ParGAP

(Parallel GAP)
A GAP4 Package

Version 1.4.0
by

Gene Cooperman
College of Computer Science
Northeastern University
Boston, MA, U.S.A.
email: gene@ccs.neu.edu

November 2013

1.1
1.2
1.3
1.4
1.5
1.6
1.7

3.1
32
33
34

Writing Parallel Programs in GAP
Easily

Overview of ParGAP
Choosing an MPI Library
Installing ParGAP
Running ParGAP
Extended Example
Author

Invoking ParGAP with Remote Slaves
(when using a system MPI library)

Invoking ParGAP with Remote Slaves
(when using MPINU)

Problems Installing or Invoking ParGAP
Problems Running ParGAP with MPINU

Problems Running ParGAP with a System
MPI Implementation

Problems with Passwords (Getting Around
Security)

Modifying the GAP kernel
Slave Listener
Slave Listener Commands

Basic Concepts for the TOP-C model
(MasterSlave)

Basic TOP-C (Master-Slave) commands
Other TOP-C Commands
Simple Usage of MasterSlave()

Efficient Parallelism in MasterSlave() using
CheckTaskResult()

O o0 3 WD U

10
14

14

15
16
17

18

19
19
21
22

25
25
26
28

28

3.5

3.6
3.7

3.8

4.1
4.2
43
4.4

5.1
5.2
53

54
5.5

5.6

5.7

6.1

Contents

Modifying Task Output or Input (a dirty
trick)

The GOTO statement of the TOP-C model

Being nice to other users (Nice, Alarm and
LimitRss)

Converting legacy sequential code to the
TOP-C model

Tutorial

Trivial Parallelism

Using ParGAP interactively

Streaming

TOP-C model for non-trivial parallelism
MasterSlave Tutorial

A simple example

ParSquare

ParInstall TOPCGlobalFunction() and
TaskInputlterator() (ParSquare revisited)

ParMultMat

DefaultCheckTaskResult (as illustrated by
ParSemiEchelonMatrix)

Caching slave task outputs
(ParSemiEchelonMat revisited)

Agglomerating tasks for efficiency
(ParSemiEchelonMat revisited again)

Raw MasterSlave (ParMultMat revisited)

Advanced Concepts for TOP-C model
(MasterSlave)

Tracing and Debugging

29
30

30

31
32
32
33
34
36
38
38
39

40

42

44

50
50

Contents

6.2
6.3
6.4

7.1
7.2

Efficiency Considerations
Checkpointing in TOP-C

When Should a Slave Process be
Considered Dead?

MPI commands and UNIX system calls
in ParGAP

Tutorial introduction to the MPI C library
Other low level commands

Comments?

Bibliography

Index

51
53

53

54
54
57
59
60
61

Writing Parallel
Programs In
GAP Easily

The ParGAP (Parallel GAP) package provides a way of writing parallel programs using the GAP language. Former
names of the package were ParGAP/MPI and GAP/MPI; the word MPI refers to Message Passing Interface, a
well-known standard for parallelism. ParGAP is based on the MPI standard, and this distribution includes a subset
implementation of MPI, to provide a portable layer with a high level interface to BSD sockets. Since knowledge of
MPI is not required for use of this software, we now refer to the package as simply ParGAP. For more information
visit the author’s ParGAP home page at:

http://www.ccs.neu.edu/home/gene/pargap.html
For some background reading, see [Co095] and [Co097].

This first chapter is intended to help a new user set up ParGAP and run through some quick examples: see

e Section 1.1 for an overview of the features of ParGAP and a general discussion of how it’s implemented;
e Section 1.3 for how to install ParGAP;

e Section 1.4 for how to run ParGAP (not by using LoadPackage); and

e Section 1.5 for some introductory ParGAP examples.

The later chapters present detailed explanations of the facilities of ParGAP. Because parallel programming is
sufficiently different from sequential programming, this author recommends printing out at least Chapters 1 through 5,
and skimming through those chapters for areas of interest, before returning to the terminal to try out some of the ideas.
This document can be found in . . . /pkg/pargap/doc/manual . dvi of the software distribution. You may also want
to print the index at the end of manual.dvi. In particular, the heading example in the index, or ?7example from
within GAP, should be useful. If you prefer postscript, the UNIX command dvips will convert that file to postscript
form.

The development of ParGAP was partially supported by National Science Foundation grants CCR-9509783 and
CCR-9732330.

1.1 Overview of ParGAP

ParGAP is installed on top of an existing GAP installation. It comes with its own subset MPI implementation
(currently functional only on UNIX installations), or it can use your system MPI libraries, if present. See Section 1.3
for instructions on installation of ParGAP. At the time that ParGAP is invoked, a special file or command line
parameter must be used to tell ParGAP how many local processes or which remote machines to use for slave
processors. See section 1.4 for instructions on invoking ParGAP. If there are questions or bugs concerning ParGAP,
please write to: gene@ccs.neu.edu

If one wishes only to try out the parallel features, the first five pages of this manual (through the section on the slave
listener) will suffice for installation, and using it. For the more advanced user who wishes to design new parallel

6

Chapter 1. Writing Parallel Programs in GAP Easily

algorithms or port old sequential code to a parallel environment, it is strongly recommended to also read the sections
following on from Section 3.

ParGAP should be invoked via the script bin/pargap.sh created by the installation process which invokes
GAP_ROOT_DIR/bin/ARCH /pargapmpi, where ARCH depends on your system but is the same directory in which
the gap binary is found. MPI and the higher layers will not be available if the binary is invoked in the standard way as
gap. This is a feature, since a single binary and source distribution serves both for the standard GAP and for ParGAP.

ParGAP is implemented in three layers: 1) MPI, 2) Slave Listener, and 3) Master Slave (TOP-C abstraction). Most
users will find that the two highest layers (Slave Listener and Master Slave) meet all their needs.

1) MPI:

The lowest layer is MPI. Most users can ignore this layer. MPI is a standard for message-based parallel
computation. A subset of the original MPI commands is exposed at the GAP level. The syntax is modified
from the original C binding to make a GAP binding in an interpreted environment more convenient. This
includes default arguments, useful return values, and Error break in the presence of errors. MPI_Init ()
(see 7.2.2) and MPI_Finalize () (see 7.2.2) are invoked automatically by ParGAP.

The MPI layer is not documented, since most users will not be using it. From GAP level, you can type:
MPI_tabtab to see all implemented MPI functions and variables. However, typing the symbol name alone
(e.g.: MPI_Send;) will cause it to display the calling syntax. The same information is displayed after an
incorrect call. The return value is typically obvious. MPI is implemented in src/pargap.c. ParGAP will
use a sysem MPI implementation if one is present, and the distribution also includes two versions of a simple,
subset implementation of MPI in pkg/gapmpi/mpinu/ and pkg/gapmpi/mpinu2/, which is implemented
on top of a standard sockets interface, which can be used instead..

For those who wish to directly use the MPI interface, the meanings of the MPI calls are best found from the
standard MPI documentation:

MPI Forum:
http://www.mpi-forum.org/

MPI Standard (version 1.1):
http://www.mpi-forum.org/docs/mpi-11-html/mpi-report.html

UNIX style man pages:

http://www.mcs.anl.gov/research/projects/mpi/www/

2) Slave Listener:

This layer provides basic message passing facilities for communication among multiple ParGAP processes
in a form that is more convenient for programming than the lower MPI layer. This will be the most useful
entry point to ParGAP for most users. This is the default mode for ParGAP. Each remote (slave) process is
in a receive-eval-send loop, in which the slave receives a GAP command from the local or master, the slave
evaluates the GAP command, and the slave then sends the result back to the master as a GAP object.

Almost all commands in the slave listener are of the form *Msg#* e.g. SendMsg() (see 2.1.1), RecvMsg()
(see 2.1.2), ProbeMsg () (see 2.1.14). Since the slave is in a receive-eval-send loop, every SendMsg (cmd)
on the master must be balanced by a later RecvMsg(). SendRecvMsg() (see 2.1.5) is provided to combine
these steps. A few parallel utilities are also included, such as ParRead () (2.1.12), ParList () (2.1.13),
ParEval () (2.1.10), etc.

Section 2. Choosing an MPI Library 7

Messages are arbitrary GAP objects. Note that arguments to any GAP function are evaluated before being
passed to the function. Hence, any argument to SendMsg () or ParEval () would be evaluated locally before
being sent across the network. For this reason, arguments can also be given as strings, to delay evaluation
until reaching the destination process. Hence, real strings must be quoted: ParEval("x:="abc";");
Additionally, multiple commands are valid, and the final “;” of the string is optional. So, one can write:

BroadcastMsg("x:=\"abc\"; Print(Length(x), \"\\n\")");;

A full description is contained in Chapter 2.

3) Master Slave:
The Master Slave facility is provided both for writing complex parallel software, and as an easier way to par-
allelize previous or “legacy” sequential code. While the Slave Listener may be sufficient for simple parallel
requirements, more complex software requires a higher level abstraction. The fundamental abstractions of
the master slave layer are the task and the shared data.

1) The task typically corresponds to the procedure or inner body of a loop in a sequential program. This is the
part that must be repetitively computed in parallel.

2) The shared data typically corresponds to the data of a sequential program that is not within the local scope
of the task. Often this is a global data structure. In the case that the task is the inner body of a loop, the
shared data may be a local data structure that is outside the local scope of the loop.

It is usually quite easy to identify the task and the shared data of a sequential program or algorithm, which is
the first step in parallelizing an algorithm.

The Master Slave parallel model described here has also been successfully used in C and in LISP. It has been
used both in distributed memory and shared memory environments, although this version in GAP currently
works only in a distributed environment. In the C language, this parallel model is known as TOP-C (Task
Oriented Parallel C). For examples of the use of the TOP-C model see [Co098], [CCHWO03], [CFTY97],
[CGO2], [CMV97], [CHLM97], [CLMW99], and [CT96].

While no parallel software can eliminate the problem of designing an algorithm that is efficient in a parallel
environment, the TOP-C abstraction eases the job by eliminating programmer concerns about lower level
details, such as message passing, migration and replication of data, load balancing, etc. This leaves the
programmer to concentrate on the primary goal: maximizing the concurrency or parallelism.

1.2 Choosing an MPI Library

If you are using Linux and wish to try out ParGAP quickly, you can skip this section and let the ParGAP build
process choose an MPI library for you. If you have a little more time, or are running on a different system, please read
on.

ParGAP uses MPI, a standard Message Passing Interface for communicating between processes. Since the details of
inter-process communication are system-specific, ParGAP relies on an external library to provide its MPI functions. A
implementation of a sufficient subset of MPI, which runs on Linux and OS X, is included with ParGAP. Alternatively,
an MPI library can be installed on your system before building ParGAP. Two popular MPI implementations are:

MPICH2
http://www.mcs.anl.gov/research/projects/mpich2/
Open MPI

8 Chapter 1. Writing Parallel Programs in GAP Easily

http://www.open-mpi.org/

Both of these are compatible with Linux, Macs and Windows. Installation packages can be downloaded from their
websites, or may be available through your systems standard package management mechanism.

The MPINU library included with ParGAP provides the MPI functionality that ParGAP needs by using Unix
sockets. This implementation is sufficient for basic ParGAP usage, but does not scale to larger systems as well as
the alternative system libraries. It is better-suited to interative ParGAP sessions, since system MPI implementations
can result in problems with line editing in ParGAP. When built with MPINU, ParGAP also enables two commands
ParReset () and FlushA1l1lMsgs () which can be useful when developing parallel programs. See Section 1.11 for
details of these known issues with system MPI implementations. Two versions of MPINU are included with ParGAP:
the original MPINU and a newer version, called MPINU?2.

On Linux machines, we recommend that you use ParGAP with a system MPI implementation instead of MPINU,
if possible. These implementations provide better performance and fault tolerance, and are compatible with a wider
range of operating systems and hardware, including high speed networks and proprietory high-end computing systems.

On Macs, we recommend using the original MPINU since there are currently some problems running ParGAP with
both a system MPI implementation and MPINU2. Both these issues will hopefully be resolved in a future release.

By default, the ParGAP build process (see Section 1.3) tries to use a system MPI implementation if it can find one. If
not, it will use MPINU. Two versions of MPINU are included with this release of ParGAP. The recommended choice
is MPINU?2, but the original MPINU is included as a backup in case there are problems building or running MPINU?2.

1.3 Installing ParGAP

Installing ParGAP should be relatively simple. However, since there are many interactions both with the GAP kernel
and with the UNIX operating system, in a minority of cases, manual intervention will be necessary. If you are part
of this minority, please see the section 1.9. The most common problem is the local security policy; ParGAP is more
pleasant to use when you don’t have to manually provide the password for each slave. See section 1.12 for suggestions
in this respect.

To install the ParGAP package, move the file pargap-XXX .zoo or pargap-XXX . tar . gz (for some version number
XXX of ParGAP) into the pkg directory in which you plan to install ParGAP. Usually, this will be the directory pkg
in the hierarchy of your version of GAP (in fact, currently it is not possible to have the pkg directory separate from
GAP’s pkg directory; we hope to remedy this in future versions of ParGAP so that it will also possible to keep an
additional pkg directory in your private directories; section 76.1 of the GAP reference manual gives details on how to
do this, when it’s possible.)

Now change into the pkg directory in which you plan to install ParGAP. If you got a . zoo file, unpack it with:
unzoo -x pargap-XXX

If you got a . tar.gz file and your tar command supports the z option, unpack it with:
tar zxf pargap-XXX.tar.gz

or otherwise unpack in two steps with:

gunzip pargap-XXX.tar
tar xvf pargap-XXX.tar

Whether you got the .zoo or .tar.gz archive you should now have a new directory pargap. As for a generic GAP
package, do:

cd pargap
./configure
make

This builds the ParGAP files. ParGAP also needs to rebuild parts of GAP to enable the MPI hooks. It may also
need to re-run the GAP configure if you have a dedicated MPI compiler. By default, the ParGAP configure will

Section 4. Running ParGAP 9

prompt you to do this by hand if necessary, and then to restart the ParGAP build. If you are happy for the ParGAP
build process to run the GAP configure for you if needed, with no arguments, then run ParGAP’s configure with

./configure --with-basic-gap-configure

The configure script will attempt to find a system MPI implementation that it can use. If if not then it will use
MPINU2, the more recent of the two MPINU subset implementations included with the ParGAP package. You can
use the —-with-mpi= configure option to specify a different behaviour, and you can also set your own MPI compiler
and options if you wish. See the help text provided by ./configure -h for full details.

After doing the configure and make steps of ParGAP’s installation process (see Section 1.3), you should find in
ParGAP’s bin subdirectory a script

pargap.sh

which you should use to start ParGAP. (ParGAP can not be started by starting GAP 4 in the usual way, and using
LoadPackage; doing so will result in Info-ed advice to read this section.) Edit the pargap.sh script if necessary,
copy it to a standard path and rename it according to how you intend to call ParGAP (e.g. rename it: pargap).

Note: The script pargap.sh defines the program that runs ParGAP as pargapmpi. In fact, after installation
pargapmpi is a symbolic link to the GAP binary named gap. The same binary runs both GAP and ParGAP; when
the binary is invoked as gap GAP runs in the usual way without any parallel features; only when the binary is invoked
as pargapmpi are the parallel features incorporated. See Section 1.13 for more details.

Your ParGAP should now be ready to use. Now read the next section which decribes how to run ParGAP (if you are
reading this from GAP’s on-line help, type: 7>).

1.4 Running ParGAP

After a successful build, you will see a message saying that ParGAP is ready to use, and confirmation of whether a
system MPI library or MPINU will be used. The method of running ParGAP depends on this MPI choice, and the
MPI library is auto-detected, or can be specified, in configure, as described in Section 1.3. The pros and cons of the
two different library variants are discussed in Section 1.2.

We will assume that you have copied the pargap.sh script to a location on your search path and renamed it as
pargap, as suggested in Section 1.3.

If you are using a system MPI library: ParGAP should be started using an MPI launcher script. The name and
syntax of the command to start MPI processes can vary, and you should check your system MPI documentation for
details. However, one common launcher is mpiexec, and the following command should work with both Open MPI
and MPICH, and most other MPI-2 implementations:

mpiexec -n 3 pargap
This will start three copies of the ParGAP: one master and two slaves. These processes will all run on your local
machine. See Section 1.7 for how to configure and run processes on remote slaves.
If you are using MPINU: In ParGAP’s bin subdirectory you should find a procgroup file which defines the master
and slave processes that will be used by ParGAP. When ParGAP is started, the MPINU library looks for a file called
procgroup in the current directory, unless the —~p4pg option is used. Thus if you renamed your shell script pargap,
the following are valid ways of starting ParGAP:

pargap
(if current directory contains the file: procgroup), or

pargap -p4pg myprocgroupfile
(where myprocgroupfile is the complete path of your procgroup file — there is no restriction on how you name it). The

default procgroup file defines one master and two slaves on the local machine. For instructions of how to run remote
slaves, see Section 1.8.

If you had trouble installing or starting ParGAP, see the section 1.9. Otherwise you are ready to test your installation,
Try the example in the following section (if you are reading this from GAP’s on-line help, type: 7>).

10

Chapter 1. Writing Parallel Programs in GAP Easily

1.5 Extended Example

After installation, try it out. Invoke ParGAP as described in Section 1.4 and try the example below (but substitute
your own program where you see " /home/gene/myprogram.g"). The commands in this first example are also found
in the README file. So, you may wish to copy text from the README file and paste it into a ParGAP session. If you
have not specified any additional machines to the MPI launcher, or you are using the unmodified procgroup file, then
your remote slaves will be other processes on your local machine. It is a good idea to run only on your local machine
for your first experiments and while you are debugging parallel programs. When you wish to experiment with using
remote machines, you can then proceed to section 1.7 or section 1.8 depending on which MPI library ParGAP has

been built to use.

gap>
gap>
true
gap>
gap>
gap>
gap>
gap>
gap>
gap>
gap>
gap>
gap>

gap>
gap>
gap>
gap>
gap>
gap>
7

gap>
gap>
7

gap>
gap>
gap>
gap>
gap>
gap>

false

gap>
true
gap>
gap>
gap>

"<no_

gap>

"<no_

gap>
gap>

This assumes your procgroup file includes two slave processes.
PingSlave(l); #a ‘true’ response indicates Slave 1 is alive

Print() on slave appears on standard output
i.e. after the master’s prompt.

SendMsg("Print(3+4)");

7

A <return> was input above to get a fresh prompt.

#

To get special characters (including newline: ‘\n’)

into a string, escape them with a ‘\’.
SendMsg("Print(3+4,\"\\n\")");
7

Again, a <return> was input above after the 7 and new-line
were printed to get a fresh prompt.

#

Each SendMsg() is normally balanced by a RecvMsg().
SendMsg("3+4", 2);

RecvMsg(2);

The following is equivalent to the two previous commands.
SendRecvMsg("3+4", 2);

The two SendMsg() commands that were sent to Slave 1 earlier have

responses that are waiting in the message queue from that slave.

Check that there is a message waiting. With some MPI implementations
the message is not immediately available, but when ProbeMsg() does

return true then RecvMsg() is guaranteed to succeed.
ProbeMsgNonBlocking(1);

ProbeMsgNonBlocking(1);

Print() is a ‘no-value’ functions, and so the result of a RecvMsg()
in both these cases is "<no_return_val>".

RecvMsg(1);

return_val>"

RecvMsg(1);

return_val>"

As with Print() the result of Exec() appears on standard

output, and the result is "<no_return_val>".

Section 5. Extended Example 11

gap> SendRecvMsg("Exec(\"pwd\")"); # Your pwd will differ :-)

/home/gene

"<no_return_val>"

gap> # Define a variable on a slave

gap> SendRecvMsg("a:=45; 3+4", 1);

7

gap> # Note "a" is defined on slave 1, not slave 2.

gap> SendMsg("a", 2); # Slave prints error, output on master

gap> Variable: ’a’ must have a value

gap> # <return> entered to get fresh prompt.

gap> RecvMsg(2); # No value for last SendMsg() command

"<no_return_val>"

gap> RecvMsg(1);

45

gap> # Execute analogue of GAP’s List() in parallel on slaves.

gap> squares := ParList([1..100], x->x"2);

[1, 4, 9, 16, 25, 36, 49, 64, 81, 100, 121, 144, 169, 196, 225, 256,
289, 324, 361, 400, 441, 484, 529, 576, 625, 676, 729, 784, 841,
900, 961, 1024, 1089, 1156, 1225, 1296, 1369, 1444, 1521, 1600,
1681, 1764, 1849, 1936, 2025, 2116, 2209, 2304, 2401, 2500, 2601,
2704, 2809, 2916, 3025, 3136, 3249, 3364, 3481, 3600, 3721, 3844,
3969, 4096, 4225, 4356, 4489, 4624, 4761, 4900, 5041, 5184, 5329,
5476, 5625, 5776, 5929, 6084, 6241, 6400, 6561, 6724, 6889, 7056,
7225, 7396, 7569, 7744, 7921, 8100, 8281, 8464, 8649, 8836, 9025,
9216, 9409, 9604, 9801, 10000]

gap> # Send a large, local (non-remote) data structure to a slave

gap> Concatenation("x := ", PrintToString([1..10]%2));
"x := [2, 4, 6, 8, 10, 12, 14, 16, 18, 20]1\n\000"
gap> SendMsg(Concatenation("x := ", PrintToString([1..10]1%2)));

gap> RecvMsg();
[2, 4, 6, 8, 10, 12, 14, 16, 18, 20]
gap> # Send a local (non-remote) function to a slave

gap> myfnc := function() return 42; end;;

gap> # Use PrintToString() to define myfnc on all slave processes
gap> BroadcastMsg(PrintToString("myfnc := ", myfnc));

gap> SendRecvMsg("myfnc()", 1);

42

gap> # Ensure problem shared data is read into master and slaves.
gap> # Try one of your GAP program files instead.
gap> ParRead("/home/gene/myprogram.g") ;

Now that you have done a fairly rudimentary test of ParGAP you should be ready to do something a little bit more
interesting:

gap> ParInstallTOPCGlobalFunction("MyParList",

> function(list, fnc)

> local result, iter;

result := [];

iter := Iterator(list);

MasterSlave(function() if IsDonelterator(iter) then return NOTASK;
else return NextIterator(iter); fi; end,

V V V VvV V

fnc,

12

V V V V

Chapter 1. Writing Parallel Programs in GAP Easily

function(input,output) result[input] := output;

Error

);

> return result;

> end);

gap> MyParList([1..25], x->x"3);

master -> 1:
master -> 2:
2 -> master:
1 -> master:
master -> 1:
master -> 2:
2 -> master:
1 -> master:
master -> 1:
master -> 2:
2 -> master:
1 -> master:
master -> 1:
master -> 2:
2 -> master:
1 -> master:
master -> 1:
master -> 2:
2 -> master:
1 -> master:
master -> 1:
master -> 2:
2 -> master:
1 -> master:
master -> 1:
master -> 2:
2 -> master:
1 -> master:
master -> 1:
master -> 2:
2 -> master:
1 -> master:
master -> 1:
master -> 2:
2 -> master:
1 -> master:
master -> 1:
master -> 2:
2 -> master:
1 -> master:
master -> 1:
master -> 2:
2 -> master:
1 -> master:
master -> 1:

1
2

64
27

216
125

512
343

10
1000
729

11

12
1728
1331

13

14
2744
2197

15

16
4096
3375

17

18
5832
4913

19

20
8000
6859

21

22
10648
9261

23

return NO_ACTION; end,

Section 5. Extended Example 13

master -> 2: 24

2 -> master: 13824

1 -> master: 12167

master -> 1: 25

1 -> master: 15625

[1, 8, 27, 64, 125, 216, 343, 512, 729, 1000, 1331, 1728, 2197, 2744, 3375,
4096, 4913, 5832, 6859, 8000, 9261, 10648, 12167, 13824, 15625]

gap> ParInstallTOPCGlobalFunction("MyParListWithAglom",

> function(list, fnc, aglomCount)

> local result, iter;

> result := [];

> iter := Iterator(list);

> MasterSlave(function() if IsDonelterator(iter) then return NOTASK;
> else return NextIterator(iter); fi; end,
> fnc,

> function(input,output)

> local i;

> for i in [1..Length(input)] do

> result[input[i]] := output[i];

> od;

> return NO_ACTION;

> end,

> Error, # Never called, can specify anything

> aglomCount

>);

> return result;

> end);

gap> MyParListWithAglom([1..25], x->x73, 4);

master -> 1: (AGGLOM_TASK): [1, 2, 3, 4]

master -> 2: (AGGLOM_TASK): [5, 6, 7, 81

1 -> master: [1, 8, 27, 64]

2 -> master: [125, 216, 343, 512]

master -> 1: (AGGLOM_TASK): [9, 10, 11, 12]

master -> 2: (AGGLOM_TASK): [13, 14, 15, 16]

1 -> master: [729, 1000, 1331, 1728 1]

2 -> master: [2197, 2744, 3375, 4096]

master -> 1: (AGGLOM_TASK): [17, 18, 19, 20 1]

master -> 2: (AGGLOM_TASK): [21, 22, 23, 24]

1 -> master: [4913, 5832, 6859, 8000]

2 -> master: [9261, 10648, 12167, 13824]

master -> 1: (AGGLOM_TASK): [25]

1 -> master: [15625]

[1, 8, 27, 64, 125, 216, 343, 512, 729, 1000, 1331, 1728, 2197, 2744, 3375,
4096, 4913, 5832, 6859, 8000, 9261, 10648, 12167, 13824, 15625]

If you wish an accelerated introduction to the models of parallel programming provided here, you might wish to read
the beginning of Chapter 2 through section 2.1, and then proceed immediately to Chapter 3.

14 Chapter 1. Writing Parallel Programs in GAP Easily

1.6 Author

The ParGAP package was designed and written by Gene Cooperman, College of Computer Science, Northeastern
University, Boston, MA, U.S.A.

If you use ParGAP to solve a problem then please send a short email to gene@ccs.neu.edu about it, and cite the
ParGAP package as follows:

\bibitem[C0099]{C0099}
Cooperman, Gene,
{\sl Parallel GAP/MPI (ParGAP/MPI)}, Version 1,
College of Computer Science, Northeastern University, 1999,
\verb+http://www.ccs.neu.edu/home/gene/pargap.html+.

1.7 Invoking ParGAP with Remote Slaves (when using a system MPI library)

ParGAP can be built to use either a system MPI library, or the included MPINU library. The command to run ParGAP
is different in the two cases. If ParGAP has been built using MPINU then you should skip this section and proceed
to section “pargap:invoking pargap with remote slaves (using mpinu)”. Otherwise, please read on.

After ParGAP has been installed, a script bin/pargap.sh will have been created which (after any changes you
needed to make; see Section 1.3) you should use to invoke ParGAP. Installers are encouraged to treat pargap . sh in
analogy to gap . sh. For example, if your site has copied gap.sh to /usr/local/bin/gap, then you should also look
for the pargap . sh script as /usr/local/bin/pargap. It simplifies the remoste slave configuration if ParGAP can
be found on the standard path on each machine, and we’1l assume that in this section ParGAP can be invoked simply
as pargap.

When built with a system MPI installation, ParGAP must be invoked using the system’s MPI launcher. This may go
under several names, but the command name mpiexec is suggested in the MPI-2 specification, and is supported by
both Open MPI and MPICH, two common implementations of that specification.

The basic usage is

mpiexec -n num pargap
to launch num copies of ParGAP (i.e. one master and (num — 1) slaves). With no other parameters, these will all be
launched on the host machine.

A configuration file can be used to specify hosts for remote slaves. The syntax of this file different for Open MPI and
MPICH, but in both cases the configuration file is a text file listing the host names and the number of processes to run
on each host, one per line. The default number of processes per node is one by default.

When using Open MPI, an example hostfile is

Example Open MPI hostfile. Comments begin with

#

The following node is a single processor machine:
foo.example.com

The following two nodes are dual-processor machines:
bar.example.com slots=2

yow.example.com slots=2

This hostfile is passed to mpiexec using
mpiexec -n num -hostfile hostfile pargap

Processes are allocated round-robin style. For example, if we choose num to be seven then the first process (the master)
will run on foo. The slaves will run two on bar, two on yow and a further one each on foo and bar.

When using MPICH, the equivalent machinefile is

Section 8. Invoking ParGAP with Remote Slaves (when using MPINU) 15

Example MPICH machinefile. Comments begin with

#

The following node is a single processor machine:
foo.example.com

The following two nodes are dual-processor machines:
bar.example.com:2

yow.example.com:2

and the command to start ParGAP using these hosts will be

mpiexec -n num -machinefile machinefile pargap
For further information, such as specifying hosts on the command line, or finer control of how processes are distributed
between hosts, or if you have a different MPI implementation, then please see your MPI documentation.

Unless you have any problems with the installation or running ParGAP, you can skip the rest of this chapter and move
on to Chapter 2.

1.8 Invoking ParGAP with Remote Slaves (when using MPINU)

If ParGAP has been built to use the supplied MPINU library then ParGAP includes the facility (on Linux) to start up
and manage remove slaves without needing an external MPI launcher. If ParGAP is built using a system MPI library
then please read to section 1.7 instead.

We’ll assume that when ParGAP was built the scipt bin/pargap.sh was copied to /usr/local/bin/pargap
(see Section 1.3). ParGAP can then be run by calling pargap. In addition, there must be a file, procgroup, in the
current directory, or alternatively, if you wish to use a single procgroup file for all jobs, and that procgroup file is in
/home/ joe, then you can alias pargap to pargap -p4pg /home/joe/procgroup.

The procgroup file has a simple syntax, taken from the MPICH (not MPICH2) implementation of MPI. A # in
column 1 introduces a comment line. The first non-comment line should be 1ocal 0, verbatim. This line declares the
master process as the local process. Other lines are of the form:

host-machine 1 pargap-script
e.g.

regulus.ccs.neu.edu 1 /usr/local/bin/pargap

The first field is the hostname for a remote process. The second field specifies one thread per process. (ParGAP
recognizes only the value 1 for the second field.) The third field is an absolute pathname for ParGAP, as it would be
called on the remote process. Note that you can repeat the same line twice if you want two remote ParGAP processes
on the same processor. The default procgroup provided in the distribution will have lines of form:

localhost 1 path-of-provided-pargap.sh

If you change path-of-provided-pargap.sh to just, say, pargap, this will work only if pargap is in your path on the
remote machine shell (Localhost in this case), using your default shell. On most machines, localhost is an alias
for the local processor. This is a good default for debugging, so that you don’t disturb users on other machines.

MPI will use a line
host-machine 1 pargap-script

to create a UNIX subprocess executing:
ssh host-machine pargap-script

Suppose host-machine is regulus.ccs.neu.edu and pargap-script is /usr/local/bin/pargap as in the above
example, and we were to have trouble invoking ParGAP, then it would be a good idea to try invoking ssh
regulus.ccs.neu.edu from a UNIX prompt and if that succeeds, to then try executing the full ssh command.

16 Chapter 1. Writing Parallel Programs in GAP Easily

A typical problem is that the remote processor requires a password to login. MPI requires a login without passwords.
This can be set up for ssh. See man ssh. Sometimes, PAM is also used for user authentication (see /etc/pam. conf).
Consult your system staff for further analysis. If your site uses an alternative to ssh, there is a solution here: add the
lines

FHHFHHH R
##

SsH remote shell used by ParGAP
##

#Hit

SSH=myssh

export SSH

before the GAP block with the exec line. (Of course, the # lines are not needed; they are comments.)

Note that the remote ParGAP process will not read from standard input, although signals such as SIGINT (~C) may be
received by the remote process. However, the remote ParGAP process will write to standard output, which is relayed
to the local process. So,

gap> SendMsg("Exec(\"hostname\")", 2);

will execute and print from the remote process.

1.9 Problems Installing or Invoking ParGAP

If you still have problems, here is a list of things to check. This section considers general problems when installing or
running ParGAP. The two sections after this one consider problems specific to using MPINU or a system MPI library
respectively.

0. If you are using ParGAP on a Mac with MPINU2 or a system MPI implementation then ParGAP may
consistently crash on startup. If this is the case then try using MPINU instead by reconfiguring ParGAP with

./configure --with-mpi=MPINU

This is a known issue which will be fixed in a forthcoming version.

1. Do you have enough swap space to support multiple GAP processes? A simple way to check this is with the
UNIX command, top. The Linux version of top sorts by memory usage if you type M.

2. make tries to automatically create:
pkg/pargap/bin/pargap.sh

and copy the parameters from GAP_ROOT /bin/gap.sh. GAP_ROOT was specified when you executed . /con-
figure GAP_ROOT to install ParGAP. This can be error-prone if your site has an unusual setup. If you execute
GAP_ROOT /bin/gap.sh, does gap come up? If so, compare it with pargap.sh and check for correct settings
in .../pkg/pargap/bin/pargap.sh?

3. Were the remote slave processes able to start up? If so, could they connect back to the master? To test connectivity
problems, try manually starting a remote slave by executing a line in the script. Try a simple ssh remote-
hostname to see if the issue is with security. If your site uses ssh instead of ssh, then there is a security issue.
Read Section 1.12, and possibly man sshd.

4. If the previous step failed due to security issues, such as requesting a password, you have several options. man
ssh tells you the security model at your site. Then read Section 1.12.

5. Is pargap listed in . . . /pkg/ALLPKG? [It’s needed to autostart slaves.]
6. Inside ParGAP, has MPI been successfully initialized? Try:

Section 10. Problems Running ParGAP with MPINU 17

gap> MPI_Initialized();

7. A remote (slave) ParGAP process starts in your home directory and tries to cd to a directory of the same name
as your local directory. Check your assumptions about the remote machine. Try:

gap> SendRecvMsg("Exec(pwd)"); SendRecvMsg("UNIX_Hostname()");
gap> SendRecvMsg("UNIX_Getpid()");

8. Every ParGAP slave process displays its GAP banner and startup messages on the terminal of the master process.
If you have many slaves and do not wish to see these messages, then pass the -b and/or -q switches to ParGAP
when it starts, to disable the banner or all messages respectively. See Section 3.1 of the GAP Reference Manual
for further details.

9. Read the documentation for further possible problems.

1.10 Problems Running ParGAP with MPINU

If you have problems running ParGAP, and ParGAP is built to use the supplied MPINU library, then this section
lists some things to check, in addition to the general issues listed in the previous section. If you are using a system
MPI implementation instead of MPINU, this section can be ignored, but you should read the next section instead.

1. Did ParGAP find your procgroup file? [It looks in the current directory for procgroup, or for:

. —pé4pg PATH/procgroup

on the command line.]

2. If you are using MPINU, is the procgroup file in your current directory set correctly? Test it. If you are calling
it on a remote host, manually type:

ssh HOSTNAME ParGAP

where HOSTNAME and ParGAP appear exactly as in procgroup, e.g.

ssh denali.ccs.neu.edu /usr/local/gap4r3/bin/pargap.sh

In some cases, exec is used to save process overhead. Also try:

ssh HOSTNAME exec ParGAP

If you plan to call it on localhost, try just: ParGAP

Note that if not all the slave processes succeed in connecting to the master, then ParGAP writes out a file:

/tmp/pargapmpi-ssh.xx

where xx is replaced by the the process id of the ParGAP process.

3. If the connection dies at random, after some period of time: You can experiment with SO_KEEPALIVE and variants.
(See man setsockopt.) This periodically sends null messages so the remote machine does not think that the
originating machine is dead. However, if the remote machine fails to reply, the local process sends a SIGPIPE
signal to notify current processes of a broken socket, even though there might have been only a temporary lapse
in connectivity. ssh specifies KeepAlive yes by default, but setting KeepAlive no might get you through
some transient lapses in connectivity due to high congestion. You may also want to experiment with: setenv
SSH "ssh -n"

4. If a host is on multiple networks, it will have multiple IP addresses and usually multiple hostnames. In this case,
the master process cannot always guess correctly which IP address (which internet address) should be passed
to the slave process, so that the slave process can call back to the master. In such cases, you may need to tell

18 Chapter 1. Writing Parallel Programs in GAP Easily

ParGAP which hostname or IP address to use for the callback. This is done by setting the UNIX environment
variable, CALLBACK_HOST, as in the example below.

[in sh/bash/...]

CALLBACK_HOST=denali.ccs.neu.edu; export CALLBACK_HOST
[in csh/tcsh/...]

setenv CALLBACK_HOST=denali.ccs.neu.edu

The appropriate line for your shell can be placed in your shell initialization file. Alternatively, you can set
this up for all users by placing the Bourne shell version (for sh) somewhere between the first and last line of
.../pkg/pargap/bin/pargap.sh.

5. ParGAP is supplied with two different versions of MPINU: the original MPINU and a later version, MPINU?2,
and it will also work with other MPI libraries if they are present on your system. By default, if you do not have
a system MPI implementation then MPINU?2 is used. If you have problems which appear to be MPI-related,
try rebuilding ParGAP with a different MPI library. For example, to use MPINU instead of MPINU2 then run
configure using

./configure --with-mpi=MPINU

1.11 Problems Running ParGAP with a System MPI Implementation

Here are a list of known issues when using a system MPI library with ParGAP, and some solutions or workarounds.
Not all of these issues will manifest themselves on all architectures and all MPI implementations. If you are having
problems building or running ParGAP, you should check this section as well as Section 1.9

1. Line editing at the GAP command prompt is unlikely to work when ParGAP is invoked with an MPI launcher,
since they tend to do their own processing of the terminal I/O (stdin/stdout/stderr) which does not work well
either the readline library used in newer versions of GAP or the in-built terminal editing in earlier versions of
GAP. It may be useful to run ParGAP through the rlwrap utility, if available. For example, if ParGAP is run
using mpiexec, then try

rlwrap mpiexec -n 3 pargap

This should restore some of the line editing, although tab completion is limited to commands that rlwrap has
already seen you use. For more information, try man rlwrap.

2. The command FlushA11Msgs () (see 2.1.8) is not available when using a system MPI implementation, since it
tests show that ProbeMsgNonBlocking (), which it uses (see 2.1.15) cannot be relied upon to always return true
the first time that it is called after a message has been sent. If your system MPI implementation does exhibit this
desired behaviour for ProbeMsgNonBlocking() then you can install your own local copy of FlushAl1Msgs ()
by copying the code for this function from 1ib/slavelist.g, removing the if statement and renaming the
function.

3. The command ParReset () (see 2.1.16) is not available when using a system MPI implementation. When using
a MPINU library, the slaves are launched by ParGAP itself and so can be contacted and restarted, but with a
system MPI library the slaves are launched by mpiexec (or whichever MPI launcher you use) and so cannot be
reset from within ParGAP. There is no known workaround for this.

4. GAP and, in particular, the 10 Package install handlers for the SIGCHLD signal. Many implementations of
MPI also install their own SIGCHLD handler, which may then conflict with ParGAP. Testing has revealed no
issues, but we cannot guarantee that there will be no interaction between the two. In particular, this may result in
temporary files not being cleaned up properly.

5. The GAP memory manager, GASMAN, can run into problems extending the GAP workspace if external libraries
use malloc to allocate their own memory. MPINU avoids the use of malloc as much as possible, but system
MPI implementations may not be as careful. This can be resolved by starting ParGAP with the -s command-line

Section 13. Modifying the GAP kernel 19

switch, which asks ParGAP to pre-allocate memory before it starts. You can safely pre-allocate more memory
than you will actually need since physical memory will only be mapped when it is actually used, so for example
you could allocate 3Gb:

mpiexec -n 3 pargap -s 3g

The -a and -m switches can also be used to control memory usage. See Section 3.1 of the GAP Reference Manuel for
further information.

News of any other issues or solutions would be gratefully accepted.

1.12 Problems with Passwords (Getting Around Security)

There is a simple test to see if you need to read this section. Pick a remote machine, HOSTNAME, that you wish to
execute on, and type: ssh HOSTNAME. If this did not work, also try ssh HOSTNAME. If you were asked for your
password, then you and your system administrator may need to talk about security policy. If you were successful with
an alternative to ssh then set the environment variable, SSH, to the alternative value, as described in item 3 below.

(1) Add a .shosts file to your home directory (for ssh).

(2) Hack around the problem: By default, the startup script uses ssh to start remote processes. However, if the
environment variable SSH was set, the script uses the value of the environment variable instead of ssh. This may
be useful, if you have your own script, myssh, that automatically gets around the security issues. Then just type:

SSH=myrsh; export SSH # [in sh/bash/...]
setenv SSH myrsh # [in csh/tcsh/...]

The appropriate line for your shell can be placed in your shell initialization file. Alternatively, you can set
this up for all users by placing the Bourne shell version (for sh) somewhere between the first and last line of
.../pkg/pargap/bin/pargap.sh. (The example for ssh was given earlier.)

(3) ssh:man ssh mentions some possibilities for giving the password the first time, and then having ssh remember
that future logins to that machine are authorized for the duration of the session. Don’t overlook the use of
$HOME/ . ssh/config to set special parameters, such as specifying a different login name on the remote machine.
Some parameters of interest might be KeepAlive, RSAAuthentication, UseRsh. You may also find useful
information in man sshd.

(4) After starting ParGAP, manually call
/tmp/pargapmpi-ssh.$$

and repeatedly type in the password for each slave process. If you find yourself doing this, you may want to talk
with your system administrator, since it actually hurts system security to have you repeatedly typing passwords
with a concommitant risk that someone else will find out your password.

1.13 Modifying the GAP kernel

Note that this package modifies the GAP src and bin files, and creates a new GAP kernel. This new GAP kernel can
be shared by traditional users of the old, sequential GAP kernel, and by those doing parallel processing.

The GAP kernel will have identical behavior to the old GAP kernel when invoked through the gap. sh script or the
bin/@GAParch@/gap binary. The new ParGAP variables will appear to the end user ONLY if the GAP binary was
invoked as pargapmpi: a symbolic link to the actual GAP binary. The script, pargap . sh, does this.

So, in a multi-user environment, traditional users can continue to use gap . sh without noticing any difference. Only
an invocation of pargap . sh will add the new features.

20 Chapter 1. Writing Parallel Programs in GAP Easily

In a future version of GAP, it is hoped that the GAP kernel will have enough “hooks”, so that no modification of
the GAP kernel is required. At that time, it will also be possible to speed up the startup time for ParGAP. Much of
the startup time is caused by waiting for GAP to read its library files. It will be possible to use the GAP function,
SaveWorkspace () to save a version with the GAP library pre-loaded. That saved version can then be used to start up
ParGAP. This is not currently possible, because ParGAP needs to get at the command line of GAP before the GAP
kernel sees it.

Comments and contributions to a ParGAP user library, or any other type of assistance, are gratefully accepted.

Gene Cooperman gene@ccs.neu.edu

Slave Listener

ParGAP implements a model of a slave process as a slave listener. This means that the slave is running a simple
program:

(1) Read message from master [as string]

(2) Evaluate message and return result

(3) Send message to master with result [as string]
(4) Goto step 1

An example using this interactive style is contained in section 1.5.

There are some enhancements to this model which should be noted. If a slave process prints to the standard output,
this will be visible at the console of the master process. If a slave process executes an Error and goes into a break
loop, then it will automatically return to the top level, return any error message to the master process, and wait for
another message from the master process. In addition, when using ParGAP with the MPINU library,

there are some enhancements to this model which should also be noted. Normally, all reply messages from a slave
will wait in a queue until the master process decides to read them. If unwanted messages accumulate in the queue,
the master can execute FlushA11Msgs () (see 2.1.8). If a slave process goes into an infinite loop, the master process
can call ParReset () ; (see 2.1.16) to interrupt all slave processes and return them to their top level loop as a slave
listener.

At this point, you may wish to review the commands by looking again at the extended example in section 1.5. Note
also some naming conventions:

MPI_...:
A command prefix of MPI_ signifies a GAP binding of an MPI function. These functions are low level
functions on which the rest of ParGAP is built. They can be safely ignored by the casual user. (Recall that
MPI, Message Passing Interface, is a standard for message passing.) In ParGAP, type MPI_<tab> for a list
of all such functions.

UNIX_...:
Commands with prefix UNIX_ are additional system commands that were not present in the unmodified GAP
kernel. They are typically GAP versions of UNIX commands that make life easier. UNIX Nice() is an
example. In ParGAP, type UNIX_<tab> for a list of all such functions.

Par...:
Commands beginning with Par are “paralle]” commands that should only be called by the master process.
Such commands invoke all slave processes to do their work. In ParGAP, type Par<tab> for a list of all such
functions.

2»

3»

4»

5»

6>

7»

3>

22 Chapter 2. Slave Listener

2.1 Slave Listener Commands

The slave listener commands are implementd in slavelist.g in ParGAP’s 1ib directory. Most procedures are
short, and can also be read online by using GAP’s Print command, e.g. try: Print (SendMsg, "\n"); (the newline
is needed only to get back to a clean “gap> ” prompt). The code of SlavelListener and CloseSlavelListener
(try: Print (SlavelListener, "\n"); and Print(CloseSlaveListener, "\n");)is also instructive and should
provide some insights into the behavior of the slave listener. Examples of slave listener commands can be found in
context in the section 1.5. Some of these commands are based on MPI. Further information on basic concepts of MPI
can be found in section 7.1, but that section can be safely ignored on a first reading.

SendMsg(command[, dest[, tagl]) F

sends command to dest (a non-negative integer that is the “rank” of the destination process); command should normally
be a string (otherwise it is evaluated on the master before being passed to dest which almost certainly will defeat the
purpose of using SendMsg()). If desr is omitted it defaults to 1 (the rank of the first slave) on the master process
(i.e. if IsMaster () is true), or to O (the rank of the master) on a slave process (i.e. if IsMaster () is false). The
argument fag, if given, should be a positive integer less than 1000. The default value of zag is 1. Tags of value 1000
and above are reserved for use by ParGAP itself, and should not be used by application routines.

RecvMsg([source]) F

gets a response from a command. The default value of source is MPI_ANY_SOURCE, which receives the next available
message from any source. GetLastMsgSource() (see 2.1.3) allows one to determine the source in such cases.
GetLastMsgTag() (see 2.1.4) always allows one to determine the tag, although most applications can ignore the
tag. Tags are applied to commands by SendMsg () or SendRecvMsg() (see 2.1.1).

GetLastMsgSource () F

returns the source of the last message that was either received (e.g. by RecvMsg(); see 2.1.2) or simply probed (e.g. by
ProbeMsg(); see 2.1.14).

GetLastMsgTag() F

returns the tag (see 2.1.1) of the last message that was either received (e.g. by RecvMsg(); see 2.1.2) or simply probed
(e.g. by ProbeMsg(); see 2.1.14).

SendRecvMsg(command[, dest[, tagl]) F

This command is equivalent to SendMsg(command[, dest[, tagl]); RecvMsg([dest]); (see 2.1.1 and 2.1.2),
except that even if dest is omitted the source for the RecvMsg() part of the command always matches the destination
to which command is sent.

Note: The response obtained will not be the response of the command itself if there are messages waiting to be
received at the destination of command at the time SendRecvMsg() is called.

Also note that tag values of 1000 and higher are reserved for use by ParGAP.
BroadcastMsg(command) F

executes command on (all) slaves only. The slaves do not send back a return value.

Note: this use of the term broadcast is distinct from the MPI usage. In MPI, a broadcast message will be received by
every process, including the process sending the message.

IsMaster() F
returns true if at console (i.e. if MPT_Comm_rank () = 0), and false otherwise.
FlushAllMsgs () F

flushes all messages that are waiting to be received and returns the number of messages flushed. (If there are no waiting
messages 0 is returned.) It is essentially equivalent to executing RecvMsg() ; ; until there are no more messages

9»

10>

13»

14 »

15»

16 »

17 »

18 »

Section 1. Slave Listener Commands 23

waiting to be received (see 2.1.2), except that it also returns the number of messages flushed. This function is only
available if ParGAP is built using MPINU

PingSlave(dest) F
Check if slave dest is alive and listening for messages, where dest is a positive integer.
ParEval(stringCmd) F

Evaluate stringCmd on all processes, where stringCmd is a command inside double quotes so that it is passed as a
string (like BroadcastMsg() (see 2.1.6), but ParEval () (see 2.1.10) also executes on the master and also returns a
value based on result on the master.)

PrintToString(object [, ...]1)

[Note that PrintToString("abc") => "abc" (like Print (), NOT ""abc"") Hence, a useful idiom is: ParEval (
PrintToString("foo := ", foo));]

ParRead(filename) F
ParReread(filename) F

are parallel analogues of the GAP Read and Reread functions, respectively (see 9.7.1 and 9.7.9 in the Reference
Manual). ParRead (resp. ParReread) executes Read (resp. Reread) on all processes. Note that it is redundant (and
often incorrect) to call ParRead on a file that itself contains Par. .. functions. One should either place sequential
functions in a file and call ParRead or place Par. . . functions in a file and call Read from the master. As an example,
in writing this code, the author (after having started ParGAP from its bin directory via pargap.sh) found it useful
to edit masslave.g in ParGAP’s 1ib directory and then type ParReread("../lib/masslave.g") ;.

ParList(list, func) F
is the parallel analogue of GAP’s two-argument List function. But faster since it also uses the slave processes.
ProbeMsg([source]) F

probes for a pending message from source or any source if the argument source is omitted. It will block until such a
message appears, and then return true. ~C (interrupt) works to unblock it.

Note: When the argument source is omitted, ProbeMsg sets source to MPI_ANY_SOURCE (which is -1), which specifies
a probe for a message from any source.

ProbeMsgNonBlocking([source]) F

Exactly like ProbeMsg, but non-blocking. It returns immediately with true or false, depending on whether a
message was present from source. The default value of source is MPI_ANY_SOURCE.

ParReset () F

flushes all pending messages from slaves, resets the slaves, pings the slaves and returns the number of messages
flushed. This function is only available if ParGAP is built using MPINU

ParBindGlobal(gvar, value) F

Not currently implemented, due to certain technical considerations.

ParDeclareGlobalValue(string) F
ParDeclareGlobalFunction(string) F

Similar to corresponding GAP functions. Note that unlike GAP’s DeclareGlobalFunction and ParDeclareGlob-
alValue, these functions also allow you to re-declare an old function or variable. The net effect is to remove the old
value, and allow one to again call InstallGlobalFunction and InstallValue. This eliminates the necessity for
Reread () in ParGAP, and it also makes it easier to place the commands in a local file, and using a simple Read ()
instead of ParRead (). It also makes it easier to interactively re-declare and re-install functions.

19 »

24 Chapter 2. Slave Listener

ParInstallValue(gvar, value)
ParInstallValue(string, value)
ParInstallGlobalFunction(gvar, function)
ParInstallGlobalFunction(string, function)

T T

Note that the second version of ParInstallGlobalFunction (with string) is equivalent to

ParDeclareGlobalFunction(string) ;
ParInstallGlobalFunction(gvar, function);

where gvar is a GAP variable whose name is string.

Note that ParInstallValue is currently implemented only in the version for string, due to certain technical
considerations.

This completes the middle layer of ParGAP. It allows one to easily use parallelism interactively. There are now two
choices for further reading. The recommended choice for writing your own parallel applications is to read the next
chapter on the TOP-C task-oriented model of parallelism, and the follow-on chapter, containing a tutorial on the TOP-
C model. These two chapters should provide enough background to write significant parallel applications. If on the
other hand you are interested in MPI and the low-level fundamentals of message passing for parallel applications, then
you should read Chapter 7.

Basic Concepts for
the TOP-C model
(MasterSlave)

TOP-C stands for Task-Oriented Parallel C [C0096]. The “TOP-C model” is the specific master slave model
implemented here. That model has been adapted for use in ParGAP. The implementation is in masslave.g in
ParGAP’s 1ib directory. Note that the functions and variables with names TOPC. . . are intended as internal functions
only, and should not be used by the GAP programmer.

For the impatient, you may type MSexample () ; in a ParGAP session now. If you prefer further hands-on learning in
a tutorial style, you may wish to next read Chapter 5. Eventually, if you wish a deeper understanding of the TOP-C
model, you will need to read this current section and those that follow.

The initial GAP process is the master process, and all others are slave processes. It allows most of the CPU-intensive
computations to be carried out on slave processes, which typically reside on remote processors. A well-developed
TOP-C application should find that the master process is almost never busy when a slave process is idle, waiting for a
new computation to carry out. This provides a natural way of maximizing utilization and load balancing.

The TOP-C model depends on three concepts:

the task:
a function that takes an arbitrary object as its single argument, reads some or all of the global shared data,
and then returns an arbitrary object as its value. The task typically corresponds to the inner loop of a typical
application.

the shared data:
global data, shared among all processes. This data can be read as part of the computation of a task. However,
after initialization of the shared data, this data must be written (modified) only by a particular user-provided
application routine, UpdateSharedData ().

the action:
After the output of a task has been produced, an application routine must choose one of four actions to
determine how the output is used.

The task input is defined to be the argument of the task (considered as a function), and the task output is the return
value of the task.

3.1 Basic TOP-C (Master-Slave) commands

There is only one core TOP-C command, a utility function, and several constants. A TOP-C command must be
evaluated on the master and on all slaves. We shall describe the commands in detail in the following sections, but a
short list of the essentials and a small example will be helpful to set the context.

MasterSlave (SubmitTaskinput ,DoTask [, CheckTaskResult [, UpdateSharedDatal ,taskAgglomCount]1]) F

See Section 3.2 for a description of MasterSlave.

2»

26 Chapter 3. Basic Concepts for the TOP-C model (MasterSlave)

NOTASK \'%
NO_ACTION v
UPDATE_ACTION Vv
REDO_ACTION Vv
CONTINUATION_ACTION(taskContinuation) F
CONTINUATION_ACTION() is described in Section 3.6.

IsUpToDate () F
ParInstallTOPCGlobalFunction(string, function) F
ParInstallTOPCGlobalFunction(gvar, function) F

A short example shows one possible implementation of ParList ().

gap> ParInstallTOPCGlobalFunction("MyParListWithAgglom",
> function(list, fnc)
> local result, i;

> result := []; i := 0;

> MasterSlave(function() if i >= Length(list) then return NOTASK;
> else i := i+1; return i; fi; end,

> fnc,

> function(input,output) result[input] := output;

> return NO_ACTION; end,

> Error

>);

> return result;

> end);

(Of course rather than type such code in a ParGAP session it’s generally more convenient to have it in a file and Read
it in.)

3.2 Other TOP-C Commands

A master-slave computation is invoked when a GAP program issues the command MasterSlave (). As given earlier,
the typical form is:

MasterSlave (SubmitTaskinput, DoTask [, CheckTaskResult[, UpdateSharedDatal, taskAgglom]1])

where the first four arguments of MasterSlave() are also functions, but they must be defined by the application
writer. Their calling syntax is defined by the following GAP code, which also provides a simplified description of
how a sequential (non-parallel) MasterSlave () would invoke these functions if there were only a single process. (A
more sophisticated version of this routine is provided in ParGAP to allow one to debug within a single process first.)
The use of the fifth argument, taskAgglom, is deferred until section 5.7.

In this section, we define MasterSlave() and describe the use of its four arguments in a purely sequential
environment. The issues of parallelism and passing of messages between processes is covered in the next section. The
call to MasterSlave () in ParGAP, above, will have the same result as if MasterSlave () were defined equivalently
to SeqMasterSlave() below, and then run in a standard, sequential GAP (a single process). The next section
describes the multi-process implementation of MasterSlave() in ParGAP, in which taskInput is computed on

Section 2. Other TOP-C Commands 27

the master process and sent as a message to a slave process, while taskOutput is computed on a slave process and
sent as a message to the master process.

SegMasterSlave :=
function(SubmitTaskInput, DoTask, CheckTaskResult, UpdateSharedData)
local taskInput, taskOutput, action;
while true do
taskInput := SubmitTaskInput();
if taskInput = NOTASK then break; fi;
repeat
taskOutput := DoTask(taskInput);
action := CheckTaskResult(taskOutput, taskInput);
until action <> REDO_ACTION;
if action = UPDATE_ACTION then
Modify the shared data (global data structures) here
Called on all processes, master and slaves
UpdateSharedData(taskOutput, taskInput);
fi;
od;
end;

One can also follow the life of a single task in a multi-processing environment through the diagram below.

MASTER | SLAVE
|
o + |
| GenerateTaskInput() | |
o + |
\input |
N\ o __
|
| v
| o +
I | DoTask(input) |
| o +
[output/ =
_________ /o
| | |
v |
e + | |
| CheckTaskResult (input, output) |___________
e + (if action == REDO)

| |
| (if action == UPDATE)

TOP-C Programmers’ Model
(Life Cycle of a Task)

28 Chapter 3. Basic Concepts for the TOP-C model (MasterSlave)

Although not explicit in the code, the application writer should add comments to define the shared data. The shared
data is defined as a global data structure that is treated as “read-write” by UpdateSharedData (), while being treated
as “read-only” by SubmitTaskInput (), DoTask (), and CheckTaskResult (). Note also that an application writer may
use different names for the four functions SubmitTaskinput (), etc. It is only a convention within this manual to give
those functions the names, above. Similarly, taskInput, taskOutput and action are the conventional names used in this
manual, and a given application may use different names.

In a correct ParGAP application, the shared data should be initialized to the same value on all processes before the
application calls MasterSlave (). MasterSlave () is then called on all processes. After that, the shared data can be
modified only by a call to UpdateSharedData () , and MasterSlave () arranges for each call to UpdateSharedData ()
to be executed on all processes. Further, UpdateSharedData() has access only to fasklnput, taskOutput, and the
previous value of the shared data. Thus, MasterSlave () maintains the same shared data uniformly on all processes.

3.3 Simple Usage of MasterSlave()

This section is concerned with formal definitions for the routines associated with ParGAP. It is important to keep in
mind the pseudo-code of Chapter 3. Since MasterSlave () uses all the ParGAP processes, the user must invoke it on
all processes. This is typically done through some function provided by the slave listener layer, such as ParEval ()
(see 2.1.10). It may be instructive for the reader to run ParGAP and type MSexample () ; now, or else to look at some
examples of ParGAP applications in the section 5. This demonstrates the use of MasterSlave () in a typical session.

The four functions written by the application writer are: SubmitTasklnput (), DoTask (), CheckTaskResult(), and
UpdateSharedData () . DoTask () is executed on a slave. SubmitTaskInput () and CheckTaskResult () are executed on
the master, where a taskInput is generated and a corresponding faskOutput is received. Finally, UpdateSharedData ()
is executed on all processes. ParGAP arranges to automatically pass faskInput and taskOutput between the master
and a slave.

Since the single master process is responsible for generating all taskInputs and receiving all taskOutputs, it is critical
that computation on the master process should not become a bottleneck for a well-designed ParGAP application.
Accordingly, the application writer should arrange for SubmitTaskInput () and CheckTaskResult () to execute quickly,
even if this means additional computation by DoTask () or UpdateSharedData () .

As seen in the examples, SubmitTaskInput () may use global variables on the master to “remember” the last taskInput
or other state information. Note that such global variables cannot be part of the shared data, since they are modified
outside of UpdateSharedData ().

3.4 Efficient Parallelism in MasterSlave() using CheckTaskResult()

It is instructive to review the logic for the lifetime of a task, as described by the pseudo-code for SeqMasterSlave in
Section 3.2. Initially, MasterSlave () calls SubmitTaskinput () on the master, which returns an application-defined
GAP object, raskInput. MasterSlave () then copies taskInput to an arbitrary slave process, and MasterSlave ()
then calls DoTask(tasklnput) on the slave. This returns an application-defined GAP object, taskOutput, which
MasterSlave () copies to the master process. On the master, MasterSlave () then calls CheckTaskResult(taskin-
put, taskOutput), which returns an action. (Recall that taskinput, taskOutput and CheckTaskResult () are defined
by the application writer, and so an application program may give them different names.)

There are four possible actions (ParGAP constants): NO_ACTION, UPDATE_ACTION, REDO_ACTION, CONTINUA-
TION_ACTION(taskContinuation). A standard language idiom in ParGAP is to define CheckTaskResult() as the
ParGAP function DefaultCheckTaskResult (), whose code is as follows:

Section 5. Modifying Task Output or Input (a dirty trick) 29

DefaultCheckTaskResult := function(taskOutput, taskInput)
if taskOutput = false then return NO_ACTION;
elif IsUpToDate() then return UPDATE_ACTION;
else return REDO_ACTION;
fi;
end;

In the simplest case, CheckTaskResult () returns NO_ACTION, in which case there is no further computation related
to the original tasklnput. CheckTaskResult() may record global information on the master process, based on the
taskOutput, but the shared data, and hence the state of the slave processes, will not be modified.

In the second most common case, CheckTaskResult () returns UPDATE_ACTION. This action causes MasterSlave ()
to call UpdateSharedData(taskOutput, taskInput) on all processes (master and slaves). This is the only way in
which the shared data can be modified by a correct ParGAP program.

In the third most common case, CheckTaskResult () returns REDO_ACTION. When a REDO_ACTION action is generated,
the value of raskinput is re-sent to the same slave that executed DoTask(taskinput) for the current task. An
application will typically invoke REDO_ACTION if the shared data has changed, and this changed shared data will
produce a new taskOutput. As before, DoTask () then returns a new value of taskOutput. Then, taskInput and the new
taskOutput are again passed to CheckTaskResult ().

Note that MasterSlave () guarantees that REDO_ACTION causes the task to be re-sent to the same slave process. This
allows the application to cache in a global variable some information computed by the first invocation of DoTask (). A
second invocation of DoTask () caused by the REDO_ACTION allows the task to test if the taskinput is the same as the
last invocation. In that case, the application-defined DoTask () routine can recognize that this is a REDO_ACTION, and
it can take advantage of the cached global variable to avoid re-computing certain quantities that would not be changed
by the altered shared data. In order to make this strategy possible, MasterSlave() also guarantees that in the case
of REDO_ACTION, the slave process will not have seen any intervening calls to DoTask () with values of taskInput
other than the current value.

In typical usage, the application-defined routine, CheckTaskResult (), will first call IsUpToDate (). IsUpToDate ()
tests if the shared data has been modified since the current fasklnput corresponding to CheckTaskResult() was
originally generated by SubmitTaskinput(). The times of the relevant events are recorded as when seen on the
master process. It is an error to call IsUpToDate () outside of a call to CheckTaskResult() by MasterSlave().
IsUpToDate () returns a boolean value, true or false.

The last possible action, CONTINUATION_ACTION(taskContinuation), is provided for unusual cases. As with advice
about the use of “goto”, it is recommended to avoid CONTINUATION_ACTION() where possible.

A favorite aphorism of this author is, “The source code is the ultimate documentation”. With this in mind, the reader
may also wish to read 1ib/masslave.g, for which readability of the code was one of the design criteria.

3.5 Modifying Task Output or Input (a dirty trick)

At this point, it should be noted that it explicitly is allowed to modify the input or output of a task from within
CheckTaskResult (). This is not recommended in general, but there may be times when CheckTaskResult () returns an
UPDATE_ACTION and must also be used to pass additional information to UpdateSharedData (). In order to modify a
previous input or output, it is important that the application has chosen a representation of the input or output as a list
or record, which can be modified in place, such that the code excerpt succeeds without error.

1»

1»

2>

3>

30 Chapter 3. Basic Concepts for the TOP-C model (MasterSlave)

o0ldOutput := taskOutput;
Modify taskOutput here
if (IsIdenticalObj(oldOutput, taskOutput)) = false then
Error("MasterSlave() will see only oldOutput, not current taskOutput");
fi;
return UPDATE_ACTION;

In principle, a dirty trick like this would also work in the case of returning a REDO_ACTION. However, this is not
recommended. For that functionality, the code will be clearer if an explicit CONTINUATION_ACTION(modifiedTask-
Output) is returned. See Section 3.6 for further discussion on the use of CONTINUATION_ACTIONQ).

3.6 The GOTO statement of the TOP-C model
CONTINUATION_ACTION(taskContinuation)

The CONTINUATION_ACTIONQ), like the goto statement, is not recommended for ordinary programs, but it may be
useful in unusual circumstances. This is a parametrized action. When the application routine CheckTaskResult()
returns this action, MasterSlave () guarantees to invoke DoTask () on the same slave process as for the original task.
There will have been no intervening calls to DoTask () on that slave, although there may have been an intervening call
to UpdateSharedData () on that slave.

This action allows arbitrary, repeated communication between the master and a single slave process. The slave process
executes DoTask(taskInput) and communicates with the master by returning a faskOutput. The master process
executes CheckTaskResult (taskinput, taskOutput) and returns a taskContinuation. The original slave process then
receives another call to DoTask (taskInput), this time with faskInput bound to taskContinuation.

3.7 Being nice to other users (Nice, Alarm and LimitRss)

When you are running a long job on a network of workstations, you will often be sharing it with others. Making your
parallel job as unintrusive as possible will leave you with a warmer welcome the next time that you want to use that
network of workstations. Accordingly, three useful functions are provided.

UNIX Nice(priority) F

This is similar to the nice command of many UNIX shells. UNIX priorities are in a range from —20 to 20 with —20
being the highest. Users typically start at priority 0. You can give yourself a lower priority by specifying a priority of
5, for example. Usually, priorities 19 and 20 are absolute priorities. Any process with a priority higher than 19 that
wishes to run will always have precedence. Other priorities are relative priorities. Your process will still receive some
CPU time even if other processes with higher priorities are running. You can set your priority lower, but you cannot
raise it back to its original value after that. The return value is the previous priority of your process.

UNIX_Alarm(seconds) F

This causes the process to kill itself after that many seconds. This is a useful safety measure, since it is unfortunately
too easy for a runaway slave process to continue if the master process is killed without the normal quit;. You
might consider adding something like UNIX_Alarm(25000); (about 6 hours) to your .gaprc file. Executing
UNIX_Alarm(O); cancels any previous alarm. The return value is the number of seconds remaining under the
previous setting of the alarm.

UNIX_LimitRss(size) [= setrlimit(RLIMIT_RSS, ...) | F

Many dialects of UNIX (and their shells) offer a 1imit or ulimit command to limit the resources available to the
shell. This command limits the size of the RSS (resident set size), or the amount of physical RAM used by your
process. The size limit is in bytes. Unfortunately, some UNIX dialects may not allow or even silently ignore this
request to limit the RSS. A UNIX command such as top can show you if your process RSS is staying below your
requested limit.

Section 8. Converting legacy sequential code to the TOP-C model 31

3.8 Converting legacy sequential code to the TOP-C model

The (tutorial contains a section 5.8, about raw version of MasterSlave() that is useful for converting legacy

sequential code to the TOP-C model. However, that model is not recommended for writing new code, for stylistic
reasons.

Tutorial

Section 4.1 covers trivial parallelism (the simplest and most common form of parallel application). This is followed
in Section 4.2 by a description of how to use ParGAP interactively, and Section 4.3 illustrates these principles with
a short implementation of parallel streaming. Streaming refers to simultaneously running different algorithms for the
same problem in different “streams” or processes, and accepting the first answer that returns. The remaining processes
for the other algorithms are then terminated. ParGAP allows those processes to reside on a single CPU or on different
CPUs. Hence, in the case of streaming, ParGAP is potentially useful even if one has only a single computer available,
since multiple streams can still reside locally in separate processes.

For more sophisticated (non-trivial) parallel applications, the TOP-C model of parallelism is recommended, and it is
described in Section 4.4.

4.1 Trivial Parallelism

In parallel computation, perhaps 80% of the applications fall under the heading of “trivial parallelism”. These are
situations in which one must compute many unrelated cases. For example, perhaps 200 different cases must be
computed and results returned for each case and each case has no interaction with any other one. In the absence
of shared data, it would be common to start 20 GAP jobs on 20 distinct workstations in a student computer laboratory.
If there are 200 cases, then one writes 20 different “batch jobs”, each batch job handling 10 distinct cases.

ParGAP provides strong support for this common situation. Conceptually, one is always talking to ParGAP on a
master process (the local workstation), and the master process talks to each of various slave processes. In its simplest
form, one merely generates a list of inputs for the cases, and writes a suitable function to provide the case information.
Effectively, trivial parallelism can be expressed by a parallel version of GAP’s List () function (see 21.20.19 in the
Reference Manual), which is called ParList () (see 2.1.13) in ParGAP.

The following is an example of a ParGAP session that uses the ParList () function. Observe the use of Broad-
castMsg() (see 2.1.6) to ensure that the function AnalyzePrimitivePermGroupsOfOrder () is known to the
slaves.

gap> AnalyzePrimitivePermGroupsOfOrder := function(ord)

> #returns a list of data records of all primitive
#permutation groups of order ord that are represented
#as permutation groups in GAP’s primitive group database

local PrimitiveGroupsOfOrder, AnalyzePrimitivePermGroup;

PrimitiveGroupsOfOrder :=
ord -> List([1..NrPrimitiveGroups(ord)],
i -> PrimitiveGroup(ord,i));

AnalyzePrimitivePermGroup :=
grp -> rec(order := Size(grp),
degree := NrMovedPoints(grp),
baseSize := Size(Base0fGroup(grp)));

vV V VV VYV VYV VVVYVYVYV

Section 2. Using ParGAP interactively 33

return List(Filtered(PrimitiveGroups0fOrder (ord),
IsPermGroup),
AnalyzePrimitivePermGroup) ;

V V V V

end;;

gap> #Define AnalyzePrimitivePermGroupsOfOrder on slaves
gap> BroadcastMsg(

> PrintToString("AnalyzePrimitivePermGroups0fOrder := ",
> AnalyzePrimitivePermGroupsOfOrder));
gap> ParList([2..256], AnalyzePrimitivePermGroupsOfOrder);
[[rec(order := 2, degree := 2, baseSize := 1)],

[rec(order := 3, degree := 3, baseSize := 1),

<...many lines of output omitted...>

As one expects, the answer is computed in parallel in a time that decreases linearly with the number of processors.
Hence a Beowulf cluster of 16 processors (1 ParGAP master and 15 ParGAP slaves) will return this information
approximately 15 times as fast as a single processor, greatly facilitating interactive exploration of the properties of
various groups.

If each single case can be executed quickly, then the execution time for ParList () can be dominated by the network
overhead imposed by message passing between the master and slaves. In this case, an optional third parameter to
ParList () specifies the number of cases to be submitted to a slave in a single message (modulo how many cases are
left, of course). As an example, suppose we are interested in finding those of the first 100,000 integers that have many
distinct prime factors, but to reduce the network overhead we wish to batch 1000 cases at a time to the slaves. Then
one is able to execute the following.

gap> ParList([1..100000],
> i -> Length(PrimePowersInt(i))/2, 1000);

4.2 Using ParGAP interactively

Having seen an example where ParGAP can be useful, one next needs to know what is involved in setting up and
using ParGAP. In the following, recall that ParGAP employs a master-slave architecture, with the local process being
the “master” process, and all others being “slaves”.

ParGAP is installed in the same way as other GAP packages. After extracting the ParGAP files, one invokes
configure and make. (See Section 1.3 for the details.) Instead of invoking gap, one then invokes the supplied shell
script, pargap . sh, (possibly modified and/or renamed; again see Section 1.4 for the details). Observe that unlike most
other GAP packages, one should not call LoadPackage () function from within a GAP session to start ParGAP. As
usual, master and slave processes read a . gaprc file in the home directory, if present.

The method by which slave processes are started depends on the MPI implementation used (see Section 1.4). When
using a system MPI library, the system MPI launcher should be used to start ParGAP, and this also starts up the
slaves. One commonly-supported MPI launcher syntax is

mpiexec -n num pargap.sh

where num is the total number of copies of pargap.sh that you wish to run. If, instead, ParGAP is built to use
MPINU, the subset MPI implementation included with ParGAP, then you should invoke pargap.sh directly, and
ParGAP will start up the slave processes itself. For details of these, it looks for a file named procgroup file in the
current directory, but can be directed to use a different file through the -p4pg switch. Hence, if one always uses
ParGAP with the slave processes specified in myprocgroup.big, one may wish to set up an alias or else a symbolic
link to a script containing the equivalent of:

pargap.sh -pdpg PATH/myprocgroup.big

Observe also that heterogeneous computing is supported, in that each slave machine may run a different operating
system on different hardware.

34 Chapter 4. Tutorial

Within ParGAP, the standard message-passing commands (send, receive, probe, etc.) are available. The slaves are
numbered consecutively starting at 1. If no slave parameter is supplied for SendMsg() or SendRecvMsg(), then the
default slave is 1. Most other commands take a default slave parameter, MPI_ANY_SOURCE (meaning “ANY_SLAVE”).
PingSlave () sends a “null message”, and waits for an acknowledgement that the slave is alive.

The command SendMsg(string, i); sends the (string) message string to slave i. Slave i then evaluates string
as a GAP command, and returns an answer. If a command has no answer, (such as "x:=3;"), then the string
"no_return_val" is returned. If multiple commands are sent, such as "x:=3; y:=4; x+y;", then only the last return
value is returned. Note that the final semicolon, normally required by GAP, is optional in a command string for a
message.

Most of the other commands are clear from context. Every SendMsg() to a slave must be balanced by a RecvMsg().
The exception to this rule is that, when using MPINU, the commands FlushAl11Msgs() and ParReset () are
available and may be used to flush any pending messages from a slave. A SendRecvMsg(string, i) command is
equivalent to the consecutive commands SendMsg(string, i) and RecvMsg(i). The command BroadcastMsg()
sends its string argument to each slave, and there is no reply message. ParEval () is like BroadcastMsg(), but
it also evaluates on the master process. If one is unsure whether there is a pending message, one can invoke
ProbeMsgNonBlocking() or ProbeMsg(); if no slave parameter is provided, the default is MPI_ANY_SOURCE. The
command ParRead () is a parallel version of GAP’s Read () command; it is useful for ensuring that the slaves and
master share a similar environment. Other examples of commands that are analogous to GAP’s built-in commands
include: ParReread, ParEval, ParInstallGlobalFunction and ParInstallGlobalFunction. See Section 2.1
for more complete descriptions of the above commands.

An illustration of the usage of the commands mentioned above with a sample ParGAP session, for which a
procgroup file has defined two slaves is the first example given in Section 1.5. It’s recommended that you review that
example at this point.

4.3 Streaming

Next, we demonstrate a simple implementation of “streaming” as an example of how easy it is to use the ParGAP
tools to provide new functionality. To the best of this author’s knowledge, the term “streaming” originated with Charles
Leedham-Green at the conference on which this proceedings is based, where he made a general request for streaming
functionality to be implemented in some software system.

The idea of streaming is that one may have two algorithms for solving a problem. One would like to to solve the
problem simultaneously on two processors, each using a distinct algorithm. Whichever processor finds the solution
first should report back to the master process. The master process should then interrupt the other slave, so as to make
it available for further computation. (NB Resetting of slaves is only possible with the MPINU library.) This is useful
when one has a heuristic available that may finish early with the correct answer, or may continue for a very long time.
The heuristic can then be “streamed” alongside the standard algorithm, in full confidence that the standard algorithm
will provide a reasonable upper bound on the time to compute an answer.

One way to provide “streaming” functionality is by the implementation of a function we describe below that is inspired
by GAP’s First () function (see 21.20.22 in the GAP Reference Manual). The function First () takes a list and
boolean function as arguments, and returns the first element of the list for which the boolean function returns true.
In contrast, we define a corresponding ParGAP function, ParFirstResult (), which takes a list and a (general)
function as arguments. Messages are sent to the slaves causing the ith slave to evaluate the function on the ith list
element. The value returned is the value obtained from whichever slave finishes first. Note that in consistency with the
goal of streaming, the function signals an error if asked to evaluate a list with more entries than the number of slaves.

Section 3. Streaming 35

gap> ParFirstResult := function(list, fnc)

> local i, result;

> if Length(list) > TOPCnumSlaves then

> Error("too few slaves");

> fi;

> for i in [1..Length(list)] do

> SendMsg(PrintToString(

> "fnc :=", fnc, "; fnc(", list[i], ");"),
> i)

> od;

> result := RecvMsg(); # default is MPI_ANY_SOURCE

> ParReset(); # Interrupt all other slaves - only if using MPINU
> return result;

> end;;

We now demonstrate the use of ParFirstResult () in “streaming”. For our example we need the FactInt package
by Stefan Kohl. To get this package if you don’t have it, visit

http://www.cip.mathematik.uni-stuttgart.de/ kohlsn/factint.html
or the equivalent at one of GAP’s mirror sites, and follow the easy installation instructions.

If one hasn’t already included a LoadPackage ("factint") ; statement in one’s .gaprc file then it is necessary to
do:

gap> ParEval("LoadPackage(\"factint\")");

Loading FactInt 1.5.2 (Routines for Integer Factorization)
by Stefan Kohl, kohl@mathematik.uni-stuttgart.de

true

so that each slave (not just the master) is aware of the FactInt functions.

Above we defined ParFirstResult () on the master process. We will assume that we have two slaves.

gap> StreamingFactInt := function(i, x)

> local alg;

> alg :=

> [x -> ["MPQS ALGORITHM", FactorsMPQS(Factorial(x)+1) 1],
> x -> ["CFRAC ALGORITHM", FactorsCFRAC(Factorial(x)+1)]
> 13

> return alg[i] (x);

> end;;

Both StreamingFactInt(l, x); and StreamingFactInt(2, x); factor an integer, but one uses the multiple
polynomial quadratic sieve algorithm (MPQS), and the other uses the continued fraction algorithm (CFRAC); the
functions FactorsMPQS and FactorsCFRAC that perform these algorithms are defined by the Factint package. We
demonstrate the “streaming” of these algorithms in determining the factorization of 35! + 1.

36 Chapter 4. Tutorial

gap> # Now, define StreamingFactInt() on each of the slaves.

gap> BroadcastMsg(PrintToString("StreamingFactInt :=",

> StreamingFactInt));

gap> ParFirstResult([1,2], i->StreamingFactInt(i, 35));
. resetting ...

["MPQS ALGORITHM", [137, 379, 17839, 340825649, 32731815563800396289317]]

The ParReset () function to reset the other slaves is only available if ParGAP is built to use MPINU. If you are
using a system MPI library then the other slaves will continue with their algorithm, and you will need to wait for them
to complete and return a result before reusing them.

4.4 TOP-C model for non-trivial parallelism

There are many examples where trivial parallelism does not suffice. Typically, this happens either when there are
global variables that must be “read” by each slave process, and possibly updated, or else when the input for the next
slave process depends on the result that arrived from the last slave process. Here we provide only the basics of the
parallel model. The parallel model was described in more detail in [Co097], and a still more detailed description is
contained in Chapter 3.

For non-trivial parallelism, ParGAP uses the TOP-C model [Co096]. ParGAP typically invokes the TOP-C model
via a command such as

MasterSlave(GenerateTaskinput, DoTask, CheckTaskResult,
UpdateSharedData) ;

The four arguments, GenerateTaskInput, DoTask, CheckTaskResult, and UpdateSharedData are “callback” functions
written by the application programmer, and the names of those callback functions are arbitrary. (The manual for
ParGAP/MPI, the earlier incarnation of ParGAP used slightly different names for its examples, but the purpose of
the arguments of MasterSlave () has not changed — only the naming convention has.)

The only ParGAP command above is MasterSlave(). A task is an arbitrary function (here called DoTask())
executed on a slave process, that takes input from the master process and returns its output to the master process.
The diagram in Section 3.2 gives some idea of the flow of control as a task is processed. The diagram there is meant
to represent the three main abstractions of the TOP-C model: (1) the task, (2) the shared data, and (3) the action. The
shared data consists of any globally shared data (which should be readable by all processes). The task is a procedure
executed on a slave process that takes a task input, and the shared data, and produces a task output, which depends
only on the task input and shared data. Finally, the task input and task output are sent to the master process, which
must then decide upon an action.

Typical actions are NO_ACTION (and the master process might save the task output in a private list of results),
UPDATE_SHARED_DATA (send a message to all slaves to update the local copy of the globally shared data), and REDO (re-
do the computation in case the shared data was changed by another slave process). (Earlier incarnations of ParGAP
used UPDATE. Now the alternative UPDATE_SHARED_DATA is offered and we standardize on this here.)

An example invocation of MasterSlave () is shown below, where we pass the four application functions as direct
arguments of MasterSlave(). The routine below implements a simplified version of the ParList () function
described in Section 4.1.

ParInstallTOPCGlobalFunction("MyParList",
function(list, fnc)

local result, iter;

result := [];

Each invocation of GAP’s iterator

returns next element of list.

iter := Iterator(list);

MasterSlave(

Section 4. TOP-C model for non-trivial parallelism 37

GenerateTaskInput():
function() if IsDonelterator(iter) then return NOTASK;
else return NextIterator(iter); fi; end,
DoTask():
fnc,
CheckTaskResult():
function(input,output) result[input] := output;
return NO_ACTION; end,

UpdateSharedData():
Error # We never see action: UPDATE_SHARED_DATA
);

return result;

end);

The function ParInstallTOPCGlobalFunction() installs MyParList on all ParGAP processes. It also defines
the version of MyParList () on the master differently from on a slave, so that a call, MyParList([1..100], x-
>x~2) ;, on the master automatically causes MyParList ([1..100], x->x"2); to be invoked on the slave with the
same arguments. This is required for the TOP-C model. Note that the distinct function, ParInstallGlobalFunc-
tion(), exists for the equivalent of BroadcastMsg("InstallGlobalFunction(MyParList, function ...
end) ") ;. Both functions should be called only from the master (possibly from inside a Read () command).

The shared data consists only of the variable fnc, which is read by all processes, but in this case is never “updated”.
Note that one need not explicitly declare variables that are in the shared data. A TOP-C shared data variable is defined
as a variable whose value is read by more than one process, and which is modified only through a call to the application
routine UpdateSharedData () . If we would like to see the messages, as they are passed back and forth between master
and slave, we can optionally set the variable ParTrace (see 6.1.1). We are then ready to execute our new parallel
function.

gap> ParTrace := true;;
gap> MyParList([2..256], AnalyzePrimitivePermGroupsOfOrder);

The example above in fact requires only trivial parallelism. Hence the CheckTaskResult() parameter to Master-
Slave () is especially simple. Since the action is never REDO, we achieve the maximum concurrency among slave
processes, resulting in a speedup that is linear in the number of slaves.

In general, the parallel efficiency of an application, with its concommitant decisions about concurrency of slave tasks
are typically determined by the actions chosen by CheckTaskResult(). The sample below is a standard ParGAP
“idiom” that allows one to easily set up reasonable concurrency in a parallel application.

CheckTaskResult := function(taskInput, taskOutput)
if taskOutput = fail then return NO_ACTION;
elif not IsUpToDate() then return REDO_ACTION;
else return UPDATE_ACTION;
fi;

end;

The function IsUpToDate() is a boolean function provided by ParGAP that returns true if there has been no
UPDATE_SHARED_DATA action since the time that the “corresponding” task input was generated by a call to the user-
provided function GenerateTaskinput (). Otherwise, IsUpToDate () returns false. The “corresponding” task input
is the task input associated with that task output which was most recently seen on the master process. In the context
of the user-provided function CheckTaskResult (), it is the first argument to that function.

MasterSlave Tutorial

This chapter assumes the background knowledge in section 3.1. ParGAP must be invoked through a script like
pargap. sh generated in ParGAP’s bin during installation. If using a system MPI library, this script must be invoked
using an MPI launcher. Alternatively MPINUI is being used instead, then the script can be called directly, and there
must be a procgroup file in the current directory when ParGAP is called, or the location of such a file provided
on the command line. See Section 1.4 for general information, and then Sections 1.7 and 1.8 for specific details of
running remote slaves with a system MPI library and MPINU respectively. Many of the examples of this section can
be found in ParGAP’s examples directory.

5.1 A simple example

A master-slave computation is invoked when a ParGAP program issues the command MasterSlave(). This
command is an example of what is called “collective communication” in MPI (although the command is not part
of MPI). It is also sometimes called SPMD (Single Program, Multiple Data), since all processes see the same code,
although different processes may execute different parts of the code. The MasterSlave () command must be invoked
on all processes before execution can begin. The following trivial example does this. (Note that the final \ on a line
that is still inside a string allows continuation of a string to the next line.) We illustrate these principles first in their
simplest form, making all variables global variables. Later, we introduce additional ParGAP utilities that allow one
to write in better style.

#Shared Data: none

#TaskInput: counter
#TaskOutput: counter”2 (square of counter)
#Task: compute counter”2 from counter
ParEval("result := []");
ParEval("counter := 0; \
SubmitTaskInput := function() \
counter := counter + 1; \
if counter <= 10 then return counter; else return NOTASK; fi; \
end;");

ParEval("DoTask := x->x"2");
ParEval("CheckTaskResultVersl := function(input, output) \

result[input] := [input, output]; \
return NO_ACTION; \
end;");

ParEval("MasterSlave(SubmitTaskInput, DoTask, CheckTaskResultVersl)");
Print(result);

By default, ParTrace = true (see 6.1.1), causing the execution to display each input, x, as it is passed from the
master to a slave, and each output, x~2, as it is passed from the slave back to the master. This behavior can be turned
off by setting: ParTrace := false; The fourth argument of MasterSlave (), Print, is a dummy argument that is
never invoked in this example.

Note that the result list is filled in only on the local process, and was never defined or modified on the slave processes.
To remedy this situation, we introduce the concept of shared data, a globally shared, application-defined data

Section 2. ParSquare 39

structure. A central principle of the TOP-C model in ParGAP is that any routine may “read” the shared data, but
it may be modified only by the application-defined routine, UpdateSharedData () . Hence, if we wanted the result list
to be recorded on all processes (perhaps as a lookup table), we would now write:

ParBroadcast (PrintToString("result = ", result));

5.2 ParSquare

Until now, we have been using global variables. It is better style to use local variables, where possible. We rewrite the
above routine in the improved style:

#Shared Data: result [result is shared among all processes]

#TaskInput: counter

#TaskOutput: counter”2 (square of counter)

#Task: compute counter”2 from counter

#UpdateSharedData: record [counter, counter”2] at index, counter, of result
MSSquare := function(range) # expects as input a range, like [1..10]

local counter, result,

SubmitTaskInput, DoTask, CheckTaskResultVers2, UpdateSharedData;
counter := range[1]; # Reset counter for use in SubmitTaskInput ()
result := [];

SubmitTaskInput := function()
counter := counter + 1;
if counter <= range[Length(range)] then return counter;
else return NOTASK;
fi;
end;
DoTask := x->x72;
CheckTaskResultVers2 := function(input, output)
return UPDATE_ACTION;

end;

UpdateSharedData := function(input, output)
result[input] := [input, output];

end;

MasterSlave(SubmitTaskInput, DoTask, CheckTaskResultVers2, UpdateSharedData);
return result;
end;

#ParSquare() is the main calling function; It must define MSSquare on
all slaves before calling it in parallel.

ParSquare := function(range) # expects as input a range, like [1..10]
ParEval(PrintToString("MSSquare := ", MSSquare));
return ParEval(PrintToString("MSSquare(", range, ")"));

end;

1»

2>

40 Chapter 5. MasterSlave Tutorial

5.3 ParinstallTOPCGlobalFunction() and Taskinputlterator() (ParSquare re-
visited)

This example can be written more compactly by using some of the convenience functions provided by ParGAP.
Specifically, we would rewrite this as:

ParInstallTOPCGlobalFunction("ParSquare", function(range)
local result;

result := [];

MasterSlave(TaskInputIterator(range),
X->x"2,
function(input, output) return UPDATE_ACTION; end,
function(input, output) result[input] := [input, output]; end

)3
return result;
end);

The usage above demonstrates the use of two utilities.
ParInstallTOPCGlobalFunction(string, function) F

This defines gvar as a function on the master and on the slaves. On each slave, the definition of gvar is given by
function. However, on the master, gvar is defined as a function that first calls gvar on all slaves with the arguments
originally passed to gvar, and then on the master, function is called with the original arguments. This is exactly the
behavior that is wanted in order to compress an invocation of MasterSlave () so that the right things happen on both
the master and on the slaves. This is exactly what we saw in the previous definition of ParSquare, above.

TaskInputIterator(collection) F

This function provides the functionality of a common case of SubmitTaskInput (), by turning it into a GAP iterator
(see 30.8 in the Reference Manual). Its meaning is best understood from its definition:

TaskInputIterator := function(collection)
local iter;
iter := Iterator(collection);

return function()
if IsDonelterator(iter) then return NOTASK;
else return NextIterator(iter);
fi;
end;
end;

5.4 ParMultMat

Let us now write a matrix-matrix multiplication routine in this style. Since matrix multiplication for dimension n
requires 7> operations, we can afford to spend »? time doing any sequential work. (A finer analysis would also
consider the number of slaves, k, resulting in up to k * n” time to send all messages, depending on the MPI broadcast
algorithm.) So, a sequential matrix multiplication program might be written as follows. (The style emphasizes clarity
over efficiency.)

SeqMultMat := function(ml, m2) # sequential code
local i, j, k, n, m2t, sum, result;
n := Length(ml);
result := [];
m2t := TransposedMat (m2);

Section 4. ParMultMat 41

for i in [1..n] do

result[i] := [];
for j in [1..n] do
sum := 0;

for k in [1..n] do
sum := sum + ml1[i] [k]*m2t[j] [k];
od;
result[i] [j] := sum;
od;
od;
return result;
end;

We choose to define the task as the computation of a single row of the result matrix. This corresponds to the body of
the outermost loop.

#Shared Data: ml, m2t, result (three matrices)

#TaskInput: i (row index of result matrix)
#TaskOutput: result[i] (row of result matrix)
#Task: Compute result[i] from i, ml, and m2

#UpdateSharedData: Given result[i] and i, modify result on all processes.

ParInstallTOPCGlobalFunction("ParMultMat", function(ml, m2)
local i, n, m2t, result, DoTask, CheckTaskResult, UpdateSharedData;
n := Length(ml);
result := [];
m2t := TransposedMat (m2);

DoTask := function(i) # i is task input
local j, k, sum;
result[i] := [];
for j in [1..n] do
sum := 0;
for k in [1..n] do
sum := sum + ml[i] [k]*m2t[j] [k];

od;
result[i] [j] := sum;
od;
return result[i]; # return task output, row_i
end;
CheckTaskResult executes only on the master
CheckTaskResult := function(i, row_i) # task output is row_i
return UPDATE_ACTION; # Pass on output and input to UpdateSharedData
end;
UpdateSharedData executes on the master and on all slaves
UpdateSharedData := function(i, row_i) # task output is row_i
result[i] := row_i;
end;

We’re done defining the task. Let’s do it now.

MasterSlave(TaskInputIterator([1..n]), DoTask, CheckTaskResult,
UpdateSharedData) ;

result is defined on all processes; return local copy of result

42 Chapter 5. MasterSlave Tutorial

return result;
end);

5.5 DefaultCheckTaskResult (as illustrated by ParSemiEchelonMatrix)

Now that the basic principles of the TOP-C model are clear, we investigate an example that requires most of the
basic features of ParGAP, including the use of IsUpToDate() and REDO_ACTION. Recall the standard idiom for
CheckTaskResult (). These issues were discussed in the section 3.4.

DefaultCheckTaskResult := function(taskOutput, taskInput)
if taskOutput = false then return NO_ACTION;
elif not IsUpToDate() then return REDO_ACTION;
else return UPDATE_ACTION;
fi;
end;

The next example is a parallelization of the function SemiEchelonMat () (a form of Gaussian elimination) in the GAP
library, 1ib/matrix.gi. Unlike the previous examples, parallelizing Gaussian elimination efficiently is a non-trivial
undertaking. This is because a naive parallelization has poor load balancing. A slave executing a task in the middle
will have to sift a row vector through many previous row vectors, while a slave executing a task toward the beginning
or end will have little work to do. We will begin with a naive parallelization based on the sequential code, and then
migrate the code in a natural manner toward a more efficient form, by analyzing the inefficiencies and applying the
TOP-C model.

The reader may wish to stop and read the original code in 1ib/matrix.gi first. The logic of SemiEchelonMat ()
is to examine each row vector of an input matrix, in order, reduce it by a list of basis vectors stored in vectors, and
then add the row to vectors. Upon completion, the number of leading zeroes of the row vectors in vectors may not
increase monotonically, but each element of vectors will have a unique number of leading zeroes. Some rows of the
input matrix may reduce to the zero matrix, in which case they are not added to vectors.

For the reader’s convenience, the original sequential code is reproduced here.

SemiEchelonMat := function(mat)

local zero, # zero of the field of <mat>
nrows, # number of rows in <mat>
ncols, # number of columns in <mat>
vectors, # list of basis vectors
heads, # list of pivot positions in ’vectors’
i, # loop over rows
Js # loop over columns
X, # a current element
nzheads, # list of non-zero heads
row; # the row of current interest

mat:= List(mat, ShallowCopy);
nrows:= Length(mat);
ncols:= Length(mat[1]);

zero:= Zero(mat[1][1]);
heads:= ListWithIdenticalEntries(ncols, 0);

nzheads := [];
vectors := [];

Section 5. DefaultCheckTaskResult (as illustrated by ParSemiEchelonMatrix) 43

for i in [1 .. nrows] do
row := matl[i];
Reduce the row with the known basis vectors.
for j in [1 .. Length(nzheads)] do

x := row[nzheads[j]1];
if x <> zero then
AddRowVector(row, vectors[j 1, - x);
fi;
od;
j := PositionNot(row, zero);

if j <= ncols then
We found a new basis vector.
MultRowVector (row, Inverse(row[jl));
Add(vectors, row);
Add(nzheads, j);
heads[j]:= Length(vectors);

fi;
od;
return rec(heads := heads,
vectors := vectors);
end;

Although GAP’s Gaussian elimination algorithm appears to be awkward to parallelize (since the next row vector in
vectors depends on row reduction by all previous vectors, we will see how the original code of SemiEchelonMat ()
can be modified in a natural manner to produce useful parallelism. This illustrates the general TOP-C paradigm for
“naturally” parallelizing a sequential algorithm.

#Shared Data: vectors (basis vectors), heads, nzheads, mat (matrix)

#TaskInput: i (row index of matrix)

#TaskOutput: List of (1) j and (2) row i of matrix, mat, reduced by vectors
j is the first non-zero element of row i

#Task: Compute reduced row i from mat, vectors, heads
#UpdateSharedData: Given i, j, reduced row i, add new basis vector

to vectors and update heads[j] to point to it

ParInstallTOPCGlobalFunction("ParSemiEchelonMat", function(mat)
local zero, # zero of the field of <mat>
nrows, # number of rows in <mat>
ncols, # number of columns in <mat>
vectors, # list of basis vectors
heads, # list of pivot positions in ’vectors’
i, # loop over rows
nzheads, # list of non-zero heads
DoTask, UpdateSharedData;

mat:= List(mat, ShallowCopy);
nrows:= Length(mat);

ncols:= Length(mat[1]);

zero:= Zero(mat[1][1]);

44

Chapter 5. MasterSlave Tutorial

heads:= ListWithIdenticalEntries(ncols, 0);
nzheads := [];
vectors := [];

DoTask := function(i) # taskInput = i
local j, # loop over columns
X, # a current element
row; # the row of current interest
row := mat[i];
Reduce the row with the known basis vectors.
for j in [1 .. Length(nzheads)] do
x := row[nzheads[j]];
if x <> zero then
AddRowVector(row, vectors[j 1, - x);
fi;
od;
j := PositionNot(row, zero);
if j <= ncols then return [j, row]; # return taskOutput
else return fail; fi;
end;
UpdateSharedData := function(i, taskOutput)
local j, row;
j := taskOutput[1];
row := taskOutput[2];
We found a new basis vector.
MultRowVector(row, Inverse(row([j]));
Add(vectors, row);
Add(nzheads, j);
heads[j]:= Length(vectors);
end;

MasterSlave(TaskInputIterator([1..nrows]), DoTask, DefaultCheckTaskResult,
UpdateSharedData) ;

return rec(heads := heads,
vectors := vectors);

end);

The next section describes how to make this code more efficient.

5.6 Caching slave task outputs (ParSemiEchelonMat revisited)

The code above is inefficient unless nrows >> ncols. This is because if nrows is comparable to ncols, it will be rare
for DoTask () to return fail. If most slaves return a result distinct from fail, then DefaultCheckTaskResult ()
will return an UPDATE_ACTION upon receiving the output from the first slave, and it will return a REDO_ACTION to
all other slaves, until those slaves execute UpdateSharedData(). The inefficiency arose because a REDO_ACTION
caused the original slave process to re-compute DoTask () from the beginning.

In the case of a REDO_ACTION, we can fix this by taking advantage of information that was already computed. To
accomplish this, a global variable should be defined on all slaves:

ParEval ("globalTaskOutput := [[-1]]1");

the routine DoTask () in the previous example should be modified to:

Section 7. Agglomerating tasks for efficiency (ParSemiEchelonMat revisited again) 45

DoTask := function(i)
local j, # loop over columns
X, # a current element
row; # the row of current interest

if i = globalTaskOutput[1] then
then this is a REDO_ACTION

row := globalTaskOutput[2]; # recover last row value
else row := matl[i];
fi;

Reduce the row with the known basis vectors.
for j in [1 .. Length(nzheads)] do
x := row[nzheads[j]1];
if x <> zero then
AddRowVector(row, vectors[j 1, - x);
fi;
od;
j := PositionNot(row, zero);
save row in case of new REDO_ACTION
globalTaskOutupt [1] := i;
globalTaskOutput[2] := row;
if j <= ncols then return [j, row]; # return taskOutput
else return fail; fi;
end;

(A perceptive reader will have noticed that it was not necessary to also save and restore row from globalTaskOutput,
since this can be found again based on the saved variable value i. However, the additional cost is small, and it illustrates
potentially greater generality of the method.)

The next section describes how to make this code more efficient.

5.7 Agglomerating tasks for efficiency (ParSemiEchelonMat revisited again)

A more efficient parallelization would partition the matrix into sets of adjacent rows, and send an entire set as a single
taskInput. This would minimize the communication overhead, since the network latency varies only slowly with
message sizxe, but linearly with the number of messages. To minimize network latency, one adds an extra parameter
to MasterSlave () in order to bundle, perhaps, up to 5 tasks at a time.

MasterSlave(TaskInputIterator([1..n]), DoTask, DefaultCheckTaskResult,
UpdateSharedData, 5);

Now the task input will be a list of the next 5 tasks returned by GetTaskInput (), or in this case by TaskInputIt-
erator([1..nrows]). If fewer than 5 tasks are produced before NOTASK is returned, then the task input will be
correspondingly shorter. If the first input task is NOTASK (yielding a list of tasks of length 0), then this will be inter-
preted as a traditional NOTASK. The task output corresponding to this task input is whatever the application routine,
DoTask () produces as task output. The routine DoTask () will be unchanged, and MasterSlave () will arrange to
repeatedly call DoTask (), once for each input task and produce a list of task outputs.

Hence, this new variation requires us to rewrite UpdateSharedData () in the obvious manner, to handle a list of input
and output tasks. Here is one solution to patch the earlier code.

46 Chapter 5. MasterSlave Tutorial

1 » TaskAgglomIndex A%

This global variable is provided for use inside DoTask (). It allows the application code to inquire about the index of
the input task in the full list of tasks created when agglomTask is used. The variable is most useful in the case of a
REDO_ACTION or CONTINUATION_ACTION(), as illustrated below.

ParEval ("globalTaskOutput := [[-1]]1");
ParEval ("globalTaskOutputs := [1");

#Shared Data: vectors (basis vectors), heads, mat (matrix)

#TaskInput: i (row index of matrix)

#TaskOutput: List of (1) j and (2) row i of matrix, mat, reduced by vectors
j is the first non-zero element of row i

#Task: Compute reduced row i from mat, vectors, heads
#UpdateSharedData: Given i, j, reduced row i, add new basis vector

to vectors and update heads[j] to point to it

ParInstallTOPCGlobalFunction("ParSemiEchelonMat", function(mat)
local zero, # zero of the field of <mat>

nrows, # number of rows in <mat>

ncols, # number of columns in <mat>

vectors, # list of basis vectors

heads, # list of pivot positions in ’vectors’
i, # loop over rows

nzheads, # list of non-zero heads
DoTask, UpdateSharedDataWithAgglom;

mat:= List(mat, ShallowCopy) ;
nrows:= Length(mat);
ncols:= Length(mat[1]);

zero:= Zero(mat[1][1]);

heads:= ListWithIdenticalEntries(ncols, 0);
nzheads := [];

vectors := [];
DoTask := function(i)
local j, # loop over columns
X, # a current element
row; # the row of current interest

if IsBound(globalTaskOutputs[TaskAgglomIndex])
and i = globalTaskOutputs[TaskAgglomIndex] [1] then

then this is a REDO_ACTION

row := globalTaskOutputs[TaskAgglomIndex] [2] [2]; # recover last row value
else row := mat[i];
fi;
Reduce the row with the known basis vectors.
for j in [1 .. Length(nzheads)] do

x := row[nzheads[j]1];
if x <> zero then
AddRowVector(row, vectors[j 1, - x);

fi;

Section 7. Agglomerating tasks for efficiency (ParSemiEchelonMat revisited again) 47

od;
j := PositionNot(row, zero);

save [input, output] in case of new REDO_ACTION
globalTaskOutputs [TaskAgglomIndex] := [i, [j, row] 1;

if j <= ncols then return [j, row]; # return taskOutput
else return fail; fi;
end;

This version of UpdateSharedData() expects a list of taskOutput’s
UpdateSharedDataWithAgglom := function(listI, taskOutputs)
local j, row, idx, tmp;
for idx in [1..Length(taskOutputs)] do
j := taskOutputs[idx] [1];
row := taskOutputs[idx][2];

if idx > 1 then
globalTaskOutputs[1] := [-1, [j, row] 1;
tmp := DoTask(-1); # Trick DoTask() into a REDO_ACTION
if tmp <> fail then

j = tmpl[1];
row := tmp[2];
fi;

fi;

We found a new basis vector.
MultRowVector(row, Inverse(row([j]l));
Add(vectors, row);
Add(nzheads, j);
heads[j]:= Length(vectors);
od;
end;

MasterSlave(TaskInputIterator([1..nrows]), DoTask, DefaultCheckTaskResult,
UpdateSharedDataWithAgglom, 5); #taskAgglom set to 5 tasks

return rec(heads := heads,
vectors vectors);

end);

Note that in this simple example, we were able to re-use most of the code from the previous version, at the cost
of adding an additional global variable, globalTaskOutputs. In fact, the last DoTask() is backward compatible
to the first version of the code, for which agglomTasks is not used. If we wanted to run the latest code without
agglomeration of tasks, it would suffice either to set the taskAgglom parameter to 1, or else to remove it entirely and
replace UpdateSharedDataWithAgglom() by UpdateSharedData().

It is useful to experiment with the above code by substituting a variable, taskAgglom, for the number 5, and trying
it out with remote slaves on your own network for different values of taskAgglom and for different size matrices.
You can call MasterSlaveStats () to see the effect of different parameters. Suitable pseudo-random matrices can
be quickly generated viamat := PseudoRandom(GL(30, 5) and similar commands.

The paper [Co098] is suggested as further reading to see a still more efficient parallel implementation of ParSemiEch-
elonMatrix (also known as Gaussian elimination) using the TOP-C model.

v

48 Chapter 5. MasterSlave Tutorial

5.8 Raw MasterSlave (ParMultMat revisited)

Finally, we given an example of a variation of MasterSlave (), based on a “raw” MasterSlave (). These versions
are designed for the common case of legacy code that contains deeply nested parentheses. The taskInput may be
generated inside several nested loops, making it awkward and error-prone to produce a function, SubmitTaskIn-
put O, that will generate instances of taskInput in the appropriate sequence.

Effectively, when we wish to return successive values from several deeply nested loops, we are in the situation
of programming the “opposite of a GAP iterator” (see 30.8 in the Reference Manual). We are already producing
successive iterator values, and we wish to “stuff them back into some iterator”. Until GAP develops such a language
construct :-) , the following example of a “raws” MasterSlave() demonstrates a solution. Before studying this
example, please review the sequential version, SeqMultMat () near the beginning of section 5.4.

We make use of the following three new ParGAP functions.

BeginRawMasterSlave(DoTask, ChecklaskResult, UpdateSharedData) F
RawSubmitTaskInput (fasklnput) F
EndRawMasterSlave () F

Their use will be obvious in the next example. This time, we parallelize SeqMultMat () by defining the task as the
computation of a single entry in the result matrix. Hence, the task will be the computation of the appropriate inner
product. For dimension n, n” tasks are now generated, and each task is generated inside a doubly nested loop.

#Shared Data: ml, m2t, result (three matrices)

#TaskInput: [i,j] (indices of entry in result matrix)
#TaskOutput: result[i][j] (value of entry in result matrix)
#Task: Compute inner produce of row i of ml by colum j of ml

(Note that column j of ml is also row j of m2t, the transpose)
#UpdateSharedData: Given result[i][j] and [i,j], modify result everywhere

ParInstallTOPCGlobalFunction("ParRawMultMat", function(ml, m2)
local i, j, k, n, m2t, sum, result, DoTask, CheckTaskResult, UpdateSharedData;
n := Length(ml);
m2t := TransposedMat(m2);
result := ListWithIdenticalEntries(Length(m2t), []);

DoTask := function(input)
local i,j,k,sum;
i:=input[1]; j:=input[2];
sum := 0;
for k in [1..n] do
sum := sum + ml[i] [k]*m2t[j] [k];
od;
return sum;
end;

CheckTaskResult := function(input, output)
return UPDATE_ACTION;
end;

UpdateSharedData := function(input, output)
local i, j;
i := input[1]; j := input[2];
result[i] [j] := output;
result[i,j] := sum;
end;

Section 8. Raw MasterSlave (ParMultMat revisited)

BeginRawMasterSlave(DoTask, CheckTaskResult, UpdateSharedData);
for i in [1..n] do
result[i] := [];
for j in [1..n] do
RawSubmitTaskInput([i,j]);
sum := O;
for k in [1..n] do
sum := sum + mi[i] [k]*m2t[j] [k];
#
#

od;
result[i] [j] := sum;
od;
od;
EndRawMasterSlave();

return result;
end);

Advanced Concepts
for TOP-C model
(MasterSlave)

This chapter may be safely skipped on a first reading. If you still want to read this chapter, it should mean that you are
familiar with the basics of the TOP-C model, and are looking for advice on how to use the model more effectively. The
first piece of advice is that the choice of task and shared data interact strongly with the choice of parallel algorithm.
We review those concepts more precisely here, in light of the overall context of the TOP-C model.

task:
A task is a function that that takes a single argument, raskInput, reads certain globally shared data, the shared
data, and computes a result, the faskOutput. Hence, given the same task input and the same shared data, a
task should always compute the same task output. The TOP-C model implements this concept through the
DoTask () application routine. In the TOP-C model, this rule is bent to accommodate caching of private data
to efficiently handle a REDO_ACTION (see Section 5.6), or to accommodate a CONTINUATION_ACTION() (see
Section 3.6).

shared data:

The shared data is globally shared data. It should be initialized before entering MasterSlave(). The
shared data is never explicitly declared. However, it is best for the application programmer to include a
comment specifying the shared data for his or her application. The TOP-C model poses certain restrictions
on what legally constitutes shared data. The shared data must include enough of the global data (variables
that occur free in the DoTusk() procedure) so that the task output of DoTask() is uniquely determined
by the task input and the shared data. However, the shared data must not include any variables whose
values are modified outside of the application routine UpdateSharedData (). Also, the shared data is updated
non-preemptively, in the sense that a slave process will always complete its current task before reading a
newly arrived message that invokes UpdateSharedData (). If a slave privately caches data for purposes of a
REDO_ACTION or CONTINUATION_ACTION(), such data is explicitly not part of the shared data.

6.1 Tracing and Debugging

In testing a program using MasterSlave (), a hierarchy of testing is suggested. The principle is to test the simplest
example first, and then iterate to more complex examples. When a stable portion of the program is ready for testing,
the following sequence of tests is suggested:

sequential
Replace MasterSlave() by SeqMasterSlave() (see definition below) and see if the program performs
correctly. SeqMasterSlave () will run only on the master, without sending any messages, and so the full
range of sequential debugging tools is available.

one slave
Restore MasterSlave () and set up the procgroup file to have only one slave process (one line, local 0,
and one line localhost ...). Initially test with no taskAgglom parameter for MasterSlave (), and then

test with the full set of parameters.

1»

2>

3»

Section 2. Efficiency Considerations 51

two slaves
Same advice as for one slave, but two lines: localhost

many slaves
Full scale test, both without and with taskAgglom.

ParTrace A%

A second easy testing strategy is to set ParTrace to true. (This is the default value.) This causes all tasklnputs,
taskOutputs, and non-trivial actions (actions other than NO_ACTION) to be displayed at the terminal. The information
is printed in the same sequence as seen by the master process.

Another “cheap” debugging trick is to inspect the values of global variables on the slave after it has been thrown out
of the MasterSlave () procedure. The following code demonstrates by interrogating the sum of the variables x and
y on slave number 2.

gap> SendRecvMsg("x+y;\n", 2);

This is useful to inspect cached data on a slave used for a REDO_ACTION or CONTINUATION_ACTION(). It may also
be useful to verify if the shared data on the slave is the same as on the master. If the slave process is still inside the
procedure MasterSlave (), then from within a break loop on the master, you may also want to interactively call
DoTask (testlnput) to determine if the expected taskOutput is produced.

If the master process is still within MasterSlave (), then it is useful to execute DoTask() locally on the master
process, and debug this sequentially.

There is also the time-honored practice of inserting print statements. Print statements “work™ both on the master
and on the slaves. If ParTrace produces too much output, or not the right kind of information, one can add print
statements exactly where one needs them. As with any UNIX debugging, it is sometimes useful to include a call to
fflush(stdout) to force any pending output. ParGAP binds this to:

UNIX_FflushStdout() F

This has the same effect as the UNIX £ff1ush(stdout). There may be pending output in a buffer, that UNIX delays
printing for efficiency. Printing any remaining output in the buffer is forced by this command. A common sequence is:
Print("information"); UNIX FflushStdout() ;. Note also that when the slave prints, there are “two” standard
outputs involved. You may also want to include a call to UNIX_FflushStdout () on the master to force any pending
output that originated on a slave. Finally, you should be conscious of network delays, and so a print statement in a
slave process will typically take longer to appear than a print statement in the master process.

SegMasterSlave(SubmitTaskinput, DoTask[, CheckTaskResult[,UpdateSharedDatal, taskAgglom 111) F

If a bug is exhibited even in the context of a single slave, then the code is “almost” sequential. In this case, one can test
further by replacing the call to MasterSlave () by a call to SeqMasterSlave (), and debug in a context that involves
zero messages and no interaction with any slave. It can also be helpful to carry out initial debugging in this context.
Note that in the case of a single slave, which is what SeqMasterSlave emulates, IsUpToDate () will always return
true, and so most applications will not call for a REDO_ACTION.

6.2 Efficiency Considerations

There are two common reasons for loss of efficiency in parallel applications. One is a lack of enough tasks, so
that some slaves are starverd for work while waiting for the next task input. A second reson is that the ratio of
communication time to compilation time is too large. The second case, poor communication efficiency, is the more
common one.

The communication efficiency can be formally defined as the ratio of the time to execute a task by the time taken for
the master to send an initial task message to a slave plus the time for the slave to send back a result message. A good
way to diagnose your efficiency is to execute MasterSlaveStats () after executing MasterSlave().

52 Chapter 6. Advanced Concepts for TOP-C model (MasterSlave)

MasterSlaveStats() F

This function currently returns statistics in the form of a list of two records. The first record provides the global
information:

MStime
total runtime (as measured by Runtime ()),

MSnrTasks
total number of tasks (not including REDO or UPDATE,

MSnrUpdates
total number of times action UPDATE was returned, and

MSnrRedos
total number of times action REDO was returned.

The second record provides per-slave information:

total

total time spent on tasks, not including UpdateSharedData(),
num

number of initial tasks, REDO and CONTINUATION () actions,
ave_ms

the value of QuoInt (1000*total,num) in GAP, and
max

maximum time spent on a task, in seconds.

Note that for purposes of the per-slave statistics, separate time intervals are recorded for each initial task, REDO action,
and CONTINUATION() action. The time for UpdateSharedData() is not included in these statistics. This is because
after an UPDATE action, the slave does not reply to the master to acknowledge when the update was completed.

Notes:

Poor communication efficiency is typically caused either by too small a task execution time (which would be the case
in the example of section or too large a message (in which case the communication time is too long). We first consider
execution times that are too small.

On many Ethernet installations, the communication time is about 0.01 seconds to send and receive small messages
(less than 1 Kb). Hence the task should be adjusted to consume at least this much CPU time. If the naturally defined
task requires less than 0.01 seconds, the user can often group together several consecutive tasks, and send them as a
single larger task. For example, in the factorization problem of section, one might modify DoTask () to test the next
1000 numbers as factors and modify SubmitTaskinput () to increment counter by 1000.

There is another easy trick that often improves communication efficiency. This is to set up more than one slave process
on each processor. This improves the communication efficiency because during much of the typical 0.01 seconds of
communication time the CPU has off-loaded the job onto a coprocessor. Hence, having a second slave process running
its own task on the CPU while a first process is concerned with communication allows one to overlap communication
with computation.

We next consider the case of messages that are too large. In this case, it is important to structure the problem
appropriately. The task architecture is intended to be especially adaptable to this case. The philosophy is to minimize
communication time by duplicating much of the execution time on each processor.

After the initial data structure has been built, it will usually be modified as a result of the computation. In order to
again minimize communication, the result of a task, which is typically passed to UpdateSharedData (), should consist
of the minimum information needed to update the global data structure. Each process can then perform this update in
parallel.

Section 4. When Should a Slave Process be Considered Dead? 53

6.3 Checkpointing in TOP-C

Any long-running computation must be concerned with checkpointing. The TOP-C model also provides a simple
model for checkpointing. The key observation is that the master process always has the latest state of the computation,
and the information in the master process is sufficient to reconstruct any ongoing computation. Any application may
take advantage of this by checkpointing the necessary information either in the application routine, SubmitTaskInput ()
or in CheckTaskResult ().

A simple way to checkpoint is to record:

o the current data in the TOP-C shared data;
e any private global data residing only in the master process; and
e the inputs to any tasks that are still pending.

This model for checkpointing assumes that your program has no CONTINUATION () actions. If you use CONTINUA-
TION() actions, then you may require a more complex model for checkpointing.

MasterSlavePendingTaskInputs() F

This function returns a GAP list (with holes) of all pending task inputs. If slave i is currently working on a task,
index i of the list will record that task. If slave i is currently idle or executing UpdateSharedData (), then there will
be a hole at index i. This function is available for use within either the application routine SubmitTaskInput (), or
CheckTaskResult (), as specified in the parameters of your call to MasterSlave (). (Of course, your application may
be using a name other than SubmitTaskInput () or CheckTaskResult () in the parameters of MasterSlave().)

6.4 When Should a Slave Process be Considered Dead?

An important question for long-running computations, is when to decide that a slave process is dead. For our purposes,
dead is not a well-defined concept. If a user on the remote machine decides to re-boot, it is clear that any slave
processes residing on that machine should be declared dead. However, suppose there is temporary congestion on the
network making the slave unavailable. Suppose that another user on the remote machine has started up many processes
consuming many resources, and the TOP-C slave process is being starved for CPU time or for RAM. Perhaps the most
difficult case of all to decide is if one particular TOP-C task requires ten times as much time as all other tasks. This
last example is conceivable if, for example, each task consists of factoring a different large integer.

Hence, our implementation of the TOP-C model will employ the following heuristic in a future version, to decide if
a task is dead. You may wish to employ this heuristic now, if you have a demanding application. We use the ParGAP
function, UNIX Realtime (), to keep track of how much time has been spent on a task (based on “wall clock time”,
and not on CPU time). If a task has taken slaveTaskTimeFactor times as much time as the longest task so far,
then it becomes a candidate for being declared dead. The GAP variable slaveTaskTimeFactor is initially set to the
default value of 2.

Once a slave process becomes a candidate for being declared dead, MasterSlave () will create a second version of
the same task, with the same task input as the original task. MasterSlave () will then record which task finishes first.
If the original version finishes first, then the second version of the task is ignored, and the slave process executing the
original task is no longer considered a candidate for death.

If, however, the second version of the task finishes before the original version, then the time for the second task is
recorded. Further, the output from the second task will be used, and any output resulting from the original task will be
ignored. MasterSlave () then periodically checks until the ration of the time spent so far on the original version of
the task is at least slaveTaskTimeFactor times greater than the time spent on the second version of the task, then
the process executing the original version of the task is then declared dead. No further messages from the process
executing original task will be recognized and no further messages will be sent to that slave process.

A future version of this distribution will include direct support for this heuristic. A customized version of it may
be used now, by taking advantage of the ParGAP routine, UNIX Realtime (). In addition, a future version of this
distribution may include the ability to start new slave processes in an ongoing computation. The reference [CG9S]
describes how this was done in a C implementation, and why this concept fits naturally with the TOP-C model.

MPI commands
and UNIX system
calls in ParGAP

This chapter can be safely ignored on a first reading, and maybe permanently. It is for application programmers who
wish to develop their own low-level message-based parallel application. The additional UNIX system calls in ParGAP
may also be useful in some applications.

7.1 Tutorial introduction to the MPI C library

This section lists some of the more common message passing commands, followed by a short MPI example. The next
section (7.2) contains more (but by no means all) of the MPI commands and some UNIX system calls. The ParGAP
binding provides a simplified form that makes interactive usage easier. This section describes the original MPI binding
in C, with some comments about the interactive versions provided in ParGAP. (The MPI standard includes a binding
both to C and to FORTRAN.)

Even if your ultimate goal is a standalone C-based application, it is useful to prototype your application with equivalent
commands executed interactively within ParGAP. Note that this distribution includes a subdirectory mpinu, which
provides a subset MPI implementation in C with a small footprint. It consists of a C library, 1ibmpi . a, and an include
file mpi . h. The library is approximately 150 KB. The subdirectory can be consulted for further details.

We first briefly explain some MPI concepts.

rank:
The rank of an MPI process is a unique ID number associated with the process. By convention, the console
(master) process has rank 0. The ranks of the process are guaranteed by MPI to form a consecutive, ascending
sequence of integers, starting with 0.

tag:

Each message has associated with it a non-negative integer tag specified by the application. Our interface
allows you to ignore tags by letting them take on default values. Typical application uses for tags are either
to choose consecutive integers in order to guarantee that all messages can be re-assembled in sequence, or
to choose a fixed set of constant tags, each constant associated with another type of message. In the latter
case, one might have integers for a QUIT_TAG, an INTEGER_ARRAY _TAG, START _TASK2_TAG, etc. In fact, our
implementation of the Slave Listener and MasterSlave () specifically uses certain tags of value 1000 and
higher for these purposes. Hence, application routines that do use tags should restrict themselves to tags
[0..999].

communicator:
A communicator in MPI serves the purpose of a namespace. Most MPI commands require a communicator
argument to specify the namespace. MPI starts up with a default namespace, MPT_COMM_WORLD. The ParGAP
implementation always assumes that single namespace. A namespace is important in MPI to build modules
and library routines, so that a thread may distinguish messages meant for itself, or to catch errors of cross-
communication between two modules.

VVYVYVYVYVYyVYVYVYYY

Section 1. Tutorial introduction to the MPI C library 55

message:
Each message in MPI is typically implemented to include fields for the source rank, destination rank
(optional), tag, communicator, count, and an array of data. The count field specifies the length of the array.
MPI guarantees that messages are non-overtaking, in the sense that if two messages are sent from a single
source process to the same destination process, then it is guaranteed that the first process sent will be the first
one to arrive, and will be received or probed first from the queue.

other:
MPI also has concepts of datatype, derived datatype, group, topology, etc. This implementation defaults those
values, so that datatype is always a character (hence the use of strings in ParGAP), no derived datatypes
are implemented, group is always consistent with MPI_COMM_WORLD, and fopology is the fully connected
topology.

communication:

This implementation implements only point-to-point communication (always blocking receives, except for
MPI_Iprobe, and sends can be blocking or not, according to the default underlying sockets).

collective communication:

The MPI standard also provides for collective communication, which sets up a barrier in which all process
within the named communicator must participate. One process is distinguished as the root process in
cases of asymmetric usage. ParGAP does not implement any collective communication (although you can
easily emulate it using a sequence of point-to-point commands). The MPI subset distribution (in ParGAP’s
mpinu directory) does provide some commands for collective communication. Examples of MPI collective
communication commands are MPT_Bcast (broadcast), MPI_Gather (place an entry from each process in an
array residing on the root process), MPI_Scatter (inverse of gather), MPI_Reduce (execute a commutative,
associative function with an entry from each process and store on root; example functions are sum, and, xor,
etc.

dynamic processes:
The newer MPI-2 standard allows for the dynamic creation of new processes on new processors in an ongoing
MPI computation. The standard is silent on whether an MPI session should be aborted if one of its member
processes dies, and the MPI standard provides no mechanism to recognize such a dead process. Part of the
reason for this silence is that much of the ancestry of MPI lies in dedicated parallel computers for which it
would be unusual for one process or processor to die.

Here is a short extract of MPI code to illustrate its flavor. It illustrates the C equivalents of the following ParGAP
commands. Note that the ParGAP versions noted here take fewer parameters than their C-based cousins, and ParGAP
includes defaults for some optional parameters.

MPI_Init() [called for you automatically when ParGAP is loaded] F
MPI Finalize() [called for you automatically when GAP quits | F
MPI_Comm_rank()

MPI_Get_count ()

MPI_Get_source()

MPI _Get_tag()

MPI_Comm_size ()

MPI_Send(string buf, intdest[, inttag=0 1)

MPI Recv(string buf [, int source = MPI ANY_SOURCEL, inttag = MPI_ ANY_-TAG 1 1)
MPI Probe([int source = MPI_ ANY_SOURCEL, inttag = MPI ANY_TAG]])

pslieviiesliesBisoiis vl s lies]

Many of the above commands have analogues at a higher level in section 2.1 as GetLastMsgSource (), GetLastMs-
gTag(),MPI_Comm_size() = TOPCnumSlaves + 1, SendMsg(), RecvMsg() and ProbeMsg().

#include <stdlib.h>
#include <mpi.h>

56 Chapter 7. MPI commands and UNIX system calls in ParGAP

#define MYCOUNT 5
#define INT_TAG 1

main(int argc, char *argv[])

{
int myrank;
MPI_Init(&argc, &argv);
MPI_Comm_rank(MPI_COMM_WORLD, &myrank);
if (myrank == 0) {
int mysize, dest, 1i;
int buf;
printf("My rank (master): %d\n", myrank);
for (i=0; i<MYCOUNT; i++)
buf = 5;
MPI_Comm_size(MPI_COMM_WORLD, &mysize);
printf("Size: %d\n", mysize);
for (dest=1; dest< mysize; dest++)
MPI_Send(&buf, MYCOUNT, MPI_INT, dest, INT_TAG, MPI_COMM_WORLD);
} else {
int i;
MPI_Status status;
int source;
int count;
int *buf;
printf ("My rank (slave): ¥%d\n", myrank);
MPI_Probe(MPI_ANY_SOURCE, MPI_ANY_TAG, MPI_COMM_WORLD, &status);
printf("Message pending with rank %d and tag %d.\n",
status.MPI_SOURCE, status.MPI_TAG);
if (status.MPI_TAG '= INT_TAG)
printf ("Error: Bad tag.\n"); exit(1);
MPI_Get_count(&status, MPI_INT, &count);
printf("The count of how many data units (MPI_INT) is: %d.\n", count);
buf = (int *)malloc(count * sizeof(int));
source = status.MPI_SOURCE;
MPI_Recv(buf, count, MPI_INT, source, INT_TAG, MPI_COMM_WORLD, &status);
for (i=0; i<MYCOUNT; i++)
if (*buf != 5) printf("error: buf([/d] != 5\n", i);
printf("slave %d done.\n", myrank);
}
MPI_Finalize();
exit (0);
}

Even in this simplistic example, it was important to specify
MPI_Recv(buf, count, MPI_INT, source, INT_TAG, MPI_COMM_WORLD, &status);
and not to use MPI_ANY_SOURCE instead of the known source. Although this alternative would often work, there is

a danger that there might be a second incoming message from a different source that arrives between the calls to
MPI Probe() and MPI_Recv (). In such an event, MPI would be free to receive the second message in MPI_Recv (),

VYV VY VY VYVYVYVYVYYY

Section 2. Other low level commands 57

even though the appropriate count of the second message is likely to be different, thus risking an overflow of the buf
buffer.

Other typical bugs in MPI programs are:

e Incorrectly matching corresponding sends and receives or having more or fewer sends than receives due to the
logic of multiple sends and receives within distinct loops.

e Reaching deadlock because all active processes have blocking calls to MPT_Recv () while no process has yet
reached code that executes MPI_Send ().

e Incorrect use of barriers in collective communication, whereby one process might execute:

MPI_Send(buf, count, datatype, dest, tag, COMM_1);
MPI_Bcast(buffer, count, datatype, root, COMM_2);

and a second executes

MPI_Bcast(buffer, count, datatype, root, COMM_2);
MPI_Recv(buf, count, datatype, dest, tag, COMM_1, status);

If the call to MPI_Send () is blocking (as is the case for long messages in the case of many implementations),
then the first process will block at MPI_Send () while the second blocks at "MPI_Bcast()’. This happens even
though they use distinct communicators, and the send-receive communication would not normally interact with
the broadcast communication.

Much of the TOP-C method in ParGAP (see chapters 3 and 5) was developed precisely to make errors like those
above syntactically impossible. The slave listener layer also does some additional work to keep track of the status
that was last received and other bookkeeping. Additionally, the TOP-C method was designed to provide a higher
level, task-oriented “language”, which would naturally lead the application programmer into designing an efficient
high level algorithm.

7.2 Other low level commands

Here is a complete listing of the low level commands available in ParGAP. Some of these commands were
documented elsewhere. The remaining ones are not recommended for most users. Nevertheless, it may be useful
to others for more sophisticated applications.

For most of these commands, the source code is the ultimat documentation. However, you may be able to guess at the
meaning of many of them based on their names and their similarity UNIX system calls (in the case of UNIX_...) or
MPI commands (in the case of MPI. . .). Some of the commands will also show you their calling parameters if called
with the wrong number of arguments. Many of the MPI commands have simplified calling parameters with certain
arguments optional or set to defaults, making them easier for interactive use.

UNIX_MakeString(len)

UNIX DirectoryCurrent () [Defined in ‘pkg/pargap/lib/slavelist.g’]
UNIX_Chdir(string)

UNIX_FflushStdout ()

UNIX Catch(function, return_val)

UNIX_Throw()

UNIX_Getpid()

UNIX_Hostname ()

UNIX_Alarm(seconds)

UNIX_Realtime()

UNIX Nice(priority)

UNIX LimitRss(bytes_of_-ram) [= setrlimit(RLIMIT_RSS, ...)]

pslie vl sliesiioviie viie s liesiiov il s Miss liss!

VYYVYYVYVYYVYYVYYVYYYVYVYVYVYVYVYYY

vyVvyVvyVvyyvyy

58 Chapter 7. MPI commands and UNIX system calls in ParGAP

MPI_Init ()

MPI_Initialized()

MPI_Finalize()

MPI_Comm_rank ()

MPI_Get_count ()

MPI_Get_source()

MPI Get_tag()

MPI_Comm_size ()

MPI_World_size()

MPI Error_string(errorcode)

MPI_Get_processor_name ()

MPI_Attr_get(keyval)

MPI_Abort (errorcode)

MPI Send(string buf , intdest[, inttag=0 1)

MPI Recv(string buf [, int source = MPI_ ANY_SOURCE(, inttag = MPI ANY TAG]])
MPI_Probe([int source = MPI_ ANY_SOURCE[, inttag = MPI. ANY_.TAG]])
MPI_Iprobe([int source = MPI_.ANY_SOURCEL, int tag = MPI ANY_.TAG 1 1)

MPI_ANY_SOURCE
MPI_ANY_TAG
MPI_COMM_WORLD
MPI_TAG_UB
MPI_HOST
MPI_IO

jesliesiievillesissiioviie s ie s ies e il s Miss Mios e ville s Misslios|

<< << <<

Comments?

COMMENTS SOLICITED:

I welcome comments on how well the TOP-C parallel model fits other applications. I am also interested in building up
a library of ParGAP programs that can be made available to other users. Finally, one ingredient in making a system
usabe is a good choice of names that makes the purpose of various commands obvious to a new user. I welcome
suggestions. For example, ParEval, BroadcastMsg, SendRecvMsg, and SendMsg all have related functionalities.
The same can be said of RecvMsg, ProbeMsg, ProbeMsgNonBlocking. Hence, a more orthogonal naming scheme
might be easier.

If you are interested in “looking over my shoulder”, you might also want to inspect some of my random scribbling in
the ParGAP’s etc subdirectory.

[CCHWO3]

[CFTYO97]

[CGI8]

[CGO2]

[CHLMY97]

[CLMW99]

[CMVI7]

[Co095]

[Co0096]

[Co097]

[Co098]

[CT96]

Bibliography

Gene Cooperman, Henri Casanova, Jim Hayes, and Thomas Witzel. Using TOP-C and AMPIC to port large
parallel applications to the Computational Grid. Future Generation Computer Systems, 19:587-596, 2003.

Gene Cooperman, Larry Finkelstein, Michael Tselman, and Bryant York. Constructing permutation
representations for matrix groups. J. Symbolic Comput., 24(3-4):471-488, 1997. Computational algebra and
number theory (London, 1993) [Used TOP-C model].

Gene Cooperman and V. Grinberg. TOP-WEB: Task-oriented metacomputing on the Web. International
Journal of Parallel and Distributed Systems and Networks, 1:184—-192, 1998.

Gene Cooperman and Victor Grinberg. Scalable parallel coset enumeration: Bulk definition and the memory
wall. J. Symbolic Computation, 33:563-585, 2002.

Gene Cooperman, Gerhard Hiss, Klaus Lux, and Jiirgen Miiller. The Brauer tree of the principal 19-block of
the sporadic simple Thompson group. Experiment. Math., 6(4):293-300, 1997.

G. D. Cooperman, W. Lempken, G. O. Michler, and M. Weller. A new existence proof of Janko’s simple
group J4. In Computational methods for representations of groups and algebras (Essen, 1997), pages 161-
175. Birkhiuser, Basel, 1999.

G. Cooperman, G. Michler, and H. Vinck, editors. Practical parallel coset enumeration, volume 226 of
Lecture notes in control and information sciences. Springer Verlag, 1997. [Used TOP-C model].

Gene Cooperman. STAR/MPI: Binding a parallel library to interactive symbolic algebra systems. In Proc.
of International Symposium on Symbolic and Algebraic Computation (ISSAC °95), pages 126-132. ACM
Press, 1995.

Gene Cooperman. TOP-C: A Task-Oriented Parallel C interface. In 5™ International Symposium on High
Performance Distributed Computing (HPDC-5), pages 141-150. IEEE Press, 1996.

Gene Cooperman. GAP/MPI: Facilitating Parallelism. In L. Finkelstein and W.M. Kantor, editors, Proc. of
Second DIMACS Workshop on Groups and Computation II, volume 28. AMS, Providence, RI, 1997.

Gene Cooperman. Practical task-oriented parallelism for Gaussian elimination in distributed memory. In
Proceedings of the Sixth Conference of the International Linear Algebra Society (Chemnitz, 1996), volume
275/276, pages 107-120, 1998.

Gene Cooperman and M. Tselman. New sequential and parallel algorithms for generating high dimension
hecke algebras using the condensation technique. In Proc. of International Symposium on Symbolic and
Algebraic Computation (ISSAC ’96), pages 155-160. ACM Press, 1996. [Used TOP-C model].

Index

This index covers only this manual. A page number in italics refers to a whole section which is devoted to the
indexed subject. Keywords are sorted with case and spaces ignored, e.g., “PermutationCharacter” comes before

“permutation group”.

A

action, 25

actions, 26

agglomerating tasks, 45

Agglomerating tasks for efficiency (ParSemiEchelonMat
revisited again), 45

A simple example, 38

Author, 14

B

Basic TOP-C (Master-Slave) commands, 25
BeginRawMasterSlave, 48

Being nice to other users (Nice, Alarm and LimitRss), 30
BroadcastMsg, 22

C

Caching slave task outputs (ParSemiEchelonMat
revisited), 44

Checkpointing in TOP-C, 53

Choosing an MPI Library, 7

constants, MPI, global, 58

CONTINUATION_ACTION, 26
definition, 30

Converting legacy sequential code to the TOP-C model,
31

D
DefaultCheckTaskResult (as illustrated by
ParSemiEchelonMatrix), 42

E

efficiency, 51

Efficiency Considerations, 51

Efficient Parallelism in MasterSlave() using
CheckTaskResult(), 28

EndRawMasterSlave, 48

example, ParInstallTOPCGlobalFunction, 40
ParMultMat, 41
ParMultMat revisited, 48
ParSemiEchelonMat, 43

ParSemiEchelonMat revisited, 44
ParSemiEchelonMat revisited again, 46
SeqMultMat, 40
TaskInputIterator, 40
taskAgglom, 45
parallel Gaussian elimination, 43
raw MasterSlave(), 48
Slave Listener, 10
Extended Example, /0

F

FlushAllMsgs, 22

functions, MPI, 57
UNIX, 57

G

Gaussian elimination, parallel, 43
GetLastMsgSource, 22
GetLastMsgTag, 22

|

installation, 8

Installing ParGAP, 8

Invoking ParGAP with Remote Slaves (when using a
system MPI library), 14

Invoking ParGAP with Remote Slaves (when using
MPINU), 15

IsMaster, 22

IsUpToDate, 26

MasterSlave, 25

MasterSlave (), raw, 48

master slave model, 25
MasterSlavePendingTaskInputs, 53
MasterSlaveStats, 52

Message Passing Interface, 54

Modifying Task Output or Input (a dirty trick), 29
Modifying the GAP kernel, 19

MPI, 54

62

standard, 6
MPI_Abort, 58
MPI_ANY_SOURCE, 58
MPI_ANY_TAG, 58
MPI_Attr_get, 58
MPI_Comm_rank, 58

example, 55
MPI_Comm_size, 58

example, 55
MPI_COMM_WORLD, 58
MPI_Error_string, 58
MPI_Finalize, 58

example, 55
MPI_Get_count, 58

example, 55
MPI_Get_processor_name, 58
MPI_Get_source, 58

example, 55
MPI_Get_tag, 58

example, 55
MPI_HOST, 58
MPI_Init, 58

example, 55
MPI_Initialized, 58
MPI_IO, 58
MPI_Iprobe, 58
MPI_Probe, 58

example, 55
MPI_Recv, 58

example, 55
MPI_Send, 58

example, 55
MPI_TAG_UB, 58
MPI_World_size, 58

MPI commands, All ParGAP bindings, 57

MPI functions, 57
MPI global constants, 58
MPI model, 54

N

NO_ACTION, 26
definition, 29

NOTASK, 26

(o)

Other low level commands, 57
Other TOP-C Commands, 26
Overview of ParGAP, 5

Index

P

ParBindGlobal, 23

ParDeclareGlobalFunction, 23

ParDeclareGlobalValue, 23

ParEval, 23

ParGAP, 5

ParInstallGlobalFunction, 24

ParInstallTOPCGlobalFunction, 26
definition, 40
example, 40

ParInstall TOPCGlobalFunction() and TaskInputlterator()
(ParSquare revisited), 40

ParInstallValue, 24

ParList, 23

ParMultMat, 40

ParRead, 23

ParReread, 23

ParReset, 23

ParSquare, 39

ParTrace, 51

PingSlave, 23

PrintToString, 23

ProbeMsg, 23

ProbeMsgNonBlocking, 23

Problems Installing or Invoking ParGAP, 16

Problems Running ParGAP with a System MPI
Implementation, /8

Problems Running ParGAP with MPINU, /7

Problems with Passwords (Getting Around Security), /9

R

raw MasterSlave (), definition, 48
example, 48

Raw MasterSlave (ParMultMat revisited), 48

RawSubmitTaskInput, 48

RecvMsg, 22

REDO_ACTION, 26
definition, 29

Running ParGAP, 9

S

SendMsg, 22

SendRecvMsg, 22

SegMasterSlave, definition, 51
simplified pseudo-code, 27

shared data, 25, 50

Simple Usage of MasterSlave(), 28

Slave Listener, example, 10

Slave Listener Commands, 22

Index

Streaming, 34

T
task, 25, 50
input, 25
output, 25
taskAgglom, 45
TaskAgglomIndex, 46
context, 45
TaskInputIterator, 40
example, 40
The GOTO statement of the TOP-C model, 30
TOP-C model, 25
TOP-C model for non-trivial parallelism, 36
Tracing and Debugging, 50
Trivial Parallelism, 32
tutorial, MasterSlave(), 38
MPI, 54
TOP-C, 38
Tutorial introduction to the MPI C library, 54

U

UNIX_Alarm, 57

63

definition, 30
UNIX_Catch, 57
UNIX_Chdir, 57
UNIX DirectoryCurrent, 57
UNIX_FflushStdout, 57
definition, 51
UNIX_ Getpid, 57
UNIX_Hostname, 57
UNIX_LimitRss, 57
definition, 30
UNIX MakeString, 57
UNIX Nice, 57
definition, 30
UNIX_Realtime, 57
UNIX_Throw, 57
UNIX functions, 57
UNIX system calls, All ParGAP bindings, 57
UPDATE_ACTION, 26
definition, 29
Using ParGAP interactively, 33

w
‘When Should a Slave Process be Considered Dead?, 53

	Contents
	Writing Parallel Programs in GAP Easily
	Overview of ParGAP
	Choosing an MPI Library
	Installing ParGAP
	Running ParGAP
	Extended Example
	Author
	Invoking ParGAP with Remote Slaves (when using a system MPI library)
	Invoking ParGAP with Remote Slaves (when using MPINU)
	Problems Installing or Invoking ParGAP
	Problems Running ParGAP with MPINU
	Problems Running ParGAP with a System MPI Implementation
	Problems with Passwords (Getting Around Security)
	Modifying the GAP kernel

	Slave Listener
	Slave Listener Commands

	Basic Concepts for the TOP-C model (MasterSlave)
	Basic TOP-C (Master-Slave) commands
	Other TOP-C Commands
	Simple Usage of MasterSlave()
	Efficient Parallelism in MasterSlave() using CheckTaskResult()
	Modifying Task Output or Input (a dirty trick)
	The GOTO statement of the TOP-C model
	Being nice to other users (Nice, Alarm and LimitRss)
	Converting legacy sequential code to the TOP-C model

	Tutorial
	Trivial Parallelism
	Using ParGAP interactively
	Streaming
	TOP-C model for non-trivial parallelism

	MasterSlave Tutorial
	A simple example
	ParSquare
	ParInstallTOPCGlobalFunction() and TaskInputIterator() (ParSquare revisited)
	ParMultMat
	DefaultCheckTaskResult (as illustrated by ParSemiEchelonMatrix)
	Caching slave task outputs (ParSemiEchelonMat revisited)
	Agglomerating tasks for efficiency (ParSemiEchelonMat revisited again)
	Raw MasterSlave (ParMultMat revisited)

	Advanced Concepts for TOP-C model (MasterSlave)
	Tracing and Debugging
	Efficiency Considerations
	Checkpointing in TOP-C
	When Should a Slave Process be Considered Dead?

	MPI commands and UNIX system calls in ParGAP
	Tutorial introduction to the MPI C library
	Other low level commands

	Comments?
	Bibliography
	Index
	A
	B
	C
	D
	E
	F
	G
	I
	M
	N
	O
	P
	R
	S
	T
	U
	W

