public final class Long extends Number implements Comparable<Long>
Long class wraps a value of the primitive type long in an object. An object of type Long contains a
single field whose type is long.
In addition, this class provides several methods for converting
a long to a String and a String to a long, as well as other constants and methods useful when dealing
with a long.
Implementation note: The implementations of the "bit twiddling"
methods (such as highestOneBit and
numberOfTrailingZeros) are
based on material from Henry S. Warren, Jr.'s Hacker's
Delight, (Addison Wesley, 2002).
| Modifier and Type | Field and Description |
|---|---|
static int |
BYTES
The number of bytes used to represent a
long value in two's
complement binary form. |
static long |
MAX_VALUE
A constant holding the maximum value a
long can
have, 263-1. |
static long |
MIN_VALUE
A constant holding the minimum value a
long can
have, -263. |
static int |
SIZE
The number of bits used to represent a
long value in two's
complement binary form. |
static Class<Long> |
TYPE
The
Class instance representing the primitive type
long. |
| Constructor and Description |
|---|
Long(long value)
Constructs a newly allocated
Long object that
represents the specified long argument. |
Long(String s)
Constructs a newly allocated
Long object that
represents the long value indicated by the
String parameter. |
| Modifier and Type | Method and Description |
|---|---|
static int |
bitCount(long i)
Returns the number of one-bits in the two's complement binary
representation of the specified
long value. |
byte |
byteValue()
Returns the value of this
Long as a byte after
a narrowing primitive conversion. |
static int |
compare(long x,
long y)
Compares two
long values numerically. |
int |
compareTo(Long anotherLong)
Compares two
Long objects numerically. |
static int |
compareUnsigned(long x,
long y)
Compares two
long values numerically treating the values
as unsigned. |
static Long |
decode(String nm)
Decodes a
String into a Long. |
static long |
divideUnsigned(long dividend,
long divisor)
Returns the unsigned quotient of dividing the first argument by
the second where each argument and the result is interpreted as
an unsigned value.
|
double |
doubleValue()
Returns the value of this
Long as a double
after a widening primitive conversion. |
boolean |
equals(Object obj)
Compares this object to the specified object.
|
float |
floatValue()
Returns the value of this
Long as a float after
a widening primitive conversion. |
static Long |
getLong(String nm)
Determines the
long value of the system property
with the specified name. |
static Long |
getLong(String nm,
long val)
Determines the
long value of the system property
with the specified name. |
static Long |
getLong(String nm,
Long val)
Returns the
long value of the system property with
the specified name. |
int |
hashCode()
Returns a hash code for this
Long. |
static int |
hashCode(long value)
Returns a hash code for a
long value; compatible with
Long.hashCode(). |
static long |
highestOneBit(long i)
Returns a
long value with at most a single one-bit, in the
position of the highest-order ("leftmost") one-bit in the specified
long value. |
int |
intValue()
Returns the value of this
Long as an int after
a narrowing primitive conversion. |
long |
longValue()
Returns the value of this
Long as a
long value. |
static long |
lowestOneBit(long i)
Returns a
long value with at most a single one-bit, in the
position of the lowest-order ("rightmost") one-bit in the specified
long value. |
static long |
max(long a,
long b)
Returns the greater of two
long values
as if by calling Math.max. |
static long |
min(long a,
long b)
Returns the smaller of two
long values
as if by calling Math.min. |
static int |
numberOfLeadingZeros(long i)
Returns the number of zero bits preceding the highest-order
("leftmost") one-bit in the two's complement binary representation
of the specified
long value. |
static int |
numberOfTrailingZeros(long i)
Returns the number of zero bits following the lowest-order ("rightmost")
one-bit in the two's complement binary representation of the specified
long value. |
static long |
parseLong(String s)
Parses the string argument as a signed decimal
long. |
static long |
parseLong(String s,
int radix)
Parses the string argument as a signed
long in the
radix specified by the second argument. |
static long |
parseUnsignedLong(String s)
Parses the string argument as an unsigned decimal
long. |
static long |
parseUnsignedLong(String s,
int radix)
Parses the string argument as an unsigned
long in the
radix specified by the second argument. |
static long |
remainderUnsigned(long dividend,
long divisor)
Returns the unsigned remainder from dividing the first argument
by the second where each argument and the result is interpreted
as an unsigned value.
|
static long |
reverse(long i)
Returns the value obtained by reversing the order of the bits in the
two's complement binary representation of the specified
long
value. |
static long |
reverseBytes(long i)
Returns the value obtained by reversing the order of the bytes in the
two's complement representation of the specified
long value. |
static long |
rotateLeft(long i,
int distance)
Returns the value obtained by rotating the two's complement binary
representation of the specified
long value left by the
specified number of bits. |
static long |
rotateRight(long i,
int distance)
Returns the value obtained by rotating the two's complement binary
representation of the specified
long value right by the
specified number of bits. |
short |
shortValue()
Returns the value of this
Long as a short after
a narrowing primitive conversion. |
static int |
signum(long i)
Returns the signum function of the specified
long value. |
static long |
sum(long a,
long b)
Adds two
long values together as per the + operator. |
static String |
toBinaryString(long i)
Returns a string representation of the
long
argument as an unsigned integer in base 2. |
static String |
toHexString(long i)
Returns a string representation of the
long
argument as an unsigned integer in base 16. |
static String |
toOctalString(long i)
Returns a string representation of the
long
argument as an unsigned integer in base 8. |
String |
toString()
Returns a
String object representing this
Long's value. |
static String |
toString(long i)
Returns a
String object representing the specified
long. |
static String |
toString(long i,
int radix)
Returns a string representation of the first argument in the
radix specified by the second argument.
|
static String |
toUnsignedString(long i)
Returns a string representation of the argument as an unsigned
decimal value.
|
static String |
toUnsignedString(long i,
int radix)
Returns a string representation of the first argument as an
unsigned integer value in the radix specified by the second
argument.
|
static Long |
valueOf(long l)
Returns a
Long instance representing the specified
long value. |
static Long |
valueOf(String s)
Returns a
Long object holding the value
of the specified String. |
static Long |
valueOf(String s,
int radix)
Returns a
Long object holding the value
extracted from the specified String when parsed
with the radix given by the second argument. |
@Native public static final long MIN_VALUE
long can
have, -263.@Native public static final long MAX_VALUE
long can
have, 263-1.public static final Class<Long> TYPE
Class instance representing the primitive type
long.@Native public static final int SIZE
long value in two's
complement binary form.public static final int BYTES
long value in two's
complement binary form.public Long(long value)
Long object that
represents the specified long argument.value - the value to be represented by the
Long object.public Long(String s) throws NumberFormatException
Long object that
represents the long value indicated by the
String parameter. The string is converted to a
long value in exactly the manner used by the
parseLong method for radix 10.s - the String to be converted to a
Long.NumberFormatException - if the String does not
contain a parsable long.parseLong(java.lang.String, int)public static String toString(long i, int radix)
If the radix is smaller than Character.MIN_RADIX
or larger than Character.MAX_RADIX, then the radix
10 is used instead.
If the first argument is negative, the first element of the
result is the ASCII minus sign '-'
('\u002d'). If the first argument is not
negative, no sign character appears in the result.
The remaining characters of the result represent the magnitude
of the first argument. If the magnitude is zero, it is
represented by a single zero character '0'
('\u0030'); otherwise, the first character of
the representation of the magnitude will not be the zero
character. The following ASCII characters are used as digits:
0123456789abcdefghijklmnopqrstuvwxyz
These are '\u0030' through
'\u0039' and '\u0061' through
'\u007a'. If radix is
N, then the first N of these characters
are used as radix-N digits in the order shown. Thus,
the digits for hexadecimal (radix 16) are
0123456789abcdef. If uppercase letters are
desired, the String.toUpperCase() method may
be called on the result:
Long.toString(n, 16).toUpperCase()
i - a long to be converted to a string.radix - the radix to use in the string representation.Character.MAX_RADIX,
Character.MIN_RADIXpublic static String toUnsignedString(long i, int radix)
If the radix is smaller than Character.MIN_RADIX
or larger than Character.MAX_RADIX, then the radix
10 is used instead.
Note that since the first argument is treated as an unsigned value, no leading sign character is printed.
If the magnitude is zero, it is represented by a single zero
character '0' ('\u0030'); otherwise,
the first character of the representation of the magnitude will
not be the zero character.
The behavior of radixes and the characters used as digits
are the same as toString.
i - an integer to be converted to an unsigned string.radix - the radix to use in the string representation.toString(long, int)public static String toHexString(long i)
long
argument as an unsigned integer in base 16.
The unsigned long value is the argument plus
264 if the argument is negative; otherwise, it is
equal to the argument. This value is converted to a string of
ASCII digits in hexadecimal (base 16) with no extra
leading 0s.
The value of the argument can be recovered from the returned
string s by calling Long.parseUnsignedLong(s,
16).
If the unsigned magnitude is zero, it is represented by a
single zero character '0' ('\u0030');
otherwise, the first character of the representation of the
unsigned magnitude will not be the zero character. The
following characters are used as hexadecimal digits:
0123456789abcdef
These are the characters '\u0030' through
'\u0039' and '\u0061' through
'\u0066'. If uppercase letters are desired,
the String.toUpperCase() method may be called
on the result:
Long.toHexString(n).toUpperCase()
i - a long to be converted to a string.long
value represented by the argument in hexadecimal
(base 16).parseUnsignedLong(String, int),
toUnsignedString(long, int)public static String toOctalString(long i)
long
argument as an unsigned integer in base 8.
The unsigned long value is the argument plus
264 if the argument is negative; otherwise, it is
equal to the argument. This value is converted to a string of
ASCII digits in octal (base 8) with no extra leading
0s.
The value of the argument can be recovered from the returned
string s by calling Long.parseUnsignedLong(s,
8).
If the unsigned magnitude is zero, it is represented by a
single zero character '0' ('\u0030');
otherwise, the first character of the representation of the
unsigned magnitude will not be the zero character. The
following characters are used as octal digits:
01234567
These are the characters '\u0030' through
'\u0037'.i - a long to be converted to a string.long
value represented by the argument in octal (base 8).parseUnsignedLong(String, int),
toUnsignedString(long, int)public static String toBinaryString(long i)
long
argument as an unsigned integer in base 2.
The unsigned long value is the argument plus
264 if the argument is negative; otherwise, it is
equal to the argument. This value is converted to a string of
ASCII digits in binary (base 2) with no extra leading
0s.
The value of the argument can be recovered from the returned
string s by calling Long.parseUnsignedLong(s,
2).
If the unsigned magnitude is zero, it is represented by a
single zero character '0' ('\u0030');
otherwise, the first character of the representation of the
unsigned magnitude will not be the zero character. The
characters '0' ('\u0030') and '1' ('\u0031') are used as binary digits.
i - a long to be converted to a string.long
value represented by the argument in binary (base 2).parseUnsignedLong(String, int),
toUnsignedString(long, int)public static String toString(long i)
String object representing the specified
long. The argument is converted to signed decimal
representation and returned as a string, exactly as if the
argument and the radix 10 were given as arguments to the toString(long, int) method.i - a long to be converted.public static String toUnsignedString(long i)
toUnsignedString(long,
int) method.i - an integer to be converted to an unsigned string.toUnsignedString(long, int)public static long parseLong(String s, int radix) throws NumberFormatException
long in the
radix specified by the second argument. The characters in the
string must all be digits of the specified radix (as determined
by whether Character.digit(char, int) returns
a nonnegative value), except that the first character may be an
ASCII minus sign '-' ('\u002D') to
indicate a negative value or an ASCII plus sign '+'
('\u002B') to indicate a positive value. The
resulting long value is returned.
Note that neither the character L
('\u004C') nor l
('\u006C') is permitted to appear at the end
of the string as a type indicator, as would be permitted in
Java programming language source code - except that either
L or l may appear as a digit for a
radix greater than or equal to 22.
An exception of type NumberFormatException is
thrown if any of the following situations occurs:
null or is a string of
length zero.
radix is either smaller than Character.MIN_RADIX or larger than Character.MAX_RADIX.
'-' ('\u002d') or plus sign '+' ('\u002B') provided that the string is
longer than length 1.
long.
Examples:
parseLong("0", 10) returns 0L
parseLong("473", 10) returns 473L
parseLong("+42", 10) returns 42L
parseLong("-0", 10) returns 0L
parseLong("-FF", 16) returns -255L
parseLong("1100110", 2) returns 102L
parseLong("99", 8) throws a NumberFormatException
parseLong("Hazelnut", 10) throws a NumberFormatException
parseLong("Hazelnut", 36) returns 1356099454469L
s - the String containing the
long representation to be parsed.radix - the radix to be used while parsing s.long represented by the string argument in
the specified radix.NumberFormatException - if the string does not contain a
parsable long.public static long parseLong(String s) throws NumberFormatException
long.
The characters in the string must all be decimal digits, except
that the first character may be an ASCII minus sign '-'
(\u002D') to indicate a negative value or an
ASCII plus sign '+' ('\u002B') to
indicate a positive value. The resulting long value is
returned, exactly as if the argument and the radix 10
were given as arguments to the parseLong(java.lang.String, int) method.
Note that neither the character L
('\u004C') nor l
('\u006C') is permitted to appear at the end
of the string as a type indicator, as would be permitted in
Java programming language source code.
s - a String containing the long
representation to be parsedlong represented by the argument in
decimal.NumberFormatException - if the string does not contain a
parsable long.public static long parseUnsignedLong(String s, int radix) throws NumberFormatException
long in the
radix specified by the second argument. An unsigned integer
maps the values usually associated with negative numbers to
positive numbers larger than MAX_VALUE.
The characters in the string must all be digits of the
specified radix (as determined by whether Character.digit(char, int) returns a nonnegative
value), except that the first character may be an ASCII plus
sign '+' ('\u002B'). The resulting
integer value is returned.
An exception of type NumberFormatException is
thrown if any of the following situations occurs:
null or is a string of
length zero.
Character.MIN_RADIX or
larger than Character.MAX_RADIX.
'+' ('\u002B') provided that the
string is longer than length 1.
long, 264-1.
s - the String containing the unsigned integer
representation to be parsedradix - the radix to be used while parsing s.long represented by the string
argument in the specified radix.NumberFormatException - if the String
does not contain a parsable long.public static long parseUnsignedLong(String s) throws NumberFormatException
long. The
characters in the string must all be decimal digits, except
that the first character may be an an ASCII plus sign '+' ('\u002B'). The resulting integer value
is returned, exactly as if the argument and the radix 10 were
given as arguments to the parseUnsignedLong(java.lang.String, int) method.s - a String containing the unsigned long
representation to be parsedlong value represented by the decimal string argumentNumberFormatException - if the string does not contain a
parsable unsigned integer.public static Long valueOf(String s, int radix) throws NumberFormatException
Long object holding the value
extracted from the specified String when parsed
with the radix given by the second argument. The first
argument is interpreted as representing a signed
long in the radix specified by the second
argument, exactly as if the arguments were given to the parseLong(java.lang.String, int) method. The result is a
Long object that represents the long
value specified by the string.
In other words, this method returns a Long object equal
to the value of:
new Long(Long.parseLong(s, radix))
s - the string to be parsedradix - the radix to be used in interpreting sLong object holding the value
represented by the string argument in the specified
radix.NumberFormatException - If the String does not
contain a parsable long.public static Long valueOf(String s) throws NumberFormatException
Long object holding the value
of the specified String. The argument is
interpreted as representing a signed decimal long,
exactly as if the argument were given to the parseLong(java.lang.String) method. The result is a
Long object that represents the integer value
specified by the string.
In other words, this method returns a Long object
equal to the value of:
new Long(Long.parseLong(s))
s - the string to be parsed.Long object holding the value
represented by the string argument.NumberFormatException - If the string cannot be parsed
as a long.public static Long valueOf(long l)
Long instance representing the specified
long value.
If a new Long instance is not required, this method
should generally be used in preference to the constructor
Long(long), as this method is likely to yield
significantly better space and time performance by caching
frequently requested values.
Note that unlike the corresponding method in the Integer class, this method
is not required to cache values within a particular
range.l - a long value.Long instance representing l.public static Long decode(String nm) throws NumberFormatException
String into a Long.
Accepts decimal, hexadecimal, and octal numbers given by the
following grammar:
DecimalNumeral, HexDigits, and OctalDigits are as defined in section 3.10.1 of The Java™ Language Specification, except that underscores are not accepted between digits.
- DecodableString:
- Signopt DecimalNumeral
- Signopt
0xHexDigits- Signopt
0XHexDigits- Signopt
#HexDigits- Signopt
0OctalDigits- Sign:
-+
The sequence of characters following an optional
sign and/or radix specifier ("0x", "0X",
"#", or leading zero) is parsed as by the Long.parseLong method with the indicated radix (10, 16, or 8).
This sequence of characters must represent a positive value or
a NumberFormatException will be thrown. The result is
negated if first character of the specified String is
the minus sign. No whitespace characters are permitted in the
String.
nm - the String to decode.Long object holding the long
value represented by nmNumberFormatException - if the String does not
contain a parsable long.parseLong(String, int)public byte byteValue()
Long as a byte after
a narrowing primitive conversion.public short shortValue()
Long as a short after
a narrowing primitive conversion.shortValue in class Numbershort.public int intValue()
Long as an int after
a narrowing primitive conversion.public long longValue()
Long as a
long value.public float floatValue()
Long as a float after
a widening primitive conversion.floatValue in class Numberfloat.public double doubleValue()
Long as a double
after a widening primitive conversion.doubleValue in class Numberdouble.public String toString()
String object representing this
Long's value. The value is converted to signed
decimal representation and returned as a string, exactly as if
the long value were given as an argument to the
toString(long) method.public int hashCode()
Long. The result is
the exclusive OR of the two halves of the primitive
long value held by this Long
object. That is, the hashcode is the value of the expression:
(int)(this.longValue()^(this.longValue()>>>32))
hashCode in class ObjectObject.equals(java.lang.Object),
System.identityHashCode(java.lang.Object)public static int hashCode(long value)
long value; compatible with
Long.hashCode().value - the value to hashlong value.public boolean equals(Object obj)
true if and only if the argument is not
null and is a Long object that
contains the same long value as this object.equals in class Objectobj - the object to compare with.true if the objects are the same;
false otherwise.Object.hashCode(),
HashMappublic static Long getLong(String nm)
long value of the system property
with the specified name.
The first argument is treated as the name of a system
property. System properties are accessible through the System.getProperty(java.lang.String) method. The
string value of this property is then interpreted as a long value using the grammar supported by decode
and a Long object representing this value is returned.
If there is no property with the specified name, if the
specified name is empty or null, or if the property
does not have the correct numeric format, then null is
returned.
In other words, this method returns a Long object
equal to the value of:
getLong(nm, null)
nm - property name.Long value of the property.SecurityException - for the same reasons as
System.getPropertySystem.getProperty(java.lang.String),
System.getProperty(java.lang.String, java.lang.String)public static Long getLong(String nm, long val)
long value of the system property
with the specified name.
The first argument is treated as the name of a system
property. System properties are accessible through the System.getProperty(java.lang.String) method. The
string value of this property is then interpreted as a long value using the grammar supported by decode
and a Long object representing this value is returned.
The second argument is the default value. A Long object
that represents the value of the second argument is returned if there
is no property of the specified name, if the property does not have
the correct numeric format, or if the specified name is empty or null.
In other words, this method returns a Long object equal
to the value of:
getLong(nm, new Long(val))
but in practice it may be implemented in a manner such as:
to avoid the unnecessary allocation of aLong result = getLong(nm, null); return (result == null) ? new Long(val) : result;
Long object when
the default value is not needed.nm - property name.val - default value.Long value of the property.SecurityException - for the same reasons as
System.getPropertySystem.getProperty(java.lang.String),
System.getProperty(java.lang.String, java.lang.String)public static Long getLong(String nm, Long val)
long value of the system property with
the specified name. The first argument is treated as the name
of a system property. System properties are accessible through
the System.getProperty(java.lang.String)
method. The string value of this property is then interpreted
as a long value, as per the
decode method, and a Long object
representing this value is returned; in summary:
0x or the ASCII character #, not followed by
a minus sign, then the rest of it is parsed as a hexadecimal integer
exactly as for the method valueOf(java.lang.String, int)
with radix 16.
0 followed by another character, it is parsed as
an octal integer exactly as by the method valueOf(java.lang.String, int) with radix 8.
valueOf(java.lang.String, int) with radix 10.
Note that, in every case, neither L
('\u004C') nor l
('\u006C') is permitted to appear at the end
of the property value as a type indicator, as would be
permitted in Java programming language source code.
The second argument is the default value. The default value is
returned if there is no property of the specified name, if the
property does not have the correct numeric format, or if the
specified name is empty or null.
nm - property name.val - default value.Long value of the property.SecurityException - for the same reasons as
System.getPropertySystem.getProperty(java.lang.String),
System.getProperty(java.lang.String, java.lang.String)public int compareTo(Long anotherLong)
Long objects numerically.compareTo in interface Comparable<Long>anotherLong - the Long to be compared.0 if this Long is
equal to the argument Long; a value less than
0 if this Long is numerically less
than the argument Long; and a value greater
than 0 if this Long is numerically
greater than the argument Long (signed
comparison).public static int compare(long x,
long y)
long values numerically.
The value returned is identical to what would be returned by:
Long.valueOf(x).compareTo(Long.valueOf(y))
x - the first long to comparey - the second long to compare0 if x == y;
a value less than 0 if x < y; and
a value greater than 0 if x > ypublic static int compareUnsigned(long x,
long y)
long values numerically treating the values
as unsigned.x - the first long to comparey - the second long to compare0 if x == y; a value less
than 0 if x < y as unsigned values; and
a value greater than 0 if x > y as
unsigned valuespublic static long divideUnsigned(long dividend,
long divisor)
Note that in two's complement arithmetic, the three other
basic arithmetic operations of add, subtract, and multiply are
bit-wise identical if the two operands are regarded as both
being signed or both being unsigned. Therefore separate addUnsigned, etc. methods are not provided.
dividend - the value to be divideddivisor - the value doing the dividingremainderUnsigned(long, long)public static long remainderUnsigned(long dividend,
long divisor)
dividend - the value to be divideddivisor - the value doing the dividingdivideUnsigned(long, long)public static long highestOneBit(long i)
long value with at most a single one-bit, in the
position of the highest-order ("leftmost") one-bit in the specified
long value. Returns zero if the specified value has no
one-bits in its two's complement binary representation, that is, if it
is equal to zero.i - the value whose highest one bit is to be computedlong value with a single one-bit, in the position
of the highest-order one-bit in the specified value, or zero if
the specified value is itself equal to zero.public static long lowestOneBit(long i)
long value with at most a single one-bit, in the
position of the lowest-order ("rightmost") one-bit in the specified
long value. Returns zero if the specified value has no
one-bits in its two's complement binary representation, that is, if it
is equal to zero.i - the value whose lowest one bit is to be computedlong value with a single one-bit, in the position
of the lowest-order one-bit in the specified value, or zero if
the specified value is itself equal to zero.public static int numberOfLeadingZeros(long i)
long value. Returns 64 if the
specified value has no one-bits in its two's complement representation,
in other words if it is equal to zero.
Note that this method is closely related to the logarithm base 2.
For all positive long values x:
63 - numberOfLeadingZeros(x)
64 - numberOfLeadingZeros(x - 1)
i - the value whose number of leading zeros is to be computedlong value, or 64 if the value
is equal to zero.public static int numberOfTrailingZeros(long i)
long value. Returns 64 if the specified value has no
one-bits in its two's complement representation, in other words if it is
equal to zero.i - the value whose number of trailing zeros is to be computedlong value, or 64 if the value is equal
to zero.public static int bitCount(long i)
long value. This function is
sometimes referred to as the population count.i - the value whose bits are to be countedlong value.public static long rotateLeft(long i,
int distance)
long value left by the
specified number of bits. (Bits shifted out of the left hand, or
high-order, side reenter on the right, or low-order.)
Note that left rotation with a negative distance is equivalent to
right rotation: rotateLeft(val, -distance) == rotateRight(val,
distance). Note also that rotation by any multiple of 64 is a
no-op, so all but the last six bits of the rotation distance can be
ignored, even if the distance is negative: rotateLeft(val,
distance) == rotateLeft(val, distance & 0x3F).
i - the value whose bits are to be rotated leftdistance - the number of bit positions to rotate leftlong value left by the
specified number of bits.public static long rotateRight(long i,
int distance)
long value right by the
specified number of bits. (Bits shifted out of the right hand, or
low-order, side reenter on the left, or high-order.)
Note that right rotation with a negative distance is equivalent to
left rotation: rotateRight(val, -distance) == rotateLeft(val,
distance). Note also that rotation by any multiple of 64 is a
no-op, so all but the last six bits of the rotation distance can be
ignored, even if the distance is negative: rotateRight(val,
distance) == rotateRight(val, distance & 0x3F).
i - the value whose bits are to be rotated rightdistance - the number of bit positions to rotate rightlong value right by the
specified number of bits.public static long reverse(long i)
long
value.i - the value to be reversedlong value.public static int signum(long i)
long value. (The
return value is -1 if the specified value is negative; 0 if the
specified value is zero; and 1 if the specified value is positive.)i - the value whose signum is to be computedlong value.public static long reverseBytes(long i)
long value.i - the value whose bytes are to be reversedlong value.public static long sum(long a,
long b)
long values together as per the + operator.a - the first operandb - the second operanda and bBinaryOperatorpublic static long max(long a,
long b)
long values
as if by calling Math.max.a - the first operandb - the second operanda and bBinaryOperatorpublic static long min(long a,
long b)
long values
as if by calling Math.min.a - the first operandb - the second operanda and bBinaryOperator Submit a bug or feature
For further API reference and developer documentation, see Java SE Documentation. That documentation contains more detailed, developer-targeted descriptions, with conceptual overviews, definitions of terms, workarounds, and working code examples.
Copyright © 1993, 2016, Oracle and/or its affiliates. All rights reserved. Use is subject to license terms. Also see the documentation redistribution policy.