ANUPQ
A GAP4 Package

Version 3.1.1
An interface to the

ANU pq Standalone Version 1.9

Eamonn O’Brien
Department of Mathematics
University of Auckland
Private Bag 92019, Auckland, New Zealand

e-mail: obrien@math.auckland.ac.nz
and

Max Horn
AG Algebra
Mathematisches Institut
Justus-Liebig-Universitit Gielen
Arndtstralie 2, D-35392 Gielen, Germany
e-mail: max.horn@math.uni-giessen.de

GAP interface code by

Werner Nickel
AG 2, Fachbereich Mathematik, TU Darmstadt
Schlossgartenstr. 7, 64289 Darmstadt, Germany
and
Greg Gamble
Department of Mathematics and Statistics
Curtin University
GPO Box U 1987, Perth WA 6845, Australia
email: Greg.Gamble@uwa.edu.au

November 2013

1.1
1.2

2.1
2.2
23

3.1
32
33

3.4
3.5

3.6

4.1
4.2
43
4.4

5.1

Introduction
Authors and Acknowledgements
Change history

Mathematical Background and
Terminology

Basic notions
The p-quotient Algorithm

The p-group generation Algorithm,
Standard Presentation, Isomorphism
Testing

Infrastructure
Loading the ANUPQ Package
The ANUPQData Record

Setting the Verbosity of ANUPQ via Info
and InfoANUPQ

Utility Functions

Attributes and a Property for fp and pc
p-groups

Hints and Warnings regarding the use of
Options

Non-interactive ANUPQ functions
Computing p-Quotients

Computing Standard Presentations
Testing p-Groups for Isomorphism
Computing Descendants of a p-Group
Interactive ANUPQ functions

Starting and Stopplng Interactive ANUPQ
Processes

10
11
11
12

14
15

16

17
20
20
24
26
27
30

30

52

53

54

5.5

6.1

7.1
7.2
7.3

7.4

Al
A2

A3
A4

Contents

Interactive ANUPQ Process Ut111ty
Functions

Interactive Versions of Non-interactive
ANUPQ Functions

Low-level Interactive ANUPQ Functions
based on menu items of the pq program

Primitive Interactive ANUPQ Process
Read/Write Functions

ANUPQ Options

Detailed descriptions of ANUPQ Options
Installing the ANUPQ Package

Testing your ANUPQ installation
Running the pq program as a standalone

Setting the Verbosity of ANUPQ via Info
and InfoANUPQ

Utility Functions
Examples
The Relators Option

The Identities Option and
PqEvaluateldentities Function

A Large Example
Developing descendants trees
Bibliography

Index

31

31

38

51
53
54
59
60
61

62
62
63
65

66
69
71
76
77

Introduction

The GAP 4 package ANUPQ provides an interface to the ANU pq C progam written by Eamonn O’Brien, making the
functionality of the C program available to GAP. Henceforth, we shall refer to the ANUPQ package when referring
to the GAP interface, and to the ANU pq program or just pq when referring to that C program.

The pq program consists of implementations of the following algorithms:

1. A p-quotient algorithm to compute pc-presentations for p-factor groups of finitely presented groups.
2. A p-group generation algorithm to generate pc presentations of groups of prime power order.

3. A standard presentation algorithm used to compute a canonical pc-presentation of a p-group.

4. An algorithm which can be used to compute the automorphism group of a p-group.

This part of the pq program is not accessible through the ANUPQ package. Instead, users are advised to consider
the GAP 4 package AutPGrp by Bettina Eick and Eamonn O’Brien, which implements a better algorithm in GAP
for the computation of automorphism groups of p-groups.

The current version of the ANUPQ package requires GAP 4.5, and version 1.5 of the AutPGrp package. All code that
made the package compatible with earlier versions of GAP has been removed. If you must use an older GAP version
and cannot upgrade (which we strongly recommend), then you may try using an older ANUPQ version. However,
you should not use versions of the ANUPQ package older than 2.2, since they are known to have bugs.

How to read this manual

It is not expected that readers of this manual will read it in a linear fashion from cover to cover; some sections contain
material that is far too technical to be absorbed on a first reading.

Firstly, installers of the ANUPQ package will need to read Chapter 7, if they have not already gleaned these details
from the README file.

Once the ANUPQ package is installed, users of the ANUPQ package will benefit most by first reading Chapter 2,
which gives a brief description of the background and terminology used (this chapter also cites a number of references
for further reading), and the introduction of Chapter 3 (skip the remainder of the chapter on a first reading).

Then the user/reader should pursue Chapter 4 in detail, delving into Chapter 6 as necessary for the options of the
functions that are described. The user will become best acquainted with the ANUPQ package by trying the examples.
This chapter describes the non-interactive functions of the ANUPQ package, i.e. “one-shot” functions that invoke the
pq program in such a way that once GAP has got what it needs, the pq is allowed to exit. It is expected that most of
the time, users will only need these functions.

Advanced users will want to explore Chapter 5 which describes all the interactive functions of the ANUPQ package;
these are functions that extract information via a dialogue with a running pq process. Occasionally, a user needs the
“next step”’; the functions provided in this chapter make use of data from previous steps retained by the pq program,
thus allowing the user to interact with the pq program like one can when one uses the pq program as a stand-alone
(see guide.dvi in the standalone-doc directory).

After having read Chapters 4 and 5, cross-references will have taken the reader into Chapter 6; by this stage, the reader
need only read the introduction of Chapter 6.

After the reader has developed some facility with the ANUPQ package, she should explore the examples described in
Appendix A.

4 Chapter 1. Introduction

If you run into trouble using the ANUPQ functions, some troubleshooting hints are given in Section 3.6. If the
troubleshooting hints don’t help, Section 1.1 below, gives contact details for the authors of the components of the
ANUPQ package.

1.1 Authors and Acknowledgements

The C implementation of the ANU pq standalone was developed by

Eamonn 0’Brien
Department of Mathematics
University of Auckland
Private Bag 92019
Auckland

New Zealand

email: obrien@math.auckland.ac.nz
New co-maintainer

Max Horn

AG Algebra

Mathematisches Institut
Justus-Liebig-Universitédt Gieflen
Arndtstrafle 2, D-35392 Gieflen, Germany

email: max.horn@math.uni-giessen.de

joined the team in November, 2011.

The GAP 4 version of this package was adapted from the GAP 3 version by

Werner Nickel
AG 2, Fachbereich Mathematik, TU Darmstadt
Schlossgartenstr. 7, 64289 Darmstadt, Germany

An interactive interface using iostreams was developed with the assistance of Werner Nickel by

Greg Gamble

Department of Mathematics and Statistics
Curtin University

GPO Box U 1987, Perth WA 6845, Australia

email: Greg.Gamble@uwa.edu.au

The authors would like to thank Joachim Neubiiser for his careful proof-reading and advice, and for formulating
Chapter 2.

We would also like to thank Bettina Eick who by her testing and provision of examples helped us to eliminate a
number of bugs and who provided a number of valuable suggestions for extensions of the package beyond the GAP 3
capabilities.

If you find a bug, the last section of ANUPQ’s README describes the information we need and where to send us a bug
report; please take the time to read this (i.e. help us to help you).

Section 2. Change history 5

1.2 Change history

Below we list the main changes between versions of the ANUPQ package.

3.1.1 The ANUPQ package now requires at least GAP 4.5 and version 1.5 of the AutPGrp package.

3.0

2.0

1.

5

Max Horn fixed many warnings in the pq program code (pq program is now version 1.9).

Max Horn improved the build system to use GNU autoconf. Various Makefiles are now more robust, and
compatible with both GAP 4.4 and 4.5.

Backward compatibility code for pre-4.4 versions of GAP removed. The ANUPQ package now requires at least
GAP 4.4 and version 1.2 of the AutPGrp package, and the AutPGrp package is now essential.

Deprecated commands replaced by GAP 4.4 commands, e.g. PrimePGroup replaced Prime0fPGroup, Read-
Package replaced ReadPkg, including in the pq program code (so pq program is now version 1.8).

Improved non-isomorphism test in IsPqIsomorphicPGroup using suggestion made by Marco Costantini (thanksfi
Marco).

Removed pkgbanner option that used to control how the ANUPQ package banner was displayed.
Corrected a typo. in PackageInfo.g.
Binomial coefficient algorithm in pq program (now version 1.7) modified to avoid overflow.

A bug discovered by Tobias RoBmann was fixed. It was caused in the ANUPQ package’s interface by not passing
on the parameter StepSize to the pq program properly. This bug could result in computing the wrong number
of descendants if a StepSize different from 1 was chosen.

Changes suggested by Gary Zablackis were implemented in order to make the package run under Windows with
cygwin:

— use [grp] as default filename instead of <grp>,

— add target to the makefile for compiling the pq program with cygwin, and

— run PqQuitAll() more often in test examples. This reduces the number of simultaneously running pro-
cesses and avoids bumping into system limits.

Changes to pq program (now version 1.6) and GAP code to fix bug reported by Boris Girnat (thanks Boris!)
where too many descendants were generated for a group of class more than 1 with insoluble automorphism
group. Also more changes for GAP 4.4, for which

— option pkgbanner for suppression of the package banner is deprecated (now does nothing); its function
is now provided by an optional argument of the LoadPackage; see Section 76.2.1 in the GAP Reference
Manual); and

— the package banner is no longer Info-ed at InfoANUPQ level 1, and so cannot be suppressed by setting the
InfoANUPQ level to O.

For GAP 4.3fix4, the previous behaviour for the display/suppression and Info-ing of the banner is unchanged,
and RequirePackage must be used rather than the new command LoadPackage.

PgSupplementInnerAutomorphisms now returns a record analogous to the AutomorphismGroupPGroup
function of the AutPGrp package, and AutomorphismGroupPGroup rather than PqSupplementInnerAuto-
morphisms is now used to generate the required automorphism group data in descendant calculations. The
corresponding PqExample example has similarly been modified.

Fixed bug in the filtering of ones from input to pq program (thanks to Robert Morse again for the fix). Some
preparatory changes made for GAP 4.4.

Removed an unnecessary file and line from a file in the src directory.

3 Efficiency improvements: in particular, the use of IsSyllableWordsFamily as first argument of some Free-

Group commands.

6 Chapter 1. Introduction

1.2 Fixed some inefficiencies in transmission of relators to the pq program (thanks to Robert Morse for identifying
the problem). Updated for bugfixes in fix4 of GAP 4.3, which required some usages of Pcgs to be replaced by
GeneralizedPcgs. Requires at least GAP 4.3fix4 and an updated AutPGrp package that uses SetGeneral-
izedPcgs in lieu of SetPcgs in its definition of ConvertHybridAutGroup.

1.1 First GAP 4 release. Requires at least GAP 4.2, but GAP 4.3 recommended. Supersedes the earlier GAP 3
version (1.0) in many ways; in particular, it provides an interactive interface using the IOStream technology
introduced in GAP 4.2.

Mathematical
Background and
Terminology

In this chapter we will give a brief description of the mathematical notions used in the algorithms implemented in the
ANU pq program that are made accessible from GAP through this package. For proofs and details we will point to
relevant places in the published literature. Also we will try to give some explanation of terminology that may help to
use the “low-level” interactive functions described in Section 5.4. However, users who intend to use these functions
are strongly advised to acquire a thorough understanding of the algorithms from the quoted literature. There is little
or no checking done in these functions and naive use may result in incorrect results.

2.1 Basic notions

pc Presentations and Consistency
For details, see e.g. [NNN98].

Every finite p-group G has a presentation of the form:
{ar, . an | d) = vi, 1 <i <, fag, aj] = v, 1 <j <k <n}-

where vy is a word in the elements @i, 1,...,a, for1 <j <k <n.

This is called a power-commutator presentation (or pc presentation or pcp) of G, generators from such a presenta-
tion will be referred to as pc generators. In terms of such pc generators every element of G can be written in a “normal
form” af' ...a% with 0 < ¢; < p. Moreover any given product of the generators can be brought into such a normal
form using the defining relations in the above presentation as rewrite rules. Any such process is called collection. For
the discussion of various collection methods see [LGS90] and [VL90a].

Every p-group of order p” has such a pcp on n generators and conversely every such presentation defines a p-group.
However a p-group defined by a pcp on n generators can be of smaller order p™ with m < n. A pcp on n generators
that does in fact define a p-group of order p” is called consistent in this manual, in line with most of the literature
on the algorithms occurring here. A consistent pcp determines a confluent rewriting system (see 38.1.5 of the GAP
Reference Manual) for the group it defines and for this reason often (in particular in the GAP Reference Manual) such
a pcp presentation is also called confluent.

Consistency of a pcp is tantamount to the fact that for any given word in the generators any two collections will yield
the same normal form.

Consistency of a pcp can be checked by a finite set of consistency conditions, demanding that collection of the left
hand side and of the right hand side of certain equations, starting with subproducts indicated by bracketing, will result
in the same normal form. There are 3 types of such equations (that will be referred to in the manual):

(@a = a(a@" (Type 1)
pa = b V(ba),b(a") = (ba)a”) (Type2)
c(ba) = (cb)a (Type 3)

See [VL84] for a description of a sufficient set of consistency conditions in the context of the p-quotient algorithm.

8 Chapter 2. Mathematical Background and Terminology

Exponent-p Central Series and Weighted pc Presentations
For details, see [NNNO98].

The (descending or lower) (exponent-)p-central series of an arbitrary group G is defined by
Py(G) := G, Pi(G) := [G, Pi_1(G)|Pi_1(G)".

For a p-group G this series terminates with the trivial group. G has p-class c if ¢ is the smallest integer such that
P.(G) is the trivial group. In this manual, as well as in much of the literature about the pqg- and related algorithms, the
p-class is often referred to simply by class.

Let the p-group G have a consistent pcp as above. Then the subgroups
(1) < Aap) < A{an,an1) < ...<A@n,...,a)<...<G

form a central series of G. If this refines the p-central series, we can define the weight function w for the pc generators
by w(a;) = k, if a; is contained in Py_;(G) but not in P¢(G).

The pair of such a weight function and a pcp allowing it, is called a weighted pcp.
p-Cover, p-Multiplicator
For details, see [NNNO98].

Let d be the minimal number of generators of the p-group G of p-class ¢. Then G is isomorphic to a factor group F/R
of a free group F of rank d. We denote [F, R]R” by R*. It can be proved (see e.g. [0’B90]) that the isomorphism type
of G* := F/R* depends only on G. G* is called the p-covering group or p-cover of G, and R/R* the p-multiplicator
of G. The p-multiplicator is, of course, an elementary abelian p-group; its minimal number of generators is called the
(p-)multiplicator rank.

Descendants, Capable, Terminal, Nucleus
For details, see [New77] and [O’B90].

Let again G be a p-group of p-class ¢ and d the minimal number of generators of G. A p-group H is a descendant of G
if the minimal number of generators of H is d and H/P.(H) is isomorphic to G. A descendant H of G is an immediate
descendant if it has p-class ¢ 4 1. G is called capable if it has immediate descendants; otherwise it is terminal.

Let G* = F/R* again be the p-cover of G. Then the group P.(G*) is called the nucleus of G. Note that P.(G*) is
contained in the p-multiplicator R/R*.

It is proved (e.g. in [O’B90]) that the immediate descendants of G are obtained as factor groups of the p-cover by
(proper) supplements of the nucleus in the (elementary abelian) p-multiplicator. These are also called allowable.

It is further proved there that every automorphism ¢ of F/R extends to an automorphism o* of the p-cover F/R*
and that the restriction of o* to the multiplicator R/R* is uniquely determined by .. Each extended automorphism
a* induces a permutation of the allowable subgroups. Thus the extended automorphisms determine a group P of
permutations on the set A of allowable subgroups (The group P of permutations will appear in the description of
some interactive functions). Choosing a representative S from each orbit of P on A, the set of factor groups F/S
contains each (isomorphism type of) immediate descendant of G exactly once. For each immediate descendant, the
procedure of computing the p-cover, extending the automorphisms and computing the orbits on allowable subgroups
can be repeated. Iteration of this procedure can in principle be used to determine all descendants of a p-group.

Laws

Let /(xy,...,x,) be a word in the free generators xi, . . ., x, of a free group of rank n. Then I(xy, ..., x,) = 1 is called
a law or identical relation in a group G if /(gy,...,g,) = 1 for any choice of elements g1, ..., g, in G. In particular,
x° = 1is called an exponent law, [[x,y], [u,v]] = 1 the metabelian law, and |[. .. [[x;,x2], x2],...,x] = 1 an Engel

identity.

Section 2. The p-quotient Algorithm 9

2.2 The p-quotient Algorithm

For details, see [HN80], [NO96] and [VL84]. Other descriptions of the algorithm are given in [Sim94].

The pq algorithm successively determines the factor groups of the groups of the p-central series of a finitely presented
(fp) group G. If a bound b for the p-class is given, the algorithm will determine those factor groups up to at most
p-class b. If the p-central series terminates with a subgroup Py (G) with k < b, the algorithm will stop with that group.
If no such bound is given, it will try to find the biggest such factor group.

G/P(G) is the largest elementary abelian p-factor group of G and this can be found from the relation matrix of G
using matrix diagonalisation modulo p. So it suffices to explain how G/P;;(G) is found from G and G/P;(G) for
some i > 1.

This is done, in principle, in two steps: first the p-cover of G; := G/P;(G) is determined (which depends only on G;,
not on G) and then G/P;;|(G) as a factor group of this p-cover.

Finding the p-cover

A very detailed description of the first step is given in [NNN98], from which we just extract some passages in order
to point to some terms occurring in this manual.

Let H be a p-group and p?®) be the order of H/P,(H). So d := d(1) is the minimal number of generators of H. A
weighted pcp of H will be called labelled if for each generator ai, kK > d one relation, having this generator as its right
hand side, is marked as definition of this generator.

As described in [NNN98], a weighted labelled pcp of a p-group can be obtained stepping down its p-central series.

So let us assume that a weighted labelled pcp of G; is given. A straightforward way of of writing down a (not neces-
sarily consistent) pcp for its p-cover is to add generators, one for each relation which is not a definition, and modify
the right hand side of each such relation by multiplying it on the right by one of the new generators — a different
generator for each such relation. Further relations are then added to make the new generators central and of order p.
This procedure is called adding tails. A more formal description of it is again given in [NNN98].

It is important to realise that the “new” generators will generate an elementary abelian group, that is, in additive
notation, a vector space over the field of p elements. As said, the pcp of the p-cover obtained in this way need not be
consistent. Since the pcp of G; was consistent, applying the consistency conditions to the pcp of the p-cover, in case
the presentation obtained for p-cover is not consistent, will produce a set of equations between the new generators,
that, written additively, are linear equations over the field of p elements and can hence be used to remove redundant
generators until a consistent pcp is obtained.

In reality, to follow this straightforward procedure would be forbiddingly inefficient except for very small examples.
There are many ways of a priori reducing the number of “new generators” to be introduced, using e.g. the weights
attached to the generators, and the main part of [NNNOS] is devoted to a detailed discussion with proofs of these
possibilities.

Imposing the Relations of the fp Group

In order to obtain G/P;;1(G) from the pcp of the p-cover of G; = G/P;(G), the defining relations from the original
presentation of G must be imposed. Since G; is a homomorphic image of G, these relations again yield relations
between the “new generators” in the presentation of the p-cover of G;.

Imposing Laws

While we have so far only considered the computation of the factor groups of a given fp group by the groups of
its descending p-central series, the p-quotient algorithm allows a very important variant of this idea: laws can be
prescribed that should be fulfilled by the p-factor groups computed by the algorithm. The key observation here is the
fact that at each step down the descending p-central series it suffices to impose these laws only for a finite number of
words. Again for efficiency of the method it is crucial to keep the number of such words small, and much of [NO96]
and the literature quoted in this paper is devoted to this problem.

In this form, starting with a free group and imposing an exponent law (also referred to as an exponent check) the pq
program has, in fact, found its most noted application in the determination of (restricted) Burnside groups (as reported
in e.g. [HN80], [NO96] and [VLI0Db]).

10 Chapter 2. Mathematical Background and Terminology

Via a GAP program using the “local” interactive functions of the pq program made available through this interface
also arbitrary laws can be imposed via the option Identities (see 6.1.8).

2.3 The p-group generation Algorithm, Standard Presentation, Isomorphism
Testing

For details, see [New77] and [O’B90].

The p-group generation algorithm determines the immediate descendants of a given p-group G up to isomorphism.
From what has been explained in Section 2.1, it is clear that this amounts to the construction of the p-cover, the
extension of the automorphisms of G to the p-cover and the determination of representatives of the orbits of the action
of these automorphisms on the set of supplements of the nucleus in the p-multiplicator.

The main practical problem here is the determination of these representatives. [O’B90] describes methods for this and
the pq program allows choices according to whether space or time limitations must be met.

As well as the descendants of G, the pq program determines their automorphism groups from that of G (see [O’B95]),
which is important for an iteration of the process; this has been used by Eamonn O’Brien, e.g. in the classification of
the 2-groups that are now also part of the Small Groups library available through GAP.

A variant of the p-group generation algorithm is also used to define a standard presentation of a given p-group. This
is done by constructing an isomorphic copy of the given group through a chain of descendants and at each step making
a choice of a particular representative for the respective orbit of capable groups. In a fairly delicate process, subgroups
of the p-multiplicator are represented by echelonised matrices and a first among the labels for standard matrices is
chosen (this is described in detail in [O’B94]).

Finally, the standard presentation provides a way of testing if two given p-groups are isomorphic: the standard presen-
tations of the groups are computed, for practical purposes compacted and the results compared for being identical,
i.e. the groups are isomorphic if and only if their standard presentations are identical.

Infrastructure

Most of the details in this chapter are of a technical nature; the user need only skim over this chapter on a first reading.
Mostly, it is enough to know that

e you must do a LoadPackage ("anupq") ; before you can expect to use a command defined by the ANUPQ
package (details are in Section 3.1);

e partial results of ANUPQ commands and some other data are stored in the ANUPQData global variable (details
are in Section 3.2);

e doing SetInfolLevel (InfoANUPQ, n); for n greater than the default value 1 will give progressively more
information of what is going on “behind the scenes” (details are in Section 7.3);

e in Section 7.4 we describe some utility functions and functions that run examples from the collection of examples
of this package;

e in Section 3.5 we describe the attributes and property NuclearRank, MultiplicatorRank and IsCapable;
and

e in Section 3.6 we describe some troubleshooting strategies. Also this section explains the utility of setting
ANUPQWarnOfOtherOptions := true; (particularly for novice users) for detecting misspelt options and diag-
nosing other option usage problems.

3.1 Loading the ANUPQ Package

To use the ANUPQ package, as with any GAP package, it must be requested explicitly. This is done by calling

gap> LoadPackage("anupq");
Loading ANUPQ (ANU p-Quotient) 3.1
GAP code by Greg Gamble <Greg.Gamble@uwa.edu.au> (address for
correspondence)
Werner Nickel (http://www.mathematik.tu-darmstadt.de/"nickel/)
[uses ANU pq binary (C code program) version: 1.9]
C code by Eamonn 0’Brien (http://www.math.auckland.ac.nz/~obrien)
Co-maintained by Max Horn <max.horn@math.uni-giessen.de>

For help, type: 7ANUPQ

Note that since the ANUPQ package uses the AutomorphimGroupPGroup function of the AutPGrp package and, in
any case, often needs other AutPGrp functions when computing descendants, the user must ensure that the AutPGrp
package is also installed, at least version 1.5. If the AutPGrp package is not installed, the ANUPQ package will fail
to load.

Also, if GAP cannot find a working pq binary, the call to LoadPackage will return fail.

12 Chapter 3. Infrastructure

If you want to load the ANUPQ package by default, you can put the LoadPackage command into your .gaprec file
(see Section “ref:the .gaprc file” in the GAP Reference Manual). By the way, the novice user of the ANUPQ package
should probably also append the line

ANUPQWarnOfOtherOptions := true;

to their . gaprc file, somewhere after the LoadPackage ("anupq"); command (see 3.6.1).

3.2 The ANUPQData Record

This section contains fairly technical details which may be skipped on an initial reading.
ANUPQData \'
is a GAP record in which the essential data for an ANUPQ session within GAP is stored; its fields are:

binary
the path of the pq binary;

tmpdir
the path of the temporary directory used by the pq binary and GAP (i.e. the directory in which all the pq’s
temporary files are created) (also see 3.2.2 below);

outfile
the full path of the default pq output file;

SPimages
the full path of the file GAP_library to which the pq program writes its Standard Presentation images;

version

the version of the current pq binary;
ni

a data record used by non-interactive functions (see below and Chapter 4);
io

list of data records for PqStart (see below and 5.1.1) processes;
topgqlogfile

name of file logged to by ToPQLog (see 3.4.7); and

logstream
stream of file logged to by ToPQLog (see 3.4.7).

Each time an interactive ANUPQ process is initiated via PqStart (see 5.1.1), an identifying number iolndex is
generated for the interactive process and a record ANUPQData. io [iolndex] with some or all of the fields listed below
is created. Whenever a non-interactive function is called (see Chapter 4), the record ANUPQData.ni is updated with
fields that, if bound, have exactly the same purpose as for a ANUPQData. io [iolndex] record.

stream
the TIOStream opened for interactive ANUPQ process iolndex or non-interactive ANUPQ function;

group
the group given as first argument to PqStart, Pq, PqEpimorphism, PqDescendants or PqStandardPre-
sentation (or any synonymous methods);

haspcp
is bound and set to true when a pc presentation is first set inside the pq program (e.g. by PqPcPresen-—
tation or PqRestorePcPresentation or a higher order function like Pq, PqEpimorphism, PqPCover,
PgDescendants or PqStandardPresentation that does a PqPcPresentation operation, but not PqS-
tart which only starts up an interactive ANUPQ process);

Section 2. The ANUPQData Record 13

gens
a list of the generators of the group group as strings (the same as those passed to the pq program);

rels
a list of the relators of the group group as strings (the same as those passed to the pq program);

name
the name of the group whose pc presentation is defined by a call to the pq program (according to the pq
program — unless you have used the GroupName option (see e.g. 4.1.1) or applied the function SetName
(see 12.8.1) to the group, the “generic” name " [grp] " is set as a default);

gpnum
if not a null string, the “number” (i.e. the unique label assigned by the pq program) of the last descendant
processed;

class
the largest lower exponent-p central class of a quotient group of the group (usually group) found by a call to
the pq program;

forder
the factored order of the quotient group of largest lower exponent-p central class found for the group (usually
group) by a call to the pq program (this factored order is given as a list [p, n], indicating an order of p");

pcoverclass
the lower exponent-p central class of the p-covering group of a p-quotient of the group (usually group) found
by a call to the pq program;

workspace
the workspace set for the pq process (either given as a second argument to PqStart, or set by default to
10000000);

menu
the current menu of the pq process (the pq program is managed by various menus, the details of which
the user shouldn’t normally need to know about — the menu field remembers which menu the pq process is
currently “in”);

outfname

is the file to which pq output is directed, which is always ANUPQData.outfile, except when option Setup-
File is used with a non-interactive function, in which case outfname is set to "PQ_OUTPUT";

pQuotient
is set to the value returned by Pq (see 4.1.1) (the field pQepi is also set at the same time);
pQepi
is set to the value returned by PqEpimorphism (see 4.1.2) (the field pQuotient is also set at the same time);

pCover
is set to the value returned by PqPCover (see 4.1.3);

SP
is set to the value returned by PqStandardPresentation or StandardPresentation (see 5.3.4) when
called interactively, for process i (the field SPepi is also set at the same time);

SPepi
is set to the value returned by EpimorphismPqStandardPresentation or EpimorphismStandardPre-
sentation (see 5.3.5) when called interactively, for process i (the field SP is also set at the same time);

descendants
is set to the value returned by PqDescendants (see 4.4.1);

14 Chapter 3. Infrastructure

treepos
if set by a call to PqDescendantsTreeCoclassOne (see A.4.1), it contains a record with fields class, node
and ndes being the information that determines the last descendant with a non-zero number of descendants
processed;

xgapsheet
if set by a call to PqDescendantsTreeCoclassOne (see A.4.1) during an XGAP session, it contains the
XGAP Sheet on which the descendants tree is displayed; and

nextX
if set by a call to PqDescendantsTreeCoclassOne (see A.4.1) during an XGAP session, it contains a list
of integers, the ith entry of which is the x-coordinate of the next node (representing a descendant) for the ith
class.

2» ANUPQDirectoryTemporary(dir) F

calls the UNIX command mkdir to create dir, which must be a string, and if successful a directory object for dir is
both assigned to ANUPQData.tmpdir and returned. The field ANUPQData.outfile is also set to be a file in ANUPQ-
Data.tmpdir, and on exit from GAP dir is removed. Most users will never need this command; by default, GAP
typically chooses a “random” subdirectory of /tmp for ANUPQData.tmpdir which may occasionally have limits on
what may be written there. ANUPQDirectoryTemporary permits the user to choose a directory (object) where one is
not so limited.

3.3 Setting the Verbosity of ANUPQ via Info and InfoANUPQ
1» InfoANUPQ \%

The input to and the output from the pq program is, by default, not displayed. However the user may choose to
see some, or all, of this input/output. This is done via the Info mechanism (see Chapter 7.4 in the GAP Reference
Manual). For this purpose, there is the InfoClass InfoANUPQ. If the InfoLevel of InfoANUPQ is high enough each
line of pq input/output is directed to a call to Info and will be displayed for the user to see. By default, the InfoLevel
of InfoANUPQ is 1, and it is recommended that you leave it at this level, or higher. Messages that the user should
presumably want to see and output from the pq program influenced by the value of the option OutputLevel (see the
options listed in Section 4.1.1), other than timing and memory usage are directed to Info at InfoANUPQ level 1.

To turn off all InfoANUPQ messaging, set the InfoANUPQ level to 0.
There are five other user-intended InfoANUPQ levels: 2, 3,4, 5 and 6.

gap> SetInfolevel (InfoANUPQ, 2);

enables the display of most timing and memory usage data from the pq program, and also the number of identity
instances when the Identities option is used. (Some timing and memory usage data, particularly when profuse in
quantity, is Info-ed at InfoANUPQ level 3 instead.) Note that the the GAP functions time and Runtime (see 7.6.2 in
the GAP Reference Manual) count the time spent by GAP and not the time spent by the (external) pq program.

gap> SetInfoLevel (InfoANUPQ, 3);

enables the display of output of the nature of the first two InfoANUPQ that was not directly invoked by the user
(e.g. some commands require GAP to discover something about the current state known to the pq program). The
identity instances processed under the Identities option are also displayed at this level. In some cases, the pq
program produces a lot of output despite the fact that the OutputLevel (see 6.1.9) is unset or is set to 0; such output
is also Info-ed at InfoANUPQ level 3.

gap> SetInfolevel (InfoANUPQ, 4);
enables the display of all the commands directed to the pq program, behind a “ToPQ> ” prompt (so that you can

distinguish it from the output from the pq program). See Section 3.6 for an example of how this can be a useful
troubleshooting tool.

1»

2»

3»

Section 4. Utility Functions 15

gap> SetInfolevel (InfoANUPQ, 5);

enables the display of the pq program’s prompts for input. Finally,
gap> SetInfoLevel (InfoANUPQ, 6);

enables the display of all other output from the pq program, namely the banner and menus. However, the timing data
printed when the pq program exits can never be observed.

3.4 Utility Functions

PgleftNormComm(elts) F

returns for a list of elements of some group (e.g. elts may be a list of words in the generators of a free or fp group) the
left normed commutator of elts, e.g. if wi, w2, w3 are such elements then PqLeftNormComm([wl, w2, w3]);
is equivalent to Comm(Comm(wil, w2), w3);.

Note: elts must contain at least two elements.
PqGAPRelators(group, rels) F

returns a list of words that GAP understands, given a list rels of strings in the string representations of the generators
of the fp group group prepared as a list of relators for the pq program.

Note: The pq program does not use / to indicate multiplication by an inverse and uses square brackets to represent
(left normed) commutators. Also, even though the pq program accepts relations, all elements of rels must be in relator
form, i.e. a relation of form w/ = w2 must be written as wi* (w2) ~-1.

Here is an example:

gap> F := FreeGroup("a", "b");

<free group on the generators [a, b]>

gap> PqGAPRelators(F, ["axb"2", "[a,b]"2*a", "([a,b,a,b,bl*axb) 2*xa" 1);

[axb™2, a~-1*b~-1xaxb*a”~-1*b~-1*a*b*a, b -1*a”-1*b~-1xa”-1xb*axb~-1*axb*a”
—1xb*a~-1*b~-1*axb*axb " -1*xa”"—-1*b~—1*a”—1*b*a*b~-1*axb~-1*a”"—1*b*a"~-1%b"
—1*xaxbxaxbxa —1*xb*axb~-1*xa*xbka~-1*b*a"-1*xb~-1*axb*xa*xb™-1*xa~-1*b"-1%a”
—-1xb*axb~-1*a*b~-1*a”~-1*xb*a”~-1*b~-1*a*xb*a*b~2*a*b*a]

PqParseWord(word, n) F

parses a word, a string representing a word in the pc generators x1, . . . ,xn, through GAP. This function is provided
as a rough-and-ready check of word for syntax errors. A syntax error will cause the entering of a break-loop, in which
the error message may or may not be meaningful (depending on whether the syntax error gets caught at the GAP or
kernel level).

Note: The reason the generators must be x1, . . . ,xn is that these are the pc generator names used by the pq program
(as distinct from the generator names for the group provided by the user to a function like Pq that invokes the pq
program).

PgExample () F
PqExample(example[, PqStart] [, Display]) F
PqExample(example[, PqStart] [, filename]) F

With no arguments, or with single argument "index", or a string example that is not the name of a file in the examples
directory, an index of available examples is displayed.

With just the one argument example that is the name of a file in the examples directory, the example contained in that
file is executed in its simplest form. Some examples accept options which you may use to modify some of the options
used in the commands of the example. To find out which options an example accepts, use one of the mechanisms for
displaying the example described below.

5»

6>

7»

1»

16 Chapter 3. Infrastructure

Some examples have both non-interactive and interactive forms; those that are non-interactive only have a name
ending in -ni; those that are interactive only have a name ending in -i; examples with names ending in . g also have
only one form; all other examples have both non-interactive and interactive forms and for these giving PqStart as
second argument invokes PqStart initially and makes the appropriate adjustments so that the example is executed or
displayed using interactive functions.

If PqExample is called with last (second or third) argument Display then the example is displayed without being
executed. If the last argument is a non-empty string filename then the example is also displayed without being executed
but is also written to a file with that name. Passing an empty string as last argument has the same effect as passing
Display.

Note: The variables used in PqExample are local to the running of PqExample, so there’s no danger of having some
of your variables over-written. However, they are not completely lost either. They are saved to a record ANUPQ-
Data.examples.vars, i.e. if F is a variable used in the example then you will be able to access it after PqExample
has finished as ANUPQData.examples.vars.F.

Al1PgExamples () F
returns a list of all currently available examples in default UNIX-listing (i.e. alphabetic) order.
GrepPqExamples(string) F

runs the UNIX command grep string over the ANUPQ examples and returns the list of examples for which there is
a match. The actual matches are Info-ed at InfoANUPQ level 2.

ToPQLog ([filename 1) F

With string argument filename, ToPQLog opens the file with name filename for logging; all commands written to the
pq binary (that are Info-ed behind a “ToPQ> ” prompt at InfoANUPQ level 4) are then also written to that file (but
without prompts). With no argument, ToPQLog stops logging to whatever file was being logged to. If a file was already
being logged to, that file is closed and the file with name filename is opened for logging.

3.5 Attributes and a Property for fp and pc p-groups

NuclearRank(G) A
MultiplicatorRank(G) A
IsCapable(G) P

return the nuclear rank of G, p-multiplicator rank of G, and whether G is capable (i.e. true if it is, or false if it is
not), respectively.

These attributes and property are set automatically if G is one of the following:

— an fp group returned by PqStandardPresentation or StandardPresentation (see 4.2.1);

— the image (fp group) of the epimorphism returned by an EpimorphismPgStandardPresentation or Epimor-
phismStandardPresentation call (see 4.2.2); or

— one of the pc groups of the list of descendants returned by PqDescendants (see 4.4.1).

If G is an fp group or a pc p-group and not one of the above and the attribute or property has not otherwise been
set for G, then PqStandardPresentation is called to set all three of NuclearRank, MultiplicatorRank and
IsCapable, before returning the value of the attribute or property actually called. Such a group G must know in
advance that it is a p-group; this is the case for the groups returned by the functions Pq and PqPCover, and the image
group of the epimorphism returned by PqEpimorphism. Otherwise, if you know the group to be a p-group, then this
can be set by typing

SetFeatureObj(G, IsPGroup, true);

or by invoking IsPGroup(G). Note that for an fp group G, the latter may result in a coset enumeration which might
not terminate in a reasonable time.

Note: For G such that HasNuclearRank(G) = true, IsCapable(G) is equivalent to (the truth or falsity of) Nu-
clearRank(G) = 0.

1»

Section 6. Hints and Warnings regarding the use of Options 17

3.6 Hints and Warnings regarding the use of Options

On a first reading we recommend you skip this section and come back to it if and when you run into trouble.

Note: By “options” we refer to GAP options. The pq program also uses the term “option”; to distinguish the two
usages of “option”, in this manual we use the term menu item to refer to what the pq program refers to as an “option”.

Options are passed to the ANUPQ interface functions in either of the two usual mechanisms provided by GAP,
namely:

— options may be set globally using the function PushOptions (see Chapter 8 in the GAP Reference Manual); or

— options may be appended to the argument list of any function call, separated by a colon from the argument list
(see Chapter 4.11 in the GAP Reference Manual), in which case they are then passed on recursively to any
subsequent inner function call, which may in turn have options of their own.

Particularly, when one is using the interactive functions of Chapter 5, one should, in general, avoid using the global
method of passing options. In fact, it is recommended that prior to calling PqStart the OptionsStack be empty.
The essential problem with setting options globally using the function PushOptions is that options pushed onto
OptionsStack, in this way, (generally) remain there until an explicit PopOptions () call is made.

In contrast, options passed in the usual way behind a colon following a function’s arguments (see 4.11 in the GAP
Reference Manual) are local, and disappear from OptionsStack after the function has executed successfully. If
the function does not execute successfully, i.e. it runs into error and the user quits the resulting break loop (see
Section 6.4 in the Reference Manual) rather than attempting to repair the problem and typing return; then, unless
the error at the kernel level, the OptionsStack is reset. If an error is detected inside the kernel (hopefully, this should
occur only rarely, if at all) then the options of that function will not be cleared from OptionsStack; in such cases:

gap> ResetOptionsStack();
#I Options stack is already empty

is usually necessary (see Chapter 8.1.3 in the GAP Reference Manual), which recursively calls PopOptions () until
OptionsStack is empty, or as in the above case warns you that the OptionsStack is already empty.

Note that a function, that is passed options after the colon, will also see any global options or any options passed
down recursively from functions calling that function, unless those options are over-ridden by options passed via
the function. Also, note that duplication of option names for different programs may lead to misinterpretations, and
mis-spelled options will not be “seen”.

The non-interactive functions of Chapter 4 that have Pq somewhere in their name provide an alternative method of
passing options as additional arguments. This has the advantages that options can be abbreviated and mis-spelled
options will be trapped.

ANUPQWarnOfOtherOptions Vv

is a global variable that is by default false. If it is set to true then any function provided by the ANUPQ function
that recognises at least one option, will warn you of “other” options, i.e. options that the function does not recognise.
These warnings are emitted at InfoWarning or InfoANUPQ level 1. This is useful for detecting mis-spelled options.
Here is an example using the function Pq (first described in Chapter 4):

gap> SetInfolevel (InfoANUPQ, 1); # Set InfoANUPQ to default level
gap> ANUPQWarnOfOtherOptions := true;;

gap> # The following makes entry into break loops very
gap> OnBreak := function() Where(0); end;;

gap> F := FreeGroup("a", "b");

<free group on the generators [a, b]>

gap> Pq(F : Prime := 2, Classbound := 1);

#I ANUPQ Warning: Options: ["Classbound"] ignored
#I (invalid for generic function: ‘Pq’).

‘‘quiet’’

18 Chapter 3. Infrastructure
user interrupt at

more0fline := ReadLine(iostream);

Entering break read-eval-print loop ...

you can ’quit;’ to quit to outer loop, or

you can ’return;’ to continue

Here we mistyped ClassBound as Classbound, and after seeing the Info-ed warning that Classbound was ignored,
we typed a control-C (that’s the “user interrupt at” message) which took us into a break loop. Since the Pq
command was not able to finish, the options Prime and Classbound, in particular, will still be on the OptionsStack:

brk> OptionsStack;
[rec(Prime := 2, Classbound :
rec(Prime := 2, Classbound :

1),
1, PqEpiOrPCover :=

"pQuotient")]

The option PqEpiOrPCover is a behind-the-scenes option that need not concern the user. On quitting the break-loop
the OptionsStack is reset and a warning telling you this is emitted:

brk> quit; # to get back to the ‘gap>’ prompt
#I Options stack has been reset

Above, we altered OnBreak (see 6.4.3 in the Reference manual) to reduce the back-tracing on entry into a break loop.
We now restore OnBreak to its usual value.

gap> OnBreak := Where;;

Notes

In cases where functions recursively call others with options (e.g. when using PqExample with options), setting
ANUPQWarnOfOtherOptions := true may give rise to spurious “other” option detections.

It is recommended that the novice user set ANUPQWarnOf0therOptions to true in their . gaprc file (see Section 3.1).
Other Troubleshooting Strategies

There are some other strategies which may have helped us to see our error above. The function Pq recognises the
option OutputLevel (see 6.1.9); if this option is set to at least 1, the pq program provides information on each class
quotient as it is generated:

gap> ANUPQWarnOfOtherOptions := false;; # Set back to normal

gap> F := FreeGroup("a", "b");;

gap> Pq(F : Prime := 2, Classbound := 1, OutputLevel := 1);

#I Lower exponent-2 central series for [grp]

#I Group: [grp]l to lower exponent-2 central class 1 has order 272

#I Group: [grp]l to lower exponent-2 central class 2 has order 275

#I Group: [grp] to lower exponent-2 central class 3 has order 2710
#I Group: [grp] to lower exponent-2 central class 4 has order 2718
#I Group: [grp] to lower exponent-2 central class 5 has order 2732
#I Group: [grp] to lower exponent-2 central class 6 has order 2755
#I Group: [grp] to lower exponent-2 central class 7 has order 2796
#I Group: [grp] to lower exponent-2 central class 8 has order 27167
#I Group: [grp] to lower exponent-2 central class 9 has order 27294
#I Group: [grp] to lower exponent-2 central class 10 has order 27520
#I Group: [grp] to lower exponent-2 central class 11 has order 27932
#I Group: [grp] to lower exponent-2 central class 12 has order 271679
[... output truncated ...]

After seeing the information for the class 2 quotient we may have got the idea that the Classbound option was not
recognised and may have realised that this was due to a mis-spelling. The above will ordinarily cause the available

Section 6. Hints and Warnings regarding the use of Options 19

space to be exhausted, necessitating user-intervention by typing control-C and quit; (to escape the break loop);
otherwise Pq terminates when the class reaches 63 (the default value of ClassBound).

If you have some familiarity with “keyword” command input to the pq binary, then setting the level of InfoANUPQ to
4 would also have indicated a problem:

gap> ResetOptionsStack(); # Necessary, if a break-loop was entered above
gap> SetInfolevel (InfoANUPQ, 4);

gap> Pq(F : Prime := 2, Classbound := 1);
#I ToPQ> 7 #to (Main) p-Quotient Menu
#I ToPQ> 1 #define group

#I ToPQ> name [grp]

#I ToPQ> prime 2

#I ToPQ> class 63

#I ToPQ> exponent O

#I ToPQ> output O

#I ToPQ> generators { a,b }

#I ToPQ> relators { I};

[... output truncated ...]

Here the line “#I ToPQ> class 63” indicates that a directive to set the classbound to 63 was sent to the pq program.

1»

Non-interactive
ANUPQ functions

Here we describe all the non-interactive functions of the ANUPQ package; i.e. “one-shot” functions that invoke the
pq program in such a way that once GAP has got what it needs, the pq program is allowed to exit. It is expected that
most of the time users will only need these functions. The functions interface with three of the four algorithms (see
Chapter 1) provided by the ANU pq C program, and are mainly grouped according to the algorithm of the pq program
they relate to.

In Section 4.1, we describe the functions that give access to the p-quotient algorithm.
Section 4.2 describe functions that give access to the standard presentation algorithm.

Section 4.3 describe functions that implement an isomorphism test for p-groups using the standard presentation algo-
rithm.

In Section 4.4, we describe functions that give access to the p-group generation algorithm.

To use any of the functions one must have at some stage previously typed:

gap> LoadPackage ("anupq") ;

(the response of which we have omitted; see 3.1).

It is strongly recommended that the user try the examples provided. To save typing there is a PqExample equivalent
for each manual example. We also suggest that to start with you may find the examples more instructive if you set the
InfoANUPQ level to 2 (see 7.3.1).

4.1 Computing p-Quotients
Pq(F : options) F

returns for the fp or pc group F, the p-quotient of F specified by options, as a pc group. Following the colon, op-
tions is a selection of the options from the following list, separated by commas like record components (see Sec-
tion “ref:function call!with options” in the GAP Reference Manual). As a minimum the user must supply a value for
the Prime option. Below we list the options recognised by Pq (see Chapter 6 for detailed descriptions).

Prime :=p
ClassBound :=n
Exponent :=n
Relators := rels
Metabelian
Identities := funcs
GroupName := name

Outputlevel :=n
SetupFile := filename

PqWorkspace := workspace

Section 1. Computing p-Quotients 21

Notes: Pq may also be called with no arguments or one integer argument, in which case it is being used interactively
(see 5.3.1); the same options may be used, except that SetupFile and PqWorkspace are ignored by the interactive
Pq function.

See Section 3.5 for the attributes and property NuclearRank, MultiplicatorRank and IsCapable which may be
applied to the group returned by Pgq.

See also PgEpimorphism (4.1.2).

We now give a few examples of the use of Pq. Except for the addition of a few comments and the non-suppression
of output (by not using duplicated semicolons) the next 3 examples may be run by typing: PqExample("Pq");
(see 3.4.4).

gap> LoadPackage("anupq");; # does nothing if ANUPQ is already loaded
gap> # First we get a p-quotient of a free group of rank 2
gap> F := FreeGroup("a", "b");; a := F.1;; b := F.2;;

gap> Pq(F : Prime := 2, ClassBound := 3);

<pc group of size 1024 with 10 generators>

gap> # Now let us get a p—quotient of an fp group

gap> G := F / [a"4, b~4];

<fp group on the generators [a, b 1>

gap> Pq(G : Prime := 2, ClassBound := 3);

<pc group of size 256 with 8 generators>

gap> # Now let’s get a different p-quotient of the same group
gap> Pq(G : Prime := 2, ClassBound := 3, Exponent := 4);
<pc group of size 128 with 7 generators>

gap> # Now we’ll get a p—quotient of another fp group

gap> # which we will redo using the ‘Relators’ option

gap> R := [a"25, Comm(Comm(b, a), a), b~5];

[a™25, a"-1*b~-1xaxbxa”-1*b"-1*a”-1*b*a"2, b5]

gap> H := F / R;

<fp group on the generators [a, b 1>

gap> Pq(H : Prime := 5, ClassBound := 5, Metabelian);
<pc group of size 78125 with 7 generators>

Now we redo the last example to show how one may use the Relators option. Observe that Comm (Comm (b, a), a)
is a left normed commutator which must be written in square bracket notation for the pq program and embedded in a
pair of double quotes. The function PqGAPRelators (see 7.4.2) can be used to translate a list of strings prepared for
the Relators option into GAP format. Below we use it. Observe that the value of R is the same as before.

gap> F := FreeGroup("a", "b");;

gap> # ‘F’ was defined for ‘Relators’. We use the same strings that GAP uses
gap> # for printing the free group generators. It is *not* necessary to
gap> # predefine: a := F.1; etc. (as it was above).

gap> rels := ["a"25", "[b, a, a]", "b°5"];

["a=25", "[b, a, al", "b"5"]

gap> R := PqGAPRelators(F, rels);

[a”25, a"-1xb~-1*a*b*a”~-1*¥b~-1*a~-1*b*a~2, b~5]

gap> H := F / R;

<fp group on the generators [a, b 1>

gap> Pq(H : Prime := 5, ClassBound := 5, Metabelian,

> Relators := rels);

<pc group of size 78125 with 7 generators>

In fact, above we could have just passed F (rather than H), i.e. we could have done:

2>

22 Chapter 4. Non-interactive ANUPQ functions

gap> F := FreeGroup("a", "b");;

gap> rels := ["a"25", "[b, a, al", "b"5"];

["a~25", "[b, a, al", "b"5"]

gap> Pq(F : Prime := 5, ClassBound := 5, Metabelian,
> Relators := rels);

<pc group of size 78125 with 7 generators>

The non-interactive Pq function also allows the options to be passed in two other ways; these alternatives have been
included for those familiar with the GAP 3 version of the ANUPQ package; the preferred method of passing options
is the one already described. Firstly, they may be passed in a record as a second argument; note that any boolean
options must be set explicitly e.g.

gap> Pq(H, rec(Prime := 5, ClassBound := 5, Metabelian := true));
<pc group of size 78125 with 7 generators>

It is also possible to pass them as extra arguments, where each option name appears as a string followed immediately
by its value (if not a boolean option) e.g.

gap> Pq(H, "Prime", 5, "ClassBound", 5, "Metabelian");
<pc group of size 78125 with 7 generators>

The preceding two examples can be run from GAP via PqExample ("Pg-ni"); (see 3.4.4).

This method of passing options permits abbreviation; the only restriction is that the abbreviation must be unique. So
"Pr" may be used for "Prime", "Class" or even just "C" for "ClassBound", etc.

The following example illustrates the use of the option Identities. We compute the largest finite Burnside group of
exponent 5 that also satisfies the 3-Engel identity. Each identity is defined by a function whose arguments correspond
to the variables of the identity. The return value of each of those functions is the identity evaluated on the arguments
of the function.

gap> F := FreeGroup(2);
<free group on the generators [f1, f2 1>

gap> Burnsideb := x->x75;

function(x) ... end

gap> Engel3 := function(x,y) return PqlLeftNormComm([x,y,y,y]); end;
function(x, y) ... end

gap> Pq(F : Prime := 5, Identities := [Burnside5, Engel3]);
#I Class 1 with 2 generators.

#I Class 2 with 3 generators.

#I Class 3 with 5 generators.

#I Class 3 with 5 generators.

<pc group of size 3125 with 5 generators>

The above example can be run from GAP via PqExample ("B5-5-Engel3-Id"); (sce 3.4.4).
PgEpimorphism(F : options) F

returns for the fp or pc group F an epimorphism from F onto the p-quotient of F specified by options; the possible
options options and required option ("Prime") are as for Pq (see 4.1.1). PgEpimorphism only differs from Pq in
what it outputs; everything about what must/may be passed as input to PqgEpimorphism is the same as for Pq. The
same alternative methods of passing options to the non-interactive Pq function are available to the non-interactive
version of PqEpimorphism.

Notes: PqEpimorphism may also be called with no arguments or one integer argument, in which case it is being used
interactively (see 5.3.2), and the options SetupFile and PqWorkspace are ignored by the interactive PqEpimor-
phism function.

3>

Section 1. Computing p-Quotients 23

See Section 3.5 for the attributes and property NuclearRank, MultiplicatorRank and IsCapable which may be
applied to the image group of the epimorphism returned by PqEpimorphism.

gap> F := FreeGroup (2, "F");

<free group on the generators [F1, F2 1>

gap> phi := PqgEpimorphism(F : Prime := 5, ClassBound := 2);
[F1, F2 1 —> [f1, f2]

gap> Image(phi);

<pc group of size 3125 with 5 generators>

Typing: PqExample ("PgEpimorphism") ; runs the above example in GAP (see 3.4.4).
PqgPCover(F : options) F

returns for the fp or pc group F, the p-covering group of the p-quotient of F specified by options, as a pc group, i.e. the
p-covering group of the p-quotient Pq(F : options). Thus the options that PqPCover accepts are exactly those
expected for Pq (and hence as a minimum the user must supply a value for the Prime option; see 4.1.1 for more
details), except in the following special case.

If F is already a p-group, in the sense that HasIsPGroup (F) and IsPGroup(F) is true, then

Prime
defaults to PrimePGroup (F), if not supplied and HasPrimePGroup (F) = true; and

ClassBound
defaults to PClassPGroup (F) if HasPClassPGroup(F) = true if not supplied, or to the usual default of
63, otherwise.

The same alternative methods of passing options to the non-interactive Pq function are available to the non-interactive
version of PqPCover.

We now give a few examples of the use of PqPCover. These examples are just a subset of the ones we gave for Pq
(see 4.1.1), except that in each instance the command Pq has been replaced with PqPCover. Essentially the same
examples may be run by typing: PqExample ("PqPCover"); (see 3.4.4).

gap> F := FreeGroup("a", "b");; a := F.1;; b := F.2;;
gap> PgPCover(F : Prime := 2, ClassBound := 3);

<pc group of size 262144 with 18 generators>

gap>

gap> # Now let’s get a p-cover of a p-quotient of an fp group

gap> G := F / [a"4, b"4];

<fp group on the generators [a, b 1>

gap> PgPCover(G : Prime := 2, ClassBound := 3);

<pc group of size 16384 with 14 generators>

gap>

gap> # Now let’s get a p-cover of a different p-quotient of the same group
gap> PgPCover(G : Prime := 2, ClassBound := 3, Exponent := 4);
<pc group of size 8192 with 13 generators>

gap>

gap> # Now we’ll get a p-cover of a p—quotient of another fp group
gap> # which we will redo using the ‘Relators’ option

gap> R := [a"25, Comm(Comm(b, a), a), b~5];

[2725, a"-1%b"-1xaxb*a”-1xb~-1*a~-1*b*a~2, b5]

gap> H := F / R;

<fp group on the generators [a, b]>

gap> PgPCover(H : Prime := 5, ClassBound := 5, Metabelian);

24 Chapter 4. Non-interactive ANUPQ functions

<pc group of size 48828125 with 11 generators>

gap>

gap> # Now we redo the previous example using the ‘Relators’ option
gap> F := FreeGroup("a", "b");;

gap> rels := ["a"25", "[b, a, al", "b75" 1;

["a"25", "[b, a, al", "b"5"]

gap> PgPCover(F : Prime := 5, ClassBound := 5, Metabelian,

> Relators := rels);

<pc group of size 48828125 with 11 generators>

4.2 Computing Standard Presentations

1» PgStandardPresentation(F : options) F
» StandardPresentation(F : options) M

return the p-quotient specified by options of the fp or pc p-group F, as an fp group which has a standard presentation.
Here options is a selection of the options from the following list (see Chapter 6 for detailed descriptions). Section 3.6
gives some important hints and warnings regarding option usage, and Section “ref:function call!with options” in the
GAP Reference Manual describes their “record”-like syntax.

Prime :=p
pQuotient := Q
ClassBound := n
Exponent :=n
Metabelian
GroupName := name

OutputLevel :=n
StandardPresentationFile := filename
SetupFile := filename

PgWorkspace := workspace

Unless F' is a pc p-group, the user must supply either the option Prime or the option pQuotient (if both Prime
and pQuotient are supplied, the prime p is determined by applying PrimePGroup (see 39.15.20 in the Reference
Manual) to the value of pQuotient).

The options for PqStandardPresentation may also be passed in the two other alternative ways described for Pq
(see 4.1.1). StandardPresentation does not provide these alternative ways of passing options.

Notes: In contrast to the function Pq (see 4.1.1) which returns a pc group, PqStandardPresentation or Standard-
Presentation returns an fp group. This is because the output is mainly used for isomorphism testing for which an fp
group is enough. However, the presentation is a polycyclic presentation and if you need to do any further computation
with this group (e.g. to find the order) you can use the function PcGroupFpGroup (see 46.4.1 in the GAP Reference
Manual) to form a pc group.

If the user does not supply a p-quotient Q via the pQuotient option and the prime p is either supplied or F is a
pc p-group, then a p-quotient Q is computed. If the user does supply a p-quotient Q via the pQuotient option, the
package AutPGrp is called to compute the automorphism group of Q; an error will occur that asks the user to install
the package AutPGrp if the automorphism group cannot be computed.

The attributes and property NuclearRank, MultiplicatorRank and IsCapable are set for the group returned by
PgStandardPresentation or StandardPresentation (see Section 3.5).

We illustrate the method with the following examples.

Section 2. Computing Standard Presentations 25

gap> F := FreeGroup("a", "b");; a := F.1;; b := F.2;;

gap> G := F / [a"25, Comm(Comm(b, a), a), b~5];

<fp group on the generators [a, b 1>

gap> S := StandardPresentation(G : Prime := 5, ClassBound := 10);

<fp group on the generators [f1, f2, £3, f4, f5, f6, f7, £8, f9, f10, fi1,
f12, £13, f14, f15, fie6, f17, £18, £19, £20, £21, £22, £23, f24, £25, £26]>

gap> IsPcGroup(S);

false

gap> # if we need to compute with S we should convert it to a pc group

gap> Spc := PcGroupFpGroup(S);

<pc group of size 1490116119384765625 with 26 generators>

gap>
gap> H := F / [27625, Comm(Comm(Comm(Comm(b, a), a), a), a)/Comm(b, a)~5,
> Comm(Comm(b, a), b), b~625 1;;

gap> StandardPresentation(H : Prime := 5, ClassBound := 15, Metabelian);

<fp group on the generators [f1, f2, £3, f4, f5, f6, f7, £8, f9, f10, fi1,
f12, f13, f14, f15, f16, f17, £18, £19, £20 1>

gap>

gap> F4 := FreeGroup("a", "b", "c", "d");;

gap> a := F4.1;; b :=F4.2;; ¢ := F4.3;; d := F4.4;;

gap> G4 :=F4 / [b™4, b2 / Comm(Comm (b, a), a), d"16,

> a”16 / (c *x d), b8 / (d * c™4)];

<fp group on the generators [a, b, c, d]>

gap> K := Pq(G4 : Prime := 2, ClassBound := 1);

<pc group of size 4 with 2 generators>

gap> StandardPresentation(G4 : pQuotient := K, ClassBound := 14);

<fp group with 53 generators>

Typing: PqExample ("StandardPresentation"); runs the above example in GAP (see 3.4.4).

EpimorphismPqStandardPresentation(F : options) F
EpimorphismStandardPresentation(F : options) M

Each of the above functions accepts the same arguments and options as the function StandardPresentation
(see 4.2.1) and returns an epimorphism from the fp or pc group F onto the finitely presented group given by a standard
presentation, i.e. if S is the standard presentation computed for the p-quotient of F by StandardPresentation then
EpimorphismStandardPresentation returns the epimorphism from F to the group with presentation S.

Note: The attributes and property NuclearRank, MultiplicatorRank and IsCapable are set for the image group of
the epimorphism returned by EpimorphismPqStandardPresentation or EpimorphismStandardPresentation
(see Section 3.5).

We illustrate the function with the following example.

gap> F := FreeGroup(6, "F");

<free group on the generators [F1, F2, F3, F4, F5, F6 1>

gap> # For printing GAP uses the symbols F1, ... for the generators of F
gap> x :=F.1;; y :=F.2;; z :=F.3;; w :=F.4;; a :=F.5;; b :=F.6;;

gap> R := [x"3 / w, y73 / w * a”2 *x b2, w3 / b,

> Comm (y, x) / z, Comm (z, x), Comm (z, y) / a, 273 1;;

gap> Q :=F / R;

<fp group on the generators [F1, F2, F3, F4, F5, F6 1>

gap> # For printing GAP also uses the symbols F1, ... for the generators of Q
gap> # (the same as used for F) ... but the gen’rs of Q and F are different:
gap> Generators0fGroup(F) = GeneratorsOfGroup(Q);

26 Chapter 4. Non-interactive ANUPQ functions

false

gap> G := Pq(Q : Prime := 3, ClassBound := 3);

<pc group of size 729 with 6 generators>

gap> phi := EpimorphismStandardPresentation(Q : Prime := 3,

> ClassBound := 3);

[F1, F2, F3, F4, F5, F6] -> [f1xf272*xf3%xf4"2xf5°2, f1xf2xf3*xf5, £372,
f4x£f6°2, 5, f6]

gap> Source(phi); # This is the group Q (GAP uses F1, ... for gen’r symbols)

<fp group of size infinity on the generators [F1, F2, F3, F4, F5, F6 1>

gap> Range(phi); # This is the group G (GAP uses f1, ... for gen’r symbols)

<fp group on the generators [f1, f2, £3, f4, f5, f6 1>
gap> AssignGeneratorVariables(G);
#I Assigned the global variables [f1, f2, £3, f4, f5, 6]

gap> # Just to see that the images of [F1, ..., F6] do generate G

gap> Group([f1x£27°2xf3, f1xf2*f3+xf4xf5°2xf6°2, £372, f4, f5, f6 1) = G;
true

gap> Size(Image(phi));

729

Typing: PqExample ("EpimorphismStandardPresentation") ; runs the above example in GAP (see 3.4.4).

4.3 Testing p-Groups for Isomorphism

1» IsPqIsomorphicPGroup(G, H)
» IsIsomorphicPGroup(G, H)

F
M

each return true if G is isomorphic to H, where both G and H must be pc groups of prime power order. These functions

compute and compare in GAP the fp groups given by standard presentations for G and H (see 4.2.1).

gap> G := Group((1,2,3,4), (1,3));
Group([(1,2,3,4), (1,3) 1)

gap> P1 := Image(IsomorphismPcGroup(G));
Group([f1, £2, £3 1)

gap> P2 := SmallGroup(8, 5);

<pc group of size 8 with 3 generators>
gap> IsIsomorphicPGroup(P1, P2);
false

gap> P3 := SmallGroup(8, 4);

<pc group of size 8 with 3 generators>
gap> IsIsomorphicPGroup(P1, P3);
false

gap> P4 := SmallGroup(8, 3);

<pc group of size 8 with 3 generators>
gap> IsIsomorphicPGroup(P1, P4);
true

Typing: PqExample ("IsIsomorphicPGroup") ; runs the above example in GAP (see 3.4.4).

1»

Section 4. Computing Descendants of a p-Group 27

4.4 Computing Descendants of a p-Group
PgDescendants(G : options) F

returns, for the pc group G which must be of prime power order with a confluent pc presentation (see “ref:isconfluent!forfj
pc groups” in the GAP Reference Manual), a list of descendants (pc groups) of G. Following the colon options

a selection of the options listed below should be given, separated by commas like record components (see Sec-
tion “ref:function call!with options” in the GAP Reference Manual). See Chapter 6 for detailed descriptions of the
options.

The automorphism group of each descendant D is also computed via a call to the AutomorphismGroupPGroup
function of the AutPGrp package.

ClassBound := n
Relators := rels
OrderBound := n

StepSize := n, StepSize := list
RankInitialSegmentSubgroups := n
SpaceEfficient
CapableDescendants
AllDescendants := false
Exponent :=n

Metabelian

GroupName := name

SubList := sub
BasicAlgorithm
CustomiseOutput := rec
SetupFile := filename

PqWorkspace := workspace

Notes: The function PgDescendants uses the automorphism group of G which it computes via the package AutPGrp.
If this package is not installed an error may be raised. If the automorphism group of G is insoluble, the pq program
will call GAP together with the AutPGrp package for certain orbit-stabilizer calculations. (So, in any case, one should
ensure the AutPGrp package is installed.)

The attributes and property NuclearRank, MultiplicatorRank and IsCapable are set for each group of the list
returned by PqDescendants (see Section 3.5).

The options options for PqDescendants may be passed in an alternative manner to that already described, namely
you can pass PqDescendants a record as an argument, which contains as entries some (or all) of the above mentioned.
Those parameters which do not occur in the record are set to their default values.

Note that you cannot set both OrderBound and StepSize.

In the first example we compute all descendants of the Klein four group which have exponent-2 class at most 5 and
order at most 2°.

28

Chapter 4. Non-interactive ANUPQ functions

gap> F := FreeGroup("a", "b");; a := F.1;; b := F.2;;

gap> G := PcGroupFpGroup(F / [a2, b~2, Comm(b, a)]);

<pc group of size 4 with 2 generators>

gap> des := PgDescendants(G : OrderBound := 6, ClassBound := 5);;

gap> Length(des);

83

gap> List(des, Size);

(8, 8, 8, 16, 16, 16, 32, 16, 16, 16, 16, 16, 32, 32, 64, 64, 32, 32, 32,
32, 32, 32, 32, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 32, 32, 32, 32,
64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 32, 32, 32, 32, 32, 64, 64, 64,
64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64,
64, 64, 64, 64, 64, 64, 64]

gap> List(des, d -> Length(PCentralSeries(d, 2)) - 1);

[2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,23,3,23,3, 3,3, 3,
3, 3,3, 3,3, 3,3, 3, 3,3, 3,3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 4,
4, 4,
4, 4, 4, 5,5, 5,5, 5]

Below, we compute all capable descendants of order 27 of the elementary abelian group of order 9.

gap> F := FreeGroup(2, "g");
<free group on the generators [gl, g2 1>
gap> G := PcGroupFpGroup(F / [F.17°3, F.273, Comm(F.1, F.2) 1);
<pc group of size 9 with 2 generators>
gap> des := PgDescendants(G : OrderBound := 3, ClassBound := 2,
> CapableDescendants) ;
[<pc group of size 27 with 3 generators>,
<pc group of size 27 with 3 generators>]
gap> List(des, d -> Length(PCentralSeries(d, 3)) -1);
(2, 2]
gap> # For comparison let us now compute all descendants
gap> PgDescendants(G : OrderBound := 3, ClassBound := 2);
[<pc group of size 27 with 3 generators>,
<pc group of size 27 with 3 generators>,
<pc group of size 27 with 3 generators>]

In the third example, we compute all capable descendants of the elementary abelian group of order 5* which have
exponent-5 class at most 3, exponent 5, and are metabelian.

gap> F := FreeGroup(2, "g");;
gap> G := PcGroupFpGroup(F / [F.1°5, F.2°5, Comm(F.2, F.1)]);
<pc group of size 25 with 2 generators>
gap> des := PgDescendants(G : Metabelian, ClassBound := 3,
> Exponent := 5, CapableDescendants);
[<pc group of size 125 with 3 generators>,

<pc group of size 625 with 4 generators>,

<pc group of size 3125 with 5 generators>]
gap> List(des, d -> Length(PCentralSeries(d, 5)) - 1);
[2,3,3]
gap> List(des, d -> Length(DerivedSeries(d)));
[3,3,3]
gap> List(des, d -> Maximum(List(Elements(d), Order)));
[5,5,5]

2»

3

4»

Section 4. Computing Descendants of a p-Group 29

The examples "PgDescendants-1", "PgDescendants-2" and "PqDescendants-3" (in order) are essentially the
same as the above three examples (see 3.4.4).

PgSupplementInnerAutomorphisms(D) F

returns a generating set for a supplement to the inner automorphisms of D, in the form of a record with fields agAutos,
agOrder and glAutos, as provided by the pq program. One should be very careful in using these automorphisms for
a descendant calculation.

Note: In principle there must be a way to use those automorphisms in order to compute descendants but there does
not seem to be a way to hand back these automorphisms properly to the pq program.

gap> Q := Pq(FreeGroup(2) : Prime := 3, ClassBound := 1);
<pc group of size 9 with 2 generators>
gap> des := PgDescendants(Q : StepSize := 1);
[<pc group of size 27 with 3 generators>,
<pc group of size 27 with 3 generators>,
<pc group of size 27 with 3 generators>]
gap> S := PqSupplementInnerAutomorphisms(des[3]);
rec(agAutos := [], agOrder := [3, 2, 2, 2],
glAutos := [Pcgs([f1, f2, £3 1) -> [f1xf2"2, f2, £3],
Pcgs([f1, £2, £3 1) -> [£f1"2, f2, £3°2 1],
Pcgs([f1, £2, £3 1) -> [£f1°2, £2, £3°2 1 1)
gap> A := AutomorphismGroupPGroup(des[3]);
rec(
aghutos := [Pcgs([f1, £2, £3 1) -> [£1°2, 2, £372 1],
Pcgs([f1, £f2, £3 1) -> [f1xf2"2, f2, f3],
Pcgs([f1, £2, £3 1) -> [f1x£f3, f2, £3 1,
Pcgs([f1, £f2, £3 1) -> [f1, £f2%£f3, £3]], agOrder := [2, 3, 3, 3],
glAutos := [], glOper := [], glOrder := 1,

group := <pc group of size 27 with 3 generators>,
one := IdentityMapping(<pc group of size 27 with 3 generators>),
size := 54)

Typing: PqExample ("PqSupplementInnerAutomorphisms") ; runs the above example in GAP (see 3.4.4).

Note that by also including PqStart as a second argument to PqExample one can see how it is possible, with the aid
of PgSetPQuotientToGroup (see 5.3.7), to do the equivalent computations with the interactive versions of Pq and
PgDescendants and a single pq process (recall pq is the name of the external C program).

PqlList(filename [: SubList := sub]) F
reads a file with name filename (a string) and returns the list L of pc groups (or with option SubList a sublist of L
or a single pc group in L) defined in that file. If the option SubList is passed and has the value sub, then it has the

same meaning as for PqDescendants, i.e. if sub is an integer then PqList returns L [sub]; otherwise, if sub is a list
of integers PqList returns Sublist (L, sub).

Both PqList and SavePqList (see 4.4.4) can be used to save and restore a list of descendants (see 4.4.1).

SavePqlist(filename, list) F

writes a list of descendants /ist to a file with name filename (a string).

SavePqList and PqList (see 4.4.3) can be used to save and restore, respectively, the results of PqDescendants (see
44.1).

vy

Interactive
ANUPQ functions

Here we describe the interactive functions defined by the ANUPQ package, i.e. the functions that manipulate and
initiate interactive ANUPQ processes. These are functions that extract information via a dialogue with a running pq
process (process used in the UNIX sense). Occasionally, a user needs the “next step”; the functions provided in this
chapter make use of data from previous steps retained by the pq program, thus allowing the user to interact with the
pq program like one can when one uses the pq program as a stand-alone (see guide.dvi in the standalone-doc
directory).

An interactive ANUPQ process is initiated by PqStart and terminated via PqQuit; these functions are described in
Section 5.1.

Each interactive ANUPQ function that manipulates an already started interactive ANUPQ process, has a form where
the first argument is the integer i returned by the initiating PqStart command, and a second form with one argument
fewer (where the integer i is discovered by a default mechanism, namely by determining the least integer i for which
there is a currently active interactive ANUPQ process). We will thus commonly say that “for the ith (or default)
interactive ANUPQ process” a certain function performs a given action. In each case, it is an error if i is not the index
of an active interactive process, or there are no current active interactive processes.

Notes: The global method of passing options (via PushOptions), should not be used with any of the interactive
functions. In fact, the OptionsStack should be empty at the time any of the interactive functions is called.

On quitting GAP, PqQuitAl1() ; is executed, which terminates all active interactive ANUPQ processes. If GAP is
killed without quitting, before all interactive ANUPQ processes are terminated, zombie processes (still living child
processes whose parents have died), may result. Since zombie processes do consume resources, in such an event,
the responsible computer user should seek out and terminate those zombie processes (e.g. on Linux: ps xw | grep
pq gives you information on the pq processes corresponding to any interactive ANUPQ processes started in a GAP
session; you can then do kill N for each number N appearing in the first column of this output).

5.1 Starting and Stopping Interactive ANUPQ Processes

PgStart(G, workspace : options)
PgStart(G : options)

PqStart(workspace : options)
PgStart(: options)

™ T

activate an iostream for an interactive ANUPQ process (i.e. PqStart starts up a pq process and opens a GAP iostream
to “talk” to that process) and returns an integer i that can be used to identify that process. The argument G should be
an fp group or pc group that the user intends to manipulate using interactive ANUPQ functions. If the function is
called without specifying G, a group can be read in by using the function PqRestorePcPresentation (see 5.4.12).
If PgStart is given an integer argument workspace, then the pq program is started up with a workspace (an integer
array) of size workspace (i.e. 4 X workspace bytes in a 32-bit environment); otherwise, the pq program sets a default
workspace of 10000000.

The only options currently recognised by PqStart are Prime, Exponent and Relators (see Chapter 6 for detailed
descriptions of these options) and if provided they are essentially global for the interactive ANUPQ process, except
that any interactive function interacting with the process and passing new values for these options will over-ride the
global values.

3»

2»

Section 3. Interactive Versions of Non-interactive ANUPQ Functions 31

PqQuit(i) F
PqQuit () F

closes the stream of the ith or default interactive ANUPQ process and unbinds its ANUPQData. io record.

Note: It can happen that the pq process, and hence the GAP iostream assigned to communicate with it, can die, e.g. by
the user typing a Ctr1-C while the pq process is engaged in a long calculation. IsPgProcessAlive (see 5.2.3) is
provided to check the status of the GAP iostream (and hence the status of the pq process it was communicating with).

PqQuitAl1() F

is provided as a convenience, to terminate all active interactive ANUPQ processes with a single command. It is
equivalent to executing PqQuit (i) for all active interactive ANUPQ processes i (see 5.1.2).

5.2 Interactive ANUPQ Process Utility Functions

PgProcessIndex(i) F
PgProcessIndex () F

With argument i, which must be a positive integer, PqProcessIndex returns i if it corresponds to an active interactive
process, or raises an error. With no arguments it returns the default active interactive process or returns fail and emits
a warning message to Info at InfoANUPQ or InfoWarning level 1.

Note: Essentially, an interactive ANUPQ process i is “active” if ANUPQData.io [i] is bound (i.e. we still have some
data telling us about it). Also see 5.1.1.

PgProcessIndices() F
returns the list of integer indices of all active interactive ANUPQ processes (see 5.2.1 for the meaning of “active”).

IsPgProcessAlive(i) F
IsPgProcessAlive() F

return true if the GAP iostream of the ith (or default) interactive ANUPQ process started by PqStart is alive (i.e. can
still be written to), or false, otherwise. (See the notes for 5.1.1 and 5.1.2.)

If the user does not yet have a gap> prompt then usually the pq program is still away doing something and an ANUPQ
interface function is still waiting for a reply. Typing a Ctr1-C (i.e. holding down the Ctrl key and typing c) will stop
the waiting and send GAP into a break-loop, from which one has no option but to quit;. The typing of Ctrl-C,
in such a circumstance, usually causes the stream of the interactive ANUPQ process to die; to check this we provide
IsPgProcessAlive (see 5.2.3).

The GAP iostream of an interactive ANUPQ process will also die if the pq program has a segmentation fault. We do
hope that this never happens to you, but if it does and the failure is reproducible, then it’s a bug and we’d like to know
about it. Please read the README that comes with the ANUPQ package to find out what to include in a bug report and
who to email it to.

5.3 Interactive Versions of Non-interactive ANUPQ Functions

Pq(i : options) F
Pq(: options) F

return, for the fp or pc group (let us call it F), of the ith or default interactive ANUPQ process, the p-quotient of F
specified by options, as a pc group; F must previously have been given (as first argument) to PqStart to start the inter-
active ANUPQ process (see 5.1.1) or restored from file using the function PqRestorePcPresentation (see 5.4.12).
Following the colon options is a selection of the options listed for the non-interactive Pq function (see 4.1.1), separated
by commas like record components (see Section “ref:function call!with options” in the GAP Reference Manual), ex-
cept that the options SetupFile or PqWorkspace are ignored by the interactive Pq, and RedoPcp is an option only
recognised by the interactive Pq i.e. the following options are recognised by the interactive Pq function:

32 Chapter 5. Interactive ANUPQ functions

Prime :=p
ClassBound := n
Exponent :=n
Relators := rels
Metabelian
Identities := funcs
GroupName := name

OutputLevel :=n
RedoPcp

Detailed descriptions of the above options may be found in Chapter 6.

As a minimum the Pq function must have a value for the Prime option, though Prime need not be passed again in
the case it has previously been provided, e.g. to PqStart (see 5.1.1) when starting the interactive process.

The behaviour of the interactive Pq function depends on the current state of the pc presentation stored by the pq
program:

1. If no pc presentation has yet been computed (the case immediately after the PqStart call initiating the process)
then the quotient group of the input group of the process of largest lower exponent-p class bounded by the value
of the ClassBound option (see 6.1.2) is returned.

2. If the current pc presentation of the process was determined by a previous call to Pq or PqEpimorphism, and
the current call has a larger value ClassBound then the class is extended as much as is possible and the quotient
group of the input group of the process of the new lower exponent-p class is returned.

3. If the current pc presentation of the process was determined by a previous call to PqPCover then a consistent pc
presentation of a quotient for the current class is determined before proceeding as in 2.

4. If the RedoPcp option is supplied the current pc presentation is scrapped, all options must be re-supplied (in
particular, Prime must be supplied) and then the Pq function proceeds as in 1.

See Section 3.5 for the attributes and property NuclearRank, MultiplicatorRank and IsCapable which may be
applied to the group returned by Pq.

The following is one of the examples for the non-interactive Pq redone with the interactive version. Also, we set the
option OutputLevel to 1 (see 6.1.9), in order to see the orders of the quotients of all the classes determined, and we
set the InfoANUPQ level to 2 (see 7.3.1), so that we catch the timing information.

gap> F := FreeGroup("a", "b");; a := F.1;; b := F.2;;

gap> G := F / [a"4, b~4];

<fp group on the generators [a, b 1>

gap> PqStart(G);

1

gap> SetInfolevel (InfoANUPQ, 2); #To see timing information

gap> Pq(: Prime := 2, ClassBound := 3, OutputlLevel := 1);

#I Lower exponent-2 central series for [grp]

#I Group: [grp] to lower exponent-2 central class 1 has order 272
#I Group: [grp] to lower exponent-2 central class 2 has order 275
#I Group: [grp] to lower exponent-2 central class 3 has order 278
#I Computation of presentation took 0.00 seconds

<pc group of size 256 with 8 generators>

PgEpimorphism(i : options) F
PgEpimorphism(: options) F
return, for the fp or pc group (let us call it F), of the ith or default interactive ANUPQ process, an epimorphism from
F onto the p-quotient of F specified by options; F must previously have been given (as first argument) to PqStart

Section 3. Interactive Versions of Non-interactive ANUPQ Functions 33

to start the interactive ANUPQ process (see 5.1.1). Since the underlying interactions with the pq program effected
by the interactive PqEpimorphism are identical to those effected by the interactive Pq, everything said regarding the
requirements and behaviour of the interactive Pq function (see 5.3.1) is also the case for the interactive PqEpimor-
phism.

Note: See Section 3.5 for the attributes and property NuclearRank, MultiplicatorRank and IsCapable which
may be applied to the image group of the epimorphism returned by PqEpimorphism.

PqPCover(i : options) F
PgPCover(: options) F

return, for the fp or pc group of the ith or default interactive ANUPQ process, the p-covering group of the p-quotient
Pq(i : options) or Pq(: options), modulo the following:

1. If no pc presentation has yet been computed (the case immediately after the PqStart call initiating the process)
and the group F of the process is already a p-group, in the sense that HasIsPGroup (F) and IsPGroup(F) is
true, then

Prime
defaults to PrimePGroup (F), if not supplied and HasPrimePGroup (F) = true; and

ClassBound
defaults to PClassPGroup (F) if HasPClassPGroup(F) = true if not supplied, or to the usual default of
63, otherwise.

2. If a pc presentation has been computed and none of options is RedoPcp or if no pc presentation has yet been
computed but 1. does not apply then PqPCover (i : options) ; is equivalent to:

Pq(i : options) ;
PgPCover (i) ;

3. If the RedoPcp option is supplied the current pc presentation is scrapped, and PqPCover proceeds as in 1. or 2.
but without the RedoPcp option.

PgStandardPresentation([i]: options) F
StandardPresentation([i]1: options) M

return, for the ith or default interactive ANUPQ process, the p-quotient of the group F of the process, specified
by options, as an fp group which has a standard presentation. Here options is a selection of the options from the
following list (see Chapter 6 for detailed descriptions); this list is the same as for the non-interactive version of
PgStandardPresentation except for the omission of options SetupFile and PqWorkspace (see 4.2.1).

Prime :=p

pQuotient := Q

ClassBound := n
Exponent :=n
Metabelian
GroupName := name

OutputLevel :=n

StandardPresentationFile := filename

Unless F is a pc p-group, or the option Prime has been passed to a previous interactive function for the process to
compute a p-quotient for F, the user must supply either the option Prime or the option pQuotient (if both Prime

34 Chapter 5. Interactive ANUPQ functions

and pQuotient are supplied, the prime p is determined by applying PrimePGroup (see 39.15.20 in the Reference
Manual) to the value of pQuotient).

Taking one of the examples for the non-interactive version of StandardPresentation (see 4.2.1) that required two
separate calls to the pq program, we now show how it can be done by setting up a dialogue with just the one pq
process, using the interactive version of StandardPresentation:

gap> F4 := FreeGroup("a", "b", "c", "d");;

gap> a := F4.1;; b := F4.2;; ¢ := F4.3;; d := F4.4;;

gap> G4 :=F4 / [b4, b2 / Comm(Comm (b, a), a), d"16,

> a”16 / (c * d), b8 / (d * c"4) 1;

<fp group on the generators [a, b, c, d 1>

gap> SetInfolevel (InfoANUPQ, 1); #Only essential Info please

gap> PgStart(G4); #Start a new interactive process for a new group
2

gap> K := Pq(2 : Prime := 2, ClassBound := 1); #‘pq’ process no. is 2
<pc group of size 4 with 2 generators>

gap> StandardPresentation(2 : pQuotient := K, ClassBound := 14);
<fp group with 53 generators>

Notes

In contrast to the function Pq (see 4.1.1) which returns a pc group, PqStandardPresentation or StandardPre-
sentation returns an fp group. This is because the output is mainly used for isomorphism testing for which an fp
group is enough. However, the presentation is a polycyclic presentation and if you need to do any further computation
with this group (e.g. to find the order) you can use the function PcGroupFpGroup (see 46.4.1 in the GAP Reference
Manual) to form a pc group.

If the user does not supply a p-quotient Q via the pQuotient option, and the prime p is either supplied, stored, or F'
is a pc p-group, then a p-quotient Q is computed. (The value of the prime p is stored if passed initially to PqStart
or to a subsequent interactive process.) Note that a stored value for pQuotient (from a prior call to Pq) does not
have precedence over a value for the prime p. If the user does supply a p-quotient Q via the pQuotient option, the
package AutPGrp is called to compute the automorphism group of Q; an error will occur that asks the user to install
the package AutPGrp if the automorphism group cannot be computed.

If any of the interactive functions PqStandardPresentation, StandardPresentation, EpimorphismPgStan-
dardPresentation or EpimorphismStandardPresentation has been called previously for an interactive pro-
cess, a subsequent call to any of these functions for the same process returns the previously computed value. Note that
all these functions compute both an epimorphism and an fp group and store the results in the SPepi and SP fields of the
data record associated with the process. See the example for the interactive EpimorphismStandardPresentation
(5.3.5).

The attributes and property NuclearRank, MultiplicatorRank and IsCapable are set for the group returned by
PgStandardPresentation or StandardPresentation (see Section 3.5).

EpimorphismPqStandardPresentation([i]1: options) F
EpimorphismStandardPresentation([i 1: options) M

Each of the above functions accepts the same arguments and options as the interactive form of StandardPresen-
tation (see 5.3.4) and returns an epimorphism from the fp or pc group F of the ith or default interactive ANUPQ
process onto the finitely presented group given by a standard presentation, i.e. if S is the standard presentation com-
puted for the p-quotient of F by StandardPresentation then EpimorphismStandardPresentation returns the
epimorphism from F to the group with presentation S. The group F' must have been given (as first argument) to
PgStart to start the interactive ANUPQ process (see 5.1.1).

Taking our earlier non-interactive example (see 4.2.2) and modifying it a little, we illustrate, as for the interactive
StandardPresentation (see 5.3.4), how something that required two separate calls to the pq program can now

Section 3. Interactive Versions of Non-interactive ANUPQ Functions 35

be achieved with a dialogue with just one pq process. Also, observe that calls to one of the standard presentation
functions (as mentioned in the notes of 5.3.4) computes and stores both an fp group with a standard presentation
and an epimorphism; subsequent calls to a standard presentation function for the same process simply return the
appropriate stored value.

gap> F := FreeGroup(6, "F");;

gap> x :=F.1;; y :=F.2;; z :=F.3;; w :=F.4;; a :=F.5;; b :=F.6;;

gap> R := [x"3 / w, y°3 / w *x a"2 * b"2, w'3 / b,

> Comm (y, x) / z, Comm (z, x), Comm (z, y) / a, z°3 1;

[F1"3%F4"-1, F2"3*F4"-1xF5"2%F672, F4"3xF67-1, F2 -1*F1"-1*F2*F1%F3"-1,
F37-1%F1"-1*F3%F1, F3"-1xF2"-1%F3*F2*F5°-1, F373]

gap> Q :=F / R;

<fp group on the generators [F1, F2, F3, F4, F5, F6 1>

gap> PqStart(Q);

3

gap> G := Pq(3 : Prime := 3, ClassBound := 3);

<pc group of size 729 with 6 generators>

gap> lev := Infolevel(InfoANUPQ);; # Save current InfoANUPQ level

gap> SetInfolLevel (InfoANUPQ, 2); # To see computation times

gap> # It is not necessary to pass the ‘Prime’ option to

gap> # ‘EpimorphismStandardPresentation’ since it was previously

gap> # passed to ‘Pq’:

gap> phi := EpimorphismStandardPresentation(3 : ClassBound := 3);

#I Class 1 3-quotient and its 3-covering group computed in 0.00 seconds

#I Order of GL subgroup is 48

#I No. of soluble autos is O

#I dimU=1 dim N=3 dim M =3

#I nice stabilizer with perm rep

#I Computing standard presentation for class 2 took 0.00 seconds

#I Computing standard presentation for class 3 took 0.01 seconds

[F1, F2, F3, F4, F5, F6] -> [f1xf272*f3%xf4"2xf572, f1xf2xf3*f5, £372,
f4x£f6°2, £5, £6]

gap> # Image of phi should be isomorphic to G ...

gap> # let’s check the order is correct:

gap> Size(Image(phi));

729

gap> # ‘StandardPresentation’ and ‘EpimorphismStandardPresentation’

gap> # behave like attributes, so no computation is done when

gap> # either is called again for the same process

gap> StandardPresentation(3 : ClassBound := 3);

<fp group of size 729 on the generators [f1, f2, £3, f4, f5, f6 1>

gap> # No timing data was Info-ed since no computation was done

gap> SetInfolevel (InfoANUPQ, lev); # Restore previous InfoANUPQ level

A very similar (essential details are the same) example to the above may be executed live, by typing: PqExample (
"EpimorphismStandardPresentation-i");.

Note: The notes for PqStandardPresentation or StandardPresentation (see 5.3.4) apply also to Epimor-
phismPqStandardPresentation or EpimorphismStandardPresentation except that their return value is an
epimorphism onto an fp group, i.e. one should interpret the phrase “returns an fp group” as “returns an epimorphism
onto an fp group” etc.

6>

36 Chapter 5. Interactive ANUPQ functions

PgDescendants(i : options) F
PgDescendants(: options) F

return for the pc group G of the ith or default interactive ANUPQ process, which must be of prime power order with
a confluent pc presentation (see “ref:isconfluent!for pc groups™ in the GAP Reference Manual), a list of descendants
(pc groups) of G. The group G is usually given as first argument to PqStart when starting the interactive ANUPQ
process (see 5.1.1). Alternatively, one may initiate the process with an fp group, use Pq interactively (see 5.3.1) to
create a pc group and use PqSetPQuotientToGroup (see 5.3.7), which involves no computation, to set the pc group
returned by Pq as the group of the process. Note that repeating a call to PqDescendants for the same interactive
ANUPQ process simply returns the list of descendants originally calculated; a warning is emitted at Inf o ANUPQ level
1 reminding you of this should you do this.

After the colon, options a selection of the options listed for the non-interactive PqDescendants function (see 4.4.1),
should be given, separated by commas like record components (see Section “ref:function call!with options” in the
GAP Reference Manual), except that the options SetupFile or PqWorkspace are ignored by the interactive PqDe-
scendants, i.e. the following options are recognised by the interactive PqDescendants function:

ClassBound :=n
Relators := rels
OrderBound := n

StepSize := n, StepSize := list
RankInitialSegmentSubgroups := n
SpaceEfficient
CapableDescendants
AllDescendants := false

Exponent :=n

Metabelian

GroupName := name

SubList := sub

BasicAlgorithm

CustomiseOutput := rec

Notes: The function PqDescendants uses the automorphism group of G which it computes via the package AutPGrp
if the automorphism group of G is not already present. If AutPGrp is not installed an error may be raised. If the
automorphism group of G is insoluble the pq program will call GAP together with the AutPGrp package for certain
orbit-stabilizer calculations.

The attributes and property NuclearRank, MultiplicatorRank and IsCapable are set for each group of the list
returned by PqgDescendants (see Section 3.5).

Let us now repeat the examples previously given for the non-interactive PqDescendants, but this time with the
interactive version of PqDescendants:

Section 3. Interactive Versions of Non-interactive ANUPQ Functions 37

gap> F := FreeGroup("a", "b");; a := F.1;; b := F.2;;

gap> G := PcGroupFpGroup(F / [a2, b"2, Comm(b, a)]);

<pc group of size 4 with 2 generators>

gap> PqStart(G); #This will now be the 4th interactive process running

4

gap> des := PgDescendants(4 : OrderBound := 6, ClassBound := 5);;

gap> Length(des) ;

83

gap> List(des, Size);

[8, 8, 8, 16, 16, 16, 32, 16, 16, 16, 16, 16, 32, 32, 64, 64, 32, 32, 32,
32, 32, 32, 32, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 32, 32, 32, 32,
64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 32, 32, 32, 32, 32, 64, 64, 64,
64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64,
64, 64, 64, 64, 64, 64, 64]

ist(des, d -> Length(PCentralSeries(

, 2, 3, 3, 3, 3, 3, 3, 3,

, 3, 3, 3, 3, 3, 3,

, 4, 4, 4, 4, 4, 4

]

B

w

M
M

B

-

>

B B

W W a
~w W
s w W

s w W

s w o

S wow
~w W
~w W
s w W
How
Rl

-
-

> B

-
-

2, 2
3, 3,

, 4, 4 >
4, 5

>

o> W
O W

B

In the second example we compute all capable descendants of order 27 of the elementary abelian group of order 9.

gap> F := FreeGroup(2, "g");;
gap> G := PcGroupFpGroup(F / [F.1°3, F.2°3, Comm(F.1, F.2)]);
<pc group of size 9 with 2 generators>
gap> PqStart(G); #This will now be the 5th interactive process running
5
gap> des := PgDescendants(5 : OrderBound := 3, ClassBound := 2,
> CapableDescendants) ;
[<pc group of size 27 with 3 generators>,
<pc group of size 27 with 3 generators>]
gap> List(des, d -> Length(PCentralSeries(d, 3)) -1);
[2, 2]
gap> # For comparison let us now compute all descendants
gap> # (using the non-interactive Pq function)
gap> PgDescendants(G : OrderBound := 3, ClassBound := 2);
[<pc group of size 27 with 3 generators>,
<pc group of size 27 with 3 generators>,
<pc group of size 27 with 3 generators>]

In the third example, we compute all capable descendants of the elementary abelian group of order 52 which have
exponent-5 class at most 3, exponent 5, and are metabelian.

gap> F := FreeGroup(2, "g");;
gap> G := PcGroupFpGroup(F / [F.1°5, F.2°5, Comm(F.2, F.1)]);
<pc group of size 25 with 2 generators>
gap> PqStart(G); #This will now be the 6th interactive process running
6
gap> des := PgDescendants(6 : Metabelian, ClassBound := 3,
> Exponent := 5, CapableDescendants);
[<pc group of size 125 with 3 generators>,
<pc group of size 625 with 4 generators>,
<pc group of size 3125 with 5 generators>]

38 Chapter 5. Interactive ANUPQ functions

gap> List(des, d -> Length(PCentralSeries(d, 5)) -1);

[2,3, 3]
gap> List(des, d -> Length(DerivedSeries(d)));
[3, 3, 3]
gap> List(des, d -> Maximum(List(Elements(d), Order)));
[5,5, 51
7» PgSetPQuotientToGroup(i) F
» PgSetPQuotientToGroup() F

for the ith or default interactive ANUPQ process, set the p-quotient previously computed by the interactive Pq function
(see 5.3.1) to be the group of the process. This function is supplied to enable the computation of descendants of a
p-quotient that is already known to the pq program, via the interactive PqDescendants function (see 5.3.6), thus
avoiding the need to re-submit it and have the pq program recompute it.

Note: See the function PqPGSetDescendantToPcp (5.4.48) for a mechanism to make (the p-cover of) a particular
descendants the current group of the process.

The following example of the usage of PqSetPQuotientToGroup, which is essentially equivalent to what is ob-
tained by running PqExample ("PgDescendants-1-i") ;, redoes the first example of 5.3.6 (which computes the
descendants of the Klein four group).

gap> F := FreeGroup("a", "b");

<free group on the generators [a, b]>

gap> procIld := PqStart(F : Prime := 2);

7

gap> Pq(procId : ClassBound := 1);

<pc group of size 4 with 2 generators>

gap> PgSetPQuotientToGroup(procId);

gap> des := PqDescendants(procId : OrderBound := 6, ClassBound := 5);;

gap> Length(des);

83

gap> List(des, Size);

[8, 8, 8, 16, 16, 16, 32, 16, 16, 16, 16, 16, 32, 32, 64, 64, 32, 32, 32,
32, 32, 32, 32, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 32, 32, 32, 32,
64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 32, 32, 32, 32, 32, 64, 64, 64,
64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64,
64, 64, 64, 64, 64, 64, 64]

gap> List(des, d -> Length(PCentralSeries(d, 2)) - 1);

[2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,23,23,23,3,3,3,3,3,3,
3,3, 3,3,3,3,3,3,3,3,3,3,3,3, 3,3, 3,3, 3, 3, 3, 3, 3, 3, 4,
4, 4,
4, 4, 4,5, 5, 5,5, 5]

> B > B B > B

5.4 Low-level Interactive ANUPQ Functions based on menu items of the pq
program

The pq program has 5 menus, the details of which the reader will not normally need to know, but if she wishes to
know the details they may be found in the standalone manual: guide.dvi. Both guide.dvi and the pq program refer
to the items of these 5 menus as “options”, which do not correspond in any way to the options used by any of the
GAP functions that interface with the pq program.

Warning: The commands provided in this section are intended to provide something like the interactive functionality
one has when running the standalone, from within GAP. The pq standalone (in particular, its “advanced” menus)
assumes some expertise of the user; doing the “wrong” thing can cause the program to crash. While a number of

2»

Section 4. Low-level Interactive ANUPQ Functions based on menu items of the pq program 39

safeguards have been provided in the GAP interface to the pq program, these are not foolproof, and the user should
exercise care and ensure pre-requisites of the various commands are met.

General commands

The following commands either use a menu item from whatever menu is “current” for the pq program, or have general
application and are not associated with just one menu item of the pq program.

PgNrPcGenerators(i) F
PgNrPcGenerators () F

for the ith or default interactive ANUPQ process, return the number of pc generators of the lower exponent p-class
quotient of the group currently determined by the process. This also applies if the pc presentation is not consistent.

PqFactoredOrder(i) F
PgFactoredOrder () F

for the ith or default interactive ANUPQ process, return an integer pair [p, n] where p is a prime and n is the
number of pc generators (see 5.4.1) in the pc presentation of the quotient group currently determined by the process.
If this presentation is consistent, then p” is the order of the quotient group. Otherwise (if tails have been added but the
necessary consistency checks, relation collections, exponent law checks and redundant generator eliminations have
not yet been done), p" is an upper bound for the order of the group.

PqOrder(i) F
PqOrder () F

for the ith or default interactive ANUPQ process, return p" where [p, n] is the pair as returned by PqFactoredOrder
(see 5.4.2).

PgPClass(i) F
PgPClass() F

for the ith or default interactive ANUPQ process, return the lower exponent p-class of the quotient group currently
determined by the process.

PqWeight(i, j) F
PgWeight(j) F

for the ith or default interactive ANUPQ process, return the weight of the jth pc generator of the lower exponent
p-class quotient of the group currently determined by the process, or fail if there is no such numbered pc generator.

PqCurrentGroup(i) F
PqCurrentGroup () F

for the ith or default interactive ANUPQ process, return the group whose pc presentation is determined by the process
as a GAP pc group (either a lower exponent p-class quotient of the start group or the p-cover of such a quotient).

Notes: See Section 3.5 for the attributes and property NuclearRank, MultiplicatorRank and IsCapable which
may be applied to the group returned by PqCurrentGroup.

PgDisplayPcPresentation(i [: OutputLevel := lev]) F
PgDisplayPcPresentation([: OutputLevel := lev]) F

for the ith or default interactive ANUPQ process, direct the pq program to display the pc presentation of the lower
exponent p-class quotient of the group currently determined by the process.

Except if the last command communicating with the pq program was a p-group generation command (for which
there is only a verbose output level), to set the amount of information this command displays you may wish to call
PgSetOutputLevel first (see 5.4.8), or equivalently pass the option OutputLevel (see 6.1.9).

Note: For those familiar with the pq program, PqDisplayPcPresentation performs menu item 4 of the current
menu of the pq program.

8 »

10 »
>

11»

40 Chapter 5. Interactive ANUPQ functions

PgSetOutputLevel(i, lev) F
PgSetOutputLevel(lev) F

for the ith or default interactive ANUPQ process, direct the pq program to set the output level of the pq program to
lev.

Note: For those familiar with the pq program, PqSetOutputLevel performs menu item 5 of the main (or advanced)
p-Quotient menu, or the Standard Presentation menu.

PgEvaluateIdentities(i [: Identities := funcs]) F
PgEvaluateIdentities([: Identities := funcs 1) F

for the ith or default interactive ANUPQ process, invoke the evaluation of identities defined by the Identities
option, and eliminate any redundant pc generators formed. Since a previous value of Identities is saved in the data
record of the process, it is unnecessary to pass the Identities if set previously.

Note: This function is mainly implemented at the GAP level. It does not correspond to a menu item of the pq program.

Commands from the Main p-Quotient menu

PgPcPresentation(i : options) F
PgPcPresentation(: options) F

for the ith or default interactive ANUPQ process, direct the pq program to compute the pc presentation of the quotient
(determined by options) of the group of the process, which for process i is stored as ANUPQData.io [i] . group.

The possible options are the same as for the interactive Pq (see 5.3.1) function, except for RedoPcp (which, in any case,
would be superfluous), namely: Prime, ClassBound, Exponent, Relators, GroupName, Metabelian, Identities
and OutputLevel (see Chapter 6 for a detailed description for these options). The option Prime is required unless
already provided to PqStart.

Notes

The pc presentation is held by the pq program. In contrast to Pq (see 5.3.1), no GAP pc group is returned; see PqCur-
rentGroup (5.4.6) if you need the corresponding GAP pc group.

PgPcPresentation(i: options) ; is roughly equivalent to the following sequence of low-level commands:

PgPcPresentation(i: opts); #class 1 call
for ¢ in [2 .. class] do

PgNextClass (i) ;
od;

where opts is options except with the ClassBound option set to 1, and class is either the maximum class of a p-
quotient of the group of the process or the user-supplied value of the option ClassBound (whichever is smaller).
If the Identities option has been set, both the first PqPcPresentation class 1 call and the PqNextClass calls
invoke PqEvaluateIdentities (i) ; as their final step.

For those familiar with the pg program, PgPcPresentation performs menu item 1 of the main p-Quotient menu.

PgSavePcPresentation(i, filename) F
PgSavePcPresentation(filename) F

for the ith or default interactive ANUPQ process, direct the pq program to save the pc presentation previously com-
puted for the quotient of the group of that process to the file with name filename. If the first character of the string
filename is not /, filename is assumed to be the path of a writable file relative to the directory in which GAP was
started. A saved file may be restored by PqRestorePcPresentation (see 5.4.12).

Note: For those familiar with the pq program, PqSavePcPresentation performs menu item 2 of the main p-Quotient
menu.

12 »

13»

14»

15»

Section 4. Low-level Interactive ANUPQ Functions based on menu items of the pq program 41

PqgRestorePcPresentation(i, filename) F
PgRestorePcPresentation(filename) F

for the ith or default interactive ANUPQ process, direct the pq program to restore the pc presentation previously saved
to filename, by PqSavePcPresentation (see 5.4.11). If the first character of the string filename is not /, filename is
assumed to be the path of a readable file relative to the directory in which GAP was started.

Note: For those familiar with the pq program, PqRestorePcPresentation performs menu item 3 of the main p-
Quotient menu.

PgNextClass(i [: QueueFactor 1) F
PgNextClass([: QueueFactor 1) F

for the ith or default interactive ANUPQ process, direct the pq program to calculate the next class of ANUPQ-
Data.io[i].group.

PgNextClass accepts the option QueueFactor (see also 6.1.27) which should be a positive integer if automorphisms
have been previously supplied. If the pq program requires a queue factor and none is supplied via the option Queue-
Factor a default of 15 is taken.

Notes

The single command: PgNextClass (i) ; is equivalent to executing

PqComputePCover (i) ;
PqCollectDefiningRelations (i) ;
PgDoExponentChecks (i) ;
PgEliminateRedundantGenerators(i);

If the Identities option is set the PqgEliminateRedundantGenerators (i) ; step is essentially replaced by PqE-
valuateIdentities(i); (which invokes its own elimination of redundant generators).

For those familiar with the pq program, PqNextClass performs menu item 6 of the main p-Quotient menu.

PqComputePCover(i) F
PqComputePCover () F

for the ith or default interactive ANUPQ processi, directi, the pq program to compute the p-covering group of ANUPQ-
Data.io[i] .group. In contrast to the function PqPCover (see 4.1.3), this function does not return a GAP pc group.
Notes

The single command: PqComputePCover (i) ; is equivalent to executing
PgSetupTablesForNextClass (i) ;
PqTails(i, 0);
PgDoConsistencyChecks(i, 0, 0);
PgEliminateRedundantGenerators(i);

For those familiar with the pq program, PqComputePCover performs menu item 7 of the main p-Quotient menu.

Commands from the Advanced p-Quotient menu

PqCollect(i, word) F
PqCollect(word) F

for the ith or default interactive ANUPQ process, instruct the pq program to do a collection on word, a word in the
current pc generators (the form of word required is described below). PqCollect returns the resulting word of the
collection as a list of generator number, exponent pairs (the same form as the second allowed input form of word; see
below).

The argument word may be input in either of the following ways:

42 Chapter 5. Interactive ANUPQ functions

1. word may be a string, where the ith pc generator is represented by xi, e.g. "x3*x2"2xx1". This way is quite ver-
satile as parentheses and left-normed commutators — using square brackets, in the same way as PqGAPRelators
(see 7.4.2) — are permitted; word is checked for correct syntax via PqParseWord (see 3.4.3).

2. Otherwise, word must be a list of generator number, exponent pairs of integers, i.e. each pair represents a
“syllable” so that [[3, 1], [2, 2], [1, 1]] represents the same word as that of the example given for
the first allowed form of word.

Note: For those familiar with the pq program, PqCollect performs menu item 1 of the Advanced p-Quotient menu.

16> PgSolveEquation(i, a, b) F
» PgSolveEquation(a, b) F

for the ith or default interactive ANUPQ process, direct the pg program to solve a * x = b for x, where a and b
are words in the pc generators. For the representation of these words see the description of the function PqCollect
(5.4.15).

Note: For those familiar with the pq program, PqSolveEquation performs menu item 2 of the Advanced p-Quotient

menu.
17» PqCommutator(i, words, pow) F
» PqCommutator(words, pow) F

for the ith or default interactive ANUPQ process, instruct the pq program to compute the left normed commutator of
the list words of words in the current pc generators raised to the integer power pow, and return the resulting word as
a list of generator number, exponent pairs. The form required for each word of words is the same as that required for
the word argument of PqCollect (see 5.4.15). The form of the output word is also the same as for PqCollect.

Note: For those familiar with the pq program, PqCommutator performs menu item 3 of the Advanced p-Quotient

menu.
18 » PgSetupTablesForNextClass(i) F
» PgSetupTablesForNextClass() F

for the ith or default interactive ANUPQ process, direct the pq program to set up tables for the next class. As as
side-effect, after PqSetupTablesForNextClass (i) the value returned by PqPClass (i) will be one more than it
was previously.

Note: For those familiar with the pq program, PqSetupTablesForNextClass performs menu item 6 of the Ad-
vanced p-Quotient menu.

19» PqTails(i, weight) F
» PqTails(weight) F

for the ith or default interactive ANUPQ process, direct the pq program to compute and add tails of weight weight
if weight is in the integer range [2 .. PqPClass(i)] (assuming i is the number of the process, even in the default
case) or for all weights if weight = 0.

If weight is non-zero, then tails that introduce new generators for only weight weight are computed and added, and
in this case and if weight < PqPClass (i), it is assumed that the tails that introduce new generators for each weight
from PqPClass (i) down to weight weight + 1 have already been added. You may wish to call PqSetMetabelian
(see 5.4.30) prior to calling PqTails.

Notes

For its use in the context of finding the next class see 5.4.13; in particular, a call to PqSetupTablesForNextClass
(see 5.4.18) needs to have been made prior to calling PqTails.

The single command: PqTails (i, weight) ; is equivalent to

PqComputeTails (i, weight) ;

20 »

21 »

22>

23 »

Section 4. Low-level Interactive ANUPQ Functions based on menu items of the pq program 43

PqAddTails (i, weight);
For those familiar with the pq program, PqTails uses menu item 7 of the Advanced p-Quotient menu.

PqComputeTails(i, weight) F
PqComputeTails(weight) F

for the ith or default interactive ANUPQ process, direct the pq program to compute tails of weight weight if weight is
in the integer range [2 .. PqPClass(i)] (assuming i is the number of the process, even in the default case) or for
all weights if weight = 0. See PqTails (5.4.19) for more details.

Note: For those familiar with the pq program, PqComputeTails uses menu item 7 of the Advanced p-Quotient menu.

PqAddTails(i, weight) F
PqAddTails(weight) F

for the ith or default interactive ANUPQ process, direct the pq program to add the tails of weight weight, previously
computed by PqComputeTails (see 5.4.20), if weight is in the integer range [2 .. PqPClass(i)] (assuming i is
the number of the process, even in the default case) or for all weights if weight = 0. See PqTails (5.4.19) for more
details.

Note: For those familiar with the pq program, PqAddTails uses menu item 7 of the Advanced p-Quotient menu.

PgDoConsistencyChecks(i, weight, type) F
PgDoConsistencyChecks(weight, type) F

for the ith or default interactive ANUPQ process, do consistency checks for weight weight if weight is in the integer
range [3 .. PqPClass(i)] (assuming i is the number of the process) or for all weights if weight = 0, and for type
type if type is in the range [1, 2, 3] (see below) or for all types if type = 0. (For its use in the context of finding
the next class see 5.4.13.)

The type of a consistency check is defined as follows. PqDoConsistencyChecks (i, weight, type) for weight in
[3 .. PgPClass(i)] and the given value of type invokes the equivalent of the following PqDoConsistencyCheck
calls (see 5.4.31):

type = 1:
PgDoConsistencyCheck(i, a, a, a) checks 2 * PqWeight (i, a) + 1 = weight, for pc generators
of index a.

type = 2:

PgDoConsistencyCheck(i, b, b, a) checks for pc generators of indices b, a satisfyingx both b > a and
PgWeight (i, b) + PqWeight(i, a) + 1 = weight.

type = 3:
PgDoConsistencyCheck(i, ¢, b, a) checks for pc generators of indices c, b, a satisfying ¢ > b > a
and the sum of the weights of these generators equals weight.

Notes

PgWeight (i, j) returns the weight of the jth pc generator, for process i (see 5.4.5).
It is assumed that tails for the given weight (or weights) have already been added (see 5.4.19).

For those familiar with the pq program, PqDoConsistencyChecks performs menu item 8 of the Advanced p-Quotient
menu.

PqgCollectDefiningRelations(i) F
PqgCollectDefiningRelations () F

for the ith or default interactive ANUPQ process, direct the pq program to collect the images of the defining relations
of the original fp group of the process, with respect to the current pc presentation, in the context of finding the next
class (see 5.4.13). If the tails operation is not complete then the relations may be evaluated incorrectly.

24 »

25>

26 »

27 »

28 »

29 »

44 Chapter 5. Interactive ANUPQ functions

Note: For those familiar with the pq program, PqCollectDefiningRelations performs menu item 9 of the Ad-
vanced p-Quotient menu.

PgCollectWordInDefiningGenerators(i, word) F
PqCollectWordInDefiningGenerators(word) F

for the ith or default interactive ANUPQ process, take a user-defined word word in the defining generators of the
original presentation of the fp or pc group of the process. Each generator is mapped into the current pc presentation,
and the resulting word is collected with respect to the current pc presentation. The result of the collection is returned
as a list of generator number, exponent pairs.

The word argument may be input in either of the two ways described for PqCollect (see 5.4.15).

Note: For those familiar with the pq program, PqCollectDefiningGenerators performs menu item 23 of the
Advanced p-Quotient menu.

PqgCommutatorDefiningGenerators(i, words, pow) F
PqgCommutatorDefiningGenerators(words, pow) F

for the ith or default interactive ANUPQ process, take a list words of user-defined words in the defining generators
of the original presentation of the fp or pc group of the process, and an integer power pow. Each generator is mapped
into the current pc presentation. The list words is interpreted as a left-normed commutator which is then raised to pow
and collected with respect to the current pc presentation. The result of the collection is returned as a list of generator
number, exponent pairs.

Note For those familiar with the pq program, PqCommutatorDefiningGenerators performs menu item 24 of the
Advanced p-Quotient menu.

PgDoExponentChecks(i [: Bounds := list 1) F
PgDoExponentChecks([: Bounds := list]) F

for the ith or default interactive ANUPQ process, direct the pq program to do exponent checks for weights (inclu-
sively) between the bounds of Bounds or for all weights if Bounds is not given. The value /ist of Bounds (assuming the
interactive process is numbered i) should be a list of two integers low, high satisfying 1 < low < high < PqPClass(i)
(see 5.4.4). If no exponent law has been specified, no exponent checks are performed.

Note: For those familiar with the pq program, PqDoExponentChecks performs menu item 10 of the Advanced p-
Quotient menu.

PgEliminateRedundantGenerators(i) F
PgEliminateRedundantGenerators() F

for the ith or default interactive ANUPQ process, direct the pq program to eliminate redundant generators of the
current p-quotient.

Note: For those familiar with the pq program, PqEliminateRedundantGenerators performs menu item 11 of the
Advanced p-Quotient menu.

PgRevertToPreviousClass(i) F
PgRevertToPreviousClass() F

for the ith or default interactive ANUPQ process, direct the pq program to abandon the current class and revert to the
previous class.

Note: For those familiar with the pq program, PqRevertToPreviousClass performs menu item 12 of the Advanced
p-Quotient menu.

PgSetMaximalOccurrences(i, noccur) F
PgSetMaximalOccurrences(noccur) F

for the ith or default interactive ANUPQ process, direct the pq program to set maximal occurrences of the weight 1
generators in the definitions of pcp generators of the group of the process. This can be used to avoid the definition of
generators of which one knows for theoretical reasons that they would be eliminated later on.

30 »

31 »

32»

Section 4. Low-level Interactive ANUPQ Functions based on menu items of the pq program 45

The argument noccur must be a list of non-negative integers of length the number of weight 1 generators (i.e. the rank
of the class 1 p-quotient of the group of the process). An entry of O for a particular generator indicates that there is no
limit on the number of occurrences for the generator.

Note: For those familiar with the pq program, PqSetMaximalOccurrences performs menu item 13 of the Advanced
p-Quotient menu.

PgSetMetabelian(i) F
PgSetMetabelian() F

for the ith or default interactive ANUPQ process, direct the pq program to enforce metabelian-ness.

Note: For those familiar with the pq program, PqSetMetabelian performs menu item 14 of the Advanced p-Quotient
menu.

PgDoConsistencyCheck(i, ¢, b, a)
PgDoConsistencyCheck(¢, b, a)
PqJacobi(i, ¢, b, a)

PqJacobi(¢, b, a)

T T

for the ith or default interactive ANUPQ process, direct the pq program to do the consistency check for the pc
generators with indices c, b, a which should be non-increasing positive integers, i.e. ¢ > b > a.

There are 3 types of consistency checks:

(@)a = a(a") (Type 1)
Pa = b V(ba),b(a") = (ba)a”"V (Type2)
c(ba) = (cb)a (Type 3)

The reason some people talk about Jacobi relations instead of consistency checks becomes clear when one looks at
the consistency check of type 3:

c(ba) = aclc,alblb,a) = acb[c,d][c,a,b]|[b,a] = ...
(¢ch)a = bcle,bla = ab[b,d|cc, d][c, b][c, b,a] = abclb, a]b, a, c][c,d][c,D][c, b,a] = ...

Each collection would normally carry on further. But one can see already that no other commutators of weight 3 will
occur. After all terms of weight one and weight two have been moved to the left we end up with:

abclb, d)[c,d][c, b][c,a,b] ...
= abclb,d][c,d][c,bllc, b, d][b,a,c] ...

Modulo terms of weight 4 this is equivalent to
[c,a,D][b,c,a]la,b,c] =1

which is the Jacobi identity.
See also PqgDoConsistencyChecks (5.4.22).

Note: For those familiar with the pq program, PqDoConsistencyCheck and PqJacobi perform menu item 15 of the
Advanced p-Quotient menu.

PqCompact(i) F
PqCompact () F

for the ith or default interactive ANUPQ process, direct the pq program to do a compaction of its work space. This
function is safe to perform only at certain points in time.

Note: For those familiar with the pq program, PqCompact performs menu item 16 of the Advanced p-Quotient menu.

33»

34 »

35»

36 »

37»

46 Chapter 5. Interactive ANUPQ functions

PgEchelonise(i) F
PgEchelonise () F

for the ith or default interactive ANUPQ process, direct the pq program to echelonise the word most recently col-
lected by PqCollect or PqCommutator against the relations of the current pc presentation, and return the number
of the generator made redundant or fail if no generator was made redundant. A call to PqCollect (see 5.4.15) or
PgCommutator (see 5.4.17) needs to be performed prior to using this command.

Note: For those familiar with the pq program, PqEchelonise performs menu item 17 of the Advanced p-Quotient
menu.

PqSupplyAutomorphisms(i, mlist) F
PqSupplyAutomorphisms (mlist) F

for the ith or default interactive ANUPQ process, supply the automorphism data provided by the list mlist of matrices
with non-negative integer coefficients. Each matrix in mlist describes one automorphism in the following way.

— The rows of each matrix correspond to the pc generators of weight one.

— Each row is the exponent vector of the image of the corresponding weight one generator under the respective
automorphism.

Note: For those familiar with the pq program, PqSupplyAutomorphisms uses menu item 18 of the Advanced p-
Quotient menu.

PgExtendAutomorphisms(i) F
PgExtendAutomorphisms () F

for the ith or default interactive ANUPQ process, direct the pq program to extend automorphisms of the p-quotient of
the previous class to the p-quotient of the present class.

Note: For those familiar with the pq program, PqExtendAutomorphisms uses menu item 18 of the Advanced p-
Quotient menu.

PgApplyAutomorphisms(i, gfac) F
PgApplyAutomorphisms(gfac) F

for the ith or default interactive ANUPQ process, direct the pq program to apply automorphisms; gfac is the queue
factor e.g. 15.

Note: For those familiar with the pq program, PqCloseRelations performs menu item 19 of the Advanced p-
Quotient menu.

PgDisplayStructure(i [: Bounds := list 1) F
PgDisplayStructure([: Bounds := list]) F

for the ith or default interactive ANUPQ process, direct the pq program to display the structure for the pcp generators
numbered (inclusively) between the bounds of Bounds or for all generators if Bounds is not given. The value list
of Bounds (assuming the interactive process is numbered i) should be a list of two integers low, high satisfying
1 < low < high < PqNrPcGenerators(i) (see 5.4.1). PqDisplayStructure also accepts the option OutputLevel
(see 6.1.9).

Explanation of output

New generators are defined as commutators of previous generators and generators of class 1 or as p-th powers of gen-
erators that have themselves been defined as p-th powers. A generator is never defined as p-th power of a commutator.

Therefore, there are two cases: all the numbers on the righthand side are either the same or they differ. Below, gi refers
to the ith defining generator.

o If the righthand side numbers are all the same, then the generator is a p-th power (of a p-th power of a p-th power,
etc.). The number of repeated digits say how often a p-th power has to be taken.

Section 4. Low-level Interactive ANUPQ Functions based on menu items of the pq program 47

In the following example, the generator number 31 is the eleventh power of generator 17 which in turn is an
eleventh power and so on:

#I 31 is defined on 17711 =111 1 1

So generator 31 is obtained by taking the eleventh power of generator 1 five times.

e [f the numbers are not all the same, the generator is defined by a commutator. If the first two generator numbers
differ, the generator is defined as a left-normed commutator of the weight one generators, e.g.

#I 19 is defined on [11, 1] =211 1 1

Here, generator 19 is defined as the commutator of generator 11 and generator 1 which is the same as the left-
normed commutator [x2, x1, x1, x1, x1].One can check this by tracing back the definition of generator 11 until
one gets to a generator of class 1.

o If the first two generator numbers are identical, then the left most component of the left-normed commutator is a
p-th power, e.g.

#I 25 is defined on [14, 1] =112 1 1

In this example, generator 25 is defined as commutator of generator 14 and generator 1. The left-normed com-
mutator is
[(x1")M %2 x1,x1]

Again, this can be verified by tracing back the definitions.

Note: For those familiar with the pq program, PqDisplayStructure performs menu item 20 of the Advanced p-
Quotient menu.

38» PgDisplayAutomorphisms(i [: Bounds := list 1) F
» PgDisplayAutomorphisms([: Bounds := list]) F

for the ith or default interactive ANUPQ process, direct the pq program to display the automorphism actions on the
pcp generators numbered (inclusively) between the bounds of Bounds or for all generators if Bounds is not given.
The value list of Bounds (assuming the interactive process is numbered i) should be a list of two integers low, high
satisfying 1 < low < high < PqNrPcGenerators(i) (see 5.4.1). PqDisplayStructure also accepts the option
OutputLevel (see 6.1.9).

Note: For those familiar with the pq program, PqDisplayAutomorphisms performs menu item 21 of the Advanced
p-Quotient menu.

39» PqWritePcPresentation(i, filename) F
» PgWritePcPresentation(filename) F

for the ith or default interactive ANUPQ process, direct the pq program to write a pc presentation of a previously-
computed quotient of the group of that process, to the file with name filename. Here the group of a process is the
one given as first argument when PqStart was called to initiate that process (for process i the group is stored as
ANUPQData.io[i] . group). If the first character of the string filename is not /, filename is assumed to be the path of a
writable file relative to the directory in which GAP was started. If a pc presentation has not been previously computed
by the pq program, then pq is called to compute it first, effectively invoking PqPcPresentation (see 5.4.10).

Note: For those familiar with the pq program, PqPcWritePresentation performs menu item 25 of the Advanced
p-Quotient menu.

Commands from the Standard Presentation menu

40 » PgSPComputePcpAndPCover(i : options) F
» PgSPComputePcpAndPCover(: options) F

for the ith or default interactive ANUPQ process, directs the pq program to compute for the group of that process
a pc presentation up to the p-quotient of maximum class or the value of the option ClassBound and the p-cover of

41>

42 »

43>

48 Chapter 5. Interactive ANUPQ functions

that quotient, and sets up tabular information required for computation of a standard presentation. Here the group of a
process is the one given as first argument when PqStart was called to initiate that process (for process i the group is
stored as ANUPQData.io[i] . group).

The possible options are Prime, ClassBound, Relators, Exponent, Metabelian and OutputLevel (see Chapter 6
for detailed descriptions of these options). The option Prime is normally determined via PrimePGroup, and so is not
required unless the group doesn’t know it’s a p-group and HasPrimePGroup returns false.

Note: For those familiar with the pq program, PqSPComputePcpAndPCover performs option 1 of the Standard Pre-
sentation menu.

PgSPStandardPresentation(i[, mlist] [: options]) F
PgSPStandardPresentation([mlist] [: options]) F

for the ith or default interactive ANUPQ process, inputs data given by options to compute a standard presentation
for the group of that process. If argument mlist is given it is assumed to be the automorphism group data required.
Otherwise it is assumed that a call to either Pq (see 5.3.1) or PqEpimorphism (see 5.3.2) has generated a p-quotient
and that GAP can compute its automorphism group from which the necessary automorphism group data can be de-
rived. The group of the process is the one given as first argument when PqStart was called to initiate the process
(for process i the group is stored as ANUPQData.io[i].group and the p-quotient if existent is stored as ANUPQ-
Data.io[i] .pQuotient). If mlist is not given and a p-quotient of the group has not been previously computed a
class 1 p-quotient is computed.

PgSPStandardPresentation accepts three options, all optional:

ClassBound := n
PcgsAutomorphisms

StandardPresentationFile := filename

If ClassBound is omitted it defaults to 63.
Detailed descriptions of the above options may be found in Chapter 6.

Note: For those familiar with the pq program, PqSPPcPresentation performs menu item 2 of the Standard Presen-
tation menu.

PgSPSavePresentation(i, filename) F
PqSPSavePresentation(filename) F

for the ith or default interactive ANUPQ process, directs the pq program to save the standard presentation previously
computed for the group of that process to the file with name filename, where the group of a process is the one given
as first argument when PqStart was called to initiate that process. If the first character of the string filename is not /,
filename is assumed to be the path of a writable file relative to the directory in which GAP was started.

Note: For those familiar with the pq program, PqSPSavePresentation performs menu item 3 of the Standard
Presentation menu.

PgSPCompareTwoFilePresentations(i, fI, f2) F
PgSPCompareTwoFilePresentations(f1, f2) F

for the ith or default interactive ANUPQ process, direct the pq program to compare the presentations in the files with
names f/ and f2 and returns true if they are identical and false otherwise. For each of the strings fI and f2, if the
first character is not a / then it is assumed to be the path of a readable file relative to the directory in which GAP was
started.

Notes

The presentations in files 7 and f2 must have been generated by the pq program but they do not need to be stan-
dard presentations. If If the presentations in files f/ and f2 have been generated by PqSPStandardPresentation

44>

45»

46 »

47»

Section 4. Low-level Interactive ANUPQ Functions based on menu items of the pq program 49

(see 5.4.41) then a false response from PqSPCompareTwoFilePresentations says the groups defined by those
presentations are not isomorphic.

For those familiar with the pq program, PqSPCompareTwoFilePresentations performs menu item 6 of the Stan-
dard Presentation menu.

PqSPIsomorphism(i) F
PgSPIsomorphism() F

for the ith or default interactive ANUPQ process, direct the pq program to compute the isomorphism mapping from
the p-group of the process to its standard presentation. This function provides a description only; for a GAP object,
use EpimorphismStandardPresentation (see 5.3.5).

Note: For those familiar with the pq program, PqSPIsomorphism performs menu item 8 of the Standard Presentation
menu.

Commands from the Main p-Group Generation menu

Note that the p-group generation commands can only be applied once the pq program has produced a pc presentation
of some quotient group of the “group of the process”.

PqPGSupplyAutomorphisms(i[, mlist] : options) F
PqPGSupplyAutomorphisms ([mlist] : options) F

for the ith or default interactive ANUPQ process, supply the pq program with the automorphism group data needed
for the current quotient of the group of that process (for process i the group is stored as ANUPQData.io[i] .group).
For a description of the format of mlist see 5.4.34. The options possible are NumberOfSolubleAutomorphisms and
RelativeOrders. (Detailed descriptions of these options may be found in Chapter 6.)

If mlist is omitted, the automorphism data is determined from the group of the process which must have been a p-group
in pc presentation.

Note: For those familiar with the pq program, PqPGSupplyAutomorphisms performs menu item 1 of the main p-
Group Generation menu.

PgPGExtendAutomorphisms(i) F
PgPGExtendAutomorphisms () F

for the ith or default interactive ANUPQ process, direct the pq program to compute the extensions of the automor-
phisms of the p-quotient of the previous class to the p-quotient of the current class. You may wish to set the InfoLevel
of InfoANUPQ to 2 (or more) in order to see the output from the pq program (see 7.3.1).

Note: For those familiar with the pq program, PqPGExtendAutomorphisms performs menu item 2 of the main or
advanced p-Group Generation menu.

PgPGConstructDescendants(i : options) F
PgPGConstructDescendants(: options) F

for the ith or default interactive ANUPQ process, direct the pq program to construct descendants prescribed by
options, and return the number of descendants constructed (compare function 4.4.1 which returns the list of descen-
dants). The options possible are ClassBound, OrderBound, StepSize, PcgsAutomorphisms, RankInitialSeg-
mentSubgroups, SpaceEfficient, CapableDescendants, AllDescendants, Exponent, Metabelian, Basi-
cAlgorithm, CustomiseQOutput. (Detailed descriptions of these options may be found in Chapter 6.)

PgPGConstructDescendants requires that the pq program has previously computed a pc presentation and a p-cover
for a p-quotient of some class of the group of the process.

Note: For those familiar with the pq program, PqPGConstructDescendants performs menu item 5 of the main
p-Group Generation menu.

vVVYyVYyVYVYVYYVYY

49»

50>

51»

50 Chapter 5. Interactive ANUPQ functions

PqPGSetDescendantToPcp(i, cls, n) F
PgPGSetDescendantToPcp(cls, n) F
PgPGSetDescendantToPcp(i [: Filename := name]) F
PgPGSetDescendantToPcp([: Filename := name]) F
PgPGRestoreDescendantFromFile (i, cls, n) F
PgPGRestoreDescendantFromFile(cls, n) F
PgPGRestoreDescendantFromFile(i [: Filename := name]) F
PgPGRestoreDescendantFromFile([: Filename := name]) F

for the ith or default interactive ANUPQ process, direct the pq program to restore group n of class cls from a tem-
porary file, where cls and n are positive integers, or the group stored in name. PqPGSetDescendantToPcp and
PgPGRestoreDescendantFromFile are synonyms; they make sense only after a prior call to construct descendants
by say PqPGConstructDescendants (see 5.4.47) or the interactive PqDescendants (see 5.3.6). In the Filename
option forms, the option defaults to the last filename in which a presentation was stored by the pq program.

Notes

Since the PqPGSetDescendantToPcp and PqPGRestoreDescendantFromFile are intended to be used in calcula-
tion of further descendants the pq program computes the p-cover of the restored descendant. Hence, PqCurrentGroup
used immediately after one of these commands returns the p-cover of the restored descendant rather than the descen-
dant itself.

For those familiar with the pq program, PqPGSetDescendantToPcp and PqPGRestoreDescendantFromFile per-
form menu item 3 of the main or advanced p-Group Generation menu.

Commands from the Advanced p-Group Generation menu

The functions below perform the component algorithms of PqPGConstructDescendants (see 5.4.47). You can get
some idea of their usage by trying PqExample ("Nott-APG-Rel-i") ;. You can get some idea of the breakdown of
PgPGConstructDescendants into these functions by comparing the previous output with PqExample ("Nott-PG-
Rel-i");.

These functions are intended for use only by “experts”; please contact the authors of the package if you genuinely
have a need for them and need any amplified descriptions.

PqAPGDegree(i, step, rank [: Exponent := n]) F
PqAPGDegree(step, rank [: Exponent := n]) F

for the ith or default interactive ANUPQ process, direct the pq program to invoke menu item 6 of the Advanced p-
Group Generation menu. Here the step-size step and the rank rank are positive integers and are the arguments required
by the pq program. See 6.1.4 for the one recognised option Exponent.

PgAPGPermutations(i : options) F
PqAPGPermutations(: options) F

for the ith or default interactive ANUPQ process, direct the pq program to perform menu item 7 of the Advanced p-
Group Generation menu. Here the options options recognised are PcgsAutomorphisms, SpaceEfficient, Print-
Automorphisms and PrintPermutations (see Chapter 6 for details).

PgAPGOrbits(i : options) F
PgAPGOrbits(: options) F

for the ith or default interactive ANUPQ process, direct the pq to perform menu item 8 of the Advanced p-Group
Generation menu.

Here the options options recognised are PcgsAutomorphisms, SpaceEfficient and CustomiseOutput (see Chap-
ter 6 for details). For the CustomiseOutput option only the setting of the orbit is recognised (all other fields if set
are ignored).

52>

53 »

vy

Section 5. Primitive Interactive ANUPQ Process Read/Write Functions 51

PqAPGOrbitRepresentatives(i : options) F
PgAPGOrbitRepresentatives(: options) F

for the ith or default interactive ANUPQ process, direct the pq to perform item 9 of the Advanced p-Group Generation
menu.

The options options may be any selection of the following: PcgsAutomorphisms, SpaceEfficient, Exponent,
Metabelian, CapableDescendants (or AllDescendants), CustomiseOutput (where only the group and aut-
group fields are recognised) and Filename (see Chapter 6 for details). If Filename is omitted the reduced p-cover
is written to the file "redPCover" in the temporary directory whose name is stored in ANUPQData. tmpdir.

PgAPGSingleStage(i : options) F
PqAPGSingleStage(: options) F

for the ith or default interactive ANUPQ process, direct the pq to perform option 5 of the Advanced p-Group Gener-
ation menu.

The possible options are StepSize, PcgsAutomorphisms, RankInitialSegmentSubgroups, SpaceEfficient,
CapableDescendants, AllDescendants, Exponent, Metabelian, BasicAlgorithm and CustomiseOutput.
(Detailed descriptions of these options may be found in Chapter 6.)

5.5 Primitive Interactive ANUPQ Process Read/Write Functions

For those familiar with using the pq program as a standalone we provide primitive read/write tools to communicate
directly with an interactive ANUPQ process, started via PqStart. For the most part, it is up to the user to translate
the output strings from pq program into a form useful in GAP.

PgRead(i) F
PgRead () F

read a complete line of ANUPQ output, from the ith or default interactive ANUPQ process, if there is output to be
read and returns fail otherwise. When successful, the line is returned as a string complete with trailing newline,
colon, or question-mark character. Please note that it is possible to be “too quick” (i.e. the return can be fail purely
because the output from ANUPQ is not there yet), but if PqRead finds any output at all, it waits for a complete line.
PqgRead also writes the line read via Info at InfoANUPQ level 2. It doesn’t try to distinguish banner and menu output
from other output of the pq program.

PqReadA11(i) F
PgReadAl1() F

read and return as many complete lines of ANUPQ output, from the ith or default interactive ANUPQ process, as
there are to be read, at the time of the call, as a list of strings with any trailing newlines removed and returns the
empty list otherwise. PqReadA11 also writes each line read via Info at InfoANUPQ level 2. It doesn’t try to distinguish
banner and menu output from other output of the pq program. Whenever PqReadA11 finds only a partial line, it waits
for the complete line, thus increasing the probability that it has captured all the output to be had from ANUPQ.

PqReadUntil(i, IsMyLine)
PqReadUntil(IsMyLine)
PqReadUntil(i, IsMyLine, Modify)
PqReadUntil(IsMyLine, Modify)

esliesiievilles|

read complete lines of ANUPQ output, from the ith or default interactive ANUPQ process, “chomps” them (i.e. re-
moves any trailing newline character), emits them to Info at InfoANUPQ level 2 (without trying to distinguish banner
and menu output from other output of the pq program), and applies the function Modify (where Modify is just the
identity map/function for the first two forms) until a “chomped” line line for which IsMyLine (Modify (line)) is
true. PqReadUntil returns the list of Modify-ed “chomped” lines read.

52 Chapter 5. Interactive ANUPQ functions

Notes: When provided by the user, Modify should be a function that accepts a single string argument.

IsMyLine should be a function that is able to accept the output of Modify (or take a single string argument when
Modify is not provided) and should return a boolean.

If IsMyLine (Modify(line)) is never true, PqReadUntil will wait indefinitely.

PaWrite(i, string) F
PgWrite(string) F

write string to the ith or default interactive ANUPQ process; string must be in exactly the form the ANUPQ stan-
dalone expects. The command is echoed via Info at InfoANUPQ level 3 (with a “ToPQ> ” prompt); i.e. do Set-
InfolLevel (InfoANUPQ, 3); to see what is transmitted to the pq program. PqWrite returns true if successful in
writing to the stream of the interactive ANUPQ process, and fail otherwise.

Note: If PqWrite returns fail it means that the ANUPQ process has died.

2»

ANUPQ Options

In this chapter we describe in detail all the options used by functions of the ANUPQ package. Note that by “options”
we mean GAP options that are passed to functions after the arguments and separated from the arguments by a colon
as described in Chapter 4.11 in the Reference Manual. The user is strongly advised to read Section 3.6.

A11ANUPQoptions() F
lists all the GAP options defined for functions of the ANUPQ package:

gap> A11ANUPQoptions();

["AllDescendants", "BasicAlgorithm", "Bounds", "CapableDescendants",
"ClassBound", "CustomiseOutput", "Exponent", "Filename", "GroupName",
"Identities", "Metabelian", "NumberOfSolubleAutomorphisms", "OrderBound",
"OutputLevel", "PcgsAutomorphisms", "PqWorkspace", "Prime",
"PrintAutomorphisms", "PrintPermutations", "QueueFactor",
"RankInitialSegmentSubgroups", "RedoPcp", "RelativeOrders", "Relators",
"SetupFile", "SpaceEfficient", "StandardPresentationFile", "StepSize",
"SubList", "TreeDepth", "pQuotient"]

The following global variable gives a partial breakdown of where the above options are used.
ANUPQoptions Vv

is a record of lists of names of admissible ANUPQ options, such that each field is either the name of a “key” ANUPQ
function or other (for a miscellaneous list of functions) and the corresponding value is the list of option names that
are admissible for the function (or miscellaneous list of functions).

Also, from within a GAP session, you may use GAP’s help browser (see Chapter 2 in the GAP Reference Manual);
to find out about any particular ANUPQ option, simply type: “?option option”, where option is one of the options
listed above without any quotes, e.g.

gap> 7option Prime
will display the sections in this manual that describe the Prime option. In fact the first 4 are for the functions that have
Prime as an option and the last actually describes the option. So follow up by choosing

gap> 75

This is also the pattern for other options (the last section of the list always describes the option; the other sections are
the functions with which the option may be used).

In the section following we describe in detail all ANUPQ options. To continue onto the next section on-line using
GAP’s help browser, type:

gap> 7>

54 Chapter 6. ANUPQ Options

6.1 Detailed descriptions of ANUPQ Options

1» Prime :=p
Specifies that the p-quotient for the prime p should be computed.

2» ClassBound := n

Specifies that the p-quotient to be computed has lower exponent-p class at most n. If this option is omitted
a default of 63 (which is the maximum possible for the pq program) is taken, except for PqDescendants
(see 4.4.1) and in a special case of PqPCover (see 4.1.3). Let F be the argument (or start group of the process
in the interactive case) for the function; then for PqgDescendants the default is PClassPGroup(F) + 1,
and for the special case of PqPCover the default is PClassPGroup (F).

3» pQuotient := Q

This option is only available for the standard presentation functions. It specifies that a p-quotient of the
group argument of the function or group of the process is the pc p-group Q, where Q is of class less than
the provided (or default) value of ClassBound. If pQuotient is provided, then the option Prime if also
provided, is ignored; the prime p is discovered by computing PrimePGroup (Q).

4» Exponent :=n

Specifies that the p-quotient to be computed has exponent n. For an interactive process, Exponent defaults to
a previously supplied value for the process. Otherwise (and non-interactively), the default is 0, which means
that no exponent law is enforced.

5» Relators := rels

Specifies that the relators sent to the pq program should be rels instead of the relators of the argument group
F (or start group in the interactive case) of the calling function; rels should be a list of strings in the string
representations of the generators of F, and F must be an fp group (even if the calling function accepts a pc
group). This option provides a way of giving relators to the pq program, without having them pre-expanded
by GAP, which can sometimes effect a performance loss of the order of 100 (see Section A.1).

Notes

1. The pq program does not use / to indicate multiplication by an inverse and uses square brackets to represent (left
normed) commutators. Also, even though the pq program accepts relations, all elements of rels must be in relator
form, i.e. a relation of form w/ = w2 must be written as wi* (w2) ~-1 and then put in a pair of double-quotes
to make it a string. See the example below.

2. To ensure there are no syntax errors in rels, each relator is parsed for validity via PqParseWord (see 3.4.3). If
they are ok, a message to say so is Info-ed at InfoANUPQ level 2.

6» Metabelian

Specifies that the largest metabelian p-quotient subject to any other conditions specified by other options be
constructed. By default this restriction is not enforced.

7» GroupName := name

Specifies that the pq program should refer to the group by the name name (a string). If GroupName is not set
and the group has been assigned a name via SetName (see 12.8.1) it is set as the name the pq program should
use. Otherwise, the “generic” name " [grp] " is set as a default.

8» Identities := funcs

Specifies that the pc presentation should satisfy the laws defined by each function in the list funcs. This option
may be called by Pq, PgEpimorphism, or PqPCover (see 4.1.1). Each function in the list funcs must return

Section 1. Detailed descriptions of ANUPQ Options 55

a word in its arguments (there may be any number of arguments). Let identity be one such function in funcs.
Then as each lower exponent p-class quotient is formed, instances identiry(wl, . .., wn) are added as relators
to the pc presentation, where wli,...,wn are words in the pc generators of the quotient. At each class the
class and number of pc generators is Info-ed at InfoANUPQ level 1, the number of instances is Info-ed at
InfoANUPQ level 2, and the instances that are evaluated are Info-ed at InfoANUPQ level 3. As usual timing
information is Info-ed at InfoANUPQ level 2; and details of the processing of each instance from the pq
program (which is often quite voluminous) is Info-ed at InfoANUPQ level 3. Try the examples "B2-4-
Id" and "11gp-3-Engel-Id" which demonstrate the usage of the Identities option; these are run using
PgExample (see 3.4.4). Take note of Note 1. below in relation to the example "B2-4-Id"; the companion
example "B2-4" generates the same group using the Exponent option. These examples are discussed at
length in Section A.2.

Notes

1. Setting the InfoANUPQ level to 3 or more when setting the Identities option may slow down the computation
considerably, by overloading GAP with io operations.

2. The Identities option is implemented at the GAP level. An identity that is just an exponent law should be
specified using the Exponent option (see 6.1.4), which is implemented at the C level and is highly optimised and
so is much more efficient.

3. The number of instances of each identity tends to grow combinatorially with the class. So care should be ex-
ercised in using the Identities option, by including other restrictions, e.g. by using the ClassBound option
(see 6.1.2).

9» OutputLevel := n

Specifies the level of “verbosity” of the information output by the ANU pq program when computing a pc
presentation; n must be an integer in the range 0 to 3. OutputLevel := O displays at most one line of
output and is the default; OutputLevel := 1 displays (usually) slightly more output and OutputLevels of
2 and 3 are two levels of verbose output. To see these messages from the pq program, the InfoANUPQ level
must be set to at least 1 (see 7.3.1). See Section 3.6 for an example of how OutputLevel can be used as a
troubleshooting tool.

10» RedoPcp

Specifies that the current pc presentation (for an interactive process) stored by the pq program be scrapped
and clears the current values stored for the options Prime, ClassBound, Exponent and Metabelian and
also clears the pQuotient, pQepi and pCover fields of the data record of the process.

11> SetupFile := filename

Non-interactively, this option directs that pq should not be called and that an input file with name filename
(a string), containing the commands necessary for the ANU pq standalone, be constructed. The commands
written to filename are also Info-ed behind a “ToPQ> ” prompt at InfoANUPQ level 4 (see 7.3.1). Except in
the case following, the calling function returns true. If the calling function is the non-interactive version of
one of Pq, PqPCover or PqEpimorphism and the group provided as argument is trivial given with an empty
set of generators, then no setup file is written and fail is returned (the pq program cannot do anything useful
with such a group). Interactively, SetupFile is ignored.

Note: Since commands emitted to the pq program may depend on knowing what the “current state” is, to form a setup
file some “close enough guesses” may sometimes be necessary; when this occurs a warning is Info-ed at InfoANUPQ
or InfoWarning level 1. To determine whether the “close enough guesses” give an accurate setup file, it is necessary
to run the command without the SetupFile option, after either setting the InfoANUPQ level to at least 4 (the setup
file script can then be compared with the “ToPQ> ” commands that are Info-ed) or setting a pq command log file by
using ToPQLog (see 3.4.7).

12 »

13»

14 »

15»

16 »

17 »

56 Chapter 6. ANUPQ Options

PgWorkspace := workspace

Non-interactively, this option sets the memory used by the pq program. It sets the maximum number of
integer-sized elements to allocate in its main storage array. By default, the pq program sets this figure to
10000000. Interactively, PqWorkspace is ignored; the memory used in this case may be set by giving PqS-
tart a second argument (see 5.1.1).

PcgsAutomorphisms
PcgsAutomorphisms := false

Let G be the group associated with the calling function (or associated interactive process). Passing the option
PcgsAutomorphisms without a value (or equivalently setting it to true), specifies that a polycyclic gener-
ating sequence for the automorphism group (which must be soluble) of G, be computed and passed to the
pq program. This increases the efficiency of the computation; it also prevents the pq from calling GAP for
orbit-stabilizer calculations. By default, PcgsAutomorphisms is set to the value returned by IsSolvable(
AutomorphismGroup(G)), and uses the package AutPGrp to compute AutomorphismGroup(G) if
it is installed. This flag is set to true or false in the background according to the above criterion by the
function PqDescendants (see 4.4.1 and 5.3.6).

Note: If PcgsAutomorphisms is used when the automorphism group of G is insoluble, an error message occurs.
OrderBound := n

Specifies that only descendants of size at most p”, where n is a non-negative integer, be generated. Note that
you cannot set both OrderBound and StepSize.

StepSize :=n
StepSize := list

For a positive integer n, StepSize specifies that only those immediate descendants which are a factor p”
bigger than their parent group be generated.

For a list list of positive integers such that the sum of the length of /ist and the exponent-p class of G is equal
to the class bound defined by the option ClassBound, StepSize specifies that the integers of list are the
step sizes for each additional class.

RankInitialSegmentSubgroups := n
Sets the rank of the initial segment subgroup chosen to be n. By default, this has value 0.
SpaceEfficient

Specifies that the pq program performs certain calculations of p-group generation more slowly but with
greater space efficiency. This flag is frequently necessary for groups of large Frattini quotient rank. The
space saving occurs because only one permutation is stored at any one time. This option is only available
if the PcgsAutomorphisms flag is set to true (see 6.1.13). For an interactive process, SpaceEfficient
defaults to a previously supplied value for the process. Otherwise (and non-interactively), SpaceEfficient
is by default false.

CapableDescendants

By default, all (i.e. capable and terminal) descendants are computed. If this flag is set, only capable descen-
dants are computed. Setting this option is equivalent to setting Al1Descendants := false (see 6.1.19),
except if both CapableDescendants and AllDescendants are passed, Al1Descendants is essentially
ignored.

19 »

20 »

21 »

22>

23 »

24 »

25>

Section 1. Detailed descriptions of ANUPQ Options 57

AllDescendants := false

By default, all descendants are constructed. If this flag is set to false, only capable descendants are com-
puted. Passing Al1Descendants without a value (which is equivalent to setting it to true) is superfluous.
This option is provided only for backward compatibility with the GAP 3 version of the ANUPQ pack-
age, where by default A11Descendants was set to false (rather than true). It is preferable to use Capa-
bleDescendants (see 6.1.18).

TreeDepth := class

Specifies that the descendants tree developed by PqDescendantsTreeCoclassOne (see A.4.1) should be
extended to class class, where class is a positive integer.

SubList := sub

Suppose that L is the list of descendants generated, then for a list sub of integers this option causes PqDe-
scendants to return Sublist(L, sub).If an integer n is supplied, PqDescendants returns L [r].

NumberOfSolubleAutomorphisms := n

Specifies that the number of soluble automorphisms of the automorphism group supplied by PqPGSupplyAu-
tomorphisms (see 5.4.45) in a p-group generation calculation is n. By default, # is taken to be 0; n must
be a non-negative integer. If n > 0 then a value for the option RelativeOrders (see 6.1.23) must also be
supplied.

RelativeOrders := l[ist

Specifies the relative orders of each soluble automorphism of the automorphism group supplied by PqPGSup-
plyAutomorphisms (see 5.4.45) in a p-group generation calculation. The list /ist must consist of n positive
integers, where n is the value of the option NumberO0fSolubleAutomorphisms (see 6.1.22). By default list
is empty.

BasicAlgorithm

Specifies that an algorithm that the pq program calls its “default” algorithm be used for p-group generation.
By default this algorithm is not used. If this option is supplied the settings of options RankInitialSeg-
mentSubgroups, Al1Descendants, Exponent and Metabelian are ignored.

CustomiseOutput := rec

Specifies that fine tuning of the output is desired. The record rec should have any subset (or all) of the the
following fields:

perm := list
where [ist is a list of booleans which determine whether the permutation group output for the automorphism
group should contain: the degree, the extended automorphisms, the automorphism matrices, and the permu-
tations, respectively.

orbit := list
where list is a list of booleans which determine whether the orbit output of the action of the automorphism
group should contain: a summary, and a complete listing of orbits, respectively. (It’s possible to have both a
summary and a complete listing.)

group := list
where [ist is a list of booleans which determine whether the group output should contain: the standard matrix
of each allowable subgroup, the presentation of reduced p-covering groups, the presentation of immediate
descendants, the nuclear rank of descendants, and the p-multiplicator rank of descendants, respectively.

58 Chapter 6. ANUPQ Options

autgroup := list
where [ist is a list of booleans which determine whether the automorphism group output should contain: the
commutator matrix, the automorphism group description of descendants, and the automorphism group order
of descendants, respectively.

trace := val
where val is a boolean which if true specifies algorithm trace data is desired. By default, one does not get
algorithm trace data.

Not providing a field (or mis-spelling it!), specifies that the default output is desired. As a convenience, 1 is also
accepted as true, and any value that is neither 1 nor true is taken as false. Also for each list above, an unbound
list entry is taken as false. Thus, for example

CustomiseQutput := rec(group := [,,1], autgroup := [,1])

specifies for the group output that only the presentation of immediate descendants is desired, for the automorphism
group output only the automorphism group description of descendants should be printed, that there should be no
algorithm trace data, and that the default output should be provided for the permutation group and orbit output.

26 » StandardPresentationFile := filename

Specifies that the file to which the standard presentation is written has name filename. If the first character of
the string filename is not /, filename is assumed to be the path of a writable file relative to the directory in
which GAP was started. If this option is omitted it is written to the file with the name generated by the com-
mand Filename (ANUPQData.tmpdir, "SPres");, i.e. the file with name "SPres" in the temporary
directory in which the pq program executes.

27 » QueueFactor :=n
Specifies a queue factor of n, where n must be a positive integer. This option may be used with PqNextClass
(see 5.4.13).

The queue factor is used when the pq program uses automorphisms to close a set of elements of the p-multiplicator
under their action.

The algorithm used is a spinning algorithm: it starts with a set of vectors in echelonized form (elements of the p-
multiplicator) and closes the span of these vectors under the action of the automorphisms. For this each automorphism
is applied to each vector and it is checked if the result is contained in the span computed so far. If not, the span becomes
bigger and the vector is put into a queue and the automorphisms are applied to this vector at a later stage. The process
terminates when the automorphisms have been applied to all vectors and no new vectors have been produced.

For each new vector it is decided, if its processing should be delayed. If the vector contains too many non-zero entries,
it is put into a second queue. The elements in this queue are processed only when there are no elements in the first
queue left.

The queue factor is a percentage figure. A vector is put into the second queue if the percentage of its non-zero entries
exceeds the queue factor.

28 » Bounds := list

Specifies a lower and upper bound on the indices of a list, where list is a pair of positive non-decreasing
integers. See 5.4.37 and 5.4.38 where this option may be used.

29» PrintAutomorphisms := [ist

Specifies that automorphism matrices be printed.
30> PrintPermutations := [ist

Specifies that permutations of the subgroups be printed.
31» Filename := string

Specifies that an output or input file to be written to or read from by the pq program should have the name
string.

Installing the
ANUPQ Package

The ANU pq program is written in C and the package can be installed under UNIX and in environments similar to
UNIX. In particular it is known to work on Linux and Mac OS X, and also on Windows equipped with cygwin.

The current version of the ANUPQ package requires at least GAP 4.5, and version 1.5 of the AutPGrp package.
However, we recommend using GAP 4.6 or newer.

To install the ANUPQ package, move the file anupq-XXX.tar.gz for some version number XXX into the pkg
directory in which you plan to install ANUPQ. Usually, this will be the directory pkg in the hierarchy of your version
of GAP; it is however also possible to keep an additional pkg directory in your private directories. The only essential
difference with installing ANUPQ in a pkg directory different to the GAP home directory is that one must start
GAP with the -1 switch (see Section 3.1), e.g. if your private pkg directory is a subdirectory of mygap in your home
directory you might type:

gap -1 ";myhomedir/mygap"

where myhomedir is the path to your home directory, which may be replaced by a tilde. The empty path before the
semicolon is filled in by the default path of the GAP home directory.
Then, in your chosen pkg directory, unpack anupq-XXX .tar.gz by

tar xf anupq-XXX.tar.gz

Change to the newly created anupq directory. Now you need to call configure. If you installed ANUPQ into the
main pkg directory, call

./configure

If you installed ANUPQ in another directory than the usual *pkg’ subdirectory, instead call

./configure --with-gaproot=<path>

where path is the path to the GAP home directory. (You can also call
./configure --help

for further options.)

What this does is look for a file sysinfo.gap in the root directory of GAP in order to determine an architecture name
for the subdirectory of bin in which to put the compiled pq binary. This only makes sense if GAP was compiled for
the same architecture that pq will be. If you have a shared file system mounted across different architectures, then you
should run configure and make for ANUPQ for each architecture immediately after compiling GAP on the same
architecture.

If you had to install the package in your own directory but wish to use the system GAP then you will need to find out
what path is. To do this, start up GAP and find out what GAP’s root path is from finding the value of the variable
GAPInfo.RootPaths, e.g.

gap> GAPInfo.RootPaths;
["/usr/local/lib/gap4r4/"]

would tell you to use /usr/local/lib/gap4r4 for path.

60 Chapter 7. Installing the ANUPQ Package

The configure command will fetch the architecture type for which GAP has been compiled last and create a Make-
file. You can now simply call

make

to compile the binary and to install it in the appropriate place.

The path of GAP (see Note below) used by the pq binary (the value GAP is set to in the make command) may be over-
ridden by setting the environment variable ANUPQ_GAP_EXEC. These values are only of interest when the pq program is
run as a standalone; however, the testPq script assumes you have set one of these correctly (see Section 7.1). When
the pq program is started from GAP communication occurs via an iostream, so that the pq binary does not actually
need to know a valid path for GAP is this case.

Note. By “path of GAP” we mean the path of the command used to invoke GAP (which should be a script, e.g.
the gap.sh script generated in the bin directory for the version of GAP when GAP was compiled). The usual
strategy is to copy the gap.sh script to a standard location, e.g. /usr/local/bin/gap. It is a mistake to copy the
GAP executable gap (in a directory with name of form bin/compile-platform) to the standard location, since direct
invocation of the executable results in GAP starting without being able to find its own library (a fatal error).

7.1 Testing your ANUPAQ installation

Now it is time to test the installation. After doing configure and make you will have a testPq script. The script
assumes that, if the environment variable ANUPQ_GAP_EXEC is set, it is a correct path for GAP, or otherwise that the
make call that compiled the pq program set GAP to a correct path for GAP (see Section 7.2 for more details). To run
the tests, just type:

./testPq

Some of the tests the script runs take a while. Please be patient. The script checks that you not only have a correct
GAP (at least version 4.5) installation that includes the AutPGrp package, but that the ANUPQ package and its pq
binary interact correctly. You should see something like the following output:

Made dir: /tmp/testPq
Testing installation of ANUPQ Package (version 3.1)

The first two tests check that the pq C program compiled ok.
Testing the pq binary ... OK.

Testing the pq binary’s stack size ... OK.

The pq C program compiled ok! We test it’s the right one below.

The next tests check that you have the right version of GAP
for the ANUPQ package and that GAP is finding
the right versions of the ANUPQ and AutPGrp packages.

Checking GAP ...
pq binary made with GAP set to: /usr/local/bin/gap
Starting GAP to determine version and package availability ...

GAP version (4.6.5) ... OK.

GAP found ANUPQ package (version 3.1) ... good.
GAP found pq binary (version 1.9) ... good.

GAP found AutPGrp package (version 1.5) ... good.

GAP is OK.

Section 2. Running the pq program as a standalone 61

Checking the link between the pq binary and GAP ... OK.
Testing the standard presentation part of the pq binary ... OK.
Doing p-group generation (final GAP/ANUPQ) test ... OK.

Tests complete.
Removed dir: /tmp/testPq
Enjoy using your functional ANUPQ package!

7.2 Running the pq program as a standalone

When the pq program is run as a standalone it sometimes needs to call GAP to compute stabilisers of subgroups; in
doing so, it first checks the value of the environment variable ANUPQ_GAP_EXEC, and uses that, if set, or otherwise the
value of GAP it was compiled with, as the path for GAP. If you ran testPq (see Section 7.1) and you got both GAP
is 0K and the link between the pq binary and GAP is 0K, you should be fine. Otherwise heed the recommendations of
the error messages you get and run the testPq until all tests are passed.

It is especially important that the GAP, whose path you gave, should know where to find the ANUPQ and AutPGrp
packages. To ensure this the path should be to a shell script that invokes GAP. If you needed to install the needed
packages in your own directory (because, say, you are not a system administrator) then you should create your own
shell script that runs GAP with a correct setting of the -1 option and set the path used by the pq binary to the path of
that script. To create the script that runs GAP it is easiest to copy the system one and edit it, e.g. start by executing
the following UNIX commands (skip the second step if you already have a bin directory; you@unix> is your UNIX
prompt):

you@unix> cd

you@unix> mkdir bin

youQunix> cd bin

youQunix> which gap
/usr/local/bin/gap

you@unix> cp /usr/local/bin/gap mygap
you@unix> chmod +x mygap

At the second-last step use the path of GAP returned by which gap. Now hopefully you will have a copy of the script
that runs the system GAP in mygap. Now use your favourite editor to edit the -1 part of the last line of mygap which
should initially look something like:

exec $GAP_DIR/bin/$GAP_PRG -m $GAP_MEM -o 970m -1 $GAP_DIR $*

so that it becomes (the tilde is a UNIX abbreviation for your home directory):

exec $GAP_DIR/bin/$GAP_PRG -m $GAP_MEM -o 970m -1 "$GAP_DIR;/gapstuff" $x

assuming that your personal GAP pkg directory is a subdirectory of gapstuff in your home directory. Finally, to
let the pq program know where GAP is and also know where your pkg directory is that contains ANUPQ, set the
environment variable ANUPQ_GAP_EXEC to the complete (i.e. absolute) path of your mygap script (do not use the tilde
abbreviation).

1»

1»

2»

62 Chapter 7. Installing the ANUPQ Package

7.3 Setting the Verbosity of ANUPQ via Info and InfoANUPQ

InfoANUPQ \"

The input to and the output from the pq program is, by default, not displayed. However the user may choose to
see some, or all, of this input/output. This is done via the Info mechanism (see Chapter 7.4 in the GAP Reference
Manual). For this purpose, there is the InfoClass InfoANUPQ. If the InfoLevel of InfoANUPQ is high enough each
line of pq input/output is directed to a call to Info and will be displayed for the user to see. By default, the InfoLevel
of InfoANUPQ is 1, and it is recommended that you leave it at this level, or higher. Messages that the user should
presumably want to see and output from the pq program influenced by the value of the option OutputLevel (see the
options listed in Section 4.1.1), other than timing and memory usage are directed to Info at InfoANUPQ level 1.

To turn off all InfoANUPQ messaging, set the InfoANUPQ level to 0.
There are five other user-intended InfoANUPQ levels: 2, 3,4, 5 and 6.

gap> SetInfolevel (InfoANUPQ, 2);
enables the display of most timing and memory usage data from the pq program, and also the number of identity
instances when the Identities option is used. (Some timing and memory usage data, particularly when profuse in

quantity, is Info-ed at InfoANUPQ level 3 instead.) Note that the the GAP functions time and Runtime (see 7.6.2 in
the GAP Reference Manual) count the time spent by GAP and not the time spent by the (external) pq program.

gap> SetInfoLevel (InfoANUPQ, 3);
enables the display of output of the nature of the first two InfoANUPQ that was not directly invoked by the user
(e.g. some commands require GAP to discover something about the current state known to the pq program). The
identity instances processed under the Identities option are also displayed at this level. In some cases, the pq

program produces a lot of output despite the fact that the OutputLevel (see 6.1.9) is unset or is set to 0; such output
is also Info-ed at InfoANUPQ level 3.

gap> SetInfolevel (InfoANUPQ, 4);

Lt}

enables the display of all the commands directed to the pq program, behind a “ToPQ> ” prompt (so that you can
distinguish it from the output from the pq program). See Section 3.6 for an example of how this can be a useful
troubleshooting tool.

gap> SetInfolevel (InfoANUPQ, 5);

enables the display of the pq program’s prompts for input. Finally,
gap> SetInfolevel (InfoANUPQ, 6);

enables the display of all other output from the pq program, namely the banner and menus. However, the timing data
printed when the pq program exits can never be observed.

7.4 Utility Functions
PqLeftNormComm(elts) F

returns for a list of elements of some group (e.g. elts may be a list of words in the generators of a free or fp group) the
left normed commutator of elts, e.g. if wi, w2, w3 are such elements then PqLeftNormComm([wl, w2, w3]);
is equivalent to Comm(Comm(wil, w2), w3);.

Note: elts must contain at least two elements.

PqGAPRelators(group, rels) F

returns a list of words that GAP understands, given a list rels of strings in the string representations of the generators

Examples

There are a large number of examples provided with the ANUPQ package. These may be executed or displayed via
the function PqExample (see 3.4.4). Each example resides in a file of the same name in the directory examples.
Most of the examples are translations to GAP of examples provided for the pq standalone by Eamonn O’Brien; the
standalone examples are found in directories standalone/examples (p-quotient and p-group generation examples)
and standalone/isom (standard presentation examples). The first line of each example indicates its origin. All the
examples seen in earlier chapters of this manual are also available as examples, in a slightly modified form (the
example which one can run in order to see something very close to the text example “live” is always indicated near —
usually immediately after — the text example). The format of the (PqExample) examples is such that they can be read
by the standard Read function of GAP, but certain features and comments are interpreted by the function PqExample
to do somewhat more than Read does. In particular, any function without a -i, -ni or .g suffix has both a non-
interactive and interactive form; in these cases, the default form is the non-interactive form, and giving PqStart as
second argument generates the interactive form.

Running PqExample without an argument or with a non-existent example Infos the available examples and some
hints on usage:

gap> PqgExample();

#1 PgExample Index (Table of Contents)

2

#I This table of possible examples is displayed when calling ‘PqExample’
#I with no arguments, or with the argument: "index" (meant in the sense
#I of ‘‘list’’), or with a non-existent example name.

#I

#I Examples that have a name ending in ‘-ni’ are mnon-interactive only.
#I Examples that have a name ending in ‘-i’ are interactive only.
#I Examples with names ending in ‘.g’ also have only one form. Other
#I examples have both a non-interactive and an interactive form; call
#I ‘PgExample’ with 2nd argument ‘PqStart’ to get the interactive form
#I of the example. The substring ‘PG’ in an example name indicates a
#I p-Group Generation example, ‘SP’ indicates a Standard Presentation
#I example, ‘Rel’ indicates it uses the ‘Relators’ option, and ‘Id’
#I indicates it uses the ‘Identities’ option.

#I

#I The following ANUPQ examples are available:

#I

#I p-Quotient examples:

#I general:

4

#I "Pq" "Pq-ni" "PqEpimorphism"
#I "PgPCover" "PqSupplementInnerAutomorphisms"

#I 2-groups:

#I "2gp-Rel" "2gp-Rel-i" "2gp—a-Rel-i"
#I "B2-4" "B2-4-Id" "B2-8-1i"

#I "B4-4-i" "B4-4-a-1i" "B5-4.g"

64

#I
#I
#1
#1
#I
#I
#I
#1
#1
#I
#I
#I
#I
#1
#I
#I
#I
#I
#1
#1
#I
#I
#I
#I
#1
#I
#I
#I
#I
#1
#I
#I
#I
#I
#1
#1
#I
#I
#I
#I
#1
#I
#I
#I
#I
#1
#I
#I
#I
#I
#1
#1

3-groups:
"3gp-Rel-i"
"3gp-a-x-Rel-i"
5-groups:
"Bgp-Rel-i"
"5gp—-c-Rel-i"
"F2-5-i"
"R2-5-x-i"
7T-groups:
"7gp-Rel-i"
11-groups:
"11gp-i"
"11gp-3-Engel-Id"

general:
"PgDescendants-1"
"PgDescendants-1-i"
2-groups:
n 2gp_PG_1 n
"2gp-PG-4-1"

"3gp-a-Rel"
"3gp—maxoccur—-Rel-i"

"5gp-a-Rel-i"

"bgp-metabelian-Rel-i"

"B2-5-i"
"B5-5-Engel3-Id"

"11gp-Rel-i"
"11gp-3-Engel-Id-i"

p-Group Generation examples:

"PgDescendants-2"

"2gp-PG-2-1"
"2gp-PG-ed-i"

"PgDescendantsTreeCoclassOne-16-1i"

3-groups:
"3gp-PG-1i"
"3gp-PG-x-1-1i"

5-groups:
"5gp-PG-i"

"3gp-PG-4-i"

Appendix A. Examples

"3gp-a-Rel-i"

"5gp-b-Rel-i"
"bgp-maxoccur-Rel-i"
"R2-5-1"

"11gp-a-Rel-i"

"PgDescendants-3"

"2gp-PG-3-1"

"3gp-PG-x-i"

"PgDescendants-treetraverse-i"
"PgDescendantsTreeCoclassOne-9-i"

"Nott-PG-Rel-i"

"PgDescendantsTreeCoclassOne-25-1i"

7,11-groups:
"7gp-PG-1i"

general:

"11gp-PG-i"

Standard Presentation examples:

"Nott-APG-Rel-i"

"StandardPresentation" "StandardPresentation-i"
"EpimorphismStandardPresentation"
"EpimorphismStandardPresentation-i"

2-groups:
"2gp-SP-Rel-i"
"2gp-SP-3-Rel-i"
"gp—-256-SP-Rel-1i"
3-groups:
"3gp-SP-Rel-i"
"3gp-SP-3-Rel-i"
5-groups:
"5gp-SP-Rel-i"
"5gp-SP-big-Rel-i"
"G5-SP-a-Rel-i"
7-groups:
"7gp-SP-Rel-i"
11-groups:
"11gp-SP-a-i"

"2gp-SP-1-Rel-i"
"2gp-SP-4-Rel-i"
"B2-4-SP-i"

"3gp-SP-1-Rel-i"
"3gp-SP-4-Rel-i"

"5gp-SP-a-Rel-i"
"6gp-SP-d-Rel-i"
"Nott-SP-Rel-i"

"7gp-SP-a-Rel-i"

"11gp-SP-a-Rel-i"

"IsIsomorphicPGroup-ni"

"2gp-SP-2-Rel-i"
"2gp—-SP-d-Rel-i"
"G2-SP-Rel-i"

"3gp-SP-2-Rel-i"
"G3-SP-Rel-i"

"5gp—-SP-b-Rel-i"
"G5-SP-Rel-i"
"7gp-SP-b-Rel-i"

"11gp-SP-a-Rel-1-i"

Section 1. The Relators Option 65

#I "11gp-SP-b-i" "11gp-SP-b-Rel-i" "11gp-SP-c-Rel-i"

#I

#I Notes

#I -————-

#I 1. The example (first) argument of ‘PqExample’ is a string; each
#I example above is in double quotes to remind you to include them.
#I 2. Some examples accept options. To find out whether a particular
#1 example accepts options, display it first (by including ‘Display’
#1 as last argument) which will also indicate how ‘PqExample’
#I interprets the options, e.g. ‘PgExample("11gp-SP-a-i", Display);’
#I 3. Try ‘SetInfolLevel(InfoANUPQ, <n>);’ for some <n> in [2 4]
#I before calling PqExample, to see what’s going on behind the scenes.
#I

If on your terminal you are unable to scroll back, an alternative to typing PqExample () ; to see the displayed examples
is to use on-line help, i.e. you may type:

gap> 7anupq:examples

which will display this appendix in a GAP session. If you are not fussed about the order in which the examples are
organised, A11PqExamples () ; lists the available examples relatively compactly (see 3.4.5).

In the remainder of this appendix we will discuss particular aspects related to the Relators (see 6.1.5) and Identi-
ties (see 6.1.8) options, and the construction of the Burnside group B(5,4).

A.1 The Relators Option

The Relators option was included because computations involving words containing commutators that are pre-
expanded by GAP before being passed to the pq program may run considerably more slowly, than the same computa-
tions being run with GAP pre-expansions avoided. The following examples demonstrate a case where the performance
hit due to pre-expansion of commutators by GAP is a factor of order 100 (in order to see timing information from the
pq program, we set the InfoANUPQ level to 2).

Firstly, we run the example that allows pre-expansion of commutators (the function PqLeftNormComm is provided by
the ANUPQ package; see 7.4.1). Note that since the two commutators of this example are very long (taking more
than an page to print), we have edited the output at this point.

gap> SetInfolevel (InfoANUPQ, 2); #to see timing information

gap> PqExample("11gp-i");

#I #Example: "11gp-i" . . . based on: examples/llgp

#I F, a, b, ¢, R, procId are local to ‘PgExample’

gap> F := FreeGroup("a", "b", "c"); a := F.1; b := F.2; ¢ := F.3;
<free group on the generators [a, b, ¢ 1>

a

b

c

gap> R := [PqlLeftNormComm([b, a, a, b, c])~11,

> PqLeftNormComm([a, b, b, a, b, c])~11, (a * b)~11];

[b~-1xa~-2%b~-1*xaxb*a*b”~-1%a~-1xb*axb*a~-1xb~-1%axb*a~-1%b~-1%a~—1xb*a ~2%c”
. 22 lines deleted here ...
—1*xa*xb*xa”-1*b"-1*a”~—-1%b*xa~2xb*c, b -1*a"-1xb~-2*%a”-1*b*a*xb*xa™-1*b~
. 43 lines deleted here ...
-1xb~-1xa”-1xb*axb”~—-1*a”~—-1*b~—1*a*xb~2*%ax*xb*c,
axb*axbxaxbkxaxb*axb*axbxaxbxaxb*a*b*axbxaxb]

66

Appendix A. Examples

gap> procIld := PqStart(F/R : Prime := 11);

1
gap> PgPcPresentation(procId : ClassBound := 7,
> OutputLevel := 1);

#I Lower exponent-11 central series for [grp]

#I Group: [grp] to lower exponent-11 central class
#I Group: [grp] to lower exponent-11 central class
#I Group: [grp] to lower exponent-11 central class
#I Group: [grp] to lower exponent-11 central class
#I Group: [grp] to lower exponent-11 central class
#I Group: [grp] to lower exponent-11 central class
#I Group: [grp] to lower exponent-11 central class
#I Computation of presentation took 27.04 seconds
gap> PgSavePcPresentation(procId, ANUPQData.outfile);

#I Variables used in ‘PqExample’ are saved in ‘ANUPQData.example.vars’.

has order 1173

has order 1178

has order 11719
has order 11742
has order 11798
has order 117228
has order 117563

~N O O W -

Now we do the same calculation using the Relators option. In this way, the commutators are passed directly as
strings to the pq program, so that GAP does not “see” them and pre-expand them.

gap> PgExample("11gp-Rel-i");

#I #Example: "11gp-Rel-i" . . . based on: examples/1llgp

#I #(equivalent to "11gp-i" example but uses ‘Relators’ option)

#I F, rels, procld are local to ‘PgExample’

gap> F := FreeGroup("a", "b", "c");

<free group on the generators [a, b, c 1>

gap> rels := ["[b, a, a, b, c]"11", "[a, b, b, a, b, c]"11", "(a * b)~11"];
["[b, a, a, b, c]~11", "[a, b, b, a, b, c]~11", "(a * b)~11"]

gap> procIld := PqStart(F : Prime := 11, Relators := rels);

2
gap> PgPcPresentation(procId : ClassBound := 7,
> OutputLevel := 1);

#I Relators parsed ok.

#I Lower exponent-11 central series for [grp]

#I Group: [grp] to lower exponent-11 central class
#I Group: [grp] to lower exponent-11 central class
#I Group: [grp] to lower exponent-11 central class
#I Group: [grp] to lower exponent-11 central class
#I Group: [grp] to lower exponent-11 central class
#I Group: [grp] to lower exponent-11 central class
#I Group: [grp] to lower exponent-11 central class
#I Computation of presentation took 0.27 seconds
gap> PqSavePcPresentation(procId, ANUPQData.outfile);

#I Variables used in ‘PqExample’ are saved in ‘ANUPQData.example.vars’.

has order 1173

has order 1178

has order 11719
has order 11742
has order 11798
has order 117228
has order 117563

~NOo O WwWN -

A.2 The Identities Option and PgEvaluateldentities Function

Please pay heed to the warnings given for the Identities option (see 6.1.8); it is written mainly at the GAP level
and is not particularly optimised. The Identities option allows one to compute p-quotients that satisfy an identity.
A trivial example better done using the Exponent option, but which nevertheless demonstrates the usage of the
Identities option, is as follows:

Section 2. The Identities Option and PqEvaluateldentities Function 67

gap> SetInfolevel (InfoANUPQ, 1);
gap> PgExample("B2-4-Id");

#I #Example: "B2-4-Id" . . . alternative way to generate B(2, 4)
#I #Generates B(2, 4) by using the ‘Identities’ option
#I #... this is not as efficient as using ‘Exponent’ but

#I #demonstrates the usage of the ‘Identities’ option.

#I F, f, procIld are local to ‘PqExample’

gap> F := FreeGroup("a", "b");

<free group on the generators [a, b 1>

gap> # All words w in the pc generators of B(2, 4) satisfy f(w) =1
gap> £ = w —> w'4;

function(w) ... end

gap> Pq(F : Prime := 2, Identities := [£]);

#I Class 1 with 2 generators.

#I Class 2 with 5 generators.

#I Class 3 with 7 generators.

#I Class 4 with 10 generators.

#I Class 5 with 12 generators.

#I Class 5 with 12 generators.

<pc group of size 4096 with 12 generators>

#I Variables used in ‘PqExample’ are saved in ‘ANUPQData.example.vars’.
gap> time;

1400

Note that the time statement gives the time in milliseconds spent by GAP in executing the PqExample ("B2-4-Id") ;
command (i.e. everything up to the Info-ing of the variables used), but over 90% of that time is spent in the final Pq
statement. The time spent by the pq program, which is negligible anyway (you can check this by running the example
while the InfoANUPQ level is set to 2), is not counted by time.

Since the identity used in the above construction of B(2,4) is just an exponent law, the “right” way to compute it is
via the Exponent option (see 6.1.4), which is implemented at the C level and is highly optimised. Consequently, the
Exponent option is significantly faster, generally by several orders of magnitude:

gap> SetInfolevel (InfoANUPQ, 2); # to see time spent by the ‘pq’ program
gap> PgExample("B2-4");

#I #Example: "B2-4" . . . the ‘‘right’’ way to generate B(2, 4)

#I #Generates B(2, 4) by using the ‘Exponent’ option

#I F, procIld are local to ‘PgExample’

gap> F := FreeGroup("a", "b");

<free group on the generators [a, b 1>

gap> Pq(F : Prime := 2, Exponent := 4);

#I Computation of presentation took 0.00 seconds

<pc group of size 4096 with 12 generators>

#I Variables used in ‘PqExample’ are saved in ‘ANUPQData.example.vars’.
gap> time; # time spent by GAP in executing ‘PqExample("B2-4");’

50

The following example uses the Identities option to compute a 3-Engel group for the prime 11. As is the case for
the example "B2-4-Id", the example has both a non-interactive and an interactive form; below, we demonstrate the
interactive form.

68

Appendix A. Examples

gap> SetInfolevel (InfoANUPQ, 1); # reset InfoANUPQ to default level
gap> PqExample("11gp-3-Engel-Id", PqgStart);

#I #Example: "11gp-3-Engel-Id" . . . 3-Engel group for prime 11

#I #Non-trivial example of using the ‘Identities’ option

#I F, a, b, G, f, procId, Q are local to ‘PgExample’

gap> F := FreeGroup("a", "b"); a := F.1; b := F.2;

<free group on the generators [a, b 1>

a

b

gap> G := F/[a~11, b~11];

<fp group on the generators [a, b 1>

gap> # All word pairs u, v in the pc generators of the 1l-quotient Q of G
gap> # must satisfy the Engel identity: [u, v, v, v] = 1.

gap> f := function(u, v) return PqlLeftNormComm([u, v, v, v]); end;
function(u, v) ... end

gap> procId := PqStart(G);

3

gap> Q := Pq(procId : Prime := 11, Identities := [£]);

#I Class 1 with 2 generators.

#I Class 2 with 3 generators.

#I Class 3 with 5 generators.

#I Class 3 with 5 generators.

<pc group of size 161051 with 5 generators>

gap> # We do a ‘‘sample’’ check that pairs of elements of Q do satisfy
gap> # the given identity:

gap> f(Random(Q), Random(Q));

<identity> of

gap> £(Q.1, Q.2);

<identity> of

#I Variables used in ‘PqExample’ are saved in ‘ANUPQData.example.vars’.

The (interactive) call to Pq above is essentially equivalent to a call to PqPcPresentation with the same argu-
ments and options followed by a call to PqCurrentGroup. Moreover, the call to PqPcPresentation (as described
in 5.4.10) is equivalent to a “class 1”7 call to PqPcPresentation followed by the requisite number of calls to
PgNextClass, and with the Identities option set, both PqPcPresentation and PgNextClass “quietly” per-
form the equivalent of a PgEvaluateIdentities call. In the following example we break down the Pq call into its
low-level equivalents, and set and unset the Identities option to show where PqEvaluateIdentities fits into
this scheme.

gap> PqExample("11gp-3-Engel-Id-i");

#I #Example: "11gp-3-Engel-Id-i" . . . 3-Engel grp for prime 11

#I #Variation of "11gp-3-Engel-Id" broken down into its lower-level component
#I #command parts.

#I F, a, b, G, f, procId, Q are local to ‘PgExample’

gap> F := FreeGroup("a", "b"); a := F.1; b := F.2;

<free group on the generators [a, b 1>

a

b

gap> G := F/[a”11, b~11];

<fp group on the generators [a, b 1>

gap> # All word pairs u, v in the pc generators of the ll-quotient Q of G
gap> # must satisfy the Engel identity: [u, v, v, v] = 1.

Section 3. A Large Example 69

gap> f := function(u, v) return PqlLeftNormComm([u, v, v, v]); end;
function(u, v) ... end

gap> procld := PqStart(G : Prime := 11);

4

gap> PgPcPresentation(procId : ClassBound := 1);

gap> PgEvaluateIdentities(procId : Identities := [f]);

#I Class 1 with 2 generators.
gap> for c in [2 .. 4] do

> PgNextClass(procId : Identities := []); #reset ‘Identities’ option
> PgEvaluateIdentities(procId : Identities := [f]);
> od;

#I Class 2 with 3 generators.

#I Class 3 with 5 generators.

#I Class 3 with 5 generators.

gap> Q := PqCurrentGroup(procld);

<pc group of size 161051 with 5 generators>

gap> # We do a ‘‘sample’’ check that pairs of elements of Q do satisfy
gap> # the given identity:

gap> f(Random(Q), Random(Q));

<identity> of ...

gap> £(Q.1, Q.2);

<identity> of

#I Variables used in ‘PqExample’ are saved in ‘ANUPQData.example.vars’.

A.3 A Large Example

An example demonstrating how a large computation can be organised with the ANUPQ package is the computation
of the Burnside group B(5,4), the largest group of exponent 4 generated by 5 elements. It has order 22728 and lower
exponent-p central class 13. The example "B5-4.g" computes B(5,4); it is based on a pq standalone input file written
by M. F. Newman.

To be able to do examples like this was part of the motivation to provide access to the low-level functions of the
standalone program from within GAP.

Please note that the construction uses the knowledge gained by Newman and O’Brien in their initial construction
of B(5,4), in particular, insight into the commutator structure of the group and the knowledge of the p-central class
and the order of B(5,4). Therefore, the construction cannot be used to prove that B(5,4) has the order and class
mentioned above. It is merely a reconstruction of the group. More information is contained in the header of the file
examples/B5-4.g.

procId := PqStart(FreeGroup(5) : Exponent := 4, Prime := 2);
Pq(procId : ClassBound := 2);
PqSupplyAutomorphisms(procld,

[
(i1, 1, 0o, 0, 07, # first automorphism
[0, 1, 0, 0, 0],
[0, 0, 1, 0, O],
[0, 0, O, 1, O],
(o, 0, 0,0,1]1,

70

-
-

-

L B B e W e W
O O O = O
O O OO

-
-

Relations :=

L

for

a,
a,
a,
,
a,
a,
class 7

[I: "X2","Xl","Xl","X3","X4","X4","X4"]] ,

class 8

[[IIXQII’lelll’lelll’IIXBII,IIX4II,IIXSII,IIXSII,IIXSII]]’

class 9

I: [le2l|’IIX1I|’lelll’IIX3l|’IIX4I|’IIX4I|’IIX5l|’IIX5l|,IIX5II
IIX2II , lelll s lelll s IIX2II s "X3" s IIX4I| s "X5" s "X5" s IIX5II
[IIX2II , lelll , lelll s IIX3II s IIX3II s IIX4II s "X5" s "X5" s IIX5l|

class 10

[[HX2||,lelll,lelll,IIX2’I,le3ll,IIX3",IIX4II,IIXSII,IIXSH,IIXSH]’
le2l| , IIX1II s IIX1I| s IIX3l| s "X3" s IIX4I| s IIX4I| ,"XS" ,"XS" ,IIX5II]] s

class 11

[I: "X2","Xl","Xl","X2","X3","Xs","X4","X4","X5","X5","X5"] ,
[IIX2|I’lelll’IIX1II’IIX2lI’IIXSII’IIX1II’IIX3II’IIX4II,IIX2II,IIX4I|,IIX3II]] s

class 12

O = O O O

##
##
##
##
##
##

b 1],
b O])

aOJ,

, 01 1]

class
class
class
class
class
class

0
0
0, 0],
0
1

o O WN -

second automorphism

1);;

Appendix A. Examples

[["X2","X].","X].","X2","X3","Xi","X3","X4","X2","X5","X5","X5"] ,
"X2","Xl","Xl","XB","X2","X4","XS","X5","X4","X5","X5","X5" :I] s

class 13

[[IIX2II,lelll,lelll’IIX2II’IIXSII’IIX1II’IIX3l|’IIX4II’IIX2II’IIX4I|,IIX5I|,IIX5II,IIX5II

11

class in [3 ..

Print("Computing class ", class, "\n");
PgSetupTablesForNextClass(procId);

for w in [class, class-1 ..

13] do

PgAddTails(procld, w);

PgDisplayPcPresentation(procId);

if Relations[w] <> [] then
recalculate automorphisms
PgExtendAutomorphisms (procId);

7 1 do

Section 4. Developing descendants trees 71

for r in Relations[w] do

Print("Collecting ", r, "\n");

PqCommutator(procId, r, 1);

PgEchelonise(procId);

PgApplyAutomorphisms(procId, 15); #queue factor = 15
od;

PgEliminateRedundantGenerators(procId);
fi;
PqComputeTails(procId, w);
od;
PgDisplayPcPresentation(procId);

smallclass := Minimum(class, 6);
for w in [smallclass, smallclass-1 .. 2] do
PqTails(procId, w);
od;
recalculate automorphisms
PgExtendAutomorphisms(procld);
PqCollect(procIld, "x574");
PgEchelonise(procId);
PgApplyAutomorphisms(procId, 15); #queue factor = 15
PgEliminateRedundantGenerators(procId);
PgDisplayPcPresentation(procId);
od;

A.4 Developing descendants trees

In the following example we will explore the 3-groups of rank 2 and 3-coclass 1 up to 3-class 5. This will be done
using the p-group generation machinery of the package. We start with the elementary abelian 3-group of rank 2. From
within GAP, run the example "PgDescendants-treetraverse-i" via PqExample (see 3.4.4).

gap> G := ElementaryAbelianGroup(9);
<pc group of size 9 with 2 generators>
gap> procld := PqStart(G);

5

gap> #

gap> # Below, we use the option StepSize in order to construct descendants
gap> # of coclass 1. This is equivalent to setting the StepSize to 1 in
gap> # each descendant calculation.

gap> #

gap> # The elementary abelian group of order 9 has 3 descendants of

gap> # 3-class 2 and 3-coclass 1, as the result of the next command

gap> # shows.

gap> #

gap> PgDescendants(procId : StepSize := 1);
[<pc group of size 27 with 3 generators>,
<pc group of size 27 with 3 generators>,
<pc group of size 27 with 3 generators>]
gap> #
gap> # Now we will compute the descendants of coclass 1 for each of the
gap> # groups above. Then we will compute the descendants of coclass 1

72

Appendix A. Examples

overwrites the
of class 2.
in depth first

gap> # of each descendant and so on. Note that the pq program keeps
gap> # one file for each class at a time. For example, the descendants
gap> # calculation for the second group of class 2

gap> # descendant file obtained from the first group

gap> # Hence, we have to traverse the descendants tree

gap> # order.

gap> #

gap> PqPGSetDescendantToPcp(procld, 2, 1);
gap> PqPGExtendAutomorphisms(procId);

gap> PgPGConstructDescendants(procId : StepSize := 1);
2

gap> PqPGSetDescendantToPcp(procId, 3, 1);

gap> PqPGExtendAutomorphisms(procId);

gap> PgPGConstructDescendants(procId : StepSize := 1);
2

gap> PgPGSetDescendantToPcp(procId, 4, 1);

gap> PqPGExtendAutomorphisms(procId);

gap> PgPGConstructDescendants(procId : StepSize := 1);

2

gap> #

gap> # At this point we stop traversing the ‘‘left most’’
gap> # descendants tree and move upwards.

gap> #

gap> PgPGSetDescendantToPcp(procld, 4, 2);

gap> PqPGExtendAutomorphisms(procId);

gap> PgPGConstructDescendants(procId : StepSize := 1);
#I group restored from file is incapable

0

gap> PqPGSetDescendantToPcp(procld, 3, 2);

gap> PqPGExtendAutomorphisms(procId) ;

gap> PgPGConstructDescendants(procId : StepSize := 1);

#I group restored from file is incapable

branch of the

0

gap> #

gap> # The computations above indicate that the descendants subtree under
gap> # the first descendant of the elementary abelian group of order 9
gap> # will have only one path of infinite length.

gap> #

gap> PqPGSetDescendantToPcp(procld, 2, 2);

gap> PqPGExtendAutomorphisms(procId);

gap> PgPGConstructDescendants(procId : StepSize := 1);
4

gap> #

gap> # We get four descendants here, three of which will turn out to be
gap> # 1incapable, i.e., they have no descendants and are terminal nodes
gap> # 1in the descendants tree.

gap> #

gap> PgPGSetDescendantToPcp(procId, 2, 3);

gap> PqPGExtendAutomorphisms(procId);

gap> PgPGConstructDescendants(procId : StepSize := 1);
#I group restored from file is incapable

0

Section 4. Developing descendants trees

gap> #

gap> # The third descendant of class three is incapable. Let us return
gap> # to the second descendant of class 2.

gap> #

gap> PgPGSetDescendantToPcp(procld, 2, 2);

gap> PqPGExtendAutomorphisms(procId);

gap> PgPGConstructDescendants(procId : StepSize :
4

gap> PgPGSetDescendantToPcp(procld, 3, 1);

gap> PqPGExtendAutomorphisms(procId);

gap> PgPGConstructDescendants(procId : StepSize :
#I group restored from file is incapable

0

gap> PgPGSetDescendantToPcp(procld, 3, 2);

gap> PqPGExtendAutomorphisms(procId);

gap> PgPGConstructDescendants(procId : StepSize :
#I group restored from file is incapable

0

gap> #

gap> # We skip the third descendant for the moment
gap> #

gap> PqPGSetDescendantToPcp(procId, 3, 4);

gap> PqPGExtendAutomorphisms(procId);

gap> PgPGConstructDescendants(procId : StepSize :
#I group restored from file is incapable

0

gap> #

gap> # ... and look at it now.

gap> #

gap> PgPGSetDescendantToPcp(procld, 3, 3);

gap> PqPGExtendAutomorphisms(procId);

gap> PgPGConstructDescendants(procId : StepSize :
6
gap>
gap>
gap>
gap>
gap>
gap> PqPGSetDescendantToPcp(procId, 4, 1);

gap> PqPGExtendAutomorphisms(procId);

gap> PgPGConstructDescendants(procId : StepSize := 1);
#I group restored from file is incapable

0

gap> PqPGSetDescendantToPcp(procld, 4, 2);

gap> PqPGExtendAutomorphisms(procId);

gap> PgPGConstructDescendants(procId : StepSize := 1);
7

gap> PgPGSetDescendantToPcp(procId, 4, 3);

gap> PqPGExtendAutomorphisms(procId);

gap> PgPGConstructDescendants(procId : StepSize := 1);
#I group restored from file is incapable

0

1);

1);

1);

1),

1);

In this branch of the descendant tree we get 6 descendants of class
three. O0f those 5 will turn out to be incapable and one will have
7 descendants.

H O H O H

74 Appendix A. Examples

To automate the above procedure to some extent we provide:

PgDescendantsTreeCoclassOne(i) F
PgDescendantsTreeCoclassOne () F

for the ith or default interactive ANUPQ process, generate a descendant tree for the group of the process (which
must be a pc p-group) consisting of descendants of p-coclass 1 and extending to the class determined by the option
TreeDepth (or 6 if the option is omitted). In an XGAP session, a graphical representation of the descendants tree
appears in a separate window. Subsequent calls to PqDescendantsTreeCoclassOne for the same process may be
used to extend the descendant tree from the last descendant computed that itself has more than one descendant.
PgDescendantsTreeCoclassOne also accepts the options CapableDescendants (or Al1Descendants) and any
options accepted by the interactive PqDescendants function (see 5.3.6).

Notes
1. PgDescendantsTreeCoclassOne first calls PqDescendants. If PqgDescendants has already been called for
the process, the previous value computed is used and a warning is Info-ed at InfoANUPQ level 1.

2. As each descendant is processed its unique label defined by the pq program and number of descendants is Info-
ed at InfoANUPQ level 1.

3. PgDescendantsTreeCoclassOne is an “experimental” function that is included to demonstrate the sort of
things that are possible with the p-group generation machinery.

Ignoring the extra functionality provided in an XGAP session, PqDescendantsTreeCoclass0One, with one argument
that is the index of an interactive ANUPQ process, is approximately equivalent to:
PgDescendantsTreeCoclassOne := function(procId)

local des, 1i;

des := PgDescendants(procId : StepSize := 1);
RecurseDescendants(procId, 2, Length(des));
end;

where RecurseDescendants is (approximately) defined as follows:
RecurseDescendants := function(procId, class, n)
local i, anr;

if class > ValueOption("TreeDepth") then return; fi;

for i in [1..n] do
PgPGSetDescendantToPcp(procld, class, i);
PgPGExtendAutomorphisms(procId);

nr := PgPGConstructDescendants(procId : StepSize := 1);
Print("Number of descendants of group ", i,
" at class ", class, ": ", nr, "\n");
RecurseDescendants(procld, class+l, nr);
od;
return;

end;

The following examples (executed via PqExample; see 3.4.4), demonstrate the use of PqgDescendantsTreeCoclas-—
sOne:

"PgDescendantsTreeCoclassOne-9-i"
approximately does example "PqDescendants-treetraverse-i" again using PqDescendantsTreeCo-
classOne;

Section 4. Developing descendants trees 75

"PgDescendantsTreeCoclassOne-16-1"
uses the option CapableDescendants; and

"PgDescendantsTreeCoclassOne-25-i"
calculates all descendants by omitting the CapableDescendants option.

The numbers 9, 16 and 25 respectively, indicate the order of the elementary abelian group to which PgDescen-—
dantsTreeCoclassOne is applied for these examples.

[HN80]

[LGS90]

[New77]

[NNNO9g]

[NO96]

[O’B90]
[O’B94]
[O’B95]

[Sim94]
[VL84]

[VL90a]
[VLI0b]

Bibliography

George Havas and M[ichael] F. Newman. Application of computers to questions like those of Burnside. In
J[ens] L. Mennicke, editor, Burnside groups, Proceedings of a workshop, Bielefeld, Germany, 1977, volume
806 of Lecture Notes in Math., pages 211-230. Springer, Berlin, Heidelberg and New York, 1980.

C. R. Leedham-Green and L. H. Soicher. Collection from the left and other strategies. J. Symbolic Comput.,
9(5-6):665-675, 1990. Computational group theory, Part 1.

MJichael] F. Newman. Determination of groups of prime-power order. In R. A. Bryce, J. Cossey, and
M[ichael] F. Newman, editors, Group theory, Proc. Minicont., Austral. Nat. Univ., Canberra, 1975, volume
573 of Lecture Notes in Math., pages 73—-84. Springer, Berlin, Heidelberg and New York, 1977.

M. F. Newman, Werner Nickel, and Alice C. Niemeyer. Descriptions of groups of prime-power order. J.
Symbolic Comput., 25(5):665-682, 1998.

MJichael] F. Newman and E[amonn] A. O’Brien. Application of computers to questions like those of
Burnside, II. Internat. J. Algebra Comput., 6:593-605, 1996.

E[amonn] A. O’Brien. The p-group generation algorithm. J. Symbolic Comput., 9:677-698, 1990.
E[amonn] A. O’Brien. Isomorphism testing for p-groups. J. Symbolic Comput., 17 (1):133—-147, 1994.

E[amonn] A. O’Brien. Computing automorphism groups of p-groups. In Wieb Bosma and Alf van der
Poorten, editors, Computational Algebra Number and Number Theory, pages 83-90. (Sydney, 1992), Kluwer
Academic Publishers, Dordrecht, 1995.

C. C. Sims. Computation with Finitely Presented Groups. Cambridge University Press, 1994.

M[ichael] R. Vaughan-Lee. An aspect of the Nilpotent Quotient Algorithm. In Michael D. Atkinson, editor,
Computational Group Theory, Proceedings LMS Symposium on Computational Group Theory, Durham
1982, pages 75-84. Academic Press, 1984.

Michael] R. Vaughan-Lee. Collection from the left. J. Symbolic Comput., 9:725-733, 1990.

M[ichael] R. Vaughan-Lee. The restricted Burnside problem, volume 5 of London Math. Soc. Monographs.
Oxford University Press, 1990.

Index

This index covers only this manual. A page number in italics refers to a whole section which is devoted to the
indexed subject. Keywords are sorted with case and spaces ignored, e.g., “PermutationCharacter” comes before

“permutation group”.

A

A Large Example, 69

A11ANUPQoptions, 53

allowable subgroup, 8

Al1PgExamples, 16

anupq, 3

ANUPQ_GAP_EXEC, environment variable, 60, 61
ANUPQData, 12

ANUPQDirectoryTemporary, 14
ANUPQoptions, 53
ANUPQWarnOf0OtherOptions, 17

Attributes and a Property for fp and pc p-groups, /16
Authors and Acknowledgements, 4
automorphisms, of p-groups, 24, 33

B

B(5,4), 69
banner, 11
Basic notions, 7
bug reports, 4

C

capable, 8

Change history, 5

class, 8

collection, 7

compaction, 10

Computing Descendants of a p-Group, 27
Computing p-Quotients, 20
Computing Standard Presentations, 24
confluent, 7

confluent rewriting system, 7
consistency conditions, 7

consistent, 7

D

definition, of generator, 9

descendant, 8

Detailed descriptions of ANUPQ Options, 54
Developing descendants trees, 71

E

echelonised matrix, 10

Engel identity, 8

EpimorphismPqStandardPresentation, 25
interactive, 34

EpimorphismStandardPresentation, 25
interactive, 34

exponent-p central series, 8

exponent check, 9

exponent law, 8

extended automorphism, 8

G

GrepPqgExamples, 16

H

Hints and Warnings regarding the use of Options, 17

identical relation, 8

immediate descendant, 8

InfoANUPQ, 14, 62

Interactive ANUPQ Process Utility Functions, 3/

Interactive Versions of Non-interactive ANUPQ
Functions, 31

interruption of an interactive ANUPQ process, 31

IsCapable, 16

IsIsomorphicPGroup, 26

isomorphism testing, 10

IsPqIsomorphicPGroup, 26

IsPgProcessAlive, 31

L

labelled pcp, 9

label of standard matrix, 10

law, 8

Loading the ANUPQ Package, 11

Low-level Interactive ANUPQ Functions based on menu

items of the pq program, 38

78

menu item, of pq program, 17
metabelian law, 8
MultiplicatorRank, 16
multiplicator rank, 8

N
NuclearRank, 16
nucleus, 8

(0)
option, of pq program is a menu item, 17
option AllDescendants, 27, 36, 57
option BasicAlgorithm, 27, 36, 57
option Bounds, 58
option CapableDescendants, 27, 36, 56
option ClassBound, 20, 24, 27, 32, 33, 36, 48, 54
option CustomiseOutput, 27, 36, 57
option Exponent, 20, 24, 27, 32, 33, 36, 54
option Filename, 58
option GroupName, 20, 24, 27, 32, 33, 36, 54
option Identities, 20, 32, 54
example of usage, 22
option Metabelian, 20, 24, 27, 32, 33, 36, 54
option Number0fSolubleAutomorphisms, 57
option OrderBound, 27, 36, 56
option OutputLevel, 20, 24, 32, 33, 55
option PcgsAutomorphisms, 48, 56
option pkgbanner, 5
option pQuotient, 24, 33, 54
option PqWorkspace, 20, 24, 27, 56
option Prime, 20, 24, 32, 33, 54
option PrintAutomorphisms, 58
option PrintPermutations, 58
option QueueFactor, 41, 58
option RankInitialSegmentSubgroups, 27, 36, 56
option RedoPcp, 32, 55
option RelativeQOrders, 57
option Relators, 20, 27, 32, 36, 54
example of usage, 21
option SetupFile, 20, 24, 27, 55
option SpaceEfficient, 27, 36, 56
option StandardPresentationFile, 24, 33, 48, 58
option StepSize, 27, 36, 56, 56
option SubList, 27, 36, 57
option TreeDepth, 57
orbits, 10

P

p-class, 8
p-cover, 8
p-covering group, 8
p-group generation, 10
p-multiplicator, 8
p-multiplicator rank, 8
pc generators, 7
pep, 7
pc presentation, 7
permutations, 8
power-commutator presentation, 7
Pq, 20

interactive, 31
PgAddTails, 43
PqAPGDegree, 50
PqgAPGOrbitRepresentatives, 51
PqAPGOrbits, 50
PgAPGPermutations, 50
PqAPGSingleStage, 51
PgApplyAutomorphisms, 46
PqCollect, 41
PqCollectDefiningRelations, 43
PqCollectWordInDefiningGenerators, 44
PgCommutator, 42
PgCommutatorDefiningGenerators, 44
PqCompact, 45
PqComputePCover, 41
PgComputeTails, 43
PgCurrentGroup, 39
PgDescendants, 27

interactive, 36
PgDescendantsTreeCoclassOne, 74
PgDisplayAutomorphisms, 47
PgDisplayPcPresentation, 39
PgDisplayStructure, 46
PgDoConsistencyCheck, 45
PgDoConsistencyChecks, 43
PgDoExponentChecks, 44
PgEchelonise, 46
PgEliminateRedundantGenerators, 44
PgEpimorphism, 22

interactive, 32
PgEvaluateIdentities, 40
PgExample, 15
PgExtendAutomorphisms, 46
PgFactoredOrder, 39
PqGAPRelators, 15, 62

Index

Index

PqJacobi, 45
PqLeftNormComm, 15, 62
Pqlist, 29
PgNextClass, 41
PgNrPcGenerators, 39
PqOrder, 39
PgParseWord, 15
PgPClass, 39
PgPCover, 23

interactive, 33
PgPcPresentation, 40
PgPGConstructDescendants, 49
PgPGExtendAutomorphisms, 49

PgPGRestoreDescendantFromFile, 50

PgPGSetDescendantToPcp, 50
PgPGSupplyAutomorphisms, 49
PgProcessIndex, 31
PgProcessIndices, 31
PqQuit, 31

PgQuitAll, 31

PgRead, 51

PgReadAll, 51
PgReadUntil, 51
PgRestorePcPresentation, 41
PgRevertToPreviousClass, 44
PgSavePcPresentation, 40
PgSetMaximalOccurrences, 44
PgSetMetabelian, 45
PgSetOutputLevel, 40
PgSetPQuotientToGroup, 38

PgSetupTablesForNextClass, 42

PgSolveEquation, 42

PgSPCompareTwoFilePresentations, 48

PgSPComputePcpAndPCover, 47

PgSPIsomorphism, 49

PgSPSavePresentation, 48

PgSPStandardPresentation, 48

PgStandardPresentation, 24
interactive, 33

PgStart, 30

79

PgSupplementInnerAutomorphisms, 29

PgSupplyAutomorphisms, 46

PqTails, 42

PgWeight, 39

PgWrite, 52

PgWritePcPresentation, 47

Primitive Interactive ANUPQ Process Read/Write
Functions, 51

R

Running the pq program as a standalone, 617

S

SavePqlist, 29

Setting the Verbosity of ANUPQ via Info and
InfoANUPQ, 14, 62

StandardPresentation, 24
interactive, 33

standard presentation, 10

Starting and Stopping Interactive ANUPQ Processes, 30

T

tails, 9

terminal, 8

Testing p-Groups for Isomorphism, 26

Testing your ANUPQ installation, 60

The ANUPQData Record, /2

The Identities Option and PqEvaluateldentities Function,
66

The p-group generation Algorithm, Standard
Presentation, Isomorphism Testing, /0

The p-quotient Algorithm, 9

The Relators Option, 65

ToPQLog, 16

troubleshooting tips, 17

U
Utility Functions, 15, 62

w

weighted pcp, 8
weight function, 8

	Contents
	Introduction
	Authors and Acknowledgements
	Change history

	Mathematical Background and Terminology
	Basic notions
	The p-quotient Algorithm
	The p-group generation Algorithm, Standard Presentation, Isomorphism Testing

	Infrastructure
	Loading the ANUPQ Package
	The ANUPQData Record
	Setting the Verbosity of ANUPQ via Info and InfoANUPQ
	Utility Functions
	Attributes and a Property for fp and pc p-groups
	Hints and Warnings regarding the use of Options

	Non-interactive ANUPQ functions
	Computing p-Quotients
	Computing Standard Presentations
	Testing p-Groups for Isomorphism
	Computing Descendants of a p-Group

	Interactive ANUPQ functions
	Starting and Stopping Interactive ANUPQ Processes
	Interactive ANUPQ Process Utility Functions
	Interactive Versions of Non-interactive ANUPQ Functions
	Low-level Interactive ANUPQ Functions based on menu items of the pq program
	Primitive Interactive ANUPQ Process Read/Write Functions

	ANUPQ Options
	Detailed descriptions of ANUPQ Options

	Installing the ANUPQ Package
	Testing your ANUPQ installation
	Running the pq program as a standalone
	Setting the Verbosity of ANUPQ via Info and InfoANUPQ
	Utility Functions

	Examples
	The Relators Option
	The Identities Option and PqEvaluateIdentities Function
	A Large Example
	Developing descendants trees
	Bibliography
	Index
	A
	B
	C
	D
	E
	G
	H
	I
	L
	M
	N
	O
	P
	R
	S
	T
	U
	W

