile can be seen below:

dependenci es {
conpi |l e "org.springfranmewor k. boot : spri ng-boot -starter-1|oggi ng'
conpi | e(" org. springfranewor k. boot : spri ng-boot -starter-actuator')
conpi |l e "org. springframewor k. boot : spri ng- boot - aut oconfi gure
conmpi l e "org. springfranmewor k. boot : spri ng-boot -starter-tontat
conpile "org.grails:grail s-dependenci es'
conpile "org.grails:grail s-web-boot'

conpile '"org.grails.plugins: hibernate'
conpile '"org.grails.plugins:cache'
conpi |l e 'org. hi bernat e: hi ber nat e- ehcache

runtinme 'org.grails.plugins:asset-pipeline
runtine 'org.grails.plugins:scaffol di ng'

testConpile "org.grails:grails-plugin-testing'
testConpile 'org.grails. plugins: geb'

/1 Note: It is recormended to update to a nore robust driver (Chrome, Firefox etc
test Runtinme 'org. sel eni unhg. sel eni um sel eni um htm unit-driver:2.44.0

console 'org.grails:grails-consol e

}

Note that version numbers are not present in the majority of the dependencies. This is thanks to the depe
Maven BOM that defines the default dependency versions for certain commonly used dependencies and pl

71

http://www.gradle.org/docs/current/userguide/embedding.html
http://www.gradle.org/docs/current/userguide/embedding.html
http://www.gradle.org/docs/current/userguide/artifact_dependencies_tutorial.html
http://www.gradle.org/docs/current/userguide/artifact_dependencies_tutorial.html

dependencyManagenent {

i nports {
mavenBom 'org.grails:grails-bom' + grail sVersion

appl yMavenExcl usi ons fal se

5.5.2 Working with Gradle Tasks

As mentioned previously the gr ai | s command uses an embedded version of Gradle and certain Grails
Grails map onto their Gradle equivalents. The following table shows which Grails command invoke which

clean clean
compile classes
package assemble
run-app run
test-app test

war assemble

Y ou can invoke any of these Grails commands using their Gradle equivaentsif you prefer:

$ gradle test

Note however that you will need to use aversion of Gradle compatible with Grails 3.0 (Gradle 2.2 or abov
version of Gradle used by Grails you can do so withthegr ai | s command:

$ grails gradle conpil eG oovy

However, it is recommended you do this via interactive mode, as it greatly speeds up execution and pro
tasks:

72

$ grails

| Enter a command nane to run. Use TAB for conpletion:
grail s> gradl e conpil eG oovy

To find out what Gradle tasks are available without using interactive mode TAB completion you can use tt

gradl e tasks

5.5.3 Grails plugins for Gradle

When you create a new project with the create-app command, a default bui | d. gr adl e is created. The
with aset of Gradle plugins that allow Gradle to build the Grails project:

pl ugi ns {
}

apply pl ugi
apply plugi
apply pl ugi
apply plugi
apply pl ugi
apply plugi

SR R= = =

id "io.spring.dependency-managenent” version "0.3.1. RELEASE"

"spring-boot"

i

"asset - pi pel i ne"
"org.grails.grails-web"
"org.grails.grail s-gsp"
“maven"

The default plugins are as follows:

* dependency- managenent - The dependency management plugin alows Gradle to read Maver
versions used by Grails.

® spring-boot - The Spring Boot Gradle plugin enhances the default packaging tasks provided t

JAR/WAR files.

* war - The WAR plugin changes the packaging so that Gradle creates as WAR file from you applic
wish to create only arunnable JAR file for standal one deployment.

® asset - pi pel i ne - The asset pipeline plugin enables the compilation of static assets (JavaScript, (

®* maven - The maven plugin alows installing your application into alocal maven repository

73

https://plugins.gradle.org/plugin/io.spring.dependency-management
http://docs.spring.io/spring-boot/docs/current/reference/html/build-tool-plugins-gradle-plugin.html
http://www.gradle.org/docs/current/userguide/war_plugin.html
https://github.com/bertramdev/asset-pipeline-core
http://www.gradle.org/docs/current/userguide/maven_plugin.html

Many of these are built in plugins provided by Gradle or third party plugins. The Gradle plugins that Grail:

org.grails.grail s-core-Theprimary Grails plugin for Gradle, included by all other plugins
org.grails.grail s-plugin-A pluginfor Gradlefor building Grails plugins.

org.grails.grail s-web - TheGrals Web gradle plugin configures Gradle to understand the C
org.grails.grail s-gsp - The Grails GSP plugin adds precompilation of GSP files for produci

org.grails.grails-doc - A pluginfor Gradle for using Grails 2.0's documentation engine.

74

6 Object Relational Mapping (GORM)

Domain classes are core to any business application. They hold state about business processes and hope
together through relationships; one-to-one, one-to-many, or many-to-many.

GORM is Grails object relational mapping (ORM) implementation. Under the hood it uses Hibernate 3
solution) and thanks to the dynamic nature of Groovy with its static and dynamic typing, along w
configuration involved in creating Grails domain classes.

Y ou can also write Grails domain classes in Java. See the section on Hibernate Integration for how to wr
persistent methods. Below is a preview of GORM in action:

def book = Book.findByTitle("G oovy in Action")

book
. addToAut hor s(nane: "Di erk Koeni g")
. addToAut hor s(nane: "CGui | | aume LaFor ge")
.save()

6.1 Quick Start Guide

A domain class can be created with the create-domain-class command:

grails create-domain-class hell oworld. Person

& |f no package is specified with the create-domain-class script, Grails automatically uses
package name.

Thiswill create aclass at the location gr ai | s- app/ domai n/ hel | owor | d/ Per son. gr oovy such

package hel |l oworl d

cl ass Person {

}

75

& If you have the dbCr eat e property set to "update’, "create" or "create-drop” on y:
automatically generate/modify the database tables for you.

Y ou can customize the class by adding properties:

cl ass Person {
String name
I nt eger age
Date lastVisit

Once you have a domain class try and manipulate it with the shell or console by typing:

grails consol e

Thisloads an interactive GUI where you can run Groovy commands with access to the Spring Application

6.1.1 Basic CRUD
Try performing some basic CRUD (Create/Read/Update/Delete) operations.

Create

To create adomain class use Map constructor to set its properties and call save:

def p = new Person(nane: "Fred", age: 40, lastVisit: new Date())
p. save()

The save method will persist your class to the database using the underlying Hibernate ORM layer.

Read

Grails transparently adds an implicit i d property to your domain class which you can use for retrieval:

76

77

def p = Person. get (1)
assert 1 == p.id

This uses the get method that expects a database identifier to read the Per son object back from the datal
state by using the read method:

def p = Person.read(1)

In this case the underlying Hibernate engine will not do any dirty checking and the object will not be pe
method then the object is placed back into a read-write state.

In addition, you can also load a proxy for an instance by using the load method:

def p = Person. | oad(1)

This incurs no database access until a method other than getld() is called. Hibernate then initializes the
record isfound for the specified id.

Update

To update an instance, change some properties and then call save again:

def p = Person. get (1)
p. nane = "Bob"
p. save()

Delete

To delete an instance use the delete method:

def p = Person. get (1)
p. del ete()

6.2 Domain Modelling in GORM

When building Grails applications you have to consider the problem domain you are trying to solve. For
bookstore you would be thinking about books, authors, customers and publishers to name afew.

These are modeled in GORM as Groovy classes, so a Book class may have atitle, arelease date, an |SBN
how to model the domain in GORM.

To create adomain class you run the create-domain-class command as follows:

grails create-domin-cl ass org. bookst ore. Book

Theresult will beaclassat gr ai | s- app/ domai n/ or g/ bookst or e/ Book. gr oovy:

package org. bookstore

cl ass Book {

}

This class will map automatically to a table in the database called book (the same name as the class). Tl

Domain Specific Language

Now that you have adomain class you can define its properties as Java types. For example:

package org. bookstore

cl ass Book {
String title
Dat e rel easeDat e
String | SBN

78

http://www.amazon.com/

Each property is mapped to a column in the database, where the convention for column namesis all low
r el easeDat e mapsonto acolumnr el ease_dat e. The SQL types are auto-detected from the Java t
the ORM DSL.

6.2.1 Association in GORM

Relationships define how domain classes interact with each other. Unless specified explicitly at both end
defined.

6.2.1.1 Many-to-one and one-to-one
A many-to-one relationship is the ssmplest kind, and is defined with a property of the type of another dom:

Example A

cl ass Face {
Nose nose
}

cl ass Nose {

In this case we have a unidirectional many-to-one relationship from Face to Nose. To make this rel
follows (and see the section on controlling the ends of the association just below):

Example B

cl ass Face {
Nose nose
}

79

cl ass Nose {
static bel ongsTo = [face: Face]

In this case we use the bel ongsTo setting to say that Nose "belongsto" Face. The result of thisistha
to it and when we save or delete the Face instance, GORM will save or delete the Nose. In other words, !
associated Nose:

new Face(nose: new Nose()).save()

The example above will save both face and nose. Note that the inverse is not true and will result in an errol

new Nose(face: new Face()).save() // will cause an error

Now if we delete the Face instance, the Nose will go too:

def f = Face.get(1)
f.delete() // both Face and Nose del eted

To make the relationship atrue one-to-one, use the has One property on the owning side, e.g. Face:

ExampleC

cl ass Face {
stati c hasOne = [nose: Nose]

80

cl ass Nose {
Face face

Note that using this property puts the foreign key on the inverse table to the example A, so in this case the
insideacolumn called f ace_i d. Also, hasOne only works with bidirectional relationships.

Finally, it'sagood ideato add a unique constraint on one side of the one-to-one relationship:

cl ass Face {
static hasOne = [nose: Nose]

static constraints = {
nose uni que: true
}

cl ass Nose {
Face face

Contralling the ends of the association

Occasionally you may find yourself with domain classes that have multiple properties of the same ty
association property has the same type as the domain classit's in. Such situations can cause problems bece
association. Consider this ssimple class:

class Person {
String nane
Person parent

static belongsTo = [supervisor: Person]

static constraints = { supervisor nullable: true }

}

81

As far as Grails is concerned, the par ent and super vi sor properties are two directions of the sa
property on aPer son instance, Grails will automatically set the super vi sor property on the other Pe:
if you look at the class, what we in fact have are two unidirectional relationships.

To guide Grailsto the correct mapping, you can tell it that a particular association is unidirectional througt

cl ass Person {
String nane
Per son parent

static belongsTo = [supervisor: Person]
static mappedBy = [supervisor: "none", parent: "none"]

static constraints = { supervisor nullable: true }

}

Y ou can also replace "none" with any property name of the target class. And of course this works for nor
ones. Nor isthe mappedBy property limited to many-to-one and one-to-one associations: it also works f
asyou'll seein the next section.

@ If you have a property called "none" on your domain class, this approach won't work currently
treated as the reverse direction of the association (or the "back reference"). Fortunately, "nc
class property name.

6.2.1.2 One-to-many

A one-to-many relationship is when one class, example Aut hor , has many instances of another class,
relationship with the hasMany setting:

cl ass Aut hor ({
static hasMany = [books: Book]

String nane

}

cl ass Book {
String title

82

In this case we have a unidirectional one-to-many. Grails will, by default, map this kind of relationship wit

& The ORM DSL allows mapping unidirectional relationships using aforeign key association in

Grails will automatically inject a property of type j ava. uti | . Set into the domain class based on th
over the collection:

def a = Author.get (1)

for (book in a.books) {
println book.title
}

& The default fetch strategy used by Grailsis "lazy", which means that the collection will be la
This can lead to the n+1 problem if you are not careful.

If you need "eager" fetching you can use the ORM DSL or specify eager fetching as part of a:

The default cascading behaviour isto cascade saves and updates, but not deletesunlessabel ongsTo ise

cl ass Aut hor {
static hasMany = [books: Book]

String name

cl ass Book {
static belongsTo = [author: Author]
String title

}

If you have two properties of the same type on the many side of a one-to-many you have to use mappedB

83

http://www.javalobby.org/java/forums/t20533.html

class Airport {
static hasMany = [flights: Flight]
static mappedBy = [flights: "departureAirport"]

class Flight {
Ai rport departureAirport
Airport destinationAlrport

Thisisalso true if you have multiple collections that map to different properties on the many side:

class Airport {
static hasMany = [out boundFlights: Flight, inboundFlights: Flight]
static mappedBy = [out boundFlights: "departureAirport"”,
i nboundFl i ghts: "destinationAirport"]

class Flight {
Ai rport departureAirport
Airport destinationAlrport

6.2.1.3 Many-to-many

Grails supports many-to-many relationships by defining ahasMany on both sides of the relationship and
relationship:

cl ass Book {
static bel ongsTo = Aut hor
static hasMany = [aut hors: Aut hor]
String title

cl ass Aut hor ({
static hasMany = [books: Book]
String nanme

Grails maps a many-to-many using a join table at the database level. The owning side of the relationshij
persisting the relationship and is the only side that can cascade saves across.

For example thiswill work and cascade saves:

new Aut hor (name: " St ephen Ki ng")
. addToBooks(new Book(t
. addToBooks(new Book(t
.save()

tle:"The Stand"))
tle:"The Shining"))

However thiswill only save the Book and not the authors!

new Book(name: "G oovy in Action")
. addToAut hor s(new Aut hor (nane: "Di erk Koeni g"))
. addToAut hor s(new Aut hor (name: " Cui | | aune Laf orge"))
. save()

Thisisthe expected behaviour as, just like Hibernate, only one side of a many-to-many can take responsib

@ Grails Scaffolding feature does not currently support many-to-many relationship and henc
manage the relationship yourself

85

6.2.1.4 Basic Collection Types

As well as associations between different domain classes, GORM also supports mapping of basic coll
createsani cknanes association that isa Set of St ri ng instances:

cl ass Person {
stati c hasMany = [ni cknanes: String]
}

GORM will map an association like the above using ajoin table. Y ou can alter various aspects of how t
argument:

cl ass Person {

static hasMany [ni cknanes: String]

static mapping =
ni cknames j oi nTabl e: [nanme: 'bunch_o_ni cknames',
key: 'person_id',
col um: ' ni cknane',
type: "text"]

The example above will map to atable that looks like the following:

bunch_o_nicknames Table

6.2.2 Composition in GORM

As well as association, Grails supports the notion of composition. In this case instead of mapping classes
within the current table. For example:

86

cl ass Person {
Addr ess honeAddr ess
Addr ess wor kAddr ess

}

cl ass Address {
String nunber
String code

stati c enbedded = [' honeAddress',

"wor kAddr ess']

The resulting mapping would looking like this:

Person Table

id home address | home address | work address | work address
I number code number code
1 &7 343432 a7 43545

2 If you define the Addr ess classin a separate Groovy fileinthe gr ai | s- app/ domai n ¢
addr ess table. If you don't want this to happen use Groovy's ability to define multiple clé
Addr ess class below the Per son classinthegr ai | s- app/ donai n/ Per son. gr oov)

6.2.3 Inheritance in GORM

GORM supports inheritance both from abstract base classes and concrete persistent GORM entities. For ex

cl ass Content {
String aut hor
}

cl ass Bl ogEntry extends Content {
URL url
}

87

cl ass Book extends Content {
String | SBN

cl ass PodCast extends Content {
byte[] audi oStream

In the above example we have a parent Cont ent class and then various child classes with more specific t

Considerations

At the database level Grails by default uses table-per-hierarchy mapping with a discriminator column call
its subclasses (Bl ogEnt ry, Book etc.), share the same table.

Table-per-hierarchy mapping has a down side in that you cannot have non-nullable properties with
table-per-subclass which can be enabled with the ORM DSL

However, excessive use of inheritance and table-per-subclass can result in poor query performance due
adviceisif you're going to use inheritance, don't abuse it and don't make your inheritance hierarchy too de

Polymorphic Queries

The upshot of inheritance is that you get the ability to polymorphically query. For example using the list |
all subclasses of Cont ent :

def content = Content.list() // list all blog entries, books and podcasts
content = Content.findAl | ByAuthor('Joe Bloggs') // find all by author

def podCasts = PodCast.list() // list only podcasts

6.2.4 Sets, Lists and Maps
Sets of Objects

By default when you define arelationship with GORM itisaj ava. uti | . Set whichisan unordered ¢
words when you have:

88

cl ass Aut hor ({
stati c hasMany = [books: Book]

The books property that GORM injectsisaj ava. util . Set . Sets guarantee uniqueness but not ord
custom ordering you configure the Set asa Sor t edSet :

class Aut hor {
Sort edSet books
static hasMany = [books: Book]

}

Inthiscaseaj ava. util . Sort edSet implementation isused which means you must implement j ave

cl ass Book inpl ements Conmparabl e {

String title
Date rel easeDate = new Date()

i nt conmpareTo(obj) {
rel easeDat e. conpar eTo(obj . rel easeDat e)
}

The result of the above classis that the Book instances in the books collection of the Author class will be ¢

Lists of Objects

To keep objectsin the order which they were added and to be able to reference them by index like an array

89

cl ass Aut hor ({
Li st books

static hasMany = [books: Book]
}

In this case when you add new elements to the books collection the order is retained in a sequential list ind

aut hor . books[0] // get the first book

The way this works at the database level is Hibernate creates a books i dx column where it saves the
this order at the database level.

When using a Li st, elements must be added to the collection before being saved, otherw
or g. hi ber nat e. H ber nat eExcept i on: null index column for collection):

/1 This won't work!

def book = new Book(title: 'The Shining')
book. save()

aut hor . addToBooks(book)

/1 Do it this way instead

def book = new Book(title: 'Msery")
aut hor . addToBooks(book)

aut hor . save()

Bags of Objects

If ordering and uniqueness aren't a concern (or if you manage these explicitly) then you can use the Hibern

The only change required for thisisto define the collection typeasa Col | ect i on:

90

http://docs.jboss.org/hibernate/core/3.6/reference/en-US/html/collections.html

cl ass Aut hor ({
Col | ecti on books

static hasMany = [books: Book]
}

Since uniqueness and order aren't managed by Hibernate, adding to or removing from collections mapy
instances from the database, so this approach will perform better and require less memory than using a Set

Maps of Objects

If you want asimple map of string/value pairs GORM can map this with the following:

class Aut hor {
Map books // map of | SBN: book nanes

def a = new Aut hor ()
a. books = ["1590597583": "Grails Book"]
a. save()

In this case the key and value of the map MUST be strings.

If you want a Map of objects then you can do this:

cl ass Book {
Map aut hors

static hasMany = [aut hors: Author]
}

def a = new Aut hor (nane: " St ephen Ki ng")

def book = new Book()
book. aut hors = [stephen: a]
book. save()

The static hasMany property defines the type of the elements within the Map. The keys for the map must

A Note on Collection Types and Performance

91

The Java Set type doesn't allow duplicates. To ensure uniqueness when adding an entry to a Set associdl
from the database. If you have alarge numbers of entriesin the association this can be costly in terms of px

The same behavior isrequired for Li st types, since Hibernate needs to load the entire association to mai
you anticipate alarge numbers of records in the association that you make the association bidirectional so
For example consider the following code:

def book = new Book(title:"New G ails Book")
def author = Author.get (1)

book. aut hor = aut hor

book. save()

In this example the association link is being created by the child (Book) and hence it is not necessary t
fewer queries and more efficient code. Given an Aut hor with alarge number of associated Book instan
you would see an impact on performance:

def book = new Book(title:"New G ails Book")
def author = Author.get (1)

aut hor . addToBooks(book)

aut hor . save()

Y ou could al'so model the collection as a Hibernate Bag as described above.

6.3 Persistence Basics

A key thing to remember about Grails is that under the surface Grails is using Hibernate for persistence.
ActiveRecord or iBatisMyBatis, Hibernate's "session” model may feel alittle strange.

Grails automatically binds a Hibernate session to the currently executing request. This lets you use the s
methods transparently.

Transactional Write-Behind

A useful feature of Hibernate over direct JDBC calls and even other frameworks is that when you call sa
SQL operations at that point. Hibernate batches up SQL statements and executes them as late as possibl
and closing the session. Thisistypically done for you automatically by Grails, which manages your Hiberr

Hibernate caches database updates where possible, only actually pushing the changes when it knows that
programmatically. One common case where Hibernate will flush cached updates is when performing
included in the query results. But as long as you're doing non-conflicting saves, updates, and deletes, the
can be a significant performance boost for applications that do a lot of database writes.

Note that flushing is not the same as committing a transaction. If your actions are performed in the cont
updates but the database will save the changesin its transaction queue and only finalize the updates when t

92

http://www.hibernate.org/
http://wiki.rubyonrails.org/rails/pages/ActiveRecord
http://www.mybatis.org/

6.3.1 Saving and Updating

An example of using the save method can be seen below:

def p = Person.get (1)
p. save()

This save will be not be pushed to the database immediately - it will be pushed when the next flush oct
control when those statements are executed or, in Hibernate terminology, when the session is "flushed".
save method:

def p = Person.get (1)
p. save(flush: true)

Note that in this case all pending SQL statements including previous saves, deletes, etc. will be synchror
any exceptions, which istypically useful in highly concurrent scenarios involving optimistic locking:

def p = Person.get(1)

try {
p. save(flush: true)

catch (org.springfranmework. dao. Dat al ntegrityVi ol ati onException e) {
/] deal wth exception
}

Another thing to bear in mind is that Grails validates a domain instance every time you save it. If that
persisted to the database. By default, save() will ssimply return nul | in this case, but if you would
fai | OnError argument:

93

def p = Person. get (1)

try {
p. save(fail OnError: true)

catch (Validati onException e) {
/1 deal with exception
}

Y ou can even change the default behaviour with a setting in appl i cat i on. gr oovy, asdescribed in t
when you are saving domain instances that have been bound with data provided by the user, the likelihoo
won't want those exceptions propagating to the end user.

Y ou can find out more about the subtleties of saving datain this article - a must read!

6.3.2 Deleting Objects

An example of the delete method can be seen below:

def p = Person. get (1)
p. del ete()

Aswith saves, Hibernate will use transactional write-behind to perform the delete; to perform the deletein

def p = Person. get (1)
p.del ete(flush: true)

Using the f | ush argument lets you catch any errors that occur during a delete. A common error that m
although this is normally down to a programming or schema error. The followir
Dat al nt egri tyVi ol ati onExcept i on that isthrown when you violate the database constraints:

http://blog.springsource.com/2010/06/23/gorm-gotchas-part-1/

def p = Person. get (1)

try {
p. del ete(flush: true)

catch (org. springframework. dao. Datal ntegrityViol ati onException e) {
fl ash. nessage = "Coul d not del ete person ${p. nane}"
redirect(action: "show', id: p.id)

}

Note that Grails does not supply adel et eAl | method as deleting datais discouraged and can often be a

If you really need to batch delete data you can use the executeUpdate method to do batch DML statements

Cust oner . execut eUpdat e("del et e Custoner c¢ where c.nane = : ol dNane",
[ol dName: "Fred"])

6.3.3 Understanding Cascading Updates and Deletes

It iscritical that you understand how cascading updates and del etes work when using GORM. The key par
controls which class "owns" arelationship.

Whether it is a one-to-one, one-to-many or many-to-many, defining bel ongsTo will result in updates ci
(the other side of the relationship), and for many-/one-to-one and one-to-many relationships deletes will al:

If you do not define bel ongsTo then no cascades will happen and you will have to manually save each
which case saves will cascade automatically if anew instanceisin ahasMany collection).

Hereis an example:

class Airport {
String name
static hasMany = [flights: Flight]

95

class Flight {
String nunber
static belongsTo = [airport: Airport]

If I now create an Ai r port and add some Fl i ght stoit | can savethe Ai r por t and have the updates
whole object graph:

new Airport(name: "Gatw ck")
.addToFl i ght s(new Fl i ght (nunber: "BA3430"))
.addToFl i ght s(new Fl i ght (nunber: "EZ0938"))

.save()

Conversely if | later deletethe Ai r por t all Fl i ght sassociated with it will aso be deleted:

def airport = Airport.findByNane("Gatw ck")
airport.del ete()

However, if | were to remove bel ongsTo then the above cascading deletion code would not work
summaries below that describe the default behaviour of GORM with regards to specific associations. A
articles to get a deegper understanding of relationships and cascading.

Bidirectional one-to-many with belongsT o

class A { static hasMany = [bees: B] }

class B { static belongsTo = [a: A] }

96

http://blog.springsource.com/2010/07/02/gorm-gotchas-part-2/

In the case of a bidirectional one-to-many where the many side defines a bel ongsTo then the cascad
"NONE" for the many side.

Unidirectional one-to-many

class A { static hasMany = [bees: B] }

class B{ }

In the case of a unidirectional one-to-many where the many side defines no belongsT o then the cascade str

Bidirectional one-to-many, no belongsTo

class A { static hasMany = [bees: B] }

class B{ Aa}

In the case of a bidirectional one-to-many where the many side does not define a bel ongsTo then the «
the one side and "NONE" for the many side.

Unidirectional one-to-one with belongsT o

class A { }

97

class B { static belongsTo = [a: A] }

In the case of a unidirectional one-to-one association that defines a bel ongsTo then the cascade strat
relationship (A->B) and "NONE" from the side that definesthe bel ongsTo (B->A)

Note that if you need further control over cascading behaviour, you can use the ORM DSL.

6.3.4 Eager and Lazy Fetching
Associations in GORM are by default lazy. Thisis best explained by example:

class Airport {
String name
static hasMany = [flights: Flight]

class Flight {
String nunber
Location destination
static belongsTo = [airport: Airport]

class Location {
String city
String country

Given the above domain classes and the following code:

98

def airport = Airport.findByNane("Gatw ck")
for (flight in airport.flights) {

println flight.destination.city
}

GORM will execute a single SQL query to fetch the Ai r por t instance, another to get its flights, and
f 11 ght s association to get the current flight's destination. In other words you get N+1 queries (if you exc

Configuring Eager Fetching

An alternative approach that avoids the N+1 queriesis to use eager fetching, which can be specified as foll

class Airport {
String nane
static hasMany
static mappi ng

= [flights: Flight]
flights |azy: false

Inthiscasethef | i ght s association will be loaded at the same time as its Ai r por t instance, athoug
collection. Youcanasousefetch: 'join' insteadof | azy: fal se,inwhichcase GORM will o
their flights. This works well for single-ended associations, but you need to be careful with one-to-many:
the moment you add a limit to the number of results you want. At that point, you will likely end up with fe
for thisis quite technical but ultimately the problem arises from GORM using aleft outer join.

S0, the recommendation is currently tousef et ch: ' j oi n' for single-ended associationsand | azy:

Be careful how and where you use eager |oading because you could load your entire database into mem
find more information on the mapping options in the section on the ORM DSL.

Using Batch Fetching

Although eager fetching is appropriate for some cases, it is not always desirable. If you made everything
database into memory resulting in performance and memory problems. An aternative to eager fetchir
Hibernate to lazily fetch resultsin "batches’. For example:

99

class Airport {

String nane
static hasMany
static mappi ng
flights batchSize: 10

[flights: Flight]

In this case, dueto the bat chSi ze argument, when you iterate over thef | i ght s association, Hibernate
if you had an Ai r port that had 30 flights, if you didn't configure batch fetching you would get 1 quen
fetch each flight. With batch fetching you get 1 query to fetch the Ai r port and 3 queriesto fetch each |
fetching is an optimization of the lazy fetching strategy. Batch fetching can also be configured at the class

class Flight {

static mappi ng = {
bat chSi ze 10
}

Check out part 3 of the GORM Gotchas series for more in-depth coverage of this tricky topic.

6.3.5 Pessimistic and Optimistic Locking
Optimistic Locking

By default GORM classes are configured for optimistic locking. Optimistic locking is a feature of Hibert
specia ver si on column in the database that is incremented after each update.

Thever si on column getsread into aver si on property that contains the current versioned state of pers

def airport = Airport.get(10)

println airport.version

When you perform updates Hibernate will automatically check the version property against the version
throw a StaleObjectException. Thiswill roll back the transaction if oneis active.

Thisisuseful asit allows a certain level of atomicity without resorting to pessimistic locking that hasan ir
you have to deal with this exception if you have highly concurrent writes. This requires flushing the sessio

100

http://blog.springsource.com/2010/07/28/gorm-gotchas-part-3/
http://docs.jboss.org/hibernate/core/3.6/javadocs/org/hibernate/StaleObjectStateException.html

def airport = Airport.get(10)

try {
ai rport.name = "Heat hrow'
ai rport.save(flush: true)

catch (org. springfranmework. dao. Opti m sti cLocki ngFai |l ureException e) {
/'l deal with exception
}

The way you deal with the exception depends on the application. Y ou could attempt a programmatic merg
to resolve the conflict.

Alternatively, if it becomes a problem you can resort to pessimistic locking.

& Thever si on will only be updated after flushing the session.

Pessimistic Locking

Pessimistic locking is equivalent to doing a SQL "SELECT * FOR UPDATE" statement and locking arc
other read operations will be blocking until the lock is released.

In Grails pessimistic locking is performed on an existing instance with the lock method:

def airport = Airport.get(10)
airport.lock() // lock for update
ai rport.name = "Heat hrow'
airport.save()

Grails will automatically deal with releasing the lock for you once the transaction has been committed. H
"upgrading” from aregular SELECT to a SELECT..FOR UPDATE and another thread could still have u|
andthecall tol ock() .

To get around this problem you can use the static lock method that takes an id just like get:

def airport = Airport.lock(10) // lock for update
ai rport.name = "Heat hrow'
ai rport.save()

101

Inthis case only SELECT..FOR UPDATE isissued.

Aswell asthe lock method you can aso obtain a pessimistic locking using queries. For example using a d

def airport = Airport.findByNane("Heathrow', [lock: true])

Or using criteria:

def airport = Airport.createCriteria().get {
eq(' nane', 'Heathrow)
| ock true

}

6.3.6 Modification Checking

Once you have loaded and possibly modified a persistent domain class instance, it isn't straightforward to
the instance using get Hibernate will return the current modified instance from its Session cache. Reloe
which could cause problems if your data isn't ready to be flushed yet. So GORM provides some methor
caches when it loads the instance (which it uses for dirty checking).

isDirty

Y ou can use the isDirty method to check if any field has been modified:

def airport = Airport.get(10)
assert lairport.isDirty()

ai rport.properties = parans
if (airport.isbDirty()) {
/1 do sonething based on changed state

}

& jsDirty() does not currently check collection associations, but it does check all otl
associations.

Y ou can also check if individual fields have been modified:

102

def airport = Airport.get(10)
assert lairport.isDirty()

ai rport.properties = parans
if (airport.isDirty('nane')) {

/1l do sonething based on changed nane
}

getDirtyPropertyNames

Y ou can use the getDirtyPropertyNames method to retrieve the names of modified fields; this may be emp

def airport = Airport.get(10)
assert lairport.isDirty()

ai rport.properties = parans
def nodifiedFi el dNames = airport.getDirtyPropertyNanes()
for (fieldName in nodifiedFiel dNames) ({
/1 do sonething based on changed val ue
}

getPersistentValue

Y ou can use the getPersistentV aue method to retrieve the value of amodified field:

def airport = Airport.get(10)
assert lairport.isDirty()

airport.properties = parans
def nodifiedFi el dNames = airport.getDirtyPropertyNanmes()
for (fieldName in nodifiedFiel dNames)
def currentValue = airport."$fiel dNanme"
def original Val ue = airport.getPersistent Val ue(fi el dNane)
if (currentValue != original Val ue) {
/1 do sonething based on changed val ue
}

6.4 Querying with GORM

103

GORM supports a number of powerful ways to query from dynamic finders, to criteria to Hibernate's obje
the complexity of the query you have the following optionsin order of flexibility and power:

® Dynamic Finders

®* Where Queries

® CriteriaQueries

® Hibernate Query Language (HQL)
In addition, Groovy's ability to manipulate collections with GPath and methods like sort, findAll and so
combination.

However, let's start with the basics.

Listing instances

Use the list method to obtain al instances of a given class:

def books = Book.list()

The list method supports arguments to perform pagination:

def books = Book.list(offset: 10, max: 20)

aswell as sorting:

def books = Book.list(sort:"title", order:"asc")

Here, the sort argument is the name of the domain class property that you wish to sort on, and the or
desc for descending.

Retrieval by Database Identifier

The second basic form of retrieval is by database identifier using the get method:

104

http://groovy.codehaus.org/GPath

def book = Book. get (23)

Y ou can aso obtain alist of instances for a set of identifiers using getAll:

def books = Book.getAll (23, 93, 81)

6.4.1 Dynamic Finders

GORM supports the concept of dynamic finders. A dynamic finder looks like a static method invocation,
in any form at the code level.

Instead, a method is auto-magically generated using code synthesis at runtime, based on the properties of €

cl ass Book {
String title
Dat e rel easeDat e
Aut hor aut hor

cl ass Aut hor ({
String nane

The Book class has propertiessuch astitl e, rel easeDat e and aut hor . These can be used by th
"method expressions”:

105

def book = Book.findByTitle("The Stand")

book = Book.findByTitleLike("Harry Pot %)

book = Book. fi ndByRel easeDat eBet ween(firstDate, secondDate)

book = Book. fi ndByRel easeDat eG eat er Than(sonmeDat e)

book = Book.findByTitl eLi keOr Rel easeDat eLessThan(" %Sonet hi ng% , soneDat e)

Method Expressions

A method expression in GORM is made up of the prefix such as findBy followed by an expression that c
is:

Book. fi ndBy([Property] [Conpar at or] [Bool ean Operator]) ?[Property][Conpar at or]

The tokens marked with a'? are optional. Each comparator changes the nature of the query. For example:

def book = Book.findByTitle("The Stand")
book = Book.findByTitleLike("Harry Pot %)

In the above example the first query is equivalent to equality whilst the latter, due to the Li ke comparator

The possible comparators include:

106

I nLi st - Inthelist of given values

® LessThan - lessthan agiven value

®* LessThanEqual s - lessthan or equal agive value

® G eat er Than - greater than agiven value

® G eat er ThanEqual s - greater than or equal agiven value

® Li ke - Equivalent to a SQL like expression

® |like-Smilartoali ke, except caseinsensitive

®* Not Equal - Negatesequality

®* | nRange - Betweenthef r omandt o values of a Groovy Range
®* Rl i ke - PerformsaRegexp LIKE in MySQL or Oracle otherwise falls back to Li ke
® Bet ween - Between two values (requires two arguments)

® | sNot Nul I - Not anull value (doesn't take an argument)

I sNul I - Isanull value (doesn't take an argument)

Notice that the last three require different numbers of method arguments compared to the rest, as demonstr

def now = new Dat e()
def |astWek = now - 7
def book = Book.fi ndByRel easeDat eBet ween(| ast \eek, now)

Book. fi ndAl | ByRel easeDat el sNul | ()
Book. fi ndAl | ByRel easeDat el sNot Nul | ()

books
books

Boolean logic (AND/OR)

Method expressions can also use a boolean operator to combine two or more criteria:

def books = Book.findAlIByTitlelLi keAndRel easeDat eG eat er Than(
"%ava% , new Date() - 30)

In this case we're using And in the middle of the query to make sure both conditions are satisfied, but you

107

def books = Book.findAlIByTitleLi keOr Rel easeDat eG eat er Than(
"%ava% , new Date() - 30)

Y ou can combine as many criteria as you like, but they must all be combined with And or all Or . If youn
criteria creates a very long method name, just convert the query to a Criteria or HQL query.

Querying Associations

Associations can also be used within queries:

def author = Author.findByName("Stephen Ki ng")
def books = author ? Book. findAll ByAuthor(author) : []

In thiscase if the Aut hor instanceisnot null we useit in aquery to obtain al the Book instances for the

Pagination and Sorting

The same pagination and sorting parameters available on the list method can also be used with dynamic fir

def books = Book.findAlIByTitleLike("Harry Pot %,
[max: 3, offset: 2, sort: "title", order: "desc"])

6.4.2 Where Queries

Thewher e method, introduced in Grails 2.0, builds on the support for Detached Criteria by providing an
common queries. The wher e method is more flexible than dynamic finders, less verbose than criteria a
gueries.

Basic Querying

The wher e method accepts a closure that looks very similar to Groovy's regular collection methods. T
regular Groovy syntax, for example:

108

def query = Person.where {
firstName == "Bart"

}
Person bart = query.find()

The returned object isaDet achedCri t eri a instance, which meansit is not associated with any partic
you can use the wher e method to define common queries at the class level:

cl ass Person {
static sinpsons = where {
| ast Name == " Si npson"”
}

}

Per son. si npsons. each {
printin it.firstname

Query execution is lazy and only happens upon usage of the DetachedCriteria instance. If you want to ex
variations of thef i ndAl'| andf i nd methods to accomplish this:

def results = Person.findAl {
| ast Name == " Si npson"

def results = Person.findAll(sort:"firstNanme") {
| ast Name == " Si npson"

}

Person p = Person.find { firstNane == "Bart" }

Each Groovy operator maps onto aregular criteria method. The following table provides a map of Groovy

109

== eq Equal to

I= ne Not equal to

> gt Greater than

< It Lessthan

>= ge Greater than or equal to

<= le Lessthan or equal to

in inList Contained within the given list
==~ like Like agiven string

= ilike Caseinsensitive like

It is possible use regular Groovy comparison operators and logic to formulate complex queries:

def query = Person. where {
(lastNane != "Sinpson” && firstName != "Fred") || (firstName == "Bart" && age

def results = query.list(sort:"firstNane")

The Groovy regex matching operators map onto like and ilike queries unless the expression on the right
they mapontoanr | i ke query:

def query = Person. where {
firstName ==~ ~/B. +/
}

& Notethat r| i ke queriesare only supported if the underlying database supports regular expre

A bet ween criteriaquery can be done by combining thei n keyword with arange:

110

def query = Person.where {
age in 18..65

Finally, youcandoi sNul | andi sNot Nul | style queries by using nul | with regular comparison oper:

def query = Person. where {
nm ddl eName == nul |
}

Query Composition

Since the return value of the wher e method is a DetachedCriteria instance you can compose new queries'

def query = Person.where {
| ast Name == " Si npson”

}

def bart Query = query.where {
firstName == "Bart"

}

Person p = bartQuery. find()

Note that you cannot pass a closure defined as a variable into the wher e method unless it has been expli
In other words the following will produce an error:

def callable = {
| ast Namre == " Si npson"

def query = Person.where(call abl e)

The above must be written as follows:

111

i mport grails.gorm DetachedCriteria

def callable = {
| ast Name == " Si npson"
} as DetachedCriteria<Person>
def query = Person.where(call abl e)

Asyou can see the closure definition is cast (using the Groovy as keyword) to a DetachedCriteria instance

Conjunction, Disjunction and Negation

As mentioned previously you can combine regular Groovy logical operators (| | and &&) to form conjunc

def query = Person.where {
(lastNane != "Sinpson” && firstName != "Fred") || (firstName == "Bart" && age
}

Y ou can aso negate alogical comparison using ! :

def query = Person.where {
firstName == "Fred" && ! (|l astNanme == ' Si npson')
}

Property Comparison Queries

If you use a property name on both the left hand and right side of a comparison expression then ti
automatically used:

def query = Person.where {
firstName == | ast Nane

The following table described how each comparison operator maps onto each criteria property comparison

112

es eqProperty Equal to

I= neProperty Not equal to

> gtProperty Greater than

< [tProperty Lessthan

>= geProperty Greater than or equal to
<= leProperty Lessthan or equal to

Querying Associations

Associations can be queried by using the dot operator to specify the property name of the association to be

def query = Pet.where {
owner. firstName == "Joe" || owner.firstNane == "Fred"
}

Y ou can group multiple criterion inside a closure method call where the name of the method matches the a

def query = Person.where {
pets { name == "Jack" || name == "Joe" }

This technigue can be combined with other top-level criteria:

def query = Person.where {
pets { name == "Jack" } || firstNanme == "Ed"

For collection associationsit is possible to apply queries to the size of the collection:

113

pets.size() ==

}

def query = Person.where {

The following table shows which operator maps onto which criteria method for each size() comparison:

== sizeEq The collection sizeis equal to

I= sizeNe The collection size is not equal to

> sizeGt The collection size is greater than

< sizel t The collection sizeis less than

>= sizeGe The collection size is greater than or equal to

<= sizeLe The collection size is less than or equal to
Subqueries

It is possible to execute subqueries within where queries. For example to find all the people older than the

age > avg(age)

final query = Person.where {

The following table lists the possible subqueries:

avg The average of all values
sum The sum of al values
max The maximum value
min The minimum value

count The count of all values

property Retrievesaproperty of the resulting entities

Y ou can apply additional criteriato any subquery by using the of method and passing in a closure contain

114

def query = Person.where {
age > avg(age).of { lastNane == "Sinpson" } && firstName == "Honer"

Since the pr oper t y subquery returns multiple results, the criterion used compares all results. For ex
younger than people with the surname " Simpson™:

Per son. where {
age < property(age).of { |astNane == "Si npson" }

More Advanced Subqueries in GORM

The support for subqueries has been extended. Y ou can now use in with nested subqueries

def results = Person.where {
firstName in where { age < 18 }.firstNane
}.list()

Criteriaand where queries can be seamlessly mixed:

def results = Person.withCriteria {
notln "firstNanme", Person.where { age < 18 }.firstNane

}

Subqueries can be used with projections:

115

def results = Person.where {
age > where { age > 18 }.avg(' age')

Correlated queries that span two domain classes can be used:

def enpl oyees = Enpl oyee. where {
regi on.continent in ["APAC , "EMEA"]
}oid()
def results = Sal e.where {
enpl oyee in enpl oyees && total > 100000

}. enpl oyee. list ()

And support for aliases (cross query references) using simple variable declarations has been added to wher

def query = Enpl oyee. where {
def eml = Enpl oyee
exi sts Sal e. where {
def s1 = Sale
def enR = enpl oyee
return en2.id == enil.id
}.id()

def results = query.list()

Other Functions

There are several functions available to you within the context of a query. These are summarized in the tak

116

second The second of a date property

minute The minute of a date property

hour The hour of a date property

day The day of the month of a date property

month The month of a date property

year The year of adate property

lower Convertsastring property to upper case

upper Convertsastring property to lower case

length Thelength of astring property

trim Trims astring property

&4 Currently functions can only be applied to properties or associations of domain classes. Y
function on aresult of a subquery.

For example the following query can be used to find all pet's bornin 2011:

def query = Pet.where {
year (birthbDate) == 2011

Y ou can a'so apply functions to associations:

def query = Person.where
year (pets. birthbDate) == 2009

Batch Updates and Deletes

Since each wher e method call returns a DetachedCriteria instance, you can use wher e queries to exec
deletes. For example, the following query will update all people with the surname " Simpson" to have the s

117

def query = Person.where {
| ast Name == ' Si npson’

}
int total = query.updateAll (Il astNane: "Bl oggs")

% Note that one limitation with regards to batch operations is that join queries (queries tha
allowed.

To batch delete records you can use the del et eAl | method:

def query = Person.where {
| ast Nane == ' Si npson'

}
int total = query.deleteAll ()

6.4.3 Criteria

Criteriais an advanced way to query that uses a Groovy builder to construct potentially complex querie:
query stringsusinga St r i ngBuf f er.

Criteria can be used either with the createCriteria or withCriteria methods. The builder uses Hibernate's ¢
static methods found in the Restrictions class of the Hibernate Criteria API. For example:

def ¢ = Account.createCriteria()
def results = ¢ {
bet ween(" bal ance", 500, 1000)
eq("branch", "London")
or {
I i ke("hol der Fi rst Nane", "Fred%)
i ke("hol derFirstNanme", "Barney%)

maxResul t s(10)
order ("hol d