IPMI — A Gentle Introduction
with OpenIPMI

Corey Minyard <minyard@acm.org>
Montavista Software

January 20, 2014

Preface

This document describes IPMI in great detail; how it works and what it does and does not do. It starts
from the basics and moves into details. If you’ve heard about IPMI and want to find out more, this is the
document for you. If you know something about IPMI but wish to find out more, you can gloss over the
introductory text and dive more into the details.

This document also describes OpenIPMI and how to use that library. A basic understanding of TPMI is
required to use OpenlPMI. However, OpenlPMI hides the details of IPMI like messages and data formats;
if you do not care about those things you can skip those sections.

IPMI stands for Intelligent Platform Management Interface. Not a great name, but not too bad. It is
intelligent (in a manner of speaking, anyway) because it requires a processor besides the main processor that
is always on and maintaining the system. In most systems with IPMI, you can monitor and maintain the
system even when the main processor is turned off (though the system must generally be plugged in).

Platform means that IPMI deals with the platform, not the software running on the platform. Software
management is mostly out of the scope of IPMI

Management Interface means that the management system uses IPMI to talk to the system to monitor
and perform maintenance on the platform. ITPMI is mostly about monitoring, though it does have a few minor
management functions. However, many companies and organizations have built more extensive management
control using OEM extensions to IPMI.

The IPMI specification[2], of course, has the details, but they can be obscure. This document hopefully
provides an easier to understand introduction to IPMI.

ii

PREFACE

Contents

Preface

Acronyms

1 Management, Systems, and IPMI

1.1 IPMI Implementation

1.2 System Types
2 OpenlPMI
2.1 TheUser View
2.2 OpenIPMI Concepts
2.2.1 Event-Driven Systems
2.2.2 The OS Handler
2.2.3 Error Handling
224 Locking
2.2.5 OpenlPMI Objects
226 Callbacks
2.3 OpenlPMI Include Files
2.3.1 Files the normal user deals with . . .
2.3.2 Files dealing with messaging interfaces
2.3.3 File for system configuration
2.3.4 Semi-internal includes
2.4 Starting Up OpenIlPMI
2.5 Creating OpenIlPMI Domains
2.5.1 Domain Connections
2.5.2 Domain Fully Up
2.5.3 Redundancy in Domain Connections .
2.5.4 Domain Options
3 Use Cases
3.1 Simple Hardware Monitoring
3.2 Redundant Systems
3.3 Monitoring Clusters of Systems
34 BusSystems.

iii

ix

10
10
12
14
14
18
20
21
22
22
22
22
23
23
23
24
24
25

iv CONTENTS
4 TIPMI Interfaces 31
4.1 OpenlPMI Generic Interface 31
4.2 System Interfaces L 31
4.2.1 Server Management Interface Chip (SMIC) 32
4.2.2 Keyboard Style Controller (KCS) 32
4.2.3 Block Transfer (BT) 32
4.2.4 SMBus System InterFace (SSIF) 32
4.2.5 The OpenIPMI Driver e e e 32
4.2.6 The OpenIPMI System Interface 38

4.3 Channels L 38
4.4 Bridging e 39
4.4.1 Channels L 39

4.4.2 Sending Bridged Messages 41
4.4.3 Message Tracking L 42
4.4.4 Receiving Asynchronous Messages on the System Interface 42
4.4.5 System Interface to IPMB Bridging oo, 43
4.4.6 LAN to IPMB Bridging e 43
4.4.7 System Interface to LAN 48

4.5 TPMB 48
4.5.1 IPMB Broadcast e 48
4.5.2 OpenlPMI and IPMB 49

4.6 ICMB 49
47 SMBUS 49
4.8 Session SUppoOrt L 49
4.9 LAN . e 49
4.9.1 LAN Configuration e 49
4.9.2 ARP control 55
4.9.3 LAN Messaging 55
4.9.4 OpenlPMI LAN Configuration e 55
4.9.5 The OpenIPMI LAN Interface 56

4.10 Serialo 57
4.10.1 Serial Configuration L e 58
4.10.2 Direct Serial L 58
4.10.3 Terminal Mode 58
4.10.4 Serial over PPP L L e 58

4.11 User Management v i v i i e e e e e e e e e 58
4.11.1 User management in OpenIPMI Lo L. 59
4.11.2 User management commands oL e 60

4.12 Channel Configuration 63
4.12.1 Channel handling in OpenIPMI 64
4.12.2 Channel handling commands L e 67
4.12.3 Channel Authentication 69

4.13 The PEF Table and SNMP Traps o oottt 69
4.13.1 PEF and Alerting Commands 69
4.13.2 The PEF Postpone Timer o 71

4.13.3 PEF Configuration Parameters 71

CONTENTS v

4.13.4 OpenlPMI and SNMP Traps il 80

4.13.5 The Alert Immediate Command 82

4.14 OpenIPMI Addressing o o i 82

5 The MC 85
51 OpenIPMI and MCs 0 s e e 85
5.1.1 Discovering MCs 85

5.1.2 MC Active o o 86

5.1.3 MC Information e 86

5.1.4 MCReSet . . o v o v o e 87

5.1.5 Global Event Enables 88

6 IPMI Commands 89
6.1 Sending Commands in the OpenIPMI Library 92

7 SDR Repositories 93
7.1 SDR Reservations 93
7.2 The Main SDR Repository e 93
7.2.1 Modal and Non-Modal SDR Repositories 93

7.2.2 Commands for Main SDR Repositories 93

7.3 Device SDR Repositories L 93
7.3.1 Dynamic Device SDR Repositories 0L 0oL 94

7.3.2 Commands for Device SDR Repositories 94

7.4 Records in an SDR Repository oo 94
7.5 Dealing with SDR Repositories in OpenIPMI 94
7.5.1 Getting an SDR Repository L o 94

7.5.2 SDR Repository Information Lo L o 96

7.5.3 Handling a SDR Repository o 97

8 Entities 99
8.1 Discovering Entities e 101
8.2 Entity Containment and OpenIPMI 102
8.3 Emtity Presence 103
8.3.1 Entity Presence in OpenIPMI 103

8.4 Entity Typesand Info e 104
8.5 Sensor and Controls in an Entity oL oo 106
8.6 Entity Hot-Swap o e e e 109
8.6.1 Hot-Swap State e 109

8.6.2 Hot-Swap Events e 110

8.6.3 Hot-Swap Activation and Deactivation 112

8.6.4 Auto Activation and Deactivation oL L oo 113

87 FRU Data o e e e 113
8.7.1 Reading FRU Data. e 113

8.8 Entity SDRS .« « o o v v v et 118

vi

9 Sensors

9.1 Sensor Events
9.2 Rearm
9.3 Threshold Sensors
Threshold Sensor Events
Hysteresis
9.4 Discrete Sensors
9.5 IPMI Commands Dealing with Sensors
9.6 Using Sensors in OpenIPMI

9.3.1
9.3.2

9.6.1

General Information About Sensors in OpenlPMI
9.6.2 Threshold Sensors in OpenIPMI
9.6.3 Discrete Sensors in OpenIPMI

9.7 Sensor SDRs

10 Controls and Miscellany

10.1 Controls

10.1.1

10.1.2
10.1.3
10.1.4
10.1.5
10.1.6
10.1.7
10.2 Watchdog Timer
10.3 Direct I?C Access

11 Events

11.1 Event Format
11.2 Event Data Information for Specific Events
11.3 MC Event Enables
11.4 Coordinating Multiple Users of an SEL

Control Name

12 Other OpenIPMI Concerns

12.1 When Operations Happen

A Special IPMI Formats

A.1 IPMI strings
A.1.1 OpenlPMI and IPMI strings

B The Perl Interface

C Comparison with SNMP

D Comparison with HPI

CONTENTS

157

..................... 157
............................ 157
..................... 158
.............................. 158

159

..................... 159

161

..................... 161
................................ 161

163

167

169

CONTENTS

E

oo

-

ATCA

E.1 Management Redundancy in ATCA e
E.2 Hot Swap in ATCA e
E3 ATCAFRU Data o e s e e e e e
E.4 Special ATCA Sensors o i e
E.5 Special ATCA Shelf Controls
E.6 Special ATCA IPMC Controls e
E.7 Chassis Controls and ATCA e
E8 AMC . . . o e

Motorola MXP

Intel Servers

Sample Program Showing Basic Operations
Sample Program Showing Event Setup
Command Receiver Program

Connection Handling Interface (ipmi_conn.h)

OS Handler Interface (os_handler.h)

vii

171
171
171
172
172
172
172
173
173

175

177

179

191

207

211

225

viii CONTENTS

Acronyms

ATCA AdvancedTCA

AMC AdvancedMC

IPMI Intelligent Platform Management Interface
IPMC Intelligent Platform Management Controller (FIXME - wrong)
OEM Original Equipment Manufacturer

SDR Sensor Device Record

FRU Field Replacable Unit

KCS Keyboard Style Controller

BT Block Transfer

SMIC Server Management Interface Chip

SSIF SMBus System InterFace

MC Management Controller

BMC Baseboard Management Controller

I2C Inter Integrated Circuit

SNMP Simple Network Management Protocol
SPD Serial Presence Detect

HPI Hardware Platform Interface

LUN Logical Unit Number

NetFN Network FuNction

IPMB Intelligent Platform Management Bus
EEPROM Electronically Erasable Programmable Read Only Memory

ix

LAN Local Area Network

SEL System Event Log

PPP Point to Point Protocol

RMCP Remote Management Control Protocol
IP Internet Protocol

UDP User Datagram Protocol

MD2 Message Digest 2

MDS5 Message Digest 5

PDU Protocol Data Unit In SNMP, this is a packet holding an SNMP operation.

PEF Platform Event Filter

MAC Media Access Code?

ARP Address Resolution Protocol

GUID Globally Unique IDentifier

NMI Non Maskable Interrupt

EAR Entity Association Record

DREAR Device Relative Entity Association Record
DLR Device Locator Record

MCDLR Management Controller Device Locator Record
FRUDLR Field Replacable Unit Device Locator Record
GDLR Generic Device Locator Record

ICMB Intelligent Chassis Management Bus

PET Platform Event Trap

DMI ?

ACRONYMS

Management, Systems, and IPMI

Management will mean different things to different industries. In simple server systems, a management
system may only deal with controlling power on a few servers and making sure they don’t get too hot. In a
telecom system, management systems generally control every aspect of the system, including startup of all
parts of the system, full monitoring of all components of the system, detection and recovery from software
and hardware errors, basic configuration of the system, and a host of other things. IPMI obviously only
plays one role in this, but it is a role that must be played. In the past, the monitoring and management of
hardware has been done with lots of proprietary interfaces. IPMI standardizes this interface.

Figure 1.1 shows a management system and the things it manages. IPMI fits mostly within the “Hard-
ware” box, although there may be other hardware interfaces the management system must manage. The
management system ties into all elements of the system and makes global decisions based upon inputs from
all parts of the systems. For instance, a server may be overheating or have a low voltage. The management
system will be informed of this through the hardware interfaces. It may choose to move the function of that
server to another server and bring that server down so it may be repaired. If no other server is available to
take over the operation, the management system may look at the severity of the problem, predict how long
the system may survive, and let it continue. These types of decisions are called “policy”.

In all cases these events are logged to permanent storage. An operator is informed of things that need
human attention. The operator may also issue manual operations to configure and override the management
system as necessary.

The operations the management system performs on the system are called “Commands” in this picture.
Commands have “Responses” from the system. Asynchronous notifications from the system to the manage-
ment system are called “Events”. The system never sends commands to the management system, and the
system may perform local operations on its own (such as controlling fan speed) but never perform global
operations unless pre-configured by the management system to do so. So the system may perform limited
policy decisions, but the management system is firmly in control of policy.

1.1 IPMI Implementation

The Management Controller (MC) sits at the center of an IPMI system, providing the “intelligence” of IPMI.
It is suppose to be always on when the system is plugged in, even if the system is off. The management
system communicates with the management controller; the management controller provides a normalized

CHAPTER 1. MANAGEMENT, SYSTEMS, AND IPMI

Operator Event
Console Storage

Management System

Command, Responses,
Events

hardware software hardware software hardware software

System 1 System 2 System N

Figure 1.1: Management Interfaces

1.1. IPMI IMPLEMENTATION 3

To Other To Power
To Other Management Controls, Reset
Systems Controllers Controls, etc.
B B
: ICMB P IPMB : ; . : —
i Interface ! . [Interface » Chassis |
H ' ! ' Control, H
[U e : v Watchdog ! ||
] b s :
I"""""""'I
' ' jmmmmmmmmmmm—aa- Sensors _—
+ Main SDR ! , :
i\ Repository ! MC : 12C ' 12C Bus DIMM
E ! Processor : Interface ' FRU
"""""""" ! ! : Data
e | be——d i '
: Event :
: Lo '
' 9 R I R R FRU
[' \ ' \ ' EEPROM
fmmmmmmmmmm———- ' System E ' Other E
: : v Interface ! v Interface !
» Device SDR 1 E . E :
i Repository 1 Rms=ssesqesseee- Y R] """" '
H '
--------------- L}
To the Main To Ethernet,
Processor Serial Port, etc.

Figure 1.2: Parts of a Management Controller

interface to all the sensors, events, and Field Replacable Unit (FRU) data in the system.

Figure 1.2 shows the various parts of the management controller. Note that most everything is optional;
depending on what a management controller does it may only need some things. The Baseboard Management
Controller (BMC) is required to have a lot of the items.

The MC Processor is generally a small, inexpensive, but reliable microcontroller. Several companies sell
processors that have a lot of the IPMI components already implemented and software to help a company
implement TPMI on their system.

The system interface provides a way for the main processor to communicate with the management
controller. Some systems do not have this connection and only use external interfaces and/or Intelligent
Platform Management Bus (IPMB) interfaces. System interfaces include SMIC, KCS, and BT interfaces.

An MC (generally the BMC) may have other interfaces to an external management system through serial
ports or Ethernet.

Generally, sensors sit on an I?C bus since many off-the-shelf sensors can sit directly on the bus with
no extra logic. Wherever the sensors sit, the MC provides a more abstract interface to the sensors so that
the management system does not have to know the details of how to talk to the sensor. Sensors may be
traditional analog sensors like temperature and voltage. But they may report other things, too, like the

4 CHAPTER 1. MANAGEMENT, SYSTEMS, AND IPMI

current BIOS state, whether a device is present or not, or other things like that.

FRU data is often stored in I?C EEPROMs on the I2C bus. FRU data is information about a Field
Replacable Unit. This includes things like the manufacturer, the serial number, date of manufacture, etc. A
system generally has information about the chassis and information about each field replaceable unit it has.
Field replaceable units may include power supplies, DIMMs (memory devices), plug-in-boards, or a host of
other things.

Connections to other MCs may be done through an IPMB. On an IPMB, each MC is a peer and they
communicate directly through messages.

In addition to IPMB, IPMI systems can be interconnected through an Intelligent Chassis Management
Bus. This is a serial bus that runs between chassis.

A management controller may be able to control various aspects of the chassis, such as power and reset.
It may also have a watchdog timer for the main processor.

The Sensor Device Record (SDR) repositories store information about the sensors and components of
the system. The BMC must have a main SDR repository; this repository is writable. There may only be
one main SDR repository in the system. Any MC may have a device SDR repository; these are a read-only
repositories.

When a problem or change in the system is detected, the MC handling that sensor may issue an event.
This allows management software to detect these problems or changes without having to poll every sensor
constantly. The events are stored in an event log. Events may be forwarded through the system interface or
other interfaces, but they are always stored in the event log. The BMC must have an event log; generally
the other management controllers forward their events to the BMC.

1.2 System Types

Although any arbitrary type of system may use IPMI for platform management, systems generally fall into
two categories: server systems and bus systems.

Figure 1.3 shows a typical server system. It is a single stand-alone box that is a single computer. It
has a BMC that is the main management controller in the system. It controls a number of sensors. In this
example, the power supply also has a MC with it’s own sensors.

A BMC can have several connections to managing systems. It may have a system interface connection to
the main processor. It may share an interface to the ethernet chip so the system may be managed through
the LAN when the main processor is not working. Systems can have serial port connections. They can even
have connections to modems where they can dial up a management system or page an operator when they
detect a problem, or be dialed into by a management system.

Figure 1.4 shows a typical bus system. The word “bus” is perhaps a bit misleading; these types of
systems used to have busses (like CPCI and VME) but recently have tended to not have big busses and use
networking for interconnect (like PICMG 2.16 and ATCA). These systems generally contain a number of
processors on pluggable boards often called Single Board Computers (SBCs) or blades. One or more power
supplies power the whole system. The boards and power supplies can be hot-pluggable.

These systems generally have one or two boards that manage the system; this can be on a standard SBC,
on another special purpose blade (like a blade used as a network switch), or on a standalone board with this
purpose. The shelf management controller(s) generally act as the BMC in the system; they will have the
event log and the main SDRs in the system. A system with two shelf controllers will generally allow the
system to be managed even if one of the shelf controllers fails.

1.2. SYSTEM TYPES

0000

Sensors

0000

Sensors

MC

Power Supply

System Interface

Main

Baseboard
Management
Controller

Processor

Ethernet

Figure 1.3: A typical server system

6 CHAPTER 1. MANAGEMENT, SYSTEMS, AND IPMI

Shelf
Management f——
Controller
Power Supply Power Supply
l"""""""'l
: Standby :
: Shelf ' MC MC
+ Management
i\ Controller !
o meecccmcamaa- '
IPMB
Network
MC MC MC MC
uP uP uP uP
Blade Blade Blade Blade

Figure 1.4: A typical bus system

1.2. SYSTEM TYPES 7

Bus systems generally use one or more IPMBs (a sister standard to IPMI) to interconnect the various
components for management. IPMB is a modified I2C interface; it provides for a somewhat slow but simple
communication bus.

The boards can generally be individually power controlled, so even though a board is plugged into the
system it may be turned off. The shelf managment controller may implement some policy, such as fan
controls or auto-powering up boards, but is generally used as a conduit for an external management system
to control the parts of the system.

Individal SBCs vary on whether the local Management Controller is connected to the microprocessor on
an SBC. Some are, and some aren’t. This connection has some limited usefulness if the software on the SBC
wishes to obtain local information from the IPMI system or store logs in the IPMI event log.

These types of systems are used to achieve high density in places with expensive real-estate, like a telco
central office. As you might imagine, you can pack a lot of processing power into a small space with a system
like this. Since they are generally designed for hot-swap, and can have I/O come out the back of the system
on separate cards; it makes mainenance easier.

CHAPTER 1. MANAGEMENT, SYSTEMS, AND IPMI

OpenlPMI

So now we’ve got a BMC, MCs, and things like that. But how are you expected to use raw TPMI?

The first things you must do, of course, is connect to the BMC. If it’s a direct SMI connection (A SMIC,
KCS, or BT interface, or perhaps a non-standard serial interface), you just open the driver on the operating
system and start messaging. If it’s a LAN-type connection, you have to go through an authentication
sequence. Omne you have a connection to the BMC, things are pretty much the same no matter what
interface you have. There are a few messaging for doing special controls on a LAN interface, but they don’t
generally matter to the user.

Once the connection to the BMC is up, the user should query to see what channels the BMC supports.
For 1.5 and later, it gets this from a command. For 1.0, it gets it from the main SDR repository.

Once you are connected, you should scan the SDRs in the main SDR repository for any entities and
sensors. Sensors and entities may also be in the device SDR repository, which should be scanned next. This
allows the user to discover the sensors in the system. Note that the sensors may point to entities that don’t
have a entry in the SDR that defines them, those entities need to be handled when they are detected.

After this point in time, the interface could be deemed to be “up”. However, there’s still more to do.

If the interface supports an event queue, the user will have to poll it (if the driver doesn’t deliver them
asynchronously, that is). If the interface doesn’t support an event queue the user should periodically scan
the system event log for new events. (Note that even if it does support an event queue, the user should still
poll the system event log in case the event queue missed any events coming in.)

Also, the user should start scanning the IPMB bus with broadcast get device id commands to detect any
MCs on the bus.

This is what the OpenIPMI library does for you. Beyond this, it also represents the sensors, controls,
and entities in a nice OO fashion, and it handles the details of addressing, message routing, and other things
you don’t really care about. It lets you get right at the sensors and entities.

2.1 The User View

A bunch of acronyms have just been introduced, along with a lot of vague concepts, and some description
about how to use IPMI. The nice thing is that the user of OpenIPMI doesn’t really have to know about all
these things.

10 CHAPTER 2. OPENIPMI

From the user’s point of view, the entity provides the central framework for sensors and controls. Sensors
monitor entities. Entities may be present or absent. When you connect to an interface, OpenIPMI takes
care of detecting the entities in the system and reporting them to you. You may register to be told when
entities are added or removed from the local database. Note that an entity may be in the SDRs but not
physically present in the system; the reporting from OpenIPMI only gives the existance in the SDRs, not
physical presence in the system. Physical presence it handled through a separate interface.

The user must know about two other OpenIPMI concepts: connections and domains. A connection
provides the interface to the IPMI system. In essence, it is the BMC connection. You must allocate one or
more connections and create a domain with them. OpenIPMI supports multiple connections to a domain in
some cases, but currently it requires some OEM support for this. A domain represents a set of devices on a
bus (like IPMB) whose entities will be unique. For instance, a chassis with a lot of cards plugged in could
be a domain, each card could be an entity and then create it’s own sub-entities, but they will be designed
so the entity id’s don’t collide.

OpenIPMI will automatically manage the connections, activating and deactating the proper connections
(if the connections support that), detecting failures and switching over, etc.

Though the user doesn’t have know the inner details of IPMI addressing and messaging, they do need
to know about entities and sensors. OpenIPMI mainly focuses on representing the entities and sensors in
convenient ways. The user still needs to understand the capabilities of sensors, how the sensors advertise
those capabilities, and the things that can be done to the sensors.

You may register with an entity to be told when its physical presence in the system changes. Some
devices (like power supplies) are field-replaceable while the system is running; this type of device is called a
hot-swappable FRU. They may have sensors that monitor them, but those sensors may not be active if the
device is not physically present in the system.

Sensors and controls are also automatically detected and reported. This is done through entities; you
register with an entity to be told when a sensor or control has been added or removed.

2.2 OpenlPMI Concepts

OpenIPMI is an event-driven library that is designed to be relatively operating system independent. If you
have written control systems or things like that in the past, you will be quite familiar with event-driven
systems and may skip to the next section. If not, you want to read this. Event-driven systems may seem a
little unusual, but they are accepted practice and by far the best way to build control systems.

2.2.1 Event-Driven Systems

In an event-driven system, you never stop and wait for something to happen. If you are not used to this,
you are probably used to writing code like this:

while (true) {
wait_for_input();
perform_opl();
wait_for_opl_results();
perform_op2();

2.2. OPENIPMI CONCEPTS 11

This is fairly straightforward, but it has some problems. What if another more important input comes
in while you are waiting for the results of perform_op1()? Now the program will have to handle input in
wait_for_opl_results(), too, and somehow return and say something is happening. The loop will then
have to somehow handle multiple operations in progress. And this is a simple example, what if there were
hundreds of possible inputs, each with their own result handler, and each had to go through several states?
You could assign each to a thread, but if you have thousands of possible pending operations in a system,
that many threads may thrash your system and render it inoperable, probably right at the time you need it
most (since a lot of things are going on).

In an event-driven system, instead you would say:

init)
{
<initialize input_data>
register_for_input(opl_handler, input_data);
}
opl_handler(input_data)
{
<allocate and initialize op_data>
perform_opl(..., op2_handler, op_data);
}
op2_handler (op_data)
{
perform_op2();
<free op_data>

}

As you see, when you start an operation, you provide the next thing to call when the operation completes.
The functions passed around are called “callbacks”. You allocate and pass around chunks of data to be passed
to the handlers. And you register input handlers that get called when certain event occurs. So the code runs
in short non-blocking sections, registers for the next operation, then returns back to some invisible main
loop that handles the details of scheduling operations. This may seem more complicated than the previous
example, but it has a large number of advantages:

e The system is almost always ready to handle input. For instance, user-interface systems (like most
widget sets) are almost always event-driven, this makes them much more “live”, since they are always
ready to handle user input.

e This system can handle multiple simultaneous operations without threads. In general, threaded systems
are less reliable and more complicated; unless you need priorities or scalability on SMP, why use them?
And even if you use them, you can have much better control over what is running in the system with
an event-driven system..

e If you are building a redundant system with data replication, this gives you a natural way to hold
your data, know when to transfer it over to the mate system, and continue an operation on the mate
system.

e If you track the data, it’s easy to monitor every operation occuring in the system, stop an operations,
or whatever.

12 CHAPTER 2. OPENIPMI

e It’s much easier to detect and manage overload situations in an event driven system. Event-driven
systems have event queues of things waiting to be processed. You can put things in the queue and
watch the queue length. If the queue length gets too big, you are in overload, and can intelligently
decide which events you want to throw away, based on priority, time to live, or some other criteria.

In general, a threaded system is easier to conceptually understand until you understand event-driven
methods. An event-driven system is almost always easier to correctly implement.

Note that event-driven systems don’t preclude the use of threads. Threads may be vastly overused, but
they are important. You could, for example, allocate one event loop thead per CPU to help scale your
system. You need to use threads to manage priorities. Some inputs may be more important than others, so
you may have an event loop for each priority and feed them that way. You have a thread per CPU, and/or
a thread per priority, but you don’t need a thread per operation.

This is often called “state-machine programming” since most control systems are state-machine based,
and this is a natural way to implement a state machine. The op_data holds the state of the state machine,
each input gets op_data, looks at the current state, and decides what to do next.

The OpenIPMI library is completely event-driven. It has no internal blocking operations, and it expects
that anything it calls will not block. IPMI messaging and operating system primitives are provided through
external plug-in pieces.

If a library function that takes a callback does not return an error, the callback is guaranteed to be called,
even if the object the call is associated with goes away. If it goes away, a NULL may be passed in as the
object to the callback, but the cb_data will still be valid.

2.2.2 The OS Handler

The OS handler provides services for the OpenIPMI library. OpenlPMI needs some things from the operating
system that are not standardized by the C language. The os-handler include file is shown in Appendix L.

OS Handler Services

The classes of services required by OpenlPMI are:

Input Callbacks The OpenIPMI code uses the “file descriptor” concept of *nix, input devices are num-
bered. This is not used internally in the library, but it is used by the messaging interfaces, so the
messaging interfaces and OS handler may implement their own conventions for these numbers. This
provides a way for OpenIPMI to register to receive input from devices.

Timers OpenlPMI times everything (as it should), thus it needs timers.

Locks OpenIPMI does not require locks, you may leave the operations NULL and they won’t be used.
However, if you are doing multi-threaded operations, you should almost certainly provide locks. The
locks do not need to be recursive (they used to, but this has changed in OpenIPMI 1.4). Read/write
locks are no longer required.

Condition Variables These are condition variables like the ones specified in POSIX threads. Although
OpenIPMI does not use condition variables (since it never waits for anything) it may be convenient for
other things to have them. OpenIPMI does not use them, and if nothing in your system needs them,
they need not be provided.

2.2. OPENIPMI CONCEPTS 13

Random Data For certain operations, OpenIPMI needs random data.

Logging Logs that OpenIPMI uses to report information and internal problems comes through the OS
Handler.

Database OpenIPMI can use an external database to hold persistent information (like SDRs) and thus
avoid having to fetch them every time it starts up. This interface is not required, but can greatly
reduce the startup time of OpenIPMI.

User Functions Not used by OpenIPMI, but available for the user for special things the user will need.

Standard User Functions in the OS Handler

OS handlers have some standard functions pointers for the user. These are:
free_os_handler Free the OS handler. Do not use the OS handler after calling this.
perform one op Handle one event (a timer timeout or a file operation) and return. This takes a
timeout; it will wait up to the amount of time given for the event.
operation_loop Continuously handle events. This function will not return.
These operations may not be available on all OS handlers, see the particular OS handler you are using
for more details.
These are part of the OS handler. As an example on how to use them, the following code performs one
operation, prints any error it returns, then frees the OS handler:

struct timeval tv;
int rv;
tv.tv_sec = 10;
tv.tv_usec = 0;
rv = os_hnd->perform_one_op(os_hnd, &tv);
if (zv)
printf ("Error handling operation: Ox¥%x", rv);
os_hnd->free_os_handler(os_hnd);

POSIX OS Handlers

OS handlers are already defined for POSIX systems, both with and without threads. These are defined in
the include file ipmi_posix.h; see that file for more details. If you are running in a threaded application,
you almost certainly should use the threaded version of the OS handlers.

To allocate a POSIX OS handler, use one of the following:

os_hnd = ipmi_posix_setup_os_handler();
os_hnd = ipmi_posix_thread_setup_os_handler(wake_sig) ;

The wake_sig is a signal number that your program is not using (usually SIGUSR1, SIGUSR2, or a real-
time signal). The OS handlers uses this signal to send between threads to wake them up if they need to be
woken.

Freeing and handling the OS handler is done with the standard functions in the OS handler, described
in section 2.2.2.

14 CHAPTER 2. OPENIPMI

The GLIB OS Handler

An OS handler is already defined for glib and will work with threads. It is defined in the include file
ipmi_glib.h; see that file for more details.
To allocate a GLIB OS handler, use:

os_hnd = ipmi_glib_get_os_handler();

Presumably, GLIB handles the waking of threads, so unlike the POSIX version no wakeup signal is
required.

All the other the OS handler functions are done with the standard functions in the OS handler, described
in section 2.2.2.

2.2.3 Error Handling

Almost all OpenIPMI calls that do anything besides fetch a piece of local data will return an integer error
value. A zero means no error. Two types of errors are returned, system errors (which are standard Unix errno
values) and IPMI errors (which are the standard IPMI error codes). You can use the macros IPMI_IS_0S_ERR
and IPMI_IS_IPMI_ERR to tell the type of error, and IPMI_GET_0S_ERR and IPMI_GET_IPMI_ERR to get the
actual error values.

Note that if your system doesn’t have Unix-type error numbers, you will have to provide those for the
OpenlPMI library.

If a function returns an error, any callbacks provided to that function will never be called. If a function
that takes a callback returns success, the callback will always be called, even if the object associated has
ceased to exist. If an object with outstandard operations ceases to exist, all the callbacks for outstanding
operations will be called with ECANCELED as the error. Errors are passed into many callbacks, if an error is
present the rest of the data in the callback is probably not valid except for the cb_data variable you provide,
and possibly the object the callback is associated with. The object the callback is associated with may be
NULL if it has ceased to exist.

2.2.4 Locking

As mentioned before, you may or may not be using locking, but you must read this section anyway. Locking
here involves existance of entities as well as normal locking.

Locking has changed between OpenIPMI 1.3 and 1.4. In OpenIPMI 1.3, locks were held in user callbacks.
Locking was very course grained and the locks were recursive, so this was generally not a problem. However,
in general it is a bad idea to hold locks in user callbacks. The user might have two domains and cause
deadlocks between them. For instance, if the user had one thread in a callback from domain 1 that then
called a function in domain 2, and another thread in a callback from domain 2 that called a function in
domain 1, the system can deadlock. This is because the first thread holds locks in domain 1 that the second
thread needs for the function in domain 1, and the second thread holds locks in domain 2 that the first
thread needs for the domain 2 function. Because of this, locking strategy has changed in OpenIPMI 1.4.
The interfaces and basic usage are completely unchanged, but the semantics have changed.

Locking principles

The basic principle of locking is that if you are in a callback for an IPMI object (an IPMI object is passed
in the callback), that object is refcounted (marked in-use) and the system cannot delete it. In any callback

2.2. OPENIPMI CONCEPTS 15

for an object owned by a particular domain, that object and anything it belongs to will be marked in-use.
So, for instance, in a callback for a sensor, the sensor is in-use, the entity the sensor belongs to is in-use,
the management controller the sensor is on is in-use, and the domain the sensor is in will be in-use. No
other sensors, entities, or management controllers will necessarily be marked in-use. Outside of callbacks,
the library is free to change pointers, change information, add and remove objects, or make whatever general
changes that are required.

So how do you mark an IPMI object in-use? If you are handling incoming IPMI callbacks you generally
don’t have to worry about this. But say you are handling outside input, such as a user interface. What
then? If the pointers can change, how do you keep a reference to something?

OpenIPMI provides two identifiers for IPMI objects. One is a pointer, but a pointer is only good inside a
callback. The other is an OpenIPMI id; the id is good outside callbacks. But the only thing you can do with
an id is pass it to a function that will call a callback for you with the pointer. You can convert a pointer to an
id (inside a callback, of course) so you should do that if you need to save a reference to the object. Note that
there are some functions that take ids that do this for you (such as ipmi_sensor_id_reading_get (), other
sensor functions, hot-swap functions, and a few others); these are provided for your convenience. Almost all
sensor, control, and entity functions that you would generally call asynchronously support these ipmi_xxx_id
functions. The operation is exactly the same as the same operation without the _id, it simply takes the id
instead of the direct pointer. See the ipmiif.h include file to see if the function you desire exists.

This mechanism, though a little inconvenient, almost guarantees that you will not forget to decrement a
use count. It nicely encapsulates the locked operation in a function'. You have to return from the function
unless you exit, longjmp, or throw an exception that falls through the callback, and you shouldn’t do those
things.

You must do this whether you are using locking or not, because the library uses this mechanism to
determine whether the id you are holding is good. Once it converts the id to the pointer, your pointer is
guaranteed to be good until the function returns.

The functions to convert an id to a pointer are named ipmi_xxx_pointer_cb(), where “xxx” is control,
entity, domain, or sensor. Unlike many other callbacks, the callback function you provide to these functions
will be called immediately in the same thread of execution, this callback is not delayed or spawned off to
another thread. So, for instance, you can use data on the stack of the calling function and pass it to the
callback function to use.

Locking example

For instance, suppose you have a callback registered with the domain for finding when new entities are ready,
and you are looking for a specific entity. The code might look like:

ipmi_entity_id_t my_entity_id = IPMI_ENTITY_ID_INVALID;

static void
entity_change(enum ipmi_update_e op,

ipmi_domain_t *domain,
ipmi_entity_t *entity,
void *cb_data)

1This is how locking works in Ada95 and Java, although their mechanisms are a little more convenient since they are built
into the language

16

CHAPTER 2. OPENIPMI

ipmi_entity_id tmp_id;

switch (op) {
case IPMI_ADDED:
if (entity_i_care_about(entity))
my_entity_id = ipmi_entity_convert_to_id(entity) ;
break;

case IPMI_DELETED:
tmp_id = ipmi_entity_convert_to_id(entity);

if (ipmi_cmp_entity_id(my_entity_id, tmp_id) == 0)
ipmi_entity_id_set_invalid(&my_entity_id) ;
break;
default:
break;
}
}
In this example, the entity is in-use in this call, because you have received a pointer to the entity in the
callback.

However, suppose you want to use the entity id later because the user asks about the entity to see if it

is present. You might have a piece of code that looks like:

static void
my_entity_id_cb(ipmi_entity_t *entity, void *cb_data)

{

my_data_t *data = cb_data;

data->exists = 1;

data->present = ipmi_entity_is_present(entity);
}
void
check_if my_entity_present(my_data_t *data)
{

int rv;

data—>exists = 0;

data->present = O;

rv = ipmi_entity_pointer_cb(my_entity_id, my_entity_id_cb, data);

if (rv)

printf ("The entity could not be found\n");

}

Most of the data about the various OpenIPMI objects is static, so you can pre-collect the information

about the objects in the callback where there existance is reported. Some local information, such as entity

2.2. OPENIPMI CONCEPTS 17

presence, whether a MC is active, and entity hot-swap state is dynamic, but the vast majority of information
is not. So, it is recommended that you collect all the static information that you need from an object when
it is reported to you.

Many operations require a message to the remote system; the ones that take callbacks. For these opera-
tions, functions that directly take the id are available.

Use of the id-base functions is recommended. The entity presence code could be rewritten using this to
be:

void
check_if_my_entity_present (my_data_t *data)
{

int rv;

data->exists = O;
data->present = 0;
rv = ipmi_entity_id_is_present(my_entity_id, &data->present);
if (rv)
printf ("The entity could not be found\n");
else
data->exists = 1;

Locking semantics

As mentioned before, OpenIPMI will not delete an object you have a pointer to while in a callback, but in
multi-threaded systems it is free to do pretty much anything else to the object, including call callbacks on
it. This means, for instance, that you can be iterating over the entities in the system and a new entity can
be added, have the entity update callback called on it, and be added to the list. There is no guarantee or
order between the adding of entities to the list and the callback. So the new entity might be iterated, it
might not, the iteration might be before or after the the callback, etc.

How can you avoid this? You have a few options:

e Ignore the problem. I strongly recommend that you do not take this option.

e Single-thread your program. If you don’t need be able to take advantage of multiple CPUs in an
SMP system, and you have no need for priorities, single-threading is a good option. With OpenIPMI,
you can have a single-threaded application that is non-blocking and can perform very well. Plus,
single-threaded programs are easier to debug, easier to understand and maintain, and more reliable.

e Do your own locking. For instance, you could claim a lock in both the entity iteration and the callback
for a new entity. This would prevent the both pieces of code from running at the same time. You are
in control of the locks, so you can handle it as appropriate. You have to know what you are doing, but
that goes without saying when doing multi-threaded programming.

This is pretty standard in multi-threaded systems. Hardware Platform Interface (HPT), for instance has
the same problem. If you have one thread waiting for events from an HPI domain, and another iterating the
RDRs, or you have two threads each doing operations on sensors, you have exactly the same situation. You
have to protect yourself with locks the same way.

18 CHAPTER 2. OPENIPMI

Note that data about an object (like the device id data, whether the MC is active, or the entity is present,
or whatever) will not change while the object is in use. This data is held until the object is no longer in use
and then installed (and in the case of activity or presence, the callbacks are then called).

2.2.5 OpenlPMI Objects

In OpenlIPMI, the user deals with six basic objects: connections, domains, entities, sensors, controls, and
events.

Connections

A connection provides the low-level interface to the system. It is usually a connection to a BMC in a system.
It handles getting IPMI messages to the proper elements in the system.

Domains

The domain is the container for the system, the entities in the system are attached to it. You create a
domain with a connection to a system; the domain handles the job of discovery of the things in the system.

Entities

Entities are things that are monitored. They may be physical things such as a power supply or processor,
or more abstract things such as the set of all power supplies or the ambient air in a chassis. Sensors monitor
entities, and controls are attached to entities.

Entities may be grouped inside other entities, thus an entity may have a parent (if it is grouped inside
another entity) and children (if it contains other entities). A raw system with no SDR data will not have
any relationships defined. Relationships are stored in the SDR repository. You may change them and store
them back, if you like and if the system supports that, but changing SDR data is not recommended.

FRU information about the entity is sometimes available. You can register with an entity to see if/when
it becomes available using:

int ipmi_entity_add_fru_update_handler (ipmi_entity_t *ent,
ipmi_entity_fru_cb handler,
void *cb_data) ;

Once it is available, you can fetch the FRU data using the commands defined in the IPMI include file.

Device-Relative vs System-Relative Entities In IPMI, entities may be either in a fixed place in the
system, or they may be moved about the system. Fixed entities, are, well, in a fixed location in the system.
These are called system relative entities. They have an entity instance less than 60h.

Other entities may not reside in a fixed location. For instance, a power supply or CompactPCI board
may be plugged in to one of many locations in a chassis; it doesn’t know ahead of time which one. These
types of entities are generally device-relative and thus have an entity instance of 60h or larger. For these
types of entities, the management controller on which they reside becomes part of the entity. In OpenIPMI,
the IPMB channel number and IPMB address are part of the entity. In ipmi_ui and ipmish, these are
printed and entered as “r<channel>.<ipmb>.<entity id>.<entity instance>".

2.2. OPENIPMI CONCEPTS 19

Sensors

Sensor monitor something about an object. IPMI defines many types of sensors, but groups them into two
main categories: Threshold and discrete. Threshold sensors are “analog”, they have continuous (or mostly
continuous) readings. Things like fans speed, voltage, or temperature.

Discrete sensors have a set of binary readings that may each be independently zero or one. In some
sensors, these may be independent. For instance, a power supply may have both an external power failure
and a predictive failure at the same time. In other cases they may be mutually exclusive. For instance, each
bit may represent the initialization state of a piece of software.

Controls

Controls are not part of the IPMI spec, but are necessary items in almost all systems. They are provided
as part of OpenIPMI so that OEM code has a consistent way to represent these, and so OpenIPMI is ready
when the IPMI team finally sees the light and adds controls. OpenIPMI defines many types of control:
lights, relays, displays, alarms, reset, one-shot-reset, power, fan speed, general outputs, one-shot outputs,
and identifiers.

For all controls except displays and identifiers, the control may actually control more than one device.
With some controls, multiple device may be controlled together and individual ones cannot be set (ie, the
same message sets all of them). For these types of controls, OpenIPMI represents them as a single control
with multiple devices. All the devices are read and set at once.

Reset controls are reset settings that can be turned on and off. One-shot-reset controls cause a reset by
setting the value to 1; they are not readable and setting them to zero returns an error.

Lights are on/off colored devices, like an LED. They may be multi-color, but can only show one color
at a time. For instance, if you work for Kmart, or you are managing a CompactPCI system with hot-swap,
you will have a blue light in your system. You can search through the controls to find a light that’s blue.
Then, if a special is on, or you want the operator to remove a card, you can light the blue light. Lights
may blink, too. Two types of lights are available. Transition lights can have a series of transitions; as series
of transition is called a value. Each value describes a sequence of one or more transitions the light may go
through. Setting lights allow direct setting of the color and on/off time of the light.

Relays are binary outputs. Most telephony systems have them; they are required by telephony specs.
They are simple on/off devices.

Displays are two-dimensional arrays of characters. OpenIPMI allows you to change individual characters
at will.

Alarms are bells, whistles, gongs, or anything that can alert the user that something is wrong.

Reset controls are used to reset the entity to which they are attached.

Power controls can be used to control power to or from an entity. A power control on a power supply
would generally control output power. A power control on a board would generally control input power to
the board.

Fan speed controls can be used to set the speed of a fan.

General outputs are outputs that don’t fall into one of the previous categories. One-shot outputs are
like general outputs, but perform some action when set to one and are not readable. Setting them to zero
returns an error.

Identifier controls hold identification information for a system, such as a chassis id, chassis type, geo-
graphic address, or whatever.

20 CHAPTER 2. OPENIPMI

Events

When an external event comes into OpenIPMI, the user will always receive that event in some manner
(unless they do not register with a generic event handler, but they should always do that). The event may
come through a callback for a sensor, control, entity, or other callback.

All the callbacks you should be using return a value telling whether the handler has “handled” the event.
Handling the event means that the callback is going to manage the event. Primarily, this means that it is
responsible for deleting the event from the event log with ipmi_event_delete(). If no callback handles
the event, then it will be delivered to the main event handler(s). This allows calls to receive events but the
events to be managed in a single location.

To handle the event, the event handler should return IPMI_EVENT_HANDLED. To pass the event on, it
should return IPMI_EVENT_NOT_HANDLED.

If a callback handles the event, then all future callbacks called due to the event will receive a NULL for
the event. So be ready to handle a NULL event in all your event handlers. A NULL may also be passed to an
event handler if the callback was not due to an event.

Where OpenIPMI Gets Its Data

OpenlPMI generally gets all of its data from the IPMI system, either from SDRs, the event log, or via
commands. OpenIPMI will pull in anything it can recognize. Note that some data in an IPMI system is
duplicated; if the data is not consistent it will continue to be inconsistent in OpenIPMI.

For instance, OpenIPMI gets all the information about a management controller from the “Get Device 1d”
command. However, the system may have a record in the SDR repository describing an entity that represents
the management controller. If the data from the command and the SDR repository is inconsistent, OpenIPMI
will happily provide the data from the SDR repository when looking at the entity, and the data from the
“Get Device Id” command when looking at the MC.

If the system has OEM controls and sensors, they may have been created by OEM code and may not
have come from SDRs (thus the phrase “generally” in the first sentance of this section). This is a major
reason not to use direct IPMI messaging with OpenIPMI. OpenIPMI provides an abstraction for the sensors
and controls and thus multiple implementations can sit below it. If software bypasses the abstraction, it will
loose the ability to talk to non-standard sensors and controls that use the same abstraction.

2.2.6 Callbacks

As you will discover, OpenIPMI is very callback based. The callbacks are somewhat fined grained; you
register for exactly what you want to see on individual objects. This is not as bad as you might imagine
(even though it may seem somewhat strange). It does mean that you have to do a lot of registering in all the
right places, though. IPMI has a large number of asynchronous things that it has to inform you about. If it
delivered all these through one interface, you would have to look at each call and try to figure out what type
of things was being reported, what object is was associated, etc. In effect, that work is done by OpenIPMI.

For user-level callbacks, the object the callback is for will always be valid, it will never be NULL. This
means, for instance, if you request a reading from a sensor, the reading response will always get called and
the sensor parameter will always be valid. It may be in the destruction process and you cannot set any
setting, get any readings, or anything else that requires sending a message. If the handler gets an ECANCELED
error, the sensor is being destroyed. This also applies to all control, entity, and most domain callbacks. This
is new for OpenIPMI 1.4, but is fully backwards compatible.

2.3. OPENIPMI INCLUDE FILES 21

This does not apply to internal interfaces, especially ones that send messages. If you send a message to
a MC, for instance, the MC can be NULL when the response comes back. Be very careful.

Note that the handlers don’t get called immediately with current state when you add a callback handler.
So you must register for the event then query the current state.

Updated Callbacks

Updated callbacks tell you when an object comes into existance, is destroyed, or if configuration information
about an object has changed. On an entity, for instance, when an entity is first added, the entity update
handler on the domain will be called with the entity. when an SDR is read and causes a change to the entity,
the updated handler will be called again with the change. When the entity is deleted, it will be called again.

In general, you should add updated handlers whenever the thing you want to register against comes into
existance. So for entities and the main event handler, you should register them in the setup_done callback
for the domain. The entity update handler should register the update handlers for sensors, controls, and
FRU information. It should register the event handlers for presence and hot-swap there, too.

Sensor and control update handlers should set up and register for events from the sensor.

Asynchronous Callbacks

Asynchronous callbacks tell you when asynchronous things happen in the system. For instance, a card gets
plugged in and an entity becomes present. You will be told with the present callback on the entity. The
hot-swap state of an entity changes. That is reported via the hot-swap state callback. Events because of
sensors going out of range is another example.

Note that these are usually due to an IPMI event, but do not necessarily have to be caused by an IPMI
event. For instance, if, during an audit, OpenIPMI discovers that it has the state wrong for something, it
will report the correct state in a callback.

Synchronous Callbacks

Synchronous callbacks are callbacks for things you request and are one-shot operations. For instance, if you
want to know the current value of a sensor, you call call ipmi_reading_get () and you give it a handler to
call when the reading has been fetched.

This is always done for things that OpenIPMI might have to send a message to do. It is a result of
OpenlPMI’s requirement to be able to work in non-threaded systems and still be responsive to operations
while waiting.

2.3 OpenlPMI Include Files

OpenIPMI has a large number of include files. The ones dealing with internals are in the internal directory
and are only needed for OEM code. The include file are classified by need in the sections below.

22

CHAPTER 2. OPENIPMI

2.3.1 Files the normal user deals with

ipmiif.h
ipmi_fru.h
ipmi_auth.h
ipmi_bits.h
ipmi_types.h

ipmi_err.h
os_handler.h

selector.h

ipmi_posix.h
ipmi_log.h

The main include file for OpenIPMI. It contains the main functions the user must deal
with when working with the OpenIPMI library. Almost everything will include this. It
includes ipmi_types.h and ipmi_bits.h, too, so you don’t have to include those.
Interface for FRU data.

The file holding information about athentication algorithms. You need this if dealing
with an authenticated interface.

Various values, mostly for sensors, used by the user. ipmiif.h includes this file, so you
generally don’t have to include it explicitly.

Types for the basic IPMI objects. ipmiif.h includes this file, so you generally don’t
have to include it explicitly.

Error values, both IPMI and system, as well as macros for interpreting these.

The os-specific handler types are defined here. You must implement this and supply it
to the IPMI code.

For *nix systems, This file provides a default mechanism for handling many of the os-
specific handler operations.

This defines some POSIX OS handlers.

Holds definitions for the logging interface.

2.3.2 Files dealing with messaging interfaces

ipmi_lan.h This is the LAN messaging interface, this contains the calls for creating a LAN connection.
ipmi_smi.h This is the messaging interface for talking to local IPMI interfaces (like KCS), this contains
the calls for creating an SMI connection.

2.3.3 File for system configuration

ipmi_pef.h
ipmi_lanparm.h
ipmi_pet.h

Contains code for configuring the PEF.

Contains code for configuring the LAN configuration data.

Contains code that allows the user to easily set up an IPMI LAN interface on a BMC
to send SNMP traps.

2.3.4 Semi-internal includes

These files expose the more IPMI-ish parts of OpenIPMI; things that are closer to raw IPMI. You should
not use these unless you really need them.

ipmi mc.h
ipmi_addr.h
ipmi_conn.h

This defines interfaces for the management controllers.
The file holding information about IPMI addresses.
This defines the interface for the messaging interfaces.

ipmi msgbits.h This defines various IPMI messages.
ipmi_picmg.h This defines various PIGMC messages.

ipmi_sdr.h

This defines internal interfaces for the SDR repository.

2.4. STARTING UP OPENIPMI 23

2.4 Starting Up OpenlPMI

Starting up OpenIPMI is relatively easy. You must allocate an OS handler and initialize the library with it.
Then you are free to set up connections. The following code shows this for a non-threaded POSIX program:

os_hnd = ipmi_posix_setup_os_handler();

if (los_hnd) {
printf("ipmi_smi_setup_con: Unable to allocate os handler\n");
exit(1);

}

/* Initialize the OpenIPMI library. */
ipmi_init(os_hnd);

The ipmi_init function should be done once when your program starts up. Generally, you only have
one OS handler, but you are free to have more if they interwork properly and you have some special need.

2.5 Creating OpenIPMI Domains

If you want to talk to an IPMI BMC, you must create a connection to it. The connection method depends
on the type of connection; these are described in Chapter 4.
Once you have a connection, you can open a domain with it. You do this like so:

ipmi_con_t cons [N] ;
int num_cons, IV;
ipmi_domain_id_t id;

/* Set up connection(s) here */

rv = ipmi_open_domain(cons, num_cons, con_change, user_data,
domain_fully_up, user_data2,
options, num_options, &domain_id);

2.5.1 Domain Connections

Up to two connections to a single domain are currently supported. A connection is an independent MC in the
same domain; if two MCs have external connections, they can both be used for fault-tolerance. This generally
requires some special support for the particular domain type, see the appendices on specific domain types
for more detail. The con_change function is called whenever the connection changes states (a connection is
established or lost). The connection change callback looks like:

static void

con_change (ipmi_domain_t *domain,
int err,
unsigned int conn_num,
unsigned int port_num,

24 CHAPTER 2. OPENIPMI

int still_connected,
void *user_data)

If a connection is established, then err will be zero. Otherwise it is the error that caused the connection
to fail. The conn_num parm is the particular connection number (from the cons array passed into the
domain setup). A connection may have specific ports, generally multiple connections to the same MC. The
still_connected parm tells if you still have some connection to the domain.

If a connection is down, the connection change callback will be called periodically to report the problem
as OpenIPMI attempts to re-establish the connection.

2.5.2 Domain Fully Up

The domain_fully_up callback will be called after the domain has been fully scanned, all SDRs fetched,
all FRUs fetched, and all SELs read for the first time. This gives you an indication that the domain is
completely “up”, although there really is no concept of completely “up” in IPMI since the system may
dynamically change. It is useful for some things, though (and people complained a lot about not having it
in the past) so it is now available. The callback is in the form:

static void
domain_fully_up(ipmi_domain_t *domain,
void xuser_data2)

{

}

Note that this will not be called until the domain is fully up. If the domain never comes up, this will never
be called. So don’t rely on this. The connection up callback will always be called.

2.5.3 Redundancy in Domain Connections

Since maintenance interfaces often need to be reliable in the face of network or hardware outages, they often
have multiple connections. The IPMI standards do not address this, but many systems implement some
form of redundancy.

The OpenIPMI library manages two different forms of redundancy in connections:

Two IP addresses for the same BMC - In this mode, the library talks to the same BMC over two
different channels. This is managed by the connection code itself. The LAN code does this; it allows
you to specify more than one IP address and port. It will make connections to both and make them
look like they are one connection. It will report, through the connection interface, if the individual
connections go up or down. Note that some systems have multiple IP addresses but are unable to use
both at the same time, so check with your hardware to see if this will work.

Connections to multiple BMCs - This means you have connections to more than one BMC. The domain
code will round-robin messages on the active connections, handle and report failures, and switchover
from failed to working connections. A connection has the concept of being “active” or “inactive”. An

2.5. CREATING OPENIPMI DOMAINS 25

inactive connection is one where the connection is up but the BMC in question is not fully operational;
you don’t want to use it. This is an active/standby type configuration. If all connections are always
active (an active/active type configuration), no special handling is required. If some connections can
be inactive, special OEM code is required for that connection as the domain handling must have a
way to activate an inactive connection if the active connection goes down. See the Motorola MXP in
appendix F on page 175 for an example of an active/standby connection.

Note that the two redundancy modes can be used together. You can have two LAN connections each to
two BMCs. In the author’s opinion, this, with an active/active configuration is the best redundancy and is
simple to implement.

Some systems like ATCA have a “floating” address that is used. The system has more than one BMC,
generally, but it has an address that will “float” between the BMCs depending on which one is active. If a
BMC fails, another BMC transparently takes over the floating address. So in this type of configuration the
redundancy is managed by the BMCs. This leaves the question open of how to monitor the inactive BMCs,
though. ATCA has addressed this in recent standards. See appendix E on page 171 for details on how this
works in ATCA.

2.5.4 Domain Options

When a domain is created, it may be passed options to control how the domain operates. For instance, if
you do not want to scan FRUs, or you do not want to fetch SDRs, you can control exactly what OpenIPMI
will do.

Control of this is done through the options. This is an array of values passed to ipmi_open_domain.
Each element is:

typedef struct ipmi_open_option_s
{
int option;
union {
long ival;
void *pval;
s

} ipmi_open_option_t;

The option goes into the option variable and the union holds the option value, whose type depends on the
option. Table 2.1 on the following page shows the options available.

26

CHAPTER 2. OPENIPMI

IPMI_OPEN_OPTION_ALL

Uses the ival value as a boolean. This is an all-or-nothing enable.
If this is enabled, then all startup processing will be done. If this
is disabled, then the individual startup processing options will be
used to individually control the enables. This is true by default.

IPMI_OPEN_OPTION_SDRS

Uses the ival value as a boolean. The all option overrides this.
This enables or disables fetching SDRs. This is false by default.

IPMI_OPEN_OPTION_FRUS

Uses the ival value as a boolean. The all option overrides this.
This enables or disables fetching FRU information. This is false by
default.

IPMI_OPEN_OPTION_SEL

Uses the ival value as a boolean. The all option over-
rides this. This enables or disables fetching SELs. Note
that you can fetch the SELs by hand from an MC by set-
ting ipmi mc_set_sel rescan time() to zero and then calling
ipmi_mc_reread_sel() when you want to reread the SEL. This
is false by default.

IPMI_OPEN_OPTION_IPMB_SCAN

Uses the ival value as a boolean. The all option overrides this.
This enables or disables automatic scanning of the IPMB bus. If
you turn this off you can still scan the bus by hand using the
ipmi_start_ipmb mc_scan() function. This is false by default.

IPMI_OPEN_OPTION_OEM_INIT

Uses the ival value as a boolean. The all option overrides this.
This will enable or disable OEM startup code for handling special
devices. This is the code that creates custom controls and things
like that. This is false by default.

IPMI_OPEN_OPTION_SET_EVENT_RCVR

Uses the ival value as a boolean. This is not affected by the all
option. This enables setting the event receiver automatically. If
true, OpenIPMI will detect if the event destination of an MC is
not set to a valid value and set it. However, this requires admin
level access; you will get errors if you connect with a lower level of
access and have this turned on. This is true by default.

Table 2.1: Domain options in OpenIPMI

Use Cases

IPMI brings a lot of complexity, so it better be useful for something and we better know how to use it. This
chapter brings up several different ways it can be used to improve system reliability.

3.1 Simple Hardware Monitoring

If you have a single system and wish to improve its reliability, you may use IPMI to monitor the hardware.
We know a few things about hardware:

1.

2.

Heat decreases the lifetime of silicon.
As capacitors degrade, they tend to fail slowly.
Fans tend to fail slowly.

If something fails, you generally have some time to do something about it before the failure is catas-
trophic.

By monitoring long-term trends of temperature, voltage, and fan speed we may accurately predict when
certain system components are going to fail. Then they can be replaced gracefully.
In addition, if software fails, you want want some mechanism to automatically restart the failed software.
To do this, you need a four-fold approach:

e Record and periodically analyze long-term trends of heat, voltage, and fan speed. IPMI stores infor-

mation about the limits of the various components. Long-term trending will tell you when values of
critical components are going to reach the limits. It’s a lot better to know that your power supply will
probably fail in five days than to know that your power supply will fail in 30 seconds, or that your
system is now dead and you don’t know why.

Monitor events coming from the system. In the event of a sudden failure, the IPMI system event log
may give you some warning that something is about to happen. In the event of a catastrophic failure,
it may give you useful information for post-mortem analysis.

27

28 CHAPTER 3. USE CASES

e Use a watchdog timer to monitor for system software failures. It is especially useful if the watchdog
timer has a pretimeout that says “Hey, I'm going to reset you in a few seconds.” that comes in via
an NMI. If you have this, you can panic the system and get useful information about what the system
was doing when it failed.

e Create a software system to monitor the rest of your software and detect when it fails and restart the
software.

OpenIPMI, of course, can be used to do a lot of this, but other useful tools exist for this. HPI can be
used in many places where OpenIPMI can be used. See chapter D on page 169 for details on the differences
between OpenIPMI and HPI.

However, HPI and OpenIPMI can be overkill for this type of monitoring. Another tool, ipmitool[3], can
provide a simple interface to the IPMI system. It is easy to script and simple to use.

For the watchdog timer, the operation system generally provides an abstract interface. The OpenlPMI
Linux device driver does this; it provides a watchdog timer with pretimeouts via an NMI. In an operating
system that does not have a nice interface to the watchdog timer, it is possible to talk directly to the IPMI
system to do this, the NMI handling may be hard to do.

Software monitoring is beyond the scope of this book.

Figure 3.1 on the facing page shows the pieces to accomplish this.

3.2 Redundant Systems

In this case, your application may consist of two systems so that is one fails, the other takes over. In effect,
these two systems are “mated”. For this configuration, you generally want each system to monitor both
itself (as described in section 3.1 on the previous page and its mate. This way, long-term trend data is held
both in the local system and the mate so it is resiliant agains faults. It is generally a good idea to monitor
the mate’s software.

Note that to monitor another system via IPMI, the IPMI system to be monitored must have a LAN
interface as described in section 4.9 on page 49.

In addition to monitoring, it is generally necessary for a system to be able to reset it’s mate to recover
it to a known state. You can do this over the IPMI LAN interface.

Since you now have multiple things managing the SEL, some extra logic is required to coordinate their
operation. Section 11.4 on page 158 describes methods to do this.

In this situation, ipmitool becomes less attractive due to the polled nature of it’s operation. Setting up
LAN connections is expensive. OpenIPMI and HPI tools will maintain a permanent connection to the mate
and reduce the connection overhead.

3.3 Monitoring Clusters of Systems

In this situation, you have a number of systems that are monitored by a single management system!. This is
much like handling redundant systems as described in section 3.2 but instead of monitoring one other system,
the management system monitors a number of other systems. The system may or may not need hardware
monitoring on the individual monitored systems, as the management system can do all that. Individual
system will still need software monitoring, of course.

1The management system may have multiple nodes for fault tolerance, but can generally be viewed as a single system

3.3. MONITORING CLUSTERS OF SYSTEMS

Analysi

/i/ﬁm,

IS

Error w
Reporting

~
—

—
—

Data

—

Long Term

,' Application
. Software

Data
Collection
1

N Software
N Monitor

Watchdog

Operating Systen

BMC

Event Log

prrey

Sensors

Figure 3.1: Simple Monitoring

29

30 CHAPTER 3. USE CASES

In this situation, the overhead of ipmitool may become burdensome to the management systems. Plus,
these types of systems tend more toward having a continuously running system management application. In
these types of systems, something like OpenIPMI or HPI becomes even more attractive.

3.4 Bus Systems

Bussed systems (as described in section 1.2 on page 4 generally have a number of computers plugged into
and managed on a single backplane. They have a central management interface (that may be redundant)
that manages the system and communicates over a LAN to a remote management application?.

In some ways these computers appear as individual systems and can be viewed as such with an extra
“hop” over the bus to get to them. However, these systems have extra management capabilities and shared
resources that make monitoring somewhat different.

In a bussed system, cooling and power supply are shared. In general the management controller on the
bus handles cooling control and power management. But if a power supply is about to fail or the cooling
system fails, it affects all the computers on the bus, not just one. The management system must take this
into account.

Also, these systems generally support hot-swap of the computers. This is generally done as a request
mechanism where a maintenance person will request (via a switch or something of that nature) that the
board be prepared for removal. In general, the maintenance application must approve the request and may
need to inform the software on the board what is happening.

Because these types of systems require more monitoring and persistent state, ipmitool is not an option
for maintaining a system like this. It can still be used for querying information, but it cannot handle the
hot-swap operations. OpenIPMI and/or HPI are needed for these types of systems.

2The management application may actually run on one or more of the computers on the bus, but is viewed as “remote”
because it would come in over the LAN.

IPMI Interfaces

IPMI has a large number of interfaces for talking to management controllers. They vary in performance and
capability, but the same messages work over the top of all of them. Generally, it does not matter how you
interface to an IPMI system, the messages will work the same.

4.1 OpenIPMI Generic Interface

The OpenIPMI libary has a generic interface to the various connections. You use a per-interface command
to set up the interface, but once set up, the interfaces all work the same. The file shown in Appendix K
defines the interface for connections.

Note that not all operations are available on all interfaces. LAN connections, for instance, cannot receive
commands.

4.2 System Interfaces

The most common interface to a management controller is the system interface. This provides a direct
connection between the main processor of a system and the management controller. Obviously, this interface
isn’t very useful if the system is turned off, but it allows a running system to monitor itself.

The low-level format of a system interface message that is n bytes long is:

Bits 0-1 - Destination LUN
Bits 2-7 - NetFN

1 Command

2-n-1 Message Data

Commands and responses have basically the same format, except that responses always have the com-
pletion code as the first byte of the message data. See chapter 6 for more details.

31

32 CHAPTER 4. IPMI INTERFACES

4.2.1 SMIC

The SMIC interface has been around a long time, but mostly during a period when IPMI was not popular.
This is a low-performance, byte-at-a-time interface with no interrupt capability.
TBD - describe this interface in detail

4.2.2 KCS

The KCS interface is currently the most popular IPMI system interface. The KCS interface looks electrically
much like a standard PC keyboard interface. It was chosen because lots of cheap hardware was available for
these types of interfaces. But it is still a byte-at-a-time interface and performs poorly. It has the capability
for interrupts, but very few systems have working interrupt capability with KCS interfaces.

TBD - describe this interface in detail

4.2.3 BT

The BT interface is the best interface for IPMI. Messages are sent a whole message at a time through the
interface, thus it is a much higher performance interface than the other system interfaces.
TBD - describe this interface in detail

4.2.4 SSIF

The SSIF interface was added in the 2.0 spec. It provides an interface over an Inter Integrated Circuit (12C)
interface using the SMBus protocol. This is very cost effective interface; most systems generally already have
an I2C bus, so no new interfaces to processor busses are required. However, I2C busses are not very fast and
the interfaces from the processor to the I?C bus tends to perform poorly.

TBD - describe this interface in detail

4.2.5 The OpenIPMI Driver

The OpenIPMI driver on Linux provides a user interface to all the standard IPMI system interfaces. It does
so in a manner that allows multiple users to use the driver at the same time, both users in the kernel and
users in user space.

To do this, the OpenIPMI driver handles all the details of addressing and sequencing messages. Other
drivers allowed more direct access to the IPMI interface; that means that only one user at a time could
use the driver. Since the IPMI can be used for different purposes by different users, it is useful to do the
multiplexing in the kernel.

The details of configuring the IPMI driver are found in the IPMI.txt file in the kernel documentation;
those details won’t be discussed here.

To use the IPMI device driver, you open the /dev/ipmiO or /dev/ipmidev/0 file. The driver allows
multiple IPMI devices at the same time; you would increment the number to get to successive devices.
However, most systems only have one.

The primary interface to the driver is through ioctl calls. read and write calls will not work because
the IPMI driver separates the addressing and data for an IPMI message.

The core description of an IPMI message is:

4.2. SYSTEM INTERFACES 33

struct ipmi_msg

{
unsigned char netfn;
unsigned char cmd;
unsigned short data_len;
unsigned char *data;
};

The netfn describes Network FuNction (NetFN) of the class of message being sent. IPMI messages are
grouped into different classes by function. The cmd is the command within the class. Chapter 6 discusses
this is more detail. The data and data_len fields are the message contents. This structure is used in both
sent and received messages.

Sending Commands

To send a command, use the following:

rv = ioctl(fd, IPMICTL_SEND_COMMAND, &req);
The req structure has the following format:

struct ipmi_req

{
unsigned char *addr;
unsigned int addr_len;
long msgid;
struct ipmi_msg msg;

5

The addr and addr_len fields describe the destination address of the management controller to receive
message. The msg field itself gives the message to send. The msgid is a field for the user; the user may
put any value they want in this field. When the response comes back for the command, it will contain the
message id. Since it is a long value, it can be used to hold a pointer value.

The driver guarantees that the user will receive a response for every message that is successfully sent. If
the message times out or is undeliverable, an error resonse will be generated and returned.

The following code fragment shows how to send a message to the local management controller, in this
case a command to read the value of a sensor:

struct ipmi_req req;
unsigned char datal1];
struct ipmi_system_interface_addr si;

/* Format the address. */

si.addr_type = IPMI_SYSTEM_INTERFACE_ADDR_TYPE;
si.channel = IPMI_BMC_CHANNEL;

si.lun = 0;

34 CHAPTER 4. IPMI INTERFACES

req.addr = (void *) &sij;

req.addr_len = sizeof(si);

req.msgid = 0x1234;

req.msg.netfn = 0x04; /* Sensor/Event netfn */
req.msg.cmd = 0x2d; /* Get sensor reading */
req.msg.data = data;

req.msg.data_len = 1;

datal[0] = 10; /* Read sensor 10 */

rv = ioctl(fd, IPMICTL_SEND_COMMAND, &req);

Note that sending the command is asyncronous; you will not immediately get the response. Instead,
the response comes back later and can be received at that point in time. This is what makes the msgid
important.

The following example shows sending a get device id request to IPMB address 0xb2.

struct ipmi_req req;
struct ipmi_ipmb_addr si;

/* Format the address. */
si.addr_type = IPMI_IPMB_ADDR_TYPE;
si.channel = 0;

si.lun = 0;

si.slave_addr = 0xb2;

req.addr = (void *) &si;

req.addr_len = sizeof(si);

req.msgid = 0x1234;

req.msg.netfn = 0x06; /* App netfn */
req.msg.cmd = 0x01; /* Get device id */
req.msg.data = NULL;

req.msg.data_len = 0;

rv = ioctl(fd, IPMICTL_SEND_COMMAND, &req);

Receiving Responses and Events

As mentioned before, the responses to commands come back in later. You can use standard select and
poll calls to wait for messages to come in. However, you cannot use read to get the message. The following
data structure is used to receive messages:

struct ipmi_recv

{
int recv_type;
unsigned char *addr;
unsigned int addr_len;
long msgid;

4.2. SYSTEM INTERFACES 35

struct ipmi_msg msg;

+;
The recv_type field can be one of the following values:

IPMI_RESPONSE_RECV_TYPE A response to a sent command.
IPMI_ASYNC_EVENT_RECV_TYPE An asyncronous event.
IPMI_CMD _RECV_TYPE A command was received for the system software.

IPMI_RESPONSE_RESPONSE_TYPE Responses sent by this interface get acked using one of these.
This way you can tell if there was an error sending the response.

Received commands are discussed in section 4.2.5. You have to fill in the data for the driver to put the
received information into. The following shows how to receive a message:

unsigned char data[IPMI_MAX_MSG_LENGTH];
struct ipmi_addr addr;

struct ipmi_recv recv;

int rv,

recv.msg.data = data;
recv.msg.data_len = sizeof (data);
recv.addr = (unsigned char *) &addr;
recv.addr_len = sizeof (addr);
rv = ioctl(fd, IPMICTL_RECEIVE_MSG_TRUNC, &recv);
if (rv == -1) {

if (errno == EMSGSIZE) {

/* The message was truncated, handle it as such. */

}
}
switch (recv.recv_type) {
case IPMI_RESPONSE_RECV_TYPE:
case IPMI_ASYNC_EVENT_RECV_TYPE:
case IPMI_CMD_RECV_TYPE:
case IPMI_RESPONSE_RESPONSE_TYPE:

The msgid comes in very handy for this responses, it lets you easily correlate commands and responses.
It has no meaning for events.

The netfn for a received message have a “one” bitwise or-ed onto the value. In IPMI, even NetFNs are
always commands and odd NetFNs are always responses.

For responses, the address will always be the same as the sent address.

An interface will not receive events by default. You must register to receive them with the following;:

int val = 1;
rv = ioctl(fd, IPMICTL_SET_GETS_EVENTS_CMD, &val)

36 CHAPTER 4. IPMI INTERFACES

Setting val to true turns on events, setting it to false turns off events. Multiple users may register to
receive events; they will all get all events. Note that this is for receiving asyncronous events through the
interface. The events also go into the event log as described in chapter 11, but that is a different thing. If
you receive an event through this interface, you will also get it in the event log. Section 11.1 describes the
format of events.

Receiving Commands and Responding

Commands sent to Logical Unit Number (LUN) two of a management controller will generally be routed to
the driver. If the driver does not have a registered user for that command, it will respond that it does not
handle that command.

If you wish to receive commands, you must register to receive those commands. The cmdspec structure
defines commands the program wishes to receive:

struct ipmi_cmdspec

{
unsigned char netfn;
unsigned char cmd;

};
These are registered with the following ioctl:

rv = ioctl(fd, IPMICTL_REGISTER_FOR_CMD, &cmdspec);
To remove a registered command, use the following;:

rv = ioctl(fd, IPMICTL_UNREGISTER_FOR_CMD, &cmdspec);

If you receive a message, you must send a response. The driver makes this easy, you can always use the
received address to send the response to. The program in Appendix J receives one message, sends a response,
and exits. When you respond, you must supply the msgid that came into the command.

Overriding Default Timing Values

Be default, commands over IPMB get resent up to 5 times with a 1 second timeout between the sends. For
very select applications, this is not suitable. Primarily, some applications need to only send once, they have
a higher-level resend mechanism and the OpenIPMI resends will only get in the way.

Note that responses over IPMB will not get timed or resent.

The user may modify the timing values two different ways. The user can set the default resend and retry
times for a file descriptor with the following structure:

struct ipmi_timing_parms

{
int retries;
unsigned int retry_time_ms;

};

The retries parm is the number of times the message will be resent. The retry_time_ms is the time
in milliseconds between resends. To get and set the parameters, use the following:

4.2. SYSTEM INTERFACES 37

struct ipmi_timing_parms tparms;

rv = ioctl(fd, IPMICTL_GET_TIMING_PARMS_CMD, &tparms);
if (rv == -1)
error handling...

printf ("parms were: %d %d", tparms.retries, tparms.retry_time_ms);

tparms.retries = 0; /* No resends */
tparms.retry_time_ms = 1000; /* one second */
rv = ioctl(fd, IPMICTL_SET_TIMING_PARMS_CMD, &tparms);
if (rv == -1)

error handling...

This will set the timing parameters for all future messages. You can also override the timing on individual
messages.

struct ipmi_req_settime

{
struct ipmi_req req;
int retries;
unsigned int retry_time_ms;
};

The req is the request as shown previously. Use the following ioctl to perform the request:

rv = ioctl(fd, IPMICTL_SEND_COMMAND_SETTIME, &req_time);

Setting Your Local IPMB Address

Unfortunately, IPMI has no standard way to determing your local IPMB address. It is usually set to 20h
but, especially in bussed systems, the local management controller may have a different address.

If you do not set your IPMB address properly, messages sent out on the IPMB will not have the proper
source address and thus the response will go to the wrong place. To avoid this problem, the OpenIPMI
allows the user to set the local IPMB address and the local LUN. The following shows how to get and set
the IPMB address:

unsigned int ipmb_addr;
rv = ioctl(fd, IPMICTL_GET_MY_ADDRESS_CMD, &ipmb_addr);
if (rv == -1)

error handling...

printf ("My address was: %x", ipmb_addr);

ipmb_addr = 0xb2;

38 CHAPTER 4. IPMI INTERFACES

Oh Primary IPMB Channel 0 is the primary IPMB bus on the system.
1h-7h ime};li%ilentatlon— This channel may be any type of channel, including IPMB, and LAN inter-
P faces.

8h-Dh Reserved

Eh Present I/F This specifies the channel the message is going over. It’s not really very
useful, since you have to put the real channel in the command to send a
message to it.

Fh System Interface | This specifies the system interface, but is really never used.

Table 4.2: Channel Numbers

rv = ioctl(fd, IPMICTL_SET_MY_ADDRESS_CMD, &ipmb_addr);
if (xrv == -1)
error handling...

The driver also has ioctls to get and set the LUN, but you should almost certainly leave that alone.

4.2.6 The OpenIPMI System Interface

The OpenIPMI library system interface can be set up with the following function:

int ipmi_smi_setup_con(int if _num,
os_handler_t *handlers,
void *xuser_data,
ipmi_con_t **new_con) ;

The if_num is the specific interface number. Generally this is 0, but if a system has more than one
system interface then this will be the specific interface number. The handlers is the OS handler data to
use for the connection (as described in section 2.2.2). The user_data field is put into the user_data filed
in the ipmi_con_t data structure. A new connection is returned in new_con.

The OpenIPMI library understands how to get the local IPMB address for certain sytems. If it can get
the local IPMB address, it will set it automatically.

Once you have a connection, you can start it and use it directly. However, usually you pass this to the
domain startup code for creation of a domain, as described in section 2.5.

4.3 Channels

The IPMI interfaces on a management controller are called “channels”. These are messaging channels. LAN,
IPMB, system interface, and any other messaging interfaces will each have their own channel on the MC.

Messages directly sent to the local management controller do not require any type of channel information.
When the user sends a message out to another interface, it must specify the channel. This is called “bridging”.
Channels also may have some type of configuration information such as users and passwords.

4.4. BRIDGING 39

4.4 Bridging

Intelligent Platform Management Interface (IPMI) does not have any type of automatic routing. Instead,
commands and responses are “bridged” between different interfaces generally using a “Send Message” com-
mand. So you have to know the route to the destination when you send the message. Generally, this is not a
big deal because only one level is generally bridged (eg system interface to IPMB, Local Area Network (LAN)
interface to IPMB).

Note that OpenIPMI handles most of the bridging work for you. The OpenIPMI address described in
section 4.14 has address formats for routing messages to the proper places. But knowing what goes on behind
the scenes can be helpful, and some of this information is required even with OpenIPMI.

4.4.1 Channels

An interface has the concept of a “channel”. A channel is an independent communication interface. Each
LAN interface, serial interface, IPMB interface, and system interface has its own channel number. Messages
are bridged to specific channels.

There are 16 specified channels. Channel 0 is always the primary IPMB channel. Channels 1-7 are for
general use, like for LAN, secondary IPMB, Intelligent Chassis Management Bus (ICMB), etc. Channels
8-Dh are reserved. Channel Fh is for the system interface. Channel Eh is used for whatever the present
interface is. This is useful because some commands take a channel as one of their fields, if you just want to
use the current channel you can put Eh here.

To discover the channels in a system, the “Get Channel Info” command shown in table 4.3 must be sent
for each possible channel.

Request

0 bits 0-3 - Channel number
bits 4-7 - reserved

Response

0 Completion Code

bits 0-3 - Actual channel number (if you put Eh in the request, the real channel
1 number is returned here)
bits 4-7 - reserved

40

CHAPTER 4. IPMI INTERFACES

bits 0-6 - Channel medium type. Valid values are:
00h - reserved
01h - IPMB (I2C)
02h - ICMB version 1.0
03h - ICMB version 0.9
04h - 802.3 (Ethernet)
05h - Async serial/modem (RS-232)
06h - Other LAN

2 07h - PCI SMBus
08h - SMBus Versions 1.0/1.1
09h - SMBus Version 2.0
0OAh - reserved for USB 1.x
0Bh - reserved for USB 2.x
0Ch - System Interface
60h-7TFh - OEM
All other values are reserved.
bit 7 - reserved
bits 0-4 - Channel protocol type. Valid values are:
00h - reserved
01h - IPMB-1.0, used for acsIPMB, serial/modem basic mode, and LAN.
02h - ICMB-1.0, see section 4.6
03h - reserved
04h - IPMI over SMBus
3 05h - KCS, see section 4.2.2
06h - SMIC, see section 4.2.1
07h - BT from IPMI v1.0, see section 4.2.3
08h - BT from IPMI v1.5, see section 4.2.3
09h - Terminal mode, see section 4.10.3
1Ch-1Fh - OEM
All other values are reserved.
bits 5-7 - reserved
This field describes session information about the channel. See section 4.8 for details
on sessions.
bits 0-5 - The number of sessions that have been activated on a given channel. This
is only valid if the channel has session support.
A bits 6-7 - Session support, values are:
00b - channel does not support sessions.
01b - channel is single-session.
10b - channel is multi-session.
11b - channel is sessions based, but may switch between single and multiple
sessions.
Vendor ID, used to specify the IANA number for the organization that defined the
5-7 protocol. This should always be the IPMI TANA, which is 7154 (decimal), or F2H,

1Bh, and 00H for these bytes.

4.4. BRIDGING 41

Auxiliary channel info.
For channel Fh, this is byte 8 is the interrupt for the system interface, byte 9 is the
interrupt for the event message buffer interface. Valid values are:
00h-0Fh - IRQ 0-15
10h-13h - PCI A-D, respectively
14h - SMI
8-9 15h - SCI
20h-5Fh - System interrupt 0-62, respecitively
60h - Assigned by ACPI, SMBIOS, or a plug and play mechanism.
FFh - No interrupt or unspecified
All other values are reserved.
For Original Equipment Manufacturer (OEM) channel types, this value is OEM defined.
These bytes are reserved for all other channel types.
Table 4.3: Get Channel Info Command, NetEFN App (06h), Cmd
42h

4.4.2 Sending Bridged Messages

Table 4.4 shows the format of a Send Message command. Note that the spec says the response can have
response data for non-system interface channels. However, this is not actually the case, response data for
LAN and serial channels is carried in a different manner.

Request

Channel information, bits are:
0-4 - Channel number
4-5 - reserved
6-7 - tracking type. See section 4.4.3 for more information. Values are:
0 00b - No tracking
01b - Track request
10b - Send raw. This is a test mechanism or a mechanism used for transmitting
proprietary protocols. It is optional.

11b - reserved
Message data. The format depends on the channel type. See the section on the specific

channel type for more information.

1-n

Response

Completion code. If transmitting on an IPMB, SMBus, or PCI management bus, the
following return codes are used to inform the sender of sending problems:

0 81h - lost arbitration

82h - Bus Error

83h - NAK on Write
Table 4.4: Send Message Command, NetFN App (06h), Cmd 34h

42 CHAPTER 4. IPMI INTERFACES

4.4.3 Message Tracking

Message tracking is relatively simple, but difficult to understand from the spec. This section should clear
that up.

Messages sent from the system interface to the IPMB interface do not have to be tracked. Instead, the
sender sets the requester (source) LUN to 2. In the response, the responder will thus set the requester
(destination) LUN to 2. If an MC receives a message with a destination LUN of 2, it will route it back to
the system interface. Simple to do and no state is required in the MC.

Other channels cannot do this. They must instead rely on message tracking to handle the responding.
With message tracking, the MC reformats the message with its own information and remembers the original
message information. When the response comes back, the MC will restore the original information in the
response. Note that the sender must still format the message properly for the destination channel.

4.4.4 Receiving Asynchronous Messages on the System Interface

Asynchronous messages to the system interfaces (ones with the destination LUN set to 2), both commands
and responses, have no direct route to be sent up the system interface. Instead, they go into the receive
message queue and the software is informed through the system interface that something is in the queue.
The software must then fetch the message from the queue using the Get Message command described in
table 4.5.

Request
- |
Response
0 Completion code
Channel information, bits are:
0-4 - Channel number
4-7 - Inferred privilege level for the message. Table 4.18 describes the privilege levels.
If the message is received from a session-oriented channel, this will generally be
set to the maximum privilege level of the session.
If per-message authentication is enabled, this will be set to User privilege for
unauthenticated messages.
The privilege will be then lowered based on the privilege limit set by the Set
1 Session Privilege Level command.
For messages from sessionless channels, this will always be set to “None”.
Privilege levels are:

0 - None (unspecified)
1 - Callback

2 - User

3 - Operator

4 - Admin

5 - OEM

Message data. The format depends on the channel type. See the section on the specific
channel type for more information.
Table 4.5: Get Message Command, NetFN App (06h), Cmd 33h

2-n

4.4. BRIDGING 43

To know if a message is waiting in the asynchronous queue, the interface will generally set some flag so
that the user may immediately know. The software will then send a Get Message Flags command (table
4.6) to know find out what is up. A bit will be set in the response to tell it something is in the queue.

Request
- |
Response
0 Completion code
Flags. The bits are:
- message(s) in the receive message queue.
- Event message buffer is full
- reserved
- Watchdog pre-timeout
- reserved
-OEM 0
-OEM 1
- OEM 2
Table 4.6: Get Message Flags Command, NetEN App (06h), Cmd
31h

O Ok WO

4.4.5 System Interface to IPMB Bridging

For bridging from a system interface to IPMB, format an IPMB message as described in section 4.5 and set
the requester LUN to 2. Then issue a Send Message command with the IPMB message as the data to the
proper IPMB channel; the message will be routed out onto the IPMB bus.

The response will come back to the MC with the requester LUN set to 2. This will route the message
back to the system interface, where it will be put into the receive message queue. The software running on
the system must receive the message from the queue using the Get Message command described in section
4.4.4.

The response data will be in the same IPMB format.

4.4.6 LAN to IPMB Bridging

Unfortunately, the description in the spec of the LAN protocol is very confusing. An errata was introduced
that, instead of clearing things up, added another possible interpretation. Four popular interpretations are
common. Fortunately, one piece of software can be written to work with three of these possibilities, and the
fourth possibility is rather broken. The three main possibilities are:

e Response comes back in the Send Message response
e Separate Send Message and IPMB responses
e Separate Send Message and Translated responses

One might also infer from the spec that you implement the receive message queue on the LAN interface
and poll it with the Get Message command. It is yet another possible interpretation, but the side effects of
this are very bad. This will not be discussed any more.

44 CHAPTER 4. IPMI INTERFACES

In the examples below, a Get Device ID is encasulated in a Send Message and sent to IPMB address
COh. For these examples, the RMCP headers and authentication information are skipped, we start directly
with the IPMI message. The sent data is always the same, and is:

Byte | Value | Description

0 20h LAN Responder address, this is the BMC’s IPMB, generally

1 18h LAN Responder LUN in bits 0-1 (0 in this case), Send Message NetFN in
bits 2-7 (6 in this case)

2 C8h Checksum for the previous two bytes

3 81h LAN Requester address (this is the value for system management software)

4 BS8h Requester LUN in bits 0-1 (0 in this case), Sequence number in bits 2-7 (2eh

in this case). Note that the sequence number is returned in the response
as-is and helps differentiate the messages.

5 34h The command, a Send Message for NetFN 6.

6 40h The channel number in bits 0-4 (0 in this case), and message tracking selec-
tion in bits 6-7 (10b in this case, message tracking is on).

7 COh The destination IPMB address

8 18h IPMB Responder LUN in bits 0-1 (0 in this case), Get Device ID NetFN in
bits 2-7 (6 in this case)

9 28h Checksum for the previous two bytes

10 20h Source address, the IPMB address of the BMC.

11 BEh Requester LUN in bits 0-1 (2 in this case, although it generally doesn’t
matter), Sequence number in bits 2-7 (2fh in this case).

12 01h The command, a Get Device Id for NetFN 6

13 25h Checksum for the IPMB message (from bytes 7-12)
14 49h Checksum for the whole message

If you look at this, a lot of the contents seem pretty silly. The addresses in the LAN header, for instance,
are pretty useless, but probably there for consistency.

Response comes back in the Send Message response

In this possibility, the send message response contains the message data response. This seems to be implied
in the text of the Send Message command, and is certainly the most efficient way to handle this. However,
it does not seem to be the accepted way.

As an example, the following shows the response to the Get Device ID previously sent:

Byte | Value | Description

0 81 Requester Address

1 lc LAN Requester LUN in bits 0-1 (0 in this case), Send Message response
NetFN in bits 2-7 (7 in this case)

2 63 Checksum for the previous two bytes

3 20 Responder Address

4 b8 Responder LUN in bits 0-1 (0 in this case), Sequence number in bits 2-7
(2eh in this case).

4.4. BRIDGING

5 34 The command, a Send Message response in this case.

6 00 Completion code

7 20 IPMB Destination address (the BMC’s IPMB address)

8 1E IPMB Requester LUN in bits 0-1 (2 in this case), Send Message response
NetFN in bits 2-7 (7 in this case)

9 C2 Checksum for the previous two bytes

10 Co Responder IPMB address

11 BC Requester LUN in bits 0-1 (0 in this case), Sequence number in bits 2-7 (2fh
in this case).

12 01 Command, a Get Device ID response

13 00 message data

14 00 message data

15 00 message data

16 01 message data

17 05 message data

18 51 message data

19 29 message data

20 57 message data

21 01 message data

22 00 message data

23 00 message data

24 09 message data

25 01 message data

26 01 message data

27 00 message data

28 00 message data

29 94 Checksum for the entire message

That’s it, the Send Message response contains all the data.

Separate Send Message and IPMB responses

45

In this possibility, a Send Message response comes back with no data and the Send Message header data
in the response header, then a separate message comes back with the IPMB parameters in the header. For
instance, in the first message the source is the BMC, in the second message the source is the IPMB sender.

The following is the first message, the Send Message response, from this format:

Byte | Value | Description

0 81 Requester Address

1 1lc LAN Requester LUN in bits 0-1 (0 in this case), Send Message response
NetFN in bits 2-7 (7 in this case)

2 63 Checksum for the previous two bytes

3 20 Responder Address

46 CHAPTER 4. IPMI INTERFACES

4 b8 Responder LUN in bits 0-1 (0 in this case), Sequence number in bits 2-7
(2eh in this case).

5 34 The command, a Send Message response in this case.

6 00 Completion code

7 f4 Checksum for the whole message.

The following is the second message, the IPMB response:

Byte | Value | Description

0 20 IPMB Destination address (the BMC’s IPMB address)

1 1E IPMB Requester LUN in bits 0-1 (2 in this case), Send Message response
NetFN in bits 2-7 (7 in this case)

2 C2 Checksum for the previous two bytes

3 Co Responder TIPMB address

4 BC Requester LUN in bits 0-1 (0 in this case), Sequence number in bits 2-7 (2th
in this case).

5 01 Command, a Get Device ID response

6 00 message data

7 00 message data

8 00 message data

9 01 message data

10 05 message data

11 51 message data

12 29 message data

13 57 message data

14 01 message data

15 00 message data

16 00 message data

17 09 message data

18 01 message data

19 01 message data

20 00 message data

21 00 message data

22 a0 Checksum for the whole message

Notice that in this second response, the destination address, LUNs, sequence numbers, etc. are from the
IPMB message, not from the original LAN message.

Separate Send Message and Translated responses

In this possibility, a Send Message response comes back with no data, then a separate message comes back
with the data, but the data in the second message has the same header information as the first, with a
different command. This could be inferred from the errata, but it makes things more difficult to track. For
instance, if you encapsulated a Send Message command inside a Send Message, the second response would

4.4. BRIDGING

47

have the same command number as the first, so it would be harder to tell the first response from the second.
The first response for the Get Device ID would be:

Byte | Value | Description

0 81 Requester Address

1 lc LAN Requester LUN in bits 0-1 (0 in this case), Send Message response
NetFN in bits 2-7 (7 in this case)

2 63 Checksum for the previous two bytes

3 20 Responder Address

4 b8 Responder LUN in bits 0-1 (0 in this case), Sequence number in bits 2-7
(2eh in this case).

5 34 The command, a Send Message response in this case.

6 00 Completion code

7 f4 Checksum for the whole message.

This is the same as the previous example. However, the second response would be:

Byte | Value | Description

0 81 Requester Address

1 lc LAN Requester LUN in bits 0-1 (0 in this case), Send Message response
NetFN in bits 2-7 (7 in this case)

2 63 Checksum for the previous two bytes

3 20 Responder Address

4 b8 Responder LUN in bits 0-1 (0 in this case), Sequence number in bits 2-7
(2¢h in this case).

5 01 Command, a Get Device ID response

6 00 IPMB completion code

7 00 message data

8 00 message data

9 01 message data

10 05 message data

11 51 message data

12 29 message data

13 57 message data

14 01 message data

15 00 message data

16 00 message data

17 09 message data

18 01 message data

19 01 message data

20 00 message data

21 00 message data

22 44 Checksum for the whole message

Notice that the header information, except for the command, is from the LAN header, not from the

48 CHAPTER 4. IPMI INTERFACES
IPMB header.

4.4.7 System Interface to LAN

TBD - write this, use the formats described in the send/receive message commands.

4.5 IPMB

IPMB provides the main channel for transferring messages around an IPMI system. It is a message bus that
works somewhat like Ethernet, it is a CSMA (carrier-sense multiple access) system. It does check to see if
another sender is transmitting before sending, and will wait for that sender to complete before starting to
transmit. However, it does not have collision detection; so if two MCs attempt to transmit at the same time,
both messages will be lost. Because of this, IPMB does not scale very well; careful use needs to be made of
the bandwith on the bus.

The format of an IPMB message of n bytes is:

Destination IPMB address

Bits 0-1 - Destination LUN

Bits 2-7 - NetFN

Checksum for bytes 0-1

Source IPMB address

Bits 0-1 - Source LUN

Bits 2-7 - Sequence Number
Command

Message Contents

Checksum for the whole message

7
N

SOy = (W =~ O

1
=

Note that for commands, the “destination LUN” will be called the “responder LUN” and the “source
LUN” will be called the “requester LUN.” For responses, the “destination LUN” will be called the “requester
LUN” and the “source LUN” will be called the “responder LUN.” IPMB is a peer-to-peer protocol, but
there is a strong master-slave sentiment in IPMI.

Unfortunately, IPMI does not have any type of routing handling or transparency of messages. To send a
message out on the IPMB, you encapsulate the entire IPMB message in a Send Message command and send
it over the proper channel.

Since IPMB can lose messages, the OpenIPMI device driver implements a resend mechanism on commands
sent over IPMB; if a response is not seen withing a given period of time, the command will be resent. This
will be done a few times before an error is returned.

4.5.1 IPMB Broadcast

One special type of message is the broadcast IPMB message. This message is exactly like a normal IPMB
message, but it has a 0 byte prepended to the message. This can only be a Get Device Id command. It
is used to discover management controllers in the system. Broadcast is a really bad name, because it will
not actually broadcast, it will go to the IPMB address in the second byte of the message. This is used for
discovery because it will not have any effect on I?C devices on the bus, but IPMI devices will do a normal

4.6. ICMB 49

response.
Many IPMI systems do not correctly implement broadcast; it seems to be an oft ignored part of the spec.

4.5.2 OpenlPMI and IPMB

The OpenIPMI driver and library handle the details of IPMB for the user. To send a message over IPMB,
the user creates an OpenIPMI IPMB address as described in section 4.14 and sends a normal OpenIPMI
message. The library and driver take care of selecting the sequence numbers, formatting the messages,
tracking and decoding the response, and resending messages.

4.6 ICMB

TBD - write this.

4.7 SMBus

TBD - write this.

4.8 Session Support

TBD - write this.

4.9 LAN

The IPMI LAN interface allows users to connect to IPMI systems over an Ethernet interface. This can
generally even be done when the system is turned off, although it probably has to be plugged in. This lets
you do things like power control the system and reset the main processor even when the operating system is
not operational on the system.

The TPMI LAN protocol runs over a subset of the Remote Management Control Protocol (RMCP)
protocol. RMCP is defined in RMCP[1].

The IPMI LAN is not well defined in the spec. Many valid interpretations of the spec were possible. Some
errata has been issued, but that really only added one more possible interpretation. OpenIPMI implements
the three different common interpretations of the spec. They can interwork seamlessly, so it is not a problem.

TBD - describe the protocol in detail.

4.9.1 LAN Configuration

Most systems have tools to configure the IPMI LAN interface. IPMI has a built-in way to do this, too,
through a set of tables.

LAN Configuration Commands

To set up the LAN configuration table, the command shown in table 4.14 is used to set parameters.

50 CHAPTER 4. IPMI INTERFACES

Request
0

Bits 0-3 - Channel Number
Bits 4-7 - reserved
1 Parameter Selector. This selects the entry in the table that you want to set.

The data for the parameter. You must look up the entry in table 4.16 for the exact
contents, it depends on which entry you are setting.

2-n

Response

Completion code. Standard completion codes, plus:
80h - Parameter not supported
0 81h - Attempt to set the “set in progress’ value (parm 0) when the parameter is not in
the free (set complete) state.
82h - Attempt to write a read-only parameter.
Table 4.14: Set LAN Configuration Parameters Command, NetFN
Transport (0Ch), Cmd 01h

Table 4.15 shows the command used to get LAN parameters.

Request
Bits 0-3 - Channel Number
0 Bits 4-6 - reserved
Bit 7 - If 1, only get parameter revision
1 Parameter Selector. This selects the entry in the table that you want to get.
9 Set Selector. Some parameters are in an array, this tells which array element to set.

Set to zero if the parameter does not have a set selector.

Block Selector. Some parameters have two levels of arrays (an array inside of the array).
3 The Set Selector is the first level array specifier, this is the second level. No standard
LAN parameters use this, although OEM ones might. Set to zero if the parameter does
not have a block selector.

Response

0

Completion code. Standard codes, plus:
80h - parameter not supported
Parameter revision. Format is:
1 Bits 0-3 - Oldest revision parameter is backward compatible with
Bits 4-7 - Current parameter revision
Parameter data. This will not be present if bit 7 of byte 0 of the response is set to 1.
2-n The contents of this depends on the particular parameter being fetched, see table 4.16
for the parameters.
Table 4.15: Get LAN Configuration Parameters Command, NetFN
Transport (0Ch), Cmd 02h

The LAN Configuration Table

The LAN Configuration table has an unusual locking mechanism (although it is usual for IPMI). Parameter
zero is a lock. If you set the value to one, it will only succeed if the value is zero. Thus, to lock the table, you

4.9. LAN ol

set the value to one until it succeeds. You then set it to zero when you are done. This locking mechanism
leads to problem if the locker dies while it holds the lock, so you probably need some way to override the
lock if this happens. The lock does not actually keep anyone from changing the data, it is simply a common
mechanism to mutual exclusion. Note also that the lock has a “commit” mechanism, writing two to the lock
will commit the contents if the system supports it. If the system supports rollback, setting the value to zero
will rollback and not commit the changes you made. So for correctness, you should write a two when you
are complete, and if that fails then write a zero.

All network parameters such as IP address, port, and MAC address are in network order, also called big
endian or most significant byte first. Unless marked “volatile”, all of these will survive removal of power.

Table 4.16: LAN Configuration Parameters

Parameter Description

Set In Progress Used to indicate that the parameters are being updated. Bits 2-7 are

(volatile) reserved. Bits 0-1 have the following values:

00b - set complete. This is the state the system comes up in. This
means that any user is finished updating the parameters. If roll-
back is implemented, setting this value will cause any changes
made since last setting this value to “set in progress” to be un-
done.

01b - set in progress. A user will set this value to inform others that
it is updating these parameters. This value can only be set if the
current value is “set complete”.

10b - commit write (optional). This will commit any changes that
are pending and go to “set complete” state. Some systems may
not support this, if setting this returns an error you should set
this value to “set complete” by hand.

<3k

Authentication Type | 1 A read only field showing which authentication types are supported.
Support (Read only) The format for this is defined in table 4.31.
Authentication Type | 2 A 5 byte field that holds the allowed authentication type for each priv-
Enables ilege level. The bytes are:

byte 0 - callback

byte 1 - user

byte 2 - operator

byte 3 - admin

byte 4 - oem
The format for each byte is defined in table 4.31.
IP Address 3 A 4 byte field holding the IP address, in network order. This is the
local TP address used for this particular channel. You only need to set
this if parameter 4 is set to “static address”.

CHAPTER 4. IPMI INTERFACES

Table 4.16: LAN Configuration Parameters

Parameter

Description

IP Address Source

=13k

One byte field telling the BMC where to get its IP address. Bits 4-7
are reserved. Values for bits 0-3 are:

0 - unspecified (I don’t know what that means)

1 - static address, configured from parameter 3

2 - get address from DHCP

3 - get address from BIOS or system software

4 - get address by some other method
As you probably can tell, static address and DHCP are really the only
useful values.

MAC Address

A 6 byte field. This is the Ethernet Media Access Code? (MACQC)
address to use as the source when transmitting packets, in network
order. You must set this value properly.

Subnet Mask

A 4 byte field holding the subnet mask for the IP connection, in network
order.

IPv4 Header Parms

A 3 byte field controlling some parameters in the IP header. The bytes
are:
byte 0 - time to live (default 40h) - The number of network hops
allowed for IP packets sent by the BMC.
byte 1 bits 0-4 - reserved
bits 5-7 - flags. Sets the of the flags field in the IP header.
The default value is 010b, or do not fragment.
byte 2 This is the setting of the 8-bit type of service field in the IP
header. Only one of bits 1-4 should be set.
bit 0 - unused, set to zero.
bit 1 - minimize monetary cost
bit 2 - maximize reliability
bit 3 - maximize throughput
bit 4 - minimize delay
bits 5-7 - Precedence, which is unused by IP systems now.
The default value is 00010000b.

Primary RMCP port
number (optional)

A 2 byte field holding the UDP port number to use for primary RMCP.
Default value is 623.

Secondary RMCP
port number (op-
tional)

A 2 byte field holding the UDP port number to use for the secure aux
bus RMCP port. IPMI does not use this, but it is here for complete-
ness. Default value is 664.

4.9. LAN

Table 4.16: LAN Configuration Parameters

93

Parameter # Description
BMC-generated ARP | 10 A 1 byte field controlling how the BMC generates ARPs. If a user
control (optional) attempts to set an unsupported field, the BMC will return an error.
The bits are:
bit 0 - set to 1 to enable BMC generated gratuitous ARPs.
bit 1 - set to 1 to enable BMC generated ARP responses.
bits 2-7 - reserved
Gratuitous ARP in- | 11 A one byte field holding the interval between gratuitous ARPs. The
terval (optional) interval is specified in 500 millisecond increments, with a 10% accuracy.
If this is not implemented, the interval will be 2 seconds.
Default gateway ad- | 12 A 4 byte field holding the IP address of the default gateway, in network
dress order. The BMC will send packets to this address if the destination is
not on its subnet, if this gateway is chosen as the gateway to use.
Default gateway | 13 A 6 byte filed holding the Ethernet MAC address to use in the desti-
MAC address nation when sending packets to the default gateway.
Backup gateway ad- | 14 A 4 byte field holding the TP address of the backup gateway, in network
dress order. The BMC will send packets to this address if the destination is
not on its subnet, if this gateway is chosen as the gateway to use.
Backup gateway | 15 A 6 byte filed holding the Ethernet MAC address to use in the desti-
MAC address ination when sending packets to the backup gateway.
Community String 16 An 18 byte field holding the SNMP community string to use in traps
send by the BMC. The default is “public”.
Number of Destina- | 17 The number of entries in the destination type and destination address

tions (read only)

tables in parameters 18 and 19.

CHAPTER 4. IPMI INTERFACES

Table 4.16: LAN Configuration Parameters

Parameter # Description

Destination type 18 This is an array of destination types, each 4 bytes long. The first byte
in bits 0-3 is the index into the array, you put the index here when
you set the value, and that index gets set. This index comes from the
alert policy entry destination field defined in table 4.38. Destination 0
is special and used by the Alert Immediate command as described in
section 4.13.5. The fields are:
byte 0 bits 0-3 - The index into the array
bits 4-7 - reserved
byte 1 The destination type. The bits are:
bits 0-2 - Destination type, values are:
000b - PET Trap
001b-101b - reserved
110b - OEM 1
111b - OEM 1
bits 3-6 - reserved
bit 7 - If zero, the alert does not need to be acknowledged to be
considered successful. If 1, the alert needs to be acknowl-
edged with a PET Acknowledge Command as defined in
table 4.35.
byte 2 PET Retry Time. This specified the amount of time between
resends when waiting for an acknowledge of the sent trap.
byte 3 Max PET Retries.
bits 0-2 - The maximum number of retries of a trap before
giving up.
bits 3-7 - reserved

4.9. LAN 99

Table 4.16: LAN Configuration Parameters

Parameter # Description
Destination address 19 This is an array of destination address, each 13 bytes long. The first
byte in bits 0-3 is the index into the array, you put the index here when
you set the value, and that index gets set. This index comes from the
alert policy entry destination field defined in table 4.38. Destination 0
is special and used by the Alert Immediate command as described in
section 4.13.5. The fields are:
byte 0 bits 0-3 - The index into the array
bits 4-7 - reserved
byte 1 The address format:
bits 0-3 - The address type, Oh is the only valid value, speci-
fying IP.
bits 4-7 - reserved
byte 2 Gateway selector
bit 0 0 - use the default gateway
0 - use the backup gateway
bits 1-7 - reserved
bytes 3-6 The IP address to send the alert to when using this des-
tination, in network order.
bytes 7-12 The Ethernet MAC address to send the alert to when
using this destination, in network order.

OEM 192+ | Parameters 192 to 255 are OEM parameters. The rest of the parame-
ters are reserved.

4.9.2 ARP control

TBD - write this, include command, talk about config table entries.

4.9.3 LAN Messaging
TBD - write this, describe the formatting of LAN messages

4.9.4 OpenIPMI LAN Configuration

OpenIPMI has some support for handling the LAN configuration. This is defined in the ipmi_lanparm.h
include file; it has all the details on how to use this.
To configure the LAN parameters for a BMC, you must first allocate a lanparm structure with:

int ipmi_lanparm_alloc(ipmi_mc_t *mc,
unsigned int channel,
ipmi_lanparm_t **new_lanparm) ;

The channel is the IPMI channel number of the LAN port you are configuring. Generally, if a server has
more than one port, it will have a separate channel for each port, you will have to find the channel numbers
from the manufacturer, although channels 6 and 7 are commonly used as the LAN channels.

56 CHAPTER 4. IPMI INTERFACES

Once you have a lanparm structure, you can get and set individual parms assuming you follow all the
rules associated with the configuration table. However, there is a much easier way that OpenlPMI provides.
After you have allocated a lanparm structure these, the function:

typedef void (*ipmi_lan_get_config_cb) (ipmi_lanparm_t *lanparm,
int err,
ipmi_lan_config_t *config,
void *cb_data) ;
int ipmi_lan_get_config(ipmi_lanparm_t *lanparm,
ipmi_lan_get_config_cb done,
void *cb_data) ;

will fetch the full current configuration. Note that when you call this, you will be holding a lock if it succeeds.
You must release the lock when you are done, or no one else will be able to change the configuration unless
they forcefully remove your lock.

At this point, you can change the value in the config structure. But those changes are only local. When
you have complete making the changes, you must commit them back to the BMC. To do this, call:

int ipmi_lan_set_config(ipmi_lanparm_t *lanparm,
ipmi_lan_config_t *config,
ipmi_lanparm_done_cb done,
void *cb_data);

After this point in time, the config cannot be used for future set operation, because it has been committed.
You must re-read it to modify parameters again.
If you do not wish to modify the configuration, you still need to clear the lock. Do that with:

int ipmi_lan_clear_lock(ipmi_lanparm_t *lanparm,
ipmi_lan_config_t *config,
ipmi_lanparm_done_cb done,
void *cb_data) ;

Once you are done with the config structure, you must free it with:
void ipmi_lan_free_config(ipmi_lan_config_t *config);

When you are done with a lanparm structure, you must free it with:

int ipmi_lanparm_destroy(ipmi_lanparm_t *]lanparm,
ipmi_lanparm_done_cb handler,
void *cb_data) ;

If the lanparm structure currently has operations pending on it, the destroy will be delayed until those
operations are complete. The handler will be called when the actual destroy takes place.

4.9.5 The OpenIPMI LAN Interface

The LAN interface is complicated, but OpenIPMI handles most of the details for the user. A single function
sets up the interface. Unfortunately, that function takes a huge number of parameters due to the large
number of things required to configure a IPMI LAN connection. The function is:

4.10. SERIAL 57

int ipmi_ip_setup_con(char * const ip_addrs[],
char * const portsl[],
unsigned int num_ip_addrs,
unsigned int authtype,
unsigned int privilege,

void *username,
unsigned int username_len,
void *password,

unsigned int password_len,
os_handler_t *handlers,
void *user_data,
ipmi_con_t **new_con);

The parameters are:

ip_addrs An array of IP addresses. Each IP address must be an address that connects to the exact same
management controller. If you need connections to multiple management controllers, you must set up
two different connections and use multiple connections in the domain.

ports An array of UDP ports for each IP address. This is defined as 623 in the IPMI spec, but is here for
flexibility.

num_ip_addrs The number of IP addresses and ports.

authtype The authentication type to use for the connection. Table 4.30 describes the different authentication
types.

privilege The privilege level to connect at. Table 4.18 describes the different privilege levels.

username The username to connect as. See section 4.11 for details on users.

username_len The length of the username. Required because usernames can be binary and contain zeros.
password The password for the user. See section 4.11 for details on users.

password_len The length of the password. Required because usernames can be binary and contain zeros.
handlers The OS handler to use for this domain. See section 2.2.2 for more details.

user_data This is a field that will be put into the connection data structure of the same name. This is for
user use and OpenIPMI will not use it.

new_con The new connection is returned in this field.

Once you have a connection, it works like a normal connection as defined in section 4.1.

4.10 Serial

TBD - OpenIPMI does not support serial interfaces, but this needs to be written someday.

o8 CHAPTER 4. IPMI INTERFACES

IPMI_PRIVILEGE CALLBACK (1) | The user is only allowed to request that the IPMI system call back
home.

IPMI PRIVILEGE USER (2) A “read-only” user. The user can look at system state, but not change
anything. For instance, the user can fetch SEL entries, but not delete
them.

IPMI_PRIVILEGE_OPERATOR (3) | This user can do everything but configuration commands. For instance,
they can clear the SEL and configure sensors, but they cannot add users
or configure LAN parameters.

IPMI_PRIVILEGE_ADMIN (4) This user can do pretty much anything on an IPMI system.
IPMI_PRIVILEGE OEM (5) Undefined by the spec, it’s whatever the OEM wants.

Table 4.18: Privilege levels in IPMI

4.10.1 Serial Configuration
4.10.2 Direct Serial

4.10.3 Terminal Mode
4.10.4 Serial over PPP

Table 4.17: Serial Configuration Parameters

‘ Parameter ‘ # ‘ Description

4.11 User Management

IPMI uses users for access control on IPMI systems with LAN or serial interfaces. The local system interface
has no access controls, but the more external interfaces require authentication to be able to use the interface.
Users may be able to authenticate links and send and receive IPMI messages.

Users have a defined maximum privilege level. They may not negotiate a connection with a higher
privilege level than that. The privilege levels are defined in table 4.18 and they affect what messages the
system will accept from the user. In addition to that, the user may be restricted to only work in a callback
session.

The systems have two ways of identifying users: by number and by name. A BMC will have a set of
users (up to 63, but the BMC may have a lower limit) indexed by number. User 0 is reserved. User 1 is
a special user that is defined to not have a name. This provides a simple but insecure way to access the
system, especially if user 1 does not have a password. All the other user numbers may be assigned names.
The name is used for system authentication.

Users may have passwords assigned to them. If no password is assigned, then an empty password is able
to authenticate the user. The passwords are used to authenticate the link and the messages.

The user number, name, password and enable are global for all channels in an BMC. The link/message
authentication enables are done per-channel.

4.11. USER MANAGEMENT 99

4.11.1 User management in OpenIPMI

Enabling a user is a complicated process. The user must have a name and password assigned. It must be
set with the proper authentication enables. Then it must be enabled with a separate enable command.

Fortunately, OpenIPMI handles a lot of this process for you. The functions are found in the ipmi_user.h
include file. You may get a list of users (or a specific user in a one-user list) with the command:

typedef void (*ipmi_user_list_cb) (ipmi_mc_t *mc,
int err,
ipmi_user_list_t x*list,
void *cb_data) ;
#define IPMI_MC_ALL_USERS 0
int ipmi_mc_get_users(ipmi_mc_t *mc,
unsigned int channel,
unsigned int user,
ipmi_user_list_cb handler,
void *cb_data) ;

Using IPMI_MC_ALL_USERS will fetch all users, otherwise the user specified will be used. The channel-specific
information will be fetched for only the given channel.
Once you have the list, you can fetch information from the list:

int ipmi_user_list_get_channel (ipmi_user_list_t *list, unsigned int *channel);
int ipmi_user_list_get_max_user (ipmi_user_list_t *1list, unsigned int *max);
int ipmi_user_list_get_enabled_users(ipmi_user_list_t *1list, unsigned int *e);
int ipmi_user_list_get_fixed_users(ipmi_user_list_t *list, unsigned int *f);

You can also fetch individual users from the user list. Note that if you fetch a user this way, you must
free it with ipmi_user_free().

unsigned int ipmi_user_list_get_user_count(ipmi_user_list_t *users);
ipmi_user_t *ipmi_user_list_get_user(ipmi_user_list_t *list,
unsigned int idx);

Once you fetch a user, you can get information from it. You can also set information for the user. This
only sets the local copy, it must be written out into the real data to activate it on the BMC.

int ipmi_user_get_channel (ipmi_user_t *user, unsigned int *channel);

/%

* Get/set the number for the user.

*/

int ipmi_user_get_num(ipmi_user_t *user, unsigned int *num);
int ipmi_user_set_num(ipmi_user_t *user, unsigned int num);

/*
* Get/set the name for the user. When getting the name, the pointer
* to "len" should point to a value of the length of "name". "len"

* will be updated to the actual number of characters copied. The

60 CHAPTER 4. IPMI INTERFACES

* password set is for 16-byte passwords, the password2 is for 20-byte

* passwords.

*/

int ipmi_user_get_name_len(ipmi_user_t *user, unsigned int *len);

int ipmi_user_get_name(ipmi_user_t *user, char *name, unsigned int *len);
int ipmi_user_set_name (ipmi_user_t *user, char *name, unsigned int len);
int ipmi_user_set_password(ipmi_user_t *user, char *pw, unsigned int len);
int ipmi_user_set_password2(ipmi_user_t #*user, char *pw, unsigned int len);

/*

* Various bits of information about a user, this is per-channel.

*/

int ipmi_user_get_link_auth_enabled(ipmi_user_t *user, unsigned int *val);
int ipmi_user_set_link_auth_enabled(ipmi_user_t *user, unsigned int val);
int ipmi_user_get_msg_auth_enabled(ipmi_user_t *user, unsigned int *val);
int ipmi_user_set_msg_auth_enabled(ipmi_user_t *user, unsigned int val);
int ipmi_user_get_access_cb_only(ipmi_user_t *user, unsigned int *val);
int ipmi_user_set_access_cb_only(ipmi_user_t *user, unsigned int val);
int ipmi_user_get_privilege_limit(ipmi_user_t *user, unsigned int #*val);
int ipmi_user_set_privilege limit(ipmi_user_t *user, unsigned int val);
int ipmi_user_get_session_limit(ipmi_user_t *user, unsigned int *val);
int ipmi_user_set_session_limit(ipmi_user_t *user, unsigned int val);

/*

* The enable for the user. Note that the enable value cannot be
* fetched and will return an error unless set.

*/

int ipmi_user_get_enable(ipmi_user_t *user, unsigned int *val);
int ipmi_user_set_enable(ipmi_user_t *user, unsigned int val);

To actually set the user information on the BMC, the following command can be used:

int ipmi_mc_set_user(ipmi_mc_t *mc,
unsigned int channel,
unsigned int num,
ipmi_user_t *xuser,
ipmi_mc_done_cb handler,
void *cb_data) ;

Note that OpenIPMI keeps track of what has changed in the user and will only write out the changed
information. If you wish to rewrite all information in the user (like if you want to write the same information
to a new user number) you can call ipmi_user_set_all() with the user to set the changed bits for all items.
Then you can write the user out.

4.11.2 User management commands

Table 4.19 on the next page shows the command used to set the enables for the user (this is not the same
as the user enable). These are all per-channel.

4.11. USER MANAGEMENT

Request
Sets various controls for the user on the channel:
bits 0-3 - channel number
bit 4 - Enable IPMI messaging for the user. If this is not set, the user may not send
IPMI messages.
bit 5 - Enable link authentication for the user. If this is not set, the user may not
0 authenticate a link.
bit 6 - User restricted to callback only. If this is set, the user is restricted to callback
authentication in non-callback situations. In a callback situation, the privilege
level is determined by the normal setting.
bit 7 - If this is 1, modify the fields in this byte. If this is 0, the fields in this byte
are ignored.
User ID:
1 bits 0-5 - User number
bits 6-7 - reserved
User limits
9 bits 0-3 - The privilege level, as defined in table 4.18 on page 58. Putting a value of
Fh in this field will disable access to this channel for the user.
bits 4-7 - reserved.
User session limit - optional byte
bits 0-3 - The user session limit. If set to 0, then the limit is the channel’s session
(3) limit. There does not appear to be any way to read this value, so it is a “write
only” parameter.
bits 4-7 - reserved

Response

10

| Completion Code

To fetch the channel information for a user, use the command shown in table 4.20 on the next page.

Table 4.19: Set User Access Command, NetFN S/E (06h), Cmd
43h

Request
0 bits 0-3 - channel number
bits 4-7 - reserved
1 bits 0-5 - User number
bits 6-7 - reserved
Response
0 Completion Code
bits 0-5 - Maximum number of user ids available. If this is 1, then only user 1 is
1 supported.
bits 6-7 - reserved
9 bits 0-5 - Number of enabled user ids.
bits 6-7 - reserved

61

62 CHAPTER 4. IPMI INTERFACES

bits 0-5 - Count of user ids with fixed names (that cannot be changed with the set
3 user name command). This includes user 1 and must be sequential starting with
user 2.
bits 6-7 - reserved
Various controls for the user on the channel:
bits 0-3 - User privilege limit.
bit 4 - IPMI messaging enabled for the user. If this is not set, the user may not send
IPMI messages.
1 bit 5 - Link authentication enabled for the user. If this is not set, the user may not
authenticate a link.
bits 6 - User restricted to callback only. If this is set, the user is restricted to callback
authentication in non-callback situations. In a callback situation, the privilege
level is determined by the normal setting.
bits 7 - If reserved.
Table 4.20: Get User Access Command, NetFN S/E (06h), Cmd
44h

The user name is set using the command defined in table 4.21 and the name can be fetched with the
command defined in table 4.22.

Request
User ID:
0 bits 0-5 - User number
bits 6-7 - reserved
1-16 User name - These bytes are ASCII-encoded bytes that define the name of the user.
Response
‘ 0 ‘ Completion Code
Table 4.21: Set User Name Command, NetFN S/E (06h), Cmd 45h
Request
User ID:
0 bits 0-5 - User number
bits 6-7 - reserved
Response
0 Completion Code
1-16 User name - These bytes are ASCII-encoded bytes that define the name of the user.
Table 4.22: Get User Name Command, NetFN S/E (06h), Cmd
46h

The Set User Password command defined in table 4.23 on the facing page sets the password and also
enables and disables the user with a different mode of the command. Obviously, there is no way to get the
password, but unfortunately, there is no way to get the enable value, either. Passwords for the IPMI 1.5

4.12. CHANNEL CONFIGURATION 63

authentication are 16-bytes long. Passwords for RMCP+ may be either 16 or 20 bytes long. You may set
a 20-byte password for a user, but then that user may not be used for IPMI 1.5 authentication, only for
RMCP+ authentication.

Request

User ID:
bits 0-5 - User number
bit 6 - If thisis 0, then use 16-byte passwords. If this is 1, then use 20-byte passwords.
bit 7 - reserved
bits 0-1 - Operation:
00b - disable the user.
01b - enable the user.
1 10b - set the password to the value in this command.
11b - test the password in this command and return an error code if it is
incorrect.

bits 2-7 - reserved
Password - These bytes are ASCII-encoded bytes that define the name of the user.

This is only present for the set and test password operations.

2-17/20

Response

Completion Code. Special values are:

0 80h - Password test failed

81h - Password was the wrong length
Table 4.23: Set User Password Command, NetFN S/E (06h), Cmd
45h

4.12 Channel Configuration

The channels on an IPMI system are controlled with a channel setting command. In addition, channel
information is available.

Channels are numbered 0-7 and Fh. Channel 0 is generally IPMB. Channels 1-7 are used for other IPMB
channels, LAN interfaces, serial interfaces, and whatnot. Channel Fh is used for the system interface.

If you specify channel Eh in a command, it will use the channel the command came from; any returned
channel number will be the actual channel number of the channel. This can be used to discover the channel
number of the current channel.

The channel information contains the channel type, protocol, and other detailed information about the
channel.

The channel access allows control of how the channel works. It allows alerting to be enabled, it controls
whether user and per-message authentication are required for the channel, it controls when the channel
is available and the privilege limit of the channel. Channel access has two separate areas to store the
information, a volatile area and a non-volatile area. The volatile area is the area that is used in normal
operation, setting that modified behaviour immediately. This area is lost if power is lost to the system. The
system loads the volatile area from the non-volatile area at startup. The areas are set separately.

In addition to this, LAN interfaces have specific configuration information as defined in section 4.9.1 on
page 49 and serial interfaces have their own information as defined in section 4.10.1 on page 58.

64 CHAPTER 4. IPMI INTERFACES

4.12.1 Channel handling in OpenIPMI
Channel Information
OpenIPMI allows the user to get channel information with the following command:

typedef struct ipmi_channel_info_s ipmi_channel_info_t;

typedef void (*ipmi_channel_info_cb) (ipmi_mc_t *mc,
int err,
ipmi_channel_info_t *info,
void *cb_data) ;
int ipmi_mc_channel_get_info(ipmi_mc_t *mc,
unsigned int channel,
ipmi_channel_info_cb handler,
void *cb_data) ;

The callback gets a channel information structure which can be accessed with the following functions:

int ipmi_channel_info_get_channel (ipmi_channel_info_t *info,
unsigned int *channel) ;
int ipmi_channel_info_get_medium(ipmi_channel_info_t *info,
unsigned int *medium) ;
int ipmi_channel_info_get_protocol_type(ipmi_channel_info_t *info,
unsigned int *prot_type) ;

int ipmi_channel_info_get_session_support(ipmi_channel_info_t *info,
unsigned int *sup) ;

/* Data is 3 bytes long */

int ipmi_channel_info_get_vendor_id(ipmi_channel_info_t *info,
unsigned char *data) ;

/* Data is 2 bytes long */

int ipmi_channel_info_get_aux_info(ipmi_channel_info_t *info,
unsigned char xdata) ;

Table 4.24 on the next page describes the channel mediums defined in OpenIPMI. Table 4.25 on the
facing page describes the channel protocol types. Table 4.26 on the next page describes the channel session
support settings.

Channel Access

Channels have access controls that define who may use them, privilege limits, and other things of that nature.
These are available to be fetched and set with OpenIPMI functions:

typedef struct ipmi_channel_access_s ipmi_channel_access_t;

typedef void (*ipmi_channel_access_cb) (ipmi_mc_t *mc,
int err,
ipmi_channel_access_t *info,
void *cb_data) ;

int ipmi_mc_channel_get_access(ipmi_mc_t *me,

4.12. CHANNEL CONFIGURATION

IPMI_CHANNEL _MEDIUM_IPMB (1)

TPMI_CHANNEL MEDIUM_ICMB V10 (2)

IPMI_CHANNEL MEDIUM_ICMB_VO09 (3)

IPMI_CHANNEL MEDIUM 8023 LAN (4)

IPMI_CHANNEL MEDIUM_RS232 (5)

TPMI_CHANNEL _MEDIUM_OTHER_LAN (6)

IPMI_CHANNEL MEDIUM_PCI_SMBUS (7)

7
IPMI_CHANNEL MEDIUM_SMBUS_v1 (8)
IPMI_CHANNEL_MEDIUM_SMBUS_v2 (9)

IPMI_CHANNEL MEDIUM USB_v1 (10)
IPMI_CHANNEL MEDIUM USB_v2 (11)

IPMI_CHANNEL _MEDIUM_SYS_INTF (12)

Table 4.24: Channel mediums in IPMI

IPMI_CHANNEL_PROTOCOL_IPMB (1

)
IPMI_CHANNEL_PROTOCOL_ICMB (2)
IPMI_CHANNEL_PROTOCOL_SMBus (4)

IPMI_CHANNEL_PROTOCOL KCS (5)

IPMI_CHANNEL_PROTOCOL_SMIC (6)

IPMI_CHANNEL_PROTOCOL BT_v10 (7)

IPMI_CHANNEL_PROTOCOL_BT_v15 (8)

(
IPMI_CHANNEL_PROTOCOL_TMODE (9)

Table 4.25: Protocol types in IPMI

IPMI_CHANNEL_SESSION_LESS (0)

IPMI_CHANNEL_SINGLE_SESSION

)

(1
IPMI_CHANNEL MULTI SESSION (2)
IPMI_CHANNEL _SESSION BASED (3)

Table 4.26: Session support in IPMI

66

CHAPTER 4. IPMI INTERFACES

IPMI_CHANNEL_ACCESS_MODE_DISABLED (0) | Channel is never available.

IPMI_CHANNEL_ACCESS_MODE_PRE_BOOT (1)

Channel is only available when the firmware is running, not
when an OS is running.

IPMI_CHANNEL_ACCESS_MODE_ALWAYS (2)

Channel is always available.

IPMI_CHANNEL_ACCESS_MODE_SHARED (3)

Channel is always available for multiple simultaneous users.

Table 4.27: Channel access modes in IPMI
unsigned int channel,
enum ipmi_set_dest_e dest,
ipmi_channel_access_cb handler,
void *cb_data) ;

int ipmi_mc_channel_set_access(ipmi_mc_t *me,
unsigned int channel,
enum ipmi_set_dest_e dest,
ipmi_channel_access_t *access,
ipmi_mc_done_cb handler,
void *cb_data) ;

Once you have a channel access type, you can get/set information in it with the following functions:

int ipmi_channel_access_get_channel (
int ipmi_channel_access_get_alerting
int ipmi_channel_access_set_alerting
int ipmi_channel_access_get_per_msg_
int ipmi_channel_access_set_per_msg_
int ipmi_channel_access_get_user_aut

int ipmi_channel_access_set_user_aut

ipmi_channel_access_t *access,
unsigned int xchannel) ;
_enabled (ipmi_channel_access_t *access,
unsigned int xenab) ;
_enabled(ipmi_channel_access_t *access,
unsigned int enab) ;
auth(ipmi_channel_access_t *access,
unsigned int *msg_auth) ;
auth(ipmi_channel_access_t *access,
unsigned int msg_auth) ;
h(ipmi_channel_access_t *access,
unsigned int *user_auth) ;
h(ipmi_channel_access_t *access,
unsigned int user_auth) ;

int ipmi_channel_access_get_access_mode(ipmi_channel_access_t *access,

unsigned int *access_mode) ;

int ipmi_channel_access_set_access_mode (ipmi_channel_access_t *access,

unsigned int access_mode) ;

int ipmi_channel_access_get_priv_limit(ipmi_channel_access_t *access,

unsigned int *priv_limit);

int ipmi_channel_access_set_priv_limit(ipmi_channel_access_t *access,

unsigned int priv_limit);

Table 4.18 on page 58 gives the privilege levels that the privilege limits used in this command. Table 4.27
gives the modes the channel can run in. Not that not all channel types can support all modes.

4.12. CHANNEL CONFIGURATION 67

Note that OpenIPMI tracks what has changed in the channel access and only writes out the changed
information. If you wish to force all data to be rewritten, you may use the ipmi_channel_access_setall()
function to mark all data as changed.

4.12.2 Channel handling commands

Table 4.3 on page 41 gives the command used to fetch the channel information.
Channel access is fetched and written with the commands defined in table 4.28 and table 4.29 on the
following page.

Request
0

bits 0-3 - Channel

bits 4-7 - reserved
bits 0-2 - Set the channel access mode per table 4.27 on the preceding page

bit 3 - If 1, require authentication for user-level command. Otherwise authentication
is not required for user-level commands. Note that this has no effect on operator
or admin level commands.
bit 4 - If 1, require per-message authentication. If 0, no authentication is required
per-message. Note that if this is 0, a session must still be established, but subse-
1 quent messages after session establishment do not require authentication.
bit 5 - Enable or diable PEF alerting on the channel. Note that if this is 0 (disabled)
alert immediate still works.
bits 6-7 - Operation:
00b - Do not modify the values specified in the rest of this byte.
01b - Set the non-volatile area
10b - Set the volatile area.

11b - reserved
bits 0-3 - Set the privilege limit for the channel per table 4.18 on page 58.

bits 4-5 - reserved

bits 6-7 - Operation:

2 00b - Do not modify the values specified in the rest of this byte.
01b - Set the non-volatile area

10b - Set the volatile area.

11b - reserved

Response
\ 0 \ Completion Code
Table 4.28: Set Channel Access Command, NetFN S/E (06h), Cmd
40h
Request
0 bits 0-3 - Channel
bits 4-7 - reserved

68 CHAPTER 4. IPMI INTERFACES

IPMI_AUTHTYPE_NONE No authentication.

IPMI_AUTHTYPE MD2 MD2 style authentication.

IPMI_AUTHTYPE_MD5 MD?5 style authentication. This is the recommended type of authentication.
IPMI_AUTHTYPE_STRAIGHT | Puts the password into the message in plain text. Don’t use this.

Table 4.30: Authentication types in IPMI

no authentication

MD2 authentication

MD5 authentication

reserved

straight password authentication
OEM authentication

-7 | reserved

DU | W N O

Table 4.31: Authentication bitmask often used in IPMI

bits 0-5 - reserved

00b - reserved
1 01b - Get the non-volatile area
10b - Get the volatile area.
11b - reserved

Response

0

Completion Code. The following special return codes are defined:
82h - The channel is session-less thus does not support this command.
bits 0-2 - The channel access mode per table 4.27 on page 66
bit 3 - If 1, require authentication for user-level command. Otherwise authentication
is not required for user-level commands. Note that this has no effect on operator
or admin level commands.

1 bit 4 - If 1, require per-message authentication. If 0, no authentication is required
per-message. Note that if this is 0, a session must still be established, but subse-
quent messages after session establishment do not require authentication.

bit 5 - Enable or diable PEF alerting on the channel. Note that if this is 0 (disabled)
alert immediate still works.

bits 6-7 - reserved

9 bits 0-3 - The privilege limit for the channel per table 4.18 on page 58.

bits 4-7 - reserved

Table 4.29: Get Channel Access Command, NetFN S/E (06h),
Cmd 41h

4.13. THE PEF TABLE AND SNMP TRAPS 69

4.12.3 Channel Authentication
4.13 The PEF Table and SNMP Traps

Many IPMI systems can specify that certain operations be done when an event comes in. This can depend
on the event’s contents; different actions can be done for different sets of events. This is done with the
Platform Event Filter (PEF) configuration. Not all IPMI systems can do event filtering, but ones that do
will work as this section describes.

The PEF configuration allows several different actions to be performed when an IPMI event comes in
(or when the BMC powers up and there are pending events in its event queue). Except for sending an alert,
if multiple event filters match, the higher priority action will be done and the lower priority action will be
ignored. The actions are:

Action Priority | Description

power down 1 (optional) Power the system down.

power cycle 2 (optional) Power off the system, then power it back on.

reset 3 (mandatory) Reset the main processor in the system.

Diagnostic Interrupt | 4 (optional) Send a system-defined diagnostic interrupt to the main

processor in the system. This is generall an NMI.

Send Alert 5 Send an alert of some type, via an SNMP trap, a page, or a modem
dialup. Note that unlike the rest of the actions, this action will still be
done if a higher priority action is done. Alerts can also be prioritized
via the Alert Policy Table as described in section 4.13.3.

OEM OEM (optional) Priority is defined by the OEM.

This sections will mainly focus on sending SNMP traps with alerts, although the other parts will also
be covered. The PEF configuration can specify sending SNMP traps to inform the the management system
that something has happened. Generally, it is saying that an event has been placed into the event log. Most
of the event information is in the SNMP trap, but unfortunately, some key information is not there. It does
give the system an immediate notification.

To have a system send traps, two tables must be set up. The LAN configuration table described in section
4.9.1 has parameters to set the SNMP community string and the trap destination addresses available. The
PEF table contains information about how to filter traps. Different events can cause different traps to be
sent to different places. As well, specific events can do other things, such as reset or power off the system.
The thing we are interested in is the “Alert” capability.

Note that alerts can also cause telephone pages, serial dialups and things like that to happen. They are
pretty flexible, although this section will mostly focus on SNMP traps.

4.13.1 PEF and Alerting Commands

These commands control the PEF and alerting capabilities of a system.
Table 4.32 shows the command used to find out what alert capabilities a BMC has.

Request
- E |
Response
] 0 \ Completion Code ‘

70 CHAPTER 4. IPMI INTERFACES

PEF version, encoded as:
1 bits 0-3 - Major version #
bits 4-7 - Minor version #
Supported PEF actions, if the bit is one then the action is supported:

bit 0 - alert
bit 1 - power down
9 bit 2 - reset

bit 3 - power cycle
bit 4 - OEM action
bit 5 - diagnostic interrupt
bits 6-7 - reserved

3 Number of entries in teh event filter table
Table 4.32: Get PEF Capabilities Command, NetFN S/E (04h),
Cmd 10h

Table 4.33 shows the command used to set the PEF configuration parameters in a BMC.

Request

0 Parameter Selector. This selects the entry in the table that you want to set.

I The data for the parameter. You must look up the entry in table 4.36 for the exact
contents, it depends on which entry you are setting.

Response

Completion code. Standard completion codes, plus:
80h - Parameter not supported
0 81h - Attempt to set the “set in progress’ value (parm 0) when the parameter is not in
the free (set complete) state.
82h - Attempt to write a read-only parameter.
Table 4.33: Set PEF Configuration Parameters Command, NetFN
S/E (04h), Cmd 12h

Table 4.34 shows the command used to get PEF configuration parameters in a BMC.

Request

bits 0-6 - Parameter Selector. This selects the entry in the table that you want to get.
0
bit 7 - If 1, only get parameter revision

1 Set Selector. Some parameters are in an array, this tells which array element to set.
Set to zero if the parameter does not have a set selector.

Block Selector. Some parameters have two levels of arrays (an array inside of the
2 array). The Set Selector is the first level array specifier, this is the second level. Set to
zero if the parameter does not have a block selector.

Response

4.13. THE PEF TABLE AND SNMP TRAPS 71

Completion code. Standard codes, plus:
80h - parameter not supported
Parameter revision. Format is:
1 Bits 0-3 - Oldest revision parameter is backward compatible with
Bits 4-7 - Current parameter revision
Parameter data. This will not be present if bit 7 of byte 0 of the response is set to 1.
2-n The contents of this depends on the particular parameter being fetched, see table 4.36
for the parameters.
Table 4.34: Get PEF Configuration Parameters Command, NetFN
S/E (04h), Cmd 13h

Table 4.35 shows the command used to send an acknowledge for a received trap. If the “Alert Ac-
knowledge” bit is set in “Destination Type” entry of the LAN Configuration Table (Table 4.16) or in the “
“Destination Info” entry of the Serial Configuration Table (Table 4.17), then the receiver of the trap must
send this message to stop the resends.

Request

0-1 Sequence Number, from the field in the Platform Event Trap (PET) of the trap being
acknowledged. Least significant byte first.

9.5 Local Timestamp, from the field in the PET of the trap being acknowledged. Least
significant byte first.

6 Event Source Type, from the field in the PET of the trap being acknowledged

7 Sensor Device, from the field in the PET of the trap being acknowledged

8 Sensor Number, from the field in the PET of the trap being acknowledged

9-11 Event Data 1-3, from the field in the PET of the trap being acknowledged

Response

10 | Completion Code

Table 4.35: PET Acknowledge Command, NetFN S/E (04h), Cmd
17h

4.13.2 The PEF Postpone Timer
TBD - write this.

4.13.3 PEF Configuration Parameters

The PEF Configuration table has an unusual locking mechanism (although it is usual for IPMI). Parameter
zero is a lock. If you set the value to one, it will only succeed if the value is zero. Thus, to lock the table, you
set the value to one until it succeeds. You then set it to zero when you are done. This locking mechanism
leads to problem if the locker dies while it holds the lock, so you probably need some way to override the
lock if this happens. The lock does not actually keep anyone from changing the data, it is simply a common
mechanism to mutual exclusion. Note also that the lock has a “commit” mechanism, writing two to the lock
will commit the contents if the system supports it. If the system supports rollback, setting the value to zero

72 CHAPTER 4. IPMI INTERFACES

will rollback and not commit the changes you made. So for correctness, you should write a two when you
are complete, and if that fails then write a zero.

Table 4.36 has the parameters used to configure the event filter. Unless marked “volatile”, all of these
will survive removal of power.

Table 4.36: PEF Configuration Parameters

Parameter # Description

Set In Progress | 0 Used to indicate that the parameters are being updated. Bits 2-7 are

(volatile) reserved. Bits 0-1 have the following values:

00b - set complete. This is the state the system comes up in. This
means that any user is finished updating the parameters. If roll-
back is implemented, setting this value will cause any changes
made since last setting this value to “set in progress” to be un-
done.

01b - set in progress. A user will set this value to inform others that
it is updating these parameters. This value can only be set if the
current value is “set complete”.

10b - commit write (optional). This will commit any changes that
are pending and go to “set complete” state. Some systems may
not support this, if setting this returns an error you should set
this value to “set complete” by hand.

PEF Control 1 One byte field global control bits for the PEF:

bit 0 - Set to one to enable the PEF.

bit 1 - Set to one to cause event messages to be sent for each action
triggered by a filter. These events are send as the System Event
Sensor (12h), offset 04h, see table 9.2. Note that these events are
subject to PEF filtering, so be careful not to cause an infinite
event message send.

bit 2 - PEF Startup Delay Enable (optional). When set to one, this
bit enables a PEF startup delay on manual startup of a chassis
and on all system resets. If this bit is supported, the spec says
that the implementation must supply a way for the user to diable
the PEF in case the filter entries are causing an infinite loop. I
have no idea what that means. If this bit is not implemented, the
spec says that there must always be a startup delay. Parameter
3 of this table sets the time.

bit 3 - PEF Alert Startup Delay Enable (optional). When set to one,
this bit enables a delay between startup time and when alerts are
allowed to be sent. Parameter 4 of this table sets the time.

bits 4-7 - reserved

4.13. THE PEF TABLE AND SNMP TRAPS

Table 4.36: PEF Configuration Parameters

73

Parameter # Description
PEF Action Global | 2 A one byte field for controlling whether specific PEF actions are en-
Control abled at all. If the bit is set to one, it is enabled. The bits are:

bit 0 - alert

bit 0 - power down

bit O - reset

bit 0 - power cycle

bit 0 - OEM

bit 0 - diagnostic interrupt

bits 6-7 - reserved
PEF Startup Delay | 3 A one byte field giving the PEF startup delay, in seconds, 10% accu-
(optional) racy. A zero value means no delay. This goes along with bit 2 of byte

1 of parameter 1 of this table, see that for more details.
PEF Alert Startup | 4 A one byte field giving the PEF Alert startup delay, in seconds, 10%
Delay (optional) accuracy. A zero value means no delay. This goes along with bit 3 of

byte 1 of parameter 1 of this table, see that for more details.

Number of Event Fil- | 5 The number of array entries in the event filter table, parameter 6 of
ters (read only) this table. The bits are:

bits 0-6 - The number of event filter entries. A zero here means that

events filters are not supported.

bit 7 - reserved
Event Filter Table 6 This is a 21 byte field giving access to the event filter table.

byte 0 bits 0-6 - The set selector, the array index of which event

filter to set. OOh is reserved and not used and does not count
in the number of event filters.
bit 7 - reserved
bytes 1-20 - The filter data for the array element given by byte 1 of
this parameter. See table 4.37 for the contents of this data.

Event Filter Table | 7 This is a 2 byte field giving access to the first byte of an event filter
Byte 1 table entry. This makes it convenient to set the first byte without

having to read-modify-write the whole entry.
byte 0 bits 0-6 - The set selector, the array index of which event
filter to set. 00h is reserved and not used and does not count
in the number of event filters.
bit 7 - reserved
byte 1 - Byte 1 of the event filter table entry. See table 4.37 for the
contents of this data.

CHAPTER 4. IPMI INTERFACES

Table 4.36: PEF Configuration Parameters

Parameter

Description

Number of Alert Poli-
cies (read only)

#
7

The number of array entries in the alert policy table, parameter 9 of
this table. The bits are:
bits 0-6 - The number of event filter entries. A zero here means that
alert policies are not supported.
bit 7 - reserved

Alert Policy Table

This is a 4 byte field giving access to the alert policy table.
byte 0 bits 0-6 - The set selector, the array index of which alert
policy to set. 00h is reserved and not used and does not
count in the number of event filters.
bit 7 - reserved
bytes 1-3 - The filter data for the array element given by byte 1 of
this parameter. See table 4.38 for the contents of this data.

System GUID

A 17 byte field telling how to get the system GUID for PET traps.
byte 0 bit 0 - If one, use the value in bytes 1-16 of this field as the
GUID in traps. If not set, use the value returned from the
Get System GUID command.
bits 1-7 - reserved
bytes 1-16 - The system GUID

Alert
(read

Number of
String Keys
only)

11

The number of array entries in the alert string keys, parameter 12 of
this table. The bits are:
bits 0-6 - The number of alert string keys. A zero here means that
alert policies are not supported.
bit 7 - reserved

4.13. THE PEF TABLE AND SNMP TRAPS

Table 4.36: PEF Configuration Parameters

75

Parameter

#

Description

Alert String Keys
(some parts are
volatile)

12

Some actions require alert strings for paging an operator. This key
is used in conjunction with the alert policy table (table 4.38) in some
cases. If bit 7 of byte 3 of an alert policy table entry is set to 1, then
it will use the alert string set field from that table and the event filter
number from the event being processed to search this table. If it finds
a match, it will use the alert string that corresponds with the same
index as the entry in this table.
For instance, if entry 4h of this table has a 3h in byte 1 and a 7h in
byte 2, if event filter 4 matches an event and the alert policy used has
87h in byte 3, then the alert string entry 4h of the alert strings are
used.
byte 0 bits 0-6 - The set selector, the array index of which alert
key to set. Entry Oh is volatile and used by the Alert Im-
mediate command as described in section 4.13.5. Entries
1h-7h are non-volatile. All other entries are reserved.
bit 7 - reserved
byte 1 bits 0-6 - Event filter number to match
bit 7 - reserved
byte 2 bits 0-6 - Alert String Set to match
bit 7 - reserved

76 CHAPTER 4. IPMI INTERFACES

Table 4.36: PEF Configuration Parameters

Parameter # Description
Alert Strings (some | 13 Some actions require alert strings for paging an operator. This table
parts are volatile) holds the actual alert strings. This table is indexed by the alert policy

table (table 4.38) either directly if bit 7 of byte 3 of an alert policy
table entry is set to 0, or indirectly through parameter 12 of this table
if that bit is one.
The meanings of the values in this table are dependent on the alert
type and channel.
For dial paging, this string will have a carraige return automatically
appended to the string.
For TAP paging, this string corresonds to 'Field 2’, the pager message.
Note that TAP only supports 7-bit ASCII and the BMC will zero the
high bit when doing TAP paging.
byte 0 bits 0-6 - The set selector, the array index of which alert
string to set. Entry Oh is volatile and used by the Alert
Immediate command as described in section 4.13.5. Entries
1h-7h are non-volatile. All other entries are reserved.
bit 7 - reserved
byte 1 - Block selector. The strings may be much larger than can
be set in a single message. This selects which block to write, in
16-byte increments. So, a 0 here is the first 16 bytes, a 1 is the
second 16 bytes, and so on.
byte 2-n - The bytes to write into the specific block If this is less
than 16 bytes, then only the given number of bytes are written.

OEM Parmeters 96+ | Parameters 96-127 are allowed for OEM use. All other parameters are
reserved.

The PEF table is read and written as part of the PEF Configuration table, parameter 6, but the contents
are documented separately in table 4.37. When an event comes in, it is compared against each filter in order.
If a match occurs on multiple filters, then the highest priority action is done and the rest except for alerts
are ignored. After the operation is completed, any alert operations are done by scanning the alert policy
table in order. The order of the alert policy table defines the priority of the different alerts.

Table 4.37: PEF Table Entry

| Byte | Field | Description

4.13. THE PEF TABLE AND SNMP TRAPS

Table 4.37: PEF Table Entry

7

Byte

Field

Description

Filter Configuration

Bits that control the operation of this filter:
bits 0-4 - reserved
bits 5-6 - filter type
00b - Software configurable filter. A manging system may con-
figure all parts of this filter.
01b - reserved
10b - pre-configured filters. A managing system should not
modify the contents of this filter, although it may turn on
and off the filter using bit 7 of this field.
11b - reserved

Event filter action

These bits set what action this filter will do if it matches. These bits
are enable if set to one.

bit 0 - alert

bit 1 - power off

bit 2 - reset

bit 3 - power cycle

bit 4 - OEM action

bit 5 - diagnostic interrupt

bits 6-7 - reserved

Alert Policy Number

bits 0-3 - If alert is selected in byte 1, this chooses the policy number
to use in the alert policy table.
bits 4-7 - reserved

Event Severity

This is the value that will be put into the event severity field of the
PET trap. If more than one event filter matches, the highest priority
in all event filters will be used. Valid values are:

00h - unspecified

01h - monitor

02h - information

04h - OK (returned to OK condition)

08h - non-critical condition

10h - critical condition

20h - non-recoverable condition

Generator ID byte 1

This matches the slave address or software id in the event. It must be
an exact match. Use FFh to ignore this field when comparing events.

Generator ID byte 2

This matches the channel and LUN in the event. It must be an exact
match. Use FFh to ignore this field when comparing events.

78

CHAPTER 4. IPMI INTERFACES

Table 4.37: PEF Table Entry

Byte

Field

Description

Sensor type

This matches the sensor type field in the event. It must be an exact
match. Use FFh to ignore this field when comparing events.

Sensor Number

This matches the sensor number field in the event. It must be an exact
match. Use FFh to ignore this field when comparing events.

Event Trigger

This matches the event direction and event type byte (byte 13) in the
event. It must be an exact match. Use FFh to ignore this field when
comparing events.

9-10

Event data 1 low nib-
ble values

This field is a bitmask specifying which values in the low 4 bits of the
event data 1 field will match. If a bit is set, then the corresponding
value will match for this filter. For instance, if bits 2 and 7 are set,
then a value of 2 or 7 in the low nibble of event data 1 will cause a
filter match (if everything else matches too, of course).

byte 9 - bit positions 0-7

byte 10 - bit positions 8-15

11

Event data 1 AND
mask

This bit indicates which bits in event data 1 are used for comparison.
If a bit in the mask is zero, then the bit is not used for comparison.
if a bit is one, then the corresponding bit in event data 1 is used for
comparison using the next two bytes of the table.

12

Event data 1 compare
1

This byte tells how the bits in event data 1 are compared. For every
bit set to one in this byte and one in the AND mask, the corresponding
bit in event data 1 must exactly match the data in the compare 2 field.
For all bits set to zero in this byte and one in the AND mask, if any
of those bits must be set to the same value as the bit in the compare
2 field, it is considered a match for that byte.

For instance, if the AND mask is 00001111b, the compare 1 field is
00001100b, and the compare 2 field is 00001010b, then the event data
1 byte matches this comparison if:

((bit0 == 0) || (bitl == 1))
& (bit2 == 0) && (bit3 == 1)

Because there are zeroes in bits 4-7, those are not used in the mask.
Exact matches are required in bits 2 and 3 to compare 2, and one of
bits 0 and 1 must be set the same as compare 2.

Setting bytes 11-13 to all zero will cause event data 1 to be ignored for
comparison (it will always match).

13

Event data 1 compare
2

This byte is used to compare the values of event data 1. See byte 12
for more details on how this works.

14-16

Event data 2 fields

These bytes work the same a bytes 11-13, but apply to event data 2.
See those fields for details.

4.13. THE PEF TABLE AND SNMP TRAPS 79

Table 4.37: PEF Table Entry

Byte | Field Description
17-19 | Event data 3 fields These bytes work the same a bytes 11-13, but apply to event data 3.
See those fields for details.

The Alert Policy table tells the BMC what to do when an event filter matches and the alert action is set.
Every matching filter with the alert action sets that alert policy to be run. Once all the filters have been
checked, the set alert policies are checked and executed in order of their policy number. Depending on the
settings in the policy, the BMC may go to the next alert policy or stop.

Table 4.38: Alert Policy Table Entry

Byte | Field Description
0 Policy Number and
Policy bits 0-2 - The policy. Valid values are:

Oh - Alway do this alert if chosen, even if other alert policy
tables tell the BMC to stop.

1h - If an alert to a previous destination was successful, do not
do this alert. If no alert has been successful so far, do this
alert. Then go to the next entry in the policy table.

2h - If an alert to a previous destination was successful, do
not do this alert. If no alert has been successful so far, do
this alert. Then stop processing the policy table (except for
entries with a Oh policy).

3h - If an alert to a previous destination was successful, do not
do this alert. If no alert has been successful so far, do this
alert. Then proceed to the next policy entry that has a
different channel.

4h - If an alert to a previous destination was successful, do not
do this alert. If no alert has been successful so far, do this
alert. Then proceed to the next policy entry that has a
different destination type.

bit 3 - Entry enable. If set to one, the entry is enabled, if set to zero
it is ignored.
bits 4-7 - The policy number, the array index of which policy table
entry to set.

80 CHAPTER 4. IPMI INTERFACES

Table 4.38: Alert Policy Table Entry

Byte | Field Description
1 Channel / Destina-
tion bits 0-3 - The destination selector. For the chosen channel, this is

the specific destination in the channel to use to send the alert. See
the LAN Configuration Table (table 4.16) or the Serial Configu-
ration Table (table 4.17) for information on what the destination
selectors can do.

bits 4-7 - The channel. This tells the BMC which channel to send
the alert over.

2 Alert String Info Some types of alerts need a string associated with them, this chooses
the string. The specific strings are stored in the PEF configuration
parameters 12 and 13 in table 4.36.

If bit 7 of this byte is one, then the string is dependent on the event fil-
ter number that was matched for this alert policy. Bits 0-6 of this byte
are the alert string set. The event filter number and the alert string set
are looked up in the table in parameter 12 of the PEF configuration
to choose the alert string to use. See that parameter for more details
on how this works.

if bit 7 of this byte is zero, then the bits 0-6 of this field are the alert
string selector. The alert string selector is used as a direct index into
the alert string table in parameter 13 of the PEF configuration.

4.13.4 OpenIPMI and SNMP Traps
Setting Up A System To Send Traps

Setting up a system to send traps with OpenIPMI can be done two basic ways. The hard way is to set up
each table individually. This is more work, but is very flexible. The easy way just sets up for SNMP traps
but does all the work for you.

Setting Up the PEF Table and LAN Configuration Table For a system to send traps, you must set
up the PEF table as described in section 4.13.3 and the LAN configuration table described in section 4.9.1.
However, this is a lot of work.

Setting Up For Traps the Easy Way OpenlPMI provides a way to set up a simple SNMP trap send
from a BMC. The call has an unfortunately large number of parameters because OpenIPMI cannot pick the
various selectors and policy numbers needed to set up for the trap, because you may be using them for other
things. The function call is:

int ipmi_pet_create(ipmi_domain_t *domain,
unsigned int connection,
unsigned int channel,

struct in_addr ip_addr,

4.13. THE PEF TABLE AND SNMP TRAPS 81

unsigned char mac_addr [6],
unsigned int eft_sel,
unsigned int policy_num,
unsigned int apt_sel,
unsigned int lan_dest_sel,
ipmi_pet_done_cb done,

void *xcb_data,
ipmi_pet_t **pet) ;

domain - The domain to set up a trap sender for.

connection - Which specific connection to the domain do you want to configure?

channel - The specific channel to configure. You will have to know the channel you want to configure.

ip_addr - The IP address to tell the BMC to send messages to.

mac_addr - The MAC address to tell the BMC to send messages to.

eft_sel - the Event Filter selector to use for this PET destination. Note that this does *not* need to be
unique for different OpenlPMI instances that are using the same channel, since the configuration will
be exactly the same for all EFT entries using the same channel, assuming they share the same policy

number.

policy_num - The policy number to use for the alert policy. This should be the same for all users of a
domain.

apt_sel - The Alert Policy selector to use for this PET destination. Note that as eft_sel, this need not be
unique for each different OpenIPMI instance on the same channel.

lan_dest_sel - The LAN configuration destination selector for this PET destination. Unlike eft_sel and
apt_sel, this *must* be unique for each OpenIPMI instance on the same channel, as it specifies the
destination address to use.

done - This function will be called when the PET configuration is complete.

cb_data - Data to pass to the done call.

pet - The created object.

This creates an object that will continue to live and periodically check that the configuration is correct.
If you wish to destroy this, use the following:

int ipmi_pet_destroy(ipmi_pet_t *pet,
ipmi_pet_done_cb done,
void *cb_data) ;

82 CHAPTER 4. IPMI INTERFACES

Handling Incoming Traps

OpenIPMI has some ability to handle SNMP traps. It does not implement its own SNMP stack though, so
it cannot do all the work for you. Indeed, different SNMP exist and OpenIPMI would not want to presume
that you would only use one of them. Also, since the SNMP trap port is fixed, some cooperative mechanism
may be required between different pieces of software. You must have your own stack, like NetSNMP[4], and
catch the traps with that.

Once you have a trap, you must call:

int ipmi_handle_snmp_trap_data(void *src_addr,
unsigned int src_addr_len,
int src_addr_type,
long specific,
unsigned char *data,
unsigned int data_len);

Where src_addr is the IP source address (struct sockaddr_in) and length is the length of the address
structure. Only IP is supported for now, so src_addr_type must be IPMI_EXTERN_ADDR_IP. The specific
field is the field of the same name from the SNMP Protocol Data Unit (PDU). The data field is a pointer
to the user data from the SNMP PDU, and the length of that data is in data_len.

The data in the trap is not enough information to fully decode the event, so currently an incoming trap
will only cause an SEL fetch on the proper SEL. OpenIPMI will automatically send the PET Acknowledge
command described in Table 4.35.

Note that SNMP traps can only be received on one port, and that port is privileged, so you must run as
root to receive SNMP traps.

4.13.5 The Alert Immediate Command
4.14 OpenIPMI Addressing

The OpenIPMI driver and library use a common addressing scheme. This attempts to normalize the mes-
saging from the user’s point of view. The message data will look the same no matter where you send it. The
only difference is the message.

The main OpenIPMI address structure is:

struct ipmi_addr

{

int addr_type;

short channel;

char data[IPMI_MAX_ADDR_SIZE];
};

The addr_type and channel are common to all OpenIPMI addresses. You have to look at the addr_type
to determine the type of address being used and cast it to the proper address. The specific messages are
overlays on this structure.

A system interface address is used to route the message to the local management controller. It is:

4.14. OPENIPMI ADDRESSING 83

#define IPMI_SYSTEM_INTERFACE_ADDR_TYPE ...
struct ipmi_system_interface_addr

{
int addr_type;
short channel;
unsigned char lun;

};

The channel should be IPMI_BMC_CHANNEL and the lun should generally be zero.
An TPMI address routes messages on the IPMB. The format is:

#define IPMI_IPMB_ADDR_TYPE
#define IPMI_IPMB_BROADCAST_ADDR_TYPE
struct ipmi_ipmb_addr

{
int addr_type;
short channel;
unsigned char slave_addr;
unsigned char lun;

};

The channel should be the IPMB bus channel number, the slave_address should be the IPMB address
of the destination, and the lun should be the destination LUN. Notice that two address types can be used
with this command, a normal IPMB message and a broadcast IPMB can be sent with this. Note that if you
send a broadcast IPMB, you will receive a normal IPMB address in the response.

A LAN to system interface address is:

#define IPMI_LAN_ADDR_TYPE ...

struct ipmi_lan_addr

{
int addr_type;
short channel;
unsigned char privilege;
unsigned char session_handle;
unsigned char remote_SWID;
unsigned char local_SWID;
unsigned char lun;

};

This deviates a little from the IPMI spec. In the spec, the SWIDs used are the requester SWID and
responder SWID. For this message, the remote SWID is other end and the local SWID is this end. This way,
there is no confusion when sending and receiving messages, and no special handling of the SWIDs needs to
be done.

84

CHAPTER 4. IPMI INTERFACES

The MC

The MC is the “intelligent” device in an OpenIPMI system. It is a processor that is always on and handles
management operations in the system. It is the thing that receives commands, processes them, and returns
the results.

An IPMI system will have at least one MC, the BMC. The BMC is the “main” management controller;
it handles most of the interfaces into the system.

5.1 OpenIPMI and MCs

Note: This section deals with OpenIPMI internals. The user does not generally need to know about man-
agement controllers, as they are internal to the operation of OpenIPMI. However, they are discussed because
users writing plugins or fizup code will need to know about them. Plus, these interfaces are subject to change.

5.1.1 Discovering MCs

In OpenIPMI, the MC devices in a system are part of the domain. When the user creates the domain,
OpenlPMI will start scanning for MCs in the system. The user can discover the MCs in a domain in two
ways: iterating or registering callbacks.

Tterating the MCs in a domain simply involves calling the iterator function with a callback function:

static void
handle mc(ipmi_domain_t *domain, ipmi_mc_t *mc, void *cb_data)
{
my_data_t *my_data = cb_data;
/* Process the MC here */
}

void
iterate_mcs(ipmi_domain_t *domain, my_data_t *my_data)
{
int rv;
rv = ipmi_domain_iterate_mcs(domain, handle_mc, my_data);

85

86 CHAPTER 5. THE MC

if (rv)
handle_error();

This is relatively simple to do, but you will not be able to know immediately when new MCs are added
to the system. To know that, you must register a callback function as follows:

static void
handle_mc(enum ipmi_update_e op,
ipmi_domain_t *domain,
ipmi_mc_t *mc,
void *cb_data)
{
my_data_t *my_data = cb_data;
/* Process the MC here */

b
void
handle_new_domain(ipmi_domain_t *domain, my_data_t *my_data)
{
int rv;

rv = ipmi_domain_add_mc_updated_handler(domain, handle_mc, my_data);
if (rv)
handle_error();

You should call the function to add an MC updated handler when the domain is reported up (or even
before); that way you will not miss any MCs.

5.1.2 MC Active

An MC may be referenced by another part of they system, but may not be present. For instance, it may be
on a plug-in card. An MC that is not present is called “inactive”, an MC that is present is called “active”.
OpenIPMI automatically detects whether MCs are active or inactive.

The ipmi_mc_is_active function is used to tell if an MC is active. As wall, callback handlers can be
registered with ipmi_mc_add_active_handler to know immediately when an MC is set active or inactive.

5.1.3 MC Information

OpenlPMI will extract information about the MC from the Get Device ID command; you can fetch this with
functions. The functions are almost all of the form:

int ipmi_mc_xxx(ipmi_mc_t *mc)

The fields available (replace “xxx” with these in the previous definition) are:

\ provides_device_sdrs \ Returns true if the MC has device SDRs, false if not.

5.1.

OPENIPMI AND MCS

87

device_available

Return false if the MC is operating normally, or true if the MC is
updating its firmware.

chassis_support

Returns true if the MC supports the chassis commands, false if not.

bridge_support

Returns true if the MC support bridge commands (generally for
ICMB)), false if not.

ipmb_event_generator_support

Return true if the MC will generate events on the IPMB. Note that
if this is false, it can still generate events and store them on a local
System Event Log (SEL), like on a BMC.

ipmb_event_receiver_support

Returns true if the MC can receive events from other MCs on the
IPMB.

fru_inventory _support

If true, the MC support FRU inventory commands.

sel_device_support

If true, the MC has an event log on it.

sdr_repository_support

If true, the MC supports a writable SDR repository. This is not a
device SDR repository.

sensor_device_support

If true, this MC supports sensor commands.

device_id The device id of the MC. This helps identify the capabilities of the
MGC; it is used along with the product and manufacturer IDs to know
the exact capabilities of the device. It’s use is OEM-specific, though.

device_revision The hardware revision for the MC and associated hardware. It’s use

is OEM-specific, though.

major_fw_revision

The major revision of the firmware running on the MC.

minor_fw_revision

The minor revision of the firmware running on the MC.

major_version

The major version of the IPMI specification version supported by the
MC.

minor_version

The minor version of the IPMI specification version supported by the
MC.

manufacturer_id

A 24-bit number assigned by the TANA for the manufacturer of the
MC hardware.

product_id

A 16-bit number assigned by the manufacturer to identify the specific
MC hardware.

In addition, the following function:

void ipmi_mc_aux_fw_revision(ipmi_mc_t #*mc, unsigned char val[]);

returns the optional 4-byte auxiliary firmware revision information field. The meaning of this field is
vendor-specific and the field may not be present (in which case all zeros is returned).

5.1.4 MC Reset

OpenIPMI has a function to reset an MC. It is:

#define IPMI_MC_RESET_COLD ...
#define IPMI_MC_RESET_WARM ...

int ipmi_mc_reset(ipmi_mc_t *me,

88 CHAPTER 5. THE MC

int reset_type,
ipmi_mc_done_cb done,
void *cb_data);

Note that this resets the MC, not the main processor on the board the MC is located on. There are two
types of reset, cold and warm. Not all systems support resetting the MC and the effects of the reset are
system-dependent.

5.1.5 Global Event Enables

An MC has a global event enable. If events are disabled, then all events from the MC are disabled. If events
are enabled, then the sending of events depends on more specific event settings on the sensors. The value is
a true-false, setting it to true enables events. False disables events. The functions are:

int ipmi_mc_get_events_enable(ipmi_mc_t *mc);

int ipmi_mc_set_events_enable(ipmi_mc_t *mc,
int val,
ipmi_mc_done_cb done,
void *cb_data) ;

The setting is fetched and held locally, so the “get” function is immediate. The “set” function requires
sending a message and thus it has a callback.

IPMI Commands

IPMI does everything except events through commands and responses. A user sends a command to an MC,
and the MC returns a response. All commands have responses. Commands may optionally have some data;
the data depends on the command. The same goes for responses, except that all responses contain at least

one data byte holding the completion code. Every response has a completion code in the first byte.

Every command and response has a NetFN and command number. A NetFN is a number that describes a
function group. All sensor-related commands, for instance, have the same NetFN. The command number is
the number for the specific command within the NetFN. Responses contain the same NetFN and command
number as the command, except the NetFN has one added to it. So responses to sensor command (NetFN
04h) will use NetFN 05h. Table 6.1 shows the NetFN values. All commands have even NetFNs, and all

responses have odd NetFNs.

Table 6.1: NetFN codes

NetFN Name Description

00h, 01h | Chassis Common chassis control and status functions.

02h, 03h | Bridge Messaging for bridging to another bus, generally ICMB.

04h, 05h | Sensor/Event Handling of sensors and events.

06h, 07h | Application General control and status of a connection and basic operations.
This is the “catch all” where things that don’t really fit elsewhere
fall, too.

08h, 09h | Firmware Used for formware checking and upgrade, generally. The mes-
saging for this is completely proprietary and not defined by the
spec.

0Ah, OBh | Storage Non-volatile storage handling, the SDRs and SEL.

0Ch, 0Dh | Tranport Configuration of the LAN and serial interfaces.

0Eh-2Bh | Reserved

89

90 CHAPTER 6. IPMI COMMANDS

2Ch, 2Dh A way for external groups to define their own extensions without
conflicting. The first byte of the command and second byte of
the response are a field that identifies the entity defining the
messages; these bytes are, in effect, an extension of the NetFN.
The external groups are free to define the message outside those
bounds. Current defined external groups are:

00h CompactPCI

01h DMTF Pre-OS Working Group ASF Specification
All other values are reserved.
Basically more group extensions, except that the first three bytes
(bytes 0-2) of commands and second three bytes (bytes 1-3) of
responses are the JANA enterprise number. The owner of the
TANA enterprise number is free to define these values any way
they like.
OEMs are free to use these messages any way they like.

Group Exten-
sions

2Eh, 2Fh | OEM/Group

30h-3Fh OEM

Every response has a one byte error code that is always the first byte of the message. There are a number
of error code. Unfortunately, the error responses returned in a response are not bounded per command; the
implementor is free to return pretty much anything it likes as an error response. Some commands define
explicit error return code for some situations, but not generally. Table 6.2 shows the error codes in IPMI.

Table 6.2: Error codes

Error Name Description
00h No error, command completed normally
01h-7Eh OEM error codes. Implementors may use these error codes for
their own commands if a standard error code does not apply.
7Fh reserved
80h-BEh Command-specific error codes. Some commands have specific
errors they return that only apply to that command. These are
defined by the command.
BFh reserved
COh Node Busy The command could not complete because command processing
resources on the MC are temporarily unavailable.
C1lh Invalid Com- | The MC did not support the given NetFN and command.
mand
C2h Invalid Com- | The given command was not supported on the LUN it was sent
mand for LUN to.
C3h Timeout A timeout occurred while processing the command.
C4h Out of Space There was not enough storage space to perform the given com-
mand.
C5h Reservation In- | This is for commands that require reservations (like SEL and
valid SDR commands). This means the reservation number given was
invalid or the reservation was lost.
C6h Data Truncated | The request data was truncated (it is unknown what this means).

C7h Command The received command was the wrong length for the command.
Length Invalid
C8h Command Field | A field in a command was too long for the given command.
Too Long
C9h Parameter Out | One or more fields in a command were outside the range of allowed
of Range values. According to the spec, “This is different from the 'Invalid
data field’ (CCh) code in that it indicates that the erroneous
field(s) has a contiguous range of possible values.” The meaning
of that enigmatic statement is unknown.
CAh Too Many Re- | A request was made for some data, but the requested number of
quested Bytes bytes was either beyond the end of the data or too long to fit into
the return response.

CBh Invalid Object The requested sensor, record, or data was not present. The com-
mand is supported, but the specific object asked for does not
exist.

CCh Invalid Data | An invalid data field was in the request. See error C9h for more

Field details.

CDh Command In- | The specific sensor, record, or data does not support the given

valid for Object | command.
CEh No Response The command response could not be provided. The meaning of
this is unknown.
CFh Duplicate Re- | A duplicate request was received and ignored. The spec says
quest “This completion code is for devices which cannot return the re-
sponse that was returned for the original instance of the request.
Such devices should provide separate commands that allow the
completion status of the original request to be determined. An
Event Receiver does not use this completion code, but returns the
00h completion code in response to (valid) duplicate requests.”
The meaning of this statement is unknown. However, in general
IPMI should be stateless because reponses can be lost and com-
mands retransmitted. Commands that have intermediate state
need to be handled very carefully (and there are none in the
main spec).
DOh SDR Respos- | The SDR repository is currently in update mode so the given
itory Being | command could not be executed.
Updated

Di1h Firmware Being | The given command could not be executed because firmware on
Updated the system is being updated.

D2h BMC Initializ- | The given command could not be executed because the BMC (or

ing probably any MC) is currently initializing.

D3h Destination Un- | An MC could not deliver the command to the given destination.

available For instance, if you send a “Send Message” command to a channel

that is not active, it may return this.

91

92

CHAPTER 6. IPMI COMMANDS

D4h Insufficient The user does not have sufficient privilege to execute the com-
Privilege mand.

D5h Invalid State The given command cannot be supported in the present state.

D6h Subfunction The given command cannot be executed because the subfunction
Disabled required has been disabled.

D7h-FEh reserved

FFh Unspecified Some error occurred, but the true error could not be determined.

The actual mechanics of sending a message depend on the interface, see the interface sections in chapter
4 for the details of sending over specific interfaces.

6.1 Sending Commands in the OpenlIPMI Library

The OpenIPMI library hides most of the details of sending a command and handles all the aspects of talking
to sensors, controls, and MCs. You should generally not need to send a command to an MC. However,
exceptions exist, so the operation is described here.

First, you should probably decide if you want a clean interface to the function through a control. A
control provides a clean interface to a device and should probably be used if possible. You would then send
the messages from functions that are part of the control interface.

To send a message, you can either send it to an address in the domain or to an MC. To send to an
address, you must have or construct a valid IPMI address and use:

ipmi_send_command_addr (ipmi_domain_t *domain,
ipmi_addr_t *xaddr,
unsigned int addr_len,
ipmi_msg_t *msg,
ipmi_addr_response_handler_t rsp_handler,
void *rsp_datal,
void xrsp_data2) ;

To send to an MC, you must have a valid MC. You can usually extract this from a control or sensor (the
MC the sensor belongs to) or you can iterate the MCs or keep the MC id around. The function to send a
message to an MC is:

int ipmi_mc_send_command (ipmi_mc_t *me,
unsigned int lun,
ipmi_msg_t *cmd ,

ipmi_mc_response_handler_t rsp_handler,

void

*rsp_data) ;

SDR Repositories

IPMI systems keep information about their sensors and entities in an SDR repository. The SDR repository
is a set of record; each record holding information about the sensor or entity. An SDR repository may also
hold OEM records; those are system-specific and not discussed here.

IPMI systems have two types of SDR repositories. The IPMI spec does not give a name to the first type,
but we shall refer to it here as the “main” SDR repository. A system should generally only have one of these.
This repository is writable by the user using standard operations.

Each MC in an IPMI system may have a device SDR repository. IPMI does not have standard operations
to write this repository, just to read it. This repository may also change dynamically. For instance, if some
device is hot-plugged onto a board, the MC for that board may dynamically add or change sensors and
entities for the new device.

The records in these two types of repositories are the same.

7.1 SDR Reservations

Both SDR repository types support the concept of a reservation.

7.2 The Main SDR Repository

TBD - write this

7.2.1 Modal and Non-Modal SDR Repositories
7.2.2 Commands for Main SDR Repositories

7.3 Device SDR Repositories

TBD - write this

93

94 CHAPTER 7. SDR REPOSITORIES

7.3.1 Dynamic Device SDR Repositories
7.3.2 Commands for Device SDR Repositories

7.4 Records in an SDR Repository

Section 8.8 on entities and section 9.7 on sensors describe the specific records in SDR repositories. They all
follow a general format, though; this section describes that format.

Each SDR has three parts: A header, a key, and a body. Note that all multi-byte values in SDRs are
little-endian unless specified otherwise. The header is:

0-1 Record ID. This is the number used to fetch the record from the SDR repository.

2 IPMI Version. This is the IPMI version the record is specified under.

3 Record Type. This tells the specific type of record contained in the SDR; it gives the
format of the data after the header.

4 Record Size. This is the number of bytes in the SDR, not including the header.

Table 7.1: The SDR header

The key and body are dependent on the record type and are defined in the specific record definitions.
Table 7.2 shows the various record types supported by IPMI.
To fetch an SDR, first fetch the SDR header. Once the size is known the rest of the SDR can be fetched.

7.5 Dealing with SDR Repositories in OpenIPMI

SDRs can be rather difficult to deal with. OpenIPMI hides most, if not all, of the difficulty from the user.
It fetches the SDRs, decodes them, create entities and sensors as necessary, and reports those to the user.
The user of OpenIPMI will not have to know anything about SDRs, in general.

The type used by OpenIPMI to hold an SDR repository is ipmi_sdr_info_t. The type used to hold
individual SDRs is ipmi_sdr_t. The internals of ipmi_sdr_info_t are opaque, you can only use functions
to manipulate it. The internals of ipmi_sdr_t are not (currently) opaque, you can access the internals
directly.

7.5.1 Getting an SDR Repository
If you need access to the SDRs for a system, you can get the main SDRs by calling:
ipmi_sdr_t *ipmi_domain_get_main_sdrs(ipmi_domain_t *domain) ;
You can get the SDRs for an MC with the following:
ipmi_sdr_t *ipmi_mc_get_sdrs(ipmi_domain_t *domain) ;

These are the pre-fetched copies that OpenIPMI holds. You can also fetch your own copy of an SDR
repository using the following call to create it:

7.5. DEALING WITH SDR REPOSITORIES IN OPENIPMI

01h | Type 1 sensors are generally used for analog sensors. They can be used for discrete sensors,
too, but most of the fields are irrelevant for discrete sensors.

02h | Type 2 sensors are used for discrete sensors. Multiple similar sensors may be specific in a
single type 2 record if the sensor meet certain criteria.

03h | Type 3 sensors are used for sensors that only send events.

08h | A type 8 sensor is called a Entity Association Record (EAR). These are used to specify
entity containment; to specify, for instance that a processor entity is on a specific board
entity.

09h | A type 9 sensor is called a Device Relative Entity Association Record (DREAR). It is like
a type 8 record, but can contain device-relative entities.

10h | A type 16 record is called a Generic Device Locator Record (GDLR). It is used to give
information about an entity when the entity is not a FRU or MC.

11h | A type 17 record is called a Field Replacable Unit Device Locator Record (FRUDLR). It is
used to give information about a FRU entity in the system that is not a MC.

12h | A type 18 record is called a Management Controller Device Locator Record (MCDLR). Tt
is used to give information about a MC entity in the system.

13h | A type 19 record is called a Management Controller Confirmation Record. It record the fact
that a MC has been found in the system. Note that OpenIPMI does not currently use these.

14h | A type 20 record is called a BMC Message Channel Info Record. It is only used in IPMI
version 1.0; it specifies the channels available on the system. Newer version of IPMI use
specific messages to carry this information.

COh | This is used for OEM records. The format depends on the specific system type.

Table 7.2: SDR types. All other record types are reserved

95

96 CHAPTER 7. SDR REPOSITORIES

int ipmi_sdr_info_alloc(ipmi_domain_t *domain,

ipmi_mc_t *mc,
unsigned int lun,
int sensor,

ipmi_sdr_info_t **new_sdrs) ;

If you want the main SDRs held on an MC, set the sensor value to false (zero). If you want the device
SDRs, set the value to true (one). After you allocate an SDR info structure, you can use the following call
to fetch it:

typedef void (*ipmi_sdrs_fetched_t) (ipmi_sdr_info_t *sdrs,

int err,
int changed,
unsigned int count,
void *cb_data) ;
int ipmi_sdr_fetch(ipmi_sdr_info_t xsdrs,
ipmi_sdrs_fetched_t handler,
void *cb_data) ;

If you allocate your own SDR info structure, you should destroy it when you are done with it with the
following call:

typedef void (*ipmi_sdr_destroyed_t) (ipmi_sdr_info_t *sdrs, void *cb_data);

int ipmi_sdr_info_destroy(ipmi_sdr_info_t *sdrs,
ipmi_sdr_destroyed_t handler,
void *cb_data) ;

Note that you should not destroy an SDR repository you fetched from the domain or MC. Those are
managed by OpenIPMI; if you destroy them you will cause problems.

Note that an SDR repository from a MC or domain is dynamic; it may change because OpenIPMI rescans
the SDRs to make sure they haven’t changed.

7.5.2 SDR Repository Information

General SDR info is available about the repository once the fetch is complete. The format of the functions
to get them are all

int ipmi_sdr_get_xxx(ipmi_sdr_info_t *sdr, int #*val);

where the xxx is replaced by the item you wish to get. Valid items are:

major_version The major IPMI version the SDR repository supports, like 1 for IPMI 1.0
and 1.5, and 2 for IPMI 2.0.
minor_version The minor IPMI version the SDR repository supports, like 0 for IPMI 1.0

and 2.0, and 5 for IPMI 1.5.
overflow An SDR write operation has failed to do lack of space.

7.5. DEALING WITH SDR REPOSITORIES IN OPENIPMI 97

update_mode The update modes supported. Valid values are:

00b - unspecified

01b - Only non-modal updates are supported

10b - Only modal updates are supported

11b - Both modal and non-modal updates are supported

supports_delete_sdr If true, the repository supports deleting individual SDRs one at a time.
supports_partial _add_sdr | If true, the repository supports the partial add command.
supports_reserve_sdr If true, the repository supports using reservations.

supports_get_sdr If true, the repository allows allocation information to be fetched with the
_repository _allocation Get SDR, Repository Allocation Info command.

dynamic_population If true, the IPMI system can dynamically change the contents of the SDR,

repository. This may only be true for device SDR repositories. Although
main SDR repositories can dynamically change, it is not the system that
does this, it is the user.

The following call can be used to tell whether sensors are available on specific LUNs.

int ipmi_sdr_get_lun_has_sensors(ipmi_sdr_info_t *sdr,
unsigned int lun,
int *val) ;

7.5.3 Handling a SDR Repository

Once you have an SDR repository, you can fetch individual SDRs from it by the record id, type, or index.
To find out the number of SDRs in the repository, use:

int ipmi_get_sdr_count (ipmi_sdr_info_t *sdr,
unsigned int *count) ;

Fetching the SDRs by index is probably the most useful function; it treats the repository as an array and
lets you fetch items, starting at zero. The call is:

int ipmi_get_sdr_by_index(ipmi_sdr_info_t *sdr,
int index,
ipmi_sdr_t *return_sdr) ;

If you are interested in a specific record number, you can fetch it with:

int ipmi_get_sdr_by_type(ipmi_sdr_info_t *sdr,
int type,
ipmi_sdr_t *return_sdr) ;

If you want to find the first SDR of a given type, use the following call:

int ipmi_get_sdr_by_type(ipmi_sdr_info_t *sdr,
int type,
ipmi_sdr_t *return_sdr) ;

98 CHAPTER 7. SDR REPOSITORIES

To get all the SDRs, use the following:

int ipmi_get_all_sdrs(ipmi_sdr_info_t *sdr,
int *array_size,
ipmi_sdr_t xarray) ;

Your passed in array will be filled with the SDR data. The int pointed to by array_size must be set to the
number of available elements in array. It will be modified to be the actual number of SDRs put into the
array. If the array is not big enough to hold all the SDRs, the call will fail and have no effect.

Entities

Though you might not know it from a cursory reading of the IPMI spec, entities are an important part of
IPMI. They define what a sensor (and in OpenIPMI, a control) monitors (or controls). They are, in essence,
the physical parts of the system. For instance, if a system has a temperature sensor on the processor and
another temperature sensor on the main board, the temperature sensors will be attached to the processor
entity and board entity, respectively. This way, you can tell what the sensor monitors.

Entities are defined by two numbers, the entity id and the entity instance. The entity id defines the type
of thing, such as a power supply, processor, board, or memory. The entity instance defines the instance of
the thing. For instance, a system may have 4 DIMMs. Each of these DIMMs would be the same entity id
(memory), but they would each have a different instance. From now on these are referred to as (<entity
id>,<entity instance>). For example, entity (3,1) would be the first processor in the system.

IPMI defines two types of entities: system-relative and device-relative. System-relative entities are unique
throughout the entire system (the domain, in OpenIPMI terms). Thus if sensors on different MCs referred
entity (3,1), they would all be referring to exactly the same physical thing. System-relative entity instances
are defined to be less than 96.

Device-relative entities are unique on the management controller that controls them. These entity’s
instances are numbered 96-128. These are referred to using their channel and IPMB address in the form
r(<channel>,<IPMB>, <entity id>,<entity instance>-96). For instance, if an MC at address COh had a
sensor on channel 0 that monitored entity id 3, instance 97, that would be r(0,C0,3,1)

Entities may or may not have specific information describing them. Entities that do have specific infor-
mation describing them have device locator records.

Entity IDs defined by IPMI are:

| Name description

0 UNSPECIFIED The entity id is not used.

1 OTHER Something else?

2 UNKOWN It’s hard to understand why the entity id wouldn’t be
known, but this is defined by the spec.

3 | PROCESSOR A processor

4 | DISK A disk or disk bay

5 PERIPHERAL A peripheral bay

99

100

CHAPTER 8. ENTITIES

6 | SYSTEM_MANAGEMENT A separate board for system management
_MODULE

7 | SYSTEM_BOARD The main system board

8 | MEMORY_MODULE A memory module (a DIMM, for instance)

9 PROCESSOR -MODULE A device that holds processors, if they are not mounted
on the system board. This would generally be a socket.

10 | POWER_SUPPLY The main power supplies for the system use this.

11 | ADD_IN_CARD A plug-in card in a system, a PCI card for instance.

12 | FRONT_PANEL BOARD A front panel display and/or control panel.

13 | BACK_PANEL_BOARD A rear panel display and/or control panel.

14 | POWER_SYSTEM _BOARD A board that power supplies plug in to

15 | DRIVE_.BACKPLANE A board that disk drives plug in to

16 | SYSTEM_INTERNAL A board that contains expansion slots. A PCI riser

_EXPANSION_BOARD board, for instance.

17 | OTHER_-SYSTEM _BOARD Some other board in the system.

18 | PROCESSOR_BOARD A separate board that holds one or more processors.

19 | POWER_UNIT A logical grouping for a set of power supplies

20 | POWER_MODULE Used for internal DC-to-DC converters, like one that
is on a board. Note that you would not use this for
the main power supply in a system, even it it was a
DC-to-DC converter.