Semigroups

Method for semigroups

Version 2.5

J. D. Mitchell
Manuel Delgado
James East
Attila Egri-Nagy
Julius Jonusas
Markus Pfeiffer
Ben Steinberg
Jhevon Smith
Michael Torpey
Wilf Wilson

J. D. Mitchell Email: jdm3@st-and.ac.uk
Homepage: http://tinyurl.com/jdmitchell

mailto://jdm3@st-and.ac.uk
http://tinyurl.com/jdmitchell

Semigroups 2

Abstract

The Semigroups package is a GAP package containing methods for semigroups, monoids, and inverse semi-
groups, principally of transformations, partial permutations, bipartitions, subsemigroups of regular Rees O-
matrix semigroups, and the free inverse semigroup.

Semigroups contains more efficient methods than those available in the GAP library (and in many cases
more efficient than any other software) for creating semigroups, monoids, and inverse semigroup, calculating
their Green’s structure, ideals, size, elements, group of units, small generating sets, testing membership, finding
the inverses of a regular element, factorizing elements over the generators, and many more. It is also possible
to test if a semigroup satisfies a particular property, such as if it is regular, simple, inverse, completely regular,
and a variety of further properties.

There are methods for finding congruences of certain types of semigroups, the normalizer of a semigroup in
a permutation group, the maximal subsemigroups of a finite semigroup, and smaller degree partial permutation
representations and the character tables of inverse semigroups. There are functions for producing pictures of
the Green’s structure of a semigroup, and for drawing bipartitions.

Copyright

© 2011-15 by J. D. Mitchell.

Semigroups is free software; you can redistribute it and/or modify it under the terms of the GNU General
Public License as published by the Free Software Foundation; either version 2 of the License, or (at your
option) any later version.

Acknowledgements

I would like to thank P. von Bunau, A. Distler, S. Linton, C. Nehaniv, J. Neubueser, M. R. Quick, E. F. Robert-
son, and N. Ruskuc for their help and suggestions. Special thanks go to J. Araujo for his mathematical sugges-
tions and to M. Neunhoeffer for his invaluable help in improving the efficiency of the package.

Manuel Delgado and Attila Egri-Nagy contributed to the functions Splash (4.8.1) and DotDClasses
(4.8.2).

James East, Attila Egri-Nagy, and Markus Pfeiffer contributed to the part of the package relating to bipar-
titions. I would like to thank the University of Western Sydney for their support of the development of this part
of the package.

Julius JonuSas contributed the part of the package relating to free inverse semigroups, and contributed to
the code for ideals.

Yann Peresse and Yanhui Wang contributed to the function MunnSemigroup (2.5.10).

Jhevon Smith and Ben Steinberg contributed the function CharacterTableOfInverseSemigroup
(4.7.16).

Michael Torpey contributed the part of the package relating to congruences of Rees (0-)matrix semigroups.

Wilf Wilson contributed to the part of the package relating maximal subsemigroups and smaller degree
partial permutation representations of inverse semigroups. We are also grateful to C. Donoven and R. Hancock
for their contribution to the development of the algorithms for maximal subsemigroups and smaller degree
partial permutation representations.

We would also like to acknowledge the support of the Centre of Algebra at the University of Lisbon, and

of EPSRC grant number GR/S/56085/01.

 http://www.fsf.org/licenses/gpl.html
 http://www.fsf.org/licenses/gpl.html

Semigroups

Contents

1 The Semigroups package 6
1.1 Introduction e e 6
1.2 Installing the Semigroups package v v v i i 7
1.3 Compiling the documentationo 8
1.4 Testing the installation 9
1.5 More information during a computation 9
1.6 Reading and writing elementstoafile 10
2 Creating semigroups and monoids 12
2.1 Random Semigroups v . i e e e e e e e e e e e 12
2.2 New semigroups fromold. Lo 13
2.3 Options when creating SEmMigroups« v v v v v v v e e e 15
2.4 Changing the representation of a semigroup 17
2.5 Standardexamples 20
3 Ideals 28
3.1 Creatingideals e 28
3.2 Atributesofideals 29
4 Determining the structure of a semigroup 31
4.1 Expressing semigroup elements as words in generators 31
4.2 Creating Green’sclasses L e 33
4.3 TIterators and enumerators of classes and representatives 37
4.4 Attributes and properties directly related to Green’s classes 42
4.5 Further attributes of semigroups L. 53
4.6 Further properties of semigroups L oo 68
4.7 Properties and attributes of inverse semigroups 80
4.8 Visualising the structure of a semigroup 91
5 Bipartitions and blocks 9
5.1 The family and categories of bipartitions 95
5.2 Creating bipartitions e 95
5.3 Changing the representation of a bipartition 98
5.4 Operators for bipartitions 101
5.5 Attributes for bipartitonso 103
5.6 Creating blocks and their attributes 109
5.7 Actionsonblocks 110

Semigroups

5.8 Visualising blocks and bipartitions Lo

5.9 Semigroups of bipartitions
6 Free inverse semigroups and free bands

6.1 Free inverse SemMigroups v v v v v i i e e e e e e e e e

6.2 Displaying free inverse semigroup elements

6.3 Operators and operations for free inverse semigroup elements

6.4 Freebands

6.5 Operators and operations for free band elements
7 Congruences

7.1 Creating CONZIUENCES . . . « v« v v v v e e e et e e e e e e e e e e

7.2 Congruence classes e

7.3 Congruences on Rees matrix semigroups

7.4 Universal cOngruences v it it e e e e e e e
8 Homomorphisms

8.1 Isomorphisms e
9 Orbits

9.1 Looking for somethinginanorbit,

9.2 Strongly connected componentsof orbits
References
Index

116
116
118
118
119
121

122
122
123
124
129

131
131

133
133
134

138

139

Chapter 1

The Semigroups package

1.1 Introduction

This is the manual for the Semigroups package version 2.5. Semigroups 2.5 is a descendant of
the Monoid package for GAP 3 by Goetz Pfeiffer, Steve A. Linton, Edmund F. Robertson, and Nik
Ruskuc; and the Monoid package for GAP 4 by J. D. Mitchell.

Many of the operations, methods, properties, and functions described in this manual only apply
to semigroups of transformations, partial permutations, bipartitions, and subsemigroups of regular
Rees 0-matrix semigroups over groups. For the sake of brevity, we have opted to say SEMIGROUP
rather than SEMIGROUP OF TRANSFORMATIONS, PARTIAL PERMUTATIONS, BIPARTITIONS, AND
SUBSEMIGROUPS OF REGULAR REES O0-MATRIX SEMIGROUPS OVER GROUPS.

Semigroups 2.5 contains more efficient methods than those available in the GAP library (and
in many cases more efficient than any other software) for creating semigroups and ideals, calculating
their Green’s structure, size, elements, group of units, minimal ideal, and testing membership, finding
the inverses of a regular element, and factorizing elements over the generators, and many more; see
Chapters 2, 3, and 4. There are also methods for testing if a semigroup satisfies a particular property,
such as if it is regular, simple, inverse, completely regular, and a variety of further properties; see
Chapter 4. The theory behind the main algorithms in Semigroups will be described in a forthcoming
article.

It is harder for Semigroups to compute Green’s .Z’- and .7/’-classes of a transformation semi-
group and the methods used to compute with Green’s %Z- and Z-classes are the most efficient in
Semigroups. Thus, if you are computing with a transformation semigroup, wherever possible, it
is advisable to use the commands relating to Green’s %#- or Z-classes rather than those relating to
Green’s .Z- or 7 -classes. No such difficulties are present when computing with semigroups of par-
tial permutations, bipartitions, or subsemigroups of a regular Rees O-matrix semigroup over a group.

The methods in Semigroups allow the computation of individual Green’s classes without com-
puting the entire data structure of the underlying semigroup; see GreensRClass0fElementNC (4.2.3).
It is also possible to compute the Z-classes, the number of elements and test membership in a semi-
group without computing all the elements; see, for example, GreensRClasses (4.3.1), RClassReps
(4.3.4), IteratorOfRClassReps (4.3.2), Iterator0fRClasses (4.3.3), or NrRClasses (4.4.6).
This may be useful if you want to study a very large semigroup where computing all the elements
of the semigroup is not feasible.

There are methods for finding: congruences of certain types of semigroups (based on Section 3.5
in [How95]), the normalizer of a semigroup in a permutation group (as given in [ABMNI10]), the

 http://schmidt.nuigalway.ie/monoid/index.html

Semigroups 7

maximal subsemigroups of a finite semigroup (based on [GGR68]), smaller degree partial permuta-
tion representations (based on [Sch92]) and the character table of an inverse semigroup. There are
functions for producing pictures of the Green’s structure of a semigroup, and for drawing bipartitions.

Several standard examples of semigroups are provided see Section 2.5. Semigroups also provides
functions to read and write collections of transformations, partial permutations, and bipartitions to a
file; see ReadGenerators (1.6.2) and WriteGenerators (1.6.3).

Details of how to create and manipulate semigroups of bipartitions can be found in Chapter 5.

There are also functions in Semigroups to define and manipulate free inverse semigroups and
their elements; this part of the package was written by Julius JonuSas; see Chapter 6 and Section 5.10
in [How95] for more details.

Semigroups contains functions synonymous to some of those defined in the GAP library but, for
the sake of convenience, they have abbreviated names; further details can be found at the appropriate
points in the later chapters of this manual.

Semigroups contains different methods for some GAP library functions, and so you might no-
tice that GAP behaves differently when Semigroups is loaded. For more details about semigroups
in GAP or Green’s relations in particular, see (Reference: Semigroups) or (Reference: Green’s
Relations).

The Semigroups package is written GAP code and requires the Orb and 10O packages. The Orb
package is used to efficiently compute components of actions, which underpin many of the features
of Semigroups. The IO package is used to read and write transformations, partial permutations, and
bipartitions to a file.

The Grape package must be loaded for the operation SmallestMultiplicationTable (8.1.2) to
work, and it must be fully compiled for the following functions to work:

* MunnSemigroup (2.5.10)
* MaximalSubsemigroups (4.5.7)
* IsIsomorphicSemigroup (8.1.1)

e IsomorphismSemigroups (8.1.3).

If Grape is not available or is not compiled, then Semigroups can be used as normal with the excep-
tion that the functions above will not work.

The genss package is used in one version of the function Normalizer (4.5.23) but nowhere else
in Semigroups. If genss is not available, then Semigroups can be used as normal with the exception
that this function will not work.

Some further details about semigroups in GAP and Green’s relations in particular, can be found
in (Reference: Semigroups) and (Reference: Green’s Relations).

If you find a bug or an issue with the package, then report this using the issue tracker.

1.2 Installing the Semigroups package

In this section we give a brief description of how to start using Semigroups.

It is assumed that you have a working copy of GAP with version number 4.7.6 or higher. The
most up-to-date version of GAP and instructions on how to install it can be obtained from the main
GAP webpage http://www.gap-system.org.

The following is a summary of the steps that should lead to a successful installation of Semi-
groups:

 http://www-groups.mcs.st-and.ac.uk/~neunhoef/Computer/Software/Gap/orb.html
 http://www-groups.mcs.st-and.ac.uk/~neunhoef/Computer/Software/Gap/io.html
 http://www-groups.mcs.st-and.ac.uk/~neunhoef/Computer/Software/Gap/orb.html
 http://www-groups.mcs.st-and.ac.uk/~neunhoef/Computer/Software/Gap/io.html
http://www.maths.qmul.ac.uk/~leonard/grape/
http://www.maths.qmul.ac.uk/~leonard/grape/
 http://www-groups.mcs.st-and.ac.uk/~neunhoef/Computer/Software/Gap/genss.html
 http://www-groups.mcs.st-and.ac.uk/~neunhoef/Computer/Software/Gap/genss.html
http://bitbucket.org/james-d-mitchell/semigroups/issues
http://www.gap-system.org

Semigroups 8

* ensure that the IO package version 4.4.4 or higher is available. 10 must be compiled before
Semigroups can be loaded.

* ensure that the Orb package version 4.7.3 or higher is available. Orb and Semigroups both
perform better if Orb is compiled.

» THIS STEP IS OPTIONAL: certain functions in Semigroups require the Grape package to be
available and fully compiled; a full list of these functions can be found above. To use these
functions make sure that the Grape package version 4.5 or higher is available. If Grape is not
fully installed (i.e. compiled), then Semigroups can be used as normal with the exception that
the functions listed above will not work.

e THIS STEP IS OPTIONAL: the non-deterministic version of the function Normalizer (4.5.23)
requires the genss package to be loaded. If you want to use this function, then please ensure
that the genss package version 1.5 or higher is available.

* download the package archive semigroups-2.5.tar.gz from the Semigroups package web-
page.

* unzip and untar the file, this should create a directory called semigroups-2.5.

* locate the pkg directory of your GAP directory, which contains the directories 1ib, doc and so
on. Move the directory semigroups-2.5 into the pkg directory.

* start GAP in the usual way.
* type LoadPackage ("semigroups") ;
* compile the documentation by using SemigroupsMakeDoc (1.3.1).

Presuming that the above steps can be completed successfully you will be running the Semigroups
package!

If you want to check that the package is working correctly, you should run some of the tests
described in Section 1.4.

1.3 Compiling the documentation

To compile the documentation use SemigroupsMakeDoc (1.3.1). If you want to use the help system,
it is essential that you compile the documentation.

1.3.1 SemigroupsMakeDoc

> SemigroupsMakeDoc () (function)
Returns: Nothing.
This function should be called with no argument to compile the Semigroups documentation.

 http://www-groups.mcs.st-and.ac.uk/~neunhoef/Computer/Software/Gap/io.html
 http://www-groups.mcs.st-and.ac.uk/~neunhoef/Computer/Software/Gap/io.html
 http://www-groups.mcs.st-and.ac.uk/~neunhoef/Computer/Software/Gap/orb.html
 http://www-groups.mcs.st-and.ac.uk/~neunhoef/Computer/Software/Gap/orb.html
 http://www-groups.mcs.st-and.ac.uk/~neunhoef/Computer/Software/Gap/orb.html
http://www.maths.qmul.ac.uk/~leonard/grape/
http://www.maths.qmul.ac.uk/~leonard/grape/
http://www.maths.qmul.ac.uk/~leonard/grape/
 http://www-groups.mcs.st-and.ac.uk/~neunhoef/Computer/Software/Gap/genss.html
 http://www-groups.mcs.st-and.ac.uk/~neunhoef/Computer/Software/Gap/genss.html
http://www-groups.mcs.st-andrews.ac.uk/~jamesm/semigroups.php
http://www-groups.mcs.st-andrews.ac.uk/~jamesm/semigroups.php

Semigroups 9

1.4 Testing the installation

In this section we describe how to test that Semigroups is working as intended. To test
that Semigroups is installed correctly use SemigroupsTestInstall (1.4.1) or for more ex-
tensive tests use SemigroupsTestAll (1.4.3). Please note that it will take a few seconds for
SemigroupsTestInstall (1.4.1) to finish and it may take several minutes for SemigroupsTestAll
(1.4.3) to finish.

If something goes wrong, then please review the instructions in Section 1.2 and ensure that Semi-
groups has been properly installed. If you continue having problems, please use the issue tracker to
report the issues you are having.

1.4.1 SemigroupsTestInstall

> SemigroupsTestInstall() (function)
Returns: Nothing.
This function should be called with no argument to test your installation of Semigroups is work-
ing correctly. These tests should take no more than a fraction of a second to complete. To more
comprehensively test that Semigroups is installed correctly use SemigroupsTestAll (1.4.3).

1.4.2 SemigroupsTestManualExamples

> SemigroupsTestManualExamples () (function)

Returns: Nothing.

This function should be called with no argument to test the examples in the Semigroups
manual. These tests should take no more than a few minutes to complete. To more compre-
hensively test that Semigroups is installed correctly use SemigroupsTestAll (1.4.3). See also
SemigroupsTestInstall (1.4.1).

1.4.3 SemigroupsTestAll

> SemigroupsTestAll () (function)
Returns: Nothing.
This function should be called with no argument to comprehensively test that Semigroups is
working correctly. These tests should take no more than a few minutes to complete. To quickly test
that Semigroups is installed correctly use SemigroupsTestInstall (1.4.1).

1.5 More information during a computation

1.5.1 InfoSemigroups

> InfoSemigroups (info class)

InfoSemigroups is the info class of the Semigroups package. The info level is initially set
to 0 and no info messages are displayed. We recommend that you set the level to 1 so that basic
info messages are displayed. To increase the amount of information displayed during a computation
increase the info level to 2 or 3. To stop all info messages from being displayed, set the info level to
0. See also (Reference: Info Functions) and SetInfoLevel (Reference: SetInfoLevel).

http://bitbucket.org/james-d-mitchell/semigroups/issues

Semigroups 10

1.6 Reading and writing elements to a file

The functions ReadGenerators (1.6.2) and WriteGenerators (1.6.3) can be used to read or write
transformations, partial permutations, and bipartitions to a file.

1.6.1 SemigroupsDir

> SemigroupsDir() (function)
Returns: A string.
This function returns the absolute path to the Semigroups package directory as a string. The
same result can be obtained typing:

Example
PackageInfo("semigroups") [1]!.InstallationPath;

at the GAP prompt.

1.6.2 ReadGenerators

> ReadGenerators(filename[, nr]) (function)
Returns: A list of lists of semigroup elements.
If filename is the name of a file created using WriteGenerators (1.6.3), then ReadGenerators
returns the contents of this file as a list of lists of transformations, partial permutations, or bipartitions.
If the optional second argument nr is present, then ReadGenerators returns the elements stored
in the nrth line of filename.

Example

gap> file:=Concatenation(SemigroupsDir(), "/tst/test.gz");;

gap> ReadGenerators(file, 1378);

[Transformation([1, 2, 2]), IdentityTransformation,
Transformation([1, 2, 3, 4, 5, 7, 71),
Transformation([1, 3, 2, 4, 7, 6, 71),
Transformation([4, 2, 1, 1, 6, 51),

Transformation([4, 3, 2, 1, 6, 7, 71),
Transformation([4, 4, 5, 7, 6, 1, 11),
Transformation([7, 6, 6, 1, 2, 4, 4 1),
Transformation([7, 7, 5, 4, 3, 1, 1])]
1.6.3 WriteGenerators
> WriteGenerators(filename, list[, append]) (function)

Returns: true or fail.

This function provides a method for writing transformations, partial permutations, and bipartitions
to a file, that uses a relatively small amount of disk space. The resulting file can be further compressed
using gzip or xz.

The argument 1ist should be a list of elements, a semigroup, or a list of lists of elements, or semi-
groups. The types of elements and semigroups supported are: transformations, partial permutations,
and bipartitions.

The argument filename should be a string containing the name of a file where the entries in
1list will be written or an IO package file object.

Semigroups 11

If the optional third argument append is given and equals "w", then the previous content of the
file is deleted. If the optional third argument is "a" or is not present, then 1ist is appended to the file.
This function returns true if everything went well or fail if something went wrong.

WriteGenerators appends a line to the file filename for every entry in 1ist. If any element
of 1ist is a semigroup, then the generators of that semigroup are written to filename.

The first character of the appended line indicates which type of element is contained in that line,
the second character m is the number of characters in the degree of the elements to be written, the
next m characters are the degree n of the elements to be written, and the internal representation of
the elements themselves are written in blocks of m*n in the remainder of the line. For example, the
transformations:

[Transformation([2, 6, 7, 2, 6, 9
Transformation([3, 8, 1, 9, 9, 4, 10, 5, 10, 6])]

are written as:
Example
t210 2267 269911538199 410 510 6

The file filename can be read using ReadGenerators (1.6.2).

1.6.4 IteratorFromGeneratorsFile

> IteratorFromGeneratorsFile(filename) (function)

Returns: An iterator.

If filename is a string containing the name of a file created using WriteGenerators (1.6.3), then
IteratorFromGeneratorsFile returns an iterator iter such that NextIterator(iter) returns
the next collection of generators stored in the file filename.

This function is a convenient way of, for example, looping over a collection of generators in a file
without loading every object in the file into memory. This might be useful if the file contains more
information than there is available memory.

Chapter 2

Creating semigroups and monoids

In this chapter we describe the various ways that semigroups and monoids can be created in Semi-
groups, the options that are available at the time of creation, and describe some standard examples
available in Semigroups.

Any semigroup created before Semigroups has been loaded must be recreated after Semigroups
is loaded so that the options record (described in Section 2.3) is defined. Almost all of the functions
and methods provided by Semigroups, including those methods for existing GAP library functions,
will return an error when applied to a semigroup created before Semigroups is loaded.

2.1 Random semigroups

2.1.1 RandomlnverseMonoid

> RandomInverseMonoid(m, n) (operation)
> RandomInverseSemigroup(m, n) (operation)
Returns: An inverse monoid or semigroup.
Returns a random inverse monoid or semigroup of partial permutations with degree at most n with
m generators.
Example
gap> S:=RandomInverseSemigroup(10,10);
<inverse partial perm semigroup on 10 pts with 10 generators>
gap> S:=RandomInverseMonoid(10,10);
<inverse partial perm monoid on 10 pts with 10 generators>

2.1.2 RandomTransformationMonoid

> RandomTransformationMonoid(m, n) (operation)
> RandomTransformationSemigroup (m, n) (operation)

Returns: A transformation semigroup or monoid.

Returns a random transformation monoid or semigroup of at most degree n with m generators.
Example
gap> S:=RandomTransformationMonoid(5,5);
<transformation monoid on 5 pts with 5 generators>
gap> S:=RandomTransformationSemigroup(5,5);
<transformation semigroup on 5 pts with 5 generators>

12

Semigroups 13

2.1.3 RandomPartialPermMonoid

> RandomPartialPermMonoid(m, n) (operation)
> RandomPartialPermSemigroup(m, n) (operation)
Returns: A partial perm semigroup or monoid.
Returns a random partial perm monoid or semigroup of degree at most n with m generators.

Example
gap> S:=RandomPartialPermSemigroup(5, 5);

<partial perm semigroup on 4 pts with 5 generators>
gap> S:=RandomPartialPermMonoid(5, 5);
<partial perm monoid on 5 pts with 5 generators>

2.1.4 RandomBinaryRelationMonoid

> RandomBinaryRelationMonoid(m, n) (operation)
> RandomBinaryRelationSemigroup(m, n) (operation)
Returns: A semigroup or monoid of binary relations.

Returns a random monoid or semigroup of binary relations on n points with m generators.
Example
gap> RandomBinaryRelationSemigroup(5,5);
<semigroup with 5 generators>

gap> RandomBinaryRelationMonoid(5,5) ;
<monoid with 5 generators>

2.1.5 RandomBipartitionSemigroup

> RandomBipartitionSemigroup(m, n) (operation)
> RandomBipartitionMonoid(m, n) (operation)
Returns: A bipartition semigroup or monoid.
Returns a random monoid or semigroup of bipartition on n points with m generators.
Example

gap> RandomBipartitionMonoid(5,5);

<bipartition monoid on 5 pts with 5 generators>
gap> RandomBipartitionSemigroup(5,5);

<bipartition semigroup on 5 pts with 5 generators>

2.2 New semigroups from old

2.2.1 ClosurelnverseSemigroup

> ClosureInverseSemigroup(S, coll[, opts]) (operation)

Returns: An inverse semigroup or monoid.

This function returns the inverse semigroup or monoid generated by the inverse semigroup S and
the collection of elements coll after first removing duplicates and elements in coll that are already
in S. In most cases, the new semigroup knows at least as much information about its structure as was
already known about that of S.

If present, the optional third argument opts should be a record containing the values of the options
for the inverse semigroup being created; these options are described in Section 2.3.

Semigroups 14

Example
gap> S:=InverseMonoid(
> PartialPerm([1, 2, 3, 5, 6
> PartialPerm([1, 2, 4, 7, 8
gap> f:=PartialPerm(

>[1, 2,3, 4,5, 7,8, 10, 11, 13, 18, 19, 20 1],

>[5,1, 7,3, 10, 2, 12, 14, 11, 16, 6, 9, 15 1);;

gap> S:=ClosurelInverseSemigroup(S, f);

<inverse partial perm semigroup on 19 pts with 4 generators>
gap> Size(S);

9744

gap> T:=Idempotents(SymmetricInverseSemigroup(10));;

gap> S:=ClosurelInverseSemigroup(S, T);

<inverse partial perm semigroup on 19 pts with 854 generators>
gap> S:=InverseSemigroup(SmallGeneratingSet(S));

<inverse partial perm semigroup on 19 pts with 14 generators>

s 7, 8], [5’ 9, 10) 6’ 3, 8)
91, [10,7,8,5,9,11])

>

> B

2.2.2 ClosureSemigroup

> ClosureSemigroup(S, colll[, opts]) (operation)

Returns: A semigroup or monoid.

This function returns the semigroup or monoid generated by the semigroup S and the collection
of elements coll after removing duplicates and elements from coll that are already in S. In most
cases, the new semigroup knows at least as much information about its structure as was already known
about that of S.

If present, the optional third argument opts should be a record containing the values of the options
for the semigroup being created as described in Section 2.3.

Example
gap> gens:=[Transformation([2, 6, 7, 2, 6, 1, 1, 51),
> Transformation([3, 8, 1, 4, 5, 6, 7, 11),
> Transformation([4, 3, 2, 7, 7, 6, 6, 51),
> Transformation([7, 1, 7, 4, 2, 5, 6, 31) 1;;

gap> S:=Monoid(gens[1]);;

gap> for i in [2..4] do S:=ClosureSemigroup(S, gens[il]); od;
gap> S;

<transformation monoid on 8 pts with 4 generators>

gap> Size(S);

233606

2.2.3 SubsemigroupByProperty (for a semigroup and function)

> SubsemigroupByProperty(S, func) (operation)
> SubsemigroupByProperty(S, func, limit) (operation)

Returns: A semigroup.

SubsemigroupByProperty returns the subsemigroup of the semigroup S generated by those
elements of S fulfilling func (which should be a function returning true or false).

If no elements of S fulfil func, then fail is returned.

If the optional third argument 1imit is present and a positive integer, then once the subsemigroup
has at least 1imit elements the computation stops.

Semigroups 15

Example
gap> func:=function(f) return 1~f<>1 and

> ForAll([1..DegreeOfTransformation(f)], y-> y=1 or y~f=y); end;
function(£) ... end

gap> T:=SubsemigroupByProperty(FullTransformationSemigroup(3), func);
<transformation semigroup of size 2, on 3 pts with 2 generators>
gap> T:=SubsemigroupByProperty(FullTransformationSemigroup(4), func);
<transformation semigroup of size 3, on 4 pts with 3 generators>
gap> T:=SubsemigroupByProperty(FullTransformationSemigroup(5), func);
<transformation semigroup of size 4, on 5 pts with 4 generators>

2.2.4 InverseSubsemigroupByProperty

> InverseSubsemigroupByProperty(S, func) (operation)

Returns: An inverse semigroup.

InverseSubsemigroupByProperty returns the inverse subsemigroup of the inverse semigroup
S generated by those elements of S fulfilling func (which should be a function returning true or
false).

If no elements of S fulfil func, then fail is returned.

If the optional third argument 1imit is present and a positive integer, then once the subsemigroup
has at least 1imit elements the computation stops.
Example

gap> IsIsometry:=function(f)
> local n, i, j, k, 1;
> n:=RankOfPartialPerm(f);
for i in [1..n-1] do
k:=DomainOfPartialPerm(f) [i];
for j in [i+1..n] do
1:=DomainOfPartialPerm(f) [j];
if not AbsInt(k~f-1-f)=AbsInt(k-1) then
return false;
fi;
od;
od;
return true;
> end;;
gap> S:=InverseSubsemigroupByProperty(SymmetricInverseSemigroup(5),
> IsIsometry);;
gap> Size(S);
142

V VV V V V V V V.YV

2.3 Options when creating semigroups
When using any of the functions:
* InverseSemigroup (Reference: InverseSemigroup),
¢ InverseMonoid (Reference: InverseMonoid),

* Semigroup (Reference: Semigroup),

Semigroups 16

¢ Monoid (Reference: Monoid),

* SemigroupByGenerators (Reference: SemigroupByGenerators),
* MonoidByGenerators (Reference: MonoidByGenerators),

* ClosurelnverseSemigroup (2.2.1),

* ClosureSemigroup (2.2.2),

e SemigroupIdeal (3.1.1)

arecord can be given as an optional final argument. The components of this record specify the values
of certain options for the semigroup being created. A list of these options and their default values is
given below.

Assume that S is the semigroup created by one of the functions given above and that either: S
is generated by a collection gens of transformations, partial permutations, Rees 0-matrix semigroup
elements, or bipartitions; or S is an ideal of such a semigroup.

acting

this component should be true or false. In order for a semigroup to use the methods in
Semigroups it must satisfy IsActingSemigroup. By default any semigroup or monoid
of transformations, partial permutations, Rees O-matrix elements, or bipartitions satisfies
IsActingSemigroup. From time to time, it might be preferable to use the exhaustive algo-
rithm in the GAP library to compute with a semigroup. If this is the case, then the value of
this component can be set false when the semigroup is created. Following this none of the
methods in the Semigroups package will be used to compute anything about the semigroup.

regular
this component should be true or false. If it is known a priori that the semigroup S being
created is a regular semigroup, then this component can be set to true. In this case, S knows
it is a regular semigroup and can take advantage of the methods for regular semigroups in
Semigroups. It is usually much more efficient to compute with a regular semigroup that to
compute with a non-regular semigroup.

If this option is set to true when the semigroup being defined is NOT regular, then the results
might be unpredictable.

The default value for this option is false.

hashlen
this component should be a positive integer, which roughly specifies the lengths of the hash
tables used internally by Semigroups. Semigroups uses hash tables in several fundamental
methods. The lengths of these tables are a compromise between performance and memory
usage; larger tables provide better performance for large computations but use more memory.
Note that it is unlikely that you will need to specify this option unless you find that GAP runs
out of memory unexpectedly or that the performance of Semigroups is poorer than expected.
If you find that GAP runs out of memory unexpectedly, or you plan to do a large number of
computations with relatively small semigroups (say with tens of thousands of elements), then
you might consider setting hashlen to be less than the default value of 25013 for each of these
semigroups. If you find that the performance of Semigroups is unexpectedly poor, or you plan

Semigroups 17

to do a computation with a very large semigroup (say, more than 10 million elements), then you
might consider setting hashlen to be greater than the default value of 25013.

You might find it useful to set the info level of the info class InfoOrb to 2 or higher since
this will indicate when hash tables used by Semigroups are being grown; see SetInfoLevel
(Reference: SetInfoLevel).

small
if this component is set to true, then Semigroups will compute a small subset of gens that
generates S at the time that S is created. This will increase the amount of time required to create
S substantially, but may decrease the amount of time required for subsequent calculations with
S. If this component is set to false, then Semigroups will return the semigroup generated by
gens without modifying gens. The default value for this component is false.

This option is ignored when passed to ClosureSemigroup (2.2.2) or
ClosureInverseSemigroup (2.2.1).

Example
gap> S:=Semigroup(Transformation([1, 2, 3, 3]),

> rec(hashlen:=100003, small:=false));

<commutative transformation semigroup on 4 pts with 1 generator>

The default values of the options described above are stored in a global variable named
SemigroupsOptionsRec (2.3.1). If you want to change the default values of these options for a
single GAP session, then you can simply redefine the value in GAP. For example, to change the
option small from the default value of false use:

Example
gap> SemigroupsOptionsRec.small:=true;
true

If you want to change the default values of the options stored in SemigroupsOptionsRec (2.3.1) for
all GAP sessions, then you can edit these values in the file semigroups/gap/options.g.

2.3.1 SemigroupsOptionsRec

> SemigroupsOptionsRec (global variable)

This global variable is a record whose components contain the default values of certain options for
transformation semigroups created after Semigroups has been loaded. A description of these options
is given above in Section 2.3.

The value of SemigroupsOptionsRec is defined in the file semigroups/gap/options.g as:

Example
rec(acting := true, hashlen := rec(L := 25013, M := 6257, S :=
251), regular := false, small := false)

2.4 Changing the representation of a semigroup

In addition, to the library functions

* IsomorphismReesMatrixSemigroup (Reference: IsomorphismReesMatrixSemigroup),

Semigroups 18

* AntiIsomorphismTransformationSemigroup (Reference: AntilsomorphismTransfor-
mationSemigroup),

* IsomorphismTransformationSemigroup (Reference: IsomorphismTransformationSemi-
group),

* IsomorphismPartialPermSemigroup (Reference: IsomorphismPartialPermSemigroup),

there are several methods for changing the representation of a semigroup in Semigroups. There
are also methods for the operations given above for the types of semigroups defined in Semigroups
which are not mentioned in the reference manual.

2.4.1 AsTransformationSemigroup

> AsTransformationSemigroup (S) (operation)
> AsPartialPermSemigroup (S) (operation)
> AsBipartitionSemigroup(S) (operation)
> AsBlockBijectionSemigroup(S) (operation)

Returns: A semigroup.

AsTransformationSemigroup (S) is just shorthand for Range (IsomorphismTransformationSemigroup(S))
when S is a semigroup; see IsomorphismTransformationSemigroup (Reference: Isomorphism-
TransformationSemigroup) for more details.

The operations:

* AsPartialPermSemigroup;
* AsBipartitionSemigroup;
* AsBlockBijectionSemigroup;

are analogous to AsTransformationSemigroup.
Example
gap> S:=Semigroup([Bipartition([[1, 21, [3, 6, -2 1,
>[4,5,-3,-41,[-1,-61,[-511),

> Bipartition([[1, -4 1, [2, 3,4,51,[61, [-1, -61,
>[-2,-31,[-511)1);

<bipartition semigroup on 6 pts with 2 generators>

gap> AsTransformationSemigroup(S);

<transformation semigroup on 12 pts with 2 generators>

2.4.2 IsomorphismPermGroup

> IsomorphismPermGroup (S) (operation)
Returns: An isomorphism.
If the semigroup S satisfies IsGroupAsSemigroup (4.6.6), then IsomorphismPermGroup returns
an isomorphism to a permutation group.
If S does not satisfy IsGroupAsSemigroup (4.6.6), then an error is given.
Example
gap> S:=Semigroup(Transformation([2, 2, 3, 4, 6, 8, 5, 51),
> Transformation([3, 3, 8, 2, 5, 6, 4, 41));;
gap> IsGroupAsSemigroup(S);

Semigroups 19

true

gap> IsomorphismPermGroup(S) ;

MappingByFunction(<transformation group on 8 pts with 2 generators>
, Group([(5,6,8), (2,3,8,

4) 1), <Attribute "PermutationOfImage">, function(x) ... end)
gap> StructureDescription(Range (IsomorphismPermGroup(S)));
" S6 n

gap> S:=Range(IsomorphismPartialPermSemigroup (SymmetricGroup(4)));

<inverse partial perm semigroup on 4 pts with 2 generators>

gap> IsomorphismPermGroup(S);

MappingByFunction(<partial perm group on 4 pts with 2 generators>
, Group([(1,2,3,4), (1,

2) 1), <Attribute "AsPermutation">, function(x) ... end)

gap> G:=GroupOfUnits(PartitionMonoid(4));

<bipartition group on 4 pts with 2 generators>

gap> StructureDescription(G);

IIS4"

gap> iso:=IsomorphismPermGroup(G) ;

MappingByFunction(<bipartition group on 4 pts with 2 generators>

, S4, <Attribute "AsPermutation">, function(x) ... end)
gap> RespectsMultiplication(iso);
true

gap> inv:=InverseGeneralMapping(iso);;

gap> ForAll(G, x-> (x~iso) ~inv=x);

true

gap> ForAll(G, x-> ForAll(G, y-> (x*y) iso=x"iso*y~iso));
true

2.4.3 IsomorphismBipartitionSemigroup

> IsomorphismBipartitionSemigroup(S) (attribute)
> IsomorphismBipartitionMonoid(S) (attribute)

Returns: An isomorphism.

If S is a semigroup, then IsomorphismBipartitionSemigroup returns an isomorphism from S
to a bipartition semigroup. When S is a transformation semigroup, partial permutation semigroup, or
a permutation group, on n points, IsomorphismBipartitionSemigroup returns the natural embed-
ding of S into the partition monoid on n points. When S is a generic semigroup, this funciton returns
the right regular representation of S acting on S with an identity adjoined.

See AsBipartition (5.3.1).
Example

gap> S:=InverseSemigroup (
> PartialPerm([1, 2, 3, 6, 8, 101, [2,6, 7,9, 1,51),
> PartialPerm([1, 2, 3, 4, 6, 7, 8, 10 1,
> [3,8,1,9,4,10,5,61));;
gap> IsomorphismBipartitionSemigroup(S);
MappingByFunction(<inverse partial perm semigroup on 10 pts
with 2 generators>, <inverse bipartition semigroup

on 10 pts with 2 generators>

, function(x) ... end, <Operation "AsPartialPerm">)
gap> ForAll(Generators(Range(last)), IsPartialPermBipartition);
true

Semigroups 20

2.4.4 IsomorphismBlockBijectionSemigroup

> IsomorphismBlockBijectionSemigroup(S) (attribute)
> IsomorphismBlockBijectionMonoid(S) (attribute)

Returns: An isomorphism.

If S is a partial perm semigroup on n points, then this function returns the embedding of S into
a subsemigroup of the dual symmetric inverse monoid on n+1 points given by the FitzGerald-Leech
Theorem [FLI8].

See AsBlockBijection (5.3.2) for more details.
Example

gap> S:=SymmetricInverseMonoid(4);
<symmetric inverse semigroup on 4 pts>
gap> IsomorphismBlockBijectionSemigroup(S);
MappingByFunction(<symmetric inverse semigroup on 4 pts>,
<inverse bipartition monoid on 5 pts with 3 generators>
, function(x) ... end, function(x) ... end)
gap> Size(Range(last));
209
gap> S:=Semigroup(PartialPerm([1, 2 1, [3, 11),
> PartialPerm([1, 2, 31, [1, 3, 41));;
gap> IsomorphismBlockBijectionSemigroup(S);
MappingByFunction(<partial perm semigroup on 3 pts
with 2 generators>, <bipartition semigroup on 5 pts with 2 generators
>, function(x) ... end, function(x) ... end)

2.5 Standard examples

In this section, we describe the operations in Semigroups that can be used to creating semigroups be-
longing to several standard classes of example. See Chapter 5 for more information about semigroups
of bipartitions.

2.5.1 EndomorphismsPartition

> EndomorphismsPartition(list) (operation)

Returns: A transformation monoid.

If 1ist is a list of positive integers, then EndomorphismsPartition returns a monoid of endo-
morphisms preserving a partition of [1..Sum(1ist)] with a part of length 1ist [i] for every i. For
example, if 1ist=[1,2,3], then EndomorphismsPartition returns the monoid of endomorphisms
of the partition [[1],[2,3],[4,5,6]].

If £ is a transformation of [1..n], then it is an ENDOMORPHISM of a partition P on [1..n] if
(i,j) in P implies that (i~f, j~f) isinP.

EndomorphismsPartition returns a monoid with a minimal size generating set, as described in
[ABMS14].

Example
gap> S:=EndomorphismsPartition([3,3,3]);
<transformation semigroup on 9 pts with 4 generators>
gap> Size(S);

531441

Semigroups 21

2.5.2 PartitionMonoid

> PartitionMonoid(n) (operation)
> SingularPartitionMonoid(n) (operation)

Returns: A bipartition monoid.

If n is a positive integer, then this operation returns the partition monoid of degree n which is the
monoid consisting of all the bipartitions of degree n.

SingularPartitionMonoid returns the ideal of the partition monoid consisting of the non-
invertible elements (i.e. those not in the group of units).
Example

gap> S:=PartitionMonoid(5);

<regular bipartition monoid on 5 pts with 4 generators>
gap> Size(S);

115975

2.5.3 BrauerMonoid

> BrauerMonoid(n) (operation)
> SingularBrauerMonoid(zn) (operation)

Returns: A bipartition monoid.

If n is a positive integer, then this operation returns the Brauer monoid of degree n. The BRAUER
MONOID is the subsemigroup of the partition monoid consisiting of those bipartitions where the size
of every block is 2.

SingularBrauerMonoid returns the ideal of the Brauer monoid consisting of the non-invertible

elements (i.e. those not in the group of units), when n is at least 2.
Example

gap> S:=BrauerMonoid(4);

<regular bipartition monoid on 4 pts with 3 generators>

gap> IsSubsemigroup(S, JonesMonoid(4));

true

gap> Size(S);

105

gap> SingularBrauerMonoid(8);

<regular bipartition semigroup ideal on 8 pts with 1 generator>

2.5.4 JonesMonoid

> JonesMonoid(n) (operation)
> TemperleyLiebMonoid (n) (operation)
> SingularJonesMonoid(n) (operation)

Returns: A bipartition monoid.

If n is a positive integer, then this operation returns the Jones monoid of degree n. The JONES
MONOID is the subsemigroup of the Brauer monoid consisting of those bipartitions with a planar
diagram. The Jones monoid is sometimes referred to as the TEMPERLEY-LIEB MONOID.

SingularJonesMonoid returns the ideal of the Jones monoid consisting of the non-invertible

elements (i.e. those not in the group of units), when n is at least 2.
Example

gap> S:=JonesMonoid(4);
<regular bipartition monoid on 4 pts with 3 generators>

Semigroups 22

gap> SingularJonesMonoid(S);
<regular bipartition semigroup ideal on 8 pts with 1 generator>

2.5.5 FactorisableDualSymmetricInverseSemigroup

> FactorisableDualSymmetricInverseSemigroup(n) (operation)
> SingularFactorisableDualSymmetricInverseSemigroup(n) (operation)

Returns: An inverse bipartition monoid.

If n is a positive integer, then this operation returns the largest factorisable inverse subsemigroup
of the dual symmetric inverse monoid of degree n.

SingularFactorisableDualSymmetricInverseSemigroup returns the ideal of the factoris-
able dual symmetric inverse semigroup consisting of the non-invertible elements (i.e. those not in the
group of units), when n is at least 2.

See IsUniformBlockBijection (5.5.14).
Example
gap> S:=DualSymmetricInverseMonoid(4);
<inverse bipartition monoid on 4 pts with 3 generators>
gap> IsFactorisableSemigroup(S);
false
gap> S:=FactorisableDualSymmetricInverseSemigroup(4) ;
<inverse bipartition monoid on 4 pts with 3 generators>
gap> IsFactorisableSemigroup(S);
true
gap> S:=Range(IsomorphismBipartitionSemigroup(SymmetricInverseMonoid(5)));
<inverse bipartition monoid on 5 pts with 3 generators>
gap> IsFactorisableSemigroup(S);
true

2.5.6 DualSymmetricInverseSemigroup

> DualSymmetricInverseSemigroup(n) (operation)
> DualSymmetricInverseMonoid(n) (operation)
> SingularDualSymmetricInverseSemigroup(n) (operation)

Returns: An inverse bipartition monoid.
If n is a positive integer, then these operations return the dual symmetric inverse monoid of degree
n, which is the subsemigroup of the partition monoid consisting of the block bijections of degree n.
SingularDualSymmetricInverseSemigroup returns the ideal of the dual symmetric inverse
monoid consisting of the non-invertible elements (i.e. those not in the group of units), when n is at
least 2.
See IsBlockBijection (5.5.13).
Example
gap> Number (PartitionMonoid(3), IsBlockBijection);
25
gap> S:=DualSymmetricInverseSemigroup(3);
<inverse bipartition monoid on 3 pts with 3 generators>
gap> Size(8);
25

Semigroups 23

2.5.7 PartialTransformationSemigroup

> PartialTransformationSemigroup(n) (operation)
Returns: A transformation monoid.
If n is a positive integer, then this function returns a semigroup of transformations on n+1 points
which is isomorphic to the semigroup consisting of all partial transformation on n points. This monoid
has (n+1) "n elements.

Example
gap> PartialTransformationSemigroup(8) ;
<regular transformation monoid on 9 pts with 4 generators>
gap> Size(last);

43046721

2.5.8 FullMatrixSemigroup

> FullMatrixSemigroup(d, q) (operation)
> GeneralLinearSemigroup(d, gq) (operation)

Returns: A matrix semigroup.

FullMatrixSemigroup and GenerallLinearSemigroup are synonyms for each other. They both
return the full matrix semigroup, or if you prefer the general linear semigroup, of d by d matrices with
entries over the field with g elements. This semigroup has g~ (d~2) elements.

PLEASE NOTE: there are currently no special methods for computing with matrix semigroups
in Semigroups and so it might be advisable to use IsomorphismTransformationSemigroup
(Reference: IsomorphismTransformationSemigroup).

Example

gap> S:=FullMatrixSemigroup(3,4);

<full matrix semigroup 3x3 over GF(2°2)>

gap> T:=Range(IsomorphismTransformationSemigroup(S));;
gap> Size(T);

262144

2.5.9 IsFullMatrixSemigroup

> IsFullMatrixSemigroup(S) (property)
> IsGeneralLinearSemigroup(S) (property)

IsFullMatrixSemigroup and IsGenerallinearSemigroup return true if the semi-
group S was created using either of the commands FullMatrixSemigroup (2.5.8) or
GenerallinearSemigroup (2.5.8) and false otherwise.

Example
gap> S:=RandomTransformationSemigroup(4,4);;
gap> IsFullMatrixSemigroup(S);

false

gap> S:=GenerallinearSemigroup(3,3);
<full matrix semigroup 3x3 over GF(3)>
gap> IsFullMatrixSemigroup(S);

true

Semigroups 24

2.5.10 MunnSemigroup

> MunnSemigroup(S) (operation)

Returns: The Munn semigroup of a semilattice.

If S is a semilattice, then MunnSemigroup returns the inverse semigroup of partial permutations
of isomorphisms of principal ideals of S; called the Munn semigroup of S.

This function was written jointly by J. D. Mitchell, Yann Peresse (St Andrews), Yanhui Wang
(York).

PLEASE NOTE: the Grape package version 4.5 or higher must be available and compiled for this
function to work.

Example
gap> S:=InverseSemigroup(

> PartialPerm([1, 2, 3, 4, 5, 6, 7, 101, [4, 6, 7, 3, 8, 2, 9, 51),
> PartialPerm([1, 2, 7, 91, [5, 6, 4, 31));

<inverse partial perm semigroup on 10 pts with 2 generators>

gap> T:=InverseSemigroup(Idempotents(S), rec(small:=true));;

gap> M:=MunnSemigroup(T);;

gap> NrIdempotents(M);

60

gap> NrIdempotents(S);

60

2.5.11 Monoids of order preserving functions

> OrderEndomorphisms (n) (operation)
> POI (Il) (operation)
> POPI(n) (operation)

Returns: A semigroup of transformations or partial permutations related to a linear order.

OrderEndomorphisms(n)
OrderEndomorphisms(n) returns the monoid of transformations that preserve the usual order
on {1,2,...,n} where n is a positive integer. OrderEndomorphisms(n) is generated by the
n+1 transformations:

1 23 .-~ n—1 n 1 2 - i-1 i i+l i+2 - n
1 12 -+ n=2 n—1)"’ 1 2 - i-1 i4+1 i4+1 i4+2 - n
where i =0,...,n— 1 and has (Zn":ll) elements.
POI(n)
POI(n) returns the inverse monoid of partial permutations that preserve the usual order on
{1,2,...,n} where n is a positive integer. POI (n) is generated by the n partial permutations:
1 23 -+ n 1 2 - i-1 i i+1 i+2 - n
- 12 -« n=1) 1 2 - i-1 i+1 — i42 - n
wherei=1,...,n— 1 and has (2:) elements.
POPI(n)

POPI(n) returns the inverse monoid of partial permutation that preserve the orientation of

http://www.maths.qmul.ac.uk/~leonard/grape/

Semigroups 25
{1,2,...,n} where n is a positive integer. POPI (n) is generated by the partial permutations:
1 2 - n—1 n 1 2 -+ n—2 n—1 n
23 -« n 1)’ 1 2 -+ n=2 n — /)

and has 1+ 5 (Zn") elements.

Example
gap> S:=POPI(10);

<inverse partial perm monoid on 10 pts with 2 generators>
gap> Size(S);

923781

gap> 1+5%Binomial (20, 10);

923781

gap> S:=P0I(10);

<inverse partial perm monoid on 10 pts with 10 generators>
gap> Size(S);

184756

gap> Binomial(20,10);

184756

gap> IsSubsemigroup(POPI(10), POI(10));

true

gap> S:=0rderEndomorphisms(5) ;

<regular transformation monoid on 5 pts with 5 generators>
gap> IsIdempotentGenerated(S);

true

gap> Size(S)=Binomial (2*5-1, 5-1);

true

2.5.12 SingularTransformationSemigroup

> SingularTransformationSemigroup(n) (operation)
> SingularTransformationMonoid(n) (operation)
Returns: The semigroup of non-invertible transformations.
If n is a integer greater than 1, then this function returns the semigroup of non-invertible transfor-
mations, which is generated by the n (n-1) idempotents of degree n and rank n-1 and has n" — n!

elements.

Example
gap> S:=SingularTransformationSemigroup(5);
<regular transformation semigroup ideal on 5 pts with 1 generator>
gap> Size(S);

3005

2.5.13 RegularBinaryRelationSemigroup

> RegularBinaryRelationSemigroup(n) (operation)
Returns: A semigroup of binary relations.
RegularBinaryRelationSemigroup return the semigroup generated by the regular binary re-
lations on the set {1,...,n} for a positive integer n. RegularBinaryRelationSemigroup(n) is

Semigroups 26

generated by the 4 binary relations:

1 2 .- n—-1 n 1 2 3 n
23 -~ n 1) 2 13 n)’
1 2 -+ n—-1 n 1 2 n—1 n
2 2 -+ n—1 {lLin})’ 2 2 n—1 —
This semigroup has nearly 2(") elements.
2.5.14 MonogenicSemigroup
> MonogenicSemigroup(m, r) (operation)

Returns: A monogenic transformation semigroup with index m and period r.

If m and r are positive integers, then this function returns a monogenic transformation semigroup
S with index m and period r.

The semigroup S is generated by a transformation f which has index m and period r (see
IndexPeriodOfTransformation (Reference: IndexPeriodOfTransformation)). S consists of the
elements f, f2,...,f™, ..., ™! The minimal ideal of S consists of the elements f™,..., f"~!
and is isomorphic to the cyclic group of order r.

See IsMonogenicSemigroup (4.6.10) for more information.
Example

gap> S := MonogenicSemigroup(5, 3);

<commutative non-regular transformation semigroup of size 7,
on 8 pts with 1 generator>

gap> IsMonogenicSemigroup(S);

true

gap> I := MinimalIdeal(S);

<transformation group on 8 pts with 1 generator>

gap> StructureDescription(I);

IlCSll

2.5.15 RectangularBand

> RectangularBand(m, n) (operation)
Returns: A Rees matrix semigroup isomorphic to an m by n rectangular band.
If m and n are positive integers, then this function returns a Rees matrix semigroup with m rows
and n columns over the trivial group. Such a Rees matrix semigroup is isomorphic to an m by n
rectangular band.

See IsRectangularBand (4.6.13) for more information.
Example

gap> S := RectangularBand(4, 8);
<Rees matrix semigroup 4x8 over Group(())>
gap> IsRectangularBand(S);

true

gap> IsCompletelySimpleSemigroup(S) and IsHTrivial(S);
true

gap> T := AsTransformationSemigroup(S);

<transformation semigroup on 33 pts with 8 generators>
gap> IsRectangularBand(T);
true

Semigroups

2.5.16 ZeroSemigroup

> ZeroSemigroup(n)
Returns: A zero partial permutation semigroup of order n.

27

(operation)

If n is a positive integer, then this function returns a zero semigroup consisting of n partial per-

mutations. The zero of this semigroup is the empty partial permutation.
See IsZeroSemigroup (4.6.22) for more information.

Example
gap> S := ZeroSemigroup(15);

<partial perm semigroup of size 15, on 14 pts with 14 generators>
gap> Size(S);

15

gap> z := MultiplicativeZero(S);

<empty partial perm>

gap> IsZeroSemigroup(S);

true

gap> ForAll(S, x -> ForAll(S, y -> x * y = 2));

true

Chapter 3

Ideals

In this chapter we describe the various ways that an ideal of a semigroup can be created and manipu-
lated in Semigroups.

We write ideal to mean two-sided ideal everywhere in this chapter.

The methods in the Semigroups package apply to any ideal of a transformation, partial permu-
tation, or bipartition semigroup, or an ideal of a subsemigroup of a Rees 0-matrix semigroup, that is
created by the function SemigroupIdeal (3.1.1) or SemigroupIdealByGenerators. Anything that
can be calculated for a semigroup defined by a generating set can also be found for an ideal. This
works particularly well for regular ideals, since such an ideal can be represented using a similar data
structure to that used to represent a semigroup defined by a generating set but without the necessity to
find a generating set for the ideal. Many methods for non-regular ideals rely on first finding a generat-
ing set for the ideal, which can be costly (but not nearly as costly as an exhaustive enumeration of the
elements of the ideal). We plan to improve the functionality of Semigroups for non-regular ideals in
the future.

3.1 Creating ideals

3.1.1 Semigroupldeal

> SemigroupIdeal(S, objl, obj2, ...) (function)

Returns: An ideal of a semigroup.

Ifobj1, obj2, ... are (any combination) of elements of the semigroup S or collections of elements
of S (including subsemigroups and ideals of S), then SemigroupIdeal returns the 2-sided ideal of
the semigroup S generated by the union of obj1, obj2,

The Parent (Reference: Parent) of the ideal returned by this function is S.

Example

gap> S:=SymmetricInverseMonoid(10) ;

<symmetric inverse semigroup on 10 pts>

gap> I:=Semigroupldeal(S, PartialPerm([1,2]));

<inverse partial perm semigroup ideal on 10 pts with 1 generator>
gap> Size(I);

4151

gap> I:=SemigroupIdeal(S, I, Idempotents(S));

<inverse partial perm semigroup ideal on 10 pts with 1025 generators>

28

Semigroups 29

3.2 Attributes of ideals

3.2.1 GeneratorsOfSemigroupldeal

> GeneratorsOfSemigroupIdeal (I) (attribute)

Returns: The generators of an ideal of a semigroup.

This function returns the generators of the two-sided ideal I, which were used to defined I when
it was created.

If T is an ideal of a semigroup, then I is defined to be the least 2-sided ideal of a semigroup S
containing a set J of elements of S. The set J is said to generate I.

The notion of the generators of an ideal is distinct from the notion of the generators of a semigroup
or monoid. In particular, the semigroup generated by the generators of an ideal is not, in general,
equal to that ideal. Use GeneratorsOfSemigroup (Reference: GeneratorsOfSemigroup) to obtain
a semigroup generating set for an ideal, but beware that this can be very costly.

Example

gap> S:=Semigroup(

> Bipartition([[1, 2, 3, 4, -1 1, [-2, -41, [-311),
> Bipartition([[1, 2, 3, -3 1, [41, [-11,[-2,-411),
> Bipartition([[1, 3, -2 1, [2,41, [-1, -3, -411),
> Bipartition([[1], [2, 3,41, [-1, -3, 41, [-21])

1)
> Bipartition([[11, [2, 4, -21, [3, -41, [-11, [-8311));;
gap> I:=Semigroupldeal(S, S.1%S.2xS.5);
<regular bipartition semigroup ideal on 4 pts with 1 generator>
gap> GeneratorsOfSemigroupldeal (I);
[<bipartition: [1, 2, 3, 4, -41, [-1 1, [-21, [-31>]
gap> I=Semigroup(Generators0fSemigroupIdeal(I));
false

3.2.2 MinimalldealGeneratingSet

> MinimalIldealGeneratingSet (I) (attribute)

Returns: A minimal set ideal generators of an ideal.

This function returns a minimal set of elements of the parent of the semigroup ideal I required to
generate I as an ideal.

The notion of the generators of an ideal is distinct from the notion of the generators of a semigroup
or monoid. In particular, the semigroup generated by the generators of an ideal is not, in general,
equal to that ideal. Use GeneratorsOfSemigroup (Reference: GeneratorsOfSemigroup) to obtain
a semigroup generating set for an ideal, but beware that this can be very costly.

Example

gap> S:=Monoid(

> Bipartition([[1, 2, 3, -2 1, [41, [-1, -41, [-3
> Bipartition([[1, 4, -2, -4 1, [2, -1, -31, [311
gap> I:=Semigroupldeal(S, S);

<non-regular bipartition semigroup ideal on 4 pts with 3 generators>
gap> MinimalIdealGeneratingSet (I);

[<block bijection: [1, -1 1, [2, -2 1, [3, -31, [4, -41>]

119,

ERE

Semigroups 30

3.2.3 SupersemigroupOfldeal

> Supersemigroup0fIdeal(I) (attribute)

Returns: An ideal of a semigroup.

The Parent (Reference: Parent) of an ideal is the semigroup in which the ideal was created, i.e.
the first argument of SemigroupIdeal (3.1.1) or SemigroupByGenerators. This function returns
the semigroup containing Generators0fSemigroup (Reference: GeneratorsOfSemigroup) which
are used to compute the ideal.

For a regular semigroup ideal, Supersemigroup0fIdeal will always be the top most semigroup
used to create any of the predecessors of the current ideal. For example, if S is a semigroup, I is a regu-
lar ideal of S, and J is an ideal of I, then Parent (J) is I and Supersemigroup0fIdeal (J) is S. This
is to avoid computing a generating set for I, in this example, which is expensive and unnecessary since
I is regular (in which case the Green’s relations of I are just restrictions of the Green’s relations on S).
If S is a semigroup, I is a non-regular ideal of S, J is an ideal of I, then Supersemigroup0fIdeal(J)
is I, since we currently have to use GeneratorsOfSemigroup(I) to compute anything about I other
than its size and membership.

Example
gap> S:=FullTransformationSemigroup(8) ;
<full transformation semigroup on 8 pts>
gap> x:=Transformation([2, 6, 7, 2, 6, 1, 1, 51);;

gap> D:=DClassNC(S, x);

{Transformation([2, 6, 7, 2, 6, 1, 1, 51)}

gap> R:=PrincipalFactor(D);

<Rees O-matrix semigroup 1050x56 over Group([(3,4), (2,8,7,4,3) 1)>
gap> S:=Semigroup(List([1..10], x-> Random(R)));

<subsemigroup of 1050x56 Rees O-matrix semigroup with 10 generators>
gap> I:=Semigroupldeal(S, MultiplicativeZero(S));

<regular Rees O-matrix semigroup ideal with 1 generator>

gap> SupersemigroupOfIdeal(I);

<subsemigroup of 1050x56 Rees O-matrix semigroup with 10 generators>
gap> J:=Semigroupldeal(I, Representative(MinimalDClass(S)));
<regular Rees O-matrix semigroup ideal with 1 generator>

gap> Parent (J)=I;

true

gap> Supersemigroup0fIdeal (J)=I;

false

Chapter 4

Determining the structure of a semigroup

In this chapter we describe the functions in Semigroups for determining the structure of a semigroup,
in particular for computing Green’s classes and related properties of semigroups.

4.1 Expressing semigroup elements as words in generators

It is possible to express an element of a semigroup as a word in the generators of that semigroup. This
section describes how to accomplish this in Semigroups.

4.1.1 EvaluateWord

> EvaluateWord(gens, w) (operation)
Returns: A semigroup element.
The argument gens should be a collection of generators of a semigroup and the argument w should
be a list of positive integers less than or equal to the length of gens. This operation evaluates the word

w in the generators gens. More precisely, EvaluateWord returns the equivalent of:
Example

Product (List (w, i-> gens[il));

see also Factorization (4.1.2).

for elements of a semigroup
When gens is a list of elements of a semigroup and w is a list of positive in-
tegers less than or equal to the length of gens, this operation returns the product
gens [w[1]]*gens[w[2]]*...*gens[w[n]] when the length of w is n.

for elements of an inverse semigroup
When gens is a list of elements with a semigroup inverse and w is a list of non-zero integers
whose absolute value does not exceed the length of gens, this operation returns the product
gens [AbsInt (w[1])]~SignInt (w[1])*...*gens[AbsInt (w[n])]~SignInt(w[n])
where n is the length of w.

Note that EvaluateWord(gens, []) returns One(gens) if gens belongs to the category
IsMultiplicativeElementWithOne (Reference: IsMultiplicativeElementWithOne).

31

Semigroups 32

Example
gap> gens:=[Transformation([2, 4, 4, 6, 8, 8, 6, 6 1),
> Transformation([2, 7, 4, 1, 4, 6, 5, 21),
> Transformation([3, 6, 2, 4, 2, 2, 2, 81),
> Transformation([4, 3, 6, 4, 2, 1, 2, 6 1),
> Transformation([4, 5, 1, 3, 8, 5, 8, 21) 1;;

gap> S:=Semigroup(gens);;

gap> f:=Transformation([1, 4, 6, 1, 7, 2, 7, 61);;

gap> Factorization(S, f);

[4,2]

gap> EvaluateWord(gens, last);

Transformation([1, 4, 6, 1, 7, 2, 7, 6 1)

gap> S:=SymmetricInverseMonoid(10);;

gap> f:=PartialPerm([1, 2, 3, 6, 8, 101, [2, 6, 7, 9, 1, 61);

[3,7108,1,2,6,9]1[10,5]

gap> Factorization(S, f);

[-2, -2, -2, -2, -3, -4, -3, -2, -2, -2, -2, -3, -2, 2, 2, 2, 2, 4,
4, 4, 4, 2, 2, 2, 2, 2, 3, 4, -3, -2, -3, -2, -3, -2, 2, 2, 2, 2,
2, 3, 4, -3, -2, -3, -2, -3, -2, 2,2,2,2,2,3, 4, -3, -2, -3,
-2, -3, -2, 2,2,2,2,2,3, 4, -3, -2, -3, -2, -3, -2, 2, 2, 2,
2, 2, 3, 4, -3, -2, -3, -2, -3, -2, 3, 2,2,2,2,2,3, 4, -3, -2,
-3, -2, -3, -2, 2,3,2,3,2,2,2,3,2,2,2,2,2,3,2,3,2]

gap> EvaluateWord(GeneratorsOfSemigroup(S), last);

[3,7108,1,2,6,9]1[10,5]

4.1.2 Factorization

> Factorization(S, f) (method)
Returns: A word in the generators.

for semigroups
When S is a semigroup and f belongs to S, Factorization return a word in the generators
of S that is equal to f. In this case, a word is a list of positive integers where i corresponds to
GeneratorsOfSemigroups (S) [i]. More specifically,

Example
EvaluateWord(GeneratorsOfSemigroup(S), Factorization(S, f))=f;

for inverse semigroups
When S is a inverse semigroup and f belongs to S, Factorization return a word in
the generators of S that is equal to f. In this case, a word is a list of non-zero in-
tegers where i corresponds to GeneratorsOfSemigroup(S)[i] and -i corresponds to

GeneratorsOfSemigroup(S) [i]~-1. As in the previous case,

Example
EvaluateWord(GeneratorsOfSemigroup(S), Factorization(S, f))=f;

Note that Factorization does not return a word of minimum length.
See also EvaluateWord (4.1.1) and GeneratorsOfSemigroup (Reference: GeneratorsOf-
Semigroup).

Semigroups 33

Example

gap> gens:=[Transformation([2, 2, 9, 7, 4, 9, 5, 5, 4, 81),

> Transformation([4, 10, 5, 6, 4, 1, 2, 7, 1, 21) 1;;

gap> S:=Semigroup(gens);;

gap> f:=Transformation([1, 10, 2, 10, 1, 2, 7, 10, 2, 71);;

gap> Factorization(S, f);

[2,2,1, 2]

gap> EvaluateWord(gens, last);

Transformation([1, 10, 2, 10, 1, 2, 7, 10, 2, 7 1)

gap> S:=SymmetricInverseMonoid(8);

<symmetric inverse semigroup on 8 pts>

gap> f:=PartialPerm([1, 2, 3, 4, 5,81, [7, 1, 4, 3, 2,61);

(6,2,1,71(8,6]1(3,4)

gap> Factorization(S, f);

[-2, -2, -2, -2, -2, -2, -2, 2, 2,4, 4, 2, 3, 2, 3, -2, -2, -2, 2,
3, 2, 3, -2, -2, -2, 2,3, 2, 3, -2, -2, -2, 3, 2, 3, 2, 3, -2, -2,
-2, 3, 2,3, 2,3, -2, -2, -2, 2,3, 2,3, -2, -2, -2, 2, 3, 2, 3,
-2, -2, -2, 2,3, 2, 3, -2, -2, -2, 2, 3, 2, 3, -2, -2, -2, 3, 2,
3, 2, 3, -2, -2, -2, 2, 3, 2, 3, -2, -2, -2, 2, 3, 2, 3, -2, -2,
-2, 2,3,2,3, -2, -2, -2,2,3,2,2,3,2,2,2, 2]

gap> EvaluateWord(GeneratorsOfSemigroup(S), last);

[5,2,1,7108,61(3,4)

gap> S:=DualSymmetricInverseMonoid(6);;

gap> f:=S.1%S.2%S.3%S.2%S.1;

<block bijection: [1, 6, -41, [2, -2, -31, [3, -51, [4, -61,
[5, -1 1>

gap> Factorization(S, f);

[-2, -2, -2, -2, -2, 4, 2]

gap> EvaluateWord(GeneratorsOfSemigroup(S), last);

<block bijection: [1, 6, -4 1, [2, -2, -31, [3, -51, [4, -61,
[5, -1 1>

4.2 Creating Green’s classes

4.2.1 XClassOfYClass

>
>
>
>
>

DClassO0fHClass(class) (method)
DClassOfLClass(class) (method)
DClass0fRClass(class) (method)
LClass0fHClass(class) (method)
RClassOfHClass(class) (method)

Returns: A Green’s class.
XClass0fYClass returns the X-class containing the Y-class class where X and Y should be re-

placed by an appropriate choice of D, H, L, andR.

Note that if it is not known to GAP whether or not the representative of class is an element of

the semigroup containing class, then no attempt is made to check this.

The same result can be produced using:

Example
First (GreensXClasses(S), x-> Representative(x) in class);

Semigroups

34

but this might be substantially slower. Note that XClass0fYClass is also likely to be faster than

Example

GreensXClassOfElement (S, Representative(class));

DClass can also be used as a synonym for DClassOfHClass, DClass0fLClass, and
DClass0fRClass; LClass as a synonym for LClassO0fHClass; and RClass as a synonym for
RClassOfHClass. See also GreensDClassOfElement (Reference: GreensDClassOfElement) and

GreensDClassOfElementNC (4.2.3).
Example

gap> S:=Semigroup(Transformation([1, 3, 21),

> Transformation([2, 1, 3]), Transformation([3, 2, 11),
> Transformation([1, 3, 1 1));;

gap> R:=GreensRClassOfElement (S, Transformation([3, 2, 11));
{Transformation([3, 2, 1 1)}

gap> DClassOfRClass(R);

{Transformation([3, 2, 1])}

gap> IsGreensDClass(DClassO0fRClass(R));

true

gap> S := InverseSemigroup(

> PartialPerm([1, 2, 3, 6, 8, 101, [2, 6, 7, 9, 1, 51),
> PartialPerm([1, 2, 3, 4, 6, 7, 8, 10],

>[3,8,1,9, 4, 10, 5, 6 1));

<inverse partial perm semigroup on 10 pts with 2 generators>
gap> x := S.1;

[3,7118,1,2,6,9]1[10,5]

gap> H := HClass(S, x);

{PartialPerm([1, 2, 3, 6, 8, 101, [2, 6, 7, 9, 1, 51)}
gap> R := RClassOfHClass(H);

{PartialPerm([1, 2, 3, 6, 8, 101, [2, 6, 7, 9, 1, 51)}
gap> L := LClass(H);

{PartialPerm([1, 2, 5, 6, 7, 91, [1, 2,5, 6, 7, 91)}
gap> DClass(R)=DClass(L);

true

gap> DClass(H)=DClass(L);

true

4.2.2 GreensXClassOfElement

GreensDClassOfElement (X, f)
DClass(X, f)
GreensHClassOfElement (X, f)
GreensHClassOfElement (R, i, j)
HClass(X, f)
HClass(R, i, j)
GreensLClassOfElement (X, f)
LClass(X, f)
GreensRClassOfElement (X, f)
RClass(X, f)

Returns: A Green’s class.

v Vv vV VvV VvV VvV VvV YV

(operation)
(function)
(operation)
(operation)
(function)
(function)
(operation)
(function)
(operation)

(function)

Semigroups 35

These functions produce essentially the same output as the GAP library functions with the same
names; see GreensDClassOfElement (Reference: GreensDClassOfElement). The main difference
is that these functions can be applied to a wider class of objects:

GreensDClass0OfElement and DClass
X must be a semigroup.

GreensHClassOfElement and HClass
X can be a semigroup, #-class, .Z-class, or Z-class. If R is a IxJ Rees matrix semigroup
or a Rees 0-matrix semigroup, and i and j are integers of the corresponding index sets, then
GreensHClassOfElement returns the .7#’-class in row i and column j.

GreensLClassOfElement and LClass
X can be a semigroup or Z-class.

GreensRClassOfElement and RClass
X can be a semigroup or Z-class.

Note that GreensXClass0fElement and XClass are synonyms and have identical output. The shorter
command is provided for the sake of convenience.

4.2.3 GreensXClassOfElementNC

> GreensDClassOfElementNC(X, f) (operation)
> DClassNC(X, f) (function)
> GreensHClassOfElementNC(X, f) (operation)
> HClassNC(X, f) (function)
> GreensLClassOfElementNC(X, f) (operation)
> LClassNC(X, £) (function)
> GreensRClassOfElementNC(X, f) (operation)
> RClassNC(X, f) (function)

Returns: A Green’s class.

These functions are essentially the same as GreensDClass0fElement (4.2.2) except that no effort
is made to verify if f is an element of X. More precisely, GreensXClass0fElementNC and XClassNC
first check if £ has already been shown to be an element of X. If it is not known to GAP if £ is an
element of X, then no further attempt to verify this is made.

Note that GreensXClass0fElementNC and XClassNC are synonyms and have identical output.
The shorter command is provided for the sake of convenience.

It can be quicker to compute the class of an element using GreensRClass0fElementNC, say, than
using GreensRClassOfElement if it is known a priori that £ is an element of X. On the other hand,
if £ is not an element of X, then the results of this computation are unpredictable.

For example, if

Example
f:=Transformation([15, 18, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 2

in the semigroup X of order-preserving mappings on 20 points, then
Example

GreensRClassOfElementNC(X, f);;

0, 20, 20, 20,

Semigroups

36

returns an answer relatively quickly, whereas GreensRClass0fElement can take a signficant amount

of time to return a value.

See also GreensRClassOfElement (Reference: GreensRClassOfElement) and

RClassOfHClass (4.2.1).
Example

gap> S:=RandomTransformationSemigroup(2,1000);;

gap> f:=[1, 1, 2,2, 2,1, 1,1, 1,1,2,2,2,2,1,1,2,2,117];;

gap> f:=EvaluateWord(Generators(S), f);;

gap> R:=GreensRClassOfElementNC(S, £f);;

gap> Size(R);

1

gap> L:=GreensLClassO0fElementNC(S, f);;

gap> Size(L);

1

gap> f:=PartialPerm([1, 2, 3, 4, 7, 8, 9, 10 1],

>[2, 3, 4,5, 6,8, 10, 11 1);;

gap> L:=LClass(P0OI(13), £);

{PartialPerm([1, 2, 3, 4, 5, 6, 7,81, [2, 3, 4, 5, 6, 8, 10, 11]

)}

gap> Size(L);

1287
4.2.4 GroupHClass
> GroupHClass(class) (attribute)

Returns: A group 7 -class of the Z-class class if it is regular and fail if it is not.

GroupHClass is a synonym for GroupHClass0fGreensDClass (Reference: GroupHClassOf-

GreensDClass).

See also IsGroupHClass (Reference: IsGroupHClass), IsRegularDClass (Reference: Is-

RegularDClass), IsRegularClass (4.4.4), and IsRegularSemigroup (4.6.14).

Example
gap> S:=Semigroup(Transformation([2, 6, 7, 2, 6, 1, 1, 5]),
> Transformation([3, 8, 1, 4, 5, 6, 7, 1 1));;

gap> IsRegularSemigroup(S);

false

gap> iter:=Iterator0fDClasses(S);;

gap> repeat D:=NextIterator(iter); until IsRegularDClass(D);
gap> D;

{Transformation([6, 1, 1, 6, 1, 2, 2, 6 1)}

gap> NrIdempotents(D);

12

gap> NrRClasses(D);

8

gap> NrLClasses(D);

4

gap> GroupHClass (D) ;

{Transformation([1, 2, 2, 1, 2, 6, 6, 1])}

gap> GroupHClass0fGreensDClass(D);

{Transformation([1, 2, 2, 1, 2, 6, 6, 1 1)}

gap> StructureDescription(GroupHClass(D));

IISBII

Semigroups

gap> repeat D:=NextIterator(iter); until not IsRegularDClass(D);
gap> D;

{Transformation([7, 5, 2, 2, 6, 1, 1, 2])}

gap> IsRegularDClass(D);

false

gap> GroupHClass(D);

fail

gap> S:=InverseSemigroup([PartialPerm([1, 2, 3, 51, [2, 1, 6, 3]),
> PartialPerm([1, 2, 3, 61, [3,5, 2,61) 1);;

gap> f:=PartialPerm([1 .. 31, [6, 3, 1 1);;

gap> First(DClasses(S), x-> not IsTrivial(GroupHClass(x)));
{PartialPerm([1, 21, [1, 21)}

gap> StructureDescription(GroupHClass(last));

IIC2||

37

4.3 Iterators and enumerators of classes and representatives

4.3.1 GreensXClasses

GreensDClasses(obj)
DClasses(obj)
GreensHClasses(obj)
HClasses(obj)
GreensJClasses(obj)
JClasses(obj)
GreensLClasses(obj)
LClasses(obj)
GreensRClasses(obj)
RClasses(obj)
Returns: A list of Green’s classes.

v vV vV VvV VvV Vv Vv YV

(method)
(method)
(method)
(method)
(method)
(method)
(method)
(method)
(method)
(method)

These functions produce essentially the same output as the GAP library functions with the same
names; see GreensDClasses (Reference: GreensDClasses). The main difference is that these func-

tions can be applied to a wider class of objects:

GreensDClasses and DClasses
X should be a semigroup.

GreensHClasses and HClasses
X can be a semigroup, Z-class, .Z-class, or Z-class.

GreensLClasses and LClasses
X can be a semigroup or Z-class.

GreensRClasses and RClasses
X can be a semigroup or Z-class.

Note that GreensXClasses and XClasses are synonyms and have identical output. The shorter

command is provided for the sake of convenience.

See also DClassReps (4.3.4), Iterator0fDClassReps (4.3.2), Iterator0fDClasses (4.3.3),

and NrDClasses (4.4.6).

Semigroups

Example

38

gap> S:=Semigroup(Transformation([3, 4, 4, 41),

> Transformation([4, 3, 1, 21));;

gap> GreensDClasses(S);

[{Transformation([3, 4, 4, 4])},
{Transformation([4, 3, 1, 2 1)},

{Transformation([4, 4, 4, 4])} 1]
gap> GreensRClasses(S);

[{Transformation([3, 4, 4, 4 1)},
{Transformation([4, 3, 1, 21)},
{Transformation([4, 4, 4, 41)},
{Transformation([4, 4, 3, 41)},
{Transformation([4, 3, 4, 4])},
{Transformation([4, 4, 4, 31)}]

gap> D:=GreensDClasses(S) [1];

{Transformation([3, 4, 4, 4])}

gap> GreensLClasses(D);
[{Transformation([3, 4, 4, 4 1)},

{Transformation([1, 2, 2, 21)} 1
gap> GreensRClasses(D);

[{Transformation([3, 4, 4, 4])},
{Transformation([4, 4, 3, 41)},
{Transformation([4, 3, 4, 4 1)},
{Transformation([4, 4, 4, 31)} 1]

gap> R:=GreensRClasses (D) [1]

[11;

{Transformation([3, 4, 4, 4])}
gap> GreensHClasses(R);
[{Transformation([3, 4, 4, 41)},

{Transformation([1, 2, 2, 21)} 1]
gap> S:=InverseSemigroup(PartialPerm([1, 2, 31, [2, 4, 11),
> PartialPerm([1, 3, 41, [3, 4, 11));;
gap> GreensDClasses(S);

[{PartialPerm([1, 2, 41, [1, 2, 41)},
{PartialPerm([1, 3, 41, [1, 3, 41)},
{PartialPerm([2, 4 1, [2, 4])}, {PartialPerm([4 1, [4])},

2
{PartialPerm([1, [1)} 1]
gap> GreensLClasses(S);

[{PartialPerm([1, 2, 41, [1, 2, 41)},
{PartialPerm([1, 2, 41, [3, 1, 2 1)},
{PartialPerm([1, 3, 41, [1, 3, 41)},
{PartialPerm([2, 41, [2, 4])},
{PartialPerm([2, 41, [3, 11)},
{PartialPerm([2, 41, [1, 2 1)},
{PartialPerm([2, 41, [3, 2 1)},
{PartialPerm([2, 41, [4, 31)},
{PartialPerm([2, 41, [1, 41)}, {PartialPerm([4 1, [4])},
{PartialPerm([4 1, [1])}, {PartialPerm([4 1, [31)},
{PartialPerm([4], [21)}, {PartialPerm([1, [1)} 1]
gap> D:=GreensDClasses(S) [3];
{PartialPerm([2, 41, [2, 41)}
gap> GreensLClasses(D);
[{PartialPerm([2, 41, [2, 41)},
{PartialPerm([2, 41, [3, 11)},

Semigroups
{PartialPerm([2, 41, [1, 21)3},
{PartialPerm([2, 41, [3, 21)},
{PartialPerm([2, 41, [4, 31)},
{PartialPerm([2, 41, [1, 41)} 1]
gap> GreensRClasses(D);

[{PartialPerm([2, 41, [2, 41)},
{PartialPerm([1, 31, [4, 21)},
{PartialPerm([1, 21, [2, 41)},
{PartialPerm([2, 31, [4, 2 1)},
{PartialPerm([3, 41, [4, 2 1)},
{PartialPerm([1, 41, [2, 41)} 1]

39

4.3.2 IteratorOfXClassReps

> Iterator0fDClassReps(S)
> IteratorOfHClassReps(S)
> Iterator0fLClassReps(S)
> IteratorOfRClassReps(S)
Returns: An iterator.

(function)
(function)
(function)

(function)

Returns an iterator of the representatives of the Green’s classes contained in the semigroup S. See

(Reference: Iterators) for more information on iterators.

See also GreensRClasses (Reference: GreensRClasses), GreensRClasses (4.3.1), and

IteratorOfRClasses (4.3.3).

Example
gap> gens:=[Transformation([3, 2, 1, 5, 4]),
> Transformation([5, 4, 3, 2, 11),
> Transformation([5, 4, 3, 2, 1]), Transformation([5, 5, 4, 5, 1]),
> Transformation([4, 5, 4, 3, 3 1) 1;;

gap> S:=Semigroup(gens);;

gap> iter:=Iterator0OfRClassReps(S);

<iterator of R-class reps>

gap> NextIterator(iter);

Transformation([3, 2, 1, 5, 4])

gap> NextIterator(iter);

Transformation([5, 5, 4, 5, 1])

gap> iter;

<iterator of R-class reps>

gap> file:=Concatenation(SemigroupsDir(), "/tst/test.gz");;
gap> S:=InverseSemigroup(ReadGenerators(file, 1377));
<inverse partial perm semigroup on 983 pts with 2 generators>
gap> NrMovedPoints(S);

983

gap> iter:=Iterator0fLClassReps(S);

<iterator of L-class reps>

gap> NextIterator(iter);

<partial perm on 634 pts with degree 1000, codegree 1000>

Semigroups

4.3.3 IteratorOfXClasses

> Iterator0fDClasses(S)
> IteratorOfHClasses(S)
> Iterator0fLClasses(S)
> IteratorOfRClasses(S)
Returns: An iterator.

40

(function)
(function)
(function)

(function)

Returns an iterator of the Green’s classes in the semigroup S. See (Reference: Iterators) for

more information on iterators.

This function is useful if you are, for example, looking for an Z-class of a semigroup with a
particular property but do not necessarily want to compute all of the Z-classes.
See also GreensRClasses (4.3.1), GreensRClasses (Reference: GreensRClasses),

NrRClasses (4.4.6), and IteratorOfRClassReps (4.3.2).

The transformation semigroup in the example below has 25147892 elements but it only takes a
fraction of a second to find a non-trivial %-class. The inverse semigroup of partial permutations in
the example below has size 158122047816 but it only takes a fraction of a second to find an Z-class

with more than 1000 elements.

gap> S:=Semigroup(gens);;

gap> iter:=Iterator0fRClasses(S);
<iterator of R-classes>

gap> for R in iter do

> if Size(R)>1 then break; fij;

> od;

gap> R;

{Transformation([6, 4, 1, 6, 6, 8, 9, 6, 2, 2]
gap> Size(R);

21600

gap> S:=InverseSemigroup (

> [19, 4, 11, 15, 3, 20, 1, 14, 8, 13, 17 1),

> PartialPerm([1, 2, 3, 4, 6, 7, 8, 14, 15, 16,
> [15, 14, 20, 19, 4, 5, 1, 13, 11, 10, 31),

> PartialPerm([1, 2, 4, 6, 7, 8, 9, 10, 14, 15,
>[r7, 2, 17, 10, 1, 19, 9, 3, 11, 16, 18 1),

> PartialPerm([1, 2, 3, 4, 5, 7, 8, 9, 11, 12,
>[s8, 3, 18, 1, 4, 13, 12, 7, 19, 20, 2, 11]),
> PartialPerm([1, 2, 3, 4, 5, 6, 7, 9, 11, 15,
>[7, 17, 13, 4, 6, 9, 18, 10, 11, 19, 5, 2, 8]
> PartialPerm([1, 3, 4, 5, 6, 7, 8, 9, 10, 11,
> [10, 20, 11, 7, 13, 8, 4, 9, 2, 18, 17, 6, 15]
>

Example

gap> gens:=[Transformation([2, 4, 1, 5, 4, 4, 7, 3, 8, 11
> Transformation([3, 2, 8, 8, 4, 4, 8, 6, 5, 71),

> Transformation([4, 10, 6, 6, 1, 2, 4, 10, 9, 71),
> Transformation([6, 2, 2, 4, 9, 9, 5, 10, 1, 8 1),
> Transformation([6, 4, 1, 6, 6, 8, 9, 6, 2, 21),

> Transformation([6, 8, 1, 10, 6, 4, 9, 1, 9, 41),
> Transformation([8, 6, 2, 3, 3, 4, 8, 6, 2, 91),

> Transformation([9, 1, 2, 8, 1, 5, 9, 9, 9, 51),

> Transformation([9, 3, 1, 5, 10, 3, 4, 6, 10, 2 1),
> Transformation([10, 7, 3, 7, 1, 9, 8, 8, 4, 101)

)}

> [PartialPerm([1, 2, 3, 4, 5, 6, 7, 10, 11, 19, 20 1],

17 1,

181,

13, 16],
16, 17, 20 1],
)!

12, 15, 18 1,
),

PartialPerm([1, 2, 3, 4, 5, 6, 7, 8, 9, 11, 13, 14, 17, 18 1,

Semigroups

[10, 20, 18, 1, 14, 16, 9, 5, 15, 4, 8, 12, 19, 11]),

PartialPerm([1, 2, 3, 4, 5, 6, 7, 9, 10, 11, 12, 15, 16, 19, 20],
[13, 6, 1, 2, 11, 7, 16, 18, 9, 10, 4, 14, 15, 5, 17 1),
PartialPerm([1, 2, 3, 4, 6, 7, 8, 9, 10, 11, 12, 14, 15, 16, 20],
[5, 3, 12, 9, 20, 15, 8, 16, 13, 1, 17, 11, 14, 10, 2]),
PartialPerm([1, 2, 3, 4, 6, 7, 8, 9, 10, 11, 13, 17, 18, 19, 20 1,
>[8, 3,9, 20, 2, 12, 14, 15, 4, 18, 13, 1, 17, 19, 51) 1);;

gap> iter:=IteratorOfRClasses(S);

<iterator of R-classes>

gap> repeat r:=NextIterator(iter); until Size(r)>1000;

gap> r;

{PartialPerm([8, 11, 13, 15, 17, 191, [3, 5, 1, 2, 6, 71)}

gap> Size(r);

10020240

V V V V V V

41

4.3.4 XClassReps

> DClassReps(obj)
> HClassReps(obj)
> LClassReps(obj)
> RClassReps(obj)
Returns: A list of representatives.

(attribute)
(attribute)
(attribute)
(attribute)

XClassReps returns a list of the representatives of the Green’s classes of obj, which can be a

semigroup, I-, .Z-, or Z-class where appropriate.
The same output can be obtained by calling, for example:

Example
List(GreensXClasses(obj), Representative);

Note that if the Green’s classes themselves are not required, then XClassReps will return an answer

more quickly than the above, since the Green’s class objects are not created.

See also GreensDClasses (4.3.1), Iterator0fDClassReps (4.3.2), Iterator0fDClasses

(4.3.3), and NrDClasses (4.4.6).
Example

gap> S:=Semigroup(Transformation([3, 4, 4, 4 1),
> Transformation([4, 3, 1, 21));;
gap> DClassReps(S);

[Transformation([3, 4, 4, 4]), Transformation([4, 3, 1, 21),
Transformation([4, 4, 4, 41) 1]

gap> LClassReps(S);

[Transformation([3, 4, 4, 4 1), Transformation([1, 2, 2, 21),
Transformation([4, 3, 1, 2]), Transformation([4, 4, 4, 4]),
Transformation([2, 2, 2, 2]), Transformation([3, 3, 3, 3]),
Transformation([1, 1, 1, 11) 1]

gap> D:=GreensDClasses(S) [1];

{Transformation([3, 4, 4, 4])}

gap> LClassReps(D);

[Transformation([3, 4, 4, 4]), Transformation([1, 2, 2, 21) 1]

gap> RClassReps(D);

[Transformation([3, 4, 4, 4]
Transformation([4, 3, 4, 4]

gap> R:=GreensRClasses(D) [1];;

I
—_
A3
.

, Transformation([4, 4, 3,

)
), Transformation([4, 4, 4, 31) 1]

Semigroups 42

gap> HClassReps(R);
[Transformation([3, 4, 4, 4]), Transformation([1, 2, 2, 2]) 1
gap> S:=SymmetricInverseSemigroup(6);;
gap> e:=InverseSemigroup(Idempotents(S));;
gap> M:=MunnSemigroup(e);;
gap> DClassReps(M);
[<identity partial perm on [51 1>,
<identity partial perm on [27, 51 1>,
<identity partial perm on [15, 27, 50, 51 1>,
<identity partial perm on [8, 15, 26, 27, 49, 50, 51, 64 1>,
<identity partial perm on
[4, 8, 14, 15, 25, 26, 27, 48, 49, 50, 51, 60, 61, 62, 63, 64 1>,
<identity partial perm on
[2, 4, 7, 8, 13, 14, 15, 21, 25, 26, 27, 29, 34, 39, 44, 48, 49, \
50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64 1>,
<identity partial perm on
[1, 2, 3, 4, 5,6, 7, 8,9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 1\
9, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36,\
37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 5\
4, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64 1>]
gap> L:=LClassNC(M, PartialPerm([51, 631 , [51, 47 1));;
gap> HClassReps(L);
[<identity partial perm on [47, 51 1>, [27,47]1(51), [50,47]1(51),
[59,471(51), [63,471(51), [64,471(51)]

4.4 Attributes and properties directly related to Green’s classes

4.4.1 Less than for Green’s classes

> \<(left-expr, right-expr) (method)

Returns: true or false.

The Green’s class left-expr is less than or equal to right-expr if they belong to the same
semigroup and the representative of left-expr is less than the representative of right-expr under
<; see also Representative (Reference: Representative).

Please note that this is not the usual order on the Green’s classes of a semigroup as defined in
(Reference: Green’s Relations). See also IsGreensLessThanOrEqual (Reference: IsGreens-
LessThanOrEqual).

Example
gap> S:=FullTransformationSemigroup(4);;
gap> A:=GreensRClassOfElement (S, Transformation([2, 1, 3, 1]));
{Transformation([2, 1, 3, 1])}

gap> B:=GreensRClassOfElement (S, Transformation([1, 2, 3, 4]));
{IdentityTransformation}

gap> A<B;

false

gap> B<A;

true

gap> IsGreensLessThanOrEqual(A,B);

true

gap> IsGreensLessThanOrEqual(B,A);

false

Semigroups 43

gap> S:=SymmetricInverseSemigroup(4);;

gap> A:=GreensJClassOfElement (S, PartialPerm([1 .. 31, [1, 3, 4 1));
{PartialPerm([1, 2, 31, [1, 2, 3 1)}

gap> B:=GreensJClassOfElement (S, PartialPerm([1, 2 1, [3, 1 1));
{PartialPerm([1, 21, [1, 2 1)}

gap> A<B;

false

gap> B<A;

true

gap> IsGreensLessThanOrEqual(A, B);

false

gap> IsGreensLessThanOrEqual(B, A);

true

4.4.2 InjectionPrincipalFactor

> InjectionPrincipalFactor (D) (attribute)
> IsomorphismReesMatrixSemigroup (D) (attribute)
Returns: A injective mapping.
If the Z-class D is a subsemigroup of a semigroup S, then the principal factor of D is just D itself.
If D is not a subsemigroup of S, then the principal factor of D is the semigroup with elements D and a
new element O with multiplication of x,y € D defined by:

oy xxy (inS) ifxxyeD
YT 0 if xy ¢ D.

InjectionPrincipalFactor returns an injective function from the Z-class D to a Rees matrix semi-
group, which contains the principal factor of D as a subsemigroup.

If D is a subsemigroup of its parent semigroup, then the function returned by
InjectionPrincipalFactor or IsomorphismReesMatrixSemigroup is an isomorphism from D
to a Rees matrix semigroup; see ReesMatrixSemigroup (Reference: ReesMatrixSemigroup).

If D is not a semigroup, then the function returned by InjectionPrincipalFactor is an
injective function from D to a Rees O-matrix semigroup isomorphic to the principal factor of
D; see ReesZeroMatrixSemigroup (Reference: ReesZeroMatrixSemigroup). In this case,
IsomorphismReesMatrixSemigroup returns an error.

See also PrincipalFactor (4.4.3).
Example

gap> S:=InverseSemigroup (

> PartialPerm([1, 2, 3, 6,8, 101, [2,6, 7,9, 1, 51]),
> PartialPerm([1, 2, 3, 4, 6, 7, 8, 10 1,

>[3,8,1,9, 4, 10, 5, 6 1))3;;

gap> f:=PartialPerm([1, 2, 5, 6, 7, 91, [1, 2, 5, 6, 7, 9 1);;
gap> d:=GreensDClassO0fElement (S, f);

{PartialPerm([1, 2, 5, 6, 7, 91, [1, 2,5, 6,7, 91)}
gap> InjectionPrincipalFactor(d);;

gap> rms:=Range(last);

<Rees O-matrix semigroup 3x3 over Group(())>

gap> MatrixOfReesZeroMatrixSemigroup (rms) ;

tco,o0,01, 00, O,01, [0,0, O11

gap> Size(rms);

Semigroups 44

10
gap> Size(d);
9
gap> S:=Semigroup(
> Bipartition([[1, 2, 3, -3, -61, [41, [5, -21, [-1, -411),
> Bipartition([[1, 3, 51, [2, 4, -31, [-1, -2, -4, -51 1),
> Bipartition([[1, 5, -2, 41, [2, 3,4, -1, -51, [-311),
> Bipartition([[1, 5, -1, -2, -3 1, [2,4, -41, [3, -511));;
gap> D:=DClasses(S) [3];
{Bipartition([[1, 5, -2, -4 1, [2, 3, 4, -1, -561, [-311)}
gap> inj:=InjectionPrincipalFactor(D);
MappingByFunction({Bipartition([[1, 5, -2, -4 1,
[2, 3,4, -1, 571, [-311])}, <Rees matrix semigroup 1x1 over
Group([(1,2) 1)>, function(£) ... end, function(x) ... end)
4.4.3 PrincipalFactor
> PrincipalFactor (D) (attribute)

Returns: A Rees matrix semigroup.
PrincipalFactor (D) is just shorthand for Range (InjectionPrincipalFactor (D)), where
D is a Z-class of semigroup; see InjectionPrincipalFactor (4.4.2) for more details.
Example
gap> S:=Semigroup([PartialPerm([1, 2, 31, [1, 3, 41),
> PartialPerm([1, 2, 3], [2, 5, 3]),
> PartialPerm([1, 2, 3, 41, [2, 4, 1,
> PartialPerm([1, 3, 5], [5, 1, 3])
gap> PrincipalFactor (MinimalDClass(S));
<Rees matrix semigroup 1x1 over Group(())>
gap> MultiplicativeZero(S);
<empty partial perm>
gap> S:=Semigroup(
> Bipartition([[1, 2, 3,
> Bipartition([[1, -5 1,
> Bipartition([[1, 5,
gap> d:=MinimalDClass(S),
{Bipartition([[1, 2, 3, 4, 5, -1, -31, [-2, 51, [-411)}
gap> PrincipalFactor(d);
<Rees matrix semigroup 1x5 over Group(())>

),

55

5]
1);

4,5, -1, -31, [-2, -1, [-411)
[2: 1) 4: 5: _1’ _3]a [_2; _4]])3
]’ [’ 4, _1, -5]; [35 _2, _3] :|)

4.4.4 IsRegularClass

> IsRegularClass(class) (property)

Returns: true or false.

This function returns true if class is a regular Green’s class and false if it
is not. See also IsRegularDClass (Reference: IsRegularDClass), IsGroupHClass
(Reference: IsGroupHClass), GroupHClass0fGreensDClass (Reference: GroupHClassOf-
GreensDClass), GroupHClass (4.2.4), NrIdempotents (4.5.4), Idempotents (4.5.3), and
IsRegularSemigroupElement (Reference: IsRegularSemigroupElement).

The function IsRegularDClass produces the same output as the GAP library functions with the
same name; see IsRegularDClass (Reference: IsRegularDClass).

Semigroups 45

Example
gap> S:=Monoid(Transformation([10, 8, 7, 4, 1, 4, 10, 10, 7, 21),
> Transformation([5, 2, 5, 5, 9, 10, 8, 3, 8, 101));;

gap> f:=Transformation([1, 1, 10, 8, 8, 8, 1, 1, 10, 8 1);;

gap> R:=RClass(S, f);;

gap> IsRegularClass(R);

true

gap> S:=Monoid(Transformation([2,3,4,5,1,8,7,6,2,7]1),
> Transformation([3, 8, 7, 4, 1, 4, 3, 3, 7, 21));;
gap> f:=Transformation([3, 8, 7, 4, 1, 4, 3, 3, 7, 21);;

gap> R:=RClass(S, f);;

gap> IsRegularClass(R);

false

gap> NrIdempotents(R);

0

gap> S:=Semigroup(Transformation([2, 1, 3, 1]),
> Transformation([3, 1, 2, 1]), Transformation([4, 2, 3, 3]));;
gap> f:=Transformation([4, 2, 3, 31);;
gap> L:=GreensLClassOfElement (S, £f);;

gap> IsRegularClass(L);

false

gap> R:=GreensRClassOfElement (S, f);;

gap> IsRegularClass(R);

false

gap> g:=Transformation([4, 4, 4, 41);;
gap> IsRegularSemigroupElement (S, g);

true

gap> IsRegularClass(LClass(S, g));

true

gap> IsRegularClass(RClass(S, g));

true

gap> IsRegularDClass(DClass(S, g));

true

gap> DClass(S, g)=RClass(S, g);

true

4.4.5 NrRegularDClasses

> NrRegularDClasses(S) (attribute)
> RegularDClasses(S) (attribute)
Returns: A positive integer, or a list.
NrRegularDClasses returns the number of regular Z-classes of the semigroup S.
RegularDClasses returns a list of the regular Z-classes of the semigroup S.

See also IsRegularClass (4.4.4) and IsRegularDClass (Reference: IsRegularDClass).
Example
gap> S:=Semigroup([Transformation([1, 3, 4, 1, 3, 51),
> Transformation([5, 1, 6, 1, 6, 3 1) 1);;

gap> NrRegularDClasses(S);

3

gap> NrDClasses(S);

7

gap> RegularDClasses(S);

Semigroups 46

[{Transformation([1, 4, 1, 1, 4, 31)},

{Transformation([1, 1, 1, 1, 1, 41)},

{Transformation([1, 1, 1, 1, 1, 11)}]
4.4.6 NrXClasses
> NrDClasses(obj) (attribute)
> NrHClasses(obj) (attribute)
> NrLClasses(obj) (attribute)
> NrRClasses(obj) (attribute)

Returns: A positive integer.
NrXClasses returns the number of Green’s classes in obj where obj can be a semigroup, Z-,
Z-, or #-class where appropriate. If the actual Green’s classes are not required, then it is more

efficient to use
Example

NrHClasses(obj)

than
Example

Length(HClasses(obj))

since the Green’s classes themselves are not created when NrXClasses is called.
See also GreensRClasses (4.3.1), GreensRClasses (Reference: GreensRClasses),
Iterator0fRClasses (4.3.3), and Iterator0fRClassReps (4.3.2).

Example
gap> gens:=[Transformation([1, 2, 5, 4, 3, 8, 7, 61),
> Transformation([1, 6, 3, 4, 7, 2, 5, 8 1),
> Transformation([2, 1, 6, 7, 8, 3, 4, 5]),
> Transformation([3, 2, 3, 6, 1, 6, 1, 21),
> Transformation([5, 2, 3, 6, 3, 4, 7, 41) 1;;

gap> S:=Semigroup(gens);;

gap> f:=Transformation([2, 5, 4, 7, 4, 3, 6, 31);;
gap> R:=RClass(S, f);

{Transformation([2, 5, 4, 7, 4, 3, 6, 3])}
gap> NrHClasses(R);

12

gap> D:=DClass(R);

{Transformation([2, 5, 4, 7, 4, 3, 6, 31)}
gap> NrHClasses(D);

72

gap> L:=LClass(S, f);

{Transformation([2, 5, 4, 7, 4, 3, 6, 3])}
gap> NrHClasses(L);

6

gap> NrHClasses(S);

1555

gap> gens:=[Transformation([4, 6, 5, 2, 1, 3]),
> Transformation([6, 3, 2, 5, 4, 11),

> Transformation([1, 2, 4, 3, 5, 6 1),

> Transformation([3, 5, 6, 1, 2, 31),

> Transformation([5, 3, 6, 6, 6, 21),

>

>

>
gap>
gap>
150
gap>
6342
gap>
gap>

Semigroups

Transformation([2, 3, 2, 6,

Transformation([2, 1, 2, 2,
4, 4, 1, 2
)

-
—

-

=N
N O

Transformation([
S:=Semigroup(gens) ;;
NrRClasses(S);

B B > B

Size(S);

f:=Transformation([1, 3, 3, 1, 3, 51);;
D:=DClass(S, f);

47

{Transformation([2, 4, 2, 2, 2, 1 1)}
gap> NrRClasses(D);

87

gap> S:=SymmetricInverseSemigroup(10);;
gap> NrDClasses(S); NrRClasses(S); NrHClasses(S); NrLClasses(S);
11

1024

184756

1024

gap> S:=POPI(10);;

gap> NrDClasses(S);

11

gap> NrRClasses(S);

1024

4.4.7 PartialOrderOfDClasses

> PartialOrder0fDClasses(S) (attribute)

Returns: The partial order of the Z-classes of S.

Returns a list 1ist where 1ist [i] contains every j such that GreensDClasses(S) [j] is im-
mediately less than GreensDClasses (S) [i] in the partial order of - classes of S. There might be
other indices in 1ist, and it may or may not include i. The reflexive transitive closure of the relation
defined by 1ist is the partial order of Z-classes of S.

The partial order on the Z-classes is defined by x < y if and only if S'xS" is a subset of S'yS!.

See also GreensDClasses (4.3.1), GreensDClasses (Reference: GreensDClasses),
IsGreensLessThanOrEqual (Reference: IsGreensLessThanOrEqual), and \< (4.4.1).

Example
gap> S:=Semigroup(Transformation([2, 4, 1, 2]),

> Transformation([3, 3, 4, 1 1));;

gap> PartialOrder0fDClasses(S);

tr031,02,31,03,41,[41]1

gap> IsGreensLessThanOrEqual (GreensDClasses(S) [1], GreensDClasses(S)[2]);
false

gap> IsGreensLessThanOrEqual (GreensDClasses(S) [2], GreensDClasses(S)[1]);
false

gap> IsGreensLessThanOrEqual (GreensDClasses(S) [3], GreensDClasses(S)[1]);
true

gap> S:=InverseSemigroup(PartialPerm([1, 2, 31, [1, 3, 41),

> PartialPerm([1, 3, 51, [5, 1, 31));;

gap> Size(8);

58

Semigroups 48

gap> PartialOrderOfDClasses(S);

(1,331, 02,31,[03,41,[04,51,[51]1

gap> IsGreensLessThanOrEqual (GreensDClasses(S) [1], GreensDClasses(S)[2]);
false

gap> IsGreensLessThanOrEqual (GreensDClasses(S) [56], GreensDClasses(S)[2]);
true

gap> IsGreensLessThanOrEqual (GreensDClasses(S) [3], GreensDClasses(S)[4]);
false

gap> IsGreensLessThanOrEqual (GreensDClasses(S) [4], GreensDClasses(S)[3]);
true

4.4.8 SchutzenbergerGroup

> SchutzenbergerGroup(class) (attribute)

Returns: A permutation group.

SchutzenbergerGroup returns the generalized Schutzenberger group (defined below) of the % -,
9D-, L-, or H-class class.

If £ is an element of a semigroup of transformations or partial permutations and im(f) denotes
the image of £, then the generalized Schutzenberger group of im(£) is the permutation group

{g|im(f) Dim(fxg) =im(f) }.

The generalized Schutzenberger group of the kernel ker (£) of a transformation £ or the domain
dom(f) of a partial permutation £ is defined analogously.
The generalized Schutzenberger group of a Green’s class is then defined as follows.

Z~-class
The generalized Schutzenberger group of the image or range of the representative of the %-
class.

Z-class
The generalized Schutzenberger group of the kernel or domain of the representative of the .£-
class.

F-class
The intersection of the generalized Schutzenberger groups of the %Z- and .Z-class containing
the J7-class.

P-class
The intersection of the generalized Schutzenberger groups of the %Z- and .Z-class containing
the representative of the Z-class.

Example
gap> S:=Semigroup(Transformation([4, 4, 3, 5, 3 1),
> Transformation([5, 1, 1, 4, 11),

> Transformation([5, 5, 4, 4, 51))
gap> f:=Transformation([5, 5, 4, 4, 5
gap> SchutzenbergerGroup(RClass(S, £f));
Group([(4,5) 1)

gap> S:=InverseSemigroup(

> [PartialPerm([1, 2, 3, 71, [9, 2, 4, 8 1),

B

1055

Semigroups 49

> PartialPerm([1, 2, 6, 7, 8, 9, 101, [6, 8, 4, 5, 9, 1, 3 1),
> PartialPerm([1, 2, 3, 5, 6, 7,8, 91, [7, 4, 1,6, 9,5,2,31)1);;
gap> List(DClasses(S), SchutzenbergerGroup) ;
[Group(()), Group(()), Group(()), Group(()), Group([(1,9,8), (8,
9) 1), Group([(4,9) 1), Group(()), Group(()), Group(()),
Group(()), Group(()), Group(()), Group(()), Group(()), Group(()),
Group((Q)), Group([(2,5)(3,7) 1), Group([(1,7,5,6,9,3) 1),
Group(()), Group(()), Group(()), Group(()), Group(()) 1]

4.4.9 MinimalDClass

> MinimalDClass(S) (attribute)

Returns: The minimal Z-class of a semigroup.

The minimal ideal of a semigroup is the least ideal with respect to containment. MinimalDClass
returns the Z-class corresponding to the minimal ideal of the semigroup S. Equivalently,
MinimalDClass returns the minimal Z-class with respect to the partial order of Z-classes.

It is significantly easier to find the minimal Z-class of a semigroup, than to find its Z-classes.

See also PartialOrderOfDClasses (4.4.7), IsGreensLessThanOrEqual (Reference: Is-
GreensLessThanOrEqual), MinimalIdeal (4.5.10) and RepresentativeOfMinimalIdeal
(4.5.11).

Example

gap> D:=MinimalDClass(JonesMonoid(8)) ;

{Bipartition([[1, 21, [3, 41, [5,61, (7,81, [-1, -21,
(-3, -41,[-5,-61, [-7,-811)}

gap> S:=InverseSemigroup(

> PartialPerm([1, 2, 3, 5, 7,8, 91, [2,6,9,1,5,3,81),

> PartialPerm([1, 3, 4, 5, 7,8, 91, [9, 4, 10, 5, 6, 7, 1 1));;

gap> MinimalDClass(S);

{pPartialPerm([1, [1)}

>

4.4.10 MaximalDClasses

> MaximalDClasses(S) (attribute)
Returns: The maximal Z-classes of a semigroup.
MaximalDClasses returns the maximal Z-classes with respect to the partial order of Z-classes.
See also PartialOrderOfDClasses (4.4.7), IsGreensLessThanOrEqual (Reference: Is-

GreensLessThanOrEqual), and MinimalDClass (4.4.9).

Example

gap> MaximalDClasses (BrauerMonoid(8)) ;

[{Bipartition([[1, -1 1, [2, -21, [3, -31]1, [4, -41,
(5,-51,[6,-61, [7,-71,[8,-811)}1

gap> MaximalDClasses(FullTransformationMonoid(5));

[{IdentityTransformation}]

gap> S:=Semigroup(

> PartialPerm([1, 2, 3, 4, 5, 6, 71, [3,8, 1, 4, 5,6, 71),

> PartialPerm([1, 2, 3, 6, 81, [2, 6, 7, 1, 51),

> PartialPerm([1, 2, 3, 4, 6, 81, [4, 3, 2, 7, 6, 51),

> PartialPerm([1, 2, 4, 5, 6, 7,81, [7,1, 4, 2, 5,6, 31));;

gap> MaximalDClasses(S);

Semigroups 50

[{PartialPerm([1, 2, 3, 4, 5, 6, 71, [3,8, 1, 4, 5, 6, 71)},
{PartialPerm([1, 2, 4, 5, 6, 7, 81, [7, 1, 4, 2, 5, 6, 3 1)} 1

B B > B

4.4.11 StructureDescriptionSchutzenbergerGroups

> StructureDescriptionSchutzenbergerGroups (S) (attribute)
Returns: Distinct structure descriptions of the Schutzenberger groups of a semigroup.
StructureDescriptionSchutzenbergerGroups returns the distinct values of
StructureDescription (Reference: StructureDescription) when it is applied to the Schutzen-
berger groups of the Z-classes of the semigroup S.

Example
gap> S:=Semigroup(PartialPerm([1, 2, 31, [2, 5, 41),
> PartialPerm([1, 2, 31, [4, 1, 21),
> PartialPerm([1, 2, 31, [5,2, 31),
> PartialPerm([1, 2, 4, 51, [2, 1, 4, 31),
> PartialPerm([1, 2, 5], [2, 3, 5]1),
> PartialPerm([1, 2, 3,51, [2, 3,5, 41),
> PartialPerm([1, 2, 3, 51, [4, 2,5, 11),
> PartialPerm([1, 2, 3, 51, [5, 2, 4, 31),

> PartialPerm([1, 2, 51, [5, 4, 31));;
gap> StructureDescriptionSchutzenbergerGroups(S);
I: l|1Il s I|CQII’ IISBII]

gap> S:=Monoid(

> Bipartition([[1, 2, 5, -1, -2 1, [3, 4, -3, -5 1, [-4 11),
> Bipartition([[1, 2, -21, [3, -1 1, [41, [51, [-3, 41, [-51D),
> Bipartition([[11, [2, 3, -51, [4, -31, [5, -21, [-1, -4 11));
<bipartition monoid on 5 pts with 3 generators>
gap> StructureDescriptionSchutzenbergerGroups(S);
["1, "c2"]

4.4.12 StructureDescriptionMaximalSubgroups

> StructureDescriptionMaximalSubgroups(S) (attribute)
Returns: Distinct structure descriptions of the maximal subgroups of a semigroup.
StructureDescriptionMaximalSubgroups returns the distinct values of

StructureDescription (Reference: StructureDescription) when it is applied to the maxi-
mal subgroups of the semigroup S.

Example
gap> S:=DualSymmetricInverseSemigroup(6) ;
<inverse bipartition monoid on 6 pts with 3 generators>

gap> StructureDescriptionMaximalSubgroups(S);

e, »c2", "s3", "s4", "sSg5", "s6"]

gap> S:=Semigroup(PartialPerm([1, 3, 4, 5, 81, [8, 3, 9, 4, 5]),

> PartialPerm([1, 2, 3, 4, 81, [10, 4, 1, 9, 6 1),

> PartialPerm([1, 2, 3, 4, 5, 6, 7, 101, [4, 1, 6, 7, 5, 3, 2, 10]),
> PartialPerm([1, 2, 3, 4, 6, 8, 101, [4, 9, 10, 3, 1, 5, 21));;
gap> StructureDescriptionMaximalSubgroups(S);

Lmm», »c2", "c3", "c4" 1]

Semigroups 51

4.4.13 MultiplicativeNeutralElement (for an H-class)

> MultiplicativeNeutralElement (H) (method)
Returns: A semigroup element or fail.
If the J#-class H of a semigroup S is a subgroup of S, then MultiplicativeNeutralElement
returns the identity of H. If H is not a subgroup of S, then fail is returned.

Example
gap> S:=Semigroup(
> PartialPerm([1, 2, 31, [1, 5,21),
> PartialPerm([1, 31, [2, 41),
> PartialPerm([1, 2, 31, [4, 1,51),
> PartialPerm([1, 3, 51, [1, 3, 41),
> PartialPerm([1, 2, 4, 51, [1, 2, 3, 51),
> PartialPerm([1, 2, 3,51, [1,3,2,51),
> PartialPerm([1, 4, 51, [5, 4, 31));;
gap> H:=HClass(S, PartialPerm([1, 2 1, [1, 21));;
gap> MultiplicativeNeutralElement (H) ;
<identity partial perm on [1, 2 1>
gap> H:=HClass(S, PartialPerm([1, 21, [1, 41));;
gap> MultiplicativeNeutralElement (H) ;
fail

4.4.14 IsGreensClassNC

> IsGreensClassNC(class) (property)
Returns: true or false.
A Green’s class class of a semigroup S satisfies IsGreensClassNC if it was not known to GAP
that the representative of class was an element of S at the point that class was created.

4.4.15 IsTransformationSemigroupGreensClass

> IsTransformationSemigroupGreensClass(class) (property)
Returns: true or false.
A Green’s class class of a semigroup S satisfies the property
IsTransformationSemigroupGreensClass if and only if S is a semigroup of transformations.

4.4.16 IsBipartitionSemigroupGreensClass

> IsBipartitionSemigroupGreensClass(class) (property)
Returns: true or false.
A Green’s class class of a semigroup S satisfies the property
IsBipartitionSemigroupGreensClass if and only if S is a semigroup of bipartitions.

4.4.17 IsPartialPermSemigroupGreensClass

> IsPartialPermSemigroupGreensClass(class) (property)
Returns: true or false.
A Green’s class class of a semigroup S satisfies the property
IsPartialPermSemigroupGreensClass if and only if S is a semigroup of partial perms.

Semigroups 52

4.4.18 StructureDescription (for an H-class)

> StructureDescription(class) (attribute)
Returns: A string or fail.
StructureDescription returns the value of StructureDescription (Reference: Structure-
Description) when it is applied to a group isomorphic to the group 7#-class class. If class is not
a group .77 -class, then fail is returned.

gap> S:=Semigroup(

> PartialPerm([1, 2, 3, 4, 6, 7, 8, 91, [1 s
> PartialPerm([1, 2, 4, 7, 8, 91, [6, 2, 4, 9, 1, 1)
gap> H:=HClass(S,

> PartialPerm([1, 2, 3, 4, 7, 91, [1,7, 3,4, 9,21));;
gap> StructureDescription(H) ;

n C6 n

4.4.19 IsGreensDLeq

> IsGreensDLeq(S) (attribute)
Returns: A function.
IsGreensDLeq(S) returns a function func such that for any two elements x and y of S, func(x,
y) return true if the Z-class of x in S is greater than or equal to the Z-class of y in S under the usual
ordering of Green’s Z-classes of a semigroup.

Example
gap> S:=Semigroup([Transformation([1, 3, 4, 1, 3 1),
> Transformation([2, 4, 1, 5, 51),

> Transformation([2, 5, 3, 5, 3]),

> Transformation([5, 5, 1, 1, 31) 1);;

gap> reps:=ShallowCopy(DClassReps(S));

[Transformation([1, 3, 4, 1, 3]),
Transformation([2, 4, 1, 5, 51),
Transformation([1, 4, 1, 1, 41),
Transformation([1, 1, 1, 1, 11) 1]

gap> Sort(reps, IsGreensDLeq(S));

gap> reps;

[Transformation([2, 4, 1, 5, 5]),
Transformation([1, 3, 4, 1, 31),
Transformation([1, 4, 1, 1, 41),
Transformation([1, 1, 1, 1, 11) 1]

gap> IsGreensLessThanOrEqual (DClass(S, reps[2]), DClass(S, reps[1]));
true

gap> S:=DualSymmetricInverseMonoid(4);;

gap> IsGreensDLeq(S)(S.1, S.3);

true

gap> IsGreensDLeq(S) (5.3, S.1);

false

gap> IsGreensLessThanOrEqual(DClass(S, S.3), DClass(S, S.1));
true

gap> IsGreensLessThanOrEqual(DClass(S, S.1), DClass(S, S.3));
false

Semigroups 53

4.5 Further attributes of semigroups

In this section we describe the attributes of a semigroup that can be found using the Semigroups
package.

4.5.1 Generators

> Generators(S) (attribute)

Returns: A list of generators.

Generators returns a generating set that can be used to define the semigroup S. The generators
of a monoid or inverse semigroup S, say, can be defined in several ways, for example, including or
excluding the identity element, including or not the inverses of the generators. Generators uses
the definition that returns the least number of generators. If no generating set for S is known, then
GeneratorsOfSemigroup is used by default.

for a group
Generators(S) is a synonym for Generators0fGroup (Reference: GeneratorsOfGroup).

for an ideal of semigroup
Generators(S) is a synonym for Generators0fSemigroupIdeal (3.2.1).

for a semigroup
Generators(S) is a synonym for GeneratorsO0fSemigroup (Reference: GeneratorsOf-
Semigroup).

for a monoid
Generators(S) is a synonym for GeneratorsOfMonoid (Reference: GeneratorsOf-
Monoid).

for an inverse semigroup
Generators(S) is a synonym for GeneratorsOf InverseSemigroup (Reference: Genera-
torsOfInverseSemigroup).

for an inverse monoid
Generators(S) is a synonym for GeneratorsOfInverseMonoid (Reference: Generator-
sOfInverseMonoid).
Example
gap> M:=Monoid(Transformation([1, 4, 6, 2, 5, 3, 7, 8, 9, 91),
> Transformation([6, 3, 2, 7, 5, 1, 8, 8, 9, 91));;
gap> Generators0fSemigroup (M) ;
[IdentityTransformation,
Transformation([1, 4, 6, 2, 5, 3, 7, 8, 9, 9 1),
Transformation([6, 3, 2, 7, 5, 1, 8, 8, 9, 91) 1
gap> GeneratorsOfMonoid (M) ;
[Transformation([1, 4, 6, 2, 5, 3, 7, 8, 9, 91),
Transformation([6, 3, 2, 7, 5, 1, 8, 8, 9, 91) 1]
gap> Generators(M);
[Transformation([1, 4, 6, 2, 5, 3, 7, 8, 9, 91),
Transformation([6, 3, 2, 7, 5, 1, 8, 8, 9, 91) 1]
gap> S:=Semigroup(Generators(M));;
gap> Generators(S);

Semigroups 54

[Transformation([1, 4, 6, 2, 5, 3, 7, 8, 9, 91),
Transformation([6, 3, 2, 7, 5, 1, 8, 8, 9, 91) 1]
gap> GeneratorsOfSemigroup(S);
[Transformation([1, 4, 6, 2, 5, 3, 7, 8, 9, 91),
Transformation([6, 3, 2, 7, 5, 1, 8, 8, 9, 91) 1]
4.5.2 GroupOfUnits
> Group0fUnits(S) (attribute)

Returns: The group of units of a semigroup.

Group0fUnits returns the group of units of the semigroup S as a subsemigroup of S if it exists
and returns fail if it does not. Use IsomorphismPermGroup (2.4.2) if you require a permutation
representation of the group of units.

If a semigroup S has an identity e, then the group of units of S is the set of those s in S such that
there exists t in S where s*t=t*s=e. Equivalently, the group of units is the .7#-class of the identity
of S.

See also GreensHClassOfElement (Reference: GreensHClassOfElement),
IsMonoidAsSemigroup (4.6.11), and MultiplicativeNeutralElement (Reference: Multi-
plicativeNeutralElement).

Example
gap> S:=Semigroup(Transformation([1, 2, 5, 4, 3, 8, 7, 6 1),
> Transformation([1, 6, 3, 4, 7, 2, 5, 81),
> Transformation([2, 1, 6, 7, 8, 3, 4, 51),
> Transformation([3, 2, 3, 6, 1, 6, 1, 21),
> Transformation([5, 2, 3, 6, 3, 4, 7, 41));;
gap> Size(S);
5304
gap> StructureDescription(Group0fUnits(S));
"C2 x S4"

gap> S:=InverseSemigroup(PartialPerm([1, 2, 3, 4, 5, 6, 7, 8, 9, 10 1],
>[2, 4, 5,3,6, 7, 10, 9,8, 11),

> PartialPerm([1, 2, 3, 4, 5, 6, 7, 8, 10 1,
>[8,2,3,1,4,5, 10,6, 91));;

gap> StructureDescription(GroupOfUnits(S));

IICSH

gap> S:=InverseSemigroup(PartialPerm([1, 3, 41, [4, 3, 51),
> PartialPerm([1, 2, 3, 51, [3,1, 5, 21));;

gap> Group0fUnits(S);

fail

gap> S:=Semigroup(Bipartition([[1, 2, 3, -1, -3 1, [-21 1),
> Bipartition([[1, -1 1, [2, 3, -2, -31 1),

> Bipartition([[1, -2 1, [2, -31, [3, -111),
> Bipartition([[11, [2,3, -21, [-1, -31 1));;
gap> StructureDescription(Group0fUnits(S));
"CS"
4.5.3 Idempotents
> Idempotents(obj[, n]) (attribute)

Returns: A list of idempotents.

Semigroups 55

The argument obj should be a semigroup, Z-class, .77 -class, .Z-class, or Z-class.

If the optional second argument n is present and obj is a semigroup, then a list of the idempotents
in obj of rank n is returned. If you are only interested in the idempotents of a given rank, then the
second version of the function will probably be faster. However, if the optional second argument is
present, then nothing is stored in obj and so every time the function is called the computation must
be repeated.

This functions produce essentially the same output as the GAP library function with the same
name; see Idempotents (Reference: Idempotents). The main difference is that this function can be
applied to a wider class of objects as described above.

See also IsRegularDClass (Reference: IsRegularDClass), IsRegularClass (4.4.4)
IsGroupHClass (Reference: IsGroupHClass), NrIdempotents (4.5.4), and GroupHClass (4.2.4).
Example
gap> S:=Semigroup([Transformation([2, 3, 4, 11),
> Transformation([3, 3, 1, 1 1) 1);;
gap> Idempotents(S, 1);

[1

gap> Idempotents(S, 2);

[Transformation([1, 1, 3, 3 1]
Transformation([2, 2, 4, 4]

gap> Idempotents(S);

[IdentityTransformation, Transformation([1, 1, 3, 3]),
Transformation([1, 3, 3, 1]), Transformation([2, 2, 4, 41),
Transformation([4, 2, 2, 4]) 1

gap> f:=Transformation([2, 2, 4, 4]);;

gap> R:=GreensRClassOfElement (S, f);

{Transformation([3, 3, 1, 1])}

gap> Idempotents(R);

[Transformation([1, 1, 3, 3]), Transformation([2, 2, 4, 4]) 1]

gap> f:=Transformation([4, 2, 2, 4]);;

gap> L:=GreensLClassOfElement (S, £);;

gap> Idempotents(L);

[Transformation([2, 2, 4, 4]), Transformation([4, 2, 2, 4]) 1]

gap> D:=DClass0fLClass(L);

{Transformation([1, 1, 3, 31)}

gap> Idempotents(D);

), Transformation([1, 3, 3,
), Transformation([4, 2,

N
L
—_

[Transformation([1, 1, 3, 3]), Transformation([2, 2, 4, 4]),
Transformation([1, 3, 3, 1]), Transformation([4, 2, 2, 41) 1]
gap> L:=GreensLClassOfElement (S, Transformation([3, 1, 1, 31));;

gap> Idempotents(L);

[Transformation([1, 1, 3, 3]), Transformation([1, 3, 3, 1]) 1
gap> H:=GroupHClass (D) ;

{Transformation([1, 1, 3, 3])}

gap> Idempotents(H);

[Transformation([1, 1, 3, 3]) 1]

gap> S:=InverseSemigroup(

> [PartialPerm([1, 2, 3, 4, 5, 71, [10, 6, 3, 4, 9, 11),
> PartialPerm([1, 2, 3, 4, 5, 6, 7, 81,

>[6,10,7, 4,8,2,9,11) Dj;

gap> Idempotents(S, 1);

[<identity partial perm on [4 1>]

gap> Idempotents(S, 0);

Semigroups 56

4.5.4 Nrldempotents

> NrIdempotents(obj) (attribute)

Returns: A positive integer.

This function returns the number of idempotents in obj where obj can be a semigroup, -,
L-, F-, or #-class. If the actual idempotents are not required, then it is more efficient to use
NrIdempotents(obj) than Length(Idempotents(obj)) since the idempotents themselves are not
created when NrIdempotents is called.

See also Idempotents (Reference: Idempotents) and Idempotents (4.5.3), IsRegularDClass
(Reference: IsRegularDClass), IsRegularClass (4.4.4) IsGroupHClass (Reference: IsGroupH-
Class), and GroupHClass (4.2.4).

Example
gap> S:=Semigroup([Transformation([2, 3, 4, 11),

> Transformation([3, 3, 1, 1 1) 1);;

gap> NrIdempotents(S);

5

gap> f:=Transformation([2, 2, 4, 41);;

gap> R:=GreensRClassOfElement (S, £);;

gap> NrIdempotents(R);

2

gap> f:=Transformation([4, 2, 2, 41);;

gap> L:=GreensLClassOfElement (S, £f);;

gap> NrIdempotents(L);

2

gap> D:=DClass0fLClass(L);;

gap> NrIdempotents(D);

4

gap> L:=GreensLClassOfElement (S, Transformation([3, 1, 1, 3 1));;
gap> NrIdempotents(L);

2

gap> H:=GroupHClass(D);;

gap> NrIdempotents(H);

1

gap> S:=InverseSemigroup(

> [PartialPerm([1, 2, 3, 5, 7, 9, 101, [6, 7, 2,9, 1,5, 31),
> PartialPerm([1, 2, 3, 5, 6, 7, 9, 10],
>[8,1,9,4,10,5,6,71) 1);;

gap> NrIdempotents(S);

236

gap> f:=PartialPerm([2, 3, 7, 9, 101, [7, 2, 1, 5, 3 1);;
gap> d:=DClassNC(S, f);;

gap> NrIdempotents(d);

13

4.5.5 IdempotentGeneratedSubsemigroup

> IdempotentGeneratedSubsemigroup (S) (attribute)
Returns: A semigroup.

Semigroups

57

IdempotentGeneratedSubsemigroup returns the subsemigroup of the semigroup S generated

by the idempotents of S.
See also Idempotents (4.5.3) and SmallGeneratingSet (4.5.14).

Example

gap> S:=Semigroup([Transformation([1, 1]),
> Transformation([2, 1 1]),

> Transformation([1, 2, 2]),

> Transformation([1, 2, 3, 4, 5, 11),

> Transformation([1, 2, 3, 4, 5, 51),

> Transformation([1, 2, 3, 4, 6, 51),

> Transformation([1, 2, 3, 5, 41),

> Transformation([1, 2, 3, 7, 4, 5, 71),

> Transformation([1, 2, 4, 8, 8, 3, 8, 71),
> Transformation([1, 2, 8, 4, 5, 6, 7, 81),
> Transformation([7, 7, 7, 4, 5, 6, 11) 1);;

gap> IdempotentGeneratedSubsemigroup(S);

<transformation monoid on 8 pts with 18 generators>

gap> S:=SymmetricInverseSemigroup(5) ;

<symmetric inverse semigroup on 5 pts>

gap> IdempotentGeneratedSubsemigroup(S);

<inverse partial perm monoid on 5 pts with 5 generators>
gap> S:=DualSymmetricInverseSemigroup(5);

<inverse bipartition monoid on 5 pts with 3 generators>
gap> IdempotentGeneratedSubsemigroup(S);

<inverse bipartition monoid on 5 pts with 10 generators>
gap> IsSemilatticeAsSemigroup(last);

true

4.5.6 IrredundantGeneratingSubset

> IrredundantGeneratingSubset(coll)
Returns: A list of irredundant generators.

(operation)

If coll is a collection of elements of a semigroup, then this function returns a subset U of coll

such that no element of U is generated by the other elements of U.

Example
gap> S:=Semigroup(Transformation([5, 1, 4, 6, 2, 31),
> Transformation([1, 2, 3, 4, 5, 6 1),
> Transformation([4, 6, 3, 4, 2, 51),
> Transformation([5, 4, 6, 3, 1, 31),
> Transformation([2, 2, 6, 5, 4, 31),
> Transformation([3, 5, 5, 1, 2, 41),
> Transformation([6, 5, 1, 3, 3, 41),
> Transformation([1, 3, 4, 3, 2, 11));;
gap> IrredundantGeneratingSubset(S);

[Transformation([1, 3, 4, 3, 2, 11),
Transformation([2, 2, 6, 5, 4, 3]),
Transformation([3, 5, 5, 1, 2, 41),
Transformation([5, 1, 4, 6, 2, 3]),
Transformation([5, 4, 6, 3, 1, 3]),
Transformation([6, 5, 1, 3, 3, 41) 1

gap> S:=RandomInverseMonoid(1000,10);

Semigroups 58

<inverse partial perm monoid on 10 pts with 1000 generators>
gap> SmallGeneratingSet(S);

[ft+..101->106,5,1,9, 8,3, 10, 4,7, 21,
[1 101 >1[1, 4,6, 2,8,5,7, 10, 3, 91,
[1, 2,3, 4,6,7,8,9]1 ->[7,5, 10, 1, 8, 4, 9, 61
[1..91->1[4,3,5,7, 10,9, 1, 6,811
p

gap> IrredundantGeneratingSubset(last) ;
rftt+..91->104,3,5,7,10,9,1,6,81,
[1..10]1 ->T[1, 4,6, 2,8,5,7, 10, 3,91,
[1 i0] >[6,5,1, 9,8, 3,10, 4,7, 21
gap> S:=RandomBipartitionSemigroup(1000,4);
<bipartition semigroup on 4 pts with 749 generators>
gap> SmallGeneratingSet(S);

]

[<bipartitiom: [1, -3 1, [2, -21, [3, -11, [4, -4 1>,
<bipartition: [1, 3, -2 1, [2, -1, -3 1, [4, -4 1>,
<bipartition: [1, -4 1, [2, 4, -1, -31, [3, -2 1>,
<bipartition: [1, -1, -3 1, [2, -41, [3, 4, -2 1>,
<bipartition: [1, -2, -4 1, [21, [3, -31, [4, -11>,
<bipartitiomn: [1, -2 1, [2, -1, -3 1, [3, 4, -4 1>,
<bipartition: [1, 3, -1 1, [2, -31, [4, -2, -4 1>,
<bipartition: [1, -1 1, [2, 4, -41, [3, -2, -3 1>,
<bipartition: [1, 3, -1 1, [2, -2 1, [4, -3, -4 1>,
<bipartition: [1, 2, -2 1, [3, -1, -4 1, [4, -3 1>,
<bipartition: [1, -2, -3 1, [2, -41, [31, [4, -11>,
<bipartition: [1, -1 1, [2, 4, -31, [3, -21, [-4 1>,
<bipartition: [1, -3 1, [2, -1 1, [3, 4, -41, [-2 1>,
<bipartition: [1, 2, -4 1, [3, -1 1, [4, -21, [-31>,

<bipartition: [1, -3 1, [2, -41, [3, -1, -21, [41>1]
gap> IrredundantGeneratingSubset(last) ;
[<bipartition: [1, 2, -4 1, [3, -11, [4, -21, [-3 1>,

<bipartition: [1, 3, -1 1, [2, -21, [4, -3, -4 1>,

<bipartition: [1, 3, -2 1, [2, -1, -3 1, [4, -4 1>,

<bipartition: [1, -1 1, [2, 4, -31, [3, -21, [-4 1>,
<bipartition: [1, -3 1, [2, -11, [3, 4, 41, [-2 1>,
<bipartition: [1, -3 1, [2, -21, [3, -11, [4, -4 1>,
<bipartition: [1, -3 1, [2, -41, [3, -1, -21, [41>,
<bipartition: [1, -2, -831, [2, -41, [31, [4, -11>,
<bipartition: [1, -2, -4], [21, [3, -31, [4, -11>]

4.5.7 MaximalSubsemigroups (for an acting semigroup)

> MaximalSubsemigroups(S) (attribute)

Returns: The maximal subsemigroups of S.

If S is a semigroup, then MaximalSubsemigroups returns a list of the maximal subsemigroups
of S.

A maximal subsemigroup of S is a proper subsemigroup of S which is contained in no other proper
subsemigroups of S.

The method for this function are based on [GGR68].

PLEASE NOTE: the Grape package version 4.5 or higher must be available and compiled for this
function to work.

http://www.maths.qmul.ac.uk/~leonard/grape/

Semigroups

gap> S

gap> R

[<Rees
<Rees
<Rees
<Rees
<Rees
<Rees
<Rees
<Rees
<Rees
<Rees

:= FullTr
<full transformation semigroup on 4 pts>
gap> MaximalSubsemigroups(S);
[<transformation semigroup on
<transformation semigroup on
<transformation semigroup on
<transformation semigroup on
<transformation semigroup on
<transformation semigroup on
<transformation semigroup on
<transformation semigroup on
<transformation semigroup on
gap> D:=DClass(S, Transformation([2, 2])
{Transformation([2, 3, 1, 2 1)}
:= Princi
<Rees O-matrix semigroup 6x4 over Group([(1,2,3), (1,2) 1)>
gap> MaximalSubsemigroups (R);

O-matrix
O-matrix
O-matrix
O-matrix
O-matrix
O-matrix
O-matrix
O-matrix
O-matrix
O-matrix

<subsemigroup
<subsemigroup
<subsemigroup
<subsemigroup
<subsemigroup
<subsemigroup
<subsemigroup
<subsemigroup
<subsemigroup
<subsemigroup

Example
ansformationSemigroup(4);

pts with
pts with
pts with
pts with

pts with
pts with
pts with
pts with

NN NN N O N N N NN

palFactor(D);

semigroup 6x3 over Group([
semigroup 6x3 over Group([
semigroup 6x3 over Group([
semigroup 6x3 over Group([
semigroup 5x4 over Group([
semigroup 5x4 over Group([
semigroup 5x4 over Group([
semigroup 5x4 over Group([
semigroup 5x4 over Group([
semigroup 5x4 over Group([

3
5
4
4
pts with 5
4
5
5
4
);

59

generators>,

generators>,
generators>,
generators>,
generators>,
generators>,

generators>,
generators>,
generators>]

(1,2,3),
(1,2,3),
(1,2,3),
(1,2,3),
(1,2,3),
(1,2,3),
(1,2,3),
(1,2,3),
(1,2,3),
(1,2,3),

of 6x4 Rees O-matrix semigroup with
of 6x4 Rees O-matrix semigroup with
of 6x4 Rees O-matrix semigroup with
of 6x4 Rees O-matrix semigroup with
of 6x4 Rees O-matrix semigroup with
of 6x4 Rees O-matrix semigroup with
of 6x4 Rees O-matrix semigroup with
of 6x4 Rees O-matrix semigroup with
of 6x4 Rees O-matrix semigroup with
of 6x4 Rees O-matrix semigroup with

(1,2) 1>,
(1,2) 1>,
(1,2) 1)>,
(1,2) 1)>,
(1,2) 1)>,
(1,2) 1)>,
(1,2) 1>,
(1,2) 1)>,
(1,2) 1)>,
(1,2) 1>,
23 generators>,
23 generators>,
21 generators>,
23 generators>,
21 generators>,
21 generators>,
23 generators>,
21 generators>,
21 generators>,
21 generators>]

4.5.8 MaximalSubsemigroups (for a Rees (0-)matrix semigroup, and a group)

> MaximalSubsemigroups(R, H)
Returns: The maximal subsemigroups of a Rees (0)-matrix semigroup corresponding to a maxi-
mal subgroup of the underlying group.
Suppose that R is a regular Rees (0-)matrix semigroup of the form .#[G;1,J;P] where G is a
group and P is a |J| by |I| matrix with entries in GU {0} . If H is a maximal subgroup of G, then this

function returns the maximal subsemigroups of R which are isomorphic to .#[H;1,J; P].

The method used in this function is based on Remark 1 of [GGR68].
PLEASE NOTE: the Grape package version 4.5 or higher must be available and compiled for this
function to work, when the argument R is a Rees 0-matrix semigroup.

(operation)

http://www.maths.qmul.ac.uk/~leonard/grape/

Semigroups 60

Example
gap> R := ReesZeroMatrixSemigroup(Group([(1,2), (3,4) 1),

>L 0O, (1,21, L 0O, (1,21 1;

<Rees O-matrix semigroup 2x2 over Group([(1,2), (3,4) 1)>

gap> G := UnderlyingSemigroup(R);

Group([(1,2), (3,4) 1)

gap> H := Group((1,2));

Group([(1,2) 1)

gap> max := MaximalSubsemigroups(R, H);

[<subsemigroup of 2x2 Rees O-matrix semigroup with 6 generators>]
gap> IsMaximalSubsemigroup(R, max[1]);

true

4.5.9 IsMaximalSubsemigroup

> IsMaximalSubsemigroup(S, T) (operation)
Returns: true or false
If S and T are semigroups, then IsMaximalSubsemigroup returns true if and only if T is a
maximal subsemigroup of S.
A proper subsemigroup T of a semigroup S is a maximal if T is not contained in any other proper
subsemigroups of S.
Example
gap> S := FullTransformationSemigroup(4);
<full transformation semigroup on 4 pts>
gap> T := Semigroup([Transformation([3, 4, 1, 2]),
> Transformation([1, 4, 2, 31),
> Transformation([2, 1, 1, 31) 1);
<transformation semigroup on 4 pts with 3 generators>
gap> IsMaximalSubsemigroup(S, T);
true
gap> R:=Semigroup([Transformation([3, 4, 1, 21),
> Transformation([1, 4, 2, 21),
> Transformation([2, 1, 1, 31) 1);
<transformation semigroup on 4 pts with 3 generators>
gap> IsMaximalSubsemigroup(S, R);
false

4.5.10 Minimalldeal

> MinimalIdeal(S) (attribute)
Returns: The minimal ideal of a semigroup.
The minimal ideal of a semigroup is the least ideal with respect to containment.
It is significantly easier to find the minimal Z-class of a semigroup, than to find its Z-classes.
See also RepresentativeOfMinimalIdeal (4.5.11), PartialOrder0fDClasses (4.4.7),
IsGreensLessThanOrEqual (Reference: IsGreensLessThanOrEqual), and MinimalDClass
(4.4.9).
Example
gap> S:=Semigroup(Transformation([3, 4, 1, 3, 6, 3, 4, 6, 10, 1]),
> Transformation([8, 2, 3, 8, 4, 1, 3, 4, 9, 71));;
gap> MinimalIdeal(S);

Semigroups 61

<simple transformation semigroup ideal on 10 pts with 1 generator>
gap> Elements(MinimalIdeal(S));

[Transformation([1, 1, 1, 1, 1, 1, 1, 1, 1, 1 1),
Transformation([3, 3, 3, 3, 3, 3, 3, 3, 3, 3 1),
Transformation([4, 4, 4, 4, 4, 4, 4, 4, 4, 4]),
Transformation([6, 6, 6, 6, 6, 6, 6, 6, 6, 6 1),
Transformation([8, 8, 8, 8, 8, 8, 8, 8, 8, 81) 1

gap> f:=Transformation([8, 8, 8, 8, 8, 8, 8, 8, 8, 81);;

gap> D:=DClass(S, £);

{Transformation([3, 3, 3, 3, 3, 3, 3, 3, 3, 3 1)}

gap> ForAll(GreensDClasses(S), x-> IsGreensLessThanOrEqual(D, x));
true

gap> MinimalIdeal (POI(10));

<partial perm group on 10 pts with 1 generator>

gap> MinimalIdeal (BrauerMonoid(6));

<simple bipartition semigroup ideal on 6 pts with 1 generator>

4.5.11 RepresentativeOfMinimalldeal

> Representative0fMinimalIdeal (S) (attribute)
> Representative0fMinimalDClass(S) (attribute)

Returns: An element of the minimal ideal of a semigroup.

The minimal ideal of a semigroup is the least ideal with respect to containment.

This method returns a representative element of the minimal ideal of S without having to create the
minimal ideal itself. In general, beyond being a member of the minimal ideal, the returned element
is not guaranteed to have any special properties. However, the element will coincide with the zero
element of S if one exists.

This method works particularly well if S is a semigroup of transformations or partial permutations.

See also MinimalIdeal (4.5.10) and MinimalDClass (4.4.9).

Example

gap> S := SymmetricInverseSemigroup(10);;

gap> RepresentativeOfMinimalIdeal(S);

<empty partial perm>

gap> B := Semigroup([

> Bipartition([[1, 21, [3, 6, -2 1, [4, 5, -3, -4 1,

> [-1, 61, [-5611),

> Bipartition([[1, -1 1, [21, [31, [4, -31,

> [5,6, -5, 61, [-2,-411) D;3;

gap> RepresentativeOfMinimalIdeal(B);

<bipartition: [1, 21, [3,61, [4,51, [-1, -5, -61,
(-2, 41, [-31>

gap> S := Semigroup([Transformation([5, 1, 6, 2, 2, 4]),

> Transformation([3, 5, 5, 1, 6, 21) 1);;

gap> RepresentativeOfMinimalDClass(S);

Transformation([1, 2, 2, 5, 5, 1])

gap> MinimalDClass(S);

{Transformation([1, 2, 2, 5, 5, 1 1)}

Semigroups 62

4.5.12 MultiplicativeZero

> MultiplicativeZero(S) (attribute)

Returns: The zero element of a semigroup.
MultiplicativeZero returns the zero element of the semigroup S if it exists and fail if it does

not. See also MultiplicativeZero (Reference: MultiplicativeZero).

Example

gap> S:=Semigroup(Transformation([1, 4, 2, 6, 6, 5, 2]),
> Transformation([1, 6, 3, 6, 2, 1, 6 1));;

gap> MultiplicativeZero(S);
Transformation([1, 1, 1, 1, 1, 1

gap> S:=Semigroup(Transformation(, 7, 1,5,2,61),

> Transformation([3, 5, 7, 2, 5, 6, 3, 8 1),

> Transformation([6, 7, 4, 1, 4, 1, 6, 21),

> Transformation([8, 8, 5, 1, 7, 5, 2, 81));;

gap> MultiplicativeZero(S);

fail

gap> S:=InverseSemigroup(PartialPerm([1, 3, 41, [5, 3, 11),
> PartialPerm([1, 2, 3, 41, [4, 3, 1, 21),

> PartialPerm([1, 3, 4, 51, [2, 4,5, 31));;

gap> MultiplicativeZero(S);

<empty partial perm>

gap> S:=PartitionMonoid(6) ;

<regular bipartition monoid on 6 pts with 4 generators>

gap> MultiplicativeZero(S);

fail

gap> S:=DualSymmetricInverseMonoid(6) ;

<inverse bipartition monoid on 6 pts with 3 generators>

gap> MultiplicativeZero(S);

<block bijection: [1, 2, 3, 4, 5, 6, -1, -2, -3, -4, -5, -6 1>

4.5.13 Random (for a semigroup)

>

Random (S) (method)
Returns: A random element.
This function returns a random element of the semigroup S. If the elements of S have been

calculated, then one of these is chosen randomly. Otherwise, if the data structure for S is known, then
a random element of a randomly chosen Z-class is returned. If the data structure for S has not been
calculated, then a short product (at most 2xLength (Generators0fSemigroup(S))) of generators
is returned.

4.5.14 SmallGeneratingSet

v VvV VvV vV V

SmallGeneratingSet (coll) (attribute)
SmallSemigroupGeneratingSet(coll) (attribute)
SmallMonoidGeneratingSet(coll) (attribute)
SmallInverseSemigroupGeneratingSet(coll) (attribute)
SmallInverseMonoidGeneratingSet (coll) (attribute)

Returns: A small generating set for a semigroup.

Semigroups 63

The attributes SmallXGeneratingSet return a relatively small generating subset of the collection
of elements coll, which can also be a semigroup. The returned value of SmallXGeneratingSet,
where applicable, has the property that

Example
X(SmallXGeneratingSet (coll))=X(coll);

where X is any of Semigroup (Reference: Semigroup), Monoid (Reference: Monoid),
InverseSemigroup (Reference: InverseSemigroup), or InverseMonoid (Reference: Inverse-
Monoid).

If the number of generators for S is already relatively small, then these functions will often return
the original generating set. These functions may return different results in different GAP sessions.

SmallGeneratingSet returns the smallest of the returned values of SmallXGeneratingSet
which is applicable to coll; see Generators (4.5.1).

As neither irredundancy, nor minimal length are proven, these functions usually return an answer
much more quickly than IrredundantGeneratingSubset (4.5.6). These functions can be used
whenever a small generating set is desired which does not necessarily needs to be minimal.

Example
gap> S:=Semigroup(Transformation([1, 2, 3, 2, 41),
> Transformation([1, 5, 4, 3, 21),
> Transformation([2, 1, 4, 2, 21),
> Transformation([2, 4, 4, 2, 11),
> Transformation([3, 1, 4, 3, 21),
> Transformation([3, 2, 3, 4, 11),
> Transformation([4, 4, 3, 3, 51),
> Transformation([5, 1, 5, 5, 31),
> Transformation([5, 4, 3, 5, 21),
> Transformation([5, 5, 4, 5, 51));;
gap> SmallGeneratingSet(S);

[Transformation([1, 5, 4, 3, 2]), Transformation([3, 2, 3, 4, 11),
Transformation([5, 4, 3, 5, 2]), Transformation([1, 2, 3, 2, 4]),
Transformation([4, 4, 3, 3, 51) 1]

gap> S:=RandomInverseMonoid(10000,10);;
gap> SmallGeneratingSet(S);

(ft+..101 ->103, 2, 4,5,6, 1,7, 10,9, 81,
[1..10]1 >[5, 10, 8,9, 3, 2, 4, 7,6, 11,
(1, 3, 4,5,6,7,8,9,101 ->[1,6, 4,38, 2, 10,7, 3,911

gap> M:=MathieuGroup(24);;

gap> mat:=List([1..1000], x-> Random(G));;

gap> Append(mat, [1..1000]1%0);

gap> mat:=List([1..138], x-> List([1..57], x-> Random(mat)));;
gap> R:=ReesZeroMatrixSemigroup(G, mat);;

gap> U:=Semigroup(List([1..200], x-> Random(R)));
<subsemigroup of 57x138 Rees O-matrix semigroup with 100 generators>
gap> Length(SmallGeneratingSet(U));

84

gap> S:=RandomBipartitionSemigroup(100,4);

<bipartition semigroup on 4 pts with 96 generators>

gap> Length(SmallGeneratingSet(S));

13

Semigroups 64

4.5.15 ComponentRepsOfTransformationSemigroup

> ComponentRepsOfTransformationSemigroup(S) (attribute)
Returns: The representatives of components of a transformation semigroup.

This function returns the representatives of the components of the action of the transformation
semigroup S on the set of positive integers not greater than the degree of S.

The representatives are the least set of points such that every point can be reached from some
representative under the action of S.

Example

gap> S:=Semigroup(
> Transformation([11, 11, 9, 6, 4, 1, 4, 1, 6, 7, 12, 51),
> Transformation([12, 10, 7, 10, 4, 1, 12, 9, 11, 9, 1, 121));;

gap> ComponentRepsOfTransformationSemigroup(S);
[2, 3, 8]

4.5.16 ComponentsOfTransformationSemigroup

> ComponentsOfTransformationSemigroup(S)
Returns: The components of a transformation semigroup.
This function returns the components of the action of the transformation semigroup S on the set

of positive integers not greater than the degree of S; the components of S partition this set.

Example

(attribute)

gap> S:=Semigroup(
> Transformation([11, 11, 9, 6, 4, 1, 4, 1, 6, 7, 12, 51),

> Transformation([12, 10, 7, 10, 4, 1, 12, 9, 11, 9, 1, 121));;
gap> ComponentsOfTransformationSemigroup(S);
[f1,2,3,4,5,6,7,8,9, 10, 11, 12]]

4.5.17 CyclesOfTransformationSemigroup

> CyclesOfTransformationSemigroup (S)
Returns: The cycles of a transformation semigroup.
This function returns the cycles, or strongly connected components, of the action of the transfor-

mation semigroup S on the set of positive integers not greater than the degree of S.

Example

(attribute)

gap> S:=Semigroup (
> Transformation([11, 11, 9, 6, 4, 1, 4, 1, 6, 7, 12, 51),

> Transformation([12, 10, 7, 10, 4, 1, 12, 9, 11, 9, 1, 121));;
gap> CyclesOfTransformationSemigroup(S);

(r1, 11, 12, 5, 4, 6, 10, 7, 91]

4.5.18 IsTransitive (for a transformation semigroup and a set)

> IsTransitive(S [, X1 (operation)
> IsTransitive(S[, n]) (operation)
Returns: true or false.

A transformation semigroup S is transitive or strongly connected on the set X if for every i, j in
X there is an element s in S such that i~s=j.

Semigroups 65

If the optional second argument is a positive integer n, then IsTransitive returns true if S is
transitive on [1..n], and false if it is not.

If the optional second argument is not provided, then the degree of S is used by default; see
DegreeOfTransformationSemigroup (Reference: DegreeOfTransformationSemigroup).
Example
gap> S:=Semigroup([Bipartition([[1, 21, [3, 6, -2 1,
>[4,5, -3, -41,[-1,-61,[-511),
> Bipartition([[1, -41, [2, 3, 4,51, [61,[-1, -61,
>[-2,-831,[-5811)>1);
<bipartition semigroup on 6 pts with 2 generators>
gap> AsTransformationSemigroup(S);
<transformation semigroup on 12 pts with 2 generators>
gap> IsTransitive(last);
false
gap> IsTransitive(AsSemigroup(Group((1,2,3))));
true

4.5.19 ComponentRepsOfPartialPermSemigroup

> ComponentRepsOfPartialPermSemigroup(S) (attribute)
Returns: The representatives of components of a partial perm semigroup.
This function returns the representatives of the components of the action of the partial perm semi-
group S on the set of positive integers where it is defined.
The representatives are the least set of points such that every point can be reached from some

representative under the action of S.
Example

gap> S:=Semigroup(
> PartialPerm([1, 2, 3, 5, 6, 7, 8, 11, 12, 16, 19 1,

> [9, 18, 20, 11, 5, 16, 8, 19, 14, 13, 1]),
> PartialPerm([1, 2, 3, 4, 5, 6, 8, 9, 10, 12, 14, 16, 18, 19, 20 1],
> [13, 1, 8, 5, 4, 14, 11, 12, 9, 20, 2, 18, 7, 3, 191));;

gap> ComponentRepsOfPartialPermSemigroup(S);
[1, 4, 6, 10, 15, 17]

4.5.20 ComponentsOfPartialPermSemigroup

> ComponentsOfPartialPermSemigroup(S) (attribute)
Returns: The components of a partial perm semigroup.
This function returns the components of the action of the partial perm semigroup S on the set of

positive integers where it is defined; the components of S partition this set.
Example

gap> S:=Semigroup(
> PartialPerm([1, 2, 3, 5, 6, 7, 8, 11, 12, 16, 19 1],

> [9, 18, 20, 11, 5, 16, 8, 19, 14, 13, 1]),
> PartialPerm([1, 2, 3, 4, 5, 6, 8, 9, 10, 12, 14, 16, 18, 19, 20 1,
> [13, 1, 8, 5, 4, 14, 11, 12, 9, 20, 2, 18, 7, 3, 191));;

gap> ComponentsOfPartialPermSemigroup(S);
[rs 2, 3, 4,5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 16, 18, 19, 20 1,
(161, [1711

Semigroups 66

4.5.21 CyclesOfPartialPerm

> CyclesOfPartialPerm(x) (attribute)
Returns: The cycles of a partial perm.
This function returns the cycles, or strongly connected components, of the action of the partial

perm x on the set of positive integers where it is defined.
Example
gap> x := PartialPerm([1, 2, 3, 4, 5, 8, 101, [3, 1, 4, 2, 5,6, 71);
[8,6]1[10,7]1(1,3,4,2)(5)

gap> CyclesOfPartialPerm(x);

[[3,4,2,1]1,[51]1

4.5.22 CyclesOfPartialPermSemigroup

> CyclesOfPartialPermSemigroup(S) (attribute)
Returns: The cycles of a partial perm semigroup.
This function returns the cycles, or strongly connected components, of the action of the partial
perm semigroup S on the set of positive integers where it is defined.
Example

gap> S:=Semigroup(
> PartialPerm([1, 2, 3, 5, 6, 7, 8, 11, 12, 16, 19 1,

> [9, 18, 20, 11, 5, 16, 8, 19, 14, 13, 1]),
> PartialPerm([1, 2, 3, 4, 5, 6, 8, 9, 10, 12, 14, 16, 18, 19, 20 1,
> [13, 1, 8, 5, 4, 14, 11, 12, 9, 20, 2, 18, 7, 3, 191));;

gap> CyclesOfPartialPermSemigroup(S);
[L1, 9, 12, 14, 20, 2, 19, 3, 8, 11] 1]

4.5.23 Normalizer (for a perm group, semigroup, record)

> Normalizer(G, S[, opts]) (operation)
> Normalizer(S/[, OptSJ) (operation)

Returns: A permutation group.

In its first form, this function returns the normalizer of the transformation, partial perm, or biparti-
tion semigroup S in the permutation group G. In its second form, the normalizer of S in the symmetric
group on [1..n] where n is the degree of S is returned.

The NORMALIZER of a transformation semigroup S in a permutation group G in the subgroup H
of G consisting of those elements in g in G conjugating S to S, i.e. S~g=S.

Analogous definitions can be given for a partial perm and bipartition semigroups.

The method used by this operation is based on Section 3 in [ABMN10].

The optional final argument opts allows you to specify various options, which determine how the
normalizer is calculated. The values of these options can dramatically change the time it takes for this
operation to complete. In different situations, different options give the best performance.

The argument opts should be a record, and the available options are:

random
If this option has the value true and the genss package is loaded, then the non-deterministic
algorithms in genss are used in Normalizer. So, there is some chance that Normalizer will
return an incorrect result in this case, but these methods can also be much faster than the deter-
ministic algorithms which are used if this option is false.

 http://www-groups.mcs.st-and.ac.uk/~neunhoef/Computer/Software/Gap/genss.html
 http://www-groups.mcs.st-and.ac.uk/~neunhoef/Computer/Software/Gap/genss.html

Semigroups 67

If genss is not loaded, then this option is ignored.

The default value for this option is false.

lambdastab
If this option has the value true, then Normalizer initially finds the setwise stabilizer of
the images or right blocks of the semigroup S. Sometimes this improves the performance of
Normalizer and sometimes it does not. If this option in false, then this setwise stabilizer is
not found.

The default value for this option is true.

rhostab
If this option has the value true, then Normalizer initially finds the setwise stabilizer of the
kernels, domains, or left blocks of the semigroup S. Sometimes this improves the performance
of Normalizer and sometimes it does not. If this option is false, the this setwise stabilizer is
not found.

If S is an inverse semigroup, then this option is ignored.

The default value for this option is true.
Example

gap> S:=BrauerMonoid(8);

<regular bipartition monoid on 8 pts with 3 generators>
gap> StructureDescription(Normalizer(S));

IlS8l|

gap> S:=InverseSemigroup (

> PartialPerm([1, 2, 3, 4, 51, [2, 5,6, 3, 81),

> PartialPerm([1, 2, 4, 7,81, [3,6, 2,5, 71));;
gap> Normalizer(S, rec(random:=true, lambdastab:=false));
#I Have 33389 points.

#I Have 40136 points in new orbit.

Group((Q))

4.5.24 SmallestElementSemigroup

> SmallestElementSemigroup (S) (attribute)
> LargestElementSemigroup (S) (attribute)

Returns: A transformation.

These attributes return the smallest and largest element of the transformation semigroup S, re-
spectively. Smallest means the first element in the sorted set of elements of S and largest means the
last element in the set of elements.

It is not necessary to find the elements of the semigroup to determine the smallest or largest
element, and this function has considerable better performance than the equivalent Elements (S) [1]
and Elements(S) [Size(S)].

Example
gap> S := Monoid(

> [Transformation([1, 4, 11, 11, 7, 2, 6, 2, 5, 5, 10]),

> Transformation([2, 4, 4, 2, 10, 5, 11, 11, 11, 6, 71) 1);
<transformation monoid on 11 pts with 2 generators>

gap> SmallestElementSemigroup(S);

IdentityTransformation

 http://www-groups.mcs.st-and.ac.uk/~neunhoef/Computer/Software/Gap/genss.html

Semigroups 68

gap> LargestElementSemigroup(S);
Transformation([11, 11, 10, 10, 7, 6, 5, 6, 2, 2, 4 1)

4.5.25 GeneratorsSmallest (for a transformation semigroup)

> GeneratorsSmallest(S) (attribute)

Returns: A generating set of transformations.

GeneratorsSmallest returns the lexicographically least collection X of transformations such
that S is generated by X and each X[i] is not generated by X[1], X[2], ..., X[i-1].

Note that it can be difficult to find this set of generators, and that it might contain a substantial
proportion of the elements of the semigroup.

The comparison of two transformation semigroups via the lexicographic comparison of their sets
of elements is the same relation as the lexicographic comparison of their GeneratorsSmallest.
However, due to the complexity of determining the GeneratorsSmallest, this is not the method
used by the Semigroups package when comparing transformation semigroups.

Example

gap> S := Monoid(

> Transformation([1, 3, 4, 1 1), Transformation([2, 4, 1, 2 1),

> Transformation([3, 1, 1, 3]), Transformation([3, 3, 4, 11));

<transformation monoid on 4 pts with 4 generators>

gap> GeneratorsSmallest(S);

[Transformation([1, 1, 1, 1]), Transformation([1, 1, 1, 21),
Transformation([1, 1, 1, 3]), Transformation([1, 1, 1]),
Transformation([1, 1, 2, 1]), Transformation([1, 1, 2, 21),
Transformation([1, 1, 3, 1]), Transformation([1, 1, 3, 3]),
Transformation([1, 1]), Transformation([1, 1, 4, 1]),
Transformation([1, 2, 1, 1]), Transformation([1, 2, 2, 11),
IdentityTransformation, Transformation([1, 3, 1, 11),
Transformation([1, 3, 4, 1]), Transformation([2, 1, 1, 21),
Transformation([2, 2, 2]), Transformation([2, 4, 1, 2 1),
Transformation([3, 3, 3]), Transformation([3, 3, 4, 11) 1]

4.6 Further properties of semigroups

In this section we describe the properties of a semigroup that can be determined using the Semigroups
package.

4.6.1 IsBand

> IsBand(S) (property)
Returns: true or false.
IsBand returns true if every element of the semigroup S is an idempotent and false if it is
not. An inverse semigroup is band if and only if it is a semilattice; see IsSemilatticeAsSemigroup
(4.6.17).

Example
gap> gens:=[Transformation([1, 1, 1, 4, 4, 4, 7,7, 7, 11),
> Transformation([2, 2, 2, 5, 5, 5, 8, 8, 8, 2 1),
> Transformation([3, 3, 3, 6, 6, 6, 9, 9, 9, 31),
> Transformation([1, 1, 1, 4, 4, 4, 7, 7, 7, 41),

Semigroups 69

> Transformation([1, 1, 1, 4, 4, 4, 7, 7,7, 71) 1;;

gap> S:=Semigroup(gens);;

gap> IsBand(S);

true

gap> S:=InverseSemigroup (

> PartialPerm([1, 2, 3, 4, 8, 91, [5,8, 7,6, 9,11),

> PartialPerm([1, 3, 4, 7, 8, 9, 101, [2, 3, 8, 7, 10, 6, 1.1));;
gap> IsBand(S);

false

gap> IsBand(IdempotentGeneratedSubsemigroup(S));

true

gap> S:=PartitionMonoid(4);

<regular bipartition monoid on 4 pts with 4 generators>

gap> M:=MinimalIdeal(S);

<simple bipartition semigroup ideal on 4 pts with 1 generator>
gap> IsBand(M);

true

4.6.2 IsBlockGroup

> ISBlOCkGI‘OUp(S) (property)
> IsSemigroupWithCommutingIdempotents(S) (property)

Returns: true or false.

IsBlockGroup and IsSemigroupWithCommutingIdempotents return true if the semigroup S
is a block group and false if it is not.

A semigroup S is a block group if every £-class and every %-class of S contains at most one

idempotent. Every semigroup of partial permutations is a block group.
Example
gap> S:=Semigroup(Transformation([5, 6, 7, 3, 1, 4, 2, 81),

> Transformation([3, 6, 8, 5, 7, 4, 2, 81));;

gap> IsBlockGroup(S);

true

gap> S:=Semigroup(Transformation([2, 1, 10, 4, 5, 9, 7, 4, 8, 41),
> Transformation([10, 7, 5, 6, 1, 3, 9, 7, 10, 2 1));;

gap> IsBlockGroup(S);

false

gap> S:=Semigroup(

> PartialPerm([1, 21, [5, 41),

> PartialPerm([1, 2, 31, [1, 2, 51),
> PartialPerm([1, 2, 31, [2, 1, 51),
> PartialPerm([1, 3, 41, [3, 1, 21),

> PartialPerm([1, 3, 4, 51, [5,4, 3,21));;

gap> T:=Range(IsomorphismBlockBijectionSemigroup(S));
<bipartition semigroup on 6 pts with 5 generators>

gap> IsBlockGroup(T);

true

gap> IsBlockGroup(Range (IsomorphismBipartitionSemigroup(S)));
true

gap> S:=Semigroup (

> Bipartition([[1, -2],
> Bipartition([[1, -2 1,

/M —

2,_3],[3,_4]:[4:_1]])5
2, -11,[3,-31, 1014, -411)

B

Semigroups 70

> Bipartition([[1, 2, -3 1], [3, -1, 2], [4, -411),

> Bipartition([[1, -1 1, [2, -21, [3,-31], [4,-411));;
gap> IsBlockGroup(S);

true

4.6.3 IsCommutativeSemigroup

> IsCommutativeSemigroup(S) (property)

Returns: true or false.

IsCommutativeSemigroup returns true if the semigroup S is commutative and false if it is not.
The function IsCommutative (Reference: IsCommutative) can also be used to test if a semigroup
is commutative.

A semigroup S is commutative if x*y=y*x for all x,yin S.

Example
gap> gens:=[Transformation([2, 4, 5, 3, 7, 8, 6, 9, 11),
> Transformation([3, 5, 6, 7, 8, 1, 9, 2, 41) 1;;

gap> S:=Semigroup(gens);;

gap> IsCommutativeSemigroup(S);

true

gap> IsCommutative(S) ;

true

gap> S:=InverseSemigroup (

> PartialPerm([1, 2, 3, 4, 5,61, [2,5, 1,3,9,61),
> PartialPerm([1, 2, 3, 4, 6, 81, [8, 5,7, 6, 2, 11));;
gap> IsCommutativeSemigroup(S);
false
gap> S:=Semigroup(
> Bipartition([[1, 2, 3, 6, 7, -1, -4, -6 1,
> [4,5,8, -2, -3, -5, -7, -811),
> Bipartition([[1, 2, -3, -41, [3, -51, [4, -61, [5, -71,
> (6, -81, [7,-11,08,-211));;
gap> IsCommutativeSemigroup(S);
true
4.6.4 IsCompletelyRegularSemigroup
> IsCompletelyRegularSemigroup(S) (property)

Returns: true or false.

IsCompletelyRegularSemigroup returns true if every element of the semigroup S is contained
in a subgroup of S.

An inverse semigroup is completely regular if and only if it is a Clifford semigroup; see
IsCliffordSemigroup (4.7.1).

Example
gap> gens:=[Transformation([1, 2, 4, 3, 6, 5, 41),
> Transformation([1, 2, 5, 6, 3, 4, 51),
> Transformation([2, 1, 2, 2, 2, 2, 21) 1;;

gap> S:=Semigroup(gens);;

gap> IsCompletelyRegularSemigroup(S);
true

gap> IsInverseSemigroup(S);

Semigroups 71

true

gap> T:=Range(IsomorphismPartialPermSemigroup(S));;
gap> IsCompletelyRegularSemigroup(T);

true

gap> IsCliffordSemigroup(T);

true

gap> S:=Semigroup (

> Bipartition([[1, 3, -4 1, [2, 4, -1, -2 1, [-3
> Bipartition([[1, -1 1, [2, 3, 4, -31, [-2, -4
gap> IsCompletelyRegularSemigroup(S);

false

4.6.5 IsCongruenceFreeSemigroup

> IsCongruenceFreeSemigroup(S) (property)

Returns: true or false.

IsCongruenceFreeSemigroup returns true if the semigroup S is a congruence-free semigroup
and false if it is not.

A semigroup S is congruence-free if it has no non-trivial proper congruences.

A semigroup with zero is congruence-free if and only if it is isomorphic to a regular Rees 0-
matrix semigroup R whose underlying semigroup is the trivial group, no two rows of the matrix of R
are identical, and no two columns are identical; see Theorem 3.7.1 in [How95].

A semigroup without zero is congruence-free if and only if it is a simple group or has order 2; see
Theorem 3.7.2 in [How95].

Example
gap> S := Semigroup(Transformation([4, 2, 3, 3, 41));;
gap> IsCongruenceFreeSemigroup(S);

true

gap> S := Semigroup(Transformation([2, 2, 4, 41),

> Transformation([5, 3, 4, 4, 6, 6 1));;

gap> IsCongruenceFreeSemigroup(S);

false

4.6.6 IsGroupAsSemigroup

> IsGroupAsSemigroup(S) (property)
Returns: true or false.
If the semigroup S is actually a group, then IsGroupAsSemigroup returns true. If it is not a
group, then false is returned.
Example
gap> gens:=[Transformation([2, 4, 5, 3, 7, 8, 6, 9, 11),
> Transformation([3, 5, 6, 7, 8, 1, 9, 2, 41) 1;;
gap> S:=Semigroup(gens);;
gap> IsGroupAsSemigroup(S);
true
gap> G:=SymmetricGroup(5);;
gap> S:=Range(IsomorphismPartialPermSemigroup(G));
<inverse partial perm semigroup on 5 pts with 2 generators>
gap> IsGroupAsSemigroup(S);
true

72

Semigroups

gap> S:=SymmetricGroup([1,2,10]);;

gap> T:=Range(IsomorphismBlockBijectionSemigroup(

> Range (IsomorphismPartialPermSemigroup(S))));

<inverse bipartition semigroup on 11 pts with 2 generators>
gap> IsGroupAsSemigroup(T);

true

4.6.7 IsldempotentGenerated

> IsIdempotentGenerated(S)
> IsSemiBand(S)

Returns: true or false.

IsIdempotentGenerated and IsSemiBand return true if the semigroup S is gener-
ated by its idempotents and false if it is not. See also Idempotents (4.5.3) and
IdempotentGeneratedSubsemigroup (4.5.5).

An inverse semigroup is idempotent-generated if and only if it is a semilattice;
IsSemilatticeAsSemigroup (4.6.17).

Semiband and idempotent-generated are synonymous in this context.
Example
gap> S:=SingularTransformationSemigroup(4);
<regular transformation semigroup ideal on 4 pts with 1 generator>
gap> IsIdempotentGenerated(S);
true
gap> S:=SingularBrauerMonoid(5) ;
<regular bipartition semigroup ideal on 5 pts with 1 generator>
gap> IsIdempotentGenerated(S) ;
true

(property)
(property)

S€e

4.6.8 IsLeftSimple

> IsLeftSimple(S)
> IsRightSimple(S)
Returns: true or false.
IsLeftSimple and IsRightSimple returns true if the semigroup S has only one .Z-class or
one Z-class, respectively, and returns false if it has more than one.
An inverse semigroup is left simple if and only if it is right simple if and only if it is a group; see
IsGroupAsSemigroup (4.6.6).

(property)
(property)

Example

gap> S:=Semigroup(
Transformation (
Transformation (
Transformation (
Transformation(
Transformation (
Transformation (
Transformation (
Transformation (
Transformation(
Transformation (
Transformation (

V VV V V V V V V V.YV

Transformation([6, 7, 9, 6

6,

v e v .

-

. .

-

L T e T s Y e Y e O s T s T e e I e |
© © © 0O N NO”O” O O

-

8,

v e v .

-

. e .

D OO N O 0O OO

-

9,

. e

-

v e v e

~N O OO O 0 WO o

-

6,

v e v .

-

. e .

© N ~NO NN N

-

8,

D O 0 0 O O 00 0 N

v e v e

-

Y

OO0 O © ©OW W o

-

v e v .

-

v e v .

©©O N0 N NN

-

~N 00 O N 00 00 O O WO

NV ~NOW O NO”N”O OO

[Ty T I T Y N S SN

3 9’ 8, 7, 6])}

8

),
),
),
),
),
),
),
),
),
),
)

B

Semigroups 73

Transformation([9,
Transformation([9,
Transformation([9,
> Transformation([9,
gap> IsRightSimple(S);
false

gap> IsLeftSimple(S);
true

gap> IsGroupAsSemigroup(S);

false

gap> NrRClasses(S);

16

gap> S:=BrauerMonoid(6);;

gap> S:=Semigroup(RClass(S, Random(MinimalDClass(S))));;
gap> IsLeftSimple(S);

false

gap> IsRightSimple(S);

true

vV V V
NN
Pro®
©®® N
> © N ©
NoNg
poo©
©No®
© 00 00 N
_

-
-

4.6.9 IsLeftZeroSemigroup

> IsLeftZeroSemigroup(S) (property)
Returns: true or false.
IsLeftZeroSemigroup returns true if the semigroup S is a left zero semigroup and false if it
is not.
A semigroup is a left zero semigroup if x*y=x for all x,y. An inverse semigroup is a left zero
semigroup if and only if it is trivial.
Example
gap> gens:=[Transformation([2, 1, 4, 3, 51),
> Transformation([3, 2, 3, 1, 11) 1;;
gap> S:=Semigroup(gens);;
gap> IsRightZeroSemigroup(S);
false
gap> gens:=[Transformation([1, 2, 3, 3, 11),
> Transformation([1, 2, 3, 3, 31) 1;;
gap> S:=Semigroup(gens);;
gap> IsLeftZeroSemigroup(S);
true

4.6.10 IsMonogenicSemigroup

> IsMonogenicSemigroup(S) (property)

Returns: true or false.

IsMonogenicSemigroup returns true if the semigroup S is monogenic and it returns false if it
is not.

A semigroup is monogenic if it is generated by a single element. See also
IsMonogenicInverseSemigroup (4.7.7) and IndexPeriod0fTransformation (Reference: Ind-

exPeriodOfTransformation).
Example

gap> S:=Semigroup(
> Transformation([2, 2, 2, 11, 10, 8, 10, 11, 2, 11, 10, 2, 11, 11, 10 1),

Semigroups 74

> Transformation([2, 2, 2, 8, 11, 15, 11, 10, 2, 10, 11, 2, 10, 4, 7 1),

> Transformation([2, 2, 2, 11, 10, 8, 10, 11, 2, 11, 10, 2, 11, 11, 10 1),
> Transformation([2, 2, 12, 7, 8, 14, 8, 11, 2, 11, 10, 2, 11, 15, 4 1));;
gap> IsMonogenicSemigroup(S);

true

gap> S:=Semigroup(

> Bipartition([[1, 2, 3, 4, 5, 6, 7, 8, 9, 10, -2, -5, -7, -9 1,

> (-1, -101, [-3, -4, -6, -81 1),

> Bipartition([[1, 4, 7,8, -21, [2, 3, 5, 10, -5 17,

> (e, 9, -7,-91, -1, -10]1, [-3, -4, -6, -81 1))3
gap> IsMonogenicSemigroup(S);

true

4.6.11 IsMonoidAsSemigroup

> IsMonoidAsSemigroup(S) (property)

Returns: true or false.

IsMonoidAsSemigroup returns true if and only if the semigroup S is mathematically a monoid
but does belong to the category of monoids IsMonoid (Reference: IsMonoid) in GAP This is pos-
sible if the MultiplicativeNeutralElement (Reference: MultiplicativeNeutralElement) of S is
not equal to the One (Reference: One) of any element in S.

A semigroup satisfying IsMonoidAsSemigroup does not possess the attributes of a monoid (such
as, GeneratorsOfMonoid (Reference: GeneratorsOfMonoid)).

See also One (Reference: Omne), IsInverseMonoid (Reference: IsInverseMonoid) and
IsomorphismTransformationMonoid (Reference: IsomorphismTransformationMonoid).
Example
gap> S:=Semigroup(Transformation([1, 4, 6, 2, 5, 3, 7, 8, 9, 91),
> Transformation([6, 3, 2, 7, 5, 1, 8, 8, 9, 91));;
gap> IsMonoidAsSemigroup(S);
true
gap> IsMonoid(S);
false
gap> MultiplicativeNeutralElement(S);

Transformation([1, 2, 3, 4, 5, 6, 7, 8, 9, 91)

gap> T:=Range(IsomorphismBipartitionSemigroup(S));;
gap> IsMonoidAsSemigroup(T);

true

gap> IsMonoid(T);

false

gap> One(T);

fail

gap> S:=Monoid(Transformation([8, 2, 8, 9, 10, 6, 2, 8, 7, 8 1),
> Transformation([9, 2, 6, 3, 6, 4, 5, 5, 3, 21));;
gap> IsMonoidAsSemigroup(S);

false

4.6.12 IsOrthodoxSemigroup

> IsOrthodoxSemigroup(S) (property)
Returns: true or false.

Semigroups

75

IsOrthodoxSemigroup returns true if the semigroup S is orthodox and false if it is not.
A semigroup is orthodox if it is regular and its idempotent elements form a subsemigroup. Every

inverse semigroup is also an orthodox semigroup.
See also IsRegularSemigroup (4.6.14) and IsRegularSemigroup (Reference:

larSemigroup).

IsRegu-

Example

gap>
gap>
true
gap>
gap>

gap> gens:=[Transformation
> Transformation([1, 2,
> Transformation([1, 2,
> Transformation([5, 5,

([1, 1,1, 4,5,41),
3,1, 1),

3, 1, 1,),
5, 5, 5)

>

>

g w N
[T T

> B]::

S:=Semigroup(gens) ;;
IsOrthodoxSemigroup(S) ;

S:=Semigroup (Generators0fSemigroup(DualSymmetricInverseMonoid(5)));;
IsOrthodoxSemigroup(S) ;

true

4.6.13 IsRectangularBand

> IsRectangularBand(S) (property)

Returns: true or false.

IsRectangularBand returns true if the semigroup S is a rectangular band and false if it is not.

A semigroup S is a rectangular band if for all x,y,z in S we have that x> = x and xyz = xz.

Equivalently, S is a rectangular band if S is isomorphic to a semigroup of the form / x A with
multiplication (i,A)(j,) = (i, it). In this case, S is called an || x |A| rectangular band.

An inverse semigroup is a rectangular band if and only if it is a group.

Example
gap> gens:=[Transformation([1, 1, 1, 4, 4, 4, 7,7, 7, 11),
> Transformation([2, 2, 2, 5, 5, 5, 8, 8, 8, 2 1),
> Transformation([3, 3, 3, 6, 6, 6, 9, 9, 9, 31),
> Transformation([1, 1, 1, 4, 4, 4, 7, 7, 7, 41),
> Transformation([1, 1, 1, 4, 4, 4, 7, 7, 7, 71) 1;;

S:=Semigroup(gens);;
IsRectangularBand(S) ;

gap>
gap>
true
gap>
true

IsRectangularBand (MinimalIdeal (PartitionMonoid(4)));

4.6.14 IsRegularSemigroup

> IsRegularSemigroup(S) (property)

Returns: true or false.

IsRegularSemigroup returns true if the semigroup S is regular and false if it is not.

A semigroup S is regular if for all x in S there exists y in S such that xxy*x=x. Every inverse
semigroup is regular, and a semigroup of partial permutations is regular if and only if it is an inverse
semigroup.

See also IsRegularDClass (Reference: IsRegularDClass), IsRegularClass (4.4.4), and
IsRegularSemigroupElement (Reference: IsRegularSemigroupElement).

Semigroups 76

Example
gap> IsRegularSemigroup(FullTransformationSemigroup(5));
true
gap> IsRegularSemigroup(JonesMonoid(5));
true
4.6.15 IsRightZeroSemigroup
> IsRightZeroSemigroup(S) (property)

Returns: true or false.
IsRightZeroSemigroup returns true if the S is a right zero semigroup and false if it is not.
A semigroup S is a right zero semigroup if xxy=y for all x,y in S. An inverse semigroup is a right
zero semigroup if and only if it is trivial.
Example
gap> gens:=[Transformation([2, 1, 4, 3, 5]),
> Transformation([3, 2, 3, 1, 11) 1;;
gap> S:=Semigroup(gens);;
gap> IsRightZeroSemigroup(S);
false
gap> gens:=[Transformation([1, 2, 3, 3, 11),
> Transformation([1, 2, 4, 4, 11)1;;
gap> S:=Semigroup(gens);;
gap> IsRightZeroSemigroup(S);
true

4.6.16 IsXTrivial

> IsRTrivial(S) (property)
> IsLTrivial(S) (property)
> IsHTrivial(S) (property)
> IsDTrivial(S) (property)
> IsAperiodicSemigroup(S) (property)
> IsCombinatorialSemigroup(S) (property)

Returns: true or false.

IsXTrivial returns true if Green’s Z-relation, Z-relation, 7 -relation, Z-relation, respec-
tively, on the semigroup S is trivial and false if it is not. These properties can also be applied to a
Green’s class instead of a semigroup where applicable.

For inverse semigroups, the properties of being Z-trivial, .Z-trivial, Z-trivial, and a semilattice
are equivalent; see IsSemilatticeAsSemigroup (4.6.17).

A semigroup is aperiodic if its contains no non-trivial subgroups (equivalently, all of its group
J-classes are trivial). A finite semigroup is aperiodic if and only if it is 7 -trivial.

Combinatorial is a synonym for aperiodic in this context.

Example
gap> S:=Semigroup(Transformation([1, 5, 1, 3, 7, 10, 6, 2, 7, 101),
> Transformation([4, 4, 5, 6, 7, 7, 7, 4, 3, 101));;

gap> IsHTrivial(S);

true

gap> Size(S);

108

Semigroups 77

gap> IsRTrivial(S);
false
gap> IsLTrivial(S);
false

4.6.17 IsSemilatticeAsSemigroup

> IsSemilatticeAsSemigroup(S) (property)
Returns: true or false.
IsSemilatticeAsSemigroup returns true if the semigroup S is a semilattice and false if it is
not.
A semigroup is a semilattice if it is commutative and every element is an idempotent. The idem-

potents of an inverse semigroup form a semilattice.
Example
gap> S:=Semigroup(Transformation([2, 5, 1, 7, 3, 7, 71),
> Transformation([3, 6, 5, 7, 2, 1, 71));;

gap> Size(8);

631

gap> IsInverseSemigroup(S);

true

gap> A:=Semigroup(Idempotents(S));

<transformation semigroup on 7 pts with 32 generators>

gap> IsSemilatticeAsSemigroup(A);

true

gap> S:=FactorisableDualSymmetricInverseSemigroup(5);;

gap> S:=IdempotentGeneratedSubsemigroup(S);;

gap> IsSemilatticeAsSemigroup(S);

true

4.6.18 IsSimpleSemigroup

> IsSimpleSemigroup(S) (property)
> IsCompletelySimpleSemigroup(S) (property)

Returns: true or false.

IsSimpleSemigroup returns true if the semigroup S is simple and false if it is not.

A semigroup is simple if it has no proper 2-sided ideals. A semigroup is completely simple if it
is simple and possesses minimal left and right ideals. A finite semigroup is simple if and only if it is
completely simple. An inverse semigroup is simple if and only if it is a group.

Example

gap> S:=Semigroup (

> Transformation([2, 2, 4, 4, 6, 6, 8, 8, 10, 10, 12, 12, 2 1),
> Transformation([1, 1, 3, 3, 5, 5, 7, 7, 9, 9, 11, 11, 31),
> Transformation([1, 7, 3, 9, 5, 11, 7, 1, 9, 3, 11, 5, 51),
> Transformation([7, 7, 9, 9, 11, 11, 1, 1, 3, 3, 5, 5, 71));;

gap> IsSimpleSemigroup(S);

true

gap> IsCompletelySimpleSemigroup(S);

true

gap> IsSimpleSemigroup(MinimalIdeal (BrauerMonoid(6)));
true

Semigroups 78

gap> R:=Range (IsomorphismReesMatrixSemigroup (
> MinimalIdeal (BrauerMonoid(6))));
<Rees matrix semigroup 15x15 over Group(())>

4.6.19 IsSynchronizingSemigroup

> IsSynchronizingSemigroup(S[, n]) (operation)
> IsSynchronizingTransformationCollection(coll [, nl) (operation)

Returns: true or false.

For a positive integer n, IsSynchronizingSemigroup returns true if the semigroup of trans-
formations S contains a transformation with constant value on [1..n]. Note that this function will
return true whenever n = 1. See also ConstantTransformation (Reference: ConstantTransfor-
mation).

If the optional second argument is not specified, then n will be taken to be the value of
Degree0fTransformationSemigroup (Reference: DegreeOfTransformationSemigroup) for S.

The operation IsSynchronizingTransformationCollection behaves in the same way as
IsSynchronizingSemigroup but can be applied to any collection of transformations and not only
semigroups.

Note that the semigroup consisting of the identity transformation has degree 0, and for this special
case the function IsSynchronizingSemigroup will return false.

Example
gap> S:=Semigroup(Transformation([1, 1, 8, 7, 6, 6, 4, 1, 8, 91),
> Transformation([5, 8, 7, 6, 10, 8, 7, 6, 9, 71));;

gap> IsSynchronizingSemigroup(S, 10);

true

gap> S:=Semigroup(Transformation([3, 8, 1, 1, 9, 9, 8, 7, 9, 6]),
> Transformation([7, 6, 8, 7, 5, 6, 8, 7, 8, 91));;

gap> IsSynchronizingSemigroup(S, 10);

false

gap> Representative(MinimalIdeal(S));

Transformation([7, 8, 8, 7, 8, 8, 8, 7, 8, 8 1)

4.6.20 IsZeroGroup

> IsZeroGroup(S) (property)
Returns: true or false.
IsZeroGroup returns true if the semigroup S is a zero group and false if it is not.
A semigroup S is a zero group if there exists an element z in S such that S without z is a group
and xxz=zxx=z for all x in S. Every zero group is an inverse semigroup.
Example
gap> S:=Semigroup(Transformation([2, 2, 3, 4, 6, 8, 5, 5, 91),
> Transformation([3, 3, 8, 2, 5, 6, 4, 4, 91),
> ConstantTransformation(9, 9));;
gap> IsZeroGroup(S);
true
gap> T:=Range(IsomorphismPartialPermSemigroup(S));;
gap> IsZeroGroup(T);
true

Semigroups 79

gap> IsZeroGroup(JonesMonoid(2));
true

4.6.21 IsZeroRectangularBand

> IsZeroRectangularBand(S) (property)

Returns: true or false.

IsZeroRectangularBand returns true if the semigroup S is a zero rectangular band and false
if it is not.

A semigroup is a O-rectangular band if it is O-simple and 7 -trivial; see also
IsZeroSimpleSemigroup (4.6.23) and IsHTrivial (4.6.16). An inverse semigroup is a O-
rectangular band if and only if it is a 0-group; see IsZeroGroup (4.6.20).

Example

gap> S:=Semigroup (
> Transformation([1, 3, 7, 9, 1, 12, 13, 1, 15, 9, 1, 18, 1, 1, 13,
> 1, 1, 21, 1, 1, 1, 1, 1, 25, 26, 11),

> Transformation([1, 5, 1, 5, 11, 1, 1, 14, 1, 16, 17, 1, 1, 19, 1,
> 11, 1, 1, 1, 23, 1, 16, 19, 1, 1, 1]
> Transformation([1, 4, 8, 1, 10, 1, 8

> 1, 1

>

20, 1, 22,1, 8, 1, 1, 1, 1, 1),
Transformation([1, 6, 6, 1, 1, 1, 6, 1, 1, 1, 1, 1, 6, 1, 6, 1, 1,
> 6, 1, 1, 24, 1, 1, 1,1, 61));;
gap> IsZeroRectangularBand(Semigroup(Elements(GreensDClasses(S)[7]1)));
true

gap> IsZeroRectangularBand(Semigroup (Elements (GreensDClasses(S) [1]1)));
false

4.6.22 IsZeroSemigroup

> IsZeroSemigroup(S) (property)
Returns: true or false.
IsZeroSemigroup returns true if the semigroup S is a zero semigroup and false if it is not.
A semigroup S is a zero semigroup if there exists an element z in S such that x*y=z for all x,y in
S. An inverse semigroup is a zero semigroup if and only if it is trivial.
Example
gap> S:=Semigroup(Transformation([4, 7, 6, 3, 1, 5, 3, 6, 5, 91),
> Transformation([5, 3, 5, 1, 9, 3, 8, 7, 4, 31));;
gap> IsZeroSemigroup(S);
false
gap> S:=Semigroup(Transformation([7, 8, 8
> Transformation([8, 8, 8, 8, 5,
> Transformation([8, 7, 8, 8, 5
> Transformation([8, 8, 8, 7, 5,
> Transformation([8, 8, 7, 8, 5
gap> IsZeroSemigroup(S);
true
gap> MultiplicativeZero(S);
Transformation([8, 8, 8, 8, 5, 8, 8, 81)

b 5’ 8) 8, 8]))

8
,» 8,),
)),
)
)

> B

> B

]
]
]
]

0 00 00
0 00 00 0
0 00 00 0

> B > > B)3,

Semigroups 80

4.6.23 IsZeroSimpleSemigroup

> IsZeroSimpleSemigroup(S) (property)

Returns: true or false.

IsZeroSimpleSemigroup returns true if the semigroup S is O-simple and false if it is not.

A semigroup is a O-simple if it has no two-sided ideals other than itself and the set containing the
zero element; see also MultiplicativeZero (4.5.12). An inverse semigroup is O-simple if and only
if it is a Brandt semigroup; see IsBrandtSemigroup (4.7.2).

Example

gap> S:=Semigroup (

> Transformation([1, 17, 17, 17, 17, 17, 17, 17, 17, 17, 5, 17,
> 17, 17, 17, 17, 17 1),

> Transformation([1, 17, 17, 17, 11, 17, 17, 17, 17, 17, 17, 17,
> 17, 17, 17, 17, 171),

> Transformation([1, 17, 17, 17, 17, 17, 17, 17, 17, 17, 4, 17,
> 17, 17, 17, 17, 17 1),

> Transformation([1, 17, 17, 5, 17, 17, 17, 17, 17, 17, 17, 17,
> 17, 17, 17, 17, 17 1));;

gap> IsZeroSimpleSemigroup(S);

true

gap> S:=Semigroup (

> Transformation([2, 3, 4, 5, 1, 8, 7, 6, 2, 71),

> Transformation([2, 3, 4, 5, 6, 8, 7, 1, 2, 21));;

gap> IsZeroSimpleSemigroup(S);

false

4.7 Properties and attributes of inverse semigroups

In this section we describe properties and attributes specific to inverse semigroups that can be deter-
mined using Semigroups.
The functions

e IsJoinIrreducible (4.7.5)

* IsMajorantlyClosed (4.7.6)

e JoinIrreducibleDClasses (4.7.8)

* MajorantClosure (4.7.9)

e Minorants (4.7.10)

* RightCosets0fInverseSemigroup (4.7.12)

* SmallerDegreePartialPermRepresentation (4.7.14)
* VagnerPrestonRepresentation (4.7.15)

were written by Wilf Wilson and Robert Hancock.
The function CharacterTable0fInverseSemigroup (4.7.16) was written by Jhevon Smith and
Ben Steinberg.

Semigroups 81

4.7.1 IsCliffordSemigroup

> IsCliffordSemigroup(S) (property)
Returns: true or false.
IsCliffordSemigroup returns true if the semigroup S is regular and its idempotents are central,
and false if it is not.

Example
gap> S:=Semigroup(Transformation([1, 2, 4, 5, 6, 3, 7, 81),
> Transformation([3, 3, 4, 5, 6, 2, 7, 8 1),
> Transformation([1, 2, 5, 3, 6, 8, 4, 41));;

gap> IsCliffordSemigroup(S);

true

gap> T:=Range(IsomorphismPartialPermSemigroup(S));;
gap> IsCliffordSemigroup(S);

true

gap> S:=DualSymmetricInverseMonoid(5);;

gap> T:=IdempotentGeneratedSubsemigroup(S);;

gap> IsCliffordSemigroup(T);

true

4.7.2 IsBrandtSemigroup

> IsBrandtSemigroup(S) (property)
Returns: true or false.
IsBrandtSemigroup return true if the semigroup S is a O-simple inverse semigroup, and false
if it is not. See also IsZeroSimpleSemigroup (4.6.23) and IsInverseSemigroup (Reference:

IsInverseSemigroup).
Example
gap> S:=Semigroup(Transformation([2, 8, 8, 8, 8, 8, 8, 81),

> Transformation([5, 8, 8, 8, 8, 8, 8, 8 1),
> Transformation([8, 3, 8, 8, 8, 8, 8, 81),
> Transformation([8, 6, 8, 8, 8, 8, 8, 81),
> Transformation([8, 8, 1, 8, 8, 8, 8, 8 1),
> Transformation([8, 8, 8, 1, 8, 8, 8, 8 1),
> Transformation([8, 8, 8, 8, 4, 8, 8, 8 1),
> Transformation([8, 8, 8, 8, 8, 7, 8, 8 1),
> Transformation([8, 8, 8, 8, 8, 8, 2, 81));;

gap> IsBrandtSemigroup(S);

true

gap> T:=Range(IsomorphismPartialPermSemigroup(S));;
gap> IsBrandtSemigroup(T);

true

gap> S:=DualSymmetricInverseMonoid(4);;

gap> D:=DClasses(S) [3];

{Bipartition([[1, 2, 3, -1, -2, -3 1, [4, -41 1)}
gap> R:=InjectionPrincipalFactor(D);;

gap> S:=Semigroup(PreImages(R, GeneratorsOfSemigroup(Range(R))));;
gap> IsBrandtSemigroup(S);

true

Semigroups 82

4.7.3 IsEUnitaryInverseSemigroup

> IsEUnitaryInverseSemigroup(S) (property)
Returns: true or false.
As described in Section 5.9 of [How95], an inverse semigroup S with semilattice of idempotents
E is E-unitary if for
seSandec E:esc E=s€E.

Equivalently, S is E-unitary if E is closed in the natural partial order (see Proposition 5.9.1 in
[How95]):
forscSandecE:e<s=sckE.

This condition 1is equivalent to E being majorantly closed in S. See
IdempotentGeneratedSubsemigroup (4.5.5) and IsMajorantlyClosed (4.7.6). Hence an
inverse semigroup of partial permutations, block bijections or partial permutation bipartitions is
E-unitary if and only if the idempotent semilattice is majorantly closed.

Example
gap> S:=InverseSemigroup([PartialPerm([1, 2, 3, 41, [2, 3, 1, 61),
> PartialPerm([1, 2, 3, 51, [3, 2,1, 61) 1);;

gap> IsEUnitaryInverseSemigroup(S) ;

true

gap> e:=IdempotentGeneratedSubsemigroup(S);;

gap> ForAll(Difference(S,e), x->not ForAny(e, y->y*x in e));

true

gap> T:=InverseSemigroup([
> PartialPerm([1, 3, 4, 6, 81,
> PartialPerm([1, 2, 3, 5, 6, 7
> PartialPerm([1, 2, 3, 5, 6, 7,
gap> IsEUnitaryInverseSemigroup(T)
false

gap> U:=InverseSemigroup([

> PartialPerm([1, 2, 3, 4, 51, [2, 3, 4, 5, 1
> PartialPerm([1, 2, 3, 4, 51, [2, 1, 3, 4, 5
gap> IsEUnitaryInverseSemigroup (U);

true

gap> IsGroupAsSemigroup(U);

true

gap> StructureDescription(U);

"85"

0, 1, 31),
, 7,21) 1D

o =~

4.7.4 IsFactorisableSemigroup

> IsFactorisableSemigroup(S) (property)
Returns: true or false.
An inverse monoid is factorisable if every element is the product of an element of the group of
units and an idempotent; see also Group0fUnits (4.5.2) and Idempotents (4.5.3). Hence an inverse
semigroup of partial permutations is factorisable if and only if each of its generators is the restriction

of some element in the group of units.

Example
gap> S:=InverseSemigroup(PartialPerm([1, 2, 41, [3, 1, 41),
> PartialPerm([1, 2, 3, 51, [4, 1,5, 21));;

Semigroups

gap> IsFactorisableSemigroup(S);

false

gap> IsFactorisableSemigroup(SymmetricInverseSemigroup(5));

true

gap> IsFactorisableSemigroup(DualSymmetricInverseMonoid(5)) ;

false

gap> IsFactorisableSemigroup(FactorisableDualSymmetricInverseSemigroup(5));
true

83

4.7.5 IsJoinIrreducible

> IsJoinIrreducible(S, x)
Returns: true or false.

(operation)

IsJoinIrreducible determines whether an element x of an inverse semigroup S of partial per-

mutations, block bijections or partial permutation bipartitions is join irreducible.

An element x is join irreducible when it is not the least upper bound (with respect to the natural
partial order NaturalLeqPartialPerm (Reference: NaturalLeqPartialPerm)) of any subset of S

not containing x.

Example
gap> S:=SymmetricInverseSemigroup(3);
<symmetric inverse semigroup on 3 pts>
gap> x:=PartialPerm([1,2,3]);
<identity partial perm on [1, 2, 3]>
gap> IsJoinIrreducible(S, x);
false
gap> T:=InverseSemigroup(PartialPerm([1,2,4,3]), PartialPerm([1]),
> PartialPerm([0,2]));
<inverse partial perm semigroup on 4 pts with 3 generators>
gap> y:=PartialPerm([1,2,3,4]);
<identity partial permon [1, 2, 3, 4 1>
gap> IsJoinIrreducible(T, y);
true
gap> B:=InverseSemigroup([
> Bipartition([[1, -5 1, [2, -2 17,
(3,5,6,7, -1, -4, -6, -71, [4, -311),
Bipartition([[1, -1 1, [2, -31, [3, -41,
(4,5,7,-2,-6,-7]1,[6,-511),
Bipartition([[1, -2 1, [2, -41, [3, -61,
(4, -11,[5,7,-3,-71,[6,-511),
Bipartition([[1, -6 1, [2, -1 1, [3, -61,
(4,5,7, -2, -4, -71, [6, -311)D;
<inverse bipartition semigroup on 7 pts with 4 generators>
gap> x:=Bipartition([[1, 2, 3, 5, 6, 7, -2, -3, -4, -5, -6, -7 1,
>[4, -111);
<block bijection: [1, 2, 3, 5, 6, 7, -2, -3, -4, -5, -6, -7 1,

V V V V V V V

[4, -1 1>
gap> IsJoinIrreducible(B, x);
true

gap> IsJoinIrreducible(B, B.1);
false

Semigroups 84

4.7.6 IsMajorantlyClosed

> IsMajorantlyClosed(S, T) (operation)

Returns: true or false.

IsMajorantlyClosed determines whether the subset T of the inverse semigroup of partial per-
mutations, block bijections or partial permutation bipartitions S is majorantly closed in S. See also
MajorantClosure (4.7.9).

We say that T is majorantly closed in S if it contains all elements of S which are greater than or
equal to any element of T, with respect to the natural partial order. See NaturalleqPartialPerm
(Reference: NaturalLeqPartialPerm).

Note that T can be a subset of S or a subsemigroup of S.

Example

gap> S:=SymmetricInverseSemigroup(2);

<symmetric inverse semigroup on 2 pts>

gap> T:=[Elements(S)[2]];

[<identity partial perm on [1 1>]

gap> IsMajorantlyClosed(S,T);

false

gap> U:=[Elements(S) [2] ,Elements(S) [6]];

[<identity partial perm on [1]>, <identity partial perm on [1, 2]
>]

gap> IsMajorantlyClosed(S,U);

true

gap> D:=DualSymmetricInverseSemigroup(3);

<inverse bipartition monoid on 3 pts with 3 generators>

gap> x:=Bipartition([[1, -2 1, [2, -31, [3, -1 11);;

gap> IsMajorantlyClosed(D, [x]);

true

gap> y:=Bipartition([[1, 2, -1, -2 1, [3, -3 11);;

gap> IsMajorantlyClosed(D, [x,yl);

false

4.7.7 IsMonogenicInverseSemigroup

> IsMonogenicInverseSemigroup(S) (property)

Returns: true or false.

IsMonogenicInverseSemigroup returns true if the semigroup S is an inverse monogenic semi-
group and it returns false if it is not.

A inverse semigroup is monogenic if it is generated as an inverse semigroup by a single element.
See also IsMonogenicSemigroup (4.6.10) and IndexPeriod0fTransformation (Reference: Ind-

exPeriodOfTransformation).

Example
gap> f:=PartialPerm([1, 2, 3, 6, 8, 101, [2, 6, 7, 9, 1, 51);;
gap> S:=InverseSemigroup(f, £°2, £73);;

gap> IsMonogenicSemigroup(S);

false

gap> IsMonogenicInverseSemigroup(S);

true

gap> x:=Random(DualSymmetricInverseMonoid(100));;

gap> S:=InverseSemigroup(x, x°2, x720);;

Semigroups 85

gap> IsMonogenicInverseSemigroup(S);
true

4.7.8 JoinIrreducibleDClasses

> JoinIrreducibleDClasses(S) (attribute)

Returns: A list of Z-classes.

JoinIrreducibleDClasses returns a list of the join irreducible Z-classes of the inverse semi-
group of partial permutations, block bijections or partial permutation bipartitions S.

A join irreducible 9-class is a P-class containing only join irreducible elements. See
IsJoinIrreducible (4.7.5). If a P-class contains one join irreducible element, then all of the ele-
ments in the Z-class are join irreducible.

Example
gap> S:=SymmetricInverseSemigroup(3);
<symmetric inverse semigroup on 3 pts>
gap> JoinIrreducibleDClasses(S);
[{PartialPerm([11, [11)} 1]
gap> T:=InverseSemigroup (
> PartialPerm([1, 2, 3, 41, [1, 2, 4, 31),
> PartialPerm([1], [1]), PartialPerm([2], [21));
<inverse partial perm semigroup on 4 pts with 3 generators>
gap> JoinIrreducibleDClasses(T);
[{PartialPerm([1, 2, 3, 41, [1, 2, 3, 41)},

{PartialPerm([1], [1])}, {PartialPerm([2], [21)}]
gap> D:=DualSymmetricInverseSemigroup(3);
<inverse bipartition monoid on 3 pts with 3 generators>
gap> JoinIrreducibleDClasses(D);
[{Bipartition([[1, 2, -1, -21, [3, -311)}1

4.7.9 MajorantClosure

> MajorantClosure(S, T) (operation)

Returns: A majorantly closed list of elements.

MajorantClosure returns a majorantly closed subset of an inverse semigroup of partial permu-
tations, block bijections or partial permutation bipartitions, S, as a list. See IsMajorantlyClosed
(4.7.6).

The result contains all elements of S which are greater than or equal to any element of T (with re-
spect to the natural partial order NaturalLeqPartialPerm (Reference: NaturalLeqPartialPerm)).
In particular, the result is a superset of T.

Note that T can be a subset of S or a subsemigroup of S.

Example

gap> S:=SymmetricInverseSemigroup(4) ;

<symmetric inverse semigroup on 4 pts>

gap> T:=[PartialPerm([1,0,3,0])];

[<identity partial perm on [1, 3]>]

gap> U:=MajorantClosure(S,T);

[<identity partial perm on [1, 3
<identity partial perm on [1, 2,
<identity partial perm on [1, 3

]

>

>
3 1>, [2,41(1)(3), [4,21(1)(3),
41>

H

Semigroups

<identity partial perm on [1, 2, 3, 4 1>, (1)(2,4)(3) 1]
gap> B:=InverseSemigroup ([

> Bipartition([[1, -21, [2, -1 1, [3, -31, [4,5, -4, -511),
> Bipartition([[1, -31, [2, -41, [3, -21,
> [4) _1];[5, _5]])]);,

gap> T:=[

> Bipartition([[1, -21, [2, 3,5, -1, -3, -51, [4, -4

> Bipartition([[1, -41, [2, 3,5, -1, -3, -6 1, [4, -2

gap> IsMajorantlyClosed(B,T);

false

gap> MajorantClosure(B,T);

[<block bijection: [1, -21, [2, 3, 5, -1, -3, -5 1, [4, -4 1>,
<block bijection: [1, -41, [2, 3, 5, -1, -3, -51, [4, -2 1>,
<block bijection: [1, -21, [2,5, -1, -51, [3, -31, [4, -41>

, <block bijection: [1, -21, [2, -11, [3,5, -3, -51,
[4, -4 1>,
<block bijection: [1, -4 1, [2, 5, -3, -51]

, <block bijection: [1, -4 1, [2, -31, [
[4, -2 1>, <block bijection: [1, -4], [
[4, -21, [5, -51>]

gap> IsMajorantlyClosed(B, last);

true

> [3’ _1]: [4: _2]>
3: 5’ _1, -5]:
2, -31, [3, -11,

86

4.7.10 Minorants

> Minorants(S, f)
Returns: A list of elements.

(operation)

Minorants takes an element f from an inverse semigroup of partial permutations, block bijections

or partial permutation bipartitions S, and returns a list of the minorants of £ in S.

A minorant of £ is an element of S which is strictly less than f in the natural partial order of S.

See NaturalLeqPartialPerm (Reference: NaturalLeqPartialPerm).
Example

gap> s:=SymmetricInverseSemigroup(3);

<symmetric inverse semigroup on 3 pts>

gap> f:=Elements(s) [13];

[1,31(2)

gap> Minorants(s,f);

[<empty partial perm>, [1,3], <identity partial perm on [2 1>]
gap> f:=PartialPerm([3,2,4,0]);

[1,3,4]1(2)

gap> S:=InverseSemigroup(f);

<inverse partial perm semigroup on 4 pts with 1 generator>
gap> Minorants(S,f);

[<identity partial perm on [2 1>, [1,3]1(2), [3,4]1(2)]

4.7.11 Primitiveldempotents

> PrimitiveIdempotents(S)
Returns: A list of idempotent partial permutations.

(attribute)

Semigroups 87

An idempotent in an inverse semigroup S is primitive if it is non-zero and minimal with respect
to the NaturalPartialOrder (Reference: NaturalPartialOrder) on S. PrimitiveIdempotents
returns the list of primitive idempotents in the inverse semigroup of partial permutations S.

Example
gap> S:= InverseMonoid(
> PartialPerm([1], [4]),
> PartialPerm([1, 2, 31, [2, 1, 31),
> PartialPerm([1, 2, 31, [3, 1, 21));;

gap> MultiplicativeZero(S);

<empty partial perm>

gap> PrimitiveIdempotents(S);

[<identity partial perm on [4]>, <identity partial perm on [1 1>,
<identity partial perm on [2]>, <identity partial perm on [3 1>]

gap> S:=DualSymmetricInverseMonoid(4) ;

<inverse bipartition monoid on 4 pts with 3 generators>

gap> PrimitiveIdempotents(S);

[<block bijection: [1, 2, 3, -1, -2, -3 1, [4, -4 1>,
<block bijection: , 2,4, -1, -2, -4 17, [3, -3 1>,
<block bijection:
<block bijection:
<block bijection:
<block bijection:

1

1, .11, [2, 3, 4, -2, -3, -4 1>,
1, 2, -1, -21, [3, 4, -3, -4 1>,
1, 3, 4, -1, -3, 41, [2, -2 1>,
1, 4, -1, -41, [2, 3, -2, -31>,
1, 3, -1, -31, [2, 4, -2, -4 1> 1]

L T e T e Y s B s B e |

<block bijection:

4.7.12 RightCosetsOfInverseSemigroup

> RightCosets0fInverseSemigroup(S, T) (operation)

Returns: A list of lists of elements.

RightCosetsOfInverseSemigroup takes a majorantly closed inverse subsemigroup T of an in-
verse semigroup of partial permutations, block bijections or partial permutation bipartitions S. See
IsMajorantlyClosed (4.7.6). The result is a list of the right cosets of T in S.

For s € S, the right coset T's is defined if and only if ss~! € T, in which case it is defined to be the
majorant closure of the set 7's. See MajorantClosure (4.7.9). Distinct cosets are disjoint but do not
necessarily partition S.

Example
gap> S:=SymmetricInverseSemigroup(3);
<symmetric inverse semigroup on 3 pts>
gap> T:=InverseSemigroup(MajorantClosure(S, [PartialPerm([1])]));
<inverse partial perm monoid on 3 pts with 6 generators>
gap> IsMajorantlyClosed(S,T);
true
gap> RC:=RightCosets0fInverseSemigroup(S,T);
[[<identity partial perm on [1 1>,
<identity partial perm on [1, 2 1>, [2,3](1), [3,2]1(1),
<identity partial perm on [1, 3 1>,
<identity partial perm on [1, 2, 3 1>, (1)(2,3) 1,
[(1,31, [2,1,3], [1,31(2), (1,3), [1,3,2]1, (1,3,2), (1,3)(2) 1,
[[1,2], (1,2), [1,2,3], [3,1,2]1, [1,21(3), (1,2)(3), (1,2,3) 11

Semigroups 88

4.7.13 SameMinorantsSubgroup

> SameMinorantsSubgroup (H) (attribute)

Returns: A list of elements of the group .7-class H.

Given a group s -class H in an inverse semigroup of partial permutations, block bijections or
partial permutation bipartitions S, SameMinorantsSubgroup returns a list of the elements of H which
have the same strict minorants as the identity element of H. A strict minorant of x in H is an element
of S which is less than x (with respect to the natural partial order), but is not equal to x.

The returned list of elements of H describe a subgroup of H.

Example
gap> S:=SymmetricInverseSemigroup(3);
<symmetric inverse semigroup on 3 pts>
gap> h:=GroupHClass (GreensDClasses(S) [1]);
{PartialPerm([1, 2, 31, [1, 2, 3 1)}
gap> Elements(h);
[<identity partial permon [1, 2, 3 1>, (1)(2,3), (1,2)(3),
(1,2,3), (1,3,2), (1,3)(2) 1]
gap> SameMinorantsSubgroup (h) ;
[<identity partial perm on [1, 2, 3 1>]
gap> T:=InverseSemigroup (
> PartialPerm([1, 2, 3, 41, [1, 2, 4, 31),
> PartialPerm([1], [1]), PartialPerm([2], [21));
<inverse partial perm semigroup on 4 pts with 3 generators>
gap> Elements(T);
[<empty partial perm>, <identity partial perm on [1 1>,
<identity partial perm on [2 1>,
<identity partial perm on [1, 2, 3, 4 1>, (1)(2)(3,4)]
gap> f:=GroupHClass (GreensDClasses(T) [1]);
{PartialPerm([1, 2, 3, 41, [1, 2, 3, 41)}
gap> Elements(f);
[<identity partial perm on [1, 2, 3, 4 1>, (1)(2)(3,4)]
gap> SameMinorantsSubgroup(f) ;
[<identity partial perm on [1, 2, 3, 4 1>, (1)(2)(3,4) 1]

4.7.14 SmallerDegreePartialPermRepresentation

> SmallerDegreePartialPermRepresentation(sS) (attribute)

Returns: An isomorphism.

SmallerDegreePartialPermRepresentation attempts to find an isomorphism from the in-
verse semigroup S of partial permutations to another inverse semigroup of partial permutations with
smaller degree. If the function cannot reduce the degree, the identity mapping is returned.

There is no guarantee that the smallest possible degree representation is returned. For more infor-
mation see [Sch92].

Example

gap> S:=InverseSemigroup(PartialPerm([2,1,4,3,6,5,8,7]1));

<commutative inverse partial perm semigroup on 8 pts with 1 generator>

gap> Elements(S);

[<identity partial perm on [1, 2, 3, 4, 5, 6, 7, 8 1>,
(1,2)(3,4)(5,6)(7,8) |

gap> T:=SmallerDegreePartialPermRepresentation(S);

Semigroups 89

MappingByFunction(<partial perm group of size 2,

on 8 pts with 1 generator>

, <commutative inverse partial perm semigroup on 2 pts

with 1 generator>, function(x) ... end, function(x) ... end)
gap> R:=Range(T);
<commutative inverse partial perm semigroup on 2 pts with 1 generator>
gap> Elements(R);

[<identity partial perm on [1, 2 1>, (1,2)]
gap> S:=DualSymmetricInverseMonoid(5);;
gap> T:=Range(IsomorphismPartialPermSemigroup(S));
<inverse partial perm monoid on 6721 pts with 3 generators>
gap> SmallerDegreePartialPermRepresentation(T);
MappingByFunction(<inverse partial perm monoid on 6721 pts

with 3 generators>, <inverse partial perm semigroup on 30 pts
with 3 generators>, function(x) ... end, function(x) ... end)

4.7.15 VagnerPrestonRepresentation

> VagnerPrestonRepresentation(S) (attribute)

Returns: An isomorphism to an inverse semigroup of partial permutations.

VagnerPrestonRepresentation returns an isomorphism from an inverse semigroup S where
the elements of S have a unique semigroup inverse accessible via Inverse (Reference: Inverse), to
the inverse semigroup of partial permutations T of degree equal to the size of S, which is obtained
using the Vagner-Preston Representation Theorem.

More precisely, if f : S — T is the isomorphism returned by
VagnerPrestonRepresentation(S) and x is in S, then f(x) is the partial permutation with
domain Sx~! and range Sx~'x defined by f(x) : sx~ ! sx~Ix.

In many cases, it is possible to find a smaller degree representation than that provided by
VagnerPrestonRepresentation using IsomorphismPartialPermSemigroup (Reference: Iso-
morphismPartialPermSemigroup) or SmallerDegreePartialPermRepresentation (4.7.14).

Example
gap> S:=SymmetricInverseSemigroup(2);
<symmetric inverse semigroup on 2 pts>

gap> Size(S);

7

gap> iso:=VagnerPrestonRepresentation(S);
MappingByFunction(<symmetric inverse semigroup on 2 pts>, <inverse pa\
rtial perm monoid on 7 pts

with 2 generators>, function(x) ... end, function(x) ... end)
gap> RespectsMultiplication(iso);
true

gap> inv:=InverseGeneralMapping(iso);;

gap> ForAll(S, x-> (x~iso) ~inv=x);

true

gap> V:=InverseSemigroup ([

> Bipartition([[1, -4 1, [2, -11, [3, -51,
(41,051, [-21,[-8311),

Bipartition([[1, -6 1, [2, -1 1, [3, -31,
(41,0571, [-21,0[-411),
Bipartition([[1, -2 1, [2, -41, [3, -51,

vV V V V

Semigroups 90

>[4, -11,[5,-311)D;
<inverse bipartition semigroup on 5 pts with 3 generators>
gap> IsInverseSemigroup(V);
true
gap> VagnerPrestonRepresentation(V);
MappingByFunction(<inverse bipartition semigroup of size 394,
on 5 pts with 3 generators>, <inverse partial perm semigroup
on 394 pts
with 5 generators>, function(x) ... end, function(x) ... end)

4.7.16 CharacterTableOfInverseSemigroup

> CharacterTableOf InverseSemigroup(S) (attribute)

Returns: The character table of the inverse semigroup S and a list of conjugacy class represen-
tatives of S.

Returns a list with two entries: the first entry being the character table of the inverse semigroup S
as a matrix, while the second entry is a list of conjugacy class representatives of S.

The order of the columns in the character table matrix follows the order of the conjugacy class
representatives list. The conjugacy representatives are grouped by Z-class and then sorted by rank.
Also, as is typical of character tables, the rows of the matrix correspond to the irreducible characters
and the columns correspond to the conjugacy classes.

This function was contributed by Jhevon Smith and Ben Steinberg.

Example
gap> S:=InverseMonoid([PartialPerm([1, 21, [3, 1 1),
> PartialPerm([1, 2, 31, [1, 3, 41),

> PartialPerm([1, 2, 31, [2, 4, 1 1),

> PartialPerm([1, 3, 41, [3,4, 11)1);;

gap> CharacterTableOfInverseSemigroup(S);

rcct 0,0,0,0,0,0,01,[3,1,1,1,0,0,0,01,
[3, 1, E3), E(3)"2, 0, 0, 0, 01,
[3,1, E(3~2, E(3), 0, 0,0,01, [s6,3,0,0,1, -1, 0, 01,
[6,3,0,0,1, 1, 0,01, [4, 3,0, 0,2,0,1, 01,
1,1, 1,1, 1,1, 1, 111,

[<identity partial perm on [1, 2, 3, 4 I1>,
<identity partial perm on [1, 3, 4 1>, (1,3,4), (1,4,3),
<identity partial perm on [1, 3 1>, (1,3),
<identity partial perm on [3 1>, <empty partial perm>]]
gap> S:=SymmetricInverseMonoid(4);;
gap> CharacterTableOfInverseSemigroup(S);
rrcqe, -2, 1,1, -1, 0, 0, 0, 0, O, O, O 1,
(3 -1, 0, -1, 1, 0, 0, 0,0, 0,0,01,

[2, 0, -1, 2, 0,0, 0,0,0,0,0,01,
[3, 1,0, -1, -1, 0, 0, 0, 0, 0, 0, 01,
r+,1,1,1,1,0,0,0,0,0,0,01,
[4, -2, 1, 0, 0, 1, -1, 1, 0, 0, 0, O 1,
[8, 0, -1, 0, 0, 2, 0, -1, 0, 0, 0, 01,
[4, 2,1,0,0,1, 1, 1, 0,0, 0,01,
[6, 0, 0, -2, 0,3, -1,0,1, -1, 0, 01,
[6,2,0,2,0,3,1,0,1, 1,0, 01,
[4, 2,1, 0,0,3,1,0,2,0,1, 01,
L1, 1,1, 1,1, 1,1, 1,1, 1,1, 111,

Semigroups 91

[<identity partial perm on [1, 2, 3, 4 1>, (1)(2)(3,4),
(1)(2,3,4), (1,2)(3,4), (1,2,3,4),
<identity partial perm on [1, 2, 3 1>, (1)(2,3), (1,2,3),
<identity partial perm on [1, 2 1>, (1,2),
<identity partial perm on [1 1>, <empty partial perm>]]

4.8 Visualising the structure of a semigroup

In this section, we describe some functions for creating pictures of various structures related to a
semigroup of transformations, partial permutations, or bipartitions; or a subsemigroup of a Rees 0-
matrix semigroup.

Several of the functions described in this section return a string, which can be written to a file
using the function FileString (GAPDoc: FileString) or viewed using Splash (4.8.1).

4.8.1 Splash

> Splash(str[, opts]) (function)

Returns: Nothing.

This function attempts to convert the string str into a pdf document and open this document, i.e.
to splash it all over your monitor.

The string str must correspond to a valid dot or LaTeX text file and you must have have
GraphViz and pdflatex installed on your computer. For details about these file formats, see
http://www.latex-project.organd http://www.graphviz.org.

This function is provided to allow convenient, immediate viewing of the pictures produced by
the functions: TikzBlocks (5.8.2), TikzBipartition (5.8.1), DotSemilatticeOfIdempotents
(4.8.3), and DotDClasses (4.8.2).

The optional second argument opts should be a record with components corresponding to various
options, given below.

path this should be a string representing the path to the directory where you want Splash to do its
work. The default value of this option is "~/".

directory
this should be a string representing the name of the directory in path where you want Splash
to do its work. This function will create this directory if does not already exist.

The default value of this option is "tmp.viz" if the option path is present, and the result of
DirectoryTemporary (Reference: DirectoryTemporary) is used otherwise.

filename
this should be a string representing the name of the file where str will be written. The default
value of this option is "vizpicture".

viewer
this should be a string representing the name of the program which should open the files pro-
duced by GraphViz or pdflatex.

type this option can be used to specify that the string str contains a I&IEX or dot document. You
can specify this option in str directly by making the first line "%latex" or "//dot". There is
no default value for this option, this option must be specified in str or in opt. type.

http://www.latex-project.org
http://www.graphviz.org

Semigroups 92

filetype
this should be a string representing the type of file which Splash should produce. For X
files, this option is ignored and the default value "pdf" is used.

This function was written by Attila Egri-Nagy and Manuel Delgado with some minor changes by J.
D. Mitchell.

Example
gap> Splash(DotDClasses(FullTransformationMonoid(4)));

4.8.2 DotDClasses (for a semigroup)

> DotDClasses(S) (attribute)
> DotDClasses (S, record) (operation)

Returns: A string.

This function produces a graphical representation of the partial order of the Z-classes of the
semigroup S together with the eggbox diagram of each Z-class. The output is in dot format (also
known as GraphViz) format. For details about this file format, and information about how to display
or edit this format see http://www.graphviz.org.

The string returned by DotDClasses can be written to a file using the command FileString
(GAPDoc: FileString).

The Z-classes are shown as eggbox diagrams with .Z-classes as rows and Z-classes as columns;
group 77 -classes are shaded gray and contain an asterisk. The Z-classes are numbered accord-
ing to their index in GreensDClasses(S), so that an i appears next to the eggbox diagram of
GreensDClasses(S) [i]. A red line from one Z-class to another indicates that the higher Z-class
is greater than the lower one in the Z-order on S.

If the optional second argument record is present, it can be used to specify some options for
output.

number
if record .number is false, then the Z-classes in the diagram are not numbered according to
their index in the list of Z-classes of S. The default value for this option is true.

maximal
if record .maximal is true, then the structure description of the group 7 -classes is displayed,;
see StructureDescription (Reference: StructureDescription). Setting this attribute to
true can adversely affect the performance of DotDClasses. The default value for this op-
tion is false.
Example
gap> S:=FullTransformationSemigroup(3);
<full transformation semigroup on 3 pts>
gap> DotDClasses(S);
"digraph DClasses {\nnode [shape=plaintext]\nedge [color=red,arrowhe\
ad=none]\nl1 [shape=box style=dotted label=<\n<TABLE BORDER=\"O\" CELL\
BORDER=\"1\" CELLPADDING=\"10\" CELLSPACING=\"O\" PORT=\"1\">\n<TR BO\
RDER=\"O0\"><TD COLSPAN=\"1\" BORDER=\"O\" >1</TD></TR><TR><TD BGCOLOR\
=\"grey\">*</TD></TR>\n</TABLE>>] ;\n2 [shape=box style=dotted label=<\
\n<TABLE BORDER=\"O\" CELLBORDER=\"1\" CELLPADDING=\"10\" CELLSPACING\
=\"0\" PORT=\"2\">\n<TR BORDER=\"O\"><TD COLSPAN=\"3\" BORDER=\"O\" >\
2</TD></TR><TR><TD BGCOLOR=\"grey\">*</TD><TD BGCOLOR=\"grey\">*</TD>\

http://www.graphviz.org

Semigroups 93

<TD></TD></TR>\n<TR><TD BGCOLOR=\"grey\">*</TD><TD></TD><TD BGCOLOR=\
\"grey\">*</TD></TR>\n<TR><TD></TD><TD BGCOLOR=\"grey\">*</TD><TD BGC\
OLOR=\"grey\">*</TD></TR>\n</TABLE>>] ;\n3 [shape=box style=dotted lab\
e1=<\n<TABLE BORDER=\"O\" CELLBORDER=\"1\" CELLPADDING=\"10\" CELLSPA\
CING=\"O\" PORT=\"3\">\n<TR BORDER=\"O\"><TD COLSPAN=\"1\" BORDER=\"O\
\" >3</TD></TR><TR><TD BGCOLOR=\"grey\">*</TD></TR>\n<TR><TD BGCOLOR=\
\"grey\">*</TD></TR>\n<TR><TD BGCOLOR=\"grey\">*</TD></TR>\n</TABLE>>\
I;\n1 -> 2\n2 -> 3\n }"

gap> FileString(DotDClasses(S), "t3.dot");

fail

gap> FileString("t3.dot", DotDClasses(S));

966

4.8.3 DotSemilatticeOfldempotents

> DotSemilatticeOfIdempotents(S) (attribute)

Returns: A string.

This function produces a graphical representation of the semilattice of the idempotents of an in-
verse semigroup S where the elements of S have a unique semigroup inverse accessible via Inverse
(Reference: Inverse). The idempotents are grouped by the Z-class they belong to.

The output is in dot format (also known as GraphViz) format. For details about this file format,
and information about how to display or edit this format see http://www.graphviz.org.

Example
gap> S:=DualSymmetricInverseMonoid(4) ;
<inverse bipartition monoid on 4 pts with 3 generators>

gap> DotSemilatticeOfIdempotents(S);

"graph graphname {\n node [shape=point]\nranksep=2;\nsubgraph cluste\
r_1{\n15 \n}\nsubgraph cluster_2{\n5 11 14 8 12 13 \n}\nsubgraph clus\
ter_3{\n2 3 10 4 6 9 7 \n}\nsubgraph cluster_4{\nl \n}\n2 -- 1\n3 -- \
1\n4 -- 1\n5 -- 2\n5 -- 3\n5 -- 4\n6 -- 1\n7 -- 1\n8 -- 2\n8 -- 6\n8 \
-- 7\n9 -- 1\n10 -- 1\n11 -- 2\n11 -- 9N\nl11 -- 10\ni12 -- 3\ni12 -- 6\n\
12 -- 9\n13 -- 3\n13 -- 7\n13 -- 10\n14 -- 4\nl14 -- 6\n14 -- 10\n15 -\
- 5\n15 -- 8\n15 -- 11\n15 -- 12\n15 -- 13\n15 -- 14\n }"

http://www.graphviz.org

Chapter 5

Bipartitions and blocks

In this chapter we describe the functions in Semigroups for creating and manipulating bipartitions
and semigroups of bipartitions. We begin by describing what these objects are.

A partition of a set X is a set of pairwise disjoint non-empty subsets of X whose union is X.

Letn €N, letn={1,2,...,n},and let —n={—1,-2,...,—n}.

The partition monoid of degree n is the set of all partitions of nU-n with a multiplication we
describe below. To avoid conflict with other uses of the word "partition”" in GAP, and to reflect their
definition, we have opted to refer to the elements of the partition monoid as bipartitions of degree n;
we will do so from this point on.

Let x be any bipartition of degree n. Then x is a set of pairwise disjoint non-empty subsets of nU-n
whose union is nU-n; these subsets are called the blocks of x. A block containing elements of both n
and -n is called a transverse block. If i, jenU-n belong to the same block of a bipartition x, then we
write (I, j)€x.

Let x and y be bipartitions of equal degree. Then xy is the bipartition where i,j€nU-n belong to
the same block of xy if there exist k(1),k(2),...,k(r) € n ; and one of the following holds:

« r=0and cither (i,j) €x or (-i,-j) €y;
e r=2s—1 for some s > 1 and

(i,—k(1)) € x, (k(1),k(2)) €y, (—k(2),—k(3)) €x, ..., (—k(25—2),—k(25—1)) €x, (k(2s—1),—j) €y
« =25 for some s > 1 and cither:

(i, —k(1)) € x, (k(1),k(2)) €y, (—k(2),—k(3)) € x, ..., (k(25—1),k(25)) € y, (—k(2s),) € x

or

(—i,k(1)) €y, (—k(1),—k(2)) €x, (k(2),k(3)) €y, ...,(—k(2s—1),—k(2s)) € x, (k(25),—J) €Y.

This product can be shown to be associative, and so the collection of bipartitions of any particular
degree is a monoid; the identity element is the partition {{i, —i} : i € n}. A bipartition is a unit if and
only if each block is of the form {i,-j} for some i, jen. Hence the group of units is isomorphic to the
symmetric group on n.

94

Semigroups 95

Let x be a bipartition of degree n. Then we define x* to be the bipartition obtained from x by
replacing i by -i and -i by -i in every block of x for all i€n. It is routine to verify that if x and y are
arbitrary bipartitions of equal degree, then

) =x, xx'x=x, xxx"=x", (xy)"=yx".

In this way, the partition monoid is a regular *-semigroup.

5.1 The family and categories of bipartitions

5.1.1 IsBipartition

> IsBipartition(obj) (Category)

Returns: true or false.

Every bipartition in GAP belongs to the category IsBipartition. Basic operations
for bipartitions are RightBlocks (5.5.4), LeftBlocks (5.5.5), ExtRepOfBipartition (5.5.3),
LeftProjection (5.2.4), RightProjection (5.2.5), StarOp (5.2.6), DegreeOfBipartition
(5.5.1), RankOfBipartition (5.5.2), multiplication of two bipartitions of equal degree is via *.

5.1.2 IsBipartitionCollection

> IsBipartitionCollection(obj) (Category)
Returns: true or false.
Every collection of bipartitions belongs to the category IsBipartitionCollection. For exam-
ple, bipartition semigroups belong to IsBipartitionCollection.

5.1.3 BipartitionFamily

> BipartitionFamily (family)

The family of all bipartitions is BipartitionFamily.

5.2 Creating bipartitions

There are several ways of creating bipartitions in GAP, which are described in this section.

5.2.1 Bipartition

> Bipartition(blocks) (function)
Returns: A bipartition.
Bipartition returns the bipartition £ with equivalence classes blocks, which should be a list of
duplicate-free lists whose union is [-n..-1] union [1. .n] for some positive integer n.
Bipartition returns an error if the argument does not define a bipartition.

Example
gap> f:=Bipartition([[1, -11,[2, 3, -31, [-211);
<bipartition: [1, -1 1, [2, 3, -31, [-2 1>

Semigroups 96

5.2.2 BipartitionByIntRep

> BipartitionByIntRep(list) (operation)
Returns: A bipartition.
It is possible to create a bipartition using its internal representation. The argument 1ist must be
a list of positive integers not greater than n, of length 2*n, and where i appears in the list only if i-1
occurs earlier in the list.

For example, the internal representation of the bipartition with blocks
Example

(1, -11,02,3,-21,1-31

has internal representation
Example

[1,2,2,1, 2, 3]

The internal representation indicates that the number 1 is in class 1, the number 2 is in class 2, the
number 3 is in class 2, the number -1 is in class 1, the number -2 is in class 2, and -3 is in class 3.
As another example, [1, 3, 2, 1] isnot the internal representation of any bipartition since there
is no 2 before the 3 in the second position.

In its first form BipartitionByIntRep verifies that the argument 1ist is the internal represen-
tation of a bipartition.

Example
gap> BipartitionByIntRep([1, 2, 2, 1, 3, 4 1);
<bipartition: [1, -1 1, [2,31, [-21, [-31>

5.2.3 IdentityBipartition

> IdentityBipartition(n) (operation)
Returns: The identity bipartition.

Returns the identity bipartition with degree n.
Example

gap> IdentityBipartition(10);
<block bijection: [1, -1], [2, -2 1, [3, -31, [4, -41,
[5, _5]: [6: _6];[73 _7]’[8, _8]: [9; _9],[10, _10]>

5.2.4 LeftOne (for a bipartition)

> LeftOne(f) (attribute)
> LeftProjection(f) (attribute)

Returns: A bipartition.

The LeftProjection of a bipartition f is the bipartition £f*Star (f). It is so-named, since the
left and right blocks of the left projection equal the left blocks of f.

The left projection e of f is also a bipartition with the property that exf=f. LeftOne and

LeftProjection are synonymous.

Example
gap> f:=Bipartition([[1, 4, -1, -2, -61, [2, 3,5, -41],
>[6,-31,[-511);;

gap> LeftOne(f);

<block bijection: [1, 4, -1, -41, [2, 3, 5, -2, -3, -5 1,

Semigroups 97

[6, -6 1>
gap> LeftBlocks(f);
<blocks: [1, 41, [2,3,51]1, [61>
gap> RightBlocks(Left0One(f));
<blocks: [1, 41, [2, 3,51, [61]>
gap> LeftBlocks(LeftOne(f));
<blocks: [1, 41, [2, 3,51, [61>
gap> LeftOne(f)*f=f;
true

5.2.5 RightOne (for a bipartition)

> RightOne (f) (attribute)
> RightProjection(f) (attribute)
Returns: A bipartition.
The RightProjection of a bipartition £ is the bipartition Star (£)*£. It is so-named, since the
left and right blocks of the right projection equal the right blocks of f.
The right projection e of f is also a bipartition with the property that f*e=f. RightOne and
RightProjection are synonymous.
Example
gap> f:=Bipartition([[1, -1, -41, [2, -2, -31, [3,41,
>[5, -5811);;
gap> RightOne(f);
<block bijection: [1, 4, -1, -41, [2, 3, -2, -31, [5, -5 1>
gap> RightBlocks(RightOne(£));
<blocks: [1, 41, [2,31, [51>
gap> LeftBlocks(RightOne(£f));
<blocks: [1, 41, [2,31, [51>
gap> RightBlocks(f);
<blocks: [1, 41, [2,31, [51>
gap> f*RightOne(f)=f;
true

5.2.6 StarOp

> StarOp () (operation)
> Star(f) (attribute)
Returns: A bipartition.
StarOp returns the wunique bipartition g with the property that: fxgxf=f,

RightBlocks(f)=LeftBlocks(g), and LeftBlocks(f)=RightBlocks(g). The star g can

be obtained from f by changing the sign of every integer in the external representation of f.

Example

gap> f:=Bipartition([[1, -4 1, [2, 3,41, [51, [-11,

>[-2,-831,[-511);

<bipartition: [1, -41, [2, 3,41, [51, [-11, [-2, -31,
[-51>

gap> g:=Star(f);

<bipartition: [11, [2,31, [4, -11, [51, [-2, -3, -41,
[-51>

gap> f*xg*xf=f;

Semigroups 98

true
gap> LeftBlocks(f)=RightBlocks(g);
true
gap> RightBlocks(f)=LeftBlocks(g);
true

5.2.7 RandomBipartition

> RandomBipartition(n) (operation)
Returns: A bipartition.
If n is a positive integer, then RandomBipartition returns a random bipartition of degree n.
Example

gap> f:=RandomBipartition(6);
<bipartition: [1, 2, 3, 41, [51, [6, -2, -3, 41, [-1, -51, [-6 1>

5.3 Changing the representation of a bipartition

It is possible that a bipartition can be represented as another type of object, or that another type of GAP
object can be represented as a bipartition. In this section, we describe the functions in the Semigroups
package for changing the representation of bipartition, or for changing the representation of another
type of object to that of a bipartition.

The operations AsPermutation (5.3.5), AsPartialPerm(5.3.4), AsTransformation (5.3.3) can
be used to convert bipartitions into permutations, partial permutations, or transformations where ap-
propriate.

5.3.1 AsBipartition

> AsBipartition(f[, n]) (operation)
Returns: A bipartition.
AsBipartition returns the bipartition, permutation, transformation, or partial permutation f, as
a bipartition of degree n. There are several possible arguments for AsBipartition:

permutations
If £ is a permutation and n is a positive integer, then AsBipartition(f, n) returns the
bipartition on [1..n] with classes [i, i~f] forall i=1. .n.

If no positive integer n is specified, then the largest moved point of £ is used as the value for n;
see LargestMovedPoint (Reference: LargestMovedPoint (for a permutation)).

transformations
If £ is a transformation and n is a positive integer such that £ is a transformation of [1..n],
then AsTransformation returns the bipartition with classes (i) f~' U {i} for all i in the image
of f.

If the positive integer n is not specified, then the internal degree of f is used as the value for n.

partial permutations
If £ is a partial permutation £ and n is a positive integer, then AsBipartition returns the

Semigroups 99

bipartition with classes [i, i~f] foriin [1..n]. Thus the degree of the returned bipartition
is the maximum of n and the values i~f where i in [1..n].

If the optional argument n is not present, then the default value of the maximum of the largest
moved point and the largest image of a moved point of £ plus 1 is used.

bipartitions
If £ is a bipartition and n is a non-negative integer, then AsBipartition returns a bipartition
corresponding to f with degree n.

If n equals the degree of f, then f is returned. If n is less than the degree of f, then this
function returns the bipartition obtained from f by removing the values exceeding n or less
than -n from the blocks of f. If n is greater than the degree of £, then this function returns the
bipartition with the same blocks as £ and the singleton blocks i and -i for all i greater than
the degree of f

Example
gap> f:=Transformation([3, 5, 3, 4, 1, 2]);;
gap> AsBipartition(f, 5);
<bipartition: [1, 3, -31, [2, -51, [4, -41, [5, -11, [-21>
gap> AsBipartition(f);
<bipartition: [1, 3, -31, [2, -51, [4, -41, [5, -11,
(e, 21, [-61>
gap> AsBipartition(f, 10);
<bipartition: [1, 3, -3 1, [2, -5
(e, 21, [7,-71,[8, -81,1
gap> AsBipartition((1, 3)(2, 4));
<block bijection: [1, -31, [2, -41, [3, -11, [4, -21>
gap> AsBipartition((1, 3)(2, 4), 10);

1, 04, 41,05, -11,
9, _9]: [101 _101,[_6]>

<block bijection: [1, -3 1, [2, -41, [3, -11, [4, -21,
[5) _5]’ [6: _6]: [7: _7]) [8) _8]’ [9: _9]: [10, _10]>
gap> f:=PartialPerm([1, 2, 3, 4, 5, 61, [6, 7, 1, 4, 3, 21);;

gap> AsBipartition(f, 11);

<bipartition: [1, -6 1, [2, -7 1, [3, -11, [4, -41, [5, -31,
(e, 21, (71, (81,91, (1011, [112]1,[-51,1[-81,
(-91,[-101, [-111>

gap> AsBipartition(f);

<bipartition: [1, -6 1, [2, -71, [3, -11, [4, -41, [5, -31,
(6, -21, 71, [-51>

gap> AsBipartition(Transformation([1, 1, 2 1), 1);

<block bijection: [1, -1 1>

gap> f:=Bipartition([[1, 2, -2], [31, [4, 5, 6, -11,

>[-3, -4, -5, -611);;

gap> AsBipartition(f, 0);

<empty bipartition>

gap> AsBipartition(f, 2);

<bipartition: [1, 2, -2 1, [-1 1>

gap> AsBipartition(f, 8);

<bipartition: [1, 2, -2 1, [31, [4,5,6, -11, [71, [81,
[-3, -4, -5, -61, [-71, [-81>

Semigroups 100

5.3.2 AsBlockBijection

> AsBlockBijection(f[, n]) (operation)

Returns: A block bijection or fail.

When the argument f is a partial perm and n is a positive integer which is greater than the maxi-
mum of the degree and codegree of f, this function returns a block bijection corresponding to f. This
block bijection has the same non-singleton classes as g:=AsBipartition(f, n) and one additional
class which is the union the singleton classes of g.

If the optional second argument n is not present, then the maximum of the degree and codegree
of £ plus 1 is used by default. If the second argument n is not greater than this maximum, then fail
is returned.

This is the value at f of the embedding of the symmetric inverse monoid into the dual symmetric

inverse monoid given in the FitzGerald-Leech Theorem [FLIS].
Example
gap> f:=PartialPerm([1, 2, 3, 6, 7, 101, [9, 5, 6, 1, 7, 81) ;
[2,5]1[3,6,1,9]1[10,8](7)
gap> AsBipartition(f, 11);
<bipartition: [1, -91, [2, -51, [3, -61, [41, [51],
(e, -1+1, t7,-71, (81, [91]1, [0, -8]1, [11]1, [-21,
[-31,[-41,[-101, [-111>
gap> AsBlockBijection(f, 10);
fail
gap> AsBlockBijection(f, 11);
<block bijection: [1, -91, [2, -5]1, [3, -61,
(4, 5,8,9, 11, -2, -3, -4, -10, -11 1, [6, -1 1, [7, -7 1,
[10, -8 1>

5.3.3 AsTransformation (for a bipartition)

> AsTransformation(f) (operation)

Returns: A transformation or fail.

When the argument f is a bipartition, that mathematically defines a transformation, this function
returns that transformation. A bipartition f defines a transformation if and only if its right blocks are
the image list of a permutation of [1..n] where n is the degree of f.

See IsTransBipartition (5.5.9).

Example
]’ [2: -2], [31 5’ 10, -7 :]: [4: -12],
9: -11], [11’ 12; _10 :l: [-1]’ [-4],

gap> f:=Bipartition([[1, -3
>[e6,7, 61,08, 51,1
>[-81, [-91D;;

gap> AsTransformation(f);
Transformation([3, 2, 7, 12, 7, 6, 6, 5, 11, 7, 10, 10])

gap> IsTransBipartition(f);

true

gap> f:=Bipartition([[1, 51, [2, 4, 8, 101, [3,6, 7, -1, -21,
>[9, -4, 6, -91, [-3,-561, [-7,-81, [-1011);;

gap> AsTransformation(f);

fail

Semigroups

5.3.4 AsPartialPerm (for a bipartition)

> AsPartialPerm(f)
Returns: A partial perm or fail.

When the argument f is a bipartition that mathematically defines a partial perm, this function

returns that partial perm.

A bipartition £ defines a partial perm if and only if its numbers of left and right blocks both equal

its degree.

See IsPartialPermBipartition (5.5.12).
Example

gap> f:=Bipartition([[1, -41, [2, -21, [3, -101, [4, -51,
>[5,-91, (61, [7]1, (8, -61,[9,-31, [10, -81,
>[-11, [-711);;

gap> IsPartialPermBipartition(f);

true

gap> AsPartialPerm(f);

(1,4,5,9,3,10,8,6](2)

gap> f:=Bipartition([[1, -2, -4 1, [2, 3,4, -31, [-111);;
gap> IsPartialPermBipartition(f);

false

gap> AsPartialPerm(f);

fail

5.3.5 AsPermutation (for a bipartition)

> AsPermutation(f)
Returns: A permutation or fail.

When the argument £ is a bipartition that mathematically defines a permutation, this function

returns that permutation.

A bipartition f defines a permutation if and only if its numbers of left, right, and transverse blocks

all equal its degree.

See IsPermBipartition (5.5.11).
Example

gap> f:=Bipartition([[1, -61, [2, 41, [3, -21, [4, -51,
>[5, -31, 06, -111D);;

gap> IsPermBipartition(f);

true

gap> AsPermutation(f);

(1,6)(2,4,5,3)

gap> AsBipartition(last)=f;

true

5.4 Operators for bipartitions

fxg
returns the composition of £ and g when f and g are bipartitions.

f<g

returns true if the internal representation of f is lexicographically less than the internal repre-

sentation of g and false if it is not.

Semigroups 102

f=g
returns true if the bipartition f equals the bipartition g and returns false if it does not.

5.4.1 PartialPermLeqBipartition

> PartialPermLegBipartition(x, y) (operation)
Returns: true or false.
If x and y are partial perm bipartitions, i.e. they satisfy IsPartialPermBipartition (5.5.12),
then this function returns AsPartialPerm(x)<AsPartialPerm(y).

5.4.2 NaturalLeqPartialPermBipartition

> NaturalleqPartialPermBipartition(x, y) (operation)

Returns: true or false.

The natural partial order < on an inverse semigroup S is defined by s<t if there exists an idem-
potent e in S such that s=et. Hence if x and y are partial perm bipartitions, then x <y if and only if
AsPartialPerm(x) is arestriction of AsPartialPerm(y).

NaturalleqPartialPermBipartition returns true if AsPartialPerm(x) is a restriction of
AsPartialPerm(y) and false if it is not. Note that since this is a partial order and not a total order,
it is possible that x and y are incomparable with respect to the natural partial order.

5.4.3 NaturalLeqBlockBijection

> NaturalLeqBlockBijection(x, y) (operation)

Returns: true or false.

The natural partial order < on an inverse semigroup S is defined by s<t if there exists an idem-
potent e in S such that s=et. Hence if x and y are block bijections, then x <y if and only if x contains
y.

NaturallLeqBlockBijection returns true if x is contained in y and false if it is not. Note
that since this is a partial order and not a total order, it is possible that x and y are incomparable with
respect to the natural partial order.

Example
gap> x:=Bipartition([[1, 2, -3 1, [3, -1, -2 1, [4, -4 1,
>[5,-51,[6,-61,[7,-71,[8, -81, [9, -91,

>[10, -101 1)33

gap> y:=Bipartition([[1, -21, [2, -1 1, [3, -31, [4, 41,

>[5, 51,6, -61,[7,-71,[8,-81,109,-91, [10, -101 1);;
gap> z:=Bipartition([Union([1..10],[-10..-11)1);;

gap> NaturalleqBlockBijection(x, y);

false
gap> NaturalleqBlockBijection(y, x);
false
gap> NaturalleqBlockBijection(z, x);
true

gap> NaturalleqBlockBijection(z, y);
true

Semigroups 103

5.4.4 PermLeftQuoBipartition

> PermLeftQuoBipartition(f, g) (operation)
Returns: A permutation.
If £ and g are bipartitions with equal left and right blocks, then PermLeftQuoBipartition
returns the permutation of the indices of the right blocks of £ (and g) induced by Star (£) *g.
PermLeftQuoBipartition verifies that f and g have equal left and right blocks, and returns
an error if they do not. The value returned by PermLeftQuoBipartition(f,g) is the same as
that returned by PermRightBlocks (RightBlocks(f), Star(f)#*g). See also PermRightBlocks
(5.7.3) and OnRightBlocksBipartitionByPerm (5.4.5).
Example
gap> f:=Bipartition([[1, 4, 6, 7, 8, 101, [
>[3, -3, -6, -7, -91, [9, -4, -51, [-10]
gap> g:=Bipartition([[1, 4, 6, 7, 8, 10 1, [
>[3, -4, -51,[9, -1, -2, -81, [-1011);
gap> PermLeftQuoBipartition(f, g);
(1,2,3)
gap> Star(f)x*g;
<bipartition: [1, 2, 8, -3, -6, -7, -91, [3,6, 7,9, -4, -5 1],
[4,5, -1, -2, -81, [101, [-10 1>
gap> PermRightBlocks(RightBlocks(f), last);
(1,2,3)

25 5: _1’ _2’ -8]:
153
2) 5: _3, _6: _7: -9]9

ERE

5.4.5 OnRightBlocksBipartitionByPerm

> OnRightBlocksBipartitionByPerm(f, p) (function)

Returns: A bipartition.

If £ is a bipartition and p is a permutation of the indices of the right blocks of f, then
OnRightBlocksBipartitionByPerm returns the bipartition obtained from f by rearranging the right
blocks of f according to p.

Example
gap> f:=Bipartition([[1, 4, 6, 7, 8, 101, [2, 5, -1, -2, -8 1,
>[38, -3, -6,-7,-91, [9, -4,-51, [-1011);;

gap> OnRightBlocksBipartitionByPerm(f, (1,2,3));

<bipartition: [1, 4, 6, 7, 8, 101, [2, 5, -3, -6, -7, -9 1,

[3, -4, -51,[9, -1, -2, -81, [-10 1>

5.5 Attributes for bipartitons

In this section we describe various attributes that a bipartition can possess.

5.5.1 DegreeOfBipartition

> DegreeOfBipartition(f) (attribute)
> DegreeOfBipartitionCollection(f) (attribute)
Returns: A positive integer.
The degree of a bipartition is, roughly speaking, the number of points where it is defined. More
precisely, if £ is a bipartition defined on 2#*n points, then the degree of £ is n.

Semigroups 104

The degree of a collection coll of bipartitions of equal degree is just the degree of any (and every)

bipartition in col1. The degree of collection oEf bipaititions of unequal degrees is not defined.
xample
gap> f:=Bipartition([[1, 7, -3, -8],p[2,61, (031, [4, -7, -91,
>[5,9,-21,1[8, -1, -4, -61, [-511);;

gap> DegreeOfBipartition(f);

9

gap> s:=BrauerMonoid(5);

<regular bipartition monoid on 5 pts with 3 generators>

gap> IsBipartitionCollection(s);

true

gap> DegreeOfBipartitionCollection(s);

5

5.5.2 RankOfBipartition

> RankOfBipartition(f) (attribute)
> NrTransverseBlocks(f) (attribute)
Returns: The rank of a bipartition.
When the argument is a bipartition £, RankOfBipartition returns the number of blocks of f
containing both positive and negative entries, i.e. the number of transverse blocks of f.

NrTransverseBlocks is just a synonym for RankOfBipartition.
Example
gap> f:=Bipartition([[1, 2, 6, 7, -4, -5, -7 1, [3, 4, 5, -1, -3 1,
>[(8,-91,[9,-2]1,[-61,[-811);
<bipartition: [1, 2, 6, 7, -4, -5, -7 1, [3, 4, 5, -1, -3 1,

(8, -91,[9,-21,[-61,[-81>
gap> RankOfBipartition(f);
4

5.5.3 ExtRepOfBipartition

> ExtRepOfBipartition(f) (attribute)
Returns: A partition of [1..2*n].
If n is the degree of the bipartition f, then ExtRepOfBipartition returns the partition of

[-n..-1] union [1..n] corresponding to f as a sorted list of duplicate-free lists.
Example
]:[2: 4: _2; _4]’[3’ _1: _5]])’
2: 4’ _2, -4]; [3’ _1’ -5]>

gap> f:=Bipartition([[1, 5, -3
<block bijection: [1, 5, -3 1, [
gap> ExtRepOfBipartition(f);

[f1,5, -31,[2,4,-2,-41,[3, -1, -511

5.5.4 RightBlocks

> RightBlOCkS (£) (attribute)

Returns: The right blocks of a bipartition.

RightBlocks returns the right blocks of the bipartition f.

The right blocks of a bipartition £ are just the intersections of the blocks of £ with [-n..-1]
where n is the degree of f, the values in transverse blocks are positive, and the values in non-transverse
blocks are negative.

Semigroups 105

The right blocks of bipartition are GAP objects in their own right, and are not simply a list of
blocks of £; see 5.6 for more information.

The significance of this notion lies in the fact that bipartitions x and y are .Z-related in the partition
monoid if and only if they have equal right blocks.
Example
gap> f:=Bipartition([[1, 4, 7, 8, -41, [2, 3, 5, -2, -7 1,
>[6,-11,[-31, [-5,-6,-811);;
gap> RightBlocks(f);
<blocks: [11, [2, 71, [-3]1, (41, [-5, -6, -81>
gap> LeftBlocks(f);
<blocks: [1, 4, 7,81, [2,3,5]1, [61>

5.5.5 LeftBlocks

> LeftBlocks(f) (attribute)

Returns: The left blocks of a bipartition.

LeftBlocks returns the left blocks of the bipartition £.

The left blocks of a bipartition £ are just the intersections of the blocks of £ with [1..n] where n
is the degree of £, the values in transverse blocks are positive, and the values in non-transverse blocks
are negative.

The left blocks of bipartition are GAP objects in their own right, and are not simply a list of blocks
of f; see 5.6 for more information.

The significance of this notion lies in the fact that bipartitions x and y are Z-related in the partition
monoid if and only if they have equal left blocks.
Example
gap> f:=Bipartition([[1, 4, 7, 8, -41, [2, 3,5, -2, -71,
>[6,-11,[-31, [-5,-6,-811);;
gap> RightBlocks(f);
<blocks: [11, [2,71, [-31, (41, 1[-5, -6, -81>
gap> LeftBlocks(f);
<blocks: [1, 4, 7,81, [2,3,5]1, [61>

5.5.6 NrLeftBlocks

> NrLeftBlocks(f) (attribute)
Returns: A non-negative integer.

When the argument is a bipartition f, NrLeftBlocks returns the number of left blocks of £, i.e.
the number of blocks of f intersecting [1..n] non-trivially.
Example
gap> f:=Bipartition([[1, 2, 3, 4, 5, 6,81, [7, -2, -31,
>[-1, -4, -7, -81, [-5, -6 11);;
gap> NrLeftBlocks(f);
2
gap> LeftBlocks(f);
<blocks: [-1, -2, -3, -4, -5, -6, -8 1, [71>

Semigroups 106

5.5.7 NrRightBlocks

> NrRightBlocks(f) (attribute)
Returns: A non-negative integer.
When the argument is a bipartition f, NrRightBlocks returns the number of right blocks of f,
i.e. the number of blocks of £ intersecting [-n. .-1] non-trivially.
Example
gap> f:=Bipartition([[1, 2, 3, 4, 6, -2, -7 1, [5, -1, -3, -8 1,
>[7,-4,-61, 081, [-511);;
gap> RightBlocks(f);
<blocks: [1, 3,81, [2,71, [4,61]1, [-51>
gap> NrRightBlocks(f) ;
4

5.5.8 NrBlocks (for blocks)

> NrBlocks(blocks) (attribute)
> NrBlocks(f) (attribute)
Returns: A positive integer.
If blocks is some blocks or f is a bipartition, then NrBlocks returns the number of blocks in
blocks or f, respectively.

Example
gap> blocks:=BlocksNC([[-1, -2, -3, -4 1, [-5 1, [6 11);
<blocks: [-1, -2, -3, -41, [-51, [61>
gap> NrBlocks(blocks);
3
gap> f:=Bipartition([[1, 51, [2, 4, -2, -41, [3,6, -1, -5, -6 1,
>[-311);
<bipartition: [1, 561, [2, 4, -2, -41, [3, 6, -1, -5, -6 1,
[-31>
gap> NrBlocks(f);
4

5.5.9 IsTransBipartition

> IsTransBipartition(f) (property)
Returns: true or false.
If the bipartition f defines a transformation, then IsTransBipartition returns true, and if not,
then false is returned.
A bipartition f defines a transformation if and only if the number of left blocks equals the number
of transverse blocks and the number of right blocks equals the degree.
Example
gap> f:=Bipartition([[1, 4, -21, [2,5, -61, [3, -71, [6,7, -91,
>[8,9,-11,[10,-5],[-31,[-41,[-81,[-1011);;
gap> IsTransBipartition(f);
true
gap> f:=Bipartition([[1, 4, -3, -6 1, [2, 5, -4, -51, [3, 6, -11,
>L[-211);;
gap> IsTransBipartition(f);
false

Semigroups 107

gap> Number (PartitionMonoid(3), IsTransBipartition);
27

5.5.10 IsDualTransBipartition

> IsDualTransBipartition(f) (property)
Returns: true or false.
If the star of the bipartition f defines a transformation, then IsDualTransBipartition returns
true, and if not, then false is returned.
A bipartition is the dual of a transformation if and only if its number of right blocks equals its
number of transverse blocks and its number of left blocks equals its degree.
Example
gap> f:=Bipartition([[1, -8, -91, [2, -1, -4], [31, [4]1,
>[5,-10],[6, -2,-5],[7,-31,[81,[9, -6, -71, [1011);;
gap> IsDualTransBipartition(f);
true
gap> f:=Bipartition([[1, 4, -3, -6 1, [2, 5, -4, -51, [3,6, -11,
>L[-211);;
gap> IsTransBipartition(f);
false
gap> Number (PartitionMonoid(3), IsDualTransBipartition);
27

5.5.11 IsPermBipartition

> IsPermBipartition(f) (property)

Returns: true or false.

If the bipartition £ defines a permutation, then IsPermBipartition returns true, and if not,
then false is returned.

A bipartition is a permutation if its numbers of left, right, and transverse blocks all equal its degree.
Example
gap> f:=Bipartition([[1, 4, -1 1, [2, -31, [3, 6, -51,
>[5, -2, -4, -611);;
gap> IsPermBipartition(f);
false
gap> f:=Bipartition([[1, -31, [2, -41, [3, -61,
>[4, -11,0[5,-51,06,-21,[7,-81,08,-7T11);;
gap> IsPermBipartition(f);
true

5.5.12 IsPartialPermBipartition

> IsPartialPermBipartition(f) (property)

Returns: true or false.

If the bipartition f defines a partial permutation, then IsPartialPermBipartition returns
true, and if not, then false is returned.

A bipartition f defines a partial permutation if and only if the numbers of left and right blocks of
f equal the degree of f.

Semigroups

Example

108

gap> f:=Bipartition([[1, 4, -1 1, [2, -31, [3, 6, -51,
>[5, -2, -4, -611);;

gap> IsPartialPermBipartition(f);

false

>[6,-561,06,-21,07,-81,1[8, -711);;
gap> IsPermBipartition(f);

false

gap> IsPartialPermBipartition(f);

true

gap> f:=Bipartition([[1, -3 1, [21, [41, [3, -61, [4, -11,

5.5.13 IsBlockBijection

> IsBlockBijection(f)
Returns: true or false.

(property)

If the bipartition f induces a bijection from the quotient of [1..n] by the blocks of £ to the
quotient of [-n..-1] by the blocks of £, then IsBlockBijection return true, and if not, then it

returns false.

A bipartition is a block bijection if and only if its number of blocks, left blocks and right blocks

are equal.
Example

gap> f:=Bipartition([[1, 4, 5, -21, [2, 3, -11,
>[6,-5 -61,[-3,-411);;

gap> IsBlockBijection(f);

false

gap> f:=Bipartition([[1, 2, -3 1, [3, -1, -21, [4, -41,
>[5, -511);;

gap> IsBlockBijection(f);

true

5.5.14 IsUniformBlockBijection

> IsUniformBlockBijection(x)
Returns: true or false.

(property)

If the bipartition x is a block bijection where every block contains an equal number of positive
and negative entries, then IsUniformBlockBijection returns true, and otherwise it returns false.

Example
gap> x:=Bipartition([[1, 2, -3, -4 1, [3, -51, [4, -61,
>[5, -71,[06,-81,[7,-91,[8,-11,[9,-211);;
gap> IsBlockBijection(x);

true

gap> x:=Bipartition([[1, 2, -3 1, [3, -1, -21, [4, -41,
>[5, -511);;

gap> IsUniformBlockBijection(x);

false

Semigroups 109

5.6 Creating blocks and their attributes

As described above the left and right blocks of a bipartition characterise Green’s Z- and £ -relation
on the partition monoid; see LeftBlocks (5.5.5) and RightBlocks (5.5.4). The left or right blocks
of a bipartition are GAP objects in their own right.

In this section, we describe the functions in the Semigroups package for creating and manipulat-
ing the left or right blocks of a bipartition.

5.6.1 BlocksNC

> BlocksNC(classes) (function)

Returns: A blocks.

This function makes it possible to create a GAP object corresponding to the left or right blocks of
a bipartition without reference to any bipartitions.

BlocksNC returns the blocks with equivalence classes classes, which should be a list of
duplicate-free lists consisting solely of positive or negative integers, where the union of the abso-
lute values of the lists is [1. .n] for some n. The blocks with positive entries correspond to transverse

blocks and the classes with negative entries correspond to non-transverse blocks.

Example
gap> BlocksNC([[11, [21, [-3, -61, [-4, -5 11);
<blocks: [11, [21, [-3, -61, [-4, -51>

5.6.2 ExtRepOfBlocks

> ExtRep0fBlocks(blocks) (attribute)
Returns: A list of integers.
If n is the degree of a bipartition with left or right blocks blocks, then ExtRepO0fBlocks returns

the partition corresponding to blocks as a sorted list of duplicate-free lists.
Example
gap> blocks:=BlocksNC([[1, 6 1, [2, 3, 71, [4,51, [-811);;
gap> ExtRepO0fBlocks(blocks) ;

(r1,61, 02,3, 71, [4,51,[-811

5.6.3 RankOfBlocks

> RankOfBlocks(blocks) (attribute)
> NrTransverseBlocks(blocks) (attribute)
Returns: A non-negative integer.
When the argument blocks is the left or right blocks of a bipartition, Rank0fBlocks returns the
number of blocks of blocks containing only positive entries, i.e. the number of transverse blocks in
blocks.

NrTransverseBlocks is a synonym of Rank0fBlocks in this context.
Example
gap> blocks:=BlocksNC([[-1, -2, -4, -6 1, [3, 10, 121, [5, 71,
>[081,[91, [-111D;;

gap> RankOfBlocks(blocks);

4

Semigroups 110

5.6.4 DegreeOfBlocks

> DegreeOfBlocks (blocks) (attribute)
Returns: A non-negative integer.
The degree of blocks is the number of points n where it is defined, i.e. the union of the blocks in
blocks will be [1..n] after taking the absolute value of every element.
Example
gap> blocks:=BlocksNC([[-1, -11 1, [21, [3, 5,6, 71, [4, 81,
>[9,101, [121 D;;
gap> DegreeOfBlocks(blocks) ;
12

5.7 Actions on blocks

Bipartitions act on left and right blocks in several ways, which are described in this section.

5.7.1 OnRightBlocks

> OnRightBlocks(blocks, f) (function)
Returns: The blocks of a bipartition.
OnRightBlocks returns the right blocks of the product g*f where g is any bipartition whose right
blocks are equal to blocks.
Example
gap> f:=Bipartition([[1, 4, 5,81, [2,3, 71, [6, -3, -4, -51,
> [-1, -2, 61, [-7, -811);;
gap> g:=Bipartition([[1, 51, [2, 4,8, -21, [3,6, 7, -3, -41,
> [-1, -6, -81, [-5, -711);;
gap> RightBlocks(g*f) ;
<blocks: [-1, -2, -61, [3, 4,51, [-7, -8 1>
gap> OnRightBlocks(RightBlocks(g), f);
<blocks: [-1, -2, -6 1, [3, 4,51, [-7, -8 1>

5.7.2 OnLeftBlocks

> OnLeftBlocks(blocks, f) (function)
Returns: The blocks of a bipartition.
OnLeftBlocks returns the left blocks of the product f*g where g is any bipartition whose left
blocks are equal to blocks.

Example
gap> f:=Bipartition([[1, 5, 7, -1, -3, -4, -61, [2, 3, 6, 81,
>[4, -2, -5, -81, [-711);;

gap> g:=Bipartition([[1, 3, -4, -51, [2, 4, 5,81, [6, -1, -31,
>[7, -2, -6, -7, -811);;

gap> LeftBlocks(f*g);

<blocks: [1, 4, 5, 71, [-2, -3, -6, -8 1>

gap> OnLeftBlocks(LeftBlocks(g), f);

<blocks: [1, 4, 5, 71, [-2, -3, -6, -8 1>

Semigroups 111

5.7.3 PermRightBlocks

> PermRightBlocks(blocks, f) (operation)
> PermLeftBlocks(blocks, f) (operation)

Returns: A permutation.

If £ is a bipartition that stabilises blocks, i.e. OnRightBlocks(blocks, f)=blocks, then
PermRightBlocks returns the permutation of the indices of the transverse blocks of blocks under
the action of f.

PermLeftBlocks is the analogue of PermRightBlocks with respect to OnLeftBlocks (5.7.2).
Example
gap> f:=Bipartition([[1, 101, [2, -7, -91, [3, 4,6,81, [5, -51,
>[7,9,-2]1,[-1, -101, [-3, -4, -6, -81 1);;
gap> blocks:=BlocksNC([[-1, -10 1, [21, [-3, -4, -6, -8 1, [51,
>[7,91D;;
gap> OnRightBlocks(blocks, f)=blocks;
true
gap> PermRightBlocks(blocks, f);

(2,5)

5.7.4 InverseRightBlocks

> InverseRightBlocks(blocks, f) (function)

Returns: A bipartition.

If OnRightBlocks(blocks, f) has rank equal to the rank of blocks, then
InverseRightBlocks returns a bipartition g such that OnRightBlocks(blocks, f*g)=blocks
and where PermRightBlocks(blocks, f*g) is the identity permutation.

See PermRightBlocks (5.7.3) and OnRightBlocks (5.7.1).

Example

gap> f:=Bipartition([[1, 4, 7, 8, -41, [2, 3, 5, -2, -7 1,

>[6,-11,[-31,[-5,-6,-811D);;

gap> blocks:=BlocksNC([[-1, -4, -5, -8 1, [-2, -3, -7 1, [6 11);;

gap> RankOfBlocks(blocks) ;

1

gap> RankOfBlocks(OnRightBlocks(blocks, f));

1

gap> g:=InverseRightBlocks(blocks, f);

<bipartition: [1, -6], [2, 3, 4, 5,6, 7,81, [-1, -4, -5, -8 1,
[-2, -3, -7 1>

gap> blocks;

<blocks: [-1, -4, -5, -8 1, [-2, -3, -7 1, [61>

gap> OnRightBlocks(blocks, f*g);

<blocks: [-1, -4, -5, -81, [-2, -3, -71, [6 1>

gap> PermRightBlocks(blocks, f*g);

O

5.7.5 InverseLeftBlocks

> InverseleftBlocks(blocks, f) (function)
Returns: A bipartition.

Semigroups 112

If OnLeftBlocks(blocks, f) hasrank equalto the rank of blocks, then InverselLeftBlocks
returns a bipartition g such that OnLeftBlocks(blocks, g*f)=blocks and where
PermLeftBlocks(blocks, g*f) is the identity permutation.

See PermLeftBlocks (5.7.3) and OnLeftBlocks (5.7.2).

Example

gap> f:=Bipartition([[1, 4, 7, 8, -41, [2, 3, 5, -2, -7 1,

>[6,-11,[-31,[-5,-6,-811);;

gap> blocks:=BlocksNC([[-1, -2, -6 1, [3, 4,51, [-7, -8 11);;

gap> RankOfBlocks(OnLeftBlocks(blocks, f));

1

gap> g:=InverselLeftBlocks(blocks, f);

<bipartition: [1, 2, 6 1, [3, 4, 5, -1, -2, -3, -4, -5, -6, -7, -8]
, [7, 81>

gap> OnLeftBlocks(blocks, g*f);

<blocks: [-1, -2, -61, [3, 4,51, [-7, -8 1>

gap> PermLeftBlocks(blocks, g*f);

O

5.8 Visualising blocks and bipartitions

There are some functions in Semigroups for creating IATEX pictures of bipartitions and blocks. De-
scriptions of these methods can be found in this section.

The functions described in this section return a string, which can be written to a file using the
function FileString (GAPDoc: FileString) or viewed using Splash (4.8.1).

5.8.1 TikzBipartition

> TikzBipartition(f[, opts]) (function)

Returns: A string.

This function produces a graphical representation of the bipartition f using the tikz package for
I4TEX. More precisely, this function outputs a string containing a minimal I&TEX document which can
be compiled using IATEX to produce a picture of f.

If the optional second argument opts is a record with the component colors set to true, then
the blocks of £ will be colored using the standard tikz colors. Due to the limited number of colors

available in tikz this option only works when the degree of f is less than 20.
Example
gap> f:=Bipartition([[1, 51, [2, 4, -3, -5 1, [3, -1, -2 1],
>[-411);;
gap> TikzBipartition(f);
"Y%tikz\n\\documentclass{minimal}\n\\usepackage{tikz}\n\\begin{documen\
tH\n\\begin{tikzpicture}\n\n Yblock #1\n Yvertices and labels\n \\\
£i11(1,2)circle(.125);\n \\draw(0.95, 2.2) node [above]l {{ 1}};\n \
\\fi11(5,2)circle(.125);\n \\draw(4.95, 2.2) node [above] {{ $5%$}};\
\n\n %lines\n \\draw(1,1.875) .. controls (1,1.1) and (5,1.1) .. (5\
,1.875) ;\n\n %block #2\n Yvertices and labels\n \\fill(2,2)circle(\
.125);\n \\draw(1.95, 2.2) node [above] {{ $2%$}};\n \\fill(4,2)circ\
1le(.125);\n \\draw(3.95, 2.2) node [above]l {{ 4}};\n \\fill(3,0)c\
ircle(.125);\n \\draw(3, -0.2) node [below] {{ -3}};\n \\fill(5,0\
Ycircle(.125);\n \\draw(5, -0.2) node [below] {{ -5}};\n\n Ylines\
\n \\draw(2,1.875) .. controls (2,1.3) and (4,1.3) .. (4,1.875);\n \

Semigroups 113

\\draw(3,0.125) .. controls (3,0.7) and (5,0.7) .. (5,0.125);\n \\dr\
aw(2,2)--(3,0);\n\n /block #3\n Yvertices and labels\n \\fill(3,2)\
circle(.125);\n \\draw(2.95, 2.2) node [above] {{ 3}};\n \\fill(1\
,0)circle(.125);\n \\draw(1l, -0.2) node [below] {{ -1}};\n \\fill\
(2,0)circle(.125);\n \\draw(2, -0.2) node [below] {{ $-2%$}};\n\n %1\
ines\n \\draw(1,0.125) .. controls (1,0.6) and (2,0.6) .. (2,0.125);\
\n \\draw(3,2)--(2,0);\n\n Y%block #4\n Y%vertices and labels\n \\f\
1i11(4,0)circle(.125);\n \\draw(4, -0.2) node [below] {{ -4}};\n\n \
%lines\n\\end{tikzpicture}\n\n\\end{document}"

5.8.2 TikzBlocks

> TikzBlocks(blocks) (function)
Returns: A string.
This function produces a graphical representation of the blocks blocks of a bipartition using the
tikz package for IXIEX. More precisely, this function outputs a string containing a minimal IATEX
document which can be compiled using I&TEX to produce a picture of blocks.

Example
gap> f:=Bipartition([[1, 4, -2, -3 1, [2, 3,5, -51, [-1, -411);;
gap> TikzBlocks(RightBlocks(f));
"Y%tikz\n\\documentclass{minimal}\n\\usepackage{tikz}\n\\begin{documen\
tH\n\\begin{tikzpicture}\n \\draw[ultra thick] (5,2)circle(.115);\n \
\\draw(1.8,5) node [top] {{1}};\n \\fill(4,2)circle(.125);\n \\dr\
aw(1.8,4) node [top] {{$2%$}};\n \\fill(3,2)circle(.125);\n \\draw(1\
.8,3) node [top] {{3}};\n \\draw[ultra thick](2,2)circle(.115);\n \
\\draw(1.8,2) node [top] {{4}};\n \\fill(1,2)circle(.125);\n \\d\
raw(1.8,1) node [top] {{$5%}};\n\n \\draw (5,2.125) .. controls (5,2\
.8) and (2,2.8) .. (2,2.125);\n \\draw (4,2.125) .. controls (4,2.6)\
and (3,2.6) .. (3,2.125);\n\\end{tikzpicture}\n\n\\end{document}"

5.9 Semigroups of bipartitions

Semigroups and monoids of bipartitions can be created in the usual way in GAP using the functions
Semigroup (Reference: Semigroup) and Monoid (Reference: Monoid).

It is possible to create inverse semigroups and monoids of bipartitions using InverseSemigroup
(Reference: InverseSemigroup) and InverseMonoid (Reference: InverseMonoid) when the argu-
ment is a collection of block bijections or partial perm bipartions; see IsBlockBijection (5.5.13)
and IsPartialPermBipartition (5.5.12).

5.9.1 IsBipartitionSemigroup

> IsBipartitionSemigroup(S) (property)
> IsBipartitionMonoid(S) (property)
Returns: true or false.
A bipartition semigroup is simply a semigroup consisting of bipartitions. An object obj
is a bipartition semigroup in GAP if it satisfies IsSemigroup (Reference: IsSemigroup) and
IsBipartitionCollection (5.1.2).

Semigroups 114

A bipartition monoid is a monoid consisting of bipartitions. An object obj is a bipartition monoid
in GAP if it satisfies IsMonoid (Reference: IsMonoid) and IsBipartitionCollection (5.1.2).
Note that it is possible for a bipartition semigroup to have a multiplicative neutral element (i.e. an
identity element) but not to satisfy IsBipartitionMonoid. For example,
Example
gap> f:=Bipartition([[1, 4, -21, [2,5, -6 1, [3, -71,
>[e6,7,-91,[8,9,-11,[10, -561, [-31,1[-41,
>[-81, [-1011);;
gap> S:=Semigroup(f, One(f));
<commutative bipartition monoid on 10 pts with 1 generator>
gap> IsMonoid(S);
true
gap> IsBipartitionMonoid(S);
true
gap> S:=Semigroup(Bipartition([[1, -3]1, [2, -8 1, [3, 8, -11,
>[4, 41, [5, -5]1,[e6,-61, [7, -], [9, 10, -10 1],
>[-21,[0-911),
> Bipartition([[1, -1 1, [2, -21, [3, -31, [4, -41,
>[5,-51,[6,-61,[7,-71,[8, -81, [9, 10, -101],
>[-911));;
gap> One(S);
fail
gap> MultiplicativeNeutralElement(S);
<bipartition: [1, -1 1, [2, -21, [3, -31, [4, 41, [5, -561,
(e, -1, 7, -71, [8,-81,[9, 10, -101, [-9 1>
gap> IsMonoid(S);
false

In this example S cannot be converted into a monoid using AsMonoid (Reference: AsMonoid) since
the One (Reference: One) of any element in S differs from the multiplicative neutral element.
For more details see IsMagmaWithOne (Reference: IsMagmaWithOne).

5.9.2 IsBlockBijectionSemigroup

> IsBlockBijectionSemigroup(S) (property)
> IsBlockBijectionMonoid(S) (property)

Returns: true or false.

A block bijection semigroup is simply a semigroup consisting of block bijections. A block bijec-
tion monoid is a monoid consisting of block bijections.

An object in GAP is a block bijection monoid if it satisfies IsMonoid (Reference: IsMonoid)
and IsBlockBijectionSemigroup.

See IsBlockBijection (5.5.13).

5.9.3 IsPartialPermBipartitionSemigroup

> IsPartialPermBipartitionSemigroup(S) (property)
> IsPartialPermBipartitionMonoid(S) (property)
Returns: true or false.
A partial perm bipartition semigroup is simply a semigroup consisting of partial perm bipartitions.
A partial perm bipartition monoid is a monoid consisting of partial perm bipartitions.

Semigroups 115

An object in GAP is a partial perm bipartition monoid if it satisfies IsMonoid (Reference: Is-
Monoid) and IsPartialPermBipartitionSemigroup.
See IsPartialPermBipartition (5.5.12).

5.9.4 IsPermBipartitionGroup

> IsPermBipartitionGroup(S) (property)
Returns: true or false.
A perm bipartition group is simply a semigroup consisting of perm bipartitions.
See IsPermBipartition (5.5.11).

5.9.5 DegreeOfBipartitionSemigroup

> DegreeOfBipartitionSemigroup(S) (attribute)
Returns: A non-negative integer.

The degree of a bipartition semigroup S is just the degree of any (and every) element of S.

Example
gap> DegreeOfBipartitionSemigroup(JonesMonoid(8));
8

Chapter 6

Free inverse semigroups and free bands

This chapter describes the functions in Semigroups for dealing with free inverse semigroups and free
bands. This part of the manual and the functions described herein were written by Julius JonusSas.

6.1 Free inverse semigroups

F is a free inverse semigroup on a non-empty set X if F is an inverse semigroup with a map f
from F' to X such that for every inverse semigroup S and a map g from X to S there exists a unique
homomorphism g’ from F to S such that fg’ = g. Moreover, by the universal property, every inverse
semigroup can be expressed as a quotient of a free inverse semigroup.

The internal representation of an element of a free inverse semigroup uses a Munn tree. A Munn
tree is a directed tree with distinguished start and terminal vertices and where the edges are labeled
by generators so that two edges labeled by the same generator are only incident to the same vertex if
one of the edges is coming in and the other is leaving the vertex. For more information regarding free
inverse semigroups and the Munn representations see Section 5.10 of [How95]. See also (Reference:
Inverse semigroups and monoids), (Reference: Partial permutations) and (Reference: Free
Groups, Monoids and Semigroups).

An element of a free inverse semigroup in Semigroups is be displayed, by default, as a shortest
word corresponding to the element. However, there might be more than one word of the minimum
length. For example, if x and y are generators of a free inverse semigroups, then

1 1,.—1

Xyy xx x !

:xxx_lyy_ X .
See MinimalWord (6.3.2) Therefore we provide a another method for printing elements of a free
inverse semigroup: a unique canonical form. Suppose an element of a free inverse semigroup is given
as a Munn tree. Let L be the set of words corresponding to the shortest paths from the start vertex to
the leaves of the tree. Also let w be a word corresponding to the shortest path from start to terminal
vertices. The word vw~! is an idempotent for every v in L. The canonical form is given by multiplying
these idempotents, in shortlex order, and then postmultiplying by w. For example, consider the word
xyy~'xx~!x~! again. The words corresponding to the paths to the leaves are in this case xx and xy.
And w is an empty word since start and terminal vertices are the same. Therefore, the canonical form

1S

1 1,.—1

Xxx— x_lxyy_ x .

See CanonicalForm (6.3.1).

116

Semigroups 117

6.1.1 FreelnverseSemigroup (for a given rank)

> FreelInverseSemigroup(rank[, name]) (function)
> FreeInverseSemigroup(namel, name2, ...) (function)
> FreelInverseSemigroup (names) (function)

Returns: A free inverse semigroup.
Returns a free inverse semigroup on rank generators, where rank is a positive integer. If rank is
not specified, the number of names is used. If S is a free inverse semigroup, then the generators can
be accessed by S.1, S.2 and so on.
Example

gap> S := FreelnverseSemigroup(7);

<free inverse semigroup on the generators
[x1, x2, x3, x4, x5, x6, x7 1>

gap> S := FreelnverseSemigroup(7,"s");
<free inverse semigroup on the generators
[s1, s2, s3, s4, s5, s6, s7 1>

gap> S := FreelnverseSemigroup("a", "b", "c");

<free inverse semigroup on the generators [a, b, ¢ 1>
gap> S := FreelnverseSemigroup(["a", "b", "c"]);

<free inverse semigroup on the generators [a, b, c 1>
gap> S.1;

a

gap> S.2;

b

6.1.2 IsFreelnverseSemigroupCategory

> IsFreelnverseSemigroupCategory(obj) (Category)
Every free inverse semigroup in GAP created by FreeInverseSemigroup (6.1.1) be-

longs to the category IsFreelnverseSemigroup. Basic operations for a free inverse semi-

group are: Generators0fInverseSemigroup (Reference: GeneratorsOfInverseSemigroup) and

GeneratorsOfSemigroup (Reference: GeneratorsOfSemigroup). Elements of a free inverse semi-

group belong to the category IsFreeInverseSemigroupElement (6.1.4).

6.1.3 IsFreelnverseSemigroup

> IsFreelInverseSemigroup(S) (property)
Returns: true or false
Attempts to determine whether the given semigroup S is a free inverse semigroup.

6.1.4 IsFreelnverseSemigroupElement

> IsFreelnverseSemigroupElement (Category)

Every element of a free inverse semigroup belongs to the category
IsFreelnverseSemigroupElement.

Semigroups 118

6.2 Displaying free inverse semigroup elements

There is a way to change how GAP displays free inverse semigroup elements using the user preference
FreeInverseSemigroupElementDisplay. See UserPreference (Reference: UserPreference)
for more information about user preferences.

There are two possible values for FreeInverseSemigroupElementDisplay:

minimal
With this option selected, GAP will display a shortest word corresponding to the free inverse
semigroup element. However, this shortest word is not unique. This is a default setting.

canonical
With this option selected, GAP will display a free inverse semigroup element in the canonical
form.
Example
gap> SetUserPreference("semigroups", "FreeInverseSemigroupElementDisplay", "minimgl");
gap> S:=FreelnverseSemigroup(2);
<free inverse semigroup on the generators [x1, x2 1>
gap> S.1 * S.2;
x1*x2
gap> SetUserPreference("semigroups", "FreeInverseSemigroupElementDisplay", "canonical');
gap> S.1 *x S.2;
x1x2x2°-1x17-1x1x2

6.3 Operators and operations for free inverse semigroup elements

w - -1
returns the semigroup inverse of the free inverse semigroup element w.

u * v
returns the product of two free inverse semigroup elements u and v.

u=1yv
checks if two free inverse semigroup elements are equal, by comparing their canonical forms.

6.3.1 CanonicalForm (for a free inverse semigroup element)

> CanonicalForm(w) (attribute)
Returns: A string.
Every element of a free inverse semigroup has a unique canonical form. If w is such an element,
then CanonicalForm returns the canonical form of w as a string.
Example

gap> S := FreelnverseSemigroup(3);

<free inverse semigroup on the generators [x1, x2, x3]>
gap> x := S.1; y := S§.2;

x1

x2

gap> CanonicalForm(x~3*y~3);
"x1x1x1x2x2x2x27-1x27-1x2"-1x1"-1x1"-1x1"-1x1x1x1x2x2x2"

Semigroups 119

6.3.2 MinimalWord (for free inverse semigroup element)

> MinimalWord (w) (attribute)
Returns: A string.
For an element w of a free inverse semigroup S, MinimalWord returns a word of minimal length
equal to w in S as a string.

Note that there maybe more than one word of minimal length which is equal to w in S.
Example

gap> S := FreelnverseSemigroup(3);

<free inverse semigroup on the generators [x1, x2, x3]>
gap> x := S.1;

x1

gap> y := S.2;

x2

gap> MinimalWord(x~3 * y~3);

"X1Rx1xx1*x2%x2%x2"

6.4 Free bands

A semigroup B is a free band on a non-empty set X if B is a band with a map f from B to X such that
for every band S and every map g from X to B there exists a unique homomorphism g’ from B to S
such that fg’ = g. The free band on a set X is unique up to isomorphism. Moreover, by the universal
property, every band can be expressed as a quotient of a free band.

For an alternative description of a free band. Suppose that X is a non-empty set and X a free
semigroup on X. Also suppose that b is the smallest congurance on X © containing the set

{(wrw):weXT).

Then the free band on X is isomorphic to the quotient of X' by b. See Section 4.5 of [How95] for
more information on free bands.

6.4.1 FreeBand (for a given rank)

> FreeBand(rank/[, name]) (function)
> FreeBand(namel, name2, ...) (function)
> FreeBand(names) (function)

Returns: A free band.
Returns a free band on rank generators, for a positive integer rank. If rank is not specified, the

number of names is used. The resulting semigroup is always finite.
Example

gap> FreeBand(6) ;

<free band on the generators [x1, x2, x3, x4, x5, x6 1>
gap> FreeBand(6, "b");

<free band on the generators [bl, b2, b3, b4, b5, b6]>
gap> FreeBand("a", "b", "c");

<free band on the generators [a, b, ¢]>

gap> FreeBand("a", "b", "c");

<free band on the generators [a, b, ¢ 1>

gap> s := FreeBand(["a", "b", "c"1);

<free band on the generators [a, b, cI>

Semigroups 120

gap> Size(s);

159

gap> gens := Generators(s);

[a, b, c]

gap> a := gens[1];; b := gens[2];;
gap> a * b;

ab

6.4.2 IsFreeBandCategory

> IsFreeBandCategory (Category)

IsFreeBandCategory is the category of semigroups created using FreeBand (6.4.1).
Example
gap> IsFreeBandCategory(FreeBand(3));

true

gap> IsFreeBand(SymmetricGroup(6));

false

6.4.3 IsFreeBand (for a given semigroup)

> IsFreeBand(S) (property)
Returns: true or false
IsFreeBand returns true if the given semigroup S is a free band.

Example

gap> IsFreeBand(FreeBand(3));

true

gap> IsFreeBand(SymmetricGroup(6)) ;

false

gap> IsFreeBand(FullTransformationMonoid(7));
false

6.4.4 IsFreeBandElement

> IsFreeBandElement (Category)

IsFreeBandElement is a Category containing the elements of a free band.

Example
gap> IsFreeBandElement (Generators(FreeBand(4)) [1]);
true
gap> IsFreeBandElement (Transformation([1,3,4,1]1));
false
gap> IsFreeBandElement ((1,2,3,4));
false

6.4.5 IsFreeBandSubsemigroup

> IsFreeBandSubsemigroup (filter)

Semigroups 121
IsFreeBandSubsemigroup is a synonym for IsSemigroup and
IsFreeBandElementCollection.
Example
gap> S := FreeBand(2);
<free band on the generators [x1, x2]>
gap> x := Generators(S) [1];
x1
gap> y := Generators(S)[2];
x2
gap> new := Semigroup([x*y, x]);
<semigroup with 2 generators>
gap> IsFreeBand(new);
false
gap> IsFreeBandSubsemigroup(new) ;
true
6.5 Operators and operations for free band elements
u * v
returns the product of two free band elements u and v.
u=v
checks if two free band elements are equal.
u < v
compares the sizes of the internal representations of two free band elements.
6.5.1 GreensDClassOfElement (for a free band and a free band element)
> GreensDClassOfElement(s, x) (operation)

Returns: A Green’s D-class

Let S be afree band. Two elements of S are Z-related if and only if they have the same content
i.e. the set of generators appearing in any factorization of the elements. Therefore, a Z-class of a free

band element x is the set of elements of S which have the same content as x .
Example

gap> S := FreeBand(3, "b");

<free band on the generators [bl, b2, b3 1>
gap> x := Generators(S) [1] * Generators(S)[2];
b1b2

gap> D := GreensDClassOfElement(S, x);

{b1b2}

gap> IsGreensDClass(D);

true

Chapter 7

Congruences

Congruences in Semigroups can be described in several different ways:

» Generating pairs — the minimal congruence which contains these pairs
* Rees congruences — the congruence specified by a given ideal

» Universal congruences — the unique congruence with only one class

* Linked triples — only for simple or O-simple semigroups (see below)

» Kernel and trace — only for inverse semigroups

The operation SemigroupCongruence (7.1.1) can be used to create any of these, interpreting the argu-
ments in a smart way. The usual way of specifying a congruence will be by giving a set of generating
pairs, but a user with an ideal could instead create a Rees congruence or universal congruence.

If a congruence is specified by generating pairs on a simple, O-simple, or inverse semigroup, then
the congruence will be converted automatically to one of the last two items in the above list, to reduce
the complexity of any calculations to be performed. The user need not manually specify, or even be
aware of, the congruence’s linked triple or kernel and trace.

7.1 Creating congruences

7.1.1 SemigroupCongruence

> SemigroupCongruence(S, pairs) (function)

Returns: A semigroup congruence.

This function returns a semigroup congruence over the semigroup S.

If pairs is a list of lists of size 2 with elements from S, then this function will return the semi-
group congruence defined by these generating pairs. The individual pairs may instead be given as
separate arguments.

Example
gap> S:=Semigroup(Transformation([2, 1, 1, 2, 1]),
> Transformation([3, 4, 3, 4, 41),
> Transformation([3, 4, 3, 4, 3 1),
> Transformation([4, 3, 3, 4, 41));;
gap> pairl := [Transformation([3, 4, 3, 4, 3]),

122

Semigroups 123

> Transformation([1, 2, 1, 2, 1 1) 1;;
gap> pair2 := [Transformation([4, 3, 4, 3, 41),
> Transformation([3, 4, 3, 4, 3 1) 1;;

gap> SemigroupCongruence(S, [pairl, pair2]);

<semigroup congruence over <simple transformation semigroup
on 5 pts with 4 generators> with linked triple (2,4,1)>

gap> SemigroupCongruence(S, pairl, pair2);

<semigroup congruence over <simple transformation semigroup
on 5 pts with 4 generators> with linked triple (2,4,1)>

7.2 Congruence classes

7.2.1 CongruenceClassOfElement

> CongruenceClassOfElement (cong, elm) (operation)
Returns: A congruence class.
This operation is a synonym of EquivalenceClass0fElement in the case that the argument
cong is a congruence of a semigroup.

Example
gap> S := ReesZeroMatrixSemigroup (SymmetricGroup(3),

> [[0,(1,3,2)]1,0(1,2),011);;

gap> cong := Congruences0fSemigroup(S) [3];;

gap> elm := ReesZeroMatrixSemigroupElement(S, 1, (1,3,2), 1);;
gap> CongruenceClassOfElement (cong, elm);

{(1,(1,3,2),1}%

7.2.2 CongruenceClasses

> CongruenceClasses(cong) (attribute)
Returns: The classes of congruence.
When cong 1is a congruence of semigroup, this attribute is synonymous with
EquivalenceClasses.

The return value is a list containing all the equivalence classes of the semigroup congruence cong.
Example
gap> S := ReesZeroMatrixSemigroup (SymmetricGroup(3),
> [[0,(1,3,2)]1,[(1,2),011);;

gap> cong := CongruencesOfSemigroup(S) [3];;

gap> classes := CongruenceClasses(cong);;
gap> Size(classes);
9

7.2.3 NrCongruenceClasses

> NrCongruenceClasses(cong) (attribute)
Returns: A positive integer.
This attribute describes the number of congruence classes in the semigroup congruence cong.

Example
gap> S := ReesZeroMatrixSemigroup (SymmetricGroup(3),

> [[O,(1,3,2)]1,0(1,2),011);;

Semigroups 124

gap> cong := Congruences0fSemigroup(S) [3];;
gap> NrCongruenceClasses(cong) ;
9

7.2.4 CongruencesOfSemigroup

> Congruences0fSemigroup (S) (attribute)
Returns: The congruences of a semigroup.
This attribute gives a list of the congruences of the semigroup S.
At present this only works for simple and 0-simple semigroups.

Example
gap> s := ReesZeroMatrixSemigroup(SymmetricGroup(3),
> [[O,1,3,2)1,0(1,2),011);;
gap> congs := CongruencesOfSemigroup(s);
[<universal semigroup congruence over
<Rees O-matrix semigroup 2x2 over Sym([1 .. 3])>>,

<semigroup congruence over <Rees O-matrix semigroup 2x2 over
Sym([1 .. 31)> with linked triple (1,2,2)>,

<semigroup congruence over <Rees 0O-matrix semigroup 2x2 over
Sym([1 .. 31)> with linked triple (3,2,2)>,

<semigroup congruence over <Rees 0O-matrix semigroup 2x2 over
Sym([1 .. 3])> with linked triple (S3,2,2)>]

7.2.5 AsLookupTable

> AsLookupTable(cong) (attribute)

Returns: A list.

This attribute describes the semigroup congruence cong as a list of positive integers with length
the size of the semigroup over which cong is defined.

Each position in the list corresponds to an element of the semigroup (in the order defined by
SSortedList) and the integer at that position is a unique identifier for that element’s congruence
class under cong. Hence, two elements are congruent if and only if they have the same number at
their two positions in the list.

Example
gap> s := Monoid([Tramsformation([1, 2, 2]),
> Transformation([3, 1, 31) 1);;
gap> cong := SemigroupCongruence(s,
> [Transformation([1,2,1]),Transformation([2,1,2])]);;
gap> AsLookupTable(cong) ;
[1, 2, 3, 4, 5, 6, 3, 2, 1, 6, 5, 1]

7.3 Congruences on Rees matrix semigroups

This section describes the implementation of congruences of simple and 0-simple semigroups in the
Semigroups package, and the functions associated with them. This code and this part of the manual
were written by Michael Torpey. Most of the theorems used in this chapter are from Section 3.5 of
[How9s].

Semigroups 125

By the Rees Theorem, any 0-simple semigroup S is isomorphic to a Rees 0-matrix semigroup (see
(Reference: Rees Matrix Semigroups)) over a group, with a regular sandwich matrix. That is,

S #°(G:I,A; P,

where G is a group, A and [are non-empty sets, and P is regular in the sense that it has no rows or
columns consisting soley of zeroes.

The congruences of a Rees 0-matrix semigroup are in 1-1 correspondence with the linked triple,
which is a triple of the form [N, S,T] where:

* Nis a normal subgroup of the underlying group G,
* Sis an equivalence relation on the columns of P,
T is an equivalence relation on the rows of P,
satisfying the following conditions:
* a pair of S-related columns must contain zeroes in precisely the same rows,
* a pair of T-related rows must contain zeroes in precisely the same columns,

« if i and j are S-related, k and 1 are T-related and the matrix entries py ;, px,j, pri, P1,j 7 0, then
q.,i,j € N, where
—1 1
qk,li,j = PkiPy; PL,jPy ;-

By Theorem 3.5.9 in [How95], for any finite O-simple Rees O-matrix semigroup, there is a bijection
between its non-universal congruences and its linked triples. In this way, we can internally represent
any congruence of such a semigroup by storing its associated linked triple instead of a set of generating
pairs, and thus perform many calculations on it more efficiently.

If a congruence is defined by a linked triple (N,S,T), then a single class of that congruence can
be defined by a triple (Nx,1i/S,k/S), where Nx is a right coset of N, 1/S is the equivalence class of i
in S, and k/S is the equivalence class of k in T. Thus we can internally represent any class of such a
congruence as a triple simply consisting of a right coset and two positive integers.

An analogous condition exists for finite simple Rees matrix semigroups without zero.

7.3.1 IsRMSCongruenceByLinkedTriple

> IsRMSCongruenceByLinkedTriple(obj) (category)
> IsRZMSCongruenceByLinkedTriple(obj) (category)

Returns: true or false.

These categories describe a type of semigroup congruence over a Rees matrix or O-matrix semi-
group. Externally, an object of this type may be used in the same way as any other object in the
category IsSemigroupCongruence (Reference: IsSemigroupCongruence) but it is represented in-
ternally by its linked triple, and certain functions may take advantage of this information to reduce
computation times.

An object of this type may be constructed with RMSCongruenceByLinkedTriple or
RZMSCongruenceByLinkedTriple, or this representation may be selected automatically by
SemigroupCongruence (7.1.1).

Semigroups 126

Example
gap> G := Group([(1,4,5), (1,5,3,4) 1);;
gap> mat := [[0, 0, (1,4,5), 0, 0, (1,4,3,5) 1,
> [o, O, 0, 0, (3,5), 01,
> [O, o, 0, (3,5, 0, 011;;
gap> S := ReesZeroMatrixSemigroup(G, mat);;

gap> N := Group([(1,4)(3,5), (1,5)(3,4) 1);;

gap> colBlocks := [[11, [2,861, [3,61, [41]1;;

gap> rowBlocks := [[11, [21, [31 1;;

gap> cong := RZMSCongruenceByLinkedTriple(S, N, colBlocks, rowBlocks);;
gap> IsRZMSCongruenceByLinkedTriple(cong);

true

7.3.2 RMSCongruenceByLinkedTriple

> RMSCongruenceByLinkedTriple(S, N, colBlocks, rowBlocks) (function)
> RZMSCongruenceByLinkedTriple(S, N, colBlocks, rowBlocks) (function)

Returns: A Rees matrix or 0-matrix semigroup congruence by linked triple.

This function returns a semigroup congruence over the Rees matrix or O-matrix semigroup S
corresponding to the linked triple (N, colBlocks, rowBlocks). The argument N should be a normal
subgroup of the underlying semigroup of S; colBlocks should be a partition of the columns of the
matrix of S; and rowBlocks should be a partition of the rows of the matrix of S. For example, if the
matrix has 5 rows, then a possibility for rowBlocks mightbe [[1,3], [2,5], [4] 1.

If the arguments describe a valid linked triple on S, then an object in the category
IsRZMSCongruenceByLinkedTriple is returned. This object can be used like any other semigroup
congruence in GAP.

If the arguments describe a triple which is not linked in the sense described above, then this
function returns an error.

Example
gap> G := Group([(1,4,5), (1,5,3,4) 1);;
gap> mat := [[0, 0, (1,4,5), 0, 0, (1,4,3,5) 1,
> [o0, O, 0, 0, (3,5, 01,
> L O, o, 0, (3,5, 0, 011;;
gap> S := ReesZeroMatrixSemigroup(G, mat);;

gap> N := Group([(1,4)(3,5), (1,5)(3,4) 1);;
gap> colBlocks := [[11, [2,861, [3,61, [41]1;;
gap> rowBlocks := [[11, [21, [31 1;;
gap> cong := RZMSCongruenceByLinkedTriple(S, N, colBlocks, rowBlocks);
<semigroup congruence over <Rees O-matrix semigroup 6x3 over
Group([(1,4,5), (1,5,3,4) 1)> with linked triple (2°2,4,3)>

7.3.3 RMSCongruenceClassByLinkedTriple

> RMSCongruenceClassByLinkedTriple(cong, nCoset, colClass, rowClass) (operation)
> RZMSCongruenceClassByLinkedTriple(cong, nCoset, colClass, rowClass) (operation)
Returns: A Rees matrix or O-matrix semigroup congruence class by linked triple.
This operation returns one congruence class of the congruence cong, as defined by the other three
parameters.

Semigroups

127

The argument cong must be a Rees matrix or O-matrix semigroup congruence by linked triple.
If the linked triple consists of the three parameters N, colBlocks and rowBlocks, then nCoset
must be a right coset of N, colClass must be a positive integer corresponding to a position in the
list colBlocks, and rowClass must be a positive integer corresponding to a position in the list

rowBlocks.

If the arguments are wvalid, an IsRMSCongruenceClassByLinkedTriple or
IsRZMSCongruenceClassByLinkedTriple object is returned, which can be used like any
other equivalence class in GAP. Otherwise, an error is returned.

Example

gap> g := Group([(1,4,5), (1,5,3,4) 1);;

gap> mat := [[0, 0, (1,4,5), 0, 0, (1,4,3,5) 1,

> [o0, O, 0, 0, (3,5), 01,

> L O, o, 0, (3,5), 0, 01 1s;

gap> s := ReesZeroMatrixSemigroup(g, mat);;

gap> n := Group([(1,4)(3,5), (1,5)(3,4) 1);;

gap> colBlocks := [[11, [2,561, [3,61]1, [41]1;;

gap> rowBlocks := [[11, [21, [31 I;;

gap> cong := RZMSCongruenceByLinkedTriple(s, n, colBlocks, rowBlocks);;

gap> class := RZMSCongruenceClassByLinkedTriple(cong,

> RightCoset(n, (1,5)),2,3);

{(2,(3,4),3)}

7.3.4 IsLinkedTriple
> IsLinkedTriple(S, N, colBlocks, rowBlocks) (operation)

Returns: true or false.

This operation returns true if and only if the arguments (N, colBlocks, rowBlocks) describe a

linked triple of the Rees matrix or O-matrix semigroup S, as described above.

Example
gap> G := Group([(1,4,5), (1,5,3,4) 1);;
gap> mat := [[0, 0, (1,4,5), 0, 0, (1,4,3,5) 1,
> [o, O, 0, 0, (3,5), 01,
> [O, o, 0, (3,5), 0, 01 1;;
gap> S := ReesZeroMatrixSemigroup(G, mat);;
gap> N := Group([(1,4)(3,5), (1,5)(3,4) 1);;
gap> colBlocks := [[11, [2,561, [3,61]1, [41]1;;
gap> rowBlocks := [[11, [2], [311;;
gap> IsLinkedTriple(S, N, colBlocks, rowBlocks);
true
7.3.5 CanonicalRepresentative
> CanonicalRepresentative(class) (attribute)

Returns: A congruence class.

This attribute gives a canonical representative for the semigroup congruence class class. This

representative can be used to identify a class uniquely.

At present this only works for simple and 0-simple semigroups.
Example

gap> S := ReesZeroMatrixSemigroup (SymmetricGroup(3),

> [[O,(1,3,2)]1,0(1,2),011);;

Semigroups 128

gap> cong := Congruences0fSemigroup(S) [3];;
gap> class := CongruenceClasses(cong) [3];;
gap> CanonicalRepresentative(class);
(1,(1,2,3),2)

7.3.6 AsSemigroupCongruenceByGeneratingPairs

> AsSemigroupCongruenceByGeneratingPairs(cong) (operation)

Returns: A semigroup congruence.

This operation takes cong, a semigroup congruence, and returns the same congruence relation,
but described by GAP’s default method of defining semigroup congruences: a set of generating pairs
for the congruence.

Example

gap> S := ReesZeroMatrixSemigroup (SymmetricGroup(3),

> [[O,(1,3,2)]1,0(1,2),011);;

gap> cong := Congruences0fSemigroup(S) [3];;

gap> AsSemigroupCongruenceByGeneratingPairs(cong) ;

<semigroup congruence over <Rees O-matrix semigroup 2x2 over
Sym([1 .. 31)> with 3 generating pairs>

7.3.7 AsRMSCongruenceByLinkedTriple

> AsRMSCongruenceByLinkedTriple (cong) (operation)
> AsRZMSCongruenceByLinkedTriple(cong) (operation)

Returns: A Rees matrix or 0-matrix semigroup congruence by linked triple.

This operation takes a semigroup congruence cong over a finite simple or 0-simple Rees 0-matrix
semigroup, and returns that congruence relation in a new form: as either a congruence by linked triple,
or a universal congruence.

If the congruence is not defined over an appropriate type of semigroup, then this function returns

an error.
Example
gap> S := ReesZeroMatrixSemigroup (SymmetricGroup(3),

> [[0,(1,3,2)]1,[(1,2),011)5;

gap> x := ReesZeroMatrixSemigroupElement(S, 1, (1,3,2), 1);;

gap> y := ReesZeroMatrixSemigroupElement(S, 1, (), 1);;

gap> cong := SemigroupCongruenceByGeneratingPairs(S, [[x,y] 1);;

gap> AsRZMSCongruenceByLinkedTriple(cong) ;

<semigroup congruence over <Rees O-matrix semigroup 2x2 over
Sym([1 .. 31)> with linked triple (3,2,2)>

7.3.8 MeetSemigroupCongruences

> MeetSemigroupCongruences(cl, c2) (operation)
Returns: A semigroup congruence.
This operation returns the meet of the two semigroup congruences c1 and c2 — that is, the largest
semigroup congruence contained in both c1 and c2.
At present this only works for simple and 0-simple semigroups.

Semigroups 129

Example

gap> S := ReesZeroMatrixSemigroup (SymmetricGroup(3),

> [[O,1,3,2)]1,[(1,2),011);;

gap> congs := CongruencesOfSemigroup(S);;

gap> MeetSemigroupCongruences(congs[2], congs[3]);

<semigroup congruence over <Rees O-matrix semigroup 2x2 over
Sym([1 .. 31)> with linked triple (1,2,2)>

7.3.9 JoinSemigroupCongruences

> JoinSemigroupCongruences(cl, c¢2) (operation)
Returns: A semigroup congruence.
This operation returns the join of the two semigroup congruences c1 and c2 — that is, the smallest
semigroup congruence containing all the relations in both c1 and c2.
At present this only works for simple and O-simple semigroups.
Example
gap> S := ReesZeroMatrixSemigroup (SymmetricGroup(3),
> [[O,1,3,2)],0(1,2),011);;
gap> congs := CongruencesOfSemigroup(S);;
gap> JoinSemigroupCongruences(congs[2], congs([3]);
<semigroup congruence over <Rees O-matrix semigroup 2x2 over
Sym([1 .. 31)> with linked triple (3,2,2)>

7.4 Universal congruences

The linked triples of a completely 0-simple Rees O-matrix semigroup describe only its non-universal
congruences. In any one of these, the zero element of the semigroup is related only to itself. However,
for any semigroup S the universal relation S x § is a congruence; called the universal congruence. The
universal congruence on a semigroup has its own unique representation.

Since many things we want to calculate about congruences are trivial in the case
of the universal congruence, this package contains a category specifically designed for it,
IsUniversalSemigroupCongruence. We also define IsUniversalSemigroupCongruenceClass,
which represents the single congruence class of the universal congruence.

7.4.1 IsUniversalSemigroupCongruence

> IsUniversalSemigroupCongruence(obj) (category)

Returns: true or false.

This category describes a type of semigroup congruence, which must refer to the universal semi-
group congruence S x S. Externally, an object of this type may be used in the same way as any other
object in the category IsSemigroupCongruence (Reference: IsSemigroupCongruence).

An object of this type may be constructed with UniversalSemigroupCongruence or this repre-
sentation may be selected automatically as an alternative to an IsRZMSCongruenceByLinkedTriple

object (since the universal congruence cannot be represented by a linked triple).

Example
gap> S := Semigroup([Transformation([3, 2, 3 1) 1);;
gap> U := UniversalSemigroupCongruence(S);;

Semigroups 130

gap> IsUniversalSemigroupCongruence (U);
true

7.4.2 UniversalSemigroupCongruence

> UniversalSemigroupCongruence (S) (operation)
Returns: A universal semigroup congruence.
This operation returns the universal semigroup congruence for the semigroup S. It can be used in
the same way as any other semigroup congruence object.
Example
gap> S := ReesZeroMatrixSemigroup (SymmetricGroup(3),
> [[O,1,3,2)1,[(1,2),011)5;
gap> UniversalSemigroupCongruence(S) ;
<universal semigroup congruence over
<Rees O-matrix semigroup 2x2 over Sym([1 .. 3 1)>>

Chapter 8

Homomorphisms

In this chapter we describe the various ways to define a homomorphism from a semigroup to another
semigroup.

Support for homomorphisms in Semigroups is currently rather limited but there are plans to
improve this in the future.

8.1 Isomorphisms

8.1.1 IsIsomorphicSemigroup

> IsIsomorphicSemigroup(S, T) (operation)
Returns: true or false.
This operation attempts to determine if the semigroups S and T are isomorphic, it returns true if
they are and false if they are not.
At present this only works for rather small semigroups, with approximately 50 elements or less.
PLEASE NOTE: the Grape package version 4.5 or higher must be available and compiled installed

for this function to work.

Example
gap> S:=Semigroup([PartialPerm([1, 2, 41, [3, 5, 11),

> PartialPerm([1, 3, 51, [4, 3,21)1);;

gap> Size(S);

11

gap> T:=SemigroupByMultiplicationTable(SmallestMultiplicationTable(S));;
gap> IsIsomorphicSemigroup(S, T);

true

8.1.2 SmallestMultiplicationTable

> SmallestMultiplicationTable(S) (attribute)

Returns: The lex-least multiplication table of a semigroup.

This function returns the lex-least multiplication table of a semigroup isomorphic to the semigroup
S. SmallestMultiplicationTable is an isomorphism invariant of semigroups, and so it can, for
example, be used to check if two semigroups are isomorphic.

Due to the high complexity of computing the smallest multiplication table of a semigroup, this
function only performs well for semigroups with at most approximately 50 elements.

131

http://www.maths.qmul.ac.uk/~leonard/grape/

Semigroups 132

SmallestMultiplicationTable is based on the function IdSmallSemigroup (Smallsemi:
IdSmallSemigroup) by Andreas Distler.

PLEASE NOTE: the Grape package version 4.5 or higher must be loaded for this function to work.
Example

gap> S:=Semigroup(

> Bipartition([[1, 2, 3, -1, -3 1, [-2 1 1),

> Bipartition([[1, 2, 3, -11, [-23, [-311),

> Bipartition([[1, 2, 31, [-11, [-2, -311),

> Bipartition([[1, 2, -1 1, [3, -21, [-31 1));;

gap> Size(8);
8
gap> SmallestMultiplicationTable(S)

(ri1,3,4,5,6,7,81, [1,1,3,4,5,6,7,81,
(1, 1,3,4,5,6,7,81, [1,3,3,4,5,6,7,81,
[5, 5’ 6, 7, 5, 6’ 7, 8], [5, 5, 6’ 7, 5, 6’ 7’ 8]9
[5’ 6, 6’ 7’ 5) 6’ 7, 8]) [5’ 6) 6’ 7, 5) 6’ 7, 8]]
8.1.3 IsomorphismSemigroups
> IsomorphismSemigroups(S, T) (operation)

Returns: An isomorphism or fail.

This operation returns an isomorphism from the semigroup S and to the semigroup T if it exists,
and it returns fail if it does not.

At present this only works for Rees matrix semigroups and Rees 0-matrix semigroups.

PLEASE NOTE: the Grape package version 4.5 or higher must be available and compiled for this
function to work, when the argument R is a Rees 0-matrix semigroup.
Example
gap> S:=PrincipalFactor(DClasses(FullTransformationMonoid(5)) [2]);
<Rees O-matrix semigroup 10x5 over Group([(1,2,3,4), (1,2) 1)>
gap> T:=PrincipalFactor(DClasses(PartitionMonoid(5)) [2]);
<Rees O-matrix semigroup 15x15 over Group([(2,3,4,5), (4,5) 1)>
gap> IsomorphismSemigroups(S, T);
fail
gap> I:=Semigroupldeal (FullTransformationMonoid(5),
> Transformation([1,1,2,3,4]1));
<regular transformation semigroup ideal on 5 pts with 1 generator>
gap> T:=PrincipalFactor(DClass(I, I.1));
<Rees O-matrix semigroup 10x5 over Group([(2,3,4,5), (2,5) 1)>
gap> IsomorphismSemigroups(S, T);
(2, 4, 3, 7, 9,10, 6, 5)
(11,13,14,15), GroupHomomorphismByImages(Group([(1,2,3,4), (1,2)
1), Group([(2,3,4,5), (2,5) 1), [(1,2,3,4), (1,2) 1,
[(2,4,5,3), (2,4) 1), fail)

http://www.maths.qmul.ac.uk/~leonard/grape/
http://www.maths.qmul.ac.uk/~leonard/grape/

Chapter 9

Orbits

9.1 Looking for something in an orbit

The functions described in this section supplement the Orb package by providing methods for finding
something in an orbit, with the possibility of continuing the orbit enumeration at some later point.

9.1.1 EnumeratePosition

> EnumeratePosition(o, val[, onlynew]) (function)

Returns: A positive integer or fail.

This function returns the position of the value val in the orbit o. If o is closed, then this is
equivalent to doing Position(o, val). However, if o is open, then the orbit is enumerated until
val is found, in which case the position of val is returned, or the enumeration ends, in which case
fail is returned.

If the optional argument onlynew is present, it should be true or false. If onlynew is true,
then val will only be checked against new points in o. Otherwise, every point in the o, not only the
new ones, is considered.

9.1.2 LookForInOrb

> LookForInOrb(o, func, start) (function)

Returns: false or a positive integer.

The arguments of this function should be an orbit o, a function func which gets the orbit object
and a point in the orbit as arguments, and a positive integer start. The function func will be called
for every point in o starting from start (inclusive) and the orbit will be enumerated until func
returns true or the enumeration ends. In the former case, the position of the first point in o for which

func returns true is returned, and in the latter false is returned.
Example
gap> o0:=0rb(SymmetricGroup(100), 1, OnPoints);
<open Int-orbit, 1 points>

gap> func:=function(o, x) return x=42; end;

function(o, x) ... end

gap> LookForInOrb(o, func, 1);
42

gap> o;

<open Int-orbit, 42 points>

133

 http://www-groups.mcs.st-and.ac.uk/~neunhoef/Computer/Software/Gap/orb.html

Semigroups 134

9.2 Strongly connected components of orbits

The functions described in this section supplement the Orb package by providing methods for opera-
tions related to strongly connected components of orbits.

If any of the functions is applied to an open orbit, then the orbit is completely enumerated before
any further calculation is performed. It is not possible to calculate the strongly connected components
of an orbit of a semigroup acting on a set until the entire orbit has been found.

9.2.1 OrbSCC

> 0rbSCC(o) (function)

Returns: The strongly connected components of an orbit.

If o is an orbit created by the Orb package with the option orbitgraph=true, then OrbSCC
returns a set of sets of positions in o corresponding to its strongly connected components.

See also OrbSCCLookup (9.2.2) and OrbSCCTruthTable (9.2.3).
Example
gap> S:=FullTransformationSemigroup(4);;
gap> o:=LambdalOrb(S) ;
<open orbit, 1 points with Schreier tree with log>
gap> 0rbSCC(o);
(ct+1,021, 103, 4,5,61, [7,8,9, 10, 11, 12 1],

[13, 14, 15, 16]]

9.2.2 OrbSCCLookup

> OrbSCCLookup (o) (function)

Returns: A lookup table for the strongly connected components of an orbit.

If o is an orbit created by the Orb package with the option orbitgraph=true, then
OrbSCCLookup returns a lookup table for its strongly connected components. More precisely,
OrbSCCLookup (o) [i] equals the index of the strongly connected component containing o [1].

See also OrbSCC (9.2.1) and OrbSCCTruthTable (9.2.3).

Example
gap> S:=FullTransformationSemigroup(4);;
gap> o:=LambdalOrb(S);;

gap> 0rbSCC(o);

rt+1,021,[3, 4,5,61, [7, 8,9, 10, 11, 121,

[13, 14, 15, 16]]

gap> O0rbSCCLookup (o) ;

[1, 2, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 5, 5, 5, 5]

gap> 0rbSCCLookup (o) [1]; OrbSCCLookup (o) [4]; OrbSCCLookup (o) [7];
1

3

4

9.2.3 OrbSCCTruthTable

> OrbSCCTruthTable (o) (function)
Returns: Truth tables for strongly connected components of an orbit.

 http://www-groups.mcs.st-and.ac.uk/~neunhoef/Computer/Software/Gap/orb.html

Semigroups 135

If o is an orbit created by the Orb package with the option orbitgraph=true, then
OrbSCCTruthTable returns a list of boolean lists such that 0rbSCCTruthTable (o) [1] [j] is true
if j belongs to 0rbSCC (o) [1].

See also 0rbSCC (9.2.1) and 0rbSCCLookup (9.2.2).

Example
gap> S:=FullTransformationSemigroup(4);;
gap> o:=LambdalOrb(S);;
gap> 0rbSCC(o);
rfts+1,021,03,4,5,61,[7,8,9, 10, 11, 1217,
[13, 14, 15, 16 1 1]
gap> OrbSCCTruthTable (o) ;
[[true, false, false, false, false, false, false, false, false,
false, false, false, false, false, false, false],
[false, true, false, false, false, false, false, false, false,
false, false, false, false, false, false, false],
[false, false, true, true, true, true, false, false, false, false,
false, false, false, false, false, false],
[false, false, false, false, false, false, true, true, true, true,
true, true, false, false, false, false],
[false, false, false, false, false, false, false, false, false,
false, false, false, true, true, true, true]]

9.2.4 ReverseSchreierTreeOfSCC

> ReverseSchreierTree0fSCC(o, i) (function)
Returns: The reverse Schreier tree corresponding to the ith strongly connected component of
an orbit.
If o is an orbit created by the Orb package with the option orbitgraph=true and action act,
and 1 is a positive integer, then ReverseSchreierTree0fSCC(o, i) returns a pair [gen, pos]
of lists with Length (o) entries such that

Example
act(o[jl, o!.gens[gen[jl])=olpos[jl].

The pair [gen, pos] corresponds to a tree with root OrbSCC (o) [i] [1] and a path from every
element of 0rbSCC (o) [1] to the root.

See also 0rbSCC (9.2.1), TraceSchreierTree0fSCCBack (9.2.6), SchreierTree0fSCC (9.2.5),
and TraceSchreierTree0fSCCForward (9.2.7).
Example
gap> S:=Semigroup(Transformation([2, 2, 1, 4, 41),
> Transformation([3, 3, 3, 4, 51),
> Transformation([5, 1, 4, 5, 51));;
gap> 0:=0rb(S, [1..4], OnSets, rec(orbitgraph:=true, schreier:=true));;
gap> 0rbSCC(o);
tt+1,021,03,5,6, 7,111, [41, (81, [91]1, [10, 12171
gap> ReverseSchreierTree0fSCC(o, 3);

[[L) fail’, 2’ 1’ 2’,,’ 1]’ [20 fail’, 3’ 5, 3,”’ 7]]
gap> ReverseSchreierTree0fSCC(o, 7);
[[2929335335 fail’ b 3] b [2993935335 fail’ b 10]]

gap> OnSets(o[11], Generators(S)[1]);
[1,4]

Semigroups 136

gap> Position(o, last);
7

9.2.5 SchreierTreeOfSCC

> SchreierTree0fSCC(o, 1) (function)
Returns: The Schreier tree corresponding to the ith strongly connected component of an orbit.
If o is an orbit created by the Orb package with the option orbitgraph=true and action act,
and i is a positive integer, then SchreierTree0fSCC(o, i) returns a pair [gen, pos] of lists
with Length (o) entries such that

Example
act(o[pos[jl], o!.gens[gen[jl])=0[j].

The pair [gen, pos] corresponds to a tree with root 0rbSCC (o) [i] [1] and a path from the root
to every element of OrbSCC (o) [i].

See also 0rbSCC (9.2.1), TraceSchreierTree0fSCCBack (9.2.6),
ReverseSchreierTree0fSCC (9.2.4), and TraceSchreierTree0fSCCForward (9.2.7).
Example

gap> S:=Semigroup(Transformation([2, 2, 1, 4, 4]),

> Transformation([3, 3, 3, 4, 51),

> Transformation([5, 1, 4, 5, 51));;

gap> 0:=0rb(S, [1..4], OnSets, rec(orbitgraph:=true, schreier:=true));;
gap> 0rbSCC(o);

rt+1,021,[3,5,6, 7,111, [41, (81, [91]1, [10, 12171
gap> SchreierTree0fSCC(o, 3);

trc,, fai1z,, ¢, 3, 1,,,, 21, [,, fail,, 7, 5, 3,,,, 6 1]
gap> SchreierTree0fSCC(o, 7);

LC,.,,,,55,, fail,, 11, [,,,,,,,,, fail,, 10]]

gap> OnSets(o[6], Generators(S)[2]);

[3, 5]

gap> Position(o, last);

11

9.2.6 TraceSchreierTreeOfSCCBack

> TraceSchreierTree0fSCCBack(orb, m, nr) (operation)

Returns: A word in the generators.

orb must be an orbit object with a Schreier tree and orbit graph, that is, the options schreier
and orbitgraph must have been set to true during the creation of the orbit, m must be the number
of a strongly connected component of orb, and nr must be the number of a point in the mth strongly
connect component of orb.

This operation traces the result of ReverseSchreierTree0fSCC (9.2.4) and with arguments orb
and m and returns a word in the generators that maps the point with number nr to the first point
in the mth strongly connected component of orb. Here, a word is a list of integers, where positive
integers are numbers of generators. See also OrbSCC (9.2.1), ReverseSchreierTree0fSCC (9.2.4),

SchreierTree0fSCC (9.2.5), and TraceSchreierTree0fSCCForward (9.2.7).
Example
gap> S:=Semigroup(Transformation([1, 3, 4, 11),
> Transformation([2, 4, 1, 2]),

Semigroups 137

> Transformation([3, 1, 1, 3 1),

> Transformation([3, 3, 4, 11));;

gap> 0:=0rb(S, [1..4], OnSets, rec(orbitgraph:=true, schreier:=true));;
gap> 0rbSCC(o);

(cts121, 021, (371, (4,5,6,7,81, [9, 10, 11, 121 1]

gap> ReverseSchreierTree0fSCC(o, 4);

rr,,, fail, 4, 1, 1, 31, [,,, fail, 4, 4, 4, 41 1]
gap> TraceSchreierTree0fSCCBack(o, 4, 7);

[1]

gap> TraceSchreierTree0fSCCBack(o, 4, 8);

[31

9.2.7 TraceSchreierTreeOfSCCForward

> TraceSchreierTree0fSCCForward(orb, m, nr) (operation)

Returns: A word in the generators.

orb must be an orbit object with a Schreier tree and orbit graph, that is, the options schreier
and orbitgraph must have been set to true during the creation of the orbit, m must be the number
of a strongly connected component of orb, and nr must be the number of a point in the mth strongly
connect component of orb.

This operation traces the result of SchreierTree0fSCC (9.2.5) and with arguments orb and m and
returns a word in the generators that maps the first point in the mth strongly connected component of
orb to the point with number nr. Here, a word is a list of integers, where positive integers are numbers
of generators. See also OrbSCC (9.2.1), ReverseSchreierTree0fSCC (9.2.4), SchreierTree0fSCC
(9.2.5), and TraceSchreierTree0fSCCBack (9.2.6).
Example
gap> S:=Semigroup(Transformation([1, 3, 4, 11),
> Transformation([2, 4, 1, 2 1),
> Transformation([3, 1, 1, 31),
> Transformation([3, 3, 4, 1 1));;
gap> 0:=0rb(S, [1..4], OnSets, rec(orbitgraph:=true, schreier:=true));;
gap> 0rbSCC(o);

(ft+1, 021,031, [4,5,6,7,81, [9, 10, 11, 12]]
gap> SchreierTree0fSCC(o, 4);

tf,,, fail, 1, 2, 2, 41, [,,, fail, 4, 4, 6, 4] 1]
gap> TraceSchreierTree0fSCCForward(o, 4, 8);
[4]

gap> TraceSchreierTree0fSCCForward(o, 4, 7);
[2, 2]

References

[ABMNI10] J. Aradjo, P. V. Biinau, J. D. Mitchell, and M. Neunhoffer. Computing automorphisms of
semigroups. J. Symbolic Comput., 45(3):373-392, 2010. 6, 66

[ABMS14] J. Aratjo, W. Bentz, J. D. Mitchell, and Csaba Schneider. The rank of the semigroup of
transformations stabilising a partition of a finite set. in preparation, March 2014. 20

[FLO98] D.G. Fitzgerald and J. Leech. Dual symmetric inverse monoids and representation theory.
J. Austral. Math. Soc. A, 64:345-67, 1998. 20, 100

[GGR68] N. Graham, R. Graham, and J. Rhodes. Maximal subsemigroups of finite semigroups. J.
Combinatorial Theory, 4:203-209, 1968. 7, 58, 59

[How95] John M. Howie. Fundamentals of semigroup theory, volume 12 of London Mathematical
Society Monographs. New Series. The Clarendon Press Oxford University Press, New
York, 1995. Oxford Science Publications. 6,7, 71, 82, 116, 119, 124, 125

[Sch92] Boris M. Schein. The minimal degree of a finite inverse semigroup. Trans. Amer. Math.
Soc., 333(2):877-888, 1992. 7, 88

138

Index

* (for bipartitions), 101
\<
for Green’s classes, 42
< (for bipartitions), 101
= (for bipartitions), 102

AsBipartition, 98
AsBipartitionSemigroup, 18
AsBlockBijection, 100
AsBlockBijectionSemigroup, 18
AsLookupTable, 124
AsPartialPerm

for a bipartition, 101
AsPartialPermSemigroup, 18
AsPermutation

for a bipartition, 101
AsRMSCongruenceByLinkedTriple, 128
AsRZMSCongruenceByLinkedTriple, 128
AsSemigroupCongruenceByGenerating-

Pairs, 128

AsTransformation

for a bipartition, 100
AsTransformationSemigroup, 18

Bipartition, 95
BipartitionByIntRep, 96
BipartitionFamily, 95
BlocksNC, 109
BrauerMonoid, 21

CanonicalForm

for a free inverse semigroup element, 118

CanonicalRepresentative, 127

CharacterTableOfInverseSemigroup, 90

ClosureInverseSemigroup, 13
ClosureSemigroup, 14

ComponentReps0fPartialPermSemigroup, 65

ComponentRepsOfTransformation-
Semigroup, 64

ComponentsOfPartialPermSemigroup,65

Components0fTransformationSemigroup, 64

CongruenceClasses, 123
CongruenceClass0fElement, 123
Congruences0fSemigroup, 124
CyclesOfPartialPerm, 66
CyclesOfPartialPermSemigroup, 66
CyclesOfTransformationSemigroup, 64

DClass, 34
DClasses, 37
DClassNC, 35
DClass0fHClass, 33
DClassOfLClass, 33
DClass0fRClass, 33
DClassReps, 41
DegreeOfBipartition, 103
DegreeOfBipartitionCollection, 103
Degree0fBipartitionSemigroup, 115
DegreeOfBlocks, 110
DotDClasses, 92

for a semigroup, 92
DotSemilatticeOfIdempotents, 93
DualSymmetricInverseMonoid, 22
DualSymmetricInverseSemigroup, 22

EndomorphismsPartition, 20
EnumeratePosition, 133
EvaluateWord, 31
ExtRepOfBipartition, 104
ExtRep0fBlocks, 109

FactorisableDualSymmetricInverse-
Semigroup, 22

Factorization, 32
FreeBand

for a given rank, 119

for a list of names, 119

for various names, 119
FreeInverseSemigroup

for a given rank, 117

139

for a list of names, 117
for various names, 117
FullMatrixSemigroup, 23

GeneralLinearSemigroup, 23
Generators, 53
GeneratorsOfSemigroupIdeal, 29
GeneratorsSmallest

for a transformation semigroup, 68
GreensDClasses, 37
GreensDClassOfElement, 34

for a free band and a free band element, 121

GreensDClass0fElementNC, 35
GreensHClasses, 37
GreensHClassOfElement, 34
for a Rees matrix semigroup, 34
GreensHClass0OfElementNC, 35
GreensJClasses, 37
GreensLClasses, 37
GreensLClass0OfElement, 34
GreensLClass0fElementNC, 35
GreensRClasses, 37
GreensRClass0OfElement, 34
GreensRClass0fElementNC, 35
GroupHClass, 36
Group0fUnits, 54

HClass, 34
for a Rees matrix semigroup, 34
HClasses, 37
HClassNC, 35
HClassReps, 41

IdempotentGeneratedSubsemigroup, 56
Idempotents, 54
IdentityBipartition, 96
InfoSemigroups, 9
InjectionPrincipalFactor, 43
InverselLeftBlocks, 111
InverseRightBlocks, 111
InverseSubsemigroupByProperty, 15
IrredundantGeneratingSubset, 57
IsAperiodicSemigroup, 76
IsBand, 68

IsBipartition, 95
IsBipartitionCollection, 95
IsBipartitionMonoid, 113
IsBipartitionSemigroup, 113

Semigroups

140

IsBipartitionSemigroupGreensClass, 51

IsBlockBijection, 108
IsBlockBijectionMonoid, 114
IsBlockBijectionSemigroup, 114
IsBlockGroup, 69
IsBrandtSemigroup, 81
IsCliffordSemigroup, 81
IsCombinatorialSemigroup, 76
IsCommutativeSemigroup, 70
IsCompletelyRegularSemigroup, 70
IsCompletelySimpleSemigroup, 77
IsCongruenceFreeSemigroup, 71
IsDTrivial, 76
IsDualTransBipartition, 107
IsEUnitaryInverseSemigroup, 82
IsFactorisableSemigroup, 82
IsFreeBand

for a given semigroup, 120
IsFreeBandCategory, 120
IsFreeBandElement, 120
IsFreeBandSubsemigroup, 120
IsFreeInverseSemigroup, 117
IsFreeInverseSemigroupCategory, 117
IsFreeInverseSemigroupElement, 117
IsFullMatrixSemigroup, 23
IsGeneralLinearSemigroup, 23
IsGreensClassNC, 51
IsGreensDLeq, 52
IsGroupAsSemigroup, 71
IsHTrivial, 76
IsIdempotentGenerated, 72
IsIsomorphicSemigroup, 131
IsJoinIrreducible, 83
IsLeftSimple, 72
IsLeftZeroSemigroup, 73
IsLinkedTriple, 127
IsLTrivial, 76
IsMajorantlyClosed, 84
IsMaximalSubsemigroup, 60
IsMonogenicInverseSemigroup, 84
IsMonogenicSemigroup, 73
IsMonoidAsSemigroup, 74
IsomorphismBipartitionMonoid, 19
IsomorphismBipartitionSemigroup, 19
IsomorphismBlockBijectionMonoid, 20

IsomorphismBlockBijectionSemigroup, 20

IsomorphismPermGroup, 18

Semigroups

IsomorphismReesMatrixSemigroup, 43
IsomorphismSemigroups, 132
IsOrthodoxSemigroup, 74
IsPartialPermBipartition, 107
IsPartialPermBipartitionMonoid, 114
IsPartialPermBipartitionSemigroup, 114
IsPartialPermSemigroupGreensClass, 51
IsPermBipartition, 107
IsPermBipartitionGroup, 115
IsRectangularBand, 75
IsRegularClass, 44
IsRegularSemigroup, 75
IsRightSimple, 72
IsRightZeroSemigroup, 76
IsRMSCongruenceByLinkedTriple, 125
IsRTrivial, 76
IsRZMSCongruenceByLinkedTriple, 125
IsSemiBand, 72
IsSemigroupWithCommutingIdempotents, 69
IsSemilatticeAsSemigroup, 77
IsSimpleSemigroup, 77
IsSynchronizingSemigroup, 78
IsSynchronizingTransformation-
Collection, 78
IsTransBipartition, 106
IsTransformationSemigroupGreensClass,
51
IsTransitive
for a transformation semigroup and a pos int,
64
for a transformation semigroup and a set, 64
IsUniformBlockBijection, 108
IsUniversalSemigroupCongruence, 129
IsZeroGroup, 78
IsZeroRectangularBand, 79
IsZeroSemigroup, 79
IsZeroSimpleSemigroup, 80
IteratorFromGeneratorsFile, 11
Iterator0fDClasses, 40
Iterator0fDClassReps, 39
IteratorOfHClasses, 40
Iterator0fHClassReps, 39
IteratorOfLClasses, 40
Iterator0fLClassReps, 39
IteratorOfRClasses, 40
Iterator0fRClassReps, 39

141

JClasses, 37
JoinIrreducibleDClasses, 85
JoinSemigroupCongruences, 129
JonesMonoid, 21

LargestElementSemigroup, 67
LClass, 34
LClasses, 37
LClassNC, 35
LClass0OfHClass, 33
LClassReps, 41
LeftBlocks, 105
LeftOne

for a bipartition, 96
LeftProjection, 96
LookForInOrb, 133

MajorantClosure, 85
MaximalDClasses, 49
MaximalSubsemigroups

for a Rees (0-)matrix semigroup, and a

group, 59

for an acting semigroup, 58
MeetSemigroupCongruences, 128
MinimalDClass, 49
MinimalIdeal, 60
MinimalIdealGeneratingSet, 29
MinimalWord

for free inverse semigroup element, 119
Minorants, 86
MonogenicSemigroup, 26
MultiplicativeNeutralElement

for an H-class, 51
MultiplicativeZero, 62
MunnSemigroup, 24

NaturalLeqgBlockBijection, 102
NaturalleqPartialPermBipartition, 102
Normalizer
for a perm group, semigroup, record, 66
for a semigroup, record, 66
NrBlocks
for a bipartition, 106
for blocks, 106
NrCongruenceClasses, 123
NrDClasses, 46
NrHClasses, 46
NrIdempotents, 56

Semigroups

NrLClasses, 46

NrLeftBlocks, 105

NrRClasses, 46

NrRegularDClasses, 45

NrRightBlocks, 106

NrTransverseBlocks
for a bipartition, 104
for blocks, 109

OnLeftBlocks, 110

OnRightBlocks, 110

OnRightBlocksBipartitionByPerm, 103

OrbscC, 134

OrbSCCLookup, 134

OrbSCCTruthTable, 134

OrderEndomorphisms

monoid of order preserving transformations,

24

PartialOrderO0fDClasses, 47
PartialPermleqBipartition, 102
PartialTransformationSemigroup, 23
PartitionMonoid, 21
PermLeftBlocks, 111
PermLeftQuoBipartition, 103
PermRightBlocks, 111
POI

monoid of order preserving partial perms, 24
POPI

monoid of orientation preserving partial

perms, 24

PrimitiveIdempotents, 86
PrincipalFactor, 44

Random

for a semigroup, 62
RandomBinaryRelationMonoid, 13
RandomBinaryRelationSemigroup, 13
RandomBipartition, 98
RandomBipartitionMonoid, 13
RandomBipartitionSemigroup, 13
RandomInverseMonoid, 12
RandomInverseSemigroup, 12
RandomPartialPermMonoid, 13
RandomPartialPermSemigroup, 13
RandomTransformationMonoid, 12
RandomTransformationSemigroup, 12
RankOfBipartition, 104

142

Rank0fBlocks, 109
RClass, 34
RClasses, 37
RClassNC, 35
RClass0fHClass, 33
RClassReps, 41
ReadGenerators, 10
RectangularBand, 26
RegularBinaryRelationSemigroup, 25
RegularDClasses, 45
Representative0fMinimalDClass, 61
Representative0fMinimalIdeal, 61
ReverseSchreierTree0fSCC, 135
RightBlocks, 104
RightCosetsOfInverseSemigroup, 87
RightOne

for a bipartition, 97
RightProjection, 97
RMSCongruenceByLinkedTriple, 126
RMSCongruenceClassByLinkedTriple, 126
RZMSCongruenceByLinkedTriple, 126
RZMSCongruenceClassByLinkedTriple, 126

SameMinorantsSubgroup, 88
SchreierTree0fSCC, 136
SchutzenbergerGroup, 48
SemigroupCongruence, 122
SemigroupIdeal, 28
Semigroups package overview, 6
SemigroupsDir, 10
SemigroupsMakeDoc, 8
SemigroupsOptionsRec, 17
SemigroupsTestAll, 9
SemigroupsTestInstall, 9
SemigroupsTestManualExamples, 9
SingularBrauerMonoid, 21
SingularDualSymmetricInverseSemigroup,
22
SingularFactorisableDualSymmetric-
InverseSemigroup, 22
SingularJonesMonoid, 21
SingularPartitionMonoid, 21
SingularTransformationMonoid, 25
SingularTransformationSemigroup, 25
SmallerDegreePartialPerm-
Representation, 88
SmallestElementSemigroup,67

Semigroups

SmallestMultiplicationTable, 131
SmallGeneratingSet, 62
SmallInverseMonoidGeneratingSet, 62
SmallInverseSemigroupGeneratingSet, 62
SmallMonoidGeneratingSet, 62
SmallSemigroupGeneratingSet, 62
Splash, 91
Star, 97
Star0Op, 97
StructureDescription
for an H-class, 52
StructureDescriptionMaximalSubgroups,
50
StructureDescriptionSchutzenberger-
Groups, 50
SubsemigroupByProperty
for a semigroup and function, 14
for a semigroup, function, and limit on the
size of the subsemigroup, 14
Supersemigroup0fIdeal, 30

TemperleyLiebMonoid, 21
TikzBipartition, 112
TikzBlocks, 113
TraceSchreierTree0fSCCBack, 136
TraceSchreierTree0fSCCForward, 137

UniversalSemigroupCongruence, 130
VagnerPrestonRepresentation, 89
WriteGenerators, 10

ZeroSemigroup, 27

143

	The Semigroups package
	Introduction
	Installing the Semigroups package
	Compiling the documentation
	Testing the installation
	More information during a computation
	Reading and writing elements to a file

	Creating semigroups and monoids
	Random semigroups
	New semigroups from old
	Options when creating semigroups
	Changing the representation of a semigroup
	Standard examples

	Ideals
	Creating ideals
	Attributes of ideals

	 Determining the structure of a semigroup
	Expressing semigroup elements as words in generators
	Creating Green's classes
	Iterators and enumerators of classes and representatives
	Attributes and properties directly related to Green's classes
	Further attributes of semigroups
	Further properties of semigroups
	Properties and attributes of inverse semigroups
	Visualising the structure of a semigroup

	 Bipartitions and blocks
	The family and categories of bipartitions
	Creating bipartitions
	Changing the representation of a bipartition
	Operators for bipartitions
	Attributes for bipartitons
	Creating blocks and their attributes
	Actions on blocks
	Visualising blocks and bipartitions
	Semigroups of bipartitions

	Free inverse semigroups and free bands
	 Free inverse semigroups
	 Displaying free inverse semigroup elements
	Operators and operations for free inverse semigroup elements
	 Free bands
	Operators and operations for free band elements

	Congruences
	Creating congruences
	Congruence classes
	Congruences on Rees matrix semigroups
	Universal congruences

	Homomorphisms
	Isomorphisms

	 Orbits
	Looking for something in an orbit
	Strongly connected components of orbits

	References
	Index

