
Documentation on the NMO package

Version 1.0

7 January 2010

Randall E. Cone

Randall E. Cone — Email: rcone@math.vt.edu

Address: Virginia Tech

Blacksburg, VA, 24060, USA

mailto://rcone@math.vt.edu

Documentation on the NMO package 2

Acknowledgements

• Our immense gratitude to the authors of GBNP for allowing us to make a small contribution.

• Equal gratitude to Dr. Ed Green for his help as mentor and advisor, in both this project and many others.

Contents

1 NMO 4

1.1 Introduction . 4

1.2 NMO Files within GBNP . 5

1.3 Quickstart . 5

1.3.1 NMO Example 1 . 5

1.3.2 NMO Example 2 . 7

1.3.3 NMO Example 3 . 8

1.3.4 NMO Example 4 . 9

1.4 Orderings . 9

1.4.1 Internals . 10

1.4.2 Internal Routines . 10

1.4.3 Provided Orderings . 12

1.4.4 Externals . 13

1.4.5 External Routines . 13

1.4.6 Flexibility vs. Efficiency . 15

1.5 Utility Routines . 15

1.5.1 GBNP Patching Routines . 15

1.5.2 Printing Routine . 15

3

Chapter 1

NMO

1.1 Introduction

What follows is a description of the largely experimental project of providing arbitrary monomial

orderings to the GBNP package. The addition of the orderings comes in the form of a library, and a

patch to GBNP; the patching process being called at the GBNP user’s discretion.

More precisely, after a user creates a monomial ordering via the NMO library functions, a rou-

tine is called which overwrites the two GBNP functions ”LtNP” and ”GtNP”. In GBNP, these latter

two functions are explicitly length-lexicographic monomial comparison functions, and are used in

GBNP’s Gröbner Basis routines. Therefore NMO allows for the creation of arbitrary monomial or-

dering comparison functions, which, after the patching process, will be used by GBNP in place of its

native comparison functions.

NMO is an acronym for Noncommutative Monomial Orderings. Such orderings play a key role

in research surrounding noncommutative Gröbner basis theory; see [3], [4]. This package is geared

primarily toward the use and study of noncommutative (associative) free algebras with identity, over

computational fields. We have done our best to write code that treats a more general class of algebras,

but the routines have not been as extensively tested in those cases. Users of the package are encouraged

to provide constructive feedback about this issue or any others; we have open ears to ways to better

these research tools.

Flexibility in the creation and use of noncommutative monomial orderings has been our guiding

principle in writing NMO. For example, two (or more) orderings can be chained together to form new

orderings. It should be noted, however, that efficiency has also been considered in the design of NMO

for commonly used monomial orderings for noncommutative rings (e.g. length left-lexicographic).

That is to say, some monomial orderings that occur regularly in the study of noncommutative algebras

have already been included in NMO.

Throughout this chapter, methods and functions are generally classed as External and Internal

routines. External routines are methods and functions that will be most useful to the average user,

and generally work directly with native GAP algebraic objects. Internal routines usually concern

backend operations and mechanisms, and are often related to operations involving NP representations

of GAP algebraic elements, or they are related to attributes of monomial orderings. Many examples

of basic code use are provided; with some examples following the reference material for the functions

or methods involved.

4

Documentation on the NMO package 5

1.2 NMO Files within GBNP

Per the GAP package standard, NMO library code is read in via the file gbnp/read.g. The follow-

ing gives brief descriptions of each of the files loaded by gbnp/read.g, all of which reside in the

gbnp/lib/nmo/ subdirectory:

• ncalgebra.gd

Sets up some nice categories and filters in GAP.

• ncordmachine.g*

Code for creating the new GAP family of noncommutative monomial orderings, as well as its

attending (internal) machinery.

• ncorderings.g*

Sets up actual noncommutative monomial orderings. This is where some specific example

routines for monomial orderings are included. The less-than functions determining monomial

orderings should be collected here, e.g. the length left-lexicographic ordering is here.

• ncinterface.g*

These files provide the interface to comparison routines for determining equivalence, less-than,

and greater-than comparison between two algebraic elements under a given NMO ordering.

• ncutils.g*

Helpful utility routines, such as: patching GBNP for use with an NMO ordering, unpatching

GBNP, as well as a ‘String’ routine for elements of an associative algebra not already covered

in GAP.

There is a documentation directory in gbnp/doc/nmo wherein the GAPDoc source for this chapter

may be found.

Finally, there is an examples directory in gbnp/doc/examples/nmo where the plain GAP source

can be found for the examples in the Quickstart section of this chapter.

1.3 Quickstart

This Quickstart assumes you’ve already installed the GBNP package in its proper home. If that’s yet

to be done, please see the GBNP package manual for installation instructions.

If the user wishes, cutting and pasting the commands which directly follow the GAP prompt

gap> is a good way to become familiar with NMO via the examples below. Alternatively, code for the

following examples may be found in gbnp/doc/examples/nmo/example0*.g.

This Quickstart covers specific use of the NMO package’s functionality as pertaining to computing

noncommutative Gröbner bases for various examples. There are NMO user-level routines beyond these

Gröbner basis applications that may be of interest, all of which are documented in later sections.

1.3.1 NMO Example 1

Example 1 is taken from Dr. Edward Green’s paper “Noncommutative Gröbner Bases, and Projective

Resolutions”, and is referenced as “Example 2.7” there; please see [3] for more information.

Load the GBNP package with:

Documentation on the NMO package 6

Example
gap> LoadPackage("gbnp");
true

Create a noncommutative free algebra on 4 generators over the Rationals in GAP:

gap> A := FreeAssociativeAlgebraWithOne(Rationals,"a","b","c","d");
<algebra-with-one over Rationals, with 4 generators>

Label the generators of the algebra:

Example
gap> a := A.a; b := A.b; c := A.c; d := A.d;
(1)*a
(1)*b
(1)*c
(1)*d

Set up our polynomials, and convert them to GBNP NP format:

Example
gap> polys := [c*d*a*b-c*b,b*c-d*a];
[(-1)*c*b+(1)*c*d*a*b, (1)*b*c+(-1)*d*a]
gap> reps := GP2NPList(polys);
[[[[3, 4, 1, 2], [3, 2]], [1, -1]],

[[[4, 1], [2, 3]], [-1, 1]]]

Compute the Gröbner basis via GBNP using its default (length left-lexicographic) ordering; that is,

without patching GBNP with an NMO ordering:

Example
gap> gbreps := Grobner(reps);;
gap> gb := NP2GPList(gbreps,A);
[(1)*d*a+(-1)*b*c, (1)*c*b*c*b+(-1)*c*b]

Create length left-lexicographic ordering, with generators ordered: a < b < c < d. Note: this is the

default ordering of generators by NMO, if none is provided:

Example
gap> ml := NCMonomialLeftLengthLexOrdering(A);
NCMonomialLeftLengthLexicographicOrdering([(1)*a, (1)*b, (1)*c, (1)*d])

Patch GBNP with the ordering ml, and then run the same example. We should get the same answer as

above:
Example

gap> PatchGBNP(ml);
LtNP patched.
GtNP patched.
gap> gbreps := Grobner(reps);;
gap> gb := NP2GPList(gbreps,A);
[(1)*d*a+(-1)*b*c, (1)*c*b*c*b+(-1)*c*b]

Create a Length-Lexicographic ordering on the generators such that d < c < b < a:

Documentation on the NMO package 7

Example
gap> ml2 := NCMonomialLeftLengthLexOrdering(A,[4,3,2,1]);
NCMonomialLeftLengthLexicographicOrdering([(1)*d, (1)*c, (1)*b, (1)*a])

Compute the Gröbner basis with respect to this new ordering on the same algebra:

Example
gap> PatchGBNP(ml2);
LtNP patched.
GtNP patched.
gap> gbreps2 := SGrobner(reps);;
gap> gb2 := NP2GPList(gbreps2,A);
[(1)*b*c+(-1)*d*a, (1)*c*d*a*b+(-1)*c*b, (1)*d*a*d*a*b+(-1)*d*a*b,
(1)*c*d*a*d*a+(-1)*c*d*a, (1)*d*a*d*a*d*a+(-1)*d*a*d*a]

1.3.2 NMO Example 2

This example is the same as Example 1 above, except that the length and left-lexicographic order-

ings are created independently and then chained to form the usual length left-lexicographic ordering.

Hence, all results should be the same. Note: we assume from this point forward in all further examples

that GBNP is loaded.

Create a noncommutative free algebra on 4 generators over the Rationals, label, and set up the

example:

Example
gap> A := FreeAssociativeAlgebraWithOne(Rationals,"a","b","c","d");;
gap> a := A.a;; b := A.b;; c := A.c;; d := A.d;;
gap> polys := [c*d*a*b-c*b,b*c-d*a];;
gap> reps := GP2NPList(polys);;

Create left-lexicographic ordering with a < b < c < d:

Example
gap> lexord := NCMonomialLeftLexicographicOrdering(A);
NCMonomialLeftLexicographicOrdering([(1)*a, (1)*b, (1)*c, (1)*d])

Create a length ordering on monomials in A, with ties broken by the lexicographic order lexord:

Example
gap> lenlex := NCMonomialLengthOrdering(A,lexord);
NCMonomialLengthOrdering([(1)*a, (1)*b, (1)*c, (1)*d])

Patch GBNP and proceed with our example:

Example
gap> PatchGBNP(lenlex);;
LtNP patched.
GtNP patched.
gap> gbreps := Grobner(reps);;
gap> gb := NP2GPList(gbreps,A);
[(1)*d*a+(-1)*b*c, (1)*c*b*c*b+(-1)*c*b]

Now, proceed similarly, with the lexicographic order such that d < c < b < a:

Documentation on the NMO package 8

Example
gap> lexord2 := NCMonomialLeftLexicographicOrdering(A,[4,3,2,1]);
NCMonomialLeftLexicographicOrdering([(1)*d, (1)*c, (1)*b, (1)*a])
gap> lenlex2 := NCMonomialLengthOrdering(A,lexord2);
NCMonomialLengthOrdering([(1)*a, (1)*b, (1)*c, (1)*d])
gap> PatchGBNP(lenlex2);;
LtNP patched.
GtNP patched.
gap> gbreps2 := Grobner(reps);;
gap> gb2 := NP2GPList(gbreps2,A);
[(1)*b*c+(-1)*d*a, (1)*c*d*a*b+(-1)*c*b, (1)*d*a*d*a*b+(-1)*d*a*b,
(1)*c*d*a*d*a+(-1)*c*d*a, (1)*d*a*d*a*d*a+(-1)*d*a*d*a]

An important point can be made here. Notice that when the lenlex2 length ordering is created,

a lexicographic (generator) ordering table is assigned internally to the ordering since one was not

provided to it. This is merely a convenience for lexicographically-dependent orderings, and in the

case of the length order, it is not used. Only the lex table for lexord2 is ever used. Some clarification

may be provided in examining:
Example

gap> HasNextOrdering(lenlex2);
true
gap> NextOrdering(lenlex2);
NCMonomialLeftLexicographicOrdering([(1)*d, (1)*c, (1)*b, (1)*a])
gap> LexicographicTable(NextOrdering(lenlex2));
[(1)*d, (1)*c, (1)*b, (1)*a]

1.3.3 NMO Example 3

Example 3 is taken from the book “Ideals, Varieties, and Algorithms”, ([2], Example 2, p. 93-94); it

is a commutative example.

First, we set up the problem and find a Gröbner basis with respect to the length left-lexicographic

ordering implicitly assumed in GBNP:
Example

gap> A := FreeAssociativeAlgebraWithOne(Rationals,"x","y","z");;
gap> x := A.x;; y := A.y;; z := A.z;; id := One(A);;
gap> polys := [xˆ2 + yˆ2 + zˆ2 - id, xˆ2 + zˆ2 - y, x-z,
> x*y-y*x, x*z-z*x, y*z-z*y];;
gap> reps := GP2NPList(polys);;
gap> gb := Grobner(reps);;
gap> NP2GPList(gb,A);
[(1)*z+(-1)*x, (1)*xˆ2+(-1/2)*y, (1)*y*x+(-1)*x*y,
(1)*yˆ2+(2)*xˆ2+(-1)*<identity ...>]

The example, as presented in the book, uses a left-lexicographic ordering with z < y < x. We create

the ordering in NMO, patch GBNP, and get the result expected:
Example

gap> ml := NCMonomialLeftLexicographicOrdering(A,[3,2,1]);
NCMonomialLeftLexicographicOrdering([(1)*z, (1)*y, (1)*x])
gap> PatchGBNP(ml);
LtNP patched.
GtNP patched.

Documentation on the NMO package 9

gap> gb := Grobner(reps);;
gap> NP2GPList(gb,A);
[(1)*zˆ4+(1/2)*zˆ2+(-1/4)*<identity ...>, (1)*y+(-2)*zˆ2, (1)*x+(-1)*z]

1.3.4 NMO Example 4

Example 4 was taken from page 339 of the book “Some Tapas of Computer Algebra” by A.M. Cohen,

H. Cuypers, H. Sterk, [1]; it also appears as Example 6 in the GBNP example set.

A noncommutative free algebra on 6 generators over the Rationals is created in GAP, and the

generators are labeled:

Example
gap> A := FreeAssociativeAlgebraWithOne(Rationals,"a","b","c","d","e","f");;
gap> a := A.a;; b := A.b;; c := A.c;; d := A.d;; e := A.e;; f := A.f;;

Set up list of noncommutative polynomials:

Example
gap> polys := [e*a, aˆ3 + f*a, aˆ9 + c*aˆ3, aˆ81 + c*aˆ9 + d*aˆ3,
> aˆ27 + d*aˆ81 + e*aˆ9 + f*aˆ3, b + c*aˆ27 + e*aˆ81 + f*aˆ9,
> c*b + d*aˆ27 + f*aˆ81, a + d*b + e*aˆ27, c*a + e*b + f*aˆ27,
> d*a + f*b, bˆ3 - b, a*b - b*a, a*c - c*a, a*d - d*a,
> a*e - e*a, a*f - f*a, b*c - c*b, b*d - d*b, b*e - e*b,
> b*f - f*b, c*d - d*c, c*e - e*c, c*f - f*c, d*e - e*d,
> d*f - f*d, e*f - f*e
>];;
gap> reps := GP2NPList(polys);;

Create a length left-lex ordering with the following (default) ordering on the generators a < b < c <

d < e < f:
Example

gap> ml := NCMonomialLeftLengthLexOrdering(A);
NCMonomialLeftLengthLexicographicOrdering([(1)*a, (1)*b, (1)*c, (1)*d,

(1)*e, (1)*f])

Patch GBNP and compute the Gröbner basis with respect to the ordering ml:

Example
gap> PatchGBNP(ml);
LtNP patched.
GtNP patched.
gap> gb := Grobner(reps);;
gap> NP2GPList(gb,A);
[(1)*a, (1)*b, (1)*d*c+(-1)*c*d, (1)*e*c+(-1)*c*e,
(1)*e*d+(-1)*d*e, (1)*f*c+(-1)*c*f,
(1)*f*d+(-1)*d*f, (1)*f*e+(-1)*e*f]

1.4 Orderings

This section describes the current orderings built into the GAP package NMO, and describes some of

the internals of the machinery involved.

Documentation on the NMO package 10

1.4.1 Internals

The orderings portion of NMO is divided codewise into the files ncordmachine.gd,
ncordmachine.gi and ncorderings.gd, ncorderings.gi. The former file pair contains code

to set up the machinery to create new monomial orderings on noncommutative algebras, whereas the

latter sets up actual orderings. We will first describe the creation and use of length lexicographic

ordering, afterward describing more of the details of the new GAP family ‘NoncommutativeMonomi-

alOrdering’.

The NMO package was built with the mindset of allowing great flexibility in creating new mono-

mial orderings on noncommutative algebras. All that is required to install a new ordering is to create

two GAP functions that determine less-than comparisons (one non-indexed, and one indexed) and then

call InstallNoncommutativeMonomialOrdering with the comparison functions as arguments. The

comparison functions should be written to compare simple lists of integers, these lists representing

monomials as in GBNP’s ‘NP’ format, or the letter representation format in GAP (see ”The Exter-

nal Representation for Associative Words” in the GAP reference manual). An example follows the

description of the function InstallNoncommutativeMonomialOrdering.

A bit of explanation is due here to address the added complexity introduced by

requiring that two functions (<function>, <function2>) need be supplied to

InstallNoncommutativeMonomialOrdering to create an ordering. The first function<function>
should be responsible for comparing two given monomial list representations in their unadultered

forms. The second, indexed, function <function2> should be capable of using a provided index

list corresponding to an order on generators, based on a different lexicographic ordering. This

accomplishes something worthwhile: two orderings with different lexicographic tables can be applied

to the same algebra in GAP.

One more caveat: InstallNoncommutativeMonomialOrdering will create a default lexico-

graphic table for all orderings, despite whether or not it will be used in the comparison function.

It does this only out of convenience and ease of use.

For example, in the creation of the following left-lex ordering, which is installed via the

InstallNoncommutativeMonomialOrdering function, a default ordering of a < b < c is created

for ml even though an ordering on the generators is not provided:

Example
gap> A := FreeAssociativeAlgebraWithOne(Rationals,"a","b","c");
<algebra-with-one over Rationals, with 3 generators>
gap> lexord := NCMonomialLeftLexicographicOrdering(A);
NCMonomialLeftLexicographicOrdering([(1)*a, (1)*b, (1)*c])

Notice next that when an ordering on the generators is provided, it is utilized in the creation of the

ordering:

Example
gap> lexord2 := NCMonomialLeftLexicographicOrdering(A,[2,3,1]);
NCMonomialLeftLexicographicOrdering([(1)*b, (1)*c, (1)*a])

1.4.2 Internal Routines

♦ InstallNoncommutativeMonomialOrdering(<string>, <function>,

<function2>) (function)

Documentation on the NMO package 11

Given a name <string>, a direct comparison function <function>, and an indexed compari-

son function <function2>, InstallNoncommutativeMonomialOrdering will install a monomial

ordering function to allow the creation of a monomial ordering based on the provided functions.

For example, we create a length ordering by setting up the two comparison functions, choosing a

name for the ordering type and then calling InstallNoncommutativeMonomialOrdering.

Example
gap> f1 := function(a,b,aux)
> return Length(a) < Length(b);
> end;
function(a, b, aux) ... end
gap> f2 := function(a,b,aux,idx)
> return Length(a) < Length(b);
> end;
function(a, b, aux, idx) ... end

DeclareGlobalFunction("lenOrdering");
InstallNoncommutativeMonomialOrdering("lenOrdering",f1,f2);

Now we create an ordering based on this new function, and make some simple comparisons. (Note:

we are passing in an empty aux table since it is not being used. Also, the comparison function is the

non-indexed version since we determined no lex order on the generators):

Example
gap> A := FreeAssociativeAlgebraWithOne(Rationals,"a","b","c");
<algebra-with-one over Rationals, with 3 generators>
gap> ml := lenOrdering(A);
lenOrdering([(1)*a, (1)*b, (1)*c])
gap>
gap> LtFunctionListRep(ml)([1,2],[1,1,1],[]);
true
gap> LtFunctionListRep(ml)([1,1],[],[]);
false

♦ IsNoncommutativeMonomialOrdering(<obj>) (Category)

A noncommutative monomial ordering is an object representing a monomial ordering on a non-

commutative (associative) algebra. All NMO orderings are of this category.

♦ LtFunctionListRep(<NoncommutativeMonomialOrdering>) (attribute)

Returns the low-level comparison function used by the given ordering. The function returned is a

comparison function on the external representations (lists) for monomials in the algebra.

♦ NextOrdering(<NoncommutativeMonomialOrdering>) (attribute)

Returns the next noncommutative monomial ordering chained to the given ordering, if one exists.

It is usually called after a true determination has been made with a HasNextOrdering call.

♦ ParentAlgebra(<NoncommutativeMonomialOrdering>) (attribute)

Returns the parent algebra used in the creation of the given ordering.

Documentation on the NMO package 12

♦ LexicographicTable(<NoncommutativeMonomialOrdering>) (attribute)

Returns the ordering of the generators of the ParentAlgebra, as specified in the creation of the

given ordering.

♦ LexicographicIndexTable(<NoncommutativeMonomialOrdering>) (attribute)

Returns the ordering of the generators of the ParentAlgebra, as specified in the creation of the

given ordering.

An example here would be useful. We create a length left-lexicographic ordering on an algebra A
with an order on the generators of b < a < d < c. Then in accessing the attributes via the atrributes

above we see how the list given by LexicographicIndexTable indexes the ordered generators:

Example
gap> A := FreeAssociativeAlgebraWithOne(Rationals,"a","b","c","d");
<algebra-with-one over Rationals, with 4 generators>
gap> ml := NCMonomialLeftLengthLexOrdering(A,2,4,1,3);
NCMonomialLeftLengthLexicographicOrdering([(1)*b, (1)*d, (1)*a, (1)*c])
gap> LexicographicTable(ml);
[(1)*b, (1)*d, (1)*a, (1)*c]
gap> LexicographicIndexTable(ml);
[3, 1, 4, 2]

The index table shows that the generator a is the third in the generator ordering, b is the least generator

in the ordering, c is the greatest and d the second least in order.

♦ LexicographicPermutation(<NoncommutativeMonomialOrdering>) (attribute)

Experimental permutation based on the information in LexicographicTable, could possibly be

used to make indexed versions of comparison functions more efficient. Currently only used by the

NMO built-in ordering NCMonomialLLLTestOrdering.

♦ AuxilliaryTable(<NoncommutativeMonomialOrdering>) (attribute)

An extra table carried by the given ordering which can be used for such things as weight vectors,

etc.

♦ OrderingLtFunctionListRep(<NoncommutativeMonomialOrdering>) (operation)

♦ OrderingGtFunctionListRep(<NoncommutativeMonomialOrdering>) (operation)

Given a noncommutative monomial ordering, OrderingLtFunctionListRep and

OrderingLtFunctionListRep return functions which compare the ‘list’ representations (NP

representations) of two monomials from the ordering’s associated parent algebra. These functions are

not typically accessed by the user.

1.4.3 Provided Orderings

♦ NCMonomialLeftLengthLexicographicOrdering(<algebra>, <list>) (function)

Given a free algebra A, and an optional ordered (possibly partial) ordered list of generators for

the algebra A, NCMonomialLeftLengthLexicographicOrdering returns a noncommutative length

lexicographic ordering object. If an ordered list of generators is provided, its order is used in creation

Documentation on the NMO package 13

of the ordering object. If a list is not provided, then the ordering object is created based on the order

of the generators when the free algebra A was created.

Note: the synonym NCMonomialLeftLengthLexOrdering may also be used.

♦ NCMonomialLengthOrdering(<algebra>) (function)

Given a free algebra A, NCMonomialLengthOrdering returns a noncommutative length ordering

object. Only the lengths of the words of monomials in A are compared using this ordering.

♦ NCMonomialLeftLexicographicOrdering(<algebra>, <list>) (function)

Given a free algebra A, and an optional ordered (possibly partial) ordered list of generators for

the algebra A, NCMonomialLeftLexicographicOrdering returns a simple noncommutative left-

lexicographic ordering object.

♦ NCMonomialCommutativeLexicographicOrdering(<algebra>, <list>) (function)

Given a free algebra A, and an optional ordered (possibly partial) ordered list of generators

for the algebra A, NCMonomialCommutativeLexicographicOrdering returns a commutative left-

lexicographic ordering object. Under this ordering, monomials from A are compared using their

respective commutative analogues.

♦ NCMonomialWeightOrdering(<algebra>, <list>, <list2>) (function)

Given a free algebra A, an ordered (possibly partial) ordered<list> of generators for the algebra

A, and a <list2> of respective weights for the generators, NCMonomialWeightOrdering returns a

noncommutative weight ordering object.

1.4.4 Externals

All user-level interface routines in the descriptions following allow for the comparison of not only

monomials from a given algebra with respect to a given ordering, but also compare general elements

from an algebra by comparing their leading terms (again, with respect to the given ordering). These

routines are located in the files ncinterface.gd and ncinterface.gi.

1.4.5 External Routines

♦ NCLessThanByOrdering(<NoncommutativeMonomialOrdering>, <a>,)
(operation)

Given a <NoncommutativeMonomialOrdering> on an algebra A and a;b ∈ A,

NCLessThanByOrdering returns the (boolean) result of a < b, where < represents the com-

parison operator determined by <NoncommutativeMonomialOrdering>.

♦ NCGreaterThanByOrdering(<NoncommutativeMonomialOrdering>, <a>,)
(operation)

Given a <NoncommutativeMonomialOrdering> on an algebra A and a;b ∈ A,

NCLessThanByOrdering returns the (boolean) result of a > b, where > represents the com-

parison operator determined by <NoncommutativeMonomialOrdering>.

♦ NCEquivalentByOrdering(<NoncommutativeMonomialOrdering>, <a>,)
(operation)

Documentation on the NMO package 14

Given a <NoncommutativeMonomialOrdering> on an algebra A and a;b ∈ A,

NCLessThanByOrdering returns the (boolean) result of a = b, where = represents the com-

parison operator determined by <NoncommutativeMonomialOrdering>.

Some examples of these methods in use:

Example
gap> A := FreeAssociativeAlgebraWithOne(Rationals,"x","y","z");
<algebra-with-one over Rationals, with 3 generators>
gap> x := A.x;; y := A.y;; z := A.z;; id := One(A);;
gap> w1 := x*x*y;; w2 := x*y*x;; w3 := z*x;;

gap> ml := NCMonomialLeftLengthLexOrdering(A);
NCMonomialLeftLengthLexicographicOrdering([(1)*x, (1)*y, (1)*z])

gap> ml2 := NCMonomialLengthOrdering(A);
NCMonomialLengthOrdering([(1)*x, (1)*y, (1)*z])

gap> ml7 := NCMonomialWeightOrdering(A,[1,2,3],[1,1,2]);
NCMonomialWeightOrdering([(1)*x, (1)*y, (1)*z])

gap> ml8 := NCMonomialWeightOrdering(A,[2,3,1],[1,1,2]);
NCMonomialWeightOrdering([(1)*y, (1)*z, (1)*x])

gap> # Left length-lex ordering, x<y<z:
gap> NCEquivalentByOrdering(ml,w1,w2);
false
gap> # Length ordering:
gap> NCEquivalentByOrdering(ml2,w1,w2);
true
gap> NCEquivalentByOrdering(ml2,w3,w2);
false
gap> # Weight ordering (z=2, x=y=1):
gap> NCEquivalentByOrdering(ml7,w1,w2);
true
gap> NCEquivalentByOrdering(ml7,w3,w2);
true
gap> # Weight ordering (z=2, x=y=1), different lex:
gap> NCEquivalentByOrdering(ml8,w1,w2);
true
gap> NCEquivalentByOrdering(ml8,w3,w2);
true

♦ NCSortNP(<NoncommutativeMonomialOrdering>, <list>, <function>)
(operation)

Given a <list> of NP ‘list’ representations for monomials from a noncommutative algebra, and

an NP comparison (ordering) function <function>, NCSortNP returns a sorted version of <list>
(with respect to the NP comparison function <function>). The sort used here is an insertion sort,

per the recommendation from [5].

Documentation on the NMO package 15

1.4.6 Flexibility vs. Efficiency

We recall that InstallNoncommutativeMonomialOrdering completes a list of generators if only

a partial one is provided. An example will provide clarity here. It is given in terms of length-lex,

but the generator list completion functionality is identical for any NMO ordering. Note: If at all

possible, users are encouraged to use the default ordering on generators as it is more efficient than the

indirection inherent in sorting via the indexed list LexicographicIndexTable. Here is the example

showing the flexibility in requiring only a partial list of the ordering on generators:

Example
gap> A := FreeAssociativeAlgebraWithOne(Rationals,"a","b","c","d");
<algebra-with-one over Rationals, with 4 generators>
gap> ml2 := NCMonomialLeftLengthLexOrdering(A,[3,1]);
NCMonomialLeftLengthLexicographicOrdering([(1)*c, (1)*a, (1)*b, (1)*d])
gap> LexicographicTable(ml2);
[(1)*c, (1)*a, (1)*b, (1)*d]

1.5 Utility Routines

1.5.1 GBNP Patching Routines

♦ PatchGBNP(<NoncommutativeMonomialOrdering>) (operation)

♦ UnpatchGBNP() (function)

Let <NoncommutativeMonomialOrdering> be a monomial ordering (on an algebra A).

PatchGBNP overwrites the GBNP Global functions LtNP and GtNP with the less-than and greater-

than functions defined for <NoncommutativeMonomialOrdering>. The purpose of such a patching

is to force GBNP to use <NoncommutativeMonomialOrdering> in its computation of a Gröbner

basis. UnpatchGBNP() simply restores the LtNP and GtNP functions to their original state. The ex-

amples in Quickstart section are more illustrative, but here is an example of the use of the patching

routines above:
Example

gap> A := FreeAssociativeAlgebraWithOne(Rationals,"x","y","z");
<algebra-with-one over Rationals, with 3 generators>
gap> ml := NCMonomialLeftLexicographicOrdering(A,3,2,1);
NCMonomialLeftLexicographicOrdering([(1)*z, (1)*y, (1)*x])
gap> PatchGBNP(ml);
LtNP patched.
GtNP patched.
gap> UnpatchGBNP();
LtNP restored.
GtNP restored.

1.5.2 Printing Routine

♦ String(<obj>) (operation)

GAP seems to be currently lacking a method to convert an object from a free associative ring to a

string version of the same object. This routine fills that gap.

Documentation on the NMO package 16

Example (after loading NMO via the GBNP package):

Example
gap> A := FreeAssociativeAlgebraWithOne(ZmodpZ(19),"x","y");
<algebra-with-one over GF(19), with 2 generators>
gap> x := A.x; y := A.y;
(Z(19)ˆ0)*x
(Z(19)ˆ0)*y
gap> IsString(String(xˆ2+x*y*x));
true
gap> String(xˆ2+x*y*x);
"(Z(19)ˆ0)*xˆ2+(Z(19)ˆ0)*x*y*x"

Example (before loading NMO via the GBNP package):

Example
gap> A := FreeAssociativeAlgebraWithOne(ZmodpZ(19),"x","y");
<lgebra-with-one over GF(19), with 2 generators>
gap> x := A.x; y := A.y;
(Z(19)ˆ0)*x
(Z(19)ˆ0)*y
gap> String(xˆ2+x*y*x);
Error, no method found! For debugging hints type ?Recovery from NoMethodFound
Error, no 1st choice method found for ‘String’ on 1 arguments called from
<function>(<arguments>) called from read-eval-loop
Entering break read-eval-print loop ...
you can ’quit;’ to quit to outer loop, or
you can ’return;’ to continue
brk>

References

[1] Arjeh M. Cohen, Hans Cuypers, and Hans Sterk. Some Tapas of Computer Algebra, volume 4 of

Algorithms and Computation in Mathematics. Springer-Verlag, Heidelberg, 1999. 9

[2] David Cox, John Little, and Donal O’Shea. Ideals, varieties, and algorithms. Undergraduate

Texts in Mathematics. Springer-Verlag, New York, second edition, 1997. An introduction to

computational algebraic geometry and commutative algebra. 8

[3] Edward L. Green. Noncommutative Gröbner bases and projective resolutions. In Computational

Methods for Representations of Groups and Algebras, pages 29–60. Birkhäuser, 1999. (Essen

1997). 4, 5

[4] Teo Mora. An introduction to commutative and noncommutative Gröbner bases. Theoretical

Computer Science, 134(1):131–173, Nov 1994. 4

[5] Gonzalo Navarro and Mathieu Raffinot. Flexible Pattern Matching in Strings. Cambridge Uni-

versity Press, 2002. 14

17

