
AutoDoc
Generate documentation from GAP

source code
2015.09.30

30/09/2015

Sebastian Gutsche

Max Horn

Sebastian Gutsche
Email: gutsche@mathematik.uni-kl.de
Homepage: http://wwwb.math.rwth-aachen.de/~gutsche/
Address: Department of Mathematics

University of Kaiserslautern
67653 Kaiserslautern
Germany

Max Horn
Email: max.horn@math.uni-giessen.de
Homepage: http://www.quendi.de/math
Address: AG Algebra

Mathematisches Institut
JLU Gießen
Arndtstraße 2
D-35392 Gießen
Germany

mailto://gutsche@mathematik.uni-kl.de
http://wwwb.math.rwth-aachen.de/~gutsche/
mailto://max.horn@math.uni-giessen.de
http://www.quendi.de/math

AutoDoc 2

Copyright
© 2012-2014 by Sebastian Gutsche and Max Horn

This package may be distributed under the terms and conditions of the GNU Public License Version 2.

Contents

1 Getting started using AutoDoc 4
1.1 Creating a package manual from scratch . 4
1.2 Documenting code with AutoDoc . 5
1.3 Using AutoDoc in an existing GAPDoc manual . 6
1.4 Automatic regeneration of the manual . 6
1.5 What is taken from PackageInfo.g . 6

2 AutoDoc documentation comments 7
2.1 Documenting declarations . 7
2.2 Other documentation comments . 9
2.3 Title page commands . 12
2.4 Plain text files . 13
2.5 Grouping . 13
2.6 Level . 14
2.7 Some syntax for AutoDoc text . 14

3 AutoDoc worksheets 16
3.1 Worksheets . 16

4 AutoDoc 17
4.1 The AutoDoc() function . 17

Index 21

3

Chapter 1

Getting started using AutoDoc

AutoDoc is a GAP package which is meant to aide GAP package authors in creating and maintaing
the documentation of their packages. In this capacity it builds upon GAPDoc (and hence is not a
replacement for it, but rather a complement). In this chapter we describe how you can get started
using AutoDoc for your package. To this end, we will assume from now on that your package is
called SomePackage.

1.1 Creating a package manual from scratch

Suppose your package is already up and running, but so far has no manual. Then you can rapidly
generate a “scaffold” for a manual using the AutoDoc (4.1.1) command like this:

LoadPackage("AutoDoc");
AutoDoc("SomePackage" : scaffold := true);

This creates two XML files doc/SomePackage.xml and doc/title.xml insider the package direc-
tory and then runs GAPDoc on them to produce a nice initial PDF and HTML version of your fresh
manual.

To ensure that the GAP help system picks up your package manual, you should also add the
following (or a variation of it) to your PackageInfo.g:

PackageDoc := rec(
BookName := ~.PackageName,
ArchiveURLSubset := ["doc"],
HTMLStart := "doc/chap0.html",
PDFFile := "doc/manual.pdf",
SixFile := "doc/manual.six",
LongTitle := ~.Subtitle,

),

Congratulations, your package now has a minimal working manual. Of course it will be mostly
empty for now, but it already should contain some useful information, based on the data in your
PackageInfo.g. This includes your package’s name, version and description as well as information
about its authors. And if you ever change the package data, (e.g. because your email address changed),
just re-run the above command to regenerate the two main XML files with the latest information.

4

AutoDoc 5

Next of course you need to provide actual content (unfortunately, we were not yet able to automate
that for you, more research on artificial intelligence is required). To add more content, you have
several options: You could add further GAPDoc XML files containing extra chapters, sections and
so on. Or you could use classic GAPDoc source comments (in either case, see Section 1.3 on how
to teach the AutoDoc (4.1.1) command to include this extra documentation). Or you could use the
special documentation facilities AutoDoc provides (see Section 1.2).

You may also wish to consult Section 1.4 for hints on automatically re-generating your package
manual when necessary.

1.2 Documenting code with AutoDoc

To get one of your global functions, operations, attributes etc. to appear in the package manual, simply
insert an AutoDoc comment of the form #! directly in front of it. For example:

#!
DeclareOperation("ToricVariety", [IsConvexObject]);

This tiny change is already sufficient to ensure that the operation appears in the manual. In general,
you will want to add further information about the operation, such as in the following example:

#! @Arguments conv
#! @Returns a toric variety
#! @Description
#! Creates a toric variety out
#! of the convex object <A>conv.
DeclareOperation("ToricVariety", [IsConvexObject]);

For a thorough description of what you can do with AutoDoc documentation comments, please refer
to chapter 2.

Suppose you have not been using GAPDoc before but instead used the process described in
section 1.1 to create your manual. Then the following GAP command will regenerate the manual and
automatically include all newly documented functions, operations etc.:

LoadPackage("AutoDoc");
AutoDoc("SomePackage" : scaffold := true, autodoc := true);

If you are not using the scaffolding feature, e.g. because you already have an existing GAPDoc based
manual, then you can still use AutoDoc documentation comments. Just make sure to first edit the
main XML file of your documentation, and insert the line

#Include SYSTEM "AutoDocMainFile.xml"

in a suitable place. This means that you can mix AutoDoc documentation comment freely with
your existing documentation; you can even still make use of any existing GAPDoc documentation
comments in your code. The following command should be useful for you in this case; it still scans
the package code for AutoDoc documentation comments and the runs GAPDoc to produce HTML
and PDF output, but does not touch your documentation XML files otherwise.

LoadPackage("AutoDoc");
AutoDoc("SomePackage" : autodoc := true);

AutoDoc 6

1.3 Using AutoDoc in an existing GAPDoc manual

TODO: Explain that it might still be interesting to switch to using scaffolding?
TODO: Demonstrate how to add / mix your own XML files, AutoDoc generated XML files, and

GAPDoc stuff...

1.4 Automatic regeneration of the manual

You will probably want to re-run the AutoDoc (4.1.1) command frequently, e.g. whenever you mod-
ified your documentation or your PackageInfo.g. To make this more convenient and reproducible,
we recommend putting its invocation into a file makedoc.g in your package directory. Then you can
regenerate the manual from the command line with the following simple command (assuming you are
in the package directory):

gap makedoc.g

1.5 What is taken from PackageInfo.g

AutoDoc can extract data from PackageInfo.g in order to generate a title page. Specifically, the
following components of the package info record are looked at:

Version
This is used to set the <Version> element of the title page, with the string “Version ” prepended.

Date This is used to set the <Date> element of the title page.

Subtitle
This is used to set the <Subtitle> element of the title page (the <Title> is set to the package
name).

Persons
This is used to generate <Author> elements in the generated title page.

PackageDoc
This is a record (or a list of records) which is used to tell the GAP help system about the package
manual. Currently AutoDoc extracts the value of the PackageDoc.BookName component and
then passes that on to GAPDoc when creating the HTML, PDF and text versions of the manual.

AutoDoc
This is a record which can be used to control the scaffolding performed by AutoDoc,
specifically to provide extra information for the title page. For example, you can set
AutoDoc.TitlePage.Copyright to a string which will then be inserted on the generated title
page. Using this method you can customize the following title page elements: TitleComment,
Abstract, Copyright, Acknowledgements and Colophon.

Note that AutoDoc.TitlePage behaves exactly the same as the scaffold.TitlePage param-
eter of the AutoDoc (4.1.1) function.

Chapter 2

AutoDoc documentation comments

You can document declarations of global functions and variables, operations, attributes etc. by insert-
ing AutoDoc comments into your sources before these declaration. An AutoDoc comment always
starts with #!. This is also the smallest possible AutoDoc command. If you want your declaration
documented, just write #! at the line before the documentation. For example:

#!
DeclareOperation("AnOperation",

[IsList]);

This will produce a manual entry for the operation AnOperation.

2.1 Documenting declarations

In the bare form above, the manual entry for AnOperation will not contain much more than the name
of the operation. In order to change this, there are several commands you can put into the AutoDoc
comment before the declaration. Currently, the following commands are provided:

2.1.1 @Description descr

Adds the text in the following lines of the AutoDoc to the description of the declaration in the manual.
Lines are until the next AutoDoc command or until the declaration is reached.

2.1.2 @Returns ret_val

The string ret_val is added to the documentation, with the text “Returns: ” put in front of it. This
should usually give a brief hint about the type or meaning of the value retuned by the documented
function.

2.1.3 @Arguments args

The string args contains a description of the arguments the function expects, including optional parts,
which are denoted by square brackets. The argument names can be separated by whitespace, commas
or square brackets for the optional arguments, like “grp[, elm]” or “xx[y[z]]”. If GAP options are
used, this can be followed by a colon : and one or more assignments, like “n[, r]: tries := 100”.

7

AutoDoc 8

2.1.4 @Group grpname

Adds the following method to a group with the given name. See section 2.5 for more information
about groups.

2.1.5 @Label label

Adds label to the function as label. If this is not specified, then for declarations that involve a list
of input filters (as is the case for DeclareOperation, DeclareAttribute, etc.), a default label is
generated from this filter list.

#! @Label testlabel
DeclareProperty("AProperty",

IsObject);

leads to this:

2.1.6 AProperty (testlabel)

. AProperty(arg) (property)

Returns: true or false
while
#!
DeclareProperty("AProperty",

IsObject);

leads to this:

2.1.7 AProperty (for IsObject)

. AProperty(arg) (property)

Returns: true or false

2.1.8 @ChapterInfo chapter, section

Adds the entry to the given chapter and section. Here, chapter and section are the respective
titles.

As an example, a full AutoDoc comment for with all options could look like this:

#! @Description
#! Computes the list of lists of degrees of ordinary characters
#! associated to the <A>p-blocks of the group <A>G
#! with <A>p-modular character table <A>modtbl
#! and underlying ordinary character table <A>ordtbl.
#! @Returns a list
#! @Arguments modtbl
#! @Group CharacterDegreesOfBlocks
#! @FunctionLabel chardegblocks
#! @ChapterInfo Blocks, Attributes
DeclareAttribute("CharacterDegreesOfBlocks",

IsBrauerTable);

AutoDoc 9

2.2 Other documentation comments

There are also some commands which can be used in AutoDoc comments that are not associated to
any declaration. This is useful for additional text in your documentation, examples, mathematical
chapters, etc..

2.2.1 @Chapter name

Sets a chapter, all functions without seperate info will be added to this chapter. Also all text comments,
i.e. lines that begin with #! without a command, and which do not follow after @description, will be
added to the chapter as regular text. Example:

#! @Chapter My chapter
#! This is my chapter.
#! I document my stuff in it.

2.2.2 @Section name

Sets a section like chapter sets a chapter.

#! @Section My first manual section
#! In this section I am going to document my first method.

2.2.3 @EndSection

Closes the current section. Please be careful here. Closing a section before opening it might cause
unexpected errors.

#! @EndSection
The following text again belongs to the chapter
#! Now we could start a second section if we want to.

2.2.4 @Subsection name

Sets a subsection like chapter sets a chapter.

#! @Subsection My first manual subsection
#! In this subsection I am going to document my first example.

2.2.5 @EndSubsection

Closes the current subsection. Please be careful here. Closing a subsection before opening it might
cause unexpected errors.

#! @EndSubsection
The following text again belongs to the section
#! Now we are in the section again

AutoDoc 10

2.2.6 @BeginAutoDoc

Causes all subsequent declarations to be documented in the manual, regardless of whether they have
an AutoDoc comment in front of them or not.

2.2.7 @EndAutoDoc

Ends the affect of @BeginAutoDoc. So from here on, again only declarations with an explicit
AutoDoc comment in front are added to the manual.

#! @BeginAutoDoc

DeclareOperation("Operation1", [IsList]);

DeclareProperty("IsProperty", IsList);

#! @EndAutoDoc

Both, Operation1 and IsProperty would appear in the manual.

2.2.8 @BeginGroup [grpname]

Starts a group. All following documented declarations without an explicit @Group command are
grouped together in the same group with the given name. If no name is given, then a new nameless
group is generated. The effect of this command is ended when an @EndGroup command is reached.

See section 2.5 for more information about groups.

2.2.9 @EndGroup

Ends the current group.

#! @BeginGroup MyGroup
#!
DeclareAttribute("GroupedAttribute",

IsList);

DeclareOperation("NonGroupedOperation",
[IsObject]);

#!
DeclareOperation("GroupedOperation",

[IsList, IsRubbish]);
#! @EndGroup

2.2.10 @Level lvl

Sets the current level of the documentation. All items created after this, chapters, sections, and items,
are given the level lvl , until the @ResetLevel command resets the level to 0 or another level is set.

See section 2.6 for more information about groups.

AutoDoc 11

2.2.11 @ResetLevel

Resets the current level to 0.

2.2.12 @BeginExample and @EndExample

@BeginExample inserts an example into the manual. The syntax is like the example enviroment in
GAPDoc. This examples can be tested by GAPDoc, and also stay readable by GAP. The GAP prompt
is added by AutoDoc. @EndExample ends the example block.

#! @BeginExample
S3 := SymmetricGroup(5);
#! Sym([1 .. 5])
Order(S3);
#! 120
#! @EndExample

2.2.13 @BeginLog and @EndLog

Works just like the @BeginExample command, but the example wont be testet. See the GAPDoc
manual for more information.

2.2.14 @DoNotReadRestOfFile

Prevents the rest of the file from being read by the parser. Useful for not finished or temporary files.

#! This will appear in the manual

#! @DoNotReadRestOfFile

#! This wont.

2.2.15 @BeginChunk name , @EndChunk, and @InsertChunk name

@BeginChunk causes the next documentation parts not to be inserted in the documentation at it’s
point in the file, but at the point where the @InsertChunk name command is. This can be used to
insert examples from different files at a specific point in the documentation. A normal chunk ends at
the end of the file. You can also end a system with @EndChunk.

#! @BeginChunk MyChunk
#! This is some text.
#! @EndChunk

#! @InsertChunk MyChunk
Text is inserted here.

#! @BeginChunk Example_Symmetric_Group
#! @BeginExample
S3 := SymmetricGroup(5);
#! Sym([1 .. 5])

AutoDoc 12

Order(S3);
#! 120
#! @EndExample
#! @EndChunk

#! @InsertChunk Example_Symmetric_Group

2.2.16 @BeginSystem name , @EndSystem, and @InsertSystem name

Same as @BeginChunk etc. This command is deprecated. Please use chunk instead.

2.2.17 @BeginCode name , @EndCode, and @InsertCode name

Inserts the code between @BeginCode and @EndCode verbatim at the point where @InsertCode is
called. This is useful to insert your programm code directly into the manual.

#! @BeginCode Increment
i := i + 1;
#! @EndCode

#! @InsertCode Increment
Code is inserted here.

2.2.18 @LatexOnly text , @BeginLatexOnly , and @EndLatexOnly

Code inserted between @BeginLatexOnly and @EndLatexOnly or after @LatexOnly is only inserted
in the PDF version of the manual or worksheet. It can hold arbitrary LaTeX-commands.

#! @BeginLatexOnly
#! \include{picture.tex}
#! @EndLatexOnly

#! @LatexOnly \include{picture.tex}

2.3 Title page commands

The following commands can be used to add the corresponding parts to the title page of the document,
in case the scaffolding is enabled.

• @Title

• @Subtitle

• @Version

• @TitleComment

• @Author

• @Date

AutoDoc 13

• @Address

• @Abstract

• @Copyright

• @Acknowledgements

• @Colophon

• @URL

Those add the following lines at the corresponding point of the titlepage. Please note that many of
those things can be (better) extracted from the PackageInfo.g. In case you set some of those, the
extracted or in scaffold defined items will be overwritten.

2.4 Plain text files

AutoDoc plain text files work exactly like AutoDoc comments, except that the #! is unnecessary at the
beginning of a line which should be documented. Files that have the suffix .autodoc will automatically
regarded as plain text files while the commands @AutoDocPlainText and @EndAutoDocPlainText
mark parts in plain text files which should be regarded as AutoDoc parts. All commands can be used
like before.

2.5 Grouping

TODO: explain more about groups and what they do, how they look in the generated output etc.
Note that group names are globally unique throughout the whole manual. That is, groups with the

same name are in fact merged into a single group, even if they were declared in different source files.
Thus you can have multiple @BeginGroup / @EndGroup pairs using the same group name, in different
places, and these all will refer to the same group.

Moreover, this means that you can add items to a group via the @Group command in the AutoDoc
comment of an arbitrary declaration, at any time. The following code

#! @BeginGroup Group1

#! @Description
#! First sentence.
DeclareOperation("FirstOperation", [IsInt]);

#! @Description
#! Second sentence.
DeclareOperation("SecondOperation", [IsInt, IsGroup]);

#! @EndGroup

.. Stuff ..

#! @Description
#! Third sentence.

AutoDoc 14

#! @Group Group1
KeyDependentOperation("ThirdOperation", IsGroup, IsInt, "prime);

produces the following:

2.5.1 FirstOperation (for IsInt)

. FirstOperation(arg) (operation)

. SecondOperation(arg1, arg2) (operation)

. ThirdOperation(arg1, arg2) (operation)

Returns:
First sentence. Second sentence. Third sentence.

2.6 Level

Levels can be set to not write certain parts in the manual by default. Every entry has by default the
level 0. The command @Level can be used to set the level of the following part to a higher level, for
example 1, and prevent it from being printed to the manual by default. However, if one sets the level
to a higher value in the autodoc option of AutoDoc, the parts will be included in the manual at the
specific place.

#! This text will be printed to the manual.
#! @Level 1
#! This text will be printed to the manual if created with level 1 or higher.
#! @Level 2
#! This text will be printed to the manual if created with level 2 or higher.
#! @ResetLevel
#! This text will be printed to the manual.

2.7 Some syntax for AutoDoc text

AutoDoc offers some useful syntax extensions which can be used in AutoDoc plain text files and
AutoDoc comments. The syntax is inspired by the Markdown language, but it does not implement all
features, neither is strict Markdown, but tries to be as straight as possible. The following constructions
are possible right now:

2.7.1 Lists

One can create items lists by beginning a new line with *, +, -, followed by one space. The first item
starts the list. When items are longer than one line, the following lines have to be indented by at least
two spaces. The list ends when a line which does not start a new item is not indented by two spaces.
Of curse lists can be nested. Here is an example:

#! The list starts in the next line
#! * item 1
#! * item 2
#! which is a bit longer
#! * and also contains a nested list

AutoDoc 15

#! * with two items
#! * item 3 of the outer list
#! This does not belong to the list anymore.

This is the output:
The list starts in the next line

• item 1

• item 2 which is a bit longer

– and also contains a nested list

– with two items

• item 3 of the outer list

This does not belong to the list anymore.
The *, -, and + are fully interchangeable and can even be used mixed, but this is not recommended.

2.7.2 Math modes

One can start an inline formula with a $, and also end it with $, just like in LATEX. This will translate
into GAPDocs inline math enviroment. For display mode one can use $$, also like LATEX.

#! This is an inline formula: $1+1 = 2$.
#! This is a display formula:
#! $$ \sum_{i=1}^n i. $$

produces the following output:
This is an inline formula: 1+1 = 2. This is a display formula:

n

∑
i=1

i.

2.7.3 Emphasize

One can emphasize text by using two asteriks (**) or two underscores (__) at the beginning and the
end of the text which should be emphasized. Example:

#! **This** is very important.
#! This is __also important__.
#! **Naturally, more than one line
#! can be important.**

This produces the following output:
This is very important. This is also important. Naturally, more than one line can be important.

Chapter 3

AutoDoc worksheets

3.1 Worksheets

3.1.1 AutoDocWorksheet

. AutoDocWorksheet(list_of_filenames: options) (function)

Returns:
This function works exactly like the AutoDoc command, except that no package is needed to

create a worksheet. It takes the sampe optional records as the AutoDoc-command, so please refer this
command for a full list. It’s only optional argument is a (list of) filenames, which are then scanned by
the AutoDoc parser.

16

Chapter 4

AutoDoc

4.1 The AutoDoc() function

4.1.1 AutoDoc

. AutoDoc(package_name[, option_record]) (function)

Returns: nothing
This is the main function of the AutoDoc package. It can perform any combination of the follow-

ing three tasks:

1. It can (re)generate a scaffold for your package manual. That is, it can produce two XML files in
GAPDoc format to be used as part of your manual: First, a file named doc/PACKAGENAME.xml
(with your package’s name substituted) which is used as main file for the package manual,
i.e. this file sets the XML DOCTYPE and defines various XML entities, includes other XML
files (both those generated by AutoDoc as well as additional files created by other means),
tells GAPDoc to generate a table of content and an index, and more. Secondly, it creates a
file doc/title.xml containing a title page for your documentation, with information about
your package (name, description, version), its authors and more, based on the data in your
PackageInfo.g.

2. It can scan your package for AutoDoc based documentation (by using AutoDoc tags and the
Autodoc command. This will produce further XML files to be used as part of the package
manual.

3. It can use GAPDoc to generate PDF, text and HTML (with MathJaX enabled) documentation
from the GAPDoc XML files it generated as well as additional such files provided by you. For
this, it invokes MakeGAPDocDoc (GAPDoc: MakeGAPDocDoc) to convert the XML sources,
and it also instructs GAPDoc to copy supplementary files (such as CSS style files) into your
doc directory (see CopyHTMLStyleFiles (GAPDoc: CopyHTMLStyleFiles)).

For more information and some examples, please refer to Chapter 1.
The parameters have the following meanings:

package_name
The name of the package whose documentation should be(re)generated.

17

AutoDoc 18

option_record
option_record can be a record with some additional options. The following are currently
supported:

dir This should be a string containing a (relative) path or a Directory() object specifying where
the package documentation (i.e. the GAPDoc XML files) are stored.
Default value: "doc/".

scaffold
This controls whether and how to generate scaffold XML files for the main and title page
of the package’s documentation.
The value should be either true, false or a record. If it is a record or true (the latter is
equivalent to specifying an empty record), then this feature is enabled. It is also enabled
if opt.scaffold is missing but the package’s info record in PackageInfo.g has an
AutoDoc entry. In all other cases (in particular if opt.scaffold is false), scaffolding
is disabled.
If opt.scaffold is a record, it may contain the following entries.

includes
A list of XML files to be included in the body of the main XML file. If you specify
this list and also are using AutoDoc to document your operations with AutoDoc
comments, you can add AutoDocMainFile.xml to this list to control at which point
the documentation produced by AutoDoc is inserted. If you do not do this, it will be
added after the last of your own XML files.

appendix
This entry is similar to opt.scaffold.includes but is used to specify files to in-
clude after the main body of the manual, i.e. typically appendices.

bib
The name of a bibliography file, in Bibtex or XML format. If this key is not set, but
there is a file doc/PACKAGENAME.bib then it is assumed that you want to use this as
your bibliography.

TitlePage
A record whose entries are used to embellish the generated titlepage for the package
manual with extra information, such as a copyright statement or acknowledgments.
To this end, the names of the record components are used as XML element names,
and the values of the components are outputted as content of these XML elements.
For example, you could pass the following record to set a custom acknowledgements
text:

rec(Acknowledgements := "Many thanks to ...")

For a list of valid entries in the titlepage, please refer to the GAPDoc manual, specif-
ically section (GAPDoc: Title) and following.

document_class
Sets the document class of the resulting pdf. The value can either be a string which
has to be the name of the new document class, a list containing this string, or a list of
two strings. Then the first one has to be the document class name, the second one the
option string (contained in []) in LaTeX.

AutoDoc 19

latex_header_file
Replaces the standard header from GAPDoc completely with the header in this La-
TeX file. Please be careful here, and look at GAPDoc’s latexheader.tex file for an
example.

gapdoc_latex_options
Must be a record with entries which can be understood by SetGapDocLaTeXOptions.
Each entry can be a string, which will be given to GAPDoc directly, or a list contain-
ing of two entries: The first one must be the string "file", the second one a filename.
This file will be read and then its content is passed to GAPDoc as option with the
name of the entry.

autodoc
This controls whether and how to generate addition XML documentation files by scanning
for AutoDoc documentation comments.
The value should be either true, false or a record. If it is a record or true (the latter is
equivalent to specifying an empty record), then this feature is enabled. It is also enabled
if opt.autodoc is missing but the package depends (directly) on the AutoDoc package.
In all other cases (in particular if opt.autodoc is false), this feature is disabled.
If opt.autodoc is a record, it may contain the following entries.

files
A list of files (given by paths relative to the package directory) to be scanned
for AutoDoc documentation comments. Usually it is more convenient to use
autodoc.scan_dirs , see below.

scan_dirs
A list of subdirectories of the package directory (given as relative paths) which
AutoDoc then scans for .gi, .gd and .g files; all of these files are then scanned for
AutoDoc documentation comments.
Default value: ["gap", "lib", "examples", "examples/doc"].

level
This defines the level of the created documentation. The default value is 0. When
parts of the manual are declared with a higher value they will not be printed into the
manual.

gapdoc
This controls whether and how to invoke GAPDoc to create HTML, PDF and text files
from your various XML files.
The value should be either true, false or a record. If it is a record or true (the latter is
equivalent to specifying an empty record), then this feature is enabled. It is also enabled
if opt.gapdoc is missing. In all other cases (in particular if opt.gapdoc is false), this
feature is disabled.
If opt.gapdoc is a record, it may contain the following entries.

main
The name of the main XML file of the package manual. This exists primarily to
support packages with existing manual which use a filename here which differs from
the default. In particular, specifying this is unnecessary when using scaffolding.
Default value: PACKAGENAME.xml.

AutoDoc 20

files
A list of files (given by paths relative to the package directory) to be scanned
for GAPDoc documentation comments. Usually it is more convenient to use
gapdoc.scan_dirs , see below.

scan_dirs
A list of subdirectories of the package directory (given as relative paths) which
AutoDoc then scans for .gi, .gd and .g files; all of these files are then scanned for
GAPDoc documentation comments.
Default value: ["gap", "lib", "examples", "examples/doc"].

maketest
The maketest item can be true or a record. When it is true, a simple maketest.g is created
in the main package directory, which can be used to test the examples from the manual.
As a record, the entry can have the following entries itself, to specify some options.

filename
Sets the name of the test file.

commands
A list of strings, each one a command, which will be executed at the beginning of the
test file.

Index

AutoDoc, 4

AProperty
for IsObject, 8
testlabel, 8

AutoDoc, 17
AutoDocWorksheet, 16

FirstOperation
for IsInt, 14

SecondOperation
for IsInt, IsGroup, 14

ThirdOperation
for IsGroupIsGroup, , 14

21

	Getting started using AutoDoc
	Creating a package manual from scratch
	Documenting code with AutoDoc
	Using AutoDoc in an existing GAPDoc manual
	Automatic regeneration of the manual
	What is taken from PackageInfo.g

	AutoDoc documentation comments
	Documenting declarations
	Other documentation comments
	Title page commands
	Plain text files
	Grouping
	Level
	Some syntax for AutoDoc text

	AutoDoc worksheets
	Worksheets

	AutoDoc
	The AutoDoc() function

	Index

