

recog

recog

A collection of group recognition

methods
1.2.3

24/09/2014

Max Neunhoffer
Akos Seress
Nurullah Ankaralioglu
Peter Brooksbank
Frank Celler
Stephen Howe
Maska Law
Steve Linton
Gunter Malle
Alice Niemeyer
Eamonn O’Brien
Colva M. Roney-Dougal

Max Horn

recog

Max Neunhoffer
Email: max@9hoeffer.de
Homepage: http://www-groups.mcs.st-and.ac.uk/ " neunhoef

Address: Gustav-Freytag-Strale 40
50354 Hiirth
Germany

Nurullah Ankaralioglu
Email: ankarali®@atauni.edu.tr

Peter Brooksbank
Email: pbrooksb@bucknell.edu
Homepage: http://wuw.facstaff.bucknell.edu/pbrooksb/
Address: Peter A. Brooksbank
Mathematics Department
Bucknell University
Lewisburg, PA 17837
USA

Frank Celler
Email: frank@celler.de
Homepage: http://wuw.celler.de/

Stephen Howe
Address: Unknown

Maska Law

Email: maska@maths.uwa.edu.au

Address: Maska Law
University of Western Australia
School of Mathematics and Statistics
35 Stirling Highway
Crawley 6009
Western Australia

Steve Linton
Email: sal@cs.st-andrews.ac.uk
Homepage: http://wuww-circa.mcs.st-and.ac.uk/"sal/
Address: School of Computer Science
Jack Cole Building
North Haugh
St Andrews, Fife KY16 9SX
Scotland, UK

mailto://max@9hoeffer.de
http://www-groups.mcs.st-and.ac.uk/~neunhoef
mailto://ankarali@atauni.edu.tr
mailto://pbrooksb@bucknell.edu
http://www.facstaff.bucknell.edu/pbrooksb/
mailto://frank@celler.de
http://www.celler.de/
mailto://maska@maths.uwa.edu.au
mailto://sal@cs.st-andrews.ac.uk
http://www-circa.mcs.st-and.ac.uk/~sal/

recog

Gunter Malle
Email: malle@mathematik.uni-kl.de
Homepage: http://www.mathematik.uni-k1.de/"malle/

Alice Niemeyer
Email: alice@maths.uwa.edu.au
Homepage: http://www.maths.uwa.edu.au/"alice/

Address: Alice C. Niemeyer
University of Western Australia
School of Mathematics and Statistics
35 Stirling Highway
Crawley 6009
Western Australia

Eamonn O’Brien
Email: obrien@math.auckland.ac.nz
Homepage: http://www.math.auckland.ac.nz/ obrien/

Colva M. Roney-Dougal
Email: colva@mcs.st-and.ac.uk
Homepage: http://www-groups.mcs.st-and.ac.uk/ colva
Address: School of Mathematics and Statistics
Mathematical Institute
North Haugh
St Andrews, Fife KY16 9SS
Scotland, UK

Max Horn
Email: max.horn@math.uni-giessen.de
Homepage: http://www.quendi.de/math
Address: AG Algebra
Mathematisches Institut
Justus-Liebig-Universitit Gieen
Arndtstralie 2
35392 Giefen
Germany

mailto://malle@mathematik.uni-kl.de
http://www.mathematik.uni-kl.de/~malle/
mailto://alice@maths.uwa.edu.au
http://www.maths.uwa.edu.au/~alice/
mailto://obrien@math.auckland.ac.nz
http://www.math.auckland.ac.nz/~obrien/
mailto://colva@mcs.st-and.ac.uk
http://www-groups.mcs.st-and.ac.uk/~colva
mailto://max.horn@math.uni-giessen.de
http://www.quendi.de/math

recog 2

Copyright

© 2005-2014 by Max Neunhoffer and Akos Seress
This package may be distributed under the terms and conditions of the GNU Public License Version 3 or
(at your option) any later version.

Contents

1 Introduction 4
1.1 Philosophy e 4
1.2 Overview over thismanual 4
1.3 Feedback 4
2 Installation of the recog-Package 5
3 Methods for recognition 6
3.1 Methods for permutation groups oL L Lo 6
3.2 Methods for matrix groups e e e e e e 8
3.3 Methods for projective groups Lo 9
3.4 Methods for black box groups 12
4 Examples 13
References 14

Chapter 1

Introduction

1.1 Philosophy

This package is about group recognition. To be written further.

1.2 Overview over this manual

Chapter 2 describes the installation of this package. Chapter (recogbase: Recognition info records)
describes the generic, recursive procedure used for group recognition throughout this package. At the
heart of this procedure is the definition of “FindHomomorphism™ methods, which is also described
in that chapter. For the choice of the right method for finding a homomorphism (or an isomorphism)
we use another generic procedure, the “method selection” which is not to be confused with the GAP
method selection. Our own method selection is described in detail in Chapter (recogbase: Method
Selection), because it is interesting in its own right and might be useful in other circumstances.

More text on other chapters to be written.

Finally, Chapter 4 shows instructive examples for the usage of this package.

1.3 Feedback

For bug reports, feature requests and suggestions, please use our issue tracker.

https://github.com/neunhoef/recog/issues

Chapter 2

Installation of the recog-Package

To install this package just extract the package’s archive file to the GAP pkg directory.

By default the recog package is not automatically loaded by GAP when it is installed. You must
load the package with LoadPackage ("recog") ; before its functions become available.

Note that the recogbase package is needed by this package.

Please, send us an e-mail if you have any questions, remarks, suggestions, etc. concerning this
package. Also, we would like to hear about applications of this package.

Max Neunhoffer and Akos Seress

Chapter 3

Methods for recognition

3.1 Methods for permutation groups

The following table gives an overview over the installed methods and their rank (higher rank means
higher priority, the method is tried earlier, see Chapter (recogbase: Method Selection)).

300 | TrivialPermGroup 3.1.1
100 | ThrowAwayFixedPoints | 3.1.2
97 | Pcgs 3.1.3
95 | VeryFewPoints 3.14
90 | NonTransitive 3.15
80 | Giant 3.1.6
70 | Imprimitive 3.1.7
60 | SnkSetswrSr 3.1.8
50 | StabChain 3.19

Table: Permutation group find homomorphism methods

3.1.1 TrivialPermGroup

This method is successful if and only if all generators of the permutation group G are equal to the
identity. Otherwise it returns false indicating that it will never succeed. This method is only installed
to handle the trivial case such that we do not have to take this case into account in the other methods.

3.1.2 ThrowAwayFixedPoints

This method defines a homomorphism of a permutation group G to the action on the moved points of
G if G does not have too many moved points. In the current setup, the homomorphism is defined if the
number k of moved points is at most 1/3 of the largest moved point of G, or & is at most half of the
number of points on which G is stored internally by GAP. The method returns false if it does not
define a homomorphism indicating that it will never succeed.

3.1.3 Pcgs

This is the GAP library function to compute a stabiliser chain for a solvable permutation group. If the
method is successful then the calling node becomes a leaf node in the recursive scheme. If the input

recog 7

group is not solvable then the method returns false.

3.14 VeryFewPoints

If a permutation group acts only on a few points (the current limit is at most 10 points) then a sta-
biliser chain is computed by the randomized GAP library function for that purpose. If the method is
successful then the calling node becomes a leaf node in the recursive scheme. If the input group acts
on more than 10 points then the method returns false.

3.1.5 Nontransitive

If a permutation group G acts nontransitively then this method computes a homomorphism to the
action of G on the orbit of the largest moved point. If G is transitive then the method returns false.

3.1.6 Giant

The method tries to determine whether the input group G is a giant (that is, A, or §, in its natural
action on n points). The output is either a data structure D containing nice generators for G and a
procedure to write an SLP for arbitrary elements of G from the nice generators; or false if G is not
transitive; or fail, in the case that no evidence was found that G is a giant, or evidence was found,
but the construction of D was unsuccessful. If the method constructs D then the calling node becomes
a leaf.

3.1.7 Imprimitive

If the input group is not known to be transitive then this method returns NotApplicable. If the input
group is known to be transitive and primitive then the method returns false; otherwise, the method
tries to compute a nontrivial block system. If successful then a homomorphism to the action on the
blocks is defined; otherwise, the method returns false. If the method is successful then it also gives
a hint for the children of the node by determining whether the kernel of the action on the block system
is solvable. If the answer is yes then the default value 20 for the number of random generators in the
kernel construction is increased by the number of blocks.

3.1.8 SnkSetswrSr

This method tries to determine whether the input group G is acting primitively on N points, and is
isomorphic to a large subgroup of H S, where H is S, acting on k-sets and N = (Z)r and kr > 1.
“Large” means that G contains a subgroup isomorphic to AJ. If G is imprimitive then the output is
false. If G is primitive then the output is either a homomorphism into the natural imprimitive action
of G on nr points with r blocks of size n, or fail.

3.1.9 StabChain

This is the randomized GAP library function for computing a stabiliser chain. The method selection
process ensures that this function is called only with small-base inputs, where the method works
efficiently.

recog 8

3.2 Methods for matrix groups

THIS CHAPTER IS CURRENTLY A BIT OUT OF DATE!

The following table gives an overview over the installed methods and their rank (higher rank
means higher priority, the method is tried earlier, see Chapter (recogbase: Method Selection)). Note
that there are not that many methods for matrix groups since the system can switch to projective
groups by dividing out the subgroup of scalar matrices. The bulk of the recognition methods are then
installed es methods for projective groups.

3100 | TrivialMatrixGroup | 3.2.1
1100 | DiagonalMatrices 3.2.2
1000 | Reduciblelso 323
900 | GoProjective 3.2.6

Table: Matrix group find homomorphism methods

3.2.1 TrivialMatrixGroup

This method is successful if and only if all generators of a matrix group G are equal to the identity.
Otherwise, it returns false.

3.2.2 DiagonalMatrices

This method is successful if and only if all generators of a matrix group G are diagonal matrices.
Otherwise, it returns false.

3.2.3 Reduciblelso

This method determines whether a matrix group G acts irreducibly. If yes, then it returns false. If
G acts reducibly then a composition series of the underlying module is computed and a base change
is performed to write G in a block lower triangular form. Also, the method passes a hint to the
image group that it is in block lower triangular form, so the image immediately can make recursive
calls for the actions on the diagonal blocks, and then to the lower p-part. For the image the method
BlockLowerTriangular (see 3.2.4) is used.

Note that this method is implemented in a way such that it can also be used as a method for a
projective group G. In that case the recognition info record has the ! .projective component bound
to true and this information is passed down to image and kernel.

3.2.4 BlockLowerTriangular

This method is only called when a hint was passed down from the method ReducibleIso (see 3.2.3).
In that case, it knows that a base change to block lower triangular form has been performed. The
method can then immediately find a homomorphism by mapping to the diagonal blocks. It sets up this
homomorphism and gives hints to image and kernel. For the image, the method BlockDiagonal (see
3.2.5) is used and for the kernel, the method LowerLeftPGroup (see 3.2.8) is used.

Note that this method is implemented in a way such that it can also be used as a method for a
projective group G. In that case the recognition info record has the ! .projective component bound
to true and this information is passed down to image and kernel.

recog 9

3.2.5 BlockDiagonal

This method is only called when a hint was passed down from the method BlockLowerTriangular
(see 3.2.4). In that case, it knows that the group is in block diagonal form. The method is used both
in the matrix- and the projective case.

The method immediately delegates to projective methods handling all the diagonal blocks pro-
jectively. This is done by giving a hint to the factor to use the method BlocksModScalars (see
3.3.4) is given. The method for the kernel then has to deal with only scalar blocks, either projec-
tively or with scalars, which is again done by giving a hint to either use BlockScalar (see 3.2.7) or
BlockScalarProj (see 3.3.13) respectively.

Note that this method is implemented in a way such that it can also be used as a method for a
projective group G. In that case the recognition info record has the ! .projective component bound
to true and this information is passed down to image and kernel.

3.2.6 GoProjective

This method defines a homomorphism from a matrix group G into the projective group G modulo
scalar matrices. In fact, since projective groups in GAP are represented as matrix groups, the homo-
morphism is the identity mapping and the only difference is that in the image the projective group
methods can be applied. The bulk of the work in matrix recognition is done in the projective group
setting.

3.2.7 BlockScalar

This method is only called by a hint. Alongside with the hint it gets a block decomposition respected
by the matrix group G to be recognised and the promise, that all diagonal blocks of all group ele-
ments will only be scalar matrices. This method recursively builds a balanced tree and does scalar
recognition in each leaf.

3.2.8 LowerLeftPGroup

This method is only called by a hint from BlockLowerTriangular as the kernel of the homomor-
phism mapping to the diagonal blocks. The method uses the fact the this kernel is a p-group where p
is the characteristic of the underlying field. It exploits this fact and uses this special structure to find
nice generators and a method to express group elements in terms of these.

3.3 Methods for projective groups

THIS CHAPTER IS CURRENTLY A BIT OUT OF DATE!

The following table gives an overview over the installed methods and their rank (higher rank
means higher priority, the method is tried earlier, see Chapter (recogbase: Method Selection)). Note
that the recognition for matrix group switches to projective recognition rather soon in the recognition
process such that most recognition methods in fact are installed as methods for projective groups.

recog 10

3000 | TrivialProjectiveGroup | 3.3.1
1300 | ProjDeterminant 332
1200 | Reduciblelso 3.33
1100 | NotAbsolutelyIrred 3.35
1000 | Subfield 3.3.6
900 | Derived 3.3.7
800 | LowIndex 3.3.8
700 | C6 3.39
600 | Tensor 3.3.10
500 | TwoLargeElOrders 3.3.11
100 | StabilizerChain 3.3.12

Table: Projective group find homomorphism methods

3.3.1 TrivialProjectiveGroup

This method is successful if and only if all generators of a projective group G are equal to the identity
(that is, in the matrix representation of G, all matrices are scalars). Otherwise, it returns false.

3.3.2 ProjDeterminant

The method defines a homomorphism from a projective group G< PGL(d,q) to the cyclic group
GF(q)*/D, where D is the set of dth powers in GF(g)*. The image of a group element g € G is the
determinant of a matrix representative of g, modulo D.

3.3.3 Reduciblelso

This method is the same as the matrix group method with the same name (see 3.2.3), which is able to
take into account the projective mode.

3.3.4 BlocksModScalars

This method is only called when hinted from above. In this method it is understood that G should
neither be recognised as a matrix group nor as a projective group. Rather, it treats all diagonal blocks
modulo scalars which means that two matrices are considered to be equal, if they differ only by a scalar
factor in corresponding diagonal blocks, and this scalar can be different for each diagonal block. This
means that the kernel of the homomorphism mapping to a node which is recognised using this method
will have only scalar matrices in all diagonal blocks.

This method does the balanced tree approach mapping to subsets of the diagonal blocks and finally
using projective recognition to recognise single diagonal block groups.

3.3.5 NotAbsolutelyIrred

If an irreducible projective group G acts absolutely irreducibly then this method returns false. If G
is not absolutely irreducible then a homomorphism into a smaller dimensional representation over an
extension field is defined. A hint is handed down to the image that no test for absolute irreducibility
has to be done any more. Another hint is handed down to the kernel indicating that the only possible
kernel elements can be elements in the centraliser of G in PGL(d,q) that come from scalar matrices
in the extension field.

recog 11

3.3.6 Subfield

When this method runs it knows that the projective group G acts absolutely irreducibly. It then tries
to realise this group over a smaller field. The algorithm used is the one using the “standard basis
approach” known from isomorphism testing of absolutely irreducible modules. It finds a base change
to write the projective group over the smallest field possible. Since the group is projective, it may
choose to multiply generators with arbitrary scalars to write them over a smaller field.

However, sometimes the correct scalar can not be guessed. Therefore, if the first approach does
not work, the method computes the derived subgroup. If the group can be written over a smaller field,
then taking commutators loses the scalars preventing a direct base change to work. Therefore, if the
derived subgroup still acts irreducibly, the standard basis approach can find the right base change that
could also do the job for the whole group. If it acts reducibly, the method Derived (see 3.3.7) which
is run next already has the computed derived subgroup and can try different things to find a reduction.

3.3.7 Derived

This method computes the derived subgroup, if this has not yet been done by other methods. It then
uses the MeatAxe to decide whether the derived subgroup acts irreducibly or not. If it acts reducibly,
then we can apply Clifford theory to the natural module. The natural module restricted to the derived
subgroup is a direct sum of simple modules. If all the summands are isomorphic, we immediately get
either an action of G on blocks or a tensor decomposition. Otherwise, we get an action of G on the
isotypic components. Either way, we find a reduction.

If the derived group acts irreducibly, we return false in the current implementation.

3.3.8 LowIndex

This method is designed for the handling of the Aschbacher class C2 (stabiliser of a decomposition of
the underlying vector space), but may succeed on other types of input as well. Given G < PGL(d, q),
the output is either the permutation action of G on a short orbit of subspaces or fail. In the current
setup, “short orbit” is defined to have length at most 4d.

3.39 cCé6

This method is designed for the handling of the Aschbacher class C6 (normaliser of an extraspecial
group). If the input G< PGL(d,q) does not satisfy d = r* and r|qg — 1 for some prime r and integer n
then the method returns false. Otherwise, it returns either a homomorphism of G into Sp(2n,r), or a
homomorphism into the C2 permutation action of G on a decomposition of GF(¢)?, or fail.

3.3.10 Tensor

This method currently tries to find one tensor factor by powering up commutators of random elements
to elements of prime order. This seems to work quite well provided that the two tensor factors are not
“linked” too much such that there exist enough elements that act with different orders on both tensor
factors.

This method and its description needs some improvement.

recog 12

3.3.11 TwolLargeElQOrders

In the case when the input group G< PGL(d,p°) is suspected to be simple but not alternating, this
method takes the two largest element orders from a sample of pseudorandom elements of G. From
these element orders, it tries to determine whether G is of Lie type or sporadic, and the characteristic
of G if it is of Lie type. In the case when G is of Lie type of characteristic different from p or G is
sporadic, the method also provides a short list of the possible isomorphism types of G.

3.3.12 StabilizerChain

This method computes a stabiliser chain and a base and strong generating set using projective actions.
This is a last resort method since for bigger examples no short orbits can be found in the natural action.
The strong generators are the nice generator in this case and expressing group elements in terms of
the nice generators ist just sifting along the stabiliser chain.

3.3.13 BlockScalarProj

This method is only called by a hint. Alongside with the hint it gets a block decomposition respected
by the matrix group G to be recognised and the promise, that all diagonal blocks of all group elements
will only be scalar matrices. This method simply norms the last diagonal block in all generators by
multiplying with a scalar and then delegates to BlockScalar (see 3.2.7) and matrix group mode to
do the recognition.

3.4 Methods for black box groups

Chapter 4

Examples

Here comes text.

13

References

14

Index

recog, 5, 6

15

	Introduction
	Philosophy
	Overview over this manual
	Feedback

	Installation of the recog-Package
	Methods for recognition
	Methods for permutation groups
	Methods for matrix groups
	Methods for projective groups
	Methods for black box groups

	Examples
	References

