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Abstract
The GAP4 package Circle extends the GAP functionality for computations in adjoint groups of associative
rings. It provides functionality to construct circle objects that will respect the circle multiplication r · s =
r + s + rs, and to compute adjoint semigroups and adjoint groups of finite rings. Also it may serve as an
example of extending the GAP system with new multiplicative objects.
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Chapter 1

Introduction

1.1 General aims

Let R be an associative ring, not necessarily with one. The set of all elements of R forms a monoid
with the neutral element 0 from R under the operation r · s = r+ s+ rs defined for all r and s of R.
This operation is called the circle multiplication, and it is also known as the star multiplication. The
monoid of elements of R under the circle multiplication is called the adjoint semigroup of R and is
denoted by Rad . The group of all invertible elements of this monoid is called the adjoint group of R
and is denoted by R∗.

These notions naturally lead to a number of questions about the connection between a ring and
its adjoint group, for example, how the ring properties will determine properties of the adjoint group;
which groups can appear as adjoint groups of rings; which rings can have adjoint groups with pre-
scribed properties, etc.

For example, V. O. Gorlov in [Gor95] gives a full list of finite nilpotent algebras R, such that
R2 6= 0 and the adjoint group of R is metacyclic (but not cyclic).

S. V. Popovich and Ya. P. Sysak in [PS97] characterize all quasiregular algebras such that all
subgroups of their adjoint group are their subalgebras. In particular, they show that all algebras of
such type are nilpotent with nilpotency index at most three.

Various connections between properties of a ring and its adjoint group were considered by O. D.
Artemovych and Yu. B. Ishchuk in [AI97].

B. Amberg and L. S. Kazarin in [AK00] give the description of all nonisomorphic finite p-groups
that can occur as the adjoint group of some nilpotent p-algebra of the dimension at most 5.

In [AS01] B. Amberg and Ya. P. Sysak give a survey of results on adjoint groups of radical rings,
including such topics as subgroups of the adjoint group; nilpotent groups which are isomorphic to
the adjoint group of some radical ring; adjoint groups of finite nilpotent $p$-algebras. The authors
continued their investigations in further papers [AS02] and [AS04].

In [KS04] L. S. Kazarin and P. Soules study associative nilpotent algebras over a field of positive
characteristic whose adjoint group has a small number of generators.

The main objective of the proposed GAP4 package Circle is to extend the GAP functionality for
computations in adjoint groups of associative rings to make it possible to use the GAP system for the
investigation of the above described questions.

Circle provides functionality to construct circle objects that will respect the circle multiplication
r · s = r + s + rs, create multiplicative structures, generated by such objects, and compute adjoint
semigroups and adjoint groups of finite rings.
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Also we hope that the package will be useful as an example of extending the GAP system with
new multiplicative objects. Relevant details are explained in the next chapter of the manual.

1.2 Installation and system requirements

Circle does not use external binaries and, therefore, works without restrictions on the type of the
operating system. This version of the package is designed for GAP4.5 and no compatibility with
previous releases of GAP4 is guaranteed.

To use the Circle online help it is necessary to install the GAP4 package GAPDoc
by Frank Lübeck and Max Neunhöffer, which is available from the GAP site or from
http://www.math.rwth-aachen.de/~Frank.Luebeck/GAPDoc/.

Circle is distributed in standard formats (tar.gz, tar.bz2, zip and -win.zip) and can be ob-
tained from http://www.cs.st-andrews.ac.uk/~alexk/circle/ or from the GAP homepage.
To install the package, unpack its archive in the pkg subdirectory of your GAP installation.

http://www.math.rwth-aachen.de/~Frank.Luebeck/GAPDoc/
http://www.cs.st-andrews.ac.uk/~alexk/circle/


Chapter 2

Implementing circle objects

In this chapter we explain how the GAP system may be extended with new objects using the circle
multiplication as an example. We follow the guidelines given in the GAP Reference Manual (see
(Reference: Creating New Objects) and subsequent chapters), to which we refer for more details.

2.1 First attempts

Of course, having two ring elements, you can straightforwardly compute their circle product defined
as r · s = r + s+ rs. You can do this in a command line, and it is a trivial task to write a simplest
function of two arguments that will do this:

Example

gap> CircleMultiplication := function(a,b)
> return a+b+a*b;
> end;
function( a, b ) ... end
gap> CircleMultiplication(2,3);
11
gap> CircleMultiplication( ZmodnZObj(2,8), ZmodnZObj(5,8) );
ZmodnZObj( 1, 8 )

However, there is no check whether both arguments belong to the same ring and whether they are ring
elements at all, so it is easy to obtain some meaningless results:

Example

gap> CircleMultiplication( 3, ZmodnZObj(3,8) );
ZmodnZObj( 7, 8 )
gap> CircleMultiplication( [1], [2,3] );
[ 5, 5 ]

You can include some tests for arguments, and maybe the best way of doing this would be declar-
ing a new operation for two ring elements, and installing the previous function as a method for this
operation. This will check automatically if the arguments are ring elements from the common ring:
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Example

gap> DeclareOperation( "BetterCircleMultiplication",
> [IsRingElement,IsRingElement] );
gap> InstallMethod( BetterCircleMultiplication,
> IsIdenticalObj,
> [IsRingElement,IsRingElement],
> CircleMultiplication );
gap> BetterCircleMultiplication(2,3);
11
gap> BetterCircleMultiplication( ZmodnZObj(2,8), ZmodnZObj(5,8) );
ZmodnZObj( 1, 8 )

Nevertheless, the functionality gained from such operation would be rather limited. You will not be
able to compute circle product via the infix operator *, and, moreover, you will not be able to create
higher level objects such as semigroups and groups with respect to the circle multiplication.

In order to "integrate" the circle multiplication into the GAP library properly, instead of defining
new operations for existing objects, we should define new objects for which the infix operator * will
perform the circle multiplication. This approach is explained in the next two sections.

2.2 Defining circle objects

Thus, we are going to implement circle objects, for which we can envisage the following functionality:
Example

gap> CircleObject( 2 ) * CircleObject( 3 );
CircleObject( 11 )

First we need to distinguish these new objects from other GAP objects. This is done via the type of
the objects, that is mainly determined by their category, representation and family.

We start with declaring the category IsCircleObject as a subcategory of
IsAssociativeElement> and IsMultiplicativeElementWithInverse. Thus, each circle object
will "know" that it is IsAssociativeElement and IsMultiplicativeElementWithInverse, and
this will make it possible to apply to circle objects such operations as One and Inverse (the latter
is allowed to return fail for a given circle object), and construct semigroups generated by circle
objects.

Example

gap> DeclareCategory( "IsMyCircleObject",
> IsAssociativeElement and IsMultiplicativeElementWithInverse );

Further we would like to create semigroups and groups generated by circle objects. Such struc-
tures will be collections of circle objects, so they will be in the category CategoryCollections(
IsCircleObject ). This is why immediately after we declare the underlying category of circle
objects, we need also to declare the category of their collections:
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Example

gap> DeclareCategoryCollections( "IsMyCircleObject" );

On the next step we should think about the internal representation of circle objects. A natural way
would be to store the underlying ring element in a list-like structure at its first position. We do not
foresee any other data that we need to store internally in the circle object. This is quite common
situation, so we may define first IsPositionalObjectOneSlotRep that is the list-like representation
with only one position in the list, and then declare a synonym IsDefaultCircleObject that means
that we are dealing with a circle object in one-slot representation:

Example

gap> DeclareRepresentation( "IsMyPositionalObjectOneSlotRep",
> IsPositionalObjectRep, [ 1 ] );
gap> DeclareSynonym( "IsMyDefaultCircleObject",
> IsMyCircleObject and IsMyPositionalObjectOneSlotRep );

Until now we are still unable to create circle objects, because we did not specify to which family they
will belong. Naturally, having a ring, we want to have all circle objects for elements of this ring in
the same family to be able to multiply them, and we expect circle objects for elements of different
rings to be placed in different families. Thus, it would be nice to establish one-to-one correspondence
between the family of ring elements and a family of circle elements for this ring. We can store the
corresponding circle family as an attribute of the ring elements family. To do this first we declare an
attribute CircleFamily for families:

Example

gap> DeclareAttribute( "MyCircleFamily", IsFamily );

Now we install the method that stores the corresponding circle family in this attribute:
Example

gap> InstallMethod( MyCircleFamily,
> "for a family",
> [ IsFamily ],
> function( Fam )
> local F;
> # create the family of circle elements
> F:= NewFamily( "MyCircleFamily(...)", IsMyCircleObject );
> if HasCharacteristic( Fam ) then
> SetCharacteristic( F, Characteristic( Fam ) );
> fi;
> # store the type of objects in the output
> F!.MyCircleType:= NewType( F, IsMyDefaultCircleObject );
> # Return the circle family
> return F;
> end );
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Similarly, we want one-to-one correspondence between circle elements and underlying ring elements.
We declare an attribute CircleObject for a ring element, and then install the method to create new
circle object from the ring element. This method takes the family of the ring element, finds corre-
sponding circle family, extracts from it the type of circle objects and finally creates the new circle
object of that type:

Example

gap> DeclareAttribute( "MyCircleObject", IsRingElement );
gap> InstallMethod( MyCircleObject,
> "for a ring element",
> [ IsRingElement ],
> obj -> Objectify( MyCircleFamily( FamilyObj( obj ) )!.MyCircleType,
> [ Immutable( obj ) ] ) );

Only after entering all code above we are able to create some circle object. However, it is displayed
just as <object>, though we can get the underlying ring element using the "!" operator:

Example

gap> a:=MyCircleObject(2);
<object>
gap> a![1];
2

We can check that the intended relation between families holds:
Example

gap> FamilyObj( MyCircleObject ( 2 ) ) = MyCircleFamily( FamilyObj( 2 ) );
true

We can not multiply circle objects yet. But before implementing this, first let us improve the output
by installing the method for PrintObj:

Example

gap> InstallMethod( PrintObj,
> "for object in ‘IsMyCircleObject’",
> [ IsMyDefaultCircleObject ],
> function( obj )
> Print( "MyCircleObject( ", obj![1], " )" );
> end );

This method will be used by Print function, and also by View, since we did not install special method
for ViewObj for circle objects. As a result of this installation, the output became more meaningful:

Example

gap> a;
MyCircleObject( 2 )
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We need to avoid the usage of "!" operator, which, in general, is not recommended to the user (for
example, if GAP developers will change the internal representation of some object, all GAP functions
that deal with it must be adjusted appropriately, while if the user’s code had direct access to that
representation via "!", an error may occur). To do this, we wrap getting the first component of a circle
object in the following operation:

Example

gap> DeclareAttribute("UnderlyingRingElement", IsMyCircleObject );
gap> InstallMethod( UnderlyingRingElement,
> "for a circle object",
> [ IsMyCircleObject],
> obj -> obj![1] );
gap> UnderlyingRingElement(a);
2

2.3 Installing operations for circle objects

Now we are finally able to install circle multiplication as a default method for the multiplication of
circle objects, and perform the computation that we envisaged in the beginning:

Example

gap> InstallMethod( \*,
> "for two objects in ‘IsMyCircleObject’",
> IsIdenticalObj,
> [ IsMyDefaultCircleObject, IsMyDefaultCircleObject ],
> function( a, b )
> return MyCircleObject( a![1] + b![1] + a![1]*b![1] );
> end );
gap> MyCircleObject(2)*MyCircleObject(3);
MyCircleObject( 11 )

However, this functionality is not enough to form semigroups or groups generated by circle elements.
We need to be able to check whether two circle objects are equal, and we need to define ordering for
them (for example, to be able to form sets of circle elements). Since we already have both operations
for underlying ring elements, this can be implemented in a straightforward way:

Example

gap> InstallMethod( \=,
> "for two objects in ‘IsMyCircleObject’",
> IsIdenticalObj,
> [ IsMyDefaultCircleObject, IsMyDefaultCircleObject ],
> function( a, b )
> return a![1] = b![1];
> end );
gap> InstallMethod( \<,
> "for two objects in ‘IsMyCircleObject’",
> IsIdenticalObj,
> [ IsMyDefaultCircleObject, IsMyDefaultCircleObject ],
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> function( a, b )
> return a![1] < b![1];
> end );

Further, zero element of the ring plays a role of the neutral element for the circle multiplication, and
we add this knowledge to our code in a form of a method for OneOp that returns circle object for the
corresponding zero object:

Example

gap> InstallMethod( OneOp,
> "for an object in ‘IsMyCircleObject’",
> [ IsMyDefaultCircleObject ],
> a -> MyCircleObject( Zero( a![1] ) ) );
gap> One(a);
MyCircleObject( 0 )

Now we are already able to create monoids generated by circle objects:
Example

gap> S:=Monoid(a);
<monoid with 1 generator>
gap> One(S);
MyCircleObject( 0 )
gap> S:=Monoid( MyCircleObject( ZmodnZObj( 2,8) ) );
<monoid with 1 generator>
gap> Size(S);
2
gap> AsList(S);
[ MyCircleObject( ZmodnZObj( 0, 8 ) ), MyCircleObject( ZmodnZObj( 2, 8 ) ) ]

Finally, to generate groups using circle objects, we need to add a method for the InverseOp. In our
implementation we will assume that the underlying ring is a subring of the ring with one, thus, if the
circle inverse for an element x exists, than it can be computed as −x(1+ x)−1:

Example

gap> InstallMethod( InverseOp,
> "for an object in ‘IsMyCircleObject’",
> [ IsMyDefaultCircleObject ],
> function( a )
> local x;
> x := Inverse( One( a![1] ) + a![1] );
> if x = fail then
> return fail;
> else
> return MyCircleObject( -a![1] * x );
> fi;
> end );
gap> MyCircleObject(-2)^-1;



Circle 12

MyCircleObject( -2 )
gap> MyCircleObject(2)^-1;
MyCircleObject( -2/3 )

The last method already makes it possible to create groups generated by circle objects (the warning
may be ignored):

Example

gap> Group( MyCircleObject(2) );
#I default ‘IsGeneratorsOfMagmaWithInverses’ method returns ‘true’ for
[ MyCircleObject( 2 ) ]
<group with 1 generators>
gap> G:=Group( [MyCircleObject( ZmodnZObj( 2,8 ) ) ]);
#I default ‘IsGeneratorsOfMagmaWithInverses’ method returns ‘true’ for
[ MyCircleObject( ZmodnZObj( 2, 8 ) ) ]
<group with 1 generators>
gap> Size(G);
2
gap> AsList(G);
[ MyCircleObject( ZmodnZObj( 0, 8 ) ), MyCircleObject( ZmodnZObj( 2, 8 ) ) ]

The GAP code used in this Chapter, is contained in the files circle/lib/circle.gd and
circle/lib/circle.gi (without My in identifiers). For more examples of implementing new GAP
objects and further details see (Reference: Creating New Objects) and subsequent chapters in the
GAP Reference Manual.



Chapter 3

Circle functions

To use the Circle package first you need to load it as follows:
Example

gap> LoadPackage("circle");
-----------------------------------------------------------------------------
Loading Circle 1.4.0 (Adjoint groups of finite rings)
by Alexander Konovalov (http://www.cs.st-andrews.ac.uk/~alexk/) and

Panagiotis Soules (psoules@math.uoa.gr).
-----------------------------------------------------------------------------
true
gap>

Note that if you entered examples from the previous chapter, you need to restart GAP before loading
the Circle package.

3.1 Circle objects

Because for elements of the ring R the ordinary multiplication is already denoted by *, for the imple-
mentation of the circle multiplication in the adjoint semigroup we need to wrap up ring elements as
CircleObjects, for which * is defined to be the circle multiplication.

3.1.1 CircleObject

. CircleObject(x) (attribute)

Let x be a ring element. Then CircleObject(x) returns the corresponding circle object. If x lies
in the family fam, then CircleObject(x) lies in the family CircleFamily (3.1.5), corresponding to
the family fam.

Example

gap> a := CircleObject( 2 );
CircleObject( 2 )
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3.1.2 UnderlyingRingElement

. UnderlyingRingElement(x) (attribute)

Returns the corresponding ring element for the circle object x .
Example

gap> a := CircleObject( 2 );
CircleObject( 2 )
gap> UnderlyingRingElement( a );
2

3.1.3 IsCircleObject

. IsCircleObject(x) (Category)

. IsCircleObjectCollection(x) (Category)

An object x lies in the category IsCircleObject if and only if it lies in a family constructed
by CircleFamily (3.1.5). Since circle objects can be multiplied via * with elements in their family,
and we need operations One and Inverse to deal with groups they generate, circle objects are im-
plemented in the category IsMultiplicativeElementWithInverse. A collection of circle objects
(e.g. adjoint semigroup or adjoint group) will lie in the category IsCircleObjectCollection.

Example

gap> IsCircleObject( 2 ); IsCircleObject( CircleObject( 2 ) );
false
true
gap> IsMultiplicativeElementWithInverse( CircleObject( 2 ) );
true
gap> IsCircleObjectCollection( [ CircleObject(0), CircleObject(2) ] );
true

3.1.4 IsPositionalObjectOneSlotRep

. IsPositionalObjectOneSlotRep(x) (Representation)

. IsDefaultCircleObject(x) (Representation)

To store the corresponding circle object, we need only to store the underlying ring element. Since
this is quite common situation, we defined the representation IsPositionalObjectOneSlotRep
for a more general case. Then we defined IsDefaultCircleObject as a synonym of
IsPositionalObjectOneSlotRep for objects in IsCircleObject (3.1.3).

Example

gap> IsPositionalObjectOneSlotRep( CircleObject( 2 ) );
true
gap> IsDefaultCircleObject( CircleObject( 2 ) );
true
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3.1.5 CircleFamily

. CircleFamily(fam) (attribute)

CircleFamily(fam) is a family, elements of which are in one-to-one correspondence with ele-
ments of the family fam , but with the circle multiplication as an infix multiplication. That is, for x, y
in fam , the product of their images in the CircleFamily(fam) will be the image of x+ y+ xy. The
relation between these families is demonstrated by the following equality:

Example

gap> FamilyObj( CircleObject ( 2 ) ) = CircleFamily( FamilyObj( 2 ) );
true

3.2 Operations with circle objects

3.2.1 One

. One(x) (operation)

This operation returns the multiplicative neutral element for the circle object x . The result is the
circle object corresponding to the additive neutral element of the appropriate ring.

Example

gap> One( CircleObject( 5 ) );
CircleObject( 0 )
gap> One( CircleObject( 5 ) ) = CircleObject( Zero( 5 ) );
true
gap> One( CircleObject( [ [ 1, 1 ],[ 0, 1 ] ] ) );
CircleObject( [ [ 0, 0 ], [ 0, 0 ] ] )

3.2.2 InverseOp

. InverseOp(x) (operation)

For a circle object x , returns the multiplicative inverse of x with respect to the circle multiplica-
tion; if such one does not exist then fail is returned.

In our implementation we assume that the underlying ring is a subring of the ring with one, thus,
if the circle inverse for an element x exists, than it can be computed as −x(1+ x)−1.

Example

gap> CircleObject( -2 )^-1;
CircleObject( -2 )
gap> CircleObject( 2 )^-1;
CircleObject( -2/3 )
gap> CircleObject( -2 )*CircleObject( -2 )^-1;
CircleObject( 0 )
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Example

gap> m := CircleObject( [ [ 1, 1 ], [ 0, 1 ] ] );
CircleObject( [ [ 1, 1 ], [ 0, 1 ] ] )
gap> m^-1;
CircleObject( [ [ -1/2, -1/4 ], [ 0, -1/2 ] ] )
gap> m * m^-1;
CircleObject( [ [ 0, 0 ], [ 0, 0 ] ] )
gap> CircleObject( [ [ 0, 1 ], [ 1, 0 ] ] )^-1;
fail

3.2.3 IsUnit

. IsUnit([R, ]x) (operation)

Let x be a circle object corresponding to an element of the ring R . Then the operation IsUnit
returns true, if x is invertible in R with respect to the circle multiplication, and false otherwise.

Example

gap> IsUnit( Integers, CircleObject( -2 ) );
true
gap> IsUnit( Integers, CircleObject( 2 ) );
false
gap> IsUnit( Rationals, CircleObject( 2 ) );
true
gap> IsUnit( ZmodnZ(8), CircleObject( ZmodnZObj(2,8) ) );
true
gap> m := CircleObject( [ [ 1, 1 ],[ 0, 1 ] ] );;
gap> IsUnit( FullMatrixAlgebra( Rationals, 2 ), m );
true

If the first argument is omitted, the result will be returned with respect to the default ring of the circle
object x .

Example

gap> IsUnit( CircleObject( -2 ) );
true
gap> IsUnit( CircleObject( 2 ) );
false
gap> IsUnit( CircleObject( ZmodnZObj(2,8) ) );
true
gap> IsUnit( CircleObject( [ [ 1, 1 ],[ 0, 1 ] ] ) );
false

3.2.4 IsCircleUnit

. IsCircleUnit([R, ]x) (operation)
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Let x be an element of the ring R . Then IsCircleUnit( R, x ) determines whether x is in-
vertible in R with respect to the circle multilpication. This is equivalent to the condition that 1+x is a
unit in R with respect to the ordinary multiplication.

Example

gap> IsCircleUnit( Integers, -2 );
true
gap> IsCircleUnit( Integers, 2 );
false
gap> IsCircleUnit( Rationals, 2 );
true
gap> IsCircleUnit( ZmodnZ(8), ZmodnZObj(2,8) );
true
gap> m := [ [ 1, 1 ],[ 0, 1 ] ];
[ [ 1, 1 ], [ 0, 1 ] ]
gap> IsCircleUnit( FullMatrixAlgebra(Rationals,2), m );
true

If the first argument is omitted, the result will be returned with respect to the default ring of x .
Example

gap> IsCircleUnit( -2 );
true
gap> IsCircleUnit( 2 );
false
gap> IsCircleUnit( ZmodnZObj(2,8) );
true
gap> IsCircleUnit( [ [ 1, 1 ],[ 0, 1 ] ] );
false

3.3 Construction of the adjoint semigroup and adjoint group

3.3.1 AdjointSemigroup

. AdjointSemigroup(R) (attribute)

If R is a finite ring then AdjointSemigroup(R) will return the monoid which is formed by all
elements of R with respect to the circle multiplication.

The implementation is rather straightforward and was added to provide a link to the GAP func-
tionality for semigroups. It assumes that the enumaration of all elements of the ring R is feasible.

Example

gap> R:=Ring( [ ZmodnZObj(2,8) ] );
<ring with 1 generators>
gap> S:=AdjointSemigroup(R);
<monoid with 4 generators>



Circle 18

3.3.2 AdjointGroup

. AdjointGroup(R) (attribute)

If R is a finite radical algebra then AdjointGroup(R) will return the adjoint group of R , given as
a group generated by a set of circle objects.

To compute the adjoint group of a finite radical algebra, Circle uses the fact that all elements of
a radical algebra form a group with respect to the circle multiplication. Thus, the adjoint group of R
coincides with R elementwise, and we can randomly select an appropriate set of generators for the
adjoint group.

The warning is displayed by IsGeneratorsOfMagmaWithInverses method defined in
gap4r4/lib/grp.gi and may be ignored.

WARNINGS:
1. The set of generators of the returned group is not required to be a generating set of minimal

possible order.
2. AdjointGroup is stored as an attribute of R , so for the same copy of R calling it again you

will get the same result. But if you will create another copy of R in the future, the output may differ
because of the random selection of generators. If you want to have the same generating set, next time
you should construct a group immediately specifying circle objects that generate it.

3. In most cases, to investigate some properties of the adjoint group, it is necessary first to convert
it to an isomorphic permutation group or to a PcGroup.

For example, we can create the following commutative 2-dimensional radical algebra of order 4
over the field of two elements, and show that its adjoint group is a cyclic group of order 4:

Example

gap> x:=[ [ 0, 1, 0 ],
> [ 0, 0, 1 ],
> [ 0, 0, 0 ] ];;
gap> R := Algebra( GF(2), [ One(GF(2))*x ] );
<algebra over GF(2), with 1 generators>
gap> RadicalOfAlgebra( R ) = R;
true
gap> Dimension(R);
2
gap> G := AdjointGroup( R );;
gap> Size( R ) = Size( G );
true
gap> StructureDescription( G );
"C4"

In the following example we construct a non-commutative 3-dimensional radical algebra of order 8
over the field of two elements, and demonstrate that its adjoint group is the dihedral group of order 8:
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Example

gap> x:=[ [ 0, 1, 0 ],
> [ 0, 0, 0 ],
> [ 0, 0, 0 ] ];;
gap> y:=[ [ 0, 0, 0 ],
> [ 0, 0, 1 ],
> [ 0, 0, 0 ] ];;
gap> R := Algebra( GF(2), One(GF(2))*[x,y] );
<algebra over GF(2), with 2 generators>
gap> RadicalOfAlgebra(R) = R;
true
gap> Dimension(R);
3
gap> G := AdjointGroup( R );
<group of size 8 with 2 generators>
gap> StructureDescription( G );
"D8"

If the ring R is not a radical algebra, then Circle will use another approach. We will enumerate all
elements of the ring R and select those that are units with respect to the circle multiplication. Then
we will use a random approach similar to the case of the radical algebra, to find some generating set
of the adjoint group. Again, all warnings 1-3 above refer also to this case.

Of course, enumeration of all elements of R should be feasible for this computation. In the fol-
lowing example we demonstrate how it works for rings, generated by residue classes:

Example

gap> R := Ring( [ ZmodnZObj(2,8) ] );
<ring with 1 generators>
gap> G := AdjointGroup( R );
<group of size 4 with 2 generators>
gap> StructureDescription( G );
"C2 x C2"
gap> R := Ring( [ ZmodnZObj(2,256) ] );
<ring with 1 generators>
gap> G := AdjointGroup( R );;
gap> StructureDescription( G );
"C64 x C2"

Due to the AdjointSemigroup (3.3.1), there is also another way to compute the adjoint group of a
ring R by means of the computation of its adjoint semigroup S(R) and taking the Green’s H-class of
the multiplicative neutral element of S(R). Let us repeat the last example in this way:

Example

gap> R := Ring( [ ZmodnZObj(2,256) ] );
<ring with 1 generators>
gap> S := AdjointSemigroup( R );
<monoid with 128 generators>
gap> H := GreensHClassOfElement(S,One(S));
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{CircleObject( ZmodnZObj( 0, 256 ) )}
gap> G:=AsGroup(H);
<group of size 128 with 2 generators>
gap> StructureDescription(G);
"C64 x C2"

However, the conversion of the Green’s H-class to the group may take some time which may vary
dependently on the particular ring in question, and will also display a lot of warnings about the de-
fault IsGeneratorsOfMagmaWithInverses method, so we did not implemented this as as standard
method. In the following example the method based on Green’s H-class is much slower than an
application of earlier described random approach (20s vs 10ms):

Example

gap> R := Ring( [ ZmodnZObj(2,256) ] );
<ring with 1 generators>
gap> AdjointGroup(R);;
gap> R := Ring( [ ZmodnZObj(2,256) ] );
<ring with 1 generators>
gap> S:=AdjointSemigroup(R);
<monoid with 128 generators>
gap> AsGroup(GreensHClassOfElement(S,One(S)));
<group of size 128 with 2 generators>

Finally, note that if R has a unity 1, then the set 1+Rad , where Rad is the adjoint semigroup of R ,
coincides with the multiplicative semigroup Rmult of R, and the map r 7→ (1+ r) for r in R is an
isomorphism from Rad onto Rmult .

Similarly, the set 1+R∗, where R∗ is the adjoint group of R , coincides with the unit group of R,
which we denote U(R), and the map r 7→ (1+ r) for r in R is an isomorphism from R∗ onto U(R).

We demonstrate this isomorphism using the following example.
Example

gap> LoadPackage( "laguna", false );
true
gap> FG := GroupRing( GF(2), DihedralGroup(8) );
<algebra-with-one over GF(2), with 3 generators>
gap> R := AugmentationIdeal( FG );;
gap> G := AdjointGroup( R );;
gap> IdGroup( G );
[ 128, 170 ]
gap> IdGroup( Units( FG ) );
#I LAGUNA package: Computing the unit group ...
[ 128, 170 ]

Thus, dependently on the ring R in question, it might be possible that you can compute much faster its
unit group using Units(R) than its adjoint group using AdjointGroup(R). This is why in an attempt
of computation of the adjoint group of the ring with one a warning message will be displayed:
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Example

gap> Size( AdjointGroup( GroupRing( GF(2), DihedralGroup(8) ) ) );

WARNING: usage of AdjointGroup for associative ring <R> with one!!!
In this case the adjoint group is isomorphic to the unit group
Units(<R>), which possibly may be computed faster!!!

128
gap> Size( AdjointGroup( Integers mod 11 ) );

WARNING: usage of AdjointGroup for associative ring <R> with one!!!
In this case the adjoint group is isomorphic to the unit group
Units(<R>), which possibly may be computed faster!!!

10

If R is infinite, an error message will appear, telling that Circle does not provide methods to deal with
infinite rings.

3.4 Service functions

3.4.1 InfoCircle

. InfoCircle (info class)

InfoCircle is a special Info class for Circle algorithms. It has 2 levels: 0 (default) and 1. To
change info level to k, use command SetInfoLevel(InfoCircle, k).

Example

gap> SetInfoLevel( InfoCircle, 1 );
gap> SetInfoLevel(InfoCircle,1);
gap> R := Ring( [ ZmodnZObj(2,8) ]);
<ring with 1 generators>
gap> G := AdjointGroup( R );
#I Circle : <R> is not a radical algebra, computing circle units ...
#I Circle : searching generators for adjoint group ...
<group of size 4 with 2 generators>
gap> SetInfoLevel( InfoCircle, 0 );
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A sample computation with Circle

Here we give an example to give the reader an idea what Circle is able to compute.
It was proved in [KS04] that if R is a finite nilpotent two-generated algebra over a field of charac-

teristic p > 3 whose adjoint group has at most three generators, then the dimension of R is not greater
than 9. Also, an example of the 6-dimensional such algebra with the 3-generated adjoint group was
given there. We will construct the algebra from this example and investigate it using Circle. First we
create two matrices that determine its generators:

Example

gap> x:=[ [ 0, 1, 0, 0, 0, 0, 0 ],
> [ 0, 0, 0, 1, 0, 0, 0 ],
> [ 0, 0, 0, 0, 1, 0, 0 ],
> [ 0, 0, 0, 0, 0, 0, 1 ],
> [ 0, 0, 0, 0, 0, 1, 0 ],
> [ 0, 0, 0, 0, 0, 0, 0 ],
> [ 0, 0, 0, 0, 0, 0, 0 ] ];;
gap> y:=[ [ 0, 0, 1, 0, 0, 0, 0 ],
> [ 0, 0, 0, 0,-1, 0, 0 ],
> [ 0, 0, 0, 1, 0, 1, 0 ],
> [ 0, 0, 0, 0, 0, 1, 0 ],
> [ 0, 0, 0, 0, 0, 0,-1 ],
> [ 0, 0, 0, 0, 0, 0, 0 ],
> [ 0, 0, 0, 0, 0, 0, 0 ] ];;

Now we construct this algebra in characteristic five and check its basic properties:
Example

gap> R := Algebra( GF(5), One(GF(5))*[x,y] );
<algebra over GF(5), with 2 generators>
gap> Dimension( R );
6
gap> Size( R );
15625
gap> RadicalOfAlgebra( R ) = R;
true

22
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Then we compute the adjoint group of R:
Example

gap> G := AdjointGroup( R );;
gap> Size(G);
15625

Now we can find the generating set of minimal possible order for the group G, and check that G it is
3-generated. To do this, first we need to convert it to the isomorphic PcGroup:

Example

gap> f := IsomorphismPcGroup( G );;
gap> H := Image( f );
Group([ f1, f2, f3, f4, f5, f6 ])
gap> gens := MinimalGeneratingSet( H );;
gap> Length( gens );
3

One can also use UnderlyingRingElement(PreImage(f,x)) to find the preimage of x in G.
It appears that the adjoint group of the algebra from example will be 3-generated in characteristic

3 as well:
Example

gap> R := Algebra( GF(3), One(GF(3))*[x,y] );
<algebra over GF(3), with 2 generators>
gap> G := AdjointGroup( R );
<group of size 729 with 3 generators>
gap> H := Image( IsomorphismPcGroup( G ) );
Group([ f1, f2, f3, f4, f5, f6 ])
gap> Length( MinimalGeneratingSet( H ) );
3

But this is not the case in characteristic 2, where the adjoint group is 4-generated:
Example

gap> R := Algebra( GF(2), One(GF(2))*[x,y] );
<algebra over GF(2), with 2 generators>
gap> G := AdjointGroup( R );;
gap> Size(G);
64
gap> H := Image( IsomorphismPcGroup( G ) );
Group([ f1, f2, f3, f4, f5, f6 ])
gap> Length( MinimalGeneratingSet( H ) );
4
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