IdRel

A package for Identities among Relators

Version 2.31

01/06/2015

Anne Heyworth
Chris Wensley

Chris Wensley Email: c.d.wensley@bangor.ac.uk
Homepage: http://pages.bangor.ac.uk/ " mas023/

Address: School of Computer Science, Bangor University,
Dean Street, Bangor, Gwynedd, LL57 1UT, U.K.

mailto://c.d.wensley@bangor.ac.uk
http://pages.bangor.ac.uk/~mas023/

IdRel 2

Abstract

The IdRel package was originally implemented in 1999, using the GAP 3 language, when the first author was
studying for a Ph.D. in Bangor.

This package is designed to compute a minimal set of generators for the module of the identities among
relators of a group presentation. It does this using

* rewriting and logged rewriting: a self-contained implementation of the Knuth-Bendix process using the
monoid presentation associated to the group presentation;

* monoid polynomials: an implementation of the monoid ring;
* module polynomials: an implementation of the right module over this monoid generated by the relators.

* Y-sequences: used as a rewriting way of representing elements of a free crossed module (products of
conjugates of group relators and inverse relators).

IdRel became an accepted GAP package in May 2015.
Bug reports, suggestions and comments are, of course, welcome. Please contact the second author at
c.d.wensley@bangor.ac.uk.

Copyright

© 1999-2015 Anne Heyworth and Chris Wensley

IdRel is free software; you can redistribute it and/or modify it under the terms of the GNU General Public
License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any
later version.

Acknowledgements

This documentation was prepared with the GAPDoc package of Frank Liibeck and Max Neunhéffer.

mailto://c.d.wensley@bangor.ac.uk
http://www.fsf.org/licenses/gpl.html
http://www.fsf.org/licenses/gpl.html

Contents

1 Introduction

2 Rewriting Systems
2.1 Identity Y-SEQUENCES« v v v it e e e e e e e e e e
2.2 Monoid Presentations of FpGroups
2.3 Rewriting systems for FpGroups Lo o o o
2.4 Enumeratingelements oL e

3 Logged Rewriting Systems
3.1 Logged Knuth-Bendix Completion
3.2 Loggedreductionofaword.

4 Monoid Polynomials
4.1 Construction of monoid polynomials
4.2 Components of a polynomial L L oL
4.3 Monoid Polynomial Operations i
4.4 Reduction of a Monoid Polynomial

5 Module Polynomials
5.1 Construction of module polynomials
5.2 Components of a module polynomial
5.3 Module Polynomial Operations
5.4 Identities among relators

References

Index

15
15
16
17
18

19
19
20
21
21

23

24

Chapter 1

Introduction

This manual describes the IdRel package for GAP 4.7 for computing the identities among relators of
a group presentation using rewriting, logged rewriting, monoid polynomials, module polynomials and
Y-sequences.

The theoretical background for these computations is contained in Brown and Huebschumann
[BH82], Brown and Razak Salleh [BRS99] and is surveyed in the first author’s thesis [Hey99].

IdRel is primarily designed for the computation of a minimal set of generators for the module
of identities among relators. It also contains functions which compute logged rewrite systems for
group presentations (and complete them where possible); functions for operations involving elements
of monoid rings; and functions for operations with elements of right modules over monoid rings. The
Y-sequences are used as a rewriting way of representing elements of a free crossed module (products
of conjugates of group relators and inverse relators). The package is written entirely in GAP4, and
requires no compilation.

The package is loaded into GAP with the LoadPackage command, and on-line help is available
in the usual way.

Example

gap> LoadPackage("idrel");
gap> 7idrel

A pdf version of the IdRel manual is available in the doc directory of the home directory of IdRel.
The information parameter InfoIdRel has default value 0. When raised to a higher value, additional
information is printed out. |dRel was originally developed in 1999 using GAP3, partially supported
by a University of Wales Research Assistantship for the first author, Anne Heyworth.

If you use IdRel to solve a problem then please send a short email to the second author, to whom
bug reports, suggestions and other comments should also be sent. You may reference the package by
mentioning [HWO03] and [Hey99].

The current version is 2.31 of 1st June 2015.

Chapter 2

Rewriting Systems

This chapter describes functions to construct rewriting systems for finitely presented groups which
store rewriting information. The main example used is a presentation of the quaternion group q8 with
generators a, b and relators [a*, b* abab™!,a*b?).

2.1 Identity Y-sequences

A typical input for [dRel is an fp-group presentation. This requires a free group F on a set of generators
and a set of relators R (words in the free group). The module of identities among relators for this
presentation has as its elements the Peiffer equivalence classes of all products of conjugates of relators
which represent the identity in the free group.

In this package the identities among relators are represented by Y-sequences, which are lists
[[r1,u1],...,[rk,ux]] where ri,...,r; are the group relators or their inverses, and uy, ..., u; are words
in the free group F. A Y-sequence is evaluated in F as the product (u; 'riuy). .. (u; 'reuy) and is an
identity Y-sequence if it evaluates to the identity in F. An identity Y-sequence represents an identity
among the relators of the group presentation. The main function of the package is to produce a set
of Y-sequences which generate the module of identites among relators, and further, that this set be
minimal in the sense that every element in it is needed to generate the module.

Before starting on the main example, we consider a simpler example illustrating the use of IdRel.
All the functions used are described in detail in this manual. We compute a reduced set of identi-
ties among relators for the presentation of the symmetric group s3 with generators a,b and relators
[a®,b%, (ab)?]. In the listing below, s3_M1 is the first monoid generator for s3, s3_R2 is the second
relator, while s3_Y4 is the fourth Y-sequence for s3.
Example

gap> F := FreeGroup(2);;

gap> a := F.1;; b:= F.2;;

gap> rels3 := [a~3 , b~2, axbxa*b];

[£1°3, £272, (f1x£2)"2]

gap> s3 := F/rels3;

<fp group on the generators [fl, f2 1>
gap> SetName(s3, "s3");

gap> idy3 := IdentityYSequences(s3);;
gap> Length(idy3);

18

gap> Y4 := idy3[4];

IdRel 6

[[s3_.R1~-1, f1~-1], [s3_R1, <identity ...>]]

gap> Y6 := idy3[6];

[[s3_.R3~-1, f1~-1 1, [s3_R1l, <identity ...>], [s3_R3"-1, f1 1],
[s3_R2, f1~-1xf2~-1], [s3_R1, f2~-1 1, [s3_R3"-1, fi1xf2~-1],
[s3_R2, <identity ...> 1, [s3_R2, f1~-11]]

gap> Y7 := idy3[7];

[[s3_.R3~-1, f1*xf2~-1], [s3_R2, <identity ...>], [s3_R3, <identity ...>],
[s3_R2"-1, <identity ...> 1 1]

gap> Y8 := idy3[8];

[[s3_R2"-1, f2~-1 1, [s3_R2, <identity ...>] 1]

Of the 18 Y-sequences formed, 6 are empty, and Y4 is the root identity ((a~3)~-1)~(a~-1).(a"3).
If we write 7 = a3,s = b%,t = (ab)* then Y4 is (r~!)* 'r. Similarly, Y8 is the second root iden-
tity (s7!)?"'s, while Y7 is the third root identity (:~')(@)"'z. The identity Y6, which is not a
root identity, is obtained by walking around the Schreier diagram of the presentation, a some-
what truncated triangular prism. Taking the appropriate conjugate of each face in turn, we get:
Y6=(t~-1)~(a~-1).r.(t"-1)"a.s"(a"-1b~-1) .r~(b~-1) . (t~-1)~(ab~-1) .s.s~(a"-1).
These four identities generate the module of identities for s3.

Example

gap> idrels3 := IdentitiesAmongRelators(s3);;
gap> Display(idrels3[1]);
[(s3_Y4*x(s3_M2#s3_M1), s3_R1*(s3_M1 - <identity ...>)),
(s3_Y8*(s3_M2#s3_M1), s3_R2*(s3_M2 - <identity ...>)),
(s3_Y7*x(s3_M2%s3_M1), s3_R3*(s3_M2 - s3_M1)),
(83_Y6%(-s3_M2%s3_M1), s3_R1*(-s3_M2*s3_M1 - s3_M1) + s3_R2x(-s3_M1xs3_M\
2 - s3_M1 - <identity ...>) + s3_R3%(s3_M3 + s3_M2 + <identity ...>))

2.2 Monoid Presentations of FpGroups

2.2.1 FreeRelatorGroup

> FreeRelatorGroup(grp) (attribute)
> FreeRelatorHomomorphism(grp) (attribute)

The function FreeRelatorGroup returns a free group on the set of relators of the given fp-group
G. If HasName (G) is true then a name is automatically assigned to the free group.

The function FreeRelatorHomomorphism returns the group homomorphism from the free group
on the relators to the free group on the generators of G, mapping each generator to the corresponding
word.

Example

gap> F := FreeGroup(2);;

gap> a := F.1;; b:=F.2;;

gap> rels := [a”4, b~4, axb*a*xb~-1, a~2xb~2];;
gap> g8 := F/rels;;

IdRel 7

gap> SetName(g8, "q8");

gap> frq8 := FreeRelatorGroup(g8);

q8_R

gap> GeneratorsOfGroup(frqg8);

[g8_R1, g8_R2, g8_R3, q8_R4]

gap> frhomg8 := FreeRelatorHomomorphism(g8);

[gS_R1, q8_R2, g8_R3, q8_R4] -> [f1°4, £2°4, f1xf2*f1xf2~-1, £1°2%£2°2]

2.2.2 MonoidPresentationFpGroup

> MonoidPresentationFpGroup (grp) (attribute)
> FreeGroupOfPresentation(mon) (attribute)
> GroupRelatorsOfPresentation(mon) (attribute)
> InverseRelatorsOfPresentation(mon) (attribute)
> HomomorphismOfPresentation (mon) (attribute)

A monoid presentation for a finitely presented group G has two monoid generators g*, g~ for each
group generator g. The relators of the monoid presentation comprise the group relators, and rela-
tors gt g~ specifying the inverses. The function MonoidPresentationFpGroup returns the monoid
presentation derived in this way from an fp-presentation. (Note: this function should always be fol-
lowed by a double semicolon — MonoidPresentationFpGroup(G) ;; — because an error occurs in
attempting to display the results on the screen: the ElementsFamily needs to be fixed.)

The function FreeGroupOfPresentation returns the free group on the monoid generators.

The function GroupRelatorsOfPresentation returns those relators of the monoid which corre-
spond to the relators of the group. All negative powers in the group relators are converted to positive
powers of the g—.

The function InverseRelators0fPresentation returns relators which specify the inverse pairs
of the monoid generators.

The function HomomorphismOfPresentation returns the homomorphism from the free group of
the monoid presentation to the free group of the group presentation.

In the example below, the four monoid generators a*,b*,a~,b~ are named q8_M1, q8_M2,
q8_M3, q8_M4.

Example
gap> mon := MonoidPresentationFpGroup(g8);;
gap> fgmon := FreeGroupOfPresentation(mon) ;
<free group on the generators [q8_M1, q8_M2, q8_M3, q8_M4]>
gap> genfgmon := Generators0fGroup(fgmon);
[98_M1, 98_M2, q8_M3, q8_M4]
gap> gprels := GroupRelatorsOfPresentation(mon);
[g8_M1"4, g8_M2"4, g8_M1*q8_M2*q8_M1*q8_M4, q8_M1"2%*q8_M2"2]
gap> invrels := InverseRelatorsOfPresentation(mon);
[g8_M1%q8_M3, q8_M2*q8_M4, q8_M3%q8_M1l, q8_M4x*q8_M2]
gap> hompres := HomomorphismOfPresentation(mon);
[98_M1, 98_M2, 98_M3, g8_M4] -> [f1, f2, f1~-1, f2~-1]

IdRel 8

2.3 Rewriting systems for FpGroups

These functions duplicate the standard Knuth Bendix functions which are available in the GAP library.
There are two reasons for this: (1) these functions were first written before the standard functions were
available; (2) we require logged versions of the functions, and these are most conveniently extended
versions of the non-logged code.

2.3.1 RewritingSystemFpGroup

> RewritingSystemFpGroup (grp) (attribute)

This function attempts to return a complete rewrite system for the group G obtained from the
monoid presentation mon, with a length-lexicographical ordering on the words in fgmon, by applying
Knuth-Bendix completion. Such a rewrite system can be obtained for all finite groups. The rewrite
rules are (partially) ordered, starting with the inverse relators, followed by the rules which reduce the
word length the most.

In our g8 example there are 16 rewrite rules.

Example

gap> rws := RewritingSystemFpGroup(g8);

[[q8_M1%q8_M3, <identity ...>], [gq8_M2%q8_M4, <identity ...>],
[q8_M3%q8_M1, <identity ...>], [gq8_M4*q8_M2, <identity ...>],
[g8_M1"2%q8_M4, q8_M2], [gq8_M1~2%q8_M2, q8_M4], [g8_M1~3, g8_M3],
[q8_M4"2, g8_M1-2], [g8_M4*q8_M3, q8_M1xq8_M4],

[g8_M4*g8_M1, q8_Ml*q8_M2], [q8_M3*q8_M4, g8_Ml*q8_M2],
[g8_M3~2, q8_M1~2], [q8_M3*q8_M2, g8_Ml*q8_M4],

[q8_M2%q8_M3, q8_Mlxq8_M2], [q8_M2-2, g8_M1-2],

[q8_M2%q8_M1, g8_M1x*q8_M4]]

The functions called by RewritingSystemFpGroup are as follows.

2.3.2 OnePassReduceWord

> OnePassReduceWord(word, rules) (operation)
> ReduceWordKB(word, rules) (operation)

Assuming that word is an element of a free monoid and rules is a list of ordered pairs of such
words, the function OnePassReduceWord searches the list of rules until it finds that the left-hand
side of a rule is a subword of word, whereupon it replaces that subword with the right-hand side
of the matching rule. The search is continued from the next rule in rules, but using the new word.
When the end of rules is reached, one pass is considered to have been made and the reduced word is
returned. If no matches are found then the original word is returned.

The function ReduceWordKB repeatedly applies the function OnePassReduceWord until the word
remaining contains no left-hand side of a rule as a subword. If rules is a complete rewrite system,
then the irreducible word that is returned is unique, otherwise the order of the rules in rules will
determine which irreducible word is returned. In the example we see that b°a° reduces to ba, and we
shall see later that this is not a normal form.

IdRel 9

Example

gap> monrels := Concatenation(gprels, invrels);

[g8_M1"4, g8_M2"4, q8_M1*q8_M2xq8_M1*q8_M4, q8_M1"2%q8_M2"2, q8_M1%q8_M3,
g8_M2xq8_M4, q8_M3*q8_M1, g8_M4x*q8_M2]

gap> id := One(monrels[1]);;

gap> rO := List(monrels, r -> [r, id]);

[[g8_M1"4, <identity ...>], [q8_M2"4, <identity. ..>],
[98_M1*q8_M2%q8_M1*q8_M4, <identity ...>],
[98_M1~2%q8_M2~2, <identity. ..>], [q8_M1*q8_M3, <identity ...>],
[g8_M2*q8_M4, <identity ...> 1, [g8_M3*q8_Ml, <identity. ..>],
[g8_M4*q8_M2, <identity ...>]]

gap> ap := genfgmon[l];; bp := genfgmon[2];; ## p for plus

gap> am := genfgmon[3];; bm := genfgmon[4];; ## m for minus

gap> w0 := bp~9 * ap”9;

q8_M2~9%q8_M1~9

gap> wl := OnePassReduceWord(wO, r0);

q8_M2-5%q8_M1-5

gap> w2 := ReduceWordKB(w0, r0);

q8_M2%q8_M1

2.3.3 OnePasskB

> OnePassKB(rules) (operation)
> RewriteReduce(rules) (operation)
> KnuthBendix(rules) (operation)
> ShorterRule(rulel, rule2) (operation)

The function OnePassKB implements the main loop of the Knuth-Bendix completion algorithm.
Rules are compared with each other; all critical pairs are calculated; and the irreducible critical pairs
are orientated with respect to the length-lexicographical ordering and added to the rewrite system.

The function RewriteReduce will remove unnecessary rules from a rewrite system. A rule is
deemed to be unnecessary if it is implied by the other rules, i.e. if both sides can be reduced to the
same thing by the remaining rules.

The function KnuthBendix implements the Knuth-Bendix algorithm, attempting to complete a
rewrite system with respect to a length-lexicographic ordering. It calls first OnePassKB, which adds
rules, and then (for efficiency) RewriteReduce which removes any unnecessary ones. This procedure
is repeated until OnePassKB adds no more rules. It will not always terminate, but for many examples
(all finite groups) it will be successful. The rewrite system returned is complete, that is: it will rewrite
any given word in the free monoid to a unique irreducible; there is one irreducible for each element of
the quotient monoid; and any two elements of the free monoid which are in the same class will rewrite
to the same irreducible.

The function ShorterRule gives an ordering on rules. Rules (g;g2,id) that identify two genera-
tors (or one generator with the inverse of another) come first in the ordering. Otherwise one precedes
another if it reduces the length of a word by a greater amount.

One pass of this procedure for our g8 example adds 13 relators to the original 8, and these 21 are
then reduced to 9. A second pass and reduction gives a list of 16 rules which forms a complete rewrite
system for the group. Now b°a’ reduces to ab™".

IdRel 10

Example

gap> rl := OnePasskB(r0);

[[g8_M1"4, <identity ...>], [q8_M2~4, <identity ...>],
q8_M1*q8_M2*q8_M1*q8_M4, <identity ...>],

q8_M1~2%q8_M2"2, <identity. ..> 1, [q8_M1%q8_M3, <identity ...> 1,
qQ8_M2*q8_M4, <identity ...> 1, [gq8_M3%q8_M1, <identity ...>],
q8_M4*q8_M2, <identity ...> 1, [gq8_M2%q8_Ml*q8_M4, g8_M1-~31,
q8_M1%q8_M2"2, q8_M1"3 1, [gq8_M2~2, gq8_M1~2], [q8_M1"3, g8_M3],
q8_M2"3, g8_M4], [g8_M1*q8_M2*q8_M1l, q8_M2],

q8_M2°3, q8_M1-2%q8_M2], [g8_M2"2, gq8_M1~2 1, [g8_M1~2%q8_M2, q8_M4 1,
q8_M1"3, q8_M3 1, [g8_M2%q8_M1*qS8_M4, q8_M3 1, [q8_M1*qS8_M2"2, g8_M3 1,
q8_M2"3, q8_M4 1]

> rl := RewriteReduce(rl1);

q8_M1%q8_M3, <identity ...> 1, [q8_M2"2, g8_M1"2],

qQ8_M2*q8_M4, <identity ...>], [q8_M3%q8_M1, <identity ...>],
q8_M4*q8_M2, <identity ...> 1, [gq8_M1~3, g8_M3 1],
q
q

— 09
©

8_M1-2%q8_M2, q8_M4 1, [q8_M1*q8_M2%q8_M1, q8_M2 1,
8_M2%q8_M1%q8_M4, q8_M3]]
> r2 := KnuthBendix(rl);
q8_M1*q8_M3, <identity ...>], [gq8_M2%q8_M1l, q8_M1*q8_M4],
q8_M2~2, q8_M1-2], [q8_M2*q8_M3, q8_Ml*q8_M2],
qQ8_M2*q8_M4, <identity ...> 1, [q8_M3%q8_M1, <identity ...>],
q8_M3%q8_M2, q8_M1*q8_M4 1, [q8_M3~2, q8_M1-2 1,
q8_M3%q8_M4, q8_M1*q8_M2], [98_M4xq8_M1, q8_M1*q8_M2],
q8_M4%q8_M2, <identity ...>], [q8_M4*q8_M3, gq8_M1*q8_M4],
q8_M4~2, q8_M1~2], [q8_M1°3, q8_M3 1, [q8_M1~2%q8_M2, q8_M4 1,
q8_M1~2%q8_M4, g8_M2 1]
gap> w2 := ReduceWordKB(w0, r2);
q8_M1%q8_M4

— 09
»
e B e W e W e W e N e I e T I e B e B e B e B e B T e B e B e B e B e B e B e B e B |

2.4 Enumerating elements

2.4.1 ElementsOfMonoidPresentation

> ElementsOfMonoidPresentation(mon) (attribute)

The function Elements0fMonoidPresentation returns a list of normal forms for the elements
of the group given by the monoid presentation mon. The normal forms are the least elements in each
equivalence class (with respect to length-lex order). When rules is a complete rewrite system for G

the list returned is a set of normal forms for the group elements.
Example

gap> elg8 := Elements(g8);

[<identity ...>, f1, f1°3, £2, f1-2xf2, f1-2, f1xf2, f1°3%f2]

gap> elmong8 := ElementsOfMonoidPresentation(mong8);

[<identity. ..>, g8_M1, 98_M2, q8_M3, q8_M4, q8_M1"2, gq8_M1x*q8_M2,
q8_M1*q8_M4]

Chapter 3

Logged Rewriting Systems

A logged rewrite system is associated with a group presentation. Each logged rewrite rule contains,
in addition to the standard rewrite rule, a record or log component which expresses the rule in terms
of the original relators of the group. We represent such a rule by a triple [w, [L1,L2,..,Lk], v],
where [u,v] is a rewrite rule and L; = [n;,w;| where n; is a group relator and w; is a word. These three
components obey the identity u = n}"...n*v.

Rules of the form g g~ are relevant to the monoid presentation, but not to the group presentation,

so are given an empty logged component.

3.1 Logged Knuth-Bendix Completion

The functions in this section are the logged versions of those in the previous chapter.

3.1.1 LoggedOnePassKB

> LoggedOnePassKB(loggedrules) (operation)

Given a logged rewrite system, this function finds all the rules that would be added to complete the
rewrite system in OnePassKB, and also the logs which relate the new rules to the originals. The result
of applying this function to loggedrules is to add new logged rules to the system without changing
the monoid it defines.

In the example, we first convert the presentation for g8 into an initial set of logged rules, and then
apply one pass of Knuth-Bendix.

Example

gap> 10 := ListWithIdenticalEntries(8, 0);;
gap> for j in [1..8] do
> r := r0[j];

> if (j<5) then

> 1001 := [r[11, [[j,id]l 1, r[2] 1;
> else

> 10031 := [rl1]1, [1, r[2] 1;

> fi;

> od;

gap> 10;

[[g8_M1~4, [[1, <identity ...>]], <identity. ..>],

11

IdRel 12

[g8_M2~4, [[2, <identity ...>]], <identity ...>],

[q8_M1*q8_M2%q8_M1*q8_M4, [[3, <identity ...>]], <identity ...>],

[g8_M1"2%q8_M2"2, [[4, <identity ...>]], <identity ...> 1],

[q8_M1*q8_M3, [], <identity ...>], [q8_M2%q8_M4, [], <identity ...>],
>]

[q8_M3%q8_M1, [], <identity ...> 1, [q8_M4*q8_M2, [], <identity .]
gap> 11 := LoggedOnePassKB(10);;
gap> Length(11);
21
3.1.2 LoggedKnuthBendix
> LoggedKnuthBendix (loggedrules) (operation)
> LoggedRewriteReduce (loggedrules) (operation)

The function LoggedRewriteReduce removes unnecessary rules from a logged rewrite system.
It works on the same principle as RewriteReduce.

The function LoggedKnuthBendix repeatedly applies LoggedOnePasskKB and
LoggedRewriteReduce until no new rules are added and no unnecessary ones are included.

The output is a reduced complete logged rewrite system.
Example

gap> 11 := LoggedRewriteReduce(11);
[[g8_M1*q8_M3, [], <identity ...>],

[g8_M2~2, [[-4, <identity ...> 1, [2, q8_M1~-2]], g8_M1"2 1],

[g8_M2*q8_M4, [], <identity ...> 1, [q8_M3*q8_M1, [], <identity ...>],

[g8_M4xq8_M2, [], <identity ...>],

[g8_M1-3, [[1, <identity. ..> 1], g8_M3 1],

[98_M1-2%q8_M2, [[4, <identity. ..> 1], q8_M4],

[98_M1*q8_M2*q8_M1, [[3, <identity ...> 1 1, q8.M2],

[q8_M2%q8_M1*q8_M4, [[3, gq8_M3~-1 1 1, q8_M3]]
gap> 12 := LoggedKnuthBendix(11);
[[g8_M1*q8_M3, [], <identity ...> 1,

[g8_M2*q8_M1, [[3, 98_M3~-1 1, [-1, <identity. ..>], [4, gq8_M1~-11 1,

q8_M1%q8_M4 1],
q8_M2~2, [[-4, <identity ...> 1, [2, q8_M1~-2] 1, g8_M1°2 1,
q8_M2*q8_M3, [[-3, <identity ...> 1 1, q8_Mi*q8_M2 1],
q8_M2%q8_M4, [], <identity ...>], [g8_M3*q8_M1, [], <identity ...> 1,
q8_M3%q8_M2, [[-1, <identity ...>], [4, q8_M1~-1 1], q8_M1*q8_M4],
q8_M3~2, [[-1, <identity ...>] 1, q8_M1-2 1],
q8_M3*q8_M4, [[-1, <idemtity ...>], [-2, g8_M1~-2],

[4, <identity ...> 1, [3, q8_M3"-1%q8_M2"-1 1],
[-3, <identity. ..>] 1, gq8_Mi*q8_M2 1],

q8_M4*q8_M1, [[-4, <identity ...> 1, [3, q8_M1~-1 1 1, q8_M1%q8_M2 1,
q8_M4xq8_M2, [], <identity ...>],
q8_M4*q8_M3, [[-3, q8_M3"-1%q8_M4~-1]], q8_M1*q8_M4 1],
q8_M4~2, [[-4, <identity. ..> 1 1, g8_M1"2],
q8_M1~3, [[1, <identity ...> 1 1, g8_M3 1,
q8_M1~2%q8_M2, [[4, <identity. ..> 1 1, q8_M4 1,
q8_M1-2%q8_M4, [[-4, 98_M1~-2], [1, <identity ...> 1 1, q8_M2]]

L T e T e Y e B s B |

Lo T e Y s T s B s Y e B |

IdRel 13

3.2 Logged reduction of a word

3.2.1 LoggedReduceWordKB

> LoggedReduceWordKB(word, loggedrules) (operation)
> LoggedOnePassReduceWord(word, loggedrules) (operation)
> ShorterLoggedRule(logrulel, logrule2) (operation)

Given a word and a logged rewrite system, the function LoggedOnePassReduceWord makes one
reduction of the word (as in OnePassReduceWord) and records this, using the log part of the rule used
and the position in the original word of the replaced part.

The function LoggedReduceWordKB repeatedly applies OnePassLoggedReduceWord until the
word can no longer be reduced. Each step of the reduction is logged, showing how the original word
can be expressed in terms of the original relators and the irreducible word. When loggedrules is
complete the reduced word is a unique normal form for that group element. The log of the reduction
depends on the order in which the rules are applied.

The function ShorterLoggedrule decides whether one logged rule is better than another, using
the same criteria as ShorterRule. In the example we perform logged reductions of w0 corresponding
to the ordinary reductions performed in the previous chapter.

Example

gap> w0;
q8_M2~9%q8_M1~9
gap> lwl := LoggedOnePassReduceWord(w0, 10);
LL[1, g8_M2~-9 1, [2, <identity ...> 1 1, gq8_M2"5%q8_M1-5]
gap> 1lw2 := LoggedReduceWordKB(w0, 10);
[[[1, g8 M2~-9 1, [2, <identity ...> 1, [1, q8_M2~-5 1,
[2, <identity ...> 1 1, q8_M2*q8_M1]
gap> lw2 := LoggedReduceWordKB(w0, 12);
[[[3, q8_M3~-1%q8_M2~-8 1, [-1, q8_M2~-8 1, [4, q8_Mi~-1%q8_M2~-8 1,
[-4, <identity ...> 1, [2, g8_M1"-2 1,
[-4, q8_M1~-1%q8_M2~-6%q8_M1~-2 1, [3, q8_M1~-2%q8_M2~-6%q8_M1~-2 1,
1, q8_M2"-1%q8_M1~-2%q8_M2~-6%q8_M1~-2], [4, <identity ...>],
3, g8_M3~-1%q8_M2~-4%q8_M4a~-1 1, [-1, q8_M2~-4%q8_M4~-1 1,
4, q8_M1~-1%q8_M2~-4%q8_M4~-1 1, [-4, q8_M4~-1 1,
2, gq8_M1~-2%q8_M4~-1 1,
-3, g8_M1~-1%q8_M4~-1%q8_M1~-1%q8_M2~-2%q8_M1~-2%q8_M4~-1],
-4, <identity ...>], [3, g8_M1~-11,
1, q8_M2~-1%q8_M1~-2%q8_M4~-1%q8_M1~-1%q8_M2"-1%(q8_M2"-1%q8_M1~-1)"~2
1, [4, q8_M4~-1%q8_M1"-1%q8_M2~-1*(q8_M2~-1*q8_M1~-1)"2],
3, q8_M3~-1%q8_M1~-1 1, [-1, q8_M1~-1 1, [4, gq8_M1~-2 1,
-4, q8_M4~-1%q8_M1~-2 1, [2, gq8_M1~-2%q8_M4~-1%q8_M1~-2],
-4, g8 M1~-2 1, [3, g8_M1~-3 1, [-4, q8_M1~-2%q8_M2~-1%q8_M1~-3],
1, <identity ...> 1, [3, 9@8_.M3~-2], [-1, g8_M3"-1 1],
4, q8_M1~-1*q8_M3~-1 1, [-4, <identity ...> 1, [3, gq8_M1~-1 1],
3, q8_M3~-1%q8_M1~-1 1, [-1, q8_M1~-1 1, [4, g8_M1~-2 1,
-4, q8_ M1~-2 1, [3, q8_M1~-3 1, [1, <identity ...>],
-1, <identity ...> 1, [4, 98_M1~-1] 1, q8_M1%q8_M4]

Lo T e Y s T s B s Y s B |

L T e I s N s N e I s Y s B |

IdRel 14

3.2.2 LoggedRewritingSystemFpGroup

> LoggedRewritingSystemFpGroup(loggedrules) (attribute)

Given a group presentation, the function LoggedRewritingSystemFpGroup determines a logged
rewrite system based on the relators. The initial logged rewrite system associated with a group pre-
sentation consists of two types of rule. These are logged versions of the two types of rule in the
monoid presentation. For each relator rel of the group there is a logged rule [rel, [[1, rell
1, id]. For each inverse relator there is a logged rule [gen*inv, [], id]. It then attempts a
completion of the logged rewrite system. The rules in the final system are partially ordered by the
function ShorterLoggedRule

Example

gap> LoggedRewritingSystemFpGroup(g8);
[[g8_M4*g8_M2, [], <identity ...> 1, [98_M3*q8_M1l, [], <identity ...>],
[98_M2*q8_M4, [1, <identity ...>],
q8_M1*q8_M3, [], <identity ...> 1,
q8_M1~2%q8_M4, [[-8, g8_M1~-2], [5, <identity ...> 1 1, gq8_M2],
q8_M1~2*q8_M2, [[8, <identity ...> 1 1, q8_M4 1,
q8_M1~3, [[5, <identity ...> 1 1, q8_M3 1,
q8_M4~2, [[-8, <identity ...> 1 1, q8_M1~2 1,
q8_M4x*q8_M3, [[-7, q8_M3~-1*q8_M4~-1 1 1, q8_M1*q8_M4 1,
q8_M4*q8_M1, [[-8, <identity. ..> 1, [7, 98_M1~-1]], gq8_M1*q8_M2],
q8_M3*q8_M4,

[[-5, <identity ...>], [-6, g8_M1~-2], [8, <identity ...>],

[7, q8_M3~-1%q8_M2~-1], [-7, <identity. ..>]], q8_Ml*q8_M2 1,

q8_M3~2, [[-5, <identity ...>] 1, g8_M1"2 1],
q8_M3%q8_M2, [[-5, <identity. ..>], [8, q8_M1~-1 1], g8_M1*q8_M4 1],
q8_M2xq8_M3, [[-7, <identity ...>]], q8_Mi1*q8_M2 1],
q8_M2~2, [[-a, <identity ...> 1, [6, q8_M1~-2 1], g8_M1"2 1],
q8_M2xq8_ M1, [[7, q8_M3~-1], [-5, <identity ...>], [a, q8_Mi~-11],

q8_M1*q8_M4]]

L T e T s T s N s T s O s B |

L T e B e B e B e |

Chapter 4

Monoid Polynomials

This chapter describes functions to compute with elements of a free noncommutative algebra. The
elements of the algebra are sums of rational multiples of words in a free monoid. These are called
monoid polynomials, and are stored as lists of pairs [coefficient, word].

4.1 Construction of monoid polynomials

4.1.1 MonoidPolyFromCoeffsWords

> MonoidPolyFromCoeffsWords(coeffs, words) (operation)
> MonoidPoly(terms) (operation)
> ZeroMonoidPoly (F) (operation)

There are two ways to input a monoid polynomial: by listing the coefficients and then the words;
or by listing the terms as a list of pairs [coefficient, word]. If a word occurs more than once in
the input list, the coefficients will be added so that the terms of the monoid polynomial recorded do
not contain any duplicates. The zero monoid polynomial is the polynomial with no terms.

Example

gap> rels := RelatorsOfFpGroup(g8);

[£1~4, £2~4, f1*f2*xf1*xf2~-1, £1°2%x£2"2]

gap> freeq8 := FreeGroupOfFpGroup(g8);;

gap> gens := Generators0fGroup(freeq8);;

gap> famfree := ElementsFamily(FamilyObj(freeq8));;
gap> famfree! .monoidPolyFam := MonoidPolyFam;;
gap> cg := [6,71;;

gap> pg := MonoidPolyFromCoeffsWords(cg, gens);;
gap> Print(pg, "\n");

7xf2 + 6%f1

gap> cr := [3,4,-5,-2];;

gap> pr := MonoidPolyFromCoeffsWords(cr, rels);;
gap> Print(pr, "\n");

4xf2~4 - Bxf1xf2*xf1*x£27-1 - 2%£1°2%xf272 + 3*xf1°4
gap> Print(ZeroMonoidPoly(freeq8), "\n");

zero monpoly

15

IdRel 16

4.2 Components of a polynomial

4.2.1 Terms

> Terms(poly) (attribute)
> Coeffs(poly) (attribute)
> Words(poly) (attribute)
> LeadTerm(poly) (attribute)
> LeadCoeffMonoidPoly(poly) (attribute)

The function Terms returns the terms of a polynomial as a list of pairs of the form [word,
coefficient]. The function Coeffs returns the coefficients of a polynomial as a list, and the func-
tion Words returns the words of a polynomial as a list. The function LeadTerm returns the term of the
polynomial whose word component is the largest with respect to the length-lexicographical ordering.
The function LeadCoeffMonoidPoly returns the coefficient of the leading term of a polynomial.

Example

gap> Coeffs(pr);

[4, -5, -2, 3]

gap> Terms(pr);

[[4, £f274 1, [-5, fixf2+f1xf2~-1 1, [-2, £f1~2%f2°2 1, [3, f1~4]]
gap> Words(pr);

[£274, fi*xf2*f1*f2~-1, £f1~2xf2"2, f1~4]

gap> LeadTerm(pr);

[4, £274]
gap> LeadCoeffMonoidPoly(pr);
4

4.2.2 Monic

> Monic (pOly) (operation)

A monoid polynomial is called monic if the coefficient of its leading polynomial is one. The
function Monic converts a polynomial into a monic polynomial by dividing all the coefficients by the
leading coefficient.

Example

gap> mpr := Monic(pr);;
gap> Print(mpr, "\n");
£274 - 5/4xf1xf2+f1xf27-1 - 1/2%f1°2%f2°2 + 3/4xf1°4

4.2.3 AddTermMonoidPoly

> AddTermMonoidPoly(poly, coeff, word) (operation)

The function AddTermMonoidPoly adds a new term, given by its coeffiecient and word, to an
existing polynomial.

ldRel

Example

17

gap> w := gens[1]~gens[2];

f27-1xf1x£2

gap> cw := 3/4;;

gap> wpg:= AddTermMonoidPoly(pg, cw, w);;
gap> Print(wpg, "\n");

3/4x£2~-1xf1xf2 + T*f2 + 6*f1

4.3 Monoid Polynomial Operations

Tests for equality and arithmetic operations are performed in the usual way.

The operation polyl = poly2 returns true if the monoid polynomials have the same terms,
and false otherwise. Multiplication of a monoid polynomial (on the left or right) by a coefficient;
the addition or subtraction of two monoid polynomials; multiplication (on the right) of a monoid

polynomial by a word; and multiplication of two monoid polynomials; are all implemented.
Example

gap> [pg = pg, pg = pr 1;

[true, false]

gap> Prcw := pI*Ccw;;

gap> Print(prcw, "\n");

3xf274 - 15/4*f1*f2+f1%f2~-1 - 3/2*%f1°2%xf272 + 9/4%f1~4

gap> CWpr := CW*pr;;

gap> Print(cwpr, "\n");

3xf274 - 15/4%f1*f2+f1%f27-1 - 3/2*%f1°2%xf2°2 + 9/4%f1~4

gap> [pr = prcw, prcw = cwpr];

[false, true]

gap> Print(pg + pr, "\n");

Axf2~4 - Bxf1xf2xf1*x£27-1 - 2xf1°2x£272 + 3*xf1°4 + 7xf2 + 6*fl
gap> Print(pg - pr, "\n");

- 4%£274 + Bxf1xf2*xf1%xf27-1 + 2*%f172%xf272 - 3%xf174 + 7*f2 + 6%f1l
gap> Print(pg * w, "\n");

6xf1xf27-1*xf1%f2 + Txf1*£f2

gap> Print(pg * pr, "\n");

28%£2°5 - 35k (£f2%f1)~24f27-1 - 14%f2xf1°2%f2°2 + 21*f2%f1~4 + 24xf1xf2~4 -
30xf172%f2*xf1%f27-1 - 12*%f1°3%xf272 + 18%f1°5

4.3.1 Length

> Length(poly)

This function returns the number of distinct terms in the monoid polynomial.
Example

(attribute)

gap> Length(pr);
4

IdRel 18

The boolean function polyl > poly2 returns true if the first polynomial has more terms than
the second. If the polynomials are the same length it will compare their leading terms. If the leading
word of the first is lengthlexicographically greater than the leading word of the second, or if the words
are equal but the coefficient of the first is greater than the coefficient of the second then true is returned.
If the leading terms are equal then the next terms are compared in the same way. If all terms are the
same then false is returned.

Example

gap> [pr > 3*pr, pr > pg I;
[false, true]

4.4 Reduction of a Monoid Polynomial

4.4.1 ReduceMonoidPoly

> ReduceMonoidPoly(poly, rules) (operation)

Recall that the words of a monoid polynomial are elements of a free monoid. Given a rewrite
system (set of rules) on the free monoid the words can be reduced. This allows us to simulate calcula-
tion in monoid rings where the monoid is given by a complete presentation. This function reduces the
words of the polynomial (elements of the free monoid) with respect to the complete rewrite system.
The words of the reduced polynomial are normal forms for the elements of the monoid presented by
that rewite system. The list of rules r2 is displayed in section 2.3.3.

Example

gap> M := genfgmon;;
gap> mpl := MonoidPolyFromCoeffsWords(
> [9,-7,5]1, [M[1]*M[3], M[2]~3, M[4]*M[3]xM[2]]);;
gap> Print(mpl, "\n");
5xq8_M4+*q8_M3*q8_M2 - 7+q8_M2"3 + 9%q8_M1*q8_M3
gap> rmpl := ReduceMonoidPoly(mpl, r2);;
gap> Print(rmpl, "\n");
- 7*q8_M4 + 5%q8_M1 + 9*<identity ...>

Chapter 5

Module Polynomials

In this chapter we consider finitely generated modules over the monoid rings considered previously.
We call an element of this module a module polynomial, and we describe functions to construct
module polynomials and the standard algebraic operations for such polynomials.

A module polynomial modpoly is recorded as a list of pairs, [gen, monpoly], where gen is
a module generator (basis element), and monpoly is a monoid polynomial. The module polynomial
is printed as the formal sum of monoid polynomial multiples of the generators. Note that the monoid
polynomials are the coefficients of the module polynomials and appear to the right of the generator,
as we choose to work with right modules.

The examples we are aiming for are the identities among the relators of a finitely presented group
(see section 5.4).

5.1 Construction of module polynomials

5.1.1 ModulePoly

> ModulePoly(gens, monpolys) (operation)
> ModulePoly(args) (operation)
> ZeroModulePoly(Fgens, Fmon) (operation)

The function ModulePoly returns a module polynomial. The terms of the polynomial may be
input as a list of generators followed by a list of monoid polynomials or as one list of [generator,
monoid polynomial] pairs.

Assuming that Fgens is the free group on the module generators and Fmon is the free group on the
monoid generators, the function ZeroModulePoly returns the zero module polynomial, which has no
terms, and is an element of the module.

Example

gap> frg8 := FreeRelatorGroup(g8);;
gap> genfrq8 := Generators0fGroup(frq8);
[g8_R1, 98_R2, g8_R3, g8_R4]
gap> Print(rmpl, "\n");
- T*q8_M4 + 5*q8_M1 + 9<identity ...>
gap> mp2 := MonoidPolyFromCoeffsWords([4,-51, [M[41, M[11 1);;
gap> Print(mp2, "\n");
4%xq8_M4 - 5%q8_M1

19

ldRel

gap> sl := ModulePoly([genfrq8[4], genfrq8[1] 1, [rmpl, mp2]);
Q8_R1%(4*q8_M4 - 5%q8_M1) + q8_R4*(- 7*q8_M4 + 5%q8_M1 + 9*<identity ...
gap> s2 := ModulePoly([genfrq8[3], genfrq8[2], genfrq8[1]],

> [-1*rmpl, 3*mp2, (rmpl+mp2)]);

q8_R1*(- 3%q8_M4 + 9x<identity ...>) + q8_R2x(12%q8_M4 - 15xq8_M1) + q8_R3x*(

7*q8_M4 - 5*q8_M1 - 9*<identity ...>)
gap> zeromp := ZeroModulePoly(frq8, freeq8);
zero modpoly

20

5.2 Components of a module polynomial

5.2.1 Terms

Terms (modpoly)
LeadTerm(modpoly)
LeadMonoidPoly (modpoly)
One (modpoly)
Length(modpoly)

v VvV vV vV V

(attribute)
(attribute)
(attribute)
(attribute)
(attribute)

The function Length counts the number of module generators which occur in modpoly (a gener-
ator occurs in a polynomial if it has nonzero coefficient). The function One returns the identity in the

free group on the generators.

The function Terms returns the terms of a module polynomial as a list of pairs. In LeadTerm, the
generators are ordered, and the term of modpoly with the highest value generator is defined to be the
leading term. The monoid polynomial (coefficient) part of the leading term is returned by the function

LeadMonoidPoly.
Example

gap> [Length(s1), Length(s2) 1;

(2, 3]
gap> One(si);
<identity ...>
gap> Terms(sl);

[[98_R1, <monpoly> 1, [g8_R4, <monpoly>]]
gap> Print(LeadTerm(s1), "\n");

[g8_R4, - 7xq8_M4 + 5%q8_M1 + 9*<identity ..
gap> Print(LeadTerm(s2), "\n");

[g8_R3, 7%q8_M4 - 5%q8_M1 - 9*<identity ...>]
gap> Print(LeadMonoidPoly(s1), "\n");

- 7%q8_M4 + 5%q8_M1 + 9x<identity ...>
gap> Print(LeadMonoidPoly(s2), "\n");
7*q8_M4 - 5%q8_M1 - 9*<identity ...>

>]

IdRel 21

5.3 Module Polynomial Operations

5.3.1 AddTermModulePoly

> AddTermModulePoly(modpoly, gen, monpoly) (operation)

The function AddTermModulePoly adds a term [gen, monpoly] to a module polynomial
modpoly.

Tests for equality and arithmetic operations are performed in the usual way. Module polynomials
may be added or subtracted. A module polynomial can also be multiplied on the right by a word or
by a scalar. The effect of this is to multiply the monoid polynomial parts of each term by the word or
scalar. This is made clearer in the example.

Example

gap> mpO := MonoidPolyFromCoeffsWords([6], [M[2] 1);;

gap> Print(mpO, "\n");

6%q8_M2

gap> sO := AddTermModulePoly(sl1, genfrq8[3], mpO);

q8_R1%(4%q8_M4 - 5%q8_M1) + q8_R3*(6%qS_M2) + q8_R4*(- T*q8_M4 + 5%xq8_M1 +
9*<identity ...>)

gap> Print(sl + s2, "\n");

q8_R1%(q8_M4 - 5%q8_M1 + 9%<identity ...>) + q8_R2%(12%q8_M4 -

15%q8_M1) + q8_R3*(7*q8_M4 - 5*q8_M1 - 9*<identity ...>) + q8_R4*(-
7T%q8_M4 + 5%q8_M1 + 9*<identity ...>)

gap> Print(sl - sO, "\n");

q8_R3*(- 6*q8_M2)

gap> Print(s1 *x 1/2, "\n");

qQ8_R1%(2%q8_M4 - 5/2%q8_M1) + q8_R4*(- 7/2%q8_M4 + 5/2%q8_M1 + 9/
2*<identity ...>)

gap> Print(s1 x M[1], "\n");

q8_R1%(4%q8_MA*q8_M1 - 5%q8_M1°2) + q8_R4A*(- T*q8_M4*q8_M1 + 5%q8_M1"2 +
9%q8_M1)

5.4 Identities among relators

5.4.1 IdentityYSequences

> IdentityYSequences(grp) (attribute)
> IdentityModulePolynomials(grp) (operation)
> IdentitiesAmongRelators(grp) (attribute)

The identities among the relators for a finitely presented group are constructed as logged module
polynomials. The procedure, described in [HWO03] and based on work in [BRS99], is to construct
a full set of Y-sequences for the group; convert these into module polynomials (eliminating empty
sequences); and then apply simplification rules (including the primary identity property) to eliminate
obvious duplicates and conjugates.

It is not guaranteed that a minimal set of identities is obtained. For g8 a set of seven identities is
obtained, whereas a minimal set contains only six. See Example 5.1 of [HWO03] for further details.

IdRel 22

Example

gap>
gap>
32
gap>
gap>
22
gap>
gap>
2
gap>
7

gap>

>) +

]

[(g8_Y3*%(g8_M1%xq8_M4), gq8_R1*(g8_M1 - <identity ...>)),

(98_Y10%(-q8_M1%*q8_M4), g8_R2*(q8_M2 - <identity ...>)),

(98_Y17*(<identity ...>), q8_R1*(-q8_M3 - q8_M2) + q8_R3*(q8_M1"2 + g8_M\
3 + gq8_M1 + <identity ...>)),

(q8_Y31*(q8_M1%q8_M4), g8_R3*(q8_M3 - q8_M2) + q8_R4x*(q8_M1 - <identity \
L)),

(98_Y32*(-q8_M1*q8_M4), q8_R2*(-q8_M1-2) + q8_R3*(-q8_M3 - <identity ...\

(g8_Y12x(g8_M1*q8_M4), q8_R1*(-q8_M2) + g8_R3*(g8_M1xq8_M2 + q8_M4) + g8\
_R4x(g8_M2 - <identity ...>)),

(q8_Y16*(-<identity ...>), g98_R1x(-<identity ...>) + g8_R2*(-q8_M1) + g8\
_R4x(g8_M3 + q8_M1))]

yseqs := IdentityYSequences(g8);;
Length(yseqs);

polys := IdentityModulePolys(g8);;
Length(polys);

idsq8 := IdentitiesAmongRelators(g8);;
Length(idsqg8);

Length(idsq8[1]);

Display(idsq8[1]);

q8_R4*(q8_M2 + <identity ...>)),

5.4.2 Rootldentities

> RootIdentities(grp) (attribute)

The root identities are identities of the form 7*r~! where r = w" is a relator and n > 1.
For g8 only two of the four relators are proper powers, ¢ = a* and r = b*, so the root identities are

q“q”!

and r2r 1.

1

Example

gap> RootIdentities(g8);
[(98_Y3*(q8_M1%xq8_M4), g8_R1*(q8_M1 - <identity ...>)),
(q8_Y10*(-g8_M1*q8_M4), g8_R2*(g8_M2 - <identity ...>)) 1]
gap> RootIdentities(s3);
[(s3_Y4*%(s3_M2#s3_M1), s3_R1*(s3_M1 - <identity ...>)),
(s3_Y8%(s3_M2#s3_M1), s3_R2*(s3_M2 - <identity ...>)),
(83_Y7*(s3_M2%s3_M1), s3_R3*(s3_M2 - s3_M1)) 1]

References

[BHS2]

[BRS99]

[Hey99]

[HWO03]

R. Brown and J. Huebschumann. Identities among relations. In R. Brown and T. L. Thick-
stun, editors, Low-Dimensional Topology, volume 46 of London Math. Soc. Lecture Note
Series, page 153-202. Cambridge University Press, 1982. 4

R. Brown and A. Razak Salleh. On the computation of identities among relations and of
free crossed resolutions of groups. London Math. Soc. J. Comput. Math., 2:28-61, 1999. 4,
21

A. Heyworth. Applications of Rewriting Systems and Groebner Bases to Computing Kan
Extensions and Identities Among Relations. PhD thesis, University of Wales, Bangor, 1999.
http://www.maths.bangor.ac.uk/research/ftp/theses/heyworth.ps.gz. 4

A. Heyworth and C. D. Wensley. Logged rewriting and identities among relators. In C. M.
Campbell, E. F. Robertson, and G. C. Smith, editors, Groups St Andrews 2001 in Oxford,
volume 304 of London Math. Soc. Lecture Note Series, page 256—-276. Cambridge Univer-
sity Press, 2003. 4, 21

23

http://www.maths.bangor.ac.uk/research/ftp/theses/heyworth.ps.gz

Index

=,+,* for module polynomials, 21
=,+,* for monoid polynomials, 17

AddTermModulePoly, 21
AddTermMonoidPoly, 16

Coeffs, 16
ElementsO0fMonoidPresentation, 10

FreeGroupOfPresentation, 7
FreeRelatorGroup, 6
FreeRelatorHomomorphism, 6

GroupRelatorsOfPresentation, 7
HomomorphismOfPresentation, 7

IdentitiesAmongRelators, 21
IdentityModulePolynomials, 21
IdentityYSequences, 21
InverseRelatorsOfPresentation, 7

KnuthBendix, 9

LeadCoeffMonoidPoly, 16
LeadMonoidPoly, 20
LeadTerm, 16, 20
Length, 17, 20

License, 2
LoggedKnuthBendix, 12
LoggedOnePassKB, 11
LoggedOnePassReduceWord, 13
LoggedReduceWordKB, 13
LoggedRewriteReduce, 12
LoggedRewritingSystemFpGroup, 14

ModulePoly, 19

Monic, 16

MonoidPoly, 15
MonoidPolyFromCoeffsWords, 15
MonoidPresentationFpGroup, 7

One, 20
OnePassKB, 9
OnePassReduceWord, 8

ReduceMonoidPoly, 18
ReduceWordKB, 8
RewriteReduce, 9
RewritingSystemFpGroup, 8
RootIdentities, 22

ShorterLoggedRule, 13
ShorterRule, 9

Terms, 16, 20
Words, 16

ZeroModulePoly, 19
ZeroMonoidPoly, 15

24

	Introduction
	Rewriting Systems
	Identity Y-sequences
	Monoid Presentations of FpGroups
	Rewriting systems for FpGroups
	Enumerating elements

	Logged Rewriting Systems
	Logged Knuth-Bendix Completion
	Logged reduction of a word

	Monoid Polynomials
	Construction of monoid polynomials
	Components of a polynomial
	Monoid Polynomial Operations
	Reduction of a Monoid Polynomial

	Module Polynomials
	Construction of module polynomials
	Components of a module polynomial
	Module Polynomial Operations
	Identities among relators

	References
	Index

