62                 int firstContactConstraintOffset=dindex;
    73                                 if (numFrictionPerContact==2)
   160         int n = numConstraintRows;
   163                 m_b.resize(numConstraintRows);
   167                 for (
int i=0;i<numConstraintRows ;i++)
   175                                 m_bSplit[i] = rhsPenetration/jacDiag;
   184         m_lo.resize(numConstraintRows);
   185         m_hi.resize(numConstraintRows);
   190                 for (
int i=0;i<numConstraintRows;i++)
   211                 bodyJointNodeArray.
resize(numBodies,-1);
   228                 JinvM3.resize(2*m,8);
   260                                         slotA =jointNodeArray.
size();
   262                                         int prevSlot = bodyJointNodeArray[sbA];
   263                                         bodyJointNodeArray[sbA] = slotA;
   264                                         jointNodeArray[slotA].nextJointNodeIndex = prevSlot;
   265                                         jointNodeArray[slotA].jointIndex = c;
   266                                         jointNodeArray[slotA].constraintRowIndex = i;
   267                                         jointNodeArray[slotA].otherBodyIndex = orgBodyB ? sbB : -1;
   269                                 for (
int row=0;row<numRows;row++,cur++)
   274                                         for (
int r=0;r<3;r++)
   278                                                 JinvM3.setElem(cur,r,normalInvMass[r]);
   279                                                 JinvM3.setElem(cur,r+4,relPosCrossNormalInvInertia[r]);
   282                                         JinvM3.setElem(cur,3,0);
   284                                         JinvM3.setElem(cur,7,0);
   296                                         slotB =jointNodeArray.
size();
   298                                         int prevSlot = bodyJointNodeArray[sbB];
   299                                         bodyJointNodeArray[sbB] = slotB;
   300                                         jointNodeArray[slotB].nextJointNodeIndex = prevSlot;
   301                                         jointNodeArray[slotB].jointIndex = c;
   302                                         jointNodeArray[slotB].otherBodyIndex = orgBodyA ? sbA : -1;
   303                                         jointNodeArray[slotB].constraintRowIndex = i;
   306                                 for (
int row=0;row<numRows;row++,cur++)
   311                                         for (
int r=0;r<3;r++)
   315                                                 JinvM3.setElem(cur,r,normalInvMassB[r]);
   316                                                 JinvM3.setElem(cur,r+4,relPosInvInertiaB[r]);
   319                                         JinvM3.setElem(cur,3,0);
   321                                         JinvM3.setElem(cur,7,0);
   336         const btScalar* JinvM = JinvM3.getBufferPointer();
   338         const btScalar* Jptr = J3.getBufferPointer();
   362                         const btScalar *JinvMrow = JinvM + 2*8*(size_t)row__;
   365                                 int startJointNodeA = bodyJointNodeArray[sbA];
   366                                 while (startJointNodeA>=0)
   368                                         int j0 = jointNodeArray[startJointNodeA].jointIndex;
   369                                         int cr0 = jointNodeArray[startJointNodeA].constraintRowIndex;
   376                                                 m_A.multiplyAdd2_p8r ( JinvMrow, 
   377                                                 Jptr + 2*8*(
size_t)ofs[j0] + ofsother, numRows, numRowsOther,  row__,ofs[j0]);
   379                                         startJointNodeA = jointNodeArray[startJointNodeA].nextJointNodeIndex;
   384                                 int startJointNodeB = bodyJointNodeArray[sbB];
   385                                 while (startJointNodeB>=0)
   387                                         int j1 = jointNodeArray[startJointNodeB].jointIndex;
   388                                         int cj1 = jointNodeArray[startJointNodeB].constraintRowIndex;
   394                                                 m_A.multiplyAdd2_p8r ( JinvMrow + 8*(
size_t)numRows, 
   395                                                 Jptr + 2*8*(
size_t)ofs[j1] + ofsother, numRows, numRowsOther, row__,ofs[j1]);
   397                                         startJointNodeB = jointNodeArray[startJointNodeB].nextJointNodeIndex;
   410                         for (;row__<numJointRows;)
   421                                 const btScalar *JinvMrow = JinvM + 2*8*(size_t)row__;
   422                                 const btScalar *Jrow = Jptr + 2*8*(size_t)row__;
   423                                 m_A.multiply2_p8r (JinvMrow, Jrow, infom, infom, row__,row__);
   426                                         m_A.multiplyAdd2_p8r (JinvMrow + 8*(
size_t)infom, Jrow + 8*(
size_t)infom, infom, infom,  row__,row__);
   437                 for ( 
int i=0; i<
m_A.rows(); ++i) 
   446                 m_A.copyLowerToUpperTriangle();
   451                 m_x.resize(numConstraintRows);
   476         m_b.resize(numConstraintRows);
   483         for (
int i=0;i<numConstraintRows ;i++)
   494         Minv.resize(6*numBodies,6*numBodies);
   496         for (
int i=0;i<numBodies;i++)
   500                 setElem(Minv,i*6+0,i*6+0,invMass[0]);
   501                 setElem(Minv,i*6+1,i*6+1,invMass[1]);
   502                 setElem(Minv,i*6+2,i*6+2,invMass[2]);
   505                 for (
int r=0;r<3;r++)
   506                         for (
int c=0;c<3;c++)
   511         J.resize(numConstraintRows,6*numBodies);
   514         m_lo.resize(numConstraintRows);
   515         m_hi.resize(numConstraintRows);
   517         for (
int i=0;i<numConstraintRows;i++)
   546         J_transpose= J.transpose();
   558                         m_A = tmp*J_transpose;
   565                 for ( 
int i=0; i<
m_A.rows(); ++i) 
   571         m_x.resize(numConstraintRows);
 btScalar getInvMass() const 
btPersistentManifold is a contact point cache, it stays persistent as long as objects are overlapping...
void push_back(const T &_Val)
btConstraintArray m_tmpSolverContactFrictionConstraintPool
virtual void createMLCP(const btContactSolverInfo &infoGlobal)
void internalApplyImpulse(const btVector3 &linearComponent, const btVector3 &angularComponent, const btScalar impulseMagnitude)
1D constraint along a normal axis between bodyA and bodyB. It can be combined to solve contact and fr...
void resizeNoInitialize(int newsize)
resize changes the number of elements in the array. 
virtual btScalar solveGroupCacheFriendlyIterations(btCollisionObject **bodies, int numBodies, btPersistentManifold **manifoldPtr, int numManifolds, btTypedConstraint **constraints, int numConstraints, const btContactSolverInfo &infoGlobal, btIDebugDraw *debugDrawer)
btVector3 m_angularComponentA
btAlignedObjectArray< btSolverBody > m_tmpSolverBodyPool
btMLCPSolver(btMLCPSolverInterface *solver)
original version written by Erwin Coumans, October 2013 
int size() const 
return the number of elements in the array 
virtual bool solveMLCP(const btMatrixXu &A, const btVectorXu &b, btVectorXu &x, const btVectorXu &lo, const btVectorXu &hi, const btAlignedObjectArray< int > &limitDependency, int numIterations, bool useSparsity=true)=0
btAlignedObjectArray< btSolverConstraint * > m_allConstraintPtrArray
original version written by Erwin Coumans, October 2013 
btConstraintArray m_tmpSolverContactConstraintPool
btCollisionObject can be used to manage collision detection objects. 
The btIDebugDraw interface class allows hooking up a debug renderer to visually debug simulations...
The btRigidBody is the main class for rigid body objects. 
btVector3 m_angularComponentB
btVectorXu m_bSplit
when using 'split impulse' we solve two separate (M)LCPs 
const btVector3 & internalGetInvMass() const 
virtual btScalar solveGroupCacheFriendlyIterations(btCollisionObject **bodies, int numBodies, btPersistentManifold **manifoldPtr, int numManifolds, btTypedConstraint **constraints, int numConstraints, const btContactSolverInfo &infoGlobal, btIDebugDraw *debugDrawer)
btVector3 can be used to represent 3D points and vectors. 
btMLCPSolverInterface * m_solver
virtual btScalar solveGroupCacheFriendlySetup(btCollisionObject **bodies, int numBodies, btPersistentManifold **manifoldPtr, int numManifolds, btTypedConstraint **constraints, int numConstraints, const btContactSolverInfo &infoGlobal, btIDebugDraw *debugDrawer)
btSimdScalar m_appliedPushImpulse
The btSolverBody is an internal datastructure for the constraint solver. Only necessary data is packe...
btAlignedObjectArray< btTypedConstraint::btConstraintInfo1 > m_tmpConstraintSizesPool
TypedConstraint is the baseclass for Bullet constraints and vehicles. 
void resize(int newsize, const T &fillData=T())
void internalApplyPushImpulse(const btVector3 &linearComponent, const btVector3 &angularComponent, btScalar impulseMagnitude)
bool btFuzzyZero(btScalar x)
virtual bool solveMLCP(const btContactSolverInfo &infoGlobal)
bool interleaveContactAndFriction
virtual btScalar solveGroupCacheFriendlySetup(btCollisionObject **bodies, int numBodies, btPersistentManifold **manifoldPtr, int numManifolds, btTypedConstraint **constraints, int numConstraints, const btContactSolverInfo &infoGlobal, btIDebugDraw *debugDrawer)
btAlignedObjectArray< int > m_limitDependencies
void setElem(btMatrixXd &mat, int row, int col, double val)
const btMatrix3x3 & getInvInertiaTensorWorld() const 
T & expand(const T &fillValue=T())
btVector3 m_contactNormal1
virtual void createMLCPFast(const btContactSolverInfo &infoGlobal)
btSimdScalar m_appliedImpulse
btConstraintArray m_tmpSolverNonContactConstraintPool
float btScalar
The btScalar type abstracts floating point numbers, to easily switch between double and single floati...
btVector3 m_contactNormal2