Goto Chapter: Top 1 2 3 4 5 Bib Ind
 [Top of Book]  [Contents]   [Previous Chapter]   [Next Chapter] 

References

[CM93] Collingwood, D. H. and McGovern, W. M., Nilpotent orbits in semisimple Lie algebras, Van Nostrand Reinhold Co., Van Nostrand Reinhold Mathematics Series, New York (1993).

[Gra08] Graaf, W. A. d., Computing with nilpotent orbits in simple Lie algebras of exceptional type, LMS J. Comput. Math., 11 (2008), 280-297 (electronic).

[Gra09] Graaf, W. A. d., Computing representatives of nilpotent orbits of θ-groups (2009)
(preprint, {\tt arXiv:0905.3149v2}[math.RT]).

[Gra10] Graaf, W. A. d., Constructing semisimple subalgebras of semisimple Lie algebras (2010)
(preprint, {\tt arXiv:1004.1972v1}[math.RA]).

[GE09] Graaf, W. A. d. and Elashvili, A. G., Induced nilpotent orbits of the simple Lie algebras of exceptional type, Georgian Mathematical Journal, 16 (2) (2009), 257-278
({\tt arXiv:0905.2743v1}[math.RT]).

[GVY11] Graaf, W. A. d., Vinberg, E. B. and Yakimova, O. S., An effective method to compute closure ordering for nilpotent orbits of θ-representations (2011)
(preprint, {\tt arXiv:1107.1864v1}[math.AG]).

[GY10] Graaf, W. A. d. and Yakimova, O. S., Good index behaviour of θ-representations, I (2010)
(preprint, {\tt arXiv:1003.4162v1}[math.RT]).

[Hel78] Helgason, S., Differential geometry, Lie groups, and symmetric spaces, Academic Press Inc. [Harcourt Brace Jovanovich Publishers], Pure and Applied Mathematics, 80, New York (1978).

[Vin75] Vinberg, E. B., The classification of nilpotent elements of graded Lie algebras, Dokl. Akad. Nauk SSSR, 225 (4) (1975), 745-748.

[Vin76] Vinberg, E. B., The Weyl group of a graded Lie algebra, Izv. Akad. Nauk SSSR Ser. Mat., 40 (3) (1976), 488-526, 709
(English translation: Math. USSR-Izv. 10, 463-495 (1976)).

[Vin79] Vinberg, E. B., Classification of homogeneous nilpotent elements of a semisimple graded Lie algebra, Trudy Sem. Vektor. Tenzor. Anal. (19) (1979), 155-177
(English translation: Selecta Math. Sov. 6, 15-35 (1987)).

 [Top of Book]  [Contents]   [Previous Chapter]   [Next Chapter] 
Goto Chapter: Top 1 2 3 4 5 Bib Ind

generated by GAPDoc2HTML