[CM93] Collingwood, D. H. and McGovern, W. M., Nilpotent orbits in semisimple Lie algebras, Van Nostrand Reinhold Co., Van Nostrand Reinhold Mathematics Series, New York (1993).
[Gra08] Graaf, W. A. d., Computing with nilpotent orbits in simple Lie algebras of exceptional type, LMS J. Comput. Math., 11 (2008), 280-297 (electronic).
[Gra09] Graaf, W. A. d.,
Computing representatives of nilpotent orbits of
θ-groups
(2009)
(preprint, {\tt arXiv:0905.3149v2}[math.RT]).
[Gra10] Graaf, W. A. d.,
Constructing semisimple subalgebras of semisimple Lie
algebras
(2010)
(preprint, {\tt arXiv:1004.1972v1}[math.RA]).
[GE09] Graaf, W. A. d. and Elashvili, A. G.,
Induced nilpotent orbits of the simple Lie algebras
of exceptional type,
Georgian Mathematical Journal,
16 (2)
(2009),
257-278
({\tt arXiv:0905.2743v1}[math.RT]).
[GVY11] Graaf, W. A. d., Vinberg, E. B. and Yakimova, O. S.,
An effective method to compute closure ordering for nilpotent orbits
of θ-representations
(2011)
(preprint, {\tt arXiv:1107.1864v1}[math.AG]).
[GY10] Graaf, W. A. d. and Yakimova, O. S.,
Good index behaviour of θ-representations,
I
(2010)
(preprint, {\tt arXiv:1003.4162v1}[math.RT]).
[Hel78] Helgason, S., Differential geometry, Lie groups, and symmetric spaces, Academic Press Inc. [Harcourt Brace Jovanovich Publishers], Pure and Applied Mathematics, 80, New York (1978).
[Vin75] Vinberg, E. B., The classification of nilpotent elements of graded Lie algebras, Dokl. Akad. Nauk SSSR, 225 (4) (1975), 745-748.
[Vin76] Vinberg, E. B.,
The Weyl group of a graded Lie algebra,
Izv. Akad. Nauk SSSR Ser. Mat.,
40 (3)
(1976),
488-526, 709
(English translation: Math. USSR-Izv. 10, 463-495 (1976)).
[Vin79] Vinberg, E. B.,
Classification of homogeneous nilpotent elements of a
semisimple graded Lie algebra,
Trudy Sem. Vektor. Tenzor. Anal. (19)
(1979),
155-177
(English translation: Selecta Math. Sov. 6, 15-35 (1987)).
generated by GAPDoc2HTML