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Abstract

This document describes the package Float, which implements in GAP arbitrary-precision floating-point num-
bers.
For comments or questions on Float please contact the author.
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Chapter 1

Licensing

This program is free software; you can redistribute it and/or modify it under the terms of the GNU
General Public License as published by the Free Software Foundation; either version 2 of the License,
or any later version.

This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY;
without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
PURPOSE. See the GNU General Public License for more details.

You should have received a copy of the GNU General Public License along with this program, in
the file COPYING. If not, see http://www.gnu.org/licenses/.


http://www.gnu.org/licenses/

Chapter 2

Float package

2.1 A sample run

The extended floating-point capabilities of GAP are installed by loading the package via
LoadPackage("float"); and selecting new floating-point handlers via SetFloats(MPFR),
SetFloats(MPFI), SetFloats(MPC) orSetFloats(CXSC), depending on whether high-precision
real, interval or complex arithmetic are desired, or whether a fast package containing all four

real/complex element/interval arithmetic is desired:
Example

gap> LoadPackage("float");

Loading FLOAT 0.3 ...

true

gap> SetFloats(MPFR); # floating-point

gap> x := 4xAtan(1.0);

.314159e1

gap> Sin(x);

.169569e-30

gap> SetFloats(MPFR,1000); # 1000 bits

gap> x := 4xAtan(1.0);

.314159e1

gap> Sin(x);

.125154e-300

gap> String(x,300) ;
".3141592653589793238462643383279502884197169399375105820974944592307816406286\
208998628034825342117067982148086513282306647093844609550582231725359408128481\
117450284102701938521105559644622948954930381964428810975665933446128475648233\
78678316527120190914564856692346034861045432664821339360726024914127e1"

gap>

gap> SetFloats(MPFI); # intervals

gap> x := 4xAtan(1.0);

.314159e1(99)

gap> AbsoluteDiameter(x); Sup(x); Inf(x);

.100441e-29

.314159e1

.314159e1

gap> Sin(x);

-.140815e-29(97)

gap> 0.0 in last;
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true

gap> 1.0; # exact representation

.le1(inf)

gap> IncreaseInterval(last,0.001); # now only 8 significant bits
.1e1(8)

gap> IncreaseInterval(last,-0.002); # now becomes empty
\emptyset

gap> MinimalPolynomial (Rationals,Sqrt(2.0));

-2%x_172+1

gap> Cyc(last);

E(8)-E(8)"3

gap>

gap> SetFloats(MPC); # complex numbers




Chapter 3

Polynomials

3.1 The Floats pseudo-field

Polynomials with floating-point coefficients may be manipulated in GAP; though they behave, in
subtle ways, quite differently than polynomials over rings.

The "pseudo-field" of floating-point numbers is an object in GAP, called FLOAT_PSEUDOFIELD.
(It is not really a field, e.g. because addition of floating-point numbers in not associative). It may be
used to create indeterminates, for example as

Example
gap> x := Indeterminate(FLOAT_PSEUDOFIELD, "x");
X
gap> 2*x72+3;
2.0%x72+3.0
gap> Value(last,10);
203.0

3.2 Roots of polynomials

The Jenkins-Traub algorithm has been implemented, in arbitrary precision for MPFR and MPC.
Furthermore, CXSC can provide complex enclosures for the roots of a complex polynomial.

3.3 Finding integer relations

The PSLQ algorithm has been implemented by Steve A. Linton, as an external contribution to Float.
This algorithm receives as input a vector of floats x and a required precision €, and seeks an integer
vector v such that |x-v| < €. The implementation follows quite closely the original article [BBO1].

3.3.1 PSLQ
> PSLQ(x, epsilon[, gammal) (function)
> PSLQ_MP(x, epsilon[, gamma[, beta]l) (function)

Returns: An integer vector v with |x-v| < €.
The PSLQ algorithm by Bailey and Broadhurst (see [BB01]) searches for an integer relation be-
tween the entries in x.
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B and y are algorithm tuning parameters, and default to 4/10 and 2//(3) respectively.

Example
gap> PSLQ([1.0, (1+Sqrt(5.0))/2],1.e-2);

[ 55, -34 ] # Fibonacci numbers

gap> RootsFloat([1,-4,2]%1.0);

[ 0.292893, 1.70711 ] # roots of 2x~2-4x+1
gap> PSLQ(List([0..2],i->last[1]"1i),1.e-7);

[ 1, -4, 2 ] # a degree-2 polynomial fitting well

3.4 LLL lattice reduction

A faster implementation of the LLL Ilattice reduction algorithm has also been implemented. It is
accessible via the commands FPLLLReducedBasis (m) and FPLLLShortestVector (m).




Chapter 4

Implemented packages

4.1 MPFR

4.1.1 IsMPFRFloat

> IsMPFRFloat (filter)
> TYPE_MPFR (global variable)

The category of floating-point numbers.
Note that they are treated as commutative and scalar, but are not necessarily associative.

4.2 MPFI

4.2.1 IsMPFIFloat

> IsMPFIFloat (filter)
> TYPE_MPFI (global variable)

The category of intervals of floating-point numbers.
Note that they are treated as commutative and scalar, but are not necessarily associative.

4.3 MPC

4.3.1 IsMPCFloat

> IsMPCFloat (filter)
> TYPE_MPC (global variable)

The category of intervals of floating-point numbers.
Note that they are treated as commutative and scalar, but are not necessarily associative.
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44 CXSC
4.4.1 IsCXSCReal
> IsCXSCReal (filter)
> IsCXSCComplex (filter)
> IsCXSCInterval (filter)
> IsCXSCBox (filter)
> TYPE_CXSC_RP (global variable)
> TYPE_CXSC_CP (global variable)
> TYPE_CXSC_RI (global variable)
> TYPE_CXSC_CI (global variable)
The category of floating-point numbers.
Note that they are treated as commutative and scalar, but are not necessarily associative.
4.5 FPLLL

4.5.1 FPLLLReducedBasis

> FPLLLReducedBasis (m) (operation)
Returns: A matrix spanning the same lattice as m.
This function implements the LLL (Lenstra-Lenstra-Lovdsz) lattice reduction algorithm via the
external library fplll.
The result is guaranteed to be optimal up to 1%.

4.5.2 FPLLLShortestVector

> FPLLLShortestVector (m) (operation)
Returns: A short vector in the lattice spanned by m.
This function implements the LLL (Lenstra-Lenstra-Lovdsz) lattice reduction algorithm via the
external library fplll, and then computes a short vector in this lattice.
The result is guaranteed to be optimal up to 1%.
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