Floating-point
numbers

Version 0.6.2

29/08/2014

Laurent Bartholdi

MPFR- and CXSC-based library for GAP

Laurent Bartholdi Email: laurent.bartholdi@gmail.com
Homepage: http://www.uni-math.gwdg.de/laurent/

Address: Mathematisches Institut
Bunsenstraf3e 3-5
D-37073 Géttingen
Germany

mailto:// laurent.bartholdi@gmail.com
http://www.uni-math.gwdg.de/laurent/

Floating-point numbers 2

Abstract

This document describes the package Float, which implements in GAP arbitrary-precision floating-point num-
bers.
For comments or questions on Float please contact the author.

Copyright

© 2011-2014 by Laurent Bartholdi

Acknowledgements

Part of this work is supported by the "Swiss National Fund for Scientific Research (SNF)", the "German
National Science Foundation (DFG)", and the Courant Research Centre "Higher Order Structures" of the
University of Gottingen.

Contents

1 Licensing 4

2 Float package 5
2.1 Asamplerun 5

3 Polynomials 7
3.1 The Floats pseudo-field 7
3.2 Rootsof polynomials 7
3.3 Finding integer relations L 7
34 LLLlatticereduction e e 8

4 Implemented packages 9
4.1 MPFR 9
4.2 MPFL 9
43 MPC . . . e 9
4.4 CXSC . . 10
45 FPLLL. 10

References 11

Index 12

Chapter 1

Licensing

This program is free software; you can redistribute it and/or modify it under the terms of the GNU
General Public License as published by the Free Software Foundation; either version 2 of the License,
or any later version.

This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY;
without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
PURPOSE. See the GNU General Public License for more details.

You should have received a copy of the GNU General Public License along with this program, in
the file COPYING. If not, see http://www.gnu.org/licenses/.

http://www.gnu.org/licenses/

Chapter 2

Float package

2.1 A sample run

The extended floating-point capabilities of GAP are installed by loading the package via
LoadPackage("float"); and selecting new floating-point handlers via SetFloats(MPFR),
SetFloats(MPFI), SetFloats(MPC) orSetFloats(CXSC), depending on whether high-precision
real, interval or complex arithmetic are desired, or whether a fast package containing all four

real/complex element/interval arithmetic is desired:
Example

gap> LoadPackage("float");

Loading FLOAT 0.3 ...

true

gap> SetFloats(MPFR); # floating-point

gap> x := 4xAtan(1.0);

.314159e1

gap> Sin(x);

.169569e-30

gap> SetFloats(MPFR,1000); # 1000 bits

gap> x := 4xAtan(1.0);

.314159e1

gap> Sin(x);

.125154e-300

gap> String(x,300) ;
".3141592653589793238462643383279502884197169399375105820974944592307816406286\
208998628034825342117067982148086513282306647093844609550582231725359408128481\
117450284102701938521105559644622948954930381964428810975665933446128475648233\
78678316527120190914564856692346034861045432664821339360726024914127e1"

gap>

gap> SetFloats(MPFI); # intervals

gap> x := 4xAtan(1.0);

.314159e1(99)

gap> AbsoluteDiameter(x); Sup(x); Inf(x);

.100441e-29

.314159e1

.314159e1

gap> Sin(x);

-.140815e-29(97)

gap> 0.0 in last;

Floating-point numbers

true

gap> 1.0; # exact representation

.le1(inf)

gap> IncreaseInterval(last,0.001); # now only 8 significant bits
.1e1(8)

gap> IncreaseInterval(last,-0.002); # now becomes empty
\emptyset

gap> MinimalPolynomial (Rationals,Sqrt(2.0));

-2%x_172+1

gap> Cyc(last);

E(8)-E(8)"3

gap>

gap> SetFloats(MPC); # complex numbers

Chapter 3

Polynomials

3.1 The Floats pseudo-field

Polynomials with floating-point coefficients may be manipulated in GAP; though they behave, in
subtle ways, quite differently than polynomials over rings.

The "pseudo-field" of floating-point numbers is an object in GAP, called FLOAT_PSEUDOFIELD.
(It is not really a field, e.g. because addition of floating-point numbers in not associative). It may be
used to create indeterminates, for example as

Example
gap> x := Indeterminate(FLOAT_PSEUDOFIELD, "x");
X
gap> 2*x72+3;
2.0%x72+3.0
gap> Value(last,10);
203.0

3.2 Roots of polynomials

The Jenkins-Traub algorithm has been implemented, in arbitrary precision for MPFR and MPC.
Furthermore, CXSC can provide complex enclosures for the roots of a complex polynomial.

3.3 Finding integer relations

The PSLQ algorithm has been implemented by Steve A. Linton, as an external contribution to Float.
This algorithm receives as input a vector of floats x and a required precision €, and seeks an integer
vector v such that |x-v| < €. The implementation follows quite closely the original article [BBO1].

3.3.1 PSLQ
> PSLQ(x, epsilon[, gammal) (function)
> PSLQ_MP(x, epsilon[, gamma[, beta]l) (function)

Returns: An integer vector v with |x-v| < €.
The PSLQ algorithm by Bailey and Broadhurst (see [BB01]) searches for an integer relation be-
tween the entries in x.

Floating-point numbers

B and y are algorithm tuning parameters, and default to 4/10 and 2//(3) respectively.

Example
gap> PSLQ([1.0, (1+Sqrt(5.0))/2],1.e-2);

[55, -34] # Fibonacci numbers

gap> RootsFloat([1,-4,2]%1.0);

[0.292893, 1.70711] # roots of 2x~2-4x+1
gap> PSLQ(List([0..2],i->last[1]"1i),1.e-7);

[1, -4, 2] # a degree-2 polynomial fitting well

3.4 LLL lattice reduction

A faster implementation of the LLL Ilattice reduction algorithm has also been implemented. It is
accessible via the commands FPLLLReducedBasis (m) and FPLLLShortestVector (m).

Chapter 4

Implemented packages

4.1 MPFR

4.1.1 IsMPFRFloat

> IsMPFRFloat (filter)
> TYPE_MPFR (global variable)

The category of floating-point numbers.
Note that they are treated as commutative and scalar, but are not necessarily associative.

4.2 MPFI

4.2.1 IsMPFIFloat

> IsMPFIFloat (filter)
> TYPE_MPFI (global variable)

The category of intervals of floating-point numbers.
Note that they are treated as commutative and scalar, but are not necessarily associative.

4.3 MPC

4.3.1 IsMPCFloat

> IsMPCFloat (filter)
> TYPE_MPC (global variable)

The category of intervals of floating-point numbers.
Note that they are treated as commutative and scalar, but are not necessarily associative.

Floating-point numbers 10

44 CXSC
4.4.1 IsCXSCReal
> IsCXSCReal (filter)
> IsCXSCComplex (filter)
> IsCXSCInterval (filter)
> IsCXSCBox (filter)
> TYPE_CXSC_RP (global variable)
> TYPE_CXSC_CP (global variable)
> TYPE_CXSC_RI (global variable)
> TYPE_CXSC_CI (global variable)
The category of floating-point numbers.
Note that they are treated as commutative and scalar, but are not necessarily associative.
4.5 FPLLL

4.5.1 FPLLLReducedBasis

> FPLLLReducedBasis (m) (operation)
Returns: A matrix spanning the same lattice as m.
This function implements the LLL (Lenstra-Lenstra-Lovdsz) lattice reduction algorithm via the
external library fplll.
The result is guaranteed to be optimal up to 1%.

4.5.2 FPLLLShortestVector

> FPLLLShortestVector (m) (operation)
Returns: A short vector in the lattice spanned by m.
This function implements the LLL (Lenstra-Lenstra-Lovdsz) lattice reduction algorithm via the
external library fplll, and then computes a short vector in this lattice.
The result is guaranteed to be optimal up to 1%.

References

[BBO1] D. H. Bailey and D. J. Broadhurst. Parallel integer relation detection: techniques and appli-
cations. Math. Comp., 70(236):1719-1736 (electronic), 2001. 7

11

Index

FPLLLReducedBasis, 10
FPLLLShortestVector, 10

IsCXSCBox, 10
IsCXSCComplex, 10
IsCXSCInterval, 10
IsCXSCReal, 10
IsMPCFloat, 9
IsMPFIFloat, 9
IsMPFRFloat, 9

PSLQ, 7
PSLQ_MP, 7

TYPE_CXSC_CI, 10
TYPE_CXSC_CP, 10
TYPE_CXSC_RI, 10
TYPE_CXSC_RP, 10
TYPE_MPC, 9
TYPE_MPFI, 9
TYPE_MPFR, 9

12

	Licensing
	Float package
	A sample run

	Polynomials
	The Floats pseudo-field
	Roots of polynomials
	Finding integer relations
	LLL lattice reduction

	Implemented packages
	MPFR
	MPFI
	MPC
	CXSC
	FPLLL

	References
	Index

