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Abstract

The UnitLib package extends the LAGUNA package and provides the library of normalized unit groups of
modular group algebras of all finite p-groups of order not greater than 243 over the field of p elements.

It also contains a parallel implementation of the computation of the normalized unit group of a modular
group algebra of a finite p-group (which should be retrieved from the GAP Small Groups Library) over the
field of p elements.

Copyright

© 2006-2012 by Alexander Konovalov and Elena Yakimenko

UnitLib is free software; you can redistribute it and/or modify it under the terms of the GNU General Public
License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any
later version. For details, see the FSF’s own site http://www.gnu.org/licenses/gpl.html.

If you obtained UnitLib, we would be grateful for a short notification sent to one of the authors.

If you publish a result which was partially obtained with the usage of UnitLib, please cite it in the following
form:

A. Konovalov and E. Yakimenko. UnitLib — The library of normalized unit groups of modular group
algebras, Version 3.2.0,2012 (http://www.cs.st-andrews.ac.uk/ alexk/unitlib/).
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Chapter 1

Introduction

1.1 General aims

Let KG be a group algebra of a finite p-group G over the field K of characteristic p, and let V(KG) be
the normalized unit group of KG. The pc-presentation of the group V (KG) can be computed using the
GAP package LAGUNA (http://www.cs.st-andrews.ac.uk/“alexk/laguna/), but for groups
of orders 64 and more such computation will already take a lot of time.

The UnitLib package is an extension of the LAGUNA package that is focused on this problem. It
contains the library of normalized unit groups of modular group algebras of finite p-groups over the
field of p elements. This allows the user to retrieve the pre-computed group from the library instead
of the time-consuming computation. The group created with UnitLib will have the same properties
and attributes as the one computed with LAGUNA.

The version UnitLib 3.0.0 released in May 2009 also contained a parallel implementation of the
computation of the normalized unit group of a modular group algebra of a finite p-group over the field
of p elements, which works for groups from the GAP small groups library. It is developed on the base
of the sequential version of this algorithm (which works for any p-group with no limitations) from
the LAGUNA package. Parallelisation is implemented using the SCSCP package that is capable of
connecting several local or remote GAP instances using the SCSCP protocol.

In April 2012, UnitLib 3.1.0 was updated to comply with GAP 4.5.

The current version of UnitLib provides the library of normalized unit groups V(KG) for all p-
groups of order not greater than 243.

If you need to work with groups of bigger orders, please write to the maintainers, because they
may be already computed or we can compute them for you.

1.2 Theoretical background

Since the UnitLib package is an extension of the LAGUNA package [BKRS], we refer to the LA-
GUNA: LAGUNA package manual for the theoretical backround. In particular, Chapter 3 (The ba-
sic theory behind LAGUNA) of that manual contains definitions of the modular group algebra and its
normalized unit group, the power-commutator presentation of the group, and also more details about
the algorithm for the computation of the pc-presentation of the normalized unit group of a modular
group algebra of a finite p-group.


http://www.cs.st-andrews.ac.uk/~alexk/laguna/
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1.3 Installation and system requirements

UnitLib 3.2.0 is designed for GAP 4.5 and no compatibility with previous releases of GAP 4 is
guaranteed.

Libraries of normalized unit groups of groups of orders less than 243, except for the order 128,
will be available in any operating system.

The library for groups of order 128 was compressed using the gzip program and, therefore, will
be available only in UNIX-type systems (including UNIX-installation in Mac OS X and Cygwin
installation in Windows). If you need to work with groups of order 128 in Windows, please write to
the maintainer to request a version of UnitLib with locally stored non-compressed data.

To work with the library for groups of order 243 you will also need the 1O package by Max Neun-
hoffer (http://www-groups.mcs.st-and.ac.uk/ “neunhoef/Computer/Software/Gap/io.html)
to retrieve the data from the UnitLib homepage.

Because the UnitLib is an extension of the LAGUNA package, you must have the LA-
GUNA package installed. You can obtain it from the GAP homepage or from its homepage
http://www.cs.st-andrews.ac.uk/ alexk/laguna.htm.

To use the UnitLib online help it is necessary to install the GAP4 package GAPDoc
by Frank Liibeck and Max Neunhoffer, which is available from the GAP homepage or from
http://www.math.rwth-aachen.de/ Frank.Luebeck/GAPDoc/.

UnitLib is distributed in standard formats (tar.gz, tar.bz2, .zip, -win.zip) and can be ob-
tained from the GAP homepage or from http://www.cs.st-andrews.ac.uk/"alexk/unitlib/.
To install UnitLib, unpack its archive into the pkg subdirectory of your GAP4.5 installation. When
you don’t have access to the directory of your main GAP installation, you can also install the package
outside the GAP main directory by unpacking it inside a directory MYGAPDIR/pkg. Then to be able
to load UnitLib you need to call GAP with the -1 " ;MYGAPDIR" option.


http://www-groups.mcs.st-and.ac.uk/~neunhoef/Computer/Software/Gap/io.html
http://www.cs.st-andrews.ac.uk/~alexk/laguna.htm
http://www.math.rwth-aachen.de/~Frank.Luebeck/GAPDoc/
http://www.cs.st-andrews.ac.uk/~alexk/unitlib/

Chapter 2

UnitLib functions

Since the main purpose of UnitLib is the date storage, it has only two main user functions to read the
description of V(KG) for the given catalogue number of G in the Small Groups Library of the GAP
system, and to save the description of V(K G) if the user would like to store it for the further usage for
the group which is not contained in the library.

To use the UnitLib package first you need to load it as follows:
Example

gap> LoadPackage("unitlib");

Loading UnitLib 3.1.0 (The library of normalized unit groups of modular group algebras)

by Alexander Konovalov (http://www.cs.st-andrews.ac.uk/"alexk/) and
Elena Yakimenko.

Homepage: http://www.cs.st-andrews.ac.uk/"alexk/unitlib/

Under Windows, a warning will be displayed about non-availability of the library of normalized unit
groups for groups of orders 128.

Examples below contain some functions from the LAGUNA package [BKRS], see their descrip-
tion in the LAGUNA manual ( LAGUNA: LAGUNA package).

2.1 MainFunctions

2.1.1 PcNormalizedUnitGroupSmallGroup

> PcNormalizedUnitGroupSmallGroup(s, n) (function)
Returns: PcGroup
Let s be a power of prime p and n is an integer from [ 1 .. NrSmallGroups(s) ]. Then

PcNormalizedUnitGroupSmallGroup(s,n) returns the normalized unit group V(KG) of the mod-
ular group algebra KG, where G is SmallGroup(s,n) (see SmallGroup (Reference: SmallGroup
(for group order and index))) and K is a field of p elements.
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Example

gap> PcNormalizedUnitGroupSmallGroup(128,161);
<pc group of size 170141183460469231731687303715884105728 with 127 generators>

The result returned by PcNormalizedUnitGroupSmallGroup is equivalent to the following:

Example
gap> G := SmallGroup( s, n );
gap> p := PrimePGroup( G );
gap> K := GF( p );

gap> KG := GroupRing( K, G );
gap> PcNormalizedUnitGroup( KG );

Nevertheless, PcNormalizedUnitGroupSmallGroup is not just a shortcut for such computation. It
reads the description of the normalized unit group from the UnitLib library and then reconstructs all
its necessary attributes and properties. Thus, if you would like to obtain the group algebra KG or the
field K and the group G, you should extract them from V (KG), which should be constructed first.

Example

gap> V:=PcNormalizedUnitGroup (GroupRing(GF(2) ,SmallGroup(8,3)));
<pc group of size 128 with 7 generators>

gap> V1:=PcNormalizedUnitGroupSmallGroup(8,3);

<pc group of size 128 with 7 generators>

gap> V1=V; # two isomorphic groups but not identical objects
false

gap> IdGroup(V)=IdGroup(V1);

true

gap> IsomorphismGroups(V,V1);

[ £f1, £f2, £3, f4, £f5, f6, f7 1 -> [ f1, f2, £3, f4, f5, f6, £7 ]
gap> KG:=UnderlyingGroupRing(V1); # now the correct way
<algebra-with-one over GF(2), with 3 generators>

gap> V1=PcNormalizedUnitGroup(KG); # V1 is an attribute of KG
true

gap> K:=UnderlyingField(KG) ;

GF(2)

gap> G:=UnderlyingGroup (KG) ;

<pc group of size 8 with 3 generators>

Moreover, the original group G can be embedded into the output of the
PcNormalizedUnitGroupSmallGroup, as it is shown in the next example:
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Example

gap> f:=Embedding(G,V1);

[ £f1, £f2, £3 1 -> [ £2, f1, £3 ]

gap> g:=List(Generators0fGroup(G), x -> x"f );
[ £f2, f1, £3 1]

gap> G1:=Subgroup(V1i,g);

Group([ f2, f1, £3 1)

gap> IdGroup(Gl);

[8, 3]

If the first argument s (the order of a group) is not a power of prime, an error message will appear. If
s is bigger than 243, you will get a warning telling that the library does not contain V(KG) for G of
such order, and you can use only data that you already stored in your unitlib/userdata directory
with the help of the function SavePcNormalizedUnitGroup (2.1.2).

It is worth to mention that for some groups of order 243, the construction of the nor-
malized unit group using PcNormalizedUnitGroupSmallGroup may already require some no-
ticeable amount of time. For example, it took about 166 seconds of CPU time to compute
PcNormalizedUnitGroupSmallGroup(243,30) on Intel Xeon 3.4 GHz with 2048 KB cache.

2.1.2 SavePcNormalizedUnitGroup

> SavePcNormalizedUnitGroup(G) (function)
> ParSavePcNormalizedUnitGroup (G) (function)

Returns: true

Let G be a finite p-group of order s from the Small Groups Library of the GAP system, constructed
with the help of SmallGroup(s,n) (see SmallGroup (Reference: SmallGroup (for group order
and index))). Then SavePcNormalizedUnitGroup(G) creates the file with the name of the form
us_n.g in the directory unitlib/userdata, and returns true if this file was successfully generated.
This file contains the description of the normalized unit group V(KG) of the group algebra of the
group G over the field of p elements.

If the order of G is greater than 243, after this you can construct the group V(KG) using
PcNormalizedUnitGroupSmallGroup (2.1.1) similarly to the previous section. The preliminary
warning will be displayed, telling that for such orders you can use only those groups that were already
computed by the user and saved to the unitlib/userdata directory. If there will be no such file
there, you will get an error message, otherwise the computation will begin.

If the order of G is less or equal to 243, then the file will be created in the unitlib/userdata
directory, but UnitLib will continue to use the file with the same name from the appropriate directory
inunitlib/data. You can compare these two files to make it sure that they are the same.

NOTE THAT:

1. The argument should be the underlying group G and not the normalized unit group V (KG).

2. The argument should be a group from the GAP Small Groups Library constructed with the help
of SmallGroup(s,n), otherwise the date consistency may be lost.

ParSavePcNormalizedUnitGroup works in the same way, but uses the function
ParPcNormalizedUnitGroup to parallelise the computation using the GAP package SCSCP.
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Example

gap> SavePcNormalizedUnitGroup( SmallGroup( 256, 56092 ) );

true

gap> PcNormalizedUnitGroupSmallGroup( 256, 56092 );

WARNING : the library of V(KG) for groups of order

256 is not available yet !!!

You can use only groups from the unitlib/userdata directory

in case if you already computed their descriptions

(See the manual for SavePcNormalizedUnitGroup) .

#I Description of V(KG) for G=SmallGroup(256,

56092) accepted, started its generation...

<pc group of size

57896044618658097711785492504343953926634992332820282019728792003956564819968
with 255 generators>
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Implementation Details

In this chapter we describe the approach used to store the normalized unit group of the group algebra
in the library, and to reconstruct the group V(KG) from the stored information.

3.1 Saving the data

To compute the pc-presentation of the normalized unit group of the modular group algebra of a finite
p-group we used the function PcNormalizedUnitGroup from the LAGUNA package. It uses the
algorithm descibed in [Bov98]. See the LAGUNA manual [BKRS] for more details.

When this group is computed, the main idea is to use GAP function CodePcGroup that returns the
code for the polycyclic generating sequence of the group, and then to create the group from this code
using the GAP function PcGroupCode.

The resulting code could be very long, and to compress it we used the GAP function
HexStringInt than returns a string that represents the code with hexa-decimal digits (using A-F as
digits 10-15). The inverse translation then can be performed with the GAP function IntHexString.
This allowed to save almost 20 MB of space on groups of order 128 and reduce the total size of their
database to 90 MB.

For groups of order 128 we decided to compress the library with the gzip program, and then
uncompress each file "on fly" when it is requested. This allowed us to reduce the size of their part
in the library from 90 to 12 MB, which is already quite reasonable. Of course, there is some little
overhead arising from the uncompression and subsequent translation from hexa-decimal notation, but
it is neglectible comparatively with the total time of the computation of V(KG) from scratch.

There is one more thing that needs to be stored together with this code to make it sure that we will
correctly identify the underlying group G of the group algebra KG with its image in the pc-presentation
of the normalized unit group V (KG).

The group G is extracted from the GAP Small Groups Library, so it is always the same, unless
its description in the library will be changed (and it will be an important task of UnitLib maintaner to
update the package in this case!), and here we are safe from inconsistencies.

But the next stage is the computation of generators of the normalized unit group V(KG), and the
first step is the dimension basis of the group G, that can be computed using the LAGUNA function
DimensionBasis. To avoid the influence of possible changes in GAP or usage of random methods,
we store (in compacted form) the information about the dimension basis of G in the UnitLib.

All further procedures are implemented inside the LAGUNA package, and their result is uniquely
determined and predictable.

10



UnitLib 11

For most groups all information is stored in a single file. However, this is not the case for groups of
order 243, where we have about 30 MB of data for 67 groups. For these groups we provide a solution
on the base of Web-services. The information about the dimension basis is stored locally, while the
codes for polycyclic generating sequences are available from the UnitLib homepage, and the package
will access them using the function SingleHTTPRequest (IO: SingleHTTPRequest) from the 10
package.

For the reader interested in more details, the package contains the file unitlib/lib/genlib.g
with the function CreatePcNormalizedUnitGroupsLibrary, that creates library files for
groups of a given prime power order, and the file unitlib/lib/genpar.g with the function
ParCreatePcNormalizedUnitGroupsLibrary, which is the parallel version of the previous func-
tion and must be used with the ParGAP package [Coo].

3.2 Reading the data

To reconstruct the normalized unit group V(K G) from the library, we need only to know the catalogue
number of the underlying group G in the GAP Small Groups Library.

We use the same numbering as in the GAP Small Group Library, so UnitLib finds the appropriate
library file(s) and reads from it the code for the polycyclic generating sequence of V(KG) and the
information about the dimension basis of G used for the computation of this code.

Then V(KG) is created from the code using the GAP function PcGroupCode (Reference: Pc-
GroupCode). We also create G using the GAP Small Groups Library.

Now to “glue” the group V(KG) with the underlying group G properly, the value
of the attribute DimensionBasis (LAGUNA: DimensionBasis) of G is set in accordance
with the data retrieved from the library. This will guarantee the correct construction
of NaturalBijectionToPcNormalizedUnitGroup (LAGUNA: NaturalBijectionToPcNormal-
izedUnitGroup) and NaturalBijectionToNormalizedUnitGroup (LAGUNA: NaturalBijec-
tionToNormalizedUnitGroup) by the LAGUNA package.

It remains now to make only several technical steps, such as constructing the group algebra KG
over the appropriate field K, and storing KG in the attribute UnderlyingGroupRing (LAGUNA: Un-
derlyingGroupRing) of V(KG) and V(KG) in the attribute PcNormalizedUnitGroup (LAGUNA:
PcNormalizedUnitGroup) of KG.
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An example of UnitLib usage

We will finish with several examples of UnitLib usage to give an idea how to work with the package.
In the first example we retrieve from the library the normalized unit group of the group algebra of
the dihedral group of order 128 over the field of two elements, compute its center and express one of
its generators in terms of group algebra elements:
Example

gap> IdGroup(DihedralGroup(128));

[ 128, 161 ]

gap> V := PcNormalizedUnitGroupSmallGroup( 128, 161 );

<pc group of size 170141183460469231731687303715884105728 with 127 generators>
gap> C := Center( V );

<pc group with 34 generators>

gap> gens := MinimalGeneratingSet( C );;

gap> KG := UnderlyingGroupRing( V );

<algebra-with-one over GF(2), with 7 generators>

gap> f := NaturalBijectionToNormalizedUnitGroup( KG );;

gap> gens|[8]~f;

(Z(2)~0)*£3+(Z(2) ~0) *£4+(Z(2) ~0) *£7+(Z(2) ~0) *£3*£4+(Z(2) ~0) *£3*£5+(Z(2) "

0) *£3%£6+(Z(2) ~0) *£3*£7+(Z(2) ~0) *£4+£5+(Z(2) ~0) *£4*£6+(Z(2) ~0) *£4*£7+(Z(2) ~
0) *f£3%f4x£5+(Z(2) ~0) *f3*f4*f6+(Z(2) ~0) *f3*xf4*£7+(Z(2) ~0) *£3*+£5+£6+(Z(2) ~

0) *£3*£5x£7+(Z(2) ~0) *£3*£6*£7+(Z(2) ~0) *£4*x£5x£6+(Z(2) ~0) *£4*£5+x£7+(Z(2) ~

0) *£4*£6*£7+(Z(2) ~0) ¥£3*E4*£5+£6+(Z(2) ~0) *E3*£4*E5*E7+(Z(2) ~0) *£3*F4*£6+E£ 7+ (
Z(2)~0) *E3*E5*£6*ET7+(Z(2) ~0) *£4*£5*E6*ET7+(Z(2) ~0) *£ 3+ 4+ L5+ £ 6+£7

In the second example we will check the conjecture about the coincidence of the lower and upper Lie
nilpotency indices of the modular group algebras for all non-abelian groups of order 64.

It is known that these indices coincide for p-groups with p > 3 [BP92], but in the general case the
problem remains open.

The indices 77 (G) and t*(G) can be computed using the LAGUNA package. While the upper Lie
nilpotency index can be expressed only in terms of the underlying group G, the lower Lie nilpotency
index is determined by the formula 7, (G) = cl V(KG) + 1 [Du92], and can be computed immediately
whenever V(KG) is known.

In the program below we enumerate all groups of size 64 and check the conjecture (we do not
exclude from consideration some particular cases when the conjecture is known to be true for p =2,
because this is beyond the task of this manual).

12



UnitLib 13

Example

gap> for n in [ 1 .. NrSmallGroups( 64 ) ] do

> if not IsAbelian( SmallGroup( 64, n ) ) then

> V := PcNormalizedUnitGroupSmallGroup( 64, n );

KG := UnderlyingGroupRing( V );

if LieLowerNilpotencyIndex( KG ) <>
LieUpperNilpotencyIndex( KG ) then
Print( n," - counterexample !!! \n" );
break;

fi;

V V V V V V V VvV

Thus, the test was finished without finding a counterexample.

In the next example we will answer the question about possible nilpotency classes of normalized
unit groups of modular group algebras of nonabelian groups of order 64:
Example

gap> cl := [1;;
gap> for n in [ 1 .. NrSmallGroups( 64 ) ] do
> if not IsAbelian( SmallGroup( 64, n ) ) then

> V := PcNormalizedUnitGroupSmallGroup( 64, n );
> AddSet( cl, NilpotencyClassOfGroup( V ) );

> fi;

> od;

gap> cl;

[2,3,4,5,6,7,8, 16 ]

With UnitLib you can perform the computation from the last example in several hours on a modern
computer. Without UnitLib you will spend the same time to compute only several normalized unit
groups V(KG) for groups of order 128 with the help of the LAGUNA package. Note that without
LAGUNA such computation would not be feasible at all.
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