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Chapter 1

Introduction

A numerical semigroup is a subset of the set N of nonnegative integers that is closed under addition,
contains 0 and whose complement in N is finite. The smallest positive integer belonging to a numerical
semigroup is its multiplicity.

Let S be a numerical semigroup and A be a subset of S. We say that A is a system of generators
of S if S = {k1a1 + · · ·+ knan | n,k1, . . . ,kn ∈ N,a1, . . . ,an ∈ A}. The set A is a minimal system of
generators of S if no proper subset of A is a system of generators of S.

Every numerical semigroup has a unique minimal system of generators. This is a data that can
be used in order to uniquely define a numerical semigroup. Observe that since the complement of a
numerical semigroup in the set of nonnegative integers is finite, this implies that the greatest common
divisor of the elements of a numerical semigroup is 1, and the same condition must be fulfilled by its
minimal system of generators (or by any of its systems of generators).

Given a numerical semigroup S and a nonzero element s in it, one can consider for every inte-
ger i ranging from 0 to s− 1, the smallest element in S congruent with i modulo s, say w(i) (this
element exists since the complement of S in N is finite). Clearly w(0) = 0. The set Ap(S,s) =
{w(0),w(1), . . . ,w(s− 1)} is called the Apéry set of S with respect to s. Note that a nonnegative in-
teger x congruent with i modulo s belongs to S if and only if w(i) ≤ x. Thus the pair (s,Ap(S,s))
fully determines the numerical semigroup S (and can be used to easily solve the membership problem
to S). This set is in fact one of the most powerfull tools known for numerical semigroups, and it is
used almost everywhere in the computation of components and invariants associated to a numerical
semigroup. Usually the element s is taken to be the multiplicity, since in this way the resulting Apéry
set is the smallest possible.

A gap of a numerical semigroup S is a nonnegative integer not belonging to S. The set of gaps of
S is usually denoted by H(S), and clearly determines uniquely S. Note that if x is a gap of S, then so
are all the nonnegative integers dividing it. Thus in order to describe S we do not need to know all its
gaps, but only those that are maximal with respect to the partial order induced by division in N. These
gaps are called fundamental gaps.

The largest nonnegative integer not belonging to a numerical semigroup S is the Frobenius number
of S. If S is the set of nonnegative integers, then clearly its Frobenius number is −1, otherwise
its Frobenius number coincides with the maximum of the gaps (or fundamental gaps) of S. The
Frobenius number plus one is known as the conductor of the semigroup. In this package we refer to
the elements in the semigroup that are less than or equal to the conductor as small elements of the
semigroup. Observe that from the definition, if S is a numerical semigroup with Frobenius number f ,
then f +N \ {0} ⊆ S. An integer z is a pseudo-Frobenius number of S if z+ S \ {0} ⊆ S. Thus the
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Frobenius number of S is one of its pseudo-Frobenius numbers. The type of a numerical semigroup is
the cardinality of the set of its pseudo-Frobenius numbers.

The number of numerical semigroups having a given Frobenius number is finite. The elements
in this set of numerical semigroups that are maximal with respect to set inclusion are precisely those
numerical semigroups that cannot be expressed as intersection of two other numerical semigroups
containing them properly, and thus they are known as irreducible numerical semigroups. Clearly,
every numerical semigroup is the intersection of (finitely many) irreducible numerical semigroups.

A numerical semigroup S with Frobenius number f is symmetric if for every integer x, either x∈ S
or f − x ∈ S. The set of irreducible numerical semigroups with odd Frobenius number coincides with
the set of symmetric numerical semigroups. The numerical semigroup S is pseudo-symmetric if f is
even and for every integer x not equal to f/2 either x ∈ S or f − x ∈ S. The set of irreducible nu-
merical semigroups with even Frobenius number is precisely the set of pseudo-symmetric numerical
semigroups. These two classes of numerical semigroups have been widely studied in the literature due
to their nice applications in Algebraic Geometry. This is probably one of the main reasons that made
people turn their attention on numerical semigroups again in the last decades. Symmetric numerical
semigroups can be also characterized as those with type one, and pseudo-symmetric numerical semi-
groups are those numerical semigroups with type two and such that its pseudo-Frobenius numbers are
its Frobenius number and its Frobenius number divided by two.

Another class of numerical semigroups that catched the attention of researchers working on Al-
gebraic Geometry and Commutative Ring Theory is the class of numerical semigroups with maximal
embedding dimension. The embedding dimension of a numerical semigroup is the cardinality of its
minimal system of generators. It can be shown that the embedding dimension is at most the multi-
plicity of the numerical semigroup. Thus maximal embedding dimension numerical semigroups are
those numerical semigroups for which their embedding dimension and multiplicity coincide. These
numerical semigroups have nice maximal properties, not only (of course) related to their embed-
ding dimension, but also by means of their presentations. Among maximal embedding dimension
there are two classes of numerical semigroups that have been studied due to the connections with the
equivalence of algebroid branches. A numerical semigroup S is Arf if for every x ≥ y ≥ z ∈ S, then
x+y− z ∈ S; and it is saturated if the following condition holds: if s,s1, . . . ,sr ∈ S are such that si ≤ s
for all i ∈ {1, . . . ,r} and z1, . . . ,zr ∈ Z are such that z1s1 + · · ·+ zrsr ≥ 0, then s+ z1s1 + · · ·+ zrsr ∈ S.

If we look carefully inside the set of fundamental gaps of a numerical semigroup, we see that there
are some fulfilling the condition that if they are added to the given numerical semigroup, then the
resulting set is again a numerical semigroup. These elements are called special gaps of the numerical
semigroup. A numerical semigroup other than the set of nonnegative integers is irreducible if and
only if it has only a special gap.

The inverse operation to the one described in the above paragraph is that of removing an element
of a numerical semigroup. If we want the resulting set to be a numerical semigroup, then the only
thing we can remove is a minimal generator.

Let a,b,c,d be positive integers such that a/b < c/d, and let I = [a/b,c/d]. Then the set S(I) =
N∩

⋃
n≥0 nI is a numerical semigroup. This class of numerical semigroups coincides with that of

sets of solutions to equations of the form Ax mod B ≤Cx with A,B,C positive integers. A numerical
semigroup in this class is said to be proportionally modular.

A sequence of positive rational numbers a1/b1 < · · · < an/bn with ai,bi positive integers is a
Bézout sequence if ai+1bi−aibi+1 = 1 for all i ∈ {1, . . . ,n−1}. If a/b = a1/b1 < · · ·< an/bn = c/d,
then S([a/b,c/d]) = 〈a1, . . . ,an〉. Bézout sequences are not only interesting for this fact, they have
shown to be a major tool in the study of proportionally modular numerical semigroups.

If S is a numerical semigroup and k is a positive integer, then the set S/k = {x ∈ N | kx ∈ S} is a
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numerical semigroup, known as the quotient S by k.
Let m be a positive integer. A subadditive function with period m is a map f : N→ N such that

f (0) = 0, f (x+ y) ≤ f (x)+ f (y) and f (x+m) = f (x). If f is a subadditive function with period
m, then the set M f = {x ∈ N | f (x) ≤ x} is a numerical semigroup. Moreover, every numerical
semigroup is of this form. Thus a numerical semigroup can be given by a subadditive function with a
given period. If S is a numerical semigroup and s∈ S,s 6= 0, and Ap(S,s)= {w(0),w(1), . . . ,w(s−1)},
then f (x) = w(x mod s) is a subadditive function with period s such that M f = S.

Let S be a numerical semigroup generated by {n1, . . . ,nk}. Then we can define the following
morphism (called sometimes the factorization morphism) by ϕ : Nk → S, ϕ(a1, . . . ,ak) = a1n1 +
· · ·+ aknk. If σ is the kernel congruence of ϕ (that is, aσb if ϕ(a) = ϕ(b)), then S is isomorphic
to Nk/σ . A presentation for S is a system of generators (as a congruence) of σ . If {n1, . . . ,np}
is a minimal system of generators, then a minimal presentation is a presentation such that none of
its proper subsets is a presentation. Minimal presentations of numerical semigroups coincide with
presentations with minimal cardinality, though in general these two concepts are not the same for an
arbitrary commutative semigroup.

A set I of integers is an ideal relative to a numerical semigroup S provided that I +S⊆ I and that
there exists d ∈ S such that d + I ⊆ S. If I ⊆ S, we simply say that I is an ideal of S. If I and J are
relative ideals of S, then so is I− J = {z ∈ Z | z+ J ⊆ I}, and it is tightly related to the operation ":"
of ideals in a commutative ring.

In this package we have implemented the functions needed to deal with the elements exposed in
this introduction.

Many of the algorithms, and the necessary background to understand them, can be found in the
monograph [RGS09]. Some examples in this book have been illustrated with the help of this package.
So the reader can also find there more examples on the usage of the functions implemented here.

This package was presented in [DGSM06].



Chapter 2

Numerical Semigroups

This chapter describes how to create numerical semigroups in GAP and perform some basic tests.

2.1 Generating Numerical Semigroups

Recalling some definitions from Chapter 1.
A numerical semigroup is a subset of the set N of nonnegative integers that is closed under addi-

tion, contains 0 and whose complement in N is finite.
We refer to the elements in a numerical semigroup that are less than or equal to the conductor as

small elements of the semigroup.
A gap of a numerical semigroup S is a nonnegative integer not belonging to S. The fundamental

gaps of S are those gaps that are maximal with respect to the partial order induced by division in N.
Given a numerical semigroup S and a nonzero element s in it, one can consider for every inte-

ger i ranging from 0 to s− 1, the smallest element in S congruent with i modulo s, say w(i) (this
element exists since the complement of S in N is finite). Clearly w(0) = 0. The set Ap(S,s) =
{w(0),w(1), . . . ,w(s−1)} is called the Apéry set of S with respect to s.

Let a,b,c,d be positive integers such that a/b < c/d, and let I = [a/b,c/d]. Then the set S(I) =
N∩

⋃
n≥0 nI is a numerical semigroup. This class of numerical semigroups coincides with that of sets

of solutions to equations of the form Ax mod B ≤ Cx with A,B,C positive integers. A numerical
semigroup in this class is said to be proportionally modular. If C = 1, then it is said to be modular.

There are different ways to specify a numerical semigroup S, namely, by its generators; by its
gaps, its fundamental or special gaps by its Apéry set, just to name some. In this section we describe
functions that may be used to specify, in one of these ways, a numerical semigroup in GAP.

To create a numerical semigroup in GAP the function NumericalSemigroup is used.

2.1.1 NumericalSemigroup

. NumericalSemigroup(Representation, List) (function)

Representation

May be "generators", "minimalgenerators", "modular", "propmodular", "elements",
"gaps", "fundamentalgaps", "subadditive" or "apery" according to whether the semigroup is
to be given by means of a system of generators, a minimal system of generators, a condition of the

9
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form ax mod m≤ x, a condition of the form ax mod m≤ cx, a set of all elements up to the conductor,
the set of gaps, the set of fundamental gaps, a periodic subaditive function, or the Apéry set.

When no string is given as first argument it is assumed that the numerical semigroup will be given
by means of a set of generators.

List

When the semigroup is given through a set of generators, this set may be given as a list or through
its individual elements.

The set of all elements up to the conductor, the set of gaps, the set of fundamental gaps or the
Apéry set are given through lists.

A periodic subadditive function with period m is given through the list of images of the elements,
from 1 to m. The image of m has to be 0.

Numerical semigroups generated by an interval of positive integers and embedding dimension
two numerical semigroups are known to be proportionally modular, and thus they are treated as such
(unles the representation "minimalgenerators" is specified), since membership and other problems are
solved faster for these semigroups.

Example
gap> s1 := NumericalSemigroup("generators",3,5,7);

<Numerical semigroup with 3 generators>

gap> s2 := NumericalSemigroup("generators",[3,5,7]);

<Numerical semigroup with 3 generators>

gap> s1=s2;

true

gap> s := NumericalSemigroup("minimalgenerators",3,7);

<Numerical semigroup with 2 generators>

gap> s := NumericalSemigroup("modular",3,5);

<Modular numerical semigroup satisfying 3x mod 5 <= x >

gap> s1:=NumericalSemigroup("generators",2,5);

<Modular numerical semigroup satisfying 5x mod 10 <= x >

gap> s = s1;

true

gap> s:=NumericalSemigroup(4,5,6);

<Proportionally modular numerical semigroup satisfying 6x mod 24 <= 2x >

Once it is known that a numerical semigroup contains the element 1, i.e. the semigroup is N, the
semigroup is treated as such.

Example
gap> NumericalSemigroup(1);

<The numerical semigroup N>

gap> NumericalSemigroupByInterval(1/3,1/2);

<The numerical semigroup N>

2.1.2 ModularNumericalSemigroup

. ModularNumericalSemigroup(a, b) (function)

Given two positive integers a and b , this function returns a modular numerical semigroup satis-
fying ax mod b≤ x.
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Example
gap> ModularNumericalSemigroup(3,7);

<Modular numerical semigroup satisfying 3x mod 7 <= x >

2.1.3 ProportionallyModularNumericalSemigroup

. ProportionallyModularNumericalSemigroup(a, b, c) (function)

Given three positive integers a , b and c , this function returns a proportionally modular numerical
semigroup satisfying ax mod b≤ cx.

Example
gap> ProportionallyModularNumericalSemigroup(3,7,12);

<Proportionally modular numerical semigroup satisfying 3x mod 7 <= 12x >

When c = 1, the semigroup is seen as a modular numerical semigroup.
Example

gap> NumericalSemigroup("propmodular",67,98,1);

<Modular numerical semigroup satisfying 67x mod 98 <= x >

2.1.4 NumericalSemigroupByGenerators

. NumericalSemigroupByGenerators(List) (function)

. NumericalSemigroupByMinimalGenerators(List) (function)

. NumericalSemigroupByMinimalGeneratorsNC(List) (function)

. NumericalSemigroupByInterval(List) (function)

. NumericalSemigroupByOpenInterval(List) (function)

. NumericalSemigroupBySubAdditiveFunction(List) (function)

. NumericalSemigroupByAperyList(List) (function)

. NumericalSemigroupBySmallElements(List) (function)

. NumericalSemigroupByGaps(List) (function)

. NumericalSemigroupByFundamentalGaps(List) (function)

The function NumericalSemigroup (2.1.1) is a front-end for these functions. The argument of
each of these functions is a list representing an entity of the type to which the function’s name refers.

Example
gap> s:=NumericalSemigroup(3,11);

<Modular numerical semigroup satisfying 22x mod 33 <= x >

gap> GapsOfNumericalSemigroup(s);

[ 1, 2, 4, 5, 7, 8, 10, 13, 16, 19 ]

gap> t:=NumericalSemigroupByGaps(last);

<Numerical semigroup>

gap> s=t;

true

gap> AperyListOfNumericalSemigroupWRTElement(s,20);;

gap> t:=NumericalSemigroupByAperyList(last);

<Numerical semigroup>

gap> s=t;

true
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2.2 Some basic tests

This section describes some basic tests on numerical semigroups. The first described tests refer to
what the semigroup is currently known to be (not necessarily the way it was created). Then are
presented functions to test if a given list represents the small elements, gaps or the Apéry set (see 1)
of a numerical semigroup; to test if an integer belongs to a numerical semigroup and if a numerical
semigroup is a subsemigroup of another one.

2.2.1 IsNumericalSemigroup

. IsNumericalSemigroup(NS) (attribute)

. IsNumericalSemigroupByGenerators(NS) (attribute)

. IsNumericalSemigroupByMinimalGenerators(NS) (attribute)

. IsNumericalSemigroupByInterval(NS) (attribute)

. IsNumericalSemigroupByOpenInterval(NS) (attribute)

. IsNumericalSemigroupBySubAdditiveFunction(NS) (attribute)

. IsNumericalSemigroupByAperyList(NS) (attribute)

. IsNumericalSemigroupBySmallElements(NS) (attribute)

. IsNumericalSemigroupByGaps(NS) (attribute)

. IsNumericalSemigroupByFundamentalGaps(NS) (attribute)

. IsProportionallyModularNumericalSemigroup(NS) (attribute)

. IsModularNumericalSemigroup(NS) (attribute)

NS is a numerical semigroup and these attributes are available (their names should be self explana-
tory).

Example
gap> s:=NumericalSemigroup(3,7);

<Modular numerical semigroup satisfying 7x mod 21 <= x >

gap> AperyListOfNumericalSemigroupWRTElement(s,30);;

gap> t:=NumericalSemigroupByAperyList(last);

<Numerical semigroup>

gap> IsNumericalSemigroupByGenerators(s);

true

gap> IsNumericalSemigroupByGenerators(t);

false

gap> IsNumericalSemigroupByAperyList(s);

false

gap> IsNumericalSemigroupByAperyList(t);

true

2.2.2 RepresentsSmallElementsOfNumericalSemigroup

. RepresentsSmallElementsOfNumericalSemigroup(L) (attribute)

Tests if the list L (which has to be a set) may represent the “small" elements of a numerical
semigroup.

Example
gap> L:=[ 0, 3, 6, 9, 11, 12, 14, 15, 17, 18, 20 ];

[ 0, 3, 6, 9, 11, 12, 14, 15, 17, 18, 20 ]
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gap> RepresentsSmallElementsOfNumericalSemigroup(L);

true

gap> L:=[ 6, 9, 11, 12, 14, 15, 17, 18, 20 ];

[ 6, 9, 11, 12, 14, 15, 17, 18, 20 ]

gap> RepresentsSmallElementsOfNumericalSemigroup(L);

false

2.2.3 RepresentsGapsOfNumericalSemigroup

. RepresentsGapsOfNumericalSemigroup(L) (attribute)

Tests if the list L may represent the gaps (see 1) of a numerical semigroup.
Example

gap> s:=NumericalSemigroup(3,7);

<Modular numerical semigroup satisfying 7x mod 21 <= x >

gap> L:=GapsOfNumericalSemigroup(s);

[ 1, 2, 4, 5, 8, 11 ]

gap> RepresentsGapsOfNumericalSemigroup(L);

true

gap> L:=Set(List([1..21],i->RandomList([1..50])));

[ 2, 6, 7, 8, 10, 12, 14, 19, 24, 28, 31, 35, 42, 50 ]

gap> RepresentsGapsOfNumericalSemigroup(L);

false

2.2.4 IsAperyListOfNumericalSemigroup

. IsAperyListOfNumericalSemigroup(L) (function)

Tests whether a list L of integers may represent the Apéry list of a numerical semi-
group. It returns true when the periodic function represented by L is subadditive (see
RepresentsPeriodicSubAdditiveFunction (A.2.1)) and the remainder of the division of L[i] by
the length of L is i and returns false otherwise (the criterium used is the one explained in [Ros96b]).

Example
gap> IsAperyListOfNumericalSemigroup([0,21,7,28,14]);

true

2.2.5 IsSubsemigroupOfNumericalSemigroup

. IsSubsemigroupOfNumericalSemigroup(S, T) (function)

S and T are numerical semigroups. Tests whether T is contained in S .
Example

gap> S := NumericalSemigroup("modular", 5,53);

<Modular numerical semigroup satisfying 5x mod 53 <= x >

gap> T:=NumericalSemigroup(2,3);

<Modular numerical semigroup satisfying 3x mod 6 <= x >

gap> IsSubsemigroupOfNumericalSemigroup(T,S);

true

gap> IsSubsemigroupOfNumericalSemigroup(S,T);

false
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2.2.6 BelongsToNumericalSemigroup

. BelongsToNumericalSemigroup(n, S) (operation)

n is an integer and S is a numerical semigroup. Tests whether n belongs to S . n in S is the short
for BelongsToNumericalSemigroup(n,S).

Example
gap> S := NumericalSemigroup("modular", 5,53);

<Modular numerical semigroup satisfying 5x mod 53 <= x >

gap> BelongsToNumericalSemigroup(15,S);

false

gap> 15 in S;

false

gap> SmallElementsOfNumericalSemigroup(S);

[ 0, 11, 12, 13, 22, 23, 24, 25, 26, 32, 33, 34, 35, 36, 37, 38, 39, 43 ]

gap> BelongsToNumericalSemigroup(13,S);

true

gap> 13 in S;

true



Chapter 3

Basic operations with numerical
semigroups

3.1 The definitions

3.1.1 MultiplicityOfNumericalSemigroup

. MultiplicityOfNumericalSemigroup(NS) (attribute)

NS is a numerical semigroup. Returns the multiplicity of NS , which is the smallest positive integer
belonging to NS .

Example
gap> S := NumericalSemigroup("modular", 7,53);

<Modular numerical semigroup satisfying 7x mod 53 <= x >

gap> MultiplicityOfNumericalSemigroup(S);

8

3.1.2 GeneratorsOfNumericalSemigroup

. GeneratorsOfNumericalSemigroup(S) (function)

. MinimalGeneratingSystemOfNumericalSemigroup(S) (attribute)

. MinimalGeneratingSystem(S) (attribute)

S is a numerical semigroup. GeneratorsOfNumericalSemigroup returns a set of generators
of S, which may not be minimal. MinimalGeneratingSystemOfNumericalSemigroup returns the
minimal set of generators of S.

From Version 0.980, ReducedSetOfGeneratorsOfNumericalSemigroup

is just a synonym of MinimalGeneratingSystemOfNumericalSemigroup

and GeneratorsOfNumericalSemigroupNC is just a synonym of
GeneratorsOfNumericalSemigroup. The names are kept for compatibility with code produced for
previous versions, but will be removed in the future.

Example
gap> S := NumericalSemigroup("modular", 5,53);

<Modular numerical semigroup satisfying 5x mod 53 <= x >

gap> GeneratorsOfNumericalSemigroup(S);

[ 11, 12, 13, 32, 53 ]

15
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gap> S := NumericalSemigroup(3, 5, 53);

<Numerical semigroup with 3 generators>

gap> GeneratorsOfNumericalSemigroup(S);

[ 3, 5, 53 ]

gap> MinimalGeneratingSystemOfNumericalSemigroup(S);

[ 3, 5 ]

gap> MinimalGeneratingSystem(S)=MinimalGeneratingSystemOfNumericalSemigroup(S);

true

3.1.3 EmbeddingDimensionOfNumericalSemigroup

. EmbeddingDimensionOfNumericalSemigroup(NS) (attribute)

NS is a numerical semigroup. It returns the cardinality of its minimal generating system.

3.1.4 SmallElementsOfNumericalSemigroup

. SmallElementsOfNumericalSemigroup(NS) (attribute)

. SmallElements(NS) (attribute)

NS is a numerical semigroup. It returns the list of small elements of NS. Of course, the time
consumed to return a result may depend on the way the semigroup is given.

Example
gap> SmallElementsOfNumericalSemigroup(NumericalSemigroup(3,5,7));

[ 0, 3, 5 ]

gap> SmallElements(NumericalSemigroup(3,5,7));

[ 0, 3, 5 ]

3.1.5 FirstElementsOfNumericalSemigroup

. FirstElementsOfNumericalSemigroup(n, NS) (function)

NS is a numerical semigroup. It returns the list with the first n elements of NS.
Example

gap> FirstElementsOfNumericalSemigroup(2,NumericalSemigroup(3,5,7));

[ 0, 3 ]

gap> FirstElementsOfNumericalSemigroup(10,NumericalSemigroup(3,5,7));

[ 0, 3, 5, 6, 7, 8, 9, 10, 11, 12 ]

3.1.6 AperyListOfNumericalSemigroupWRTElement

. AperyListOfNumericalSemigroupWRTElement(S, m) (operation)

S is a numerical semigroup and m is a positive element of S . Computes the Apéry list of S with
respect to m . It contains for every i ∈ {0, . . . ,m −1}, in the i+1th position, the smallest element in the
semigroup congruent with i modulo m .

Example
gap> S := NumericalSemigroup("modular", 5,53);

<Modular numerical semigroup satisfying 5x mod 53 <= x >



numericalsgps– a package for numerical semigroups 17

gap> AperyListOfNumericalSemigroupWRTElement(S,12);

[ 0, 13, 26, 39, 52, 53, 54, 43, 32, 33, 22, 11 ]

3.1.7 AperyListOfNumericalSemigroup

. AperyListOfNumericalSemigroup(S) (operation)

S is a numerical semigroup. It computes the Apéry list of S with respect to the multiplicity of S .
Example

gap> S := NumericalSemigroup("modular", 5,53);

<Modular numerical semigroup satisfying 5x mod 53 <= x >

gap> AperyListOfNumericalSemigroup(S);

[ 0, 12, 13, 25, 26, 38, 39, 51, 52, 53, 32 ]

3.1.8 AperyListOfNumericalSemigroupWRTInteger

. AperyListOfNumericalSemigroupWRTInteger(S, m) (function)

S is a numerical semigroup and m is a positive integer. Computes the Apéry list of S with respect
to m , that is, the set of elements x in S such that x−m is not in S . If m is an element in S , then the
output, as sets, is the same as AperyListOfNumericalSemigroupWRTInteger , though without side
effects, in the sense that this information is no longer used by the package.

Example
gap> s:=NumericalSemigroup(10,13,19,27);

<Numerical semigroup with 4 generators>

gap> AperyListOfNumericalSemigroupWRTInteger(s,11);

[ 0, 10, 13, 19, 20, 23, 26, 27, 29, 32, 33, 36, 39, 42, 45, 46, 52, 55 ]

gap> Length(last);

18

gap> AperyListOfNumericalSemigroupWRTInteger(s,10);

[ 0, 13, 19, 26, 27, 32, 38, 45, 51, 54 ]

gap> AperyListOfNumericalSemigroupWRTElement(s,10);

[ 0, 51, 32, 13, 54, 45, 26, 27, 38, 19 ]

gap> Length(last);

10

3.1.9 AperyListOfNumericalSemigroupAsGraph

. AperyListOfNumericalSemigroupAsGraph(ap) (function)

ap is the Apéry list of a numerical semigroup. This function returns the adjacency list of the graph
(ap,E) where the edge u−> v is in E iff v−u is in ap. The 0 is ignored.

Example
gap> s:=NumericalSemigroup(3,7);;

gap> AperyListOfNumericalSemigroupWRTElement(s,10);

[ 0, 21, 12, 3, 14, 15, 6, 7, 18, 9 ]

gap> AperyListOfNumericalSemigroupAsGraph(last);

[ ,, [ 3, 6, 9, 12, 15, 18, 21 ],,, [ 6, 9, 12, 15, 18, 21 ],

[ 7, 14, 21 ],, [ 9, 12, 15, 18, 21 ],,, [ 12, 15, 18, 21 ],,

[ 14, 21 ], [ 15, 18, 21 ],,, [ 18, 21 ],,, [ 21 ] ]
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3.1.10 KunzCoordinatesOfNumericalSemigroup

. KunzCoordinatesOfNumericalSemigroup(S, m) (function)

S is a numerical semigroup, and m is a nonzero element of S . The second argument is optional,
and if missing it is assumed to be the multiplicity of S .

Then the Apéry set of m in S has the form [0,k1m+ 1, ...,km−1m+m− 1], and the output is the
(m−1)-uple [k1,k2, ...,km−1]

Example
gap> s:=NumericalSemigroup(3,5,7);

<Numerical semigroup with 3 generators>

gap> KunzCoordinatesOfNumericalSemigroup(s);

[ 2, 1 ]

gap> KunzCoordinatesOfNumericalSemigroup(s,5);

[ 1, 1, 0, 1 ]

3.1.11 KunzPolytope

. KunzPolytope(m) (function)

m is a positive ingeger.
The Kunz coordinates of the semigroups with that multiplicity m are solutions of a system of

inequalities Ax≥ b (see [RGSB02]). The output is the matrix (A|−b).
Example

gap> KunzPolytope(3);

[ [ 1, 0, -1 ], [ 0, 1, -1 ], [ 2, -1, 0 ], [ -1, 2, 1 ] ]

3.2 Frobenius Number

The largest nonnegative integer not belonging to a numerical semigroup S is the Frobenius number
of S. If S is the set of nonnegative integers, then clearly its Frobenius number is −1, otherwise its
Frobenius number coincides with the maximum of the gaps (or fundamental gaps) of S. An integer z
is a pseudo-Frobenius number of S if z+S\{0} ⊆ S.

3.2.1 FrobeniusNumberOfNumericalSemigroup

. FrobeniusNumberOfNumericalSemigroup(NS) (attribute)

NS is a numerical semigroup. It returns the Frobenius number of NS. Of course, the time consumed
to return a result may depend on the way the semigroup is given or on the knowledge already produced
on the semigroup.

Example
gap> FrobeniusNumberOfNumericalSemigroup(NumericalSemigroup(3,5,7));

4
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3.2.2 FrobeniusNumber

. FrobeniusNumber(NS) (attribute)

This is just a synonym of FrobeniusNumberOfNumericalSemigroup (3.2.1).

3.2.3 ConductorOfNumericalSemigroup

. ConductorOfNumericalSemigroup(NS) (attribute)

This is just a synonym of FrobeniusNumberOfNumericalSemigroup (NS)+1.

3.2.4 PseudoFrobeniusOfNumericalSemigroup

. PseudoFrobeniusOfNumericalSemigroup(S) (attribute)

S is a numerical semigroup. It returns set of pseudo-Frobenius numbers of S .
Example

gap> S := NumericalSemigroup("modular", 5,53);

<Modular numerical semigroup satisfying 5x mod 53 <= x >

gap> PseudoFrobeniusOfNumericalSemigroup(S);

[ 21, 40, 41, 42 ]

3.2.5 TypeOfNumericalSemigroup

. TypeOfNumericalSemigroup(NS) (attribute)

Stands for Length(PseudoFrobeniusOfNumericalSemigroup (NS)).

3.3 Gaps

A gap of a numerical semigroup S is a nonnegative integer not belonging to S. The fundamental gaps
of S are those gaps that are maximal with respect to the partial order induced by division in N. The
special gaps of a numerical semigroup S, are those fundamental gaps such that if they are added to
the given numerical semigroup, then the resulting set is again a numerical semigroup.

3.3.1 GapsOfNumericalSemigroup

. GapsOfNumericalSemigroup(NS) (attribute)

NS is a numerical semigroup. It returns the set of gaps of NS.
Example

gap> GapsOfNumericalSemigroup(NumericalSemigroup(3,5,7));

[ 1, 2, 4 ]
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3.3.2 GenusOfNumericalSemigroup

. GenusOfNumericalSemigroup(NS) (attribute)

NS is a numerical semigroup. It returns the number of gaps of NS.

3.3.3 FundamentalGapsOfNumericalSemigroup

. FundamentalGapsOfNumericalSemigroup(S) (attribute)

S is a numerical semigroup. It returns the set of fundamental gaps of S .
Example

gap> S := NumericalSemigroup("modular", 5,53);

<Modular numerical semigroup satisfying 5x mod 53 <= x >

gap> FundamentalGapsOfNumericalSemigroup(S);

[ 16, 17, 18, 19, 27, 28, 29, 30, 31, 40, 41, 42 ]

gap> GapsOfNumericalSemigroup(S);

[ 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 14, 15, 16, 17, 18, 19, 20, 21, 27, 28, 29,

30, 31, 40, 41, 42 ]

3.3.4 SpecialGapsOfNumericalSemigroup

. SpecialGapsOfNumericalSemigroup(S) (attribute)

S is a numerical semigroup. It returns the special gaps of S .
Example

gap> S := NumericalSemigroup("modular", 5,53);

<Modular numerical semigroup satisfying 5x mod 53 <= x >

gap> SpecialGapsOfNumericalSemigroup(S);

[ 40, 41, 42 ]



Chapter 4

Presentations of Numerical Semigroups

In this chapter we explain how to compute a minimal presentation of a numerical semigroup. There
are three functions involved in this process.

4.1 Presentations of Numerical Semigroups

4.1.1 MinimalPresentationOfNumericalSemigroup

. MinimalPresentationOfNumericalSemigroup(S) (function)

S is a numerical semigroup. The output is a list of lists with two elements. Each list of
two elements represents a relation between the minimal generators of the numerical semigroup.
If {{x1,y1}, . . . ,{xk,yk}} is the output and {m1, . . . ,mn} is the minimal system of generators of
the numerical semigroup, then {xi,yi} = {{ai1 , . . . ,ain},{bi1 , . . . ,bin}} and ai1m1 + · · ·+ ainmn =
bi1m1 + · · ·+binmn.

Any other relation among the minimal generators of the semigroup can be deduced from the ones
given in the output.

The algorithm implemented is described in [Ros96a] (see also [RGS99a]).
Example

gap> s:=NumericalSemigroup(3,5,7);

<Numerical semigroup with 3 generators>

gap> MinimalPresentationOfNumericalSemigroup(s);

[ [ [ 0, 2, 0 ], [ 1, 0, 1 ] ], [ [ 3, 1, 0 ], [ 0, 0, 2 ] ],

[ [ 4, 0, 0 ], [ 0, 1, 1 ] ] ]

The first element in the list means that 1×3+1×7 = 2×5, and the others have similar meanings.

4.1.2 GraphAssociatedToElementInNumericalSemigroup

. GraphAssociatedToElementInNumericalSemigroup(n, S) (function)

S is a numerical semigroup and n is an element in S .

21
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The output is a pair. If {m1, . . . ,mn} is the set of minimal generators of S , then the first component
is the set of vertices of the graph associated to n in S , that is, the set {mi | n−mi ∈ S}, and the second
component is the set of edges of this graph, that is, {{mi,m j} | n− (mi +m j) ∈ S}.

This function is used to compute a minimal presentation of the numerical semigroup S , as ex-
plained in [Ros96a].

Example
gap> s:=NumericalSemigroup(3,5,7);;

gap> GraphAssociatedToElementInNumericalSemigroup(10,s);

[ [ 3, 5, 7 ], [ [ 3, 7 ] ] ]

4.1.3 BettiElementsOfNumericalSemigroup

. BettiElementsOfNumericalSemigroup(S) (function)

S is a numerical semigroup.
The output is the set of elements in S whose associated graph is nonconnected [GSO10].

Example
gap> s:=NumericalSemigroup(3,5,7);;

gap> BettiElementsOfNumericalSemigroup(s);

[ 10, 12, 14 ]

4.1.4 PrimitiveElementsOfNumericalSemigroup

. PrimitiveElementsOfNumericalSemigroup(S) (function)

S is a numerical semigroup.
The output is the set of elements s in S such that there exists a minimal solution to msg · x−msg ·

y = 0, such that x,y are factorizations of s, and msg is the minimal generating system of S . Betti
elements are primitive, but not the way around in general.

Example
gap> s:=NumericalSemigroup(3,5,7);;

gap> PrimitiveElementsOfNumericalSemigroup(s);

[ 3, 5, 7, 10, 12, 14, 15, 21, 28, 35 ]

4.1.5 ShadedSetOfElementInNumericalSemigroup

. ShadedSetOfElementInNumericalSemigroup(n, S) (function)

S is a numerical semigroup and n is an element in S .
The output is a simplicial complex C. If {m1, . . . ,mn} is the set of minimal generators of S , then

L ∈C if n−∑i∈L mi ∈ S ([SW86]).
This function is a generalization of the graph associated to n .
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Example
gap> s:=NumericalSemigroup(3,5,7);;

gap> ShadedSetOfElementInNumericalSemigroup(10,s);

[ [ ], [ 3 ], [ 3, 7 ], [ 5 ], [ 7 ] ]

4.2 Uniquely Presented Numerical Semigroups

A numerical semigroup S is uniquely presented if for any two minimal presentations σ and τ and any
(a,b) ∈ σ , either (a,b) ∈ τ or (b,a) ∈ τ , that is, there is essentially a unique minimal presentation (up
to arrangement of the components of the pairs in it).

4.2.1 IsUniquelyPresentedNumericalSemigroup

. IsUniquelyPresentedNumericalSemigroup(S) (function)

S is a numerical semigroup.
The output is true if S has uniquely presented. The implementation is based on (see [GSO10]).

Example
gap> s:=NumericalSemigroup(3,5,7);;

gap> IsUniquelyPresentedNumericalSemigroup(s);

true

4.2.2 IsGenericNumericalSemigroup

. IsGenericNumericalSemigroup(S) (function)

S is a numerical semigroup.
The output is true if S has a generic presentation, that is, in every minimal relation all generators

occur. These semigroups are uniquely presented (see [BGSG11]).
Example

gap> s:=NumericalSemigroup(3,5,7);;

gap> IsGenericNumericalSemigroup(s);

true



Chapter 5

Constructing numerical semigroups from
others

5.1 Adding and removing elements of a numerical semigroup

In this section we show how to construct new numerical semigroups from a given numerical semi-
group. Two dual operations are presented. The first one removes a minimal generator from a numeri-
cal semigroup. The second adds a special gap to a semigroup (see [RGSGGJM03]).

5.1.1 RemoveMinimalGeneratorFromNumericalSemigroup

. RemoveMinimalGeneratorFromNumericalSemigroup(n, S) (function)

S is a numerical semigroup and n is one if its minimal generators.
The output is the numerical semigroup S \{n} (see [RGSGGJM03]; S\{n} is a numerical semi-

group if and only if n is a minimal generator of S).
Example

gap> s:=NumericalSemigroup(3,5,7);

<Numerical semigroup with 3 generators>

gap> RemoveMinimalGeneratorFromNumericalSemigroup(7,s);

<Numerical semigroup with 3 generators>

gap> MinimalGeneratingSystemOfNumericalSemigroup(last);

[ 3, 5 ]

5.1.2 AddSpecialGapOfNumericalSemigroup

. AddSpecialGapOfNumericalSemigroup(g, S) (function)

S is a numerical semigroup and g is a special gap of S
The output is the numerical semigroup S ∪{g} (see [RGSGGJM03], where it is explained why

this set is a numerical semigroup).
Example

gap> s:=NumericalSemigroup(3,5,7);;

gap> s2:=RemoveMinimalGeneratorFromNumericalSemigroup(5,s);

24
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<Numerical semigroup with 3 generators>

gap> s3:=AddSpecialGapOfNumericalSemigroup(5,s2);

<Numerical semigroup>

gap> SmallElementsOfNumericalSemigroup(s) =

> SmallElementsOfNumericalSemigroup(s3);

true

gap> s=s3;

true

5.2 Intersections and quotients by integers

5.2.1 IntersectionOfNumericalSemigroups

. IntersectionOfNumericalSemigroups(S, T) (function)

S and T are numerical semigroups. Computes the intersection of S and T (which is a numerical
semigroup).

Example
gap> S := NumericalSemigroup("modular", 5,53);

<Modular numerical semigroup satisfying 5x mod 53 <= x >

gap> T := NumericalSemigroup(2,17);

<Modular numerical semigroup satisfying 17x mod 34 <= x >

gap> SmallElementsOfNumericalSemigroup(S);

[ 0, 11, 12, 13, 22, 23, 24, 25, 26, 32, 33, 34, 35, 36, 37, 38, 39, 43 ]

gap> SmallElementsOfNumericalSemigroup(T);

[ 0, 2, 4, 6, 8, 10, 12, 14, 16 ]

gap> IntersectionOfNumericalSemigroups(S,T);

<Numerical semigroup>

gap> SmallElementsOfNumericalSemigroup(last);

[ 0, 12, 22, 23, 24, 25, 26, 32, 33, 34, 35, 36, 37, 38, 39, 43 ]

5.2.2 QuotientOfNumericalSemigroup

. QuotientOfNumericalSemigroup(S, n) (function)

S is a numerical semigroup and n is an integer. Computes the quotient of S by n , that is, the
set {x ∈ N | nx ∈ S}, which is again a numerical semigroup. S / n may be used as a short for
QuotientOfNumericalSemigroup(S, n).

Example
gap> s:=NumericalSemigroup(3,29);

<Modular numerical semigroup satisfying 58x mod 87 <= x >

gap> SmallElementsOfNumericalSemigroup(s);

[ 0, 3, 6, 9, 12, 15, 18, 21, 24, 27, 29, 30, 32, 33, 35, 36, 38,

39, 41, 42, 44, 45, 47, 48, 50, 51, 53, 54, 56 ]

gap> t:=QuotientOfNumericalSemigroup(s,7);

<Numerical semigroup>

gap> SmallElementsOfNumericalSemigroup(t);

[ 0, 3, 5, 6, 8 ]



numericalsgps– a package for numerical semigroups 26

gap> u := s / 7;

<Numerical semigroup>

gap> SmallElementsOfNumericalSemigroup(u);

[ 0, 3, 5, 6, 8 ]

5.3 Constructing the set of all numerical semigroups containing a given
numerical semigroup

In order to construct the set of numerical semigroups containing a fixed numerical semigroup S, one
first constructs its unitary extensions, that is to say, the sets S∪{g} that are numerical semigroups
with g a positive integer. This is achieved by constructing the special gaps of the semigroup, and then
adding each of them to the numerical semigroup. Then we repeat the process for each of this new
numerical semigroups until we reach N.

These procedures are described in [RGSGGJM03].

5.3.1 OverSemigroupsNumericalSemigroup

. OverSemigroupsNumericalSemigroup(s) (function)

s is a numerical semigroup. The output is the set of numerical semigroups containing it.
Example

gap> OverSemigroupsNumericalSemigroup(NumericalSemigroup(3,5,7));

[ <The numerical semigroup N>, <Numerical semigroup>, <Numerical semigroup>,

<Numerical semigroup with 3 generators> ]

gap> List(last,s->MinimalGeneratingSystemOfNumericalSemigroup(s));

[ [ 1 ], [ 2, 3 ], [ 3 .. 5 ], [ 3, 5, 7 ] ]

5.4 Constructing the set of numerical semigroup with given Frobenius
number

5.4.1 NumericalSemigroupsWithFrobeniusNumber

. NumericalSemigroupsWithFrobeniusNumber(f) (function)

f is an non zero integer greater than or equal to -1. The output is the set of numerical semigroups
with Frobenius number f . The algorithm implemented is given in [RGSGGJM04].

Example
gap> Length(NumericalSemigroupsWithFrobeniusNumber(20));

900
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5.5 Constructing the set of numerical semigroups with genus g, that is,
numerical semigroups with exactly g gaps

Given a numerical semigroup of genus g, removing minimal generators, one obtains numerical semi-
groups of genus g+1. In order to avoid repetitions, we only remove minimal generators greater than
the frobenius number of the numerical semigroup (this is accomplished with the local function sons).

These procedures are described in [RGSGGB03] and [BA08].

5.5.1 NumericalSemigroupsWithGenus

. NumericalSemigroupsWithGenus(g) (function)

g is a nonnegative integer. The output is the set of numerical semigroups with genusg .
Example

gap> NumericalSemigroupsWithGenus(5);

[ <Proportionally modular numerical semigroup satisfying 11x mod 66 <= 5x >,

<Numerical semigroup with 5 generators>,

<Numerical semigroup with 5 generators>,

<Numerical semigroup with 5 generators>,

<Numerical semigroup with 5 generators>,

<Numerical semigroup with 4 generators>,

<Numerical semigroup with 4 generators>,

<Numerical semigroup with 4 generators>,

<Numerical semigroup with 4 generators>,

<Numerical semigroup with 3 generators>,

<Numerical semigroup with 3 generators>,

<Modular numerical semigroup satisfying 11x mod 22 <= x > ]

gap> List(last,MinimalGeneratingSystemOfNumericalSemigroup);

[ [ 6 .. 11 ], [ 5, 7, 8, 9, 11 ], [ 5, 6, 8, 9 ], [ 5, 6, 7, 9 ],

[ 5, 6, 7, 8 ], [ 4, 6, 7 ], [ 4, 7, 9, 10 ], [ 4, 6, 9, 11 ],

[ 4, 5, 11 ], [ 3, 8, 10 ], [ 3, 7, 11 ], [ 2, 11 ] ]

5.6 Constructing the set of numerical semigroups with a given set of
pseudo-Frobenius numbers

Refer to PseudoFrobeniusOfNumericalSemigroup (3.2.4).
These procedures are described in [DGR15].

5.6.1 ForcedIntegersForPseudoFrobenius

. ForcedIntegersForPseudoFrobenius(PF) (function)

PF is a list of positive integers (given as a list or individual elements). The output is:

• in case there exists a numerical semigroup S such that PF(S) = PF :

– a list [ f orced_gaps, f orced_elts] such that:

* f orced_gaps is contained in N−S for any numerical semigroup S such that PF(S) =
{g_1, . . . ,g_n}
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* forced_elts is contained in S for any numerical semigroup S such that PF(S) =
{g_1, . . . ,g_n}

• "fail" in case it is found some condition that fails.
Example

gap> pf := [ 58, 64, 75 ];

[ 58, 64, 75 ]

gap> ForcedIntegersForPseudoFrobenius(pf);

[ [ 1, 2, 3, 4, 5, 6, 7, 8, 11, 15, 16, 17, 25, 29, 32, 58, 64, 75 ],

[ 0, 59, 60, 67, 68, 69, 70, 71, 72, 73, 74, 76 ] ]

5.6.2 SimpleForcedIntegersForPseudoFrobenius

. SimpleForcedIntegersForPseudoFrobenius(fg, fe, PF) (function)

Is just a quicker version of ForcedIntegersForPseudoFrobenius (5.6.1)
fg is a list of integers that we require to be gaps of the semigroup; fe is a list of integers that we

require to be elements of the semigroup; PF is a list of positive integers. The output is:

• in case there exists a numerical semigroup S such that PF(S) = PF :

– a list [ f orced_gaps, f orced_elts] such that:

* f orced_gaps is contained in N−S for any numerical semigroup S such that PF(S) =
{g_1, . . . ,g_n}

* forced_elts is contained in S for any numerical semigroup S such that PF(S) =
{g_1, . . . ,g_n}

• "fail" in case it is found some condition that fails.
Example

gap> pf := [ 15, 20, 27, 35 ];;

gap> fint := ForcedIntegersForPseudoFrobenius(pf);

[ [ 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 15, 16, 20, 27, 35 ],

[ 0, 19, 23, 25, 26, 28, 29, 30, 31, 32, 33, 34, 36 ] ]

gap> free := Difference([1..Maximum(pf)],Union(fint));

[ 11, 13, 14, 17, 18, 21, 22, 24 ]

gap> SimpleForcedIntegersForPseudoFrobenius(fint[1],Union(fint[2],[free[1]]),pf);

[ [ 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 13, 15, 16, 20, 24, 27, 35 ],

[ 0, 11, 19, 22, 23, 25, 26, 28, 29, 30, 31, 32, 33, 34, 36 ] ]

5.6.3 NumericalSemigroupsWithPseudoFrobeniusNumbers

. NumericalSemigroupsWithPseudoFrobeniusNumbers(g) (function)

PF is a list of positive integers (given as a list or individual elements). The output is: a list
of numerical semigrups S such that PF(S)=PF When Length(PF)=1, it makes use of the function
NumericalSemigroupsWithFrobeniusNumber (5.4.1)

Example
gap> pf := [ 58, 64, 75 ];

[ 58, 64, 75 ]

gap> Length(NumericalSemigroupsWithPseudoFrobeniusNumbers(pf));
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561

gap> pf := [11,19,22];;

gap> NumericalSemigroupsWithPseudoFrobeniusNumbers(pf);

[ <Numerical semigroup>, <Numerical semigroup>, <Numerical semigroup>,

<Numerical semigroup>, <Numerical semigroup> ]

gap> List(last,MinimalGeneratingSystemOfNumericalSemigroup);

[ [ 7, 9, 17, 20 ], [ 7, 10, 13, 16, 18 ], [ 9, 12, 14, 15, 16, 17, 20 ],

[ 10, 13, 14, 15, 16, 17, 18, 21 ],

[ 12, 13, 14, 15, 16, 17, 18, 20, 21, 23 ] ]

5.6.4 RandomNumericalSemigroupWithPseudoFrobeniusNumbers

. RandomNumericalSemigroupWithPseudoFrobeniusNumbers(g) (function)

PF is a list of positive integers (given as a list or individual elements). Alternatively, a record with
fields "pseudo_frobenius" and "max_attempts" option The output is: A numerical semigrups S such
that PF(S)=PF, at random. Returns fail if it conludes that it exists and suggets to use NumericalSemi-
groupsWithPseudoFrobeniusNumbers if it is not able to conclude...

It makes use of the function AnIrreducibleNumericalSemigroupWithFrobeniusNumber

(6.1.4), when Length(PF)=1.
Example

gap> pf := [ 83, 169, 173, 214, 259 ];;

gap> RandomNumericalSemigroupWithPseudoFrobeniusNumbers(pf);

<Numerical semigroup>

gap> gen := MinimalGeneratingSystem(last);

[ 38, 57, 64, 72, 79, 98, 99, 106, 118, 120, 124, 132, 134, 146, 147, 154,

165, 168, 179 ]

gap> ns := NumericalSemigroup(gen);

<Numerical semigroup with 19 generators>

gap> PseudoFrobeniusOfNumericalSemigroup(ns);

[ 83, 169, 173, 214, 259 ]



Chapter 6

Irreducible numerical semigroups

6.1 Irreducible numerical semigroups

An irreducible numerical semigroup is a semigroup that cannot be expressed as the intersection of
numerical semigroups properly containing it.

It is not difficult to prove that a semigroup is irreducible if and only if it is maximal (with re-
spect to set inclusion) in the set of all numerical semigroup having its same Frobenius number (see
[RB03]). Hence, according to [FGR87] (respectively [BDF97]), symmetric (respectively pseudo-
symmetric) numerical semigroups are those irreducible numerical semigroups with odd (respectively
even) Frobenius number.

In [RGSGGJM03] it is shown that a nontrivial numerical semigroup is irreducible if and only if it
has only one special gap. We use this characterization.

In this section we show how to construct the set of all numerical semigroups with a given Frobe-
nius number. In old versions of the package, we first constructed an irreducible numerical semigroup
with the given Frobenius number (as explained in [RGS04]), and then we constructed the rest from
it. That is why we separated both functions. The present version uses a faster procedure presented in
[BR13].

Every numerical semigroup can be expressed as an intersection of irreducible numerical semi-
groups. If S can be expressed as S = S1∩ ·· · ∩ Sn, with Si irreducible numerical semigroups, and no
factor can be removed, then we say that this decomposition is minimal. Minimal decompositions can
be computed by using Algorithm 26 in [RGSGGJM03].

6.1.1 IsIrreducibleNumericalSemigroup

. IsIrreducibleNumericalSemigroup(s) (function)

s is a numerical semigroup. The output is true if s is irreducible, false otherwise.
Example

gap> IsIrreducibleNumericalSemigroup(NumericalSemigroup(4,6,9));

true

gap> IsIrreducibleNumericalSemigroup(NumericalSemigroup(4,6,7,9));

false

30
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6.1.2 IsSymmetricNumericalSemigroup

. IsSymmetricNumericalSemigroup(s) (function)

s is a numerical semigroup. The output is true if s is symmetric, false otherwise.
Example

gap> IsSymmetricNumericalSemigroup(NumericalSemigroup(10,23));

true

gap> IsSymmetricNumericalSemigroup(NumericalSemigroup(10,11,23));

false

6.1.3 IsPseudoSymmetricNumericalSemigroup

. IsPseudoSymmetricNumericalSemigroup(s) (function)

s is a numerical semigroup. The output is true if s is pseudo-symmetric, false otherwise.
Example

gap> IsPseudoSymmetricNumericalSemigroup(NumericalSemigroup(6,7,8,9,11));

true

gap> IsPseudoSymmetricNumericalSemigroup(NumericalSemigroup(4,6,9));

false

6.1.4 AnIrreducibleNumericalSemigroupWithFrobeniusNumber

. AnIrreducibleNumericalSemigroupWithFrobeniusNumber(f) (function)

f is an integer greater than or equal to -1. The output is an irreducible numerical semigroup with
frobenius number f . From the way the procedure is implemented, the resulting semigroup has at most
four generators (see [RGS04]).

Example
gap> FrobeniusNumber(AnIrreducibleNumericalSemigroupWithFrobeniusNumber(28));

28

6.1.5 IrreducibleNumericalSemigroupsWithFrobeniusNumber

. IrreducibleNumericalSemigroupsWithFrobeniusNumber(f) (function)

f is an integer greater than or equal to -1. The output is the set of all irreducible numerical
semigroups with frobenius number f .

Example
gap> Length(IrreducibleNumericalSemigroupsWithFrobeniusNumber(39));

227

6.1.6 DecomposeIntoIrreducibles

. DecomposeIntoIrreducibles(s) (function)

s is a numerical semigroup. The output is a set of irreducible numerical semigroups containing
it. These elements appear in a minimal decomposition of s as intersection into irreducibles.
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Example
gap> DecomposeIntoIrreducibles(NumericalSemigroup(5,6,8));

[ <Numerical semigroup>, <Numerical semigroup> ]

6.2 Complete intersection numerical semigroups

The cardinality of a minimal presentation of a numerical semigroup is alwas greater than or equal to its
embedding dimension minus one. Complete intersection numerical semigroups are numerical semi-
groups reching this bound, and they are irreducible. It can be shown that every complete intersection
(other that N) is a complete intersection if and only if it is the gluing of two complete intersections.
When in this gluing, one of the copies is isomorphic to N, then we obtain a free semigroups in the
sense of [BC77]. Two special kinds of free semigroups are telescopic semigroups ([KP95]) and those
associated to an irreducible planar curve ([Zar86]). We use the algorithms presented in [AGS13] to
find the set of all complete intersections (also free, telescopic and associated to irreducible planar
curves) numerical semigroups with given Frobenius number.

6.2.1 AsGluingOfNumericalSemigroups

. AsGluingOfNumericalSemigroups(s) (function)

s is a numerical semigroup. Returns all partitions {A1,A2} of the minimal generating set of s
such that s is a gluing of 〈A1〉 and 〈A2〉 by gcd(A1)gcd(A2)

Example
gap> s := NumericalSemigroup( 10, 15, 16 );

<Numerical semigroup with 3 generators>

gap> AsGluingOfNumericalSemigroups(s);

[ [ [ 10, 15 ], [ 16 ] ], [ [ 10, 16 ], [ 15 ] ] ]

gap> s := NumericalSemigroup( 18, 24, 34, 46, 51, 61, 74, 8 );

<Numerical semigroup with 8 generators>

gap> AsGluingOfNumericalSemigroups(s);

[ ]

6.2.2 IsACompleteIntersectionNumericalSemigroup

. IsACompleteIntersectionNumericalSemigroup(s) (function)

s is a numerical semigroup. The output is true if the numerical semigroup is a complete intersec-
tion, that is, the cardinality of a (any) minimal presentation equals its embedding dimension minus
one.

Example
gap> s := NumericalSemigroup( 10, 15, 16 );

<Numerical semigroup with 3 generators>

gap> IsACompleteIntersectionNumericalSemigroup(s);

true

gap> s := NumericalSemigroup( 18, 24, 34, 46, 51, 61, 74, 8 );

<Numerical semigroup with 8 generators>

gap> IsACompleteIntersectionNumericalSemigroup(s);

false
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6.2.3 CompleteIntersectionNumericalSemigroupsWithFrobeniusNumber

. CompleteIntersectionNumericalSemigroupsWithFrobeniusNumber(f) (function)

f is an integer greater than or equal to -1. The output is the set of all complete intersection
numerical semigroups with frobenius number f .

Example
gap> Length(CompleteIntersectionNumericalSemigroupsWithFrobeniusNumber(57));

34

6.2.4 IsFreeNumericalSemigroup

. IsFreeNumericalSemigroup(s) (function)

s is a numerical semigroup. The output is true if the numerical semigroup is free in the sense of
[BC77]: it is either N or the gluing of a copy of N with a free numerical semigroup.

Example
gap> IsFreeNumericalSemigroup(NumericalSemigroup(10,15,16));

true

gap> IsFreeNumericalSemigroup(NumericalSemigroup(3,5,7));

false

6.2.5 FreeNumericalSemigroupsWithFrobeniusNumber

. FreeNumericalSemigroupsWithFrobeniusNumber(f) (function)

f is an integer greater than or equal to -1. The output is the set of all free numerical semigroups
with frobenius number f .

Example
gap> Length(FreeNumericalSemigroupsWithFrobeniusNumber(57));

33

6.2.6 IsTelescopicNumericalSemigroup

. IsTelescopicNumericalSemigroup(s) (function)

s is a numerical semigroup. The output is true if the numerical semigroup is telescopic in the
sense of [KP95]: it is either N or the gluing of 〈ne〉 and s′ = 〈n1/d, . . . ,ne−1/d〉, and s′ is again a
telescopic numerical semigroup, where n1 < · · ·< ne are the minimal generators of s .

Example
gap> IsTelescopicNumericalSemigroup(NumericalSemigroup(4,11,14));

false

gap> IsFreeNumericalSemigroup(NumericalSemigroup(4,11,14));

true
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6.2.7 TelescopicNumericalSemigroupsWithFrobeniusNumber

. TelescopicNumericalSemigroupsWithFrobeniusNumber(f) (function)

f is an integer greater than or equal to -1. The output is the set of all telescopic numerical
semigroups with frobenius number f .

Example
gap> Length(TelescopicNumericalSemigroupsWithFrobeniusNumber(57));

20

6.2.8 IsNumericalSemigroupAssociatedIrreduciblePlanarCurveSingularity

. IsNumericalSemigroupAssociatedIrreduciblePlanarCurveSingularity(s) (function)

s is a numerical semigroup. The output is true if the numerical semigroup is associated to an
irreducible planar curve singularity ([Zar86]). These semigroups are telescopic.

Example
gap> ns := NumericalSemigroup(4,11,14);;

gap> IsNumericalSemigroupAssociatedIrreduciblePlanarCurveSingularity(ns);

false

gap> ns := NumericalSemigroup(4,11,19);;

gap> IsNumericalSemigroupAssociatedIrreduciblePlanarCurveSingularity(ns);

true

6.2.9 NumericalSemigroupsAssociatedIrreduciblePlanarCurveSingularityWithFrobeniusNumber

. NumericalSemigroupsAssociatedIrreduciblePlanarCurveSingularityWithFrobeniusNumber(f)

(function)

f is an integer greater than or equal to -1. The output is the set of all numerical semigroups
associated to irreducible planar curves singularities with frobenius number f .

Example
gap> Length(

> NumericalSemigroupsAssociatedIrreduciblePlanarCurveSingularityWithFrobeniusNumber

> (57));

7

6.3 Almost-symmetric numerical semigroups

A numerical semigroup is almost-symmetric ([BR97]) if its genus is the arithmetic mean of its Frobe-
nius number and type. We use a procedure presented in [RGS13] to determine the set of all almost-
symmetric numerical semigroups with given Frobenius number. In order to do this, we first calculate
the set of all almost-symmetric numerical semigroups that can be constructed from an irreducible
numerical semigroup.
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6.3.1 AlmostSymmetricNumericalSemigroupsFromIrreducible

. AlmostSymmetricNumericalSemigroupsFromIrreducible(s) (function)

s is an irreducible numerical semigroup. The output is the set of almost-symetric numerical semi-
groups that can be constructed from s by removing some of its generators as explained in [RGS13]).

Example
gap> ns := NumericalSemigroup(5,8,9,11);;

gap> AlmostSymmetricNumericalSemigroupsFromIrreducible(ns);

[ <Numerical semigroup>, <Numerical semigroup>, <Numerical semigroup> ]

gap> List(last,MinimalGeneratingSystemOfNumericalSemigroup);

[ [ 5, 8, 9, 11 ], [ 5, 8, 11, 14, 17 ], [ 5, 9, 11, 13, 17 ] ]

6.3.2 IsAlmostSymmetricNumericalSemigroup

. IsAlmostSymmetricNumericalSemigroup(s) (function)

s is a numerical semigroup. The output is true if the numerical semigroup is almost symmetric.
Example

gap> IsAlmostSymmetricNumericalSemigroup(NumericalSemigroup(5,8,11,14,17));

true

6.3.3 AlmostSymmetricNumericalSemigroupsWithFrobeniusNumber

. AlmostSymmetricNumericalSemigroupsWithFrobeniusNumber(f) (function)

f is an integer greater than or equal to -1. The output is the set of all almost symmetric numerical
semigroups with Frobenius number f .

Example
gap> Length(AlmostSymmetricNumericalSemigroupsWithFrobeniusNumber(12));

15

gap> Length(IrreducibleNumericalSemigroupsWithFrobeniusNumber(12));

2



Chapter 7

Ideals of numerical semigroups

Let S be a numerical semigroup. A set I of integers is an ideal relative to a numerical semigroup S
provided that I +S⊆ I and that there exists d ∈ S such that d + I ⊆ S.

If {i1, . . . , ik} is a subset of Z, then the set I = {i1, . . . , ik}+S =
⋃k

n=1 in+S is an ideal relative to S,
and {i1, . . . , ik} is a system of generators of I. A system of generators M is minimal if no proper subset
of M generates the same ideal. Usually, ideals are specified by means of its generators and the ambient
numerical semigroup to which they are ideals (for more information see for instance [BDF97]).

7.1 Definitions and basic operations

7.1.1 IdealOfNumericalSemigroup

. IdealOfNumericalSemigroup(l, S) (function)

S is a numerical semigroup and l a list of integers.
The output is the ideal of S generated by l

There are several shortcuts for this function, as shown in the example.
Example

gap> IdealOfNumericalSemigroup([3,5],NumericalSemigroup(9,11));

<Ideal of numerical semigroup>

gap> [3,5]+NumericalSemigroup(9,11);

<Ideal of numerical semigroup>

gap> last=last2;

true

gap> 3+NumericalSemigroup(5,9);

<Ideal of numerical semigroup>

7.1.2 IsIdealOfNumericalSemigroup

. IsIdealOfNumericalSemigroup(Obj) (function)

Tests if the object Obj is an ideal of a numerical semigroup.
Example

gap> I:=[1..7]+NumericalSemigroup(7,19);;

gap> IsIdealOfNumericalSemigroup(I);

true

36
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gap> IsIdealOfNumericalSemigroup(2);

false

7.1.3 MinimalGeneratingSystemOfIdealOfNumericalSemigroup

. MinimalGeneratingSystemOfIdealOfNumericalSemigroup(I) (function)

. MinimalGeneratingSystem(I) (function)

I is an ideal of a numerical semigroup.
The output is the minimal system of generators of I .

Example
gap> I:=[3,5,9]+NumericalSemigroup(2,11);;

gap> MinimalGeneratingSystemOfIdealOfNumericalSemigroup(I);

[ 3 ]

gap> MinimalGeneratingSystem(I);

[ 3 ]

7.1.4 GeneratorsOfIdealOfNumericalSemigroup

. GeneratorsOfIdealOfNumericalSemigroup(I) (function)

. GeneratorsOfIdealOfNumericalSemigroupNC(I) (function)

I is an ideal of a numerical semigroup.
The output of GeneratorsOfIdealOfNumericalSemigroup is a system of generators of

the ideal. If the minimal system of generators is known, then it is used as output.
GeneratorsOfIdealOfNumericalSemigroupNC always returns the set of generators stored in
I!.generators .

Example
gap> I:=[3,5,9]+NumericalSemigroup(2,11);;

gap> GeneratorsOfIdealOfNumericalSemigroup(I);

[ 3, 5, 9 ]

gap> MinimalGeneratingSystemOfIdealOfNumericalSemigroup(I);

[ 3 ]

gap> GeneratorsOfIdealOfNumericalSemigroup(I);

[ 3 ]

gap> GeneratorsOfIdealOfNumericalSemigroupNC(I);

[ 3, 5, 9 ]

7.1.5 AmbientNumericalSemigroupOfIdeal

. AmbientNumericalSemigroupOfIdeal(I) (function)

I is an ideal of a numerical semigroup, say S.
The output is S.

Example
gap> I:=[3,5,9]+NumericalSemigroup(2,11);;

gap> AmbientNumericalSemigroupOfIdeal(I);

<Modular numerical semigroup satisfying 11x mod 22 <= x >
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7.1.6 SmallElementsOfIdealOfNumericalSemigroup

. SmallElementsOfIdealOfNumericalSemigroup(I) (function)

. SmallElements(I) (function)

I is an ideal of a numerical semigroup.
The output is a list with the elements in I that are less than or equal to the greatest integer not

belonging to the ideal plus one.
Example

gap> I:=[3,5,9]+NumericalSemigroup(2,11);;

gap> SmallElementsOfIdealOfNumericalSemigroup(I);

[ 3, 5, 7, 9, 11, 13 ]

gap> SmallElements(I) = SmallElementsOfIdealOfNumericalSemigroup(I);

true

gap> J:=[2,11]+NumericalSemigroup(2,11);;

gap> SmallElementsOfIdealOfNumericalSemigroup(J);

[ 2, 4, 6, 8, 10 ]

7.1.7 BelongsToIdealOfNumericalSemigroup

. BelongsToIdealOfNumericalSemigroup(n, I) (function)

I is an ideal of a numerical semigroup, n is an integer.
The output is true if n belongs to I .
n in I can be used for short.

Example
gap> J:=[2,11]+NumericalSemigroup(2,11);;

gap> BelongsToIdealOfNumericalSemigroup(9,J);

false

gap> 9 in J;

false

gap> BelongsToIdealOfNumericalSemigroup(10,J);

true

gap> 10 in J;

true

7.1.8 SumIdealsOfNumericalSemigroup

. SumIdealsOfNumericalSemigroup(I, J) (function)

I, J are ideals of a numerical semigroup.
The output is the sum of both ideals {i+ j | i ∈ I , j ∈ J}.
I + J is a synonym of this function.

Example
gap> I:=[3,5,9]+NumericalSemigroup(2,11);;

gap> J:=[2,11]+NumericalSemigroup(2,11);;

gap> I+J;

<Ideal of numerical semigroup>

gap> MinimalGeneratingSystemOfIdealOfNumericalSemigroup(last);

[ 5, 14 ]
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gap> SumIdealsOfNumericalSemigroup(I,J);

<Ideal of numerical semigroup>

gap> MinimalGeneratingSystemOfIdealOfNumericalSemigroup(last);

[ 5, 14 ]

7.1.9 MultipleOfIdealOfNumericalSemigroup

. MultipleOfIdealOfNumericalSemigroup(n, I) (function)

I is an ideal of a numerical semigroup, n is a non negative integer.
The output is the ideal I + · · ·+I (n times).
n * I can be used for short.

Example
gap> I:=[0,1]+NumericalSemigroup(3,5,7);;

gap> MinimalGeneratingSystemOfIdealOfNumericalSemigroup(2*I);

[ 0, 1, 2 ]

7.1.10 SubtractIdealsOfNumericalSemigroup

. SubtractIdealsOfNumericalSemigroup(I, J) (function)

I, J are ideals of a numerical semigroup.
The output is the ideal {z ∈ Z | z+J ⊆ I}.
I - J is a synonym of this function.
S−J is a synonym of (0+S)−J , if S is the ambient semigroup of I and J . The following example

appears in [HS04].
Example

gap> S:=NumericalSemigroup(14, 15, 20, 21, 25);;

gap> I:=[0,1]+S;;

gap> II:=S-I;;

gap> MinimalGeneratingSystemOfIdealOfNumericalSemigroup(I);

[ 0, 1 ]

gap> MinimalGeneratingSystemOfIdealOfNumericalSemigroup(II);

[ 14, 20 ]

gap> MinimalGeneratingSystemOfIdealOfNumericalSemigroup(I+II);

[ 14, 15, 20, 21 ]

7.1.11 DifferenceOfIdealsOfNumericalSemigroup

. DifferenceOfIdealsOfNumericalSemigroup(I, J) (function)

I, J are ideals of a numerical semigroup. J must be contained in I .
The output is the set I \J .

Example
gap> S:=NumericalSemigroup(14, 15, 20, 21, 25);;

gap> I:=[0,1]+S;

<Ideal of numerical semigroup>

gap> 2*I-2*I;

<Ideal of numerical semigroup>
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gap> I-I;

<Ideal of numerical semigroup>

gap> DifferenceOfIdealsOfNumericalSemigroup(last2,last);

[ 26, 27, 37, 38 ]

7.1.12 TranslationOfIdealOfNumericalSemigroup

. TranslationOfIdealOfNumericalSemigroup(k, I) (function)

Given an ideal I of a numerical semigroup S and an integer k returns an ideal of the numerical
semigroup S generated by {i1 + k, . . . , in + k} where {i1, . . . , in} is the system of generators of I .

As a synonym to TranslationOfIdealOfNumericalSemigroup(k, I) the expression k + I

may be used.
Example

gap> s:=NumericalSemigroup(13,23);;

gap> l:=List([1..6], _ -> Random([8..34]));

[ 22, 29, 34, 25, 10, 12 ]

gap> I:=IdealOfNumericalSemigroup(l, s);;

gap> It:=TranslationOfIdealOfNumericalSemigroup(7,I);

<Ideal of numerical semigroup>

gap> It2:=7+I;

<Ideal of numerical semigroup>

gap> It2=It;

true

7.1.13 IntersectionIdealsOfNumericalSemigroup

. IntersectionIdealsOfNumericalSemigroup(I, J) (function)

Given two ideals I and J of a numerical semigroup S returns the ideal of the numerical semigroup
S which is the intersection of the ideals I and J .

Example
gap> i:=IdealOfNumericalSemigroup([75,89],s);;

gap> j:=IdealOfNumericalSemigroup([115,289],s);;

gap> IntersectionIdealsOfNumericalSemigroup(i,j);

<Ideal of numerical semigroup>

7.1.14 MaximalIdealOfNumericalSemigroup

. MaximalIdealOfNumericalSemigroup(S) (function)

Returns the maximal ideal of the numerical semigroup S .
Example

gap> MaximalIdealOfNumericalSemigroup(NumericalSemigroup(3,7));

<Ideal of numerical semigroup>
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7.1.15 CanonicalIdealOfNumericalSemigroup

. CanonicalIdealOfNumericalSemigroup(S) (function)

Computes a canonical ideal of S ([BF06]): {x ∈ Z|g− x 6∈ S}.
Example

gap> s:=NumericalSemigroup(4,6,11);;

gap> m:=MaximalIdealOfNumericalSemigroup(s);;

gap> c:=CanonicalIdealOfNumericalSemigroup(s);

<Ideal of numerical semigroup>

gap> (m-c)-c=m;

true

gap> id:=3+s;

<Ideal of numerical semigroup>

gap> (id-c)-c=id;

true

7.2 Other functions for ideals

7.2.1 HilbertFunctionOfIdealOfNumericalSemigroup

. HilbertFunctionOfIdealOfNumericalSemigroup(n, I) (function)

I is an ideal of a numerical semigroup, n is a non negative integer. I must be contained in its
ambient semigroup.

The output is the cardinality of the set nI \ (n +1)I .
Example

gap> I:=[6,9,11]+NumericalSemigroup(6,9,11);;

gap> List([1..7],n->HilbertFunctionOfIdealOfNumericalSemigroup(n,I));

[ 3, 5, 6, 6, 6, 6, 6 ]

7.2.2 BlowUpIdealOfNumericalSemigroup

. BlowUpIdealOfNumericalSemigroup(I) (function)

I is an ideal of a numerical semigroup.
The output is the ideal

⋃
n≥0 nI −nI .

Example
gap> I:=[0,2]+NumericalSemigroup(6,9,11);;

gap> BlowUpIdealOfNumericalSemigroup(I);;

gap> SmallElementsOfIdealOfNumericalSemigroup(last);

[ 0, 2, 4, 6, 8 ]

7.2.3 ReductionNumberIdealNumericalSemigroup

. ReductionNumberIdealNumericalSemigroup(I) (function)

I is an ideal of a numerical semigroup.
The output is the least integer such that nI + i = (n+1)I , where i = min(I).
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Example
gap> I:=[0,2]+NumericalSemigroup(6,9,11);;

gap> ReductionNumberIdealNumericalSemigroup(I);

2

7.2.4 BlowUpOfNumericalSemigroup

. BlowUpOfNumericalSemigroup(S) (function)

If M is the maximal ideal of the numerical semigroup, then the output is the numerical semigroup⋃
n≥0 nM −nM .

Example
gap> s:=NumericalSemigroup(30, 35, 42, 47, 148, 153, 157, 169, 181, 193);;

gap> BlowUpOfNumericalSemigroup(s);

<Numerical semigroup with 10 generators>

gap> SmallElementsOfNumericalSemigroup(last);

[ 0, 5, 10, 12, 15, 17, 20, 22, 24, 25, 27, 29, 30, 32, 34, 35, 36, 37, 39,

40, 41, 42, 44 ]

gap> m:=MaximalIdealOfNumericalSemigroup(s);

<Ideal of numerical semigroup>

gap> BlowUpIdealOfNumericalSemigroup(m);

<Ideal of numerical semigroup>

gap> SmallElementsOfIdealOfNumericalSemigroup(last);

[ 0, 5, 10, 12, 15, 17, 20, 22, 24, 25, 27, 29, 30, 32, 34, 35, 36, 37, 39,

40, 41, 42, 44 ]

7.2.5 MicroInvariantsOfNumericalSemigroup

. MicroInvariantsOfNumericalSemigroup(S) (function)

Returns the microinvariants of the numerical semigroup S defined in [Eli01]. For their computa-
tion we have used the formula given in [BF06]. The Ap\’ery set of S and its blow up are involved in
this computation.

Example
gap> s:=NumericalSemigroup(30, 35, 42, 47, 148, 153, 157, 169, 181, 193);;

gap> bu:=BlowUpOfNumericalSemigroup(s);;

gap> ap:=AperyListOfNumericalSemigroupWRTElement(s,30);;

gap> apbu:=AperyListOfNumericalSemigroupWRTElement(bu,30);;

gap> (ap-apbu)/30;

[ 0, 4, 4, 3, 2, 1, 3, 4, 4, 3, 2, 3, 1, 4, 4, 3, 3, 1, 4, 4, 4, 3, 2, 4, 2,

5, 4, 3, 3, 2 ]

gap> MicroInvariantsOfNumericalSemigroup(s)=last;

true

7.2.6 IsGradedAssociatedRingNumericalSemigroupCM

. IsGradedAssociatedRingNumericalSemigroupCM(S) (function)

Returns true if the graded ring associated to K[[S ]] is Cohen-Macaulay, and false otherwise. This
test is the implementation of the algorithm given in [BF06].
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Example
gap> s:=NumericalSemigroup(30, 35, 42, 47, 148, 153, 157, 169, 181, 193);;

gap> IsGradedAssociatedRingNumericalSemigroupCM(s);

false

gap> MicroInvariantsOfNumericalSemigroup(s);

[ 0, 4, 4, 3, 2, 1, 3, 4, 4, 3, 2, 3, 1, 4, 4, 3, 3, 1, 4, 4, 4, 3, 2, 4, 2,

5, 4, 3, 3, 2 ]

gap> List(AperyListOfNumericalSemigroupWRTElement(s,30),

> w->MaximumDegreeOfElementWRTNumericalSemigroup (w,s));

[ 0, 1, 4, 1, 2, 1, 3, 1, 4, 3, 2, 3, 1, 1, 4, 3, 3, 1, 4, 1, 4, 3, 2, 4, 2,

5, 4, 3, 1, 2 ]

gap> last=last2;

false

gap> s:=NumericalSemigroup(4,6,11);;

gap> IsGradedAssociatedRingNumericalSemigroupCM(s);

true

gap> MicroInvariantsOfNumericalSemigroup(s);

[ 0, 2, 1, 1 ]

gap> List(AperyListOfNumericalSemigroupWRTElement(s,4),

> w->MaximumDegreeOfElementWRTNumericalSemigroup(w,s));

[ 0, 2, 1, 1 ]

7.2.7 IsMonomialNumericalSemigroup

. IsMonomialNumericalSemigroup(S) (function)

S is a numerical semigroup.
Tests whether S a monomial numerical semigroup.
Let R a Noetherian ring such that K ⊆ R⊆ K[[t]], K is a field of characteristic zero, the algebraic

closure of R is K[[t]], and the conductor (R : K[[t]]) is not zero. If v : K((t))→Z is the natural valuation
for K((t)), then v(R) is a numerical semigroup.

Let S be a numerical semigroup minimally generated by {n1, . . . ,ne}. The semigroup ring associ-
ated to S is K[[S]] = K[[tn1 , . . . , tne ]]. A ring is called a semigroup ring if it is of the form K[[S]], for
some numerical semigroup S. We say that S is a monomial numerical semigroup if for any R as above
with v(R) = S, R is a semigroup ring. See [Mic02] for details.

Example
gap> IsMonomialNumericalSemigroup(NumericalSemigroup(4,6,7));

true

gap> IsMonomialNumericalSemigroup(NumericalSemigroup(4,6,11));

false

7.2.8 AperyListOfIdealOfNumericalSemigroupWRTElement

. AperyListOfIdealOfNumericalSemigroupWRTElement(I, n) (function)

Computes the sets of elements x of I such that x−n not in the ideal I , where n is supposed to
be in the ambient semigroup of I . The element in the ith position of the output list (starting in 0) is
congruent with i modulo n .
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Example
gap> s:=NumericalSemigroup(10,11,13);;

gap> i:=[12,14]+s;;

gap> AperyListOfIdealOfNumericalSemigroupWRTElement(i,10);

[ 40, 51, 12, 23, 14, 25, 36, 27, 38, 49 ]

7.2.9 AperyTableOfNumericalSemigroup

. AperyTableOfNumericalSemigroup(s) (function)

Computes the Apéry table associated to the numerical semigroup s as explained in [CBJZA13],
that is, a list containing the Apéry list of s with respect to its multiplicity and the Apéry lists of kM
(with M the maximal ideal of s ) with respect to the multiplicity of s , for k ∈ {1, . . . ,r}, where r is the
reduction number of M (see ReductionNumberIdealNumericalSemigroup).

Example
gap> s:=NumericalSemigroup(10,11,13);;

gap> AperyTableOfNumericalSemigroup(s);

[ [ 0, 11, 22, 13, 24, 35, 26, 37, 48, 39 ],

[ 10, 11, 22, 13, 24, 35, 26, 37, 48, 39 ],

[ 20, 21, 22, 23, 24, 35, 26, 37, 48, 39 ],

[ 30, 31, 32, 33, 34, 35, 36, 37, 48, 39 ],

[ 40, 41, 42, 43, 44, 45, 46, 47, 48, 49 ] ]

7.2.10 StarClosureOfIdealOfNumericalSemigroup

. StarClosureOfIdealOfNumericalSemigroup(i, is) (function)

i is an ideal and is is a set of ideals (all from the same numerical semigroups). The output is i∗is,
where ∗is is the star operation generated by is : (s− (s− i))

⋂
k∈is(k− (k− i)). The implementation

uses Section 3 of [Spi14].
Example

gap> s:=NumericalSemigroup(3,5,7);;

gap> StarClosureOfIdealOfNumericalSemigroup([0,2]+s,[[0,4]+s]);;

gap> MinimalGeneratingSystemOfIdealOfNumericalSemigroup(last);

[ 0, 2, 4 ]



Chapter 8

Numerical semigroups with maximal
embedding dimension

8.1 Numerical semigroups with maximal embedding dimension

If S is a numerical semigroup and m is its multiplicity (the least positive integer belonging to it), then
the embedding dimension e of S (the cardinality of the minimal system of generators of S) is less
than or equal to m. We say that S has maximal embedding dimension (MED for short) when e = m.
The intersection of two numerical semigroups with the same multiplicity and maximal embedding
dimension is again of maximal embedding dimension. Thus we define the MED closure of a non-
empty subset of positive integers M = {m < m1 < · · ·< mn < · · ·} with gcd(M) = 1 as the intersection
of all MED numerical semigroups with multiplicity m.

Given a MED numerical semigroup S, we say that M = {m1 < · · · < mk} is a MED system of
generators if the MED closure of M is S. Moreover, M is a minimal MED generating system for
S provided that every proper subset of M is not a MED system of generators of S. Minimal MED
generating systems are unique, and in general are smaller that the classical minimal generating systems
(see [RGSGGB03]).

8.1.1 IsMEDNumericalSemigroup

. IsMEDNumericalSemigroup(S) (function)

S is a numerical semigroup.
Returns true if S is a MED numerical semigroup and false otherwise.

Example
gap> IsMEDNumericalSemigroup(NumericalSemigroup(3,5,7));

true

gap> IsMEDNumericalSemigroup(NumericalSemigroup(3,5));

false

45
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8.1.2 MEDNumericalSemigroupClosure

. MEDNumericalSemigroupClosure(S) (function)

S is a numerical semigroup.
Returns the MED closure of S .

Example
gap> MEDNumericalSemigroupClosure(NumericalSemigroup(3,5));

<Numerical semigroup>

gap> MinimalGeneratingSystemOfNumericalSemigroup(last);

[ 3, 5, 7 ]

8.1.3 MinimalMEDGeneratingSystemOfMEDNumericalSemigroup

. MinimalMEDGeneratingSystemOfMEDNumericalSemigroup(S) (function)

S is a MED numerical semigroup.
Returns the minimal MED generating system of S .

Example
gap> MinimalMEDGeneratingSystemOfMEDNumericalSemigroup(

> NumericalSemigroup(3,5,7));

[ 3, 5 ]

8.2 Numerical semigroups with the Arf property and Arf closures

Numerical semigroups with the Arf property are a special kind of numerical semigroups with maximal
embedding dimension. A numerical semigroup S is Arf if for every x,y,z in S with x≥ y≥ z, one has
that x+ y− z ∈ S.

The intersection of two Arf numerical semigroups is again Arf, and thus we can consider the Arf
closure of a set of nonnegative integers with greatest common divisor equal to one. Analogously as
with MED numerical semigroups, we define Arf systems of generators and minimal Arf generating
system for an Arf numerical semigroup. These are also unique(see [RGSGGB04]).

8.2.1 IsArfNumericalSemigroup

. IsArfNumericalSemigroup(S) (function)

S is a numerical semigroup.
Returns true if S is an Arf numerical semigroup and false otherwise.

Example
gap> IsArfNumericalSemigroup(NumericalSemigroup(3,5,7));

true

gap> IsArfNumericalSemigroup(NumericalSemigroup(3,7,11));

false

gap> IsMEDNumericalSemigroup(NumericalSemigroup(3,7,11));
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true

8.2.2 ArfNumericalSemigroupClosure

. ArfNumericalSemigroupClosure(S) (function)

S is a numerical semigroup.
Returns the Arf closure of S .

Example
gap> ArfNumericalSemigroupClosure(NumericalSemigroup(3,7,11));

<Numerical semigroup>

gap> MinimalGeneratingSystemOfNumericalSemigroup(last);

[ 3, 7, 8 ]

8.2.3 MinimalArfGeneratingSystemOfArfNumericalSemigroup

. MinimalArfGeneratingSystemOfArfNumericalSemigroup(S) (function)

S is an Arf numerical semigroup.
Returns the minimal MED generating system of S .

Example
gap> MinimalArfGeneratingSystemOfArfNumericalSemigroup(

> NumericalSemigroup(3,7,8));

[ 3, 7 ]

8.2.4 ArfNumericalSemigroupsWithFrobeniusNumber

. ArfNumericalSemigroupsWithFrobeniusNumber(f) (function)

f is an integer greater than or equal to -1. The output is the set of all Arf numerical semigroups
with Frobenius number f .

Example
gap> ArfNumericalSemigroupsWithFrobeniusNumber(10);

[ <Numerical semigroup>, <Numerical semigroup>, <Numerical semigroup>,

<Numerical semigroup>, <Numerical semigroup>, <Numerical semigroup>,

<Numerical semigroup>, <Numerical semigroup>, <Numerical semigroup> ]

gap> List(last,MinimalGeneratingSystemOfNumericalSemigroup);

[ [ 7, 9, 11, 12, 13, 15, 17 ], [ 3, 11, 13 ], [ 6, 9, 11, 13, 14, 16 ],

[ 9, 11, 12, 13, 14, 15, 16, 17, 19 ], [ 4, 11, 13, 14 ],

[ 8, 11, 12, 13, 14, 15, 17, 18 ], [ 7, 11, 12, 13, 15, 16, 17 ],

[ 6, 11, 13, 14, 15, 16 ], [ 11 .. 21 ] ]
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8.3 Saturated numerical semigroups

Saturated numerical semigroups with the Arf property are a special kind of numerical semigroups
with maximal embedding dimension. A numerical semigroup S is saturated if the following condition
holds: s,s1, . . . ,sr in S are such that si ≤ s for all i in {1, . . . ,r} and z1, . . . ,zr in Z are such that
z1s1 + · · ·+ zrsr ≥ 0, then s+ z1s1 + · · ·+ zrsr in S.

The intersection of two saturated numerical semigroups is again saturated, and thus we can con-
sider the saturated closure of a set of nonnegative integers with greatest common divisor equal to one
(see [RGS09]).

8.3.1 IsSaturatedNumericalSemigroup

. IsSaturatedNumericalSemigroup(S) (function)

S is a numerical semigroup.
Returns true if S is a saturated numerical semigroup and false otherwise.

Example
gap> IsSaturatedNumericalSemigroup(NumericalSemigroup(4,6,9,11));

true

gap> IsSaturatedNumericalSemigroup(NumericalSemigroup(8, 9, 12, 13, 15, 19 ));

false

8.3.2 SaturatedNumericalSemigroupClosure

. SaturatedNumericalSemigroupClosure(S) (function)

S is a numerical semigroup.
Returns the saturated closure of S .

Example
gap> SaturatedNumericalSemigroupClosure(NumericalSemigroup(8, 9, 12, 13, 15));

<Numerical semigroup>

gap> MinimalGeneratingSystemOfNumericalSemigroup(last);

[ 8 .. 15 ]

8.3.3 SaturatedNumericalSemigroupsWithFrobeniusNumber

. SaturatedNumericalSemigroupsWithFrobeniusNumber(f) (function)

f is an integer greater than or equal to -1. The output is the set of all Saturated numerical semi-
groups with Frobenius number f .

Example
gap> SaturatedNumericalSemigroupsWithFrobeniusNumber(10);

[ <Numerical semigroup>, <Numerical semigroup>, <Numerical semigroup>,

<Numerical semigroup>, <Numerical semigroup>, <Numerical semigroup>,

<Numerical semigroup>, <Numerical semigroup> ]

gap> List(last,MinimalGeneratingSystemOfNumericalSemigroup);

[ [ 3, 11, 13 ], [ 4, 11, 13, 14 ], [ 6, 9, 11, 13, 14, 16 ],

[ 6, 11, 13, 14, 15, 16 ], [ 7, 11, 12, 13, 15, 16, 17 ],

[ 8, 11, 12, 13, 14, 15, 17, 18 ], [ 9, 11, 12, 13, 14, 15, 16, 17, 19 ],

[ 11 .. 21 ] ]



Chapter 9

Nonunique invariants for factorizations
in numerical semigroups

9.1 Factorizations in Numerical Semigroups

Let S be a numerical semigroup minimally generated by {m1, . . . ,mn}. A factorization of an ele-
ment s ∈ S is an n-tuple a = (a1, . . . ,an) of nonnegative integers such that n = a1n1 + · · ·+ anmn.
The lenght of a is |a| = a1 + · · ·+ an. Given two factorizations a and b of n, the distance be-
tween a and b is d(a,b)=max{|a−gcd(a,b)|, |b−gcd(a,b)|}, where gcd((a1, . . . ,an),(b1, . . . ,bn))=
(min(a1,b1), . . . ,min(an,bn)).

If l1 > · · · > lk are the lenghts of all the factorizations of s ∈ S, the Delta set associated to s is
∆(s) = {l1− l2, . . . , lk− lk−1}.

The catenary degree of an element in S is the least positive integer c such that for any two of its
factorizations a and b, there exists a chain of factorizations starting in a and ending in b and so that
the distance between two consecutive links is at most c. The catenary degree of S is the supremum of
the catenary degrees of the elements in S.

The tame degree of S is the least positive integer t for any factorization a of an element s in S, and
any i such that s−mi ∈ S, there exists another factorization b of s so that the distance to a is at most t
and bi 6= 0.

The ω-primality of an elment s in S is the least positive integer k such that if (∑i∈I si)−s∈ S,si ∈ S,
then there exists Ω⊆ I with cardinality k such that (∑i∈Ω si)−s∈ S. The ω-primality is the maximum
of the ω-primality of its minimal generators.

The basic properties of these constants can be found in [GHK06]. The algorithm used to compute
the catenary and tame degree is an adaptation of the algorithms appearing in [CGSL+06] for numerical
semigroup (see [CGSD07]). The computation of the elascitiy of a numerical semigroup reduces to
m/n with m the multiplicity of the semigroup and n its largest minimal generator (see [CHM06] or
[GHK06]).

9.1.1 FactorizationsIntegerWRTList

. FactorizationsIntegerWRTList(n, ls) (function)

ls is a list of integers and n an integer. The output is the set of factorizations of n in terms of the
elements in the list ls . This function uses RestrictedPartitions.

49
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Example
gap> FactorizationsIntegerWRTList(100,[11,13,15,19]);

[ [ 2, 6, 0, 0 ], [ 3, 4, 1, 0 ], [ 4, 2, 2, 0 ], [ 5, 0, 3, 0 ],

[ 5, 2, 0, 1 ], [ 6, 0, 1, 1 ], [ 0, 1, 2, 3 ], [ 1, 1, 0, 4 ] ]

9.1.2 FactorizationsElementWRTNumericalSemigroup

. FactorizationsElementWRTNumericalSemigroup(n, S) (function)

S is a numerical semigroup and n a nonnegative integer. The output is the set of factorizations of
n in terms of the minimal generating set of S .

Example
gap> s:=NumericalSemigroup(101,113,196,272,278,286);

<Numerical semigroup with 6 generators>

gap> FactorizationsElementWRTNumericalSemigroup(1100,s);

[ [ 0, 8, 1, 0, 0, 0 ], [ 0, 0, 0, 2, 2, 0 ], [ 5, 1, 1, 0, 0, 1 ],

[ 0, 2, 3, 0, 0, 1 ] ]

9.1.3 RClassesOfSetOfFactorizations

. RClassesOfSetOfFactorizations(ls) (function)

ls is a set of factorizations (a list of lists of nonnegative integers with the same lenght). The
output is the set of R-classes of this set of factorizations as defined in Chapter 7 of [RGS09].

Example
gap> s:=NumericalSemigroup(10,11,19,23);;

gap> BettiElementsOfNumericalSemigroup(s);

[ 30, 33, 42, 57, 69 ]

gap> FactorizationsElementWRTNumericalSemigroup(69,s);

[ [ 5, 0, 1, 0 ], [ 2, 1, 2, 0 ], [ 0, 0, 0, 3 ] ]

gap> RClassesOfSetOfFactorizations(last);

[ [ [ 2, 1, 2, 0 ], [ 5, 0, 1, 0 ] ], [ [ 0, 0, 0, 3 ] ] ]

9.1.4 LShapesOfNumericalSemigroup

. LShapesOfNumericalSemigroup(S) (function)

S is a numerical semigroup. The output is the number of LShapes associated to S . These are ways
of arranging the set of factorizations of the elements in the Apéry set of the largest generator, so that
if one factorization x is chosen for w and w−w′ ∈ S, then only the factorization of x′ of w′ with x′ ≤
can be in the LShape (and if there is no such a factorization, then we have no LShape with x in it), see
[AGGS10].

Example
gap> s:=NumericalSemigroup(4,6,9);;

gap> LShapesOfNumericalSemigroup(s);

[ [ [ 0, 0 ], [ 1, 0 ], [ 0, 1 ], [ 2, 0 ], [ 1, 1 ], [ 0, 2 ], [ 2, 1 ],

[ 1, 2 ], [ 2, 2 ] ],

[ [ 0, 0 ], [ 1, 0 ], [ 0, 1 ], [ 2, 0 ], [ 1, 1 ], [ 3, 0 ], [ 2, 1 ],

[ 4, 0 ], [ 5, 0 ] ] ]
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9.1.5 DenumerantOfElementInNumericalSemigroup

. DenumerantOfElementInNumericalSemigroup(n, S) (function)

S is a numerical semigroup and n a positive integer. The output is the number of factorizations of
n in terms of the minimal generating set of S .

Example
gap> s:=NumericalSemigroup(101,113,195,272,278,286);;

gap> DenumerantOfElementInNumericalSemigroup(1311,s);

6

9.2 Invariants based on lengths

9.2.1 LengthsOfFactorizationsIntegerWRTList

. LengthsOfFactorizationsIntegerWRTList(n, ls) (function)

ls is a list of integers and n an integer. The output is the set of lengths of the factorizations of n
in terms of the elements in ls .

Example
gap> LengthsOfFactorizationsIntegerWRTList(100,[11,13,15,19]);

[ 6, 8 ]

9.2.2 LengthsOfFactorizationsElementWRTNumericalSemigroup

. LengthsOfFactorizationsElementWRTNumericalSemigroup(n, S) (function)

S is a numerical semigroup and n a nonnegative integer. The output is the set of lengths of the
factorizations of n in terms of the minimal generating set of S .

Example
gap> s:=NumericalSemigroup(101,113,196,272,278,286);

<Numerical semigroup with 6 generators>

gap> LengthsOfFactorizationsElementWRTNumericalSemigroup(1100,s);

[ 4, 6, 8, 9 ]

9.2.3 ElasticityOfFactorizationsElementWRTNumericalSemigroup

. ElasticityOfFactorizationsElementWRTNumericalSemigroup(n, S) (function)

S is a numerical semigroup and n a positive integer. The output is the maximum length divided
by the minimum length of the factorizations of n in terms of the minimal generating set of S .

Example
gap> s:=NumericalSemigroup(101,113,196,272,278,286);

<Numerical semigroup with 6 generators>

gap> ElasticityOfFactorizationsElementWRTNumericalSemigroup(1100,s);

9/4
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9.2.4 ElasticityOfNumericalSemigroup

. ElasticityOfNumericalSemigroup(S) (function)

S is a numerical semigroup. The output is the elasticity of S .
Example

gap> s:=NumericalSemigroup(101,113,196,272,278,286);

<Numerical semigroup with 6 generators>

gap> ElasticityOfNumericalSemigroup(s);

286/101

9.2.5 DeltaSetOfSetOfIntegers

. DeltaSetOfSetOfIntegers(ls) (function)

ls is list of integers. The output is the Delta set of the elements in ls , that is, the set of differences
of consecutive elements in the list.

Example
gap> LengthsOfFactorizationsIntegerWRTList(100,[11,13,15,19]);

[ 6, 8 ]

gap> DeltaSetOfSetOfIntegers(last);

[ 2 ]

9.2.6 DeltaSetOfFactorizationsElementWRTNumericalSemigroup

. DeltaSetOfFactorizationsElementWRTNumericalSemigroup(n, S) (function)

S is a numerical semigroup and n a nonnegative integer. The output is the Delta set of the factor-
izations of n in terms of the minimal generating set of S .

Example
gap> s:=NumericalSemigroup(101,113,196,272,278,286);

<Numerical semigroup with 6 generators>

gap> DeltaSetOfFactorizationsElementWRTNumericalSemigroup(1100,s);

[ 1, 2 ]

9.2.7 MaximumDegreeOfElementWRTNumericalSemigroup

. MaximumDegreeOfElementWRTNumericalSemigroup(n, S) (function)

S is a numerical semigroup and n a nonnegative integer. The output is the maximum length of the
factorizations of n in terms of the minimal generating set of S .

Example
gap> s:=NumericalSemigroup(101,113,196,272,278,286);

<Numerical semigroup with 6 generators>

gap> MaximumDegreeOfElementWRTNumericalSemigroup(1100,s);

9
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9.2.8 MaximalDenumerantOfElementInNumericalSemigroup

. MaximalDenumerantOfElementInNumericalSemigroup(n, S) (function)

S is a numerical semigroup and n a positive integer. The output is the number of factorizations of
n in terms of the minimal generating set of S with maximal length.

Example
gap> s:=NumericalSemigroup(101,113,196,272,278,286);;

gap> MaximalDenumerantOfElementInNumericalSemigroup(1100,s);

1

gap> MaximalDenumerantOfElementInNumericalSemigroup(1311,s);

2

9.2.9 MaximalDenumerantOfSetOfFactorizations

. MaximalDenumerantOfSetOfFactorizations(ls) (function)

ls is list of factorizations (a list of lists of nonnegative integers with the same lenght). The output
is number of elements in ls with maximal length.

Example
gap> FactorizationsIntegerWRTList(100,[11,13,15,19]);

[ [ 2, 6, 0, 0 ], [ 3, 4, 1, 0 ], [ 4, 2, 2, 0 ], [ 5, 0, 3, 0 ], [ 5, 2, 0, 1 ],

[ 6, 0, 1, 1 ], [ 0, 1, 2, 3 ], [ 1, 1, 0, 4 ] ]

gap> MaximalDenumerantOfSetOfFactorizations(last);

6

9.2.10 MaximalDenumerantOfNumericalSemigroup

. MaximalDenumerantOfNumericalSemigroup(S) (function)

S is a numerical semigroup. The output is the maximal denumerant of S , that is, the maximum of
the maximal denumerant of the elements in S (see [BH13]).

Example
gap> s:=NumericalSemigroup(101,113,196,272,278,286);;

gap> MaximalDenumerantOfNumericalSemigroup(s);

4

9.2.11 AdjustmentOfNumericalSemigroup

. AdjustmentOfNumericalSemigroup(S) (function)

S is a numerical semigroup. The output is the adjustment of S as defined in [BH13].
Example

gap> s:=NumericalSemigroup(101,113,196,272,278,286);;

gap> AdjustmentOfNumericalSemigroup(s);

[ 0, 12, 24, 36, 48, 60, 72, 84, 95, 96, 107, 108, 119, 120, 131, 132, 143,

144, 155, 156, 167, 168, 171, 177, 179, 180, 183, 185, 189, 190, 191, 192,

195, 197, 201, 203, 204, 207, 209, 213, 215, 216, 219, 221, 225, 227, 228,

231, 233, 237, 239, 240, 243, 245, 249, 251, 252, 255, 257, 261, 263, 264,

266, 267, 269, 273, 275, 276, 279, 280, 281, 285, 287, 288, 292, 293, 299,
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300, 304, 305, 311, 312, 316, 317, 323, 324, 328, 329, 335, 336, 340, 341,

342, 347, 348, 352, 353, 354, 356, 359, 360, 361, 362, 364, 365, 366, 368,

370, 371, 372, 374, 376, 377, 378, 380, 382, 383, 384, 388, 389, 390, 394,

395, 396, 400, 401, 402, 406, 407, 408, 412, 413, 414, 418, 419, 420, 424,

425, 426, 430, 431, 432, 436, 437, 438, 442, 444, 448, 450, 451, 454, 456,

460, 465, 466, 472, 477, 478, 484, 489, 490, 496, 501, 502, 508, 513, 514,

519, 520, 525, 526, 527, 531, 532, 533, 537, 539, 543, 545, 549, 551, 555,

561, 567, 573, 579, 585, 591, 597, 603, 609, 615, 621, 622, 627, 698, 704,

710, 716, 722 ]

9.2.12 IsAdditiveNumericalSemigroup

. IsAdditiveNumericalSemigroup(S) (function)

S is a numerical semigroup. Detects if S is additive, that is, ord(m+x) = ord(x)+1 for all x in S ,
where m is the multiplicity of S and ord stands for MaximumDegreeOfElementWRTNumericalSemi-
group. For these semigroups grm(K[[S]]) is Cohen-Macaulay(see [BH13]).

Example
gap> l:=IrreducibleNumericalSemigroupsWithFrobeniusNumber(31);;

gap> Length(l);

109

gap> Length(Filtered(l,IsAdditiveNumericalSemigroup));

20

9.2.13 IsSuperSymmetricNumericalSemigroup

. IsSuperSymmetricNumericalSemigroup(S) (function)

S is a numerical semigroup. Detects if S is supersymmetric, that is, it is symmetric, additive and
whenever w+w′= f +m (with m the multiplicity and f the Frobenius number) we have ord(w+w′)=
ord(w)+ord(w′), where ord stands for MaximumDegreeOfElementWRTNumericalSemigroup.

Example
gap> l:=IrreducibleNumericalSemigroupsWithFrobeniusNumber(31);;

gap> Length(l);

109

gap> Length(Filtered(l,IsSuperSymmetricNumericalSemigroup));

7

9.3 Invariants based on distances

9.3.1 CatenaryDegreeOfSetOfFactorizations

. CatenaryDegreeOfSetOfFactorizations(ls) (function)

ls is a set of factorizations (a list of lists of nonnegative integers with the same lenght). The
output is the catenary degree of this set of factorizations.

Example
gap> FactorizationsIntegerWRTList(100,[11,13,15,19]);

[ [ 2, 6, 0, 0 ], [ 3, 4, 1, 0 ], [ 4, 2, 2, 0 ], [ 5, 0, 3, 0 ],
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[ 5, 2, 0, 1 ], [ 6, 0, 1, 1 ], [ 0, 1, 2, 3 ], [ 1, 1, 0, 4 ] ]

gap> CatenaryDegreeOfSetOfFactorizations(last);

5

9.3.2 AdjacentCatenaryDegreeOfSetOfFactorizations

. AdjacentCatenaryDegreeOfSetOfFactorizations(ls) (function)

ls is a set of factorizations (a list of lists of nonnegative integers with the same lenght). The
output is the adjacent catenary degree of this set of factorizations, that is, the supremum of the distance
between to sets of factorizations with adjacet lengths. More precisely, if l1, . . . , lt are the lengths of
the factorizations of the elements in ls , and Zli is the set of factorizations in ls with length li, then
the adjacent catenary degre is the maximum of the distances d(Zli ,Zli+1).

Example
gap> FactorizationsIntegerWRTList(100,[11,13,15,19]);

[ [ 2, 6, 0, 0 ], [ 3, 4, 1, 0 ], [ 4, 2, 2, 0 ], [ 5, 0, 3, 0 ], [ 5, 2, 0, 1 ],

[ 6, 0, 1, 1 ], [ 0, 1, 2, 3 ], [ 1, 1, 0, 4 ] ]

gap> AdjacentCatenaryDegreeOfSetOfFactorizations(last);

5

9.3.3 EqualCatenaryDegreeOfSetOfFactorizations

. EqualCatenaryDegreeOfSetOfFactorizations(ls) (function)

ls is a set of factorizations (a list of lists of nonnegative integers with the same lenght). The same
as CatenaryDegreeOfSetOfFactorizations, but now the factorizations joined by the chain must have
the same length, and the elements in the chain also. Equivalently, if l1, . . . , lt are the lengths of the
factorizations of the elements in ls , and Zli is the set of factorizations in ls with length li, then the
equal catenary degre is the maximum of the CatenaryDegreeOfSetOfFactorizations of d(Zli ,Zli+1).

Example
gap> FactorizationsIntegerWRTList(100,[11,13,15,19]);

[ [ 2, 6, 0, 0 ], [ 3, 4, 1, 0 ], [ 4, 2, 2, 0 ], [ 5, 0, 3, 0 ], [ 5, 2, 0, 1 ],

[ 6, 0, 1, 1 ], [ 0, 1, 2, 3 ], [ 1, 1, 0, 4 ] ]

gap> EqualCatenaryDegreeOfSetOfFactorizations(last);

2

9.3.4 MonotoneCatenaryDegreeOfSetOfFactorizations

. MonotoneCatenaryDegreeOfSetOfFactorizations(ls) (function)

ls is a set of factorizations (a list of lists of nonnegative integers with the same lenght). The
same as CatenaryDegreeOfSetOfFactorizations, but now the factorizations are joined by a chain with
nondecreasing lengths. Equivalently, it is the maximum of the AdjacentCatenaryDegreeOfSetOfFac-
torizations and the EqualCatenaryDegreeOfSetOfFactorizations.

Example
gap> FactorizationsIntegerWRTList(100,[11,13,15,19]);

[ [ 2, 6, 0, 0 ], [ 3, 4, 1, 0 ], [ 4, 2, 2, 0 ], [ 5, 0, 3, 0 ], [ 5, 2, 0, 1 ],

[ 6, 0, 1, 1 ], [ 0, 1, 2, 3 ], [ 1, 1, 0, 4 ] ]
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gap> MonotoneCatenaryDegreeOfSetOfFactorizations(last);

5

9.3.5 CatenaryDegreeOfElementInNumericalSemigroup

. CatenaryDegreeOfElementInNumericalSemigroup(n, S) (function)

n is a nonnegative integer and S is a numerical semigroup. The output is the catenary degree of n
relative to S .

Example
gap> CatenaryDegreeOfElementInNumericalSemigroup(157,NumericalSemigroup(13,18));

0

gap> CatenaryDegreeOfElementInNumericalSemigroup(1157,NumericalSemigroup(13,18));

18

9.3.6 TameDegreeOfSetOfFactorizations

. TameDegreeOfSetOfFactorizations(ls) (function)

ls is a set of factorizations (a list of lists of nonnegative integers with the same lenght). The
output is the tame degree of this set of factorizations.

Example
gap> FactorizationsIntegerWRTList(100,[11,13,15,19]);

[ [ 2, 6, 0, 0 ], [ 3, 4, 1, 0 ], [ 4, 2, 2, 0 ], [ 5, 0, 3, 0 ],

[ 5, 2, 0, 1 ], [ 6, 0, 1, 1 ], [ 0, 1, 2, 3 ], [ 1, 1, 0, 4 ] ]

gap> TameDegreeOfSetOfFactorizations(last);

4

9.3.7 CatenaryDegreeOfNumericalSemigroup

. CatenaryDegreeOfNumericalSemigroup(S) (function)

S is a numerical semigroup. The output is the catenary degree of S .
Example

gap> s:=NumericalSemigroup(101,113,196,272,278,286);

<Numerical semigroup with 6 generators>

gap> CatenaryDegreeOfNumericalSemigroup(s);

8

9.3.8 EqualPrimitiveElementsOfNumericalSemigroup

. EqualPrimitiveElementsOfNumericalSemigroup(S) (function)

S is a numerical semigroup.
The output is the set of elements s in S such that there exists a minimal solution to msg · x−msg ·

y = 0, such that x,y are factorizations with the same length of s, and msg is the minimal generating
system of S . These elements are used to compute the equal catenary degree of S .
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Example
gap> s:=NumericalSemigroup(3,5,7);;

gap> BettiElementsOfNumericalSemigroup(s);

[ 10, 12, 14 ]

9.3.9 EqualCatenaryDegreeOfNumericalSemigroup

. EqualCatenaryDegreeOfNumericalSemigroup(S) (function)

S is a numerical semigroup. The output is the equal catenary degree of S .
Example

gap> s:=NumericalSemigroup(3,5,7);;

gap> EqualPrimitiveElementsOfNumericalSemigroup(s);

[ 3, 5, 7, 10 ]

9.3.10 MonotonePrimitiveElementsOfNumericalSemigroup

. MonotonePrimitiveElementsOfNumericalSemigroup(S) (function)

S is a numerical semigroup.
The output is the set of elements s in S such that there exists a minimal solution to msg · x−msg ·

y = 0, such that x,y are factorizations of s, with |x| ≤ |y|; msg stands the minimal generating system
of S . These elements are used to compute the monotone catenary degree of S .

Example
gap> s:=NumericalSemigroup(3,5,7);;

gap> MonotonePrimitiveElementsOfNumericalSemigroup(s);

[ 3, 5, 7, 10, 12, 14, 15, 21, 28, 35 ]

9.3.11 MonotoneCatenaryDegreeOfNumericalSemigroup

. MonotoneCatenaryDegreeOfNumericalSemigroup(S) (function)

S is a numerical semigroup. The output is the monotone catenary degree of S .
Example

gap> s:=NumericalSemigroup(10,23,31,44);;

gap> CatenaryDegreeOfNumericalSemigroup(s);

9

gap> MonotoneCatenaryDegreeOfNumericalSemigroup(s);

21

9.3.12 TameDegreeOfNumericalSemigroup

. TameDegreeOfNumericalSemigroup(S) (function)

S is a numerical semigroup. The output is the tame degree of S .
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Example
gap> s:=NumericalSemigroup(101,113,196,272,278,286);

<Numerical semigroup with 6 generators>

gap> TameDegreeOfNumericalSemigroup(s);

14

9.3.13 TameDegreeOfElementInNumericalSemigroup

. TameDegreeOfElementInNumericalSemigroup(n, S) (function)

n is an elment of the numerical semigroup S . The output is the tame degree of n in S .
Example

gap> s:=NumericalSemigroup(10,11,13);

<Numerical semigroup with 3 generators>

gap> TameDegreeOfElementInNumericalSemigroup(100,s);

5

9.4 Primality

9.4.1 OmegaPrimalityOfElementInNumericalSemigroup

. OmegaPrimalityOfElementInNumericalSemigroup(n, S) (function)

n is an elment of the numerical semigroup S . The output is the ω-primality of n in S as explained
in [BGSG11]. The current implementation is due to Chris O’Neill based on a work in progress with
Pelayo and Thomas.

Example
gap> s:=NumericalSemigroup(10,11,13);

<Numerical semigroup with 3 generators>

gap> OmegaPrimalityOfElementInNumericalSemigroup(100,s);

13

9.4.2 OmegaPrimalityOfNumericalSemigroup

. OmegaPrimalityOfNumericalSemigroup(n, S) (function)

S is a numerical semigroup. The output is the maximum of the ω-primalities of the minimal
generators of S .

Example
gap> s:=NumericalSemigroup(10,11,13);

<Numerical semigroup with 3 generators>

gap> OmegaPrimalityOfNumericalSemigroup(s);

5

9.5 Homogenization of Numerical Semigroups

Let S be a numerical semigroup minimally generated by {m1, . . . ,mn}. The homogenization of S, Shom

is the semigroup generated by {(1,0),(1,m1), . . . ,(1,mn)}. The catenary degree of Shom coincides
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with the homogeneous catenary degree of S, and it is between the catenary and the monotone catenary
degree of S. The advantage of this catenary degree is that is less costly to compute than the monotone
catenary degree, and has some nice interpretations ([GSOSRN13]). This section contains the auxiliary
functions needed to compute the homogeneous catenary degree.

9.5.1 BelongsToHomogenizationOfNumericalSemigroup

. BelongsToHomogenizationOfNumericalSemigroup(n, S) (function)

S is a numerical semigroup and n a list with two entries (a pair). The output is true if the n belongs
to the homogenization of S .

Example
gap> s:=NumericalSemigroup(10,11,13);;

gap> BelongsToHomogenizationOfNumericalSemigroup([10,23],s);

true

gap> BelongsToHomogenizationOfNumericalSemigroup([1,23],s);

false

9.5.2 FactorizationsInHomogenizationOfNumericalSemigroup

. FactorizationsInHomogenizationOfNumericalSemigroup(n, S) (function)

S is a numerical semigroup and n a list with two entries (a pair). The output is the set of factor-
izations n in terms of the minimal generating system of the homogenization of S .

Example
gap> s:=NumericalSemigroup(10,11,13);;

gap> FactorizationsInHomogenizationOfNumericalSemigroup([20,230],s);

[ [ 0, 0, 15, 5 ], [ 0, 2, 12, 6 ], [ 0, 4, 9, 7 ],

[ 0, 6, 6, 8 ], [ 0, 8, 3, 9 ], [ 0, 10, 0, 10 ],

[ 1, 1, 7, 11 ], [ 1, 3, 4, 12 ], [ 1, 5, 1, 13 ],

[ 2, 0, 2, 16 ] ]

gap> FactorizationsElementWRTNumericalSemigroup(230,s);

[ [ 23, 0, 0 ], [ 12, 10, 0 ], [ 1, 20, 0 ], [ 14, 7, 1 ],

[ 3, 17, 1 ], [ 16, 4, 2 ], [ 5, 14, 2 ], [ 18, 1, 3 ],

[ 7, 11, 3 ], [ 9, 8, 4 ], [ 11, 5, 5 ], [ 0, 15, 5 ],

[ 13, 2, 6 ], [ 2, 12, 6 ], [ 4, 9, 7 ], [ 6, 6, 8 ],

[ 8, 3, 9 ], [ 10, 0, 10 ], [ 1, 7, 11 ], [ 3, 4, 12 ],

[ 5, 1, 13 ], [ 0, 2, 16 ] ]

9.5.3 HomogeneousBettiElementsOfNumericalSemigroup

. HomogeneousBettiElementsOfNumericalSemigroup(n, S) (function)

S is a numerical semigroup. The output is the set of Betti elements of the homogenization of S .
Example

gap> s:=NumericalSemigroup(10,17,19);;

gap> BettiElementsOfNumericalSemigroup(s);

[ 57, 68, 70 ]

gap> HomogeneousBettiElementsOfNumericalSemigroup(s);

[ [ 5, 57 ], [ 5, 68 ], [ 6, 95 ], [ 7, 70 ], [ 9, 153 ] ]
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9.5.4 HomogeneousCatenaryDegreeOfNumericalSemigroup

. HomogeneousCatenaryDegreeOfNumericalSemigroup(S) (function)

S is a numerical semigroup. The output is the homogeneus catenary degree of S . Observe that for
a single element in the homogenization of S , its catenary degree can be computed with CatenaryDe-
greeOfSetOfFactorizations and FactorizationsInHomogenizationOfNumericalSemigroup.

Example
gap> s:=NumericalSemigroup(10,17,19);;

gap> CatenaryDegreeOfNumericalSemigroup(s);

7

gap> HomogeneousCatenaryDegreeOfNumericalSemigroup(s);

9

9.6 Divisors, posets

Given a numerical semigroup S and two integers a,b, we write a≤S b if b−a ∈ S. We also say that a
divides b (with respecto to S). The semigroup S with this binary relation is a poset.

9.6.1 MoebiusFunctionAssociatedToNumericalSemigroup

. MoebiusFunctionAssociatedToNumericalSemigroup(S, n) (function)

S is a numerical semigroup and n is an integer. As (S,≤S) is a poset, we can define the Möbius
function associtate to it as in [CRA13]. The output is the value of the Möbius function in the integer
n , that is, the alternate sum of the number of chains from 0 to n .

Example
gap> s:=NumericalSemigroup(3,5,7);;

gap> MoebiusFunctionAssociatedToNumericalSemigroup(s,10);

2

gap> MoebiusFunctionAssociatedToNumericalSemigroup(s,34);

25



Chapter 10

Polynomials and numerical semigroups

10.1 Generating functions or Hilbert series

Let S be a numerical semigroup. The Hilbert series or generating function associated to S is HS(x) =
∑s∈S xs (actually it is the Hilbert function of the ring K[S] with K a field). See for instance [Mor14].

10.1.1 NumericalSemigroupPolynomial

. NumericalSemigroupPolynomial(s, x) (function)

s is a numerical semigroups and x a variable (or a value to evaluate in). The output is the poly-
nomial 1+(x−1)∑s∈N\S xs, which equals (1− x)HS(x).

Example
gap> x:=X(Rationals,"x");;

gap> s:=NumericalSemigroup(5,7,9);;

gap> NumericalSemigroupPolynomial(s,x);

x^14-x^13+x^12-x^11+x^9-x^8+x^7-x^6+x^5-x+1

10.1.2 HilbertSeriesOfNumericalSemigroup

. HilbertSeriesOfNumericalSemigroup(s, x) (function)

s is a numerical semigroups and x a variable (or a value to evaluate in). The output is the series
∑s∈\S xs. The series is given as a rational function.

Example
gap> x:=X(Rationals,"x");;

gap> s:=NumericalSemigroup(5,7,9);;

gap> HilbertSeriesOfNumericalSemigroup(s,x);

(x^14-x^13+x^12-x^11+x^9-x^8+x^7-x^6+x^5-x+1)/(-x+1)

10.1.3 GraeffePolynomial

. GraeffePolynomial(p) (function)

p is a polynomial. Computes the Graeffe polynomial of p . Needed to test if p is a cyclotomic
polynomial (see [BD89]).

61



numericalsgps– a package for numerical semigroups 62

Example
gap> x:=X(Rationals,"x");;

gap> GraeffePolynomial(x^2-1);

x^2-2*x+1

10.1.4 IsCyclotomicPolynomial

. IsCyclotomicPolynomial(p) (function)

p is a polynomial. Detects if p is a cyclotomic polynomial using the procedure given in [BD89].
Example

gap> CyclotomicPolynomial(Rationals,3);

x^2+x+1

gap> IsCyclotomicPolynomial(last);

true

10.1.5 IsKroneckerPolynomial

. IsKroneckerPolynomial(p) (function)

p is a polynomial. Detects if p is a Kronecker polynomial, that is, a monic polynomial with integer
coefficients having all its roots in the unit circunference, or equivalently, a product of cyclotomic
polynomials.

Example
gap> x:=X(Rationals,"x");;

gap> s:=NumericalSemigroup(3,5,7);;

gap> t:=NumericalSemigroup(4,6,9);;

gap> p:=NumericalSemigroupPolynomial(s,x);

x^5-x^4+x^3-x+1

gap> q:=NumericalSemigroupPolynomial(t,x);

x^12-x^11+x^8-x^7+x^6-x^5+x^4-x+1

gap> IsKroneckerPolynomial(p);

false

gap> IsKroneckerPolynomial(q);

true

10.1.6 IsCyclotomicNumericalSemigroup

. IsCyclotomicNumericalSemigroup(s) (function)

s is a numerical semigroup. Detects if the polynomial associated to s is a Kronecker polynomial.
Example

gap> l:=CompleteIntersectionNumericalSemigroupsWithFrobeniusNumber(21);;

gap> ForAll(l,IsCyclotomicNumericalSemigroup);

true
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10.1.7 IsSelfReciprocalUnivariatePolynomial

. IsSelfReciprocalUnivariatePolynomial(p) (function)

p is a polynomial. Detects if p is a selfreciprocal. A numerical semigroup is symmetric if and
only if it is selfreciprocal, [Mor14]

Example
gap> l:=IrreducibleNumericalSemigroupsWithFrobeniusNumber(13);;

gap> x:=X(Rationals,"x");;

gap> ForAll(l, s->

> IsSelfReciprocalUnivariatePolynomial(NumericalSemigroupPolynomial(s,x)));

true

10.2 Semigroup of values of algebraic curves

Let f (x,y) ∈ K[x,y], with K an algebraically close field of characteristic zero. Let f (x,y) = yn +
a1(x)yn−1 + . . .+an(x) be a nonzero polynomial of K[x][y]. After possibly a change of variables, we
may assume that, that degx(ai(x))≤ i−1 for all i ∈ {1, . . . ,n}. For g ∈K[x,y] that is not a multiple of
f , define int( f ,g) = dimK

K[x,y]
( f ,g) . If f as a one place at infinity, then the set {int( f ,g) | g∈K[x,y]\( f )}

is a free numerical semigroup (and thus a complete intersection).

10.2.1 SemigroupOfValuesOfPlaneCurveWithSinglePlaceAtInfinity

. SemigroupOfValuesOfPlaneCurveWithSinglePlaceAtInfinity(f) (function)

f is a polynomial in the variables X(Rationals,1) and X(Rationals,2). Computes the semigroup
{int( f ,g) | g∈K[x,y]\( f )}. The algorithm checks if f has one place at infinity. If the extra argument
"all" is given, then the output is the δ -sequence and approximate roots of f . The method is explained
in [AGS14].

Example
gap> x:=X(Rationals,"x");; y:=X(Rationals,"y");;

gap> f:=((y^3-x^2)^2-x*y^2)^4-(y^3-x^2);;

gap> SemigroupOfValuesOfPlaneCurveWithSinglePlaceAtInfinity(f,"all");

[ [ 24, 16, 28, 7 ], [ y, y^3-x^2, y^6-2*x^2*y^3+x^4-x*y^2 ] ]

10.2.2 IsDeltaSequence

. IsDeltaSequence(l) (function)

l is a list of positive integers. Assume that l equals a0,a1, . . . ,ah. Then l is a δ -sequence if
gcd(a0, . . . ,ah) = 1, 〈a0, · · ·as is free, akDk > ak+1Dk+1 and a0 > a1 > D2 > D3 > .. . > Dh+1, where
D1 = a0, Dk = gcd(Dk−1,ak−1.

Every δ -sequence generates a numerical semigroup that is the semigroup of values of a plane
curve with one place at infinity.

Example
gap> IsDeltaSequence([24,16,28,7]);

true
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10.2.3 DeltaSequencesWithFrobeniusNumber

. DeltaSequencesWithFrobeniusNumber(f) (function)

f is a positive integer. Computes the set of all δ -sequences generating numerical semigroups with
Frobenius number f .

Example
gap> DeltaSequencesWithFrobeniusNumber(21);

[ [ 8, 6, 11 ], [ 10, 4, 15 ], [ 12, 8, 6, 11 ], [ 14, 4, 11 ],

[ 15, 10, 4 ], [ 23, 2 ] ]

10.2.4 CurveAssociatedToDeltaSequence

. CurveAssociatedToDeltaSequence(l) (function)

l is a δ -sequence. Computes a curve in the variables X(Rationals,1) and X(Rationals,2) whose
semigroup of values is generated by the l .

Example
gap> CurveAssociatedToDeltaSequence([24,16,28,7]);

x_2^24-8*x^2*x_2^21+28*x^4*x_2^18-56*x^6*x_2^15-4*x*x_2^20+70*x^8*x_2^12+24*x^\

3*x_2^17-56*x^10*x_2^9-60*x^5*x_2^14+28*x^12*x_2^6+80*x^7*x_2^11+6*x^2*x_2^16-\

8*x^14*x_2^3-60*x^9*x_2^8-24*x^4*x_2^13+x^16+24*x^11*x_2^5+36*x^6*x_2^10-4*x^1\

3*x_2^2-24*x^8*x_2^7-4*x^3*x_2^12+6*x^10*x_2^4+8*x^5*x_2^9-4*x^7*x_2^6+x^4*x_2\

^8-x_2^3+x^2

gap> SemigroupOfValuesOfPlaneCurveWithSinglePlaceAtInfinity(last,"all");

[ [ 24, 16, 28, 7 ], [ x_2, x_2^3-x_1^2, x_2^6-2*x_1^2*x_2^3+x_1^4-x_1*x_2^2 ] ]

10.2.5 SemigroupOfValuesOfCurve_Local

. SemigroupOfValuesOfCurve_Local(arg) (function)

The function admits one or two parameters. In any case, the first is a list of polynomials pols .
And the second can be the string "basis" or an integer val .

If only one argument is given, the output is the semigroup of all possible orders of K[[pols]]
provided that K[[x]]/K[[pols]] has finite length. If the second argument "basis" is given, then the
output is a (reduced) basis of the algebra K[[pols]] such that the orders of the basis elements generate
minimally the semigroup of orders of K[[pols]]. If an integer val is the second argument, then the
output is a polynomial in K[[pols]] with order val (fail if there is no such polynomioal, that is, val
is not in the semigroup of values).

The method is explained in [AGSM14].
Example

gap> x:=Indeterminate(Rationals,"x");;

gap> SemigroupOfValuesOfCurve_Local([x^4,x^6+x^7,x^13]);

<Numerical semigroup with 4 generators>

gap> MinimalGeneratingSystem(last);

[ 4, 6, 13, 15 ]

gap> SemigroupOfValuesOfCurve_Local([x^4,x^6+x^7,x^13], "basis");

[ x^4, x^7+x^6, x^13, x^15 ]

gap> SemigroupOfValuesOfCurve_Local([x^4,x^6+x^7,x^13], 20);

x^20
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10.2.6 SemigroupOfValuesOfCurve_Global

. SemigroupOfValuesOfCurve_Global(arg) (function)

The function admits one or two parameters. In any case, the first is a list of polynomials pols .
And the second can be the string "basis" or an integer val .

If only one argument is given, the output is the semigroup of all possible degrees of K[pols]
provided that K[x]/K[pols] has finite length. If the second argument "basis" is given, then the
output is a (reduced) basis of the algebra K[pols] such that the degrees of the basis elements generate
minimally the semigroup of degrees of K[pols]. If an integer val is the second argument, then the
output is a polynomial in K[pols] with degree val (fail if there is no such polynomioal, that is, val
is not in the semigroup of values).

The method is explained in [AGSM14].
Example

gap> x:=Indeterminate(Rationals,"x");;

gap> SemigroupOfValuesOfCurve_Global([x^4,x^6+x^7,x^13]);

<Numerical semigroup with 3 generators>

gap> MinimalGeneratingSystem(last);

[ 4, 7, 13 ]

gap> SemigroupOfValuesOfCurve_Global([x^4,x^6+x^7,x^13],"basis");

[ x^4, x^7+x^6, x^13 ]

gap> SemigroupOfValuesOfCurve_Global([x^4,x^6+x^7,x^13],12);

x^12

gap> SemigroupOfValuesOfCurve_Global([x^4,x^6+x^7,x^13],6);

fail



Chapter 11

Affine semigroups

The use of the packages NormalizInterface [GHS14] (an interface to Normalize [BIRC14]; or in
its absence 4ti2Interface[Gut], and interface to 4ti2[tt]), SingularInterface (an interface to
Singular [DGPS12]; or in its absence Singular [CdG12]); or in its absecnce GradedModules

[BGJ+14] is highly recomended for many of the functions presented in this chapter. How-
ever, whenever possible a method not depending on these packages is also provided (though
slower). The package tests if the user has downloaded any of the above packages, and if so puts
NumSgpsCanUsePackage to true, where Package is any of the above.

11.1 Using external packages

As mentioned above some methods are specifially implemented to take advantage of several external
packages. The following functions can be used in case these packages have not been loaded prior to
numericalsgps.

11.1.1 NumSgpsUse4ti2

. NumSgpsUse4ti2() (function)

Tries to load the package 4ti2Interface. If the package is available, then it also loads methods
implemented using functions in this package.

11.1.2 NumSgpsUse4ti2gap

. NumSgpsUse4ti2gap() (function)

Tries to load the package 4ti2gap. If the package is available, then it also loads methods imple-
mented using functions in this package.

11.1.3 NumSgpsUseNormalize

. NumSgpsUseNormalize() (function)

Tries to load the package NormalizInterface. If the package is available, then it also loads
methods implemented using functions in this package.

66
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11.1.4 NumSgpsUseSingular

. NumSgpsUseSingular() (function)

Tries to load the package singular. If the package is available, then it also loads methods imple-
mented using functions in this package.

To prevent incompatibilities, the package will not load if SingularInterface has been already
loaded.

11.1.5 NumSgpsUseSingularInterface

. NumSgpsUseSingularInterface() (function)

Tries to load the package SingularInterface. If the package is available, then it also loads
methods implemented using functions in this package.

To prevent incompatibilities, the package will not load if singular has been already loaded.

11.1.6 NumSgpsUseSingularGradedModules

. NumSgpsUseSingularGradedModules() (function)

Tries to load the package GradedModules. If the package is available, then it also loads methods
implemented using functions in this package.

It also creates a ring of rationals NumSgpsRationals.

11.2 Defining affine semigroups

An affine semigroup S is a finitely generated cancellative monoid that is reduced (no units other than
0) and is torsion-free (as = bs implies a = b, with a,b ∈ N and s ∈ S). Up to isomorphisms any
affine semigroup can ve viewed as a finitely generated submonoid of Nk for some positive integer
k. Thus affine semigroups are a natural generalization of numerical semigroups. The most common
way to give an affine semigroup is by any of its systems of generators. As for numerical semigroups,
any affine semigroup admits a unique minimal system of generators. A system of generators can be
represented as a list of lists of nonnegative integers; all lists in the list having the same length (a matrix
actually). If G is a subgroup of Zk, then S = G∩Nk is an affine semigroup (these semigroups are call
full affine semigroups). As G can be represented by its defining equations (homogeneous and some
of them possibly in congruences), we can represent S by the defining equations of G; indeed S is
just the set of nonnegative solutions of this system of equations. We can represent the equations as
a list of lists of integers, all with the same length. Every list is a row of the matrix of coefficients of
the system of equations. For the equations in congruences, if we arrange them so that they are the
first ones in the list, we provide the corresponding moduli in a list. So for instance, the equations
x+ y≡ 0 mod 2, x−2y = 0 will be represented as [[1,1],[1,-2]] and the moduli [2].

To create an affine semigroup in GAP the function AffineSemigroup is used.

11.2.1 AffineSemigroup

. AffineSemigroup(Representation, List) (function)
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Representation may be "generators", "minimalgenerators" according to whether the
semigroup is to be given by means of a system of generators, a minimal system of generators, ...

When no string is given as first argument it is assumed that the numerical semigroup will be given
by means of a set of generators.

Example
gap> AffineSemigroup([1,3],[7,2],[1,5]);

<Affine semigroup in 2 dimensional space, with 3 generators>

gap> a2 := AffineSemigroup("equations",[[[-2,1]],[3]]);

<Affine semigroup>

11.2.2 AsAffineSemigroup

. AsAffineSemigroup(S) (function)

S is a numerical semigroup, the output is S regarded as an affine semigroup.
Example

gap> s:=NumericalSemigroup(1310,1411,1546,1601);

<Numerical semigroup with 4 generators>

gap> MinimalPresentationOfNumericalSemigroup(s);;time;

2960

gap> a:=AsAffineSemigroup(s);

<Affine semigroup in 1 dimensional space, with 4 generators>

gap> GeneratorsOfAffineSemigroup(a);

[ [ 1310 ], [ 1411 ], [ 1546 ], [ 1601 ] ]

gap> MinimalPresentationOfAffineSemigroup(a);;time;

237972

If we use the package SingularInterface, the speed up is considerable.
Example

gap> NumSgpsUseSingularInterface();

...

gap> MinimalPresentationOfAffineSemigroup(a);;time;

32

11.2.3 IsAffineSemigroup

. IsAffineSemigroup(AS) (attribute)

. IsAffineSemigroupByGenerators(AS) (attribute)

. IsAffineSemigroupByMinimalGenerators(AS) (attribute)

. IsAffineSemigroupByEquations(AS) (attribute)

. IsAffineSemigroupByInequalities(AS) (attribute)

AS is an affine semigroup and these attributes are available (their names should be self explana-
tory). They reflect what is currently known about the semigroup.

Example
gap> a1:=AffineSemigroup([[3,0],[2,1],[1,2],[0,3]]);

<Affine semigroup in 2 dimensional space, with 4 generators>

gap> IsAffineSemigroupByEquations(a1);

false
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gap> IsAffineSemigroupByGenerators(a1);

true

11.2.4 BelongsToAffineSemigroup

. BelongsToAffineSemigroup(v, a) (function)

v is a list of nonnegative integers and a an affine semigroup. Returns true if the vector is in the
semigroup, and false otherwise.

If the semigroup is full and its equations are known (either because the semigroup was defined by
equations, or because the user has called IsFullAffineSemgiroup(a) and the output was true), then
membership is performed by evaluating v in the equations. The same holds for normal semigroups
and its defining inequalities.

Example
gap> a:=AffineSemigroup([[2,0],[0,2],[1,1]]);;

gap> BelongsToAffineSemigroup([5,5],a);

true

gap> BelongsToAffineSemigroup([1,2],a);

false

11.2.5 IsFullAffineSemigroup

. IsFullAffineSemigroup(S) (function)

s is an affine semigroup.
Returns true if the semigroup is full, false otherwise. The semigroup is full if whenever a,b ∈ S

and b−a ∈ Nk, then a−b ∈ S, where k is the dimension of S.
If the semigroup is full, then its equations are stored in the semigroup for further use.

Example
gap> a:=AffineSemigroup([[2,0],[0,2],[1,1]]);;

gap> BelongsToAffineSemigroup([5,5],a);

true

gap> BelongsToAffineSemigroup([1,2],a);

false

11.2.6 HilbertBasisOfSystemOfHomogeneousEquations

. HilbertBasisOfSystemOfHomogeneousEquations(ls, m) (function)

ls is a list of lists of integers and m a list of integers. The elements of ls represent the rows of a
matrix A. The output is a minimal generating system (Hilbert basis) of the set of nonnegative integer
solutions of the sytem Ax = 0 where the k first equations are in the congruences modulo m[i] , with k
the length of m .

If the package NormalizInterface has not been loaded, then Contejean-Devie algorithm is used
[CD94] instead (if this is the case, congruences are treated as in [RGS98].

Example
gap> HilbertBasisOfSystemOfHomogeneousEquations([[1,0,1],[0,1,-1]],[2]);

[ [ 0, 2, 2 ], [ 1, 1, 1 ], [ 2, 0, 0 ] ]
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If C is a pointed cone (a cone in Qk not containing lines and 0 ∈C), then S =C∩Nk is an affine
semigroup (known as normal affine semigroup). So another way to give an affine semigroup is by a
set of homogeneous inequalities, and we can represent these inequalities by its coefficients. If we put
them in a matrix S can be defined as the set of nonnegative integer solutions to Ax≥ 0.

11.2.7 HilbertBasisOfSystemOfHomogeneousInequalities

. HilbertBasisOfSystemOfHomogeneousInequalities(ls) (function)

ls is a list of lists of integers. The elements of ls represent the rows of a matrix A. The output is
a minimal generating system (Hilbert basis) of the set of nonnegative integer solutions to Ax≥ 0.

If the package NormalizInterface has not been loaded, then Contejean-Devie algorithm is used
[CD94] instead (the use of slack variables is described in [RGSB02]).

Example
gap> HilbertBasisOfSystemOfHomogeneousInequalities([[2,-3],[0,1]]);

[ [ 1, 0 ], [ 2, 1 ], [ 3, 2 ] ]

11.2.8 EquationsOfGroupGeneratedBy

. EquationsOfGroupGeneratedBy(M) (function)

M is a matrix of integers. The output is a pair [A,m] that reperesents the set of defining equations
of the group spanned by the rows of M : Ax = 0 ∈ Zn1×·· ·×Znt ×Zk, with m = [n1, . . . ,nt ].

Example
gap> EquationsOfGroupGeneratedBy([[1,2,0],[2,-2,2]]);

[ [ [ 0, 0, -1 ], [ -2, 1, 3 ] ], [ 2 ] ]

11.2.9 BasisOfGroupGivenByEquations

. BasisOfGroupGivenByEquations(A, m) (function)

A is a matrix of integers and m is a list of positive integers. The output is a basis for the group with
defining equations Ax = 0 ∈ Zn1×·· ·×Znt ×Zk, with m = [n1, . . . ,nt ].

Example
gap> BasisOfGroupGivenByEquations([[0,0,1],[2,-1,-3]],[2]);

[ [ -1, -2, 0 ], [ -2, 2, -2 ] ]

11.3 Gluings of affine semigroups

Let S1 and S2 be two affine semigroups with the same dimension generated by A1 and A2, respectively.
We say that the affine semigroup S generated by the union of A1 and A2 is a gluing of S1 and S2 if
G(S1)∩G(S2) = dZ (G(·) stands for group spanned by) for some d ∈ S1∩S2.

The algorithm used is explained in [RGS99b].
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11.3.1 GluingOfAffineSemigroups

. GluingOfAffineSemigroups(a1, a2) (function)

a1, a2 are affine semigroups. Determines if they can be glued, and if so, returns the gluing.
Otherwise it returns fail.

Example
gap> a1:=AffineSemigroup([[2,0],[0,2]]);

<Affine semigroup in 2 dimensional space, with 2 generators>

gap> a2:=AffineSemigroup([[1,1]]);

<Affine semigroup in 2 dimensional space, with 1 generators>

gap> GluingOfAffineSemigroups(a1,a2);

<Affine semigroup in 2 dimensional space, with 3 generators>

gap> GeneratorsAS(last);

[ [ 0, 2 ], [ 1, 1 ], [ 2, 0 ] ]

11.4 Presentations of affine semigroups

A minimal presentation of an affine semigoup is defined analogously as for numerical semigroups.
The user might take into account that generators are stored in a set, and thus might be arranged in a
different way to the intitial input.

11.4.1 GeneratorsOfKernelCongruence

. GeneratorsOfKernelCongruence(M) (function)

M is matrix with nonnegative integer coefficients. The output is a system of generators of the
congruence {(x,y) | xM = yM}.

The main differe3nce with MinimalPresentationOfAffineSemigroup is that the matrix M can
have repeated columns and these are not treated as a set.

11.4.2 MinimalPresentationOfAffineSemigroup

. MinimalPresentationOfAffineSemigroup(a) (function)

a is an affine semigroup. The output is a minimal presentation for a .
There are four methods implemented for this function, depending on the packages loaded. All

of them use elimination, and Herzog’s correspondence, computing the kernel of a ring homomor-
phism ([Her70]). The fastest procedure is achived when SingularInterface is loaded, followed
by Singular. The procedure that does not use external packages uses internal GAP Gröbner basis
computations and thus it is slower. Also in this case, from the Gröbner basis, a minimal set of ger-
ating binomials must be refined, and for this Rclasses are used (if NormalizInterface is loaded,
then the factorizations are faster). The 4ti2 implementation uses 4ti2 internal Gröbner bases and
factorizations are done via zsolve.

Example
gap> a:=AffineSemigroup([2,0],[0,2],[1,1]);;

gap> MinimalPresentationOfAffineSemigroup(a);

[ [ [ 1, 0, 1 ], [ 0, 2, 0 ] ] ]
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gap> GeneratorsOfAffineSemigroup(a);

[ [ 0, 2 ], [ 1, 1 ], [ 2, 0 ] ]

11.4.3 BettiElementsOfAffineSemigroup

. BettiElementsOfAffineSemigroup(a) (function)

a is an affine semigroup. The output is the set of Betti elements of a (defined as for numerical
semigroups).

This function relies on the computation of a minimal presentation.
Example

gap> a:=AffineSemigroup([2,0],[0,2],[1,1]);;

gap> BettiElementsOfAffineSemigroup(a);

[ [ 2, 2 ] ]

11.4.4 ShadedSetOfElementInAffineSemigroup

. ShadedSetOfElementInAffineSemigroup(v, a) (function)

a is an affine semigroup and v is an element in a . This is a translation of
ShadedSetOfElementInNumericalSemigroup (4.1.5) but for affine semigroups.

11.4.5 IsGenericAffineSemigroup

. IsGenericAffineSemigroup(a) (function)

a is an affine semigroup.
The same as IsGenericNumericalSemigroup (4.2.2) but for affine semigroups.

11.4.6 IsUniquelyPresentedAffineSemigroup

. IsUniquelyPresentedAffineSemigroup(a) (function)

a is an affine semigroup.
The same as IsUniquelyPresentedNumericalSemigroup (4.2.1) but for affine semigroups.

11.4.7 PrimitiveElementsOfAffineSemigroup

. PrimitiveElementsOfAffineSemigroup(a) (function)

a is an affine semigroup. The output is the set of primitive elements of a (defined as for numerical
semigroups).

This function has three implementations (methods), one using Graver basis via the Lawrence
lifting of a and the other (much faster) using NormalizInterface. Also a 4ti2 version using its
Graber basis computation is provided.
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Example
gap> a:=AffineSemigroup([2,0],[0,2],[1,1]);;

gap> PrimitiveElementsOfAffineSemigroup(a);

[ [ 0, 2 ], [ 1, 1 ], [ 2, 0 ], [ 2, 2 ] ]

11.5 Factorizations in affine semigroups

The invariants presented here are defined as for numerical semigroups.
As with presentations, the user should take into account that generators are stored in a set, and

thus might be arranged in a different way to the intitial input.

11.5.1 FactorizationsVectorWRTList

. FactorizationsVectorWRTList(v, ls) (function)

v is a list of nonnegative integers and ls is a list of lists of nonnegative integers. The output is set
of factorizations of v in terms of the elements of ls .

If no extra package is loaded, then factorizations are computed recursively; and thus slowly. If
NormalizInterface is loaded, then a system of equations is solve with Normaliz, and the perfor-
mance is much better. If 4ti2Interface is loaded instead, then factorizations are calculated using
zsolve command of 4ti2.

Example
gap> FactorizationsVectorWRTList([5,5],[[2,0],[0,2],[1,1]]);

[ [ 2, 2, 1 ], [ 1, 1, 3 ], [ 0, 0, 5 ] ]

11.5.2 ElasticityOfAffineSemigroup

. ElasticityOfAffineSemigroup(a) (function)

a is an affine semigroup. The output is the elasticity of a (defined as for numerical semigroups).
The procedure used is based on [Phi10], where it is shown that the elasticity can be computed by

using circuits. The set of circutis is calculated using [ES96].
Example

gap> a:=AffineSemigroup([2,0],[0,2],[1,1]);;

gap> ElasticityOfAffineSemigroup(a);

1

11.5.3 CatenaryDegreeOfAffineSemigroup

. CatenaryDegreeOfAffineSemigroup(a) (function)

a is an affine semigroup. The output is the catenary degree of a (defined as for numerical semi-
groups).

Example
gap> a:=AffineSemigroup([2,0],[0,2],[1,1]);;

gap> CatenaryDegreeOfAffineSemigroup(a);

2



numericalsgps– a package for numerical semigroups 74

11.5.4 EqualCatenaryDegreeOfAffineSemigroup

. EqualCatenaryDegreeOfAffineSemigroup(a) (function)

a is an affine semigroup. The output is the equal catenary degree of a (defined as for numerical
semigroups).

This function relies on the results presented in [GSOSRN13].

11.5.5 HomogeneousCatenaryDegreeOfAffineSemigroup

. HomogeneousCatenaryDegreeOfAffineSemigroup(a) (function)

a is an affine semigroup. The output is the homogeneous catenary degree of a (defined as for
numerical semigroups).

This function is based on [GSOSRN13].

11.5.6 MonotoneCatenaryDegreeOfAffineSemigroup

. MonotoneCatenaryDegreeOfAffineSemigroup(a) (function)

a is an affine semigroup. The output is the monotone catenary degree of a (defined as for numer-
ical semigroups), computed as explained in [Phi10].

Example
gap> a:=AffineSemigroup("inequalities",[[2,-1],[-1,3]]);

<Affine semigroup>

gap> GeneratorsOfAffineSemigroup(a);

[ [ 1, 1 ], [ 1, 2 ], [ 2, 1 ], [ 3, 1 ] ]

gap> CatenaryDegreeOfAffineSemigroup(a);

3

gap> EqualCatenaryDegreeOfAffineSemigroup(a);

2

gap> HomogeneousCatenaryDegreeOfAffineSemigroup(a);

3

gap> MonotoneCatenaryDegreeOfAffineSemigroup(a);

3

11.5.7 TameDegreeOfAffineSemigroup

. TameDegreeOfAffineSemigroup(a) (function)

a is an affine semigroup. The output is the tame degree of a (defined as for numerical semigroups).
If a is given by equations (or its equations are known), then the procedure explained in [GS14] is used.

Example
gap> a:=AffineSemigroup([2,0],[0,2],[1,1]);;

gap> TameDegreeOfAffineSemigroup(a);

2
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11.5.8 OmegaPrimalityOfElementInAffineSemigroup

. OmegaPrimalityOfElementInAffineSemigroup(v, a) (function)

v is a list of nonnegative integers and a is an affine semigroup. The output is the omega primality
of a (defined as for numerical semigroups). Returns 0 if the element is not in the semigroup.

The implementation of this procedure is performed as explained in [BGSG11] (also, if the semi-
group has defining equations, then it takes advantage of this fact as explained in this reference).

Example
gap> a:=AffineSemigroup([2,0],[0,2],[1,1]);;

gap> OmegaPrimalityOfElementInAffineSemigroup([5,5],a);

6

11.5.9 OmegaPrimalityOfAffineSemigroup

. OmegaPrimalityOfAffineSemigroup(a) (function)

a is an affine semigroup. The output is the omega primality of a (defined as for numerical semi-
groups).

Example
gap> a:=AffineSemigroup([2,0],[0,2],[1,1]);;

gap> OmegaPrimalityOfAffineSemigroup(a);

2



Appendix A

Generalities

Here we describe some functions which are not specific for numerical semigroups but are used to do
computations with them. As they may have interest by themselves, we decribe them here.

A.1 Bézout sequences

A sequence of positive rational numbers a1/b1 < · · · < an/bn with ai,bi positive integers is a Bézout
sequence if ai+1bi−aibi+1 = 1 for all i ∈ {1, . . . ,n−1}.

The following function uses an algorithm presented in [BR09].

A.1.1 BezoutSequence

. BezoutSequence(arg) (function)

arg consits of two rational numbers or a list of two rational numbers. The output is a Bézout se-
quence with ends the two rational numbers given. (Warning: rational numbers are silently transformed
into irreducible fractions.)

Example
gap> BezoutSequence(4/5,53/27);

[ 4/5, 1, 3/2, 5/3, 7/4, 9/5, 11/6, 13/7, 15/8, 17/9, 19/10, 21/11, 23/12,

25/13, 27/14, 29/15, 31/16, 33/17, 35/18, 37/19, 39/20, 41/21, 43/22,

45/23, 47/24, 49/25, 51/26, 53/27 ]

A.1.2 IsBezoutSequence

. IsBezoutSequence(L) (function)

L is a list of rational numbers. IsBezoutSequence returns true or false according to whether
L is a Bézout sequence or not.

Example
gap> IsBezoutSequence([ 4/5, 1, 3/2, 5/3, 7/4, 9/5, 11/6]);

true

gap> IsBezoutSequence([ 4/5, 1, 3/2, 5/3, 7/4, 9/5, 11/3]);

Take the 6 and the 7 elements of the sequence

false
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A.1.3 CeilingOfRational

. CeilingOfRational(r) (function)

Returns the smallest integer greater than or equal to the rational r .
Example

gap> CeilingOfRational(3/5);

1

A.2 Periodic subadditive functions

A periodic function f of period m from the set N of natural numbers into itself may be specified
through a list of m natural numbers. The function f is said to be subadditive if f (i+ j)≤ f (i)+ f ( j)
and f (0) = 0.

A.2.1 RepresentsPeriodicSubAdditiveFunction

. RepresentsPeriodicSubAdditiveFunction(L) (function)

L is a list of integers. RepresentsPeriodicSubAdditiveFunction returns true or false

according to whether L represents a periodic subAdditive function f periodic of period m or not. To
avoid defining f (0) (which we assume to be 0) we define f (m) = 0 and so the last element of the list
must be 0. This technical need is due to the fact that positions in a list must be positive (not a 0).

Example
gap> RepresentsPeriodicSubAdditiveFunction([1,2,3,4,0]);

true

A.2.2 IsListOfIntegersNS

. IsListOfIntegersNS(L) (function)

Detects wheter L is a nonempty list of integers.
Example

gap> IsListOfIntegersNS([1,-1,0]);

true

gap> IsListOfIntegersNS(2);

false

gap> IsListOfIntegersNS([[2],3]);

false

gap> IsListOfIntegersNS([]);

false



Appendix B

Random functions

Here we describe some functions which allow to create several "random" objects.

B.1 Random functions

B.1.1 RandomNumericalSemigroup

. RandomNumericalSemigroup(n, a[, b]) (function)

Returns a “random" numerical semigroup with no more than n generators in [1..a ] (or in [a ..b ],
if b is present).

Example
gap> RandomNumericalSemigroup(3,9);

<Numerical semigroup with 3 generators>

gap> RandomNumericalSemigroup(3,9,55);

<Numerical semigroup with 3 generators>

B.1.2 RandomListForNS

. RandomListForNS(n, a, b) (function)

Returns a set of length not greater than n of random integers in [a..b] whose GCD is 1. It is
used to create "random" numerical semigroups.

Example
gap> RandomListForNS(13,1,79);

[ 22, 26, 29, 31, 34, 46, 53, 61, 62, 73, 76 ]

B.1.3 RandomModularNumericalSemigroup

. RandomModularNumericalSemigroup(k[, m]) (function)

Returns a “random" modular numerical semigroup S(a,b) with a ≤ k (see 1) and multiplicity at
least m, were m is the second argument, which may not be present..

Example
gap> RandomModularNumericalSemigroup(9);

<Modular numerical semigroup satisfying 5x mod 6 <= x >
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gap> RandomModularNumericalSemigroup(10,25);

<Modular numerical semigroup satisfying 4x mod 157 <= x >

B.1.4 RandomProportionallyModularNumericalSemigroup

. RandomProportionallyModularNumericalSemigroup(k[, m]) (function)

Returns a “random" proportionally modular numerical semigroup S(a,b,c) with a≤ k (see 1) and
multiplicity at least m, were m is the second argument, which may not be present.

Example
gap> RandomProportionallyModularNumericalSemigroup(9);

<Proportionally modular numerical semigroup satisfying 2x mod 3 <= 2x >

gap> RandomProportionallyModularNumericalSemigroup(10,25);

<Proportionally modular numerical semigroup satisfying 6x mod 681 <= 2x >

B.1.5 RandomListRepresentingSubAdditiveFunction

. RandomListRepresentingSubAdditiveFunction(m, a) (function)

Produces a “random" list representing a subadditive function (see 1) which is periodic with period
m (or less). When possible, the images are in [a..20*a] . (Otherwise, the list of possible images is
enlarged.)

Example
gap> RandomListRepresentingSubAdditiveFunction(7,9);

[ 173, 114, 67, 0 ]

gap> RepresentsPeriodicSubAdditiveFunction(last);

true



Appendix C

Contributions

C.1 Functions implemented by A. Sammartano

C.1.1 IsGradedAssociatedRingNumericalSemigroupBuchsbaum

. IsGradedAssociatedRingNumericalSemigroupBuchsbaum(S) (function)

S is a numerical semigroup.
Returns true if the graded ring associated to K[[S ]] is Buchsbaum, and false otherwise. This test

is the implementation of the algorithm given in [DMV09].
Example

gap> s:=NumericalSemigroup(30, 35, 42, 47, 148, 153, 157, 169, 181, 193);;

gap> IsGradedAssociatedRingNumericalSemigroupBuchsbaum(s);

true

C.1.2 IsMpureNumericalSemigroup

. IsMpureNumericalSemigroup(S) (function)

S is a numerical semigroup.
Test for the M-Purity of the numerical semigroup S S . This test is based on [Bry10].

Example
gap> s:=NumericalSemigroup(30, 35, 42, 47, 148, 153, 157, 169, 181, 193);;

gap> IsMpureNumericalSemigroup(s);

false

gap> s:=NumericalSemigroup(4,6,11);;

gap> IsMpureNumericalSemigroup(s);

true

C.1.3 IsPureNumericalSemigroup

. IsPureNumericalSemigroup(S) (function)

S is a numerical semigroup.
Test for the purity of the numerical semigroup S S . This test is based on [Bry10].
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Example
gap> s:=NumericalSemigroup(30, 35, 42, 47, 148, 153, 157, 169, 181, 193);;

gap> IsPureNumericalSemigroup(s);

false

gap> s:=NumericalSemigroup(4,6,11);;

gap> IsPureNumericalSemigroup(s);

true

C.1.4 IsGradedAssociatedRingNumericalSemigroupGorenstein

. IsGradedAssociatedRingNumericalSemigroupGorenstein(S) (function)

S is a numerical semigroup.
Returns true if the graded ring associated to K[[S ]] is Gorenstein, and false otherwise. This test is

the implementation of the algorithm given in [DMS11].
Example

gap> s:=NumericalSemigroup(30, 35, 42, 47, 148, 153, 157, 169, 181, 193);;

gap> IsGradedAssociatedRingNumericalSemigroupGorenstein(s);

false

gap> s:=NumericalSemigroup(4,6,11);;

gap> IsGradedAssociatedRingNumericalSemigroupGorenstein(s);

true

C.1.5 IsGradedAssociatedRingNumericalSemigroupCI

. IsGradedAssociatedRingNumericalSemigroupCI(S) (function)

S is a numerical semigroup.
Returns true if the Complete Intersection property of the associated graded ring of a numerical

semigroup ring associated to K[[S ]], and false otherwise. This test is the implementation of the algo-
rithm given in [DMS13].

Example
gap> s:=NumericalSemigroup(30, 35, 42, 47, 148, 153, 157, 169, 181, 193);;

gap> IsGradedAssociatedRingNumericalSemigroupCI(s);

false

gap> s:=NumericalSemigroup(4,6,11);;

gap> IsGradedAssociatedRingNumericalSemigroupCI(s);

true

C.1.6 IsAperySetGammaRectangular

. IsAperySetGammaRectangular(S) (function)

S is a numerical semigroup.
Test for the Gamma-Rectangularity of the Apéry Set of a numerical semigroup. This test is the

implementation of the algorithm given in [DMS14].
Example

gap> s:=NumericalSemigroup(30, 35, 42, 47, 148, 153, 157, 169, 181, 193);;

gap> IsAperySetGammaRectangular(s);
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false

gap> s:=NumericalSemigroup(4,6,11);;

gap> IsAperySetGammaRectangular(s);

true

C.1.7 IsAperySetBetaRectangular

. IsAperySetBetaRectangular(S) (function)

S is a numerical semigroup.
Test for the Beta-Rectangularity of the Apéry Set of a numerical semigroup. This test is the

implementation of the algorithm given in [DMS14].
Example

gap> s:=NumericalSemigroup(30, 35, 42, 47, 148, 153, 157, 169, 181, 193);;

gap> IsAperySetBetaRectangular(s);

false

gap> s:=NumericalSemigroup(4,6,11);;

gap> IsAperySetBetaRectangular(s);

true

C.1.8 IsAperySetAlphaRectangular

. IsAperySetAlphaRectangular(S) (function)

S is a numerical semigroup.
Test for the Alpha-Rectangularity of the Apéry Set of a numerical semigroup. This test is the

implementation of the algorithm given in [DMS14].
Example

gap> s:=NumericalSemigroup(30, 35, 42, 47, 148, 153, 157, 169, 181, 193);;

gap> IsAperySetAlphaRectangular(s);

false

gap> s:=NumericalSemigroup(4,6,11);;

gap> IsAperySetAlphaRectangular(s);

true

C.1.9 TypeSequenceOfNumericalSemigroup

. TypeSequenceOfNumericalSemigroup(S) (function)

S is a numerical semigroup.
Computes the type sequence of a numerical semigroup. This test is the implementation of the

algorithm given in [BDF97].
Example

gap> s:=NumericalSemigroup(30, 35, 42, 47, 148, 153, 157, 169, 181, 193);;

gap> TypeSequenceOfNumericalSemigroup(s);

[ 13, 3, 4, 4, 7, 3, 3, 3, 2, 2, 2, 3, 3, 2, 4, 3, 2, 1, 3, 2, 1, 1, 2, 2, 1,

1, 1, 2, 2, 1, 3, 1, 1, 1, 1, 2, 2, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1,

1, 1, 1 ]

gap> s:=NumericalSemigroup(4,6,11);;
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gap> TypeSequenceOfNumericalSemigroup(s);

[ 1, 1, 1, 1, 1, 1, 1 ]

C.2 Functions implemented by C. O’Neill

This section includes the implementations of some procedures described in [BOP14].

C.2.1 OmegaPrimalityOfElementListInNumericalSemigroup

. OmegaPrimalityOfElementListInNumericalSemigroup(l, S) (function)

S is a numerical semigroup and l a list of elements of S .
Computes the omega-values of all the elements in l .

Example
gap> s:=NumericalSemigroup(10,11,13);;

gap> l:=FirstElementsOfNumericalSemigroup(100,s);;

gap> List(l,x->OmegaPrimalityOfElementInNumericalSemigroup(x,s)); time;

[ 0, 4, 5, 5, 4, 6, 7, 6, 6, 6, 6, 7, 8, 7, 7, 7, 7, 7, 8, 7, 8, 9, 8, 8, 8,

8, 8, 8, 8, 9, 9, 10, 9, 9, 9, 9, 9, 9, 9, 9, 10, 11, 10, 10, 10, 10, 10,

10, 10, 10, 11, 12, 11, 11, 11, 11, 11, 11, 11, 11, 12, 13, 12, 12, 12, 12,

12, 12, 12, 12, 13, 14, 13, 13, 13, 13, 13, 13, 13, 13, 14, 15, 14, 14, 14,

14, 14, 14, 14, 14, 15, 16, 15, 15, 15, 15, 15, 15, 15, 15 ]

218

gap> OmegaPrimalityOfElementListInNumericalSemigroup(l,s);time;

[ 0, 4, 5, 5, 4, 6, 7, 6, 6, 6, 6, 7, 8, 7, 7, 7, 7, 7, 8, 7, 8, 9, 8, 8, 8,

8, 8, 8, 8, 9, 9, 10, 9, 9, 9, 9, 9, 9, 9, 9, 10, 11, 10, 10, 10, 10, 10,

10, 10, 10, 11, 12, 11, 11, 11, 11, 11, 11, 11, 11, 12, 13, 12, 12, 12, 12,

12, 12, 12, 12, 13, 14, 13, 13, 13, 13, 13, 13, 13, 13, 14, 15, 14, 14, 14,

14, 14, 14, 14, 14, 15, 16, 15, 15, 15, 15, 15, 15, 15, 15 ]

10

C.2.2 FactorizationsElementListWRTNumericalSemigroup

. FactorizationsElementListWRTNumericalSemigroup(l, S) (function)

S is a numerical semigroup and l a list of elements of S .
Computes the factorizations of all the elements in l .

Example
gap> s:=NumericalSemigroup(10,11,13);

<Numerical semigroup with 3 generators>

gap> FactorizationsElementListWRTNumericalSemigroup([100,101,103],s);

[ [ [ 0, 2, 6 ], [ 1, 7, 1 ], [ 3, 4, 2 ], [ 5, 1, 3 ], [ 10, 0, 0 ] ],

[ [ 0, 8, 1 ], [ 1, 0, 7 ], [ 2, 5, 2 ], [ 4, 2, 3 ], [ 9, 1, 0 ] ],

[ [ 0, 7, 2 ], [ 2, 4, 3 ], [ 4, 1, 4 ], [ 7, 3, 0 ], [ 9, 0, 1 ] ] ]
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C.2.3 DeltaSetPeriodicityBoundForNumericalSemigroup

. DeltaSetPeriodicityBoundForNumericalSemigroup(S) (function)

S is a numerical semigroup.
Computes the bound were the periodicity starts for Delta sets of the elements in S ; see

[GGMFVT14].
Example

gap> s:=NumericalSemigroup(5,7,11);;

gap> DeltaSetPeriodicityBoundForNumericalSemigroup(s);

60

C.2.4 DeltaSetPeriodicityStartForNumericalSemigroup

. DeltaSetPeriodicityStartForNumericalSemigroup(S) (function)

S is a numerical semigroup.
Computes the element were the periodicity starts for Delta sets of the elements in S .

Example
gap> s:=NumericalSemigroup(5,7,11);;

gap> DeltaSetPeriodicityStartForNumericalSemigroup(s);

21

C.2.5 DeltaSetListUpToElementWRTNumericalSemigroup

. DeltaSetListUpToElementWRTNumericalSemigroup(n, S) (function)

S is a numerical semigroup, n a nonnegative integer.
Computes the Delta sets of the integers up to (and including) n , if an integer is not in S , the

corresponding Delta set is empty.
Example

gap> s:=NumericalSemigroup(5,7,11);;

gap> DeltaSetListUpToElementWRTNumericalSemigroup(31,s);

[ [ ], [ ], [ ], [ ], [ ], [ ], [ ], [ ], [ ], [ ], [ ], [ ], [ ],

[ ], [ ], [ ], [ ], [ ], [ ], [ ], [ ], [ 2 ], [ ], [ ], [ 2 ], [ ],

[ 2 ], [ ], [ 2 ], [ 2 ], [ ] ]

C.2.6 DeltaSetUnionUpToElementWRTNumericalSemigroup

. DeltaSetUnionUpToElementWRTNumericalSemigroup(n, S) (function)

S is a numerical semigroup, n a nonnegative integer.
Computes the union of the delta sets of the elements of S up to and including n , using a ring buffer

to conserve memory.
Example

gap> s:=NumericalSemigroup(5,7,11);;

gap> DeltaSetUnionUpToElementWRTNumericalSemigroup(60,s);

[ 2 ]
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C.2.7 DeltaSetOfNumericalSemigroup

. DeltaSetOfNumericalSemigroup(S) (function)

S is a numerical semigroup.
Computes the Delta set of S .

Example
gap> s:=NumericalSemigroup(5,7,11);;

gap> DeltaSetOfNumericalSemigroup(s);

[ 2 ]



References

[AGGS10] F. Aguiló-Gost and P. A. García-Sánchez. Factoring in embedding dimension three
numerical semigroups. Electron. J. Combin., 17(1):Research Paper 138, 21, 2010.
50

[AGS13] A. Assi and P. A. García-Sánchez. Constructing the set of complete intersection
numerical semigroups with a given frobenius number. Applicable Algebra in Engi-
neering, Communication and Computing, 2013. 32

[AGS14] A. Assi and P. A. García-Sánchez. On curves with one place at infinity. arXiv,
1407.0490, 2014. 63

[AGSM14] A. Assi, P. A. García-Sánchez, and V. Micale. Bases of subalgebras of k[[x]] and
k[x]. arXiv, 1412.4089, 2014. 64, 65

[BA08] M. Bras-Amorós. Fibonacci-like behavior of the number of numerical semigroups
of a given genus. Semigroup Forum, 76:379–384, 2008. 27

[BC77] J. Bertin and P. Carbonne. Semi-groupes d’entiers et application aux branches. J.
Algebra, 49(1):81–95, 1977. 32, 33

[BD89] R. J. Bradford and J. H. Davenport. Effective tests for cyclotomic polynomials. In
Symbolic and algebraic computation (Rome, 1988), volume 358 of Lecture Notes in
Comput. Sci., pages 244–251. Springer, Berlin, 1989. 61, 62

[BDF97] V. Barucci, D. D. Dobbs, and M. Fontana. Maximality properties in numerical semi-
groups and applications to one-dimensional analytically irreducible local domains.
Number 598 in Memoirs of the American Mathematical Society. American Mathe-
matical Society, 1997. 30, 36, 82

[BF06] V. Barucci and R. Fröberg. Associated graded rings of one-dimensional analytically
irreducible rings. J. Algebra, 304:349–358, 2006. 41, 42

[BGJ+14] M. Barakat, S. Gutsche, S. Jambor, M. Lange-Hegermann, A. Lorenz, and
O. Motsak. GradedModules, a homalg based package for the abelian cat-
egory of finitely presented graded modules over computable graded rings,
Version 2014.09.17. http://homalg.math.rwth-aachen.de/~barakat/

homalg-project/GradedModules/, Sep 2014. GAP package. 66

[BGSG11] V. Blanco, P. A. García-Sánchez, and A Geroldinger. Semigroup-theoretical char-
acterizations of arithmetical invariants with applications to numerical monoids and
krull monoids. Illinois J. Math., 55:1385–1414, 2011. 23, 58, 75

86

http://homalg.math.rwth-aachen.de/~barakat/homalg-project/Gr\ adedModules/
http://homalg.math.rwth-aachen.de/~barakat/homalg-project/Gr\ adedModules/


numericalsgps– a package for numerical semigroups 87

[BH13] Lance Bryant and James Hamblin. The maximal denumerant of a numerical semi-
group. Semigroup Forum, 86(3):571–582, 2013. 53, 54

[BIRC14] W. Bruns, B. Ichim, T. Römer, and Söger C. Normaliz. algorithms for rational cones
and affine monoids. http://www.math.uos.de/normaliz, 2014. 66

[BOP14] T. Barron, C. O’Neill, and R. Pelayo. On the computation of delta sets and ω-
primality in numerical monoids. preprint, 2014. 83

[BR97] V. Barucci and Fröberg R. One-dimensional almost gorenstein rings. J. Algebra,
188:418–442, 1997. 34

[BR09] M. Bullejos and J. C. Rosales. Proportionally modular Diophantine inequalities and
the Stern-Brocot tree. Math. Comp., 78(266):1211–1226, 2009. 76

[BR13] Victor Blanco and José Carlos Rosales. The tree of irreducible numerical semigroups
with fixed Frobenius number. Forum Math., 25(6):1249–1261, 2013. 30

[Bry10] L. Bryant. Goto numbers of a numerical semigroup ring and the Gorensteiness of
associated graded rings. Comm. Algebra, 38(6):2092–2128, 2010. 80

[CBJZA13] T. Cortadellas Benítez, R. Jafari, and S. Zarzuela Armengou. On teh apéry sets of
monomial curves. Semigroup Forum, 86:289–320, 2013. 44

[CD94] E. Contejean and H. Devie. An efficient incremental algorithm for solving systems
of linear Diophantine equations. Inform. and Comput., 113(1):143–172, 1994. 69,
70

[CdG12] M. Costantini and W. de Graaf. Gap package singular; the gap interface to singular.
http://gap-system.org/Packages/singular.html, 2012. 66

[CGSD07] S. T. Chapman, P. A. García-Sánchez, and Llena D. The catenary and tame degree
of numerical semigroups. Forum Math., pages 1–13, 2007. 49

[CGSL+06] S. T. Chapman, P. A. García-Sánchez, D. Llena, V. Ponomarenko, and J. C. Ros-
ales. The catenary and tame degree in finitely generated commutative cancellative
monoids. Manuscripta Math., 120(3):253–264, 2006. 49

[CHM06] S. T. Chapman, M. T. Holden, and T. A. Moore. Full elasticity in atomic monoids
and integral domains. Rocky Mountain J. Math., 36(5):1437–1455, 2006. 49

[CRA13] Jonathan Chappelon and Jorge Luis Ramírez Alfonsín. On the Möbius function of
the locally finite poset associated with a numerical semigroup. Semigroup Forum,
87(2):313–330, 2013. 60

[DGPS12] Wolfram Decker, Gert-Martin Greuel, Gerhard Pfister, and Hans Schönemann. SIN-
GULAR 3-1-6 — A computer algebra system for polynomial computations. http:

//www.singular.uni-kl.de, 2012. 66

[DGR15] M. Delgado, P. A. García-Sánchez, and A. M. Robles-Pérez. Numerical semigroups
with a given set of pseudo-Frobenius numbers. ArXiv e-prints, May 2015. 27

http://www.math.uos.de/normaliz
http://gap-system.org/Packages/singular.html
http://www.singular.uni-kl.de
http://www.singular.uni-kl.de


numericalsgps– a package for numerical semigroups 88

[DGSM06] M. Delgado, P. A. García-Sánchez, and J. Morais. On the GAP package numericals-
gps. In Fifth Conference on Discrete Mathematics and Computer Science (Spanish),
volume 23 of Ciencias (Valladolid), pages 271–278. Univ. Valladolid, Secr. Publ.
Intercamb. Ed., Valladolid, 2006. 8

[DMS11] M. D’Anna, V. Micale, and A. Sammartano. On the associated graded ring of a
semigroup ring. J. Commut. Algebra, 3(2):147–168, 2011. 81

[DMS13] M. D’Anna, V. Micale, and A. Sammartano. When the associated graded ring of a
semigroup ring is complete intersection. J. Pure Appl. Algebra, 217(6):1007–1017,
2013. 81

[DMS14] Marco D’Anna, Vincenzo Micale, and Alessio Sammartano. Classes of complete
intersection numerical semigroups. Semigroup Forum, 88(2):453–467, 2014. 81, 82

[DMV09] M. D’Anna, M. Mezzasalma, and Micale V. On the buchsbaumness of the associated
graded ring of a one-dimensional local ring. Comm. Algebra, 37:1594–1603, 2009.
80

[Eli01] J. Elias. On the deep structure of the blowing-up of curve singularities. Math. Proc.
Camb. Phil. Soc., 131:227–240, 2001. 42

[ES96] David Eisenbud and Bernd Sturmfels. Binomial ideals. Duke Math. J., 84(1):1–45,
1996. 73

[FGR87] R. Fröberg, C. Gottlieb, and Häggkvist R. On numerical semigroups. Semigroup
Forum, 35(1):63–83, 1987. 30

[GGMFVT14] J. I. García-García, M. A. Moreno-Frías, and A. Vigneron-Tenorio. Computation of
delta sets of numerical monoids. arxiv:1406.0280, 2014. 84

[GHK06] A. Geroldinger and F. Halter-Koch. Non-unique Factorizations: Algebraic, Combi-
natorial and Analytic Theory. Chapman & Hall/CRC, 2006. 49

[GHS14] S Gutsche, M. Horn, and C. Söger. Normalizinterface for gap. https://github.

com/fingolfin/NormalizInterface, 2014. 66

[GS14] P. A. García-Sánchez. A new approach for the computation of the tame degree.
arxiv:1504.02998, 2014. 74

[GSO10] P. A. García-Sánchez and I. Ojeda. Uniquely presented finitely generated commuta-
tive monoids. Pacific J. Math., 249:91–105, 2010. 22, 23

[GSOSRN13] P. A. García Sánchez, I. Ojeda, and A. Sánchez-R.-Navarro. Factorization invariants
in half-factorial affine semigroups. Internat. J. Algebra Comput., 23(1):111–122,
2013. 59, 74

[Gut] S. Gutsche. 4ti2interface, a link to 4ti2. http://www.gap-system.org/

Packages/4ti2interface.html. 66

[Her70] Jürgen Herzog. Generators and relations of abelian semigroups and semigroup rings.
Manuscripta Math., 3:175–193, 1970. 71

https://github.com/fingolfin/NormalizInterface
https://github.com/fingolfin/NormalizInterface
http://www.gap-system.org/Packages/4ti2interface.html
http://www.gap-system.org/Packages/4ti2interface.html


numericalsgps– a package for numerical semigroups 89

[HS04] K. Herzinger and R. Sanford. Minimal generating sets for relative ideals in numerical
semigroups of multiplicity eight. Communications in Algebra, 32(12):4713–4731,
2004. 39

[KP95] Christoph Kirfel and Ruud Pellikaan. The minimum distance of codes in an ar-
ray coming from telescopic semigroups. IEEE Trans. Inform. Theory, 41(6, part
1):1720–1732, 1995. Special issue on algebraic geometry codes. 32, 33

[Mic02] V. Micale. On monomial semigroups. Communications in Algebra, 30:4687 – 4698,
2002. 43

[Mor14] Pieter Moree. Numerical semigroups, cyclotomic polynomials, and Bernoulli num-
bers. Amer. Math. Monthly, 121(10):890–902, 2014. 61, 63

[Phi10] A. Philipp. A characterization of arithmetical invariants by the monoid of relations.
Semigroup Forum, 81:424–434, 2010. 73, 74

[RB03] J. C. Rosales and M. B. Branco. Irreducible numerical semigroups. Pacific J. Math.,
209(1):131–143, 2003. 30

[RGS98] J.C. Rosales and Pedro A. García-Sánchez. Nonnegative elements of subgroups of
Zn. Linear Algebra and its Applications, 270(1-3):351– 357, 1998. 69

[RGS99a] J. C. Rosales and P. A. García-Sánchez. Finitely generated commutative monoids.
Nova Science Publishers, New York, 1999. 21

[RGS99b] J. C. Rosales and P. A. García-Sánchez. On free affine semigroups. Semigroup
Forum, 58(3):367–385, 1999. 70

[RGS04] J. C. Rosales and P. A. García-Sánchez. Every positive integer is the frobenius num-
ber of an irreducible numerical semigroup with at most four generators. Ark. Mat.,
42:301–306, 2004. 30, 31

[RGS09] J. C. Rosales and P. A. García-Sánchez. Numerical Semigroups. Springer, 2009. 8,
48, 50

[RGS13] J. C. Rosales and P.A. García-Sánchez. Constructing almost symmetric numerical
semigroups from almost irreducible numerical semigroups. Comm. Algebra, to ap-
pear 2013. 34, 35

[RGSB02] J. C. Rosales, García-García J. I. García-Sánchez, P. A. and, and M. B. Branco. Sys-
tems of inequalities and numerical semigroups. Journal of the London Mathematical
Society, 65:611–623, 6 2002. 18, 70

[RGSGGB03] J. C. Rosales, P. A. García-Sánchez, J. I. García-García, and M. B. Branco. Numeri-
cal semigroups with maximal embedding dimension. J. Algebra, 2:47–53, 2003. 27,
45

[RGSGGB04] J. C. Rosales, P. A. García-Sánchez, J. I. García-García, and M. B. Branco. Arf
numerical semigroups. J. Algebra, 276:3–12, 2004. 46



numericalsgps– a package for numerical semigroups 90

[RGSGGJM03] J. C. Rosales, P. A. García-Sánchez, J. I. García-García, and J. A. Jiménez-Madrid.
The oversemigroups of a numerical semigroup. Semigroup Forum, 67:145–158,
2003. 24, 26, 30

[RGSGGJM04] J. C. Rosales, P. A. García-Sánchez, J. I. García-García, and J. A. Jiménez Madrid.
Fundamental gaps in numerical semigroups. J. Pure Appl. Algebra, 189(1-3):301–
313, 2004. 26

[Ros96a] J. C. Rosales. An algorithmic method to compute a minimal relation for any numer-
ical semigroup. Internat. J. Algebra Comput., 6:441–455, 1996. 21, 22

[Ros96b] J. C. Rosales. On numerical semigroups. Semigroup Forum, 52:307–318, 1996. 13

[Spi14] D. Spirito. Star operations on numerical semigroups. Comm. Algebra, to appear
2014. 44

[SW86] L. A. Székely and N. C. Wormald. Generating functions for the Frobenius problem
with 2 and 3 generators. Math. Chronicle, 15:49–57, 1986. 22

[tt] 4ti2 team. 4ti2—a software package for algebraic, geometric and combinatorial
problems on linear spaces. Available at www.4ti2.de. 66

[Zar86] O. Zariski. Le problème des modules pour les courbes planes. Hermann, 1986. 32,
34



Index

AddSpecialGapOfNumericalSemigroup, 24
AdjacentCatenaryDegreeOfSetOf-

Factorizations, 55
AdjustmentOfNumericalSemigroup, 53
AffineSemigroup, 67
AlmostSymmetricNumericalSemigroups-

FromIrreducible, 35
AlmostSymmetricNumericalSemigroups-

WithFrobeniusNumber, 35
AmbientNumericalSemigroupOfIdeal, 37
AnIrreducibleNumericalSemigroupWith-

FrobeniusNumber, 31
AperyListOfIdealOfNumericalSemigroupW-

RTElement, 43
AperyListOfNumericalSemigroup, 17
AperyListOfNumericalSemigroupAsGraph,

17
AperyListOfNumericalSemigroupWRT-

Element, 16
AperyListOfNumericalSemigroupWRT-

Integer, 17
AperyTableOfNumericalSemigroup, 44
ArfNumericalSemigroupClosure, 47
ArfNumericalSemigroupsWithFrobenius-

Number, 47
AsAffineSemigroup, 68
AsGluingOfNumericalSemigroups, 32

BasisOfGroupGivenByEquations, 70
BelongsToAffineSemigroup, 69
BelongsToHomogenizationOfNumerical-

Semigroup, 59
BelongsToIdealOfNumericalSemigroup, 38
BelongsToNumericalSemigroup, 14
BettiElementsOfAffineSemigroup, 72
BettiElementsOfNumericalSemigroup, 22
BezoutSequence, 76
BlowUpIdealOfNumericalSemigroup, 41
BlowUpOfNumericalSemigroup, 42

CanonicalIdealOfNumericalSemigroup, 41
CatenaryDegreeOfAffineSemigroup, 73
CatenaryDegreeOfElementInNumerical-

Semigroup, 56
CatenaryDegreeOfNumericalSemigroup, 56
CatenaryDegreeOfSetOfFactorizations, 54
CeilingOfRational, 77
CompleteIntersectionNumerical-

SemigroupsWithFrobeniusNumber,
33

ConductorOfNumericalSemigroup, 19
CurveAssociatedToDeltaSequence, 64

DecomposeIntoIrreducibles, 31
DeltaSequencesWithFrobeniusNumber, 64
DeltaSetListUpToElementWRTNumerical-

Semigroup, 84
DeltaSetOfFactorizationsElementWRT-

NumericalSemigroup, 52
DeltaSetOfNumericalSemigroup, 85
DeltaSetOfSetOfIntegers, 52
DeltaSetPeriodicityBoundForNumerical-

Semigroup, 84
DeltaSetPeriodicityStartForNumerical-

Semigroup, 84
DeltaSetUnionUpToElementWRTNumerical-

Semigroup, 84
DenumerantOfElementInNumerical-

Semigroup, 51
DifferenceOfIdealsOfNumerical-

Semigroup, 39

ElasticityOfAffineSemigroup, 73
ElasticityOfFactorizationsElementWRT-

NumericalSemigroup, 51
ElasticityOfNumericalSemigroup, 52
EmbeddingDimensionOfNumerical-

Semigroup, 16
EqualCatenaryDegreeOfAffineSemigroup,

74

91



numericalsgps– a package for numerical semigroups 92

EqualCatenaryDegreeOfNumerical-
Semigroup, 57

EqualCatenaryDegreeOfSetOf-
Factorizations, 55

EqualPrimitiveElementsOfNumerical-
Semigroup, 56

EquationsOfGroupGeneratedBy, 70

FactorizationsElementListWRTNumerical-
Semigroup, 83

FactorizationsElementWRTNumerical-
Semigroup, 50

FactorizationsInHomogenizationOf-
NumericalSemigroup, 59

FactorizationsIntegerWRTList, 49
FactorizationsVectorWRTList, 73
FirstElementsOfNumericalSemigroup, 16
ForcedIntegersForPseudoFrobenius, 27
FreeNumericalSemigroupsWithFrobenius-

Number, 33
FrobeniusNumber, 19
FrobeniusNumberOfNumericalSemigroup, 18
FundamentalGapsOfNumericalSemigroup, 20

GapsOfNumericalSemigroup, 19
GeneratorsOfIdealOfNumericalSemigroup,

37
GeneratorsOfIdealOfNumerical-

SemigroupNC, 37
GeneratorsOfKernelCongruence, 71
GeneratorsOfNumericalSemigroup, 15
GenusOfNumericalSemigroup, 20
GluingOfAffineSemigroups, 71
GraeffePolynomial, 61
GraphAssociatedToElementInNumerical-

Semigroup, 21

HilbertBasisOfSystemOfHomogeneous-
Equations, 69

HilbertBasisOfSystemOfHomogeneous-
Inequalities, 70

HilbertFunctionOfIdealOfNumerical-
Semigroup, 41

HilbertSeriesOfNumericalSemigroup, 61
HomogeneousBettiElementsOfNumerical-

Semigroup, 59
HomogeneousCatenaryDegreeOfAffine-

Semigroup, 74

HomogeneousCatenaryDegreeOfNumerical-
Semigroup, 60

IdealOfNumericalSemigroup, 36
IntersectionIdealsOfNumerical-

Semigroup, 40
IntersectionOfNumericalSemigroups, 25
IrreducibleNumericalSemigroupsWith-

FrobeniusNumber, 31
IsACompleteIntersectionNumerical-

Semigroup, 32
IsAdditiveNumericalSemigroup, 54
IsAffineSemigroup, 68
IsAffineSemigroupByEquations, 68
IsAffineSemigroupByGenerators, 68
IsAffineSemigroupByInequalities, 68
IsAffineSemigroupByMinimalGenerators,

68
IsAlmostSymmetricNumericalSemigroup, 35
IsAperyListOfNumericalSemigroup, 13
IsAperySetAlphaRectangular, 82
IsAperySetBetaRectangular, 82
IsAperySetGammaRectangular, 81
IsArfNumericalSemigroup, 46
IsBezoutSequence, 76
IsCyclotomicNumericalSemigroup, 62
IsCyclotomicPolynomial, 62
IsDeltaSequence, 63
IsFreeNumericalSemigroup, 33
IsFullAffineSemigroup, 69
IsGenericAffineSemigroup, 72
IsGenericNumericalSemigroup, 23
IsGradedAssociatedRingNumerical-

SemigroupBuchsbaum, 80
IsGradedAssociatedRingNumerical-

SemigroupCI, 81
IsGradedAssociatedRingNumerical-

SemigroupCM, 42
IsGradedAssociatedRingNumerical-

SemigroupGorenstein, 81
IsIdealOfNumericalSemigroup, 36
IsIrreducibleNumericalSemigroup, 30
IsKroneckerPolynomial, 62
IsListOfIntegersNS, 77
IsMEDNumericalSemigroup, 45
IsModularNumericalSemigroup, 12
IsMonomialNumericalSemigroup, 43



numericalsgps– a package for numerical semigroups 93

IsMpureNumericalSemigroup, 80
IsNumericalSemigroup, 12
IsNumericalSemigroupAssociated-

IrreduciblePlanarCurve-
Singularity, 34

IsNumericalSemigroupByAperyList, 12
IsNumericalSemigroupByFundamentalGaps,

12
IsNumericalSemigroupByGaps, 12
IsNumericalSemigroupByGenerators, 12
IsNumericalSemigroupByInterval, 12
IsNumericalSemigroupByMinimal-

Generators, 12
IsNumericalSemigroupByOpenInterval, 12
IsNumericalSemigroupBySmallElements, 12
IsNumericalSemigroupBySubAdditive-

Function, 12
IsProportionallyModularNumerical-

Semigroup, 12
IsPseudoSymmetricNumericalSemigroup, 31
IsPureNumericalSemigroup, 80
IsSaturatedNumericalSemigroup, 48
IsSelfReciprocalUnivariatePolynomial,

63
IsSubsemigroupOfNumericalSemigroup, 13
IsSuperSymmetricNumericalSemigroup, 54
IsSymmetricNumericalSemigroup, 31
IsTelescopicNumericalSemigroup, 33
IsUniquelyPresentedAffineSemigroup, 72
IsUniquelyPresentedNumericalSemigroup,

23

KunzCoordinatesOfNumericalSemigroup, 18
KunzPolytope, 18

LengthsOfFactorizationsElementWRT-
NumericalSemigroup, 51

LengthsOfFactorizationsIntegerWRTList,
51

LShapesOfNumericalSemigroup, 50

MaximalDenumerantOfElementInNumerical-
Semigroup, 53

MaximalDenumerantOfNumericalSemigroup,
53

MaximalDenumerantOfSetOf-
Factorizations, 53

MaximalIdealOfNumericalSemigroup, 40

MaximumDegreeOfElementWRTNumerical-
Semigroup, 52

MEDNumericalSemigroupClosure, 46
MicroInvariantsOfNumericalSemigroup, 42
MinimalArfGeneratingSystemOfArf-

NumericalSemigroup, 47
MinimalGeneratingSystem, 15, 37
MinimalGeneratingSystemOfIdealOf-

NumericalSemigroup, 37
MinimalGeneratingSystemOfNumerical-

Semigroup, 15
MinimalMEDGeneratingSystemOfMED-

NumericalSemigroup, 46
MinimalPresentationOfAffineSemigroup,

71
MinimalPresentationOfNumerical-

Semigroup, 21
ModularNumericalSemigroup, 10
MoebiusFunctionAssociatedToNumerical-

Semigroup, 60
MonotoneCatenaryDegreeOfAffine-

Semigroup, 74
MonotoneCatenaryDegreeOfNumerical-

Semigroup, 57
MonotoneCatenaryDegreeOfSetOf-

Factorizations, 55
MonotonePrimitiveElementsOfNumerical-

Semigroup, 57
MultipleOfIdealOfNumericalSemigroup, 39
MultiplicityOfNumericalSemigroup, 15

NumericalSemigroup, 9
NumericalSemigroupByAperyList, 11
NumericalSemigroupByFundamentalGaps, 11
NumericalSemigroupByGaps, 11
NumericalSemigroupByGenerators, 11
NumericalSemigroupByInterval, 11
NumericalSemigroupByMinimalGenerators,

11
NumericalSemigroupByMinimal-

GeneratorsNC, 11
NumericalSemigroupByOpenInterval, 11
NumericalSemigroupBySmallElements, 11
NumericalSemigroupBySubAdditive-

Function, 11
NumericalSemigroupPolynomial, 61



numericalsgps– a package for numerical semigroups 94

NumericalSemigroupsAssociated-
IrreduciblePlanarCurve-
SingularityWithFrobeniusNumber,
34

NumericalSemigroupsWithFrobenius-
Number, 26

NumericalSemigroupsWithGenus, 27
NumericalSemigroupsWithPseudo-

FrobeniusNumbers, 28
NumSgpsUse4ti2, 66
NumSgpsUse4ti2gap, 66
NumSgpsUseNormalize, 66
NumSgpsUseSingular, 67
NumSgpsUseSingularGradedModules, 67
NumSgpsUseSingularInterface, 67

OmegaPrimalityOfAffineSemigroup, 75
OmegaPrimalityOfElementInAffine-

Semigroup, 75
OmegaPrimalityOfElementInNumerical-

Semigroup, 58
OmegaPrimalityOfElementListIn-

NumericalSemigroup, 83
OmegaPrimalityOfNumericalSemigroup, 58
OverSemigroupsNumericalSemigroup, 26

PrimitiveElementsOfAffineSemigroup, 72
PrimitiveElementsOfNumericalSemigroup,

22
ProportionallyModularNumerical-

Semigroup, 11
PseudoFrobeniusOfNumericalSemigroup, 19

QuotientOfNumericalSemigroup, 25

RandomListForNS, 78
RandomListRepresentingSubAdditive-

Function, 79
RandomModularNumericalSemigroup, 78
RandomNumericalSemigroup, 78
RandomNumericalSemigroupWithPseudo-

FrobeniusNumbers, 29
RandomProportionallyModularNumerical-

Semigroup, 79
RClassesOfSetOfFactorizations, 50
ReductionNumberIdealNumerical-

Semigroup, 41

RemoveMinimalGeneratorFromNumerical-
Semigroup, 24

RepresentsGapsOfNumericalSemigroup, 13
RepresentsPeriodicSubAdditiveFunction,

77
RepresentsSmallElementsOfNumerical-

Semigroup, 12

SaturatedNumericalSemigroupClosure, 48
SaturatedNumericalSemigroupsWith-

FrobeniusNumber, 48
SemigroupOfValuesOfCurve_Global, 65
SemigroupOfValuesOfCurve_Local, 64
SemigroupOfValuesOfPlaneCurveWith-

SinglePlaceAtInfinity, 63
ShadedSetOfElementInAffineSemigroup, 72
ShadedSetOfElementInNumerical-

Semigroup, 22
SimpleForcedIntegersForPseudo-

Frobenius, 28
SmallElements, 16, 38
SmallElementsOfIdealOfNumerical-

Semigroup, 38
SmallElementsOfNumericalSemigroup, 16
SpecialGapsOfNumericalSemigroup, 20
StarClosureOfIdealOfNumerical-

Semigroup, 44
SubtractIdealsOfNumericalSemigroup, 39
SumIdealsOfNumericalSemigroup, 38

TameDegreeOfAffineSemigroup, 74
TameDegreeOfElementInNumerical-

Semigroup, 58
TameDegreeOfNumericalSemigroup, 57
TameDegreeOfSetOfFactorizations, 56
TelescopicNumericalSemigroupsWith-

FrobeniusNumber, 34
TranslationOfIdealOfNumerical-

Semigroup, 40
TypeOfNumericalSemigroup, 19
TypeSequenceOfNumericalSemigroup, 82


	 Introduction 
	 Numerical Semigroups 
	 Generating Numerical Semigroups 
	Some basic tests

	 Basic operations with numerical semigroups 
	 The definitions 
	Frobenius Number
	Gaps

	 Presentations of Numerical Semigroups 
	Presentations of Numerical Semigroups
	Uniquely Presented Numerical Semigroups

	 Constructing numerical semigroups from others 
	 Adding and removing elements of a numerical semigroup 
	Intersections and quotients by integers
	 Constructing the set of all numerical semigroups containing a given numerical semigroup 
	 Constructing the set of numerical semigroup with given Frobenius number
	 Constructing the set of numerical semigroups with genus g, that is, numerical semigroups with exactly g gaps 
	 Constructing the set of numerical semigroups with a given set of pseudo-Frobenius numbers 

	 Irreducible numerical semigroups 
	 Irreducible numerical semigroups 
	 Complete intersection numerical semigroups 
	 Almost-symmetric numerical semigroups 

	 Ideals of numerical semigroups 
	 Definitions and basic operations 
	 Other functions for ideals 

	 Numerical semigroups with maximal embedding dimension 
	 Numerical semigroups with maximal embedding dimension 
	 Numerical semigroups with the Arf property and Arf closures 
	 Saturated numerical semigroups 

	 Nonunique invariants for factorizations in numerical semigroups 
	 Factorizations in Numerical Semigroups 
	 Invariants based on lengths 
	 Invariants based on distances 
	 Primality 
	 Homogenization of Numerical Semigroups 
	 Divisors, posets 

	 Polynomials and numerical semigroups 
	 Generating functions or Hilbert series 
	 Semigroup of values of algebraic curves 

	 Affine semigroups 
	 Using external packages 
	 Defining affine semigroups 
	 Gluings of affine semigroups 
	 Presentations of affine semigroups 
	 Factorizations in affine semigroups 

	Generalities
	Bézout sequences
	Periodic subadditive functions

	Random functions
	Random functions

	Contributions
	Functions implemented by A. Sammartano
	Functions implemented by C. O'Neill

	References
	Index

