
IPMI { A Gentle Introdu
tion

with OpenIPMI

Corey Minyard <minyard�a
m.org>

Montavista Software

January 20, 2014

2

Prefa
e

This do
ument des
ribes IPMI in great detail; how it works and what it does and does not do. It starts

from the basi
s and moves into details. If you've heard about IPMI and want to �nd out more, this is the

do
ument for you. If you know something about IPMI but wish to �nd out more, you
an gloss over the

introdu
tory text and dive more into the details.

This do
ument also des
ribes OpenIPMI and how to use that library. A basi
 understanding of IPMI is

required to use OpenIPMI. However, OpenIPMI hides the details of IPMI like messages and data formats;

if you do not
are about those things you
an skip those se
tions.

IPMI stands for Intelligent Platform Management Interfa
e. Not a great name, but not too bad. It is

intelligent (in a manner of speaking, anyway) be
ause it requires a pro
essor besides the main pro
essor that

is always on and maintaining the system. In most systems with IPMI, you
an monitor and maintain the

system even when the main pro
essor is turned o� (though the system must generally be plugged in).

Platform means that IPMI deals with the platform, not the software running on the platform. Software

management is mostly out of the s
ope of IPMI

Management Interfa
e means that the management system uses IPMI to talk to the system to monitor

and perform maintenan
e on the platform. IPMI is mostly about monitoring, though it does have a few minor

management fun
tions. However, many
ompanies and organizations have built more extensive management

ontrol using OEM extensions to IPMI.

The IPMI spe
i�
ation[2℄, of
ourse, has the details, but they
an be obs
ure. This do
ument hopefully

provides an easier to understand introdu
tion to IPMI.

i

ii PREFACE

Contents

Prefa
e i

A
ronyms ix

1 Management, Systems, and IPMI 1

1.1 IPMI Implementation . 1

1.2 System Types . 4

2 OpenIPMI 9

2.1 The User View . 9

2.2 OpenIPMI Con
epts . 10

2.2.1 Event-Driven Systems . 10

2.2.2 The OS Handler . 12

2.2.3 Error Handling . 14

2.2.4 Lo
king . 14

2.2.5 OpenIPMI Obje
ts . 18

2.2.6 Callba
ks . 20

2.3 OpenIPMI In
lude Files . 21

2.3.1 Files the normal user deals with . 22

2.3.2 Files dealing with messaging interfa
es . 22

2.3.3 File for system
on�guration . 22

2.3.4 Semi-internal in
ludes . 22

2.4 Starting Up OpenIPMI . 23

2.5 Creating OpenIPMI Domains . 23

2.5.1 Domain Conne
tions . 23

2.5.2 Domain Fully Up . 24

2.5.3 Redundan
y in Domain Conne
tions . 24

2.5.4 Domain Options . 25

3 Use Cases 27

3.1 Simple Hardware Monitoring . 27

3.2 Redundant Systems . 28

3.3 Monitoring Clusters of Systems . 28

3.4 Bus Systems . 30

iii

iv CONTENTS

4 IPMI Interfa
es 31

4.1 OpenIPMI Generi
 Interfa
e . 31

4.2 System Interfa
es . 31

4.2.1 Server Management Interfa
e Chip (SMIC) . 32

4.2.2 Keyboard Style Controller (KCS) . 32

4.2.3 Blo
k Transfer (BT) . 32

4.2.4 SMBus System InterFa
e (SSIF) . 32

4.2.5 The OpenIPMI Driver . 32

4.2.6 The OpenIPMI System Interfa
e . 38

4.3 Channels . 38

4.4 Bridging . 39

4.4.1 Channels . 39

4.4.2 Sending Bridged Messages . 41

4.4.3 Message Tra
king . 42

4.4.4 Re
eiving Asyn
hronous Messages on the System Interfa
e 42

4.4.5 System Interfa
e to IPMB Bridging . 43

4.4.6 LAN to IPMB Bridging . 43

4.4.7 System Interfa
e to LAN . 48

4.5 IPMB . 48

4.5.1 IPMB Broad
ast . 48

4.5.2 OpenIPMI and IPMB . 49

4.6 ICMB . 49

4.7 SMBus . 49

4.8 Session Support . 49

4.9 LAN . 49

4.9.1 LAN Con�guration . 49

4.9.2 ARP
ontrol . 55

4.9.3 LAN Messaging . 55

4.9.4 OpenIPMI LAN Con�guration . 55

4.9.5 The OpenIPMI LAN Interfa
e . 56

4.10 Serial . 57

4.10.1 Serial Con�guration . 58

4.10.2 Dire
t Serial . 58

4.10.3 Terminal Mode . 58

4.10.4 Serial over PPP . 58

4.11 User Management . 58

4.11.1 User management in OpenIPMI . 59

4.11.2 User management
ommands . 60

4.12 Channel Con�guration . 63

4.12.1 Channel handling in OpenIPMI . 64

4.12.2 Channel handling
ommands . 67

4.12.3 Channel Authenti
ation . 69

4.13 The PEF Table and SNMP Traps . 69

4.13.1 PEF and Alerting Commands . 69

4.13.2 The PEF Postpone Timer . 71

4.13.3 PEF Con�guration Parameters . 71

CONTENTS v

4.13.4 OpenIPMI and SNMP Traps . 80

4.13.5 The Alert Immediate Command . 82

4.14 OpenIPMI Addressing . 82

5 The MC 85

5.1 OpenIPMI and MCs . 85

5.1.1 Dis
overing MCs . 85

5.1.2 MC A
tive . 86

5.1.3 MC Information . 86

5.1.4 MC Reset . 87

5.1.5 Global Event Enables . 88

6 IPMI Commands 89

6.1 Sending Commands in the OpenIPMI Library . 92

7 SDR Repositories 93

7.1 SDR Reservations . 93

7.2 The Main SDR Repository . 93

7.2.1 Modal and Non-Modal SDR Repositories . 93

7.2.2 Commands for Main SDR Repositories . 93

7.3 Devi
e SDR Repositories . 93

7.3.1 Dynami
 Devi
e SDR Repositories . 94

7.3.2 Commands for Devi
e SDR Repositories . 94

7.4 Re
ords in an SDR Repository . 94

7.5 Dealing with SDR Repositories in OpenIPMI . 94

7.5.1 Getting an SDR Repository . 94

7.5.2 SDR Repository Information . 96

7.5.3 Handling a SDR Repository . 97

8 Entities 99

8.1 Dis
overing Entities . 101

8.2 Entity Containment and OpenIPMI . 102

8.3 Entity Presen
e . 103

8.3.1 Entity Presen
e in OpenIPMI . 103

8.4 Entity Types and Info . 104

8.5 Sensor and Controls in an Entity . 106

8.6 Entity Hot-Swap . 109

8.6.1 Hot-Swap State . 109

8.6.2 Hot-Swap Events . 110

8.6.3 Hot-Swap A
tivation and Dea
tivation . 112

8.6.4 Auto A
tivation and Dea
tivation . 113

8.7 FRU Data . 113

8.7.1 Reading FRU Data . 113

8.8 Entity SDRs . 118

vi CONTENTS

9 Sensors 119

9.1 Sensor Events . 119

9.2 Rearm . 119

9.3 Threshold Sensors . 119

9.3.1 Threshold Sensor Events . 120

9.3.2 Hysteresis . 120

9.4 Dis
rete Sensors . 122

9.5 IPMI Commands Dealing with Sensors . 122

9.6 Using Sensors in OpenIPMI . 122

9.6.1 General Information About Sensors in OpenIPMI . 131

9.6.2 Threshold Sensors in OpenIPMI . 137

9.6.3 Dis
rete Sensors in OpenIPMI . 146

9.7 Sensor SDRs . 147

10 Controls and Mis
ellany 149

10.1 Controls . 149

10.1.1 Control Name . 150

10.1.2 Controls and Events . 151

10.1.3 Basi
 Type Controls . 151

10.1.4 Light . 152

10.1.5 Display . 155

10.1.6 Identi�er . 155

10.1.7 Chassis Controls . 155

10.2 Wat
hdog Timer . 155

10.3 Dire
t I

2

C A

ess . 156

11 Events 157

11.1 Event Format . 157

11.2 Event Data Information for Spe
i�
 Events . 157

11.3 MC Event Enables . 158

11.4 Coordinating Multiple Users of an SEL . 158

12 Other OpenIPMI Con
erns 159

12.1 When Operations Happen . 159

A Spe
ial IPMI Formats 161

A.1 IPMI strings . 161

A.1.1 OpenIPMI and IPMI strings . 161

B The Perl Interfa
e 163

C Comparison with SNMP 167

D Comparison with HPI 169

CONTENTS vii

E ATCA 171

E.1 Management Redundan
y in ATCA . 171

E.2 Hot Swap in ATCA . 171

E.3 ATCA FRU Data . 172

E.4 Spe
ial ATCA Sensors . 172

E.5 Spe
ial ATCA Shelf Controls . 172

E.6 Spe
ial ATCA IPMC Controls . 172

E.7 Chassis Controls and ATCA . 173

E.8 AMC . 173

F Motorola MXP 175

G Intel Servers 177

H Sample Program Showing Basi
 Operations 179

I Sample Program Showing Event Setup 191

J Command Re
eiver Program 207

K Conne
tion Handling Interfa
e (ipmi
onn.h) 211

L OS Handler Interfa
e (os handler.h) 225

viii CONTENTS

A
ronyms

ATCA Advan
edTCA

AMC Advan
edMC

IPMI Intelligent Platform Management Interfa
e

IPMC Intelligent Platform Management Controller (FIXME - wrong)

OEM Original Equipment Manufa
turer

SDR Sensor Devi
e Re
ord

FRU Field Repla
able Unit

KCS Keyboard Style Controller

BT Blo
k Transfer

SMIC Server Management Interfa
e Chip

SSIF SMBus System InterFa
e

MC Management Controller

BMC Baseboard Management Controller

I

2

C Inter Integrated Cir
uit

SNMP Simple Network Management Proto
ol

SPD Serial Presen
e Dete
t

HPI Hardware Platform Interfa
e

LUN Logi
al Unit Number

NetFN Network FuN
tion

IPMB Intelligent Platform Management Bus

EEPROM Ele
troni
ally Erasable Programmable Read Only Memory

ix

x ACRONYMS

LAN Lo
al Area Network

SEL System Event Log

PPP Point to Point Proto
ol

RMCP Remote Management Control Proto
ol

IP Internet Proto
ol

UDP User Datagram Proto
ol

MD2 Message Digest 2

MD5 Message Digest 5

PDU Proto
ol Data Unit In SNMP, this is a pa
ket holding an SNMP operation.

PEF Platform Event Filter

MAC Media A

ess Code?

ARP Address Resolution Proto
ol

GUID Globally Unique IDenti�er

NMI Non Maskable Interrupt

EAR Entity Asso
iation Re
ord

DREAR Devi
e Relative Entity Asso
iation Re
ord

DLR Devi
e Lo
ator Re
ord

MCDLR Management Controller Devi
e Lo
ator Re
ord

FRUDLR Field Repla
able Unit Devi
e Lo
ator Re
ord

GDLR Generi
 Devi
e Lo
ator Re
ord

ICMB Intelligent Chassis Management Bus

PET Platform Event Trap

DMI ?

C h a p t e r 1

Management, Systems, and IPMI

Management will mean di�erent things to di�erent industries. In simple server systems, a management

system may only deal with
ontrolling power on a few servers and making sure they don't get too hot. In a

tele
om system, management systems generally
ontrol every aspe
t of the system, in
luding startup of all

parts of the system, full monitoring of all
omponents of the system, dete
tion and re
overy from software

and hardware errors, basi

on�guration of the system, and a host of other things. IPMI obviously only

plays one role in this, but it is a role that must be played. In the past, the monitoring and management of

hardware has been done with lots of proprietary interfa
es. IPMI standardizes this interfa
e.

Figure 1.1 shows a management system and the things it manages. IPMI �ts mostly within the \Hard-

ware" box, although there may be other hardware interfa
es the management system must manage. The

management system ties into all elements of the system and makes global de
isions based upon inputs from

all parts of the systems. For instan
e, a server may be overheating or have a low voltage. The management

system will be informed of this through the hardware interfa
es. It may
hoose to move the fun
tion of that

server to another server and bring that server down so it may be repaired. If no other server is available to

take over the operation, the management system may look at the severity of the problem, predi
t how long

the system may survive, and let it
ontinue. These types of de
isions are
alled \poli
y".

In all
ases these events are logged to permanent storage. An operator is informed of things that need

human attention. The operator may also issue manual operations to
on�gure and override the management

system as ne
essary.

The operations the management system performs on the system are
alled \Commands" in this pi
ture.

Commands have \Responses" from the system. Asyn
hronous noti�
ations from the system to the manage-

ment system are
alled \Events". The system never sends
ommands to the management system, and the

system may perform lo
al operations on its own (su
h as
ontrolling fan speed) but never perform global

operations unless pre-
on�gured by the management system to do so. So the system may perform limited

poli
y de
isions, but the management system is �rmly in
ontrol of poli
y.

1.1 IPMI Implementation

The Management Controller (MC) sits at the
enter of an IPMI system, providing the \intelligen
e" of IPMI.

It is suppose to be always on when the system is plugged in, even if the system is o�. The management

system
ommuni
ates with the management
ontroller; the management
ontroller provides a normalized

1

2 CHAPTER 1. MANAGEMENT, SYSTEMS, AND IPMI

Figure 1.1: Management Interfa
es

1.1. IPMI IMPLEMENTATION 3

Figure 1.2: Parts of a Management Controller

interfa
e to all the sensors, events, and Field Repla
able Unit (FRU) data in the system.

Figure 1.2 shows the various parts of the management
ontroller. Note that most everything is optional;

depending on what a management
ontroller does it may only need some things. The Baseboard Management

Controller (BMC) is required to have a lot of the items.

The MC Pro
essor is generally a small, inexpensive, but reliable mi
ro
ontroller. Several
ompanies sell

pro
essors that have a lot of the IPMI
omponents already implemented and software to help a
ompany

implement IPMI on their system.

The system interfa
e provides a way for the main pro
essor to
ommuni
ate with the management

ontroller. Some systems do not have this
onne
tion and only use external interfa
es and/or Intelligent

Platform Management Bus (IPMB) interfa
es. System interfa
es in
lude SMIC, KCS, and BT interfa
es.

An MC (generally the BMC) may have other interfa
es to an external management system through serial

ports or Ethernet.

Generally, sensors sit on an I

2

C bus sin
e many o�-the-shelf sensors
an sit dire
tly on the bus with

no extra logi
. Wherever the sensors sit, the MC provides a more abstra
t interfa
e to the sensors so that

the management system does not have to know the details of how to talk to the sensor. Sensors may be

traditional analog sensors like temperature and voltage. But they may report other things, too, like the

4 CHAPTER 1. MANAGEMENT, SYSTEMS, AND IPMI

urrent BIOS state, whether a devi
e is present or not, or other things like that.

FRU data is often stored in I

2

C EEPROMs on the I

2

C bus. FRU data is information about a Field

Repla
able Unit. This in
ludes things like the manufa
turer, the serial number, date of manufa
ture, et
. A

system generally has information about the
hassis and information about ea
h �eld repla
eable unit it has.

Field repla
eable units may in
lude power supplies, DIMMs (memory devi
es), plug-in-boards, or a host of

other things.

Conne
tions to other MCs may be done through an IPMB. On an IPMB, ea
h MC is a peer and they

ommuni
ate dire
tly through messages.

In addition to IPMB, IPMI systems
an be inter
onne
ted through an Intelligent Chassis Management

Bus. This is a serial bus that runs between
hassis.

A management
ontroller may be able to
ontrol various aspe
ts of the
hassis, su
h as power and reset.

It may also have a wat
hdog timer for the main pro
essor.

The Sensor Devi
e Re
ord (SDR) repositories store information about the sensors and
omponents of

the system. The BMC must have a main SDR repository; this repository is writable. There may only be

one main SDR repository in the system. Any MC may have a devi
e SDR repository; these are a read-only

repositories.

When a problem or
hange in the system is dete
ted, the MC handling that sensor may issue an event.

This allows management software to dete
t these problems or
hanges without having to poll every sensor

onstantly. The events are stored in an event log. Events may be forwarded through the system interfa
e or

other interfa
es, but they are always stored in the event log. The BMC must have an event log; generally

the other management
ontrollers forward their events to the BMC.

1.2 System Types

Although any arbitrary type of system may use IPMI for platform management, systems generally fall into

two
ategories: server systems and bus systems.

Figure 1.3 shows a typi
al server system. It is a single stand-alone box that is a single
omputer. It

has a BMC that is the main management
ontroller in the system. It
ontrols a number of sensors. In this

example, the power supply also has a MC with it's own sensors.

A BMC
an have several
onne
tions to managing systems. It may have a system interfa
e
onne
tion to

the main pro
essor. It may share an interfa
e to the ethernet
hip so the system may be managed through

the LAN when the main pro
essor is not working. Systems
an have serial port
onne
tions. They
an even

have
onne
tions to modems where they
an dial up a management system or page an operator when they

dete
t a problem, or be dialed into by a management system.

Figure 1.4 shows a typi
al bus system. The word \bus" is perhaps a bit misleading; these types of

systems used to have busses (like CPCI and VME) but re
ently have tended to not have big busses and use

networking for inter
onne
t (like PICMG 2.16 and ATCA). These systems generally
ontain a number of

pro
essors on pluggable boards often
alled Single Board Computers (SBCs) or blades. One or more power

supplies power the whole system. The boards and power supplies
an be hot-pluggable.

These systems generally have one or two boards that manage the system; this
an be on a standard SBC,

on another spe
ial purpose blade (like a blade used as a network swit
h), or on a standalone board with this

purpose. The shelf management
ontroller(s) generally a
t as the BMC in the system; they will have the

event log and the main SDRs in the system. A system with two shelf
ontrollers will generally allow the

system to be managed even if one of the shelf
ontrollers fails.

1.2. SYSTEM TYPES 5

Figure 1.3: A typi
al server system

6 CHAPTER 1. MANAGEMENT, SYSTEMS, AND IPMI

Figure 1.4: A typi
al bus system

1.2. SYSTEM TYPES 7

Bus systems generally use one or more IPMBs (a sister standard to IPMI) to inter
onne
t the various

omponents for management. IPMB is a modi�ed I

2

C interfa
e; it provides for a somewhat slow but simple

ommuni
ation bus.

The boards
an generally be individually power
ontrolled, so even though a board is plugged into the

system it may be turned o�. The shelf managment
ontroller may implement some poli
y, su
h as fan

ontrols or auto-powering up boards, but is generally used as a
onduit for an external management system

to
ontrol the parts of the system.

Individal SBCs vary on whether the lo
al Management Controller is
onne
ted to the mi
ropro
essor on

an SBC. Some are, and some aren't. This
onne
tion has some limited usefulness if the software on the SBC

wishes to obtain lo
al information from the IPMI system or store logs in the IPMI event log.

These types of systems are used to a
hieve high density in pla
es with expensive real-estate, like a tel
o

entral oÆ
e. As you might imagine, you
an pa
k a lot of pro
essing power into a small spa
e with a system

like this. Sin
e they are generally designed for hot-swap, and
an have I/O
ome out the ba
k of the system

on separate
ards; it makes mainenan
e easier.

8 CHAPTER 1. MANAGEMENT, SYSTEMS, AND IPMI

C h a p t e r 2

OpenIPMI

So now we've got a BMC, MCs, and things like that. But how are you expe
ted to use raw IPMI?

The �rst things you must do, of
ourse, is
onne
t to the BMC. If it's a dire
t SMI
onne
tion (A SMIC,

KCS, or BT interfa
e, or perhaps a non-standard serial interfa
e), you just open the driver on the operating

system and start messaging. If it's a LAN-type
onne
tion, you have to go through an authenti
ation

sequen
e. One you have a
onne
tion to the BMC, things are pretty mu
h the same no matter what

interfa
e you have. There are a few messaging for doing spe
ial
ontrols on a LAN interfa
e, but they don't

generally matter to the user.

On
e the
onne
tion to the BMC is up, the user should query to see what
hannels the BMC supports.

For 1.5 and later, it gets this from a
ommand. For 1.0, it gets it from the main SDR repository.

On
e you are
onne
ted, you should s
an the SDRs in the main SDR repository for any entities and

sensors. Sensors and entities may also be in the devi
e SDR repository, whi
h should be s
anned next. This

allows the user to dis
over the sensors in the system. Note that the sensors may point to entities that don't

have a entry in the SDR that de�nes them, those entities need to be handled when they are dete
ted.

After this point in time, the interfa
e
ould be deemed to be \up". However, there's still more to do.

If the interfa
e supports an event queue, the user will have to poll it (if the driver doesn't deliver them

asyn
hronously, that is). If the interfa
e doesn't support an event queue the user should periodi
ally s
an

the system event log for new events. (Note that even if it does support an event queue, the user should still

poll the system event log in
ase the event queue missed any events
oming in.)

Also, the user should start s
anning the IPMB bus with broad
ast get devi
e id
ommands to dete
t any

MCs on the bus.

This is what the OpenIPMI library does for you. Beyond this, it also represents the sensors,
ontrols,

and entities in a ni
e OO fashion, and it handles the details of addressing, message routing, and other things

you don't really
are about. It lets you get right at the sensors and entities.

2.1 The User View

A bun
h of a
ronyms have just been introdu
ed, along with a lot of vague
on
epts, and some des
ription

about how to use IPMI. The ni
e thing is that the user of OpenIPMI doesn't really have to know about all

these things.

9

10 CHAPTER 2. OPENIPMI

From the user's point of view, the entity provides the
entral framework for sensors and
ontrols. Sensors

monitor entities. Entities may be present or absent. When you
onne
t to an interfa
e, OpenIPMI takes

are of dete
ting the entities in the system and reporting them to you. You may register to be told when

entities are added or removed from the lo
al database. Note that an entity may be in the SDRs but not

physi
ally present in the system; the reporting from OpenIPMI only gives the existan
e in the SDRs, not

physi
al presen
e in the system. Physi
al presen
e it handled through a separate interfa
e.

The user must know about two other OpenIPMI
on
epts:
onne
tions and domains. A
onne
tion

provides the interfa
e to the IPMI system. In essen
e, it is the BMC
onne
tion. You must allo
ate one or

more
onne
tions and
reate a domain with them. OpenIPMI supports multiple
onne
tions to a domain in

some
ases, but
urrently it requires some OEM support for this. A domain represents a set of devi
es on a

bus (like IPMB) whose entities will be unique. For instan
e, a
hassis with a lot of
ards plugged in
ould

be a domain, ea
h
ard
ould be an entity and then
reate it's own sub-entities, but they will be designed

so the entity id's don't
ollide.

OpenIPMI will automati
ally manage the
onne
tions, a
tivating and dea
tating the proper
onne
tions

(if the
onne
tions support that), dete
ting failures and swit
hing over, et
.

Though the user doesn't have know the inner details of IPMI addressing and messaging, they do need

to know about entities and sensors. OpenIPMI mainly fo
uses on representing the entities and sensors in

onvenient ways. The user still needs to understand the
apabilities of sensors, how the sensors advertise

those
apabilities, and the things that
an be done to the sensors.

You may register with an entity to be told when its physi
al presen
e in the system
hanges. Some

devi
es (like power supplies) are �eld-repla
eable while the system is running; this type of devi
e is
alled a

hot-swappable FRU. They may have sensors that monitor them, but those sensors may not be a
tive if the

devi
e is not physi
ally present in the system.

Sensors and
ontrols are also automati
ally dete
ted and reported. This is done through entities; you

register with an entity to be told when a sensor or
ontrol has been added or removed.

2.2 OpenIPMI Con
epts

OpenIPMI is an event-driven library that is designed to be relatively operating system independent. If you

have written
ontrol systems or things like that in the past, you will be quite familiar with event-driven

systems and may skip to the next se
tion. If not, you want to read this. Event-driven systems may seem a

little unusual, but they are a

epted pra
ti
e and by far the best way to build
ontrol systems.

2.2.1 Event-Driven Systems

In an event-driven system, you never stop and wait for something to happen. If you are not used to this,

you are probably used to writing
ode like this:

while (true) {

wait_for_input();

perform_op1();

wait_for_op1_results();

perform_op2();

}

2.2. OPENIPMI CONCEPTS 11

This is fairly straightforward, but it has some problems. What if another more important input
omes

in while you are waiting for the results of perform_op1()? Now the program will have to handle input in

wait_for_op1_results(), too, and somehow return and say something is happening. The loop will then

have to somehow handle multiple operations in progress. And this is a simple example, what if there were

hundreds of possible inputs, ea
h with their own result handler, and ea
h had to go through several states?

You
ould assign ea
h to a thread, but if you have thousands of possible pending operations in a system,

that many threads may thrash your system and render it inoperable, probably right at the time you need it

most (sin
e a lot of things are going on).

In an event-driven system, instead you would say:

init()

{

<initialize input_data>

register_for_input(op1_handler, input_data);

}

op1_handler(input_data)

{

<allo
ate and initialize op_data>

perform_op1(..., op2_handler, op_data);

}

op2_handler(op_data)

{

perform_op2();

<free op_data>

}

As you see, when you start an operation, you provide the next thing to
all when the operation
ompletes.

The fun
tions passed around are
alled \
allba
ks". You allo
ate and pass around
hunks of data to be passed

to the handlers. And you register input handlers that get
alled when
ertain event o

urs. So the
ode runs

in short non-blo
king se
tions, registers for the next operation, then returns ba
k to some invisible main

loop that handles the details of s
heduling operations. This may seem more
ompli
ated than the previous

example, but it has a large number of advantages:

� The system is almost always ready to handle input. For instan
e, user-interfa
e systems (like most

widget sets) are almost always event-driven, this makes them mu
h more \live", sin
e they are always

ready to handle user input.

� This system
an handle multiple simultaneous operations without threads. In general, threaded systems

are less reliable and more
ompli
ated; unless you need priorities or s
alability on SMP, why use them?

And even if you use them, you
an have mu
h better
ontrol over what is running in the system with

an event-driven system..

� If you are building a redundant system with data repli
ation, this gives you a natural way to hold

your data, know when to transfer it over to the mate system, and
ontinue an operation on the mate

system.

� If you tra
k the data, it's easy to monitor every operation o

uring in the system, stop an operations,

or whatever.

12 CHAPTER 2. OPENIPMI

� It's mu
h easier to dete
t and manage overload situations in an event driven system. Event-driven

systems have event queues of things waiting to be pro
essed. You
an put things in the queue and

wat
h the queue length. If the queue length gets too big, you are in overload, and
an intelligently

de
ide whi
h events you want to throw away, based on priority, time to live, or some other
riteria.

In general, a threaded system is easier to
on
eptually understand until you understand event-driven

methods. An event-driven system is almost always easier to
orre
tly implement.

Note that event-driven systems don't pre
lude the use of threads. Threads may be vastly overused, but

they are important. You
ould, for example, allo
ate one event loop thead per CPU to help s
ale your

system. You need to use threads to manage priorities. Some inputs may be more important than others, so

you may have an event loop for ea
h priority and feed them that way. You have a thread per CPU, and/or

a thread per priority, but you don't need a thread per operation.

This is often
alled \state-ma
hine programming" sin
e most
ontrol systems are state-ma
hine based,

and this is a natural way to implement a state ma
hine. The op_data holds the state of the state ma
hine,

ea
h input gets op_data, looks at the
urrent state, and de
ides what to do next.

The OpenIPMI library is
ompletely event-driven. It has no internal blo
king operations, and it expe
ts

that anything it
alls will not blo
k. IPMI messaging and operating system primitives are provided through

external plug-in pie
es.

If a library fun
tion that takes a
allba
k does not return an error, the
allba
k is guaranteed to be
alled,

even if the obje
t the
all is asso
iated with goes away. If it goes away, a NULL may be passed in as the

obje
t to the
allba
k, but the
b_data will still be valid.

2.2.2 The OS Handler

The OS handler provides servi
es for the OpenIPMI library. OpenIPMI needs some things from the operating

system that are not standardized by the C language. The os-handler in
lude �le is shown in Appendix L.

OS Handler Servi
es

The
lasses of servi
es required by OpenIPMI are:

Input Callba
ks The OpenIPMI
ode uses the \�le des
riptor"
on
ept of *nix, input devi
es are num-

bered. This is not used internally in the library, but it is used by the messaging interfa
es, so the

messaging interfa
es and OS handler may implement their own
onventions for these numbers. This

provides a way for OpenIPMI to register to re
eive input from devi
es.

Timers OpenIPMI times everything (as it should), thus it needs timers.

Lo
ks OpenIPMI does not require lo
ks, you may leave the operations NULL and they won't be used.

However, if you are doing multi-threaded operations, you should almost
ertainly provide lo
ks. The

lo
ks do not need to be re
ursive (they used to, but this has
hanged in OpenIPMI 1.4). Read/write

lo
ks are no longer required.

Condition Variables These are
ondition variables like the ones spe
i�ed in POSIX threads. Although

OpenIPMI does not use
ondition variables (sin
e it never waits for anything) it may be
onvenient for

other things to have them. OpenIPMI does not use them, and if nothing in your system needs them,

they need not be provided.

2.2. OPENIPMI CONCEPTS 13

Random Data For
ertain operations, OpenIPMI needs random data.

Logging Logs that OpenIPMI uses to report information and internal problems
omes through the OS

Handler.

Database OpenIPMI
an use an external database to hold persistent information (like SDRs) and thus

avoid having to fet
h them every time it starts up. This interfa
e is not required, but
an greatly

redu
e the startup time of OpenIPMI.

User Fun
tions Not used by OpenIPMI, but available for the user for spe
ial things the user will need.

Standard User Fun
tions in the OS Handler

OS handlers have some standard fun
tions pointers for the user. These are:

free os handler Free the OS handler. Do not use the OS handler after
alling this.

perform one op Handle one event (a timer timeout or a �le operation) and return. This takes a

timeout; it will wait up to the amount of time given for the event.

operation loop Continuously handle events. This fun
tion will not return.

These operations may not be available on all OS handlers, see the parti
ular OS handler you are using

for more details.

These are part of the OS handler. As an example on how to use them, the following
ode performs one

operation, prints any error it returns, then frees the OS handler:

stru
t timeval tv;

int rv;

tv.tv_se
 = 10;

tv.tv_use
 = 0;

rv = os_hnd->perform_one_op(os_hnd, &tv);

if (rv)

printf("Error handling operation: 0x%x", rv);

os_hnd->free_os_handler(os_hnd);

POSIX OS Handlers

OS handlers are already de�ned for POSIX systems, both with and without threads. These are de�ned in

the in
lude �le ipmi_posix.h; see that �le for more details. If you are running in a threaded appli
ation,

you almost
ertainly should use the threaded version of the OS handlers.

To allo
ate a POSIX OS handler, use one of the following:

os_hnd = ipmi_posix_setup_os_handler();

os_hnd = ipmi_posix_thread_setup_os_handler(wake_sig);

The wake_sig is a signal number that your program is not using (usually SIGUSR1, SIGUSR2, or a real-

time signal). The OS handlers uses this signal to send between threads to wake them up if they need to be

woken.

Freeing and handling the OS handler is done with the standard fun
tions in the OS handler, des
ribed

in se
tion 2.2.2.

14 CHAPTER 2. OPENIPMI

The GLIB OS Handler

An OS handler is already de�ned for glib and will work with threads. It is de�ned in the in
lude �le

ipmi_glib.h; see that �le for more details.

To allo
ate a GLIB OS handler, use:

os_hnd = ipmi_glib_get_os_handler();

Presumably, GLIB handles the waking of threads, so unlike the POSIX version no wakeup signal is

required.

All the other the OS handler fun
tions are done with the standard fun
tions in the OS handler, des
ribed

in se
tion 2.2.2.

2.2.3 Error Handling

Almost all OpenIPMI
alls that do anything besides fet
h a pie
e of lo
al data will return an integer error

value. A zero means no error. Two types of errors are returned, system errors (whi
h are standard Unix errno

values) and IPMI errors (whi
h are the standard IPMI error
odes). You
an use the ma
ros IPMI_IS_OS_ERR

and IPMI_IS_IPMI_ERR to tell the type of error, and IPMI_GET_OS_ERR and IPMI_GET_IPMI_ERR to get the

a
tual error values.

Note that if your system doesn't have Unix-type error numbers, you will have to provide those for the

OpenIPMI library.

If a fun
tion returns an error, any
allba
ks provided to that fun
tion will never be
alled. If a fun
tion

that takes a
allba
k returns su

ess, the
allba
k will always be
alled, even if the obje
t asso
iated has

eased to exist. If an obje
t with outstandard operations
eases to exist, all the
allba
ks for outstanding

operations will be
alled with ECANCELED as the error. Errors are passed into many
allba
ks, if an error is

present the rest of the data in the
allba
k is probably not valid ex
ept for the
b_data variable you provide,

and possibly the obje
t the
allba
k is asso
iated with. The obje
t the
allba
k is asso
iated with may be

NULL if it has
eased to exist.

2.2.4 Lo
king

As mentioned before, you may or may not be using lo
king, but you must read this se
tion anyway. Lo
king

here involves existan
e of entities as well as normal lo
king.

Lo
king has
hanged between OpenIPMI 1.3 and 1.4. In OpenIPMI 1.3, lo
ks were held in user
allba
ks.

Lo
king was very
ourse grained and the lo
ks were re
ursive, so this was generally not a problem. However,

in general it is a bad idea to hold lo
ks in user
allba
ks. The user might have two domains and
ause

deadlo
ks between them. For instan
e, if the user had one thread in a
allba
k from domain 1 that then

alled a fun
tion in domain 2, and another thread in a
allba
k from domain 2 that
alled a fun
tion in

domain 1, the system
an deadlo
k. This is be
ause the �rst thread holds lo
ks in domain 1 that the se
ond

thread needs for the fun
tion in domain 1, and the se
ond thread holds lo
ks in domain 2 that the �rst

thread needs for the domain 2 fun
tion. Be
ause of this, lo
king strategy has
hanged in OpenIPMI 1.4.

The interfa
es and basi
 usage are
ompletely un
hanged, but the semanti
s have
hanged.

Lo
king prin
iples

The basi
 prin
iple of lo
king is that if you are in a
allba
k for an IPMI obje
t (an IPMI obje
t is passed

in the
allba
k), that obje
t is ref
ounted (marked in-use) and the system
annot delete it. In any
allba
k

2.2. OPENIPMI CONCEPTS 15

for an obje
t owned by a parti
ular domain, that obje
t and anything it belongs to will be marked in-use.

So, for instan
e, in a
allba
k for a sensor, the sensor is in-use, the entity the sensor belongs to is in-use,

the management
ontroller the sensor is on is in-use, and the domain the sensor is in will be in-use. No

other sensors, entities, or management
ontrollers will ne
essarily be marked in-use. Outside of
allba
ks,

the library is free to
hange pointers,
hange information, add and remove obje
ts, or make whatever general

hanges that are required.

So how do you mark an IPMI obje
t in-use? If you are handling in
oming IPMI
allba
ks you generally

don't have to worry about this. But say you are handling outside input, su
h as a user interfa
e. What

then? If the pointers
an
hange, how do you keep a referen
e to something?

OpenIPMI provides two identi�ers for IPMI obje
ts. One is a pointer, but a pointer is only good inside a

allba
k. The other is an OpenIPMI id; the id is good outside
allba
ks. But the only thing you
an do with

an id is pass it to a fun
tion that will
all a
allba
k for you with the pointer. You
an
onvert a pointer to an

id (inside a
allba
k, of
ourse) so you should do that if you need to save a referen
e to the obje
t. Note that

there are some fun
tions that take ids that do this for you (su
h as ipmi_sensor_id_reading_get(), other

sensor fun
tions, hot-swap fun
tions, and a few others); these are provided for your
onvenien
e. Almost all

sensor,
ontrol, and entity fun
tions that you would generally
all asyn
hronously support these ipmi_xxx_id

fun
tions. The operation is exa
tly the same as the same operation without the _id, it simply takes the id

instead of the dire
t pointer. See the ipmiif.h in
lude �le to see if the fun
tion you desire exists.

This me
hanism, though a little in
onvenient, almost guarantees that you will not forget to de
rement a

use
ount. It ni
ely en
apsulates the lo
ked operation in a fun
tion

1

. You have to return from the fun
tion

unless you exit, longjmp, or throw an ex
eption that falls through the
allba
k, and you shouldn't do those

things.

You must do this whether you are using lo
king or not, be
ause the library uses this me
hanism to

determine whether the id you are holding is good. On
e it
onverts the id to the pointer, your pointer is

guaranteed to be good until the fun
tion returns.

The fun
tions to
onvert an id to a pointer are named ipmi_xxx_pointer_
b(), where \xxx" is
ontrol,

entity, domain, or sensor. Unlike many other
allba
ks, the
allba
k fun
tion you provide to these fun
tions

will be
alled immediately in the same thread of exe
ution, this
allba
k is not delayed or spawned o� to

another thread. So, for instan
e, you
an use data on the sta
k of the
alling fun
tion and pass it to the

allba
k fun
tion to use.

Lo
king example

For instan
e, suppose you have a
allba
k registered with the domain for �nding when new entities are ready,

and you are looking for a spe
i�
 entity. The
ode might look like:

ipmi_entity_id_t my_entity_id = IPMI_ENTITY_ID_INVALID;

stati
 void

entity_
hange(enum ipmi_update_e op,

ipmi_domain_t *domain,

ipmi_entity_t *entity,

void *
b_data)

{

1

This is how lo
king works in Ada95 and Java, although their me
hanisms are a little more
onvenient sin
e they are built

into the language

16 CHAPTER 2. OPENIPMI

ipmi_entity_id tmp_id;

swit
h (op) {

ase IPMI_ADDED:

if (entity_i_
are_about(entity))

my_entity_id = ipmi_entity_
onvert_to_id(entity);

break;

ase IPMI_DELETED:

tmp_id = ipmi_entity_
onvert_to_id(entity);

if (ipmi_
mp_entity_id(my_entity_id, tmp_id) == 0)

ipmi_entity_id_set_invalid(&my_entity_id);

break;

default:

break;

}

}

In this example, the entity is in-use in this
all, be
ause you have re
eived a pointer to the entity in the

allba
k.

However, suppose you want to use the entity id later be
ause the user asks about the entity to see if it

is present. You might have a pie
e of
ode that looks like:

stati
 void

my_entity_id_
b(ipmi_entity_t *entity, void *
b_data)

{

my_data_t *data =
b_data;

data->exists = 1;

data->present = ipmi_entity_is_present(entity);

}

void

he
k_if_my_entity_present(my_data_t *data)

{

int rv;

data->exists = 0;

data->present = 0;

rv = ipmi_entity_pointer_
b(my_entity_id, my_entity_id_
b, data);

if (rv)

printf("The entity
ould not be found\n");

}

Most of the data about the various OpenIPMI obje
ts is stati
, so you
an pre-
olle
t the information

about the obje
ts in the
allba
k where there existan
e is reported. Some lo
al information, su
h as entity

2.2. OPENIPMI CONCEPTS 17

presen
e, whether a MC is a
tive, and entity hot-swap state is dynami
, but the vast majority of information

is not. So, it is re
ommended that you
olle
t all the stati
 information that you need from an obje
t when

it is reported to you.

Many operations require a message to the remote system; the ones that take
allba
ks. For these opera-

tions, fun
tions that dire
tly take the id are available.

Use of the id-base fun
tions is re
ommended. The entity presen
e
ode
ould be rewritten using this to

be:

void

he
k_if_my_entity_present(my_data_t *data)

{

int rv;

data->exists = 0;

data->present = 0;

rv = ipmi_entity_id_is_present(my_entity_id, &data->present);

if (rv)

printf("The entity
ould not be found\n");

else

data->exists = 1;

}

Lo
king semanti
s

As mentioned before, OpenIPMI will not delete an obje
t you have a pointer to while in a
allba
k, but in

multi-threaded systems it is free to do pretty mu
h anything else to the obje
t, in
luding
all
allba
ks on

it. This means, for instan
e, that you
an be iterating over the entities in the system and a new entity
an

be added, have the entity update
allba
k
alled on it, and be added to the list. There is no guarantee or

order between the adding of entities to the list and the
allba
k. So the new entity might be iterated, it

might not, the iteration might be before or after the the
allba
k, et
.

How
an you avoid this? You have a few options:

� Ignore the problem. I strongly re
ommend that you do not take this option.

� Single-thread your program. If you don't need be able to take advantage of multiple CPUs in an

SMP system, and you have no need for priorities, single-threading is a good option. With OpenIPMI,

you
an have a single-threaded appli
ation that is non-blo
king and
an perform very well. Plus,

single-threaded programs are easier to debug, easier to understand and maintain, and more reliable.

� Do your own lo
king. For instan
e, you
ould
laim a lo
k in both the entity iteration and the
allba
k

for a new entity. This would prevent the both pie
es of
ode from running at the same time. You are

in
ontrol of the lo
ks, so you
an handle it as appropriate. You have to know what you are doing, but

that goes without saying when doing multi-threaded programming.

This is pretty standard in multi-threaded systems. Hardware Platform Interfa
e (HPI), for instan
e has

the same problem. If you have one thread waiting for events from an HPI domain, and another iterating the

RDRs, or you have two threads ea
h doing operations on sensors, you have exa
tly the same situation. You

have to prote
t yourself with lo
ks the same way.

18 CHAPTER 2. OPENIPMI

Note that data about an obje
t (like the devi
e id data, whether the MC is a
tive, or the entity is present,

or whatever) will not
hange while the obje
t is in use. This data is held until the obje
t is no longer in use

and then installed (and in the
ase of a
tivity or presen
e, the
allba
ks are then
alled).

2.2.5 OpenIPMI Obje
ts

In OpenIPMI, the user deals with six basi
 obje
ts:
onne
tions, domains, entities, sensors,
ontrols, and

events.

Conne
tions

A
onne
tion provides the low-level interfa
e to the system. It is usually a
onne
tion to a BMC in a system.

It handles getting IPMI messages to the proper elements in the system.

Domains

The domain is the
ontainer for the system, the entities in the system are atta
hed to it. You
reate a

domain with a
onne
tion to a system; the domain handles the job of dis
overy of the things in the system.

Entities

Entities are things that are monitored. They may be physi
al things su
h as a power supply or pro
essor,

or more abstra
t things su
h as the set of all power supplies or the ambient air in a
hassis. Sensors monitor

entities, and
ontrols are atta
hed to entities.

Entities may be grouped inside other entities, thus an entity may have a parent (if it is grouped inside

another entity) and
hildren (if it
ontains other entities). A raw system with no SDR data will not have

any relationships de�ned. Relationships are stored in the SDR repository. You may
hange them and store

them ba
k, if you like and if the system supports that, but
hanging SDR data is not re
ommended.

FRU information about the entity is sometimes available. You
an register with an entity to see if/when

it be
omes available using:

int ipmi_entity_add_fru_update_handler(ipmi_entity_t *ent,

ipmi_entity_fru_
b handler,

void *
b_data);

On
e it is available, you
an fet
h the FRU data using the
ommands de�ned in the IPMI in
lude �le.

Devi
e-Relative vs System-Relative Entities In IPMI, entities may be either in a �xed pla
e in the

system, or they may be moved about the system. Fixed entities, are, well, in a �xed lo
ation in the system.

These are
alled system relative entities. They have an entity instan
e less than 60h.

Other entities may not reside in a �xed lo
ation. For instan
e, a power supply or Compa
tPCI board

may be plugged in to one of many lo
ations in a
hassis; it doesn't know ahead of time whi
h one. These

types of entities are generally devi
e-relative and thus have an entity instan
e of 60h or larger. For these

types of entities, the management
ontroller on whi
h they reside be
omes part of the entity. In OpenIPMI,

the IPMB
hannel number and IPMB address are part of the entity. In ipmi_ui and ipmish, these are

printed and entered as \r<
hannel>.<ipmb>.<entity id>.<entity instan
e>".

2.2. OPENIPMI CONCEPTS 19

Sensors

Sensor monitor something about an obje
t. IPMI de�nes many types of sensors, but groups them into two

main
ategories: Threshold and dis
rete. Threshold sensors are \analog", they have
ontinuous (or mostly

ontinuous) readings. Things like fans speed, voltage, or temperature.

Dis
rete sensors have a set of binary readings that may ea
h be independently zero or one. In some

sensors, these may be independent. For instan
e, a power supply may have both an external power failure

and a predi
tive failure at the same time. In other
ases they may be mutually ex
lusive. For instan
e, ea
h

bit may represent the initialization state of a pie
e of software.

Controls

Controls are not part of the IPMI spe
, but are ne
essary items in almost all systems. They are provided

as part of OpenIPMI so that OEM
ode has a
onsistent way to represent these, and so OpenIPMI is ready

when the IPMI team �nally sees the light and adds
ontrols. OpenIPMI de�nes many types of
ontrol:

lights, relays, displays, alarms, reset, one-shot-reset, power, fan speed, general outputs, one-shot outputs,

and identi�ers.

For all
ontrols ex
ept displays and identi�ers, the
ontrol may a
tually
ontrol more than one devi
e.

With some
ontrols, multiple devi
e may be
ontrolled together and individual ones
annot be set (ie, the

same message sets all of them). For these types of
ontrols, OpenIPMI represents them as a single
ontrol

with multiple devi
es. All the devi
es are read and set at on
e.

Reset
ontrols are reset settings that
an be turned on and o�. One-shot-reset
ontrols
ause a reset by

setting the value to 1; they are not readable and setting them to zero returns an error.

Lights are on/o�
olored devi
es, like an LED. They may be multi-
olor, but
an only show one
olor

at a time. For instan
e, if you work for Kmart, or you are managing a Compa
tPCI system with hot-swap,

you will have a blue light in your system. You
an sear
h through the
ontrols to �nd a light that's blue.

Then, if a spe
ial is on, or you want the operator to remove a
ard, you
an light the blue light. Lights

may blink, too. Two types of lights are available. Transition lights
an have a series of transitions; as series

of transition is
alled a value. Ea
h value des
ribes a sequen
e of one or more transitions the light may go

through. Setting lights allow dire
t setting of the
olor and on/o� time of the light.

Relays are binary outputs. Most telephony systems have them; they are required by telephony spe
s.

They are simple on/o� devi
es.

Displays are two-dimensional arrays of
hara
ters. OpenIPMI allows you to
hange individual
hara
ters

at will.

Alarms are bells, whistles, gongs, or anything that
an alert the user that something is wrong.

Reset
ontrols are used to reset the entity to whi
h they are atta
hed.

Power
ontrols
an be used to
ontrol power to or from an entity. A power
ontrol on a power supply

would generally
ontrol output power. A power
ontrol on a board would generally
ontrol input power to

the board.

Fan speed
ontrols
an be used to set the speed of a fan.

General outputs are outputs that don't fall into one of the previous
ategories. One-shot outputs are

like general outputs, but perform some a
tion when set to one and are not readable. Setting them to zero

returns an error.

Identi�er
ontrols hold identi�
ation information for a system, su
h as a
hassis id,
hassis type, geo-

graphi
 address, or whatever.

20 CHAPTER 2. OPENIPMI

Events

When an external event
omes into OpenIPMI, the user will always re
eive that event in some manner

(unless they do not register with a generi
 event handler, but they should always do that). The event may

ome through a
allba
k for a sensor,
ontrol, entity, or other
allba
k.

All the
allba
ks you should be using return a value telling whether the handler has \handled" the event.

Handling the event means that the
allba
k is going to manage the event. Primarily, this means that it is

responsible for deleting the event from the event log with ipmi_event_delete(). If no
allba
k handles

the event, then it will be delivered to the main event handler(s). This allows
alls to re
eive events but the

events to be managed in a single lo
ation.

To handle the event, the event handler should return IPMI_EVENT_HANDLED. To pass the event on, it

should return IPMI_EVENT_NOT_HANDLED.

If a
allba
k handles the event, then all future
allba
ks
alled due to the event will re
eive a NULL for

the event. So be ready to handle a NULL event in all your event handlers. A NULL may also be passed to an

event handler if the
allba
k was not due to an event.

Where OpenIPMI Gets Its Data

OpenIPMI generally gets all of its data from the IPMI system, either from SDRs, the event log, or via

ommands. OpenIPMI will pull in anything it
an re
ognize. Note that some data in an IPMI system is

dupli
ated; if the data is not
onsistent it will
ontinue to be in
onsistent in OpenIPMI.

For instan
e, OpenIPMI gets all the information about a management
ontroller from the \Get Devi
e Id"

ommand. However, the system may have a re
ord in the SDR repository des
ribing an entity that represents

the management
ontroller. If the data from the
ommand and the SDR repository is in
onsistent, OpenIPMI

will happily provide the data from the SDR repository when looking at the entity, and the data from the

\Get Devi
e Id"
ommand when looking at the MC.

If the system has OEM
ontrols and sensors, they may have been
reated by OEM
ode and may not

have
ome from SDRs (thus the phrase \generally" in the �rst sentan
e of this se
tion). This is a major

reason not to use dire
t IPMI messaging with OpenIPMI. OpenIPMI provides an abstra
tion for the sensors

and
ontrols and thus multiple implementations
an sit below it. If software bypasses the abstra
tion, it will

loose the ability to talk to non-standard sensors and
ontrols that use the same abstra
tion.

2.2.6 Callba
ks

As you will dis
over, OpenIPMI is very
allba
k based. The
allba
ks are somewhat �ned grained; you

register for exa
tly what you want to see on individual obje
ts. This is not as bad as you might imagine

(even though it may seem somewhat strange). It does mean that you have to do a lot of registering in all the

right pla
es, though. IPMI has a large number of asyn
hronous things that it has to inform you about. If it

delivered all these through one interfa
e, you would have to look at ea
h
all and try to �gure out what type

of things was being reported, what obje
t is was asso
iated, et
. In e�e
t, that work is done by OpenIPMI.

For user-level
allba
ks, the obje
t the
allba
k is for will always be valid, it will never be NULL. This

means, for instan
e, if you request a reading from a sensor, the reading response will always get
alled and

the sensor parameter will always be valid. It may be in the destru
tion pro
ess and you
annot set any

setting, get any readings, or anything else that requires sending a message. If the handler gets an ECANCELED

error, the sensor is being destroyed. This also applies to all
ontrol, entity, and most domain
allba
ks. This

is new for OpenIPMI 1.4, but is fully ba
kwards
ompatible.

2.3. OPENIPMI INCLUDE FILES 21

This does not apply to internal interfa
es, espe
ially ones that send messages. If you send a message to

a MC, for instan
e, the MC
an be NULL when the response
omes ba
k. Be very
areful.

Note that the handlers don't get
alled immediately with
urrent state when you add a
allba
k handler.

So you must register for the event then query the
urrent state.

Updated Callba
ks

Updated
allba
ks tell you when an obje
t
omes into existan
e, is destroyed, or if
on�guration information

about an obje
t has
hanged. On an entity, for instan
e, when an entity is �rst added, the entity update

handler on the domain will be
alled with the entity. when an SDR is read and
auses a
hange to the entity,

the updated handler will be
alled again with the
hange. When the entity is deleted, it will be
alled again.

In general, you should add updated handlers whenever the thing you want to register against
omes into

existan
e. So for entities and the main event handler, you should register them in the setup_done
allba
k

for the domain. The entity update handler should register the update handlers for sensors,
ontrols, and

FRU information. It should register the event handlers for presen
e and hot-swap there, too.

Sensor and
ontrol update handlers should set up and register for events from the sensor.

Asyn
hronous Callba
ks

Asyn
hronous
allba
ks tell you when asyn
hronous things happen in the system. For instan
e, a
ard gets

plugged in and an entity be
omes present. You will be told with the present
allba
k on the entity. The

hot-swap state of an entity
hanges. That is reported via the hot-swap state
allba
k. Events be
ause of

sensors going out of range is another example.

Note that these are usually due to an IPMI event, but do not ne
essarily have to be
aused by an IPMI

event. For instan
e, if, during an audit, OpenIPMI dis
overs that it has the state wrong for something, it

will report the
orre
t state in a
allba
k.

Syn
hronous Callba
ks

Syn
hronous
allba
ks are
allba
ks for things you request and are one-shot operations. For instan
e, if you

want to know the
urrent value of a sensor, you
all
all ipmi_reading_get() and you give it a handler to

all when the reading has been fet
hed.

This is always done for things that OpenIPMI might have to send a message to do. It is a result of

OpenIPMI's requirement to be able to work in non-threaded systems and still be responsive to operations

while waiting.

2.3 OpenIPMI In
lude Files

OpenIPMI has a large number of in
lude �les. The ones dealing with internals are in the internal dire
tory

and are only needed for OEM
ode. The in
lude �le are
lassi�ed by need in the se
tions below.

22 CHAPTER 2. OPENIPMI

2.3.1 Files the normal user deals with

ipmiif.h The main in
lude �le for OpenIPMI. It
ontains the main fun
tions the user must deal

with when working with the OpenIPMI library. Almost everything will in
lude this. It

in
ludes ipmi types.h and ipmi bits.h, too, so you don't have to in
lude those.

ipmi fru.h Interfa
e for FRU data.

ipmi auth.h The �le holding information about athenti
ation algorithms. You need this if dealing

with an authenti
ated interfa
e.

ipmi bits.h Various values, mostly for sensors, used by the user. ipmiif.h in
ludes this �le, so you

generally don't have to in
lude it expli
itly.

ipmi types.h Types for the basi
 IPMI obje
ts. ipmiif.h in
ludes this �le, so you generally don't

have to in
lude it expli
itly.

ipmi err.h Error values, both IPMI and system, as well as ma
ros for interpreting these.

os handler.h The os-spe
i�
 handler types are de�ned here. You must implement this and supply it

to the IPMI
ode.

sele
tor.h For *nix systems, This �le provides a default me
hanism for handling many of the os-

spe
i�
 handler operations.

ipmi posix.h This de�nes some POSIX OS handlers.

ipmi log.h Holds de�nitions for the logging interfa
e.

2.3.2 Files dealing with messaging interfa
es

ipmi lan.h This is the LAN messaging interfa
e, this
ontains the
alls for
reating a LAN
onne
tion.

ipmi smi.h This is the messaging interfa
e for talking to lo
al IPMI interfa
es (like KCS), this
ontains

the
alls for
reating an SMI
onne
tion.

2.3.3 File for system
on�guration

ipmi pef.h Contains
ode for
on�guring the PEF.

ipmi lanparm.h Contains
ode for
on�guring the LAN
on�guration data.

ipmi pet.h Contains
ode that allows the user to easily set up an IPMI LAN interfa
e on a BMC

to send SNMP traps.

2.3.4 Semi-internal in
ludes

These �les expose the more IPMI-ish parts of OpenIPMI; things that are
loser to raw IPMI. You should

not use these unless you really need them.

ipmi m
.h This de�nes interfa
es for the management
ontrollers.

ipmi addr.h The �le holding information about IPMI addresses.

ipmi
onn.h This de�nes the interfa
e for the messaging interfa
es.

ipmi msgbits.h This de�nes various IPMI messages.

ipmi pi
mg.h This de�nes various PIGMC messages.

ipmi sdr.h This de�nes internal interfa
es for the SDR repository.

2.4. STARTING UP OPENIPMI 23

2.4 Starting Up OpenIPMI

Starting up OpenIPMI is relatively easy. You must allo
ate an OS handler and initialize the library with it.

Then you are free to set up
onne
tions. The following
ode shows this for a non-threaded POSIX program:

os_hnd = ipmi_posix_setup_os_handler();

if (!os_hnd) {

printf("ipmi_smi_setup_
on: Unable to allo
ate os handler\n");

exit(1);

}

/* Initialize the OpenIPMI library. */

ipmi_init(os_hnd);

The ipmi_init fun
tion should be done on
e when your program starts up. Generally, you only have

one OS handler, but you are free to have more if they interwork properly and you have some spe
ial need.

2.5 Creating OpenIPMI Domains

If you want to talk to an IPMI BMC, you must
reate a
onne
tion to it. The
onne
tion method depends

on the type of
onne
tion; these are des
ribed in Chapter 4.

On
e you have a
onne
tion, you
an open a domain with it. You do this like so:

ipmi_
on_t
ons[N℄;

int num_
ons, rv;

ipmi_domain_id_t id;

/* Set up
onne
tion(s) here */

rv = ipmi_open_domain(
ons, num_
ons,
on_
hange, user_data,

domain_fully_up, user_data2,

options, num_options, &domain_id);

2.5.1 Domain Conne
tions

Up to two
onne
tions to a single domain are
urrently supported. A
onne
tion is an independent MC in the

same domain; if two MCs have external
onne
tions, they
an both be used for fault-toleran
e. This generally

requires some spe
ial support for the parti
ular domain type, see the appendi
es on spe
i�
 domain types

for more detail. The
on_
hange fun
tion is
alled whenever the
onne
tion
hanges states (a
onne
tion is

established or lost). The
onne
tion
hange
allba
k looks like:

stati
 void

on_
hange(ipmi_domain_t *domain,

int err,

unsigned int
onn_num,

unsigned int port_num,

24 CHAPTER 2. OPENIPMI

int still_
onne
ted,

void *user_data)

{

...

}

If a
onne
tion is established, then err will be zero. Otherwise it is the error that
aused the
onne
tion

to fail. The
onn_num parm is the parti
ular
onne
tion number (from the
ons array passed into the

domain setup). A
onne
tion may have spe
i�
 ports, generally multiple
onne
tions to the same MC. The

still_
onne
ted parm tells if you still have some
onne
tion to the domain.

If a
onne
tion is down, the
onne
tion
hange
allba
k will be
alled periodi
ally to report the problem

as OpenIPMI attempts to re-establish the
onne
tion.

2.5.2 Domain Fully Up

The domain_fully_up
allba
k will be
alled after the domain has been fully s
anned, all SDRs fet
hed,

all FRUs fet
hed, and all SELs read for the �rst time. This gives you an indi
ation that the domain is

ompletely \up", although there really is no
on
ept of
ompletely \up" in IPMI sin
e the system may

dynami
ally
hange. It is useful for some things, though (and people
omplained a lot about not having it

in the past) so it is now available. The
allba
k is in the form:

stati
 void

domain_fully_up(ipmi_domain_t *domain,

void *user_data2)

{

...

}

Note that this will not be
alled until the domain is fully up. If the domain never
omes up, this will never

be
alled. So don't rely on this. The
onne
tion up
allba
k will always be
alled.

2.5.3 Redundan
y in Domain Conne
tions

Sin
e maintenan
e interfa
es often need to be reliable in the fa
e of network or hardware outages, they often

have multiple
onne
tions. The IPMI standards do not address this, but many systems implement some

form of redundan
y.

The OpenIPMI library manages two di�erent forms of redundan
y in
onne
tions:

Two IP addresses for the same BMC - In this mode, the library talks to the same BMC over two

di�erent
hannels. This is managed by the
onne
tion
ode itself. The LAN
ode does this; it allows

you to spe
ify more than one IP address and port. It will make
onne
tions to both and make them

look like they are one
onne
tion. It will report, through the
onne
tion interfa
e, if the individual

onne
tions go up or down. Note that some systems have multiple IP addresses but are unable to use

both at the same time, so
he
k with your hardware to see if this will work.

Conne
tions to multiple BMCs - This means you have
onne
tions to more than one BMC. The domain

ode will round-robin messages on the a
tive
onne
tions, handle and report failures, and swit
hover

from failed to working
onne
tions. A
onne
tion has the
on
ept of being \a
tive" or \ina
tive". An

2.5. CREATING OPENIPMI DOMAINS 25

ina
tive
onne
tion is one where the
onne
tion is up but the BMC in question is not fully operational;

you don't want to use it. This is an a
tive/standby type
on�guration. If all
onne
tions are always

a
tive (an a
tive/a
tive type
on�guration), no spe
ial handling is required. If some
onne
tions
an

be ina
tive, spe
ial OEM
ode is required for that
onne
tion as the domain handling must have a

way to a
tivate an ina
tive
onne
tion if the a
tive
onne
tion goes down. See the Motorola MXP in

appendix F on page 175 for an example of an a
tive/standby
onne
tion.

Note that the two redundan
y modes
an be used together. You
an have two LAN
onne
tions ea
h to

two BMCs. In the author's opinion, this, with an a
tive/a
tive
on�guration is the best redundan
y and is

simple to implement.

Some systems like ATCA have a \
oating" address that is used. The system has more than one BMC,

generally, but it has an address that will \
oat" between the BMCs depending on whi
h one is a
tive. If a

BMC fails, another BMC transparently takes over the
oating address. So in this type of
on�guration the

redundan
y is managed by the BMCs. This leaves the question open of how to monitor the ina
tive BMCs,

though. ATCA has addressed this in re
ent standards. See appendix E on page 171 for details on how this

works in ATCA.

2.5.4 Domain Options

When a domain is
reated, it may be passed options to
ontrol how the domain operates. For instan
e, if

you do not want to s
an FRUs, or you do not want to fet
h SDRs, you
an
ontrol exa
tly what OpenIPMI

will do.

Control of this is done through the options. This is an array of values passed to ipmi_open_domain.

Ea
h element is:

typedef stru
t ipmi_open_option_s

{

int option;

union {

long ival;

void *pval;

};

} ipmi_open_option_t;

The option goes into the option variable and the union holds the option value, whose type depends on the

option. Table 2.1 on the following page shows the options available.

26 CHAPTER 2. OPENIPMI

IPMI OPEN OPTION ALL Uses the ival value as a boolean. This is an all-or-nothing enable.

If this is enabled, then all startup pro
essing will be done. If this

is disabled, then the individual startup pro
essing options will be

used to individually
ontrol the enables. This is true by default.

IPMI OPEN OPTION SDRS Uses the ival value as a boolean. The all option overrides this.

This enables or disables fet
hing SDRs. This is false by default.

IPMI OPEN OPTION FRUS Uses the ival value as a boolean. The all option overrides this.

This enables or disables fet
hing FRU information. This is false by

default.

IPMI OPEN OPTION SEL Uses the ival value as a boolean. The all option over-

rides this. This enables or disables fet
hing SELs. Note

that you
an fet
h the SELs by hand from an MC by set-

ting ipmi m
 set sel res
an time() to zero and then
alling

ipmi m
 reread sel() when you want to reread the SEL. This

is false by default.

IPMI OPEN OPTION IPMB SCAN Uses the ival value as a boolean. The all option overrides this.

This enables or disables automati
 s
anning of the IPMB bus. If

you turn this o� you
an still s
an the bus by hand using the

ipmi start ipmb m
 s
an() fun
tion. This is false by default.

IPMI OPEN OPTION OEM INIT Uses the ival value as a boolean. The all option overrides this.

This will enable or disable OEM startup
ode for handling spe
ial

devi
es. This is the
ode that
reates
ustom
ontrols and things

like that. This is false by default.

IPMI OPEN OPTION SET EVENT RCVR Uses the ival value as a boolean. This is not a�e
ted by the all

option. This enables setting the event re
eiver automati
ally. If

true, OpenIPMI will dete
t if the event destination of an MC is

not set to a valid value and set it. However, this requires admin

level a

ess; you will get errors if you
onne
t with a lower level of

a

ess and have this turned on. This is true by default.

Table 2.1: Domain options in OpenIPMI

C h a p t e r 3

Use Cases

IPMI brings a lot of
omplexity, so it better be useful for something and we better know how to use it. This

hapter brings up several di�erent ways it
an be used to improve system reliability.

3.1 Simple Hardware Monitoring

If you have a single system and wish to improve its reliability, you may use IPMI to monitor the hardware.

We know a few things about hardware:

1. Heat de
reases the lifetime of sili
on.

2. As
apa
itors degrade, they tend to fail slowly.

3. Fans tend to fail slowly.

4. If something fails, you generally have some time to do something about it before the failure is
atas-

trophi
.

By monitoring long-term trends of temperature, voltage, and fan speed we may a

urately predi
t when

ertain system
omponents are going to fail. Then they
an be repla
ed gra
efully.

In addition, if software fails, you want want some me
hanism to automati
ally restart the failed software.

To do this, you need a four-fold approa
h:

� Re
ord and periodi
ally analyze long-term trends of heat, voltage, and fan speed. IPMI stores infor-

mation about the limits of the various
omponents. Long-term trending will tell you when values of

riti
al
omponents are going to rea
h the limits. It's a lot better to know that your power supply will

probably fail in �ve days than to know that your power supply will fail in 30 se
onds, or that your

system is now dead and you don't know why.

� Monitor events
oming from the system. In the event of a sudden failure, the IPMI system event log

may give you some warning that something is about to happen. In the event of a
atastrophi
 failure,

it may give you useful information for post-mortem analysis.

27

28 CHAPTER 3. USE CASES

� Use a wat
hdog timer to monitor for system software failures. It is espe
ially useful if the wat
hdog

timer has a pretimeout that says \Hey, I'm going to reset you in a few se
onds." that
omes in via

an NMI. If you have this, you
an pani
 the system and get useful information about what the system

was doing when it failed.

� Create a software system to monitor the rest of your software and dete
t when it fails and restart the

software.

OpenIPMI, of
ourse,
an be used to do a lot of this, but other useful tools exist for this. HPI
an be

used in many pla
es where OpenIPMI
an be used. See
hapter D on page 169 for details on the di�eren
es

between OpenIPMI and HPI.

However, HPI and OpenIPMI
an be overkill for this type of monitoring. Another tool, ipmitool[3℄,
an

provide a simple interfa
e to the IPMI system. It is easy to s
ript and simple to use.

For the wat
hdog timer, the operation system generally provides an abstra
t interfa
e. The OpenIPMI

Linux devi
e driver does this; it provides a wat
hdog timer with pretimeouts via an NMI. In an operating

system that does not have a ni
e interfa
e to the wat
hdog timer, it is possible to talk dire
tly to the IPMI

system to do this, the NMI handling may be hard to do.

Software monitoring is beyond the s
ope of this book.

Figure 3.1 on the fa
ing page shows the pie
es to a

omplish this.

3.2 Redundant Systems

In this
ase, your appli
ation may
onsist of two systems so that is one fails, the other takes over. In e�e
t,

these two systems are \mated". For this
on�guration, you generally want ea
h system to monitor both

itself (as des
ribed in se
tion 3.1 on the previous page and its mate. This way, long-term trend data is held

both in the lo
al system and the mate so it is resiliant agains faults. It is generally a good idea to monitor

the mate's software.

Note that to monitor another system via IPMI, the IPMI system to be monitored must have a LAN

interfa
e as des
ribed in se
tion 4.9 on page 49.

In addition to monitoring, it is generally ne
essary for a system to be able to reset it's mate to re
over

it to a known state. You
an do this over the IPMI LAN interfa
e.

Sin
e you now have multiple things managing the SEL, some extra logi
 is required to
oordinate their

operation. Se
tion 11.4 on page 158 des
ribes methods to do this.

In this situation, ipmitool be
omes less attra
tive due to the polled nature of it's operation. Setting up

LAN
onne
tions is expensive. OpenIPMI and HPI tools will maintain a permanent
onne
tion to the mate

and redu
e the
onne
tion overhead.

3.3 Monitoring Clusters of Systems

In this situation, you have a number of systems that are monitored by a single management system

1

. This is

mu
h like handling redundant systems as des
ribed in se
tion 3.2 but instead of monitoring one other system,

the management system monitors a number of other systems. The system may or may not need hardware

monitoring on the individual monitored systems, as the management system
an do all that. Individual

system will still need software monitoring, of
ourse.

1

The management system may have multiple nodes for fault toleran
e, but
an generally be viewed as a single system

3.3. MONITORING CLUSTERS OF SYSTEMS 29

Figure 3.1: Simple Monitoring

30 CHAPTER 3. USE CASES

In this situation, the overhead of ipmitool may be
ome burdensome to the management systems. Plus,

these types of systems tend more toward having a
ontinuously running system management appli
ation. In

these types of systems, something like OpenIPMI or HPI be
omes even more attra
tive.

3.4 Bus Systems

Bussed systems (as des
ribed in se
tion 1.2 on page 4 generally have a number of
omputers plugged into

and managed on a single ba
kplane. They have a
entral management interfa
e (that may be redundant)

that manages the system and
ommuni
ates over a LAN to a remote management appli
ation

2

.

In some ways these
omputers appear as individual systems and
an be viewed as su
h with an extra

\hop" over the bus to get to them. However, these systems have extra management
apabilities and shared

resour
es that make monitoring somewhat di�erent.

In a bussed system,
ooling and power supply are shared. In general the management
ontroller on the

bus handles
ooling
ontrol and power management. But if a power supply is about to fail or the
ooling

system fails, it a�e
ts all the
omputers on the bus, not just one. The management system must take this

into a

ount.

Also, these systems generally support hot-swap of the
omputers. This is generally done as a request

me
hanism where a maintenan
e person will request (via a swit
h or something of that nature) that the

board be prepared for removal. In general, the maintenan
e appli
ation must approve the request and may

need to inform the software on the board what is happening.

Be
ause these types of systems require more monitoring and persistent state, ipmitool is not an option

for maintaining a system like this. It
an still be used for querying information, but it
annot handle the

hot-swap operations. OpenIPMI and/or HPI are needed for these types of systems.

2

The management appli
ation may a
tually run on one or more of the
omputers on the bus, but is viewed as \remote"

be
ause it would
ome in over the LAN.

C h a p t e r 4

IPMI Interfa
es

IPMI has a large number of interfa
es for talking to management
ontrollers. They vary in performan
e and

apability, but the same messages work over the top of all of them. Generally, it does not matter how you

interfa
e to an IPMI system, the messages will work the same.

4.1 OpenIPMI Generi
 Interfa
e

The OpenIPMI libary has a generi
 interfa
e to the various
onne
tions. You use a per-interfa
e
ommand

to set up the interfa
e, but on
e set up, the interfa
es all work the same. The �le shown in Appendix K

de�nes the interfa
e for
onne
tions.

Note that not all operations are available on all interfa
es. LAN
onne
tions, for instan
e,
annot re
eive

ommands.

4.2 System Interfa
es

The most
ommon interfa
e to a management
ontroller is the system interfa
e. This provides a dire
t

onne
tion between the main pro
essor of a system and the management
ontroller. Obviously, this interfa
e

isn't very useful if the system is turned o�, but it allows a running system to monitor itself.

The low-level format of a system interfa
e message that is n bytes long is:

0

Bits 0-1 - Destination LUN

Bits 2-7 - NetFN

1

Command

2 - n-1 Message Data

Commands and responses have basi
ally the same format, ex
ept that responses always have the
om-

pletion
ode as the �rst byte of the message data. See
hapter 6 for more details.

31

32 CHAPTER 4. IPMI INTERFACES

4.2.1 SMIC

The SMIC interfa
e has been around a long time, but mostly during a period when IPMI was not popular.

This is a low-performan
e, byte-at-a-time interfa
e with no interrupt
apability.

TBD - des
ribe this interfa
e in detail

4.2.2 KCS

The KCS interfa
e is
urrently the most popular IPMI system interfa
e. The KCS interfa
e looks ele
tri
ally

mu
h like a standard PC keyboard interfa
e. It was
hosen be
ause lots of
heap hardware was available for

these types of interfa
es. But it is still a byte-at-a-time interfa
e and performs poorly. It has the
apability

for interrupts, but very few systems have working interrupt
apability with KCS interfa
es.

TBD - des
ribe this interfa
e in detail

4.2.3 BT

The BT interfa
e is the best interfa
e for IPMI. Messages are sent a whole message at a time through the

interfa
e, thus it is a mu
h higher performan
e interfa
e than the other system interfa
es.

TBD - des
ribe this interfa
e in detail

4.2.4 SSIF

The SSIF interfa
e was added in the 2.0 spe
. It provides an interfa
e over an Inter Integrated Cir
uit (I

2

C)

interfa
e using the SMBus proto
ol. This is very
ost e�e
tive interfa
e; most systems generally already have

an I

2

C bus, so no new interfa
es to pro
essor busses are required. However, I

2

C busses are not very fast and

the interfa
es from the pro
essor to the I

2

C bus tends to perform poorly.

TBD - des
ribe this interfa
e in detail

4.2.5 The OpenIPMI Driver

The OpenIPMI driver on Linux provides a user interfa
e to all the standard IPMI system interfa
es. It does

so in a manner that allows multiple users to use the driver at the same time, both users in the kernel and

users in user spa
e.

To do this, the OpenIPMI driver handles all the details of addressing and sequen
ing messages. Other

drivers allowed more dire
t a

ess to the IPMI interfa
e; that means that only one user at a time
ould

use the driver. Sin
e the IPMI
an be used for di�erent purposes by di�erent users, it is useful to do the

multiplexing in the kernel.

The details of
on�guring the IPMI driver are found in the IPMI.txt �le in the kernel do
umentation;

those details won't be dis
ussed here.

To use the IPMI devi
e driver, you open the /dev/ipmi0 or /dev/ipmidev/0 �le. The driver allows

multiple IPMI devi
es at the same time; you would in
rement the number to get to su

essive devi
es.

However, most systems only have one.

The primary interfa
e to the driver is through io
tl
alls. read and write
alls will not work be
ause

the IPMI driver separates the addressing and data for an IPMI message.

The
ore des
ription of an IPMI message is:

4.2. SYSTEM INTERFACES 33

stru
t ipmi_msg

{

unsigned
har netfn;

unsigned
har
md;

unsigned short data_len;

unsigned
har *data;

};

The netfn des
ribes Network FuN
tion (NetFN) of the
lass of message being sent. IPMI messages are

grouped into di�erent
lasses by fun
tion. The
md is the
ommand within the
lass. Chapter 6 dis
usses

this is more detail. The data and data_len �elds are the message
ontents. This stru
ture is used in both

sent and re
eived messages.

Sending Commands

To send a
ommand, use the following:

rv = io
tl(fd, IPMICTL_SEND_COMMAND, &req);

The req stru
ture has the following format:

stru
t ipmi_req

{

unsigned
har *addr;

unsigned int addr_len;

long msgid;

stru
t ipmi_msg msg;

};

The addr and addr_len �elds des
ribe the destination address of the management
ontroller to re
eive

message. The msg �eld itself gives the message to send. The msgid is a �eld for the user; the user may

put any value they want in this �eld. When the response
omes ba
k for the
ommand, it will
ontain the

message id. Sin
e it is a long value, it
an be used to hold a pointer value.

The driver guarantees that the user will re
eive a response for every message that is su

essfully sent. If

the message times out or is undeliverable, an error resonse will be generated and returned.

The following
ode fragment shows how to send a message to the lo
al management
ontroller, in this

ase a
ommand to read the value of a sensor:

stru
t ipmi_req req;

unsigned
har data[1℄;

stru
t ipmi_system_interfa
e_addr si;

/* Format the address. */

si.addr_type = IPMI_SYSTEM_INTERFACE_ADDR_TYPE;

si.
hannel = IPMI_BMC_CHANNEL;

si.lun = 0;

34 CHAPTER 4. IPMI INTERFACES

req.addr = (void *) &si;

req.addr_len = sizeof(si);

req.msgid = 0x1234;

req.msg.netfn = 0x04; /* Sensor/Event netfn */

req.msg.
md = 0x2d; /* Get sensor reading */

req.msg.data = data;

req.msg.data_len = 1;

data[0℄ = 10; /* Read sensor 10 */

rv = io
tl(fd, IPMICTL_SEND_COMMAND, &req);

Note that sending the
ommand is asyn
ronous; you will not immediately get the response. Instead,

the response
omes ba
k later and
an be re
eived at that point in time. This is what makes the msgid

important.

The following example shows sending a get devi
e id request to IPMB address 0xb2.

stru
t ipmi_req req;

stru
t ipmi_ipmb_addr si;

/* Format the address. */

si.addr_type = IPMI_IPMB_ADDR_TYPE;

si.
hannel = 0;

si.lun = 0;

si.slave_addr = 0xb2;

req.addr = (void *) &si;

req.addr_len = sizeof(si);

req.msgid = 0x1234;

req.msg.netfn = 0x06; /* App netfn */

req.msg.
md = 0x01; /* Get devi
e id */

req.msg.data = NULL;

req.msg.data_len = 0;

rv = io
tl(fd, IPMICTL_SEND_COMMAND, &req);

Re
eiving Responses and Events

As mentioned before, the responses to
ommands
ome ba
k in later. You
an use standard sele
t and

poll
alls to wait for messages to
ome in. However, you
annot use read to get the message. The following

data stru
ture is used to re
eive messages:

stru
t ipmi_re
v

{

int re
v_type;

unsigned
har *addr;

unsigned int addr_len;

long msgid;

4.2. SYSTEM INTERFACES 35

stru
t ipmi_msg msg;

};

The re
v_type �eld
an be one of the following values:

IPMI RESPONSE RECV TYPE A response to a sent
ommand.

IPMI ASYNC EVENT RECV TYPE An asyn
ronous event.

IPMI CMD RECV TYPE A
ommand was re
eived for the system software.

IPMI RESPONSE RESPONSE TYPE Responses sent by this interfa
e get a
ked using one of these.

This way you
an tell if there was an error sending the response.

Re
eived
ommands are dis
ussed in se
tion 4.2.5. You have to �ll in the data for the driver to put the

re
eived information into. The following shows how to re
eive a message:

unsigned
har data[IPMI_MAX_MSG_LENGTH℄;

stru
t ipmi_addr addr;

stru
t ipmi_re
v re
v;

int rv;

re
v.msg.data = data;

re
v.msg.data_len = sizeof(data);

re
v.addr = (unsigned
har *) &addr;

re
v.addr_len = sizeof(addr);

rv = io
tl(fd, IPMICTL_RECEIVE_MSG_TRUNC, &re
v);

if (rv == -1) {

if (errno == EMSGSIZE) {

/* The message was trun
ated, handle it as su
h. */

...

}

}

swit
h (re
v.re
v_type) {

ase IPMI_RESPONSE_RECV_TYPE: ...

ase IPMI_ASYNC_EVENT_RECV_TYPE: ...

ase IPMI_CMD_RECV_TYPE: ...

ase IPMI_RESPONSE_RESPONSE_TYPE: ...

The msgid
omes in very handy for this responses, it lets you easily
orrelate
ommands and responses.

It has no meaning for events.

The netfn for a re
eived message have a \one" bitwise or-ed onto the value. In IPMI, even NetFNs are

always
ommands and odd NetFNs are always responses.

For responses, the address will always be the same as the sent address.

An interfa
e will not re
eive events by default. You must register to re
eive them with the following:

int val = 1;

rv = io
tl(fd, IPMICTL_SET_GETS_EVENTS_CMD, &val)

36 CHAPTER 4. IPMI INTERFACES

Setting val to true turns on events, setting it to false turns o� events. Multiple users may register to

re
eive events; they will all get all events. Note that this is for re
eiving asyn
ronous events through the

interfa
e. The events also go into the event log as des
ribed in
hapter 11, but that is a di�erent thing. If

you re
eive an event through this interfa
e, you will also get it in the event log. Se
tion 11.1 des
ribes the

format of events.

Re
eiving Commands and Responding

Commands sent to Logi
al Unit Number (LUN) two of a management
ontroller will generally be routed to

the driver. If the driver does not have a registered user for that
ommand, it will respond that it does not

handle that
ommand.

If you wish to re
eive
ommands, you must register to re
eive those
ommands. The
mdspe
 stru
ture

de�nes
ommands the program wishes to re
eive:

stru
t ipmi_
mdspe

{

unsigned
har netfn;

unsigned
har
md;

};

These are registered with the following io
tl:

rv = io
tl(fd, IPMICTL_REGISTER_FOR_CMD, &
mdspe
);

To remove a registered
ommand, use the following:

rv = io
tl(fd, IPMICTL_UNREGISTER_FOR_CMD, &
mdspe
);

If you re
eive a message, you must send a response. The driver makes this easy, you
an always use the

re
eived address to send the response to. The program in Appendix J re
eives one message, sends a response,

and exits. When you respond, you must supply the msgid that
ame into the
ommand.

Overriding Default Timing Values

Be default,
ommands over IPMB get resent up to 5 times with a 1 se
ond timeout between the sends. For

very sele
t appli
ations, this is not suitable. Primarily, some appli
ations need to only send on
e, they have

a higher-level resend me
hanism and the OpenIPMI resends will only get in the way.

Note that responses over IPMB will not get timed or resent.

The user may modify the timing values two di�erent ways. The user
an set the default resend and retry

times for a �le des
riptor with the following stru
ture:

stru
t ipmi_timing_parms

{

int retries;

unsigned int retry_time_ms;

};

The retries parm is the number of times the message will be resent. The retry_time_ms is the time

in millise
onds between resends. To get and set the parameters, use the following:

4.2. SYSTEM INTERFACES 37

stru
t ipmi_timing_parms tparms;

rv = io
tl(fd, IPMICTL_GET_TIMING_PARMS_CMD, &tparms);

if (rv == -1)

error handling...

printf("parms were: %d %d", tparms.retries, tparms.retry_time_ms);

tparms.retries = 0; /* No resends */

tparms.retry_time_ms = 1000; /* one se
ond */

rv = io
tl(fd, IPMICTL_SET_TIMING_PARMS_CMD, &tparms);

if (rv == -1)

error handling...

This will set the timing parameters for all future messages. You
an also override the timing on individual

messages.

stru
t ipmi_req_settime

{

stru
t ipmi_req req;

int retries;

unsigned int retry_time_ms;

};

The req is the request as shown previously. Use the following io
tl to perform the request:

rv = io
tl(fd, IPMICTL_SEND_COMMAND_SETTIME, &req_time);

Setting Your Lo
al IPMB Address

Unfortunately, IPMI has no standard way to determing your lo
al IPMB address. It is usually set to 20h

but, espe
ially in bussed systems, the lo
al management
ontroller may have a di�erent address.

If you do not set your IPMB address properly, messages sent out on the IPMB will not have the proper

sour
e address and thus the response will go to the wrong pla
e. To avoid this problem, the OpenIPMI

allows the user to set the lo
al IPMB address and the lo
al LUN. The following shows how to get and set

the IPMB address:

unsigned int ipmb_addr;

rv = io
tl(fd, IPMICTL_GET_MY_ADDRESS_CMD, &ipmb_addr);

if (rv == -1)

error handling...

printf("My address was: %x", ipmb_addr);

ipmb_addr = 0xb2;

38 CHAPTER 4. IPMI INTERFACES

0h Primary IPMB Channel 0 is the primary IPMB bus on the system.

1h-7h

Implementation-

spe
i�

This
hannel may be any type of
hannel, in
luding IPMB, and LAN inter-

fa
es.

8h-Dh Reserved

Eh Present I/F This spe
i�es the
hannel the message is going over. It's not really very

useful, sin
e you have to put the real
hannel in the
ommand to send a

message to it.

Fh System Interfa
e This spe
i�es the system interfa
e, but is really never used.

Table 4.2: Channel Numbers

rv = io
tl(fd, IPMICTL_SET_MY_ADDRESS_CMD, &ipmb_addr);

if (rv == -1)

error handling...

The driver also has io
tls to get and set the LUN, but you should almost
ertainly leave that alone.

4.2.6 The OpenIPMI System Interfa
e

The OpenIPMI library system interfa
e
an be set up with the following fun
tion:

int ipmi_smi_setup_
on(int if_num,

os_handler_t *handlers,

void *user_data,

ipmi_
on_t **new_
on);

The if_num is the spe
i�
 interfa
e number. Generally this is 0, but if a system has more than one

system interfa
e then this will be the spe
i�
 interfa
e number. The handlers is the OS handler data to

use for the
onne
tion (as des
ribed in se
tion 2.2.2). The user_data �eld is put into the user_data �led

in the ipmi_
on_t data stru
ture. A new
onne
tion is returned in new_
on.

The OpenIPMI library understands how to get the lo
al IPMB address for
ertain sytems. If it
an get

the lo
al IPMB address, it will set it automati
ally.

On
e you have a
onne
tion, you
an start it and use it dire
tly. However, usually you pass this to the

domain startup
ode for
reation of a domain, as des
ribed in se
tion 2.5.

4.3 Channels

The IPMI interfa
es on a management
ontroller are
alled \
hannels". These are messaging
hannels. LAN,

IPMB, system interfa
e, and any other messaging interfa
es will ea
h have their own
hannel on the MC.

Messages dire
tly sent to the lo
al management
ontroller do not require any type of
hannel information.

When the user sends a message out to another interfa
e, it must spe
ify the
hannel. This is
alled \bridging".

Channels also may have some type of
on�guration information su
h as users and passwords.

4.4. BRIDGING 39

4.4 Bridging

Intelligent Platform Management Interfa
e (IPMI) does not have any type of automati
 routing. Instead,

ommands and responses are \bridged" between di�erent interfa
es generally using a \Send Message"
om-

mand. So you have to know the route to the destination when you send the message. Generally, this is not a

big deal be
ause only one level is generally bridged (eg system interfa
e to IPMB, Lo
al Area Network (LAN)

interfa
e to IPMB).

Note that OpenIPMI handles most of the bridging work for you. The OpenIPMI address des
ribed in

se
tion 4.14 has address formats for routing messages to the proper pla
es. But knowing what goes on behind

the s
enes
an be helpful, and some of this information is required even with OpenIPMI.

4.4.1 Channels

An interfa
e has the
on
ept of a \
hannel". A
hannel is an independent
ommuni
ation interfa
e. Ea
h

LAN interfa
e, serial interfa
e, IPMB interfa
e, and system interfa
e has its own
hannel number. Messages

are bridged to spe
i�

hannels.

There are 16 spe
i�ed
hannels. Channel 0 is always the primary IPMB
hannel. Channels 1-7 are for

general use, like for LAN, se
ondary IPMB, Intelligent Chassis Management Bus (ICMB), et
. Channels

8-Dh are reserved. Channel Fh is for the system interfa
e. Channel Eh is used for whatever the present

interfa
e is. This is useful be
ause some
ommands take a
hannel as one of their �elds, if you just want to

use the
urrent
hannel you
an put Eh here.

To dis
over the
hannels in a system, the \Get Channel Info"
ommand shown in table 4.3 must be sent

for ea
h possible
hannel.

Request

0

bits 0-3 - Channel number

bits 4-7 - reserved

Response

0 Completion Code

1

bits 0-3 - A
tual
hannel number (if you put Eh in the request, the real
hannel

number is returned here)

bits 4-7 - reserved

40 CHAPTER 4. IPMI INTERFACES

2

bits 0-6 - Channel medium type. Valid values are:

00h - reserved

01h - IPMB (I

2

C)

02h - ICMB version 1.0

03h - ICMB version 0.9

04h - 802.3 (Ethernet)

05h - Asyn
 serial/modem (RS-232)

06h - Other LAN

07h - PCI SMBus

08h - SMBus Versions 1.0/1.1

09h - SMBus Version 2.0

0Ah - reserved for USB 1.x

0Bh - reserved for USB 2.x

0Ch - System Interfa
e

60h-7Fh - OEM

All other values are reserved.

bit 7 - reserved

3

bits 0-4 - Channel proto
ol type. Valid values are:

00h - reserved

01h - IPMB-1.0, used for a
sIPMB, serial/modem basi
 mode, and LAN.

02h - ICMB-1.0, see se
tion 4.6

03h - reserved

04h - IPMI over SMBus

05h - KCS, see se
tion 4.2.2

06h - SMIC, see se
tion 4.2.1

07h - BT from IPMI v1.0, see se
tion 4.2.3

08h - BT from IPMI v1.5, see se
tion 4.2.3

09h - Terminal mode, see se
tion 4.10.3

1Ch-1Fh - OEM

All other values are reserved.

bits 5-7 - reserved

4

This �eld des
ribes session information about the
hannel. See se
tion 4.8 for details

on sessions.

bits 0-5 - The number of sessions that have been a
tivated on a given
hannel. This

is only valid if the
hannel has session support.

bits 6-7 - Session support, values are:

00b -
hannel does not support sessions.

01b -
hannel is single-session.

10b -
hannel is multi-session.

11b -
hannel is sessions based, but may swit
h between single and multiple

sessions.

5-7

Vendor ID, used to spe
ify the IANA number for the organization that de�ned the

proto
ol. This should always be the IPMI IANA, whi
h is 7154 (de
imal), or F2H,

1Bh, and 00H for these bytes.

4.4. BRIDGING 41

8-9

Auxiliary
hannel info.

For
hannel Fh, this is byte 8 is the interrupt for the system interfa
e, byte 9 is the

interrupt for the event message bu�er interfa
e. Valid values are:

00h-0Fh - IRQ 0-15

10h-13h - PCI A-D, respe
tively

14h - SMI

15h - SCI

20h-5Fh - System interrupt 0-62, respe
itively

60h - Assigned by ACPI, SMBIOS, or a plug and play me
hanism.

FFh - No interrupt or unspe
i�ed

All other values are reserved.

For Original Equipment Manufa
turer (OEM)
hannel types, this value is OEM de�ned.

These bytes are reserved for all other
hannel types.

Table 4.3: Get Channel Info Command, NetFN App (06h), Cmd

42h

4.4.2 Sending Bridged Messages

Table 4.4 shows the format of a Send Message
ommand. Note that the spe
 says the response
an have

response data for non-system interfa
e
hannels. However, this is not a
tually the
ase, response data for

LAN and serial
hannels is
arried in a di�erent manner.

Request

0

Channel information, bits are:

0-4 - Channel number

4-5 - reserved

6-7 - tra
king type. See se
tion 4.4.3 for more information. Values are:

00b - No tra
king

01b - Tra
k request

10b - Send raw. This is a test me
hanism or a me
hanism used for transmitting

proprietary proto
ols. It is optional.

11b - reserved

1-n

Message data. The format depends on the
hannel type. See the se
tion on the spe
i�

hannel type for more information.

Response

0

Completion
ode. If transmitting on an IPMB, SMBus, or PCI management bus, the

following return
odes are used to inform the sender of sending problems:

81h - lost arbitration

82h - Bus Error

83h - NAK on Write

Table 4.4: Send Message Command, NetFN App (06h), Cmd 34h

42 CHAPTER 4. IPMI INTERFACES

4.4.3 Message Tra
king

Message tra
king is relatively simple, but diÆ
ult to understand from the spe
. This se
tion should
lear

that up.

Messages sent from the system interfa
e to the IPMB interfa
e do not have to be tra
ked. Instead, the

sender sets the requester (sour
e) LUN to 2. In the response, the responder will thus set the requester

(destination) LUN to 2. If an MC re
eives a message with a destination LUN of 2, it will route it ba
k to

the system interfa
e. Simple to do and no state is required in the MC.

Other
hannels
annot do this. They must instead rely on message tra
king to handle the responding.

With message tra
king, the MC reformats the message with its own information and remembers the original

message information. When the response
omes ba
k, the MC will restore the original information in the

response. Note that the sender must still format the message properly for the destination
hannel.

4.4.4 Re
eiving Asyn
hronous Messages on the System Interfa
e

Asyn
hronous messages to the system interfa
es (ones with the destination LUN set to 2), both
ommands

and responses, have no dire
t route to be sent up the system interfa
e. Instead, they go into the re
eive

message queue and the software is informed through the system interfa
e that something is in the queue.

The software must then fet
h the message from the queue using the Get Message
ommand des
ribed in

table 4.5.

Request

-

Response

0 Completion
ode

1

Channel information, bits are:

0-4 - Channel number

4-7 - Inferred privilege level for the message. Table 4.18 des
ribes the privilege levels.

If the message is re
eived from a session-oriented
hannel, this will generally be

set to the maximum privilege level of the session.

If per-message authenti
ation is enabled, this will be set to User privilege for

unauthenti
ated messages.

The privilege will be then lowered based on the privilege limit set by the Set

Session Privilege Level
ommand.

For messages from sessionless
hannels, this will always be set to \None".

Privilege levels are:

0 - None (unspe
i�ed)

1 - Callba
k

2 - User

3 - Operator

4 - Admin

5 - OEM

2-n

Message data. The format depends on the
hannel type. See the se
tion on the spe
i�

hannel type for more information.

Table 4.5: Get Message Command, NetFN App (06h), Cmd 33h

4.4. BRIDGING 43

To know if a message is waiting in the asyn
hronous queue, the interfa
e will generally set some
ag so

that the user may immediately know. The software will then send a Get Message Flags
ommand (table

4.6) to know �nd out what is up. A bit will be set in the response to tell it something is in the queue.

Request

-

Response

0 Completion
ode

1

Flags. The bits are:

0 - message(s) in the re
eive message queue.

1 - Event message bu�er is full

2 - reserved

3 - Wat
hdog pre-timeout

4 - reserved

5 - OEM 0

6 - OEM 1

7 - OEM 2

Table 4.6: Get Message Flags Command, NetFN App (06h), Cmd

31h

4.4.5 System Interfa
e to IPMB Bridging

For bridging from a system interfa
e to IPMB, format an IPMB message as des
ribed in se
tion 4.5 and set

the requester LUN to 2. Then issue a Send Message
ommand with the IPMB message as the data to the

proper IPMB
hannel; the message will be routed out onto the IPMB bus.

The response will
ome ba
k to the MC with the requester LUN set to 2. This will route the message

ba
k to the system interfa
e, where it will be put into the re
eive message queue. The software running on

the system must re
eive the message from the queue using the Get Message
ommand des
ribed in se
tion

4.4.4.

The response data will be in the same IPMB format.

4.4.6 LAN to IPMB Bridging

Unfortunately, the des
ription in the spe
 of the LAN proto
ol is very
onfusing. An errata was introdu
ed

that, instead of
learing things up, added another possible interpretation. Four popular interpretations are

ommon. Fortunately, one pie
e of software
an be written to work with three of these possibilities, and the

fourth possibility is rather broken. The three main possibilities are:

� Response
omes ba
k in the Send Message response

� Separate Send Message and IPMB responses

� Separate Send Message and Translated responses

One might also infer from the spe
 that you implement the re
eive message queue on the LAN interfa
e

and poll it with the Get Message
ommand. It is yet another possible interpretation, but the side e�e
ts of

this are very bad. This will not be dis
ussed any more.

44 CHAPTER 4. IPMI INTERFACES

In the examples below, a Get Devi
e ID is en
asulated in a Send Message and sent to IPMB address

C0h. For these examples, the RMCP headers and authenti
ation information are skipped, we start dire
tly

with the IPMI message. The sent data is always the same, and is:

Byte Value Des
ription

0 20h LAN Responder address, this is the BMC's IPMB, generally

1 18h LAN Responder LUN in bits 0-1 (0 in this
ase), Send Message NetFN in

bits 2-7 (6 in this
ase)

2 C8h Che
ksum for the previous two bytes

3 81h LAN Requester address (this is the value for system management software)

4 B8h Requester LUN in bits 0-1 (0 in this
ase), Sequen
e number in bits 2-7 (2eh

in this
ase). Note that the sequen
e number is returned in the response

as-is and helps di�erentiate the messages.

5 34h The
ommand, a Send Message for NetFN 6.

6 40h The
hannel number in bits 0-4 (0 in this
ase), and message tra
king sele
-

tion in bits 6-7 (10b in this
ase, message tra
king is on).

7 C0h The destination IPMB address

8 18h IPMB Responder LUN in bits 0-1 (0 in this
ase), Get Devi
e ID NetFN in

bits 2-7 (6 in this
ase)

9 28h Che
ksum for the previous two bytes

10 20h Sour
e address, the IPMB address of the BMC.

11 BEh Requester LUN in bits 0-1 (2 in this
ase, although it generally doesn't

matter), Sequen
e number in bits 2-7 (2fh in this
ase).

12 01h The
ommand, a Get Devi
e Id for NetFN 6

13 25h Che
ksum for the IPMB message (from bytes 7-12)

14 49h Che
ksum for the whole message

If you look at this, a lot of the
ontents seem pretty silly. The addresses in the LAN header, for instan
e,

are pretty useless, but probably there for
onsisten
y.

Response
omes ba
k in the Send Message response

In this possibility, the send message response
ontains the message data response. This seems to be implied

in the text of the Send Message
ommand, and is
ertainly the most eÆ
ient way to handle this. However,

it does not seem to be the a

epted way.

As an example, the following shows the response to the Get Devi
e ID previously sent:

Byte Value Des
ription

0 81 Requester Address

1 1
 LAN Requester LUN in bits 0-1 (0 in this
ase), Send Message response

NetFN in bits 2-7 (7 in this
ase)

2 63 Che
ksum for the previous two bytes

3 20 Responder Address

4 b8 Responder LUN in bits 0-1 (0 in this
ase), Sequen
e number in bits 2-7

(2eh in this
ase).

4.4. BRIDGING 45

5 34 The
ommand, a Send Message response in this
ase.

6 00 Completion
ode

7 20 IPMB Destination address (the BMC's IPMB address)

8 1E IPMB Requester LUN in bits 0-1 (2 in this
ase), Send Message response

NetFN in bits 2-7 (7 in this
ase)

9 C2 Che
ksum for the previous two bytes

10 C0 Responder IPMB address

11 BC Requester LUN in bits 0-1 (0 in this
ase), Sequen
e number in bits 2-7 (2fh

in this
ase).

12 01 Command, a Get Devi
e ID response

13 00 message data

14 00 message data

15 00 message data

16 01 message data

17 05 message data

18 51 message data

19 29 message data

20 57 message data

21 01 message data

22 00 message data

23 00 message data

24 09 message data

25 01 message data

26 01 message data

27 00 message data

28 00 message data

29 94 Che
ksum for the entire message

That's it, the Send Message response
ontains all the data.

Separate Send Message and IPMB responses

In this possibility, a Send Message response
omes ba
k with no data and the Send Message header data

in the response header, then a separate message
omes ba
k with the IPMB parameters in the header. For

instan
e, in the �rst message the sour
e is the BMC, in the se
ond message the sour
e is the IPMB sender.

The following is the �rst message, the Send Message response, from this format:

Byte Value Des
ription

0 81 Requester Address

1 1
 LAN Requester LUN in bits 0-1 (0 in this
ase), Send Message response

NetFN in bits 2-7 (7 in this
ase)

2 63 Che
ksum for the previous two bytes

3 20 Responder Address

46 CHAPTER 4. IPMI INTERFACES

4 b8 Responder LUN in bits 0-1 (0 in this
ase), Sequen
e number in bits 2-7

(2eh in this
ase).

5 34 The
ommand, a Send Message response in this
ase.

6 00 Completion
ode

7 f4 Che
ksum for the whole message.

The following is the se
ond message, the IPMB response:

Byte Value Des
ription

0 20 IPMB Destination address (the BMC's IPMB address)

1 1E IPMB Requester LUN in bits 0-1 (2 in this
ase), Send Message response

NetFN in bits 2-7 (7 in this
ase)

2 C2 Che
ksum for the previous two bytes

3 C0 Responder IPMB address

4 BC Requester LUN in bits 0-1 (0 in this
ase), Sequen
e number in bits 2-7 (2fh

in this
ase).

5 01 Command, a Get Devi
e ID response

6 00 message data

7 00 message data

8 00 message data

9 01 message data

10 05 message data

11 51 message data

12 29 message data

13 57 message data

14 01 message data

15 00 message data

16 00 message data

17 09 message data

18 01 message data

19 01 message data

20 00 message data

21 00 message data

22 a0 Che
ksum for the whole message

Noti
e that in this se
ond response, the destination address, LUNs, sequen
e numbers, et
. are from the

IPMB message, not from the original LAN message.

Separate Send Message and Translated responses

In this possibility, a Send Message response
omes ba
k with no data, then a separate message
omes ba
k

with the data, but the data in the se
ond message has the same header information as the �rst, with a

di�erent
ommand. This
ould be inferred from the errata, but it makes things more diÆ
ult to tra
k. For

instan
e, if you en
apsulated a Send Message
ommand inside a Send Message, the se
ond response would

4.4. BRIDGING 47

have the same
ommand number as the �rst, so it would be harder to tell the �rst response from the se
ond.

The �rst response for the Get Devi
e ID would be:

Byte Value Des
ription

0 81 Requester Address

1 1
 LAN Requester LUN in bits 0-1 (0 in this
ase), Send Message response

NetFN in bits 2-7 (7 in this
ase)

2 63 Che
ksum for the previous two bytes

3 20 Responder Address

4 b8 Responder LUN in bits 0-1 (0 in this
ase), Sequen
e number in bits 2-7

(2eh in this
ase).

5 34 The
ommand, a Send Message response in this
ase.

6 00 Completion
ode

7 f4 Che
ksum for the whole message.

This is the same as the previous example. However, the se
ond response would be:

Byte Value Des
ription

0 81 Requester Address

1 1
 LAN Requester LUN in bits 0-1 (0 in this
ase), Send Message response

NetFN in bits 2-7 (7 in this
ase)

2 63 Che
ksum for the previous two bytes

3 20 Responder Address

4 b8 Responder LUN in bits 0-1 (0 in this
ase), Sequen
e number in bits 2-7

(2eh in this
ase).

5 01 Command, a Get Devi
e ID response

6 00 IPMB
ompletion
ode

7 00 message data

8 00 message data

9 01 message data

10 05 message data

11 51 message data

12 29 message data

13 57 message data

14 01 message data

15 00 message data

16 00 message data

17 09 message data

18 01 message data

19 01 message data

20 00 message data

21 00 message data

22 44 Che
ksum for the whole message

Noti
e that the header information, ex
ept for the
ommand, is from the LAN header, not from the

48 CHAPTER 4. IPMI INTERFACES

IPMB header.

4.4.7 System Interfa
e to LAN

TBD - write this, use the formats des
ribed in the send/re
eive message
ommands.

4.5 IPMB

IPMB provides the main
hannel for transferring messages around an IPMI system. It is a message bus that

works somewhat like Ethernet, it is a CSMA (
arrier-sense multiple a

ess) system. It does
he
k to see if

another sender is transmitting before sending, and will wait for that sender to
omplete before starting to

transmit. However, it does not have
ollision dete
tion; so if two MCs attempt to transmit at the same time,

both messages will be lost. Be
ause of this, IPMB does not s
ale very well;
areful use needs to be made of

the bandwith on the bus.

The format of an IPMB message of n bytes is:

0

Destination IPMB address

1

Bits 0-1 - Destination LUN

Bits 2-7 - NetFN

2 Che
ksum for bytes 0-1

3

Sour
e IPMB address

4

Bits 0-1 - Sour
e LUN

Bits 2-7 - Sequen
e Number

5

Command

6 .. n-2 Message Contents

n-1 Che
ksum for the whole message

Note that for
ommands, the \destination LUN" will be
alled the \responder LUN" and the \sour
e

LUN" will be
alled the \requester LUN." For responses, the \destination LUN" will be
alled the \requester

LUN" and the \sour
e LUN" will be
alled the \responder LUN." IPMB is a peer-to-peer proto
ol, but

there is a strong master-slave sentiment in IPMI.

Unfortunately, IPMI does not have any type of routing handling or transparen
y of messages. To send a

message out on the IPMB, you en
apsulate the entire IPMB message in a Send Message
ommand and send

it over the proper
hannel.

Sin
e IPMB
an lose messages, the OpenIPMI devi
e driver implements a resend me
hanism on
ommands

sent over IPMB; if a response is not seen withing a given period of time, the
ommand will be resent. This

will be done a few times before an error is returned.

4.5.1 IPMB Broad
ast

One spe
ial type of message is the broad
ast IPMB message. This message is exa
tly like a normal IPMB

message, but it has a 0 byte prepended to the message. This
an only be a Get Devi
e Id
ommand. It

is used to dis
over management
ontrollers in the system. Broad
ast is a really bad name, be
ause it will

not a
tually broad
ast, it will go to the IPMB address in the se
ond byte of the message. This is used for

dis
overy be
ause it will not have any e�e
t on I

2

C devi
es on the bus, but IPMI devi
es will do a normal

4.6. ICMB 49

response.

Many IPMI systems do not
orre
tly implement broad
ast; it seems to be an oft ignored part of the spe
.

4.5.2 OpenIPMI and IPMB

The OpenIPMI driver and library handle the details of IPMB for the user. To send a message over IPMB,

the user
reates an OpenIPMI IPMB address as des
ribed in se
tion 4.14 and sends a normal OpenIPMI

message. The library and driver take
are of sele
ting the sequen
e numbers, formatting the messages,

tra
king and de
oding the response, and resending messages.

4.6 ICMB

TBD - write this.

4.7 SMBus

TBD - write this.

4.8 Session Support

TBD - write this.

4.9 LAN

The IPMI LAN interfa
e allows users to
onne
t to IPMI systems over an Ethernet interfa
e. This
an

generally even be done when the system is turned o�, although it probably has to be plugged in. This lets

you do things like power
ontrol the system and reset the main pro
essor even when the operating system is

not operational on the system.

The IPMI LAN proto
ol runs over a subset of the Remote Management Control Proto
ol (RMCP)

proto
ol. RMCP is de�ned in RMCP[1℄.

The IPMI LAN is not well de�ned in the spe
. Many valid interpretations of the spe
 were possible. Some

errata has been issued, but that really only added one more possible interpretation. OpenIPMI implements

the three di�erent
ommon interpretations of the spe
. They
an interwork seamlessly, so it is not a problem.

TBD - des
ribe the proto
ol in detail.

4.9.1 LAN Con�guration

Most systems have tools to
on�gure the IPMI LAN interfa
e. IPMI has a built-in way to do this, too,

through a set of tables.

LAN Con�guration Commands

To set up the LAN
on�guration table, the
ommand shown in table 4.14 is used to set parameters.

50 CHAPTER 4. IPMI INTERFACES

Request

0

Bits 0-3 - Channel Number

Bits 4-7 - reserved

1 Parameter Sele
tor. This sele
ts the entry in the table that you want to set.

2-n

The data for the parameter. You must look up the entry in table 4.16 for the exa
t

ontents, it depends on whi
h entry you are setting.

Response

0

Completion
ode. Standard
ompletion
odes, plus:

80h - Parameter not supported

81h - Attempt to set the \set in progress' value (parm 0) when the parameter is not in

the free (set
omplete) state.

82h - Attempt to write a read-only parameter.

Table 4.14: Set LAN Con�guration Parameters Command, NetFN

Transport (0Ch), Cmd 01h

Table 4.15 shows the
ommand used to get LAN parameters.

Request

0

Bits 0-3 - Channel Number

Bits 4-6 - reserved

Bit 7 - If 1, only get parameter revision

1 Parameter Sele
tor. This sele
ts the entry in the table that you want to get.

2

Set Sele
tor. Some parameters are in an array, this tells whi
h array element to set.

Set to zero if the parameter does not have a set sele
tor.

3

Blo
k Sele
tor. Some parameters have two levels of arrays (an array inside of the array).

The Set Sele
tor is the �rst level array spe
i�er, this is the se
ond level. No standard

LAN parameters use this, although OEM ones might. Set to zero if the parameter does

not have a blo
k sele
tor.

Response

0

Completion
ode. Standard
odes, plus:

80h - parameter not supported

1

Parameter revision. Format is:

Bits 0-3 - Oldest revision parameter is ba
kward
ompatible with

Bits 4-7 - Current parameter revision

2-n

Parameter data. This will not be present if bit 7 of byte 0 of the response is set to 1.

The
ontents of this depends on the parti
ular parameter being fet
hed, see table 4.16

for the parameters.

Table 4.15: Get LAN Con�guration Parameters Command, NetFN

Transport (0Ch), Cmd 02h

The LAN Con�guration Table

The LAN Con�guration table has an unusual lo
king me
hanism (although it is usual for IPMI). Parameter

zero is a lo
k. If you set the value to one, it will only su

eed if the value is zero. Thus, to lo
k the table, you

4.9. LAN 51

set the value to one until it su

eeds. You then set it to zero when you are done. This lo
king me
hanism

leads to problem if the lo
ker dies while it holds the lo
k, so you probably need some way to override the

lo
k if this happens. The lo
k does not a
tually keep anyone from
hanging the data, it is simply a
ommon

me
hanism to mutual ex
lusion. Note also that the lo
k has a \
ommit" me
hanism, writing two to the lo
k

will
ommit the
ontents if the system supports it. If the system supports rollba
k, setting the value to zero

will rollba
k and not
ommit the
hanges you made. So for
orre
tness, you should write a two when you

are
omplete, and if that fails then write a zero.

All network parameters su
h as IP address, port, and MAC address are in network order, also
alled big

endian or most signi�
ant byte �rst. Unless marked \volatile", all of these will survive removal of power.

Table 4.16: LAN Con�guration Parameters

Parameter # Des
ription

Set In Progress

(volatile)

0 Used to indi
ate that the parameters are being updated. Bits 2-7 are

reserved. Bits 0-1 have the following values:

00b - set
omplete. This is the state the system
omes up in. This

means that any user is �nished updating the parameters. If roll-

ba
k is implemented, setting this value will
ause any
hanges

made sin
e last setting this value to \set in progress" to be un-

done.

01b - set in progress. A user will set this value to inform others that

it is updating these parameters. This value
an only be set if the

urrent value is \set
omplete".

10b -
ommit write (optional). This will
ommit any
hanges that

are pending and go to \set
omplete" state. Some systems may

not support this, if setting this returns an error you should set

this value to \set
omplete" by hand.

Authenti
ation Type

Support (Read only)

1 A read only �eld showing whi
h authenti
ation types are supported.

The format for this is de�ned in table 4.31.

Authenti
ation Type

Enables

2 A 5 byte �eld that holds the allowed authenti
ation type for ea
h priv-

ilege level. The bytes are:

byte 0 -
allba
k

byte 1 - user

byte 2 - operator

byte 3 - admin

byte 4 - oem

The format for ea
h byte is de�ned in table 4.31.

IP Address 3 A 4 byte �eld holding the IP address, in network order. This is the

lo
al IP address used for this parti
ular
hannel. You only need to set

this if parameter 4 is set to \stati
 address".

52 CHAPTER 4. IPMI INTERFACES

Table 4.16: LAN Con�guration Parameters

Parameter # Des
ription

IP Address Sour
e 4 One byte �eld telling the BMC where to get its IP address. Bits 4-7

are reserved. Values for bits 0-3 are:

0 - unspe
i�ed (I don't know what that means)

1 - stati
 address,
on�gured from parameter 3

2 - get address from DHCP

3 - get address from BIOS or system software

4 - get address by some other method

As you probably
an tell, stati
 address and DHCP are really the only

useful values.

MAC Address 5 A 6 byte �eld. This is the Ethernet Media A

ess Code? (MAC)

address to use as the sour
e when transmitting pa
kets, in network

order. You must set this value properly.

Subnet Mask 6 A 4 byte �eld holding the subnet mask for the IP
onne
tion, in network

order.

IPv4 Header Parms 7 A 3 byte �eld
ontrolling some parameters in the IP header. The bytes

are:

byte 0 - time to live (default 40h) - The number of network hops

allowed for IP pa
kets sent by the BMC.

byte 1 bits 0-4 - reserved

bits 5-7 -
ags. Sets the of the
ags �eld in the IP header.

The default value is 010b, or do not fragment.

byte 2 This is the setting of the 8-bit type of servi
e �eld in the IP

header. Only one of bits 1-4 should be set.

bit 0 - unused, set to zero.

bit 1 - minimize monetary
ost

bit 2 - maximize reliability

bit 3 - maximize throughput

bit 4 - minimize delay

bits 5-7 - Pre
eden
e, whi
h is unused by IP systems now.

The default value is 00010000b.

Primary RMCP port

number (optional)

8 A 2 byte �eld holding the UDP port number to use for primary RMCP.

Default value is 623.

Se
ondary RMCP

port number (op-

tional)

9 A 2 byte �eld holding the UDP port number to use for the se
ure aux

bus RMCP port. IPMI does not use this, but it is here for
omplete-

ness. Default value is 664.

4.9. LAN 53

Table 4.16: LAN Con�guration Parameters

Parameter # Des
ription

BMC-generated ARP

ontrol (optional)

10 A 1 byte �eld
ontrolling how the BMC generates ARPs. If a user

attempts to set an unsupported �eld, the BMC will return an error.

The bits are:

bit 0 - set to 1 to enable BMC generated gratuitous ARPs.

bit 1 - set to 1 to enable BMC generated ARP responses.

bits 2-7 - reserved

Gratuitous ARP in-

terval (optional)

11 A one byte �eld holding the interval between gratuitous ARPs. The

interval is spe
i�ed in 500 millise
ond in
rements, with a 10% a

ura
y.

If this is not implemented, the interval will be 2 se
onds.

Default gateway ad-

dress

12 A 4 byte �eld holding the IP address of the default gateway, in network

order. The BMC will send pa
kets to this address if the destination is

not on its subnet, if this gateway is
hosen as the gateway to use.

Default gateway

MAC address

13 A 6 byte �led holding the Ethernet MAC address to use in the desti-

nation when sending pa
kets to the default gateway.

Ba
kup gateway ad-

dress

14 A 4 byte �eld holding the IP address of the ba
kup gateway, in network

order. The BMC will send pa
kets to this address if the destination is

not on its subnet, if this gateway is
hosen as the gateway to use.

Ba
kup gateway

MAC address

15 A 6 byte �led holding the Ethernet MAC address to use in the desti-

ination when sending pa
kets to the ba
kup gateway.

Community String 16 An 18 byte �eld holding the SNMP
ommunity string to use in traps

send by the BMC. The default is \publi
".

Number of Destina-

tions (read only)

17 The number of entries in the destination type and destination address

tables in parameters 18 and 19.

54 CHAPTER 4. IPMI INTERFACES

Table 4.16: LAN Con�guration Parameters

Parameter # Des
ription

Destination type 18 This is an array of destination types, ea
h 4 bytes long. The �rst byte

in bits 0-3 is the index into the array, you put the index here when

you set the value, and that index gets set. This index
omes from the

alert poli
y entry destination �eld de�ned in table 4.38. Destination 0

is spe
ial and used by the Alert Immediate
ommand as des
ribed in

se
tion 4.13.5. The �elds are:

byte 0 bits 0-3 - The index into the array

bits 4-7 - reserved

byte 1 The destination type. The bits are:

bits 0-2 - Destination type, values are:

000b - PET Trap

001b-101b - reserved

110b - OEM 1

111b - OEM 1

bits 3-6 - reserved

bit 7 - If zero, the alert does not need to be a
knowledged to be

onsidered su

essful. If 1, the alert needs to be a
knowl-

edged with a PET A
knowledge Command as de�ned in

table 4.35.

byte 2 PET Retry Time. This spe
i�ed the amount of time between

resends when waiting for an a
knowledge of the sent trap.

byte 3 Max PET Retries.

bits 0-2 - The maximum number of retries of a trap before

giving up.

bits 3-7 - reserved

4.9. LAN 55

Table 4.16: LAN Con�guration Parameters

Parameter # Des
ription

Destination address 19 This is an array of destination address, ea
h 13 bytes long. The �rst

byte in bits 0-3 is the index into the array, you put the index here when

you set the value, and that index gets set. This index
omes from the

alert poli
y entry destination �eld de�ned in table 4.38. Destination 0

is spe
ial and used by the Alert Immediate
ommand as des
ribed in

se
tion 4.13.5. The �elds are:

byte 0 bits 0-3 - The index into the array

bits 4-7 - reserved

byte 1 The address format:

bits 0-3 - The address type, 0h is the only valid value, spe
i-

fying IP.

bits 4-7 - reserved

byte 2 Gateway sele
tor

bit 0 0 - use the default gateway

0 - use the ba
kup gateway

bits 1-7 - reserved

bytes 3-6 The IP address to send the alert to when using this des-

tination, in network order.

bytes 7-12 The Ethernet MAC address to send the alert to when

using this destination, in network order.

OEM 192+ Parameters 192 to 255 are OEM parameters. The rest of the parame-

ters are reserved.

4.9.2 ARP
ontrol

TBD - write this, in
lude
ommand, talk about
on�g table entries.

4.9.3 LAN Messaging

TBD - write this, des
ribe the formatting of LAN messages

4.9.4 OpenIPMI LAN Con�guration

OpenIPMI has some support for handling the LAN
on�guration. This is de�ned in the ipmi_lanparm.h

in
lude �le; it has all the details on how to use this.

To
on�gure the LAN parameters for a BMC, you must �rst allo
ate a lanparm stru
ture with:

int ipmi_lanparm_allo
(ipmi_m
_t *m
,

unsigned int
hannel,

ipmi_lanparm_t **new_lanparm);

The
hannel is the IPMI
hannel number of the LAN port you are
on�guring. Generally, if a server has

more than one port, it will have a separate
hannel for ea
h port, you will have to �nd the
hannel numbers

from the manufa
turer, although
hannels 6 and 7 are
ommonly used as the LAN
hannels.

56 CHAPTER 4. IPMI INTERFACES

On
e you have a lanparm stru
ture, you
an get and set individual parms assuming you follow all the

rules asso
iated with the
on�guration table. However, there is a mu
h easier way that OpenIPMI provides.

After you have allo
ated a lanparm stru
ture these, the fun
tion:

typedef void (*ipmi_lan_get_
onfig_
b)(ipmi_lanparm_t *lanparm,

int err,

ipmi_lan_
onfig_t *
onfig,

void *
b_data);

int ipmi_lan_get_
onfig(ipmi_lanparm_t *lanparm,

ipmi_lan_get_
onfig_
b done,

void *
b_data);

will fet
h the full
urrent
on�guration. Note that when you
all this, you will be holding a lo
k if it su

eeds.

You must release the lo
k when you are done, or no one else will be able to
hange the
on�guration unless

they for
efully remove your lo
k.

At this point, you
an
hange the value in the
onfig stru
ture. But those
hanges are only lo
al. When

you have
omplete making the
hanges, you must
ommit them ba
k to the BMC. To do this,
all:

int ipmi_lan_set_
onfig(ipmi_lanparm_t *lanparm,

ipmi_lan_
onfig_t *
onfig,

ipmi_lanparm_done_
b done,

void *
b_data);

After this point in time, the
onfig
annot be used for future set operation, be
ause it has been
ommitted.

You must re-read it to modify parameters again.

If you do not wish to modify the
on�guration, you still need to
lear the lo
k. Do that with:

int ipmi_lan_
lear_lo
k(ipmi_lanparm_t *lanparm,

ipmi_lan_
onfig_t *
onfig,

ipmi_lanparm_done_
b done,

void *
b_data);

On
e you are done with the
onfig stru
ture, you must free it with:

void ipmi_lan_free_
onfig(ipmi_lan_
onfig_t *
onfig);

When you are done with a lanparm stru
ture, you must free it with:

int ipmi_lanparm_destroy(ipmi_lanparm_t *lanparm,

ipmi_lanparm_done_
b handler,

void *
b_data);

If the lanparm stru
ture
urrently has operations pending on it, the destroy will be delayed until those

operations are
omplete. The handler will be
alled when the a
tual destroy takes pla
e.

4.9.5 The OpenIPMI LAN Interfa
e

The LAN interfa
e is
ompli
ated, but OpenIPMI handles most of the details for the user. A single fun
tion

sets up the interfa
e. Unfortunately, that fun
tion takes a huge number of parameters due to the large

number of things required to
on�gure a IPMI LAN
onne
tion. The fun
tion is:

4.10. SERIAL 57

int ipmi_ip_setup_
on(
har *
onst ip_addrs[℄,

har *
onst ports[℄,

unsigned int num_ip_addrs,

unsigned int authtype,

unsigned int privilege,

void *username,

unsigned int username_len,

void *password,

unsigned int password_len,

os_handler_t *handlers,

void *user_data,

ipmi_
on_t **new_
on);

The parameters are:

ip addrs An array of IP addresses. Ea
h IP address must be an address that
onne
ts to the exa
t same

management
ontroller. If you need
onne
tions to multiple management
ontrollers, you must set up

two di�erent
onne
tions and use multiple
onne
tions in the domain.

ports An array of UDP ports for ea
h IP address. This is de�ned as 623 in the IPMI spe
, but is here for

exibility.

num ip addrs The number of IP addresses and ports.

authtype The authenti
ation type to use for the
onne
tion. Table 4.30 des
ribes the di�erent authenti
ation

types.

privilege The privilege level to
onne
t at. Table 4.18 des
ribes the di�erent privilege levels.

username The username to
onne
t as. See se
tion 4.11 for details on users.

username len The length of the username. Required be
ause usernames
an be binary and
ontain zeros.

password The password for the user. See se
tion 4.11 for details on users.

password len The length of the password. Required be
ause usernames
an be binary and
ontain zeros.

handlers The OS handler to use for this domain. See se
tion 2.2.2 for more details.

user data This is a �eld that will be put into the
onne
tion data stru
ture of the same name. This is for

user use and OpenIPMI will not use it.

new
on The new
onne
tion is returned in this �eld.

On
e you have a
onne
tion, it works like a normal
onne
tion as de�ned in se
tion 4.1.

4.10 Serial

TBD - OpenIPMI does not support serial interfa
es, but this needs to be written someday.

58 CHAPTER 4. IPMI INTERFACES

IPMI PRIVILEGE CALLBACK (1) The user is only allowed to request that the IPMI system
all ba
k

home.

IPMI PRIVILEGE USER (2) A \read-only" user. The user
an look at system state, but not
hange

anything. For instan
e, the user
an fet
h SEL entries, but not delete

them.

IPMI PRIVILEGE OPERATOR (3) This user
an do everything but
on�guration
ommands. For instan
e,

they
an
lear the SEL and
on�gure sensors, but they
annot add users

or
on�gure LAN parameters.

IPMI PRIVILEGE ADMIN (4) This user
an do pretty mu
h anything on an IPMI system.

IPMI PRIVILEGE OEM (5) Unde�ned by the spe
, it's whatever the OEM wants.

Table 4.18: Privilege levels in IPMI

4.10.1 Serial Con�guration

4.10.2 Dire
t Serial

4.10.3 Terminal Mode

4.10.4 Serial over PPP

Table 4.17: Serial Con�guration Parameters

Parameter # Des
ription

4.11 User Management

IPMI uses users for a

ess
ontrol on IPMI systems with LAN or serial interfa
es. The lo
al system interfa
e

has no a

ess
ontrols, but the more external interfa
es require authenti
ation to be able to use the interfa
e.

Users may be able to authenti
ate links and send and re
eive IPMI messages.

Users have a de�ned maximum privilege level. They may not negotiate a
onne
tion with a higher

privilege level than that. The privilege levels are de�ned in table 4.18 and they a�e
t what messages the

system will a

ept from the user. In addition to that, the user may be restri
ted to only work in a
allba
k

session.

The systems have two ways of identifying users: by number and by name. A BMC will have a set of

users (up to 63, but the BMC may have a lower limit) indexed by number. User 0 is reserved. User 1 is

a spe
ial user that is de�ned to not have a name. This provides a simple but inse
ure way to a

ess the

system, espe
ially if user 1 does not have a password. All the other user numbers may be assigned names.

The name is used for system authenti
ation.

Users may have passwords assigned to them. If no password is assigned, then an empty password is able

to authenti
ate the user. The passwords are used to authenti
ate the link and the messages.

The user number, name, password and enable are global for all
hannels in an BMC. The link/message

authenti
ation enables are done per-
hannel.

4.11. USER MANAGEMENT 59

4.11.1 User management in OpenIPMI

Enabling a user is a
ompli
ated pro
ess. The user must have a name and password assigned. It must be

set with the proper authenti
ation enables. Then it must be enabled with a separate enable
ommand.

Fortunately, OpenIPMI handles a lot of this pro
ess for you. The fun
tions are found in the ipmi user.h

in
lude �le. You may get a list of users (or a spe
i�
 user in a one-user list) with the
ommand:

typedef void (*ipmi_user_list_
b)(ipmi_m
_t *m
,

int err,

ipmi_user_list_t *list,

void *
b_data);

#define IPMI_MC_ALL_USERS 0

int ipmi_m
_get_users(ipmi_m
_t *m
,

unsigned int
hannel,

unsigned int user,

ipmi_user_list_
b handler,

void *
b_data);

Using IPMI_MC_ALL_USERS will fet
h all users, otherwise the user spe
i�ed will be used. The
hannel-spe
i�

information will be fet
hed for only the given
hannel.

On
e you have the list, you
an fet
h information from the list:

int ipmi_user_list_get_
hannel(ipmi_user_list_t *list, unsigned int *
hannel);

int ipmi_user_list_get_max_user(ipmi_user_list_t *list, unsigned int *max);

int ipmi_user_list_get_enabled_users(ipmi_user_list_t *list, unsigned int *e);

int ipmi_user_list_get_fixed_users(ipmi_user_list_t *list, unsigned int *f);

You
an also fet
h individual users from the user list. Note that if you fet
h a user this way, you must

free it with ipmi_user_free().

unsigned int ipmi_user_list_get_user_
ount(ipmi_user_list_t *users);

ipmi_user_t *ipmi_user_list_get_user(ipmi_user_list_t *list,

unsigned int idx);

On
e you fet
h a user, you
an get information from it. You
an also set information for the user. This

only sets the lo
al
opy, it must be written out into the real data to a
tivate it on the BMC.

int ipmi_user_get_
hannel(ipmi_user_t *user, unsigned int *
hannel);

/*

* Get/set the number for the user.

*/

int ipmi_user_get_num(ipmi_user_t *user, unsigned int *num);

int ipmi_user_set_num(ipmi_user_t *user, unsigned int num);

/*

* Get/set the name for the user. When getting the name, the pointer

* to "len" should point to a value of the length of "name". "len"

* will be updated to the a
tual number of
hara
ters
opied. The

60 CHAPTER 4. IPMI INTERFACES

* password set is for 16-byte passwords, the password2 is for 20-byte

* passwords.

*/

int ipmi_user_get_name_len(ipmi_user_t *user, unsigned int *len);

int ipmi_user_get_name(ipmi_user_t *user,
har *name, unsigned int *len);

int ipmi_user_set_name(ipmi_user_t *user,
har *name, unsigned int len);

int ipmi_user_set_password(ipmi_user_t *user,
har *pw, unsigned int len);

int ipmi_user_set_password2(ipmi_user_t *user,
har *pw, unsigned int len);

/*

* Various bits of information about a user, this is per-
hannel.

*/

int ipmi_user_get_link_auth_enabled(ipmi_user_t *user, unsigned int *val);

int ipmi_user_set_link_auth_enabled(ipmi_user_t *user, unsigned int val);

int ipmi_user_get_msg_auth_enabled(ipmi_user_t *user, unsigned int *val);

int ipmi_user_set_msg_auth_enabled(ipmi_user_t *user, unsigned int val);

int ipmi_user_get_a

ess_
b_only(ipmi_user_t *user, unsigned int *val);

int ipmi_user_set_a

ess_
b_only(ipmi_user_t *user, unsigned int val);

int ipmi_user_get_privilege_limit(ipmi_user_t *user, unsigned int *val);

int ipmi_user_set_privilege_limit(ipmi_user_t *user, unsigned int val);

int ipmi_user_get_session_limit(ipmi_user_t *user, unsigned int *val);

int ipmi_user_set_session_limit(ipmi_user_t *user, unsigned int val);

/*

* The enable for the user. Note that the enable value
annot be

* fet
hed and will return an error unless set.

*/

int ipmi_user_get_enable(ipmi_user_t *user, unsigned int *val);

int ipmi_user_set_enable(ipmi_user_t *user, unsigned int val);

To a
tually set the user information on the BMC, the following
ommand
an be used:

int ipmi_m
_set_user(ipmi_m
_t *m
,

unsigned int
hannel,

unsigned int num,

ipmi_user_t *user,

ipmi_m
done
b handler,

void *
b_data);

Note that OpenIPMI keeps tra
k of what has
hanged in the user and will only write out the
hanged

information. If you wish to rewrite all information in the user (like if you want to write the same information

to a new user number) you
an
all ipmi_user_set_all() with the user to set the
hanged bits for all items.

Then you
an write the user out.

4.11.2 User management
ommands

Table 4.19 on the next page shows the
ommand used to set the enables for the user (this is not the same

as the user enable). These are all per-
hannel.

4.11. USER MANAGEMENT 61

Request

0

Sets various
ontrols for the user on the
hannel:

bits 0-3 -
hannel number

bit 4 - Enable IPMI messaging for the user. If this is not set, the user may not send

IPMI messages.

bit 5 - Enable link authenti
ation for the user. If this is not set, the user may not

authenti
ate a link.

bit 6 - User restri
ted to
allba
k only. If this is set, the user is restri
ted to
allba
k

authenti
ation in non-
allba
k situations. In a
allba
k situation, the privilege

level is determined by the normal setting.

bit 7 - If this is 1, modify the �elds in this byte. If this is 0, the �elds in this byte

are ignored.

1

User ID:

bits 0-5 - User number

bits 6-7 - reserved

2

User limits

bits 0-3 - The privilege level, as de�ned in table 4.18 on page 58. Putting a value of

Fh in this �eld will disable a

ess to this
hannel for the user.

bits 4-7 - reserved.

(3)

User session limit - optional byte

bits 0-3 - The user session limit. If set to 0, then the limit is the
hannel's session

limit. There does not appear to be any way to read this value, so it is a \write

only" parameter.

bits 4-7 - reserved

Response

0 Completion Code

Table 4.19: Set User A

ess Command, NetFN S/E (06h), Cmd

43h

To fet
h the
hannel information for a user, use the
ommand shown in table 4.20 on the next page.

Request

0

bits 0-3 -
hannel number

bits 4-7 - reserved

1

bits 0-5 - User number

bits 6-7 - reserved

Response

0 Completion Code

1

bits 0-5 - Maximum number of user ids available. If this is 1, then only user 1 is

supported.

bits 6-7 - reserved

2

bits 0-5 - Number of enabled user ids.

bits 6-7 - reserved

62 CHAPTER 4. IPMI INTERFACES

3

bits 0-5 - Count of user ids with �xed names (that
annot be
hanged with the set

user name
ommand). This in
ludes user 1 and must be sequential starting with

user 2.

bits 6-7 - reserved

1

Various
ontrols for the user on the
hannel:

bits 0-3 - User privilege limit.

bit 4 - IPMI messaging enabled for the user. If this is not set, the user may not send

IPMI messages.

bit 5 - Link authenti
ation enabled for the user. If this is not set, the user may not

authenti
ate a link.

bits 6 - User restri
ted to
allba
k only. If this is set, the user is restri
ted to
allba
k

authenti
ation in non-
allba
k situations. In a
allba
k situation, the privilege

level is determined by the normal setting.

bits 7 - If reserved.

Table 4.20: Get User A

ess Command, NetFN S/E (06h), Cmd

44h

The user name is set using the
ommand de�ned in table 4.21 and the name
an be fet
hed with the

ommand de�ned in table 4.22.

Request

0

User ID:

bits 0-5 - User number

bits 6-7 - reserved

1-16 User name - These bytes are ASCII-en
oded bytes that de�ne the name of the user.

Response

0 Completion Code

Table 4.21: Set User Name Command, NetFN S/E (06h), Cmd 45h

Request

0

User ID:

bits 0-5 - User number

bits 6-7 - reserved

Response

0 Completion Code

1-16 User name - These bytes are ASCII-en
oded bytes that de�ne the name of the user.

Table 4.22: Get User Name Command, NetFN S/E (06h), Cmd

46h

The Set User Password
ommand de�ned in table 4.23 on the fa
ing page sets the password and also

enables and disables the user with a di�erent mode of the
ommand. Obviously, there is no way to get the

password, but unfortunately, there is no way to get the enable value, either. Passwords for the IPMI 1.5

4.12. CHANNEL CONFIGURATION 63

authenti
ation are 16-bytes long. Passwords for RMCP+ may be either 16 or 20 bytes long. You may set

a 20-byte password for a user, but then that user may not be used for IPMI 1.5 authenti
ation, only for

RMCP+ authenti
ation.

Request

0

User ID:

bits 0-5 - User number

bit 6 - If this is 0, then use 16-byte passwords. If this is 1, then use 20-byte passwords.

bit 7 - reserved

1

bits 0-1 - Operation:

00b - disable the user.

01b - enable the user.

10b - set the password to the value in this
ommand.

11b - test the password in this
ommand and return an error
ode if it is

in
orre
t.

bits 2-7 - reserved

2-17/20

Password - These bytes are ASCII-en
oded bytes that de�ne the name of the user.

This is only present for the set and test password operations.

Response

0

Completion Code. Spe
ial values are:

80h - Password test failed

81h - Password was the wrong length

Table 4.23: Set User Password Command, NetFN S/E (06h), Cmd

45h

4.12 Channel Con�guration

The
hannels on an IPMI system are
ontrolled with a
hannel setting
ommand. In addition,
hannel

information is available.

Channels are numbered 0-7 and Fh. Channel 0 is generally IPMB. Channels 1-7 are used for other IPMB

hannels, LAN interfa
es, serial interfa
es, and whatnot. Channel Fh is used for the system interfa
e.

If you spe
ify
hannel Eh in a
ommand, it will use the
hannel the
ommand
ame from; any returned

hannel number will be the a
tual
hannel number of the
hannel. This
an be used to dis
over the
hannel

number of the
urrent
hannel.

The
hannel information
ontains the
hannel type, proto
ol, and other detailed information about the

hannel.

The
hannel a

ess allows
ontrol of how the
hannel works. It allows alerting to be enabled, it
ontrols

whether user and per-message authenti
ation are required for the
hannel, it
ontrols when the
hannel

is available and the privilege limit of the
hannel. Channel a

ess has two separate areas to store the

information, a volatile area and a non-volatile area. The volatile area is the area that is used in normal

operation, setting that modi�ed behaviour immediately. This area is lost if power is lost to the system. The

system loads the volatile area from the non-volatile area at startup. The areas are set separately.

In addition to this, LAN interfa
es have spe
i�

on�guration information as de�ned in se
tion 4.9.1 on

page 49 and serial interfa
es have their own information as de�ned in se
tion 4.10.1 on page 58.

64 CHAPTER 4. IPMI INTERFACES

4.12.1 Channel handling in OpenIPMI

Channel Information

OpenIPMI allows the user to get
hannel information with the following
ommand:

typedef stru
t ipmi_
hannel_info_s ipmi_
hannel_info_t;

typedef void (*ipmi_
hannel_info_
b)(ipmi_m
_t *m
,

int err,

ipmi_
hannel_info_t *info,

void *
b_data);

int ipmi_m
_
hannel_get_info(ipmi_m
_t *m
,

unsigned int
hannel,

ipmi_
hannel_info_
b handler,

void *
b_data);

The
allba
k gets a
hannel information stru
ture whi
h
an be a

essed with the following fun
tions:

int ipmi_
hannel_info_get_
hannel(ipmi_
hannel_info_t *info,

unsigned int *
hannel);

int ipmi_
hannel_info_get_medium(ipmi_
hannel_info_t *info,

unsigned int *medium);

int ipmi_
hannel_info_get_proto
ol_type(ipmi_
hannel_info_t *info,

unsigned int *prot_type);

int ipmi_
hannel_info_get_session_support(ipmi_
hannel_info_t *info,

unsigned int *sup);

/* Data is 3 bytes long */

int ipmi_
hannel_info_get_vendor_id(ipmi_
hannel_info_t *info,

unsigned
har *data);

/* Data is 2 bytes long */

int ipmi_
hannel_info_get_aux_info(ipmi_
hannel_info_t *info,

unsigned
har *data);

Table 4.24 on the next page des
ribes the
hannel mediums de�ned in OpenIPMI. Table 4.25 on the

fa
ing page des
ribes the
hannel proto
ol types. Table 4.26 on the next page des
ribes the
hannel session

support settings.

Channel A

ess

Channels have a

ess
ontrols that de�ne who may use them, privilege limits, and other things of that nature.

These are available to be fet
hed and set with OpenIPMI fun
tions:

typedef stru
t ipmi_
hannel_a

ess_s ipmi_
hannel_a

ess_t;

typedef void (*ipmi_
hannel_a

ess_
b)(ipmi_m
_t *m
,

int err,

ipmi_
hannel_a

ess_t *info,

void *
b_data);

int ipmi_m
_
hannel_get_a

ess(ipmi_m
_t *m
,

4.12. CHANNEL CONFIGURATION 65

IPMI CHANNEL MEDIUM IPMB (1)

IPMI CHANNEL MEDIUM ICMB V10 (2)

IPMI CHANNEL MEDIUM ICMB V09 (3)

IPMI CHANNEL MEDIUM 8023 LAN (4)

IPMI CHANNEL MEDIUM RS232 (5)

IPMI CHANNEL MEDIUM OTHER LAN (6)

IPMI CHANNEL MEDIUM PCI SMBUS (7)

IPMI CHANNEL MEDIUM SMBUS v1 (8)

IPMI CHANNEL MEDIUM SMBUS v2 (9)

IPMI CHANNEL MEDIUM USB v1 (10)

IPMI CHANNEL MEDIUM USB v2 (11)

IPMI CHANNEL MEDIUM SYS INTF (12)

Table 4.24: Channel mediums in IPMI

IPMI CHANNEL PROTOCOL IPMB (1)

IPMI CHANNEL PROTOCOL ICMB (2)

IPMI CHANNEL PROTOCOL SMBus (4)

IPMI CHANNEL PROTOCOL KCS (5)

IPMI CHANNEL PROTOCOL SMIC (6)

IPMI CHANNEL PROTOCOL BT v10 (7)

IPMI CHANNEL PROTOCOL BT v15 (8)

IPMI CHANNEL PROTOCOL TMODE (9)

Table 4.25: Proto
ol types in IPMI

IPMI CHANNEL SESSION LESS (0)

IPMI CHANNEL SINGLE SESSION (1)

IPMI CHANNEL MULTI SESSION (2)

IPMI CHANNEL SESSION BASED (3)

Table 4.26: Session support in IPMI

66 CHAPTER 4. IPMI INTERFACES

IPMI CHANNEL ACCESS MODE DISABLED (0) Channel is never available.

IPMI CHANNEL ACCESS MODE PRE BOOT (1) Channel is only available when the �rmware is running, not

when an OS is running.

IPMI CHANNEL ACCESS MODE ALWAYS (2) Channel is always available.

IPMI CHANNEL ACCESS MODE SHARED (3) Channel is always available for multiple simultaneous users.

Table 4.27: Channel a

ess modes in IPMI

unsigned int
hannel,

enum ipmi_set_dest_e dest,

ipmi_
hannel_a

ess_
b handler,

void *
b_data);

int ipmi_m
_
hannel_set_a

ess(ipmi_m
_t *m
,

unsigned int
hannel,

enum ipmi_set_dest_e dest,

ipmi_
hannel_a

ess_t *a

ess,

ipmi_m
done
b handler,

void *
b_data);

On
e you have a
hannel a

ess type, you
an get/set information in it with the following fun
tions:

int ipmi_
hannel_a

ess_get_
hannel(ipmi_
hannel_a

ess_t *a

ess,

unsigned int *
hannel);

int ipmi_
hannel_a

ess_get_alerting_enabled(ipmi_
hannel_a

ess_t *a

ess,

unsigned int *enab);

int ipmi_
hannel_a

ess_set_alerting_enabled(ipmi_
hannel_a

ess_t *a

ess,

unsigned int enab);

int ipmi_
hannel_a

ess_get_per_msg_auth(ipmi_
hannel_a

ess_t *a

ess,

unsigned int *msg_auth);

int ipmi_
hannel_a

ess_set_per_msg_auth(ipmi_
hannel_a

ess_t *a

ess,

unsigned int msg_auth);

int ipmi_
hannel_a

ess_get_user_auth(ipmi_
hannel_a

ess_t *a

ess,

unsigned int *user_auth);

int ipmi_
hannel_a

ess_set_user_auth(ipmi_
hannel_a

ess_t *a

ess,

unsigned int user_auth);

int ipmi_
hannel_a

ess_get_a

ess_mode(ipmi_
hannel_a

ess_t *a

ess,

unsigned int *a

ess_mode);

int ipmi_
hannel_a

ess_set_a

ess_mode(ipmi_
hannel_a

ess_t *a

ess,

unsigned int a

ess_mode);

int ipmi_
hannel_a

ess_get_priv_limit(ipmi_
hannel_a

ess_t *a

ess,

unsigned int *priv_limit);

int ipmi_
hannel_a

ess_set_priv_limit(ipmi_
hannel_a

ess_t *a

ess,

unsigned int priv_limit);

Table 4.18 on page 58 gives the privilege levels that the privilege limits used in this
ommand. Table 4.27

gives the modes the
hannel
an run in. Not that not all
hannel types
an support all modes.

4.12. CHANNEL CONFIGURATION 67

Note that OpenIPMI tra
ks what has
hanged in the
hannel a

ess and only writes out the
hanged

information. If you wish to for
e all data to be rewritten, you may use the ipmi_
hannel_a

ess_setall()

fun
tion to mark all data as
hanged.

4.12.2 Channel handling
ommands

Table 4.3 on page 41 gives the
ommand used to fet
h the
hannel information.

Channel a

ess is fet
hed and written with the
ommands de�ned in table 4.28 and table 4.29 on the

following page.

Request

0

bits 0-3 - Channel

bits 4-7 - reserved

1

bits 0-2 - Set the
hannel a

ess mode per table 4.27 on the pre
eding page

bit 3 - If 1, require authenti
ation for user-level
ommand. Otherwise authenti
ation

is not required for user-level
ommands. Note that this has no e�e
t on operator

or admin level
ommands.

bit 4 - If 1, require per-message authenti
ation. If 0, no authenti
ation is required

per-message. Note that if this is 0, a session must still be established, but subse-

quent messages after session establishment do not require authenti
ation.

bit 5 - Enable or diable PEF alerting on the
hannel. Note that if this is 0 (disabled)

alert immediate still works.

bits 6-7 - Operation:

00b - Do not modify the values spe
i�ed in the rest of this byte.

01b - Set the non-volatile area

10b - Set the volatile area.

11b - reserved

2

bits 0-3 - Set the privilege limit for the
hannel per table 4.18 on page 58.

bits 4-5 - reserved

bits 6-7 - Operation:

00b - Do not modify the values spe
i�ed in the rest of this byte.

01b - Set the non-volatile area

10b - Set the volatile area.

11b - reserved

Response

0 Completion Code

Table 4.28: Set Channel A

ess Command, NetFN S/E (06h), Cmd

40h

Request

0

bits 0-3 - Channel

bits 4-7 - reserved

68 CHAPTER 4. IPMI INTERFACES

IPMI AUTHTYPE NONE No authenti
ation.

IPMI AUTHTYPE MD2 MD2 style authenti
ation.

IPMI AUTHTYPE MD5 MD5 style authenti
ation. This is the re
ommended type of authenti
ation.

IPMI AUTHTYPE STRAIGHT Puts the password into the message in plain text. Don't use this.

Table 4.30: Authenti
ation types in IPMI

0 no authenti
ation

1 MD2 authenti
ation

2 MD5 authenti
ation

3 reserved

4 straight password authenti
ation

5 OEM authenti
ation

6-7 reserved

Table 4.31: Authenti
ation bitmask often used in IPMI

1

bits 0-5 - reserved

00b - reserved

01b - Get the non-volatile area

10b - Get the volatile area.

11b - reserved

Response

0

Completion Code. The following spe
ial return
odes are de�ned:

82h - The
hannel is session-less thus does not support this
ommand.

1

bits 0-2 - The
hannel a

ess mode per table 4.27 on page 66

bit 3 - If 1, require authenti
ation for user-level
ommand. Otherwise authenti
ation

is not required for user-level
ommands. Note that this has no e�e
t on operator

or admin level
ommands.

bit 4 - If 1, require per-message authenti
ation. If 0, no authenti
ation is required

per-message. Note that if this is 0, a session must still be established, but subse-

quent messages after session establishment do not require authenti
ation.

bit 5 - Enable or diable PEF alerting on the
hannel. Note that if this is 0 (disabled)

alert immediate still works.

bits 6-7 - reserved

2

bits 0-3 - The privilege limit for the
hannel per table 4.18 on page 58.

bits 4-7 - reserved

Table 4.29: Get Channel A

ess Command, NetFN S/E (06h),

Cmd 41h

4.13. THE PEF TABLE AND SNMP TRAPS 69

4.12.3 Channel Authenti
ation

4.13 The PEF Table and SNMP Traps

Many IPMI systems
an spe
ify that
ertain operations be done when an event
omes in. This
an depend

on the event's
ontents; di�erent a
tions
an be done for di�erent sets of events. This is done with the

Platform Event Filter (PEF)
on�guration. Not all IPMI systems
an do event �ltering, but ones that do

will work as this se
tion des
ribes.

The PEF
on�guration allows several di�erent a
tions to be performed when an IPMI event
omes in

(or when the BMC powers up and there are pending events in its event queue). Ex
ept for sending an alert,

if multiple event �lters mat
h, the higher priority a
tion will be done and the lower priority a
tion will be

ignored. The a
tions are:

A
tion Priority Des
ription

power down 1 (optional) Power the system down.

power
y
le 2 (optional) Power o� the system, then power it ba
k on.

reset 3 (mandatory) Reset the main pro
essor in the system.

Diagnosti
 Interrupt 4 (optional) Send a system-de�ned diagnosti
 interrupt to the main

pro
essor in the system. This is generall an NMI.

Send Alert 5 Send an alert of some type, via an SNMP trap, a page, or a modem

dialup. Note that unlike the rest of the a
tions, this a
tion will still be

done if a higher priority a
tion is done. Alerts
an also be prioritized

via the Alert Poli
y Table as des
ribed in se
tion 4.13.3.

OEM OEM (optional) Priority is de�ned by the OEM.

This se
tions will mainly fo
us on sending SNMP traps with alerts, although the other parts will also

be
overed. The PEF
on�guration
an spe
ify sending SNMP traps to inform the the management system

that something has happened. Generally, it is saying that an event has been pla
ed into the event log. Most

of the event information is in the SNMP trap, but unfortunately, some key information is not there. It does

give the system an immediate noti�
ation.

To have a system send traps, two tables must be set up. The LAN
on�guration table des
ribed in se
tion

4.9.1 has parameters to set the SNMP
ommunity string and the trap destination addresses available. The

PEF table
ontains information about how to �lter traps. Di�erent events
an
ause di�erent traps to be

sent to di�erent pla
es. As well, spe
i�
 events
an do other things, su
h as reset or power o� the system.

The thing we are interested in is the \Alert"
apability.

Note that alerts
an also
ause telephone pages, serial dialups and things like that to happen. They are

pretty
exible, although this se
tion will mostly fo
us on SNMP traps.

4.13.1 PEF and Alerting Commands

These
ommands
ontrol the PEF and alerting
apabilities of a system.

Table 4.32 shows the
ommand used to �nd out what alert
apabilities a BMC has.

Request

-

-

Response

0 Completion Code

70 CHAPTER 4. IPMI INTERFACES

1

PEF version, en
oded as:

bits 0-3 - Major version #

bits 4-7 - Minor version #

2

Supported PEF a
tions, if the bit is one then the a
tion is supported:

bit 0 - alert

bit 1 - power down

bit 2 - reset

bit 3 - power
y
le

bit 4 - OEM a
tion

bit 5 - diagnosti
 interrupt

bits 6-7 - reserved

3

Number of entries in teh event �lter table

Table 4.32: Get PEF Capabilities Command, NetFN S/E (04h),

Cmd 10h

Table 4.33 shows the
ommand used to set the PEF
on�guration parameters in a BMC.

Request

0 Parameter Sele
tor. This sele
ts the entry in the table that you want to set.

1-n

The data for the parameter. You must look up the entry in table 4.36 for the exa
t

ontents, it depends on whi
h entry you are setting.

Response

0

Completion
ode. Standard
ompletion
odes, plus:

80h - Parameter not supported

81h - Attempt to set the \set in progress' value (parm 0) when the parameter is not in

the free (set
omplete) state.

82h - Attempt to write a read-only parameter.

Table 4.33: Set PEF Con�guration Parameters Command, NetFN

S/E (04h), Cmd 12h

Table 4.34 shows the
ommand used to get PEF
on�guration parameters in a BMC.

Request

0

bits 0-6 - Parameter Sele
tor. This sele
ts the entry in the table that you want to get.

bit 7 - If 1, only get parameter revision

1

Set Sele
tor. Some parameters are in an array, this tells whi
h array element to set.

Set to zero if the parameter does not have a set sele
tor.

2

Blo
k Sele
tor. Some parameters have two levels of arrays (an array inside of the

array). The Set Sele
tor is the �rst level array spe
i�er, this is the se
ond level. Set to

zero if the parameter does not have a blo
k sele
tor.

Response

4.13. THE PEF TABLE AND SNMP TRAPS 71

0

Completion
ode. Standard
odes, plus:

80h - parameter not supported

1

Parameter revision. Format is:

Bits 0-3 - Oldest revision parameter is ba
kward
ompatible with

Bits 4-7 - Current parameter revision

2-n

Parameter data. This will not be present if bit 7 of byte 0 of the response is set to 1.

The
ontents of this depends on the parti
ular parameter being fet
hed, see table 4.36

for the parameters.

Table 4.34: Get PEF Con�guration Parameters Command, NetFN

S/E (04h), Cmd 13h

Table 4.35 shows the
ommand used to send an a
knowledge for a re
eived trap. If the \Alert A
-

knowledge" bit is set in \Destination Type" entry of the LAN Con�guration Table (Table 4.16) or in the \

\Destination Info" entry of the Serial Con�guration Table (Table 4.17), then the re
eiver of the trap must

send this message to stop the resends.

Request

0-1

Sequen
e Number, from the �eld in the Platform Event Trap (PET) of the trap being

a
knowledged. Least signi�
ant byte �rst.

2-5

Lo
al Timestamp, from the �eld in the PET of the trap being a
knowledged. Least

signi�
ant byte �rst.

6 Event Sour
e Type, from the �eld in the PET of the trap being a
knowledged

7 Sensor Devi
e, from the �eld in the PET of the trap being a
knowledged

8 Sensor Number, from the �eld in the PET of the trap being a
knowledged

9-11 Event Data 1-3, from the �eld in the PET of the trap being a
knowledged

Response

0 Completion Code

Table 4.35: PET A
knowledge Command, NetFN S/E (04h), Cmd

17h

4.13.2 The PEF Postpone Timer

TBD - write this.

4.13.3 PEF Con�guration Parameters

The PEF Con�guration table has an unusual lo
king me
hanism (although it is usual for IPMI). Parameter

zero is a lo
k. If you set the value to one, it will only su

eed if the value is zero. Thus, to lo
k the table, you

set the value to one until it su

eeds. You then set it to zero when you are done. This lo
king me
hanism

leads to problem if the lo
ker dies while it holds the lo
k, so you probably need some way to override the

lo
k if this happens. The lo
k does not a
tually keep anyone from
hanging the data, it is simply a
ommon

me
hanism to mutual ex
lusion. Note also that the lo
k has a \
ommit" me
hanism, writing two to the lo
k

will
ommit the
ontents if the system supports it. If the system supports rollba
k, setting the value to zero

72 CHAPTER 4. IPMI INTERFACES

will rollba
k and not
ommit the
hanges you made. So for
orre
tness, you should write a two when you

are
omplete, and if that fails then write a zero.

Table 4.36 has the parameters used to
on�gure the event �lter. Unless marked \volatile", all of these

will survive removal of power.

Table 4.36: PEF Con�guration Parameters

Parameter # Des
ription

Set In Progress

(volatile)

0 Used to indi
ate that the parameters are being updated. Bits 2-7 are

reserved. Bits 0-1 have the following values:

00b - set
omplete. This is the state the system
omes up in. This

means that any user is �nished updating the parameters. If roll-

ba
k is implemented, setting this value will
ause any
hanges

made sin
e last setting this value to \set in progress" to be un-

done.

01b - set in progress. A user will set this value to inform others that

it is updating these parameters. This value
an only be set if the

urrent value is \set
omplete".

10b -
ommit write (optional). This will
ommit any
hanges that

are pending and go to \set
omplete" state. Some systems may

not support this, if setting this returns an error you should set

this value to \set
omplete" by hand.

PEF Control 1 One byte �eld global
ontrol bits for the PEF:

bit 0 - Set to one to enable the PEF.

bit 1 - Set to one to
ause event messages to be sent for ea
h a
tion

triggered by a �lter. These events are send as the System Event

Sensor (12h), o�set 04h, see table 9.2. Note that these events are

subje
t to PEF �ltering, so be
areful not to
ause an in�nite

event message send.

bit 2 - PEF Startup Delay Enable (optional). When set to one, this

bit enables a PEF startup delay on manual startup of a
hassis

and on all system resets. If this bit is supported, the spe
 says

that the implementation must supply a way for the user to diable

the PEF in
ase the �lter entries are
ausing an in�nite loop. I

have no idea what that means. If this bit is not implemented, the

spe
 says that there must always be a startup delay. Parameter

3 of this table sets the time.

bit 3 - PEF Alert Startup Delay Enable (optional). When set to one,

this bit enables a delay between startup time and when alerts are

allowed to be sent. Parameter 4 of this table sets the time.

bits 4-7 - reserved

4.13. THE PEF TABLE AND SNMP TRAPS 73

Table 4.36: PEF Con�guration Parameters

Parameter # Des
ription

PEF A
tion Global

Control

2 A one byte �eld for
ontrolling whether spe
i�
 PEF a
tions are en-

abled at all. If the bit is set to one, it is enabled. The bits are:

bit 0 - alert

bit 0 - power down

bit 0 - reset

bit 0 - power
y
le

bit 0 - OEM

bit 0 - diagnosti
 interrupt

bits 6-7 - reserved

PEF Startup Delay

(optional)

3 A one byte �eld giving the PEF startup delay, in se
onds, 10% a

u-

ra
y. A zero value means no delay. This goes along with bit 2 of byte

1 of parameter 1 of this table, see that for more details.

PEF Alert Startup

Delay (optional)

4 A one byte �eld giving the PEF Alert startup delay, in se
onds, 10%

a

ura
y. A zero value means no delay. This goes along with bit 3 of

byte 1 of parameter 1 of this table, see that for more details.

Number of Event Fil-

ters (read only)

5 The number of array entries in the event �lter table, parameter 6 of

this table. The bits are:

bits 0-6 - The number of event �lter entries. A zero here means that

events �lters are not supported.

bit 7 - reserved

Event Filter Table 6 This is a 21 byte �eld giving a

ess to the event �lter table.

byte 0 bits 0-6 - The set sele
tor, the array index of whi
h event

�lter to set. 00h is reserved and not used and does not
ount

in the number of event �lters.

bit 7 - reserved

bytes 1-20 - The �lter data for the array element given by byte 1 of

this parameter. See table 4.37 for the
ontents of this data.

Event Filter Table

Byte 1

7 This is a 2 byte �eld giving a

ess to the �rst byte of an event �lter

table entry. This makes it
onvenient to set the �rst byte without

having to read-modify-write the whole entry.

byte 0 bits 0-6 - The set sele
tor, the array index of whi
h event

�lter to set. 00h is reserved and not used and does not
ount

in the number of event �lters.

bit 7 - reserved

byte 1 - Byte 1 of the event �lter table entry. See table 4.37 for the

ontents of this data.

74 CHAPTER 4. IPMI INTERFACES

Table 4.36: PEF Con�guration Parameters

Parameter # Des
ription

Number of Alert Poli-

ies (read only)

7 The number of array entries in the alert poli
y table, parameter 9 of

this table. The bits are:

bits 0-6 - The number of event �lter entries. A zero here means that

alert poli
ies are not supported.

bit 7 - reserved

Alert Poli
y Table 8 This is a 4 byte �eld giving a

ess to the alert poli
y table.

byte 0 bits 0-6 - The set sele
tor, the array index of whi
h alert

poli
y to set. 00h is reserved and not used and does not

ount in the number of event �lters.

bit 7 - reserved

bytes 1-3 - The �lter data for the array element given by byte 1 of

this parameter. See table 4.38 for the
ontents of this data.

System GUID 9 A 17 byte �eld telling how to get the system GUID for PET traps.

byte 0 bit 0 - If one, use the value in bytes 1-16 of this �eld as the

GUID in traps. If not set, use the value returned from the

Get System GUID
ommand.

bits 1-7 - reserved

bytes 1-16 - The system GUID

Number of Alert

String Keys (read

only)

11 The number of array entries in the alert string keys, parameter 12 of

this table. The bits are:

bits 0-6 - The number of alert string keys. A zero here means that

alert poli
ies are not supported.

bit 7 - reserved

4.13. THE PEF TABLE AND SNMP TRAPS 75

Table 4.36: PEF Con�guration Parameters

Parameter # Des
ription

Alert String Keys

(some parts are

volatile)

12 Some a
tions require alert strings for paging an operator. This key

is used in
onjun
tion with the alert poli
y table (table 4.38) in some

ases. If bit 7 of byte 3 of an alert poli
y table entry is set to 1, then

it will use the alert string set �eld from that table and the event �lter

number from the event being pro
essed to sear
h this table. If it �nds

a mat
h, it will use the alert string that
orresponds with the same

index as the entry in this table.

For instan
e, if entry 4h of this table has a 3h in byte 1 and a 7h in

byte 2, if event �lter 4 mat
hes an event and the alert poli
y used has

87h in byte 3, then the alert string entry 4h of the alert strings are

used.

byte 0 bits 0-6 - The set sele
tor, the array index of whi
h alert

key to set. Entry 0h is volatile and used by the Alert Im-

mediate
ommand as des
ribed in se
tion 4.13.5. Entries

1h-7h are non-volatile. All other entries are reserved.

bit 7 - reserved

byte 1 bits 0-6 - Event �lter number to mat
h

bit 7 - reserved

byte 2 bits 0-6 - Alert String Set to mat
h

bit 7 - reserved

76 CHAPTER 4. IPMI INTERFACES

Table 4.36: PEF Con�guration Parameters

Parameter # Des
ription

Alert Strings (some

parts are volatile)

13 Some a
tions require alert strings for paging an operator. This table

holds the a
tual alert strings. This table is indexed by the alert poli
y

table (table 4.38) either dire
tly if bit 7 of byte 3 of an alert poli
y

table entry is set to 0, or indire
tly through parameter 12 of this table

if that bit is one.

The meanings of the values in this table are dependent on the alert

type and
hannel.

For dial paging, this string will have a
arraige return automati
ally

appended to the string.

For TAP paging, this string
orresonds to 'Field 2', the pager message.

Note that TAP only supports 7-bit ASCII and the BMC will zero the

high bit when doing TAP paging.

byte 0 bits 0-6 - The set sele
tor, the array index of whi
h alert

string to set. Entry 0h is volatile and used by the Alert

Immediate
ommand as des
ribed in se
tion 4.13.5. Entries

1h-7h are non-volatile. All other entries are reserved.

bit 7 - reserved

byte 1 - Blo
k sele
tor. The strings may be mu
h larger than
an

be set in a single message. This sele
ts whi
h blo
k to write, in

16-byte in
rements. So, a 0 here is the �rst 16 bytes, a 1 is the

se
ond 16 bytes, and so on.

byte 2-n - The bytes to write into the spe
i�
 blo
k If this is less

than 16 bytes, then only the given number of bytes are written.

OEM Parmeters 96+ Parameters 96-127 are allowed for OEM use. All other parameters are

reserved.

The PEF table is read and written as part of the PEF Con�guration table, parameter 6, but the
ontents

are do
umented separately in table 4.37. When an event
omes in, it is
ompared against ea
h �lter in order.

If a mat
h o

urs on multiple �lters, then the highest priority a
tion is done and the rest ex
ept for alerts

are ignored. After the operation is
ompleted, any alert operations are done by s
anning the alert poli
y

table in order. The order of the alert poli
y table de�nes the priority of the di�erent alerts.

Table 4.37: PEF Table Entry

Byte Field Des
ription

4.13. THE PEF TABLE AND SNMP TRAPS 77

Table 4.37: PEF Table Entry

Byte Field Des
ription

0 Filter Con�guration Bits that
ontrol the operation of this �lter:

bits 0-4 - reserved

bits 5-6 - �lter type

00b - Software
on�gurable �lter. A manging system may
on-

�gure all parts of this �lter.

01b - reserved

10b - pre-
on�gured �lters. A managing system should not

modify the
ontents of this �lter, although it may turn on

and o� the �lter using bit 7 of this �eld.

11b - reserved

1 Event �lter a
tion These bits set what a
tion this �lter will do if it mat
hes. These bits

are enable if set to one.

bit 0 - alert

bit 1 - power o�

bit 2 - reset

bit 3 - power
y
le

bit 4 - OEM a
tion

bit 5 - diagnosti
 interrupt

bits 6-7 - reserved

2 Alert Poli
y Number

bits 0-3 - If alert is sele
ted in byte 1, this
hooses the poli
y number

to use in the alert poli
y table.

bits 4-7 - reserved

3 Event Severity This is the value that will be put into the event severity �eld of the

PET trap. If more than one event �lter mat
hes, the highest priority

in all event �lters will be used. Valid values are:

00h - unspe
i�ed

01h - monitor

02h - information

04h - OK (returned to OK
ondition)

08h - non-
riti
al
ondition

10h -
riti
al
ondition

20h - non-re
overable
ondition

4 Generator ID byte 1 This mat
hes the slave address or software id in the event. It must be

an exa
t mat
h. Use FFh to ignore this �eld when
omparing events.

5 Generator ID byte 2 This mat
hes the
hannel and LUN in the event. It must be an exa
t

mat
h. Use FFh to ignore this �eld when
omparing events.

78 CHAPTER 4. IPMI INTERFACES

Table 4.37: PEF Table Entry

Byte Field Des
ription

6 Sensor type This mat
hes the sensor type �eld in the event. It must be an exa
t

mat
h. Use FFh to ignore this �eld when
omparing events.

7 Sensor Number This mat
hes the sensor number �eld in the event. It must be an exa
t

mat
h. Use FFh to ignore this �eld when
omparing events.

8 Event Trigger This mat
hes the event dire
tion and event type byte (byte 13) in the

event. It must be an exa
t mat
h. Use FFh to ignore this �eld when

omparing events.

9-10 Event data 1 low nib-

ble values

This �eld is a bitmask spe
ifying whi
h values in the low 4 bits of the

event data 1 �eld will mat
h. If a bit is set, then the
orresponding

value will mat
h for this �lter. For instan
e, if bits 2 and 7 are set,

then a value of 2 or 7 in the low nibble of event data 1 will
ause a

�lter mat
h (if everything else mat
hes too, of
ourse).

byte 9 - bit positions 0-7

byte 10 - bit positions 8-15

11 Event data 1 AND

mask

This bit indi
ates whi
h bits in event data 1 are used for
omparison.

If a bit in the mask is zero, then the bit is not used for
omparison.

if a bit is one, then the
orresponding bit in event data 1 is used for

omparison using the next two bytes of the table.

12 Event data 1
ompare

1

This byte tells how the bits in event data 1 are
ompared. For every

bit set to one in this byte and one in the AND mask, the
orresponding

bit in event data 1 must exa
tly mat
h the data in the
ompare 2 �eld.

For all bits set to zero in this byte and one in the AND mask, if any

of those bits must be set to the same value as the bit in the
ompare

2 �eld, it is
onsidered a mat
h for that byte.

For instan
e, if the AND mask is 00001111b, the
ompare 1 �eld is

00001100b, and the
ompare 2 �eld is 00001010b, then the event data

1 byte mat
hes this
omparison if:

((bit0 == 0) || (bit1 == 1))

&& (bit2 == 0) && (bit3 == 1)

Be
ause there are zeroes in bits 4-7, those are not used in the mask.

Exa
t mat
hes are required in bits 2 and 3 to
ompare 2, and one of

bits 0 and 1 must be set the same as
ompare 2.

Setting bytes 11-13 to all zero will
ause event data 1 to be ignored for

omparison (it will always mat
h).

13 Event data 1
ompare

2

This byte is used to
ompare the values of event data 1. See byte 12

for more details on how this works.

14-16 Event data 2 �elds These bytes work the same a bytes 11-13, but apply to event data 2.

See those �elds for details.

4.13. THE PEF TABLE AND SNMP TRAPS 79

Table 4.37: PEF Table Entry

Byte Field Des
ription

17-19 Event data 3 �elds These bytes work the same a bytes 11-13, but apply to event data 3.

See those �elds for details.

The Alert Poli
y table tells the BMC what to do when an event �lter mat
hes and the alert a
tion is set.

Every mat
hing �lter with the alert a
tion sets that alert poli
y to be run. On
e all the �lters have been

he
ked, the set alert poli
ies are
he
ked and exe
uted in order of their poli
y number. Depending on the

settings in the poli
y, the BMC may go to the next alert poli
y or stop.

Table 4.38: Alert Poli
y Table Entry

Byte Field Des
ription

0 Poli
y Number and

Poli
y bits 0-2 - The poli
y. Valid values are:

0h - Alway do this alert if
hosen, even if other alert poli
y

tables tell the BMC to stop.

1h - If an alert to a previous destination was su

essful, do not

do this alert. If no alert has been su

essful so far, do this

alert. Then go to the next entry in the poli
y table.

2h - If an alert to a previous destination was su

essful, do

not do this alert. If no alert has been su

essful so far, do

this alert. Then stop pro
essing the poli
y table (ex
ept for

entries with a 0h poli
y).

3h - If an alert to a previous destination was su

essful, do not

do this alert. If no alert has been su

essful so far, do this

alert. Then pro
eed to the next poli
y entry that has a

di�erent
hannel.

4h - If an alert to a previous destination was su

essful, do not

do this alert. If no alert has been su

essful so far, do this

alert. Then pro
eed to the next poli
y entry that has a

di�erent destination type.

bit 3 - Entry enable. If set to one, the entry is enabled, if set to zero

it is ignored.

bits 4-7 - The poli
y number, the array index of whi
h poli
y table

entry to set.

80 CHAPTER 4. IPMI INTERFACES

Table 4.38: Alert Poli
y Table Entry

Byte Field Des
ription

1 Channel / Destina-

tion bits 0-3 - The destination sele
tor. For the
hosen
hannel, this is

the spe
i�
 destination in the
hannel to use to send the alert. See

the LAN Con�guration Table (table 4.16) or the Serial Con�gu-

ration Table (table 4.17) for information on what the destination

sele
tors
an do.

bits 4-7 - The
hannel. This tells the BMC whi
h
hannel to send

the alert over.

2 Alert String Info Some types of alerts need a string asso
iated with them, this
hooses

the string. The spe
i�
 strings are stored in the PEF
on�guration

parameters 12 and 13 in table 4.36.

If bit 7 of this byte is one, then the string is dependent on the event �l-

ter number that was mat
hed for this alert poli
y. Bits 0-6 of this byte

are the alert string set. The event �lter number and the alert string set

are looked up in the table in parameter 12 of the PEF
on�guration

to
hoose the alert string to use. See that parameter for more details

on how this works.

if bit 7 of this byte is zero, then the bits 0-6 of this �eld are the alert

string sele
tor. The alert string sele
tor is used as a dire
t index into

the alert string table in parameter 13 of the PEF
on�guration.

4.13.4 OpenIPMI and SNMP Traps

Setting Up A System To Send Traps

Setting up a system to send traps with OpenIPMI
an be done two basi
 ways. The hard way is to set up

ea
h table individually. This is more work, but is very
exible. The easy way just sets up for SNMP traps

but does all the work for you.

Setting Up the PEF Table and LAN Con�guration Table For a system to send traps, you must set

up the PEF table as des
ribed in se
tion 4.13.3 and the LAN
on�guration table des
ribed in se
tion 4.9.1.

However, this is a lot of work.

Setting Up For Traps the Easy Way OpenIPMI provides a way to set up a simple SNMP trap send

from a BMC. The
all has an unfortunately large number of parameters be
ause OpenIPMI
annot pi
k the

various sele
tors and poli
y numbers needed to set up for the trap, be
ause you may be using them for other

things. The fun
tion
all is:

int ipmi_pet_
reate(ipmi_domain_t *domain,

unsigned int
onne
tion,

unsigned int
hannel,

stru
t in_addr ip_addr,

4.13. THE PEF TABLE AND SNMP TRAPS 81

unsigned
har ma
_addr[6℄,

unsigned int eft_sel,

unsigned int poli
y_num,

unsigned int apt_sel,

unsigned int lan_dest_sel,

ipmi_pet_done_
b done,

void *
b_data,

ipmi_pet_t **pet);

domain - The domain to set up a trap sender for.

onne
tion - Whi
h spe
i�

onne
tion to the domain do you want to
on�gure?

hannel - The spe
i�

hannel to
on�gure. You will have to know the
hannel you want to
on�gure.

ip addr - The IP address to tell the BMC to send messages to.

ma
 addr - The MAC address to tell the BMC to send messages to.

eft sel - the Event Filter sele
tor to use for this PET destination. Note that this does *not* need to be

unique for di�erent OpenIPMI instan
es that are using the same
hannel, sin
e the
on�guration will

be exa
tly the same for all EFT entries using the same
hannel, assuming they share the same poli
y

number.

poli
y num - The poli
y number to use for the alert poli
y. This should be the same for all users of a

domain.

apt sel - The Alert Poli
y sele
tor to use for this PET destination. Note that as eft_sel, this need not be

unique for ea
h di�erent OpenIPMI instan
e on the same
hannel.

lan dest sel - The LAN
on�guration destination sele
tor for this PET destination. Unlike eft_sel and

apt_sel, this *must* be unique for ea
h OpenIPMI instan
e on the same
hannel, as it spe
i�es the

destination address to use.

done - This fun
tion will be
alled when the PET
on�guration is
omplete.

b data - Data to pass to the done
all.

pet - The
reated obje
t.

This
reates an obje
t that will
ontinue to live and periodi
ally
he
k that the
on�guration is
orre
t.

If you wish to destroy this, use the following:

int ipmi_pet_destroy(ipmi_pet_t *pet,

ipmi_pet_done_
b done,

void *
b_data);

82 CHAPTER 4. IPMI INTERFACES

Handling In
oming Traps

OpenIPMI has some ability to handle SNMP traps. It does not implement its own SNMP sta
k though, so

it
annot do all the work for you. Indeed, di�erent SNMP exist and OpenIPMI would not want to presume

that you would only use one of them. Also, sin
e the SNMP trap port is �xed, some
ooperative me
hanism

may be required between di�erent pie
es of software. You must have your own sta
k, like NetSNMP[4℄, and

at
h the traps with that.

On
e you have a trap, you must
all:

int ipmi_handle_snmp_trap_data(void *sr
_addr,

unsigned int sr
_addr_len,

int sr
_addr_type,

long spe
ifi
,

unsigned
har *data,

unsigned int data_len);

Where sr
_addr is the IP sour
e address (stru
t so
kaddr_in) and length is the length of the address

stru
ture. Only IP is supported for now, so sr
_addr_type must be IPMI_EXTERN_ADDR_IP. The spe
ifi

�eld is the �eld of the same name from the SNMP Proto
ol Data Unit (PDU). The data �eld is a pointer

to the user data from the SNMP PDU, and the length of that data is in data_len.

The data in the trap is not enough information to fully de
ode the event, so
urrently an in
oming trap

will only
ause an SEL fet
h on the proper SEL. OpenIPMI will automati
ally send the PET A
knowledge

ommand des
ribed in Table 4.35.

Note that SNMP traps
an only be re
eived on one port, and that port is privileged, so you must run as

root to re
eive SNMP traps.

4.13.5 The Alert Immediate Command

4.14 OpenIPMI Addressing

The OpenIPMI driver and library use a
ommon addressing s
heme. This attempts to normalize the mes-

saging from the user's point of view. The message data will look the same no matter where you send it. The

only di�eren
e is the message.

The main OpenIPMI address stru
ture is:

stru
t ipmi_addr

{

int addr_type;

short
hannel;

har data[IPMI_MAX_ADDR_SIZE℄;

};

The addr_type and
hannel are
ommon to all OpenIPMI addresses. You have to look at the addr_type

to determine the type of address being used and
ast it to the proper address. The spe
i�
 messages are

overlays on this stru
ture.

A system interfa
e address is used to route the message to the lo
al management
ontroller. It is:

4.14. OPENIPMI ADDRESSING 83

#define IPMI_SYSTEM_INTERFACE_ADDR_TYPE ...

stru
t ipmi_system_interfa
e_addr

{

int addr_type;

short
hannel;

unsigned
har lun;

};

The
hannel should be IPMI_BMC_CHANNEL and the lun should generally be zero.

An IPMI address routes messages on the IPMB. The format is:

#define IPMI_IPMB_ADDR_TYPE ...

#define IPMI_IPMB_BROADCAST_ADDR_TYPE ...

stru
t ipmi_ipmb_addr

{

int addr_type;

short
hannel;

unsigned
har slave_addr;

unsigned
har lun;

};

The
hannel should be the IPMB bus
hannel number, the slave_address should be the IPMB address

of the destination, and the lun should be the destination LUN. Noti
e that two address types
an be used

with this
ommand, a normal IPMB message and a broad
ast IPMB
an be sent with this. Note that if you

send a broad
ast IPMB, you will re
eive a normal IPMB address in the response.

A LAN to system interfa
e address is:

#define IPMI_LAN_ADDR_TYPE ...

stru
t ipmi_lan_addr

{

int addr_type;

short
hannel;

unsigned
har privilege;

unsigned
har session_handle;

unsigned
har remote_SWID;

unsigned
har lo
al_SWID;

unsigned
har lun;

};

This deviates a little from the IPMI spe
. In the spe
, the SWIDs used are the requester SWID and

responder SWID. For this message, the remote SWID is other end and the lo
al SWID is this end. This way,

there is no
onfusion when sending and re
eiving messages, and no spe
ial handling of the SWIDs needs to

be done.

84 CHAPTER 4. IPMI INTERFACES

C h a p t e r 5

The MC

The MC is the \intelligent" devi
e in an OpenIPMI system. It is a pro
essor that is always on and handles

management operations in the system. It is the thing that re
eives
ommands, pro
esses them, and returns

the results.

An IPMI system will have at least one MC, the BMC. The BMC is the \main" management
ontroller;

it handles most of the interfa
es into the system.

5.1 OpenIPMI and MCs

Note: This se
tion deals with OpenIPMI internals. The user does not generally need to know about man-

agement
ontrollers, as they are internal to the operation of OpenIPMI. However, they are dis
ussed be
ause

users writing plugins or �xup
ode will need to know about them. Plus, these interfa
es are subje
t to
hange.

5.1.1 Dis
overing MCs

In OpenIPMI, the MC devi
es in a system are part of the domain. When the user
reates the domain,

OpenIPMI will start s
anning for MCs in the system. The user
an dis
over the MCs in a domain in two

ways: iterating or registering
allba
ks.

Iterating the MCs in a domain simply involves
alling the iterator fun
tion with a
allba
k fun
tion:

stati
 void

handle_m
(ipmi_domain_t *domain, ipmi_m
_t *m
, void *
b_data)

{

my_data_t *my_data =
b_data;

/* Pro
ess the MC here */

}

void

iterate_m
s(ipmi_domain_t *domain, my_data_t *my_data)

{

int rv;

rv = ipmi_domain_iterate_m
s(domain, handle_m
, my_data);

85

86 CHAPTER 5. THE MC

if (rv)

handle_error();

}

This is relatively simple to do, but you will not be able to know immediately when new MCs are added

to the system. To know that, you must register a
allba
k fun
tion as follows:

stati
 void

handle_m
(enum ipmi_update_e op,

ipmi_domain_t *domain,

ipmi_m
_t *m
,

void *
b_data)

{

my_data_t *my_data =
b_data;

/* Pro
ess the MC here */

}

void

handle_new_domain(ipmi_domain_t *domain, my_data_t *my_data)

{

int rv;

rv = ipmi_domain_add_m
_updated_handler(domain, handle_m
, my_data);

if (rv)

handle_error();

}

You should
all the fun
tion to add an MC updated handler when the domain is reported up (or even

before); that way you will not miss any MCs.

5.1.2 MC A
tive

An MC may be referen
ed by another part of they system, but may not be present. For instan
e, it may be

on a plug-in
ard. An MC that is not present is
alled \ina
tive", an MC that is present is
alled \a
tive".

OpenIPMI automati
ally dete
ts whether MCs are a
tive or ina
tive.

The ipmi_m
_is_a
tive fun
tion is used to tell if an MC is a
tive. As wall,
allba
k handlers
an be

registered with ipmi_m
_add_a
tive_handler to know immediately when an MC is set a
tive or ina
tive.

5.1.3 MC Information

OpenIPMI will extra
t information about the MC from the Get Devi
e ID
ommand; you
an fet
h this with

fun
tions. The fun
tions are almost all of the form:

int ipmi_m
_xxx(ipmi_m
_t *m
)

The �elds available (repla
e \xxx" with these in the previous de�nition) are:

provides devi
e sdrs Returns true if the MC has devi
e SDRs, false if not.

5.1. OPENIPMI AND MCS 87

devi
e available Return false if the MC is operating normally, or true if the MC is

updating its �rmware.

hassis support Returns true if the MC supports the
hassis
ommands, false if not.

bridge support Returns true if the MC support bridge
ommands (generally for

ICMB), false if not.

ipmb event generator support Return true if the MC will generate events on the IPMB. Note that

if this is false, it
an still generate events and store them on a lo
al

System Event Log (SEL), like on a BMC.

ipmb event re
eiver support Returns true if the MC
an re
eive events from other MCs on the

IPMB.

fru inventory support If true, the MC support FRU inventory
ommands.

sel devi
e support If true, the MC has an event log on it.

sdr repository support If true, the MC supports a writable SDR repository. This is not a

devi
e SDR repository.

sensor devi
e support If true, this MC supports sensor
ommands.

devi
e id The devi
e id of the MC. This helps identify the
apabilities of the

MC; it is used along with the produ
t and manufa
turer IDs to know

the exa
t
apabilities of the devi
e. It's use is OEM-spe
i�
, though.

devi
e revision The hardware revision for the MC and asso
iated hardware. It's use

is OEM-spe
i�
, though.

major fw revision The major revision of the �rmware running on the MC.

minor fw revision The minor revision of the �rmware running on the MC.

major version The major version of the IPMI spe
i�
ation version supported by the

MC.

minor version The minor version of the IPMI spe
i�
ation version supported by the

MC.

manufa
turer id A 24-bit number assigned by the IANA for the manufa
turer of the

MC hardware.

produ
t id A 16-bit number assigned by the manufa
turer to identify the spe
i�

MC hardware.

In addition, the following fun
tion:

void ipmi_m
_aux_fw_revision(ipmi_m
_t *m
, unsigned
har val[℄);

returns the optional 4-byte auxiliary �rmware revision information �eld. The meaning of this �eld is

vendor-spe
i�
 and the �eld may not be present (in whi
h
ase all zeros is returned).

5.1.4 MC Reset

OpenIPMI has a fun
tion to reset an MC. It is:

#define IPMI_MC_RESET_COLD ...

#define IPMI_MC_RESET_WARM ...

int ipmi_m
_reset(ipmi_m
_t *m
,

88 CHAPTER 5. THE MC

int reset_type,

ipmi_m
done
b done,

void *
b_data);

Note that this resets the MC, not the main pro
essor on the board the MC is lo
ated on. There are two

types of reset,
old and warm. Not all systems support resetting the MC and the e�e
ts of the reset are

system-dependent.

5.1.5 Global Event Enables

An MC has a global event enable. If events are disabled, then all events from the MC are disabled. If events

are enabled, then the sending of events depends on more spe
i�
 event settings on the sensors. The value is

a true-false, setting it to true enables events. False disables events. The fun
tions are:

int ipmi_m
_get_events_enable(ipmi_m
_t *m
);

int ipmi_m
_set_events_enable(ipmi_m
_t *m
,

int val,

ipmi_m
done
b done,

void *
b_data);

The setting is fet
hed and held lo
ally, so the \get" fun
tion is immediate. The \set" fun
tion requires

sending a message and thus it has a
allba
k.

C h a p t e r 6

IPMI Commands

IPMI does everything ex
ept events through
ommands and responses. A user sends a
ommand to an MC,

and the MC returns a response. All
ommands have responses. Commands may optionally have some data;

the data depends on the
ommand. The same goes for responses, ex
ept that all responses
ontain at least

one data byte holding the
ompletion
ode. Every response has a
ompletion
ode in the �rst byte.

Every
ommand and response has a NetFN and
ommand number. A NetFN is a number that des
ribes a

fun
tion group. All sensor-related
ommands, for instan
e, have the same NetFN. The
ommand number is

the number for the spe
i�

ommand within the NetFN. Responses
ontain the same NetFN and
ommand

number as the
ommand, ex
ept the NetFN has one added to it. So responses to sensor
ommand (NetFN

04h) will use NetFN 05h. Table 6.1 shows the NetFN values. All
ommands have even NetFNs, and all

responses have odd NetFNs.

Table 6.1: NetFN
odes

NetFN Name Des
ription

00h, 01h Chassis Common
hassis
ontrol and status fun
tions.

02h, 03h Bridge Messaging for bridging to another bus, generally ICMB.

04h, 05h Sensor/Event Handling of sensors and events.

06h, 07h Appli
ation General
ontrol and status of a
onne
tion and basi
 operations.

This is the \
at
h all" where things that don't really �t elsewhere

fall, too.

08h, 09h Firmware Used for formware
he
king and upgrade, generally. The mes-

saging for this is
ompletely proprietary and not de�ned by the

spe
.

0Ah, 0Bh Storage Non-volatile storage handling, the SDRs and SEL.

0Ch, 0Dh Tranport Con�guration of the LAN and serial interfa
es.

0Eh-2Bh Reserved

89

90 CHAPTER 6. IPMI COMMANDS

2Ch, 2Dh Group Exten-

sions

A way for external groups to de�ne their own extensions without

on
i
ting. The �rst byte of the
ommand and se
ond byte of

the response are a �eld that identi�es the entity de�ning the

messages; these bytes are, in e�e
t, an extension of the NetFN.

The external groups are free to de�ne the message outside those

bounds. Current de�ned external groups are:

00h Compa
tPCI

01h DMTF Pre-OS Working Group ASF Spe
i�
ation

All other values are reserved.

2Eh, 2Fh OEM/Group Basi
ally more group extensions, ex
ept that the �rst three bytes

(bytes 0-2) of
ommands and se
ond three bytes (bytes 1-3) of

responses are the IANA enterprise number. The owner of the

IANA enterprise number is free to de�ne these values any way

they like.

30h-3Fh OEM OEMs are free to use these messages any way they like.

Every response has a one byte error
ode that is always the �rst byte of the message. There are a number

of error
ode. Unfortunately, the error responses returned in a response are not bounded per
ommand; the

implementor is free to return pretty mu
h anything it likes as an error response. Some
ommands de�ne

expli
it error return
ode for some situations, but not generally. Table 6.2 shows the error
odes in IPMI.

Table 6.2: Error
odes

Error Name Des
ription

00h No error,
ommand
ompleted normally

01h-7Eh OEM error
odes. Implementors may use these error
odes for

their own
ommands if a standard error
ode does not apply.

7Fh reserved

80h-BEh Command-spe
i�
 error
odes. Some
ommands have spe
i�

errors they return that only apply to that
ommand. These are

de�ned by the
ommand.

BFh reserved

C0h Node Busy The
ommand
ould not
omplete be
ause
ommand pro
essing

resour
es on the MC are temporarily unavailable.

C1h Invalid Com-

mand

The MC did not support the given NetFN and
ommand.

C2h Invalid Com-

mand for LUN

The given
ommand was not supported on the LUN it was sent

to.

C3h Timeout A timeout o

urred while pro
essing the
ommand.

C4h Out of Spa
e There was not enough storage spa
e to perform the given
om-

mand.

C5h Reservation In-

valid

This is for
ommands that require reservations (like SEL and

SDR
ommands). This means the reservation number given was

invalid or the reservation was lost.

C6h Data Trun
ated The request data was trun
ated (it is unknown what this means).

91

C7h Command

Length Invalid

The re
eived
ommand was the wrong length for the
ommand.

C8h Command Field

Too Long

A �eld in a
ommand was too long for the given
ommand.

C9h Parameter Out

of Range

One or more �elds in a
ommand were outside the range of allowed

values. A

ording to the spe
, \This is di�erent from the 'Invalid

data �eld' (CCh)
ode in that it indi
ates that the erroneous

�eld(s) has a
ontiguous range of possible values." The meaning

of that enigmati
 statement is unknown.

CAh Too Many Re-

quested Bytes

A request was made for some data, but the requested number of

bytes was either beyond the end of the data or too long to �t into

the return response.

CBh Invalid Obje
t The requested sensor, re
ord, or data was not present. The
om-

mand is supported, but the spe
i�
 obje
t asked for does not

exist.

CCh Invalid Data

Field

An invalid data �eld was in the request. See error C9h for more

details.

CDh Command In-

valid for Obje
t

The spe
i�
 sensor, re
ord, or data does not support the given

ommand.

CEh No Response The
ommand response
ould not be provided. The meaning of

this is unknown.

CFh Dupli
ate Re-

quest

A dupli
ate request was re
eived and ignored. The spe
 says

\This
ompletion
ode is for devi
es whi
h
annot return the re-

sponse that was returned for the original instan
e of the request.

Su
h devi
es should provide separate
ommands that allow the

ompletion status of the original request to be determined. An

Event Re
eiver does not use this
ompletion
ode, but returns the

00h
ompletion
ode in response to (valid) dupli
ate requests."

The meaning of this statement is unknown. However, in general

IPMI should be stateless be
ause reponses
an be lost and
om-

mands retransmitted. Commands that have intermediate state

need to be handled very
arefully (and there are none in the

main spe
).

D0h SDR Respos-

itory Being

Updated

The SDR repository is
urrently in update mode so the given

ommand
ould not be exe
uted.

D1h Firmware Being

Updated

The given
ommand
ould not be exe
uted be
ause �rmware on

the system is being updated.

D2h BMC Initializ-

ing

The given
ommand
ould not be exe
uted be
ause the BMC (or

probably any MC) is
urrently initializing.

D3h Destination Un-

available

An MC
ould not deliver the
ommand to the given destination.

For instan
e, if you send a \Send Message"
ommand to a
hannel

that is not a
tive, it may return this.

92 CHAPTER 6. IPMI COMMANDS

D4h InsuÆ
ient

Privilege

The user does not have suÆ
ient privilege to exe
ute the
om-

mand.

D5h Invalid State The given
ommand
annot be supported in the present state.

D6h Subfun
tion

Disabled

The given
ommand
annot be exe
uted be
ause the subfun
tion

required has been disabled.

D7h-FEh reserved

FFh Unspe
i�ed Some error o

urred, but the true error
ould not be determined.

The a
tual me
hani
s of sending a message depend on the interfa
e, see the interfa
e se
tions in
hapter

4 for the details of sending over spe
i�
 interfa
es.

6.1 Sending Commands in the OpenIPMI Library

The OpenIPMI library hides most of the details of sending a
ommand and handles all the aspe
ts of talking

to sensors,
ontrols, and MCs. You should generally not need to send a
ommand to an MC. However,

ex
eptions exist, so the operation is des
ribed here.

First, you should probably de
ide if you want a
lean interfa
e to the fun
tion through a
ontrol. A

ontrol provides a
lean interfa
e to a devi
e and should probably be used if possible. You would then send

the messages from fun
tions that are part of the
ontrol interfa
e.

To send a message, you
an either send it to an address in the domain or to an MC. To send to an

address, you must have or
onstru
t a valid IPMI address and use:

ipmi_send_
ommand_addr(ipmi_domain_t *domain,

ipmi_addr_t *addr,

unsigned int addr_len,

ipmi_msg_t *msg,

ipmi_addr_response_handler_t rsp_handler,

void *rsp_data1,

void *rsp_data2);

To send to an MC, you must have a valid MC. You
an usually extra
t this from a
ontrol or sensor (the

MC the sensor belongs to) or you
an iterate the MCs or keep the MC id around. The fun
tion to send a

message to an MC is:

int ipmi_m
send
ommand(ipmi_m
_t *m
,

unsigned int lun,

ipmi_msg_t *
md,

ipmi_m
_response_handler_t rsp_handler,

void *rsp_data);

C h a p t e r 7

SDR Repositories

IPMI systems keep information about their sensors and entities in an SDR repository. The SDR repository

is a set of re
ord; ea
h re
ord holding information about the sensor or entity. An SDR repository may also

hold OEM re
ords; those are system-spe
i�
 and not dis
ussed here.

IPMI systems have two types of SDR repositories. The IPMI spe
 does not give a name to the �rst type,

but we shall refer to it here as the \main" SDR repository. A system should generally only have one of these.

This repository is writable by the user using standard operations.

Ea
h MC in an IPMI system may have a devi
e SDR repository. IPMI does not have standard operations

to write this repository, just to read it. This repository may also
hange dynami
ally. For instan
e, if some

devi
e is hot-plugged onto a board, the MC for that board may dynami
ally add or
hange sensors and

entities for the new devi
e.

The re
ords in these two types of repositories are the same.

7.1 SDR Reservations

Both SDR repository types support the
on
ept of a reservation.

7.2 The Main SDR Repository

TBD - write this

7.2.1 Modal and Non-Modal SDR Repositories

7.2.2 Commands for Main SDR Repositories

7.3 Devi
e SDR Repositories

TBD - write this

93

94 CHAPTER 7. SDR REPOSITORIES

7.3.1 Dynami
 Devi
e SDR Repositories

7.3.2 Commands for Devi
e SDR Repositories

7.4 Re
ords in an SDR Repository

Se
tion 8.8 on entities and se
tion 9.7 on sensors des
ribe the spe
i�
 re
ords in SDR repositories. They all

follow a general format, though; this se
tion des
ribes that format.

Ea
h SDR has three parts: A header, a key, and a body. Note that all multi-byte values in SDRs are

little-endian unless spe
i�ed otherwise. The header is:

0-1 Re
ord ID. This is the number used to fet
h the re
ord from the SDR repository.

2 IPMI Version. This is the IPMI version the re
ord is spe
i�ed under.

3

Re
ord Type. This tells the spe
i�
 type of re
ord
ontained in the SDR; it gives the

format of the data after the header.

4 Re
ord Size. This is the number of bytes in the SDR, not in
luding the header.

Table 7.1: The SDR header

The key and body are dependent on the re
ord type and are de�ned in the spe
i�
 re
ord de�nitions.

Table 7.2 shows the various re
ord types supported by IPMI.

To fet
h an SDR, �rst fet
h the SDR header. On
e the size is known the rest of the SDR
an be fet
hed.

7.5 Dealing with SDR Repositories in OpenIPMI

SDRs
an be rather diÆ
ult to deal with. OpenIPMI hides most, if not all, of the diÆ
ulty from the user.

It fet
hes the SDRs, de
odes them,
reate entities and sensors as ne
essary, and reports those to the user.

The user of OpenIPMI will not have to know anything about SDRs, in general.

The type used by OpenIPMI to hold an SDR repository is ipmi_sdr_info_t. The type used to hold

individual SDRs is ipmi_sdr_t. The internals of ipmi_sdr_info_t are opaque, you
an only use fun
tions

to manipulate it. The internals of ipmi_sdr_t are not (
urrently) opaque, you
an a

ess the internals

dire
tly.

7.5.1 Getting an SDR Repository

If you need a

ess to the SDRs for a system, you
an get the main SDRs by
alling:

ipmi_sdr_t *ipmi_domain_get_main_sdrs(ipmi_domain_t *domain);

You
an get the SDRs for an MC with the following:

ipmi_sdr_t *ipmi_m
_get_sdrs(ipmi_domain_t *domain);

These are the pre-fet
hed
opies that OpenIPMI holds. You
an also fet
h your own
opy of an SDR

repository using the following
all to
reate it:

7.5. DEALING WITH SDR REPOSITORIES IN OPENIPMI 95

01h Type 1 sensors are generally used for analog sensors. They
an be used for dis
rete sensors,

too, but most of the �elds are irrelevant for dis
rete sensors.

02h Type 2 sensors are used for dis
rete sensors. Multiple similar sensors may be spe
i�
 in a

single type 2 re
ord if the sensor meet
ertain
riteria.

03h Type 3 sensors are used for sensors that only send events.

08h A type 8 sensor is
alled a Entity Asso
iation Re
ord (EAR). These are used to spe
ify

entity
ontainment; to spe
ify, for instan
e that a pro
essor entity is on a spe
i�
 board

entity.

09h A type 9 sensor is
alled a Devi
e Relative Entity Asso
iation Re
ord (DREAR). It is like

a type 8 re
ord, but
an
ontain devi
e-relative entities.

10h A type 16 re
ord is
alled a Generi
 Devi
e Lo
ator Re
ord (GDLR). It is used to give

information about an entity when the entity is not a FRU or MC.

11h A type 17 re
ord is
alled a Field Repla
able Unit Devi
e Lo
ator Re
ord (FRUDLR). It is

used to give information about a FRU entity in the system that is not a MC.

12h A type 18 re
ord is
alled a Management Controller Devi
e Lo
ator Re
ord (MCDLR). It

is used to give information about a MC entity in the system.

13h A type 19 re
ord is
alled a Management Controller Con�rmation Re
ord. It re
ord the fa
t

that a MC has been found in the system. Note that OpenIPMI does not
urrently use these.

14h A type 20 re
ord is
alled a BMC Message Channel Info Re
ord. It is only used in IPMI

version 1.0; it spe
i�es the
hannels available on the system. Newer version of IPMI use

spe
i�
 messages to
arry this information.

C0h This is used for OEM re
ords. The format depends on the spe
i�
 system type.

Table 7.2: SDR types. All other re
ord types are reserved

96 CHAPTER 7. SDR REPOSITORIES

int ipmi_sdr_info_allo
(ipmi_domain_t *domain,

ipmi_m
_t *m
,

unsigned int lun,

int sensor,

ipmi_sdr_info_t **new_sdrs);

If you want the main SDRs held on an MC, set the sensor value to false (zero). If you want the devi
e

SDRs, set the value to true (one). After you allo
ate an SDR info stru
ture, you
an use the following
all

to fet
h it:

typedef void (*ipmi_sdrs_fet
hed_t)(ipmi_sdr_info_t *sdrs,

int err,

int
hanged,

unsigned int
ount,

void *
b_data);

int ipmi_sdr_fet
h(ipmi_sdr_info_t *sdrs,

ipmi_sdrs_fet
hed_t handler,

void *
b_data);

If you allo
ate your own SDR info stru
ture, you should destroy it when you are done with it with the

following
all:

typedef void (*ipmi_sdr_destroyed_t)(ipmi_sdr_info_t *sdrs, void *
b_data);

int ipmi_sdr_info_destroy(ipmi_sdr_info_t *sdrs,

ipmi_sdr_destroyed_t handler,

void *
b_data);

Note that you should not destroy an SDR repository you fet
hed from the domain or MC. Those are

managed by OpenIPMI; if you destroy them you will
ause problems.

Note that an SDR repository from a MC or domain is dynami
; it may
hange be
ause OpenIPMI res
ans

the SDRs to make sure they haven't
hanged.

7.5.2 SDR Repository Information

General SDR info is available about the repository on
e the fet
h is
omplete. The format of the fun
tions

to get them are all

int ipmi_sdr_get_xxx(ipmi_sdr_info_t *sdr, int *val);

where the xxx is repla
ed by the item you wish to get. Valid items are:

major version The major IPMI version the SDR repository supports, like 1 for IPMI 1.0

and 1.5, and 2 for IPMI 2.0.

minor version The minor IPMI version the SDR repository supports, like 0 for IPMI 1.0

and 2.0, and 5 for IPMI 1.5.

over
ow An SDR write operation has failed to do la
k of spa
e.

7.5. DEALING WITH SDR REPOSITORIES IN OPENIPMI 97

update mode The update modes supported. Valid values are:

00b - unspe
i�ed

01b - Only non-modal updates are supported

10b - Only modal updates are supported

11b - Both modal and non-modal updates are supported

supports delete sdr If true, the repository supports deleting individual SDRs one at a time.

supports partial add sdr If true, the repository supports the partial add
ommand.

supports reserve sdr If true, the repository supports using reservations.

supports get sdr

repository allo
ation

If true, the repository allows allo
ation information to be fet
hed with the

Get SDR Repository Allo
ation Info
ommand.

dynami
 population If true, the IPMI system
an dynami
ally
hange the
ontents of the SDR

repository. This may only be true for devi
e SDR repositories. Although

main SDR repositories
an dynami
ally
hange, it is not the system that

does this, it is the user.

The following
all
an be used to tell whether sensors are available on spe
i�
 LUNs.

int ipmi_sdr_get_lun_has_sensors(ipmi_sdr_info_t *sdr,

unsigned int lun,

int *val);

7.5.3 Handling a SDR Repository

On
e you have an SDR repository, you
an fet
h individual SDRs from it by the re
ord id, type, or index.

To �nd out the number of SDRs in the repository, use:

int ipmi_get_sdr_
ount(ipmi_sdr_info_t *sdr,

unsigned int *
ount);

Fet
hing the SDRs by index is probably the most useful fun
tion; it treats the repository as an array and

lets you fet
h items, starting at zero. The
all is:

int ipmi_get_sdr_by_index(ipmi_sdr_info_t *sdr,

int index,

ipmi_sdr_t *return_sdr);

If you are interested in a spe
i�
 re
ord number, you
an fet
h it with:

int ipmi_get_sdr_by_type(ipmi_sdr_info_t *sdr,

int type,

ipmi_sdr_t *return_sdr);

If you want to �nd the �rst SDR of a given type, use the following
all:

int ipmi_get_sdr_by_type(ipmi_sdr_info_t *sdr,

int type,

ipmi_sdr_t *return_sdr);

98 CHAPTER 7. SDR REPOSITORIES

To get all the SDRs, use the following:

int ipmi_get_all_sdrs(ipmi_sdr_info_t *sdr,

int *array_size,

ipmi_sdr_t *array);

Your passed in array will be �lled with the SDR data. The int pointed to by array_size must be set to the

number of available elements in array. It will be modi�ed to be the a
tual number of SDRs put into the

array. If the array is not big enough to hold all the SDRs, the
all will fail and have no e�e
t.

C h a p t e r 8

Entities

Though you might not know it from a
ursory reading of the IPMI spe
, entities are an important part of

IPMI. They de�ne what a sensor (and in OpenIPMI, a
ontrol) monitors (or
ontrols). They are, in essen
e,

the physi
al parts of the system. For instan
e, if a system has a temperature sensor on the pro
essor and

another temperature sensor on the main board, the temperature sensors will be atta
hed to the pro
essor

entity and board entity, respe
tively. This way, you
an tell what the sensor monitors.

Entities are de�ned by two numbers, the entity id and the entity instan
e. The entity id de�nes the type

of thing, su
h as a power supply, pro
essor, board, or memory. The entity instan
e de�nes the instan
e of

the thing. For instan
e, a system may have 4 DIMMs. Ea
h of these DIMMs would be the same entity id

(memory), but they would ea
h have a di�erent instan
e. From now on these are referred to as (<entity

id>,<entity instan
e>). For example, entity (3,1) would be the �rst pro
essor in the system.

IPMI de�nes two types of entities: system-relative and devi
e-relative. System-relative entities are unique

throughout the entire system (the domain, in OpenIPMI terms). Thus if sensors on di�erent MCs referred

entity (3,1), they would all be referring to exa
tly the same physi
al thing. System-relative entity instan
es

are de�ned to be less than 96.

Devi
e-relative entities are unique on the management
ontroller that
ontrols them. These entity's

instan
es are numbered 96-128. These are referred to using their
hannel and IPMB address in the form

r(<
hannel>,<IPMB>,<entity id>,<entity instan
e>-96). For instan
e, if an MC at address C0h had a

sensor on
hannel 0 that monitored entity id 3, instan
e 97, that would be r(0,C0,3,1)

Entities may or may not have spe
i�
 information des
ribing them. Entities that do have spe
i�
 infor-

mation des
ribing them have devi
e lo
ator re
ords.

Entity IDs de�ned by IPMI are:

Name des
ription

0 UNSPECIFIED The entity id is not used.

1 OTHER Something else?

2 UNKOWN It's hard to understand why the entity id wouldn't be

known, but this is de�ned by the spe
.

3 PROCESSOR A pro
essor

4 DISK A disk or disk bay

5 PERIPHERAL A peripheral bay

99

100 CHAPTER 8. ENTITIES

6 SYSTEM MANAGEMENT

MODULE

A separate board for system management

7 SYSTEM BOARD The main system board

8 MEMORY MODULE A memory module (a DIMM, for instan
e)

9 PROCESSOR MODULE A devi
e that holds pro
essors, if they are not mounted

on the system board. This would generally be a so
ket.

10 POWER SUPPLY The main power supplies for the system use this.

11 ADD IN CARD A plug-in
ard in a system, a PCI
ard for instan
e.

12 FRONT PANEL BOARD A front panel display and/or
ontrol panel.

13 BACK PANEL BOARD A rear panel display and/or
ontrol panel.

14 POWER SYSTEM BOARD A board that power supplies plug in to

15 DRIVE BACKPLANE A board that disk drives plug in to

16 SYSTEM INTERNAL

EXPANSION BOARD

A board that
ontains expansion slots. A PCI riser

board, for instan
e.

17 OTHER SYSTEM BOARD Some other board in the system.

18 PROCESSOR BOARD A separate board that holds one or more pro
essors.

19 POWER UNIT A logi
al grouping for a set of power supplies

20 POWER MODULE Used for internal DC-to-DC
onverters, like one that

is on a board. Note that you would not use this for

the main power supply in a system, even it it was a

DC-to-DC
onverter.

21 POWER MANAGEMENT

BOARD

A board for managing and distributing power in the

system

22 CHASSIS BACK

PANEL BOARD

A rear board in a
hassis.

23 SYSTEM CHASSIS The main
hassis in the system.

24 SUB CHASSIS A sub-unit of the main
hassis.

25 OTHER CHASSIS BOARD Some other board that doesn't �t the given
ategories.

26 DISK DRIVE BAY A sub-
hassis that holds a set of disk drives.

27 PERIPHERAL BAY A sub-
hassis that holds a set of peripherals.

28 DEVICE BAY A sub-
hassis that holds a set of devi
es. The di�er-

en
e between a peripheral and a devi
e is not known.

29 FAN COOLING A fan or other
ooling devi
e.

30 COOLING UNIT A group of fans or other
ooling devi
es.

31 CABLE INTERCONNECT A
able routing devi
e.

32 MEMORY DEVICE A repla
eable memory devi
e, like a DIMM. This

should not be used for individual memory
hips, but

for the board that holds the memory
hips.

33 SYSTEM MANAGEMENT

SOFTWARE

The meaning of this is unknown.

34 BIOS The BIOS running on the system.

35 OPERATING SYSTEM The operating system running on the system.

36 SYSTEM BUS The main inter
onne
t bus in a system.

8.1. DISCOVERING ENTITIES 101

37 GROUP A generi
 grouping of entities if no physi
al thing

groups them but they need to be groups.

38 REMOTE MGMT

COMM DEVICE

A
ommuni
ation devi
e used for remote management.

39 EXTERNAL

ENVIRONMENT

The environment outside the
hassis. For instan
e,

a temperature sensor outside the
hassis that moni-

tored external temperature would use this. Di�erent

instan
es may be used to spe
ify di�erent regions out-

side the box.

40 BATTERY A battery

41 PROCESSING BLADE A single-board
omputer, generally a board that has

one or more pro
essors, memory, et
. that plugs into

a ba
kplane.

42 CONNECTIVITY SWITCH A network swit
h that plugs into a system to provide

onne
tivity between independent pro
essors in a sys-

tem.

43 PROCESSOR MEMORY

MODULE

?

44 IO MODULE ?

45 PROCESSOR IO MODULE ?

46 MGMT CONTROLLER

FIRMWARE

The �rmware running on an MC.

8.1 Dis
overing Entities

In OpenIPMI, the entities in a system are part of the domain. As OpenIPMI s
ans SDRs it �nds, it will

reate the entities referen
ed in those SDRs. The user
an dis
over the entities in a domain in two ways:

iterating or registering
allba
ks.

Iterating the entities in a domain simply involves
alling the iterator fun
tion with a
allba
k fun
tion:

stati
 void

handle_entity(ipmi_domain_t *domain, ipmi_entity_t *entity, void *
b_data)

{

my_data_t *my_data =
b_data;

/* Pro
ess the entity here */

}

void

iterate_entities(ipmi_domain_t *domain, my_data_t *my_data)

{

int rv;

rv = ipmi_domain_iterate_entities(domain, handle_entity, my_data);

if (rv)

handle_error();

102 CHAPTER 8. ENTITIES

}

This is relatively simple to do, but you will not be able to know immediately when new entities are added

to the system. To know that, you must register a
allba
k fun
tion as follows:

stati
 void

handle_entity(enum ipmi_update_e op,

ipmi_domain_t *domain,

ipmi_entity_t *entity,

void *
b_data)

{

my_data_t *my_data =
b_data;

/* Pro
ess the entity here */

}

void

handle_new_domain(ipmi_domain_t *domain, my_data_t *my_data)

{

int rv;

rv = ipmi_domain_add_entity_update_handler(domain, handle_entity, my_data);

if (rv)

handle_error();

}

You should
all the fun
tion to add an entity update handler when the domain is reported up (or even

before); that way you will not miss any entities.

8.2 Entity Containment and OpenIPMI

Entities may be
ontained inside other entities. For instan
e, a
hassis may
ontain a board, and a board

may have a pro
essor on it. This is expressed in spe
i�
 entity SDRs. OpenIPMI represents this by entities

having
hildren and parents.

To dis
over the parents of an entity, they may be iterated. It seems possible for an entity to have more

than one parent; there is no dire
t prohibition of this in IPMI, although it would be a little wierd. To iterate

the parents, use the following
all:

typedef void (*ipmi_entity_iterate_
hild_
b)(ipmi_entity_t *ent,

ipmi_entity_t *
hild,

void *
b_data);

void ipmi_entity_iterate_
hildren(ipmi_entity_t *ent,

ipmi_entity_iterate_
hild_
b handler,

void *
b_data);

Similarly, an entity may have
hildren, but it is
ertain that more than one
hild is allowed. To iterate

entities
hildren, use the following
all:

8.3. ENTITY PRESENCE 103

typedef void (*ipmi_entity_iterate_parent_
b)(ipmi_entity_t *ent,

ipmi_entity_t *parent,

void *
b_data);

void ipmi_entity_iterate_parents(ipmi_entity_t *ent,

ipmi_entity_iterate_parent_
b handler,

void *
b_data);

To dis
over if an entity is a
hild (has parent entities) or is a parent (has
hild entities), you may use the

following
alls:

int ipmi_entity_get_is_
hild(ipmi_entity_t *ent);

int ipmi_entity_get_is_parent(ipmi_entity_t *ent);

8.3 Entity Presen
e

An entity identi�ed in an SDR may or may not be present in the system. IPMI spe
i�es an algorithm

for dete
ting whether an entity is present. Unfortunately, this algorithm is extremely
ompli
ated. The

algorithm is given in stages:

� If the entity has a presen
e sensor atta
hed (sensor type 25h) or a bit in some sensor that is atta
hed

to it that shows presense (sensor type 21h bit 02h, sensor type 08h bit 00h, or sensor type 29h bit 02h),

that sensor should always be present and will tell if the entity is present. A presen
e sensor or bit will

override all other entity dete
tion methods; it dire
tly tells if the entity is present or not.

� If a FRU devi
e for the entity is spe
i�ed and is operational, then the entity is present.

� The entity is present if at least one sensor is available and s
anning is enabled on that sensor.

� The entity is present if the entity is a parent entity and at least one of its
hildren is present.

� Otherwise the entity is not present.

Entity presen
e may also a�e
t whether the sensors atta
hed to the entity are present. The sensor SDRs

have a
ag that spe
i�es whether the sensor is present even if the entity is not present.

8.3.1 Entity Presen
e in OpenIPMI

OpenIPMI handles dete
tion of entity presen
e for the user. If you have an entity pointer or entity id, you

an dire
tly query to see if the entity is present using:

int ipmi_entity_is_present(ipmi_entity_t *ent);

int ipmi_entity_id_is_present(ipmi_entity_id_t id, int *present);

If you need to know when an entity be
omes present or absent, you may use the following
allba
k

registration:

typedef int (*ipmi_entity_presen
e_
hange_
b)(ipmi_entity_t *entity,

int present,

void *
b_data,

104 CHAPTER 8. ENTITIES

ipmi_event_t *event);

int ipmi_entity_add_presen
e_handler(ipmi_entity_t *ent,

ipmi_entity_presen
e_
hange_
b handler,

void *
b_data);

int ipmi_entity_remove_presen
e_handler

(ipmi_entity_t *ent,

ipmi_entity_presen
e_
hange_
b handler,

void *
b_data);

This is a standard event handler as de�ned in se
tion 2.2.5 on page 20.

8.4 Entity Types and Info

Entities
ome in four di�erent
avors:

MC - An MC entity is for a MC.

FRU - This is for �eld-repla
eable entities that are not MCs.

Generi
 - Some other devi
e on the IPMB bus.

Unknown - This is for entities that do not have an SDR re
ord to identify them. These entities are generally

only referen
ed in sensor re
ords or in entity asso
iation re
ords.

The following
all returns the entity type:

enum ipmi_dlr_type_e ipmi_entity_get_type(ipmi_entity_t *ent);

Valid entity types are:

IPMI ENTITY UNKNOWN

IPMI ENTITY MC

IPMI ENTITY FRU

IPMI ENTITY GENERIC

There are
alls to fet
h information about entities, but only
ertain
alls are available for
ertain entities.

All these
alls have the form:

int ipmi_entity_get_xxx(ipmi_entity_t *ent);

where xxx is the data item. These will not return errors, they will return unde�ned information if they are

alled on an entity that does not support the spe
i�
 data item. The data items supported are:

Data Item Des
ription M F G U

is fru This will be true if the item has FRU information x x x x

entity id This will be the entity id of the entity. x x x x

entity instan
e This will be the entity instan
e of the entity. x x x x

devi
e
hannel This is the devi
e
hannel for the entity. It is only useful if

the entity instan
e is devi
e-relative. See se
tion 8 for more

details.

x x x x

8.4. ENTITY TYPES AND INFO 105

devi
e address This is the IPMB address for the entity. It is only useful if

the entity instan
e is devi
e-relative. See se
tion 8 for more

details.

x x x x

presense sensor

always there

If this is true, then the entity has a presen
e sensor or a

presen
e bit sensor and that sensor is always present.

x x x x

hannel The
hannel number for the entity. This is di�erent than

devi
e
hannel be
ause it is the a
tual value from the SDR,

not the value from the entity info.

x x x

lun The LUN from the SDR. x x x

oem The entity SDRs have an OEM �eld that may be fet
hed

with this
all. The meaning of this is system dependent.

x x x

a

ess address The IPMB address of the MC the entity is on or is represented

by.

x x

private bus id The FRU information may be on an EEPROM devi
e on a

private bus. If so,

x x

devi
e type The type of I

2

C devi
e. This is really not very important,

but these are de�ned in the IPMI spe
.

x x

devi
e modi�er An extension to the devi
e type �eld to further re�ne the

devi
e type.

x x

slave address The IPMB address of the devi
e on the IPMB. x x

is logi
al fru Tells if the FRU information on the FRU is a

essed through

an MC (value is 1) or is a

ess dire
tly on the IPMB bus as

a EEPROM (value is 0).

x

ACPI system power

notify required

If true, ACPI system power state noti�
ation is required for

the devi
e.

x

ACPI devi
e power

notify required

If true, ACPI devi
e power syste noti�
ation is required by

the devi
e.

x

ontroller logs init

agent errors

If true, the MC logs initialization errors. x

log init agent errors

a

essing

If this is true, then the initialization agent will log any failures

trying to set the event re
eiver for the devi
e.

x

global init Tells the initialization agent whether to initialize the
on-

troller's event re
eiver. This is a two bit value:

00b - Enable the
ontroller's event re
eiver.

01b - Disable the
ontroller's event re
eiver by setting it to

FFh. This is generally to turn of a rogue
ontroller or

for debugging.

10b - Do not initialize the
ontroller's event re
eiver. this

is generally for debugging.

11b - reserved

x

hassis devi
e The
ontroller handles the
hassis
ommands. x

bridge The
ontroller handles bridge
ommands. This generally

means it supports ICMB.

x

106 CHAPTER 8. ENTITIES

IPMB event

generator

The
ontroller generates events on the IPMB. x

IPMB event re
eiver The
ontroller
an re
eive events on the IPMB. x

FRU devi
e

inventory

The
ontroller supports FRU inventory
ommands. x

SEL devi
e The
ontroller supports a SEL devi
e for storing events. x

SDR repository

devi
e

The
ontroller supports a main SDR repository. x

sensor devi
e The
ontroller has sensors, it supports the sensor
ommands. x

get address span The number of additional
onse
utive slave addresses used

by the devi
e. For instan
e, if the address is C0h and this

value is zero, then it is only at C0h. If this value was one,

then it would be at C0h and C2h.

x

In addition, a string value for the entity id may be fet
hed. This is not quite the same as the entity id,

be
ause OEM
ode may set this string to a di�erent value than the default, espe
ially for OEM entity ids.

The fun
tion is:

har *ipmi_entity_get_entity_id_string(ipmi_entity_t *ent);

The id (the string name in the SDR)
an also be fet
hed using the following
alls:

int ipmi_entity_get_id_length(ipmi_entity_t *ent);

enum ipmi_str_type_e ipmi_entity_get_id_type(ipmi_entity_t *ent);

int ipmi_entity_get_id(ipmi_entity_t *ent,
har *id, int length);

See se
tion A.1 for details on this.

8.5 Sensor and Controls in an Entity

In OpenIPMI, entities
ontain sensors and
ontrols. If a sensor or
ontrol is asso
iated with an entity, that

sensor or
ontrol will be
ontained inside the entity in OpenIPMI.

To �nd the sensors in an entity, you
an iterate them using the fun
tion:

typedef void (*ipmi_entity_iterate_sensor_
b)(ipmi_entity_t *ent,

ipmi_sensor_t *sensor,

void *
b_data);

void ipmi_entity_iterate_sensors(ipmi_entity_t *ent,

ipmi_entity_iterate_sensor_
b handler,

void *
b_data);

The \handler" fun
tion will be
alled with ea
h sensor in the entity. Controls have a similar fun
tion:

typedef void (*ipmi_entity_iterate_
ontrol_
b)(ipmi_entity_t *ent,

ipmi_
ontrol_t *
ontrol,

void *
b_data);

8.5. SENSOR AND CONTROLS IN AN ENTITY 107

void ipmi_entity_iterate_
ontrols(ipmi_entity_t *ent,

ipmi_entity_iterate_
ontrol_
b handler,

void *
b_data);

So, for instan
e, if you wanted to print the name and entity id string of every sensor in an entity, you

might have
ode that looks like:

stati
 void

handle_sensor(ipmi_entity_t *ent,

ipmi_sensor_t *sensor,

void *
b_data)

{

har *name;

int length = ipmi_sensor_get_id_length(sensor);

int allo
ated = 0;

if (length == 0)

name = "empty name";

else {

name = mallo
(length+1);

if (!name) {

/* Handle error */

return;

}

allo
ated = 1;

length = ipmi_sensor_get_id(sensor, name, length);

}

printf("Sensor %s\n", name);

if (allo
ated)

free(name);

}

void

print_sensors(ipmi_entity_t *entity)

{

ipmi_entity_iterate_sensors(entity, handle_sensor, NULL);

}

However, you probably want to know about the sensors and
ontrols as soon as they are
reated or

destroyed. To do this, you
an add
allba
k fun
tions to the entity to
all you whenever a sensor or
ontrol

is added to the entity or deleted from the entity. The following fun
tions allow the user to wat
h sensors in

a domain:

typedef void (*ipmi_entity_sensor_
b)(enum ipmi_update_e op,

ipmi_entity_t *ent,

ipmi_sensor_t *sensor,

void *
b_data);

108 CHAPTER 8. ENTITIES

int ipmi_entity_add_sensor_update_handler(ipmi_entity_t *ent,

ipmi_entity_sensor_
b handler,

void *
b_data);

int ipmi_entity_remove_sensor_update_handler(ipmi_entity_t *ent,

ipmi_entity_sensor_
b handler,

void *
b_data);

Likewise, the following fun
tion are for
ontrols:

typedef void (*ipmi_entity_
ontrol_
b)(enum ipmi_update_e op,

ipmi_entity_t *ent,

ipmi_
ontrol_t *
ontrol,

void *
b_data);

int ipmi_entity_add_
ontrol_update_handler(ipmi_entity_t *ent,

ipmi_entity_
ontrol_
b handler,

void *
b_data);

int ipmi_entity_remove_
ontrol_update_handler(ipmi_entity_t *ent,

ipmi_entity_
ontrol_
b handler,

void *
b_data);

The add fun
tions should generally be
alled in the
allba
k that reports the new entity, that way you will

not miss any
ontrols or sensors as they are added. On removal, both the handler and the
b data values

must mat
h the values in the add handler, the
b data value is not use for a
allba
k but to �nd the spe
i�

item to remove.

As an example, the following
ode reports the sensor name and whether it was added, removed, or

hanged:

stati
 void

handle_sensor(enum ipmi_update_e op,

ipmi_entity_t *ent,

ipmi_sensor_t *sensor,

void *
b_data)

{

har *name;

int length = ipmi_sensor_get_id_length(sensor);

int allo
ated = 0;

if (length == 0)

name = "empty name";

else {

name = mallo
(length+1);

if (!name) {

/* Handle error */

return;

}

allo
ated = 1;

length = ipmi_sensor_get_id(sensor, name, length);

8.6. ENTITY HOT-SWAP 109

}

printf("Sensor %s\n", name);

if (allo
ated)

free(name);

}

void

print_sensors(ipmi_entity_t *entity)

{

ipmi_entity_iterate_sensors(entity, handle_sensor, NULL);

}

8.6 Entity Hot-Swap

OpenIPMI supports the notion of an entity being hot-swapped. It supports a
omplete state ma
hine that

allows insertion to be dete
ted, requests to power on the entity and requests to power o� the entity. These

requests generally
ome from the user in the form of a swit
h or something of that nature. It also supports

a subset of the hot-swap state ma
hine if all these features are not available.

Unfortunately, IPMI does not have this
on
ept, so this must be added by OEM
ode. Several systems

that support hot-swap are available in OpenIPMI, in
luding the Motorola MXP (see appendix F on page 175)

and
hassis that adhere to the PICMG ATCA standard (see appendix E on page 171).

Not all entities are hot-swappable. If an entity is hot-swappable, the fun
tion:

int ipmi_entity_hot_swappable(ipmi_entity_t *ent);

will return true.

8.6.1 Hot-Swap State

OpenIPMI supports eight hot-swap states:

IPMI HOT SWAP NOT PRESENT

IPMI HOT SWAP INACTIVE

IPMI HOT SWAP ACTIVATION REQUESTED

IPMI HOT SWAP ACTIVATION IN PROGRESS

IPMI HOT SWAP ACTIVE

IPMI HOT SWAP DEACTIVATION REQUESTED

IPMI HOT SWAP DEACTIVATION IN PROGRESS

IPMI HOT SWAP OUT OF CON

These may be
onverted to a string name with the fun
tion:

har *ipmi_hot_swap_state_name(enum ipmi_hot_swap_states state);

Figure 8.1 on the following page shows a simple hot-swap state ma
hine for an entity that only supports

presen
e. In e�e
t, the entity is either not present or present.

Figure 8.2 on page 111 shows a more
omplex hot-swap state ma
hine. This would be used for an entity

that supported some type of power
ontrol (the entity
an be present but ina
tive). Upon insertion, the

entity will move from not present to ina
tive. If the entity supports some type of a
tivation request, it will

110 CHAPTER 8. ENTITIES

Figure 8.1: Simple Hot-Swap state ma
hine

move from ina
tive to a
tivation requested when that o

urs. If it does not support an a
tivation request, it

will move to either a
tivation in progress (if the a
tivation requires some time to o

ur) or dire
tly to a
tive

when the entity is a
tivated. The move from a
tivation requested to a
tivation in progress or a
tive o

urs

when the entity is a
tivated.

The entity will move to dea
tivation requested if the entity supports that and the operator requests a

dea
tivation. In a
tive or dea
tivation requested, the entity will move to dea
tivation in progress (or dire
tly

to ina
tive if dea
tivation is immediate) upon the entity being dea
tivated. Although it is not shown in the

diagram, the a
tivation in progress
an go to the dea
tivation states just like the a
tive state; it
onfused

the diagram too mu
h to show this.

Note that any state
an go to not present. This is
alled a suprise extra
tion; it o

urs if the operator

does not follow the hot-swap extra
tion pro
edure and just pulls the board. The state may also go from

any state to out of
ommuni
ation. This o

urs if the board is present (or the board presen
e
annot be

dete
ted) and the system looses
ommuni
ation with the entity. If
ommuni
ation is restored, the entity

goes to the
urrent state it is in. Some systems may support some manual means to move the entity's state

to not present.

When a hot-swap devi
e is inserted, it may or may not be automati
ally a
tivated. This depends on

the poli
ies and
apabilities of the
hassis where the devi
e is inserted. The devi
e may be dea
tivated

automati
ally upon a request if that poli
y is supported by the system.

The following fun
tion will allow the
urrent hot-swap state to be fet
hed:

typedef void (*ipmi_entity_hot_swap_state_
b)(ipmi_entity_t *ent,

int err,

enum ipmi_hot_swap_states state,

void *
b_data);

int ipmi_entity_get_hot_swap_state(ipmi_entity_t *ent,

ipmi_entity_hot_swap_state_
b handler,

void *
b_data);

8.6.2 Hot-Swap Events

It is possible to register to re
eive hot-swap
hanges when the o

ur. The following fun
tions do the regis-

tration and deregistra
tion of a hot-swap handler:

typedef int (*ipmi_entity_hot_swap_
b)(ipmi_entity_t *ent,

enum ipmi_hot_swap_states last_state,

enum ipmi_hot_swap_states
urr_state,

8.6. ENTITY HOT-SWAP 111

Figure 8.2: Complex Hot-Swap state ma
hine

112 CHAPTER 8. ENTITIES

void *
b_data,

ipmi_event_t *event);

int ipmi_entity_add_hot_swap_handler(ipmi_entity_t *ent,

ipmi_entity_hot_swap_
b handler,

void *
b_data);

int ipmi_entity_remove_hot_swap_handler(ipmi_entity_t *ent,

ipmi_entity_hot_swap_
b handler,

void *
b_data);

This is a standard event handler as des
ribed in se
tion 2.2.5 on page 20

8.6.3 Hot-Swap A
tivation and Dea
tivation

Devi
es that have the ability to
ontrol power and request power up or removal have some spe
ial handling

that may be required. Note that some systems may only support a subset of these operations, referen
e the

do
umentation for the system for more details.

When a devi
e is inserted that has these
apabilities, there is generally some way to signal that the devi
e

is ready to be powered up. In ATCA, for instan
e, the operator will insert the
ard and the entity for the

ard will go from not present to ina
tive state. When the operator
loses the lo
k-lat
h, that signals the

system to go to a
tivation requested state.

If a devi
e is in the ina
tive state, the management software using OpenIPMI
an use the following

fun
tion to for
e it into a
tivation requested state:

int ipmi_entity_set_a
tivation_requested(ipmi_entity_t *ent,

ipmi_entity_
b done,

void *
b_data);

This
an o

ur if an entity has been moved to the ina
tive state by the management software then the entity

needs to be powered up again. If an entity is sitting in the ina
tive state but does not support this, then

this
all will return ENOSYS and the entity
an be moved dire
tly to a
tive state.

To move an entity to a
tive state (either from ina
tive or a
tivation requested state), use the following

fun
tion:

int ipmi_entity_a
tivate(ipmi_entity_t *ent,

ipmi_entity_
b done,

void *
b_data);

This will power the entity up and move it to a
tive state.

Dea
tivation is similar, but not quite the same. The operator dire
tly working on the devi
e
an request

a removal using some me
hanism. In ATCA, for instan
e, the operator
an open the lo
k lat
h on the
ard

and the
ard entity will move from a
tive to dea
tivation requested state. Note that unlike a
tivation, there

is no way for system management software to request a move to dea
tivation requested state. It's not really

required, sin
e it
an request that the entity go dire
tly to ina
tive state.

To move from either a
tive (or really any state in the a
tivation pro
ess) or dea
tivation requested state

to ina
tive state, the fun
tion:

int ipmi_entity_dea
tivate(ipmi_entity_t *ent,

ipmi_entity_
b done,

void *
b_data);

8.7. FRU DATA 113

is used.

8.6.4 Auto A
tivation and Dea
tivation

Some systems allow the system management software to spe
ify a poli
y to exe
ute when a devi
e is inserted

or a removal is requested. Basi
ally, the time from an a
tivate request to when an a
tivation is automati
ally

started
an be spe
i�ed. The time from a dea
tivate request to when an dea
tivation is automati
ally started

an be spe
i�ed. The following fun
tions
an be used to read and update these times:

int ipmi_entity_get_auto_a
tivate_time(ipmi_entity_t *ent,

ipmi_entity_time_
b handler,

void *
b_data);

int ipmi_entity_set_auto_a
tivate_time(ipmi_entity_t *ent,

ipmi_timeout_t auto_a
t,

ipmi_entity_
b done,

void *
b_data);

int ipmi_entity_get_auto_dea
tivate_time(ipmi_entity_t *ent,

ipmi_entity_time_
b handler,

void *
b_data);

int ipmi_entity_set_auto_dea
tivate_time(ipmi_entity_t *ent,

ipmi_timeout_t auto_dea
t,

ipmi_entity_
b done,

void *
b_data);

The timeouts are standard OpenIPMI time values, whi
h are in nanose
onds. These will return ENOSYS

if the operation is not supported. They will return EINVAL if the time is out of range. To disable auto-

a
tivation and dea
tiviation, the time may be set to IPMI_TIMEOUT_FOREVER. To
ause the transitions to

o

ur immediately, set the value to IPMI_TIMEOUT_NOW.

8.7 FRU Data

OpenIPMI supports fet
hing all the FRU data supported by the IPMI spe
, as well as SPD data in DRAMs.

It also supports plugins for handling other types of FRU data that
an be provided for OEM data. It is

able to fet
h and modify all the standard data and all the
ustom data stored in multi-re
ords and has a

multire
ord de
oder plugin interfa
e with the standard multire
ords implements, along with some ATCA

re
ord de
oders. SPD data (and other data types, unless they provide their own interfa
es)
an only be

de
oded. Standard FRU data spe
i�ed by the IPMI spe

an be de
oded and written.

8.7.1 Reading FRU Data

The FRU data interfa
e has two separate interfa
es fet
hing data data from a FRU data obje
t. One is

a generi
 interfa
e that works with all FRU data type, in
luding SPD or OEM data. The other is an

IPMI-spe
i�ed FRU interfa
e that only works with the FRU data format spe
i�ed by IPMI.

114 CHAPTER 8. ENTITIES

Generi
 FRU Data Interfa
e

The generi
 FRU interfa
e represents the FRU data as a tree-stru
tured hierar
hy of data. Ea
h level of the

tree has a \node". The �elds in a node are indexed by number and may
ontain both data elements and

sub-nodes.

Two types of nodes exist. A re
ord node is a set of named �elds. The \name" of ea
h �eld will be

returned and the \intval" when the node itself is fet
hed will be �1. An array node
ontains a set of

unnamed elements. The \name" of ea
h �eld will be returned as NULL and the \intval" will be the number

of elements in the array.

The nodes are ref
ounted. If you are given a node, you must free the node using ipmi_fru_put_node()

when you are done with it.

To fet
h the root node of a FRU data obje
t, use the fun
tion:

int ipmi_fru_get_root_node(ipmi_fru_t *fru,

onst
har **name,

ipmi_fru_node_t **node);

This fun
tion returns the name of the FRU, either \SPD FRU" or \standard FRU" or some other OEM

name and the a
tual root node. If either of these is NULL, it will be ignored. The root node is always a

re
ord node.

To fet
h individual �elds from a re
ord, use:

int ipmi_fru_node_get_field(ipmi_fru_node_t *node,

unsigned int index,

onst
har **name,

enum ipmi_fru_data_type_e *dtype,

int *intval,

time_t *time,

double *floatval,

har **data,

unsigned int *data_len,

ipmi_fru_node_t **sub_node);

The index is a
ontiguous range from zero that holds every �eld. So you
an iterate through the indexes

from 0 until it returns EINVAL to �nd all the �elds. If a �eld is not present in the FRU data, this will return

ENOSYS. Note that later �elds may still be present.

The name returns the string name for the index. Note that the indexes may
hange between release, so

don't rely on absolute numbers. The names will remain the same, so you
an rely on those.

The dtype �eld will be set to the data type. The following values are returned:

IPMI FRU DATA INT sets intval

IPMI FRU DATA TIME sets time

IPMI FRU DATA ASCII sets data and data_len

IPMI FRU DATA BINARY sets data and data_len

IPMI FRU DATA UNICODE sets data and data_len

8.7. FRU DATA 115

IPMI FRU DATA BOOLEAN sets intval

IPMI FRU DATA FLOAT sets floatval

IPMI FRU DATA SUB NODE sets sub_node. intval will be -1 if it is not an array, or the array length if it is

an array.

Note that if data is returned in data, you must free the data when you are done with ipmi_fru_data_free().

Any of the return values may be passed NULL to ignore the data.

Printing all the FRU data or sear
hing for a data item by name
an easily be a

omplished using re
ursion.

IPMI-spe
i�
 FRU Data Interfa
e

The generi
 interfa
e should be used for appli
ations that only read the FRU data. For appli
ations that also

write the data, another interfa
e is available that allows individual data items to be spe
i�
ally addressed

and modi�ed and the data areas of the FRU data to be modi�ed, if they need to be resized,
reated, or

deleted.

IPMI FRU Data Organization FRU data is organized into areas, and the areas are organized into

�elds. The areas are:

internal use

hassis info

board info

produ
t info

multi re
ord

An area may or may not be present. An area, if present, may have required �elds and \
ustom" �elds.

The required �elds
an be fet
hed by name, the
ustom �elds are fet
hed by index number. Note that you

don't need to know anything about areas if you are just fet
hing data from the FRU, but you need to know

about them to modify FRU data.

There are a very large number of FRU variables and they are fairly well de�ned in the IPMI FRU

do
ument; see that do
ument and the ipmiif.h in
lude �le for details on the FRU data.

Fet
hing FRU Data from a FRU Some �elds are integers, some are time values, and some are strings.

Ea
h type has its own fet
h type. The integer and time values only return the one value that is returned.

The string fun
tions have a \type" fun
tion, a \len" fun
tion, and a fun
tion to a
tually get the strings.

For instan
e:

int ipmi_fru_get_
hassis_info_part_number_len(ipmi_entity_t *entity,

unsigned int *length);

int ipmi_fru_get_
hassis_info_part_number_type(ipmi_entity_t *entity,

enum ipmi_str_type_e *type);

int ipmi_fru_get_
hassis_info_part_number(ipmi_entity_t *entity,

har *str,

unsigned int *strlen);

116 CHAPTER 8. ENTITIES

The \len" fun
tion returns the length of the string. The \type" fun
tion returns the type of string per

standard OpenIPMI string handling. See se
tion A.1 on page 161 for more details. The last fun
tion returns

the a
tual string. The integer that strlen points to must be set to the length of the str array. Upon return,

the integer that strlen points to will
ontain the a
tual length. If there is not enough spa
e for the whole

string, the beginning of the string that �lls the array will be
opied in. All these fun
tions return an error;

the only
urrent return is ENOSYS if the parameter is not present.

You may also fet
h fru data (ex
ept for multi-re
ords) through a single general fun
tion. It is a ne
essarily

omplex interfa
e. The fun
tion is:

int ipmi_fru_get(ipmi_fru_t *fru,

int index,

har **name,

int *num,

enum ipmi_fru_data_type_e *dtype,

int *intval,

time_t *time,

har **data,

unsigned int *data_len);

The index is a
ontiguous range from zero that holds every FRU data item. So you
an iterate through the

indexes from 0 until it returns EINVAL to �nd all the names.

The name returns the string name for the index. Note that the indexes may
hange between release, so

don't rely on absolute numbers. The names will remain the same, so you
an rely on those.

The number is a pointer to an integer with the number of the item to get within the �eld. Some �elds

(
ustom re
ords) have multiple items in them. The �rst item will be zero, and the integer here will be

updated to referen
e the next item. When the last item is rea
hed, the �eld will be updated to -1. For �elds

that don't have multiple items, this will not modify the value num points to, so you
an use that to dete
t

if indexes are used for the item.

The dtype �eld will be set to the data type. If it is an integer value, then intval will be set to whatever

the value is. If it is a time value, then the time �eld will be �lled in. If it is not, then a blo
k of data will be

allo
ated to hold the �eld and pla
ed into data, the length of the data will be in data_len. You must free

the data when you are done with ipmi_fru_data_free().

This fun
tion Returns EINVAL if the index is out of range, ENOSYS if the parti
ular index is not supported

(the name will still be set), or E2BIG if the num is too big (again, the name will be set).

Any of the return values may be passed NULL to ignore the data.

Writing FRU Data to a FRU OpenIPMI supports writing FRU data. This is a very dangerous oper-

ations and should not be done by general
ode. There are no lo
ks on the FRU data, so multiple writers

an easily
orrupt the data. But for doing FRU data updates, OpenIPMI
an be used to fet
h, modify, and

write the FRU data assuming proper
are is taken.

To write to the FRU, you must �rst fet
h it by allo
ating it. If the FRU data
urrently in the fru is

orrupt, you will get errors, but as long as the data length of the FRU is non-zero you
an still modify it

and write it ba
k out.

After the FRU has been fet
hed, you may then modify the
ontents. Remember that ea
h �eld of a FRU

is in an area. To in
rease the size of a �eld or add a new �eld, it's area must have enough spa
e.

You may
hange the size of an area by in
reasing or de
reasing its length. You may also add a new area,

but it must be one of the supported types. You must, however, make sure there is enough empty spa
e to

8.7. FRU DATA 117

after the area. OpenIPMI will not rearrange the areas to make spa
e, you have to do that yourself. So you

may have to
hange the o�set of an area (and other areas) to make spa
e. The following fun
tions are for

working with areas:

int ipmi_fru_add_area(ipmi_fru_t *fru,

unsigned int area,

unsigned int offset,

unsigned int length);

int ipmi_fru_delete_area(ipmi_fru_t *fru, int area);

int ipmi_fru_area_get_offset(ipmi_fru_t *fru,

unsigned int area,

unsigned int *offset);

int ipmi_fru_area_get_length(ipmi_fru_t *fru,

unsigned int area,

unsigned int *length);

int ipmi_fru_area_set_offset(ipmi_fru_t *fru,

unsigned int area,

unsigned int offset);

int ipmi_fru_area_set_length(ipmi_fru_t *fru,

unsigned int area,

unsigned int length);

int ipmi_fru_area_get_used_length(ipmi_fru_t *fru,

unsigned int area,

unsigned int *used_length);

The used_length variable tells how mu
h of the length of the FRU is a
tually used. Note that area o�sets

and length must be multiples of 8.

To
hange the value of a �eld, you will use fun
tions of the form:

int ipmi_fru_set_
hassis_info_type(ipmi_entity_t *entity,

unsigned
har type);

int ipmi_entity_set_
hassis_info_part_number(ipmi_entity_t *entity,

enum ipmi_str_type_e *type);

har *str,

unsigned int strlen);

int ipmi_fru_set_
hassis_info_
ustom(ipmi_fru_t *fru,

unsigned int num,

enum ipmi_str_type_e type,

har *str,

unsigned int len);

These set the �elds to the given values. If you set a required �eld to a NULL string, it will
lear the value of

the string. If you set a multi-re
ord or
ustom string to a NULL string, it will delete the re
ord at the given

number.

Like the ipmi_fru_get fun
tion, the following fun
tions allow setting FRU variables by index:

int ipmi_fru_set_int_val(ipmi_fru_t *fru,

int index,

118 CHAPTER 8. ENTITIES

int num,

int val);

int ipmi_fru_set_time_val(ipmi_fru_t *fru,

int index,

int num,

time_t time);

int ipmi_fru_set_data_val(ipmi_fru_t *fru,

int index,

int num,

enum ipmi_fru_data_type_e dtype,

har *data,

unsigned int len);

The num �eld is ignored if the parti
ular index does not support more than one �eld (is not a
ustom �eld).

When adding, if the num �eld is a �eld that already exists, it will be repla
ed or updated. If num is beyond

the last element of the parti
ular item, a new item will be added onto the end, it will not be added at the

spe
i�
 index.

To write the FRU data ba
k out after you have modi�ed it, use the following fun
tion:

int ipmi_fru_write(ipmi_fru_t *fru, ipmi_fru_fet
hed_
b done, void *
b_data);

8.8 Entity SDRs

TBD - write this

C h a p t e r 9

Sensors

Sensors, of
ourse, are probably the most interesting part of IPMI. Really, everything else is there so the

sensors may be known and monitored. Unfortunately, sensors are also the most
ompli
ated part of IPMI.

OpenIPMI is really unable to hide a lot of this
omplexity, it is passed on to the user, so expe
t to have to

do some reading and understanding.

IPMI de�nes two basi
 di�erent types of sensors. Threshold sensors monitor \analog" things like tem-

perature, voltage, or fan speed. Dis
rete sensors monitor events or states, like entity presen
e, software

initialization progress, or if external power is applied to the system. Table 9.1 des
ribes the basi
 types of

sensors.

Table 9.1: Event/Reading Type Codes

Value # Des
ription

9.1 Sensor Events

Both threshold and dis
rete sensors may generate events. This is optional, the SDR for the sensor des
ribes

the sensor's event support.

Some sensors support ea
h individual bit or state being enabled or disabled. Others may only support

events for the whole sensor being enabled or disabled. Still others may only support a global enable for the

entire MC.

9.2 Rearm

\Rearm" means setting the sensor so it will go o� again.

TBD - write this.

9.3 Threshold Sensors

Threshold sensors report their readings in values from 0-255. OpenIPMI makes every e�ort to
onvert

this to a
oating-point value for you to use. IPMI de�nes standard ways to
onvert values using various

119

120 CHAPTER 9. SENSORS

formulas. OpenIPMI implements all these and provides ways for OEM fun
tions to plug in to provide their

own
onverters. If you have a sensor that
annot be represented using the standard me
hanisms, you need

to get the OEM algorithms for this and implement them in an OEM plug-in for the sensor.

9.3.1 Threshold Sensor Events

You may have events on a threshold sensor by spe
ifying values (
alled thresholds) where you want the sensor

to report an event. Then you
an enable the events for the spe
i�
 thresholds. Not all sensors support all

thresholds, some
annot have their events enabled and others
annot have them disabled. The
apabilities

of a sensor may all be queried by the user to determine what it
an do. When the value of the sensor goes

outside the threshold an event may be generated. An event may be generated when the value goes ba
k into

the threshold.

Events for threshold sensors are mind-bogglingly
ompli
ated. Ea
h threshold has four di�erent possible

events that
an be supported. Only two of them make sense to support for any given threshold, thankfully.

And a sensor
an have six di�erent thresholds.

IPMI supports events on going below (going low) the threshold and going above the threshold (going

high). For ea
h of those, it supports an assertion and deassertion event. Most sensors are either a lower

bound (and would thus support an eventgoing below the threshold) or an upper bound (and would thus

support an event going above the threshold). Figure 9.1 on the fa
ing page shows an upper and lower

threshold sensor. When the value of an upper threshold sensor goes above the threshold, that is an assertion

going high. When it goes ba
k below the threshold, that is a deassertion going high. On a lower threshold,

going below the threshold is a assertion going low. When the value goes ba
k above the threshold, it is an

deassertion going low.

Ea
h sensor may have six di�erent thresholds:

upper non-re
overable

upper
riti
al

upper non-
riti
al

lower non-
riti
al

lower
riti
al

lower non-re
overable

The meanings of these are not de�ned by IPMI, but the meanings are pretty obvious. You may ask, though,

why there are both upper and lower thresholds and separate going high and going low events. A going low

event is kind of silly on an upper threshold, for instan
e. The reasoning is not in the spe
, but it may be that

there are sensors where the \middle" of the range is not ok. So for instan
e, it may be ok if the temperature

is above 100C or below 5C, but the range between those values is not ok. This is extremely unlikely, but

this type of stru
ture allows it.

9.3.2 Hysteresis

Threshold sensors may have hysteresis, meaning that when the threshold goes on above or below the spe
i�ed

value, the transition point where the threshold goes o� is somewhat below or above the given value. For

instan
e, if you want a fan speed sensor to go o� when it goes below 150 RPM, if the fan is hanging right

around 150 RPM, the sensor may be
onstantly sending you events as it goes slightly above and slightly

below 150 RPM, whi
h is bad be
ause it
an overload the system management software. The hysteresis for

the fan might be set at 10 rpm, whi
h means that if the speed goes below 150 RPM, then it must go above

160 RPM for the threshold to be disabled. Hysteresis may be settable or may be �xed for the sensor.

9.3. THRESHOLD SENSORS 121

Figure 9.1: Examples of thresholds

122 CHAPTER 9. SENSORS

Figure 9.2 on page 125 shows an example of going high and going low thresholds with hysteresis. Noti
e

that the deassertion events don't get triggered right at the threshold, but as some point beyond the threshold.

There is only one pair of hysteresis values for a sensor. That pair is used for all thresholds in the sensor.

One of the members of the pair is a positive threshold, meaning that is is applied to thresholds that go over

a spe
i�
 value. The value must go that mu
h below the threshold before the threshold goes ba
k in range.

The other member is a negative threshold, meaning that it is applied to thresholds that go below a given

value. The value must go that mu
h above the threshold before the threshold goes ba
k in range.

9.4 Dis
rete Sensors

Dis
rete sensors report their readings in a 16-bit bitmask, ea
h bit generally representing a dis
rete state.

For instan
e,
onsider the slot/
onne
tor sensor. Bit 0 tells if there is a fault. Bit 2 tells if a devi
e is present

in the slot. Bit 5 tells if power is o� on the slot. Ea
h bit tells a
ompletely independent state and they may

ea
h be zero or one independently.

You enable events on the sensor by spe
ifying whi
h bits you want to generate events. Like threshold

sensors, these events may or may not be user-
ontrollable. The
apabilities of the sensor may be fet
hed by

the user.

Table 9.2: Sensor Types and Codes

Parameter # Des
ription

9.5 IPMI Commands Dealing with Sensors

TBD - write this

9.6 Using Sensors in OpenIPMI

As mentioned before, IPMI sensors are very
ompli
ated. OpenIPMI attempts to hide as mu
h of this

omplexity as it
an, but it
an only do so mu
h.

So starting at the beginning, the �rst thing you need to know about a sensor is its type. You fet
h that

with the fun
tion:

int ipmi_sensor_get_event_reading_type(ipmi_sensor_t *sensor);

This returns a value from the following table. The names in this table are shortened, all these begin with

IPMI EVENT READING TYPE . The values are:

THRESHOLD The sensor monitors an analog value. All threshold sensors have this

value.

DISCRETE USAGE These are DMI-based usage states. Valid o�sets are:

00h - transition to idle

01h - transition to a
tive

02h - transition to busy

9.6. USING SENSORS IN OPENIPMI 123

DISCRETE STATE Monitors the value of a state. Valid values are:

00h - state deasserted

01h - state asserted

DISCRETE PREDICTIVE

FAILURE

This is used to know if an entity is about to fail, but is still operations.

Valid values are:

00h - predi
tive failure deasserted

01h - predi
tive failure asserted

DISCRETE LIMIT

EXCEEDED

This is used to tell if a limit has been ex
eeded. Valid values are:

00h - limit not ex
eeded

01h - limit ex
eeded

DISCRETE

PERFORMANCE MET

This is used to tell if system performan
e is meeting expe
tations.

Valid values are:

00h - performan
e met

01h - performan
e not met

DISCRETE SEVERITY This is used to know if an entity is in trouble or other state information.

Valid values are:

00h - transition to ok

01h - transition to non-
riti
al from ok.

02h - transition to
riti
al from less
riti
al.

03h - transition to non-re
overable from less
riti
al.

04h - transition to non-
riti
al from more
riti
al.

05h - transition to
riti
al from non-re
overable.

06h - transition to non-re
overable.

1

07h - monitor

08h - informational

The a
tual meaning of these is not de�ned by the spe
.

DISCRETE DEVICE

PRESENCE

This is a presen
e sensor to know when an entity is present or not.

Note that OpenIPMI uses this for entity presen
e if it is available.

Valid values are:

00h - entity not present

01h - entity present

DISCRETE DEVICE

ENABLE

This tells if a devi
e is enabled. Valid values are:

00h - devi
e disabled

01h - devi
e enabled

1

This state seems rather silly and is probably not used.

124 CHAPTER 9. SENSORS

DISCRETE

AVAILABILITY

This tells the
urrent availability state of the devi
e. Valid values are:

00h - transition to running

01h - transition to in test

02h - transition to power o�

03h - transition to on line

04h - transition to o� line

05h - transition to o� duty

06h - transition to degraded

07h - transition to power save

08h - install error

DISCRETE

REDUNDANCY

This shows the redundan
y state of an entity. Valid values are:

00h - Fully redundant, the entity has full redundan
y.

01h - Redundan
y lost, this is reported if redundan
y has been lost

at all.

02h - Redundan
e degraded, the system is still redundant but is miss-

ing some resour
es (like the system has four fans and only two

are running).

03h - Transition from fully redundant to non-redundant: suÆ
ient

resour
e. The entity has lost redundan
y but has suÆ
ient re-

sour
es to
ontinue normal operation.

04h - Transition from non-redundant:suÆ
ient resour
es to non-

redundant:insuÆ
ient resour
e. The entity has lost enough re-

sour
es to
ontinue normal operation.

05h - Transition from fully redundant to non-redundant: suÆ
ient

resour
e. The entity has lost redundan
y but has suÆ
ient re-

sour
es to
ontinue normal operation.

06h - Non-redundant:insuÆ
ient resour
es. entity has lost redun-

dan
y and lost enough resour
es to
ontinue normal operation.

07h - Transition from redundant to redundan
y degraded. The unit

has lost some redundan
y but is still redundant.

08h - Transition from redundan
y lost to redundan
y degraded. The

entity had lost redundan
y and has regained some redundan
y,

but is not fully redundant.

DISCRETE ACPI POWER The
urrent ACPI power state of the system. Valid values are:

00h - D0 power state

01h - D1 power state

02h - D2 power state

03h - D3 power state

SENSOR SPECIFIC This setting means that the o�sets in the sensor are dependent on the

sensor type. This is only for dis
rete sensors.

Note that for some operations, threshold sensors and dis
rete sensor have di�erent fun
tions, and some

9.6. USING SENSORS IN OPENIPMI 125

Figure 9.2: Examples of hysteresis

126 CHAPTER 9. SENSORS

other fun
tions work a little di�erently.

To know the type of sensor, the fun
tion:

int ipmi_sensor_get_sensor_type(ipmi_sensor_t *sensor);

returns the type. The returns values for this are integer de�nes that start with IPMI SENSOR TYPE and

have the spe
i�
 values de�ned in the following table. Note that dis
rete sensors in this list have de�ne bit

settings; those settings are also de�ned in this list.

TEMPERATURE

VOLTAGE

CURRENT

FAN

PHYSICAL SECURITY The
hassis was opened or a

essed.

00h - General
hassis intrusion

01h - Drive bay intrusion

02h - I/O
ard area intrusion

03h - Pro
essor area intrusion

04h - LAN
able is unplugged

05h - Unauthorized do
k/undo
k

06h - Fan area intrusion (in
luding unauthorized hot-plugs of fans).

PLATFORM SECURITY

00h - The spe
 says \Se
ure Mode (Front Panel Lo
kout) Violation

attempt". The meaning of this is unknown.

01h - User pre-boot password failure.

02h - Setup pre-boot password failure.

03h - Network pre-boot password failure.

04h - Other pre-boot password failure.

05h - Out-of-band pre-boot password failure.

PROCESSOR Various pro
essor failures. Most of these are very Intel pro
essor
en-

tri
, you may need to referen
e the pro
essor manual for the meaning

of the failure.

00h - IERR

01h - Thermal Trip

02h - FRB1/BIST failure

03h - FRB2/Hang in POST failure, if the failure is believed to be

due to a pro
essor failure.

04h - FRB3/Pro
essor Startup/Initialization failure (CPU didn't

start).

05h - Con�guration Error

06h - SMBIOS \Un
orre
table CPU-
omplex error"

07h - Pro
essor presen
e dete
ted

08h - Pro
essor disabled

09h - Terminator presen
e dete
ted

9.6. USING SENSORS IN OPENIPMI 127

POWER SUPPLY

00h - Presen
e dete
ted

01h - Failure dete
ted

02h - Predi
tive failure. This probably means that the power supply

is still working but may fail soon.

03h - AC lost

04h - AC lost or out-of-range

05h - AC present but out of range

POWER UNIT

00h - Power o�

01h - Power
y
le

02h - 240VA power down

03h - Interlo
k power down

04h - AC lost

05h - Soft power
ontrol failure (unit did not response to request)

06h - Failure dete
ted

07h - Predi
tive failure. This probably means that the power unit is

still working but may fail soon.

COOLING DEVICE

OTHER UNITS

BASED SENSOR

The sensor is a threshold sensor, but not one spe
i�ed dire
tly by the

spe
. The units
an be fet
hed with the
alls to get the units.

MEMORY

00h - Corre
table memory error

01h - Un
orre
table memory error

02h - Parity error

03h - Memory s
rub failed, probably stu
k bit

04h - Memory devi
e disabled

05h - Rea
hed log limit for
orre
table memory errors

DRIVE SLOT

POWER MEMORY

RESIZE

SYSTEM FIRMWARE

PROGRESS

Information about the system �rmware (BIOS). In an event, the event

data 2 may give further information about the error. See se
tion 11.2

for more info.

00h - System �rmware error (power-on-self-test error)

01h - System �rmware hang

02h - System �rmware progress

128 CHAPTER 9. SENSORS

EVENT LOGGING

DISABLED 00h - Corre
table memory error logging disabled

01h - Event logging has been disabled for the sensor spe
i�ed in

the event information. In an event, event data provides more

information about the event, see se
tion 11.2 for more info.

02h - Log area
leared

03h - All event logging disabled

WATCHDOG 1 This is for IPMI version 0.9 and old 1.0 only. Later 1.0 and newer

spe
s use the wat
hdog 2 sensor type.

00h - BIOS wat
hdog reset

01h - OS wat
hdog reset

02h - OS wat
hdog shutdown

03h - OS wat
hdog power down

04h - OS wat
hdog power
y
le

05h - OS wat
hdog NMI or diagnosti
 interrupt

06h - OS wat
hdog expired, status only

07h - OS wat
hdog pre-timeout interrupt, not NMI

SYSTEM EVENT

00h - System re
on�gured

01h - OEM system boot event

02h - Undetermined system hardware failure

03h - Entry added to the auxilliary log. In an event, event data

provides more information about the event, see se
tion 11.2 for

more info.

04h - PEF a
tion. In an event, event data provides more information

about the event, see se
tion 11.2 for more info.

CRITICAL INTERRUPT

00h - Front panel NMI/Diagnosti
 interrupt

01h - Bus timeout

02h - I/O
hannel
he
k NMI

03h - Software NMI

04h - PCI PERR

05h - PCI SERR

06h - EISA fail safe timeout

07h - Bus
orre
table error

08h - Bus un
orre
table error

09h - Fatal NMI (port 61h, bit 7)

9.6. USING SENSORS IN OPENIPMI 129

BUTTON

00h - Power button pressed

01h - Sleep button pressed

02h - Reset button pressed

MODULE BOARD

MICROCONTROLLER

COPROCESSOR

ADD IN CARD

CHASSIS

CHIP SET

OTHER FRU

CABLE INTERCONNECT

TERMINATOR

SYSTEM BOOT

INITIATED 00h - Power up

01h - Hard reset

02h - Warm reset

03h - User requested PXE boot

04h - Automati
 boot to diagnosti

BOOT ERROR

00h - No bootable media

01h - Non-bootable disk in drive

02h - PXE server not found

03h - Invalid boot se
tor

04h - Timeout waiting for user sele
tion of boot sour
e

OS BOOT

00h - A: boot
ompleted

00h - C: boot
ompleted

00h - PXE boot
ompleted

00h - Diagnosti
 boot
ompleted

00h - CDROM boot
ompleted

00h - ROM boot
ompleted

00h - Boot
ompleted, boot devi
e not spe
i�ed

OS CRITICAL STOP

00h - Stop during OS load or initialization

01h - Stop during OS operation

130 CHAPTER 9. SENSORS

SLOT CONNECTOR Note that ready for installation, ready for removal, and power states

an transition together. In an event, event data provides more infor-

mation about the event, see se
tion 11.2 for more info.

00h - Fault status

01h - Identify status

02h - Devi
e installed (in
ludes do
 events)

03h - Ready for devi
e installation. This generally means that the

power is o�.

04h - Ready for devi
e removal.

05h - Power is o�

06h - Removal request. This generally means that the user has as-

serted some me
hanism that requests removal.

07h - Interlo
k. This is generally some me
hani
al devi
e that dis-

ables power to the slot. Assertion means that the disable is a
-

tive.

08h - Slot is disabled.

SYSTEM ACPI

POWER STATE 00h - S0/G0 \Working"

01h - S1 \Sleeping, system h/w and pro
essor
ontext maintained"

02h - S2 \Sleeping, pro
essor
ontext lost"

03h - S3 \Sleeping, system h/w and pro
essor
ontext lost, memory

maintained"

04h - S4 \non-volatile sleep or suspend to disk"

05h - S5/G2 \soft o�"

06h - S4/S5 soft-o�, parti
ular S4/S5 state
annot be determined.

07h - G3 \Me
hani
al o�"

08h - Sleeping in an S1, S2, or S3 state, parti
ular state
annot be

determined.

09h - G1 sleeping, S1-S4 state
annot be determined

0Ah - S5 state entered by override

0Bh - Lega
y on state

0Ch - Lega
y o� state

0Eh - Unknown

WATCHDOG 2 This is for newer IPMI 1.0 systems and later spe
s. In an event, event

data provides more information about the event, see se
tion 11.2 for

more info.

00h - Timer expired, status only, no a
tion

01h - Hard reset

02h - Power down

03h - Power
y
le

08h - Timer interrupts.

9.6. USING SENSORS IN OPENIPMI 131

PLATFORM ALERT Used for monitoring the platform management �rmware, status
an be

fet
hed and events generated on platform management a
tions.

00h - Page sent

01h - LAN alert sent

02h - Event trap sent per IPMI PET spe
i�
ation

03h - Event trap sent using OEM format

ENTITY PRESENCE This is the sensor used to tell if an entity is present or not. This applied

to the entity the sensor is atta
hed to.

00h - Entity is present

01h - Entity is absent

02h - Entity is present but disabled

MONITOR ASIC IC

LAN

00h - LAN heartbeat lost

01h - LAN heartbeat present

MANAGEMENT

SUBSYSTEM HEALTH 00h - Sensor a

ess degraded or unavailable

01h - Controller a

ess degraded or unavailable

02h - Management
ontroller o�ine

03h - Management
ontroller unavailable

BATTERY

00h - Battery is low

01h - Battery failed

02h - Battery is present.

Strings are available from the sensor that des
ribe the sensor type and event reading type. Note that

these may be set to valid values by OEM
ode even if the values are OEM, so these
an be very useful.

har *ipmi_sensor_get_sensor_type_string(ipmi_sensor_t *sensor);

har *ipmi_sensor_get_event_reading_type_string(ipmi_sensor_t *sensor);

As well as the strings, the spe
i�
 reading information from the above table is also available, supply the

sensor type and o�set and a string is returned. The fun
tion is:

har *ipmi_sensor_reading_name_string(ipmi_sensor_t *sensor, int offset);

9.6.1 General Information About Sensors in OpenIPMI

The following se
tion applies to all sensor types.

132 CHAPTER 9. SENSORS

Sensor Entity Information

Every sensor is asso
iated with a spe
i�
 entity, these
alls let you fet
h the entity information. The following

alls return the numeri
 entity id and instan
e:

int ipmi_sensor_get_entity_id(ipmi_sensor_t *sensor);

int ipmi_sensor_get_entity_instan
e(ipmi_sensor_t *sensor);

Generally, though, that is note what you want. You want the a
tual entity obje
t, whi
h may be fet
hed

with the following:

ipmi_entity_t *ipmi_sensor_get_entity(ipmi_sensor_t *sensor);

Note that the entity is ref
ounted when the sensor is
laimed, so the entity will exist while you have a valid

referen
e to a sensor it
ontains.

Sensor Name

The SDR
ontains a string giving a name for the sensor. This is useful for printing out sensor information.

The fun
tions to get this are:

int ipmi_sensor_get_id_length(ipmi_sensor_t *sensor);

enum ipmi_str_type_e ipmi_sensor_get_id_type(ipmi_sensor_t *sensor);

int ipmi_sensor_get_id(ipmi_sensor_t *sensor,
har *id, int length);

See appendix A.1 for more information about these strings.

The fun
tion

int ipmi_sensor_get_name(ipmi_sensor_t *sensor,
har *name, int length);

returns a fully quali�ed name for the sensor with the entity name prepended. The name array is �lled with

the name, up to the length given. This is useful for printing string names for the sensor.

Sensor Event Support in OpenIPMI

Sensors may support event enables in di�erent ways. The following fun
tion returns what type of event

enable is supported:

int ipmi_sensor_get_event_support(ipmi_sensor_t *sensor);

The return values are all prepended with IPMI EVENT SUPPORT , values are:

PER STATE Ea
h individual state or threshold may individually have its events

turned o� and on. This means that the individual thresholds and

states may be individually enabled.

ENTIRE SENSOR The entire sensor may have events enabled and disabled using the

events enabled setting when setting the event enables. Se
tion 9.6.1

des
ribes this setting.

GLOBAL ENABLE Events may only be enabled and disabled for the whole managment

ontroller. Events are disabled by setting the event re
eiver to 00h, or

enabled by setting them to the proper event re
eiver. See se
tion 5.1.5

for more details.

NONE The sensor does not support events.

9.6. USING SENSORS IN OPENIPMI 133

Note that the more general event enables work and override the more spe
i�
 ones, so if, for instan
e, a

sensor supports per-state event enables, it will also support the entire sensor and global enables. The entire

sensor enable being o� will override all per-state enables. The global enable will turn o� all events from a

management
ontroller no matter what other settings are present.

To re
eive events from a sensor, an event handler must be registered. An event handler may also be

dynami
ally removed. The following fun
tions do this for dis
rete sensors:

typedef int (*ipmi_sensor_dis
rete_event_
b)(

ipmi_sensor_t *sensor,

enum ipmi_event_dir_e dir,

int offset,

int severity,

int prev_severity,

void *
b_data,

ipmi_event_t *event);

int ipmi_sensor_add_dis
rete_event_handler(

ipmi_sensor_t *sensor,

ipmi_sensor_dis
rete_event_
b handler,

void *
b_data);

int ipmi_sensor_remove_dis
rete_event_handler(

ipmi_sensor_t *sensor,

ipmi_sensor_dis
rete_event_
b handler,

void *
b_data);

The following fun
tions do this for threshold sensors:

typedef int (*ipmi_sensor_threshold_event_
b)(

ipmi_sensor_t *sensor,

enum ipmi_event_dir_e dir,

enum ipmi_thresh_e threshold,

enum ipmi_event_value_dir_e high_low,

enum ipmi_value_present_e value_present,

unsigned int raw_value,

double value,

void *
b_data,

ipmi_event_t *event);

int ipmi_sensor_add_threshold_event_handler(

ipmi_sensor_t *sensor,

ipmi_sensor_threshold_event_
b handler,

void *
b_data);

int ipmi_sensor_remove_threshold_event_handler(

ipmi_sensor_t *sensor,

ipmi_sensor_threshold_event_
b handler,

void *
b_data);

This fun
tion should generally be registered in the entity
allba
k that reports the sensor being added, so

that no events will be missed. This is a standard event handler as de�ned in se
tion 2.2.5 on page 20.

134 CHAPTER 9. SENSORS

Sensor/Entity Existan
e Intera
tion

Some sensors are present even if the entity they are atta
hed to is not present. The following will return

true if the entity should be ignore if the entity is not present. It will return false if the sensor is present even

when the entity is not present.

int ipmi_sensor_get_ignore_if_no_entity(ipmi_sensor_t *sensor);

Sensor States

When reading the value of a sensor or handling an even, a state data stru
ture is generally available in a

read-only data stru
ture. This tells the state of the various thresholds or bits in the sensor. This is an

opaque data stru
ture, you do not have a

ess to any of the
ontents. The data stru
ture is de�ned as:

typedef stru
t ipmi_states_s ipmi_states_t;

To keep your own
opy of a states data stru
ture, you may allo
ate and
opy one using the following

fun
tions:

unsigned int ipmi_states_size(void);

void ipmi_
opy_states(ipmi_states_t *dest, ipmi_states_t *sr
);

This allows you to �nd the size and
opy the information in one of these stru
tures. For example, to make

your own
opy, do something like:

my_states = mallo
(ipmi_states_size());

if (!my_states)

handle_error()

else

ipmi_
opy_states(my_states, states);

Information about the whole sensor is available using the following fun
tions:

int ipmi_is_event_messages_enabled(ipmi_states_t *states);

int ipmi_is_sensor_s
anning_enabled(ipmi_states_t *states);

int ipmi_is_initial_update_in_progress(ipmi_states_t *states);

If event messages are enabled, then the sensor may generate events. If s
anning is enabled, then the sensor is

\turned on" and working. If initial update is in progress, the information from the sensor is not valid sin
e

the sensor is still trying to get a valid reading.

Sensor Event State Information

The event state stru
ture is an opaque stru
ture that is used to
ontrol the event settings of a sensor, if

it supports at least individual sensor event
ontrol. This is mu
h like the state data stru
ture de�ned in

se
tion 9.6.1, but it is used to
ontrol event settings instead of just get the
urrent state. The data stru
ture

is de�ned as:

typedef stru
t ipmi_event_state_s ipmi_event_state_t;

9.6. USING SENSORS IN OPENIPMI 135

It is an opaque data stru
ture, so you
annot dire
tly a

ess the
ontents or dire
tly de
lare one.

To
reate or keep your own
opy of an event state data stru
ture, you may allo
ate and
opy one using

the following fun
tions:

unsigned int ipmi_event_state_size(void);

void ipmi_
opy_event_state(ipmi_event_state_t *dest, ipmi_event_state_t *sr
);

This allows you to �nd the size and
opy the information in one of these stru
tures. For example, to make

your own
opy, do something like:

my_states = mallo
(ipmi_event_state_size());

if (!my_states)

handle_error()

else

ipmi_
opy_event_state(my_states, states);

If you want to
reate one, allo
ate it as above and initialize it with

void ipmi_event_state_init(ipmi_event_state_t *events);

This
lears all settings. The following fun
tions are then available to set and get global items in the event

state:

void ipmi_event_state_set_events_enabled(ipmi_event_state_t *events, int val);

int ipmi_event_state_get_events_enabled(ipmi_event_state_t *events);

void ipmi_event_state_set_s
anning_enabled(ipmi_event_state_t *events,int val);

int ipmi_event_state_get_s
anning_enabled(ipmi_event_state_t *events);

void ipmi_event_state_set_busy(ipmi_event_state_t *events, int val);

int ipmi_event_state_get_busy(ipmi_event_state_t *events);

If events are enabled, then the sensor
an generate events. This a
ts as an o� swit
h for the whole sensor.

If events are enabled, and if per-state event enables are supported, then the individual state settings
ontrol

whi
h events are generated. S
anning means wat
hing for events; if s
anning is o� then the sensor, in e�e
t,

is turned o� and will not report valid reading or generate events. If busy is true on a return from a query,

then the sensor is
urrently in busy with some operation and
annot be read.

See se
tion 9.6.3 for dis
rete sensors and se
tion 9.6.2 on page 138 for threshold events for the details on

setting the individual event enables.

Note that on
e you have
reated an event state, you have to send it to the sensor. Just
reating and

setting the values doesn't do anything dire
tly to the sensor; it must be sent. To send them, use one of the

following:

int ipmi_sensor_set_event_enables(ipmi_sensor_t *sensor,

ipmi_event_state_t *states,

ipmi_sensor_done_
b done,

void *
b_data);

int ipmi_sensor_enable_events(ipmi_sensor_t *sensor,

ipmi_event_state_t *states,

ipmi_sensor_done_
b done,

void *
b_data);

136 CHAPTER 9. SENSORS

int ipmi_sensor_disable_events(ipmi_sensor_t *sensor,

ipmi_event_state_t *states,

ipmi_sensor_done_
b done,

void *
b_data);

The \set" fun
tion will set the states to exa
tly what is set in the event state stru
ture. The \enable"

fun
tion will only enable the states that are set in the event state stru
ture. The \disable" fun
tion will

disable the events that are set in the event state stru
ture. Note that the disable does not disable the events

that are not set, it really disables the events that are set. All of these fun
tions will set the event enable

and s
anning enable to the values in the event state stru
ture.

To query the
urrent event state settings, use the following fun
tion:

typedef void (*ipmi_sensor_event_enables_
b)(ipmi_sensor_t *sensor,

int err,

ipmi_event_state_t *states,

void *
b_data);

int ipmi_sensor_get_event_enables(ipmi_sensor_t *sensor,

ipmi_event_enables_get_
b done,

void *
b_data);

Appendex I on page 191
ontains a program that demonstrates how to use many of the fun
tions des
ribed

in this se
tion.

Rearm in OpenIPMI

TBD - write this.

int ipmi_sensor_get_supports_auto_rearm(ipmi_sensor_t *sensor);

int ipmi_sensor_rearm(ipmi_sensor_t *sensor,

int global_enable,

ipmi_event_state_t *state,

ipmi_sensor_done_
b done,

void *
b_data);

Initialization

When a sensor is stored in the main SDR repository of a system, the BMC may initialize
ertain aspe
ts

of the sensor at power up. The following fet
h if these aspe
ts are initialized at power up. Note that \pu"

means \Power Up" in the following names.

int ipmi_sensor_get_sensor_init_s
anning(ipmi_sensor_t *sensor);

int ipmi_sensor_get_sensor_init_events(ipmi_sensor_t *sensor);

int ipmi_sensor_get_sensor_init_thresholds(ipmi_sensor_t *sensor);

int ipmi_sensor_get_sensor_init_hysteresis(ipmi_sensor_t *sensor);

int ipmi_sensor_get_sensor_init_type(ipmi_sensor_t *sensor);

int ipmi_sensor_get_sensor_init_pu_events(ipmi_sensor_t *sensor);

int ipmi_sensor_get_sensor_init_pu_s
anning(ipmi_sensor_t *sensor);

9.6. USING SENSORS IN OPENIPMI 137

9.6.2 Threshold Sensors in OpenIPMI

As mentioned before, threshold sensors monitor analog values. This means that they have a lot of information

about how to
onvert the values from the raw readings (the 0-255 value returned from the sensor) into useful

readings, what thresholds are supported, hysteresis settings, and a plethora of other settings. Lots of things

an be set up for threshold sensors.

Threshold Sensor Readings in OpenIPMI

The reading of a threshold sensor is done with the following:

typedef void (*ipmi_sensor_reading_
b)(ipmi_sensor_t *sensor,

int err,

enum ipmi_value_present_e value_present,

unsigned int raw_value,

double val,

ipmi_states_t *states,

void *
b_data);

int ipmi_sensor_get_reading(ipmi_sensor_t *sensor,

ipmi_reading_done_
b done,

void *
b_data);

Assuming there was no error, the value present �eld will be set to one of the following:

IPMI NO VALUES PRESENT - Neither the raw or the
onverted values are present. Only the states

are valid. This will be the
ase for thresholds sensors that
annot have their value read.

IPMI RAW VALUE PRESENT - Only the raw value is present. This will be the
ase if there was no

onversion algorithm available for the sensor.

IPMI BOTH VALUES PRESENT - Both the raw and
onverted values are present.

The
urrent states of the various thresholds (whether they are out of range or note) is returned in the

states parameter. To know if a sensor sets a threshold state setting when the value is read, use the following

fun
tion:

int ipmi_sensor_threshold_reading_supported(ipmi_sensor_t *sensor,

enum ipmi_thresh_e thresh,

int *val);

This may not mean that the threshold will generate events (although it will almost
ertainly mean that, the

spe
 is not
lear on this). It is only de�ned to mean that the threshold is returned in the reading.

For threshold sensors, the fun
tion:

int ipmi_is_threshold_out_of_range(ipmi_states_t *states,

enum ipmi_thresh_e thresh);

will return true if the given threshold is out of range and false if not.

138 CHAPTER 9. SENSORS

Threshold Sensor Events in OpenIPMI

Se
tion 9.6.1 on page 132 shows the general support for events for all sensor types. Threshold sensors have

their own spe
ial routines for handling the thresholds.

Thresholds in a sensor may be settable or �xed and may or may not be able to be read. The fun
tion

int ipmi_sensor_get_threshold_a

ess(ipmi_sensor_t *sensor);

returns the event threshold a

ess support of the sensor, return values are

IPMI THRESHOLD ACCESS SUPPORT NONE - The sensor does not support thresholds.

IPMI THRESHOLD ACCESS SUPPORT READABLE - The sensor supports thresholds and their

values may be read with ipmi thresholds get, but
annot be written.

IPMI THRESHOLD ACCESS SUPPORT SETTABLE - The sensor supports thresholds and they

may be read and written.

IPMI THRESHOLD ACCESS SUPPORT FIXED - The sensor supports thresholds and they are

�xed and may not be read or
hanged. ipmi get default sensor thresholds should return the �xed

values of this sensor.

In addition to this, individual thresholds may be readable or settable individually. To �nd this, the

following fun
tions will return true if a spe
i�
 threshold is readable or settable, and false if not:

int ipmi_sensor_threshold_settable(ipmi_sensor_t *sensor,

enum ipmi_thresh_e threshold,

int *val);

int ipmi_sensor_threshold_readable(ipmi_sensor_t *sensor,

enum ipmi_thresh_e threshold,

int *val);

The spe
i�
 threshold values in the enumeration are:

IPMI LOWER NON CRITICAL

IPMI LOWER CRITICAL

IPMI LOWER NON RECOVERABLE

IPMI UPPER NON CRITICAL

IPMI UPPER CRITICAL

IPMI UPPER NON RECOVERABLE

The fun
tion

har *ipmi_get_threshold_string(enum ipmi_thresh_e val);

onverts the value to a string.

To a
tually get and set the thresholds for a sensor, a threshold data stru
ture is used. This data stru
ture

is opaque.

To
reate or keep your own
opy of a threshold data stru
ture, you may allo
ate and
opy one using the

following fun
tions:

unsigned int ipmi_threshold_size(void);

void ipmi_
opy thresholds(ipmi_thresholds_t *dest, ipmi_thresholds_t *sr
);

9.6. USING SENSORS IN OPENIPMI 139

This allows you to �nd the size and
opy the information in one of these stru
tures. For example, to make

your own
opy, do something like:

my_th = mallo
(ipmi_thresholds_size());

if (!my_th)

handle_error()

else

ipmi_
opy_thresholds(my_th, th);

If you want to
reate one, allo
ate it as above and initialize it with

void ipmi_thresholds_init(ipmi_thresholds_t *th);

This
lears all settings. The following fun
tions are then available to set the various threshold values:

int ipmi_threshold_set(ipmi_thresholds_t *th,

ipmi_sensor_t *sensor,

enum ipmi_thresh_e threshold,

double value);

int ipmi_threshold_get(ipmi_thresholds_t *th,

enum ipmi_thresh_e threshold,

double *value);

These get and set the values in the data stru
ture. This does not a�e
t the a
tual sensor until you send the

thresholds to the sensor.

To send a set of thresholds to a sensor, use the following fun
tion:

int ipmi_sensor_set_thresholds(ipmi_sensor_t *sensor,

ipmi_thresholds_t *thresholds,

ipmi_sensor_done_
b done,

void *
b_data);

To get the
urrent threshold settings of a sensor, use:

typedef void (*ipmi_sensor_thresholds_
b)(ipmi_sensor_t *sensor,

int err,

ipmi_thresholds_t *th,

void *
b_data);

int ipmi_sensor_get_thresholds(ipmi_sensor_t *sensor,

ipmi_thresh_get_
b done,

void *
b_data);

To �nd out whi
h thresholds support events, the following
an be used to tell if a spe
i�
 thresholds

support a spe
i�
 event:

int ipmi_sensor_threshold_event_supported(

ipmi_sensor_t *sensor,

enum ipmi_thresh_e threshold,

enum ipmi_event_value_dir_e value_dir,

enum ipmi_event_dir_e dir,

int *val);

140 CHAPTER 9. SENSORS

The value dir parameter spe
i�es if the \going low" or \going high" events are being queried. Value for

this are:

IPMI GOING LOW

IPMI GOING HIGH

The dir parameter spe
i�es if the \assertion" or \deassertion" events are being queried. Value for this are:

IPMI ASSERTION

IPMI DEASSERTION

Using these, all the thresholds and dire
tions may be iterated through to �nd out what the sensor supports.

The fun
tions

har *ipmi_get_value_dir_string(enum ipmi_event_value_dir_e val);

har *ipmi_get_event_dir_string(enum ipmi_event_dir_e val);

onverts the value dir and dir values to strings.

To a
tually enable or disable individual events for a sensor, an event state stru
ture must be
reated.

An event state stru
ture is passed in when the event state of a sensor is queried. To set or
lear individual

events in one of these stru
tures, use the following:

void ipmi_threshold_event_
lear(ipmi_event_state_t *events,

enum ipmi_thresh_e threshold,

enum ipmi_event_value_dir_e value_dir,

enum ipmi_event_dir_e dir);

void ipmi_threshold_event_set(ipmi_event_state_t *events,

enum ipmi_thresh_e threshold,

enum ipmi_event_value_dir_e value_dir,

enum ipmi_event_dir_e dir);

To see if a spe
i�
 event is set, use:

int ipmi_is_threshold_event_set(ipmi_event_state_t *events,

enum ipmi_thresh_e threshold,

enum ipmi_event_value_dir_e value_dir,

enum ipmi_event_dir_e dir);

Threshold Sensor Units in OpenIPMI

In IPMI, the SDR gives quite a bit of information about what the
onverted value means. The units are

spe
i�ed, unit modi�ers and rates, and whether the measurement is a per
entage.

Unit
ome in three types, the normal unit, the rate unit (whi
h give a \per time" modi�ers) and a

modi�er unit (whi
h gives whether the measurement has a modi�er unit, and whether it is a division or a

multipli
ation.

The units on a sensor are spe
i�ed as a base unit, and optional modi�er unit and how that is used, and

a rate unit. The modi�er unit is spe
i�ed in the same type as a base unit. A boolean spe
ifying whether

the value is a per
entage is also available.

This may sound somewhat
ompli
ated, but it is not as bad as it sounds. In most
ases only the base

unit is used, the modi�er unit use is none (thus the modi�er is turned o�), the rate unit is none, and it is

not a per
entage. But you
an use all of these. For instan
e, if a sensor measures per
ent of newton�meters

per se
ond, that would use all of these. The base unit would be newtons, the modi�er unit use would be

9.6. USING SENSORS IN OPENIPMI 141

multiply, the modi�er unit would be meters, the rate unit would be per se
ond, and the per
entage would

be true.

The following fun
tions return these units for a sensor:

enum ipmi_unit_type_e ipmi_sensor_get_base_unit(ipmi_sensor_t *sensor);

enum ipmi_unit_type_e ipmi_sensor_get_modifier_unit(ipmi_sensor_t *sensor);

enum ipmi_rate_unit_e ipmi_sensor_get_rate_unit(ipmi_sensor_t *sensor);

enum ipmi_modifier_unit_use_e ipmi_sensor_get_modifier_unit_use(

ipmi_sensor_t *sensor);

int ipmi_sensor_get_per
entage(ipmi_sensor_t *sensor);

The following return string representations for the units:

har *ipmi_sensor_get_rate_unit_string(ipmi_sensor_t *sensor);

har *ipmi_sensor_get_base_unit_string(ipmi_sensor_t *sensor);

har *ipmi_sensor_get_modifier_unit_string(ipmi_sensor_t *sensor);

Note that for OEM values, OEM
ode may set the strings even though the unit enumerations return an

invalid value. So use the strings if you
an.

As a qui
k example, the following
ode will print out a value with all the various units atta
hed:

har *per
ent = "";

har *base;

har *mod_use = "";

har *modifier = "";

har *rate;

base = ipmi_sensor_get_base_unit_string(sensor);

if (ipmi_sensor_get_per
entage(sensor))

per
ent = "%";

swit
h (ipmi_sensor_get_modifier_unit_use(sensor)) {

ase IPMI_MODIFIER_UNIT_NONE:

break;

ase IPMI_MODIFIER_UNIT_BASE_DIV_MOD:

mod_use = "/";

modifier = ipmi_sensor_get_modifier_unit_string(sensor);

break;

ase IPMI_MODIFIER_UNIT_BASE_MULT_MOD:

mod_use = "*";

modifier = ipmi_sensor_get_modifier_unit_string(sensor);

break;

}

rate = ipmi_sensor_get_rate_unit_string(sensor);

printf(" value: %lf%s %s%s%s%s\n", val, per
ent,

base, mod_use, modifier, rate);

The modi�er units uses in OpenIPMI are:

142 CHAPTER 9. SENSORS

IPMI MODIFIER UNIT NONE

IPMI MODIFIER UNIT BASE DIV MOD

IPMI MODIFIER UNIT BASE MULT MOD

The rate units are:

IPMI RATE UNIT NONE

IPMI RATE UNIT PER US

IPMI RATE UNIT PER MS

IPMI RATE UNIT PER SEC

IPMI RATE UNIT MIN

IPMI RATE UNIT HOUR

IPMI RATE UNIT DAY

The normal units are:

IPMI UNIT TYPE UNSPECIFIED

IPMI UNIT TYPE DEGREES C

IPMI UNIT TYPE DEGREES F

IPMI UNIT TYPE DEGREES K

IPMI UNIT TYPE VOLTS

IPMI UNIT TYPE AMPS

IPMI UNIT TYPE WATTS

IPMI UNIT TYPE JOULES

IPMI UNIT TYPE COULOMBS

IPMI UNIT TYPE VA

IPMI UNIT TYPE NITS

IPMI UNIT TYPE LUMENS

IPMI UNIT TYPE LUX

IPMI UNIT TYPE CANDELA

IPMI UNIT TYPE KPA

IPMI UNIT TYPE PSI

IPMI UNIT TYPE NEWTONS

IPMI UNIT TYPE CFM

IPMI UNIT TYPE RPM

IPMI UNIT TYPE HZ

IPMI UNIT TYPE USECONDS

IPMI UNIT TYPE MSECONDS

IPMI UNIT TYPE SECONDS

IPMI UNIT TYPE MINUTE

IPMI UNIT TYPE HOUR

IPMI UNIT TYPE DAY

IPMI UNIT TYPE WEEK

IPMI UNIT TYPE MIL

IPMI UNIT TYPE INCHES

IPMI UNIT TYPE FEET

IPMI UNIT TYPE CUBIC INCHS

IPMI UNIT TYPE CUBIC FEET

IPMI UNIT TYPE MILLIMETERS

IPMI UNIT TYPE CENTIMETERS

9.6. USING SENSORS IN OPENIPMI 143

IPMI UNIT TYPE METERS

IPMI UNIT TYPE CUBIC CENTIMETERS

IPMI UNIT TYPE CUBIC METERS

IPMI UNIT TYPE LITERS

IPMI UNIT TYPE FL OZ

IPMI UNIT TYPE RADIANS

IPMI UNIT TYPE SERADIANS

IPMI UNIT TYPE REVOLUTIONS

IPMI UNIT TYPE CYCLES

IPMI UNIT TYPE GRAVITIES

IPMI UNIT TYPE OUNCES

IPMI UNIT TYPE POUNDS

IPMI UNIT TYPE FOOT POUNDS

IPMI UNIT TYPE OUNCE INCHES

IPMI UNIT TYPE GAUSS

IPMI UNIT TYPE GILBERTS

IPMI UNIT TYPE HENRIES

IPMI UNIT TYPE MHENRIES

IPMI UNIT TYPE FARADS

IPMI UNIT TYPE UFARADS

IPMI UNIT TYPE OHMS

IPMI UNIT TYPE SIEMENS

IPMI UNIT TYPE MOLES

IPMI UNIT TYPE BECQUERELS

IPMI UNIT TYPE PPM

IPMI UNIT TYPE reserved1

IPMI UNIT TYPE DECIBELS

IPMI UNIT TYPE DbA

IPMI UNIT TYPE DbC

IPMI UNIT TYPE GRAYS

IPMI UNIT TYPE SIEVERTS

IPMI UNIT TYPE COLOR TEMP DEG K

IPMI UNIT TYPE BITS

IPMI UNIT TYPE KBITS

IPMI UNIT TYPE MBITS

IPMI UNIT TYPE GBITS

IPMI UNIT TYPE BYTES

IPMI UNIT TYPE KBYTES

IPMI UNIT TYPE MBYTES

IPMI UNIT TYPE GBYTES

IPMI UNIT TYPE WORDS

IPMI UNIT TYPE DWORDS

IPMI UNIT TYPE QWORDS

IPMI UNIT TYPE LINES

IPMI UNIT TYPE HITS

IPMI UNIT TYPE MISSES

144 CHAPTER 9. SENSORS

IPMI UNIT TYPE RETRIES

IPMI UNIT TYPE RESETS

IPMI UNIT TYPE OVERRUNS

IPMI UNIT TYPE UNDERRUNS

IPMI UNIT TYPE COLLISIONS

IPMI UNIT TYPE PACKETS

IPMI UNIT TYPE MESSAGES

IPMI UNIT TYPE CHARACTERS

IPMI UNIT TYPE ERRORS

IPMI UNIT TYPE CORRECTABLE ERRORS

IPMI UNIT TYPE UNCORRECTABLE ERRORS

IPMI UNIT TYPE FATAL ERRORS

IPMI UNIT TYPE GRAMS

The meanings of these values are not de�ned by the spe
, but should be fairly obvious.

Threshold Sensor Hysteresis in OpenIPMI

OpenIPMI allows hysteresis to be fet
hed form a sensor and written to a sensor. Unfortunately, OpenIPMI

does not have a very good way to represent the a
tual hysteresis value. The trouble is that hysteresis is not

set per-threshold; it only has one hysteresis value that is applied to all thresholds for a sensor. This means

that you
annot set a
oating-point o�set for hysteresis be
ause the same
oating-point hysteresis value may

result in a di�erent raw hysteresis value for ea
h sensor

2

. This is one of the rare situations where IPMI
ould

have been a bit more
exible (usually it is too
exible). Be
ause of this situation, the hysteresis value is set

as a raw value.

A separate positive and negative hysteresis
an exist for a sensor. The positive value is for the \going

higher" thresholds, it is the amount that must be subtra
ted from the threshold where the threshold will go

ba
k in range. The negative value is for the \going lower" thresholds, it is the amount that must be added

to the threshold where the threshold will go ba
k in range.

To know what type of hysteresis a sensor supports, use:

int ipmi_sensor_get_hysteresis_support(ipmi_sensor_t *sensor);

This returns one of the following values:

IPMI HYSTERESIS SUPPORT NONE - The sensor does not support hysteresis.

IPMI HYSTERESIS SUPPORT READABLE - The sensor has hysteresis, but the value
annot be

set. It
an be read.

IPMI HYSTERESIS SUPPORT SETTABLE - The sensor has hysteresis and the value
an be both

set and read.

IPMI HYSTERESIS SUPPORT FIXED - The sensor has hysteresis but the value
annot be read or

set. If the default hysteresis values are non-zero, then they are the �xed hysteresis for the sensor.

Otherwise the values are unknown.

The default hystersis
an be read using:

2

This is due to the fa
t that some sensors are non-linear.

9.6. USING SENSORS IN OPENIPMI 145

int ipmi_sensor_get_positive_going_threshold_hysteresis(ipmi_sensor_t *sensor);

int ipmi_sensor_get_negative_going_threshold_hysteresis(ipmi_sensor_t *sensor);

To fet
h and set the
urrent threshold values for a sensor (assuming it support these operations), use:

typedef void (*ipmi_sensor__hysteresis_
b)(ipmi_sensor_t *sensor,

int err,

unsigned int positive_hysteresis,

unsigned int negative_hysteresis,

void *
b_data);

int ipmi_sensor_get_hysteresis(ipmi_sensor_t *sensor,

ipmi_hysteresis_get_
b done,

void *
b_data);

int ipmi_sensor_set_hysteresis(ipmi_sensor_t *sensor,

unsigned int positive_hysteresis,

unsigned int negative_hysteresis,

ipmi_sensor_done_
b done,

void *
b_data);

Threshold Sensor Reading Information in OpenIPMI

In addition to all this, IPMI gives some more information about the readings. The following allow the user

to get the a

ura
y and toleran
e of the readings from the sensor:

int ipmi_sensor_get_toleran
e(ipmi_sensor_t *sensor,

int val,

double *toleran
e);

int ipmi_sensor_get_a

ura
y(ipmi_sensor_t *sensor, int val, double *a

ura
y);

The sensor also may have de�ned ranges and nominal readings. If a value of this type is spe
i�ed, then

the spe
ified fun
tions below will return true and the spe
i�
 value will be available:

int ipmi_sensor_get_normal_min_spe
ified(ipmi_sensor_t *sensor);

int ipmi_sensor_get_normal_min(ipmi_sensor_t *sensor, double *normal_min);

int ipmi_sensor_get_normal_max_spe
ified(ipmi_sensor_t *sensor);

int ipmi_sensor_get_normal_max(ipmi_sensor_t *sensor, double *normal_max);

int ipmi_sensor_get_nominal_reading_spe
ified(ipmi_sensor_t *sensor);

int ipmi_sensor_get_nominal_reading(ipmi_sensor_t *sensor,

double *nominal_reading);

The normal min and max give the standard operating range of a sensor. The nominal reading is the \normal"

value the sensor should read.

The sensor may also have absolute minimum and maximum values. These
an be fet
hed with the

following fun
tions:

int ipmi_sensor_get_sensor_max(ipmi_sensor_t *sensor, double *sensor_max);

int ipmi_sensor_get_sensor_min(ipmi_sensor_t *sensor, double *sensor_min);

146 CHAPTER 9. SENSORS

9.6.3 Dis
rete Sensors in OpenIPMI

The value of a dis
rete sensor is its states, the value of its bits. Ea
h bit is a single independent states; the

bits are not used together to represent multi-bit values.

Dis
rete Sensor Readings in OpenIPMI

To read the value of a dis
rete sensor, use the following:

typedef void (*ipmi_sensor_states_
b)(ipmi_sensor_t *sensor,

int err,

ipmi_states_t *states,

void *
b_data);

int ipmi_sensor_get_states(ipmi_sensor_t *sensor,

ipmi_states_read_
b done,

void *
b_data);

The values are returned in the states obje
t. To know if a spe
i�
 state will be set in the states stru
ture

for a sensor, use the fun
tion:

int ipmi_dis
rete_event_readable(ipmi_sensor_t *sensor,

int event,

int *val);

This will set val to if the bit for the given sensor will support being read.

On
e you know if the bit is supported, the fun
tion:

int ipmi_is_state_set(ipmi_states_t *states,

int state_num);

will return true if the given state (bit) is set and false if it is not set.

Dis
rete Sensor Events in OpenIPMI

To know if a spe
i�
 bit
an
ause an event to be sent by the sensor, use the following fun
tion:

int ipmi_sensor_dis
rete_event_supported(ipmi_sensor_t *sensor,

int offset,

enum ipmi_event_dir_e dir,

int *val);

The val will be set to whether the event is supported or not.

To a
tually enable or disable individual events for a sensor, an event state stru
ture must be
reated.

An event state stru
ture is passed in when the event state of a sensor is queried. To set or
lear individual

events in one of these stru
tures, use the following:

void ipmi_dis
rete_event_
lear(ipmi_event_state_t *events,

int event_offset,

enum ipmi_event_dir_e dir);

void ipmi_dis
rete_event_set(ipmi_event_state_t *events,

int event_offset,

enum ipmi_event_dir_e dir);

9.7. SENSOR SDRS 147

To see if a spe
i�
 event is set, use:

int ipmi_is_dis
rete_event_set(ipmi_event_state_t *events,

int event_offset,

enum ipmi_event_dir_e dir);

9.7 Sensor SDRs

TBD - write this

148 CHAPTER 9. SENSORS

C h a p t e r 1 0

Controls and Mis
ellany

10.1 Controls

Standard IPMI has no provision for an output devi
e besides a few simple fun
tions like reset and power.

However, many systems have OEM extensions that allow
ontrol of lights, display panels, relays, and a lot

of other things. OpenIPMI adds the
on
ept of a \
ontrol", whi
h is an output devi
e.

Ea
h
ontrol has a spe
i�
 type, that is fet
hed with:

int ipmi_
ontrol_get_type(ipmi_
ontrol_t *
ontrol);

It returns one of the following values:

IPMI CONTROL LIGHT - A light of some time, like an LED or a lamp.

IPMI CONTROL RELAY - A relay output

IPMI CONTROL DISPLAY - A 2-D text display

IPMI CONTROL ALARM - Some type of audible or visible warning devi
e

IPMI CONTROL RESET - A reset line to reset something. This type allows the value to be set as

either on or o�.

IPMI CONTROL POWER - Control of the power of something.

IPMI CONTROL FAN SPEED - Control of the fan speed.

IPMI CONTROL IDENTIFIER - A general identi�er for the entity in question. This is things like a

serial number, a board type, or things of that nature. These may or may not be writable.

IPMI CONTROL ONE SHOT RESET - A reset line, but setting the value to one does a reset and

release of reset, you
annot hold the devi
e in reset with one of these.

IPMI CONTROL OUTPUT - A general output devi
e like a digital output.

IPMI CONTROL ONE SHOT OUTPUT - A general one-shot output devi
e.

149

150 CHAPTER 10. CONTROLS AND MISCELLANY

The fun
tion:

har *ipmi_
ontrol_get_type_string(ipmi_
ontrol_t *
ontrol);

returns a string representation of the
ontrol type for the
ontrol.

Some
ontrols may have multiple obje
ts that
annot be independently
ontrolled. For example, if a

message is sent to set the value of three LEDs and it has one byte for ea
h LED and no way to set \only

set this one", then there is no generally and guaranteed way to independently
ontrol ea
h LED. In these

ases, OpenIPMI represents these as a
ontrol with multiple values. When setting, all the values must be

spe
i�ed. When reading, all the values are returned. To get the number of values for a
ontrol, use the

following fun
tion:

int ipmi_
ontrol_get_num_vals(ipmi_
ontrol_t *
ontrol);

Control Entity Information

Every
ontrol is asso
iated with a spe
i�
 entity, these
alls let you fet
h the entity information. The following

alls return the numeri
 entity id and instan
e:

int ipmi_
ontrol_get_entity_id(ipmi_
ontrol_t *
ontrol);

int ipmi_
ontrol_get_entity_instan
e(ipmi_
ontrol_t *
ontrol);

Generally, though, that is note what you want. You want the a
tual entity obje
t, whi
h may be fet
hed

with the following:

ipmi_entity_t *ipmi_
ontrol_get_entity(ipmi_
ontrol_t *
ontrol);

Note that the entity is ref
ounted when the
ontrol is
laimed, so the entity will exist while you have a valid

referen
e to a
ontrol it
ontains.

10.1.1 Control Name

Controls are given a name by the OEM
ode that
reates them. This is useful for printing out
ontrol

information. The fun
tions to get this are:

int ipmi_
ontrol_get_id_length(ipmi_
ontrol_t *
ontrol);

enum ipmi_str_type_e ipmi_
ontrol_get_id_type(ipmi_
ontrol_t *
ontrol);

int ipmi_
ontrol_get_id(ipmi_
ontrol_t *
ontrol,
har *id, int length);

See appendix A.1 for more information about these strings.

The fun
tion

int ipmi_
ontrol_get_name(ipmi_
ontrol_t *
ontrol,
har *name, int length);

returns a fully quali�ed name for the
ontrol with the entity name prepended. The name array is �lled with

the name, up to the length given. This is useful for printing string names for the
ontrol.

10.1. CONTROLS 151

10.1.2 Controls and Events

Controls may support events, mu
h like sensors. The fun
tion:

int ipmi_
ontrol_has_events(ipmi_
ontrol_t *
ontrol);

tells if a
ontrol supports events.

To register/unregister for
ontrol events, use the fun
tions:

typedef int (*ipmi_
ontrol_val_event_
b)(ipmi_
ontrol_t *
ontrol,

int *valid_vals,

int *vals,

void *
b_data,

ipmi_event_t *event);

int ipmi_
ontrol_add_val_event_handler(ipmi_
ontrol_t *
ontrol,

ipmi_
ontrol_val_event_
b handler,

void *
b_data);

int ipmi_
ontrol_remove_val_event_handler(ipmi_
ontrol_t *
ontrol,

ipmi_
ontrol_val_event_
b handler,

void *
b_data);

In the
allba
k, not all values may be present. The valid_vals parameter is an array of booleans telling if

spe
i�
 values are present. If an item in that array is true, then the
orresponding value in the vals array

is a valid value. This is a standard event handler as de�ned in se
tion 2.2.5 on page 20.

10.1.3 Basi
 Type Controls

This se
tion des
ribes the more \normal"
ontrols, that generally have a single value that is a binary or some

type of dire
t setting. These take an integer value per
ontrol for their setting. These
ontrol types are:

relay

alarm

reset

power

fan speed

one-shot reset

output

one-shot output

To set the value of one of these
ontrols, use the following:

int ipmi_
ontrol_set_val(ipmi_
ontrol_t *
ontrol,

int *val,

ipmi_
ontrol_op_
b handler,

void *
b_data);

152 CHAPTER 10. CONTROLS AND MISCELLANY

Pass in an array of integers for the values, the length of whi
h should be the number of values the
ontrol

supports. To get the value of a
ontrol, use:

typedef void (*ipmi_
ontrol_val_
b)(ipmi_
ontrol_t *
ontrol,

int err,

int *val,

void *
b_data);

int ipmi_
ontrol_get_val(ipmi_
ontrol_t *
ontrol,

ipmi_
ontrol_val_
b handler,

void *
b_data);

The val returns is an array of integers, the length is the number of values the
ontrol supports.

10.1.4 Light

Lights
ome in two
avors. Some lights have absolute
ontrol of the
olor, on time, and o� time. OpenIPMI

all these \setting" lights. Other lights have �xed fun
tions; they have a few settings that have �xed
olor

and on/o� values. OpenIPMI
alles these \transition" lights. Both types are fully supported.

To know if a light
ontrol is a setting or transition light, the following fun
tion returns true for a setting

light and false for a transition light:

int ipmi_
ontrol_light_set_with_setting(ipmi_
ontrol_t *
ontrol);

Lights
an be di�erent
olors, and the interfa
e allows the supported
olors to be
he
k and set. The

supported
olors are:

IPMI CONTROL COLOR BLACK

IPMI CONTROL COLOR WHITE

IPMI CONTROL COLOR RED

IPMI CONTROL COLOR GREEN

IPMI CONTROL COLOR BLUE

IPMI CONTROL COLOR YELLOW

IPMI CONTROL COLOR ORANGE

Setting Light

Setting lights are managed with an abstra
t data stru
ture:

typedef stru
t ipmi_light_setting_s ipmi_light_setting_t;

This is a standard OpenIPMI opaque data stru
ture. Like most other data stru
tures of this type, this does

not dire
tly modify the light, this is used to transmit the settings to a light and to re
eive the settings from

a light. To allo
ate/free these, use the following:

ipmi_light_setting_t *ipmi_allo
_light_settings(unsigned int
ount);

void ipmi_free_light_settings(ipmi_light_setting_t *settings);

A fun
tion is also available to dupli
ate these obje
ts:

ipmi_light_setting_t *ipmi_light_settings_dup(ipmi_light_setting_t *settings);

10.1. CONTROLS 153

Ea
h light setting has the settings for all lights for the
ontrol. If you allo
ate a light setting, you must

pass in the number of lights the
ontrol manages. You
an also fet
h this from the setting using:

unsigned int ipmi_light_setting_get_
ount(ipmi_light_setting_t *setting);

Setting type lights have the
on
ept of \lo
al
ontrol". When a light is in lo
al
ontrol, the light is

managed by the system it runs on. If lo
al
ontrol is turned o�, then the light
an be dire
tly managed.

For instan
e, the system may have an LED that when under lo
al
ontrol displays disk a
tivity. However,

it may be possible for the management system to take over that LED and use it for another purpose. Lo
al

ontrol is set and modi�ed in a setting using the fun
tions:

int ipmi_light_setting_in_lo
al_
ontrol(ipmi_light_setting_t *setting,

int num,

int *l
);

int ipmi_light_setting_set_lo
al_
ontrol(ipmi_light_setting_t *setting,

int num,

int l
);

The num parameter is the light number to set (whi
h of the lights the
ontrol managers). The l
 parameter

is the lo
al
ontrol
ontrol setting. These return error values if the parameters are out of range. If lo
al

ontrol is not supported, this is generally ignored.

To know if a light supports a spe
i�

olor, the fun
tion:

int ipmi_
ontrol_light_is_
olor_supported(ipmi_
ontrol_t *
ontrol,

unsigned int
olor);

To set the
olor in a setting and extra
t the
olor from a setting, use:

int ipmi_light_setting_get_
olor(ipmi_light_setting_t *setting, int num,

int *
olor);

int ipmi_light_setting_set_
olor(ipmi_light_setting_t *setting, int num,

int
olor);

These types of lights also support on and o� times. The on and o� times are dire
tly set, so the user has

dire
t
ontrol of this. Note that on and o� times may be approximate. To set or get the on and o� times in

a setting, use:

int ipmi_light_setting_get_on_time(ipmi_light_setting_t *setting, int num,

int *time);

int ipmi_light_setting_set_on_time(ipmi_light_setting_t *setting, int num,

int time);

int ipmi_light_setting_get_off_time(ipmi_light_setting_t *setting, int num,

int *time);

int ipmi_light_setting_set_off_time(ipmi_light_setting_t *setting, int num,

int time);

The times are spe
i�ed in millise
onds.

To fet
h the
urrent settings of a light
ontrol, use:

154 CHAPTER 10. CONTROLS AND MISCELLANY

typedef void (*ipmi_light_settings_
b)(ipmi_
ontrol_t *
ontrol,

int err,

ipmi_light_setting_t *settings,

void *
b_data);

int ipmi_
ontrol_get_light(ipmi_
ontrol_t *
ontrol,

ipmi_light_settings_
b handler,

void *
b_data);

On
e you re
eive the settings, use the get fun
tions to get the data you want from it. Note that the settings

parameter is freed by the system; if you want to keep the settings around you should dupli
ate them.

To set the settings of a light
ontrol, �rst
reate and
on�gure a light setting obje
t, then pass it to:

int ipmi_
ontrol_set_light(ipmi_
ontrol_t *
ontrol,

ipmi_light_setting_t *settings,

ipmi_
ontrol_op_
b handler,

void *
b_data);

Transition Light

For a transition light
ontrol, ea
h
ontrol has one or more lights. Ea
h light is an lightable devi
e, but all

the lights in a
ontrol are
hanged together. To get the number of lights supported by a
ontrol, use:

int ipmi_
ontrol_get_num_vals(ipmi_
ontrol_t *
ontrol);

Ea
h light has a number of values that it may be set to. The value is what is passed to set_
ontrol.

See se
tion 10.1.3 on page 151 for details on how to use set_
ontrol. To �nd the number of values for a

light, use

int ipmi_
ontrol_get_num_light_values(ipmi_
ontrol_t *
ontrol, light);

Ea
h value of a light has a number of transitions that it may go through. Ea
h transition has a
olor and

a time when that
olors runs.

This all sounds
ompli
ated, but it is really fairly simple. Suppose a
ontrol has two lights. Say light 0

is a red led. Light 0 has 4 values: o�, 100ms on and 900ms o�, 900ms on and 100ms o�, and always on.

For value 0, it will have one transition and the
olor will be bla
k (time is irrelevant with one transition).

For value 1, it will have two transitions, the �rst has a
olor of bla
k and a time of 900 and the se
ond has

a
olor of red and a time of 100. Likewise, value 2 has two transitions, the �rst is bla
k with a time of 100

and the se
ond is red with a value of 900. Value 4 has one transition with a red
olor.

To get the number of transitions in a value,
all the fun
tion:

int ipmi_
ontrol_get_num_light_transitions(ipmi_
ontrol_t *
ontrol,

unsigned int light,

unsigned int value);

For ea
h transition, use the following fun
tions to fet
h the
olor and time for that transition:

int ipmi_
ontrol_get_light_
olor(ipmi_
ontrol_t *
ontrol,

unsigned int light,

unsigned int value,

10.2. WATCHDOG TIMER 155

unsigned int transition);

int ipmi_
ontrol_get_light_
olor_time(ipmi_
ontrol_t *
ontrol,

unsigned int light,

unsigned int value,

unsigned int transition);

10.1.5 Display

The fun
tion of a display is TBD until the author of OpenIPMI gets a system that supports one :-).

10.1.6 Identi�er

An identi�er
ontrol holds some type of information about the system, the spe
i�
 type of something, a

serial number or other identi�er, or things of that nature. They are represented as an array of bytes.

To �nd the maximum number of bytes a
ontrol may be set to or will return, use the fun
tion:

unsigned int ipmi_
ontrol_identifier_get_max_length(ipmi_
ontrol_t *
ontrol);

To set and get the value of a
ontrol, use:

typedef void (*ipmi_
ontrol_identifier_val_
b)(ipmi_
ontrol_t *
ontrol,

int err,

unsigned
har *val,

int length,

void *
b_data);

int ipmi_
ontrol_identifier_get_val(ipmi_
ontrol_t *
ontrol,

ipmi_
ontrol_identifier_val_
b handler,

void *
b_data);

int ipmi_
ontrol_identifier_set_val(ipmi_
ontrol_t *
ontrol,

unsigned
har *val,

int length,

ipmi_
ontrol_op_
b handler,

void *
b_data);

10.1.7 Chassis Controls

The IPMI standard supports two basi

ontrols if the system supports
hassis
ontrol. OpenIPMI automat-

i
ally dete
ts these and
reates
ontrols for them. The
ontrols
reated are
reated on the
hassis entity id

(id 23.1) and are named:

reset A one-shot reset that
an reset the pro
essor in the
hassis.

power A binary power
ontrol that
an turn on and turn o� power to a
hassis.

10.2 Wat
hdog Timer

TBD - determine if we really need wat
hdog timer support, write it and do
ument it if so. Currently the

OpenIPMI library does not support the wat
hdog timer, but the Linux IPMI driver does support it through

the standard wat
hdog timer interfa
e.

156 CHAPTER 10. CONTROLS AND MISCELLANY

10.3 Dire
t I

2

C A

ess

C h a p t e r 1 1

Events

OpenIPMI automati
ally sets the event re
eiver.

11.1 Event Format

11.2 Event Data Information for Spe
i�
 Events

SYSTEM

FIRMWARE

PROGRESS

00h

-

01h Uses the same values as o�set 00h.

02h

-

EVENT LOGGING

DISABLED

01h

-

SYSTEM EVENT 03h

-

04h

-

SLOT CONNECTOR all

-

WATCHDOG 2 all

-

157

158 CHAPTER 11. EVENTS

11.3 MC Event Enables

Note there is a se
tion in the MC
hapter about this.

11.4 Coordinating Multiple Users of an SEL

If multiple things are managing an SEL, su
h as two instan
es of a redundant LAN appli
ation, you generally

want both appli
ations to be able to see all events. This means that they must
oordinate deletion of logs

from the SEL. Generally, you want an appli
ation to be able to pull events from the SEL, store them in some

other non-volatile storage, and then delete the events from the SEL.

If two appli
ations are doing this, you
an have ea
h appli
ation wait for twi
e at least twi
e the SEL

polling time and delete the event. This give all appli
ations a
han
e to polls the SEL and pull out the

events. OpenIPMI will
orre
tly handle situations where another system has deleted an event from the SEL.

It is also possible to send the events between the systems and use the timestamps and event numbers to

dete
t redundant
opies. This is obviously more
omplex, but
overs situations where one system may have

been down for a time and needs
opies of events it may have missed.

C h a p t e r 1 2

Other OpenIPMI Con
erns

12.1 When Operations Happen

As mentioned before, OpenIPMI has a very dynami
 view of the domain. It also reports things as it �nds

them, but the work on those things is not ne
essarily \done". OpenIPMI has no
on
ept of anything being

\done"; it views a domain as a dynami
 entity that
an
hange over time.

In some
ases, though, it may be useful to know when
ertain operations
omplete. The following
all

will tell you when the main SDR repository has been read. You
an
all it after you
reate the domain but

before the domain has �nished initialization; you
an register your own handler here:

int

ipmi_domain_set_main_SDRs_read_handler(ipmi_domain_t *domain,

ipmi_domain_
b handler,

void *
b_data)

Likewise, when a MC is reported the SDRs and events have not yet been read. To register handlers for

those, use:

int ipmi_m
_set_sdrs_first_read_handler(ipmi_m
_t *m
,

ipmi_m
ptr
b handler,

void *
b_data);

int ipmi_m
_set_sels_first_read_handler(ipmi_m
_t *m
,

ipmi_m
ptr
b handler,

void *
b_data);

Note that you should almost
ertainly not use these, unless you absolutely have to. In general, your

software should handle the dynami
 nature of an IPMI system dynami
ally.

159

160 CHAPTER 12. OTHER OPENIPMI CONCERNS

A p p e n d i x A

Spe
ial IPMI Formats

A.1 IPMI strings

IPMI uses a spe
ial format for storing strings. It allows data to be stored in four di�erent formats. The �rst

byte des
ribes the type and length; the format is:

bits 0-4 - The number of bytes following this byte. Note that this is not the number of
hara
ters in the

string, it is the number of bytes following. The value of 11111b is reserved.

bit 5 - reserved

bits 6-7 - The string type. Valid values are:

00h - Uni
ode

01h - BCD plus

02h - 6-bit ASCII, pa
ked

03h - 8-bit ASCII and Latin 1. In this
ase, a length of one is reserved. The length may be zero, or

it may be from 2 to 30, but may not be 1.

The values and pa
king are de�ned in the IPMI spe
.

TBD - add
hara
ter values and pa
king information

A.1.1 OpenIPMI and IPMI strings

OpenIPMI does most of the work of de
oding the IPMI strings. Generally, to fet
h a string, three fun
tions

are supported that generally look something like:

int ipmi_xxx_get_id_length(ipmi_xxx_t *obj);

enum ipmi_str_type_e ipmi_xxx_get_id_type(ipmi_xxx_t *obj);

int ipmi_xxx_get_id(ipmi_xxx_t *obj,
har *id, int length);

Fet
hing the type allows you to tell what it is. The type may be one of:

IPMI ASCII STR - The value is in normal ASCII and Latin 1

IPMI UNICODE STR - The value is uni
ode en
oded.

IPMI BINARY STR - The value is raw binary data.

161

162 APPENDIX A. SPECIAL IPMI FORMATS

Then you
an get the length to know how long the value will be. Then fet
h the a
tual id with the get id

all; it will store the value in the id passed in. The get id
all will return the number of bytes
opied into

into the id string. The size of the id string should be passed in to the \length" �eld. The number of bytes

a
tually
opied will be returned by the
all. If the number of bytes is more than the length of the id �eld,

then only \length" bytes are �lled in.

A p p e n d i x B

The Perl Interfa
e

OpenIPMI has interfa
e
ode that let's Perl programs use OpenIPMI. The interfa
e works mu
h like the C

interfa
e. Some things are simpli�ed, but in general it is very similar.

The interfa
e uses obje
t-oriented programming in Perl, so you must know how to do that in Perl. It's

pretty simple, really, but it's somewhat strange if you already know another OO programming language.

As an example, to
reate a domain
onne
tion and read all the events, you might use the following
ode:

#!/usr/bin/perl

get_events

#

A sample perl program to get IPMI events from an BMC

#

Author: MontaVista Software, In
.

Corey Minyard <minyard�mvista.
om>

sour
e�mvista.
om

#

Copyright 2004 MontaVista Software In
.

#

This program is free software; you
an redistribute it and/or

modify it under the terms of the GNU Lesser General Publi
 Li
ense

as published by the Free Software Foundation; either version 2 of

the Li
ense, or (at your option) any later version.

#

#

THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESS OR IMPLIED

WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF

MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.

IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,

INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,

BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS

OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND

163

164 APPENDIX B. THE PERL INTERFACE

ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR

TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE

USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

#

You should have re
eived a
opy of the GNU Lesser General Publi

Li
ense along with this program; if not, write to the Free

Software Foundation, In
., 675 Mass Ave, Cambridge, MA 02139, USA.

#

use OpenIPMI;

{

pa
kage MC_Nameget;

sub new {

my $a = shift;

my $b = \$a;

return bless $b;

}

sub m
_
b {

my $self = shift;

my $m
 = shift;

$$self = $m
->get_name();

}

pa
kage Eventh;

sub new {

my $obj = { };

return bless \$obj;

}

sub event_
b {

my $self = shift;

my $domain = shift;

my $event = shift;

my $m
id;

my $name;

my $val;

my �data;

my $dataref;

$m
id = $event->get_m
_id();

$name = MC_Nameget::new("");

165

$m
id->to_m
($name);

$dataref = $event->get_data();

�data = �$dataref;

print ("Got event: $$name ", $event->get_re
ord_id(),

" ", $event->get_type(), " ", $event->get_timestamp(), "\n");

print " Data: ";

while (defined ($val = shift �data)) {

printf " %2.2x", $val;

}

print "\n";

}

pa
kage Conh;

sub new {

my $obj = { };

$obj->{first_time} = 1;

return bless \$obj;

}

sub
onn_
hange_
b {

my $self = shift;

my $domain = shift;

my $err = shift;

my $
onn_num = shift;

my $port_num = shift;

my $still_
onne
ted = shift;

if ($err && !$still_
onne
ted) {

print "Error starting up
onne
tion: $err\n";

exit 1;

} elsif ($$self->{first_time}) {

my $event_handler = Eventh::new();

Register an event handler on the first time.

$$self->{first_time} = 0;

$rv = $domain->add_event_handler($event_handler);

if ($rv) {

print "Error adding event handler,
losing\n";

$domain->
lose();

exit(1);

}

}

}

pa
kage Uph;

166 APPENDIX B. THE PERL INTERFACE

sub new {

my $obj = { };

return bless \$obj;

}

sub domain_
lose_done_
b {

exit 0;

}

sub domain_up_
b {

my $self = shift;

my $domain = shift;

Domain is up, the SEL has been read.

print "Domain ", $domain->get_name(), " is finished
oming up!\n";

$domain->
lose($self);

}

}

OpenIPMI::init();

$
onh = Conh::new();

$uph = Uph::new();

Only get the SEL from the lo
al BMC, don't do anything else.

�args = ("-noall", "-sel", "smi", "0");

$domain_id = OpenIPMI::open_domain("test1", \�args, $
onh, $uph);

while (1) {

OpenIPMI::wait_io(1000);

}

Unfortunately, the do
umentation for the Perl interfa
e is in the �le swig/OpenIPMI.i along with the

sour
es. It will hopefully be here in the future.

A p p e n d i x C

Comparison with SNMP

167

168 APPENDIX C. COMPARISON WITH SNMP

A p p e n d i x D

Comparison with HPI

OpenIPMI and HPI
over mu
h of the same fun
tionality. Many of the
on
epts are similar. OpenIPMI was

designed so that HPI
ould be implemented on top of it, so they are not ne
essarily
ompeting te
hnologies.

The only thing that HPI provides that OpenIPMI doesn't is a wat
hdog interfa
e. Sin
e that's really

more a fun
tion of the OS and not something useful for remote systems, OpenIPMI didn't implement this

and left that to the OS.

OpenIPMI provides a

ess to the
on�guration information for LAN interfa
es,
hannel management,

and user management. HPI doesn't provide this. Indeed it
ouldn't be
ause that type of thing is too hard

to abstra
t and too spe
i�
 to IPMI. So even if you use HPI, you will need something like OpenIPMI to

manage the IPMI-spe
i�
 things in your system.

Both HPI and OpenIPMI have the
on
ept of a domain, entity, sensor, and
ontrol. For the most part,

they are the same. In theory the domain
on
ept of HPI is more general than OpenIPMI's. In pra
ti
e they

are usually the same. Entities do not di�er in
on
ept, but they are �rst-
lass obje
ts in OpenIPMI. In HPI

they are a set of numbers that identify a \path", but don't have a
tual data asso
iated with them and you

annot perform operations on them.

HPI adds a \resour
e" obje
t that OpenIPMI doesn't really have. An RDR many of the things that

entities do in OpenIPMI. For instan
e, hot-swap is on entities in OpenIPMI, but is on RDRs in HPI. In

e�e
t, HPI split the
on
ept of an IPMI entity into two things, one for identifying the things sensors and

ontrols are atta
hed to, and one for the inventory data, hot-swap
ontrol, and some other things. This split

is arti�
al from IPMI's point of view; it makes no su
h distin
tion.

The biggest
on
eptual di�eren
e between OpenIPMI and HPI is that OpenIPMI is event-driven as

des
ribed in se
tion 2.2.1 on page 10. This means that it is possible to
reate
omplex and live systems with

OpenIPMI without using threads or low-level polling. This is not possible with HPI. Event-driven system

are somewhat strange to use if you haven't used them before, though.

HPI is a standard. It
an be used with non-IPMI systems. These things
ount for a lot.

169

170 APPENDIX D. COMPARISON WITH HPI

A p p e n d i x E

ATCA

ATCA is a standard spe
i�ed by PICMG for highly available hardware. These are bus systems where a

number of
ards are plugged into a ba
kplane. The ba
kplane has redundant IPMB management busses and

an have redundant BMCs. In ATCA, the BMC is
alled the \Shelf Manager" (this is not quite
orre
t, but

lose enough for this dis
ussion). The individual management
ontrollers on a board are
alled \IPMCs."

Something that
onne
ts to the Shelf Managers is
alled a \System Manager."

The OpenIPMI library will auto-dete
t an ATCA system and
on�gure itself properly.

Unlike the IPMI spe
, the ATCA spe
 is fairly well written and easy to understand. Reading it is highly

re
ommended if you are programming on an ATCA system.

OpenIPMI maps the ATCA system into a fairly standard IPMI
on�guration. This is relatively transpar-

ent be
ause ATCA was designed to work with the IPMI spe
 and IPMI-spe
i�ed operations are used when

possible. The entire shelf is represented as entity 23.1. Ea
h of the boards will appear as
ontained inside

entity 23.1.

E.1 Management Redundan
y in ATCA

In general the redundan
y in ATCA is done by the ATCA system itself and is mostly invisible to the System

Manager. Though there are multiple IPMB busses, it looks like one ex
ept for reporting of errors. And the

Shelf Managers will make the system look like one IP address even if one Shelf Manager fails.

ECN002 of the ATCA spe
 added the
apability to supply all the management IP addresses on an ATCA

system. OpenIPMI will automati
ally dete
t this
apability and
reate a port for ea
h IP address. This

port's info will show ATCA aux as the interfa
e type. The port
annot be a
tivated, but reporting of the

port's state tells you if the port is up or down. Note that ports
an
hange dynami
ally; if a port
hange

omes in with an ENOENT error, that port has been deleted. You should
he
k the port information ea
h

time the port
hanges, as the ports may be reordered or re
on�gured.

E.2 Hot Swap in ATCA

The full standard OpenIPMI hot-swap state ma
hine is implemented for ATCA systems and is fully operation.

171

172 APPENDIX E. ATCA

E.3 ATCA FRU Data

OpenIPMI has de
oders to de
ode all the standard ATCA FRU data. It uses the standard interfa
e as

de�ned in se
tion 8.7.1 on page 114. OpenIPMI will fet
h the ATCA FRU data for its own internal use, but

the ATCA FRU data is not fet
hed in a way that is visible to the user be
ause it does not appear in the

standard lo
ations for IPMI FRUs. The ATCA spe
 de�nes how the user
an �nd the FRU data; on
e the

lo
ation is found the data
an be fet
hed using ipmi_fru_allo
().

E.4 Spe
ial ATCA Sensors

All hot-swappable ATCA entities have their own hot-swap sensor. OpenIPMI will dete
t this sensor auto-

mati
ally and set it up properly. It will report this sensor to the user, but the user must not modify the

on�guration of the sensor or it may mess up the hot-swap state ma
hine. Use the hot-swap state ma
hine

instead of this sensor.

ATCA spe
i�ed other sensors, but the OpenIPMI ATCA
ode does not use these internally.

E.5 Spe
ial ATCA Shelf Controls

OpenIPMI will
reate one
ontrol for ECN002 and later versions. It is a single
ontrol with all the power

feeds de�ned in the power map. The
urrent value of ea
h feed is in the
ontrol. It is named \power feeds"

and is atta
hed to the shelf entity (23.1).

E.6 Spe
ial ATCA IPMC Controls

ATCA spe
i�es a standard way to
ontrol LEDs on the board, and it has a de�ned reset operation.

The LED
ontrols appear as standard OpenIPMI light
ontrols that use setting
ontrols, see the se
-

tion 10.1.4 on page 152 for more information on how to
ontrol these. The �rst LED is always the blue

hot-swap LED and is named \blue led". The other LEDs are labeled \led 1", \led 2", et
.

The reset
ontrol is named \
old reset" and
an be used to reset the main pro
essor on the board. If

your board is ATCA ECN002
ompliant, it will have a way to dete
t additional
ontrols:

warm reset

gra
eful reboot

diagnosti
 interrupt

The operation of these is board-dependent.

Note that even though you
ould dire
tly
ontrol the power on an ATCA board, you should not. Use the

hot-swap state ma
hine.

In addition, an address
ontrol named \address' is
reated for ea
h IPMC that has the address info: site

type, site number, hardware address, ipmb address, in that order.

E.7. CHASSIS CONTROLS AND ATCA 173

E.7 Chassis Controls and ATCA

The Shelf Manager is supposed to have the standard
hassis
ontrols spe
i�ed by IPMI for power and reset.

Be very
areful using these. They a�e
t the entire shelf. So if you turn o� the power with the
hassis power

ontrol, it will turn of every board in the shelf.

E.8 AMC

AMC was designed to work transparently with the ATCA spe
. The IPMC that manages the AMC modules

will represent the AMC modules to the shelf and system manager transparently, so in general the user doesn't

have to do anything spe
ial. The AMCs will appear as hot-swap
apable entities
ontained within their host

board's entity.

It may be ne
essary to dire
tly
ommuni
ate with the AMC modules. From an OpenIPMI driver
on-

ne
tion, you must send the message using an ipmi_ipmb_addr with
hannel 7 and the slave address set to

the IPMB address of the AMC module. This works transparently in the driver.

1

Communi
ating dire
tly to the AMC over a LAN interfa
e is more
omplex. You must format a send

message
ommand yourself, but only the last level of the send message. You would format a
omplete send

message
ommand to
hannel 7 and the IPMB address of the AMC module. You then send this message

using an ipmi_ipmb_addr, with the
hannel set to 0 and using the IPMB address of the IPMC as the slave

address. You must use message tra
king. Then the OpenIPMI library will format the message properly to

get it to the IPMC. Your send message
ommand will then be pro
essed by the IPMC and the message will

be routed to the AMC. The IPMC takes
are of handling the response and returning it to you through the

shelf manager. This is rather
omplex, but should be a seldom-used operation. And if anyone wants to make

it simpler, pat
hes are always appre
iated.

1

Note that some systems do not
orre
tly implement this due to a misunderstanding in the AMC spe
. The AMC spe
 talks

about using message tra
king to route messages from the IPMB to the AMCs. It does not talk about using message tra
king

going from the system interfa
es to the AMCs. The IPMI spe
 is quite
lear that only untra
ked messages are used from the

system interfa
e. If you
annot talk to your AMC board from the IPMI driver, it may be that the board does not properly

handle untra
ked messages.

174 APPENDIX E. ATCA

A p p e n d i x F

Motorola MXP

175

176 APPENDIX F. MOTOROLA MXP

A p p e n d i x G

Intel Servers

Many Intel server systems have an alarm panel and a relay output that
an be monitored and
ontrolled

through IPMI. This will appear under entity 12.1 (Alarm Panel) and will be named \alarm". It takes an

8-bit setting. The meanings of the bits are:

7 Reserved, always write 1

6 LED
olors, 1 = amber (default), 0 = red. Note that the
olors were added in some

later �rmware versions, not in all, and the
olors may not a�e
t all LEDs.

5 Minor Relay bit, 0 = on, 1=o�. This is a read only bit and should always be written

1.

4 Major Relay bit, 0 = on, 1=o�. This is a read only bit and should always be written

1.

3 Minor LED bit, 0 = on, 1=o�

2 Major LED bit, 0 = on, 1=o�

1 Criti
al LED bit, 0 = on, 1=o�

0 Power LED bit, 0 = on, 1=o�

177

178 APPENDIX G. INTEL SERVERS

A p p e n d i x H

Sample Program Showing Basi

Operations

The following program shows basi
 setup, registration, and registering to handle new entitys, sensors, and

ontrols as they are
reated. Some basi
 information is dumped.

/*

* test1.

*

* OpenIPMI test
ode

*

* Author: Intel Corporation

* Jeff Zheng <Jeff.Zheng�Intel.
om>

*

* This program is free software; you
an redistribute it and/or

* modify it under the terms of the GNU Lesser General Publi
 Li
ense

* as published by the Free Software Foundation; either version 2 of

* the Li
ense, or (at your option) any later version.

*

*

* THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESS OR IMPLIED

* WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF

* MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.

* IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,

* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,

* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS

* OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND

* ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR

* TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE

* USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

*

* You should have re
eived a
opy of the GNU Lesser General Publi

179

180 APPENDIX H. SAMPLE PROGRAM SHOWING BASIC OPERATIONS

* Li
ense along with this program; if not, write to the Free

* Software Foundation, In
., 675 Mass Ave, Cambridge, MA 02139, USA.

*/

#in
lude <stdio.h>

#in
lude <stdlib.h>

#in
lude <string.h>

#in
lude <sys/types.h>

#in
lude <sys/stat.h>

#in
lude <f
ntl.h>

#in
lude <unistd.h>

#in
lude <netdb.h>

#in
lude <
type.h>

#in
lude <time.h>

#in
lude <OpenIPMI/ipmiif.h>

#in
lude <OpenIPMI/ipmi_smi.h>

#in
lude <OpenIPMI/ipmi_err.h>

#in
lude <OpenIPMI/ipmi_auth.h>

#in
lude <OpenIPMI/ipmi_lan.h>

#in
lude <OpenIPMI/ipmi_posix.h>

#in
lude <OpenIPMI/ipmi_fru.h>

/* This sample appli
ation demostrates a very simple method to use

OpenIPMI. It just sear
h all sensors in the system. From this

appli
ation, you
an find that there is only 4 lines
ode in main()

fun
tion if you use the SMI-only interfa
e, and several simple

allba
k fun
tions in all
ases. */

stati

onst
har *progname;

stati
 void
on_usage(
onst
har *name,
onst
har *help, void *
b_data)

{

printf("\n%s%s", name, help);

}

stati
 void

usage(void)

{

printf("Usage:\n");

printf(" %s <
on_parms>\n", progname);

printf(" Where <
on_parms> is one of:");

ipmi_parse_args_iter_help(
on_usage, NULL);

}

stati
 int

181

sensor_threshold_event_handler(ipmi_sensor_t *sensor,

enum ipmi_event_dir_e dir,

enum ipmi_thresh_e threshold,

enum ipmi_event_value_dir_e high_low,

enum ipmi_value_present_e value_present,

unsigned int raw_value,

double value,

void *
b_data,

ipmi_event_t *event)

{

ipmi_entity_t *ent = ipmi_sensor_get_entity(sensor);

int id, instan
e;

har name[33℄;

id = ipmi_entity_get_entity_id(ent);

instan
e = ipmi_entity_get_entity_instan
e(ent);

ipmi_sensor_get_id(sensor, name, 32);

printf("Event from sensor %d.%d.%s: %s %s %s\n",

id, instan
e, name,

ipmi_get_threshold_string(threshold),

ipmi_get_value_dir_string(high_low),

ipmi_get_event_dir_string(dir));

if (value_present == IPMI_BOTH_VALUES_PRESENT) {

printf(" value is %f (%2.2x)\n", value, raw_value);

} else if (value_present == IPMI_RAW_VALUE_PRESENT) {

printf(" raw value is 0x%x\n", raw_value);

}

if (event)

printf("Due to event 0x%4.4x\n", ipmi_event_get_re
ord_id(event));

/* This passes the event on to the main event handler, whi
h does

not exist in this program. */

return IPMI_EVENT_NOT_HANDLED;

}

stati
 int

sensor_dis
rete_event_handler(ipmi_sensor_t *sensor,

enum ipmi_event_dir_e dir,

int offset,

int severity,

int prev_severity,

void *
b_data,

ipmi_event_t *event)

{

ipmi_entity_t *ent = ipmi_sensor_get_entity(sensor);

182 APPENDIX H. SAMPLE PROGRAM SHOWING BASIC OPERATIONS

int id, instan
e;

har name[33℄;

id = ipmi_entity_get_entity_id(ent);

instan
e = ipmi_entity_get_entity_instan
e(ent);

ipmi_sensor_get_id(sensor, name, 32);

printf("Event from sensor %d.%d.%s: %d %s\n",

id, instan
e, name,

offset,

ipmi_get_event_dir_string(dir));

if (severity != -1)

printf(" severity is %d\n", severity);

if (prev_severity != -1)

printf(" prev severity is %d\n", prev_severity);

if (event)

printf("Due to event 0x%4.4x\n", ipmi_event_get_re
ord_id(event));

/* This passes the event on to the main event handler, whi
h does

not exist in this program. */

return IPMI_EVENT_NOT_HANDLED;

}

/* Whenever the status of a sensor
hanges, the fun
tion is
alled

We display the information of the sensor if we find a new sensor

*/

stati
 void

sensor_
hange(enum ipmi_update_e op,

ipmi_entity_t *ent,

ipmi_sensor_t *sensor,

void *
b_data)

{

int id, instan
e;

har name[33℄;

int rv;

id = ipmi_entity_get_entity_id(ent);

instan
e = ipmi_entity_get_entity_instan
e(ent);

ipmi_sensor_get_id(sensor, name, 32);

if (op == IPMI_ADDED) {

printf("Sensor added: %d.%d.%s\n", id, instan
e, name);

if (ipmi_sensor_get_event_reading_type(sensor)

== IPMI_EVENT_READING_TYPE_THRESHOLD)

rv = ipmi_sensor_add_threshold_event_handler

(sensor,

183

sensor_threshold_event_handler,

NULL);

else

rv = ipmi_sensor_add_dis
rete_event_handler

(sensor,

sensor_dis
rete_event_handler,

NULL);

if (rv)

printf("Unable to add the sensor event handler: %x\n", rv);

}

}

stati
 int

traverse_fru_node_tree(int indent, ipmi_fru_node_t *node)

{

onst
har *name;

unsigned int i, j;

enum ipmi_fru_data_type_e dtype;

int intval, rv;

time_t time;

double floatval;

har *data;

unsigned int data_len;

ipmi_fru_node_t *sub_node;

for (i=0; ; i++) {

data = NULL;

rv = ipmi_fru_node_get_field(node, i, &name, &dtype, &intval, &time,

&floatval, &data, &data_len, &sub_node);

if (rv == EINVAL)

break;

else if (rv)

ontinue;

if (name)

printf("%*s%s: ", indent, "", name);

else

printf("%*s[%d℄: ", indent, "", i);

swit
h (dtype) {

ase IPMI_FRU_DATA_INT:

printf("(integer) %d\n", intval);

break;

ase IPMI_FRU_DATA_TIME:

printf("(integer) %ld\n", (long) time);

184 APPENDIX H. SAMPLE PROGRAM SHOWING BASIC OPERATIONS

break;

ase IPMI_FRU_DATA_BINARY:

printf("(binary)");

for (j=0; j<data_len; j++)

printf(" %2.2x", data[j℄);

printf("\n");

break;

ase IPMI_FRU_DATA_UNICODE:

printf("(uni
ode)");

for (j=0; j<data_len; j++)

printf(" %2.2x", data[j℄);

printf("\n");

break;

ase IPMI_FRU_DATA_ASCII:

printf("(as
ii) \"%s\"\n", data);

break;

ase IPMI_FRU_DATA_BOOLEAN:

printf("(boolean) \"%s\"\n", intval ? "true" : "false");

break;

ase IPMI_FRU_DATA_FLOAT:

printf("(float) %f\n", floatval);

break;

ase IPMI_FRU_DATA_SUB_NODE:

if (intval == -1)

printf("(re
ord)\n");

else

printf("(array) %d\n", intval);

traverse_fru_node_tree(indent+2, sub_node);

break;

default:

printf("(unknown)");

break;

}

if (data)

ipmi_fru_data_free(data);

}

ipmi_fru_put_node(node);

185

return 0;

}

stati
 void

fru_
hange(enum ipmi_update_e op,

ipmi_entity_t *entity,

void *
b_data)

{

int id, instan
e;

int rv;

ipmi_fru_t *fru = ipmi_entity_get_fru(entity);

onst
har *type;

ipmi_fru_node_t *node;

if (op == IPMI_ADDED) {

id = ipmi_entity_get_entity_id(entity);

instan
e = ipmi_entity_get_entity_instan
e(entity);

printf("FRU added for: %d.%d\n", id, instan
e);

if (!fru)

return;

rv = ipmi_fru_get_root_node(fru, &type, &node);

if (rv)

return;

printf("FRU type: %s", type);

traverse_fru_node_tree(2, node);

}

}

/* Whenever the status of an entity
hanges, the fun
tion is
alled

When a new entity is
reated, we sear
h all sensors that belong

to the entity */

stati
 void

entity_
hange(enum ipmi_update_e op,

ipmi_domain_t *domain,

ipmi_entity_t *entity,

void *
b_data)

{

int rv;

int id, instan
e;

id = ipmi_entity_get_entity_id(entity);

instan
e = ipmi_entity_get_entity_instan
e(entity);

186 APPENDIX H. SAMPLE PROGRAM SHOWING BASIC OPERATIONS

if (op == IPMI_ADDED) {

printf("Entity added: %d.%d\n", id, instan
e);

/* Register
allba
k so that when the status of a

sensor
hanges, sensor_
hange is
alled */

rv = ipmi_entity_add_sensor_update_handler(entity,

sensor_
hange,

entity);

if (rv) {

printf("ipmi_entity_set_sensor_update_handler: 0x%x", rv);

exit(1);

}

rv = ipmi_entity_add_fru_update_handler(entity,

fru_
hange,

NULL);

if (rv) {

printf("ipmi_entity_set_fru_update_handler: 0x%x", rv);

exit(1);

}

}

}

/* After we have established
onne
tion to domain, this fun
tion get
alled

At this time, we
an do whatever things we want to do. Herr we want to

sear
h all entities in the system */

void

setup_done(ipmi_domain_t *domain,

int err,

unsigned int
onn_num,

unsigned int port_num,

int still_
onne
ted,

void *user_data)

{

int rv;

/* Register a
allba
k fun
tin entity_
hange. When a new entities

is
reated, entity_
hange is
alled */

rv = ipmi_domain_add_entity_update_handler(domain, entity_
hange, domain);

if (rv) {

printf("ipmi_domain_add_entity_update_handler return error: %d\n", rv);

return;

}

}

stati
 os_handler_t *os_hnd;

187

stati
 void

my_vlog(os_handler_t *handler,

onst
har *format,

enum ipmi_log_type_e log_type,

va_list ap)

{

int do_nl = 1;

swit
h(log_type)

{

ase IPMI_LOG_INFO:

printf("INFO: ");

break;

ase IPMI_LOG_WARNING:

printf("WARN: ");

break;

ase IPMI_LOG_SEVERE:

printf("SEVR: ");

break;

ase IPMI_LOG_FATAL:

printf("FATL: ");

break;

ase IPMI_LOG_ERR_INFO:

printf("EINF: ");

break;

ase IPMI_LOG_DEBUG_START:

do_nl = 0;

/* FALLTHROUGH */

ase IPMI_LOG_DEBUG:

printf("DEBG: ");

break;

ase IPMI_LOG_DEBUG_CONT:

do_nl = 0;

/* FALLTHROUGH */

ase IPMI_LOG_DEBUG_END:

break;

}

vprintf(format, ap);

188 APPENDIX H. SAMPLE PROGRAM SHOWING BASIC OPERATIONS

if (do_nl)

printf("\n");

}

int

main(int arg
,
har *argv[℄)

{

int rv;

int
urr_arg = 1;

ipmi_args_t *args;

ipmi_
on_t *
on;

progname = argv[0℄;

/* OS handler allo
ated first. */

os_hnd = ipmi_posix_setup_os_handler();

if (!os_hnd) {

printf("ipmi_smi_setup_
on: Unable to allo
ate os handler\n");

exit(1);

}

/* Override the default log handler (just to show how). */

os_hnd->set_log_handler(os_hnd, my_vlog);

/* Initialize the OpenIPMI library. Do a double one to look for

init/shutdown bugs. */

rv = ipmi_init(os_hnd);

if (rv) {

fprintf(stderr, "Error in ipmi initialization %d: %s\n",

urr_arg, strerror(rv));

exit(1);

}

ipmi_shutdown();

rv = ipmi_init(os_hnd);

if (rv) {

fprintf(stderr, "Error in ipmi initialization(2) %d: %s\n",

urr_arg, strerror(rv));

exit(1);

}

#if 0

/* If all you need is an SMI
onne
tion, this is all the
ode you

need. */

/* Establish
onne
tions to domain through system interfa
e. This

fun
tion
onne
t domain, sele
tor and OS handler together.

189

When there is response message from domain, the status of file

des
riptor in sele
tor is
hanged and predefined
allba
k is

alled. After the
onne
tion is established, setup_done will be

alled. */

rv = ipmi_smi_setup_
on(0, os_hnd, NULL, &
on);

if (rv) {

printf("ipmi_smi_setup_
on: %s", strerror(rv));

exit(1);

}

#endif

#if 1

rv = ipmi_parse_args2(&
urr_arg, arg
, argv, &args);

if (rv) {

fprintf(stderr, "Error parsing
ommand arguments, argument %d: %s\n",

urr_arg, strerror(rv));

usage();

exit(1);

}

rv = ipmi_args_setup_
on(args, os_hnd, NULL, &
on);

if (rv) {

fprintf(stderr, "ipmi_ip_setup_
on: %s", strerror(rv));

exit(1);

}

#endif

rv = ipmi_open_domain("", &
on, 1, setup_done, NULL, NULL, NULL,

NULL, 0, NULL);

if (rv) {

fprintf(stderr, "ipmi_init_domain: %s\n", strerror(rv));

exit(1);

}

/* This is the main loop of the event-driven program.

Try <CTRL-C> to exit the program */

#if 1

/* We run the sele
t loop here, this shows how you
an use

sel_sele
t. You
ould add your own pro
essing in this loop. */

while (1) {

os_hnd->perform_one_op(os_hnd, NULL);

}

#else

/* Let the sele
tor
ode run the sele
t loop. */

os_hnd->operation_loop(os_hnd);

#endif

190 APPENDIX H. SAMPLE PROGRAM SHOWING BASIC OPERATIONS

/* Te
hni
ally, we
an't get here, but this is an example. */

os_hnd->free_os_handler(os_hnd);

}

A p p e n d i x I

Sample Program Showing Event

Setup

The following program show how to set up events. For every sensor that is dete
ted, it will turn on all events

that the sensor supports.

/*

* test1.

*

* OpenIPMI test
ode showing event setup

*

* Author: Corey Minyard <minyard�a
m.org>

*

* This program is free software; you
an redistribute it and/or

* modify it under the terms of the GNU Lesser General Publi
 Li
ense

* as published by the Free Software Foundation; either version 2 of

* the Li
ense, or (at your option) any later version.

*

*

* THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESS OR IMPLIED

* WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF

* MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.

* IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,

* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,

* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS

* OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND

* ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR

* TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE

* USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

*

* You should have re
eived a
opy of the GNU Lesser General Publi

* Li
ense along with this program; if not, write to the Free

191

192 APPENDIX I. SAMPLE PROGRAM SHOWING EVENT SETUP

* Software Foundation, In
., 675 Mass Ave, Cambridge, MA 02139, USA.

*/

#in
lude <stdio.h>

#in
lude <stdlib.h>

#in
lude <string.h>

#in
lude <sys/types.h>

#in
lude <sys/stat.h>

#in
lude <f
ntl.h>

#in
lude <unistd.h>

#in
lude <netdb.h>

#in
lude <
type.h>

#in
lude <time.h>

#in
lude <OpenIPMI/ipmiif.h>

#in
lude <OpenIPMI/ipmi_smi.h>

#in
lude <OpenIPMI/ipmi_err.h>

#in
lude <OpenIPMI/ipmi_auth.h>

#in
lude <OpenIPMI/ipmi_lan.h>

#in
lude <OpenIPMI/ipmi_posix.h>

/* This sample appli
ation demostrates some general handling of sensors,

like reading values, setting up events, and things of that nature.

It also demonstrates some good
oding pra
ti
es like ref
ounting

stru
tures. */

stati

onst
har *progname;

#define MAX_SENSOR_NAME_SIZE 128

typedef stru
t sdata_s

{

unsigned int ref
ount;

ipmi_sensor_id_t sensor_id;

har name[MAX_SENSOR_NAME_SIZE℄;

ipmi_event_state_t *es;

ipmi_thresholds_t *th;

int state_sup;

int thresh_sup;

stru
t sdata_s *next, *prev;

} sdata_t;

stati
 sdata_t *sdata_list = NULL;

stati
 sdata_t *

193

allo
_sdata(ipmi_sensor_t *sensor)

{

sdata_t *sdata;

sdata = mallo
(sizeof(*sdata));

if (!sdata)

return NULL;

sdata->es = mallo
(ipmi_event_state_size());

if (!sdata->es) {

free(sdata);

return NULL;

}

ipmi_event_state_init(sdata->es);

sdata->th = mallo
(ipmi_thresholds_size());

if (!sdata->th) {

free(sdata->es);

free(sdata);

return NULL;

}

ipmi_thresholds_init(sdata->th);

sdata->ref
ount = 1;

sdata->sensor_id = ipmi_sensor_
onvert_to_id(sensor);

ipmi_sensor_get_name(sensor, sdata->name, sizeof(sdata->name));

sdata->next = sdata_list;

sdata->prev = NULL;

sdata_list = sdata;

return sdata;

}

stati
 sdata_t *

find_sdata(ipmi_sensor_t *sensor)

{

ipmi_sensor_id_t id = ipmi_sensor_
onvert_to_id(sensor);

sdata_t *link;

link = sdata_list;

while (link) {

if (ipmi_
mp_sensor_id(id, link->sensor_id) == 0)

return link;

link = link->next;

194 APPENDIX I. SAMPLE PROGRAM SHOWING EVENT SETUP

}

return NULL;

}

stati
 void

use_sdata(sdata_t *sdata)

{

sdata->ref
ount++;

}

stati
 void

release_sdata(sdata_t *sdata)

{

sdata->ref
ount--;

if (sdata->ref
ount == 0) {

/* Remove it from the list. */

if (sdata->next)

sdata->next->prev = sdata->prev;

if (sdata->prev)

sdata->prev->next = sdata->next;

else

sdata_list = sdata->next;

free(sdata->es);

free(sdata->th);

free(sdata);

}

}

stati
 void
on_usage(
onst
har *name,
onst
har *help, void *
b_data)

{

printf("\n%s%s", name, help);

}

stati
 void

usage(void)

{

printf("Usage:\n");

printf(" %s <
on_parms>\n", progname);

printf(" Where <
on_parms> is one of:");

ipmi_parse_args_iter_help(
on_usage, NULL);

}

stati
 void

got_thresh_reading(ipmi_sensor_t *sensor,

195

int err,

enum ipmi_value_present_e value_present,

unsigned int raw_value,

double val,

ipmi_states_t *states,

void *
b_data)

{

sdata_t *sdata =
b_data;

enum ipmi_thresh_e thresh;

if (err) {

printf("Error 0x%x getting dis
rete states for sensor %s\n",

err, sdata->name);

goto out;

}

printf("Got threshold reading for sensor %s\n", sdata->name);

if (ipmi_is_event_messages_enabled(states))

printf(" event messages enabled\n");

if (ipmi_is_sensor_s
anning_enabled(states))

printf(" sensor s
anning enabled\n");

if (ipmi_is_initial_update_in_progress(states))

printf(" initial update in progress\n");

swit
h (value_present)

{

ase IPMI_NO_VALUES_PRESENT:

printf(" no value present\n");

break;

ase IPMI_BOTH_VALUES_PRESENT:

{

onst
har *per
ent = "";

onst
har *base;

onst
har *mod_use = "";

onst
har *modifier = "";

onst
har *rate;

base = ipmi_sensor_get_base_unit_string(sensor);

if (ipmi_sensor_get_per
entage(sensor))

per
ent = "%";

swit
h (ipmi_sensor_get_modifier_unit_use(sensor)) {

ase IPMI_MODIFIER_UNIT_NONE:

break;

ase IPMI_MODIFIER_UNIT_BASE_DIV_MOD:

mod_use = "/";

modifier = ipmi_sensor_get_modifier_unit_string(sensor);

196 APPENDIX I. SAMPLE PROGRAM SHOWING EVENT SETUP

break;

ase IPMI_MODIFIER_UNIT_BASE_MULT_MOD:

mod_use = "*";

modifier = ipmi_sensor_get_modifier_unit_string(sensor);

break;

}

rate = ipmi_sensor_get_rate_unit_string(sensor);

printf(" value: %lf%s %s%s%s%s\n", val, per
ent,

base, mod_use, modifier, rate);

}

/* FALLTHROUGH */

ase IPMI_RAW_VALUE_PRESENT:

printf(" raw value: 0x%2.2x\n", raw_value);

}

if (sdata->thresh_sup == IPMI_THRESHOLD_ACCESS_SUPPORT_NONE)

goto out;

for (thresh=IPMI_LOWER_NON_CRITICAL;

thresh<=IPMI_UPPER_NON_RECOVERABLE;

thresh++)

{

int val, rv;

rv = ipmi_sensor_threshold_reading_supported(sensor, thresh, &val);

if (rv || !val)

ontinue;

if (ipmi_is_threshold_out_of_range(states, thresh))

printf(" Threshold %s is out of range\n",

ipmi_get_threshold_string(thresh));

else

printf(" Threshold %s is in range\n",

ipmi_get_threshold_string(thresh));

}

out:

release_sdata(sdata);

}

stati
 void

got_dis
rete_states(ipmi_sensor_t *sensor,

int err,

ipmi_states_t *states,

void *
b_data)

197

{

sdata_t *sdata =
b_data;

int i;

if (err) {

printf("Error 0x%x getting dis
rete states for sensor %s\n",

err, sdata->name);

goto out;

}

if (err) {

printf("Error 0x%x getting dis
rete states for sensor %s\n",

err, sdata->name);

goto out;

}

printf("Got state reading for sensor %s\n", sdata->name);

if (ipmi_is_event_messages_enabled(states))

printf(" event messages enabled\n");

if (ipmi_is_sensor_s
anning_enabled(states))

printf(" sensor s
anning enabled\n");

if (ipmi_is_initial_update_in_progress(states))

printf(" initial update in progress\n");

for (i=0; i<15; i++) {

int val, rv;

rv = ipmi_sensor_dis
rete_event_readable(sensor, i, &val);

if (rv || !val)

ontinue;

printf(" state %d value is %d\n", i, ipmi_is_state_set(states, i));

}

out:

release_sdata(sdata);

}

stati
 void

event_set_done(ipmi_sensor_t *sensor,

int err,

void *
b_data)

{

sdata_t *sdata =
b_data;

if (err) {

198 APPENDIX I. SAMPLE PROGRAM SHOWING EVENT SETUP

printf("Error 0x%x setting events for sensor %s\n", err, sdata->name);

goto out;

}

printf("Events set for sensor %s\n", sdata->name);

out:

release_sdata(sdata);

}

stati
 void

got_events(ipmi_sensor_t *sensor,

int err,

ipmi_event_state_t *states,

void *
b_data)

{

sdata_t *sdata =
b_data;

int rv;

if (err) {

printf("Error 0x%x getting events for sensor %s\n", err, sdata->name);

goto out_err;

}

/* Turn on the general events for a sensor, sin
e this at

least supports per-sensor enables. */

ipmi_event_state_set_events_enabled(sdata->es, 1);

ipmi_event_state_set_s
anning_enabled(sdata->es, 1);

printf("Sensor %s event settings:\n", sdata->name);

if (sdata->state_sup != IPMI_EVENT_SUPPORT_PER_STATE) {

/* No per-state sensors, just do the global enable. */

} else if (ipmi_sensor_get_event_reading_type(sensor)

== IPMI_EVENT_READING_TYPE_THRESHOLD)

{

/* Che
k ea
h event, print out the
urrent state, and turn it

on in the events to set if it is available. */

enum ipmi_event_value_dir_e value_dir;

enum ipmi_event_dir_e dir;

enum ipmi_thresh_e thresh;

int val;

for (value_dir=IPMI_GOING_LOW; value_dir<=IPMI_GOING_HIGH; value_dir++)

{

for (dir=IPMI_ASSERTION; dir<=IPMI_DEASSERTION; dir++) {

for (thresh=IPMI_LOWER_NON_CRITICAL;

thresh<=IPMI_UPPER_NON_RECOVERABLE;

199

thresh++)

{

har *v;

rv = ipmi_sensor_threshold_event_supported

(sensor, thresh, value_dir, dir, &val);

if (rv || !val)

ontinue;

if (ipmi_is_threshold_event_set(states, thresh,

value_dir, dir))

v = "";

else

v = " not";

printf(" %s %s %s was%s enabled\n",

ipmi_get_threshold_string(thresh),

ipmi_get_value_dir_string(value_dir),

ipmi_get_event_dir_string(dir),

v);

ipmi_threshold_event_set(sdata->es, thresh,

value_dir, dir);

}

}

}

} else {

/* Che
k ea
h event, print out the
urrent state, and turn it

on in the events to set if it is available. */

enum ipmi_event_dir_e dir;

int i;

for (dir=IPMI_ASSERTION; dir<=IPMI_DEASSERTION; dir++) {

for (i=0; i<15; i++) {

har *v;

int val;

rv = ipmi_sensor_dis
rete_event_supported

(sensor, i, dir, &val);

if (rv || !val)

ontinue;

if (ipmi_is_dis
rete_event_set(states, i, dir))

v = "";

else

v = " not";

200 APPENDIX I. SAMPLE PROGRAM SHOWING EVENT SETUP

printf(" bit %d %s was%s enabled\n",

i,

ipmi_get_event_dir_string(dir),

v);

ipmi_dis
rete_event_set(sdata->es, i, dir);

}

}

}

rv = ipmi_sensor_set_event_enables(sensor, sdata->es,

event_set_done, sdata);

if (rv) {

printf("Error 0x%x enabling events for sensor %s\n", err, sdata->name);

goto out_err;

}

return;

out_err:

release_sdata(sdata);

}

stati
 void

thresholds_set(ipmi_sensor_t *sensor, int err, void *
b_data)

{

sdata_t *sdata =
b_data;

if (err) {

printf("Error 0x%x setting thresholds for sensor %s\n",

err, sdata->name);

goto out;

}

printf("Thresholds set for sensor %s\n", sdata->name);

out:

release_sdata(sdata);

}

stati
 void

got_thresholds(ipmi_sensor_t *sensor,

int err,

ipmi_thresholds_t *th,

void *
b_data)

201

{

sdata_t *sdata =
b_data;

enum ipmi_thresh_e thresh;

int rv;

if (err) {

printf("Error 0x%x getting events for sensor %s\n", err, sdata->name);

goto out_err;

}

printf("Sensor %s threshold settings:\n", sdata->name);

for (thresh=IPMI_LOWER_NON_CRITICAL;

thresh<=IPMI_UPPER_NON_RECOVERABLE;

thresh++)

{

int val;

double dval;

rv = ipmi_sensor_threshold_readable(sensor, thresh, &val);

if (rv || !val)

/* Threshold not available. */

ontinue;

rv = ipmi_threshold_get(th, thresh, &dval);

if (rv) {

printf(" threshold %s
ould not be fet
hed due to error 0x%x\n",

ipmi_get_threshold_string(thresh), rv);

} else {

printf(" threshold %s is %lf\n",

ipmi_get_threshold_string(thresh), dval);

}

}

rv = ipmi_get_default_sensor_thresholds(sensor, sdata->th);

if (rv) {

printf("Error 0x%x getting def thresholds for sensor %s\n",

rv, sdata->name);

goto out_err;

}

rv = ipmi_sensor_set_thresholds(sensor, sdata->th, thresholds_set, sdata);

if (rv) {

printf("Error 0x%x setting thresholds for sensor %s\n",

rv, sdata->name);

goto out_err;

}

202 APPENDIX I. SAMPLE PROGRAM SHOWING EVENT SETUP

return;

out_err:

release_sdata(sdata);

}

/* Whenever the status of a sensor
hanges, the fun
tion is
alled

We display the information of the sensor if we find a new sensor */

stati
 void

sensor_
hange(enum ipmi_update_e op,

ipmi_entity_t *ent,

ipmi_sensor_t *sensor,

void *
b_data)

{

sdata_t *sdata;

int rv;

if (op == IPMI_ADDED) {

sdata = allo
_sdata(sensor);

if (!sdata) {

printf("Unable to allo
ate sensor name memory\n");

return;

}

printf("Sensor added: %s\n", sdata->name);

/* Get the
urrent reading. */

if (ipmi_sensor_get_event_reading_type(sensor)

== IPMI_EVENT_READING_TYPE_THRESHOLD)

{

use_sdata(sdata);

rv = ipmi_sensor_get_reading(sensor, got_thresh_reading, sdata);

if (rv) {

printf("ipmi_reading_get returned error 0x%x for sensor %s\n",

rv, sdata->name);

release_sdata(sdata);

}

} else {

use_sdata(sdata);

rv = ipmi_sensor_get_states(sensor, got_dis
rete_states, sdata);

if (rv) {

printf("ipmi_states_get returned error 0x%x for sensor %s\n",

rv, sdata->name);

release_sdata(sdata);

}

203

}

/* Set up events. */

sdata->state_sup = ipmi_sensor_get_event_support(sensor);

swit
h (sdata->state_sup)

{

ase IPMI_EVENT_SUPPORT_NONE:

ase IPMI_EVENT_SUPPORT_GLOBAL_ENABLE:

/* No events to set up. */

printf("Sensor %s has no event support\n", sdata->name);

goto get_thresh;

}

use_sdata(sdata);

rv = ipmi_sensor_get_event_enables(sensor, got_events, sdata);

if (rv) {

printf("ipmi_sensor_events_enable_get returned error 0x%x"

" for sensor %s\n",

rv, sdata->name);

release_sdata(sdata);

}

get_thresh:

/* Handle the threshold settings. */

if (ipmi_sensor_get_event_reading_type(sensor)

!= IPMI_EVENT_READING_TYPE_THRESHOLD)

/* Thresholds only for threshold sensors (duh) */

goto out;

sdata->thresh_sup = ipmi_sensor_get_threshold_a

ess(sensor);

swit
h (sdata->thresh_sup)

{

ase IPMI_THRESHOLD_ACCESS_SUPPORT_NONE:

printf("Sensor %s has no threshold support\n", sdata->name);

goto out;

ase IPMI_THRESHOLD_ACCESS_SUPPORT_FIXED:

printf("Sensor %s has fixed threshold support\n", sdata->name);

goto out;

}

use_sdata(sdata);

rv = ipmi_sensor_get_thresholds(sensor, got_thresholds, sdata);

if (rv) {

204 APPENDIX I. SAMPLE PROGRAM SHOWING EVENT SETUP

printf("ipmi_thresholds_get returned error 0x%x"

" for sensor %s\n",

rv, sdata->name);

release_sdata(sdata);

}

} else if (op == IPMI_DELETED) {

sdata = find_sdata(sensor);

if (!sdata) {

har name[120℄;

ipmi_sensor_get_name(sensor, name, sizeof(name));

printf("sensor %s was deleted but not found in the sensor db\n",

name);

goto out;

}

printf("sensor %s was deleted\n", sdata->name);

release_sdata(sdata);

}

out:

return;

}

/* Whenever the status of an entity
hanges, the fun
tion is
alled

When a new entity is
reated, we sear
h all sensors that belong

to the entity */

stati
 void

entity_
hange(enum ipmi_update_e op,

ipmi_domain_t *domain,

ipmi_entity_t *entity,

void *
b_data)

{

int rv;

har name[50℄;

ipmi_entity_get_name(entity, name, sizeof(name));

if (op == IPMI_ADDED) {

printf("Entity added: %s\n", name);

/* Register
allba
k so that when the status of a

sensor
hanges, sensor_
hange is
alled */

rv = ipmi_entity_add_sensor_update_handler(entity,

sensor_
hange,

NULL);

if (rv) {

printf("ipmi_entity_set_sensor_update_handler: 0x%x", rv);

205

exit(1);

}

}

}

/* After we have established
onne
tion to domain, this fun
tion get
alled

At this time, we
an do whatever things we want to do. Herr we want to

sear
h all entities in the system */

void

setup_done(ipmi_domain_t *domain,

int err,

unsigned int
onn_num,

unsigned int port_num,

int still_
onne
ted,

void *user_data)

{

int rv;

/* Register a
allba
k fun
tin entity_
hange. When a new entities

is
reated, entity_
hange is
alled */

rv = ipmi_domain_add_entity_update_handler(domain, entity_
hange, domain);

if (rv) {

printf("ipmi_domain_add_entity_update_handler return error: %d\n", rv);

return;

}

}

stati
 os_handler_t *os_hnd;

int

main(int arg
,
har *argv[℄)

{

int rv;

int
urr_arg = 1;

ipmi_args_t *args;

ipmi_
on_t *
on;

progname = argv[0℄;

/* OS handler allo
ated first. */

os_hnd = ipmi_posix_setup_os_handler();

if (!os_hnd) {

printf("ipmi_smi_setup_
on: Unable to allo
ate os handler\n");

exit(1);

}

206 APPENDIX I. SAMPLE PROGRAM SHOWING EVENT SETUP

/* Use the default log handler. */

/* Initialize the OpenIPMI library. */

ipmi_init(os_hnd);

rv = ipmi_parse_args2(&
urr_arg, arg
, argv, &args);

if (rv) {

fprintf(stderr, "Error parsing
ommand arguments, argument %d: %s\n",

urr_arg, strerror(rv));

usage();

exit(1);

}

rv = ipmi_args_setup_
on(args, os_hnd, NULL, &
on);

if (rv) {

fprintf(stderr, "ipmi_ip_setup_
on: %s", strerror(rv));

exit(1);

}

rv = ipmi_open_domain("", &
on, 1, setup_done, NULL, NULL, NULL,

NULL, 0, NULL);

if (rv) {

fprintf(stderr, "ipmi_init_domain: %s\n", strerror(rv));

exit(1);

}

/* This is the main loop of the event-driven program.

Try <CTRL-C> to exit the program */

/* Let the sele
tor
ode run the sele
t loop. */

os_hnd->operation_loop(os_hnd);

/* Te
hni
ally, we
an't get here, but this is an example. */

os_hnd->free_os_handler(os_hnd);

return 0;

}

A p p e n d i x J

Command Re
eiver Program

#in
lude <sys/types.h>

#in
lude <sys/stat.h>

#in
lude <f
ntl.h>

#in
lude <errno.h>

#in
lude <sys/sele
t.h>

#in
lude <sys/io
tl.h>

#in
lude <linux/ipmi.h>

#in
lude <stdio.h>

#define MY_NETFN 0x32

#define MY_CMD 0x01

int

main(int arg
,
har *argv)

{

int fd;

int rv;

int i;

stru
t ipmi_
mdspe

mdspe
;

unsigned
har data[IPMI_MAX_MSG_LENGTH℄;

stru
t ipmi_addr addr;

stru
t ipmi_re
v re
v;

stru
t ipmi_req req;

fd_set rset;

int
ount;

int got_one;

fd = open("/dev/ipmi0", O_RDWR);

if (fd == -1) {

fd = open("/dev/ipmidev/0", O_RDWR);

if (fd == -1) {

207

208 APPENDIX J. COMMAND RECEIVER PROGRAM

perror("open");

exit(1);

}

}

/* Register to get the
ommand */

mdspe
.netfn = MY_NETFN;

mdspe
.
md = MY_CMD;

rv = io
tl(fd, IPMICTL_REGISTER_FOR_CMD, &
mdspe
);

if (rv == -1) {

perror("io
tl register_for_
md");

exit(1);

}

ount = 0;

got_one = 0;

while (
ount || !got_one) {

/* Wait for a message. */

FD_ZERO(&rset);

FD_SET(fd, &rset);

rv = sele
t(fd+1, &rset, NULL, NULL, NULL);

if (rv == -1) {

if (errno == EINTR)

ontinue;

perror("sele
t");

exit(1);

}

/* Get the message. */

re
v.msg.data = data;

re
v.msg.data_len = sizeof(data);

re
v.addr = (unsigned
har *) &addr;

re
v.addr_len = sizeof(addr);

rv = io
tl(fd, IPMICTL_RECEIVE_MSG_TRUNC, &re
v);

if (rv == -1) {

perror("io
tl re
v_msg_trun
");

exit(1);

}

if ((re
v.re
v_type == IPMI_CMD_RECV_TYPE)

&& (re
v.msg.netfn == MY_NETFN)

&& (re
v.msg.
md == MY_CMD))

{

/* We got a
ommand, send a response. */

data[0℄ = 0; /* No error */

for (i=1; i<10; i++)

209

data[i℄ = i;

req.addr = (void *) re
v.addr;

req.addr_len = re
v.addr_len;

req.msgid = re
v.msgid;

req.msg.netfn = re
v.msg.netfn | 1; /* Make it a response */

req.msg.
md = re
v.msg.
md;

req.msg.data = data;

req.msg.data_len = 10;

rv = io
tl(fd, IPMICTL_SEND_COMMAND, &req);

if (rv == -1) {

perror("io
tl send_
md");

exit(1);

}

ount++;

got_one = 1;

}

else if ((re
v.re
v_type == IPMI_RESPONSE_RESPONSE_TYPE)

&& (re
v.msg.netfn == MY_NETFN | 1)

&& (re
v.msg.
md == MY_CMD))

{

/* We got a response to our response send, done. */

ount--;

}

else

{

printf("Got wrong msg type %d, netfn %x,
md %x\n",

re
v.re
v_type, re
v.msg.netfn, re
v.msg.
md);

}

}

/* Remove our
ommand registration. */

rv = io
tl(fd, IPMICTL_UNREGISTER_FOR_CMD, &
mdspe
);

if (rv == -1) {

perror("io
tl unregister_for_
md");

exit(1);

}

exit(0);

}

210 APPENDIX J. COMMAND RECEIVER PROGRAM

A p p e n d i x K

Conne
tion Handling Interfa
e

(ipmi
onn.h)

/*

* ipmi_
onn.h

*

* MontaVista IPMI interfa
e, definition for a low-level
onne
tion (like a

* LAN interfa
e, or system management interfa
e, et
.).

*

* Author: MontaVista Software, In
.

* Corey Minyard <minyard�mvista.
om>

* sour
e�mvista.
om

*

* Copyright 2002,2003 MontaVista Software In
.

*

* This program is free software; you
an redistribute it and/or

* modify it under the terms of the GNU Lesser General Publi
 Li
ense

* as published by the Free Software Foundation; either version 2 of

* the Li
ense, or (at your option) any later version.

*

*

* THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESS OR IMPLIED

* WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF

* MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.

* IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,

* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,

* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS

* OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND

* ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR

* TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE

* USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

211

212 APPENDIX K. CONNECTION HANDLING INTERFACE (IPMI CONN.H)

*

* You should have re
eived a
opy of the GNU Lesser General Publi

* Li
ense along with this program; if not, write to the Free

* Software Foundation, In
., 675 Mass Ave, Cambridge, MA 02139, USA.

*/

#ifndef _IPMI_CONN_H

#define _IPMI_CONN_H

#in
lude <OpenIPMI/ipmi_types.h>

#in
lude <OpenIPMI/ipmi_addr.h>

#in
lude <OpenIPMI/os_handler.h>

#ifdef __
plusplus

extern "C" {

#endif

/* Called when an IPMI response to a
ommand
omes in from the BMC. */

typedef int (*ipmi_ll_rsp_handler_t)(ipmi_
on_t *ipmi,

ipmi_msgi_t *rspi);

/* Called when an IPMI event
omes in from the BMC. Note that the

event may be NULL, meaning that an event
ame in but did not have

enough information to build a full event message. So this is just

an indi
ation that there is a new event in the event log. Note that

if an event is delivered here, it's m
id might be invalid, so that

may need to be established here. */

typedef void (*ipmi_ll_evt_handler_t)(ipmi_
on_t *ipmi,

onst ipmi_addr_t *addr,

unsigned int addr_len,

ipmi_event_t *event,

void *
b_data);

/* Called when an in
oming
ommand is re
eived by the IPMI
ode. */

typedef void (*ipmi_ll_
md_handler_t)(ipmi_
on_t *ipmi,

onst ipmi_addr_t *addr,

unsigned int addr_len,

onst ipmi_msg_t *
md,

long sequen
e,

void *
md_data,

void *data2,

void *data3);

/* Called when a low-level
onne
tion has failed or
ome up. If err

is zero, the
onne
tion has
ome up after being failed. if err is

non-zero, it's an error number to report why the failure o

urred.

213

Sin
e some
onne
tions support multiple ports into the system, this

is used to report partial failures as well as full failures.

port_num will be the port number that has failed (if err is

nonzero) or has just
ome up (if err is zero). What port_num that

means depends on the
onne
tion type. any_port_up will be true if

the system still has
onne
tivity through other ports. */

typedef void (*ipmi_ll_
on_
hanged_
b)(ipmi_
on_t *ipmi,

int err,

unsigned int port_num,

int any_port_up,

void *
b_data);

/* Used when fet
hing the IPMB address of the
onne
tion. The a
tive

parm tells if the interfa
e is a
tive or not, this
allba
k is also

used to inform the upper layer when the
onne
tion be
omes a
tive

or ina
tive. Note that there
an be one IPMB address per
hannel,

so this allows an array of IPMBs to be passed, one per
hannel.

Set the IPMB to 0 if unknown. */

typedef void (*ipmi_ll_ipmb_addr_
b)(ipmi_
on_t *ipmi,

int err,

onst unsigned
har ipmb_addr[℄,

unsigned int num_ipmb_addr,

int a
tive,

unsigned int ha
ks,

void *
b_data);

/* Used to handle knowing when the
onne
tion shutdown is
omplete. */

typedef void (*ipmi_ll_
on_
losed_
b)(ipmi_
on_t *ipmi, void *
b_data);

/* Statisti
s interfa
es. */

typedef stru
t ipmi_ll_stat_info_s ipmi_ll_stat_info_t;

typedef void (*ipmi_ll_
on_add_stat_
b)(ipmi_ll_stat_info_t *info,

void *stat,

int
ount);

typedef int (*ipmi_ll_
on_register_stat_
b)(ipmi_ll_stat_info_t *info,

onst
har *name,

onst
har *instan
e,

void **stat);

typedef void (*ipmi_ll_
on_unregister_stat_
b)(ipmi_ll_stat_info_t *info,

void *stat);

ipmi_ll_stat_info_t *ipmi_ll_
on_allo
_stat_info(void);

void ipmi_ll_
on_free_stat_info(ipmi_ll_stat_info_t *info);

void ipmi_ll_
on_stat_info_set_adder(ipmi_ll_stat_info_t *info,

ipmi_ll_
on_add_stat_
b adder);

void ipmi_ll_
on_stat_info_set_register(ipmi_ll_stat_info_t *info,

ipmi_ll_
on_register_stat_
b reg);

214 APPENDIX K. CONNECTION HANDLING INTERFACE (IPMI CONN.H)

void ipmi_ll_
on_stat_info_set_unregister(ipmi_ll_stat_info_t *info,

ipmi_ll_
on_unregister_stat_
b ureg);

void ipmi_ll_
on_stat_
all_adder(ipmi_ll_stat_info_t *info,

void *stat,

int
ount);

int ipmi_ll_
on_stat_
all_register(ipmi_ll_stat_info_t *info,

onst
har *name,

onst
har *instan
e,

void **stat);

void ipmi_ll_
on_stat_
all_unregister(ipmi_ll_stat_info_t *info,

void *stat);

void ipmi_ll_
on_stat_set_user_data(ipmi_ll_stat_info_t *info,

void *data);

void *ipmi_ll_
on_stat_get_user_data(ipmi_ll_stat_info_t *info);

/* Set this bit in the ha
ks if, even though the
onne
tion is to a

devi
e not at 0x20, the first part of a LAN
ommand should always

use 0x20. */

#define IPMI_CONN_HACK_20_AS_MAIN_ADDR 0x00000001

/* Some systems (in
orre
tly, a

ording to the spe
) use only the

bottom 4 bits or ROLE(m) for authenti
ation in the RAKP3 message.

The spe
 says to use all 8 bits, but enabling this ha
k makes

OpenIPMI only use the bottom 4 bits. */

#define IPMI_CONN_HACK_RAKP3_WRONG_ROLEM 0x00000002

/* The spe
 is vague (perhaps wrong), but the default for RMCP+ seems

to be to use K(1) as the integrity key. That is thus the default

of OpenIPMI, but this ha
k lets you use SIK as it says in one part

of the spe
. */

#define IPMI_CONN_HACK_RMCPP_INTEG_SIK 0x00000004

/*

* Used to pass spe
ial options for sending messages.

*/

typedef stru
t ipmi_
on_option_s

{

int option;

union {

long ival;

void *pval;

};

} ipmi_
on_option_t;

/* Used to mark the end of the option list. Must always be the last

option. */

215

#define IPMI_CON_OPTION_LIST_END 0

/* Enable/disable authenti
ation on the message (set by ival).

Default is enabled. */

#define IPMI_CON_MSG_OPTION_AUTH 1

/* Enable/disable
onfidentiality (en
ryption) on the message (set by

ival). Default is enabled. */

#define IPMI_CON_MSG_OPTION_CONF 2

/* The
ommand has side effe
ts. Handle this
ommand

spe
ially to avoid side effe
ts. Primarily used for reserve

ommands, where on a slow link a
ommand may be retransmitted

but the previous response is re
eived. If not implemented,

this is ignored.*/

#define IPMI_CON_MSG_OPTION_SIDE_EFFECTS 3

/* The data stru
ture representing a
onne
tion. The low-level handler

fills this out then
alls ipmi_init_
on() with the
onne
tion. */

stru
t ipmi_
on_s

{

/* If this is zero, the domain handling
ode will not attempt to

s
an the system interfa
e address of the
onne
tion. If 1, it

will. Generally, if the system interfa
e will respond on a

IPMB address, you should set this to zero. If it does not

respond on an IPMB, you should set this to one if it is a

management
ontroller. */

int s
an_sysaddr;

/* The low-level handler should provide one of these for doing os-type

things (lo
ks, random numbers, et
.) */

os_handler_t *os_hnd;

/* This data
an be fet
hed by the user and used for anything they

like. */

void *user_data;

/* Conne
tion-spe
ifi
 data for the underlying
onne
tion. */

void *
on_data;

/* If OEM
ode want to atta
h some data, it
an to it here. */

void *oem_data;

void (*oem_data_
leanup)(ipmi_
on_t *ipmi);

/* This allows the
onne
tion to tell the upper layer that broad
asting

216 APPENDIX K. CONNECTION HANDLING INTERFACE (IPMI CONN.H)

will not work on this interfa
e. */

int broad
ast_broken;

/* Calls for the interfa
e. These should all return standard

"errno" errors if they fail. */

/* Start pro
essing on a
onne
tion. Note that the handler *must*

be
alled with the global read lo
k not held, be
ause the

handler must write lo
k the global lo
k in order to add the MC

to the global list. This will report su

ess/failure with the

on_
hanged_handler, so set that up first. */

int (*start_
on)(ipmi_
on_t *ipmi);

/* Add a
allba
k to
all when the
onne
tion goes down or up. */

int (*add_
on_
hange_handler)(ipmi_
on_t *ipmi,

ipmi_ll_
on_
hanged_
b handler,

void *
b_data);

int (*remove_
on_
hange_handler)(ipmi_
on_t *ipmi,

ipmi_ll_
on_
hanged_
b handler,

void *
b_data);

/* If OEM
ode dis
overs that an IPMB address has
hanged, it
an

use this to
hange it. The ha
ks are the same as the ones in

the IPMB address handler. */

void (*set_ipmb_addr)(ipmi_
on_t *ipmi,

onst unsigned
har ipmb_addr[℄,

unsigned int num_ipmb_addr,

int a
tive,

unsigned int ha
ks);

/* Add a handler that will be
alled when the IPMB address
hanges. */

int (*add_ipmb_addr_handler)(ipmi_
on_t *ipmi,

ipmi_ll_ipmb_addr_
b handler,

void *
b_data);

int (*remove_ipmb_addr_handler)(ipmi_
on_t *ipmi,

ipmi_ll_ipmb_addr_
b handler,

void *
b_data);

/* This
all gets the IPMB address of the
onne
tion. It may be

NULL if the
onne
tion does not support this. This
all may be

set or overridden by the OEM
ode. This is primarily for use

by the
onne
tion
ode itself, the OEM
ode for the BMC

onne
ted to should set this. If it is not set, the IPMB

address is assumed to be 0x20. This *should* send a message to

the devi
e, be
ause
onne
tion
ode will assume that and use it

to
he
k for devi
e fun
tion. This should also
he
k if the

217

devi
e is a
tive. If this is non-null, it will be
alled

periodi
ally. */

int (*get_ipmb_addr)(ipmi_
on_t *ipmi,

ipmi_ll_ipmb_addr_
b handler,

void *
b_data);

/* Change the state of the
onne
tion to be a
tive or ina
tive.

This may be NULL if the
onne
tion does not support this. The

interfa
e
ode may set this, the OEM
ode should override this

if ne
essary. */

int (*set_a
tive_state)(ipmi_
on_t *ipmi,

int is_a
tive,

ipmi_ll_ipmb_addr_
b handler,

void *
b_data);

/* Send an IPMI
ommand (in "msg" on the "ipmi"
onne
tion to the

given "addr". When the response
omes in or the message times

out, rsp_handler will be
alled with the following four data

items. Note that the lower layer MUST guarantee that the

reponse handler is
alled, even if it fails or the message is

dropped. */

int (*send_
ommand)(ipmi_
on_t *ipmi,

onst ipmi_addr_t *addr,

unsigned int addr_len,

onst ipmi_msg_t *msg,

ipmi_ll_rsp_handler_t rsp_handler,

ipmi_msgi_t *rspi);

/* Register to re
eive IPMI events from the interfa
e. */

int (*add_event_handler)(ipmi_
on_t *ipmi,

ipmi_ll_evt_handler_t handler,

void *
b_data);

/* Remove an event handler. */

int (*remove_event_handler)(ipmi_
on_t *ipmi,

ipmi_ll_evt_handler_t handler,

void *
b_data);

/* Send a response message. This is not supported on all

interfa
es, primarily only on system management interfa
es. If

not supported, this should return ENOSYS. */

int (*send_response)(ipmi_
on_t *ipmi,

onst ipmi_addr_t *addr,

unsigned int addr_len,

onst ipmi_msg_t *msg,

long sequen
e);

218 APPENDIX K. CONNECTION HANDLING INTERFACE (IPMI CONN.H)

/* Register to re
eive in
oming
ommands. This is not supported

on all interfa
es, primarily only on system management

interfa
es. If not supported, this should return ENOSYS. */

int (*register_for_
ommand)(ipmi_
on_t *ipmi,

unsigned
har netfn,

unsigned
har
md,

ipmi_ll_
md_handler_t handler,

void *
md_data,

void *data2,

void *data3);

/* Deregister a
ommand registration. This is not supported on

all interfa
es, primarily only on system management interfa
es.

If not supported, this should return ENOSYS. */

int (*deregister_for_
ommand)(ipmi_
on_t *ipmi,

unsigned
har netfn,

unsigned
har
md);

/* Close an IPMI
onne
tion. */

int (*
lose_
onne
tion)(ipmi_
on_t *ipmi);

/* This is set by OEM
ode to handle
ertain
onditions when a

send message fails. It is
urrently only used by the IPMI LAN

ode, if a send messages response is an error, this will be

alled first. If this fun
tion returns true, then the IPMI LAN

ode will not do anything with the message. */

int (*handle_send_rsp_err)(ipmi_
on_t *
on, ipmi_msg_t *msg);

/* Name the
onne
tion
ode
an use for logging and instan
e names

for statisti
s. Must be dynami
ally allo
ated with

ipmi_mem_allo
(). The
onne
tion
ode will free this. May be

NULL. */

har *name;

/* The
onne
tion
ode may put a string here to identify

itself. */

har *
on_type;

/* The privilege level of the
onne
tion */

unsigned int priv_level;

/* Close an IPMI
onne
tion and report that it is
losed. */

int (*
lose_
onne
tion_done)(ipmi_
on_t *ipmi,

ipmi_ll_
on_
losed_
b handler,

void *
b_data);

219

/* Ha
ks reported by OEM
ode. This should be set by the lower

layer or by the user interfa
e
ode. */

unsigned int ha
ks;

/* The IPMB address as reported by the lower layer. */

unsigned
har ipmb_addr[MAX_IPMI_USED_CHANNELS℄;

/* Handle an asyn
 event for the
onne
tion reported by something

else. */

void (*handle_asyn
event)(ipmi
on_t *
on,

onst ipmi_addr_t *addr,

unsigned int addr_len,

onst ipmi_msg_t *msg);

/* Used by the
onne
tion attribute
ode. Don't do anything with

this yourself!. The thing that
reates this
onne
tion should

all ipmi_
on_attr_init() when the
onne
tion is
reated and

ipmi_
on_attr_
leanup() when the
onne
tion is destroyed. */

void *attr;

/* Old statisti
s interfa
es. Do not use these, they don't work

any more. */

int (*register_stat)(void *user_data,
har *name,

har *instan
e, void **stat);

void (*add_stat)(void *user_data, void *stat, int value);

void (*finished_with_stat)(void *user_data, void *stat);

/* Return the arguments or the
onne
tion. */

ipmi_args_t *(*get_startup_args)(ipmi_
on_t *
on);

/* In
rement the use
ount of the
onne
tion; for ea
h use, the

onne
tion must be
losed. This may be NULL if the
onne
tion

type does not support being reused. */

void (*use_
onne
tion)(ipmi_
on_t *
on);

/* Like send_
ommand, but with options. options may be NULL if

none. If options are passed in, they must be terminated with

the proper option. This field may be NULL if the
onne
tion

does not support options. */

int (*send_
ommand_option)(ipmi_
on_t *ipmi,

onst ipmi_addr_t *addr,

unsigned int addr_len,

onst ipmi_msg_t *msg,

onst ipmi_
on_option_t *options,

ipmi_ll_rsp_handler_t rsp_handler,

220 APPENDIX K. CONNECTION HANDLING INTERFACE (IPMI CONN.H)

ipmi_msgi_t *rspi);

/* Returns the number of ports on the
onne
tion (one more than

the max_port that
an be reported by ipmi_ll_
on_
hanged_
b().

If NULL, assume 1. */

unsigned int (*get_num_ports)(ipmi_
on_t *ipmi);

/* New statisti
s interfa
e. */

int (*register_stat_handler)(ipmi_
on_t *ipmi,

ipmi_ll_stat_info_t *info);

int (*unregister_stat_handler)(ipmi_
on_t *ipmi,

ipmi_ll_stat_info_t *info);

/* Get a string about the port. This may be NULL, and the format

varies with the parti
ular interfa
e. The length if the "info"

string is passed in info_len, the number of
hara
ters that

would have been used is returned in info_len, even if it was

not long enough to hold it. */

int (*get_port_info)(ipmi_
on_t *ipmi, unsigned int port,

har *info, int *info_len);

};

#define IPMI_CONN_NAME(
) (
->name ?
->name : "")

/* Initialization
ode for the initialization the
onne
tion
ode. */

int _ipmi_
onn_init(os_handler_t *os_hnd);

void _ipmi_
onn_shutdown(void);

/* Address types for external addresses. */

#define IPMI_EXTERN_ADDR_IP 1

/* Handle a trap from an external SNMP sour
e. It returns 1 if the

event was handled an zero if it was not. */

int ipmi_handle_snmp_trap_data(
onst void *sr
_addr,

unsigned int sr
_addr_len,

int sr
_addr_type,

long spe
ifi
,

onst unsigned
har *data,

unsigned int data_len);

/* These
alls deal with OEM-type handlers for
onne
tions. Certain

onne
tions
an be dete
ted with spe
ial means (beyond just the

manufa
turer and produ
t id) and this allows handlers for these

types of
onne
tions to be registered. At the very initial

onne
tion of every
onne
tion, the handler will be
alled and it

221

must dete
t whether this is the spe
ifi
 type of
onne
tion or not,

do any setup for that
onne
tion type, and then
all the done

routine passed in. Note that the done routine may be
alled later,

(allowing this handler to send messages and the like) but it *must*

be
alled. Note that this has no
an
ellation handler. It relies

on the lower levels returning responses for all the
ommands with

NULL
onne
tions. */

typedef void (*ipmi_
onn_oem_
he
k_done)(ipmi_
on_t *
onn,

void *
b_data);

typedef int (*ipmi_
onn_oem_
he
k)(ipmi_
on_t *
onn,

void *
he
k_
b_data,

ipmi_
onn_oem_
he
k_done done,

void *done_
b_data);

int ipmi_register_
onn_oem_
he
k(ipmi_
onn_oem_
he
k
he
k,

void *
b_data);

int ipmi_deregister_
onn_oem_
he
k(ipmi_
onn_oem_
he
k
he
k,

void *
b_data);

/* Should be
alled by the
onne
tion
ode for any new
onne
tion. */

int ipmi_
onn_
he
k_oem_handlers(ipmi_
on_t *
onn,

ipmi_
onn_oem_
he
k_done done,

void *
b_data);

/* Generi
 message handling */

void ipmi_handle_rsp_item(ipmi_
on_t *ipmi,

ipmi_msgi_t *rspi,

ipmi_ll_rsp_handler_t rsp_handler);

void ipmi_handle_rsp_item_
opymsg(ipmi_
on_t *ipmi,

ipmi_msgi_t *rspi,

onst ipmi_msg_t *msg,

ipmi_ll_rsp_handler_t rsp_handler);

void ipmi_handle_rsp_item_
opyall(ipmi_
on_t *ipmi,

ipmi_msgi_t *rspi,

onst ipmi_addr_t *addr,

unsigned int addr_len,

onst ipmi_msg_t *msg,

ipmi_ll_rsp_handler_t rsp_handler);

/* You should use these for allo
ating and freeing mesage items. Note

that if you set item->msg.data to a non-NULL value that is not

item->data, the system will free it with ipmi_free_msg_item_data().

So you should allo
ate it with ipmi_allo
_msg_item_data9). */

ipmi_msgi_t *ipmi_allo
_msg_item(void);

void ipmi_free_msg_item(ipmi_msgi_t *item);

void *ipmi_allo
_msg_item_data(unsigned int size);

222 APPENDIX K. CONNECTION HANDLING INTERFACE (IPMI CONN.H)

void ipmi_free_msg_item_data(void *data);

/* Move the data from the old message item to the new one, NULL-ing

out the old item's data. This will free the new_item's original

data if ne
essary. This will *not*
opy the data items, just the

address and message. */

void ipmi_move_msg_item(ipmi_msgi_t *new_item, ipmi_msgi_t *old_item);

/*

* Conne
tion attributes. These are named items that
ode may
reate

* to atta
h a void data item to a
onne
tion by name. It
an then

* look up the data item by name. Note that you
an
all

* ipmi_
on_register_attribute multiple times. The first time will

*
reate the item, the rest of the times will return the existing

* item.

*

* When the
onne
tion is destroyed, the destroy fun
tion will be

*
alled on the attribute so the memory (or anything else)
an be

*
leaned up.

*

* This is espe
ially for use by RMCP+ payloads so they may atta
h

* data to the
onne
tion they are asso
iated with.

*/

typedef stru
t ipmi_
on_attr_s ipmi_
on_attr_t;

/* Attr init fun
tion. Return the data item in the data field. Returns

an error value. Will only be
alled on
e for the attribute. */

typedef int (*ipmi_
on_attr_init_
b)(ipmi_
on_t *
on, void *
b_data,

void **data);

/* Called when the attribute is destroyed. Note that this may happen

after
onne
tion destru
tion, so the
onne
tion may not exist any

more. */

typedef void (*ipmi_
on_attr_kill_
b)(void *
b_data, void *data);

int ipmi_
on_register_attribute(ipmi_
on_t *
on,

har *name,

ipmi_
on_attr_init_
b init,

ipmi_
on_attr_kill_
b destroy,

void *
b_data,

ipmi_
on_attr_t **attr);

int ipmi_
on_find_attribute(ipmi_
on_t *
on,

har *name,

ipmi_
on_attr_t **attr);

void *ipmi_
on_attr_get_data(ipmi_
on_attr_t *attr);

/* You must
all the put operation of every attribute returned by

register or find. */

223

void ipmi_
on_attr_put(ipmi_
on_attr_t *attr);

int ipmi_
on_attr_init(ipmi_
on_t *
on);

void ipmi_
on_attr_
leanup(ipmi_
on_t *
on);

#ifdef __
plusplus

}

#endif

#endif /* _IPMI_CONN_H */

224 APPENDIX K. CONNECTION HANDLING INTERFACE (IPMI CONN.H)

A p p e n d i x L

OS Handler Interfa
e (os handler.h)

/*

* os_handler.h

*

* MontaVista IPMI os handler interfa
e.

*

* Author: MontaVista Software, In
.

* Corey Minyard <minyard�mvista.
om>

* sour
e�mvista.
om

*

* Copyright 2002,2003,2004,2005 MontaVista Software In
.

*

* This software is available to you under a
hoi
e of one of two

* li
enses. You may
hoose to be li
ensed under the terms of the GNU

* Lesser General Publi
 Li
ense (GPL) Version 2 or the modified BSD

* li
ense below. The following dis
lamer applies to both li
enses:

*

* THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESS OR IMPLIED

* WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF

* MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.

* IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,

* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,

* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS

* OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND

* ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR

* TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE

* USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

*

* GNU Lesser General Publi
 Li
en
e

*

* This program is free software; you
an redistribute it and/or

* modify it under the terms of the GNU Lesser General Publi
 Li
ense

225

226 APPENDIX L. OS HANDLER INTERFACE (OS HANDLER.H)

* as published by the Free Software Foundation; either version 2 of

* the Li
ense, or (at your option) any later version.

*

* You should have re
eived a
opy of the GNU Lesser General Publi

* Li
ense along with this program; if not, write to the Free

* Software Foundation, In
., 675 Mass Ave, Cambridge, MA 02139, USA.

*

* Modified BSD Li
en
e

*

* Redistribution and use in sour
e and binary forms, with or without

* modifi
ation, are permitted provided that the following
onditions

* are met:

*

* 1. Redistributions of sour
e
ode must retain the above
opyright

* noti
e, this list of
onditions and the following dis
laimer.

* 2. Redistributions in binary form must reprodu
e the above

*
opyright noti
e, this list of
onditions and the following

* dis
laimer in the do
umentation and/or other materials provided

* with the distribution.

* 3. The name of the author may not be used to endorse or promote

* produ
ts derived from this software without spe
ifi
 prior

* written permission.

*/

#ifndef __OS_HANDLER_H

#define __OS_HANDLER_H

#in
lude <stdarg.h>

#in
lude <sys/time.h>

#in
lude <OpenIPMI/ipmi_log.h>

/**

* WARNINGWARNINGWARNINGWARNINGWARNINGWARNINGWARNINGWARNINGWARNINGWARNING

*

* In order to make this data stru
ture extensible, you should never

* de
lare a stati
 version of the OS handler. You should *always*

* allo
ate it with the allo
ation routine at the end of this file,

* and free it with the free routine found there. That way, if new

* items are added to the end of this data stru
ture, you are ok. You

* have been warned! Note that if you use the standard OS handlers,

* then you are ok.

*

**/

#ifdef __
plusplus

extern "C" {

227

#endif

/* An os-independent normal lo
k. */

typedef stru
t os_hnd_lo
k_s os_hnd_lo
k_t;

/* An os-independent read/write lo
k. */

typedef stru
t os_hnd_rwlo
k_s os_hnd_rwlo
k_t;

/* An os-independent
ondition variable. */

typedef stru
t os_hnd_
ond_s os_hnd_
ond_t;

/* An os-independent file des
riptor holder. */

typedef stru
t os_hnd_fd_id_s os_hnd_fd_id_t;

/* An os-independent timer. */

typedef stru
t os_hnd_timer_id_s os_hnd_timer_id_t;

/* This is a stru
ture that defined the os-dependent stuff required by

threaded
ode. In general, return values of these should be zero

on su

ess, or an errno value on failure. The errno values will be

propigated ba
k up to the
ommands that
aused these to be
alled,

if possible. */

typedef void (*os_data_ready_t)(int fd, void *
b_data, os_hnd_fd_id_t *id);

typedef void (*os_timed_out_t)(void *
b_data, os_hnd_timer_id_t *id);

/* This
an be registered with add_fd_to_wait_for, it will be
alled

if the fd handler is freed or repla
ed. This
an be used to avoid

free ra
e
onditions, handlers may be in
allba
ks when you remove

an fd to wait for, this will be
alled when all handlers are

done. */

typedef void (*os_fd_data_freed_t)(int fd, void *data);

/* This
an be registered with free_timer, it will be
alled if the

time free a
tually o

urs. This
an be used to avoid free ra
e

onditions, handlers may be in
allba
ks when you free the timer,

this will be
alled when all handlers are done. */

typedef void (*os_timer_freed_t)(void *data);

typedef stru
t os_handler_s os_handler_t;

/* A fun
tion to output logs, used to override the default fun
tions. */

typedef void (*os_vlog_t)(os_handler_t *handler,

onst
har *format,

enum ipmi_log_type_e log_type,

va_list ap);

228 APPENDIX L. OS HANDLER INTERFACE (OS HANDLER.H)

stru
t os_handler_s

{

/* Allo
ate and free data, like mallo
() and free(). These are

only used in the "main" os handler, too, not in the oned

registered for domains. */

void *(*mem_allo
)(int size);

void (*mem_free)(void *data);

/* This is
alled by the user
ode to register a
allba
k handler

to be
alled when data is ready to be read on the given file

des
riptor. I know, it's kind of wierd, a
allba
k to register

a
allba
k, but it's the best way I
ould think of to do this.

This
all will return an id that
an then be used to
an
el

the wait. The
alled
ode should register that whenever data

is ready to be read from the given file des
riptor, data_ready

should be
alled with the given
b_data. If this is NULL, you

may only
all the
ommands ending in "_wait", the event-driven

ode will return errors. You also may not re
eive
ommands or

events. Note that these
alls may NOT blo
k. */

int (*add_fd_to_wait_for)(os_handler_t *handler,

int fd,

os_data_ready_t data_ready,

void *
b_data,

os_fd_data_freed_t freed,

os_hnd_fd_id_t **id);

int (*remove_fd_to_wait_for)(os_handler_t *handler,

os_hnd_fd_id_t *id);

/* Create a timer. This will allo
ate all the data required for

the timer, so no other timer operations should fail due to la
k

of memory. */

int (*allo
_timer)(os_handler_t *handler,

os_hnd_timer_id_t **id);

/* Free the memory for the given timer. If the timer is running,

stop it first. */

int (*free_timer)(os_handler_t *handler,

os_hnd_timer_id_t *id);

/* This is
alled to register a
allba
k handler to be
alled at

the given time or after (absolute time, as seen by

gettimeofday). After the given time has passed, the

"timed_out" will be
alled with the given
b_data. The

identifier in "id" just be one previously allo
ated with

allo
_timer(). Note that timed_out may NOT blo
k. */

int (*start_timer)(os_handler_t *handler,

os_hnd_timer_id_t *id,

stru
t timeval *timeout,

229

os_timed_out_t timed_out,

void *
b_data);

/* Can
el the given timer. If the timer has already been
alled

(or is in the pro
ess of being
alled) this should return

ESRCH, and it may not return ESRCH for any other reason. In

other words, if ESRCH is returned, the timer is valid and the

timeout handler has or will be
alled. */

int (*stop_timer)(os_handler_t *handler,

os_hnd_timer_id_t *id);

/* Used to implement lo
king primitives for multi-threaded a

ess.

If these are NULL, then the
ode will assume that the system is

single-threaded and doesn't need lo
king. Note that these no

longer have to be re
ursive lo
ks, they may be normal

non-re
ursive lo
ks. */

int (*
reate_lo
k)(os_handler_t *handler,

os_hnd_lo
k_t **id);

int (*destroy_lo
k)(os_handler_t *handler,

os_hnd_lo
k_t *id);

int (*lo
k)(os_handler_t *handler,

os_hnd_lo
k_t *id);

int (*unlo
k)(os_handler_t *handler,

os_hnd_lo
k_t *id);

/* Return "len" bytes of random data into "data". */

int (*get_random)(os_handler_t *handler,

void *data,

unsigned int len);

/* Log reports some through here. They will not end in newlines.

See the log types defined in ipmiif.h for more information on

handling these. */

void (*log)(os_handler_t *handler,

enum ipmi_log_type_e log_type,

onst
har *format,

...);

void (*vlog)(os_handler_t *handler,

enum ipmi_log_type_e log_type,

onst
har *format,

va_list ap);

/* The user may use this for whatever they like. */

void *user_data;

/* The rest of these are not used by OpenIPMI proper, but are here

230 APPENDIX L. OS HANDLER INTERFACE (OS HANDLER.H)

for upper layers if they need them. If your upper layer

doesn't use theses, you don't have to provide them. */

/* Condition variables, like in POSIX Threads. */

int (*
reate_
ond)(os_handler_t *handler,

os_hnd_
ond_t **
ond);

int (*destroy_
ond)(os_handler_t *handler,

os_hnd_
ond_t *
ond);

int (*
ond_wait)(os_handler_t *handler,

os_hnd_
ond_t *
ond,

os_hnd_lo
k_t *lo
k);

/* The timeout here is relative, not absolute. */

int (*
ond_timedwait)(os_handler_t *handler,

os_hnd_
ond_t *
ond,

os_hnd_lo
k_t *lo
k,

stru
t timeval *timeout);

int (*
ond_wake)(os_handler_t *handler,

os_hnd_
ond_t *
ond);

int (*
ond_broad
ast)(os_handler_t *handler,

os_hnd_
ond_t *
ond);

/* Thread management */

int (*
reate_thread)(os_handler_t *handler,

int priority,

void (*startup)(void *data),

void *data);

/* Terminate the running thread. */

int (*thread_exit)(os_handler_t *handler);

/* Should *NOT* be used by the user, this is for the OS handler's

internal use. */

void *internal_data;

/***/

/* These are basi
 fun
tion on the OS handler that are here for

onvenien
e to the user. These are not used by OpenIPMI

proper. Depending on the spe
ifi
 OS handler, these may or may

not be implemented. If you are not sure,
he
k for NULL. */

/* Free the OS handler passed in. After this
all, the OS handler

may not be used any more. May sure that nothing is using it

before this is
alled. */

void (*free_os_handler)(os_handler_t *handler);

/* Wait up to the amount of time spe
ified in timeout (relative

231

time) to perform one operation (a timeout, file operation,

et
.) then return. This return a standard errno. If timeout

is NULL, then this will wait forever. */

int (*perform_one_op)(os_handler_t *handler,

stru
t timeval *timeout);

/* Loop
ontinuously handling operations. This fun
tion does not

return. */

void (*operation_loop)(os_handler_t *handler);

/* The following are no longer implemented be
ause they are

ra
e-prone, unneeded, and/or diffi
ult to implement. You may

safely set these to NULL, but they are here for ba
kwards

ompatability with old os handlers. */

int (*is_lo
ked)(os_handler_t *handler,

os_hnd_lo
k_t *id);

int (*
reate_rwlo
k)(os_handler_t *handler,

os_hnd_rwlo
k_t **id);

int (*destroy_rwlo
k)(os_handler_t *handler,

os_hnd_rwlo
k_t *id);

int (*read_lo
k)(os_handler_t *handler,

os_hnd_rwlo
k_t *id);

int (*read_unlo
k)(os_handler_t *handler,

os_hnd_rwlo
k_t *id);

int (*write_lo
k)(os_handler_t *handler,

os_hnd_rwlo
k_t *id);

int (*write_unlo
k)(os_handler_t *handler,

os_hnd_rwlo
k_t *id);

int (*is_readlo
ked)(os_handler_t *handler,

os_hnd_rwlo
k_t *id);

int (*is_writelo
ked)(os_handler_t *handler,

os_hnd_rwlo
k_t *id);

/* Database storage and retrieval routines. These are used by

things in OpenIPMI to speed up various operations by
a
hing

data lo
ally instead of going to the a
tual system to get them.

The key is a arbitrary length
hara
ter string. The find

routine returns an error on failure. Otherwise, if it
an

fet
h the data without delay, it allo
ates a blo
k of data and

returns it in data (with the length in data_len) and sets

fet
h_
ompleted to true. Otherwise, if it
annot fet
h the

data without delay, it will set fet
h_
ompleted to false and

start the database operation,
alling got_data() when it is

done.

232 APPENDIX L. OS HANDLER INTERFACE (OS HANDLER.H)

The data returned should be freed by database_free. Note that

these routines are optional and do not need to be here, they

simply speed up operation when working
orre
tly. Also, if

these routines fail for some reason it is not fatal to the

operation of OpenIPMI. It is not a big deal. */

int (*database_store)(os_handler_t *handler,

har *key,

unsigned
har *data,

unsigned int data_len);

int (*database_find)(os_handler_t *handler,

har *key,

unsigned int *fet
h_
ompleted,

unsigned
har **data,

unsigned int *data_len,

void (*got_data)(void *
b_data,

int err,

unsigned
har *data,

unsigned int data_len),

void *
b_data);

void (*database_free)(os_handler_t *handler,

unsigned
har *data);

/* Sets the filename to use for the database to the one spe
ified.

The meaning is system-dependent. On *nix systems it defaults

to $HOME/.OpenIPMI_db. This is for use by the user, OpenIPMI

proper does not use this. */

int (*database_set_filename)(os_handler_t *handler,

har *name);

/* Set the fun
tion to send logs to. */

void (*set_log_handler)(os_handler_t *handler,

os_vlog_t log_handler);

/* For fd handlers, allow write and ex
ept handling to be done,

and allow any of the I/O types to be enabled and disabled. */

void (*set_fd_handlers)(os_handler_t *handler, os_hnd_fd_id_t *id,

os_data_ready_t write_ready,

os_data_ready_t ex
ept_ready);

int (*set_fd_enables)(os_handler_t *handler, os_hnd_fd_id_t *id,

int read, int write, int ex
ept);

int (*get_monotoni
_time)(os_handler_t *handler, stru
t timeval *tv);

int (*get_real_time)(os_handler_t *handler, stru
t timeval *tv);

};

/* Only use these to allo
ate/free OS handlers. */

os_handler_t *ipmi_allo
_os_handler(void);

233

void ipmi_free_os_handler(os_handler_t *handler);

/**

*

* Tools to use OS handlers to wait.

*

* Well, you shouldn't have to wait for OpenIPMI to do things, you

* should use
allba
ks and event-drive your programs. However, it's

* not always that simple. Broken APIs that require blo
king exist,

* and it makes things ugly.

*

* The tools below help you with this. They provide a way with an OS

* handler to do blo
king operations more easily. They handle all the

* nastiness of threading, single-threaded, and whatnot.

*

* To use this, allo
ate a waiter fa
tory. Then when you need to

* wait, allo
ate a waiter from the fa
tory. It is allo
ated with a

* use
ount of 1. For every operation you start, "use" the waiter.

* When you are done starting operations, do one "release" of the

* waiter and then wait on the waiter. When operations
omplete, they

* "release" the waiter. When the last operation is done the wait

* operation will return. Then free the waiter. You
annot reuse

* waiters, you must allo
ate new ones.

*

* This interfa
e has three basi
 modes. If you have a

* single-threaded OS handler (no threads support in the handler) then

* you must set num_threads = 0 and it runs single-threaded. The
ode

* will run an event loop while waiting for the operations to
omplete.

*

* If you have multiple thread support in the OS handler and set

* num_threads > 0, it will allo
ate num_threads event loop threads.

* The event loop will not be run from the waiting thread (there are

* ra
e
onditions with this) but
ondition variable are used to wake

* the waiting thread.

*

* If you have multiple thread support in the OS handler and set

* num_threads = 0, things are more
omplex. This allows a

* single-threaded appli
ation, but permits a multi-threaded

* appli
ation. Another thread is allo
ated to run the event loop.

* It will *only* run when a thread is waiting. Thus it preserved

* single-threaded operation for single-threaded programs, but does

* not have ra
es in multi-threaded programs.

*

* Be
areful using the timeout. You want to be *sure* that you don't

* free the waiter before anything else that might wake up and release

* it.

234 APPENDIX L. OS HANDLER INTERFACE (OS HANDLER.H)

*

***/

typedef stru
t os_handler_waiter_fa
tory_s os_handler_waiter_fa
tory_t;

typedef stru
t os_handler_waiter_s os_handler_waiter_t;

/* Allo
ate a fa
tory to get waiters from. This is the thing that

owns the event loop threads (if you have them). The event loop

threads are allo
ated with thread_priority. */

int os_handler_allo
_waiter_fa
tory(os_handler_t *os_hnd,

unsigned int num_threads,

int thread_priority,

os_handler_waiter_fa
tory_t **fa
tory);

/* Free a waiter fa
tory. This will fail with EAGAIN if there are any

waiters allo
ated from it that have not been freed. */

int os_handler_free_waiter_fa
tory(os_handler_waiter_fa
tory_t *fa
tory);

/* Allo
ate a waiter from the fa
tory. Returns NULL on failure. It is

allo
ated with a use
ount of 1. */

os_handler_waiter_t *os_handler_allo
_waiter

(os_handler_waiter_fa
tory_t *fa
tory);

/* Free a waiter. It
annot be waiting or an error is returned (EAGAIN). */

int os_handler_free_waiter(os_handler_waiter_t *waiter);

/* In
rement the use
ount of the waiter. */

void os_handler_waiter_use(os_handler_waiter_t *waiter);

/* De
rement the use
ount of the waiter. When the use
ount rea
hes

zero the waiter will return. */

void os_handler_waiter_release(os_handler_waiter_t *waiter);

/* Wait for the waiter's use
ount to rea
h zero. If timeout is

non-NULL, it will wait up to that amount of time. */

int os_handler_waiter_wait(os_handler_waiter_t *waiter,

stru
t timeval *timeout);

#ifdef __
plusplus

}

#endif

#endif /* __OS_HANDLER_H */

Bibliography

[1℄ Distributed Management Task Fork (DMTF). Alert Standard Format Spe
i�
ation.

[2℄ Intel, Hewlett-Pa
kard, NEC, Dell. IPMI { Intelligent Platform Management Interfa
e Spe
i�
ation.

[3℄ ipmitool. http://ipmitool.sour
eforge.net.

[4℄ Netsnmp. http://www.netsnmp.org.

235

236 BIBLIOGRAPHY

