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Copyright

Copyright © (1987-2015) for the core part of the GAP system by the GAP Group.

Most parts of this distribution, including the core part of the GAP system are distributed under the terms of
the GNU General Public License, see http://www.gnu.org/licenses/gpl.html or the file GPL in the etc
directory of the GAP installation.

More detailed information about copyright and licenses of parts of this distribution can be found in Section
1.4 of this manual.

GAP is developed over a long time and has many authors and contributors. More detailed information can

be found in Section 1.2 of this manual.
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Chapter 1

Preface

Welcome to GAP. This is one of three manuals documenting the core part of GAP, the other being
the GAP Tutorial . and the document called “GAP - Changes from Earlier Versions” .

This preface serves not only to introduce “The GAP Reference Manual”, but also as an introduc-
tion to the whole system.

GAP stands for Groups, Algorithms and Programming. The name was chosen to reflect the aim
of the system, which is introduced in this reference manual. Since that choice, the system has become
somewhat broader, and you will also find information about algorithms and programming for other
algebraic structures, such as semigroups and algebras.

This manual, the GAP reference manual contains the official definitions of GAP functions. It
should contain all the information needed to use GAP, and is not intended to be read cover-to-cover.

To get started a new user may first look at parts of the GAP Tutorial .

A lot of the functionality of the system and a number of contributed extensions are provided as
“GAP packages” which are developed independently of the core part of GAP and can be loaded into
a GAP session. Each package comes with a its own manual which is also available through the GAP
help system.

This manual is divided into chapters, sections and subsections. Chapter 2 describes the help
system, which provides access to all the manuals from a running GAP session. Chapter 3 gives
technical advice for running GAP. Chapter 4 introduces the GAP language, and the next chapters
deal with the environment provided by GAP for the user. These are followed by the main bulk of
chapters which are devoted to the various mathematical structures that GAP can handle.

Subsequent sections of this preface explain the structure of the system and provide copyright and
licensing information.

1.1 The GAP System

GARP is a free, open and extensible software package for computation in discrete abstract algebra. The
terms “free” and “open” describe the conditions under which the system is distributed — in brief, it is
free of charge (except possibly for the immediate costs of delivering it to you), you are free to pass it
on within certain limits, and all of the workings of the system are open for you to examine and change.
Details of these conditions can be found in Section (Reference: Copyright and License).

The system is “extensible” in that you can write your own programs in the GAP language, and
use them in just the same way as the programs which form part of the system (the “library”). Indeed,
we actively support the contribution, refereeing and distribution of extensions to the system, in the

23
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form of “GAP packages”. Further details of this can be found in chapter (Reference: Using GAP
Packages), and on our website.

Development of GAP began at Lehrstuhl D fiir Mathematik, RWTH-Aachen, under the leader-
ship of Joachim Neubiiser in 1985. Version 2.4 was released in 1988 and version 3.1 in 1992. In
1997 coordination of GAP development, now very much an international effort, was transferred to
St Andrews. A complete internal redesign and almost complete rewrite of the system was completed
over the following years and version 4.1 was released in July 1999. A sign of the further internation-
alization of the project was the GAP 4.4 release in 2004, which has been coordinated from Colorado
State University, Fort Collins.

More information on the motivation and development of GAP to date, can be found on our Web
pages in a section entitled “Release history and Prefaces”.

For those readers who have used an earlier version of GAP, an overview of the changes from
GAP 4.4 and a brief summary of changes from earlier versions is given in a separate manual
(Changes: Changes between GAP 4.4 and GAP 4.5).

The system that you are getting now consists of a “core system” and a number of packages. The
core system consists of four main parts.

1. A kernel, written in C, which provides the user with

* automatic dynamic storage management, which the user needn’t bother about in his pro-
gramming;

* aset of time-critical basic functions, e.g. “arithmetic”, operations for integers, finite fields,
permutations and words, as well as natural operations for lists and records;

* an interpreter for the GAP language, an untyped imperative programming language with
functions as first class objects and some extra built-in data types such as permutations and
finite field elements. The language supports a form of object-oriented programming, simi-
lar to that supported by languages like C++ and Java but with some important differences.

* a small set of system functions allowing the GAP programmer to handle files and execute
external programs in a uniform way, regardless of the particular operating system in use.

* a set of programming tools for testing, debugging, and timing algorithms.

* a “read-eval-view” style user interface.

2. A much larger library of GAP functions that implement algebraic and other algorithms. Since
this is written entirely in the GAP language, the GAP language is both the main implementation
language and the user language of the system. Therefore the user can as easily as the original
programmers investigate and vary algorithms of the library and add new ones to it, first for own
use and eventually for the benefit of all GAP users.

3. A library of group theoretical data which contains various libraries of groups, including the
library of small groups (containing all groups of order at most 2000, except those of order
1024) and others. Large libraries of ordinary and Brauer character tables and Tables of Marks
are included as packages.

4. The documentation. This is available as on-line help, as printable files in PDF format and as
HTML for viewing with a Web browser.

Also included with the core system are some test files and a few small utilities which we hope you
will find useful.
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GAP packages are self-contained extensions to the core system. A package contains GAP
code and its own documentation and may also contain data files or external programs to which the
GAP code provides an interface. These packages may be loaded into GAP using the LoadPackage
(Reference: LoadPackage) command, and both the package and its documentation are then available
just as if they were parts of the core system. Some packages may be loaded automatically, when GAP
is started, if they are present. Some packages, because they depend on external programs, may only
be available on the operating systems where those programs are available (usually UNIX). You should
note that, while the packages included with this release are the most recent versions ready for release
at this time, new packages and new versions may be released at any time and can be easily installed
in your copy of GAP.

With GAP there are two packages (the library of ordinary and Brauer character tables, and the
library of tables of marks) which contain functionality developed from parts of the GAP core system.
These have been moved into packages for ease of maintenance and to allow new versions to be released
independently of new releases of the core system. The library of small groups should also be regarded
as a package, although it does not currently use the standard package mechanism. Other packages
contain functionality which has never been part of the core system, and may extend it substantially,
implementing specific algorithms to enhance its capabilities, providing data libraries, interfaces to
other computer algebra systems and data sources such as the electronic version of the Atlas of Finite
Group Representations; therefore, installation and usage of packages is recommended.

Further details about GAP packages can be found in chapter (Reference: Using GAP Packages),
and on the GAP website here: http://www.gap-system.org/Packages/packages.html.

1.2 Authors and Maintainers

GAP is the work of very many people, many of whom still maintain parts of the system. A com-
plete list of authors, and an approximation to the current list of maintainers can be found on the
GAP World Wide Web site at http://www.gap-system.org/Contacts/People/authors.html
and http://www.gap-system.org/Contacts/People/modules.html. All GAP packages have
their own authors and maintainers. It should however be noted that some packages provide interfaces
between GAP and an external program, a copy of which is included for convenience, and that, in
these cases, we do not claim that the package authors or maintainers wrote, or maintain, this external
program. Similarly, the system and some packages include large data libraries that may have been
computed by many people. We try to make clear in each case what credit is attributable to whom.

We have, for some time, operated a refereeing system for contributed packages, both to ensure the
quality of the software we distribute, and to provide recognition for the authors. We now consider this
to be a refereeing system for modules, and we would note, in particular that, although it does not use
the standard package interface, the library of small groups has been refereed and accepted on exactly
the same basis as the accepted packages.

We also include with this distribution a number of packages which have not (yet) gone through
our refereeing process. Some may be accepted in the future, in other cases the authors have chosen
not to submit them. More information can be found on our World Wide Web site (see Section 1.5).

1.3 Acknowledgements

Very many people have worked on, and contributed to, GAP over the years since its inception. On our
Web site you will find the prefaces to the previous releases, each of which acknowledges people who


http://www.gap-system.org/Packages/packages.html
http://www.gap-system.org/Contacts/People/authors.html
http://www.gap-system.org/Contacts/People/modules.html

GAP - Reference Manual 26

have made special contributions to that release. Even so, it is appropriate to mention here Joachim
Neubiiser whose vision of a free, open and extensible system for computational algebra inspired GAP
in the first place, and Martin Schonert, who was the technical architect of GAP 3 and GAP 4.

1.4 Copyright and License

Copyright © (1987-2015) by the GAP Group,

incorporating the Copyright © 1999, 2000 by School of Mathematical and Computational Sci-
ences, University of St Andrews, North Haugh, St Andrews, Fife KY16 9SS, Scotland

being the Copyright © 1992 by Lehrstuhl D fiir Mathematik, RWTH, 52056 Aachen, Germany,
transferred to St Andrews on July 21st, 1997.

except for files in the distribution, which have an explicit different copyright statement. In par-
ticular, the copyright of packages distributed with GAP is usually with the package authors or their
institutions.

GARP is free software; you can redistribute it and/or modify it under the terms of the GNU General
Public License as published by the Free Software Foundation; either version 2 of the License, or (at
your option) any later version. For details, see the file GPL in the etc directory of the GAP distribution
or see http://www.gnu.org/licenses/gpl.html.

If you obtain GAP please send us a short notice to that effect, e.g., an e-mail message to the
address support@gap-system.org. This helps us to keep track of the number of GAP users.

If you publish a mathematical result that was partly obtained using GAP, please cite GAP, just as
you would cite another paper that you used (see below for sample citation). Also we would appreciate
if you could inform us about such a paper, which we will add to the GAP bibliography.

Specifically, please refer to

[GAP] The GAP Group, GAP - Groups, Algorithms, and Programming,
Version 4.7.8; 2015 (http://www.gap-system.org)

You are permitted to modify and redistribute GAP, but you are not allowed to restrict further
redistribution. That is to say proprietary modifications will not be allowed. We want all versions of
GAP to remain free.

If you modify any part of GAP and redistribute it, you must supply a README document. This
should specify what modifications you made in which files. We do not want to take credit or be
blamed for your modifications.

Of course we are interested in all of your modifications. In particular we would like to see bug-
fixes, improvements and new functions. So again we would appreciate it if you would inform us about
all modifications you make.

In addition to the general copyright for GAP set forth above, the following terms apply to the
versions of GAP for Windows.

The executable of GAP for Windows that we distribute was compiled with the gcc compiler
supplied with Cygwin installation (http://cygwin.com/).

The GNU C compiler is

Copyright © 2010 Free Software Foundation, Inc.

under the terms of the GNU General Public License (GPL).

The Cygwin API library is also covered by the GNU GPL. The executable we provide is linked
against this library (and in the process includes GPL’d Cygwin glue code). This means that the
executable falls under the GPL too, which it does anyhow.
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The cyggcc_s-1.d11, cygncurses-10.d1l1l, cygncursesw-10.d1l, cygpanel-10.d11,
cygpopt-0.dll, cygreadline7.dll, cygstart.exe, cygwinl.dll, 1ibWill.d1ll, mintty.exe,
rxvt.exe and regtool.exe are taken unmodified from the Cygwin distribution. They are copy-
right by RedHat Software and released under the GPL. For more information on Cygwin, see
http://www.cygwin.com.

Please contact support@gap-system.org if you need further information.

1.5 Further Information about GAP

Information about GAP is best obtained from the GAP website
http://www.gap-system.org
There you will find, amongst other things

* directions to the sites from which you can download the current GAP distribution, all accepted
and deposited GAP packages, and a selection of other contributions.

* the GAP manual and an archive of the gap-forum mailing list, formatted for reading with a
Web browser, and indexed for searching.

* information about GAP developers, and about the email addresses available for comment, dis-
cussion and support.

We would particularly ask you to note the following things:

* The GAP Forum — an email discussion forum for comments, discussions or questions about
GAP. You must subscribe to the list before you can post to it, see the website for details. In
particular we will announce new releases in this mailing list.

* The email address support@gap-system.org to which you are asked to send any questions
or bug reports which do not seem likely to be of interest to the whole GAP Forum. Please give
a (short, if possible) self-contained excerpt of a GAP session containing both input and output
that illustrates your problem (including comments of why you think it is a bug) and state the
type of the machine, operating system, (compiler used, if UNIX/Linux) and the version of GAP
you are using (the first line after the GAP 4 banner starting GAP, Version 4...).

* We also ask you to send a brief message to support@gap-system.org when you install GAP.

 The correct form of citation of GAP, which we ask you use whenever you publish scientific
results obtained using GAP.

It finally remains for us to wish you all pleasure and success in using GAP, and to invite your
constructive comment and criticism.

The GAP Group,

09-Jun-2015
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Chapter 2

The Help System

This chapter describes the GAP help system. The help system lets you read the documentation inter-
actively.

2.1 Invoking the Help

The basic command to read GAP’s documentation from within a GAP session is as follows.

?[book:]1[?]topic

For an explanation and some examples see (Tutorial: Help).

Note that the first question mark must appear in the first position after the gap> prompt. The
search strings book and topic are normalized in a certain way (see the end of this section for details)
before the search starts. This makes the search case insensitive and there can be arbitrary white space
after the first question mark.

When there are several manual sections that match the query a numbered list of topics is displayed.
These matches can be accessed with Pnumber.

There are some further specially handled commands which start with a question mark. They are
explained in Section 2.2.

By default GAP shows the help sections as text in the terminal (window), page by page if the
shown text does not fit on the screen. But there are several other choices to read (other formats of) the
documents: via a viewer for pdf files or via a web browser. This is explained below in Section 2.3.

Details of the string normalization process

Here is a precise description how the search strings book and topic are normalized before a
search starts: backslashes and double or single quotes are removed, parentheses and braces are substi-
tuted by blanks, non-ASCII characters are considered as ISO-latin1 characters and the accented letters
are substituted by their non-accented counterpart. Finally white space is normalized.

2.2 Browsing through the Sections

Help books for GAP are organized in chapters, sections, and subsections. There are a few special
commands starting with a question mark (in the first position after the gap> prompt) which allow
browsing a book section or chapter wise.

7>

7<

28
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The two help commands 7< and 7> allow one to browse through a whole help book. 7< displays
the section or subsection preceding the previously shown (sub)section, and ?> takes you to the section
or subsection following the previously shown one.

>>

<<

7<< takes you back to the beginning of the current chapter. If you are already at the start of a
chapter 7<< takes you to the beginning of the previous chapter. ?>> takes you to the beginning of the
next chapter.

?-

7+

GAP remembers the last few sections that you have read. 7- takes you to the one that you have
read before the current one, and displays it again. Further applications of 7- take you further back
in this history. ?+ reverses this process, i.e., it takes you back to the section that you have read after
the current one. It is important to note that ?- and ?+ do not alter the history like the other help
commands.

?books

This command shows a list of the books which are currently known to the help system. For each
book there is a short name which is used with the book part of the basic help query and there is a long
name which hopefully tells you what this book is about.

A short name which ends in (not loaded) refers to a GAP package whose documentation is
loaded but which needs a call of LoadPackage (76.2.1) before you can use the described functions.

7[book :1sections

?[book :] [chapters]

These commands show tables of contents for all available, respectively the matching books. For
some books these commands show the same, namely the whole table of contents.

?

7%

These commands redisplay the last shown help section. In the form 7& the next preferred help
viewer is used for the display (provided one has chosen several viewers), see SetHelpViewer (2.3.1)
below.

2.3 Changing the Help Viewer

Books of the GAP help system or package manuals can be available in several formats. Currently the
following formats occur (not all of them may be available for all books):

text
This is used for display in the terminal window in which GAP is running. Complicated mathe-
matical expressions may not be easy to read in this format.

pdf Adobe’s pdf format. Can be used for printing and onscreen reading on most current systems
(with freely available software). Some manual books contain hyperlinks in this format.

HTML
The format of web pages. Can be used with any web browser. There may be hyperlink informa-
tion available which allows a convenient browsing through the book via cross-references. This
format has the problem that complicated formulae may be not be easy to read since there is no
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syntax for formulae in HTML. (Some older manual books use special symbol fonts for formu-
lae and need a particular configuration of the web browser for correct display. Some manuals
may use technology for quite sophisticated formula display.)

Depending on your operating system and available additional software you can use several of
these formats with GAP’s help system. This is configured with the following command.

2.3.1 SetHelpViewer

> SetHelpViewer(viewerl, viewer2, ...) (function)

This command takes an arbitrary number of arguments which must be strings describing a viewer.
The recognized viewers are explained below. A call with no arguments shows the current setting.

The first given arguments are those with higher priority. So, if a help section is available in the
format needed by viewerl, this viewer is used. If not, availability of the format for viewer?2 is
checked and so on. Recall that the command 7& displays the last seen section again but with the next
possible viewer in your list, see 2.2.

The viewer "screen" (see below) is always silently appended since we assume that each help
book is available in text format.

If you want to change the default setting you can use a call of SetUserPreference(
"HelpViewers", [ ... 1 ); (the listin the second argument containing the viewers you want)
in your gap . ini file (see 3.2).

"screen"

This is the default setting. The help is shown in text format using the Pager (2.4.1) command.
Hint: Text versions of manuals are formatted assuming that your terminal displays at least 80
characters per line, if this is not the case some sections may look very bad. We suggest to
use a terminal in UTF-8 encoding with a fixed width font (this is the default on most modern
Linux/Windows/Mac systems anyway). Terminals in IS0-8859-X encoding will also work
reasonably well (so far, since we do not yet use many special characters which such terminals
could not display).

"firefox", chrome, "mozilla", "netscape", "konqueror"
If a book is available in HTML format this is shown using the corresponding web browser.
How well this works, for example by using a running instance of this browser, depends on
your particular start script of this browser. (Note, that for some old books the browser must be
configured to use symbol fonts.)

"browser"
(for MS Windows) If a book is available in HTML format, it will be opened using the Windows
default application (typically, a web browser).

"links2", "w3m", "lynx"
If a book is available in HTML format this is shown using the text based "1inks2" (in graphics
mode), w3m or Lynx web browser, respectively, inside the terminal running GAP. (Formulae in
some older books which use symbol fonts may be unreadable.)

"mac default browser", "browser'", "safari","firefox"
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(for Mac OS X) If a book is available in HTML format this is shown in a web browser. The
options "safari" and "firefox" use the corresponding browsers. The other two options use
the program default browser (which can be set in Safari’s preferences, in the "General" tab).

" Xpdf "n
(on X-windows systems) If a book is available in pdf format it is shown with the onscreen
viewer program xpdf (which must be installed on your system). This is a nice program, once it
is running it is reused by GAP for the next displays of help sections.

"acroread"
If a book is available in pdf format it is shown with the onscreen viewer program acroread
(which must be available on your system). This program does not allow remote commands or
startup with a given page. Therefore the page numbers you have to visit are just printed on the
screen. When you are looking at several sections of the same book, this viewer assumes that
the acroread window still exists. When you go to another book a new acroread window is
launched.

"pdf viewer", "skim", "preview", "adobe reader"

(for Mac OS X) If a book is available in pdf format this is shown in a pdf viewer. The options
"skim", "preview" and "adobe reader" use the corresponding viewers. The other two op-
tions use the pdf viewer which you have chosen to open pdf files from the Finder. Note that
only "Skim" seems to be capable to open a pdf file on a given page. For the other help viewers,
the page numbers where the information can be found will just be printed on the screen. None
of the help viewers seems to be capable of opening a pdf at a given named destination (i. e.,
jump to precisely the place where the information can be found). The pdf viewer "Skim" is
open source software, it can be downloaded from http://skim-app.sourceforge.net/.

"less" or "more"
This is the same as '"screen" but additionally the user preferences "Pager" and
""PagerOptions" are set, see the section 2.4 for more details.

Please, send ideas for further viewer commands to support@gap-system. org.

2.4 The Pager Command

GAP contains a builtin pager which shows a text string which does not fit on the screen page by page.
Its functionality is very rudimentary and self-explaining. This is because (at least under UNIX) there
are powerful external standard programs which do this job.

2.4.1 Pager

> Pager(lines) (function)

This function can be used to display a text on screen using a pager, i.e., the text is shown page by
page.

There is a default builtin pager in GAP which has very limited capabilities but should work on
any system.
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At least on a UNIX system one should use an external pager program like less or more. GAP
assumes that this program has a command line option +nr which starts the display of the text with
line number nr.

Which pager is used can be controlled by setting the user preference "Pager". The default value
is "builtin" which means that the internal pager is used.

On UNIX systems you probably want to set the user preference "Pager" to the value "less" or
"more", you can do this for example in your gap.ini file (see 3.2). In that case you can also tell
GAP alist of standard options for the external pager, via the user preference "PagerOptions".

Example
SetUserPreference( "Pager", "less" );

SetUserPreference( "PagerOptions", ["-f","-r","-a","-i","-M","-j2"] );

The argument 1ines can have one of the following forms:

1. astring (i.e., lines are separated by newline characters)

2. a list of strings (without newline characters) which are interpreted as lines of the text to be
shown

3. arecord with component 1ines as in 1. or 2. and optional further components
In case 3. currently the following additional components are used:

formatted
can be false or true. If set to true the builtin pager tries to show the text exactly as it is given
(avoiding GAP’s automatic line breaking),

start
must be a positive integer. This is interpreted as the number of the first line shown by the pager
(one may see the beginning of the text via back scrolling).

exitAtEnd
can be false or true. If set to true (the default), the builtin pager is terminated as soon as the
end of the list is shown; otherwise entering the Q key is necessary in order to return from the

pager.

The Pager command is used by GAP’s help system for displaying help sections in text format.
But, of course, it may be used for other purposes as well.

Example

gap> s6 := SymmetricGroup(6);;

gap> words := ["This", "is", "a", "very", "stupid", "example"];;
gap> 1 := List(s6, p-> Permuted(words, p));;

gap> Pager(List(l, a-> JoinStringsWithSeparator(a," ")));;




Chapter 3

Running GAP

This chapter informs about command line options for GAP (see 3.1), some files in user specific GAP
root directory (see 3.2) and saving and loading a GAP workspace (see 3.3).

3.1 Command Line Options

When you start GAP from a command line or from a script you may specify a number of options on
the command-line to change the default behaviour of GAP. All these options start with a hyphen -,
followed by a single letter. Options must not be grouped, e.g., gap -gq is invalid, use gap -g -q
instead. Some options require an argument, this must follow the option and must be separated by
whitespace, e.g., gap -m 256m, it is not correct to say gap -m256m instead. Certain Boolean options
(-b, -q, -e, -, -A, -D, -M, -T, -X, -Y) toggle the current value so that gap -b -b is equivalent to
gap andtogap -b -q -b -qetc.

GAP for UNIX will distinguish between upper and lower case options.

As described in the GAP installation instructions (see the INSTALL file in the GAP root direc-
tory, or at http://www.gap-system.org/Download/INSTALL), usually you will not execute GAP
directly. Instead you will call a (shell) script, with the name gap, which in turn executes GAP. This
script sets some options which are necessary to make GAP work on your system. This means that the
default settings mentioned below may not be what you experience when you execute GAP on your
system.

During a GAP session, one can find the current values of command line options in the record
GAPInfo.CommandLineOptions (see GAPInfo (3.5.1)), whose component names are the command
line options (without the leading -).

-A By default, some needed and suggested GAP packages (see 76) are loaded, if present, into the
GAP session when it starts. This option disables (actually toggles) the loading of suggested
packages, which can be useful for debugging or testing. The needed packages (and their needed
packages, and so on) are loaded in any case.

-a memory
GASMAN, the storage manager of GAP uses sbrk to get blocks of memory from (certain)
operating systems and it is required that subsequent calls to sbrk produce adjacent blocks of
memory in this case because GAP only wants to deal with one large block of memory. If the
C function malloc is called for whatever reason, it is likely that sbrk will no longer produce
adjacent blocks, therefore GAP does not use malloc itself.

33


http://www.gap-system.org/Download/INSTALL

GAP - Reference Manual 34

However some operating systems insist on calling malloc to create a buffer when a file is
opened, or for some other reason. In order to catch these cases GAP preallocates a block of
memory with malloc which is immediately freed. The amount preallocated can be controlled
with the -a option. (Most users do not need this option.)

The option argument memory is specified as with the -m option.

-B architecture

Executable binary files that form part of GAP or of a GAP package are kept in a subdirectory
of the bin directory within the GAP or package root directory. The subdirectory name is
determined from the operating system, processor and compiler details when GAP (resp. the
package) is installed. Under rare circumstances, it may be necessary to override this name, and
this can be done using the -B option.

tells GAP to suppress the banner. That means that GAP immediately prints the prompt. This
is useful when, after a while, you get tired of the banner. This option can be repeated to enable
the banner; each -b toggles the state of banner display.

The -D option tells GAP to print short messages when it is reading files or loading modules.
This option may be repeated to toggle this behavior on and off. The message,

Example
#I READ_GAP_ROOT: loading ’lib/kernel.g’ as GAP file

tells you that GAP has started to read the library file 1ib/kernel.g.

Example
#I READ_GAP_ROOT: loading ’lib/kernel.g’ statically

tells you that GAP has used the compiled version of the library file 1ib/kernel.g. This
compiled module was statically linked to the GAP kernel at the time the kernel was created.

Example
#I READ_GAP_ROOT: loading ’lib/kernel.g’ dynamically

tells you that GAP has loaded the compiled version of the library file 1ib/kernel.g. This
compiled module was dynamically loaded to the GAP kernel at runtime from a corresponding
.so file.

Obviously, this is a debugging option and most users will not need it.

If your GAP installation uses the readline library for command line editing (see 6.9), this
may be disabled by using -E option. This option may be repeated to toggle this behavior
on and off. If your GAP installation does not use the readline library (you can check by
IsBound (GAPInfo.UseReadline) ; if this is the case), this option will have no effect at all.

tells GAP not to quit when receiving a CTRL-D on an empty input line (see 6.4.1). This option
should not be used when the input is a file or pipe. This option may be repeated to toggle this
behavior on and off.
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-f  tells GAP to enable the line editing and history (see 6.8).
In general line editing will be enabled if the input is connected to a terminal. There are rare cir-
cumstances, for example when using a remote session with a corrupted telnet implementation,
when this detection fails. Try using -£ in this case to enable line editing. This option does not
toggle; you must use -n to disable line editing.

-g tells GAP to print a message every time a full garbage collection is performed.

Example
#G FULL 44580/2479kb live  57304/4392kb dead  734/4096kb free

For example, this tells you that there are 44580 live objects that survived a full garbage col-
lection, that 57304 unused objects were reclaimed by it, and that 734 kilobytes from a total
allocated memory of 4096 kilobytes are available afterwards.

-& -8
If you give the option -g twice, GAP prints a information message every time a partial or full
garbage collection is performed. The message,

Example
#G PART 9405/961kb+live 7525/1324kb+dead  2541/4096kb free

for example, tells you that 9405 objects survived the partial garbage collection and 7525 objects
were reclaimed, and that 2541 kilobytes from a total allocated memory of 4096 kilobytes are
available afterwards.

-h  tells GAP to print a summary of all available options (-h is mnemonic for “help”). GAP exits

after printing the summary, all other options are ignored.

-i filename

changes the name of the init file from the default init.g to filename. (Usually not needed.)

-K memory

is like the -o option. But while the latter actually allocates more memory if the system allows
it and then prints a warning inside a break loop the -K options tells GAP not even to try to
allocate more memory. Instead GAP just exits with an appropriate message. The default is that
this feature is switched off. You have to set it explicitly when you want to enable it.

-L filename

The option -L tells GAP to load a saved workspace. See section 3.3.

-1 path_list

can be used to set or modify GAP’s list of root directories (see 9.2). The defaultifno -1 option
is given is the current directory ./. This option can be used several times. Depending on the
-r option a further user specific path is prepended to the list of root directories (the path in
GAPInfo.UserGapRoot).

path_list should be a list of directories separated by semicolons. No whitespace is permit-
ted before or after a semicolon. If path_list does not start or end with a semicolon, then
path_list replaces the existing list of root directories. If path_list starts with a semicolon,
then path_list is appended to the existing list of root directories. If path_list ends with
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a semicolon and does not start with one, then the new list of root directories is the concate-
nation of path_list and the existing list of root directories. After GAP has completed its
startup procedure and displays the prompt, the list of root directories can be seen in the variable
GAPInfo.RootPaths, see GAPInfo (3.5.1).

Usually this option is used inside a startup script to specify where GAP is installed on the
system. The -1 option can also be used by individual users to tell GAP about privately installed
modifications of the library, additional GAP packages and so on. Section 9.2 explains how
several root paths can be used to do this.

GAP will attempt to read the file root_dir/lib/init.g during startup where root_dir is
one of the directories in its list of root directories. If GAP cannot find its init.g file it will
print the following warning.

Example
gap: hmm, I cannot find ’lib/init.g’ maybe use option ’-1 <gaproot>’?

It is not possible to use GAP without the library files, so you must not ignore this warning. You
should leave GAP and start it again, specifying the correct root path using the -1 option.

tells GAP not to check for, nor to use, compiled versions of library files. This option may be
repeated to toggle this behavior on and off.

-m memory

tells GAP to allocate memory bytes at startup time. If the last character of memory is k or K it
is taken as kilobytes, if the last character is m or M memory is taken as megabytes and if it is g or
G it is taken as gigabytes.

This amount of memory should be large enough so that computations do not require too many
garbage collections. On the other hand, if GAP allocates more memory than is physically
available, it will spend most of the time paging.

tells GAP to disable the line editing and history (see 6.8).

You may want to do this if the command line editing is incompatible with another program that
is used to run GAP. For example if GAP is run from inside a GNU Emacs shell window, -n
should be used since otherwise every input line will be echoed twice, once by Emacs and once
by GAP. This option does not toggle; you must use -£ to enable line editing.

disables loading obsolete variables (see Chapter 77). This option is used mainly for testing
purposes, for example in order to make sure that a GAP package or one’s own GAP code does
not rely on the obsolete variables.

-0 memory

tells GAP to allocate at most memory bytes without asking. The option argument memory is
specified as with the -m option.

If more than this amount is required during the GAP session, GAP prints an error message and
enters a break loop. In that case you can enter return; which implicitly doubles the amount
given with this option.

tells GAP to be quiet. This means that GAP displays neither the banner nor the prompt gap>.
This is useful if you want to run GAP as a filter with input and output redirection and want to
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avoid the banner and the prompts appearing in the output file. This option may be repeated to
disable quiet mode; each -q toggles quiet mode.

The option -R tells GAP not to load a saved workspace previously specified via the -L option.
This option does not toggle.

The option -r tells GAP to ignore any user specific configuration files. In particular, the user
specific root directory GAPInfo.UserGapRoot is not added to the GAP root directories and so
gap.ini and gaprec files that may be contained in that directory are not read, see 3.2. Multiple
- options toggle this behaviour.

-s memory

With this option GAP does not use sbrk to get memory from the operating system. Instead it
uses mmap, malloc or some other command for the amount given with this option to allocate
space for the GASMAN memory manager. Usually GAP does not really use all of this memory,
the options -m, -o, -K still work as documented. This feature assumes that the operating system
only assigns physical memory to the GAP process when it is accessed, so that specifying a large
amount of memory with -s should not cause any performance problem. The advantage of using
this option is that GAP can work together with kernel modules which allocate a lot of memory
with malloc.

The option argument memory is specified as with the -m option.

suppresses the usual break loop behaviour of GAP. With this option GAP behaves as if the user
quit immediately from every break loop. This is intended for automated testing of GAP. This
option may be repeated to toggle this behavior on and off.

tells GAP to do a consistency check of the library file and the corresponding compiled module
when loading the compiled module. This option may be repeated to toggle this behavior on and
off.

-x length

With this option you can tell GAP how long lines are. GAP uses this value to decide when to
split long lines. After starting GAP you may use SizeScreen (6.12.1) to alter the line length.

The default value is 80, unless another value can be obtained from the Operating System, which
is the right value if you have a standard terminal application. If you have a larger monitor, or
use a smaller font, or redirect the output to a printer, you may want to increase this value.

-y length

With this option you can tell GAP how many lines your screen has. GAP uses this value to
decide after how many lines of on-line help it should wait. After starting GAP you may use
SizeScreen (6.12.1) to alter the number of lines.

The default value is 24, unless another value can be obtained from the Operating System, which
is the right value if you have a standard terminal application. If you have a larger monitor, or
use a smaller font, or redirect the output to a printer, you may want to increase this value.

filename ...

Further arguments are taken as filenames of files that are read by GAP during startup, after the
system and private init files are read, but before the first prompt is printed. The files are read in
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the order in which they appear on the command line. GAP only accepts up to 14 filenames on
the command line. If a file cannot be opened GAP will print an error message and will abort.

Additional options, -C, -U, -P, -W, -p and -z are used internally by the gac script (see 76.3.9)
and/or on specific operating systems.

3.2 The gap.ini and gaprec files

When you start GAP, it looks for files with the names gap.ini and gaprc in its root directories
(see 9.2), and reads the first gap.ini and the first gaprc file it finds. These files are used for certain
initializations, as follows.

The file gap.ini is read early in the startup process. Therefore, the parameters set in this file can
influence the startup process, such as which packages are automatically loaded (see LoadPackage
(76.2.1)) and whether library files containing obsolete variables are read (see Chapter 77). On the
other hand, only calls to a restricted set of GAP functions are allowed in a gap.ini file. Usually,
it should only contain calls of SetUserPreference (3.2.3). This file can be generated (or updated
when new releases introduce further user preferences) with the command WriteGapIniFile (3.2.3).
This file is read whenever GAP is started, with or without a workspace.

The file gaprc is read after the startup process, before the first input file given on the command
line (see 3.1). So the contents of this file cannot influence the startup process, but all GAP library
functions can be called in this file. When GAP is started with a workspace then the file is read only if
no gaprec file had been read before the workspace was created. (With this setup, it is on the one hand
possible that administrators provide a GAP workspace for several users such that the user’s gaprc
file is read when GAP is started with the workspace, and on the other hand one can start GAP, read
one’s gaprc file, save a workspace, and then start from this workspace without reading one’s gaprc
file again.)

Note that by default, the user specific GAP root directory GAPInfo.UserGapRoot is the first
GAP root directory. So you can put your gap.ini and gaprec files into this directory.

This mechanism substitutes the much less flexible reading of a users .gaprc file in versions of
GAP up to 4.4. For compatibility this . gaprc file is still read if the directory GAPInfo.UserGapRoot
does not exist, see 77.5 how to migrate your old setup.

3.2.1 The gap.ini file

The file gap.ini is read after the declaration part of the GAP library is read, before the declaration
parts of the packages needed and suggested by GAP are read, and before the implementation parts of
GAP and of the packages are read.

The file gap.ini is expected to consist of calls to the function SetUserPreference (3.2.3), see
Section SetUserPreference (3.2.3).

Since the file gap.ini is read before the implementation part of GAP is read, not all GAP
functions may be called in the file. Assignments of numbers, lists, and records are admissible as
well as calls to basic functions such as Concatenation (21.20.1) and JoinStringsWithSeparator
(27.6.17).

Note that the file gap. ini is read also when GAP is started with a workspace.
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3.2.2 The gaprec file

If a file gaprc is found it is read after GAP’s init.g, but before any of the files mentioned on the
command line are read. You can use this file for your private customizations. (Many users may be
happy with using just user preferences in the gap.ini file (see above) for private customization.) For
example, if you have a file containing functions or data that you always need, you could read this from
gaprc. Or if you find some of the names in the library too long, you could define abbreviations for
those names in gaprc. The following sample gaprec file does both.

Example
Read( "/usr/you/dat/mygroups.grp" );
Ac := Action;
AcHom := ActionHomomorphism;
RepAc := RepresentativeAction;

Note that only one gaprec file is read when GAP is started. When a workspace is created in a GAP
session after a gaprc file has been read then no more gaprec file will be read when GAP is started
with this workspace.

Also note that the file must be called gaprc. If you use a Windows text editor, in particular if your
default is not to show file suffixes, you might accidentally create a file gaprc.txt or gaprc.doc
which GAP will not recognize.

3.2.3 Configuring User preferences

> SetUserPreference([package, Jname, value) (function)
> UserPreference([package, Jname) (function)
> ShowUserPreferences(packagel, package2, ...) (function)
> WriteGapIniFile([dir, J[ignorecurrent]) (function)

Some aspects of the behaviour of GAP can be customized by the user via user preferences. Ex-
amples include the way help sections are displayed or the use of colors in the terminal.

User preferences are specified via a pair of strings, the first is the (case insensitive) name of a
package (or "GAP" for the core GAP library) and the second is some arbitrary case sensitive string.

User preferences can be set to some value with SetUserPreference. The current value of a
user preference can be found with UserPreference. In both cases, if no package name is given the
default "GAP" is used. If a user preference is not known or not set then UserPreference returns
fail.

The function ShowUserPreferences with no argument shows in a pager an overview of all
known user preferences together with some explanation and the current value. If one or more strings
packagel, ... are given then only the user preferences for these packages are shown.

The easiest way to make use of user preferences is probably to use the function
WriteGapIniFile, usually without argument. This function creates a file gap.ini in your user
specific GAP root directory (GAPInfo.UserGapRoot). If such a file already exists the function will
make a backup of it first. This newly created file contains descriptions of all known user preferences
and also calls of SetUserPreference for those user preferences which currently do not have their
default value. You can then edit that file to customize (further) the user preferences for future GAP
sessions.
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Should a later version of GAP or some packages introduce new user preferences then you can
call WriteGapIniFile again since it will set the previously known user preferences to their current
values.

Optionally, a different directory for the resulting gap . ini file can be specified as argument dir to
WriteGapIniFile. Another optional argument is the boolean value true, if this is given, the settings
of all user preferences in the current session are ignored.

Note that your gap.ini file is read by GAP very early during its startup process. A conse-
quence is that the value argument in a call of SetUserPreference must be some very basic GAP
object, usually a boolean, a number, a string or a list of those. A few user preferences support
more complicated settings. For example, the user preference "UseColorPrompt" admits a record
as its value whose components are available only after the GAPDocC package has been loaded,
see ColorPrompt (3.6.1). If you want to specify such a complicated value, then move the correspond-
ing call of SetUserPreference from your gap.ini file into your gaprc file (also in the directory
GAPInfo.UserGapRoot). This file is read much later.

Example
gap> SetUserPreference( "Pager", "less" );
gap> SetUserPreference("PagerOptions",
> [ "-f", "-r", "-a", "-i", "-M", "-j2" ] );
gap> UserPreference("Pager");
lllessll

The first two lines of this example will cause GAP to use the programm less as a pager. This is
highly recommended if less is available on your system. The last line displays the current setting.

3.2.4 DeclareUserPreference

> DeclareUserPreference(record) (function)

This function can be used (also in packages) to introduce new user preferences. It declares a user
preference, determines a default value and contains documentation of the user preference. After dec-
laration a user preference will be shown with ShowUserPreferences (3.2.3) and WriteGapIniFile
(3.2.3).

When this declaration is evaluated it is checked, if this user preference is already set in the current
session. If not the value of the user preference is set to its default. (Do not use fail as default value
since this indicated that a user preference is not set.)

The argument record of DeclareUserPreference must be a record with the following compo-
nents.

name
a string or a list of strings, the latter meaning several preferences which belong together,

description
a list of strings describing the preference(s), one string for each paragraph; if several preferences
are declared together then the description refers to all of them,

default
the default value that is used, or a function without arguments that computes this default value;
if several preferences are declared together then the value of this component must be the list of
default values for the individual preferences.
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The following components of record are optional.

check
a function that takes a value as its argument and returns either true or false, depending on
whether the given value is admissible for this preference; if several preferences are declared
together then the number of arguments of the function must equal the length of the name list,

values
the list of admissible values, or a function without arguments that returns this list,

multi
true or false, depending on whether one may choose several values from the given list or just
one; needed (and useful only) if the values component is present,

package
the name of the GAP package to which the preference is assigned; if the declaration happens
inside a file that belongs to this package then the value of this component is computed, using
GAPInfo.PackageCurrent; otherwise, the default value for package is "GAP",

omitFromGapIniFile
if the value is true then this user preference is ignored by WriteGapIniFile (3.2.3).
Example
gap> UserPreference( "MyFavouritePrime" );
fail
gap> DeclareUserPreference( rec(
> name:= "MyFavouritePrime",
> description:= [ "is not used, serves as an example" ],
> default:= 2,
> omitFromGapIniFile:= true ) );
gap> UserPreference( "MyFavouritePrime" );
2
gap> SetUserPreference( "MyFavouritePrime", 17 );
gap> UserPreference( "MyFavouritePrime" );
17

3.3 Saving and Loading a Workspace

GAP workspace files are binary files that contain the data of a GAP session. One can produce a
workspace file with SaveWorkspace (3.3.1), and load it into a new GAP session using the -L com-
mand line option, see Section 3.1.

One purpose of workspace files is of course the possibility to save a “snapshot” image of the
current GAP workspace in a file.

The recommended way to start GAP is to load an existing workspace file, because this reduces the
startup time of GAP drastically. So if you have installed GAP yourself then you should think about
creating a workspace file immediately after you have started GAP, and then using this workspace
file later on, whenever you start GAP. If your GAP installation is shared between several users, the
system administrator should think about providing such a workspace file.
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3.3.1 SaveWorkspace
> SaveWorkspace (filename) (function)
will save a “‘snapshot” image of the current GAP workspace in the file filename. This image then

can be loaded by another copy of GAP which then will behave as at the point when SaveWorkspace
was called.

Example
gap> a:=1;

gap> SaveWorkspace("savefile");

true

gap> quit;

SaveWorkspace can only be used at the main gap> prompt. It cannot be included in the body of
a loop or function, or called from a break loop.
3.4 Testing for the System Architecture
3.4.1 ARCH_IS_UNIX

> ARCH_IS_UNIX() (function)

tests whether GAP is running on a UNIX system (including Mac OS X).

34.2 ARCH_IS_MAC _OS_X

> ARCH_IS_MAC_0S_X(O) (function)

tests whether GAP is running on Mac OS X. Note that on Mac OS X, also ARCH_IS_UNIX (3.4.1)
will be true.
3.43 ARCH_IS_WINDOWS

> ARCH_IS_WINDOWS() (function)

tests whether GAP is running on a Windows system.

3.5 Global Values that Control the GAP Session

3.5.1 GAPInfo

> GAPInfo (global variable)

Several global values control the GAP session, such as the command line, the architecture, or
the information about available and loaded packages. Many of these values are accessible as compo-
nents of the global record GAPInfo. Typically, these components are set and read in low level GAP
functions, so changing the values of existing components of GAPInfo “by hand” is not recommended.

Important components are documented via index entries, try the input ??GAPInfo for getting an
overview of these components.
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3.6 Coloring the Prompt and Input

GAP provides hooks for functions which are called when the prompt is to be printed and when an
input line is finished.
An example of using this feature is the following function.

3.6.1 ColorPrompt

> ColorPrompt (bool[, optrec]) (function)

With ColorPrompt (true) ; GAP changes its user interface: The prompts and the user input are
displayed in different colors. Switch off the colored prompts with ColorPrompt (false) ;.

Note that this will only work if your terminal emulation in which you run GAP understands the so
called ANSI color escape sequences —almost all terminal emulations on current UNIX/Linux (xterm,
rxvt, konsole, ...) systems do so.

The colors shown depend on the terminal configuration and cannot be forced from an application.
If your terminal follows the ANSI conventions you see the standard prompt in bold blue and the break
loop prompt in bold red, as well as your input in red.

If it works for you and you like it, put a call of SetUserPreference("UseColorPrompt",
true); in your gap.ini file. If you want a more complicated setting as explained below then put
your SetUserPreference("UseColorPrompt", rec( ... ) ); callinto your gaprc file.

The optional second argument optrec allows one to further customize the behaviour. It must be
a record from which the following components are recognized:

MarkupStdPrompt
a string or no argument function returning a string containing the escape sequence used for the
main prompt gap> .

MarkupContPrompt
a string or no argument function returning a string containing the escape sequence used for the
continuation prompt > .

MarkupBrkPrompt
a string or no argument function returning a string containing the escape sequence used for the
break prompt brk...> .

MarkupInput
a string or no argument function returning a string containing the escape sequence used for user
input.

TextPrompt
a no argument function returning the string with the text of the prompt, but without any escape
sequences. The current standard prompt is returned by CPROMPT (). But note that changing the
standard prompts makes the automatic removal of prompts from input lines impossible (see 6.2).

PrePrompt
a function called before printing a prompt.

Here is an example.
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LoadPackage ("GAPDoc") ;
timeSHOWMIN := 100;
ColorPrompt (true, rec(
# usually cyan bold, see 7TextAttr
MarkupStdPrompt := Concatenation(TextAttr.bold, TextAttr.6),
MarkupContPrompt := Concatenation(TextAttr.bold, TextAttr.6),
PrePrompt := function()
# show the ’time’ automatically if at least timeSHOWMIN
if CPROMPT() = "gap> " and time >= timeSHOWMIN then
Print ("Time of last command: ", time, ms\n") ;
fi;
end) )




Chapter 4

The Programming Language

This chapter describes the GAP programming language. It should allow you in principle to predict
the result of each and every input. In order to know what we are talking about, we first have to look
more closely at the process of interpretation and the various representations of data involved.

4.1 Language Overview

First we have the input to GAP, given as a string of characters. How those characters enter GAP
is operating system dependent, e.g., they might be entered at a terminal, pasted with a mouse into a
window, or read from a file. The mechanism does not matter. This representation of expressions by
characters is called the external representation of the expression. Every expression has at least one
external representation that can be entered to get exactly this expression.

The input, i.e., the external representation, is transformed in a process called reading to an internal
representation. At this point the input is analyzed and inputs that are not legal external representations,
according to the rules given below, are rejected as errors. Those rules are usually called the syntax of
a programming language.

The internal representation created by reading is called either an expression or a statement. Later
we will distinguish between those two terms. However for now we will use them interchangeably.
The exact form of the internal representation does not matter. It could be a string of characters equal
to the external representation, in which case the reading would only need to check for errors. It could
be a series of machine instructions for the processor on which GAP is running, in which case the
reading would more appropriately be called compilation. It is in fact a tree-like structure.

After the input has been read it is again transformed in a process called evaluation or execution.
Later we will distinguish between those two terms too, but for the moment we will use them inter-
changeably. The name hints at the nature of this process, it replaces an expression with the value
of the expression. This works recursively, i.e., to evaluate an expression first the subexpressions are
evaluated and then the value of the expression is computed from those values according to rules given
below. Those rules are usually called the semantics of a programming language.

The result of the evaluation is, not surprisingly, called a value. Again the form in which such a
value is represented internally does not matter. It is in fact a tree-like structure again.

The last process is called printing. It takes the value produced by the evaluation and creates an
external representation, i.e., a string of characters again. What you do with this external representation
is up to you. You can look at it, paste it with the mouse into another window, or write it to a file.

45
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Lets look at an example to make this more clear. Suppose you type in the following string of 8
characters

1+ 2 % 3

GAP takes this external representation and creates a tree-like internal representation, which we
can picture as follows

+

/\

1 *
7\
2 3

This expression is then evaluated. To do this GAP first evaluates the right subexpression 2*3.
Again, to do this GAP first evaluates its subexpressions 2 and 3. However they are so simple that they
are their own value, we say that they are self-evaluating. After this has been done, the rule for * tells
us that the value is the product of the values of the two subexpressions, which in this case is clearly 6.
Combining this with the value of the left operand of the +, which is self-evaluating, too, gives us the
value of the whole expression 7. This is then printed, i.e., converted into the external representation
consisting of the single character 7.

In this fashion we can predict the result of every input when we know the syntactic rules that
govern the process of reading and the semantic rules that tell us for every expression how its value is
computed in terms of the values of the subexpressions. The syntactic rules are given in sections 4.2,
4.3, 4.4, 4.5, and 4.6, the semantic rules are given in sections 4.7, 4.8, 4.11, 4.12, 4.13, 4.14, 4.15,
4.16,4.17,4.18, 4.19, 4.20, 4.23, and the chapters describing the individual data types.

4.2 Lexical Structure

Most input of GAP consists of sequences of the following characters.
Digits, uppercase and lowercase letters, SPACE, TAB, NEWLINE, RETURN and the special char-
acters

,_|
~
—

)
|
A+
-

It is possible to use other characters in identifiers by escaping them with backslashes, but we do
not recommend to use this feature. Inside strings (see section 4.3 and chapter 27) and comments
(see 4.4) the full character set supported by the computer is allowed.

4.3 Symbols

The process of reading, i.e., of assembling the input into expressions, has a subprocess, called scan-
ning, that assembles the characters into symbols. A symbol is a sequence of characters that form a
lexical unit. The set of symbols consists of keywords, identifiers, strings, integers, and operator and
delimiter symbols.



GAP - Reference Manual 47

A keyword is a reserved word (see 4.5). An identifier is a sequence of letters, digits and under-
scores (or other characters escaped by backslashes) that contains at least one non-digit and is not a
keyword (see 4.6). An integer is a sequence of digits (see 14), possibly prepended by - and + sign
characters. A string is a sequence of arbitrary characters enclosed in double quotes (see 27).

Operator and delimiter symbols are

2
= <> < <= > >= [
= . .. -> s ; t{

L ] { } ( )

Note also that during the process of scanning all whitespace is removed (see 4.4).

4.4 Whitespaces

The characters SPACE, TAB, NEWLINE, and RETURN are called whitespace characters. Whitespace is
used as necessary to separate lexical symbols, such as integers, identifiers, or keywords. For example
Thorondor is a single identifier, while Th or ondor is the keyword or between the two identifiers
Th and ondor. Whitespace may occur between any two symbols, but not within a symbol. Two or
more adjacent whitespace characters are equivalent to a single whitespace. Apart from the role as
separator of symbols, whitespace characters are otherwise insignificant. Whitespace characters may
also occur inside a string, where they are significant. Whitespace characters should also be used freely
for improved readability.

A comment starts with the character #, which is sometimes called sharp or hatch, and continues to
the end of the line on which the comment character appears. The whole comment, including # and the
NEWLINE character is treated as a single whitespace. Inside a string, the comment character # loses
its role and is just an ordinary character.

For example, the following statement

if i<0 then a:=-i;else a:=i;fi;

is equivalent to

if 1 < 0 then # if i is negative

a := -i; # take its additive inverse
else # otherwise

a := 1i; # take itself
fi;

(which by the way shows that it is possible to write superfluous comments). However the first
statement is not equivalent to

ifi<Othena:=-i;elsea:=i;fi;

since the keyword if must be separated from the identifier i by a whitespace, and similarly then
and a, and else and a must be separated.
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4.5 Keywords

Keywords are reserved words that are used to denote special operations or are part of statements. They
must not be used as identifiers. The list of keywords is contained in the GAPInfo.Keywords compo-
nent of the GAPInfo record (see 3.5.1). We will show how to print it in a nice table, demonstrating at
the same time some list manipulation techniques:

Example

gap> keys:=SortedList( GAPInfo.Keywords );; l:=Length( keys );;
gap> arr:= List( [ O .. Int( 1/4 )-1 1, i-> keys{ 4*i + [ 1 .. 41 } );;
gap> if 1 mod 4 <> O then Add( arr, keys{[ 4*Int(1/4) + 1 .. 1 1} ); fi;
gap> Length( keys ); PrintArray( arr );
32
[ [ Assert, Info, IsBound, QUIT 1,

[ TryNextMethod, Unbind, and, break ],

[ continue, do, elif, else ],

[ end, false, fi, for ],

[ function, if, in, local 1],

[ mod, not, od, or ],

[ quit, rec, repeat, return ],

[ then, true, until, while ] 1]

Note that (almost) all keywords are written in lowercase and that they are case sensitive. For
example else is a keyword; Else, eLsE, ELSE and so forth are ordinary identifiers. Keywords must
not contain whitespace, for example €1 if is not the same as elif.

Note: Several tokens from the list of keywords above may appear to be normal identifiers repre-
senting functions or literals of various kinds but are actually implemented as keywords for technical
reasons. The only consequence of this is that those identifiers cannot be re-assigned, and do not ac-
tually have function objects bound to them, which could be assigned to other variables or passed to
functions. These keywords are true, false, Assert (7.5.3), IsBound (4.8.1), Unbind (4.8.2), Info
(7.4.5) and TryNextMethod (78.4.1).

4.6 Identifiers

An identifier is used to refer to a variable (see 4.8). An identifier usually consists of letters, digits, un-
derscores _, and “at”-characters @, and must contain at least one non-digit. An identifier is terminated
by the first character not in this class. Note that the “at”-character @ is used to implement namespaces,
see Section 4.10 for details.

Examples of valid identifiers are

a foo alongIdentifier
hello Hello HELLO
x100 100x _100

some_people_prefer_underscores_to_separate_words
WePreferMixedCaseToSeparateWords
abc@def

Note that case is significant, so the three identifiers in the second line are distinguished.
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The backslash \ can be used to include other characters in identifiers; a backslash followed by a
character is equivalent to the character, except that this escape sequence is considered to be an ordinary
letter. For example

G\ (2\,5\)

is an identifier, not a call to a function G.

An identifier that starts with a backslash is never a keyword, so for example \* and \mod are
identifiers.

The length of identifiers is not limited, however only the first 1023 characters are significant. The
escape sequence \NEWLINE is ignored, making it possible to split long identifiers over multiple lines.

4.6.1 IsValidldentifier

> IsValidIdentifier(str) (function)

returns true if the string str would form a valid identifier consisting of letters, digits and under-
scores; otherwise it returns false. It does not check whether str contains characters escaped by a
backslash \.

Note that the “at”-character is used to implement namespaces for global variables in packages.
See 4.10 for details.

4.7 Expressions

An expression is a construct that evaluates to a value. Syntactic constructs that are executed to produce
a side effect and return no value are called statements (see 4.14). Expressions appear as right hand
sides of assignments (see 4.15), as actual arguments in function calls (see 4.11), and in statements.

Note that an expression is not the same as a value. For example 1 + 11 is an expression, whose
value is the integer 12. The external representation of this integer is the character sequence 12, i.e.,
this sequence is output if the integer is printed. This sequence is another expression whose value is the
integer 12. The process of finding the value of an expression is done by the interpreter and is called
the evaluation of the expression.

Variables, function calls, and integer, permutation, string, function, list, and record literals (see
4.8,4.11, 14, 42,27, 4.23, 21, 29), are the simplest cases of expressions.

Expressions, for example the simple expressions mentioned above, can be combined with the
operators to form more complex expressions. Of course those expressions can then be combined
further with the operators to form even more complex expressions. The operators fall into three
classes. The comparisons are =, <>, <, <=, >, >=,and in (see 4.12 and 30.6). The arithmetic operators
are +, -, *, /, mod, and ~ (see 4.13). The logical operators are not, and, and or (see 20.4).

The following example shows a very simple expression with value 4 and a more complex expres-
sion.

Example
gap> 2 * 2;
4
gap> 2 * 2 + 9 = Fibonacci(7) and Fibonacci(13) in Primes;
true

For the precedence of operators, see 4.12.
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4.8 Variables

A variable is a location in a GAP program that points to a value. We say the variable is bound to this
value. If a variable is evaluated it evaluates to this value.

Initially an ordinary variable is not bound to any value. The variable can be bound to a value by
assigning this value to the variable (see 4.15). Because of this we sometimes say that a variable that is
not bound to any value has no assigned value. Assignment is in fact the only way by which a variable,
which is not an argument of a function, can be bound to a value. After a variable has been bound to a
value an assignment can also be used to bind the variable to another value.

A special class of variables is the class of arguments of functions. They behave similarly to other
variables, except they are bound to the value of the actual arguments upon a function call (see 4.11).

Each variable has a name that is also called its identifier. This is because in a given scope an
identifier identifies a unique variable (see 4.6). A scope is a lexical part of a program text. There
is the global scope that encloses the entire program text, and there are local scopes that range from
the function keyword, denoting the beginning of a function definition, to the corresponding end
keyword. A local scope introduces new variables, whose identifiers are given in the formal argument
list and the local declaration of the function (see 4.23). Usage of an identifier in a program text
refers to the variable in the innermost scope that has this identifier as its name. Because this mapping
from identifiers to variables is done when the program is read, not when it is executed, GAP is said to
have lexical scoping. The following example shows how one identifier refers to different variables at
different points in the program text.

g = 0; # global variable g
x := function ( a, b, c )
local y;
g = c; # c refers to argument ¢ of function x

y := function ( y )
local d, e, f;
d :=vy; # y refers to argument y of function y
e :=b; # b refers to argument b of function x
f:=g; # g refers to global variable g
return d + e + £;

end;

return y( a ); # y refers to local y of function x

end;

It is important to note that the concept of a variable in GAP is quite different from the concept of
a variable in most compiled programming languages.

In those languages a variable denotes a block of memory. The value of the variable is stored in
this block. So in those languages two variables can have the same value, but they can never have
identical values, because they denote different blocks of memory. Note that some languages have
the concept of a reference argument. It seems as if such an argument and the variable used in the
actual function call have the same value, since changing the argument’s value also changes the value
of the variable used in the actual function call. But this is not so; the reference argument is actually
a pointer to the variable used in the actual function call, and it is the compiler that inserts enough
magic to make the pointer invisible. In order for this to work the compiler needs enough information
to compute the amount of memory needed for each variable in a program, which is readily available
in the declarations.
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In GAP on the other hand each variable just points to a value, and different variables can share
the same value.

4.8.1 IsBound (for a global variable)

> IsBound(ident) (function)

IsBound returns true if the variable ident points to a value, and false otherwise.
For records and lists IsBound can be used to check whether components or entries, respectively,
are bound (see Chapters 29 and 21).

4.8.2 Unbind (unbind a variable)

> Unbind(ident) (function)

deletes the identifier ident. If there is no other variable pointing to the same value as ident was,
this value will be removed by the next garbage collection. Therefore Unbind can be used to get rid of
unwanted large objects.

For records and lists Unbind can be used to delete components or entries, respectively (see Chap-
ters 29 and 21).

4.9 More About Global Variables

The vast majority of variables in GAP are defined at the outer level (the global scope). They are used
to access functions and other objects created either in the GAP library or packages or in the user’s
code.

Note that for packages there is a mechanism to implement package local namespaces on top of
this global namespace. See Section 4.10 for details.

Certain special facilities are provided for manipulating global variables which are not available
for other types of variable (such as local variables or function arguments).

First, such variables may be marked read-only. In which case attempts to change them will fail.
Most of the global variables defined in the GAP library are so marked.

Second, a group of functions are supplied for accessing and altering the values assigned to global
variables. Use of these functions differs from the use of assignment, Unbind (4.8.2) and IsBound
(4.8.1) statements, in two ways. First, these functions always affect global variables, even if local
variables of the same names exist. Second, the variable names are passed as strings, rather than being
written directly into the statements.

Note that the functions NamesGVars (4.9.8), NamesSystemGVars (4.9.9), NamesUserGVars
(4.9.10), and TemporaryGlobalVarName (4.9.11) deal with the global namespace.

4.9.1 IsReadOnlyGlobal

> IsReadOnlyGlobal (name) (function)

returns true if the global variable named by the string name is read-only and false otherwise
(the default).
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4.9.2 MakeReadOnlyGlobal

> MakeReadOnlyGlobal(name) (function)

marks the global variable named by the string name as read-only.
A warning is given if name has no value bound to it or if it is already read-only.

4.9.3 MakeReadWriteGlobal

> MakeReadWriteGlobal (name) (function)

marks the global variable named by the string name as read-write.
A warning is given if name is already read-write.

Example
gap> xx := 17;
17
gap> IsReadOnlyGlobal ("xx");
false
gap> xx := 15;
15

gap> MakeReadOnlyGlobal("xx");

gap> xx := 16;

Variable: ’xx’ is read only

not in any function

Entering break read-eval-print loop ...
you can ’quit;’ to quit to outer loop, or
you can ’return;’ after making it writable to continue
brk> quit;

gap> IsReadOnlyGlobal("xx");

true

gap> MakeReadWriteGlobal("xx");

gap> xx := 16;

16

gap> IsReadOnlyGlobal("xx");

false

4.9.4 ValueGlobal

> ValueGlobal (name) (function)

returns the value currently bound to the global variable named by the string name. An error is
raised if no value is currently bound.

4.9.5 IsBoundGlobal

> IsBoundGlobal (name) (function)

returns true if a value currently bound to the global variable named by the string name and false
otherwise.
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4.9.6 UnbindGlobal

> UnbindGlobal (name) (function)

removes any value currently bound to the global variable named by the string name. Nothing is
returned.

A warning is given if name was not bound. The global variable named by name must be writable,
otherwise an error is raised.

4.9.7 BindGlobal

> BindGlobal (name, val) (function)

sets the global variable named by the string name to the value val, provided it is writable, and
makes it read-only. If name already had a value, a warning message is printed.

This is intended to be the normal way to create and set “official” global variables (such as opera-
tions and filters).

Caution should be exercised in using these functions, especially BindGlobal and UnbindGlobal
(4.9.6) as unexpected changes in global variables can be very confusing for the user.

Example
gap> xx := 16;
16
gap> IsReadOnlyGlobal ("xx");
false
gap> ValueGlobal("xx");
16
gap> IsBoundGlobal("xx");
true

gap> BindGlobal ("xx",17);

#W BIND_GLOBAL: variable ‘xx’ already has a value
gap> XxX;

17

gap> IsReadOnlyGlobal ("xx");

true

gap> MakeReadWriteGlobal("xx");

gap> Unbind(xx);

4.9.8 NamesGVars

> NamesGVars() (function)

This function returns an immutable (see 12.6) sorted (see 21.19) list of all the global variable
names known to the system. This includes names of variables which were bound but have now been
unbound and some other names which have never been bound but have become known to the system
by various routes.

4.9.9 NamesSystemG Vars

> NamesSystemGVars () (function)
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This function returns an immutable sorted list of all the global variable names created by the GAP
library when GAP was started.

4.9.10 NamesUserGVars

> NamesUserGVars () (function)

This function returns an immutable sorted list of the global variable names created since the library
was read, to which a value is currently bound.

4.9.11 TemporaryGlobalVarName

> TemporaryGlobalVarName( [prefix]) (function)

returns a string that can be used as the name of a global variable that is not bound at the time when
TemporaryGlobalVarName is called. The optional argument prefix can specify a string with which
the name of the global variable starts.

4.10 Namespaces for GAP packages

As mentioned in Section 4.9 above all global variables share a common namespace. This can relatively
easily lead to name clashes, in particular when many GAP packages are loaded at the same time. To
give package code a way to have a package local namespace without breaking backward compatibility
of the GAP language, the following simple rule has been devised:

If in package code a global variable that ends with an “at”-character @ is accessed in any way,
the name of the package is appended before accessing it. Here, “package code” refers to everything
which is read with ReadPackage (76.3.1). As the name of the package the entry PackageName in its
PackageInfo.g file is taken. As for all identifiers, this name is case sensitive.

For example, if the following is done in the code of a package with name xYz:

Example

gap> a@ := 12;

Then actually the global variable a@xYz is assigned. Further accesses to a@ within the package code
will all be redirected to a@xYz. This includes all the functions described in Section 4.9 and indeed all
the functions described Section 79.18 like for example DeclareCategory (79.18.1). Note that from
code in the same package it is still possible to access the same global variable via a@xYz explicitly.

All other code outside the package as well as interactive user input that wants to refer to that
variable a@xYz must do so explicitly by using a@xYz.

Since in earlier releases of GAP the “at”-character @ was not a legal character (without using
backslashes), this small extension of the language does not break any old code.

4.11 Function Calls

4.11.1 Function Call With Arguments

function-var( larg-expr[, arg-expr, ...11 )
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The function call has the effect of calling the function function-var. The precise semantics are
as follows.

First GAP evaluates the function-var. Usually function-var is a variable, and GAP does
nothing more than taking the value of this variable. It is allowed though that function-var
is a more complex expression, such as a reference to an element of a list (see Chapter 21)
list-var [int-expr], or to a component of a record (see Chapter 29) record-var .ident. In
any case GAP tests whether the value is a function. If it is not, GAP signals an error.

Next GAP checks that the number of actual arguments arg-exprs agrees with the number of
formal arguments as given in the function definition. If they do not agree GAP signals an error. An
exception is the case when there is exactly one formal argument with the name arg, in which case any
number of actual arguments is allowed (see 4.23 for examples).

Now GAP allocates for each formal argument and for each formal local (that is, the identifiers
in the 1ocal declaration) a new variable. Remember that a variable is a location in a GAP program
that points to a value. Thus for each formal argument and for each formal local such a location is
allocated.

Next the arguments arg-exprs are evaluated, and the values are assigned to the newly created
variables corresponding to the formal arguments. Of course the first value is assigned to the new
variable corresponding to the first formal argument, the second value is assigned to the new variable
corresponding to the second formal argument, and so on. However, GAP does not make any guarantee
about the order in which the arguments are evaluated. They might be evaluated left to right, right to
left, or in any other order, but each argument is evaluated once. An exception again occurs if the
function has only one formal argument with the name arg. In this case the values of all the actual
arguments are stored in a list and this list is assigned to the new variable corresponding to the formal
argument arg.

The new variables corresponding to the formal locals are initially not bound to any value. So
trying to evaluate those variables before something has been assigned to them will signal an error.

Now the body of the function, which is a statement, is executed. If the identifier of one of the
formal arguments or formal locals appears in the body of the function it refers to the new variable that
was allocated for this formal argument or formal local, and evaluates to the value of this variable.

If during the execution of the body of the function a return statement with an expression (see
4.24) is executed, execution of the body is terminated and the value of the function call is the value
of the expression of the return. If during the execution of the body a return statement without an
expression is executed, execution of the body is terminated and the function call does not produce a
value, in which case we call this call a procedure call (see 4.16). If the execution of the body completes
without execution of a return statement, the function call again produces no value, and again we talk
about a procedure call.

Example

gap> Fibonacci( 11 );
89

The above example shows a call to the function Fibonacci (16.3.1) with actual argument 11, the
following one shows a call to the operation RightCosets (39.7.2) where the second actual argument
is another function call.

Example
gap> RightCosets( G, Intersection( U, V ) );;
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4.11.2 Function Call With Options

function-var( arg-expr[, arg-expr, ...]1[ : [ option-expr [,option-expr,
11D

As well as passing arguments to a function, providing the mathematical input to its calculation,
it is sometimes useful to supply “hints” suggesting to GAP how the desired result may be computed
more quickly, or specifying a level of tolerance for random errors in a Monte Carlo algorithm.

Such hints may be supplied to a function-call and to all subsidiary functions called from that call
using the options mechanism. Options are separated from the actual arguments by a colon : and have
much the same syntax as the components of a record expression. The one exception to this is that a
component name may appear without a value, in which case the value true is silently inserted.

The following example shows a call to Size (30.4.6) passing the options hard (with the value
true) and tcselection (with the string "external" as value).

Example
gap> Size( fpgrp : hard, tcselection := "external" );

Options supplied with function calls in this way are passed down using the global options stack
described in chapter 8, so that the call above is exactly equivalent to

Example
gap> PushOptions( rec( hard := true, tcselection := "extermal") );
gap> Size( fpgrp );
gap> PopOptions( );

Note that any option may be passed with any function, whether or not it has any actual meaning
for that function, or any function called by it. The system provides no safeguard against misspelled
option names.

4.12 Comparisons

left-expr = right-expr

left-expr <> right-expr

The operator = tests for equality of its two operands and evaluates to true if they are equal and
to false otherwise. Likewise <> tests for inequality of its two operands. For each type of objects
the definition of equality is given in the respective chapter. Objects in different families (see 13.1) are
never equal, i.e., = evaluates in this case to false, and <> evaluates to true.

left-expr < right-expr

left-expr > right-expr

left-expr <= right-expr

left-expr >= right-expr

< denotes less than, <= less than or equal, > greater than, and >= greater than or equal of its two
operands. For each kind of objects the definition of the ordering is given in the respective chapter.

Note that < implements a fotal ordering of objects (which can be used for example to sort a list
of elements). Therefore in general < will not be compatible with any inclusion relation (which can be
tested using IsSubset (30.5.1)). (For example, it is possible to compare permutation groups with <
in a total ordering of all permutation groups, but this ordering is not compatible with the relation of
being a subgroup.)
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Only for the following kinds of objects, an ordering via < of objects in different families (see 13.1)
is supported. Rationals (see IsRat (17.2.1)) are smallest, next are cyclotomics (see IsCyclotomic
(18.1.3)), followed by finite field elements (see ISFFE (59.1.1)); finite field elements in different
characteristics are compared via their characteristics, next are permutations (see IsPerm (42.1.1)),
followed by the boolean values true, false, and fail (see IsBool (20.1.1)), characters (such as
{}a{’}’, see IsChar (27.1.1)), and lists (see IsList (21.1.1)) are largest; note that two lists can be
compared with < if and only if their elements are again objects that can be compared with <.

For other objects, GAP does nor provide an ordering via <. The reason for this is that a total
ordering of all GAP objects would be hard to maintain when new kinds of objects are introduced, and
such a total ordering is hardly used in its full generality.

However, for objects in the filters listed above, the ordering via < has turned out to be useful. For
example, one can form sorted lists containing integers and nested lists of integers, and then search in
them using PositionSorted (see 21.16).

Of course it would in principle be possible to define an ordering via < also for certain other objects,
by installing appropriate methods for the operation \<. But this may lead to problems at least as soon
as one loads GAP code in which the same is done, under the assumption that one is completely free to
define an ordering via < for other objects than the ones for which the “official” GAP provides already
an ordering via <.

Comparison operators, including the operator in (see 21.8), are not associative, Hence it is not
allowed towritea = b <> ¢ = d,youmustuse (a = b) <> (¢ = d) instead. The comparison
operators have higher precedence than the logical operators (see 20.4), but lower precedence than the
arithmetic operators (see 4.13). Thus, for instance, a * b = ¢ and d is interpreted as ((a * b)
= ¢) and d).

The following example shows a comparison where the left operand is an expression.

Example

gap> 2 * 2 + 9 = Fibonacci(7);
true

For the underlying operations of the operators introduced above, see 31.11.

4.13 Arithmetic Operators

+ right-expr

- right-expr

left-expr + right-expr

left-expr - right-expr

left-expr * right-expr

left-expr / right-expr

left-expr mod right-expr

left-expr ~ right-expr

The arithmetic operators are +, -, *, /, mod, and ~. The meanings (semantics) of those operators
generally depend on the types of the operands involved, and they are defined in the various chapters
describing the types. However basically the meanings are as follows.

a + b denotes the addition of additive elements a and b.

a - b denotes the addition of a and the additive inverse of b.

a * b denotes the multiplication of multiplicative elements a and b.
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a / b denotes the multiplication of a with the multiplicative inverse of b.

a mod b, for integer or rational left operand a and for non-zero integer right operand b, is defined
as follows. If a and b are both integers, a mod b is the integer r in the integer range 0 .. |b]|
- 1 satisfying a = r + bq, for some integer g (where the operations occurring have their usual
meaning over the integers, of course).

If a is a rational number and b is a non-zero integer, and a = m / n where m and n are coprime
integers with n positive, then a mod b is the integer r in the integer range 0 .. |b| - 1 such
that m is congruent to rn modulo b, and r is called the “modular remainder” of a modulo b. Also, 1
/ n mod b is called the “modular inverse” of n modulo b. (A pair of integers is said to be coprime
(or relatively prime) if their greatest common divisor is 1.)

With the above definition, 4 / 6 mod 32 equals 2 / 3 mod 32 and hence exists (and is equal
to 22), despite the fact that 6 has no inverse modulo 32.

Note: For rational a, a mod b could have been defined to be the non-negative rational c less
than | b| such that a - ¢ is a multiple of b. However this definition is seldom useful and not the one
chosen for GAP.

+ and - can also be used as unary operations. The unary + is ignored. The unary - returns the
additive inverse of its operand; over the integers it is equivalent to multiplication by -1.

~ denotes powering of a multiplicative element if the right operand is an integer, and is also used
to denote the action of a group element on a point of a set if the right operand is a group element.

The precedence of those operators is as follows. The powering operator ~ has the highest prece-
dence, followed by the unary operators + and -, which are followed by the multiplicative operators
*, /, and mod, and the additive binary operators + and - have the lowest precedence. That means
that the expression -2 ~ -2 * 3 + 1 is interpreted as (-(2 ~ (-2)) * 3) + 1. If in doubt use
parentheses to clarify your intention.

The associativity of the arithmetic operators is as follows. ~ is not associative, i.e., it is invalid to
write 27374, use parentheses to clarify whether you mean (2~3) ~4 or 2~ (3~4). The unary operators
+ and - are right associative, because they are written to the left of their operands. *, /, mod, +, and
- are all left associative, i.e., 1-2-3 is interpreted as (1-2) -3 not as 1-(2-3). Again, if in doubt use
parentheses to clarify your intentions.

The arithmetic operators have higher precedence than the comparison operators (see 4.12
and 30.6) and the logical operators (see 20.4). Thus, for example, a * b = ¢ and d is interpreted,

((a * b) = ¢) and d.

Example
gap> 2 * 2 + 9; # a very simple arithmetic expression
13

For other arithmetic operations, and for the underlying operations of the operators introduced
above, see 31.12.

4.14 Statements

Assignments (see 4.15), Procedure calls (see 4.16), if statements (see 4.17), while (see 4.18),
repeat (see 4.19) and for loops (see 4.20), and the return statement (see 4.24) are called state-
ments. They can be entered interactively or be part of a function definition. Every statement must be
terminated by a semicolon.

Statements, unlike expressions, have no value. They are executed only to produce an effect. For
example an assignment has the effect of assigning a value to a variable, a for loop has the effect of
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executing a statement sequence for all elements in a list and so on. We will talk about evaluation of
expressions but about execution of statements to emphasize this difference.
Using expressions as statements is treated as syntax error.

Example
gap> 1 := 7;;
gap> if i <> O then k = 16/i; fi;
Syntax error: := expected

if i <> 0 then k = 16/i; fi;

gap>

As you can see from the example this warning does in particular address those users who are used
to languages where = instead of := denotes assignment.

Empty statements are permitted and have no effect.

A sequence of one or more statements is a statement sequence, and may occur everywhere instead
of a single statement. Each construct is terminated by a keyword. The simplest statement sequence is
a single semicolon, which can be used as an empty statement sequence. In fact an empty statement
sequence as in for i in [ 1 .. 2 ] do od is also permitted and is silently translated into the
sequence containing just a semicolon.

4.15 Assignments

var := expr;
The assignment has the effect of assigning the value of the expressions expr to the variable var.
The variable var may be an ordinary variable (see 4.8), a list element selection
list-var [int-expr] (see 21.4) or a record component selection record-var .ident (see 29.3).
Since a list element or a record component may itself be a list or a record the left hand side of an
assignment may be arbitrarily complex.
Note that variables do not have a type. Thus any value may be assigned to any variable. For
example a variable with an integer value may be assigned a permutation or a list or anything else.

Example
gap> data:= rec( numbers:= [ 1, 2, 3] );
rec( numbers := [ 1, 2, 31 )

gap> data.string:= "string";; data;

rec( numbers := [ 1, 2, 3 ], string := "string" )
gap> data.numbers[2]:= 4;; data;
rec( numbers := [ 1, 4, 3 ], string := "string" )

If the expression expr is a function call then this function must return a value. If the function
does not return a value an error is signalled and you enter a break loop (see 6.4). As usual you can
leave the break loop with quit;. If you enter return return-expr; the value of the expression
return-expr is assigned to the variable, and execution continues after the assignment.

Example
gap> fl:= function( x ) Print( "value: ", x, "\n" ); end;;

gap> £2:= function( x ) return f1( x ); end;;
gap> £2( 4 );
value: 4

Function Calls: <func> must return a value at



GAP - Reference Manual 60

return f1( x );
called from
<function>( <arguments> ) called from read-eval-loop
Entering break read-eval-print loop ...
you can ’quit;’ to quit to outer loop, or
you can supply one by ’return <value>;’ to continue
brk> return "hello";
"hello"

In the above example, the function £2 calls £1 with argument 4, and since £1 does not return a
value (but only prints a line “value: ...”), the return statement of £2 cannot be executed. The
error message says that it is possible to return an appropriate value, and the returned string "hello"
is used by £2 instead of the missing return value of £1.

4.16 Procedure Calls

procedure-var ( [arg-expr [,arg-expr, ...1]1 );

The procedure call has the effect of calling the procedure procedure-var. A procedure call is
done exactly like a function call (see 4.11). The distinction between functions and procedures is only
for the sake of the discussion, GAP does not distinguish between them. So we state the following
conventions.

A function does return a value but does not produce a side effect. As a convention the name
of a function is a noun, denoting what the function returns, e.g., "Length", "Concatenation" and
"Order".

A procedure is a function that does not return a value but produces some effect. Procedures are
called only for this effect. As a convention the name of a procedure is a verb, denoting what the
procedure does, e.g., "Print", "Append" and "Sort".

Example
gap> Read( "myfile.g" ); # a call to the procedure Read
gap> 1 := [ 1, 2 1;;

gap> Append( 1, [3,4,5] ); # a call to the procedure Append

There are a few exceptions of GAP functions that do both return a value and produce some effect.
An example is Sortex (21.18.3) which sorts a list and returns the corresponding permutation of the
entries.

417 It

if bool-exprl then statementsl { elif bool-expr2 then statements2 }[ else
statements3 ] fi;

The if statement allows one to execute statements depending on the value of some boolean ex-
pression. The execution is done as follows.

First the expression bool-exprl following the if is evaluated. If it evaluates to true the state-
ment sequence statements1 after the first then is executed, and the execution of the if statement is
complete.

Otherwise the expressions bool-expr2 following the elif are evaluated in turn. There may
be any number of elif parts, possibly none at all. As soon as an expression evaluates to true the
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corresponding statement sequence statements2 is executed and execution of the if statement is
complete.

If the if expression and all, if any, elif expressions evaluate to false and there is an else
part, which is optional, its statement sequence statements3 is executed and the execution of the if
statement is complete. If there is no else part the if statement is complete without executing any
statement sequence.

Since the if statement is terminated by the £i keyword there is no question where an else part
belongs, i.e., GAP has no “dangling else”. In

if exprl then if expr2 then statsl else stats2 fi; fi;

the else part belongs to the second if statement, whereas in

if exprl then if expr2 then statsl fi; else stats2 fi;

the else part belongs to the first if statement.
Since an if statement is not an expression it is not possible to write

abs := if x > O then x; else -x; fi;

which would, even if legal syntax, be meaningless, since the if statement does not produce a
value that could be assigned to abs.

If one of the expressions bool-exprl, bool-expr2 is evaluated and its value is neither true nor
false an error is signalled and a break loop (see 6.4) is entered. As usual you can leave the break loop
with quit;. If you enter return true;, execution of the if statement continues as if the expression
whose evaluation failed had evaluated to true. Likewise, if you enter return false;, execution of
the if statement continues as if the expression whose evaluation failed had evaluated to false.

Example
gap> 1 := 10;;
gap> if 0 < i then
> s = 1;
> elif i < 0 then
> s := -1;
> else
> s := 0;
> fi,
gap> s; # the sign of i
1

4.18 While

while bool-expr do statements od;

The while loop executes the statement sequence statements while the condition bool-expr
evaluates to true.

First bool-expr is evaluated. If it evaluates to false execution of the while loop terminates
and the statement immediately following the while loop is executed next. Otherwise if it evaluates to
true the statements are executed and the whole process begins again.
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The difference between the while loop and the repeat until loop (see 4.19) is that the
statements in the repeat until loop are executed at least once, while the statements in the
while loop are not executed at all if bool-expr is false at the first iteration.

If bool-expr does not evaluate to true or false an error is signalled and a break loop (see 6.4)
is entered. As usual you can leave the break loop with quit ;. If you enter return false;, execution
continues with the next statement immediately following the while loop. If you enter return true;,
execution continues at statements, after which the next evaluation of bool-expr may cause another
error.

The following example shows a while loop that sums up the squares 12,22, ... until the sum
exceeds 200.

Example
gap> 1 := 0;; s := 0;;

gap> while s <= 200 do

> i:=1i+1; 8 :=8 + i~2;

> od;

gap> s;

204

A while loop may be left prematurely using break, see 4.21.

4.19 Repeat

repeat statements until bool-expr;

The repeat loop executes the statement sequence statements until the condition bool-expr
evaluates to true.

First statements are executed. Then bool-expr is evaluated. If it evaluates to true the repeat
loop terminates and the statement immediately following the repeat loop is executed next. Otherwise
if it evaluates to false the whole process begins again with the execution of the statements.

The difference between the while loop (see 4.18) and the repeat until loop is that the
statements in the repeat until loop are executed at least once, while the statements in the
while loop are not executed at all if bool-expr is false at the first iteration.

If bool-expr does not evaluate to true or false an error is signalled and a break loop (see
6.4) is entered. As usual you can leave the break loop with quit;. If you enter return true;,
execution continues with the next statement immediately following the repeat loop. If you enter
return false;, execution continues at statements, after which the next evaluation of bool-expr
may cause another error.

The repeat loop in the following example has the same purpose as the while loop in the preced-
ing example, namely to sum up the squares 12,22, ... until the sum exceeds 200.

Example
gap> 1 := 0;; s := 0;;
gap> repeat

> i:=1i+1; 8 :=8 + i~2;
> until s > 200;

gap> s;

204

A repeat loop may be left prematurely using break, see 4.21.
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4.20 For

for simple-var in list-expr do statements od;

The for loop executes the statement sequence statements for every element of the list
list-expr.

The statement sequence statements is first executed with simple-var bound to the first element
of the list 1ist-expr, then with simple-var bound to the second element of 1ist-expr and so on.
simple-var must be a simple variable, it must not be a list element selection 1ist-var [int-expr]
or a record component selection record-var . ident.

The execution of the for loop over a list is exactly equivalent to the following while loop.

loop_list := list;

loop_index := 1;

while loop_index <= Length(loop_list) do
variable := loop_list[loop_index];
statements
loop_index := loop_index + 1;

od;

with the exception that “loop_list” and “loop_index” are different variables for each for loop, i.e.,
these variables of different for loops do not interfere with each other.

The list 1ist-expr is very often a range (see 21.22).

for variable in [from..to] do statements od;

corresponds to the more common

for variable from from to to do statements od;

in other programming languages.

Example

gap> s := 0;;

gap> for i in [1..100] do
> s := s + 1i;

> od;

gap> s;

5050

Note in the following example how the modification of the list in the loop body causes the loop
body also to be executed for the new values.

Example

gap> 1 := [ 1, 2, 3, 4, 5, 6 1;;

gap> for i in 1 do

> Print( i, " " );

> if i mod 2 = 0 then AddA( 1, 3 * i / 2 ); fi;
> od; Print( "\n" );

12345636929

gap> 1;

(1, 2,3, 4,5,6,3,6,9, 9]

Note in the following example that the modification of the variable that holds the list has no
influence on the loop.
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Example
gap> 1 := [ 1, 2, 3, 4, 5, 6 1;;
gap> for i in 1 do
> Print( i, " " );
> 1:=[];
> od; Print( "\n" );
123456
gap> 1;
[ ]

for variable in iterator do statements od;

It is also possible to have a for-loop run over an iterator (see 30.8). In this case the for-loop is
equivalent to

while not IsDonelterator(iterator) do
variable := NextIterator (iterator)
statements

od;

for variable in object do statements od;

Finally, if an object object which is not a list or an iterator appears in a for-loop, then GAP will
attempt to evaluate the function call Iterator (object). If this is successful then the loop is taken
to run over the iterator returned.

Example
gap> g := Group((1,2,3,4,5),(1,2)(3,4)(5,6));

Group([ (1,2,3,4,5), (1,2)(3,4)(5,6) 1)

gap> count := 0;; sumord := 0;;

gap> for x in g do

> count := count + 1; sumord := sumord + Order(x); od;
gap> count;

120

gap> sumord;

471

The effect of

for variable in domain do

should thus normally be the same as

for variable in AsList(domain) do

but may use much less storage, as the iterator may be more compact than a list of all the elements.

See 30.8 for details about iterators.

A for loop may be left prematurely using break, see 4.21. This combines especially well with
a loop over an iterator, as a way of searching through a domain for an element with some useful
property.

4.21 Break

break;
The statement break; causes an immediate exit from the innermost loop enclosing it.
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Example
gap> g := Group((1,2,3,4,5),(1,2)(3,4)(5,6));
Group([ (1,2,3,4,5), (1,2)(3,4)(5,6) 1)

gap> for x in g do

> if Order(x) = 3 then

> break;

> fi; od;

gap> X;

(1,4,3)(2,6,5)

It is an error to use this statement other than inside a loop.
Example

gap> break;
Error, A break statement can only appear inside a loop
not in any function

4.22 Continue

continue;
The statement continue; causes the rest of the current iteration of the innermost loop enclosing
it to be skipped.

Example

gap> g := Group((1,2,3),(1,2));
Group([ (1,2,3), (1,2) 1

gap> for x in g do

> if Order(x) = 3 then

> continue;

> fi; Print(x,"\n"); od;

O

(2,3)

(1,3)

(1,2)

It is an error to use this statement other than inside a loop.
Example

gap> continue;
Error, A continue statement can only appear inside a loop
not in any function

4.23 Function

function( [ arg-ident {, arg-ident} ] )
[local loc-ident {, loc-ident} ; ]
statements
end
A function is in fact a literal and not a statement. Such a function literal can be assigned to a
variable or to a list element or a record component. Later this function can be called as described in
4.11.
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The following is an example of a function definition. It is a function to compute values of the
Fibonacci sequence (see Fibonacci (16.3.1)).
Example

gap> fib := function ( n )
local f1, f2, £3, i;
f1 :=1; £f2 := 1;
for i in [3..n] do
£3 := £f1 + £2;
f1 := £2;
f2 := £3;
od;
return f2;
end;;
ap> List( [1..10], fib );
1, 1, 2, 3, 5, 8, 13, 21, 34, 55 ]

—0kQ V V V V V V V V V

Because for each of the formal arguments arg-ident and for each of the formal locals
loc-ident a new variable is allocated when the function is called (see 4.11), it is possible that a
function calls itself. This is usually called recursion. The following is a recursive function that com-
putes values of the Fibonacci sequence.

Example
gap> fib := function ( n )
> if n < 3 then
> return 1;
> else
> return fib(n-1) + fib(n-2);
> fi;
> end;;
gap> List( [1..10], fib );
[1, 1, 2, 3, 5, 8, 13, 21, 34, 55 ]

Note that the recursive version needs 2 * fib(a)-1 stepsto compute fib(n), while the iterative
version of £ib needs only n-2 steps. Both are not optimal however, the library function Fibonacci
(16.3.1) only needs about Log(n) steps.

As noted in Section 4.11, the case where a function is defined with exactly one formal argument
with the name arg, is special. It provides a way of defining a function with a variable number of
arguments; the values of all the actual arguments are stored in a list and this list is assigned to the new
variable corresponding to the formal argument arg. There are two typical scenarios for wanting such
a possibility: having optional arguments and having any number of arguments.

The following example shows one way that the function Position (21.16.1) might be encoded
and demonstrates the “optional argument” scenario.

Example
gap> position := function ( arg )
> local list, obj, pos;
> list := arg[1];
> obj := argl2];
> if 2 = Length(arg) then
> pos := 0;
> else
> pos := arg[3];
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> fi;

> repeat

> pos := pos + 1;

> if pos > Length(list) then
> return fail;

> fi;

> until list[pos] = obj;

> return pos;

> end;

function( arg ) ... end

gap> position([1, 4, 2], 4);

2

gap> position([1, 4, 2], 3);
fail

gap> position([1l, 4, 2], 4, 2);
fail

The following example demonstrates the “any number of arguments” scenario.

Example
gap> sum := function ( arg )
> local total, x;
> total := 0;
> for x in arg do
> total := total + x;
> od;
> return total;
> end;
function( arg ) ... end
gap> sum(l, 2, 3);

6

gap> sum(1, 2, 3, 4);
10

gap> sum();

0

The user should compare the above with the GAP function Sum (21.20.26) which, for example,
may take a list argument and optionally an initial element (which zero should the sum of an empty list
return?).

Note that if a function f is defined as above with the single formal argument arg then
NumberArgumentsFunction(f) returns —1 (see NumberArgumentsFunction (5.1.2)).

The argument arg when used as the single argument name of some function f tells GAP that
when it encounters £ that it should form a list out of the arguments of £. What if one wishes to do the
“opposite”: tell GAP that a list should be “unwrapped” and passed as several arguments to a function.
The function CallFuncList (5.2.1) is provided for this purpose.

Also see Chapter 5.

arg-ident -> expr

This is a shorthand for

function ( arg-ident ) return expr; end.

arg-ident must be a single identifier, i.e., it is not possible to write functions of several argu-
ments this way. Also arg is not treated specially, so it is also impossible to write functions that take a
variable number of arguments this way.
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The following is an example of a typical use of such a function
Example
gap> Sum( List( [1..100], x -> x°2 ) );
338350

When the definition of a function fun1 is evaluated inside another function fun2, GAP binds all
the identifiers inside the function fun1 that are identifiers of an argument or a local of fun2 to the
corresponding variable. This set of bindings is called the environment of the function funl. When
fun1 is called, its body is executed in this environment. The following implementation of a simple
stack uses this. Values can be pushed onto the stack and then later be popped off again. The interesting
thing here is that the functions push and pop in the record returned by Stack access the local variable
stack of Stack. When Stack is called, a new variable for the identifier stack is created. When
the function definitions of push and pop are then evaluated (as part of the return statement) each
reference to stack is bound to this new variable. Note also that the two stacks A and B do not interfere,
because each call of Stack creates a new variable for stack.

Example

gap> Stack := function ()
local stack;
stack := [];
return rec(
push := function ( value )
Add( stack, value );
end,
pop := function ()
local value;
value := stack[Length(stack)];
Unbind( stack[Length(stack)] );
return value;
end
)3
end; ;
A := StackQ;;
gap> B := Stack(Q);;
gap> A.push( 1 ); A.push( 2 ); A.push( 3 );
gap> B.push( 4 ); B.push( 5 ); B.push( 6 )
gap> A.pop(); A.pop(O; A.pop();

V V.V V V V V V V V V V V.V
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gap> B.pop(); B.pop(); B.pop();

This feature should be used rarely, since its implementation in GAP is not very efficient.

4.24 Return (With or without Value)

return;
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In this form return terminates the call of the innermost function that is currently executing, and
control returns to the calling function. An error is signalled if no function is currently executing. No
value is returned by the function.

return expr;

In this form return terminates the call of the innermost function that is currently executing, and
returns the value of the expression expr. Control returns to the calling function. An error is signalled
if no function is currently executing.

Both statements can also be used in break loops (see 6.4). return; has the effect that the com-
putation continues where it was interrupted by an error or the user hitting CTRL-C. return expr;
can be used to continue execution after an error. What happens with the value expr depends on the
particular error.

For examples of return statements, see the functions £ib and Stack in Section 4.23.



Chapter 5

Functions

The section 4.23 describes how to define a function. In this chapter we describe functions that give in-
formation about functions, and various utility functions used either when defining functions or calling
functions.

5.1 Information about a function

5.1.1 NameFunction

> NameFunction(func) (function)

returns the name of a function. For operations, this is the name used in their declaration. For
functions, this is the variable name they were first assigned to. (For some internal functions, this
might be a name different from the name that is documented.) If no such name exists, the string
"unknown" is returned.
Example

gap> NameFunction(SylowSubgroup) ;
"SylowSubgroup"

gap> Blubberflutsch:=x->x;;

gap> NameFunction(Blubberflutsch);
"Blubberflutsch"

gap> a:=Blubberflutsch;;

gap> NameFunction(a);
"Blubberflutsch"

gap> NameFunction(x->x);
"unknown"

gap> NameFunction(NameFunction);
"NameFunction"

5.1.2 NumberArgumentsFunction

> NumberArgumentsFunction(func) (function)

returns the number of arguments the function func accepts. For functions that use arg to take a
variable number of arguments, as well as for operations, -1 is returned. For attributes, 1 is returned.

70
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Example
gap> NumberArgumentsFunction(function(a,b,c,d,e,f,g,h,i,j,k)return 1;end);
11

gap> NumberArgumentsFunction(Size) ;

1

gap> NumberArgumentsFunction(IsCollsCollsElms);

3

gap> NumberArgumentsFunction(Sum) ;

-1

5.1.3 NamesLocalVariablesFunction

> NamesLocalVariablesFunction(func) (function)

returns a mutable list of strings; the first entries are the names of the arguments of the function
func, in the same order as they were entered in the definition of func, and the remaining ones are the
local variables as given in the 1ocal statement in func. (The number of arguments can be computed
with NumberArgumentsFunction (5.1.2).)

Example
gap> NamesLocalVariablesFunction(function( a, b ) local c¢; return 1; end);

[ |lall’ |lbll’ HCII :l

gap> NamesLocalVariablesFunction(function( arg ) local a; return 1; end);

[ "arg"’ llall
gap> NamesLocalVariablesFunction( Size );
fail

5.1.4 FilenameFunc
> FilenameFunc(func) (function)
For a function func, FilenameFunc returns either fail or the absolute path of the file from which

func has been read. The return value fail occurs if func is a compiled function or an operation.
For functions that have been entered interactively, the string "*stdin*" is returned, see Section 9.5.

Example
gap> FilenameFunc( LEN_LIST ); # a kernel function
fail
gap> FilenameFunc( Size ); # an operation
fail
gap> FilenameFunc( x -> x”2 ); # an interactively entered function
"xstdinx"
gap> meth:= ApplicableMethod( Size, [ Group( O ) 1 );;
gap> FilenameFunc( meth );
"... some path .../grpperm.gi"

5.1.5 StartlineFunc

> StartlineFunc(func) (function)
> EndlineFunc(func) (function)
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Let func be a function. If FilenameFunc (5.1.4) returns fail for func then also
StartlineFunc returns fail. If FilenameFunc (5.1.4) returns a filename for func then
StartlineFunc returns the line number in this file where the definition of func starts.

EndlineFunc behaves similarly and returns the line number in this file where the definition of
func ends.

Example
gap> meth:= ApplicableMethod( Size, [ Group( O ) 1 );;
gap> FilenameFunc( meth );
"... some path ... gap4rb5/lib/grpperm.gi"
gap> StartlineFunc( meth );
487
gap> EndlineFunc( meth );
487

5.1.6 PageSource

> PageSource (func) (function)

This shows the file containing the source code of the function or method func in a pager (see
Pager (2.4.1)). The display starts at a line shortly before the code of func.

This function works if FilenameFunc (func) returns the name of a proper file. In that case this
filename and the position of the function definition are also printed. Otherwise the function indicates
that the source is not available (for example this happens for functions which are implemented in the
GAP C-kernel).

Usage examples:
met := ApplicableMethod(\~, [(1,2),2743527]); PageSource(met);
PageSource(Combinations) ;
ct:=CharacterTable (Group((1,2,3)));
met := ApplicableMethod(Size,[ct]); PageSource(met);

5.2 Calling a function with a list argument that is interpreted as several
arguments

5.2.1 CallFuncList

> CallFuncList(func, args) (operation)

returns the result, when calling function func with the arguments given in the list args, i.e. args
is “unwrapped” so that args appears as several arguments to func.

Example

gap> CallFuncList(\+, [6, 71);
13

gap> #1is equivalent to:

gap> \+(6, 7);

13
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A more useful application of CallFuncList is for a function g that is called in the body of a
function £ with (a sublist of) the arguments of f, where £ has been defined with a single formal
argument arg (see 4.23), as in the following code fragment.

Example
f := function ( arg )
CallFunclist(g, arg);

end;

In the body of £ the several arguments passed to £ become a list arg. If g were called instead via
g( arg ) then g would see a single list argument, so that g would, in general, have to “unwrap” the
passed list. The following (not particularly useful) example demonstrates both described possibilities
for the call to g.

Example
gap> PrintNumberFromDigits := function ( arg )
> CallFunclist( Print, arg );
> Print( "\n" );
> end;
function( arg ) ... end
gap> PrintNumberFromDigits( 1, 9, 7, 3, 2 );
19732
gap> PrintDigits := function ( arg )
> Print( arg );
> Print( "\n" );
> end;
function( arg ) ... end
gap> PrintDigits( 1, 9, 7, 3, 2 );

[1, 9,7, 3, 2]

5.3 Functions that do nothing

The following functions return fixed results (or just their own argument). They can be useful in places
when the syntax requires a function, but actually no functionality is required. So ReturnTrue (5.3.1)
is often used as family predicate in InstallMethod (78.2.1).

5.3.1 ReturnTrue

> ReturnTrue(...) (function)

This function takes any number of arguments, and always returns true.

Example

gap> f:=ReturnTrue;
function( arg ) ... end
gap> Q)

true

gap> £(42);

true
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5.3.2 ReturnFalse
> ReturnFalse(...) (function)

This function takes any number of arguments, and always returns false.

Example

gap> f:=ReturnFalse;
function( arg ) ... end
gap> £O;

false

gap> f("any_string");
false

5.3.3 ReturnFail

> ReturnFail(...) (function)

This function takes any number of arguments, and always returns fail.

Example

gap> oops:=ReturnFail;
function( arg ) ... end
gap> oops();

fail

gap> oops(-42);

fail

5.3.4 IdFunc

> IdFunc( Obj) (function)

returns obj.

Example

gap> id:=IdFunc;

function( object ) ... end

gap> id(42);

42

gap> f:=id(SymmetricGroup(3));

Sym( [ 1 ..31)

gap> s:=0ne (AutomorphismGroup (SymmetricGroup(3)));
IdentityMapping( Sym( [ 1 .. 31 ) )

gap> f=s;

false

5.4 Function Types

Functions are GAP objects and thus have categories and a family.
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5.4.1 IsFunction

> IsFunction(obj) (Category)

is the category of functions.

Example
gap> IsFunction(x->x"2);

true

gap> IsFunction(Factorial);

true

gap> f:=0ne(AutomorphismGroup (SymmetricGroup(3)));
IdentityMapping( Sym( [ 1 .. 31 ) )

gap> IsFunction(f);

false

5.4.2 IsOperation

> IsOperation(obj) (Category)

is the category of operations. Every operation is a function, but not vice versa.
Example

gap> MinimalPolynomial;

<Operation "MinimalPolynomial">
gap> IsOperation(MinimalPolynomial);
true

gap> IsFunction(MinimalPolynomial) ;
true

gap> Factorial;

function( n ) ... end

gap> IsOperation(Factorial);

false

5.4.3 FunctionsFamily

> FunctionsFamily (global variable)

is the family of all functions.

5.5 Naming Conventions

The way functions are named in GAP might help to memorize or even guess names of library func-
tions.

If a variable name consists of several words then the first letter of each word is capitalized.

If the first part of the name of a function is a verb then the function may modify its argument(s) but
does not return anything, for example Append (21.4.5) appends the list given as second argument to the
list given as first argument. Otherwise the function returns an object without changing the arguments,
for example Concatenation (21.20.1) returns the concatenation of the lists given as arguments.

If the name of a function contains the word “0f” then the return value is thought of as informa-
tion deduced from the arguments. Usually such functions are attributes (see 13.5). Examples are



GAP - Reference Manual 76

GeneratorsO0fGroup (39.2.4), which returns a list of generators for the group entered as argument,
or DiagonalOfMat (24.12.1).

For the setter and tester functions of an attribute Attr the names SetAttr resp. HasAttr are
available (see 13.5).

If the name of a function contains the word “By” then the return value is thought of as
built in a certain way from the parts given as arguments. For example, creating a group
as a factor group of a given group by a normal subgroup can be done by taking the image
of NaturalHomomorphismByNormalSubgroup (39.18.1). Other examples of “By” functions are
GroupHomomorphismByImages (40.1.1) and LaurentPolynomialByCoefficients (66.13.1).

Often such functions construct an algebraic structure given by its generators (for exam-
ple, RingByGenerators (56.1.4)). In some cases, “By” may be replaced by “With” (like e.g.
GroupWithGenerators (39.2.3)) or even both versions of the name may be used. The difference
between StructByGenerators and StructWithGenerators is that the latter guarantees that the
GeneratorsOfStruct value of the result is equal to the given set of generators (see 31.3).

If the name of a function has the form “AsSomething” then the return value is an object (usually
a collection which has the same family of elements), which may, for example:

* know more about its own structure (and so support more operations) than its input (e.g. if the
elements of the collection form a group, then this group can be constructed using AsGroup
(39.2.9));

* discard its additional structure (e.g. AsList (30.3.8) applied to a group will return a list of its
elements);

* contain all elements of the original object without duplicates (like e.g. AsSet (30.3.10) does if
its argument is a list of elements from the same family);

* remain unchanged (like e.g. AsSemigroup (51.1.6) does if its argument is a group).

If Something and the argument of AsSomething are domains, some further rules apply as explained
in Tutorial: Changing the Structure.

If the name of a function fun1 ends with “NC” then there is another function fun2 with the same
name except that the NC is missing. NC stands for “no check”. When fun2 is called then it checks
whether its arguments are valid, and if so then it calls fun1. The functions SubgroupNC (39.3.1) and
Subgroup (39.3.1) are a typical example.

The idea is that the possibly time consuming check of the arguments can be omitted if one is sure
that they are unnecessary. For example, if an algorithm produces generators of the derived subgroup
of a group then it is guaranteed that they lie in the original group; Subgroup (39.3.1) would check
this, and SubgroupNC (39.3.1) omits the check.

Needless to say, all these rules are not followed slavishly, for example there is one operation Zero
(31.10.3) instead of two operations ZeroOfElement and ZeroO0fAdditiveGroup.



Chapter 6

Main Loop and Break Loop

This chapter is a first of a series of chapters that describe the interactive environment in which you
use GAP.

6.1 Main Loop

The normal interaction with GAP happens in the so-called read-eval-print loop. This means that you
type an input, GAP first reads it, evaluates it, and then shows the result. Note that the term print
may be confusing since there is a GAP function called Print (6.3.4) (see 6.3) which is in fact not
used in the read-eval-print loop, but traditions are hard to break. In the following, whenever we want
to express that GAP places some characters on the standard output, we will say that GAP shows
something.

The exact sequence in the read-eval-print loop is as follows.

To signal that it is ready to accept your input, GAP shows the prompt gap>. When you see this,
you know that GAP is waiting for your input.

Note that every statement must be terminated by a semicolon. You must also enter RETURN (i.e.,
strike the RETURN key) before GAP starts to read and evaluate your input. (The RETURN key may
actually be marked with the word ENTER and a returning arrow on your terminal.) Because GAP
does not do anything until you enter RETURN, you can edit your input to fix typos and only when
everything is correct enter RETURN and have GAP take a look at it (see 6.8). It is also possible to
enter several statements as input on a single line. Of course each statement must be terminated by a
semicolon.

It is absolutely acceptable to enter a single statement on several lines. When you have entered
the beginning of a statement, but the statement is not yet complete, and you enter RETURN, GAP
will show the partial prompt >. When you see this, you know that GAP is waiting for the rest of the
statement. This happens also when you forget the semicolon ; that terminates every GAP statement.
Note that when RETURN has been entered and the current statement is not yet complete, GAP will
already evaluate those parts of the input that are complete, for example function calls that appear as
arguments in another function call which needs several input lines. So it may happen that one has to
wait some time for the partial prompt.

When you enter RETURN, GAP first checks your input to see if it is syntactically correct (see
Chapter 4 for the definition of syntactically correct). If it is not, GAP prints an error message of the
following form

7
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Example

gap> 1 * ;
Syntax error: expression expected
1 %

The first line tells you what is wrong about the input, in this case the * operator takes two ex-
pressions as operands, so obviously the right one is missing. If the input came from a file (see Read
(9.7.1)), this line will also contain the filename and the line number. The second line is a copy of the
input. And the third line contains a caret pointing to the place in the previous line where GAP realized
that something is wrong. This need not be the exact place where the error is, but it is usually quite
close.

Sometimes, you will also see a partial prompt after you have entered an input that is syntactically
incorrect. This is because GAP is so confused by your input, that it thinks that there is still something
to follow. In this case you should enter ; RETURN repeatedly, ignoring further error messages, until
you see the full prompt again. When you see the full prompt, you know that GAP forgave you and is
now ready to accept your next —hopefully correct— input.

If your input is syntactically correct, GAP evaluates or executes it, i.e., performs the required
computations (see Chapter 4 for the definition of the evaluation).

If you do not see a prompt, you know that GAP is still working on your last input. Of course, you
can type ahead, i.e., already start entering new input, but it will not be accepted by GAP until GAP
has completed the ongoing computation.

When GAP is ready it will usually show the result of the computation, i.e., the value computed.
Note that not all statements produce a value, for example, if you enter a for loop, nothing will be
printed, because the for loop does not produce a value that could be shown.

Also sometimes you do not want to see the result. For example if you have computed a value and
now want to assign the result to a variable, you probably do not want to see the value again. You can
terminate statements by two semicolons to suppress showing the result.

If you have entered several statements on a single line GAP will first read, evaluate, and show
the first one, then read, evaluate, and show the second one, and so on. This means that the second
statement will not even be checked for syntactical correctness until GAP has completed the first
computation.

After the result has been shown GAP will display another prompt, and wait for your next input.
And the whole process starts all over again. Note that if you have entered several statements on a
single line, a new prompt will only be printed after GAP has read, evaluated, and shown the last
statement.

In each statement that you enter, the result of the previous statement that produced a value is
available in the variable 1ast. The next to previous result is available in 1ast2 and the result produced
before that is available in last3.

Example
gap> 1;2;3;

1

2

3

gap> last3 + last2 * last;

7
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Also in each statement the time spent by the last statement, whether it produced a value or not, is
available in the variable time (7.6.3). This is an integer that holds the number of milliseconds.

6.2 Special Rules for Input Lines

The input for some GAP objects may not fit on one line, in particular big integers, long strings or
long identifiers. In these cases you can still type or paste them in long single lines. For nicer display
you can also specify the input on several lines. This is achieved by ending a line by a backslash or
by a backslash and a carriage return character, then continue the input on the beginning of the next
line. When reading this GAP will ignore such continuation backslashes, carriage return characters
and newline characters. GAP also prints long strings and integers this way.

Example

gap> n := 1234\

> 567890;

1234567890

gap> "This is a very long string that does not fit on a line \

> and is therefore continued on the next line.";

"This is a very long string that does not fit on a line and is therefo\
re continued on the next line."

gap> bla\

> bla := 5;; blabla;

5

There is a special rule about GAP prompts in input lines: In line editing mode (usual user input
and GAP started without -n) in lines starting with whitespace following gap> , > or brk> this
beginning part is removed. This rule is very convenient because it allows to cut and paste input from
other GAP sessions or manual examples easily into your current session.

6.3 View and Print

GAP has three different operations to display or print objects: Display (6.3.6), ViewObj (6.3.5) and
Print0bj (6.3.5), and these three have different purposes as follows. The first, Display (6.3.6),
should print the object to the standard output in a human-readable relatively complete and verbose
form. The second, ViewObj (6.3.5), should print the object to the standard output in a short and con-
cise form, it is used in the main read-eval-print loop to display the resulting object of a computation.
The third, Print0bj (6.3.5), should print the object to the standard output in a complete form which
is GAP-readable if at all possible, such that reading the output into GAP produces an object which is
equal to the original one.

All three operations have corresponding operations which do not print anything to standard out-
put but return the output as a string. These are DisplayString (27.6.1), ViewString (27.6.3) and
PrintString (27.6.5) (corresponding to Print0Obj (6.3.5)). Additionally, there is String (27.6.6)
which is very similar to PrintString (27.6.5) but does not insert control characters for line breaks.

For implementation convenience it is allowed that some of these operations have methods which
delegate to some other of these operations. However, the rules for this are that a method may only
delegate to another operation which appears further down in the following table:
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Display (6.3.6)
ViewObj (6.3.5)
Print0bj (6.3.5)
DisplayString (27.6.1)
ViewString (27.6.3)
PrintString (27.6.5)
String (27.6.6)

This is to avoid circular delegations.

Note in particular that none of the methods of the string producing operations may delegate to
the corresponding printing operations. Note also that the above mentioned purposes of the different
operations suggest that delegations between different operations will be sub-optimal in most scenarios.

6.3.1 Default delegations in the library

The library contains the following low ranked default methods:

* A method for DisplayString (27.6.1) which returns the constant value of the global variable
DEFAULTDISPLAYSTRING (27.6.2).

* A method for ViewString (27.6.3) which returns the constant value of the global variable
DEFAULTVIEWSTRING (27.6.4).

* A method for Display (6.3.6) which first calls DisplayString (27.6.1) and prints the result, if
it is a different object than DEFAULTDISPLAYSTRING (27.6.2). Otherwise the method delegates
to Print0Obj (6.3.5).

* A method for ViewObj (6.3.5) which first calls ViewString (27.6.3) and prints the result, if
it is a different object than DEFAULTVIEWSTRING (27.6.4). Otherwise the method delegates to
Print0bj (6.3.5).

* A method for Print0bj (6.3.5) which prints the result of PrintString (27.6.5).

* A method for PrintString (27.6.5) which returns the result of String (27.6.6)

6.3.2 Recommendations for the implementation

This subsection describes what methods for printing and viewing one should implement for new GAP
objects.

One should at the very least install a String (27.6.6) method to allow printing. Using the standard
delegations this enables a limited form of viewing, displaying and printing.

If, for larger objects, nicer line breaks are needed, one should install a separate PrintString
(27.6.5) method which puts in positions for good line breaks using the control characters \< (ASCII
1) and \> (ASCII 2).

If, for even larger objects, output performance and memory usage matters, one should install a
separate Print0bj (6.3.5) method.

One should usually install a ViewString (27.6.3) method, unless the above String (27.6.6)
method is good enough for ViewObj (6.3.5) purposes. Performance and memory should never matter
here, so it is usually unnecessary to install a separate ViewQbj (6.3.5) method.
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If the type of object calls for it one should install a DisplayString (27.6.1) method. This is the
case if a human readable verbose form is required.

If the performance and memory usage for Display (6.3.6) matters, one should install a separate
Display (6.3.6) method.

Note that if only a String (27.6.6) method is installed, then ViewObj (6.3.5) works and
ViewString (27.6.3) returns DEFAULTVIEWSTRING (27.6.4). Likewise, Display (6.3.6) works and
DisplayString (27.6.1) returns DEFAULTDISPLAYSTRING (27.6.2). If you want to avoid this then
install methods for these operations as well.

6.3.3 View

> View(objl , Obj2. . ) (function)
View shows the objects obj1, obj2... etc. in a short form on the standard output by calling the

ViewObj (6.3.5) operation on each of them. View is called in the read-eval-print loop, thus the output

looks exactly like the representation of the objects shown by the main loop. Note that no space or

newline is printed between the objects.

6.3.4 Print

> Print (Objl B Obj2, o) (function)
Also Print shows the objects obj1, obj2... etc. on the standard output. The difference compared

to View (6.3.3) is in general that the shown form is not required to be short, and that in many cases
the form shown by Print is GAP readable.

Example

Z2(2);

gap> z:
Z(2)"0
gap> v:i= [ z, z, z, z, z, z, z ];

[ z(2)-0, Z(2)~0, z(2)~0, Z(2)"0, Z(2)~0, Z(2)~0, Z(2)"0 ]
gap> ConvertToVectorRep(v);; v;

<a GF2 vector of length 7>

gap> Print( v, "\n" );

[ z(2)-0, Z2(2)0, Z(2)"0, Z(2)~0, Z(2)°0, Z(2)°0, Z(2)"0 ]

Another difference is that Print shows strings without the enclosing quotes, so Print can be used
to produce formatted text on the standard output (see also chapter 27). Some characters preceded by
a backslash, such as \n, are processed specially (see chapter 27.2). PrintTo (9.7.3) can be used to
print to a file.

Example
gap> for i in [1..5] do

Print( i, " u’ i”2, " u’ i”3, "\Il" );
od;

[YoJRT NN
N 00 =

7

16 64

25 125

gap> g:= SmallGroup(12,5);

>
>
1
2
3
4
5
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<pc group of size 12 with 3 generators>
gap> Print( g, "\n" );

Group( [ f1, f2, £3 1)

gap> View( g ); Print( "\n" );

<pc group of size 12 with 3 generators>

6.3.5 ViewObj

> ViewObj (Obj) (operation)
> Print0bj ( Obj) (operation)

The functions View (6.3.3) and Print (6.3.4) actually call the operations ViewObj and Print0bj,
respectively, for each argument. By installing special methods for these operations, it is possible to
achieve special printing behavior for certain objects (see chapter 78). The only exceptions are strings
(see Chapter 27), for which the default Print0Obj and ViewObj methods as well as the function View
(6.3.3) print also the enclosing doublequotes, whereas Print (6.3.4) strips the doublequotes.

The default method for ViewObj is to call PrintObj. So it is sufficient to have a Print0bj
method for an object in order to View (6.3.3) it. If one wants to supply a “short form” for View
(6.3.3), one can install additionally a method for View0Obj.

6.3.6 Display
> Display (o bj ) (operation)

Displays the object obj in a nice, formatted way which is easy to read (but might be difficult for
machines to understand). The actual format used for this depends on the type of obj. Each method
should print a newline character as last character.

Example
gap> Display( [ [ 1, 2, 31, [ 4, 5, 611 x Z(5) );
241
3.2

One can assign a string to an object that Print (6.3.4) will use instead of the default used by
Print (6.3.4), via SetName (12.8.1). Also, Name (12.8.2) returns the string previously assigned to the
object for printing, via SetName (12.8.1). The following is an example in the context of domains.

Example
gap> g:= Group( (1,2,3,4) );

Group([ (1,2,3,4) 1)

gap> SetName( g, "C4" ); g;

Cc4

gap> Name( g );

IIC4II

When setting up examples, in particular if for beginning users, it sometimes can be convenient
to hide the structure behind a printing name. For many objects, such as groups, this can be done
using SetName (12.8.1). If the objects however is represented internally, for example permutations
representing group elements, this function is not applicable. Instead the function SetNameObject
(6.3.7) can be used to interface with the display routines on a lower level.
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6.3.7 SetNameObject

> SetNameObject(o, s) (function)

SetNameQObject sets the string s as display name for object o in an interactive session. When
applying View (6.3.3) to object o, for example in the system’s main loop, GAP will print the string s.
Calling SetNameObject for the same object o with s set to fail deletes the special viewing setup.
since use of this features potentially slows down the whole print process, this function should be used
sparingly.

Example

gap> SetNameObject(3,"three");
gap> Filtered([1..10],IsPrimelnt);
[ 2, three, 5, 7 1]

gap> SetNameObject(3,fail);

gap> Filtered([1..10],IsPrimelInt);
[2,3,5,7]

6.4 Break Loops

When an error has occurred or when you interrupt GAP (usually by hitting CTRL-C) GAP enters a
break loop, that is in most respects like the main read eval print loop (see 6.1). That is, you can enter
statements, GAP reads them, evaluates them, and shows the result if any. However those evaluations
happen within the context in which the error occurred. So you can look at the arguments and local
variables of the functions that were active when the error happened and even change them. The prompt
is changed from gap> to brk> to indicate that you are in a break loop.

Example

gap> 1/0;

Rational operations: <divisor> must not be zero

not in any function

Entering break read-eval-print loop ...

you can ’quit;’ to quit to outer loop, or

you can replace <divisor> via ’return <divisor>;’ to continue

If errors occur within a break loop GAP enters another break loop at a deeper level. This is
indicated by a number appended to brk:

Example

brk> 1/0;

Rational operations: <divisor> must not be zero

not in any function

Entering break read-eval-print loop ...

you can ’quit;’ to quit to outer loop, or

you can replace <divisor> via ’return <divisor>;’ to continue
brk_02>

There are two ways to leave a break loop, see 6.4.1 and 6.4.2.
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6.4.1 (quit from a break loop

The first way to leave a break loop is to quit the break loop. To do this you enter quit ; or type the eof
(end of file) character, which is usually CTRL-D except when using the -e option (see Section 3.1).
Note that GAP code between quit ; and the end of the input line is ignored.

Example

brk_02> quit;
brk>

In this case control returns to the break loop one level above or to the main loop, respectively. So
iterated break loops must be left iteratively. Note also that if you type quit; from a gap> prompt,
GAP will exit (see 6.7).

Note: If you leave a break loop with quit without completing a command it is possible (though
not very likely) that data structures will be corrupted or incomplete data have been stored in objects.
Therefore no guarantee can be given that calculations afterwards will return correct results! If you
have been using options quitting a break loop generally leaves the options stack with options you no
longer want. The function ResetOptionsStack (8.1.3) removes all options on the options stack, and
this is the sole intended purpose of this function.

6.4.2 return from a break loop

The other way to leave a break loop is to return from a break loop. To do this you type return; or
return obj ;. If the break loop was entered because you interrupted GAP, then you can continue
by typing return;. If the break loop was entered due to an error, you may have to modify the value
of a variable before typing return; (see the example for IsDenseList (21.1.2)) or you may have to
return an object obj (by typing: return obj ;) to continue the computation; in any case, the message
printed on entering the break loop will tell you which of these alternatives is possible. For example, if
the break loop was entered because a variable had no assigned value, the value to be returned is often
a value that this variable should have to continue the computation.

Example
brk> return 9; # we had tried to enter the divisor 9 but typed O ...
1/9

gap>

6.4.3 OnBreak

> OnBreak (global variable)

By default, when a break loop is entered, GAP prints a trace of the innermost 5 commands cur-
rently being executed. This behaviour can be configured by changing the value of the global variable
OnBreak. When a break loop is entered, the value of OnBreak is checked. If it is a function, then it is
called with no arguments. By default, the value of OnBreak is Where (6.4.5).

Example
gap> OnBreak := function() Print("Hello\n"); end;
function( ) ... end
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Example
gap> Error("!\n");

Error, !

Hello

Entering break read-eval-print loop ...

you can ’quit;’ to quit to outer loop, or
you can ’return;’ to continue

brk> quit;

In cases where a break loop is entered during a function that was called with options (see Chap-
ter 8), a quit; will also cause the options stack to be reset and an Info-ed warning stating this is
emitted at InfoWarning (7.4.7) level 1 (see Chapter 7.4).

Note that for break loops entered by a call to Error (6.6.1), the lines after “Entering break
read-eval-print loop ” and before the brk> prompt can also be customised, namely by
redefining OnBreakMessage (6.4.4).

Also, note that one can achieve the effect of changing OnBreak locally. As mentioned above,
the default value of OnBreak is Where (6.4.5). Thus, a call to Error (6.6.1) generally gives a trace
back up to five levels of calling functions. Conceivably, we might like to have a function like Error
(6.6.1) that does not trace back without globally changing OnBreak. Such a function we might call
ErrorNoTraceBack and here is how we might define it. (Note ErrorNoTraceBack is not a GAP
function.)

Example
gap> ErrorNoTraceBack := function(arg) # arg is special variable that GAP
> # knows to treat as list of arg’s
> local SavedOnBreak, ENTBOnBreak;
> SavedOnBreak := OnBreak; # save current value of OnBreak
>
> ENTBOnBreak := function() # our ‘local’ OnBreak
> local s;
> for s in arg do
> Print(s);
> od;
> OnBreak := SavedOnBreak; # restore OnBreak afterwards
> end;
>
> OnBreak := ENTBOnBreak;
> Error();
> end;
function( arg ) ... end

Here is a somewhat trivial demonstration of the use of ErrorNoTraceBack.
Example
gap> ErrorNoTraceBack("Gidday!", " How’s", " it", " going?\n");
Error, Gidday! How’s it going?

Entering break read-eval-print loop ...

you can ’quit;’ to quit to outer loop, or
you can ’return;’ to continue
brk> quit;

Now we call Error (6.6.1) with the same arguments to show the difference.
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Example
gap> Error("Gidday!", " How’s", " it", " going?\n");
Error, Gidday! How’s it going?
Hello

Entering break read-eval-print loop ...
you can ’quit;’ to quit to outer loop, or
you can ’return;’ to continue

brk> quit;

Observe that the value of OnBreak before the ErrorNoTraceBack call was restored. However,
we had changed OnBreak from its default value; to restore OnBreak to its default value, we should do

the following.
Example

gap> OnBreak := Where;;

6.4.4 OnBreakMessage

> OnBre akMessage (global variable)

When a break loop is entered by a call to Error (6.6.1) the message after the “Entering break

read-eval-print loop ...” line is produced by the function OnBreakMessage, which just like
OnBreak (6.4.3) is a user-configurable global variable that is a function with no arguments.
Example

gap> OnBreakMessage(); # By default, OnBreakMessage prints the following
you can ’quit;’ to quit to outer loop, or
you can ’return;’ to continue

Perhaps you are familiar with what’s possible in a break loop, and so don’t need to be reminded.
In this case, you might wish to do the following (the first line just makes it easy to restore the default
value later).

Example
gap> NormalOnBreakMessage := OnBreakMessage;; # save the default value
gap> OnBreakMessage := function() end; # do-nothing function
function( ) ... end
gap> OnBreakMessage();
gap> OnBreakMessage := NormalOnBreakMessage;; # reset

With OnBreak (6.4.3) still set away from its default value, calling Error (6.6.1) as we did above,
now produces:

Example
gap> Error("!\n");

Error, !

Hello

Entering break read-eval-print loop ...
brk> quit; # to get back to outer loop

However, suppose you are writing a function which detects an error condition and
OnBreakMessage needs to be changed only locally, i.e., the instructions on how to recover from
the break loop need to be specific to that function. The same idea used to define ErrorNoTraceBack
(see OnBreak (6.4.3)) can be adapted to achieve this. The function CosetTableFromGensAndRels
(47.6.5) is an example in the GAP code where the idea is actually used.
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6.4.5 Where

> Where(nr) (function)

shows the last nr commands on the execution stack during whose execution the error occurred. If
not given, nr defaults to 5. (Assume, for the following example, that after the last example OnBreak
(6.4.3) has been set back to its default value.)
Example
gap> StabChain(SymmetricGroup(100)); # After this we typed ~C
user interrupt at
bpt := S.orbit[1];

called from
SiftedPermutation( S, (g * rep) ~ -1 ) called from
StabChainStrong( S.stabilizer, [ sch ], options ); called from
StabChainStrong( S.stabilizer, [ sch ], options ); called from
StabChainStrong( S, GeneratorsOfGroup( G ), options ); called from
StabChainOp( G, rec(
) ) called from

Entering break read-eval-print loop ...
you can ’quit;’ to quit to outer loop, or
you can ’return;’ to continue
brk> Where(2);
called from
SiftedPermutation( S, (g * rep) ~ -1 ) called from
StabChainStrong( S.stabilizer, [ sch ], options ); called from

Note that the variables displayed even in the first line of the Where list (after the called from
line) may be already one environment level higher and DownEnv (6.5.1) may be necessary to access
them.

At the moment this backtrace does not work from within compiled code (this includes the method
selection which by default is compiled into the kernel). If this creates problems for debugging, call
GAP with the -M option (see 3.1) to avoid loading compiled code.

(Function calls to Info (7.4.5) and methods installed for binary operations are handled in a special
way. In rare circumstances it is possible therefore that they do not show up in a Where log but the log
refers to the last proper function call that happened before.)

The command line option -T to GAP disables the break loop. This is mainly intended for testing
purposes and for special applications. If this option is given then errors simply cause GAP to return
to the main loop.

6.5 Variable Access in a Break Loop

In a break loop access to variables of the current break level and higher levels is possible, but if the
same variable name is used for different objects or if a function calls itself recursively, of course only
the variable at the lowest level can be accessed.
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6.5.1 DownEnv and UpEnv

> DownEnv(nr) (function)
> UpEnv(nr) (function)

DownEnv moves down nr steps in the environment and allows one to inspect variables on this
level; if nr is negative it steps up in the environment again; nr defaults to 1 if not given. UpEnv
acts similarly to DownEnv but in the reverse direction (the mnemonic rule to remember the difference
between DownEnv and UpEnv is the order in which commands on the execution stack are displayed by
Where (6.4.5)).

Example
gap> OnBreak := function() Where(0); end;; # eliminate back-tracing on
gap> # entry to break loop
gap> test:= function( n )
> if n > 3 then Error( "!'\n" ); fi; test( n+l ); end;;
gap> test( 1 );
Error, !

Entering break read-eval-print loop ...
you can ’quit;’ to quit to outer loop, or
you can ’return;’ to continue
brk> Where();
called from
test( n + 1 ); called from
test( n + 1 ); called from
test( n + 1 ); called from
<function>( <arguments> ) called from read-eval-loop
brk> n;
4
brk> DownEnv() ;
brk> n;
3
brk> Where();
called from
test( n + 1 ); called from
test( n + 1 ); called from
<function>( <arguments> ) called from read-eval-loop
brk> DownEnv( 2 );
brk> n;
1
brk> Where();
called from
<function>( <arguments> ) called from read-eval-loop
brk> DownEnv( -2 );
brk> n;
3
brk> quit;
gap> OnBreak := Where;; # restore OnBreak to its default value

Note that the change of the environment caused by DownEnv only affects variable access in the
break loop. If you use return to continue a calculation GAP automatically jumps to the right envi-
ronment level again.
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Note also that search for variables looks first in the chain of outer functions which enclosed the
definition of a currently executing function, before it looks at the chain of calling functions which led
to the current invocation of the function.

Example
gap> foo := function()
> local x; x := 1;
> return function() local y; y := x*x; Error("!!\n"); end;
> end;
function( ) ... end
gap> bar := foo();
function( ) ... end
gap> fun := function() local x; x := 3; bar(); end;
function( ) ... end
gap> fun();
Error, !!

called from
bar( ); called from
<function>( <arguments> ) called from read-eval-loop
Entering break read-eval-print loop ...
you can ’quit;’ to quit to outer loop, or
you can ’return;’ to continue
brk> x;
1
brk> DownEnv(1);
brk> x;
3

Here the x of foo which contained the definition of bar is found before that of fun which caused
its execution. Using DownEnv we can access the x from fun.

6.6 Error and ErrorCount

6.6.1 Error

> Error(messages, ...) (function)

Error signals an error from within a function. First the messages messages are printed, this
is done exactly as if Print (6.3.4) (see 6.3) were called with these arguments. Then a break loop
(see 6.4) is entered, unless the standard error output is not connected to a terminal. You can leave this
break loop with return; to continue execution with the statement following the call to Error.

6.6.2 ErrorCount

> ErrorCount () (function)

ErrorCount returns a count of the number of errors (including user interruptions) which have
occurred in the GAP session so far. This count is reduced modulo 22® on 32 bit systems, 2°° on 64
bit systems. The count is incremented by each error, even if GAP was started with the -T option to
disable the break loop.



GAP - Reference Manual 90

6.7 Leaving GAP

The normal way to terminate a GAP session is to enter either quit; (note the semicolon) or an
end-of-file character (usually CTRL-D) at the gap> prompt in the main read eval print loop.

6.7.1 QUIT

> QUIT (global variable)

An emergency way to leave GAP is to enter QUIT at any gap> or brk> or brk_nn> prompt.

6.7.2 InstallAtExit

> InstallAtExit(func) (function)
> QUITTING (global variable)

Before actually terminating, GAP will call (with no arguments) all of the functions that have been
installed using InstallAtExit. These typically perform tasks such as cleaning up temporary files
created during the session, and closing open files. If an error occurs during the execution of one of
these functions, that function is simply abandoned, no break loop is entered.

Example
gap> InstallAtExit(function() Print("bye\n"); end);
gap> quit;
bye

During execution of these functions, the global variable QUITTING will be set to true if GAP is
exiting because the user typed QUIT and false otherwise. Since QUIT is considered as an emergency
measure, different action may be appropriate.

6.7.3 SaveOnExitFile

> SaveOnExitFile (global variable)

If, when GAP is exiting due to a quit or end-of-file (i.e. not due to a QUIT) the variable
SaveOnExitFile is bound to a string value, then the system will try to save the workspace to that
file.

6.8 Line Editing

In most installations GAP will be compiled to use the Gnu readline library (see the line Libs used:
on GAP startup). In that case skip to the next section 6.9. (The line editing commands described in
the rest of this section were available in previous versions of GAP, they will work almost the same in
the standard configuration of the Gnu readline library.)

GAP allows one you to edit the current input line with a number of editing commands. Those
commands are accessible either as control keys or as escape keys. You enter a control key by pressing
the CTRL key, and, while still holding the CTRL key down, hitting another key key. You enter an
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escape key by hitting ESC and then hitting another key key. Below we denote control keys by CTRL-
key and escape keys by ESC-key. The case of key does not matter, i.e., CTRL-A and CTRL-A are
equivalent.

Normally, line editing will be enabled if the input is connected to a terminal. Line editing can be
enabled or disabled using the command line options -f and -n respectively (see 3.1), however this is
a machine dependent feature of GAP.

Typing CTRL-KEY or ESC-KEY for characters not mentioned below always inserts CTRL-key
resp. ESC-key at the current cursor position.

The first few commands allow you to move the cursor on the current line.

CTRL-A
move the cursor to the beginning of the line.

Esc-B
move the cursor to the beginning of the previous word.

CTRL-B
move the cursor backward one character.

CTRL-F
move the cursor forward one character.

Esc-F
move the cursor to the end of the next word.

CTRL-E
move the cursor to the end of the line.

The next commands delete or kill text. The last killed text can be reinserted, possibly at a different
position, with the “yank” command CTRL-Y.

CTRL-H or del
delete the character left of the cursor.

CTRL-D
delete the character under the cursor.

CTRL-K
kill up to the end of the line.

Esc-D
kill forward to the end of the next word.

ESC-DEL
kill backward to the beginning of the last word.

CTRL-X
kill entire input line, and discard all pending input.

CTRL-Y
insert (yank) a just killed text.
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The next commands allow you to change the input.

CTRL-T
exchange (twiddle) current and previous character.

Esc-U
uppercase next word.

Esc-L
lowercase next word.

Esc-C
capitalize next word.

92

The TAB character, which is in fact the control key CTRL-I, looks at the characters before the
cursor, interprets them as the beginning of an identifier and tries to complete this identifier. If there
is more than one possible completion, it completes to the longest common prefix of all those comple-
tions. If the characters to the left of the cursor are already the longest common prefix of all completions

hitting TAB a second time will display all possible completions.

TAB
complete the identifier before the cursor.

The next commands allow you to fetch previous lines, e.g., to correct typos, etc.

CTRL-L
insert last input line before current character.

CTRL-P

redisplay the last input line, another CTRL-P will redisplay the line before that, etc. If the cursor
is not in the first column only the lines starting with the string to the left of the cursor are taken.

CTRL-N
Like CTRL-P but goes the other way round through the history.

Esc-<
goes to the beginning of the history.

Esc->
goes to the end of the history.

CTRL-O
accepts this line and perform a CTRL-N.

Finally there are a few miscellaneous commands.

CTRL-V

enter next character literally, i.e., enter it even if it is one of the control keys.

CTRL-U
execute the next line editing command 4 times.
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ESC-num
execute the next line editing command num times.

Esc-CTRL-L
redisplay input line.

The four arrow keys (cursor keys) can be used instead of CTRL-B, CTRL-F, CTRL-P, and CTRL-
N, respectively.

6.9 Editing using the readline library

The descriptions in this section are valid only if your GAP installation uses the readline library for
command line editing. You can check by IsBound (GAPInfo.UseReadline) ; if this is the case.

You can wuse all the features of readline, as for example explained in
http://tiswww.case.edu/php/chet/readline/rluserman.html. Therefore the command line
editing in GAP is similar to the bash shell and many other programs. On a Unix/Linux system you
may also have a manpage, try man readline.

Compared to the command line editing which was used in GAP up to version 4.4 (or compared to
not using the readline library) using readline has several advantages:

* Most keys still do the same as explained in 6.8 (in the default configuration).

e There are many additional commands, e.g. undoing (CTRL-_, keyboard macros (CTRL-X(,
CTRL-X) and CTRL-XE), file name completion (hit ESC two or four times), showing matching
parentheses, vi-style key bindings, deleting and yanking text, ...

* Lines which are longer than a physical terminal row can be edited more conveniently.
* Arbitrary unicode characters can be typed into string literals.

* The key bindings can be configured, either via your ~/.inputrec file or by GAP commands,
see 6.9.1.

* The command line history can be saved to and read from a file, see 6.9.2.
* Adventurous users can even implement completely new command line editing functions on
GARP level, see 6.9.4.
6.9.1 Readline customization

You can use your readline init file (by default “/ . inputrc on Unix/Linux) to customize key bindings.
If you want settings be used only within GAP you can write them between lines containing $if GAP

and $endif. For a detailed documentation of the available settings and functions see here.
From readline init file

$if GAP
set blink-matching-paren on
"\C-n": dump-functions
"\ep": kill-region

$endif
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Alternatively, from within GAP the command ReadlineInitLine(line) ; canbe used, where 1ine
is a string containing a line as in the init file.

Note that after pressing CTRL-V the next special character is input verbatim. This is very
useful to bind keys or key sequences. For example, binding the function key F3 to the com-
mand kill-whole-line by using the sequence CTRL-V F3 looks on many terminals like this:
ReadlineInitLine("\"~[OR\":kill-whole-1line");. (You can get the line back later with
CTRL-Y.)

The CTRL-G key can be used to type any unicode character by its code point. The number of the
character can either be given as a count, or if the count is one the input characters before the cursor
are taken (as decimal number or as hex number which starts with Ox. For example, the double stroke
character Z can be input by any of the three key sequences ESC 8484 CTRL-G, 8484 CTRL-G or
0x2124 CTRL-G.

Some terminals bind the CTRL-S and CTRL-Q keys to stop and restart terminal output. Further-
more, sometimes CTRL-\ quits a program. To disable this behaviour (and maybe use these keys for
command line editing) you can use Exec("stty stop undef; stty start undef; stty quit
undef") ; in your GAP session or your gaprc file (see 3.2).

6.9.2 The command line history

GAP can save your input lines for later reuse. The keys CTRL-P (or UP), CTRL-N (or DOWN), ESC<
and ESC> work as documented in 6.8, that is they scroll backward and forward in the history or go
to its beginning or end. Also, CTRL-O works as documented, it is useful for repeating a sequence of
previous lines. (But CTRL-L clears the screen as in other programs.)

The command line history can be used across several instances of GAP via the following two
commands.

6.9.3 SaveCommandLineHistory

> SaveCommandLineHistory(/[fname, J[app]) (function)
Returns: fail or number of saved lines
> ReadCommandLineHistory([fname]) (function)

Returns: fail or number of added lines

The first command saves the lines in the command line history to the file given by the string
fname. The default for fname is history in the user’s GAP root path GAPInfo.UserGapRoot or
"~/.gap_hist" if this directory does not exist. If the optional argument app is true then the lines
are appended to that file otherwise the file is overwritten.

The second command is the converse, it reads the lines from file fname and prepends them to the
current command line history.

By default an arbitrary number of input lines is stored in the command line history. For
very long GAP sessions or if SaveCommandLineHistory and ReadCommandLineHistory
are used repeatedly it can be sensible to restrict the number of saved lines via
SetUserPreference("HistoryMaxLines", num); to a non negative number num (the de-
faultis infinity). An automatic storing and restoring of the command line history can be configured
via SetUserPreference ("SaveAndRestoreHistory", true);.

Note that these functions are only available if your GAP is configured to use the readline li-
brary.
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6.9.4 Writing your own command line editing functions

It is possible to write new command line editing functions in GAP as follows.

The functions have one argument 1 which is a list with five entries of the form [count, key,
line, cursorpos, markpos] where count and key are the last pressed key and its count (these
are not so useful here because users probably do not want to overwrite the binding of a single key),
then 1ine is a string containing the line typed so far, cursorpos is the current position of the cursor
(point), and markpos the current position of the mark.

The result of such a function must be a list which can have various forms:

[str]
with a string str. In this case the text str is inserted at the cursor position.

[kill, begin, end]
where kill is true or false and begin and end are positions on the input line. This removes
the text from the lower position to before the higher position. If kill is true the text is killed,
i.e. put in the kill ring for later yanking.

[begin, end, str]
where begin and end are positions on the input line and str is a string. Then the text from
position begin to before end is substituted by str.

[1, 1strl
where 1str is a list of strings. Then these strings are displayed like a list of possible comple-
tions. The input line is not changed.

[2, chars]
where chars is a string. The characters from chars are used as the next characters from the
input. (At most 512 characters are possible.)

[100]
This rings the bell as configured in the terminal.

In the first three cases the result list can contain a position as a further entry, this becomes the new
cursor position. Or it can contain two positions as further entries, these become the new cursor position
and the new position of the mark.

Such a function can be installed as a macro for readline via InstallReadlineMacro(name,
fun) ; where name is a string used as name of the macro and fun is a function as above. This macro
can be called by a key sequence which is returned by InvocationReadlineMacro (name) ;.

As an example we define a function which puts double quotes around the word under or before
the cursor position. The space character, the characters in " (,)", and the beginning and end of the
line are considered as word boundaries. The function is then installed as a macro and bound to the
key sequence ESC Q.

Example

gap> EditAddQuotes := function(l)

> local str, pos, i, j, new;

>  str := 1[3];

> pos := 1[4];

> i := pos;

> while i > 1 and (not str[i-1] in ",( ") do
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> i = i-1;

> od;

> j := pos;

> while IsBound(str[j]) and not str[j] in ",) " do
> j o= j+i;

> od;

> new := n\uu;

>  Append(new, str{[i..j-11});

>  Append(new, "\"");

> return [i, j, newl;

> end;;

gap> InstallReadlineMacro('addquotes'", EditAddQuotes);
gap> invl := InvocationReadlineMacro("addquotes");;

gap> ReadlineInitLine(Concatenation("\"\\eQ\":\"",invl,"\""));;

6.10 Editing Files

In most cases, it is preferable to create longer input (in particular GAP programs) separately in an
editor, and to read in the result via Read (9.7.1). Note that Read (9.7.1) by default reads from the
directory in which GAP was started (respectively under Windows the directory containing the GAP
binary), so you might have to give an absolute path to the file.

If you cannot create several windows, the Edit (6.10.1) command may be used to leave GAP,
start an editor, and read in the edited file automatically.

6.10.1 Edit

> Edit(filename) (function)

Edit starts an editor with the file whose filename is given by the string filename, and reads the
file back into GAP when you exit the editor again.

GAP will call your preferred editor if you call SetUserPreference ("Editor", path); where
path is the path to your editor, e.g., /usr/bin/vim. On Windows you can use edit.com.

Under Mac OS X, you should use SetUserPreference("Editor", "open");, this will open
the file in the default editor. If you call SetUserPreference("EditorOptions", ["-t"]);, the
file will open in TextEdit, and SetUserPreference ("EditorOptions", ["-a", "<appl>"]);
will open the file using the application <appl>.

This can for example be done in your gap. ini file, see Section 3.2.1.

6.11 Editor Support

In the etc subdirectory of the GAP installation we provide some setup files for the editors vim and
emacs/xemacs.

vim is a powerful editor that understands the basic vi commands but provides much more func-
tionality. You can find more information about it (and download it) from http://www.vim.org.

To get support for GAP syntax in vim, create in your home directory a directory .vim with subdi-
rectories .vim/syntax and .vim/indent (If you are not using Unix, refer to the vim documentation
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on where to place syntax files). Then copy the file etc/gap.vimto .vim/syntax/gap.vim and the
file etc/gap_indent.vimto .vim/indent/gap.vim.
Then edit the . vimrc file in your home directory. Add lines as in the following example:

Example

if has("syntax")
syntax on " Default to no syntax highlightning
endif

" For GAP files
augroup gap
" Remove all gap autocommands
au!
autocmd BufRead,BufNewFile *.g,*.gi,*.gd set filetype=gap comments=s:##\ \ ,m:##\

" I’m using the external program ‘par’ for formating comment lines starting
" with ‘## °’. Include these lines only when you have par installed.

autocmd BufRead,BufNewFile *.g,*.gi,*.gd set formatprg="par w76p4s0j"

autocmd BufWritePost,FileWritePost *.g,*.gi,*.gd set formatprg="par w76p0s0j"
augroup END

See the headers of the two mentioned files for additional comments and adjust details according
to your personal taste. Send comments and suggestions to support@gap-system.org. Setup files
for emacs/xemacs are contained in the etc/emacs subdirectory.

6.12 Changing the Screen Size

6.12.1 SizeScreen

> SizeScreen([sz]) (function)

Called with no arguments, SizeScreen returns the size of the screen as a list with two entries.
The first is the length of each line, the second is the number of lines.

Called with one argument that is a list sz, SizeScreen sets the size of the screen; The first entry
of sz, if bound, is the length of each line, and the second entry of sz, if bound, is the number of lines.
The values for unbound entries of sz are left unaffected. The function returns the new values.

Note that those parameters can also be set with the command line options -x for the line length
and -y for the number of lines (see Section 3.1).

To check/change whether line breaking occurs for files and streams see PrintFormattingStatus
(10.4.8) and SetPrintFormattingStatus (10.4.8).

The line length must be between 20 and 4096 characters (inclusive) and the number of lines must
be at least 10. Values outside this range will be adjusted to the nearest endpoint of the range.

6.13 Teaching Mode

When using GAP in the context of (undergraduate) teaching it is often desirable to simplify some of
the system output and functionality defaults (potentially at the cost of making the printing of objects
more expensive). This can be achieved by turning on a teaching mode:

\ ,e:##\ \ b:t
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6.13.1 TeachingMode

> TeachingMode([switchl) (function)

When called with a boolean argument switch, this function will turn teaching mode respectively

on or off.
Example

gap> a:=Z(11)"3;

Z(11)-3

gap> TeachingMode (true);

#I Teaching mode is turned ON
gap> a;

ZmodnZ0bj(8,11)

gap> TeachingMode (false);

#I Teaching mode is turned OFF
gap> a;

Z(11)"3

At the moment, teaching mode changes the following things

Prime Field Elements
Elements of fields of prime order are printed as ZmodnZ0bj (14.5.3) instead as power of a
primitive root.

Quadratic Irrationalities
Elements of a quadratic extension of the rationals are printed using the square root ER (18.4.2)
instead of using roots of unity.

Creation of some small groups
The group creator functions CyclicGroup (50.1.2), AbelianGroup (50.1.3),
ElementaryAbelianGroup (50.1.4), and DihedralGroup (50.1.6) create by default (if
no other representation is specified) not a pc group, but a finitely presented group, which makes
the generators easier to interpret.



Chapter 7

Debugging and Profiling Facilities

This chapter describes some functions that are useful mainly for debugging and profiling purposes.

Probably the most important debugging tool in GAP is the break loop (see Section 6.4) which
can be entered by putting an Error (6.6.1) statement into your code or by hitting Control-C. In the
break loop one can inspect variables, stack traces and issue commands as usual in an interactive GAP
session. See also the DownEnv (6.5.1), UpEnv (6.5.1) and Where (6.4.5) functions.

Sections 7.2 and 7.3 show how to get information about the methods chosen by the method selec-
tion mechanism (see chapter 78).

The final sections describe functions for collecting statistics about computations (see Runtime
(7.6.2), 7.7).

7.1 Recovery from NoMethodFound-Errors

When the method selection fails because there is no applicable method, an error as in the following

example occurs and a break loop is entered:
Example

gap> IsNormal(2,2);

Error, no method found! For debugging hints type 7Recovery from NoMethodFound
Error, no 1st choice method found for ‘IsNormal’ on 2 arguments called from
<function>( <arguments> ) called from read-eval-loop

Entering break read-eval-print loop ...

you can ’quit;’ to quit to outer loop, or

you can ’return;’ to continue

brk>

This only says, that the method selection tried to find a method for IsNormal on two arguments
and failed. In this situation it is crucial to find out, why this happened. Therefore there are a few
functions which can display further information. Note that you can leave the break loop by the quit
command (see 6.4.1) and that the information about the incident is no longer accessible afterwards.

7.1.1 ShowArguments

> ShowArguments() (function)

This function is only available within a break loop caused by a “No Method Found”-error. It prints
as a list the arguments of the operation call for which no method was found.

99
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7.1.2 ShowArgument

> ShowArgument (ar) (function)

This function is only available within a break loop caused by a “No Method Found”-error. It
prints the nr-th arguments of the operation call for which no method was found. ShowArgument
needs exactly one argument which is an integer between 0 and the number of arguments the operation
was called with.

7.1.3 ShowDetails

> ShowDetails() (function)

This function is only available within a break loop caused by a “No Method Found”-error. It prints
the details of this error: The operation, the number of arguments, a flag which indicates whether the
operation is being traced, a flag which indicates whether the operation is a constructor method, and
the number of methods that refused to apply by calling TryNextMethod (78.4.1). The last num-
ber is called Choice and is printed as an ordinal. So if exactly k& methods were found but called
TryNextMethod (78.4.1) and there were no more methods it says Choice: kth.

7.1.4 ShowMethods

> ShowMethods ([verbosity]) (function)

This function is only available within a break loop caused by a “No Method Found”-error. It prints
an overview about the installed methods for those arguments the operation was called with (using
7.2. The verbosity can be controlled by the optional integer parameter verbosity. The default is 2,
which lists all applicable methods. With verbosity 1 ShowMethods only shows the number of installed
methods and the methods matching, which can only be those that were already called but refused to
work by calling TryNextMethod (78.4.1). With verbosity 3 not only all installed methods but also the
reasons why they do not match are displayed.

7.1.5 ShowOtherMethods

> ShowOtherMethods([verbosity]) (function)

This function is only available within a break loop caused by a “No Method Found”-error. It
prints an overview about the installed methods for a different number of arguments than the number
of arguments the operation was called with (using 7.2. The verbosity can be controlled by the optional
integer parameter verbosity. The default is 1 which lists only the number of applicable methods.
With verbosity 2 ShowOtherMethods lists all installed methods and with verbosity 3 also the reasons,
why they are not applicable. Calling ShowOtherMethods with verbosity 3 in this function will nor-
mally not make any sense, because the different numbers of arguments are simulated by supplying the
corresponding number of ones, for which normally no reasonable methods will be installed.
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7.2 Inspecting Applicable Methods

7.2.1 ApplicableMethod

> ApplicableMethod(opr, args[, printlevel[, nrl]) (function)
> ApplicableMethodTypes(opr, args[, printlevel[, nr]]) (function)

Called with two arguments, ApplicableMethod returns the method of highest rank that is appli-
cable for the operation opr with the arguments in the list args. The default printlevel is 0. If no
method is applicable then fail is returned.

If a positive integer is given as the fourth argument nr then ApplicableMethod returns the nr-th
applicable method for the operation opr with the arguments in the list args, where the methods are
ordered according to descending rank. If less than nr methods are applicable then fail is returned.

If the fourth argument nr is the string "all" then ApplicableMethod returns a list of all appli-
cable methods for opr with arguments args, ordered according to descending rank.

Depending on the integer value printlevel, additional information is printed. Admissible values
and their meaning are as follows.

0 no information,

1 information about the applicable method,

2 also information about the not applicable methods of higher rank,

3 also for each not applicable method the first reason why it is not applicable,
4 also for each not applicable method all reasons why it is not applicable.

6 also the function body of the selected method(s)

When a method returned by ApplicableMethod is called then it returns either the desired result
or the string "TRY_NEXT_METHOD", which corresponds to a call to TryNextMethod (78.4.1) in the
method and means that the method selection would call the next applicable method.

Note: The GAP kernel provides special treatment for the infix operations \+, \-, \*, \/, \", \mod
and \in. For some kernel objects (notably cyclotomic numbers, finite field elements and row vectors
thereof) it calls kernel methods circumventing the method selection mechanism. Therefore for these
operations ApplicableMethod may return a method which is not the kernel method actually used.

The function ApplicableMethodTypes takes the types or filters of the arguments as argument (if
only filters are given of course family predicates cannot be tested).

7.3 Tracing Methods

7.3.1 TraceMethods (for operations)

> TraceMethods(oprl, opr2, ...) (function)
> TraceMethods (oprs) (function)

After the call of TraceMethods, whenever a method of one of the operations opri1, opr2, ... is
called, the information string used in the installation of the method is printed. The second form has
the same effect for each operation from the list oprs of operations.
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7.3.2 UntraceMethods (for operations)

> UntraceMethods(oprl, opr2, )

> UntraceMethods (oprs)
turns the tracing off for all operations opr1, opr2, ... or in the
the list oprs.

102

(function)

(function)

second form, for all operations in

Example
gap> TraceMethods( [ Size ] );

gap> g:= Group( (1,2,3), (1,2) );;
gap> Size( g );

#I Size: for a permutation group
#I Setter(Size): system setter
#I Size: system getter

#1 system getter

6

gap> UntraceMethods( [ Size ] );

Size:

7.3.3 TraceImmediateMethods

> TraceImmediateMethods(flag)

If f1ag is true, tracing for all immediate methods is turned on
(There is no facility to trace specific immediate methods.)

(function)

. If flag is false it is turned off.

Example
gap> TraceImmediateMethods( true );
gap> g:= Group( (1,2,3), (1,2) );;
#I immediate: Size
#I immediate: IsCyclic
#I immediate: IsCommutative
#I immediate: IsTrivial
gap> Size( g );

#I immediate: IsNonTrivial

#I immediate: Size

#I immediate: IsFreeAbelian

#I immediate: IsTorsionFree

#I immediate: IsNonTrivial

#I immediate: GeneralizedPcgs
#I immediate: IsPerfectGroup
#I immediate: IsEmpty

6

gap> TraceImmediateMethods( false );
gap> UntraceMethods( [ Size ] );

This example gives an explanation for the two calls of the “system getter” for Size (30.4.6).
Namely, there are immediate methods that access the known size of the group. Note that the group
g was known to be finitely generated already before the size was computed, the calls of the imme-
diate method for IsFinitelyGeneratedGroup (39.15.17) after the call of Size (30.4.6) have other

arguments than g.
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7.4 Info Functions

The Info (7.4.5) mechanism permits operations to display intermediate results or information about
the progress of the algorithms. Information is always given according to one or more info classes.
Each of the info classes defined in the GAP library usually covers a certain range of algorithms, so for
example InfoLattice covers all the cyclic extension algorithms for the computation of a subgroup
lattice.

The amount of information to be displayed can be specified by the user for each info class sepa-
rately by a level, the higher the level the more information will be displayed. Ab initio all info classes
have level zero except InfoWarning (7.4.7) which initially has level 1.

7.4.1 NewlnfoClass

> NewInfoClass(name) (operation)

creates a new info class with name name.

7.4.2 DeclareInfoClass

> DeclareInfoClass(name) (function)

creates a new info class with name name and binds it to the global variable name. The variable
must previously be writable, and is made readonly by this function.

7.4.3 SetInfoLevel

> SetInfolevel(infoclass, level) (operation)

Sets the info level for infoclass to level.

7.4.4 InfoLevel

> Infolevel(infoclass) (operation)

returns the info level of infoclass.

7.4.5 Info

> Info(infoclass, level, info[, moreinfo, ...]) (function)

If the info level of infoclass is at least level the remaining arguments, info and possibly
moreinfo and so on, are evaluated. (Technically, Info is a keyword and not a function.)

By default, they are viewed, preceded by the string "#I " and followed by a newline. Otherwise
the third and subsequent arguments are not evaluated. (The latter can save substantial time when
displaying difficult results.)

The behaviour can be customized with SetInfoHandler (7.4.6).
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Example
gap> InfoExample:=NewInfoClass("InfoExample");;

gap> Info(InfoExample,1,"one");Info(InfoExample,2,"two");
gap> SetInfolLevel (InfoExample,1);

gap> Info(InfoExample,1,"one");Info(InfoExample,2,"two");
#I one

gap> SetInfolevel (InfoExample,2);

gap> Info(InfoExample,1,"one");Info(InfoExample,2,"two");

#I one

#I  two

gap> Infolevel(InfoExample);
2

gap> Info(InfoExample,3,Length(Combinations([1..9999]1)));

Note that the last Info call is executed without problems, since the actual level 2 of InfoExample
causes Info toignore the last argument, which prevents Length (Combinations ([1..9999])) from
being evaluated; note that an evaluation would be impossible due to memory restrictions.

A set of info classes (called an info selector) may be passed to a single Info statement. As a
shorthand, info classes and selectors may be combined with + rather than Union (30.5.3). In this case,
the message is triggered if the level of any of the classes is high enough.

Example
gap> InfoExample:=NewInfoClass("InfoExample");;

gap> SetInfolevel (InfoExample,0);

gap> Info(InfoExample + InfoWarning, 1, "hello");
#I hello

gap> Info(InfoExample + InfoWarning, 2, "hello");
gap> SetInfolevel (InfoExample,2);

gap> Info(InfoExample + InfoWarning, 2, "hello");

#I hello
gap> Infolevel(InfoWarning);
1

7.4.6 Customizing Info (7.4.5) statements

> SetInfoHandler(infoclass, handler) (function)
> SetInfoOutput(infoclass, out) (function)
> SetDefaultInfolOutput (out) (function)
Returns: nothing
This allows to customize what happens in an Info(infoclass, level, ...) statement.

In the first function handler must be a function with three arguments infoclass, level, list.
Here 1ist is the list containing the third to last argument of the Info (7.4.5) call.

The default handler is the function DefaultInfoHandler. It prints "#I ", then the third and
further arguments of the info statement, and finally a "\n".

If the first argument of an Info (7.4.5) statement is a sum of Info classes, the handler of the first
summand is used.

The file or stream to which Info (7.4.5) statements for individual Info (7.4.5) classes print can be
changed with SetInfoOutput. The initial default for all Info (7.4.5) classes is the string "*Print*"
which means the current output file. The default can be changed with SetDefaultInfoOutput. The
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argument out can be a filename or an open stream, the special names "*Print*", "*errout* and
"xstdout* are also recognized.

For example, SetDefaultInfolQutput ("*errout*"); would send Info (7.4.5) output to stan-
dard error, which can be interesting if GAPs output is redirected.

7.4.7 InfoWarning

> InfoWarning (global variable)

is an info class to which general warnings are sent at level 1, which is its default level. More
specialised warnings are shown via calls of Info (7.4.5) at InfoWarning level 2, e.g. information
about the autoloading of GAP packages and the initial line matched when displaying an on-line help
topic.

7.5 Assertions

Assertions are used to find errors in algorithms. They test whether intermediate results conform to
required conditions and issue an error if not.

7.5.1 SetAssertionLevel

> SetAssertionlLevel(lev) (function)

assigns the global assertion level to 1ev. By default it is zero.

7.5.2 AssertionLevel

> AssertionLevel() (function)

returns the current assertion level.

7.5.3 Assert

> Assert(lev, cond[, messagel) (function)

With two arguments, if the global assertion level is at least 1ev, condition cond is tested and if it
does not return true an error is raised. Thus Assert (lev, cond) is equivalent to the code

Example
if Assertionlevel() >= lev and not <cond> then

Error("Assertion failure");
fi;

With the message argument form of the Assert statement, if the global assertion level is at least
lev, condition cond is tested and if it does not return true then message is evaluated and printed.

Assertions are used at various places in the library. Thus turning assertions on can slow code
execution significantly.
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7.6 Timing

7.6.1 Runtimes

> Runtimes () (function)

Runtimes returns a record with components bound to integers or fail. Each integer is the cpu
time (processor time) in milliseconds spent by GAP in a certain status:

user_time
cpu time spent with GAP functions (without child processes).

system_time
cpu time spent in system calls, e.g., file access (fail if not available).

user_time_children
cpu time spent in child processes (fail if not available).

system_time_children
cpu time spent in system calls by child processes (fail if not available).

Note that this function is not fully supported on all systems. Only the user_time component is
(and may on some systems include the system time).
The following example demonstrates tasks which contribute to the different time components:

Example

gap> Runtimes(); # after startup

rec( user_time := 3980, system_time := 60, user_time_children := 0,
system_time_children := 0 )

gap> Exec("cat /usr/bin/*||wc"); # child process with a lot of file access

893799 7551659 200928302

gap> Runtimes();

rec( user_time := 3990, system_time := 60, user_time_children := 1590,
system_time_children := 600 )

gap> a:=0;;for i in [1..100000000] do a:=atl; od; # GAP user time

gap> Runtimes();

rec( user_time := 12980, system_time := 70, user_time_children := 1590,
system_time_children := 600 )

gap> 7blabla # first call of help, a lot of file access

Help: no matching entry found

gap> Runtimes();

rec( user_time := 13500, system_time := 440, user_time_children := 1590,
system_time_children := 600 )

7.6.2 Runtime

> Runtime () (function)

Runtime returns the time spent by GAP in milliseconds as an integer. It is the same as the value
of the user_time component given by Runtimes (7.6.1), as explained above.
See StringTime (27.9.9) for a translation from milliseconds into hour/minute format.
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7.6.3 time

> time (global variable)

In the read-eval-print loop, time stores the time the last command took.

7.7 Profiling

Profiling of code can be used to determine in which parts of a program how much time has been spent
and how much memory has been allocated during runtime. The idea is that

* first one switches on profiling for those GAP functions the performance of which one wants to
check,

* then one runs some GAP computations,
* then one looks at the profile information collected during these computations,

e then one runs more computations (perhaps clearing all profile information before, see
ClearProfile (7.7.9)),

* and finally one switches off profiling.

For switching on and off profiling, GAP supports entering a list of functions (see
ProfileFunctions (7.7.4), UnprofileFunctions (7.7.5)) or a list of operations whose methods
shall be (un)profiled (ProfileMethods (7.7.6), UnprofileMethods (7.7.7)), and DisplayProfile
(7.7.8) can be used to show profile information about functions in a given list.

Besides these functions, ProfileGlobalFunctions (7.7.1), ProfileOperations (7.7.2), and
ProfileOperationsAndMethods (7.7.3) can be used for switching on or off profiling for all global
functions, operations, and operations together with all their methods, respectively, and for showing
profile information about these functions.

Note that GAP will perform more slowly when profiling than when not.

7.7.1 ProfileGlobalFunctions

> ProfileGlobalFunctions([bool]) (function)

Called with argument true, ProfileGlobalFunctions starts profiling of all functions that have
been declared via DeclareGlobalFunction (79.18.7). Old profile information for all these functions
is cleared. A function call with the argument false stops profiling of all these functions. Recorded
information is still kept, so you can display it even after turning the profiling off.

When ProfileGlobalFunctions is called without argument, profile information for all global
functions is displayed, see DisplayProfile (7.7.8).

7.7.2 ProfileOperations

> ProfileOperations([bool]) (function)

Called with argument true, ProfileOperations starts profiling of all operations. Old profile
information for all operations is cleared. A function call with the argument false stops profiling of
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all operations. Recorded information is still kept, so you can display it even after turning the profiling
off.

When ProfileOperations is called without argument, profile information for all operations is
displayed (see DisplayProfile (7.7.8)).
7.7.3 ProfileOperationsAndMethods

> ProfileOperationsAndMethods([bool]) (function)

Called with argument true, ProfileOperationsAndMethods starts profiling of all operations
and their methods. Old profile information for these functions is cleared. A function call with the
argument false stops profiling of all operations and their methods. Recorded information is still
kept, so you can display it even after turning the profiling off.

When ProfileOperationsAndMethods is called without argument, profile information for all
operations and their methods is displayed, see DisplayProfile (7.7.8).

7.7.4 ProfileFunctions

> ProfileFunctions(funcs) (function)

starts profiling for all function in the list funcs. You can use ProfileGlobalFunctions (7.7.1)
to turn profiling on for all globally declared functions simultaneously.

7.7.5 UnprofileFunctions

> UnprofileFunctions(funcs) (function)

stops profiling for all function in the list funcs. Recorded information is still kept, so you can
display it even after turning the profiling off.

7.7.6 ProfileMethods

> ProfileMethods (ops) (function)

starts profiling of the methods for all operations in the list ops.

7.7.7 UnprofileMethods

> UnprofileMethods(ops) (function)

stops profiling of the methods for all operations in the list ops. Recorded information is still kept,
so you can display it even after turning the profiling off.

7.7.8 DisplayProfile

> DisplayProfile([functions, ][mincount, mintime]) (function)
> GAPInfo.ProfileThreshold (global variable)



GAP - Reference Manual 109

Called without arguments, DisplayProfile displays the profile information for profiled opera-
tions, methods and functions. If an argument functions is given, only profile information for the
functions in the list functions is shown. If two integer values mincount, mintime are given as ar-
guments then the output is restricted to those functions that were called at least mincount times or for
which the total time spent (see below) was at least mintime milliseconds. The defaults for mincount
and mintime are the entries of the list stored in the global variable GAPInfo.ProfileThreshold.

The default value of GAPInfo.ProfileThresholdis [ 10000, 30 ].

Profile information is displayed in a list of lines for all functions (including operations and meth-
ods) which are profiled. For each function, “count” gives the number of times the function has been
called. “self/ms” gives the time (in milliseconds) spent in the function itself, “chld/ms” the time (in
milliseconds) spent in profiled functions called from within this function, “stor/kb” the amount of
storage (in kilobytes) allocated by the function itself, “chld/kb” the amount of storage (in kilobytes)
allocated by profiled functions called from within this function, and “package” the name of the GAP
package to which the function belongs; the entry “GAP” in this column means that the function be-
longs to the GAP library, the entry “(oprt.)” means that the function is an operation (which may
belong to several packages), and an empty entry means that FilenameFunc (5.1.4) cannot determine
in which file the function is defined.

The list is sorted according to the total time spent in the functions, that is the sum of the values in
the columns “self/ms” and “chld/ms”.

At the end of the list, two lines are printed that show the total time used and the total memory
allocated by the profiled functions not shown in the list (label OTHER) and by all profiled functions
(label TOTAL), respectively.

An interactive variant of DisplayProfile is the function BrowseProfile (Browse: Browse-
Profile) that is provided by the GAP package Browse.

7.7.9 ClearProfile

> ClearProfile() (function)

clears all stored profile information.

7.7.10 An Example of Profiling

Let us suppose we want to get information about the computation of the conjugacy classes of a certain
permutation group. For that, first we create the group, then we start profiling for all global functions
and for all operations and their methods, then we compute the conjugacy classes, and then we stop
profiling.

Example

gap> g:= PrimitiveGroup( 24, 1 );;

gap> ProfileGlobalFunctions( true );

gap> ProfileOperationsAndMethods( true );
gap> ConjugacyClasses( g );;

gap> ProfileGlobalFunctions( false );

gap> ProfileOperationsAndMethods( false );

Now the profile information is available. We can list the information for all profiled functions with
DisplayProfile (7.7.8).



GAP - Reference Manual

gap> DisplayProfile();

count self/ms
17647 0
10230 0
10139 0
10001 0
10001 8
14751 12
10830 8
2700 20
2444 28
4368 0
2174 32
585 4
1532 32
1221 8
185309 28
336 4
4 28
2798 0
560 4
432 16
185553 48
26 0

26 0

26 0
152 4
1605 0
26 0
382 0
5130 4
7980 24
12076 12
192 0
2208 4
217 0
217 12
216 36
1479 12
1453 12
126 0

1 0

2 0

1 0
13400 1164
484

2048

chld/ms
0
0
0
0
0
0
4

12
4
32
4
32
8
32
12
40
20
b2
48
40
8
64
64
64
64
68
68
96
96
116
136
148
148
160
148
464
668
684
728
736
736
736

stor/kb
275

226

0

688

28

0

182

313
3924

1030
45
194
349

95
488
54
83
259

O O O O OO

69
309
330
351

60
334
566

12052
23319

Example

chld/kb

package
GAP
(oprt.)

(oprt.)

GAP
GAP
GAP
(oprt.)
GAP
GAP
GAP
GAP
(oprt.)
GAP
(oprt.)
GAP
GAP
GAP
(oprt.)
(oprt.)
GAP
GAP
(oprt.)
(oprt.)
GAP
GAP
GAP
GAP
GAP
GAP
(oprt.)
(oprt.)
GAP
GAP
GAP
GAP
GAP
GAP
(oprt.)
GAP
(oprt.)

function

BasePoint

ShallowCopy
PositionSortedOp: for*
UniteSet: for two int*
UniteSet

=: for two families: *
Concatenation
AddRefinement
ConjugateStabChain
Size

List

RRefine
AddGeneratorsExtendSc*
Partition

Length
ExtendSeriesPermGroup
Sortex
StabChainForcePoint
StabChainSwap
SubmagmaWithInversesNC
Add

Centralizer(Op
CentralizerOp: perm g*
Centralizer: try to e*
Centralizer
StabilizerOfExternalS*
Meth(StabilizerOfExtex
TryPcgsPermGroup
ForAll

ChangeStabChain
ProcessFixpoint
StabChainMutable: calx*
StabChainMutable
StabChainOp
StabChain0p: group an*
PartitionBacktrack
RepOpElmTuplesPermGro*
in: perm class rep
ConjugacyClassesTry
ConjugacyClassesByRan*
ConjugacyClasses
ConjugacyClasses: perx*
Position

OTHER

TOTAL

We can restrict the list to global functions with ProfileGlobalFunctions (7.7.1).

gap> ProfileGlobalFunctions();

count self/ms

chld/ms

stor/kb

Example

chld/kb

package

function




GAP - Reference Manual

17647 0 0 275
10830 8 4 182
2700 20 12 313
2444 28 4 3924
2174 32 4 1030
585 4 32 45
1532 32 8 194
1221 8 32 349
336 4 40 95
2798 0 52 54
560 4 48 83
432 16 40 259
382 0 96 69
5130 4 96 309
7980 24 116 330
12076 12 136 351
216 36 464 334
1479 12 668 566
126 0 728 13

1 0 736 0
1804 14536

2048 23319

276
55
317
116
742
56
420
817
944
628
461
1922
3165
6434
6478
12546
18474
19233
19671

GAP
GAP
GAP
GAP
GAP
GAP
GAP
GAP
GAP
GAP
GAP
GAP
GAP
GAP
GAP
GAP
GAP
GAP
GAP
GAP

BasePoint
Concatenation
AddRefinement
ConjugateStabChain
List

RRefine
AddGeneratorsExtendSc*
Partition
ExtendSeriesPermGroup
StabChainForcePoint
StabChainSwap
SubmagmaWithInversesNC
TryPcgsPermGroup
ForAll

ChangeStabChain
ProcessFixpoint
PartitionBacktrack
RepOpElmTuplesPermGro*
ConjugacyClassesTry
ConjugacyClassesByRan*
OTHER

TOTAL

111

We can restrict the list to operations with ProfileOperations (7.7.2).

gap> ProfileOperations();
count self/ms chld/ms stor/kb
10230 0 0 226
10001 8 0 28
4368 0 32 7
185309 28 12 0
4 28 20 488
185553 48 8 915
26 0 64 0
152 4 64 0
1605 0 68 0
2208 4 148 3
217 0 160 0
2 0 736 2
13400 1164 0 0
764 21646
2048 23319

Example

chld/kb
0

688
714

0
454
94
2023
2024
2032
3083
3177
19678
0

package
(oprt.
(oprt.
(oprt.
(oprt.
(oprt.
(oprt.
(oprt.
(oprt.
(oprt.
(oprt.
(oprt.
(oprt.
(oprt.

R N L N

function
ShallowCopy
UniteSet

Size

Length

Sortex

Add
Centralizer(Op
Centralizer
StabilizerOfExternalS*
StabChainMutable
StabChainOp
ConjugacyClasses
Position

OTHER

TOTAL

We can restrict the list to operations and their methods with ProfileOperationsAndMethods

(7.7.3).
gap> ProfileOperationsAndMethods() ;
count self/ms chld/ms stor/kb
10230 0 0 226
10139 0 0 0
10001 0 0 688

Example

chld/kb
0
0
0

package
(oprt.)

function

ShallowCopy
PositionSortedOp: for*
UniteSet: for two intx*
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10001 8 0 28 688 (oprt.) UniteSet
14751 12 0 0 0 =: for two families: *
4368 0 32 7 714 (oprt.) Size
185309 28 12 0 0 (oprt.) Length
4 28 20 488 454 (oprt.) Sortex
185553 48 8 915 94 (oprt.) Add
26 0 64 0 2023 (oprt.) CentralizerQOp
26 0 64 0 2023 GAP Centralizer(Op: perm g%
26 0 64 0 2023 GAP Centralizer: try to e*
152 4 64 0 2024 (oprt.) Centralizer
1605 0 68 0 2032 (oprt.) Stabilizer0fExternalSx
26 0 68 0 2024 GAP Meth(StabilizerOfExtex
192 0 148 4 3029 GAP StabChainMutable: calx
2208 4 148 3 3083 (oprt.) StabChainMutable
217 0 160 0 3177 (oprt.) StabChainOp
217 12 148 60 3117 GAP StabChainOp: group anx
1453 12 684 56 18460 GAP in: perm class rep
2 0 736 2 19678 (oprt.) ConjugacyClasses
1 0 736 0 19675 GAP ConjugacyClasses: per*
13400 1164 0 0 0 (oprt.) Position
728 20834 OTHER
2048 23319 TOTAL

112

Finally, we can restrict the list to explicitly given functions with DisplayProfile (7.7.8), by

entering the list of functions as an argument.

Example
gap> DisplayProfile( [ StabChainOp, Centralizer ] );
count self/ms chld/ms stor/kb chld/kb package function
152 4 64 0 2024 (oprt.) Centralizer
217 0 160 0 3177 (oprt.) StabChainOp
2044 23319 OTHER
2048 23319 TOTAL

7.7.11 DisplayCacheStats

> DisplayCacheStats() (function)
displays statistics about the different caches used by the method selection.

7.712 ClearCacheStats

> ClearCacheStats() (function)

clears all statistics about the different caches used by the method selection.

7.8 Information about the version used

The global variable GAPInfo.Version (see GAPInfo (3.5.1)) contains the version number of the
version of GAP. Its value can be checked other version number using CompareVersionNumbers
(76.3.6).
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To produce sample citations for the used version of GAP or for a package available in this GAP
installation, use Cite (76.3.15).

If you wish to report a problem to GAP Support or GAP Forum, it may be useful to not only report
the version used, but also to include the GAP banner displays the information about the architecture
for which the GAP binary is built, used libraries and loaded packages.

7.9 Test Files

Test files are used to check that GAP produces correct results in certain computations. A selection of
test files for the library can be found in the tst directory of the GAP distribution.

7.9.1 ReadTest

> ReadTest(string) (operation)

reads the test file with name string. The test file should contain lines of GAP input and corre-
sponding output. The input lines start with the gap> prompt (or with the > prompt if commands
exceed one line). The output is exactly as would result from typing in the input interactively to a GAP
session (on a screen with 80 characters per line).

Optionally, START_TEST (7.9.2) and STOP_TEST (7.9.2) may be used in the beginning and end of
test files to reinitialize the caches and the global random number generator in order to be independent
of the reading order of several test files. Furthermore, START_TEST (7.9.2) increases the assertion
level for the time of the test, and STOP_TEST (7.9.2) sets the proportionality factor that is used to
output a “GAPstone” speed ranking after the file has been completely processed.

7.9.2 Starting and stopping test

> START_TEST(id) (function)
> STOP_TEST (file 5 fac) (function)

START_TEST (7.9.2) and STOP_TEST (7.9.2) may be optionally used in files that are read via
ReadTest (7.9.1). If used, START_TEST (7.9.2) reinitialize the caches and the global random number
generator, in order to be independent of the reading order of several test files. Furthermore, the asser-
tion level (see Assert (7.5.3)) is set to 2 by START_TEST (7.9.2) and set back to the previous value in
the subsequent STOP_TEST (7.9.2) call.

To use these options, a test file should be started with a line

Example
gap> START_TEST( "arbitrary identifier string" );

(Note that the gap> prompt is part of the line!)
and should be finished with a line

Example

gap> STOP_TEST( "filename'", 10000 );

Here the string "filename" should give the name of the test file. The number is a proportionality
factor that is used to output a “GAPstone” speed ranking after the file has been completely processed.
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For the files provided with the distribution this scaling is roughly equalized to yield the same numbers
as produced by the test file tst/combinat.tst.

Note that the functions in tst/testutil.g temporarily replace STOP_TEST (7.9.2) before they
call ReadTest (7.9.1).

If you want to run a quick test of your GAP installation (though this is not required), you can read
in a test script that exercises some GAP’s capabilities.

Example
gap> Read( Filename( DirectoriesLibrary( "tst" ), "testinstall.g" ) );

The test requires about 750MB of memory and runs about one minute on an Intel Core 2 Duo /
2.53 GHz machine. You will get a large number of lines with output about the progress of the tests.

Example
test file GAP4stones time(msec)
testing: .........coiinnn /gap4rb/tst/zlattice.tst
zlattice.tst 0 0
testing: ........... ..., /gap4rb/tst/gaussian.tst
gaussian.tst 0 10
[ further lines deleted ]

If you want to run a more advanced check (this is not required and make take up to an hour), you can
read testall.g which is an extended test script performing all tests from the tst directory.

Example
gap> Read( Filename( DirectoriesLibrary( "tst" ), "testall.g" ) );

The test requires about 750MB of memory and runs about one hour on an Intel Core 2 Duo / 2.53
GHz machine, and produces an output similar to the testinstall.g test.

7.9.3 Test

> Test(fname[, optrec]) (function)

Returns: true or false.

The argument fname must be the name of a file or an open input stream. The content of this file
or stream should contain GAP input and output. The function Test runs the input lines, compares
the actual output with the output stored in fname and reports differences. With an optional record as
argument optrec details of this process can be adjusted.

More precisely, the content of fname must have the following format.

Lines starting with "gap> " are considered as GAP input, they can be followed by lines starting with
"> " if the input is continued over several lines.

To allow for comments in fname the following lines are ignored by default: lines at the beginning of
fname that start with "#", and one empty line together with one or more lines starting with "#".

All other lines are considered as GAP output from the preceding GAP input.

By default the actual GAP output is compared exactly with the stored output, and if these are
different some information about the differences is printed.

If any differences are found then Test returns false, otherwise true.

If the optional argument optrec is given it must be a record. The following components of
optrec are recognized and can change the default behaviour of Test:
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ignoreComments
If set to false then no lines in fname are ignored as explained above (default is true).

width
The screen width used for the new output (default is 80).

compareFunction
This must be a function that gets two strings as input, the newly generated and the stored output
of some GAP input. The function must return true or false, indicating if the strings should
be considered equivalent or not. By default \= (31.11.1) is used.
Two strings are recognized as abbreviations in this component: "uptowhitespace" checks
if the two strings become equal after removing all white space. And "uptonl" compares the
string up to trailing newline characters.

reportDiff
A function that gets six arguments and reports a difference in the output: the GAP input, the
expected GAP output, the newly generated output, the name of tested file, the line number of
the input, the time to run the input. (The default is demonstrated in the example below.)

rewriteToFile
If this is bound to a string it is considered as a file name and that file is written with the same
input and comment lines as fname but the output substituted by the newly generated version
(default is false).

writeTimings
If this is bound to a string it is considered as a file name, that file is written and contains timing
information for each input in fname.

compareTimings
If this is bound to a string it is considered as name of a file to which timing information was
stored via writeTimings in a previous call. The new timings are compared to the stored ones.
By default only commands which take more than a threshold of 100 milliseconds are consid-
ered, and only differences of more than 20% are considered significant. These defaults can be
overwritten by assigning a list [timingfile, threshold, percentage] to this component.
(The default of compareTimings is false.)

reportTimeDiff
This component can be used to overwrite the default function to display timing differences. It
must be a function with 5 arguments: GAP input, name of test file, line number, stored time,
new time.

ignoreSTOP_TEST
By default set to true, in that case the output of GAP input starting with "STOP_TEST" is not
checked.

showProgress
If this is true then GAP prints position information and the input line before it is processed
(default is false).
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subsWindowsLineBreaks
If this is true then GAP substitutes DOS/Windows style line breaks "\r\n" by UNIX style line
breaks "\n" after reading the test file. (default is true).

Example
gap> tnam := Filename(DirectoriesLibrary(), "../doc/ref/demo.tst");;
gap> mask := function(str) return Concatenation("| ",
> JoinStringsWithSeparator (SplitString(str, "\n", ""), "\n| "),

> "\n"); end;;

gap> Print(mask(StringFile(tnam)));

| # this is a demo file for the ’Test’ function
#

gap> g := Group((1,2), (1,2,3));

Group([ (1,2), (1,2,3) 1)

# another comment following an empty line
# the following fails:

gap> a := 13+29;

41

gap> ss := InputTextString(StringFile(tnam));;
gap> Test(ss);

########> Diff in test stream, line 8:

# Input is:

a := 13+29;

# Expected output:

41

# But found:

42

HHEH

false

gap> RewindStream(ss) ;

true

gap> dtmp := DirectoryTemporary();;

gap> ftmp := Filename(dtmp,"demo.tst");;

gap> Test(ss, rec(reportDiff := Ignore, rewriteToFile := ftmp));
false

gap> Test(ftmp);

true

gap> Print(mask(StringFile(ftmp)));

| # this is a demo file for the ’Test’ function
#

gap> g := Group((1,2), (1,2,3));

Group([ (1,2), (1,2,3) 1)

# another comment following an empty line
# the following fails:
gap> a := 13+29;

|
|
I
I
I
|
|
| 42
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7.10 Debugging Recursion

The GAP interpreter monitors the level of nesting of GAP functions during execution. By default,
whenever this nesting reaches a multiple of 5000, GAP enters a break loop (6.4) allowing you to
terminate the calculation, or enter RETURN ; to continue it.
Example
gap> dive:= function(depth) if depth>1 then dive(depth-1); fi; return; end;
function( depth ) ... end
gap> dive(100);
gap> OnBreak:= function() Where(1); end; # shorter traceback
function( ) ... end
gap> dive(6000);
recursion depth trap (5000)

at

dive( depth - 1 );

called from

dive( depth - 1 ); called from

Entering break read-eval-print loop ...
you can ’quit;’ to quit to outer loop, or
you may ’return;’ to continue
brk> return;
gap> dive(11000);
recursion depth trap (5000)
at
dive( depth - 1 );
called from
dive( depth - 1 ); called from

Entering break read-eval-print loop ...
you can ’quit;’ to quit to outer loop, or
you may ’return;’ to continue
brk> return;
recursion depth trap (10000)
at
dive( depth - 1 );
called from
dive( depth - 1 ); called from

Entering break read-eval-print loop ...
you can ’quit;’ to quit to outer loop, or
you may ’return;’ to continue

brk> return;

gap>

This behaviour can be controlled using the following procedure.

7.10.1 SetRecursionTrapInterval

> SetRecursionTrapInterval (interval) (function)
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interval must be a non-negative small integer (between 0 and 22%). An interval of 0 sup-

presses the monitoring of recursion altogether. In this case excessive recursion may cause GAP to
crash.
Example
gap> dive:= function(depth) if depth>1 then dive(depth-1); fi; return; end;
function( depth ) ... end
gap> SetRecursionTrapInterval(1000);
gap> dive(2500);
recursion depth trap (1000)

at

dive( depth - 1 );

called from

dive( depth - 1 ); called from

Entering break read-eval-print loop ...
you can ’quit;’ to quit to outer loop, or
you may ’return;’ to continue
brk> return;
recursion depth trap (2000)
at
dive( depth - 1 );
called from
dive( depth - 1 ); called from

Entering break read-eval-print loop ...

you can ’quit;’ to quit to outer loop, or

you may ’return;’ to continue

brk> return;

gap> SetRecursionTrapInterval(-1);

SetRecursionTrapInterval( <interval> ): <interval> must be a non-negative small
1 integer

not in any function

Entering break read-eval-print loop ...

you can ’quit;’ to quit to outer loop, or

you can replace <interval> via ’return <interval>;’ to continue
brk> return ();

SetRecursionTrapInterval( <interval> ): <interval> must be a non-negative smal\
1 integer

not in any function

Entering break read-eval-print loop ...

you can ’quit;’ to quit to outer loop, or

you can replace <interval> via ’return <interval>;’ to continue
brk> return O;

gap> dive(20000);

gap> dive(2000000) ;

Segmentation fault

7.11 Global Memory Information

The GAP environment provides automatic memory management, so that the programmer does not
need to concern themselves with allocating space for objects, or recovering space when objects are
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no longer needed. The component of the kernel which provides this is called GASMAN (GAP Storage
MANager). Messages reporting garbage collections performed by GASMAN can be switched on by the
-g command line option (see section 3.1). There are also some facilities to access information from
GASMAN from GAP programs.

7.11.1 GasmanStatistics

> GasmanStatistics() (function)

GasmanStatistics returns a record containing some information from the garbage collection
mechanism. The record may contain up to four components: full, partial, npartial, and nfull.

The full component will be present if a full garbage collection has taken place since GAP started.
It contains information about the most recent full garbage collection. It is a record, with six compo-
nents: 1ivebags contains the number of bags which survived the garbage collection; 1ivekb contains
the total number of kilobytes occupied by those bags; deadbags contains the total number of bags
which were reclaimed by that garbage collection and all the partial garbage collections preceding it,
since the previous full garbage collection; deadkb contains the total number of kilobytes occupied
by those bags; freekb reports the total number of kilobytes available in the GAP workspace for new
objects and totalkb the actual size of the workspace.

These figures should be viewed with some caution. They are stored internally in fixed length
integer formats, and deadkb and deadbags are liable to overflow if there are many partial collections
before a full collection. Also, note that 1ivekb and freekb will not usually add up to totalkb. The
difference is essentially the space overhead of the memory management system.

The partial component will be present if there has been a partial garbage collection since the
last full one. It is also a record with the same six components as full. In this case deadbags and
deadkb refer only to the number and total size of the garbage bags reclaimed in this partial garbage
collection and livebagsand livekb only to the numbers and total size of the young bags that were
considered for garbage collection, and survived.

The npartial and nfull components will contain the number of full and partial garbage collec-
tions performed since GAP started.

7.11.2 GasmanMessageStatus

> GasmanMessageStatus() (function)
> SetGasmanMessageStatus(stat) (function)

GasmanMessageStatus returns one of the strings "none", "full", or "all", depending on
whether the garbage collector is currently set to print messages on no collections, full collections
only, or all collections, respectively.

Calling SetGasmanMessageStatus with the argument stat, which should be one of the three
strings mentioned above, sets the garbage collector messaging level.

7.11.3 GasmanLimits

> GasmanLimits() (function)
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GasmanLimits returns a record with three components: min is the minimum workspace size as
set by the -m command line option in kilobytes. The workspace size will never be reduced below this
by the garbage collector. max is the maximum workspace size, as set by the ’-0’ command line option,
also in kilobytes. If the workspace would need to grow past this point, GAP will enter a break loop to
warn the user. A value of 0 indicates no limit. kill is the absolute maximum, set by the -K command
line option. The workspace will never be allowed to grow past this limit.



Chapter 8

Options Stack

GAP supports a global options system. This is intended as a way for the user to provide guidance to
various algorithms that might be used in a computation. Such guidance should not change mathemati-
cally the specification of the computation to be performed, although it may change the algorithm used.
A typical example is the selection of a strategy for the Todd-Coxeter coset enumeration procedure.
An example of something not suited to the options mechanism is the imposition of exponent laws in
the p-Quotient algorithm.

The basis of this system is a global stack of records. All the entries of each record are thought of
as options settings, and the effective setting of an option is given by the topmost record in which the
relevant field is bound.

The reason for the choice of a stack is the intended pattern of use:

PushOptions( rec( stuff ) );

DoSomething( args ) ;

PopOptions();

This can be abbreviated, to DoSomething( args : stuff ); with a small additional abbre-
viation of stuff permitted. See 4.11.2 for details. The full form can be used where the same options
are to run across several calls, or where the DoSomething procedure is actually an infix operator, or
other function with special syntax.

An alternative to this system is the use of additional optional arguments in procedure calls. This is
not felt to be sufficient because many procedure calls might cause, for example, a coset enumeration
and each would need to make provision for the possibility of extra arguments. In this system the
options are pushed when the user-level procedure is called, and remain in effect (unless altered) for
all procedures called by it.

Note that in some places in the system optional records containing options which are valid only
for the immediate function or method call are in fact used.

8.1 Functions Dealing with the Options Stack

8.1.1 PushOptions

> PushOptions(options, record) (function)

This function pushes a record of options onto the global option stack. Note that PushOptions(
rec( opt:= fail ) ) has the effect of resetting the option opt, since an option that has never been

121
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set has the value fail returned by ValueOption (8.1.5).
Note that there is no check for misspelt or undefined options.

8.1.2 PopOptions

> PopOptions() (function)

This function removes the top-most options record from the options stack if there is one.

8.1.3 ResetOptionsStack

> ResetOptionsStack() (function)

unbinds (i.e. removes) all the options records from the options stack.

Note: ResetOptionsStack should not be used within a function. Its intended use is to clean
up the options stack in the event that the user has quit from a break loop, so leaving a stack of
no-longer-needed options (see 6.4.1).

8.1.4 OnQuit
> OnQuit() (function)
called when a user selects to quit ; a break loop entered via execution of Error (6.6.1). As GAP
starts up, OnQuit is defined to do nothing, in case an error is encountered during GAP start-up. Later
in the loading process we redefine OnQuit to do a variant of ResetOptionsStack (8.1.3) to ensure
the options stack is empty after a user quits an Error (6.6.1)-induced break loop. (OnQuit differs
from ResetOptionsStack (8.1.3) in that it warns when it does something rather than the other way
round.) Currently, OnQuit is not advertised, since exception handling may make it obsolete.

8.1.5 ValueOption
> Value Opt ion( Opt) (function)
This function is a method for accessing the options stack without changing it; opt should be the

name of an option, i.e. a string. A function which makes decisions that might be affected by options
should examine the result of ValueOption. If opt is currently not set then fail is returned.

8.1.6 DisplayOptionsStack

> DisplayOptionsStack() (function)

This function prints a human-readable display of the complete options stack.

8.1.7 InfoOptions

> InfoOptions (info class)
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This info class can be used to enable messages about options being changed (level 1) or accessed
(level 2).

8.2 Options Stack — an Example

The example below shows simple manipulation of the Options Stack, first using PushOptions (8.1.1)
and PopOptions (8.1.2) and then using the special function calling syntax.

Example
gap> foo := function()
> Print ("myoptl = ", ValueOption("myoptl"),
> " myopt2 = ",ValueOption("myopt2"),"\n");
> end;
function( ) ... end
gap> foo();

myoptl = fail myopt2 = fail
gap> PushOptions(rec(myoptl := 17));
gap> foo();
myoptl = 17 myopt2 = fail
gap> DisplayOptionsStack();
[ rec(
myoptl := 17 ) ]
gap> PopOptions();
gap> foo();
myoptl = fail myopt2 = fail
gap> foo( : myoptl, myopt2 := [Z(3),"aardvark"]);
myoptl = true myopt2 = [ Z(3), "aardvark" ]
gap> DisplayOptionsStack();
L]
gap>




Chapter 9

Files and Filenames

Files are identified by filenames, which are represented in GAP as strings. Filenames can be created
directly by the user or a program, but of course this is operating system dependent.

Filenames for some files can be constructed in a system independent way using the following
functions. This is done by first getting a directory object for the directory the file shall reside in, and
then constructing the filename. However, it is sometimes necessary to construct filenames of files in
subdirectories relative to a given directory object. In this case the directory separator is always / even
under DOS or MacOS.

Section 9.3 describes how to construct directory objects for the common GAP and system direc-
tories. Using the command Filename (9.4.1) it is possible to construct a filename pointing to a file in
these directories. There are also functions to test for accessibility of files, see 9.6.

9.1 Portability

For portability filenames and directory names should be restricted to at most 8 alphanumerical charac-
ters optionally followed by a dot . and between 1 and 3 alphanumerical characters. Upper case letters
should be avoided because some operating systems do not make any distinction between case, so that
NaMe, Name and name all refer to the same file whereas some operating systems are case sensitive. To
avoid problems only lower case characters should be used.

Another function which is system-dependent is LastSystemError (9.1.1).

9.1.1 LastSystemError
> LastSystemError () (function)
LastSystemError returns a record describing the last system error that has occurred. This record

contains at least the component message which is a string. This message is, however, highly operating
system dependent and should only be used as an informational message for the user.

9.2 GAP Root Directories

When GAP is started it determines a list of directories which we call the GAP root directories. In a
running GAP session this list can be found in GAPInfo.RootPaths.

124
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The core part of GAP knows which files to read relative to its root directories. For exam-
ple when GAP wants to read its library file 1ib/group.gd, it appends this path to each path in
GAPInfo.RootPaths until it finds the path of an existing file. The first file found this way is read.

Furthermore, GAP looks for available packages by examining the subdirectories pkg/ in each of
the directories in GAPInfo.RootPaths.

The root directories are specified via one or several of the -1 paths command line options, see
3.1. Furthermore, by default GAP automatically prepends a user specific GAP root directory to the
list; this can be avoided by calling GAP with the -r option. The name of this user specific directory
depends on your operating system, it can be found in GAPInfo.UserGapRoot. This directory can be
used to tell GAP about personal preferences, to always load some additional code, to install additional
packages, or to overwrite some GAP files. See 3.2 for more information how to do this.

9.3 Directories

9.3.1 IsDirectory

> IsDirectory(obj) (Category)

IsDirectory is a category of directories.

9.3.2 Directory

> Directory(string) (operation)

returns a directory object for the string string. Directory understands "." for “current direc-
tory”, that is, the directory in which GAP was started. It also understands absolute paths.

If the variable GAPInfo.UserHome is defined (this may depend on the operating system) then
Directory understands a string with a leading ~ (tilde) character for a path relative to the user’s
home directory (but a string beginning with "~other_user" is not interpreted as a path relative to
other_user’s home directory, as in a UNIX shell).

Paths are otherwise taken relative to the current directory.

9.3.3 DirectoryTemporary

> DirectoryTemporary() (function)

returns a directory object in the category IsDirectory (9.3.1) for a new temporary directory. This
is guaranteed to be newly created and empty immediately after the call to DirectoryTemporary.
GAP will make a reasonable effort to remove this directory upon termination of the GAP job that
created the directory.

If DirectoryTemporary is unable to create a new directory, fail is returned. In this case
LastSystemError (9.1.1) can be used to get information about the error.

9.3.4 DirectoryCurrent

> DirectoryCurrent () (function)

returns the directory object for the current directory.
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9.3.5 DirectoriesLibrary

> DirectoriesLibrary([name]) (function)

DirectoriesLibrary returns the directory objects for the GAP library name as a list. name
must be one of "1ib" (the default), "doc", "tst", and so on.

The string "" is also legal and with this argument DirectoriesLibrary returns the list of GAP
root directories. The return value of this call differs from GAPInfo.RootPaths in that the former is a
list of directory objects and the latter a list of strings.

The directory name must exist in at least one of the root directories, otherwise fail is returned.

As the files in the GAP root directories (see 9.2) can be distributed into different directories in the
filespace a list of directories is returned. In order to find an existing file in a GAP root directory you
should pass that list to Filename (9.4.1) as the first argument. In order to create a filename for a new
file inside a GAP root directory you should pass the first entry of that list. However, creating files
inside the GAP root directory is not recommended, you should use DirectoryTemporary (9.3.3)
instead.

9.3.6 DirectoriesSystemPrograms

> DirectoriesSystemPrograms() (function)

DirectoriesSystemPrograms returns the directory objects for the list of directories where the
system programs reside, as a list. Under UNIX this would usually represent $PATH.

9.3.7 DirectoryContents

> DirectoryContents(dir) (function)

This function returns a list of filenames/directory names that reside in the directory dir. The
argument dir can either be given as a string indicating the name of the directory or as a directory
object (see IsDirectory (9.3.1)). It is an error, if such a directory does not exist.

The ordering of the list entries can depend on the operating system.

An interactive way to show the contents of a directory is provided by the function
BrowseDirectory (Browse: BrowseDirectory) from the GAP package Browse.

9.3.8 DirectoryDesktop

> DirectoryDesktop() (operation)

returns a directory object for the users desktop directory as defined on many modern operating
systems. The function is intended to provide a cross-platform interface to a directory that is easily
accessible by the user. Under Unix systems (including Mac OS X) this will be the Desktop directory
in the users home directory if it exists, and the users home directory otherwise. Under Windows it
will the the users Desktop folder (or the appropriate name under different languages).
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9.3.9 DirectoryHome

> DirectoryHome () (operation)

returns a directory object for the users home directory, defined as a directory in which the user
will typically have full read and write access. The function is intended to provide a cross-platform
interface to a directory that is easily accessible by the user. Under Unix systems (including Mac OS
X) this will be the usual user home directory. Under Windows it will the the users My Documents
folder (or the appropriate name under different languages).

9.4 File Names

94.1 Filename

> Filename(dir, name) (operation)
> Filename(list-of-dirs, name) (operation)

If the first argument is a directory object dir, Filename returns the (system dependent) filename
as a string for the file with name name in the directory dir. Filename returns the filename regardless
of whether the directory contains a file with name name or not.

If the first argument is a list 1ist-of-dirs (possibly of length 1) of directory objects, then
Filename searches the directories in order, and returns the filename for the file name in the first
directory which contains a file name or fail if no directory contains a file name.

For example, in order to locate the system program date use DirectoriesSystemPrograms
(9.3.6) together with the second form of Filename.
Example
gap> path := DirectoriesSystemPrograms();;
gap> date := Filename( path, "date" );
"/bin/date"

In order to locate the library file files.gd use DirectoriesLibrary (9.3.5) together with the
second form of Filename.

Example
gap> path := DirectoriesLibrary(Q);;

gap> Filename( path, "files.gd" );
"./lib/files.gd"

In order to construct filenames for new files in a temporary directory use DirectoryTemporary
(9.3.3) together with the first form of Filename.

Example
gap> tmpdir := DirectoryTemporary();;

gap> Filename( [ tmpdir ], "file.new" );
fail

gap> Filename( tmpdir, "file.new" );
"/var/tmp/tmp.0.021738.0001/file.new"
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9.5 Special Filenames

The special filename "*stdin*" denotes the standard input, i.e., the stream through which the user
enters commands to GAP. The exact behaviour of reading from "*stdin*" is operating system de-
pendent, but usually the following happens. If GAP was started with no input redirection, statements
are read from the terminal stream until the user enters the end of file character, which is usually CTRL-
D. Note that terminal streams are special, in that they may yield ordinary input after an end of file.
Thus when control returns to the main read-eval-print loop the user can continue with GAP. If GAP
was started with an input redirection, statements are read from the current position in the input file up
to the end of the file. When control returns to the main read eval view loop the input stream will still
return end of file, and GAP will terminate.

The special filename "*errin*" denotes the stream connected to the UNIX stderr output. This
stream is usually connected to the terminal, even if the standard input was redirected, unless the
standard error stream was also redirected, in which case opening of "*errinx*" fails.

The special filename "*stdout*" can be used to print to the standard output.

The special filename "*errout*" can be used to print to the standard error output file, which is
usually connected to the terminal, even if the standard output was redirected.

9.6 File Access

When the following functions return false one can use LastSystemError (9.1.1) to find out the
reason (as provided by the operating system), see the examples.

9.6.1 IsExistingFile

> IsExistingFile(name-file) (function)

IsExistingFile returns true if a file with the filename name-file exists and can be seen by
the GAP process. Otherwise false is returned.

Example
gap> IsExistingFile( "/bin/date" ); # file ‘/bin/date’ exists
true
gap> IsExistingFile( "/bin/date.new" ); # non existing ‘/bin/date.new’
false
gap> IsExistingFile( "/bin/date/new" ); # ‘/bin/date’ is not a directory
false
gap> LastSystemError () .message;
"Not a directory"
9.6.2 IsReadableFile
> IsReadableFile(name-file) (function)

IsReadableFile returns true if a file with the filename name-file exists and the GAP process
has read permissions for the file, or false if this is not the case.

Example
gap> IsReadableFile( "/bin/date" ); # file ‘/bin/date’ is readable
true
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gap> IsReadableFile( "/bin/date.new" ); # non-existing ‘/bin/date.new’
false

gap> LastSystemError () .message;

"No such file or directory"

9.6.3 IsWritableFile

> IsWritableFile(name-file) (function)

IsWritableFile returns true if a file with the filename name-file exists and the GAP process
has write permissions for the file, or false if this is not the case.

Example
gap> IsWritableFile( "/bin/date" ); # file ‘/bin/date’ is not writable
false
9.6.4 IsExecutableFile
> IsExecutableFile(name-file) (function)

IsExecutableFile returns true if a file with the filename name-file exists and the GAP
process has execute permissions for the file, or false if this is not the case. Note that execute permis-
sions do not imply that it is possible to execute the file, e.g., it may only be executable on a different
machine.

Example
gap> IsExecutableFile( "/bin/date" ); # ... but executable
true
9.6.5 IsDirectoryPath
> IsDirectoryPath(name-file) (function)

IsDirectoryPath returns true if the file with the filename name-file exists and is a direc-
tory, and false otherwise. Note that this function does not check if the GAP process actually
has write or execute permissions for the directory. You can use IsWritableFile (9.6.3), resp.
IsExecutableFile (9.6.4) to check such permissions.

9.7 File Operations
9.71 Read

> Read(name-file) (operation)

reads the input from the file with the filename name-file, which must be given as a string.

Read first opens the file name-file. If the file does not exist, or if GAP cannot open it, e.g.,
because of access restrictions, an error is signalled.

Then the contents of the file are read and evaluated, but the results are not printed. The reading
and evaluations happens exactly as described for the main loop (see 6.1).
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If a statement in the file causes an error a break loop is entered (see 6.4). The input for this break
loop is not taken from the file, but from the input connected to the stderr output of GAP. If stderr
is not connected to a terminal, no break loop is entered. If this break loop is left with quit (or CTRL-
D), GAP exits from the Read command, and from all enclosing Read commands, so that control is
normally returned to an interactive prompt. The QUIT statement (see 6.7) can also be used in the break
loop to exit GAP immediately.

Note that a statement must not begin in one file and end in another. lLe., eof (end-of-file) is not
treated as whitespace, but as a special symbol that must not appear inside any statement.

Note that one file may very well contain a read statement causing another file to be read, before
input is again taken from the first file. There is an upper limit of 15 on the number of files that may be
open simultaneously.

9.7.2 ReadAsFunction

> ReadAsFunction(name-file) (operation)

reads the file with filename name-file as a function and returns this function.

Example

Suppose that the file /tmp/example.g contains the following
Example

local a;

a := 10;

return ax*x10;

Reading the file as a function will not affect a global variable a.

Example

gap> a := 1;

1

gap> ReadAsFunction("/tmp/example.g") ();

100

gap> a;

1
9.7.3 PrintTo and AppendTo
> PrintTo(name-file[, obj1, ...I1) (function)
> AppendTo(name-file[, obj1, ...]) (function)

PrintTo works like Print (6.3.4), except that the arguments obj1, ... (if present) are printed to
the file with the name name-file instead of the standard output. This file must of course be writable
by GAP. Otherwise an error is signalled. Note that PrintTo will overwrite the previous contents of
this file if it already existed; in particular, PrintTo with just the name-file argument empties that
file.

AppendTo works like PrintTo, except that the output does not overwrite the previous contents of
the file, but is appended to the file.

There is an upper limit of 15 on the number of output files that may be open simultaneously.

Note that one should be careful not to write to a logfile (see LogTo (9.7.4)) with PrintTo or
AppendTo.
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9.74 LogTo

> LOgTO (name-file) (operation)
> LOgTO () (operation)

Calling LogTo with a string name-file causes the subsequent interaction to be logged to the
file with the name name-file, i.e., everything you see on your terminal will also appear in this file.
(LogTo (10.4.5) may also be used to log to a stream.) This file must of course be writable by GAP,
otherwise an error is signalled. Note that LogTo will overwrite the previous contents of this file if it
already existed.

Called without arguments, LogTo stops logging to a file or stream.

9.7.5 InputLogTo

> InputLogTo (name-file) (operation)
> InputLogTo O (operation)

Calling InputLogTo with a string name-file causes the subsequent input to be logged to the
file with the name name-file, i.e., everything you type on your terminal will also appear in this file.
Note that InputLogTo and LogTo (9.7.4) cannot be used at the same time while InputLogTo and
OutputLogTo (9.7.6) can. Note that InputLogTo will overwrite the previous contents of this file if it
already existed.

Called without arguments, InputLogTo stops logging to a file or stream.

9.7.6 OutputLogTo

> OutputLogTo (name-file) (operation)
> OutputLogTo O (operation)

Calling OutputLogTo with a string name-file causes the subsequent output to be logged to the
file with the name name-file, i.e., everything GAP prints on your terminal will also appear in this
file. Note that OutputLogTo and LogTo (9.7.4) cannot be used at the same time while InputLogTo
(9.7.5) and OutputLogTo can. Note that OutputLogTo will overwrite the previous contents of this
file if it already existed.

Called without arguments, QutputLogTo stops logging to a file or stream.

9.7.7 CrcFile

> CrcFile(name-file) (function)

CRC (cyclic redundancy check) numbers provide a certain method of doing checksums. They are
used by GAP to check whether files have changed.

CrcFile computes a checksum value for the file with filename name-file and returns this value
as an integer. The function returns fail if a system error occurred, say, for example, if name-file
does not exist. In this case the function LastSystemError (9.1.1) can be used to get information
about the error.
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Example

gap> CrcFile( "lib/morpheus.gi" );
2705743645

9.7.8 RemoveFile

> RemoveFile(name-file) (function)

will remove the file with filename name-file and returns true in case of success. The function
returns fail if a system error occurred, for example, if your permissions do not allow the removal of
name-file. In this case the function LastSystemError (9.1.1) can be used to get information about
the error.

9.7.9 Reread

> Reread(name-file) (function)
> REREADING (global variable)

In general, it is not possible to read the same GAP library file twice, or to read a compiled version
after reading a GAP version, because crucial global variables are made read-only (see 4.9) and filters
and methods are added to global tables.

A partial solution to this problem is provided by the function Reread (and related functions
RereadLib etc.). Reread( name-file ) sets the global variable REREADING to true, reads the
file named by name-file and then resets REREADING. Various system functions behave differently
when REREADING is set to true. In particular, assignment to read-only global variables is permitted,
calls to NewRepresentation (79.2.1) and NewInfoClass (7.4.1) with parameters identical to those
of an existing representation or info class will return the existing object, and methods installed with
InstallMethod (78.2.1) may sometimes displace existing methods.

This function may not entirely produce the intended results, especially if what has changed is the
super-representation of a representation or the requirements of a method. In these cases, it is necessary
to restart GAP to read the modified file.

An additional use of Reread is to load the compiled version of a file for which the GAP language
version had previously been read (or perhaps was included in a saved workspace). See 76.3.9 and 3.3
for more information.

It is not advisable to use Reread programmatically. For example, if a file that contains calls to
Reread is read with Reread then REREADING may be reset too early.



Chapter 10

Streams

Streams provide flexible access to GAP’s input and output processing. An input stream takes charac-
ters from some source and delivers them to GAP which reads them from the stream. When an input
stream has delivered all characters it is at end-of -stream. An output stream receives characters from
GAP which writes them to the stream, and delivers them to some destination.

A major use of streams is to provide efficient and flexible access to files. Files can be read and
written using Read (9.7.1) and AppendTo (9.7.3), however the former only allows a complete file to
be read as GAP input and the latter imposes a high time penalty if many small pieces of output are
written to a large file. Streams allow input files in other formats to be read and processed, and files to
be built up efficiently from small pieces of output. Streams may also be used for other purposes, for
example to read from and print to GAP strings, or to read input directly from the user.

Any stream is either a text stream, which translates the end-of-1ine character (\n) to or from
the system’s representation of end-of -1ine (e.g., new-line under UNIX and carriage-return-new-line
under DOS), or a binary stream, which does not translate the end-of-1ine character. The processing
of other unprintable characters by text streams is undefined. Binary streams pass them unchanged.

Whereas it is cheap to append to a stream, streams do consume system resources, and only a
limited number can be open at any time, therefore it is necessary to close a stream as soon as possible
using CloseStream (10.2.1). If creating a stream failed then LastSystemError (9.1.1) can be used
to get information about the failure.

10.1 Categories for Streams and the StreamsFamily

10.1.1 IsStream

> IsStream(obj) (Category)

Streams are GAP objects and all open streams, input, output, text and binary, lie in this category.

10.1.2 IsClosedStream

> IsClosedStream(obj) (Category)

When a stream is closed, its type changes to lie in IsClosedStream. This category is used to
install methods that trap accesses to closed streams.

133
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10.1.3 IsInputStream

> IsInputStream(obj) (Category)

All input streams lie in this category, and support input operations such as ReadByte (10.3.4) (see
10.3)

10.1.4 IsInputTextStream

> IsInputTextStream(obj) (Category)

All text input streams lie in this category. They translate new-line characters read.

10.1.5 IsInputTextNone

> IsInputTextNone (Obj) (Category)

It is convenient to use a category to distinguish dummy streams (see 10.9) from others. Other
distinctions are usually made using representations

10.1.6 IsOutputStream

> IsOutputStream(obj) (Category)

All output streams lie in this category and support basic operations such as WriteByte (10.4.1)
(see Section 10.4).

10.1.7 IsOutputTextStream

> IsOutputTextStream(obj) (Category)

All text output streams lie in this category and translate new-line characters on output.

10.1.8 IsOutputTextNone

> IsOutputTextNone (Obj) (Category)

It is convenient to use a category to distinguish dummy streams (see 10.9) from others. Other
distinctions are usually made using representations

10.1.9 StreamsFamily

> StreamsFamily (family)

All streams lie in the StreamsFamily.
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10.2 Operations applicable to All Streams

10.2.1 CloseStream

> CloseStream(stream) (operation)

In order to preserve system resources and to flush output streams every stream should be closed
as soon as it is no longer used using CloseStream.

It is an error to try to read characters from or write characters to a closed stream. Closing a stream
tells the GAP kernel and/or the operating system kernel that the file is no longer needed. This may
be necessary because the GAP kernel and/or the operating system may impose a limit on how many
streams may be open simultaneously.

10.2.2 FileDescriptorOfStream

> FileDescriptorOfStream(stream) (operation)

returns the UNIX file descriptor of the underlying file. This is mainly useful for the UNIXSelect
(10.2.3) function call. This is as of now only available on UNIX-like operating systems and only for
streams to local processes and local files.

10.2.3 UNIXSelect

> UNIXSelect(inlist, outlist, exclist, timeoutsec, timeoutusec) (function)

makes the UNIX C-library function select accessible from GAP for streams. The functionality
is as described in the man page (see UNIX file descriptors (integers) for streams. They can be obtained
via FileDescriptorOfStream (10.2.2) for streams to local processes and to local files. The argu-
ment timeoutsec is a timeout in seconds as in the struct timeval on the C level. The argument
timeoutusec is analogously in microseconds. The total timeout is the sum of both. If one of those
timeout arguments is not a small integer then no timeout is applicable (fail is allowed for the timeout
arguments).

The return value is the number of streams that are ready, this may be 0 if a timeout was specified.
All file descriptors in the three lists that are not yet ready are replaced by fail in this function. So the
lists are changed!

This function is not available on the Macintosh architecture and is only available if your operating
system has select, which is detected during compilation of GAP.

10.3 Operations for Input Streams

Three operations normally used to read files: Read (9.7.1), ReadAsFunction (9.7.2) and ReadTest
(7.9.1) can also be used to read GAP input from a stream. The input is immediately parsed and
executed. When reading from a stream str, the GAP kernel generates calls to ReadLine (str) to
supply text to the parser.

Three further operations: ReadByte (10.3.4), ReadLine (10.3.5) and ReadAll (10.3.6), support
reading characters from an input stream without parsing them. This can be used to read data in any
format and process it in GAP.
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Additional operations for input streams support detection of end of stream, and (for those streams
for which it is appropriate) random access to the data.

10.3.1 Read (for streams)

> Read(input-text-stream) (operation)

reads the input-text-stream as input until end-of -stream occurs. See 9.7 for details.

10.3.2 ReadAsFunction (for streams)

> ReadAsFunction(input-text-stream) (operation)

reads the input-text-stream as function and returns this function. See 9.7 for details.

Example
gap> # a function with local ‘a’ does not change the global one
gap> a := 1;;

gap> i := InputTextString( "local a; a := 10; return a*10;" );;
gap> ReadAsFunction(i) () ;

100

gap> a;

1

gap> # reading it via ‘Read’ does

gap> i := InputTextString( "a := 10;" );;
gap> Read(i);

gap> a;

10

10.3.3 ReadTest (for streams)

> ReadTest (input-text-stream) (operation)

reads the input-text-stream as test input until end-of-stream occurs. See 9.7 for details.

10.3.4 ReadByte

> ReadByte(input—stream) (operation)

ReadByte returns one character (returned as integer) from the input stream input-stream.
ReadByte returns fail if there is no character available, in particular if it is at the end of a file.

If input-stream is the input stream of a input/output process, ReadByte may also return fail
if no byte is currently available.

ReadByte is the basic operation for input streams. If a ReadByte method is installed for a user-
defined type of stream which does not block, then all the other input stream operations will work
(although possibly not at peak efficiency).

ReadByte will wait (block) until a byte is available. For instance if the stream is a connection to
another process, it will wait for the process to output a byte.
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10.3.5 ReadLine

> ReadLine(input-stream) (operation)

ReadLine returns one line (returned as string with the newline) from the input stream
input-stream. ReadLine reads in the input until a newline is read or the end-of-stream is en-
countered.

If input-stream is the input stream of a input/output process, ReadLine may also return fail
or return an incomplete line if the other process has not yet written any more. It will always wait
(block) for at least one byte to be available, but will then return as much input as is available, up to a
limit of one line

A default method is supplied for ReadLine which simply calls ReadByte (10.3.4) repeatedly.
This is only safe for streams that cannot block. The kernel uses calls to ReadLine to supply input to
the parser when reading from a stream.

10.3.6 ReadAll

> ReadAll(input-stream[, limit]) (operation)

ReadAll returns all characters as string from the input stream stream-in. It waits (blocks) until
at least one character is available from the stream, or until there is evidence that no characters will
ever be available again. This last indicates that the stream is at end-of-stream. Otherwise, it reads
as much input as it can from the stream without blocking further and returns it to the user. If the
stream is already at end of file, so that no bytes are available, fail is returned. In the case of a file
stream connected to a normal file (not a pseudo-tty or named pipe or similar), all the bytes should be
immediately available and this function will read the remainder of the file.

With a second argument, at most 1imit bytes will be returned. Depending on the stream a
bounded number of additional bytes may have been read into an internal buffer.

A default method is supplied for ReadA1l which simply calls ReadLine (10.3.5) repeatedly. This
is only really safe for streams which cannot block. Other streams should install a method for ReadA11l
Example
gap> i := InputTextString( "1Hallo\nYou\nl" );;
gap> ReadByte(i);

49

gap> CHAR_INT(last);
b 1 2

gap> ReadLine(i);
"Hallo\n"

gap> ReadLine(i);
"You\n"

gap> ReadLine(i);
" 1 "

gap> ReadLine(i);
fail

gap> ReadAll(di);

nn

gap> RewindStream(i);;
gap> ReadAll(i);
"{1Hallo\nYou\n1"
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10.3.7 IsEndOfStream
> IsEndOfStream(input-stream) (operation)
IsEnd0fStream returns true if the input stream is at end-of-stream, and false otherwise. Note
that IsEndOfStream might return false even if the next ReadByte (10.3.4) fails.
10.3.8 PositionStream
> PositionStream(input-stream) (operation)
Some input streams, such as string streams and file streams attached to disk files, support a form
of random access by way of the operations PositionStream, SeekPositionStream (10.3.10) and
RewindStream (10.3.9). PositionStream returns a non-negative integer denoting the current posi-
tion in the stream (usually the number of characters before the next one to be read.
If this is not possible, for example for an input stream attached to standard input (normally the
keyboard), then fail is returned
10.3.9 RewindStream
> RewindStream(input-stream) (operation)
RewindStream attempts to return an input stream to its starting condition, so that all the same
characters can be read again. It returns true if the rewind succeeds and fail otherwise
A default method implements RewindStream using SeekPositionStream (10.3.10).

10.3.10 SeekPositionStream

> SeekPositionStream(input-stream, pos) (operation)

SeekPositionStream attempts to rewind or wind forward an input stream to the specified posi-
tion. This is not possible for all streams. It returns true if the seek is successful and fail otherwise.

10.4 Operations for Output Streams

10.4.1 WriteByte

> WriteByte (output—stream, byte) (operation)

writes the next character (given as integer) to the output stream output-stream. The function
returns true if the write succeeds and fail otherwise.

WriteByte is the basic operation for output streams. If a WriteByte method is installed for a
user-defined type of stream, then all the other output stream operations will work (although possibly
not at peak efficiency).
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10.4.2 WriteLine

> WriteLine(output-stream, string) (operation)

appends string to output-stream. A final newline is written. The function returns true if the
write succeeds and fail otherwise.

A default method is installed which implements WriteLine by repeated calls to WriteByte
(10.4.1).

10.4.3 WriteAll

> WriteAll(output-stream, string) (operation)

appends string to output-stream. No final newline is written. The function returns true if
the write succeeds and fail otherwise. It will block as long as necessary for the write operation to
complete (for example for a child process to clear its input buffer )

A default method is installed which implements WriteAll by repeated calls to WriteByte
(10.4.1).

When printing or appending to a stream (using PrintTo (9.7.3), or AppendTo (9.7.3) or when
logging to a stream), the kernel generates a call to WriteAll for each line output.

Example
gap> str := "";; a := OutputTextString(str,true);;
gap> WriteByte(a,INT_CHAR(’H’));
true
gap> WriteLine(a,"allo");
true
gap> WriteAll(a,"You\n");
true

gap> CloseStream(a);
gap> Print(str);
Hallo

You

10.4.4 PrintTo and AppendTo (for streams)

> PrintTo(output-stream, argl, ...) (function)
> AppendTo(output-stream, argl, ...) (function)

These functions work like Print (6.3.4), except that the output is appended to the output stream
output-stream.

Example
gap> str := "";; a := OutputTextString(str,true);;
gap> AppendTo( a, (1,2,3), ":", Z(3) );

gap> CloseStream(a);
gap> Print( str, "\n" );
(1,2,3):Z2(3)
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10.4.5 LogTo (for streams)

> LogTo(stream) (operation)

causes the subsequent interaction to be logged to the output stream stream. It works in precisely
the same way as it does for files (see LogTo (9.7.4)).

10.4.6 InputLogTo (for streams)

> InputLogTo(stream) (operation)

causes the subsequent input to be logged to the output stream stream. It works just like it does
for files (see InputLogTo (9.7.5)).

10.4.7 OutputLogTo (for streams)

> OutputLogTo (stream) (operation)

causes the subsequent output to be logged to the output stream stream. It works just like it does
for files (see OutputLogTo (9.7.6)).

10.4.8 SetPrintFormattingStatus

> SetPrintFormattingStatus(stream, newstatus) (operation)
> PrintFormattingStatus(stream) (operation)

When text is being sent to an output text stream via PrintTo (9.7.3), AppendTo (9.7.3), LogTo
(10.4.5), etc., it is by default formatted just as it would be were it being printed to the screen. Thus,
it is broken into lines of reasonable length at (where possible) sensible places, lines containing el-
ements of lists or records are indented, and so forth. This is appropriate if the output is eventually
to be viewed by a human, and harmless if it to passed as input to GAP, but may be unhelpful if
the output is to be passed as input to another program. It is possible to turn off this behaviour for
a stream using the SetPrintFormattingStatus operation, and to test whether it is on or off using
PrintFormattingStatus.

SetPrintFormattingStatus sets whether output sent to the output stream stream via PrintTo
(9.7.3), AppendTo (9.7.3), etc. will be formatted with line breaks and indentation. If the second
argument newstatus is true then output will be so formatted, and if false then it will not. If the
stream is not a text stream, only false is allowed.

PrintFormattingStatus returns true if output sent to the output text stream stream via
PrintTo (9.7.3), AppendTo (9.7.3), etc. will be formatted with line breaks and indentation, and false
otherwise. For non-text streams, it returns false. If as argument stream the string "*stdout*" is
given, these functions refer to the formatting status of the standard output (so usually the users termi-
nal screen).

These functions do not influence the behaviour of the low level functions WriteByte (10.4.1),
WriteLine (10.4.2) or WriteAll (10.4.3) which always write without formatting.

Example
gap> s := "";; str := OutputTextString(s,false);;
gap> PrintTo(str,Primes{[1..301});
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gap> s;

“(2, 3,5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61,\
\n 67, 71, 73, 79, 83, 89, 97, 101, 103, 107, 109, 113 1"

gap> Print(s,"\n");

[2,3,5,7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61,
67, 71, 73, 79, 83, 89, 97, 101, 103, 107, 109, 113 ]

gap> SetPrintFormattingStatus(str, false);

gap> PrintTo(str,Primes{[1..301});

gap> s;

"[ 2,3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61,\
\n 67, 71, 73, 79, 83, 89, 97, 101, 103, 107, 109, 113 1[ 2, 3, 5, 7\

, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, \

79, 83, 89, 97, 101, 103, 107, 109, 113 1"

gap> Print(s,"\n");

[2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61,
67, 71, 73, 79, 83, 89, 97, 101, 103, 107, 109, 113 1[ 2, 3, 5, 7, 1\

1, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79,\
83, 89, 97, 101, 103, 107, 109, 113 ]

10.5 File Streams

File streams are streams associated with files. An input file stream reads the characters it delivers from
a file, an output file stream prints the characters it receives to a file. The following functions can be
used to create such streams. They return fail if an error occurred, in this case LastSystemError
(9.1.1) can be used to get information about the error.

10.5.1 InputTextFile

> InputTextFile(name-file) (operation)

InputTextFile( name-file ) returns an input stream in the category IsInputTextStream
(10.1.4) that delivers the characters from the file name-file.

10.5.2 OutputTextFile
> OQutputTextFile(name-file, append) (operation)
OutputTextFile( name-file, append ) returns an output stream in the category

IsOutputTextFile that writes received characters to the file name-file. If append is false, then
the file is emptied first, otherwise received characters are added at the end of the file.

Example
gap> # use a temporary directory
gap> name := Filename( DirectoryTemporary(), "test" );;
gap> # create an output stream, append output, and close again
gap> output := OutputTextFile( name, true );;

gap> AppendTo( output, "Hallo\n", "You\n" );

gap> CloseStream(output) ;

gap> # create an input, print complete contents of file, and close
gap> input := InputTextFile(name);;
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gap> Print( ReadAll(input) );

Hallo

You

gap> CloseStream(input) ;

gap> # append a single line

gap> output := OutputTextFile( name, true );;

gap> AppendTo( output, "AppendLine\n" );

gap> # close output stream to flush the output

gap> CloseStream(output) ;

gap> # create an input, print complete contents of file, and close

gap> input := InputTextFile(name);;
gap> Print( ReadAll(input) );

Hallo

You

AppendLine

gap> CloseStream(input);

10.6 User Streams

The commands described in this section create streams which accept characters from, or deliver char-
acters to, the user, via the keyboard or the GAP session display.

10.6.1 InputTextUser

> InputTextUser O (function)

returns an input text stream which delivers characters typed by the user (or from the standard input
device if it has been redirected). In normal circumstances, characters are delivered one by one as they
are typed, without waiting until the end of a line. No prompts are printed.

10.6.2 OutputTextUser

> OutputTextUser O (function)

returns an output stream which delivers characters to the user’s display (or the standard output
device if it has been redirected). Each character is delivered immediately it is written, without waiting
for a full line of output. Text written in this way is not written to the session log (see LogTo (9.7.4)).

10.6.3 InputFromUser

> InputFromUser(arg) (function)
prints the arg as a prompt, then waits until a text is typed by the user (or from the standard input

device if it has been redirected). This text must be a single expression, followed by one enter. This is
evaluated (see EvalString (27.8.3)) and the result is returned.
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10.7 String Streams

String streams are streams associated with strings. An input string stream reads the characters it
delivers from a string, an output string stream appends the characters it receives to a string. The
following functions can be used to create such streams.

10.7.1 InputTextString

> InputTextString(string) (operation)

InputTextString( string ) returns an input stream that delivers the characters from the
string string. The string is not changed when reading characters from it and changing the string
after the call to InputTextString has no influence on the input stream.

10.7.2 OutputTextString

> OutputTextString(list, append) (operation)

returns an output stream that puts all received characters into the list 1ist. If append is false,
then the list is emptied first, otherwise received characters are added at the end of the list.

Example
gap> # read input from a string

gap> input := InputTextString( "Hallo\nYou\n" );;
gap> ReadLine(input);

"Hallo\n"

gap> ReadLine(input);

”YOIl\Il"

gap> # print to a string

gap> str := "";;

gap> out := QutputTextString( str, true );;

gap> PrintTo( out, 1, "\n", (1,2,3,4)(5,6), "\n" );
gap> CloseStream(out) ;

gap> Print( str );

1

(1,2,3,4)(5,6)

10.8 Input-Output Streams

Input-output streams capture bidirectional communications between GAP and another process, either
locally or (@as yet unimplemented @) remotely.

Such streams support the basic operations of both input and output streams. They should provide
some buffering, allowing output data to be written to the stream, even when input data is waiting to
be read, but the amount of this buffering is operating system dependent, and the user should take care
not to get too far ahead in writing, or behind in reading, or deadlock may occur.

At present the only type of Input-Output streams that are implemented provide communication
with a local child process, using a pseudo-tty.

Like other streams, write operations are blocking, read operations will block to get the first char-
acter, but not thereafter.
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As far as possible, no translation is done on characters written to, or read from the stream, and no
control characters have special effects, but the details of particular pseudo-tty implementations may
effect this.

10.8.1 IsInputOutputStream

> IsInputOutputStream(obj) (Category)

IsInputOutputStream is the Category of Input-Output Streams; it returns true if the obj is an
input-output stream and false otherwise.

10.8.2 InputOutputLocalProcess

> InputOutputLocalProcess(dir, executable, args) (function)

starts up a slave process, whose executable file is executable, with “command line” ar-
guments args in the directory dir. (Suitable choices for dir are DirectoryCurrent ()
or DirectoryTemporary() (see Section 9.3); DirectoryTemporary() may be a good
choice when executable generates output files that it doesn’t itself remove afterwards.)
InputOutputLocalProcess returns an InputOutputStream object. Bytes written to this stream are
received by the slave process as if typed at a terminal on standard input. Bytes written to standard
output by the slave process can be read from the stream.

When the stream is closed, the signal SIGTERM is delivered to the child process, which is ex-
pected to exit.

Example
gap> d := DirectoryCurrent();
dir("./™)
gap> f := Filename(DirectoriesSystemPrograms(), "rev");
"/usr/bin/rev"

gap> s := InputOutputLocalProcess(d,f,[]1);
< input/output stream to rev >

gap> WriteLine(s,"The cat sat on the mat");
true

gap> Print(ReadLine(s));

tam eht no tas tac ehT

gap> x := ListWithIdenticalEntries(10000,°x’);;
gap> ConvertToStringRep(x);

gap> WriteLine(s,x);

true

gap> WriteByte(s,INT_CHAR(’\n’));

true

gap> y := ReadAll(s);;

gap> Length(y);

4095

gap> CloseStream(s);

gap> s;

< closed input/output stream to rev >




GAP - Reference Manual 145

10.8.3 ReadAllLine

> ReadAllLine(iostream[, nofail][, IsAllLine]) (operation)

For an input/output stream iostream ReadAllLine reads until a newline character if any input
is found or returns fail if no input is found, i.e. if any input is found ReadA11Line is non-blocking.

If the argument nofail (which must be false or true) is provided and it is set to true then
ReadAllLine will wait, if necessary, for input and never return fail.

If the argument IsAl11Line (which must be a function that takes a string argument and returns
either true or false) then it is used to determine what constitutes a whole line. The default behaviour
is equivalent to passing the function

Example
line -> 0 < Length(line) and line[Length(line)] = ’\n’

for the IsA11Line argument. The purpose of the IsA11Line argument is to cater for the case
where the input being read is from an external process that writes a “prompt” for data that does not
terminate with a newline.

If the first argument is an input stream but not an input/output stream then ReadAl1lLine behaves
as if ReadLine (10.3.5) was called with just the first argument and any additional arguments are
ignored.

10.9 Dummy Streams

The following two commands create dummy streams which will consume all characters and never
deliver one.

10.9.1 InputTextNone

> InputTextNone () (function)

returns a dummy input text stream, which delivers no characters, i.e., it is always at end of stream.
Its main use is for calls to Process (11.1.1) when the started program does not read anything.

10.9.2 OutputTextNone

> OutputTextNone O (function)

returns a dummy output stream, which discards all received characters. Its main use is for calls to
Process (11.1.1) when the started program does not write anything.

10.10 Handling of Streams in the Background

This section describes a feature of the GAP kernel that can be used to handle pending streams some-
how “in the background”. This is currently not available on the Macintosh architecture and only on
operating systems that have select.

Right before GAP reads a keypress from the keyboard it calls a little subroutine that can handle
streams that are ready to be read or ready to be written. This means that GAP can handle these streams
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during user input on the command line. Note that this does not work when GAP is in the middle of
some calculation.

This feature is used in the following way. One can install handler functions for reading
or writing streams via InstallCharReadHookFunc (10.10.1). Handlers can be removed via
UnInstallCharReadHookFunc (10.10.2)

Note that handler functions must not return anything and get one integer argument, which refers
to an index in one of the following arrays (according to whether the function was installed for input,
output or exceptions on the stream). Handler functions usually should not output anything on the
standard output because this ruins the command line during command line editing.

10.10.1 InstallCharReadHookFunc

> InstallCharReadHookFunc(stream, mode, func) (function)

installs the function func as a handler function for the stream stream. The argument mode
decides, for what operations on the stream this function is installed. mode must be a string, in which
a letter r means “read”, w means “write”” and x means “exception”, according to the select function
call in the UNIX C-library (see man select and UNIXSelect (10.2.3)). More than one letter is
allowed in mode. As described above the function is called in a situation when GAP is reading a
character from the keyboard. Handler functions should not use much time to complete.

This functionality does not work on the Macintosh architecture and only works if the operating
system has a select function.

10.10.2 UnlnstallCharReadHookFunc

> UnInstallCharReadHookFunc(stream, func) (function)

uninstalls the function func as a handler function for the stream stream. All instances are dein-
stalled, regardless of the mode of operation (read, write, exception).

This functionality does not work on the Macintosh architecture and only works if the operating
system has a select function.

10.11 Comma separated files

In some situations it can be desirable to process data given in the form of a spreadsheet (such as Excel).
GAP can do this using the CSV (comma separated values) format, which spreadsheet programs can
usually read in or write out.

The first line of the spreadsheet is used as labels of record components, each subsequent line then
corresponds to a record. Entries enclosed in double quotes are considered as strings and are permitted
to contain the separation character (usually a comma).

10.11.1 ReadCSV

> ReadCSV(filename[, nohead][, separator]) (function)

This function reads in a spreadsheet, saved in CSV format (comma separated values) and returns
its entries as a list of records. The entries of the first line of the spreadsheet are used to denote the
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names of the record components. Blanks will be translated into underscore characters. If the parameter
nohead is given as true, instead the record components will be called fieldn. Each subsequent line
will create one record. If given, separator is the character used to separate fields. Otherwise it
defaults to a comma.

10.11.2 PrintCSV

> PrintCSV(filename, list[, fields]) (function)

This function prints a list of records as a spreadsheet in CSV format (which can be read in for
example into Excel). The names of the record components will be printed as entries in the first line.
If the argument fields is given only the record fields listed in this list will be printed and they will
be printed in the same arrangement as given in this list. If the option noheader is set to true the line
with the record field names will not be printed.



Chapter 11

Processes

GAP can call other programs, such programs are called processes. There are two kinds of processes:
first there are processes that are started, run and return a result, while GAP is suspended until the
process terminates. Then there are processes that will run in parallel to GAP as subprocesses and
GAP can communicate and control the processes using streams (see InputOutputLocalProcess
(10.8.2)).

11.1 Process and Exec

11.1.1 Process

> Process(dir, prg, stream-in, stream-out, options) (operation)

Process runs a new process and returns when the process terminates. It returns the return value
of the process if the operating system supports such a concept.

The first argument dir is a directory object (see 9.3) which will be the current directory (in the
usual UNIX or MSDOS sense) when the program is run. This will only matter if the program accesses
files (including running other programs) via relative path names. In particular, it has nothing to do
with finding the binary to run.

In general the directory will either be the current directory, which is returned by
DirectoryCurrent (9.3.4) —this was the behaviour of GAP 3— or a temporary directory returned
by DirectoryTemporary (9.3.3). If one expects that the process creates temporary or log files the
latter should be used because GAP will attempt to remove these directories together with all the files
in them when quitting.

If a program of a GAP package which does not only consist of GAP code needs to be launched
in a directory relative to certain data libraries, then the first entry of DirectoriesPackageLibrary
(76.3.4) should be used. The argument of DirectoriesPackageLibrary (76.3.4) should be the path
to the data library relative to the package directory.

If a program calls other programs and needs to be launched in a directory containing the executa-
bles for such a GAP package then the first entry of DirectoriesPackagePrograms (76.3.5) should
be used.

The latter two alternatives should only be used if absolutely necessary because otherwise one risks
accumulating log or core files in the package directory.

Example
gap> path := DirectoriesSystemPrograms();;

148
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gap> ls := Filename( path, "ls" );;

gap> stdin := InputTextUser();;

gap> stdout := OutputTextUser();;

gap> Process( path[1], 1ls, stdin, stdout, ["-c"] );;

awk 1s mkdir

gap> # current directory, here the root directory

gap> Process( DirectoryCurrent(), 1ls, stdin, stdout, ["-c"] );;
bin 1ib trans tst CVS grp prim  thr two
src dev etc tbl doc pkg small tom

gap> # create a temporary directory

gap> tmpdir := DirectoryTemporary();;

gap> Process( tmpdir, 1ls, stdin, stdout, ["-c¢"] );;

gap> PrintTo( Filename( tmpdir, "emil" ) );

gap> Process( tmpdir, ls, stdin, stdout, ["-c"] );;

emil

prg is the filename of the program to launch, for portability it should be the result of Filename
(9.4.1) and should pass IsExecutableFile (9.6.4). Note that Process does no searching through a
list of directories, this is done by Filename (9.4.1).

stream-in is the input stream that delivers the characters to the process. For portability it should
either be InputTextNone (10.9.1) (if the process reads no characters), InputTextUser (10.6.1), the
result of a call to InputTextFile (10.5.1) from which no characters have been read, or the result of
a call to InputTextString (10.7.1).

Process is free to consume all the input even if the program itself does not require any input at
all.

stream-out is the output stream which receives the characters from the process. For portability
it should either be OutputTextNone (10.9.2) (if the process writes no characters), OutputTextUser
(10.6.2), the result of a call to OutputTextFile (10.5.2) to which no characters have been written, or
the result of a call to OutputTextString (10.7.2).

options is a list of strings which are passed to the process as command line argument. Note
that no substitutions are performed on the strings, i.e., they are passed immediately to the process and
are not processed by a command interpreter (shell). Further note that each string is passed as one
argument, even if it contains space characters. Note that input/output redirection commands are not
allowed as options.

In order to find a system program use DirectoriesSystemPrograms (9.3.6) together with
Filename (9.4.1).

Example
gap> path := DirectoriesSystemPrograms();;
gap> date := Filename( path, "date" );
"/bin/date"

The next example shows how to execute date with no argument and no input, and collect the
output into a string stream.
Example
gap> str := "";; a := OutputTextString(str,true);;
gap> Process( DirectoryCurrent(), date, InputTextNone(), a, [1 );
0
gap> CloseStream(a);
gap> Print(str);
Fri Jul 11 09:04:23 MET DST 1997
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11.1.2 Exec

> Exec(cmd, optionl, ..., optionk) (function)

Exec runs a shell in the current directory to execute the command given by the string cmd with
options optionlt, ..., optionN.

Example
gap> Exec( "date" );
Thu Jul 24 10:04:13 BST 1997

cmd is interpreted by the shell and therefore we can make use of the various features that a shell
offers as in following example.
Example
gap> Exec( "echo \"GAP is great!\" > foo" );
gap> Exec( "cat foo" );
GAP is great!
gap> Exec( "rm foo" );

Exec calls the more general operation Process (11.1.1). The function Edit (6.10.1) should be
used to call an editor from within GAP.



Chapter 12

Objects and Elements

An object is anything in GAP that can be assigned to a variable, so nearly everything in GAP is an
object.

Different objects can be regarded as equal with respect to the equivalence relation “=", in this case
we say that the objects describe the same element.

12.1 Objects

Nearly all things one deals with in GAP are objects. For example, an integer is an object, as is a
list of integers, a matrix, a permutation, a function, a list of functions, a record, a group, a coset or a
conjugacy class in a group.

Examples of things that are not objects are comments which are only lexical constructs, while
loops which are only syntactical constructs, and expressions, such as 1 + 1; but note that the value
of an expression, in this case the integer 2, is an object.

Objects can be assigned to variables, and everything that can be assigned to a variable is an object.
Analogously, objects can be used as arguments of functions, and can be returned by functions.

12.1.1 IsObject

> IsObject (Obj) (Category)

IsObject returns true if the object obj is an object. Obviously it can never return false.
It can be used as a filter in InstallMethod (78.2.1) when one of the arguments can be anything.

12.2 Elements as equivalence classes

The equality operation “=" defines an equivalence relation on all GAP objects. The equivalence
classes are called elements.

There are basically three reasons to regard different objects as equal. Firstly the same information
may be stored in different places. Secondly the same information may be stored in different ways;
for example, a polynomial can be stored sparsely or densely. Thirdly different information may be
equal modulo a mathematical equivalence relation. For example, in a finitely presented group with
the relation a® = 1 the different objects a and a® describe the same element.

151
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As an example of all three reasons, consider the possibility of storing an integer in several places
of the memory, of representing it as a fraction with denominator 1, or of representing it as a fraction
with any denominator, and numerator a suitable multiple of the denominator.

12.3 Sets

In GAP there is no category whose definition corresponds to the mathematical property of being a
set, however in the manual we will often refer to an object as a sef in order to convey the fact that
mathematically, we are thinking of it as a set. In particular, two sets A and B are equal if and only if,
xX€A < xcB.

There are two types of object in GAP which exhibit this kind of behaviour with respect to equality,
namely domains (see Section 12.4) and lists whose elements are strictly sorted see IsSSortedList
(21.17.4). In general, set in this manual will mean an object of one of these types.

More precisely: two domains can be compared with “{=}", the answer being true if and only if
the sets of elements are equal (regardless of any additional structure) and; a domain and a list can be
compared with “=", the answer being true if and only if the list is equal to the strictly sorted list of
elements of the domain.

A discussion about sorted lists and sets can be found in Section 21.19.

12.4 Domains

An especially important class of objects in GAP are those whose underlying mathematical abstraction
is that of a structured set, for example a group, a conjugacy class, or a vector space. Such objects are
called domains. The equality relation between domains is always equality as sets, so that two domains
are equal if and only if they contain the same elements.

Domains play a central role in GAP. In a sense, the only reason that GAP supports objects such
as integers and permutations is the wish to form domains of them and compute the properties of those
domains.

Domains are described in Chapter 31.

12.5 Identical Objects

Two objects that are equal as objects (that is they actually refer to the same area of computer memory)
and not only w.r.t. the equality relation “=" are called identical. Identical objects do of course describe
the same element.

12.5.1 IsldenticalObj

> IsIdenticalObj(objl, obj2) (function)

IsIdenticalObj tests whether the objects obj1 and obj2 are identical (that is they are either
equal immediate objects or are both stored at the same location in memory.

If two copies of a simple constant object (see section 12.6) are created, it is not defined whether
GAP will actually store two equal but non-identical objects, or just a single object. For mutable
objects, however, it is important to know whether two values refer to identical or non-identical objects,
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and the documentation of operations that return mutable values should make clear whether the values
returned are new, or may be identical to values stored elsewhere.

Example
gap> IsIdenticalObj( 1076, 1076);
true
gap> IsIdenticalObj( 10~30, 10~30);
false
gap> IsIdenticalObj( true, true);
true

Generally, one may compute with objects but think of the results in terms of the underlying el-
ements because one is not interested in locations in memory, data formats or information beyond
underlying equivalence relations. But there are cases where it is important to distinguish the relations
identity and equality. This is best illustrated with an example. (The reader who is not familiar with
lists in GAP, in particular element access and assignment, is referred to Chapter 21.)

Example
gap> 11:= [ 1, 2, 3 1;; 12:= [ 1, 2, 3 I3;;
gap> 11 = 12;
true
gap> IsIdenticalObj( 11, 12 );
false
gap> 11[3]:= 4;; 11; 12;

[1, 2, 4]
[1, 2, 3]
gap> 11 = 12;
false

The two lists 11 and 12 are equal but not identical. Thus a change in 11 does not affect 12.

Example
gap> 11:= [ 1, 2, 3 1;; 12:= 11;;
gap> 11 = 12;
true
gap> IsIdenticalObj( 11, 12 );
true
gap> 11[3]:= 4;; 11; 12;
[1, 2, 4]
[1, 2, 4]
gap> 11 = 12;
true

Here, 11 and 12 are identical objects, so changing 11 means a change to 12 as well.

12.5.2 IsNotldenticalObj

> IsNotIdenticalObj(objl, obj2) (function)

tests whether the objects obj1 and obj2 are not identical.
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12.6 Mutability and Copyability

An object in GAP is said to be immutable if its mathematical value (as defined by =) does not change
under any operation. More explicitly, suppose a is immutable and O is some operation on a, then if
a = b evaluates to true before executing O(a), a = b also evaluates to true afterwards. (Examples
for operations O that change mutable objects are Add (21.4.2) and Unbind (21.5.2) which are used
to change list objects, see Chapter 21.) An immutable object may change, for example to store new
information, or to adopt a more efficient representation, but this does not affect its behaviour under =.

There are two points here to note. Firstly, “operation” above refers to the functions and methods
which can legitimately be applied to the object, and not the ! . operation whereby virtually any aspect
of any GAP level object may be changed. The second point which follows from this, is that when
implementing new types of objects, it is the programmer’s responsibility to ensure that the functions
and methods they write never change immutable objects mathematically.

In fact, most objects with which one deals in GAP are immutable. For instance, the permutation
(1,2) will never become a different permutation or a non-permutation (although a variable which
previously had (1,2) stored in it may subsequently have some other value).

For many purposes, however, mutable objects are useful. These objects may be changed to rep-
resent different mathematical objects during their life. For example, mutable lists can be changed by
assigning values to positions or by unbinding values at certain positions. Similarly, one can assign
values to components of a mutable record, or unbind them.

12.6.1 IsCopyable

> IsCopyable(obj) (Category)

If a mutable form of an object obj can be made in GAP, the object is called copyable. Examples
of copyable objects are of course lists and records. A new mutable version of the object can always
be obtained by the operation ShallowCopy (12.7.1).

Objects for which only an immutable form exists in GAP are called constants. Examples of
constants are integers, permutations, and domains. Called with a constant as argument, Immutable
(12.6.3) and ShallowCopy (12.7.1) return this argument.

12.6.2 IsMutable

> IsMutable(o bj ) (Category)

tests whether obj is mutable.

If an object is mutable then it is also copyable (see IsCopyable (12.6.1)), and a ShallowCopy
(12.7.1) method should be supplied for it. Note that IsMutable must not be implied by another filter,
since otherwise Immutable (12.6.3) would be able to create paradoxical objects in the sense that
IsMutable for such an object is false but the filter that implies IsMutable is true.

In many situations, however, one wants to ensure that objects are immutable. For example, take the
identity of a matrix group. Since this matrix may be referred to as the identity of the group in several
places, it would be fatal to modify its entries, or add or unbind rows. We can obtain an immutable
copy of an object with Immutable (12.6.3).
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12.6.3 Immutable

> Immutable(o bj ) (operation)

returns an immutable structural copy (see StructuralCopy (12.7.2)) of obj in which the sub-
objects are immutable copies of the subobjects of obj. If obj is immutable then Immutable returns
obj itself.

GAP will complain with an error if one tries to change an immutable object.

12.6.4 MakeImmutable

> MakeImmutable (obj) (function)

One can turn the (mutable or immutable) object obj into an immutable one with MakeImmutable;
note that this also makes all subobjects of obj immutable, so one should call MakeImmutable only if
obj and its mutable subobjects are newly created. If one is not sure about this, Immutable (12.6.3)
should be used.

Note that it is not possible to turn an immutable object into a mutable one; only mutable copies
can be made (see 12.7).

Using Immutable (12.6.3), it is possible to store an immutable identity matrix or an immutable
list of generators, and to pass around references to this immutable object safely. Only when a mutable
copy is really needed does the actual object have to be duplicated. Compared to the situation without
immutable objects, much unnecessary copying is avoided this way. Another advantage of immutabil-
ity is that lists of immutable objects may remember whether they are sorted (see 21.19), which is not
possible for lists of mutable objects.

Since the operation Immutable (12.6.3) must work for any object in GAP, it follows that an
immutable form of every object must be possible, even if it is not sensible, and user-defined objects
must allow for the possibility of becoming immutable without notice.

12.6.5 Mutability of Iterators

An interesting example of mutable (and thus copyable) objects is provided by iterators, see 30.8. (Of
course an immutable form of an iterator is not very useful, but clearly Immutable (12.6.3) will yield
such an object.) Every call of NextIterator (30.8.5) changes a mutable iterator until it is exhausted,
and this is the only way to change an iterator. ShallowCopy (12.7.1) for an iterator iter is defined
so as to return a mutable iterator that has no mutable data in common with iter, and that behaves
equally to iter w.r.t. IsDoneIterator (30.8.4) and (if iter is mutable) NextIterator (30.8.5).
Note that this meaning of the “shallow copy” of an iterator that is returned by ShallowCopy (12.7.1)
is not as obvious as for lists and records, and must be explicitly defined.

12.6.6 Mutability of Results of Arithmetic Operations

Many operations return immutable results, among those in particular attributes (see 13.5). Exam-
ples of attributes are Size (30.4.6), Zero (31.10.3), AdditiveInverse (31.10.9), One (31.10.2), and
Inverse (31.10.8). Arithmetic operations, such as the binary infix operations +, -, *, /, ~, mod, the
unary -, and operations such as Comm (31.12.3) and LeftQuotient (31.12.2), return mutable results,
except if all arguments are immutable. So the product of two matrices or of a vector and a matrix
is immutable if and only if the two matrices or both the vector and the matrix are immutable (see
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also 21.11). There is one exception to this rule, which arises where the result is less deeply nested
than at least one of the argument, where mutable arguments may sometimes lead to an immutable
result. For instance, a mutable matrix with immutable rows, multiplied by an immutable vector gives
an immutable vector result. The exact rules are given in 21.11.

It should be noted that 0 * obj is equivalent to ZeroSM( obj ), -obj is equivalent to
AdditiveInverseSM( obj ), obj~0 is equivalent to OneSM( obj), and obj~-1 is equivalent to
InverseSM( obj ). The “SM” stands for “same mutability”, and indicates that the result is mutable
if and only if the argument is mutable.

The operations ZeroOp (31.10.3), AdditiveInverseOp (31.10.9), OneOp (31.10.2), and
InverseQp (31.10.8) return mutable results whenever a mutable version of the result exists, contrary
to the attributes Zero (31.10.3), AdditiveInverse (31.10.9), One (31.10.2), and Inverse (31.10.8).

If one introduces new arithmetic objects then one need not install methods for the attributes One
(31.10.2), Zero (31.10.3), etc. The methods for the associated operations OneOp (31.10.2) and ZeroOp
(31.10.3) will be called, and then the results made immutable.

All methods installed for the arithmetic operations must obey the rule about the mutability of the
result. This means that one may try to avoid the perhaps expensive creation of a new object if both
operands are immutable, and of course no problems of this kind arise at all in the (usual) case that the
objects in question do not admit a mutable form, i.e., that these objects are not copyable.

In a few, relatively low-level algorithms, one wishes to treat a matrix partly as a data structure,
and manipulate and change its entries. For this, the matrix needs to be mutable, and the rule that
attribute values are immutable is an obstacle. For these situations, a number of additional operations
are provided, for example TransposedMatMutable (24.5.6) constructs a mutable matrix (contrary to
the attribute TransposedMat (24.5.6)), while TriangulizeMat (24.7.3) modifies a mutable matrix
(in place) into upper triangular form.

Note that being immutable does not forbid an object to store knowledge. For example, if it is
found out that an immutable list is strictly sorted then the list may store this information. More
precisely, an immutable object may change in any way, provided that it continues to represent the
same mathematical object.

12.7 Duplication of Objects

12.7.1 ShallowCopy

> ShallowCopy ( Obj) (operation)

ShallowCopy returns a new mutable object equal to its argument, if this is possible. The subob-
jects of ShallowCopy( obj ) are identical to the subobjects of obj.

If GAP does not support a mutable form of the immutable object obj (see 12.6) then
ShallowCopy returns obj itself.

Since ShallowCopy is an operation, the concrete meaning of “subobject” depends on the type of
obj. But for any copyable object obj, the definition should reflect the idea of “first level copying”.

The definition of ShallowCopy for lists (in particular for matrices) can be found in 21.7.

12.7.2 StructuralCopy

> StructuralCopy(obj) (function)
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In a few situations, one wants to make a structural copy scp of an object obj. This is defined as
follows. scp and obj are identical if obj is immutable. Otherwise, scp is a mutable copy of obj such
that each subobject of scp is a structural copy of the corresponding subobject of obj. Furthermore, if

two subobjects of obj are identical then also the corresponding subobjects of scp are identical.
Example

gap> obj:= [ [ 0, 11 133

gap> obj[2]:= obj[1];;

gap> obj[3]:= Immutable( obj[1] );;
gap> scp:= StructuralCopy( obj );;
gap> scp = obj; IsIdenticalObj( scp, obj );
true

false

gap> IsIdenticalObj( scpl[1], obj[1] );
false

gap> IsIdenticalObj( scpl[3], obj[3] );
true

gap> IsIdenticalObj( scpl[1], scpl2] );
true

That both ShallowCopy (12.7.1) and StructuralCopy return the argument obj itself if it is not
copyable is consistent with this definition, since there is no way to change obj by modifying the result
of any of the two functions, because in fact there is no way to change this result at all.

12.8 Other Operations Applicable to any Object

There are a number of general operations which can be applied, in principle, to any object in GAP.
Some of these are documented elsewhere —see String (27.6.6), Print0bj (6.3.5) and Display
(6.3.6). Others are mainly somewhat technical.

12.8.1 SetName

> SetName(obj, name) (function)

for a suitable object obj sets that object to have name name (a string).

12.8.2 Name

> Name (obj) (attribute)

returns the name, a string, previously assigned to obj via a call to SetName (12.8.1). The name
of an object is used only for viewing the object via this name.

There are no methods installed for computing names of objects, but the name may be set for
suitable objects, using SetName (12.8.1).
Example
gap> R := PolynomialRing(Integers,2);
Integers[x_1,x_2]
gap> SetName(R,"Z[x,y1");
gap> R;
Z[x,y]
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gap> Name(R) ;
llZ [X,y] "

12.8.3 IsInternallyConsistent

> IsInternallyConsistent(obj) (operation)

For debugging purposes, it may be useful to check the consistency of an object obj that is com-
posed from other (composed) objects.

There is a default method of IsInternallyConsistent, with rank zero, that returns true.
So it is possible (and recommended) to check the consistency of subobjects of obj recursively by
IsInternallyConsistent.

(Note that IsInternallyConsistent is not an attribute.)

12.8.4 MemoryUsage

> MemoryUsage ( Obj) (operation)

returns the amount of memory in bytes used by the object obj and its subobjects. Note that in
general, objects can reference each other in very difficult ways such that determining the memory
usage is a recursive procedure. In particular, computing the memory usage of a complicated structure
itself uses some additional memory, which is however no longer used after completion of this oper-
ation. This procedure descends into lists and records, positional and component objects, however it
does not take into account the type and family objects! For functions, it only takes the memory usage
of the function body, not of the local context the function was created in, although the function keeps
a reference to that as well!



Chapter 13

Types of Objects

Every GAP object has a rype. The type of an object is the information which is used to decide
whether an operation is admissible or possible with that object as an argument, and if so, how it is to
be performed (see Chapter 78).

For example, the types determine whether two objects can be multiplied and what function is
called to compute the product. Analogously, the type of an object determines whether and how the
size of the object can be computed. It is sometimes useful in discussing the type system, to identify
types with the set of objects that have this type. Partial types can then also be regarded as sets, such
that any type is the intersection of its parts.

The type of an object consists of two main parts, which describe different aspects of the object.

The family determines the relation of the object to other objects. For example, all permutations
form a family. Another family consists of all collections of permutations, this family contains the set
of permutation groups as a subset. A third family consists of all rational functions with coefficients in
a certain family.

The other part of a type is a collection of filters (actually stored as a bit-list indicating, from the
complete set of possible filters, which are included in this particular type). These filters are all treated
equally by the method selection, but, from the viewpoint of their creation and use, they can be divided
(with a small number of unimportant exceptions) into categories, representations, attribute testers and
properties. Each of these is described in more detail below.

This chapter does not describe how types and their constituent parts can be created. Information
about this topic can be found in Chapter 79.

Note: Detailed understanding of the type system is not required to use GAP. It can be helpful,
however, to understand how things work and why GAP behaves the way it does.

A discussion of the type system can be found in [BL98].

13.1 Families

The family of an object determines its relationship to other objects.

More precisely, the families form a partition of all GAP objects such that the following two
conditions hold: objects that are equal w.r.t. = lie in the same family; and the family of the result of
an operation depends only on the families of its operands.

The first condition means that a family can be regarded as a set of elements instead of a set of
objects. Note that this does not hold for categories and representations (see below), two objects that
are equal w.r.t. = need not lie in the same categories and representations. For example, a sparsely
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represented matrix can be equal to a densely represented matrix. Similarly, each domain is equal w.r.t.
= to the sorted list of its elements, but a domain is not a list, and a list is not a domain.

13.1.1 FamilyObj

> FamilyObj (Obj) (function)

returns the family of the object obj.

The family of the object obj is itself an object, its family is Family0fFamilies.

It should be emphasized that families may be created when they are needed. For example, the
family of elements of a finitely presented group is created only after the presentation has been con-
structed. Thus families are the dynamic part of the type system, that is, the part that is not fixed after
the initialisation of GAP.

Families can be parametrized. For example, the elements of each finitely presented group form
a family of their own. Here the family of elements and the finitely presented group coincide when
viewed as sets. Note that elements in different finitely presented groups lie in different families. This
distinction allows GAP to forbid multiplications of elements in different finitely presented groups.

As a special case, families can be parametrized by other families. An important example is the
family of collections that can be formed for each family. A collection consists of objects that lie in
the same family, it is either a nonempty dense list of objects from the same family or a domain.

Note that every domain is a collection, that is, it is not possible to construct domains whose
elements lie in different families. For example, a polynomial ring over the rationals cannot contain
the integer O because the family that contains the integers does not contain polynomials. So one has
to distinguish the integer zero from each zero polynomial.

Let us look at this example from a different viewpoint. A polynomial ring and its coefficients
ring lie in different families, hence the coefficients ring cannot be embedded ‘“naturally” into the
polynomial ring in the sense that it is a subset. But it is possible to allow, e.g., the multiplication of an
integer and a polynomial over the integers. The relation between the arguments, namely that one is a
coefficient and the other a polynomial, can be detected from the relation of their families. Moreover,
this analysis is easier than in a situation where the rationals would lie in one family together with
all polynomials over the rationals, because then the relation of families would not distinguish the
multiplication of two polynomials, the multiplication of two coefficients, and the multiplication of a
coefficient with a polynomial. So the wish to describe relations between elements can be taken as a
motivation for the introduction of families.

13.2 Filters

A filter is a special unary GAP function that returns either true or false, depending on whether or
not the argument lies in the set defined by the filter. Filters are used to express different aspects of
information about a GAP object, which are described below (see 13.3, 13.4, 13.5, 13.6, 13.7, 13.8).

Presently any filter in GAP is implemented as a function which corresponds to a set of positions
in the bitlist which forms part of the type of each GAP object, and returns true if and only if the
bitlist of the type of the argument has the value true at all of these positions.

The intersection (or meet) of two filters fi1t1, fil1t2 is again a filter, it can be formed as

filtl and filt2

See 20.4 for more details.
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For example, IsList and IsEmpty is a filter that returns true if its argument is an empty
list, and false otherwise. The filter IsGroup (39.2.7) is defined as the intersection of the category
IsMagmaWithInverses (35.1.4) and the property IsAssociative (35.4.7).

A filter that is not the meet of other filters is called a simple filter. For example, each attribute
tester (see 13.6) is a simple filter. Each simple filter corresponds to a position in the bitlist currently
used as part of the data structure representing a type.

Every filter has a rank, which is used to define a ranking of the methods installed for an operation,
see Section 78.2. The rank of a filter can be accessed with RankFilter (13.2.1).

13.2.1 RankFilter

> RankFilter(filt) (function)

For simple filters, an incremental rank is defined when the filter is created, see the sections about
the creation of filters: 79.1, 79.2, 79.3, 79.4. For an arbitrary filter, its rank is given by the sum of
the incremental ranks of the involved simple filters; in addition to the implied filters, these are also
the required filters of attributes (again see the sections about the creation of filters). In other words,
for the purpose of computing the rank and only for this purpose, attribute testers are treated as if they
would imply the requirements of their attributes.

13.2.2 NamesFilter

> NamesFilter(filt) (function)

NamesFilter returns a list of names of the implied simple filters of the filter filt, these are all
those simple filters imp such that every object in filt also lies in imp. For implications between
filters, see ShowImpliedFilters (13.2.3) as well as sections 78.7, 79.1, 79.2, 79.3.

13.2.3 ShowlmpliedFilters

> ShowImpliedFilters(filter) (function)

Displays information about the filters that may be implied by filter. They are given by their
names. ShowImpliedFilters first displays the names of all filters that are unconditionally implied
by filter. It then displays implications that require further filters to be present (indicating by + the
required further filters). The function displays only first-level implications, implications that follow
in turn are not displayed (though GAP will do these).
Example

gap> ShowImpliedFilters(IsMatrix);
Implies:
IsGeneralizedRowVector
IsNearAdditiveElementWithInverse
IsAdditiveElement
IsMultiplicativeElement

May imply with:
+IsGF2MatrixRep
IsOrdinaryMatrix




GAP - Reference Manual 162

+CategoryCollections(CategoryCollections(IsAdditivelyCommutativeElement))
IsAdditivelyCommutativeElement

+IsInternalRep
IsOrdinaryMatrix

13.3 Categories

The categories of an object are filters (see 13.2) that determine what operations an object admits.
For example, all integers form a category, all rationals form a category, and all rational functions
form a category. An object which claims to lie in a certain category is accepting the requirement that
it should have methods for certain operations (and perhaps that their behaviour should satisfy certain
axioms). For example, an object lying in the category IsList (21.1.1) must have methods for Length
(21.17.5), IsBound\ [\] (21.2.1) and the list element access operation \ [\] (21.2.1).

An object can lie in several categories. For example, a row vector lies in the categories IsList
(21.1.1) and IsVector (31.14.14); each list lies in the category IsCopyable (12.6.1), and depending
on whether or not it is mutable, it may lie in the category IsMutable (12.6.2). Every domain lies in
the category IsDomain (31.9.1).

Of course some categories of a mutable object may change when the object is changed. For
example, after assigning values to positions of a mutable non-dense list, this list may become part of
the category IsDenseList (21.1.2).

However, if an object is immutable then the set of categories it lies in is fixed.

All categories in the library are created during initialization, in particular they are not created
dynamically at runtime.

The following list gives an overview of important categories of arithmetic objects. Indented cate-

gories are to be understood as subcategories of the non indented category listed above it.
Example

IsObject
IsExtLElement
IsExtRElement
IsMultiplicativeElement
IsMultiplicativeElementWithOne
IsMultiplicativeElementWithInverse
IsExtAElement
IsAdditiveElement
IsAdditiveElementWithZero
IsAdditiveElementWithInverse

Every object lies in the category IsObject (12.1.1).

The categories IsExtLElement (31.14.8) and IsExtRElement (31.14.9) contain objects that can
be multiplied with other objects via * from the left and from the right, respectively. These categories
are required for the operands of the operation *.

The category IsMultiplicativeElement (31.14.10) contains objects that can
be multiplied from the left and from the right with objects from the same fam-
ily. IsMultiplicativeElementWithOne (31.14.11) contains objects obj for which
a multiplicatively neutral element can be obtained by taking the O-th power obj~0.
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IsMultiplicativeElementWithInverse (31.14.13) contains objects obj for which a multi-
plicative inverse can be obtained by forming obj~-1.

Likewise, the categories IsExtAElement (31.14.1), IsAdditiveElement (31.14.3),
IsAdditiveElementWithZero (31.14.5) and IsAdditiveElementWithInverse (31.14.7)
contain objects that can be added via + to other objects, objects that can be added to objects of the
same family, objects for which an additively neutral element can be obtained by multiplication with
zero, and objects for which an additive inverse can be obtained by multiplication with -1.

So a vector lies in IsExtLElement (31.14.8), IsExtRElement (31.14.9) and
IsAdditiveElementWithInverse (31.14.7). A ring element must additionally lie in
IsMultiplicativeElement (31.14.10).

As stated above it is not guaranteed by the categories of objects whether the result of an opera-
tion with these objects as arguments is defined. For example, the category IsMatrix (24.2.1) is a
subcategory of IsMultiplicativeElementWithInverse (31.14.13). Clearly not every matrix has
a multiplicative inverse. But the category IsMatrix (24.2.1) makes each matrix an admissible argu-
ment of the operation Inverse (31.10.8), which may sometimes return fail. Likewise, two matrices
can be multiplied only if they are of appropriate shapes.

Analogous to the categories of arithmetic elements, there are categories of domains of these ele-

ments.
Example

IsObject
IsDomain
IsMagma
IsMagmaWithOne
IsMagmaWithInversesIfNonzero
IsMagmaWithInverses
IsAdditiveMagma
IsAdditiveMagmaWithZero
IsAdditiveMagmaWithInverses
IsExtLSet
IsExtRSet

Of course IsDomain (31.9.1) is a subcategory of IsObject (12.1.1). A domain that is closed under
multiplication * is called a magma and it lies in the category IsMagma (35.1.1). If a magma is closed
under taking the identity, it lies in IsMagmaWithOne (35.1.2), and if it is also closed under taking in-
verses, it lies in IsMagmaWithInverses (35.1.4). The category IsMagmaWithInversesIfNonzero
(35.1.3) denotes closure under taking inverses only for nonzero elements, every division ring lies in
this category.

Note that every set of categories constitutes its own notion of generation, for example a group may
be generated as a magma with inverses by some elements, but to generate it as a magma with one it
may be necessary to take the union of these generators and their inverses.

13.3.1 CategoriesOfObject

> CategoriesOfObject(object) (operation)

returns a list of the names of the categories in which object lies.
Example

gap> g:=Group((1,2),(1,2,3));;
gap> Categories0fObject(g);
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[ "IsListOrCollection", "IsCollection", "IsExtLElement",
"CategoryCollections (IsExtLElement)", "IsExtRElement",
"CategoryCollections (IsExtRElement)",
"CategoryCollections(IsMultiplicativeElement)",
"CategoryCollections(IsMultiplicativeElementWithOne)",
"CategoryCollections (IsMultiplicativeElementWithInverse)",
"CategoryCollections(IsAssociativeElement)",

"CategoryCollections(IsFiniteOrderElement)", "IsGeneralizedDomain",
"CategoryCollections(IsPerm)", "IsMagma", "IsMagmaWithOne",
"IsMagmaWithInversesIfNonzero", "IsMagmaWithInverses" ]

13.4 Representation

The representation of an object is a set of filters (see 13.2) that determines how an object is actually
represented. For example, a matrix or a polynomial can be stored sparsely or densely; all dense poly-
nomials form a representation. An object which claims to lie in a certain representation is accepting
the requirement that certain fields in the data structure be present and have specified meanings.

GAP distinguishes four essentially different ways to represent objects.  First there are
the representations IsInternalRep for internal objects such as integers and permutations, and
IsDataObjectRep for other objects that are created and whose data are accessible only by kernel
functions. The data structures underlying such objects cannot be manipulated at the GAP level.

All other objects are either in the representation IsComponent0ObjectRep or in the representation
IsPositionalObjectRep, see 79.10 and 79.11.

An object can belong to several representations in the sense that it lies in several subrepresen-
tations of IsComponentObjectRep or of IsPositionalObjectRep. The representations to which
an object belongs should form a chain and either two representations are disjoint or one is contained
in the other. So the subrepresentations of IsComponentObjectRep and IsPositionalObjectRep
each form trees. In the language of Object Oriented Programming, we support only single inheritance
for representations.

These trees are typically rather shallow, since for one representation to be contained in another
implies that all the components of the data structure implied by the containing representation, are
present in, and have the same meaning in, the smaller representation (whose data structure presumably
contains some additional components).

Objects may change their representation, for example a mutable list of characters can be converted
into a string.

All representations in the library are created during initialization, in particular they are not created
dynamically at runtime.

Examples of subrepresentations of IsPositionalObjectRep are IsModulusRep, which is used
for residue classes in the ring of integers, and IsDenseCoeffVectorRep, which is used for elements
of algebras that are defined by structure constants.

An important subrepresentation of IsComponentObjectRep is IsAttributeStoringRep,
which is used for many domains and some other objects. It provides automatic storing of all attribute
values (see below).
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13.4.1 RepresentationsOfObject

> RepresentationsOfObject(object) (operation)

returns a list of the names of the representations object has.
Example

gap> g:=Group((1,2),(1,2,3));;
gap> RepresentationsOfObject(g);
[ "IsComponentObjectRep", "IsAttributeStoringRep" ]

13.5 Attributes

The attributes of an object describe knowledge about it.

An attribute is a unary operation without side-effects.

An object may store values of its attributes once they have been computed, and claim that it knows
these values. Note that “store” and “know” have to be understood in the sense that it is very cheap to
get such a value when the attribute is called again.

The stored value of an attribute is in general immutable (see 12.6), except if the attribute had been
specially constructed as “mutable attribute”.

It depends on the representation of an object (see 13.4) which attribute values it stores. An object
in the representation IsAttributeStoringRep stores all attribute values once they are computed.
Moreover, for an object in this representation, subsequent calls to an attribute will return the same
object; this is achieved via a special method for each attribute setter that stores the attribute value in
an object in IsAttributeStoringRep, and a special method for the attribute itself that fetches the
stored attribute value. (These methods are called the “system setter” and the “system getter” of the
attribute, respectively.)

Note also that it is impossible to get rid of a stored attribute value because the system may have
drawn conclusions from the old attribute value, and just removing the value might leave the data
structures in an inconsistent state. If necessary, a new object can be constructed.

Several attributes have methods for more than one argument. For example IsTransitive
(41.10.1) is an attribute for a G-set that can also be called for the two arguments, being a group G
and its action domain. If attributes are called with more than one argument then the return value is not
stored in any of the arguments.

Properties are a special form of attributes that have the value true or false, see section 13.7.

Examples of attributes for multiplicative elements are Inverse (31.10.8), One (31.10.2), and
Order (31.10.10). Size (30.4.6) is an attribute for domains, Centre (35.4.5) is an attribute for mag-
mas, and DerivedSubgroup (39.12.3) is an attribute for groups.

13.5.1 KnownAttributesOfObject

> KnownAttributesOfObject (object) (operation)

returns a list of the names of the attributes whose values are known for object.

Example

gap> g:=Group((1,2),(1,2,3));;Size(g);;

gap> KnownAttributes0f0bject(g);

[ "Size", "OneImmutable", "NrMovedPoints", "MovedPoints",
"GeneratorsOfMagmaWithInverses", "MultiplicativeNeutralElement",
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"HomePcgs", "Pcgs", "GeneralizedPcgs", "StabChainMutable",
"StabChainOptions" ]

13.6 Setter and Tester for Attributes

For every attribute, the attribute setter and the attribute tester are defined.

To check whether an object belongs to an attribute attr, the tester of the attribute is used, see
Tester (13.6.1). To store a value for the attribute attr in an object, the setter of the attribute is used,
see Setter (13.6.2).

13.6.1 Tester

> Tester(attr) (function)

For an attribute attr, Tester (attr) is a filter (see 13.2) that returns true or false, depending
on whether or not the value of attr for the object is known. For example, Tester( Size ) ( obj
) is true if the size of the object obj is known.

13.6.2 Setter

> Setter(attr) (function)

For an attribute attr, Setter(attr) is called automatically when the attribute value has been
computed for the first time. One can also call the setter explicitly, for example, Setter( Size )(
obj, val ) sets val as size of the object obj if the size was not yet known.

For each attribute attr that is declared with DeclareAttribute (79.18.3)
resp. DeclareProperty (79.18.4) (see 79.18), tester and setter are automatically made acces-
sible by the names Hasattr and Setattr, respectively. For example, the tester for Size (30.4.6) is
called HasSize, and the setter is called SetSize.

Example
gap> g:=Group((1,2,3,4),(1,2));;Size(g);
24
gap> HasSize(g);
true

gap> SetSize(g,99);
gap> Size(g);
24

For two properties propl and prop2, the intersection prop! and prop2 (see 13.2) is again a
property for which a setter and a tester exist. Setting the value of this intersection to true for a GAP
object means to set the values of prop1 and prop2 to true for this object.

Example
gap> prop:= IsFinite and IsCommutative;
<Property "<<and-filter>>">

gap> g:= Group( (1,2,3), (4,5) );;

gap> Tester( prop )( g );

false

gap> Setter( prop )( g, true );
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gap> Tester( prop )( g ); prop( g );
true
true

It is not allowed to set the value of such an intersection to false for an object.

Example
gap> Setter( prop )( Rationals, false );
You cannot set an "and-filter" except to true

not in any function

Entering break read-eval-print loop ...

you can ’quit;’ to quit to outer loop, or

you can type ’return true;’ to set all components true

(but you might really want to reset just one component) to continue
brk>

13.6.3 AttributeValueNotSet

> AttributeValueNotSet(attr, obj) (function)

If the value of the attribute attr is already stored for obj, AttributeValueNotSet simply
returns this value. Otherwise the value of attr ( obj ) is computed and returned without storing it
in obj. This can be useful when “large” attribute values (such as element lists) are needed only once
and shall not be stored in the object.

Example

gap> HasAsSSortedList(g);

false

gap> AttributeValueNotSet (AsSSortedList,g);

L O, (4,5), (1,2,3), (1,2,3)(4,5), (1,3,2), (1,3,2)(4,5) 1
gap> HasAsSSortedList(g);

false

The normal behaviour of attributes (when called with just one argument) is that once a method
has been selected and executed, and has returned a value the setter of the attribute is called, to (pos-
sibly) store the computed value. In special circumstances, this behaviour can be altered dynami-
cally on an attribute-by-attribute basis, using the functions DisableAttributeValueStoring and
EnableAttributeValueStoring.

In general, the code in the library assumes, for efficiency, but not for correctness, that attribute
values will be stored (in suitable objects), so disabling storing may cause substantial computations to
be repeated.

13.6.4 InfoAttributes
> InfoAttributes (info class)
This info class (together with InfoWarning (7.4.7) is used for messages about attribute storing

being disabled (at level 2) or enabled (level 3). It may be used in the future for other messages
concerning changes to attribute behaviour.
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13.6.5 DisableAttributeValueStoring

> DisableAttributeValueStoring(attr) (function)

disables the usual call of Setter( attr ) when a method for attr returns a value. In conse-
quence the values will never be stored. Note that attr must be an attribute and not a property.

13.6.6 EnableAttributeValueStoring

> EnableAttributeValueStoring(attr) (function)

enables the usual call of Setter( attr ) when a method for attr returns a value.
In consequence the values may be stored. This will usually have no effect unless
DisableAttributeValueStoring has previously been used for attr. Note that attr must be

an attribute and not a property.

Example

gap> g := Group((1,2,3,4,5),(1,2,3));

Group([ (1,2,3,4,5), (1,2,3) 1)

gap> KnownAttributes0f0bject(g);

[ "LargestMovedPoint", "GeneratorsOfMagmaWithInverses",
"MultiplicativeNeutralElement" ]

gap> SetInfolLevel (InfoAttributes,3);

gap> DisableAttributeValueStoring(Size);

#I Disabling value storing for Size

gap> Size(g);

60

gap> KnownAttributes0fObject(g);

[ "OneImmutable", "LargestMovedPoint", "NrMovedPoints",
"MovedPoints", "GeneratorsOfMagmaWithInverses",
"MultiplicativeNeutralElement", "StabChainMutable",
"StabChainOptions" ]

gap> Size(g);

60

gap> EnableAttributeValueStoring(Size);

#I Enabling value storing for Size

gap> Size(g);

60

gap> KnownAttributes0fObject(g);

[ "Size", "Onelmmutable", "LargestMovedPoint", "NrMovedPoints",
"MovedPoints", "GeneratorsOfMagmaWithInverses",
"MultiplicativeNeutralElement", "StabChainMutable",
"StabChainOptions" ]

13.7 Properties

The properties of an object are those of its attributes (see 13.5) whose values can only be true or
false.

The main difference between attributes and properties is that a property defines two sets of objects,
namely the usual set of all objects for which the value is known, and the set of all objects for which
the value is known to be true.
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(Note that it makes no sense to consider a third set, namely the set of objects for which the value
of a property is true whether or not it is known, since there may be objects for which the containment
in this set cannot be decided.)

For a property prop, the containment of an object obj in the first set is checked again by applying
Tester( prop ) to obj, and obj lies in the second set if and only if Tester( prop ) ( obj )
and prop( obj ) istrue.

If a property value is known for an immutable object then this value is also stored, as part of the
type of the object. To some extent, property values of mutable objects also can be stored, for example
a mutable list all of whose entries are immutable can store whether it is strictly sorted. When the
object is mutated (for example by list assignment) the type may need to be adjusted.

Important properties for domains are IsAssociative (35.4.7), IsCommutative (35.4.9),
IsAnticommutative (56.4.6), IsLDistributive (56.4.3) and IsRDistributive (56.4.4), which
mean that the multiplication of elements in the domain satisfies (axb)xc =ax* (b*c), axb=b=xa,
axb=—(bxa),ax(b+c)=axb+axc,and (a+b)*c=ax*c+bx*c, respectively, for all a, b, ¢ in
the domain.

13.7.1 KnownPropertiesOfObject

> KnownPropertiesOfObject (object) (operation)

returns a list of the names of the properties whose values are known for object.

13.7.2 KnownTruePropertiesOfObject

> KnownTrueProperties0fObject(object) (operation)

returns a list of the names of the properties known to be true for object.
Example

gap> g:=Group((1,2),(1,2,3));;

gap> KnownPropertiesOfObject(g);

[ "IsFinite", "CanEasilyCompareElements", "CanEasilySortElements",
"IsDuplicateFree", "IsGeneratorsOfMagmaWithInverses",
"IsAssociative", "IsGeneratorsOfSemigroup", "IsSimpleSemigroup",
"IsRegularSemigroup", "IsCompletelyRegularSemigroup",
"IsCompletelySimpleSemigroup", "IsFinitelyGeneratedGroup",
"IsSubsetLocallyFiniteGroup", "KnowsHowToDecompose",
"IsNilpotentByFinite" ]

gap> Size(g);

6

gap> KnownPropertiesOfObject(g);

[ "IsEmpty", "IsTrivial", "IsNonTrivial", "IsFinite",
"CanEasilyCompareElements", "CanEasilySortElements",
"IsDuplicateFree", "IsGeneratorsOfMagmaWithInverses",
"IsAssociative", "IsGeneratorsOfSemigroup", "IsSimpleSemigroup",
"IsRegularSemigroup", "IsCompletelyRegularSemigroup",
"IsCompletelySimpleSemigroup", "IsFinitelyGeneratedGroup",
"IsSubsetLocallyFiniteGroup", "KnowsHowToDecompose",
"IsPerfectGroup", "IsSolvableGroup", "IsPolycyclicGroup",
"IsNilpotentByFinite", "IsTorsionFree", "IsFreeAbelian" ]

gap> KnownTrueProperties0fObject(g);
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[ "IsNonTrivial", "IsFinite", "CanEasilyCompareElements",
"CanEasilySortElements", "IsDuplicateFree",
"IsGeneratorsOfMagmaWithInverses", "IsAssociative",
"IsGeneratorsOfSemigroup", "IsSimpleSemigroup",
"IsRegularSemigroup", "IsCompletelyRegularSemigroup",
"IsCompletelySimpleSemigroup", "IsFinitelyGeneratedGroup",
"IsSubsetLocallyFiniteGroup", "KnowsHowToDecompose",
"IsSolvableGroup", "IsPolycyclicGroup", "IsNilpotentByFinite" ]

13.8 Other Filters

There are situations where one wants to express a kind of knowledge that is based on some heuristic.

For example, the filters (see 13.2) CanEasilyTestMembership (39.25.1) and
CanEasilyComputePcgs (45.2.3) are defined in the GAP library. Note that such filters do not
correspond to a mathematical concept, contrary to properties (see 13.7). Also it need not be defined
what “easily” means for an arbitrary GAP object, and in this case one cannot compute the value for
an arbitrary GAP object. In order to access this kind of knowledge as a part of the type of an object,
GAP provides filters for which the value is false by default, and it is changed to true in certain
situations, either explicitly (for the given object) or via a logical implication (see 78.7) from other
filters.

For example, a true value of CanEasilyComputePcgs (45.2.3) for a group means that certain
methods are applicable that use a pcgs (see 45.1) for the group. There are logical implications to set
the filter value to true for permutation groups that are known to be solvable, and for groups that have
already a (sufficiently nice) pcgs stored. In the case one has a solvable matrix group and wants to
enable methods that use a pcgs, one can set the CanEasilyComputePcgs (45.2.3) value to true for
this particular group.

A filter filt of the kind described here is different from the other filters introduced in the previous
sections. In particular, filt is not a category (see 13.3) or a property (see 13.7) because its value may
change for a given object, and £filt is not a representation (see 13.4) because it has nothing to do
with the way an object is made up from some data. filt is similar to an attribute tester (see 13.6),
the only difference is that £i1t does not refer to an attribute value; note that £i1¢ is also used in the
same way as an attribute tester; namely, the true value may be required for certain methods to be
applicable.

13.9 Types

We stated above (see 13) that, for an object obj, its fype is formed from its family and its filters. There
is a also a third component, used in a few situations, namely defining data of the type.

13.9.1 TypeObj

> TypeObj (Obj) (function)

returns the type of the object obj.
The type of an object is itself an object.
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Two types are equal if and only if the two families are identical, the filters are equal, and, if
present, also the defining data of the types are equal.

13.9.2 DataType

> DataType (type) (function)

The last part of the type, defining data, has not been mentioned before and seems to be of minor
importance. It can be used, e.g., for cosets U g of a group U, where the type of each coset may contain
the group U as defining data. As a consequence, two such cosets mod U and V can have the same
type only if U = V. The defining data of the type type can be accessed via DataType.



Chapter 14

Integers

One of the most fundamental datatypes in every programming language is the integer type. GAP is
no exception.

GAP integers are entered as a sequence of decimal digits optionally preceded by a “+” sign for
positive integers or a “~” sign for negative integers. The size of integers in GAP is only limited by the
amount of available memory, so you can compute with integers having thousands of digits.

Example
gap> -1234;

-1234

gap> 123456789012345678901234567890123456789012345678901234567890;
123456789012345678901234567890123456789012345678901234567890

Many more functions that are mainly related to the prime residue group of integers modulo an
integer are described in chapter 15, and functions dealing with combinatorics can be found in chap-
ter 16.

14.1 Integers: Global Variables

14.1.1 Integers (global variable)

> Integers (global variable)
> PositiveIntegers (global variable)
> Nonnegativelntegers (global variable)

These global variables represent the ring of integers and the semirings of positive and nonnegative
integers, respectively.
Example
gap> Size( Integers ); 2 in Integers;
infinity
true

Integers is a subset of Rationals (17.1.1), which is a subset of Cyclotomics (18.1.2). See
Chapter 18 for arithmetic operations and comparison of integers.

172
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14.1.2 IsIntegers

> IsIntegers(obj) (Category)
> IsPositivelntegers(obj) (Category)
> IsNonnegativeIntegers(obj) (Category)

are the defining categories for the domains Integers (14.1.1), PositiveIntegers (14.1.1), and
NonnegativeIntegers (14.1.1).

Example
gap> IsIntegers( Integers ); IsIntegers( Rationals ); IsIntegers( 7 );
true
false
false

14.2 Elementary Operations for Integers

14.2.1 IsInt

> IsInt (Obj) (Category)

Every rational integer lies in the category IsInt, which is a subcategory of IsRat (17.2.1).

14.2.2 IsPoslInt

> IsPosInt(obj) (Category)

Every positive integer lies in the category IsPosInt.

14.2.3 Int

> Int(elm) (attribute)

Int returns an integer int whose meaning depends on the type of elm.

If elm is a rational number (see Chapter 17) then int is the integer part of the quotient of numer-
ator and denominator of elm (see QuoInt (14.3.1)).

If elm is an element of a finite prime field (see Chapter 59) then int is the smallest nonnegative
integer such that eIm = int * One( elm ).

If elm is a string (see Chapter 27) consisting of digits >0, *1°, ..., ?9? and ’-’ (at the first
position) then int is the integer described by this string. The operation String (27.6.6) can be used
to compute a string for rational integers, in fact for all cyclotomics.

Example

gap> Int( 4/3 ); Int( -2/3 );

1

0

gap> int:= Int( Z(B) ); int * One( Z(5) );

2

Z(5)

gap> Int( "12345" ); Int( "-27" ); Int( "-27/3" );
12345
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-27
fail

14.2.4 IsEvenlnt

> IsEvenInt(n) (function)

tests if the integer n is divisible by 2.

14.2.5 IsOddInt

> Is0ddInt(n) (function)

tests if the integer n is not divisible by 2.

14.2.6 AbsInt

> AbsInt(n) (function)

AbsInt returns the absolute value of the integer n, i.e., n if n is positive, -n if n is negative and 0
ifnisO.
AbsInt is a special case of the general operation EuclideanDegree (56.6.2).

See also AbsoluteValue (18.1.8).
Example

gap> AbsInt( 33 );

33

gap> AbsInt( -214378 );
214378

gap> AbsInt( 0 );

0

14.2.7 SignInt

> Signlnt (n) (function)

SignInt returns the sign of the integer n, i.e., 1 if n is positive, -1 if n is negative and 0 if n is O.
Example

gap> SignInt( 33 );

1

gap> SignInt( -214378 );
-1

gap> SignInt( 0 );

0

14.2.8 LoglInt

> LogInt (n, base) (function)
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LogInt returns the integer part of the logarithm of the positive integer n with respect to the
positive integer base, i.e., the largest positive integer e such that base® < n. The function LogInt
will signal an error if either n or base is not positive.

For base =2 this is very efficient because the internal binary representation of the integer is used.

Example

gap> LogInt( 1030, 2 );
10

gap> 2710;

1024

gap> LogInt( 1, 10 );

0

14.2.9 RootInt

> RootInt(n[, k1) (function)

RootInt returns the integer part of the kth root of the integer n. If the optional integer argument
k is not given it defaults to 2, i.e., Root Int returns the integer part of the square root in this case.

If n is positive, RootInt returns the largest positive integer r such that X <n. Ifnis negative
and k is odd RootInt returns -RootInt( -n, k ). If n is negative and k is even RootInt will

cause an error. RootInt will also cause an error if k is O or negative.
Example

gap> RootInt( 361 );

19

gap> RootInt( 2 * 10712 );
1414213

gap> RootInt( 17000, 5 );
7

gap> 775;

16807

14.2.10 SmallestRootInt

> SmallestRootInt (n) (function)

SmallestRootInt returns the smallest root of the integer n.

The smallest root of an integer n is the integer r of smallest absolute value for which a positive

integer k exists such that n = r*.

Example
gap> SmallestRootInt( 2730 );
2
gap> SmallestRootInt( -(27°30) );
-4
Note that (—2)30 = +(2%0).
Example

gap> SmallestRootInt( 279936 );
6
gap> LogInt( 279936, 6 );
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7
gap> SmallestRootInt( 1001 );
1001

14.2.11 ListOfDigits

> LiS‘thDigitS(n) (function)

For a positive integer n this function returns a list 1, consisting of the digits of n in decimal
representation.

Example

gap> List0fDigits(3142);
[3: 114,2]

14.2.12 Random (for integers)

> Random(Integers) (function)

Random for integers returns pseudo random integers between —10 and 10 distributed according to
a binomial distribution. To generate uniformly distributed integers from a range, use the construction
Random( [ low .. high ] ) (seeRandom (30.7.1)).

14.3 Quotients and Remainders

14.3.1 Quolnt

> QuoInt(n, m) (function)

QuoInt returns the integer part of the quotient of its integer operands.

If n and m are positive, QuoInt returns the largest positive integer g such that gxm < n. If n orm
or both are negative the absolute value of the integer part of the quotient is the quotient of the absolute
values of n and m, and the sign of it is the product of the signs of n and m.

QuoInt is used in a method for the general operation EuclideanQuotient (56.6.3).

Example
gap> QuoInt(5,3); QuoInt(-5,3); QuoInt(5,-3); QuoInt(-5,-3);
1
-1
-1
1

14.3.2 BestQuolnt
> BestQuoInt(n, m) (function)
BestQuoInt returns the best quotient g of the integers n and m. This is the quotient such that

n — g *m has minimal absolute value. If there are two quotients whose remainders have the same
absolute value, then the quotient with the smaller absolute value is chosen.
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Example
gap> BestQuoInt( 5, 3 ); BestQuoInt( -5, 3 );
2
-2
14.3.3 Remlnt
> RemInt (n, m) (function)

RemInt returns the remainder of its two integer operands.

If m is not equal to zero, RemInt returns n - m * QuoInt( n, m ). Note that the rules given
for QuoInt (14.3.1) imply that the return value of RemInt has the same sign as n and its absolute
value is strictly less than the absolute value of m. Note also that the return value equals n mod m
when both n and m are nonnegative. Dividing by 0O signals an error.

RemInt is used in a method for the general operation EuclideanRemainder (56.6.4).
Example
gap> RemInt(5,3); RemInt(-5,3); RemInt(5,-3); RemInt(-5,-3);
2

-2

2

-2

14.3.4 GcedInt

> GcdInt (m, n) (function)

GedInt returns the greatest common divisor of its two integer operands m and n, i.e., the greatest
integer that divides both m and n. The greatest common divisor is never negative, even if the arguments
are. We define GedInt( m, 0 ) = GedInt( O, m ) = AbsInt( m ) and GedInt( O, 0 ) =
0.

GcdInt is a method used by the general function Ged (56.7.1).

Example

gap> GecdInt( 123, 66 );
3

14.3.5 Gcedex

> Gecdex(m, n) (function)

returns a record g describing the extended greatest common divisor of m and n. The compo-
nent gcd is this ged, the components coeffl and coeff2 are integer cofactors such that g.ged =
g.coeffl * m + g.coeff2 * n, and the components coeff3 and coeff4 are integer cofactors
suchthat0 = g.coeff3 * m + g.coeffd * n.

If m and n both are nonzero, AbsInt( g.coeffl ) is less than or equal to AbsInt(n) / (2 *
g.gcd), and AbsInt ( g.coeff2 ) isless than or equal to AbsInt(m) / (2 * g.gcd).

If m or n or both are zero coeff3is -n / g.gcd and coeff4dism / g.gecd.

The coefficients always form a unimodular matrix, i.e., the determinant g.coeffl * g.coeff4
- g.coeff3 * g.coeff2islor —1.
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Example

gap> Gcdex( 123, 66 );
rec( coeffl := 7, coeff2 :
ged := 3 )

-13, coeff3 := -22, coeffd := 41,

This means 3 =7 123 —13%66, 0 = —22 % 123 441 * 66.
Example

gap> Gcdex( 0, -3 );
rec( coeffl := 0, coeff2 := -1, coeff3 := 1, coeff4d := 0, gcd := 3 )
gap> Gcdex( 0, 0 );
rec( coeffl := 1, coeff2 := 0, coeff3 := 0, coeffd := 1, gcd := 0 )

GcdRepresentation (56.7.3) provides similar functionality over arbitrary Euclidean rings.

14.3.6 LcmliInt

> LcmInt (m, n) (function)

returns the least common multiple of the integers m and n.
LemInt is a method used by the general operation Lem (56.7.6).
Example

gap> LemInt( 123, 66 );
2706

14.3.7 CoefficientsQadic
> CoefficientsQadic(i, q) (operation)
returns the g-adic representation of the integer i as a list / of coefficients satisfying the equality

i=Y,_0q’ 1[j+1] foran integer q > I.
Example

gap> l:=CoefficientsQadic(462,3);
[0, 1,0,2,2,1]1]

14.3.8 CoefficientsMultiadic

> CoefficientsMultiadic(ints, int) (function)

returns the multiadic expansion of the integer int modulo the integers given in ints (in ascending
order). It returns a list of coefficients in the reverse order to that in ints.

14.3.9 ChineseRem
> ChineseRem(moduli, residues) (function)
ChineseRem returns the combination of the residues modulo the moduli, i.e., the unique in-

teger ¢ from [0..Lcm(moduli)-1] such that ¢ = residues [i] modulo moduli [i] for all i, if it
exists. If no such combination exists ChineseRem signals an error.
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Such a combination does exist if and only if residues[i] = residues[k] mod Gcd(
moduli [i], moduli[k] ) for every pair i, k. Note that this implies that such a combination exists
if the moduli are pairwise relatively prime. This is called the Chinese remainder theorem.

Example
gap> ChineseRem( [ 2, 3, 5, 71, [ 1, 2, 3, 41 );
53
gap> ChineseRem( [ 6, 10, 14 1, [ 1, 3, 51 );
103
Example

gap> ChineseRem( [ 6, 10, 14 1, [ 1, 2, 31 );

Error, the residues must be equal modulo 2 called from
<function>( <arguments> ) called from read-eval-loop
Entering break read-eval-print loop ...

you can ’quit;’ to quit to outer loop, or

you can ’return;’ to continue

brk> gap>

14.3.10 PowerModInt

> PowerModInt(r, e, m) (function)

returns r€  (mod m) for integers r, e and m (e > 0).

Note that PowerModInt can reduce intermediate results and thus will generally be faster than
using r~e mod m, which would compute r€ first and reduces the result afterwards.

PowerModInt is a method for the general operation PowerMod (56.7.9).

14.4 Prime Integers and Factorization
14.4.1 Primes

> Primes (global variable)

Primes is a strictly sorted list of the 168 primes less than 1000.

This is used in IsPrimeInt (14.4.2) and FactorsInt (14.4.7) to cast out small primes quickly.
Example

gap> Primes[1];

2

gap> Primes[100];
541

14.4.2 IsPrimelnt

> IsPrimeInt(n) (function)
> IsProbablyPrimeInt(n) (function)

IsPrimeInt returns false if it can prove that the integer n is composite and true otherwise.
By convention IsPrimeInt(0) = IsPrimeInt(1) = false and we define IsPrimeInt(-n) =
IsPrimeInt(n).
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IsPrimeInt will return true for every prime n. IsPrimeInt will return false for all composite
n < 10'8 and for all composite n that have a factor p < 1000. So for integers n < 10'®, IsPrimeInt
is a proper primality test. It is conceivable that IsPrimeInt may return true for some composite
n > 10'®, but no such n is currently known. So for integers n > 10'®, IsPrimeInt is a probable-
primality test. IsPrimeInt will issue a warning when its argument is probably prime but not a proven
prime. (The function IsProbablyPrimeInt will do a similar calculation but not issue a warning.)
The warning can be switched off by SetInfolLevel( InfoPrimelInt, O );, the default level is 1
(also see SetInfolLevel (7.4.3)).

If composites that fool IsPrimeInt do exist, they would be extremely rare, and finding one by
pure chance might be less likely than finding a bug in GAP. We would appreciate being informed
about any example of a composite number n for which IsPrimeInt returns true.

IsPrimeInt is a deterministic algorithm, i.e., the computations involve no random numbers, and
repeated calls will always return the same result. IsPrimeInt first does trial divisions by the primes
less than 1000. Then it tests that n is a strong pseudoprime w.r.t. the base 2. Finally it tests whether
n is a Lucas pseudoprime w.r.t. the smallest quadratic nonresidue of n. A better description can be
found in the comment in the library file primality.gi.

The time taken by IsPrimelInt is approximately proportional to the third power of the number of
digits of n. Testing numbers with several hundreds digits is quite feasible.

IsPrimeInt is a method for the general operation IsPrime (56.5.8).

Remark: In future versions of GAP we hope to change the definition of IsPrimeInt to return
true only for proven primes (currently, we lack a sufficiently good primality proving function). In

applications, use explicitly IsPrimeInt or IsProbablyPrimeInt with this change in mind.
Example

gap> IsPrimeInt( 2°31 - 1 );
true
gap> IsPrimeInt( 10742 + 1 );
false

14.4.3 PrimalityProof

> PrimalityProof (n) (function)

Construct a machine verifiable proof of the primality of (the probable prime) n, following the
ideas of [BLS75]. The proof consists of various Fermat and Lucas pseudoprimality tests, which taken
as a whole prove the primality. The proof is represented as a list of witnesses of two kinds. The first
kind, [ "F", divisor, base ], indicates a successful Fermat pseudoprimality test, where n is a
strong pseudoprime at base with order not divisible by (n — 1) /divisor. The second kind, [ "L",
divisor, discriminant, P ] indicates a successful Lucas pseudoprimality test, for a quadratic
form of given discriminant and middle term P with an extra check at (n + 1) /divisor.

14.4.4 IsPrimePowerlInt

> IsPrimePowerInt (n) (function)

IsPrimePowerInt returns true if the integer n is a prime power and false otherwise.

An integer n is a prime power if there exists a prime p and a positive integer i such that p’ = n.
If n is negative the condition is that there must exist a negative prime p and an odd positive integer i
such that p’ = n. The integers 1 and -1 are not prime powers.
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Note that IsPrimePowerInt uses SmallestRootInt (14.2.10) and a probable-primality test (see
IsPrimeInt (14.4.2)).

Example
gap> IsPrimePowerInt( 3175 );
true
gap> IsPrimePowerInt( 2°31-1 ); # 2~31-1 is actually a prime
true
gap> IsPrimePowerInt( 2°63-1 );
false
gap> Filtered( [-10..10], IsPrimePowerInt );
[ -8, -7, -5, -3, -2, 2, 3, 4, 5, 7, 8, 9]

14.4.5 NextPrimelnt

> NextPrimeInt (n) (function)

NextPrimeInt returns the smallest prime which is strictly larger than the integer n.
Note that NextPrimeInt uses a probable-primality test (see IsPrimeInt (14.4.2)).

Example
gap> NextPrimeInt( 541 ); NextPrimeInt( -1 );
547
2
14.4.6 PrevPrimelnt
> PrevPrimeInt (n) (function)

PrevPrimeInt returns the largest prime which is strictly smaller than the integer n.
Note that PrevPrimeInt uses a probable-primality test (see IsPrimeInt (14.4.2)).

Example
gap> PrevPrimeInt( 541 ); PrevPrimeInt( 1 );
523
-2
14.4.7 Factorsint
> FactorsInt(n) (function)
> FactorsInt(n: RhoTrials := trials) (function)

FactorsInt returns a list of factors of a given integer n such that Product ( FactorsInt( n )
) = n. If |n] <1 the list [n] is returned. Otherwise the result contains probable primes, sorted by
absolute value. The entries will all be positive except for the first one in case of a negative n.

See PrimeDivisors (14.4.8) for a function that returns a set of (probable) primes dividing n.

Note that FactorsInt uses a probable-primality test (see IsPrimeInt (14.4.2)). Thus
FactorsInt might return a list which contains composite integers. In such a case you will get a
warning about the use of a probable prime. You can switch off these warnings by SetInfoLevel(
InfoPrimeInt, O ); (also see SetInfolLevel (7.4.3)).

The time taken by FactorsInt is approximately proportional to the square root of the second
largest prime factor of n, which is the last one that FactorsInt has to find, since the largest factor
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is simply what remains when all others have been removed. Thus the time is roughly bounded by the
fourth root of n. FactorsInt is guaranteed to find all factors less than 10° and will find most factors
less than 10'°. If n contains multiple factors larger than that FactorsInt may not be able to factor n
and will then signal an error.

FactorsInt is used in a method for the general operation Factors (56.5.9).

In the second form, FactorsInt calls FactorsRho with a limit of trials on the number of
trials it performs. The default is 8192. Note that Pollard’s Rho is the fastest method for finding prime
factors with roughly 5-10 decimal digits, but becomes more and more inferior to other factorization
techniques like e.g. the Elliptic Curves Method (ECM) the bigger the prime factors are. Therefore
instead of performing a huge number of Rho trials, itis usually more advisable to install the Factint
package and then simply to use the operation Factors (56.5.9). The factorization of the 8-th Fermat

number by Pollard’s Rho below takes already a while.
Example

gap> FactorsInt( -Factorial(6) );

[ -2, 2, 2, 2, 3, 3, 5]

gap> Set( FactorsInt( Factorial(13)/11 ) );

[2,3,5,7, 13]

gap> FactorsInt( 2763 - 1 );

L7, 7, 73, 127, 337, 92737, 649657 ]

gap> FactorsInt( 10742 + 1 );

[ 29, 101, 281, 9901, 226549, 121499449, 4458192223320340849 ]

gap> FactorsInt(27256+1:RhoTrials:=100000000) ;

[ 1238926361552897,
93461639715357977769163558199606896584051237541638188580280321 ]

14.4.8 PrimeDivisors

> PrimeDivisors(n) (attribute)

PrimeDivisors returns for a non-zero integer n a set of its positive (probable) primes divisors.
In rare cases the result could contain a composite number which passed certain primality tests, see

IsProbablyPrimelInt (14.4.2) and FactorsInt (14.4.7) for more details.
Example

gap> PrimeDivisors(-12);
[ 2, 3]
gap> PrimeDivisors(1);

L1

14.4.9 PartialFactorization

> PartialFactorization(n/[, effort]) (operation)

PartialFactorization returns a partial factorization of the integer n. No assertions are made
about the primality of the factors, except of those mentioned below.

The argument effort, if given, specifies how intensively the function should try to determine
factors of n. The default is effort = 5.

o If effort =0, trial division by the primes below 100 is done. Returned factors below 10* are
guaranteed to be prime.
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* If effort = 1, trial division by the primes below 1000 is done. Returned factors below 10° are
guaranteed to be prime.

e If effort = 2, additionally trial division by the numbers in the lists Primes2 and
ProbablePrimes2 is done, and perfect powers are detected. Returned factors below 10° are
guaranteed to be prime.

* If effort =3, additionally FactorsRho (Pollard’s Rho) with RhoTrials = 256 is used.
» If effort =4, as above, but RhoTrials = 2048.

o If effort = 5, as above, but RhoTrials = 8192. Returned factors below 102 are guaranteed
to be prime, and all prime factors below 10° are guaranteed to be found.

o If effort = 6 and the package Factint is loaded, in addition to the above quite a number of
special cases are handled.

 If effort =7 and the package Factint is loaded, the only thing which is not attempted to obtain
a full factorization into Baillie-Pomerance-Selfridge-Wagstaff pseudoprimes is the application
of the MPQS to a remaining composite with more than 50 decimal digits.

Increasing the value of the argument effort by one usually results in an increase of the runtime
requirements by a factor of (very roughly!) 3 to 10. (Also see CheapFactorsInt (EDIM: Cheap-
Factorslnt)).

Example
gap> List([0..5],i->PartialFactorization(97~35-1,1));
[ L2, 2,2, 2, 2,3, 11, 31, 43,
2446338959059521520901826365168917110105972824229555319002965029 1,
L2, 2,2, 2,2, 3, 11, 31, 43, 967,
2529823122088440042297648774735177983563570655873376751812787 1],
[ 2, 2, 2, 2, 2, 3, 11, 31, 43, 967,
2529823122088440042297648774735177983563570655873376751812787 1,
L2, 2, 2, 2, 2, 3, 11, 31, 43, 967, 39761, 262321,
242549173950325921859769421435653153445616962914227 ],
[ 2, 2,2, 2,2, 3, 11, 31, 43, 967, 39761, 262321, 687121,
352993394104278463123335513593170858474150787 1,
[ 2, 2, 2, 2, 2, 3, 11, 31, 43, 967, 39761, 262321, 687121,
20241187, 504769301, 34549173843451574629911361501 ] 1]

14.4.10 PrintFactorsInt

> PrintFactorsInt (n) (function)

prints the prime factorization of the integer n in human-readable form.
Example
gap> PrintFactorsInt( Factorial( 7 ) ); Print( "\n" );
274%372x5%7




GAP - Reference Manual 184

14.4.11 PrimePowersInt

> PrimePowersInt(n) (function)

returns the prime factorization of the integer n as a list [pi,e1,..., px,ex] withn = pi' - p3? - .- pi*.

Example
gap> PrimePowersInt( Factorial( 7 ) );
[ 2, 4, 3, 2,5, 1, 7, 1]

14.4.12 Divisorsint

> DivisorsInt(a) (function)

DivisorsInt returns a list of all divisors of the integer n. The list is sorted, so that it starts with
1 and ends with n. We define that DivisorsInt( -n ) = DivisorsInt( n ).

Since the set of divisors of 0 is infinite calling DivisorsInt ( 0 ) causes an error.

DivisorsInt may call FactorsInt (14.4.7) to obtain the prime factors. Sigma (15.5.1) and Tau
(15.5.2) compute the sum and the number of positive divisors, respectively.

Example
gap> DivisorsInt( 1 ); DivisorsInt( 20 ); DivisorsInt( 541 );
[ 11
[1, 2, 4, 5, 10, 20 ]
[ 1, 541 ]

14.5 Residue Class Rings

ZmodnZ (14.5.2) returns a residue class ring of Integers (14) modulo an ideal. These residue class
rings are rings, thus all operations for rings (see Chapter 56) apply. See also Chapters 59 and 15.

14.5.1 \mod (for residue class rings)

> \IIlOd (I‘/S N Il) (operation)
If r, s and n are integers, r / s as a reduced fraction is p/q, where q and n are coprime, then

r / s mod n is defined to be the product of p and the inverse of ¢ modulo n. See Section 4.13 for

more details and definitions.

With the above definition, 4 / 6 mod 32 equals 2 / 3 mod 32 and hence exists (and is equal
to 22), despite the fact that 6 has no inverse modulo 32.

14.5.2 ZmodnZ

> ZmodnZ (n) (function)
> Zmode (p) (function)
> ZmodeNC (p) (function)

ZmodnZ returns a ring R isomorphic to the residue class ring of the integers modulo the positive
integer n. The element corresponding to the residue class of the integer i in this ring can be obtained
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by i * One( R ), and a representative of the residue class corresponding to the element x € R can
be computed by Int(x).

ZmodnZ( n ) isequal to Integers mod n.

ZmodpZ does the same if the argument p is a prime integer, additionally the result is a field.
ZmodpZNC omits the check whether p is a prime.

Each ring returned by these functions contains the whole family of its elements if n is not a prime,
and is embedded into the family of finite field elements of characteristic n if n is a prime.

14.5.3 ZmodnZObj (for a residue class family and integer)

> ZmodnZ0bj (Fam, r) (operation)
> ZmoanObj (I‘, n) (operation)

If the first argument is a residue class family Fam then ZmodnZ0Obj returns the element in Fam
whose coset is represented by the integer r.

If the two arguments are an integer r and a positive integer n then ZmodnZ0bj returns the element
in ZmodnZ( n ) (see ZmodnZ (14.5.2)) whose coset is represented by the integer r.

Example
gap> r:= ZmodnZ(15);

(Integers mod 15)

gap> fam:=ElementsFamily(FamilyObj(r));;
gap> a:= ZmodnZObj(fam,9);

ZmodnZ0bj( 9, 15 )

gap> ata;

ZmodnZ0bj( 3, 15 )

gap> Int(a+a);

3

14.5.4 IsZmodnZObj

> IsZmodnZObj (Obj) (Category)
> IsZmoanObj Nonprime (Obj) (Category)
> ISZmOdeObj (Obj) (Category)
> IsZmodpZObjSmall (Obj) (Category)
> IsZmodpZObjLarge(obj) (Category)

The elements in the rings Z/nZ are in the category IsZmodnZ0bj. If n is a prime then the elements
are of course also in the category IsFFE (59.1.1), otherwise they are in IsZmodnZObjNonprime.
IsZmodpZObj is an abbreviation of IsZmodnZ0Obj and ISFFE. This category is the disjoint union
of IsZmodpZ0ObjSmall and IsZmodpZObjLarge, the former containing all elements with n at most
MAXSIZE_GF_INTERNAL.

The reasons to distinguish the prime case from the nonprime case are

* that objects in IsZmodnZObjNonprime have an external representation (namely the residue in
the range [0,1,...,n— 1)),

* that the comparison of elements can be defined as comparison of the residues, and
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* that the elements lie in a family of type IsZmodnZ0bjNonprimeFamily (note that for prime n,
the family must be an IsFFEFamily).

The reasons to distinguish the small and the large case are that for small n the elements must
be compatible with the internal representation of finite field elements, whereas we are free to define
comparison as comparison of residues for large n.

Note that we cannot claim that every finite field element of degree 1 is in IsZmodnZ0bj, since
finite field elements in internal representation may not know that they lie in the prime field.

14.6 Check Digits

14.6.1 CheckDigitISBN

> CheckDigitISBN(n) (function)
> CheCkDigitISBNlB(n) (function)
> CheckDigitPostalMoneyOrder (n) (function)
> CheckDigitUPC(n) (function)

These functions can be used to compute, or check, check digits for some everyday items. In each
case what is submitted as input is either the number with check digit (in which case the function
returns true or false), or the number without check digit (in which case the function returns the
missing check digit). The number can be specified as integer, as string (for example in case of leading
zeros) or as a sequence of arguments, each representing a single digit. The check digits tested are
the 10-digit ISBN (International Standard Book Number) using CheckDigitISBN (since arithmetic is
module 11, a digit 11 is represented by an X); the newer 13-digit ISBN-13 using CheckDigitISBN13;
the numbers of 11-digit US postal money orders using CheckDigitPostalMoneyOrder; and the 12-
digit UPC bar code found on groceries using CheckDigitUPC.

Example

gap> CheckDigitISBN("052166103");

Check Digit is ’X’

7x)

gap> CheckDigitISBN("052166103X");
Checksum test satisfied

true

gap> CheckDigitISBN(0,5,2,1,6,6,1,0,3,1);
Checksum test failed

false

gap> CheckDigitISBN(0,5,2,1,6,6,1,0,3,’X’); # note single quotes!
Checksum test satisfied

true

gap> CheckDigitISBN13("9781420094527") ;
Checksum test satisfied

true

gap> CheckDigitUPC("07164183001");

Check Digit is 1

1

gap> CheckDigitPostalMoneyOrder (16786457155) ;
Checksum test satisfied

true
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14.6.2 CheckDigitTestFunction

> CheckDigitTestFunction(l, m, f) (function)

This function creates check digit test functions such as CheckDigitISBN (14.6.1) for check digit
schemes that use the inner products with a fixed vector modulo a number. The scheme creates will
use strings of 1 digits (including the check digits), the check consists of taking the standard product
of the vector of digits with the fixed vector £ modulo m; the result needs to be 0. The function returns

a function that then can be used for testing or determining check digits.
Example
gap> isbntest:=CheckDigitTestFunction(10,11,[1,2,3,4,5,6,7,8,9,-1]1);
function( arg ) ... end

gap> isbntest("038794680") ;

Check Digit is 2

2

14.7 Random Sources

GAP provides Random (30.7.1) methods for many collections of objects. On a lower level these
methods use random sources which provide random integers and random choices from lists.

14.7.1 IsRandomSource

> IsRandomSource(obj) (Category)

This is the category of random source objects which are defined to have, for an object rs in this
category, methods available for the following operations which are explained in more detail below:
Random( rs, list ) giving a random element of a list, Random( rs, low, high ) giving a
random integer between l1ow and high (inclusive), Init (14.7.3), State (14.7.3) and Reset (14.7.3).

Use RandomSource (14.7.5) to construct new random sources.

One idea behind providing several independent (pseudo) random sources is to make algorithms
which use some sort of random choices deterministic. They can use their own new random source
created with a fixed seed and so do exactly the same in different calls.

Random source objects lie in the family RandomSourcesFamily.

14.7.2 Random (for a list)
> Random(rs, list) (operation)

> Random(rs, low, high) (operation)

This operation returns a random element from list 1ist, or an integer in the range from the given
(possibly large) integers low to high, respectively. The choice should only depend on the random
source rs and have no effect on other random sources.

14.7.3 State

> State(rs) (operation)
> Reset(rs[, seed]) (operation)
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> Init(prers[, seed]) (operation)

These are the basic operations for which random sources (see IsRandomSource (14.7.1)) must
have methods.

State should return a data structure which allows to recover the state of the random source such
that a sequence of random calls using this random source can be reproduced. If a random source
cannot be reset (say, it uses truly random physical data) then State should return fail.

Reset( rs, seed ) resets the random source rs to a state described by seed, if the random
source can be reset (otherwise it should do nothing). Here seed can be an output of State and then
should reset to that state. Also, the methods should always allow integers as seed. Without the seed
argument the default seed = 1 is used.

Init is the constructor of a random source, it gets an empty component object prers which has
already the correct type and should fill in the actual data which are needed. Optionally, it should allow
one to specify a seed for the initial state, as explained for Reset.

Most methods for Random (30.7.1) in the GAP library use the GlobalMersenneTwister (14.7.4)

as random source. It can be reset into a known state as in the following example.
Example
gap> seed := State(GlobalMersenneTwister);;

gap> List([1..10],i->Random(Integers));

[ -1, -3, -2, 1, -2, -1, 0, 1, 0, 1]
gap> List([1..10],i->Random(Integers));

[ -1, 0, 2, O, 4, -1, -3, 1, -4, -1]
gap> Reset(GlobalMersenneTwister, seed);;
gap> List([1..10],i->Random(Integers));

[ -1, -3, -2, 1, -2, -1, 0, 1, 0, 1]

14.7.4 IsMersenneTwister

> IsMersenneTwister(rs) (Category)
> IsGAPRandomSource(rs) (Category)
> IsGlobalRandomSource(rs) (Category)
> GlobalMersenneTwister (global variable)
> GlobalRandomSource (global variable)

Currently, the GAP library provides three types of random sources, distinguished by the three
listed categories.

IsMersenneTwister are random sources which use a fast random generator of 32 bit numbers,
called the Mersenne twister. The pseudo random sequence has a period of 2!°°37 — 1 and the numbers
have a 623-dimensional equidistribution. For more details and the origin of the code used in the GAP
kernel, see: http://www.math.sci.hiroshima-u.ac.jp/ "m-mat/MT/emt.html.

Use the Mersenne twister if possible, in particular for generating many large random integers.

There is also a predefined global random source GlobalMersenneTwister which is used by most
of the library methods for Random (30.7.1).

IsGAPRandomSource uses the same number generator as IsGlobalRandomSource, but you can
create several of these random sources which generate their random numbers independently of all
other random sources.

IsGlobalRandomSource gives access to the classical global random generator which was
used by GAP in former releases. You do not need to construct new random sources of this
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kind which would all use the same global data structure. Just use the existing random source
GlobalRandomSource. This uses the additive random number generator described in [Knu98] (Al-
gorithm A in 3.2.2 with lag 30).

14.7.5 RandomSource

> RandomSource(cat[, seed]) (operation)

This operation is used to create new random sources. The first argument cat is the category
describing the type of the random generator, an optional seed which can be an integer or a type
specific data structure can be given to specify the initial state.

Example
gap> rsl := RandomSource(IsMersenneTwister);
<RandomSource in IsMersenneTwister>

gap> statel := State(rsl);;

gap> 11 := List([1..10000], i-> Random(rsi, [1..6]));;

gap> rs2 := RandomSource(IsMersenneTwister);;

gap> 12 := List([1..10000], i-> Random(rs2, [1..61));;
gap> 11 = 12;

true

gap> 11 = List([1..10000], i-> Random(rsil, [1..6]));

false
gap> n := Random(rsl, 1, 27220);
1598617776705343302477918831699169150767442847525442557699717518961




Chapter 15

Number Theory

GAP provides a couple of elementary number theoretic functions. Most of these deal with the group
of integers coprime to m, called the prime residue group. The order of this group is ¢(m) (see Phi
(15.2.2)), and A(m) (see Lambda (15.2.3)) is its exponent. This group is cyclic if and only if m is 2,
4, an odd prime power p”", or twice an odd prime power 2p". In this case the generators of the group,
i.e., elements of order ¢ (m), are called primitive roots (see PrimitiveRootMod (15.3.3)).

Note that neither the arguments nor the return values of the functions listed below are groups or
group elements in the sense of GAP. The arguments are simply integers.

15.1 InfoNumtheor (Info Class)

15.1.1 InfoNumtheor

> InfoNumtheor (info class)

InfoNumtheor is the info class (see 7.4) for the functions in the number theory chapter.

15.2 Prime Residues

15.2.1 PrimeResidues

> PrimeResidues (m) (function)

PrimeResidues returns the set of integers from therange [ 0 .. Abs( m )-1 ] that are co-
prime to the integer m.
Abs (m) must be less than 278, otherwise the set would probably be too large anyhow.

Example
gap> PrimeResidues( O ); PrimeResidues( 1 ); PrimeResidues( 20 );
]

0 ]
1, 3, 7, 9, 11, 13, 17, 19 1]

Lo e B |

190
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15.2.2 Phi
> Phi(m) (operation)
Phi returns the number ¢ (m) of positive integers less than the positive integer m that are coprime

to m.
Suppose that m = p§' p$ -+ pf*. Then ¢ (m) is p$' " (p1 — D)p$  (pa— 1) pf (pr—1).

Example
gap> Phi( 12 );
4
gap> Phi( 2713-1 ); # this proves that 2°(13)-1 is a prime
8190
gap> Phi( 2°15-1 );
27000
15.2.3 Lambda
> Lambda(m) (operation)

Lambda returns the exponent A (m) of the group of prime residues modulo the integer m.

A(m) is the smallest positive integer / such that for every a relatively prime to m we have o' = 1
(mod m). Fermat’s theorem asserts ¢ ™) =1 (mod m); thus A(m) divides ¢ (m) (see Phi (15.2.2)).

Carmichael’s theorem states that A can be computed as follows: A(2) =1, A(4) =2 and A(2¢) =
2¢72if 3 < e, A(p?) = (p—1)p¢~! (i.e. ¢(m)) if p is an odd prime and A (m *n) =Lcm(A (m),A(n))
if m,n are coprime.

Composites for which A(m) divides m — 1 are called Carmichaels. If 6k+ 1, 12k + 1 and
18k 4 1 are primes their product is such a number. There are only 1547 Carmichaels below 10'°

but 455052511 primes.
Example

gap> Lambda( 10 );

4

gap> Lambda( 30 );

4

gap> Lambda( 561 ); # 561 is the smallest Carmichael number
80

15.2.4 GeneratorsPrimeResidues

> GeneratorsPrimeResidues(n) (function)

Let n be a positive integer. GeneratorsPrimeResidues returns a description of generators of
the group of prime residues modulo n. The return value is a record with components

primes:
a list of the prime factors of n,

exponents:
a list of the exponents of these primes in the factorization of n, and
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generators:
a list describing generators of the group of prime residues; for the prime factor 2, either a
primitive root or a list of two generators is stored, for each other prime factor of n, a primitive
root is stored.

Example
gap> GeneratorsPrimeResidues( 1 );
rec( exponents := [ ], generators := [ ], primes := [ ] )
gap> GeneratorsPrimeResidues( 4%3 );
rec( exponents := [ 2, 1 ], generators := [ 7, 51,

primes := [ 2, 3])
gap> GeneratorsPrimeResidues( 8*9%5 );
rec( exponents := [ 3, 2, 11,

generators := [ [ 271, 181 ], 281, 217 ], primes := [ 2, 3, 561 )
15.3 Primitive Roots and Discrete Logarithms
15.3.1 OrderMod
> OrderMod(n, m) (function)

OrderMod returns the multiplicative order of the integer » modulo the positive integer m. If n and
m are not coprime the order of n is not defined and OrderMod will return 0.

If n and m are relatively prime the multiplicative order of n modulo m is the smallest positive
integer i such that n’ =1 (modm). If the group of prime residues modulo m is cyclic then each
element of maximal order is called a primitive root modulo m (see IsPrimitiveRootMod (15.3.4)).

OrderMod usually spends most of its time factoring m and ¢ (m) (see FactorsInt (14.4.7)).
Example

gap> OrderMod( 2, 7 );

3

gap> OrderMod( 3, 7 ); # 3 is a primitive root modulo 7
6

15.3.2 LogMod

> LogMod(n, r, m) (function)
> LogModShanks(n, r, m) (function)

computes the discrete r-logarithm of the integer n modulo the integer m. It returns a number 1
such that r! =n (mod m) if such a number exists. Otherwise fail is returned.
LogModShanks uses the Baby Step - Giant Step Method of Shanks (see for example [Coh93,

section 5.4.1]) and in general requires more memory than a call to LogMod.

Example
gap> l:= LogMod( 2, 5, 7 ); 571 mod 7 = 2;
4
true
gap> LogMod( 1, 3, 3 ); LogMod( 2, 3, 3 );
0
fail
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15.3.3 PrimitiveRootMod

> PrimitiveRootMod(m[, start]) (function)

PrimitiveRootMod returns the smallest primitive root modulo the positive integer m and
fail if no such primitive root exists. If the optional second integer argument start is given

PrimitiveRootMod returns the smallest primitive root that is strictly larger than start.
Example
gap> # largest primitive root for a prime less than 2000:
gap> PrimitiveRootMod( 409 );

21

gap> PrimitiveRootMod( 541, 2 );

10

gap> # 327 is the largest primitive root mod 337:

gap> PrimitiveRootMod( 337, 327 );

fail

gap> # there exists no primitive root modulo 30:

gap> PrimitiveRootMod( 30 );

fail

15.3.4 IsPrimitiveRootMod

> IsPrimitiveRootMod(r, m) (function)

IsPrimitiveRootMod returns true if the integer r is a primitive root modulo the positive integer
m, and false otherwise. If r is less than O or larger than m it is replaced by its remainder.

Example
gap> IsPrimitiveRootMod( 2, 541 );
true
gap> IsPrimitiveRootMod( -539, 541 ); # same computation as above;
true
gap> IsPrimitiveRootMod( 4, 541 );
false
gap> ForAny( [1..29], r -> IsPrimitiveRootMod( r, 30 ) );
false
gap> # there is no a primitive root modulo 30

15.4 Roots Modulo Integers

15.4.1 Jacobi

> Jacobi(n, m) (function)

Jacobi returns the value of the Kronecker-Jacobi symbol J(n,m) of the integer n modulo the
integer m. It is defined as follows:

If n and m are not coprime then J(n,m) = 0. Furthermore, J(n,1) =1 and J(n,—1) = —1 if
m < 0 and +1 otherwise. And for odd 7 it is J(n,2) = (— 1)k with k = (n*> — 1) /8. For odd primes
m which are coprime to n the Kronecker-Jacobi symbol has the same value as the Legendre symbol
(see Legendre (15.4.2)).
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For the general case suppose that m = p; - p» - - - py is a product of —1 and of primes, not necessarily
distinct, and that n is coprime to m. Then J(n,m) = J(n,p1)-J(n,p2)---J(n, px).

Note that the Kronecker-Jacobi symbol coincides with the Jacobi symbol that is defined for odd m
in many number theory books. For odd primes m and n coprime to m it coincides with the Legendre
symbol.

Jacobi is very efficient, even for large values of n and m, it is about as fast as the Euclidean
algorithm (see Ged (56.7.1)).

Example
gap> Jacobi( 11, 35 ); # 972 = 11 mod 35

1

gap> # this is -1, thus there is no r such that r~2
gap> Jacobi( 6, 35 );

-1

gap> # this is 1 even though there is no r with r"2 = 3 mod 35
gap> Jacobi( 3, 35 );

1

6 mod 35

15.4.2 Legendre

> Legendre(n, m) (function)
Legendre returns the value of the Legendre symbol of the integer n modulo the positive integer

The value of the Legendre symbol L(n/m) is 1 if n is a quadratic residue modulo m, i.e., if there
exists an integer r such that 7 =n  (mod m) and —1 otherwise.

If a root of n exists it can be found by RootMod (15.4.3).

While the value of the Legendre symbol usually is only defined for m a prime, we have extended
the definition to include composite moduli too. The Jacobi symbol (see Jacobi (15.4.1)) is another
generalization of the Legendre symbol for composite moduli that is much cheaper to compute, because
it does not need the factorization of m (see FactorsInt (14.4.7)).

A description of the Jacobi symbol, the Legendre symbol, and related topics can be found in
[Bak&4].

Example
gap> Legendre( 5, 11 ); # 472 = 5 mod 11
1
gap> # this is -1, thus there is no r such that r°2 = 6 mod 11
gap> Legendre( 6, 11 );
-1
gap> # this is -1, thus there is no r such that r°2 = 3 mod 35
gap> Legendre( 3, 35 );
-1
15.4.3 RootMod
> RootMod(n[, kJ, m) (function)

RootMod computes a kth root of the integer n modulo the positive integer m, i.e., a r such that
r¥=n (mod m). If no such root exists RootMod returns fail. If only the arguments n and m are
given, the default value for k is 2.
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A square root of n exists only if Legendre(n,m) = 1 (see Legendre (15.4.2)). If m has r
different prime factors then there are 2" different roots of n mod m. It is unspecified which one
RootMod returns. You can, however, use RootsMod (15.4.4) to compute the full set of roots.

RootMod is efficient even for large values of m, in fact the most time is usually spent factoring m
(see FactorsInt (14.4.7)).

Example
gap> # note ’RootMod’ does not return 8 in this case but -8:
gap> RootMod( 64, 1009 );
1001
gap> RootMod( 64, 3, 1009 );
518
gap> RootMod( 64, 5, 1009 );
656
gap> List( RootMod( 64, 1009 ) * RootsUnityMod( 1009 ),
> x -> x mod 1009 ); # set of all square roots of 64 mod 1009
[ 1001, 8 ]

15.4.4 RootsMod
> RootsMod(n [, k] , m) (function)
RootsMod computes the set of kth roots of the integer n modulo the positive integer m, i.e., the

list of all 7 such that X =n  (mod m). If only the arguments n and m are given, the default value for
kis 2.

Example
gap> RootsMod( 1, 7*31 ); # the same as ‘RootsUnityMod( 7%31 )?
[ 1, 92, 125, 216 1]

gap> RootsMod( 7, 7%31 );

[ 21, 196 ]
gap> RootsMod( 5, 7%x31 );
[ 1]

gap> RootsMod( 1, 5, 7*31 );
[ 1, 8, 64, 78, 190 ]

15.4.5 RootsUnityMod

> ROOtSUnityMOd( [k, Jm) (function)

RootsUnityMod returns the set of k-th roots of unity modulo the positive integer m, i.e., the list
of all solutions 7 of X = n (mod m). If only the argument m is given, the default value for k is 2.

In general there are k" such roots if the modulus m has n different prime factors p such that p =1
(mod k). If k2 divides m then there are k"*! such roots; and especially if k = 2 and 8 divides m there
are 2”2 such roots.

In the current implementation k must be a prime.
Example
gap> RootsUnityMod( 7*31 ); RootsUnityMod( 3, 7%31 );
[ 1, 92, 125, 216 1]

[ 1, 25, 32, 36, 67, 149, 156, 191, 211 ]
gap> RootsUnityMod( 5, 7x31 );
[ 1, 8, 64, 78, 190 ]
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gap> List( RootMod( 64, 1009 ) * RootsUnityMod( 1009 ),
> X -> x mod 1009 ); # set of all square roots of 64 mod 1009
[ 1001, 8]

15.5 Multiplicative Arithmetic Functions

15.5.1 Sigma

> Si gma ( n) (operation)

Sigma returns the sum of the positive divisors of the nonzero integer n.

Sigma is a multiplicative arithmetic function, i.e., if n and m are relatively prime we have that
o(n-m)=o(n)o(m).

Together with the formula o (p*) = (p**! —1)/(p — 1) this allows us to compute ¢ (n).

Integers n for which o(n) = 2n are called perfect. Even perfect integers are exactly of the form
20-1(22 — 1) where 22 — 1 is prime. Primes of the form 2 — 1 are called Mersenne primes, and 42
among the known Mersenne primes are obtained for n = 2, 3, 5, 7, 13, 17, 19, 31, 61, 89, 107,
127, 521, 607, 1279, 2203, 2281, 3217, 4253, 4423, 9689, 9941, 11213, 19937, 21701, 23209,
44497, 86243, 110503, 132049, 216091, 756839, 859433, 1257787, 1398269, 2976221, 3021377,
6972593, 13466917, 20996011, 24036583 and 25964951. Please find more up to date information
about Mersenne primes at http://www.mersenne.org. It is not known whether odd perfect integers
exist, however [BC89] show that any such integer must have at least 300 decimal digits.

Sigma usually spends most of its time factoring n (see FactorsInt (14.4.7)).

Example

gap> Sigma( 1 );

1

gap> Sigma( 1009 ); # 1009 is a prime

1010

gap> Sigma( 8128 ) = 248128; # 8128 is a perfect number
true

15.5.2 Tau

> Tau(an) (operation)

Tau returns the number of the positive divisors of the nonzero integer n.

Tau is a multiplicative arithmetic function, i.e., if n and m are relative prime we have t(n-m) =
7(n)t(m). Together with the formula 7(p*) = k+ 1 this allows us to compute 7(n).

Tau usually spends most of its time factoring n (see FactorsInt (14.4.7)).
Example

gap> Tau( 1 );

1

gap> Tau( 1013 ); # thus 1013 is a prime

2

gap> Tau( 8128 );

14

gap> # result is odd if and only if argument is a perfect square:
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gap> Tau( 36 );
9

15.5.3 MoebiusMu

> MoebiusMu(n) (function)

MoebiusMu computes the value of Moebius inversion function for the nonzero integer n. This is
0 for integers which are not squarefree, i.e., which are divided by a square 7>. Otherwise it is 1 if n
has a even number and —1 if n has an odd number of prime factors.

The importance of u stems from the so called inversion formula. Suppose f is a multiplica-
tive arithmetic function defined on the positive integers and let g(n) = Y4, f(d). Then f(n) =
Yant(d)g(n/d). As a special case we have ¢(n) = Y4, u(d)n/d since n = Y4, ¢(d) (see Phi
(15.2.2)).

MoebiusMu usually spends all of its time factoring n (see FactorsInt (14.4.7)).
Example

gap> MoebiusMu( 60 ); MoebiusMu( 61 ); MoebiusMu( 62 );
0
-1

15.6 Continued Fractions

15.6.1 ContinuedFractionExpansionOfRoot

> ContinuedFractionExpansionOfRoot(f, n) (function)

The first n terms of the continued fraction expansion of the only positive real root of the polyno-
mial £ with integer coefficients. The leading coefficient of £ must be positive and the value of £ at 0
must be negative. If the degree of f is 2 and n = 0, the function computes one period of the continued
fraction expansion of the root in question. Anything may happen if £ has three or more positive real

roots.
Example

gap> x := Indeterminate(Integers);;

gap> ContinuedFractionExpansionOfRoot(x2-7,20);

2,1, 1,1, 4,1, 1,1, 4,1, 1,1, 4, 1,1, 1, 4,1, 1, 1]

gap> ContinuedFractionExpansionOfRoot(x~2-7,0);

[2,1, 1,1, 4]

gap> ContinuedFractionExpansion0OfRoot (x73-2,20);

[1, 3,1,5, 1,1, 4, 1,1, 8,1, 14, 1, 10, 2, 1, 4, 12, 2, 3]

gap> ContinuedFractionExpansionOfRoot (x~5-x-1,50);

[ 1, 5,1, 42, 1, 3, 24, 2, 2, 1, 16, 1, 11, 1, 1, 2, 31, 1, 12, 5,
1, 7, 11, 1, 4, 1, 4, 2, 2, 3, 4, 2, 1, 1, 11, 1, 41, 12, 1, 8, 1,
1, 1, 1,1, 9, 2, 1, 5, 4]

15.6.2 ContinuedFractionApproximationOfRoot

> ContinuedFractionApproximation0fRoot(f, n) (function)
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The nth continued fraction approximation of the only positive real root of the polynomial £ with
integer coefficients. The leading coefficient of £ must be positive and the value of £ at 0 must be
negative. Anything may happen if £ has three or more positive real roots.

Example
gap> ContinuedFractionApproximationOfRoot(x~2-2,10);
3363/2378
gap> 3363°2-2%2378"2;
1

gap> z := ContinuedFractionApproximationOfRoot(x~5-x-1,20);
499898783527/428250732317

gap> z"5-z-1;

486192462527432755459620441970617283/
14404247382319842421697357558805709031116987826242631261357

15.7 Miscellaneous

15.7.1 TwoSquares

> TwoSquares(n) (function)

TwoSquares returns a list of two integers x < y such that the sum of the squares of x and y is equal
to the nonnegative integer n, i.e., n = x> + y>. If no such representation exists TwoSquares will return
fail. TwoSquares will return a representation for which the gcd of x and y is as small as possible. It
is not specified which representation TwoSquares returns if there is more than one.

Let a be the product of all maximal powers of primes of the form 4k + 3 dividing n. A represen-
tation of n as a sum of two squares exists if and only if a is a perfect square. Let b be the maximal
power of 2 dividing n or its half, whichever is a perfect square. Then the minimal possible gcd of x
and y is the square root ¢ of a-b. The number of different minimal representation with x <y is 2/~
where [ is the number of different prime factors of the form 4k + 1 of n.

The algorithm first finds a square root r of —1 modulo n /(a-b), which must exist, and applies the
Euclidean algorithm to r and n. The first residues in the sequence that are smaller than /n/(a-b)
times ¢ are a possible pair x and y.

Better descriptions of the algorithm and related topics can be found in [Wag90] and [Zag90].
Example

gap> TwoSquares( 5 );

[1, 2]

gap> TwoSquares( 11 ); # there is no representation

fail

gap> TwoSquares( 16 );

[0, 4]

gap> # 3 is the minimal possible gcd because 9 divides 45:
gap> TwoSquares( 45 );

[3, 6]

gap> # it is not [5,10] because their gcd is not minimal:

gap> TwoSquares( 125 );

[ 2, 11 ]

gap> # [10,11] would be the other possible representation:
gap> TwoSquares( 13%17 );

[ 5, 14 ]
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gap> TwoSquares( 848654483879497562821 ); # argument is prime
[ 6305894639, 28440994650 ]




Chapter 16

Combinatorics

This chapter describes functions that deal with combinatorics. We mainly concentrate on two areas.
One is about selections, that is the ways one can select elements from a set. The other is about
partitions, that is the ways one can partition a set into the union of pairwise disjoint subsets.

16.1 Combinatorial Numbers
16.1.1 Factorial
> Factorial(n) (function)

returns the factorial n! of the positive integer n, which is defined as the product 1-2-3---n.
n! is the number of permutations of a set of n elements. 1/n! is the coefficient of x” in the formal
series exp(x), which is the generating function for factorial.

Example

gap> List( [0..10], Factorial );

[1, 1, 2, 6, 24, 120, 720, 5040, 40320, 362880, 3628800 ]
gap> Factorial( 30 );

265252859812191058636308480000000

PermutationsList (16.2.12) computes the set of all permutations of a list.

16.1.2 Binomial

> Binomial(n, k) (function)

returns the binomial coefficient (}) of integers n and k, which is defined as n!/(k!(n —k)!) (see

Factorial (16.1.1)). We define () =1, (}) =0ifk<Oorn <k, and (}) = (—=1)*(7"* ) ifn <0,
. . . . . .. —1 -1
which is consistent with the equivalent definition (}) = (") + (}_,)-

(Z) is the number of combinations with k elements, i.e., the number of subsets with k elements,
of a set with n elements. (Z) is the coefficient of the term x* of the polynomial (x+ 1)", which is the
generating function for (" ), hence the name.

Example
gap> # Knuth calls this the trademark of Binomial:
gap> List( [0..4], k->Binomial( 4, k ) );

200
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[ 1, 4, 6, 4, 1]

gap> List( [0..6], n->List( [0..6], k->Binomial( n, k ) ) );;
gap> # the lower triangle is called Pascal’s triangle:

gap> PrintArray( last );

cc ¢ o0, o0 O O, O, 01,
t 4, 1, o0, o0, 0, 0, 01,
t 14, 2, 1, o0, 0, 0, 01,
c 1 3 3 1, o0, o0, 01,
r 1, 4, 6, 4, 1, o0, 01,
t 1, 5, 10, 10, 5, 1, 01,
( 1, 6, 15, 20, 15, 6, 111

gap> Binomial( 50, 10 );
10272278170

NrCombinations (16.2.3) is the generalization of Binomial for multisets. Combinations
(16.2.1) computes the set of all combinations of a multiset.

16.1.3 Bell

> Bell(n) (function)

returns the Bell number B(n). The Bell numbers are defined by B(0) = 1 and the recurrence
B(n-+1) = Yo (1) B(K).

B(n) is the number of ways to partition a set of n elements into pairwise disjoint nonempty subsets
(see PartitionsSet (16.2.16)). This implies of course that B(n) = Y}_S2(n,k) (see Stirling?2
(16.1.6)). B(n)/n! is the coefficient of x” in the formal series exp(exp(x) — 1), which is the generating

function for B(n).
Example

gap> List( [0..6], n -> Bell( n ) );
[1, 1, 2, 5, 15, 52, 203 ]

gap> Bell( 14 );

190899322

16.1.4 Bernoulli

> Bernoulli(n) (function)

returns the n-th Bernoulli number B, which is defined by By = 1 and B,, = — ZZ;(I) (”Z])Bk/(n +
1).
B, /n! is the coefficient of x" in the power series of x/(exp(x) — 1). Except for Bj = —1/2 the

Bernoulli numbers for odd indices are zero.
Example

gap> Bernoulli( 4 );

-1/30

gap> Bernoulli( 10 );

5/66

gap> Bernoulli( 12 ); # there is no simple pattern in Bernoulli numbers
-691/2730

gap> Bernoulli( 50 ); # and they grow fairly fast
495057205241079648212477525/66
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16.1.5 Stirlingl

> Stirlingl (n, k) (function)

returns the Stirling number of the first kind S)(n,k) of the integers n and k. Stirling numbers
of the first kind are defined by S1(0,0) = 1, S1(n,0) = S1(0,k) = 0 if n,k # 0 and the recurrence
Si(nk)=(n—1)S1(n—1,k)+S1(n—1,k—1).

S1(n,k) is the number of permutations of n points with k cycles. Stirling numbers of the first kind
appear as coefficients in the series n! (%) = Y}_ S1(n,k)x* which is the generating function for Stirling
numbers of the first kind. Note the similarity to x" = }_, Sg(n,k)k!(i) (see Stirling2 (16.1.6)).
Also the definition of S implies S;(n,k) = S»(—k,—n) if n,k < 0. There are many formulae relating
Stirling numbers of the first kind to Stirling numbers of the second kind, Bell numbers, and Binomial
coefficients.

Example
gap> # Knuth calls this the trademark of S_1:

gap> List( [0..4], k -> Stirlingli( 4, k ) );

[0, 6, 11, 6, 1]

gap> List( [0..6], n->List( [0..6], k->Stirlingl( n, k ) ) J;;

gap> # note the similarity with Pascal’s triangle for Binomial numbers
gap> PrintArray( last );

L[ 1, 0, 0, 0, 0, 0, 01,
[ 0, 1, 0, 0, 0, 0, 01,
L 0, 1, 1, 0, 0, 0, 01,
L 0, 2, 3, 1, 0, 0, 01,
L 0, 6, 11, 6, 1, 0, 01,
[ 0, 24, 50, 35, 10, 1, 01,
[ 0, 120, 274, 225, 85, 15, 111

gap> Stirling1(50,10);
101623020926367490059043797119309944043405505380503665627365376

16.1.6 Stirling2

> StirlingQ(n, k) (function)

returns the Stirling number of the second kind S,(n,k) of the integers n and k. Stirling numbers
of the second kind are defined by $,(0,0) = 1, S»(n,0) = S»(0,k) = 0 if n,k # 0 and the recurrence
Sz(l’l,k) = kSz(l’l - l,k) —I—Sz(l’l —1,k— 1).

S2(n, k) is the number of ways to partition a set of n elements into k pairwise disjoint nonempty
subsets (see PartitionsSet (16.2.16)). Stirling numbers of the second kind appear as coefficients
in the expansion of x" = YJ_(S>(n,k)k!(;). Note the similarity to n!(*) = ¥}_S1(n,k)x* (see
Stirlingl (16.1.5)). Also the definition of S, implies S»(n,k) = Si(—k,—n) if n,k < 0. There
are many formulae relating Stirling numbers of the second kind to Stirling numbers of the first kind,
Bell numbers, and Binomial coefficients.

Example
gap> # Knuth calls this the trademark of S_2:

gap> List( [0..4], k->Stirling2( 4, k ) );

Lo, 17,6, 11

gap> List( [0..6], n->List( [0..6], k->Stirling2( n, k ) ) );;

gap> # note the similarity with Pascal’s triangle for Binomial numbers
gap> PrintArray( last );




GAP - Reference Manual 203

tc s o0 o0 O, O, 0, 01,

t o 1 o0, O, O, O, 01,

L 0, 1, 1, 0, 0, 0, 01,

L 0, 1, 3, 1, 0, 0, 01,

t o, 1, 7, 6, 1, 0, 01,

( o, 1, 15, 25, 10, 1, 01,

( o, 1, 31, 9, 65, 15, 111
gap> Stirling2( 50, 10 );
26154716515862881292012777396577993781727011

16.2 Combinations, Arrangements and Tuples

16.2.1 Combinations

> Combinations(mset[, kJ) (function)

returns the set of all combinations of the multiset mset (a list of objects which may contain the
same object several times) with k elements; if k is not given it returns all combinations of mset.

A combination of mset is an unordered selection without repetitions and is represented by a sorted
sublist of mset. If mset is a proper set, there are (|msket ‘) (see Binomial (16.1.2)) combinations with
k elements, and the set of all combinations is just the power set of mset, which contains all subsets
of mset and has cardinality 21mS€t|,

To loop over combinations of a larger multiset use IteratorOfCombinations (16.2.2) which
produces combinations one by one and may save a lot of memory. Another memory efficient repre-

sentation of the list of all combinations is provided by Enumerator0fCombinations (16.2.2).

16.2.2 Iterator and enumerator of combinations

> IteratorOfCombinations(mset[, kJ]) (function)
> EnumeratorOfCombinations(mset) (function)

IteratorOfCombinations returns an Iterator (30.8.1) for combinations (see Combinations
(16.2.1)) of the given multiset mset. If a non-negative integer k is given as second argument then
only the combinations with k entries are produced, otherwise all combinations.

EnumeratorOfCombinations returns an Enumerator (30.3.2) of the given multiset mset. Cur-
rently only a variant without second argument k is implemented.

The ordering of combinations from these functions can be different and also different from the list
returned by Combinations (16.2.1).

Example
gap> m:=[1..15];; Add(m, 15);
gap> NrCombinations(m);
49152
gap> i := 0;; for ¢ in Combinations(m) do 1 := i+l; od;
gap> 1i;
49152
gap> cm := Enumerator0fCombinations(m);;
gap> cm[1000];
[, 2, 3, 6, 7, 8, 9, 10 1]
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gap> Position(cm, [1,13,15,15]);
36866

16.2.3 NrCombinations

> NrCombinations(mset([, kJ]) (function)

returns the number of Combinations(mset , k).

Example

gap> Combinations( [1,2,2,3] );

tft 1, 0t31,0,21,01,2,21,[1,2,2,31,1L
(+,31, 0231, [02,21,[2,2,3],[2,31]1,I[3

gap> # number of different hands in a game of poker:

gap> NrCombinations( [1..52], 5 );

2598960

1, 2’ 3],
11

The function Arrangements (16.2.4) computes ordered selections without repetitions,
UnorderedTuples (16.2.6) computes unordered selections with repetitions, and Tuples (16.2.8)
computes ordered selections with repetitions.

16.2.4 Arrangements

> Arrangements(mset[, kJ) (function)

returns the set of arrangements of the multiset mset that contain k elements. If k is not given it
returns all arrangements of mset.

An arrangement of mset is an ordered selection without repetitions and is represented by a list
that contains only elements from mset, but maybe in a different order. If mset is a proper set there
are |mset|!/(|mset| —k)! (see Factorial (16.1.1)) arrangements with k elements.

16.2.5 NrArrangements

> NrArrangements(mset[, kJ) (function)

returns the number of Arrangements (mset , k).

As an example of arrangements of a multiset, think of the game Scrabble. Suppose you have the
six characters of the word "settle" and you have to make a four letter word. Then the possibilities
are given by
Example
gap> Arrangements( [Ilsll’llell’lltll’lltll’lllll’llell:l s 4 );

I: I: llell’ llell’ lllll’ llsll ] s I: llell’ llell’ lllll’ lltll ] s I: llell’ llell’ llsll’ 'llll ]’
[ llell’ llell’ IISII’ lltll ] s [ llell’ llell’ lltll’ lllll ] s [ llell’ llell’ lltll’ "S" ]’
. 93 more possibilities ...
[ lltll’ lltll’ lllll’ llsll ] , [ lltll’ lltll’ llsll, llell ] , I: lltll, lltll, "S", lllll ] ]

Can you find the five proper English words, where "1ets" does not count? Note that the fact that
the list returned by Arrangements (16.2.4) is a proper set means in this example that the possibilities
are listed in the same order as they appear in the dictionary.
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Example
gap> NrAI‘I‘aIlgemeIltS( [llsll’llell’Iltll’lltll’lllll’llell] ) ;
523

The function Combinations (16.2.1) computes unordered selections without repetitions,
UnorderedTuples (16.2.6) computes unordered selections with repetitions, and Tuples (16.2.8)
computes ordered selections with repetitions.

16.2.6 UnorderedTuples

> UnorderedTuples(set, k) (function)

returns the set of all unordered tuples of length k of the set set.

An unordered tuple of length k of set is an unordered selection with repetitions of set and
is represented by a sorted list of length k containing elements from set. There are ('Set"ltk_l) (see
Binomial (16.1.2)) such unordered tuples.

Note that the fact that UnorderedTuples returns a set implies that the last index runs fastest.
That means the first tuple contains the smallest element from set k times, the second tuple contains
the smallest element of set at all positions except at the last positions, where it contains the second
smallest element from set and so on.

16.2.7 NrUnorderedTuples

> NrUnorderedTuples(set, k) (function)

returns the number of UnorderedTuples(set ,k).
As an example for unordered tuples think of a poker-like game played with 5 dice. Then each
possible hand corresponds to an unordered five-tuple from the set {1,2,...,6}.
Example

gap> NrUnorderedTuples( [1..6], 5 );
252
gap> UnorderedTuples( [1..6], 5 );
cct1,1,1t¢, 1,121, 01,1,1,1,2
(t,1,1,1,571, [1,1,1,1,86
100 more tuples ...
(+ 3 5,5,61, [1,3,5,6,61,[1,3,6,6,61,[1,4,4,4,41,
. 100 more tuples ...
(3,3,5,5,5],[3,3,5,5,61,[3,3,5,6,61, [3,3,6,6,61,
. 32 more tuples ...
[5,5,5,6,61,[5,5,6,6,61,[5,6,6,6,61,[6,6,6,6,61]1

], [ 1, 1, 1’ 1, 3 ], [ 1, 1, 1’ 1
], [ 1’ 1’ 1’ 2, 2 ], [ 1’ 1’ 1’ 2’

The function Combinations (16.2.1) computes unordered selections without repetitions,
Arrangements (16.2.4) computes ordered selections without repetitions, and Tuples (16.2.8) com-
putes ordered selections with repetitions.

16.2.8 Tuples

> Tuples(set, k) (function)
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returns the set of all ordered tuples of length k of the set set.

An ordered tuple of length k of set is an ordered selection with repetition and is represented by
a list of length k containing elements of set. There are |set |k such ordered tuples.

Note that the fact that Tuples returns a set implies that the last index runs fastest. That means
the first tuple contains the smallest element from set k times, the second tuple contains the smallest
element of set at all positions except at the last positions, where it contains the second smallest
element from set and so on.

16.2.9 EnumeratorOfTuples

> EnumeratorOfTuples(set, k) (function)

This function is referred to as an example of enumerators that are defined by functions but are not
constructed from a domain. The result is equal to that of Tuples( set, k ). However, the entries
are not stored physically in the list but are created/identified on demand.

16.2.10 IteratorOfTuples
> IteratorOfTuples(set, k) (function)
For a set set and a positive integer k, Iterator0fTuples returns an iterator (see 30.8) of the

set of all ordered tuples (see Tuples (16.2.8)) of length k of the set set. The tuples are returned in
lexicographic order.

16.2.11 NrTuples

> NrTuples (set R k) (function)

returns the number of Tuples(set k).

Example
gap> Tuples( [1,2,3], 2 );
cr+, 11,011,271, 01,31,[02,11,T[2,21,T[2, 31,
(3,11, [3,21,[3,31]1
gap> NrTuples( [1..10], 5 );
100000

Tuples(set ,k) can also be viewed as the k-fold cartesian product of set (see Cartesian
(21.20.16)).

The function Combinations (16.2.1) computes unordered selections without repetitions,
Arrangements (16.2.4) computes ordered selections without repetitions, and finally the function
UnorderedTuples (16.2.6) computes unordered selections with repetitions.

16.2.12 PermutationsList
> PermutationsList(mset) (function)
PermutationsList returns the set of permutations of the multiset mset.

A permutation is represented by a list that contains exactly the same elements as mset, but pos-
sibly in different order. If mset is a proper set there are |mset|! (see Factorial (16.1.1)) such
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permutations. Otherwise if the first elements appears k| times, the second element appears k, times
and so on, the number of permutations is |mset|!/(k;!k,!...), which is sometimes called multinomial
coefficient.

16.2.13 NrPermutationsList

> NrPermutationsList(mset) (function)

returns the number of PermutationsList (mset).
Example

gap> PermutationsList( [1,2,3] );

rr1, 2,31, r101,3,21,[2,1,31,[2,3,11,[3,1,21,
[ 3,2, 11]1]

gap> PermutationsList( [1,1,2,2] );

[ft1,1,2,21,[01,2,1,273,01,2,2,1]1,[2,1,1, 21,
[2,1,2, 11, [2,2,1, 1711

gap> NrPermutationsList( [1,2,2,3,3,3,4,4,4,4] );

12600

The function Arrangements (16.2.4) is the generalization of PermutationsList (16.2.12) that
allows you to specify the size of the permutations. Derangements (16.2.14) computes permutations
that have no fixed points.

16.2.14 Derangements

> Derangements(list) (function)

returns the set of all derangements of the list 1ist.

A derangement is a fixpointfree permutation of 1ist and is represented by a list that contains
exactly the same elements as 1ist, but in such an order that the derangement has at no position the
same element as 1ist. If the list 1ist contains no element twice there are exactly |1ist|!(1/2!—
1/3!41/4!—---+(—1)"/n!) derangements.

Note that the ratio NrPermutationsList( [ 1 .. n ] ) / NrDerangements( [ 1 .. n
1 ), whichis n!/(n!(1/2!—1/3!41/4! —--- 4+ (—1)"/n!)) is an approximation for the base of the
natural logarithm e = 2.7182818285. .., which is correct to about n digits.

16.2.15 NrDerangements

> NrDerangements(list) (function)

returns the number of Derangements(1ist).

As an example of derangements suppose that you have to send four different letters to four differ-
ent people. Then a derangement corresponds to a way to send those letters such that no letter reaches
the intended person.

Example
gap> Derangements( [1,2,3,4] );
[[2,1,4,31,[02,3,4,11,[2,4,1,31,1[3,1, 4,21,
[3, 4,1, 21, [3, 4,2,1], [4,1, 2,31, 1[4, 3,1, 217,
[4, 3, 2,111
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gap> NrDerangements( [1..10] );

1334961

gap> Int( 10~7*NrPermutationsList([1..10])/last );

27182816

gap> Derangements( [1,1,2,2,3,3] );

[(2,2,3,3,1,11,[2,3,1,3,1,21,[2,3,1,3,2,11,
[2,3,3,1,1,21,[2,3,3,1,2,1]1,[3,2,1, 3,1, 21,
[3,2,1,3,2,11,[3,2,3,1, 1,21, [3,2,3,1, 2,11,
[3,3,1,1, 2, 211

gap> NrDerangements( [1,2,2,3,3,3,4,4,4,4] );

338

The function PermutationsList (16.2.12) computes all permutations of a list.

16.2.16 PartitionsSet

> PartitionsSet(set[, kJ) (function)

returns the set of all unordered partitions of the set set into k pairwise disjoint nonempty sets. If
k is not given it returns all unordered partitions of set for all k.

An unordered partition of set is a set of pairwise disjoint nonempty sets with union set and is
represented by a sorted list of such sets. There are B(|set|) (see Bell (16.1.3)) partitions of the set
set and S (|set|,k) (see Stirling2 (16.1.6)) partitions with k elements.

16.2.17 NrPartitionsSet

> NrPartitionsSet(set[, k]) (function)

returns the number of PartitionsSet(set k).

Example
gap> PartitionsSet( [1,2,3] );
cccf11,021, 03111, C011,02,311,[[1,21,[311,
([1,2,311, 001,31, 0211]1
gap> PartitionsSet( [1,2,3,4], 2 );
rrr11,02,3,411, 001,21, 1[3,411,
tri1 2,31, 0411, C0C01,2,41, (3711,
(f1,31, 02,411, [0[1,38,41,[0211,
(l1,41, 02,3111
gap> NrPartitionsSet( [1..6] );
203
gap> NrPartitionsSet( [1..10], 3 );
9330

Note that PartitionsSet (16.2.16) does currently not support multisets and that there is currently
no ordered counterpart.

16.2.18 Partitions

> Partitions(a[, kJ]) (function)
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returns the set of all (unordered) partitions of the positive integer n into sums with k summands.
If k is not given it returns all unordered partitions of set for all k.

An unordered partition is an unordered sum n = p; + py + - -- + pi of positive integers and is
represented by the list p = [p1, p2,. .., pi/, in nonincreasing order, i.e., p; > p> > ... > p;. We write
p b n. There are approximately exp(7+/2/3n)/(4v/3n) such partitions, use NrPartitions (16.2.20)
to compute the precise number.

If you want to loop over all partitions of some larger n use the more memory efficient
IteratorOfPartitions (16.2.19).

It is possible to associate with every partition of the integer n a conjugacy class of permutations in
the symmetric group on n points and vice versa. Therefore p(n) :=NrPartitions(n) is the number
of conjugacy classes of the symmetric group on n points.

Ramanujan found the identities p(5i+4) =0mod 5, p(7i+5) =0 mod 7 and p(11i+6) = 0 mod
11 and many other fascinating things about the number of partitions.

16.2.19 IteratorOfPartitions

> IteratorOfPartitions(n) (function)

For a positive integer n, IteratorOfPartitions returns an iterator (see 30.8) of the set of par-
titions of n (see Partitions (16.2.18)). The partitions of n are returned in lexicographic order.

16.2.20 NrPartitions

> NrPartitions(al[, kJ]) (function)

returns the number of Partitions(set k).

Example

gap> Partitions( 7 );

rrst,1,1,1,1,1,121,02,1,1,1,1,11,[2,2,1,1,1171,
r2,2,2,11,03,1,1,1,11,[3,2,1,11,[3,2, 21,
(3,3,11,04,1,1,11,[04,2,11,[4,31,0[5,1,11,
(5,211,006, 11, [71]1]1]

gap> Partitions( 8, 3 );

(33,21, [4,2,21,[4,3,11,[5,2,11,[6, 1,111

gap> NrPartitions( 7 );

15

gap> NrPartitions( 100 );

190569292

The function OrderedPartitions (16.2.21) is the ordered counterpart of Partitions
(16.2.18).

16.2.21 OrderedPartitions

> OrderedPartitions(af, kJ]) (function)

returns the set of all ordered partitions of the positive integer n into sums with k summands. If k
is not given it returns all ordered partitions of set for all k.
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An ordered partition is an ordered sum n = p; + p2 +. .. + py of positive integers and is represented
by the list [py, p2, ..., pk). There are totally 21 ordered partitions and (Z:D (see Binomial (16.1.2))
ordered partitions with k summands.

Do not call OrderedPartitions with an n much larger than 15, the list will simply become too
large.

16.2.22 NrOrderedPartitions

> NrOrderedPartitions(n[, kJ) (function)

returns the number of OrderedPartitions(set k).
Example

gap> OrderedPartitions( 5 )
cfit,1,1,1,121,01,1,1,271,[01,1,2,11,[1,1,31],
2

1
[1,2,1,11, 1, 2, 1, 01,3,11, 1,41, [2,1,1, 11,
[2,1,231,[2,2,11,[2,3]1,[3,1,11,[3,2]1],
(4,11, [51]1
gap> OrderedPartitions( 6, 3 );
rc,1,41,01,2,31,[01,3,21,1[1,4,11,[2,1,31,
(2,2,21,[02,3,11,[3,1,21,[3,2,11,[4,1,11]1

gap> NrQOrderedPartitions(20);
524288

The function Partitions (16.2.18) is the unordered counterpart of OrderedPartitions
(16.2.21).

16.2.23 PartitionsGreatestLE

> PartitionsGreatestLE(n, m) (function)

returns the set of all (unordered) partitions of the integer n having parts less or equal to the integer

16.2.24 PartitionsGreatestEQ

> PartitionsGreatestEQ(n, m) (function)

returns the set of all (unordered) partitions of the integer n having greatest part equal to the integer

16.2.25 RestrictedPartitions
> RestrictedPartitions(n, set[, kJ]) (function)
In the first form RestrictedPartitions returns the set of all restricted partitions of the positive

integer n into sums with k summands with the summands of the partition coming from the set set.
If k is not given all restricted partitions for all k are returned.
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A restricted partition is like an ordinary partition (see Partitions (16.2.18)) an unordered sum
n=pi+p2+...+ pi of positive integers and is represented by the list p = [p1, p2,. .., px], in nonin-
creasing order. The difference is that here the p; must be elements from the set set, while for ordinary
partitions they may be elements from [ 1 .. n ].

16.2.26 NrRestrictedPartitions

> NrRestrictedPartitions(n, set[, kJ) (function)

returns the number of RestrictedPartitions(n,set k).

Example

gap> RestrictedPartitions( 8, [1,3,5,7] );

rcs+, 1,1,1, 1, 1,121,173, (3,1, 1,1, 1,171, [3,3,1,11,
[L5,1, 1,11, [5,371, 7,111

gap> NrRestrictedPartitions(50,[1,2,5,10,20,50]);

451

The last example tells us that there are 451 ways to return 50 pence change using 1, 2, 5, 10, 20
and 50 pence coins.

16.2.27 SignPartition

> SignPartition(pi) (function)

returns the sign of a permutation with cycle structure pi.

This function actually describes a homomorphism from the symmetric group S, into the cyclic
group of order 2, whose kernel is exactly the alternating group A, (see SignPerm (42.4.1)). Partitions
of sign 1 are called even partitions while partitions of sign —1 are called odd.

Example

gap> SignPartition([6,5,4,3,2,1]1);
-1

16.2.28 AssociatedPartition

> AssociatedPartition(pi) (function)

AssociatedPartition returns the associated partition of the partition pi which is obtained by
transposing the corresponding Young diagram.

Example

gap> AssociatedPartition([4,2,1]);
[ 3, 2,1, 1]

gap> AssociatedPartition([6]);
[1, 1, 1, 1, 1, 11
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16.2.29 PowerPartition

> PowerPartition(pi, k) (function)

PowerPartition returns the partition corresponding to the k-th power of a permutation with
cycle structure pi.

Each part [ of pi is replaced by d = gcd(l,k) parts [ /d. So if pi is a partition of n then pi¥ also
is a partition of n. PowerPartition describes the power map of symmetric groups.
Example
gap> PowerPartition([6,5,4,3,2,1], 3);
[5,4,2,2,2,2,1, 1,1, 1]

16.2.30 PartitionTuples

> PartitionTuples(an, r) (function)
PartitionTuples returns the list of all r-tuples of partitions which together form a partition of

r-tuples of partitions describe the classes and the characters of wreath products of groups with r
conjugacy classes with the symmetric group Sj,.

16.2.31 NrPartitionTuples

> NrPartitionTuples(n, r) (function)

returns the number of PartitionTuples( n, r ).

Example
gap> PartitionTuples(3, 2);
ccf+,1,21, 011,004,113, 02711, C0C01]1,C1,111,
cc 1,04, 1,211, 002,21, 11,011,211,
cc21,c+211,0C 1, 02,211, CC031,[C 11,
(L 1, 03111
16.3 Fibonacci and Lucas Sequences
16.3.1 Fibonacci
> Fibonacci(n) (function)

returns the nth number of the Fibonacci sequence. The Fibonacci sequence F, is defined by the
initial conditions ] = F, = 1 and the recurrence relation F,, ., = F,. + F,,. For negative n we define
F, = (—1)""'F_,, which is consistent with the recurrence relation.

Using generating functions one can prove that F, = ¢" — 1/¢", where ¢ is (\@ +1)/2,i.e., one
root of x> —x — 1 = 0. Fibonacci numbers have the property gcd(Fy,, F,) = Fyed(m,n)- But a pair of
Fibonacci numbers requires more division steps in Euclid’s algorithm (see Gcd (56.7.1)) than any
other pair of integers of the same size. Fibonacci (k) is the special case Lucas(1,-1,k) [1] (see
Lucas (16.3.2)).
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Example

gap> Fibonacci( 10 );
b5

gap> Fibonacci( 35 );
9227465

gap> Fibonacci( -10 );
-55

16.3.2 Lucas

> Lucas(P, q, k) (function)

returns the k-th values of the Lucas sequence with parameters P and , which must be integers,
as a list of three integers. If k is a negative integer, then the values of the Lucas sequence may be
nonintegral rational numbers, with denominator roughly @~k.

Let o, B be the two roots of x> — Px + Q then we define Lucas( P, @, k )[1] =U; = (af -
B¥)/(a—B) and Lucas( P, @, k )[2] =V; = (a* + B¥) and as a convenience Lucas( P, @,
k )[3] =0k

The following recurrence relations are easily derived from the definition Uy = 0,U; = 1,U; =
PU,_1 —QUy_5 and Vy =2,V = PV, = PV;_1 — QV,_». Those relations are actually used to define
Lucas if a = 3.

Also the more complex relations used in Lucas can be easily derived Uy, = Uy Vi, Uag+1 = (PUnk +
Var)/2 and Vo = V2 — 20K, Va1 = ((P* — 4Q)Uni + PVy) /2.

Fibonacci(k) (see Fibonacci (16.3.1)) is simply Lucas(1,-1,k) [1]. In an abuse of notation,
the sequence Lucas(1,-1,k) [2] is sometimes called the Lucas sequence.

Example
gap> List( [0..10], i -> Lucas(1,-2,i)[1] ); # 2°k - (-1)"k)/3
o, 1,1, 3, 5, 11, 21, 43, 85, 171, 341 ]
gap> List( [0..10], i -> Lucas(1,-2,i)[2] ); # 2°k + (-1)"k
[2, 1, 5, 7, 17, 31, 65, 127, 257, 511, 1025 ]
gap> List( [0..10], i -> Lucas(1,-1,i)[1] ); # Fibonacci sequence
[o, 1,1, 2, 3, 5, 8, 13, 21, 34, 55 ]
gap> List( [0..10], i -> Lucas(2,1,1)[1] ); # the roots are equal
[0, 1, 2, 3, 4, 5,6, 7,8, 9, 101

16.4 Permanent of a Matrix

16.4.1 Permanent

> Permanent (mat) (function)

returns the permanent of the matrix mat. The permanent is defined by ¥, gym(n) [Tiz | mat[i][i"].

Note the similarity of the definition of the permanent to the definition of the determinant
(see DeterminantMat (24.4.4)). In fact the only difference is the missing sign of the permutation.
However the permanent is quite unlike the determinant, for example it is not multilinear or alternating.
It has however important combinatorial properties.
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Example
gap> Permanent( [[0,1,1,1],
> [1,0,1,1],
> [1,1,0,1],
> [1,1,1,0]] ); # inefficient way to compute NrDerangements([1..4])
9

gap> # 24 permutations fit the projective plane of order 2:
gap> Permanent( [[1,1,0,1,0,0,0],

> (0,1,1,0,1,0,0],
> [0,0,1,1,0,1,0],
> [0,0,0,1,1,0,11,
> [1,0,0,0,1,1,0],
> [0,1,0,0,0,1,11,
> [1,0,1,0,0,0,111 );




Chapter 17

Rational Numbers

The rationals form a very important field. On the one hand it is the quotient field of the integers (see
chapter 14). On the other hand it is the prime field of the fields of characteristic zero (see chapter 60).

The former comment suggests the representation actually used. A rational is represented as a
pair of integers, called numerator and denominator. Numerator and denominator are reduced, i.e.,
their greatest common divisor is 1. If the denominator is 1, the rational is in fact an integer and is
represented as such. The numerator holds the sign of the rational, thus the denominator is always
positive.

Because the underlying integer arithmetic can compute with arbitrary size integers, the rational
arithmetic is always exact, even for rationals whose numerators and denominators have thousands of
digits.

Example

gap> 2/3;

2/3

gap> 66/123; # numerator and denominator are made relatively prime

22/41

gap> 17/-13; # the numerator carries the sign;

-17/13

gap> 121/11; # rationals with denominator 1 (when canceled) are integers
11

17.1 Rationals: Global Variables

17.1.1 Rationals

> Rationals (global variable)
> IsRationals (Obj) (property)

Rationals is the field Q of rational integers, as a set of cyclotomic numbers, see Chapter 18 for
basic operations, Functions for the field Rationals can be found in the chapters 58 and 60.

IsRationals returns true for a prime field that consists of cyclotomic numbers —for example
the GAP object Rationals— and false for all other GAP objects.

Example
gap> Size( Rationals ); 2/3 in Rationals;
infinity
true

215
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17.2 Elementary Operations for Rationals

17.2.1 IsRat

> IsRat(o bj ) (Category)

Every rational number lies in the category IsRat, which is a subcategory of IsCyc (18.1.3).

Example

gap> IsRat( 2/3 );

true

gap> IsRat( 17/-13 );

true

gap> IsRat( 11 );

true

gap> IsRat( IsRat ); # ‘IsRat’ is a function, not a rational
false

17.2.2 IsPosRat

> IsPosRat (Obj) (Category)

Every positive rational number lies in the category IsPosRat.

17.2.3 IsNegRat

> IsNegRat (obj) (Category)

Every negative rational number lies in the category IsNegRat.

17.2.4 NumeratorRat

> NumeratorRat (rat) (function)

NumeratorRat returns the numerator of the rational rat. Because the numerator holds the sign
of the rational it may be any integer. Integers are rationals with denominator 1, thus NumeratorRat
is the identity function for integers.

Example

gap> NumeratorRat( 2/3 );

2

gap> # numerator and denominator are made relatively prime:
gap> NumeratorRat( 66/123 );

22
gap> NumeratorRat( 17/-13 ); # numerator holds the sign of the rational
-17
gap> NumeratorRat( 11 ); # integers are rationals with denominator 1

11
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17.2.5 DenominatorRat

> DenominatorRat (rat) (function)

DenominatorRat returns the denominator of the rational rat. Because the numerator holds
the sign of the rational the denominator is always a positive integer. Integers are rationals with the
denominator 1, thus DenominatorRat returns 1 for integers.

Example

gap> DenominatorRat( 2/3 );

3

gap> # numerator and denominator are made relatively prime:

gap> DenominatorRat( 66/123 );

41

gap> # the denominator holds the sign of the rational:

gap> DenominatorRat( 17/-13 );

13

gap> DenominatorRat( 11 ); # integers are rationals with denominator 1
1

17.2.6 Rat

> Rat (elm) (attribute)

Rat returns a rational number rat whose meaning depends on the type of elm.

If elm is a string consisting of digits *0°, >1°, ..., 29’ and ’ -’ (at the first position), >/’ and the
decimal dot ?.” then rat is the rational described by this string. The operation String (27.6.6) can
be used to compute a string for rational numbers, in fact for all cyclotomics.

Example
gap> Rat( "1/2" ); Rat( "35/14" ); Rat( "35/-27" ); Rat( "3.14159" );
1/2

5/2

-35/27

314159/100000

17.2.7 Random (for rationals)

> Random(Rationals) (operation)

Random for rationals returns pseudo random rationals which are the quotient of two random inte-
gers. See the description of Random (14.2.12) for details. (Also see Random (30.7.1).)



Chapter 18

Cyclotomic Numbers

GAP admits computations in abelian extension fields of the rational number field Q, that is fields
with abelian Galois group over Q. These fields are subfields of cyclotomic fields Q(e,) where
e, = exp(2mi/n) is a primitive complex n-th root of unity. The elements of these fields are called
cyclotomics.

Information concerning operations for domains of cyclotomics, for example certain integral bases
of fields of cyclotomics, can be found in Chapter 60. For more general operations that take a field
extension as a —possibly optional- argument, e.g., Trace (58.3.5) or Coefficients (61.6.3), see
Chapter 58.

18.1 Operations for Cyclotomics
18.1.1 E
> E(n) (function)

E returns the primitive n-th root of unity e, = exp(27i/n). Cyclotomics are usually entered as
sums of roots of unity, with rational coefficients, and irrational cyclotomics are displayed in such a
way. (For special cyclotomics, see 18.4.)

Example

gap> E(9); E(9)°3; E(6); E(12) / 3;
-E(9)~4-E(9)"7

E(3)

-E(3)"2

-1/3%E(12)"7

A particular basis is used to express cyclotomics, see 60.3; note that E(9) is not a basis element,
as the above example shows.

18.1.2 Cyclotomics

> Cyclotomics (global variable)

is the domain of all cyclotomics.

218
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Example
gap> E(9) in Cyclotomics; 37 in Cyclotomics; true in Cyclotomics;
true
true
false

As the cyclotomics are field elements, the usual arithmetic operators +, -, * and / (and ~ to take
powers by integers) are applicable. Note that ~ does not denote the conjugation of group elements, so
it is not possible to explicitly construct groups of cyclotomics. (However, it is possible to compute the
inverse and the multiplicative order of a nonzero cyclotomic.) Also, taking the k-th power of a root
of unity z defines a Galois automorphism if and only if & is coprime to the conductor (see Conductor
(18.1.7)) of z.

Example
gap> E(5) + E(3); (E(5) + E(5)74) ~ 2; E(5) / E(3); E(5) * E(3);
-E(15)~2-2+E(15)~8-E(15)~11-E(15)~13-E(15)~14
-2xE(5)-E(5)~2-E(5)~3-2+E(5)"4

E(15)~13

E(15)"8

gap> Order( E(5) ); Order( 1+E(5) );

5

infinity

18.1.3 IsCyclotomic

> IsCyclotomic(obj) (Category)
> I SCyC (o bj ) (Category)

Every object in the family CyclotomicsFamily lies in the category IsCyclotomic. This covers
integers, rationals, proper cyclotomics, the object infinity (18.2.1), and unknowns (see Chapter 74).
All these objects except infinity (18.2.1) and unknowns lie also in the category IsCyc, infinity
(18.2.1) lies in (and can be detected from) the category IsInfinity (18.2.1), and unknowns lie in
IsUnknown (74.1.3).

Example
gap> IsCyclotomic(0); IsCyclotomic(1/2*E(3)); IsCyclotomic( infinity );
true

true
true
gap> IsCyc(0); IsCyc(1/2xE(3)); IsCyc( infinity );
true
true
false

18.1.4 IsIntegralCyclotomic

> IsIntegralCyclotomic(obj) (property)

A cyclotomic is called integral or a cyclotomic integer if all coefficients of its minimal polynomial
over the rationals are integers. Since the underlying basis of the external representation of cyclotomics
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is an integral basis (see 60.3), the subring of cyclotomic integers in a cyclotomic field is formed by
those cyclotomics for which the external representation is a list of integers. For example, square roots
of integers are cyclotomic integers (see 18.4), any root of unity is a cyclotomic integer, character
values are always cyclotomic integers, but all rationals which are not integers are not cyclotomic
integers.

Example
gap> r:= ER( 5 ); # The square root of 5 ...
E(5)-E(5)"2-E(5)~3+E(5)"4
gap> IsIntegralCyclotomic( r }; # ... is a cyclotomic integer.
true
gap> r2:= 1/2 * r; # This is not a cyclotomic integer,

1/2%E(5)-1/2%E(5)~2-1/2*E(5) ~3+1/2*E(5) "4

gap> IsIntegralCyclotomic( r2 );

false

gap> r3:= 1/2 * r - 1/2; # ... but this is one.
E(5)+E(5)"4

gap> IsIntegralCyclotomic( r3 );

true

18.1.5 Int (for a cyclotomic)

> Int( CyC) (function)

The operation Int can be used to find a cyclotomic integer near to an arbitrary cyclotomic, by
applying Int (14.2.3) to the coefficients.

Example
gap> Int( E(5)+1/2*E(5)"2 ); Int( 2/3*E(7)-3/2xE(4) );
E(5)
-E(4)
18.1.6 String (for a cyclotomic)
> String(cyc) (method)

The operation String returns for a cyclotomic cyc a string corresponding to the way the cyclo-
tomic is printed by ViewObj (6.3.5) and Print0Obj (6.3.5).
Example
gap> String( E(5)+1/2*E(5)~2 ); String( 17/3 );
"E(5)+1/2*E(5) ~2"
L1} 17/3 L1}

18.1.7 Conductor (for a cyclotomic)

> Conductor (cyc) (attribute)
> Conductor(C) (attribute)

For an element cyc of a cyclotomic field, Conductor returns the smallest integer n such that cyc
is contained in the n-th cyclotomic field. For a collection C of cyclotomics (for example a dense list of
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cyclotomics or a field of cyclotomics), Conductor returns the smallest integer n such that all elements
of C are contained in the n-th cyclotomic field.

Example
gap> Conductor( 0 ); Conductor( E(10) ); Conductor( E(12) );
1
5
12
18.1.8 AbsoluteValue
> AbsoluteValue(cyc) (attribute)

returns the absolute value of a cyclotomic number cyc. At the moment only methods for rational

numbers exist.
Example

gap> AbsoluteValue(-3);
3

18.1.9 RoundCyc

> RoundCyc(cyc) (operation)

is a cyclotomic integer z (see IsIntegralCyclotomic (18.1.4)) near to the cyclotomic cyc in the
following sense: Let ¢ be the i-th coefficient in the external representation (see CoeffsCyc (18.1.10))
of cyc. Then the i-th coefficient in the external representation of zis Int( ¢ + 1/2 ) or Int( ¢ -
1/2 ), depending on whether c is nonnegative or negative, respectively.

Expressed in terms of the Zumbroich basis (see 60.3), rounding the coefficients of cyc w.r.t. this
basis to the nearest integer yields the coefficients of z.

Example

gap> RoundCyc( E(5)+1/2*E(5)~2 ); RoundCyc( 2/3*E(7)+3/2xE(4) );

E(B)+E(5)"~2

-2*E(28) ~3+E(28)~4-2*E(28) ~11-2*E(28) ~15-2*E(28) ~19-2*E(28) =23
-2xE(28)~27

18.1.10 CoeffsCyc

> CoeffsCyc(cyc, N) (function)

Let cyc be a cyclotomic with conductor n (see Conductor (18.1.7)). If ¥ is not a multiple of
n then CoeffsCyc returns fail because cyc cannot be expressed in terms of N-th roots of unity.
Otherwise CoeffsCyc returns a list of length ¥ with entry at position j equal to the coefficient of
exp(2mi(j — 1)/N) if this root belongs to the N-th Zumbroich basis (see 60.3), and equal to zero
otherwise. So we have cyc = CoeffsCyc( cyc, N ) * List( [1..N], j -> E(W)~(j-1) ).
Example

gap> cyc:= E(5)+E(5)"2;

E(5)+E(5)"2

gap> CoeffsCyc( cyc, 5 ); CoeffsCyc( cyc, 16 ); CoeffsCyc( cyc, 7 );
[o, 1,1, 0, 01
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[01 _11 O, 0, 01 O, 01 O: _1, 0, 01 _11 O, _1, 0]
fail

18.1.11 DenominatorCyc

> DenominatorCyc(cyc) (function)

For a cyclotomic number cyc (see IsCyclotomic (18.1.3)), this function returns the smallest
positive integer n such that n * cyc is a cyclotomic integer (see IsIntegralCyclotomic (18.1.4)).
For rational numbers cyc, the result is the same as that of DenominatorRat (17.2.5).

18.1.12 ExtRepOfObj (for a cyclotomic)

> ExtRep0f0bj(cyc) (method)

The external representation of a cyclotomic cyc with conductor n (see Conductor (18.1.7) is the
list returned by CoeffsCyc (18.1.10), called with cyc and n.

Example
gap> ExtRep0f0bj( E(5) ); CoeffsCyc( E(5), 5 );
[0, 1, 0, 0,01

[0, 1,0, 0,01

gap> CoeffsCyc( E(5), 15 );

ro, o, o, 0,0,b0, 0,0, -1, 0,0, 0,0, -1, 01

18.1.13 DescriptionOfRootOfUnity

> Description0fRoot0fUnity(root) (function)

Given a cyclotomic root that is known to be a root of unity (this is not checked),
Description0fRoot0fUnity returns a list [n,e] of coprime positive integers such that root = E(n)¢
holds.

Example
gap> E(9); Description0fRoot0fUnity( E(9) );
-E(9)~4-E(9)"7

[9, 1]
gap> Description0fRoot0fUnity( -E(3) );
[ 6, 5]

18.1.14 IsGaussInt

> IsGaussInt(x) (function)

IsGaussInt returns true if the object x is a Gaussian integer (see GaussianIntegers (60.5.1)),
and false otherwise. Gaussian integers are of the form a 4 b*E(4), where a and b are integers.
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18.1.15 IsGaussRat

> IsGaussRat(x) (function)

IsGaussRat returns true if the object x is a Gaussian rational (see GaussianRationals
(60.1.3)), and false otherwise. Gaussian rationals are of the form a + b*E(4), where a and b are
rationals.

18.1.16 DefaultField (for cyclotomics)

> DefaultField(list) (function)

DefaultField for cyclotomics is defined to return the smallest cyclotomic field containing the
given elements.

Note that Field (58.1.3) returns the smallest field containing all given elements, which need not
be a cyclotomic field. In both cases, the fields represent vector spaces over the rationals (see 60.3).

Example
gap> Field( E(5)+E(5)~4 ); DefaultField( E(5)+E(5)"4 );
NF(5,[ 1, 4 1)

CF(5)

18.2 Infinity and negative Infinity

18.2.1 IsInfinity

> IsInfinity(obj) (Category)
> IsNegInfinity(obj) (Category)
> inf inity (global variable)
> -infinity (global variable)

infinity and -infinity are special GAP objects that lie in CyclotomicsFamily. They are
larger or smaller than all other objects in this family respectively. infinity is mainly used as return
value of operations such as Size (30.4.6) and Dimension (57.3.3) for infinite and infinite dimensional
domains, respectively.

Some arithmetic operations are provided for convenience when using infinity and -infinity
as top and bottom element respectively.

Example
gap> -infinity + 1;
-infinity
gap> infinity + infinity;
infinity

Often it is useful to distinguish infinity from “proper” cyclotomics. For that, infinity lies in the
category IsInfinity but not in IsCyc (18.1.3), and the other cyclotomics lie in the category IsCyc
(18.1.3) but not in IsInfinity.

Example

gap> s:= Size( Rationals );
infinity
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gap> s = infinity; IsCyclotomic( s ); IsCyc( s ); IsInfinity( s );
true

true

false

true

gap> s in Rationals; s > 17;

false

true

gap> Set( [ s, 2, s, E(17), s, 191 );

[ 2, 19, E(17), infinity ]

18.3 Comparisons of Cyclotomics

To compare cyclotomics, the operators <, <=, =, >=, >, and <> can be used, the result will be true if
the first operand is smaller, smaller or equal, equal, larger or equal, larger, or unequal, respectively,
and false otherwise.

Cyclotomics are ordered as follows: The relation between rationals is the natural one, rationals
are smaller than irrational cyclotomics, and infinity (18.2.1) is the largest cyclotomic. For two
irrational cyclotomics with different conductors (see Conductor (18.1.7)), the one with smaller con-
ductor is regarded as smaller. Two irrational cyclotomics with same conductor are compared via their
external representation (see ExtRep0f0bj (18.1.12)).

For comparisons of cyclotomics and other GAP objects, see Section 4.12.

Example
gap> E(B) < E(6); # the latter value has conductor 3

false

gap> E(3) < E(3)"2; # both have conductor 3, compare the ext. repr.
false

gap> 3 < E(3); E(5) < E(7);

true

true

18.4 ATLAS Irrationalities

184.1 EB,EC,...,EH

EB(N) (function)
EC(N) (function)
ED ( N ) (function)
EE(N) (function)
EF ( N ) (function)
EG(N) (function)
EH ( N ) (function)

v VvV VvV VvV VvV VvV V

For a positive integer N, let z = E(N) = exp(27i/N). The following so-called atomic irrationali-
ties (see [CCN™85, Chapter 7, Section 10]) can be entered using functions. (Note that the values are
not necessary irrational.)
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EB(N) = by = Zi-v:_llzjz /2 , N=1 (mod2)
EC(N) = cy = Zﬁ»\’:_llzf /3 , N=1 (mod3)
ED() = dy = (¥¥5'7')/4 . N=1 (mod4)
EE(N) = ey = Zﬁ-v:]lzjs /5 , N=1 (mod5)
EF(N) = fy = (E¥5'2°)/6 . ¥=1 (mod6)
EG() = gy = (¥X5'')/7 . W=1 (mod7)
EH(N) = hy = (E¥5'2")/8 . N=1 (mod8)

(Note that in EC(N), ..., EH(¥), N must be a prime.)
Example

gap> EB(5); EB(9);
E(5)+E(5)"4
1

18.4.2 EI and ER

> EI(N) (function)
> ER ( N ) (function)

For a rational number N, ER returns the square root /N of N, and EI returns /—N. By the chosen
embedding of cyclotomic fields into the complex numbers, ER returns the positive square root if N is
positive, and if N is negative then ER(N) = EI(-N) holds. In any case, EI(N) = E(4) * ER(N).

ER is installed as method for the operation Sqrt (31.12.5), for rational argument.

From a theorem of Gauss we know that by =

(=14+VN)/2 if N=1 (mod4)
(=1+iVN)/2 if N=-1 (mod4)

So /N can be computed from by, see EB (18.4.1).

Example

gap> ER(3); EI(3);

-E(12)~7+E(12)~11

E(3)-E(3)"2
18.4.3 EY,EX,..,ES
> EY(N[, d]) (function)
> EX(N[, d]) (function)
> EW(N[, d]) (function)
> EV(N[, d]) (function)
> EU (N[, d]) (function)
> ET(N[, d]) (function)
> ES (N[, d]) (function)
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For the given integer N > 2, let N} denote the first integer with multiplicative order exactly k
modulo ¥, chosen in the order of preference

1,-1,2,-2,3,-3,4,—4,....

We define (with z = exp(27i/N))

For the two-argument versions of the functions, see Section NX (18.4.5).

EY(N)
EX(N)
EW(N)
EV(N)
EU(N)
ET(N)
ES(N)

YN
XN
Wy
VN
uy
Iy

Sy

gap> EY(5);
E(5)+E(5)"4

0

gap> EW(16,3); EW(17,2);

ET)+E(17)~4+E(17)~13+E(17) 16

z+7"
4+ 47"
4+ 4
2 3 4
2+ 7+ 7+
n nz I’lS
2+ +7 +...+2Z
2
P+ 4
n n2 n7
2+ 4+ +...+2

Example

1844 EM,EL,..,EJ

> EM(N[, d1)
> EL(N[, dI)
> EK(N[, d])
> EJ(N[, dI)

Let N be an integer, N > 2. We define (with z = exp(27i/N))

For the two-argument versions of the functions, see Section NX (18.4.5).

18.4.5 NK
> NK(N, k, d)

Let N(d)

EM(N)
EL(N)
EK(N)
EJ(N)

ky =
JN =

z—7"
2 3
—7"+7V - 7"
5
z—7"+... ="
7
z—7"+... ="

(d)

(function)
(function)
(function)

(function)

(function)

i be the (d 4 1)-th integer with multiplicative order exactly k modulo N, chosen in the

order of preference defined in Section 18.4.3; NK returns NV, ~; if there is no integer with the required
multiplicative order, NK returns fail.

We write Ny, =N

(0) 3
x Ny

_

N = NE{Z) and so on.
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The algebraic numbers

ro_ o (2) roon g
y]\[_yN 7yN_yN >7XN7XN57]N7]]\]'7

are obtained on replacing Ny in the definitions in the sections 18.4.3 and 18.4.4 by N N’ ,...; they
can be entered as
EY(d) =
EX(d) = x\)
EJ(Wd) = jid
18.4.6 AtlasIrrationality
> AtlasIrrationality(irratname) (function)

Let irratname be a string that describes an irrational value as a linear combination in terms of the
atomic irrationalities introduced in the sections 18.4.1, 18.4.2, 18.4.3, 18.4.4. These irrational values
are defined in [CCN ™85, Chapter 6, Section 10], and the following description is mainly copied from
there. If gy is such a value (e.g. y5,) then linear combinations of algebraic conjugates of gy are
abbreviated as in the following examples:

2qN+385-4&7+&9 means 2gy + 3¢5 —4qy + 4
4qN&3&5&7-3%4  means 4(gn +q5 + 45 +q¥) = 3!
AqN*3E5+LT means  4(q +4i7) + gy

To explain the “ampersand” syntax in general we remark that “&Kk” is interpreted as q}‘vk, where gy
is the most recently named atomic irrationality, and that the scope of any premultiplying coefficient is
broken by a + or — sign, but not by & or k. The algebraic conjugations indicated by the ampersands
apply directly to the atomic irrationality gy, even when, as in the last example, gy first appears with
another conjugacy *k.

Example

gap> AtlasIrrationality( "b7*3" );
E(7)"~3+E(7)"5+E(7)"6

gap> AtlasIrratiomnality( "y?’’24" );
E(24)-E(24)~19

gap> AtlasIrrationality( "-3y?’?24%13%&5" );
3+E(8)-3+E(8)"3

gap> AtlasIrrationality( "3y’’’24%13-2&5" );
-3*E(24) -2xE(24) ~11+2*E(24) ~17+3*E(24)~19
gap> AtlasIrrationality( "3y’?’24%13-&5" );
-3*E(24)-E(24) ~11+E(24) ~17+3*E(24) ~19

gap> AtlasIrrationality( "3y’’’24x13-4&5&7" );
-T*E(24) -4*E(24) ~11+4*E(24) ~17+7*E(24)~19
gap> AtlasIrrationality( "3y’’’24&7" );
6xE(24) -6+E(24)~19
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18.5 Galois Conjugacy of Cyclotomics

18.5.1 GaloisCyc (for a cyclotomic)

> GaloisCyc(cyc, k) (operation)
> GaloisCyc(list, k) (operation)

For a cyclotomic cyc and an integer k, GaloisCyc returns the cyclotomic obtained by raising the
roots of unity in the Zumbroich basis representation of cyc to the k-th power. If k is coprime to the
integer n, GaloisCyc( ., k ) acts as a Galois automorphism of the n-th cyclotomic field (see 60.4);
to get the Galois automorphisms themselves, use GaloisGroup (58.3.1).

The complex conjugate of cyc is GaloisCyc( cyc, -1 ), which can also be computed using
ComplexConjugate (18.5.2).

For a list or matrix 1ist of cyclotomics, GaloisCyc returns the list obtained by applying
GaloisCyc to the entries of 1ist.

18.5.2 ComplexConjugate

> ComplexConjugate(z) (attribute)
> RealPart(z) (attribute)
> ImaginaryPart(z) (attribute)

For a cyclotomic number z, ComplexConjugate returns GaloisCyc( z, -1 ), see GaloisCyc
(18.5.1). For a quaternion z = c1e+czi+c3j+ c4k, ComplexConjugate returns cje — cri — c3j — cak,
see IsQuaternion (62.8.8).

When ComplexConjugate is called with a list then the result is the list of return values of
ComplexConjugate for the list entries in the corresponding positions.

When ComplexConjugate is defined for an object z then RealPart and ImaginaryPart
return (z + ComplexConjugate( z )) / 2 and (z - ComplexConjugate( z )) / 2 i, re-
spectively, where i denotes the corresponding imaginary unit.

Example
gap> GaloisCyc( E(5) + E(5)"4, 2 );
E(5)"2+E(5)"3
gap> GaloisCyc( E(B), -1 ); # the complex conjugate

E(5)~4

gap> GaloisCyc( E(5) + E(5)~4, -1 ); # this value is real
E(5)+E(5)"4

gap> GaloisCyc( E(15) + E(15)"4, 3 );

E(5)+E(5)~4

gap> ComplexConjugate( E(7) );

E(7)"6

18.5.3 StarCyc

> StarCyc(cyc) (function)

If the cyclotomic cyc is an irrational element of a quadratic extension of the rationals then
StarCyc returns the unique Galois conjugate of cyc that is different from cyc, otherwise fail is
returned. In the first case, the return value is often called cycx* (see 71.13).
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Example
gap> StarCyc( EB(5) ); StarCyc( E(5) );
E(5)"2+E(5)"3

fail

18.5.4 Quadratic

> Quadratic(cyc) (function)

Let cyc be a cyclotomic integer that lies in a quadratic extension field of the rationals. Then we
have cyc= (a+ b+/n)/d, for integers a, b, n, d, such that d is either 1 or 2. In this case, Quadratic
returns a record with the components a, b, root, d, ATLAS, and display; the values of the first four
are a, b, n, and d, the ATLAS value is a (not necessarily shortest) representation of cyc in terms of
the Atlas irrationalities by, i|,|, 7|, and the display value is a string that expresses cyc in GAP
notation, corresponding to the value of the ATLAS component.

If cyc is not a cyclotomic integer or does not lie in a quadratic extension field of the rationals then
fail is returned.

If the denominator d is 2 then necessarily n is congruent to 1 modulo 4, and r,, i,, are not possible;
we have cyc = x + y * EB( root ) withy = b,x = (a+b) / 2.

If d = 1, we have the possibilities i‘n‘ forn< —1,a+bxiforn=—1, a+bxr, for n > 0.
Furthermore if n is congruent to 1 modulo 4, also cyc = (a+b) +2 b x by, is possible; the shortest
string of these is taken as the value for the component ATLAS.

Example
gap> Quadratic( EB(5) ); Quadratic( EB(27) );
rec( ATLAS := "b5", a := -1, b := 1, d := 2,
display := "(-1+Sqrt(5))/2", root := 5 )
rec( ATLAS := "1+3b3", a := -1, b := 3, 4 := 2,
display := "(-1+3xSqrt(-3))/2", root := -3 )
gap> Quadratic(0); Quadratic( E(5) );
rec( ATLAS := "0", a := 0, b := 0, 4 := 1, display := "0", root := 1)
fail
18.5.5 GaloisMat
> GaloisMat (mat) (attribute)

Let mat be a matrix of cyclotomics. GaloisMat calculates the complete orbits under the operation
of the Galois group of the (irrational) entries of mat, and the permutations of rows corresponding to
the generators of the Galois group.

If some rows of mat are identical, only the first one is considered for the permutations, and a
warning will be printed.

GaloisMat returns a record with the components mat, galoisfams, and generators.

mat
a list with initial segment being the rows of mat (not shallow copies of these rows); the list
consists of full orbits under the action of the Galois group of the entries of mat defined above.
The last rows in the list are those not contained in mat but must be added in order to complete
the orbits; so if the orbits were already complete, mat and mat have identical rows.
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galoisfams
a list that has the same length as the mat component, its entries are either 1, 0, -1, or lists.

galoisfams[i] = 1
means that mat [1] consists of rationals, i.e., [ mat[i] ] forms an orbit;

galoisfams[i] = -1
means that mat [i] contains unknowns (see Chapter 74); in this case [ mat[i] 1] is re-
garded as an orbit, too, even if mat [i] contains irrational entries;

galoisfams[i] = [/1,]
(a list) means that mat [1] is the first element of its orbit in mat, /; is the list of positions
of rows that form the orbit, and /; is the list of corresponding Galois automorphisms (as
exponents, not as functions); so we have mat[l;[j]][k] = GaloisCyc( matli][k],2[j] );

galoisfams[i] = 0
means that mat [i] is an element of a nontrivial orbit but not the first element of it.

generators
a list of permutations generating the permutation group corresponding to the action of the Galois
group on the rows of mat.
Example
gap> GaloisMat( [ [ E(3), E(4) 11 );
rec( galoisfams := [ [ [ 1, 2, 3,41, [1, 7,5, 11171, 0, 0,01,
generators := [ (1,2)(3,4), (1,3)(2,4) 1,
mat := [ [ E(3), E(4) 1, [ E(3), -E(4) 1, [ E(3)"2, E4 1,
[ E(3)~2, -E4) 1 1)
gap> GaloisMat( [ [ 1, 1, 1
rec( galoisfams := L
generators := [
mat := [ [ 1, 1

1, [ 1, E(3), E3)211);
2,31, 1,211, 01,

L1, [
(2,3) 1,
,» 11, 01, E®), E@)"21, [ 1, E)"2, E@) 1 1)

18.5.6 RationalizedMat

> RationalizedMat (mat) (attribute)

returns the list of rationalized rows of mat, which must be a matrix of cyclotomics. This is the
set of sums over orbits under the action of the Galois group of the entries of mat (see GaloisMat
(18.5.5)), so the operation may be viewed as a kind of trace on the rows.

Note that no two rows of mat should be equal.

Example
gap> mat:= [ [ 1, 1, 11, [ 1, E(3), E(3)~2 1, [ 1, E(3)"2, E(3) 1 1;;
gap> RationalizedMat( mat );

(ri+,1,11, 02, -1, -1 11

18.6 Internally Represented Cyclotomics

The implementation of an internally represented cyclotomic is based on a list of length equal to its
conductor. This means that the internal representation of a cyclotomic does not refer to the smallest
number field but the smallest cyclotomic field containing it. The reason for this is the wish to reflect
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the natural embedding of two cyclotomic fields into a larger one that contains both. With such embed-
dings, it is easy to construct the sum or the product of two arbitrary cyclotomics (in possibly different
fields) as an element of a cyclotomic field.

The disadvantage of this approach is that the arithmetical operations are quite expensive, so the use
of internally represented cyclotomics is not recommended for doing arithmetics over number fields,
such as calculations with matrices of cyclotomics. But internally represented cyclotomics are good
enough for dealing with irrationalities in character tables (see chapter 71).

For the representation of cyclotomics one has to recall that the n-th cyclotomic field Q(e,) is
a vector space of dimension ¢(n) over the rationals where ¢ denotes Euler’s phi-function (see Phi
(15.2.2)).

A special integral basis of cyclotomic fields is chosen that allows one to easily convert arbitrary
sums of roots of unity into the basis, as well as to convert a cyclotomic represented w.r.t. the basis into
the smallest possible cyclotomic field. This basis is accessible in GAP, see 60.3 for more information
and references.

Note that the set of all n-th roots of unity is linearly dependent for n > 1, so multiplication is not
the multiplication of the group ring Q(e,); given a Q-basis of Q(e,) the result of the multiplication
(computed as multiplication of polynomials in e,, using (e, )" = 1) will be converted to the basis.

Example
gap> E(6) * E(5)"2; ( E(B) + E(B)~4 ) * E(5)"~2;
E(5)"3

E(5)+E(5)"3

gap> ( E(5) + E(5)°4 ) * E(5);
-E(5)-E(5)~3-E(5)~4

An internally represented cyclotomic is always represented in the smallest cyclotomic field it
is contained in. The internal coefficients list coincides with the external representation returned by
ExtRepOfObj (18.1.12).

To avoid calculations becoming unintentionally very long, or consuming very large amounts of
memory, there is a limit on the conductor of internally represented cyclotomics, by default set to
one million. This can be raised (although not lowered) using SetCyclotomicsLimit (18.6.1) and
accessed using GetCyclotomicsLimit (18.6.1). The maximum value of the limit is 228 _1on32
bit systems, and 232 on 64 bit systems. So the maximal cyclotomic field implemented in GAP is not
really the field Q.

It should be emphasized that one disadvantage of representing a cyclotomic in the smallest cy-
clotomic field (and not in the smallest field) is that arithmetic operations in a fixed small extension
field of the rational number field are comparatively expensive. For example, take a prime integer p
and suppose that we want to work with a matrix group over the field Q(,/p). Then each matrix entry
could be described by two rational coefficients, whereas the representation in the smallest cyclotomic
field requires p — 1 rational coefficients for each entry. So it is worth thinking about using elements
in a field constructed with AlgebraicExtension (67.1.1) when natural embeddings of cyclotomic
fields are not needed.

18.6.1 SetCyclotomicsLimit

> SetCyclotomicsLimit (newlimit) (function)
> GetCyclotomicsLimit () (function)
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GetCyclotomicsLimit returns the current limit on conductors of internally represented cyclo-
tomic numbers

SetCyclotomicsLimit can be called to increase the limit on conductors of internally represented
cyclotomic numbers. Note that computing in large cyclotomic fields using this representation can be
both slow and memory-consuming, and that other approaches may be better for some problems. See
18.6.



Chapter 19

Floats

Starting with version 4.5, GAP has built-in support for floating-point numbers in machine format, and
allows package to implement arbitrary-precision floating-point arithmetic in a uniform manner. For
now, one such package, Float exists, and is based on the arbitrary-precision routines in mpfr.

A word of caution: GAP deals primarily with algebraic objects, which can be represented exactly
in a computer. Numerical imprecision means that floating-point numbers do not form a ring in the
strict GAP sense, because addition is in general not associative ((1.0e-100+1.0)-1.0 is not the
same as 1.0e-100+(1.0-1.0), in the default precision setting).

Most algorithms in GAP which require ring elements will therefore not be applicable to floating-
point elements. In some cases, such a notion would not even make any sense (what is the greatest
common divisor of two floating-point numbers?)

19.1 A sample run

Floating-point numbers can be input into GAP in the standard floating-point notation:

Example

gap> 3.14;

3.14

gap> last~2/6;

1.64327

gap> h := 6.62606896e-34;
6.62607e-34

gap> pi := 4xAtan(1.0);
3.14159

gap> hbar := h/(2%pi);
1.05457e-34

Floating-point numbers can also be created using Float, from strings or rational numbers; and
can be converted back using String,Rat,Int.

GAP allows rational and floating-point numbers to be mixed in the elementary operations
+,-,%*,/. However, floating-point numbers and rational numbers may not be compared. Conversions
are performed using the creator Float:

Example

gap> Float("3.1416");
3.1416

233
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gap> Float (355/113);
3.14159

gap> Rat(last);
355/113

gap> Rat(0.33333);
1/3

gap> Int(1.e10);
10000000000

gap> Int(1.e20);
100000000000000000000
gap> Int(1.e30);
1000000000000000019884624838656

19.2 Methods

Floating-point numbers may be directly input, as in any usual mathematical software or language;
with the exception that every floating-point number must contain a decimal digit. Therefore .1, .1lel,
-.999 etc. are all valid GAP inputs.

Floating-point numbers so entered in GAP are stored as strings. They are converted to floating-
point when they are first used. This means that, if the floating-point precision is increased, the con-
stants are reevaluated to fit the new format.

Floating-point numbers may be followed by an underscore, as in 1._. This means that they are
to be immediately converted to the current floating-point format. The underscore may be followed by
a single letter, which specifies which format/precision to use. By default, GAP has a single floating-
point handler, with fixed (53 bits) precision, and its format specifier is 1’ as in 1._1. Higher-
precision floating-point computations is available via external packages; float for example.

A record, FLOAT (19.2.6), contains all relevant constants for the current floating-point for-
mat; see its documentation for details. Typical fields are FLOAT.MANT_DIG=53, the constant
FLOAT.VIEW_DIG=6 specifying the number of digits to view, and FLOAT.PI for the constant 7. The
constants have the same name as their C counterparts, except for the missing initial DBL_ or M_.

Floating-point numbers may be created using the single function Float (19.2.7), which
accepts as arguments rational, string, or floating-point numbers.  Floating-point numbers
may also be created, in any floating-point representation, using NewFloat (19.2.7) as in
NewFloat (IsIEEE754FloatRep,355/113), by supplying the category filter of the desired new
floating-point number; or using MakeFloat (19.2.7) as in NewFloat(1.0,355/113), by supplying a
sample floating-point number.

Floating-point numbers may also be converted to other GAP formats using the usual commands
Int (14.2.3), Rat (17.2.6), String (27.6.6).

Exact conversion to and from floating-point format may be done using external representations.
The "external representation” of a floating-point number x is a pair [m,e] of integers, such that
x=m*2" (-1+e-LogInt (AbsInt(m),2)). Conversion to and from external representation is per-
formed as usual using ExtRep0£0bj (79.16.1) and ObjByExtRep (79.16.1):

Example

gap> ExtRep0f0bj(3.14);

[ 7070651414971679, 2 ]

gap> ObjByExtRep (IEEE754FloatsFamily,last);
3.14
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Computations with floating-point numbers never raise any error. Division by zero is allowed, and
produces a signed infinity. Illegal operations, such as 0./0., produce NaN’s (not-a-number); this is
the only floating-point number x such that not EqFloat (x+0.0,x).

The IEEE754 standard requires NaN to be non-equal to itself. On the other hand, GAP requires
every object to be equal to itself. To respect the IEEE754 standard, the function EqFloat (19.2.2)
should be used instead of =.

The category a floating-point belongs to can be checked using the filters IsFinite (30.4.2),
IsPInfinity (19.2.5), IsNInfinity (19.2.5), IsXInfinity (19.2.5), IsNaN (19.2.5).

Comparisons between floating-point numbers and rationals are explicitly forbidden. The rationale
is that objects belonging to different families should in general not be comparable in GAP. Floating-
point numbers are also approximations of real numbers, and don’t follow the same rules; consider for
example, using the default GAP implementation of floating-point numbers,

Example

gap> 1.0/3.0 = Float(1/3);

true

gap> (1.0/3.0)"5 = Float((1/3)"5);

false
19.2.1 Mathematical operations
> Cos ( X ) (operation)
> Sin ( X ) (operation)
> SinCos ( X ) (operation)
> Tan ( X ) (operation)
> Sec(x) (operation)
> Csc ( X ) (operation)
> Cot(x) (operation)
> Asin ( X ) (operation)
> Acos(x) (operation)
> Atan(x) (operation)
> Atan2(y, x) (operation)
> Cosh(x) (operation)
> Sinh ( X ) (operation)
> Tanh(x) (operation)
> Sech(x) (operation)
> Csch(x) (operation)
> Coth(x) (operation)
> Asinh(x) (operation)
> Acosh (X) (operation)
> Atanh(x) (operation)
> Log (x) (operation)
> Log2 (x) (operation)
> Logl0 (x) (operation)
> Loglp (X) (operation)
> Exp (x) (operation)
> Exp 2 ( X ) (operation)
> Expl10(x) (operation)
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> Expmil (x) (operation)
> Cuberoot (x) (operation)
> Square (x) (operation)
> Hypothenuse (x, y) (operation)
> Ceil ( X) (operation)
> Floor(x) (operation)
> Round ( X ) (operation)
> Trunc(x) (operation)
> Frac ( X ) (operation)
> SignFloat (x) (operation)
> Argument (x) (operation)
> Erf(x) (operation)
> Zeta(x) (operation)
> Gamma (x) (operation)
> ComplexI (x) (operation)

Usual mathematical functions.

19.2.2 EqgFloat

> EgFloat(x, y) (operation)
Returns: Whether the floateans x and y are equal
This function compares two floating-point numbers, and returns true if they are equal, and false
otherwise; with the exception that NaN is always considered to be different from itself.

19.2.3 PrecisionFloat

> PrecisionFloat (x) (operation)
Returns: The precision of x
This function returns the precision, counted in number of binary digits, of the floating-point num-
ber x.

19.2.4 Interval operations

> Sup (interval) (operation)
> Inf(interval) (operation)
> Mid(interval) (operation)
> AbsoluteDiameter(interval) (operation)
> RelativeDiameter (interval) (operation)
> Overlaps(intervall, interval?2) (operation)
> IsDisjoint(intervall, interval2) (operation)
> Increaselnterval(interval, delta) (operation)
> BlowupInterval(interval, ratio) (operation)
> BisectInterval(interval) (operation)

Most are self-explanatory. BlowupInterval returns an interval with same midpoint but relative
diameter increased by ratio; IncreaseInterval returns an interval with same midpoint but ab-
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solute diameter increased by delta; BisectInterval returns a list of two intervals whose union
equals interval.

19.2.5 IsPInfinity

> IsPInfinity(X) (property)
> IsNInfinity(x) (property)
> IsXInfinity(x) (property)
> IsFinite(x) (property)
> IsNaN(x) (property)

Returns true if the floating-point number x is respectively oo, —oo, 4-co, finite, or ‘not a number’,
such as the result of 0.0/0.0.

19.2.6 FLOAT (constants)

> FLOAT (global variable)

This record contains useful floating-point constants:

DECIMAL_DIG
Maximal number of useful digits;

DIG
Number of significant digits;

VIEW_DIG
Number of digits to print in short view;

EPSILON
Smallest number such that 1 # 1+ ¢;

MANT _DIG
Number of bits in the mantissa;

MAX
Maximal representable number;

MAX_10_EXP
Maximal decimal exponent;

MAX_EXP
Maximal binary exponent;

MIN
Minimal positive representable number;

MIN_10_EXP
Minimal decimal exponent;

MIN_EXP
Minimal exponent;



GAP - Reference Manual 238

INFINITY
Positive infinity;

NINFINITY
Negative infinity;

NAN
Not-a-number,

as well as mathematical constants E, LOG2E, LOG10E, LN2, LN10, PI, PI_2, PI_4, 1_PI, 2_PI,
2_SQRTPI, SQRT2, SQRT1_2.

19.2.7 Float

> Float (Obj) (operation)
> NewFloat(filter, Obj) (operation)
> MakeFloat (sample, obj, obj) (operation)

Returns: A new floating-point number, based on obj

This function creates a new floating-point number.

If obj is a rational number, the created number is created with sufficient precision so that
the number can (usually) be converted back to the original number (see Rat (Reference: Rat)
and Rat (17.2.6)). For an integer, the precision, if unspecified, is chosen sufficient so that
Int (Float(obj))=obj always holds, but at least 64 bits.

obj may also be a string, which may be of the form "3.14e0" or ".314el1" or ".314@1" etc.

An option may be passed to specify, it bits, a desired precision. The format is
Float("3.14":PrecisionFloat:=1000) to create a 1000-bit approximation of 3.14.
In particular, if obj is already a floating-point number, then

Float(obj:PrecisionFloat:=prec) creates a copy of obj with a new precision. prec

19.2.8 Rat (for floats)

> Rat (f) (operation)

Returns: A rational approximation to £

This command constructs a rational approximation to the floating-point number f. Of course, it
is not guaranteed to return the original rational number £ was created from, though it returns the most
‘reasonable’ one given the precision of f.

Two options control the precision of the rational approximation: In the form
Rat (f :maxdenom:=md,maxpartial:=mp), the rational returned is such that the denominator
is at most md and the partials in its continued fraction expansion are at most mp. The default values
are maxpartial:=10000 and maxdenom:=2"(precision/2).

19.2.9 SetFloats
> SetFloats(rec[, bits][, installl) (function)
Installs a new interface to floating-point numbers in GAP, optionally with a desired precision

bits in binary digits. The last optional argument install is a boolean value; if false, it only installs
the eager handler and the precision for the floateans, without making them the default.



GAP - Reference Manual 239

19.3 High-precision-specific methods

GAP provides a mechanism for packages to implement new floating-point numerical interfaces. The
following describes that mechanism, actual examples of packages are documented separately.
A package must create a record with fields (all optional)

creator
a function converting strings to floating-point;

eager
a character allowing immediate conversion to floating-point;

objbyextrep
a function creating a floating-point number out of a list [mantissa,exponent];

filter
a filter for the new floating-point objects;

constants
a record containing numerical constants, such as MANT_DIG, MAX, MIN, NAN.

The package must install methods Int, Rat, String for its objects, and creators
NewFloat(filter,IsRat), NewFloat(IsString).

It must then install methods for all arithmetic and numerical operations: PLUS, Exp, ...

The user chooses that implementation by calling SetFloats (19.2.9) with the record as argument,
and with an optional second argument requesting a precision in binary digits.

19.4 Complex arithmetic

Complex arithmetic may be implemented in packages, and is present in float. Complex numbers are
treated as usual numbers; they may be input with an extra "i" as in -0.5+0.8661.

Methods should then be implemented for Norm, RealPart, ImaginaryPart,
ComplexConjugate, ...

19.5 Interval-specific methods

Interval arithmetic may also be implemented in packages. Intervals are in fact efficient implementa-
tions of sets of real numbers. The only non-trivial issue is how they should be compared. The standard
EQ tests if the intervals are equal; however, it is usually more useful to know if intervals overlap, or
are disjoint, or are contained in each other. The methods provided by the package should include
Sup,Inf,Mid,DiameterOfInterval,Overlaps,IsSubset,IsDisjoint.

Note the usual convention that intervals are compared as in [a,b] < [c¢,d] if and only if a < ¢ and
b<d.



Chapter 20

Booleans

The two main boolean values are true and false. They stand for the logical values of the same
name. They appear as values of the conditions in if-statements and while-loops. Booleans are also
important as return values of filters (see 13.2) such as IsFinite (30.4.2) and IsBool (20.1.1). Note
that it is a convention that the name of a function that returns true or false according to the outcome,
starts with Is.

For technical reasons, also the value fail (see 20.2) is regarded as a boolean.

20.1 IsBool (Filter)

20.1.1 IsBool

> IsBool( Obj) (Category)

tests whether obj is true, false or fail.
Example
gap> IsBool( true ); IsBool( false ); IsBool( 17 );
true

true

false

20.2 Fail (Variable)

20.2.1 fail

> fail (global variable)

The value fail is used to indicate situations when an operation could not be performed for the
given arguments, either because of shortcomings of the arguments or because of restrictions in the
implementation or computability. So for example Position (21.16.1) will return fail if the point
searched for is not in the list.

fail is simply an object that is different from every other object than itself.

For technical reasons, fail is a boolean value. But note that fail cannot be used to form boolean
expressions with and, or, and not (see 20.4 below), and fail cannot appear in boolean lists (see
Chapter 22).

240
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20.3 Comparisons of Booleans

20.3.1 Equality and inequality of Booleans

booll = bool2
booll <> bool2

The equality operator = evaluates to true if the two boolean values bool1 and bool2 are equal,
i.e., both are true or both are false or both fail, and false otherwise. The inequality operator <>
evaluates to true if the two boolean values bool1, bool2 are different, and false otherwise. This
operation is also called the exclusive or, because its value is true if exactly one of booll or bool2
is true.

You can compare boolean values with objects of other types. Of course they are never equal.

Example
gap> true = false;
false
gap> false = (true = fail);
true
gap> true <> 17;
true

20.3.2 Ordering of Booleans

bool1l < bool2
The ordering of boolean values is defined by true < false < fail. For the comparison of
booleans with other GAP objects, see Section 4.12.

Example
gap> true < false; fail >= false;

true

true

20.4 Operations for Booleans

The following boolean operations are only applicable to true and false.

20.4.1 Logical disjunction

booll or bool2

The logical operator or evaluates to true if at least one of the two boolean operands bool1 and
bool2 is true, and to false otherwise.

or first evaluates bool1. If the value is neither true nor false an error is signalled. If the value
is true, then or returns true without evaluating bool2. If the value is false, then or evaluates
bool2. Again, if the value is neither true nor false an error is signalled. Otherwise or returns
the value of bool2. This short-circuited evaluation is important if the value of bool1! is true and
evaluation of bool2 would take much time or cause an error.

or is associative, i.e., it is allowed to write b1 or b2 or b3, which is interpreted as (b1 or b2) or
b3. or has the lowest precedence of the logical operators. All logical operators have lower precedence
than the comparison operators =, <, in, etc.
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Example
gap> true or false;
true
gap> false or false;
false
gap> i := -1;; 1 := [1,2,3];;
gap> if i <= 0 or 1[i] = false then # this does not cause an error,
> Print("aha\n"); fi; # because ‘1[i]’ is not evaluated
aha

20.4.2 Logical conjunction

booll and bool2
fill and fi12

The logical operator and evaluates to true if both boolean operands bool1, bool2 are true, and
to false otherwise.

and first evaluates bool1. If the value is neither true nor false an error is signalled. If the value
is false, then and returns false without evaluating bool2. If the value is true, then and evaluates
bool2. Again, if the value is neither true nor false an error is signalled. Otherwise and returns
the value of bool2. This short-circuited evaluation is important if the value of bool1 is false and
evaluation of bool2 would take much time or cause an error.

and is associative, i.e., it is allowed to write b1 and b2 and b3, which is interpreted as (b1 and
b2) and b3. and has higher precedence than the logical or operator, but lower than the unary logical
not operator. All logical operators have lower precedence than the comparison operators =, <, in, etc.

Example
gap> true and false;
false
gap> true and true;
true
gap> false and 17; # does not cause error, because 17 is never looked at
false

and can also be applied to filters. It returns a filter that when applied to some argument x, tests
£il1(x) and £i12(x).
Example

gap> andfilt:= IsPosRat and IsInt;;
gap> andfilt( 17 ); andfilt( 1/2 );
true
false

20.4.3 Logical negation

not bool

The logical operator not returns true if the boolean value bool is false, and true otherwise.
An error is signalled if bool does not evaluate to true or false.

not has higher precedence than the other logical operators, or and and. All logical operators have
lower precedence than the comparison operators =, <, in, etc.
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gap> true and false;
false

gap> not true;

false

gap> not false;

true

Example
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Chapter 21

Lists

Lists are the most important way to treat objects together. A list arranges objects in a definite order.
So each list implies a partial mapping from the integers to the elements of the list. L.e., there is a first
element of a list, a second, a third, and so on. Lists can occur in mutable or immutable form, see 12.6
for the concept of mutability, and 21.7 for the case of lists.

This chapter deals mainly with the aspect of lists in GAP as data structures. Chapter 30 tells more
about the collection aspect of certain lists, and more about lists as arithmetic objects can be found in
the chapters 23 and 24.

Lists are used to implement ranges (see 21.22), sets (see 21.19), strings (see 27), row vectors
(see 23), and matrices (see 24); Boolean lists (see 22) are a further special kind of lists.

Several operations for lists, such as Intersection (30.5.2) and Random (30.7.1), will be de-
scribed in Chapter 30, in particular see 30.3.

21.1 List Categories

A list can be written by writing down the elements in order between square brackets [, ], and sepa-
rating them with commas ,. An empty list, i.e., a list with no elements, is written as [].

Example
gap> [ 1, 2, 3 1; # a list with three elements
[1, 2, 3]

gap> [ 0, [ 11, [ 1, 21 1; # a list may contain other lists
[t 1, 011, [1,21]1]

Each list constructed this way is mutable (see 12.6).

21.1.1 IsList

> IsList( Obj) (Category)

tests whether obj is a list.

Example
gap> IsList( [ 1, 3, 5, 71 ); IsList( 1 );
true
false

244
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21.1.2 IsDenseList

> IsDenseList (obj) (Category)

A list is dense if it has no holes, i.e., contains an element at every position up to the length. It is
absolutely legal to have lists with holes. They are created by leaving the entry between the commas
empty. Holes at the end of a list are ignored. Lists with holes are sometimes convenient when the list

represents a mapping from a finite, but not consecutive, subset of the positive integers.
Example

gap> IsDenselList( [ 1, 2, 3] );

true

gap> 1 := [, 4, 9,, 25,, 49,,,, 121 1;; IsDenselList( 1 );
false

gap> 1[3];

9

gap> 1[4]1;

List Element: <list>[4] must have an assigned value
not in any function

Entering break read-eval-print loop ...

you can ’quit;’ to quit to outer loop, or

you can ’return;’ after assigning a value to continue
brk> 1[4] := 16;; # assigning a value

brk> return; # to escape the break-loop

16

gap>

Observe that requesting the value of 1 [4], which was not assigned, caused the entry of a break-
loop (see Section 6.4). After assigning a value and typing return;, GAP is finally able to comply
with our request (by responding with 16).

21.1.3 IsHomogeneousList

> IsHomogeneousList (obj) (Category)

returns true if obj is a list and it is homogeneous, and false otherwise.
A homogeneous list is a dense list whose elements lie in the same family (see 13.1). The empty
list is homogeneous but not a collection (see 30), a nonempty homogeneous list is also a collection.

Example
gap> IsHomogeneousList( [ 1, 2, 3 ] ); IsHomogeneousList( [] );
true

true
gap> IsHomogeneousList( [ 1, false, () ] );
false

21.1.4 IsTable

> IsTable (Obj) (Category)

A table is a nonempty list of homogeneous lists which lie in the same family. Typical examples
of tables are matrices (see 24).
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Example
gap> IsTable( [ [ 1, 21, [ 3,41 1); # in fact a matrix
true
gap> IsTable( [ [ 11, [ 2,31 1); # not rectangular but a table
true
gap> IsTable( [ [ 1, 21, [ O , (1,2) 11 ); # not homogeneous
false
21.1.5 IsRectangularTable
> IsRectangularTable(list) (property)

A list lies in IsRectangularTable when it is nonempty and its elements are all homogeneous
lists of the same family and the same length.

21.1.6 IsConstantTimeAccessList

> IsConstantTimeAccessList(list) (Category)

This category indicates whether the access to each element of the list 1ist will take roughly the
same time. This is implied for example by IsList and IsInternalRep, so all strings, Boolean
lists, ranges, and internally represented plain lists are in this category.

But also other enumerators (see 21.23) can lie in this category if they guarantee constant time
access to their elements.

21.2 Basic Operations for Lists

The basic operations for lists are element access (see 21.3), assignment of elements to a list (see 21.4),
fetching the length of a list (see Length (21.17.5)), the test for a hole at a given position, and unbinding
an element at a given position (see 21.5).

The term basic operation means that each other list operation can be formulated in terms of the
basic operations. (But note that usually a more efficient method than this one is implemented.)

Any GAP object 1ist in the category IsList (21.1.1) is regarded as a list, and if methods for the
basic list operations are installed for 1ist then 1ist can be used also for the other list operations.

For internally represented lists, kernel methods are provided for the basic list operations. For
other lists, it is possible to install appropriate methods for these operations. This permits the imple-
mentation of lists that do not need to store all list elements (see also 21.23); for example, the elements
might be described by an algorithm, such as the elements list of a group. For this reduction of space
requirements, however, a price in access time may have to be paid (see ConstantTimeAccessList
(21.17.6)).

21.2.1 \[\]

> \[\](1list, pOS) (operation)
> IsBound\[\](list, pOS) (operation)
> \[\J\:\=(1ist, pos, val) (operation)
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> Unbind\[\](1ist, pOS) (operation)

These operations implement element access, test for element boundedness, list element assign-
ment, and removal of the element at position pos. In all cases, the index pos must be a positive
integer.

Note that the special characters [, ], :, and = must be escaped with a backslash \ (see 4.3); so
\[\] (21.2.1) denotes the operation for element access in a list, whereas [] denotes an empty list.
(Maybe the variable names involving special characters look strange, but nevertheless they are quite
suggestive.)

\[\1( 1ist, pos ) isequivalentto 1ist [ pos 1, which clearly will usually be preferred; the
former is useful mainly if one wants to access the operation itself, for example if one wants to install
a method for element access in a special kind of lists.

Similarly, IsBound\ [\] (21.2.1) is used explicitly mainly in method installations. In other situ-
ations, one can simply call IsBound (21.5.1), which then delegates to IsBound\ [\] (21.2.1) if the
first argument is a list, and to IsBound\ . (29.7.3) if the first argument is a record.

Analogous statements hold for \[\1\:\=(21.2.1) and Unbind\ [\] (21.2.1).

21.3 List Elements

list [ pos 1

The above construct evaluates to the pos-th element of the list 1ist, where pos must be a positive
integer. List indexing is done with origin 1, i.e., the first element of the list is the element at position
1.

Example
gap> 1 := [ 2, 3, 5, 7, 11, 13 1;; 1[1]; 1[2]; 1[6];
2
3
13

If 1ist is not a list, or pos does not evaluate to a positive integer, or 1ist [pos] is unbound an error
is signalled.

listq{ poss }

The above construct evaluates to a new list new whose first element is 1ist [poss [1]], whose
second element is 1ist [poss [2]], and so on. poss must be a dense list of positive integers. How-
ever, it does not need to be sorted and may contain duplicate elements. If for any i, 1ist [ poss [i]
] is unbound, an error is signalled.

Example
gap> 1 := [ 2, 3, b, 7, 11, 13, 17, 19 1;;
gap> 1{[4..6]1}; 1{[1,7,1,81};

[ 7, 11, 13 1]

[ 2, 17, 2, 19 1]

The result is a new list, that is not identical to any other list. The elements of that list, however,
are identical to the corresponding elements of the left operand (see 21.6).
It is possible to nest such sublist extractions, as can be seen in the example below.

Example
gap> m = [ [1,213], [4,516], [7’859], [10’11112] ];; m{[1;2,3]}{[3;2]};
[ [ 3, 2 ], [ 6, 5 ]’ [ 9’ 8 ] ]
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gap> 1 := m{[1,2,3]};; 1{[3,2]};
LL7,8 91, [4,5,61]1

Note the difference between the two examples. The latter extracts elements 1, 2, and 3 from m and
then extracts the elements 3 and 2 from this list. The former extracts elements 1, 2, and 3 from m and
then extracts the elements 3 and 2 from each of those element lists.

To be precise: With each selector [pos] or {poss} we associate a level that is defined as the
number of selectors of the form {poss? to its left in the same expression. For example

1[posi]{poss2}{poss3}[poss]{poss5} [pos6]
level 0 0 1 2 2 3

Then a selector 1ist [pos] of level level is computed as ListElement (1ist ,pos,level),
where ListElement is defined as follows. (Note that ListElement is not a GAP function.)

Example

ListElement := function ( list, pos, level )

if level = 0 then

return list[pos];

else

return List( list, elm -> ListElement(elm,pos,level-1) );
fi;
end;

and a selector 1ist{poss} of level 1evel is computed as ListElements(list ,poss,level),

where ListElements is defined as follows. (Note that ListElements is not a GAP function.)
Example
ListElements := function ( list, poss, level )

if level = 0 then
return list{poss};
else
return List( list, elm -> ListElements(elm,poss,level-1) );
fi;
end;

21.3.1 \{\}

> \{\}(1ist, pOSS) (operation)

This operation implements sublist access. For any list, the default method is to loop over the
entries in the list poss, and to delegate to the element access operation. (For the somewhat strange
variable name, cf. 21.2.)

21.4 List Assignment

list[ pos ] := object;

The list element assignment assigns the object object, which can be of any type, to the list entry
at the position pos, which must be a positive integer, in the mutable (see 12.6) list 1ist. That means
that accessing the pos-th element of the list 1ist will return object after this assignment.
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Example

gap> 1 := [ 1, 2, 31;;
gap> 1[1] := 3;; 1; # assign a new object

[3,2, 3]

gap> 1[2] := [ 4, 5, 6 ];; 1; # <object> may be of any type
[ 3, [4,5,61, 3]

gap> 1[ 1[1] 1 := 10;; 1; # <index> may be an expression
[3, [4,5,61, 101

If the index pos is larger than the length of the list 1ist (see Length (21.17.5)), the list is
automatically enlarged to make room for the new element. Note that it is possible to generate lists

with holes that way.

Example
gap> 1[4] := "another entry";; 1; # <list> is enlarged
[ 3, [ 4, 5, 61, 10, "another entry" ]
gap> 1[ 10 1 := 1;; 1; # now <list> has a hole
[ 3, [ 4, 5, 61, 10, "another entry",,,,,, 1 ]

The function Add (21.4.2) should be used if you want to add an element to the end of the list.

Note that assigning to a list changes the list, thus this list must be mutable (see 12.6). See 21.6 for

subtleties of changing lists.

If 1ist does not evaluate to a list, pos does not evaluate to a positive integer or object is a call

to a function which does not return a value (for example Print) an error is signalled.
list{ poss } := objects;

The sublist assignment assigns the object objects [1], which can be of any type, to the list 1ist
at the position poss [1], the object objects [2] to 1ist [poss[2]], and so on. poss must be a
dense list of positive integers, it need, however, not be sorted and may contain duplicate elements.

objects must be a dense list and must have the same length as poss.

Example

gap> 1 := [ 2, 3, b, 7, 11, 13, 17, 19 1;;
gap> 1{[1..4]} := [10..13]1;; 1;

[ 10, 11, 12, 13, 11, 13, 17, 19 ]
gap> 1{[1,7,1,10]} := [ 1, 2, 3, 4

155 1;
[ 3, 11, 12, 13, 11, 13, 2, 19,, 4 ]

The next example shows that it is possible to nest such sublist assignments.

Example

gap>m := [ [1,2,3], [4,5,6], [7,8,9], [10,11,12] 1;;
gap> m{[1,2,313{[(3,2]1} := [ [11,12], [13,14], [15,16] J1;; m;
[, 12, 121, [ 4, 14, 131, [ 7, 16, 161, [ 10, 11, 12 ] 1]

The exact behaviour is defined in the same way as for list extractions (see 21.3). Namely, with

each selector [pos] or {poss} we associate a level that is defined as the number of selectors of the

form {poss} to its left in the same expression. For example

Example

1[pos1]{poss2}{poss3} [pos4]{poss5} [pos6]
level 0 0 1 1 1 2
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Then a list assignment 1ist [pos] := vals; of level 1evel is computed as ListAssignment (
list, pos, vals, level ), where ListAssignment is defined as follows. (Note that
ListAssignment is nor a GAP function.)

Example
ListAssignment := function ( list, pos, vals, level )
local 1i;
if level = 0 then
list[pos] := vals;
else

for i in [1..Length(list)] do
ListAssignment ( list[i], pos, vals[i], level-1 );
od;

fi;

end;

and a list assignment 1ist{poss} := vals oflevel level is computed as ListAssignments(
list, poss, vals, level ), where ListAssignments is defined as follows. (Note that
ListAssignments is nor a GAP function.)

Example
ListAssignments := function ( list, poss, vals, level )

local i;
if level = 0 then
list{poss} := vals;
else
for i in [1..Length(list)] do
ListAssignments( 1list[i], poss, vals[i], level-1 );
od;
fi;
end;

2141 \{\}\:\=

> \{\}\:\=(1ist, poss, val) (operation)

This operation implements sublist assignment. For any list, the default method is to loop over
the entries in the list poss, and to delegate to the element assignment operation. (For the somewhat
strange variable name, cf. 21.2.)

214.2 Add

> Add(list R Obj [, pOSJ) (operation)

adds the element obj to the mutable list 1ist. The two argument version adds obj at the end of
list,i.e., it is equivalent to the assignment 1ist [ Length(list) + 1 ] := obj, see 21.4.

The three argument version adds obj in position pos, moving all later elements of the list (if any)
up by one position. Any holes at or after position pos are also moved up by one position, and new
holes are created before pos if they are needed.

Nothing is returned by Add, the function is only called for its side effect.
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21.4.3 Remove

> Remove(list[, pos]) (operation)

removes an element from 1ist. The one argument form removes the last element. The two argu-
ment form removes the element in position pos, moving all subsequent elements down one position.
Any holes after position pos are also moved down by one position.

The one argument form always returns the removed element. In this case 1ist must be non-
empty.

The two argument form returns the old value of 1ist[pos] if it was bound, and nothing if it was
not. Note that accessing or assigning the return value of this form of the Remove operation is only
safe when you know that there will be a value, otherwise it will cause an error.

Example
gap> 1 := [ 2, 3, 51;; Add( 1, 7 ); 1;
[2,3,5,7]
gap> Add(1,4,2); 1;

[ 2, 4, 3, 5, 71
gap> Remove(1,2); 1;
4

[ 2, 3,5, 7]
gap> Remove(1l); 1;

7

[ 2, 3, 51

gap> Remove(1,5); 1;
[ 2, 3, 5]

21.4.4 CopyListEntries

> CopylListEntries(fromlst, fromind, fromstep, tolst, toind, tostep, n) (function)

This function copies n elements from fromlst, starting at position fromind and incrementing
the position by fromstep each time, into tolst starting at position toind and incrementing the
position by tostep each time. fromlst and tolst must be plain lists. fromstep and/or tostep
can be negative. Unbound positions of fromlst are simply copied to tolst.

CopyListEntries is used in methods for the operations Add (21.4.2) and Remove (21.4.3).

21.4.5 Append

> Append(listl, list2) (operation)

adds the elements of the list 1ist2 to the end of the mutable list 1ist1, see 21.4. 1ist2 may
contain holes, in which case the corresponding entries in 1ist1 will be left unbound. Append returns
nothing, it is only called for its side effect.

Note that Append changes its first argument, while Concatenation (21.20.1) creates a new list
and leaves its arguments unchanged.
Example
1:=[2,3,51;; Append( 1, [ 7, 11, 131 ); 1;
3,5, 7, 11, 13 1]

gap>
L2,
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gap> Append( 1, [ 17,, 23 1 ); 1;
[2, 3,5, 7,11, 13, 17,, 23 ]

21.5 IsBound and Unbind for Lists

21.5.1 IsBound (for a list position)

> IsBound(list[, n]) (operation)

IsBound returns true if the list 1ist has a element at the position n, and false otherwise. 1ist
must evaluate to a list, otherwise an error is signalled.
Example
gap> 1 := [, 2,3, ,56, ,7, , , , 11 1;;
gap> IsBound( 1[7] );
true
gap> IsBound( 1[4] );
false
gap> IsBound( 1[101] );
false

21.5.2 Unbind (unbind a list entry)

> Unbind(list[, n]) (operation)

Unbind deletes the element at the position n in the mutable list 1ist. That is, after execution of
Unbind, 1ist no longer has an assigned value at the position n. Thus Unbind can be used to produce
holes in a list. Note that it is not an error to unbind a nonexisting list element. 1ist must evaluate to
a list, otherwise an error is signalled.

Example
gap> 1 :=[,2,3,5, ,7,,,,111;;
gap> Unbind( 1[3] ); 1;
[,2,, 5,, 7,,,, 11 1]
gap> Unbind( 1[4] ); 1;
[, 2,5, Tysss 111

Note that IsBound (21.5.1) and Unbind are special in that they do not evaluate their argument,
otherwise IsBound (21.5.1) would always signal an error when it is supposed to return false and
there would be no way to tell Unbind which component to remove.

21.6 Identical Lists

With the list assignment (see 21.4) it is possible to change a mutable list. This section describes the
semantic consequences of this fact. (See also 12.5.)

First we define what it means when we say that “an object is changed”. You may think that in the
following example the second assignment changes the integer.
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Example

i = 3;
i+ 13

But in this example it is not the integer 3 which is changed, by adding one to it. Instead the
variable i is changed by assigning the value of i+1, which happens to be 4, to i. The same thing
happens in the example below.

Example

=101, 21;
1:=0[1, 2, 317];

The second assignment does not change the first list, instead it assigns a new list to the variable 1.
On the other hand, in the following example the list is changed by the second assignment.
Example

1:=0[1, 217;
1[3] := 3;

To understand the difference, think of a variable as a name for an object. The important point
is that a list can have several names at the same time. An assignment var := l1ist; means in this
interpretation that var is a name for the object 1ist. At the end of the following example 12 still has
the value [ 1, 2 1] as this list has not been changed and nothing else has been assigned to it.
Example

11 :=[1, 2 1;
12 := 11;
11 :=[1, 2, 317;

But after the following example the list for which 12 is a name has been changed and thus the
valueof 12isnow [ 1, 2, 3 1].

Example
11 :=[1, 21;
12 := 11;
11[3] := 3;

We say that two lists are identical if changing one of them by a list assignment also changes the
other one. This is slightly incorrect, because if two lists are identical, there are actually only two
names for one list. However, the correct usage would be very awkward and would only add to the
confusion. Note that two identical lists must be equal, because there is only one list with two different
names. Thus identity is an equivalence relation that is a refinement of equality. Identity of objects can
be detected using IsIdenticalObj (12.5.1).

Let us now consider under which circumstances two lists are identical.

If you enter a list literal then the list denoted by this literal is a new list that is not identical to any
other list. Thus in the following example 11 and 12 are not identical, though they are equal of course.
Example

B

11 :=[1, 21;
12 :=[1, 2]

>

Also in the following example, no lists in the list 1 are identical.
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Example
1 :=[1;
for i in [1..10] do 1[i]

[ 1, 27; od;

If you assign a list to a variable no new list is created. Thus the list value of the variable on the
left hand side and the list on the right hand side of the assignment are identical. So in the following
example 11 and 12 are identical lists.

Example

11
12

[ 1, 21;
11;

If you pass a list as an argument, the old list and the argument of the function are identical. Also
if you return a list from a function, the old list and the value of the function call are identical. So in
the following example 11 and 12 are identical lists:
Example

11 :=[1, 2171
f := function ( 1 ) return 1; end;
12 := £( 11 );

If you change a list it keeps its identity. Thus if two lists are identical and you change one of them,
you also change the other, and they are still identical afterwards. On the other hand, two lists that are
not identical will never become identical if you change one of them. So in the following example both
11 and 12 are changed, and are still identical.

Example
11 :=[1, 2 17;
12 := 11;
11[1] := 2;

21.7 Duplication of Lists

Here we describe the meaning of ShallowCopy (12.7.1) and StructuralCopy (12.7.2) for lists. For
the general definition of these functions, see 12.7.

The subobjects (see ShallowCopy (12.7.1)) of a list are exactly its elements.

This means that for any list 1ist, ShallowCopy (12.7.1) returns a mutable new list new that is
not identical to any other list (see 21.6), and whose elements are identical to the elements of 1ist.

Analogously, for a mutable list 1ist, StructuralCopy (12.7.2) returns a mutable new list scp
that is not identical to any other list, and whose elements are structural copies (defined recursively)
of the elements of 1ist; an element of scp is mutable (and then a new list) if and only if the corre-
sponding element of 1ist is mutable.

In both cases, modifying the copy new resp. scp by assignments (see 21.4) does not modify the
original object 1ist.

ShallowCopy (12.7.1) basically executes the following code for lists.
Example

new := [];
for i in [ 1 .. Length( 1list ) ] do
if IsBound( list[i] ) then
new[i] := list[i];



GAP - Reference Manual 255

fi;
od;

Example

gap> listl := [ [ 1, 21, [ 3, 41 1;; 1list2 := ShallowCopy( listl );;
gap> IsIdenticalObj( listl, list2 );

false

gap> IsIdenticalObj( list1[1], 1ist2[1] );

true

gap> list2[1] 0
[Ct1,21,L[3, 4
[o, [3,41]1]

;3 listl; 1list2;
11

StructuralCopy (12.7.2) basically executes the following code for lists.
Example

new := [];
for i in [ 1 .. Length( 1list ) ] do
if IsBound( list[i] ) then
new[i] := StructuralCopy( list[i] );
fi;
od;

Example

gap> listl := [ [ 1, 21, [ 3, 41 1;; 1list2 := StructuralCopy( listl );;
gap> IsIdenticalObj( listl, list2 );

false

gap> IsIdenticalObj( listi[1], 1list2[1] );

false

gap> list2[1][1] := 0;; 1listl; 1list2;

[[1,271, (3,41

[CLo,21,[3, 4]

[ Sy T W

The above code is not entirely correct. If the object 1ist contains a mutable object twice this
object is not copied twice, as would happen with the above definition, but only once. This means that

the copy new and the object 1ist have exactly the same structure when viewed as a general graph.

Example
gap> sub := [ 1, 2 1;; listl := [ sub, sub 1;;
gap> list2 := StructuralCopy( listl );
(f1,271,01,21]1
gap> list2[1][1] := 0;; list2;
Lcto,21, 00,211
gap> listl;
[Ct1,21,01,21]1

21.8 Membership Test for Lists

21.8.1 \in (element test for lists)

> \in(obj, list) (operation)
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This function call or the infix variant obj in list tests whether there is a positive integer i such
that 1ist[i] = obj holds.

If the list 1ist knows that it is strictly sorted (see IsSSortedList (21.17.4)), the membership
test is much quicker, because a binary search can be used instead of the linear search used for arbitrary
lists, see \in (21.19.1).

Example
gap> 1in [ 2, 2, 1, 3]; 1in [ 4, -1, 0, 3 1;
true
false

gap> s := SSortedlList( [2,4,6,8,10,12,14,16,18,20,22,24,26,28,30,32] );;
gap> 17 in s; # uses binary search and only 4 comparisons
false

For finding the position of an element in a list, see 21.16.

21.9 Enlarging Internally Represented Lists

Section 21.4 told you (among other things) that it is possible to assign beyond the logical end of a
mutable list, automatically enlarging the list. This section tells you how this is done for internally
represented lists.

It would be extremely wasteful to make all lists large enough so that there is room for all assign-
ments, because some lists may have more than 100000 elements, while most lists have less than 10
elements.

On the other hand suppose every assignment beyond the end of a list would be done by allocating
new space for the list and copying all entries to the new space. Then creating a list of 1000 elements
by assigning them in order, would take half a million copy operations and also create a lot of garbage
that the garbage collector would have to reclaim.

So the following strategy is used. If a list is created it is created with exactly the correct size.
If a list is enlarged, because of an assignment beyond the end of the list, it is enlarged by at least
length/8 + 4 entries. Therefore the next assignments beyond the end of the list do not need to
enlarge the list. For example creating a list of 1000 elements by assigning them in order, would now
take only 32 enlargements.

The result of this is of course that the physical length of a list may be larger than the logical length,
which is usually called simply the length of the list. Aside from the implications for the performance
you need not be aware of the physical length. In fact all you can ever observe, for example by calling
Length (21.17.5), is the logical length.

Suppose that Length (21.17.5) would have to take the physical length and then test how many
entries at the end of a list are unassigned, to compute the logical length of the list. That would take
too much time. In order to make Length (21.17.5), and other functions that need to know the logical
length, more efficient, the length of a list is stored along with the list.

For fine tuning code dealing with plain lists we provide the following two functions.

21.9.1 EmptyPlist

> EmptyPlist(len) (function)
Returns: a plain list
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> ShrinkAllocationPlist (1) (function)
Returns: nothing
The function EmptyPlist returns an empty plain list which has enough memory allocated for
len entries. This can be useful for creating and filling a plain list with a known number of entries.
The function ShrinkAllocationPlist gives back to GAP’s memory manager the physical
memory which is allocated for the plain list 1 but not needed by the current number of entries.
Note that there are similar functions EmptyString (27.3.5) and ShrinkAllocationString
(27.3.5) for strings instead of plain lists.

Example
gap> 1:=[]; for i in [1..160] do Add(1l, i~2); od;
[ 1]
gap> m:=EmptyPlist(160); for i in [1..160] do Add(m, i~2); od;
[ ]

gap> # now 1 uses about 25 more memory than the equal list m
gap> ShrinkAllocationPlist(1l);
gap> # now 1 and m use the same amount of memory

21.10 Comparisons of Lists

listl = list2
listl <> list2
Two lists 1ist1 and 1ist2 are equal if and only if for every index i, either both entries 1ist1[i]

and 1ist2[i] are unbound, or both are bound and are equal, i.e., 1ist1[i] = 1ist2]i] is true.

Example

gap> [ 1, 2,31 =101, 2, 31;
true

gap> [ , 2,31 =101, 2,1;
false

gap> [ 1, 2,31 =13, 2,11;
false

This definition will cause problems with lists which are their own entries. Comparing two such
lists for equality may lead to an infinite recursion in the kernel if the list comparison has to compare
the list entries which are in fact the lists themselves, and then GAP crashes.

listl < list2

listl <= list2

Lists are ordered lexicographically. Unbound entries are smaller than any bound entry. That
implies the following behaviour. Let i be the smallest positive integer i such that 1ist! and 1ist2 at
position i differ, i.e., either exactly one of 1ist1[i], 1ist2[i] is bound or both entries are bound and
differ. Then 1ist1 is less than 1ist2 if either 1ist1[i] is unbound (and 1ist2[i] is not) or both are
bound and list1[i] < 1ist2[i] is true.

Example
gap> [ 1, 2, 3,41 <[ 1, 2, 4, 8]; # <list1>[3] < <1ist2>[3]
true
gap> [ 1, 2, 31 <[ 1, 2, 3, 5]; # <list1>[4] is unbound and thus < 5
true

gap> [ 1, , 3,41 <[1, -1, 3]; # <list1>[2] is unbound and thus < -1
true
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Note that for comparing two lists with < or <=, the (relevant) list elements must be comparable
with <, which is usually not the case for objects in different families, see 13.1. Also for the possibility
to compare lists with other objects, see 13.1.

21.11 Arithmetic for Lists

It is convenient to have arithmetic operations for lists, in particular because in GAP row vectors and
matrices are special kinds of lists. However, it is the wide variety of list objects because of which we
prescribe arithmetic operations not for all of them. (Keep in mind that “list” means just an object in
the category IsList (21.1.1).)

(Due to the intended generality and flexibility, the definitions given in the following sections
are quite technical. But for not too complicated cases such as matrices (see 24.3) and row vectors
(see 23.2) whose entries aren’t lists, the resulting behaviour should be intuitive.)

For example, we want to deal with matrices which can be added and multiplied in the usual way,
via the infix operators + and *; and we want also Lie matrices, with the same additive behaviour but
with the multiplication defined by the Lie bracket. Both kinds of matrices shall be lists, with the usual
access to their rows, with Length (21.17.5) returning the number of rows etc.

For the categories and attributes that control the arithmetic behaviour of lists, see 21.12.

For the definition of return values of additive and multiplicative operations whose arguments are
lists in these filters, see 21.13 and 21.14, respectively. It should be emphasized that these sections
describe only what the return values are, and not how they are computed.

For the mutability status of the return values, see 21.15. (Note that this is not dealt with in the
sections about the result values.)

Further details about the special cases of row vectors and matrices can be found in 23.2 and in 24.3,
the compression status is dealt with in 23.3 and 24.14.

21.12 Filters Controlling the Arithmetic Behaviour of Lists

The arithmetic behaviour of lists is controlled by their types. The following categories and attributes
are used for that.

Note that we distinguish additive and multiplicative behaviour. For example, Lie matrices have
the usual additive behaviour but not the usual multiplicative behaviour.

21.12.1 IsGeneralizedRowVector

> IsGeneralizedRowVector(list) (Category)
For a list 1ist, the value true for IsGeneralizedRowVector indicates that the additive arith-

metic behaviour of 1ist is as defined in 21.13, and that the attribute NestingDepthA (21.12.4) will
return a nonzero value when called with Iist.

Example
gap> IsList( "abc" ); IsGeneralizedRowVector( "abc" );
true
false

gap> liemat:= LieObject( [ [ 1

, 21, [3,411);
LieDbject( [ [ 1, 21, [ 3, 411)
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gap> IsGeneralizedRowVector( liemat );
true

21.12.2 IsMultiplicativeGeneralizedRow Vector

> IsMultiplicativeGeneralizedRowVector(list) (Category)

For a list 1ist, the value true for IsMultiplicativeGeneralizedRowVector indicates
that the multiplicative arithmetic behaviour of 1ist is as defined in 21.14, and that the attribute
NestingDepthM (21.12.5) will return a nonzero value when called with 1ist.

Example
gap> IsMultiplicativeGeneralizedRowVector( liemat );

false

gap> bas:= CanonicalBasis( FullRowSpace( Rationals, 3 ) );
CanonicalBasis( ( Rationals~3 ) )

gap> IsMultiplicativeGeneralizedRowVector( bas );

true

Note that the filters IsGeneralizedRowVector (21.12.1),
IsMultiplicativeGeneralizedRowVector do not enable default methods for addition or
multiplication (cf. IsListDefault (21.12.3)).

21.12.3 IsListDefault

> IsListDefault(list) (Category)

For a list 1ist, IsListDefault indicates that the default methods for arithmetic operations of
lists, such as pointwise addition and multiplication as inner product or matrix product, shall be appli-
cable to 1ist.

IsListDefault implies IsGeneralizedRowVector (21.12.1) and
IsMultiplicativeGeneralizedRowVector (21.12.2).

All internally represented lists are in this category, and also all lists in the representations
IsGF2VectorRep, Is8BitVectorRep, IsGF2MatrixRep, and Is8BitMatrixRep (see 23.3 and
24.14). Note that the result of an arithmetic operation with lists in IsListDefault will in general be
an internally represented list, so most “wrapped list objects” will not lie in IsListDefault.

Example
gap> v:=[ 1, 2 1;; m:=[ v, 2%v 1;;

gap> IsListDefault( v ); IsListDefault( m );

true

true

gap> IsListDefault( bas ); IsListDefault( liemat );
true

false

21.12.4 NestingDepthA

> NestingDepthA(obj) (attribute)
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For a GAP object obj, NestingDepthA returns the additive nesting depth of obj. This is defined
recursively as the integer O if obj is not in IsGeneralizedRowVector (21.12.1), as the integer 1 if
obj is an empty list in IsGeneralizedRowVector (21.12.1), and as 1 plus the additive nesting depth
of the first bound entry in obj otherwise.

21.12.5 NestingDepthM

> NestingDepthM(obj) (attribute)

For a GAP object obj, NestingDepthM returns the multiplicative nesting depth of obj. This
is defined recursively as the integer O if obj is not in IsMultiplicativeGeneralizedRowVector
(21.12.2), as the integer 1 if obj is an empty list in IsMultiplicativeGeneralizedRowVector
(21.12.2), and as 1 plus the multiplicative nesting depth of the first bound entry in obj otherwise.
Example
gap> NestingDepthA( v ); NestingDepthM( v );

1

1

gap> NestingDepthA( m ); NestingDepthM( m );

2

2

gap> NestingDepthA( liemat ); NestingDepthM( liemat );
2

0

gap> 11:= [ [ 1, 21, 31;; 12:=[1, [ 2, 31 1;;
gap> NestingDepthA( 11 ); NestingDepthM( 11 );

2

2

gap> NestingDepthA( 12 ); NestingDepthM( 12 );

1

1

21.13 Additive Arithmetic for Lists

In this general context, we define the results of additive operations only in the following sit-
uations. For unary operations (zero and additive inverse), the unique argument must be in
IsGeneralizedRowVector (21.12.1); for binary operations (addition and subtraction), at least one
argument must be in IsGeneralizedRowVector (21.12.1), and the other either is not a list or also in
IsGeneralizedRowVector (21.12.1).

(For non-list GAP objects, defining the results of unary operations is not an issue here, and if
at least one argument is a list not in IsGeneralizedRowVector (21.12.1), it shall be left to this
argument whether the result in question is defined and what it is.)

21.13.1 Zero for lists

The zero (see Zero (31.10.3)) of a list x in IsGeneralizedRowVector (21.12.1) is defined as the list
whose entry at position i is the zero of x[i] if this entry is bound, and is unbound otherwise.

Example
gap> Zero( [ 1, 2, 31 ); Zero( [ [ 1,21, 31); Zero( liemat );
[0, 0,01
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[L0,01,0]1
LieObject( [ [0, 01, [ 0, 01 1)

21.13.2 AdditiveInverse for lists

The additive inverse (see AdditiveInverse (31.10.9)) of a list x in IsGeneralizedRowVector
(21.12.1) is defined as the list whose entry at position i is the additive inverse of x[i] if this entry
is bound, and is unbound otherwise.

Example
gap> AdditiveInverse( [ 1, 2, 3 ] ); AdditiveInverse( [ [ 1, 271, 3] );
[ -1, -2, -3 1]

[ [-1, -27, -31]

21.13.3 Addition of lists

If x and y are in IsGeneralizedRowVector (21.12.1) and have the same additive nesting depth
(see NestingDepthA (21.12.4)), the sum x+y is defined pointwise, in the sense that the result is a list
whose entry at position i is x[i] + y[i] if these entries are bound, is a shallow copy (see ShallowCopy
(12.7.1)) of x[i| or yli] if the other argument is not bound at position i, and is unbound if both x and y
are unbound at position i.

If x is in IsGeneralizedRowVector (21.12.1) and y is in IsGeneralizedRowVector (21.12.1)
and has lower additive nesting depth, or is neither a list nor a domain, the sum x + y is defined as
a list whose entry at position i is x[i] + y if x is bound at position i, and is unbound if not. The
equivalent holds in the reversed case, where the order of the summands is kept, as addition is not
always commutative.

Example
gap> 1 + [ 1,2,3]1; [1,2,31+[0,2,41; [1,2]1+T[2Z2 I1;
[ 2,3, 4]
[1, 4, 7]
[ 0xZ2(2), 2]
gap> 11:= [ 1, , 3, 4 1;; 12:= [, 2, 3, 4, 5 1;;
gap> 13:= [ [ 1,21, , [5,611;; 14:=[, [3,41,[5,611;;
gap> NestingDepthA( 11 ); NestingDepthA( 12 );
1
1
gap> NestingDepthA( 13 ); NestingDepthA( 14 );
2
2

gap> 11 + 12;

[1, 2,6, 8, 5]

gap> 11 + 13;
(02,2,3,41,,[6,6,3,41]1

gap> 12 + 14;
[,[3,6,3, 4,51, [5,8,3,4,51]1]
gap> 13 + 14;

[ct1y,21,03,41, [10, 1217 ]
gap> 11 + [1;

[1,, 38, 4]
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21.13.4 Subtraction of lists

For two GAP objects x and y of which one is in IsGeneralizedRowVector (21.12.1) and the other
is also in IsGeneralizedRowVector (21.12.1) or is neither a list nor a domain, x — y is defined as
x+ (=)

Example
gap> 11 - 12;
[1, -2, 0, 0, -5 ]
gap> 11 - 13;
tco, -2,3,41,, [ -4, -6, 3, 411
gap> 12 - 14;

L, (-3, -2,3,4,51, [ -5, -4,3,4,51]]1]
gap> 13 - 14;
(C1,27],0-3,-41,[0,01]1

gap> 11 - [1;

[1,, 3, 4]

21.14 Multiplicative Arithmetic for Lists

In this general context, we define the results of multiplicative operations only in the fol-
lowing situations. For unary operations (one and inverse), the unique argument must be in
IsMultiplicativeGeneralizedRowVector (21.12.2); for binary operations (multiplication and di-
vision), at least one argument must be in IsMultiplicativeGeneralizedRowVector (21.12.2), and
the other either not a list or also in IsMultiplicativeGeneralizedRowVector (21.12.2).

(For non-list GAP objects, defining the results of unary operations is not an issue here, and if at
least one argument is a list not in IsMultiplicativeGeneralizedRowVector (21.12.2), it shall be
left to this argument whether the result in question is defined and what it is.)

21.14.1 One for lists

The one (see One (31.10.2)) of a dense list x in IsMultiplicativeGeneralizedRowVector
(21.12.2) such that x has even multiplicative nesting depth and has the same length as each of its
rows is defined as the usual identity matrix on the outer two levels, that is, an identity matrix of the
same dimensions, with diagonal entries One( x[1][1] ) and off-diagonal entries Zero ( x [1] [1]

).

Example
gap> One( [ [ 1, 21, [3,411);
(1,01, C[0,11]
gap> One( [ L L L1211, 002111, 000311, [CL411117);
tccfft+3131, 000111, CCo011, 011111

21.14.2 Inverse for lists

The inverse (see Inverse (31.10.8)) of an invertible square table x in
IsMultiplicativeGeneralizedRowVector (21.12.2) whose entries lie in a common field is
defined as the usual inverse y, i.e., a square matrix over the same field such that xy and yx is equal to
One( x ).
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Example
gap> Inverse( [ [ 1, 21, [ 3,411);
(C0-2,11,[3/2,-1/21]1

21.14.3 Multiplication of lists

There are three possible computations that might be triggered by a multiplication involving a list in
IsMultiplicativeGeneralizedRowVector (21.12.2). Namely, x *y might be

(I)  the inner product x[1] * y[1] +x[2] * y[2] + - -- + x[n] * y[n], where summands are omitted for
which the entry in x or y is unbound (if this leaves no summand then the multiplication is an
error), or

(L) the left scalar multiple, i.e., a list whose entry at position i is x y[i] if y is bound at position i,
and is unbound if not, or

(R) the right scalar multiple, i.e., a list whose entry at position i is x[i] «y if x is bound at position i,
and is unbound if not.

Our aim is to generalize the basic arithmetic of simple row vectors and matrices, so we first
summarize the situations that shall be covered.

‘ scl  vec mat
scl L) (@)
vee | (R) (D (D
mat | (R) (R) (R)

This means for example that the product of a scalar (scl) with a vector (vec) or a matrix (mat) is
computed according to (L). Note that this is asymmetric.

Now we can state the general multiplication rules.

If exactly one argument is in IsMultiplicativeGeneralizedRowVector (21.12.2) then we
regard the other argument (which is then neither a list nor a domain) as a scalar, and specify result (L)
or (R), depending on ordering.

In the remaining cases, both x and y are in IsMultiplicativeGeneralizedRowVector
(21.12.2), and we distinguish the possibilities by their multiplicative nesting depths. An argument
with odd multiplicative nesting depth is regarded as a vector, and an argument with even multiplica-
tive nesting depth is regarded as a scalar or a matrix.

So if both arguments have odd multiplicative nesting depth, we specify result (I).

If exactly one argument has odd nesting depth, the other is treated as a scalar if it has lower
multiplicative nesting depth, and as a matrix otherwise. In the former case, we specify result (L) or
(R), depending on ordering; in the latter case, we specify result (L) or (I), depending on ordering.

We are left with the case that each argument has even multiplicative nesting depth. If the two
depths are equal, we treat the computation as a matrix product, and specify result (R). Otherwise, we
treat the less deeply nested argument as a scalar and the other as a matrix, and specify result (L) or
(R), depending on ordering.

Example
gap> [ O, (2,3), (1,2), (1,2,3), (1,3,2), (1,3) 1 * (1,4);

[ (1,4, (1,4)(2,3), (1,2,4), (1,2,3,4), (1,3,2,4), (1,3,4) ]
gap> [ 1, 2, , 4] * 2;
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[ 2, 4,, 8]

gap> [ 1, 2,31 *[1,3,5,71;
22

gap> m:= [ [ 1, 21, 31;; m * m;
(7,81, [[3,61,91]1]

gap> m * m = [ m[1] * m, m[2] * m ];
true

gap> n:= [ 1, [ 2, 31 1;; n * n;
14

gap> n * n = n[1] * n[1] + n[2] * n[2];
true

21.14.4 Division of lists

For two GAP objects x and y of which one is in IsMultiplicativeGeneralizedRowVector

(21.12.2) and the other is also in IsMultiplicativeGeneralizedRowVector (21.12.2) or is nei-

ther a list nor a domain, x/y is defined as x*y~!.

Example
gap> [ 1, 2,31 /2; [1,2]/001,21, [3,41]1;
[ 1/2, 1, 3/2 ]

[1, 01

21.14.5 mod for lists

If x and y are in IsMultiplicativeGeneralizedRowVector (21.12.2) and have the same multi-
plicative nesting depth (see NestingDepthM (21.12.5)), x mod y is defined pointwise, in the sense
that the result is a list whose entry at position i is x [1] mod y [i] if these entries are bound, is a
shallow copy (see ShallowCopy (12.7.1)) of x[i] or y[i] if the other argument is not bound at position
i, and is unbound if both x and y are unbound at position i.

If x is in IsMultiplicativeGeneralizedRowVector (21.12.2) and y 1is in
IsMultiplicativeGeneralizedRowVector (21.12.2) and has lower multiplicative nesting
depth or is neither a list nor a domain, x mod y is defined as a list whose entry at position i is x [1]
mod y if x is bound at position i, and is unbound if not. The equivalent holds in the reversed case,
where the order of the arguments is kept.

Example

gap> 4711 mod [ 2, 3,, 5, 7 1;

[1, 1,, 1, 0]

gap> [ 2, 3, 4, 5, 6 ] mod 3;

[2, 0,1, 2, 0]

gap> [ 10, 12, 14, 16 1 mod [ 3, 5, 7 1;
[1, 2, 0, 16 1]

21.14.6 Left quotients of lists

For two GAP objects x and y of which one is in IsMultiplicativeGeneralizedRowVector
(21.12.2) and the other is also in IsMultiplicativeGeneralizedRowVector (21.12.2) or is nei-
ther a list nor a domain, LeftQuotient( x, y ) is defined as x sy,
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Example
gap> LeftQuotient( [ [ 1, 21, [ 3,411, [1,21);
[0, 1/2]

21.15 Mutability Status and List Arithmetic

Many results of arithmetic operations, when applied to lists, are again lists, and it is of interest whether
their entries are mutable or not (if applicable). Note that the mutability status of the result itself
is already defined by the general rule for any result of an arithmetic operation, not only for lists
(see 12.6).

However, we do not define exactly the mutability status for each element on each level of a nested
list returned by an arithmetic operation. (Of course it would be possible to define this recursively,
but since the methods used are in general not recursive, in particular for efficient multiplication of
compressed matrices, such a general definition would be a burden in these cases.) Instead we consider,
for a list x in IsGeneralizedRowVector (21.12.1), the sequence x = x1,x3,...x, Where x;; is the
first bound entry in x; if exists (that is, if x; is a nonempty list), and »n is the largest i such that x;
lies in IsGeneralizedRowVector (21.12.1). The immutability level of x is defined as infinity if x
is immutable, and otherwise the number of x; which are immutable. (So the immutability level of a
mutable empty list is 0.)

Thus a fully mutable matrix has immutability level 0, and a mutable matrix with immutable first
row has immutability level 1 (independent of the mutability of other rows).

The immutability level of the result of any of the binary operations discussed here is the minimum
of the immutability levels of the arguments, provided that objects of the required mutability status
exist in GAP.

Moreover, the results have a “homogeneous” mutability status, that is, if the first bound entry at
nesting depth i is immutable (mutable) then all entries at nesting depth i are immutable (mutable,
provided that a mutable version of this entry exists in GAP).

Thus the sum of two mutable matrices whose first rows are mutable is a matrix all of whose rows
are mutable, and the product of two matrices whose first rows are immutable is a matrix all of whose
rows are immutable, independent of the mutability status of the other rows of the arguments.

For example, the sum of a matrix (mutable or immutable, i.e., of immutability level one of O, 1,
or 2) and a mutable row vector (i.e., immutability level 0) is a fully mutable matrix. The product of
two mutable row vectors of integers is an integer, and since GAP does not support mutable integers,
the result is immutable.

For unary arithmetic operations, there are three operations available, an attribute that returns an
immutable result (Zero (31.10.3), AdditiveInverse (31.10.9), One (31.10.2), Inverse (31.10.8)),
an operation that returns a result that is mutable (ZeroOp (31.10.3), AdditiveInverseOp (31.10.9),
OneOp (31.10.2), InverseOp (31.10.8)), and an operation whose result has the same immutabil-
ity level as the argument (ZeroSM (31.10.3), AdditiveInverseSM (31.10.9), OneSM (31.10.2),
InverseSM (31.10.8)). The last kind of operations is equivalent to the corresponding infix opera-
tions 0 * list,- list,list~0, and 1ist~-1. (This holds not only for lists, see 12.6.)

Example
gap> IsMutable( 11 ); IsMutable( 2 * Immutable( [ 1, 2, 3] ) );
true
false

gap> IsMutable( 12 ); IsMutable( 13 );
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true
true

An example motivating the mutability rule is the use of syntactic constructs such as obj #* list
and - list as an elegant and efficient way to create mutable lists needed for further manipulations
from mutable lists. In particular one can construct a mutable zero vector of lengthnby 0 * [ 1
n ]1. The latter can be done also using ListWithIdenticalEntries (21.15.1).

21.15.1 ListWithldenticalEntries

> ListWithIdenticalEntries(n, obj) (function)

is alist 1ist of length n that has the object obj stored at each of the positions from 1 to n. Note
that all elements of 1ists are identical, see 21.6.

Example
gap> ListWithIdenticalEntries( 10, 0 );
(o, 0,0,0,0,0,0,0,0,0]1

21.16 Finding Positions in Lists

21.16.1 Position

> Position(list, obj [, from]) (operation)

returns the position of the first occurrence obj in 1ist, or fail if obj is not contained in 1ist.
If a starting index from is given, it returns the position of the first occurrence starting the search after
position from.

Each call to the two argument version is translated into a call of the three argument version, with
third argument the integer zero 0. (Methods for the two argument version must be installed as methods
for the version with three arguments, the third being described by IsZeroCyc.)

Example

gap> Position( [ 2, 2, 1, 31, 1 );

3

gap> Position( [ 2, 1, 1, 31, 1 );

2

gap> Position( [ 2, 1, 1, 31, 1, 2 );

3

gap> Position( [ 2, 1, 1, 31, 1, 3);

fail
21.16.2 Positions
> Positions(list, obj) (function)
> POSitiOnSOp(liSt, Obj) (operation)

returns the positions of all occurrences of obj in 1ist.
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Example
gap> Positions([1,2,1,2,3,2,2],2);

[ 2, 4,6, 7]

gap> Positions([1,2,1,2,3,2,2],4);

[ ]

21.16.3 PositionCanonical

> PositionCanonical(list, obj) (operation)

returns the position of the canonical associate of obj in 1ist. The definition of this asso-
ciate depends on list. For internally represented lists it is defined as the element itself (and
PositionCanonical thus defaults to Position (21.16.1), but for example for certain enumerators
(see 21.23) other canonical associates can be defined.

For example RightTransversal (39.8.1) defines the canonical associate to be the element in the
transversal defining the same coset of a subgroup in a group.

Example
gap> g:=Group((1,2,3,4),(1,2));;u:=Subgroup(g, [(1,2)(3,4),(1,3)(2,4)1);;
gap> rt:=RightTransversal(g,u);;AsList(rt);

[ O, 3,4), (2,3), (2,3,4), (2,4,3), (2,4) ]

gap> Position(rt, (1,2));

fail

gap> PositionCanonical(rt,(1,2));

2

21.16.4 PositionNthOccurrence

> PositionNthOccurrence(list, obj, n) (operation)

returns the position of the n-th occurrence of obj in 1ist and returns fail if obj does not occur
n times.
Example
gap> PositionNthOccurrence([1,2,3,2,4,2,1]1,1,1);
1
gap> PositionNthOccurrence([1,2,3,2,4,2,1]1,1,2);
7
gap> PositionNthOccurrence([1,2,3,2,4,2,1],2,3);
6
gap> PositionNthOccurrence([1,2,3,2,4,2,1]1,2,4);
fail

21.16.5 PositionSorted

> PositionSorted(list, elm[, func]) (function)

Called with two arguments, PositionSorted returns the position of the element elm in the sorted
list 1ist.
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Called with three arguments, PositionSorted returns the position of the element elm in the list
list, which must be sorted with respect to func. func must be a function of two arguments that
returns true if the first argument is less than the second argument, and false otherwise.

PositionSorted returns pos such that 1ist[pos — 1] < elm and elm < list[pos]|. That
means, if elm appears once in 1ist, its position is returned. If elm appears several times in 1ist,
the position of the first occurrence is returned. If elm is not an element of 1ist, the index where elm
must be inserted to keep the list sorted is returned.

PositionSorted uses binary search, whereas Position (21.16.1) can in general use only linear
search, see the remark at the beginning of 21.19. For sorting lists, see 21.18, for testing whether a list
is sorted, see IsSortedList (21.17.3) and IsSSortedList (21.17.4).

Specialized functions for certain kinds of lists must be installed as methods for the operation
PositionSortedOp.

Example
gap> PositionSorted( [1,4,5,5,6,71, 0 );
;ap> PositionSorted( [1,4,5,5,6,7], 2 );
2ap> PositionSorted( [1,4,5,5,6,71, 4 );
zap> PositionSorted( [1,4,5,5,6,7], 5 );
Zap> PositionSorted( [1,4,5,5,6,7], 8 );
7
21.16.6 PositionSet
> PositionSet(list, obj[, func]) (function)

PositionSet is a slight variation of PositionSorted (21.16.5). The only difference to
PositionSorted (21.16.5) is that PositionSet returns fail if obj isnotin list.

Example
gap> PositionSet( [1,4,5,5,6,7], 0 );
fail
gap> PositionSet( [1,4,5,5,6,71, 2 );
fail
gap> PositionSet( [1,4,5,5,6,71, 4 );
2
gap> PositionSet( [1,4,5,5,6,7], 5 );
3
gap> PositionSet( [1,4,5,5,6,7], 8 );
fail

21.16.7 PositionProperty
> PositionProperty(list, func[, froml) (operation)
returns the position of the first entry in the list 1ist for which the property tester function func

returns true, or fail if no such entry exists. If a starting index from is given, it returns the position
of the first entry satisfying func, starting the search after position from.
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Example
gap> PositionProperty( [10°7..1078], IsPrime );
20
gap> PositionProperty( [1075..1076],
> n -> not IsPrime(n) and IsPrimePowerInt(n) );
490

First (21.20.22) allows you to extract the first element of a list that satisfies a certain property.

21.16.8 PositionsProperty
> PositionsProperty(list, func) (operation)

returns the list of all those positions in the dense list 1ist for which the property tester function

func returns true.
Example

gap> 1:= [ -5 .. 5 1;;

gap> PositionsProperty( 1, IsPosInt );

[ 7, 8 9, 10, 11 1]

gap> PositionsProperty( 1, IsPrimelnt );
[1, 3, 4,8,9, 11]

PositionProperty (21.16.7) allows you to extract the position of the first element in a list that
satisfies a certain property.

21.16.9 PositionBound

> PositionBound(list) (operation)

returns the first index for which an element is bound in the list 1ist. For the empty list it returns
fail.

Example
gap> PositionBound([1,2,3]);

1

gap> PositionBound([,1,2,3]);

2

21.16.10 PositionNot
> PositionNot(list, val[, from]) (operation)
For a list 1ist and an object val, PositionNot returns the smallest nonnegative integer n such

that Iist[n] is either unbound or not equal to val. If a starting index from is given, it returns the
first position with this property starting the search after position from.

Example
gap> 1:= [ 1, 1, 2, 3, 2 1;; PositionNot( 1, 1 );
3
gap> PositionNot( 1, 1, 4 ); PositionNot( 1, 2, 4 );
5
6
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21.16.11 PositionNonZero

> PositionNonZero(vec[, from]) (operation)

For a row vector vec, PositionNonZero returns the position of the first non-zero element of
vec, or Length( vec )+1 if all entries of vec are zero.

If a starting index from is given, it returns the position of the first occurrence starting the search
after position from.

PositionNonZero implements a special case of PositionNot (21.16.10). Namely, the element
to be avoided is the zero element, and the list must be (at least) homogeneous because otherwise the
zero element cannot be specified implicitly.

Example
gap> PositionNonZero( [ 1, 1, 2, 3, 21 );
1
gap> PositionNonZero( [ 2, 3, 4, 51 * Z(2) );
2
21.16.12 PositionSublist
> PositionSublist(list , Ssub [, from]) (operation)

returns the smallest index in the list 1ist at which a sublist equal to sub starts. If sub does not
occur the operation returns fail. The version with given from starts searching after position from.

To determine whether sub matches 1ist at a particular position, use IsMatchingSublist
(21.17.1) instead.

21.16.13 PositionFirstComponent

> PositionFirstComponent(list, obj) (operation)

returns the index i in Iist such that 1ist [i][1] = obj or the place where such an entry
should be added (cf. PositionSorted (21.16.5)).

21.17 Properties and Attributes for Lists

A list that contains mutable objects (like lists or records) cannot store attribute values that depend on
the values of its entries, such as whether it is homogeneous, sorted, or strictly sorted, as changes in
any of its entries could change such property values, like the following example shows.

Example
gap> 1l:=[[11,[2]1];

LC1]1, 0211

gap> IsSSortedList(l);

true

gap> 1[11[1]:=3;

3

gap> IsSSortedList(l);

false
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For such lists these property values must be computed anew each time the property is asked for.
For example, if 1ist is a list of mutable row vectors then the call of Position (21.16.1) with 1ist
as first argument cannot take advantage of the fact that 1ist is in fact sorted. One solution is to call
explicitly PositionSorted (21.16.5) in such a situation, another solution is to replace 1ist by an
immutable copy using Immutable (12.6.3).

21.17.1 IsMatchingSublist

> IsMatchingSublist(Ilist, sub[, atl]) (operation)

returns true if sub matches a sublist of 1ist from position 1 (or position at, in the case of three
arguments), or false, otherwise. If sub is empty true is returned. If 1ist is empty but sub is
non-empty false is returned.

If you actually want to know whether there is an at for which IsMatchingSublist( list,
sub, at ) is true, use a construction like PositionSublist( list, sub ) <> fail instead
(see PositionSublist (21.16.12)); it’s more efficient.

21.17.2 IsDuplicateFree

> IsDuplicateFree(obj) (property)
> IsDuplicateFreelist(obj) (property)

IsDuplicateFree returns true if obj is both a list or collection, and it is duplicate free; other-
wise it returns false. IsDuplicateFreeList is a synonym for IsDuplicateFree and IsList.

A list is duplicate free if it is dense and does not contain equal entries in different positions. Every
domain (see 12.4) is duplicate free.

Note that GAP cannot compare arbitrary objects (by equality). This can cause that
IsDuplicateFree runs into an error, if obj is a list with some non-comparable entries.

21.17.3 IsSortedList

> IsSortedList(obj) (property)

returns true if obj is a list and it is sorted, and false otherwise.

Alist 1ist is sorted if it is dense (see IsDenseList (21.1.2)) and satisfies the relation 1ist[i] <
list[j] wheneveri < j. Note that a sorted list is not necessarily duplicate free (see IsDuplicateFree
(21.17.2) and IsSSortedList (21.17.4)).

Many sorted lists are in fact homogeneous (see IsHomogeneousList (21.1.3)), but also non-
homogeneous lists may be sorted (see 31.11).

In sorted lists, membership test and computing of positions can be done by binary search,
see 21.19.

Note that GAP cannot compare (by less than) arbitrary objects. This can cause that
IsSortedList runs into an error, if obj is a list with some non-comparable entries.

21.17.4 IsSSortedList

> IsSSortedList(obj) (property)
> IsSet(obj) (property)
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returns true if obj is a list and it is strictly sorted, and false otherwise. IsSSortedList is short
for “is strictly sorted list”; IsSet is just a synonym for IsSSortedList.

A list 1ist is strictly sorted if it is sorted (see IsSortedList (21.17.3)) and satisfies the relation
list[i] < 1ist[j] whenever i < j. In particular, such lists are duplicate free (see IsDuplicateFree
(21.17.2)).

(Currently there is little special treatment of lists that are sorted but not strictly sorted. In particular,
internally represented lists will not store that they are sorted but not strictly sorted.)

Note that GAP cannot compare (by less than) arbitrary objects. This can cause that
IsSSortedList runs into an error, if obj is a list with some non-comparable entries.

21.17.5 Length

> Length(1list) (attribute)

returns the length of the list 1ist, which is defined to be the index of the last bound entry in
list.

21.17.6 ConstantTimeA ccessList

> ConstantTimeAccessList(1list) (attribute)

ConstantTimeAccessList returns an immutable list containing the same elements as the list
list (which may have holes) in the same order. If 1ist is already a constant time access list,
ConstantTimeAccessList returns an immutable copy of 1ist directly. Otherwise it puts all ele-
ments and holes of 1ist into a new list and makes that list immutable.

21.18 Sorting Lists

21.18.1 Sort

> Sort(list[, func]) (operation)
> SOI‘tBy (list , func) (operation)

Sort sorts the list 1ist in increasing order. In the one argument form Sort uses the operator <
to compare the elements. (If the list is not homogeneous it is the users responsibility to ensure that
< is defined for all element pairs, see 31.11) In the two argument form Sort uses the function func
to compare elements. func must be a function taking two arguments that returns true if the first is
regarded as strictly smaller than the second, and false otherwise.

Note that, in cases where it is applicable, SortBy is likely to be more efficient.

Sort does not return anything, it just changes the argument 1ist. Use ShallowCopy (12.7.1)
if you want to keep 1ist. Use Reversed (21.20.7) if you want to get a new list that is sorted in
decreasing order.

It is possible to sort lists that contain multiple elements which compare equal. It is not guaranteed
that those elements keep their relative order, i.e., Sort is not stable.

Example
gap> list := [ 5, 4, 6, 1, 7, 5 1;; Sort( list ); list;
[ 1’ 4’ 5, 5’ 6’ 7 ]
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gap> list := [ [0,6], [1,2], [1,3], [1,5], [0,4], [3,4] 1;;

gap> Sort( list, function(v,w) return v*v < wxw; end );

gap> list; # sorted according to the Euclidean distance from [0,0]
tft+, 21,011,311, (0,41, [3,41,[1,51,[0,61]1

gap> list := [ [0,6], [1,3], [3,41, [1,5], [1,2], [0,4], 1;;

gap> Sort( list, function(v,w) return v[1] < w[1]; end );

gap> # note the random order of the elements with equal first component:
gap> list;

rro,e61, 0,41, 01,31, 01,51, [1,21,1[3,41]1

SortBy sorts the list 1ist into an order such that func(list[i]) <= func(list[i+1]) for all
relevant i. func must thus be a function on one argument which returns values that can be compared.
Each func(list[i]) is computed just once and stored, making this more efficient than using the
two-argument version of Sort in many cases.

21.18.2 SortParallel
> SortParallel(listl, list2[, func]) (operation)
sorts the list 1ist1 in increasing order just as Sort (21.18.1) does. In parallel it applies the same

exchanges that are necessary to sort 1ist1 to the list 1ist2, which must of course have at least as
many elements as 1ist1 does.

Example
gap> listl := [ 5, 4, 6, 1, 7, 5 1;;
gap> list2 := [ 2, 3, 5, 7, 8, 9 1;;
gap> SortParallel( listl, list2 );
gap> listl;
[1, 4, 5, 5, 6, 71
gap> list2;
[7, 3, 2, 9, 5, 81

Note that [ 7, 3, 2, 9, 5, 8 Jor[ 7, 3, 9, 2, 5, 8 ] are possible results.

21.18.3 Sortex

> Sortex(list[, func]l) (operation)

sorts the list 1ist and returns a permutation that can be applied to 1ist to obtain the sorted list.
The one argument form sorts via the operator <, the two argument form sorts w.r.t. the function func.
(If the list is not homogeneous it is the user’s responsibility to ensure that < is defined for all element
pairs, see 31.11)

Permuted (21.20.18) allows you to rearrange a list according to a given permutation.

Example
gap> listl := [ 5, 4, 6, 1, 7, 5 1;;

gap> list2 := ShallowCopy( listl );;

gap> perm := Sortex( listl );

(1,3,5,6,4)

gap> listl;

[ 1, 4, 5,5, 6, 71
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gap> Permuted( 1list2, perm );
[ 1’ 4’ 5, 57 6’ 7 ]

21.18.4 SortingPerm

> SortingPerm(list) (attribute)

SortingPerm returns the same as Sortex (21.18.3) but does not change the argument.

Example

gap> listl := [ 5, 4, 6, 1, 7, 5 1;;

gap> list2 := ShallowCopy( listl );;
gap> perm := SortingPerm( listl );
(1,3,5,6,4)

gap> listl;

[ 5, 4,6, 1,7, 5]
gap> Permuted( list2, perm );
[ 1’ 4’ 5, 5’ 6, 7 ]

The default methods for all of these sorting operations currently use Shell sort as it has a compa-
rable performance to Quicksort for lists of length at most a few thousands, and has better worst-case
behaviour.

21.19 Sorted Lists and Sets

Searching objects in a list works much quicker if the list is known to be sorted. Currently GAP
exploits the sortedness of a list automatically only if the list is strictly sorted, which is indicated by
the property IsSSortedList (21.17.4).

Remember that a list of mutable objects cannot store that it is strictly sorted but has to test it
anew whenever it is asked whether it is sorted, see the remark in 21.17. Therefore GAP cannot
take advantage of the sortedness of a list if this list has mutable entries. Moreover, if a sorted list
list with mutable elements is used as an argument of a function that expects this argument to be
sorted, for example UniteSet (21.19.6) or RemoveSet (21.19.5), then it is checked whether 1ist is
in fact sorted; this check can have the effect actually to slow down the computations, compared to
computations with sorted lists of immutable elements or computations that do not involve functions
that do automatically check sortedness.

Strictly sorted lists are used to represent sets in GAP. More precisely, a strictly sorted list is called
a proper set in the following, in order to avoid confusion with domains (see 12.4) which also represent
sets.

In short proper sets are represented by sorted lists without holes and duplicates in GAP. Note that
we guarantee this representation, so you may make use of the fact that a set is represented by a sorted
list in your functions.

In some contexts (for example see 16), we also want to talk about multisets. A multiset is like a
set, except that an element may appear several times in a multiset. Such multisets are represented by
sorted lists without holes that may have duplicates.

This section lists only those functions that are defined exclusively for proper sets. Set theoretic
functions for general collections, such as Intersection (30.5.2) and Union (30.5.3), are described
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in Chapter 30. In particular, for the construction of proper sets, see SSortedList (30.3.7) and
AsSSortedList (30.3.10). For finding positions in sorted lists, see PositionSorted (21.16.5).

There are nondestructive counterparts of the functions UniteSet (21.19.6), IntersectSet
(21.19.7), and SubtractSet (21.19.8) available for proper sets. These are UnionSet,
IntersectionSet, and Difference (30.5.4). The former two are methods for the more general op-
erations Union (30.5.3) and Intersection (30.5.2), the latter is itself an operation (see Difference
(30.5.4)).

The result of IntersectionSet and UnionSet is always a new list, that is not identical to any
other list. The elements of that list however are identical to the corresponding elements of the first
argument set. If set is not a proper set it is not specified to which of a number of equal elements in
set the element in the result is identical (see 21.6). The following functions, if not explicitly stated
differently, take two arguments, set and obj, where set must be a proper set, otherwise an error
is signalled; If the second argument obj is a list that is not a proper set then Set (30.3.7) is silently
applied to it first.

21.19.1 \in (for strictly sorted lists)

> \in(obj, list) (method)

For a list 1ist that stores that it is strictly sorted, the test with \in (21.19.1) whether the object
obj is an entry of 1ist uses binary search. This test can be entered also with the infix notation obj
in 1ist.

21.19.2 IsEqualSet

> IsEqualSet(listl, list2) (operation)

tests whether 1ist1 and 1ist2 are equal when viewed as sets, that is if every element of 1ist1
is an element of 1ist2 and vice versa. Either argument of IsEqualSet may also be a list that is not
a proper set, in which case Set (30.3.7) is applied to it first.

If both lists are proper sets then they are of course equal if and only if they are also equal as lists.
Thus IsEqualSet( listl, list2 ) isequivalentto Set( listl ) = Set( list2 ) (see Set
(30.3.7)), but the former is more efficient.

Example
gap> IsEqualSet( [2,3,5,7,11], [11,7,5,3,2] );
true
gap> IsEqualSet( [2,3,5,7,11]1, [2,3,5,7,11,13] );
false
21.19.3 IsSubsetSet
> IsSubsetSet(listl, 1ist2) (operation)

tests whether every element of 1ist2 is contained in 1istl. Either argument of IsSubsetSet
may also be a list that is not a proper set, in which case Set (30.3.7) is applied to it first.
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21.19.4 AddSet

> AddSet(set, Obj) (operation)

adds the element obj to the proper set set. If obj is already contained in set then set is
not changed. Otherwise obj is inserted at the correct position such that set is again a proper set
afterwards.

Note that obj must be in the same family as each element of set.
Example

gap> s := [2,3,7,11];;
gap> AddSet( s, 5 ); s;
[2, 3,5, 7, 11 1]

gap> AddSet( s, 13 ); s;
[2,3,5,7, 11, 13 ]
gap> AddSet( s, 3 ); s;
[2, 3, 5, 7, 11, 13 ]

21.19.5 RemoveSet

> RemoveSet (set, obj) (operation)

removes the element obj from the proper set set. If obj is not contained in set then set is
not changed. If obj is an element of set it is removed and all the following elements in the list are
moved one position forward.

Example

gap> s := [ 2, 3, 4, 5, 6, 7 1;;
gap> RemoveSet( s, 6 ); s;

[ 2, 3, 4, 5, 7]

gap> RemoveSet( s, 10 ); s;

[ 2, 3,4, 5, 7]

21.19.6 UniteSet

> UniteSet(set, list) (operation)

unites the proper set set with 1ist. This is equivalent to adding all elements of 1ist to set
(see AddSet (21.19.4)).

Example

gap> set := [ 2, 3, 5, 7, 11 1;;

gap> UniteSet( set, [ 4, 8, 9] ); set;
[2,3,4,5,7,8, 9, 11]

gap> UniteSet( set, [ 16, 9, 25, 13, 16 ] ); set;
[2, 3, 4, 5, 7, 8, 9, 11, 13, 16, 25 ]

21.19.7 IntersectSet

> IntersectSet(set, 1list) (operation)
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intersects the proper set set with 1ist. This is equivalent to removing from set all elements of
set that are not contained in 1ist.
Example
gap> set := [ 2, 3, 4, 5, 7, 8, 9, 11, 13, 16 1;;
gap> IntersectSet( set, [ 3, 5, 7, 9, 11, 13, 15, 17 ] ); set;
[ 35, 7,9, 11, 13 ]
gap> IntersectSet( set, [ 9, 4, 6, 8 1 ); set;
[ 9]

21.19.8 SubtractSet

> SubtractSet(set, list) (operation)

subtracts 1ist from the proper set set. This is equivalent to removing from set all elements of
list.
Example
gap> set := [ 2, 3, 4, 5, 6, 7, 8, 9, 10, 11 1;;
gap> SubtractSet( set, [ 6, 10 ] ); set;
[2, 3, 4,5,7, 8,9, 111
gap> SubtractSet( set, [ 9, 4, 6, 8 1 ); set;
[2,3,5,7, 11]

21.20 Operations for Lists

Several of the following functions expect the first argument to be either a list or a collection (see 30),
with possibly slightly different meaning for lists and non-list collections.

21.20.1 Concatenation (for several lists)

> Concatenation(listil, list2, ...) (function)
> Concatenation(list) (function)

In the first form Concatenation returns the concatenation of the lists 1ist1, 1ist2, etc. The
concatenation is the list that begins with the elements of 1ist1, followed by the elements of 1ist2,
and so on. Each list may also contain holes, in which case the concatenation also contains holes at the
corresponding positions.

In the second form 1ist must be a dense list of lists 1ist1, 1ist2, etc., and Concatenation
returns the concatenation of those lists.

The result is a new mutable list, that is not identical to any other list. The elements of that list
however are identical to the corresponding elements of 1ist1, 1ist2, etc. (see 21.6).

Note that Concatenation creates a new list and leaves its arguments unchanged, while Append
(21.4.5) changes its first argument. For computing the union of proper sets, Union (30.5.3) can be
used, see also 21.19.

Example
gap> Concatenation( [ 1, 2, 31, [ 4, 51 );
[1, 2, 3, 4, 5]

gap> Concatenation( [2,3,,5,,7], [11,,13,,,,17,,19] );
[ 2, 3,, 5,, 7, 11,, 13,,,, 17,, 19 ]
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gap> Concatenation( [ [1,2,3], [2,3,4], [3,4,5] 1 );
[1,2,3,2,3,4,3,4,5]

21.20.2 Compacted

> Compacted(list) (operation)

returns a new mutable list that contains the elements of 1ist in the same order but omitting the
holes.

Example
gap> 1:=[,1,,,3,,,4,[5,,,61,7];; Compacted( 1 );
[ 1’ 3’ 4, [ 5,,’ 6 ]’ 7 ]
21.20.3 Collected
> Collected(list) (operation)

returns a new list new that contains for each element elm of the list 1ist a list of length two, the
first element of this is elm itself and the second element is the number of times elm appears in 1ist.
The order of those pairs in new corresponds to the ordering of the elements elm, so that the result is
sorted.

For all pairs of elements in 1ist the comparison via < must be defined.

Example

gap> Factors( Factorial( 10 ) );
[2,2,2,2,2,2,2,2,3,3,3,3, 5,5, 7]

gap> Collected( last );

(r2,81, 038,41, 5,21, [7,11]

gap> Collected( last );
tcf2,81,1¢1, 008,411,121, ([s5,21,11, [C7,11,11]

21.20.4 DuplicateFreeList

> DuplicateFreeList(list) (operation)
> Unique (1list) (operation)

returns a new mutable list whose entries are the elements of the list 1ist with duplicates re-
moved. DuplicateFreeList only uses the = comparison and will not sort the result. Therefore
DuplicateFreeList can be used even if the elements of 1ist do not lie in the same family. Other-
wise, if 1ist contains objects that can be compared with \< (31.11.1) then it is much more efficient
to use Set (30.3.7) instead of DuplicateFreelist.

Unique is a synonym for DuplicateFreelist.
Example
gap> 1:=[1,2(3),1,"abc",Group((1,2,3),(1,2)),Z2(3),Group((1,2),(2,3))1;;
gap> DuplicateFreelList( 1 );
[ 1, Z(3), "abe", Group([ (1,2,3), (1,2) 1) 1
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21.20.5 AsDuplicateFreeList

> AsDuplicateFreelist(list) (attribute)

returns the same result as DuplicateFreeList (21.20.4), except that the result is immutable.

21.20.6 Flat
> Flat(list) (operation)
returns the list of all elements that are contained in the list 1ist or its sublists. That is, Flat first

makes a new empty list new. Then it loops over the elements elm of 1ist. If elm is not a list it is
added to new, otherwise Flat appends Flat( elm ) to new.

Example
gap> Flat( [ 1, [ 2,31, [ [1,21,311);
[1,2,3,1,2, 3]

gap> Flat( [ ] );

[ ]

To reconstruct a matrix from the list obtained by applying Flat to the matrix, the sublist operator
can be used, as follows.
Example
gap> 1:=[9..14];;w:=2;; # w is the length of each row
gap> sub:=[1..w];;List([1..Length(1)/w],i->1{(i-1)*w+subl});
[[9, 101, [ 11, 121, [ 13, 1411

21.20.7 Reversed

> Reversed(list) (function)

returns a new mutable list, containing the elements of the dense list 2ist in reversed order.

The argument list is unchanged. The result list is a new list, that is not identical to any other
list. The elements of that list however are identical to the corresponding elements of the argument list
(see 21.6).

Reversed implements a special case of list assignment, which can also be formulated in terms of
the {} operator (see 21.4).

Example
gap> Reversed( [ 1, 4, 9, 5, 6, 71 );
[7,6,5,9,4,1]

21.20.8 Shuffle

> Shuffle(list) (operation)

The argument 1ist must be a dense mutable list. This operation permutes the entries of 1ist
randomly (in place), and returns 1ist.
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Example

gap> Reset(GlobalMersenneTwister, 12345);; # make manual tester happy

gap> 1 := [1..20];

[1..20]

gap> m := Shuffle(ShallowCopy(1));

[ 15, 13, 3, 19, 8, 11, 14, 7, 16, 4, 17, 18, 5, 1, 10, 6, 2, 9, 12,
20 1]

gap> 1;

[1..20]

gap> Shuffle(1);;

gap> 1;

[ 3, 4, 18, 13, 10, 7, 9, 8, 14, 17, 16, 6, 19, 12, 1, 11, 20, 2, 15,
5 ]

21.20.9 IsLexicographicallyLess

> IsLexicographicallylLess(listl, list2) (function)
Let 1istl and 1ist2 be two dense, but not necessarily homogeneous lists (see IsDenselist

(21.1.2), IsHomogeneousList (21.1.3)), such that for each i, the entries in both lists at position i

can be compared via <. IsLexicographicallyLess returns true if 1ist1 is smaller than 1ist2

w.r.t. lexicographical ordering, and false otherwise.

21.20.10 Apply

> Apply(list, func) (function)
Apply applies the function func to every element of the dense and mutable list 1ist, and replaces

each element entry by the corresponding return value.
Apply changes its argument. The nondestructive counterpart of Apply is List (30.3.5).

Example
gap> 1:= [ 1, 2, 3 1;; Apply( 1, i > i"2); 1;
[1, 4, 91
21.20.11 Perform
> Perform(list, func) (operation)

Perform applies the function func to every element of the list 1ist, discarding any return values.
It does not return a value.
Example

gap> 1 := [1, 2, 3];; Perform(1,

> function(x) if IsPrimelInt(x) then Print(x,"\n"); fi; end);
2

3
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21.20.12 PermlListList

> PermListList(listl, 1list2)

(function)

returns a permutation p of [ 1 .. Length( Iistl ) ] such that 1ist1[i~p|= 1list2]i]. It

returns fail if there is no such permutation.
Example

gap> listl := [ 5, 4, 6, 1, 7, 5 1;;

gap> list2 := [ 4, 1, 7, 5, 5, 6 1;;

gap> perm := PermListList(listl, list2);

(1,2,4)(3,5,6)

gap> Permuted( list2, perm );

[5,4,6,1,7,5]1]
21.20.13 Maximum
> Maximum(objl, Obj2, o) (function)
> Maximum(list) (function)

In the first form Maximum returns the maximum of its arguments, i.e., one argument obj for which
obj > obj1,0bj > obj2 etc.

In the second form Maximum takes a homogeneous list 1ist and returns the maximum of the
elements in this list.

Example
gap> Maximum( -123, 700, 123, 0, -1000 );
700
gap> Maximum( [ -123, 700, 123, 0, -1000 ] );
700

gap> # lists are compared elementwise:
gap> Maximum( [1,2], [0,15], [1,5], [2,-11] );
[2, -11]

21.20.14 Minimum

> Minimum(obj1, obj2, ...)
> Minimum(list)

(function)

(function)

In the first form Minimum returns the minimum of its arguments, i.e., one argument obj for which
obj <objl,o0bj < obj2 etc.

In the second form Minimum takes a homogeneous list 1ist and returns the minimum of the
elements in this list.

Note that for both Maximum (21.20.13) and Minimum the comparison of the objects obj1, obj2
etc. must be defined; for that, usually they must lie in the same family (see 13.1).

Example
gap> Minimum( -123, 700, 123, 0, -1000 );
-1000
gap> Minimum( [ -123, 700, 123, 0, -1000 ] );
-1000

gap> Minimum( [ 1, 231, [0, 1561, [ 1,51, [ 2, -11 1] );
[ 0, 15 ]
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21.20.15 MaximumList and MinimumList

> MaximumList(list[, seed]) (operation)
> MinimumList(list [, seed]) (operation)

return the maximum resp. the minimum of the elements in the list 1ist. They are the operations
called by Maximum (21.20.13) resp. Minimum (21.20.14). Methods can be installed for special kinds of
lists. For example, there are special methods to compute the maximum resp. the minimum of a range
(see 21.22).

If a second argument seed is supplied, then the result is the maximum resp. minimum of the
union of 1ist and seed. In this manner, the operations may be applied to empty lists.

21.20.16 Cartesian

> Cartesian(listl, 1ist2, ...) (function)
> Cartesian(list) (function)

In the first form Cartesian returns the cartesian product of the lists 1ist1, 1ist2, etc.

In the second form 1ist must be a list of lists 1ist1, 1ist2, etc., and Cartesian returns the
cartesian product of those lists.

The cartesian product is a list cart of lists tup, such that the first element of tup is an element of
list1, the second element of tup is an element of 1ist2, and so on. The total number of elements
in cart is the product of the lengths of the argument lists. In particular cart is empty if and only if
at least one of the argument lists is empty. Also cart contains duplicates if and only if no argument
list is empty and at least one contains duplicates.

The last index runs fastest. That means that the first element tupl of cart contains the first
element from 1ist1, from 1ist2 and so on. The second element tup2 of cart contains the first
element from 1ist1, the first from 1ist2, an so on, but the last element of tup2 is the second
element of the last argument list. This implies that cart is a proper set if and only if all argument
lists are proper sets (see 21.19).

The function Tuples (16.2.8) computes the k-fold cartesian product of a list.

Example
gap> Cartesian( [1,2], [3,4]1, [5,6] );

rri1,3,51,01,3,61, [1,4,5]1,[1,4,61,[2, 3,51,
[2,3,61, [2,4,51,[2,4,¢61]1]

gap> Cartesian( [1,2,2], [1,1,2] );

tCfs,21, 01,121, 01,21,02,11,[02,11,T[2,2]1],
(2,11, 02,11, [2, 211

21.20.17 IteratorOfCartesianProduct

> IteratorOfCartesianProduct(listl, 1list2, ...) (function)
> IteratorOfCartesianProduct(list) (function)

In the first form IteratorOfCartesianProduct returns an iterator (see 30.8) of all elements of
the cartesian product (see Cartesian (21.20.16)) of the lists 1ist1, 1ist2, etc.

In the second form 1list must be a list of lists listl, 1list2, etc.,, and
IteratorOfCartesianProduct returns an iterator of the cartesian product of those lists.
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Resulting tuples will be returned in the lexicographic order. Usage of iterators of cartesian prod-
ucts is recommended in the case when the resulting cartesian product is big enough, so its generating
and storage will require essential amount of runtime and memory. For smaller cartesian products it is
faster to generate the full set of tuples using Cartesian (21.20.16) and then loop over its elements
(with some minor overhead of needing more memory).

21.20.18 Permuted

> Permuted(list y perm) (operation)

returns a new list new that contains the elements of the list 1ist permuted according to the
permutation perm. That is new [i ~“perm] = list [i].

Sortex (21.18.3) allows you to compute a permutation that must be applied to a list in order to
get the sorted list.
Example
gap> Permuted( [ 5, 4, 6, 1, 7, 51, (1,3,5,6,4) );
[ 1, 4, 5, 5, 6, 7]

21.20.19 List (for a list (and a function))

> List(list[, func]) (function)

This function returns a new mutable list new of the same length as the list 1ist (which
may have holes). The entry new[i] is unbound if 1ist [i] is unbound. Otherwise new[i] =
func (1ist [i]). If the argument func is omitted, its default is IdFunc (5.3.4), so this function
does the same as ShallowCopy (12.7.1) (see also 21.7).

Example

gap> List( [1,2,3], i -> i"2 );

[ 1, 4, 9]

gap> List( [1..10], IsPrime );

[ false, true, true, false, true, false, true, false, false, false ]
gap> List([,1,,3,4], x-> x > 2);

[ , false,, true, true ]

(See also List (30.3.5).)

21.20.20 Filtered

> Filtered(listorcoll, func) (function)

returns a new list that contains those elements of the list or collection 1istorcoll (see 30),
respectively, for which the unary function func returns true.

If the first argument is a list, the order of the elements in the result is the same as the order of the
corresponding elements of this list. If an element for which func returns true appears several times
in the list it will also appear the same number of times in the result. The argument list may contain
holes, they are ignored by Filtered.

For each element of 1istorcoll, func must return either true or false, otherwise an error is
signalled.
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The result is a new list that is not identical to any other list. The elements of that list however are
identical to the corresponding elements of the argument list (see 21.6).

List assignment using the operator \{\} (21.3.1) (see 21.4) can be used to extract elements of a
list according to indices given in another list.

Example

gap> Filtered( [1..20], IsPrime );

[2,3,5,7, 11, 13, 17, 19 ]

gap> Filtered( [ 1, 3, 4, -4, 4, 7, 10, 6 1, IsPrimePowerInt );
[ 3,4, 4,7]

gap> Filtered( [ 1, 3, 4, -4, 4, 7, 10, 6 ],

> n -> IsPrimePowerInt(n) and n mod 2 <> 0 );

[ 3, 7]

gap> Filtered( Group( (1,2), (1,2,3) ), x -> Order( x ) = 2 );
[ 2,3), (1,2), (1,3) ]

21.20.21 Number

> Number(listorcoll[, func]l) (function)

Called with a list Iistorcoll, Number returns the number of bound entries in this list. For dense
lists Number, Length (21.17.5), and Size (30.4.6) return the same value; for lists with holes Number
returns the number of bound entries, Length (21.17.5) returns the largest index of a bound entry, and
Size (30.4.6) signals an error.

Called with two arguments, a list or collection 1istorcoll and a unary function func, Number
returns the number of elements of 1istorcoll for which func returns true. If an element for which
func returns true appears several times in 1istorcoll it will also be counted the same number of
times.

For each element of 1istorcoll, func must return either true or false, otherwise an error is
signalled.

Filtered (21.20.20) allows you to extract the elements of a list that have a certain property.

Example
gap> Number( [ 2, 3, 5, 71 );
4
gap> Number( [, 2, 3,, 5,, 7,,,, 11 ] );
5
gap> Number( [1..20], IsPrime );
8
gap> Number( [ 1, 3, 4, -4, 4, 7, 10, 6 ], IsPrimePowerInt );
4
gap> Number( [ 1, 3, 4, -4, 4, 7, 10, 6 ],
> n -> IsPrimePowerInt(n) and n mod 2 <> 0 );
2
gap> Number( Group( (1,2), (1,2,3) ), x -> Order( x ) = 2 );
3

21.20.22 First

> First(list, func) (function)
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First returns the first element of the list 1ist for which the unary function func returns true.
list may contain holes. func must return either true or false for each element of 1ist, otherwise
an error is signalled. If func returns false for all elements of 1ist then First returns fail.

PositionProperty (21.16.7) allows you to find the position of the first element in a list that
satisfies a certain property.

Example
gap> First( [1077..1078], IsPrime );
10000019
gap> First( [1075..1076],
> n -> not IsPrime(n) and IsPrimePowerInt(n) );
100489
gap> First( [ 1 .. 201, x -> x <0 );
fail
gap> First( [ fail ], x -> x = fail );
fail
21.20.23 ForAll
> ForAll(listorcoll, func) (function)

tests whether the unary function func returns true for all elements in the list or collection
listorcoll.

Example
gap> ForAll( [1..20], IsPrime );
false
gap> ForAll( [2,3,4,5,8,9], IsPrimePowerInt );
true
gap> ForAl1( [2..14], n -> IsPrimePowerInt(n) or n mod 2 = 0 );
true
gap> ForAll( Group( (1,2), (1,2,3) ), i -> SignPerm(i) =1 );
false
21.20.24 ForAny
> ForAny(listorcoll, func) (function)

tests whether the unary function func returns true for at least one element in the list or collection
listorcoll.

Example
gap> ForAny( [1..20], IsPrime );
true
gap> ForAny( [2,3,4,5,8,9], IsPrimePowerInt );
true
gap> ForAny( [2..14],
> n -> IsPrimePowerInt(n) and n mod 5 = 0 and not IsPrime(n) );
false
gap> ForAny( Integers, i -> i>0
> and ForAl1( [0,2..4], j -> IsPrime(i+j) ) );
true
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21.20.25 Product

> Product(listorcoll([, func][, init]) (function)

Called with one argument, a dense list or collection 1istorcoll, Product returns the product of
the elements of 1istorcoll (see 30).

Called with a dense list or collection 1istorcoll and a function func, which must be a function
taking one argument, Product applies the function func to the elements of 1istorcoll, and returns
the product of the results. In either case Product returns 1 if the first argument is empty.

The general rules for arithmetic operations apply (see 21.15), so the result is immutable if and
only if all summands are immutable.

If 1istorcoll contains exactly one element then this element (or its image under func if appli-
cable) itself is returned, not a shallow copy of this element.

If an additional initial value init is given, Product returns the product of init and the elements
of the first argument resp. of their images under the function func. This is useful for example if the
first argument is empty and a different identity than 1 is desired, in which case init is returned.

Example
gap> Product( [ 2, 3, 5, 7, 11, 13, 17, 19 1] );

9699690

gap> Product( [1..10], x->x"2 );

13168189440000

gap> Product( [ (1,2), (1,3), (1,4), (2,3), (2,4, (3,4) 1);
(1,4)(2,3)

gap> Product( GF(8) );

0*Z(2)

21.20.26 Sum

> Sum(listorcoll[, func][, init]) (function)

Called with one argument, a dense list or collection 1istorcoll, Sum returns the sum of the
elements of 1istorcoll (see 30).

Called with a dense list or collection I1istorcoll and a function func, which must be a function
taking one argument, Sum applies the function func to the elements of 1istorcoll, and returns the
sum of the results. In either case Sum returns O if the first argument is empty.

The general rules for arithmetic operations apply (see 21.15), so the result is immutable if and
only if all summands are immutable.

If 1istorcoll contains exactly one element then this element (or its image under func if appli-
cable) itself is returned, not a shallow copy of this element.

If an additional initial value init is given, Sum returns the sum of init and the elements of the
first argument resp. of their images under the function func. This is useful for example if the first
argument is empty and a different zero than O is desired, in which case init is returned.

Example
gap> Sum( [ 2, 3, 5, 7, 11, 13, 17, 19 ] );
77
gap> Sum( [1..10], x->x"2 );

385

gap> Sum( [ [1,2], [3,4]1, [5,6]1 1 );
[9, 12 ]
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gap> Sum( GF(8) );
0%Z(2)

21.20.27 Iterated
> Iterated(list ) f) (operation)
returns the result of the iterated application of the function f, which must take two arguments, to

the elements of the list 1ist. More precisely, if 1ist has length n then Iterated returns the result
of the following application, f(...f(f(1ist[l],1ist[2]),1ist[3]),...,1list(n]).

Example
gap> Iterated( [ 126, 66, 105 1, Gcd );
3
21.20.28 ListN
> ListN(listl, list2, ..., listn, f) (function)

applies the n-argument function £ to the lists. That is, ListN returns the list whose i-th entry is
f(1ist1[i],1ist2]i],...,listnli]).
Example

gap> ListN( [1,2], [3,4], \+ );
[ 4, 61

21.21 Advanced List Manipulations

The following functions are generalizations of List (30.3.5), Set (30.3.7), Sum (21.20.26), and
Product (21.20.25).
21.21.1 ListX
> ListX(argl, arg2, ..., argn, func) (operation)
ListX returns a new list constructed from the arguments.
Each of the arguments argl, arg2, ... argn must be one of the following:

a list or collection
this introduces a new for-loop in the sequence of nested for-loops and if-statements;

a function returning a list or collection
this introduces a new for-loop in the sequence of nested for-loops and if-statements, where the
loop-range depends on the values of the outer loop-variables; or

a function returning true or false
this introduces a new if-statement in the sequence of nested for-loops and if-statements.
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The last argument func must be a function, it is applied to the values of the loop-variables and
the results are collected.

Thus ListX( list, func ) is the same as List( Iist, func ), and ListX( list,
func, x -> x ) isthesame as Filtered( list, func ).

As a more elaborate example, assume argl is a list or collection, arg2 is a function returning
true or false, arg3 is a function returning a list or collection, and arg4 is another function returning
true or false, then

result := ListX( argl, arg2, arg3, arg4, func );

is equivalent to

result := [];
for vl in argl do
if arg2( vl ) then
for v2 in arg3( vl ) do
if arg4( v1l, v2 ) then
Add( result, func( vl, v2 ) );
fi;
od;
fi;
od;

The following example shows how ListX can be used to compute all pairs and all strictly sorted
pairs of elements in a list.
Example

gap> 1:= [ 1, 2, 3, 4 1;;
gap> pair:= function( x, y ) return [ x, y ]; end;;
gap> ListX( 1, 1, pair );

tc+, 11,011,271, 01,31, [01,41,[02,11,([2,21,
2,31, 02,41, [3,11,[03,21,0[3,31, 3,41,
(4,11, 04,21, 04,31,0[04,41]1

In the following example, \< (31.11.1) is the comparison operation:
Example

gap> ListX( 1, 1, \<, pair );
(s, 21,011,311, 01,41, 02,31, 02,41, [3,41]

21.21.2 SetX

> SetX(argl, arg2, ..., func) (operation)

The only difference between SetX and ListX (21.21.1) is that the result list of SetX is strictly
sorted.

21.21.3 SumX

> SumX(argl, arg2, ..., func) (operation)

SumX returns the sum of the elements in the list obtained by ListX (21.21.1) when this is called
with the same arguments.
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21.21.4 ProductX

> ProductX(argl, arg2, ..., func) (operation)

ProductX returns the product of the elements in the list obtained by ListX (21.21.1) when this is
called with the same arguments.

21.22 Ranges

A range is a dense list of integers in arithmetic progression (or degression). This is a list of inte-
gers such that the difference between consecutive elements is a nonzero constant. Ranges can be
abbreviated with the syntactic construct

[ first, second .. last ]

or, if the difference between consecutive elements is 1, as

[ first .. 1last ].

If first > last, [ first .. 1last ] is the empty list, which by definition is also a
range; also, if second > first > last or second < first < last,then [ first, second

last 1] is the empty list. If first = last, [ first, second .. last ] is a singleton

list, which is a range, too. Note that last - first must be divisible by the increment second -
first, otherwise an error is signalled.

Currently, the integers first, second and last and the length of a range must be small integers,
that is at least —2¢ and at most 2¢ — 1 with d = 28 on 32-bit architectures and d = 60 on 64-bit
architectures.

Note also that a range is just a special case of a list. Thus you can access elements in a range (see
21.3), test for membership etc. You can even assign to such a range if it is mutable (see 21.4). Of
course, unless you assign last + second - first tothe entry range [ Length( range ) + 1
1, the resulting list will no longer be a range.

Example
gap> r := [10..20];
[ 10 .. 20 1]
gap> Length( r );
11
gap> r(3];
12
gap> 17 in r;
true
gap> r[12] := 25;; r; # r is no longer a range

[ 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 25 ]
gap> r := [1,3..17];
[1, 3..17]

gap> Length( r );

9

gap> r[4];

7

gap> r := [0,-1..-9];
[0, -1 .. -9]

gap> r[5];

-4
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gap>r := [ 1, 4 .. 32 1;
Error, Range: <last>-<first> (31) must be divisible by <inc> (3)

Most often ranges are used in connection with the for-loop see 4.20). Here the construct
for var in [ first .. 1last ] do statements od

replaces the

for var from first to last do statements od

which is more usual in other programming languages.

Example
gap> s := [1;; for i in [10..20] do Add( s, i"2 ); od; s;
[ 100, 121, 144, 169, 196, 225, 256, 289, 324, 361, 400 ]

Note that a range with last >= first is at the same time also a proper set (see 21.19), because
it contains no holes or duplicates and is sorted, and also a row vector (see 23), because it contains no
holes and all elements are integers.

21.22.1 IsRange

> IsRange (Obj) (Category)

tests if the object obj is a range, i.e. is a dense list of integers that is also a range (see 21.22 for a
definition of “range”).

Example
gap> IsRange( [1,2,3] ); IsRange( [7,5,3,1] );
true
true
gap> IsRange( [1,2,4,5] ); IsRange( [1,,3,,5,,7]1 );
false
false
gap> IsRange( [] ); IsRange( [1] );
true
true
21.22.2 ConvertToRangeRep
> ConvertToRangeRep(list) (function)

For some lists the GAP kernel knows that they are in fact ranges. Those lists are represented
internally in a compact way instead of the ordinary way.

If 1ist is a range then ConvertToRangeRep changes the representation of 1ist to this compact
representation.

This is important since this representation needs only 12 bytes for the entire range while the
ordinary representation needs 4/ength bytes.

Note that a list that is represented in the ordinary way might still be a range. It is just that GAP
does not know this. The following rules tell you under which circumstances a range is represented in
the compact way, so you can write your program in such a way that you make best use of this compact
representation for ranges.
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Lists created by the syntactic construct [ first, second .. last ] are of course known to
be ranges and are represented in the compact way.

If you call ConvertToRangeRep for a list represented the ordinary way that is indeed a
range, the representation is changed from the ordinary to the compact representation. A call of
ConvertToRangeRep for a list that is not a range is ignored.

If you change a mutable range that is represented in the compact way, by assignment, Add (21.4.2)
or Append (21.4.5), the range will be converted to the ordinary representation, even if the change is
such that the resulting list is still a proper range.

Suppose you have built a proper range in such a way that it is represented in the ordinary way and
that you now want to convert it to the compact representation to save space. Then you should call
ConvertToRangeRep with that list as an argument. You can think of the call to ConvertToRangeRep
as a hint to GAP that this list is a proper range.

Example
gap> r:= [ 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 1;
[1, 2, 3, 4, 5,6, 7,8, 9, 10]
gap> ConvertToRangeRep( r ); r;

[1..10]
gap> 1:= [ 1, 2, 4, 5 ];; ConvertToRangeRep( 1 ); 1;
[1, 2, 4, 5]

21.23 Enumerators

An enumerator is an immutable list that need not store its elements explicitly but knows, from a set
of basic data, how to determine the i-th element and the position of a given object. A typical example
of this is a vector space over a finite field with g elements, say, for which it is very easy to enumerate
all elements using g-adic expansions of integers.

Using this enumeration can be even quicker than a binary search in a sorted list of vectors, see
IsQuickPositionList (21.23.1).

On the one hand, element access to an enumerator may take more time than element access to
an internally represented list containing the same elements. On the other hand, an enumerator may
save a vast amount of memory. Take for example a permutation group of size a few millions. Even
for moderate degree it is unlikely that a list of all its elements will fit into memory whereas it is no
problem to construct an enumerator from a stabilizer chain (see 43.6).

There are situations where one only wants to loop over the elements of a domain, without using
the special facilities of an enumerator, namely the particular order of elements and the possibility to
find the position of elements. For such cases, GAP provides iterators (see 30.8).

The functions Enumerator (30.3.2) and EnumeratorSorted (30.3.3) return enumerators of do-
mains. Most of the special implementations of enumerators in the GAP library are based on the
general interface that is provided by EnumeratorByFunctions (30.3.4); one generic example is
EnumeratorByBasis (61.6.5), which can be used to get an enumerator of a finite dimensional free
module.

Also enumerators for non-domains can be implemented via EnumeratorByFunctions (30.3.4);
for a discussion, see 79.13.
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21.23.1 IsQuickPositionList
> IsQuickPositionList(list) (filter)
This filter indicates that a position test in 1ist is quicker than about 5 or 6 element comparisons

for “smaller”. If this is the case it can be beneficial to use Position (21.16.1) in 1ist and a bit list
than ordered lists to represent subsets of 1ist.



Chapter 22

Boolean Lists

This chapter describes boolean lists. A boolean list is a list that has no holes and contains only the
boolean values true and false (see Chapter 20). In function names we call boolean lists blists for
brevity.

22.1 IsBlist (Filter)

22.1.1 IsBlist

> IsBlist (Obj) (Category)

A boolean list (“blist”) is a list that has no holes and contains only true and false. Boolean lists
can be represented in an efficient compact form, see 22.5 for details.

Example
gap> IsBlist( [ true, true, false, false ] );
true
gap> IsBlist( [] );
true
gap> IsBlist( [false,,true] ); # has holes
false
gap> IsBlist( [1,1,0,0] ); # contains not only boolean values
false
gap> IsBlist( 17 ); # is not even a list
false

Boolean lists are lists and all operations for lists are therefore applicable to boolean lists.

Boolean lists can be used in various ways, but maybe the most important application is their use
for the description of subsets of finite sets. Suppose sef is a finite set, represented as a list. Then a
subset sub of set is represented by a boolean list blist of the same length as set such that blist[i] is
true if set[i] is in sub, and false otherwise.

293
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22.2 Boolean Lists Representing Subsets
22.2.1 BlistList

> BlistList(list, sub) (function)
returns a new boolean list that describes the list sub as a sublist of the dense list 1ist. That is
BlistList returns a boolean list blist of the same length as 1ist such that blist[i] is true if 1ist ]
is in sub and false otherwise.
list need not be a proper set (see 21.19), even though in this case BlistList is most efficient.
In particular 1ist may contain duplicates. sub need not be a proper sublist of 1ist, i.e., sub may

contain elements that are not in 1ist. Those elements of course have no influence on the result of
BlistList.

Example
gap> BlistList( [1..10], [2,3,5,7] );

[ false, true, true, false, true, false, true, false, false, false ]
gap> BlistList( [1,2,3,4,5,2,8,6,4,10], [4,8,9,16] );
[ false, false, false, true, false, false, true, false, true, false ]

See also UniteBlistList (22.4.2).

22.2.2 ListBlist

> ListBlist(list, blist)

(operation)

returns the sublist sub of the list 1ist, which must have no holes, represented by the boolean list
blist, which must have the same length as 1ist.
sub contains the element 1ist [i] if bIist[i] is true and does not contain the element if b1ist [i]

is false. The order of the elements in sub is the same as the order of the corresponding elements in
list.

Example
gap> ListBlist([1..8],[false,true,true,true,true,false,true,truel);
[2, 3, 4,5, 7, 81

gap> ListBlist( [1,2,3,4,5,2,8,6,4,10],

> [false,false,false,true,false,false,true,false,true,false] );

[ 4, 8, 4]

22.2.3 SizeBlist

> SizeBlist(blist)

(function)

returns the number of entries of the boolean list b1ist that are true. This is the size of the subset
represented by the boolean list blist.

Example
gap> SizeBlist( [ false, true, false, true, false ] );
2
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22.2.4 IsSubsetBlist
> IsSubsetBlist(blistl, blist2) (function)
returns true if the boolean list bIist2 is a subset of the boolean list b1ist1, which must have

equal length, and false otherwise. blist2 is a subset of blist! if blistl[i] = blist1[i] or
blist2[i] for all i.

Example
gap> blistl := [ true, true, false, false ];;
gap> blist2 := [ true, false, true, false ];;
gap> IsSubsetBlist( blistl, blist2 );
false
gap> blist2 := [ true, false, false, false ];;
gap> IsSubsetBlist( blistl, blist2 );
true

22.3 Set Operations via Boolean Lists

22.3.1 UnionBlist

> UnionBlist(blistl, blist2[, . (function)
> UnionBlist(list) (function)

In the first form UnionBlist returns the union of the boolean lists blist1, blist2, etc., which
must have equal length. The union is a new boolean list that contains at position i the value blist1 [i]
or blist2[i]or ....

The second form takes the union of all blists (which as for the first form must have equal length)
in the list 1ist.

22.3.2 IntersectionBlist

> IntersectionBlist(blistl, blist2[, ...]) (function)
> IntersectionBlist(list) (function)

In the first form IntersectionBlist returns the intersection of the boolean lists blist1,
blist2, etc., which must have equal length. The infersection is a new blist that contains at posi-
tion i the value blist1]i] and blist2[i] and ....

In the second form 1ist must be a list of boolean lists b1ist1, blist2, etc., which must have
equal length, and IntersectionBlist returns the intersection of those boolean lists.

22.3.3 DifferenceBlist
> DifferenceBlist(blistl, blist2) (function)
returns the asymmetric set difference of the two boolean lists b1ist1 and blist2, which must

have equal length. The asymmetric set difference is a new boolean list that contains at position i the
value blist1]i] and not blist2][i].
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Example
gap> blistl := [ true, true, false, false ];;
gap> blist2 := [ true, false, true, false ];;

gap> UnionBlist( blistl, blist2 );

[ true, true, true, false ]

gap> IntersectionBlist( blistl, blist2 );
[ true, false, false, false ]

gap> DifferenceBlist( blistl, blist2 );

[ false, true, false, false ]

22.4 Function that Modify Boolean Lists
22.4.1 UniteBlist

> UniteBlist(blistl, blist2) (function)
UniteBlist unites the boolean list b1ist1 with the boolean list bIist2, which must have the

same length. This is equivalent to assigning blist1[i] := blist1]i] or blist2][i] for all i.
UniteBlist returns nothing, it is only called to change blist1.

Example
gap> blistl := [ true, true, false, false ];;
gap> blist2 := [ true, false, true, false ];;

gap> UniteBlist( blistl, blist2 );
gap> blistl;
[ true, true, true, false ]

The function UnionBlist (22.3.1) is the nondestructive counterpart to UniteBlist.

22.4.2 UniteBlistList

> UniteBlistList(list, blist, sub) (function)

works like UniteBlist(blist ,BlistList(list,sub)). As no intermediate blist is created,
the performance is better than the separate function calls.

22.4.3 IntersectBlist

> IntersectBlist(blistl, blist2) (function)
intersects the boolean list b1ist1 with the boolean list b1ist2, which must have the same length.
This is equivalent to assigning blist1[i] := blist1[i] and blist2]i] for all i.
IntersectBlist returns nothing, it is only called to change blist1.

Example
gap> blistl := [ true, true, false, false ];;
gap> blist2 := [ true, false, true, false ];;

gap> IntersectBlist( blistl, blist2 );
gap> blistl;
[ true, false, false, false ]
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The function IntersectionBlist (22.3.2) 1is the nondestructive counterpart to
IntersectBlist.

22.4.4 SubtractBlist
> SubtractBlist(blistl, blist2) (function)
subtracts the boolean list b1ist2 from the boolean list b1ist1, which must have equal length.

This is equivalent to assigning b1ist1[i] := blist1[i] and not blist2[i| for all i.
SubtractBlist returns nothing, it is only called to change blist1.

Example
gap> blistl := [ true, true, false, false ];;
gap> blist2 := [ true, false, true, false ];;

gap> SubtractBlist( blistl, blist2 );
gap> blistl;
[ false, true, false, false ]

The function DifferenceBlist (22.3.3) is the nondestructive counterpart to SubtractBlist.

22.5 More about Boolean Lists

We defined a boolean list as a list that has no holes and contains only true and false. There is a
special internal representation for boolean lists that needs only 1 bit for each entry. This bit is set if
the entry is true and reset if the entry is false. This representation is of course much more compact
than the ordinary representation of lists, which needs 32 or 64 bits per entry.

Not every boolean list is represented in this compact representation. It would be too much work
to test every time a list is changed, whether this list has become a boolean list. This section tells you
under which circumstances a boolean list is represented in the compact representation, so you can
write your functions in such a way that you make best use of the compact representation.

If a dense list containing only true and false is read, it is stored in the compact representa-
tion. Furthermore, the results of BlistList (22.2.1), UnionBlist (22.3.1), IntersectionBlist
(22.3.2) and DifferenceBlist (22.3.3) are known to be boolean lists by construction, and thus are
represented in the compact representation upon creation.

If an argument of IsSubsetBlist (22.2.4), ListBlist (22.2.2), UnionBlist (22.3.1),
IntersectionBlist (22.3.2),DifferenceBlist (22.3.3), UniteBlist (22.4.1), IntersectBlist
(22.4.3) and SubtractBlist (22.4.4) is a list represented in the ordinary representation, it is tested
to see if it is in fact a boolean list. If it is not, an error is signalled. If it is, the representation of the list
is changed to the compact representation.

If you change a boolean list that is represented in the compact representation by assignment (see
21.4) or Add (21.4.2) in such a way that the list remains a boolean list it will remain represented in the
compact representation. Note that changing a list that is not represented in the compact representation,
whether it is a boolean list or not, in such a way that the resulting list becomes a boolean list, will
never change the representation of the list.

22.5.1 IsBlistRep

> IsBlistRep ( Obj) (Representation)
> ConvertToBlistRep(blist) (function)
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Returns: true or false

The first function is a filter that returns true if the object obj is a boolean list in compact repre-
sentation and false otherwise, see 22.5.

The second function converts the object blist to a boolean list in compact representation and

returns true if this is possible. Otherwise blist is unchanged and false is returned.
Example

gap> 1 := [true, false, truel;
[ true, false, true ]

gap> IsBlistRep(1);

true

gap> 1 := [true, false, 1];
[ true, false, 1 ]

gap> 1[3] := false;

false

gap> IsBlistRep(1);

false

gap> ConvertToBlistRep(1);
true




Chapter 23

Row Vectors

Just as in mathematics, a vector in GAP is any object which supports appropriate addition and scalar
multiplication operations (see Chapter 61). As in mathematics, an especially important class of vectors
are those represented by a list of coefficients with respect to some basis. These correspond roughly to
the GAP concept of row vectors.

23.1 IsRowVector (Filter)

23.1.1 IsRowVector

> IsRowVector (obj) (Category)

A row vector is a vector (see IsVector (31.14.14)) that is also a homogeneous list of odd additive
nesting depth (see 21.12). Typical examples are lists of integers and rationals, lists of finite field
elements of the same characteristic, and lists of polynomials from a common polynomial ring. Note
that matrices are not regarded as row vectors, because they have even additive nesting depth.

The additive operations of the vector must thus be compatible with that for lists, implying that the
list entries are the coefficients of the vector with respect to some basis.

Note that not all row vectors admit a multiplication via * (which is to be understood as a scalar
product); for example, class functions are row vectors but the product of two class functions is defined
in a different way. For the installation of a scalar product of row vectors, the entries of the vector must
be ring elements; note that the default method expects the row vectors to lie in IsRingElementList,
and this category may not be implied by IsRingElement (31.14.16) for all entries of the row vector
(see the comment in IsVector (31.14.14)).

Note that methods for special types of row vectors really must be installed with the requirement
IsRowVector, since IsVector (31.14.14) may lead to a rank of the method below that of the default
method for row vectors (see file 1ib/vecmat.gi).
Example

gap> IsRowVector([1,2,3]);
true

Because row vectors are just a special case of lists, all operations and functions for lists are appli-
cable to row vectors as well (see Chapter 21). This especially includes accessing elements of a row
vector (see 21.3), changing elements of a mutable row vector (see 21.4), and comparing row vectors
(see 21.10).

299
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Note that, unless your algorithms specifically require you to be able to change entries of your
vectors, it is generally better and faster to work with immutable row vectors. See Section 12.6 for
more details.

23.2 Operators for Row Vectors

The rules for arithmetic operations involving row vectors are in fact special cases of those for the arith-
metic of lists, as given in Section 21.11 and the following sections, here we reiterate that definition,
in the language of vectors.

Note that the additive behaviour sketched below is defined only for lists in the category
IsGeneralizedRowVector (21.12.1), and the multiplicative behaviour is defined only for lists in
the category IsMultiplicativeGeneralizedRowVector (21.12.2).

vecl + vec2

returns the sum of the two row vectors vecl and vec2. Probably the most usual situation is that
vecl and vec2 have the same length and are defined over a common field; in this case the sum is a
new row vector over the same field where each entry is the sum of the corresponding entries of the
vectors.

In more general situations, the sum of two row vectors need not be a row vector, for example
adding an integer vector vecl and a vector vec2 over a finite field yields the list of pointwise sums,
which will be a mixture of finite field elements and integers if vec1 is longer than vec2.

scalar + vec

vec + scalar

returns the sum of the scalar scalar and the row vector vec. Probably the most usual situation is
that the elements of vec lie in a common field with scalar; in this case the sum is a new row vector
over the same field where each entry is the sum of the scalar and the corresponding entry of the vector.

More general situations are for example the sum of an integer scalar and a vector over a finite
field, or the sum of a finite field element and an integer vector.

Example
gap> [ 1, 2, 31 + [ 1/2, 1/3, 1/4 1;

[ 3/2, 7/3, 13/4 ]

gap> [ 1/2, 3/2, 1/2 1 + 1/2;

[ 1, 2, 1]

vecl - vec2

scalar - vec

vec - scalar

Subtracting a vector or scalar is defined as adding its additive inverse, so the statements for the
addition hold likewise.

Example
gap> [ 1, 2, 31 - [1/2, 1/3, 1/4 1;

[ 1/2, 5/3, 11/4 ]

gap> [ 1/2, 3/2, 1/2 ] - 1/2;

o, 1,01

scalar * vec
vec * scalar
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returns the product of the scalar scalar and the row vector vec. Probably the most usual situation
is that the elements of vec lie in a common field with scalar; in this case the product is a new row
vector over the same field where each entry is the product of the scalar and the corresponding entry of
the vector.

More general situations are for example the product of an integer scalar and a vector over a finite
field, or the product of a finite field element and an integer vector.

Example

gap> [ 1/2, 3/2, 1/2 ] * 2;
[1, 3, 11

vecl * vec2
returns the standard scalar product of vec! and vec2, i.e., the sum of the products of the corre-
sponding entries of the vectors. Probably the most usual situation is that vec1 and vec2 have the
same length and are defined over a common field; in this case the sum is an element of this field.
More general situations are for example the inner product of an integer vector and a vector over a
finite field, or the inner product of two row vectors of different lengths.
Example
gap> [ 1, 2, 31 x [ 1/2, 1/3, 1/4 1;
23/12

For the mutability of results of arithmetic operations, see 12.6.
Further operations with vectors as operands are defined by the matrix operations, see 24.3.

23.2.1 NormedRowVector

> NormedRowVector (v) (attribute)

returns a scalar multiple w = ¢ * v of the row vector v with the property that the first nonzero
entry of w is an identity element in the sense of IsOne (31.10.5).

Example

gap> NormedRowVector( [ 5, 2, 3 ] );
(1, 2/5, 3/5]

23.3 Row Vectors over Finite Fields

GAP can use compact formats to store row vectors over fields of order at most 256, based on those
used by the Meat-Axe [Rin93]. This format also permits extremely efficient vector arithmetic. On the
other hand element access and assignment is significantly slower than for plain lists.

The function ConvertToVectorRep (23.3.1) is used to convert a list into a compressed vector,
or to rewrite a compressed vector over another field. Note that this function is much faster when it
is given a field (or field size) as an argument, rather than having to scan the vector and try to decide
the field. Supplying the field can also avoid errors and/or loss of performance, when one vector from
some collection happens to have all of its entries over a smaller field than the “natural” field of the
problem.
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23.3.1 ConvertToVectorRep

> ConvertToVectorRep(list[, field]) (function)
> ConvertToVectorRep(list[, fieldsize]) (function)
> ConvertToVectorRepNC(list[, field]) (function)
> ConvertToVectorRepNC(list[, fieldsize]) (function)

Called with one argument 1ist, ConvertToVectorRep converts 1ist to an internal row vector
representation if possible.

Called with a list 1ist and a finite field field, ConvertToVectorRep converts 1ist to an
internal row vector representation appropriate for a row vector over field.

Instead of a field also its size fieldsize may be given.

It is forbidden to call this function unless 1ist is a plain list or a row vector, field is a field, and
all elements of 1ist lie in field. Violation of this condition can lead to unpredictable behaviour or
a system crash. (Setting the assertion level to at least 2 might catch some violations before a crash,
see SetAssertionLevel (7.5.1).)

list may already be a compressed vector. In this case, if no field or fieldsize is given, then
nothing happens. If one is given then the vector is rewritten as a compressed vector over the given
field unless it has the filter IsLockedRepresentationVector, in which case it is not changed.

The return value is the size of the field over which the vector ends up written, if it is written in a
compressed representation.

In this example, we first create a row vector and then ask GAP to rewrite it, first over GF(2) and
then over GF(4).

Example
gap> v := [2(2)70,2(2),Z(2),0%xZ(2)];

[ Z(2)~0, Z(2)~0, Z(2)~0, 0xZ(2) ]

gap> Representations0f0bject(v);

[ "IsPlistRep", "IsInternalRep" ]

gap> ConvertToVectorRep(v);

2

gap> Vv;

<a GF2 vector of length 4>

gap> ConvertToVectorRep(v,4);

4

gap> v

[ z(2)-0, Z(2)~0, Zz(2)~0, 0*Z(2) ]

gap> Representations0f0bject(v);

[ "IsDataObjectRep", "Is8BitVectorRep" ]

A vector in the special representation over GF(2) is always viewed as <a GF2 vector of
length ...>. Over fields of orders 3 to 256, a vector of length 10 or less is viewed as the list of
its coefficients, but a longer one is abbreviated.

Arithmetic operations (see 21.11 and the following sections) preserve the compression status of
row vectors in the sense that if all arguments are compressed row vectors written over the same field
and the result is a row vector then also the result is a compressed row vector written over this field.
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23.3.2 NumberFFVector

> NumberFFVector(vec, sz) (operation)

returns an integer that gives the position of the finite field row vector vec in the sorted list of all
row vectors over the field with sz elements in the same dimension as vec. NumberFFVector returns
fail if the vector cannot be represented over the field with sz elements.

23.4 Coefficient List Arithmetic

The following operations all perform arithmetic on row vectors. given as homogeneous lists of the
same length, containing elements of a commutative ring.

There are two reasons for using AddRowVector (23.4.1) in preference to arithmetic operators.
Firstly, the three argument form has no single-step equivalent. Secondly AddRowVector (23.4.1)
changes its first argument in-place, rather than allocating a new vector to hold the result, and may thus
produce less garbage.

23.4.1 AddRowVector

> AddRowVector(dst, src[, mul[, from, to]]) (operation)

Adds the product of src and mul to dst, changing dst. If from and to are given then only the
index range [ from .. to 1] is guaranteed to be affected. Other indices may be affected, if it is
more convenient to do so. Even when from and to are given, dst and src must be row vectors of
the same length.

If mul is not given either then this operation simply adds src to dst.

23.4.2 AddCoeffs

> AddCoeffs(list![, possl], list2[, poss2[, mul]l]) (operation)

AddCoeffs adds the entries of 1ist2{poss2}, multiplied by the scalar mul, to 1ist1{possi}.
Unbound entries in 1ist1 are assumed to be zero. The position of the right-most non-zero element is
returned.

If the ranges poss1 and poss2 are not given, they are assumed to span the whole vectors. If the
scalar mul is omitted, one is used as a default.

Note that it is the responsibility of the caller to ensure that 1ist2 has elements at position poss2
and that the result (in 2ist1) will be a dense list.

The function is free to remove trailing (right-most) zeros.

Example
gap> 1:=[1,2,3,4];;m:=[5,6,7];;AddCoeffs(1l,m);
4
gap> 1;

[ 6,8, 10, 4]
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23.4.3 MultRowVector

> MultRowVector(listl[, possl, list2, poss2], mul) (operation)

The five argument version of this operation replaces listl[possi[i]l] by
mul*1ist2[poss2[i]] foribetween |1 and Length( possi ).
The two-argument version simply multiplies each element of 1ist1, in-place, by mul.

23.4.4 CoeffsMod

> CoeffsMod(listl[, lenl], modulus) (operation)

returns the coefficient list obtained by reducing the entries in 1ist1 modulo modulus. After
reducing it shrinks the list to remove trailing zeroes. If the optional argument len1 is used, it reduces
only first 1en1 elements of the list.
Example

gap> 1:=[1,2,3,4];;CoeffsMod(1,2);
[1, 0, 11

23.5 Shifting and Trimming Coefficient Lists

The following functions change coefficient lists by shifting or trimming.

23.5.1 LeftShiftRowVector

> LeftShiftRowVector(list, shift) (operation)

changes 1ist by assigning list[i]:= list[i+ shift] and removing the last shift entries of
the result.

23.5.2 RightShiftRowVector

> RightShiftRowVector(list, shift, fill) (operation)

changes 1ist by assigning list[i+ shift|:= list[i] and filling each of the shift first entries
with fi11.

23.5.3 ShrinkRowVector

> ShrinkRowVector (1ist) (operation)

removes trailing zeroes from the list 1ist.

Example
gap> 1:=[1,0,0];;ShrinkRowVector(l);1;
[ 1]
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23.5.4 RemoveOuterCoeffs

> RemoveOuterCoeffs(list, coef) (operation)

removes coef at the beginning and at the end of 1ist and returns the number of elements re-
moved at the beginning.

Example
gap> 1:=[1,1,2,1,2,1,1,2,1];; RemoveOuterCoeffs(1l,1);
2
gap> 1;

(2, 1,2,1,1, 2]

23.6 Functions for Coding Theory

The following functions perform operations on finite fields vectors considered as code words in a
linear code.

23.6.1 WeightVecFFE

> WeightVecFFE(vec) (operation)

returns the weight of the finite field vector vec, i.e. the number of nonzero entries.

23.6.2 DistanceVecFFE

> DistanceVecFFE(vecl, vec2) (operation)

returns the distance between the two vectors vecl and vec2, which must have the same length
and whose elements must lie in a common field. The distance is the number of places where vec1
and vec2 differ.

23.6.3 DistancesDistributionVecFFEsVecFFE

> DistancesDistributionVecFFEsVecFFE(vecs, vec) (operation)

returns the distances distribution of the vector vec to the vectors in the list vecs. All vectors
must have the same length, and all elements must lie in a common field. The distances distribution is
a list d of length Length (vec) +1, such that the value d[i] is the number of vectors in vecs that have
distance i+ 1 to vec.

23.6.4 DistancesDistributionMatFFEVecFFE
> DistancesDistributionMatFFEVecFFE(mat, F, vec) (operation)
returns the distances distribution of the vector vec to the vectors in the vector space generated by

the rows of the matrix mat over the finite field F. The length of the rows of mat and the length of
vec must be equal, and all entries must lie in F. The rows of mat must be linearly independent. The
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distances distribution is a list d of length Length(vec)+1, such that the value d[i| is the number of
vectors in the vector space generated by the rows of mat that have distance i + 1 to vec.

23.6.5 AClosestVectorCombinationsMatFFEVecFFE

> AClosestVectorCombinationsMatFFEVecFFE(mat, f, vec, 1, stop) (operation)
> AClosestVectorCombinationsMatFFEVecFFECoords(mat, f, vec, 1, stop) (operation)

These functions run through the f-linear combinations of the vectors in the rows of the matrix mat
that can be written as linear combinations of exactly 1 rows (that is without using zero as a coefficient).
The length of the rows of mat and the length of vec must be equal, and all elements must lie in the field
f. The rows of mat must be linearly independent. AClosestVectorCombinationsMatFFEVecFFE
returns a vector from these that is closest to the vector vec. If it finds a vector of distance at most
stop, which must be a nonnegative integer, then it stops immediately and returns this vector.

AClosestVectorCombinationsMatFFEVecFFECoords returns a length 2 list containing the
same closest vector and also a vector v with exactly 1 non-zero entries, such that v times mat is
the closest vector.

23.6.6 CosetLeadersMatFFE

> CosetLeadersMatFFE(mat, f) (operation)

returns a list of representatives of minimal weight for the cosets of a code. mat must be a check
matrix for the code, the code is defined over the finite field £. All rows of mat must have the same
length, and all elements must lie in the field £. The rows of mat must be linearly independent.

23.7 Vectors as coefficients of polynomials

A list of ring elements can be interpreted as a row vector or the list of coefficients of a polynomial.
There are a couple of functions that implement arithmetic operations based on these interpretations.
GAP contains proper support for polynomials (see 66), the operations described in this section are on
a lower level.

The following operations all perform arithmetic on univariate polynomials given by their coef-
ficient lists. These lists can have different lengths but must be dense homogeneous lists containing
elements of a commutative ring. Not all input lists may be empty.

In the following descriptions we will always assume that 1ist1 is the coefficient list of the poly-
nomial pol1 and so forth. If length parameter 1eni is not given, it is set to the length of 1isti by
default.

23.7.1 ValuePol
> ValuePol (coeff, x) (function)
Let coeff be the coefficients list of a univariate polynomial f, and x a ring element. Then

ValuePol returns the value f(x).
The coefficient of x' is assumed to be stored at position i + 1 in the coefficients list.



GAP - Reference Manual 307

Example
gap> ValuePol([1,2,3],4);
57
23.7.2 ProductCoeffs
> ProductCoeffs(listi[, lenl], list2[, len2]) (operation)

Let pl (and p2) be polynomials given by the first 1en1 (len2) entries of the coefficient list
list2 (1ist2).If lenl and Ien2 are omitted, they default to the lengths of 1ist1 and 1ist2. This
operation returns the coefficient list of the product of p1 and p2.

Example
gap> 1:=[1,2,3,4];;m:=[5,6,7]; ;ProductCoeffs(1l,m);
[ 5, 16, 34, 52, 45, 28 ]

23.7.3 ReduceCoeffs

> ReduceCoeffs(listl[, lenl], list2[, len2]) (operation)

Let pl (and p2) be polynomials given by the first 1en1 (Ien2) entries of the coefficient list
listl (1ist2). If lenl and len2 are omitted, they default to the lengths of 1ist1 and list2.
ReduceCoeffs changes 1ist1 to the coefficient list of the remainder when dividing p1 by p2. This
operation changes 1ist1 which therefore must be a mutable list. The operation returns the position
of the last non-zero entry of the result but is not guaranteed to remove trailing zeroes.

Example
gap> 1:=[1,2,3,4];;m:=[5,6,7]; ;ReduceCoeffs(l,m);
2
gap> 1;
[ 64/49, -24/49, 0, 0 ]
23.7.4 ReduceCoeffsMod
> ReduceCoeffsMod(listl[, leni1], 1ist2[, len2], modulus) (operation)

Let pl (and p2) be polynomials given by the first 1en1 (I1en2) entries of the coefficient list
listl (1ist2). If len1 and len2 are omitted, they default to the lengths of 1ist1 and list2.
ReduceCoeffsMod changes 1ist1 to the coefficient list of the remainder when dividing p! by p2
modulo modulus, which must be a positive integer. This operation changes 1ist1 which therefore
must be a mutable list. The operations returns the position of the last non-zero entry of the result but
is not guaranteed to remove trailing zeroes.

Example
gap> 1:=[1,2,3,4];;m:=[5,6,7]; ;ReduceCoeffsMod(1l,m,3);
1
gap> 1;

[ 1, 0, 0, 0]
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23.7.5 PowerModCoeffs

> PowerModCoeffs(listl[, lenl], exp, list2[, len2]) (operation)

Let p1 and p2 be polynomials whose coefficients are given by the first 1en1 resp. len2 entries of
the lists 1ist1 and 1ist2, respectively. If 1en1 and len2 are omitted, they default to the lengths of
list1 and list2. Let exp be a positive integer. PowerModCoeffs returns the coefficient list of the
remainder when dividing the exp-th power of pl by p2. The coefficients are reduced already while
powers are computed, therefore avoiding an explosion in list length.

Example
gap> 1:=[1,2,3,4];;m:=[5,6,7]; ;PowerModCoeffs(1,5,m);
[ -839462813696/678223072849, -7807439437824/678223072849 ]

23.7.6 ShiftedCoeffs

> ShiftedCoeffs(list, shift) (operation)

produces a new coefficient list new obtained by the rule new[i+shift]:= 1ist[i] and filling
initial holes by the appropriate zero.

Example
[1,2,3];;ShiftedCoeffs(1,2);ShiftedCoeffs(1,-2);
1, 2, 3]

ap> 1:=
0, 0,
3]

— — 03




Chapter 24

Matrices

Matrices are represented in GAP by lists of row vectors (see 23) (for future changes to this policy see
Chapter 26). The vectors must all have the same length, and their elements must lie in a common ring.
However, since checking rectangularness can be expensive functions and methods of operations for
matrices often will not give an error message for non-rectangular lists of lists —in such cases the result
is undefined.

Because matrices are just a special case of lists, all operations and functions for lists are applicable
to matrices also (see chapter 21). This especially includes accessing elements of a matrix (see 21.3),
changing elements of a matrix (see 21.4), and comparing matrices (see 21.10).

Note that, since a matrix is a list of lists, the behaviour of ShallowCopy (12.7.1) for matrices
is just a special case of ShallowCopy (12.7.1) for lists (see 21.7); called with an immutable matrix
mat, ShallowCopy (12.7.1) returns a mutable matrix whose rows are identical to the rows of mat. In
particular the rows are still immutable. To get a matrix whose rows are mutable, one can use List (
mat, ShallowCopy ).

24.1 InfoMatrix (Info Class)

24.1.1 InfoMatrix

> InfoMatrix (info class)

The info class for matrix operations is InfoMatrix.

24.2 Categories of Matrices

24.2.1 IsMatrix

> IsMatrix( Obj) (Category)

A matrix is a list of lists of equal length whose entries lie in a common ring.

Note that matrices may have different multiplications, besides the usual matrix product there
is for example the Lie product. So there are categories such as IsOrdinaryMatrix (24.2.2) and
IsLieMatrix (24.2.3) that describe the matrix multiplication. One can form the product of two ma-
trices only if they support the same multiplication.

309
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Example

gap> mat:=[[1,2,3], [4,5,6],[7,8,9]1];
(rC1,2,31,04,5,61,[7,8,91]1
gap> IsMatrix(mat);

true

Note also the filter IsTable (21.1.4) which may be more appropriate than IsMatrix for some
purposes.

Note that the empty list [1 and more complex “empty” structures such as [ [1] are not matrices, al-
though special methods allow them be used in place of matrices in some situations. See EmptyMatrix
(24.5.3) below.

Example
gap> [[011*[[1];

LC 11

gap> IsMatrix([[11);

false

24.2.2 IsOrdinaryMatrix

> IsOrdinaryMatrix(obj) (Category)

An ordinary matrix is a matrix whose multiplication is the ordinary matrix multiplication.

Each matrix in internal representation is in the category IsOrdinaryMatrix, and arithmetic op-
erations with objects in IsOrdinaryMatrix produce again matrices in IsOrdinaryMatrix.

Note that we want that Lie matrices shall be matrices that behave in the same way as ordinary
matrices, except that they have a different multiplication. So we must distinguish the different matrix
multiplications, in order to be able to describe the applicability of multiplication, and also in order to
form a matrix of the appropriate type as the sum, difference etc. of two matrices which have the same
multiplication.

24.2.3 IsLieMatrix

> IsLieMatrix(mat) (Category)

A Lie matrix is a matrix whose multiplication is given by the Lie bracket. (Note that a matrix with
ordinary matrix multiplication is in the category IsOrdinaryMatrix (24.2.2).)

Each matrix created by LieObject (64.1.1) is in the category IsLieMatrix, and arithmetic op-
erations with objects in IsLieMatrix produce again matrices in IsLieMatrix.

24.3 Operators for Matrices

The rules for arithmetic operations involving matrices are in fact special cases of those for the arith-
metic of lists, given in Section 21.11 and the following sections, here we reiterate that definition, in
the language of vectors and matrices.

Note that the additive behaviour sketched below is defined only for lists in the category
IsGeneralizedRowVector (21.12.1), and the multiplicative behaviour is defined only for lists in
the category IsMultiplicativeGeneralizedRowVector (21.12.2) (see 21.12).
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matl + mat2

returns the sum of the two matrices matl and mat2, Probably the most usual situation is that
mat1 and mat2 have the same dimensions and are defined over a common field; in this case the sum
is a new matrix over the same field where each entry is the sum of the corresponding entries of the
matrices.

In more general situations, the sum of two matrices need not be a matrix, for example adding an
integer matrix mat1 and a matrix mat2 over a finite field yields the table of pointwise sums, which
will be a mixture of finite field elements and integers if mat1 has bigger dimensions than mat2.

scalar + mat

mat + scalar

returns the sum of the scalar scalar and the matrix mat. Probably the most usual situation is that
the entries of mat lie in a common field with scalar; in this case the sum is a new matrix over the
same field where each entry is the sum of the scalar and the corresponding entry of the matrix.

More general situations are for example the sum of an integer scalar and a matrix over a finite
field, or the sum of a finite field element and an integer matrix.

matl - mat2

scalar - mat

mat - scalar

Subtracting a matrix or scalar is defined as adding its additive inverse, so the statements for the
addition hold likewise.

scalar * mat

mat * scalar

returns the product of the scalar scalar and the matrix mat. Probably the most usual situation is
that the elements of mat lie in a common field with scalar; in this case the product is a new matrix
over the same field where each entry is the product of the scalar and the corresponding entry of the
matrix.

More general situations are for example the product of an integer scalar and a matrix over a finite
field, or the product of a finite field element and an integer matrix.

vec * mat

returns the product of the row vector vec and the matrix mat. Probably the most usual situation
is that vec and mat have the same lengths and are defined over a common field, and that all rows of
mat have the same length m, say; in this case the product is a new row vector of length m over the
same field which is the sum of the scalar multiples of the rows of mat with the corresponding entries
of vec.

More general situations are for example the product of an integer vector and a matrix over a finite
field, or the product of a vector over a finite field and an integer matrix.

mat * vec

returns the product of the matrix mat and the row vector vec. (This is the standard product of a
matrix with a column vector.) Probably the most usual situation is that the length of vec and of all
rows of mat are equal, and that the elements of mat and vec lie in a common field; in this case the
product is a new row vector of the same length as mat and over the same field which is the sum of the
scalar multiples of the columns of mat with the corresponding entries of vec.

More general situations are for example the product of an integer matrix and a vector over a finite
field, or the product of a matrix over a finite field and an integer vector.

matl * mat2

This form evaluates to the (Cauchy) product of the two matrices mat1 and mat2. Probably the
most usual situation is that the number of columns of mat1 equals the number of rows of mat2, and
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that the elements of mat and vec lie in a common field; if mat1 is a matrix with m rows and n
columns, say, and mat2 is a matrix with n rows and o columns, the result is a new matrix with m rows
and o columns. The element in row i at position j of the product is the sum of mat 1 [i][/] * mat2][l][],
with / running from 1 to n.

Inverse( mat )

returns the inverse of the matrix mat, which must be an invertible square matrix. If mat is not
invertible then fail is returned.

matl / mat2

scalar / mat

mat / scalar

vec / mat

In general, left / right is defined as left * right~-1. Thus in the above forms the right
operand must always be invertible.

mat ~ int

matl = mat2

vec ~ mat

Powering a square matrix mat by an integer int yields the int-th power of mat; if int is
negative then mat must be invertible, if int is O then the result is the identity matrix One( mat ),
even if mat is not invertible.

Powering a square matrix mat1 by an invertible square matrix mat2 of the same dimensions yields
the conjugate of mat1 by mat2, i.e., the matrix mat2~-1 * matl * mat2.

Powering a row vector vec by a matrix mat is in every respect equivalent to vec * mat. This
operations reflects the fact that matrices act naturally on row vectors by multiplication from the right,
and that the powering operator is GAP’s standard for group actions.

Comm( matl, mat2 )

returns the commutator of the square invertible matrices mat1 and mat2 of the same dimensions
and over a common field, which is the matrix mat1~-1 * mat2~-1 * matl * mat2.

The following cases are still special cases of the general list arithmetic defined in 21.11.

scalar + matlist

matlist + scalar

scalar - matlist

matlist - scalar

scalar * matlist

matlist * scalar

matlist / scalar

A scalar scalar may also be added, subtracted, multiplied with, or divided into a list matlist
of matrices. The result is a new list of matrices where each matrix is the result of performing the
operation with the corresponding matrix in matlist.

mat * matlist

matlist * mat

A matrix mat may also be multiplied with a list matlist of matrices. The result is a new list of
matrices, where each entry is the product of mat and the corresponding entry in matlist.

matlist / mat

Dividing a list mat1ist of matrices by an invertible matrix mat evaluatesto matlist * mat~-1.

vec * matlist

returns the product of the vector vec and the list of matrices mat. The lengths 1 of vec and
matlist must be equal. All matrices in matlist must have the same dimensions. The elements of
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vec and the elements of the matrices in matlist must lie in a common ring. The product is the sum
over vec [i] * matlist [i] with i running from 1to 1.
For the mutability of results of arithmetic operations, see 12.6.

24.4 Properties and Attributes of Matrices

24.4.1 DimensionsMat

> DimensionsMat (mat) (attribute)

is a list of length 2, the first being the number of rows, the second being the number of columns of

the matrix mat. If mat is malformed, that is, itEis notla IsRectangularTable (21.1.5), returns fail.
xample

gap> DimensionsMat([[1,2,3],[4,5,6]1]1);
[2, 3]

gap> DimensionsMat([[1,2,3],[4,511);
fail

24.4.2 DefaultFieldOfMatrix

> DefaultFieldOfMatrix(mat) (attribute)

For a matrix mat, DefaultFieldOfMatrix returns either a field (not necessarily the smallest
one) containing all entries of mat, or fail.

If mat is a matrix of finite field elements or a matrix of cyclotomics, DefaultField0fMatrix
returns the default field generated by the matrix entries (see 59.3 and 18.1).

Example
gap> DefaultFieldOfMatrix([[Z(4),Z(8)]1]);
GF(2-6)
24.4.3 TraceMat
> TraceMat (mat) (function)
> Trace(mat) (function)

The trace of a square matrix is the sum of its dia%onal entries.
Example

gap> TraceMat([[1,2,3],[4,5,61,[7,8,911);
15

24.4.4 DeterminantMat

> DeterminantMat (mat) (attribute)
> Determinant (mat) (attribute)

returns the determinant of the square matrix mat.

These methods assume implicitly that mat is defined over an integral domain whose quotient
field is implemented in GAP. For matrices defined over an arbitrary commutative ring with one
see DeterminantMatDivFree (24.4.6).
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24.4.5 DeterminantMatDestructive

> DeterminantMatDestructive(mat) (operation)

Does the same as DeterminantMat (24.4.4), with the difference that it may destroy its argument.

The matrix mat must be mutable.
Example

gap> DeterminantMat([[1,2],[2,1]11);
-3

gap> mm:= [[1,2],[2,1]1];;

gap> DeterminantMatDestructive( mm );
-3

gap> mm;

[[1,2],[05_3]]

24.4.6 DeterminantMatDivFree

> DeterminantMatDivFree (mat) (operation)

returns the determinant of a square matrix mat over an arbitrary commutative ring with one using
the division free method of Mahajan and Vinay [MV97].

24.4.7 IsMonomialMatrix

> IsMonomialMatrix{(mat) (property)

A matrix is monomial if and only if it has exactly one nonzero entry in every row and every

column.

Example
gap> IsMonomialMatrix([[0,1],[1,0]1]1);

true

24.4.8 IsDiagonalMat

> I sDiagonalMat (mat) (operation)

returns true if mat has only zero entries off the main diagonal, false otherwise.

2449 IsUpperTriangularMat

> IsUpperTriangularMat(mat) (operation)

returns true if mat has only zero entries below the main diagonal, false otherwise.

24.4.10 IsLowerTriangularMat

> IsLowerTriangularMat (mat) (operation)

returns true if mat has only zero entries below the main diagonal, false otherwise.
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24.5 Matrix Constructions

24.5.1 IdentityMat

> IdentityMat(m[, RJ)

(function)

returns a (mutable) m xm identity matrix over the ring given by R. Here, R can be either a ring, or

an element of a ring. By default, an integer matrix is created.
Example

gap> IdentityMat(3);

rcty,0,01, 0,121,011, [0,0,11]]

gap> IdentityMat(2,Integers mod 15);

[ [ ZmodnZObj( 1, 15 ), ZmodnZ0Obj( 0, 15
[ ZmodnZ0Obj( 0, 15 ), ZmodnZObj( 1, 15

gap> IdentityMat(2,Z(3));

[ [ Z(38)~0, 0%Z(3) 1, [ 0%Z(3), z(3)°0 1 1

) 1,
) 11

24.5.2 NullMat

> NullMat(m, n[, R])

(function)

returns a (mutable) m xn null matrix over the ring given by by R. Here, R can be either a ring, or

an element of a ring. By default, an integer matrix is created.
Example

gap> NullMat(3,2);
[fo,01,[0,0]1, 0,011
gap> NullMat(2,2,Integers mod 15);
[ [ ZmodnZ0Obj( O, 15 ), ZmodnZObj( 0, 15 ) 1,
[ ZmodnZObj( 0, 15 ), ZmodnZObj{ 0, 15 ) 1 ]
gap> NullMat(3,2,Z(3));
[ [ 0%Z(3), 0%Z(3) 1, [ 0xZ(3), 0%Z(3) ], [ 0%Z(3), 0%Z(3) ] ]

24.5.3 EmptyMatrix

> EmptyMatrix(char) (function)

is an empty (ordinary) matrix in characteristic char that can be added to or multiplied with empty

lists (representing zero-dimensional row vectors). It also acts (via the operation \~ (31.12.1)) on
empty lists.

Example

gap> EmptyMatrix(5);
EmptyMatrix( 5 )
gap> AsList(last);

[ ]

24.5.4 DiagonalMat

> DiagonalMat (vector) (function)

returns a diagonal matrix mat with the diagonal entries given by vector.
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Example

gap> DiagonalMat([1,2,3]);
tfto0,01,00,2,01]1,[0,0,31]1]

24.5.5 PermutationMat

> PermutationMat (perm, dim[, FI]) (function)

returns a matrix in dimension dim over the field given by F (i.e. the smallest field containing the
element F or F itself if it is a field) that represents the permutation perm acting by permuting the basis
vectors as it permutes points.
Example

gap> PermutationMat((1,2,3),4,1);
rro,t+o0,01,r0,0,1,01,01,0,0,01,[0,0,0,11]

24.5.6 TransposedMatImmutable

> TransposedMatImmutable (mat) (attribute)
> TransposedMatAttr (mat) (attribute)
> TransposedMat (mat) (attribute)
> TransposedMatMutable (mat) (operation)
> TransposedMatOp (mat) (operation)

These functions all return the transposed of the matrix mat, i.e., a matrix trans such that
trans [i] [k] = mat [k][i] holds.

They differ only w.r.t. the mutability of the result.

TransposedMat is an attribute and hence returns an immutable result. TransposedMatMutable
is guaranteed to return a new mutable matrix.

TransposedMatImmutable and TransposedMatAttr are synonyms of TransposedMat, and

TransposedMatOp is a synonym of TransposedMatMutable, in analogy to operations such as Zero
(31.10.3).

24.5.7 TransposedMatDestructive

> TransposedMatDestructive (mat) (operation)

If mat is a mutable matrix, then the transposed is computed by swapping the entries in mat. In
this way mat gets changed. In all other cases the transposed is computed by TransposedMat (24.5.6).
Example
gap> TransposedMat([[1,2,3],[4,5,6],[7,8,9]11);
([1,4,71,[2,5,81,[3,6,91]1
gap> mm:= [[1,2,3],[4,5,61,[7,8,911;;
gap> TransposedMatDestructive( mm );
(l1,4,71,[2,5,81,[3,6,91]1
gap> mm;
([1,4,71,[2,5,81,[3,6,91]1
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24.5.8 KroneckerProduct

> KroneckerProduct(matl, mat2) (operation)

The Kronecker product of two matrices is the matrix obtained when replacing each entry a of
mat1 by the product a*mat2 in one matrix.

Example
gap> KroneckerProduct([[1,211,[[5,71,[9,211);
LCs,7, 10, 141, [ 9,2, 18, 41 ]

24.5.9 ReflectionMat

> ReflectionMat (coeffs[, conjl[, root]) (function)

Let coeffs be a row vector. ReflectionMat returns the matrix of the reflection in this vector.

More precisely, if coeffs is the coefficients list of a vector v w.r.t. a basis B (see Basis (61.5.2)),
say, then the returned matrix describes the reflection in v w.r.t. B as a map on a row space, with action
from the right.

The optional argument root is a root of unity that determines the order of the reflection. The
default is a reflection of order 2. For triflections one should choose a third root of unity etc. (see E
(18.1.1)).

conj is a function of one argument that conjugates a ring element. The default is
ComplexConjugate (18.5.2).

The matrix of the reflection in v is defined as

M=1L+V"-(w—=1)/(w") v

where w equals root, n is the length of the coefficient list, and denotes the conjugation.
So v is mapped to wv, with default —v, and any vector x with the property xv'" = 0 is fixed by the
reflection.

24.5.10 PrintArray

> PrintArray(array) (function)

pretty-prints the array array.

24.6 Random Matrices
24.6.1 RandomMat

> RandomMat (m, n [, RD) (function)

RandomMat returns a new mutable random matrix with m rows and n columns with elements taken
from the ring R, which defaults to Integers (14).
Example

gap> RandomMat (2,3,GF(3));
[ [ 203, Z(3), 0x2(3) 1, [ Z(3), Z2(3)°0, Z(3) 1 1]
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24.6.2 RandomlnvertibleMat

> RandomInvertibleMat (m[, RJ) (function)

RandomInvertibleMat returns a new mutable invertible random matrix with m rows and columns

with elements taken from the ring R, which defaults to Integers (14).
Example

gap> m := RandomInvertibleMat (4);

s, -2, 1,01, 01,0,1, -11,[0,2,0,41,
[ -1, -3, 1, -41 1]

gap> m™-1;

L [ 14, 1/2, -1/8, -1/4 1, [ -1/3, 0, -1/3, -1/3 1,
[ -1/12, 1/2, 13/24, 5/12 1, [ 1/6, 0, 5/12, 1/6 1 1]

24.6.3 RandomUnimodularMat

> RandomUnimodularMat (m) (function)

returns a new random mutable m X m matrix with integer entries that is invertible over the integers.
Example

gap> m := RandomUnimodularMat (3);

(C1,o0,01, [ 166, -39, -256 1, [ -100, 25, 16 ] ]
gap> m™-1;

(C1,0,01, [4, 16,251, [0, -25, -39 ] 1]

24.7 Matrices Representing Linear Equations and the Gaussian Algo-
rithm

24.7.1 RankMat

> RankMat (mat) (attribute)

If mat is a matrix whose rows span a free module over the ring generated by the matrix entries and
their inverses then RankMat returns the dimension of this free module. Otherwise fail is returned.
Note that RankMat may perform a Gaussian elimination. For large rational matrices this may take

very long, because the entries may become very large.
Example
gap> mat:=[[1,2,3],[4,5,61,[7,8,9]11;;

gap> RankMat (mat) ;

2

24.7.2 TriangulizedMat

> TriangulizedMat (mat) (operation)
> RREF (mat) (operation)

Computes an upper triangular form of the matrix mat via the Gaussian Algorithm. It returns a
immutable matrix in upper triangular form. This is sometimes also called “Hermite normal form” or
“Reduced Row Echelon Form”. RREF is a synonym for TriangulizedMat.
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24.7.3 TriangulizeMat

> TriangulizeMat (mat) (operation)
Applies the Gaussian Algorithm to the mutable matrix mat and changes mat such that it is in

upper triangular normal form (sometimes called “Hermite normal form” or “Reduced Row Echelon
Form”).

Example

gap> m:=TransposedMatMutable(mat) ;

(C1, 4,71, [02,5,81, [3,6,91]1]
gap> TriangulizeMat (m) ;m;

tft,o0, -21,00,1,21,[0,0,011
gap> m:=TransposedMatMutable(mat) ;

(cti, 4,71, [2,5,81, [3,6,91]1]
gap> TriangulizedMat (m) ;m;

tft,o0, -21,00,1,21,00,0,011
LC1, 4,71, [02,5,81, [3,6,91]1

24.7.4 NullspaceMat

> NullspaceMat (mat) (attribute)
> TriangulizedNullspaceMat (mat) (attribute)

returns a list of row vectors that form a basis of the vector space of solutions to the equation
vec*mat=0. The result is an immutable matrix. This basis is not guaranteed to be in any specific
form.

The variant TriangulizedNullspaceMat returns a basis of the nullspace in triangulized form as
is often needed for algorithms.

24.7.5 NullspaceMatDestructive

> NullspaceMatDestructive (mat) (operation)
> TriangulizedNullspaceMatDestructive(mat) (operation)

This function does the same as NullspaceMat (24.7.4). However, the latter function makes a
copy of mat to avoid having to change it. This function does not do that; it returns the nullspace and
may destroy mat; this saves a lot of memory in case mat is big. The matrix mat must be mutable.

The variant TriangulizedNullspaceMatDestructive returns a basis of the nullspace in trian-
gulized form. It may destroy the matrix mat.

Example
gap> mat:=[[1,2,3],[4,5,6],[7,8,91]1;;

gap> NullspaceMat (mat) ;

(L1, -2,11]1]

gap> mm:=[[1,2,3],[4,5,6]1,[7,8,911;;

gap> NullspaceMatDestructive( mm );

(01, 2,111

gap> mm;

rc1, 2,31, [0, -3, -61, [0, 0,011
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24.7.6 SolutionMat

> SolutionMat(mat, vec) (operation)

returns a row vector x that is a solution of the equation x * mat = vec. It returns fail if no
such vector exists.

24.7.7 SolutionMatDestructive

> SolutionMatDestructive(mat, vec) (operation)

Does the same as SolutionMat ( mat, vec ) except thatit may destroy the matrix mat and the
vector vec. The matrix mat must be mutable.

Example
gap> mat:=[[1,2,3],[4,5,6],[7,8,91];;
gap> SolutionMat (mat, [3,5,7]);
[ 5/3, 1/3, 0]
gap> mm:= [[1,2,3],[4,5,6],[7,8,9]1];;
gap> v:= [3,5,7];;
gap> SolutionMatDestructive( mm, v );
[ 6/3, 1/3, 0]
gap> mm;
tf1, 2,31, [0, -3, -61, [0,0,017]1
gap> Vv;
L0, 0, 0]

24.7.8 BaseFixedSpace

> BaseFixedSpace(mats) (function)

BaseFixedSpace returns a list of row vectors that form a base of the vector space V such that
vM = v for all v in V and all matrices M in the list mats. (This is the common eigenspace of all
matrices in mats for the eigenvalue 1.)

Example
gap> BaseFixedSpace([[[1,2],[0,1111);
(fo,11]1

24.8 Eigenvectors and eigenvalues

24.8.1 GeneralisedEigenvalues

> GeneralisedEigenvalues(F, A) (operation)
> GeneralizedEigenvalues(F, 4) (operation)

The generalised eigenvalues of the matrix A over the field F.
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24.8.2 GeneralisedEigenspaces

> GeneralisedEigenspaces(F, A)
> GeneralizedEigenspaces(F, 4)

The generalised eigenspaces of the matrix 4 over the field F.

24.8.3 Eigenvalues

> Eigenvalues(F, 4)

The eigenvalues of the matrix 4 over the field F.

24.8.4 Eigenspaces

> Eigenspaces(F, 4)

The eigenspaces of the matrix 4 over the field F.

24.8.5 Eigenvectors

> Eigenvectors(F, 4)

The eigenvectors of the matrix A over the field F.

24.9 Elementary Divisors
See also chapter 25.

24.9.1 ElementaryDivisorsMat

> ElementaryDivisorsMat ([ring, Jmat)
> ElementaryDivisorsMatDestructive(ring, mat)

321

(operation)

(operation)

(operation)

(operation)

(operation)

(operation)

(function)

returns a list of the elementary divisors, i.e., the unique d with d[i] divides d[i + 1] and mat is
equivalent to a diagonal matrix with the elements d[i] on the diagonal. The operations are performed
over the euclidean ring ring, which must contain all matrix entries. For compatibility reasons it can

be omitted and defaults to the DefaultRing (56.1.3) of the matrix entries.

The function ElementaryDivisorsMatDestructive produces the same result but in the process

may destroy the contents of mat.
Example

gap> mat:=[[1,2,3],[4,5,6],[7,8,9]1];;

gap> ElementaryDivisorsMat (mat);

[1, 3, 0]

gap> x:=Indeterminate(Rationals,"x");;

gap> mat:=mat#*0ne (x)-x*mat~0;

[ [ -x+t1, 2,31, [ 4, -x+b, 61, [ 7, 8, -xt9 ] 1]

[ 1, 1, x~3-15%x"2-18*x ]

gap> ElementaryDivisorsMat(PolynomialRing(Rationals,1) ,mat);
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gap> mat:=KroneckerProduct (CompanionMat ((x-1)"2),

> CompanionMat ((x~3-1)*(x-1)));;

gap> mat:=mat*0ne(x)-x*mat~0;

tf -x, 0, 0, 0,0,0,0,11, [0, -x, 0, 0, -1, 0,0, -11,
to, o0, -x,0,0,-1,0,01,00,0,0, -x, 0,0, -1, -11,

to,o,o0, -, x,0,0,-213,0[01,0,0,1, 2, -x, 0, 2],

(0,1,0,0,0,2, x,01]1,[0,0,1,1,0,0, 2, -x+2]]

gap> ElementaryDivisorsMat (PolynomialRing(Rationals,1) ,mat);

[1, 1,1, 1, 1, 1, x-1, X"7-x"6-2%x"4+2*%x"3+x-1 ]

s

24.9.2 ElementaryDivisorsTransformationsMat

> ElementaryDivisorsTransformationsMat([ring, Jmat) (operation)
> ElementaryDivisorsTransformationsMatDestructive(ring, mat) (function)
ElementaryDivisorsTransformations, in addition to the tasks done by

ElementaryDivisorsMat, also calculates transforming matrices. It returns a record with
components normal (a matrix §), rowtrans (a matrix P), and coltrans (a matrix Q) such that
PAQ = S. The operations are performed over the euclidean ring ring, which must contain all matrix
entries. For compatibility reasons it can be omitted and defaults to the DefaultRing (56.1.3) of the
matrix entries.

The function ElementaryDivisorsTransformationsMatDestructive produces the same re-

sult but in the process destroys the contents of mat.
Example
gap> mat:=KroneckerProduct (CompanionMat ((x-1)~2),CompanionMat ((x~3-1)*(x-1)));;
gap> mat:=mat*0ne (x)-x*mat~0;
tf -x, 0, 0, 0, 0,0,0,11, [0, -x, 0, O, -1, 0, O, -11,
to, o, -x, 0, 0, -1, 0,01, 000, 0,0, -x, 0,0, -1, -117,
ro,oo0, -, -x,0,0,-21,01,0,0,1, 2, -x, 0, 21,
(o0,1,0,0,0,2, x,01]1,[0,0,1,1,0,0, 2, -x+27]
gap> t:=ElementaryDivisorsTransformationsMat(PolynomialRing(Rationals,1) ,mat);
rec( coltrans := [ [ 0, O, O, O, O, O, 1/6%x~2-7/9*%x-1/18, -3*x~3-x"2-x-1 1,
0, 0, 0, 0, -1/6%x"2+x-1, 3*x~3-3*x"2 ],
[0, 0, 0, 0, 0, 1, -1/18%x~4+1/3%x"3-1/3*%x"2-1/9%x, x~5-x"4+2%x"2-2%x
0, 0, 0, 0, -1, 0, -1/9%x"3+1/2%x~2+1/9%x, 2%x~4+x"3+x~2+2%x ],
[0, -1, 0, 0, 0, 0, -2/9*x~2+19/18%x, 4*x~3+x"2+x ],
[ 0, 0, -1, 0, 0, -x, 1/18%x"5-1/3*x"4+1/3%x"3+1/9*x"2,
-X"6+x"5-2%x"3+2%x"2 ],
[ 0, 0, 0, -1, x, O, 1/9%x"4-2/3%x~3+2/3*x"2+1/18%x,
-2%x"54+2%x~4-x"2+x ],
L1, 0, 0, 0, 0, 0, 1/6%x~3-7/9%x"2-1/18%x, -3*x~4-x~3-x"2-x ] 1,

normal := [ [ 1, 0, O, 0, O, O, 0, 01, [0, 1, O, O, O, O, O, O],
ro,o,1o0,0,0,001,000, 0, 0,1, 0, 0,0, 01,
ro,o0,o0,0,10,0,01,000, 0, 0,0,0,1, 0,01,

[o, 0, 0, 0, O, O, x-1, O 1,
[0, 0, 0, 0, 0, 0, 0, Xx°7-x"6-2%x"4+2%x~3+x-1 ] ],

rowtrans := [ [ 1, 0, 0, O, O, 0, O, 01, [ 1, 1, 0, O, O, O, O, O 1,
ro,o,1o0,0,0,0,01,101, 0, 0,1, 0, 0,0, 01,

[ -x+2, -x, 0, 0, 1, 0, O, O 1,
[ 2xx~2-4%x+2, 2%x~2-x, 0, 2, -2*x+1, 0, 0, 1 ],
[ 3%x"3-6%x"2+3*%x, 3*x~3-2%x"2, 2, 3*x, -3%x"2+2*x, 0, 1, 2*x ],
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[ 1/6%x~8-7/6xx"7T+2*x"~6-4/3%x~5+7/3*x~4-4%x~3+13/6%x~2-7/6%x+2,
1/6%x~8-17/18*x"7+13/18%x~6-5/18*%x"5+35/18%x~4-31/18%x"3+1/9*x~2-x+\
2, 1/9%x~5-5/9*%x~4+1/9%x"3-1/9*x~2+14/9*x-1/9,
1/6%x~6-5/6%x"5+1/6%x"4-1/6%xx~3+11/6*%x"2-1/6%*x,
-1/6%x"~7+17/18%x~6-13/18%x~5+5/18%x~4-35/18%x~3+31/18*x~2-1/9*x+1,
1, 1/18%x"5-5/18%x~4+1/18*x~3-1/18%x"2+23/18%x-1/18,
1/9%x~6-5/9*%x"5+1/9%x~4-1/9%x~3+14/9*x"2-1/9%x ] ] )

gap> t.rowtrans*mat*t.coltrans;
trtt o0,0,0,0,0,0,01,[0,1,0,0,0,0,0,01,
ro,o,1o0,0,0,0,01,[00,0,0,1,0,0,0,01,
to,o,0,0,1,0,0,01,[0,0,0,0,0,1,0,01,
[O, 07 O: O, 01 O: X—l, O ]1
[0, 0, 0, O, 0, 0, 0, Xx~7-x"6-2%x"4+2*%x~3+x-1 ] ]
24.9.3 DiagonalizeMat
> DiagonalizeMat(ring, mat) (operation)

brings the mutable matrix mat, considered as a matrix over ring, into diagonal form by elemen-

tary row and column operations.
Example

gap> m:=[[1,2],[2,11]1;;
gap> DiagonalizeMat(Integers,m) ;m;

tfi,01, 00,311

24.10 Echelonized Matrices

24.10.1 SemiEchelonMat

> SemiEchelonMat (mat) (attribute)

A matrix over a field F' is in semi-echelon form if the first nonzero element in each row is the
identity of F, and all values exactly below these pivots are the zero of F.

SemiEchelonMat returns a record that contains information about a semi-echelonized form of the
matrix mat.

The components of this record are

vectors
list of row vectors, each with pivot element the identity of F,

heads
list that contains at position 1, if nonzero, the number of the row for that the pivot element is in
column i.

24.10.2 SemiEchelonMatDestructive

> SemiEchelonMatDestructive (mat) (operation)
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This does the same as SemiEchelonMat ( mat ), except that it may (and probably will) destroy
the matrix mat.

Example
gap> mm:=[[1,2,3],[4,5,6],[7,8,911;;

gap> SemiEchelonMatDestructive( mm );

rec( heads := [ 1, 2, 0], vectors := [ [ 1, 2,31, [0, 1,211)
gap> mm;

rct1, 2,31, [0,1,2],[0,0,01]1]

24.10.3 SemiEchelonMatTransformation

> SemiEchelonMatTransformation(mat) (attribute)

does the same as SemiEchelonMat (24.10.1) but additionally stores the linear transformation T’
performed on the matrix. The additional components of the result are

coeffs
a list of coefficients vectors of the vectors component, with respect to the rows of mat, that is,
coeffs * mat is the vectors component.

relations
a list of basis vectors for the (left) null space of mat.
Example
gap> SemiEchelonMatTransformation([[1,2,3],[0,0,111);
rec( coeffs := [ [ 1, 0], [ 0, 111, heads := [ 1, 0, 2],
relations := [ ], vectors := [ [ 1, 2,371, [0, 0,1171)

24.10.4 SemiEchelonMats

> SemiEchelonMats (mats) (operation)

A list of matrices over a field F' is in semi-echelon form if the list of row vectors obtained on
concatenating the rows of each matrix is a semi-echelonized matrix (see SemiEchelonMat (24.10.1)).

SemiEchelonMats returns a record that contains information about a semi-echelonized form of
the list mats of matrices.

The components of this record are

vectors
list of matrices, each with pivot element the identity of F,

heads
matrix that contains at position [1,7], if nonzero, the number of the matrix that has the pivot
element in this position

24.10.5 SemiEchelonMatsDestructive

> SemiEchelonMatsDestructive(mats) (operation)

Does the same as SemiEchelonmats, except that it may destroy its argument. Therefore the
argument must be a list of matrices that re mutable.
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24.11 Matrices as Basis of a Row Space

See also chapter 25

24.11.1 BaseMat

> BaseMat (mat) (attribute)

returns a basis for the row space generated by the rows of mat in the form of an immutable matrix.

24.11.2 BaseMatDestructive

> BaseMatDestructive(mat) (operation)

Does the same as BaseMat (24.11.1), with the difference that it may destroy the matrix mat. The
matrix mat must be mutable.

Example
gap> mat:=[[1,2,3],[4,5,6],[7,8,91]1;;

gap> BaselMat (mat) ;
(f1,2,31,00,1,21]1

gap> mm:= [[1,2,3],[4,5,6]1,[5,7,91];;

gap> BaseMatDestructive( mm );
[C1,2,37,00,1,21]]

gap> mm;

rct1, 2,31, [0,1,21, [0, 0,011

24.11.3 BaseOrthogonalSpaceMat

> BaseOrthogonalSpaceMat (mat) (attribute)

Let V be the row space generated by the rows of mat (over any field that contains all entries of
mat). BaseOrthogonalSpaceMat ( mat ) computes a base of the orthogonal space of V.
The rows of mat need not be linearly independent.

24.11.4 SumlIntersectionMat

> SumIntersectionMat (M1, M2)

(operation)

performs Zassenhaus’ algorithm to compute bases for the sum and the intersection of spaces gen-
erated by the rows of the matrices M1, M2.

returns a list of length 2, at first position a base of the sum, at second position a base of the
intersection. Both bases are in semi-echelon form (see 24.10).

Example
gap> SumIntersectionMat(mat, [[2,7,6],[5,9,411);

[[[1,2’313[0: 1’2]’[0’0’ 1]]’[[1’_3/4’_5/2]]]
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24.11.5 BaseSteinitzVectors

> BaseSteinitzVectors(bas, mat) (function)

find vectors extending mat to a basis spanning the span of bas. Both bas and mat must be
matrices of full (row) rank. It returns a record with the following components:

subspace
s a basis of the space spanned by mat in upper triangular form with leading ones at all echelon
steps and zeroes above these ones.

factorspace
is a list of extending vectors in upper triangular form.

factorzero
18 a zero vector.

heads
is a list of integers which can be used to decompose vectors in the basis vectors. The ith entry
indicating the vector that gives an echelon step at position i. A negative number indicates an
echelon step in the subspace, a positive number an echelon step in the complement, the absolute
value gives the position of the vector in the lists subspace and factorspace.
Example
gap> BaseSteinitzVectors(IdentityMat(3,1),[[11,13,15]1]);
rec( factorspace := [ [ 0, 1, 15/13 1, [ 0, 0, 11 1,
factorzero := [ 0, 0, 0 ], heads := [ -1, 1, 2 17,
subspace := [ [ 1, 13/11, 15/11 1 1 )

24.12 Triangular Matrices
24.12.1 DiagonalOfMat

> DiagonalOfMat (mat) (operation)

returns the diagonal of the matrix mat. If mat is not a square matrix, then the result has the same
length as the rows of mat, and is padded with zeros if mat has fewer rows than columns.

Example
gap> DiagonalOfMat([[1,2,3],[4,5,6]11);
[1, 5, 0]
24.12.2 UpperSubdiagonal
> UpperSubdiagonal (mat, pos) (operation)

returns a mutable list containing the entries of the posth upper subdiagonal of mat.
Example

gap> UpperSubdiagonal (mat,1) ;
[ 2, 6]
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24.12.3 DepthOfUpperTriangularMatrix

> DepthOfUpperTriangularMatrix(mat) (attribute)

If mat is an upper triangular matrix this attribute returns the index of the first nonzero diagonal.
Example
gap> DepthOfUpperTriangularMatrix([[0,1,2],[0,0,1],[0,0,0]11);
1
gap> Depth0fUpperTriangularMatrix([[0,0,2],[0,0,0],[0,0,0]11);
2

24.13 Matrices as Linear Mappings

24.13.1 CharacteristicPolynomial

> CharacteristicPolynomial ([F, E, Jmat[, ind]) (attribute)

For a square matrix mat, CharacteristicPolynomial returns the characteristic polynomial of
mat, that is, the StandardAssociate (56.5.5) of the determinant of the matrix mat — X - I, where X
is an indeterminate and / is the appropriate identity matrix.

If fields F and E are given, then F must be a subfield of E, and mat must have entries in E.
Then CharacteristicPolynomial returns the characteristic polynomial of the F-linear mapping
induced by mat on the underlying E-vector space of mat. In this case, the characteristic polynomial
is computed using BlownUpMat (24.13.3) for the field extension of E /F generated by the default field.
Thus, if F = E, the result is the same as for the one argument version.

The returned polynomials are expressed in the indeterminate number ind. If ind is not given, it
defaults to 1.

CharacteristicPolynomial(F, E, mat) 1is a multiple of the minimal polynomial
MinimalPolynomial (F, mat) (see MinimalPolynomial (66.8.1)).

Note that, up to GAP version 4.4.6, CharacteristicPolynomial only allowed to specify
one field (corresponding to F) as an argument. That usage has been disabled because its defini-
tion turned out to be ambiguous and may have lead to unexpected results. (To ensure backward
compatibility, it is still possible to use the old form if F contains the default field of the matrix,
see DefaultFieldOfMatrix (24.4.2), but this feature will disappear in future versions of GAP.)
Example
gap> CharacteristicPolynomial( [ [ 1, 11, [ 0, 111 );
X"2-2%x+1
gap> mat := [[0,1],[E(4)-1,E(4)]1];;
gap> CharacteristicPolynomial( mat );
x"2+(-E(4) ) *x+(1-E(4))
gap> CharacteristicPolynomial( Rationals, CF(4), mat );
X"4+3%x " 2+2%x+2
gap> mat:= [ [ E(4), 11, [ 0, -E(4) 1 1;;
gap> CharacteristicPolynomial( mat );
x"2+1
gap> CharacteristicPolynomial( Rationals, CF(4), mat );
X"4+2%x"2+1
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24.13.2 JordanDecomposition

> JordanDecomposition(mat) (attribute)

JordanDecomposition( mat ) returns a list [S,N] such that S is a semisimple matrix and N
is nilpotent. Furthermore, S and N commute and mat =S+N.
Example
gap> mat:=[[1,2,3],[4,5,6],[7,8,91];;
gap> JordanDecomposition(mat);
(rrsi1,2,31,04,5,61,[7,8,911,
([o0,0,01,[0,0,01,[0,0,0111

24.13.3 BlownUpMat

> BlownUpMat (B, mat) (function)

Let B be a basis of a field extension F /K, and mat a matrix whose entries are all in F. (This is
not checked.) BlownUpMat returns a matrix over K that is obtained by replacing each entry of mat by
its regular representation w.r.t. B.

More precisely, regard mat as the matrix of a linear transformation on the row space F”
w.r.t. the F-basis with vectors (vy,ldots,v,), say, and suppose that the basis B consists of the vec-
tors (by,...,by); then the returned matrix is the matrix of the linear transformation on the row space
K™ w.r.t. the K-basis whose vectors are (bjvy,...Dbyvi,...,byvy).

Note that the linear transformations act on row vectors, i.e., each row of the matrix is a concate-
nation of vectors of B-coefficients.

24.13.4 BlownUpVector

> BlownUpVector (B, vector) (function)

Let B be a basis of a field extension F /K, and vector a row vector whose entries are all in F.
BlownUpVector returns a row vector over K that is obtained by replacing each entry of vector by
its coefficients w.r.t. B.

So BlownUpVector and BlownUpMat (24.13.3) are compatible in the sense that for a ma-
trix mat over F, BlownUpVector( B, mat * vector ) is equal to BlownUpMat( B, mat ) *
BlownUpVector( B, vector ).

gap> B:= Basis( CF(4), [ 1, E(4) 1 );;
gap> mat:= [ [ 1, E(4) 1, [ 0, 11 1;; vwvec:=1[1, E(4) 1;;
gap> bmat:= BlownUpMat( B, mat );; bvec:= BlownUpVector( B, vec );;
gap> Display( bmat ); bvec;
L[ 1, 0, 0, 11,
[ 0, 1, -1, 01,
L 0, o, 1, 01,
L o, 0, 0, 11 ]
[1, 0, 0, 11

gap> bvec * bmat = BlownUpVector( B, vec * mat );
true
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24.13.5 CompanionMat

> CompanionMat (poly) (function)

computes a companion matrix of the polynomial poly. This matrix has poly as its minimal
polynomial.

24.14 Matrices over Finite Fields

Just as for row vectors, (see section 23.3), GAP has a special representation for matrices over small
finite fields.

To be eligible to be represented in this way, each row of a matrix must be able to be represented
as a compact row vector of the same length over the same finite field.

Example

gap> v := Z(2)%[1,0,0,1,1];

[ Z(2)~0, 0%xZ(2), 0xZ(2), Z(2)"0, Z(2)~0 1]

gap> ConvertToVectorRep(v,2);

2

gap> Vv;

<a GF2 vector of length 5>

gap> m := [v];; ConvertToMatrixRep(m,GF(2));; m;

<a 1x5 matrix over GF2>

gap> m := [v,v];; ConvertToMatrixRep(m,GF(2));; m;

<a 2x5 matrix over GF2>

gap> m := [v,v,v];; ConvertToMatrixRep(m,GF(2));; m;
<a 3x5 matrix over GF2>

gap> v := Z(3)*[1..8];

[ 2(3), Z(3)~0, 0%Z(3), Z(3), Z(3)~0, 0*Z(3), Z(3), Z(3)70 ]
gap> ConvertToVectorRep(v);

3

gap> m := [v];; ConvertToMatrixRep(m,GF(3));; m;

[ [ Z2(3), 2(3)~0, 0xZ(3), Z(3), Z(3)~0, 0*Z(3), Z(3), Z(3)~0 1 ]
gap> RepresentationsOfObject(m);

[ "IsPositionalObjectRep", "Is8BitMatrixRep" ]

gap> m := [v,v,v,v];; ConvertToMatrixRep(m,GF(3));; m;
< mutable compressed matrix 4x8 over GF(3) >

All compressed matrices over GF(2) are viewed as <a nxm matrix over GF2>, while over
fields GF(q) for q between 3 and 256, matrices with 25 or more entries are viewed in this way, and
smaller ones as lists of lists.

Matrices can be converted to this special representation via the following functions.

Note that the main advantage of this special representation of matrices is in low dimensions, where
various overheads can be reduced. In higher dimensions, a list of compressed vectors will be almost
as fast. Note also that list access and assignment will be somewhat slower for compressed matrices
than for plain lists.

In order to form a row of a compressed matrix a vector must accept certain restrictions. Specif-
ically, it cannot change its length or change the field over which it is compressed. The main conse-
quences of this are: that only elements of the appropriate field can be assigned to entries of the vector,
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and only to positions between 1 and the original length; that the vector cannot be shared between two
matrices compressed over different fields.

This is enforced by the filter IsLockedRepresentationVector. When a vector becomes part
of a compressed matrix, this filter is set for it. Assignment, Unbind (21.5.2), ConvertToVectorRep
(23.3.1) and ConvertToMatrixRep (24.14.2) are all prevented from altering a vector with this filter.

Example
gap> v := [Z2(2),Z(2)];; ConvertToVectorRep(v,GF(2));; v;

<a GF2 vector of length 2>

gap> m := [v,v];

[ <a GF2 vector of length 2>, <a GF2 vector of length 2> ]

gap> ConvertToMatrixRep(m,GF(2));

2

gap> m2 := [m[1], [Z2(4),Z(4)]1]; # now try and mix in some GF(4)

[ <a GF2 vector of length 2>, [ Z(2°2), Z(2"2) ] 1]

gap> ConvertToMatrixRep(m2); # but m2[1] is locked

#I ConvertToVectorRep: locked vector not converted to different field
fail

gap> m2 := [ShallowCopy(m[1]), [Z(4),Z(4)]1]; # a fresh copy of row 1

[ <a GF2 vector of length 2>, [ Z(2~2), Z(2"2) ] 1]

gap> ConvertToMatrixRep(m2); # now it works

4

gap> m2;

[ [z(2-0, z(2)~0 1, [ z(2°2), 2(2°2) 1]

gap> Representations0fObject(m2);

[ "IsPositionalObjectRep", "Is8BitMatrixRep" ]

Arithmetic operations (see 21.11 and the following sections) preserve the compression status of
matrices in the sense that if all arguments are compressed matrices written over the same field and the
result is a matrix then also the result is a compressed matrix written over this field.

There are also two operations that are only available for matrices written over finite fields.

24.14.1 ImmutableMatrix

> ImmutableMatrix(field, matrix[, change]) (function)

returns an immutable matrix equal to matrix which is in the optimal (concerning space and
runtime) representation for matrices defined over field. This means that matrices obtained by several
calls of ImmutableMatrix for the same field are compatible for fast arithmetic without need for
field conversion.

The input matrix matrix or its rows might change the representation, however the result of
ImmutableMatrix is not necessarily identical to matrix if a conversion is not possible.

If change is true, the rows of matrix (or matrix itself) may be changed to become immutable;
otherwise they are copied first).

24.14.2 ConvertToMatrixRep (for a list (and a field))

> ConvertToMatrixRep(list[, field]) (function)
> ConvertToMatrixRep(list[, fieldsize]) (function)
> ConvertToMatrixRepNC(list[, field]) (function)



GAP - Reference Manual 331

> ConvertToMatrixRepNC(list[, fieldsizel) (function)

This function is more technical version of ImmutableMatrix (24.14.1), which will never copy
a matrix (or any rows of it) but may fail if it encounters rows locked in the wrong representation, or
various other more technical problems. Most users should use ImmutableMatrix (24.14.1) instead.
The NC versions of the function do less checking of the argument and may cause unpredictable results
or crashes if given unsuitable arguments. Called with one argument 1ist, ConvertToMatrixRep
converts 1ist to an internal matrix representation if possible.

Called with a list 1ist and a finite field field, ConvertToMatrixRep converts 1ist to an
internal matrix representation appropriate for a matrix over field.

Instead of a field also its size fieldsize may be given.

It is forbidden to call this function unless all elements of 1ist are row vectors with entries in the
field field. Violation of this condition can lead to unpredictable behaviour or a system crash. (Setting
the assertion level to at least 2 might catch some violations before a crash, see SetAssertionLevel
(7.5.1).)

list may already be a compressed matrix. In this case, if no field or fieldsize is given, then
nothing happens.

The return value is the size of the field over which the matrix ends up written, if it is written in a
compressed representation.

24.14.3 ProjectiveOrder

> ProjectiveOrder (mat) (attribute)

Returns an integer n and a finite field element e such that 4 “n = el. mat must be a matrix defined

over a finite field.

Example
gap> ProjectiveOrder([[1,4],[5,2]11*Z(11)~0);
[ 5, Z(11)"5 ]

24.14.4 SimultaneousEigenvalues

> SimultaneousEigenvalues(matlist, expo) (function)

The matrices in matlist must be matrices over GF(q) for some prime q. Together, they must
generate an abelian p-group of exponent expo. Then the eigenvalues of mat in the splitting field
GF(q~r) for some r are powers of an element & in the splitting field, which is of order expo.
SimultaneousEigenvalues returns a matrix of integers mod expo, say (a; j), such that the power
£ is an eigenvalue of the i-th matrix in matlist and the eigenspaces of the different matrices to
the eigenvalues % for fixed j are equal.

24.15 Inverse and Nullspace of an Integer Matrix Modulo an Ideal

The following two operations deal with matrices over a ring, but only care about the residues of their
entries modulo some ring element. In the case of the integers and a prime number p, say, this is
effectively computation in a matrix over the prime field in characteristic p.
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24.15.1 InverseMatMod

> InverseMatMod(mat, obj) (operation)

For a square matrix mat, InverseMatMod returns a matrix inv such that inv * mat is congruent
to the identity matrix modulo obj, if such a matrix exists, and fail otherwise.
Example
gap>mat:= [ [ 1, 21, [ 3, 41 1;; inv:= InverseMatMod( mat, 5 );
(s, 11, 04,211
gap> mat * inv;
[ [11, 51, [ 25, 111 1]

24.15.2 NullspaceModQ

> NullspaceModQ(E, q) (function)

E must be a matrix of integers and g a prime power. Then NullspaceModQ returns the set of all
vectors of integers modulo g, which solve the homogeneous equation system given by E modulo q.

Example
1, [ 1, 11 171;; DNullspaceModQ( mat, 5 );
2’ 1’ 2 ]’ [ 4’ 2, 4 ], [ 3’ 4’ 3 ] ]

gap> mat:= [ [ 1,31, [ 1, 2
Lfo,0,01,[1,3, 1], 1L

24.16 Special Multiplication Algorithms for Matrices over GF(2)

When multiplying two compressed matrices M and N over GF(2) of dimensions a X b and b X c, say,
where a, b and c are all greater than or equal to 128, GAP by default uses a more sophisticated matrix
multiplication algorithm, in which linear combinations of groups of 8 rows of M are remembered and
re-used in constructing various rows of the product. This is called level 8 grease. To optimise memory
access patterns, these combinations are stored for (b+255)/256 sets of 8 rows at once. This number
is called the blocking level.

These levels of grease and blocking are found experimentally to give good performance across
a range of processors and matrix sizes, but other levels may do even better in some cases. You can
control the levels exactly using the functions below.

We plan to include greased blocked matrix multiplication for other finite fields, and greased
blocked algorithms for inversion and other matrix operations in a future release.

24.16.1 PROD_GF2MAT_GF2MAT_SIMPLE

> PROD_GF2MAT_GF2MAT_SIMPLE(m1, m2) (function)

This function performs the standard unblocked and ungreased matrix multiplication for matrices
of any size.

24.16.2 PROD_GF2MAT_GF2MAT_ADVANCED

> PROD_GF2MAT_GF2MAT_ADVANCED(m1, m2, g, b) (function)
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This function computes the product of m1 and m2, which must be compressed matrices over GF(2)
of compatible dimensions, using level g grease and level b blocking.

24.17 Block Matrices

Block matrices are a special representation of matrices which can save a lot of memory if large matri-
ces have a block structure with lots of zero blocks. GAP uses the representation IsBlockMatrixRep
to store block matrices.

24.17.1 AsBlockMatrix

> AsBlockMatrix(m, nrb, ncb) (function)

returns a block matrix with nrb row blocks and ncb column blocks which is equal to the ordinary
matrix m.

24.17.2 BlockMatrix

> BlockMatrix(blocks, nrb, ncb[, rpb, cpb, zerol) (function)

BlockMatrix returns an immutable matrix in the sparse representation IsBlockMatrixRep. The
nonzero blocks are described by the list blocks of triples [i,j,M(i, j)] each consisting of a matrix
M(i, j) and its block coordinates in the block matrix to be constructed. All matrices M (i, j) must have
the same dimensions. As usual the first coordinate specifies the row and the second one the column.
The resulting matrix has nrb row blocks and ncb column blocks.

If blocks is empty (i.e., if the matrix is a zero matrix) then the dimensions of the blocks must be
entered as rpb and cpb, and the zero element as zero.

Note that all blocks must be ordinary matrices (see IsOrdinaryMatrix (24.2.2)), and also the
block matrix is an ordinary matrix.

Example
gap> M := BlockMatrix([[1,1,[[1, 2]1,[ 3, 4111,
> [1,2,[[9,101,[11,12]11],
> [2,2,[[5, 61,L 7, 81111,2,2);

<block matrix of dimensions (2*2)x(2%2)>
gap> Display(M);

[c 1, 2, 9, 101,
[ 3, 4, 11, 121,
[ o, o0, 5, 61,
L o, o, 7, 811

24.17.3 MatrixByBlockMatrix

> MatrixByBlockMatrix(blockmat) (attribute)

returns a plain ordinary matrix that is equal to the block matrix blockmat.



Chapter 25

Integral matrices and lattices

25.1 Linear equations over the integers and Integral Matrices

25.1.1 NullspaceIntMat

> NullspaceIntMat (mat) (attribute)

If mat is a matrix with integral entries, this function returns a list of vectors that forms a basis of

the integral nullspace of mat, i.e., of those vectors in the nullspace of mat that have integral entries.
Example
gap> mat:=[[1,2,7],[4,5,6],[7,8,9],[10,11,19],[5,7,121];;
gap> NullspaceMat (mat);

L C-7/4, 9/2, -15/4, 1, 01, [ -3/4, -3/2, 1/4, 0, 111
gap> NullspaceIntMat (mat) ;

(C1,18,-9,2, 61, [0, 24, -13, 3, -7 ] ]

25.1.2 SolutionIntMat

> SolutionIntMat (mat, vec) (operation)

If mat is a matrix with integral entries and vec a vector with integral entries, this function returns
a vector x with integer entries that is a solution of the equation x * mat = vec. It returns fail if no
such vector exists.

Example
gap> mat:=[[1,2,7],[4,5,6],[7,8,9]1,[10,11,19],[5,7,12]1];;
gap> SolutionMat (mat, [95,115,182]);

[ 47/4, -17/2, 67/4, 0, 0 ]

gap> SolutionIntMat(mat,[95,115,182]);

[ 2285, -5854, 4888, -1299, 0 ]

25.1.3 SolutionNullspaceIntMat

> SolutionNullspaceIntMat(mat, vec) (operation)

This function returns a list of length two, its first entry being the result of a call to
SolutionIntMat (25.1.2) with same arguments, the second the result of NullspaceIntMat (25.1.1)

334
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applied to the matrix mat. The calculation is performed faster than if two separate calls would be
used.

Example
gap> mat:=[[1,2,7],[4,5,6],[7,8,9]1,[10,11,19],[5,7,12]1];;
gap> SolutionNullspaceIntMat(mat,[95,115,182]);
[ [ 2285, -5854, 4888, -1299, 0 1],

Lf1, 18, -9, 2, -61, [ 0, 24, -13, 3, -7 111

25.1.4 BaselntMat

> BaseIntMat (mat) (attribute)

If mat is a matrix with integral entries, this function returns a list of vectors that forms a basis of

the integral row space of mat, i.e. of the set of integral linear combinations of the rows of mat.
Example
gap> mat:=[[1,2,7],[4,5,6]1,[10,11,19]];;
gap> BaseIntMat (mat);

(ft,2,71,00,8, 71, [0,0, 151711

25.1.5 BaselntersectionIntMats

> BaseIntersectionIntMats(m, n) (attribute)

If m and n are matrices with integral entries, this function returns a list of vectors that forms a

basis of the intersection of the integral row spaces of m and n.
Example
gap> nat:=[[5,7,2],[4,2,5],[7,1,41];;

gap> BaseIntMat (nat);

rrcit1,1,151, [0,2,5661, [0, 0,641]1
gap> BaseIntersectionIntMats(mat,nat);
(L1, 5,501, [0, 6,891, [0, 0, 960171 1]

25.1.6 ComplementIntMat

> ComplementIntMat (full, sub) (attribute)

Let full be a list of integer vectors generating an integral row module M and sub a list of vectors
defining a submodule S of M. This function computes a free basis for M that extends S. lLe., if the
dimension of S is n it determines a basis B = {b,...,b,, } for M, as well as n integers x; such that the
n vectors s; := x; - b; form a basis for S.

It returns a record with the following components:

complement
the vectors b, up to b, (they generate a complement to §).

sub
the vectors s; (a basis for S).

moduli
the factors x;.
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Example

gap> m:=IdentityMat(3);;

gap> n:=[[1,2,3],[4,5,61];;

gap> ComplementIntMat (m,n);

rec( complement := [ [ 0, 0, 1 ] ], moduli := [ 1, 3 1],
sub := [ [ 1, 2,31, [0, 3,611)

25.2 Normal Forms over the Integers

This section describes the computation of the Hermite and Smith normal form of integer matrices.

The Hermite Normal Form (HNF) H of an integer matrix A is a row equivalent upper triangular
form such that all off-diagonal entries are reduced modulo the diagonal entry of the column they are
in. There exists a unique unimodular matrix Q such that QA = H.

The Smith Normal Form § of an integer matrix A is the unique equivalent diagonal form with S;
dividing §; for i < j. There exist unimodular integer matrices P, Q such that PAQ = S.

All routines described in this section build on the “workhorse” routine NormalFormIntMat
(25.2.9).

25.2.1 TriangulizedIntegerMat

> TriangulizedIntegerMat(mat) (operation)

Computes an upper triangular form of a matrix with integer entries. It returns a immutable matrix
in upper triangular form.

25.2.2 TriangulizedIntegerMatTransform

> TriangulizedIntegerMatTransform(mat) (operation)

Computes an upper triangular form of a matrix with integer entries. It returns a record with a
component normal (an immutable matrix in upper triangular form) and a component rowtrans that
gives the transformations done to the original matrix to bring it into upper triangular form.

25.2.3 'TriangulizeIntegerMat

> TriangulizeIntegerMat (mat) (operation)

Changes mat to be in upper triangular form.  (The result is the same as that of
TriangulizedIntegerMat (25.2.1), but mat will be modified, thus using less memory.) If mat
is immutable an error will be triggered.

Example

gap> m:=[[1,15,28],[4,5,6],[7,8,9]1];;

gap> TriangulizedIntegerMat(m);

(Ci1 15,281, [0, 1,11, [0,0,31]1

gap> n:=TriangulizedIntegerMatTransform(m) ;

rec( normal := [ [ 1, 15, 281, [0, 1, 11, [0, 0, 311,
rank := 3, rowC := [ [ 1, 0,01, [0, 1,01, [0, 0,111,
rowQ := [ [1,0,01, 1, -3, 171, [ -3, 97, -551 1,
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rowtrans := [ [ 1, 0, 01, [ 1, -30, 171, [ -3, 97, -55 1] 1,
signdet := 1 )
gap> n.rowtrans*m=n.normal;
true
gap> TriangulizeIntegerMat(m); m;
(C1,15,281,[0,1,1],[0,0,31]

25.2.4 HermiteNormalFormIntegerMat

> HermiteNormalFormIntegerMat (mat) (operation)

This operation computes the Hermite normal form of a matrix mat with integer entries. It returns
a immutable matrix in HNF.

25.2.5 HermiteNormalFormIntegerMatTransform

> HermiteNormalFormIntegerMatTransform (mat) (operation)

This operation computes the Hermite normal form of a matrix mat with integer entries. It returns
a record with components normal (a matrix H) and rowtrans (a matrix Q) such that QA = H.
Example
gap> m:=[[1,15,28]1,[4,5,6]1,[7,8,911;;
gap> HermiteNormalFormIntegerMat (m) ;
(f1,0,11,00,1,11,[0,0,31]1
gap> n:=HermiteNormalFormIntegerMatTransform(m) ;
rec( normal := [ [ 1, 0, 21, [0, 1,11, [0, 0, 3] 1, rank := 3,

rowC :=[[1,0,071, [0,1,01, [0,0,111,
rowQ := [ [ -2, 62, -361, [ 1, -30, 171, [ -3, 97, -55 1 1,
rowtrans := [ [ -2, 62, -351, [ 1, -30, 171, [ -3, 97, -55 1 1,

signdet := 1 )
gap> n.rowtrans*m=n.normal;
true

25.2.6 SmithNormalFormIntegerMat

> SmithNormalFormIntegerMat (mat) (operation)

This operation computes the Smith normal form of a matrix mat with integer entries. It returns a
new immutable matrix in the Smith normal form.
25.2.7 SmithNormalFormIntegerMatTransforms
> SmithNormalFormIntegerMatTransforms(mat) (operation)
This operation computes the Smith normal form of a matrix mat with integer entries. It returns

a record with components normal (a matrix S), rowtrans (a matrix P), and coltrans (a matrix Q)
such that PAQ = §.
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25.2.8 DiagonalizeIntMat

> DiagonalizeIntMat (mat) (operation)

This function changes mat to its SNF. (The result is the same as that of
SmithNormalFormIntegerMat (25.2.6), but mat will be modified, thus using less memory.)

If mat is immutable an error will be triggered.
Example
gap> m:=[[1,15,28],[4,5,6],[7,8,91];;

gap> SmithNormalFormIntegerMat (m) ;
(ft,0,01,00,1,07]1, [0,0,31]1
gap> n:=SmithNormalFormIntegerMatTransforms (m) ;

rec( colC:=[[1, 0,01, [0, 1,01, [0, 0,111,

colQ :=[[1,0, .11, 0,1, -121,[0,0,111,

coltrans := [ [ 1 0, -11, 00,1, -11, [0,0,11]1,

normal := [ [ 1, o], [o, 1,01, [ 0, 311, rank := 3,
rowC := [ [ 1, O, ], Lo, 1,01, [0,0,111,

row := [ [ -2, 62, -351, [ 1, -30, 171, [ -3, 97, -65 1 1,
rowtrans := [ [ -2, 62, -351, [ 1, -30, 171, [ -3, 97, -55 1 1,

signdet := 1 )
gap> n.rowtrans*m*n.coltrans=n.normal;
true
gap> DiagonalizeIntMat (m);m;
rcs,0,01,00,1,01, [0,0,31]1

25.2.9 NormalFormIntMat

> NormalFormIntMat (mat, options) (operation)

This general operation for computation of various Normal Forms is probably the most efficient.
Options bit values:

0/1 Triangular Form / Smith Normal Form.

2 Reduce off diagonal entries.
4 Row Transformations.
8 Col Transformations.

16  Destructive (the original matrix may be destroyed)

Compute a Triangular, Hermite or Smith form of the n x m integer input matrix A. Optionally,
compute n X n and m x m unimodular transforming matrices Q, P which satisfy QA = H or QAP = S.

Note option is a value ranging from O to 15 but not all options make sense (e.g., reducing off
diagonal entries with SNF option selected already). If an option makes no sense it is ignored.

Returns a record with component normal containing the computed normal form and optional
components rowtrans and/or coltrans which hold the respective transformation matrix. Also in
the record are components holding the sign of the determinant, signdet, and the rank of the matrix,
rank.
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Example
gap> m:=[[1,15,28], [4,5,6],[7,8,91];;
gap> NormalFormIntMat (m,0); # Triangular, no transforms
rec( normal := [ [ 1, 15, 281, [0, 1, 11, [ 0, 0, 311,
rank := 3, signdet := 1)
gap> NormalFormIntMat(m,6); # Hermite Normal Form with row transforms
rec( normal := [ [ 1, 0, 11, [0, 1, 11, [0, 0, 311, rank := 3,
rowC:=[[1,0,01, 0,111,071, [0,0,111,
row := [ [ -2, 62, -35], [ 1, -30, 171, [ -3, 97, -656 1 1,
rowtrans := [ [ -2, 62, -35 1, [ 1, -30, 17 1, [ -3, 97, -55 1] 1,
signdet := 1)
gap> NormalFormIntMat(m,13); # Smith Normal Form with both transforms
rec( colC:=[[1,0,01, [0,1,01, [0,0,11]11,
,0,-11,[0,1,-11,[0,0,1]

colQ := [ [ 1 s 1,

coltrans := [ [ 1, 0, .11, [0, 1, -11, [0, 0,111,

normal := [ [ 1, 0,01, [0, 1,01, [0, 0, 311, rank := 3,
rowC :=[[1,0,01,[0,1,071, [0,0,111,

row := [ [ -2, 62, -35]1, [ 1, -30, 171, [ -3, 97, -65 ] 1,
rowtrans := [ [ -2, 62, -35 1, [ 1, -30, 17 1, [ -3, 97, -55 1 1,

signdet := 1 )
gap> last.rowtrans*m*last.coltrans;
(fto,01,00,1,071,[0,0,31]

25.2.10 AbelianInvariantsOfList

> AbelianInvariantsOfList(list) (attribute)

Given a list of nonnegative integers, this routine returns a sorted list containing the prime power
factors of the positive entries in the original list, as well as all zeroes of the original list.

Example
gap> AbelianInvariants0fList([4,6,2,0,12]);
[0, 2, 2, 3, 3, 4, 4]

25.3 Determinant of an integer matrix

25.3.1 DeterminantIntMat

> DeterminantIntMat (mat) (operation)

Computes the determinant of an integer matrix using the same strategy as NormalFormIntMat
(25.2.9). This method is faster in general for matrices greater than 20 x 20 but quite a lot slower for
smaller matrices. It therefore passes the work to the more general DeterminantMat (24.4.4) for these
smaller matrices.

25.4 Decompositions

For computing the decomposition of a vector of integers into the rows of a matrix of integers, with
integral coefficients, one can use p-adic approximations, as follows.
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Let A be a square integral matrix, and p an odd prime. The reduction of A modulo p is A, its entries
are chosen in the interval [—(p —1)/2,(p —1)/2]. If A is regular over the field with p elements, we
can form A’ = A~ '. Now we consider the integral linear equation system xA = b, i.e., we look for an
integral solution x. Define by = b, and then iteratively compute

Xi = (blA,) mod p7bi+1 = (bl _xiA)/p7i = 07 1527' s
By induction, we get
i
P+ Y plx; |A=b.
j=0
If there is an integral solution x then it is unique, and there is an index / such that b;, | is zero and
/ )

x=Y i opPxj.

There are two useful generalizations of this idea. First, A need not be square; it is only necessary
that there is a square regular matrix formed by a subset of columns of A. Second, A does not need to
be integral; the entries may be cyclotomic integers as well, in this case one can replace each column
of A by the columns formed by the coefficients w.r.t. an integral basis (which are integers). Note that

this preprocessing must be performed compatibly for A and b.
GAP provides the following functions for this purpose (see also InverseMatMod (24.15.1)).

254.1 Decomposition

> Decomposition(4, B, depth) (function)

For a m x n matrix A4 of cyclotomics that has rank m < n, and a list B of cyclotomic vectors, each
of length n, Decomposition tries to find integral solutions of the linear equation systems x * 4 =
B[il], by computing the p-adic series of hypothetical solutions.

Decomposition( A4, B, depth ), where depth is a nonnegative integer, computes for each

vector B[i] the initial part Zs:e()p th xip¥, with all x; vectors of integers with entries bounded by
+(p—1)/2. The prime p is set to 83 first; if the reduction of 4 modulo p is singular, the next prime
is chosen automatically.

A list X is returned. If the computed initial part for x * A = B[i] is a solution, we have X [i]
= x, otherwise X [i] = fail.

If depth is not an integer then it must be the string "nonnegative". Decomposition( 4, B,
"nonnegative" ) assumes that the solutions have only nonnegative entries, and that the first column
of A consists of positive integers. This is satisfied, e.g., for the decomposition of ordinary characters
into Brauer characters. In this case the necessary number depth of iterations can be computed; the
i-th entry of the returned list is fail if there exists no nonnegative integral solution of the system x
* A = B[i], and it is the solution otherwise.

Note that the result is a list of fail if 4 has not full rank, even if there might be a unique integral
solution for some equation system.

25.4.2 LinearIndependentColumns

> LinearIndependentColumns(mat) (function)

Called with a matrix mat, LinearIndependentColumns returns a maximal list of column posi-
tions such that the restriction of mat to these columns has the same rank as mat.
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25.4.3 PadicCoefficients

> PadicCoefficients(4, Amodpinv, b, prime, depth) (function)

Let 4 be an integral matrix, prime a prime integer, Amodpinv an inverse of 4 modulo prime,
b an integral vector, and depth a nonnegative integer. PadicCoefficients returns the list
[X0,X1,...,x1,b141] describing the prime-adic approximation of b (see above), where / = depth or [
is minimal with the property that b;; = 0.

25.4.4 IntegralizedMat

> IntegralizedMat(A[, inforec]) (function)

IntegralizedMat returns, for a matrix A of cyclotomics, a record intmat with components mat
and inforec. Each family of algebraic conjugate columns of 4 is encoded in a set of columns of
the rational matrix intmat.mat by replacing cyclotomics in 4 by their coefficients w.r.t. an integral
basis. intmat.inforec is a record containing the information how to encode the columns.

If the only argument is 4, the value of the component inforec is computed that can be entered as
second argument inforec in a later call of IntegralizedMat with a matrix B that shall be encoded
compatibly with 4.

25.4.5 DecompositionInt

> DecompositionInt(4, B, depth) (function)

DecompositionInt does the same as Decomposition (25.4.1), except that A and B must be
integral matrices, and depth must be a nonnegative integer.

25.5 Lattice Reduction

25.5.1 LLLReducedBasis

> LLLReducedBasis([L, Jvectors[, yl[, "linearcomb"][, 1llout]) (function)

provides an implementation of the LLL algorithm by Lenstra, Lenstra and Lovész (see [LLJL82],
[Poh87]). The implementation follows the description in [Coh93, p. 94f.].

LLLReducedBasis returns a record whose component basis is a list of LLL reduced linearly
independent vectors spanning the same lattice as the list vectors. L must be a lattice, with scalar
product of the vectors v and w given by ScalarProduct( L, v, w ). Ifno lattice is specified then
the scalar product of vectors given by ScalarProduct( v, w ) isused.

In the case of the option "linearcomb", the result record contains also the components
relations and transformation, with the following meaning. relations is a basis of the rela-
tion space of vectors, i.e., of vectors x such that x * vectors is zero. transformation gives the
expression of the new lattice basis in terms of the old, i.e., transformation * vectors equals the
basis component of the result.

Another optional argument is y, the “sensitivity” of the algorithm, a rational number between 1/4
and 1 (the default value is 3/4).
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The optional argument 111out is a record with the components mue and B, both lists of length &,
with the meaning that if 111out is present then the first k vectors in vectors form an LLL reduced
basis of the lattice they generate, and 111out .mue and 111out .B contain their scalar products and
norms used internally in the algorithm, which are also present in the output of LLLReducedBasis. So
111out can be used for “incremental” calls of LLLReducedBasis.

The function LLLReducedGramMat (25.5.2) computes an LLL reduced Gram matrix.

Example
gap> vectors:= [ [ 9, 1, 0, -1, -1 1, [ 15, -1, O, O, O 1,
> (16, 0,1, 1,171, [20,0, -1, 0, 01,
> [25,1,1,0,011;;

gap> LLLReducedBasis( vectors, "linearcomb" );
rec( B := [ 5, 36/5, 12, 50/3 ],

basis := [ [ 1, 1,1, 1, 11, [ 1,1, -2, 1, 11,

[-1,3, -1, -1, -1 1, [ -3,1,0,2, 211,
me :=[[ 1, [2/51, [ -1/5, 1/31, [ 2/5, 1/6, 1/6 1 1,
relations := [ [ -1, 0, -1, 0, 1] 1,

]
transformation := [ [ 0, -1, 1, 0, O

]; [_1, _2; O: 2, 0 ],
[1’_2’011,0]’[_11_211’110]])
25.5.2 LLLReducedGramMat
> LLLReducedGramMat (G[, yI) (function)

LLLReducedGramMat provides an implementation of the LLL algorithm by Lenstra, Lenstra and
Lovasz (see [LLJL82], [Poh87]). The implementation follows the description in [Coh93, p. 94f.].

Let G the Gram matrix of the vectors (by,bs,...,b,); this means G is either a square symmetric
matrix or lower triangular matrix (only the entries in the lower triangular half are used by the program).

LLLReducedGramMat returns a record whose component remainder is the Gram matrix of the
LLL reduced basis corresponding to (by,by,...,b,). If G is a lower triangular matrix then also the
remainder component of the result record is a lower triangular matrix.

The result record contains also the components relations and transformation, which have
the following meaning.

relations is a basis of the space of vectors (xj,x2,...,x,) such that Y7  x;b; is zero,
and transformation gives the expression of the new lattice basis in terms of the old, i.e.,
transformation is the matrix T such that T - G - T'" is the remainder component of the result.

The optional argument y denotes the “sensitivity” of the algorithm, it must be a rational number
between 1/4 and 1; the default value is y = 3/4.

The function LLLReducedBasis (25.5.1) computes an LLL reduced basis.
Example
gap> g:= [ [ 4, 6, 5, 2, 21, [ 6, 13, 7, 4, 41,
> [5,7,11,2,01, [2,4,2,8,41, [2,4,0,4,811;;
gap> LLLReducedGramMat( g );
rec( B := [ 4, 4, 75/16, 168/25, 32/7 1,

me := [ [ 1, [1/21, [ 1/4, -1/8 1, [ 1/2, 1/4, -2/25 1],
[ -1/4, 1/8, 37/75, 8/21 1 1, relations := [ 1,

remainder := [ [ 4, 2, 1, 2, -1 1, [ 2, 5,0, 2, 01,
[1, 0, 5, 0,21, [2,2,0,8,21, [-1,0,2,2,711,
transformation := [ [ 1, 0, 0, 0, 01, [ -1, 1, 0, 0, 0 1,

[_1’0’110’0],[070’011,0],[_21031:011]])
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25.6 Orthogonal Embeddings

25.6.1 OrthogonalEmbeddings

> OrthogonalEmbeddings(gram[, "positive"][, maxdim]) (function)

computes all possible orthogonal embeddings of a lattice given by its Gram matrix gram, which
must be a regular symmetric matrix of integers. In other words, all integral solutions X of the equation
X'"- X =gram are calculated. The implementation follows the description in [Ple95].

Usually there are many solutions X but all their rows belong to a small set of vectors, so
OrthogonalEmbeddings returns the solutions encoded by a record with the following components.

vectors
the list L = [x1,x2, . ..,x,] of vectors that may be rows of a solution, up to sign; these are exactly
the vectors with the property x;-gram ! -x{" <1, see ShortestVectors (25.6.2),

norms
the list of values x;-gram ! - ", and

solutions
a list S of index lists; the i-th solution matrix is L{ S[i] }, so the dimension of the i -th solution
is the length of S[i], and we have gram= Y. jcg; X'/ - x;,

The optional argument "positive" will cause OrthogonalEmbeddings to compute only vectors
x; with nonnegative entries. In the context of characters this is allowed (and useful) if gram is the
matrix of scalar products of ordinary characters.

When OrthogonalEmbeddings is called with the optional argument maxdim (a positive integer),
only solutions up to dimension maxdim are computed; this may accelerate the algorithm.

Example
gap> b:= [ [3, -1, -1 1, [ -1, 3, -11, [ -1, -1, 31 1;;
gap> c:=0rthogonalEmbeddings( b );
rec( norms := [ 1, 1, 1, 1/2, 1/2, 1/2, 1/2, 1/2, 1/2 17,
solutions := [ [ 1, 2,31, [1,6,6, 7,71, [ 2,5, 5,8, 81,
[ 3, 4,4,9,91, [4,5,6,7,8,911,

vectors := [ [ -1, 1,11, [1, -1, 11, [ -1, -1, 11,
(-t,1,01,[-1,0,11, [1,0,01, [0, -1, 1],
[o,1,01, [0,0,111)

gap> c.vectors{ c.solutions[1] };
-+, 1,121,001, -1,171, [-1, -1,11]1]

gram may be the matrix of scalar products of some virtual characters. From the characters and
the embedding given by the matrix X, Decreased (72.10.7) may be able to compute irreducibles.

25.6.2 ShortestVectors
> ShortestVectors(G, m[, "positive"]) (function)

Let G be a regular matrix of a symmetric bilinear form, and m a nonnegative integer.
ShortestVectors computes the vectors x that satisfy x- G - x' < m, and returns a record describ-
ing these vectors. The result record has the components
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vectors
list of the nonzero vectors x, but only one of each pair (x, —x),

norms
list of norms of the vectors according to the Gram matrix G.

If the optional argument "positive" is entered, only those vectors x with nonnegative entries are

computed.

Example
gap> g:= [ (2,121,111, [1,2,1]1, [1,1,2171;;
gap> ShortestVectors(g,4);

rec( norms := [ 4, 2, 2, 4, 2, 4, 2, 2, 21,
vectors := [ [ -1, 1,11, [0, 0,211, [ -1,0, 11, [1, -1, 11,
ro,-1,11, -1, -1,11,C0,1,01, [-1,1,01,

[1,0,011)




Chapter 26

Vector and matrix objects

This chapter is work in progress. It will eventually describe the new interface to vector and matrix
objects.

Traditionally, vectors in GAP have been lists and matrices have been lists of lists (of equal length).
Unfortunately, such lists cannot store their type and so it is impossible to use the full advantages of
GAP’s method selection on them. This situation is unsustainable in the long run since more special
representations (compressed, sparse, etc.) have already been and even more will be implemented.
To eventually solve this problem, this chapter describes a new programming interface to vectors and
matrices.

26.1 Fundamental ideas and rules

The whole idea of this interface is that (row-) vectors and matrices must be proper objects with a stored
type (i.e. created by Objectify allowing inheritance) to benefit from method selection. We therefore
refer to the new style vectors and matrices as “vector objects” and “matrix objects” respectively.

It should be possible to write (efficient) code that is independent of the actual representation (in
the sense of GAP’s representation filters) and preserves it.

This latter requirement makes it necessary to distinguish between (at least) two classes of matrices:

* “RowList”-Matrices which behave basically like lists of rows, in particular are the rows indi-
vidual GAP objects that can be shared between different matrix objects.

* “Flat” matrices which behave basically like one GAP object that cannot be split up further. In
particular a row is only a part of a matrix and no GAP object in itself.

For various reasons these two classes have to be distinguished already with respect to the definition of
the operations for them.

In particular vectors and matrices know their BaseDomain and their dimensions. Note that the
basic condition is that the elements of vectors and matrices must either lie in the BaseDomain or
naturally embed in the sense that + and * and = automatically work with all elements of the base
domain (example: integers in polynomials over integers).

Vectors are equal with respect to "=" if they have the same length and the same entries. It is not
necessary that they have the same BaseDomain. Matrices are equal with respect to "=" if they have the
same dimensions and the same entries. It is possible that not for all pairs of representations methods
exist.

345
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It is not guaranteed that all rows of a matrix have the same vector type! It is for example thinkable
that a matrix stores some of its rows in a sparse representation and some in a dense one! However, it
is guaranteed that the rows of matrices in the same representation are compatible in the sense that all
vector operations defined in this interface can be applied to them and that new matrices in the same
representation as the original matrix can be formed out of them.

Note that there is neither a default mapping from the set of matrix representations to the set of
vector representations nor one in the reverse direction! There is nothing like an "associated" vector
representation to a matrix representation or vice versa.

The way to write code that preserves the representation basically works by using constructing
operations that take template objects to decide about the actual representation of the new object.

Vectors do not have to be lists in the sense that they do not have to support all list operations. The
same holds for matrices. However, RowList matrices behave nearly like lists of row vectors that insist
on being dense and containing only vectors of the same length and with the same BaseDomain.

There are some rules embedded in the comments to the following code. They are marked with the
word "Rule". FIXME: Collect all rules here.

26.2 Categories of vectors and matrices

26.3 Constructing vector and matrix objects
26.4 Operations for row vector objects

26.5 Operations for row list matrix objects

26.6 Operations for flat matrix objects



Chapter 27

Strings and Characters

27.1 IsChar and IsString

27.1.1 IsChar

> IsChar(obj) (Category)
> IsCharCollection(obj) (Category)

A character is simply an object in GAP that represents an arbitrary character from the character
set of the operating system. Character literals can be entered in GAP by enclosing the character in
singlequotes °.

Example
gap> x:= ’a’; IsChar( x );
7a)
true
gap> %73
? %
27.1.2 IsString
> IsString(obj) (filter)

A string is a dense list (see IsList (21.1.1), IsDenseList (21.1.2)) of characters (see IsChar
(27.1.1)); thus strings are always homogeneous (see IsHomogeneousList (21.1.3)).

A string literal can either be entered as the list of characters or by writing the characters between
doublequotes ". GAP will always output strings in the latter format. However, the input via the
double quote syntax enables GAP to store the string in an efficient compact internal representation.
See IsStringRep (27.3.1) below for more details.

Each character, in particular those which cannot be typed directly from the keyboard, can also be
typed in three digit octal notation. And for some special characters (like the newline character) there
is a further possibility to type them, see section 27.2.
Example
gap> Sl = [7H7,7e7’71’,717’707’7 ’,’W’,’O’,’I",’l’,’d’,’.’];
"Hello world."
gap> IsString( si1 );
true

347
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gap> s2 := "Hello world.";

"Hello world."

gap> sl = s2;

true

gap> s3 := ""; # the empty string

R1)

gap> s3 = [];

true

gap> IsString( [1 );

true

gap> IsString( "123" ); IsString( 123 );

true

false

gap> IsString( [ ’1°, ’2°, 37 ] );

true

gap> IsString( [ ’1°, °2°, , °4> ] ); # strings must be dense
false

gap> IsString( [ ’1’, ’2’, 3 ] ); # strings must only contain characters
false

27.1.3 Strings As Lists

Note that a string is just a special case of a list. So everything that is possible for lists (see 21) is also
possible for strings. Thus you can access the characters in such a string (see 21.3), test for membership
(see 30.6), ask for the length, concatenate strings (see Concatenation (21.20.1)), form substrings etc.
You can even assign to a mutable string (see 21.4). Of course unless you assign a character in such a
way that the list stays dense, the resulting list will no longer be a string.

Example

gap> Length( s2 );

12

gap> s2[2];

7e)

gap> ’a’ in s2;

false

gap> s2[2] := ’a’;; s2;
"Hallo world."

gap> s1{ [1..4] };
llHellll

gap> Concatenation( s1{ [ 1 .. 61 }, si{ [ 1 .. 41 });
"Hello Hell"

27.1.4 Printing Strings

> VieWObj (str) (method)
> Print0Obj(str) (method)

If a string is displayed by View (6.3.3), for example as result of an evaluation (see 6.1), or
by ViewObj (6.3.5) and Print0bj (6.3.5), it is displayed with enclosing doublequotes. (But note
that there is an ambiguity for the empty string which is also an empty list of arbitrary GAP ob-
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jects; it is only printed like a string if it was input as empty string or converted to a string with
ConvertToStringRep (27.3.2).) The output of Print0Obj can be read back into GAP.

Strings behave differently from other GAP objects with respect to Print (6.3.4), PrintTo (9.7.3),
or AppendTo (9.7.3). These commands interpret a string in the sense that they essentially send the
characters of the string directly to the output stream/file. (But depending on the type of the stream and
the presence of some special characters used as hints for line breaks there may be sent some additional
newline (or backslash and newline) characters.

Example
gap> s4:= "abc\"def\nghi";;
gap> View( s4 ); Print( "\n" );
"abc\"def\nghi"
gap> ViewObj( s4 ); Print( "\n" );
"abc\"def\nghi"
gap> Print0bj( s4 ); Print( "\n" );
"abc\"def\nghi"
gap> Print( s4 ); Print( "\n" );
abc"def
ghi
gap> s := "German uses strange characters: &&if\n";

"German uses strange characters: #&if\n"

gap> Print(s);

German uses strange characters: &o6iif8

gap> Print0Obj(s); Print( "\n" );

"German uses strange characters: \303\244\303\266\303\274\303\237\n"

Example
gap> s := "\007";

l|\007||

gap> Print(s); # rings bell in many terminals

Note that only those line breaks are printed by Print (6.3.4) that are contained in the string (\n
characters, see 27.2), as is shown in the example below.

Example

gap> si;

"Hello world."

gap> Print( sl );

Hello world.gap> Print( si, "\n" );
Hello world.

gap> Print( s1, "\nnext line\n" );
Hello world.

next line

27.2 Special Characters

There are a number of special character sequences that can be used between the singlequotes of a
character literal or between the doublequotes of a string literal to specify characters. They consist of
two characters. The first is a backslash \. The second may be any character. If it is an octal digit
(from O to 7) there must be two more such digits. The meaning is given in the following list
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\n  newline character. This is the character that, at least on UNIX systems, separates lines in a text
file. Printing of this character in a string has the effect of moving the cursor down one line and
back to the beginning of the line.

\ "n
doublequote character. Inside a string a doublequote must be escaped by the backslash, because
it is otherwise interpreted as end of the string.

\ >
singlequote character. Inside a character a singlequote must escaped by the backslash, because
it is otherwise interpreted as end of the character.

\\
backslash character. Inside a string a backslash must be escaped by another backslash, because
it is otherwise interpreted as first character of an escape sequence.

\b
backspace character. Printing this character should have the effect of moving the cursor back
one character. Whether it works or not is system dependent and should not be relied upon.

\r
carriage return character. Printing this character should have the effect of moving the cursor
back to the beginning of the same line. Whether this works or not is again system dependent.

\c
flush character. This character is not printed. Its purpose is to flush the output queue. Usually
GAP waits until it sees a newline before it prints a string. If you want to display a string that
does not include this character use \c.

\XYZ
with X, Y, Z three octal digits. This is translated to the character corresponding to the number X
* 64 + Y x 8 + Z modulo 256. This can be used to specify and store arbitrary binary data
as a string in GAP.

other

For any other character the backslash is simply ignored.

Again, if the line is displayed as result of an evaluation, those escape sequences are displayed in
the same way that they are input.

Only Print (6.3.4), PrintTo (9.7.3), or AppendTo (9.7.3) send the characters directly to the
output stream.

Example
gap> "This is one line.\nThis is another line.\n";

"This is one line.\nThis is another line.\n"
gap> Print( last );
This is one line.

This is another line.

Note in particular that it is not allowed to enclose a newline inside the string. You can use the
special character sequence \n to write strings that include newline characters. If, however, an input



GAP - Reference Manual 351

string is too long to fit on a single line it is possible to continue it over several lines. In this case the last
character of each input line, except the last line must be a backslash. Both backslash and newline
are thrown away by GAP while reading the string. Note that the same continuation mechanism is
available for identifiers and integers, see 6.2.

27.3 Internally Represented Strings

27.3.1 IsStringRep

> IsStringRep(obj) (Representation)
IsStringRep is a special (internal) representation of dense lists of characters. Dense lists of

characters can be converted into this representation using ConvertToStringRep (27.3.2). Note that
calling IsString (27.1.2) does not change the representation.

27.3.2 ConvertToStringRep

> ConvertToStringRep(obj) (function)

If obj is a dense internally represented list of characters then ConvertToStringRep changes
the representation to IsStringRep (27.3.1). This is useful in particular for converting the empty
list [], which usually is in IsPlistRep, to IsStringRep (27.3.1). If obj is not a string then
ConvertToStringRep signals an error.

27.3.3 CopyToStringRep

> CopyToStringRep(obj) (function)

If obj is a dense internally represented list of characters then CopyToStringRep copies obj to a
new object with representation IsStringRep (27.3.1). If obj is not a string then CopyToStringRep
signals an error.

27.3.4 IsEmptyString

> IsEmptyString(str) (function)

IsEmptyString returns true if str is the empty string in the representation IsStringRep
(27.3.1), and false otherwise. Note that the empty list [] and the empty string "" have the same
type, the recommended way to distinguish them is via IsEmptyString. For formatted printing, this
distinction is sometimes necessary.

Example
gap> l:= [1;; IsString( 1 ); IsEmptyString( 1 ); IsEmpty( 1);
true
false
true

gap> 1; ConvertToStringRep( 1 ); 1;
[ ]

nn
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gap> IsEmptyString( 1 ); IsEmptyString( "" ); IsEmptyString( "abc" );
true

true

false

gap> 11:= [ ’a’, ’b’ ]; IsStringRep( 11 ); ConvertToStringRep( 11 );
llabll

false

gap> 11; IsStringRep( 11 );

l|ab||

true

27.3.5 EmptyString

> EmptyString(len) (function)
Returns: a string
> ShrinkAllocationString(str) (function)

Returns: nothing

The function EmptyString returns an empty string in internal representation which has enough
memory allocated for Ien characters. This can be useful for creating and filling a string with a known
number of entries.

The function ShrinkAllocationString gives back to GAPs memory manager the physical
memory which is allocated for the string str in internal representation but not needed by its cur-
rent number of characters.

These functions are intended for saving some of GAPs memory in certain situations,
see the explanations and the example for the analogeous functions EmptyPlist (21.9.1) and
ShrinkAllocationPlist (21.9.1) for plain lists.

27.3.6 CharsFamily
> CharsFamily (global variable)
Each character lies in the family CharsFamily, each nonempty string lies in the collections family

of this family. Note the subtle differences between the empty list [] and the empty string "" when
both are printed.

27.4 Recognizing Characters

27.4.1 IsDigitChar

> IsDigitChar (¢c) (function)

checks whether the character ¢ is a digit, i.e., occurs in the string "0123456789".

27.4.2 IsLowerAlphaChar

> IsLowerAlphaChar(c) (function)
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checks whether the character ¢ is a lowercase alphabet letter, i.e., occurs in the string
"abcdefghijklmnopgrstuvwxyz".

27.4.3 IsUpperAlphaChar

> IsUpperAlphaChar(c) (function)

checks whether the character ¢ is an uppercase alphabet letter, i.e., occurs in the string
"ABCDEFGHIJKLMNOPQRSTUVWXYZ".

27.4.4 IsAlphaChar

> IsAlphaChar ( C) (function)

checks whether the character c is either a lowercase or an uppercase alphabet letter.

27.5 Comparisons of Strings
27.5.1 \= (for two strings)

> \=(stringl, string2) (method)

The equality operator = returns true if the two strings string! and string2 are equal and
false otherwise. The inequality operator <> returns true if the two strings stringl and string?2
are not equal and false otherwise.

Example
gap> "Hello world.\n" = "Hello world.\n";
true
gap> "Hello World.\n" = "Hello world.\n"; # comparison is case sensitive
false
gap> "Hello world." = "Hello world.\n"; # first string has no <newline>
false
gap> "Goodbye world.\n" = "Hello world.\n";
false
gap> [ 7a7’ 'p? ] = "ab";
true

27.5.2 \< (for two strings)

> \<(stringl, string2) (method)

The ordering of strings is lexicographically according to the order implied by the underlying,
system dependent, character set.
Example
gap> "Hello world.\n" < "Hello world.\n"; # the strings are equal
false
gap> # in ASCII capitals range before small letters:
gap> "Hello World." < "Hello world.";
true
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gap> "Hello world." < "Hello world.\n"; # prefixes are always smaller
true

gap> # G comes before H, in ASCII at least:

gap> "Goodbye world.\n" < "Hello world.\n";

true

Strings can be compared via < with certain GAP objects that are not strings, see 4.12 for the
details.
27.6 Operations to Produce or Manipulate Strings

For the possibility to print GAP objects to strings, see 10.7.

27.6.1 DisplayString

> DisplayString ( Obj) (operation)

Returns a string which could be used to display the object obj in a nice, formatted way which
is easy to read (but might be difficult for machines to understand). The actual format used for this
depends on the type of obj. Each method should include a newline character as last character. Note
that no method for DisplayString may delegate to any of the operations Display (6.3.6), ViewObj
(6.3.5) or Print0bj (6.3.5) to avoid circular delegations.

27.6.2 DEFAULTDISPLAYSTRING

> DEFAULTDISPLAYSTRING (global variable)

This is the default value for DisplayString (27.6.1).

27.6.3 ViewString

> ViewString(obj) (operation)

ViewString returns a string which would be displayed by ViewObj (6.3.5) for an object. Note
that no method for ViewString may delegate to any of the operations Display (6.3.6), ViewObj
(6.3.5), DisplayString (27.6.1) or Print0bj (6.3.5) to avoid circular delegations.

27.6.4 DEFAULTVIEWSTRING

> DEFAULTVIEWSTRING (global variable)

This is the default value for ViewString (27.6.3).

27.6.5 PrintString

> PrintString(obj[, lengthl]) (operation)
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PrintString returns a representation of obj, which may be an object of arbitrary type, as a
string. This string should approximate as closely as possible the character sequence you see if you
print obj using Print0bj (6.3.5).

If length is given it must be an integer. The absolute value gives the minimal length of the result.
If the string representation of obj takes less than that many characters it is filled with blanks. If
length is positive it is filled on the left, if 1ength is negative it is filled on the right.

In the two argument case, the string returned is a new mutable string (in particular not a part of
any other object); it can be modified safely, an% MakeImmutable (12.6.4) may be safely applied to it.

xample
gap> PrintString(123) ;PrintString([1,2,3]);
l|123l|
ll[ 1, 2’ 3 ]ll

PrintString is entitled to put in additional control characters \< (ASCII 1) and \> (ASCII 2) that
allow proper line breaks. See StripLineBreakCharacters (27.6.7) for a function to get rid of these
control characters.

27.6.6 String

> String(obj[, lengthl]) (attribute)

String returns a representation of obj, which may be an object of arbitrary type, as a string. This
string should approximate as closely as possible the character sequence you see if you print obj.

If length is given it must be an integer. The absolute value gives the minimal length of the result.
If the string representation of obj takes less than that many characters it is filled with blanks. If
length is positive it is filled on the left, if Iength is negative it is filled on the right.

In the two argument case, the string returned is a new mutable string (in particular not a part of

any other object); it can be modified safely, an(Ei Mak?L Immutable (12.6.4) may be safely applied to it.
xample

gap> String(123);String([1,2,3]);
||123||
ll[ 1’ 2’ 3 ]n

String must not put in additional control characters \< (ASCII 1) and \> (ASCII 2) that allow proper
line breaks.

27.6.7 StripLineBreakCharacters

> StripLineBreakCharacters(st) (function)

This function takes a string st as an argument and removes all control characters \< (ASCII 1)
and \> (ASCII 2) which are used by PrintString (27.6.5) and Print0Obj (6.3.5) to ensure proper
line breaking. A new string with these characters removed is returned.

27.6.8 HexStringInt

> HexStringInt(int) (function)

returns a string which represents the integer int with hexa-decimal digits (using A to F as digits
10 to 15). The inverse translation can be achieved with IntHexString (27.8.1).
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27.6.9 StringPP
> StringPP(int) (function)

returns a string representing the prime factor decomposition of the integer int.
Example

gap> StringPP(40320);
MO 2KEHT

27.6.10 WordAlp

> WordAlp(alpha, nr) (function)

returns a string that is the nr-th word over the alphabet list alpha, w.r.t. word length and lexico-
graphical order. The empty word is WordAlp( alpha, 0 ).

Example
gap> List([0..5],i->WordAlp("abc",i));
I: |l|l’ |lall’ |lbl|’ |ICI|’ |laal|’ llabll ]
27.6.11 LowercaseString
> LowercaseString(string) (function)

returns a lowercase version of the string string, that is, a string in which each uppercase alphabet
character is replaced by the corresponding lowercase character.
Example
gap> LowercaseString("This Is UpperCase");
"this is uppercase"

27.6.12 SplitString

> SplitString(string, seps[, wspacel) (operation)

This function accepts a string string and lists seps and, optionally, wspace of characters. Now
string is split into substrings at each occurrence of a character in seps or wspace. The characters
in wspace are interpreted as white space characters. Substrings of characters in wspace are treated
as one white space character and they are ignored at the beginning and end of a string.

Both arguments seps and wspace can be single characters.

Each string in the resulting list of substring does not contain any characters in seps or wspace.

A character that occurs both in seps and wspace is treated as a white space character.

A separator at the end of a string is interpreted as a terminator; in this case, the separator does not
produce a trailing empty string. Also see Chomp (27.6.18).

Example
gap> SplitString( "substrl:substr2::substr4", ":" );
[ "substri", "substr2", "", "substr4" ]
gap> SplitString( "a;b;c;d;", ";" );
[ |lal|, Hbll, "C", Hdll ]
gap> SplitString( "/home//user//dir/", ", "/" );
[ "home" s lluser" , lldir" ]
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27.6.13 ReplacedString

> ReplacedString(string, old, new) (function)
replaces occurrences of the string old in string by new, starting from the left and always re-

placing the first occurrence. To avoid infinite recursion, characters which have been replaced already,
are not subject to renewed replacement.

Example
gap> ReplacedString("abacab","a","z1");
"zlbzlczlb"
gap> ReplacedString("ababa", "aba",'c");
"cba"
gap> ReplacedString("abacab","a","ba");
"babbacbab"

27.6.14 NormalizeWhitespace

> NormalizeWhitespace(string) (function)

This function changes the string string in place. The characters (space), \n, \r and \t are
considered as white space. Leading and trailing white space characters in string are removed.
Sequences of white space characters between other characters are replaced by a single space character.

See NormalizedWhitespace (27.6.15) for a non-destructive version.

Example
gap> s :=" x y \n\n\t\r z\n \n";

" x y \n\n\t\r z\n \n"

gap> NormalizeWhitespace(s);

gap> s;

IIX y le

27.6.15 NormalizedWhitespace

> NormalizedWhitespace(str) (function)

This function returns a copy of string str to which NormalizeWhitespace (27.6.14) was ap-
plied.
27.6.16 RemoveCharacters

> RemoveCharacters(string, chars) (function)

Both arguments must be strings. This function efficiently removes all characters given in chars
from string.

Example
gap> s := "ab c\ndef\n\ng h i .\n";
"ab c\ndef\n\ng h i .\n"
gap> RemoveCharacters(s, " \n\t\r"); # remove all whitespace characters
gap> s;
"abcdefghi."




GAP - Reference Manual 358

27.6.17 JoinStringsWithSeparator

> JoinStringsWithSeparator(list[, sep]) (function)

joins 1ist (a list of strings) after interpolating sep (or "," if the second argument is omitted)
between each adjacent pair of strings; sep should be a string.

Example

gap> list := List([1..10], String);
[ "1", "2", |13l|, |l4l|’ |15l|’ l|6l|’ l|7|l’ l|8|l’ l|9|l’ "10" ]
gap> JoinStringsWithSeparator(list);
"1,2,3,4,5,6,7,8,9,10"
gap> JoinStringsWithSeparator(["The", "quick", "brown", "fox"], " ");
"The quick brown fox"
gap> new:= JoinStringsWithSeparator(["a", "b", "c", "d"], ",\n ");
"a,\n b,\n c,\n d"
gap> Print (" ", new, "\n");

a,

b’

C,

d

27.6.18 Chomp

> Chomp (str) (function)

Like the similarly named Perl function, Chomp removes a trailing newline character (or carriage-
return line-feed couplet) from a string argument str if present and returns the result. If str is not a
string or does not have such trailing character(s) it is returned unchanged. This latter property means
that Chomp is safe to use in cases where one is manipulating the result of another function which might
sometimes return fail.

Example
gap> Chomp ("The quick brown fox jumps over the lazy dog.\n");
"The quick brown fox jumps over the lazy dog."

gap> Chomp("The quick brown fox jumps over the lazy dog.\r\n");
"The quick brown fox jumps over the lazy dog."

gap> Chomp ("The quick brown fox jumps over the lazy dog.");
"The quick brown fox jumps over the lazy dog."

gap> Chomp(fail);

fail

gap> Chomp(32);

32

Note: Chomp only removes a trailing newline character from str. If your string contains several
newline characters and you really want to split str into lines at the newline characters (and remove
those newline characters) then you should use SplitString (27.6.12), e.g.

Example
gap> str := "The quick brown fox\njumps over the lazy dog.\n";
"The quick brown fox\njumps over the lazy dog.\n"

gap> SplitString(str, "", "\n");
[ "The quick brown fox'", "jumps over the lazy dog." ]
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gap> Chomp(str);
"The quick brown fox\njumps over the lazy dog."

The following two functions convert basic strings to lists of numbers and vice versa. They are
useful for examples of text encryption.

27.6.19 NumbersString

> NumbersString(s, m[, tablel) (function)

NumbersString takes a string message s and returns a list of integers, each not exceeding the
integer m that encode the message using the scheme A = 11, B = 12 and so on (and converting lower

case to upper case). If a list of characters is given in table, it is used instead for encoding).

Example

gap> l:=NumbersString("Twas brillig and the slithy toves",1000000) ;

[ 303311, 291012, 281922, 221917, 101124, 141030, 181510, 292219,
301835, 103025, 321529 ]

27.6.20 StringNumbers

> StringNumbers(l, m[, tablel) (function)

StringNumbers takes a list 1 of integers that was encoded using NumbersString (27.6.19) and
the size integer m, and returns a message string, using the scheme A = 11, B =12 and so on. If a list

of characters is given in table, it is used instead for decoding).
Example

gap> StringNumbers(1,1000000);
"TWAS BRILLIG AND THE SLITHY TOVES"

27.7 Character Conversion

The following functions convert characters in their internal integer values and vice versa. Note that
the number corresponding to a particular character might depend on the system used. While most
systems use an extension of ASCII, in particular character values outside the range [ 32 .. 126 ]
might differ between architectures.

27.7.1 IntChar

> IntChar (char) (function)

returns an integer value in the range [ 0 .. 255 ] that corresponds to char.

27.7.2 Charlnt

> CharInt(int) (function)

returns a character that corresponds to the integer value int, which must be in the range [ 0
255 1].
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Example

gap> c:=CharInt(65);
7A7

gap> IntChar(c);

65

27.7.3 SIntChar

> SIntChar (char) (function)

returns a signed integer value in the range [ -128 .. 127 ] that corresponds to char.

27.7.4 CharSInt

> CharSInt(int) (function)
returns a character which corresponds to the signed integer value int, which must be in the range
[ -128 .. 127 1.

The signed and unsigned integer functions behave the same for values in therange [ 0 .. 127

Example

gap> SIntChar(c);

65

gap> c:=CharSInt(-20);;

gap> SIntChar(c);

-20

gap> IntChar(c);

236

gap> SIntChar(CharInt(255));
-1

27.8 Operations to Evaluate Strings

27.8.1 Int (for strings)

> Int(str) (attribute)
> Rat(str) (attribute)
> IntHexString(str) (function)

return either an integer (Int and IntHexString), or a rational (Rat) as represented by the string
str. Int returns fail if non-digit characters occur in str. For Rat, the argument string may start
with the sign character -, followed by either a sequence of digits or by two sequences of digits that
are separated by one of the characters / or ., where the latter stands for a decimal dot. (The methods
only evaluate numbers but do not perform arithmetic!)

IntHexString evaluates an integer written with hexa-decimal digits. Here the letters a-f or
A-F are used as digits 10 to 15. An error occurs when a wrong character is found in the string.
This function can be used (together with HexStringInt (27.6.8)) for efficiently storing and reading
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large integers from respectively into GAP. Note that the translation between integers and their hexa-
decimal representation costs linear computation time in terms of the number of digits, while translation
from and into decimal representation needs substantial computations. If stz is not in compact string
representation then ConvertToStringRep (27.3.2) is applied to it as side effect.

Example

gap> Int("12345")+1;
12346

gap> Int("123/45");

fail

gap> Int("1+2");

fail

gap> Int("-12");

-12

gap> Rat("123/45");
41/15

gap> Rat( "123.45" );
2469/20

gap> IntHexString("-abcdef0123456789") ;
-12379813738877118345
gap> HexStringInt (last);
"-ABCDEF0123456789"

27.8.2 Ordinal

> Ordinal(n) (function)

returns the ordinal of the integer n as a string.
Example
gap> Ordinal(2); Ordinal(21); Ordinal(33); Ordinal(-33);
n 2ndll

n 2 1 St n

"33rd"

"-33rd"

27.8.3 EvalString

> EvalString(expr) (function)

passes the string expr through an input text stream so that GAP interprets it, and returns the
result.

Example
gap> a:=10;
10
gap> EvalString("a~2");
100

EvalString is intended for single expressions. A sequence of commands may be interpreted by
using the functions InputTextString (10.7.1) and ReadAsFunction (10.3.2) together; see 10.3 for
an example.
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If EvalString is used inside a function, then it doesn’t know about the local variables and the
arguments of the function. A possible workaround is to define global variables in advance, and then
to assign the values of the local variables to the global ones, like in the example below.

Example
gap> global_a := 0;;
gap> global_b := 0;;
gap> example := function ( local_a )
> local 1local_b;
> local_b := b;
> global_a := local_a;
> global_b := local_b;
> return EvalString( "global_a * global_b" );
> end;;
gap> example( 2 );
10
27.8.4 CrcString
> CrcString(str) (function)

Returns: an integer
This function computes a cyclic redundancy check number from a string str. See also CrcFile

(9.7.7).

Example
gap> CrcString("GAP example string");
-50451670

27.9 Calendar Arithmetic

All calendar functions use the Gregorian calendar.

27.9.1 DaysInYear

> DaysInYear(year) (function)

returns the number of days in the year year.

27.9.2 DaysInMonth

> DaysInMonth(month, year) (function)

returns the number of days in month number month of year, and fail if month is not in the valid
range.
Example

gap> DaysInYear(1998);
365

gap> DaysInMonth(3,1998);
31
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27.9.3 DMYDay

> DMYDay (day) (function)

converts a number of days, starting 1-Jan-1970, to a list [ day, month, year ] in Gregorian
calendar counting.

2794 DayDMY

> DayDMY ( dmy) (function)

returns the number of days from 01-Jan-1970 to the day given by dmy, which must be a list of the
form [ day, month, year ] in Gregorian calendar counting. The result is fail on input outside
valid ranges.

Note that this makes not much sense for early dates like: before 1582 (no Gregorian calendar at
all), or before 1753 in many English speaking countries or before 1917 in Russia.

27.9.5 WeekDay

> WeekD ay (date) (function)

returns the weekday of a day given by date, which can be a number of days since 1-Jan-1970 or
alist [ day, month, year ].

27.9.6 StringDate

> StringDate(date) (function)

converts date to a readable string. date can be a number of days since 1-Jan-1970 or a list [
day, month, year ].
Example
gap> DayDMY([1,1,1970]) ;DayDMY([2,1,1970]);
0
1
gap> DMYDay (12345) ;
[ 20, 10, 2003 ]
gap> WeekDay([11,3,1998]);
"Wed"
gap> StringDate([11,3,1998]);
"11-Mar-1998"

27.9.7 HMSMSec

> HMSMSec (msec) (function)

converts a number msec of milliseconds into a list [ hour, min, sec, milli ].
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27.9.8 SecHMSM

> SecHMSM (hmsm) (function)

is the reverse of HMSMSec (27.9.7).

27.9.9 StringTime

> StringTime(time) (function)

converts time (given as a number of milliseconds or a list [ hour, min, sec, milli ])toa
readable string.

Example
gap> HMSMSec(Factorial(10));

[ 1, 0, 28, 800 ]

gap> SecHMSM([1,10,5,13]);
4205013

gap> StringTime([1,10,5,13]);
" 1:10:05.013"

27.9.10 SecondsDMYhms

> SecondsDMYhms (DMYhms) (function)

returns the number of seconds from 01-Jan-1970, 00:00:00, to the time given by DMYhms, which
must be a list of the form [ day, month, year, hour, minute, second ]. The remarks on the
Gregorian calendar in the section on DayDMY (27.9.4) apply here as well. The last three arguments
must lie in the appropriate ranges.

27.9.11 DMYhmsSeconds

> DMYhmsSeconds (secs) (function)

This is the inverse function to SecondsDMYhms (27.9.10).
Example
gap> SecondsDMYhms([ 9, 9, 2001, 1, 46, 40 1);
1000000000

gap> DMYhmsSeconds(-1000000000) ;

[ 24, 4, 1938, 22, 13, 20 ]

27.10 Obtaining LaTeX Representations of Objects

For the purpose of generating I&TEX source code with GAP it is recommended to add new functions
which will print the ISTEX source or return IATEX strings for further processing.

An alternative approach could be based on methods for the default IATEX representation for each
appropriate type of objects. However, there is no clear notion of a default IXTgX code for any non-
trivial mathematical object; moreover, different output may be required in different contexts.
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While customisation of such an operation may require changes in a variety of methods that may be
distributed all over the library, the user will have a clean overview of the whole process of IAIEX code
generation if it is contained in a single function. Furthermore, there may be kinds of objects which
are not detected by the method selection, or there may be a need in additional parameters specifying
requirements for the output.

This is why having a special purpose function for each particular case is more suitable. GAP
provides several functions that produce IATEX strings for those situations where this is nontrivial and
reasonable. A useful example is LaTeXStringDecompositionMatrix (71.11.5) from the GAP li-
brary, others can be found entering ?LaTeX at the GAP prompt. Package authors are encouraged to
add an index entry LaTeX to the documentation of all I&TEX string producing functions. This way,
entering ?LaTeX will give an overview of all documented functionality in this direction.



Chapter 28

Dictionaries and General Hash Tables

People and computers spend a large amount of time with searching. Dictionaries are an abstract data
structure which facilitates searching for objects. Depending on the kind of objects the implementation
will use a variety of possible internal storage methods that will aim to provide the fastest possible
access to objects. These internal methods include

Hash Tables
for objects for which a hash function has been defined.

Direct Indexing
if the domain is small and cheaply enumerable

Sorted Lists
if a total order can be computed easily

Plain lists
for objects for which nothing but an equality test is available.

28.1 Using Dictionaries

The standard way to use dictionaries is to first create a dictionary (using NewDictionary (28.2.1),
and then to store objects (and associated information) in it and look them up.

For the creation of objects the user has to make a few choices: Is the dictionary only to be used
to check whether objects are known already, or whether associated information is to be stored with
the objects. This second case is called a lookup dictionary and is selected by the second parameter of
NewDictionary (28.2.1).

The second choice is to indicate which kind of objects are to be stored. This choice will decide
the internal storage used. This kind of objects is specified by the first parameter to NewDictionary
(28.2.1), which is a “sample” object.

In some cases however such a sample object is not specific enough. For example when storing
vectors over a finite field, it would not be clear whether all vectors will be over a prime field or over
a field extension. Such an issue can be resolved by indicating in an (optional) third parameter to
NewDictionary (28.2.1) a domain which has to be a collection that will contain all objects to be used
with this dictionary. (Such a domain may also be used internally to decide that direct indexing can be
used).

366
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The reason for this choice of giving two parameters is that in some cases no suitable collection of
objects has been defined in GAP - for example for permutations there is no object representing the
symmetric group on infinitely many points.

Once a dictionary has been created, it is possible to use Representations0f0Object (13.4.1) to
check which representation is used by GAP.

In the following example, we create a dictionary to store permutations with associated informa-
tion.
Example
gap> d:=NewDictionary((1,2,3),true);;
gap> AddDictionary(d, (1,2),1);
gap> AddDictionary(d, (5,6),9);
gap> AddDictionary(d, (4,7),2);
gap> LookupDictionary(d, (5,6));
9
gap> LookupDictionary(d, (5,7));
fail

A typical example of this use would be in an orbit algorithm. The dictionary would be used to store
the elements known in the orbit together with their respective orbit positions.

We observe that this dictionary is stored internally by a sorted list. On the other hand, if we have
an explicit, sorted element list, direct indexing is to be used.
Example

gap> Representations0f0bject(d);

[ "IsComponentObjectRep", "IsDictionaryDefaultRep",
"IsListDictionary", "IsListLookupDictionary", "IsSortDictionary",
"IsSortLookupDictionary" ]

gap> d:=NewDictionary((1,2,3),true,Elements(SymmetricGroup(5)));;

gap> Representations0f0bject(d);

[ "IsComponentObjectRep", "IsDictionaryDefaultRep",
"IsPositionDictionary", "IsPositionDictionary" ]

(Just indicating SymmetricGroup(5) as a third parameter would still keep the first storage method,
as indexing would be too expensive if no explicit element list is known.)

The same effect happens in the following example, in which we work with vectors: Indicating
only a vector only enables sorted index, as it cannot be known whether all vectors will be defined over
the prime field. On the other hand, providing the vector space (and thus limiting the domain) enables
the use of hashing (which will be faster).

Example

gap> v:=GF(2)"7;;

gap> d:=NewDictionary(Zero(v),true);;

gap> Representations0f0bject(d);

[ "IsComponentObjectRep", "IsDictionaryDefaultRep",
"IsListDictionary", "IsListLookupDictionary", "IsSortDictionary",
"IsSortLookupDictionary" ]

gap> d:=NewDictionary(Zero(v),true,v);;

gap> Representations0f0bject(d);

[ "IsComponentObjectRep", "IsDictionaryDefaultRep",
"IsPositionDictionary", "IsPositionDictionary" ]
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28.2 Dictionaries

This section contains the formal declarations for dictionaries. For information on how to use them,
please refer to the previous section 28.1. There are several ways how dictionaries are implemented:
As lists, as sorted lists, as hash tables or via binary lists. A user however will just have to call
NewDictionary (28.2.1) and obtain a “suitable” dictionary for the kind of objects she wants to
create. It is possible however to create hash tables (see 28.4) and dictionaries using binary lists
(see DictionaryByPosition (28.3.1)).

The use of two objects, obj and objcoll to parametrize the objects a dictionary is able to store
might look confusing. However there are situations where either of them might be needed:

The first situation is that of objects, for which no formal “collection object” has been defined. A
typical example here might be subspaces of a vector space. GAP does not formally define a “Grass-
mannian” or anything else to represent the multitude of all subspaces. So it is only possible to give
the dictionary a “sample object”.

The other situation is that of an object which might represent quite varied domains. The permuta-
tion (1,10%) might be the nontrivial element of a cyclic group of order 2, it might be a representative
of S;gs. In the first situation the best approach might be just to have two entries for the two possible
objects, in the second situation a much more elaborate approach might be needed.

An algorithm that creates a dictionary will usually know a priori, from what domain all the objects
will be, giving this domain permits to use a more efficient dictionary.

This is particularly true for vectors. From a single vector one cannot decide whether a calculation
will take place over the smallest field containing all its entries or over a larger field.

28.2.1 NewDictionary

> NewDictionary(obj, look[, objcolll) (function)

creates a new dictionary for objects such as obj. If objcoll is given the dictionary will be for
objects only from this collection, knowing this can improve the performance. If objcoll is given,
obj may be replaced by false, i.e. no sample object is needed.

The function tries to find the right kind of dictionary for the basic dictionary functions to be quick.
If 1ook is true, the dictionary will be a lookup dictionary, otherwise it is an ordinary dictionary.

28.3 Dictionaries via Binary Lists

As there are situations where the approach via binary lists is explicitly desired, such dictionaries can
be created deliberately.

28.3.1 DictionaryByPosition

> DictionaryByPosition(list, lookup) (function)

creates a new (lookup) dictionary which uses PositionCanonical (21.16.3) in 1ist for in-
dexing. The dictionary will have an entry dict!.blist which is a bit list corresponding to 1ist
indicating the known values. If 1ook is true, the dictionary will be a lookup dictionary, otherwise it
is an ordinary dictionary.
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28.3.2 IsDictionary

> IsDictionary(obj) (Category)
A dictionary is a growable collection of objects that permits to add objects (with associated values)

and to check whether an object is already known.

28.3.3 IsLookupDictionary

> IsLookupDictionary(obj) (Category)

A lookup dictionary is a dictionary, which permits not only to check whether an object is con-
tained, but also to retrieve associated values, using the operation LookupDictionary (28.3.6).

28.3.4 AddDictionary

> AddDict ionary(di ct, key[, vall) (operation)

adds key to the dictionary dict, storing the associated value val in case dict is a lookup
dictionary. If key is not an object of the kind for which the dictionary was specified, or if key is
known already to dict, the results are unpredictable.

28.3.5 KnowsDictionary

> KnowsDictionary(dict, key) (operation)

checks, whether key is known to the dictionary dict, and returns true or false accordingly.
key must be an object of the kind for which the dictionary was specified, otherwise the results are
unpredictable.

28.3.6 LookupDictionary

> LookupDictionary(dict, key) (operation)

looks up key in the lookup dictionary dict and returns the associated value. If key is not known
to the dictionary, fail is returned.

28.4 General Hash Tables

These sections describe some particularities for hash tables. These are intended mainly for extend-
ing the implementation - programs requiring hash functionality ought to use the dictionary interface
described above.

We hash by keys and also store a value. Keys cannot be removed from the table, but the corre-
sponding value can be changed. Fast access to last hash index allows you to efficiently store more
than one array of values —this facility should be used with care.

This code works for any kind of object, provided you have a DenseIntKey (28.5.1) method to
convert the key into a positive integer. This method should ideally be implemented efficiently in the
core.
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Note that, for efficiency, it is currently impossible to create a hash table with non-positive integers.

28.5 Hash keys

The crucial step of hashing is to transform key objects into integers such that equal objects produce
the same integer.

The actual function used will vary very much on the type of objects. However GAP provides
already key functions for some commonly encountered objects.

28.5.1 DenselntKey
> DenselIntKey(objcoll, obj) (operation)
returns a function that can be used as hash key function for objects such as obj in the collection
objcoll. Typically, objcoll will be a large domain. If the domain is not available, it can be given
as false in which case the hash key function will be determined only based on obj. (For a further
discussion of these two arguments see NewDictionary (28.2.1)).
The function returned by DenseIntKey is guaranteed to give different values for different objects.
If no suitable hash key function has been predefined, fail is returned.
28.5.2 SparselntKey
> SparselntKey(objcoll, obj) (operation)
returns a function that can be used as hash key function for objects such as obj in the collection

objcoll. In contrast to DenseIntKey (28.5.1), the function returned may return the same key value
for different objects. If no suitable hash key function has been predefined, fail is returned.

28.6 Dense hash tables

Dense hash tables are used for hashing dense sets without collisions, in particular integers. Keys are
stored as an unordered list and values as an array with holes. The position of a value is given by the
function returned by DenseIntKey (28.5.1), and so KeyIntDense must be one-to-one.

28.6.1 DenseHashTable

> DenseHashTable() (function)

Construct an empty dense hash table. This is the only correct way to construct such a table.

28.7 Sparse hash tables

Sparse hash tables are used for hashing sparse sets. Stores keys as an array with fail denoting an empty
position, stores values as an array with holes. Uses the result of calling SparseIntKey (28.5.2)) of
the key. DefaultHashLength is the default starting hash table length; the table is doubled when it
becomes half full.
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In sparse hash tables, the integer obtained from the hash key is then transformed to an index
position by taking it modulo the length of the hash array.

28.7.1 SparseHashTable

> SparseHashTable([intkeyfun]) (function)

Construct an empty sparse hash table. This is the only correct way to construct such a table. If the
argument intkeyfun is given, this function will be used to obtain numbers for the keys passed to it.

28.7.2 DoubleHashArraySize

> DoubleHashArraySize (hash) (function)

Double the size of the hash array and rehash all the entries. This will also happen automatically
when the hash array is half full.



Chapter 29

Records

Records are next to lists the most important way to collect objects together. A record is a collection of
components. BEach component has a unique name, which is an identifier that distinguishes this com-
ponent, and a value, which is an object of arbitrary type. We often abbreviate value of a component to
element. We also say that a record contains its elements. You can access and change the elements of
a record using its name.

Record literals are written by writing down the components in order between “rec(” and “)”,
and separating them by commas “,”. Each component consists of the name, the assignment operator
“:=", and the value. The empty record, i.e., the record with no components, is written as rec().

Example
gap> rec( a := 1, b := "2" ); # a record with two components
rec( a :=1, b := "2" )
gap> rec( a := 1, b :=rec( c :=2 ) ); # record may contain records
rec(a :=1, b :=rec(c :=2) )

We may use the Display (6.3.6) function to illustrate the hierarchy of the record components.

Example
gap> Display( last );
rec(
a:=1,
b := rec(
c:=2))

Records usually contain elements of various types, i.e., they are usually not homogeneous like
lists.

29.1 IsRecord and RecNames

29.1.1 IsRecord

> ISReCOI‘d(Obj) (Category)
> IsRecordCollection(obj) (Category)
> IsRecordCollColl(obj) (Category)

372
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Example
gap> IsRecord( rec( a := 1, b :=2) );
true

gap> IsRecord( IsRecord );

false

29.1.2 RecNames

> RecNames(record) (attribute)

returns a list of strings corresponding to the names of the record components of the record record.

Example

gap> r :=rec( a := 1, b := 2 );;
gap> Set(RecNames( r )); # ’Set’ because ordering depends on GAP session
I: Ilall s Ilbll :l

Note that you cannot use the string result in the ordinary way to access or change a record com-
ponent. You can use the record . (name) construct for that, see 29.2 and 29.3.

29.2 Accessing Record Elements

r .name
The above construct evaluates to the value of the record component with the name name in the

record r. Note that the name is not evaluated, i.e. it is taken literal.

Example

gap> r :=rec( a :=1, b := 2 );;
gap> r.a;

1

gap> r.b;

2

r. (name)

This construct is similar to the above construct. The difference is that the second operand name is
evaluated. It must evaluate to a string or an integer otherwise an error is signalled. The construct then
evaluates to the element of the record r whose name is, as a string, equal to name.

Example
gap> old := rec( a := 1, b := 2 );;
gap> new := rec();
rec( )

gap> for i in RecNames( old ) do
> new.(i) := old.(i);

> od;
gap> Display( new );
rec(

a :=1,

b :=2)
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29.3 Record Assignment

r.name := obj

The record assignment assigns the object obj, which may be an object of arbitrary type, to the
record component with the name name, which must be an identifier, of the record r. That means that
accessing the element with name name of the record r will return obj after this assignment. If the
record r has no component with the name name, the record is automatically extended to make room
for the new component.

Example
gap> r :=rec( a =1, b := 2 );;

gap> r.a := 10;;

gap> Display( r );

rec(
a := 10,
b :=2)

gap> r.c := 3;;
gap> Display( r );

rec(
a := 10,
b = 2,
c :=3)

Note that assigning to a record changes the record.
The function IsBound (29.6.1) can be used to test if a record has a component with a certain
name, the function Unbind (29.6.2) can be used to remove a component with a certain name again.

Example

gap> IsBound(r.a);
true
gap> IsBound(r.d);
false
gap> Unbind(r.b);
gap> Display( r );

rec(

a := 10,

c :=3)
r.(name) := obj

This construct is similar to the above construct. The difference is that the second operand name is
evaluated. It must evaluate to a string or an integer otherwise an error is signalled. The construct then
assigns obj to the record component of the record r whose name is, as a string, equal to name.

29.4 Identical Records

With the record assignment (see 29.3) it is possible to change a record. This section describes the
semantic consequences of this fact which are essentially the same as for lists (see 21.6).

Example

).

r :=rec( a := ;
, b :=2);

rec( a :

1
1

-
I
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The second assignment does not change the first record, instead it assigns a new record to the vari-
able r. On the other hand, in the following example the record is changed by the second assignment.
Example

To understand the difference first think of a variable as a name for an object. The important point
is that a record can have several names at the same time. An assignment var := r means in this
interpretation that var is a name for the object r. At the end of the following example r2 still has the
value rec( a := 1 ) as this record has not been changed and nothing else has been assigned to r2.

Example
rl :=rec(a :=1);
r2 :=ri;
rl :=rec(a :=1, b :=2 );

But after the following example the record for which r2 is a name has been changed and thus the
value of r2isnowrec( a := 1, b := 2 ).

Example
rl :=recCa :=1);
r2 :=ri;
ri.b := 2;

We shall say that two records are identical if changing one of them by a record assignment also
changes the other one. This is slightly incorrect, because if two records are identical, there are actually
only two names for one record. However, the correct usage would be very awkward and would only
add to the confusion. Note that two identical records must be equal, because there is only one records
with two different names. Thus identity is an equivalence relation that is a refinement of equality.

Let us now consider under which circumstances two records are identical.

If you enter a record literal then the record denoted by this literal is a new record that is not
identical to any other record. Thus in the following example r1 and r2 are not identical, though they
are equal of course.

Example
rl := rec( a :=
r2 :=rec( a :

1]
1]
[N
N NS
. e

Also in the following example, no records in the list 1 are identical.
Example

1:=[1;
for i in [1..10] do

1[i] := rec( a :=1 );
od;

If you assign a record to a variable no new record is created. Thus the record value of the variable
on the left hand side and the record on the right hand side of the assignment are identical. So in the
following example r1 and r2 are identical records.
Example

rl :=rec( a :=1);
r2 :=ri;
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If you pass a record as argument, the old record and the argument of the function are identical.
Also if you return a record from a function, the old record and the value of the function call are
identical. So in the following example r1 and r2 are identical records.

Example

rl :=rec( a :=1);
f := function ( r ) return r; end;
r2 := f(rl1);

The functions StructuralCopy (12.7.2) and ShallowCopy (12.7.1) accept a record and return a
new record that is equal to the old record but that is not identical to the old record. The difference
between StructuralCopy (12.7.2) and ShallowCopy (12.7.1) is that in the case of ShallowCopy
(12.7.1) the corresponding components of the new and the old records will be identical, whereas in
the case of StructuralCopy (12.7.2) they will only be equal. So in the following example r1 and r2
are not identical records.

Example

rl :
r2 :

rec( a :=1);
ShallowCopy( rl );

If you change a record it keeps its identity. Thus if two records are identical and you change
one of them, you also change the other, and they are still identical afterwards. On the other hand,
two records that are not identical will never become identical if you change one of them. So in the
following example both r1 and r2 are changed, and are still identical.

Example
rl :=rec(a :=1);
r2 :=ri;
rli.b := 2;

29.5 Comparisons of Records

recl = rec2

recl <> rec2

Two records are considered equal, if for each component of one record the other record has a
component of the same name with an equal value and vice versa.

Example
gap> rec( a :=1, b :=2) =rec( b =2, a :=1);
true
gap> rec( a := 1, b :=2) =rec(a =2, b :=1);
false
gap> rec( a :=1 ) =rec(a:=1, b :=2);
false
gap> rec( a := 1) = 1;
false

recl < rec2

recl <= rec2

To compare records we imagine that the components of both records are sorted according to their
names (the sorting depends on the GAP session, more precisely the order in which component names
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were first used). Then the records are compared lexicographically with unbound elements considered
smaller than anything else. Precisely one record rec? is considered less than another record rec2
if rec2 has a component with name name2 and either rec1 has no component with this name or
recl .name2 < rec2.name2 and for each component of rec! with name namel < name2 rec2
has a component with this name and rec! .namel = rec2.namel.

Example
gap> rec( axy := 1, bxy := 2 ) < rec( bxy := 2, axy := 1 ); # are equal
false
gap> rec( axy := 1 ) < rec( axy := 1, bxy := 2 ); # unbound is < 2
true

gap> # in new session the .axy components are compared first
gap> rec( axy := 1, bxy := 2 ) <rec( axy := 2, bxy :=0 ); # 1< 2

true

gap> rec( axy := 1 ) <rec( axy := 0, bxy :=2 ); #0< 1

false

gap> rec( bxy := 1 ) < rec( bxy := 0, axy := 2 ); # unbound is < 2
true

29.6 IsBound and Unbind for Records

29.6.1 IsBound (for a record component)

> IsBound(r.name) (operation)

IsBound returns true if the record r has a component with the name name (which must be an

identifier) and false otherwise. r must evaluate to a record, otherwise an error is signalled.
Example

gap> r :=rec( a :=1, b := 2 );;
gap> IsBound( r.a );

true

gap> IsBound( r.c );

false

29.6.2 Unbind (unbind a record component)

> Unbind (r . name) (operation)

Unbind deletes the component with the name name in the record r. That is, after execution of
Unbind, r no longer has a record component with this name. Note that it is not an error to unbind a

nonexisting record component. r must evaluate to a record, otherwise an error is signalled.
Example

gap> r :=rec( a :=1, b 1= 2 );;
gap> Unbind( r.a ); r;

rec( b :=2)

gap> Unbind( r.c ); r;

rec( b :=2)

Note that IsBound (29.6.1) and Unbind are special in that they do not evaluate their argument,
otherwise IsBound (29.6.1) would always signal an error when it is supposed to return false and
there would be no way to tell Unbind which component to remove.
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29.7 Record Access Operations

Internally, record accesses are done using the operations listed in this section. For the records imple-
mented in the kernel, kernel methods are provided for all these operations but otherwise it is possible
to install methods for these operations for any object. This permits objects to simulate record behavior.

To save memory, records do not store a list of all component names, but only numbers identifying
the components. There numbers are called RNams. GAP keeps a global list of all RNams that are
used and provides functions to translate RNams to strings that give the component names and vice
versa.

29.7.1 NameRNam

> NameRNam(nr) (function)

returns a string representing the component name corresponding to the RNam nr.

29.7.2 RNamObj (for a string)

> RNamObj (str) (function)
> RNamObj (int) (function)

returns a number (the RNam) corresponding to the string str. It is also possible to pass a positive
integer int in which case the decimal expansion of int is used as a string.

Example
gap> NameRNam(798) ;

"BravaisSupergroups"

gap> RNamObj ("blubberflutsch");

2075

gap> NameRNam(last);

"blubberflutsch"

The correspondence between strings and RNams is not predetermined ab initio, but RNams are
assigned to component names dynamically on a “first come, first serve” basis. Therefore, depending
on the version of the library you are using and on the assignments done so far, the same component
name may be represented by different RNams in different GAP sessions.

29.7.3 \.

> \. (Obj , rnam) (operation)
> IsBound\. (Obj , rnam) (operation)
> \.\: \=(Obj , rnam, val) (operation)
> Unbind\. (Obj N rnam) (operation)

These operations are called for record accesses to arbitrary objects. If applicable methods are
installed, they are called when the object is accessed as a record.

For records, the operations implement component access, test for element boundness, component
assignment and removal of the component represented by the RNam rnam.

The component identifier rnam is always required to be in IsPosInt (14.2.2).



Chapter 30

Collections

A collection in GAP consists of elements in the same family (see 13.1). The most important kinds of
collections are homogeneous lists (see 21) and domains (see 12.4). Note that a list is never a domain,
and a domain is never a list. A list is a collection if and only if it is nonempty and homogeneous.

Basic operations for collections are Size (30.4.6) and Enumerator (30.3.2); for finite collections,
Enumerator (30.3.2) admits to delegate the other operations for collections (see 30.4 and 30.5) to
functions for lists (see 21). Obviously, special methods depending on the arguments are needed for
the computation of e.g. the intersection of two infinite domains.

30.1 IsCollection (Filter)

30.1.1 IsCollection

> IsCollection(obj) (Category)

tests whether an object is a collection.

Some of the functions for lists and collections are described in the chapter about lists, mainly in
Section 21.20. In the current chapter, we describe those functions for which the “collection aspect”
seems to be more important than the “list aspect”.

30.2 Collection Families

30.2.1 CollectionsFamily

> CollectionsFamily (Fam) (attribute)

For a family Fam, CollectionsFamily returns the family of all collections over Fam, that is, of
all dense lists and domains that consist of objects in Fam.

The NewFamily (79.7.1) call in the standard method of CollectionsFamily is executed with
second argument IsCollection (30.1.1), since every object in the collections family must be a col-
lection, and with third argument the collections categories of the involved categories in the implied
filter of Fam.

Note that families (see 13.1) are used to describe relations between objects. Important such rela-
tions are that between an element e and each collection of elements that lie in the same family as e,

379
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and that between two collections whose elements lie in the same family. Therefore, all collections of
elements in the family Fam form the new family CollectionsFamily( Fam ).

30.2.2 IsCollectionFamily

> IsCollectionFamily(obj) (Category)

is true if Fam is a family of collections, and false otherwise.

30.2.3 ElementsFamily

> ElementsFamily (Fam) (attribute)

If Fam is a collections family (see IsCollectionFamily (30.2.2)) then ElementsFamily returns
the family from which Fam was created by CollectionsFamily (30.2.1). The way a collections
family is created, it always has its elements family stored. If Fam is not a collections family then an
error is signalled.

Example
gap> fam:= FamilyObj( (1,2) );;
gap> collfam:= CollectionsFamily( fam );;
gap> fam = collfam; fam = ElementsFamily( collfam );
false
true
gap> collfam = FamilyObj( [ (1,2,3) 1 );
true
gap> collfam = FamilyObj( Group( () ) );
true
gap> collfam = CollectionsFamily( collfam );
false

30.2.4 CategoryCollections

> CategoryCollections(filter) (function)

Let filter be a filter that is true for all elements of a family Fam, by the construction of Fam.
Then CategoryCollections returns the collections category of filter. This is a category that is
true for all elements in CollectionsFamily( Fam ).

For example, the construction of PermutationsFamily (42.1.3) guarantees that each of its
elements lies in the filter IsPerm (42.1.1), and each collection of permutations (permutation
group or dense list of permutations) lies in the category CategoryCollections( IsPerm ).
CategoryCollections( IsPerm ). Note that this works only if the collections category is cre-
ated before the collections family. So it is necessary to construct interesting collections categories
immediately after the underlying category has been created.

30.3 Lists and Collections

The following functions take a list or collection as argument, and return a corresponding /list. They
differ in whether or not the result is mutable or immutable (see 12.6), guaranteed to be sorted, or
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guaranteed to admit list access in constant time (see IsConstantTimeAccessList (21.1.6)).

30.3.1 IsListOrCollection

> IsListOrCollection(obj) (Category)

Several functions are defined for both lists and collections, for example Intersection (30.5.2),
Iterator (30.8.1), and Random (30.7.1). IsListOrCollection is a supercategory of IsList
(21.1.1) and IsCollection (30.1.1) (that is, all lists and collections lie in this category), which is
used to describe the arguments of functions such as the ones listed above.

30.3.2 Enumerator

> Enumerator(listorcoll) (attribute)

Enumerator returns an immutable list enum. If the argument is a list (which may contain holes),
then Length( enum ) is the length of this list, and enum contains the elements (and holes) of this
list in the same order. If the argument is a collection that is not a list, then Length( enum ) is the
number of different elements of C, and enum contains the different elements of the collection in an
unspecified order, which may change for repeated calls of Enumerator. enum[pos| may not execute
in constant time (see IsConstantTimeAccessList (21.1.6)), and the size of enum in memory is as
small as is feasible.

For lists, the default method is Immutable (12.6.3). For collections that are not lists, there is no
default method.

30.3.3 EnumeratorSorted

> EnumeratorSorted(listorcoll) (attribute)

EnumeratorSorted returns an immutable list enum. The argument must be a collection
or a list l1istorcoll which may contain holes but whose elements lie in the same family
(see 13.1). Length( enum ) is the number of different elements of the argument, and enum con-
tains the different elements in sorted order, w.r.t. <. enum[pos] may not execute in constant time
(see IsConstantTimeAccessList (21.1.6)), and the size of enum in memory is as small as is feasi-
ble.

Example
gap> Enumerator( [ 1, 3,, 21 );
[1, 3,, 2]
gap> enum:= Enumerator( Rationals );; elm:= enum[ 1076 ];
-69/907
gap> Position( enum, elm );
1000000
gap> IsMutable( enum ); IsSortedList( enum );
false
false
gap> IsConstantTimeAccessList( enum );
false
gap> EnumeratorSorted( [ 1, 3,, 2] );
[1, 2, 3]
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30.3.4 EnumeratorByFunctions (for a domain and a record)

> EnumeratorByFunctions(D, record) (function)
> EnumeratorByFunctions(Fam, record) (function)

EnumeratorByFunctions returns an immutable, dense, and duplicate-free list enum for which
IsBound (21.5.1), element access via \[\] (21.2.1), Length (21.17.5), and Position (21.16.1) are
computed via prescribed functions.

Let record be a record with at least the following components.

ElementNumber
a function taking two arguments enum and pos, which returns enum [ pos 1] (see 21.2); it can
be assumed that the argument pos is a positive integer, but pos may be larger than the length of
enum (in which case an error must be signalled); note that the result must be immutable since
enum itself is immutable,

NumberElement
a function taking two arguments enum and elm, which returns Position( enum, elm )
(see Position (21.16.1)); it cannot be assumed that elm is really contained in enum (and
fail must be returned if not); note that for the three argument version of Position (21.16.1),
the method that is available for duplicate-free lists suffices.

Further (data) components may be contained in record which can be used by these function.

If the first argument is a domain D then enum lists the elements of D (in general enum is not
sorted), and methods for Length (21.17.5), IsBound (21.5.1), and Print0bj (6.3.5) may use D.

If one wants to describe the result without creating a domain then the elements are given implicitly
by the functions in record, and the first argument must be a family Fam which will become the
family of enum; if enum is not homogeneous then Fam must be ListsFamily, otherwise it must be
the collections family of any element in enum. In this case, additionally the following component in
record is needed.

Length
a function taking the argument enum, which returns the length of enum (see Length (21.17.5)).

The following components are optional; they are used if they are present but default methods are
installed for the case that they are missing.

IsBound\ [\]
a function taking two arguments enum and k, which returns IsBound( enum[ k ] )
(see 21.2); if this component is missing then Length (21.17.5) is used for computing the result,

Membership
a function taking two arguments elm and enum, which returns true is elm is an element of
enum, and false otherwise (see 21.2); if this component is missing then NumberElement is
used for computing the result,

Aslist
a function taking one argument enum, which returns a list with the property that the access
to each of its elements will take roughly the same time (see IsConstantTimeAccessList
(21.1.6)); if this component is missing then ConstantTimeAccessList (21.17.6) is used for
computing the result,
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ViewObj and Print0bj
two functions that print what one wants to be printed when View( enum ) or Print( enum
) is called (see 6.3), if the ViewObj component is missing then the PrintObj method is used
as a default.

If the result is known to have additional properties such as being strictly sorted
(see IsSSortedList (21.17.4)) then it can be useful to set these properties after the construction
of the enumerator, before it is used for the first time. And in the case that a new sorted enumera-
tor of a domain is implemented via EnumeratorByFunctions, and this construction is installed as
a method for the operation Enumerator (30.3.2), then it should be installed also as a method for
EnumeratorSorted (30.3.3).

Note that it is not checked that EnumeratorByFunctions really returns a dense and duplicate-
free list. EnumeratorByFunctions does not make a shallow copy of record, this record is changed
in place, see 79.9.

It would be easy to implement a slightly generalized setup for enumerators that need not be
duplicate-free (where the three argument version of Position (21.16.1) is supported), but the re-
sulting overhead for the methods seems not to be justified.

30.3.5 List (for a collection)

> List (C) (function)

For a collection C (see 30) that is not a list, List returns a new mutable list new such that Length (
new ) is the number of different elements of C, and new contains the different elements of C in
an unspecified order which may change for repeated calls. new[pos] executes in constant time
(see IsConstantTimeAccessList (21.1.6)), and the size of new is proportional to its length. The
generic method for this case is ShallowCopy ( Enumerator( C ) ).

Example

gap> l:= List( Group( (1,2,3) ) );

[ O, (1,3,2), (1,2,3) ]

gap> IsMutable( 1 ); IsSortedList( 1 ); IsConstantTimeAccessList( 1 );
true

false

true

(See also List (21.20.19).)

30.3.6 SortedList

> SortedList(listorcoll) (operation)

SortedList returns a new mutable and dense list new. The argument must be a collection or
list 1istorcoll which may contain holes but whose elements lie in the same family (see 13.1).
Length( new ) is the number of elements of 1istorcoll, and new contains the elements in sorted
order, w.r.t. <=. new [pos] executes in constant time (see IsConstantTimeAccessList (21.1.6)),
and the size of new in memory is proportional to its length.

Example
gap> l:= SortedList( Group( (1,2,3) ) );
[ O, 1,2,3), (1,3,2) ]
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gap> IsMutable( 1 ); IsSortedList( 1 ); IsConstantTimeAccessList( 1 );
true

true

true

gap> SortedList( [ 1, 2, 1,, 3, 21 );

(1,1, 2,2, 3]

30.3.7 SSortedList

> SSortedList(listorcoll) (operation)
> Set (C) (operation)

SSortedList (“strictly sorted list”) returns a new dense, mutable, and duplicate free list new. The
argument must be a collection or list 1istorcoll which may contain holes but whose elements lie
in the same family (see 13.1). Length( new ) is the number of different elements of 1istorcoll,
and new contains the different elements in strictly sorted order, w.r.t. \< (31.11.1). new [pos] exe-
cutes in constant time (see IsConstantTimeAccessList (21.1.6)), and the size of new in memory
is proportional to its length.

Set is simply a synonym for SSortedList.
Example
gap> 1l:= SSortedList( Group( (1,2,3) ) );

L O, (1,2,3), (1,3,2) ]
gap> IsMutable( 1 ); IsSSortedList( 1 ); IsConstantTimeAccessList( 1 );

true

true

true

gap> SSortedList( [ 1, 2, 1,, 3, 2] );
[ 1, 2, 3]

30.3.8 AsList

> AsList(listorcoll) (attribute)

AsList returns a immutable list imm. If the argument is a list (which may contain holes), then
Length( imm ) is the Length (21.17.5) value of this list, and imm contains the elements (and holes)
of of the list in the same order. If the argument is a collection that is not a list, then Length( imm
) is the number of different elements of this collection, and imm contains the different elements of
the collection in an unspecified order, which may change for repeated calls of AsList. imm [pos]
executes in constant time (see IsConstantTimeAccessList (21.1.6)), and the size of imm in memory
is proportional to its length.

If you expect to do many element tests in the resulting list, it might be worth to use a sorted list
instead, using AsSSortedList (30.3.10).

Example
gap> 1:= AsList( [ 1, 3, 3,, 21 );
[1, 3, 3,, 2]

gap> IsMutable( 1 ); IsSortedList( 1 ); IsConstantTimeAccessList( 1 );
false

false
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true
gap> AsList( Group( (1,2,3), (1,2) ) );
L O, (2,3, (1,2), (1,2,3), (1,3,2), (1,3) ]

30.3.9 AsSortedList

> AsSortedlList(listorcoll) (attribute)

AsSortedList returns a dense and immutable list imm. The argument must be a collection or
list 1istorcoll which may contain holes but whose elements lie in the same family (see 13.1).
Length( imm ) is the number of elements of the argument, and imm contains the elements in sorted
order, w.r.t. <=. new [pos] executes in constant time (see IsConstantTimeAccessList (21.1.6)),
and the size of imm in memory is proportional to its length.

The only difference to the operation SortedList (30.3.6) is that AsSortedList returns an im-
mutable list.

Example
gap> l:= AsSortedList( [ 1, 3, 3,, 21 );
[1, 2, 3, 3]

gap> IsMutable( 1 ); IsSortedList( 1 ); IsConstantTimeAccessList( 1 );
false

true
true
gap> IsSSortedList( 1 );
false

30.3.10 AsSSortedList

> AsSSortedlList(listorcoll) (attribute)
> AsSet(listorcoll) (attribute)

AsSSortedList (“as strictly sorted list”) returns a dense, immutable, and duplicate free list imm.
The argument must be a collection or list 1istorcoll which may contain holes but whose ele-
ments lie in the same family (see 13.1). Length( imm ) is the number of different elements of
listorcoll, and imm contains the different elements in strictly sorted order, w.r.t. \< (31.11.1).
imm [pos] executes in constant time (see IsConstantTimeAccessList (21.1.6)), and the size of
imm in memory is proportional to its length.

Because the comparisons required for sorting can be very expensive for some kinds of objects,
you should use AsList (30.3.8) instead if you do not require the result to be sorted.

The only difference to the operation SSortedList (30.3.7) is that AsSSortedList returns an
immutable list.

AsSet is simply a synonym for AsSSortedList.

In general a function that returns a set of elements is free, in fact encouraged, to return a domain
instead of the proper set of its elements. This allows one to keep a given structure, and moreover the
representation by a domain object is usually more space efficient. AsSSortedList must of course
not do this, its only purpose is to create the proper set of elements.

Example

gap> 1:= AsSSortedList( 1 );
[1, 2, 3]
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gap> IsMutable( 1 ); IsSSortedList( 1 ); IsConstantTimeAccessList( 1 );
false

true

true

gap> AsSSortedList( Group( (1,2,3), (1,2) ) );

[ O, (2,3, (1,2, 1,2,3), (1,3,2), (1,3) ]

30.3.11 Elements

> Elements(C) (function)

Elements does the same as AsSSortedList (30.3.10), that is, the return value is a strictly sorted
list of the elements in the list or collection C.

Elements is only supported for backwards compatibility. In many situations, the sortedness of
the “element list” for a collection is in fact not needed, and one can save a lot of time by asking for a
list that is not necessarily sorted, using AsList (30.3.8). If one is really interested in the strictly sorted
list of elements in € then one should use AsSet (30.3.10) or AsSSortedList (30.3.10) instead.

30.4 Attributes and Properties for Collections

30.4.1 IsEmpty

> IsEmpty(listorcoll) (property)

IsEmpty returns true if the collection or list 1istorcoll is empty (that is it contains no ele-
ments), and false otherwise.

30.4.2 IsFinite
> IsFinite(C) (property)

IsFinite returns true if the collection C is finite, and false otherwise.

The default method for IsFinite checks the size (see Size (30.4.6)) of C.

Methods for IsFinite may call Size (30.4.6), but methods for Size (30.4.6) must not call
IsFinite.

30.4.3 IsTrivial

> IsTrivial(C) (property)

IsTrivial returns true if the collection C consists of exactly one element.

30.4.4 IsNonTrivial

> IsNonTrivial(C) (property)

IsNonTrivial returns true if the collection C is empty or consists of at least two elements
(see IsTrivial (30.4.3)).
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Example
gap> IsEmpty( [1 ); IsEmpty( [ 1 .. 100 1 ); IsEmpty( Group( (1,2,3) ) );
true

false

false

gap> IsFinite( [ 1 .. 100 1 ); IsFinite( Integers );
true

false

gap> IsTrivial( Integers ); IsTrivial( Group( O ) );
false

true

gap> IsNonTrivial( Integers ); IsNonTrivial( Group( () ) );
true

false

30.4.5 IsWholeFamily

> IsWholeFamily(C) (property)
IsWholeFamily returns true if the collection C contains the whole family (see 13.1) of its ele-

ments.
Example

gap> IsWholeFamily( Integers )

> ; # all rationals and cyclotomics lie in the family
false

gap> IsWholeFamily( Integers mod 3 )

> ; # all finite field elements in char. 3 lie in this family
false

gap> IsWholeFamily( Integers mod 4 );

true

gap> IsWholeFamily( FreeGroup( 2 ) );

true

30.4.6 Size

> Size(listorcoll) (attribute)

Size returns the size of the list or collection 1istorcoll, which is either an integer or infinity
(18.2.1). If the argument is a list then the result is its length (see Length (21.17.5)).

The default method for Size checks the length of an enumerator of 1istorcoll.

Methods for IsFinite (30.4.2) may call Size, but methods for Size must not call IsFinite
(30.4.2).

Example
gap> Size( [1,2,3] ); Size( Group( () ) ); Size( Integers );
3
1

infinity
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30.4.7 Representative

> Representative(C) (attribute)

Representative returns a representative of the collection C.

Note that Representative is free in choosing a representative if there are several elements in C.
It is not even guaranteed that Representative returns the same representative if it is called several
times for one collection. The main difference between Representative and Random (30.7.1) is that
Representative is free to choose a value that is cheap to compute, while Random (30.7.1) must
make an effort to randomly distribute its answers.

If C is a domain then there are methods for Representative that try to fetch an element from
any known generator list of C, see 31. Note that Representative does not try to compute generators
of C, thus Representative may give up and signal an error if C has no generators stored at all.

30.4.8 RepresentativeSmallest

> RepresentativeSmallest (C) (attribute)

returns the smallest element in the collection C, w.r.t. the ordering \< (31.11.1). While the opera-
tion defaults to comparing all elements, better methods are installed for some collections.

Example
gap> Representative( Rationals );
0
gap> Representative( [ -1, -2 .. -100 ] );
-1
gap> RepresentativeSmallest( [ -1, -2 .. -100 ] );
-100

30.5 Operations for Collections

30.5.1 IsSubset

> IsSubset(C1, C2) (operation)

IsSubset returns true if C2, which must be a collection, is a subset of C1, which also must be a
collection, and false otherwise.

C2 1is considered a subset of C1 if and only if each element of C2 is also an element of
C1. That is IsSubset behaves as if implemented as IsSubsetSet( AsSSortedList( C1 ),
AsSSortedList( €2 ) ), except that it will also sometimes, but not always, work for infinite col-
lections, and that it will usually work much faster than the above definition. Either argument may also
be a proper set (see 21.19).

Example
gap> IsSubset( Rationals, Integers );
true
gap> IsSubset( Integers, [ 1, 2, 3] );
true

gap> IsSubset( Group( (1,2,3,4) ), [ (1,2,3) 1 );
false
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30.5.2 Intersection

> Intersection(C1, C2, ...) (function)
> Intersection(list) (function)
> Intersection2(C1, C2) (operation)

In the first form Intersection returns the intersection of the collections C1, C2, etc. In the
second form 1ist must be a nonempty list of collections and Intersection returns the intersection
of those collections. Each argument or element of 1ist respectively may also be a homogeneous list
that is not a proper set, in which case Intersection silently applies Set (30.3.7) to it first.

The result of Intersection is the set of elements that lie in every of the collections C1, C2, etc.
If the result is a list then it is mutable and new, i.e., not identical to any of C1, C2, etc.

Methods can be installed for the operation Intersection2 that takes only two arguments.
Intersection calls Intersection2.

Methods for Intersection?2 should try to maintain as much structure as possible, for example
the intersection of two permutation groups is again a permutation group.

Example
gap> # this is one of the rare cases where the intersection of two

gap> # infinite domains works (’CF’ is a shorthand for ’CyclotomicField’):
gap> Intersection( CyclotomicField(9), CyclotomicField(12) );

CF(3)

gap> D12 := Group( (2,6)(3,5), (1,2)(3,6)(4,5) );;

gap> Intersection( D12, Group( (1,2), (1,2,3,4,5) ) );

Group([ (1,5)(2,4) 1)

gap> Intersection( D12, [ (1,3)(4,6), (1,2)(3,4) 1)

> ;  # note that the second argument is not a proper set

[ (1,3)(4,6) ]

gap> # although the result is mathematically a group it is returned as a
gap> # proper set because the second argument is not regarded as a group:
gap> Intersection( D12, [ (O, (1,2)(3,4), (1,3)(4,6), (1,4)(5,6) 1 );

L O, (1,3)(4,8) ]

gap> Intersection( Group( () ), [1,2,3] );

L1

gap> Intersection( [2,4,6,8,10], [3,6,9,12,15], [5,10,15,20,25] )

> ; # two or more lists or collections as arguments are legal

[ ]

gap> Intersection( [ [1,2,4], [2,3,4], [1,3,4]1 1)

> ; # or one list of lists or collections

(4]

30.5.3 Union

> Union(C1 , C2, ... ) (function)
> Union(list) (function)
> Union?2 (Cl ) C2) (operation)

In the first form Union returns the union of the collections C1, C2, etc. In the second form 1ist
must be a list of collections and Union returns the union of those collections. Each argument or
element of 1ist respectively may also be a homogeneous list that is not a proper set, in which case
Union silently applies Set (30.3.7) to it first.
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The result of Union is the set of elements that lie in any of the collections C1, €2, etc. If the result
is a list then it is mutable and new, i.e., not identical to any of C1, C2, etc.

Methods can be installed for the operation Union2 that takes only two arguments. Union calls
Union2.
Example
gap> Union( [ (1,2,3), (1,2,3,4) 1, Group( (1,2,3), (1,2) ) );
[ O, (2,3, (1,2, (1,2,3), (1,2,3,4), (1,3,2), (1,3) ]
gap> Union( [2,4,6,8,10], [3,6,9,12,15], [5,10,15,20,25] )
> ; # two or more lists or collections as arguments are legal
(2,3, 4,5,6, 8,9, 10, 12, 15, 20, 25 ]
gap> Union( [ [1,2,41, [2,3,4]1, [1,3,4] 1)
> ; # or one list of lists or collections
[1, 2, 3, 4]
gap> Union( [ ] );
L1

30.5.4 Difference

> Difference(Cl, 02) (operation)

Difference returns the set difference of the collections C1 and C2. Either argument may also be
a homogeneous list that is not a proper set, in which case Difference silently applies Set (30.3.7) to
it first.

The result of Difference is the set of elements that lie in C1 but not in C2. Note that C2 need
not be a subset of C1. The elements of C2, however, that are not elements of C1 play no role for the
result. If the result is a list then it is mutable and new, i.e., not identical to C1 or C2.

Example
gap> Difference( [ (1,2,3), (1,2,3,4) 1, Group( (1,2,3), (1,2) ) );
[ (1,2,3,4) ]

30.6 Membership Test for Collections

30.6.1 \in (for a collection)

> \in( Obj , C ) (operation)

returns true if the object obj lies in the collection C, and false otherwise.
The infix version of the command

obj in C

calls the operation \in (30.6.1), for which methods can be installed.

Example
gap> 13 in Integers; [ 1, 2 ] in Integers;
true
false
gap> g:= Group( (1,2) );; (1,2) in g; (1,2,3) in g;
true
false
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30.7 Random Elements

The method used by GAP to obtain random elements may depend on the type object.

Most methods which produce random elements in GAP use a global random number generator
(see GlobalMersenneTwister (14.7.4)). This random number generator is (deliberately) initialized
to the same values when GAP is started, so different runs of GAP with the same input will always
produce the same result, even if random calculations are involved.

See Reset (14.7.3) for a description of how to reset the random number generator to a previous
state.

30.7.1 Random (for a list or collection)

> Random(listorcoll) (operation)
> Random(from, to) (operation)

Random returns a (pseudo-)random element of the list or collection 1istorcoll.

As lists or ranges are restricted in length (228 — 1 or 260 — 1 depending on your system), the second
form returns a random integer in the range from to to (inclusive) for arbitrary integers from and to.

The distribution of elements returned by Random depends on the argument. For a list, all ele-
ments are equally likely. The same holds usually for finite collections that are not lists. For infinite
collections some reasonable distribution is used.

See the chapters of the various collections to find out which distribution is being used.

For some collections ensuring a reasonable distribution can be difficult and require substantial
runtime. If speed at the cost of equal distribution is desired, the operation PseudoRandom (30.7.2)
should be used instead.

Note that Random is of course not an attribute.

Example
gap> Random(Rationals) ;
4
gap> g:= Group( (1,2,3) );; Random( g ); Random( g );
(1,3,2)
O
30.7.2 PseudoRandom
> PseudoRandom(listorcoll) (operation)

PseudoRandom returns a pseudo random element of the list or collection listorcoll, which
can be roughly described as follows. For a list, PseudoRandom returns the same as Random (30.7.1).
For collections that are not lists, the elements returned by PseudoRandom are not necessarily equally
distributed, even for finite collections; the idea is that Random (30.7.1) returns elements according
to a reasonable distribution, PseudoRandom returns elements that are cheap to compute but need not
satisfy this strong condition, and Representative (30.4.7) returns arbitrary elements, probably the
same element for each call.
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30.7.3 RandomlList

> RandomList(1ist) (function)

For a dense list 1ist, RandomList returns a (pseudo-)random element with equal distribution.
This function uses the GlobalMersenneTwister (14.7.4) to produce the random elements (a
source of high quality random numbers).

30.8 Iterators

30.8.1 Iterator

> Iterator(listorcoll) (operation)

Iterators provide a possibility to loop over the elements of a (countable) collection or list
listorcoll, without repetition. For many collections C, an iterator of C need not store all ele-
ments of C, for example it is possible to construct an iterator of some infinite domains, such as the
field of rational numbers.

Iterator returns a mutable iterator iter for its argument. If this argument is a list (which may
contain holes), then iter iterates over the elements (but not the holes) of this list in the same order
(see IteratorList (30.8.6) for details). If this argument is a collection but not a list then iter iterates
over the elements of this collection in an unspecified order, which may change for repeated calls of
Iterator. Because iterators returned by Iterator are mutable (see 12.6), each call of Iterator
for the same argument returns a new iterator. Therefore Iterator is not an attribute (see 13.5).

The only operations for iterators are IsDonelterator (30.8.4), NextIterator (30.8.5), and
ShallowCopy (12.7.1). In particular, it is only possible to access the next element of the iterator with
NextIterator (30.8.5) if there is one, and this can be checked with IsDoneIterator (30.8.4) For
an iterator iter, ShallowCopy (12.7.1) returns a mutable iterator new that iterates over the remaining
elements independent of iter; the results of IsDoneIterator (30.8.4) for iter and new are equal, and
if iter is mutable then also the results of NextIterator (30.8.5) for iter and new are equal; note that
= is not defined for iterators, so the equality of two iterators cannot be checked with =.

When Iterator is called for a mutable collection C then it is not defined whether iter respects
changes to C occurring after the construction of iter, except if the documentation explicitly promises
a certain behaviour. The latter is the case if the argument is a mutable list (see IteratorList (30.8.6)
for subtleties in this case).

It is possible to have for-loops run over mutable iterators instead of lists.

In some situations, one can construct iterators with a special succession of elements,
see IteratorByBasis (61.6.6) for the possibility to loop over the elements of a vector space w.r.t. a
given basis.

For lists, Iterator is implemented by IteratorList (30.8.6). For collections C that are not
lists, the default method is IteratorList( Enumerator( C ) ). Better methods depending on C
should be provided if possible.

For random access to the elements of a (possibly infinite) collection, enumerators are used.
See 21.23 for the facility to compute a list from C, which provides a (partial) mapping from C to

the positive integers.
Example

gap> iter:= Iterator( GF(5) );
<iterator>
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gap> 1:= [1;;

gap> for i in iter do Add( 1, i ); od; 1;

[ 0xZ(5), Z(5)~0, Z(5), Z(5)~2, Z(5)~3 ]

gap> iter:= Iterator( [ 1, 2, 3, 4] );; 1l:= [1;;
gap> for i in iter do

> new:= ShallowCopy( iter );
> for j in new do Add( 1, j ); od;
> od; 1;

[ 2, 3, 4, 3, 4, 4]

30.8.2 IteratorSorted

> IteratorSorted(listorcoll) (operation)

IteratorSorted returns a mutable iterator. The argument must be a collection or a list that is
not necessarily dense but whose elements lie in the same family (see 13.1). It loops over the different
elements in sorted order.

For a collection C that is not a list, the generic method is IteratorList( EnumeratorSorted(

¢ ).

30.8.3 Islterator

> IsIterator(obj) (Category)

Every iterator lies in the category IsIterator.

30.8.4 IsDonelterator

> IsDonelterator(iter) (operation)

If iter is an iterator for the list or collection C then IsDonelterator( iter ) is true if all
elements of C have been returned already by NextIterator( iter ), and false otherwise.

30.8.5 Nextlterator

> NextIterator(iter) (operation)

Let iter be a mutable iterator for the list or collection C. If IsDonelterator( iter ) isfalse
then NextIterator is applicable to iter, and the result is the next element of C, according to the
succession defined by iter.

If IsDoneIterator( iter ) is true then it is not defined what happens when NextIterator
is called for iter; that is, it may happen that an error is signalled or that something meaningless is
returned, or even that GAP crashes.

Example
gap> iter:= Iterator( [ 1, 2, 3, 4] );
<iterator>

gap> sum:= 0;;

gap> while not IsDonelterator( iter ) do

> sum:= sum + NextIterator( iter );
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> od;

gap> IsDonelterator( iter ); sum;

true

10

gap> ir:= Iterator( Rationals );;

gap> l:= [1;; for i in [1..20] do Add( 1, NextIterator( ir ) ); od; 1;

[o, 1, -1, 1/2, 2, -1/2, -2, 1/3, 2/3, 3/2, 3, -1/3, -2/3, -3/2, -3,
1/4, 3/4, 4/3, 4, -1/4 1

gap> for i in ir do

> if DenominatorRat( i ) > 10 then break; fi;

> od;

gap> 1i;

1/11

30.8.6 IteratorList

> IteratorList(list) (function)

IteratorList returns a new iterator that allows iteration over the elements of the list 1ist
(which may have holes) in the same order.

If 1ist is mutable then it is in principle possible to change 1ist after the call of IteratorList.
In this case all changes concerning positions that have not yet been reached in the iteration will also
affect the iterator. For example, if 1ist is enlarged then the iterator will iterate also over the new
elements at the end of the changed list.

Note that changes of 1ist will also affect all shallow copies of 1ist.

30.8.7 Triviallterator

> TrivialIterator(elm) (function)

is a mutable iterator for the collection [ elm ] that consists of exactly one element elm
(see IsTrivial (30.4.3)).

30.8.8 IteratorByFunctions

> IteratorByFunctions(record) (function)

IteratorByFunctions returns a (mutable) iterator iter for which NextIterator (30.8.5),
IsDonelIterator (30.8.4), and ShallowCopy (12.7.1) are computed via prescribed functions.
Let record be a record with at least the following components.

NextIterator
a function taking one argument iter, which returns the next element of iter
(see NextIterator (30.8.5)); for that, the components of iter are changed,

IsDonelterator
a function taking one argument iter, which returns the IsDoneIterator (30.8.4) value of
iter,
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ShallowCopy
a function taking one argument iter, which returns a record for which IteratorByFunctions
can be called in order to create a new iterator that is independent of iter but behaves like iter
w.r.t. the operations NextIterator (30.8.5) and IsDoneIterator (30.8.4).

Further (data) components may be contained in record which can be used by these function.
IteratorByFunctions does not make a shallow copy of record, this record is changed in place
(see Section 79.9).



Chapter 31

Domains and their Elements

Domain is GAP’s name for structured sets. The ring of Gaussian integers Z[/—1] is an example of a
domain, the group D, of symmetries of a regular hexahedron is another.

The GAP library predefines some domains. For example the ring of Gaussian integers is
predefined as GaussianIntegers (60.5.1) (see 60.5) and the field of rationals is predefined as
Rationals (17.1.1) (see 17). Most domains are constructed by functions, which are called do-
main constructors (see 31.3). For example the group D, is constructed by the construction Group(
(1,2,3,4,5,6), (2,6)(3,5) ) (see Group (39.2.1)) and the finite field with 16 elements is con-
structed by GaloisField( 16 ) (see GaloisField (59.3.2)).

The first place where you need domains in GAP is the obvious one. Sometimes you simply want
to deal with a domain. For example if you want to compute the size of the group D15, you had better
be able to represent this group in a way that the Size (30.4.6) function can understand.

The second place where you need domains in GAP is when you want to be able to specify that
an operation or computation takes place in a certain domain. For example suppose you want to factor
10 in the ring of Gaussian integers. Saying Factors( 10 ) will not do, because this will return the
factorization [ 2, 5 1] in the ring of integers. To allow operations and computations to happen in a
specific domain, Factors (56.5.9), and many other functions as well, accept this domain as optional
first argument. Thus Factors( GaussianIntegers, 10 ) yields the desired result [ 1+E(4),
1-E(4), 2+E(4), 2-E(4) 1. (The imaginary unit v/—1 is written as E(4) in GAP, see E (18.1.1).)

An introduction to the most important facts about domains is given in Chapter (Tutorial: Do-
mains).

There are only few operations especially for domains (see 31.9), operations such as
Intersection (30.5.2) and Random (30.7.1) are defined for the more general situation of collections
(see Chapter 30).

31.1 Operational Structure of Domains

Domains have an operational structure, that is, a collection of operations under which the domain is
closed. For example, a group is closed under multiplication, taking the zeroth power of elements, and
taking inverses of elements. The operational structure may be empty, examples of domains without
additional structure are the underlying relations of general mappings (see 32.3).

The operations under which a domain is closed are a subset of the operations that the elements of
a domain admit. It is possible that the elements admit more operations. For example, matrices can be
multiplied and added. But addition plays no role in a group of matrices, and multiplication plays no

396
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role in a vector space of matrices. In particular, a matrix group is not closed under addition.

Note that the elements of a domain exist independently of this domain, usually they existed already
before the domain was created. So it makes sense to say that a domain is generated by some elements
with respect to certain operations.

Of course, different sets of operations yield different notions of generation. For example, the
group generated by some matrices is different from the ring generated by these matrices, and these
two will in general be different from the vector space generated by the same matrices, over a suitable
field.

The other way round, the same set of elements may be obtained by generation w.r.t. different
notions of generation. For example, one can get the group generated by two elements g and / also as
the monoid generated by the elements g, g_l, h, h~'; if both g and & have finite order then of course
the group generated by g and & coincides with the monoid generated by g and A.

Additionally to the operational structure, a domain can have properties. For example, the multi-
plication of a group is associative, and the multiplication in a field is commutative.

Note that associativity and commutativity depend on the set of elements for which one considers
the multiplication, i.e., it depends on the domain. For example, the multiplication in a full matrix ring
over a field is not commutative, whereas its restriction to the set of diagonal matrices is commutative.

One important difference between the operational structure and the properties of a domain is
that the operational structure is fixed when the domain is constructed, whereas properties can be
discovered later. For example, take a domain whose operational structure is given by closure under
multiplication. If it is discovered that the inverses of all its elements also do (by chance) lie in this
domain, being closed under taking inverses is not added to the operational structure. But a domain
with operational structure of multiplication, taking the identity, and taking inverses will be treated as
a group as soon as the multiplication is found out to be associative for this domain.

The operational structures available in GAP form a hierarchy, which is explicitly formulated in
terms of domain categories, see 31.6.

31.2 Equality and Comparison of Domains

Equality and comparison of domains are defined as follows.

Two domains are considered equal if and only if the sets of their elements as computed by
AsSSortedList (30.3.10)) are equal. Thus, in general = behaves as if each domain operand were
replaced by its set of elements. Except that = will also sometimes, but not always, work for infi-
nite domains, for which of course GAP cannot compute the set of elements. Note that this implies
that domains with different algebraic structure may well be equal. As a special case of this, either
operand of = may also be a proper set (see 21.19), i.e., a sorted list without holes or duplicates (see
AsSSortedList (30.3.10)), and = will return true if and only if this proper set is equal to the set of
elements of the argument that is a domain.

No general ordering of arbitrary domains via < is defined in GAP 4. This is because a well-defined
< for domains or, more general, for collections, would have to be compatible with = and would need
to be transitive and antisymmetric in order to be used to form ordered sets. In particular, < would have
to be independent of the algebraic structure of its arguments because this holds for =, and thus there
would be hardly a situation where one could implement an efficient comparison method. (Note that
in the case that two domains are comparable with <, the result is in general not compatible with the
set theoretical subset relation, which can be decided with IsSubset (30.5.1).)
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31.3 Constructing Domains

For several operational structures (see 31.1), GAP provides functions to construct domains with this
structure (note that such functions do not exist for all operational structures). For example, Group
(39.2.1) returns groups, VectorSpace (61.2.1) returns vector spaces etc.:

Struct ( argl, arg2, ... )

The syntax of these functions may vary, dependent on the structure in question. Usually a domain
is constructed as the closure of some elements under the given operations, that is, the domain is given
by its generators. For example, a group can be constructed from a list of generating permutations or
matrices or whatever is admissible as group elements, and a vector space over a given field F' can be
constructed from F and a list of appropriate vectors.

The idea of generation and generators in GAP is that the domain returned by a function such as
Group, Algebra, or FreeLeftModule contains the given generators. This implies that the generators
of a group must know how they are multiplied and inverted, the generators of a module must know
how they are added and how scalar multiplication works, and so on. Thus one cannot use for example
permutations as generators of a vector space.

The function Struct first checks whether the arguments admit the construction of a domain with
the desired structure. This is done by calling the operation

IsGenerators0fStruct ( [info, ]gens )

where arglist is the list of given generators and info an argument of Struct, for example the
field of scalars in the case that a vector space shall be constructed. If the check failed then Struct
returns fail, otherwise it returns the result of StructByGenerators (see below). (So if one wants
to omit the check then one should call StructByGenerators directly.)

Generators0fStruct ( D)

For a domain D with operational structure corresponding to Struct, the attribute
Generators0OfStruct returns a list of corresponding generators of D. If these generators were not
yet stored in D then D must know some generators if Generators0fStruct shall have a chance to
compute the desired result; for example, monoid generators of a group can be computed from known
group generators (and vice versa). Note that several notions of generation may be meaningful for a
given domain, so it makes no sense to ask for “the generators of a domain”. Further note that the
generators may depend on other information about D. For example the generators of a vector space
depend on the underlying field of scalars; the vector space generators of a vector space over the field
with four elements need not generate the same vector space when this is viewed as a space over the
field with two elements.

StructByGenerators( [info, lgens )

Domain construction from  generators gens is implemented by  operations
StructByGenerators, which are called by the simple functions Struct; methods can be in-
stalled only for the operations. Note that additional information info may be necessary to construct
the domain; for example, a vector space needs the underlying field of scalars in addition to the list
of vector space generators. The Generators0fStruct value of the returned domain need not be
equal to gens. But if a domain D is printed as Struct ([a, b, ...]) and if there is an attribute
Generators0fStruct then the list Generators0fStruct ( D ) is guaranteed to be equalto [ a,
b, ... 1.

StructWithGenerators( [info, ]gens )

The only difference between StructByGenerators and StructWithGenerators is that the
latter guarantees that the Generators0fStruct value of the result is equal to the given generators
gens.
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ClosureStruct( D, obj )

For constructing a domain as the closure of a given domain with an element or another domain,
one can use the operation ClosureStruct. It returns the smallest domain with operational structure
corresponding to Struct that contains D as a subset and obj as an element.

31.4 Changing the Structure

The same set of elements can have different operational structures. For example, it may happen that a
monoid M does in fact contain the inverses of all of its elements; if M has not been constructed as a
group (see 31.6) then it is reasonable to ask for the group that is equal to M.

AsStruct ( [info, 1D )

If D is a domain that is closed under the operational structure given by Struct then AsStruct
returns a domain E that consists of the same elements (that is, D = E) and that has this operational
structure (that is, IsStruct ( E ) is true); if D is not closed under the structure given by Struct
then AsStruct returns fail.

If additional information besides generators are necessary to define D then the argument info
describes the value of this information for the desired domain. For example, if we want to view D
as a vector space over the field with two elements then we may call AsVectorSpace( GF(2), D );
this allows us to change the underlying field of scalars, for example if D is a vector space over the
field with four elements. Again, if D is not equal to a domain with the desired structure and additional
information then fail is returned.

In the case that no additional information info is related to the structure given by Struct, the
operation AsStruct is in fact an attribute (see 13.5).

See the index of the GAP Reference Manual for an overview of the available AsStruct func-
tions.

31.5 Changing the Representation

Often it is useful to answer questions about a domain via computations in a different but isomorphic
domain. In the sense that this approach keeps the structure and changes the underlying set of elements,
it can be viewed as a counterpart of keeping the set of elements and changing its structure (see 31.4).

One reason for doing so can be that computations with the elements in the given domain are not
very efficient. For example, if one is given a solvable matrix group (see Chapter 44) then one can
compute an isomorphism to a polycyclicly presented group G, say (see Chapter 45); the multipli-
cation of two matrices —which is essentially determined by the dimension of the matrices— is much
more expensive than the multiplication of two elements in G —which is essentially determined by the
composition length of G.

IsomorphismRepStruct( D )

If D is a domain that is closed under the operational structure given by Struct then
IsomorphismRepStruct returns a mapping hom from D to a domain E having structure given by
Struct, such that hom respects the structure Struct and Rep describes the representation of the
elements in E. If no domain E with the required properties exists then fail is returned.

For example, IsomorphismPermGroup (43.3.1) takes a group as its argument and returns a group
homomorphism (see 40) onto an isomorphic permutation group (see Chapter 43) provided the orig-
inal group is finite; for infinite groups, IsomorphismPermGroup (43.3.1) returns fail. Similarly,
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IsomorphismPcGroup (46.5.2) returns a group homomorphism from its argument to a polycyclicly
presented group (see 46) if the argument is polycyclic, and fail otherwise.

See the index of the GAP Reference Manual for an overview of the available
IsomorphismRep Struct functions.

31.6 Domain Categories

As mentioned in 31.1, the operational structure of a domain is fixed when the domain is constructed.
For example, if D was constructed by Monoid (51.2.2) then D is in general not regarded as a group
in GAP, even if D is in fact closed under taking inverses. In this case, IsGroup (39.2.7) returns
false for D. The operational structure determines which operations are applicable for a domain, so
for example SylowSubgroup (39.13.1) is not defined for D and therefore will signal an error.

IsStruct( D )

The functions IsStruct implement the tests whether a domain D has the respective opera-
tional structure (upon construction). IsStruct is a filter (see 13) that involves certain categories
(see 13.3) and usually also certain properties (see 13.7). For example, IsGroup (39.2.7) is equivalent
to IsMagmaWithInverses and IsAssociative, the first being a category and the second being a
property.

Implications between domain categories describe the hierarchy of operational structures available
in GAP. Here are some typical examples.

* IsDomain (31.9.1) is implied by each domain category,
* IsMagma (35.1.1) is implied by each category that describes the closure under multiplication *,

* IsAdditiveMagma (55.1.4) is implied by each category that describes the closure under addi-
tion +,

* IsMagmaWithOne (35.1.2) implies IsMagma (35.1.1); a magma-with-one is a magma such that
each element (and thus also the magma itself) can be asked for its zeroth power,

* IsMagmaWithInverses (35.1.4) implies IsMagmaWithOne (35.1.2); a magma-with-inverses is
a magma such that each element can be asked for its inverse; important special cases are groups,
which in addition are associative,

* aring is a magma that is also an additive group,
* aring-with-one is a ring that is also a magma-with-one,
* adivision ring is a ring-with-one that is also closed under taking inverses of nonzero elements,

* afield is a commutative division ring.

Each operational structure Struct has associated with it a domain category IsStruct, and op-
erations StructByGenerators for constructing a domain from generators, Generators0fStruct
for storing and accessing generators w.r.t. this structure, ClosureStruct for forming the closure, and
AsStruct for getting a domain with the desired structure from one with weaker operational structure
and for testing whether a given domain can be regarded as a domain with Struct.

The functions applicable to domains with the various structures are described in the correspond-
ing chapters of the Reference Manual. For example, functions for rings, fields, groups, and vector
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spaces are described in Chapters 56, 58, 39, and 61, respectively. More general functions for arbitrary
collections can be found in Chapter 30.

31.7 Parents

31.7.1 Parent

> Parent (D) (function)
> SetParent(D, P) (operation)
> HasParent (D) (function)

It is possible to assign to a domain D one other domain P containing D as a subset, in order to
exploit this subset relation between D and P. Note that P need not have the same operational structure
as D, for example P may be a magma and D a field.

The assignment is done by calling SetParent, and P is called the parent of D. If D has already a
parent, calls to SetParent will be ignored.

If D has a parent P —this can be checked with HasParent— then P can be used to gain information
about D. First, the call of SetParent causes UseSubsetRelation (31.13.1) to be called. Second,
for a domain D with parent, information relative to the parent can be stored in D; for example, there is
an attribute NormalizerInParent for storing Normalizer( P, D ) in the case that D is a group.
(More about such parent dependent attributes can be found in 85.2.) Note that because of this relative
information, one cannot change the parent; that is, one can set the parent only once, subsequent calls
to SetParent for the same domain D are ignored. Further note that contrary to UseSubsetRelation
(31.13.1), also knowledge about the parent P might be used that is discovered after the SetParent
call.

A stored parent can be accessed using Parent. If D has no parent then Parent returns D itself,
and HasParent will return false also after a call to Parent. So Parent is not an attribute, the
underlying attribute to store the parent is ParentAttr.

Certain functions that return domains with parent already set, for example Subgroup (39.3.1),
are described in Section 31.8. Whenever a function has this property, the GAP Reference Man-
ual states this explicitly. Note that these functions do not guarantee a certain parent, for example
DerivedSubgroup (39.12.3) for a perfect group G may return G itself, and if G had already a parent
then this is not replaced by G. As a rule of thumb, GAP avoids to set a domain as its own parent, which
is consistent with the behaviour of Parent, at least until a parent is set explicitly with SetParent.

Example
gap> g:= Group( (1,2,3), (1,2) );; h:= Group( (1,2) );;
gap> HasParent( g ); HasParent( h );

false

false

gap> SetParent( h, g );

gap> Parent( g ); Parent( h );
Group([ (1,2,3), (1,2) 1)

Group([ (1,2,3), (1,2) 1)

gap> HasParent( g ); HasParent( h );
false

true
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31.8 Constructing Subdomains

For many domains D, there are functions that construct certain subsets S of D as domains with parent
(see 31.7) already set to D. For example, if G is a group that contains the elements in the list gens
then Subgroup( G, gens ) returns a group S that is generated by the elements in gens and with
Parent( S ) = G.

Substruct( D, gens )

More general, if D is a domain whose algebraic structure is given by the function Struct (for ex-
ample Group, Algebra, Field) then the function Substruct (for example Subgroup, Subalgebra,
Subfield) returns domains with structure Struct and parent set to the first argument.

SubstructNC( D, gens )

Each function Substruct checks that the Struct generated by gens is in fact a subset of D. If
one wants to omit this check then one can call SubstructNC instead; the suffix NC stands for “no
check”.

AsSubstruct( D, S )

first constructs AsStruct ( [info, ]S ), where info depends on D and S, and then sets the
parent (see 31.7) of this new domain to D.

IsSubstruct( D, S )

There is no real need for functions that check whether a domain S is a Substruct of a domain
D, since this is equivalent to the checks whether S is a Struct and S is a subset of D. Note that in
many cases, only the subset relation is what one really wants to check, and that appropriate methods
for the operation IsSubset (30.5.1) are available for many special situations, such as the test whether
a group is contained in another group, where only generators need to be checked.

If a function IsSubstruct is available in GAP then it is implemented as first a call to IsStruct
for the second argument and then a call to IsSubset (30.5.1) for the two arguments.

31.9 Operations for Domains

For the meaning of the attributes Characteristic (31.10.1), One (31.10.2), Zero (31.10.3) in the
case of a domain argument, see 31.10.

31.9.1 IsGeneralizedDomain

> IsGeneralizedDomain(obj) (Category)
> IsDomain(obj) (Category)

For some purposes, it is useful to deal with objects that are similar to domains but that are not
collections in the sense of GAP because their elements may lie in different families; such objects
are called generalized domains. An instance of generalized domains are “operation domains”, for
example any G-set for a permutation group G consisting of some union of points, sets of points, sets
of sets of points etc., under a suitable action.

IsDomain is a synonym for IsGeneralizedDomain and IsCollection.

31.9.2 GeneratorsOfDomain

> GeneratorsOfDomain(D) (attribute)
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For a domain D, Generators0fDomain returns a list containing all elements of D, perhaps with
repetitions. Note that if the domain D shall be generated by a list of some elements w.r.t. the empty
operational structure (see 31.1), the only possible choice of elements is to take all elements of D.
See 31.3 and 31.4 for concepts of other notions of generation.

For many domains that have natural generators by construction (for example, the natural
generators of a free group of rank two are the two generators stored as value of the attribute
Generators0fGroup (39.2.4), and the natural generators of a free associative algebra are those gen-
erators stored as value of the attribute Generators0fAlgebra (62.9.1)), each natural generator can
be accessed using the . operator. For a domain D, D.1i returns the i-th generator if i is a positive
integer, and if name is the name of a generator of D then D . name returns this generator.

31.9.3 Domain

> Domain( [Fam, Jgenerators) (function)
> DomainByGenerators(Fam, generators) (operation)

Domain returns the domain consisting of the elements in the homogeneous list generators. If
generators is empty then a family Fam must be entered as the first argument, and the returned
(empty) domain lies in the collections family of Fam.

DomainByGenerators is the operation called by Domain.

31.10 Attributes and Properties of Elements

The following attributes and properties for elements and domains correspond to the operational struc-
ture.

31.10.1 Characteristic

> Characteristic(obj) (attribute)

Characteristic returns the characteristic of obj.

If obj is a family, all of whose elements lie in IsAdditiveElementWithZero (31.14.5) then its
characteristic is the least positive integer n, if any, such that IsZero(n*x) is true for all x in the
family obj, otherwise it is 0.

If obj is a collections family of a family g which has a characteristic, then the characteristic of
obj is the same as the characteristic of g.

For other families obj the characteristic is not defined and fail will be returned.

For any object obj which is in the filter IsAdditiveElementWithZero (31.14.5) or in the filter
IsAdditiveMagmaWithZero (55.1.5) the characteristic of obj is the same as the characteristic of its
family if that is defined and undefined otherwise.

For all other objects obj the characteristic is undefined and may return fail or a “no method
found” error.

31.10.2 Onelmmutable

> OneImmutable(obj) (attribute)
> OneAttr( Obj) (attribute)
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> One( Obj) (attribute)
> Identity(obj) (attribute)
> OneMutable( Obj ) (operation)
> OneOp (o bj ) (operation)
> OneSameMutability(obj) (operation)
> OneSM(o bj ) (operation)

OneImmutable, OneMutable, and OneSameMutability return the multiplicative neutral element
of the multiplicative element obj.

They differ only w.r.t. the mutability of the result. OneImmutable is an attribute and hence returns
an immutable result. OneMutable is guaranteed to return a new mutable object whenever a mutable
version of the required element exists in GAP (see IsCopyable (12.6.1)). OneSameMutability
returns a result that is mutable if obj is mutable and if a mutable version of the required element exists
in GAP; for lists, it returns a result of the same immutability level as the argument. For instance, if
the argument is a mutable matrix with immutable rows, it returns a similar object.

If obj is a multiplicative element then OneSameMutability( obj ) is equivalent to obj~0.

OneAttr, One and Identity are synonyms of OneImmutable. OneSM is a synonym of
OneSameMutability. OneQp is a synonym of OneMutable.

If obj is a domain or a family then One is defined as the identity element of all elements in
obj, provided that all these elements have the same identity. For example, the family of all cy-
clotomics has the identity element 1, but a collections family (see CollectionsFamily (30.2.1))
may contain matrices of all dimensions and then it cannot have a unique identity element. Note that
One is applicable to a domain only if it is a magma-with-one (see IsMagmaWithOne (35.1.2)); use
MultiplicativeNeutralElement (35.4.10) otherwise.

The identity of an object need not be distinct from its zero, so for example a ring consisting of a
single element can be regarded as a ring-with-one (see 56). This is particularly useful in the case of
finitely presented algebras, where any factor of a free algebra-with-one is again an algebra-with-one,
no matter whether or not it is a zero algebra.

The default method of One for multiplicative elements calls OneMutable (note that methods for
OneMutable must not delegate to One); so other methods to compute identity elements need to be
installed only for OneOp and (in the case of copyable objects) OneSameMutability.

For domains, One may call Representative (30.4.7), but Representative (30.4.7) is allowed
to fetch the identity of a domain D only if HasOne ( D ) is true.

31.10.3 ZeroImmutable

> ZeroImmutable (obj) (attribute)
> ZeroAttr( Obj) (attribute)
> Zero(obj) (attribute)
> ZeroMutable (o bj ) (operation)
> ZeroOp(obj) (operation)
> ZeroSameMutability(obj) (operation)
> ZeroSM( Obj) (operation)

ZeroImmutable, ZeroMutable, and ZeroSameMutability all return the additive neutral ele-
ment of the additive element obj.
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They differ only w.r.t. the mutability of the result. ZeroImmutable is an attribute and
hence returns an immutable result. ZeroMutable is guaranteed to return a new mutable object
whenever a mutable version of the required element exists in GAP (see IsCopyable (12.6.1)).
ZeroSameMutability returns a result that is mutable if obj is mutable and if a mutable version
of the required element exists in GAP; for lists, it returns a result of the same immutability level as
the argument. For instance, if the argument is a mutable matrix with immutable rows, it returns a
similar object.

ZeroSameMutability( obj ) isequivalentto O * obj.

ZeroAttr and Zero are synonyms of ZeroImmutable. ZeroSM is a synonym of
ZeroSameMutability. ZeroQp is a synonym of ZeroMutable.

If obj is a domain or a family then Zero is defined as the zero element of all elements in obj,
provided that all these elements have the same zero. For example, the family of all cyclotomics has
the zero element 0, but a collections family (see CollectionsFamily (30.2.1)) may contain matrices
of all dimensions and then it cannot have a unique zero element. Note that Zero is applicable to a
domain only if it is an additive magma-with-zero (see IsAdditiveMagmaWithZero (55.1.5)); use
AdditiveNeutralElement (55.3.5) otherwise.

The default method of Zero for additive elements calls ZeroMutable (note that methods for
ZeroMutable must not delegate to Zero); so other methods to compute zero elements need to be
installed only for ZeroMutable and (in the case of copyable objects) ZeroSameMutability.

For domains, Zero may call Representative (30.4.7), but Representative (30.4.7) is allowed
to fetch the zero of a domain D only if HasZero( D ) is true.

31.10.4 MultiplicativeZeroOp

> MultiplicativeZeroOp(elt) (operation)

Returns: A multiplicative zero element.

for an element elt in the category IsMultiplicativeElementWithZero (31.14.12),
MultiplicativeZeroOp returns the element z in the family F of elt with the property that
z*m = z=m=zholds for all m € F, if such an element can be determined.

Families of elements in the category IsMultiplicativeElementWithZero (31.14.12) often
arise from adjoining a new zero to an existing magma. See InjectionZeroMagma (35.2.13) or
MagmaWithZeroAdjoined (35.2.13) for details.
Example

gap> G:=AlternatingGroup(5);;

gap> x:=Representative(MagmaWithZeroAdjoined(G));
<group with 0 adjoined elt: (>

gap> MultiplicativeZeroOp(x);

<group with 0 adjoined elt: 0>

31.10.5 IsOne

> IsOne(elm) (property)

istrue if eIm = One( elm ), and false otherwise.
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31.10.6 IsZero

> IsZero(elm) (property)

istrueif elm = Zero( elm ), and false otherwise.

31.10.7 IsIdempotent

> IsIdempotent(elt) (property)

returns true iff elt is its own square. (Even if IsZero (31.10.6) returns true for elt.)

31.10.8 InverseImmutable

> InverseImmutable(elm) (attribute)
> InverseAttr(elm) (attribute)
> Inverse(elm) (attribute)
> InverseMutable(elm) (operation)
> InverseOp(elm) (operation)
> InverseSameMutability (elm) (operation)
> InverseSM(elm) (operation)

InverseImmutable, InverseMutable, and InverseSameMutability all return the multiplica-
tive inverse of an element elm, thatis, an element inv such that eIm * inv = inv * elm = One(
elm ) holds; if elm is not invertible then fail (see 20.2) is returned.

Note that the above definition implies that a (general) mapping is invertible in the sense of
Inverse only if its source equals its range (see 32.14). For a bijective mapping f whose source
and range differ, InverseGeneralMapping (32.2.3) can be used to construct a mapping g with the
property that f * g is the identity mapping on the source of f and g * f is the identity mapping on the
range of f.

The operations differ only w.r.t. the mutability of the result. InverseImmutable is an attribute
and hence returns an immutable result. InverseMutable is guaranteed to return a new mutable object
whenever a mutable version of the required element exists in GAP. InverseSameMutability returns
a result that is mutable if elm is mutable and if a mutable version of the required element exists in
GAP; for lists, it returns a result of the same immutability level as the argument. For instance, if the
argument is a mutable matrix with immutable rows, it returns a similar object.

InverseSameMutability( elm ) isequivalent to elm~-1.

InverseAttr and Inverse are synonyms of InverseImmutable. InverseSM is a synonym of
InverseSameMutability. Inverse0p is a synonym of InverseMutable.

The default method of InverseImmutable calls InverseMutable (note that methods for
InverseMutable must not delegate to InverseImmutable); other methods to compute in-
verses need to be installed only for InverseMutable and (in the case of copyable objects)
InverseSameMutability.

31.10.9 AdditiveInverselImmutable

> AdditiveInverseImmutable(elm) (attribute)
> AdditiveInverseAttr(elm) (attribute)
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> AdditiveInverse(elm) (attribute)
> AdditiveInverseMutable(elm) (operation)
> AdditiveInverseOp(elm) (operation)
> AdditiveInverseSameMutability(elm) (operation)
> AdditiveInverseSM(elm) (operation)

AdditiveInverseImmutable, AdditiveInverseMutable, and

AdditiveInverseSameMutability all return the additive inverse of elm.

They differ only w.r.t. the mutability of the result. AdditiveInverseImmutable is an attribute
and hence returns an immutable result. AdditiveInverseMutable is guaranteed to return a new
mutable object whenever a mutable version of the required element exists in GAP (see IsCopyable
(12.6.1)). AdditiveInverseSameMutability returns a result that is mutable if elm is mutable and
if a mutable version of the required element exists in GAP; for lists, it returns a result of the same
immutability level as the argument. For instance, if the argument is a mutable matrix with immutable
rows, it returns a similar object.

AdditiveInverseSameMutability( elm ) isequivalentto -elm.

AdditiveInverseAttr and AdditiveInverse are synonyms of
AdditiveInverseImmutable. AdditiveInverseSM is a synonym of
AdditiveInverseSameMutability. AdditiveInverseOp is a  synonym  of

AdditivelInverseMutable.

The default method of AdditiveInverse calls AdditiveInverseMutable (note that methods
for AdditiveInverseMutable must not delegate to AdditiveInverse); so other methods to com-
pute additive inverses need to be installed only for AdditiveInverseMutable and (in the case of
copyable objects) AdditiveInverseSameMutability.

31.10.10 Order
> Order(elm) (attribute)
is the multiplicative order of elm. This is the smallest positive integer n such that elm ~ n = One(

elm ) if such an integer exists. If the order is infinite, Order may return the value infinity (18.2.1),
but it also might run into an infinite loop trying to test the order.

31.11 Comparison Operations for Elements

Binary comparison operations have been introduced already in 4.12. The underlying operations for
which methods can be installed are the following.

31.11.1 \=and \<

> \=(left-expr, right-expr) (operation)
> \<(left-expr, right-expr) (operation)

Note that the comparisons via <>, <=, >, and >= are delegated to the operations \= (31.11.1) and
\< (31.11.1).

In general, objects in different families cannot be compared with \< (31.11.1). For the reason and
for exceptions from this rule, see 4.12.
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31.11.2 CanEasilyCompareElements

> CanEasilyCompareElements(obj) (property)
> CanEasilyCompareElementsFamily(fam) (function)
> CanEasilySortElements(obj) (property)
> CanEasilySortElementsFamily(fam) (function)

For some objects a “normal form” is hard to compute and thus equality of elements of a domain
might be expensive to test. Therefore GAP provides a (slightly technical) property with which an
algorithm can test whether an efficient equality test is available for elements of a certain kind.

CanEasilyCompareElements indicates whether the elements in the family fam of obj can be
easily compared with \= (31.11.1).

The default method for this property is to ask the family of obj, the default method for the family
is to return false.

The ability to compare elements may depend on the successful computation of certain in-
formation. (For example for finitely presented groups it might depend on the knowledge of
a faithful permutation representation.) This information might change over time and thus it
might not be a good idea to store a value false too early in a family. Instead the function
CanEasilyCompareElementsFamily should be called for the family of obj which returns false
if the value of CanEasilyCompareElements is not known for the family without computing it. (This
is in fact what the above mentioned family dispatch does.)

If a family knows ab initio that it can compare elements this property should be set as implied
filter and filter for the family (the 3rd and 4th argument of NewFamily (79.7.1) respectively). This
guarantees that code which directly asks the family gets a right answer.

The property CanEasilySortElements and the function CanEasilySortElementsFamily be-
have exactly in the same way, except that they indicate that objects can be compared via \< (31.11.1).
This property implies CanEasilyCompareElements, as the ordering must be total.

31.12 Arithmetic Operations for Elements

Binary arithmetic operations have been introduced already in 4.13. The underlying operations for
which methods can be installed are the following.

31.12.1  \+,\*,\/,\~, \mod

> \+(left-expr, right-expr) (operation)
> \*(left-expr, right-expr) (operation)
> \/(left-expr, right-expr) (operation)
> \~(left-expr, right-expr) (operation)
> \mod(left-expr, right-expr) (operation)

For details about special methods for \* (31.12.1), \/ (31.12.1), \~ (31.12.1) and \mod (31.12.1),
consult the appropriate index entries for them.
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31.12.2 LeftQuotient

> LeftQuotient(elml, elm2) (operation)

returns the product eIm1~(-1) * elm2. For some types of objects (for example permutations)
this product can be evaluated more efficiently than by first inverting eIm1 and then forming the product
with eIm2.

31.12.3 Comm

> Comm(elml, e1m2) (operation)

returns the commutator of elm1 and eIm2. The commutator is defined as the product eIm1 ~! x
elm2 '« elml x elm2.

Example
gap> a:= (1,3)(4,6);; b:= (1,6,5,4,3,2);;
gap> Comm( a, b );

(1,5,3)(2,6,4)

gap> LeftQuotient( a, b );

(1,2)(3,6)(4,5)

31.12.4 LieBracket

> LieBracket(elml, elm2) (operation)

returns the element elml * elm2 - elm2 * elml.

The addition \+ (31.12.1) is assumed to be associative but nor assumed to be commutative
(see IsAdditivelyCommutative (55.3.1)). The multiplication \* (31.12.1) is not assumed to be
commutative or associative (see IsCommutative (35.4.9), IsAssociative (35.4.7)).

31.12.5 Sqrt

> Sqrt ( obj ) (operation)

Sqrt returns a square root of obj, that is, an object x with the property that x-x = obj holds. If
such an x is not unique then the choice of x depends on the type of obj. For example, ER (18.4.2) is
the Sqrt method for rationals (see IsRat (17.2.1)).

31.13 Relations Between Domains

Domains are often constructed relative to other domains. The probably most usual case is to form a
subset of a domain, for example the intersection (see Intersection (30.5.2)) of two domains, or a
Sylow subgroup of a given group (see SylowSubgroup (39.13.1)).

In such a situation, the new domain can gain knowledge by exploiting that several attributes are
maintained under taking subsets. For example, the intersection of an arbitrary domain with a finite
domain is clearly finite, a Sylow subgroup of an abelian group is abelian, too, and so on.
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Since usually the new domain has access to the knowledge of the old domain(s) only when it is
created (see 31.8 for the exception), this is the right moment to take advantage of the subset relation,
using UseSubsetRelation (31.13.1).

Analogous relations occur when a factor structure is created from a domain and a subset (see
UseFactorRelation (31.13.2)), and when a domain isomorphic to a given one is created (see
UseIsomorphismRelation (31.13.3)).

The functions InstallSubsetMaintenance (31.13.4), InstallIsomorphismMaintenance
(31.13.6), and InstallFactorMaintenance (31.13.5) are used to tell GAP under what conditions
an attribute is maintained under taking subsets, or forming factor structures or isomorphic domains.
This is used only when a new attribute is created, see 79.3. For the attributes already available, such
as IsFinite (30.4.2) and IsCommutative (35.4.9), the maintenances are already notified.

31.13.1 UseSubsetRelation

> UseSubsetRelation(super, sub) (operation)

Methods for this operation transfer possibly useful information from the domain super to its
subset sub, and vice versa.

UseSubsetRelation is designed to be called automatically whenever substructures of domains
are constructed. So the methods must be cheap, and the requirements should be as sharp as possible!

To achieve that all applicable methods are executed, all methods for this operation except the
default method must end with TryNextMethod (). This default