
SCSCP
Symbolic Computation Software

Composability Protocol

Version 2.1.4

17 November 2013

Alexander Konovalov
Steve Linton

Alexander Konovalov Email: alexk at mcs dot st-andrews dot ac dot uk

Homepage: http://www.cs.st-andrews.ac.uk/~alexk/
Address: School of Computer Science

University of St Andrews
Jack Cole Building, North Haugh,
St Andrews, Fife, KY16 9SX, Scotland

Steve Linton Email: sal at cs dot st-andrews dot ac dot uk

Homepage: http://www.cs.st-andrews.ac.uk/~sal/
Address: School of Computer Science

University of St Andrews
Jack Cole Building, North Haugh,
St Andrews, Fife, KY16 9SX, Scotland

mailto://alexk at mcs dot st-andrews dot ac dot uk
http://www.cs.st-andrews.ac.uk/~alexk/
mailto://sal at cs dot st-andrews dot ac dot uk
http://www.cs.st-andrews.ac.uk/~sal/

SCSCP 2

Abstract
The GAP package SCSCP implements the Symbolic Computation Software Composability protocol
(http://www.symbolic-computing.org/scscp) for the computational algebra system GAP.

Copyright
© 2007-2013 by Alexander Konovalov and Steve Linton

SCSCP is free software; you can redistribute it and/or modify it under the terms of the GNU General Public
License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any
later version. For details, see the FSF’s own site http://www.gnu.org/licenses/gpl.html.

If you obtained SCSCP, we would be grateful for a short notification sent to one of the authors.
If you publish a result which was partially obtained with the usage of SCSCP, please cite it in the following

form:
A. Konovalov and S. Linton. SCSCP — Symbolic Computation Software Composability Protocol, Version

2.1.4; 2013 (http://www.cs.st-andrews.ac.uk/~alexk/scscp.htm).

Acknowledgements
The project 026133 "SCIEnce - Symbolic Computation Infrastructure for Europe"
(http://www.symbolic-computing.org/) is supported by the EU FP6 Programme.

Colophon
Versions history:

• Version 0.1 - first half of 2007;

• Version 0.2 - December 2007;

• Version 0.3 - May 2008;

• Version 0.4 - August 2008;

• Version 1.0 - March 2009;

• Version 1.1 - May 2009;

• Version 1.2 - March 2010.

• Version 2.0 - October 2011.

• Version 2.1 - March 2012.

http://www.symbolic-computing.org/scscp
http://www.gnu.org/licenses/gpl.html
http://www.cs.st-andrews.ac.uk/~alexk/scscp.htm
http://www.symbolic-computing.org/

SCSCP 3

Contents

1 Preface 6

2 Installation 8
2.1 Installation and system requirements . 8
2.2 Configuration files . 8

3 Using streams 10
3.1 Input-output TCP streams . 10
3.2 Example of client-server communication via input-output TCP streams 11

4 Message exchange by SCSCP 13
4.1 Communication with the SCSCP server . 13
4.2 Communication with the SCSCP client . 16
4.3 Example: SCSCP session . 17

5 Running SCSCP server 18
5.1 Installation of SCSCP procedures . 18
5.2 Starting SCSCP server . 20
5.3 Procedures to get information about the SCSCP server 21

6 Client’s functionality 24
6.1 SCSCP connections . 24
6.2 Processes . 25
6.3 All-in-one tool: sending request and getting result 27
6.4 Switching between Binary and XML OpenMath Encodings 28
6.5 Remote objects . 31

7 Examples of SCSCP usage 35
7.1 Providing services with the SCSCP package . 35
7.2 Identifying groups of order 512 . 35

8 Parallel computing with SCSCP 38
8.1 Managing multiple requests . 38
8.2 MasterWorker skeleton . 40
8.3 Example: parallelising Karatsuba multiplication for polynomials 43

4

SCSCP 5

9 Service functions 46
9.1 Pinging SCSCP servers . 46
9.2 Info classes for SCSCP . 47
9.3 Other SCSCP Utilities . 50

References 53

Index 54

Chapter 1

Preface

The GAP package SCSCP implements the Symbolic Computation Software Composability protocol
[FHK+b]. This protocol specifies an OpenMath-based remote procedure call framework, in which all
messages (procedure calls and returns of results of successful computation or error messages) are en-
coded in OpenMath using content dictionaries scscp1 and scscp2 ([FHK+a], [FHK+c]). Using the
SCSCP package, GAP can communicate locally or remotely with any other OpenMath-enabled SC-
SCP-compliant application which may be not only another computer algebra system but also another
instance of the GAP system or even, for example, an external Java or C/C++ application via libraries
http://java.symcomp.org/ or http://www.imcce.fr/Equipes/ASD/trip/scscp/ providing
an SCSCP API. Such communication will go into seamless manner for the GAP user, since all con-
versions from GAP to OpenMath and vice versa will be performed in the background. See the SCI-
Ence project homepage http://www.symbolic-computing.org/ for the details about computer
algebra systems and other sotware supporting SCSCP

The SCSCP package for GAP has two main components:

• SCSCP server;

• SCSCP client.

There are several ways to start GAP SCSCP server:

• call RunSCSCPserver (5.2.1) from the GAP session specifying the server name and the port
number from the GAP session;

• start GAP as gap myserver.g, where myserver.g is the server configuration file with the last
command being the call of RunSCSCPserver (5.2.1) (an example of such configuration file is
given in scscp/example/myserver.g);

• start GAP as a daemon using the script gapd.sh which is supplied in the root directory of the
package (for the description of all available options see comments in gapd.sh).

During startup the server installs all procedures that it will provide and loads their lookup mechanisms,
and then begins to listen to the specified port. The recommended port number is 26133 which has
been assigned to SCSCP by the Internet Assigned Numbers Authority (IANA) in November 2007,
see http://www.iana.org/assignments/port-numbers.

When the server accepts a connection from client, it starts the "accept-evaluate-return" loop:

• accepts the "procedure_call"; message;

6

http://java.symcomp.org/
http://www.imcce.fr/Equipes/ASD/trip/scscp/
http://www.symbolic-computing.org/
http://www.iana.org/assignments/port-numbers

SCSCP 7

• performs lookup of the appropriate GAP function;

• evaluates the result (or produces a side-effect);

• returns the result in the "procedure_completed" message or returns an error in the
"procedure_terminated" message.

The server works in a "multi-user" mode. When one client is connected, the server is busy for other
clients. As soon as the computation is finished and the client is disconnected, the server is waiting
for the next connection, and normally it never stops until it will be terminated by the service provider.
The server maintain a queue of five incoming connections (this parameter can be easily modified),
and on each iteration evaluates the next request from the queue.

There is an SCSCP server accessible at chrystal.mcs.st-andrews.ac.uk, port 26133. It
is running under development versions of the GAP system and a selection of currently distributed
packages. The reader is encouraged to try to use examples from the manual to access this service,
replacing "localhost" by its address, where appropriate. Please report to Alexander Konovalov if
you will discover any bugs or if the server seems not available.

The SCSCP client:

• establishes connection with the specified server at the specified port;

• sends the "procedure_call" message to the server;

• waits for the result of the computation or returns to pick it up later;

• fetches the response, extracting the result from the "procedure_completed" message or en-
tering the break loop in the case of the "procedure_terminated" message.

On the top of this functionality we built a set of instructions for simple parallel computations frame-
work using the SCSCP protocol, which allows to send several procedure calls in parallel and then
collect all results or pick up the first available result, and implements the master-worker skeleton.
These tools are presented in the Chapter 8.

The package also implements a new kind of GAP input-output streams, namely input-output TCP
streams (see Chapter 3), based on the functionality for TCP/IP protocol usage provided by the GAP
package IO. Such streams may constitute an independent interest for adapting streams-using GAP
code to use streams across the network.

Finally, the manual describes how the communication by SCSCP goes between several instances
of the GAP system, but the same behaviour is expected from any SCSCP-compliant application: the
set of supported OpenMath symbols clearly will be different, but the rules of communication are
precisely specified in the SCSCP specification [FHK+b]. See the homepage of the SCIEnce project
http://www.symbolic-computing.org/ for the information about SCSCP-compliant computer
algebra systems and other tools developed in the project.

http://www.symbolic-computing.org/

Chapter 2

Installation

2.1 Installation and system requirements

The SCSCP client for GAP is fully functional under GAP 4.4 and works in UNIX/Linux environ-
ments, Mac OS X (UNIX installation) and MS Windows.

The SCSCP server for GAP works in UNIX/Linux environments and Mac OS X (UNIX installa-
tion), but does not work under MS Windows. It is fully functional with the GAP development version
and goes automatically into the compatibility mode to work with GAP 4.4.12 and earlier versions.
The only limitation of this compatibility mode is that in the case of an error the break loop occurs
on the server and can not be transmitted to the client (however, if the service consumer is the service
provider himself/herself, then this is not as crucial as it might be in the general case). After the GAP
4.5 release the package will fully be compatible with the official GAP releases.

To use the SCSCP package it is necessary to install recent versions of GAP4 packages IO [Neu],
GAPDoc [LN] and OpenMath [CKS].

The SCSCP package is distributed in standard formats (tar.gz, tar.bz2) and can be obtained
from http://www.cs.st-andrews.ac.uk/~alexk/scscp.htm or from the GAP web site (the lat-
ter also offers zoo- and win.zip-archives. To unpack the zoo-archive the program unzoo is needed,
which can be obtained from the GAP homepage http://www.gap-system.org/ (see section ‘Dis-
tribution’). To install SCSCP package, put its zoo-archive into the pkg subdirectory of your GAP4.4
installation and enter the command unzoo -x scscp-X.X.X.zoo, then the subdirectory scscp (con-
taining subdirectories doc, lib etc.) will be created in the pkg subdirectory. Installation using other
archive formats is performed in a similar way.

When there are no access rights to the root directory of the main GAP installation, it is also
possible to install the package outside the GAP main directory by unpacking it inside a directory
MYGAPDIR/pkg. Then to load the package GAP should be started with -l ";MYGAPDIR" option.

2.2 Configuration files

There are four files in the package which may need to be modified to setup and customise the package.
The first three files are related with the server’s functionality:

• scscp/config.g specifies:

– default InfoLevel for the InfoSCSCP (9.2.1) class;

8

http://www.cs.st-andrews.ac.uk/~alexk/scscp.htm
http://www.gap-system.org/

SCSCP 9

– default SCSCP server name and port to be used by RunSCSCPserver (5.2.1) if GAP is
started with the scscp/example/myserver.g file;

– whether the server accepts calls to procedures which are standard OpenMath
symbols, or only procedures installed in the transient content dictionary (see
InstallSCSCPprocedure (5.1.1));

– service description to be returned to the client by GetServiceDescription (5.3.1).

• scscp/gapd.sh is the script to start the GAP SCSCP server as a daemon. To use it, adjust
the local call of GAP and, if necessary, call options (for example, memory usage, startup from
the workspace etc.) and the location of the root directory of the SCSCP package in section 1
of this script.

• scscp/example/myserver.g is an example of the server configuration file which loads all
necessary packages, reads all needed code, installs all procedures which will be exposed to the
client and finally starts the SCSCP server (see Chapter 5).

The fourth file is related with the client’s functionality for parallel computations:

• The file scscp/configpar.g assigns the global variable SCSCPservers which specifies a
list of hosts and ports to search for SCSCP services (which may be not only represented by
GAP services, but also by another SCSCP-compliant systems). It will be used to run parallel
computations with the SCSCP package (see Chapter 8).

See comments in these configuration files for further details and examples.

Chapter 3

Using streams

The package implements new kind of GAP input-output streams, called input-output TCP streams.
Such streams are based on the functionality for the TCP/IP protocol usage provided by the GAP
package IO, and may constitute an independent interest for GAP users.

Input-output TCP streams are intended to support all operations, implemented for streams in
GAP. It is assumed that all existing code using streams should work with this kind of streams as
well (please let us know, if you will notice that this is not the case!). We installed methods for input-
output TCP streams to support the following operations: ViewObj (Reference: ViewObj), PrintObj
(Reference: PrintObj), ReadByte (Reference: ReadByte), ReadLine (Reference: ReadLine),
ReadAll (Reference: ReadAll), WriteByte (Reference: WriteByte), WriteLine (Reference:
WriteLine), WriteAll (Reference: WriteAll), IsEndOfStream (Reference: IsEndOfStream),
CloseStream (Reference: CloseStream), FileDescriptorOfStream (Reference: FileDescrip-
torOfStream), UNIXSelect (Reference: UNIXSelect).

3.1 Input-output TCP streams

3.1.1 IsInputOutputTCPStream

. IsInputOutputTCPStream (filter)

IsInputOutputTCPStream is a subcategory of IsInputOutputStream (Reference: IsIn-
putOutputStream). Streams in the category IsInputOutputTCPStream are created with the help
of the function InputOutputTCPStream (3.1.3) with one or two arguments dependently on whether
they will be used in the client or server mode. Examples of their creation and usage will be given in
subsequent sections.

3.1.2 IsInputOutputTCPStreamRep

. IsInputOutputTCPStreamRep (filter)

This is the representation used for streams in the category IsInputOutputTCPStream (3.1.1).

10

SCSCP 11

3.1.3 InputOutputTCPStream (for server)

. InputOutputTCPStream(desc) (function)

. InputOutputTCPStream(host, port) (function)

Returns: stream
The one-argument version must be called from the SCSCP server. Its argument desc must be a

socket descriptor obtained using IO_accept (IO: IO_accept) function from the IO package (see the
example below). It returns a stream in the category IsInputOutputTCPStream (3.1.1) which will
use this socket to accept incoming connections. In most cases, the one-argument version is called
automatically from RunSCSCPserver (5.2.1) rather then manually.

The version with two arguments, a string host and an integer port , must be called from the
SCSCP client. It returns a stream in the category IsInputOutputTCPStream (3.1.1) which will
be used by the client for communication with the SCSCP server running at hostname host on port
port . In most cases, the two-argument version is called automatically from the higher level functions,
for example, EvaluateBySCSCP (6.3.1).

3.2 Example of client-server communication via input-output TCP
streams

The following example demonstrates the low-level interaction between client and server using input-
output TCP stream, and shows how such streams are created in the function RunSCSCPserver (5.2.1).
It uses some functions from the IO package (see the IO manual for their description). We will show
step by step what is happens on server and client (of course, if you will try this example, the numbers
denoting descriptors may be different).

Firts, we will start two GAP sessions, one for the server, another one for the client. Now we enter
the following commands on the server’s side:

Example

gap> sock := IO_socket(IO.PF_INET, IO.SOCK_STREAM, "tcp");

3

gap> lookup := IO_gethostbyname("localhost");

rec(name := "localhost", aliases := [], addrtype := 2, length := 4,

addr := ["\177\000\000\>"])

gap> port:=26133;

26133

gap> res := IO_bind(sock, IO_make_sockaddr_in(lookup.addr[1], port));

true

gap> IO_listen(sock, 5);

true

gap> socket_descriptor := IO_accept(sock, IO_MakeIPAddressPort("0.0.0.0",0));

After the last command you will not see the GAP prompt because the server starts to wait for an
incoming connection. Now we go to the client’s side and create an input-output TCP stream to the
server. Here it can be created in one step:

Example

gap> clientstream:=InputOutputTCPStream("localhost", 26133);

Creating a socket...

SCSCP 12

Connecting to a remote socket via TCP/IP...

Now we are trying to connect to the server, and as soon as the connection will be established, the
stream will be created at the client side, and we will see the output and the new GAP prompt:

Example

< input/output TCP stream to localhost >

gap>

On the server you will get the socket descriptor and then you will be able to create a stream from it:
Example

4

gap> serverstream := InputOutputTCPStream(socket_descriptor);

< input/output TCP stream to socket >

Now we can write to this stream on the client side and then read from it on the server side and
backwards. First, write on the client:

Example

gap> WriteLine(clientstream, "12345");

true

Now read and write on the server:
Example

gap> ReadLine(serverstream);

"12345\n"

gap> WriteLine(serverstream, "54321");

true

And finally we read on the client and close the stream:
Example

gap> ReadLine(clientstream);

"54321\n"

gap> CloseStream(clientstream);

and similarly close the stream on the server:
Example

gap> CloseStream(serverstream);

In this way one can organise remote communication between two copies of GAP in various ways.
In subsequent chapters we explain how it is implemented using SCSCP to ensure compatibility not
only with GAP but with any other SCSCP-compliant system.

Chapter 4

Message exchange by SCSCP

To ensure the message exchange as required by SCSCP specification, the SCSCP package extends
the global record OMsymRecord from the OpenMath package with new entries to support scscp1
and scscp2 content dictionaries ([FHK+a], [FHK+c]), and also service-dependent transient private
content dictionaries (see Chapter 5 for details about transient content dictionaries). It also overwrites
some OpenMath functions by their extended (but backwards compatible) versions, and adds some
new OpenMath-related functions to send and receive SCSCP messages, documented below.

Note that functions documented in this chapter belong to the middle-level interface, and the user
may find it more convenient to use functions developed on top of them and explained in next chapters.

4.1 Communication with the SCSCP server

4.1.1 StartSCSCPsession

. StartSCSCPsession(stream) (function)

Returns: string
Initialises SCSCP session and negotiates with the server about the version of the protocol. Re-

turns the string with the service_id (which may be used later as a part of the call identifier) or causes
an error message if can not perform these tasks.

Example

gap> s := InputOutputTCPStream("localhost",26133);

< input/output TCP stream to localhost:26133 >

gap> StartSCSCPsession(s);

"localhost:26133:5541"

gap> CloseStream(s);

After the call to StartSCSCPsession the SCSCP server is ready to accept procedure calls.

4.1.2 OMPutProcedureCall

. OMPutProcedureCall(stream, proc_name, objrec) (function)

Returns: nothing
Takes a stream stream , the string proc_name and a record objrec , and writes to stream an

OpenMath object procedure_call for the procedure proc_name with arguments given by the list

13

SCSCP 14

objrec.object and procedure call options (which should be encoded as OpenMath attributes) given
in the list objrec.attributes.

This function accepts options cd and debuglevel.
cd:="cdname" may be used to specify the name of the content dictionary if the procedure is actu-

ally a standard OpenMath symbol. Note that the server may reject such a call if it accepts only calls of
procedures from the transient content dictionary, see InstallSCSCPprocedure (5.1.1) for explana-
tion). If the cdname is not specified, scscp_transient_1 content dictionary will be assumed by de-
fault. The value of the debuglevel option is an integer. If it is non-zero, the procedure_completed
message will carry on also some additional information about the call, for example, runtime and
memory used.

Example

gap> t:="";; stream:=OutputTextString(t,true);;

gap> OMPutProcedureCall(stream, "WS_Factorial", rec(object:= [5],

> attributes:=[["call_id", "user007"],

> ["option_runtime",1000],

> ["option_min_memory",1024],

> ["option_max_memory",2048],

> ["option_debuglevel",1],

> ["option_return_object"]]));;

gap> Print(t);

<?scscp start ?>

<OMOBJ>

<OMATTR>

<OMATP>

<OMS cd="scscp1" name="call_id"/>

<OMSTR>user007</OMSTR>

<OMS cd="scscp1" name="option_runtime"/>

<OMI>1000</OMI>

<OMS cd="scscp1" name="option_min_memory"/>

<OMI>1024</OMI>

<OMS cd="scscp1" name="option_max_memory"/>

<OMI>2048</OMI>

<OMS cd="scscp1" name="option_debuglevel"/>

<OMI>1</OMI>

<OMS cd="scscp1" name="option_return_object"/>

<OMSTR></OMSTR>

</OMATP>

<OMA>

<OMS cd="scscp1" name="procedure_call"/>

<OMA>

<OMS cd="scscp_transient_1" name="WS_Factorial"/>

<OMI>5</OMI>

</OMA>

</OMA>

</OMATTR>

</OMOBJ>

<?scscp end ?>

SCSCP 15

4.1.3 SCSCPwait

. SCSCPwait(stream[, timeout]) (function)

Returns: nothing
This function may be used by the SCSCP client to wait (using IO_select (IO: IO_select)) until

the result of the procedure call will be available from stream . By default the timeout is one hour, to
specify another value give it as the optional second argument in seconds. See the end of this chapter
for the example.

4.1.4 OMGetObjectWithAttributes

. OMGetObjectWithAttributes(stream) (function)

Returns: record with components object and attributes, or fail
This function is similar to the function OMGetObject from the OpenMath package, and the

main difference is that it is able to understand OpenMath attribution pairs. It retrieves exactly one
OpenMath object from the stream stream , and stores it in the object component of the returned
record. If the OpenMath object has no attributes, the attributes component of the returned record
will be an empty list, otherwise it will contain pairs [attribute_name,attribute_value], where
attribute_name is a string, and attribute_value is a GAP object, whose type is determined
by the kind of an attribute. Only attributes, defined by the SCSCP are allowed, otherwise an error
message will be displayed.

If the procedure was not successful, the function returns fail instead of an error message like
the function OMGetObject (OpenMath: OMGetObject) does. Returning fail is useful when
OMGetObjectWithAttributes is used inside accept-evaluate-return loop.

As an example, the file scscp/tst/omdemo.om contains some OpenMath objects, including
those from the SCSCP Specification [FHK+b]. We can retrieve them from this file, preliminary
installing some SCSCP procedures using the function InstallSCSCPprocedure (5.1.1):

Example

gap> InstallSCSCPprocedure("WS_Factorial", Factorial);

gap> InstallSCSCPprocedure("GroupIdentificationService", IdGroup);

gap> InstallSCSCPprocedure("GroupByIdNumber", SmallGroup);

gap> InstallSCSCPprocedure("Length", Length, 1, 1);

gap> test:=Filename(Directory(Concatenation(

> GAPInfo.PackagesInfo.("scscp")[1].InstallationPath,"/tst/")),

> "omdemo.om");;

gap> stream:=InputTextFile(test);;

gap> OMGetObjectWithAttributes(stream);

rec(

attributes := [["option_return_object", ""], ["call_id", "5rc6rtG62"]]

, object := 6)

gap> OMGetObjectWithAttributes(stream);

rec(attributes := [], object := 1)

gap> OMGetObjectWithAttributes(stream);

rec(attributes := [], object := 120)

gap> OMGetObjectWithAttributes(stream);

rec(

attributes := [["call_id", "alexk_9053"], ["option_runtime", 300000],

["option_min_memory", 40964], ["option_max_memory", 134217728],

["option_debuglevel", 2], ["option_return_object", ""]],

SCSCP 16

object := [24, 12])

gap> OMGetObjectWithAttributes(stream);

rec(

attributes := [["call_id", "alexk_9053"], ["option_return_cookie", ""]

], object := <pc group of size 24 with 4 generators>)

gap> OMGetObjectWithAttributes(stream);

rec(attributes := [["call_id", "alexk_9053"], ["info_runtime", 1234],

["info_memory", 134217728]], object := [24, 12])

gap> CloseStream(stream);

4.2 Communication with the SCSCP client

4.2.1 OMPutProcedureCompleted

. OMPutProcedureCompleted(stream, objrec) (function)

Returns: true

Takes a stream stream , and a record objrec , and writes to stream an OpenMath object
procedure_completed with the result being objrec.object and information messages (as Open-
Math attributes) given in the list objrec.attributes.

Example

gap> t:="";; stream:=OutputTextString(t,true);;

gap> OMPutProcedureCompleted(stream,

> rec(object:=120,

> attributes:=[["call_id", "user007"]]));

true

gap> Print(t);

<?scscp start ?>

<OMOBJ>

<OMATTR>

<OMATP>

<OMS cd="scscp1" name="call_id"/>

<OMSTR>user007</OMSTR>

</OMATP>

<OMA>

<OMS cd="scscp1" name="procedure_completed"/>

<OMI>120</OMI>

</OMA>

</OMATTR>

</OMOBJ>

<?scscp end ?>

4.2.2 OMPutProcedureTerminated

. OMPutProcedureTerminated(stream, objrec, error_cd, error_type) (function)

Returns: nothing
Takes a stream stream , and a record with an error message objrec (for example rec(

attributes := [["call_id", "localhost:26133:87643:gcX33cCf"]], object :=

SCSCP 17

"localhost:26133 reports : Rational operations: <divisor> must not be zero")

and writes to the stream an OpenMath object procedure_terminated containing an error
determined by the symbol error_type from the content dictionary error_cd (for example,
error_memory, error_runtime or error_system_specific from the scscp1 content dictionary
([FHK+a]).

This is the internal function of the package which is used only in the code for the SCSCP server
to return the error message to the client.

4.3 Example: SCSCP session

In the following example we start an SCSCP session and perform ten procedure calls in a loop before
closing that session. Note that we demonstrate the usage of the session ID sid and the function
RandomString from the OpenMath package to produce some unique call identifier. The call ID is a
mandatory attribute for any procedure call, however, it is not nesessarily random; for example, it may
be just a string with the number of the procedure call.

Example

gap> stream:=InputOutputTCPStream("localhost", 26133);

< input/output TCP stream to localhost:26133 >

gap> sid := StartSCSCPsession(stream);

"localhost:26133:5541"

gap> res:=[];

[]

gap> for i in [1..10] do

> OMPutProcedureCall(stream, "WS_Factorial",

> rec(object := [i],

> attributes := [["call_id",

> Concatenation(sid, ":", RandomString(8))]]));

> SCSCPwait(stream);

> res[i]:=OMGetObjectWithAttributes(stream).object;

> od;

gap> CloseStream(stream);

gap> res;

[1, 2, 6, 24, 120, 720, 5040, 40320, 362880, 3628800]

Also note the usage of SCSCPwait (4.1.3) to wait until the result of the computation will be available
from stream.

In this example we assumed that there is an SCSCP server running at localhost, port 26133.
In the next chapter we will explain how to configure and run a GAP SCSCP server and how to
interrogate it from a GAP client to learn about its functionality. After that, we will proceed with the
SCSCP client functionality for the end-user.

Chapter 5

Running SCSCP server

5.1 Installation of SCSCP procedures

There may various ways to run SCSCP server, for example:

• allowing generic services like evaluation of arbitrary OpenMath code;

• offering highly specialized procedures like identification of groups of order 512;

• providing access to a database of mathematical objects.

Each of these use cases requires certain control over the level of functionality exposed to the
client. To achieve this, before starting SCSCP service its provider must call the function
InstallSCSCPprocedure (5.1.1) to make required procedures “visible” for the client.

Additionally, the service can be made made accessible only for clients running on the same com-
puter, or accessible only through a particular network interface, or generally accessible. This cus-
tomization is made at the stage of starting the SCSCP server with the function RunSCSCPserver

(5.2.1).

5.1.1 InstallSCSCPprocedure

. InstallSCSCPprocedure(procname, procfunc[, description][, narg1[, narg2][,

signature]]) (function)

Returns: nothing
For a string procname and a function procfunc , InstallSCSCPprocedure makes the

procfunc available as SCSCP procedure under the name procname , adding it to the transient Open-
Math content dictionary scscp_transient_1 that will exist during the service lifetime.

The second argument procfunc may be either a standard or user-defined GAP function (proce-
dure, operation, etc.).

The rest of arguments are optional and may be used in a number of combinations:

• description is a string with the description of the procedure. It may be used by the help
system. If it is omitted, the procedure will be reported as undocumented.

• narg1 is a non-negative integer, specifying the minimal number of arguments, and narg2 is
a non-negative integer or infinity, specifying the maximal number of arguments. If narg2 is
omitted then the maximal number of arguments will be set to narg1 . If both narg1 and narg2

18

SCSCP 19

are omitted then the minimal number of arguments will be set to zero and their maximal number
will be set to infinity.

• signature is the signature record of the procedure. If the signature is given, then the num-
ber of arguments must be explicitly specified (by narg1 with or without narg2) at least to zero
and infinity respectively (to ensure proper matching of arguments). Note that it is completely
acceptable for a symbol from a transient content dictionary to overstate the set of symbols
which may occur in its children using the scscp2.symbol_set_all symbol, and to use stan-
dard OpenMath errors to reject requests later at the stage of their evaluation. For example,
using such approach, we will define the procedure WS_Factorial accepting not only immedi-
ate <OMI> objects but anything which could be evaluated to an integer.

. The signature must be either a list of records, where i-th record corresponds to the i-th argu-
ment, or a record itself meaning that it specifies the signature for all arguments. In the latter
case the record may be rec() corresponding to the scscp2.symbol_set_all symbol (this
will be assumed by default if the signature will be omitted).

If more detailed description of allowed arguments is needed, the signature record (one for all
arguments or a specific one) may have components CDgroups, CDs and Symbols. The first
two are lists of names of content dictionary groups and content dictionaries, and the third is
a record whose components are names of content dictionaries, containing lists of names of
allowed symbols from these dictionaries,for example:

Example

signature := rec(CDgroups := ["scscp"],

CDs := ["arith1", "linalg1"],

Symbols := rec(polyd1 := ["DMP", "term", "SDMP"],

polyu := ["poly_u_rep", "term"]));

In the following example we define the function WS_Factorial that takes an integers and returns its
factorial, using only mandatory arguments of InstallSCSCPprocedure:

Example

gap> InstallSCSCPprocedure("WS_Factorial", Factorial);

InstallSCSCPprocedure : procedure WS_Factorial installed.

In the following example we install the procedure that will accept a list of permutations and return the
number in the GAP Small Groups library of the group they generate (for the sake of simplicity we
omit tests of validity of arguments, availability of IdGroup for groups of given order etc.)

Example

gap> IdGroupByGenerators:=function(permlist)

> return IdGroup(Group(permlist));

> end;

function(permlist) ... end

gap> InstallSCSCPprocedure("GroupIdentificationService", IdGroupByGenerators);

InstallSCSCPprocedure : procedure GroupIdentificationService installed.

SCSCP 20

After installation, the procedure may be reinstalled, if necessary:
Example

gap> InstallSCSCPprocedure("WS_Factorial", Factorial);

WS_Factorial is already installed. Do you want to reinstall it [y/n]? y

InstallSCSCPprocedure : procedure WS_Factorial reinstalled.

Finally, some examples of various combinations of optional arguments:
Example

InstallSCSCPprocedure("WS_Phi", Phi,

"Euler's totient function, see ?Phi in GAP", 1, 1);

InstallSCSCPprocedure("GroupIdentificationService",

IdGroupByGenerators, 1, infinity, rec());

InstallSCSCPprocedure("IdGroup512ByCode", IdGroup512ByCode, 1);

InstallSCSCPprocedure("WS_IdGroup", IdGroup, "See ?IdGroup in GAP");

Note that it is quite acceptable to overstate the signature of the procedure and use only mandatory
arguments in a call to InstallSCSCPprocedure, which will be installed then as a procedure that
can accept arbitrary number of arguments encoded without any restrictions on OpenMath symbols
used, because anyway the GAP system will return an error in case of the wrong number or type
of arguments, though it might be a good practice to give a way to the client to get more precise
procedure description a priori, that is before sending request. See 5.3 about utilities for obtaining such
information about the SCSCP service.

Some more examples of installation of SCSCP procedures are given in the file
scscp/example/myserver.g.

5.1.2 OMsymRecord

. OMsymRecord (global variable)

This is the global record from the OpenMath package used for the conversion from OpenMath to
GAP. It is extended in the SCSCP package by adding support for symbols from scscp1 and scscp2

content dictionaries ([FHK+a], [FHK+c]). Additionally, InstallSCSCPprocedure (5.1.1) adds to
this record a component corresponding to the appropriate transient content dictionary (by default,
scscp_transient_1) defining mappings between OpenMath symbols from this content dictionary
and installed SCSCP procedures.

5.2 Starting SCSCP server

5.2.1 RunSCSCPserver

. RunSCSCPserver(servertype, port) (function)

Returns: nothing
Will start the SCSCP server at port given by the integer port . The first parameter servertype

is either true, false or a string containing the server hostname:

SCSCP 21

• when servertype is true, the server will be started in a “universal” mode and will accept all
incoming connections;

• when servertype is false, the server will be started at localhost and will not accept any
incoming connections from outside;

• when servertype is a string, for example, "scscp.symbolic-computing.org", the server
will be accessible only by specified server name (this may be useful to manage accessibility if,
for example, the hardware has several network interfaces).

Example

gap> RunSCSCPserver("localhost", 26133);

Ready to accept TCP/IP connections at localhost:26133 ...

Waiting for new client connection at localhost:26133 ...

Actually, there is more than one way to run GAP SCSCP server:

• from the GAP session as shown in the example above;

• starting GAP as gap myserver.g, where myserver.g is the server configuration file with
the last command being the call RunSCSCPserver (5.2.1), which may take its arguments
from the configuration file scscp/config.g (an example of such configuration file is given
in scscp/example/myserver.g);

• start GAP as a daemon using the script gapd.sh which is supplied in the root directory of
the package (for the description of all available options see comments in gapd.sh) and may
overwrite parameters from scscp/config.g.

See Section 2.2 about configuring files config.g and gapd.sh.

5.3 Procedures to get information about the SCSCP server

5.3.1 GetServiceDescription

. GetServiceDescription(server, port) (function)

Returns: record
Returns the record with three components containing strings with the name, version and descrip-

tion of the service as specified by the service provider in the scscp/config.g (for details about
configuration files, see 2.2).

Example

gap> GetServiceDescription("localhost", 26133);

rec(

description := "Started with the demo file scscp/example/myserver.g \

on Sat 8 Oct 2011 17:24:13 BST", service_name := "GAP SCSCP service",

version := "GAP 4.4.12 + SCSCP 2.0.0")

SCSCP 22

5.3.2 GetAllowedHeads

. GetAllowedHeads(server, port) (function)

Returns: record
Returns the record with components corresponding to content dictionaries. Each component is

a list of names of symbols from the corresponding content dictionary which are allowed to appear
as a “head” symbol (i.e. the first child of the outermost <OMA>) in an SCSCP procedure call to the
SCSCP server running at server:port .

Note that it is acceptable (although not quite desirable) for a server to “overstate” the set of sym-
bols it accepts and use standard OpenMath errors to reject requests later.

Example

gap> GetAllowedHeads("localhost",26133);

rec(scscp_transient_1 := ["GroupIdentificationService",

"IO_UnpickleStringAndPickleItBack", "IdGroup512ByCode", "PointImages",

"QuillenSeriesByIdGroup", "SCSCPStartTracing", "SCSCPStopTracing",

"WS_ConwayPolynomial", "WS_Factorial", "WS_FactorsCFRAC", "WS_FactorsECM",

"WS_FactorsMPQS", "WS_FactorsPminus1", "WS_FactorsPplus1", "WS_FactorsTD",

"WS_IdGroup", "WS_Karatsuba", "WS_Phi"])

5.3.3 IsAllowedHead

. IsAllowedHead(cd, symbol, server, port) (function)

Returns: true or false
Checks whether the OpenMath symbol cd.symbol , which may be a symbol from a standard or

transient OpenMath content dictionary, is allowed to appear as “head” symbol (i.e. the first child of
the outermost <OMA> in an SCSCP procedure call to the SCSCP server running at server:port .
This enables the client to check whether a particular symbol is allowed without requesting the full list
of symbols.

Also, it is acceptable (although not necessarily desirable) for a server to “overstate” the set of
symbols it accepts and use standard OpenMath errors to reject requests later.

Example

gap> IsAllowedHead("permgp1", "group", "localhost", 26133);

true

gap> IsAllowedHead("nums1", "pi", "localhost", 26133);

false

5.3.4 GetTransientCD

. GetTransientCD(transient_cd, server, port) (function)

Returns: record
Returns a record with the transient content dictionary transient_cd from the SCSCP server

running at server:port . Names of components of this record correspond to symbols from the meta
content dictionary.

By default, the name of the transient content dictionary for the GAP SCSCP server is
scscp_transient_1. Other systems may use transient content dictionaries with another names,

SCSCP 23

which, however, must always begin with scscp_transient_ and may be guessed from the output of
GetAllowedHeads (5.3.2).

Example

gap> GetTransientCD("scscp_transient_1", "localhost", 26133);

rec(CDDate := "2011-10-08",

CDDefinitions :=

[rec(Description := "Size is currently undocumented.", Name := "Size"),

rec(Description := "Length is currently undocumented.",

Name := "Length"),

rec(Description := "NrConjugacyClasses is currently undocumented.",

Name := "NrConjugacyClasses"),

...

rec(Description := "MatrixGroup is currently undocumented.",

Name := "MatrixGroup")], CDName := "scscp_transient_1",

CDReviewDate := "2011-10-08", CDRevision := "0", CDStatus := "private",

CDVersion := "0",

Description := "This is a transient CD for the GAP SCSCP service")

5.3.5 GetSignature

. GetSignature(transientcd, symbol, server, port) (function)

Returns: record
Returns a record with the signature of the OpenMath symbol transientcd.symbol from a tran-

sient OpenMath content dictionary. This record contains components corresponding to the Open-
Math symbol whose signature is described, the minimal and maximal number of its children (that is,
of its arguments), and symbols which may be used in the OpenMath encoding of its children. Note
that it is acceptable for a symbol from a transient content dictionary to overstate the set of symbols
which may occur in its children using the scscp2.symbol_set_all symbol, and use standard Open-
Math errors to reject requests later, like in the example below: using such approach, the procedure
WS_Factorial is defined to accept not only immediate <OMI> objects but anything which could be
evaluated to an integer.

Example

gap> GetSignature("scscp_transient_1","WS_Factorial","localhost",26133);

rec(maxarg := 1, minarg := 1,

symbol := rec(cd := "scscp_transient_1", name := "WS_Factorial"),

symbolargs := rec(cd := "scscp2", name := "symbol_set_all"))

Chapter 6

Client’s functionality

Sending and getting requests to the SCSCP server(s), the client operates with processes. Process is
an abstraction which in other words may be also called a remote task. It encapsulates an input/output
TCP stream (see IsInputOutputTCPStream (3.1.1)) from the client to the server and the process ID
of the CAS running as a server (deduced from the connection initiation message; may be unassigned,
if the server CAS did not communicate it).

There are two ways to create processes. One of them is to specify the hostname and port where
the SCSCP server is running; in this case a new input/output TCP stream will be created. Another
way is first to establish the connection with the SCSCP server using NewSCSCPconnection (6.1.2)
and then keep it alive across multiple remote procedure calls, thus saving time on the DNS lookup
and connection initiation. This may give a good speedup in computations with an intensive message
exchange. Note that as long as such connection is open, other SCSCP clients will not be able to get
through, so if several clients are interchanging with the SCSCP server at the same time, they should
not block each other with long-lasting connections.

6.1 SCSCP connections

6.1.1 IsSCSCPconnection

. IsSCSCPconnection (filter)

This is the category of SCSCP connections. Objects in this category are created using the func-
tion NewSCSCPconnection (6.1.2).

6.1.2 NewSCSCPconnection

. NewSCSCPconnection(hostname, port) (function)

For a string hostname and an integer port , creates an object in the category
IsSCSCPconnection (6.1.1). This object will encapsulate two objects: tcpstream, which is
the input/output TCP stream to hostname:port , and session_id, which is the result of calling
StartSCSCPsession (4.1.1) on tcpstream. The connection will be kept alive across multiple re-
mote procedure calls until it will be closed with CloseSCSCPconnection (6.1.3).

Example

gap> SetInfoLevel(InfoSCSCP, 2);

24

SCSCP 25

gap> s:=NewSCSCPconnection("localhost",26133);

#I Creating a socket ...

#I Connecting to a remote socket via TCP/IP ...

#I Got connection initiation message

#I <?scscp service_name="GAP" service_version="4.dev" service_id="localhost:2\

6133:52918" scscp_versions="1.0 1.1 1.2 1.3" ?>

#I Requesting version 1.3 from the server ...

#I Server confirmed version 1.3 to the client ...

< connection to localhost:26133 session_id=localhost:26133:52918 >

gap> CloseSCSCPconnection(s);

6.1.3 CloseSCSCPconnection

. CloseSCSCPconnection(s) (function)

Returns: nothing
Closes SCSCP connection s , which must be an object in the category IsSCSCPconnection

(6.1.1). Internally, it just calls CloseStream (Reference: CloseStream) on the underlying in-
put/output TCP stream of s .

Example

gap> SetInfoLevel(InfoSCSCP, 0);

gap> s:=NewSCSCPconnection("localhost",26133);

< connection to localhost:26133 session_id=localhost:26133:52918 >

gap> CloseSCSCPconnection(s);

6.2 Processes

6.2.1 IsProcess

. IsProcess (filter)

This is the category of processes. Processes in this category are created using the function
NewProcess (6.2.2).

6.2.2 NewProcess

. NewProcess(command, listargs, server, port) (function)

. NewProcess(command, listargs, connection) (function)

Returns: object in the category IsProcess

In the first form, command and server are strings, listargs is a list of GAP objects and port

is an integer.
In the second form, an SCSCP connection in the category NewSCSCPconnection (6.1.2) is used

instead of server and port.
Calls the SCSCP procedure with the name command and the list of arguments listargs at the

server and port given by server and port or encapsulated in the connection . Returns an object in
the category IsProcess for the subsequent waiting the result from its underlying stream.

It accepts the following options:

SCSCP 26

• output:="object" is used to specify that the server must return the actual object evaluated as
a result of the procedure call. This is the default action requested by the client if the output

option is omitted.

• output:="cookie" is used to specify that the result of the procedure call should be stored on
the server, and the server should return a remote object (see 6.5) pointing to that result (that is,
a cookie);

• output:="nothing" is used to specify that the server is supposed to reply with a
procedure_completed message carrying no object just to signal that the call was completed
successfully (for the compatibility, this will be evaluated to a "procedure completed" string
on the client’s side);

• cd:="cdname" is used to specify that the OpenMath symbol corresponding to the first argu-
ment command should be looked up in the particular content dictionary cdname. Otherwise, it
will be looked for in the default content dictionary (scscp_transient_1 for the GAP SCSCP
server);

• debuglevel:=N is used to obtain additional information attributes together with the result. The
GAP SCSCP server does the following: if N=1, it will report about the CPU time in millisec-
onds required to compute the result; if N=2 it will additionally report about the amount of mem-
ory used by GAP in bytes will be returned (using the output of MemoryUsageByGAPinKbytes
(9.3.4) converted to bytes); if N=3 it will additionally report the amount of memory in bytes
used by the resulting object and its subobjects (using the output of MemoryUsage (Reference:
MemoryUsage)).

See CompleteProcess (6.2.3) and EvaluateBySCSCP (6.3.1) for examples.

6.2.3 CompleteProcess

. CompleteProcess(process) (function)

Returns: record with components object and attributes

The function waits, if necessary, until the underlying stream of the process will contain some data,
then reads the appropriate OpenMath object from this stream and closes it.

It has the option output which may have two values:

• output:="cookie" has the same meaning as for the NewProcess (6.2.2)

• output:="tree" is used to specify that the result obtained from the server should be returned
as an XML parsed tree without its evaluation.

In the following example we demonstrate combination of the two previous functions to send request
and get result, calling the procedure WS_Factorial, installed in the previous chapter:

Example

gap> s := NewProcess("WS_Factorial", [10], "localhost", 26133);

< process at localhost:26133 pid=52918 >

gap> x := CompleteProcess(s);

rec(attributes := [["call_id", "localhost:26133:52918:TPNiMjCT"]],

object := 3628800)

SCSCP 27

See more examples in the description of the function EvaluateBySCSCP (6.3.1), which combines the
two previous functions by sending request and getting result in one call.

6.2.4 TerminateProcess

. TerminateProcess(process) (function)

The function is supposed to send an “out-of-band” interrupt signal to the server. Current imple-
mentation works only when the server is running as “localhost” by sending a SIGINT to the server
using its PID contained in the process . It will do nothing if the server is running remotely, as the
SCSCP specification allows the server to ignore interrupt messages. Remote interrupts will be intro-
duced in one of the next versions of the package.

6.3 All-in-one tool: sending request and getting result

6.3.1 EvaluateBySCSCP

. EvaluateBySCSCP(command, listargs, server, port) (function)

. EvaluateBySCSCP(command, listargs, connection) (function)

Returns: record with components object and attributes

In the first form, command and server are strings, listargs is a list of GAP objects and port

is an integer.
In the second form, an SCSCP connection in the category NewSCSCPconnection (6.1.2) is used

instead of server and port.
Calls the SCSCP procedure with the name command and the list of arguments listargs at the

server and port given by server and port or encapsulated in the connection .
Since EvaluateBySCSCP combines NewProcess (6.2.2) and CompleteProcess (6.2.3), it ac-

cepts all options which may be used by that functions (output, cd and debuglevel) with the same
meanings.

Example

gap> EvaluateBySCSCP("WS_Factorial",[10],"localhost",26133);

#I Creating a socket ...

#I Connecting to a remote socket via TCP/IP ...

#I Got connection initiation message

#I Requesting version 1.3 from the server ...

#I Server confirmed version 1.3 to the client ...

#I Request sent ...

#I Waiting for reply ...

rec(attributes := [["call_id", "localhost:26133:2442:6hMEN40d"]],

object := 3628800)

gap> SetInfoLevel(InfoSCSCP,0);

gap> EvaluateBySCSCP("WS_Factorial",[10],"localhost",26133 : output:="cookie");

rec(attributes := [["call_id", "localhost:26133:2442:jNQG6rml"]],

object := < remote object scscp://localhost:26133/TEMPVarSCSCP5KZIeiKD >)

gap> EvaluateBySCSCP("WS_Factorial",[10],"localhost",26133 : output:="nothing");

rec(attributes := [["call_id", "localhost:26133:2442:9QHQrCjv"]],

object := "procedure completed")

SCSCP 28

Now we demonstrate the procedure GroupIdentificationService, also given in the previous
chapter:

Example

gap> G:=SymmetricGroup(4);

Sym([1 .. 4])

gap> gens:=GeneratorsOfGroup(G);

[(1,2,3,4), (1,2)]

gap> EvaluateBySCSCP("GroupIdentificationService", [gens],

> "localhost", 26133 : debuglevel:=3);

rec(attributes := [["call_id", "localhost:26133:2442:xOilXtnw"],

["info_runtime", 4], ["info_memory", 2596114432],

["info_message", "Memory usage for the result is 48 bytes"]],

object := [24, 12])

Service provider may suggest to the client to use a counterpart function
Example

gap> IdGroupWS := function(G)

> local H, result;

> if not IsPermGroup(G) then

> H:= Image(IsomorphismPermGroup(G));

> else

> H := G;

> fi;

> result := EvaluateBySCSCP ("GroupIdentificationService",

> [GeneratorsOfGroup(H)], "localhost", 26133);

> return result.object;

> end;;

which works exactly like IdGroup (Reference: IdGroup):
Example

gap> G:=DihedralGroup(64);

<pc group of size 64 with 6 generators>

gap> IdGroupWS(G);

[64, 52]

6.4 Switching between Binary and XML OpenMath Encodings

6.4.1 SwitchSCSCPmodeToBinary

. SwitchSCSCPmodeToBinary() (function)

. SwitchSCSCPmodeToXML() (function)

Returns: nothing
The OpenMath package supports both binary and XML encodings for OpenMath. To switch

between them, use SwitchSCSCPmodeToBinary and SwitchSCSCPmodeToXML. When the package is

SCSCP 29

loaded, the mode is initially set to XML. On the clients’s side, you can change the mode back and
forth as many times as you wish during the same SCSCP session. The server will autodetect the
mode and will response in the same format, so one does not need to set the mode on the server’s side.

For example, let us create a vector over GF(3):
Example

gap> x := [Z(3)^0, Z(3), 0*Z(3)];

[Z(3)^0, Z(3), 0*Z(3)]

The XML OpenMath encoding of such objects is quite bulky:
Example

gap> OMString(x);

"<OMOBJ> <OMA> <OMS cd=\"list1\" name=\"list\"/> <OMA> <OMS cd=\"arith1\" name\

=\"power\"/> <OMA> <OMS cd=\"finfield1\" name=\"primitive_element\"/> <OMI>3</\

OMI> </OMA> <OMI>0</OMI> </OMA> <OMA> <OMS cd=\"arith1\" name=\"power\"/> <OMA\

> <OMS cd=\"finfield1\" name=\"primitive_element\"/> <OMI>3</OMI> </OMA> <OMI>\

1</OMI> </OMA> <OMA> <OMS cd=\"arith1\" name=\"times\"/> <OMA> <OMS cd=\"finfi\

eld1\" name=\"primitive_element\"/> <OMI>3</OMI> </OMA> <OMI>0</OMI> </OMA> </\

OMA> </OMOBJ>"

gap> Length(OMString(x));

452

We call the SCSCP procedure Identity just to test how this object may be sent back and forth. The
total length of the procedure call message is 969 symbols:

Example

gap> SetInfoLevel(InfoSCSCP,3);

gap> EvaluateBySCSCP("Identity",[x],"localhost",26133);

#I Creating a socket ...

#I Connecting to a remote socket via TCP/IP ...

#I Got connection initiation message

#I <?scscp service_name="GAP" service_version="4.dev" service_id="localhost:2\

6133:42448" scscp_versions="1.0 1.1 1.2 1.3" ?>

#I Requesting version 1.3 from the server ...

#I Server confirmed version 1.3 to the client ...

#I Composing procedure_call message:

<?scscp start ?>

<OMOBJ>

<OMATTR>

<OMATP>

<OMS cd="scscp1" name="call_id"/>

<OMSTR>localhost:26133:42448:IOs9ZkBU</OMSTR>

<OMS cd="scscp1" name="option_return_object"/>

<OMSTR></OMSTR>

</OMATP>

<OMA>

<OMS cd="scscp1" name="procedure_call"/>

<OMA>

<OMS cd="scscp_transient_1" name="Identity"/>

SCSCP 30

<OMA>

<OMS cd="list1" name="list"/>

<OMA>

<OMS cd="arith1" name="power"/>

<OMA>

<OMS cd="finfield1" name="primitive_element"/>

<OMI>3</OMI>

</OMA>

<OMI>0</OMI>

</OMA>

<OMA>

<OMS cd="arith1" name="power"/>

<OMA>

<OMS cd="finfield1" name="primitive_element"/>

<OMI>3</OMI>

</OMA>

<OMI>1</OMI>

</OMA>

<OMA>

<OMS cd="arith1" name="times"/>

<OMA>

<OMS cd="finfield1" name="primitive_element"/>

<OMI>3</OMI>

</OMA>

<OMI>0</OMI>

</OMA>

</OMA>

</OMA>

</OMA>

</OMATTR>

</OMOBJ>

<?scscp end ?>

#I Total length 969 characters

...

rec(attributes := [["call_id", "localhost:26133:42448:IOs9ZkBU"]],

object := [Z(3)^0, Z(3), 0*Z(3)])

Now we switch to binary mode:
Example

gap> SwitchSCSCPmodeToBinary();

gap> EvaluateBySCSCP("Identity",[x],"localhost",26133);

#I Creating a socket ...

#I Connecting to a remote socket via TCP/IP ...

#I Got connection initiation message

#I <?scscp service_name="GAP" service_version="4.dev" service_id="localhost:2\

6133:42448" scscp_versions="1.0 1.1 1.2 1.3" ?>

#I Requesting version 1.3 from the server ...

#I Server confirmed version 1.3 to the client ...

#I Composing procedure_call message:

3C3F7363736370207374617274203F3E0A18121408060773637363703163616C6C5F6964061E6C\

6F63616C686F73743A32363133333A34323434383A3256675A5562755A0806147363736370316F\

SCSCP 31

7074696F6E5F72657475726E5F6F626A6563740600151008060E73637363703170726F63656475\

72655F63616C6C1008110873637363705F7472616E7369656E745F314964656E74697479100805\

046C697374316C69737410080605617269746831706F7765721008091166696E6669656C643170\

72696D69746976655F656C656D656E7401031101001110080605617269746831706F7765721008\

091166696E6669656C64317072696D69746976655F656C656D656E740103110101111008060561\

726974683174696D65731008091166696E6669656C64317072696D69746976655F656C656D656E\

7401031101001111111113193C3F736373637020656E64203F3E0A

#I Total length 339 bytes

#I Request sent ...

#I Waiting for reply ...

#I <?scscp start ?>

#I Got back: object [Z(3)^0, Z(3), 0*Z(3)] with attributes

[["call_id", "localhost:26133:42448:2VgZUbuZ"]]

rec(attributes := [["call_id", "localhost:26133:42448:2VgZUbuZ"]],

object := [Z(3)^0, Z(3), 0*Z(3)])

gap> SetInfoLevel(InfoSCSCP,3);

As we can see, the size of the message is almost three times shorter, and this is not the limit. Switching
to binary OpenMath encoding in combination with pickling and unpickling from IO package (see
in the last Chapter) and special methods for pickling compressed vectors implemented in the Cvec
available in GAP 4.5 allow to dramatically reduce the overhead for vectors and matrices over finite
fields, making a roundtrip up to a thousand times faster.

6.5 Remote objects

The SCSCP package introduces new kind of objects - remote objects. They provide an opportunity
to manipulate with objects on remote services without their actual transmitting over the network.
Remote objects store the information that allows to access the original object: the server name and the
port number through which the object can be accessed, and the variable name under which it is stored
in the remote system. Two remote objects are equal if and only if all these three parameters coincide.

There are two types of remote object which differ by their lifetime:

• temporary remote objects which exist only within a single session;

• persistent remote objects which stay alive across multiple sessions.

First we show the example of the temporary remote object in a session. The procedure PointImages
returns the set of images of a point i under the generators of the group G. First we create the symmetric
group S3 on the client and store it remotely on the server (call 1), then we compute set of images for
i = 1,2 (calls 2,3) and finally demonstrate that we may retrieve the group from the server (call 4):

Example

gap> stream:=InputOutputTCPStream("localhost", 26133);

< input/output TCP stream to localhost:26133 >

gap> StartSCSCPsession(stream);

"localhost:26133:6184"

gap> OMPutProcedureCall(stream, "store_session",

> rec(object := [SymmetricGroup(3)],

> attributes := [["call_id", "1"],

SCSCP 32

> ["option_return_cookie"]]));

true

gap> SCSCPwait(stream);

gap> G:=OMGetObjectWithAttributes(stream).object;

< remote object scscp://localhost:26133/TEMPVarSCSCPo3Bc8J75 >

gap> OMPutProcedureCall(stream, "PointImages",

> rec(object := [G, 1],

> attributes := [["call_id", "2"]]));

true

gap> SCSCPwait(stream);

gap> OMGetObjectWithAttributes(stream);

rec(attributes := [["call_id", "2"]], object := [2])

gap> OMPutProcedureCall(stream, "PointImages",

> rec(object := [G, 2],

> attributes := [["call_id", "3"]]));

true

gap> SCSCPwait(stream);

gap> OMGetObjectWithAttributes(stream);

rec(attributes := [["call_id", "3"]], object := [1, 3])

gap> OMPutProcedureCall(stream, "retrieve",

> rec(object := [G],

> attributes := [["call_id", "4"]]));

true

gap> SCSCPwait(stream);

gap> OMGetObjectWithAttributes(stream);

rec(attributes := [["call_id", "4"]],

object := Group([(1,2,3), (1,2)]))

gap> CloseStream(stream);

After the stream is closed, it is no longer possible to retrieve the group G again or use it as an argument.
Thus, the usage of remote objects existing during a session reduces the network traffic, since we

pass only references instead of actual OpenMath representation of an object. Also, the remote object
on the server may accumulate certain information in its properties and attributes, which may not be
included in it default OpenMath representation.

Now we show remote objects which remain alive after the session is closed. Such remote objects
may be accessed later, for example, by:

• subsequent procedure calls from the same instance of GAP or another system;

• other instances of GAP or another systems (if the identifier of an object is known)

• another SCSCP servers which obtained a reference to such object as an argument of a proce-
dure call.

6.5.1 StoreAsRemoteObjectPersistently

. StoreAsRemoteObjectPersistently(obj, server, port) (function)

. StoreAsRemoteObject(obj, server, port) (function)

Returns: remote object
Returns the remote object corresponding to the object created at server:port from the Open-

Math representation of the first argument obj . The second form is just a synonym.

SCSCP 33

Example

gap> s:=StoreAsRemoteObject(SymmetricGroup(3), "localhost", 26133);

< remote object scscp://localhost:26133/TEMPVarSCSCPLvIUUtL3 >

Internally, the remote object carries all the information which is required to get access to the
original object: its identifier, server and port:

Example

gap> s![1];

"TEMPVarSCSCPLvIUUtL3"

gap> s![2];

"localhost"

gap> s![3];

26133

When the remote object is printed in the OpenMath format, we use symbols @ and : to combine
these parameters in the OpenMath reference:

Example

gap> OMPrint(s);

<OMOBJ>

<OMR href="scscp://localhost:26133/TEMPVarSCSCPLvIUUtL3" />

</OMOBJ>

This allows substitution of remote object as arguments into procedure calls in the same manner like
we do this with usual objects:

Example

gap> EvaluateBySCSCP("WS_IdGroup",[s],"localhost",26133);

rec(attributes := [["call_id", "localhost:26133:52918:Viq6EWBP"]],

Line 183 :

object := [6, 1])

6.5.2 IsRemoteObject

. IsRemoteObject (filter)

This is the category of remote objects.

6.5.3 RemoteObjectsFamily

. RemoteObjectsFamily (family)

This is the family of remote objects.

SCSCP 34

6.5.4 RetrieveRemoteObject

. RetrieveRemoteObject(remoteobject) (function)

Returns: object
This function retrieves the remote object from the remote service in the OpenMath format and

constructs it locally. Note, however, that for a complex mathematical object its default OpenMath
representation may not contain all information about it which was accumulated during its lifetime on
the SCSCP server.

Example

gap> RetrieveRemoteObject(s);

Group([(1,2,3), (1,2)])

6.5.5 UnbindRemoteObject

. UnbindRemoteObject(remoteobject) (function)

Returns: true or false
Removes any value currently bound to the global variable determined by remoteobject at the

SCSCP server, and returns true or false dependently on whether this action was successful or not.
Example

gap> UnbindRemoteObject(s);

true

Finally, we show an example when first we create a group on the service running on port 26133,
and then identify it on the service running on port 26134:

Example

gap> s:=StoreAsRemoteObject(SymmetricGroup(3), "localhost", 26133);

< remote object scscp://localhost:26133/TEMPVarSCSCPNqc8Bkan >

gap> EvaluateBySCSCP("WS_IdGroup", [s], "localhost", 26134);

rec(object := [6, 1], attributes := [["call_id", "localhost:26134:7414"]])

Instead of transmitting the group to the client and then sending it as an argument to the second service,
the latter service directly retrieves the group from the first service:

Example

gap> EvaluateBySCSCP("WS_IdGroup",[s],"localhost",26133 : output:="cookie");

rec(attributes := [["call_id", "localhost:26133:52918:mRU6w471"]],

object := < remote object scscp://localhost:26133/TEMPVarSCSCPS9SVe9PZ >)

Chapter 7

Examples of SCSCP usage

In this chapter we are going to demonstrate some examples of communication between client and
server using the SCSCP.

7.1 Providing services with the SCSCP package

You can try to run the SCSCP server with the configuration file scscp/example/myserver.g. To
do this, go to that directory and enter gap myserver.g. After this you will see some information
messages and finally the server will start to wait for the connection. The final part of the startup
screen may look as follows:

Example

#I Installed SCSCP procedure Factorial

#I Installed SCSCP procedure WS_Factorial

#I Installed SCSCP procedure GroupIdentificationService

#I Installed SCSCP procedure IdGroup512ByCode

#I Installed SCSCP procedure WS_IdGroup

#I Installed SCSCP procedure WS_Karatsuba

#I Installed SCSCP procedure EvaluateOpenMathCode

#I Ready to accept TCP/IP connections at localhost:26133 ...

#I Waiting for new client connection at localhost:26133 ...

See further self-explanatory comments in the file scscp/example/myserver.g. There also some test
files in the directory scscp/tst/ supplied with detailed comments. First, you may use demonstration
files, preliminary turning on the demonstration mode as it is explained in these files, or just executing
step by step each command from scscp/tst/demo.g and scscp/tst/omdemo.g. Then you can try
to use files scscp/tst/id512.g, scscp/tst/idperm.g and scscp/tst/factor.g for further tests
of SCSCP services.

7.2 Identifying groups of order 512

We will give an example guiding you through all steps of creation of your own SCSCP service.
The GAP Small Group Library does not provide identification for groups of order 512 using the

function IdGroup:

35

SCSCP 36

Example

gap> IdGroup(DihedralGroup(256));

[256, 539]

gap> IdGroup(DihedralGroup(512));

Error, the group identification for groups of size 512 is not available

called from

<function "unknown">(<arguments>)

called from read-eval loop at line 71 of *stdin*

you can 'quit;' to quit to outer loop, or

you can 'return;' to continue

brk>

However, the GAP package ANUPQ [GNO] has a function IdStandardPresented512Group that
does this work as demonstrated below:

Example

gap> LoadPackage("anupq");

Loading ANUPQ 3.0 (ANU p-Quotient package)

C code by Eamonn O'Brien <obrien@math.auckland.ac.nz>

(ANU pq binary version: 1.8)

GAP code by Werner Nickel <nickel@mathematik.tu-darmstadt.de>

and Greg Gamble <gregg@math.rwth-aachen.de>

For help, type: ?ANUPQ

true

gap> G := DihedralGroup(512);

<pc group of size 512 with 9 generators>

gap> F := PqStandardPresentation(G);

<fp group on the generators [f1, f2, f3, f4, f5, f6, f7, f8, f9]>

gap> H := PcGroupFpGroup(F);

<pc group of size 512 with 9 generators>

gap> IdStandardPresented512Group(H);

[512, 2042]

The package ANUPQ requires UNIX environment and it is natural to provide an identification service
for groups of order 512 to make it available for other platforms.

Now we need to decide how the client will transmit a group to the server. Can we encode this
group in OpenMath? But there is no content dictionary for PcGroups. Should we convert it to
a permutation representation to be able to use existing content dictionaries? But then the resulting
OpenMath code will be not compact. However, the SCSCP protocol provides enough freedom for
the user to select its own data representation, and since we are linking together two copies of the
same system, we may use the pcgs code to pass the data to the server (see CodePcGroup (Reference:
CodePcGroup).

First we create a function which accepts the integer number that is the code for pcgs of a group of
order 512 and returns the number of this group in the GAP Small Groups library:

SCSCP 37

Example

IdGroup512ByCode := function(code)

local G, F, H;

G := PcGroupCode(code, 512);

F := PqStandardPresentation(G);

H := PcGroupFpGroup(F);

return IdStandardPresented512Group(H);

end;

After such function was created on the server, we need to make it “visible” as an SCSCP procedure:
Example

gap> InstallSCSCPprocedure("IdGroup512", IdGroup512ByCode);

InstallSCSCPprocedure : procedure IdGroup512 installed.

Note that this function assumes that the argument is a valid code for some group of order 512, and we
wish the client to make it sure that this is the case. To do this, and also for the client’s convenience,
we provide the client’s counterpart for this service. Here the group must be a pc-group of order 512,
otherwise an error message will appear.

Example

gap> IdGroup512 := function(G)

> local code, result;

> if Size(G) <> 512 then

> Error("G must be a group of order 512 \n");

> fi;

> code := CodePcGroup(G);

> result := EvaluateBySCSCP("IdGroup512ByCode", [code],

> "localhost", 26133);

> return result.object;

> end;;

Now the client can call the function IdGroup512, and the procedure of getting result is as much
straightforward as using IdGroup for those groups where it works:

Example

gap> IdGroup512(DihedralGroup(512));

[512, 2042]

Chapter 8

Parallel computing with SCSCP

8.1 Managing multiple requests

Using procedure calls explained in the previous section, the user can create several requests to multiple
services to execute them in parallel, or to wait until the fastest result will be available.

8.1.1 SynchronizeProcesses

. SynchronizeProcesses(process1, process2, ..., processN) (function)

. SynchronizeProcesses(proclist) (function)

Returns: list of records with components object and attributes

The function collects results of from each process given in the argument, and returns the list, i-th
entry of which is the result obtained from the i-th process. The function accepts both one argument
that is a list of processes, and arbitrary number of arguments, each of them being a process.

Example

gap> a:=NewProcess("WS_Factorial", [10], "localhost", 26133);

< process at localhost:26133 pid=2064 >

gap> b:=NewProcess("WS_Factorial", [20], "localhost", 26134);

< process at localhost:26134 pid=1975 >

gap> SynchronizeProcesses(a,b);

[rec(attributes := [["call_id", "localhost:26133:2064:yCWBGYFO"]],

object := 3628800),

rec(attributes := [["call_id", "localhost:26134:1975:yAAWvGTL"]],

object := 2432902008176640000)]

8.1.2 FirstProcess

. FirstProcess(process1, process2, ..., processN) (function)

. FirstProcess(proclist) (function)

Returns: records with components object and attributes

The function waits for the result from each process given in the argument, and returns the result
coming first, terminating all remaining processes at the same time. The function accepts both one
argument that is a list of processes, and arbitrary number of arguments, each of them being a process.

38

SCSCP 39

Example

gap> a:=NewProcess("WS_Factorial", [10], "localhost", 26133);

< process at localhost:26133 pid=2064 >

gap> b:=NewProcess("WS_Factorial", [20], "localhost", 26134);

< process at localhost:26134 pid=1975 >

gap> FirstProcess(a,b);

rec(attributes := [["call_id", "localhost:26133:2064:mdb8RaO2"]],

object := 3628800)

8.1.3 SCSCPservers

. SCSCPservers (global variable)

SCSCPservers is a list of hosts and ports to search for SCSCP services (which may be not only
represented by GAP services, but also by another SCSCP-compliant systems).

It is used by parallel skeletons ParQuickWithSCSCP (8.1.4) and ParListWithSCSCP (8.2.1).
The initial value of this variable is specified in the file scscp/configpar.g and may be reas-

signed later.

8.1.4 ParQuickWithSCSCP

. ParQuickWithSCSCP(commands, listargs) (function)

Returns: record with components object and attributes

This function is constructed using the FirstProcess (8.1.2). It is useful when it is not known
which partcular method is more efficient, because it allows to call in parallel several procedures (given
by the list of their names commands) with the same list of arguments listargs (having the same
meaning as in EvaluateBySCSCP (6.3.1)) and obtain the result of that procedure call which will be
computed faster.

In the example below we call two factorisation methods from the GAP package FactInt to fac-
torise 2150 + 1. The example is selected in such a way that the runtime of these two methods is
approximately the same, so you should expect results from both methods in some random order from
repeated calls.

Example

gap> ParQuickWithSCSCP(["WS_FactorsECM", "WS_FactorsMPQS"], [2^150+1]);

rec(attributes := [["call_id", "localhost:26133:53877:GQX8MhC8"]],

object := [[5, 5, 5, 13, 41, 61, 101, 1201, 1321, 63901],

[2175126601, 15767865236223301]])

8.1.5 FirstTrueProcess

. FirstTrueProcess(process1, process2, ..., processN) (function)

. FirstTrueProcess(proclist) (function)

Returns: list of records
The function waits for the result from each process given in the argument, and stops waiting as

soon as the first true is returned, abandoning all remaining processes. It retuns a list containing a

SCSCP 40

records with components object and attributes at the position corresponding to the process that
returned true. If none of the processes returned true, it will return a complete list of procedure call
results.

The function accepts both one argument that is a list of processes, and arbitrary number of argu-
ments, each of them being a process.

In the first example, the second call returns true:
Example

gap> a:=NewProcess("IsPrimeInt", [2^15013-1], "localhost", 26134);

< process at localhost:26134 pid=42554 >

gap> b:=NewProcess("IsPrimeInt", [2^521-1], "localhost", 26133);

< process at localhost:26133 pid=42448 >

gap> FirstTrueProcess(a,b);

[, rec(attributes := [["call_id", "localhost:26133:42448:Lz1DL0ON"]],

object := true)]

In the next example both calls return false:
Example

gap> a:=NewProcess("IsPrimeInt", [2^520-1], "localhost", 26133);

< process at localhost:26133 pid=42448 >

gap> b:=NewProcess("IsPrimeInt", [2^15013-1], "localhost", 26134);

< process at localhost:26134 pid=42554 >

gap> FirstTrueProcess(a,b);

[rec(attributes := [["call_id", "localhost:26133:42448:nvsk8PQp"]],

object := false),

rec(attributes := [["call_id", "localhost:26134:42554:JnEYuXL8"]],

object := false)]

8.2 MasterWorker skeleton

In this section we will present more general framework to run parallel computations, which has a
number of useful features:

• it is implemented purely in GAP;

• the client (i.e. master, which orchestrates the computation) will work in UNIX/Linux, Mac OS
X and MS Windows;

• it may orchestrate both GAP and non-GAP SCSCP servers;

• if one of servers (i.e. workers) will be lost, it will retry the computation on another available
server;

• it allows to add dynamically new workers during the computation on hostnames and ports from
a range perviously declared in SCSCPservers (8.1.3).

To configure this functionality, the file scscp/configpar.g assigns the global variable
SCSCPservers which specifies a list of hosts and ports to search for SCSCP services (which may
be not only represented by GAP services, but also by another SCSCP-compliant systems). See
comments in this file for further instructions.

SCSCP 41

8.2.1 ParListWithSCSCP

. ParListWithSCSCP(listargs, procname) (function)

Returns: list
ParListWithSCSCP implements the well-known master-worker skeleton: we have a master

(SCSCP client) and a number of workers (SCSCP servers) which obtain pieces of work from the
client, perform the required job and report back with the result, waiting for the next job.

It returns the list of the same length as listargs , i-th element of which is the result of calling the
procedure procname with the argument listargs[i] .

It accepts two options which should be given as non-negative integers: timeout which specifies
in minutes how long the client must wait for the result (if not given, the default value is one hour) and
recallfrequency which specifies the number of iterations after which the search for new services
will be performed (if not given the default value is zero meaning no such search at all). There is also
a boolean option noretry which, if set to true, means that no retrying calls will be performed if the
timeout is exceeded and an incomplete resut may be returned.

Example

gap> ParListWithSCSCP(List([2..6], n -> SymmetricGroup(n)), "WS_IdGroup");

#I master -> ["localhost", 26133] : SymmetricGroup([1 .. 2])

#I master -> ["localhost", 26134] : SymmetricGroup([1 .. 3])

#I ["localhost", 26133] --> master : [2, 1]

#I master -> ["localhost", 26133] : SymmetricGroup([1 .. 4])

#I ["localhost", 26134] --> master : [6, 1]

#I master -> ["localhost", 26134] : SymmetricGroup([1 .. 5])

#I ["localhost", 26133] --> master : [24, 12]

#I master -> ["localhost", 26133] : SymmetricGroup([1 .. 6])

#I ["localhost", 26133] --> master : [720, 763]

#I ["localhost", 26134] --> master : [120, 34]

[[2, 1], [6, 1], [24, 12], [120, 34], [720, 763]]

8.2.2 SCSCPreset

. SCSCPreset() (function)

Returns: nothing
If an error occurs during a call of ParQuickWithSCSCP (8.1.4) and ParListWithSCSCP (8.2.1),

some of parallel requests may be still running at the remaining services, making them inaccessible for
further procedure calls. SCSCPreset resets them by closing all open streams to SCSCP servers.

8.2.3 SCSCPLogTracesToGlobal

. SCSCPLogTracesToGlobal(testname) (function)

. SCSCPLogTracesToGlobal() (function)

To analyse the performance of parallel SCSCP framework, we make use of the EdenTV program
[BL07] developed initially to visualize the performance of parallel programs written in functional
programming language Eden, and now distributed under the GNU Public License and available from
http://www.mathematik.uni-marburg.de/~eden/?content=EdenTV.

http://www.mathematik.uni-marburg.de/~eden/?content=EdenTV

SCSCP 42

Called with the string containing the name of the test, this functions turns on writing informa-
tion about key activity events into trace files in current directories for the client and servers listed
SCSCPservers (8.1.3). The trace file will have the name of the format testname.client.tr for
the client and testname.<hostname>.<port>.tr for the server. After the test these files should be
collected from remote servers and concatenated (e.g. using cat) together with the standard preamble
from the file scscp/tracing/stdhead.txt (we recommend to put after the preamble first all traces
from servers and then the client’s traces to have nicer diagrams). The resulting file then may be opened
with EdenTV.

In the following example we use a dual core MacBook laptop to generate trace files for two tests
and then show their corresponding trace diagrams:

Example

SCSCPLogTracesToGlobal("quillen100");

ParListWithSCSCP(List([1..100], i->[512,i]), "QuillenSeriesByIdGroup");

SCSCPLogTracesToGlobal();

SCSCPLogTracesToGlobal("euler");

ParListWithSCSCP([1..1000], "WS_Phi");

SCSCPLogTracesToGlobal();

SCSCP 43

The diagrams (made on an dual core MacBook laptop), shows that in the first case parallelising is
efficient and master successfully distributes load to workers, while in the second case a single com-
putation is just too short, so most of the time is spent on communication. To parallelize the Euler’s
function example efficiently, tasks must rather be grouped in chunks, which should be enough large
to reduce the communication overload, but enough small to ensure that tasks are evenly distributed.

Of course, tracing can be used to investigate communication between a client and a single server
in a non-parallel context as well. For this purpose, SCSCPservers (8.1.3) must be modified to contain
only one server.

ParListWithSCSCP (8.2.1) can be easily modified to have parallel versions of other list operations
like ForAll (Reference: ForAll), ForAny (Reference: ForAny), First (Reference: First), Number
(Reference: Number), Filtered (Reference: Filtered), and also to have the skeleton in which the
queue may be modified during the computation (for example, to compute orbits). We plan to provide
such tools in one of the next versions of the package.

8.3 Example: parallelising Karatsuba multiplication for polynomials

The file scscp/example/karatsuba.g contains an implementation of the Karatsuba multiplication
algorithm for polynomials. This algorithm can be easily parallelized since each recursive step creates
three recursive calls of the same function for other polynomials. We will not parallelize each recur-
sive call, since this will create enormous data flow. Instead of this we parallelize only the top-level
function. For our experiments with parallelising Karatsuba multiplication for polynomials with inte-
ger coefficients we used the multi-core workstation, on which we started one SCSCP client and two
SCSCP servers. To use it, modify the server configuration file adding to it the command to read the
file scscp/example/karatsuba.g, then define there the following function

Example

KaratsubaPolynomialMultiplicationExtRepByString:=function(s1,s2)

SCSCP 44

return String(KaratsubaPolynomialMultiplicationExtRep(

EvalString(s1), EvalString(s2)));

end;;

and finally add the following lines to made it available as an SCSCP procedure under the name
WS_Karatsuba:

Example

InstallSCSCPprocedure("WS_Karatsuba",

KaratsubaPolynomialMultiplicationExtRepByString);

(we do not include it into the default scscp/example/myserver.g since the code contains a call to
EvalString (Reference: EvalString)).

This function provides a "bridge" between the client’s func-
tion KaratsubaPolynomialMultiplicationWS and the server’s function
KaratsubaPolynomialMultiplicationExtRep, which performs the actual work on the server.
WS_Karatsuba converts its string arguments into internal representation of univariate polynomials
(basically, lists of integers) and then converts the result back into string (since such data exchange
format was chosen).

SCSCP 45

We are going to parallelize the following part of the client’s code:
Example

...

u := KaratsubaPolynomialMultiplicationExtRep(f1,g1);

v := KaratsubaPolynomialMultiplicationExtRep(f0,g0);

w := KaratsubaPolynomialMultiplicationExtRep(

PlusLaurentPolynomialsExtRep(f1,f0),

PlusLaurentPolynomialsExtRep(g1,g0));

...

and this can be done straightforwardly - we replace two first calls by calls of the appropriate SCSCP
services, then perform the 3rd call locally and then collect the results from the two remote calls:

Example

...

u := NewProcess("WS_Karatsuba",[String(f1), String(g1)],"localhost", 26133);

v := NewProcess("WS_Karatsuba",[String(f0), String(g0)],"localhost", 26134);

w := KaratsubaPolynomialMultiplicationExtRep(

PlusLaurentPolynomialsExtRep(f1,f0),

PlusLaurentPolynomialsExtRep(g1,g0));

wsresult:=SynchronizeProcesses2(u,v);

u := EvalString(wsresult[1].object);

v := EvalString(wsresult[2].object);

...

We obtain almost double speedup on three cores on randomly generated polynomials of degree 32000:
Example

gap> ReadPackage("scscp/example/karatsuba.g");

gap> fam:=FamilyObj(1);;

gap> f:=LaurentPolynomialByCoefficients(fam,

> List([1..32000],i->Random(Integers)), 0, 1);;

gap> g:=LaurentPolynomialByCoefficients(fam,

> List([1..32000],i->Random(Integers)), 0, 1);;

gap> t2:=KaratsubaPolynomialMultiplication(f,g);;time;

5892

gap> t3:=KaratsubaPolynomialMultiplicationWS(f,g);;time;

2974

Chapter 9

Service functions

9.1 Pinging SCSCP servers

9.1.1 PingSCSCPservice

. PingSCSCPservice(hostname, portnumber) (function)

Returns: true or fail
This function returns true if the client can establish connection with the SCSCP server at

hostname :portnumber . Otherwise, it returns fail.
Example

gap> PingSCSCPservice("localhost",26133);

true

gap> PingSCSCPservice("localhost",26140);

Error: rec(

message := "Connection refused",

number := 61)

fail

9.1.2 PingStatistic

. PingStatistic(hostname, portnumber, n) (function)

Returns: nothing
The function is similar to the UNIX ping. It tries n times to establish connection with the SCSCP

server at hostname :portnumber , and then displays statistical information.
Example

gap> PingStatistic("localhost",26133,1000);

1000 packets transmitted, 1000 received, 0% packet loss, time 208ms

min/avg/max = [0, 26/125, 6]

46

SCSCP 47

9.2 Info classes for SCSCP

9.2.1 InfoSCSCP

. InfoSCSCP (info class)

InfoSCSCP is a special Info class for the SCSCP package. The amount of information to be
displayed can be specified by the user by setting InfoLevel for this class from 0 to 4, and the de-
fault value of InfoLevel for the package is specified in the file scscp/config.g. The higher the
level is, the more information will be displayed. To change the InfoLevel to k, use the command
SetInfoLevel(InfoSCSCP, k). In the following examples we demonstrate various degrees of out-
put details using Info messages.

Default Info level:
Example

gap> SetInfoLevel(InfoSCSCP,2);

gap> EvaluateBySCSCP("WS_Factorial",[10],"localhost",26133);

#I Creating a socket ...

#I Connecting to a remote socket via TCP/IP ...

#I Got connection initiation message

#I <?scscp service_name="GAP" service_version="4.dev" service_id="localhost:2\

6133:286" scscp_versions="1.0 1.1 1.2 1.3" ?>

#I Requesting version 1.3 from the server ...

#I Server confirmed version 1.3 to the client ...

#I Request sent ...

#I Waiting for reply ...

#I <?scscp start ?>

#I <?scscp end ?>

#I Got back: object 3628800 with attributes

[["call_id", "localhost:26133:286:JL6KRQeh"]]

rec(attributes := [["call_id", "localhost:26133:286:JL6KRQeh"]],

object := 3628800)

Minimal Info level:
Example

gap> SetInfoLevel(InfoSCSCP,0);

gap> EvaluateBySCSCP("WS_Factorial",[10],"localhost",26133);

rec(attributes := [["call_id", "localhost:26133:286:jzjsp6th"]],

object := 3628800)

Verbose Info level:
Example

gap> SetInfoLevel(InfoSCSCP,3);

gap> EvaluateBySCSCP("WS_Factorial",[10],"localhost",26133);

#I Creating a socket ...

#I Connecting to a remote socket via TCP/IP ...

#I Got connection initiation message

#I <?scscp service_name="GAP" service_version="4.dev" service_id="localhost:2\

SCSCP 48

6133:286" scscp_versions="1.0 1.1 1.2 1.3" ?>

#I Requesting version 1.3 from the server ...

#I Server confirmed version 1.3 to the client ...

#I Composing procedure_call message:

<?scscp start ?>

<OMOBJ>

<OMATTR>

<OMATP>

<OMS cd="scscp1" name="call_id"/>

<OMSTR>localhost:26133:286:Jok6cQAf</OMSTR>

<OMS cd="scscp1" name="option_return_object"/>

<OMSTR></OMSTR>

</OMATP>

<OMA>

<OMS cd="scscp1" name="procedure_call"/>

<OMA>

<OMS cd="scscp_transient_1" name="WS_Factorial"/>

<OMI>10</OMI>

</OMA>

</OMA>

</OMATTR>

</OMOBJ>

<?scscp end ?>

#I Total length 396 characters

#I Request sent ...

#I Waiting for reply ...

#I <?scscp start ?>

#I Received message:

<OMOBJ>

<OMATTR>

<OMATP>

<OMS cd="scscp1" name="call_id"/>

<OMSTR>localhost:26133:286:Jok6cQAf</OMSTR>

</OMATP>

<OMA>

<OMS cd="scscp1" name="procedure_completed"/>

<OMI>3628800</OMI>

</OMA>

</OMATTR>

</OMOBJ>

#I <?scscp end ?>

#I Got back: object 3628800 with attributes

[["call_id", "localhost:26133:286:Jok6cQAf"]]

rec(attributes := [["call_id", "localhost:26133:286:Jok6cQAf"]],

object := 3628800)

gap> SetInfoLevel(InfoSCSCP,0);

9.2.2 InfoMasterWorker

. InfoMasterWorker (info class)

SCSCP 49

InfoMasterWorker is a special Info class for the Master-Worker skeleton ParListWithSCSCP

(8.2.1). The amount of information to be displayed can be specified by the user by setting InfoLevel
for this class from 0 to 5, and the default value of InfoLevel for the package is specified in the file
scscp/config.g. The higher the level is, the more information will be displayed. To change the In-
foLevel to k, use the command SetInfoLevel(InfoMasterWorker, k). In the following examples
we demonstrate various degrees of output details using Info messages.

Default Info level:
Example

gap> SetInfoLevel(InfoMasterWorker,2);

gap> ParListWithSCSCP(List([2..6], n -> SymmetricGroup(n)), "WS_IdGroup");

#I 1/5:master --> localhost:26133

#I 2/5:master --> localhost:26134

#I 3/5:master --> localhost:26133

#I 4/5:master --> localhost:26134

#I 5/5:master --> localhost:26133

[[2, 1], [6, 1], [24, 12], [120, 34], [720, 763]]

Minimal Info level:
Example

gap> SetInfoLevel(InfoSCSCP,0);

gap> SetInfoLevel(InfoMasterWorker,0);

gap> ParListWithSCSCP(List([2..6], n -> SymmetricGroup(n)), "WS_IdGroup");

[[2, 1], [6, 1], [24, 12], [120, 34], [720, 763]]

Verbose Info level:
Example

gap> SetInfoLevel(InfoMasterWorker,5);

gap> ParListWithSCSCP(List([2..6], n -> SymmetricGroup(n)), "WS_IdGroup");

#I 1/5:master --> localhost:26133 : SymmetricGroup([1 .. 2])

#I 2/5:master --> localhost:26134 : SymmetricGroup([1 .. 3])

#I localhost:26133 --> 1/5:master : [2, 1]

#I 3/5:master --> localhost:26133 : SymmetricGroup([1 .. 4])

#I localhost:26134 --> 2/5:master : [6, 1]

#I 4/5:master --> localhost:26134 : SymmetricGroup([1 .. 5])

#I localhost:26133 --> 3/5:master : [24, 12]

#I 5/5:master --> localhost:26133 : SymmetricGroup([1 .. 6])

#I localhost:26134 --> 4/5:master : [120, 34]

#I localhost:26133 --> 5/5:master : [720, 763]

[[2, 1], [6, 1], [24, 12], [120, 34], [720, 763]]

gap> SetInfoLevel(InfoMasterWorker,2);

SCSCP 50

9.3 Other SCSCP Utilities

9.3.1 DateISO8601

. DateISO8601() (function)

Returns: string
Returns the current date in the ISO-8601 YYYY-MM-DD format. This is an internal function of

the package which is used by the SCSCP server to generate the transient content dictionary, accord-
ingly to the definition of the OpenMath symbol meta.CDDate.

Example

gap> DateISO8601();

"2011-10-05"

9.3.2 CurrentTimestamp

. CurrentTimestamp() (function)

Returns: string
Returns the result of the call to date. This is an internal function of the package which is used to

add the timestamp to the SCSCP service description.
Example

gap> CurrentTimestamp();

"Tue 30 Mar 2010 11:19:38 BST"

9.3.3 Hostname

. Hostname() (function)

Returns: string
Returns the result of the call to hostname. This function may be used in the configuration file

scscp/config.g to specify that the default hostname which will be used by the SCSCP server will
be detected automatically using hostname.

Example

gap> Hostname();

"scscp.symbolic-computing.co.uk"

9.3.4 MemoryUsageByGAPinKbytes

. MemoryUsageByGAPinKbytes() (function)

Returns: integer
Returns the current volume of the memory used by GAP in kylobytes. This is equivalent to

calling ps -p <PID> -o vsz, where <PID> is the process ID of the GAP process. This is an in-
ternal function of the package which is used by the SCSCP server to report its memory usage
in the info_memory attribute when being called with the option debuglevel=2 (see options in
EvaluateBySCSCP (6.3.1) and NewProcess (6.2.2)).

SCSCP 51

Example

gap> MemoryUsageByGAPinKbytes();

649848

9.3.5 LastReceivedCallID

. LastReceivedCallID() (function)

Returns: string
Returns the call ID contained in the most recently received message. It may contain some useful

debugging information; in particular, the call ID for the GAP SCSCP client and server contains
colon-separated server name, port number, process ID and a random string.

Example

gap> LastReceivedCallID();

"scscp.symbolic-computing.co.uk:26133:77372:choDZBgA"

9.3.6 IO_PickleToString

. IO_PickleToString(obj) (function)

Returns: string containing "pickled" object
This function "pickles" or "serialises" the object obj using the operation IO_Pickle (IO:

IO_Pickle) from the IO package, and writes it to a string, from which it could be later restored
using IO_UnpickleFromString (9.3.7). This provides a way to design SCSCP procedures which
transmit GAP objects in the "pickled" format as OpenMath strings, which may be useful for objects
which may be "pickled" by the IO package but can not be converted to OpenMath or for which the
"pickled" representation is more compact or can be encoded/decoded much faster.

See IO_Pickle (IO: IO_Pickle) and IO_Unpickle (IO: IO_Unpickle) for more details.
Example

gap> f := IO_PickleToString(GF(125));

"FFIEINTG\>15INTG\>13FAIL"

9.3.7 IO_UnpickleFromString

. IO_UnpickleFromString(s) (function)

Returns: "unpickled" GAP object
This function "unpickles" the string s which was created using the function IO_PickleToString

(9.3.6), using the operation IO_Unpickle (IO: IO_Unpickle) from the IO package. See
IO_PickleToString (9.3.6) for more details and suggestions about its usage.

Example

gap> IO_UnpickleFromString(f);

GF(5^3)

gap> f = IO_UnpickleFromString(IO_PickleToString(f));

SCSCP 52

true

References

[BL07] Jost Berthold and Rita Loogen. Visualizing Parallel Functional Program Runs — Case
Studies with the Eden Trace Viewer. In Parallel Computing: Architectures, Algorithms
and Applications. Proceedings of the International Conference ParCo 2007, volume 15 of
Advances in Parallel Computing. IOS Press, 2007. 41

[CKS] Marco Costantini, Alexander Konovalov, and Andrew Solomon. Openmath — OpenMath
functionality in GAP. GAP4 package (http://www.cs.st-andrews.ac.uk/~alexk/
openmath.htm). 8

[FHK+a] Sebastian Freundt, Peter Horn, Alexander Konovalov, Sylla Lesseni, Steve Linton, and
Dan Roozemond. OpenMath content dictionary scscp1. (http://www.win.tue.nl/
SCIEnce/cds/scscp1.html). 6, 13, 17, 20

[FHK+b] Sebastian Freundt, Peter Horn, Alexander Konovalov, Sylla Lesseni, Steve Linton, and Dan
Roozemond. Symbolic Computation Software Composability Protocol (SCSCP) specifica-
tion, version 1.3, 2009. (http://www.symbolic-computing.org/scscp). 6, 7, 15

[FHK+c] Sebastian Freundt, Peter Horn, Alexander Konovalov, Steve Linton, and Dan Rooze-
mond. OpenMath content dictionary scscp2. (http://www.win.tue.nl/SCIEnce/cds/
scscp2.html). 6, 13, 20

[GNO] Greg Gamble, Werner Nickel, and Eamonn O’Brien. ANUPQ — ANU p-Quotient. GAP4
package (http://www.math.rwth-aachen.de/~Greg.Gamble/ANUPQ/). 36

[LN] Frank Lübeck and Max Neunhöffer. GAPDoc — A Meta Package for GAP Documentation.
GAP4 package (http://www.math.rwth-aachen.de/~Frank.Luebeck/GAPDoc). 8

[Neu] Max Neunhöffer. IO — Bindings for low level C library IO. GAP4 package (http://
www-groups.mcs.st-and.ac.uk/~neunhoef/Computer/Software/Gap/io.html). 8

53

http://www.cs.st-andrews.ac.uk/~alexk/openmath.htm
http://www.cs.st-andrews.ac.uk/~alexk/openmath.htm
http://www.win.tue.nl/SCIEnce/cds/scscp1.html
http://www.win.tue.nl/SCIEnce/cds/scscp1.html
http://www.symbolic-computing.org/scscp
http://www.win.tue.nl/SCIEnce/cds/scscp2.html
http://www.win.tue.nl/SCIEnce/cds/scscp2.html
http://www.math.rwth-aachen.de/~Greg.Gamble/ANUPQ/
http://www.math.rwth-aachen.de/~Frank.Luebeck/GAPDoc
http://www-groups.mcs.st-and.ac.uk/~neunhoef/Computer/Software/Gap/io.html
http://www-groups.mcs.st-and.ac.uk/~neunhoef/Computer/Software/Gap/io.html

Index

CloseSCSCPconnection, 25
CompleteProcess, 26
CurrentTimestamp, 50

DateISO8601, 50

EvaluateBySCSCP, 27
for SCSCP connection, 27

FirstProcess, 38
for list of processes, 38

FirstTrueProcess, 39
for list of processes, 39

GetAllowedHeads, 22
GetServiceDescription, 21
GetSignature, 23
GetTransientCD, 22

Hostname, 50

InfoMasterWorker, 48
InfoSCSCP, 47
InputOutputTCPStream

for client, 11
for server, 11

InstallSCSCPprocedure, 18
IO_PickleToString, 51
IO_UnpickleFromString, 51
IsAllowedHead, 22
IsInputOutputTCPStream, 10
IsInputOutputTCPStreamRep, 10
IsProcess, 25
IsRemoteObject, 33
IsSCSCPconnection, 24

LastReceivedCallID, 51

MemoryUsageByGAPinKbytes, 50

NewProcess, 25

for SCSCP connection, 25
NewSCSCPconnection, 24

OMGetObjectWithAttributes, 15
OMPutProcedureCall, 13
OMPutProcedureCompleted, 16
OMPutProcedureTerminated, 16
OMsymRecord, 20

ParListWithSCSCP, 41
ParQuickWithSCSCP, 39
PingSCSCPservice, 46
PingStatistic, 46

RemoteObjectsFamily, 33
RetrieveRemoteObject, 34
RunSCSCPserver, 20

SCSCP package, 2
SCSCPLogTracesToGlobal, 41

to stop tracing, 41
SCSCPreset, 41
SCSCPservers, 39
SCSCPwait, 15
StartSCSCPsession, 13
StoreAsRemoteObject, 32
StoreAsRemoteObjectPersistently, 32
SwitchSCSCPmodeToBinary, 28
SwitchSCSCPmodeToXML, 28
SynchronizeProcesses, 38

for list of processes, 38

TerminateProcess, 27

UnbindRemoteObject, 34

54

	Preface
	Installation
	Installation and system requirements
	Configuration files

	Using streams
	Input-output TCP streams
	Example of client-server communication via input-output TCP streams

	Message exchange by SCSCP
	Communication with the SCSCP server
	Communication with the SCSCP client
	Example: SCSCP session

	Running SCSCP server
	Installation of SCSCP procedures
	Starting SCSCP server
	Procedures to get information about the SCSCP server

	Client's functionality
	SCSCP connections
	Processes
	All-in-one tool: sending request and getting result
	Switching between Binary and XML OpenMath Encodings
	Remote objects

	Examples of SCSCP usage
	Providing services with the SCSCP package
	Identifying groups of order 512

	Parallel computing with SCSCP
	Managing multiple requests
	MasterWorker skeleton
	Example: parallelising Karatsuba multiplication for polynomials

	Service functions
	Pinging SCSCP servers
	Info classes for SCSCP
	Other SCSCP Utilities

	References
	Index

