
PatternClass
Permutation Pattern Classes

Version 2.0

August 2015

Michael Albert
Steve Linton

Ruth Hoffmann

Michael Albert Email: malbert at cs.otago.ac.nz

Steve Linton Email: sl4 at st-andrews.ac.uk

Ruth Hoffmann Email: rh347 at icloud.com

mailto:// malbert at cs.otago.ac.nz
mailto:// sl4 at st-andrews.ac.uk
mailto:// rh347 at icloud.com


PatternClass 2

Abstract
The PatternClass package is build on the idea of token passing networks building permutation pattern
classes. Those classes are best determined by their basis. Both sets can be encoded by rank encoding their
permutations. Each, the class and its basis, in their encoded form build a rational language [1]. Rational
languages can be easily computed by using automata, which also can be build directly from the token passing
networks [2]. Both ways will build the same language, i.e. the same automaton.
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Chapter 1

Introduction

Token passing networks (TPNs) are directed graphs with nodes that can hold at most one token. Also
each graph has a designated input node, which generates an ordered sequence of numbered tokens and
a designated output node that collects the tokens in the order they arrive at it. The input node has no
incoming edges, whereas the output node has no outgoing edges. A token t travels through the graph,
from node to node, if there is an edge connecting the nodes, if the node the token is moving from is
either the input node and the tokens 1, . . . , t−1 have been released or the node is not the output node,
and lastly if the destination node contains no token or it is the output node. [2]

The set of permutations resulting from a TPN is closed under the property of containment. A per-
mutation a contains a permutation b of shorter length if in a there is a subsequence that is isomorphic
to b. This class of permutations can be represented by its anti-chain, which in this context is called
the basis. [1]

To enhance the computability of permutation pattern classes, each permutation can be encoded,
using the so called rank encoding. For a permutation p1 . . . pn, it is the sequence e1 . . .en where ei is
the rank of pi among {pi, pi+1, . . . , pn}. It can be shown that the sets of encoded permutations of the
class and the basis, both are a rational languages. Rational languages can be represented by automata.
[1]

There is another approach to get from TPNs to their corresponding automata. Namely building
equivalence classes from TPNs using the different dispositions of tokens within them. These equiva-
lence classes of dispositions and the rank encoding of the permutations allow to build the same rational
language as from the process above. [2]
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Chapter 2

Token Passing Networks

A token passing network is a directed graph with a designated input node and a designated output
node. The input node has no incoming edges whereas the output node has no outgoing edges. Also
the input node generates a sequence of tokens, labelled 1, 2, 3, ... . These tokens are passed on to the
nodes within the graph, where each node, apart from the input and output node, can hold at most one
token at any time. The edges do not hold tokens but are there to pass them on. The following must
hold if a token t moves from the node x to the node y.

There is an edge from x to y; x is the input node, and the tokens 1, 2, 3, ... , t−1 have been moved,
or x is any other node but not the output node; lastly either y is the output node or y is not the input
node and currently is not occupied by a token. [2]

Token passing networks, or TPNs, are represented in GAP as a list. Each entry of the list is the
index of the node within the TPN and contains a list of the "destinations", i.e. the end of the edge or
arrow where it is directed to.

Here is an example how the input of such a TPN looks in GAP:
Example

gap> hex:=[[2,3],[4],[5],[3,6],[6],[]];
[ [ 2, 3 ], [ 4 ], [ 5 ], [ 3, 6 ], [ 6 ], [ ] ]
gap>

This list represents the following directed graph:

From this it is visible that the input node is 1, as it has no other node pointing any arrows towards
it, and the output node is 6, as it has no destinations (hence the empty list).

2.1 Specific TPN

In PatternClass there are several functions that define different kinds of specific token passing
networks.
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2.1.1 Parstacks

. Parstacks(m, n) (function)

Returns: A list that represents the directed edges of a token passing network.
Parstacks constructs a token passing network with 2 different sized stacks m,n positioned in

parallel.
Example

gap> Parstacks(2,2);
[ [ 2, 4 ], [ 3, 6 ], [ 2 ], [ 5, 6 ], [ 4 ], [ ] ]
gap>

Parstacks(2,2) can be visualised as the following directed graph:

Example
gap> Parstacks(4,3);
[ [ 2, 6 ], [ 3, 9 ], [ 2, 4 ], [ 3, 5 ], [ 4 ], [ 7, 9 ], [ 6, 8 ], [ 7 ],

[ ] ]
gap>

The token passing network below represents the list that was output by Parstacks(4,3).



PatternClass 8

2.1.2 Seqstacks

. Seqstacks(n[, m[, o[, p[, ...]]]]) (function)

Returns: A list that represents the directed edges of a token passing network.
The token passing network build by Seqstacks contains a series of stacks (as many as you have

integers in the arguments list) each of different length (each integer in the argument list).
Example

gap> Seqstacks(2,2);
[ [ 2 ], [ 3, 4 ], [ 2 ], [ 5, 6 ], [ 4 ], [ ] ]
gap>

Seqstacks(2,2) can be visualised as the following directed graph:

Example
gap> Seqstacks(3,1,4);
[ [ 2 ], [ 3, 5 ], [ 2, 4 ], [ 3 ], [ 4 ], [ 7, 10 ], [ 6, 8 ], [ 7, 9 ],

[ 8 ], [ ] ]
gap>

The token passing network containing a series of stacks of length 3, 1 and 4 looks as follows:
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2.1.3 BufferAndStack

. BufferAndStack(m, n) (function)

Returns: A list that represents the directed edges of a token passing network.
BufferAndStack is a token passing network that consists of a buffer of size m which is followed

by a single stack of size n.
Example

gap> BufferAndStack(2,2);
[ [ 2, 3 ], [ 4 ], [ 4 ], [ 5, 6 ], [ 4 ], [ ] ]
gap>

BufferAndStack(2,2) is the following directed graph:

Example
gap> BufferAndStack(4,3);
[ [ 2 .. 5 ], [ 6 ], [ 6 ], [ 6 ], [ 6 ], [ 7, 9 ], [ 6, 8 ], [ 7 ], [ ] ]
gap>

The token passing network correlating to the list output by BufferAndStack(4,3) is:



Chapter 3

Permutation Encoding

A permutation π = π1 . . .πn has rank encoding p1 . . . pn where pi = |{ j : j ≥ i,π j ≤ πi}|. In other
words the rank encoded permutation is a sequence of pi with 1 ≤ i ≤ n, where pi is the rank of πi in
{πi,πi+1, . . . ,πn}. [1]

The encoding of the permutation 3 2 5 1 6 7 4 8 9 is done as follows:

Permutation Encoding Assisting list
325167489 /0 123456789
25167489 3 12456789
5167489 32 1456789
167489 323 146789
67489 3231 46789
7489 32312 4789
489 323122 489
89 3231221 89
9 32312211 9
/0 323122111 /0

Decoding a permutation is done in a similar fashion, taking the sequence p1 . . . pn and using the
reverse process will lead to the permutation π = π1 . . .πn, where πi is determined by finding the
number that has rank pi in {πi,πi+1, . . . ,πn}.

The sequence 3 2 3 1 2 2 1 1 1 is decoded as:

Encoding Permutation Assisting list
323122111 /0 123456789
23122111 3 12456789
3122111 32 1456789
122111 325 146789
22111 3251 46789
2111 32516 4789
111 325167 489
11 3251674 89
1 32516748 9
/0 325167489 /0
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3.1 Encoding and Decoding

3.1.1 RankEncoding

. RankEncoding(p) (function)

Returns: A list that represents the rank encoding of the permutation p.
Using the algorithm above RankEncoding turns the permutation p into a list of integers.

Example
gap> RankEncoding([3, 2, 5, 1, 6, 7, 4, 8, 9]);
[ 3, 2, 3, 1, 2, 2, 1, 1, 1 ]
gap> RankEncoding([ 4, 2, 3, 5, 1 ]);
[ 4, 2, 2, 2, 1 ]
gap>

3.1.2 RankDecoding

. RankDecoding(e) (function)

Returns: A permutation in list form.
A rank encoded permutation is decoded by using the reversed process from encoding, which is

also explained above.
Example

gap> RankDecoding([ 3, 2, 3, 1, 2, 2, 1, 1, 1 ]);
[ 3, 2, 5, 1, 6, 7, 4, 8, 9 ]
gap> RankDecoding([ 4, 2, 2, 2, 1 ]);
[ 4, 2, 3, 5, 1 ]
gap>

3.1.3 SequencesToRatExp

. SequencesToRatExp(list) (function)

Returns: A rational expression that describes all the words in list.
A list of sequences is turned into a rational expression by concatenating each sequence and unify-

ing all of them.
Example

gap> SequencesToRatExp([[ 1, 1, 1, 1, 1 ],[ 2, 1, 2, 2, 1 ],[ 3, 2, 1, 2, 1 ],
> [ 4, 2, 3, 2, 1 ]]);
11111U21221U32121U42321
gap>



Chapter 4

From Networks to Automata

It is known that the language of all encoded permutations of a TPN is rational, and thus is it indeed
possible to turn a TPN into an automaton. The idea is to inspect all dispositions of tokens within
the TPN and find equivalence classes of these dispositions, for more details consult [2]. Adding a
constraint, which limits the number of tokens at any time within the TPN, is also considered in this
chapter.

The algorithms featured in this chapter do not return the minimal automata representing the input
TPN as they are exactly visualising the equivalence classes of the dispositions of the tokens in the
TPN. The automaton can be minimalised by choice, as it simplifies future computations involving the
automaton also is makes the automata more legible.

4.1 Functions

4.1.1 GraphToAut

. GraphToAut(g, innode, outnode) (function)

Returns: An automaton representing the input TPN.
GraphToAut turns an array represented directed graph, with a distinct input node and a distinct

output node, into the corresponding automaton, that accepts the language build by the resulting rank
encoded permutations of the directed graph.

Example
gap> x:=Seqstacks(2,2);
[ [ 2 ], [ 3, 4 ], [ 2 ], [ 5, 6 ], [ 4 ], [ ] ]
gap> aut:=GraphToAut(x,1,6);
< epsilon automaton on 4 letters with 64 states >
gap> aut:=MinimalAutomaton(aut);
< deterministic automaton on 3 letters with 3 states >
gap> Display(aut);

| 1 2 3
--------------
a | 1 3 1
b | 3 3 3
c | 2 2 2

Initial state: [ 1 ]
Accepting state: [ 1 ]
gap>

12
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The minimal automaton corresponding to Seqstacks(2,2) is:

Example
gap> x:=Parstacks(2,2);
[ [ 2, 4 ], [ 3, 6 ], [ 2 ], [ 5, 6 ], [ 4 ], [ ] ]
gap> aut:=GraphToAut(x,1,6);
< epsilon automaton on 5 letters with 66 states >
gap> aut:=MinimalAutomaton(aut);
< deterministic automaton on 4 letters with 9 states >
gap> Display(aut);

| 1 2 3 4 5 6 7 8 9
--------------------------------
a | 1 2 1 3 2 2 6 6 3
b | 3 2 3 3 4 3 6 9 3
c | 9 2 9 4 6 6 4 9 9
d | 8 2 8 7 5 5 7 8 8

Initial state: [ 1 ]
Accepting state: [ 1 ]
gap>

The rank encoded permutations of Parstacks(2,2) are accepted by the following automaton:
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Example
gap> x:=BufferAndStack(3,2);
[ [ 2 .. 4 ], [ 5 ], [ 5 ], [ 5 ], [ 6, 7 ], [ 5 ], [ ] ]
gap> aut:=GraphToAut(x,1,7);
< epsilon automaton on 5 letters with 460 states >
gap> aut:=MinimalAutomaton(aut);
< deterministic automaton on 4 letters with 4 states >
gap> Display(aut);

| 1 2 3 4
-----------------
a | 1 4 1 3
b | 3 4 3 3
c | 4 4 4 4
d | 2 2 2 2

Initial state: [ 1 ]
Accepting state: [ 1 ]
gap>

The following automaton represents the language of rank encoded permutations that are output by
BufferAndStack(3,2):
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Example
gap> x:=[[2,3],[4],[5],[3,6],[6],[]];
[ [ 2, 3 ], [ 4 ], [ 5 ], [ 3, 6 ], [ 6 ], [ ] ]
gap> aut:=GraphToAut(x,1,6);
< epsilon automaton on 4 letters with 80 states >
gap> aut:=MinimalAutomaton(aut);
< deterministic automaton on 3 letters with 8 states >
gap> Display(aut);

| 1 2 3 4 5 6 7 8
-----------------------------
a | 1 3 1 4 6 1 6 1
b | 3 8 3 4 4 6 6 6
c | 2 2 2 4 5 5 7 7

Initial state: [ 1 ]
Accepting state: [ 1 ]
gap>

The input TPN here is the first network described in Chapter 2. The language of rank encoded permu-
tations of this token passing network is accepted by the following automaton:
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4.1.2 ConstrainedGraphToAut

. ConstrainedGraphToAut(g, innode, outnode, capacity) (function)

Returns: An automaton representing the input TPN with bounded capacity.
ConstrainedGraphToAut builds an epsilon automaton based on the same idea as GraphToAut,

so it takes a list representation of a directed graph, a designated input node and a distinct output node,
but additionally there is the constraint that there can be at most capacity tokens in the graph, at any
time.

Example
gap> x:=Seqstacks(2,2);
[ [ 2 ], [ 3, 4 ], [ 2 ], [ 5, 6 ], [ 4 ], [ ] ]
gap> aut:=ConstrainedGraphToAut(x,1,6,2);
< epsilon automaton on 6 letters with 21 states >
gap> aut:=MinimalAutomaton(aut);
< deterministic automaton on 5 letters with 3 states >
gap> Display(aut);

| 1 2 3
--------------
a | 1 2 1
b | 3 2 3
c | 2 2 2
d | 2 2 2
e | 2 2 2

Initial state: [ 1 ]
Accepting state: [ 1 ]
gap>

The rank encoded permutations of Seqstacks(2,2), where at any time there are at most 2 tokens
within the network, are accepted by the following automaton:
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Example
gap> x:=BufferAndStack(3,2);
[ [ 2 .. 4 ], [ 5 ], [ 5 ], [ 5 ], [ 6, 7 ], [ 5 ], [ ] ]
gap> aut:=ConstrainedGraphToAut(x,1,6,3);
< epsilon automaton on 7 letters with 112 states >
gap> aut:=MinimalAutomaton(aut);
< deterministic automaton on 6 letters with 4 states >
gap> Display(aut);

| 1 2 3 4
-----------------
a | 1 2 1 3
b | 3 2 3 3
c | 4 2 4 4
d | 2 2 2 2
e | 2 2 2 2
f | 2 2 2 2

Initial state: [ 1 ]
Accepting state: [ 1 ]
gap>

The automaton corresponding to BufferAndStack(3,2) with limited capacity of 3 tokens is:
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Example
gap> x:=[[2,3],[4],[5],[3,6],[6],[]];
[ [ 2, 3 ], [ 4 ], [ 5 ], [ 3, 6 ], [ 6 ], [ ] ]
gap> aut:=ConstrainedGraphToAut(x,1,6,3);
< epsilon automaton on 6 letters with 48 states >
gap> aut:=MinimalAutomaton(aut);
< deterministic automaton on 5 letters with 8 states >
gap> Display(aut);

| 1 2 3 4 5 6 7 8
-----------------------------
a | 1 3 1 4 6 1 6 1
b | 3 8 3 4 4 6 6 6
c | 2 2 2 4 5 5 7 7
d | 4 4 4 4 4 4 4 4
e | 4 4 4 4 4 4 4 4

Initial state: [ 1 ]
Accepting state: [ 1 ]
gap>

The automaton that accepts the language of rank encoded permutations of the token passing network,
from Chapter 2, with at most 3 tokens in the network at anytime, is:
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Chapter 5

From Automata to Networks

It is not only important to see how a TPN can be interpreted as a finite state automaton. But also if
an arbitrary automaton could represent the language of rank encoded permutations of a TPN. Cur-
rently within PatternClass it is only possible to check whether deterministic automata are possible
representatives of a TPN.

5.1 Functions

5.1.1 IsStarClosed

. IsStarClosed(aut) (function)

Returns: true if the start and accept states in aut are one and the same state.
This has the consequence that the whole rational expression accepted by aut is always enclosed

by the Kleene star.
Example

gap> x:=Automaton("det",4,2,[[3,4,2,4],[2,2,2,4]],[1],[2]);
< deterministic automaton on 2 letters with 4 states >
gap> IsStarClosed(x);
false
gap> AutToRatExp(x);
(a(aUb)Ub)b*
gap> y:=Automaton("det",3,2,[[3,2,1],[2,3,1]],[1],[1]);
< deterministic automaton on 2 letters with 3 states >
gap> IsStarClosed(y);
true
gap> AutToRatExp(y);
((ba*bUa)(aUb))*
gap>

5.1.2 Is2StarReplaceable

. Is2StarReplaceable(aut) (function)

Returns: true if none of the states in the automaton aut, which are not the initial state, have a
transition to the initial state labelled with the first letter of the alphabet. It also returns true if there
is at least one state i ∈ Q with the first two transitions from i being f (i,1) = 1 and f (i,2) = x, where
x ∈ Q\{1} and f (x,1) = 1.

20
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Example
gap> x:=Automaton("det",3,2,[[1,2,3],[2,2,3]],[1],[2]);
< deterministic automaton on 2 letters with 3 states >
gap> Is2StarReplaceable(x);
true
gap> y:=Automaton("det",4,2,[[4,1,1,2],[1,3,3,2]],[1],[1]);
< deterministic automaton on 2 letters with 4 states >
gap> Is2StarReplaceable(y);
true
gap> z:=Automaton("det",4,2,[[4,1,1,2],[1,4,2,2]],[1],[4]);
< deterministic automaton on 2 letters with 4 states >
gap> Is2StarReplaceable(z);
false
gap>

5.1.3 IsStratified

. IsStratified(aut) (function)

Returns: true if aut has a specific "layered" form.
A formal description of the most basic stratified automaton is:
(S,Q, f ,q0,A) with S := {1, ...,n}, Q := {1, ...,m}, n < m, q0 := 1, A := Q\{n+1}, f : Q×S→

Q and n+1 is a sink state.
If i, j ∈ Q\{n+1},with i < j, and i′, j′ ∈ S, i = i′, j = j′ then

f (i, i′) = i, f (i, j′) = j, f ( j, j′) = j, f ( j, i′) = j−1 or n+1.
Example

gap> x:=Automaton("det",4,2,[[1,3,1,4],[2,2,4,4]],[1],[2]);
< deterministic automaton on 2 letters with 4 states >
gap> IsStratified(x);
true
gap> y:=Automaton("det",4,2,[[1,3,2,4],[2,4,1,4]],[1],[2]);
< deterministic automaton on 2 letters with 4 states >
gap> IsStratified(y);
false
gap>

5.1.4 IsPossibleGraphAut

. IsPossibleGraphAut(aut) (function)

Returns: true if aut returns true in IsStratified, Is2StarReplaceable and
IsStarClosed.

An automaton that fulfils the three functions above has the right form to be an automaton repre-
senting rank encoded permutations, which are output from a TPN.

Example
gap> x:=Automaton("det",2,2,[[1,2],[2,2]],[1],[1]);
< deterministic automaton on 2 letters with 2 states >
gap> IsPossibleGraphAut(x);
true
gap> y:=Automaton("det",2,2,[[1,2],[1,2]],[1],[1]);
< deterministic automaton on 2 letters with 2 states >
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gap> IsPossibleGraphAut(y);
false
gap> IsStarClosed(y);
true
gap> Is2StarReplaceable(y);
true
gap> IsStratified(y);
false
gap>



Chapter 6

Pattern Classes

Permutation pattern classes can be determined using their corresponding basis. The basis of a pattern
class is the anti-chain of the class, under the order of containment. A permutation π contains another
permutation σ (of shorter length) if there is a subsequence in π , which is isomorphic to σ .

With the rational language of the rank encoded class, it is also possible to find the rational language
of the basis and vice versa. Several specific kinds of transducers are used in this process. [1]

6.1 Transducers

6.1.1 Transducer

. Transducer(states, init, transitions, accepting) (function)

Returns: A record that represents a transducer.
A transducer is essentially an automaton, where running through the process does not determine

whether the input is accepted, but the input is translated to another language, over a different alphabet.
Formally a transducer is a six-tuple with: Q being the set of states, S the input alphabet, G the

output alphabet, I ∈ Q the start state, A ⊆ Q the set of accept states, and with the transition function
f : Q× (S∪{e})→ Q× (G∪{e}), where e is the empty word.

In this function the transducer is stored by defining how many states there are,
which one (by index) is the start or initial state, the transitions are of the form
[inputletter,outputletter,fromstate,tostate] and a list of accept states. The input and
output alphabet are determined by the input and output letters on the transitions.

Example
gap> trans:=Transducer(3,1,[[1,2,1,2],[1,2,2,2],[2,2,1,3],[2,2,2,3],
> [1,1,3,3],[2,2,3,3]],[2]);
rec( accepting := [ 2 ], initial := 1, states := 3,

transitions := [ [ 1, 2, 1, 2 ], [ 1, 2, 2, 2 ], [ 2, 2, 1, 3 ],
[ 2, 2, 2, 3 ], [ 1, 1, 3, 3 ], [ 2, 2, 3, 3 ] ] )

gap>

This transducer can be visualised as the following graph:

23
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6.1.2 DeletionTransducer

. DeletionTransducer(k) (function)

Returns: A transducer over k+1 states.
A deletion transducer is a transducer that deletes one letter of a rank encoded permutation and

returns the correct rank encoding of the new permutation. The deletion transducer over k deletes
letters over the set of all rank encoded permutations with highest rank k. Specifically, running through
a deletion transducer with a rank encoded permutation, of highest rank k, will lead to the set of all
rank encoded permutations that have one letter of the initial permutation removed. It is important
to note that computing these shorter permutations with the transducer, is done by reading the input
permutation from right to left. For example the deletion transducer with k=3, looks as follows:

Example
gap> DeletionTransducer(3);
rec( accepting := [ 1 .. 3 ], initial := 4, states := 4,

transitions := [ [ 1, 1, 4, 4 ], [ 1, 0, 4, 1 ], [ 2, 1, 1, 1 ],
[ 1, 1, 1, 2 ], [ 3, 2, 1, 1 ], [ 1, 1, 2, 3 ], [ 1, 1, 3, 3 ],
[ 2, 2, 4, 4 ], [ 2, 0, 4, 2 ], [ 3, 2, 2, 2 ], [ 2, 2, 2, 3 ],
[ 2, 2, 3, 3 ], [ 3, 3, 4, 4 ], [ 3, 0, 4, 3 ], [ 3, 3, 3, 3 ] ] )

gap>
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6.1.3 TransposedTransducer

. TransposedTransducer(t) (function)

Returns: A new transducer with interchanged input and output letters on each transition.
A transducer is transposed when all origins and destinations of transitions are left the same as be-

fore but the input and output letters on each transition are interchanged. Taking the deletion transducer
from above, its transpose looks as follows:

Example
gap> TransposedTransducer(DeletionTransducer(3));
rec( accepting := [ 1 .. 3 ], initial := 4, states := 4,

transitions := [ [ 1, 1, 4, 4 ], [ 0, 1, 4, 1 ], [ 1, 2, 1, 1 ],
[ 1, 1, 1, 2 ], [ 2, 3, 1, 1 ], [ 1, 1, 2, 3 ], [ 1, 1, 3, 3 ],
[ 2, 2, 4, 4 ], [ 0, 2, 4, 2 ], [ 2, 3, 2, 2 ], [ 2, 2, 2, 3 ],
[ 2, 2, 3, 3 ], [ 3, 3, 4, 4 ], [ 0, 3, 4, 3 ], [ 3, 3, 3, 3 ] ] )

gap>

6.1.4 InvolvementTransducer

. InvolvementTransducer(k) (function)

Returns: A transducer over k+1 states, with a k sized alphabet.
An involvement transducer is a transducer over k+1 states, and deletes any number of letters in a

rank encoded permutation, of rank at most k.
Example

gap> InvolvementTransducer(3);
rec( accepting := [ 1 .. 4 ], initial := 4, states := 4,

transitions := [ [ 1, 1, 1, 2 ], [ 1, 0, 1, 3 ], [ 2, 1, 1, 1 ],
[ 2, 0, 1, 3 ], [ 3, 2, 1, 1 ], [ 3, 0, 1, 1 ], [ 1, 1, 2, 4 ],
[ 1, 0, 2, 1 ], [ 2, 2, 2, 4 ], [ 2, 0, 2, 2 ], [ 3, 2, 2, 2 ],
[ 3, 0, 2, 2 ], [ 1, 1, 3, 2 ], [ 1, 0, 3, 3 ], [ 2, 1, 3, 1 ],
[ 2, 0, 3, 3 ], [ 3, 1, 3, 3 ], [ 3, 0, 3, 3 ], [ 1, 1, 4, 4 ],
[ 1, 0, 4, 1 ], [ 2, 2, 4, 4 ], [ 2, 0, 4, 2 ], [ 3, 3, 4, 4 ],
[ 3, 0, 4, 4 ] ] )

gap>
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6.1.5 CombineAutTransducer

. CombineAutTransducer(aut, trans) (function)

Returns: An automaton consisting of a combination of aut and trans.
Combining automata and transducers is done over the natural "translation" of the by the automa-

ton accepted language through the transducer and then building a new automaton that accepts the
new language. The function CombineAutTransducer does this process and returns the new non-
deterministic automaton.

Example
gap> a:=Automaton("det",1,1,[[1]],[1],[1]);
< deterministic automaton on 1 letters with 1 states >
gap> AutToRatExp(a);
a*
gap> t:=Transducer(2,1,[[1,2,1,2],[2,1,1,2],
> [1,1,2,1],[2,2,2,1]],[1]);
rec( accepting := [ 1 ], initial := 1, states := 2,

transitions := [ [ 1, 2, 1, 2 ], [ 2, 1, 1, 2 ], [ 1, 1, 2, 1 ],
[ 2, 2, 2, 1 ] ] )

gap> res:=CombineAutTransducer(a,t);
< non deterministic automaton on 2 letters with 2 states >
gap> AutToRatExp(res);
(ba)*
gap> Display(res);

| 1 2
-------------------
a | [ 1 ]
b | [ 2 ]

Initial state: [ 1 ]
Accepting state: [ 1 ]
gap>
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6.2 From Class to Basis and vice versa

6.2.1 BasisAutomaton

. BasisAutomaton(a) (function)

Returns: An automaton that accepts the rank encoded permutations of the basis of the input
automaton a.

Every pattern class has a basis that consists of the smallest set of permutations which do not belong
to the class. Using

B(L) = (LrDt)r ∩Lc

it is possible using the deletion transducer D and the language of rank encoded permutations L to find
the language of the rank encoded permutations of the basis B(L), and thus the basis.

Example
gap> x:=Parstacks(2,2);
[ [ 2, 4 ], [ 3, 6 ], [ 2 ], [ 5, 6 ], [ 4 ], [ ] ]
gap> xa:=GraphToAut(x,1,6);
< epsilon automaton on 5 letters with 66 states >
gap> ma:=MinimalAutomaton(xa);
< deterministic automaton on 4 letters with 9 states >
gap> Display(ma);

| 1 2 3 4 5 6 7 8 9
--------------------------------
a | 1 2 1 3 2 2 6 6 3
b | 3 2 3 3 4 3 6 9 3
c | 9 2 9 4 6 6 4 9 9
d | 8 2 8 7 5 5 7 8 8

Initial state: [ 1 ]
Accepting state: [ 1 ]
gap> ba:=BasisAutomaton(ma);
< deterministic automaton on 4 letters with 9 states >
gap> Display(ba);

| 1 2 3 4 5 6 7 8 9
--------------------------------
a | 2 2 1 3 4 2 2 2 2
b | 2 2 2 2 2 4 1 2 8
c | 2 2 2 2 2 2 1 2 2
d | 2 2 2 9 2 2 5 6 2

Initial state: [ 7 ]
Accepting states: [ 1, 5 ]
gap> AutToRatExp(ba);
d(a(dbdb)*aaU@)UbUc
gap>

Ignoring the trailing UbUc which essentially are noise, the basis of the pattern class indicates which
permutations are avoided in this particular class. The shortest permutation in the basis, looking at the
rational expression, is daaa, which can be translated to 4111 and decoded to the permutation 4123.

6.2.2 ClassAutomaton

. ClassAutomaton(a) (function)

Returns: The automaton that accepts permutations of the class in their rank encoding.
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The function ClassAutomaton does the reverse process of BasisAutomaton. Namely it takes
the automaton that represents the language of the rank encoded basis of a permutation class, and using
the formula

L = Bk∩ ((B(L)rIt)c)r

returns the automaton that accepts the rank encoded permutations of the class. In the formula, Bk is
the automaton that accepts all permutations of any length with highest rank k, B(L) is the automaton
that represents the basis and I is the involement transducer.

Example
gap> xa:=Automaton("det",9,4,[[2,2,1,3,4,2,2,2,2],[2,2,2,2,2,4,1,2,8],
> [2,2,2,2,2,2,1,2,2],[2,2,2,9,2,2,5,6,2]],[7],[1,5]);
< deterministic automaton on 4 letters with 9 states >
gap> ca:=ClassAutomaton(xa);
< deterministic automaton on 4 letters with 9 states >
gap> Display(ca);

| 1 2 3 4 5 6 7 8 9
--------------------------------
a | 1 2 1 3 2 2 6 6 3
b | 3 2 3 3 4 3 6 9 3
c | 9 2 9 4 6 6 4 9 9
d | 8 2 8 7 5 5 7 8 8

Initial state: [ 1 ]
Accepting state: [ 1 ]
gap> IsPossibleGraphAut(ca);
true
gap>

6.2.3 BoundedClassAutomaton

. BoundedClassAutomaton(k) (function)

Returns: An automaton that accepts all rank encoded permutations, with highest rank being k.
The bounded class automaton, is an automaton that accepts all rank encoded permutations, of any

length, with highest rank k.
Example

gap> BoundedClassAutomaton(3);
< deterministic automaton on 3 letters with 3 states >
gap> Display(last);

| 1 2 3
--------------
a | 1 1 2
b | 2 2 2
c | 3 3 3

Initial state: [ 1 ]
Accepting state: [ 1 ]
gap>

6.2.4 ClassAutFromBaseEncoding

. ClassAutFromBaseEncoding(base, k) (function)

Returns: The class automaton from a list of rank encoded basis permutations.
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Given the permutations in the basis, in their rank encoded form, and the bound of the rank of
the permutations of the class, ClassAutFromBaseEncoding builds the automaton that accepts rank
encoded permutations of the class.

Example
gap> ClassAutFromBaseEncoding([[4,1,1,1]],4);
< deterministic automaton on 4 letters with 7 states >
gap> Display(last);

| 1 2 3 4 5 6 7
--------------------------
a | 1 2 1 3 2 2 6
b | 3 2 3 3 4 3 4
c | 4 2 4 4 6 6 4
d | 7 2 7 7 5 5 7

Initial state: [ 1 ]
Accepting state: [ 1 ]
gap>

6.2.5 ClassAutFromBase

. ClassAutFromBase(perms, k) (function)

Returns: The class automaton from a list of permutations of the basis.
Taking perms which is the list of permutations in the basis and k an integer which indicates the

highest rank in the encoded permutations of the class, ClassAutFromBase constructs the automaton
that accepts the language of rank encoded permutations of the class.

Example
gap> ClassAutFromBase([[4,1,2,3]],4);
< deterministic automaton on 4 letters with 7 states >
gap> Display(last);

| 1 2 3 4 5 6 7
--------------------------
a | 1 2 1 3 2 2 6
b | 3 2 3 3 4 3 4
c | 4 2 4 4 6 6 4
d | 7 2 7 7 5 5 7

Initial state: [ 1 ]
Accepting state: [ 1 ]
gap>

6.2.6 ExpandAlphabet

. ExpandAlphabet(a, newAlphabet) (function)

Returns: The automaton a, over the alphabet of size newAlphabet.
Given an automaton and the size of the new alphabet, which has to be bigger than the size of the al-

phabet in a , ExpandAlphabet changes the automaton a to contain an alphabet of size newAlphabet.
The new letters have no transitions within the automaton.

Example
gap> aut:=Automaton("det",3,2,[[2,2,3],[3,3,3]],[1],[3]);
< deterministic automaton on 2 letters with 3 states >
gap> Display(aut);

| 1 2 3
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--------------
a | 2 2 3
b | 3 3 3

Initial state: [ 1 ]
Accepting state: [ 3 ]
gap> ExpandAlphabet(aut,4);
< deterministic automaton on 4 letters with 3 states >
gap> Display(last);

| 1 2 3
--------------
a | 2 2 3
b | 3 3 3
c |
d |

Initial state: [ 1 ]
Accepting state: [ 3 ]
gap>

6.3 Direct Sum of Regular Classes

It is obvious that the direct sum of two rational pattern classes is also rational. But the skew sum of
two rational pattern classes does not imply that the resulting pattern class is rational, because if the
second class in the sum has infinitely many permutations, the alphabet of the skew sum class will be
infinite and thusly the resulting class will not be rational.

6.3.1 ClassDirectSum

. ClassDirectSum(aut1, aut2) (function)

Returns: An automaton that corresponds to the direct sum of aut1 with aut2.
ClassDirectSum builds the concatenation automaton of aut1 with aut2, which corresponds to

the pattern class aut1 ⊕ aut2.
Example

gap> a:=BasisAutomaton(GraphToAut(Parstacks(2,2),1,6));
< deterministic automaton on 4 letters with 9 states >
gap> AutToRatExp(a);
d(a(dbdb)*aaU@)UbUc
gap> b:=MinimalAutomaton(GraphToAut(Seqstacks(2,2),1,6));
< deterministic automaton on 3 letters with 3 states >
gap> AutToRatExp(b);
((cc*(aUb)Ub)(cc*(aUb)Ub)*aUa)*
gap> ab:=ClassDirectSum(a,b);
< deterministic automaton on 4 letters with 11 states >
gap> AutToRatExp(ab);
((d(acUc)c*(aUb)Ud(abUb))(cc*(aUb)Ub)*aUda(d(bdbd)*bdbaaUa)UbUc)((cc*(aUb)U\
b)(cc*(aUb)Ub)*aUa)*Ud(aU@)
gap>
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6.4 Statistical Inspections

It is of interest to see what permutations and how many of different length are accepted by the class,
respectively the basis.

In this section, the examples will be inspecting the basis automaton of the token passing network
containing 2 stacks of capacity 2, which are situated in parallel to each other.

Example
gap> x:=Parstacks(2,2);
[ [ 2, 4 ], [ 3, 6 ], [ 2 ], [ 5, 6 ], [ 4 ], [ ] ]
gap> xa:=GraphToAut(x,1,6);
< epsilon automaton on 5 letters with 66 states >
gap> ma:=MinimalAutomaton(xa);
< deterministic automaton on 4 letters with 9 states >
gap> ba:=BasisAutomaton(ma);
< deterministic automaton on 4 letters with 9 states >
gap> AutToRatExp(ba);
d(a(dbdb)*aaU@)UbUc
gap>

6.4.1 Spectrum

. Spectrum(aut[, int]) (function)

Returns: A list indicating how many words of each length from 1 to int or 15 (default) are
accepted by the automaton.

Each entry in the returned list indicates how many words of length the index of the entry are
accepted by the automaton aut. The length of the list is by default 15, but if this is too much or too
little the second optional argument regulates the length of the list.

Example
gap> Spectrum(ba);
[ 3, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0 ]
gap> Spectrum(ba,20);
[ 3, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1 ]
gap>

6.4.2 NumberAcceptedWords

. NumberAcceptedWords(aut, len) (function)

Returns: The number of words of length len accepted by the automaton aut.
Given the automaton aut and the integer len, NumberAcceptedWords determines how many

words of length len are accepted by the automaton.
Example

gap> NumberAcceptedWords(ba,1);
3
gap> NumberAcceptedWords(ba,16);
1
gap>
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6.4.3 AutStateTransitionMatrix

. AutStateTransitionMatrix(aut) (function)

Returns: A matrix containing the number of transitions between states of the automaton aut.
In the matrix computed by AutStateTransitionMatrix the rows are indexed by the state the

transitions are originating from, the columnns are indexed by the states the transitions are ending at.
Each entry ai, j of the matrix represents the number of transitions from the state i to the state j.

Example
gap> AutStateTransitionMatrix(ba);
[ [ 0, 4, 0, 0, 0, 0, 0, 0, 0 ], [ 0, 4, 0, 0, 0, 0, 0, 0, 0 ],

[ 1, 3, 0, 0, 0, 0, 0, 0, 0 ], [ 0, 2, 1, 0, 0, 0, 0, 0, 1 ],
[ 0, 3, 0, 1, 0, 0, 0, 0, 0 ], [ 0, 3, 0, 1, 0, 0, 0, 0, 0 ],
[ 2, 1, 0, 0, 1, 0, 0, 0, 0 ], [ 0, 3, 0, 0, 0, 1, 0, 0, 0 ],
[ 0, 3, 0, 0, 0, 0, 0, 1, 0 ] ]

gap>

6.4.4 AcceptedWords

. AcceptedWords(aut, int) (function)

Returns: All words of length int that are accepted by the automaton aut.
AcceptedWords outputs all permutations accepted by the automaton aut, which have length int,

in a list. The permutations are output in their rank encoding.
Example

gap> AcceptedWords(ba,1);
[ [ 2 ], [ 3 ], [ 4 ] ]
gap> AcceptedWords(ba,16);
[ [ 4, 1, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 1, 1 ] ]
gap>

6.4.5 AcceptedWordsR

. AcceptedWordsR(aut, int1[, int2]) (function)

. AcceptedWordsReversed(aut, int1[, int2]) (function)

Returns: The list of all by the automaton accepted words of length int1, where each word is
written in reverse.

The functions AcceptedWordsR and AcceptedWordsReversed are synonymous and take the
following arguments; an automaton aut, an integer int1 which indicates the length of the words that
are accepted by the aut and another integer int2 which is optional and represents the initial state of
aut. The return value of these functions is the list containing all permutations of length int1 that are
accepted by aut. The permutations are rank encoded and written in reverse.

Example
gap> AcceptedWordsR(ba,1);
[ [ 2 ], [ 3 ], [ 4 ] ]
gap> AcceptedWordsReversed(ba,16);
[ [ 1, 1, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 1, 4 ] ]
gap>



Chapter 7

Some Permutation Essentials

In this chapter we mention a couple functions that are fairly basic but useful tools to work with.

7.1 Complement

7.1.1 PermComplement

. PermComplement(perm) (function)

Returns: The permutation that is the complement of perm.
The complement of a permutation τ = τ1 . . .τn is the permutation

τ
C = (n+1)− τ1 (n+1)− τ2 . . .(n+1)− τn

.
Example

gap> PermComplement([3,2,8,6,7,1,5,4]);
[ 6, 7, 1, 3, 2, 8, 4, 5 ]
gap>

7.2 Rank Encoding

7.2.1 IsRankEncoding

. IsRankEncoding(perm) (function)

Returns: true if perm is a valid rank encoding of a permutation.
IsRankEncoding checkes whether the input list perm is a valid rank encoding by checking

whether it is accepted by the bounded class automaton, with the highest rank being set by the highest
element in perm.

Example
gap> IsRankEncoding([3,2,6,4,4,1,2,1]);
true
gap> IsRankEncoding([3,2,6,4,5,1,2,1]);
false
gap>
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Chapter 8

Properties of Permutations

It has been of interest to the authors to compute different properties of permutations. Inspections
include plus- and minus-decomposable permutations, block-decompositions of permutations, as well
as the computation of the direct and skew sum of permutations. First a couple of definitions on which
some of the properties are based on:

An interval of a permutation σ is a set of contiguous values which in σ have consecutive indices.
A permutation of length n is called simple if it only contains the intervals of length 0, 1 and n.

8.1 Intervals in Permutations

As mentioned above, an interval of a permutation σ is a set of contiguous numbers which in σ have
consecutive indices. For example in σ = 46871523 the following is an interval σ(2)σ(3)σ(4) = 687
whereas σ(4)σ(5)σ(6) = 715 is not.

8.1.1 IsInterval

. IsInterval(list) (function)

Returns: true, if list is an interval.
IsInterval takes in any list with unique elements, which can be ordered lexicographically and

checkes whether it is an interval.
Example

gap> IsInterval([3,6,9,2]);
false
gap> IsInterval([2,6,5,3,4]);
true
gap>

8.2 Simplicity

As mentioned above a permutation is said to be simple if it only contains intervals of length 0, 1 or
the length of the permutation.

34
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8.2.1 IsSimplePerm

. IsSimplePerm(perm) (function)

Returns: true if perm is simple.
To check whether perm (length of perm = n) is a simple permutation IsSimplePerm uses the basic

algorithm proposed by Uno and Yagiura in [3] to compare the perm against the identity permutation
of the same length.

Example
gap> IsSimplePerm([2,3,4,5,1,1,1,1]);
true
gap> IsSimplePerm([2,4,6,8,1,3,5,7]);
true
gap> IsSimplePerm([3,2,8,6,7,1,5,4]);
false
gap>

8.3 Point Deletion in Simple Permutations

In [4] it is shown how one can get chains of permutations by starting with a simple permutation and
then removing either a single point or two points and the resulting permutation would still be simple.
We have applied this theory to create functions such that the set of simple permutations of shorter
length, by one deletion, can be found.

8.3.1 OnePointDelete

. OnePointDelete(perm) (function)

Returns: A list of simple permutations with one point less than perm.
OnePointDelete removes single points in the simple permutation and returns a list of the result-

ing simple permutations, in their rank encoding.
Example

gap> OnePointDelete([5,2,3,1,2,1]);
[ [ 2, 3, 1, 2, 1 ], [ 4, 1, 2, 2, 1 ] ]
gap> OnePointDelete([5,2,4,1,6,3]);
[ [ 2, 3, 1, 2, 1 ], [ 4, 1, 2, 2, 1 ] ]
gap>

8.3.2 TwoPointDelete

. TwoPointDelete(perm) (function)

Returns: The exceptional permutation with two point less than perm.
TwoPointDelete removes two points of the input exceptional permutation and returns the list of

the unique resulting permutation, in its rank encoding.
Example

gap> TwoPointDelete([2,4,6,8,1,3,5,7]);
[ [ 2, 3, 4, 1, 1, 1 ] ]
gap> TwoPointDelete([2,3,4,5,1,1,1,1]);
[ [ 2, 3, 4, 1, 1, 1 ] ]
gap>
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8.3.3 PointDeletion

. PointDeletion(perm) (function)

Returns: A list of simple permutations with of shorter length than perm.
PointDeletion takes any simple permutation does not matter whether exceptional or not and

removes the right number of points.
Example

gap> PointDeletion([5,2,3,1,2,1]);
[ [ 2, 3, 1, 2, 1 ], [ 4, 1, 2, 2, 1 ] ]
gap> PointDeletion([5,2,4,1,6,3]);
[ [ 2, 3, 1, 2, 1 ], [ 4, 1, 2, 2, 1 ] ]
gap> PointDeletion([2,4,6,8,1,3,5,7]);
[ [ 2, 3, 4, 1, 1, 1 ] ]
gap> PointDeletion([2,3,4,5,1,1,1,1]);
[ [ 2, 3, 4, 1, 1, 1 ] ]
gap>

8.4 Block-Decomposition

Given a permutation π of length m and nonempty permutations α1, . . . ,αm the inflation of π by
α1, . . . ,αm, written as π[α1, . . . ,αm], is the permutation obtained by replacing each entry π(i) by an
interval that is order isomorphic to αi [5]. Conversely a block-decomposition of σ is any expression
of σ as an inflation σ = π[α1, . . . ,αm]. The block decomposition of a permutation is unique if and
only if σ ,π,α1, . . . ,αn all are in the same pattern class and π is simple and π 6= 12, 21 [6].

For example the inflation of 25413[21,1,1,1,2413] = 328915746, written in GAP this is
[[2,5,4,1,3],[2,1],[1],[1],[1],[2,4,1,3]]. This decomposition of 328915746 is not
unique. The unique block-decomposition, as described above, for 328915746 = 2413[21,12,1,2413]
or in GAP notation [3,2,8,9,1,5,7,4,6]=[[2,4,1,3],[2,1],[1,2],[1],[2,4,1,3]].

8.4.1 Inflation

. Inflation(list_of_perms) (function)

Returns: A permutation that represents the inflation of the list of permutations, taking the first
permutation to be π , as described in the definition of inflation.

Inflation takes the list of permutations that stand for a box decomposition of a permutation, and
calculates that permutation by replacing each entry i in the first permutation by an interval order
isomorphic to the permutation in index i+1.

Example
gap> Inflation([[3,2,1],[1],[1,2],[1,2,3]]);
[ 6, 4, 5, 1, 2, 3 ]
gap> Inflation([[1,2],[1],[4,2,1,3]]);
[ 1, 5, 3, 2, 4 ]
gap> Inflation([[2,4,1,3],[2,1],[3,1,2],[1],[2,4,1,3]]);
[ 3, 2, 10, 8, 9, 1, 5, 7, 4, 6 ]
gap>
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8.4.2 BlockDecomposition

. BlockDecomposition(perm) (function)

Returns: A list of permutations, representing the block-decomposition of perm. In the list the
first permutation is π , as described in the definiton of block-decomposition above.

BlockDecomposition takes a plus- and minus-indecomposable permutation and decomposes it
into its maximal maximal intervals, which are preceded by the simple permutation that represents
the positions of the intervals. If a plus- or minus-decomposable permutation is input, then the de-
composition will not be the unique decomposition, by the definition of plus- or minus- decomposable
permutations, see below.

Example
gap> BlockDecomposition([3,2,10,8,9,1,5,7,4,6]);
[ [ 2, 4, 1, 3 ], [ 2, 1 ], [ 3, 1, 2 ], [ 1 ], [ 2, 4, 1, 3 ] ]
gap> BlockDecomposition([1,2,3,4,5]);
[ [ 1, 2 ], [ 1, 2, 3, 4 ], [ 1 ] ]
gap> BlockDecomposition([5,4,3,2,1]);
[ [ 2, 1 ], [ 4, 3, 2, 1 ], [ 1 ] ]
gap>

8.5 Plus-Decomposability

A permutation σ is said to be plus-decomposable if it can be written uniquely in the following form,

σ = 12[α1,α2]

where α1 is not plus-decomposable.
The subset of a rational class, containing all permutations that are plus-decomposable and in the

class, has been found to be also rational under the rank encoding.

8.5.1 IsPlusDecomposable

. IsPlusDecomposable(perm) (function)

Returns: true if perm is plus-decomposable.
To check whether perm is a plus-decomposable permutation IsPlusDecomposable uses the fact

that there has to be an interval 1..x where x < n (n = length of the perm) in the rank encoded permu-
tation that is a valid rank encoding.

Example
gap> IsPlusDecomposable([3,3,2,3,2,2,1,1]);
true
gap> IsPlusDecomposable([3,4,2,6,5,7,1,8]);
true
gap> IsPlusDecomposable([3,2,8,6,7,1,5,4]);
false
gap>
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8.6 Minus-Decomposability

Minus-decomposability is essentially the same as plus-decomposability, the difference is that if a
permutation σ is minus-decomposable, it can be written uniquely in the following form,

σ = 21[α1,α2]

where α1 is not minus-decomposable.
Here also, the subset of a rational class, containing all permutations that are minus-decomposable

and in the class, has been found to be rational under the rank encoding.

8.6.1 IsMinusDecomposable

. IsMinusDecomposable(perm) (function)

Returns: true if perm is minus-decomposable.
To check whether perm (length of perm = n) is a minus-decomposable permutation

IsMinusDecomposable uses the fact that the first n− x, where x < n, letters in the rank encoding
of perm have to be > x and that the letters from position x+1 until the last one have to be ≤ x.

Example
gap> IsMinusDecomposable([3,3,3,3,3,3,2,1]);
true
gap> IsMinusDecomposable([3,4,5,6,7,8,2,1]);
true
gap> IsMinusDecomposable([3,2,8,6,7,1,5,4]);
false
gap>

8.7 Sums of Permutations

The direct sum of two permutations σ = σ1 . . .σk and τ = τ1 . . .τl is defined as,

σ ⊕ τ = σ1 σ2 . . .σk τ1 + k τ2 + k . . .τl + k .

In a similar fashion the skew sum of σ ,τ is

σ 	 τ = σ1 + l σ2 + l . . .σk + l τ1 τ2 . . .τl .

The calculation of the direct and skew sums of permutations using the rank encoding is also straight
forward and is used in the functions described below. The direct sum of two permutations σ ,τ rep-
resented as their rank encoded sequences is the permutation which has the rank encoding that is the
concatention of the rank encoding of σ and τ . The skew sum of two permutations σ ,τ encoded by
the rank encoding is the concatenation of the rank encodings of σ and τ where in the sequence corre-
sponding to σ under the rank encoding each element has been increased by l, with l being the length
of τ .

8.7.1 PermDirectSum

. PermDirectSum(perm1, perm2) (function)

Returns: A permutation resulting from perm1 ⊕ perm2.
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PermDirectSum returns the permutation corresponding to perm1 ⊕ perm2 if perm1 and perm2
are both not rank encoded. If both perm1 and perm2 are rank encoded, then PermDirectSum returns
a rank encoded sequence.

Example
gap> PermDirectSum([2,4,1,3],[2,5,4,1,3]);
[ 2, 4, 1, 3, 6, 9, 8, 5, 7 ]
gap> PermDirectSum([2,3,1,1],[2,4,3,1,1]);
[ 2, 3, 1, 1, 2, 4, 3, 1, 1 ]
gap>

8.7.2 PermSkewSum

. PermSkewSum(perm1, perm2) (function)

Returns: A permutation resulting from perm1 	 perm2.
PermSkewSum returns the permutation corresponding to perm1 	 perm2 if perm1 and perm2 are

both not rank encoded. If both perm1 and perm2 are rank encoded, then PermSkewSum returns a rank
encoded sequence.

Example
gap> PermSkewSum([2,4,1,3],[2,5,4,1,3]);
[ 7, 9, 6, 8, 2, 5, 4, 1, 3 ]
gap> PermSkewSum([2,3,1,1],[2,4,3,1,1]);
[ 7, 8, 6, 6, 2, 4, 3, 1, 1 ]
gap>



Chapter 9

Regular Languages of Sets of
Permutations

This chapter is dedicated to the different sets of permutations with the same properties.

9.1 Inversions in Permutations

An inversion in a permutation τ = τ1 . . .τn is a pair (i, j) such that 1≤ i < j ≤ n and τi > τ j [7].

9.1.1 InversionAut

. InversionAut(k) (function)

Returns: An automaton that accepts all permutations with exactly k inversions.
The rational language of all permutations with a given number , k, of inversions is computed by

InversionAut.
Example

gap> a:=InversionAut(1);
< deterministic automaton on 2 letters with 4 states >
gap> AutToRatExp(a);
a*baa*
gap> Spectrum(a);
[ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14 ]
gap> b:=InversionAut(5);
< deterministic automaton on 6 letters with 14 states >
gap> AutToRatExp(b);
((a*ba*bUa*c)a*bUa*ba*cUa*d)a*(ba*baa*Ucaaa*)U(a*ba*bUa*c)a*(ca*baa*Udaaaa*)U(\
a*ba*daUa*eaa)a*baa*Ua*ba*(dbUeaa)aaa*U(a*eabUa*(ebUfaa)a)aaa*
gap> Spectrum(b);
[ 0, 0, 0, 3, 22, 71, 169, 343, 628, 1068, 1717, 2640, 3914, 5629, 7889 ]
gap>

9.1.2 InversionAutOfClass

. InversionAutOfClass(aut, inv) (function)

Returns: An automaton accepting all permutations of a class with inv inversions.
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InversionAutOfClass intersects the rational pattern class with the rational language containing
all permutations under the rank encoding that have exactly inv inversions.

Example
gap> a:=MinimalAutomaton(GraphToAut(Seqstacks(2,2),1,6));
< deterministic automaton on 3 letters with 3 states >
gap> Spectrum(a);
[ 1, 2, 6, 18, 54, 162, 486, 1458, 4374, 13122, 39366, 118098, 354294,

1062882, 3188646 ]
gap> b:=InversionAutOfClass(a,4);
< deterministic automaton on 5 letters with 23 states >
gap> Spectrum(b);
[ 0, 0, 0, 3, 13, 35, 75, 140, 238, 378, 570, 825, 1155, 1573, 2093 ]
gap>

9.2 Plus- and Minus-(In)Decomposablilty

9.2.1 PlusDecomposableAut

. PlusDecomposableAut(aut) (function)

Returns: An automaton that accepts the subset of the class aut containing the plus-decomposable
permutations of aut.

The PlusDecomposableAut automaton accepts the language of all plus-decomposable permuta-
tions of the encoded class accepted by aut.

Example
gap> xa:=MinimalAutomaton(GraphToAut(Parstacks(2,2),1,6));
< deterministic automaton on 4 letters with 9 states >
gap> Spectrum(xa);
[ 1, 2, 6, 23, 89, 345, 1338, 5189, 20122, 78024, 302529, 1172993, 4547973,

17633432, 68368135 ]
gap> a:=PlusDecomposableAut(xa);
< deterministic automaton on 4 letters with 16 states >
gap> Spectrum(a);
[ 0, 1, 3, 11, 47, 196, 808, 3306, 13433, 54265, 218145, 873303, 3483654,

13853682, 54945158 ]
gap>

9.2.2 PlusIndecomposableAut

. PlusIndecomposableAut(aut) (function)

Returns: An automaton that accepts all permutations of aut that are not plus-decomposable.
The PlusIndecomposableAutomaton automaton accepts the language of all plus-

indecomposable permutations of the encoded class accepted by aut, by rejecting every rank
encoding that in the original automaton would have entered and left the accept state before the last
letter in the rank encodedpermutation.

Example
gap> xa:=MinimalAutomaton(GraphToAut(Parstacks(2,2),1,6));
< deterministic automaton on 4 letters with 9 states >
gap> Spectrum(xa);
[ 1, 2, 6, 23, 89, 345, 1338, 5189, 20122, 78024, 302529, 1172993, 4547973,

17633432, 68368135 ]
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gap> a:=PlusIndecomposableAut(xa);
< deterministic automaton on 4 letters with 11 states >
gap> Spectrum(a);
[ 1, 1, 3, 12, 42, 149, 530, 1883, 6689, 23759, 84384, 299690, 1064319,

3779750, 13422977 ]
gap>

9.2.3 MinusDecomposableAut

. MinusDecomposableAut(aut) (function)

Returns: An automaton that accepts the subset of the class aut containing the minus-
decomposable permutations of aut.

The MinusDecomposableAut automaton accepts the language of all minus-decomposable per-
mutations of the rank encoded class accepted by aut.

Example
gap> xa:=MinimalAutomaton(GraphToAut(Parstacks(2,2),1,6));
< deterministic automaton on 4 letters with 9 states >
gap> Spectrum(xa);
[ 1, 2, 6, 23, 89, 345, 1338, 5189, 20122, 78024, 302529, 1172993, 4547973,

17633432, 68368135 ]
gap> a:=MinusDecomposableAut(xa);
< deterministic automaton on 4 letters with 12 states >
gap> Spectrum(a);
[ 0, 1, 3, 10, 24, 64, 180, 520, 1524, 4504, 13380, 39880, 119124, 356344,

1066980 ]
gap>

9.2.4 MinusIndecomposableAut

. MinusIndecomposableAut(aut) (function)

Returns: An automaton that accepts all permutations of aut that are not minus-decomposable.
The MinusIndecomposableAut automaton accepts the language of all minus-indecomposable

permutations of the encoded class accepted by aut, which is the complement set of the set of minus-
decomposable permutations within the class.

Example
gap> xa:=MinimalAutomaton(GraphToAut(Parstacks(2,2),1,6));
< deterministic automaton on 4 letters with 9 states >
gap> Spectrum(xa);
[ 1, 2, 6, 23, 89, 345, 1338, 5189, 20122, 78024, 302529, 1172993, 4547973,

17633432, 68368135 ]
gap> a:=MinusIndecomposableAut(xa);
< deterministic automaton on 4 letters with 17 states >
gap> Spectrum(a);
[ 1, 1, 3, 13, 65, 281, 1158, 4669, 18598, 73520, 289149, 1133113, 4428849,

17277088, 67301155 ]
gap>
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9.3 Language of all non-simple permutations

The regular language of all non-simple rank encoded permutations with highest rank k is described by
the following equation,

E(NSk) = E(Ωk)∩ (
k−1⋃
l=1

Pl

k−1⋃
m=l

E(Ω̂k−m)
+m∪

k−1⋃
j=1

E(Ω̂k− j)
+ j∪

∪
k−1⋃
a=2

k−1−a⋃
b=0

Qa,b

a−2⋃
i=0

(E(Ω̂k−(b+i))
+b+i)(a−i))Σ∗∪E(DP(Ωk))

where Σ is the alphabet {1, . . . ,k}, k ∈ N, k ≥ 3.
Pl is the language of prefixes of rank encoded permutations, where the prefix ends with the total

sum of gap sizes to be equal to l.
Qi, j is the language of prefixes of rank encoded permutations, where the prefix ends with a gap of

size i and the sum of the sizes of gaps below equals to j.
E(Ωk−i)

+i is the language of E(Ωk−i) i ∈ N, with the alphabet shifted upwards by i.
E(Ωk)

(i) is the sublanguage of E(Ωk) containing the words of length ≤ i, i ∈ N.
E(Ω̂k) is the sublanguage of E(Ωk) excluding the words of length ≤ 1.
E(DP(Ωk)) is the language of all plus-decomposable permutations as described in [8].

9.3.1 LengthBoundAut

. LengthBoundAut(aut, min, i, k) (function)

Returns: The subautomaton of aut that accepts words between (and including) the lengths min
and i.

We are taking the automaton aut and it’s alphabet k, and find the automaton that accepts all words
of aut of length between (and including) min and i.

Example
gap> a:=BoundedClassAutomaton(4);
< deterministic automaton on 4 letters with 4 states >
gap> Spectrum(a);
[ 1, 2, 6, 24, 96, 384, 1536, 6144, 24576, 98304, 393216, 1572864, 6291456,

25165824, 100663296 ]
gap> LengthBoundAut(a,4,8,4);
< deterministic automaton on 4 letters with 22 states >
gap> Spectrum(last);
[ 0, 0, 0, 24, 96, 384, 1536, 6144, 0, 0, 0, 0, 0, 0, 0 ]
gap>

9.3.2 ShiftAut

. ShiftAut(i, k) (function)

Returns: The automaton Ω
+i
k−i.

We are shifting the alphabet of Ωk−i in their values by i to expand to the alphabet {1, . . . ,k}, but
keeping the automaton structure of Ωk−i.
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Example
gap> ShiftAut(2,4);
< non deterministic automaton on 4 letters with 4 states >
gap> Display(last);

| 1 2 3 4
-----------------------------------
a |
b |
c | [ 2 ] [ 4 ] [ 4 ] [ 4 ]
d | [ 3 ] [ 3 ] [ 3 ] [ 3 ]

Initial state: [ 1 ]
Accepting state: [ 4 ]
gap> ShiftAut(1,4);
< non deterministic automaton on 4 letters with 5 states >
gap> Display(last);

| 1 2 3 4 5
-------------------------------------------
a |
b | [ 2 ] [ 5 ] [ 5 ] [ 3 ] [ 5 ]
c | [ 3 ] [ 3 ] [ 3 ] [ 3 ] [ 3 ]
d | [ 4 ] [ 4 ] [ 4 ] [ 4 ] [ 4 ]

Initial state: [ 1 ]
Accepting state: [ 5 ]
gap>

9.3.3 NextGap

. NextGap(gap, rank) (function)

Returns: A list of gap sizes.
Knowing the current available gap sizes gap, which are the number of available spaces in a permu-

tation plot. These gaps are separated by blocks where there are already points inserted. We determine
where the next point (known to us as its rank) is being placed and what the next gap sizes are.

Example
gap> NextGap([1,1],2);
[ 1 ]
gap> NextGap([1],3);
[ 1, 1 ]
gap> NextGap([2,1],4);
[ 2, 1 ]
gap>

9.3.4 GapAut

. GapAut(k) (function)

Returns: The non-deterministic automaton accepting the rank encoded language of Ωk and the
list of all possible gap sizes.

The automaton accepts the rank encoded permutations of Ωk, but the automaton is slightly ex-
tended through having each state corresponding to a gap size and the start state being the emptyset
of gap sizes. The transitions of the automaton are determined through the knowledge of the available
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spaces and the rank. This is calculated in NextGap. Please note that the index of the gap sizes in the
list corresponds to the state of the automaton.

Example
gap> GapAut(3);
[ < non deterministic automaton on 3 letters with 5 states >,

[ [ ], [ 0 ], [ 1 ], [ 2 ], [ 1, 1 ] ] ]
gap> Display(last[1]);

| 1 2 3 4 5
-------------------------------------------
a | [ 2 ] [ 2 ] [ 2 ] [ 3 ] [ 3 ]
b | [ 3 ] [ 3 ] [ 3 ] [ 3 ] [ 3 ]
c | [ 4 ] [ 4 ] [ 5 ] [ 4 ] [ 5 ]

Initial state: [ 1 ]
Accepting states: [ 1, 2 ]
gap>

9.3.5 SumAut

. SumAut(sum, k) (function)

Returns: The automaton accepting the language Psum.
This automaton is based on the GapAut where the accept states are chosen by their gap sizes,

namely if the total sum of gap sizes equal to sum.
Example

gap> SumAut(2,3);
< non deterministic automaton on 3 letters with 5 states >
gap> Display(last);

| 1 2 3 4 5
-------------------------------------------
a | [ 2 ] [ 2 ] [ 2 ] [ 3 ] [ 3 ]
b | [ 3 ] [ 3 ] [ 3 ] [ 3 ] [ 3 ]
c | [ 4 ] [ 4 ] [ 5 ] [ 4 ] [ 5 ]

Initial state: [ 1 ]
Accepting states: [ 4, 5 ]
gap>

9.3.6 GapSumAut

. GapSumAut(gap, sum, k) (function)

Returns: The automaton accepting the language Qgap,sum.
This automaton is based on the GapAut where the accept states are chosen by their gap sizes,

namely if there is a gap size gap and the gap sizes before have a total sum of sum.
Example

gap> GapSumAut(1,0,3);
< non deterministic automaton on 3 letters with 5 states >
gap> Display(last);

| 1 2 3 4 5
-------------------------------------------
a | [ 2 ] [ 2 ] [ 2 ] [ 3 ] [ 3 ]
b | [ 3 ] [ 3 ] [ 3 ] [ 3 ] [ 3 ]
c | [ 4 ] [ 4 ] [ 5 ] [ 4 ] [ 5 ]

Initial state: [ 1 ]
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Accepting states: [ 3, 5 ]
gap>

9.3.7 NonSimpleAut

. NonSimpleAut(k) (function)

Returns: The automaton accepting all rank encoded non-simple permutations with rank encoding
k.

We find the language of all non-simple permutations of the set of all k rank encoded permutations
Ωk using the above equation.

Example
gap> a:=NonSimpleAut(3);
< deterministic automaton on 3 letters with 9 states >
gap> Display(a);

| 1 2 3 4 5 6 7 8 9
--------------------------------
a | 1 3 1 5 3 1 6 3 3
b | 3 3 3 3 9 9 3 9 3
c | 2 2 2 2 4 4 2 7 4

Initial state: [ 8 ]
Accepting state: [ 1 ]
gap>

9.4 Simplicity

The set of simple permutations of a class is the complement set of the class with the non-simple permu-
tations. We are working in the rank encoding and so in language terms our set of simple permutations
Sk will be the subset of Ωk

E(Sk) = E(Ωk \NSk) = E(Ωk)\E(NSk) = E(Ωk)∩E(NSk)
C

9.4.1 SimplePermAut

. SimplePermAut(k) (function)

Returns: The automaton accepting all rank encoded simple permutations with highest rank en-
coding k.

We find the language of all simple permutations of the set of all k rank encoded permutations Ωk
using the above equation.

Example
gap> SimplePermAut(3);
< deterministic automaton on 3 letters with 8 states >
gap> Display(last);

| 1 2 3 4 5 6 7 8
-----------------------------
a | 2 2 1 1 7 2 1 6
b | 2 2 4 2 2 4 4 2
c | 2 2 8 5 2 5 5 2

Initial state: [ 3 ]
Accepting states: [ 1, 3 ]
gap>
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9.5 Exceptionality

A permutation is said to be exceptional if it is of one of the following forms,

246 . . .(2m)135 . . .(2m−1)

(2m−1)(2m−3) . . .1(2m)(2m−2) . . .2

(m+1)1(m+2)2(m+3)3 . . .(2m)m

m(2m)(m−1)(2m−1) . . .1(m+1)

where m≥ 2 [4].

9.5.1 IsExceptionalPerm

. IsExceptionalPerm(perm) (function)

Returns: True if perm is exceptional, False otherwise.
The functions checks whether perm is one of the 4 types of exceptional permutations, that are

described above.
Example

gap> IsExceptionalPerm([1,2,5,3,4]);
false
gap> IsExceptionalPerm([1,1,3,1,1]);
false
gap> IsExceptionalPerm([2,4,6,1,3,5]);
true
gap> IsExceptionalPerm([2,3,4,1,1,1]);
true
gap>

9.5.2 ExceptionalBoundedAutomaton

. ExceptionalBoundedAutomaton(k) (function)

Returns: The automaton which accepts all exceptional permutations with highest rank encoding
k.

The language of k rank encoded exceptional permutations will be finite, and so it regular.
Example

gap> ExceptionalBoundedAutomaton(8);
< deterministic automaton on 8 letters with 41 states >
gap> Spectrum(last,20);
[ 0, 2, 0, 2, 0, 4, 0, 4, 0, 2, 0, 2, 0, 2, 0, 0, 0, 0, 0, 0 ]
gap> ExceptionalBoundedAutomaton(5);
< deterministic automaton on 5 letters with 21 states >
gap> Spectrum(last);
[ 0, 2, 0, 2, 0, 4, 0, 2, 0, 0, 0, 0, 0, 0, 0 ]
gap>
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Miscellaneous functions

This temporary chapter is dedicated to miscellaneous functions that are relevant to some specific
ongoing research questions.

10.1 Automaton Manipulation

10.1.1 LoopFreeAut

. LoopFreeAut(aut) (function)

Returns: An automaton without any loops of length 1.
LoopFreeAut builds the subautomaton of aut that does not contain any loops of length 1, except

for the sink state.
Example

gap> a:=Automaton("det",4,3,[[2,4,3,3],[4,4,1,4],[3,1,2,4]],[1],[2]);
< deterministic automaton on 3 letters with 4 states >
gap> Display(a);

| 1 2 3 4
-----------------
a | 2 4 3 3
b | 4 4 1 4
c | 3 1 2 4

Initial state: [ 1 ]
Accepting state: [ 2 ]
gap> b:=LoopFreeAut(a);
< deterministic automaton on 3 letters with 5 states >
gap> Display(b);

| 1 2 3 4 5
--------------------
a | 2 4 5 3 5
b | 4 4 1 5 5
c | 3 1 2 5 5

Initial state: [ 1 ]
Accepting state: [ 2 ]
gap>
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10.1.2 LoopVertexFreeAut

. LoopVertexFreeAut(aut) (function)

Returns: An automaton without any vertices that had loops of length 1.
LoopVertexFreeAut builds the subautomaton that does not contain the vertices and transitions of

vertices in aut that have loops of length 1. The function minimalises and determinises the automaton
before returning it, which might change the numbering on the vertices, but the returned automaton is
isomorphic to the subautomaton of aut.

Example
gap> a:=Automaton("det",4,3,[[2,4,3,3],[4,4,1,4],[3,1,2,4]],[1],[2]);
< deterministic automaton on 3 letters with 4 states >
gap> Display(a);

| 1 2 3 4
-----------------
a | 2 4 3 3
b | 4 4 1 4
c | 3 1 2 4

Initial state: [ 1 ]
Accepting state: [ 2 ]
gap> b:=LoopVertexFreeAut(a);
< deterministic automaton on 3 letters with 3 states >
gap> Display(b);

| 1 2 3
--------------
a | 2 2 1
b | 2 2 2
c | 3 2 2

Initial state: [ 3 ]
Accepting state: [ 1 ]
gap>
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