
simpcomp
A GAP toolbox for simplicial complexes

Version 2.1.1

June 2015

Felix Effenberger
Jonathan Spreer

Felix Effenberger Email: felix.effenberger@mis.mpg.de
Address: Max Planck Institute for Mathematics in the Sciences

Inselstr. 22
D-04103 Leipzig, Germany

Jonathan Spreer Email: j.spreer@uq.edu.au
Address: University of Queensland

School of Mathematics and Physics
Brisbane QLD 4072 Australia

mailto://felix.effenberger@mis.mpg.de
mailto://j.spreer@uq.edu.au

simpcomp 2

Abstract
simpcomp is an extension (a so called package) to GAP for working with simplicial complexes in the context
of combinatorial topology. The package enables the user to compute numerous properties of (abstract) sim-
plicial complexes (such as the f -, g- and h-vectors, the face lattice, the fundamental group, the automorphism
group, (co-)homology with explicit basis computation, etc.). It provides functions to generate simplicial
complexes from facet lists, orbit representatives or difference cycles. Moreover, a variety of infinite series of
combinatorial manifolds and pseudomanifolds (such as the simplex, the cross polytope, transitive handle bodies
and sphere bundles, etc.) is given and it is possible to create new complexes from existing ones (links and stars,
connected sums, simplicial cartesian products, handle additions, bistellar flips, etc.). simpcomp ships with
an extensive library of known triangulations of manifolds and a census of all combinatorial 3-manifolds with
transitive cyclic symmetry up to 22 vertices. Furthermore, it provides the user with the possibility to create
own complex libraries. In addition, functions related to slicings and polyhedral Morse theory as well as a
combinatorial version of algebraic blowups and the possibility to resolve isolated singularities of 4-manifolds
are implemented.
simpcomp caches computed properties of a simplicial complex, thus avoiding unnecessary computations,
internally handles the vertex labeling of the complexes and insures the consistency of a simplicial complex
throughout all operations.
If possible, simpcomp makes use of the GAP package homology [DHSW11] for its homology computation
but also provides the user with own (co-)homology algorithms. For automorphism group computation the GAP
package GRAPE [Soi12] is used, which in turn uses the program nauty by Brendan McKay [MP14]. An
internal automorphism group calculation algorithm is used as fallback if the GRAPE package is not available.

Copyright
© 2015 Felix Effenberger and Jonathan Spreer. Permission is granted to copy, distribute and/or modify this
document under the terms of the GNU Free Documentation License, Version 1.2 or any later version published
by the Free Software Foundation, see http://www.fsf.org/licensing/licenses/fdl.html for a copy.

simpcomp is free software. The code of simpcomp is released under the GPL version 2 or later
(at your preference). For the text of the GPL see the file COPYING in the simpcomp directory or
http://www.gnu.org/licenses/.

Acknowledgements
A few functions of simpcomp are based on code from other authors. The bistellar flips implementation, the al-
gorithm to collapse bounded simplicial complexes as well as the classification algorithm for transitive triangula-
tions is based upon work of Frank Lutz (see [Lut03] and the GAP programs BISTELLAR and MANIFOLD_VT
from [Lut]). Some functions were carried over from the homology package by Dumas et al. [DHSW11] – these
functions are marked in the documentation and the source code. The internal (co-)homology algorithms were
implemented by Armin Weiss.

Most of the complexes in the simplicial complex library are taken from the "Manifold Page" by Frank Lutz
[Lut].

The authors acknowledge support by the Deutsche Forschungsgemeinschaft (DFG): simpcomp has been
developed within the DFG projects Ku 1203/5-2 and Ku 1203/5-3.

http://www.fsf.org/licensing/licenses/fdl.html
http://www.gnu.org/licenses/

simpcomp 3

Contents

1 Introduction 7
1.1 What is new . 7
1.2 simpcomp benefits . 7
1.3 How to save time reading this document . 8
1.4 Organization of this document . 8
1.5 How to assure simpcomp works correctly . 9
1.6 Controlling simpcomp log messages . 10
1.7 How to cite simpcomp . 10

2 Theoretical foundations 11
2.1 Polytopes and polytopal complexes . 11
2.2 Simplices and simplicial complexes . 12
2.3 From geometry to combinatorics . 13
2.4 Discrete Normal surfaces . 15
2.5 Polyhedral Morse theory and slicings . 15
2.6 Discrete Morse theory . 18
2.7 Tightness and tight triangulations . 18
2.8 Simplicial blowups . 19

3 The new GAP object types of simpcomp 21
3.1 Accessing properties of a SCPolyhedralComplex object 22

4 Functions and operations for the GAP object type SCPolyhedralComplex 24
4.1 Computing properties of objects of type SCPolyhedralComplex 24
4.2 Vertex labelings and label operations . 25
4.3 Operations on objects of type SCPolyhedralComplex 29

5 The GAP object types SCSimplicialComplex and SCNormalSurface 35
5.1 The object type SCSimplicialComplex . 35
5.2 Overloaded operators of SCSimplicialComplex . 37
5.3 SCSimplicialComplex as a subtype of Set . 40
5.4 The object type SCNormalSurface . 43
5.5 Overloaded operators of SCNormalSurface . 43
5.6 SCNormalSurface as a subtype of Set . 44

4

simpcomp 5

6 Functions and operations for SCSimplicialComplex 46
6.1 Creating an SCSimplicialComplex object from a facet list 46
6.2 Isomorphism signatures . 48
6.3 Generating some standard triangulations . 50
6.4 Generating infinite series of transitive triangulations 55
6.5 A census of regular and chiral maps . 67
6.6 Generating new complexes from old . 72
6.7 Simplicial complexes from transitive permutation groups 77
6.8 The classification of cyclic combinatorial 3-manifolds 80
6.9 Computing properties of simplicial complexes . 82
6.10 Operations on simplicial complexes . 105

7 Functions and operations for SCNormalSurface 119
7.1 Creating an SCNormalSurface object . 119
7.2 Generating new objects from discrete normal surfaces 122
7.3 Properties of SCNormalSurface objects . 123

8 (Co-)Homology of simplicial complexes 133
8.1 Homology computation . 133
8.2 Cohomology computation . 135

9 Bistellar flips 143
9.1 Theory . 143
9.2 Functions for bistellar flips . 145

10 Simplicial blowups 156
10.1 Theory . 156
10.2 Functions related to simplicial blowups . 156

11 Polyhedral Morse theory 159
11.1 Polyhedral Morse theory related functions . 159

12 Forman’s discrete Morse theory 166
12.1 Functions using discrete Morse theory . 166

13 Library and I/O 175
13.1 Simplicial complex library . 175
13.2 simpcomp input / output functions . 182

14 Interfaces to other software packages 187
14.1 Interface to the GAP-package homalg . 187

15 Miscellaneous functions 191
15.1 simpcomp logging . 191
15.2 Email notification system . 192
15.3 Testing the functionality of simpcomp . 194

simpcomp 6

16 Property handlers 195
16.1 Property handlers of SCPolyhedralComplex . 195
16.2 Property handlers of SCSimplicialComplex . 196
16.3 Property handlers of SCNormalSurface . 199
16.4 Property handlers of SCLibRepository . 199

17 A demo session with simpcomp 200
17.1 Creating a SCSimplicialComplex object . 200
17.2 Working with a SCSimplicialComplex object . 202
17.3 Calculating properties of a SCSimplicialComplex object 202
17.4 Creating new complexes from a SCSimplicialComplex object 204
17.5 Homology related calculations . 205
17.6 Bistellar flips . 207
17.7 Simplicial blowups . 209
17.8 Discrete normal surfaces and slicings . 211

18 simpcomp internals 213
18.1 The GAP object type SCPropertyObject . 213
18.2 Example of a common attribute . 215
18.3 Writing a method for an attribute . 217

References 222

Index 223

Chapter 1

Introduction

simpcomp is a GAP package that provides the user with functions to do calculations and construc-
tions with simplicial complexes in the context of combinatorial topology (see abstract). If possible, it
makes use of the GAP packages homology [DHSW11] by J.-G. Dumas et al. and GRAPE [Soi12]
by L. Soicher.

Most parts of this manual can be accessed directly from within GAP using its internal help system.

1.1 What is new

simpcomp is a package for working with simplicial complexes. It claims to provide the user with a
broad spectrum of functionality regarding simplicial constructions.

simpcomp allows the user to interactively construct complexes and to compute their properties
in the GAP shell. Furthermore, it makes use of GAP’s expertise in groups and group operations. For
example, automorphism groups and fundamental groups of complexes can be computed and exam-
ined further within the GAP system. Apart from supplying a facet list, the user can as well construct
simplicial complexes from a set of generators and a prescribed automorphism group – the latter form
being the common in which a complex is presented in a publication. This feature is to our knowl-
edge unique to simpcomp. Furthermore, simpcomp as of Version 1.3.0 supports the construction
of simplicial complexes of prescribed dimension, vertex number and transitive automorphism group
as described in [Lut03], [CK01] and a number of functions (function prefix SCSeries...) provide
infinite series of combinatorial manifolds with transitive automorphism group.

As of Version 1.4.0, simpcomp provides the possibility to perform a combinatorial version of al-
gebraic blowups, so-called simplicial blowups, for combinatorial 4-manfolds as described in [SK11]
and [Spr11a]. The implementation can be used as well to resolve isolated singularities of combinato-
rial 4-pseudomanifolds. It seems that this feature, too, is unique to simpcomp.

Starting from Version 1.5.4, simpcomp comes with more efficient code to perform bistellar moves
implemented in C (see function SCReduceComplexFast (9.2.15)). However, this feature is completely
optional.

1.2 simpcomp benefits

The origin of simpcomp is a collection of scripts of the two authors [Eff11a], [Spr11a] that
provide basic and often-needed functions and operations for working with simplicial complexes.
Apart from some optional code dealing with bistellar moves (see Section 9 and in particular

7

simpcomp 8

SCReduceComplexFast (9.2.15)), it is written entirely in the GAP scripting language, thus giving
the user the possibility to see behind the scenes and to customize or alter simpcomp functions if
needed.

The main benefit when working with simpcomp over implementing the needed functions from
scratch is that simpcomp encapsulates all methods and properties of a simplicial complex in a new
GAP object type (as an abstract data type). This way, among other things, simpcomp can transpar-
ently cache properties already calculated, thus preventing unnecessary double calculations. It also
takes care of the error-prone vertex labeling of a complex. As of Version 1.5, simpcomp makes use
of GAP’s caching mechanism (as described in [BL98]) to cache all known properties of a simplicial
complex. In addition, a customized data structure is provided to organize the complex library and to
cache temporary information about a complex.

simpcomp provides the user with functions to save and load the simplicial complexes to and
from files and to import and export a complex in various formats (e.g. from and to polymake/TOPAZ
[GJ00], SnapPea [Wee99] and Regina [BBP+13] (via the SnapPea file format), Macaulay2 [GS],
LaTeX, etc.).

In contrast to the software package polymake [GJ00] providing the most efficient algorithms
for each task in form of a heterogeneous package (where algorithms are implemented in various
languages), the primary goal when developing simpcomp was not efficiency (this is already limited
by the GAP scripting language), but rather ease of use and ease of extensibility by the user in the
GAP language with all its mathematical and algebraic capabilities. Extending simpcomp is possible
directly from within GAP, without having to compile anything, see Chapter 18.

1.3 How to save time reading this document

The core component in simpcomp is the newly defined object types SCPropertyObject and its de-
rived subtype SCSimplicialComplex. When working with this package it is important to understand
how objects of these types can be created, accessed and modified. The reader is therefore advised to
first skim over the Chapters 3 and 5.

The impatient reader may then directly skip to Chapter 17 to see simpcomp in action.
The next advised step is to have a look at the functions for creating objects of type

SCSimplicialComplex, see the first section of Chapter 6.
The rest of Chapter 6 contains most of the functions that simpcomp provides, except for the func-

tions related to (co-)homology, bistellar flips, simplicial blowups, polyhedral Morse theory, slicings
(discrete normal surfaces) and the simplicial complex library that are described in the Chapters 8 to
13. Functions for the more general GAP object type SCPolyhedralComplex are described in Chapter
4 .

1.4 Organization of this document

This manual accompanying simpcomp is organized as follows.

• Chapter 2 provides a short introduction into the theory of simplicial complexes and PL-
topology.

• Chapter 3 gives a short overview about the newly defined GAP object types simpcomp is
working with.

simpcomp 9

• Chapter 4 is devoted to the description of the GAP object type SCPolyhedralComplex that is
defined by simpcomp.

• Chapter 5 introduce the GAP object types SCSimplicialComplex and SCNormalSurface

which are both derived from SCPolyhedralComplex.

• In Chapter 6 functions for working with simplicial complexes are described.

• Chapter 7 gives an overview over functions related to slicings / discrete normal surfaces.

• Chapter 8 describes the homology- and cohomology-related functions of simpcomp.

• Chapter 9 contains a description of the functions related to bistellar flips provided by simp-
comp.

• In Chapter 10 simplicial blowups and resolutions of singularities of combinatorial 4-
pseudomanifolds are explained.

• In Chapter 11 polyhedral Morse theory is discussed.

• In Chapter 13 the simplicial complex library and the input output functionality that simpcomp
provides is described in detail.

• Chapter 15 contains descriptions of functions not fitting in the other chapters, such as the error
handling and the email notification system of simpcomp.

• Chapter 16 contains a list of all property handlers allowing to access properties of a
SCSimplicialComplex object, a SCNormalSurface object or a SCLibRepository object via
the dot operator (pseudo object orientation).

• Chapter 17 contains the transcript of a demo session with simpcomp showing some of the con-
structions and calculations with simplicial complexes that can also be used as a first overview
of things possible with this package.

• Finally, Chapter 18 focuses on the description of the internal structure of simpcomp and deals
with aspects of extending the functionality of the package.

1.5 How to assure simpcomp works correctly

As with all software, it is important to test whether simpcomp functions correctly on your system
after installing it. GAP has an internal testing mechanism and simpcomp ships with a short testing
file that does some sample computations and verifies that the results are correct.

To test the functionality of simpcomp you can run the function SCRunTest (15.3.1) from the
GAP console:

Example
gap> SCRunTest();

+ test simpcomp package, Version 2.1.1

+ GAP4stones: 69988

true

gap>

SCRunTest (15.3.1) should return true, otherwise the correct functionality of simpcomp cannot be
guaranteed.

simpcomp 10

1.6 Controlling simpcomp log messages

Note that the verbosity of the output of information to the screen during calls to functions of the pack-
age simpcomp can be controlled by setting the info level parameter via the function SCInfoLevel

(15.1.1).

1.7 How to cite simpcomp

If you would like to cite simpcomp using BibTeX, you can use the following BibTeX entry for the
current simpcomp version (remember to include the url package in your LATEX document):

@manual{simpcomp,

author = "Felix Effenberger and Jonathan Spreer",

title = "{\tt simpcomp} - a {\tt GAP} toolkit for simplicial complexes,

{V}ersion 2.1.1",

year = "2015",

url = "\url{http://code.google.com/p/simpcomp}",

}

If you are not using BibTeX, you can use the following entry inside the bibliography environment of
LaTeX.

\bibitem{simpcomp}

F.~Effenberger and J.~Spreer,

\emph{{\tt simpcomp} -- a {\tt GAP} toolkit for simplicial complexes},

Version 2.1.1,

2015,

\url{http://code.google.com/p/simpcomp}.

Chapter 2

Theoretical foundations

The purpose of this chapter is to recall some basic definitions regarding polytopes, triangula-
tions, polyhedral Morse theory, discrete normal surfaces, slicings, tight triangulations and simplicial
blowups. The expert in these fields may well skip to the next chapter.

For a more detailed look the authors recommend the books [Hud69], [RS72] on PL-topology and
[Zie95], [Grü03] on the theory of polytopes.

An overview of the more recent developments in the field of combinatorial topology can be found
in [Lut05] and [Dat07].

2.1 Polytopes and polytopal complexes

A convex d-polytope is the convex hull of n points pi ∈ Ed in the d-dimensional euclidean space:

P = conv{v1, . . . ,vn} ⊂ Ed ,

where the v1, . . . ,vn do not lie in a hyperplane of Ed .
From now on when talking about polytopes in this document always convex polytopes are meant

unless explicitly stated otherwise.
For any supporting hyperplane h ⊂ Ed , P∩h is called a k-face of P if dim(P∩h) = k. The 0-faces

are called vertices, the 1-faces edges and the (d−1)-faces are called facets of P.
A d-polytope P for which all facets are congruent regular (d − 1)-polytopes and for which all

vertex links are congruent regular (d −1)-polytopes is called regular, where the regular 2-polytopes
are regular polygons.

Figure 1 below shows the only five regular convex 3-polytopes (also known as platonic solids).

Figure 1. The platonic solids as the five regular convex 3-polytopes.

The set of all k-faces of P is called the k-skeleton of P, written as skelk(P).

11

simpcomp 12

Figure 2. From left to right, drawn in grey: the 0-skeleton, the 1-skeleton and the 2-skeleton of the cube.

A polytopal complex C is a finite collection of polytopes Pi, 1 ≤ i ≤ n for which the intersection of
any two polytopes Pi ∩Pj is either empty or a common face of Pi and Pj. The polytopes of maximal
dimension are called the facets of C. The dimension of a polytopal complex C is defined as the
maximum over all dimensions of its facets.

For every d-dimensional polytopal complex the (d +1)-tuple, containing its number of i-faces in
the i-th entry is called the f -vector of the polytopal complex.

Every polytope P gives rise to a polytopal complex consisting of all the proper faces of P. This
polytopal complex is called the boundary complex C(∂P) of the polytope P.

Figure 2 below shows the boundary complex of the cube.

Figure 3. The 3-cube (left) and its boundary complex (right) where the 0-faces shown in black, the 1-faces
dark gray and the 2-faces in light gray.

2.2 Simplices and simplicial complexes

A d-dimensional simplex or d-simplex for short is the convex hull of d + 1 points in Ed in general
position. Thus the d-simplex is the smallest (with respect to the number of vertices) possible d-
polytope. Every face of the d-simplex is a m-simplex, m ≤ d.

A 0-simplex is a point, a 1-simplex is a line segment, a 2-simplex is a triangle, a 3-simplex a
tetrahedron, and so on.

Figure 4. From left to right: a 0-simplex, a 1-simplex, a 2-simplex, a 3-simplex and a Schlegel diagram of a
4-simplex.

A polytopal complex which entirely consists of simplices is called a simplicial complex (for this it
actually suffices that the facets (i. e., the faces that are not included in any other face of the complex)
of a polytopal complex are simplices).

simpcomp 13

Figure 4. A simplicial complex (left) and a collection of simplices that does not form a simplicial complex
(right).

The dimension of a simplicial complex is the maximal dimension of a facet. A simplicial complex
is said to be pure if all facets are of the same dimension. A pure simplicial complex of dimension d
satisfies the weak pseudomanifold property if every (d−1)-face is part of exactly two facets.

Since simplices are polytopes and, hence, simplicial complexes are polytopal complexes all of the
terminology regarding simplicial complexes can be transfered from polytope theory.

2.3 From geometry to combinatorics

Every d-simplex has an underlying set in Ed , as the set of all points of that simplex. In the same way
one can define the underlying set ∣C∣ of a simplicial complex C. If the underlying set of a simplicial
complex C is a topological manifold, then C is called triangulated manifold (or triangulation of ∣C∣).

One can also go the other way and assign an abstract simplicial complex to a geometrical one by
identifying each simplex with its vertex set. This obviously defines a set of sets with a natural partial
ordering given by the inclusion (a socalled poset).

1

6

5

4

7

2

3

��

��

������

��

�� �� �� �� �� �� ������

������ �� ���� ������
����
����

����
����
����

��
��
��

��
��
��

��
��
��

��
��
��

����
����
����

����
����
����

�����
�����
�����

�����
�����
�����

���������
���������
���������
���������
���������
���������

���������
���������
���������
���������
���������
���������

����
����
����
����

����
����
����
����

��
��
��
��

��
��
��
��

�������
�������
�������
�������
�������
�������

�������
�������
�������
�������
�������
�������

������
������
������

������
������
������

����
����
����

����
����
����

����
����
����

����
����
����

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

����
����
����

����
����
���������

�����
�����

�����
�����
�����

���
���
���

���
���
���

���
���
���

���
���
���

����
����
����

����
����
����

�
�
�

�
�
�

�
�
�

�
�
�

��
��
��

��
��
��

���
���
���

���
���
���

�
�
�

�
�
�

�����
�����
�����

�����
�����
����������

�����
�����

�����
�����
�����

����������
����������
����������

����������
����������
����������{1} {2}

{12} {16} {23} {27}

{3}

{34}

ø

{37}

{4} {5} {6} {7}

{47}{45}

{237} {347}

C

{4567}

{56} {67}

Figure 5. A geometrical polytopal complex (left) and its abstract version in form of a poset (right).

Let v be a vertex of C. The set of all facets that contain v is called star of v in C and is denoted by
starC(v). The subcomplex of starC(v) that contains all faces not containing v is called link of v in C,
written as lkC(v).

A combinatorial d-manifold is a d-dimensional simplicial complex whose vertex links are all tri-
angulated (d −1)-dimensional spheres with standard PL-structure. A combinatorial pseudomanifold
is a simplicial complex whose vertex links are all combinatorial (d−1)-manifolds.

simpcomp 14

1

2

3

1

1

2

3

1

4 5

4 5

6

7

Figure 6. A simplicial complex that is a vertex-minimal combinatorial triangulation of the torus T 2 (so called
Möbius’ torus) – each vertex link is a hexagon.

Note that every combinatorial manifold is a triangulated manifold. The opposite is wrong: for
example, there exists a triangulation of the 5-sphere that is not combinatorial, the so called Edward’s
sphere, see [BL00].

A combinatorial manifold carries an induced PL-structure and can be understood in terms of an
abstract simplicial complex. If the complex has d vertices there exists a natural embedding of C into
the (d −1) simplex and, thus, into Ed−1. In general, there is no canonical embedding into any lower
dimensional space. However, combinatorial methods allow to examine a given simplicial complex
independently from an embedding and, in particular, independently from vertex coordinates.

Some fundamental properties of an abstract simplicial complex C are the following:

Dimensionality.
The dimension of C.

f , g and h-vector.
The f -vector (fk equals the number of k-faces of a simplicial complex), the g- and h-vector can
be obtained from the f -vector via linear transformations.

(Co-)Homology.
The simplicical (co-)homology groups and Betti numbers.

Euler characteristic
The Euler characteristic as the alternating sum over the Betti numbers / the f -vector.

Connectedness and closedness.
Whether C is strongly connected, path connected, has a boundary or not.

Symmetries.
The automorphism group, i. e. the group of all permutations on the set of vertex labels that do
not change the complex as a whole.

All of those properties and many more can be computed on a strictly combinatorial basis.

simpcomp 15

2.4 Discrete Normal surfaces

The concept of normal surfaces is originally due to Kneser [Kne29] and Haken [Hak61]: A surface S,
properly embedded into a 3-manifold M, is said to be normal, if it respects a given cell decomposition
of M in the following sense: It does not intersect any vertex nor touch any 3-cell of the manifold and
does not intersect with any 2-cell in a circle or an arc starting and ending in a point of the same edge.
Here we will look at normal surfaces in the case that M is given as a combinatorial 3-manifold and
we will call the corresponding objects discrete normal surfaces. In order to do this let us first define:

DEFINITION

A polytopal manifold is a polytopal complex M such that there exists a simplicial subdivision of M
which is a combinatorial manifold. If M is a surface we will call it a polytopal map. If, in addition M
entirely consists of m-gons, we call it a polytopal m-gon map.

DEFINITION (Discrete Normal surface, [Spr11b])
Let M be a combinatorial 3-manifold (3-pseudomanifold), ∆ ∈ M one of its tetrahedra and P the
intersection of ∆ with a plane that does not include any vertex of ∆. Then P is called a normal subset
of ∆. Up to an isotopy that respects the face lattice of ∆, P is equal to one of the triangles Pi, 1 ≤ i ≤ 4,
or quadrilaterals Pi, 5 ≤ i ≤ 7, shown in Figure 7.

A polyhedral map S ⊂ M that entirely consists of facets Pi such that every tetrahedron contains
at most one facet is called discrete normal surface of M.

The second author has recently investigated on the combinatorial theory of discrete normal
surfaces, see [Spr11b].

P5 P6

P7

P1

P2

P3

P4

(1;0;0;0;0;0;0) (0;1;0;0;0;0;0) (0;0;1;0;0;0;0) (0;0;0;1;0;0;0)

(0;0;0;0;1;0;0) (0;0;0;0;0;1;0) (0;0;0;0;0;0;1) (0;1;0;0;0;0;2)2 2 2 2

2 2 2 2

4 4 4 4

4 4 4 4

3 3 3 3

3 3 3 3

1 1 1 1

1 1 1 1

Figure 7. The seven different normal subsets of the tetrahedron. Note that the rightmost picture of the bottom
row can not be part of a discrete normal surface.

2.5 Polyhedral Morse theory and slicings

In the field of PL-topology Kühnel developed what one might call a polyhedral Morse theory
(compare [Küh95], not to be confused with Forman’s discrete Morse theory for cell complexes which

simpcomp 16

is decribed in Section 2.6):

Let M be a combinatorial d-manifold. A function f ∶ M → R is called regular simplexwise lin-
ear (rsl) if f (v) ≠ f (w) for any two vertices w ≠ v and if f is linear when restricted to an arbitrary
simplex of the triangulation.

A vertex x ∈ M is said to be critical for an rsl-function f ∶ M → R, if H⋆(Mx,Mx/{x},F) ≠ 0
where Mx ∶= {y ∈M∣ f (y) ≤ f (x)} and F is a field.

It follows that no point of M can be critical except possibly the vertices. In arbitrary dimen-
sions we define:

DEFINITION (Slicing, [Spr11b])
Let M be a combinatorial pseudomanifold of dimension d and f ∶ M → R an rsl-function. Then we
call the pre-image f −1(α) a slicing of M whenever α ≠ f (v) for any vertex v ∈M.

By construction, a slicing is a polytopal (d − 1)-manifold and for any ordered pair α ≤ β we
have f −1(α) ≅ f −1(β) whenever f −1([α,β]) contains no vertex of M. In particular, a slicing S of
a closed combinatorial 3-manifold M is a discrete normal surface: It follows from the simplexwise
linearity of f that the intersection of the pre-image with any tetrahedron of M either forms a single
triangle or a single quadrilateral. In addition, if two facets of S lie in adjacent tetrahedra they ei-
ther are disjoint or glued together along the intersection line of the pre-image and the common triangle.

Any partition of the set of vertices V = V1∪̇V2 of M already determines a slicing: Just define
an rsl-function f ∶M→R with f (v) ≤ f (w) for all v ∈V1 and w ∈V2 and look at a suitable pre-image.
In the following we will write S(V1,V2) for the slicing defined by the vertex partition V =V1∪̇V2.

Every vertex of a slicing is given as an intersection point of the corresponding pre-image with
an edge ⟨u,w⟩ of the combinatorial manifold. Since there is at most one such intersection point per
edge, we usually label this vertex of the slicing according to the vertices of the corresponding edge,
that is (u

w) with u ∈V1 and w ∈V2.

Every slicing decomposes the surrounding combinatorial manifold M into at least 2 pieces (an
upper part M+ and a lower part M−). This is not the case for discrete normal surfaces (see 2.4) in
general. However, we will focus on the case where discrete normal surfaces are slicings and we will
apply the above notation for both types of objects.

Since every combinatorial pseudomanifold M has a finite number of vertices, there exist only
a finite number of slicings of M. Hence, if f is chosen carefully, the induced slicings admit a useful
visualization of M, c.f. [SK11].

simpcomp 17

1
2

3

4

(

1

3

)

(

2

3

)

(

1

4

)

(

2

4

)

f−1(α)

f
α

S2 R

Figure 8. One dimensional slicing of the 2-sphere (represented as the boundary of the 3-simplex) seen as a
level set of a regular point of a simplicial Morse function.

1

4

1

5

1

6

1

4

2

4

2

5

2

6 2

4

3

4

3

5

3

6 3

4

1

4

1

5

1

6

1

4

Figure 9. Handlebody decomposition of genus 1 of a 6-vertex 3-sphere - a 3×3-grid torus.

�
2
5

�

�
2
8

�

�
4
5

�

�
4
8

�

�
2
7

� �
3
7

� �
3
8

�

�
1
7

� �
3
6

�

�
1
5

� �
1
6

� �
4
6

�

Figure 10. Separating sphere of an 8-vertex cylinder S2
4 ×[0,1] - A cuboctahedron (drawn as a Schlegel

diagram of a quadrilateral face).

simpcomp 18

2.6 Discrete Morse theory

For an introduction into Forman’s discrete Morse theory see [For95], not to be confused with
Banchoff and Kühnel’s theory of regular simplexwise linear functions which is described in Section
2.5).

2.7 Tightness and tight triangulations

Tightness is a notion developed in the field of differential geometry as the equality of the (normalized)
total absolute curvature of a submanifold with the lower bound sum of the Betti numbers [Kui84],
[BK97]. It was first studied by Alexandrov, Milnor, Chern and Lashof and Kuiper and later
extended to the polyhedral case by Banchoff [Ban65], Kuiper [Kui84] and Kühnel [Küh95]. From a
geometrical point of view, tightness can be understood as a generalization of the concept of convexity
that applies to objects other than topological balls and their boundary manifolds since it roughly
means that an embedding of a submanifold is “as convex as possible” according to its topology. The
usual definition is the following:

DEFINITION (Tightness, [Küh95])
Let F be a field. An embedding M → EN of a compact manifold is called k-tight with respect to F if
for any open or closed halfspace h ⊂ EN the induced homomorphism

Hi(M∩h;F) Ð→Hi(M;F)

is injective for all i ≤ k. M is called F-tight if it is k-tight for all k. The standard choice for the field of
coefficients is F2 and an F2-tight embedding is called tight.

With regard to PL embeddings of PL manifolds tightness of combinatorial manifolds can also
be defined via a purely combinatorial condition as follows. For an introduction to PL topology see
[RS72].

DEFINITION (Tight triangulation [Küh95])
Let F be a field. A combinatorial manifold K on n vertices is called (k-) tight w.r.t. F if its canonical
embedding K ⊂ ∆

n−1 ⊂ En−1 is (k-)tight w.r.t. F, where ∆
n−1 denotes the (n−1)-dimensional simplex.

In dimension d = 2 the following are equivalent for a triangulated surface S on n vertices: (i)
S has a complete edge graph Kn, (ii) S appears as a so called regular case in Heawood’s Map Color
Theorem [Rin74], compare [Küh95] and (iii) the induced piecewise linear embedding of S into
Euclidean (n−1)-space has the two-piece property [Ban74], and it is tight [Küh95].

Kühnel investigated the tightness of combinatorial triangulations of manifolds also in higher
dimensions and codimensions, see [Küh94]. It turned out that the tightness of a combinatorial
triangulation is closely related to the concept of Hamiltonicity of a polyhedral complexes (see
[Küh95]): A subcomplex A of a polyhedral complex K is called k-Hamiltonian if A contains the
full k-dimensional skeleton of K (not to be confused with the notion of a k-Hamiltonian graph).
This generalization of the notion of a Hamiltonian circuit in a graph seems to be due to C.Schulz

simpcomp 19

[Sch94]. A Hamiltonian circuit then becomes a special case of a 0-Hamiltonian subcomplex of a
1-dimensional graph or of a higher-dimensional complex.

A triangulated 2k-manifold that is a k-Hamiltonian subcomplex of the boundary complex of
some higher dimensional simplex is a tight triangulation as Kühnel [Küh95] showed. Such a
triangulation is also called (k+1)-neighborly triangulation since any k+1 vertices in a k-dimensional
simplex are common neighbors. Moreover, (k+1)-neighborly triangulations of 2k-manifolds are also
referred to as super-neighborly triangulations – in analogy with neighborly polytopes the boundary
complex of a (2k+1)-polytope can be at most k-neighborly unless it is a simplex. Notice here that
combinatorial 2k-manifolds can go beyond k-neighborliness, depending on their topology.

Whereas in the 2-dimensional case all tight triangulations of surfaces were classified by Ringel and
Jungerman and Ringel, in dimensions d ≥ 3 there exist only a finite number of known examples of
tight triangulations (see [KL99] for a census) apart from the trivial case of the boundary of a simplex
and an infinite series of triangulations of sphere bundles over the circle due to Kühnel [Küh95],
[Küh86].

2.8 Simplicial blowups

The blowing up process or Hopf σ -process can be described as the resolution of nodes or ordinary
double points of a complex algebraic variety. This was described by H.~Hopf in [Hop51], compare
[Hir53] and [Hau00]. From the topological point of view the process consists of cutting out some
subspace and gluing in some other subspace. In complex algebraic geometry one point is replaced by
the projective line CP1 ≅ S2 of all complex lines through that point. This is often called blowing up
of the point or just blowup. In general the process can be applied to non-singular 4-manifolds and
yields a transformation of a manifold M to M#(+CP2) or M#(−CP2), depending on the choice of an
orientation. The same construction is possible for nodes or ordinary double points (a special type of
singularities), and also the ambiguity of the orientation is the same for the blowup process of a node.
Similarly it has been used in arbitrary even dimension by Spanier [Spa56] as a so-called dilatation
process.

A PL version of the blowing up process is the following: We cut out the star of one of the
singular vertices which is, in the case of an ordinary double point, nothing but a cone over a
triangulated RP3. The boundary of the resulting space is this triangulated RP3. Now we glue back in
a triangulated version C of a complex projective plane with a 4-ball removed where antipodal points
of the boundary are identified. C is called a triangulated mapping cylinder and by construction its
boundary is PL homeomorphic to RP3.

For a combinatorial version with concrete triangulations, however, we face the problem that
these two triangulations are not isomorphic. This implies that before cutting out and gluing in we
have to modify the triangulations by bistellar moves until they coincide:

DEFINITION (Simplicial blowup, [SK11])
Let v be a vertex of a combinatorial 4-pseudomanifold M whose link is isomorphic with the particular
11-vertex triangulation of RP3 which is given by the boundary complex of the triangulated C given
in [SK11]. Let ψ ∶ lk(v)→ ∂C denote such an isomorphism. A simplicial resolution of the singularity

simpcomp 20

v is given by the following construction M↦ M̃ ∶= (M∖ star(v)○)∪ψ C.

The process is described in more detail in [SK11]. In particular it is used to transform a
4-dimensional Kummer variety into a K3 surface.

Chapter 3

The new GAP object types of simpcomp

In order to meet the particular requirements of piecewise linear geometric objects and their invariants,
simpcomp defines a number of new GAP object types.

All new object types are derived from the object type SCPropertyObject which is a subtype
of Record. It is a GAP object consisting of permanent and temporary attributes. While simpcomp
makes use of GAP’s internal attribute caching mechanism for permanent attributes (see below), this
is not the case for temporary ones.

The temporary properties of a SCPropertyObject can be accessed directly with the functions
SCPropertyTmpByName and changed with SCPropertyTmpSet. But this direct access to property
objects is discouraged when working with simpcomp, as the internal consistency of the objects cannot
be guaranteed when the properties of the objects are modified in this way.

Important note: The temporary properties of SCPropertyObject are not used to hold properties
(in the GAP sense) of simplicial complexes or other geometric objects. This is done by the GAP4 type
system [BL98]. Instead, the properties handled by simpcomp’s own caching mechanism are used to
store changing information, e.g. the complex library (see Section 13) of the package or any other data
which possibly is subject to changes (and thus not suited to be stored by the GAP type system).

To realize its complex library (see Section 13), simpcomp defines a GAP object type
SCLibRepository which provides the possibility to store, load, etc. any defined geometric object
to and from the build-in complex library as well as customized user libraries. In addition, a searching
mechanism is provided.

Geometric objects are represented by the GAP object type SCPolyhedralComplex, which as well
is a subtype of SCPropertyObject. SCPolyhedralComplex is designed to represent any kind of
piecewise linear geometric object given by a certain cell decomposition. Here, as already mentioned,
the GAP4 type system [BL98] is used to cache properties of the object. In this way, a property is not
calculated multiple times in case the object is not altered (see SCPropertiesDropped (5.1.4) for a
way of dropping previously calculated properties).

As of Version 1.4, simpcomp makes use of two different subtypes of SCPolyhedralComplex:
SCSimplicialComplex to handle simplicial complexes and SCNormalSurface to deal with dis-
crete normal surfaces (slicings of dimension 2). Whenever possible, only one method per opera-
tions is implemented to deal with all subtypes of SCPolyhedralComplex, these functions are de-
scribed in Chapter 4. For all other operations, the different methods for SCSimplicialComplex and
SCNormalSurface are documented separately.

21

simpcomp 22

3.1 Accessing properties of a SCPolyhedralComplex object

As described above the object type SCPolyhedralComplex (and thus also the GAP object types
SCSimplicialComplex and SCNormalSurface) has properties that are handled by the GAP4 type
system. Hence, GAP takes care of the internal consistency of objects of type SCSimplicialComplex.

There are two ways of accessing properties of a SCPolyhedralComplex object. The first is
to call a property handler function of the property one wishes to calculate. The first argument of
such a property handler function is always the simplicial complex for which the property should be
calculated, in some cases followed by further arguments of the property handler function. An example
would be:

Example
gap> c:=SCBdSimplex(3);; # create a SCSimplicialComplex object

gap> SCFVector(c);

[4, 6, 4]

gap> SCSkel(c,0);

[[1], [2], [3], [4]]

Here the functions SCFVector and SCSkel are the property handler functions, see Chapter 16 for a list
of all property handlers of a SCPolyhedralComplex, SCSimplicialComplex or SCNormalSurface
object. Apart from this (standard) method of calling the property handlers directly with a
SCPolyhedralComplex object, simpcomp provides the user with another more object oriented
method which calls property handlers of a SCPolyhedralComplex object indirectly and more conve-
niently:

Example
gap> c:=SCBdSimplex(3);; # create a SCSimplicialComplex object

gap> c.F;

[4, 6, 4]

gap> c.Skel(0);

[[1], [2], [3], [4]]

Note that the code in this example calculates the same properties as in the first example above, but
the properties of a SCPolyhedralComplex object are accessed via the . operator (the record access
operator).

For each property handler of a SCPolyhedralComplex object the object oriented form of this
property handler equals the name of the corresponding operation. However, in most cases abbrevi-
ations are available: Usually the prefix “SC” can be dropped, in other cases even shorter names are
available. See Chapter 16 for a complete list of all abbreviations available.

simpcomp 23

SCPropertyObject

SCLibRepository SCPolyhedralComplex

SCNormalSurface SCSimplicialComplex

Figure 11. Overview over all GAP object types defined by simpcomp.

Chapter 4

Functions and operations for the GAP
object type SCPolyhedralComplex

In the following all operations for the GAP object type SCPolyhedralComplex are listed. I. e. for
the following operations only one method is implemented to deal with all geometric objects derived
from this object type.

4.1 Computing properties of objects of type SCPolyhedralComplex

The following functions compute basic properties of objects of type SCPolyhedralComplex (and
thus also of objects of type SCSimplicialComplex and SCNormalSurface). None of these functions
alter the complex. All properties are returned as immutable objects (this ensures data consistency of
the cached properties of a simplicial complex). Use ShallowCopy or the internal simpcomp function
SCIntFunc.DeepCopy to get a mutable copy.

Note: every object is internally stored with the standard vertex labeling from 1 to n and a maptable
to restore the original vertex labeling. Thus, we have to relabel some of the complex properties (facets,
etc...) whenever we want to return them to the user. As a consequence, some of the functions exist
twice, one of them with the appendix "Ex". These functions return the standard labeling whereas the
other ones relabel the result to the original labeling.

4.1.1 SCFacets

▷ SCFacets(complex) (method)

Returns: a facet list upon success, fail otherwise.
Returns the facets of a simplicial complex in the original vertex labeling.

Example
gap> c:=SC([[2,3],[3,4],[4,2]]);;

gap> SCFacets(c);

[[2, 3], [2, 4], [3, 4]]

4.1.2 SCFacetsEx

▷ SCFacetsEx(complex) (method)

Returns: a facet list upon success, fail otherwise.

24

simpcomp 25

Returns the facets of a simplicial complex as they are stored, i. e. with standard vertex labeling
from 1 to n.

Example
gap> c:=SC([[2,3],[3,4],[4,2]]);;

gap> SCFacetsEx(c);

[[1, 2], [1, 3], [2, 3]]

4.1.3 SCVertices

▷ SCVertices(complex) (method)

Returns: a list of vertex labels of complex upon success, fail otherwise.
Returns the vertex labels of a simplicial complex complex .

Example
gap> sphere:=SC([["x",45,[1,1]],["x",45,["b",3]],["x",[1,1],

["b",3]],[45,[1,1],["b",3]]]);;

gap> SCVerticesEx(sphere);

[1 .. 4]

gap> SCVertices(sphere);

[45, [1, 1], "x", ["b", 3]]

4.1.4 SCVerticesEx

▷ SCVerticesEx(complex) (method)

Returns: [1, . . . ,n] upon success, fail otherwise.
Returns [1, . . . ,n], where n is the number of vertices of a simplicial complex complex .

Example
gap> c:=SC([[1,4,5],[4,9,8],[12,13,14,15,16,17]]);;

gap> SCVerticesEx(c);

[1 .. 11]

4.2 Vertex labelings and label operations

This section focuses on functions operating on the labels of a complex such as the name or the vertex
labeling.

Internally, simpcomp uses the standard labeling [1, . . . ,n]. It is recommended to use simple ver-
tex labels like integers and, whenever possible, the standard labeling, see also SCRelabelStandard

(4.2.7).

4.2.1 SCLabelMax

▷ SCLabelMax(complex) (method)

Returns: vertex label of complex (an integer, a short list, a character, a short string) upon
success, fail otherwise.

The maximum over all vertex labels is determined by the GAP function MaximumList.

simpcomp 26

Example
gap> c:=SCBdSimplex(3);;

gap> SCRelabel(c,[10,100,100000,3500]);;

gap> SCLabelMax(c);

100000

Example
gap> c:=SCBdSimplex(3);;

gap> SCRelabel(c,["a","bbb",5,[1,1]]);;

gap> SCLabelMax(c);

"bbb"

4.2.2 SCLabelMin

▷ SCLabelMin(complex) (method)

Returns: vertex label of complex (an integer, a short list, a character, a short string) upon
success, fail otherwise.

The minimum over all vertex labels is determined by the GAP function MinimumList.
Example

gap> c:=SCBdSimplex(3);;

gap> SCRelabel(c,[10,100,100000,3500]);;

gap> SCLabelMin(c);

10

Example
gap> c:=SCBdSimplex(3);;

gap> SCRelabel(c,["a","bbb",5,[1,1]]);;

gap> SCLabelMin(c);

5

4.2.3 SCLabels

▷ SCLabels(complex) (method)

Returns: a list of vertex labels of complex (a list of integers, short lists, characters, short strings,
...) upon success, fail otherwise.

Returns the vertex labels of complex as a list. This is a synonym of SCVertices (4.1.3).
Example

gap> c:=SCFromFacets(Combinations(["a","b","c","d"],3));;

gap> SCLabels(c);

["a", "b", "c", "d"]

4.2.4 SCName

▷ SCName(complex) (operation)

Returns: a string upon success, fail otherwise.
Returns the name of a simplicial complex complex .

simpcomp 27

Example
gap> c:=SCBdSimplex(5);;

gap> SCName(c);

"S^4_6"

Example
gap> c:=SC([[1,2],[2,3],[3,1]]);;

gap> SCName(c);

"unnamed complex 2"

4.2.5 SCReference

▷ SCReference(complex) (operation)

Returns: a string upon success, fail otherwise.
Returns a literature reference of a polyhedral complex complex .

Example
gap> c:=SCLib.Load(253);;

gap> SCReference(c);

"F.H.Lutz: 'The Manifold Page', http://www.math.tu-berlin.de/diskregeom/stella\

r/"

gap> c:=SC([[1,2],[2,3],[3,1]]);;

gap> SCReference(c);

#I SCReference: complex lacks reference.

fail

4.2.6 SCRelabel

▷ SCRelabel(complex, maptable) (method)

Returns: true upon success, fail otherwise.
maptable has to be a list of length n where n is the number of vertices of complex . The function

maps the i-th entry of maptable to the i-th entry of the current vertex labels. If complex has the
standard vertex labeling [1, . . . ,n] the vertex label i is mapped to maptable[i] .

Note that the elements of maptable must admit a total ordering. Hence, following Section 4.11
of the GAP manual, they must be members of one of the following families: rationals IsRat, cyclo-
tomics IsCyclotomic, finite field elements IsFFE, permutations IsPerm, booleans IsBool, charac-
ters IsChar and lists (strings) IsList.

Internally the property “SCVertices” of complex is replaced by maptable.

Example
gap> list:=SCLib.SearchByAttribute("F[1]=12");;

gap> c:=SCLib.Load(list[1][1]);;

gap> SCVertices(c);

[1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12]

gap> SCRelabel(c,["a","b","c","d","e","f","g","h","i","j","k","l"]);

true

gap> SCLabels(c);

["a", "b", "c", "d", "e", "f", "g", "h", "i", "j", "k", "l"]

simpcomp 28

4.2.7 SCRelabelStandard

▷ SCRelabelStandard(complex) (method)

Returns: true upon success, fail otherwise.
Maps vertex labels v1, . . . ,vn of complex to [1, . . . ,n]. Internally the property "SCVertices" is

replaced by [1, . . . ,n].
Example

gap> list:=SCLib.SearchByAttribute("F[1]=12");;

gap> c:=SCLib.Load(list[1][1]);;

gap> SCRelabel(c,[4..15]);

true

gap> SCVertices(c);

[4 .. 15]

gap> SCRelabelStandard(c);

true

gap> SCLabels(c);

[1 .. 12]

4.2.8 SCRelabelTransposition

▷ SCRelabelTransposition(complex, pair) (method)

Returns: true upon success, fail otherwise.
Permutes vertex labels of a single pair of vertices. pair has to be a list of length 2 and a sublist

of the property “SCVertices”.
The function is equivalent to SCRelabel (4.2.6) with maptable =

[SCVertices[1], . . . ,SCVertices[j], . . . ,SCVertices[i], . . . ,SCVertices[n]] if pair =
[SCVertices[j],SCVertices[i]], j ≤ i, j ≠ i.

Example
gap> c:=SCBdSimplex(3);;

gap> SCVertices(c);

[1, 2, 3, 4]

gap> SCRelabelTransposition(c,[1,2]);;

gap> SCLabels(c);

[2, 1, 3, 4]

4.2.9 SCRename

▷ SCRename(complex, name) (method)

Returns: true upon success, fail otherwise.
Renames a polyhedral complex. The argument name has to be given in form of a string.

Example
gap> c:=SCBdSimplex(5);;

gap> SCName(c);

"S^4_6"

gap> SCRename(c,"mySphere");

true

gap> SCName(c);

"mySphere"

simpcomp 29

4.2.10 SCSetReference

▷ SCSetReference(complex, ref) (method)

Returns: true upon success, fail otherwise.
Sets the literature reference of a polyhedral complex. The argument ref has to be given in form

of a string.
Example

gap> c:=SCBdSimplex(5);;

gap> SCReference(c);

#I SCReference: complex lacks reference.

fail

gap> SCSetReference(c,"my 5-sphere in my cool paper");

true

gap> SCReference(c);

"my 5-sphere in my cool paper"

4.2.11 SCUnlabelFace

▷ SCUnlabelFace(complex, face) (method)

Returns: a list upon success, fail otherwise.
Computes the standard labeling of face in complex .

Example
gap> c:=SCBdSimplex(3);;

gap> SCRelabel(c,["a","bbb",5,[1,1]]);;

gap> SCUnlabelFace(c,["a","bbb",5]);

[1, 2, 3]

4.3 Operations on objects of type SCPolyhedralComplex

The following functions perform operations on objects of type SCPolyhedralComplex and all of its
subtypes. Most of them return simplicial complexes. Thus, this section is closely related to the Sec-
tions 6.6 (for objects of type SCSimplicialComplex), ”Generate new complexes from old”. How-
ever, the data generated here is rather seen as an intrinsic attribute of the original complex and not as
an independent complex.

4.3.1 SCAntiStar

▷ SCAntiStar(complex, face) (method)

Returns: simplicial complex of type SCSimplicialComplex upon success, fail otherwise .
Computes the anti star of face (a face given as a list of vertices or a scalar interpreted as vertex)

in complex , i. e. the complement of face in complex .
Example

gap> SCLib.SearchByName("RP^2");

[[3, "RP^2 (VT)"], [635, "RP^2xS^1"]]

gap> rp2:=SCLib.Load(last[1][1]);;

gap> SCVertices(rp2);

[1, 2, 3, 4, 5, 6]

simpcomp 30

gap> SCAntiStar(rp2,1);

[SimplicialComplex

Properties known: Dim, FacetsEx, Name, Vertices.

Name="ast([1]) in RP^2 (VT)"

Dim=2

/SimplicialComplex]

gap> last.Facets;

[[2, 3, 4], [2, 4, 5], [2, 5, 6], [3, 4, 6], [3, 5, 6]]

4.3.2 SCLink

▷ SCLink(complex, face) (method)

Returns: simplicial complex of type SCSimplicialComplex upon success, fail otherwise.
Computes the link of face (a face given as a list of vertices or a scalar interpreted as vertex) in

a polyhedral complex complex , i. e. all facets containing face , reduced by face . if complex is
pure, the resulting complex is of dimension dim(complex) - dim(face) −1. If face is not a face of
complex the empty complex is returned.

Example
gap> SCLib.SearchByName("RP^2");

[[3, "RP^2 (VT)"], [635, "RP^2xS^1"]]

gap> rp2:=SCLib.Load(last[1][1]);;

gap> SCVertices(rp2);

[1, 2, 3, 4, 5, 6]

gap> SCLink(rp2,[1]);

[SimplicialComplex

Properties known: Dim, FacetsEx, Name, Vertices.

Name="lk([1]) in RP^2 (VT)"

Dim=1

/SimplicialComplex]

gap> last.Facets;

[[2, 3], [2, 6], [3, 5], [4, 5], [4, 6]]

4.3.3 SCLinks

▷ SCLinks(complex, k) (method)

Returns: a list of simplicial complexes of type SCSimplicialComplex upon success, fail
otherwise.

Computes the link of all k -faces of the polyhedral complex complex and returns them as a list of
simplicial complexes. Internally calls SCLink (4.3.2) for every k -face of complex .

Example
gap> c:=SCBdSimplex(4);;

gap> SCLinks(c,0);

simpcomp 31

[[SimplicialComplex

Properties known: Dim, FacetsEx, Name, Vertices.

Name="lk([1]) in S^3_5"

Dim=2

/SimplicialComplex], [SimplicialComplex

Properties known: Dim, FacetsEx, Name, Vertices.

Name="lk([2]) in S^3_5"

Dim=2

/SimplicialComplex], [SimplicialComplex

Properties known: Dim, FacetsEx, Name, Vertices.

Name="lk([3]) in S^3_5"

Dim=2

/SimplicialComplex], [SimplicialComplex

Properties known: Dim, FacetsEx, Name, Vertices.

Name="lk([4]) in S^3_5"

Dim=2

/SimplicialComplex], [SimplicialComplex

Properties known: Dim, FacetsEx, Name, Vertices.

Name="lk([5]) in S^3_5"

Dim=2

/SimplicialComplex]]

gap> SCLinks(c,1);

[[SimplicialComplex

Properties known: Dim, FacetsEx, Name, Vertices.

Name="lk([1, 2]) in S^3_5"

Dim=1

/SimplicialComplex], [SimplicialComplex

Properties known: Dim, FacetsEx, Name, Vertices.

Name="lk([1, 3]) in S^3_5"

Dim=1

/SimplicialComplex], [SimplicialComplex

simpcomp 32

Properties known: Dim, FacetsEx, Name, Vertices.

Name="lk([1, 4]) in S^3_5"

Dim=1

/SimplicialComplex], [SimplicialComplex

Properties known: Dim, FacetsEx, Name, Vertices.

Name="lk([1, 5]) in S^3_5"

Dim=1

/SimplicialComplex], [SimplicialComplex

Properties known: Dim, FacetsEx, Name, Vertices.

Name="lk([2, 3]) in S^3_5"

Dim=1

/SimplicialComplex], [SimplicialComplex

Properties known: Dim, FacetsEx, Name, Vertices.

Name="lk([2, 4]) in S^3_5"

Dim=1

/SimplicialComplex], [SimplicialComplex

Properties known: Dim, FacetsEx, Name, Vertices.

Name="lk([2, 5]) in S^3_5"

Dim=1

/SimplicialComplex], [SimplicialComplex

Properties known: Dim, FacetsEx, Name, Vertices.

Name="lk([3, 4]) in S^3_5"

Dim=1

/SimplicialComplex], [SimplicialComplex

Properties known: Dim, FacetsEx, Name, Vertices.

Name="lk([3, 5]) in S^3_5"

Dim=1

/SimplicialComplex], [SimplicialComplex

Properties known: Dim, FacetsEx, Name, Vertices.

Name="lk([4, 5]) in S^3_5"

Dim=1

simpcomp 33

/SimplicialComplex]]

4.3.4 SCStar

▷ SCStar(complex, face) (method)

Returns: simplicial complex of type SCSimplicialComplex upon success, fail otherwise .
Computes the star of face (a face given as a list of vertices or a scalar interpreted as vertex) in a

polyhedral complex complex , i. e. the set of facets of complex that contain face .
Example

gap> SCLib.SearchByName("RP^2");

[[3, "RP^2 (VT)"], [635, "RP^2xS^1"]]

gap> rp2:=SCLib.Load(last[1][1]);;

gap> SCVertices(rp2);

[1, 2, 3, 4, 5, 6]

gap> SCStar(rp2,1);

[SimplicialComplex

Properties known: Dim, FacetsEx, Name, Vertices.

Name="star([1]) in RP^2 (VT)"

Dim=2

/SimplicialComplex]

gap> last.Facets;

[[1, 2, 3], [1, 2, 6], [1, 3, 5], [1, 4, 5], [1, 4, 6]]

4.3.5 SCStars

▷ SCStars(complex, k) (method)

Returns: a list of simplicial complexes of type SCSimplicialComplex upon success, fail
otherwise.

Computes the star of all k -faces of the polyhedral complex complex and returns them as a list of
simplicial complexes. Internally calls SCStar (4.3.4) for every k -face of complex .

Example
gap> SCLib.SearchByName("T^2"){[1..6]};

[[4, "T^2 (VT)"], [5, "T^2 (VT)"], [9, "T^2 (VT)"], [10, "T^2 (VT)"],

[18, "T^2 (VT)"], [20, "(T^2)#2"]]

gap> torus:=SCLib.Load(last[1][1]);; # the minimal 7-vertex torus

gap> SCStars(torus,0); # 7 2-discs as vertex stars

[[SimplicialComplex

Properties known: Dim, FacetsEx, Name, Vertices.

Name="star([1]) in T^2 (VT)"

Dim=2

/SimplicialComplex], [SimplicialComplex

simpcomp 34

Properties known: Dim, FacetsEx, Name, Vertices.

Name="star([2]) in T^2 (VT)"

Dim=2

/SimplicialComplex], [SimplicialComplex

Properties known: Dim, FacetsEx, Name, Vertices.

Name="star([3]) in T^2 (VT)"

Dim=2

/SimplicialComplex], [SimplicialComplex

Properties known: Dim, FacetsEx, Name, Vertices.

Name="star([4]) in T^2 (VT)"

Dim=2

/SimplicialComplex], [SimplicialComplex

Properties known: Dim, FacetsEx, Name, Vertices.

Name="star([5]) in T^2 (VT)"

Dim=2

/SimplicialComplex], [SimplicialComplex

Properties known: Dim, FacetsEx, Name, Vertices.

Name="star([6]) in T^2 (VT)"

Dim=2

/SimplicialComplex], [SimplicialComplex

Properties known: Dim, FacetsEx, Name, Vertices.

Name="star([7]) in T^2 (VT)"

Dim=2

/SimplicialComplex]]

Chapter 5

The GAP object types
SCSimplicialComplex and
SCNormalSurface

Currently, the GAP package simpcomp supports data structures for two different kinds of geo-
metric objects, namely simplicial complexes (SCSimplicialComplex) and discrete normal surfaces
(SCNormalSurface) which are both subtypes of the GAP object type SCPolyhedralComplex

5.1 The object type SCSimplicialComplex

A major part of simpcomp deals with the object type SCSimplicialComplex. For a complete
list of properties that SCSimplicialComplex handles, see Chapter 6. For a few fundamental
methods and functions (such as checking the object class, copying objects of this type, etc.) for
SCSimplicialComplex see below.

5.1.1 SCIsSimplicialComplex

▷ SCIsSimplicialComplex(object) (filter)

Returns: true or false upon success, fail otherwise.
Checks if object is of type SCSimplicialComplex. The object type SCSimplicialComplex is

derived from the object type SCPropertyObject.
Example

gap> c:=SCEmpty();;

gap> SCIsSimplicialComplex(c);

true

5.1.2 SCCopy

▷ SCCopy(complex) (method)

Returns: a copy of complex upon success, fail otherwise.
Makes a “deep copy” of complex – this is a copy such that all properties of the copy can be altered

without changing the original complex.

35

simpcomp 36

Example
gap> c:=SCBdSimplex(4);;

gap> d:=SCCopy(c)-1;;

gap> c.Facets=d.Facets;

false

Example
gap> c:=SCBdSimplex(4);;

gap> d:=SCCopy(c);;

gap> IsIdenticalObj(c,d);

false

5.1.3 ShallowCopy (SCSimplicialComplex)

▷ ShallowCopy (SCSimplicialComplex)(complex) (method)

Returns: a copy of complex upon success, fail otherwise.
Makes a copy of complex . This is actually a “deep copy” such that all properties of the copy can

be altered without changing the original complex. Internally calls SCCopy (7.2.1).
Example

gap> c:=SCBdCrossPolytope(7);;

gap> d:=ShallowCopy(c)+10;;

gap> c.Facets=d.Facets;

false

5.1.4 SCPropertiesDropped

▷ SCPropertiesDropped(complex) (function)

Returns: a object of type SCSimplicialComplex upon success, fail otherwise.
An object of the type SCSimplicialComplex caches its previously calculated properties such

that each property only has to be calculated once. This function returns a copy of complex with all
properties (apart from Facets, Dim and Name) dropped, clearing all previously computed properties.
See also SCPropertyDrop (18.1.8) and SCPropertyTmpDrop (18.1.13).

Example
gap> c:=SC(SCFacets(SCBdCyclicPolytope(10,12)));

[SimplicialComplex

Properties known: Dim, FacetsEx, Name, Vertices.

Name="unnamed complex 27"

Dim=9

/SimplicialComplex]

gap> c.F; time;

[12, 66, 220, 495, 792, 922, 780, 465, 180, 36]

36

gap> c.F; time;

[12, 66, 220, 495, 792, 922, 780, 465, 180, 36]

0

simpcomp 37

gap> c:=SCPropertiesDropped(c);

[SimplicialComplex

Properties known: Dim, FacetsEx, Name, Vertices.

Name="unnamed complex 27"

Dim=9

/SimplicialComplex]

gap> c.F; time;

[12, 66, 220, 495, 792, 922, 780, 465, 180, 36]

40

5.2 Overloaded operators of SCSimplicialComplex

simpcomp overloads some standard operations for the object type SCSimplicialComplex if this
definition is intuitive and mathematically sound. See a list of overloaded operators below.

5.2.1 Operation + (SCSimplicialComplex, Integer)

▷ Operation + (SCSimplicialComplex, Integer)(complex, value) (method)

Returns: the simplicial complex passed as argument upon success, fail otherwise.
Positively shifts the vertex labels of complex (provided that all labels satisfy the property

IsAdditiveElement) by the amount specified in value .
Example

gap> c:=SCBdSimplex(3)+10;;

gap> c.Facets;

[[11, 12, 13], [11, 12, 14], [11, 13, 14], [12, 13, 14]]

5.2.2 Operation - (SCSimplicialComplex, Integer)

▷ Operation - (SCSimplicialComplex, Integer)(complex, value) (method)

Returns: the simplicial complex passed as argument upon success, fail otherwise.
Negatively shifts the vertex labels of complex (provided that all labels satisfy the property

IsAdditiveElement) by the amount specified in value .
Example

gap> c:=SCBdSimplex(3)-1;;

gap> c.Facets;

[[0, 1, 2], [0, 1, 3], [0, 2, 3], [1, 2, 3]]

5.2.3 Operation mod (SCSimplicialComplex, Integer)

▷ Operation mod (SCSimplicialComplex, Integer)(complex, value) (method)

Returns: the simplicial complex passed as argument upon success, fail otherwise.

simpcomp 38

Takes all vertex labels of complex modulo the value specified in value (provided that all labels
satisfy the property IsAdditiveElement). Warning: this might result in different vertices being
assigned the same label or even in invalid facet lists, so be careful.

Example
gap> c:=(SCBdSimplex(3)*10) mod 7;;

gap> c.Facets;

[[2, 3, 5], [2, 3, 6], [2, 5, 6], [3, 5, 6]]

5.2.4 Operation ^ (SCSimplicialComplex, Integer)

▷ Operation ^ (SCSimplicialComplex, Integer)(complex, value) (method)

Returns: simplicial complex of type SCSimplicialComplex upon success, fail otherwise.
Forms the value -th simplicial cartesian power of complex , i.e. the value -fold cartesian

product of copies of complex . The complex passed as argument is not altered. Internally calls
SCCartesianPower (6.6.1).

Example
gap> c:=SCBdSimplex(2)^2; #a torus

[SimplicialComplex

Properties known: Dim, FacetsEx, Name, TopologicalType, Vertices.

Name="(S^1_3)^2"

Dim=2

TopologicalType="(S^1)^2"

/SimplicialComplex]

5.2.5 Operation + (SCSimplicialComplex, SCSimplicialComplex)

▷ Operation + (SCSimplicialComplex, SCSimplicialComplex)(complex1, complex2)

(method)

Returns: simplicial complex of type SCSimplicialComplex upon success, fail otherwise.
Forms the connected sum of complex1 and complex2 . Uses the lexicographically first facets of

both complexes to do the gluing. The complexes passed as arguments are not altered. Internally calls
SCConnectedSum (6.6.5).

Example
gap> SCLib.SearchByName("RP^3");

[[45, "RP^3"], [113, "RP^3=L(2,1) (VT)"], [589, "(S^2~S^1)#RP^3"],

[590, "(S^2xS^1)#RP^3"], [632, "(S^2~S^1)#2#RP^3"],

[633, "(S^2xS^1)#2#RP^3"], [2414, "RP^3#RP^3"],

[2426, "RP^3=L(2,1) (VT)"], [2488, "(S^2~S^1)#3#RP^3"],

[2489, "(S^2xS^1)#3#RP^3"], [2502, "RP^3=L(2,1) (VT)"],

[7473, "(S^2~S^1)#4#RP^3"], [7474, "(S^2xS^1)#4#RP^3"],

[7504, "(S^2~S^1)#5#RP^3"], [7505, "(S^2xS^1)#5#RP^3"]]

gap> c:=SCLib.Load(last[1][1]);;

gap> SCLib.SearchByName("S^2~S^1"){[1..3]};

[[12, "S^2~S^1 (VT)"], [27, "S^2~S^1 (VT)"], [28, "S^2~S^1 (VT)"]]

gap> d:=SCLib.Load(last[1][1]);;

simpcomp 39

gap> c:=c+d; #form RP^3#(S^2~S^1)

[SimplicialComplex

Properties known: Dim, FacetsEx, Name, Vertices.

Name="RP^3#+-S^2~S^1 (VT)"

Dim=3

/SimplicialComplex]

5.2.6 Operation - (SCSimplicialComplex, SCSimplicialComplex)

▷ Operation - (SCSimplicialComplex, SCSimplicialComplex)(complex1, complex2)

(method)

Returns: simplicial complex of type SCSimplicialComplex upon success, fail otherwise.
Calls SCDifference (6.10.5)(complex1 , complex2)

5.2.7 Operation * (SCSimplicialComplex, SCSimplicialComplex)

▷ Operation * (SCSimplicialComplex, SCSimplicialComplex)(complex1, complex2)

(method)

Returns: simplicial complex of type SCSimplicialComplex upon success, fail otherwise.
Forms the simplicial cartesian product of complex1 and complex2 . Internally calls

SCCartesianProduct (6.6.2).
Example

gap> SCLib.SearchByName("RP^2");

[[3, "RP^2 (VT)"], [635, "RP^2xS^1"]]

gap> c:=SCLib.Load(last[1][1])*SCBdSimplex(3); #form RP^2 x S^2

[SimplicialComplex

Properties known: Dim, FacetsEx, Name, Vertices.

Name="RP^2 (VT)xS^2_4"

Dim=4

/SimplicialComplex]

5.2.8 Operation = (SCSimplicialComplex, SCSimplicialComplex)

▷ Operation = (SCSimplicialComplex, SCSimplicialComplex)(complex1, complex2)

(method)

Returns: true or false upon success, fail otherwise.
Calculates whether two simplicial complexes are isomorphic, i.e. are equal up to a relabeling of

the vertices.
Example

gap> c:=SCBdSimplex(3);;

gap> c=c+10;

true

simpcomp 40

gap> c=SCBdCrossPolytope(4);

false

5.3 SCSimplicialComplex as a subtype of Set

Apart from being a subtype of SCPropertyObject, an object of type SCSimplicialComplex also
behaves like a GAP Set type. The elements of the set are given by the facets of the simplical complex,
grouped by their dimensionality, i.e. if complex is an object of type SCSimplicialComplex, c[1]
refers to the 0-faces of complex, c[2] to the 1-faces, etc.

5.3.1 Operation Union (SCSimplicialComplex, SCSimplicialComplex)

▷ Operation Union (SCSimplicialComplex, SCSimplicialComplex)(complex1,

complex2) (method)

Returns: simplicial complex of type SCSimplicialComplex upon success, fail otherwise.
Computes the union of two simplicial complexes by calling SCUnion (7.3.16).

Example
gap> c:=Union(SCBdSimplex(3),SCBdSimplex(3)+3); #a wedge of two 2-spheres

[SimplicialComplex

Properties known: Dim, FacetsEx, Name, Vertices.

Name="S^2_4 cup S^2_4"

Dim=2

/SimplicialComplex]

5.3.2 Operation Difference (SCSimplicialComplex, SCSimplicialComplex)

▷ Operation Difference (SCSimplicialComplex, SCSimplicialComplex)(complex1,

complex2) (method)

Returns: simplicial complex of type SCSimplicialComplex upon success, fail otherwise.
Computes the “difference” of two simplicial complexes by calling SCDifference (6.10.5).

Example
gap> c:=SCBdSimplex(3);;

gap> d:=SC([[1,2,3]]);;

gap> disc:=Difference(c,d);;

gap> disc.Facets;

[[1, 2, 4], [1, 3, 4], [2, 3, 4]]

gap> empty:=Difference(d,c);;

gap> empty.Dim;

-1

simpcomp 41

5.3.3 Operation Intersection (SCSimplicialComplex, SCSimplicialComplex)

▷ Operation Intersection (SCSimplicialComplex, SCSimplicialComplex)(complex1,

complex2) (method)

Returns: simplicial complex of type SCSimplicialComplex upon success, fail otherwise.
Computes the “intersection” of two simplicial complexes by calling SCIntersection (6.10.8).

Example
gap> c:=SCBdSimplex(3);;

gap> d:=SCBdSimplex(3);;

gap> d:=SCMove(d,[[1,2,3],[]]);;

gap> d:=d+1;;

gap> s1:=SCIntersection(c,d);

[SimplicialComplex

Properties known: Dim, FacetsEx, Name, Vertices.

Name="S^2_4 cap unnamed complex 20"

Dim=1

/SimplicialComplex]

gap> s1.Facets;

[[2, 3], [2, 4], [3, 4]]

5.3.4 Size (SCSimplicialComplex)

▷ Size (SCSimplicialComplex)(complex) (method)

Returns: an integer upon success, fail otherwise.
Returns the “size” of a simplicial complex. This is d+1, where d is the dimension of the complex.

d +1 is returned instead of d, as all lists in GAP are indexed beginning with 1 – thus this also holds
for all the face lattice related properties of the complex.

Example
gap> SCLib.SearchByAttribute("F=[12,66,108,54]");

[[139, "L_3_1"], [140, "S^2~S^1 (VT)"],

[141, "(S^2xS^1)#(S^2xS^1) (VT)"], [142, "S^2xS^1 (VT)"],

[143, "S^2xS^1 (VT)"], [144, "S^2xS^1 (VT)"], [145, "S^2xS^1 (VT)"],

[146, "S^2~S^1 (VT)"], [147, "S^2~S^1 (VT)"], [148, "S^2~S^1 (VT)"],

[149, "S^2~S^1 (VT)"], [150, "S^2~S^1 (VT)"],

[151, "(S^2xS^1)#(S^2xS^1) (VT)"], [152, "S^2xS^1 (VT)"],

[153, "(S^2xS^1)#(S^2xS^1) (VT)"], [154, "S^2xS^1 (VT)"],

[155, "S^2xS^1 (VT)"], [156, "S^2~S^1 (VT)"], [157, "S^2~S^1 (VT)"],

[158, "(S^2xS^1)#(S^2xS^1) (VT)"], [159, "S^2xS^1 (VT)"],

[160, "S^2xS^1 (VT)"], [161, "(S^2xS^1)#(S^2xS^1) (VT)"]]

gap> c:=SCLib.Load(last[1][1]);;

gap> for i in [1..Size(c)] do Print(c.F[i],"\n"); od;

12

66

108

54

simpcomp 42

5.3.5 Length (SCSimplicialComplex)

▷ Length (SCSimplicialComplex)(complex) (method)

Returns: an integer upon success, fail otherwise.
Returns the “size” of a simplicial complex by calling Size(complex).

Example
gap> SCLib.SearchByAttribute("F=[12,66,108,54]");

[[139, "L_3_1"], [140, "S^2~S^1 (VT)"],

[141, "(S^2xS^1)#(S^2xS^1) (VT)"], [142, "S^2xS^1 (VT)"],

[143, "S^2xS^1 (VT)"], [144, "S^2xS^1 (VT)"], [145, "S^2xS^1 (VT)"],

[146, "S^2~S^1 (VT)"], [147, "S^2~S^1 (VT)"], [148, "S^2~S^1 (VT)"],

[149, "S^2~S^1 (VT)"], [150, "S^2~S^1 (VT)"],

[151, "(S^2xS^1)#(S^2xS^1) (VT)"], [152, "S^2xS^1 (VT)"],

[153, "(S^2xS^1)#(S^2xS^1) (VT)"], [154, "S^2xS^1 (VT)"],

[155, "S^2xS^1 (VT)"], [156, "S^2~S^1 (VT)"], [157, "S^2~S^1 (VT)"],

[158, "(S^2xS^1)#(S^2xS^1) (VT)"], [159, "S^2xS^1 (VT)"],

[160, "S^2xS^1 (VT)"], [161, "(S^2xS^1)#(S^2xS^1) (VT)"]]

gap> c:=SCLib.Load(last[1][1]);;

gap> for i in [1..Length(c)] do Print(c.F[i],"\n"); od;

12

66

108

54

5.3.6 Operation [] (SCSimplicialComplex)

▷ Operation [] (SCSimplicialComplex)(complex, pos) (method)

Returns: a list of faces upon success, fail otherwise.
Returns the (pos− 1)-dimensional faces of complex as a list. If pos ≥ d + 2, where d is the

dimension of complex , the empty set is returned. Note that pos must be ≥ 1.
Example

gap> SCLib.SearchByName("K^2");

[[17, "K^2 (VT)"], [571, "K^2 (VT)"]]

gap> c:=SCLib.Load(last[1][1]);;

gap> c[2];

[[1, 2], [1, 3], [1, 5], [1, 7], [1, 9], [1, 10], [2, 3],

[2, 4], [2, 6], [2, 8], [2, 10], [3, 4], [3, 5], [3, 7],

[3, 9], [4, 5], [4, 6], [4, 8], [4, 10], [5, 6], [5, 7],

[5, 9], [6, 7], [6, 8], [6, 10], [7, 8], [7, 9], [8, 9],

[8, 10], [9, 10]]

gap> c[4];

[]

5.3.7 Iterator (SCSimplicialComplex)

▷ Iterator (SCSimplicialComplex)(complex) (method)

Returns: an iterator on the face lattice of complex upon success, fail otherwise.
Provides an iterator object for the face lattice of a simplicial complex.

simpcomp 43

Example
gap> c:=SCBdCrossPolytope(4);;

gap> for faces in c do Print(Length(faces),"\n"); od;

8

24

32

16

5.4 The object type SCNormalSurface

The GAP object type SCNormalSurface is designed to describe slicings (level sets of discrete Morse
functions) of combinatorial 3-manifolds, i. e. discrete normal surfaces. Internally SCNormalSurface

is a subtype of SCPolyhedralComplex and, thus, mostly behaves like a SCSimplicialComplex

object (see Section 5.1). For a very short introduction to normal surfaces see 2.4, for a more
thorough introduction to the field see [Spr11b]. For some fundamental methods and functions for
SCNormalSurface see below. For more functions related to the SCNormalSurface object type see
Chapter 7.

5.5 Overloaded operators of SCNormalSurface

As with the object type SCSimplicialComplex, simpcomp overloads some standard operations for
the object type SCNormalSurface. See a list of overloaded operators below.

5.5.1 Operation + (SCNormalSurface, Integer)

▷ Operation + (SCNormalSurface, Integer)(complex, value) (method)

Returns: the discrete normal surface passed as argument upon success, fail otherwise.
Positively shifts the vertex labels of complex (provided that all labels satisfy the property

IsAdditiveElement) by the amount specified in value .
Example

gap> sl:=SCNSSlicing(SCBdSimplex(4),[[1],[2..5]]);;

gap> sl.Facets;

[[[1, 2], [1, 3], [1, 4]], [[1, 2], [1, 3], [1, 5]],

[[1, 2], [1, 4], [1, 5]], [[1, 3], [1, 4], [1, 5]]]

gap> sl:=sl + 2;;

gap> sl.Facets;

[[[3, 4], [3, 5], [3, 6]], [[3, 4], [3, 5], [3, 7]],

[[3, 4], [3, 6], [3, 7]], [[3, 5], [3, 6], [3, 7]]]

5.5.2 Operation - (SCNormalSurface, Integer)

▷ Operation - (SCNormalSurface, Integer)(complex, value) (method)

Returns: the discrete normal surface passed as argument upon success, fail otherwise.
Negatively shifts the vertex labels of complex (provided that all labels satisfy the property

IsAdditiveElement) by the amount specified in value .

simpcomp 44

Example
gap> sl:=SCNSSlicing(SCBdSimplex(4),[[1],[2..5]]);;

gap> sl.Facets;

[[[1, 2], [1, 3], [1, 4]], [[1, 2], [1, 3], [1, 5]],

[[1, 2], [1, 4], [1, 5]], [[1, 3], [1, 4], [1, 5]]]

gap> sl:=sl - 2;;

gap> sl.Facets;

[[[-1, 0], [-1, 1], [-1, 2]], [[-1, 0], [-1, 1], [-1, 3]],

[[-1, 0], [-1, 2], [-1, 3]], [[-1, 1], [-1, 2], [-1, 3]]]

5.5.3 Operation mod (SCNormalSurface, Integer)

▷ Operation mod (SCNormalSurface, Integer)(complex, value) (method)

Returns: the discrete normal surface passed as argument upon success, fail otherwise.
Takes all vertex labels of complex modulo the value specified in value (provided that all labels

satisfy the property IsAdditiveElement). Warning: this might result in different vertices being
assigned the same label or even invalid facet lists, so be careful.

Example
gap> sl:=SCNSSlicing(SCBdSimplex(4),[[1],[2..5]]);;

gap> sl.Facets;

[[[1, 2], [1, 3], [1, 4]], [[1, 2], [1, 3], [1, 5]],

[[1, 2], [1, 4], [1, 5]], [[1, 3], [1, 4], [1, 5]]]

gap> sl:=sl mod 2;;

gap> sl.Facets;

[[[1, 0], [1, 0], [1, 1]], [[1, 0], [1, 0], [1, 1]],

[[1, 0], [1, 1], [1, 1]], [[1, 0], [1, 1], [1, 1]]]

5.6 SCNormalSurface as a subtype of Set

Like objects of type SCSimplicialComplex, an object of type SCNormalSurface behaves like a
GAP Set type. The elements of the set are given by the facets of the normal surface, grouped by their
dimensionality and type, i.e. if complex is an object of type SCNormalSurface, c[1] refers to the
0-faces of complex, c[2] to the 1-faces, c[3] to the triangles and c[4] to the quadrilaterals. See
below for some examples and Section 5.3 for details.

5.6.1 Operation Union (SCNormalSurface, SCNormalSurface)

▷ Operation Union (SCNormalSurface, SCNormalSurface)(complex1, complex2)

(method)

Returns: discrete normal surface of type SCNormalSurface upon success, fail otherwise.
Computes the union of two discrete normal surfaces by calling SCUnion (7.3.16).

Example
gap> SCLib.SearchByAttribute("F = [10, 35, 50, 25]");

[[19, "S^3 (VT)"]]

gap> c:=SCLib.Load(last[1][1]);;

gap> sl1:=SCNSSlicing(c,[[1,3,5,7,9],[2,4,6,8,10]]);;

gap> sl2:=sl1+10;;

simpcomp 45

gap> SCTopologicalType(sl1);

"T^2"

gap> sl3:=Union(sl1,sl2);;

gap> SCTopologicalType(sl3);

"T^2 U T^2"

Chapter 6

Functions and operations for
SCSimplicialComplex

6.1 Creating an SCSimplicialComplex object from a facet list

This section contains functions to generate or to construct new simplicial complexes. Some of them
obtain new complexes from existing ones, some generate new complexes from scratch.

6.1.1 SCFromFacets

▷ SCFromFacets(facets) (method)

Returns: simplicial complex of type SCSimplicialComplex upon success, fail otherwise.
Constructs a simplicial complex object from the given facet list. The facet list facets has to

be a duplicate free list (or set) which consists of duplicate free entries, which are in turn lists or
sets. For the vertex labels (i. e. the entries of the list items of facets) an ordering via the less-
operator has to be defined. Following Section 4.11 of the GAP manual this is the case for objects
of the following families: rationals IsRat, cyclotomics IsCyclotomic, finite field elements IsFFE,
permutations IsPerm, booleans IsBool, characters IsChar and lists (strings) IsList.

Internally the vertices are mapped to the standard labeling 1..n, where n is the number of
vertices of the complex and the vertex labels of the original complex are stored in the property
”VertexLabels”, see SCLabels (4.2.3) and the SCRelabel.. functions like SCRelabel (4.2.6) or
SCRelabelStandard (4.2.7).

Example
gap> c:=SCFromFacets([[1,2,5], [1,4,5], [1,4,6], [2,3,5], [3,4,6], [3,5,6]]);

[SimplicialComplex

Properties known: Dim, FacetsEx, Name, Vertices.

Name="unnamed complex 9"

Dim=2

/SimplicialComplex]

gap> c:=SCFromFacets([["a","b","c"], ["a","b",1], ["a","c",1], ["b","c",1]]);

[SimplicialComplex

Properties known: Dim, FacetsEx, Name, Vertices.

46

simpcomp 47

Name="unnamed complex 10"

Dim=2

/SimplicialComplex]

6.1.2 SC

▷ SC(facets) (method)

Returns: simplicial complex of type SCSimplicialComplex upon success, fail otherwise.
A shorter function to create a simplicial complex from a facet list, just calls SCFromFacets

(6.1.1)(facets).
Example

gap> c:=SC(Combinations([1..6],5));

[SimplicialComplex

Properties known: Dim, FacetsEx, Name, Vertices.

Name="unnamed complex 11"

Dim=4

/SimplicialComplex]

6.1.3 SCFromDifferenceCycles

▷ SCFromDifferenceCycles(diffcycles) (method)

Returns: simplicial complex of type SCSimplicialComplex upon success, fail otherwise.
Creates a simplicial complex object from the list of difference cycles provided. If diffcycles

is of length 1 the computation is equivalent to the one in SCDifferenceCycleExpand (6.6.8). Oth-
erwise the induced modulus (the sum of all entries of a difference cycle) of all cycles has to be equal
and the union of all expanded difference cycles is returned.

A n-dimensional difference cycle D = (d1 ∶ . . . ∶ dn+1) induces a simplex ∆ = (v1, . . . ,vn+1) by v1 =
d1, vi = vi−1 +di and a cyclic group action by Zσ where σ = ∑di is the modulus of D. The function
returns the Zσ -orbit of ∆.

Note that modulo operations in GAP are often a little bit cumbersome, since all integer ranges
usually start from 1.

Example
gap> c:=SCFromDifferenceCycles([[1,1,6],[2,3,3]]);;

gap> c.F;

[8, 24, 16]

gap> c.Homology;

[[0, []], [2, []], [1, []]]

gap> c.Chi;

0

gap> c.HasBoundary;

false

gap> SCIsPseudoManifold(c);

true

simpcomp 48

gap> SCIsManifold(c);

true

6.1.4 SCFromGenerators

▷ SCFromGenerators(group, generators) (method)

Returns: simplicial complex of type SCSimplicialComplex upon success, fail otherwise.
Constructs a simplicial complex object from the set of generators on which the group group

acts, i.e. a complex which has group as a subgroup of the automorphism group and a facet list that
consists of the group -orbits specified by the list of representatives passed in generators . Note that
group is not stored as an attribute of the resulting complex as it might just be a subgroup of the actual
automorphism group. Internally calls Orbits and SCFromFacets (6.1.1).

Example
gap> #group: AGL(1,7) of order 42

gap> G:=Group([(2,6,5,7,3,4),(1,3,5,7,2,4,6)]);;

gap> c:=SCFromGenerators(G,[[1, 2, 4]]);

[SimplicialComplex

Properties known: Dim, FacetsEx, Name, Vertices.

Name="complex from generators under unknown group"

Dim=2

/SimplicialComplex]

gap> SCLib.DetermineTopologicalType(c);

[SimplicialComplex

Properties known: BoundaryEx, Dim, FacetsEx, HasBoundary,

IsPseudoManifold, IsPure, Name, SkelExs[],

Vertices.

Name="complex from generators under unknown group"

Dim=2

HasBoundary=false

IsPseudoManifold=true

IsPure=true

/SimplicialComplex]

6.2 Isomorphism signatures

This section contains functions to construct simplicial complexes from isomorphism signatures and
to compress closed and strongly connected weak pseudomanifolds to strings.

The isomorphism signature of a closed and strongly connected weak pseudomanifold is a rep-
resentation which is invariant under relabelings of the underlying complex and thus unique for a
combinatorial type, i.e. two complexes are isomorphic iff they have the same isomorphism signature.

simpcomp 49

To compute the isomorphism signature of a closed and strongly connected weak pseudomanifold
P we have to compute all canonical labelings of P and chose the one that is lexicographically minimal.

A canonical labeling of P is determined by chosing a facet ∆ ∈ P and a numbering 1,2, . . . ,d +1
of the vertices of ∆ (which in turn determines a numbering of the co-dimension one faces of ∆ by
identifying each face with its opposite vertex). This numbering can then be uniquely extended to a
numbering (and thus a labeling) on all vertices of P by the weak pseudomanifold property: start at
face 1 of ∆ and label the opposite vertex of the unique other facet δ meeting face 1 by d +2, go on
with face 2 of ∆ and so on. After finishing with the first facet we now have a numbering on δ , repeat
the procedure for δ , etc. Whenever the opposite vertex of a face is already labeled (and also, if the
vertex occurs for the first time) we note this label. Whenever a facet is already visited we skip this step
and keep track of the number of skippings between any two newly discovered facets. This results in
a sequence of m−1 vertex labels together with m−1 skipping numbers (where m denotes the number
of facets in P) which then can by encoded by characters via a lookup table.

Note that there are precisely (d + 1)!m canonical labelings we have to check in order to find
the lexicographically minimal one. Thus, computing the isomorphism signature of a large or highly
dimensional complex can be time consuming. If you are not interested in the isomorphism signature
but just in the compressed string representation use SCExportToString (6.2.1) which just computes
the first canonical labeling of the complex provided as argument and returns the resulting string.

Note: Another way of storing and loading complexes is provided by simpcomp’s library function-
ality, see Section 13.1 for details.

6.2.1 SCExportToString

▷ SCExportToString(c) (function)

Returns: string upon success, fail otherwise.
Computes one string representation of a closed and strongly connected weak pseudomanifold.

Compare SCExportIsoSig (6.2.2), which returns the lexicographically minimal string representa-
tion.

Example
gap> c:=SCSeriesBdHandleBody(3,9);;

gap> s:=SCExportToString(c); time;

"deffg.h.f.fahaiciai.i.hai.fbgeiagihbhceceba.g.gag"

4

gap> s:=SCExportIsoSig(c); time;

"deefgaf.hbi.gbh.eaiaeaicg.g.ibf.heg.iff.hggcfffgg"

16

6.2.2 SCExportIsoSig

▷ SCExportIsoSig(c) (method)

Returns: string upon success, fail otherwise.
Computes the isomorphism signature of a closed, strongly connected weak pseudomanifold. The

isomorphism signature is stored as an attribute of the complex.
Example

gap> c:=SCSeriesBdHandleBody(3,9);;

gap> s:=SCExportIsoSig(c);

"deefgaf.hbi.gbh.eaiaeaicg.g.ibf.heg.iff.hggcfffgg"

simpcomp 50

6.2.3 SCFromIsoSig

▷ SCFromIsoSig(str) (method)

Returns: a SCSimplicialComplex object upon success, fail otherwise.
Computes a simplicial complex from its isomorphism signature. If a file with isomorphism signa-

tures is provided a list of all complexes is returned.
Example

gap> s:="deeee";;

gap> c:=SCFromIsoSig(s);;

gap> SCIsIsomorphic(c,SCBdSimplex(4));

true

Example
gap> s:="deeee";;

gap> PrintTo("tmp.txt",s,"\n");;

gap> cc:=SCFromIsoSig("tmp.txt");

[[SimplicialComplex

Properties known: Dim, ExportIsoSig, FacetsEx, Name, Vertices.

Name="unnamed complex 7"

Dim=3

/SimplicialComplex]]

gap> cc[1].F;

[5, 10, 10, 5]

6.3 Generating some standard triangulations

6.3.1 SCBdCyclicPolytope

▷ SCBdCyclicPolytope(d, n) (function)

Returns: simplicial complex of type SCSimplicialComplex upon success, fail otherwise.
Generates the boundary complex of the d -dimensional cyclic polytope (a combinatorial d − 1-

sphere) on n vertices, where n ≥ d+2.
Example

gap> SCBdCyclicPolytope(3,8);

[SimplicialComplex

Properties known: Dim, EulerCharacteristic, FacetsEx, HasBoundary,

Homology, IsConnected, IsStronglyConnected, Name,

NumFaces[], TopologicalType, Vertices.

Name="Bd(C_3(8))"

Dim=2

EulerCharacteristic=2

HasBoundary=false

Homology=[[0, []], [0, []], [1, []]]

IsConnected=true

IsStronglyConnected=true

simpcomp 51

TopologicalType="S^2"

/SimplicialComplex]

6.3.2 SCBdSimplex

▷ SCBdSimplex(d) (function)

Returns: simplicial complex of type SCSimplicialComplex upon success, fail otherwise.
Generates the boundary of the d-simplex ∆

d , a combinatorial d−1-sphere.
Example

gap> SCBdSimplex(5);

[SimplicialComplex

Properties known: AutomorphismGroup, AutomorphismGroupSize,

AutomorphismGroupStructure,

AutomorphismGroupTransitivity, Dim,

EulerCharacteristic, FacetsEx, GeneratorsEx,

HasBoundary, Homology, IsConnected,

IsStronglyConnected, Name, NumFaces[],

TopologicalType, Vertices.

Name="S^4_6"

Dim=4

AutomorphismGroupSize=720

AutomorphismGroupStructure="S6"

AutomorphismGroupTransitivity=6

EulerCharacteristic=2

HasBoundary=false

Homology=[[0, []], [0, []], [0, []], [0, []], [1, []]]

IsConnected=true

IsStronglyConnected=true

TopologicalType="S^4"

/SimplicialComplex]

6.3.3 SCEmpty

▷ SCEmpty() (function)

Returns: simplicial complex of type SCSimplicialComplex upon success, fail otherwise.
Generates an empty complex (of dimension −1), i. e. a SCSimplicialComplex object with empty

facet list.
Example

gap> SCEmpty();

[SimplicialComplex

Properties known: Dim, FacetsEx, Name, Vertices.

Name="empty complex"

Dim=-1

simpcomp 52

/SimplicialComplex]

6.3.4 SCSimplex

▷ SCSimplex(d) (function)

Returns: simplicial complex of type SCSimplicialComplex upon success, fail otherwise.
Generates the d -simplex.

Example
gap> SCSimplex(3);

[SimplicialComplex

Properties known: Dim, EulerCharacteristic, FacetsEx, Name,

NumFaces[], TopologicalType, Vertices.

Name="B^3_4"

Dim=3

EulerCharacteristic=1

TopologicalType="B^3"

/SimplicialComplex]

6.3.5 SCSeriesTorus

▷ SCSeriesTorus(d) (function)

Returns: simplicial complex of type SCSimplicialComplex upon success, fail otherwise.
Generates the d-torus described in [Küh86].

Example
gap> t4:=SCSeriesTorus(4);

[SimplicialComplex

Properties known: DifferenceCycles, Dim, FacetsEx, Name,

TopologicalType, Vertices.

Name="4-torus T^4"

Dim=4

TopologicalType="T^4"

/SimplicialComplex]

gap> t4.Homology;

[[0, []], [4, []], [6, []], [4, []], [1, []]]

6.3.6 SCSurface

▷ SCSurface(g, orient) (function)

Returns: simplicial complex of type SCSimplicialComplex upon success, fail otherwise.

simpcomp 53

Generates the surface of genus g where the boolean argument orient specifies whether the sur-
face is orientable or not. The surfaces have transitive cyclic group actions and can be described using
the minimum amount of O(log(g)) memory. If orient is true and g≥ 50 or if orient is false and
g≥ 100 only the difference cycles of the surface are returned

Example
gap> c:=SCSurface(23,true);

[SimplicialComplex

Properties known: DifferenceCycles, Dim, FacetsEx, Name,

TopologicalType, Vertices.

Name="S_23^or"

Dim=2

TopologicalType="(T^2)^#23"

/SimplicialComplex]

gap> c.Homology;

[[0, []], [46, []], [1, []]]

gap> c.TopologicalType;

"(T^2)^#23"

gap> c:=SCSurface(23,false);

[SimplicialComplex

Properties known: DifferenceCycles, Dim, FacetsEx, Name,

TopologicalType, Vertices.

Name="S_23^non"

Dim=2

TopologicalType="(RP^2)^#23"

/SimplicialComplex]

gap> c.Homology;

[[0, []], [22, [2]], [0, []]]

gap> c.TopologicalType;

"(RP^2)^#23"

Example
gap> dc:=SCSurface(345,true);

[[1, 1, 1374], [2, 343, 1031], [343, 345, 688]]

gap> c:=SCFromDifferenceCycles(dc);

[SimplicialComplex

Properties known: DifferenceCycles, Dim, FacetsEx, Name, Vertices.

Name="complex from diffcycles [[1, 1, 1374], [2, 343, 1031], [343, 345,\

688]]"

Dim=2

/SimplicialComplex]

gap> c.Chi;

-688

gap> dc:=SCSurface(12345678910,true); time;

simpcomp 54

[[1, 1, 24691357816], [2, 4, 24691357812], [3, 3, 24691357812],

[4, 12345678907, 12345678907]]

0

6.3.7 SCFVectorBdCrossPolytope

▷ SCFVectorBdCrossPolytope(d) (function)

Returns: a list of integers of size d + 1 upon success, fail otherwise.
Computes the f -vector of the d-dimensional cross polytope without generating the underlying

complex.
Example

gap> SCFVectorBdCrossPolytope(50);

[100, 4900, 156800, 3684800, 67800320, 1017004800, 12785203200,

137440934400, 1282782054400, 10518812846080, 76500457062400,

497252970905600, 2907017368371200, 15365663232819200, 73755183517532160,

322678927889203200, 1290715711556812800, 4732624275708313600,

15941471244491161600, 49418560857922600960, 141195888165493145600,

372243705163572838400, 906332499528699084800, 2039248123939572940800,

4241636097794311716864, 8156992495758291763200, 14501319992459185356800,

23823597130468661657600, 36146147370366245273600, 50604606318512743383040,

65296266217435797913600, 77539316133205010022400, 84588344872587283660800,

84588344872587283660800, 77337915312079802204160, 64448262760066501836800,

48771658304915190579200, 33370081998099867238400, 20535435075753764454400,

11294489291664570449920, 5509506971543692902400, 2361217273518725529600,

878592473867432755200, 279552150776001331200, 74547240206933688320,

16205921784116019200, 2758454771764428800, 344806846470553600,

28147497671065600, 1125899906842624]

6.3.8 SCFVectorBdCyclicPolytope

▷ SCFVectorBdCyclicPolytope(d, n) (function)

Returns: a list of integers of size d+1 upon success, fail otherwise.
Computes the f -vector of the d -dimensional cyclic polytope on n vertices, n ≥ d + 2, without

generating the underlying complex.
Example

gap> SCFVectorBdCyclicPolytope(25,198);

[198, 19503, 1274196, 62117055, 2410141734, 77526225777, 2126433621312,

50768602708824, 1071781612741840, 20256672480820776, 346204947854027808,

5395027104058600008, 48354596155522298656, 262068846498922699590,

940938105142239825104, 2379003007642628680027, 4396097923113038784642,

6062663500381642763609, 6294919173643129209180, 4911378208855785427761,

2840750019404460890298, 1183225500922302444568, 335951678686835900832,

58265626173398052500, 4661250093871844200]

6.3.9 SCFVectorBdSimplex

▷ SCFVectorBdSimplex(d) (function)

Returns: a list of integers of size d + 1 upon success, fail otherwise.
Computes the f -vector of the d-simplex without generating the underlying complex.

simpcomp 55

Example
gap> SCFVectorBdSimplex(100);

[101, 5050, 166650, 4082925, 79208745, 1267339920, 17199613200,

202095455100, 2088319702700, 19212541264840, 158940114100040,

1192050855750300, 8160963550905900, 51297485177122800, 297525414027312240,

1599199100396803290, 7995995501984016450, 37314645675925410100,

163006083742200475700, 668324943343021950370, 2577824781465941808570,

9373908296239788394800, 32197337191432316660400, 104641345872155029146300,

322295345286237489770604, 942094086221309585483304,

2616928017281415515231400, 6916166902815169575968700,

17409661513983013070541900, 41783187633559231369300560,

95696978128474368620010960, 209337139656037681356273975,

437704928371715151926754675, 875409856743430303853509350,

1675784582908852295948146470, 3072271735332895875904935195,

5397234129638871133346507775, 9090078534128625066688855200,

14683973016669317415420458400, 22760158175837441993901710520,

33862674359172779551902544920, 48375249084532542217003635600,

66375341767149302111702662800, 87494768693060443692698964600,

110826707011209895344085355160, 134919469404951176940625649760,

157884485473879036845412994400, 177620046158113916451089618700,

192119641762857909630770403900, 199804427433372226016001220056,

199804427433372226016001220056, 192119641762857909630770403900,

177620046158113916451089618700, 157884485473879036845412994400,

134919469404951176940625649760, 110826707011209895344085355160,

87494768693060443692698964600, 66375341767149302111702662800,

48375249084532542217003635600, 33862674359172779551902544920,

22760158175837441993901710520, 14683973016669317415420458400,

9090078534128625066688855200, 5397234129638871133346507775,

3072271735332895875904935195, 1675784582908852295948146470,

875409856743430303853509350, 437704928371715151926754675,

209337139656037681356273975, 95696978128474368620010960,

41783187633559231369300560, 17409661513983013070541900,

6916166902815169575968700, 2616928017281415515231400,

942094086221309585483304, 322295345286237489770604,

104641345872155029146300, 32197337191432316660400, 9373908296239788394800,

2577824781465941808570, 668324943343021950370, 163006083742200475700,

37314645675925410100, 7995995501984016450, 1599199100396803290,

297525414027312240, 51297485177122800, 8160963550905900, 1192050855750300,

158940114100040, 19212541264840, 2088319702700, 202095455100, 17199613200,

1267339920, 79208745, 4082925, 166650, 5050, 101]

6.4 Generating infinite series of transitive triangulations

6.4.1 SCSeriesAGL

▷ SCSeriesAGL(p) (function)

Returns: a permutation group and a list of 5-tuples of integers upon success, fail otherwise.
For a given prime p the automorphism group (AGL(1, p)) and the generators of all members of

the series of 2-transitive combinatorial 4-pseudomanifolds with p vertices from [Spr11a], Section 5.2,
is computed. The affine linear group AGL(1, p) is returned as the first argument. If no member of the

simpcomp 56

series with p vertices exists only the group is returned.
Example

gap> gens:=SCSeriesAGL(17);

[AGL(1,17), [[1, 2, 4, 8, 16]]]

gap> c:=SCFromGenerators(gens[1],gens[2]);;

gap> SCIsManifold(SCLink(c,1));

true

Example
gap> List([19..23],x->SCSeriesAGL(x));

#I SCSeriesAGL: argument must be a prime > 13.

#I SCSeriesAGL: argument must be a prime > 13.

#I SCSeriesAGL: argument must be a prime > 13.

[[AGL(1,19), [[1, 2, 10, 12, 17]]], fail, fail, fail,

[AGL(1,23), [[1, 2, 7, 9, 19], [1, 2, 4, 8, 22]]]]

gap> for i in [80000..80100] do if IsPrime(i) then Print(i,"\n"); fi; od;

80021

80039

80051

80071

80077

gap> SCSeriesAGL(80021);

AGL(1,80021)

gap> SCSeriesAGL(80039);

[AGL(1,80039), [[1, 2, 6496, 73546, 78018]]]

gap> SCSeriesAGL(80051);

[AGL(1,80051), [[1, 2, 31498, 37522, 48556]]]

gap> SCSeriesAGL(80071);

AGL(1,80071)

gap> SCSeriesAGL(80077);

[AGL(1,80077), [[1, 2, 4126, 39302, 40778]]]

6.4.2 SCSeriesBrehmKuehnelTorus

▷ SCSeriesBrehmKuehnelTorus(n) (function)

Returns: simplicial complex of type SCSimplicialComplex upon success, fail otherwise.
Generates a neighborly 3-torus with n vertices if n is odd and a centrally symmetric 3-torus if n

is even (n≥ 15 . The triangulations are taken from [BK12]
Example

gap> T3:=SCSeriesBrehmKuehnelTorus(15);

[SimplicialComplex

Properties known: DifferenceCycles, Dim, FacetsEx, Name,

TopologicalType, Vertices.

Name="Neighborly 3-Torus NT3(15)"

Dim=3

TopologicalType="T^3"

/SimplicialComplex]

simpcomp 57

gap> T3.Homology;

[[0, []], [3, []], [3, []], [1, []]]

gap> T3.Neighborliness;

2

gap> T3:=SCSeriesBrehmKuehnelTorus(16);

[SimplicialComplex

Properties known: DifferenceCycles, Dim, FacetsEx, Name,

TopologicalType, Vertices.

Name="Centrally symmetric 3-Torus SCT3(16)"

Dim=3

TopologicalType="T^3"

/SimplicialComplex]

gap> T3.Homology;

[[0, []], [3, []], [3, []], [1, []]]

gap> T3.IsCentrallySymmetric;

true

6.4.3 SCSeriesBdHandleBody

▷ SCSeriesBdHandleBody(d, n) (function)

Returns: simplicial complex of type SCSimplicialComplex upon success, fail otherwise.
SCSeriesBdHandleBody(d,n) generates a transitive d-dimensional sphere bundle (d ≥ 2) with n

vertices (n ≥ 2d+3) which coincides with the boundary of SCSeriesHandleBody (6.4.9)(d,n). The
sphere bundle is orientable if d is even or if d is odd and n is even, otherwise it is not orientable.
Internally calls SCFromDifferenceCycles (6.1.3).

Example
gap> c:=SCSeriesBdHandleBody(2,7);

[SimplicialComplex

Properties known: Dim, FacetsEx, IsOrientable, Name, TopologicalType,

Vertices.

Name="Sphere bundle S^1 x S^1"

Dim=2

IsOrientable=true

TopologicalType="S^1 x S^1"

/SimplicialComplex]

gap> SCLib.DetermineTopologicalType(c);

[SimplicialComplex

Properties known: BoundaryEx, Dim, FacetsEx, HasBoundary,

IsOrientable, IsPseudoManifold, IsPure, Name,

SkelExs[], TopologicalType, Vertices.

Name="Sphere bundle S^1 x S^1"

Dim=2

HasBoundary=false

simpcomp 58

IsOrientable=true

IsPseudoManifold=true

IsPure=true

TopologicalType="S^1 x S^1"

/SimplicialComplex]

gap> SCIsIsomorphic(c,SCSeriesHandleBody(3,7).Boundary);

true

6.4.4 SCSeriesBid

▷ SCSeriesBid(i, d) (function)

Returns: a simplicial complex upon success, fail otherwise.
Constructs the complex B(i,d) as described in [KN12], cf. [Eff11a], [Spa99]. The complex

B(i,d) is a i-Hamiltonian subcomplex of the d-cross polytope and its boundary topologically is a
sphere product Si×Sd−i−2 with vertex transitive automorphism group.

Example
gap> b26:=SCSeriesBid(2,6);

[SimplicialComplex

Properties known: Dim, FacetsEx, Name, Reference, Vertices.

Name="B(2,6)"

Dim=5

/SimplicialComplex]

gap> s2s2:=SCBoundary(b26);

[SimplicialComplex

Properties known: Dim, FacetsEx, Name, Vertices.

Name="Bd(B(2,6))"

Dim=4

/SimplicialComplex]

gap> SCFVector(s2s2);

[12, 60, 160, 180, 72]

gap> SCAutomorphismGroup(s2s2);

TransitiveGroup(12,28) = D(4)[x]S(3)

gap> SCIsManifold(s2s2);

true

gap> SCHomology(s2s2);

[[0, []], [0, []], [2, []], [0, []], [1, []]]

6.4.5 SCSeriesC2n

▷ SCSeriesC2n(n) (function)

Returns: simplicial complex of type SCSimplicialComplex upon success, fail otherwise.

simpcomp 59

Generates the combinatorial 3-manifold C2n, n ≥ 8, with 2n vertices from [Spr11a], Section 4.5.3
and Section 5.2. The complex is homeomorphic to S2 ×S1 for n odd and homeomorphic to S2 "S1

in case n is an even number. In the latter case C2n is isomorphic to D2n from SCSeriesD2n (6.4.8).
The complexes are believed to appear as the vertex links of some of the members of the series of 2-
transitive 4-pseudomanifolds from SCSeriesAGL (6.4.1). Internally calls SCFromDifferenceCycles
(6.1.3).

Example
gap> c:=SCSeriesC2n(8);

[SimplicialComplex

Properties known: DifferenceCycles, Dim, FacetsEx, Name,

TopologicalType, Vertices.

Name="C_16 = { (1:1:3:11),(1:1:11:3),(1:3:1:11),(2:3:2:9),(2:5:2:7) }"

Dim=3

TopologicalType="S^2 ~ S^1"

/SimplicialComplex]

gap> SCGenerators(c);

[[[1, 2, 3, 6], 32], [[1, 2, 5, 6], 16], [[1, 3, 6, 8], 16],

[[1, 3, 8, 10], 16]]

Example
gap> c:=SCSeriesC2n(8);;

gap> d:=SCSeriesD2n(8);

[SimplicialComplex

Properties known: DifferenceCycles, Dim, FacetsEx, Name,

TopologicalType, Vertices.

Name="D_16 = { (1:1:1:13),(1:2:11:2),(3:4:5:4),(2:3:4:7),(2:7:4:3) }"

Dim=3

TopologicalType="S^2 ~ S^1"

/SimplicialComplex]

gap> SCIsIsomorphic(c,d);

true

gap> c:=SCSeriesC2n(11);;

gap> d:=SCSeriesD2n(11);;

gap> c.Homology;

[[0, []], [1, []], [1, []], [1, []]]

gap> d.Homology;

[[0, []], [1, []], [0, [2]], [0, []]]

6.4.6 SCSeriesConnectedSum

▷ SCSeriesConnectedSum(k) (function)

Returns: simplicial complex of type SCSimplicialComplex upon success, fail otherwise.
Generates a combinatorial manifold of type (S2xS1)k for k even. The complex is a combinatorial

3-manifold with transitive cyclic symmetry as described in [BS14].

simpcomp 60

Example
gap> c:=SCSeriesConnectedSum(12);

[SimplicialComplex

Properties known: DifferenceCycles, Dim, FacetsEx, Name,

TopologicalType, Vertices.

Name="(S^2xS^1)^#12)"

Dim=3

TopologicalType="(S^2xS^1)^#12)"

/SimplicialComplex]

gap> c.Homology;

[[0, []], [12, []], [12, []], [1, []]]

gap> g:=SimplifiedFpGroup(SCFundamentalGroup(c));

<fp group of size infinity on the generators

[[2,3], [2,14], [3,4], [6,7], [9,10], [10,11], [11,12], [12,13], [26,32],

[26,34], [29,31], [33,35]]>

gap> RelatorsOfFpGroup(g);

[]

6.4.7 SCSeriesCSTSurface

▷ SCSeriesCSTSurface(l[, j], 2k) (function)

Returns: simplicial complex of type SCSimplicialComplex upon success, fail otherwise.
SCSeriesCSTSurface(l,j,2k) generates the centrally symmetric transitive (cst) surface

S(l, j,2k), SCSeriesCSTSurface(l,2k) generates the cst surface S(l,2k) from [Spr12], Section 4.4.
Example

gap> SCSeriesCSTSurface(2,4,14);

[SimplicialComplex

Properties known: DifferenceCycles, Dim, FacetsEx, Name, Vertices.

Name="cst surface S_{(2,4,14)} = { (2:4:8),(2:8:4) }"

Dim=2

/SimplicialComplex]

gap> last.Homology;

[[1, []], [4, []], [2, []]]

gap> SCSeriesCSTSurface(2,10);

[SimplicialComplex

Properties known: DifferenceCycles, Dim, FacetsEx, Name, Vertices.

Name="cst surface S_{(2,10)} = { (2:2:6),(3:3:4) }"

Dim=2

/SimplicialComplex]

gap> last.Homology;

[[0, []], [1, [2]], [0, []]]

simpcomp 61

6.4.8 SCSeriesD2n

▷ SCSeriesD2n(n) (function)

Returns: simplicial complex of type SCSimplicialComplex upon success, fail otherwise.
Generates the combinatorial 3-manifold D2n, n ≥ 8, n ≠ 9, with 2n vertices from [Spr11a], Section

4.5.3 and Section 5.2. The complex is homeomorphic to S2 " S1. In the case that n is even D2n is
isomorphic to C2n from SCSeriesC2n (6.4.5). The complexes are believed to appear as the vertex
links of some of the members of the series of 2-transitive 4-pseudomanifolds from SCSeriesAGL

(6.4.1). Internally calls SCFromDifferenceCycles (6.1.3).
Example

gap> d:=SCSeriesD2n(15);

[SimplicialComplex

Properties known: DifferenceCycles, Dim, FacetsEx, Name,

TopologicalType, Vertices.

Name="D_30 = { (1:1:1:27),(1:2:25:2),(3:11:5:11),(2:3:11:14),(2:14:11:3) }"

Dim=3

TopologicalType="S^2 ~ S^1"

/SimplicialComplex]

gap> SCAutomorphismGroup(d);

TransitiveGroup(30,14) = t30n14

gap> StructureDescription(last);

"D60"

Example
gap> c:=SCSeriesC2n(8);;

gap> d:=SCSeriesD2n(8);

[SimplicialComplex

Properties known: DifferenceCycles, Dim, FacetsEx, Name,

TopologicalType, Vertices.

Name="D_16 = { (1:1:1:13),(1:2:11:2),(3:4:5:4),(2:3:4:7),(2:7:4:3) }"

Dim=3

TopologicalType="S^2 ~ S^1"

/SimplicialComplex]

gap> SCIsIsomorphic(c,d);

true

gap> c:=SCSeriesC2n(11);;

gap> d:=SCSeriesD2n(11);;

gap> c.Homology;

[[0, []], [1, []], [1, []], [1, []]]

gap> d.Homology;

[[0, []], [1, []], [0, [2]], [0, []]]

simpcomp 62

6.4.9 SCSeriesHandleBody

▷ SCSeriesHandleBody(d, n) (function)

Returns: simplicial complex of type SCSimplicialComplex upon success, fail otherwise.
SCSeriesHandleBody(d,n) generates a transitive d-dimensional handle body (d ≥ 3) with n ver-

tices (n ≥ 2d +1). The handle body is orientable if d is odd or if d and n are even, otherwise it is not
orientable. The complex equals the difference cycle (1 ∶ . . . ∶ 1 ∶ n−d) To obtain the boundary com-
plexes of SCSeriesHandleBody(d,n) use the function SCSeriesBdHandleBody (6.4.3). Internally
calls SCFromDifferenceCycles (6.1.3).

Example
gap> c:=SCSeriesHandleBody(3,7);

[SimplicialComplex

Properties known: DifferenceCycles, Dim, FacetsEx, IsOrientable,

Name, TopologicalType, Vertices.

Name="Handle body B^2 x S^1"

Dim=3

IsOrientable=true

TopologicalType="B^2 x S^1"

/SimplicialComplex]

gap> SCAutomorphismGroup(c);

PrimitiveGroup(7,2) = D(2*7)

gap> bd:=SCBoundary(c);;

gap> SCAutomorphismGroup(bd);

PrimitiveGroup(7,4) = AGL(1, 7)

gap> SCIsIsomorphic(bd,SCSeriesBdHandleBody(2,7));

true

6.4.10 SCSeriesHomologySphere

▷ SCSeriesHomologySphere(p, q, r) (function)

Returns: simplicial complex of type SCSimplicialComplex upon success, fail otherwise.
Generates a combinatorial Brieskorn homology sphere of type Σ(p,q,r), p, q and r pairwise co-

prime. The complex is a combinatorial 3-manifold with transitive cyclic symmetry as described in
[BS14].

Example
gap> c:=SCSeriesHomologySphere(2,3,5);

[SimplicialComplex

Properties known: DifferenceCycles, Dim, FacetsEx, Name,

TopologicalType, Vertices.

Name="Homology sphere Sigma(2,3,5)"

Dim=3

TopologicalType="Sigma(2,3,5)"

/SimplicialComplex]

gap> c.Homology;

simpcomp 63

[[0, []], [0, []], [0, []], [1, []]]

gap> c:=SCSeriesHomologySphere(3,4,13);

[SimplicialComplex

Properties known: DifferenceCycles, Dim, FacetsEx, Name,

TopologicalType, Vertices.

Name="Homology sphere Sigma(3,4,13)"

Dim=3

TopologicalType="Sigma(3,4,13)"

/SimplicialComplex]

gap> c.Homology;

[[0, []], [0, []], [0, []], [1, []]]

6.4.11 SCSeriesK

▷ SCSeriesK(i, k) (function)

Returns: simplicial complex of type SCSimplicialComplex upon success, fail otherwise.
Generates the k -th member (k ≥ 0) of the series K^i (1 ≤ i ≤ 396) from [Spr11a]. The 396 series

describe a complete classification of all dense series (i. e. there is a member of the series for every
integer, f0(Ki(k+1)) = f0(Ki(k))+1) of cyclic 3-manifolds with a fixed number of difference cycles
and at least one member with less than 23 vertices. See SCSeriesL (6.4.13) for a list of series of order
2.

Example
gap> cc:=List([1..10],x->SCSeriesK(x,0));;

gap> Set(List(cc,x->x.F));

[[9, 36, 54, 27], [11, 55, 88, 44], [13, 65, 104, 52],

[13, 78, 130, 65], [15, 90, 150, 75], [15, 105, 180, 90]]

gap> cc:=List([1..10],x->SCSeriesK(x,10));;

gap> gap> cc:=List([1..10],x->SCSeriesK(x,10));;

gap> Set(List(cc,x->x.Homology));

[[[0, []], [1, []], [0, [2]], [0, []]]]

gap> Set(List(cc,x->x.IsManifold));

[true]

6.4.12 SCSeriesKu

▷ SCSeriesKu(n) (function)

Returns: simplicial complex of type SCSimplicialComplex upon success, fail otherwise.
Computes the symmetric orientable sphere bundle Ku(n) with 4n vertices from [Spr11a], Section

4.5.2. The series is defined as a generalization of the slicings from [Spr11a], Section 3.3.
Example

gap> c:=SCSeriesKu(4);

[SimplicialComplex

Properties known: Dim, FacetsEx, Name, Vertices.

simpcomp 64

Name="Sl_16 = G{ [1,2,5,9],[1,2,9,10],[1,5,9,16] }"

Dim=3

/SimplicialComplex]

gap> SCSlicing(c,[[1,2,3,4,9,10,11,12],[5,6,7,8,13,14,15,16]]);

[NormalSurface

Properties known: ConnectedComponents, Dim, EulerCharacteristic, FVector, Fac\

etsEx, Genus, IsConnected, IsOrientable, NSTriangulation, Name, TopologicalTyp\

e, Vertices.

Name="slicing [[1, 2, 3, 4, 9, 10, 11, 12], [5, 6, 7, 8, 13, 14, 15, 16]\

] of Sl_16 = G{ [1,2,5,9],[1,2,9,10],[1,5,9,16] }"

Dim=2

FVector=[32, 80, 32, 16]

EulerCharacteristic=0

IsOrientable=true

TopologicalType="T^2"

/NormalSurface]

gap> Mminus:=SCSpan(c,[1,2,3,4,9,10,11,12]);;

gap> Mplus:=SCSpan(c,[5,6,7,8,13,14,15,16]);;

gap> SCCollapseGreedy(Mminus).Facets;

[[1, 2], [1, 12], [2, 10], [10, 11], [11, 12]]

gap> SCCollapseGreedy(Mplus).Facets;

[[6, 7], [6, 14], [7, 16], [13, 14], [13, 16]]

6.4.13 SCSeriesL

▷ SCSeriesL(i, k) (function)

Returns: simplicial complex of type SCSimplicialComplex upon success, fail otherwise.
Generates the k -th member (k ≥ 0) of the series L^i , 1 ≤ i ≤ 18 from [Spr11a]. The 18 series

describe a complete classification of all series of cyclic 3-manifolds with a fixed number of difference
cycles of order 2 (i. e. there is a member of the series for every second integer, f0(Li(k + 1)) =
f0(Li(k))+2) and at least one member with less than 15 vertices where each series does not appear
as a sub series of one of the series Ki from SCSeriesK (6.4.11).

Example
gap> cc:=List([1..18],x->SCSeriesL(x,0));;

gap> Set(List(cc,x->x.F));

[[10, 45, 70, 35], [12, 60, 96, 48], [12, 66, 108, 54],

[14, 77, 126, 63], [14, 84, 140, 70], [14, 91, 154, 77]]

gap> cc:=List([1..18],x->SCSeriesL(x,10));;

gap> Set(List(cc,x->x.IsManifold));

[true]

6.4.14 SCSeriesLe

▷ SCSeriesLe(k) (function)

Returns: simplicial complex of type SCSimplicialComplex upon success, fail otherwise.

simpcomp 65

Generates the k -th member (k ≥ 7) of the series Le from [Spr11a], Section 4.5.1. The series can
be constructed as the generalization of the boundary of a genus 1 handlebody decomposition of the
manifold manifold_3_14_1_5 from the classification in [Lut03].

Example
gap> c:=SCSeriesLe(7);

[SimplicialComplex

Properties known: DifferenceCycles, Dim, FacetsEx, Name, Vertices.

Name="Le_14 = { (1:1:1:11),(1:2:4:7),(1:4:2:7),(2:1:4:7),(2:5:2:5),(2:4:2:6) \

}"

Dim=3

/SimplicialComplex]

gap> d:=SCLib.DetermineTopologicalType(c);;

gap> SCReference(d);

"manifold_3_14_1_5 in F.H.Lutz: 'The Manifold Page', http://www.math.tu-berlin\

.de/diskregeom/stellar/,\r\nF.H.Lutz: 'Triangulated manifolds with few vertice\

s and vertex-transitive group actions', Doctoral Thesis TU Berlin 1999, Shaker\

-Verlag, Aachen 1999"

6.4.15 SCSeriesLensSpace

▷ SCSeriesLensSpace(p, q) (function)

Returns: simplicial complex of type SCSimplicialComplex upon success, fail otherwise.
Generates the lens space L(p,q) whenever p = (k+2)2−1 and q = k+2 or p = 2k+3 and q = 1 for

a k ≥ 0 and fail otherwise. All complexes have a transitive cyclic automorphism group.
Example

gap> l154:=SCSeriesLensSpace(15,4);

[SimplicialComplex

Properties known: DifferenceCycles, Dim, FacetsEx, Name,

TopologicalType, Vertices.

Name="Lens space L(15,4)"

Dim=3

TopologicalType="L(15,4)"

/SimplicialComplex]

gap> l154.Homology;

[[0, []], [0, [15]], [0, []], [1, []]]

gap> g:=SimplifiedFpGroup(SCFundamentalGroup(l154));

<fp group on the generators [[2,5]]>

gap> StructureDescription(g);

"C15"

Example
gap> l151:=SCSeriesLensSpace(15,1);

[SimplicialComplex

simpcomp 66

Properties known: DifferenceCycles, Dim, FacetsEx, Name,

TopologicalType, Vertices.

Name="Lens space L(15,1)"

Dim=3

TopologicalType="L(15,1)"

/SimplicialComplex]

gap> l151.Homology;

[[0, []], [0, [15]], [0, []], [1, []]]

gap> g:=SimplifiedFpGroup(SCFundamentalGroup(l151));

<fp group on the generators [[2,3]]>

gap> StructureDescription(g);

"C15"

6.4.16 SCSeriesPrimeTorus

▷ SCSeriesPrimeTorus(l, j, p) (function)

Returns: simplicial complex of type SCSimplicialComplex upon success, fail otherwise.
Generates the well known triangulated torus {(l ∶ j ∶ p− l− j),(l ∶ p− l− j ∶ j)} with p vertices, 3p

edges and 2p triangles where j has to be greater than l and p must be any prime number greater than
6.

Example
gap> l:=List([2..19],x->SCSeriesPrimeTorus(1,x,41));;

gap> Set(List(l,x->SCHomology(x)));

[[[0, []], [2, []], [1, []]]]

6.4.17 SCSeriesSeifertFibredSpace

▷ SCSeriesSeifertFibredSpace(p, q, r) (function)

Returns: simplicial complex of type SCSimplicialComplex upon success, fail otherwise.
Generates a combinatorial Seifert fibred space of type

SFS[(T2)(a−1)(b−1) ∶ (p/a,b1)b,(q/b,b2)a,(r/ab,b3)]

where p and q are co-prime, a = gcd(p,r), b = gcd(p,r), and the bi are given by the identity

b1

p
+ b2

q
+ b3

r
= ±ab

pqr
.

This 3-parameter family of combinatorial 3-manifolds contains the families generated
by SCSeriesHomologySphere (6.4.10), SCSeriesConnectedSum (6.4.6) and parts of
SCSeriesLensSpace (6.4.15), internally calls SCIntFunc.SeifertFibredSpace(p,q,r).
The complexes are combinatorial 3-manifolds with transitive cyclic symmetry as described in
[BS14].

Example
gap> c:=SCSeriesSeifertFibredSpace(2,3,15);

[SimplicialComplex

simpcomp 67

Properties known: DifferenceCycles, Dim, FacetsEx, Name,

TopologicalType, Vertices.

Name="SFS [S^2 : (2,b1)^3, (5,b3)]"

Dim=3

TopologicalType="SFS [S^2 : (2,b1)^3, (5,b3)]"

/SimplicialComplex]

gap> c.Homology;

[[0, []], [0, [2, 2]], [0, []], [1, []]]

6.4.18 SCSeriesS2xS2

▷ SCSeriesS2xS2(k) (function)

Returns: simplicial complex of type SCSimplicialComplex upon success, fail otherwise.
Generates a combinatorial version of (S2×S2)#k.

Example
gap> c:=SCSeriesS2xS2(3);

[SimplicialComplex

Properties known: DifferenceCycles, Dim, FacetsEx, Name,

TopologicalType, Vertices.

Name="(S^2 x S^2)^(# 3)"

Dim=4

TopologicalType="(S^2 x S^2)^(# 3)"

/SimplicialComplex]

gap> c.Homology;

[[0, []], [0, []], [6, []], [0, []], [1, []]]

6.5 A census of regular and chiral maps

6.5.1 SCChiralMap

▷ SCChiralMap(m, g) (function)

Returns: a SCSimplicialComplex object upon success, fail otherwise.
Returns the (hyperbolic) chiral map of vertex valence m and genus g if existent and fail other-

wise. The list was generated with the help of the classification of regular maps by Marston Conder
[Con09]. Use SCChiralMaps (6.5.2) to get a list of all chiral maps available.

Example
gap> SCChiralMaps();

[[7, 17], [8, 10], [8, 28], [8, 37], [8, 46], [8, 82],

[9, 43], [10, 73], [12, 22], [12, 33], [12, 40], [12, 51],

[12, 58], [12, 64], [12, 85], [12, 94], [12, 97], [18, 28]]

gap> c:=SCChiralMap(8,10);

[SimplicialComplex

simpcomp 68

Properties known: Dim, FacetsEx, Name, TopologicalType, Vertices.

Name="Chiral map {8,10}"

Dim=2

TopologicalType="(T^2)^#10"

/SimplicialComplex]

gap> c.Homology;

[[0, []], [20, []], [1, []]]

6.5.2 SCChiralMaps

▷ SCChiralMaps() (function)

Returns: a list of lists upon success, fail otherwise.
Returns a list of all simplicial (hyperbolic) chiral maps of orientable genus up to 100. The list

was generated with the help of the classification of regular maps by Marston Conder [Con09]. Every
chiral map is given by a 2-tuple (m,g) where m is the vertex valence and g is the genus of the map.
Use the 2-tuples of the list together with SCChiralMap (6.5.1) to get the corresponding triangulations.

Example
gap> ll:=SCChiralMaps();

[[7, 17], [8, 10], [8, 28], [8, 37], [8, 46], [8, 82],

[9, 43], [10, 73], [12, 22], [12, 33], [12, 40], [12, 51],

[12, 58], [12, 64], [12, 85], [12, 94], [12, 97], [18, 28]]

gap> c:=SCChiralMap(ll[18][1],ll[18][2]);

[SimplicialComplex

Properties known: Dim, FacetsEx, Name, TopologicalType, Vertices.

Name="Chiral map {18,28}"

Dim=2

TopologicalType="(T^2)^#28"

/SimplicialComplex]

gap> SCHomology(c);

[[0, []], [56, []], [1, []]]

6.5.3 SCChiralTori

▷ SCChiralTori(n) (function)

Returns: a SCSimplicialComplex object upon success, fail otherwise.
Returns a list of chiral triangulations of the torus with n vertices. See [BK08] for details.

Example
gap> cc:=SCChiralTori(91);

[[SimplicialComplex

Properties known: AutomorphismGroup, Dim, FacetsEx, Name,

TopologicalType, Vertices.

simpcomp 69

Name="{3,6}_(9,1)"

Dim=2

TopologicalType="T^2"

/SimplicialComplex], [SimplicialComplex

Properties known: AutomorphismGroup, Dim, FacetsEx, Name,

TopologicalType, Vertices.

Name="{3,6}_(6,5)"

Dim=2

TopologicalType="T^2"

/SimplicialComplex]]

gap> SCIsIsomorphic(cc[1],cc[2]);

false

6.5.4 SCNrChiralTori

▷ SCNrChiralTori(n) (function)

Returns: an integer upon success, fail otherwise.
Returns the number of simplicial chiral maps on the torus with n vertices, cf. [BK08] for details.

Example
gap> SCNrChiralTori(7);

1

gap> SCNrChiralTori(343);

2

6.5.5 SCNrRegularTorus

▷ SCNrRegularTorus(n) (function)

Returns: an integer upon success, fail otherwise.
Returns the number of simplicial regular maps on the torus with n vertices, cf. [BK08] for details.

Example
gap> SCNrRegularTorus(9);

1

gap> SCNrRegularTorus(10);

0

6.5.6 SCRegularMap

▷ SCRegularMap(m, g, orient) (function)

Returns: a SCSimplicialComplex object upon success, fail otherwise.
Returns the (hyperbolic) regular map of vertex valence m , genus g and orientability orient if

existent and fail otherwise. The triangulations were generated with the help of the classification of

simpcomp 70

regular maps by Marston Conder [Con09]. Use SCRegularMaps (6.5.7) to get a list of all regular
maps available.

Example
gap> SCRegularMaps(){[1..10]};

[[7, 3, true], [7, 7, true], [7, 8, false], [7, 14, true],

[7, 15, false], [7, 147, false], [8, 3, true], [8, 5, true],

[8, 8, true], [8, 9, false]]

gap> c:=SCRegularMap(7,7,true);

[SimplicialComplex

Properties known: Dim, FacetsEx, Name, TopologicalType, Vertices.

Name="Orientable regular map {7,7}"

Dim=2

TopologicalType="(T^2)^#7"

/SimplicialComplex]

gap> g:=SCAutomorphismGroup(c);

#I group not listed

C2 x PSL(2,8)

gap> Size(g);

1008

6.5.7 SCRegularMaps

▷ SCRegularMaps() (function)

Returns: a list of lists upon success, fail otherwise.
Returns a list of all simplicial (hyperbolic) regular maps of orientable genus up to 100 or non-

orientable genus up to 200. The list was generated with the help of the classification of regular maps
by Marston Conder [Con09]. Every regular map is given by a 3-tuple (m,g,or) where m is the vertex
valence, g is the genus and or is a boolean stating if the map is orientable or not. Use the 3-tuples of
the list together with SCRegularMap (6.5.6) to get the corresponding triangulations. g

Example
gap> ll:=SCRegularMaps(){[1..10]};

[[7, 3, true], [7, 7, true], [7, 8, false], [7, 14, true],

[7, 15, false], [7, 147, false], [8, 3, true], [8, 5, true],

[8, 8, true], [8, 9, false]]

gap> c:=SCRegularMap(ll[5][1],ll[5][2],ll[5][3]);

[SimplicialComplex

Properties known: Dim, FacetsEx, Name, TopologicalType, Vertices.

Name="Non-orientable regular map {7,15}"

Dim=2

TopologicalType="(RP^2)^#15"

/SimplicialComplex]

gap> SCHomology(c);

[[0, []], [14, [2]], [0, []]]

gap> SCGenerators(c);

simpcomp 71

[[[1, 4, 7], 182]]

6.5.8 SCRegularTorus

▷ SCRegularTorus(n) (function)

Returns: a SCSimplicialComplex object upon success, fail otherwise.
Returns a list of regular triangulations of the torus with n vertices (the length of the list will be at

most 1). See [BK08] for details.
Example

gap> cc:=SCRegularTorus(9);

[[SimplicialComplex

Properties known: AutomorphismGroup, Dim, FacetsEx, Name,

TopologicalType, Vertices.

Name="{3,6}_(3,0)"

Dim=2

TopologicalType="T^2"

/SimplicialComplex]]

gap> g:=SCAutomorphismGroup(cc[1]);

Group([(2,7)(3,4)(5,9), (1,4,2)(3,7,9)(5,8,6), (2,8,7,3,6,4)(5,9)])

gap> SCNumFaces(cc[1],0)*12 = Size(g);

true

6.5.9 SCSeriesSymmetricTorus

▷ SCSeriesSymmetricTorus(p, q) (function)

Returns: a SCSimplicialComplex object upon success, fail otherwise.
Returns the equivarient triangulation of the torus {3,6}(p,q) with fundamental domain (p,q) on

the 2-dimensional integer lattice. See [BK08] for details.
Example

gap> c:=SCSeriesSymmetricTorus(2,1);

[SimplicialComplex

Properties known: AutomorphismGroup, Dim, FacetsEx, Name,

TopologicalType, Vertices.

Name="{3,6}_(2,1)"

Dim=2

TopologicalType="T^2"

/SimplicialComplex]

gap> SCFVector(c);

[7, 21, 14]

See also SCSurface (6.3.6) for example triangulations of all compact closed surfaces with transi-
tive cyclic automorphism group.

simpcomp 72

6.6 Generating new complexes from old

6.6.1 SCCartesianPower

▷ SCCartesianPower(complex, n) (method)

Returns: simplicial complex of type SCSimplicialComplex upon success, fail otherwise.
The new complex is PL-homeomorphic to n times the cartesian product of complex , of dimen-

sions n ⋅d and has f n
d ⋅n ⋅

2n−1
2n−1 ! facets where d denotes the dimension and fd denotes the number of

facets of complex . Note that the complex returned by the function is not the n-fold cartesian product
complex n of complex (which, in general, is not simplicial) but a simplicial subdivision of complex n.

Example
gap> c:=SCBdSimplex(2);;

gap> 4torus:=SCCartesianPower(c,4);

[SimplicialComplex

Properties known: Dim, FacetsEx, Name, TopologicalType, Vertices.

Name="(S^1_3)^4"

Dim=4

TopologicalType="(S^1)^4"

/SimplicialComplex]

gap> 4torus.Homology;

[[0, []], [4, []], [6, []], [4, []], [1, []]]

gap> 4torus.Chi;

0

gap> 4torus.F;

[81, 1215, 4050, 4860, 1944]

6.6.2 SCCartesianProduct

▷ SCCartesianProduct(complex1, complex2) (method)

Returns: simplicial complex of type SCSimplicialComplex upon success, fail otherwise.
Computes the simplicial cartesian product of complex1 and complex2 where complex1 and

complex2 are pure, simplicial complexes. The original vertex labeling of complex1 and complex2

is changed into the standard one. The new complex has vertex labels of type [vi,v j] where vi is a
vertex of complex1 and v j is a vertex of complex2 .

If ni, i = 1,2, are the number facets and di, i = 1,2, are the dimensions of complexi , then the new
complex has n1 ⋅n2 ⋅ (d1+d2

d1
) facets. The number of vertices of the new complex equals the product of

the numbers of vertices of the arguments.
Example

gap> c1:=SCBdSimplex(2);;

gap> c2:=SCBdSimplex(3);;

gap> c3:=SCCartesianProduct(c1,c2);

[SimplicialComplex

Properties known: Dim, FacetsEx, Name, TopologicalType, Vertices.

Name="S^1_3xS^2_4"

Dim=3

simpcomp 73

TopologicalType="S^1xS^2"

/SimplicialComplex]

gap> c3.Homology;

[[0, []], [1, []], [1, []], [1, []]]

gap> c3.F;

[12, 48, 72, 36]

6.6.3 SCConnectedComponents

▷ SCConnectedComponents(complex) (method)

Returns: a list of simplicial complexes of type SCSimplicialComplex upon success, fail
otherwise.

Computes all connected components of an arbitrary simplicial complex.
Example

gap> c:=SC([[1,2,3],[3,4,5],[4,5,6,7,8]]);;

gap> SCRename(c,"connected complex");;

gap> SCConnectedComponents(c);

[[SimplicialComplex

Properties known: Dim, FacetsEx, Name, Vertices.

Name="Connected component #1 of connected complex"

Dim=4

/SimplicialComplex]]

gap> c:=SC([[1,2,3],[4,5],[6,7,8]]);;

gap> SCRename(c,"non-connected complex");;

gap> SCConnectedComponents(c);

[[SimplicialComplex

Properties known: Dim, FacetsEx, Name, Vertices.

Name="Connected component #1 of non-connected complex"

Dim=2

/SimplicialComplex], [SimplicialComplex

Properties known: Dim, FacetsEx, Name, Vertices.

Name="Connected component #2 of non-connected complex"

Dim=1

/SimplicialComplex], [SimplicialComplex

Properties known: Dim, FacetsEx, Name, Vertices.

Name="Connected component #3 of non-connected complex"

Dim=2

simpcomp 74

/SimplicialComplex]]

6.6.4 SCConnectedProduct

▷ SCConnectedProduct(complex, n) (method)

Returns: simplicial complex of type SCSimplicialComplex upon success, fail otherwise.
If n ≥ 2, the function internally calls 1× SCConnectedSum (6.6.5) and (n − 2)×

SCConnectedSumMinus (6.6.6).
Example

gap> SCLib.SearchByName("T^2"){[1..6]};

[[4, "T^2 (VT)"], [5, "T^2 (VT)"], [9, "T^2 (VT)"], [10, "T^2 (VT)"],

[18, "T^2 (VT)"], [20, "(T^2)#2"]]

gap> torus:=SCLib.Load(last[1][1]);;

gap> genus10:=SCConnectedProduct(torus,10);

[SimplicialComplex

Properties known: Dim, FacetsEx, Name, Vertices.

Name="T^2 (VT)#+-T^2 (VT)#+-T^2 (VT)#+-T^2 (VT)#+-T^2 (VT)#+-T^2 (VT)#+-T^2 (\

VT)#+-T^2 (VT)#+-T^2 (VT)#+-T^2 (VT)"

Dim=2

/SimplicialComplex]

gap> genus10.Chi;

-18

gap> genus10.F;

[43, 183, 122]

6.6.5 SCConnectedSum

▷ SCConnectedSum(complex1, complex2) (method)

Returns: simplicial complex of type SCSimplicialComplex upon success, fail otherwise.
In a lexicographic ordering the smallest facet of both complex1 and complex2 is removed and the

complexes are glued together along the resulting boundaries. The bijection used to identify the vertices
of the boundaries differs from the one chosen in SCConnectedSumMinus (6.6.6) by a transposition.
Thus, the topological type of SCConnectedSum is different from the one of SCConnectedSumMinus
(6.6.6) whenever complex1 and complex2 do not allow an orientation reversing homeomorphism.

Example
gap> SCLib.SearchByName("T^2"){[1..6]};

[[4, "T^2 (VT)"], [5, "T^2 (VT)"], [9, "T^2 (VT)"], [10, "T^2 (VT)"],

[18, "T^2 (VT)"], [20, "(T^2)#2"]]

gap> torus:=SCLib.Load(last[1][1]);;

gap> genus2:=SCConnectedSum(torus,torus);

[SimplicialComplex

Properties known: Dim, FacetsEx, Name, Vertices.

Name="T^2 (VT)#+-T^2 (VT)"

simpcomp 75

Dim=2

/SimplicialComplex]

gap> genus2.Homology;

[[0, []], [4, []], [1, []]]

gap> genus2.Chi;

-2

Example
gap> SCLib.SearchByName("CP^2");

[[16, "CP^2 (VT)"], [99, "CP^2#-CP^2"], [100, "CP^2#CP^2"],

[400, "CP^2#(S^2xS^2)"], [2486, "Gaifullin CP^2"],

[4401, "(S^3~S^1)#(CP^2)^{#5} (VT)"]]

gap> cp2:=SCLib.Load(last[1][1]);;

gap> c1:=SCConnectedSum(cp2,cp2);;

gap> c2:=SCConnectedSumMinus(cp2,cp2);;

gap> c1.F=c2.F;

true

gap> c1.ASDet=c2.ASDet;

true

gap> SCIsIsomorphic(c1,c2);

false

gap> PrintArray(SCIntersectionForm(c1));

[[1, 0],

[0, 1]]

gap> PrintArray(SCIntersectionForm(c2));

[[1, 0],

[0, -1]]

6.6.6 SCConnectedSumMinus

▷ SCConnectedSumMinus(complex1, complex2) (method)

Returns: simplicial complex of type SCSimplicialComplex upon success, fail otherwise.
In a lexicographic ordering the smallest facet of both complex1 and complex2 is removed and

the complexes are glued together along the resulting boundaries. The bijection used to identify the
vertices of the boundaries differs from the one chosen in SCConnectedSum (6.6.5) by a transposition.
Thus, the topological type of SCConnectedSumMinus is different from the one of SCConnectedSum
(6.6.5) whenever complex1 and complex2 do not allow an orientation reversing homeomorphism.

Example
gap> SCLib.SearchByName("T^2"){[1..6]};

[[4, "T^2 (VT)"], [5, "T^2 (VT)"], [9, "T^2 (VT)"], [10, "T^2 (VT)"],

[18, "T^2 (VT)"], [20, "(T^2)#2"]]

gap> torus:=SCLib.Load(last[1][1]);;

gap> genus2:=SCConnectedSumMinus(torus,torus);

[SimplicialComplex

Properties known: Dim, FacetsEx, Name, Vertices.

Name="T^2 (VT)#+-T^2 (VT)"

Dim=2

simpcomp 76

/SimplicialComplex]

gap> genus2.Homology;

[[0, []], [4, []], [1, []]]

gap> genus2.Chi;

-2

Example
gap> SCLib.SearchByName("CP^2");

[[16, "CP^2 (VT)"], [99, "CP^2#-CP^2"], [100, "CP^2#CP^2"],

[400, "CP^2#(S^2xS^2)"], [2486, "Gaifullin CP^2"],

[4401, "(S^3~S^1)#(CP^2)^{#5} (VT)"]]

gap> cp2:=SCLib.Load(last[1][1]);;

gap> c1:=SCConnectedSum(cp2,cp2);;

gap> c2:=SCConnectedSumMinus(cp2,cp2);;

gap> c1.F=c2.F;

true

gap> c1.ASDet=c2.ASDet;

true

gap> SCIsIsomorphic(c1,c2);

false

gap> PrintArray(SCIntersectionForm(c1));

[[1, 0],

[0, 1]]

gap> PrintArray(SCIntersectionForm(c2));

[[1, 0],

[0, -1]]

6.6.7 SCDifferenceCycleCompress

▷ SCDifferenceCycleCompress(simplex, modulus) (function)

Returns: list with possibly duplicate entries upon success, fail otherwise.
A difference cycle is returned, i. e. a list of integer values of length (d + 1), if d is the di-

mension of simplex , and a sum equal to modulus . In some sense this is the inverse operation of
SCDifferenceCycleExpand (6.6.8).

Example
gap> sphere:=SCBdSimplex(4);;

gap> gens:=SCGenerators(sphere);

[[[1, 2, 3, 4], [5]]]

gap> diffcycle:=SCDifferenceCycleCompress(gens[1][1],5);

[1, 1, 1, 2]

gap> c:=SCDifferenceCycleExpand([1,1,1,2]);;

gap> c.Facets;

[[1, 2, 3, 4], [1, 2, 3, 5], [1, 2, 4, 5], [1, 3, 4, 5],

[2, 3, 4, 5]]

simpcomp 77

6.6.8 SCDifferenceCycleExpand

▷ SCDifferenceCycleExpand(diffcycle) (function)

Returns: simplicial complex of type SCSimplicialComplex upon success, fail otherwise.
diffcycle induces a simplex ∆= (v1, . . . ,vn+1) by v1 =diffcycle[1] , vi = vi−1+ diffcycle[i]

and a cyclic group action by Zσ where σ = ∑ diffcycle[i] is the modulus of diffcycle. The
function returns the Zσ -orbit of ∆.

Note that modulo operations in GAP are often a little bit cumbersome, since all integer ranges
usually start from 1.

Example
gap> c:=SCDifferenceCycleExpand([1,1,2]);;

gap> c.Facets;

[[1, 2, 3], [1, 2, 4], [1, 3, 4], [2, 3, 4]]

6.6.9 SCStronglyConnectedComponents

▷ SCStronglyConnectedComponents(complex) (method)

Returns: a list of simplicial complexes of type SCSimplicialComplex upon success, fail
otherwise.

Computes all strongly connected components of a pure simplicial complex.
Example

gap> c:=SC([[1,2,3],[2,3,4],[4,5,6],[5,6,7]]);;

gap> comps:=SCStronglyConnectedComponents(c);

[[SimplicialComplex

Properties known: Dim, FacetsEx, Name, Vertices.

Name="Strongly connected component #1 of unnamed complex 82"

Dim=2

/SimplicialComplex], [SimplicialComplex

Properties known: Dim, FacetsEx, Name, Vertices.

Name="Strongly connected component #2 of unnamed complex 82"

Dim=2

/SimplicialComplex]]

gap> comps[1].Facets;

[[1, 2, 3], [2, 3, 4]]

gap> comps[2].Facets;

[[4, 5, 6], [5, 6, 7]]

6.7 Simplicial complexes from transitive permutation groups

Beginning from Version 1.3.0, simpcomp is able to generate triangulations from a prescribed tran-
sitive group action on its set of vertices. Note that the corresponding group is a subgroup of the full

simpcomp 78

automorphism group, but not necessarily the full automorphism group of the triangulations obtained
in this way. The methods and algorithms are based on the works of Frank H. Lutz [Lut03], [Lut] and
in particular his program MANIFOLD_VT.

6.7.1 SCsFromGroupExt

▷ SCsFromGroupExt(G, n, d, objectType, cache, removeDoubleEntries, outfile,

maxLinkSize, subset) (function)

Returns: a list of simplicial complexes of type SCSimplicialComplex upon success, fail
otherwise.

Computes all combinatorial d -pseudomanifolds, d = 2 / all strongly connected combinatorial d -
pseudomanifolds, d ≥ 3, as a union of orbits of the group action of G on (d+1)-tuples on the set of
n vertices, see [Lut03]. The integer argument objectType specifies, whether complexes exceeding
the maximal size of each vertex link for combinatorial manifolds are sorted out (objectType = 0)
or not (objectType = 1, in this case some combinatorial pseudomanifolds won’t be found, but no
combinatorial manifold will be sorted out). The integer argument cache specifies if the orbits are
held in memory during the computation, a value of 0 means that the orbits are discarded, trading
speed for memory, any other value means that they are kept, trading memory for speed. The boolean
argument removeDoubleEntries specifies whether the results are checked for combinatorial iso-
morphism, preventing isomorphic entries. The argument outfile specifies an output file containing
all complexes found by the algorithm, if outfile is anything else than a string, not output file is
generated. The argument maxLinkSize determines a maximal link size of any output complex. If
maxLinkSize= 0 or if maxLinkSize is anything else than an integer the argument is ignored. The
argument subset specifies a set of orbits (given by a list of indices of repHigh) which have to be
contained in any output complex. If subset is anything else than a subset of matrixAllowedRows
the argument is ignored.

Example
gap> G:=PrimitiveGroup(8,5);

PGL(2, 7)

gap> Size(G);

336

gap> Transitivity(G);

3

gap> list:=SCsFromGroupExt(G,8,3,1,0,true,false,0,[]);

["defgh.g.h.fah.e.gaf.h.eag.e.faf.a.haa.g.fah.a.gjhzh"]

gap> c:=SCFromIsoSig(list[1]);

[SimplicialComplex

Properties known: Dim, ExportIsoSig, FacetsEx, Name, Vertices.

Name="unnamed complex 6"

Dim=3

/SimplicialComplex]

gap> SCNeighborliness(c);

3

gap> c.F;

[8, 28, 56, 28]

gap> c.IsManifold;

false

simpcomp 79

gap> SCLibDetermineTopologicalType(SCLink(c,1));

[SimplicialComplex

Properties known: BoundaryEx, Dim, FacetsEx, HasBoundary,

IsPseudoManifold, IsPure, Name, SkelExs[],

Vertices.

Name="lk([1]) in unnamed complex 6"

Dim=2

HasBoundary=false

IsPseudoManifold=true

IsPure=true

/SimplicialComplex]

gap> # there are no 3-neighborly 3-manifolds with 8 vertices

gap> list:=SCsFromGroupExt(PrimitiveGroup(8,5),8,3,0,0,true,false,0,[]);

gap> []

6.7.2 SCsFromGroupByTransitivity

▷ SCsFromGroupByTransitivity(n, d, k, maniflag, computeAutGroup,

removeDoubleEntries) (function)

Returns: a list of simplicial complexes of type SCSimplicialComplex upon success, fail
otherwise.

Computes all combinatorial d -pseudomanifolds, d = 2 / all strongly connected combinatorial d -
pseudomanifolds, d ≥ 3, as union of orbits of group actions for all k -transitive groups on (d+1)-tuples
on the set of n vertices, see [Lut03]. The boolean argument maniflag specifies, whether the resulting
complexes should be listed separately by combinatorial manifolds, combinatorial pseudomanifolds
and complexes where the verification that the object is at least a combinatorial pseudomanifold failed.
The boolean argument computeAutGroup specifies whether or not the real automorphism group
should be computed (note that a priori the generating group is just a subgroup of the automorphism
group). The boolean argument removeDoubleEntries specifies whether the results are checked
for combinatorial isomorphism, preventing isomorphic entries. Internally calls SCsFromGroupExt

(6.7.1) for every group.
Example

gap> list:=SCsFromGroupByTransitivity(8,3,2,true,true,true);

#I SCsFromGroupByTransitivity: Building list of groups...

#I SCsFromGroupByTransitivity: ...2 groups found.

#I degree 8: [AGL(1, 8), PSL(2, 7)]

#I SCsFromGroupByTransitivity: Processing dimension 3.

#I SCsFromGroupByTransitivity: Processing degree 8.

#I SCsFromGroupByTransitivity: 1 / 2 groups calculated, found 0 complexes.

#I SCsFromGroupByTransitivity: Calculating 0 automorphism and homology groups...

#I SCsFromGroupByTransitivity: ...all automorphism groups calculated for group 1 / 2.

#I SCsFromGroupByTransitivity: 2 / 2 groups calculated, found 1 complexes.

#I SCsFromGroupByTransitivity: Calculating 1 automorphism and homology groups...

#I group not listed

#I SCsFromGroupByTransitivity: 1 / 1 automorphism groups calculated.

#I SCsFromGroupByTransitivity: ...all automorphism groups calculated for group 2 / 2.

simpcomp 80

#I SCsFromGroupByTransitivity: ...done dim = 3, deg = 8, 0 manifolds, 1 pseudomanifolds, 0 candidates found.

#I SCsFromGroupByTransitivity: ...done dim = 3.

[[], [], []]

6.8 The classification of cyclic combinatorial 3-manifolds

This section contains functions to access the classification of combinatorial 3-manifolds with transitive
cyclic symmetry and up to 22 vertices as presented in [Spr14].

6.8.1 SCNrCyclic3Mflds

▷ SCNrCyclic3Mflds(i) (function)

Returns: integer upon success, fail otherwise.
Returns the number of combinatorial 3-manifolds with transitive cyclic symmetry with i vertices.

See [Spr14] for more about the classification of combinatorial 3-manifolds with transitive cyclic sym-
metry up to 22 vertices.

Example
gap> SCNrCyclic3Mflds(22);

3090

6.8.2 SCCyclic3MfldTopTypes

▷ SCCyclic3MfldTopTypes(i) (function)

Returns: a list of strings upon success, fail otherwise.
Returns a list of all topological types that occur in the classification combinatorial 3-manifolds

with transitive cyclic symmetry with i vertices. See [Spr14] for more about the classification of
combinatorial 3-manifolds with transitive cyclic symmetry up to 22 vertices.

Example
gap> SCCyclic3MfldTopTypes(19);

["B2", "RP^2xS^1", "SFS[RP^2:(2,1)(3,1)]", "S^2~S^1", "S^3", "Sigma(2,3,7)",

"T^3"]

6.8.3 SCCyclic3Mfld

▷ SCCyclic3Mfld(i, j) (function)

Returns: simplicial complex of type SCSimplicialComplex upon success, fail otherwise.
Returns the j th combinatorial 3-manifold with i vertices in the classification of combinatorial

3-manifolds with transitive cyclic symmetry. See [Spr14] for more about the classification of combi-
natorial 3-manifolds with transitive cyclic symmetry up to 22 vertices.

Example
gap> SCCyclic3Mfld(15,34);

[SimplicialComplex

Properties known: AutomorphismGroupTransitivity, DifferenceCycles,

Dim, FacetsEx, IsManifold, Name, TopologicalType,

simpcomp 81

Vertices.

Name="Cyclic 3-mfld (15,34): T^3"

Dim=3

AutomorphismGroupTransitivity=1

TopologicalType="T^3"

/SimplicialComplex]

6.8.4 SCCyclic3MfldByType

▷ SCCyclic3MfldByType(type) (function)

Returns: simplicial complex of type SCSimplicialComplex upon success, fail otherwise.
Returns the smallest combinatorial 3-manifolds in the classification of combinatorial 3-manifolds

with transitive cyclic symmetry of topological type type . See [Spr14] for more about the classifica-
tion of combinatorial 3-manifolds with transitive cyclic symmetry up to 22 vertices.

Example
gap> SCCyclic3MfldByType("T^3");

[SimplicialComplex

Properties known: AutomorphismGroupTransitivity, DifferenceCycles,

Dim, FacetsEx, IsManifold, Name, TopologicalType,

Vertices.

Name="Cyclic 3-mfld (15,34): T^3"

Dim=3

AutomorphismGroupTransitivity=1

TopologicalType="T^3"

/SimplicialComplex]

6.8.5 SCCyclic3MfldListOfGivenType

▷ SCCyclic3MfldListOfGivenType(type) (function)

Returns: simplicial complex of type SCSimplicialComplex upon success, fail otherwise.
Returns a list of indices {(i1, j1),(i1, j1), . . .(in, jn)} of all combinatorial 3-manifolds in the clas-

sification of combinatorial 3-manifolds with transitive cyclic symmetry of topological type type .
Complexes can be obtained by calling SCCyclic3Mfld (6.8.3) using these indices. See [Spr14] for
more about the classification of combinatorial 3-manifolds with transitive cyclic symmetry up to 22
vertices.

Example
gap> SCCyclic3MfldListOfGivenType("Sigma(2,3,7)");

[[19, 100], [19, 118], [19, 120], [19, 130]]

simpcomp 82

6.9 Computing properties of simplicial complexes

The following functions compute basic properties of simplicial complexes of type
SCSimplicialComplex. None of these functions alter the complex. All properties are re-
turned as immutable objects (this ensures data consistency of the cached properties of a simplicial
complex). Use ShallowCopy or the internal simpcomp function SCIntFunc.DeepCopy to get a
mutable copy.

Note: every simplicial complex is internally stored with the standard vertex labeling from 1 to n
and a maptable to restore the original vertex labeling. Thus, we have to relabel some of the complex
properties (facets, face lattice, generators, etc...) whenever we want to return them to the user. As a
consequence, some of the functions exist twice, one of them with the appendix "Ex". These functions
return the standard labeling whereas the other ones relabel the result to the original labeling.

6.9.1 SCAltshulerSteinberg

▷ SCAltshulerSteinberg(complex) (method)

Returns: a non-negative integer upon success, fail otherwise.
Computes the Altshuler-Steinberg determinant.
Definition: Let vi, 1 ≤ i ≤ n be the vertices and let Fj, 1 ≤ j ≤ m be the facets of a pure simplicial

complex C, then the determinant of AS ∈ Zn×m, ASi j = 1 if vi ∈ Fj, ASi j = 0 otherwise, is called the
Altshuler-Steinberg matrix. The Altshuler-Steinberg determinant is the determinant of the quadratic
matrix AS ⋅AST .

The Altshuler-Steinberg determinant is a combinatorial invariant of C and can be checked before
searching for an isomorphism between two simplicial complexes.

Example
gap> list:=SCLib.SearchByName("T^2");;

gap> torus:=SCLib.Load(last[1][1]);;

gap> SCAltshulerSteinberg(torus);

73728

gap> c:=SCBdSimplex(3);;

gap> SCAltshulerSteinberg(c);

9

gap> c:=SCBdSimplex(4);;

gap> SCAltshulerSteinberg(c);

16

gap> c:=SCBdSimplex(5);;

gap> SCAltshulerSteinberg(c);

25

6.9.2 SCAutomorphismGroup

▷ SCAutomorphismGroup(complex) (method)

Returns: a GAP permutation group upon success, fail otherwise.
Computes the automorphism group of a strongly connected pseudomanifold complex , i. e. the

group of all automorphisms on the set of vertices of complex that do not change the complex as a
whole. Necessarily the group is a subgroup of the symmetric group Sn where n is the number of
vertices of the simplicial complex.

simpcomp 83

The function uses an efficient algorithm provided by the package GRAPE (see [Soi12], which is
based on the program nauty by Brendan McKay [MP14]). If the package GRAPE is not available,
this function call falls back to SCAutomorphismGroupInternal (6.9.3).

The position of the group in the GAP libraries of small groups, transitive groups or primitive
groups is given. If the group is not listed, its structure description, provided by the GAP function
StructureDescription(), is returned as the name of the group. Note that the latter form is not
always unique, since every non trivial semi-direct product is denoted by ”:”.

Example
gap> SCLib.SearchByName("K3");

[[7648, "K3_16"], [7649, "K3_17"]]

gap> k3surf:=SCLib.Load(last[1][1]);;

gap> SCAutomorphismGroup(k3surf);

Group([(1,3,8,4,9,16,15,2,14,12,6,7,13,5,10),

(1,13)(2,14)(3,15)(4,16)(5,9)(6,10)(7,11)(8,12)])

6.9.3 SCAutomorphismGroupInternal

▷ SCAutomorphismGroupInternal(complex) (method)

Returns: a GAP permutation group upon success, fail otherwise.
Computes the automorphism group of a strongly connected pseudomanifold complex , i. e. the

group of all automorphisms on the set of vertices of complex that do not change the complex as a
whole. Necessarily the group is a subgroup of the symmetric group Sn where n is the number of
vertices of the simplicial complex.

The position of the group in the GAP libraries of small groups, transitive groups or primitive
groups is given. If the group is not listed, its structure description, provided by the GAP function
StructureDescription(), is returned as the name of the group. Note that the latter form is not
always unique, since every non trivial semi-direct product is denoted by ”:”.

Example
gap> c:=SCBdSimplex(5);;

gap> SCAutomorphismGroupInternal(c);

Sym([1 .. 6])

Example
gap> c:=SC([[1,2],[2,3],[1,3]]);;

gap> g:=SCAutomorphismGroupInternal(c);

PrimitiveGroup(3,2) = S(3)

gap> List(g);

[(), (1,2,3), (1,3,2), (2,3), (1,2), (1,3)]

gap> StructureDescription(g);

"S3"

6.9.4 SCAutomorphismGroupSize

▷ SCAutomorphismGroupSize(complex) (method)

Returns: a positive integer group upon success, fail otherwise.
Computes the size of the automorphism group of a strongly connected pseudomanifold complex ,

see SCAutomorphismGroup (6.9.2).

simpcomp 84

Example
gap> SCLib.SearchByName("K3");

[[7648, "K3_16"], [7649, "K3_17"]]

gap> k3surf:=SCLib.Load(last[1][1]);;

gap> SCAutomorphismGroupSize(k3surf);

240

6.9.5 SCAutomorphismGroupStructure

▷ SCAutomorphismGroupStructure(complex) (method)

Returns: the GAP structure description upon success, fail otherwise.
Computes the GAP structure description of the automorphism group of a strongly connected

pseudomanifold complex , see SCAutomorphismGroup (6.9.2).
Example

gap> SCLib.SearchByName("K3");

[[7648, "K3_16"], [7649, "K3_17"]]

gap> k3surf:=SCLib.Load(last[1][1]);;

gap> SCAutomorphismGroupStructure(k3surf);

"((C2 x C2 x C2 x C2) : C5) : C3"

6.9.6 SCAutomorphismGroupTransitivity

▷ SCAutomorphismGroupTransitivity(complex) (method)

Returns: a positive integer upon success, fail otherwise.
Computes the transitivity of the automorphism group of a strongly connected pseudomanifold

complex , i. e. the maximal integer t such that for any two ordered t-tuples T1 and T2 of vertices of
complex , there exists an element g in the automorphism group of complex for which gT1 = T2, see
[Hup67].

Example
gap> SCLib.SearchByName("K3");

[[7648, "K3_16"], [7649, "K3_17"]]

gap> k3surf:=SCLib.Load(last[1][1]);;

gap> SCAutomorphismGroupTransitivity(k3surf);

2

6.9.7 SCBoundary

▷ SCBoundary(complex) (method)

Returns: simplicial complex of type SCSimplicialComplex upon success, fail otherwise.
The function computes the boundary of a simplicial complex complex satisfying the weak pseu-

domanifold property and returns it as a simplicial complex. In addition, it is stored as a property of
complex .

The boundary of a simplicial complex is defined as the simplicial complex consisting of all d−1-
faces that are contained in exactly one facet.

If complex does not fulfill the weak pseudomanifold property (i. e. if the valence of any d−1-face
exceeds 2) the function returns fail.

simpcomp 85

Example
gap> c:=SC([[1,2,3,4],[1,2,3,5],[1,2,4,5],[1,3,4,5]]);

[SimplicialComplex

Properties known: Dim, FacetsEx, Name, Vertices.

Name="unnamed complex 52"

Dim=3

/SimplicialComplex]

gap> SCBoundary(c);

[SimplicialComplex

Properties known: Dim, FacetsEx, Name, Vertices.

Name="Bd(unnamed complex 52)"

Dim=2

/SimplicialComplex]

gap> c;

[SimplicialComplex

Properties known: BoundaryEx, Dim, FacetsEx, HasBoundary,

IsPseudoManifold, IsPure, Name, SkelExs[],

Vertices.

Name="unnamed complex 52"

Dim=3

HasBoundary=true

IsPseudoManifold=true

IsPure=true

/SimplicialComplex]

6.9.8 SCDehnSommervilleCheck

▷ SCDehnSommervilleCheck(c) (method)

Returns: true or false upon success, fail otherwise.
Checks if the simplicial complex c fulfills the Dehn Sommerville equations: h j − hd+1− j =

(−1)d+1− j(d+1
j)(χ(M)−2) for 0 ≤ j ≤ d

2 and d even, and h j −hd+1− j = 0 for 0 ≤ j ≤ d−1
2 and d odd.

Where h j is the jth component of the h-vector, see SCHVector (6.9.26).
Example

gap> c:=SCBdCrossPolytope(6);;

gap> SCDehnSommervilleCheck(c);

true

gap> c:=SC([[1,2,3],[1,4,5]]);;

gap> SCDehnSommervilleCheck(c);

false

simpcomp 86

6.9.9 SCDehnSommervilleMatrix

▷ SCDehnSommervilleMatrix(d) (method)

Returns: a (d+1)×Int(d+1/2) matrix with integer entries upon success, fail otherwise.
Computes the coefficients of the Dehn Sommerville equations for dimension d: h j − hd+1− j =

(−1)d+1− j(d+1
j)(χ(M)−2) for 0 ≤ j ≤ d

2 and d even, and h j −hd+1− j = 0 for 0 ≤ j ≤ d−1
2 and d odd.

Where h j is the jth component of the h-vector, see SCHVector (6.9.26).
Example

gap> m:=SCDehnSommervilleMatrix(6);;

gap> PrintArray(m);

[[1, -1, 1, -1, 1, -1, 1],

[0, -2, 3, -4, 5, -6, 7],

[0, 0, 0, -4, 10, -20, 35],

[0, 0, 0, 0, 0, -6, 21]]

6.9.10 SCDifferenceCycles

▷ SCDifferenceCycles(complex) (method)

Returns: a list of lists upon success, fail otherwise.
Computes the difference cycles of complex in standard labeling if complex is invariant under a

shift of the vertices of type v↦ v+1 mod n. The function returns the difference cycles as lists where
the sum of the entries equals the number of vertices n of complex .

Example
gap> torus:=SCFromDifferenceCycles([[1,2,4],[1,4,2]]);

[SimplicialComplex

Properties known: DifferenceCycles, Dim, FacetsEx, Name, Vertices.

Name="complex from diffcycles [[1, 2, 4], [1, 4, 2]]"

Dim=2

/SimplicialComplex]

gap> torus.Homology;

[[0, []], [2, []], [1, []]]

gap> torus.DifferenceCycles;

[[1, 2, 4], [1, 4, 2]]

6.9.11 SCDim

▷ SCDim(complex) (method)

Returns: an integer ≥ −1 upon success, fail otherwise.
Computes the dimension of a simplicial complex. If the complex is not pure, the dimension of the

highest dimensional simplex is returned.
Example

gap> complex:=SC([[1,2,3], [1,2,4], [1,3,4], [2,3,4]]);;

gap> SCDim(complex);

2

gap> c:=SC([[1], [2,4], [3,4], [5,6,7,8]]);;

simpcomp 87

gap> SCDim(c);

3

6.9.12 SCDualGraph

▷ SCDualGraph(complex) (method)

Returns: 1-dimensional simplicial complex of type SCSimplicialComplex upon success, fail
otherwise.

Computes the dual graph of the pure simplicial complex complex .
Example

gap> sphere:=SCBdSimplex(5);;

gap> graph:=SCFaces(sphere,1);

[[1, 2], [1, 3], [1, 4], [1, 5], [1, 6], [2, 3], [2, 4],

[2, 5], [2, 6], [3, 4], [3, 5], [3, 6], [4, 5], [4, 6],

[5, 6]]

gap> graph:=SC(graph);;

gap> dualGraph:=SCDualGraph(sphere);

[SimplicialComplex

Properties known: Dim, FacetsEx, Name, Vertices.

Name="dual graph of S^4_6"

Dim=1

/SimplicialComplex]

gap> graph.Facets = dualGraph.Facets;

true

6.9.13 SCEulerCharacteristic

▷ SCEulerCharacteristic(complex) (method)

Returns: integer upon success, fail otherwise.

Computes the Euler characteristic χ(C) =
d
∑
i=0

(−1)i fi of a simplicial complex C, where fi denotes

the i-th component of the f -vector.
Example

gap> complex:=SCFromFacets([[1,2,3], [1,2,4], [1,3,4], [2,3,4]]);;

gap> SCEulerCharacteristic(complex);

2

gap> s2:=SCBdSimplex(3);;

gap> s2.EulerCharacteristic;

2

6.9.14 SCFVector

▷ SCFVector(complex) (method)

Returns: a list of non-negative integers upon success, fail otherwise.

simpcomp 88

Computes the f -vector of the simplicial complex complex , i. e. the number of i-dimensional
faces for 0 ≤ i ≤ d, where d is the dimension of complex . A memory-saving implicit algorithm is used
that avoids calculating the face lattice of the complex. Internally calls SCNumFaces (6.9.52).

Example
gap> complex:=SC([[1,2,3], [1,2,4], [1,3,4], [2,3,4]]);;

gap> SCFVector(complex);

[4, 6, 4]

6.9.15 SCFaceLattice

▷ SCFaceLattice(complex) (method)

Returns: a list of face lists upon success, fail otherwise.
Computes the entire face lattice of a d-dimensional simplicial complex, i. e. all of its i-skeletons

for 0 ≤ i ≤ d. The faces are returned in the original labeling.
Example

gap> c:=SC([["a","b","c"],["a","b","d"], ["a","c","d"], ["b","c","d"]]);;

gap> SCFaceLattice(c);

[[["a"], ["b"], ["c"], ["d"]],

[["a", "b"], ["a", "c"], ["a", "d"], ["b", "c"], ["b", "d"],

["c", "d"]],

[["a", "b", "c"], ["a", "b", "d"], ["a", "c", "d"],

["b", "c", "d"]]]

6.9.16 SCFaceLatticeEx

▷ SCFaceLatticeEx(complex) (method)

Returns: a list of face lists upon success, fail otherwise.
Computes the entire face lattice of a d-dimensional simplicial complex, i. e. all of its i-skeletons

for 0 ≤ i ≤ d. The faces are returned in the standard labeling.
Example

gap> c:=SC([["a","b","c"],["a","b","d"], ["a","c","d"], ["b","c","d"]]);;

gap> SCFaceLatticeEx(c);

[[[1], [2], [3], [4]],

[[1, 2], [1, 3], [1, 4], [2, 3], [2, 4], [3, 4]],

[[1, 2, 3], [1, 2, 4], [1, 3, 4], [2, 3, 4]]]

6.9.17 SCFaces

▷ SCFaces(complex, k) (method)

Returns: a face list upon success, fail otherwise.
This is a synonym of the function SCSkel (7.3.13).

6.9.18 SCFacesEx

▷ SCFacesEx(complex, k) (method)

Returns: a face list upon success, fail otherwise.
This is a synonym of the function SCSkelEx (7.3.14).

simpcomp 89

6.9.19 SCFacets

▷ SCFacets(complex) (method)

Returns: a facet list upon success, fail otherwise.
Returns the facets of a simplicial complex in the original vertex labeling.

Example
gap> c:=SC([[2,3],[3,4],[4,2]]);;

gap> SCFacets(c);

[[2, 3], [2, 4], [3, 4]]

6.9.20 SCFacetsEx

▷ SCFacetsEx(complex) (method)

Returns: a facet list upon success, fail otherwise.
Returns the facets of a simplicial complex as they are stored, i. e. with standard vertex labeling

from 1 to n.
Example

gap> c:=SC([[2,3],[3,4],[4,2]]);;

gap> SCFacetsEx(c);

[[1, 2], [1, 3], [2, 3]]

6.9.21 SCFpBettiNumbers

▷ SCFpBettiNumbers(complex, p) (method)

Returns: a list of non-negative integers upon success, fail otherwise.
Computes the Betti numbers of a simplicial complex with respect to the field Fp for any prime

number p.
Example

gap> SCLib.SearchByName("K^2");

[[17, "K^2 (VT)"], [571, "K^2 (VT)"]]

gap> kleinBottle:=SCLib.Load(last[1][1]);;

gap> SCHomology(kleinBottle);

[[0, []], [1, [2]], [0, []]]

gap> SCFpBettiNumbers(kleinBottle,2);

[1, 2, 1]

gap> SCFpBettiNumbers(kleinBottle,3);

[1, 1, 0]

6.9.22 SCFundamentalGroup

▷ SCFundamentalGroup(complex) (method)

Returns: a GAP fp group upon success, fail otherwise.
Computes the first fundamental group of complex , which must be a connected simplicial com-

plex, and returns it in form of a finitely presented group. The generators of the group are given
as 2-tuples that correspond to the edges of complex in standard labeling. You can use GAP’s
SimplifiedFpGroup to simplify the group presenation.

simpcomp 90

Example
gap> list:=SCLib.SearchByName("RP^2");

[[3, "RP^2 (VT)"], [635, "RP^2xS^1"]]

gap> c:=SCLib.Load(list[1][1]);

[SimplicialComplex

Properties known: AltshulerSteinberg, AutomorphismGroup,

AutomorphismGroupSize, AutomorphismGroupStructure,

AutomorphismGroupTransitivity, ConnectedComponents,

Dim, DualGraph, EulerCharacteristic, FVector,

FacetsEx, GVector, GeneratorsEx, HVector,

HasBoundary, HasInterior, Homology, Interior,

IsCentrallySymmetric, IsConnected,

IsEulerianManifold, IsManifold, IsOrientable,

IsPseudoManifold, IsPure, IsStronglyConnected,

MinimalNonFacesEx, Name, Neighborliness,

NumFaces[], Orientation, Reference, SkelExs[],

Vertices.

Name="RP^2 (VT)"

Dim=2

AltshulerSteinberg=3645

AutomorphismGroupSize=60

AutomorphismGroupStructure="A5"

AutomorphismGroupTransitivity=2

EulerCharacteristic=1

FVector=[6, 15, 10]

GVector=[2, 3]

HVector=[3, 6, 0]

HasBoundary=false

HasInterior=true

Homology=[[0, []], [0, [2]], [0, []]]

IsCentrallySymmetric=false

IsConnected=true

IsEulerianManifold=true

IsOrientable=false

IsPseudoManifold=true

IsPure=true

IsStronglyConnected=true

Neighborliness=2

/SimplicialComplex]

gap> g:=SCFundamentalGroup(c);;

gap> StructureDescription(g);

"C2"

6.9.23 SCGVector

▷ SCGVector(complex) (method)

Returns: a list of integers upon success, fail otherwise.
Computes the g-vector of a simplicial complex. The g-vector is defined as follows:

simpcomp 91

Let h be the h-vector of a d-dimensional simplicial complex C, then gi ∶= hi+1 −hi; d
2 ≥ i ≥ 0 is

called the g-vector of C. For the definition of the h-vector see SCHVector (6.9.26). The information
contained in g suffices to determine the f -vector of C.

Example
gap> SCLib.SearchByName("RP^2");

[[3, "RP^2 (VT)"], [635, "RP^2xS^1"]]

gap> rp2_6:=SCLib.Load(last[1][1]);;

gap> SCFVector(rp2_6);

[6, 15, 10]

gap> SCHVector(rp2_6);

[3, 6, 0]

gap> SCGVector(rp2_6);

[2, 3]

6.9.24 SCGenerators

▷ SCGenerators(complex) (method)

Returns: a list of pairs of the form [list, integer] upon success, fail otherwise.
Computes the generators of a simplicial complex in the original vertex labeling.
The generating set of a simplicial complex is a list of simplices that will generate the complex by

uniting their G-orbits if G is the automorphism group of complex .
The function returns the simplices together with the length of their orbits.

Example
gap> list:=SCLib.SearchByName("T^2");;

gap> torus:=SCLib.Load(list[1][1]);;

gap> SCGenerators(torus);

[[[1, 2, 4], 14]]

Example
gap> SCLib.SearchByName("K3");

[[7648, "K3_16"], [7649, "K3_17"]]

gap> SCLib.Load(last[1][1]);

[SimplicialComplex

Properties known: AltshulerSteinberg, AutomorphismGroup,

AutomorphismGroupSize, AutomorphismGroupStructure,

AutomorphismGroupTransitivity, ConnectedComponents,

Dim, DualGraph, EulerCharacteristic, FVector,

FacetsEx, GVector, GeneratorsEx, HVector,

HasBoundary, HasInterior, Homology, Interior,

IsCentrallySymmetric, IsConnected,

IsEulerianManifold, IsManifold, IsOrientable,

IsPseudoManifold, IsPure, IsStronglyConnected,

MinimalNonFacesEx, Name, Neighborliness,

NumFaces[], Orientation, SkelExs[], Vertices.

Name="K3_16"

Dim=4

AltshulerSteinberg=883835714748069945165599539200

AutomorphismGroupSize=240

simpcomp 92

AutomorphismGroupStructure="((C2 x C2 x C2 x C2) : C5) : C3"

AutomorphismGroupTransitivity=2

EulerCharacteristic=24

FVector=[16, 120, 560, 720, 288]

GVector=[10, 55, 220]

HVector=[11, 66, 286, -99, 23]

HasBoundary=false

HasInterior=true

Homology=[[0, []], [0, []], [22, []], [0, []], [1, []]]

IsCentrallySymmetric=false

IsConnected=true

IsEulerianManifold=true

IsOrientable=true

IsPseudoManifold=true

IsPure=true

IsStronglyConnected=true

Neighborliness=3

/SimplicialComplex]

gap> SCGenerators(last);

[[[1, 2, 3, 8, 12], 240], [[1, 2, 5, 8, 14], 48]]

6.9.25 SCGeneratorsEx

▷ SCGeneratorsEx(complex) (method)

Returns: a list of pairs of the form [list, integer] upon success, fail otherwise.
Computes the generators of a simplicial complex in the standard vertex labeling.
The generating set of a simplicial complex is a list of simplices that will generate the complex by

uniting their G-orbits if G is the automorphism group of complex .
The function returns the simplices together with the length of their orbits.

Example
gap> list:=SCLib.SearchByName("T^2");;

gap> torus:=SCLib.Load(list[1][1]);;

gap> SCGeneratorsEx(torus);

[[[1, 2, 4], 14]]

Example
gap> SCLib.SearchByName("K3");

[[7648, "K3_16"], [7649, "K3_17"]]

gap> SCLib.Load(last[1][1]);

[SimplicialComplex

Properties known: AltshulerSteinberg, AutomorphismGroup,

AutomorphismGroupSize, AutomorphismGroupStructure,

AutomorphismGroupTransitivity, ConnectedComponents,

Dim, DualGraph, EulerCharacteristic, FVector,

FacetsEx, GVector, GeneratorsEx, HVector,

HasBoundary, HasInterior, Homology, Interior,

IsCentrallySymmetric, IsConnected,

IsEulerianManifold, IsManifold, IsOrientable,

simpcomp 93

IsPseudoManifold, IsPure, IsStronglyConnected,

MinimalNonFacesEx, Name, Neighborliness,

NumFaces[], Orientation, SkelExs[], Vertices.

Name="K3_16"

Dim=4

AltshulerSteinberg=883835714748069945165599539200

AutomorphismGroupSize=240

AutomorphismGroupStructure="((C2 x C2 x C2 x C2) : C5) : C3"

AutomorphismGroupTransitivity=2

EulerCharacteristic=24

FVector=[16, 120, 560, 720, 288]

GVector=[10, 55, 220]

HVector=[11, 66, 286, -99, 23]

HasBoundary=false

HasInterior=true

Homology=[[0, []], [0, []], [22, []], [0, []], [1, []]]

IsCentrallySymmetric=false

IsConnected=true

IsEulerianManifold=true

IsOrientable=true

IsPseudoManifold=true

IsPure=true

IsStronglyConnected=true

Neighborliness=3

/SimplicialComplex]

gap> SCGeneratorsEx(last);

[[[1, 2, 3, 8, 12], 240], [[1, 2, 5, 8, 14], 48]]

6.9.26 SCHVector

▷ SCHVector(complex) (method)

Returns: a list of integers upon success, fail otherwise.
Computes the h-vector of a simplicial complex. The h-vector is defined as hk ∶=

k−1
∑

i=−1
(−1)k−i−1(d−i−1

k−i−1) fi for 0 ≤ k ≤ d, where f−1 ∶= 1. For all simplicial complexes we have h0 = 1,

hence the returned list starts with the second entry of the h-vector.
Example

gap> SCLib.SearchByName("RP^2");

[[3, "RP^2 (VT)"], [635, "RP^2xS^1"]]

gap> rp2_6:=SCLib.Load(last[1][1]);;

gap> SCFVector(rp2_6);

[6, 15, 10]

gap> SCHVector(rp2_6);

[3, 6, 0]

simpcomp 94

6.9.27 SCHasBoundary

▷ SCHasBoundary(complex) (method)

Returns: true or false upon success, fail otherwise.
Checks if a simplicial complex complex that fulfills the weak pseudo manifold property has a

boundary, i. e. d−1-faces of valence 1. If complex is closed false is returned, if complex does not
fulfill the weak pseudomanifold property, fail is returned, otherwise true is returned.

Example
gap> SCLib.SearchByName("K^2");

[[17, "K^2 (VT)"], [571, "K^2 (VT)"]]

gap> kleinBottle:=SCLib.Load(last[1][1]);;

gap> SCHasBoundary(kleinBottle);

false

Example
gap> c:=SC([[1,2,3,4],[1,2,3,5],[1,2,4,5],[1,3,4,5]]);;

gap> SCHasBoundary(c);

true

6.9.28 SCHasInterior

▷ SCHasInterior(complex) (method)

Returns: true or false upon success, fail otherwise.
Returns true if a simplicial complex complex that fulfills the weak pseudomanifold property has

at least one d−1-face of valence 2, i. e. if there exist at least one d−1-face that is not in the boundary
of complex , if no such face can be found false is returned. It complex does not fulfill the weak
pseudomanifold property fail is returned.

Example
gap> c:=SC([[1,2,3,4],[1,2,3,5],[1,2,4,5],[1,3,4,5]]);;

gap> SCHasInterior(c)

true

gap> c:=SC([[1,2,3,4]]);;

gap> SCHasInterior(c);

false

6.9.29 SCHeegaardSplittingSmallGenus

▷ SCHeegaardSplittingSmallGenus(M) (method)

Returns: a list of an integer, a list of two sublists and a string upon success, fail otherwise.
Computes a Heegaard splitting of the combinatorial 3-manifold M of small genus. The function

returns the genus of the Heegaard splitting, the vertex partition of the Heegaard splitting and informa-
tion whether the splitting is minimal or just small (i. e. the Heegaard genus could not be determined).
See also SCHeegaardSplitting (6.9.30) for a faster computation of a Heegaard splitting of arbitrary
genus and SCIsHeegaardSplitting (6.9.40) for a test whether or not a given splitting defines a
Heegaard splitting.

simpcomp 95

Example
gap> c:=SCSeriesBdHandleBody(3,10);;

gap> M:=SCConnectedProduct(c,3);;

gap> list:=SCHeegaardSplittingSmallGenus(M);

This creates an error

6.9.30 SCHeegaardSplitting

▷ SCHeegaardSplitting(M) (method)

Returns: a list of an integer, a list of two sublists and a string upon success, fail otherwise.
Computes a Heegaard splitting of the combinatorial 3-manifold M . The function returns the genus

of the Heegaard splitting, the vertex partition of the Heegaard splitting and a note, that splitting is ar-
bitrary and in particular possibly not minimal. See also SCHeegaardSplittingSmallGenus (6.9.29)
for the calculation of a Heegaard splitting of small genus and SCIsHeegaardSplitting (6.9.40) for
a test whether or not a given splitting defines a Heegaard splitting.

Example
gap> M:=SCSeriesBdHandleBody(3,12);;

gap> list:=SCHeegaardSplitting(M);

[1, [[1, 2, 3, 5, 9], [4, 6, 7, 8, 10, 11, 12]], "arbitrary"]

gap> sl:=SCSlicing(M,list[2]);

[NormalSurface

Properties known: ConnectedComponents, Dim, EulerCharacteristic, FVector, Fac\

etsEx, Genus, IsConnected, IsOrientable, NSTriangulation, Name, TopologicalTyp\

e, Vertices.

Name="slicing [[1, 2, 3, 5, 9], [4, 6, 7, 8, 10, 11, 12]] of Sphere bun\

dle S^2 x S^1"

Dim=2

FVector=[24, 55, 14, 17]

EulerCharacteristic=0

IsOrientable=true

TopologicalType="T^2"

/NormalSurface]

6.9.31 SCHomologyClassic

▷ SCHomologyClassic(complex) (function)

Returns: a list of pairs of the form [integer, list].
Computes the integral simplicial homology groups of a simplicial complex complex (internally

calls the function SimplicialHomology(complex.FacetsEx) from the homology package, see
[DHSW11]).

If the homology package is not available, this function call falls back to SCHomologyInternal

(8.1.5). The output is a list of homology groups of the form [H0,,Hd], where d is the dimension of
complex . The format of the homology groups Hi is given in terms of their maximal cyclic subgroups,
i.e. a homology group Hi ≅Z f +Z/t1Z×⋅ ⋅ ⋅×Z/tnZ is returned in form of a list [f ,[t1, ...,tn]], where f
is the (integer) free part of Hi and ti denotes the torsion parts of Hi ordered in weakly increasing size.

simpcomp 96

Example
gap> SCLib.SearchByName("K^2");

[[17, "K^2 (VT)"], [571, "K^2 (VT)"]]

gap> kleinBottle:=SCLib.Load(last[1][1]);;

gap> kleinBottle.Homology;

[[0, []], [1, [2]], [0, []]]

gap> SCLib.SearchByName("L_"){[1..10]};

[[139, "L_3_1"], [634, "L_4_1"], [754, "L_5_2"],

[2416, "(S^2~S^1)#L_3_1"], [2417, "(S^2xS^1)#L_3_1"], [2490, "L_5_1"],

[2492, "(S^2~S^1)#2#L_3_1"], [2494, "(S^2xS^1)#2#L_3_1"],

[7467, "L_7_2"], [7468, "L_8_3"]]

gap> c:=SCConnectedSum(SCLib.Load(last[9][1]),

SCConnectedProduct(SCLib.Load(last[10][1]),2));

> [SimplicialComplex

Properties known: Dim, FacetsEx, Name, Vertices.

Name="L_7_2#+-L_8_3#+-L_8_3"

Dim=3

/SimplicialComplex]

gap> SCHomology(c);

[[0, []], [0, [8, 56]], [0, []], [1, []]]

gap> SCFpBettiNumbers(c,2);

[1, 2, 2, 1]

gap> SCFpBettiNumbers(c,3);

[1, 0, 0, 1]

6.9.32 SCIncidences

▷ SCIncidences(complex, k) (method)

Returns: a list of face lists upon success, fail otherwise.
Returns a list of all k -faces of the simplicial complex complex . The list is sorted by the valence

of the faces in the k+1-skeleton of the complex, i. e. the i-th entry of the list contains all k -faces of
valence i. The faces are returned in the original labeling.

Example
gap> c:=SC([[1,2,3],[2,3,4],[3,4,5],[4,5,6],[1,5,6],[1,4,6],[2,3,6]]);;

gap> SCIncidences(c,1);

[[[1, 2], [1, 3], [1, 4], [1, 5], [2, 4], [2, 6], [3, 5],

[3, 6]], [[1, 6], [3, 4], [4, 5], [4, 6], [5, 6]],

[[2, 3]]]

6.9.33 SCIncidencesEx

▷ SCIncidencesEx(complex, k) (method)

Returns: a list of face lists upon success, fail otherwise.
Returns a list of all k -faces of the simplicial complex complex . The list is sorted by the valence

of the faces in the k+1-skeleton of the complex, i. e. the i-th entry of the list contains all k -faces of
valence i. The faces are returned in the standard labeling.

simpcomp 97

Example
gap> c:=SC([[1,2,3],[2,3,4],[3,4,5],[4,5,6],[1,5,6],[1,4,6],[2,3,6]]);;

gap> SCIncidences(c,1);

[[[1, 2], [1, 3], [1, 4], [1, 5], [2, 4], [2, 6], [3, 5],

[3, 6]], [[1, 6], [3, 4], [4, 5], [4, 6], [5, 6]],

[[2, 3]]]

6.9.34 SCInterior

▷ SCInterior(complex) (method)

Returns: simplicial complex of type SCSimplicialComplex upon success, fail otherwise.
Computes all d − 1-faces of valence 2 of a simplicial complex complex that fulfills the weak

pseudomanifold property, i. e. the function returns the part of the d −1-skeleton of C that is not part
of the boundary.

Example
gap> c:=SC([[1,2,3,4],[1,2,3,5],[1,2,4,5],[1,3,4,5]]);;

gap> SCInterior(c).Facets;

[[1, 2, 3], [1, 2, 4], [1, 2, 5], [1, 3, 4], [1, 3, 5],

[1, 4, 5]]

gap> c:=SC([[1,2,3,4]]);;

gap> SCInterior(c).Facets;

[]

6.9.35 SCIsCentrallySymmetric

▷ SCIsCentrallySymmetric(complex) (method)

Returns: true or false upon success, fail otherwise.
Checks if a simplicial complex complex is centrally symmetric, i. e. if its automorphism group

contains a fixed point free involution.
Example

gap> c:=SCBdCrossPolytope(4);;

gap> SCIsCentrallySymmetric(c);

true

Example
gap> c:=SCBdSimplex(4);;

gap> SCIsCentrallySymmetric(c);

false

6.9.36 SCIsConnected

▷ SCIsConnected(complex) (method)

Returns: true or false upon success, fail otherwise.
Checks if a simplicial complex complex is connected.

simpcomp 98

Example
gap> c:=SCBdSimplex(1);;

gap> SCIsConnected(c);

false

gap> c:=SCBdSimplex(2);;

gap> SCIsConnected(c);

true

6.9.37 SCIsEmpty

▷ SCIsEmpty(complex) (method)

Returns: true or false upon success, fail otherwise.
Checks if a simplicial complex complex is the empty complex, i. e. a SCSimplicialComplex

object with empty facet list.
Example

gap> c:=SC([[1]]);;

gap> SCIsEmpty(c);

false

gap> c:=SC([]);;

gap> SCIsEmpty(c);

true

gap> c:=SC([[]]);;

gap> SCIsEmpty(c);

true

6.9.38 SCIsEulerianManifold

▷ SCIsEulerianManifold(complex) (method)

Returns: true or false upon success, fail otherwise.
Checks whether a given simplicial complex complex is a Eulerian manifold or not, i. e. checks if

all vertex links of complex have the Euler characteristic of a sphere. In particular the function returns
false in case complex has a non-empty boundary.

Example
gap> c:=SCBdSimplex(4);;

gap> SCIsEulerianManifold(c);

true

gap> SCLib.SearchByName("Moebius");

[[1, "Moebius Strip"]]

gap> moebius:=SCLib.Load(last[1][1]); # a moebius strip

[SimplicialComplex

Properties known: Dim, EulerCharacteristic, FVector, FacetsEx,

GVector, HVector, HasBoundary, Homology,

IsConnected, IsManifold, IsPseudoManifold,

MinimalNonFacesEx, Name, NumFaces[], SkelExs[],

Vertices.

Name="Moebius Strip"

Dim=2

simpcomp 99

EulerCharacteristic=0

FVector=[5, 10, 5]

GVector=[1, 1]

HVector=[2, 3, -1]

HasBoundary=true

Homology=[[0], [1], [0]]

IsConnected=true

IsPseudoManifold=true

/SimplicialComplex]

gap> SCIsEulerianManifold(moebius);

false

6.9.39 SCIsFlag

▷ SCIsFlag(complex, k) (method)

Returns: true or false upon success, fail otherwise.
Checks if complex is flag. A simplicial complex is a flag complex if all edges of a potential

face of the complex are in the complex, or equivalently if all of its minimal non-faces are edges (cf.
[Fro08]).

Example
gap> SCLib.SearchByName("RP^2");

[[3, "RP^2 (VT)"], [635, "RP^2xS^1"]]

gap> rp2_6:=SCLib.Load(last[1][1]);;

gap> SCIsFlag(rp2_6);

true

6.9.40 SCIsHeegaardSplitting

▷ SCIsHeegaardSplitting(c, list) (method)

Returns: true or false upon success, fail otherwise.
Checks whether list defines a Heegaard splitting of c or not. See also SCHeegaardSplitting

(6.9.30) and SCHeegaardSplittingSmallGenus (6.9.29) for functions to compute Heegaard split-
tings.

Example
gap> c:=SCSeriesBdHandleBody(3,9);;

gap> list:=[[1..3],[4..9]];

[[1 .. 3], [4 .. 9]]

gap> SCIsHeegaardSplitting(c,list);

false

gap> splitting:=SCHeegaardSplitting(c);

[1, [[1, 2, 3, 6], [4, 5, 7, 8, 9]], "arbitrary"]

gap> SCIsHeegaardSplitting(c,splitting[2]);

true

simpcomp 100

6.9.41 SCIsHomologySphere

▷ SCIsHomologySphere(complex) (method)

Returns: true or false upon success, fail otherwise.
Checks whether a simplicial complex complex is a homology sphere, i. e. has the homology of a

sphere, or not.
Example

gap> c:=SC([[2,3],[3,4],[4,2]]);;

gap> SCIsHomologySphere(c);

true

6.9.42 SCIsInKd

▷ SCIsInKd(complex, k) (method)

Returns: true / false upon success, fail otherwise.
Checks whether the simplicial complex complex that must be a combinatorial d-manifold is in

the class Kk(d), 1 ≤ k ≤ ⌊ d+1
2 ⌋, of simplicial complexes that only have k-stacked spheres as vertex

links, see [Eff11b]. Note that it is not checked whether complex is a combinatorial manifold – if not,
the algorithm will not succeed. Returns true / false upon success. If true is returned this means
that complex is at least k -stacked and thus that the complex is in the class Kk(d), i.e. all vertex
links are i-stacked spheres. If false is returnd the complex cannot be k -stacked. In some cases the
question can not be decided. In this case fail is returned.

Internally calls SCIsKStackedSphere (9.2.5) for all links. Please note that this is a radomized
algorithm that may give an indefinite answer to the membership problem.

Example
gap> list:=SCLib.SearchByName("S^2~S^1");;{[1..3]};

gap> c:=SCLib.Load(list[1][1]);;

gap> c.AutomorphismGroup;

Group([(1,3)(4,9)(5,8)(6,7), (1,9,8,7,6,5,4,3,2)])

gap> SCIsInKd(c,1);

#I SCIsKStackedSphere: checking if complex is a 1-stacked sphere...

#I SCIsKStackedSphere: try 1/50

#I SCIsKStackedSphere: complex is a 1-stacked sphere.

true

6.9.43 SCIsKNeighborly

▷ SCIsKNeighborly(complex, k) (method)

Returns: true or false upon success, fail otherwise.
Example

gap> SCLib.SearchByName("RP^2");

[[3, "RP^2 (VT)"], [635, "RP^2xS^1"]]

gap> rp2_6:=SCLib.Load(last[1][1]);;

gap> SCFVector(rp2_6);

[6, 15, 10]

gap> SCIsKNeighborly(rp2_6,2);

true

gap> SCIsKNeighborly(rp2_6,3);

simpcomp 101

false

6.9.44 SCIsOrientable

▷ SCIsOrientable(complex) (method)

Returns: true or false upon success, fail otherwise.
Checks if a simplicial complex complex , satisfying the weak pseudomanifold property, is ori-

entable.
Example

gap> c:=SCBdCrossPolytope(4);;

gap> SCIsOrientable(c);

true

6.9.45 SCIsPseudoManifold

▷ SCIsPseudoManifold(complex) (method)

Returns: true or false upon success, fail otherwise.
Checks if a simplicial complex complex fulfills the weak pseudomanifold property, i. e. if every

d−1-face of complex is contained in at most 2 facets.
Example

gap> c:=SC([[1,2,3],[1,2,4],[1,3,4],[2,3,4],[1,5,6],[1,5,7],[1,6,7],[5,6,7]]);;

gap> SCIsPseudoManifold(c);

true

gap> c:=SC([[1,2],[2,3],[3,1],[1,4],[4,5],[5,1]]);;

gap> SCIsPseudoManifold(c);

false

6.9.46 SCIsPure

▷ SCIsPure(complex) (method)

Returns: a boolean upon success, fail otherwise.
Checks if a simplicial complex complex is pure.

Example
gap> c:=SC([[1,2], [1,4], [2,4], [2,3,4]]);;

gap> SCIsPure(c);

false

gap> c:=SC([[1,2], [1,4], [2,4]]);;

gap> SCIsPure(c);

true

6.9.47 SCIsShellable

▷ SCIsShellable(complex) (method)

Returns: true or false upon success, fail otherwise.

simpcomp 102

The simplicial complex complex must be pure, strongly connected and must fulfill the weak
pseudomanifold property with non-empty boundary (cf. SCBoundary (6.9.7)).

The function checks whether complex is shellable or not. An ordering (F1,F2, . . . ,Fr) on the facet
list of a simplicial complex is called a shelling if and only if Fi∩(F1∪ . . .∪Fi−1) is a pure simplicial
complex of dimension d−1 for all i = 1, . . . ,r. A simplicial complex is called shellable, if at least one
shelling exists.

See [Zie95], [Pac87] to learn more about shellings.
Example

gap> c:=SCBdCrossPolytope(4);;

gap> c:=Difference(c,SC([[1,3,5,7]]));; # bounded version

gap> SCIsShellable(c);

true

6.9.48 SCIsStronglyConnected

▷ SCIsStronglyConnected(complex) (method)

Returns: true or false upon success, fail otherwise.
Checks if a simplicial complex complex is strongly connected, i. e. if for any pair of facets (∆̂, ∆̃)

there exists a sequence of facets (∆1, . . . ,∆k) with ∆1 = ∆̂ and ∆k = ∆̃ and dim(∆i,∆i+1) = d −1 for all
1 ≤ i ≤ k−1.

Example
gap> c:=SC([[1,2,3],[1,2,4],[1,3,4],[2,3,4], [1,5,6],[1,5,7],[1,6,7],[5,6,7]]);

[SimplicialComplex

Properties known: Dim, FacetsEx, Name, Vertices.

Name="unnamed complex 24"

Dim=2

/SimplicialComplex]

gap> SCIsConnected(c);

true

gap> SCIsStronglyConnected(c);

false

6.9.49 SCMinimalNonFaces

▷ SCMinimalNonFaces(complex) (method)

Returns: a list of face lists upon success, fail otherwise.
Computes all missing proper faces of a simplicial complex complex by calling

SCMinimalNonFacesEx (6.9.50). The simplices are returned in the original labeling of complex .
Example

gap> c:=SCFromFacets(["abc","abd"]);;

gap> SCMinimalNonFaces(c);

[[], ["cd"]]

simpcomp 103

6.9.50 SCMinimalNonFacesEx

▷ SCMinimalNonFacesEx(complex) (method)

Returns: a list of face lists upon success, fail otherwise.
Computes all missing proper faces of a simplicial complex complex , i.e. the missing (i+1)-tuples

in the i-dimensional skeleton of a complex . A missing i+1-tuple is not listed if it only consists of
missing i-tuples. Note that whenever complex is k-neighborly the first k+1 entries are empty. The
simplices are returned in the standard labeling 1, . . . ,n, where n is the number of vertices of complex .

Example
gap> SCLib.SearchByName("T^2"){[1..10]};

[[4, "T^2 (VT)"], [5, "T^2 (VT)"], [9, "T^2 (VT)"], [10, "T^2 (VT)"],

[18, "T^2 (VT)"], [20, "(T^2)#2"], [24, "(T^2)#3"],

[41, "T^2 (VT)"], [44, "(T^2)#4"], [65, "T^2 (VT)"]]

gap> torus:=SCLib.Load(last[1][1]);;

gap> SCFVector(torus);

[7, 21, 14]

gap> SCMinimalNonFacesEx(torus);

[[], []]

gap> SCMinimalNonFacesEx(SCBdCrossPolytope(4));

[[], [[1, 2], [3, 4], [5, 6], [7, 8]], []]

6.9.51 SCNeighborliness

▷ SCNeighborliness(complex) (method)

Returns: a positive integer upon success, fail otherwise.
Returns k if a simplicial complex complex is k-neighborly but not (k+1)-neighborly. See also

SCIsKNeighborly (6.9.43).
Note that every complex is at least 1-neighborly.

Example
gap> c:=SCBdSimplex(4);;

gap> SCNeighborliness(c);

4

gap> c:=SCBdCrossPolytope(4);;

gap> SCNeighborliness(c);

1

gap> SCLib.SearchByAttribute("F[3]=Binomial(F[1],3) and Dim=4");

[[16, "CP^2 (VT)"], [7648, "K3_16"]]

gap> cp2:=SCLib.Load(last[2][1]);;

gap> SCNeighborliness(cp2);

3

6.9.52 SCNumFaces

▷ SCNumFaces(complex[, i]) (method)

Returns: an integer or a list of integers upon success, fail otherwise.
If i is not specified the function computes the f -vector of the simplicial complex complex (cf.

SCFVector (7.3.4)). If the optional integer parameter i is passed, only the i -th position of the f -

simpcomp 104

vector of complex is calculated. In any case a memory-saving implicit algorithm is used that avoids
calculating the face lattice of the complex.

Example
gap> complex:=SC([[1,2,3], [1,2,4], [1,3,4], [2,3,4]]);;

gap> SCNumFaces(complex,1);

6

6.9.53 SCOrientation

▷ SCOrientation(complex) (method)

Returns: a list of the type {±1} fd or [] upon success, fail otherwise.
This function tries to compute an orientation of a pure simplicial complex complex that fulfills

the weak pseudomanifold property. If complex is orientable, an orientation in form of a list of orien-
tations for the facets of complex is returned, otherwise an empty set.

Example
gap> c:=SCBdCrossPolytope(4);;

gap> SCOrientation(c);

[1, -1, -1, 1, -1, 1, 1, -1, -1, 1, 1, -1, 1, -1, -1, 1]

6.9.54 SCSkel

▷ SCSkel(complex, k) (method)

Returns: a face list or a list of face lists upon success, fail otherwise.
If k is an integer, the k -skeleton of a simplicial complex complex , i. e. all k -faces of complex ,

is computed. If k is a list, a list of all k[i]-faces of complex for each entry k[i] (which has to be
an integer) is returned. The faces are returned in the original labeling.

Example
gap> SCLib.SearchByName("RP^2");

[[3, "RP^2 (VT)"], [635, "RP^2xS^1"]]

gap> rp2_6:=SCLib.Load(last[1][1]);;

gap> rp2_6:=SC(rp2_6.Facets+10);;

gap> SCSkelEx(rp2_6,1);

[[1, 2], [1, 3], [1, 4], [1, 5], [1, 6], [2, 3], [2, 4],

[2, 5], [2, 6], [3, 4], [3, 5], [3, 6], [4, 5], [4, 6],

[5, 6]]

gap> SCSkel(rp2_6,1);

[[11, 12], [11, 13], [11, 14], [11, 15], [11, 16], [12, 13],

[12, 14], [12, 15], [12, 16], [13, 14], [13, 15], [13, 16],

[14, 15], [14, 16], [15, 16]]

6.9.55 SCSkelEx

▷ SCSkelEx(complex, k) (method)

Returns: a face list or a list of face lists upon success, fail otherwise.
If k is an integer, the k -skeleton of a simplicial complex complex , i. e. all k -faces of complex ,

is computed. If k is a list, a list of all k[i]-faces of complex for each entry k[i] (which has to be
an integer) is returned. The faces are returned in the standard labeling.

simpcomp 105

Example
gap> SCLib.SearchByName("RP^2");

[[3, "RP^2 (VT)"], [635, "RP^2xS^1"]]

gap> rp2_6:=SCLib.Load(last[1][1]);;

gap> rp2_6:=SC(rp2_6.Facets+10);;

gap> SCSkelEx(rp2_6,1);

[[1, 2], [1, 3], [1, 4], [1, 5], [1, 6], [2, 3], [2, 4],

[2, 5], [2, 6], [3, 4], [3, 5], [3, 6], [4, 5], [4, 6],

[5, 6]]

gap> SCSkel(rp2_6,1);

[[11, 12], [11, 13], [11, 14], [11, 15], [11, 16], [12, 13],

[12, 14], [12, 15], [12, 16], [13, 14], [13, 15], [13, 16],

[14, 15], [14, 16], [15, 16]]

6.9.56 SCSpanningTree

▷ SCSpanningTree(complex) (method)

Returns: simplicial complex of type SCSimplicialComplex upon success, fail otherwise.
Computes a spanning tree of a connected simplicial complex complex using a greedy algorithm.

Example
gap> c:=SC([["a","b","c"],["a","b","d"], ["a","c","d"], ["b","c","d"]]);;

gap> s:=SCSpanningTree(c);

[SimplicialComplex

Properties known: Dim, FacetsEx, Name, Vertices.

Name="spanning tree of unnamed complex 1"

Dim=1

/SimplicialComplex]

gap> s.Facets;

[[1, 2], [1, 3], [1, 4]]

6.10 Operations on simplicial complexes

The following functions perform operations on simplicial complexes. Most of them return simplicial
complexes. Thus, this section is closely related to the Sections 6.6 ”Generate new complexes from
old”. However, the data generated here is rather seen as an intrinsic attribute of the original complex
and not as an independent complex.

6.10.1 SCAlexanderDual

▷ SCAlexanderDual(complex) (method)

Returns: simplicial complex of type SCSimplicialComplex upon success, fail otherwise.
The Alexander dual of a simplicial complex complex with set of vertices V is the simplicial

complex where any subset of V spans a face if and only if its complement in V is a non-face of
complex .

simpcomp 106

Example
gap> c:=SC([[1,2],[2,3],[3,4],[4,1]]);;

gap> dual:=SCAlexanderDual(c);;

gap> dual.F;

[4, 2]

gap> dual.IsConnected;

false

gap> dual.Facets;

[[1, 3], [2, 4]]

6.10.2 SCClose

▷ SCClose(complex[, apex]) (function)

Returns: simplicial complex of type SCSimplicialComplex upon success, fail otherwise.
Closes a simplicial complex complex by building a cone over its boundary. If apex is specified it

is assigned to the apex of the cone and the original vertex labeling of complex is preserved, otherwise
an arbitrary vertex label is chosen and complex is returned in the standard labeling.

Example
gap> s:=SCSimplex(5);;

gap> b:=SCSimplex(5);;

gap> s:=SCClose(b,13);;

gap> SCIsIsomorphic(s,SCBdSimplex(6));

true

6.10.3 SCCone

▷ SCCone(complex, apex) (function)

Returns: simplicial complex of type SCSimplicialComplex upon success, fail otherwise.
If the second argument is passed every facet of the simplicial complex complex is united with

apex . If not, an arbitrary vertex label v is used (which is not a vertex of complex). In the first case
the vertex labeling remains unchanged. In the second case the function returns the new complex in
the standard vertex labeling from 1 to n+1 and the apex of the cone is n+1.

If called with a facet list instead of a SCSimplicialComplex object and apex is not specified,
internally falls back to the homology package [DHSW11], if available.

Example
gap> SCLib.SearchByName("RP^3");

[[45, "RP^3"], [113, "RP^3=L(2,1) (VT)"], [589, "(S^2~S^1)#RP^3"],

[590, "(S^2xS^1)#RP^3"], [632, "(S^2~S^1)#2#RP^3"],

[633, "(S^2xS^1)#2#RP^3"], [2414, "RP^3#RP^3"],

[2426, "RP^3=L(2,1) (VT)"], [2488, "(S^2~S^1)#3#RP^3"],

[2489, "(S^2xS^1)#3#RP^3"], [2502, "RP^3=L(2,1) (VT)"],

[7473, "(S^2~S^1)#4#RP^3"], [7474, "(S^2xS^1)#4#RP^3"],

[7504, "(S^2~S^1)#5#RP^3"], [7505, "(S^2xS^1)#5#RP^3"]]

gap> rp3:=SCLib.Load(last[1][1]);;

gap> rp3.F;

[11, 51, 80, 40]

gap> cone:=SCCone(rp3);;

gap> cone.F;

simpcomp 107

[12, 62, 131, 120, 40]

Example
gap> s:=SCBdSimplex(4)+12;;

gap> s.Facets;

[[13, 14, 15, 16], [13, 14, 15, 17], [13, 14, 16, 17],

[13, 15, 16, 17], [14, 15, 16, 17]]

gap> cc:=SCCone(s,13);;

gap> cc:=SCCone(s,12);;

gap> cc.Facets;

[[12, 13, 14, 15, 16], [12, 13, 14, 15, 17], [12, 13, 14, 16, 17],

[12, 13, 15, 16, 17], [12, 14, 15, 16, 17]]

6.10.4 SCDeletedJoin

▷ SCDeletedJoin(complex1, complex2) (method)

Returns: simplicial complex of type SCSimplicialComplex upon success, fail otherwise.
Calculates the simplicial deleted join of the simplicial complexes complex1 and complex2 . If

called with a facet list instead of a SCSimplicialComplex object, the function internally falls back
to the homology package [DHSW11], if available.

Example
gap> deljoin:=SCDeletedJoin(SCBdSimplex(3),SCBdSimplex(3));

[SimplicialComplex

Properties known: Dim, FacetsEx, Name, Vertices.

Name="S^2_4 deljoin S^2_4"

Dim=3

/SimplicialComplex]

gap> bddeljoin:=SCBoundary(deljoin);;

gap> bddeljoin.Homology;

[[1, []], [0, []], [2, []]]

gap> deljoin.Facets;

[[[1, 1], [2, 1], [3, 1], [4, 2]],

[[1, 1], [2, 1], [3, 2], [4, 1]],

[[1, 1], [2, 1], [3, 2], [4, 2]],

[[1, 1], [2, 2], [3, 1], [4, 1]],

[[1, 1], [2, 2], [3, 1], [4, 2]],

[[1, 1], [2, 2], [3, 2], [4, 1]],

[[1, 1], [2, 2], [3, 2], [4, 2]],

[[1, 2], [2, 1], [3, 1], [4, 1]],

[[1, 2], [2, 1], [3, 1], [4, 2]],

[[1, 2], [2, 1], [3, 2], [4, 1]],

[[1, 2], [2, 1], [3, 2], [4, 2]],

[[1, 2], [2, 2], [3, 1], [4, 1]],

[[1, 2], [2, 2], [3, 1], [4, 2]],

[[1, 2], [2, 2], [3, 2], [4, 1]]]

simpcomp 108

6.10.5 SCDifference

▷ SCDifference(complex1, complex2) (method)

Returns: simplicial complex of type SCSimplicialComplex upon success, fail otherwise.
Forms the “difference” of two simplicial complexes complex1 and complex2 as the simpli-

cial complex formed by the difference of the face lattices of complex1 minus complex2 . The
two arguments are not altered. Note: for the difference process the vertex labelings of the
complexes are taken into account, see also Operation Difference (SCSimplicialComplex,

SCSimplicialComplex) (5.3.2).
Example

gap> c:=SCBdSimplex(3);;

gap> d:=SC([[1,2,3]]);;

gap> disc:=SCDifference(c,d);;

gap> disc.Facets;

[[1, 2, 4], [1, 3, 4], [2, 3, 4]]

gap> empty:=SCDifference(d,c);;

gap> empty.Dim;

-1

6.10.6 SCFillSphere

▷ SCFillSphere(complex[, vertex]) (function)

Returns: simplicial complex of type SCSimplicialComplex upon success, fail otherwise .
Fills the given simplicial sphere complex by forming the suspension of the anti star of vertex

over vertex . This is a triangulated (d + 1)-ball with the boundary complex , see [BD08a]. If the
optional argument vertex is not supplied, the first vertex of complex is chosen.

Note that it is not checked whether complex really is a simplicial sphere – this has to be done by
the user!

Example
gap> SCLib.SearchByName("S^4");

[[36, "S^4 (VT)"], [37, "S^4 (VT)"], [38, "S^4 (VT)"],

[130, "S^4 (VT)"], [463, "S^4~S^1 (VT)"], [713, "S^4xS^1 (VT)"],

[1472, "S^4xS^1 (VT)"], [1473, "S^4~S^1 (VT)"],

[1474, "S^4~S^1 (VT)"], [1475, "S^4xS^1 (VT)"],

[2477, "S^4~S^1 (VT)"], [2478, "S^4 (VT)"], [3435, "S^4 (VT)"],

[4395, "S^4~S^1 (VT)"], [4396, "S^4~S^1 (VT)"],

[4397, "S^4~S^1 (VT)"], [4398, "S^4~S^1 (VT)"],

[4399, "S^4~S^1 (VT)"], [4402, "S^4~S^1 (VT)"],

[4403, "S^4~S^1 (VT)"], [4404, "S^4~S^1 (VT)"], [7479, "S^4xS^2"],

[7539, "S^4xS^3"], [7573, "S^4xS^4"]]

gap> s:=SCLib.Load(last[1][1]);;

gap> filled:=SCFillSphere(s);

[SimplicialComplex

Properties known: Dim, FacetsEx, Name, Vertices.

Name="FilledSphere(S^4 (VT)) at vertex [1]"

Dim=5

/SimplicialComplex]

simpcomp 109

gap> SCHomology(filled);

[[0, []], [0, []], [0, []], [0, []], [0, []],

[0, []]]

gap> SCCollapseGreedy(filled);

[SimplicialComplex

Properties known: Dim, FVector, FacetsEx, IsPure, Name, NumFaces[],

SkelExs[], Vertices.

Name="collapsed version of FilledSphere(S^4 (VT)) at vertex [1]"

Dim=0

FVector=[1]

IsPure=true

/SimplicialComplex]

gap> bd:=SCBoundary(filled);;

gap> bd=s;

true

6.10.7 SCHandleAddition

▷ SCHandleAddition(complex, f1, f2) (method)

Returns: simplicial complex of type SCSimplicialComplex, fail otherwise.
Returns a simplicial complex obtained by identifying the vertices of facet f1 with the ones from

facet f2 in complex . A combinatorial handle addition is possible, whenever we have d(v,w) ≥ 3 for
any two vertices v ∈f1 and w ∈f2 , where d(⋅, ⋅) is the length of the shortest path from v to w. This
condition is not checked by this algorithm. See [BD08b] for further information.

Example
gap> c:=SC([[1,2,4],[2,4,5],[2,3,5],[3,5,6],[1,3,6],[1,4,6]]);;

gap> c:=SCUnion(c,SCUnion(SCCopy(c)+3,SCCopy(c)+6));;

gap> c:=SCUnion(c,SC([[1,2,3],[10,11,12]]));;

gap> c.Facets;

[[1, 2, 3], [1, 2, 4], [1, 3, 6], [1, 4, 6], [2, 3, 5],

[2, 4, 5], [3, 5, 6], [4, 5, 7], [4, 6, 9], [4, 7, 9],

[5, 6, 8], [5, 7, 8], [6, 8, 9], [7, 8, 10], [7, 9, 12],

[7, 10, 12], [8, 9, 11], [8, 10, 11], [9, 11, 12], [10, 11, 12]]

gap> c.Homology;

[[0, []], [0, []], [1, []]]

gap> torus:=SCHandleAddition(c,[1,2,3],[10,11,12]);;

gap> torus.Homology;

[[0, []], [2, []], [1, []]]

gap> ism:=SCIsManifold(torus);;

gap> ism;

true

6.10.8 SCIntersection

▷ SCIntersection(complex1, complex2) (method)

Returns: simplicial complex of type SCSimplicialComplex upon success, fail otherwise.

simpcomp 110

Forms the “intersection” of two simplicial complexes complex1 and complex2 as the simpli-
cial complex formed by the intersection of the face lattices of complex1 and complex2 . The
two arguments are not altered. Note: for the intersection process the vertex labelings of the com-
plexes are taken into account. See also Operation Intersection (SCSimplicialComplex,

SCSimplicialComplex) (5.3.3).
Example

gap> c:=SCBdSimplex(3);;

gap> d:=SCBdSimplex(3)+1;;

gap> d.Facets;

[[2, 3, 4], [2, 3, 5], [2, 4, 5], [3, 4, 5]]

gap> c:=SCBdSimplex(3);;

gap> d:=SCBdSimplex(3);;

gap> d:=SCMove(d,[[1,2,3],[]])+1;;

gap> s1:=SCIntersection(c,d);;

gap> s1.Facets;

[[2, 3], [2, 4], [3, 4]]

6.10.9 SCIsIsomorphic

▷ SCIsIsomorphic(complex1, complex2) (method)

Returns: true or false upon success, fail otherwise.
The function returns true, if the simplicial complexes complex1 and complex2 are combinato-

rially isomorphic, false if not.
Example

gap> c1:=SC([[11,12,13],[11,12,14],[11,13,14],[12,13,14]]);;

gap> c2:=SCBdSimplex(3);;

gap> SCIsIsomorphic(c1,c2);

true

gap> c3:=SCBdCrossPolytope(3);;

gap> SCIsIsomorphic(c1,c3);

false

6.10.10 SCIsSubcomplex

▷ SCIsSubcomplex(sc1, sc2) (method)

Returns: true or false upon success, fail otherwise.
Returns true if the simplicial complex sc2 is a sub-complex of simplicial complex sc1 , false

otherwise. If dim(sc2) ≤ dim(sc1) the facets of sc2 are compared with the dim(sc2)-skeleton of
sc1 . Only works for pure simplicial complexes. Note: for the intersection process the vertex labelings
of the complexes are taken into account.

Example
gap> SCLib.SearchByAttribute("F[1]=10"){[1..10]};

[[17, "K^2 (VT)"], [18, "T^2 (VT)"], [19, "S^3 (VT)"],

[20, "(T^2)#2"], [21, "S^3 (VT)"], [22, "S^2xS^1 (VT)"],

[23, "S^3 (VT)"], [24, "(T^2)#3"], [25, "(P^2)#7 (VT)"],

[26, "S^3 (VT)"]]

gap> k:=SCLib.Load(last[1][1]);;

gap> c:=SCBdSimplex(9);;

simpcomp 111

gap> k.F;

[10, 30, 20]

gap> c.F;

[10, 45, 120, 210, 252, 210, 120, 45, 10]

gap> SCIsSubcomplex(c,k);

true

gap> SCIsSubcomplex(k,c);

false

6.10.11 SCIsomorphism

▷ SCIsomorphism(complex1, complex2) (method)

Returns: a list of pairs of vertex labels or false upon success, fail otherwise.
Returns an isomorphism of simplicial complex complex1 to simplicial complex complex2 in

the standard labeling if they are combinatorially isomorphic, false otherwise. Internally calls
SCIsomorphismEx (6.10.12).

Example
gap> c1:=SC([[11,12,13],[11,12,14],[11,13,14],[12,13,14]]);;

gap> c2:=SCBdSimplex(3);;

gap> SCIsomorphism(c1,c2);

[[11, 1], [12, 2], [13, 3], [14, 4]]

gap> SCIsomorphismEx(c1,c2);

[[[1, 1], [2, 2], [3, 3], [4, 4]]]

6.10.12 SCIsomorphismEx

▷ SCIsomorphismEx(complex1, complex2) (method)

Returns: a list of pairs of vertex labels or false upon success, fail otherwise.
Returns an isomorphism of simplicial complex complex1 to simplicial complex complex2 in

the standard labeling if they are combinatorially isomorphic, false otherwise. If the f -vector and
the Altshuler-Steinberg determinant of complex1 and complex2 are equal, the internal function
SCIntFunc.SCComputeIsomorphismsEx(complex1,complex2,true) is called.

Example
gap> c1:=SC([[11,12,13],[11,12,14],[11,13,14],[12,13,14]]);;

gap> c2:=SCBdSimplex(3);;

gap> SCIsomorphism(c1,c2);

[[11, 1], [12, 2], [13, 3], [14, 4]]

gap> SCIsomorphismEx(c1,c2);

[[[1, 1], [2, 2], [3, 3], [4, 4]]]

6.10.13 SCJoin

▷ SCJoin(complex1, complex2) (method)

Returns: simplicial complex of type SCSimplicialComplex upon success, fail otherwise.
Calculates the simplicial join of the simplicial complexes complex1 and complex2 . If facet lists

instead of SCSimplicialComplex objects are passed as arguments, the function internally falls back

simpcomp 112

to the homology package [DHSW11], if available. Note that the vertex labelings of the complexes
passed as arguments are not propagated to the new complex.

Example
gap> sphere:=SCJoin(SCBdSimplex(2),SCBdSimplex(2));

[SimplicialComplex

Properties known: Dim, FacetsEx, Name, Vertices.

Name="S^1_3 join S^1_3"

Dim=3

/SimplicialComplex]

gap> SCHasBoundary(sphere);

false

gap> sphere.Facets;

[[[1, 1], [1, 2], [2, 1], [2, 2]],

[[1, 1], [1, 2], [2, 1], [2, 3]],

[[1, 1], [1, 2], [2, 2], [2, 3]],

[[1, 1], [1, 3], [2, 1], [2, 2]],

[[1, 1], [1, 3], [2, 1], [2, 3]],

[[1, 1], [1, 3], [2, 2], [2, 3]],

[[1, 2], [1, 3], [2, 1], [2, 2]],

[[1, 2], [1, 3], [2, 1], [2, 3]],

[[1, 2], [1, 3], [2, 2], [2, 3]]]

gap> sphere.Homology;

[[0, []], [0, []], [0, []], [1, []]]

Example
gap> ball:=SCJoin(SC([[1]]),SCBdSimplex(2));

[SimplicialComplex

Properties known: Dim, FacetsEx, Name, Vertices.

Name="unnamed complex 4 join S^1_3"

Dim=2

/SimplicialComplex]

gap> ball.Homology;

[[0, []], [0, []], [0, []]]

gap> ball.Facets;

[[[1, 1], [2, 1], [2, 2]], [[1, 1], [2, 1], [2, 3]],

[[1, 1], [2, 2], [2, 3]]]

6.10.14 SCNeighbors

▷ SCNeighbors(complex, face) (method)

Returns: a list of faces upon success, fail otherwise.
In a simplicial complex complex all neighbors of the k-face face , i. e. all k-faces distinct from

face intersecting with face in a common (k−1)-face, are returned in the original labeling.

simpcomp 113

Example
gap> c:=SCFromFacets(Combinations(["a","b","c"],2));

[SimplicialComplex

Properties known: Dim, FacetsEx, Name, Vertices.

Name="unnamed complex 22"

Dim=1

/SimplicialComplex]

gap> SCNeighbors(c,["a","d"]);

[["a", "b"], ["a", "c"]]

6.10.15 SCNeighborsEx

▷ SCNeighborsEx(complex, face) (method)

Returns: a list of faces upon success, fail otherwise.
In a simplicial complex complex all neighbors of the k-face face , i. e. all k-faces distinct from

face intersecting with face in a common (k−1)-face, are returned in the standard labeling.
Example

gap> c:=SCFromFacets(Combinations(["a","b","c"],2));

[SimplicialComplex

Properties known: Dim, FacetsEx, Name, Vertices.

Name="unnamed complex 21"

Dim=1

/SimplicialComplex]

gap> SCLabels(c);

["a", "b", "c"]

gap> SCNeighborsEx(c,[1,2]);

[[1, 3], [2, 3]]

6.10.16 SCShelling

▷ SCShelling(complex) (method)

Returns: a facet list or false upon success, fail otherwise.
The simplicial complex complex must be pure, strongly connected and must fulfill the weak

pseudomanifold property with non-empty boundary (cf. SCBoundary (6.9.7)).
An ordering (F1,F2, . . . ,Fr) on the facet list of a simplicial complex is a shelling if and only if

Fi∩(F1∪ . . .∪Fi−1) is a pure simplicial complex of dimension d−1 for all i = 1, . . . ,r.
The function checks whether complex is shellable or not. In the first case a permuted version of

the facet list of complex is returned encoding a shelling of complex , otherwise false is returned.
Internally calls SCShellingExt (6.10.17)(complex,false,[]);. To learn more about shellings

see [Zie95], [Pac87].

simpcomp 114

Example
gap> c:=SC([[1,2,3],[1,2,4],[1,3,4]]);;

gap> SCShelling(c);

[[[1, 2, 3], [1, 2, 4], [1, 3, 4]]]

6.10.17 SCShellingExt

▷ SCShellingExt(complex, all, checkvector) (method)

Returns: a list of facet lists (if checkvector = []) or true or false (if checkvector is not
empty), fail otherwise.

The simplicial complex complex must be pure of dimension d, strongly connected and must fulfill
the weak pseudomanifold property with non-empty boundary (cf. SCBoundary (6.9.7)).

An ordering (F1,F2, . . . ,Fr) on the facet list of a simplicial complex is a shelling if and only if
Fi∩(F1∪ . . .∪Fi−1) is a pure simplicial complex of dimension d−1 for all i = 1, . . . ,r.

If all is set to true all possible shellings of complex are computed. If all is set to false, at
most one shelling is computed.

Every shelling is represented as a permuted version of the facet list of complex . The list
checkvector encodes a shelling in a shorter form. It only contains the indices of the facets. If
an order of indices is assigned to checkvector the function tests whether it is a valid shelling or not.

See [Zie95], [Pac87] to learn more about shellings.
Example

gap> c:=SCBdSimplex(4);;

gap> c:=SCDifference(c,SC([c.Facets[1]]));; # bounded version

gap> all:=SCShellingExt(c,true,[]);;

gap> Size(all);

24

gap> all[1];

[[1, 2, 3, 5], [1, 2, 4, 5], [1, 3, 4, 5], [2, 3, 4, 5]]

gap> all:=SCShellingExt(c,false,[]);

[[[1, 2, 3, 5], [1, 2, 4, 5], [1, 3, 4, 5], [2, 3, 4, 5]]]

gap> all:=SCShellingExt(c,true,[1..4]);

true

6.10.18 SCShellings

▷ SCShellings(complex) (method)

Returns: a list of facet lists upon success, fail otherwise.
The simplicial complex complex must be pure, strongly connected and must fulfill the weak

pseudomanifold property with non-empty boundary (cf. SCBoundary (6.9.7)).
An ordering (F1,F2, . . . ,Fr) on the facet list of a simplicial complex is a shelling if and only if

Fi∩(F1∪ . . .∪Fi−1) is a pure simplicial complex of dimension d−1 for all i = 1, . . . ,r.
The function checks whether complex is shellable or not. In the first case a list of permuted

facet lists of complex is returned containing all possible shellings of complex , otherwise false is
returned.

Internally calls SCShellingExt (6.10.17)(complex,true,[]);. To learn more about shellings
see [Zie95], [Pac87].

simpcomp 115

Example
gap> c:=SC([[1,2,3],[1,2,4],[1,3,4]]);;

gap> SCShellings(c);

[[[1, 2, 3], [1, 2, 4], [1, 3, 4]],

[[1, 2, 3], [1, 3, 4], [1, 2, 4]],

[[1, 2, 4], [1, 2, 3], [1, 3, 4]],

[[1, 3, 4], [1, 2, 3], [1, 2, 4]],

[[1, 2, 4], [1, 3, 4], [1, 2, 3]],

[[1, 3, 4], [1, 2, 4], [1, 2, 3]]]

6.10.19 SCSpan

▷ SCSpan(complex, subset) (method)

Returns: simplicial complex of type SCSimplicialComplex upon success, fail otherwise.
Computes the reduced face lattice of all faces of a simplicial complex complex that are spanned

by subset , a subset of the set of vertices of complex .
Example

gap> c:=SCBdCrossPolytope(4);;

gap> SCVertices(c);

[1, 2, 3, 4, 5, 6, 7, 8]

gap> span:=SCSpan(c,[1,2,3,4]);

[SimplicialComplex

Properties known: Dim, FacetsEx, Name, Vertices.

Name="span([1, 2, 3, 4]) in Bd(\beta^4)"

Dim=1

/SimplicialComplex]

gap> span.Facets;

[[1, 3], [1, 4], [2, 3], [2, 4]]

Example
gap> c:=SC([[1,2],[1,4,5],[2,3,4]]);;

gap> span:=SCSpan(c,[2,3,5]);

[SimplicialComplex

Properties known: Dim, FacetsEx, Name, Vertices.

Name="span([2, 3, 5]) in unnamed complex 121"

Dim=1

/SimplicialComplex]

gap> SCFacets(span);

[[2, 3], [5]]

simpcomp 116

6.10.20 SCSuspension

▷ SCSuspension(complex) (method)

Returns: simplicial complex of type SCSimplicialComplex upon success, fail otherwise.
Calculates the simplicial suspension of the simplicial complex complex . Internally falls back to

the homology package [DHSW11] (if available) if a facet list is passed as argument. Note that the
vertex labelings of the complexes passed as arguments are not propagated to the new complex.

Example
gap> SCLib.SearchByName("Poincare");

[[7469, "Poincare_sphere"]]

gap> phs:=SCLib.Load(last[1][1]);

[SimplicialComplex

Properties known: AltshulerSteinberg, AutomorphismGroup,

AutomorphismGroupSize, AutomorphismGroupStructure,

AutomorphismGroupTransitivity, ConnectedComponents,

Dim, DualGraph, EulerCharacteristic, FVector,

FacetsEx, GVector, GeneratorsEx, HVector,

HasBoundary, HasInterior, Homology, Interior,

IsCentrallySymmetric, IsConnected,

IsEulerianManifold, IsManifold, IsOrientable,

IsPseudoManifold, IsPure, IsStronglyConnected,

MinimalNonFacesEx, Name, Neighborliness,

NumFaces[], Orientation, SkelExs[], Vertices.

Name="Poincare_sphere"

Dim=3

AltshulerSteinberg=115400413872363901952

AutomorphismGroupSize=1

AutomorphismGroupStructure="1"

AutomorphismGroupTransitivity=0

EulerCharacteristic=0

FVector=[16, 106, 180, 90]

GVector=[11, 52]

HVector=[12, 64, 12, 1]

HasBoundary=false

HasInterior=true

Homology=[[0, []], [0, []], [0, []], [1, []]]

IsCentrallySymmetric=false

IsConnected=true

IsEulerianManifold=true

IsOrientable=true

IsPseudoManifold=true

IsPure=true

IsStronglyConnected=true

Neighborliness=1

/SimplicialComplex]

gap> susp:=SCSuspension(phs);;

gap> edwardsSphere:=SCSuspension(susp);

[SimplicialComplex

Properties known: Dim, FacetsEx, Name, Vertices.

simpcomp 117

Name="susp of susp of Poincare_sphere"

Dim=5

/SimplicialComplex]

6.10.21 SCUnion

▷ SCUnion(complex1, complex2) (method)

Returns: simplicial complex of type SCSimplicialComplex upon success, fail otherwise.
Forms the union of two simplicial complexes complex1 and complex2 as the simplicial complex

formed by the union of their facets sets. The two arguments are not altered. Note: for the union
process the vertex labelings of the complexes are taken into account, see also Operation Union

(SCSimplicialComplex, SCSimplicialComplex) (5.3.1). Facets occurring in both arguments
are treated as one facet in the new complex.

Example
gap> c:=SCUnion(SCBdSimplex(3),SCBdSimplex(3)+3); #a wedge of two 2-spheres

[SimplicialComplex

Properties known: Dim, FacetsEx, Name, Vertices.

Name="S^2_4 cup S^2_4"

Dim=2

/SimplicialComplex]

6.10.22 SCVertexIdentification

▷ SCVertexIdentification(complex, v1, v2) (method)

Returns: simplicial complex of type SCSimplicialComplex upon success, fail otherwise.
Identifies vertex v1 with vertex v2 in a simplicial complex complex and returns the result as

a new object. A vertex identification of v1 and v2 is possible whenever d(v1 ,v2) ≥ 3. This is not
checked by this algorithm.

Example
gap> c:=SC([[1,2],[2,3],[3,4]]);;

gap> circle:=SCVertexIdentification(c,[1],[4]);;

gap> circle.Facets;

[[1, 2], [1, 3], [2, 3]]

gap> circle.Homology;

[[0, []], [1, []]]

6.10.23 SCWedge

▷ SCWedge(complex1, complex2) (method)

Returns: simplicial complex of type SCSimplicialComplex upon success, fail otherwise.

simpcomp 118

Calculates the wedge product of the complexes supplied as arguments. Note that the vertex label-
ings of the complexes passed as arguments are not propagated to the new complex.

Example
gap> wedge:=SCWedge(SCBdSimplex(2),SCBdSimplex(2));

[SimplicialComplex

Properties known: Dim, FacetsEx, Name, Vertices.

Name="unnamed complex 17"

Dim=1

/SimplicialComplex]

gap> wedge.Facets;

[[1, [1, 2]], [1, [1, 3]], [1, [2, 2]], [1, [2, 3]],

[[1, 2], [1, 3]], [[2, 2], [2, 3]]]

Chapter 7

Functions and operations for
SCNormalSurface

7.1 Creating an SCNormalSurface object

This section contains functions to construct discrete normal surfaces that are slicings from a list of
2-dimensional facets (triangles and quadrilaterals) or combinatorial 3-manifolds.

For a very short introduction to the theory of discrete normal surfaces and slicings see Section
2.4 and Section 2.5, for an introduction to the GAP object type SCNormalSurface see 5.4, for more
information see the article [Spr11b].

7.1.1 SCNSEmpty

▷ SCNSEmpty() (function)

Returns: discrete normal surface of type SCNormalSurface upon success, fail otherwise.
Generates an empty complex (of dimension −1), i. e. an object of type SCNormalSurface with

empty facet list.
Example

gap> SCNSEmpty();

[NormalSurface

Properties known: Dim, FacetsEx, Name, Vertices.

Name="empty normal surface"

Dim=-1

/NormalSurface]

7.1.2 SCNSFromFacets

▷ SCNSFromFacets(facets) (method)

Returns: discrete normal surface of type SCNormalSurface upon success, fail otherwise.
Constructor for a discrete normal surface from a facet list, see SCFromFacets (6.1.1) for details.

119

simpcomp 120

Example
gap> sl:=SCNSFromFacets([[1,2,3],[1,2,4,5],[1,3,4,6],[2,3,5,6],[4,5,6]]);

[NormalSurface

Properties known: Dim, FacetsEx, Name, Vertices.

Name="unnamed complex 86"

Dim=2

/NormalSurface]

7.1.3 SCNS

▷ SCNS(facets) (method)

Returns: discrete normal surface of type SCNormalSurface upon success, fail otherwise.
Internally calls SCNSFromFacets (7.1.2).

Example
gap> sl:=SCNS([[1,2,3],[1,2,4,5],[1,3,4,6],[2,3,5,6],[4,5,6]]);

[NormalSurface

Properties known: Dim, FacetsEx, Name, Vertices.

Name="unnamed complex 87"

Dim=2

/NormalSurface]

7.1.4 SCNSSlicing

▷ SCNSSlicing(complex, slicing) (function)

Returns: discrete normal surface of type SCNormalSurface upon success, fail otherwise.
Computes a slicing defined by a partition slicing of the set of vertices of the 3-dimensional

combinatorial pseudomanifold complex . In particular, slicing has to be a pair of lists of vertex
labels and has to contain all vertex labels of complex .

Example
gap> SCLib.SearchByAttribute("F=[10, 35, 50, 25]");

[[19, "S^3 (VT)"]]

gap> c:=SCLib.Load(last[1][1]);;

gap> sl:=SCNSSlicing(c,[[1..5],[6..10]]);

[NormalSurface

Properties known: ConnectedComponents, Dim, EulerCharacteristic, FVector, Fac\

etsEx, Genus, IsConnected, IsOrientable, NSTriangulation, Name, TopologicalTyp\

e, Vertices.

Name="slicing [[1, 2, 3, 4, 5], [6, 7, 8, 9, 10]] of S^3 (VT)"

Dim=2

FVector=[17, 36, 12, 9]

EulerCharacteristic=2

simpcomp 121

IsOrientable=true

TopologicalType="S^2"

/NormalSurface]

gap> sl.Facets;

[[[1, 6], [1, 8], [1, 9]], [[1, 6], [1, 8], [3, 6], [3, 8]]

, [[1, 6], [1, 9], [4, 6], [4, 9]],

[[1, 6], [3, 6], [4, 6]], [[1, 8], [1, 9], [1, 10]],

[[1, 8], [1, 10], [3, 8], [3, 10]],

[[1, 9], [1, 10], [2, 9], [2, 10]],

[[1, 9], [2, 9], [4, 9]], [[1, 10], [2, 10], [3, 10]],

[[2, 7], [2, 9], [2, 10]],

[[2, 7], [2, 9], [4, 7], [4, 9]],

[[2, 7], [2, 10], [5, 7], [5, 10]],

[[2, 7], [4, 7], [5, 7]], [[2, 10], [3, 10], [5, 10]],

[[3, 6], [3, 8], [5, 6], [5, 8]], [[3, 6], [4, 6], [5, 6]]

, [[3, 8], [3, 10], [5, 8], [5, 10]],

[[4, 6], [4, 7], [4, 9]], [[4, 6], [4, 7], [5, 6], [5, 7]]

, [[5, 6], [5, 7], [5, 8]], [[5, 7], [5, 8], [5, 10]]]

gap> sl:=SCNSSlicing(c,[[1,3,5,7,9],[2,4,6,8,10]]);

[NormalSurface

Properties known: ConnectedComponents, Dim, EulerCharacteristic, FVector, Fac\

etsEx, Genus, IsConnected, IsOrientable, NSTriangulation, Name, TopologicalTyp\

e, Vertices.

Name="slicing [[1, 3, 5, 7, 9], [2, 4, 6, 8, 10]] of S^3 (VT)"

Dim=2

FVector=[25, 50, 0, 25]

EulerCharacteristic=0

IsOrientable=true

TopologicalType="T^2"

/NormalSurface]

gap> sl.Facets;

[[[1, 2], [1, 4], [3, 2], [3, 4]],

[[1, 2], [1, 4], [9, 2], [9, 4]],

[[1, 2], [1, 10], [3, 2], [3, 10]],

[[1, 2], [1, 10], [9, 2], [9, 10]],

[[1, 4], [1, 6], [3, 4], [3, 6]],

[[1, 4], [1, 6], [9, 4], [9, 6]],

[[1, 6], [1, 8], [3, 6], [3, 8]],

[[1, 6], [1, 8], [9, 6], [9, 8]],

[[1, 8], [1, 10], [3, 8], [3, 10]],

[[1, 8], [1, 10], [9, 8], [9, 10]],

[[3, 2], [3, 4], [5, 2], [5, 4]],

[[3, 2], [3, 10], [5, 2], [5, 10]],

[[3, 4], [3, 6], [5, 4], [5, 6]],

[[3, 6], [3, 8], [5, 6], [5, 8]],

[[3, 8], [3, 10], [5, 8], [5, 10]],

[[5, 2], [5, 4], [7, 2], [7, 4]],

[[5, 2], [5, 10], [7, 2], [7, 10]],

[[5, 4], [5, 6], [7, 4], [7, 6]],

simpcomp 122

[[5, 6], [5, 8], [7, 6], [7, 8]],

[[5, 8], [5, 10], [7, 8], [7, 10]],

[[7, 2], [7, 4], [9, 2], [9, 4]],

[[7, 2], [7, 10], [9, 2], [9, 10]],

[[7, 4], [7, 6], [9, 4], [9, 6]],

[[7, 6], [7, 8], [9, 6], [9, 8]],

[[7, 8], [7, 10], [9, 8], [9, 10]]]

7.2 Generating new objects from discrete normal surfaces

simpcomp provides the possibility to copy and / or triangulate normal surfaces. Note that other
constructions like the connected sum or the cartesian product do not make sense for (embedded)
normal surfaces in general.

7.2.1 SCCopy

▷ SCCopy(complex) (method)

Returns: discrete normal surface of type SCNormalSurface upon success, fail otherwise.
Copies a GAP object of type SCNormalSurface (cf. SCCopy).

Example
gap> sl:=SCNSSlicing(SCBdSimplex(4),[[1],[2..5]]);

[NormalSurface

Properties known: ConnectedComponents, Dim, EulerCharacteristic, FVector, Fac\

etsEx, Genus, IsConnected, IsOrientable, NSTriangulation, Name, TopologicalTyp\

e, Vertices.

Name="slicing [[1], [2, 3, 4, 5]] of S^3_5"

Dim=2

FVector=[4, 6, 4]

EulerCharacteristic=2

IsOrientable=true

TopologicalType="S^2"

/NormalSurface]

gap> sl_2:=SCCopy(sl);

[NormalSurface

Properties known: ConnectedComponents, Dim, EulerCharacteristic, FVector, Fac\

etsEx, Genus, IsConnected, IsOrientable, NSTriangulation, Name, TopologicalTyp\

e, Vertices.

Name="slicing [[1], [2, 3, 4, 5]] of S^3_5"

Dim=2

FVector=[4, 6, 4]

EulerCharacteristic=2

IsOrientable=true

TopologicalType="S^2"

/NormalSurface]

simpcomp 123

gap> IsIdenticalObj(sl,sl_2);

false

7.2.2 SCNSTriangulation

▷ SCNSTriangulation(sl) (method)

Returns: simplicial complex of type SCSimplicialComplex upon success, fail otherwise.
Computes a simplicial subdivision of a slicing sl without introducing new vertices. The subdi-

vision is stored as a property of sl and thus is returned as an immutable object. Note that symmetry
may be lost during the computation.

Example
gap> SCLib.SearchByAttribute("F=[10, 35, 50, 25]");

[[19, "S^3 (VT)"]]

gap> c:=SCLib.Load(last[1][1]);;

gap> sl:=SCNSSlicing(c,[[1,3,5,7,9],[2,4,6,8,10]]);;

gap> sl.F;

[25, 50, 0, 25]

gap> sc:=SCNSTriangulation(sl);;

gap> sc.F;

[25, 75, 50]

7.3 Properties of SCNormalSurface objects

Although some properties of a discrete normal surface can be computed by using the functions for
simplicial complexes, there is a variety of properties needing specially designed functions. See below
for a list.

7.3.1 SCConnectedComponents

▷ SCConnectedComponents(complex) (method)

Returns: a list of simplicial complexes of type SCNormalSurface upon success, fail otherwise.
Computes all connected components of an arbitrary normal surface.

Example
gap> sl:=SCNSSlicing(SCBdCrossPolytope(4),[[1,2],[3..8]]);

[NormalSurface

Properties known: ConnectedComponents, Dim, EulerCharacteristic, FVector, Fac\

etsEx, IsConnected, IsOrientable, NSTriangulation, Name, TopologicalType, Vert\

ices.

Name="slicing [[1, 2], [3, 4, 5, 6, 7, 8]] of Bd(\beta^4)"

Dim=2

FVector=[12, 24, 16]

EulerCharacteristic=4

IsOrientable=true

TopologicalType="S^2 U S^2"

simpcomp 124

/NormalSurface]

gap> cc:=SCConnectedComponents(sl);

[[NormalSurface

Properties known: Dim, EulerCharacteristic, FVector, FacetsEx, Genus, IsC\

onnected, IsOrientable, NSTriangulation, Name, TopologicalType, Vertices.

Name="unnamed complex 302_cc_#1"

Dim=2

FVector=[6, 12, 8]

EulerCharacteristic=2

IsOrientable=true

TopologicalType="S^2"

/NormalSurface], [NormalSurface

Properties known: Dim, EulerCharacteristic, FVector, FacetsEx, Genus, IsC\

onnected, IsOrientable, NSTriangulation, Name, TopologicalType, Vertices.

Name="unnamed complex 302_cc_#2"

Dim=2

FVector=[6, 12, 8]

EulerCharacteristic=2

IsOrientable=true

TopologicalType="S^2"

/NormalSurface]]

7.3.2 SCDim

▷ SCDim(sl) (method)

Returns: an integer upon success, fail otherwise.
Computes the dimension of a discrete normal surface (which is always 2 if the slicing sl is not

empty).
Example

gap> sl:=SCNSEmpty();;

gap> SCDim(sl);

-1

gap> sl:=SCNSFromFacets([[1,2,3],[1,2,4,5],[1,3,4,6],[2,3,5,6],[4,5,6]]);;

gap> SCDim(sl);

2

7.3.3 SCEulerCharacteristic

▷ SCEulerCharacteristic(sl) (method)

Returns: an integer upon success, fail otherwise.
Computes the Euler characteristic of a discrete normal surface sl , cf. SCEulerCharacteristic.

simpcomp 125

Example
gap> list:=SCLib.SearchByName("S^2xS^1");;

gap> c:=SCLib.Load(list[1][1]);;

gap> sl:=SCNSSlicing(c,[[1..5],[6..10]]);;

gap> SCEulerCharacteristic(sl);

4

7.3.4 SCFVector

▷ SCFVector(sl) (method)

Returns: a 1, 3 or 4 tuple of (non-negative) integer values upon success, fail otherwise.
Computes the f -vector of a discrete normal surface, i. e. the number of vertices, edges, triangles

and quadrilaterals of sl , cf. SCFVector.
Example

gap> list:=SCLib.SearchByName("S^2xS^1");;

gap> c:=SCLib.Load(list[1][1]);;

gap> sl:=SCNSSlicing(c,[[1..5],[6..10]]);;

gap> SCFVector(sl);

[20, 40, 16, 8]

7.3.5 SCFaceLattice

▷ SCFaceLattice(complex) (method)

Returns: a list of facet lists upon success, fail otherwise.
Computes the face lattice of a discrete normal surface sl in the original labeling. Triangles and

quadrilaterals are stored separately (cf. SCSkel (7.3.13)).
Example

gap> c:=SCBdSimplex(4);;

gap> sl:=SCNSSlicing(c,[[1,2],[3..5]]);;

gap> SCFaceLattice(sl);

[[[[1, 3]], [[1, 4]], [[1, 5]], [[2, 3]], [[2, 4]],

[[2, 5]]],

[[[1, 3], [1, 4]], [[1, 3], [1, 5]], [[1, 3], [2, 3]],

[[1, 4], [1, 5]], [[1, 4], [2, 4]], [[1, 5], [2, 5]],

[[2, 3], [2, 4]], [[2, 3], [2, 5]], [[2, 4], [2, 5]]]

, [[[1, 3], [1, 4], [1, 5]], [[2, 3], [2, 4], [2, 5]]],

[[[1, 3], [1, 4], [2, 3], [2, 4]],

[[1, 3], [1, 5], [2, 3], [2, 5]],

[[1, 4], [1, 5], [2, 4], [2, 5]]]]

gap> sl.F;

[6, 9, 2, 3]

7.3.6 SCFaceLatticeEx

▷ SCFaceLatticeEx(complex) (method)

Returns: a list of face lists upon success, fail otherwise.

simpcomp 126

Computes the face lattice of a discrete normal surface sl in the standard labeling. Triangles and
quadrilaterals are stored separately (cf. SCSkelEx (7.3.14)).

Example
gap> c:=SCBdSimplex(4);;

gap> sl:=SCNSSlicing(c,[[1,2],[3..5]]);;

gap> SCFaceLatticeEx(sl);

[[[1], [2], [3], [4], [5], [6]],

[[1, 2], [1, 3], [1, 4], [2, 3], [2, 5], [3, 6], [4, 5],

[4, 6], [5, 6]], [[1, 2, 3], [4, 5, 6]],

[[1, 2, 4, 5], [1, 3, 4, 6], [2, 3, 5, 6]]]

gap> sl.F;

[6, 9, 2, 3]

7.3.7 SCFpBettiNumbers

▷ SCFpBettiNumbers(sl, p) (method)

Returns: a list of non-negative integers upon success, fail otherwise.
Computes the Betti numbers modulo p of a slicing sl . Internally, sl is triangulated (using

SCNSTriangulation (7.2.2)) and the Betti numbers are computed via SCFpBettiNumbers using
the triangulation.

Example
gap> SCLib.SearchByName("(S^2xS^1)#20");

[[7617, "(S^2xS^1)#20"]]

gap> c:=SCLib.Load(last[1][1]);;

gap> c.F;

[27, 298, 542, 271]

gap> sl:=SCNSSlicing(c,[[1..13],[14..27]]);;

gap> SCFpBettiNumbers(sl,2);

[2, 14, 2]

7.3.8 SCGenus

▷ SCGenus(sl) (method)

Returns: a non-negative integer upon success, fail otherwise.
Computes the genus of a discrete normal surface sl .

Example
gap> SCLib.SearchByName("(S^2xS^1)#20");

[[7617, "(S^2xS^1)#20"]]

gap> c:=SCLib.Load(last[1][1]);;

gap> c.F;

[27, 298, 542, 271]

gap> sl:=SCNSSlicing(c,[[1..12],[13..27]]);;

gap> SCIsConnected(sl);

true

gap> SCGenus(sl);

7

simpcomp 127

7.3.9 SCHomology

▷ SCHomology(sl) (method)

Returns: a list of homology groups upon success, fail otherwise.
Computes the homology of a slicing sl . Internally, sl is triangulated (cf. SCNSTriangulation

(7.2.2)) and simplicial homology is computed via SCHomology using the triangulation.
Example

gap> SCLib.SearchByName("(S^2xS^1)#20");

[[7617, "(S^2xS^1)#20"]]

gap> c:=SCLib.Load(last[1][1]);;

gap> c.F;

[27, 298, 542, 271]

gap> sl:=SCNSSlicing(c,[[1..12],[13..27]]);;

gap> sl.Homology;

[[0, []], [14, []], [1, []]]

gap> sl:=SCNSSlicing(c,[[1..13],[14..27]]);;

gap> sl.Homology;

[[1, []], [14, []], [2, []]]

7.3.10 SCIsConnected

▷ SCIsConnected(complex) (method)

Returns: true or false upon success, fail otherwise.
Checks if a normal surface complex is connected.

Example
gap> list:=SCLib.SearchByAttribute("Dim=3 and F[1]=10");;

gap> c:=SCLib.Load(list[1][1]);

[SimplicialComplex

Properties known: AltshulerSteinberg, AutomorphismGroup,

AutomorphismGroupSize, AutomorphismGroupStructure,

AutomorphismGroupTransitivity, ConnectedComponents,

Dim, DualGraph, EulerCharacteristic, FVector,

FacetsEx, GVector, GeneratorsEx, HVector,

HasBoundary, HasInterior, Homology, Interior,

IsCentrallySymmetric, IsConnected,

IsEulerianManifold, IsManifold, IsOrientable,

IsPseudoManifold, IsPure, IsStronglyConnected,

MinimalNonFacesEx, Name, Neighborliness,

NumFaces[], Orientation, Reference, SkelExs[],

Vertices.

Name="S^3 (VT)"

Dim=3

AltshulerSteinberg=0

AutomorphismGroupSize=200

AutomorphismGroupStructure="(D10 x D10) : C2"

AutomorphismGroupTransitivity=1

EulerCharacteristic=0

FVector=[10, 35, 50, 25]

GVector=[5, 5]

simpcomp 128

HVector=[6, 11, 6, 1]

HasBoundary=false

HasInterior=true

Homology=[[0, []], [0, []], [0, []], [1, []]]

IsCentrallySymmetric=false

IsConnected=true

IsEulerianManifold=true

IsOrientable=true

IsPseudoManifold=true

IsPure=true

IsStronglyConnected=true

Neighborliness=1

/SimplicialComplex]

gap> sl:=SCNSSlicing(c,[[1..5],[6..10]]);

[NormalSurface

Properties known: ConnectedComponents, Dim, EulerCharacteristic, FVector, Fac\

etsEx, Genus, IsConnected, IsOrientable, NSTriangulation, Name, TopologicalTyp\

e, Vertices.

Name="slicing [[1, 2, 3, 4, 5], [6, 7, 8, 9, 10]] of S^3 (VT)"

Dim=2

FVector=[17, 36, 12, 9]

EulerCharacteristic=2

IsOrientable=true

TopologicalType="S^2"

/NormalSurface]

gap> SCIsConnected(sl);

true

7.3.11 SCIsEmpty

▷ SCIsEmpty(complex) (method)

Returns: true or false upon success, fail otherwise.
Checks if a normal surface complex is the empty complex, i. e. a SCNormalSurface object with

empty facet list.
Example

gap> sl:=SCNS([]);;

gap> SCIsEmpty(sl);

true

7.3.12 SCIsOrientable

▷ SCIsOrientable(sl) (method)

Returns: true or false upon success, fail otherwise.
Checks if a discrete normal surface sl is orientable.

simpcomp 129

Example
gap> c:=SCBdSimplex(4);;

gap> sl:=SCNSSlicing(c,[[1,2],[3,4,5]]);

[NormalSurface

Properties known: ConnectedComponents, Dim, EulerCharacteristic, FVector, Fac\

etsEx, Genus, IsConnected, IsOrientable, NSTriangulation, Name, TopologicalTyp\

e, Vertices.

Name="slicing [[1, 2], [3, 4, 5]] of S^3_5"

Dim=2

FVector=[6, 9, 2, 3]

EulerCharacteristic=2

IsOrientable=true

TopologicalType="S^2"

/NormalSurface]

gap> SCIsOrientable(sl);

true

7.3.13 SCSkel

▷ SCSkel(sl, k) (method)

Returns: a face list (of k+1 tuples) or a list of face lists upon success, fail otherwise.
Computes all faces of cardinality k+1 in the original labeling: k = 0 computes the vertices, k = 1

computes the edges, k = 2 computes the triangles, k = 3 computes the quadrilaterals.
If k is a list (necessarily a sublist of [0,1,2,3]) all faces of all cardinalities contained in k are

computed.
Example

gap> c:=SCBdSimplex(4);;

gap> sl:=SCNSSlicing(c,[[1],[2..5]]);;

gap> SCSkel(sl,1);

[[[1, 2], [1, 3]], [[1, 2], [1, 4]], [[1, 2], [1, 5]],

[[1, 3], [1, 4]], [[1, 3], [1, 5]], [[1, 4], [1, 5]]]

Example
gap> c:=SCBdSimplex(4);;

gap> sl:=SCNSSlicing(c,[[1],[2..5]]);;

gap> SCSkel(sl,3);

[]

gap> sl:=SCNSSlicing(c,[[1,2],[3..5]]);;

gap> SCSkelEx(sl,3);

[[1, 2, 4, 5], [1, 3, 4, 6], [2, 3, 5, 6]]

7.3.14 SCSkelEx

▷ SCSkelEx(sl, k) (method)

Returns: a face list (of k+1 tuples) or a list of face lists upon success, fail otherwise.

simpcomp 130

Computes all faces of cardinality k+1 in the standard labeling: k = 0 computes the vertices, k = 1
computes the edges, k = 2 computes the triangles, k = 3 computes the quadrilaterals.

If k is a list (necessarily a sublist of [0,1,2,3]) all faces of all cardinalities contained in k are
computed.

Example
gap> c:=SCBdSimplex(4);;

gap> sl:=SCNSSlicing(c,[[1],[2..5]]);;

gap> SCSkelEx(sl,1);

[[1, 2], [1, 3], [1, 4], [2, 3], [2, 4], [3, 4]]

Example
gap> c:=SCBdSimplex(4);;

gap> sl:=SCNSSlicing(c,[[1],[2..5]]);;

gap> SCSkelEx(sl,3);

[]

gap> sl:=SCNSSlicing(c,[[1,2],[3..5]]);;

gap> SCSkelEx(sl,3);

[[1, 2, 4, 5], [1, 3, 4, 6], [2, 3, 5, 6]]

7.3.15 SCTopologicalType

▷ SCTopologicalType(sl) (method)

Returns: a string upon success, fail otherwise.
Determines the topological type of sl via the classification theorem for closed compact surfaces.

If sl is not connected, the topological type of each connected component is computed.
Example

gap> SCLib.SearchByName("(S^2xS^1)#20");

[[7617, "(S^2xS^1)#20"]]

gap> c:=SCLib.Load(last[1][1]);;

gap> c.F;

[27, 298, 542, 271]

gap> for i in [1..26] do sl:=SCNSSlicing(c,[[1..i],[i+1..27]]); Print(sl.TopologicalType,"\n"); od;

S^2

S^2

S^2

S^2

S^2 U S^2

S^2 U S^2

S^2

(T^2)#3

(T^2)#5

(T^2)#4

(T^2)#3

(T^2)#7

(T^2)#7 U S^2

(T^2)#7 U S^2

(T^2)#7 U S^2

(T^2)#8 U S^2

(T^2)#7 U S^2

(T^2)#8

simpcomp 131

(T^2)#6

(T^2)#6

(T^2)#5

(T^2)#3

(T^2)#2

T^2

S^2

S^2

7.3.16 SCUnion

▷ SCUnion(complex1, complex2) (method)

Returns: normal surface of type SCNormalSurface upon success, fail otherwise.
Forms the union of two normal surfaces complex1 and complex2 as the normal surface formed

by the union of their facet sets. The two arguments are not altered. Note: for the union pro-
cess the vertex labelings of the complexes are taken into account, see also Operation Union

(SCNormalSurface, SCNormalSurface) (5.6.1). Facets occurring in both arguments are treated
as one facet in the new complex.

Example
gap> list:=SCLib.SearchByAttribute("Dim=3 and F[1]=10");;

gap> c:=SCLib.Load(list[1][1]);

[SimplicialComplex

Properties known: AltshulerSteinberg, AutomorphismGroup,

AutomorphismGroupSize, AutomorphismGroupStructure,

AutomorphismGroupTransitivity, ConnectedComponents,

Dim, DualGraph, EulerCharacteristic, FVector,

FacetsEx, GVector, GeneratorsEx, HVector,

HasBoundary, HasInterior, Homology, Interior,

IsCentrallySymmetric, IsConnected,

IsEulerianManifold, IsManifold, IsOrientable,

IsPseudoManifold, IsPure, IsStronglyConnected,

MinimalNonFacesEx, Name, Neighborliness,

NumFaces[], Orientation, Reference, SkelExs[],

Vertices.

Name="S^3 (VT)"

Dim=3

AltshulerSteinberg=0

AutomorphismGroupSize=200

AutomorphismGroupStructure="(D10 x D10) : C2"

AutomorphismGroupTransitivity=1

EulerCharacteristic=0

FVector=[10, 35, 50, 25]

GVector=[5, 5]

HVector=[6, 11, 6, 1]

HasBoundary=false

HasInterior=true

Homology=[[0, []], [0, []], [0, []], [1, []]]

IsCentrallySymmetric=false

simpcomp 132

IsConnected=true

IsEulerianManifold=true

IsOrientable=true

IsPseudoManifold=true

IsPure=true

IsStronglyConnected=true

Neighborliness=1

/SimplicialComplex]

gap> sl1:=SCNSSlicing(c,[[1..5],[6..10]]);;

gap> sl2:=sl1+10;;

gap> sl3:=SCUnion(sl1,sl2);;

gap> SCTopologicalType(sl3);

"S^2 U S^2"

Chapter 8

(Co-)Homology of simplicial complexes

By default, simpcomp uses an algorithm based on discrete Morse theory (see Chapter 12,
SCHomology (12.1.12)) for its homology computations. However, some additional (co-)homology
related functionality cannot be realised using this algorithm. For this, simpcomp contains an addi-
tional (co-)homology algorithm (cf. SCHomologyInternal (8.1.5)), which will be presented in this
chapter.

Furthermore, whenever possible simpcomp makes use of the GAP package ”homology”
[DHSW11], for an alternative method to calculate homology groups (cf. SCHomologyClassic

(6.9.31)) which sometimes is much faster than the built-in discrete Morse theory algorithm.

8.1 Homology computation

Apart from calculating boundaries of simplices, boundary matrices or the simplicial homology of a
given complex, simpcomp is also able to compute a basis of the homology groups.

8.1.1 SCBoundaryOperatorMatrix

▷ SCBoundaryOperatorMatrix(complex, k) (method)

Returns: a rectangular matrix upon success, fail otherwise.
Calculates the matrix of the boundary operator ∂k+1 of a simplicial complex complex . Note that

each column contains the boundaries of a k+1-simplex as a list of oriented k -simplices and that the
matrix is stored as a list of row vectors (as usual in GAP).

Example
gap> c:=SCFromFacets([[1,2,3],[1,2,6],[1,3,5],[1,4,5],[1,4,6],\

[2,3,4],[2,4,5],[2,5,6],[3,4,6],[3,5,6]]);;

gap> mat:=SCBoundaryOperatorMatrix(c,1);

[[1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],

[-1, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0],

[0, -1, 0, 0, 0, -1, 0, 0, 0, 1, 1, 1, 0, 0, 0],

[0, 0, -1, 0, 0, 0, -1, 0, 0, -1, 0, 0, 1, 1, 0],

[0, 0, 0, -1, 0, 0, 0, -1, 0, 0, -1, 0, -1, 0, 1],

[0, 0, 0, 0, -1, 0, 0, 0, -1, 0, 0, -1, 0, -1, -1]]

133

simpcomp 134

8.1.2 SCBoundarySimplex

▷ SCBoundarySimplex(simplex, orientation) (function)

Returns: a list upon success, fail otherwise.
Calculates the boundary of a given simplex . If the flag orientation is set to true, the function

returns the boundary as a list of oriented simplices of the form [ORIENTATION, SIMPLEX], where
ORIENTATION is either +1 or -1 and a value of +1 means that SIMPLEX is positively oriented and a
value of -1 that SIMPLEX is negatively oriented. If orientation is set to false, an unoriented list
of simplices is returned.

Example
gap> SCBoundarySimplex([1..5],true);

[[-1, [2, 3, 4, 5]], [1, [1, 3, 4, 5]], [-1, [1, 2, 4, 5]],

[1, [1, 2, 3, 5]], [-1, [1, 2, 3, 4]]]

gap> SCBoundarySimplex([1..5],false);

[[2, 3, 4, 5], [1, 3, 4, 5], [1, 2, 4, 5], [1, 2, 3, 5],

[1, 2, 3, 4]]

8.1.3 SCHomologyBasis

▷ SCHomologyBasis(complex, k) (method)

Returns: a list of pairs of the form [integer, list of linear combinations of

simplices] upon success, fail otherwise.
Calculates a set of basis elements for the k -dimensional homology group (with integer coeffi-

cients) of a simplicial complex complex . The entries of the returned list are of the form [MODU-
LUS, [BASEELM1, BASEELM2, ...]], where the value MODULUS is 1 for the basis elements of
the free part of the k -th homology group and q ≥ 2 for the basis elements of the q-torsion part. In
contrast to the function SCHomologyBasisAsSimplices (8.1.4) the basis elements are stored as lists
of coefficient-index pairs referring to the simplices of the complex, i.e. a basis element of the form
[[λ1, i],[λ2, j], . . .] . . . encodes the linear combination of simplices of the form λ1 ∗∆1+λ2 ∗∆2 with
∆1=SCSkel(complex,k)[i], ∆2=SCSkel(complex,k)[j] and so on.

Example
gap> SCLib.SearchByName("(S^2xS^1)#RP^3");

[[590, "(S^2xS^1)#RP^3"]]

gap> c:=SCLib.Load(last[1][1]);;

gap> SCHomologyBasis(c,1);

[[1, [[1, 12], [-1, 7], [1, 1]]],

[2, [[1, 68], [-1, 69], [-1, 71], [2, 72], [-2, 73]]]]

8.1.4 SCHomologyBasisAsSimplices

▷ SCHomologyBasisAsSimplices(complex, k) (method)

Returns: a list of pairs of the form [integer, list of linear combinations of

simplices] upon success, fail otherwise.
Calculates a set of basis elements for the k -dimensional homology group (with integer coeffi-

cients) of a simplicial complex complex . The entries of the returned list are of the form [MODU-
LUS, [BASEELM1, BASEELM2, ...]], where the value MODULUS is 1 for the basis elements of
the free part of the k -th homology group and q ≥ 2 for the basis elements of the q-torsion part. In

simpcomp 135

contrast to the function SCHomologyBasis (8.1.3) the basis elements are stored as lists of coefficient-
simplex pairs, i.e. a basis element of the form [[λ1,∆1],[λ2,∆2], . . .] encodes the linear combination
of simplices of the form λ1 ∗∆1+λ2 ∗∆2+

Example
gap> SCLib.SearchByName("(S^2xS^1)#RP^3");

[[590, "(S^2xS^1)#RP^3"]]

gap> c:=SCLib.Load(last[1][1]);;

gap> SCHomologyBasisAsSimplices(c,1);

[[1, [[1, [2, 8]], [-1, [1, 8]], [1, [1, 2]]]],

[2,

[[1, [11, 12]], [-1, [11, 13]], [-1, [12, 13]],

[2, [12, 14]], [-2, [13, 14]]]]]

8.1.5 SCHomologyInternal

▷ SCHomologyInternal(complex) (function)

Returns: a list of pairs of the form [integer, list] upon success, fail otherwise.
This function computes the reduced simplicial homology with integer coefficients of a given sim-

plicial complex complex with integer coefficients. It uses the algorithm described in [DKT08].
The output is a list of homology groups of the form [H0,,Hd], where d is the dimension of

complex . The format of the homology groups Hi is given in terms of their maximal cyclic subgroups,
i.e. a homology group Hi ≅ Z f +Z/t1Z× ⋅ ⋅ ⋅ ×Z/tnZ is returned in form of a list [f ,[t1, ...,tn]], where
f is the (integer) free part of Hi and ti denotes the torsion parts of Hi ordered in weakly incresing size.
See also SCHomology (12.1.12) and SCHomologyClassic (6.9.31).

Example
gap> c:=SCSurface(1,false);;

gap> SCHomologyInternal(c);

[[0, []], [0, [2]], [0, []]]

8.2 Cohomology computation

simpcomp can also compute the cohomology groups of simplicial complexes, bases of these coho-
mology groups, the cup product of two cocycles and the intersection form of (orientable) 4-manifolds.

8.2.1 SCCoboundaryOperatorMatrix

▷ SCCoboundaryOperatorMatrix(complex, k) (method)

Returns: a rectangular matrix upon success, fail otherwise.
Calculates the matrix of the coboundary operator dk+1 as a list of row vectors.

Example
gap> c:=SCFromFacets([[1,2,3],[1,2,6],[1,3,5],[1,4,5],[1,4,6],\

[2,3,4],[2,4,5],[2,5,6],[3,4,6],[3,5,6]]);

> [SimplicialComplex

Properties known: Dim, FacetsEx, Name, Vertices.

Name="unnamed complex 2"

simpcomp 136

Dim=2

/SimplicialComplex]

gap> mat:=SCCoboundaryOperatorMatrix(c,1);

[[-1, 1, 0, 0, 0, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0],

[-1, 0, 0, 0, 1, 0, 0, 0, -1, 0, 0, 0, 0, 0, 0],

[0, -1, 0, 1, 0, 0, 0, 0, 0, 0, -1, 0, 0, 0, 0],

[0, 0, -1, 1, 0, 0, 0, 0, 0, 0, 0, 0, -1, 0, 0],

[0, 0, -1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, -1, 0],

[0, 0, 0, 0, 0, -1, 1, 0, 0, -1, 0, 0, 0, 0, 0],

[0, 0, 0, 0, 0, 0, -1, 1, 0, 0, 0, 0, -1, 0, 0],

[0, 0, 0, 0, 0, 0, 0, -1, 1, 0, 0, 0, 0, 0, -1],

[0, 0, 0, 0, 0, 0, 0, 0, 0, -1, 0, 1, 0, -1, 0],

[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1, 1, 0, 0, -1]]

8.2.2 SCCohomology

▷ SCCohomology(complex) (method)

Returns: a list of pairs of the form [integer, list] upon success, fail otherwise.
This function computes the simplicial cohomology groups of a given simplicial complex complex

with integer coefficients. It uses the algorithm described in [DKT08].
The output is a list of cohomology groups of the form [H0,,Hd], where d is the dimension of

complex . The format of the cohomology groups H i is given in terms of their maximal cyclic sub-
groups, i.e. a cohomology group H i ≅Z f +Z/t1Z×⋅ ⋅ ⋅×Z/tnZ is returned in form of a list [f ,[t1, ...,tn]],
where f is the (integer) free part of H i and ti denotes the torsion parts of H i ordered in weakly in-
creasing size.

Example
gap> c:=SCFromFacets([[1,2,3],[1,2,6],[1,3,5],[1,4,5],[1,4,6],

[2,3,4],[2,4,5],[2,5,6],[3,4,6],[3,5,6]]);

> [SimplicialComplex

Properties known: Dim, FacetsEx, Name, Vertices.

Name="unnamed complex 4"

Dim=2

/SimplicialComplex]

gap> SCCohomology(c);

[[1, []], [0, []], [0, [2]]]

8.2.3 SCCohomologyBasis

▷ SCCohomologyBasis(complex, k) (method)

Returns: a list of pairs of the form [integer, list of linear combinations of

simplices] upon success, fail otherwise.
Calculates a set of basis elements for the k -dimensional cohomology group (with integer coeffi-

cients) of a simplicial complex complex . The entries of the returned list are of the form [MODU-
LUS, [BASEELM1, BASEELM2, ...]], where the value MODULUS is 1 for the basis elements of

simpcomp 137

the free part of the k -th homology group and q ≥ 2 for the basis elements of the q-torsion part. In
contrast to the function SCCohomologyBasisAsSimplices (8.2.4) the basis elements are stored as
lists of coefficient-index pairs referring to the linear forms dual to the simplices in the k-th cochain
complex of complex , i.e. a basis element of the form [[λ1, i],[λ2, j], . . .] . . . encodes the linear com-
bination of simplices (or their dual linear forms in the corresponding cochain complex) of the form
λ1 ∗∆1+λ2 ∗∆2 with ∆1=SCSkel(complex,k)[i], ∆2=SCSkel(complex,k)[j] and so on.

Example
gap> SCLib.SearchByName("SU(3)/SO(3)");

[[563, "SU(3)/SO(3) (VT)"], [7276, "SU(3)/SO(3) (VT)"],

[7418, "SU(3)/SO(3) (VT)"], [7419, "SU(3)/SO(3) (VT)"]]

gap> c:=SCLib.Load(last[1][1]);;

gap> SCCohomologyBasis(c,3);

[[2, [[-9, 259], [9, 262], [9, 263], [-9, 270], [9, 271],

[-9, 273], [-9, 274], [-18, 275], [-9, 276], [9, 278],

[-9, 279], [-9, 280], [3, 283], [-3, 285], [3, 289],

[-3, 294], [3, 310], [-3, 313], [3, 316], [-1, 317],

[-6, 318], [3, 319], [-6, 320], [6, 321], [1, 322],

[3, 325], [-1, 328], [6, 330], [-2, 331], [12, 332],

[7, 333], [-5, 334], [1, 345], [3, 355], [-9, 357],

[9, 358], [1, 363], [12, 365], [-9, 366], [-3, 370],

[-1, 371], [-3, 372], [8, 373], [-1, 374], [6, 375],

[9, 376], [3, 377], [1, 380], [3, 383], [-8, 385],

[-9, 386], [-9, 388], [-18, 404], [9, 410], [-9, 425],

[-18, 426], [-9, 427], [9, 428], [-9, 429], [3, 433],

[-3, 435], [-9, 437], [10, 442], [12, 445], [1, 447],

[-19, 448], [2, 449], [-1, 450], [-9, 451], [3, 453],

[1, 455], [1, 457], [-11, 458], [-9, 459], [9, 461],

[9, 462], [-9, 468], [9, 469], [-18, 471], [-9, 472],

[9, 474], [-9, 475], [9, 488], [9, 495], [-9, 500],

[-3, 504], [9, 505], [9, 512], [9, 515], [6, 519],

[18, 521], [-15, 523], [9, 524], [-3, 525], [18, 527],

[-18, 528], [6, 529], [6, 531], [12, 532]]]]

8.2.4 SCCohomologyBasisAsSimplices

▷ SCCohomologyBasisAsSimplices(complex, k) (method)

Returns: a list of pars of the form [integer, linear combination of simplices] upon
success, fail otherwise.

Calculates a set of basis elements for the k -dimensional cohomology group (with integer coeffi-
cients) of a simplicial complex complex . The entries of the returned list are of the form [MODULUS,
[BASEELM1, BASEELM2, ...]], where the value MODULUS is 1 for the basis elements of the free
part of the k -th homology group and q ≥ 2 for the basis elements of the q-torsion part. In contrast to
the function SCCohomologyBasis (8.2.3) the basis elements are stored as lists of coefficient-simplex
pairs referring to the linear forms dual to the simplices in the k-th cochain complex of complex , i.e.
a basis element of the form [[λ1,∆i],[λ2,∆ j], . . .] . . . encodes the linear combination of simplices (or
their dual linear forms in the corresponding cochain complex) of the form λ1 ∗∆1+λ2 ∗∆2+

Example
gap> SCLib.SearchByName("SU(3)/SO(3)");

[[563, "SU(3)/SO(3) (VT)"], [7276, "SU(3)/SO(3) (VT)"],

simpcomp 138

[7418, "SU(3)/SO(3) (VT)"], [7419, "SU(3)/SO(3) (VT)"]]

gap> c:=SCLib.Load(last[1][1]);;

gap> SCCohomologyBasisAsSimplices(c,3);

[[2,

[[-9, [2, 7, 8, 9]], [9, [2, 7, 8, 12]],

[9, [2, 7, 8, 13]], [-9, [2, 7, 11, 12]],

[9, [2, 7, 11, 13]], [-9, [2, 8, 9, 10]],

[-9, [2, 8, 9, 11]], [-18, [2, 8, 9, 12]],

[-9, [2, 8, 9, 13]], [9, [2, 8, 10, 12]],

[-9, [2, 8, 10, 13]], [-9, [2, 8, 11, 12]],

[3, [2, 9, 10, 12]], [-3, [2, 9, 11, 12]],

[3, [3, 4, 5, 7]], [-3, [3, 4, 5, 12]],

[3, [3, 4, 10, 12]], [-3, [3, 5, 6, 7]],

[3, [3, 5, 6, 11]], [-1, [3, 5, 6, 13]],

[-6, [3, 5, 7, 8]], [3, [3, 5, 7, 10]],

[-6, [3, 5, 7, 11]], [6, [3, 5, 7, 12]],

[1, [3, 5, 7, 13]], [3, [3, 5, 8, 12]],

[-1, [3, 5, 9, 13]], [6, [3, 5, 10, 12]],

[-2, [3, 5, 10, 13]], [12, [3, 5, 11, 12]],

[7, [3, 5, 11, 13]], [-5, [3, 5, 12, 13]],

[1, [3, 6, 9, 13]], [3, [3, 7, 10, 12]],

[-9, [3, 7, 11, 12]], [9, [3, 7, 11, 13]],

[1, [3, 8, 9, 13]], [12, [3, 8, 10, 12]],

[-9, [3, 8, 10, 13]], [-3, [3, 9, 10, 12]],

[-1, [3, 9, 10, 13]], [-3, [3, 9, 11, 12]],

[8, [3, 9, 11, 13]], [-1, [3, 9, 12, 13]],

[6, [3, 10, 11, 12]], [9, [3, 10, 11, 13]],

[3, [3, 10, 12, 13]], [1, [4, 5, 6, 8]],

[3, [4, 5, 6, 11]], [-8, [4, 5, 6, 13]],

[-9, [4, 5, 7, 8]], [-9, [4, 5, 7, 11]],

[-18, [4, 6, 8, 9]], [9, [4, 6, 9, 13]],

[-9, [4, 8, 9, 10]], [-18, [4, 8, 9, 12]],

[-9, [4, 8, 9, 13]], [9, [4, 8, 10, 12]],

[-9, [4, 8, 10, 13]], [3, [4, 9, 10, 12]],

[-3, [4, 9, 11, 12]], [-9, [4, 9, 12, 13]],

[10, [5, 6, 7, 8]], [12, [5, 6, 7, 11]],

[1, [5, 6, 7, 13]], [-19, [5, 6, 8, 9]],

[2, [5, 6, 8, 11]], [-1, [5, 6, 8, 12]],

[-9, [5, 6, 8, 13]], [3, [5, 6, 9, 11]],

[1, [5, 6, 9, 13]], [1, [5, 6, 10, 13]],

[-11, [5, 6, 11, 13]], [-9, [5, 7, 8, 9]],

[9, [5, 7, 8, 12]], [9, [5, 7, 8, 13]],

[-9, [5, 7, 11, 12]], [9, [5, 7, 11, 13]],

[-18, [5, 8, 9, 12]], [-9, [5, 8, 9, 13]],

[9, [5, 8, 10, 12]], [-9, [5, 8, 11, 12]],

[9, [6, 7, 8, 13]], [9, [6, 7, 11, 13]],

[-9, [6, 8, 10, 13]], [-3, [6, 9, 11, 12]],

[9, [6, 9, 11, 13]], [9, [7, 8, 9, 13]],

[9, [7, 8, 11, 12]], [6, [7, 9, 11, 12]],

[18, [7, 11, 12, 13]], [-15, [8, 9, 10, 12]],

[9, [8, 9, 10, 13]], [-3, [8, 9, 11, 12]],

[18, [8, 10, 11, 12]], [-18, [8, 10, 12, 13]],

[6, [9, 10, 11, 12]], [6, [9, 10, 12, 13]],

simpcomp 139

[12, [9, 11, 12, 13]]]]]

8.2.5 SCCupProduct

▷ SCCupProduct(complex, cocycle1, cocycle2) (function)

Returns: a list of pairs of the form [ORIENTATION, SIMPLEX] upon success, fail otherwise.
The cup product is a method of adjoining two cocycles of degree p and q to form a composite

cocycle of degree p+q. It endows the cohomology groups of a simplicial complex with the structure
of a ring.

The construction of the cup product starts with a product of cochains: if cocycle1 is a p-
cochain and cocylce2 is a q-cochain of a simplicial complex complex (given as list of oriented
p- (q-)simplices), then

cocycle1 ⌣ cocycle2(σ) =cocycle1(σ ○ ι0,1,...p)⋅ cocycle2(σ ○ ιp,p+1,...,p+q)
where σ is a p+q-simplex and ιS, S ⊂ {0,1, ..., p+q} is the canonical embedding of the simplex

spanned by S into the (p+q)-standard simplex.
σ ○ ι0,1,...,p is called the p-th front face and σ ○ ιp,p+1,...,p+q is the q-th back face of σ , respectively.
Note that this function only computes the cup product in the case that complex is an orientable

weak pseudomanifold of dimension 2k and p = q = k. Furthermore, complex must be given in stan-
dard labeling, with sorted facet list and cocylce1 and cocylce2 must be given in simplex notation
and labeled accordingly. Note that the latter condition is usually fulfilled in case the cocycles were
computed using SCCohomologyBasisAsSimplices (8.2.4).

Example
gap> SCLib.SearchByName("K3");

[[7648, "K3_16"], [7649, "K3_17"]]

gap> c:=SCLib.Load(last[1][1]);;

gap> basis:=SCCohomologyBasisAsSimplices(c,2);;

gap> SCCupProduct(c,basis[1][2],basis[1][2]);

[[1, [1, 2, 4, 7, 11]], [1, [2, 3, 4, 5, 9]]]

gap> SCCupProduct(c,basis[1][2],basis[2][2]);

[[-1, [1, 2, 4, 7, 11]], [-1, [1, 2, 4, 7, 15]],

[-1, [2, 3, 4, 5, 9]]]

8.2.6 SCIntersectionForm

▷ SCIntersectionForm(complex) (method)

Returns: a square matrix of integer values upon success, fail otherwise.
For 2k-dimensional orientable manifolds M the cup product (see SCCupProduct (8.2.5)) defines

a bilinear form
Hk(M)×Hk(M) →H2k(M),(a,b) ↦ a∪b
called the intersection form of M. This function returns the intersection form of an orientable com-

binatorial 2k-manifold complex in form of a matrix mat with respect to the basis of Hk(complexM)
computed by SCCohomologyBasisAsSimplices (8.2.4). The matrix entry mat[i][j] equals the
intersection number of the i-th base element with the j-th base element of Hk(complexM).

Example
gap> SCLib.SearchByName("CP^2");

[[16, "CP^2 (VT)"], [99, "CP^2#-CP^2"], [100, "CP^2#CP^2"],

simpcomp 140

[400, "CP^2#(S^2xS^2)"], [2486, "Gaifullin CP^2"],

[4401, "(S^3~S^1)#(CP^2)^{#5} (VT)"]]

gap> c:=SCLib.Load(last[1][1]);;

gap> c1:=SCConnectedSum(c,c);;

gap> c2:=SCConnectedSumMinus(c,c);;

gap> q1:=SCIntersectionForm(c1);;

gap> q2:=SCIntersectionForm(c2);;

gap> PrintArray(q1);

[[1, 0],

[0, 1]]

gap> PrintArray(q2);

[[1, 0],

[0, -1]]

8.2.7 SCIntersectionFormParity

▷ SCIntersectionFormParity(complex) (method)

Returns: 0 or 1 upon success, fail otherwise.
Computes the parity of the intersection form of a combinatorial manifold complex (see

SCIntersectionForm (8.2.6)). If the intersection for is even (i. e. all diagonal entries are even
numbers) 0 is returned, otherwise 1 is returned.

Example
gap> SCLib.SearchByName("S^2xS^2");

[[59, "S^2xS^2"], [134, "S^2xS^2 (VT)"], [135, "S^2xS^2 (VT)"],

[136, "S^2xS^2 (VT)"], [137, "(S^2xS^2)#(S^2xS^2)"],

[360, "(S^2xS^2)#(S^2xS^2) (VT)"], [361, "(S^2xS^2)#(S^2xS^2) (VT)"],

[400, "CP^2#(S^2xS^2)"]]

gap> c:=SCLib.Load(last[1][1]);;

gap> SCIntersectionFormParity(c);

0

gap> SCLib.SearchByName("CP^2");

[[16, "CP^2 (VT)"], [99, "CP^2#-CP^2"], [100, "CP^2#CP^2"],

[400, "CP^2#(S^2xS^2)"], [2486, "Gaifullin CP^2"],

[4401, "(S^3~S^1)#(CP^2)^{#5} (VT)"]]

gap> c:=SCLib.Load(last[1][1]);;

gap> SCIntersectionFormParity(c);

1

8.2.8 SCIntersectionFormDimensionality

▷ SCIntersectionFormDimensionality(complex) (method)

Returns: an integer upon success, fail otherwise.
Returns the dimensionality of the intersection form of a combinatorial manifold complex , i. e.

the length of a minimal generating set of Hk(M) (where 2k is the dimension of complex). See
SCIntersectionForm (8.2.6) for further details.

Example
gap> SCLib.SearchByName("CP^2");

[[16, "CP^2 (VT)"], [99, "CP^2#-CP^2"], [100, "CP^2#CP^2"],

simpcomp 141

[400, "CP^2#(S^2xS^2)"], [2486, "Gaifullin CP^2"],

[4401, "(S^3~S^1)#(CP^2)^{#5} (VT)"]]

gap> c:=SCLib.Load(last[1][1]);;

gap> SCIntersectionFormParity(c);

1

gap> SCCohomology(c);

[[1, []], [0, []], [1, []], [0, []], [1, []]]

gap> SCIntersectionFormDimensionality(c);

1

gap> d:=SCConnectedProduct(c,10);;

gap> SCIntersectionFormDimensionality(d);

10

8.2.9 SCIntersectionFormSignature

▷ SCIntersectionFormSignature(complex) (method)

Returns: a triple of integers upon success, fail otherwise.
Computes the dimensionality (see SCIntersectionFormDimensionality (8.2.8)) and the sig-

nature of the intersection form of a combinatorial manifold complex as a 3-tuple that contains the
dimensionality in the first entry and the number of positive / negative eigenvalues in the second and
third entry. See SCIntersectionForm (8.2.6) for further details.

Internally calls the GAP-functions Matrix_CharacteristicPolynomialSameField and
CoefficientsOfLaurentPolynomial to compute the number of positive / negative eigenvalues of
the intersection form.

Example
gap> SCLib.SearchByName("CP^2");

[[16, "CP^2 (VT)"], [99, "CP^2#-CP^2"], [100, "CP^2#CP^2"],

[400, "CP^2#(S^2xS^2)"], [2486, "Gaifullin CP^2"],

[4401, "(S^3~S^1)#(CP^2)^{#5} (VT)"]]

gap> c:=SCLib.Load(last[1][1]);;

gap> SCIntersectionFormParity(c);

1

gap> SCCohomology(c);

[[1, []], [0, []], [1, []], [0, []], [1, []]]

gap> SCIntersectionFormSignature(c);

[1, 0, 1]

gap> d:=SCConnectedSum(c,c);

[SimplicialComplex

Properties known: Dim, FacetsEx, Name, Vertices.

Name="CP^2 (VT)#+-CP^2 (VT)"

Dim=4

/SimplicialComplex]

gap> SCIntersectionFormSignature(d);

[2, 2, 0]

gap> d:=SCConnectedSumMinus(c,c);;

gap> SCIntersectionFormSignature(d);

[2, 1, 1]

simpcomp 142

Chapter 9

Bistellar flips

9.1 Theory

Since two combinatorial manifolds are already considered distinct to each other as soon as they
are not combinatorially isomorphic, a topological PL-manifold is represented by a whole class of
combinatorial manifolds. Thus, a frequent question when working with combinatorial manifolds is
whether two such objects are PL-homeomorphic or not. One possibility to approach this problem,
i. e. to find combinatorially distinct members of the class of a PL-manifold, is a heuristic algorithm
using the concept of bistellar moves.

DEFINITION (Bistellar moves [Pac87])
Let M be a combinatorial d-manifold (d-pseudomanifold), γ = ⟨v0, . . . ,vk⟩ a k-face and
δ = ⟨w0, . . . ,wd−k⟩ a (d − k + 1)-tuple of vertices of M that does not span a (d − k)-face in M,
0 ≤ k ≤ d, such that {v0, . . . ,vk} ∩ {w0, . . . ,wd−k} = ∅ and {v0, . . . ,vk,w0, . . .wk−d} spans exactly
d−k+1 facets. Then the operation

κ(γ,δ)(M) =M∖(γ ⋆∂δ)∪(∂γ ⋆δ)

is called a bistellar (d−k)-move.

In other words: If there exists a bouquet D ⊂ M of d − k + 1 facets on a subset of vertices
W ⊂V of order d +2 with a common k-face γ and the complement δ of the vertices of γ in W does
not span a (d −k)-face in M we can remove D and replace it by a bouquet of k+1 facets E ⊂ M with
vertex set W with a common face spanned by δ . By construction ∂D = ∂E and the altered complex
is again a combinatorial d-manifold (d-pseudomanifold). See Fig. 11 for a bistellar 1-move of a
2-dimensional complex, see Fig. 12 for all bistellar moves in dimension 3.

143

simpcomp 144

\ ∪ =

γ ⋆ ∂δ δ ⋆ ∂γ

M := 〈〈1, 2, 3〉, 〈1, 2, 5〉, 〈1, 3, 4〉, 〈1, 4, 8〉, 〈1, 5, 8〉, 〈2, 3, 6〉, 〈2, 5, 6〉, 〈3, 4, 7〉, 〈3, 6, 7〉, 〈4, 7, 8〉〉;

γ := 〈〈1, 3〉〉; δ := 〈〈2, 4〉〉;

κ(γ,δ)(M) = 〈〈1, 2, 4〉, 〈1, 2, 5〉, 〈2, 3, 4〉, 〈1, 4, 8〉, 〈1, 5, 8〉, 〈2, 3, 6〉, 〈2, 5, 6〉, 〈3, 4, 7〉, 〈3, 6, 7〉, 〈4, 7, 8〉〉;

5

6 7

8

2

3

4

1

2

3

4

1

2

3

4

1

5

6 7

8

2

3

4

1

Figure 11. Bistellar 1-move in dimension 2 with W = {1,2,3,4}.

1 1

2

3

2

3

4
((5),(1,2,3,4))

((1,2,3,4),(5)) ((1,2,3),(4,5))

((4,5),(1,2,3))

2

1

4

3

4

5

2

1

4

3

55

Figure 12. Bistellar moves in dimension d = 3 with W = {1,2,3,4,5}. On the left side a bistellar 0- and a
bistellar 3-move, on the right side a bistellar 1- and a bistellar 2-move.

A bistellar 0-move is a stellar subdivision, i. e. the subdivision of a facet δ into d + 1 new
facets by introducing a new vertex at the center of δ (cf. Fig. 12 on the left). In particular, the
vertex set of a combinatorial manifold (pseudomanifold) is not invariant under bistellar moves.
For any bistellar (d − k)-move κ(γ,δ) we have an inverse bistellar k-move κ

−1
(γ,δ) = κ(δ ,γ) such that

κ(δ ,γ)(κ(γ,δ)(M)) = M. If for two combinatorial manifolds M and N there exist a sequence of
bistellar moves that transforms one into the other, M and N are called bistellarly equivalent. So
far bistellar moves are local operations on combinatorial manifolds that change its combinatorial
type. However, the strength of the concept in combinatorial topology is a consequence of the following

THEOREM (Bistellar moves [Pac87])
Two combinatorial manifolds (pseudomanifolds) M and N are PL homeomorphic if and only if they
are bistellarly equivalent.

Unfortunately Pachners theorem does not guarantee that the search for a connecting sequence
of bistellar moves between M and N terminates. Hence, using bistellar moves, we can not prove that
M and N are not PL-homeomorphic. However, there is a very effective simulated annealing approach
that is able to give a positive answer in a lot of cases. The heuristic was first implemented by Bjoerner
and Lutz in [BL00]. The functions presented in this chapter are based on this code which can be used
for several tasks:

• Decide, whether two combinatorial manifolds are PL-homeomorphic,

simpcomp 145

• for a given triangulation of a PL-manifold, try to find a smaller one with less vertices,

• check, if an abstract simplicial complex is a combinatorial manifold by reducing all vertex links
to the boundary of the d-simplex (this can also be done using discrete Morse theory, see Chapter
<Ref Chap="chap:DMT" />, <Ref Meth="SCBistellarIsManifold" />).

In many cases the heuristic reduces a given triangulation but does not reach a minimal triangula-
tion after a reasonable amount of flips. Thus, we usually can not expect the algorithm to terminate.
However, in some cases the program normally stops after a small number of flips:

• Whenever d = 1 (in this case the approach is deterministic),

• whenever a complex is PL-homeomorphic to the boundary of the d-simplex,

• in the case of some 3-manifolds, namely S2"S1, S2×S1 or RP3.

Technical note: Since bistellar flips do not respect the combinatorial properties of a complex, no
attention to the original vertex labels is payed, i. e. the flipped complex will be relabeled whenever its
vertex labels become different from the standard labeling (for example after every reverse 0-move).

9.2 Functions for bistellar flips

9.2.1 SCBistellarOptions

▷ SCBistellarOptions (global variable)

Record of global variables to adjust output an behavior of bistellar moves in
SCIntFunc.SCChooseMove (9.2.4) and SCReduceComplexEx (9.2.14) respectively.

1. BaseRelaxation: determines the length of the relaxation period. Default: 3

2. BaseHeating: determines the length of the heating period. Default: 4

3. Relaxation: value of the current relaxation period. Default: 0

4. Heating: value of the current heating period. Default: 0

5. MaxRounds: maximal over all number of bistellar flips that will be performed. Default: 500000

6. MaxInterval: maximal number of bistellar flips that will be performed without a change of
the f -vector of the moved complex. Default: 100000

7. Mode: flip mode, 0=reducing, 1=comparing, 2=reduce as sub-complex, 3=randomize. Default:
0

8. WriteLevel: 0=no output, 1=storing of every vertex minimal complex to user library, 2=e-mail
notification. Default: 1

9. MailNotifyIntervall: (minimum) number of seconds between two e-mail notifications. De-
fault: 24 ⋅60 ⋅60 (one day)

simpcomp 146

10. MaxIntervalIsManifold: maximal number of bistellar flips that will be performed without a
change of the f -vector of a vertex link while trying to prove that the complex is a combinatorial
manifold. Default: 5000

11. MaxIntervalRandomize := 50: number of flips performed to create a randomized sphere.
Default: 50

Example
gap> SCBistellarOptions.BaseRelaxation;

3

gap> SCBistellarOptions.BaseHeating;

4

gap> SCBistellarOptions.Relaxation;

0

gap> SCBistellarOptions.Heating;

0

gap> SCBistellarOptions.MaxRounds;

500000

gap> SCBistellarOptions.MaxInterval;

100000

gap> SCBistellarOptions.Mode;

0

gap> SCBistellarOptions.WriteLevel;

0

gap> SCBistellarOptions.MailNotifyInterval;

86400

gap> SCBistellarOptions.MaxIntervalIsManifold;

5000

gap> SCBistellarOptions.MaxIntervalRandomize;

50

9.2.2 SCEquivalent

▷ SCEquivalent(complex1, complex2) (method)

Returns: true or false upon success, fail or a list of type [fail, SCSimplicialComplex,

Integer, facet list] otherwise.
Checks if the simplicial complex complex1 (which has to fulfill the weak pseudomanifold prop-

erty with empty boundary) can be reduced to the simplicial complex complex2 via bistellar moves, i.
e. if complex1 and complex2 are PL-homeomorphic. Note that in general the problem is undecid-
able. In this case fail is returned.

It is recommended to use a minimal triangulation complex2 for the check if possible.
Internally calls SCReduceComplexEx (9.2.14) (complex1,complex2,1,SCIntFunc.SCChooseMove);

Example
gap> SCBistellarOptions.WriteLevel:=0;; # do not save complexes to disk

gap> obj:=SC([[1,2],[2,3],[3,4],[4,5],[5,6],[6,1]]);; # hexagon

gap> refObj:=SCBdSimplex(2);; # triangle as a (minimal) reference object

gap> SCEquivalent(obj,refObj);

#I SCReduceComplexEx: complexes are bistellarly equivalent.

true

simpcomp 147

9.2.3 SCExamineComplexBistellar

▷ SCExamineComplexBistellar(complex) (method)

Returns: simplicial complex passed as argument with additional properties upon success, fail
otherwise.

Computes the face lattice, the f -vector, the AS-determinant, the dimension and the maximal vertex
label of complex .

Example
gap> obj:=SC([[1,2],[2,3],[3,4],[4,5],[5,6],[6,1]]);

[SimplicialComplex

Properties known: Dim, FacetsEx, Name, Vertices.

Name="unnamed complex 7"

Dim=1

/SimplicialComplex]

gap> SCExamineComplexBistellar(obj);

[SimplicialComplex

Properties known: AltshulerSteinberg, BoundaryEx, Dim, FVector,

FacetsEx, HasBoundary, IsPseudoManifold, IsPure,

Name, NumFaces[], SkelExs[], Vertices.

Name="unnamed complex 7"

Dim=1

AltshulerSteinberg=0

FVector=[6, 6]

HasBoundary=false

IsPseudoManifold=true

IsPure=true

/SimplicialComplex]

9.2.4 SCIntFunc.SCChooseMove

▷ SCIntFunc.SCChooseMove(dim, moves) (function)

Returns: a bistellar move, i. e. a pair of lists upon success, fail otherwise.
Since the problem of finding a bistellar flip sequence that reduces a simplicial complex is unde-

cidable, we have to use an heuristic approach to choose the next move.
The implemented strategy SCIntFunc.SCChooseMove first tries to directly remove vertices,

edges, i-faces in increasing dimension etc. If this is not possible it inserts high dimensional faces in
decreasing co-dimension. To do this in an efficient way a number of parameters have to be adjusted,
namely SCBistellarOptions.BaseHeating and SCBistellarOptions.BaseRelaxation. See
SCBistellarOptions (9.2.1) for further options.

If this strategy does not work for you, just implement a customized strategy and pass it to
SCReduceComplexEx (9.2.14).

See SCRMoves (9.2.10) for further information.

simpcomp 148

9.2.5 SCIsKStackedSphere

▷ SCIsKStackedSphere(complex, k) (method)

Returns: a list upon success, fail otherwise.
Checks, whether the given simplicial complex complex that must be a PL d-sphere is a k -stacked

sphere with 1 ≤ k ≤ ⌊ d+2
2 ⌋ using a randomized algorithm based on bistellar moves (see [Eff11b],

[Eff11a]). Note that it is not checked whether complex is a PL sphere – if not, the algorithm will
not succeed. Returns a list upon success: the first entry is a boolean, where true means that the com-
plex is k-stacked and false means that the complex cannot be k -stacked. A value of -1 means that
the question could not be decided. The second argument contains a simplicial complex that, in case
of success, contains the trigangulated (d +1)-ball B with ∂B = S and skeld−k(B) = skeld−k(S), where
S denotes the simplicial complex passed in complex .

Internally calls SCReduceComplexEx (9.2.14).
Example

gap> SCLib.SearchByName("S^4~S^1");

[[463, "S^4~S^1 (VT)"], [1473, "S^4~S^1 (VT)"], [1474, "S^4~S^1 (VT)"],

[2477, "S^4~S^1 (VT)"], [4395, "S^4~S^1 (VT)"],

[4396, "S^4~S^1 (VT)"], [4397, "S^4~S^1 (VT)"],

[4398, "S^4~S^1 (VT)"], [4399, "S^4~S^1 (VT)"],

[4402, "S^4~S^1 (VT)"], [4403, "S^4~S^1 (VT)"],

[4404, "S^4~S^1 (VT)"]]

gap> c:=SCLib.Load(last[1][1]);;

gap> l:=SCLink(c,1);

[SimplicialComplex

Properties known: Dim, FacetsEx, Name, Vertices.

Name="lk([1]) in S^4~S^1 (VT)"

Dim=4

/SimplicialComplex]

gap> SCIsKStackedSphere(l,1);

#I SCIsKStackedSphere: checking if complex is a 1-stacked sphere...

#I SCIsKStackedSphere: try 1/50

#I SCIsKStackedSphere: complex is a 1-stacked sphere.

[true, [SimplicialComplex

Properties known: Dim, FacetsEx, Name, Vertices.

Name="Filled 1-stacked sphere (lk([1]) in S^4~S^1 (VT))"

Dim=5

/SimplicialComplex]]

9.2.6 SCBistellarIsManifold

▷ SCBistellarIsManifold(complex) (method)

Returns: true or false upon success, fail otherwise.
Tries to prove that a closed simplicial d-pseudomanifold is a combinatorial manifold by reducing

its vertex links to the boundary of the d-simplex.

simpcomp 149

false is returned if it can be proven that there exists a vertex link which is not PL-homeomorphic
to the standard PL-sphere, true is returned if all vertex links are bistellarly equivalent to the bound-
ary of the simplex, fail is returned if the algorithm does not terminate after the number of rounds
indicated by SCBistellarOptions.MaxIntervallIsManifold.

Internally calls SCReduceComplexEx (9.2.14) (link,SCEmpty(),0,SCIntFunc.SCChooseMove);
for every link of complex . Note that false is returned in case of a bounded manifold.

See SCIsManifoldEx (12.1.18) and SCIsManifold (12.1.17) for alternative methods for mani-
fold verification.

Example
gap> c:=SCBdCrossPolytope(3);;

gap> SCBistellarIsManifold(c);

true

9.2.7 SCIsMovableComplex

▷ SCIsMovableComplex(complex) (method)

Returns: true or false upon success, fail otherwise.
Checks if a simplicial complex complex can be modified by bistellar moves, i. e. if it is a pure

simplicial complex which fulfills the weak pseudomanifold property with empty boundary.
Example

gap> c:=SCBdCrossPolytope(3);;

gap> SCIsMovableComplex(c);

true

Complex with non-empty boundary:
Example

gap> c:=SC([[1,2],[2,3],[3,4],[3,1]]);;

gap> SCIsMovableComplex(c);

false

9.2.8 SCMove

▷ SCMove(c, move) (method)

Returns: simplicial complex of type SCSimplicialComplex upon success, fail otherwise.
Applies the bistellar move move to a simplicial complex c . move is given as a (r + 1)-tuple

together with a (d +1− r)-tuple if d is the dimension of c and if move is a r-move. See SCRMoves

(9.2.10) for detailed information about bistellar r-moves.
Note: move and c should be given in standard labeling to ensure a correct result.

Example
gap> obj:=SC([[1,2],[2,3],[3,4],[4,1]]);

[SimplicialComplex

Properties known: Dim, FacetsEx, Name, Vertices.

Name="unnamed complex 5"

Dim=1

simpcomp 150

/SimplicialComplex]

gap> moves:=SCMoves(obj);

[[[[1, 2], []], [[1, 4], []], [[2, 3], []],

[[3, 4], []]],

[[[1], [2, 4]], [[2], [1, 3]], [[3], [2, 4]],

[[4], [1, 3]]]]

gap> obj:=SCMove(obj,last[2][1]);

[SimplicialComplex

Properties known: Dim, FacetsEx, Name, NumFaces[], SkelExs[],

Vertices.

Name="unnamed complex 6"

Dim=1

/SimplicialComplex]

9.2.9 SCMoves

▷ SCMoves(complex) (method)

Returns: a list of list of pairs of lists upon success, fail otherwise.
See SCRMoves (9.2.10) for further information.

Example
gap> c:=SCBdCrossPolytope(3);;

gap> moves:=SCMoves(c);

[[[[1, 3, 5], []], [[1, 3, 6], []], [[1, 4, 5], []],

[[1, 4, 6], []], [[2, 3, 5], []], [[2, 3, 6], []],

[[2, 4, 5], []], [[2, 4, 6], []]],

[[[1, 3], [5, 6]], [[1, 4], [5, 6]], [[1, 5], [3, 4]],

[[1, 6], [3, 4]], [[2, 3], [5, 6]], [[2, 4], [5, 6]],

[[2, 5], [3, 4]], [[2, 6], [3, 4]], [[3, 5], [1, 2]],

[[3, 6], [1, 2]], [[4, 5], [1, 2]], [[4, 6], [1, 2]]]

, []]

9.2.10 SCRMoves

▷ SCRMoves(complex, r) (method)

Returns: a list of pairs of the form [list, list], fail otherwise.
A bistellar r-move of a d-dimensional combinatorial manifold complex is a r-face m1 together

with a d − r-tuple m2 where m1 is a common face of exactly (d +1− r) facets and m2 is not a face of
complex .

The r-move removes all facets containing m1 and replaces them by the (r+1) faces obtained by
uniting m2 with any subset of m1 of order r.

The resulting complex is PL-homeomorphic to complex .
Example

gap> c:=SCBdCrossPolytope(3);;

gap> moves:=SCRMoves(c,1);

simpcomp 151

[[[1, 3], [5, 6]], [[1, 4], [5, 6]], [[1, 5], [3, 4]],

[[1, 6], [3, 4]], [[2, 3], [5, 6]], [[2, 4], [5, 6]],

[[2, 5], [3, 4]], [[2, 6], [3, 4]], [[3, 5], [1, 2]],

[[3, 6], [1, 2]], [[4, 5], [1, 2]], [[4, 6], [1, 2]]]

9.2.11 SCRandomize

▷ SCRandomize(complex[[, rounds][, allowedmoves]]) (function)

Returns: a simplicial complex upon success, fail otherwise.
Randomizes the given simplicial complex complex via bistellar moves chosen at random. By

passing the optional array allowedmoves , which has to be a dense array of integer values of
length SCDim(complex), certain moves can be allowed or forbidden in the proccess. An entry
allowedmoves[i]=1 allows (i−1)-moves and an entry allowedmoves[i]=0 forbids (i−1)-moves
in the randomization process.

With optional positive integer argument rounds , the amount of randomization can be
controlled. The higher the value of rounds , the more bistellar moves will be ran-
domly performed on complex . Note that the argument rounds overrides the global setting
SCBistellarOptions.MaxIntervalRandomize (this value is used, if rounds is not specified). In-
ternally calls SCReduceComplexEx (9.2.14).

Example
gap> c:=SCRandomize(SCBdSimplex(4));

[SimplicialComplex

Properties known: Dim, FacetsEx, Name, Vertices.

Name="Randomized S^3_5"

Dim=3

/SimplicialComplex]

gap> c.F;

[17, 74, 114, 57]

9.2.12 SCReduceAsSubcomplex

▷ SCReduceAsSubcomplex(complex1, complex2) (method)

Returns: SCBistellarOptions.WriteLevel=0: a triple of the form [boolean,

simplicial complex, rounds performed] upon termination of the algorithm.
SCBistellarOptions.WriteLevel=1: A library of simplicial complexes with a number of

complexes from the reducing process and (upon termination) a triple of the form [boolean,

simplicial complex, rounds performed].
SCBistellarOptions.WriteLevel=2: A mail in case a smaller version of complex1 was

found, a library of simplicial complexes with a number of complexes from the reducing process and
(upon termination) a triple of the form [boolean, simplicial complex, rounds performed

].
Returns fail upon an error.

simpcomp 152

Reduces a simplicial complex complex1 (satisfying the weak pseudomanifold property with
empty boundary) as a sub-complex of the simplicial complex complex2 .

Main application: Reduce a sub-complex of the cross polytope without introducing diagonals.
Internally calls SCReduceComplexEx (9.2.14) (complex1,complex2,2,SCIntFunc.SCChooseMove);

Example
gap> c:=SCFromFacets([[1,3],[3,5],[4,5],[4,1]]);;

gap> SCBistellarOptions.WriteLevel:=0;; # do not save complexes

gap> SCReduceAsSubcomplex(c,SCBdCrossPolytope(3));

[true, [SimplicialComplex

Properties known: Dim, FacetsEx, Name, Vertices.

Name="unnamed complex 36"

Dim=1

/SimplicialComplex], 1]

9.2.13 SCReduceComplex

▷ SCReduceComplex(complex) (method)

Returns: SCBistellarOptions.WriteLevel=0: a triple of the form [boolean,

simplicial complex, rounds performed] upon termination of the algorithm.
SCBistellarOptions.WriteLevel=1: A library of simplicial complexes with a number of

complexes from the reducing process and (upon termination) a triple of the form [boolean,

simplicial complex, rounds performed].
SCBistellarOptions.WriteLevel=2: A mail in case a smaller version of complex1 was

found, a library of simplicial complexes with a number of complexes from the reducing process and
(upon termination) a triple of the form [boolean, simplicial complex, rounds performed

].
Returns fail upon an error..
Reduces a pure simplicial complex complex satisfying the weak pseudoman-

ifold property via bistellar moves. Internally calls SCReduceComplexEx (9.2.14)
(complex,SCEmpty(),0,SCIntFunc.SCChooseMove);

Example
gap> obj:=SC([[1,2],[2,3],[3,4],[4,5],[5,6],[6,1]]);; # hexagon

gap> SCBistellarOptions.WriteLevel:=0;; # do not save complexes

gap> tmp := SCReduceComplex(obj);

[true, [SimplicialComplex

Properties known: Dim, FacetsEx, Name, Vertices.

Name="unnamed complex 27"

Dim=1

/SimplicialComplex], 3]

simpcomp 153

9.2.14 SCReduceComplexEx

▷ SCReduceComplexEx(complex, refComplex, mode, choosemove) (function)

Returns: SCBistellarOptions.WriteLevel=0: a triple of the form [boolean,

simplicial complex, rounds] upon termination of the algorithm.
SCBistellarOptions.WriteLevel=1: A library of simplicial complexes with a number of

complexes from the reducing process and (upon termination) a triple of the form [boolean,

simplicial complex, rounds].
SCBistellarOptions.WriteLevel=2: A mail in case a smaller version of complex1 was

found, a library of simplicial complexes with a number of complexes from the reducing process and
(upon termination) a triple of the form [boolean, simplicial complex, rounds].

Returns fail upon an error.
Reduces a pure simplicial complex complex satisfying the weak pseudomanifold property via bis-

tellar moves mode = 0 , compares it to the simplicial complex refComplex (mode = 1) or reduces
it as a sub-complex of refComplex (mode = 2).

choosemove is a function containing a flip strategy, see also SCIntFunc.SCChooseMove (9.2.4).
The currently smallest complex is stored to the variable minComplex, the currently smallest f -

vector to minF. Note that in general the algorithm will not stop until the maximum number of rounds
is reached. You can adjust the maximum number of rounds via the property SCBistellarOptions

(9.2.1). The number of rounds performed is returned in the third entry of the triple returned by this
function.

This function is called by

1. SCReduceComplex (9.2.13),

2. SCEquivalent (9.2.2),

3. SCReduceAsSubcomplex (9.2.12),

4. SCBistellarIsManifold (9.2.6).

5. SCRandomize (9.2.11).

Please see SCMailIsPending (15.2.3) for further information about the email notification system in
case SCBistellarOptions.WriteLevel is set to 2.

Example
gap> c:=SCBdCrossPolytope(4);;

gap> SCBistellarOptions.WriteLevel:=0;; # do not save complexes

gap> SCReduceComplexEx(c,SCEmpty(),0,SCIntFunc.SCChooseMove);

[true, [SimplicialComplex

Properties known: Dim, FacetsEx, Name, Vertices.

Name="unnamed complex 13"

Dim=3

/SimplicialComplex], 7]

gap> SCReduceComplexEx(c,SCEmpty(),0,SCIntFunc.SCChooseMove);

[true, [SimplicialComplex

Properties known: Dim, FacetsEx, Name, Vertices.

simpcomp 154

Name="unnamed complex 18"

Dim=3

/SimplicialComplex], 7]

gap> SCMailSetAddress("johndoe@somehost");

true

gap> SCMailIsEnabled();

true

gap> SCReduceComplexEx(c,SCEmpty(),0,SCIntFunc.SCChooseMove);

[true, [SimplicialComplex

Properties known: Dim, FacetsEx, Name, Vertices.

Name="unnamed complex 23"

Dim=3

/SimplicialComplex], 7]

Content of sent mail:
Example

Greetings master,

this is simpcomp %%%VERSION%%% running on igt215.mathematik.uni-stuttgart.de

(Linux igt215 2.6.26-2-amd64 #1 SMP Thu Nov 5 02:23:12 UTC 2009 x86_64

GNU/Linux), GAP 4.4.12.

I have been working hard for 0 seconds and have a message for you, see below.

START MESSAGE

SCReduceComplex:

Computed locally minimal complex after 7 rounds:

[SimplicialComplex

Properties known: Boundary, Chi, Date, Dim, F, Faces, Facets, G, H,

HasBoundary, Homology, IsConnected, IsManifold, IsPM, Name, SCVertices,

Vertices.

Name="ReducedComplex_5_vertices_7"

Dim=3

Chi=0

F=[5, 10, 10, 5]

G=[0, 0]

H=[1, 1, 1, 1]

HasBoundary=false

Homology=[[0, []], [0, []], [0, []], [1, []]]

IsConnected=true

IsPM=true

simpcomp 155

/SimplicialComplex]

END MESSAGE

That's all, I hope this is good news! Have a nice day.

9.2.15 SCReduceComplexFast

▷ SCReduceComplexFast(complex) (function)

Returns: a simplicial complex upon success, fail otherwise.
Same as SCReduceComplex (9.2.13), but calls an external binary provided with the simpcomp

package.

Chapter 10

Simplicial blowups

10.1 Theory

In this chapter functions are provided to perform simplicial blowups as well as the resolution of
isolated singularities of certain types of combinatorial 4-manifolds. As of today singularities where
the link is homeomorphic to RP3, S2×S1, S2"S1 and the lens spaces L(k,1) are supported. In addition,
the program provides the possibility to hand over additional types of mapping cylinders to cover other
types of singularities.

Please note that the program is based on a heuristic algorithm using bistellar moves. Hence, the
search for a suitable sequence of bistellar moves to perform the blowup does not always terminate.
However, especially in the case of ordinary double points (singularities of type RP3), a lot of blowups
have already been successful. For a very short introduction to simplicial blowups see 2.8, for further
information see [SK11].

10.2 Functions related to simplicial blowups

10.2.1 SCBlowup

▷ SCBlowup(pseudomanifold, singularity[, mappingCyl]) (property)

Returns: simplicial complex of type SCSimplicialComplex upon success, fail otherwise.
If singularity is an ordinary double point of a combinatorial 4-pseudomanifold

pseudomanifold (lk(singularity) = RP3) the blowup of pseudomanifold at singularity is
computed. If it is a singularity of type S2 ×S1, S2 "S1 or L(k,1), k ≤ 4, the canonical resolution of
singularity is computed using the bounded complexes provided in the source code below.

If the optional argument mappingCyl of type SCIsSimplicialComplex is given, this complex
will be used to to resolve the singularity singularity.

Note that bistellar moves do not necessarily preserve any orientation. Thus, the orientation of the
blowup has to be checked in order to verify which type of blowup was performed. Normally, repeated
computation results in both versions.

Example
gap> SCLib.SearchByName("Kummer variety");

[[7493, "4-dimensional Kummer variety (VT)"]]

gap> c:=SCLib.Load(last[1][1]);;

gap> d:= SCBlowup(c,1);

#I SCBlowup: checking if singularity is a combinatorial manifold...

156

simpcomp 157

#I SCBlowup: ...true

#I SCBlowup: checking type of singularity...

#I SCReduceComplexEx: complexes are bistellarly equivalent.

#I SCBlowup: ...ordinary double point (supported type).

#I SCBlowup: starting blowup...

#I SCBlowup: map boundaries...

#I SCBlowup: boundaries not isomorphic, initializing bistellar moves...

#I SCBlowup: found complex with smaller boundary: f = [15, 74, 118, 59].

#I SCBlowup: found complex with smaller boundary: f = [14, 70, 112, 56].

#I SCBlowup: found complex with smaller boundary: f = [14, 67, 106, 53].

#I SCBlowup: found complex with smaller boundary: f = [13, 65, 104, 52].

#I SCBlowup: found complex with smaller boundary: f = [13, 64, 102, 51].

#I SCBlowup: found complex with smaller boundary: f = [13, 63, 100, 50].

#I SCBlowup: found complex with smaller boundary: f = [13, 62, 98, 49].

#I SCBlowup: found complex with smaller boundary: f = [12, 58, 92, 46].

#I SCBlowup: found complex with smaller boundary: f = [12, 57, 90, 45].

#I SCBlowup: found complex with smaller boundary: f = [12, 56, 88, 44].

#I SCBlowup: found complex with smaller boundary: f = [12, 55, 86, 43].

#I SCBlowup: found complex with smaller boundary: f = [11, 51, 80, 40].

#I SCBlowup: found complex with isomorphic boundaries.

#I SCBlowup: ...boundaries mapped succesfully.

#I SCBlowup: build complex...

#I SCBlowup: ...done.

#I SCBlowup: ...blowup completed.

#I SCBlowup: You may now want to reduce the complex via 'SCReduceComplex'.

[SimplicialComplex

Properties known: Dim, FacetsEx, Name, Vertices.

Name="unnamed complex 4084 \ star([1]) in unnamed complex 4084 cup unnamed \

complex 4088 cup unnamed complex 4086"

Dim=4

/SimplicialComplex]

Example
gap> # resolving the singularities of a 4 dimensional Kummer variety

gap> SCLib.SearchByName("Kummer variety");

[[7488, "4-dimensional Kummer variety (VT)"]]

gap> c:=SCLib.Load(last[1][1]);;

gap> for i in [1..16] do

for j in SCLabels(c) do

lk:=SCLink(c,j);

if lk.Homology = [[0],[0],[0],[1]] then continue; fi;

singularity := j; break;

od;

c:=SCBlowup(c,singularity);

od;

gap> d.IsManifold;

true

gap> d.Homology;

[[0, []], [0, []], [22, []], [0, []], [1, []]]

simpcomp 158

10.2.2 SCMappingCylinder

▷ SCMappingCylinder(k) (function)

Returns: simplicial complex of type SCSimplicialComplex upon success, fail otherwise.
Generates a bounded version of CP2 (a so-called mapping cylinder for a simplicial blowup, com-

pare [SK11]) with boundary L(k,1).
Example

gap> mapCyl:=SCMappingCylinder(3);;

gap> mapCyl.Homology;

[[0, []], [0, []], [1, []], [0, []], [0, []]]

gap> l31:=SCBoundary(mapCyl);;

gap> l31.Homology;

[[0, []], [0, [3]], [0, []], [1, []]]

Chapter 11

Polyhedral Morse theory

In this chapter we present some useful functions dealing with polyhedral Morse theory. See Section
2.5 for a very short introduction to the field, see [Küh95] for more information. Note: this is not
to be confused with Robin Forman’s discrete Morse theory for cell complexes which is described in
Chapter 12.

If M is a combinatorial d-manifold with n-vertices a rsl-function will be represented as an ordering
on the set of vertices, i. e. a list of length n containing all vertex labels of the corresponding simplicial
complex.

11.1 Polyhedral Morse theory related functions

11.1.1 SCIsTight

▷ SCIsTight(complex) (method)

Returns: true or false upon success, fail otherwise.
Checks whether a simplicial complex complex is a tight triangulation or not. A simplicial com-

plex with n vertices is said to be a tight triangulation if it can be tightly embedded into the (n−1)-
simplex. See Section 2.7 for a short introduction to the field of tightness.

First, if complex is a (k+1)-neighborly 2k-manifold (cf. [Küh95], Corollary 4.7) or if complex
is of dimension d ≥ 4, 2-neighborly and all its vertex links are stacked spheres (i.e. the complex is
in Walkup’s class K(d), see [Eff11b]), true is returned as the complex is a tight triangulation in
these cases. Note that it is not computed whether or not complex is a combinatorial manifold as this
computation might take a long time. Hence, only if the manifold flag of the complex is set (this can
be achieved by calling SCIsManifold (12.1.17) and the complex indeed is a combinatorial manifold)
these checks are performed. In a second step, the algorithm first checks certain rsl-functions allowing
slicings between minimal non faces and the rest of the complex. In most cases where complex is not
tight at least one of these rsl-functions is not perfect and thus false is returned as the complex is not
a tight triangulation.

If the complex passed all checks so far, the remaining rsl-functions are checked for being per-
fect functions. As there are “only” 2n different multiplicity vectors, but n! different rsl-functions, a
lookup table containing all possible multiplicity vectors is computed first. Note that nonetheless the
complexity of this algorithm is O(n!).

In order to reduce the number of rsl-functions that need to be checked, the automorphism group
of complex is computed first using SCAutomorphismGroup (6.9.2). In case it is k-transitive, the

159

simpcomp 160

complexity is reduced by the factor of n ⋅ (n−1) ⋅ ⋅ ⋅ ⋅ ⋅ (n−k+1).
Example

gap> list:=SCLib.SearchByName("S^2~S^1 (VT)");

[[12, "S^2~S^1 (VT)"], [27, "S^2~S^1 (VT)"], [28, "S^2~S^1 (VT)"],

[43, "S^2~S^1 (VT)"], [47, "S^2~S^1 (VT)"], [49, "S^2~S^1 (VT)"],

[89, "S^2~S^1 (VT)"], [90, "S^2~S^1 (VT)"], [111, "S^2~S^1 (VT)"],

[140, "S^2~S^1 (VT)"], [146, "S^2~S^1 (VT)"], [147, "S^2~S^1 (VT)"],

[148, "S^2~S^1 (VT)"], [149, "S^2~S^1 (VT)"], [150, "S^2~S^1 (VT)"],

[156, "S^2~S^1 (VT)"], [157, "S^2~S^1 (VT)"], [391, "S^2~S^1 (VT)"],

[393, "S^2~S^1 (VT)"], [394, "S^2~S^1 (VT)"], [396, "S^2~S^1 (VT)"],

[407, "S^2~S^1 (VT)"], [408, "S^2~S^1 (VT)"], [410, "S^2~S^1 (VT)"],

[412, "S^2~S^1 (VT)"], [413, "S^2~S^1 (VT)"], [578, "S^2~S^1 (VT)"],

[579, "S^2~S^1 (VT)"], [582, "S^2~S^1 (VT)"], [596, "S^2~S^1 (VT)"],

[597, "S^2~S^1 (VT)"], [598, "S^2~S^1 (VT)"], [640, "S^2~S^1 (VT)"],

[642, "S^2~S^1 (VT)"], [644, "S^2~S^1 (VT)"], [645, "S^2~S^1 (VT)"],

[769, "S^2~S^1 (VT)"], [770, "S^2~S^1 (VT)"], [774, "S^2~S^1 (VT)"],

[775, "S^2~S^1 (VT)"], [776, "S^2~S^1 (VT)"], [2401, "S^2~S^1 (VT)"],

[2409, "S^2~S^1 (VT)"], [2410, "S^2~S^1 (VT)"],

[2411, "S^2~S^1 (VT)"], [2428, "S^2~S^1 (VT)"],

[2429, "S^2~S^1 (VT)"], [2430, "S^2~S^1 (VT)"],

[2431, "S^2~S^1 (VT)"], [2432, "S^2~S^1 (VT)"],

[2433, "S^2~S^1 (VT)"], [2434, "S^2~S^1 (VT)"],

[2435, "S^2~S^1 (VT)"], [2500, "S^2~S^1 (VT)"],

[2501, "S^2~S^1 (VT)"], [2504, "S^2~S^1 (VT)"],

[2505, "S^2~S^1 (VT)"], [2506, "S^2~S^1 (VT)"],

[2510, "S^2~S^1 (VT)"], [2511, "S^2~S^1 (VT)"],

[2512, "S^2~S^1 (VT)"], [2513, "S^2~S^1 (VT)"],

[2514, "S^2~S^1 (VT)"], [2515, "S^2~S^1 (VT)"]]

gap> s2s1:=SCLib.Load(list[1][1]);

[SimplicialComplex

Properties known: AltshulerSteinberg, AutomorphismGroup,

AutomorphismGroupSize, AutomorphismGroupStructure,

AutomorphismGroupTransitivity, ConnectedComponents,

Dim, DualGraph, EulerCharacteristic, FVector,

FacetsEx, GVector, GeneratorsEx, HVector,

HasBoundary, HasInterior, Homology, Interior,

IsCentrallySymmetric, IsConnected,

IsEulerianManifold, IsManifold, IsOrientable,

IsPseudoManifold, IsPure, IsStronglyConnected,

MinimalNonFacesEx, Name, Neighborliness,

NumFaces[], Orientation, Reference, SkelExs[],

Vertices.

Name="S^2~S^1 (VT)"

Dim=3

AltshulerSteinberg=250838208

AutomorphismGroupSize=18

AutomorphismGroupStructure="D18"

AutomorphismGroupTransitivity=1

EulerCharacteristic=0

FVector=[9, 36, 54, 27]

GVector=[4, 10]

simpcomp 161

HVector=[5, 15, 5, 1]

HasBoundary=false

HasInterior=true

Homology=[[0, []], [1, []], [0, [2]], [0, []]]

IsCentrallySymmetric=false

IsConnected=true

IsEulerianManifold=true

IsOrientable=false

IsPseudoManifold=true

IsPure=true

IsStronglyConnected=true

Neighborliness=2

/SimplicialComplex]

gap> SCInfoLevel(2); # print information while running

true

gap> SCIsTight(s2s1); time;

#I SCIsTight: checking non faces...

#I SCIsTight: found no contradiction so far.

#I SCIsTight: generating lookup table...

#I SCIsTight: lookup table done, size = 2304.

#I SCIsTight: computing automorphism group...

#I SCIsTight: automorphism group done, transitivity = 1.

#I SCIsTight: checking rsl-functions...

#I SCIsTight: processed 10000 of 40320 rsl-functions so far, all perfect.

#I SCIsTight: processed 20000 of 40320 rsl-functions so far, all perfect.

#I SCIsTight: processed 30000 of 40320 rsl-functions so far, all perfect.

#I SCIsTight: processed 40000 of 40320 rsl-functions so far, all perfect.

true

7900

Example
gap> SCLib.SearchByAttribute("F[1] = 120");

[[7647, "Bd(600-cell)"]]

gap> id:=last[1][1];;

gap> c:=SCLib.Load(id);;

gap> SCIsTight(c); time;

#I SCIsTight: checking non faces...

#I SCIsTight: found non perfect rsl-function: [1, 3, 2, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21,

22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40,

41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59,

60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78,

79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97,

98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112,

113, 114, 115, 116, 117, 118, 119, 120], complex not tight.

false

12

Example
gap> SCInfoLevel(0);

true

gap> SCLib.SearchByName("K3");

simpcomp 162

[[7648, "K3_16"], [7649, "K3_17"]]

gap> c:=SCLib.Load(last[1][1]);;

gap> SCIsManifold(c);

true

gap> SCInfoLevel(2);

true

gap> c.IsTight;

#I SCIsTight: complex is (k+1)-neighborly 2k-manifold and thus tight.

true

Example
gap> list:=SCLib.SearchByName("S^3xS^1");

[[55, "S^3xS^1 (VT)"], [128, "S^3xS^1 (VT)"], [399, "S^3xS^1 (VT)"],

[459, "S^3xS^1 (VT)"], [460, "S^3xS^1 (VT)"], [461, "S^3xS^1 (VT)"],

[462, "S^3xS^1 (VT)"], [588, "S^3xS^1 (VT)"], [612, "S^3xS^1 (VT)"],

[699, "S^3xS^1 (VT)"], [700, "S^3xS^1 (VT)"], [701, "S^3xS^1 (VT)"],

[703, "S^3xS^1 (VT)"], [1078, "S^3xS^1 (VT)"], [1080, "S^3xS^1 (VT)"],

[1081, "S^3xS^1 (VT)"], [1082, "S^3xS^1 (VT)"],

[1083, "S^3xS^1 (VT)"], [1084, "S^3xS^1 (VT)"],

[1085, "S^3xS^1 (VT)"], [1086, "S^3xS^1 (VT)"],

[1087, "S^3xS^1 (VT)"], [1088, "S^3xS^1 (VT)"],

[1089, "S^3xS^1 (VT)"], [1091, "S^3xS^1 (VT)"],

[2413, "S^3xS^1 (VT)"], [2470, "S^3xS^1 (VT)"],

[2471, "S^3xS^1 (VT)"], [2472, "S^3xS^1 (VT)"],

[2473, "S^3xS^1 (VT)"], [2474, "S^3xS^1 (VT)"],

[2475, "S^3xS^1 (VT)"], [2476, "S^3xS^1 (VT)"],

[3413, "S^3xS^1 (VT)"], [3414, "S^3xS^1 (VT)"],

[3415, "S^3xS^1 (VT)"], [3416, "S^3xS^1 (VT)"],

[3417, "S^3xS^1 (VT)"], [3418, "S^3xS^1 (VT)"],

[3419, "S^3xS^1 (VT)"], [3420, "S^3xS^1 (VT)"],

[3421, "S^3xS^1 (VT)"], [3422, "S^3xS^1 (VT)"],

[3423, "S^3xS^1 (VT)"], [3424, "S^3xS^1 (VT)"],

[3425, "S^3xS^1 (VT)"], [3426, "S^3xS^1 (VT)"],

[3427, "S^3xS^1 (VT)"], [3428, "S^3xS^1 (VT)"],

[3429, "S^3xS^1 (VT)"], [3430, "S^3xS^1 (VT)"],

[3431, "S^3xS^1 (VT)"], [3432, "S^3xS^1 (VT)"],

[3433, "S^3xS^1 (VT)"], [3434, "S^3xS^1 (VT)"]]

gap> c:=SCLib.Load(list[1][1]);

[SimplicialComplex

Properties known: AltshulerSteinberg, AutomorphismGroup,

AutomorphismGroupSize, AutomorphismGroupStructure,

AutomorphismGroupTransitivity, ConnectedComponents,

Dim, DualGraph, EulerCharacteristic, FVector,

FacetsEx, GVector, GeneratorsEx, HVector,

HasBoundary, HasInterior, Homology, Interior,

IsCentrallySymmetric, IsConnected,

IsEulerianManifold, IsManifold, IsOrientable,

IsPseudoManifold, IsPure, IsStronglyConnected,

MinimalNonFacesEx, Name, Neighborliness,

NumFaces[], Orientation, Reference, SkelExs[],

Vertices.

simpcomp 163

Name="S^3xS^1 (VT)"

Dim=4

AltshulerSteinberg=737125273600

AutomorphismGroupSize=22

AutomorphismGroupStructure="D22"

AutomorphismGroupTransitivity=1

EulerCharacteristic=0

FVector=[11, 55, 110, 110, 44]

GVector=[5, 15, -20]

HVector=[6, 21, 1, 16, -1]

HasBoundary=false

HasInterior=true

Homology=[[0, []], [1, []], [0, []], [1, []], [1, []]]

IsCentrallySymmetric=false

IsConnected=true

IsEulerianManifold=true

IsOrientable=true

IsPseudoManifold=true

IsPure=true

IsStronglyConnected=true

Neighborliness=2

/SimplicialComplex]

gap> SCInfoLevel(0);

true

gap> SCIsManifold(c);

true

gap> SCInfoLevel(2);

true

gap> c.IsTight;

#I SCIsInKd: complex has transitive automorphism group, only checking one link.

#I SCIsInKd: checking link 1/1

#I SCIsKStackedSphere: checking if complex is a 1-stacked sphere...

#I SCIsKStackedSphere: try 1/50

#I round 0

Reduced complex, F: [9, 26, 34, 17]

#I round 1

Reduced complex, F: [8, 22, 28, 14]

#I round 2

Reduced complex, F: [7, 18, 22, 11]

#I round 3

Reduced complex, F: [6, 14, 16, 8]

#I round 4

Reduced complex, F: [5, 10, 10, 5]

#I SCReduceComplexEx: computed locally minimal complex after 5 rounds.

#I SCIsKStackedSphere: complex is a 1-stacked sphere.

#I SCIsInKd: complex has transitive automorphism group, all links are 1-stacked.

#I SCIsTight: complex is in class K(1) and 2-neighborly, thus tight.

true

simpcomp 164

11.1.2 SCMorseIsPerfect

▷ SCMorseIsPerfect(c, f) (method)

Returns: true or false upon success, fail otherwise.
Checks whether the rsl-function f is perfect on the simplicial complex c or not. A rsl-function is

said to be perfect, if it has the minimum number of critical points, i. e. if the sum of its critical points
equals the sum of the Betti numbers of c.

Example
gap> c:=SCBdCyclicPolytope(4,6);;

gap> SCMinimalNonFaces(c);

[[], [], [[1, 3, 5], [2, 4, 6]]]

gap> SCMorseIsPerfect(c,[1..6]);

true

gap> SCMorseIsPerfect(c,[1,3,5,2,4,6]);

false

11.1.3 SCSlicing

▷ SCSlicing(complex, slicing) (method)

Returns: a facet list of a polyhedral complex or a SCNormalSurface object upon success, fail
otherwise.

Returns the pre-image f −1(α) of a rsl-function f on the simplicial complex complex where f is
given in the second argument slicing by a partition of the set of vertices slicing= [V1,V2] such
that f (v1) (f (v2)) is smaller (greater) than α for all v1 ∈V1 (v2 ∈V2).

If complex is of dimension 3, a GAP object of type SCNormalSurface is returned. Otherwise
only the facet list is returned. See also SCNSSlicing (7.1.4).

The vertex labels of the returned slicing are of the form (v1,v2) where v1 ∈V1 and v2 ∈V2. They
represent the center points of the edges ⟩v1,v2⟨ defined by the intersection of slicing with complex .

Example
gap> c:=SCBdCyclicPolytope(4,6);;

gap> v:=SCVertices(c);

[1, 2, 3, 4, 5, 6]

gap> SCMinimalNonFaces(c);

[[], [], [[1, 3, 5], [2, 4, 6]]]

gap> ns:=SCSlicing(c,[v{[1,3,5]},v{[2,4,6]}]);

[NormalSurface

Properties known: ConnectedComponents, Dim, EulerCharacteristic, FVector, Fac\

etsEx, Genus, IsConnected, IsOrientable, NSTriangulation, Name, TopologicalTyp\

e, Vertices.

Name="slicing [[1, 3, 5], [2, 4, 6]] of Bd(C_4(6))"

Dim=2

FVector=[9, 18, 0, 9]

EulerCharacteristic=0

IsOrientable=true

TopologicalType="T^2"

/NormalSurface]

simpcomp 165

Example
gap> c:=SCBdSimplex(5);;

gap> v:=SCVertices(c);

[1, 2, 3, 4, 5, 6]

gap> slicing:=SCSlicing(c,[v{[1,3,5]},v{[2,4,6]}]);

[[[1, 2], [1, 4], [3, 2], [3, 4], [5, 2], [5, 4]],

[[1, 2], [1, 4], [1, 6], [3, 2], [3, 4], [3, 6]],

[[1, 2], [1, 6], [3, 2], [3, 6], [5, 2], [5, 6]],

[[1, 2], [1, 4], [1, 6], [5, 2], [5, 4], [5, 6]],

[[1, 4], [1, 6], [3, 4], [3, 6], [5, 4], [5, 6]],

[[3, 2], [3, 4], [3, 6], [5, 2], [5, 4], [5, 6]]]

11.1.4 SCMorseMultiplicityVector

▷ SCMorseMultiplicityVector(c, f) (method)

Returns: a list of (d +1)-tuples if c is a d-dimensional simplicial complex upon success, fail
otherwise.

Computes all multiplicity vectors of a rsl-function f on a simplicial complex c. f is given as an
ordered list (v1, . . .vn) of all vertices of c where f is defined by f(vi) = i−1

n−1 . The i-th entry of the
returned list denotes the multiplicity vector of vertex vi.

Example
gap> SCLib.SearchByName("K3");

[[7648, "K3_16"], [7649, "K3_17"]]

gap> c:=SCLib.Load(last[1][1]);;

gap> f:=SCVertices(c);

[1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16]

gap> SCMorseMultiplicityVector(c,f);

[[1, 0, 0, 0, 0], [0, 0, 0, 0, 0], [0, 0, 0, 0, 0], [0, 0, 1, 0, 0],

[0, 0, 2, 0, 0], [0, 0, 1, 0, 0], [0, 0, 4, 0, 0], [0, 0, 3, 0, 0],

[0, 0, 3, 0, 0], [0, 0, 4, 0, 0], [0, 0, 1, 0, 0], [0, 0, 2, 0, 0],

[0, 0, 1, 0, 0], [0, 0, 0, 0, 0], [0, 0, 0, 0, 0], [0, 0, 0, 0, 1]]

11.1.5 SCMorseNumberOfCriticalPoints

▷ SCMorseNumberOfCriticalPoints(c, f) (method)

Returns: an integer and a list upon success, fail otherwise.
Computes the number of critical points of each index of a rsl-function f on a simplicial complex

c as well as the total number of critical points.
Example

gap> SCLib.SearchByName("K3");

[[7648, "K3_16"], [7649, "K3_17"]]

gap> c:=SCLib.Load(last[1][1]);;

gap> f:=SCVertices(c);

[1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16]

gap> SCMorseNumberOfCriticalPoints(c,f);

[24, [1, 0, 22, 0, 1]]

Chapter 12

Forman’s discrete Morse theory

In this chapter a framework is provided to use Forman’s discrete Morse theory [For95] within simp-
comp. See Section 2.6 for a brief introduction.

Note: this is not to be confused with Banchoff and Kühnel’s theory of regular simplexwise linear
functions which is described in Chapter 11.

12.1 Functions using discrete Morse theory

12.1.1 SCCollapseGreedy

▷ SCCollapseGreedy(complex) (method)

Returns: simplicial complex of type SCSimplicialComplex upon success, fail otherwise.
Employs a greedy collapsing algorithm to collapse the simplicial complex complex . See also

SCCollapseLex (12.1.2) and SCCollapseRevLex (12.1.3).
Example

gap> SCLib.SearchByName("T^2"){[1..6]};

[[4, "T^2 (VT)"], [5, "T^2 (VT)"], [9, "T^2 (VT)"], [10, "T^2 (VT)"],

[18, "T^2 (VT)"], [20, "(T^2)#2"]]

gap> torus:=SCLib.Load(last[1][1]);;

gap> bdtorus:=SCDifference(torus,SC([torus.Facets[1]]));;

gap> coll:=SCCollapseGreedy(bdtorus);

[SimplicialComplex

Properties known: Dim, FacetsEx, Name, Vertices.

Name="collapsed version of T^2 (VT) \ unnamed complex 8"

Dim=1

/SimplicialComplex]

gap> coll.Facets;

[[1, 3], [1, 5], [2, 3], [2, 5], [3, 4], [3, 7], [4, 7]]

gap> sphere:=SCBdSimplex(4);;

gap> bdsphere:=SCDifference(sphere,SC([sphere.Facets[1]]));;

gap> coll:=SCCollapseGreedy(bdsphere);

[SimplicialComplex

Properties known: Dim, FVector, FacetsEx, IsPure, Name, NumFaces[],

166

simpcomp 167

SkelExs[], Vertices.

Name="collapsed version of S^3_5 \ unnamed complex 12"

Dim=0

FVector=[1]

IsPure=true

/SimplicialComplex]

gap> coll.Facets;

[[5]]

12.1.2 SCCollapseLex

▷ SCCollapseLex(complex) (method)

Returns: simplicial complex of type SCSimplicialComplex upon success, fail otherwise.
Employs a greedy collapsing algorithm in lexicographical order to collapse the simplicial complex

complex . See also SCCollapseGreedy (12.1.1) and SCCollapseRevLex (12.1.3).
Example

gap> s:=SCSurface(1,true);;

gap> s:=SCDifference(s,SC([SCFacets(s)[1]]));;

gap> coll:=SCCollapseGreedy(s);

[SimplicialComplex

Properties known: Dim, FacetsEx, Name, Vertices.

Name="collapsed version of T^2 \ unnamed complex 18"

Dim=1

/SimplicialComplex]

gap> coll.Facets;

[[1, 3], [1, 5], [3, 6], [3, 7], [5, 6], [6, 7]]

gap> sphere:=SCBdSimplex(4);;

gap> ball:=SCDifference(sphere,SC([sphere.Facets[1]]));;

gap> coll:=SCCollapseLex(ball);

[SimplicialComplex

Properties known: Dim, FVector, FacetsEx, IsPure, Name, NumFaces[],

SkelExs[], Vertices.

Name="collapsed version of S^3_5 \ unnamed complex 22"

Dim=0

FVector=[1]

IsPure=true

/SimplicialComplex]

gap> coll.Facets;

[[5]]

simpcomp 168

12.1.3 SCCollapseRevLex

▷ SCCollapseRevLex(complex) (method)

Returns: simplicial complex of type SCSimplicialComplex upon success, fail otherwise.
Employs a greedy collapsing algorithm in reverse lexicographical order to collapse the simplicial

complex complex . See also SCCollapseGreedy (12.1.1) and SCCollapseLex (12.1.2).
Example

gap> s:=SCSurface(1,true);;

gap> s:=SCDifference(s,SC([SCFacets(s)[1]]));;

gap> coll:=SCCollapseGreedy(s);

[SimplicialComplex

Properties known: Dim, FacetsEx, Name, Vertices.

Name="collapsed version of T^2 \ unnamed complex 28"

Dim=1

/SimplicialComplex]

gap> coll.Facets;

[[1, 3], [1, 6], [3, 6], [3, 7], [6, 7]]

gap> sphere:=SCBdSimplex(4);;

gap> ball:=SCDifference(sphere,SC([sphere.Facets[1]]));;

gap> coll:=SCCollapseRevLex(ball);

[SimplicialComplex

Properties known: Dim, FVector, FacetsEx, IsPure, Name, NumFaces[],

SkelExs[], Vertices.

Name="collapsed version of S^3_5 \ unnamed complex 32"

Dim=0

FVector=[1]

IsPure=true

/SimplicialComplex]

gap> coll.Facets;

[[1]]

12.1.4 SCHasseDiagram

▷ SCHasseDiagram(c) (function)

Returns: two lists of lists upon success, fail otherweise.
Computes the Hasse diagram of SCSimplicialComplex object c . The Hasse diagram is returned

as two sets of lists. The first set of lists contains the upward part of the Hasse diagram, the second set
of lists contains the downward part of the Hasse diagram.

The i-th list of each set of lists represents the incidences between the (i−1)-faces and the i-faces.
The faces are given by their indices of the face lattice.

Example
gap> c:=SCBdSimplex(3);;

gap> HD:=SCHasseDiagram(c);

[[[[1, 2, 3], [1, 4, 5], [2, 4, 6], [3, 5, 6]],

simpcomp 169

[[1, 2], [1, 3], [2, 3], [1, 4], [2, 4], [3, 4]]],

[[[2, 1], [3, 1], [4, 1], [3, 2], [4, 2], [4, 3]],

[[4, 2, 1], [5, 3, 1], [6, 3, 2], [6, 5, 4]]]]

12.1.5 SCMorseEngstroem

▷ SCMorseEngstroem(complex) (function)

Returns: two lists of small integer lists upon success, fail otherweise.
Builds a discrete Morse function following the Engstroem method by reducing the input complex

to smaller complexes defined by minimal link and deletion operations. See [Eng09] for details.
Example

gap> c:=SCBdSimplex(3);;

gap> f:=SCMorseEngstroem(c);

[[[2], [2, 3], [2, 4], [2 .. 4], [], [3], [4], [3, 4],

[1, 3], [1, 3, 4], [1], [1, 4], [1, 2, 4], [1, 2],

[1 .. 3]], [[2], [1 .. 3]]]

12.1.6 SCMorseRandom

▷ SCMorseRandom(complex) (function)

Returns: two lists of small integer lists upon success, fail otherweise.
Builds a discrete Morse function following Lutz and Benedetti’s random discrete Morse theory

approach: Faces are paired with free co-dimension one faces until now free faces remain. Then a
critical face is removed at random. See [BL14] for details.

Example
gap> c:=SCBdSimplex(3);;

gap> f:=SCMorseRandom(c);;

gap> Size(f[2]);

2

12.1.7 SCMorseRandomLex

▷ SCMorseRandomLex(complex) (function)

Returns: two lists of small integer lists upon success, fail otherweise.
Builds a discrete Morse function following Adiprasito, Benedetti and Lutz’ lexicographic random

discrete Morse theory approach. See [BL14], [KAL14] for details.
Example

gap> c := SCSurface(3,true);;

gap> f:=SCMorseRandomLex(c);;

gap> Size(f[2]);

8

simpcomp 170

12.1.8 SCMorseRandomRevLex

▷ SCMorseRandomRevLex(complex) (function)

Returns: two lists of small integer lists upon success, fail otherweise.
Builds a discrete Morse function following Adiprasito, Benedetti and Lutz’ reverse lexicographic

random discrete Morse theory approach. See [BL14], [KAL14] for details.
Example

gap> c := SCSurface(5,false);;

gap> f:=SCMorseRandomRevLex(c);;

gap> Size(f[2]);

7

12.1.9 SCMorseSpec

▷ SCMorseSpec(complex, iter[, morsefunc]) (function)

Returns: a list upon success, fail otherweise.
Computes iter versions of a discrete Morse function of complex using a randomised method

specified by morsefunc (default choice is SCMorseRandom (12.1.6), other randomised methods avail-
able are SCMorseRandomLex (12.1.7) SCMorseRandomRevLex (12.1.8), and SCMorseUST (12.1.10)).
The result is referred to by the Morse spectrum of complex and is returned in form of a list containing
all Morse vectors sorted by number of critical points together with the actual vector of critical points
and how often they ocurred (see [BL14] for details).

Example
gap> c:=SCSeriesTorus(2);;

gap> f:=SCMorseSpec(c,30);

[[4, [1, 2, 1], 30]]

Example
gap> c:=SCSeriesHomologySphere(2,3,5);;

gap> f:=SCMorseSpec(c,30,SCMorseRandom);

[[6, [1, 2, 2, 1], 27], [8, [1, 3, 3, 1], 3]]

gap> f:=SCMorseSpec(c,30,SCMorseRandomLex);

[[6, [1, 2, 2, 1], 29], [8, [1, 3, 3, 1], 1]]

gap> f:=SCMorseSpec(c,30,SCMorseRandomRevLex);

[[6, [1, 2, 2, 1], 7], [8, [1, 3, 3, 1], 9],

[8, [2, 3, 2, 1], 1], [10, [1, 4, 4, 1], 11],

[12, [1, 5, 5, 1], 1], [14, [1, 6, 6, 1], 1]]

gap> f:=SCMorseSpec(c,30,SCMorseUST);

[[6, [1, 2, 2, 1], 18], [8, [1, 3, 3, 1], 8],

[10, [1, 4, 4, 1], 3], [12, [1, 5, 5, 1], 1]]

12.1.10 SCMorseUST

▷ SCMorseUST(complex) (function)

Returns: a random Morse function of a simplicial complex and a list of critical faces.
Builds a random Morse function by removing a uniformly sampled spanning tree from the dual

1-skeleton followed by a collapsing approach. complex needs to be a closed weak pseudomanifold
for this to work. For details of the algorithm, see [PS14].

simpcomp 171

Example
gap> c:=SCBdSimplex(3);;

gap> f:=SCMorseUST(c);;

gap> Size(f[2]);

2

12.1.11 SCSpanningTreeRandom

▷ SCSpanningTreeRandom(HD, top) (function)

Returns: a list of edges upon success, fail otherweise.
Computes a uniformly sampled spanning tree of the complex belonging to the Hasse diagram HD

using Wilson’s algorithm (see [Wil96]). If top = true the output is a spanning tree of the dual graph
of the underlying complex. If top = false the output is a spanning tree of the primal graph (i.e., the
1-skeleton.

Example
gap> c:=SCSurface(1,false);;

gap> HD:=SCHasseDiagram(c);;

gap> stTop:=SCSpanningTreeRandom(HD,true);

[3, 10, 13, 8, 1, 15, 12, 6, 14]

gap> stBot:=SCSpanningTreeRandom(HD,false);

[10, 6, 9, 5, 13]

12.1.12 SCHomology

▷ SCHomology(complex) (method)

Returns: a list of pairs of the form [integer, list] upon success
Computes the homology groups of a given simplicial complex complex using SCMorseRandom

(12.1.6) to obtain a Morse function and SmithNormalFormIntegerMat. Use SCHomologyEx

(12.1.13) to use alternative methods to compute discrete Morse functions (such as
SCMorseEngstroem (12.1.5), or SCMorseUST (12.1.10)) or the Smith normal form.

The output is a list of homology groups of the form [H0,,Hd], where d is the dimension of
complex . The format of the homology groups Hi is given in terms of their maximal cyclic subgroups,
i.e. a homology group Hi ≅Z f +Z/t1Z×⋅ ⋅ ⋅×Z/tnZ is returned in form of a list [f ,[t1, ...,tn]], where f
is the (integer) free part of Hi and ti denotes the torsion parts of Hi ordered in weakly increasing size.

Example
gap> c:=SCSeriesTorus(2);;

gap> f:=SCHomology(c);

[[0, []], [2, []], [1, []]]

12.1.13 SCHomologyEx

▷ SCHomologyEx(c, morsechoice, smithchoice) (method)

Returns: a list of pairs of the form [integer, list] upon success, fail otherwise.
Computes the homology groups of a given simplicial complex c using the function morsechoice

for discrete Morse function computations and smithchoice for Smith normal form computations.

simpcomp 172

The output is a list of homology groups of the form [H0,,Hd], where d is the dimension of
complex . The format of the homology groups Hi is given in terms of their maximal cyclic subgroups,
i.e. a homology group Hi ≅Z f +Z/t1Z×⋅ ⋅ ⋅×Z/tnZ is returned in form of a list [f ,[t1, ...,tn]], where f
is the (integer) free part of Hi and ti denotes the torsion parts of Hi ordered in weakly increasing size.

Example
gap> c:=SCSeriesTorus(2);;

gap> f:=SCHomology(c);

[[0, []], [2, []], [1, []]]

Example
gap> c := SCSeriesHomologySphere(2,3,5);;

gap> SCHomologyEx(c,SCMorseRandom,SmithNormalFormIntegerMat); time;

[[0, []], [0, []], [0, []], [1, []]]

44

gap> c := SCSeriesHomologySphere(2,3,5);;

gap> SCHomologyEx(c,SCMorseRandomLex,SmithNormalFormIntegerMat); time;

[[0, []], [0, []], [0, []], [1, []]]

76

gap> c := SCSeriesHomologySphere(2,3,5);;

gap> SCHomologyEx(c,SCMorseRandomRevLex,SmithNormalFormIntegerMat); time;

[[0, []], [0, []], [0, []], [1, []]]

60

gap> c := SCSeriesHomologySphere(2,3,5);;

gap> SCHomologyEx(c,SCMorseEngstroem,SmithNormalFormIntegerMat); time;

[[0, []], [0, []], [0, []], [1, []]]

132

gap> c := SCSeriesHomologySphere(2,3,5);;

gap> SCHomologyEx(c,SCMorseUST,SmithNormalFormIntegerMat); time;

[[0, []], [0, []], [0, []], [1, []]]

160

12.1.14 SCIsSimplyConnected

▷ SCIsSimplyConnected(c) (function)

Returns: a boolean value upon success, fail otherweise.
Computes if the SCSimplicialComplex object c is simply connected. The algorithm is a heuris-

tic method and is described in [PS14]. Internally calls SCIsSimplyConnectedEx (12.1.15).
Example

gap> rp2:=SCSurface(1,false);;

gap> SCIsSimplyConnected(rp2);

false

gap> c:=SCBdCyclicPolytope(8,18);;

gap> SCIsSimplyConnected(c);

true

12.1.15 SCIsSimplyConnectedEx

▷ SCIsSimplyConnectedEx(c[, top, tries]) (function)

Returns: a boolean value upon success, fail otherweise.

simpcomp 173

Computes if the SCSimplicialComplex object c is simply connected. The optional boolean
argument top determines whether a spanning graph in the dual or the primal graph of c will be used
for a collapsing sequence. The optional positive integer argument tries determines the number of
times the algorithm will try to find a collapsing sequence. The algorithm is a heuristic method and is
described in [PS14].

Example
gap> rp2:=SCSurface(1,false);;

gap> SCIsSimplyConnectedEx(rp2);

false

gap> c:=SCBdCyclicPolytope(8,18);;

gap> SCIsSimplyConnectedEx(c);

true

12.1.16 SCIsSphere

▷ SCIsSphere(c) (function)

Returns: a boolean value upon success, fail otherweise.
Determines whether the SCSimplicialComplex object c is a topological sphere. In dimension

≠ 4 the algorithm determines whether c is PL-homeomorphic to the standard sphere. In dimension 4
the PL type is not specified. The algorithm uses a result due to [KS77] stating that, in dimension ≠ 4,
any simply connected homology sphere with PL structure is a standard PL sphere. The function calls
SCIsSimplyConnected (12.1.14) which uses a heuristic method described in [PS14].

Example
gap> c:=SCBdCyclicPolytope(4,20);;

gap> SCIsSphere(c);

true

gap> c:=SCSurface(1,true);;

gap> SCIsSphere(c);

false

12.1.17 SCIsManifold

▷ SCIsManifold(c) (function)

Returns: a boolean value upon success, fail otherweise.
The algorithm is a heuristic method and is described in [PS14] in more detail. Internally calls

SCIsManifoldEx (12.1.18).
Example

gap> c:=SCBdCyclicPolytope(4,20);;

gap> SCIsManifold(c);

true

12.1.18 SCIsManifoldEx

▷ SCIsManifoldEx(c[, aut, quasi]) (function)

Returns: a boolean value upon success, fail otherweise.

simpcomp 174

If the boolean argument aut is true the automorphism group is computed and only one link
per orbit is checked to be a sphere. If aut is not provided symmetry information is only used if
the automorphism group is already known. If the boolean argument quasi is false the algorithm
returns whether or not c is a combinatorial manifold. If quasi is true the 4-dimensional links are not
verified to be standard PL 4-spheres and c is a combinatorial manifold modulo the smooth Poincare
conjecture. By default quasi is set to false. The algorithm is a heuristic method and is described in
[PS14] in more detail.

See SCBistellarIsManifold (9.2.6) for an alternative method for manifold verification.
Example

gap> c:=SCBdCyclicPolytope(4,20);;

gap> SCIsManifold(c);

true

Chapter 13

Library and I/O

13.1 Simplicial complex library

simpcomp contains a library of simplicial complexes on few vertices, most of them (combinatorial)
triangulations of manifolds and pseudomanifolds. The user can load these known triangulations from
the library in order to study their properties or to construct new triangulations out of the known ones.
For example, a user could determine the topological type of a given triangulation – which can be quite
tedious if done by hand – by establishing a PL equivalence to a complex in the library.

Among other known triangulations, the library contains all of the vertex transitive triangulations
of combinatorial manifolds with up to 15 vertices (for d ∈ {2,3,9,10,11,12}) and up to 13 vertices (for
d ∈ {4,5,6,7,8}) and all of the vertex transitive combinatorial pseudomanifolds with up to 15 vertices
(for d = 3) and up to 13 vertices (for d ∈ {4,5,6,7}) classified by Frank Lutz that can be found on
his “Manifold Page” http://www.math.tu-berlin.de/diskregeom/stellar/, along with some
triangulations of sphere bundles and some bounded triangulated PL-manifolds.

See SCLib (13.1.2) for a naming convention used for the global library of simpcomp. Note:
Another way of storing and loading complexes is provided by the functions SCExportIsoSig (6.2.2),
SCExportToString (6.2.1) and SCFromIsoSig (6.2.3), see Section 6.2 for details.

13.1.1 SCIsLibRepository

▷ SCIsLibRepository(object) (filter)

Returns: true or false upon success, fail otherwise.
Filter for the category of a library repository SCIsLibRepository used by the simpcomp library.

The category SCLibRepository is derived from the category SCPropertyObject.
Example

gap> SCIsLibRepository(SCLib); #the global library is stored in SCLib

true

13.1.2 SCLib

▷ SCLib (global variable)

175

http://www.math.tu-berlin.de/diskregeom/stellar/

simpcomp 176

The global variable SCLib contains the library object of the global library of simp-
comp through which the user can access the library. The path to the global library is
GAPROOT/pkg/simpcomp/complexes.

The naming convention in the global library is the following: complexes are usually named by
their topological type. As usual, ‘ Sˆd’ denotes a d-sphere, ‘T’ a torus, ‘x’ the cartesian product, ‘˜’
the twisted product and ‘#’ the connected sum. The Klein Bottle is denoted by ‘K’ or ‘Kˆ2’.

Example
gap> SCLib;

[Simplicial complex library. Properties:

CalculateIndexAttributes=true

Number of complexes in library=7649

IndexAttributes=["Name", "Dim", "F", "G", "H", "Chi", "Homology", "IsPM",

"IsManifold"]

Loaded=true

Path="/home/jonathan/apps/gap4r5/pkg/simpcomp/complexes/"

]

gap> SCLib.Size;

7649

gap> SCLib.SearchByName("S^4~");

[[463, "S^4~S^1 (VT)"], [1473, "S^4~S^1 (VT)"], [1474, "S^4~S^1 (VT)"],

[2477, "S^4~S^1 (VT)"], [4395, "S^4~S^1 (VT)"],

[4396, "S^4~S^1 (VT)"], [4397, "S^4~S^1 (VT)"],

[4398, "S^4~S^1 (VT)"], [4399, "S^4~S^1 (VT)"],

[4402, "S^4~S^1 (VT)"], [4403, "S^4~S^1 (VT)"],

[4404, "S^4~S^1 (VT)"]]

gap> SCLib.Load(last[1][1]);

[SimplicialComplex

Properties known: AltshulerSteinberg, ConnectedComponents, Dim,

DualGraph, EulerCharacteristic, FVector, FacetsEx,

GVector, HVector, HasBoundary, HasInterior,

Homology, Interior, IsConnected,

IsEulerianManifold, IsManifold, IsOrientable,

IsPseudoManifold, IsPure, IsStronglyConnected,

MinimalNonFacesEx, Name, Neighborliness,

NumFaces[], Orientation, Reference, SkelExs[],

Vertices.

Name="S^4~S^1 (VT)"

Dim=5

AltshulerSteinberg=2417917928025780

EulerCharacteristic=0

FVector=[13, 78, 195, 260, 195, 65]

GVector=[6, 21, -35]

HVector=[7, 28, -7, 28, 7, 1]

HasBoundary=false

HasInterior=true

Homology=[[0, []], [1, []], [0, []], [0, []], [0, [2]], [0,\

[]]]

IsConnected=true

IsEulerianManifold=true

IsOrientable=false

simpcomp 177

IsPseudoManifold=true

IsPure=true

IsStronglyConnected=true

Neighborliness=2

/SimplicialComplex]

13.1.3 SCLibAdd

▷ SCLibAdd(repository, complex[, name]) (function)

Returns: true upon success, fail otherwise.
Adds a given simplicial complex complex to a given repository repository of type

SCIsLibRepository. complex is saved to a file with suffix .sc in the repositories base path, where
the file name is either formed from the optional argument name and the current time or taken from the
name of the complex, if it is named.

Example
gap> info:=InfoLevel(InfoSimpcomp);;

gap> SCInfoLevel(0);;

gap> myRepository:=SCLibInit("/tmp/repository");

[Simplicial complex library. Properties:

CalculateIndexAttributes=true

Number of complexes in library=0

IndexAttributes=["Name", "Dim", "F", "G", "H", "Chi", "Homology", "IsPM",

"IsManifold"]

Loaded=true

Path="/tmp/repository/"

]

gap> complex1:=SCBdCrossPolytope(4);;

gap> SCLibAdd(myRepository,complex1);

true

gap> complex2:=SCBdCrossPolytope(4);;

gap> myRepository.Add(complex2);; # alternative syntax

gap> SCInfoLevel(info);;

13.1.4 SCLibAllComplexes

▷ SCLibAllComplexes(repository) (function)

Returns: list of entries of the form [integer, string] upon success, fail otherwise.
Returns a list with entries of the form [ID, NAME] of all the complexes in the given repository

repository of type SCIsLibRepository.
Example

gap> all:=SCLibAllComplexes(SCLib);;

gap> all[1];

[1, "Moebius Strip"]

gap> Length(all);

7649

simpcomp 178

13.1.5 SCLibDelete

▷ SCLibDelete(repository, id) (function)

Returns: true upon success, fail otherwise.
Deletes the simplicial complex with the given id id from the given repository repository . Apart

from deleting the complexes’ index entry, the associated .sc file is also deleted.
Example

gap> myRepository:=SCLibInit("/tmp/repository");

[Simplicial complex library. Properties:

CalculateIndexAttributes=true

Number of complexes in library=2

IndexAttributes=["Name", "Dim", "F", "G", "H", "Chi", "Homology", "IsPM",

"IsManifold"]

Loaded=true

Path="/tmp/repository/"

]

gap> SCLibAdd(myRepository,SCSimplex(2));;

gap> SCLibDelete(myRepository,1);

true

13.1.6 SCLibDetermineTopologicalType

▷ SCLibDetermineTopologicalType([repository,]complex) (function)

Returns: simplicial complex of type SCSimplicialComplex or a list of integers upon success,
fail otherwise.

Tries to determine the topological type of a given complex complex by first looking for com-
plexes with matching homology in the library repository repository (if no repository is passed, the
global repository SCLib is used) and either returns a simplicial complex object (that is combinatori-
ally isomorphic to the complex given) or a list of library ids of complexes in the library with the same
homology as the complex provided.

The ids obtained in this way can then be used to compare the corresponding complexes with
complex via the function SCEquivalent (9.2.2).

If complex is a combinatorial manifold of dimension 1 or 2 its topological type is computed,
stored to the property TopologicalType and complex is returned.

If no complexes with matching homology can be found, the empty set is returned.
Example

gap> c:=SCFromFacets([[1,2,3],[1,2,6],[1,3,5],[1,4,5],[1,4,6],

[2,3,4],[2,4,5],[2,5,6],[3,4,6],[3,5,6]]);;

gap> SCLibDetermineTopologicalType(c);

[SimplicialComplex

Properties known: BoundaryEx, Dim, FacetsEx, HasBoundary,

IsPseudoManifold, IsPure, Name, SkelExs[],

Vertices.

Name="unnamed complex 167"

Dim=2

HasBoundary=false

IsPseudoManifold=true

IsPure=true

simpcomp 179

/SimplicialComplex]

13.1.7 SCLibFlush

▷ SCLibFlush(repository, confirm) (function)

Returns: true upon success, fail otherwise.
Completely empties a given repository repository . The index and all simplicial complexes in

this repository are deleted. The second argument, confirm , must be the string "yes" in order to
confirm the deletion.

Example
gap> myRepository:=SCLibInit("/tmp/repository");;

gap> SCLibFlush(myRepository,"yes");

#I SCLibInit: invalid parameters.

true

13.1.8 SCLibInit

▷ SCLibInit(dir) (function)

Returns: library repository of type SCLibRepository upon success, fail otherwise.
This function initializes a library repository object for the given directory dir (which has to be

provided in form of a GAP object of type String or Directory) and returns that library repository
object in case of success. The returned object then provides a mean to access the library repository
via the SCLib-functions of simpcomp.

The global library repository of simpcomp is loaded automatically at startup and is stored in the
variable SCLib. User repositories can be created by calling SCLibInit with a desired destination
directory. Note that each repository must reside in a different path since otherwise data may get lost.

The function first tries to load the repository index for the given directory to rebuild it (by calling
SCLibUpdate) if loading the index fails. The library index of a library repository is stored in its base
path in the XML file complexes.idx, the complexes are stored in files with suffix .sc, also in XML
format.

Example
gap> myRepository:=SCLibInit("/tmp/repository");

#I SCLibInit: made directory "/tmp/repository/" for user library.

#I SCIntFunc.SCLibInit: index not found -- trying to reconstruct it.

#I SCLibUpdate: rebuilding index for /tmp/repository/.

#I SCLibUpdate: rebuilding index done.

[Simplicial complex library. Properties:

CalculateIndexAttributes=true

Number of complexes in library=0

IndexAttributes=["Name", "Dim", "F", "G", "H", "Chi", "Homology", "IsPM",

"IsManifold"]

Loaded=true

Path="/tmp/repository/"

]

simpcomp 180

13.1.9 SCLibIsLoaded

▷ SCLibIsLoaded(repository) (function)

Returns: true or false upon succes, fail otherwise.
Returns true when a given library repository repository is in loaded state. This means that

the directory of this repository is accessible and a repository index file for this repository exists in the
repositories’ path. If this is not the case false is returned.

Example
gap> SCLibIsLoaded(SCLib);

true

gap> SCLib.IsLoaded;

true

13.1.10 SCLibSearchByAttribute

▷ SCLibSearchByAttribute(repository, expr) (function)

Returns: A list of items of the form [integer, string] upon success, fail otherwise.
Searches a given repository repository for complexes for which the boolean expression expr ,

passed as string, evaluates to true and returns a list of complexes with entries of the form [ID,

NAME] or fail upon error. The expression may use all GAP functions and can access all the indexed
attributes of the complexes in the given repository for the query. The standard attributes are: Dim
(Dimension), F (f-vector), G (g-vector), H (h-vector), Chi (Euler characteristic), Homology, Name,
IsPM, IsManifold. See SCLib for the set of indexed attributes of the global library of simpcomp.

Example
gap> SCLibSearchByAttribute(SCLib,"Dim=4 and F[3]=Binomial(F[1],3)");

[[16, "CP^2 (VT)"], [7648, "K3_16"]]

gap> SCLib.SearchByAttribute("Dim=4 and F[3]=Binomial(F[1],3)");

[[16, "CP^2 (VT)"], [7648, "K3_16"]]

13.1.11 SCLibSearchByName

▷ SCLibSearchByName(repository, name) (function)

Returns: A list of items of the form [integer, string] upon success, fail otherwise.
Searches a given repository repository for complexes that contain the string name as a substring

of their name attribute and returns a list of the complexes found with entries of the form [ID, NAME].
See SCLib (13.1.2) for a naming convention used for the global library of simpcomp.

Example
gap> SCLibSearchByName(SCLib,"K3");

[[7648, "K3_16"], [7649, "K3_17"]]

gap> SCLib.SearchByName("K3"); #alternative syntax

[[7648, "K3_16"], [7649, "K3_17"]]

gap> SCLib.SearchByName("S^4x"); #search for products with S^4

[[713, "S^4xS^1 (VT)"], [1472, "S^4xS^1 (VT)"], [1475, "S^4xS^1 (VT)"],

[7479, "S^4xS^2"], [7539, "S^4xS^3"], [7573, "S^4xS^4"]]

simpcomp 181

13.1.12 SCLibSize

▷ SCLibSize(repository) (function)

Returns: integer upon success, fail otherwise.
Returns the number of complexes contained in the given repository repository . Fails if the

library repository was not previously loaded with SCLibInit.
Example

gap> SCLibSize(SCLib); #SCLib is the repository of the global library

7649

13.1.13 SCLibUpdate

▷ SCLibUpdate(repository[, recalc]) (function)

Returns: library repository of type SCLibRepository upon success, fail otherwise.
Recreates the index of a given repository (either via a repository object or a base path of a repos-

itory repository) by scanning the base path for all .sc files containing simplicial complexes of
the repository. Returns a repository object with the newly created index on success or fail in case
of an error. The optional boolean argument recalc forces simpcomp to recompute all the indexed
properties (such as f-vector, homology, etc.) of the simplicial complexes in the repository if set to
true.

Example
gap> myRepository:=SCLibInit("/tmp/repository");;

gap> SCLibUpdate(myRepository);

#I SCLibUpdate: rebuilding index for /tmp/repository/.

#I SCLibUpdate: rebuilding index done.

[Simplicial complex library. Properties:

CalculateIndexAttributes=true

Number of complexes in library=0

IndexAttributes=["Name", "Dim", "F", "G", "H", "Chi", "Homology", "IsPM",

"IsManifold"]

Loaded=true

Path="/tmp/repository/"

]

13.1.14 SCLibStatus

▷ SCLibStatus(repository) (function)

Returns: library repository of type SCLibRepository upon success, fail otherwise.
Lets GAP print the status of a given library repository repository . IndexAttributes is the

list of attributes indexed for this repository. If CalculateIndexAttributes is true, the index at-
tributes for a complex added to the library are calculated automatically upon addition of the complex,
otherwise this is left to the user and only pre-calculated attributes are indexed.

Example
gap> SCLibStatus(SCLib);

[Simplicial complex library. Properties:

CalculateIndexAttributes=true

Number of complexes in library=7649

IndexAttributes=["Name", "Dim", "F", "G", "H", "Chi", "Homology", "IsPM",

simpcomp 182

"IsManifold"]

Loaded=true

Path="/home/jonathan/apps/gap4r5/pkg/simpcomp/complexes/"

]

13.2 simpcomp input / output functions

This section contains a description of the input/output-functionality provided by simpcomp. The
package provides the functionality to save and load simplicial complexes (and their known properties)
to, respectively from files in XML format. Furthermore, it provides the user with functions to export
simplicial complexes into polymake format (for this format there also exists rudimentary import func-
tionality), as JavaView geometry or in form of a LATEX table. For importing more complex polymake
data the package polymaking [R1̈3] can be used.

13.2.1 SCLoad

▷ SCLoad(filename) (function)

Returns: simplicial complex of type SCSimplicialComplex upon success, fail otherwise.
Loads a simplicial complex stored in a binary format (using IO_Pickle) from a file specified in

filename (as string). If filename does not end in .scb, this suffix is appended to the file name.
Example

gap> c:=SCBdSimplex(3);;

gap> SCSave(c,"/tmp/bddelta3");

true

gap> d:=SCLoad("/tmp/bddelta3");

[SimplicialComplex

Properties known: AutomorphismGroup, AutomorphismGroupSize,

AutomorphismGroupStructure,

AutomorphismGroupTransitivity, Dim,

EulerCharacteristic, FacetsEx, GeneratorsEx,

HasBoundary, Homology, IsConnected,

IsStronglyConnected, Name, NumFaces[],

TopologicalType, Vertices.

Name="S^2_4"

Dim=2

AutomorphismGroupSize=24

AutomorphismGroupStructure="S4"

AutomorphismGroupTransitivity=4

EulerCharacteristic=2

HasBoundary=false

Homology=[[0, []], [0, []], [1, []]]

IsConnected=true

IsStronglyConnected=true

TopologicalType="S^2"

/SimplicialComplex]

gap> c=d;

simpcomp 183

true

13.2.2 SCLoadXML

▷ SCLoadXML(filename) (function)

Returns: simplicial complex of type SCSimplicialComplex upon success, fail otherwise.
Loads a simplicial complex stored in XML format from a file specified in filename (as string).

If filename does not end in .sc, this suffix is appended to the file name.
Example

gap> c:=SCBdSimplex(3);;

gap> SCSaveXML(c,"/tmp/bddelta3");

true

gap> d:=SCLoadXML("/tmp/bddelta3");

[SimplicialComplex

Properties known: AutomorphismGroup, AutomorphismGroupSize,

AutomorphismGroupStructure,

AutomorphismGroupTransitivity, Dim,

EulerCharacteristic, FacetsEx, GeneratorsEx,

HasBoundary, Homology, IsConnected,

IsStronglyConnected, Name, NumFaces[],

TopologicalType, Vertices.

Name="S^2_4"

Dim=2

AutomorphismGroupSize=24

AutomorphismGroupStructure="S4"

AutomorphismGroupTransitivity=4

EulerCharacteristic=2

HasBoundary=false

Homology=[[0, []], [0, []], [1, []]]

IsConnected=true

IsStronglyConnected=true

TopologicalType="S^2"

/SimplicialComplex]

gap> c=d;

true

13.2.3 SCSave

▷ SCSave(complex, filename) (function)

Returns: true upon success, fail otherwise.
Saves a simplicial complex in a binary format (using IO_Pickle) to a file specified in filename

(as string). If filename does not end in .scb, this suffix is appended to the file name.
Example

gap> c:=SCBdSimplex(3);;

gap> SCSave(c,"/tmp/bddelta3");

simpcomp 184

true

13.2.4 SCSaveXML

▷ SCSaveXML(complex, filename) (function)

Returns: true upon success, fail otherwise.
Saves a simplicial complex complex to a file specified by filename (as string) in XML format.

If filename does not end in .sc, this suffix is appended to the file name.
Example

gap> c:=SCBdSimplex(3);;

gap> SCSaveXML(c,"/tmp/bddelta3");

true

13.2.5 SCExportMacaulay2

▷ SCExportMacaulay2(complex, ring, filename[, alphalabels]) (function)

Returns: true upon success, fail otherwise.
Exports the facet list of a given simplicial complex complex in Macaulay2 format to a file speci-

fied by filename . The argument ring can either be the ring of integers (specified by Integers) or
the ring of rationals (sepcified by Rationals). The optional boolean argument alphalabels labels
the complex with characters from a, . . . ,z in the exported file if a value of true is supplied, while
the standard labeling of the vertices is v1, . . . ,vn where n is the number of vertices of complex . If
complex has more than 26 vertices, the argument alphalabels is ignored.

Example
gap> c:=SCBdCrossPolytope(4);;

gap> SCExportMacaulay2(c,Integers,"/tmp/bdbeta4.m2");

true

13.2.6 SCExportPolymake

▷ SCExportPolymake(complex, filename) (function)

Returns: true upon success, fail otherwise.
Exports the facet list with vertex labels of a given simplicial complex complex in polymake

format to a file specified by filename . Currently, only the export in the format of polymake version
2.3 is supported.

Example
gap> c:=SCBdCrossPolytope(4);;

gap> SCExportPolymake(c,"/tmp/bdbeta4.poly");

true

13.2.7 SCImportPolymake

▷ SCImportPolymake(filename) (function)

Returns: simplicial complex of type SCSimplicialComplex upon success, fail otherwise.

simpcomp 185

Imports the facet list of a topaz polymake file specified by filename (discarding any vertex
labels) and creates a simplicial complex object from these facets.

Example
gap> c:=SCBdCrossPolytope(4);;

gap> SCExportPolymake(c,"/tmp/bdbeta4.poly");

true

gap> d:=SCImportPolymake("/tmp/bdbeta4.poly");

[SimplicialComplex

Properties known: Dim, FacetsEx, Name, Vertices.

Name="polymake import '/tmp/bdbeta4.poly'"

Dim=3

/SimplicialComplex]

gap> c=d;

true

13.2.8 SCExportLatexTable

▷ SCExportLatexTable(complex, filename, itemsperline) (function)

Returns: true on success, fail otherwise.
Exports the facet list of a given simplicial complex complex (or any list given as first argument)

in form of a LATEX table to a file specified by filename . The argument itemsperline specifies how
many columns the exported table should have. The faces are exported in the format ⟨v1, . . . ,vk⟩.

Example
gap> c:=SCBdSimplex(5);;

gap> SCExportLatexTable(c,"/tmp/bd5simplex.tex",5);

true

13.2.9 SCExportJavaView

▷ SCExportJavaView(complex, file, coords) (function)

Returns: true on success, fail otherwise.
Exports the 2-skeleton of the given simplicial complex complex (or the facets if the complex is of

dimension 2 or less) in JavaView format (file name suffix .jvx) to a file specified by filename (as
string). The list coords must contain a 3-tuple of real coordinates for each vertex of complex , either
as tuple of length three containing the coordinates (Warning: as GAP only has rudimentary support
for floating point values, currently only integer numbers can be used as coordinates when providing
coords as list of 3-tuples) or as string of the form "x.x y.y z.z" with decimal numbers x.x, y.y,
z.z for the three coordinates (i.e. "1.0 0.0 0.0").

Example
gap> coords:=[[1,0,0],[0,1,0],[0,0,1]];;

gap> SCExportJavaView(SCBdSimplex(2),"/tmp/triangle.jvx",coords);

true

simpcomp 186

13.2.10 SCExportPolymake

▷ SCExportPolymake(complex, filename) (function)

Returns: true upon success, fail otherwise.
Exports the gluings of the tetrahedra of a given combinatorial 3-manifold complex in a format

compatible with Matveev’s 3-manifold software Recognizer.
Example

gap> c:=SCBdCrossPolytope(4);;

gap> SCExportRecognizer(c,"/tmp/bdbeta4.mv");

true

13.2.11 SCExportSnapPy

▷ SCExportSnapPy(complex, filename) (function)

Returns: true upon success, fail otherwise.
Exports the facet list and orientability of a given combinatorial 3-pseudomanifold complex in

SnapPy format to a file specified by filename .
Example

gap> SCLib.SearchByAttribute("Dim=3 and F=[8,28,56,28]");

[[8, "PM^3 - TransitiveGroup(8,43), No. 1"]]

gap> c:=SCLib.Load(last[1][1]);;

gap> SCExportSnapPy(c,"/tmp/M38.tri");

true

Chapter 14

Interfaces to other software packages

simpcomp contains various interfaces to other software packages (see Chapter 13 for file-related
export and import formats). In this chapter, some more sophisticated interfaces to other software
packages are described.

Note that this chapter is subject to change and extension as it is planned to expand simpcomp’s
functionality in this area in the course of the next versions.

14.1 Interface to the GAP-package homalg

As of Version 1.5, simpcomp is equipped with an interface to the GAP-package homalg [BR08]
by Mohamed Barakat. This allows to use homalg’s powerful capabilities in the field of homological
algebra to compute topological properties of simplicial complexes.

For the time being, the only functions provided are ones allowing to compute the homology and
cohomology groups of simplicial complexes with arbitrary coefficients. It is planned to extend the
functionality in future releases of simpcomp. See below for a list of functions that provide an inter-
face to homalg.

14.1.1 SCHomalgBoundaryMatrices

▷ SCHomalgBoundaryMatrices(complex, modulus) (method)

Returns: a list of homalg objects upon success, fail otherwise.
This function computes the boundary operator matrices for the simplicial complex complex with

a ring of coefficients as specified by modulus : a value of 0 yields Q-matrices, a value of 1 yields
Z-matrices and a value of q, q a prime or a prime power, computes the Fq-matrices.

Example
gap> SCLib.SearchByName("CP^2 (VT)");

[[16, "CP^2 (VT)"]]

gap> c:=SCLib.Load(last[1][1]);;

gap> SCHomalgBoundaryMatrices(c,0);

[<A 36 x 9 mutable matrix over an internal ring>,

<A 84 x 36 mutable matrix over an internal ring>,

<A 90 x 84 mutable matrix over an internal ring>,

<A 36 x 90 mutable matrix over an internal ring>,

<An unevaluated 0 x 36 zero matrix over an internal ring>]

187

simpcomp 188

14.1.2 SCHomalgCoboundaryMatrices

▷ SCHomalgCoboundaryMatrices(complex, modulus) (method)

Returns: a list of homalg objects upon success, fail otherwise.
This function computes the coboundary operator matrices for the simplicial complex complex

with a ring of coefficients as specified by modulus : a value of 0 yields Q-matrices, a value of 1 yields
Z-matrices and a value of q, q a prime or a prime power, computes the Fq-matrices.

Example
gap> SCLib.SearchByName("CP^2 (VT)");

[[16, "CP^2 (VT)"]]

gap> c:=SCLib.Load(last[1][1]);;

gap> SCHomalgCoboundaryMatrices(c,0);

[<A 9 x 36 mutable matrix over an internal ring>,

<A 36 x 84 mutable matrix over an internal ring>,

<A 84 x 90 mutable matrix over an internal ring>,

<A 90 x 36 mutable matrix over an internal ring>,

<An unevaluated 36 x 0 zero matrix over an internal ring>]

14.1.3 SCHomalgHomology

▷ SCHomalgHomology(complex, modulus) (method)

Returns: a list of integers upon success, fail otherwise.
This function computes the ranks of the homology groups of complex with a ring of coefficients as

specified by modulus : a value of 0 computes the Q-homology, a value of 1 computes the Z-homology
and a value of q, q a prime or a prime power, computes the Fq-homology ranks.

Note that if you are interested not only in the ranks of the homology groups, but rather their full
structure, have a look at the function SCHomalgHomologyBasis (14.1.4).

Example
gap> SCLib.SearchByName("K3");

[[7648, "K3_16"], [7649, "K3_17"]]

gap> c:=SCLib.Load(last[1][1]);;

gap> SCHomalgHomology(c,0);

#I SCHomalgHomologyOp: Q-homology ranks: [1, 0, 22, 0, 1]

[1, 0, 22, 0, 1]

14.1.4 SCHomalgHomologyBasis

▷ SCHomalgHomologyBasis(complex, modulus) (method)

Returns: a homalg object upon success, fail otherwise.
This function computes the homology groups (including explicit bases of the modules involved) of

complex with a ring of coefficients as specified by modulus : a value of 0 computes the Q-homology,
a value of 1 computes the Z-homology and a value of q, q a prime or a prime power, computes the
Fq-homology groups.

The k-th homology group hk can be obtained by calling hk:=CertainObject(homology,k);,
where homology is the homalg object returned by this function. The generators of hk can then be
obtained via GeneratorsOfModule(hk);.

simpcomp 189

Note that if you are only interested in the ranks of the homology groups, then it is better to use the
funtion SCHomalgHomology (14.1.3) which is way faster.

Example
gap> SCLib.SearchByName("K3");

[[7648, "K3_16"], [7649, "K3_17"]]

gap> c:=SCLib.Load(last[1][1]);;

gap> SCHomalgHomologyBasis(c,0);

#I SCHomalgHomologyBasisOp: constructed Q-homology groups.

<A graded homology object consisting of 5 left modules at degrees [0 .. 4]>

14.1.5 SCHomalgCohomology

▷ SCHomalgCohomology(complex, modulus) (method)

Returns: a list of integers upon success, fail otherwise.
This function computes the ranks of the cohomology groups of complex with a ring of coefficients

as specified by modulus : a value of 0 computes the Q-cohomology, a value of 1 computes the Z-
cohomology and a value of q, q a prime or a prime power, computes the Fq-cohomology ranks.

Note that if you are interested not only in the ranks of the cohomology groups, but rather their full
structure, have a look at the function SCHomalgCohomologyBasis (14.1.6).

Example
gap> SCLib.SearchByName("K3");

[[7648, "K3_16"], [7649, "K3_17"]]

gap> c:=SCLib.Load(last[1][1]);;

gap> SCHomalgCohomology(c,0);

#I SCHomalgCohomologyOp: Q-cohomology ranks: [1, 0, 22, 0, 1]

[1, 0, 22, 0, 1]

14.1.6 SCHomalgCohomologyBasis

▷ SCHomalgCohomologyBasis(complex, modulus) (method)

Returns: a homalg object upon success, fail otherwise.
This function computes the cohomology groups (including explicit bases of the modules involved)

of complex with a ring of coefficients as specified by modulus : a value of 0 computes the Q-
cohomology, a value of 1 computes the Z-cohomology and a value of q, q a prime or a prime power,
computes the Fq-homology groups.

The k-th cohomology group ck can be obtained by calling
ck:=CertainObject(cohomology,k);, where cohomology is the homalg object returned
by this function. The generators of ck can then be obtained via GeneratorsOfModule(ck);.

Note that if you are only interested in the ranks of the cohomology groups, then it is better to use
the funtion SCHomalgCohomology (14.1.5) which is way faster.

Example
gap> SCLib.SearchByName("K3");

[[7648, "K3_16"], [7649, "K3_17"]]

gap> c:=SCLib.Load(last[1][1]);;

gap> SCHomalgCohomologyBasis(c,0);

#I SCHomalgCohomologyBasisOp: constructed Q-cohomology groups.

<A graded cohomology object consisting of 5 left modules at degrees

simpcomp 190

[1 .. 5]>

Chapter 15

Miscellaneous functions

The behaviour of simpcomp can be changed by setting cetain global options. This can be achieved
by the functions described in the following.

15.1 simpcomp logging

The verbosity of the output of information to the screen during calls to functions of the package sim-
pcomp can be controlled by setting the info level parameter via the function SCInfoLevel (15.1.1).

15.1.1 SCInfoLevel

▷ SCInfoLevel(level) (function)

Returns: true

Sets the logging verbosity of simpcomp. A level of 0 suppresses all output, a level of 1 lets sim-
pcomp output normal running information, whereas levels of 2 and higher display verbose running
information. Examples of functions using more verbose logging are bistellar flip-related functions.

Example
gap> SCInfoLevel(3);

true

gap> c:=SCBdCrossPolytope(3);;

gap> SCReduceComplex(c);

#I round 0, move: [[4, 6], [1, 2]]

F: [6, 12, 8]

#I round 1, move: [[6], [1, 2, 3]]

F: [5, 9, 6]

#I round 1

Reduced complex, F: [5, 9, 6]

#I round 2, move: [[4], [1, 2, 5]]

F: [4, 6, 4]

#I round 2

Reduced complex, F: [4, 6, 4]

#I SCReduceComplexEx: computed locally minimal complex after 3 rounds.

[true, [SimplicialComplex

Properties known: Dim, FacetsEx, Name, Vertices.

Name="unnamed complex 3"

191

simpcomp 192

Dim=2

/SimplicialComplex], 3]

15.2 Email notification system

simpcomp comes with an email notification system that can be used for being notified of the progress
of lengthy computations (such as reducing a complex via bistellar flips). See below for a description
of the mail notification related functions. Note that this might not work on non-Unix systems.

See SCReduceComplexEx (9.2.14) for an example computation using the email notification sys-
tem.

15.2.1 SCMailClearPending

▷ SCMailClearPending() (function)

Returns: nothing.
Clears a pending mail message.

Example
gap> SCMailClearPending();

15.2.2 SCMailIsEnabled

▷ SCMailIsEnabled() (function)

Returns: true or false upon success, fail otherwise.
Returns true when the mail notification system of simpcomp is enabled, false otherwise. De-

fault setting is false.
Example

gap> SCMailSetAddress("johndoe@somehost"); #enables mail notification

true

gap> SCMailIsEnabled();

true

15.2.3 SCMailIsPending

▷ SCMailIsPending() (function)

Returns: true or false upon success, fail otherwise.
Returns true when an email of the simpcomp email notification system is pending, false oth-

erwise.
Example

gap> SCMailIsPending();

true

simpcomp 193

15.2.4 SCMailSend

▷ SCMailSend(message[, starttime][, forcesend]) (function)

Returns: true when the message was sent, false if it was not send, fail upon an error.
Tries to send an email to the address specified by SCMailSetAddress (15.2.6) using the Unix

program mail. The optional parameter starttime specifies the starting time (as the integer Unix
timestamp) a calculation was started (then the duration of the calculation is included in the email),
the optional boolean parameter forcesend can be used to force the sending of an email, even if this
violates the minimal email sending interval, see SCMailSetMinInterval (15.2.8).

Example
gap> SCMailSetAddress("johndoe@somehost"); #enables mail notification

true

gap> SCMailIsEnabled();

true

gap> SCMailSend("Hello, this is simpcomp.");

mail: cannot send message: Process exited with a non-zero status

false

15.2.5 SCMailSendPending

▷ SCMailSendPending() (function)

Returns: true upon success, fail otherwise.
Tries to send a pending email of the simpcomp email notification system. Returns true on

success or if there was no mail pending.
Example

gap> SCMailSendPending();

mail: cannot send message: Process exited with a non-zero status

false

15.2.6 SCMailSetAddress

▷ SCMailSetAddress(address) (function)

Returns: true upon success, fail otherwise.
Sets the email address that should be used to send notification messages and enables the mail

notification system by calling SCMailSetEnabled (15.2.7)(true).
Example

gap> SCMailSetAddress("johndoe@somehost");

true

15.2.7 SCMailSetEnabled

▷ SCMailSetEnabled(flag) (function)

Returns: true upon success, fail otherwise.
Enables or disables the mail notification system of simpcomp. By default it is disabled. Returns

fail if no email message was previously set with SCMailSetAddress (15.2.6).

simpcomp 194

Example
gap> SCMailSetAddress("johndoe@somehost"); #enables mail notification

true

gap> SCMailSetEnabled(false);

true

15.2.8 SCMailSetMinInterval

▷ SCMailSetMinInterval(interval) (function)

Returns: true upon success, fail otherwise.
Sets the minimal time interval in seconds that mail messages can be sent by simpcomp. This

prevents a flooding of the specified email address with messages sent by simpcomp. Default is 3600,
i.e. one hour.

Example
gap> SCMailSetMinInterval(7200);

true

15.3 Testing the functionality of simpcomp

simpcomp makes use of the GAP internal testing mechanisms and provides the user with a function
to test the functionality of the package.

15.3.1 SCRunTest

▷ SCRunTest() (function)

Returns: true upon success, fail otherwise.
Test whether the package simpcomp is functional by calling

ReadTest("GAPROOT/pkg/simpcomp/tst/simpcomp.tst");. The returned value of GAP4stones
is a measure of your system performance and differs from system to system.

Example
gap> SCRunTest();

Line 1220 :

+ simpcomp package test

Line 1221 :

+ GAP4stones: 65445

true

On a modern computer, the function SCRunTest should take about a minute to complete when the
packages GRAPE [Soi12] and homology [DHSW11] are available. If these packages are missing,
the testing will take slightly longer.

Chapter 16

Property handlers

As explained in Chapter 5, objects of the types SCSimplicialComplex, SCNormalSurface and
SCLibRepository provide a set of property handlers for ease of access to simpcomp functions
using these objects. Accessing these property handlers is possible via the .-operator.

For example, the f -vector of a simplicial complex c that is stored as a SCSimplicialComplex

object can be accessed via the statement c.F; instead of writing the longer SCFVector(c);.
See below for a list of all properties supported by objects of the types SCPolyhedralComplex,
SCSimplicialComplex, SCNormalSurface and SCLibRepository (Note that the property handlers
of SCPolyhedralComplex can be used by both SCSimplicialComplex and SCNormalSurface).

16.1 Property handlers of SCPolyhedralComplex

This section contains a table of all property handlers of a SCPolyhedralComplex object.

PROPERTY HANDLER FUNCTION CALLED

AntiStar SCAntiStar (4.3.1)
Ast SCAntiStar (4.3.1)
Facets SCFacets (6.9.19)
FacetsEx SCFacetsEx (6.9.20)
LabelMax SCLabelMax (4.2.1)
LabelMin SCLabelMin (4.2.2)
Labels SCLabels (4.2.3)
Lk SCLink (4.3.2)
Link SCLink (4.3.2)
Links SCLinks (4.3.3)
Lks SCLinks (4.3.3)
Name SCName (4.2.4)
Reference SCReference (4.2.5)
Relabel SCRelabel (4.2.6)
RelabelStandard SCRelabelStandard (4.2.7)
RelabelTransposition SCRelabelTransposition (4.2.8)
Rename SCRename (4.2.9)
SetReference SCSetReference (4.2.10)

195

simpcomp 196

Star SCStar (4.3.4)
Str SCStar (4.3.4)
Stars SCStars (4.3.5)
Strs SCStars (4.3.5)
UnlabelFace SCUnlabelFace (4.2.11)
Vertices SCVertices (4.1.3)
VerticesEx SCVerticesEx (4.1.4)

16.2 Property handlers of SCSimplicialComplex

This section contains a table of all property handlers of a SCSimplicialComplex object.

PROPERTY HANDLER FUNCTION CALLED

ASDet SCAltshulerSteinberg (6.9.1)
AlexanderDual SCAlexanderDual (6.10.1)
AutomorphismGroup SCAutomorphismGroup (6.9.2)
AutomorphismGroupInternal SCAutomorphismGroupInternal (6.9.3)
AutomorphismGroupSize SCAutomorphismGroupSize (6.9.4)
AutomorphismGroupStructure SCAutomorphismGroupStructure (6.9.5)
AutomorphismGroupTransitivity SCAutomorphismGroupTransitivity (6.9.6)
Bd SCBoundary (6.9.7)
Boundary SCBoundary (6.9.7)
BoundaryOperatorMatrix SCBoundaryOperatorMatrix (8.1.1)
Chi SCEulerCharacteristic (7.3.3)
CoboundaryOperatorMatrix SCCoboundaryOperatorMatrix (8.2.1)
Cohomology SCCohomology (8.2.2)
CohomologyBasis SCCohomologyBasis (8.2.3)
CohomologyBasisAsSimplices SCCohomologyBasisAsSimplices (8.2.4)
CollapseGreedy SCCollapseGreedy (12.1.1)
Cone SCCone (6.10.3)
ConnectedComponents SCConnectedComponents (7.3.1)
Copy SCCopy (7.2.1)
CupProduct SCCupProduct (8.2.5)
DehnSommervilleCheck SCDehnSommervilleCheck (6.9.8)
DeletedJoin SCDeletedJoin (6.10.4)
DetermineTopologicalType SCLibDetermineTopologicalType (13.1.6)
Difference SCDifference (6.10.5)
DifferenceCycles SCDifferenceCycles (6.9.10)
Dim SCDim (7.3.2)
DualGraph SCDualGraph (6.9.12)
Equivalent SCEquivalent (9.2.2)
EulerCharacteristic SCEulerCharacteristic (7.3.3)
ExportJavaView SCExportJavaView (13.2.9)
ExportLatexTable SCExportLatexTable (13.2.8)
ExportPolymake SCExportPolymake (13.2.10)

simpcomp 197

F SCFVector (7.3.4)
FaceLattice SCFaceLattice (7.3.5)
FaceLatticeEx SCFaceLatticeEx (7.3.6)
Faces SCFaces (6.9.17)
FacesEx SCFacesEx (6.9.18)
FillSphere SCFillSphere (6.10.6)
FpBetti SCFpBettiNumbers (7.3.7)
FundamentalGroup SCFundamentalGroup (6.9.22)
G SCGVector (6.9.23)
Generators SCGenerators (6.9.24)
GeneratorsEx SCGeneratorsEx (6.9.25)
H SCHVector (6.9.26)
HandleAddition SCHandleAddition (6.10.7)
HasBd SCHasBoundary (6.9.27)
HasBoundary SCHasBoundary (6.9.27)
HasInt SCHasInterior (6.9.28)
HasInterior SCHasInterior (6.9.28)
HasseDiagram SCHasseDiagram (12.1.4)
Homology SCHomology (12.1.12)
HomologyBasis SCHomologyBasis (8.1.3)
HomologyBasisAsSimplices SCHomologyBasisAsSimplices (8.1.4)
HomologyInternal SCHomologyInternal (8.1.5)
Incidences SCIncidences (6.9.32)
IncidencesEx SCIncidencesEx (6.9.33)
Interior SCInterior (6.9.34)
Intersection SCIntersection (6.10.8)
IntersectionForm SCIntersectionForm (8.2.6)
IntersectionFormDimensionality SCIntersectionFormDimensionality (8.2.8)
IntersectionFormParity SCIntersectionFormParity (8.2.7)
IntersectionFormSignature SCIntersectionFormSignature (8.2.9)
IsCentrallySymmetric SCIsCentrallySymmetric (6.9.35)
IsConnected SCIsConnected (7.3.10)
IsEmpty SCIsEmpty (7.3.11)
IsEulerianManifold SCIsEulerianManifold (6.9.38)
IsFlag SCIsFlag (6.9.39)
IsHomologySphere SCIsHomologySphere (6.9.41)
IsInKd SCIsInKd (6.9.42)
IsIsomorphic SCIsIsomorphic (6.10.9)
IsKNeighborly SCIsKNeighborly (6.9.43)
IsKStackedSphere SCIsKStackedSphere (9.2.5)

simpcomp 198

IsManifold SCIsManifold (12.1.17)
IsMovable SCIsMovableComplex (9.2.7)
Isomorphism SCIsomorphism (6.10.11)
IsomorphismEx SCIsomorphismEx (6.10.12)
IsOrientable SCIsOrientable (7.3.12)
IsPM SCIsPseudoManifold (6.9.45)
IsPure SCIsPure (6.9.46)
IsSC SCIsSimplyConnected (12.1.14)
IsSimplyConnected SCIsSimplyConnected (12.1.14)
IsShellable SCIsShellable (6.9.47)
IsSphere SCIsSphere (12.1.16)
IsStronglyConnected SCIsStronglyConnected (6.9.48)
IsSubcomplex SCIsSubcomplex (6.10.10)
IsTight SCIsTight (11.1.1)
Join SCJoin (6.10.13)
Load SCLoad (13.2.1)
MinimalNonFaces SCMinimalNonFaces (6.9.49)
MinimalNonFacesEx SCMinimalNonFacesEx (6.9.50)
MorseIsPerfect SCMorseIsPerfect (11.1.2)
MorseMultiplicityVector SCMorseMultiplicityVector (11.1.4)
MorseNumberOfCriticalPoints SCMorseNumberOfCriticalPoints (11.1.5)
Move SCMove (9.2.8)
Moves SCMoves (9.2.9)
Neighborliness SCNeighborliness (6.9.51)
Neighbors SCNeighbors (6.10.14)
NeighborsEx SCNeighborsEx (6.10.15)
NumFaces SCNumFaces (6.9.52)
Orientation SCOrientation (6.9.53)
PropertiesDropped SCPropertiesDropped (5.1.4)
Randomize SCRandomize (9.2.11)
RMoves SCRMoves (9.2.10)
Reduce SCReduceComplex (9.2.13)
ReduceAsSubcomplex SCReduceAsSubcomplex (9.2.12)
ReduceEx SCReduceComplexEx (9.2.14)
Save SCSave (13.2.3)
Shelling SCShelling (6.10.16)
ShellingExt SCShellingExt (6.10.17)
Shellings SCShellings (6.10.18)
Skel SCSkel (7.3.13)
SkelEx SCSkelEx (7.3.14)
Slicing SCSlicing (11.1.3), SCNSSlicing (7.1.4)
Span SCSpan (6.10.19)
SpanningTree SCSpanningTree (6.9.56)
StronglyConnectedComponents SCStronglyConnectedComponents (6.6.9)
Suspension SCSuspension (6.10.20)
Transitivity SCAutomorphismGroupTransitivity (6.9.6)
Union SCUnion (7.3.16)
VertexIdentification SCVertexIdentification (6.10.22)
Wedge SCWedge (6.10.23)

simpcomp 199

16.3 Property handlers of SCNormalSurface

This section contains a table of all property handlers of a SCNormalSurface object.

PROPERTY HANDLER FUNCTION CALLED

Betti SCFpBettiNumbers (7.3.7)
ConnectedComponents SCConnectedComponents (7.3.1)
FpBettiNumbers SCFpBettiNumbers (7.3.7)
Chi SCEulerCharacteristic (7.3.3)
EulerCharacteristic SCEulerCharacteristic (7.3.3)
Connected SCIsConnected (7.3.10)
IsConnected SCIsConnected (7.3.10)
Copy SCCopy (7.2.1)
D SCDim (7.3.2)
Dim SCDim (7.3.2)
F SCFVector (7.3.4)
FVector SCFVector (7.3.4)
FaceLattice SCFaceLattice (7.3.5)
Faces SCSkel (7.3.13)
Genus SCGenus (7.3.8)
Homology SCHomology (12.1.12)
IsEmpty SCIsEmpty (7.3.11)
Name SCName (4.2.4)
Triangulation SCNSTriangulation (7.2.2)
TopologicalType SCTopologicalType (7.3.15)

16.4 Property handlers of SCLibRepository

This section contains a table of all property handlers of a SCLibRepository object.

PROPERTY HANDLER FUNCTION CALLED

Update SCLibUpdate (13.1.13)
IsLoaded SCLibIsLoaded (13.1.9)
Size SCLibSize (13.1.12)
Status SCLibStatus (13.1.14)
Flush SCLibFlush (13.1.7)
Add SCLibAdd (13.1.3)
Delete SCLibDelete (13.1.5)
All SCLibAllComplexes (13.1.4)
SearchByName SCLibSearchByName (13.1.11)
SearchByAttribute SCLibSearchByAttribute (13.1.10)
DetermineTopologicalType SCLibDetermineTopologicalType (13.1.6)

Chapter 17

A demo session with simpcomp

This chapter contains the transcript of a demo session with simpcomp that is intended to give an
insight into what things can be done with this package.

Of course this only scratches the surface of the functions provided by simpcomp. See Chapters 4
through 15 for further functions provided by simpcomp.

17.1 Creating a SCSimplicialComplex object

Simplicial complex objects can either be created from a facet list (complex c1 below), orbit represen-
tatives together with a permutation group (complex c2) or difference cycles (complex c3, see Section
6.1), from a function generating triangulations of standard complexes (complex c4, see Section 6.3)
or from a function constructing infinite series for combinatorial (pseudo)manifolds (complexes c5,
c6, c7, see Section 6.4 and the function prefix SCSeries...). There are also functions creating new
simplicial complexes from old, see Section 6.6, which will be described in the next sections.

Example
gap> #first run functionality test on simpcomp

gap> SCRunTest();

+ test simpcomp package, version 2.1.1

+ GAP4stones: 69988

true

gap> #all ok

gap> c1:=SCFromFacets([[1,2],[2,3],[3,1]]);

[SimplicialComplex

Properties known: Dim, Facets, Name, VertexLabels.

Name="unnamed complex 1"

Dim=1

/SimplicialComplex]

gap> G:=Group([(2,12,11,6,8,3)(4,7,10)(5,9),(1,11,6,4,5,3,10,8,9,7,2,12)]);

Group([(2,12,11,6,8,3)(4,7,10)(5,9), (1,11,6,4,5,3,10,8,9,7,2,12)])

gap> StructureDescription(G);

"S4 x S3"

gap> Size(G);

144

gap> c2:=SCFromGenerators(G,[[1,2,3]]);;

200

simpcomp 201

gap> c2.IsManifold;

true

gap> SCLibDetermineTopologicalType(c2);

[SimplicialComplex

Properties known: AutomorphismGroup, AutomorphismGroupSize,

AutomorphismGroupStructure, AutomorphismGroupTransitivity,\

Boundary, Dim, Faces, Facets, Generators, HasBoundary,

IsManifold, IsPM, Name, TopologicalType, VertexLabels,

Vertices.

Name="complex from generators under group S4 x S3"

Dim=2

AutomorphismGroupSize=144

AutomorphismGroupStructure="S4 x S3"

AutomorphismGroupTransitivity=1

HasBoundary=false

IsPM=true

TopologicalType="T^2"

/SimplicialComplex]

gap> c3:=SCFromDifferenceCycles([[1,1,6],[3,3,2]]);

[SimplicialComplex

Properties known: Dim, Facets, Name, VertexLabels.

Name="complex from diffcycles [[1, 1, 6], [3, 3, 2]]"

Dim=2

/SimplicialComplex]

gap> c4:=SCBdSimplex(2);

[SimplicialComplex

Properties known: AutomorphismGroup, AutomorphismGroupOrder,

AutomorphismGroupStructure, AutomorphismGroupTransitivity,

Chi, Dim, F, Facets, Generators, HasBounday, Homology,

IsConnected, IsStronglyConnected, Name, TopologicalType,

VertexLabels.

Name="S^1_3"

Dim=1

AutomorphismGroupStructure="S3"

AutomorphismGroupTransitivity=3

Chi=0

F=[3, 3]

Homology=[[0, []], [1, []]]

IsConnected=true

IsStronglyConnected=true

TopologicalType="S^1"

/SimplicialComplex]

gap> c5:=SCSeriesCSTSurface(2,16);;

simpcomp 202

gap> SCLibDetermineTopologicalType(c5);

[SimplicialComplex

Properties known: Boundary, Dim, Faces, Facets, HasBoundary, IsPM, Name,

TopologicalType, VertexLabels.

Name="cst surface S_{(2,16)} = { (2:2:12),(6:6:4) }"

Dim=2

HasBoundary=false

IsPM=true

TopologicalType="T^2 U T^2"

/SimplicialComplex]

gap> c6:=SCSeriesD2n(22);;

gap> c6.Homology;

[[0, []], [1, []], [0, [2]], [0, []]]

gap> c6.F;

[44, 264, 440, 220]

gap> SCSeriesAGL(17);

[AGL(1,17), [[1, 2, 4, 8, 16]]]

gap> c7:=SCFromGenerators(last[1],last[2]);;

gap> c7.AutomorphismGroupTransitivity;

2

17.2 Working with a SCSimplicialComplex object

As described in Section 3.1 there are two several ways of accessing an object of type
SCSimplicialComplex. An example for the two equivalent ways is given below. The preference
will be given to the object oriented notation in this demo session. The code listed below

Example
gap> c:=SCBdSimplex(3);; # create a simplicial complex object

gap> SCFVector(c);

[4, 6, 4]

gap> SCSkel(c,0);

[[1], [2], [3], [4]]

is equivalent to
Example

gap> c:=SCBdSimplex(3);; # create a simplicial complex object

gap> c.F;

[4, 6, 4]

gap> c.Skel(0);

[[1], [2], [3], [4]]

17.3 Calculating properties of a SCSimplicialComplex object

simpcomp provides a variety of functions for calculating properties of simplicial complexes, see
Section 6.9. All these properties are only calculated once and stored in the SCSimplicialComplex

object.

simpcomp 203

Example
gap> c1.F;

[3, 3]

gap> c1.FaceLattice;

[[[1], [2], [3]], [[1, 2], [1, 3], [2, 3]]]

gap> c1.AutomorphismGroup;

S3

gap> c1.Generators;

[[[1, 2], 3]]

gap> c3.Facets;

[[1, 2, 3], [1, 2, 8], [1, 3, 6], [1, 4, 6], [1, 4, 7],

[1, 7, 8], [2, 3, 4], [2, 4, 7], [2, 5, 7], [2, 5, 8],

[3, 4, 5], [3, 5, 8], [3, 6, 8], [4, 5, 6], [5, 6, 7],

[6, 7, 8]]

gap> c3.F;

[8, 24, 16]

gap> c3.G;

[4]

gap> c3.H;

[5, 11, -1]

gap> c3.ASDet;

186624

gap> c3.Chi;

0

gap> c3.Generators;

[[[1, 2, 3], 16]]

gap> c3.HasBoundary;

false

gap> c3.IsConnected;

true

gap> c3.IsCentrallySymmetric;

true

gap> c3.Vertices;

[1, 2, 3, 4, 5, 6, 7, 8]

gap> c3.ConnectedComponents;

[[SimplicialComplex

Properties known: Dim, Facets, Name, VertexLabels.

Name="Connected component #1 of complex from diffcycles [[1, 1, 6], [\

3, 3, 2]]"

Dim=2

/SimplicialComplex]]

gap> c3.UnknownProperty;

#I SCPropertyObject: unhandled property 'UnknownProperty'. Handled properties\

are ["Equivalent", "IsKStackedSphere", "IsManifold", "IsMovable", "Move",

"Moves", "RMoves", "ReduceAsSubcomplex", "Reduce", "ReduceEx", "Copy",

"Recalc", "ASDet", "AutomorphismGroup", "AutomorphismGroupInternal",

"Boundary", "ConnectedComponents", "Dim", "DualGraph", "Chi", "F",

"FaceLattice", "FaceLatticeEx", "Faces", "FacesEx", "Facets", "FacetsEx",

"FpBetti", "FundamentalGroup", "G", "Generators", "GeneratorsEx", "H",

"HasBoundary", "HasInterior", "Homology", "Incidences", "IncidencesEx",

simpcomp 204

"Interior", "IsCentrallySymmetric", "IsConnected", "IsEmpty",

"IsEulerianManifold", "IsHomologySphere", "IsInKd", "IsKNeighborly",

"IsOrientable", "IsPM", "IsPure", "IsShellable", "IsStronglyConnected",

"MinimalNonFaces", "MinimalNonFacesEx", "Name", "Neighborliness",

"Orientation", "Skel", "SkelEx", "SpanningTree",

"StronglyConnectedComponents", "Vertices", "VerticesEx",

"BoundaryOperatorMatrix", "HomologyBasis", "HomologyBasisAsSimplices",

"HomologyInternal", "CoboundaryOperatorMatrix", "Cohomology",

"CohomologyBasis", "CohomologyBasisAsSimplices", "CupProduct",

"IntersectionForm", "IntersectionFormParity",

"IntersectionFormDimensionality", "Load", "Save", "ExportPolymake",

"ExportLatexTable", "ExportJavaView", "LabelMax", "LabelMin", "Labels",

"Relabel", "RelabelStandard", "RelabelTransposition", "Rename",

"SortComplex", "UnlabelFace", "AlexanderDual", "CollapseGreedy", "Cone",

"DeletedJoin", "Difference", "HandleAddition", "Intersection",

"IsIsomorphic", "IsSubcomplex", "Isomorphism", "IsomorphismEx", "Join",

"Link", "Links", "Neighbors", "NeighborsEx", "Shelling", "ShellingExt",

"Shellings", "Span", "Star", "Stars", "Suspension", "Union",

"VertexIdentification", "Wedge", "DetermineTopologicalType", "Dim",

"Facets", "VertexLabels", "Name", "Vertices", "IsConnected",

"ConnectedComponents"].

fail

17.4 Creating new complexes from a SCSimplicialComplex object

As already mentioned, there is the possibility to generate new objects of type SCSimplicialComplex
from existing ones using standard constructions. The functions used in this section are described in
more detail in Section 6.6.

Example
gap> d:=c3+c3;

[SimplicialComplex

Properties known: Dim, Facets, Name, VertexLabels, Vertices.

Name="complex from diffcycles [[1, 1, 6], [3, 3, 2]]#+-complex from dif\

fcycles [[1, 1, 6], [3, 3, 2]]"

Dim=2

/SimplicialComplex]

gap> SCRename(d,"T^2#T^2");

true

gap> SCLink(d,1);

[SimplicialComplex

Properties known: Dim, Facets, Name, VertexLabels.

Name="lk(1) in T^2#T^2"

Dim=1

/SimplicialComplex]

simpcomp 205

gap> SCStar(d,[1,2]);

[SimplicialComplex

Properties known: Dim, Facets, Name, VertexLabels.

Name="star([1, 2]) in T^2#T^2"

Dim=2

/SimplicialComplex]

gap> SCRename(c3,"T^2");

true

gap> SCConnectedProduct(c3,4);

[SimplicialComplex

Properties known: Dim, Facets, Name, VertexLabels, Vertices.

Name="T^2#+-T^2#+-T^2#+-T^2"

Dim=2

/SimplicialComplex]

gap> SCCartesianProduct(c4,c4);

[SimplicialComplex

Properties known: Dim, Facets, Name, TopologicalType, VertexLabels.

Name="S^1_3xS^1_3"

Dim=2

TopologicalType="S^1xS^1"

/SimplicialComplex]

gap> SCCartesianPower(c4,3);

[SimplicialComplex

Properties known: Dim, Facets, Name, TopologicalType, VertexLabels.

Name="(S^1_3)^3"

Dim=3

TopologicalType="(S^1)^3"

/SimplicialComplex]

17.5 Homology related calculations

simpcomp relies on the GAP package homology [DHSW11] for its homology computations but
provides further (co-)homology related functions, see Chapter 8.

Example
gap> s2s2:=SCCartesianProduct(SCBdSimplex(3),SCBdSimplex(3));

[SimplicialComplex

Properties known: Dim, Facets, Name, TopologicalType, VertexLabels.

simpcomp 206

Name="S^2_4xS^2_4"

Dim=4

TopologicalType="S^2xS^2"

/SimplicialComplex]

gap> SCHomology(s2s2);

[[0, []], [0, []], [2, []], [0, []], [1, []]]

gap> SCHomologyInternal(s2s2);

[[0, []], [0, []], [2, []], [0, []], [1, []]]

gap> SCHomologyBasis(s2s2,2);

[[1, [[1, 70], [-1, 12], [1, 2], [-1, 1]]],

[1, [[1, 143], [-1, 51], [1, 29], [-1, 25]]]]

gap> SCHomologyBasisAsSimplices(s2s2,2);

[[1,

[[1, [2, 3, 4]], [-1, [1, 3, 4]], [1, [1, 2, 4]], [-1, [1

, 2, 3]]]],

[1, [[1, [5, 9, 13]], [-1, [1, 9, 13]], [1, [1, 5, 13]],

[-1, [1, 5, 9]]]]]

gap> SCCohomologyBasis(s2s2,2);

[[1,

[[1, 122], [1, 115], [1, 112], [1, 111], [1, 93], [1, 90],

[1, 89], [1, 84], [1, 83], [1, 82], [1, 46], [1, 43],

[1, 42], [1, 37], [1, 36], [1, 35], [1, 28], [1, 27],

[1, 26], [1, 25]]],

[1, [[1, 213], [1, 201], [1, 192], [1, 189], [1, 159],

[1, 150], [1, 147], [1, 131], [1, 128], [1, 125],

[1, 67], [1, 58], [1, 55], [1, 39], [1, 36], [1, 33],

[1, 10], [1, 7], [1, 4], [1, 1]]]]

gap> SCCohomologyBasisAsSimplices(s2s2,2);

[[1, [[1, [4, 8, 12]], [1, [3, 8, 12]], [1, [3, 7, 12]],

[1, [3, 7, 11]], [1, [2, 8, 12]], [1, [2, 7, 12]],

[1, [2, 7, 11]], [1, [2, 6, 12]], [1, [2, 6, 11]],

[1, [2, 6, 10]], [1, [1, 8, 12]], [1, [1, 7, 12]],

[1, [1, 7, 11]], [1, [1, 6, 12]], [1, [1, 6, 11]],

[1, [1, 6, 10]], [1, [1, 5, 12]], [1, [1, 5, 11]],

[1, [1, 5, 10]], [1, [1, 5, 9]]]],

[1, [[1, [13, 14, 15]], [1, [9, 14, 15]], [1, [9, 10, 15]],

[1, [9, 10, 11]], [1, [5, 14, 15]], [1, [5, 10, 15]],

[1, [5, 10, 11]], [1, [5, 6, 15]], [1, [5, 6, 11]],

[1, [5, 6, 7]], [1, [1, 14, 15]], [1, [1, 10, 15]],

[1, [1, 10, 11]], [1, [1, 6, 15]], [1, [1, 6, 11]],

[1, [1, 6, 7]], [1, [1, 2, 15]], [1, [1, 2, 11]],

[1, [1, 2, 7]], [1, [1, 2, 3]]]]]

gap> PrintArray(SCIntersectionForm(s2s2));

[[0, 1],

[1, 0]]

gap> c:=s2s2+s2s2;

[SimplicialComplex

Properties known: Dim, Facets, Name, VertexLabels, Vertices.

Name="S^2_4xS^2_4#+-S^2_4xS^2_4"

Dim=4

simpcomp 207

/SimplicialComplex]

gap> PrintArray(SCIntersectionForm(c));

[[0, -1, 0, 0],

[-1, 0, 0, 0],

[0, 0, 0, -1],

[0, 0, -1, 0]]

17.6 Bistellar flips

For a more detailed description of functions related to bistellar flips as well as a very short introduction
into the topic, see Chapter 9.

Example
gap> beta4:=SCBdCrossPolytope(4);;

gap> s3:=SCBdSimplex(4);;

gap> SCEquivalent(beta4,s3);

#I round 0, move: [[2, 6, 7], [3, 4]]

[8, 25, 34, 17]

#I round 1, move: [[2, 7], [3, 4, 5]]

[8, 24, 32, 16]

#I round 2, move: [[2, 5], [3, 4, 8]]

[8, 23, 30, 15]

#I round 3, move: [[2], [3, 4, 6, 8]]

[7, 19, 24, 12]

#I round 4, move: [[6, 8], [1, 3, 4]]

[7, 18, 22, 11]

#I round 5, move: [[8], [1, 3, 4, 5]]

[6, 14, 16, 8]

#I round 6, move: [[5], [1, 3, 4, 7]]

[5, 10, 10, 5]

#I SCReduceComplexEx: complexes are bistellarly equivalent.

true

gap> SCBistellarOptions.WriteLevel;

0

gap> SCBistellarOptions.WriteLevel:=1;

1

gap> SCEquivalent(beta4,s3);

#I SCLibInit: made directory "~/PATH" for user library.

#I SCIntFunc.SCLibInit: index not found -- trying to reconstruct it.

#I SCLibUpdate: rebuilding index for ~/PATH.

#I SCLibUpdate: rebuilding index done.

#I round 0, move: [[2, 4, 6], [7, 8]]

[8, 25, 34, 17]

#I round 1, move: [[2, 4], [5, 7, 8]]

[8, 24, 32, 16]

#I round 2, move: [[4, 5], [1, 7, 8]]

[8, 23, 30, 15]

#I round 3, move: [[4], [1, 6, 7, 8]]

[7, 19, 24, 12]

#I SCLibAdd: saving complex to file "complex_ReducedComplex_7_vertices_3_2009\

simpcomp 208

-10-27_11-40-00.sc".

#I round 4, move: [[2, 6], [3, 7, 8]]

[7, 18, 22, 11]

#I round 5, move: [[2], [3, 5, 7, 8]]

[6, 14, 16, 8]

#I SCLibAdd: saving complex to file "complex_ReducedComplex_6_vertices_5_2009\

-10-27_11-40-00.sc".

#I round 6, move: [[5], [1, 3, 7, 8]]

[5, 10, 10, 5]

#I SCLibAdd: saving complex to file "complex_ReducedComplex_5_vertices_6_2009\

-10-27_11-40-00.sc".

#I SCLibAdd: saving complex to file "complex_ReducedComplex_5_vertices_7_2009\

-10-27_11-40-00.sc".

#I SCReduceComplexEx: complexes are bistellarly equivalent.

true

gap> myLib:=SCLibInit("~/PATH"); # copy path from above

[Simplicial complex library. Properties:

CalculateIndexAttributes=true

Number of complexes in library=4

IndexAttributes=["Name", "Date", "Dim", "F", "G", "H", "Chi", "Homology"]

Loaded=true

Path="/home/spreerjn/reducedComplexes/2009-10-27_11-40-00/"

]

gap> s3:=myLib.Load(3);

[SimplicialComplex

Properties known: Chi, Date, Dim, F, Faces, Facets, G, H, Homology,

IsConnected, Name, VertexLabels.

Name="ReducedComplex_5_vertices_6"

Dim=3

Chi=0

F=[5, 10, 10, 5]

G=[0, 0]

H=[1, 1, 1, 1]

Homology=[[0, []], [0, []], [0, []], [1, []]]

IsConnected=true

/SimplicialComplex]

gap> s3:=myLib.Load(2);

[SimplicialComplex

Properties known: Chi, Date, Dim, F, Faces, Facets, G, H, Homology,

IsConnected, Name, VertexLabels.

Name="ReducedComplex_6_vertices_5"

Dim=3

Chi=0

F=[6, 14, 16, 8]

G=[1, 0]

H=[2, 2, 2, 1]

Homology=[[0, []], [0, []], [0, []], [1, []]]

IsConnected=true

simpcomp 209

/SimplicialComplex]

gap> t2:=SCCartesianProduct(SCBdSimplex(2),SCBdSimplex(2));;

gap> t2.F;

[9, 27, 18]

gap> SCBistellarOptions.WriteLevel:=0;

0

gap> SCBistellarOptions.LogLevel:=0;

0

gap> mint2:=SCReduceComplex(t2);

[true, [SimplicialComplex

Properties known: Dim, Facets, Name, VertexLabels.

Name="unnamed complex 85"

Dim=2

/SimplicialComplex], 32]

17.7 Simplicial blowups

For a more detailed description of functions related to simplicial blowups see Chapter 10.
Example

gap> list:=SCLib.SearchByName("Kummer");

[[7493, "4-dimensional Kummer variety (VT)"]]

gap> c:=SCLib.Load(7493);

[SimplicialComplex

Properties known: AltshulerSteinberg, AutomorphismGroup,

AutomorphismGroupSize, AutomorphismGroupStructure,

AutomorphismGroupTransitivity,

ConnectedComponents, Date, Dim, DualGraph,

EulerCharacteristic, FacetsEx, GVector,

GeneratorsEx, HVector, HasBoundary, HasInterior,

Homology, Interior, IsCentrallySymmetric,

IsConnected, IsEulerianManifold, IsManifold,

IsOrientable, IsPseudoManifold, IsPure,

IsStronglyConnected, MinimalNonFacesEx, Name,

Neighborliness, NumFaces[], Orientation,

SkelExs[], Vertices.

Name="4-dimensional Kummer variety (VT)"

Dim=4

AltshulerSteinberg=45137758519296000000000000

AutomorphismGroupSize=1920

AutomorphismGroupStructure="((C2 x C2 x C2 x C2) : A5) : C2"

AutomorphismGroupTransitivity=1

EulerCharacteristic=8

GVector=[10, 55, 60]

HVector=[11, 66, 126, -19, 7]

simpcomp 210

HasBoundary=false

HasInterior=true

Homology=[[0, []], [0, []], [6, [2,2,2,2,2]], [0, []], [1, []]]

IsCentrallySymmetric=false

IsConnected=true

IsEulerianManifold=true

IsOrientable=true

IsPseudoManifold=true

IsPure=true

IsStronglyConnected=true

Neighborliness=2

/SimplicialComplex]

gap> lk:=SCLink(c,1);

[SimplicialComplex

Properties known: Dim, FacetsEx, Name, Vertices.

Name="lk([1]) in 4-dimensional Kummer variety (VT)"

Dim=3

/SimplicialComplex]

gap> SCHomology(lk);

[[0, []], [0, [2]], [0, []], [1, []]]

gap> SCLibDetermineTopologicalType(lk);

[45, 113, 2426, 2502, 7470]

gap> d:=SCLib.Load(45);;

gap> d.Name;

"RP^3"

gap> SCEquivalent(lk,d);

#I SCReduceComplexEx: complexes are bistellarly equivalent.

true

gap> e:=SCBlowup(c,1);

#I SCBlowup: checking if singularity is a combinatorial manifold...

#I SCBlowup: ...true

#I SCBlowup: checking type of singularity...

#I SCReduceComplexEx: complexes are bistellarly equivalent.

#I SCBlowup: ...ordinary double point (supported type).

#I SCBlowup: starting blowup...

#I SCBlowup: map boundaries...

#I SCBlowup: boundaries not isomorphic, initializing bistellar moves...

#I SCBlowup: found complex with smaller boundary: f = [15, 74, 118, 59].

#I SCBlowup: found complex with smaller boundary: f = [14, 70, 112, 56].

#I SCBlowup: found complex with smaller boundary: f = [14, 69, 110, 55].

#I SCBlowup: found complex with smaller boundary: f = [14, 68, 108, 54].

#I SCBlowup: found complex with smaller boundary: f = [13, 64, 102, 51].

#I SCBlowup: found complex with smaller boundary: f = [13, 63, 100, 50].

#I SCBlowup: found complex with smaller boundary: f = [13, 62, 98, 49].

#I SCBlowup: found complex with smaller boundary: f = [12, 58, 92, 46].

#I SCBlowup: found complex with smaller boundary: f = [12, 57, 90, 45].

#I SCBlowup: found complex with smaller boundary: f = [12, 56, 88, 44].

#I SCBlowup: found complex with smaller boundary: f = [11, 52, 82, 41].

#I SCBlowup: found complex with smaller boundary: f = [11, 51, 80, 40].

simpcomp 211

#I SCBlowup: found complex with isomorphic boundaries.

#I SCBlowup: ...boundaries mapped succesfully.

#I SCBlowup: build complex...

#I SCBlowup: ...done.

#I SCBlowup: ...blowup completed.

#I SCBlowup: You may now want to reduce the complex via 'SCReduceComplex'.

[SimplicialComplex

Properties known: Dim, FacetsEx, Name, Vertices.

Name="unnamed complex 6315 \ star([1]) in unnamed complex 6315 cup unnamed\

complex 6319 cup unnamed complex 6317"

Dim=4

/SimplicialComplex]

gap> SCHomology(c);

[[0, []], [0, []], [6, [2, 2, 2, 2, 2]], [0, []], [1, []]]

gap> SCHomology(e);

[[0, []], [0, []], [7, [2, 2, 2, 2]], [0, []], [1, []]]

17.8 Discrete normal surfaces and slicings

For a more detailed description of functions related to discrete normal surfaces and slicings see the
Sections 2.4 and 2.5.

Example

gap> # the boundary of the cyclic 4-polytope with 6 vertices

gap> c:=SCBdCyclicPolytope(4,6);

[SimplicialComplex

Properties known: Dim, EulerCharacteristic, FacetsEx, HasBoundary, Homology,\

IsConnected, IsStronglyConnected, Name, NumFaces[], TopologicalType, Vertices.

Name="Bd(C_4(6))"

Dim=3

EulerCharacteristic=0

HasBoundary=false

Homology=[[0, []], [0, []], [0, []], [1, []]]

IsConnected=true

IsStronglyConnected=true

TopologicalType="S^3"

/SimplicialComplex]

gap> # slicing in between the odd and the even vertex labels, a polyhedral torus

gap> sl:=SCSlicing(c,[[2,4,6],[1,3,5]]);

[NormalSurface

Properties known: ConnectedComponents, Dim, EulerCharacteristic, FVector,\

FacetsEx, Genus, IsConnected, IsOrientable, NSTriangulation, Name,\

TopologicalType, Vertices.

simpcomp 212

Name="slicing [[2, 4, 6], [1, 3, 5]] of Bd(C_4(6))"

Dim=2

FVector=[9, 18, 0, 9]

EulerCharacteristic=0

IsOrientable=true

TopologicalType="T^2"

/NormalSurface]

gap> sl.Homology;

[[0, []], [2, []], [1, []]]

gap> sl.Genus;

1

gap> sl.F; # the slicing constists of 9 quadrilaterals and 0 triangles

[9, 18, 0, 9]

gap> PrintArray(sl.Facets);

[[[2, 1], [2, 3], [4, 1], [4, 3]],

[[2, 1], [2, 3], [6, 1], [6, 3]],

[[2, 1], [2, 5], [4, 1], [4, 5]],

[[2, 1], [2, 5], [6, 1], [6, 5]],

[[2, 3], [2, 5], [4, 3], [4, 5]],

[[2, 3], [2, 5], [6, 3], [6, 5]],

[[4, 1], [4, 3], [6, 1], [6, 3]],

[[4, 1], [4, 5], [6, 1], [6, 5]],

[[4, 3], [4, 5], [6, 3], [6, 5]]]

Further example computations can be found in the slides of var-
ious talks about simpcomp, available from the simpcomp homepage
(http://www.igt.uni-stuttgart.de/LstDiffgeo/simpcomp/), and in Appendix A of
[Spr11a].

Chapter 18

simpcomp internals

The package simpcomp works with geometric objects for which the GAP object types
SCSimplicialComplex and SCNormalSurface are defined and calculates properties of these ob-
jects via so called property handlers. This chapter describes how to extend simpcomp by writing
own property handlers.

If you extended simpcomp and want to share your extension with other users please send your
extension to one of the authors and we will consider including it (of course with giving credit) in a
future release of simpcomp.

18.1 The GAP object type SCPropertyObject

In the following, we present a number of functions to manage a GAP object of type
SCPropertyObject. Since most properties of SCPolyhedralComplex, SCSimplicialComplex and
SCNormalSurface are managed by the GAP4 type system (cf. [BL98]), the functions described be-
low are mainly used by the object type SCLibRepository and to store temporary properties.

18.1.1 SCProperties

▷ SCProperties(po) (method)

Returns: a record upon success.
Returns the record of all stored properties of the SCPropertyObject po .

18.1.2 SCPropertiesFlush

▷ SCPropertiesFlush(po) (method)

Returns: true upon success.
Drops all properties and temporary properties of the SCPropertyObject po .

18.1.3 SCPropertiesManaged

▷ SCPropertiesManaged(po) (method)

Returns: a list of managed properties upon success, fail otherwise.
Returns a list of all properties that are managed for the SCPropertyObject po via property

handler functions. See SCPropertyHandlersSet (18.1.9).

213

simpcomp 214

18.1.4 SCPropertiesNames

▷ SCPropertiesNames(po) (method)

Returns: a list upon success.
Returns a list of all the names of the stored properties of the SCPropertyObject po . These can

be accessed via SCPropertySet (18.1.10) and SCPropertyDrop (18.1.8).

18.1.5 SCPropertiesTmp

▷ SCPropertiesTmp(po) (method)

Returns: a record upon success.
Returns the record of all stored temporary properties (these are mutable in contrast to regular

properties and not serialized when the object is serialized to XML) of the SCPropertyObject po .

18.1.6 SCPropertiesTmpNames

▷ SCPropertiesTmpNames(po) (method)

Returns: a list upon success.
Returns a list of all the names of the stored temporary properties of the SCPropertyObject po .

These can be accessed via SCPropertyTmpSet (18.1.14) and SCPropertyTmpDrop (18.1.13).

18.1.7 SCPropertyByName

▷ SCPropertyByName(po, name) (method)

Returns: any value upon success, fail otherwise.
Returns the value of the property with name name of the SCPropertyObject po if this property

is known for po and fail otherwise. The names of known properties can be accessed via the function
SCPropertiesNames (18.1.4)

18.1.8 SCPropertyDrop

▷ SCPropertyDrop(po, name) (method)

Returns: true upopn success, fail otherwise
Drops the property with name name of the SCPropertyObject po . Returns true if the property

is successfully dropped and fail if a property with that name did not exist.

18.1.9 SCPropertyHandlersSet

▷ SCPropertyHandlersSet(po, handlers) (method)

Returns: true

Sets the property handling functions for a SCPropertyObject po to the functions described
in the record handlers . The record handlers has to contain entries of the following struc-
ture: [Property Name]:=[Function name computing and returning the property]. For
SCSimplicialComplex for example simpcomp defines (among many others): F:=SCFVector. See
the file lib/prophandler.gd.

simpcomp 215

18.1.10 SCPropertySet

▷ SCPropertySet(po, name, data) (method)

Returns: true upon success.
Sets the value of the property with name name of the SCPropertyObject po to data . Note

that the argument becomes immutable. If this behaviour is not desired, use SCPropertySetMutable
(18.1.11) instead.

18.1.11 SCPropertySetMutable

▷ SCPropertySetMutable(po, name, data) (method)

Returns: true upon success.
Sets the value of the property with name name of the SCPropertyObject po to data . Note

that the argument does not become immutable. If this behaviour is not desired, use SCPropertySet

(18.1.10) instead.

18.1.12 SCPropertyTmpByName

▷ SCPropertyTmpByName(po, name) (method)

Returns: any value upon success, fail otherwise.
Returns the value of the temporary property with the name name of the SCPropertyObject po

if this temporary property is known for po and fail otherwise. The names of known temporary
properties can be accessed via the function SCPropertiesTmpNames (18.1.6)

18.1.13 SCPropertyTmpDrop

▷ SCPropertyTmpDrop(po, name) (method)

Returns: true upon success, fail otherwise
Drops the temporary property with name name of the SCPropertyObject po . Returns true if

the property is successfully dropped and fail if a temporary property with that name did not exist.

18.1.14 SCPropertyTmpSet

▷ SCPropertyTmpSet(po, name, data) (method)

Returns: true upon success.
Sets the value of the temporary property with name name of the SCPropertyObject po to data .

Note that the argument does not become immutable. This is the standard behaviour for temporary
properties.

18.2 Example of a common attribute

In this section we will have a look at the property handler SCEulerCharacteristic (7.3.3) in order
to explain the inner workings of property handlers. This is the code of the property handler for
calculating the Euler characteristic of a complex in simpcomp:

Example
DeclareAttribute("SCEulerCharacteristic",SCIsPolyhedralComplex);

InstallMethod(SCEulerCharacteristic,

simpcomp 216

"for SCSimplicialComplex",

[SCIsSimplicialComplex],

function(complex)

local f, chi, i;

f:=SCFVector(complex);

if f=fail then

return fail;

fi;

chi:=0;

for i in [1..Size(f)] do

chi:=chi + ((-1)^(i+1))*f[i];

od;

return chi;

end);

InstallMethod(SCEulerCharacteristic,

"for SCNormalSurface",

[SCIsNormalSurface],

function(sl)

local facets, f, chi;

f:=SCFVector(sl);

if(f=fail) then

return fail;

fi;

if Length(f) = 1 then

return f[1];

elif Length(f) =3 then

return f[1]-f[2]+f[3];

elif Length(f) =4 then

return f[1]-f[2]+f[3]+f[4];

else

Info(InfoSimpcomp,1,"SCEulerCharacteristic: illegal f-vector found: ",f,". ");

return fail;

fi;

end);

When looking at the code one already sees the structure that such a handler needs to have:

1. Each property handler (a GAP operation) needs to be defined. This is done by the first
line of code. Once an operation is defined, multiple methods can by implemented for var-
ious types of GAP objects (here two methods are implemented for the GAP object types
SCSimplicialComplex and SCNormalSurface).

simpcomp 217

2. First note that the validity of the arguments is checked by GAP. For example, the first method
only accepts an argument of type SCSimplicialComplex.

3. If the property was already computed, the GAP4 type system automatically returns the cached
property avoiding unnecessary double calculations.

4. If the property is not already known. it is computed and returned (and automatically cached by
the GAP4 type system).

18.3 Writing a method for an attribute

This section provides the skeleton of a method that can be used when writing own methods:
Example

DeclareAttribute("SCMyPropertyHandler",SCPolyhedralComplex);

InstallMethod(SCMyPropertyHandler,

"for SCSimplicialComplex[and further arguments]",

[SCIsSimplicialComplex[, further arguments]],

function(complex[, further arguments])

local myprop, ...;

compute the property

[do property computation here]

return myprop;

end);

References

[Ban65] Thomas F. Banchoff. Tightly embedded 2-dimensional polyhedral manifolds. Amer. J.
Math., 87:462–472, 1965. 18

[Ban74] Thomas F. Banchoff. Tight polyhedral Klein bottles, projective planes, and Möbius
bands. Math. Ann., 207:233–243, 1974. 18

[BBP+13] B. A. Burton, Ryan Budney, William Pettersson, et al. Regina: normal surface and 3-
manifold topology software, version 4.95. http://regina.sourceforge.net/, 1999–
2013. 8

[BD08a] Bhaskar Bagchi and Basudeb Datta. Lower bound theorem for normal pseudomanifolds.
Expo. Math., 26(4):327–351, 2008. 108

[BD08b] Bhaskar Bagchi and Basudeb Datta. On Walkup’s classK(d) and a minimal triangulation
of a 4-manifold. arXiv:0804.2153v1 [math.GT], Preprint, 8 pages, 2008. 109

[BK97] Thomas F. Banchoff and Wolfgang Kühnel. Tight submanifolds, smooth and polyhedral.
In Tight and taut submanifolds (Berkeley, CA, 1994), volume 32 of Math. Sci. Res. Inst.
Publ., pages 51–118. Cambridge Univ. Press, Cambridge, 1997. 18

[BK08] Ulrich Brehm and Wolfgang Kühnel. Equivelar maps on the torus. European J. Combin.,
29(8):1843–1861, 2008. 68, 69, 71

[BK12] Ulrich Brehm and Wolfgang Kühnel. Lattice triangulations of E3 and of the 3-torus.
Israel J. Math., 189:97–133, 2012. 56

[BL98] Thomas Breuer and Steve Linton. The gap 4 type system: organising algebraic algo-
rithms. In Proceedings of the 1998 international symposium on Symbolic and algebraic
computation, ISSAC ’98, pages 38–45, New York, NY, USA, 1998. ACM. 8, 21, 213

[BL00] Anders Björner and Frank H. Lutz. Simplicial manifolds, bistellar flips and a 16-vertex
triangulation of the Poincaré homology 3-sphere. Experiment. Math., 9(2):275–289,
2000. 14, 144

[BL14] Bruno Benedetti and Frank H. Lutz. Random discrete Morse theory and a new library of
triangulations. Exp. Math., 23(1):66–94, 2014. 169, 170

[BR08] Mohamed Barakat and Daniel Robertz. homalg: a meta-package for homological alge-
bra. J. Algebra Appl., 7(3):299–317, 2008. 187

218

simpcomp 219

[BS14] B. A. Burton and J. Spreer. Combinatorial seifert fibred spaces with transitive cyclic
automorphism group. arXiv:1404.3005 [math.GT], 2014. 26 pages, 10 figures. 59,
62, 66

[CK01] Mario Casella and Wolfgang Kühnel. A triangulated K3 surface with the minimum num-
ber of vertices. Topology, 40(4):753–772, 2001. 7

[Con09] Marston D. E. Conder. Regular maps and hypermaps of Euler characteristic −1 to −200.
J. Combin. Theory Ser. B, 99(2):455–459, 2009. 67, 68, 70

[Dat07] Basudeb Datta. Minimal triangulations of manifolds. J. Indian Inst. Sci., 87(4):429–449,
2007. 11

[DHSW11] J.-G. Dumas, F. Heckenbach, B. D. Saunders, and V. Welker. Simplicial Homology, v.
1.4.5. http://www.cis.udel.edu/~dumas/Homology/, 2001–2011. 2, 7, 95, 106,
107, 112, 116, 133, 194, 205

[DKT08] Mathieu Desbrun, Eva Kanso, and Yiying Tong. Discrete differential forms for compu-
tational modeling. In Discrete differential geometry, volume 38 of Oberwolfach Semin.,
pages 287–324. Birkhäuser, Basel, 2008. 135, 136

[Eff11a] Felix Effenberger. Hamiltonian submanifolds of regular polytopes. Logos Verlag, Berlin,
2011. Dissertation, University of Stuttgart, 2010. 7, 58, 148

[Eff11b] Felix Effenberger. Stacked polytopes and tight triangulations of manifolds. Journal of
Combinatorial Theory, Series A, 118(6):1843 – 1862, 2011. 100, 148, 159

[Eng09] Alexander Engström. Discrete Morse functions from Fourier transforms. Experiment.
Math., 18(1):45–53, 2009. 169

[For95] Robin Forman. A discrete Morse theory for cell complexes. In Geometry, topology,
& physics, Conf. Proc. Lecture Notes Geom. Topology, IV, pages 112–125. Int. Press,
Cambridge, MA, 1995. 18, 166

[Fro08] Andrew Frohmader. Face vectors of flag complexes. Israel J. Math., 164:153–164, 2008.
99

[GJ00] Ewgenij Gawrilow and Michael Joswig. polymake: a framework for analyzing con-
vex polytopes. In Polytopes—combinatorics and computation (Oberwolfach, 1997), vol-
ume 29 of DMV Sem., pages 43–73. Birkhäuser, Basel, 2000. 8

[Grü03] Branko Grünbaum. Convex polytopes, volume 221 of Graduate Texts in Mathematics.
Springer-Verlag, New York, second edition, 2003. Prepared and with a preface by Volker
Kaibel, Victor Klee and Günter M. Ziegler. 11

[GS] Daniel R. Grayson and Michael E. Stillman. Macaulay2, a software system for research
in algebraic geometry. Available at http://www.math.uiuc.edu/Macaulay2/. 8

[Hak61] Wolfgang Haken. Theorie der Normalflächen. Acta Math., 105:245–375, 1961. 15

[Hau00] Herwig Hauser. Resolution of singularities 1860–1999. In Resolution of singularities
(Obergurgl, 1997), volume 181 of Progr. Math., pages 5–36. Birkhäuser, Basel, 2000. 19

http://www.cis.udel.edu/~dumas/Homology/

simpcomp 220

[Hir53] Friedrich E. P. Hirzebruch. über vierdimensionale riemannsche flächen mehrdeutiger
analytischer funktionen von zwei komplexen veränderlichen. Math. Ann., 126:1 – 22,
1953. 19

[Hop51] Heinz Hopf. Über komplex-analytische Mannigfaltigkeiten. Univ. Roma. Ist. Naz. Alta
Mat. Rend. Mat. e Appl. (5), 10:169–182, 1951. 19

[Hud69] John F. P. Hudson. Piecewise linear topology. University of Chicago Lecture Notes
prepared with the assistance of J. L. Shaneson and J. Lees. W. A. Benjamin, Inc., New
York-Amsterdam, 1969. 11

[Hup67] Bertram Huppert. Endliche Gruppen. I. Die Grundlehren der Mathematischen Wis-
senschaften, Band 134. Springer-Verlag, Berlin, 1967. 84

[KAL14] B. Benedetti K. Adiprasito and F. H. Lutz. Random discrete morse theory ii and a col-
lapsible 5-manifold different from the 5-ball. arXiv:1404.4239 [math.CO], 20 pages,
6 figures, 2 tables, 2014. 169, 170

[KL99] Wolfgang Kühnel and Frank H. Lutz. A census of tight triangulations. Period. Math.
Hungar., 39(1-3):161–183, 1999. Discrete geometry and rigidity (Budapest, 1999). 19

[KN12] Steven Klee and Isabella Novik. Centrally symmetric manifolds with few vertices. Adv.
Math., 229(1):487–500, 2012. 58

[Kne29] Hellmuth Kneser. Geschlossene Flächen in dreidimensionalen Mannigfaltigkeiten.
Jahresbericht der deutschen Mathematiker-Vereinigung, 38:248–260, 1929. 15

[KS77] Robion C. Kirby and Laurence C. Siebenmann. Foundational essays on topological
manifolds, smoothings, and triangulations. Princeton University Press, Princeton, N.J.;
University of Tokyo Press, Tokyo, 1977. With notes by John Milnor and Michael Atiyah,
Annals of Mathematics Studies, No. 88. 173

[Küh86] Wolfgang Kühnel. Higher dimensional analogues of Császár’s torus. Results Math.,
9:95–106, 1986. 19, 52

[Küh94] Wolfgang Kühnel. Manifolds in the skeletons of convex polytopes, tightness, and gen-
eralized Heawood inequalities. In Polytopes: abstract, convex and computational (Scar-
borough, ON, 1993), volume 440 of NATO Adv. Sci. Inst. Ser. C Math. Phys. Sci., pages
241–247. Kluwer Acad. Publ., Dordrecht, 1994. 18

[Küh95] Wolfgang Kühnel. Tight polyhedral submanifolds and tight triangulations, volume 1612
of Lecture Notes in Mathematics. Springer-Verlag, Berlin, 1995. 15, 18, 19, 159

[Kui84] Nicolaas H. Kuiper. Geometry in total absolute curvature theory. In Perspectives in
mathematics, pages 377–392. Birkhäuser, Basel, 1984. 18

[Lut] Frank H. Lutz. The Manifold Page. http://www.math.tu-berlin.de/diskregeom/
stellar. 2, 78

[Lut03] Frank H. Lutz. Triangulated Manifolds with Few Vertices and Vertex-Transitive Group
Actions. PhD thesis, TU Berlin, 2003. 2, 7, 65, 78, 79

http://www.math.tu-berlin.de/diskregeom/stellar
http://www.math.tu-berlin.de/diskregeom/stellar

simpcomp 221

[Lut05] Frank H. Lutz. Triangulated Manifolds with Few Vertices: Combinatorial Manifolds.
arXiv:math/0506372v1 [math.CO], Preprint, 37 pages, 2005. 11

[MP14] Brendan D. McKay and Adolfo Piperno. Practical graph isomorphism, {II}. Journal of
Symbolic Computation, 60(0):94 – 112, 2014. 2, 83

[Pac87] Udo Pachner. Konstruktionsmethoden und das kombinatorische Homöomorphieproblem
für Triangulierungen kompakter semilinearer Mannigfaltigkeiten. Abh. Math. Sem. Uni.
Hamburg, 57:69–86, 1987. 102, 113, 114, 143, 144

[PS14] J. Paixao and J. Spreer. Probabilistic collapsibility testing and manifold recognition
heuristics, 2014. In preparation, 6 pages. 170, 172, 173, 174

[R1̈3] Marc Röder. GAP package polymaking. http://www.gap-system.org/Packages/

polymaking.html, 2013. 182

[Rin74] Gerhard Ringel. Map color theorem. Springer-Verlag, New York, 1974. Die Grundlehren
der mathematischen Wissenschaften, Band 209. 18

[RS72] Colin P. Rourke and Brian J. Sanderson. Introduction to piecewise-linear topology.
Springer-Verlag, New York, 1972. Ergebnisse der Mathematik und ihrer Grenzgebiete,
Band 69. 11, 18

[Sch94] Christoph Schulz. Polyhedral manifolds on polytopes. Rend. Circ. Mat. Palermo (2)
Suppl., (35):291–298, 1994. First International Conference on Stochastic Geometry,
Convex Bodies and Empirical Measures (Palermo, 1993). 19

[SK11] Jonathan Spreer and Wolfgang Kühnel. Combinatorial properties of the K3 surface:
Simplicial blowups and slicings. Experiment. Math., 20(2):201–216, 2011. 7, 16, 19, 20,
156, 158

[Soi12] Leonard H. Soicher. GRAPE - GRaph Algorithms using PErmutation groups. http:

//www.gap-system.org/Packages/grape.html, 2012. Version 4.6.1. 2, 7, 83, 194

[Spa56] Edwin H. Spanier. The homology of Kummer manifolds. Proc. AMS, 7:155–160, 1956.
19

[Spa99] Eric Sparla. A new lower bound theorem for combinatorial 2k-manifolds. Graphs Com-
bin., 15(1):109–125, 1999. 58

[Spr11a] J. Spreer. Blowups, slicings and permutation groups in combinatorial topology. PhD
thesis, University of Stuttgart, 2011. Ph.D. thesis. 7, 55, 59, 61, 63, 64, 65, 212

[Spr11b] Jonathan Spreer. Normal surfaces as combinatorial slicings. Discrete Math.,
311(14):1295–1309, 2011. doi:10.1016/j.disc.2011.03.013. 15, 16, 43, 119

[Spr12] J. Spreer. Partitioning the triangles of the cross polytope into surfaces. Beitr. Algebra
Geom. / Contributions to Algebra and Geometry, 53(2):473–486, 2012. 60

[Spr14] Jonathan Spreer. Combinatorial 3-manifolds with transitive cyclic symmetry. Discrete
Comput. Geom., 51(2):394–426, 2014. 80, 81

http://www.gap-system.org/Packages/polymaking.html
http://www.gap-system.org/Packages/polymaking.html
http://www.gap-system.org/Packages/grape.html
http://www.gap-system.org/Packages/grape.html

simpcomp 222

[Wee99] Jeff Weeks. SnapPea (Software for hyperbolic 3-manifolds), 1999. http://www.

geometrygames.org/SnapPea/. 8

[Wil96] David Bruce Wilson. Generating random spanning trees more quickly than the cover
time. In Proceedings of the Twenty-eighth Annual ACM Symposium on the Theory of
Computing (Philadelphia, PA, 1996), pages 296–303. ACM, New York, 1996. 171

[Zie95] Günter M. Ziegler. Lectures on polytopes, volume 152 of Graduate Texts in Mathematics.
Springer-Verlag, New York, 1995. 11, 102, 113, 114

http://www.geometrygames.org/SnapPea/
http://www.geometrygames.org/SnapPea/

Index

Iterator (SCSimplicialComplex), 42

Length (SCSimplicialComplex), 42

Operation * (SCSimplicialComplex,

SCSimplicialComplex), 39
Operation + (SCNormalSurface, -

Integer), 43
Operation + (SCSimplicialComplex,

Integer), 37
Operation + (SCSimplicialComplex,

SCSimplicialComplex), 38
Operation - (SCNormalSurface, -

Integer), 43
Operation - (SCSimplicialComplex,

Integer), 37
Operation - (SCSimplicialComplex,

SCSimplicialComplex), 39
Operation = (SCSimplicialComplex,

SCSimplicialComplex), 39
Operation [] (SCSimplicialComplex), 42
Operation ^ (SCSimplicialComplex,

Integer), 38
Operation Difference (SCSimplicial-

Complex, SCSimplicialComplex),
40

Operation Intersection (SCSimplicial-
Complex, SCSimplicialComplex),
41

Operation mod (SCNormalSurface, -
Integer), 44

Operation mod (SCSimplicialComplex,

Integer), 37
Operation Union (SCNormalSurface,

SCNormalSurface), 44
Operation Union (SCSimplicialComplex,

SCSimplicialComplex), 40

SC, 47
SCAlexanderDual, 105

SCAltshulerSteinberg, 82
SCAntiStar, 29
SCAutomorphismGroup, 82
SCAutomorphismGroupInternal, 83
SCAutomorphismGroupSize, 83
SCAutomorphismGroupStructure, 84
SCAutomorphismGroupTransitivity, 84
SCBdCyclicPolytope, 50
SCBdSimplex, 51
SCBistellarIsManifold, 148
SCBistellarOptions, 145
SCBlowup, 156
SCBoundary, 84
SCBoundaryOperatorMatrix, 133
SCBoundarySimplex, 134
SCCartesianPower, 72
SCCartesianProduct, 72
SCChiralMap, 67
SCChiralMaps, 68
SCChiralTori, 68
SCClose, 106
SCCoboundaryOperatorMatrix, 135
SCCohomology, 136
SCCohomologyBasis, 136
SCCohomologyBasisAsSimplices, 137
SCCollapseGreedy, 166
SCCollapseLex, 167
SCCollapseRevLex, 168
SCCone, 106
SCConnectedComponents, 73, 123
SCConnectedProduct, 74
SCConnectedSum, 74
SCConnectedSumMinus, 75
SCCopy, 35, 122
SCCupProduct, 139
SCCyclic3Mfld, 80
SCCyclic3MfldByType, 81
SCCyclic3MfldListOfGivenType, 81
SCCyclic3MfldTopTypes, 80

223

simpcomp 224

SCDehnSommervilleCheck, 85
SCDehnSommervilleMatrix, 86
SCDeletedJoin, 107
SCDifference, 108
SCDifferenceCycleCompress, 76
SCDifferenceCycleExpand, 77
SCDifferenceCycles, 86
SCDim, 86, 124
SCDualGraph, 87
SCEmpty, 51
SCEquivalent, 146
SCEulerCharacteristic, 87, 124
SCExamineComplexBistellar, 147
SCExportIsoSig, 49
SCExportJavaView, 185
SCExportLatexTable, 185
SCExportMacaulay2, 184
SCExportPolymake, 184, 186
SCExportSnapPy, 186
SCExportToString, 49
SCFaceLattice, 88, 125
SCFaceLatticeEx, 88, 125
SCFaces, 88
SCFacesEx, 88
SCFacets, 24, 89
SCFacetsEx, 24, 89
SCFillSphere, 108
SCFpBettiNumbers, 89, 126
SCFromDifferenceCycles, 47
SCFromFacets, 46
SCFromGenerators, 48
SCFromIsoSig, 50
SCFundamentalGroup, 89
SCFVector, 87, 125
SCFVectorBdCrossPolytope, 54
SCFVectorBdCyclicPolytope, 54
SCFVectorBdSimplex, 54
SCGenerators, 91
SCGeneratorsEx, 92
SCGenus, 126
SCGVector, 90
SCHandleAddition, 109
SCHasBoundary, 94
SCHasInterior, 94
SCHasseDiagram, 168
SCHeegaardSplitting, 95
SCHeegaardSplittingSmallGenus, 94

SCHomalgBoundaryMatrices, 187
SCHomalgCoboundaryMatrices, 188
SCHomalgCohomology, 189
SCHomalgCohomologyBasis, 189
SCHomalgHomology, 188
SCHomalgHomologyBasis, 188
SCHomology, 127, 171
SCHomologyBasis, 134
SCHomologyBasisAsSimplices, 134
SCHomologyClassic, 95
SCHomologyEx, 171
SCHomologyInternal, 135
SCHVector, 93
SCImportPolymake, 184
SCIncidences, 96
SCIncidencesEx, 96
SCInfoLevel, 191
SCInterior, 97
SCIntersection, 109
SCIntersectionForm, 139
SCIntersectionFormDimensionality, 140
SCIntersectionFormParity, 140
SCIntersectionFormSignature, 141
SCIntFunc.SCChooseMove, 147
SCIsCentrallySymmetric, 97
SCIsConnected, 97, 127
SCIsEmpty, 98, 128
SCIsEulerianManifold, 98
SCIsFlag, 99
SCIsHeegaardSplitting, 99
SCIsHomologySphere, 100
SCIsInKd, 100
SCIsIsomorphic, 110
SCIsKNeighborly, 100
SCIsKStackedSphere, 148
SCIsLibRepository, 175
SCIsManifold, 173
SCIsManifoldEx, 173
SCIsMovableComplex, 149
SCIsomorphism, 111
SCIsomorphismEx, 111
SCIsOrientable, 101, 128
SCIsPseudoManifold, 101
SCIsPure, 101
SCIsShellable, 101
SCIsSimplicialComplex, 35
SCIsSimplyConnected, 172

simpcomp 225

SCIsSimplyConnectedEx, 172
SCIsSphere, 173
SCIsStronglyConnected, 102
SCIsSubcomplex, 110
SCIsTight, 159
SCJoin, 111
SCLabelMax, 25
SCLabelMin, 26
SCLabels, 26
SCLib, 175
SCLibAdd, 177
SCLibAllComplexes, 177
SCLibDelete, 178
SCLibDetermineTopologicalType, 178
SCLibFlush, 179
SCLibInit, 179
SCLibIsLoaded, 180
SCLibSearchByAttribute, 180
SCLibSearchByName, 180
SCLibSize, 181
SCLibStatus, 181
SCLibUpdate, 181
SCLink, 30
SCLinks, 30
SCLoad, 182
SCLoadXML, 183
SCMailClearPending, 192
SCMailIsEnabled, 192
SCMailIsPending, 192
SCMailSend, 193
SCMailSendPending, 193
SCMailSetAddress, 193
SCMailSetEnabled, 193
SCMailSetMinInterval, 194
SCMappingCylinder, 158
SCMinimalNonFaces, 102
SCMinimalNonFacesEx, 103
SCMorseEngstroem, 169
SCMorseIsPerfect, 164
SCMorseMultiplicityVector, 165
SCMorseNumberOfCriticalPoints, 165
SCMorseRandom, 169
SCMorseRandomLex, 169
SCMorseRandomRevLex, 170
SCMorseSpec, 170
SCMorseUST, 170
SCMove, 149

SCMoves, 150
SCName, 26
SCNeighborliness, 103
SCNeighbors, 112
SCNeighborsEx, 113
SCNrChiralTori, 69
SCNrCyclic3Mflds, 80
SCNrRegularTorus, 69
SCNS, 120
SCNSEmpty, 119
SCNSFromFacets, 119
SCNSSlicing, 120
SCNSTriangulation, 123
SCNumFaces, 103
SCOrientation, 104
SCProperties, 213
SCPropertiesDropped, 36
SCPropertiesFlush, 213
SCPropertiesManaged, 213
SCPropertiesNames, 214
SCPropertiesTmp, 214
SCPropertiesTmpNames, 214
SCPropertyByName, 214
SCPropertyDrop, 214
SCPropertyHandlersSet, 214
SCPropertySet, 215
SCPropertySetMutable, 215
SCPropertyTmpByName, 215
SCPropertyTmpDrop, 215
SCPropertyTmpSet, 215
SCRandomize, 151
SCReduceAsSubcomplex, 151
SCReduceComplex, 152
SCReduceComplexEx, 153
SCReduceComplexFast, 155
SCReference, 27
SCRegularMap, 69
SCRegularMaps, 70
SCRegularTorus, 71
SCRelabel, 27
SCRelabelStandard, 28
SCRelabelTransposition, 28
SCRename, 28
SCRMoves, 150
SCRunTest, 194
SCSave, 183
SCSaveXML, 184

simpcomp 226

SCSeriesAGL, 55
SCSeriesBdHandleBody, 57
SCSeriesBid, 58
SCSeriesBrehmKuehnelTorus, 56
SCSeriesC2n, 58
SCSeriesConnectedSum, 59
SCSeriesCSTSurface, 60
SCSeriesD2n, 61
SCSeriesHandleBody, 62
SCSeriesHomologySphere, 62
SCSeriesK, 63
SCSeriesKu, 63
SCSeriesL, 64
SCSeriesLe, 64
SCSeriesLensSpace, 65
SCSeriesPrimeTorus, 66
SCSeriesS2xS2, 67
SCSeriesSeifertFibredSpace, 66
SCSeriesSymmetricTorus, 71
SCSeriesTorus, 52
SCSetReference, 29
SCsFromGroupByTransitivity, 79
SCsFromGroupExt, 78
SCShelling, 113
SCShellingExt, 114
SCShellings, 114
SCSimplex, 52
SCSkel, 104, 129
SCSkelEx, 104, 129
SCSlicing, 164
SCSpan, 115
SCSpanningTree, 105
SCSpanningTreeRandom, 171
SCStar, 33
SCStars, 33
SCStronglyConnectedComponents, 77
SCSurface, 52
SCSuspension, 116
SCTopologicalType, 130
SCUnion, 117, 131
SCUnlabelFace, 29
SCVertexIdentification, 117
SCVertices, 25
SCVerticesEx, 25
SCWedge, 117
ShallowCopy (SCSimplicialComplex), 36
Size (SCSimplicialComplex), 41

	Introduction
	What is new
	simpcomp benefits
	How to save time reading this document
	Organization of this document
	How to assure simpcomp works correctly
	Controlling simpcomp log messages
	How to cite simpcomp

	Theoretical foundations
	Polytopes and polytopal complexes
	Simplices and simplicial complexes
	From geometry to combinatorics
	Discrete Normal surfaces
	Polyhedral Morse theory and slicings
	Discrete Morse theory
	Tightness and tight triangulations
	Simplicial blowups

	The new GAP object types of simpcomp
	Accessing properties of a SCPolyhedralComplex object

	Functions and operations for the GAP object type SCPolyhedralComplex
	Computing properties of objects of type SCPolyhedralComplex
	Vertex labelings and label operations
	Operations on objects of type SCPolyhedralComplex

	The GAP object types SCSimplicialComplex and SCNormalSurface
	The object type SCSimplicialComplex
	Overloaded operators of SCSimplicialComplex
	SCSimplicialComplex as a subtype of Set
	The object type SCNormalSurface
	Overloaded operators of SCNormalSurface
	SCNormalSurface as a subtype of Set

	Functions and operations for SCSimplicialComplex
	Creating an SCSimplicialComplex object from a facet list
	Isomorphism signatures
	Generating some standard triangulations
	Generating infinite series of transitive triangulations
	A census of regular and chiral maps
	Generating new complexes from old
	Simplicial complexes from transitive permutation groups
	The classification of cyclic combinatorial 3-manifolds
	Computing properties of simplicial complexes
	Operations on simplicial complexes

	Functions and operations for SCNormalSurface
	Creating an SCNormalSurface object
	Generating new objects from discrete normal surfaces
	Properties of SCNormalSurface objects

	(Co-)Homology of simplicial complexes
	Homology computation
	Cohomology computation

	Bistellar flips
	Theory
	Functions for bistellar flips

	Simplicial blowups
	Theory
	Functions related to simplicial blowups

	Polyhedral Morse theory
	Polyhedral Morse theory related functions

	Forman's discrete Morse theory
	Functions using discrete Morse theory

	Library and I/O
	Simplicial complex library
	simpcomp input / output functions

	Interfaces to other software packages
	Interface to the GAP-package homalg

	Miscellaneous functions
	simpcomp logging
	Email notification system
	Testing the functionality of simpcomp

	Property handlers
	Property handlers of SCPolyhedralComplex
	Property handlers of SCSimplicialComplex
	Property handlers of SCNormalSurface
	Property handlers of SCLibRepository

	A demo session with simpcomp
	Creating a SCSimplicialComplex object
	Working with a SCSimplicialComplex object
	Calculating properties of a SCSimplicialComplex object
	Creating new complexes from a SCSimplicialComplex object
	Homology related calculations
	Bistellar flips
	Simplicial blowups
	Discrete normal surfaces and slicings

	simpcomp internals
	The GAP object type SCPropertyObject
	Example of a common attribute
	Writing a method for an attribute

	References
	Index

