| Safe Haskell | None |
|---|
TyCon
Contents
- data TyCon
- type FieldLabel = Name
- data AlgTyConRhs
- visibleDataCons :: AlgTyConRhs -> [DataCon]
- data TyConParent
- isNoParent :: TyConParent -> Bool
- data SynTyConRhs
- data CoAxiom = CoAxiom {
- co_ax_unique :: Unique
- co_ax_name :: Name
- co_ax_tvs :: [TyVar]
- co_ax_lhs :: Type
- co_ax_rhs :: Type
- co_ax_implicit :: Bool
- coAxiomName :: CoAxiom -> Name
- coAxiomArity :: CoAxiom -> Arity
- coAxiomTyVars :: CoAxiom -> [TyVar]
- coAxiomLHS :: CoAxiom -> Type
- coAxiomRHS :: CoAxiom -> Type
- isImplicitCoAxiom :: CoAxiom -> Bool
- mkAlgTyCon :: Name -> Kind -> [TyVar] -> Maybe CType -> [PredType] -> AlgTyConRhs -> TyConParent -> RecFlag -> Bool -> TyCon
- mkClassTyCon :: Name -> Kind -> [TyVar] -> AlgTyConRhs -> Class -> RecFlag -> TyCon
- mkFunTyCon :: Name -> Kind -> TyCon
- mkPrimTyCon :: Name -> Kind -> Arity -> PrimRep -> TyCon
- mkKindTyCon :: Name -> Kind -> TyCon
- mkLiftedPrimTyCon :: Name -> Kind -> Arity -> PrimRep -> TyCon
- mkTupleTyCon :: Name -> Kind -> Arity -> [TyVar] -> DataCon -> TupleSort -> TyCon
- mkSynTyCon :: Name -> Kind -> [TyVar] -> SynTyConRhs -> TyConParent -> TyCon
- mkForeignTyCon :: Name -> Maybe FastString -> Kind -> Arity -> TyCon
- mkPromotedDataCon :: DataCon -> Name -> Unique -> Kind -> Arity -> TyCon
- mkPromotedTyCon :: TyCon -> Kind -> TyCon
- isAlgTyCon :: TyCon -> Bool
- isClassTyCon :: TyCon -> Bool
- isFamInstTyCon :: TyCon -> Bool
- isFunTyCon :: TyCon -> Bool
- isPrimTyCon :: TyCon -> Bool
- isTupleTyCon :: TyCon -> Bool
- isUnboxedTupleTyCon :: TyCon -> Bool
- isBoxedTupleTyCon :: TyCon -> Bool
- isSynTyCon :: TyCon -> Bool
- isClosedSynTyCon :: TyCon -> Bool
- isDecomposableTyCon :: TyCon -> Bool
- isForeignTyCon :: TyCon -> Bool
- isPromotedDataCon :: TyCon -> Bool
- isPromotedTyCon :: TyCon -> Bool
- isInjectiveTyCon :: TyCon -> Bool
- isDataTyCon :: TyCon -> Bool
- isProductTyCon :: TyCon -> Bool
- isEnumerationTyCon :: TyCon -> Bool
- isNewTyCon :: TyCon -> Bool
- isAbstractTyCon :: TyCon -> Bool
- isFamilyTyCon :: TyCon -> Bool
- isSynFamilyTyCon :: TyCon -> Bool
- isDataFamilyTyCon :: TyCon -> Bool
- isUnLiftedTyCon :: TyCon -> Bool
- isGadtSyntaxTyCon :: TyCon -> Bool
- isDistinctTyCon :: TyCon -> Bool
- isDistinctAlgRhs :: AlgTyConRhs -> Bool
- isTyConAssoc :: TyCon -> Bool
- tyConAssoc_maybe :: TyCon -> Maybe Class
- isRecursiveTyCon :: TyCon -> Bool
- isImplicitTyCon :: TyCon -> Bool
- tyConName :: TyCon -> Name
- tyConKind :: TyCon -> Kind
- tyConUnique :: TyCon -> Unique
- tyConTyVars :: TyCon -> [TyVar]
- tyConCType :: TyCon -> Maybe CType
- tyConCType_maybe :: TyCon -> Maybe CType
- tyConDataCons :: TyCon -> [DataCon]
- tyConDataCons_maybe :: TyCon -> Maybe [DataCon]
- tyConSingleDataCon_maybe :: TyCon -> Maybe DataCon
- tyConFamilySize :: TyCon -> Int
- tyConStupidTheta :: TyCon -> [PredType]
- tyConArity :: TyCon -> Arity
- tyConParent :: TyCon -> TyConParent
- tyConTuple_maybe :: TyCon -> Maybe TupleSort
- tyConClass_maybe :: TyCon -> Maybe Class
- tyConFamInst_maybe :: TyCon -> Maybe (TyCon, [Type])
- tyConFamInstSig_maybe :: TyCon -> Maybe (TyCon, [Type], CoAxiom)
- tyConFamilyCoercion_maybe :: TyCon -> Maybe CoAxiom
- synTyConDefn :: TyCon -> ([TyVar], Type)
- synTyConRhs :: TyCon -> SynTyConRhs
- synTyConType :: TyCon -> Type
- tyConExtName :: TyCon -> Maybe FastString
- algTyConRhs :: TyCon -> AlgTyConRhs
- newTyConRhs :: TyCon -> ([TyVar], Type)
- newTyConEtadRhs :: TyCon -> ([TyVar], Type)
- unwrapNewTyCon_maybe :: TyCon -> Maybe ([TyVar], Type, CoAxiom)
- tupleTyConBoxity :: TyCon -> Boxity
- tupleTyConSort :: TyCon -> TupleSort
- tupleTyConArity :: TyCon -> Arity
- promotedDataCon :: TyCon -> DataCon
- promotedTyCon :: TyCon -> TyCon
- tcExpandTyCon_maybe :: TyCon -> [tyco] -> Maybe ([(TyVar, tyco)], Type, [tyco])
- coreExpandTyCon_maybe :: TyCon -> [tyco] -> Maybe ([(TyVar, tyco)], Type, [tyco])
- makeTyConAbstract :: TyCon -> TyCon
- newTyConCo :: TyCon -> CoAxiom
- newTyConCo_maybe :: TyCon -> Maybe CoAxiom
- pprPromotionQuote :: TyCon -> SDoc
- data PrimRep
- tyConPrimRep :: TyCon -> PrimRep
- primRepSizeW :: PrimRep -> Int
Main TyCon data types
data TyCon
TyCons represent type constructors. Type constructors are introduced by things such as:
1) Data declarations: data Foo = ... creates the Foo type constructor of kind *
2) Type synonyms: type Foo = ... creates the Foo type constructor
3) Newtypes: newtype Foo a = MkFoo ... creates the Foo type constructor of kind * -> *
4) Class declarations: class Foo where creates the Foo type constructor of kind *
This data type also encodes a number of primitive, built in type constructors such as those for function and tuple types.
type FieldLabel = Name
Names of the fields in an algebraic record type
data AlgTyConRhs
Represents right-hand-sides of TyCons for algebraic types
Constructors
| AbstractTyCon Bool | Says that we know nothing about this data type, except that it's represented by a pointer. Used when we export a data type abstractly into an .hi file. |
| DataFamilyTyCon | Represents an open type family without a fixed right hand side. Additional instances can appear at any time. These are introduced by either a top level declaration: data T a :: * Or an associated data type declaration, within a class declaration: class C a b where data T b :: * |
| DataTyCon | Information about those |
Fields
| |
| NewTyCon | Information about those |
Fields
| |
visibleDataCons :: AlgTyConRhs -> [DataCon]
Both type classes as well as family instances imply implicit
type constructors. These implicit type constructors refer to their parent
structure (ie, the class or family from which they derive) using a type of
the following form. We use TyConParent for both algebraic and synonym
types, but the variant ClassTyCon will only be used by algebraic TyCons.
Extract those DataCons that we are able to learn about. Note
that visibility in this sense does not correspond to visibility in
the context of any particular user program!
data TyConParent
Constructors
| NoParentTyCon | An ordinary type constructor has no parent. |
| ClassTyCon Class | Type constructors representing a class dictionary. See Note [ATyCon for classes] in TypeRep |
| AssocFamilyTyCon Class | An *associated* type of a class. |
| FamInstTyCon CoAxiom TyCon [Type] | Type constructors representing an instance of a *data* family. Parameters: 1) The type family in question 2) Instance types; free variables are the 3) A |
Instances
isNoParent :: TyConParent -> Bool
data SynTyConRhs
Information pertaining to the expansion of a type synonym (type)
Constructors
| SynonymTyCon Type | An ordinary type synonyn. |
| SynFamilyTyCon | A type synonym family e.g. |
Coercion axiom constructors
data CoAxiom
A CoAxiom is a "coercion constructor", i.e. a named equality axiom.
Constructors
| CoAxiom | |
Fields
| |
coAxiomName :: CoAxiom -> Name
coAxiomArity :: CoAxiom -> Arity
coAxiomTyVars :: CoAxiom -> [TyVar]
coAxiomLHS :: CoAxiom -> Type
coAxiomRHS :: CoAxiom -> Type
isImplicitCoAxiom :: CoAxiom -> Bool
Constructing TyCons
Arguments
| :: Name | |
| -> Kind | Kind of the resulting |
| -> [TyVar] |
|
| -> Maybe CType | The C type this type corresponds to when using the CAPI FFI |
| -> [PredType] | Stupid theta: see |
| -> AlgTyConRhs | Information about dat aconstructors |
| -> TyConParent | |
| -> RecFlag | Is the |
| -> Bool | Was the |
| -> TyCon |
This is the making of an algebraic TyCon. Notably, you have to
pass in the generic (in the -XGenerics sense) information about the
type constructor - you can get hold of it easily (see Generics
module)
mkClassTyCon :: Name -> Kind -> [TyVar] -> AlgTyConRhs -> Class -> RecFlag -> TyCon
Simpler specialization of mkAlgTyCon for classes
mkFunTyCon :: Name -> Kind -> TyCon
mkPrimTyCon :: Name -> Kind -> Arity -> PrimRep -> TyCon
Create an unlifted primitive TyCon, such as Int#
mkKindTyCon :: Name -> Kind -> TyCon
Kind constructors
mkLiftedPrimTyCon :: Name -> Kind -> Arity -> PrimRep -> TyCon
Create a lifted primitive TyCon such as RealWorld
Arguments
| :: Name | |
| -> Kind | Kind of the resulting |
| -> Arity | Arity of the tuple |
| -> [TyVar] |
|
| -> DataCon | |
| -> TupleSort | Whether the tuple is boxed or unboxed |
| -> TyCon |
Foreign-imported (.NET) type constructors are represented
as primitive, but lifted, TyCons for now. They are lifted
because the Haskell type T representing the (foreign) .NET
type T is actually implemented (in ILX) as a thunkT
mkSynTyCon :: Name -> Kind -> [TyVar] -> SynTyConRhs -> TyConParent -> TyCon
Create a type synonym TyCon
mkPromotedDataCon :: DataCon -> Name -> Unique -> Kind -> Arity -> TyCon
Create a promoted data constructor TyCon
Somewhat dodgily, we give it the same Name
as the data constructor itself; when we pretty-print
the TyCon we add a quote; see the Outputable TyCon instance
mkPromotedTyCon :: TyCon -> Kind -> TyCon
Create a promoted type constructor TyCon
Somewhat dodgily, we give it the same Name
as the type constructor itself
Predicates on TyCons
isAlgTyCon :: TyCon -> Bool
Returns True if the supplied TyCon resulted from either a
data or newtype declaration
isClassTyCon :: TyCon -> Bool
Is this TyCon that for a class instance?
isFamInstTyCon :: TyCon -> Bool
Is this TyCon that for a family instance, be that for a synonym or an
algebraic family instance?
isFunTyCon :: TyCon -> Bool
isPrimTyCon :: TyCon -> Bool
Does this TyCon represent something that cannot be defined in Haskell?
isTupleTyCon :: TyCon -> Bool
Does this TyCon represent a tuple?
NB: when compiling Data.Tuple, the tycons won't reply True to
isTupleTyCon, becuase they are built as AlgTyCons. However they
get spat into the interface file as tuple tycons, so I don't think
it matters.
isUnboxedTupleTyCon :: TyCon -> Bool
Is this the TyCon for an unboxed tuple?
isBoxedTupleTyCon :: TyCon -> Bool
Is this the TyCon for a boxed tuple?
isSynTyCon :: TyCon -> Bool
Is this a TyCon representing a type synonym (type)?
isClosedSynTyCon :: TyCon -> Bool
Is this a synonym TyCon that can have no further instances appear?
isDecomposableTyCon :: TyCon -> Bool
isForeignTyCon :: TyCon -> Bool
Is this the TyCon of a foreign-imported type constructor?
isPromotedDataCon :: TyCon -> Bool
Is this a PromotedDataCon?
isPromotedTyCon :: TyCon -> Bool
Is this a PromotedTyCon?
isInjectiveTyCon :: TyCon -> Bool
Injective TyCons can be decomposed, so that
T ty1 ~ T ty2 => ty1 ~ ty2
isDataTyCon :: TyCon -> Bool
Returns True for data types that are definitely represented by
heap-allocated constructors. These are scrutinised by Core-level
case expressions, and they get info tables allocated for them.
Generally, the function will be true for all data types and false
for newtypes, unboxed tuples and type family TyCons. But it is
not guaranteed to return True in all cases that it could.
NB: for a data type family, only the instance TyCons
get an info table. The family declaration TyCon does not
isProductTyCon :: TyCon -> Bool
isEnumerationTyCon :: TyCon -> Bool
Is this an algebraic TyCon which is just an enumeration of values?
isNewTyCon :: TyCon -> Bool
Is this TyCon that for a newtype
isAbstractTyCon :: TyCon -> Bool
Test if the TyCon is algebraic but abstract (invisible data constructors)
isFamilyTyCon :: TyCon -> Bool
Is this a TyCon, synonym or otherwise, that may have further instances appear?
isSynFamilyTyCon :: TyCon -> Bool
Is this a synonym TyCon that can have may have further instances appear?
isDataFamilyTyCon :: TyCon -> Bool
Is this a synonym TyCon that can have may have further instances appear?
isUnLiftedTyCon :: TyCon -> Bool
isGadtSyntaxTyCon :: TyCon -> Bool
Is this an algebraic TyCon declared with the GADT syntax?
isDistinctTyCon :: TyCon -> Bool
isDistinctTyCon is true of TyCons that are equal only to
themselves, even via coercions (except for unsafeCoerce).
This excludes newtypes, type functions, type synonyms.
It relates directly to the FC consistency story:
If the axioms are consistent,
and co : S tys ~ T tys, and S,T are distinct TyCons,
then S=T.
Cf Note [Pruning dead case alternatives] in Unify
isDistinctAlgRhs :: AlgTyConRhs -> Bool
isTyConAssoc :: TyCon -> Bool
tyConAssoc_maybe :: TyCon -> Maybe Class
isRecursiveTyCon :: TyCon -> Bool
Is this a recursive TyCon?
isImplicitTyCon :: TyCon -> Bool
Identifies implicit tycons that, in particular, do not go into interface files (because they are implicitly reconstructed when the interface is read).
Note that:
- Associated families are implicit, as they are re-constructed from the class declaration in which they reside, and
- Family instances are not implicit as they represent the instance body
(similar to a
dfundoes that for a class instance).
Extracting information out of TyCons
tyConUnique :: TyCon -> Unique
Same Unique as the type constructor
Same Unique as the data constructor
tyConTyVars :: TyCon -> [TyVar]
The kind and type variables used in the type constructor. Invariant: length tyvars = arity Precisely, this list scopes over:
- The
algTcStupidTheta2. The cached types in 'algTyConRhs.NewTyCon' 3. The family instance types if present
Note that it does not scope over the data constructors.
tyConCType :: TyCon -> Maybe CType
tyConCType_maybe :: TyCon -> Maybe CType
tyConDataCons :: TyCon -> [DataCon]
As tyConDataCons_maybe, but returns the empty list of constructors if no constructors
could be found
tyConDataCons_maybe :: TyCon -> Maybe [DataCon]
tyConSingleDataCon_maybe :: TyCon -> Maybe DataCon
If the given TyCon has a single data constructor, i.e. it is a data type with one
alternative, a tuple type or a newtype then that constructor is returned. If the TyCon
has more than one constructor, or represents a primitive or function type constructor then
Nothing is returned. In any other case, the function panics
tyConFamilySize :: TyCon -> Int
tyConStupidTheta :: TyCon -> [PredType]
Find the "stupid theta" of the TyCon. A "stupid theta" is the context to the left of
an algebraic type declaration, e.g. Eq a in the declaration data Eq a => T a ...
tyConArity :: TyCon -> Arity
n if ty_con :: * -> ... -> * n times
tyConParent :: TyCon -> TyConParent
tyConTuple_maybe :: TyCon -> Maybe TupleSort
tyConClass_maybe :: TyCon -> Maybe Class
If this TyCon is that for a class instance, return the class it is for.
Otherwise returns Nothing
tyConFamInst_maybe :: TyCon -> Maybe (TyCon, [Type])
If this TyCon is that of a family instance, return the family in question
and the instance types. Otherwise, return Nothing
synTyConDefn :: TyCon -> ([TyVar], Type)
synTyConRhs :: TyCon -> SynTyConRhs
Extract the information pertaining to the right hand side of a type synonym (type) declaration. Panics
if the given TyCon is not a type synonym
synTyConType :: TyCon -> Type
tyConExtName :: TyCon -> Maybe FastString
Just e for foreign-imported types,
holds the name of the imported thing
algTyConRhs :: TyCon -> AlgTyConRhs
Extract an AlgTyConRhs with information about data constructors from an algebraic or tuple
TyCon. Panics for any other sort of TyCon
newTyConRhs :: TyCon -> ([TyVar], Type)
newTyConEtadRhs :: TyCon -> ([TyVar], Type)
tupleTyConBoxity :: TyCon -> Boxity
Extract the boxity of the given TyCon, if it is a TupleTyCon.
Panics otherwise
tupleTyConSort :: TyCon -> TupleSort
tupleTyConArity :: TyCon -> Arity
Extract the arity of the given TyCon, if it is a TupleTyCon.
Panics otherwise
promotedDataCon :: TyCon -> DataCon
Retrieves the promoted DataCon if this is a PromotedDataTyCon; Panics otherwise
promotedTyCon :: TyCon -> TyCon
Retrieves the promoted TypeCon if this is a PromotedTypeTyCon; Panics otherwise
Manipulating TyCons
Arguments
| :: TyCon | |
| -> [tyco] | Arguments to |
| -> Maybe ([(TyVar, tyco)], Type, [tyco]) | Returns a |
Used to create the view Core has on TyCons. We expand
not only closed synonyms like tcExpandTyCon_maybe,
but also non-recursive newtypes
Used to create the view the typechecker has on TyCons.
We expand (closed) synonyms only, cf. coreExpandTyCon_maybe
Arguments
| :: TyCon | |
| -> [tyco] | Arguments to |
| -> Maybe ([(TyVar, tyco)], Type, [tyco]) | Returns a |
Used to create the view the typechecker has on TyCons.
We expand (closed) synonyms only, cf. coreExpandTyCon_maybe
makeTyConAbstract :: TyCon -> TyCon
newTyConCo :: TyCon -> CoAxiom
newTyConCo_maybe :: TyCon -> Maybe CoAxiom
pprPromotionQuote :: TyCon -> SDoc
Primitive representations of Types
data PrimRep
A PrimRep is an abstraction of a type. It contains information that
the code generator needs in order to pass arguments, return results,
and store values of this type.
tyConPrimRep :: TyCon -> PrimRep
Find the primitive representation of a TyCon
primRepSizeW :: PrimRep -> Int
Find the size of a PrimRep, in words