AddSpecialGapOfNumericalSemigroup
5.1-2AdjacentCatenaryDegreeOfSetOfFactorizations
9.3-2AdjustmentOfNumericalSemigroup
9.2-11AffineSemigroup
11.2-1AlmostSymmetricNumericalSemigroupsFromIrreducible
6.3-1AlmostSymmetricNumericalSemigroupsWithFrobeniusNumber
6.3-3AmbientNumericalSemigroupOfIdeal
7.1-5AnIrreducibleNumericalSemigroupWithFrobeniusNumber
6.1-4AperyListOfIdealOfNumericalSemigroupWRTElement
7.2-8AperyListOfNumericalSemigroup
3.1-7AperyListOfNumericalSemigroupAsGraph
3.1-9AperyListOfNumericalSemigroupWRTElement
3.1-6AperyListOfNumericalSemigroupWRTInteger
3.1-8AperyTableOfNumericalSemigroup
7.2-9ArfNumericalSemigroupClosure
8.2-2ArfNumericalSemigroupsWithFrobeniusNumber
8.2-4AsAffineSemigroup
11.2-2AsGluingOfNumericalSemigroups
6.2-1BasisOfGroupGivenByEquations
11.2-9BelongsToAffineSemigroup
11.2-4BelongsToHomogenizationOfNumericalSemigroup
9.5-1BelongsToIdealOfNumericalSemigroup
7.1-7BelongsToNumericalSemigroup
2.2-6BettiElementsOfAffineSemigroup
11.4-3BettiElementsOfNumericalSemigroup
4.1-3BezoutSequence
A.1-1BlowUpIdealOfNumericalSemigroup
7.2-2BlowUpOfNumericalSemigroup
7.2-4CanonicalIdealOfNumericalSemigroup
7.1-15CatenaryDegreeOfAffineSemigroup
11.5-3CatenaryDegreeOfElementInNumericalSemigroup
9.3-5CatenaryDegreeOfNumericalSemigroup
9.3-7CatenaryDegreeOfSetOfFactorizations
9.3-1CeilingOfRational
A.1-3CompleteIntersectionNumericalSemigroupsWithFrobeniusNumber
6.2-3ConductorOfNumericalSemigroup
3.2-3CurveAssociatedToDeltaSequence
10.2-4DecomposeIntoIrreducibles
6.1-6DeltaSequencesWithFrobeniusNumber
10.2-3DeltaSetListUpToElementWRTNumericalSemigroup
C.2-5DeltaSetOfFactorizationsElementWRTNumericalSemigroup
9.2-6DeltaSetOfNumericalSemigroup
C.2-7DeltaSetOfSetOfIntegers
9.2-5DeltaSetPeriodicityBoundForNumericalSemigroup
C.2-3DeltaSetPeriodicityStartForNumericalSemigroup
C.2-4DeltaSetUnionUpToElementWRTNumericalSemigroup
C.2-6DenumerantOfElementInNumericalSemigroup
9.1-5DifferenceOfIdealsOfNumericalSemigroup
7.1-11ElasticityOfAffineSemigroup
11.5-2ElasticityOfFactorizationsElementWRTNumericalSemigroup
9.2-3ElasticityOfNumericalSemigroup
9.2-4EmbeddingDimensionOfNumericalSemigroup
3.1-3EqualCatenaryDegreeOfAffineSemigroup
11.5-4EqualCatenaryDegreeOfNumericalSemigroup
9.3-9EqualCatenaryDegreeOfSetOfFactorizations
9.3-3EqualPrimitiveElementsOfNumericalSemigroup
9.3-8EquationsOfGroupGeneratedBy
11.2-8FactorizationsElementListWRTNumericalSemigroup
C.2-2FactorizationsElementWRTNumericalSemigroup
9.1-2FactorizationsInHomogenizationOfNumericalSemigroup
9.5-2FactorizationsIntegerWRTList
9.1-1FactorizationsVectorWRTList
11.5-1FirstElementsOfNumericalSemigroup
3.1-5ForcedIntegersForPseudoFrobenius
5.6-1FreeNumericalSemigroupsWithFrobeniusNumber
6.2-5FrobeniusNumber
3.2-2FrobeniusNumberOfNumericalSemigroup
3.2-1FundamentalGapsOfNumericalSemigroup
3.3-3GapsOfNumericalSemigroup
3.3-1GeneratorsOfIdealOfNumericalSemigroup
7.1-4GeneratorsOfIdealOfNumericalSemigroupNC
7.1-4GeneratorsOfKernelCongruence
11.4-1GeneratorsOfNumericalSemigroup
3.1-2GenusOfNumericalSemigroup
3.3-2GluingOfAffineSemigroups
11.3-1GraeffePolynomial
10.1-3GraphAssociatedToElementInNumericalSemigroup
4.1-2HilbertBasisOfSystemOfHomogeneousEquations
11.2-6HilbertBasisOfSystemOfHomogeneousInequalities
11.2-7HilbertFunctionOfIdealOfNumericalSemigroup
7.2-1HilbertSeriesOfNumericalSemigroup
10.1-2HomogeneousBettiElementsOfNumericalSemigroup
9.5-3HomogeneousCatenaryDegreeOfAffineSemigroup
11.5-5HomogeneousCatenaryDegreeOfNumericalSemigroup
9.5-4IdealOfNumericalSemigroup
7.1-1IntersectionIdealsOfNumericalSemigroup
7.1-13IntersectionOfNumericalSemigroups
5.2-1IrreducibleNumericalSemigroupsWithFrobeniusNumber
6.1-5IsACompleteIntersectionNumericalSemigroup
6.2-2IsAdditiveNumericalSemigroup
9.2-12IsAffineSemigroup
11.2-3IsAffineSemigroupByEquations
11.2-3IsAffineSemigroupByGenerators
11.2-3IsAffineSemigroupByInequalities
11.2-3IsAffineSemigroupByMinimalGenerators
11.2-3IsAlmostSymmetricNumericalSemigroup
6.3-2IsAperyListOfNumericalSemigroup
2.2-4IsAperySetAlphaRectangular
C.1-8IsAperySetBetaRectangular
C.1-7IsAperySetGammaRectangular
C.1-6IsArfNumericalSemigroup
8.2-1IsBezoutSequence
A.1-2IsCyclotomicNumericalSemigroup
10.1-6IsCyclotomicPolynomial
10.1-4IsDeltaSequence
10.2-2IsFreeNumericalSemigroup
6.2-4IsFullAffineSemigroup
11.2-5IsGenericAffineSemigroup
11.4-5IsGenericNumericalSemigroup
4.2-2IsGradedAssociatedRingNumericalSemigroupBuchsbaum
C.1-1IsGradedAssociatedRingNumericalSemigroupCI
C.1-5IsGradedAssociatedRingNumericalSemigroupCM
7.2-6IsGradedAssociatedRingNumericalSemigroupGorenstein
C.1-4IsIdealOfNumericalSemigroup
7.1-2IsIrreducibleNumericalSemigroup
6.1-1IsKroneckerPolynomial
10.1-5IsListOfIntegersNS
A.2-2IsMEDNumericalSemigroup
8.1-1IsModularNumericalSemigroup
2.2-1IsMonomialNumericalSemigroup
7.2-7IsMpureNumericalSemigroup
C.1-2IsNumericalSemigroup
2.2-1IsNumericalSemigroupAssociatedIrreduciblePlanarCurveSingularity
6.2-8IsNumericalSemigroupByAperyList
2.2-1IsNumericalSemigroupByFundamentalGaps
2.2-1IsNumericalSemigroupByGaps
2.2-1IsNumericalSemigroupByGenerators
2.2-1IsNumericalSemigroupByInterval
2.2-1IsNumericalSemigroupByMinimalGenerators
2.2-1IsNumericalSemigroupByOpenInterval
2.2-1IsNumericalSemigroupBySmallElements
2.2-1IsNumericalSemigroupBySubAdditiveFunction
2.2-1IsProportionallyModularNumericalSemigroup
2.2-1IsPseudoSymmetricNumericalSemigroup
6.1-3IsPureNumericalSemigroup
C.1-3IsSaturatedNumericalSemigroup
8.3-1IsSelfReciprocalUnivariatePolynomial
10.1-7IsSubsemigroupOfNumericalSemigroup
2.2-5IsSuperSymmetricNumericalSemigroup
9.2-13IsSymmetricNumericalSemigroup
6.1-2IsTelescopicNumericalSemigroup
6.2-6IsUniquelyPresentedAffineSemigroup
11.4-6IsUniquelyPresentedNumericalSemigroup
4.2-1KunzCoordinatesOfNumericalSemigroup
3.1-10KunzPolytope
3.1-11LengthsOfFactorizationsElementWRTNumericalSemigroup
9.2-2LengthsOfFactorizationsIntegerWRTList
9.2-1LShapesOfNumericalSemigroup
9.1-4MaximalDenumerantOfElementInNumericalSemigroup
9.2-8MaximalDenumerantOfNumericalSemigroup
9.2-10MaximalDenumerantOfSetOfFactorizations
9.2-9MaximalIdealOfNumericalSemigroup
7.1-14MaximumDegreeOfElementWRTNumericalSemigroup
9.2-7MEDNumericalSemigroupClosure
8.1-2MicroInvariantsOfNumericalSemigroup
7.2-5MinimalArfGeneratingSystemOfArfNumericalSemigroup
8.2-3MinimalGeneratingSystem
3.1-2MinimalGeneratingSystem
7.1-3MinimalGeneratingSystemOfIdealOfNumericalSemigroup
7.1-3MinimalGeneratingSystemOfNumericalSemigroup
3.1-2MinimalMEDGeneratingSystemOfMEDNumericalSemigroup
8.1-3MinimalPresentationOfAffineSemigroup
11.4-2MinimalPresentationOfNumericalSemigroup
4.1-1ModularNumericalSemigroup
2.1-2MoebiusFunctionAssociatedToNumericalSemigroup
9.6-1MonotoneCatenaryDegreeOfAffineSemigroup
11.5-6MonotoneCatenaryDegreeOfNumericalSemigroup
9.3-11MonotoneCatenaryDegreeOfSetOfFactorizations
9.3-4MonotonePrimitiveElementsOfNumericalSemigroup
9.3-10MultipleOfIdealOfNumericalSemigroup
7.1-9MultiplicityOfNumericalSemigroup
3.1-1NumericalSemigroup
2.1-1NumericalSemigroupByAperyList
2.1-4NumericalSemigroupByFundamentalGaps
2.1-4NumericalSemigroupByGaps
2.1-4NumericalSemigroupByGenerators
2.1-4NumericalSemigroupByInterval
2.1-4NumericalSemigroupByMinimalGenerators
2.1-4NumericalSemigroupByMinimalGeneratorsNC
2.1-4NumericalSemigroupByOpenInterval
2.1-4NumericalSemigroupBySmallElements
2.1-4NumericalSemigroupBySubAdditiveFunction
2.1-4NumericalSemigroupPolynomial
10.1-1NumericalSemigroupsAssociatedIrreduciblePlanarCurveSingularityWithFrobeniusNumber
6.2-9NumericalSemigroupsWithFrobeniusNumber
5.4-1NumericalSemigroupsWithGenus
5.5-1NumericalSemigroupsWithPseudoFrobeniusNumbers
5.6-3NumSgpsUse4ti2
11.1-1NumSgpsUse4ti2gap
11.1-2NumSgpsUseNormalize
11.1-3NumSgpsUseSingular
11.1-4NumSgpsUseSingularGradedModules
11.1-6NumSgpsUseSingularInterface
11.1-5OmegaPrimalityOfAffineSemigroup
11.5-9OmegaPrimalityOfElementInAffineSemigroup
11.5-8OmegaPrimalityOfElementInNumericalSemigroup
9.4-1OmegaPrimalityOfElementListInNumericalSemigroup
C.2-1OmegaPrimalityOfNumericalSemigroup
9.4-2OverSemigroupsNumericalSemigroup
5.3-1PrimitiveElementsOfAffineSemigroup
11.4-7PrimitiveElementsOfNumericalSemigroup
4.1-4ProportionallyModularNumericalSemigroup
2.1-3PseudoFrobeniusOfNumericalSemigroup
3.2-4QuotientOfNumericalSemigroup
5.2-2RandomListForNS
B.1-2RandomListRepresentingSubAdditiveFunction
B.1-5RandomModularNumericalSemigroup
B.1-3RandomNumericalSemigroup
B.1-1RandomNumericalSemigroupWithPseudoFrobeniusNumbers
5.6-4RandomProportionallyModularNumericalSemigroup
B.1-4RClassesOfSetOfFactorizations
9.1-3ReductionNumberIdealNumericalSemigroup
7.2-3RemoveMinimalGeneratorFromNumericalSemigroup
5.1-1RepresentsGapsOfNumericalSemigroup
2.2-3RepresentsPeriodicSubAdditiveFunction
A.2-1RepresentsSmallElementsOfNumericalSemigroup
2.2-2SaturatedNumericalSemigroupClosure
8.3-2SaturatedNumericalSemigroupsWithFrobeniusNumber
8.3-3SemigroupOfValuesOfCurve_Global
10.2-6SemigroupOfValuesOfCurve_Local
10.2-5SemigroupOfValuesOfPlaneCurveWithSinglePlaceAtInfinity
10.2-1ShadedSetOfElementInAffineSemigroup
11.4-4ShadedSetOfElementInNumericalSemigroup
4.1-5SimpleForcedIntegersForPseudoFrobenius
5.6-2SmallElements
3.1-4SmallElements
7.1-6SmallElementsOfIdealOfNumericalSemigroup
7.1-6SmallElementsOfNumericalSemigroup
3.1-4SpecialGapsOfNumericalSemigroup
3.3-4StarClosureOfIdealOfNumericalSemigroup
7.2-10SubtractIdealsOfNumericalSemigroup
7.1-10SumIdealsOfNumericalSemigroup
7.1-8TameDegreeOfAffineSemigroup
11.5-7TameDegreeOfElementInNumericalSemigroup
9.3-13TameDegreeOfNumericalSemigroup
9.3-12TameDegreeOfSetOfFactorizations
9.3-6TelescopicNumericalSemigroupsWithFrobeniusNumber
6.2-7TranslationOfIdealOfNumericalSemigroup
7.1-12TypeOfNumericalSemigroup
3.2-5TypeSequenceOfNumericalSemigroup
C.1-9
generated by GAPDoc2HTML