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1 Introduction

The AutomGrp package provides methods for computations with groups and semigroups generated by finite
automata or given by wreath recursions, as well as with their finitely generated subgroups, subsemigroups
and elements.

The project originally started in 2000 mostly for personal use. It was gradually expanding during consequent
years, including both addition of new algorithms and simplification of user interface. It was used in the
process of classification of groups generated by 3-state automata over a 2-letter alphabet (see [BGK+08]).

First author thanks Sveta and Max Muntyan for their infinite patience and understanding. Second author
thanks Olga and Anna, Irina and Andrey Savchuk for their help and understanding. This project would be
impossible without them.

We would like to express our warm gratitude to Rostislav Grigorchuk, Zoran Sunic, Volodymyr Nekra-
shevych, Ievgen Bondarenko, Rostyslav Kravchenko, Yaroslav and Maria Vorobets and Ben Steinberg for
their support, valuable comments, feature requests and constant interest in the project.

Both authors were partially supported by NSF grants DMS-0600975, DMS-0456185 and DMS-0308985. The
second author appreciates the support from the New Researcher Grant from University of South Florida.

1.1 Short math background

This package deals mostly with groups acting on rooted trees. In this section we recall necessary definitions
and notation that will be used throughout the manual. For more detailed introduction in the theory of
groups generated by automata we refer the reader to [GNS00].

The infinite connected tree with selected vertex, called the root , in which the degree of every vertex except
the root is d + 1 and the degree of the root is d is called the regular homogeneous rooted tree of degree d (or
d-ary tree). The rooted tree of degree 2 is called the binary tree.

The n-th level of the tree consists of all vertices located at distance n from the root (here we mean combi-
natorial distance in the graph).

Similarly one defines spherically homogeneous (or spherically-transitive) rooted trees as rooted trees, such
that the degrees of all vertices on the same level coincide.

Given a finite alphabet X = {1, 2, . . . , d} the set X ∗ of all finite words over X may be endowed with the
structure of d -ary tree in which the empty word ∅ is the root , the level n in X ∗ consists of the words of
length n over X and every vertex v has d children, labeled by vx , for x ∈ X .

Any automorphism f of the rooted tree T fixes the root and the levels. For any vertex v of the tree the
automorphism f induces the automorphism f |v of the subtree hanging down from the vertex v by f |v (u) = w
if f (vu) = v ′w for some v ′ ∈ X |v | from the same level as v (here |v | denotes the combinatorial distance from
v to the root of the tree). This automorphism is called the section of f at v .

If the tree T is regular, then the subtrees hanging down from vertices of T are canonically isomorphic to T
and, thus, the sections of any automorphism f of T can be considered as automorphisms of T again.

A group G of automorphisms of the regular rooted tree T is called self-similar if all sections of every element
of G belong to G .
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A self-similar group G is called contracting if there is a finite set N of elements of G , such that for any g in
G there is a level n such that all sections of g at vertices of levels bigger than n belong to N . The smallest
set with such a property is called the nucleus of G .

Any automorphism f of a rooted tree can be decomposed as

f = (f1, f2, . . . , fd )σ,

where f1, . . . , fd are the sections of f at the vertices of the first level and σ is the permutation which permutes
the subtrees hanging down from these vertices.

This notation is very convenient for performing multiplication of elements. If f = (f1, f2, . . . , fd )σ and g =
(g1, g2, . . . , gd )π, then

f · g = (f1 · gσ(1), . . . , fd · gσ(d))σπ,

f −1 = (f −1σ−1(1), . . . , f
−1
σ−1(d))σ

−1.

The group of automorphisms of a rooted tree is said to be level-transitive if it acts transitively on each level
of the tree.

Everything above applies also for homomorphisms of rooted trees (maps preserving the root and incidence
relation of the vertices). The only difference is that in this case we get semigroups and monoids of tree
homomorphisms.

A special class of self-similar groups is the class of groups generated by finite automata. This class is especially
nice from algorithmic point of view. Recall basic definitions.

A Mealy automaton (transducer , synchronous automaton, or, simply, automaton) is a tuple A = (Q ,X , ρ, τ),
where Q is a set of states, X is a finite alphabet of cardinality d ≥ 2, ρ : Q ×X → X is a map, called output
map, τ : Q ×X → Q is a map, called transition map.

If for each state q in Q , the restriction ρq : X → X given by ρq(x ) = ρ(q , x ) is a permutation, the automaton
is called invertible.

If the set Q of states is finite, the automaton is called finite.

If some state q in Q of the automaton A is selected to be initial, the automaton is called initial and denoted
Aq . If an initial state is not specified, the automaton is called noninitial .

An initial automaton naturally acts on X ∗ by homomorphisms (automorphisms in case of an invertible
automation). Given a word x1x2 . . . xn the automaton starts at the initial state q , reads the first input
letter x1, outputs the letter ρq(x1) and changes its state to q1 = τ(q , x1). The rest of the input word is
handled by the new state q1 in the same way. Formally speaking, the functions ρ and τ can be extended to
ρ : Q ×X ∗ → X ∗ and τ : Q ×X ∗ → Q .

Given an automaton A the group G(A) of automorphisms of X ∗ generated by the states of A (as initial
automata) is called the automaton group defined by A.

Every automaton group is self-similar, because the section of Aq at vertex v is just Aτ(q,v).

A special case is the case of groups generated by finite automata and their subgroups. In this class we can
solve the word problem, which makes it much nicer from computational point of view.

Finite automata are often described by recursive relations of the form

q = (τ(q , 1), . . . , τ(q , d))ρq

for every state q . For example, the line a = (a, b)(1, 2), b = (a, b) describes the automaton with 2 states
a and b, such that a permutes the letters 1 and 2 and b does not; and independently of current state
the automaton changes its initial state to a if it reads 1 and to b if it reads 2. This particular automaton
generates the, so-called, lamplighter group.

One may also consider semigroups generated by noninvertible automata.
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1.2 Installation instructions

AutomGrp package requires GAP version at least 4.4.6 and FGA (Free Group Algorithms) package available
at

http://www.gap-system.org/Packages/fga.html

The installation of the AutomGrp package follows the standard GAP rules, i.e. to install it unpack the archive
into the pkg directory of your GAP distribution. This will create automgrp subdirectory.

To load package issue the command

gap> LoadPackage("automgrp");

----------------------------------------------------------------

Loading AutomGrp 1.2.4 (Automata Groups and Semigroups)

by Yevgen Muntyan (muntyan@fastmail.fm)

Dmytro Savchuk (http://savchuk.myweb.usf.edu/)

Homepage: http://finautom.sourceforge.net/

----------------------------------------------------------------

true

To test the installation, issue the command

gap> Read( Filename( DirectoriesLibrary( "pkg/automgrp/tst"), "testall.g"));

in the GAP command line.

1.3 Quick example

Here is how to define Grigorchuk group and Basilica group.

gap> GrigorchukGroup := AutomatonGroup("a=(1,1)(1,2),b=(a,c),c=(a,d),d=(1,b)");

< a, b, c, d >

gap> Basilica := AutomatonGroup( "u=(v,1)(1,2), v=(u,1)" );

< u, v >

Similarly one can define a group (or semigroup) generated by a noninvertible automaton. As an example we
consider the semigroup of intermediate growth generated by the two state automaton ([BRS06])

gap> SG := AutomatonSemigroup( "f0=(f0,f0)(1,2), f1=(f1,f0)[2,2]" );

< f0, f1 >

Another type of groups (semigroups) implemented in the package is the class of groups (semigroups) defined
by wreath recursion (finitely generated self-similar groups).

gap> WRG := SelfSimilarGroup("x=(1,y)(1,2),y=(z^-1,1)(1,2),z=(1,x*y)");

< x, y, z >

Now we can compute several properties of GrigorchukGroup, Basilica and SG

gap> IsFinite(GrigorchukGroup);

false

gap> IsSphericallyTransitive(GrigorchukGroup);

true

gap> IsFractal(GrigorchukGroup);

true

gap> IsAbelian(GrigorchukGroup);

false

gap> IsTransitiveOnLevel(GrigorchukGroup, 4);

true

We can also check that Basilica and WRG are contracting and compute their nuclei
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gap> IsContracting(Basilica);

true

gap> GroupNucleus(Basilica);

[ 1, u, v, u^-1, v^-1, u^-1*v, v^-1*u ]

gap> IsContracting( WRG );

true

gap> GroupNucleus( WRG );

[ 1, y*z^-1*x*y, z^-1*y^-1*x^-1*y*z^-1, z^-1*y^-1*x^-1, y^-1*x^-1*z*y^-1,

z*y^-1*x*y*z, x*y*z ]

The group GrigorchukGroup is generated by a bounded automaton and, thus, is amenable (see [BKN10])

gap> IsGeneratedByBoundedAutomaton(GrigorchukGroup);

true

gap> IsAmenable(GrigorchukGroup);

true

We can compute the stabilizers of levels and vertices

gap> StabilizerOfLevel(GrigorchukGroup, 2);

< a*b*a*d*a^-1*b^-1*a^-1, d, b*a*d*a^-1*b^-1, a*b*c*a^-1, b*a*b*a*b^-1*a^-1*b^

-1*a^-1, a*b*a*b*a*b^-1*a^-1*b^-1 >

gap> StabilizerOfVertex(GrigorchukGroup, [2, 1]);

< a*b*a*d*a^-1*b^-1*a^-1, d, a*c*b^-1*a^-1, c, b, a*b*a*c*a^-1*b^-1*a^

-1, a*b*a*b*a^-1*b^-1*a^-1 >

In case of a finite group we can produce an isomorphism into a permutational group

gap> f := IsomorphismPermGroup(Group(a,b));

[ a, b ] ->

[ (1,2)(3,5)(4,6)(7,9)(8,10)(11,13)(12,14)(15,17)(16,18)(19,21)(20,22)(23,

25)(24,26)(27,29)(28,30)(31,32), (1,3)(2,4)(5,7)(6,8)(9,11)(10,12)(13,

15)(14,16)(17,19)(18,20)(21,23)(22,24)(25,27)(26,28)(29,31)(30,32) ]

gap> Size(Image(f));

32

Here is how to find relations in Basilica between elements of length not greater than 5.

gap> FindGroupRelations(Basilica, 6);

v*u*v*u^-1*v^-1*u*v^-1*u^-1

v*u^2*v^-1*u^2*v*u^-2*v^-1*u^-2

v^2*u*v^2*u^-1*v^-2*u*v^-2*u^-1

[ v*u*v*u^-1*v^-1*u*v^-1*u^-1, v*u^2*v^-1*u^2*v*u^-2*v^-1*u^-2,

v^2*u*v^2*u^-1*v^-2*u*v^-2*u^-1 ]

Or relations in the subgroup 〈p = uv−1, q = vu〉

gap> FindGroupRelations([u*v^-1,v*u], ["p", "q"], 5);

q*p^2*q*p^-1*q^-2*p^-1

[ q*p^2*q*p^-1*q^-2*p^-1 ]

Or relations in the semigroup SG
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gap> FindSemigroupRelations(SG, 4);

f0^3 = f0

f0^2*f1 = f1

f1*f0^2 = f1

f1^3 = f1

[ [ f0^3, f0 ], [ f0^2*f1, f1 ], [ f1*f0^2, f1 ], [ f1^3, f1 ] ]

Some basic operations with elements are the following:

The function IsOne computes whether an element represents the trivial automorphism of the tree

gap> IsOne( (a*b)^16 );

true

Here is how to compute the order (this function might not stop in some cases)

gap> Order(a*b);

16

gap> Order(u^22*v^-15*u^2*v*u^10);

infinity

One can check if a particular element acts spherically transitively on the tree (this function might not stop
in some cases)

gap> IsSphericallyTransitive(a*b);

false

gap> IsSphericallyTransitive(u*v);

true

The sections of an element can be obtained as follows

gap> Section(u*v^2*u, 2);

u^2*v

gap> Decompose(u*v^2*u);

(v, u^2*v)

gap> Decompose(u*v^2*u, 3);

(v, 1, 1, 1, u*v, 1, u, 1)(1,2)(5,6)

One can try to compute whether the elements of group WRG defined by wreath recursion are finite-state and
calculate corresponding automaton

gap> IsFiniteState(x*y^-1);

true

gap> AllSections(x*y^-1);

[ x*y^-1, z, 1, x*y, y*z^-1, z^-1*y^-1*x^-1, y^-1*x^-1*z*y^-1, z*y^-1*x*y*z,

y*z^-1*x*y, z^-1*y^-1*x^-1*y*z^-1, x*y*z, y, z^-1, y^-1*x^-1, z*y^-1 ]

gap> A := MealyAutomaton(x*y^-1);

<automaton>

gap> NumberOfStates(A);

15

To get the action of an element on a vertex or on a particular level of the tree use the following commands
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gap> [1,2,1,1]^(a*b);

[ 2, 2, 1, 1 ]

gap> PermOnLevel(u*v^2*v, 3);

(1,6,4,8,2,5,3,7)

The action of the whole group GrigorchukGroup on some level can be computed via PermGroupOnLevel

(see 2.3.1).

gap> PermGroupOnLevel(GrigorchukGroup, 3);

Group([ (1,5)(2,6)(3,7)(4,8), (1,3)(2,4)(5,6), (1,3)(2,4), (5,6) ])

gap> Size(last);

128

The next example shows how to find all elements of Grigorchuk group of length at most 5, which have order
16.

gap> FindElements(GrigorchukGroup, Order, 16, 5);

[ a*b, b*a, c*a*d, d*a*c, a*b*a*d, a*c*a*d, a*d*a*b, a*d*a*c, b*a*d*a,

c*a*d*a, d*a*b*a, d*a*c*a, a*c*a*d*a, a*d*a*c*a, b*a*b*a*c, b*a*c*a*c,

c*a*b*a*b, c*a*c*a*b ]



2
Properties and

operations with groups
and semigroups

2.1 Creation of groups and semigroups

1I AutomatonGroup( string[, bind vars] ) O
I AutomatonGroup( list[, names, bind vars] ) O
I AutomatonGroup( automaton[, bind vars] ) O

Creates the self-similar group generated by the finite automaton, described by string or list , or by the
argument automaton.

The argument string is a conventional notation of the form name1=(name11,name12,...,name1d)perm1,

name2=... where each name* is a name of a state or 1, and each perm* is a permutation written in GAP no-
tation. Trivial permutations may be omitted. This function ignores whitespace, and states may be separated
by commas or semicolons.

The argument list is a list consisting of n entries corresponding to n states of an automaton. Each entry is of
the form [a1, ..., ad , p], where d ≥ 2 is the size of the alphabet the group acts on, ai are IsInt in {1, . . . ,n}
and represent the sections of the corresponding state at all vertices of the first level of the tree; and p from
SymmetricGroup(d) describes the action of the corresponding state on the alphabet.

The optional argument names must be a list of names of generators of the group, corresponding to the states
of the automaton. These names are used to display elements of the resulting group.

If the optional argument bind vars is false the names of generators of the group are not assigned to the
global variables. The default value is true. One can use AssignGeneratorVariables function to assign
these names later, if they were not assigned when the group was created.

gap> AutomatonGroup("a=(a,b), b=(a, b)(1,2)");

< a, b >

gap> AutomatonGroup("a=(b,a,1)(2,3), b=(1,a,b)(1,2,3)");

< a, b >

gap> A := MealyAutomaton("a=(b,1)(1,2), b=(a,1)");

<automaton>

gap> G := AutomatonGroup(A);

< a, b >

In the second form of this operation the definition of the first group looks like

gap> AutomatonGroup([ [ 1, 2, ()], [ 1, 2, (1,2) ] ], [ "a", "b" ]);

< a, b >

The bind vars argument works as follows



10 Chapter 2. Properties and operations with groups and semigroups

gap> AutomatonGroup("t = (1, t)(1,2)", false);;

gap> t;

Variable: ’t’ must have a value

gap> AutomatonGroup("t = (1, t)(1,2)", true);;

gap> t;

t

2I AutomatonSemigroup( string[, bind vars] ) O
I AutomatonSemigroup( list[, names, bind vars] ) O
I AutomatonSemigroup( automaton[, bind vars] ) O

Creates the semigroup generated by the finite automaton, described by string or list , or by the argument
automaton.

The argument string is a conventional notation of the form name1=(name11,name12,...,name1d)trans1,

name2=... where each name* is a name of a state or 1, and each trans* is either a permutation written
in GAP notation, or a list defining a transformation of the alphabet via Transformation(trans*). Trivial
permutations may be omitted. This function ignores whitespace, and states may be separated by commas
or semicolons.

The argument list is a list consisting of n entries corresponding to n states of the automaton. Each entry
is of the form [a1, · · ·, ad , p], where d ≥ 2 is the size of the alphabet the group acts on, ai are IsInt in
{1, . . . ,n} and represent the sections of the corresponding state at all vertices of the first level of the tree;
and p is a transformation of the alphabet describing the action of the corresponding state on the alphabet.

The optional arguments names and bind vars have the same meaning as in AutomatonGroup (see 2.1.1).

gap> AutomatonSemigroup("a=(a, b)[2,2], b=(a,b)(1,2)");

< a, b >

gap> AutomatonSemigroup("a=(b,a,1)[1,1,3], b=(1,a,b)(1,2,3)");

< 1, a, b >

gap> A := MealyAutomaton("f0=(f0,f0)(1,2), f1=(f1,f0)[2,2]");

<automaton>

gap> G := AutomatonSemigroup(A);

< f0, f1 >

In the second form of this operation the definition of the second semigroup looks like

gap> AutomatonSemigroup([ [1,2,Transformation([2,2])], [ 1,2,(1,2)] ], ["a","b"]);

< a, b >

3I SelfSimilarGroup( string[, bind vars] ) O
I SelfSimilarGroup( list[, names, bind vars] ) O
I SelfSimilarGroup( automaton[, bind vars] ) O

Creates the self-similar group generated by the wreath recursion, described by string or list , or given by the
argument automaton.

The argument string is a conventional notation of the form name1=(word11,word12,...,word1d)perm1,

name2=... where each name* is a name of a state, word* is an associative word over the alphabet consisting
of all name*, and each perm* is a permutation written in GAP notation. Trivial permutations may be omitted.
This function ignores whitespace, and states may be separated by commas or semicolons.

The argument list is a list consisting of n entries corresponding to n generators of the group. Each entry is
of the form [a1, ..., ad , p], where d ≥ 2 is the size of the alphabet the group acts on, ai are lists acceptable by
AssocWordByLetterRep (e.g. if the names of generators are x, y and z, then [1, 1, -2, -2, 1, 3] will
produce x^2*y^-2*x*z) representing the sections of the corresponding generator at all vertices of the first
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level of the tree; and p from SymmetricGroup(d) describes the action of the corresponding generator on the
alphabet.

The optional argument names must be a list of names of generators of the group. These names are used to
display the elements of the resulting group.

If the optional argument bind vars is false the names of generators of the group are not assigned to the
global variables. The default value is true. One can use AssignGeneratorVariables function to assign
these names later, if they were not assigned when the group was created.

gap> SelfSimilarGroup("a=(a*b, b^-1), b=(1, b^2*a)(1,2)");

< a, b >

gap> SelfSimilarGroup("a=(b,a,a^-1)(2,3), b=(1,a*b,b)(1,2,3)");

< a, b >

gap> A := MealyAutomaton("f0=(f0,f0)(1,2),f1=(f1,f0)");

<automaton>

gap> SelfSimilarGroup(A);

< f0, f1 >

In the second form of this operation the definition of the first group looks like

gap> SelfSimilarGroup([[ [1,2], [-2], ()], [ [], [2,2,1], (1,2) ]], ["a","b"]);

< a, b >

The bind vars argument works as follows

gap> SelfSimilarGroup("t = (t^2, t)(1,2)", false);;

gap> t;

Variable: ’t’ must have a value

gap> SelfSimilarGroup("t = (t^2, t)(1,2)", true);;

gap> t;

t

4I SelfSimilarSemigroup( string[, bind vars] ) O
I SelfSimilarSemigroup( list[, names, bind vars] ) O
I SelfSimilarSemigroup( automaton[, bind vars] ) O

Creates the semigroup generated by the wreath recursion, described by string or list , or given by the
argument automaton. Note, that on the contrary to AutomatonSemigroup (2.1.2) in some cases the defined
semigroup may not be self-similar, since the sections of generators may include inverses of generators or
trivial homomorphisms, not included in the semigroup generated by the generators. If one needs to have
self-similarity it is always possible to include the necessary sections in the generating set.

The argument string is a conventional notation of the form name1=(word11,word12,...,word1d)trans1,

name2=... where each name* is a name of a state, word* is an associative word over the alphabet consisting of
all name*, and each trans* is either a permutation written in GAP notation, or a list defining a transformation
of the alphabet via Transformation(trans*). Trivial permutations may be omitted. This function ignores
whitespace, and states may be separated by commas or semicolons.

The argument list is a list consisting of n entries corresponding to n generators of the semigroup. Each
entry is of the form [a1, ..., ad , p], where d ≥ 2 is the size of the alphabet the semigroup acts on, ai are
lists acceptable by AssocWordByLetterRep (e.g. if the names of generators are x, y and z, then [1, 1,

2, 3] will produce x^2*y*z) representing the sections of the corresponding generator at all vertices of the
first level of the tree; and p is a transformation of the alphabet describing the action of the corresponding
generator.

The optional arguments names and bind vars have the same meaning as in SelfSimilarGroup (see 2.1.3).
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gap> SelfSimilarSemigroup("a=(a*b,b)[1,1], b=(a,b^2*a)(1,2)");

< a, b >

gap> SelfSimilarSemigroup("a=(b,a,a^3)(2,3), b=(1,a*b,b^-1)(1,2,3)");

< a, b >

gap> A := MealyAutomaton("f0=(f0,f0)(1,2), f1=(f1,f0)[2,2]");

<automaton>

gap> SelfSimilarSemigroup(A);

< f0, f1 >

In the second form of this operation the definition of the first semigroup looks like

gap> SelfSimilarSemigroup([[[1,2], [2], ()], [[1], [2,2,1], (1,2)]],["a","b"]);

< a, b >

The bind vars argument works as follows

gap> SelfSimilarSemigroup("t = (t^2, t)(1,2)", false);;

gap> t;

Variable: ’t’ must have a value

gap> SelfSimilarSemigroup("t = (t^2, t)(1,2)", true);;

gap> t;

t

5I IsTreeAutomorphismGroup( G ) C

The category of groups of tree automorphisms.

6I IsAutomGroup( G ) C

The category of groups generated by finite invertible initial automata (elements from category IsAutom).

7I IsAutomatonGroup( G ) P

is true if G is created using the command AutomatonGroup (2.1.1) or if the generators of G coincide
with the generators of the corresponding family, and false otherwise. To test whether G is self-similar use
IsSelfSimilar (2.2.8) command.

8I IsSelfSimGroup( G ) C

The category of groups whose generators are defined using wreath recursion (elements from category Is-

SelfSim). These groups need not be self-similar.

9I IsSelfSimilarGroup( G ) P

is true if G is created using the command SelfSimilarGroup (2.1.3) or if the generators of G coincide
with the generators of the corresponding family, and false otherwise. To test whether G is self-similar use
IsSelfSimilar (2.2.8) command.

2.2 Basic properties of groups and semigroups

1I TopDegreeOfTree( obj ) A

Returns the degree of the tree on the first level, i.e. the number of vertices adjacent to the root vertex.

2I DegreeOfTree( obj ) A

This is a synonym for TopDegreeOfTree (2.2.1) for the case of a regular tree. It is an error to call this method
for an object which acts on a non-regular tree.
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3I IsFractal( G ) P

Returns whether the group G is fractal (also called as self-replicating). In other words, if G acts transitively
on the first level and for any vertex v of the tree the projection of the stabilizer of v in G on this vertex
coincides with the whole group G .

gap> GrigorchukGroup := AutomatonGroup("a=(1,1)(1,2),b=(a,c),c=(a,d),d=(1,b)");

< a, b, c, d >

gap> IsFractal(GrigorchukGroup);

true

4I IsFractalByWords( G ) P

Computes the generators of stabilizers of vertices of the first level and their projections on these vertices.
Returns true if the preimages of these projections in the free group under the canonical epimorphism
generate the whole free group for each stabilizer, and the G acts transitively on the first level. This is
sufficient but not necessary condition for G to be fractal. See also IsFractal (2.2.3).

5I IsSphericallyTransitive( G ) P

Returns whether the group G is spherically transitive (see 1.1).

gap> GrigorchukGroup := AutomatonGroup("a=(1,1)(1,2),b=(a,c),c=(a,d),d=(1,b)");

< a, b, c, d >

gap> IsSphericallyTransitive(GrigorchukGroup);

true

6I ContainsSphericallyTransitiveElement( G ) A

For a self-similar group G acting on a binary tree returns true if G contains an element acting spherically
transitively on the levels of the tree and false otherwise. See also SphericallyTransitiveElement (2.3.15).

gap> Basilica := AutomatonGroup( "u=(v,1)(1,2), v=(u,1)" );

< u, v >

gap> ContainsSphericallyTransitiveElement(Basilica);

true

gap> G := SelfSimilarGroup("a=(a^-1*b^-1,1)(1,2), b=(b^-1,a*b)");

< a, b >

gap> ContainsSphericallyTransitiveElement(G);

false

7I IsTransitiveOnLevel( G, lev ) O

Returns whether the group (semigroup) G acts transitively on level lev .

gap> GrigorchukGroup := AutomatonGroup("a=(1,1)(1,2),b=(a,c),c=(a,d),d=(1,b)");

< a, b, c, d >

gap> IsTransitiveOnLevel(Group([a,b]),3);

true

gap> IsTransitiveOnLevel(Group([a,b]),4);

false

8I IsSelfSimilar( G ) P

Returns whether the group or semigroup G is self-similar (see 1.1).

9I IsContracting( G ) A

Given a self-similar group G tries to compute whether it is contracting or not. Only a partial method is
implemented (since there is no general algorithm so far). First it tries to find the nucleus up to size 50
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using FindNucleus(G ,50) (see 2.3.18), then it tries to find evidence that the group is noncontracting using
IsNoncontracting(G ,10,10) (see 2.2.10). If the answer was not found one can try to use FindNucleus and
IsNoncontracting with bigger parameters. Also one can use SetInfoLevel(InfoAutomGrp, 3) for more
information to be displayed.

gap> Basilica := AutomatonGroup( "u=(v,1)(1,2), v=(u,1)" );

< u, v >

gap> IsContracting(Basilica);

true

gap> IsContracting(AutomatonGroup("a=(c,a)(1,2), b=(c,b), c=(b,a)"));

false

10I IsNoncontracting( G[, max len, depth] ) F

Tries to show that the group G is not contracting. Enumerates the elements of the group G up to length
max len until it finds an element which has a section g of infinite order, such that OrderUsingSections(g ,
depth) (see 3.2.6) returns infinity and such that g stabilizes some vertex and has itself as a section at this
vertex. See also IsContracting (2.2.9).

If max len and depth are omitted they are assumed to be infinity and 10, respectively.

If InfoLevel of InfoAutomGrp is greater than or equal to 3 (one can set it by SetInfoLevel( InfoAutom-

Grp, 3)), then the proof is printed.

gap> G := AutomatonGroup("a=(b,a)(1,2), b=(c,b), c=(c,a)");

< a, b, c >

gap> IsNoncontracting(G);

true

gap> H := AutomatonGroup("a=(c,b)(1,2), b=(b,a), c=(a,a)");

< a, b, c >

gap> SetInfoLevel(InfoAutomGrp, 3);

gap> IsNoncontracting(H);

#I There are 37 elements of length up to 2

#I There are 187 elements of length up to 3

#I a^2*c^-1*b^-1 is obtained from (a^2*c^-1*b^-1)^2

by taking sections and cyclic reductions at vertex [ 1, 1 ]

#I a^2*c^-1*b^-1 has b*c*a^-2 as a section at vertex [ 2 ]

true

11I IsGeneratedByAutomatonOfPolynomialGrowth( G ) P

For a group G generated by all states of a finite automaton (see 2.1.7) determines whether this automaton
has polynomial growth in terms of Sidki [Sid00].

See also operations IsGeneratedByBoundedAutomaton (2.2.12) and PolynomialDegreeOfGrowthOfUnder-

lyingAutomaton (2.2.13).

gap> Basilica := AutomatonGroup( "u=(v,1)(1,2), v=(u,1)" );

< u, v >

gap> IsGeneratedByAutomatonOfPolynomialGrowth(Basilica);

true

gap> D := AutomatonGroup( "a=(a,b)(1,2), b=(b,a)" );

< a, b >

gap> IsGeneratedByAutomatonOfPolynomialGrowth(D);

false

12I IsGeneratedByBoundedAutomaton( G ) P

For a group G generated by all states of a finite automaton (see 2.1.7) determines whether this automaton
is bounded in terms of Sidki [Sid00].
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See also IsGeneratedByAutomatonOfPolynomialGrowth (2.2.11) and PolynomialDegreeOfGrowthOfUn-

derlyingAutomaton (2.2.13).

gap> Basilica := AutomatonGroup( "u=(v,1)(1,2), v=(u,1)" );

< u, v >

gap> IsGeneratedByBoundedAutomaton(Basilica);

true

gap> C := AutomatonGroup("a=(a,b)(1,2), b=(b,c), c=(c,1)(1,2)");

< a, b, c >

gap> IsGeneratedByBoundedAutomaton(C);

false

13I PolynomialDegreeOfGrowthOfUnderlyingAutomaton( G ) A

For a group G generated by all states of a finite automaton (see 2.1.7) of polynomial growth in terms of
Sidki [Sid00] determines the degree of polynomial growth of this automaton. This degree is 0 if and only if
the automaton is bounded. If the growth of automaton is exponential returns fail.

See also IsGeneratedByAutomatonOfPolynomialGrowth (2.2.11) and IsGeneratedByBoundedAutomaton

(2.2.12).

gap> Basilica := AutomatonGroup( "u=(v,1)(1,2), v=(u,1)" );

< u, v >

gap> PolynomialDegreeOfGrowthOfUnderlyingAutomaton(Basilica);

0

gap> C := AutomatonGroup("a=(a,b)(1,2), b=(b,c), c=(c,1)(1,2)");

< a, b, c >

gap> PolynomialDegreeOfGrowthOfUnderlyingAutomaton(C);

2

14I IsOfSubexponentialGrowth( G[, len, depth] ) O

Tries to check whether the growth function of a self-similar group G is subexponential. The main part of the
algorithm works as follows. It looks at all words of length up to len and if for some length l for each word of
this length l the sum of the lengths of all its sections at level depth is less then l , returns true. The default
values of len and depth are 10 and 6 respectively. Setting SetInfoLevel(InfoAtomGrp, 3) will make it print
for each length the words that are not contracted. It also sometimes helps to use AG UseRewritingSystem

(see 2.6.1).

gap> GrigorchukGroup := AutomatonGroup("a=(1,1)(1,2),b=(a,c),c=(a,d),d=(1,b)");

< a, b, c, d >

gap> UseAGRewritingSystem(GrigorchukGroup);

true

gap> IsOfSubexponentialGrowth(GrigorchukGroup,10,6);

true

15I IsAmenable( G ) P

In certain cases (for groups generated by bounded automata [BKN10], some virtually abelian groups or
finite groups) returns true if G is amenable.

gap> GrigorchukGroup := AutomatonGroup("a=(1,1)(1,2),b=(a,c),c=(a,d),d=(1,b)");

< a, b, c, d >

gap> IsAmenable(GrigorchukGroup);

true

16I UnderlyingAutomaton( G ) A

For a group (or semigroup) G returns an automaton generating a self-similar group (or semigroup) containing
G .



16 Chapter 2. Properties and operations with groups and semigroups

gap> GS := AutomatonSemigroup("x=(x,y)[1,1], y=(y,y)(1,2)");

< x, y >

gap> A := UnderlyingAutomaton(GS);

<automaton>

gap> Print(A);

a1 = (a1, a2)[ 1, 1 ], a2 = (a2, a2)[ 2, 1 ]

For a subgroup of Basilica group we get the automaton generating Basilica group.

gap> H := Group([u*v^-1,v^2]);

< u*v^-1, v^2 >

gap> Print(UnderlyingAutomaton(H));

a1 = (a1, a1), a2 = (a3, a1)(1,2), a3 = (a2, a1)

17I AutomatonList( G ) AM

Returns an AutomatonList of UnderlyingAutomaton(G) (see 2.2.16).

gap> Basilica := AutomatonGroup( "u=(v,1)(1,2), v=(u,1)" );

< u, v >

gap> AutomatonList(Basilica);

[ [ 2, 5, (1,2) ], [ 1, 5, () ], [ 5, 4, (1,2) ], [ 3, 5, () ], [ 5, 5, () ] ]

18I RecurList( G ) AM

Returns an internal representation of the wreath recursion of the self-similar group (semigroup) containing
G .

gap> R := SelfSimilarGroup("a=(a^-1*b,b^-1*a)(1,2), b=(a^-1,b^-1)");

< a, b >

gap> RecurList(R);

[ [ [ -1, 2 ], [ -2, 1 ], (1,2) ], [ [ -1 ], [ -2 ], () ],

[ [ -1, 2 ], [ -2, 1 ], (1,2) ], [ [ 1 ], [ 2 ], () ] ]

2.3 Operations with groups and semigroups

1I PermGroupOnLevel( G, k ) O

Returns the group of permutations induced by the action of the group G at the k -th level.

gap> Basilica := AutomatonGroup( "u=(v,1)(1,2), v=(u,1)" );

< u, v >

gap> PermGroupOnLevel(Basilica, 4);

Group([ (1,11,3,9)(2,12,4,10)(5,13)(6,14)(7,15)(8,16), (1,6,2,5)(3,7)(4,8) ])

gap> H := PermGroupOnLevel(Group([u,v^2]),4);

Group([ (1,11,3,9)(2,12,4,10)(5,13)(6,14)(7,15)(8,16), (1,2)(5,6) ])

gap> Size(H);

64

2I TransformationSemigroupOnLevel( G, k ) O

Returns the semigroup of transformations induced by the action of the semigroup G at the k -th level.
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gap> S:=AutomatonSemigroup("y=(1,u)[1,1],u=(y,u)(1,2)");

< 1, y, u >

gap> T:=TransformationSemigroupOnLevel(S,3);

<semigroup with 3 generators>

gap> Size(T);

11

3I StabilizerOfLevel( G, k ) O

Returns the stabilizer of the k -th level.

gap> Basilica := AutomatonGroup( "u=(v,1)(1,2), v=(u,1)" );

< u, v >

gap> StabilizerOfLevel(Basilica, 2);

< u*v^2*u^-1, u*v*u*v^2*u^-1*v^-1*u^-1, v^2, v*u^2*v^-1, u*v*u^2*v^-1*u^-1, u^

2, v*u*v*u*v^-1*u^-1*v^-1*u^-1 >

4I StabilizerOfFirstLevel( G ) A

Returns the stabilizer of the first level, see also 2.3.3.

gap> Basilica := AutomatonGroup( "u=(v,1)(1,2), v=(u,1)" );

< u, v >

gap> StabilizerOfFirstLevel(Basilica);

< u^2, u*v*u^-1, v >

5I StabilizerOfVertex( G, v ) O

Returns the stabilizer of the vertex v . Here v can be a list representing a vertex, or a positive integer
representing a vertex at the first level.

gap> Basilica := AutomatonGroup( "u=(v,1)(1,2), v=(u,1)" );

< u, v >

gap> StabilizerOfVertex(Basilica, [1,2,1]);

< v*u^4*v^-1, v*u^2*v^2*u^-2*v^-1, v^2, u^2, v*u^2*v*u^2*v^-1*u^-2*v^

-1, u*v*u^-1, v*u^-1*v*u*v^-1, v*u^2*v*u*v*u^-1*v^-1*u^-2*v^-1 >

6I FixesLevel( obj, lev ) O

Returns whether obj fixes level lev , i.e. fixes every vertex at the level lev .

7I FixesVertex( obj, v ) O

Returns whether obj fixes the vertex v . The vertex v may be given as a list, or as a positive integer, in which
case it denotes the v -th vertex at the first level.

8I Projection( G, v ) O
I ProjectionNC( G, v ) O

Returns the projection of the group G at the vertex v . The group G must fix the vertex v , otherwise Error()
will be called. The operation ProjectionNC does the same thing, except it does not check whether G fixes
the vertex v .

gap> Basilica := AutomatonGroup( "u=(v,1)(1,2), v=(u,1)" );

< u, v >

gap> Projection(StabilizerOfVertex(Basilica, [1,2,1]), [1,2,1]);

< v, u >

9I ProjStab( G, v ) O

Returns the projection of the stabilizer of v at itself. It is a shortcut for Projection(StabilizerOfVertex(G,
v), v) (see 2.3.8, 2.3.5).
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gap> Basilica := AutomatonGroup( "u=(v,1)(1,2), v=(u,1)" );

< u, v >

gap> ProjStab(Basilica, [1,2,1]);

< v, u >

10I FindGroupRelations( G[, max len, max num rels] ) O
I FindGroupRelations( subs words[, names, max len, max num rels] ) O

Finds group relations between the generators of the group G or in the group generated by subs words. Stops
after investigating all words of length up to max len elements or when it finds max num rels relations. The
optional argument names is a list of names of generators of the same length as subs words. If this argument
is given the relations are given in terms of these names. Otherwise they are given in terms of the elements
of the group generated by subs words. If max len or max num rels are not specified, they are assumed to
be infinity. Note that if the rewring system (see 2.6.1) for group G is used, then this operation returns
relations not contained in the rewriting system rules (see 2.6.4). This operation can be applied to any group,
not only to a group generated by automata.

gap> Basilica := AutomatonGroup( "u=(v,1)(1,2), v=(u,1)" );

< u, v >

gap> FindGroupRelations(Basilica, 6);

v*u*v*u^-1*v^-1*u*v^-1*u^-1

v*u^2*v^-1*u^2*v*u^-2*v^-1*u^-2

v^2*u*v^2*u^-1*v^-2*u*v^-2*u^-1

[ v*u*v*u^-1*v^-1*u*v^-1*u^-1, v*u^2*v^-1*u^2*v*u^-2*v^-1*u^-2,

v^2*u*v^2*u^-1*v^-2*u*v^-2*u^-1 ]

gap> FindGroupRelations([u*v^-1, v*u], ["x", "y"], 5);

y*x^2*y*x^-1*y^-2*x^-1

[ y*x^2*y*x^-1*y^-2*x^-1 ]

gap> FindGroupRelations([u*v^-1, v*u], 5);

u^-2*v*u^-2*v^-1*u^2*v*u^2*v^-1

[ u^-2*v*u^-2*v^-1*u^2*v*u^2*v^-1 ]

gap> FindGroupRelations([(1,2)(3,4), (1,2,3)], ["x", "y"]);

x^2

y^-3

y^-1*x*y^-1*x*y^-1*x

[ x^2, y^-3, y^-1*x*y^-1*x*y^-1*x ]

11I FindSemigroupRelations( G[, max len, max num rels] ) O
I FindSemigroupRelations( subs words[, names, max len, max num rels] ) O

Finds semigroup relations between the generators of the group or semigroup G , or in the semigroup generated
by subs words. The arguments have the same meaning as in FindGroupRelations (2.3.10). It returns a list
of pairs of equal words. In order to make the list of relations shorter it also tries to remove relations that
can be derived from the known ones. Note, that by default the trivial automorphism is not included in every
semigroup. So if one needs to find relations of the form w = 1 one has to define G as a monoid or to include
the trivial automorphism into subs words (for instance, as One(g) for any element g acting on the same
tree). This operation can be applied for any semigroup, not only for a semigroup generated by automata.

gap> Basilica := AutomatonGroup( "u=(v,1)(1,2), v=(u,1)" );

< u, v >

gap> FindSemigroupRelations([u*v^-1, v*u], ["x", "y"], 6);

y*x^2*y=x*y^2*x

y*x^3*y^2=x^2*y^3*x

y^2*x^3*y=x*y^3*x^2
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[ [ y*x^2*y, x*y^2*x ], [ y*x^3*y^2, x^2*y^3*x ], [ y^2*x^3*y, x*y^3*x^2 ] ]

gap> FindSemigroupRelations([u*v^-1, v*u],6);

v*u^2*v^-1*u^2=u^2*v*u^2*v^-1

v*u^2*v^-1*u*v^-1*u^2*v*u=u*v^-1*u^2*v*u*v*u^2*v^-1

v*u*v*u^2*v^-1*u*v^-1*u^2=u^2*v*u*v*u^2*v^-1*u*v^-1

[ [ v*u^2*v^-1*u^2, u^2*v*u^2*v^-1 ],

[ v*u^2*v^-1*u*v^-1*u^2*v*u, u*v^-1*u^2*v*u*v*u^2*v^-1 ],

[ v*u*v*u^2*v^-1*u*v^-1*u^2, u^2*v*u*v*u^2*v^-1*u*v^-1 ] ]

gap> x := Transformation([1,1,2]);;

gap> y := Transformation([2,2,3]);;

gap> FindSemigroupRelations([x,y],["x","y"]);

y*x=x

y^2=y

x^3=x^2

x^2*y=x*y

[ [ y*x, x ], [ y^2, y ], [ x^3, x^2 ], [ x^2*y, x*y ] ]

12I Iterator( G[, max len] ) M

Provides a possibility to loop over elements of a group (semigroup, monoid) generated by automata. If
max len is given stops after enumerating all elements of length up to max len.

gap> GrigorchukGroup := AutomatonGroup("a=(1,1)(1,2),b=(a,c),c=(a,d),d=(1,b)");

< a, b, c, d >

gap> iter := Iterator(GrigorchukGroup, 5);

<iterator>

gap> l:=[];;

gap> for g in iter do

> if Order(g)=16 then Add(l,g); fi;

> od;

gap> l;

[ b*a, a*b, d*a*c, c*a*d, d*a*c*a, d*a*b*a, c*a*d*a, b*a*d*a, a*d*a*c,

a*d*a*b, a*c*a*d, a*b*a*d, c*a*c*a*b, c*a*b*a*b, b*a*c*a*c, b*a*b*a*c,

a*d*a*c*a, a*c*a*d*a ]

13I FindElement( G, func, val, max len ) O
I FindElements( G, func, val, max len ) O

The first function enumerates elements of the group (semigroup, monoid) G until it finds an element g of
length at most max len, for which func(g)=val . Returns g if such an element was found and fail otherwise.

The second function enumerates elements of the group (semigroup, monoid) of length at most max len and
returns the list of elements g , for which func(g)=val .

These functions are based on Iterator operation (see 2.3.12), so can be applied in more general settings
whenever GAP knows how to solve word problem in the group. The following example illustrates how to find
an element of order 16 in Grigorchuk group and the list of all such elements of length at most 5.

gap> GrigorchukGroup := AutomatonGroup("a=(1,1)(1,2),b=(a,c),c=(a,d),d=(1,b)");

< a, b, c, d >

gap> FindElement(GrigorchukGroup, Order, 16, 5);

a*b

gap> FindElements(GrigorchukGroup,Order,16,5);

[ a*b, b*a, c*a*d, d*a*c, a*b*a*d, a*c*a*d, a*d*a*b, a*d*a*c, b*a*d*a,

c*a*d*a, d*a*b*a, d*a*c*a, a*c*a*d*a, a*d*a*c*a, b*a*b*a*c, b*a*c*a*c,

c*a*b*a*b, c*a*c*a*b ]
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14I FindElementOfInfiniteOrder( G, max len, depth ) O
I FindElementsOfInfiniteOrder( G, max len, depth ) O

The first function enumerates elements of the group G up to length max len until it finds an element g of
infinite order, such that OrderUsingSections(g ,depth) (see 3.2.6) is infinity. In other words all sections
of every element up to depth depth are investigated. In case if the element belongs to the group generated
by bounded automaton (see 2.2.12) one can set depth to be infinity.

The second function returns the list of all such elements up to length max len.

gap> G := AutomatonGroup("a=(1,1)(1,2), b=(a,c), c=(b,1)");

< a, b, c >

gap> FindElementOfInfiniteOrder(G, 5, 10);

a*b*c

15I SphericallyTransitiveElement( G ) A

For a self-similar group G acting on a binary tree returns an element of G acting spherically transitively on
the levels of the tree if such an element exists and fail otherwise. See also ContainsSphericallyTransi-

tiveElement (2.2.6).

gap> Basilica := AutomatonGroup( "u=(v,1)(1,2), v=(u,1)" );

< u, v >

gap> SphericallyTransitiveElement(Basilica);

u*v

gap> G := SelfSimilarGroup("a=(a^-1*b^-1,1)(1,2), b=(b^-1,a*b)");

< a, b >

gap> SphericallyTransitiveElement(G);

fail

16I Growth( G, max len ) O

Returns a list of the first values of the growth function of a group (semigroup, monoid) G . If G is a
monoid it computes the growth function at {0, 1, . . . ,max len}, and for a semigroup without identity at
{1, . . . ,max len}.

gap> GrigorchukGroup := AutomatonGroup("a=(1,1)(1,2),b=(a,c),c=(a,d),d=(1,b)");

< a, b, c, d >

gap> Growth(GrigorchukGroup, 7);

There are 11 elements of length up to 2

There are 23 elements of length up to 3

There are 40 elements of length up to 4

There are 68 elements of length up to 5

There are 108 elements of length up to 6

There are 176 elements of length up to 7

[ 1, 5, 11, 23, 40, 68, 108, 176 ]

gap> H := AutomatonSemigroup("a=(a,b)[1,1], b=(b,a)(1,2)");

< a, b >

gap> Growth(H,6);

[ 2, 6, 14, 30, 62, 126 ]

17I ListOfElements( G, max len ) O

Returns the list of all different elements of a group (semigroup, monoid) G up to length max len.
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gap> GrigorchukGroup := AutomatonGroup("a=(1,1)(1,2),b=(a,c),c=(a,d),d=(1,b)");

< a, b, c, d >

gap> ListOfElements(GrigorchukGroup, 3);

[ 1, a, b, c, d, a*b, a*c, a*d, b*a, c*a, d*a, a*b*a, a*c*a, a*d*a, b*a*b,

b*a*c, b*a*d, c*a*b, c*a*c, c*a*d, d*a*b, d*a*c, d*a*d ]

18I FindNucleus( G[, max nucl, print info] ) O

Given a self-similar group G it tries to find its nucleus. If the group is not contracting it will loop for-
ever. When it finds the nucleus it returns the triple [GroupNucleus(G), GeneratingSetWithNucleus(G),
GeneratingSetWithNucleusAutom(G)] (see 2.5.1, 2.5.2, 2.5.3).

If max nucl is given it stops after finding max nucl elements that need to be in the nucleus and returns fail
if the nucleus was not found.

An optional argument print info is a boolean telling whether to print results of intermediate computations.
The default value is true.

Use IsNoncontracting (see 2.2.10) to try to show that G is noncontracting.

gap> Basilica := AutomatonGroup( "u=(v,1)(1,2), v=(u,1)" );

< u, v >

gap> FindNucleus(Basilica);

Trying generating set with 5 elements

Elements added:[ u^-1*v, v^-1*u ]

Trying generating set with 7 elements

[ [ 1, u, v, u^-1, v^-1, u^-1*v, v^-1*u ],

[ 1, u, v, u^-1, v^-1, u^-1*v, v^-1*u ], <automaton> ]

19I LevelOfFaithfulAction( G ) A
I LevelOfFaithfulAction( G, max lev ) A

For a given finite self-similar group G determines the smallest level of the tree, where G acts faithfully, i.e.
the stabilizer of this level in G is trivial. The idea here is that for a self-similar group all nontrivial level
stabilizers are different. If max lev is given it finds only first max lev quotients by stabilizers and if all of
them have different size it returns fail. If G is infinite and max lev is not specified it will loop forever.

See also IsomorphismPermGroup (2.3.20).

gap> H := SelfSimilarGroup("a=(a,a)(1,2), b=(a,a), c=(b,a)(1,2)");

< a, b, c >

gap> LevelOfFaithfulAction(H);

3

gap> Size(H);

16

gap> LevelOfFaithfulAction(AddingMachine, 10);

fail

20I IsomorphismPermGroup( G ) O
I IsomorphismPermGroup( G, max lev ) O

For a given finite group G generated by initial automata or by elements defined by wreath recursion computes
an isomorphism from G into a finite permutational group. If G is not known to be self-similar (see 2.2.8) the
isomorphism is based on the regular representation, which works generally much slower. If G is self-similar
there is a level of the tree (see 2.3.19), where G acts faithfully. The corresponding representation is returned
in this case. If max lev is given it finds only the first max lev quotients by stabilizers and if all of them have
different size it returns fail. If G is infinite and max lev is not specified it will loop forever.

For example, consider a subgroup 〈a, b〉 of Grigorchuk group.
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gap> GrigorchukGroup := AutomatonGroup("a=(1,1)(1,2),b=(a,c),c=(a,d),d=(1,b)");

< a, b, c, d >

gap> f := IsomorphismPermGroup(Group(a, b));

MappingByFunction( < a, b >, Group(

[ (1,2)(3,5)(4,6)(7,9)(8,10)(11,13)(12,14)(15,17)(16,18)(19,21)(20,22)(23,

25)(24,26)(27,29)(28,30)(31,32), (1,3)(2,4)(5,7)(6,8)(9,11)(10,12)(13,

15)(14,16)(17,19)(18,20)(21,23)(22,24)(25,27)(26,28)(29,31)(30,32)

]), function( g ) ... end, function( b ) ... end )

gap> Size(Image(f));

32

gap> H := SelfSimilarGroup("a=(a*b,1)(1,2), b=(1,b*a^-1)(1,2), c=(b, a*b)");

< a, b, c >

gap> f1 := IsomorphismPermGroup(H);

MappingByFunction( < a, b, c >, Group([ (1,3)(2,4), (1,3)(2,4), (1,2)

]), function( g ) ... end, function( b ) ... end )

gap> Size(Image(f1));

8

gap> PreImagesRepresentative(f1, (1,3,2,4));

a*c

gap> (a*c)^f1;

(1,3,2,4)

21I Random( G ) O

Returns a random element of a group (semigroup) G . The operation is based on the generator of random
elements in free groups and semigroups.

gap> Basilica := AutomatonGroup( "u=(v,1)(1,2), v=(u,1)" );

< u, v >

gap> Random( Basilica );

v*u^-3

22I MarkovOperator( G, lev, weights ) O

Computes the matrix of the Markov operator related to the (semi)group G on the lev -th level of the tree. If G
is a group generated by g1, g2, . . . , gn , then the Markov operator is defined as (PermOnLevelAsMatrix(g1) +
· · · + PermOnLevelAsMatrix(gn) + PermOnLevelAsMatrix(g−11 ) + · · · + PermOnLevelAsMatrix(g−1n ))/(2 ∗
n). If S is a semigroup generated by s1, s2, . . . , sn , then the Markov operator is defined similarly with
PermOnLevelAsMatrix being replaced with TransformationOnLevelAsMatrix. If the list of weights is given,
uses its entries as coefficients of operators correspondings to the generators of a group or semigroup. In the
case of a group, the length of weights must be twice as big as the number of generators of G . The list
weights may consist either of numbers or of strings representing the names of indeterminates. See also
PermOnLevelAsMatrix (3.2.9) and TransformationOnLevelAsMatrix (3.2.11).

gap> L := AutomatonGroup("p=(p,q)(1,2), q=(p,q)");

< p, q >

gap> MarkovOperator(L, 3);

[ [ 0, 0, 1/4, 1/4, 0, 1/4, 0, 1/4 ], [ 0, 0, 1/4, 1/4, 1/4, 0, 1/4, 0 ],

[ 1/4, 1/4, 0, 0, 1/4, 0, 1/4, 0 ], [ 1/4, 1/4, 0, 0, 0, 1/4, 0, 1/4 ],

[ 0, 1/4, 1/4, 0, 0, 1/2, 0, 0 ], [ 1/4, 0, 0, 1/4, 1/2, 0, 0, 0 ],

[ 0, 1/4, 1/4, 0, 0, 0, 1/2, 0 ], [ 1/4, 0, 0, 1/4, 0, 0, 0, 1/2 ] ]

gap> MarkovOperator(L,3,["a","b","c","d"]);

[ [ 0, 0, d, b, 0, c, 0, a ], [ 0, 0, b, d, c, 0, a, 0 ],

[ b, d, 0, 0, a, 0, c, 0 ], [ d, b, 0, 0, 0, a, 0, c ],
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[ 0, a, c, 0, 0, b+d, 0, 0 ], [ a, 0, 0, c, b+d, 0, 0, 0 ],

[ 0, c, a, 0, 0, 0, b+d, 0 ], [ c, 0, 0, a, 0, 0, 0, b+d ] ]

In the case of semigroups we have:

gap> S:=AutomatonSemigroup("c=(c,d)[1,1],d=(c,c)(1,2)");

< c, d >

gap> MarkovOperator(S,3,["w1","w2"]);

[ [ w1, 0, 0, 0, w2, 0, 0, 0 ], [ w1, 0, 0, 0, w2, 0, 0, 0 ],

[ 0, w1, 0, 0, 0, w2, 0, 0 ], [ w1, 0, 0, 0, w2, 0, 0, 0 ],

[ w2, 0, w1, 0, 0, 0, 0, 0 ], [ w2, 0, w1, 0, 0, 0, 0, 0 ],

[ w1, w2, 0, 0, 0, 0, 0, 0 ], [ w1+w2, 0, 0, 0, 0, 0, 0, 0 ] ]

gap> MarkovOperator(S,3,[1/3,2/3]);

[ [ 1/3, 0, 0, 0, 2/3, 0, 0, 0 ], [ 1/3, 0, 0, 0, 2/3, 0, 0, 0 ],

[ 0, 1/3, 0, 0, 0, 2/3, 0, 0 ], [ 1/3, 0, 0, 0, 2/3, 0, 0, 0 ],

[ 2/3, 0, 1/3, 0, 0, 0, 0, 0 ], [ 2/3, 0, 1/3, 0, 0, 0, 0, 0 ],

[ 1/3, 2/3, 0, 0, 0, 0, 0, 0 ], [ 1, 0, 0, 0, 0, 0, 0, 0 ] ]

23I MihailovaSystem( G ) AM

In the case when G is an automaton fractal group acting on a binary tree, computes the generating set for
the first level stabilizer in G such that the sections of these generators at the first level, viewed as elements
of Fr × Fr , are in Mihailova normal form. See [GS14] for details.

gap> G:=AutomatonGroup("a=(b,c)(1,2),b=(a,c),c=(a,a)");

< a, b, c >

gap> M:=MihailovaSystem(G);

[ c^-1*b, c^-1*b^-1*c*a^-1*b*c*b^-1*a, a^-1*b*c*b^-1*a, a*c^-1*b^-1*a*c,

c^-1*a^-1*b*c*a ]

gap> for g in M do

> Print(g,"=",Decompose(g),"\n");

> od;

c^-1*b=(1, a^-1*c)

c^-1*b^-1*c*a^-1*b*c*b^-1*a=(1, a^-1*c^-1*a*b^-1*a*b)

a^-1*b*c*b^-1*a=(a, b^-1*a*b)

a*c^-1*b^-1*a*c=(b, c*a^-2*b*a)

c^-1*a^-1*b*c*a=(c, a^-1*b^-1*a^2*b)

24I AbelImage( obj ) A

Returns image of obj in the canonical projection onto the abelianization of the full group of tree automor-
phisms, represented as a subgroup of the additive group of rational functions.

25I DiagonalPower( fam[, k] ) O

For a given automaton group G acting on alphabet X and corresponding family fam of automata one
can consider the action of Gk on X k defined by (x1, x2, . . . , xk )(g1,g2,...,gk ) = (x g1

1 , x
g2
2 , . . . , x

gk

k ). This function
constructs a self-similar group, which encodes this action. If k is not given it is assumed to be 2.

gap> Basilica := AutomatonGroup( "u=(v,1)(1,2), v=(u,1)" );

< u, v >

gap> S := DiagonalPower(UnderlyingAutomFamily(Basilica));

< uu, uv, u1, vu, vv, v1, 1u, 1v >

gap> Decompose(uu);

(vv, v1, 1v, 1)(1,4)(2,3)
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26I MultAutomAlphabet( fam ) O

27I UnderlyingAutomFamily( G ) A

Returns the family to which the elements of G belong.

2.4 Self-similar groups and semigroups defined by wreath recursion

1I IsFiniteState( G ) P

For a group or semigroup of homomorphisms of the tree defined using a wreath recursion, returns true if all
generators can be represented as finite automata (have finitely many different sections). It will never stop
if the free reduction of words is not sufficient to establish the finite-state property or if the group is not
finite-state. In case G is a finite-state group it automatically computes the attributes UnderlyingAutoma-

tonGroup(G) (2.4.4), IsomorphicAutomGroup(G) (2.4.2) and MonomorphismToAutomatonGroup(G) (2.4.6).
For a finite-state semigroup it computes the corresponding attributes UnderlyingAutomatonSemigroup(G)
(2.4.5), IsomorphicAutomSemigroup(G) (2.4.3) and MonomorphismToAutomatonSemigroup(G) (2.4.7).

gap> W:=SelfSimilarGroup("x=(x^-1,y)(1,2), y=(z^-1,1)(1,2), z=(1,x*y)");

< x, y, z >

gap> IsFiniteState(W);

true

gap> Size(GeneratorsOfGroup(UnderlyingAutomatonGroup(W)));

50

2I IsomorphicAutomGroup( G ) AM

In case G is finite-state tries to compute a group generated by automata, isomorphic to G , which is a
subgroup of UnderlyingAutomatonGroup(G) (see 2.4.4). The natural isomorphism between G and Isomor-

phicAutomGroup(G) is stored in the attribute MonomorphismToAutomatonGroup(G) (2.4.6). In some cases
it may be useful to check if G is finite.

gap> R := SelfSimilarGroup("a=(a^-1*b,b^-1*a)(1,2), b=(a^-1,b^-1)");

< a, b >

gap> UR := UnderlyingAutomatonGroup(R);

< a1, a2, a4, a5 >

gap> IR := IsomorphicAutomGroup(R);

< a1, a5 >

gap> hom := MonomorphismToAutomatonGroup(R);

MappingByFunction( < a, b >, < a1, a5 >, function( a ) ... end, function( b ) \

... end )

gap> (a*b)^hom;

a1*a5

gap> PreImagesRepresentative(hom, last);

a*b

gap> List(GeneratorsOfGroup(UR), x -> PreImagesRepresentative(hom, x));

[ a, a^-1*b, b^-1*a, b ]

All these operations work also for the subgroups of groups generated by SelfSimilarGroup. (2.1.3).

gap> T := Group([b*a, a*b]);

< b*a, a*b >

gap> IT := IsomorphicAutomGroup(T);

< a1, a4 >

Note, that different groups have different UnderlyingAutomGroup attributes. For example, the generator a1
of group IT above is different from the generator a1 of group IR.
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3I IsomorphicAutomSemigroup( G ) AM

In case G is finite-state returns a semigroup generated by automata, isomorphic to G , which is a subsemi-
group of UnderlyingAutomatonSemigroup(G) (see 2.4.5). The natural isomorphism between G and Iso-

morphicAutomSemigroup(G) is stored in the attribute MonomorphismToAutomatonSemigroup(G) (2.4.7).

gap> R := SelfSimilarSemigroup("a=(1,1)[1,1], b=(a*c,1)(1,2), c=(1,a*b)");

< a, b, c >

gap> UR := UnderlyingAutomatonSemigroup(R);

< 1, a1, a3, a5, a6 >

gap> IR := IsomorphicAutomSemigroup(R);

< a1, a3, a5 >

gap> hom := MonomorphismToAutomatonSemigroup(R);

MappingByFunction( < a, b, c >, < a1, a3, a5 >, function( a ) ... end, functio\

n( b ) ... end )

gap> (a*b)^hom;

a1*a3

gap> PreImagesRepresentative(hom, last);

a*b

gap> List(GeneratorsOfSemigroup(UR), x -> PreImagesRepresentative(hom, x));

[ 1, a, b, c, a*b ]

All these operations work also for the subsemigroups of semigroups generated by SelfSimilarSemigroup

(2.1.4).

gap> T := Semigroup([a*b, b^2]);

< a*b, b^2 >

gap> IT := IsomorphicAutomSemigroup(T);

< a1, a4 >

Note, that different semigroups have different UnderlyingAutomSemigroup attributes. For example, the
generator a1 of semigroup IT above is different from the generator a1 of semigroup IR.

4I UnderlyingAutomatonGroup( G ) AM

In case G is finite-state returns a self-similar closure of G as a group generated by automaton. The natural
monomorphism from G and UnderlyingAutomatonGroup(G) is stored in the attribute MonomorphismToAu-

tomatonGroup(G) (2.4.6). If G is created by SelfSimilarGroup (see 2.1.3), then the self-similar closure of
G coincides with G , so one can use MonomorphismToAutomatonGroup(G) to get preimages of elements of
UnderlyingAutomatonGroup(G) in G . See the example for IsomorphicAutomGroup (2.4.2).

5I UnderlyingAutomatonSemigroup( G ) AM

In case G is finite-state returns a self-similar closure of G as a semigroup generated by automaton. The nat-
ural monomorphism from G and UnderlyingAutomatonSemigroup(G) is stored in the attribute Monomor-

phismToAutomatonSemigroup(G) (2.4.7). If G is created by SelfSimilarSemigroup (see 2.1.4), then the
self-similar closure of G coincides with G , so one can use MonomorphismToAutomatonSemigroup(G) to get
preimages of elements of UnderlyingAutomatonSemigroup(G) in G . See the example for IsomorphicAu-

tomSemigroup (2.4.3).

6I MonomorphismToAutomatonGroup( G ) AM

In case G is finite-state returns a monomorphism from G into UnderlyingAutomatonGroup(G) (see 2.4.4). If
G is created by SelfSimilarGroup (see 2.1.3), then one can use MonomorphismToAutomatonGroup(G) to get
preimages of elements of UnderlyingAutomatonGroup(G) in G . See the example for IsomorphicAutomGroup
(2.4.2).
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7I MonomorphismToAutomatonSemigroup( G ) AM

In case G is finite-state returns a monomorphism from G into UnderlyingAutomatonSemigroup(G) (see
2.4.5). If G is created by SelfSimilarSemigroup (see 2.1.4), then one can use MonomorphismToAutomaton-

Semigroup(G) to get preimages of elements of UnderlyingAutomatonSemigroup(G) in G . See the example
for IsomorphicAutomSemigroup (2.4.3).

2.5 Contracting groups

1I GroupNucleus( G ) AM

Tries to compute the nucleus (see the definition in 1.1) of a self-similar group G . Note that this set need not
contain the original generators of G . It uses FindNucleus (see 2.3.18) operation and behaves accordingly:
if the group is not contracting it will loop forever. See also GeneratingSetWithNucleus (2.5.2).

gap> Basilica := AutomatonGroup( "u=(v,1)(1,2), v=(u,1)" );

< u, v >

gap> GroupNucleus(Basilica);

[ 1, u, v, u^-1, v^-1, u^-1*v, v^-1*u ]

2I GeneratingSetWithNucleus( G ) AM

Tries to compute the generating set of a self-similar group G that includes the original generators and
the nucleus (see 1.1) of G . It uses FindNucleus operation and behaves accordingly: if the group is not
contracting it will loop forever (modulo memory constraints, of course). See also GroupNucleus (2.5.1).

gap> Basilica := AutomatonGroup( "u=(v,1)(1,2), v=(u,1)" );

< u, v >

gap> GeneratingSetWithNucleus(Basilica);

[ 1, u, v, u^-1, v^-1, u^-1*v, v^-1*u ]

3I GeneratingSetWithNucleusAutom( G ) AM

Computes the automaton of the generating set that includes the nucleus of the contracting group G . See
also GeneratingSetWithNucleus (2.5.2).

gap> Basilica := AutomatonGroup( "u=(v,1)(1,2), v=(u,1)" );

< u, v >

gap> B_autom := GeneratingSetWithNucleusAutom(Basilica);

<automaton>

gap> Print(B_autom);

a1 = (a1, a1), a2 = (a3, a1)(1,2), a3 = (a2, a1), a4 = (a1, a5)

(1,2), a5 = (a4, a1), a6 = (a1, a7)(1,2), a7 = (a6, a1)(1,2)

4I ContractingLevel( G ) AM

Given a contracting group G with generating set N that includes the nucleus, stored in GeneratingSetWith-

Nucleus(G) (see 2.5.2) computes the minimal level n, such that for every vertex v of the n-th level and all
g , h ∈ N the section gh|v ∈ N .

In case if it is not known whether G is contracting it first tries to compute the nucleus. If G happens to be
noncontracting, it will loop forever. One can also use IsNoncontracting (see 2.2.10) or FindNucleus (see
2.3.18) directly.
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gap> GrigorchukGroup := AutomatonGroup("a=(1,1)(1,2),b=(a,c),c=(a,d),d=(1,b)");

< a, b, c, d >

gap> ContractingLevel(GrigorchukGroup);

1

gap> ContractingLevel(Basilica);

2

5I ContractingTable( G ) AM

Given a contracting group G with generating set N of size k that includes the nucleus, stored in Generat-

ingSetWithNucleus(G) (see 2.5.2) computes the k × k table, whose [i][j]-th entry contains decomposition
of N [i]N [j] on the ContractingLevel(G) level (see 2.5.4). By construction the sections of N [i]N [j] on this
level belong to N . This table is used in the algorithm solving the word problem in polynomial time.

In case if it is not known whether G is contracting it first tries to compute the nucleus. If G happens to be
noncontracting, it will loop forever. One can also use IsNoncontracting (see 2.2.10) or FindNucleus (see
2.3.18) directly.

gap> GrigorchukGroup := AutomatonGroup("a=(1,1)(1,2),b=(a,c),c=(a,d),d=(1,b)");

< a, b, c, d >

gap> ContractingTable(GrigorchukGroup);

[ [ (1, 1), (1, 1)(1,2), (a, c), (a, d), (1, b) ],

[ (1, 1)(1,2), (1, 1), (c, a)(1,2), (d, a)(1,2), (b, 1)(1,2) ],

[ (a, c), (a, c)(1,2), (1, 1), (1, b), (a, d) ],

[ (a, d), (a, d)(1,2), (1, b), (1, 1), (a, c) ],

[ (1, b), (1, b)(1,2), (a, d), (a, c), (1, 1) ] ]

6I UseContraction( G ) O
I DoNotUseContraction( G ) O

For a contracting automaton group G these two operations determine whether to use the algorithm of
polynomial complexity solving the word problem in the group. By default it is set to true as soon as the
nucleus of the group was computed. Sometimes when the nucleus is very big, the standard algorithm of
exponential complexity is faster for short words, but this heavily depends on the group. Therefore the
decision on which algorithm to use is left to the user. To use the exponential algorithm one can use the
second operation DoNotUseContraction(G).

Note also then in order to use the polynomial time algorithm the ContractingTable(G) (see 2.5.5) has to
be computed first, which takes some time when the nucleus is big. This attribute is computed automatically
when the word problem is solved for the first time. This sometimes causes some delay.

Below we provide an example which shows that both methods can be of use.

gap> G := AutomatonGroup("a=(b,b)(1,2), b=(c,a), c=(a,a)");

< a, b, c >

gap> IsContracting(G);

true

gap> Size(GroupNucleus(G));

41

gap> ContractingLevel(G);

6

gap> ContractingTable(G);; time;

11336

gap> v := a*b*a*b^2*c*b*c*b^-1*a^-1*b^-1*a^-1;;

gap> w := b*c*a*b*a*b*c^-1*b^-2*a^-1*b^-1*a^-1;;

gap> UseContraction(G);;
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gap> IsOne(Comm(v,w)); time;

true

251

gap> FindGroupRelations(G, 5);; time;

a^2

b^2

c^2

b*a*b*c*a*b*a*b*c*a

b*c*a*c*a*b*c*a*c*a

881

gap> DoNotUseContraction(G);;

gap> IsOne(Comm(v,w)); time;

true

3855

gap> FindGroupRelations(G, 5);; time;

a^2

b^2

c^2

b*a*b*c*a*b*a*b*c*a

b*c*a*c*a*b*c*a*c*a

451

2.6 Rewriting Systems

It is possible to use basic relators in all computations performed in a self-similar group.

1I AG UseRewritingSystem( G[, setting] ) O

Tells whether computations in the group G should use a rewriting system. setting defaults to true if omitted.
This function initially only tries to find involutions in G . See AG AddRelators (2.6.2) and AG UpdateRewritingSystem

(2.6.3) for the ways to add more relators.

gap> G := AutomatonGroup("a=(1,1)(1,2),b=(a,c),c=(a,d),d=(1,b)");

< a, b, c, d >

gap> Comm(a*b, b*a);

b^-1*a^-2*b^-1*a*b^2*a

gap> AG_UseRewritingSystem(G);

gap> Comm(a*b, b*a);

1

gap> AG_UseRewritingSystem(G, false);

gap> Comm(a*b, b*a);

b^-1*a^-2*b^-1*a*b^2*a

2I AG AddRelators( G, relators ) O

Adds relators from the list relators to the rewriting system used in G .

gap> G := AutomatonGroup("a=(1,1)(1,2),b=(a,c),c=(a,d),d=(1,b)");

< a, b, c, d >

gap> AG_UseRewritingSystem(G);

gap> b*c;

b*c

gap> AG_AddRelators(G, [b*c*d]);

gap> b*c;
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d

In some cases it’s hard to find relations directly from the wreath recursion of a self-similar group (at least,
there is no general agorithm). This function provides possibility to add relators manually. After that one can
use AG UpdateRewritingSystem (see 2.6.3) and AG UseRewritingSystem (see 2.6.1) to use these relators
in computations. In the example below we consider a finite group H , in which a = b, but the standard
algorithm is unable to solve the word problem. There are two solutions for that. One can manually add a
relator, or one can ask if the group is finite (which does not stop generally if the group is infinite).

gap> H := SelfSimilarGroup("a=(a*b,1)(1,2), b=(1,b*a^-1)(1,2), c=(b, a*b)");

< a, b, c >

gap> AG_AddRelators(H, [a*b^-1]);

gap> AG_UseRewritingSystem(H);

gap> Order(a*c);

4

3I AG UpdateRewritingSystem( G, maxlen ) O

Tries to find new relators of length up to maxlen and adds them into the rewriting system. It can also be
used after introducing new relators via AG AddRelators (see 2.6.2).

gap> G := AutomatonGroup("a=(1,1)(1,2),b=(a,c),c=(a,d),d=(1,b)");

< a, b, c, d >

gap> AG_UseRewritingSystem(G);

gap> b*c;

b*c

gap> AG_UpdateRewritingSystem(G, 3);

gap> b*c;

d

4I AG RewritingSystemRules( G ) O

Returns the list of rules used in the rewriting system of group G .

gap> G := AutomatonGroup("a=(1,1)(1,2),b=(a,c),c=(a,d),d=(1,b)");

< a, b, c, d >

gap> AG_UseRewritingSystem(G);

gap> AG_RewritingSystemRules(G);

[ [ a^2, <identity ...> ], [ b^2, <identity ...> ], [ c^2, <identity ...> ],

[ d^2, <identity ...> ], [ A, a ], [ B, b ], [ C, c ], [ D, d ] ]
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operations with group
and semigroup elements

3.1 Creation of tree automorphisms and homomorphisms

1I TreeAutomorphism( states, perm ) O

Constructs the tree automorphism with states on the first level given by the argument states and acting on
the first level as the permutation perm. The states must belong to the same family.

gap> L := AutomatonGroup("p=(p,q)(1,2), q=(p,q)");

< p, q >

gap> r := TreeAutomorphism([p, q, p, q^2],(1,2)(3,4));

(p, q, p, q^2)(1,2)(3,4)

gap> t := TreeAutomorphism([q, 1, p*q, q],(1,2));

(q, 1, p*q, q)(1,2)

gap> r*t;

(p, q^2, p*q, q^2*p*q)(3,4)

2I Representative( word, fam ) O
I Representative( word, a ) O

Given an associative word word constructs the tree homomorphism from the family fam, or to which ho-
momorphism a belongs. This function is useful when one needs to make some operations with associative
words. See also Word (3.2.12).

gap> L := AutomatonGroup("p=(p,q)(1,2), q=(p,q)");

< p, q >

gap> F := UnderlyingFreeGroup(L);

<free group on the generators [ p, q ]>

gap> r := Representative(F.1*F.2^2, p);

p*q^2

gap> Decompose(r);

(p*q^2, q*p^2)(1,2)

gap> H := SelfSimilarGroup("x=(x*y,x)(1,2), y=(x^-1,y)");

< x, y >

gap> F := UnderlyingFreeGroup(H);

<free group on the generators [ x, y ]>

gap> r := Representative(F.1^-1*F.2, x);

x^-1*y

gap> Decompose(r);

(x^-1*y, y^-1*x^-2)(1,2)
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3.2 Properties and attributes of tree automorphisms and homomorphisms

1I IsSphericallyTransitive( a ) P

Returns whether the action of a is spherically transitive (see 1.1).

2I IsTransitiveOnLevel( a, lev ) O

Returns whether a acts transitively on level lev of the tree.

3I IsOne( a ) O

Returns whether automorphism a acts trivially on the tree. For contracting groups see also UseContraction

(2.5.6) and IsOneContr (3.2.4).

gap> L := AutomatonGroup("p=(p,q)(1,2), q=(p,q)");

< p, q >

gap> IsOne(q*p^-1*q*p^-1);

true

4I IsOneContr( a ) F

Returns true if a is trivial automorphism and false otherwise. Works for contracting groups only. Uses
polynomial time algorithm.

5I Order( a ) O

Computes the order of the automorphism a. In some cases it does not stop. Works always (modulo memory
restrictions) for groups generated by bounded automata.

If InfoLevel of InfoAutomGrp is greater than or equal to 3 (one can set it by SetInfoLevel( InfoAutom-

Grp, 3)) and the element has infinite order, then the proof of this fact is printed.

gap> L := AutomatonGroup("p=(p,q)(1,2), q=(p,q)");

< p, q >

gap> Basilica := AutomatonGroup( "u=(v,1)(1,2), v=(u,1)" );

< u, v >

gap> Order(p*q^-1);

2

gap> SetInfoLevel( InfoAutomGrp, 3);

gap> Order( u^35*v^-12*u^2*v^-3 );

#I (u^35*v^-12*u^2*v^-3)^68719476736 has conjugate of u^2*v^-3*u^35*v^

-12 as a section at vertex [ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,

1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 ]

infinity

6I OrderUsingSections( a[, max depth] ) O

Tries to compute the order of the element a by looking at its sections of depth up to max depth-th level. If
max depth is omitted it is assumed to be infinity, but then it may not stop. Also note, that if max depth
is not given, it searches the tree in depth first and may be trapped in some infinite ray, while specifying
finite max depth may produce a result by looking at a section not in that ray. For bounded automata it will
always produce a result.

If InfoLevel of InfoAutomGrp is greater than or equal to 3 (one can set it by SetInfoLevel( InfoAutom-

Grp, 3)) and the element has infinite order, then the proof of this fact is printed.
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gap> GrigorchukGroup := AutomatonGroup("a=(1,1)(1,2),b=(a,c),c=(a,d),d=(1,b)");

< a, b, c, d >

gap> OrderUsingSections( a*b*a*c*b );

16

gap> Basilica := AutomatonGroup( "u=(v,1)(1,2), v=(u,1)" );

< u, v >

gap> SetInfoLevel( InfoAutomGrp, 3);

gap> OrderUsingSections( u^23*v^-2*u^3*v^15, 10 );

#I v^13*u^15 is obtained from (u^23*v^-2*u^3*v^15)^1

by taking sections and cyclic reductions at vertex [ 1 ]

#I v^13*u^15 is obtained from (v^13*u^15)^4

by taking sections and cyclic reductions at vertex [ 1, 1 ]

infinity

gap> OrderUsingSections( u^23*v^-2*u^3*v^15, 2 );

fail

gap> G := AutomatonGroup("a=(c,a)(1,2), b=(b,c), c=(b,a)");

< a, b, c >

gap> OrderUsingSections(b,10);

#I b*c*a^2*b^2*c*a acts transitively on levels and is obtained from (b)^8

by taking sections and cyclic reductions at vertex

[ 2, 2, 1, 1, 1, 1, 2, 2, 1, 1 ]

infinity

7I Perm( a[, lev] ) O

Returns the permutation induced by the tree automorphism a on the level lev (or first level if lev is not
given). See also TransformationOnLevel (3.2.10).

8I PermOnLevel( a, k ) O

Does the same thing as Perm (3.2.7).

9I PermOnLevelAsMatrix( g, lev ) F

Computes the action of the element g of a group on the lev -th level as a permutational matrix, in which the
i-th row contains 1 at the position iˆg .

gap> L := AutomatonGroup("p=(p,q)(1,2), q=(p,q)");

< p, q >

gap> PermOnLevel(p*q,2);

(1,4)(2,3)

gap> PermOnLevelAsMatrix(p*q, 2);

[ [ 0, 0, 0, 1 ], [ 0, 0, 1, 0 ], [ 0, 1, 0, 0 ], [ 1, 0, 0, 0 ] ]

10I TransformationOnLevel( a, lev ) O
I TransformationOnFirstLevel( a ) O

The first function returns the transformation induced by the tree homomorphism a on the level lev . See also
PermOnLevel (3.2.8).

If the transformation is invertible then it returns a permutation, and Transformation otherwise.

TransformationOnFirstLevel(a) is equivalent to TransformationOnLevel(a, 1).

11I TransformationOnLevelAsMatrix( g, lev ) F

Computes the action of the element g on the lev -th level as a permutational matrix, in which the i-th row
contains 1 at the position iˆg .
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gap> L := AutomatonSemigroup("p=(p,q)(1,2), q=(p,q)[1,1]");

< p, q >

gap> TransformationOnLevel(p*q,2);

Transformation( [ 1, 1, 2, 2 ] )

gap> TransformationOnLevelAsMatrix(p*q,2);

[ [ 1, 0, 0, 0 ], [ 1, 0, 0, 0 ], [ 0, 1, 0, 0 ], [ 0, 1, 0, 0 ] ]

12I Word( a ) O

Returns a as an associative word (an element of the underlying free group) in the generators of the self-similar
group (semigroup) to which a belongs.

gap> L := AutomatonGroup("p=(p,q)(1,2), q=(p,q)");

< p, q >

gap> w := Word(p*q^2*p^-1);

p*q^2*p^-1

gap> Length(w);

4

3.3 Operations with tree automorphisms and homomorphisms

The multiplication of tree homomorphisms is defined in the standard way

1I a * b

The following operations allow computation of the actions of tree homomorphisms on letters and vertices

2I letter ^ a
I vertex ^ a

gap> L := AutomatonGroup("p=(p,q)(1,2), q=(p,q)");

< p, q >

gap> 1^p;

2

gap> [1, 2, 2, 1, 2, 1]^(p*q^2);

[ 2, 1, 2, 2, 1, 2 ]

The operations below describe how to work with sections of tree homomorphisms.

3I Section( a, v ) O

Returns the section of the automorphism (homomorphism) a at the vertex v . The vertex v can be a list
representing the vertex, or a positive integer representing a vertex of the first level of the tree.

gap> L := AutomatonGroup("p=(p,q)(1,2), q=(p,q)");

< p, q >

gap> Section(p*q*p^2, [1,2,2,1,2,1]);

p^2*q^2

4I Sections( a [, lev] ) O

Returns the list of sections of a at the lev -th level. If lev is omitted it is assumed to be 1.
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gap> L := AutomatonGroup("p=(p,q)(1,2), q=(p,q)");

< p, q >

gap> Sections(p*q*p^2);

[ p*q^2*p, q*p^2*q ]

5I Decompose( a[, k] ) O

Returns the decomposition of the tree homomorphism a on the k -th level of the tree, i.e. the representation
of the form

a = (a1, a2, . . . , ad1×···×dk
)σ

where ai are the sections of a at the k -th level, and σ is the transformation of the k -th level. If k is omitted
it is assumed to be 1.

gap> L := AutomatonGroup("p=(p,q)(1,2), q=(p,q)");

< p, q >

gap> Decompose(p*q^2);

(p*q^2, q*p^2)(1,2)

gap> Decompose(p*q^2,3);

(p*q^2, q*p^2, p^2*q, q^2*p, p*q*p, q*p*q, p^3, q^3)(1,8,3,5)(2,7,4,6)

6I a in G

Returns whether the automorphism a belongs to the group G . In some cases it does not stop.

gap> L := AutomatonGroup("p=(p,q)(1,2), q=(p,q)");

< p, q >

gap> H := Group([p^2, q^2]);

< p^2, q^2 >

gap> p in H;

false

7I OrbitOfVertex( ver, g[, n] ) O

Returns the list of vertices in the orbit of the vertex ver under the action of the semigroup generated by
the automorphism g . If n is specified, it returns only the first n elements of the orbit. Vertices are defined
either as lists with entries from {1, . . . , d}, or as strings containing characters 1, . . . , d , where d is the degree
of the tree.

gap> T := AutomatonGroup("t=(1,t)(1,2)");

< t >

gap> OrbitOfVertex([1,1,1], t);

[ [ 1, 1, 1 ], [ 2, 1, 1 ], [ 1, 2, 1 ], [ 2, 2, 1 ], [ 1, 1, 2 ],

[ 2, 1, 2 ], [ 1, 2, 2 ], [ 2, 2, 2 ] ]

gap> OrbitOfVertex("11111111111", t, 6);

[ [ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 ], [ 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 ],

[ 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1 ], [ 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1 ],

[ 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1 ], [ 2, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1 ] ]

8I PrintOrbitOfVertex( ver, g[, n] ) O

Prints the orbit of the vertex ver under the action of the semigroup generated by g . Each vertex is printed as
a string containing characters 1, . . . , d , where d is the degree of the tree. In case of binary tree the symbols
“ ” and “x” are used to represent 1 and 2. If n is specified only the first n elements of the orbit are printed.
Vertices are defined either as lists with entries from {1, . . . , d}, or as strings. See also OrbitOfVertex (3.3.7).



Section 4. Elements of groups and semigroups defined by wreath recursion 35

gap> L := AutomatonGroup("p=(p,q)(1,2), q=(p,q)");

< p, q >

gap> PrintOrbitOfVertex("2222222222222222222222222222222", p*q^-2, 6);

xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx

x x x x x x x x x x x x x x x

x xx xx xx xx xx xx xx

x x x x x x x

xxx xxxx xxxx xxxx

x x x x x x x

gap> H := AutomatonGroup("t=(s,1,1)(1,2,3), s=(t,s,t)(1,2)");

< t, s >

gap> PrintOrbitOfVertex([1,2,1], s^2);

121

132

123

131

122

133

9I PermActionOnLevel( perm, big lev, sm lev, deg ) F

Given a permutation perm on the big lev -th level of the tree of degree deg returns the permutation induced
by perm on a smaller level sm lev .

gap> PermActionOnLevel((1,4,2,3), 2, 1, 2);

(1,2)

gap> PermActionOnLevel((1,13,5,9,3,15,7,11)(2,14,6,10,4,16,8,12), 4, 2, 2);

(1,4,2,3)

3.4 Elements of groups and semigroups defined by wreath recursion

1I IsFiniteState( a ) P

Returns true if a has finitely many different sections. It will never stop if the free reduction of words is
not sufficient to establish the finite-state property or if a is not finite-state (has infinitely many different
sections).

See also AllSections (3.4.2) for the list of all sections and MealyAutomaton (4.1.1), which allows to construct
a Mealy automaton whose states are the sections of a and which encodes its action on the tree.

gap> D := SelfSimilarGroup("x=(1,y)(1,2), y=(z^-1,1)(1,2), z=(1,x*y)");

< x, y, z >

gap> IsFiniteState(x*y^-1);

true

2I AllSections( a ) A

Returns the list of all sections of a if there are finitely many of them and this fact can be established using
free reduction of words in sections. Otherwise will never stop. Note, that in the case when a is an element
of a self-similar (semi)group defined by wreath recurion it does not check whether all elements of the list
are actually different automorphisms (homomorphisms) of the tree. If a is a element of of a (semi)group
generated by finite automaton, it will always return the list of all distinct sections of a.
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gap> D := SelfSimilarGroup("x=(1,y)(1,2), y=(z^-1,1)(1,2), z=(1,x*y)");

< x, y, z >

gap> AllSections(x*y^-1);

[ x*y^-1, z, 1, x*y, y*z^-1, z^-1*y^-1*x^-1, y^-1*x^-1*z*y^-1, z*y^-1*x*y*z,

y*z^-1*x*y, z^-1*y^-1*x^-1*y*z^-1, x*y*z, y, z^-1, y^-1*x^-1, z*y^-1 ]

See also operation MealyAutomaton (4.1.1), which allows to construct a Mealy automaton whose states are
the sections of given tree homomorphism and which encodes its action on the tree.

3.5 Elements of contracting groups

1I AutomPortrait( a ) F
I AutomPortraitBoundary( a ) F
I AutomPortraitDepth( a ) F

Constructs the portrait of an element a of a contracting group G . The portrait of a is defined recursively
as follows. For g in the nucleus of G the portrait is just [g ]. For any other element g = (g1, g2, . . . , gd )σ
the portrait of g is [σ, AutomPortrait(g1), . . . , AutomPortrait(gd )], where d is the degree of the tree. This
structure describes a finite tree whose inner vertices are labelled by permutations from Sd and the leaves are
labelled by elements from the nucleus. The contraction in G guarantees that the portrait of any element is
finite.

The portraits may be considered as “normal forms” of the elements of G , since different elements have
different portraits.

One also can be interested only in the boundary of a portrait, which consists of all leaves of the portrait. This
boundary can be described by an ordered set of pairs [leveli , gi ], i = 1, . . . , r representing the leaves of the
tree ordered from left to right (where leveli and gi are the level and the label of the i -th leaf correspondingly,
r is the number of leaves). The operation AutomPortraitBoundary(a) computes this boundary.

AutomPortraitDepth( a ) returns the depth of the portrait, i.e. the minimal level such that all sections of
a at this level belong to the nucleus of G .

gap> Basilica := AutomatonGroup("u=(v,1)(1,2), v=(u,1)");

< u, v >

gap> AutomPortrait(u^3*v^-2*u);

[ (), [ (), [ (), [ v ], [ v ] ], [ 1 ] ],

[ (), [ (), [ v ], [ u^-1*v ] ], [ v^-1 ] ] ]

gap> AutomPortrait(u^3*v^-2*u^3);

[ (), [ (), [ (1,2), [ (), [ (), [ v ], [ v ] ], [ 1 ] ], [ v ] ], [ 1 ] ],

[ (), [ (1,2), [ (), [ (), [ v ], [ v ] ], [ 1 ] ], [ u^-1*v ] ], [ v^-1 ]

] ]

gap> AutomPortraitBoundary(u^3*v^-2*u^3);

[ [ 5, v ], [ 5, v ], [ 4, 1 ], [ 3, v ], [ 2, 1 ], [ 5, v ], [ 5, v ],

[ 4, 1 ], [ 3, u^-1*v ], [ 2, v^-1 ] ]

gap> AutomPortraitDepth(u^3*v^-2*u^3);

5



4 Noninitial automata

4.1 Definition
1I MealyAutomaton( table[, names[, alphabet]] ) O
I MealyAutomaton( string ) O
I MealyAutomaton( autom ) O
I MealyAutomaton( tree hom list ) O

Creates the Mealy automaton (see 1.1) defined by the argument table, string or autom. Format of the
argument table is the following: it is a list of states, where each state is a list of positive integers which
represent transition function at the given state and a permutation or transformation which represent the
output function at this state. Format of the string string is the same as in AutomatonGroup (see 2.1.1).
The third form of this operation takes a tree homomorphism autom as its argument. It returns noninitial
automaton constructed from the sections of autom, whose first state corresponds to autom itself. The
fourth form creates a noninitial automaton constructed of the states of all tree homomorphisms from the
tree hom list .

gap> A := MealyAutomaton([[1,2,(1,2)],[3,1,()],[3,3,(1,2)]], ["a","b","c"]);

<automaton>

gap> Print(A, "\n");

a = (a, b)(1,2), b = (c, a), c = (c, c)(1,2)

gap> B:=MealyAutomaton([[1,2,Transformation([1,1])],[3,1,()],[3,3,(1,2)]],["a","b","c"]);

<automaton>

gap> Print(B, "\n");

a = (a, b)[ 1, 1 ], b = (c, a), c = (c, c)[ 2, 1 ]

gap> D := MealyAutomaton("a=(a,b)(1,2), b=(b,a)");

<automaton>

gap> Basilica := AutomatonGroup( "u=(v,1)(1,2), v=(u,1)" );

< u, v >

gap> M := MealyAutomaton(u*v*u^-3);

<automaton>

gap> Print(M);

a1 = (a2, a5), a2 = (a3, a4), a3 = (a4, a2)(1,2), a4 = (a4, a4), a5 = (a6, a3)

(1,2), a6 = (a7, a4), a7 = (a6, a4)(1,2)

2I IsMealyAutomaton( A ) C

A category of non-initial finite Mealy automata with the same input and output alphabet.

3I NumberOfStates( A ) A

Returns the number of states of the automaton A.

4I SizeOfAlphabet( A ) A

Returns the number of letters in the alphabet the automaton A acts on.

5I AutomatonList( A ) A

Returns the list of A acceptible by MealyAutomaton (see 4.1.1)
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4.2 Tools

1I IsTrivial( A ) P

Computes whether the automaton A is equivalent to the trivial automaton.

gap> A := MealyAutomaton("a=(c,c), b=(a,b), c=(b,a)");

<automaton>

gap> IsTrivial(A);

true

2I IsInvertible( A ) P

Is true if A is invertible and false otherwise.

3I MinimizationOfAutomaton( A ) F

Returns the automaton obtained from automaton A by minimization.

gap> B := MealyAutomaton("a=(1,a)(1,2), b=(1,a)(1,2), c=(a,b), d=(a,b)");

<automaton>

gap> C := MinimizationOfAutomaton(B);

<automaton>

gap> Print(C);

a = (1, a)(1,2), c = (a, a), 1 = (1, 1)

4I MinimizationOfAutomatonTrack( A ) F

Returns the list [A new, new via old, old via new], where A new is an automaton obtained from automa-
ton A by minimization, new via old describes how new states are expressed in terms of the old ones, and
old via new describes how old states are expressed in terms of the new ones.

gap> B := MealyAutomaton("a=(1,a)(1,2), b=(1,a)(1,2), c=(a,b), d=(a,b)");

<automaton>

gap> B_min := MinimizationOfAutomatonTrack(B);

[ <automaton>, [ 1, 3, 5 ], [ 1, 1, 2, 2, 3 ] ]

gap> Print(B_min[1]);

a = (1, a)(1,2), c = (a, a), 1 = (1, 1)

5I IsOfPolynomialGrowth( A ) P

Determines whether the automaton A has polynomial growth in terms of Sidki [Sid00].

See also IsBounded (4.2.6) and PolynomialDegreeOfGrowth (4.2.7).

gap> B := MealyAutomaton("a=(b,1)(1,2), b=(a,1)");

<automaton>

gap> IsOfPolynomialGrowth(B);

true

gap> D := MealyAutomaton("a=(a,b)(1,2), b=(b,a)");

<automaton>

gap> IsOfPolynomialGrowth(D);

false

6I IsBounded( A ) P

Determines whether the automaton A is bounded in terms of Sidki [Sid00].

See also IsOfPolynomialGrowth (4.2.5) and PolynomialDegreeOfGrowth (4.2.7).
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gap> B := MealyAutomaton("a=(b,1)(1,2), b=(a,1)");

<automaton>

gap> IsBounded(B);

true

gap> C := MealyAutomaton("a=(a,b)(1,2), b=(b,c), c=(c,1)(1,2)");

<automaton>

gap> IsBounded(C);

false

7I PolynomialDegreeOfGrowth( A ) A

For an automaton A of polynomial growth in terms of Sidki [Sid00] determines its degree of polynomial
growth. This degree is 0 if and only if automaton is bounded. If the growth of automaton is exponential
returns fail.

See also IsOfPolynomialGrowth (4.2.5) and IsBounded (4.2.6).

gap> B := MealyAutomaton("a=(b,1)(1,2), b=(a,1)");

<automaton>

gap> PolynomialDegreeOfGrowth(B);

0

gap> C := MealyAutomaton("a=(a,b)(1,2), b=(b,c), c=(c,1)(1,2)");

<automaton>

gap> PolynomialDegreeOfGrowth(C);

2

8I AdjacencyMatrix( A ) A

Returns the adjacency matrix of a Mealy automaton A, in which the ij -th entry contains the number of
arrows in the Moore diagram of A from state i to state j .

gap> A:=MealyAutomaton("a=(a,a,b)(1,2,3),b=(a,c,b)(1,2),c=(a,a,a)");

<automaton>

gap> AdjacencyMatrix(A);

[ [ 2, 1, 0 ], [ 1, 1, 1 ], [ 3, 0, 0 ] ]

9I IsAcyclic( A ) P

Computes whether or not an automaton A is acyclic in the sense of Sidki [Sid00]. I.e. returns true if the
Moore diagram of A does not contain cycles with two or more states and false otherwise.

gap> A:=MealyAutomaton("a=(a,a,b)(1,2,3),b=(c,c,b)(1,2),c=(d,c,1),d=(d,1,d)");

<automaton>

gap> IsAcyclic(A);

true

gap> A:=MealyAutomaton("a=(a,a,b)(1,2,3),b=(c,c,d)(1,2),c=(d,c,1),d=(b,1,d)");

<automaton>

gap> IsAcyclic(A);

false

10I DualAutomaton( A ) O

Returns the automaton dual of A.
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gap> A := MealyAutomaton("a=(b,a)(1,2), b=(b,a)");

<automaton>

gap> D := DualAutomaton(A);

<automaton>

gap> Print(D);

d1 = (d2, d1)[ 2, 2 ], d2 = (d1, d2)[ 1, 1 ]

11I InverseAutomaton( A ) O

Returns the automaton inverse to A if A is invertible.

gap> A := MealyAutomaton("a=(b,a)(1,2), b=(b,a)");

<automaton>

gap> B := InverseAutomaton(A);

<automaton>

gap> Print(B);

a1 = (a1, a2)(1,2), a2 = (a2, a1)

12I IsBireversible( A ) P

Computes whether or not the automaton A is bireversible, i.e. A, the dual of A and the dual of the inverse
of A are invertible. The example below shows that the Bellaterra automaton is bireversible.

gap> Bellaterra := MealyAutomaton("a=(c,c)(1,2), b=(a,b), c=(b,a)");

<automaton>

gap> IsBireversible(Bellaterra);

true

13I IsReversible( A ) P

Computes whether or not the automaton A is reversible, i.e. the dual of A is invertible.

14I IsIRAutomaton( A ) P

Computes whether or not the automaton A is an IR-automaton, i.e. A and its dual are invertible. The
example below shows that the automaton generating lamplighter group is an IR-automaton.

gap> L := MealyAutomaton("a=(b,a)(1,2), b=(a,b)");

<automaton>

gap> IsIRAutomaton(L);

true

The next three commands deal with a procedure called MD-reduction developed in [AKL+12]. Particularly,
according to [Kli13], a 2-letter or 2-state invertible reversible automaton generates a finite group if and only
if the MD-reduction procedure terminates with a trivial automaton. In the last case the automaton is called
MD-trivial.

15I MDReduction( A ) O

Performs the process of MD-reduction of automaton A (alternating applications of minimization and dual-
ization procedures) until a pair of minimal automata dual to each other is reached. Returns this pair. The
main point of this procedure is in the fact that the (semi)group generated by the original automaton is finite
if and only each of the (semi)groups generated by the output automata is finite.
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gap> A:=MealyAutomaton("a=(d,d,d,d)(1,2)(3,4),b=(b,b,b,b)(1,4)(2,3),\\

> c=(a,c,a,c), d=(c,a,c,a)");

<automaton>

gap> NumberOfStates(MinimizationOfAutomaton(A));

4

gap> MDR:=MDReduction(A);

[ <automaton>, <automaton> ]

gap> Print(MDR[1]);

d1 = (d2, d2, d1, d1)(1,4,3), d2 = (d1, d1, d2, d2)(1,4)

gap> Print(MDR[2]);

d1 = (d4, d4)(1,2), d2 = (d2, d2)(1,2), d3 = (d1, d3), d4 = (d3, d1)

16I IsMDTrivial( A ) P

Returns true if A is MD-trivial (i.e. if MD-reduction proedure returns the trivial automaton) and false

otherwise.

17I IsMDReduced( A ) P

Returns true if A is MD-reduced and false otherwise.

18I DisjointUnion( A, B ) O

Constructs the disjoint union of automata A and B

gap> A := MealyAutomaton("a=(a,b)(1,2), b=(a,b)");

<automaton>

gap> B := MealyAutomaton("c=(d,c), d=(c,e)(1,2), e=(e,d)");

<automaton>

gap> Print(DisjointUnion(A, B));

a1 = (a1, a2)(1,2), a2 = (a1, a2), a3 = (a4, a3), a4 = (a3, a5)

(1,2), a5 = (a5, a4)

19I A * B

Constructs the product of 2 noninitial automata A and B .

gap> A := MealyAutomaton("a=(a,b)(1,2), b=(a,b)");

<automaton>

gap> B := MealyAutomaton("c=(d,c), d=(c,e)(1,2), e=(e,d)");

<automaton>

gap> Print(A*B);

a1 = (a1, a5)(1,2), a2 = (a3, a4), a3 = (a2, a6)

(1,2), a4 = (a2, a4), a5 = (a1, a6)(1,2), a6 = (a3, a5)

20I SubautomatonWithStates( A, states ) O

Returns the minimal subautomaton of the automaton A containing states states.

gap> A := MealyAutomaton("a=(e,d)(1,2),b=(c,c),c=(b,c)(1,2),d=(a,e)(1,2),e=(e,d)");

<automaton>

gap> Print(SubautomatonWithStates(A, [1, 4]));

a = (e, d)(1,2), d = (a, e)(1,2), e = (e, d)

21I AutomatonNucleus( A ) O

Returns the nucleus of the automaton A, i.e. the minimal subautomaton containing all cycles in A.
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gap> A := MealyAutomaton("a=(b,c)(1,2),b=(d,d),c=(d,b)(1,2),d=(d,b)(1,2),e=(a,d)");

<automaton>

gap> Print(AutomatonNucleus(A));

b = (d, d), d = (d, b)(1,2)

22I AreEquivalentAutomata( A, B ) O

Returns true if for every state s of the automaton A there is a state of the automaton B equivalent to s

and vice versa.

gap> A := MealyAutomaton("a=(b,a)(1,2), b=(a,c), c=(b,c)(1,2)");

<automaton>

gap> B := MealyAutomaton("b=(a,c), c=(b,c)(1,2), a=(b,a)(1,2), d=(b,c)(1,2)");

<automaton>

gap> AreEquivalentAutomata(A, B);

true
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5.1 Trees

1I NumberOfVertex( ver, deg ) F

Let ver belong to the n-th level of the deg-ary tree. One can naturally enumerate all the vertices of this
level by the numbers 1, . . . , degn . This function returns the number that corresponds to the vertex ver .

gap> NumberOfVertex([1,2,1,2], 2);

6

gap> NumberOfVertex("333", 3);

27

2I VertexNumber( num, lev, deg ) F

One can naturally enumerate all the vertices of the lev -th level of the deg-ary tree by the numbers 1, . . . , degn .
This function returns the vertex of this level that has number num.

gap> VertexNumber(1, 3, 2);

[ 1, 1, 1 ]

gap> VertexNumber(4, 4, 3);

[ 1, 1, 2, 1 ]

5.2 Some predefined groups

Several groups are predefined as fields in the global variable AG Groups. Here is how to access, for example,
Grigorchuk group

gap> G:=AG_Groups.GrigorchukGroup;

< a, b, c, d >

To perform operations with elements of G one can use AssignGeneratorVariables function.

gap> AssignGeneratorVariables(G);

#I Global variable ‘a’ is already defined and will be overwritten

#I Global variable ‘b’ is already defined and will be overwritten

#I Global variable ‘c’ is already defined and will be overwritten

#I Global variable ‘d’ is already defined and will be overwritten

#I Assigned the global variables [ a, b, c, d ]

gap> Decompose(a*b);

(c, a)(1,2)

Below is a list of all predefined groups with short description and references.
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1I GrigorchukGroup

is the first Grigorchuk group, an infinite 2-group of intermediate growth constructed in [Gri80] (see [Gri05]
for a survey on this group). It is defined as the group generated by the automaton

a = (1, 1)(1, 2), b = (a, c), c = (a, d), d = (1, b).

2I UniversalGrigorchukGroup

is the universal group for the family of groups Gω (see [Gri84]). It is defined as a group acting on the 6-ary
tree, generated by the automaton

a = (1, 1, 1, 1, 1, 1)(1, 2), b = (a, a, 1, b, b, b), c = (a, 1, a, c, c, c), d = (1, a, a, d , d , d).

3I Basilica

is the Basilica group. It was first studied in [GZ02a] and [GZ02b]. Later it became the first example of
amenable, but not subexponentially amenable group (see [BV05]). It is the iterated monodromy group of
the map f (z ) = z 2 − 1. It is generated by the automaton

u = (v , 1)(1, 2), v = (u, 1).

4I Lamplighter

is the Lamplighter group. This group was a key to the counterexample (see [GLSZ00]) to the strong Atiyah
conjecture. It is generated by the automaton

a = (a, b)(1, 2), b = (a, b).

5I AddingMachine

is a the free abelian group of rank 1 (see [GNS00]) generated by the automaton

a = (1, a)(1, 2).

6I InfiniteDihedral

is the infinite dihedral group (see [GNS00]) generated by the automaton

a = (a, a)(1, 2), b = (b, a).

7I AleshinGroup

is the free group of rank 3 generated by the Aleshin automaton (see [Ale83])

a = (b, c)(1, 2), b = (c, b)(1, 2), c = (a, a).

It was proved just recently by M.Vorobets and Ya.Vorobets (see [VV07]) that the group is indeed free of
rank 3.

8I Bellaterra

is the free product of 3 cyclic groups of oreder 2 (see [BGK+09])

a = (c, c)(1, 2), b = (a, b), c = (b, a).

9I SushchanskyGroup

is the self-similar closure of the faithful level-transitive action of Sushchansky group on the ternary tree.
The original groups constructed in [Sus79] are infinite p-groups of intermediate growth acting on the p-ary
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tree. In [BS07] the action of these groups on the tree was simplified, so that, in particular, the self-similar
closure of one of the 3-groups is generated by the automaton

A = (1, 1, 1)(1, 2, 3), A2 = (1, 1, 1)(1, 3, 2), B = (r1, q1,A),

r1 = (r2,A, 1), r2 = (r3, 1, 1), r3 = (r4, 1, 1),

r4 = (r5,A, 1), r5 = (r6,A
2, 1), r6 = (r7,A, 1),

r7 = (r8,A, 1), r8 = (r9,A, 1), r9 = (r1,A
2, 1),

q1 = (q2, 1, 1), q2 = (q3,A, 1), q3 = (q1,A, 1).

The group 〈A,B〉 is isomorphic to the original Sushchansky 3-group.

10I Hanoi3
I Hanoi4

Groups related to the Hanoi towers game on 3 and 4 pegs correspondingly (see [GŠ06] and [GŠ08]). For 3
pegs Hanoi3 is generated by the automaton

a23 = (a23, 1, 1)(2, 3), a13 = (1, a13, 1)(1, 3), a12 = (1, 1, a12)(1, 2),

while the automaton generating Hanoi4 is

a12 = (1, 1, a12, a12)(1, 2), a13 = (1, a13, 1, a13)(1, 3), a14 = (1, a14, a14, 1)(1, 4),

a23 = (a23, 1, 1, a23)(2, 3), a24 = (a24, 1, a24, 1)(2, 4), a34 = (a34, a34, 1, 1)(3, 4).

11I GuptaSidki3Group

is the Gupta-Sidki infinite 3-group constructed in [GS83] and generated by the automaton

a = (1, 1, 1)(1, 2, 3), b = (a, a−1, b).

12I GuptaFabrikowskiGroup

is the Gupta-Fabrykowski group of intermediate growth constructed in [FG85] and generated by the au-
tomaton

a = (1, 1, 1)(1, 2, 3), b = (a, 1, b).

13I BartholdiGrigorchukGroup

is the Bartholdi-Grigorchuk group studied in [BG02] and generated by the automaton

a = (1, 1, 1)(1, 2, 3), b = (a, a, b).

14I GrigorchukErschlerGroup

is the group of subexponential growth studied by Erschler in [Ers04]. It grows faster than exp(nα) for any
α < 1. It belongs to the class of groups constructed by Grigorchuk in [Gri84] and corresponds to the sequence
01010101 . . .. It is generated by the automaton

a = (1, 1)(1, 2), b = (a, b), c = (a, d), d = (1, c).

15I BartholdiNonunifExponGroup

is the group of nonuniformly exponential growth constructed by Bartholdi in [Bar03]. Similar examples were
constructed earlier in [Wil04] by Wilson. It is generated by the automaton

x = (1, 1, 1, 1, 1, 1, 1)(1, 5)(3, 7), y = (1, 1, 1, 1, 1, 1, 1)(2, 3)(6, 7), z = (1, 1, 1, 1, 1, 1, 1)(4, 6)(5, 7),
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x1 = (x1, x , 1, 1, 1, 1, 1), y1 = (y1, y , 1, 1, 1, 1, 1), z1 = (z1, z , 1, 1, 1, 1, 1).

16I IMG z2plusI

The iterated monodromy group of the map f (z ) = z 2 + i . It has intermediate growth (see [BP06]) and was
studied in [GSŠ07].

a = (1, 1)(1, 2), b = (a, c), c = (b, 1).

17I Airplane
I Rabbit

These are iterated monodromy groups of certain quadratic polynomials studied in [BN06]. It was proved
there that they are not isomorphic. The automata generating them are the following

a = (b, 1)(1, 2), b = (c, 1), c = (a, 1);

a = (b, 1)(1, 2), b = (1, c), c = (a, 1).

18I TwoStateSemigroupOfIntermediateGrowth

is the semigroup of intermediate growth studied in [BRS06]. It is generated by the automaton

f0 = (f0, f0)(1, 2), f1 = (f1, f0)[2, 2]·

19I UniversalD omega

is the group constructed in [Nek07] as a universal group which covers an uncountable family of groups
parametrized by infinite binary sequences. It is contracting with nucleus consisting of 35 elements. The
automaton generating it is the following (it acts on the 4-ary tree)

a = (1, 2)(3, 4), b = (a, c, a, c), c = (b, 1, 1, b).
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