OpenMath

OpenMath functionality in GAP

Version 11.2.0

16 November 2013

Marco Costantini
Alexander Konovalov
Max Nicosia
Andrew Solomon

OpenMath

Marco Costantini

Address: Department of Mathematics
University of Trento

Alexander Konovalov Email: alexk at mcs dot st-andrews dot ac dot uk
Homepage: http://www.cs.st-andrews.ac.uk/ alexk/
Address: School of Computer Science

University of St Andrews

Jack Cole Building, North Haugh,

St Andrews, Fife, KY16 9SX, Scotland

Max Nicosia Email: 1n73 at st-andrews dot ac dot uk
Address: School of Computer Science

University of St Andrews

Jack Cole Building, North Haugh,

St Andrews, Fife, KY16 9SX, Scotland

Andrew Solomon Email: andrew at illywhacker dot net
Homepage: http://www.illywhacker.net/

Address: Faculty of IT
University of Technology, Sydney
Broadway, NSW 2007
Australia

mailto://alexk at mcs dot st-andrews dot ac dot uk
http://www.cs.st-andrews.ac.uk/~alexk/
mailto://ln73 at st-andrews dot ac dot uk
mailto://andrew at illywhacker dot net
http://www.illywhacker.net/

OpenMath 2

Abstract

The OpenMath package provides an OpenMath phrasebook for GAP: it allows GAP users to import
and export mathematical objects encoded in OpenMath, for the purpose of exchanging them with other
OpenMath-enabled applications.

Copyright

The OpenMath package is free software; you can redistribute it and/or modify it under the terms of the GNU
General Public License as published by the Free Software Foundation; either version 2 of the License, or (at
your option) any later version.

Acknowledgements

On various stages the development of the OpenMath package was supported by:

* European Commission through ESPRIT grant EP 24969 “Accessing and Using Mathematical Informa-
tion Electronically” (see

http://web.archive.org/web/20040416013945/http://www.nag.co.uk/projects/OpenMath.html).

* EU FP6 Programme project 026133 “SCIEnce - Symbolic Computation Infrastructure for Europe” (see
http://www.symbolic-computation.org/).

We acknowledge with gratitude this support.

http://www.fsf.org/licenses/gpl.html
http://www.fsf.org/licenses/gpl.html
http://web.archive.org/web/20040416013945/http://www.nag.co.uk/projects/OpenMath.html
http://www.symbolic-computation.org/

Contents

1 Introduction and installation
1.1 Brief description of the package
1.2 Installation of the package,

2 OpenMath functionality in GAP
2.1 Viewing OpenMath representation of an object
2.2 Reading OpenMath code from streams and strings
2.3 Writing OpenMath code to streams
24 ULHeS v o e e e

3 Extending the OpenMath package
3.1 Exploring the range of supported symbols
3.2 Adding support for private content dictionaries and symbols

References

Index

11
12
14

15
15
16

18

19

Chapter 1

Introduction and installation

1.1 Brief description of the package

The GAP package OpenMath provides an OpenMath phrasebook for GAP: it allows GAP users to
import and export mathematical objects encoded in OpenMath for the purpose of exchanging them
with other OpenMath-enabled applications.

This manual describes:

* how to view OpenMath representation of an object;

* how to read OpenMath object from stream or write it to stream for the purposes of exchange
with another OpenMath-enabled application;

* how to find which objects can be converted to/from OpenMath using this package;
* how to extend the package to support private OpenMath content dictionaries.

For the detailed information about OpenMath standard and content dictionaries see the OpenMath
homepage http://www.openmath.org.

For practical purposes, the OpenMath package will be most efficient if used in conjunction with
the GAP package SCSCP ([KL]) which implements the Symbolic Computation Software Com-
posability protocol ([FHK™c]). This protocol specifies an OpenMath-based remote procedure call
framework, in which all messages (procedure calls and returns of results of successful computation or
error messages) are encoded in OpenMath using content dictionaries scscp1 and scscp2 ([FHK *a],
[FHKb]). Using the SCSCP package, GAP can communicate locally or remotely with any other
OpenMath-enabled SCSCP-compliant application which may be not only another computer alge-
bra system but also another instance of the GAP system or even, for example, an external C/C++
or Java application. Such communication will go into a seamless manner with the GAP/OpenMath
conversion going in the background.

1.2 Installation of the package

To use the OpenMath package it is required to install the GAPDoC package [LN] to use the help
system and parse OpenMath objects in the XML format.

To install the OpenMath package, unpack the archive and place the openmath directory in the
pkg subdirectory of your GAP4.4 installation. When you don’t have write access to the directory

4

http://www.openmath.org

OpenMath 5

of your main GAP installation, you can also install the package outside the GAP main directory by
unpacking it inside a directory MYGAPDIR/pkg. Then to be able to load OpenMath you need to call
GAP with the -1 ";MYGAPDIR" option.

When the OpenMath package is installed, it may be loaded as shown below (possibly loading
required packages at the same time):
Example

gap> LoadPackage("openmath") ;

Loading OpenMath 11.0.0 (OpenMath functionality in GAP)

by Marco Costantini,
Alexander Konovalov (http://www.cs.st-andrews.ac.uk/"alexk/),
Nicosia Max (1n73@st-andrews.ac.uk), and
Andrew Solomon (http://www.illywhacker.net/).

Homepage: http://www.cs.st-andrews.ac.uk/“alexk/openmath/

Chapter 2

OpenMath functionality in GAP

2.1 Viewing OpenMath representation of an object

2.1.1 OMPrint

> OMPrint(Obj) (function)

OMPrint writes the default XML OpenMath encoding of GAP object obj to the standard output.

One can try it with different GAP objects to see if they can be converted to OpenMath and learn
how their OpenMath representation looks like. Here we show the encoding for lists of integers and
rationals:

Example
gap> OMPrint([1, 1/2]);
<0MOBJ>
<0OMA>
<0MS cd="listl" name="list"/>
<0OMI>1</0MI>
<0MA>
<0OMS cd="nums1" name="rational"/>
<0OMI>1</0MI>
<0OMI>2</0MI>
</0MA>
</0MA>
</0MOBJ>

Strings are encoded using <OMSTR> tags:

Example

gap> OMPrint("This is a string");
<0MOBJ>

<OMSTR>This is a string</0MSTR>
</0MOBJ>

Cyclotomics may be encoded in different ways dependently on their properties:

OpenMath

Example

gap> OMPrint(1-2xE(4));

<0MOBJ>
<0OMA>
<0MS cd="complexl" name="complex_cartesian'"/>
<OMI>1</0MI>
<OMI>-2</0MI>
</0MA>
</0MOBJ>
gap> OMPrint(E(3));
<0MOBJ>
<0OMA>
<OMS cd="arithl" name="plus"/>
<0OMA>
<0MS cd="arithl" name="times"/>
<OMI>1</0MI>
<OMA>
<OMS cd="algnums" name="NthRootOfUnity"/>
<OMI>3</0MI>
<OMI>1</0OMI>
</0MA>
</0MA>
</0MA>
</0MOBJ>

Various encodings may be used for various types of groups:
Example

gap> OMPrint (Group((1,2)));

<0MOBJ>
<0OMA>
<0MS cd="permgpl" name="group"/>
<0MS cd="permutationl" name="right_compose'"/>
<0OMA>
<0MS cd="permutl" name="permutation'/>
<OMI>2</0MI>
<OMI>1</0MI>
</0MA>
</0MA>
</0MOBJ>
gap> OMPrint(Group([[[1, 21,L 0, 1111));
<0MOBJ>
<0OMA>
<OMS cd="groupl" name="group_by_generators"/>
<0OMA>
<0MS cd="1linalg2" name="matrix"/>
<OMA>
<0MS cd="linalg2" name="matrixrow"/>
<OMI>1</0MI>
<OMI>2</0MI>

</0MA>

OpenMath

<0OMA>
<OMS cd="1inalg2" name="matrixrow"/>
<OMI>0</0MI>
<OMI>1</0MI>
</0MA>
</0MA>
</0MA>
</0MOBJ>
gap> OMPrint (FreeGroup(2));
<0MOBJ>
<0OMA>
<0MS cd="fpgroupl" name="free_groupn"/>
<0MI>2</0MI>
</0MA>
</0MOBJ>

Producing OpenMath representation of polynomials, one may get a warning:

Example

gap> x:=Indeterminate(Rationals,"x");; y:=Indeterminate(Rationals,"y");;
gap> OMPrint (x~2+y) ;

#I Warning : polynomial will be printed using its default ring

#I because the default OpenMath polynomial ring is not specified

#I or it is not contained in the default OpenMath polynomial ring.

#I You may ignore this or call SetOpenMathDefaultPolynomialRing to fix it.
<0MOBJ>

<0OMA>
<0MS cd="polydl" name="DMP"/>
<0MA id="polyring9qiY200aiITWUORD" >
<0MS cd="polydl" name="poly_ring_d4"/>
<0MS cd="setnamel" name="Q"/>
<0MI>2</0MI>
</0MA>
<0OMA>
<0MS cd="polydl" name="SDMP"/>
<OMA>
<OMS cd="polydl" name="term"/>
<OMI>1</0MI>
<OMI>0</0MI>
<OMI>1</0MI>
</0OMA>
<0OMA>
<OMS cd="polydl" name="term"/>
<OMI>1</0MI>
<OMI>2</0MI>
<OMI>0</0MI>
</0OMA>
</0MA>
</0MA>

</0MOBJ>

OpenMath 9

Indeed, now when another polynomial will be printed, it will belong to a ring with a different identifier
(despite GAP will be able to perform arithmetical operations on these polynomials like when they
belong to the same ground ring):

Example
gap> OMPrint (x+1);
#I Warning : polynomial will be printed using its default ring
#I because the default OpenMath polynomial ring is not specified
#I or it is not contained in the default OpenMath polynomial ring.
#I You may ignore this or call SetOpenMathDefaultPolynomialRing to fix it.
<0MOBJ>
<0OMA>
<0MS cd="polydl" name="DMP"/>
<0MA id="polyringOLqlkhnCyLldcoBl" >
<0MS cd="polydl" name="poly_ring_d_named"/>
<0MS cd="setnamel" name="Q"/>
<0MV name="x"/>
</0MA>
<0OMA>
<0MS cd="polydl" name="SDMP"/>
<0OMA>
<OMS cd="polydl" name="term"/>
<OMI>1</0MI>
<OMI>1</0MI>
</0MA>
<OMA>
<OMS cd="polydl" name="term"/>
<OMI>1</0OMI>
<OMI>0</0MI>
</0MA>
</0MA>
</0MA>
</0MOBJ>

Thus, the warning means that it is not guaranteed that the polynomial ring will have the same identifier
<0MA id="polyring..." > when another or same polynomial from this ring will be printed next
time. If this may constitute a problem, for example, if a list of polynomial is being exchanged with
another system and it is crucial that all of them will belong to the same ring, then such ring must be
created explicitly and then SetOpenMathDefaultPolynomialRing must be called

Example

gap> x:=Indeterminate(Rationals,"x");; y:=Indeterminate(Rationals,"y");;
gap> R:=PolynomialRing(Rationals, [x,y]);;
gap> SetOpenMathDefaultPolynomialRing(R) ;
gap> OMPrint (x~2+y) ;
<0MOBJ>
<0OMA>
<0MS cd="polydl" name="DMP"/>
<0OMA id="polyring9eNcBGFHXkjl2kWh" >
<0MS cd="polydl" name="poly_ring_d4"/>
<0MS cd="setnamel" name="Q"/>

OpenMath 10

<OMI>2</0MI>
</0MA>
<0MA>
<0MS cd="polydl" name="SDMP"/>
<OMA>
<OMS cd="polydl" name="term"/>
<OMI>1</0MI>
<OMI>0</0MI>
<OMI>0</0MI>
</0MA>
<0OMA>
<OMS cd="polydl" name="term"/>
<OMI>1</0MI>
<OMI>0</0MI>
<OMI>0</0MI>
</0OMA>
</0MA>
</0MA>
</0MOBJ>

Now we can see that both polynomials belong to the ring with the same identifier, and the OpenMath
representation of the 2nd polynomial properly reflects that it belongs to a polynomial ring with two
variables.

Example
gap> OMPrint (x+1);
<0MOBJ>
<0OMA>
<0MS cd="polydl" name="DMP"/>
<OMR href="#polyring9eNcBGFHXkj12kWh" />
<0OMA>
<0MS cd="polydl" name="SDMP"/>
<OMA>
<0MS cd="polydl" name="term"/>
<OMI>1</0OMI>
<OMI>0</0MI>
<OMI>0</0OMI>
</0MA>
<OMA>
<OMS cd="polydl" name="term"/>
<OMI>1</0OMI>
<OMI>0</0MI>
<OMI>0</0MI>
</0MA>
</0MA>
</0MA>
</0MOBJ>

OpenMath 11

2.1.2 OMString

> OMString(obj) (function)

OMString returns a string with the default XML OpenMath encoding of GAP object obj. If

used with the noomobj option, then initial and final <OMOBJ> tags will be omitted.
Example

gap> 0MString(42);

"<QMOBJ> <0OMI>42</0MI> </0MOBJ>"

gap> OMString([1,2] :noomobj);

"<OMA> <0OMS cd=\"1list1\" name=\"1list\"/> <OMI>1</0MI> <OMI>2</0MI> </0OMA>"

2.2 Reading OpenMath code from streams and strings

2.2.1 OMGetObject

> OMGetObject (stream) (function)

stream is an input stream (see InputTextFile (Reference: InputTextFile),
InputTextUser (Reference: InputTextUser), InputTextString (Reference: InputTextString),
InputOutputLocalProcess (Reference: InputOutputLocalProcess), InputOutputTCPStream
(SCSCP: InputOutputTCPStream (for client)), InputOutputTCPStream (SCSCP: InputOut-
putTCPStream (for server))) with an OpenMath object on it. OMGetObject takes precisely one
object off stream and returns it as a GAP object. Both XML and binary OpenMath encoding are
supported: autodetection is used.

This may be used to retrieve objects from a file. In the following example we demonsrate read-
ing the same content in binary and XML formats using the test files supplied with the package (the

package autodetects whether binary or XML encoding is used):
Example

gap> txml:=Filename(DirectoriesPackagelLibrary("openmath","tst"),"test3.omt");;
gap> tbin:=Filename(DirectoriesPackagelLibrary("openmath","tst"),"test3.bin");;
gap> xstream := InputTextFile(txml);; bstream := InputTextFile(tbin);;
gap> x:=0MGetObject(xstream); y:=0MGetObject(bstream);

912873912381273891

912873912381273891

gap> x:=0MGetObject(xstream); y:=0MGetObject(bstream);

E(4)

E(4)

gap> CloseStream(xstream) ;CloseStream(bstream) ;

To paste an OpenMath object directly into standard input execute the following command in GAP:
Example

gap> s:= InputTextUser();; g := OMGetObject(s); CloseStream(s);
gap>

OpenMath 12

For XML OpenMath, this function requires that the GAP package GAPDoC is available.

2.2.2 EvalOMString

> EvalOMString(omstr) (function)

This function is an analog of EvalString (Reference: EvalString). Its argument omstr must be
a string containing a single OpenMath object. EvalOMString will return the GAP object represented
by omstr.

If omstr contains more OpenMath objects, the rest will be ignored.
Example

gap> s:="<0MOBJ><0MS cd=\"setnamel\" name=\"Z\"/></0MOBJ>";;
gap> EvalOMString(s);

Integers

gap> G:=SL(2,5);; G=EvalOMString(OMString(G));

true

2.3 Writing OpenMath code to streams

While it is possible to read OpenMath code directly from a stream, writing OpenMath to streams
uses a different setup. It requires special objects called OpenMath writers, which encapsulate streams
and may be viewed as transducers accepting GAP objects and writing them to a stream in the XML
or binary OpenMath

Such setup makes it possible to re-use the same stream for both binary and XML OpenMath
communication, using different OpenMath writers in different calls. It also allows to re-use most
of the high-level code for GAP to OpenMath conversion, having separate methods for generating
binary and XML OpenMath only for low-level output (OpenMath tags and basic objects). This
makes easier adding support to new mathematical objects and private content dictionaries as described
in Chapter 3 since it does not require changing the low-level functionality.

2.3.1 IsOpenMathWriter

> IsOpenMathWriter (Category)
> IsOpenMathXMLWriter (Category)
> IsOpenMathBinaryWriter (Category)

IsOpenMathWriteris a category for OpenMath writers. It has two subcategories:
IsOpenMathXMLWriter and IsOpenMathBinaryWriter.

2.3.2 OpenMathXMLWriter

> OpenMathXMLWriter(s) (function)

for a stream s, returns an object in the category IsOpenMathXMLWriter (2.3.1).

OpenMath 13

2.3.3 OpenMathBinaryWriter

> OpenMathBinaryWriter(s) (function)

for a stream s, returns an object in the category OpenMathBinaryWriter.

2.3.4 OMPutObject

> OMPutObject(stream, obj) (function)
> OMPutObjectNoOMOBJtags (stream, obj) (function)

OMPutObject writes (appends) the XML OpenMath encoding of the GAP object obj to output
stream stream (see InputTextFile (Reference: InputTextFile), OutputTextUser (Reference:
OutputTextUser), OutputTextString (Reference: OutputTextString), InputOutputTCPStream
(SCSCP: InputOutputTCPStream (for client)), InputOutputTCPStream (SCSCP: InputQOut-
putTCPStream (for server))).

The second version does the same but without <OMOBJ> tags, what may be useful for assembling
complex OpenMath objects.

Example
gap> g := [[1,2],[1,01];;
gap> t :="";
gap> s := OutputTextString(t, true);;

gap> w:=0OpenMathXMLWriter(s);

<OpenMath XML writer to OutputTextString(0)>
gap> OMPutObject(w, g);

gap> CloseStream(s);

gap> Print(t);

<0MOBJ>
<0OMA>
<OMS cd="linalg2" name="matrix"/>
<0OMA>
<0MS cd="linalg2" name="matrixrow"/>
<OMI>1</0MI>
<0QMI>2</0MI>
</0MA>
<0OMA>
<0MS cd="linalg2" name="matrixrow"/>
<OMI>1</0MI>
<OMI>0</0MI>
</0MA>
</0MA>
</0MOBJ>

2.3.5 OMPlainString

> OMPlainString(string) (function)

OpenMath 14

OMPlainString wraps the string into a GAP object of a special kind called an OpenMath plain
string. Internally such object is represented as a string, but 0MPutObject (2.3.4) threat it in a different
way: instead of converting it into a <OMSTR> object, an OpenMath plain string will be plainly
substituted into the output (this explains its name) without decorating it with <OMSTR> tags.

It is assumed that OpenMath plain string contains valid OpenMath code; no actual validation is
performed during its creation. Such functionality may be useful to compose some OpenMath code
at the GAP level to communicate it to the other system, in particular, to send there symbols which are

not supported by GAP, for example:
Example

gap> s:=0MPlainString("<0MS cd=\"nums1\" name=\"pi\"/>");
<OMS cd="nums1" name="pi"/>
gap> OMPrint(s);
<0M0BJ>
<OMS cd="nums1" name="pi"/>
</0MOBJ>

2.4 Utilities

2.4.1 OMTestXML

> OMTestXML (o bj) (function)
> OMTest (Obj) (function)

Converts obj to XML OpenMath and back. Returns true if and only if obj is unchanged (as
a GAP object) by this operation. The OpenMath standard does not stipulate that converting to and

from OpenMath should be the identity function so this is a useful diagnostic tool.
Example

gap> OMTestXML([[1..10],[1/2,2+E(4)],ZmodnZ0bj(2,6),(1,2),true,"string"]);
true

OMTest is a synonym to OMTestXML

2.4.2 OMTestBinary

> OMTestBinary(obj) (function)

Converts obj to binary OpenMath and back. Returns true if and only if obj is unchanged (as
a GAP object) by this operation. The OpenMath standard does not stipulate that converting to and

from OpenMath should be the identity function so this is a useful diagnostic tool.
Example

gap> OMTestBinary([[1..10],[1/2,2+E(4)],ZmodnZ0bj(2,6),(1,2) ,true,"string"]);
true

Chapter 3

Extending the OpenMath package

3.1 Exploring the range of supported symbols

The OpenMath package supports such basic OpenMath objects as integers (<OMI>), character
strings (<OMSTR>) and variables (<OMVAR>). Besides that, it supports a number of OpenMath
content dictionaries (some of them only partially, dependently on their relevance to GAP). To see
which symbols from which content dictionaries are supported for the conversion from OpenMath to
GAP, explore the global record OMsymRecord. Its components have names of appropriate CDs, and
subcomponents of each component have names of symbols from the corresponding CD. If the value
of the component is not equal to fail, then it contains the function or the object which is used for
conversion. The following example of the entry for the nums1 CD demonstrates a combination of all

possible cases:
Example

gap> Display(OMsymRecord.numsl);
rec(

NaN := nan,

based_integer := fail,

e := 2.718281828459045,

gamma := fail,

i:= E@4),

infinity := infinity,

pi := 3.141592653589793,

rational := function (x)

return OMgapId([OMgap2ARGS(x), x[1] / x[2] 1)[2];
end)

OMsymRecord contains all symbols for which conversion from OpenMath to GAP is supported ex-
cept some special symbols related with errors and special procedures from the SCSCP package which
are treated separately.

To check quickly if GAP can parse a given OpenMath object, copy the OpenMath code and

paste it directly into standard input after the following command:
Example

gap> s:= InputTextUser();; g := OMGetObject(s); CloseStream(s);

15

OpenMath 16

The main tool for the conversion from GAP to OpenMath is OMPut (<writer>, <object>). A
number of methods for OMPut are installed in the file openmath/gap/omput . gi.

To check quickly whether the object may be converted to OpenMath, call 0Mprint for that object,
for example:

Example
gap> OMPrint([[1..10], ZmodnZ0bj(2,6), (1,2) 1);
<0MOBJ>
<0OMA>
<0MS cd="listl1" name="list"/>
<0OMA>
<0MS cd="intervall" name="integer_interval"/>
<OMI>1</0MI>
<0MI>10</0MI>
</0MA>
<0OMA>
<0MS cd="integer2" name="class"/>
<0OMI>2</0MI>
<OMI>6</0MI>
</0MA>
<0OMA>
<0MS cd="permutl" name="permutation'/>
<0OMI>2</0MI>
<OMI>1</0MI>
</0MA>
</0MA>
</0MOBJ>

The package is in the continuous development and will support even more symbols in the future. In
the meantime, if you will have any requests for the support for particular symbols, please contact
Alexander Konovalov.

3.2 Adding support for private content dictionaries and symbols

There is also a way for the user to extend the package adding support for private and experimen-
tal CDs or separate symbols. We allocated the directory openmath/private for this purposes,
and currently it contain the file private.g for conversions from OpenMath to GAP and the file
private.gi for conversions from GAP to OpenMath for some symbols from private CDs contained
in the openmath/cds directory.

In particular, we extended the package with the following private OpenMath symbols:

* groupl.group_by_generators which allows us to input and output groups given by their
generators as this is a natural way to create groups in GAP;

* semigroupl.semigroup_by_generatorsandmonoidl.monoid_by_generators following
the same considerations for semigroups and monoids;

* pcgroupl.pcgroup_by_pcgscode for PcGroups given by their pcgs code and order;

OpenMath 17

* recordl.record for records as they are important data structures which we want to pass in a
straightforward manner between different GAP instances;

e transforml.transformation to support transformations, transformation semigroups and
their automorphism groups.

The file private.g is loaded from openmath/gap/new.g, and the private.gi is loaded from
openmath/gap/read.g. If the user would like to add own code, this may be done either by adding
it to these files or by placing additional files in openmath/private directory and load them similarly
to private.g and private.gi. We will welcome user’s contributions in the form of the code to
support existing content dictionaries from the OpenMath web site or private content dictionaries, if
they may be interesting for a wider community.

References

[FHK"a] Sebastian Freundt, Peter Horn, Alexander Konovalov, Sylla Lesseni, Steve Linton, and
Dan Roozemond. OpenMath content dictionary scscpl. (http://www.win.tue.nl/
SCIEnce/cds/scscpl.html). 4

[FHK*b] Sebastian Freundt, Peter Horn, Alexander Konovalov, Sylla Lesseni, Steve Linton, and
Dan Roozemond. OpenMath content dictionary scscp2. (http://www.win.tue.nl/
SCIEnce/cds/scscp2.html). 4

[FHK"c] Sebastian Freundt, Peter Horn, Alexander Konovalov, Steve Linton, and Dan Roozemond.
Symbolic Computation Software Composability Protocol (SCSCP) specification, version
1.3, 2009. (http://www.symbolic-computation.org/scscp). 4

[KL] Alexander Konovalov and Steve Linton. SCSCP — Symbolic Computation Software
Composability Protocol. GAP4 package (http://www.cs.st-andrews.ac.uk/“alexk/
scscp.htm). 4

[LN] Frank Liibeck and Max Neunhoffer. GAPDoc — A Meta Package for GAP Documentation.
GAP4 package (http://www.math.rwth-aachen.de/ Frank.Luebeck/GAPDoc). 4

18

http://www.win.tue.nl/SCIEnce/cds/scscp1.html
http://www.win.tue.nl/SCIEnce/cds/scscp1.html
http://www.win.tue.nl/SCIEnce/cds/scscp2.html
http://www.win.tue.nl/SCIEnce/cds/scscp2.html
http://www.symbolic-computation.org/scscp
http://www.cs.st-andrews.ac.uk/~alexk/scscp.htm
http://www.cs.st-andrews.ac.uk/~alexk/scscp.htm
http://www.math.rwth-aachen.de/~Frank.Luebeck/GAPDoc

Index

EvalOMString, 12

IsOpenMathBinaryWriter, 12
IsOpenMathWriter, 12
IsOpenMathXMLWriter, 12

OMGetObject, 11
OMPlainString, 13
OMPrint, 6
OMPutQObject, 13
OMPutObjectNoOMOBJtags, 13
OMString, 11
OMsymRecord, 15
OMTest, 14
OMTestBinary, 14
OMTestXML, 14
OpenMathBinaryWriter, 13
OpenMathXMLWriter, 12

OpenMath package, 2

19

	Introduction and installation
	Brief description of the package
	Installation of the package

	OpenMath functionality in GAP
	Viewing OpenMath representation of an object
	Reading OpenMath code from streams and strings
	Writing OpenMath code to streams
	Utilities

	Extending the OpenMath package
	Exploring the range of supported symbols
	Adding support for private content dictionaries and symbols

	References
	Index

