
STDLIB
Copyright © 1997-2016 Ericsson AB. All Rights Reserved.

STDLIB 3.0
June 21, 2016

Copyright © 1997-2016 Ericsson AB. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance
with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless
required by applicable law or agreed to in writing, software distributed under the License is distributed on an
"AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See
the License for the specific language governing permissions and limitations under the License. Ericsson AB. All
Rights Reserved..

June 21, 2016

Ericsson AB. All Rights Reserved.: STDLIB | 1

1.1 Introduction

2 | Ericsson AB. All Rights Reserved.: STDLIB

1 STDLIB User's Guide

1.1 Introduction
1.1.1 Scope
The Standard Erlang Libraries application, STDLIB, is mandatory in the sense that the minimal system based on
Erlang/OTP consists of STDLIB and Kernel.

STDLIB contains the following functional areas:

• Erlang shell

• Command interface

• Query interface

• Interface to standard Erlang I/O servers

• Interface to the Erlang built-in term storage BIFs

• Regular expression matching functions for strings and binaries

• Finite state machine

• Event handling

• Functions for the server of a client-server relation

• Function to control applications in a distributed manner

• Start and control of slave nodes

• Operations on finite sets and relations represented as sets

• Library for handling binary data

• Disk-based term storage

• List processing

• Maps processing

1.1.2 Prerequisites
It is assumed that the reader is familiar with the Erlang programming language.

1.2 The Erlang I/O Protocol
The I/O protocol in Erlang enables bi-directional communication between clients and servers.

• The I/O server is a process that handles the requests and performs the requested task on, for example, an I/O device.

• The client is any Erlang process wishing to read or write data from/to the I/O device.

The common I/O protocol has been present in OTP since the beginning, but has been undocumented and has also
evolved over the years. In an addendum to Robert Virding's rationale, the original I/O protocol is described. This
section describes the current I/O protocol.

The original I/O protocol was simple and flexible. Demands for memory efficiency and execution time efficiency have
triggered extensions to the protocol over the years, making the protocol larger and somewhat less easy to implement
than the original. It can certainly be argued that the current protocol is too complex, but this section describes how
it looks today, not how it should have looked.

1.2 The Erlang I/O Protocol

Ericsson AB. All Rights Reserved.: STDLIB | 3

The basic ideas from the original protocol still hold. The I/O server and client communicate with one single, rather
simplistic protocol and no server state is ever present in the client. Any I/O server can be used together with any client
code, and the client code does not need to be aware of the I/O device that the I/O server communicates with.

1.2.1 Protocol Basics
As described in Robert's paper, I/O servers and clients communicate using io_request/io_reply tuples as
follows:

{io_request, From, ReplyAs, Request}
{io_reply, ReplyAs, Reply}

The client sends an io_request tuple to the I/O server and the server eventually sends a corresponding io_reply
tuple.

• From is the pid() of the client, the process which the I/O server sends the I/O reply to.

• ReplyAs can be any datum and is returned in the corresponding io_reply. The io module monitors the the
I/O server and uses the monitor reference as the ReplyAs datum. A more complicated client can have many
outstanding I/O requests to the same I/O server and can use different references (or something else) to differentiate
among the incoming I/O replies. Element ReplyAs is to be considered opaque by the I/O server.

Notice that the pid() of the I/O server is not explicitly present in tuple io_reply. The reply can be sent from
any process, not necessarily the actual I/O server.

• Request and Reply are described below.

When an I/O server receives an io_request tuple, it acts upon the Request part and eventually sends an
io_reply tuple with the corresponding Reply part.

1.2.2 Output Requests
To output characters on an I/O device, the following Requests exist:

{put_chars, Encoding, Characters}
{put_chars, Encoding, Module, Function, Args}

• Encoding is unicode or latin1, meaning that the characters are (in case of binaries) encoded as UTF-8 or
ISO Latin-1 (pure bytes). A well-behaved I/O server is also to return an error indication if list elements contain
integers > 255 when Encoding is set to latin1.

Notice that this does not in any way tell how characters are to be put on the I/O device or handled by the I/O
server. Different I/O servers can handle the characters however they want, this only tells the I/O server which
format the data is expected to have. In the Module/Function/Args case, Encoding tells which format the
designated function produces.

Notice also that byte-oriented data is simplest sent using the ISO Latin-1 encoding.

• Characters are the data to be put on the I/O device. If Encoding is latin1, this is an iolist(). If
Encoding is unicode, this is an Erlang standard mixed Unicode list (one integer in a list per character,
characters in binaries represented as UTF-8).

• Module, Function, and Args denote a function that is called to produce the data (like io_lib:format/2).

Args is a list of arguments to the function. The function is to produce data in the specified Encoding. The I/
O server is to call the function as apply(Mod, Func, Args) and put the returned data on the I/O device as

1.2 The Erlang I/O Protocol

4 | Ericsson AB. All Rights Reserved.: STDLIB

if it was sent in a {put_chars, Encoding, Characters} request. If the function returns anything else
than a binary or list, or throws an exception, an error is to be sent back to the client.

The I/O server replies to the client with an io_reply tuple, where element Reply is one of:

ok
{error, Error}

• Error describes the error to the client, which can do whatever it wants with it. The io module typically
returns it "as is".

For backward compatibility, the following Requests are also to be handled by an I/O server (they are not to be
present after Erlang/OTP R15B):

{put_chars, Characters}
{put_chars, Module, Function, Args}

These are to behave as {put_chars, latin1, Characters} and {put_chars, latin1, Module,
Function, Args}, respectively.

1.2.3 Input Requests
To read characters from an I/O device, the following Requests exist:

{get_until, Encoding, Prompt, Module, Function, ExtraArgs}

• Encoding denotes how data is to be sent back to the client and what data is sent to the function denoted by
Module/Function/ExtraArgs. If the function supplied returns data as a list, the data is converted to this
encoding. If the function supplied returns data in some other format, no conversion can be done, and it is up to
the client-supplied function to return data in a proper way.

If Encoding is latin1, lists of integers 0..255 or binaries containing plain bytes are sent back to the client
when possible. If Encoding is unicode, lists with integers in the whole Unicode range or binaries encoded in
UTF-8 are sent to the client. The user-supplied function always sees lists of integers, never binaries, but the list
can contain numbers > 255 if Encoding is unicode.

• Prompt is a list of characters (not mixed, no binaries) or an atom to be output as a prompt for input on the I/O
device. Prompt is often ignored by the I/O server; if set to '', it is always to be ignored (and results in nothing
being written to the I/O device).

• Module, Function, and ExtraArgs denote a function and arguments to determine when enough data is
written. The function is to take two more arguments, the last state, and a list of characters. The function is to
return one of:

{done, Result, RestChars}
{more, Continuation}

Result can be any Erlang term, but if it is a list(), the I/O server can convert it to a binary() of appropriate
format before returning it to the client, if the I/O server is set in binary mode (see below).

The function is called with the data the I/O server finds on its I/O device, returning one of:

1.2 The Erlang I/O Protocol

Ericsson AB. All Rights Reserved.: STDLIB | 5

• {done, Result, RestChars} when enough data is read. In this case Result is sent to the client and
RestChars is kept in the I/O server as a buffer for later input.

• {more, Continuation}, which indicates that more characters are needed to complete the request.

Continuation is sent as the state in later calls to the function when more characters are available. When no
more characters are available, the function must return {done, eof, Rest}. The initial state is the empty
list. The data when an end of file is reached on the IO device is the atom eof.

An emulation of the get_line request can be (inefficiently) implemented using the following functions:

-module(demo).
-export([until_newline/3, get_line/1]).

until_newline(_ThisFar,eof,_MyStopCharacter) ->
 {done,eof,[]};
until_newline(ThisFar,CharList,MyStopCharacter) ->
 case
 lists:splitwith(fun(X) -> X =/= MyStopCharacter end, CharList)
 of
 {L,[]} ->
 {more,ThisFar++L};
 {L2,[MyStopCharacter|Rest]} ->
 {done,ThisFar++L2++[MyStopCharacter],Rest}
 end.

get_line(IoServer) ->
 IoServer ! {io_request,
 self(),
 IoServer,
 {get_until, unicode, '', ?MODULE, until_newline, [$\n]}},
 receive
 {io_reply, IoServer, Data} ->
 Data
 end.

Notice that the last element in the Request tuple ([$\n]) is appended to the argument list when the function is
called. The function is to be called like apply(Module, Function, [State, Data | ExtraArgs])
by the I/O server.

A fixed number of characters is requested using the following Request:

{get_chars, Encoding, Prompt, N}

• Encoding and Prompt as for get_until.

• N is the number of characters to be read from the I/O device.

A single line (as in former example) is requested with the following Request:

{get_line, Encoding, Prompt}

• Encoding and Prompt as for get_until.

Clearly, get_chars and get_line could be implemented with the get_until request (and indeed they were
originally), but demands for efficiency have made these additions necessary.

1.2 The Erlang I/O Protocol

6 | Ericsson AB. All Rights Reserved.: STDLIB

The I/O server replies to the client with an io_reply tuple, where element Reply is one of:

Data
eof
{error, Error}

• Data is the characters read, in list or binary form (depending on the I/O server mode, see the next section).

• eof is returned when input end is reached and no more data is available to the client process.

• Error describes the error to the client, which can do whatever it wants with it. The io module typically returns
it as is.

For backward compatibility, the following Requests are also to be handled by an I/O server (they are not to be
present after Erlang/OTP R15B):

{get_until, Prompt, Module, Function, ExtraArgs}
{get_chars, Prompt, N}
{get_line, Prompt}

These are to behave as {get_until, latin1, Prompt, Module, Function, ExtraArgs},
{get_chars, latin1, Prompt, N}, and {get_line, latin1, Prompt}, respectively.

1.2.4 I/O Server Modes
Demands for efficiency when reading data from an I/O server has not only lead to the addition of the get_line and
get_chars requests, but has also added the concept of I/O server options. No options are mandatory to implement,
but all I/O servers in the Erlang standard libraries honor the binary option, which allows element Data of the
io_reply tuple to be a binary instead of a list when possible. If the data is sent as a binary, Unicode data is sent
in the standard Erlang Unicode format, that is, UTF-8 (notice that the function of the get_until request still gets
list data regardless of the I/O server mode).

Notice that the get_until request allows for a function with the data specified as always being a list. Also, the
return value data from such a function can be of any type (as is indeed the case when an io:fread/2,3 request is
sent to an I/O server). The client must be prepared for data received as answers to those requests to be in various forms.
However, the I/O server is to convert the results to binaries whenever possible (that is, when the function supplied to
get_until returns a list). This is done in the example in section An Annotated and Working Example I/O Server.

An I/O server in binary mode affects the data sent to the client, so that it must be able to handle binary data. For
convenience, the modes of an I/O server can be set and retrieved using the following I/O requests:

{setopts, Opts}

• Opts is a list of options in the format recognized by the proplists module (and by the I/O server).

As an example, the I/O server for the interactive shell (in group.erl) understands the following options:

{binary, boolean()} (or binary/list)
{echo, boolean()}
{expand_fun, fun()}
{encoding, unicode/latin1} (or unicode/latin1)

1.2 The Erlang I/O Protocol

Ericsson AB. All Rights Reserved.: STDLIB | 7

Options binary and encoding are common for all I/O servers in OTP, while echo and expand are valid only
for this I/O server. Option unicode notifies how characters are put on the physical I/O device, that is, if the terminal
itself is Unicode-aware. It does not affect how characters are sent in the I/O protocol, where each request contains
encoding information for the provided or returned data.

The I/O server is to send one of the following as Reply:

ok
{error, Error}

An error (preferably enotsup) is to be expected if the option is not supported by the I/O server (like if an echo
option is sent in a setopts request to a plain file).

To retrieve options, the following request is used:

getopts

This request asks for a complete list of all options supported by the I/O server as well as their current values.

The I/O server replies:

OptList
{error, Error}

• OptList is a list of tuples {Option, Value}, where Option always is an atom.

1.2.5 Multiple I/O Requests
The Request element can in itself contain many Requests by using the following format:

{requests, Requests}

• Requests is a list of valid io_request tuples for the protocol. They must be executed in the order that
they appear in the list. The execution is to continue until one of the requests results in an error or the list is
consumed. The result of the last request is sent back to the client.

The I/O server can, for a list of requests, send any of the following valid results in the reply, depending on the requests
in the list:

ok
{ok, Data}
{ok, Options}
{error, Error}

1.2.6 Optional I/O Request
The following I/O request is optional to implement and a client is to be prepared for an error return:

1.2 The Erlang I/O Protocol

8 | Ericsson AB. All Rights Reserved.: STDLIB

{get_geometry, Geometry}

• Geometry is the atom rows or the atom columns.

The I/O server is to send the Reply as:

{ok, N}
{error, Error}

• N is the number of character rows or columns that the I/O device has, if applicable to the I/O device handled by
the I/O server, otherwise {error, enotsup} is a good answer.

1.2.7 Unimplemented Request Types
If an I/O server encounters a request that it does not recognize (that is, the io_request tuple has the expected
format, but the Request is unknown), the I/O server is to send a valid reply with the error tuple:

{error, request}

This makes it possible to extend the protocol with optional requests and for the clients to be somewhat backward
compatible.

1.2.8 An Annotated and Working Example I/O Server
An I/O server is any process capable of handling the I/O protocol. There is no generic I/O server behavior, but could
well be. The framework is simple, a process handling incoming requests, usually both I/O-requests and other I/O
device-specific requests (positioning, closing, and so on).

The example I/O server stores characters in an ETS table, making up a fairly crude RAM file.

The module begins with the usual directives, a function to start the I/O server and a main loop handling the requests:

-module(ets_io_server).

-export([start_link/0, init/0, loop/1, until_newline/3, until_enough/3]).

-define(CHARS_PER_REC, 10).

-record(state, {
 table,
 position, % absolute
 mode % binary | list
 }).

start_link() ->
 spawn_link(?MODULE,init,[]).

init() ->
 Table = ets:new(noname,[ordered_set]),
 ?MODULE:loop(#state{table = Table, position = 0, mode=list}).

loop(State) ->
 receive
 {io_request, From, ReplyAs, Request} ->
 case request(Request,State) of
 {Tag, Reply, NewState} when Tag =:= ok; Tag =:= error ->

1.2 The Erlang I/O Protocol

Ericsson AB. All Rights Reserved.: STDLIB | 9

 reply(From, ReplyAs, Reply),
 ?MODULE:loop(NewState);
 {stop, Reply, _NewState} ->
 reply(From, ReplyAs, Reply),
 exit(Reply)
 end;
 %% Private message
 {From, rewind} ->
 From ! {self(), ok},
 ?MODULE:loop(State#state{position = 0});
 _Unknown ->
 ?MODULE:loop(State)
 end.

The main loop receives messages from the client (which can use the the io module to send requests). For each request,
the function request/2 is called and a reply is eventually sent using function reply/3.

The "private" message {From, rewind} results in the current position in the pseudo-file to be reset to 0 (the
beginning of the "file"). This is a typical example of I/O device-specific messages not being part of the I/O protocol.
It is usually a bad idea to embed such private messages in io_request tuples, as that can confuse the reader.

First, we examine the reply function:

reply(From, ReplyAs, Reply) ->
 From ! {io_reply, ReplyAs, Reply}.

It sends the io_reply tuple back to the client, providing element ReplyAs received in the request along with the
result of the request, as described earlier.

We need to handle some requests. First the requests for writing characters:

request({put_chars, Encoding, Chars}, State) ->
 put_chars(unicode:characters_to_list(Chars,Encoding),State);
request({put_chars, Encoding, Module, Function, Args}, State) ->
 try
 request({put_chars, Encoding, apply(Module, Function, Args)}, State)
 catch
 : ->
 {error, {error,Function}, State}
 end;

The Encoding says how the characters in the request are represented. We want to store the characters as lists in
the ETS table, so we convert them to lists using function unicode:characters_to_list/2. The conversion
function conveniently accepts the encoding types unicode and latin1, so we can use Encoding directly.

When Module, Function, and Arguments are provided, we apply it and do the same with the result as if the
data was provided directly.

We handle the requests for retrieving data:

request({get_until, Encoding, _Prompt, M, F, As}, State) ->
 get_until(Encoding, M, F, As, State);
request({get_chars, Encoding, _Prompt, N}, State) ->
 %% To simplify the code, get_chars is implemented using get_until
 get_until(Encoding, ?MODULE, until_enough, [N], State);
request({get_line, Encoding, _Prompt}, State) ->
 %% To simplify the code, get_line is implemented using get_until

1.2 The Erlang I/O Protocol

10 | Ericsson AB. All Rights Reserved.: STDLIB

 get_until(Encoding, ?MODULE, until_newline, [$\n], State);

Here we have cheated a little by more or less only implementing get_until and using internal helpers to implement
get_chars and get_line. In production code, this can be inefficient, but that depends on the frequency of the
different requests. Before we start implementing functions put_chars/2 and get_until/5, we examine the few
remaining requests:

request({get_geometry,_}, State) ->
 {error, {error,enotsup}, State};
request({setopts, Opts}, State) ->
 setopts(Opts, State);
request(getopts, State) ->
 getopts(State);
request({requests, Reqs}, State) ->
 multi_request(Reqs, {ok, ok, State});

Request get_geometry has no meaning for this I/O server, so the reply is {error, enotsup}. The only option
we handle is binary/list, which is done in separate functions.

The multi-request tag (requests) is handled in a separate loop function applying the requests in the list one after
another, returning the last result.

We need to handle backward compatibility and the file module (which uses the old requests until backward
compatibility with pre-R13 nodes is no longer needed). Notice that the I/O server does not work with a simple
file:write/2 if these are not added:

request({put_chars,Chars}, State) ->
 request({put_chars,latin1,Chars}, State);
request({put_chars,M,F,As}, State) ->
 request({put_chars,latin1,M,F,As}, State);
request({get_chars,Prompt,N}, State) ->
 request({get_chars,latin1,Prompt,N}, State);
request({get_line,Prompt}, State) ->
 request({get_line,latin1,Prompt}, State);
request({get_until, Prompt,M,F,As}, State) ->
 request({get_until,latin1,Prompt,M,F,As}, State);

{error, request} must be returned if the request is not recognized:

request(_Other, State) ->
 {error, {error, request}, State}.

Next we handle the different requests, first the fairly generic multi-request type:

multi_request([R|Rs], {ok, _Res, State}) ->
 multi_request(Rs, request(R, State));
multi_request([_|_], Error) ->
 Error;
multi_request([], Result) ->
 Result.

1.2 The Erlang I/O Protocol

Ericsson AB. All Rights Reserved.: STDLIB | 11

We loop through the requests one at the time, stopping when we either encounter an error or the list is exhausted.
The last return value is sent back to the client (it is first returned to the main loop and then sent back by function
io_reply).

Requests getopts and setopts are also simple to handle. We only change or read the state record:

setopts(Opts0,State) ->
 Opts = proplists:unfold(
 proplists:substitute_negations(
 [{list,binary}],
 Opts0)),
 case check_valid_opts(Opts) of
 true ->
 case proplists:get_value(binary, Opts) of
 true ->
 {ok,ok,State#state{mode=binary}};
 false ->
 {ok,ok,State#state{mode=binary}};
 _ ->
 {ok,ok,State}
 end;
 false ->
 {error,{error,enotsup},State}
 end.
check_valid_opts([]) ->
 true;
check_valid_opts([{binary,Bool}|T]) when is_boolean(Bool) ->
 check_valid_opts(T);
check_valid_opts(_) ->
 false.

getopts(#state{mode=M} = S) ->
 {ok,[{binary, case M of
 binary ->
 true;
 _ ->
 false
 end}],S}.

As a convention, all I/O servers handle both {setopts, [binary]}, {setopts, [list]}, and
{setopts,[{binary, boolean()}]}, hence the trick with proplists:substitute_negations/2
and proplists:unfold/1. If invalid options are sent to us, we send {error, enotsup} back to the client.

Request getopts is to return a list of {Option, Value} tuples. This has the twofold function of providing both
the current values and the available options of this I/O server. We have only one option, and hence return that.

So far this I/O server is fairly generic (except for request rewind handled in the main loop and the creation of an
ETS table). Most I/O servers contain code similar to this one.

To make the example runnable, we start implementing the reading and writing of the data to/from the ETS table. First
function put_chars/3:

put_chars(Chars, #state{table = T, position = P} = State) ->
 R = P div ?CHARS_PER_REC,
 C = P rem ?CHARS_PER_REC,
 [apply_update(T,U) || U <- split_data(Chars, R, C)],
 {ok, ok, State#state{position = (P + length(Chars))}}.

1.2 The Erlang I/O Protocol

12 | Ericsson AB. All Rights Reserved.: STDLIB

We already have the data as (Unicode) lists and therefore only split the list in runs of a predefined size and put
each run in the table at the current position (and forward). Functions split_data/3 and apply_update/2 are
implemented below.

Now we want to read data from the table. Function get_until/5 reads data and applies the function until it says
that it is done. The result is sent back to the client:

get_until(Encoding, Mod, Func, As,
 #state{position = P, mode = M, table = T} = State) ->
 case get_loop(Mod,Func,As,T,P,[]) of
 {done,Data,_,NewP} when is_binary(Data); is_list(Data) ->
 if
 M =:= binary ->
 {ok,
 unicode:characters_to_binary(Data, unicode, Encoding),
 State#state{position = NewP}};
 true ->
 case check(Encoding,
 unicode:characters_to_list(Data, unicode))
 of
 {error, _} = E ->
 {error, E, State};
 List ->
 {ok, List,
 State#state{position = NewP}}
 end
 end;
 {done,Data,_,NewP} ->
 {ok, Data, State#state{position = NewP}};
 Error ->
 {error, Error, State}
 end.

get_loop(M,F,A,T,P,C) ->
 {NewP,L} = get(P,T),
 case catch apply(M,F,[C,L|A]) of
 {done, List, Rest} ->
 {done, List, [], NewP - length(Rest)};
 {more, NewC} ->
 get_loop(M,F,A,T,NewP,NewC);
 _ ->
 {error,F}
 end.

Here we also handle the mode (binary or list) that can be set by request setopts. By default, all OTP I/O servers
send data back to the client as lists, but switching mode to binary can increase efficiency if the I/O server handles
it in an appropriate way. The implementation of get_until is difficult to get efficient, as the supplied function is
defined to take lists as arguments, but get_chars and get_line can be optimized for binary mode. However,
this example does not optimize anything.

It is important though that the returned data is of the correct type depending on the options set. We therefore convert
the lists to binaries in the correct encoding if possible before returning. The function supplied in the get_until
request tuple can, as its final result return anything, so only functions returning lists can get them converted to binaries.
If the request contains encoding tag unicode, the lists can contain all Unicode code points and the binaries are to be
in UTF-8. If the encoding tag is latin1, the client is only to get characters in the range 0..255. Function check/2
takes care of not returning arbitrary Unicode code points in lists if the encoding was specified as latin1. If the
function does not return a list, the check cannot be performed and the result is that of the supplied function untouched.

To manipulate the table we implement the following utility functions:

1.2 The Erlang I/O Protocol

Ericsson AB. All Rights Reserved.: STDLIB | 13

check(unicode, List) ->
 List;
check(latin1, List) ->
 try
 [throw(not_unicode) || X <- List,
 X > 255],
 List
 catch
 throw:_ ->
 {error,{cannot_convert, unicode, latin1}}
 end.

The function check provides an error tuple if Unicode code points > 255 are to be returned if the client requested
latin1.

The two functions until_newline/3 and until_enough/3 are helpers used together with function
get_until/5 to implement get_chars and get_line (inefficiently):

until_newline([],eof,_MyStopCharacter) ->
 {done,eof,[]};
until_newline(ThisFar,eof,_MyStopCharacter) ->
 {done,ThisFar,[]};
until_newline(ThisFar,CharList,MyStopCharacter) ->
 case
 lists:splitwith(fun(X) -> X =/= MyStopCharacter end, CharList)
 of
 {L,[]} ->
 {more,ThisFar++L};
 {L2,[MyStopCharacter|Rest]} ->
 {done,ThisFar++L2++[MyStopCharacter],Rest}
 end.

until_enough([],eof,_N) ->
 {done,eof,[]};
until_enough(ThisFar,eof,_N) ->
 {done,ThisFar,[]};
until_enough(ThisFar,CharList,N)
 when length(ThisFar) + length(CharList) >= N ->
 {Res,Rest} = my_split(N,ThisFar ++ CharList, []),
 {done,Res,Rest};
until_enough(ThisFar,CharList,_N) ->
 {more,ThisFar++CharList}.

As can be seen, the functions above are just the type of functions that are to be provided in get_until requests.

To complete the I/O server, we only need to read and write the table in an appropriate way:

get(P,Tab) ->
 R = P div ?CHARS_PER_REC,
 C = P rem ?CHARS_PER_REC,
 case ets:lookup(Tab,R) of
 [] ->
 {P,eof};
 [{R,List}] ->
 case my_split(C,List,[]) of
 {_,[]} ->
 {P+length(List),eof};
 {_,Data} ->
 {P+length(Data),Data}

1.3 Using Unicode in Erlang

14 | Ericsson AB. All Rights Reserved.: STDLIB

 end
 end.

my_split(0,Left,Acc) ->
 {lists:reverse(Acc),Left};
my_split(_,[],Acc) ->
 {lists:reverse(Acc),[]};
my_split(N,[H|T],Acc) ->
 my_split(N-1,T,[H|Acc]).

split_data([],_,_) ->
 [];
split_data(Chars, Row, Col) ->
 {This,Left} = my_split(?CHARS_PER_REC - Col, Chars, []),
 [{Row, Col, This} | split_data(Left, Row + 1, 0)].

apply_update(Table, {Row, Col, List}) ->
 case ets:lookup(Table,Row) of
 [] ->
 ets:insert(Table,{Row, lists:duplicate(Col,0) ++ List});
 [{Row, OldData}] ->
 {Part1,_} = my_split(Col,OldData,[]),
 {_,Part2} = my_split(Col+length(List),OldData,[]),
 ets:insert(Table,{Row, Part1 ++ List ++ Part2})
 end.

The table is read or written in chunks of ?CHARS_PER_REC, overwriting when necessary. The implementation is
clearly not efficient, it is just working.

This concludes the example. It is fully runnable and you can read or write to the I/O server by using, for example, the
io module or even the file module. It is as simple as that to implement a fully fledged I/O server in Erlang.

1.3 Using Unicode in Erlang
1.3.1 Unicode Implementation
Implementing support for Unicode character sets is an ongoing process. The Erlang Enhancement Proposal (EEP) 10
outlined the basics of Unicode support and specified a default encoding in binaries that all Unicode-aware modules
are to handle in the future.

Here is an overview what has been done so far:

• The functionality described in EEP10 was implemented in Erlang/OTP R13A.

• Erlang/OTP R14B01 added support for Unicode filenames, but it was not complete and was by default disabled
on platforms where no guarantee was given for the filename encoding.

• With Erlang/OTP R16A came support for UTF-8 encoded source code, with enhancements to many of
the applications to support both Unicode encoded filenames and support for UTF-8 encoded files in many
circumstances. Most notable is the support for UTF-8 in files read by file:consult/1, release handler support
for UTF-8, and more support for Unicode character sets in the I/O system.

• In Erlang/OTP 17.0, the encoding default for Erlang source files was switched to UTF-8.

This section outlines the current Unicode support and gives some recipes for working with Unicode data.

1.3.2 Understanding Unicode
Experience with the Unicode support in Erlang has made it clear that understanding Unicode characters and encodings
is not as easy as one would expect. The complexity of the field and the implications of the standard require thorough
understanding of concepts rarely before thought of.

1.3 Using Unicode in Erlang

Ericsson AB. All Rights Reserved.: STDLIB | 15

Also, the Erlang implementation requires understanding of concepts that were never an issue for many (Erlang)
programmers. To understand and use Unicode characters requires that you study the subject thoroughly, even if you
are an experienced programmer.

As an example, contemplate the issue of converting between upper and lower case letters. Reading the standard makes
you realize that there is not a simple one to one mapping in all scripts, for example:

• In German, the letter "ß" (sharp s) is in lower case, but the uppercase equivalent is "SS".

• In Greek, the letter "#" has two different lowercase forms, "#" in word-final position and "#" elsewhere.

• In Turkish, both dotted and dotless "i" exist in lower case and upper case forms.

• Cyrillic "I" has usually no lowercase form.

• Languages with no concept of upper case (or lower case).

So, a conversion function must know not only one character at a time, but possibly the whole sentence, the natural
language to translate to, the differences in input and output string length, and so on. Erlang/OTP has currently no
Unicode to_upper/to_lower functionality, but publicly available libraries address these issues.

Another example is the accented characters, where the same glyph has two different representations. The Swedish
letter "ö" is one example. The Unicode standard has a code point for it, but you can also write it as "o" followed by
"U+0308" (Combining Diaeresis, with the simplified meaning that the last letter is to have "¨" above). They have the
same glyph. They are for most purposes the same, but have different representations. For example, MacOS X converts
all filenames to use Combining Diaeresis, while most other programs (including Erlang) try to hide that by doing the
opposite when, for example, listing directories. However it is done, it is usually important to normalize such characters
to avoid confusion.

The list of examples can be made long. One need a kind of knowledge that was not needed when programs only
considered one or two languages. The complexity of human languages and scripts has certainly made this a challenge
when constructing a universal standard. Supporting Unicode properly in your program will require effort.

1.3.3 What Unicode Is
Unicode is a standard defining code points (numbers) for all known, living or dead, scripts. In principle, every symbol
used in any language has a Unicode code point. Unicode code points are defined and published by the Unicode
Consortium, which is a non-profit organization.

Support for Unicode is increasing throughout the world of computing, as the benefits of one common character set are
overwhelming when programs are used in a global environment. Along with the base of the standard, the code points
for all the scripts, some encoding standards are available.

It is vital to understand the difference between encodings and Unicode characters. Unicode characters are code points
according to the Unicode standard, while the encodings are ways to represent such code points. An encoding is only a
standard for representation. UTF-8 can, for example, be used to represent a very limited part of the Unicode character
set (for example ISO-Latin-1) or the full Unicode range. It is only an encoding format.

As long as all character sets were limited to 256 characters, each character could be stored in one single byte, so
there was more or less only one practical encoding for the characters. Encoding each character in one byte was so
common that the encoding was not even named. With the Unicode system there are much more than 256 characters, so
a common way is needed to represent these. The common ways of representing the code points are the encodings. This
means a whole new concept to the programmer, the concept of character representation, which was a non-issue earlier.

Different operating systems and tools support different encodings. For example, Linux and MacOS X have chosen
the UTF-8 encoding, which is backward compatible with 7-bit ASCII and therefore affects programs written in plain
English the least. Windows supports a limited version of UTF-16, namely all the code planes where the characters can
be stored in one single 16-bit entity, which includes most living languages.

The following are the most widely spread encodings:

1.3 Using Unicode in Erlang

16 | Ericsson AB. All Rights Reserved.: STDLIB

Bytewise representation

This is not a proper Unicode representation, but the representation used for characters before the Unicode standard.
It can still be used to represent character code points in the Unicode standard with numbers < 256, which exactly
corresponds to the ISO Latin-1 character set. In Erlang, this is commonly denoted latin1 encoding, which is
slightly misleading as ISO Latin-1 is a character code range, not an encoding.

UTF-8

Each character is stored in one to four bytes depending on code point. The encoding is backward compatible
with bytewise representation of 7-bit ASCII, as all 7-bit characters are stored in one single byte in UTF-8. The
characters beyond code point 127 are stored in more bytes, letting the most significant bit in the first character
indicate a multi-byte character. For details on the encoding, the RFC is publicly available.

Notice that UTF-8 is not compatible with bytewise representation for code points from 128 through 255, so an
ISO Latin-1 bytewise representation is generally incompatible with UTF-8.

UTF-16

This encoding has many similarities to UTF-8, but the basic unit is a 16-bit number. This means that all characters
occupy at least two bytes, and some high numbers four bytes. Some programs, libraries, and operating systems
claiming to use UTF-16 only allow for characters that can be stored in one 16-bit entity, which is usually sufficient
to handle living languages. As the basic unit is more than one byte, byte-order issues occur, which is why UTF-16
exists in both a big-endian and a little-endian variant.

In Erlang, the full UTF-16 range is supported when applicable, like in the unicode module and in the bit syntax.

UTF-32

The most straightforward representation. Each character is stored in one single 32-bit number. There is no need
for escapes or any variable number of entities for one character. All Unicode code points can be stored in one
single 32-bit entity. As with UTF-16, there are byte-order issues. UTF-32 can be both big-endian and little-endian.

UCS-4

Basically the same as UTF-32, but without some Unicode semantics, defined by IEEE, and has little use as a
separate encoding standard. For all normal (and possibly abnormal) use, UTF-32 and UCS-4 are interchangeable.

Certain number ranges are unused in the Unicode standard and certain ranges are even deemed invalid. The most
notable invalid range is 16#D800-16#DFFF, as the UTF-16 encoding does not allow for encoding of these numbers.
This is possibly because the UTF-16 encoding standard, from the beginning, was expected to be able to hold all
Unicode characters in one 16-bit entity, but was then extended, leaving a hole in the Unicode range to handle backward
compatibility.

Code point 16#FEFF is used for Byte Order Marks (BOMs) and use of that character is not encouraged in other
contexts. It is valid though, as the character "ZWNBS" (Zero Width Non Breaking Space). BOMs are used to identify
encodings and byte order for programs where such parameters are not known in advance. BOMs are more seldom
used than expected, but can become more widely spread as they provide the means for programs to make educated
guesses about the Unicode format of a certain file.

1.3.4 Areas of Unicode Support
To support Unicode in Erlang, problems in various areas have been addressed. This section describes each area briefly
and more thoroughly later in this User's Guide.

Representation

To handle Unicode characters in Erlang, a common representation in both lists and binaries is needed. EEP (10)
and the subsequent initial implementation in Erlang/OTP R13A settled a standard representation of Unicode
characters in Erlang.

1.3 Using Unicode in Erlang

Ericsson AB. All Rights Reserved.: STDLIB | 17

Manipulation

The Unicode characters need to be processed by the Erlang program, which is why library functions must be able
to handle them. In some cases functionality has been added to already existing interfaces (as the string module
now can handle lists with any code points). In some cases new functionality or options have been added (as in
the io module, the file handling, the unicode module, and the bit syntax). Today most modules in Kernel
and STDLIB, as well as the VM are Unicode-aware.

File I/O

I/O is by far the most problematic area for Unicode. A file is an entity where bytes are stored, and the lore of
programming has been to treat characters and bytes as interchangeable. With Unicode characters, you must decide
on an encoding when you want to store the data in a file. In Erlang, you can open a text file with an encoding
option, so that you can read characters from it rather than bytes, but you can also open a file for bytewise I/O.

The Erlang I/O-system has been designed (or at least used) in a way where you expect any I/O server to handle any
string data. That is, however, no longer the case when working with Unicode characters. The Erlang programmer
must now know the capabilities of the device where the data ends up. Also, ports in Erlang are byte-oriented, so an
arbitrary string of (Unicode) characters cannot be sent to a port without first converting it to an encoding of choice.

Terminal I/O

Terminal I/O is slightly easier than file I/O. The output is meant for human reading and is usually Erlang syntax
(for example, in the shell). There exists syntactic representation of any Unicode character without displaying the
glyph (instead written as \x{HHH}). Unicode data can therefore usually be displayed even if the terminal as such
does not support the whole Unicode range.

Filenames

Filenames can be stored as Unicode strings in different ways depending on the underlying operating system and
file system. This can be handled fairly easy by a program. The problems arise when the file system is inconsistent
in its encodings. For example, Linux allows files to be named with any sequence of bytes, leaving to each program
to interpret those bytes. On systems where these "transparent" filenames are used, Erlang must be informed about
the filename encoding by a startup flag. The default is bytewise interpretation, which is usually wrong, but allows
for interpretation of all filenames.

The concept of "raw filenames" can be used to handle wrongly encoded filenames if one enables Unicode filename
translation (+fnu) on platforms where this is not the default.

Source code encoding

The Erlang source code has support for the UTF-8 encoding and bytewise encoding. The default in Erlang/OTP
R16B was bytewise (latin1) encoding. It was changed to UTF-8 in Erlang/OTP 17.0. You can control the
encoding by a comment like the following in the beginning of the file:

%% -*- coding: utf-8 -*-

This of course requires your editor to support UTF-8 as well. The same comment is also interpreted by functions
like file:consult/1, the release handler, and so on, so that you can have all text files in your source
directories in UTF-8 encoding.

The language

Having the source code in UTF-8 also allows you to write string literals containing Unicode characters with code
points > 255, although atoms, module names, and function names are restricted to the ISO Latin-1 range. Binary
literals, where you use type /utf8, can also be expressed using Unicode characters > 255. Having module names
using characters other than 7-bit ASCII can cause trouble on operating systems with inconsistent file naming
schemes, and can hurt portability, so it is not recommended.

1.3 Using Unicode in Erlang

18 | Ericsson AB. All Rights Reserved.: STDLIB

EEP 40 suggests that the language is also to allow for Unicode characters > 255 in variable names. Whether to
implement that EEP is yet to be decided.

1.3.5 Standard Unicode Representation
In Erlang, strings are lists of integers. A string was until Erlang/OTP R13 defined to be encoded in the ISO Latin-1
(ISO 8859-1) character set, which is, code point by code point, a subrange of the Unicode character set.

The standard list encoding for strings was therefore easily extended to handle the whole Unicode range. A Unicode
string in Erlang is a list containing integers, where each integer is a valid Unicode code point and represents one
character in the Unicode character set.

Erlang strings in ISO Latin-1 are a subset of Unicode strings.

Only if a string contains code points < 256, can it be directly converted to a binary by using, for example,
erlang:iolist_to_binary/1 or can be sent directly to a port. If the string contains Unicode characters >
255, an encoding must be decided upon and the string is to be converted to a binary in the preferred encoding using
unicode:characters_to_binary/1,2,3. Strings are not generally lists of bytes, as they were before Erlang/
OTP R13, they are lists of characters. Characters are not generally bytes, they are Unicode code points.

Binaries are more troublesome. For performance reasons, programs often store textual data in binaries instead of lists,
mainly because they are more compact (one byte per character instead of two words per character, as is the case
with lists). Using erlang:list_to_binary/1, an ISO Latin-1 Erlang string can be converted into a binary,
effectively using bytewise encoding: one byte per character. This was convenient for those limited Erlang strings, but
cannot be done for arbitrary Unicode lists.

As the UTF-8 encoding is widely spread and provides some backward compatibility in the 7-bit ASCII range, it is
selected as the standard encoding for Unicode characters in binaries for Erlang.

The standard binary encoding is used whenever a library function in Erlang is to handle Unicode data in binaries, but
is of course not enforced when communicating externally. Functions and bit syntax exist to encode and decode both
UTF-8, UTF-16, and UTF-32 in binaries. However, library functions dealing with binaries and Unicode in general
only deal with the default encoding.

Character data can be combined from many sources, sometimes available in a mix of strings and binaries. Erlang has
for long had the concept of iodata or iolists, where binaries and lists can be combined to represent a sequence
of bytes. In the same way, the Unicode-aware modules often allow for combinations of binaries and lists, where the
binaries have characters encoded in UTF-8 and the lists contain such binaries or numbers representing Unicode code
points:

unicode_binary() = binary() with characters encoded in UTF-8 coding standard

chardata() = charlist() | unicode_binary()

charlist() = maybe_improper_list(char() | unicode_binary() | charlist(),
 unicode_binary() | nil())

The module unicode even supports similar mixes with binaries containing other encodings than UTF-8, but that is
a special case to allow for conversions to and from external data:

external_unicode_binary() = binary() with characters coded in a user-specified
 Unicode encoding other than UTF-8 (UTF-16 or UTF-32)

external_chardata() = external_charlist() | external_unicode_binary()

external_charlist() = maybe_improper_list(char() | external_unicode_binary() |

1.3 Using Unicode in Erlang

Ericsson AB. All Rights Reserved.: STDLIB | 19

 external_charlist(), external_unicode_binary() | nil())

1.3.6 Basic Language Support
As from Erlang/OTP R16, Erlang source files can be written in UTF-8 or bytewise (latin1) encoding. For
information about how to state the encoding of an Erlang source file, see the epp(3) module. Strings and comments
can be written using Unicode, but functions must still be named using characters from the ISO Latin-1 character set,
and atoms are restricted to the same ISO Latin-1 range. These restrictions in the language are of course independent
of the encoding of the source file.

Bit Syntax
The bit syntax contains types for handling binary data in the three main encodings. The types are named utf8, utf16,
and utf32. The utf16 and utf32 types can be in a big-endian or a little-endian variant:

<<Ch/utf8,_/binary>> = Bin1,
<<Ch/utf16-little,_/binary>> = Bin2,
Bin3 = <<$H/utf32-little, $e/utf32-little, $l/utf32-little, $l/utf32-little,
$o/utf32-little>>,

For convenience, literal strings can be encoded with a Unicode encoding in binaries using the following (or similar)
syntax:

Bin4 = <<"Hello"/utf16>>,

String and Character Literals
For source code, there is an extension to syntax \OOO (backslash followed by three octal numbers) and \xHH
(backslash followed by x, followed by two hexadecimal characters), namely \x{H ...} (backslash followed by x,
followed by left curly bracket, any number of hexadecimal digits, and a terminating right curly bracket). This allows
for entering characters of any code point literally in a string even when the encoding of the source file is bytewise
(latin1).

In the shell, if using a Unicode input device, or in source code stored in UTF-8, $ can be followed directly by a Unicode
character producing an integer. In the following example, the code point of a Cyrillic # is output:

7> $с.
1089

Heuristic String Detection
In certain output functions and in the output of return values in the shell, Erlang tries to detect string data in lists and
binaries heuristically. Typically you will see heuristic detection in a situation like this:

1> [97,98,99].
"abc"
2> <<97,98,99>>.
<<"abc">>
3> <<195,165,195,164,195,182>>.
<<"åäö"/utf8>>

1.3 Using Unicode in Erlang

20 | Ericsson AB. All Rights Reserved.: STDLIB

Here the shell detects lists containing printable characters or binaries containing printable characters in bytewise or
UTF-8 encoding. But what is a printable character? One view is that anything the Unicode standard thinks is printable,
is also printable according to the heuristic detection. The result is then that almost any list of integers are deemed a
string, and all sorts of characters are printed, maybe also characters that your terminal lacks in its font set (resulting
in some unappreciated generic output). Another way is to keep it backward compatible so that only the ISO Latin-1
character set is used to detect a string. A third way is to let the user decide exactly what Unicode ranges that are to
be viewed as characters.

As from Erlang/OTP R16B you can select the ISO Latin-1 range or the whole Unicode range by supplying startup flag
+pc latin1 or +pc unicode, respectively. For backward compatibility, latin1 is default. This only controls
how heuristic string detection is done. More ranges are expected to be added in the future, enabling tailoring of the
heuristics to the language and region relevant to the user.

The following examples show the two startup options:

$ erl +pc latin1
Erlang R16B (erts-5.10.1) [source] [async-threads:0] [hipe] [kernel-poll:false]

Eshell V5.10.1 (abort with ^G)
1> [1024].
[1024]
2> [1070,1085,1080,1082,1086,1076].
[1070,1085,1080,1082,1086,1076]
3> [229,228,246].
"åäö"
4> <<208,174,208,189,208,184,208,186,208,190,208,180>>.
<<208,174,208,189,208,184,208,186,208,190,208,180>>
5> <<229/utf8,228/utf8,246/utf8>>.
<<"åäö"/utf8>>

$ erl +pc unicode
Erlang R16B (erts-5.10.1) [source] [async-threads:0] [hipe] [kernel-poll:false]

Eshell V5.10.1 (abort with ^G)
1> [1024].
"Ѐ"
2> [1070,1085,1080,1082,1086,1076].
"Юникод"
3> [229,228,246].
"åäö"
4> <<208,174,208,189,208,184,208,186,208,190,208,180>>.
<<"Юникод"/utf8>>
5> <<229/utf8,228/utf8,246/utf8>>.
<<"åäö"/utf8>>

In the examples, you can see that the default Erlang shell interprets only characters from the ISO Latin1 range as
printable and only detects lists or binaries with those "printable" characters as containing string data. The valid UTF-8
binary containing the Russian word "######", is not printed as a string. When started with all Unicode characters
printable (+pc unicode), the shell outputs anything containing printable Unicode data (in binaries, either UTF-8
or bytewise encoded) as string data.

These heuristics are also used by io:format/2, io_lib:format/2, and friends when modifier t is used with
~p or ~P:

$ erl +pc latin1

1.3 Using Unicode in Erlang

Ericsson AB. All Rights Reserved.: STDLIB | 21

Erlang R16B (erts-5.10.1) [source] [async-threads:0] [hipe] [kernel-poll:false]

Eshell V5.10.1 (abort with ^G)
1> io:format("~tp~n",[{<<"åäö">>, <<"åäö"/utf8>>, <<208,174,208,189,208,184,208,186,208,190,208,180>>}]).
{<<"åäö">>,<<"åäö"/utf8>>,<<208,174,208,189,208,184,208,186,208,190,208,180>>}
ok

$ erl +pc unicode
Erlang R16B (erts-5.10.1) [source] [async-threads:0] [hipe] [kernel-poll:false]

Eshell V5.10.1 (abort with ^G)
1> io:format("~tp~n",[{<<"åäö">>, <<"åäö"/utf8>>, <<208,174,208,189,208,184,208,186,208,190,208,180>>}]).
{<<"åäö">>,<<"åäö"/utf8>>,<<"Юникод"/utf8>>}
ok

Notice that this only affects heuristic interpretation of lists and binaries on output. For example, the ~ts format
sequence always outputs a valid list of characters, regardless of the +pc setting, as the programmer has explicitly
requested string output.

1.3.7 The Interactive Shell
The interactive Erlang shell, when started to a terminal or started using command werl on Windows, can support
Unicode input and output.

On Windows, proper operation requires that a suitable font is installed and selected for the Erlang application to use.
If no suitable font is available on your system, try installing the DejaVu fonts, which are freely available, and then
select that font in the Erlang shell application.

On Unix-like operating systems, the terminal is to be able to handle UTF-8 on input and output (this is done by, for
example, modern versions of XTerm, KDE Konsole, and the Gnome terminal) and your locale settings must be proper.
As an example, a LANG environment variable can be set as follows:

$ echo $LANG
en_US.UTF-8

Most systems handle variable LC_CTYPE before LANG, so if that is set, it must be set to UTF-8:

$ echo $LC_CTYPE
en_US.UTF-8

The LANG or LC_CTYPE setting are to be consistent with what the terminal is capable of. There is no portable way
for Erlang to ask the terminal about its UTF-8 capacity, we have to rely on the language and character type settings.

To investigate what Erlang thinks about the terminal, the call io:getopts() can be used when the shell is started:

$ LC_CTYPE=en_US.ISO-8859-1 erl
Erlang R16B (erts-5.10.1) [source] [async-threads:0] [hipe] [kernel-poll:false]

Eshell V5.10.1 (abort with ^G)
1> lists:keyfind(encoding, 1, io:getopts()).
{encoding,latin1}
2> q().
ok

href

1.3 Using Unicode in Erlang

22 | Ericsson AB. All Rights Reserved.: STDLIB

$ LC_CTYPE=en_US.UTF-8 erl
Erlang R16B (erts-5.10.1) [source] [async-threads:0] [hipe] [kernel-poll:false]

Eshell V5.10.1 (abort with ^G)
1> lists:keyfind(encoding, 1, io:getopts()).
{encoding,unicode}
2>

When (finally?) everything is in order with the locale settings, fonts. and the terminal emulator, you have probably
found a way to input characters in the script you desire. For testing, the simplest way is to add some keyboard mappings
for other languages, usually done with some applet in your desktop environment.

In a KDE environment, select KDE Control Center (Personal Settings) > Regional and Accessibility > Keyboard
Layout.

On Windows XP, select Control Panel > Regional and Language Options, select tab Language, and click button
Details... in the square named Text Services and Input Languages.

Your environment probably provides similar means of changing the keyboard layout. Ensure that you have a way to
switch back and forth between keyboards easily if you are not used to this. For example, entering commands using a
Cyrillic character set is not easily done in the Erlang shell.

Now you are set up for some Unicode input and output. The simplest thing to do is to enter a string in the shell:

$ erl
Erlang R16B (erts-5.10.1) [source] [async-threads:0] [hipe] [kernel-poll:false]

Eshell V5.10.1 (abort with ^G)
1> lists:keyfind(encoding, 1, io:getopts()).
{encoding,unicode}
2> "Юникод".
"Юникод"
3> io:format("~ts~n", [v(2)]).
Юникод
ok
4>

While strings can be input as Unicode characters, the language elements are still limited to the ISO Latin-1 character
set. Only character constants and strings are allowed to be beyond that range:

$ erl
Erlang R16B (erts-5.10.1) [source] [async-threads:0] [hipe] [kernel-poll:false]

Eshell V5.10.1 (abort with ^G)
1> $ξ.
958
2> Юникод.
* 1: illegal character
2>

1.3.8 Unicode Filenames
Most modern operating systems support Unicode filenames in some way. There are many different ways to do this
and Erlang by default treats the different approaches differently:

1.3 Using Unicode in Erlang

Ericsson AB. All Rights Reserved.: STDLIB | 23

Mandatory Unicode file naming

Windows and, for most common uses, MacOS X enforce Unicode support for filenames. All files created in the
file system have names that can consistently be interpreted. In MacOS X, all filenames are retrieved in UTF-8
encoding. In Windows, each system call handling filenames has a special Unicode-aware variant, giving much
the same effect. There are no filenames on these systems that are not Unicode filenames. So, the default behavior
of the Erlang VM is to work in "Unicode filename translation mode". This means that a filename can be specified
as a Unicode list, which is automatically translated to the proper name encoding for the underlying operating
system and file system.

Doing, for example, a file:list_dir/1 on one of these systems can return Unicode lists with code points
> 255, depending on the content of the file system.

Transparent file naming

Most Unix operating systems have adopted a simpler approach, namely that Unicode file naming is not enforced,
but by convention. Those systems usually use UTF-8 encoding for Unicode filenames, but do not enforce it.
On such a system, a filename containing characters with code points from 128 through 255 can be named as
plain ISO Latin-1 or use UTF-8 encoding. As no consistency is enforced, the Erlang VM cannot do consistent
translation of all filenames.

By default on such systems, Erlang starts in utf8 filename mode if the terminal supports UTF-8, otherwise in
latin1 mode.

In latin1 mode, filenames are bytewise encoded. This allows for list representation of all filenames in the
system. However, a a file named "Östersund.txt", appears in file:list_dir/1 either as "Östersund.txt" (if
the filename was encoded in bytewise ISO Latin-1 by the program creating the file) or more probably as
[195,150,115,116,101,114,115,117,110,100], which is a list containing UTF-8 bytes (not what
you want). If you use Unicode filename translation on such a system, non-UTF-8 filenames are ignored by
functions like file:list_dir/1. They can be retrieved with function file:list_dir_all/1, but
wrongly encoded filenames appear as "raw filenames".

The Unicode file naming support was introduced in Erlang/OTP R14B01. A VM operating in Unicode filename
translation mode can work with files having names in any language or character set (as long as it is supported by
the underlying operating system and file system). The Unicode character list is used to denote filenames or directory
names. If the file system content is listed, you also get Unicode lists as return value. The support lies in the Kernel
and STDLIB modules, which is why most applications (that does not explicitly require the filenames to be in the ISO
Latin-1 range) benefit from the Unicode support without change.

On operating systems with mandatory Unicode filenames, this means that you more easily conform to the filenames of
other (non-Erlang) applications. You can also process filenames that, at least on Windows, were inaccessible (because
of having names that could not be represented in ISO Latin-1). Also, you avoid creating incomprehensible filenames
on MacOS X, as the vfs layer of the operating system accepts all your filenames as UTF-8 does not rewrite them.

For most systems, turning on Unicode filename translation is no problem even if it uses transparent file naming. Very
few systems have mixed filename encodings. A consistent UTF-8 named system works perfectly in Unicode filename
mode. It was still, however, considered experimental in Erlang/OTP R14B01 and is still not the default on such systems.

Unicode filename translation is turned on with switch +fnu. On Linux, a VM started without explicitly stating the
filename translation mode defaults to latin1 as the native filename encoding. On Windows and MacOS X, the default
behavior is that of Unicode filename translation. Therefore file:native_name_encoding/0 by default returns
utf8 on those systems (Windows does not use UTF-8 on the file system level, but this can safely be ignored by the
Erlang programmer). The default behavior can, as stated earlier, be changed using option +fnu or +fnl to the VM, see
the erl program. If the VM is started in Unicode filename translation mode, file:native_name_encoding/0
returns atom utf8. Switch +fnu can be followed by w, i, or e to control how wrongly encoded filenames are to
be reported.

1.3 Using Unicode in Erlang

24 | Ericsson AB. All Rights Reserved.: STDLIB

• w means that a warning is sent to the error_logger whenever a wrongly encoded filename is "skipped" in
directory listings. w is the default.

• i means that wrongly encoded filenames are silently ignored.

• e means that the API function returns an error whenever a wrongly encoded filename (or directory name) is
encountered.

Notice that file:read_link/1 always returns an error if the link points to an invalid filename.

In Unicode filename mode, filenames given to BIF open_port/2 with option {spawn_executable,...}
are also interpreted as Unicode. So is the parameter list specified in option args available when using
spawn_executable. The UTF-8 translation of arguments can be avoided using binaries, see section Notes About
Raw Filenames.

Notice that the file encoding options specified when opening a file has nothing to do with the filename encoding
convention. You can very well open files containing data encoded in UTF-8, but having filenames in bytewise
(latin1) encoding or conversely.

Note:
Erlang drivers and NIF-shared objects still cannot be named with names containing code points > 127. This
limitation will be removed in a future release. However, Erlang modules can, but it is definitely not a good idea
and is still considered experimental.

Notes About Raw Filenames
Raw filenames were introduced together with Unicode filename support in ERTS 5.8.2 (Erlang/OTP R14B01). The
reason "raw filenames" were introduced in the system was to be able to represent filenames, specified in different
encodings on the same system, consistently. It can seem practical to have the VM automatically translate a filename
that is not in UTF-8 to a list of Unicode characters, but this would open up for both duplicate filenames and other
inconsistent behavior.

Consider a directory containing a file named "björn" in ISO Latin-1, while the Erlang VM is operating in Unicode
filename mode (and therefore expects UTF-8 file naming). The ISO Latin-1 name is not valid UTF-8 and one can be
tempted to think that automatic conversion in, for example, file:list_dir/1 is a good idea. But what would
happen if we later tried to open the file and have the name as a Unicode list (magically converted from the ISO Latin-1
filename)? The VM converts the filename to UTF-8, as this is the encoding expected. Effectively this means trying
to open the file named <<"björn"/utf8>>. This file does not exist, and even if it existed it would not be the same file
as the one that was listed. We could even create two files named "björn", one named in UTF-8 encoding and one not.
If file:list_dir/1 would automatically convert the ISO Latin-1 filename to a list, we would get two identical
filenames as the result. To avoid this, we must differentiate between filenames that are properly encoded according to
the Unicode file naming convention (that is, UTF-8) and filenames that are invalid under the encoding. By the common
function file:list_dir/1, the wrongly encoded filenames are ignored in Unicode filename translation mode,
but by function file:list_dir_all/1 the filenames with invalid encoding are returned as "raw" filenames, that
is, as binaries.

The file module accepts raw filenames as input. open_port({spawn_executable, ...} ...)
also accepts them. As mentioned earlier, the arguments specified in the option list to
open_port({spawn_executable, ...} ...) undergo the same conversion as the filenames, meaning that
the executable is provided with arguments in UTF-8 as well. This translation is avoided consistently with how the
filenames are treated, by giving the argument as a binary.

To force Unicode filename translation mode on systems where this is not the default was considered experimental in
Erlang/OTP R14B01. This was because the initial implementation did not ignore wrongly encoded filenames, so that
raw filenames could spread unexpectedly throughout the system. As from Erlang/OTP R16B, the wrongly encoded

1.3 Using Unicode in Erlang

Ericsson AB. All Rights Reserved.: STDLIB | 25

filenames are only retrieved by special functions (such as file:list_dir_all/1). Since the impact on existing
code is therefore much lower it is now supported. Unicode filename translation is expected to be default in future
releases.

Even if you are operating without Unicode file naming translation automatically done by the VM, you can access and
create files with names in UTF-8 encoding by using raw filenames encoded as UTF-8. Enforcing the UTF-8 encoding
regardless of the mode the Erlang VM is started in can in some circumstances be a good idea, as the convention of
using UTF-8 filenames is spreading.

Notes About MacOS X
The vfs layer of MacOS X enforces UTF-8 filenames in an aggressive way. Older versions did this by refusing to
create non-UTF-8 conforming filenames, while newer versions replace offending bytes with the sequence "%HH",
where HH is the original character in hexadecimal notation. As Unicode translation is enabled by default on MacOS
X, the only way to come up against this is to either start the VM with flag +fnl or to use a raw filename in bytewise
(latin1) encoding. If using a raw filename, with a bytewise encoding containing characters from 127 through 255,
to create a file, the file cannot be opened using the same name as the one used to create it. There is no remedy for this
behavior, except keeping the filenames in the correct encoding.

MacOS X reorganizes the filenames so that the representation of accents, and so on, uses the "combining characters".
For example, character ö is represented as code points [111,776], where 111 is character o and 776 is the special
accent character "Combining Diaeresis". This way of normalizing Unicode is otherwise very seldom used. Erlang
normalizes those filenames in the opposite way upon retrieval, so that filenames using combining accents are not
passed up to the Erlang application. In Erlang, filename "björn" is retrieved as [98,106,246,114,110], not as
[98,106,117,776,114,110], although the file system can think differently. The normalization into combining
accents is redone when accessing files, so this can usually be ignored by the Erlang programmer.

1.3.9 Unicode in Environment and Parameters
Environment variables and their interpretation are handled much in the same way as filenames. If Unicode filenames
are enabled, environment variables as well as parameters to the Erlang VM are expected to be in Unicode.

If Unicode filenames are enabled, the calls to os:getenv/0,1, os:putenv/2, and os:unsetenv/1 handle
Unicode strings. On Unix-like platforms, the built-in functions translate environment variables in UTF-8 to/from
Unicode strings, possibly with code points > 255. On Windows, the Unicode versions of the environment system API
are used, and code points > 255 are allowed.

On Unix-like operating systems, parameters are expected to be UTF-8 without translation if Unicode filenames are
enabled.

1.3.10 Unicode-Aware Modules
Most of the modules in Erlang/OTP are Unicode-unaware in the sense that they have no notion of Unicode and should
not have. Typically they handle non-textual or byte-oriented data (such as gen_tcp).

Modules handling textual data (such as io_lib and string are sometimes subject to conversion or extension to
be able to handle Unicode characters.

Fortunately, most textual data has been stored in lists and range checking has been sparse, so modules like string
work well for Unicode lists with little need for conversion or extension.

Some modules are, however, changed to be explicitly Unicode-aware. These modules include:

unicode

The unicode module is clearly Unicode-aware. It contains functions for conversion between different Unicode
formats and some utilities for identifying byte order marks. Few programs handling Unicode data survive without
this module.

1.3 Using Unicode in Erlang

26 | Ericsson AB. All Rights Reserved.: STDLIB

io

The io module has been extended along with the actual I/O protocol to handle Unicode data. This means that
many functions require binaries to be in UTF-8, and there are modifiers to format control sequences to allow for
output of Unicode strings.

file, group, user

I/O-servers throughout the system can handle Unicode data and have options for converting data upon output or
input to/from the device. As shown earlier, the shell module has support for Unicode terminals and the file
module allows for translation to and from various Unicode formats on disk.

Reading and writing of files with Unicode data is, however, not best done with the file module, as its interface
is byte-oriented. A file opened with a Unicode encoding (like UTF-8) is best read or written using the io module.

re

The re module allows for matching Unicode strings as a special option. As the library is centered on matching
in binaries, the Unicode support is UTF-8-centered.

wx

The graphical library wx has extensive support for Unicode text.

The string module works perfectly for Unicode strings and ISO Latin-1 strings, except the language-dependent
functions string:to_upper/1 and string:to_lower/1, which are only correct for the ISO Latin-1 character
set. These two functions can never function correctly for Unicode characters in their current form, as there are language
and locale issues as well as multi-character mappings to consider when converting text between cases. Converting
case in an international environment is a large subject not yet addressed in OTP.

1.3.11 Unicode Data in Files
Although Erlang can handle Unicode data in many forms does not automatically mean that the content of any file can
be Unicode text. The external entities, such as ports and I/O servers, are not generally Unicode capable.

Ports are always byte-oriented, so before sending data that you are not sure is bytewise-encoded to a port, ensure to
encode it in a proper Unicode encoding. Sometimes this means that only part of the data must be encoded as, for
example, UTF-8. Some parts can be binary data (like a length indicator) or something else that must not undergo
character encoding, so no automatic translation is present.

I/O servers behave a little differently. The I/O servers connected to terminals (or stdout) can usually cope with
Unicode data regardless of the encoding option. This is convenient when one expects a modern environment but do
not want to crash when writing to an archaic terminal or pipe.

A file can have an encoding option that makes it generally usable by the io module (for example
{encoding,utf8}), but is by default opened as a byte-oriented file. The file module is byte-oriented, so only
ISO Latin-1 characters can be written using that module. Use the io module if Unicode data is to be output to a file
with other encoding than latin1 (bytewise encoding). It is slightly confusing that a file opened with, for example,
file:open(Name,[read,{encoding,utf8}]) cannot be properly read using file:read(File,N), but
using the io module to retrieve the Unicode data from it. The reason is that file:read and file:write (and
friends) are purely byte-oriented, and should be, as that is the way to access files other than text files, byte by byte. As
with ports, you can write encoded data into a file by "manually" converting the data to the encoding of choice (using
the unicode module or the bit syntax) and then output it on a bytewise (latin1) encoded file.

Recommendations:

• Use the file module for files opened for bytewise access ({encoding,latin1}).

• Use the io module when accessing files with any other encoding (for example {encoding,uf8}).

Functions reading Erlang syntax from files recognize the coding: comment and can therefore handle Unicode data
on input. When writing Erlang terms to a file, you are advised to insert such comments when applicable:

1.3 Using Unicode in Erlang

Ericsson AB. All Rights Reserved.: STDLIB | 27

$ erl +fna +pc unicode
Erlang R16B (erts-5.10.1) [source] [async-threads:0] [hipe] [kernel-poll:false]

Eshell V5.10.1 (abort with ^G)
1> file:write_file("test.term",<<"%% coding: utf-8\n[{\"Юникод\",4711}].\n"/utf8>>).
ok
2> file:consult("test.term").
{ok,[[{"Юникод",4711}]]}

1.3.12 Summary of Options
The Unicode support is controlled by both command-line switches, some standard environment variables, and the OTP
version you are using. Most options affect mainly how Unicode data is displayed, not the functionality of the APIs in
the standard libraries. This means that Erlang programs usually do not need to concern themselves with these options,
they are more for the development environment. An Erlang program can be written so that it works well regardless
of the type of system or the Unicode options that are in effect.

Here follows a summary of the settings affecting Unicode:

The LANG and LC_CTYPE environment variables

The language setting in the operating system mainly affects the shell. The terminal (that is, the group leader)
operates with {encoding, unicode} only if the environment tells it that UTF-8 is allowed. This setting is
to correspond to the terminal you are using.

The environment can also affect filename interpretation, if Erlang is started with flag +fna (which is default
from Erlang/OTP 17.0).

You can check the setting of this by calling io:getopts(), which gives you an option list containing
{encoding,unicode} or {encoding,latin1}.

The +pc {unicode|latin1} flag to erl(1)

This flag affects what is interpreted as string data when doing heuristic string detection in the shell and in io/
io_lib:format with the "~tp" and ~tP formatting instructions, as described earlier.

You can check this option by calling io:printable_range/0, which returns unicode or latin1. To
be compatible with future (expected) extensions to the settings, rather use io_lib:printable_list/1 to
check if a list is printable according to the setting. That function takes into account new possible settings returned
from io:printable_range/0.

The +fn{l|u|a} [{w|i|e}] flag to erl(1)

This flag affects how the filenames are to be interpreted. On operating systems with transparent file naming,
this must be specified to allow for file naming in Unicode characters (and for correct interpretation of filenames
containing characters > 255).

• +fnl means bytewise interpretation of filenames, which was the usual way to represent ISO Latin-1
filenames before UTF-8 file naming got widespread.

• +fnu means that filenames are encoded in UTF-8, which is nowadays the common scheme (although not
enforced).

• +fna means that you automatically select between +fnl and +fnu, based on environment variables LANG
and LC_CTYPE. This is optimistic heuristics indeed, nothing enforces a user to have a terminal with the
same encoding as the file system, but this is usually the case. This is the default on all Unix-like operating
systems, except MacOS X.

The filename translation mode can be read with function file:native_name_encoding/0, which returns
latin1 (bytewise encoding) or utf8.

1.3 Using Unicode in Erlang

28 | Ericsson AB. All Rights Reserved.: STDLIB

epp:default_encoding/0

This function returns the default encoding for Erlang source files (if no encoding comment is present) in the
currently running release. In Erlang/OTP R16B, latin1 (bytewise encoding) was returned. As from Erlang/
OTP 17.0, utf8 is returned.

The encoding of each file can be specified using comments as described in the epp(3) module.

io:setopts/1,2 and flags -oldshell/-noshell

When Erlang is started with -oldshell or -noshell, the I/O server for standard_io is by default set to
bytewise encoding, while an interactive shell defaults to what the environment variables says.

You can set the encoding of a file or other I/O server with function io:setopts/2. This can also be
set when opening a file. Setting the terminal (or other standard_io server) unconditionally to option
{encoding,utf8} implies that UTF-8 encoded characters are written to the device, regardless of how Erlang
was started or the user's environment.

Opening files with option encoding is convenient when writing or reading text files in a known encoding.

You can retrieve the encoding setting for an I/O server with function io:getopts().

1.3.13 Recipes
When starting with Unicode, one often stumbles over some common issues. This section describes some methods of
dealing with Unicode data.

Byte Order Marks
A common method of identifying encoding in text files is to put a Byte Order Mark (BOM) first in the file. The BOM
is the code point 16#FEFF encoded in the same way as the remaining file. If such a file is to be read, the first few bytes
(depending on encoding) are not part of the text. This code outlines how to open a file that is believed to have a BOM,
and sets the files encoding and position for further sequential reading (preferably using the io module).

Notice that error handling is omitted from the code:

open_bom_file_for_reading(File) ->
 {ok,F} = file:open(File,[read,binary]),
 {ok,Bin} = file:read(F,4),
 {Type,Bytes} = unicode:bom_to_encoding(Bin),
 file:position(F,Bytes),
 io:setopts(F,[{encoding,Type}]),
 {ok,F}.

Function unicode:bom_to_encoding/1 identifies the encoding from a binary of at least four bytes. It returns,
along with a term suitable for setting the encoding of the file, the byte length of the BOM, so that the file position can
be set accordingly. Notice that function file:position/2 always works on byte-offsets, so that the byte length
of the BOM is needed.

To open a file for writing and place the BOM first is even simpler:

open_bom_file_for_writing(File,Encoding) ->
 {ok,F} = file:open(File,[write,binary]),
 ok = file:write(File,unicode:encoding_to_bom(Encoding)),
 io:setopts(F,[{encoding,Encoding}]),
 {ok,F}.

1.3 Using Unicode in Erlang

Ericsson AB. All Rights Reserved.: STDLIB | 29

The file is in both these cases then best processed using the io module, as the functions in that module can handle
code points beyond the ISO Latin-1 range.

Formatted I/O
When reading and writing to Unicode-aware entities, like a file opened for Unicode translation, you probably want to
format text strings using the functions in the io module or the io_lib module. For backward compatibility reasons,
these functions do not accept any list as a string, but require a special translation modifier when working with Unicode
texts. The modifier is t. When applied to control character s in a formatting string, it accepts all Unicode code points
and expects binaries to be in UTF-8:

1> io:format("~ts~n",[<<"åäö"/utf8>>]).
åäö
ok
2> io:format("~s~n",[<<"åäö"/utf8>>]).
Ã¥Ã¤Ã¶
ok

Clearly, the second io:format/2 gives undesired output, as the UTF-8 binary is not in latin1. For backward
compatibility, the non-prefixed control character s expects bytewise-encoded ISO Latin-1 characters in binaries and
lists containing only code points < 256.

As long as the data is always lists, modifier t can be used for any string, but when binary data is involved, care must
be taken to make the correct choice of formatting characters. A bytewise-encoded binary is also interpreted as a string,
and printed even when using ~ts, but it can be mistaken for a valid UTF-8 string. Avoid therefore using the ~ts
control if the binary contains bytewise-encoded characters and not UTF-8.

Function io_lib:format/2 behaves similarly. It is defined to return a deep list of characters and the output can
easily be converted to binary data for outputting on any device by a simple erlang:list_to_binary/1. When
the translation modifier is used, the list can, however, contain characters that cannot be stored in one byte. The call to
erlang:list_to_binary/1 then fails. However, if the I/O server you want to communicate with is Unicode-
aware, the returned list can still be used directly:

$ erl +pc unicode
Erlang R16B (erts-5.10.1) [source] [async-threads:0] [hipe] [kernel-poll:false]

Eshell V5.10.1 (abort with ^G)
1> io_lib:format("~ts~n", ["Γιούνικοντ"]).
["Γιούνικοντ","\n"]
2> io:put_chars(io_lib:format("~ts~n", ["Γιούνικοντ"])).
Γιούνικοντ
ok

The Unicode string is returned as a Unicode list, which is recognized as such, as the Erlang shell uses the Unicode
encoding (and is started with all Unicode characters considered printable). The Unicode list is valid input to function
io:put_chars/2, so data can be output on any Unicode-capable device. If the device is a terminal, characters are
output in format \x{H...} if encoding is latin1. Otherwise in UTF-8 (for the non-interactive terminal: "oldshell"
or "noshell") or whatever is suitable to show the character properly (for an interactive terminal: the regular shell).

So, you can always send Unicode data to the standard_io device. Files, however, accept only Unicode code points
beyond ISO Latin-1 if encoding is set to something else than latin1.

1.3 Using Unicode in Erlang

30 | Ericsson AB. All Rights Reserved.: STDLIB

Heuristic Identification of UTF-8
While it is strongly encouraged that the encoding of characters in binary data is known before processing, that is not
always possible. On a typical Linux system, there is a mix of UTF-8 and ISO Latin-1 text files, and there are seldom
any BOMs in the files to identify them.

UTF-8 is designed so that ISO Latin-1 characters with numbers beyond the 7-bit ASCII range are seldom considered
valid when decoded as UTF-8. Therefore one can usually use heuristics to determine if a file is in UTF-8 or if it
is encoded in ISO Latin-1 (one byte per character). The unicode module can be used to determine if data can be
interpreted as UTF-8:

heuristic_encoding_bin(Bin) when is_binary(Bin) ->
 case unicode:characters_to_binary(Bin,utf8,utf8) of
 Bin ->
 utf8;
 _ ->
 latin1
 end.

If you do not have a complete binary of the file content, you can instead chunk through
the file and check part by part. The return-tuple {incomplete,Decoded,Rest} from function
unicode:characters_to_binary/1,2,3 comes in handy. The incomplete rest from one chunk of data read
from the file is prepended to the next chunk and we therefore avoid the problem of character boundaries when reading
chunks of bytes in UTF-8 encoding:

heuristic_encoding_file(FileName) ->
 {ok,F} = file:open(FileName,[read,binary]),
 loop_through_file(F,<<>>,file:read(F,1024)).

loop_through_file(_,<<>>,eof) ->
 utf8;
loop_through_file(_,_,eof) ->
 latin1;
loop_through_file(F,Acc,{ok,Bin}) when is_binary(Bin) ->
 case unicode:characters_to_binary([Acc,Bin]) of
 {error,_,_} ->
 latin1;
 {incomplete,_,Rest} ->
 loop_through_file(F,Rest,file:read(F,1024));
 Res when is_binary(Res) ->
 loop_through_file(F,<<>>,file:read(F,1024))
 end.

Another option is to try to read the whole file in UTF-8 encoding and see if it fails. Here we need to read the file using
function io:get_chars/3, as we have to read characters with a code point > 255:

heuristic_encoding_file2(FileName) ->
 {ok,F} = file:open(FileName,[read,binary,{encoding,utf8}]),
 loop_through_file2(F,io:get_chars(F,'',1024)).

loop_through_file2(_,eof) ->
 utf8;
loop_through_file2(_,{error,_Err}) ->
 latin1;
loop_through_file2(F,Bin) when is_binary(Bin) ->

1.3 Using Unicode in Erlang

Ericsson AB. All Rights Reserved.: STDLIB | 31

 loop_through_file2(F,io:get_chars(F,'',1024)).

Lists of UTF-8 Bytes
For various reasons, you can sometimes have a list of UTF-8 bytes. This is not a regular string of Unicode characters, as
each list element does not contain one character. Instead you get the "raw" UTF-8 encoding that you have in binaries.
This is easily converted to a proper Unicode string by first converting byte per byte into a binary, and then converting
the binary of UTF-8 encoded characters back to a Unicode string:

utf8_list_to_string(StrangeList) ->
 unicode:characters_to_list(list_to_binary(StrangeList)).

Double UTF-8 Encoding
When working with binaries, you can get the horrible "double UTF-8 encoding", where strange characters are encoded
in your binaries or files. In other words, you can get a UTF-8 encoded binary that for the second time is encoded
as UTF-8. A common situation is where you read a file, byte by byte, but the content is already UTF-8. If you then
convert the bytes to UTF-8, using, for example, the unicode module, or by writing to a file opened with option
{encoding,utf8}, you have each byte in the input file encoded as UTF-8, not each character of the original text
(one character can have been encoded in many bytes). There is no real remedy for this other than to be sure of which
data is encoded in which format, and never convert UTF-8 data (possibly read byte by byte from a file) into UTF-8
again.

By far the most common situation where this occurs, is when you get lists of UTF-8 instead of proper Unicode strings,
and then convert them to UTF-8 in a binary or on a file:

wrong_thing_to_do() ->
 {ok,Bin} = file:read_file("an_utf8_encoded_file.txt"),
 MyList = binary_to_list(Bin), %% Wrong! It is an utf8 binary!
 {ok,C} = file:open("catastrophe.txt",[write,{encoding,utf8}]),
 io:put_chars(C,MyList), %% Expects a Unicode string, but get UTF-8
 %% bytes in a list!
 file:close(C). %% The file catastrophe.txt contains more or less unreadable
 %% garbage!

Ensure you know what a binary contains before converting it to a string. If no other option exists, try heuristics:

if_you_can_not_know() ->
 {ok,Bin} = file:read_file("maybe_utf8_encoded_file.txt"),
 MyList = case unicode:characters_to_list(Bin) of
 L when is_list(L) ->
 L;
 _ ->
 binary_to_list(Bin) %% The file was bytewise encoded
 end,
 %% Now we know that the list is a Unicode string, not a list of UTF-8 bytes
 {ok,G} = file:open("greatness.txt",[write,{encoding,utf8}]),
 io:put_chars(G,MyList), %% Expects a Unicode string, which is what it gets!
 file:close(G). %% The file contains valid UTF-8 encoded Unicode characters!

1.3 Using Unicode in Erlang

32 | Ericsson AB. All Rights Reserved.: STDLIB

2 Reference Manual

STDLIB

Ericsson AB. All Rights Reserved.: STDLIB | 33

STDLIB
Application

The STDLIB application is mandatory in the sense that the minimal system based on Erlang/OTP consists of Kernel
and STDLIB. The STDLIB application contains no services.

Configuration
The following configuration parameters are defined for the STDLIB application. For more information about
configuration parameters, see the app(4) module in Kernel.

shell_esc = icl | abort

Can be used to change the behavior of the Erlang shell when ^G is pressed.

restricted_shell = module()

Can be used to run the Erlang shell in restricted mode.

shell_catch_exception = boolean()

Can be used to set the exception handling of the evaluator process of Erlang shell.

shell_history_length = integer() >= 0

Can be used to determine how many commands are saved by the Erlang shell.

shell_prompt_func = {Mod, Func} | default

where

• Mod = atom()

• Func = atom()

Can be used to set a customized Erlang shell prompt function.

shell_saved_results = integer() >= 0

Can be used to determine how many results are saved by the Erlang shell.

shell_strings = boolean()

Can be used to determine how the Erlang shell outputs lists of integers.

See Also
app(4), application(3), shell(3)

array

34 | Ericsson AB. All Rights Reserved.: STDLIB

array
Erlang module

Functional, extendible arrays. Arrays can have fixed size, or can grow automatically as needed. A default value is used
for entries that have not been explicitly set.

Arrays uses zero-based indexing. This is a deliberate design choice and differs from other Erlang data structures, for
example, tuples.

Unless specified by the user when the array is created, the default value is the atom undefined. There is no
difference between an unset entry and an entry that has been explicitly set to the same value as the default one (compare
reset/2). If you need to differentiate between unset and set entries, ensure that the default value cannot be confused
with the values of set entries.

The array never shrinks automatically. If an index I has been used to set an entry successfully, all indices in the range
[0,I] stay accessible unless the array size is explicitly changed by calling resize/2.

Examples:

Create a fixed-size array with entries 0-9 set to undefined:

A0 = array:new(10).
10 = array:size(A0).

Create an extendible array and set entry 17 to true, causing the array to grow automatically:

A1 = array:set(17, true, array:new()).
18 = array:size(A1).

Read back a stored value:

true = array:get(17, A1).

Accessing an unset entry returns default value:

undefined = array:get(3, A1)

Accessing an entry beyond the last set entry also returns the default value, if the array does not have fixed size:

undefined = array:get(18, A1).

"Sparse" functions ignore default-valued entries:

A2 = array:set(4, false, A1).
[{4, false}, {17, true}] = array:sparse_to_orddict(A2).

array

Ericsson AB. All Rights Reserved.: STDLIB | 35

An extendible array can be made fixed-size later:

A3 = array:fix(A2).

A fixed-size array does not grow automatically and does not allow accesses beyond the last set entry:

{'EXIT',{badarg,_}} = (catch array:set(18, true, A3)).
{'EXIT',{badarg,_}} = (catch array:get(18, A3)).

Data Types
array(Type)
A functional, extendible array. The representation is not documented and is subject to change without notice. Notice
that arrays cannot be directly compared for equality.

array() = array(term())
array_indx() = integer() >= 0
array_opts() = array_opt() | [array_opt()]
array_opt() =
 {fixed, boolean()} |
 fixed |
 {default, Type :: term()} |
 {size, N :: integer() >= 0} |
 (N :: integer() >= 0)
indx_pairs(Type) = [indx_pair(Type)]
indx_pair(Type) = {Index :: array_indx(), Type}

Exports

default(Array :: array(Type)) -> Value :: Type
Gets the value used for uninitialized entries.

See also new/2.

fix(Array :: array(Type)) -> array(Type)
Fixes the array size. This prevents it from growing automatically upon insertion.

See also set/3 and relax/1.

foldl(Function, InitialAcc :: A, Array :: array(Type)) -> B
Types:

Function =
 fun((Index :: array_indx(), Value :: Type, Acc :: A) -> B)

Folds the array elements using the specified function and initial accumulator value. The elements are visited in order
from the lowest index to the highest. If Function is not a function, the call fails with reason badarg.

See also foldr/3, map/2, sparse_foldl/3.

array

36 | Ericsson AB. All Rights Reserved.: STDLIB

foldr(Function, InitialAcc :: A, Array :: array(Type)) -> B
Types:

Function =
 fun((Index :: array_indx(), Value :: Type, Acc :: A) -> B)

Folds the array elements right-to-left using the specified function and initial accumulator value. The elements are
visited in order from the highest index to the lowest. If Function is not a function, the call fails with reason badarg.

See also foldl/3, map/2.

from_list(List :: [Value :: Type]) -> array(Type)
Equivalent to from_list(List, undefined).

from_list(List :: [Value :: Type], Default :: term()) ->
 array(Type)
Converts a list to an extendible array. Default is used as the value for uninitialized entries of the array. If List is
not a proper list, the call fails with reason badarg.

See also new/2, to_list/1.

from_orddict(Orddict :: indx_pairs(Value :: Type)) -> array(Type)
Equivalent to from_orddict(Orddict, undefined).

from_orddict(Orddict :: indx_pairs(Value :: Type),
 Default :: Type) ->
 array(Type)
Converts an ordered list of pairs {Index, Value} to a corresponding extendible array. Default is used as the
value for uninitialized entries of the array. If Orddict is not a proper, ordered list of pairs whose first elements are
non-negative integers, the call fails with reason badarg.

See also new/2, to_orddict/1.

get(I :: array_indx(), Array :: array(Type)) -> Value :: Type
Gets the value of entry I. If I is not a non-negative integer, or if the array has fixed size and I is larger than the
maximum index, the call fails with reason badarg.

If the array does not have fixed size, the default value for any index I greater than size(Array)-1 is returned.

See also set/3.

is_array(X :: term()) -> boolean()
Returns true if X is an array, otherwise false. Notice that the check is only shallow, as there is no guarantee that
X is a well-formed array representation even if this function returns true.

is_fix(Array :: array()) -> boolean()
Checks if the array has fixed size. Returns true if the array is fixed, otherwise false.

See also fix/1.

array

Ericsson AB. All Rights Reserved.: STDLIB | 37

map(Function, Array :: array(Type1)) -> array(Type2)
Types:

Function = fun((Index :: array_indx(), Type1) -> Type2)
Maps the specified function onto each array element. The elements are visited in order from the lowest index to the
highest. If Function is not a function, the call fails with reason badarg.

See also foldl/3, foldr/3, sparse_map/2.

new() -> array()
Creates a new, extendible array with initial size zero.

See also new/1, new/2.

new(Options :: array_opts()) -> array()
Creates a new array according to the specified otions. By default, the array is extendible and has initial size zero.
Array indices start at 0.

Options is a single term or a list of terms, selected from the following:

N::integer() >= 0 or {size, N::integer() >= 0}

Specifies the initial array size; this also implies {fixed, true}. If N is not a non-negative integer, the call
fails with reason badarg.

fixed or {fixed, true}

Creates a fixed-size array. See also fix/1.

{fixed, false}

Creates an extendible (non-fixed-size) array.

{default, Value}

Sets the default value for the array to Value.

Options are processed in the order they occur in the list, that is, later options have higher precedence.

The default value is used as the value of uninitialized entries, and cannot be changed once the array has been created.

Examples:

array:new(100)

creates a fixed-size array of size 100.

array:new({default,0})

creates an empty, extendible array whose default value is 0.

array:new([{size,10},{fixed,false},{default,-1}])

creates an extendible array with initial size 10 whose default value is -1.

See also fix/1, from_list/2, get/2, new/0, new/2, set/3.

array

38 | Ericsson AB. All Rights Reserved.: STDLIB

new(Size :: integer() >= 0, Options :: array_opts()) -> array()
Creates a new array according to the specified size and options. If Size is not a non-negative integer, the call fails
with reason badarg. By default, the array has fixed size. Notice that any size specifications in Options override
parameter Size.

If Options is a list, this is equivalent to new([{size, Size} | Options], otherwise it is equivalent to
new([{size, Size} | [Options]]. However, using this function directly is more efficient.

Example:

array:new(100, {default,0})

creates a fixed-size array of size 100, whose default value is 0.

See also new/1.

relax(Array :: array(Type)) -> array(Type)
Makes the array resizable. (Reverses the effects of fix/1.)

See also fix/1.

reset(I :: array_indx(), Array :: array(Type)) -> array(Type)
Resets entry I to the default value for the array. If the value of entry I is the default value, the array is returned
unchanged. Reset never changes the array size. Shrinking can be done explicitly by calling resize/2.

If I is not a non-negative integer, or if the array has fixed size and I is larger than the maximum index, the call fails
with reason badarg; compare set/3

See also new/2, set/3.

resize(Array :: array(Type)) -> array(Type)
Changes the array size to that reported by sparse_size/1. If the specified array has fixed size, also the resulting
array has fixed size.

See also resize/2, sparse_size/1.

resize(Size :: integer() >= 0, Array :: array(Type)) ->
 array(Type)
Change the array size. If Size is not a non-negative integer, the call fails with reason badarg. If the specified array
has fixed size, also the resulting array has fixed size.

set(I :: array_indx(), Value :: Type, Array :: array(Type)) ->
 array(Type)
Sets entry I of the array to Value. If I is not a non-negative integer, or if the array has fixed size and I is larger than
the maximum index, the call fails with reason badarg.

If the array does not have fixed size, and I is greater than size(Array)-1, the array grows to size I+1.

See also get/2, reset/2.

array

Ericsson AB. All Rights Reserved.: STDLIB | 39

size(Array :: array()) -> integer() >= 0
Gets the number of entries in the array. Entries are numbered from 0 to size(Array)-1. Hence, this is also the
index of the first entry that is guaranteed to not have been previously set.

See also set/3, sparse_size/1.

sparse_foldl(Function, InitialAcc :: A, Array :: array(Type)) -> B
Types:

Function =
 fun((Index :: array_indx(), Value :: Type, Acc :: A) -> B)

Folds the array elements using the specified function and initial accumulator value, skipping default-valued entries.
The elements are visited in order from the lowest index to the highest. If Function is not a function, the call fails
with reason badarg.

See also foldl/3, sparse_foldr/3.

sparse_foldr(Function, InitialAcc :: A, Array :: array(Type)) -> B
Types:

Function =
 fun((Index :: array_indx(), Value :: Type, Acc :: A) -> B)

Folds the array elements right-to-left using the specified function and initial accumulator value, skipping default-
valued entries. The elements are visited in order from the highest index to the lowest. If Function is not a function,
the call fails with reason badarg.

See also foldr/3, sparse_foldl/3.

sparse_map(Function, Array :: array(Type1)) -> array(Type2)
Types:

Function = fun((Index :: array_indx(), Type1) -> Type2)
Maps the specified function onto each array element, skipping default-valued entries. The elements are visited in order
from the lowest index to the highest. If Function is not a function, the call fails with reason badarg.

See also map/2.

sparse_size(Array :: array()) -> integer() >= 0
Gets the number of entries in the array up until the last non-default-valued entry. That is, returns I+1 if I is the last
non-default-valued entry in the array, or zero if no such entry exists.

See also resize/1, size/1.

sparse_to_list(Array :: array(Type)) -> [Value :: Type]
Converts the array to a list, skipping default-valued entries.

See also to_list/1.

sparse_to_orddict(Array :: array(Type)) ->
 indx_pairs(Value :: Type)
Converts the array to an ordered list of pairs {Index, Value}, skipping default-valued entries.

See also to_orddict/1.

array

40 | Ericsson AB. All Rights Reserved.: STDLIB

to_list(Array :: array(Type)) -> [Value :: Type]
Converts the array to a list.

See also from_list/2, sparse_to_list/1.

to_orddict(Array :: array(Type)) -> indx_pairs(Value :: Type)
Converts the array to an ordered list of pairs {Index, Value}.

See also from_orddict/2, sparse_to_orddict/1.

assert.hrl.xml

Ericsson AB. All Rights Reserved.: STDLIB | 41

assert.hrl.xml
Name

The include file assert.hrl provides macros for inserting assertions in your program code.

Include the following directive in the module from which the function is called:

-include_lib("stdlib/include/assert.hrl").

When an assertion succeeds, the assert macro yields the atom ok. When an assertion fails, an exception of type error
is generated. The associated error term has the form {Macro, Info}. Macro is the macro name, for example,
assertEqual. Info is a list of tagged values, such as [{module, M}, {line, L}, ...], which gives
more information about the location and cause of the exception. All entries in the Info list are optional; do not rely
programatically on any of them being present.

If the macro NOASSERT is defined when assert.hrl is read by the compiler, the macros are defined as equivalent
to the atom ok. The test is not performed and there is no cost at runtime.

For example, using erlc to compile your modules, the following disable all assertions:

erlc -DNOASSERT=true *.erl

The value of NOASSERT does not matter, only the fact that it is defined.

A few other macros also have effect on the enabling or disabling of assertions:

• If NODEBUG is defined, it implies NOASSERT, unless DEBUG is also defined, which is assumed to take precedence.

• If ASSERT is defined, it overrides NOASSERT, that is, the assertions remain enabled.

If you prefer, you can thus use only DEBUG/NODEBUG as the main flags to control the behavior of the assertions
(which is useful if you have other compiler conditionals or debugging macros controlled by those flags), or you can
use ASSERT/NOASSERT to control only the assert macros.

Macros
assert(BoolExpr)

Tests that BoolExpr completes normally returning true.

assertNot(BoolExpr)

Tests that BoolExpr completes normally returning false.

assertMatch(GuardedPattern, Expr)

Tests that Expr completes normally yielding a value that matches GuardedPattern, for example:

?assertMatch({bork, _}, f())

Notice that a guard when ... can be included:

assert.hrl.xml

42 | Ericsson AB. All Rights Reserved.: STDLIB

?assertMatch({bork, X} when X > 0, f())

assertNotMatch(GuardedPattern, Expr)

Tests that Expr completes normally yielding a value that does not match GuardedPattern.

As in assertMatch, GuardedPattern can have a when part.

assertEqual(ExpectedValue, Expr)

Tests that Expr completes normally yielding a value that is exactly equal to ExpectedValue.

assertNotEqual(ExpectedValue, Expr)

Tests that Expr completes normally yielding a value that is not exactly equal to ExpectedValue.

assertException(Class, Term, Expr)

Tests that Expr completes abnormally with an exception of type Class and with the associated Term. The
assertion fails if Expr raises a different exception or if it completes normally returning any value.

Notice that both Class and Term can be guarded patterns, as in assertMatch.

assertNotException(Class, Term, Expr)

Tests that Expr does not evaluate abnormally with an exception of type Class and with the associated Term.
The assertion succeeds if Expr raises a different exception or if it completes normally returning any value.

As in assertException, both Class and Term can be guarded patterns.

assertError(Term, Expr)

Equivalent to assertException(error, Term, Expr)

assertExit(Term, Expr)

Equivalent to assertException(exit, Term, Expr)

assertThrow(Term, Expr)

Equivalent to assertException(throw, Term, Expr)

See Also
compile(3), erlc(3)

base64

Ericsson AB. All Rights Reserved.: STDLIB | 43

base64
Erlang module

Provides base64 encode and decode, see RFC 2045.

Data Types
ascii_string() = [1..255]
ascii_binary() = binary()
A binary() with ASCII characters in the range 1 to 255.

Exports

decode(Base64) -> Data
decode_to_string(Base64) -> DataString
mime_decode(Base64) -> Data
mime_decode_to_string(Base64) -> DataString
Types:

Base64 = ascii_string() | ascii_binary()
Data = ascii_binary()
DataString = ascii_string()

Decodes a base64-encoded string to plain ASCII. See RFC 4648.

mime_decode/1 and mime_decode_to_string/1 strip away illegal characters, while decode/1 and
decode_to_string/1 only strip away whitespace characters.

encode(Data) -> Base64
encode_to_string(Data) -> Base64String
Types:

Data = ascii_string() | ascii_binary()
Base64 = ascii_binary()
Base64String = ascii_string()

Encodes a plain ASCII string into base64. The result is 33% larger than the data.

href
href

beam_lib

44 | Ericsson AB. All Rights Reserved.: STDLIB

beam_lib
Erlang module

This module provides an interface to files created by the BEAM Compiler ("BEAM files"). The format used, a variant
of "EA IFF 1985" Standard for Interchange Format Files, divides data into chunks.

Chunk data can be returned as binaries or as compound terms. Compound terms are returned when chunks are
referenced by names (atoms) rather than identifiers (strings). The recognized names and the corresponding identifiers
are as follows:

• abstract_code ("Abst")

• atoms ("Atom")

• attributes ("Attr")

• compile_info ("CInf")

• exports ("ExpT")

• imports ("ImpT")

• indexed_imports ("ImpT")

• labeled_exports ("ExpT")

• labeled_locals ("LocT")

• locals ("LocT")

Debug Information/Abstract Code
Option debug_info can be specified to the Compiler (see compile(3)) to have debug information in the form
of abstract code (see section The Abstract Format in the ERTS User's Guide) stored in the abstract_code chunk.
Tools such as Debugger and Xref require the debug information to be included.

Warning:
Source code can be reconstructed from the debug information. To prevent this, use encrypted debug information
(see below).

The debug information can also be removed from BEAM files using strip/1, strip_files/1, and/or
strip_release/1.

Reconstruct Source Code
The following example shows how to reconstruct source code from the debug information in a BEAM file Beam:

{ok,{_,[{abstract_code,{_,AC}}]}} = beam_lib:chunks(Beam,[abstract_code]).
io:fwrite("~s~n", [erl_prettypr:format(erl_syntax:form_list(AC))]).

Encrypted Debug Information
The debug information can be encrypted to keep the source code secret, but still be able to use tools such as Debugger
or Xref.

beam_lib

Ericsson AB. All Rights Reserved.: STDLIB | 45

To use encrypted debug information, a key must be provided to the compiler and beam_lib. The key is specified
as a string. It is recommended that the string contains at least 32 characters and that both upper and lower case letters
as well as digits and special characters are used.

The default type (and currently the only type) of crypto algorithm is des3_cbc, three rounds of DES. The key string
is scrambled using erlang:md5/1 to generate the keys used for des3_cbc.

Note:
As far as we know by the time of writing, it is infeasible to break des3_cbc encryption without any knowledge
of the key. Therefore, as long as the key is kept safe and is unguessable, the encrypted debug information should
be safe from intruders.

The key can be provided in the following two ways:

• Use Compiler option {debug_info,Key}, see compile(3) and function crypto_key_fun/1 to register
a fun that returns the key whenever beam_lib must decrypt the debug information.

If no such fun is registered, beam_lib instead searches for an .erlang.crypt file, see the next section.

• Store the key in a text file named .erlang.crypt.

In this case, Compiler option encrypt_debug_info can be used, see compile(3).

.erlang.crypt
beam_lib searches for .erlang.crypt in the current directory and then the home directory for the current user.
If the file is found and contains a key, beam_lib implicitly creates a crypto key fun and registers it.

File .erlang.crypt is to contain a single list of tuples:

{debug_info, Mode, Module, Key}

Mode is the type of crypto algorithm; currently, the only allowed value is des3_cbc. Module is either an atom,
in which case Key is only used for the module Module, or [], in which case Key is used for all modules. Key is
the non-empty key string.

Key in the first tuple where both Mode and Module match is used.

The following is an example of an .erlang.crypt file that returns the same key for all modules:

[{debug_info, des3_cbc, [], "%>7}|pc/DM6Cga*68$Mw]L#&_Gejr]G^"}].

The following is a slightly more complicated example of an .erlang.crypt providing one key for module t and
another key for all other modules:

[{debug_info, des3_cbc, t, "My KEY"},
 {debug_info, des3_cbc, [], "%>7}|pc/DM6Cga*68$Mw]L#&_Gejr]G^"}].

beam_lib

46 | Ericsson AB. All Rights Reserved.: STDLIB

Note:
Do not use any of the keys in these examples. Use your own keys.

Data Types
beam() = module() | file:filename() | binary()
Each of the functions described below accept either the module name, the filename, or a binary containing the BEAM
module.

chunkdata() =
 {chunkid(), dataB()} |
 {abstract_code, abst_code()} |
 {attributes, [attrib_entry()]} |
 {compile_info, [compinfo_entry()]} |
 {exports, [{atom(), arity()}]} |
 {labeled_exports, [labeled_entry()]} |
 {imports, [mfa()]} |
 {indexed_imports,
 [{index(), module(), Function :: atom(), arity()}]} |
 {locals, [{atom(), arity()}]} |
 {labeled_locals, [labeled_entry()]} |
 {atoms, [{integer(), atom()}]}
The list of attributes is sorted on Attribute (in attrib_entry()) and each attribute name occurs once in the
list. The attribute values occur in the same order as in the file. The lists of functions are also sorted.

chunkid() = nonempty_string()
"Abst" | "Attr" | "CInf" | "ExpT" | "ImpT" | "LocT" | "Atom"

dataB() = binary()
abst_code() =
 {AbstVersion :: atom(), forms()} | no_abstract_code
It is not checked that the forms conform to the abstract format indicated by AbstVersion. no_abstract_code
means that chunk "Abst" is present, but empty.

forms() = [erl_parse:abstract_form()]
compinfo_entry() = {InfoKey :: atom(), term()}
attrib_entry() =
 {Attribute :: atom(), [AttributeValue :: term()]}
labeled_entry() = {Function :: atom(), arity(), label()}
index() = integer() >= 0
label() = integer()
chunkref() = chunkname() | chunkid()
chunkname() =
 abstract_code |
 attributes |
 compile_info |
 exports |
 labeled_exports |
 imports |

beam_lib

Ericsson AB. All Rights Reserved.: STDLIB | 47

 indexed_imports |
 locals |
 labeled_locals |
 atoms
chnk_rsn() =
 {unknown_chunk, file:filename(), atom()} |
 {key_missing_or_invalid, file:filename(), abstract_code} |
 info_rsn()
info_rsn() =
 {chunk_too_big,
 file:filename(),
 chunkid(),
 ChunkSize :: integer() >= 0,
 FileSize :: integer() >= 0} |
 {invalid_beam_file,
 file:filename(),
 Position :: integer() >= 0} |
 {invalid_chunk, file:filename(), chunkid()} |
 {missing_chunk, file:filename(), chunkid()} |
 {not_a_beam_file, file:filename()} |
 {file_error, file:filename(), file:posix()}

Exports

all_chunks(File :: beam()) ->
 {ok, beam_lib, [{chunkid(), dataB()}]}
Reads chunk data for all chunks.

build_module(Chunks) -> {ok, Binary}
Types:

Chunks = [{chunkid(), dataB()}]
Binary = binary()

Builds a BEAM module (as a binary) from a list of chunks.

chunks(Beam, ChunkRefs) ->
 {ok, {module(), [chunkdata()]}} |
 {error, beam_lib, chnk_rsn()}
Types:

Beam = beam()
ChunkRefs = [chunkref()]

Reads chunk data for selected chunks references. The order of the returned list of chunk data is determined by the
order of the list of chunks references.

chunks(Beam, ChunkRefs, Options) ->
 {ok, {module(), [ChunkResult]}} |
 {error, beam_lib, chnk_rsn()}
Types:

beam_lib

48 | Ericsson AB. All Rights Reserved.: STDLIB

Beam = beam()
ChunkRefs = [chunkref()]
Options = [allow_missing_chunks]
ChunkResult =
 chunkdata() | {ChunkRef :: chunkref(), missing_chunk}

Reads chunk data for selected chunks references. The order of the returned list of chunk data is determined by the
order of the list of chunks references.

By default, if any requested chunk is missing in Beam, an error tuple is returned. However, if option
allow_missing_chunks is specified, a result is returned even if chunks are missing. In the result list, any missing
chunks are represented as {ChunkRef,missing_chunk}. Notice however that if chunk "Atom" is missing, that
is considered a fatal error and the return value is an error tuple.

clear_crypto_key_fun() -> undefined | {ok, Result}
Types:

Result = undefined | term()
Unregisters the crypto key fun and terminates the process holding it, started by crypto_key_fun/1.

Returns either {ok, undefined} if no crypto key fun is registered, or {ok, Term}, where Term is the return
value from CryptoKeyFun(clear), see crypto_key_fun/1.

cmp(Beam1, Beam2) -> ok | {error, beam_lib, cmp_rsn()}
Types:

Beam1 = Beam2 = beam()
cmp_rsn() =
 {modules_different, module(), module()} |
 {chunks_different, chunkid()} |
 different_chunks |
 info_rsn()

Compares the contents of two BEAM files. If the module names are the same, and all chunks except for chunk "CInf"
(the chunk containing the compilation information that is returned by Module:module_info(compile)) have
the same contents in both files, ok is returned. Otherwise an error message is returned.

cmp_dirs(Dir1, Dir2) ->
 {Only1, Only2, Different} | {error, beam_lib, Reason}
Types:

Dir1 = Dir2 = atom() | file:filename()
Only1 = Only2 = [file:filename()]
Different =
 [{Filename1 :: file:filename(), Filename2 :: file:filename()}]
Reason = {not_a_directory, term()} | info_rsn()

Compares the BEAM files in two directories. Only files with extension ".beam" are compared. BEAM files that
exist only in directory Dir1 (Dir2) are returned in Only1 (Only2). BEAM files that exist in both directories
but are considered different by cmp/2 are returned as pairs {Filename1, Filename2}, where Filename1
(Filename2) exists in directory Dir1 (Dir2).

crypto_key_fun(CryptoKeyFun) -> ok | {error, Reason}
Types:

beam_lib

Ericsson AB. All Rights Reserved.: STDLIB | 49

CryptoKeyFun = crypto_fun()
Reason = badfun | exists | term()
crypto_fun() = fun((crypto_fun_arg()) -> term())
crypto_fun_arg() =
 init | clear | {debug_info, mode(), module(), file:filename()}
mode() = des3_cbc

Registers an unary fun that is called if beam_lib must read an abstract_code chunk that has been encrypted.
The fun is held in a process that is started by the function.

If a fun is already registered when attempting to register a fun, {error, exists} is returned.

The fun must handle the following arguments:

CryptoKeyFun(init) -> ok | {ok, NewCryptoKeyFun} | {error, Term}

Called when the fun is registered, in the process that holds the fun. Here the crypto key fun can do any
necessary initializations. If {ok, NewCryptoKeyFun} is returned, NewCryptoKeyFun is registered instead
of CryptoKeyFun. If {error, Term} is returned, the registration is aborted and crypto_key_fun/1 also
returns {error, Term}.

CryptoKeyFun({debug_info, Mode, Module, Filename}) -> Key

Called when the key is needed for module Module in the file named Filename. Mode is the type of crypto algorithm;
currently, the only possible value is des3_cbc. The call is to fail (raise an exception) if no key is available.

CryptoKeyFun(clear) -> term()

Called before the fun is unregistered. Here any cleaning up can be done. The return value is not important, but is passed
back to the caller of clear_crypto_key_fun/0 as part of its return value.

diff_dirs(Dir1, Dir2) -> ok | {error, beam_lib, Reason}
Types:

Dir1 = Dir2 = atom() | file:filename()
Reason = {not_a_directory, term()} | info_rsn()

Compares the BEAM files in two directories as cmp_dirs/2, but the names of files that exist in only one directory
or are different are presented on standard output.

format_error(Reason) -> io_lib:chars()
Types:

Reason = term()
For a specified error returned by any function in this module, this function returns a descriptive string of the error in
English. For file errors, function file:format_error(Posix) is to be called.

info(Beam) -> [InfoPair] | {error, beam_lib, info_rsn()}
Types:

beam_lib

50 | Ericsson AB. All Rights Reserved.: STDLIB

Beam = beam()
InfoPair =
 {file, Filename :: file:filename()} |
 {binary, Binary :: binary()} |
 {module, Module :: module()} |
 {chunks,
 [{ChunkId :: chunkid(),
 Pos :: integer() >= 0,
 Size :: integer() >= 0}]}

Returns a list containing some information about a BEAM file as tuples {Item, Info}:

{file, Filename} | {binary, Binary}

The name (string) of the BEAM file, or the binary from which the information was extracted.

{module, Module}

The name (atom) of the module.

{chunks, [{ChunkId, Pos, Size}]}

For each chunk, the identifier (string) and the position and size of the chunk data, in bytes.

md5(Beam) -> {ok, {module(), MD5}} | {error, beam_lib, chnk_rsn()}
Types:

Beam = beam()
MD5 = binary()

Calculates an MD5 redundancy check for the code of the module (compilation date and other attributes are not
included).

strip(Beam1) ->
 {ok, {module(), Beam2}} | {error, beam_lib, info_rsn()}
Types:

Beam1 = Beam2 = beam()

Removes all chunks from a BEAM file except those needed by the loader. In particular, the debug information (chunk
abstract_code) is removed.

strip_files(Files) ->
 {ok, [{module(), Beam}]} |
 {error, beam_lib, info_rsn()}
Types:

Files = [beam()]
Beam = beam()

Removes all chunks except those needed by the loader from BEAM files. In particular, the debug information (chunk
abstract_code) is removed. The returned list contains one element for each specified filename, in the same order
as in Files.

strip_release(Dir) ->
 {ok, [{module(), file:filename()}]} |

beam_lib

Ericsson AB. All Rights Reserved.: STDLIB | 51

 {error, beam_lib, Reason}
Types:

Dir = atom() | file:filename()
Reason = {not_a_directory, term()} | info_rsn()

Removes all chunks except those needed by the loader from the BEAM files of a release. Dir is to
be the installation root directory. For example, the current OTP release can be stripped with the call
beam_lib:strip_release(code:root_dir()).

version(Beam) ->
 {ok, {module(), [Version :: term()]}} |
 {error, beam_lib, chnk_rsn()}
Types:

Beam = beam()
Returns the module version or versions. A version is defined by module attribute -vsn(Vsn). If this attribute is
not specified, the version defaults to the checksum of the module. Notice that if version Vsn is not a list, it is made
into one, that is {ok,{Module,[Vsn]}} is returned. If there are many -vsn module attributes, the result is the
concatenated list of versions.

Examples:

1> beam_lib:version(a). % -vsn(1).
{ok,{a,[1]}}
2> beam_lib:version(b). % -vsn([1]).
{ok,{b,[1]}}
3> beam_lib:version(c). % -vsn([1]). -vsn(2).
{ok,{c,[1,2]}}
4> beam_lib:version(d). % no -vsn attribute
{ok,{d,[275613208176997377698094100858909383631]}}

binary

52 | Ericsson AB. All Rights Reserved.: STDLIB

binary
Erlang module

This module contains functions for manipulating byte-oriented binaries. Although the majority of functions could be
provided using bit-syntax, the functions in this library are highly optimized and are expected to either execute faster
or consume less memory, or both, than a counterpart written in pure Erlang.

The module is provided according to Erlang Enhancement Proposal (EEP) 31.

Note:
The library handles byte-oriented data. For bitstrings that are not binaries (does not contain whole octets of bits)
a badarg exception is thrown from any of the functions in this module.

Data Types
cp()
Opaque data type representing a compiled search pattern. Guaranteed to be a tuple() to allow programs to
distinguish it from non-precompiled search patterns.

part() = {Start :: integer() >= 0, Length :: integer()}
A representaion of a part (or range) in a binary. Start is a zero-based offset into a binary() and Length is the
length of that part. As input to functions in this module, a reverse part specification is allowed, constructed with a
negative Length, so that the part of the binary begins at Start + Length and is -Length long. This is useful
for referencing the last N bytes of a binary as {size(Binary), -N}. The functions in this module always return
part()s with positive Length.

Exports

at(Subject, Pos) -> byte()
Types:

Subject = binary()
Pos = integer() >= 0

Returns the byte at position Pos (zero-based) in binary Subject as an integer. If Pos >= byte_size(Subject),
a badarg exception is raised.

bin_to_list(Subject) -> [byte()]
Types:

Subject = binary()
Same as bin_to_list(Subject, {0,byte_size(Subject)}).

bin_to_list(Subject, PosLen) -> [byte()]
Types:

binary

Ericsson AB. All Rights Reserved.: STDLIB | 53

Subject = binary()
PosLen = part()

Converts Subject to a list of byte()s, each representing the value of one byte. part() denotes which part of
the binary() to convert.

Example:

1> binary:bin_to_list(<<"erlang">>, {1,3}).
"rla"
%% or [114,108,97] in list notation.

If PosLen in any way references outside the binary, a badarg exception is raised.

bin_to_list(Subject, Pos, Len) -> [byte()]
Types:

Subject = binary()
Pos = integer() >= 0
Len = integer()

Same as bin_to_list(Subject, {Pos, Len}).

compile_pattern(Pattern) -> cp()
Types:

Pattern = binary() | [binary()]
Builds an internal structure representing a compilation of a search pattern, later to be used in functions match/3,
matches/3, split/3, or replace/4. The cp() returned is guaranteed to be a tuple() to allow programs to
distinguish it from non-precompiled search patterns.

When a list of binaries is specified, it denotes a set of alternative binaries to search for. For
example, if [<<"functional">>,<<"programming">>] is specified as Pattern, this means either
<<"functional">> or <<"programming">>". The pattern is a set of alternatives; when only a single binary
is specified, the set has only one element. The order of alternatives in a pattern is not significant.

The list of binaries used for search alternatives must be flat and proper.

If Pattern is not a binary or a flat proper list of binaries with length > 0, a badarg exception is raised.

copy(Subject) -> binary()
Types:

Subject = binary()
Same as copy(Subject, 1).

copy(Subject, N) -> binary()
Types:

Subject = binary()
N = integer() >= 0

Creates a binary with the content of Subject duplicated N times.

binary

54 | Ericsson AB. All Rights Reserved.: STDLIB

This function always creates a new binary, even if N = 1. By using copy/1 on a binary referencing a larger binary,
one can free up the larger binary for garbage collection.

Note:
By deliberately copying a single binary to avoid referencing a larger binary, one can, instead of freeing up the
larger binary for later garbage collection, create much more binary data than needed. Sharing binary data is usually
good. Only in special cases, when small parts reference large binaries and the large binaries are no longer used
in any process, deliberate copying can be a good idea.

If N < 0, a badarg exception is raised.

decode_unsigned(Subject) -> Unsigned
Types:

Subject = binary()
Unsigned = integer() >= 0

Same as decode_unsigned(Subject, big).

decode_unsigned(Subject, Endianness) -> Unsigned
Types:

Subject = binary()
Endianness = big | little
Unsigned = integer() >= 0

Converts the binary digit representation, in big endian or little endian, of a positive integer in Subject to an Erlang
integer().

Example:

1> binary:decode_unsigned(<<169,138,199>>,big).
11111111

encode_unsigned(Unsigned) -> binary()
Types:

Unsigned = integer() >= 0
Same as encode_unsigned(Unsigned, big).

encode_unsigned(Unsigned, Endianness) -> binary()
Types:

Unsigned = integer() >= 0
Endianness = big | little

Converts a positive integer to the smallest possible representation in a binary digit representation, either big endian
or little endian.

Example:

binary

Ericsson AB. All Rights Reserved.: STDLIB | 55

1> binary:encode_unsigned(11111111, big).
<<169,138,199>>

first(Subject) -> byte()
Types:

Subject = binary()
Returns the first byte of binary Subject as an integer. If the size of Subject is zero, a badarg exception is raised.

last(Subject) -> byte()
Types:

Subject = binary()
Returns the last byte of binary Subject as an integer. If the size of Subject is zero, a badarg exception is raised.

list_to_bin(ByteList) -> binary()
Types:

ByteList = iodata()
Works exactly as erlang:list_to_binary/1, added for completeness.

longest_common_prefix(Binaries) -> integer() >= 0
Types:

Binaries = [binary()]
Returns the length of the longest common prefix of the binaries in list Binaries.

Example:

1> binary:longest_common_prefix([<<"erlang">>, <<"ergonomy">>]).
2
2> binary:longest_common_prefix([<<"erlang">>, <<"perl">>]).
0

If Binaries is not a flat list of binaries, a badarg exception is raised.

longest_common_suffix(Binaries) -> integer() >= 0
Types:

Binaries = [binary()]
Returns the length of the longest common suffix of the binaries in list Binaries.

Example:

1> binary:longest_common_suffix([<<"erlang">>, <<"fang">>]).
3
2> binary:longest_common_suffix([<<"erlang">>, <<"perl">>]).
0

If Binaries is not a flat list of binaries, a badarg exception is raised.

binary

56 | Ericsson AB. All Rights Reserved.: STDLIB

match(Subject, Pattern) -> Found | nomatch
Types:

Subject = binary()
Pattern = binary() | [binary()] | cp()
Found = part()

Same as match(Subject, Pattern, []).

match(Subject, Pattern, Options) -> Found | nomatch
Types:

Subject = binary()
Pattern = binary() | [binary()] | cp()
Found = part()
Options = [Option]
Option = {scope, part()}
part() = {Start :: integer() >= 0, Length :: integer()}

Searches for the first occurrence of Pattern in Subject and returns the position and length.

The function returns {Pos, Length} for the binary in Pattern, starting at the lowest position in Subject.

Example:

1> binary:match(<<"abcde">>, [<<"bcde">>, <<"cd">>],[]).
{1,4}

Even though <<"cd">> ends before <<"bcde">>, <<"bcde">> begins first and is therefore the first match. If
two overlapping matches begin at the same position, the longest is returned.

Summary of the options:

{scope, {Start, Length}}

Only the specified part is searched. Return values still have offsets from the beginning of Subject. A negative
Length is allowed as described in section Data Types in this manual.

If none of the strings in Pattern is found, the atom nomatch is returned.

For a description of Pattern, see function compile_pattern/1.

If {scope, {Start,Length}} is specified in the options such that Start > size of Subject, Start +
Length < 0 or Start + Length > size of Subject, a badarg exception is raised.

matches(Subject, Pattern) -> Found
Types:

Subject = binary()
Pattern = binary() | [binary()] | cp()
Found = [part()]

Same as matches(Subject, Pattern, []).

matches(Subject, Pattern, Options) -> Found
Types:

binary

Ericsson AB. All Rights Reserved.: STDLIB | 57

Subject = binary()
Pattern = binary() | [binary()] | cp()
Found = [part()]
Options = [Option]
Option = {scope, part()}
part() = {Start :: integer() >= 0, Length :: integer()}

As match/2, but Subject is searched until exhausted and a list of all non-overlapping parts matching Pattern
is returned (in order).

The first and longest match is preferred to a shorter, which is illustrated by the following example:

1> binary:matches(<<"abcde">>,
 [<<"bcde">>,<<"bc">>,<<"de">>],[]).
[{1,4}]

The result shows that <<"bcde">> is selected instead of the shorter match <<"bc">> (which would have given raise to
one more match, <<"de">>). This corresponds to the behavior of POSIX regular expressions (and programs like awk),
but is not consistent with alternative matches in re (and Perl), where instead lexical ordering in the search pattern
selects which string matches.

If none of the strings in a pattern is found, an empty list is returned.

For a description of Pattern, see compile_pattern/1. For a description of available options, see match/3.

If {scope, {Start,Length}} is specified in the options such that Start > size of Subject, Start +
Length < 0 or Start + Length is > size of Subject, a badarg exception is raised.

part(Subject, PosLen) -> binary()
Types:

Subject = binary()
PosLen = part()

Extracts the part of binary Subject described by PosLen.

A negative length can be used to extract bytes at the end of a binary:

1> Bin = <<1,2,3,4,5,6,7,8,9,10>>.
2> binary:part(Bin, {byte_size(Bin), -5}).
<<6,7,8,9,10>>

Note:
part/2 and part/3 are also available in the erlang module under the names binary_part/2 and
binary_part/3. Those BIFs are allowed in guard tests.

If PosLen in any way references outside the binary, a badarg exception is raised.

part(Subject, Pos, Len) -> binary()
Types:

binary

58 | Ericsson AB. All Rights Reserved.: STDLIB

Subject = binary()
Pos = integer() >= 0
Len = integer()

Same as part(Subject, {Pos, Len}).

referenced_byte_size(Binary) -> integer() >= 0
Types:

Binary = binary()
If a binary references a larger binary (often described as being a subbinary), it can be useful to get the size of the
referenced binary. This function can be used in a program to trigger the use of copy/1. By copying a binary, one can
dereference the original, possibly large, binary that a smaller binary is a reference to.

Example:

store(Binary, GBSet) ->
 NewBin =
 case binary:referenced_byte_size(Binary) of
 Large when Large > 2 * byte_size(Binary) ->
 binary:copy(Binary);
 _ ->
 Binary
 end,
 gb_sets:insert(NewBin,GBSet).

In this example, we chose to copy the binary content before inserting it in gb_sets:set() if it references a binary
more than twice the data size we want to keep. Of course, different rules apply when copying to different programs.

Binary sharing occurs whenever binaries are taken apart. This is the fundamental reason why binaries are fast,
decomposition can always be done with O(1) complexity. In rare circumstances this data sharing is however
undesirable, why this function together with copy/1 can be useful when optimizing for memory use.

Example of binary sharing:

1> A = binary:copy(<<1>>, 100).
<<1,1,1,1,1 ...
2> byte_size(A).
100
3> binary:referenced_byte_size(A)
100
4> <<_:10/binary,B:10/binary,_/binary>> = A.
<<1,1,1,1,1 ...
5> byte_size(B).
10
6> binary:referenced_byte_size(B)
100

Note:
Binary data is shared among processes. If another process still references the larger binary, copying the part this
process uses only consumes more memory and does not free up the larger binary for garbage collection. Use this
kind of intrusive functions with extreme care and only if a real problem is detected.

binary

Ericsson AB. All Rights Reserved.: STDLIB | 59

replace(Subject, Pattern, Replacement) -> Result
Types:

Subject = binary()
Pattern = binary() | [binary()] | cp()
Replacement = Result = binary()

Same as replace(Subject, Pattern, Replacement,[]).

replace(Subject, Pattern, Replacement, Options) -> Result
Types:

Subject = binary()
Pattern = binary() | [binary()] | cp()
Replacement = binary()
Options = [Option]
Option = global | {scope, part()} | {insert_replaced, InsPos}
InsPos = OnePos | [OnePos]
OnePos = integer() >= 0
An integer() =< byte_size(Replacement)

Result = binary()
Constructs a new binary by replacing the parts in Subject matching Pattern with the content of Replacement.

If the matching subpart of Subject giving raise to the replacement is to be inserted in the result, option
{insert_replaced, InsPos} inserts the matching part into Replacement at the specified position (or
positions) before inserting Replacement into Subject.

Example:

1> binary:replace(<<"abcde">>,<<"b">>,<<"[]">>, [{insert_replaced,1}]).
<<"a[b]cde">>
2> binary:replace(<<"abcde">>,[<<"b">>,<<"d">>],<<"[]">>,[global,{insert_replaced,1}]).
<<"a[b]c[d]e">>
3> binary:replace(<<"abcde">>,[<<"b">>,<<"d">>],<<"[]">>,[global,{insert_replaced,[1,1]}]).
<<"a[bb]c[dd]e">>
4> binary:replace(<<"abcde">>,[<<"b">>,<<"d">>],<<"[-]">>,[global,{insert_replaced,[1,2]}]).
<<"a[b-b]c[d-d]e">>

If any position specified in InsPos > size of the replacement binary, a badarg exception is raised.

Options global and {scope, part()} work as for split/3. The return type is always a binary().

For a description of Pattern, see compile_pattern/1.

split(Subject, Pattern) -> Parts
Types:

Subject = binary()
Pattern = binary() | [binary()] | cp()
Parts = [binary()]

Same as split(Subject, Pattern, []).

binary

60 | Ericsson AB. All Rights Reserved.: STDLIB

split(Subject, Pattern, Options) -> Parts
Types:

Subject = binary()
Pattern = binary() | [binary()] | cp()
Options = [Option]
Option = {scope, part()} | trim | global | trim_all
Parts = [binary()]

Splits Subject into a list of binaries based on Pattern. If option global is not specified, only the first occurrence
of Pattern in Subject gives rise to a split.

The parts of Pattern found in Subject are not included in the result.

Example:

1> binary:split(<<1,255,4,0,0,0,2,3>>, [<<0,0,0>>,<<2>>],[]).
[<<1,255,4>>, <<2,3>>]
2> binary:split(<<0,1,0,0,4,255,255,9>>, [<<0,0>>, <<255,255>>],[global]).
[<<0,1>>,<<4>>,<<9>>]

Summary of options:

{scope, part()}

Works as in match/3 and matches/3. Notice that this only defines the scope of the search for matching
strings, it does not cut the binary before splitting. The bytes before and after the scope are kept in the result. See
the example below.

trim

Removes trailing empty parts of the result (as does trim in re:split/3.

trim_all

Removes all empty parts of the result.

global

Repeats the split until Subject is exhausted. Conceptually option global makes split work on the positions
returned by matches/3, while it normally works on the position returned by match/3.

Example of the difference between a scope and taking the binary apart before splitting:

1> binary:split(<<"banana">>, [<<"a">>],[{scope,{2,3}}]).
[<<"ban">>,<<"na">>]
2> binary:split(binary:part(<<"banana">>,{2,3}), [<<"a">>],[]).
[<<"n">>,<<"n">>]

The return type is always a list of binaries that are all referencing Subject. This means that the data in Subject is
not copied to new binaries, and that Subject cannot be garbage collected until the results of the split are no longer
referenced.

For a description of Pattern, see compile_pattern/1.

c

Ericsson AB. All Rights Reserved.: STDLIB | 61

c
Erlang module

This module enables users to enter the short form of some commonly used commands.

Note:
These functions are intended for interactive use in the Erlang shell only. The module prefix can be omitted.

Exports

bt(Pid) -> ok | undefined
Types:

Pid = pid()
Stack backtrace for a process. Equivalent to erlang:process_display(Pid, backtrace).

c(File) -> {ok, Module} | error
c(File, Options) -> {ok, Module} | error
Types:

File = file:name()
Options = [compile:option()]
Module = module()

Compiles and then purges and loads the code for a file. Options defaults to []. Compilation is equivalent to:

compile:file(, ++ [report_errors, report_warnings])

Notice that purging the code means that any processes lingering in old code for the module are killed without warning.
For more information, see code/3.

cd(Dir) -> ok
Types:

Dir = file:name()
Changes working directory to Dir, which can be a relative name, and then prints the name of the new working
directory.

Example:

2> cd("../erlang").
/home/ron/erlang

c

62 | Ericsson AB. All Rights Reserved.: STDLIB

flush() -> ok
Flushes any messages sent to the shell.

help() -> ok
Displays help information: all valid shell internal commands, and commands in this module.

i() -> ok
ni() -> ok
i/0 displays system information, listing information about all processes. ni/0 does the same, but for all nodes the
network.

i(X, Y, Z) -> [{atom(), term()}]
Types:

X = Y = Z = integer() >= 0

Displays information about a process, Equivalent to process_info(pid(X, Y, Z)), but location transparent.

l(Module) -> code:load_ret()
Types:

Module = module()
Purges and loads, or reloads, a module by calling code:purge(Module) followed by
code:load_file(Module).

Notice that purging the code means that any processes lingering in old code for the module are killed without warning.
For more information, see code/3.

lc(Files) -> ok
Types:

Files = [File]

File

Compiles a list of files by calling compile:file(File, [report_errors, report_warnings]) for
each File in Files.

For information about File, see file:filename().

ls() -> ok
Lists files in the current directory.

ls(Dir) -> ok
Types:

Dir = file:name()
Lists files in directory Dir or, if Dir is a file, only lists it.

m() -> ok
Displays information about the loaded modules, including the files from which they have been loaded.

c

Ericsson AB. All Rights Reserved.: STDLIB | 63

m(Module) -> ok
Types:

Module = module()
Displays information about Module.

memory() -> [{Type, Size}]
Types:

Type = atom()
Size = integer() >= 0

Memory allocation information. Equivalent to erlang:memory/0.

memory(Type) -> Size
memory(Types) -> [{Type, Size}]
Types:

Types = [Type]
Type = atom()
Size = integer() >= 0

Memory allocation information. Equivalent to erlang:memory/1.

nc(File) -> {ok, Module} | error
nc(File, Options) -> {ok, Module} | error
Types:

File = file:name()
Options = [Option] | Option
Option = compile:option()
Module = module()

Compiles and then loads the code for a file on all nodes. Options defaults to []. Compilation is equivalent to:

compile:file(, ++ [report_errors, report_warnings])

nl(Module) -> abcast | error
Types:

Module = module()
Loads Module on all nodes.

pid(X, Y, Z) -> pid()
Types:

X = Y = Z = integer() >= 0

Converts X, Y, Z to pid <X.Y.Z>. This function is only to be used when debugging.

c

64 | Ericsson AB. All Rights Reserved.: STDLIB

pwd() -> ok
Prints the name of the working directory.

q() -> no_return()
This function is shorthand for init:stop(), that is, it causes the node to stop in a controlled fashion.

regs() -> ok
nregs() -> ok
regs/0 displays information about all registered processes. nregs/0 does the same, but for all nodes in the network.

uptime() -> ok
Prints the node uptime (as specified by erlang:statistics(wall_clock)) in human-readable form.

xm(ModSpec) -> void()
Types:

ModSpec = Module | Filename

 Module = atom()

 Filename = string()

Finds undefined functions, unused functions, and calls to deprecated functions in a module by calling xref:m/1.

y(File) -> YeccRet
Types:

File = name()

YeccRet

Generates an LALR-1 parser. Equivalent to:

yecc:file(File)

For information about File = name(), see filename(3). For information about YeccRet, see
yecc:file/2.

y(File, Options) -> YeccRet
Types:

File = name()

Options, YeccRet

Generates an LALR-1 parser. Equivalent to:

yecc:file(File, Options)

For information about File = name(), see filename(3). For information about Options and YeccRet,
see yecc:file/2.

c

Ericsson AB. All Rights Reserved.: STDLIB | 65

See Also
filename(3), compile(3), erlang(3), yecc(3), xref(3)

calendar

66 | Ericsson AB. All Rights Reserved.: STDLIB

calendar
Erlang module

This module provides computation of local and universal time, day of the week, and many time conversion functions.

Time is local when it is adjusted in accordance with the current time zone and daylight saving. Time is universal when
it reflects the time at longitude zero, without any adjustment for daylight saving. Universal Coordinated Time (UTC)
time is also called Greenwich Mean Time (GMT).

The time functions local_time/0 and universal_time/0 in this module both return date and time. The is
because separate functions for date and time can result in a date/time combination that is displaced by 24 hours. This
occurs if one of the functions is called before midnight, and the other after midnight. This problem also applies to the
Erlang BIFs date/0 and time/0, and their use is strongly discouraged if a reliable date/time stamp is required.

All dates conform to the Gregorian calendar. This calendar was introduced by Pope Gregory XIII in 1582 and was
used in all Catholic countries from this year. Protestant parts of Germany and the Netherlands adopted it in 1698,
England followed in 1752, and Russia in 1918 (the October revolution of 1917 took place in November according
to the Gregorian calendar).

The Gregorian calendar in this module is extended back to year 0. For a given date, the gregorian days is the number
of days up to and including the date specified. Similarly, the gregorian seconds for a specified date and time is the
number of seconds up to and including the specified date and time.

For computing differences between epochs in time, use the functions counting gregorian days or seconds. If epochs are
specified as local time, they must be converted to universal time to get the correct value of the elapsed time between
epochs. Use of function time_difference/2 is discouraged.

Different definitions exist for the week of the year. This module contains a week of the year implementation conforming
to the ISO 8601 standard. As the week number for a specified date can fall on the previous, the current, or on the
next year, it is important to specify both the year and the week number. Functions iso_week_number/0 and
iso_week_number/1 return a tuple of the year and the week number.

Data Types
datetime() = {date(), time()}
datetime1970() = {{year1970(), month(), day()}, time()}
date() = {year(), month(), day()}
year() = integer() >= 0
Year cannot be abbreviated. For example, 93 denotes year 93, not 1993. The valid range depends on the underlying
operating system. The date tuple must denote a valid date.

calendar

Ericsson AB. All Rights Reserved.: STDLIB | 67

year1970() = 1970..10000
month() = 1..12
day() = 1..31
time() = {hour(), minute(), second()}
hour() = 0..23
minute() = 0..59
second() = 0..59
daynum() = 1..7
ldom() = 28 | 29 | 30 | 31
yearweeknum() = {year(), weeknum()}
weeknum() = 1..53

Exports

date_to_gregorian_days(Date) -> Days
date_to_gregorian_days(Year, Month, Day) -> Days
Types:

Date = date()
Year = year()
Month = month()
Day = day()

Computes the number of gregorian days starting with year 0 and ending at the specified date.

datetime_to_gregorian_seconds(DateTime) -> Seconds
Types:

DateTime = datetime()
Seconds = integer() >= 0

Computes the number of gregorian seconds starting with year 0 and ending at the specified date and time.

day_of_the_week(Date) -> daynum()
day_of_the_week(Year, Month, Day) -> daynum()
Types:

Date = date()
Year = year()
Month = month()
Day = day()

Computes the day of the week from the specified Year, Month, and Day. Returns the day of the week as 1: Monday,
2: Tuesday, and so on.

gregorian_days_to_date(Days) -> date()
Types:

Days = integer() >= 0
Computes the date from the specified number of gregorian days.

calendar

68 | Ericsson AB. All Rights Reserved.: STDLIB

gregorian_seconds_to_datetime(Seconds) -> datetime()
Types:

Seconds = integer() >= 0
Computes the date and time from the specified number of gregorian seconds.

is_leap_year(Year) -> boolean()
Types:

Year = year()
Checks if the specified year is a leap year.

iso_week_number() -> yearweeknum()
Returns tuple {Year, WeekNum} representing the ISO week number for the actual date. To determine the actual
date, use function local_time/0.

iso_week_number(Date) -> yearweeknum()
Types:

Date = date()
Returns tuple {Year, WeekNum} representing the ISO week number for the specified date.

last_day_of_the_month(Year, Month) -> LastDay
Types:

Year = year()
Month = month()
LastDay = ldom()

Computes the number of days in a month.

local_time() -> datetime()
Returns the local time reported by the underlying operating system.

local_time_to_universal_time(DateTime1) -> DateTime2
Types:

DateTime1 = DateTime2 = datetime1970()

Converts from local time to Universal Coordinated Time (UTC). DateTime1 must refer to a local date after Jan
1, 1970.

Warning:
This function is deprecated. Use local_time_to_universal_time_dst/1 instead, as it gives a more
correct and complete result. Especially for the period that does not exist, as it is skipped during the switch to
daylight saving time, this function still returns a result.

calendar

Ericsson AB. All Rights Reserved.: STDLIB | 69

local_time_to_universal_time_dst(DateTime1) -> [DateTime]
Types:

DateTime1 = DateTime = datetime1970()

Converts from local time to Universal Coordinated Time (UTC). DateTime1 must refer to a local date after Jan
1, 1970.

The return value is a list of 0, 1, or 2 possible UTC times:

[]

For a local {Date1, Time1} during the period that is skipped when switching to daylight saving time, there
is no corresponding UTC, as the local time is illegal (it has never occured).

[DstDateTimeUTC, DateTimeUTC]

For a local {Date1, Time1} during the period that is repeated when switching from daylight saving time,
two corresponding UTCs exist; one for the first instance of the period when daylight saving time is still active,
and one for the second instance.

[DateTimeUTC]

For all other local times only one corresponding UTC exists.

now_to_datetime(Now) -> datetime1970()
Types:

Now = erlang:timestamp()
Returns Universal Coordinated Time (UTC) converted from the return value from erlang:timestamp/0.

now_to_local_time(Now) -> datetime1970()
Types:

Now = erlang:timestamp()
Returns local date and time converted from the return value from erlang:timestamp/0.

now_to_universal_time(Now) -> datetime1970()
Types:

Now = erlang:timestamp()
Returns Universal Coordinated Time (UTC) converted from the return value from erlang:timestamp/0.

seconds_to_daystime(Seconds) -> {Days, Time}
Types:

Seconds = Days = integer()
Time = time()

Converts a specified number of seconds into days, hours, minutes, and seconds. Time is always non-negative, but
Days is negative if argument Seconds is.

seconds_to_time(Seconds) -> time()
Types:

calendar

70 | Ericsson AB. All Rights Reserved.: STDLIB

Seconds = secs_per_day()
secs_per_day() = 0..86400

Computes the time from the specified number of seconds. Seconds must be less than the number of seconds per
day (86400).

time_difference(T1, T2) -> {Days, Time}
Types:

T1 = T2 = datetime()
Days = integer()
Time = time()

Returns the difference between two {Date, Time} tuples. T2 is to refer to an epoch later than T1.

Warning:
This function is obsolete. Use the conversion functions for gregorian days and seconds instead.

time_to_seconds(Time) -> secs_per_day()
Types:

Time = time()
secs_per_day() = 0..86400

Returns the number of seconds since midnight up to the specified time.

universal_time() -> datetime()
Returns the Universal Coordinated Time (UTC) reported by the underlying operating system. Returns local time if
universal time is unavailable.

universal_time_to_local_time(DateTime) -> datetime()
Types:

DateTime = datetime1970()
Converts from Universal Coordinated Time (UTC) to local time. DateTime must refer to a date after Jan 1, 1970.

valid_date(Date) -> boolean()
valid_date(Year, Month, Day) -> boolean()
Types:

Date = date()
Year = Month = Day = integer()

This function checks if a date is a valid.

Leap Years
The notion that every fourth year is a leap year is not completely true. By the Gregorian rule, a year Y is a leap year
if one of the following rules is valid:

• Y is divisible by 4, but not by 100.

calendar

Ericsson AB. All Rights Reserved.: STDLIB | 71

• Y is divisible by 400.

Hence, 1996 is a leap year, 1900 is not, but 2000 is.

Date and Time Source
Local time is obtained from the Erlang BIF localtime/0. Universal time is computed from the BIF
universaltime/0.

The following fapply:

• There are 86400 seconds in a day.

• There are 365 days in an ordinary year.

• There are 366 days in a leap year.

• There are 1461 days in a 4 year period.

• There are 36524 days in a 100 year period.

• There are 146097 days in a 400 year period.

• There are 719528 days between Jan 1, 0 and Jan 1, 1970.

dets

72 | Ericsson AB. All Rights Reserved.: STDLIB

dets
Erlang module

This module provides a term storage on file. The stored terms, in this module called objects, are tuples such that one
element is defined to be the key. A Dets table is a collection of objects with the key at the same position stored on a file.

This module is used by the Mnesia application, and is provided "as is" for users who are interested in efficient storage
of Erlang terms on disk only. Many applications only need to store some terms in a file. Mnesia adds transactions,
queries, and distribution. The size of Dets files cannot exceed 2 GB. If larger tables are needed, table fragmentation
in Mnesia can be used.

Three types of Dets tables exist:

• set. A table of this type has at most one object with a given key. If an object with a key already present in the
table is inserted, the existing object is overwritten by the new object.

• bag. A table of this type has zero or more different objects with a given key.

• duplicate_bag. A table of this type has zero or more possibly matching objects with a given key.

Dets tables must be opened before they can be updated or read, and when finished they must be properly closed. If a
table is not properly closed, Dets automatically repairs the table. This can take a substantial time if the table is large.
A Dets table is closed when the process which opened the table terminates. If many Erlang processes (users) open the
same Dets table, they share the table. The table is properly closed when all users have either terminated or closed the
table. Dets tables are not properly closed if the Erlang runtime system terminates abnormally.

Note:
A ^C command abnormally terminates an Erlang runtime system in a Unix environment with a break-handler.

As all operations performed by Dets are disk operations, it is important to realize that a single look-up operation
involves a series of disk seek and read operations. The Dets functions are therefore much slower than the corresponding
ets(3) functions, although Dets exports a similar interface.

Dets organizes data as a linear hash list and the hash list grows gracefully as more data is inserted into the table. Space
management on the file is performed by what is called a buddy system. The current implementation keeps the entire
buddy system in RAM, which implies that if the table gets heavily fragmented, quite some memory can be used up.
The only way to defragment a table is to close it and then open it again with option repair set to force.

Notice that type ordered_set in Ets is not yet provided by Dets, neither is the limited support for concurrent
updates that makes a sequence of first and next calls safe to use on fixed ETS tables. Both these features will be
provided by Dets in a future release of Erlang/OTP. Until then, the Mnesia application (or some user-implemented
method for locking) must be used to implement safe concurrency. Currently, no Erlang/OTP library has support for
ordered disk-based term storage.

Two versions of the format used for storing objects on file are supported by Dets. The first version, 8, is the format
always used for tables created by Erlang/OTP R7 and earlier. The second version, 9, is the default version of tables
created by Erlang/OTP R8 (and later releases). Erlang/OTP R8 can create version 8 tables, and convert version 8 tables
to version 9, and conversely, upon request.

All Dets functions return {error, Reason} if an error occurs (first/1 and next/2 are exceptions, they exit
the process with the error tuple). If badly formed arguments are specified, all functions exit the process with a badarg
message.

dets

Ericsson AB. All Rights Reserved.: STDLIB | 73

Data Types
access() = read | read_write
auto_save() = infinity | integer() >= 0
bindings_cont()
Opaque continuation used by match/1 and match/3.

cont()
Opaque continuation used by bchunk/2.

keypos() = integer() >= 1
match_spec() = ets:match_spec()
Match specifications, see section Match Specification in Erlang in ERTS User's Guide and the ms_transform(3)
module.

no_slots() = integer() >= 0 | default
object() = tuple()
object_cont()
Opaque continuation used by match_object/1 and match_object/3.

pattern() = atom() | tuple()
For a description of patterns, see ets:match/2.

select_cont()
Opaque continuation used by select/1 and select/3.

tab_name() = term()
type() = bag | duplicate_bag | set
version() = 8 | 9 | default

Exports

all() -> [tab_name()]
Returns a list of the names of all open tables on this node.

bchunk(Name, Continuation) ->
 {Continuation2, Data} |
 '$end_of_table' |
 {error, Reason}
Types:

Name = tab_name()
Continuation = start | cont()
Continuation2 = cont()
Data = binary() | tuple()
Reason = term()

Returns a list of objects stored in a table. The exact representation of the returned objects is not public. The lists of
data can be used for initializing a table by specifying value bchunk to option format of function init_table/3
The Mnesia application uses this function for copying open tables.

dets

74 | Ericsson AB. All Rights Reserved.: STDLIB

Unless the table is protected using safe_fixtable/2, calls to bchunk/2 do possibly not work as expected if
concurrent updates are made to the table.

The first time bchunk/2 is called, an initial continuation, the atom start, must be provided.

bchunk/2 returns a tuple {Continuation2, Data}, where Data is a list of objects. Continuation2 is
another continuation that is to be passed on to a subsequent call to bchunk/2. With a series of calls to bchunk/2,
all table objects can be extracted.

bchunk/2 returns '$end_of_table' when all objects are returned, or {error, Reason} if an error occurs.

close(Name) -> ok | {error, Reason}
Types:

Name = tab_name()
Reason = term()

Closes a table. Only processes that have opened a table are allowed to close it.

All open tables must be closed before the system is stopped. If an attempt is made to open a table that is not properly
closed, Dets automatically tries to repair it.

delete(Name, Key) -> ok | {error, Reason}
Types:

Name = tab_name()
Key = Reason = term()

Deletes all objects with key Key from table Name.

delete_all_objects(Name) -> ok | {error, Reason}
Types:

Name = tab_name()
Reason = term()

Deletes all objects from a table in almost constant time. However, if the table if fixed, delete_all_objects(T)
is equivalent to match_delete(T, '_').

delete_object(Name, Object) -> ok | {error, Reason}
Types:

Name = tab_name()
Object = object()
Reason = term()

Deletes all instances of a specified object from a table. If a table is of type bag or duplicate_bag, this function
can be used to delete only some of the objects with a specified key.

first(Name) -> Key | '$end_of_table'
Types:

Name = tab_name()
Key = term()

Returns the first key stored in table Name according to the internal order of the table, or '$end_of_table' if the
table is empty.

dets

Ericsson AB. All Rights Reserved.: STDLIB | 75

Unless the table is protected using safe_fixtable/2, subsequent calls to next/2 do possibly not work as
expected if concurrent updates are made to the table.

If an error occurs, the process is exited with an error tuple {error, Reason}. The error tuple is not returned, as
it cannot be distinguished from a key.

There are two reasons why first/1 and next/2 are not to be used: they are not efficient, and they prevent the use
of key '$end_of_table', as this atom is used to indicate the end of the table. If possible, use functions match,
match_object, and select for traversing tables.

foldl(Function, Acc0, Name) -> Acc | {error, Reason}
foldr(Function, Acc0, Name) -> Acc | {error, Reason}
Types:

Name = tab_name()
Function = fun((Object :: object(), AccIn) -> AccOut)
Acc0 = Acc = AccIn = AccOut = Reason = term()

Calls Function on successive elements of table Name together with an extra argument AccIn. The table elements
are traversed in unspecified order. Function must return a new accumulator that is passed to the next call. Acc0
is returned if the table is empty.

from_ets(Name, EtsTab) -> ok | {error, Reason}
Types:

Name = tab_name()
EtsTab = ets:tab()
Reason = term()

Deletes all objects of table Name and then inserts all the objects of the ETS table EtsTab. The objects are inserted
in unspecified order. As ets:safe_fixtable/2 is called, the ETS table must be public or owned by the calling
process.

info(Name) -> InfoList | undefined
Types:

Name = tab_name()
InfoList = [InfoTuple]
InfoTuple =
 {file_size, integer() >= 0} |
 {filename, file:name()} |
 {keypos, keypos()} |
 {size, integer() >= 0} |
 {type, type()}

Returns information about table Name as a list of tuples:

• {file_size, integer() >= 0}} - The file size, in bytes.

• {filename, file:name()} - The name of the file where objects are stored.

• {keypos, keypos()} - The key position.

• {size, integer() >= 0} - The number of objects stored in the table.

• {type, type()} - The table type.

dets

76 | Ericsson AB. All Rights Reserved.: STDLIB

info(Name, Item) -> Value | undefined
Types:

Name = tab_name()
Item =
 access |
 auto_save |
 bchunk_format |
 hash |
 file_size |
 filename |
 keypos |
 memory |
 no_keys |
 no_objects |
 no_slots |
 owner |
 ram_file |
 safe_fixed |
 safe_fixed_monotonic_time |
 size |
 type |
 version
Value = term()

Returns the information associated with Item for table Name. In addition to the {Item, Value} pairs defined
for info/1, the following items are allowed:

• {access, access()} - The access mode.

• {auto_save, auto_save()} - The autosave interval.

• {bchunk_format, binary()} - An opaque binary describing the format of the objects returned by
bchunk/2. The binary can be used as argument to is_compatible_chunk_format/2. Only available
for version 9 tables.

• {hash, Hash} - Describes which BIF is used to calculate the hash values of the objects stored in the dets
table. Possible values of Hash:

• hash - Implies that the erlang:hash/2 BIF is used.

• phash - Implies that the erlang:phash/2 BIF is used.

• phash2 - Implies that the erlang:phash2/1 BIF is used.

• {memory, integer() >= 0} - The file size, in bytes. The same value is associated with item file_size.

• {no_keys, integer >= 0()} - The number of different keys stored in the table. Only available for version
9 tables.

• {no_objects, integer >= 0()} - The number of objects stored in the table.

• {no_slots, {Min, Used, Max}} - The number of slots of the table. Min is the minimum number of
slots, Used is the number of currently used slots, and Max is the maximum number of slots. Only available for
version 9 tables.

• {owner, pid()} - The pid of the process that handles requests to the Dets table.

• {ram_file, boolean()} - Whether the table is kept in RAM.

• {safe_fixed_monotonic_time, SafeFixed} - If the table is fixed, SafeFixed is a tuple
{FixedAtTime, [{Pid,RefCount}]}. FixedAtTime is the time when the table was first fixed, and

dets

Ericsson AB. All Rights Reserved.: STDLIB | 77

Pid is the pid of the process that fixes the table RefCount times. There can be any number of processes in the
list. If the table is not fixed, SafeFixed is the atom false.

FixedAtTime corresponds to the result returned by erlang:monotonic_time/0 at the time of fixation.
The use of safe_fixed_monotonic_time is time warp safe.

• {safe_fixed, SafeFixed} - The same as {safe_fixed_monotonic_time, SafeFixed} except
the format and value of FixedAtTime.

FixedAtTime corresponds to the result returned by erlang:timestamp/0 at the time of fixation. Notice
that when the system uses single or multi time warp modes, this can produce strange results. This is because the
use of safe_fixed is not time warp safe. Time warp safe code must use safe_fixed_monotonic_time
instead.

• {version, integer()} - The version of the format of the table.

init_table(Name, InitFun) -> ok | {error, Reason}
init_table(Name, InitFun, Options) -> ok | {error, Reason}
Types:

Name = tab_name()
InitFun = fun((Arg) -> Res)
Arg = read | close
Res =
 end_of_input |
 {[object()], InitFun} |
 {Data, InitFun} |
 term()
Options = Option | [Option]
Option = {min_no_slots, no_slots()} | {format, term | bchunk}
Reason = term()
Data = binary() | tuple()

Replaces the existing objects of table Name with objects created by calling the input function InitFun, see below.
The reason for using this function rather than calling insert/2 is that of efficiency. Notice that the input functions
are called by the process that handles requests to the Dets table, not by the calling process.

When called with argument read, function InitFun is assumed to return end_of_input when there is no more
input, or {Objects, Fun}, where Objects is a list of objects and Fun is a new input function. Any other value
Value is returned as an error {error, {init_fun, Value}}. Each input function is called exactly once, and
if an error occurs, the last function is called with argument close, the reply of which is ignored.

If the table type is set and more than one object exists with a given key, one of the objects is chosen. This is not
necessarily the last object with the given key in the sequence of objects returned by the input functions. Avoid duplicate
keys, otherwise the file becomes unnecessarily fragmented. This holds also for duplicated objects stored in tables of
type bag.

It is important that the table has a sufficient number of slots for the objects. If not, the hash list starts to grow when
init_table/2 returns, which significantly slows down access to the table for a period of time. The minimum
number of slots is set by the open_file/2 option min_no_slots and returned by the info/2 item no_slots.
See also option min_no_slots below.

Argument Options is a list of {Key, Val} tuples, where the following values are allowed:

• {min_no_slots, no_slots()} - Specifies the estimated number of different keys to be stored in the table.
The open_file/2 option with the same name is ignored, unless the table is created, in which case performance
can be enhanced by supplying an estimate when initializing the table.

dets

78 | Ericsson AB. All Rights Reserved.: STDLIB

• {format, Format} - Specifies the format of the objects returned by function InitFun. If Format is term
(the default), InitFun is assumed to return a list of tuples. If Format is bchunk, InitFun is assumed to
return Data as returned by bchunk/2. This option overrides option min_no_slots.

insert(Name, Objects) -> ok | {error, Reason}
Types:

Name = tab_name()
Objects = object() | [object()]
Reason = term()

Inserts one or more objects into the table Name. If there already exists an object with a key matching the key of some
of the given objects and the table type is set, the old object will be replaced.

insert_new(Name, Objects) -> boolean() | {error, Reason}
Types:

Name = tab_name()
Objects = object() | [object()]
Reason = term()

Inserts one or more objects into table Name. If there already exists some object with a key matching the key of any
of the specified objects, the table is not updated and false is returned. Otherwise the objects are inserted and true
returned.

is_compatible_bchunk_format(Name, BchunkFormat) -> boolean()
Types:

Name = tab_name()
BchunkFormat = binary()

Returns true if it would be possible to initialize table Name, using init_table/3 with option
{format, bchunk}, with objects read with bchunk/2 from some table T, such that calling
info(T, bchunk_format) returns BchunkFormat.

is_dets_file(Filename) -> boolean() | {error, Reason}
Types:

Filename = file:name()
Reason = term()

Returns true if file Filename is a Dets table, otherwise false.

lookup(Name, Key) -> Objects | {error, Reason}
Types:

Name = tab_name()
Key = term()
Objects = [object()]
Reason = term()

Returns a list of all objects with key Key stored in table Name, for example:

2> dets:open_file(abc, [{type, bag}]).

dets

Ericsson AB. All Rights Reserved.: STDLIB | 79

{ok,abc}
3> dets:insert(abc, {1,2,3}).
ok
4> dets:insert(abc, {1,3,4}).
ok
5> dets:lookup(abc, 1).
[{1,2,3},{1,3,4}]

If the table type is set, the function returns either the empty list or a list with one object, as there cannot be more than
one object with a given key. If the table type is bag or duplicate_bag, the function returns a list of arbitrary length.

Notice that the order of objects returned is unspecified. In particular, the order in which objects were inserted is not
reflected.

match(Continuation) ->
 {[Match], Continuation2} |
 '$end_of_table' |
 {error, Reason}
Types:

Continuation = Continuation2 = bindings_cont()
Match = [term()]
Reason = term()

Matches some objects stored in a table and returns a non-empty list of the bindings matching a specified pattern
in some unspecified order. The table, the pattern, and the number of objects that are matched are all defined by
Continuation, which has been returned by a previous call to match/1 or match/3.

When all table objects are matched, '$end_of_table' is returned.

match(Name, Pattern) -> [Match] | {error, Reason}
Types:

Name = tab_name()
Pattern = pattern()
Match = [term()]
Reason = term()

Returns for each object of table Name that matches Pattern a list of bindings in some unspecified order. For a
description of patterns, see ets:match/2. If the keypos'th element of Pattern is unbound, all table objects are
matched. If the keypos'th element is bound, only the objects with the correct key are matched.

match(Name, Pattern, N) ->
 {[Match], Continuation} |
 '$end_of_table' |
 {error, Reason}
Types:

dets

80 | Ericsson AB. All Rights Reserved.: STDLIB

Name = tab_name()
Pattern = pattern()
N = default | integer() >= 0
Continuation = bindings_cont()
Match = [term()]
Reason = term()

Matches some or all objects of table Name and returns a non-empty list of the bindings that match Pattern in some
unspecified order. For a description of patterns, see ets:match/2.

A tuple of the bindings and a continuation is returned, unless the table is empty, in which case '$end_of_table'
is returned. The continuation is to be used when matching further objects by calling match/1.

If the keypos'th element of Pattern is bound, all table objects are matched. If the keypos'th element is unbound,
all table objects are matched, N objects at a time, until at least one object matches or the end of the table is reached.
The default, indicated by giving N the value default, is to let the number of objects vary depending on the sizes of
the objects. If Name is a version 9 table, all objects with the same key are always matched at the same time, which
implies that more than N objects can sometimes be matched.

The table is always to be protected using safe_fixtable/2 before calling match/3, otherwise errors can occur
when calling match/1.

match_delete(Name, Pattern) -> ok | {error, Reason}
Types:

Name = tab_name()
Pattern = pattern()
Reason = term()

Deletes all objects that match Pattern from table Name. For a description of patterns, see ets:match/2.

If the keypos'th element of Pattern is bound, only the objects with the correct key are matched.

match_object(Continuation) ->
 {Objects, Continuation2} |
 '$end_of_table' |
 {error, Reason}
Types:

Continuation = Continuation2 = object_cont()
Objects = [object()]
Reason = term()

Returns a non-empty list of some objects stored in a table that match a given pattern in some unspecified order. The
table, the pattern, and the number of objects that are matched are all defined by Continuation, which has been
returned by a previous call to match_object/1 or match_object/3.

When all table objects are matched, '$end_of_table' is returned.

match_object(Name, Pattern) -> Objects | {error, Reason}
Types:

dets

Ericsson AB. All Rights Reserved.: STDLIB | 81

Name = tab_name()
Pattern = pattern()
Objects = [object()]
Reason = term()

Returns a list of all objects of table Name that match Pattern in some unspecified order. For a description of patterns,
see ets:match/2.

If the keypos'th element of Pattern is unbound, all table objects are matched. If the keypos'th element of Pattern
is bound, only the objects with the correct key are matched.

Using the match_object functions for traversing all table objects is more efficient than calling first/1 and
next/2 or slot/2.

match_object(Name, Pattern, N) ->
 {Objects, Continuation} |
 '$end_of_table' |
 {error, Reason}
Types:

Name = tab_name()
Pattern = pattern()
N = default | integer() >= 0
Continuation = object_cont()
Objects = [object()]
Reason = term()

Matches some or all objects stored in table Name and returns a non-empty list of the objects that match Pattern in
some unspecified order. For a description of patterns, see ets:match/2.

A list of objects and a continuation is returned, unless the table is empty, in which case '$end_of_table' is
returned. The continuation is to be used when matching further objects by calling match_object/1.

If the keypos'th element of Pattern is bound, all table objects are matched. If the keypos'th element is unbound, all
table objects are matched, N objects at a time, until at least one object matches or the end of the table is reached. The
default, indicated by giving N the value default, is to let the number of objects vary depending on the sizes of the
objects. If Name is a version 9 table, all matching objects with the same key are always returned in the same reply,
which implies that more than N objects can sometimes be returned.

The table is always to be protected using safe_fixtable/2 before calling match_object/3, otherwise errors
can occur when calling match_object/1.

member(Name, Key) -> boolean() | {error, Reason}
Types:

Name = tab_name()
Key = Reason = term()

Works like lookup/2, but does not return the objects. Returns true if one or more table elements has key Key,
otherwise false.

next(Name, Key1) -> Key2 | '$end_of_table'
Types:

dets

82 | Ericsson AB. All Rights Reserved.: STDLIB

Name = tab_name()
Key1 = Key2 = term()

Returns either the key following Key1 in table Name according to the internal order of the table, or
'$end_of_table' if there is no next key.

If an error occurs, the process is exited with an error tuple {error, Reason}.

To find the first key in the table, use first/1.

open_file(Filename) -> {ok, Reference} | {error, Reason}
Types:

Filename = file:name()
Reference = reference()
Reason = term()

Opens an existing table. If the table is not properly closed, it is repaired. The returned reference is to be used as the
table name. This function is most useful for debugging purposes.

open_file(Name, Args) -> {ok, Name} | {error, Reason}
Types:

Name = tab_name()
Args = [OpenArg]
OpenArg =
 {access, access()} |
 {auto_save, auto_save()} |
 {estimated_no_objects, integer() >= 0} |
 {file, file:name()} |
 {max_no_slots, no_slots()} |
 {min_no_slots, no_slots()} |
 {keypos, keypos()} |
 {ram_file, boolean()} |
 {repair, boolean() | force} |
 {type, type()} |
 {version, version()}
Reason = term()

Opens a table. An empty Dets table is created if no file exists.

The atom Name is the table name. The table name must be provided in all subsequent operations on the table. The
name can be used by other processes as well, and many processes can share one table.

If two processes open the same table by giving the same name and arguments, the table has two users. If one user
closes the table, it remains open until the second user closes it.

Argument Args is a list of {Key, Val} tuples, where the following values are allowed:

• {access, access()} - Existing tables can be opened in read-only mode. A table that is opened in read-
only mode is not subjected to the automatic file reparation algorithm if it is later opened after a crash. Defaults
to read_write.

• {auto_save, auto_save()} - The autosave interval. If the interval is an integer Time, the table is flushed
to disk whenever it is not accessed for Time milliseconds. A table that has been flushed requires no reparation
when reopened after an uncontrolled emulator halt. If the interval is the atom infinity, autosave is disabled.
Defaults to 180000 (3 minutes).

dets

Ericsson AB. All Rights Reserved.: STDLIB | 83

• {estimated_no_objects, no_slots()} - Equivalent to option min_no_slots.

• {file, file:name()} - The name of the file to be opened. Defaults to the table name.

• {max_no_slots, no_slots()} - The maximum number of slots to be used. Defaults to 32 M, which is the
maximal value. Notice that a higher value can increase the table fragmentation, and a smaller value can decrease
the fragmentation, at the expense of execution time. Only available for version 9 tables.

• {min_no_slots, no_slots()} - Application performance can be enhanced with this flag by specifying,
when the table is created, the estimated number of different keys to be stored in the table. Defaults to 256, which
is the minimum value.

• {keypos, keypos()} - The position of the element of each object to be used as key. Defaults to 1. The
ability to explicitly state the key position is most convenient when we want to store Erlang records in which the
first position of the record is the name of the record type.

• {ram_file, boolean()} - Whether the table is to be kept in RAM. Keeping the table in RAM can sound
like an anomaly, but can enhance the performance of applications that open a table, insert a set of objects, and
then close the table. When the table is closed, its contents are written to the disk file. Defaults to false.

• {repair, Value} - Value can be either a boolean() or the atom force. The flag specifies if the Dets
server is to invoke the automatic file reparation algorithm. Defaults to true. If false is specified, no attempt
is made to repair the file, and {error, {needs_repair, FileName}} is returned if the table must be
repaired.

Value force means that a reparation is made even if the table is properly closed. This is how to convert tables
created by older versions of STDLIB. An example is tables hashed with the deprecated erlang:hash/2 BIF.
Tables created with Dets from STDLIB version 1.8.2 or later use function erlang:phash/2 or function
erlang:phash2/1, which is preferred.

Option repair is ignored if the table is already open.

• {type, type()} - The table type. Defaults to set.

• {version, version()} - The version of the format used for the table. Defaults to 9. Tables on the format
used before Erlang/OTP R8 can be created by specifying value 8. A version 8 table can be converted to a version
9 table by specifying options {version,9} and {repair,force}.

pid2name(Pid) -> {ok, Name} | undefined
Types:

Pid = pid()
Name = tab_name()

Returns the table name given the pid of a process that handles requests to a table, or undefined if there is no such
table.

This function is meant to be used for debugging only.

repair_continuation(Continuation, MatchSpec) -> Continuation2
Types:

Continuation = Continuation2 = select_cont()
MatchSpec = match_spec()

This function can be used to restore an opaque continuation returned by select/3 or select/1 if the continuation
has passed through external term format (been sent between nodes or stored on disk).

The reason for this function is that continuation terms contain compiled match specifications and therefore are
invalidated if converted to external term format. Given that the original match specification is kept intact, the
continuation can be restored, meaning it can once again be used in subsequent select/1 calls even though it has
been stored on disk or on another node.

dets

84 | Ericsson AB. All Rights Reserved.: STDLIB

For more information and examples, see the ets(3) module.

Note:
This function is rarely needed in application code. It is used by application Mnesia to provide distributed
select/3 and select/1 sequences. A normal application would either use Mnesia or keep the continuation
from being converted to external format.

The reason for not having an external representation of compiled match specifications is performance. It can be
subject to change in future releases, while this interface remains for backward compatibility.

safe_fixtable(Name, Fix) -> ok
Types:

Name = tab_name()
Fix = boolean()

If Fix is true, table Name is fixed (once more) by the calling process, otherwise the table is released. The table is
also released when a fixing process terminates.

If many processes fix a table, the table remains fixed until all processes have released it or terminated. A reference
counter is kept on a per process basis, and N consecutive fixes require N releases to release the table.

It is not guaranteed that calls to first/1, next/2, or select and match functions work as expected even if the table
is fixed; the limited support for concurrency provided by the ets(3) module is not yet provided by Dets. Fixing a
table currently only disables resizing of the hash list of the table.

If objects have been added while the table was fixed, the hash list starts to grow when the table is released, which
significantly slows down access to the table for a period of time.

select(Continuation) ->
 {Selection, Continuation2} |
 '$end_of_table' |
 {error, Reason}
Types:

Continuation = Continuation2 = select_cont()
Selection = [term()]
Reason = term()

Applies a match specification to some objects stored in a table and returns a non-empty list of the results. The table,
the match specification, and the number of objects that are matched are all defined by Continuation, which is
returned by a previous call to select/1 or select/3.

When all objects of the table have been matched, '$end_of_table' is returned.

select(Name, MatchSpec) -> Selection | {error, Reason}
Types:

dets

Ericsson AB. All Rights Reserved.: STDLIB | 85

Name = tab_name()
MatchSpec = match_spec()
Selection = [term()]
Reason = term()

Returns the results of applying match specification MatchSpec to all or some objects stored in table Name. The
order of the objects is not specified. For a description of match specifications, see the ERTS User's Guide.

If the keypos'th element of MatchSpec is unbound, the match specification is applied to all objects of the table. If
the keypos'th element is bound, the match specification is applied to the objects with the correct key(s) only.

Using the select functions for traversing all objects of a table is more efficient than calling first/1 and next/2
or slot/2.

select(Name, MatchSpec, N) ->
 {Selection, Continuation} |
 '$end_of_table' |
 {error, Reason}
Types:

Name = tab_name()
MatchSpec = match_spec()
N = default | integer() >= 0
Continuation = select_cont()
Selection = [term()]
Reason = term()

Returns the results of applying match specification MatchSpec to some or all objects stored in table Name. The
order of the objects is not specified. For a description of match specifications, see the ERTS User's Guide.

A tuple of the results of applying the match specification and a continuation is returned, unless the table is empty, in
which case '$end_of_table' is returned. The continuation is to be used when matching more objects by calling
select/1.

If the keypos'th element of MatchSpec is bound, the match specification is applied to all objects of the table with the
correct key(s). If the keypos'th element of MatchSpec is unbound, the match specification is applied to all objects of
the table, N objects at a time, until at least one object matches or the end of the table is reached. The default, indicated
by giving N the value default, is to let the number of objects vary depending on the sizes of the objects. If Name
is a version 9 table, all objects with the same key are always handled at the same time, which implies that the match
specification can be applied to more than N objects.

The table is always to be protected using safe_fixtable/2 before calling select/3, otherwise errors can occur
when calling select/1.

select_delete(Name, MatchSpec) -> N | {error, Reason}
Types:

Name = tab_name()
MatchSpec = match_spec()
N = integer() >= 0
Reason = term()

Deletes each object from table Name such that applying match specification MatchSpec to the object returns value
true. For a description of match specifications, see the ERTS User's Guide. Returns the number of deleted objects.

dets

86 | Ericsson AB. All Rights Reserved.: STDLIB

If the keypos'th element of MatchSpec is bound, the match specification is applied to the objects with the correct
key(s) only.

slot(Name, I) -> '$end_of_table' | Objects | {error, Reason}
Types:

Name = tab_name()
I = integer() >= 0
Objects = [object()]
Reason = term()

The objects of a table are distributed among slots, starting with slot 0 and ending with slot n. Returns the list of objects
associated with slot I. If I > n, '$end_of_table' is returned.

sync(Name) -> ok | {error, Reason}
Types:

Name = tab_name()
Reason = term()

Ensures that all updates made to table Name are written to disk. This also applies to tables that have been opened with
flag ram_file set to true. In this case, the contents of the RAM file are flushed to disk.

Notice that the space management data structures kept in RAM, the buddy system, is also written to the disk. This
can take some time if the table is fragmented.

table(Name) -> QueryHandle
table(Name, Options) -> QueryHandle
Types:

Name = tab_name()
Options = Option | [Option]
Option = {n_objects, Limit} | {traverse, TraverseMethod}
Limit = default | integer() >= 1
TraverseMethod = first_next | select | {select, match_spec()}
QueryHandle = qlc:query_handle()

Returns a Query List Comprehension (QLC) query handle. The qlc(3) module provides a query language aimed
mainly for Mnesia, but ETS tables, Dets tables, and lists are also recognized by qlc as sources of data. Calling
dets:table/1,2 is the means to make Dets table Name usable to qlc.

When there are only simple restrictions on the key position, qlc uses dets:lookup/2 to look up the keys. When
that is not possible, the whole table is traversed. Option traverse determines how this is done:

• first_next - The table is traversed one key at a time by calling dets:first/1 and dets:next/2.

• select - The table is traversed by calling dets:select/3 and dets:select/1. Option n_objects
determines the number of objects returned (the third argument of select/3). The match specification (the
second argument of select/3) is assembled by qlc:

• Simple filters are translated into equivalent match specifications.

• More complicated filters must be applied to all objects returned by select/3 given a match specification
that matches all objects.

dets

Ericsson AB. All Rights Reserved.: STDLIB | 87

• {select, match_spec()} - As for select, the table is traversed by calling dets:select/3 and
dets:select/1. The difference is that the match specification is specified explicitly. This is how to state
match specifications that cannot easily be expressed within the syntax provided by qlc.

The following example uses an explicit match specification to traverse the table:

1> dets:open_file(t, []),
ok = dets:insert(t, [{1,a},{2,b},{3,c},{4,d}]),
MS = ets:fun2ms(fun({X,Y}) when (X > 1) or (X < 5) -> {Y} end),
QH1 = dets:table(t, [{traverse, {select, MS}}]).

An example with implicit match specification:

2> QH2 = qlc:q([{Y} || {X,Y} <- dets:table(t), (X > 1) or (X < 5)]).

The latter example is equivalent to the former, which can be verified using function qlc:info/1:

3> qlc:info(QH1) =:= qlc:info(QH2).
true

qlc:info/1 returns information about a query handle. In this case identical information is returned for the two
query handles.

to_ets(Name, EtsTab) -> EtsTab | {error, Reason}
Types:

Name = tab_name()
EtsTab = ets:tab()
Reason = term()

Inserts the objects of the Dets table Name into the ETS table EtsTab. The order in which the objects are inserted is
not specified. The existing objects of the ETS table are kept unless overwritten.

traverse(Name, Fun) -> Return | {error, Reason}
Types:

Name = tab_name()
Fun = fun((Object) -> FunReturn)
Object = object()
FunReturn =
 continue | {continue, Val} | {done, Value} | OtherValue
Return = [term()] | OtherValue
Val = Value = OtherValue = Reason = term()

Applies Fun to each object stored in table Name in some unspecified order. Different actions are taken depending on
the return value of Fun. The following Fun return values are allowed:

continue

Continue to perform the traversal. For example, the following function can be used to print the contents of a table:

dets

88 | Ericsson AB. All Rights Reserved.: STDLIB

fun(X) -> io:format("~p~n", [X]), continue end.

{continue, Val}

Continue the traversal and accumulate Val. The following function is supplied to collect all objects of a table
in a list:

fun(X) -> {continue, X} end.

{done, Value}

Terminate the traversal and return [Value | Acc].

Any other value OtherValue returned by Fun terminates the traversal and is returned immediately.

update_counter(Name, Key, Increment) -> Result
Types:

Name = tab_name()
Key = term()
Increment = {Pos, Incr} | Incr
Pos = Incr = Result = integer()

Updates the object with key Key stored in table Name of type set by adding Incr to the element at the Pos:th
position. The new counter value is returned. If no position is specified, the element directly following the key is
updated.

This functions provides a way of updating a counter, without having to look up an object, update the object by
incrementing an element, and insert the resulting object into the table again.

See Also
ets(3), mnesia(3), qlc(3)

dict

Ericsson AB. All Rights Reserved.: STDLIB | 89

dict
Erlang module

This module provides a Key-Value dictionary. The representation of a dictionary is not defined.

This module provides the same interface as the orddict(3) module. One difference is that while this module
considers two keys as different if they do not match (=:=), orddict considers two keys as different if and only if
they do not compare equal (==).

Data Types
dict(Key, Value)
Dictionary as returned by new/0.

dict() = dict(term(), term())

Exports

append(Key, Value, Dict1) -> Dict2
Types:

Dict1 = Dict2 = dict(Key, Value)

Appends a new Value to the current list of values associated with Key.

See also section Notes.

append_list(Key, ValList, Dict1) -> Dict2
Types:

Dict1 = Dict2 = dict(Key, Value)
ValList = [Value]

Appends a list of values ValList to the current list of values associated with Key. An exception is generated if the
initial value associated with Key is not a list of values.

See also section Notes.

erase(Key, Dict1) -> Dict2
Types:

Dict1 = Dict2 = dict(Key, Value)

Erases all items with a given key from a dictionary.

fetch(Key, Dict) -> Value
Types:

Dict = dict(Key, Value)
Returns the value associated with Key in dictionary Dict. This function assumes that Key is present in dictionary
Dict, and an exception is generated if Key is not in the dictionary.

See also section Notes.

dict

90 | Ericsson AB. All Rights Reserved.: STDLIB

fetch_keys(Dict) -> Keys
Types:

Dict = dict(Key, Value :: term())
Keys = [Key]

Returns a list of all keys in dictionary Dict.

filter(Pred, Dict1) -> Dict2
Types:

Pred = fun((Key, Value) -> boolean())
Dict1 = Dict2 = dict(Key, Value)

Dict2 is a dictionary of all keys and values in Dict1 for which Pred(Key, Value) is true.

find(Key, Dict) -> {ok, Value} | error
Types:

Dict = dict(Key, Value)
Searches for a key in dictionary Dict. Returns {ok, Value}, where Value is the value associated with Key, or
error if the key is not present in the dictionary.

See also section Notes.

fold(Fun, Acc0, Dict) -> Acc1
Types:

Fun = fun((Key, Value, AccIn) -> AccOut)
Dict = dict(Key, Value)
Acc0 = Acc1 = AccIn = AccOut = Acc

Calls Fun on successive keys and values of dictionary Dict together with an extra argument Acc (short for
accumulator). Fun must return a new accumulator that is passed to the next call. Acc0 is returned if the dictionary
is empty. The evaluation order is undefined.

from_list(List) -> Dict
Types:

Dict = dict(Key, Value)
List = [{Key, Value}]

Converts the Key-Value list List to dictionary Dict.

is_empty(Dict) -> boolean()
Types:

Dict = dict()
Returns true if dictionary Dict has no elements, otherwise false.

is_key(Key, Dict) -> boolean()
Types:

dict

Ericsson AB. All Rights Reserved.: STDLIB | 91

Dict = dict(Key, Value :: term())
Tests if Key is contained in dictionary Dict.

map(Fun, Dict1) -> Dict2
Types:

Fun = fun((Key, Value1) -> Value2)
Dict1 = dict(Key, Value1)
Dict2 = dict(Key, Value2)

Calls Fun on successive keys and values of dictionary Dict1 to return a new value for each key. The evaluation
order is undefined.

merge(Fun, Dict1, Dict2) -> Dict3
Types:

Fun = fun((Key, Value1, Value2) -> Value)
Dict1 = dict(Key, Value1)
Dict2 = dict(Key, Value2)
Dict3 = dict(Key, Value)

Merges two dictionaries, Dict1 and Dict2, to create a new dictionary. All the Key-Value pairs from both
dictionaries are included in the new dictionary. If a key occurs in both dictionaries, Fun is called with the key and
both values to return a new value. merge can be defined as follows, but is faster:

merge(Fun, D1, D2) ->
 fold(fun (K, V1, D) ->
 update(K, fun (V2) -> Fun(K, V1, V2) end, V1, D)
 end, D2, D1).

new() -> dict()
Creates a new dictionary.

size(Dict) -> integer() >= 0
Types:

Dict = dict()
Returns the number of elements in dictionary Dict.

store(Key, Value, Dict1) -> Dict2
Types:

Dict1 = Dict2 = dict(Key, Value)

Stores a Key-Value pair in dictionary Dict2. If Key already exists in Dict1, the associated value is replaced by
Value.

to_list(Dict) -> List
Types:

dict

92 | Ericsson AB. All Rights Reserved.: STDLIB

Dict = dict(Key, Value)
List = [{Key, Value}]

Converts dictionary Dict to a list representation.

update(Key, Fun, Dict1) -> Dict2
Types:

Dict1 = Dict2 = dict(Key, Value)
Fun = fun((Value1 :: Value) -> Value2 :: Value)

Updates a value in a dictionary by calling Fun on the value to get a new value. An exception is generated if Key is
not present in the dictionary.

update(Key, Fun, Initial, Dict1) -> Dict2
Types:

Dict1 = Dict2 = dict(Key, Value)
Fun = fun((Value1 :: Value) -> Value2 :: Value)
Initial = Value

Updates a value in a dictionary by calling Fun on the value to get a new value. If Key is not present in the dictionary,
Initial is stored as the first value. For example, append/3 can be defined as:

append(Key, Val, D) ->
 update(Key, fun (Old) -> Old ++ [Val] end, [Val], D).

update_counter(Key, Increment, Dict1) -> Dict2
Types:

Dict1 = Dict2 = dict(Key, Value)
Increment = number()

Adds Increment to the value associated with Key and stores this value. If Key is not present in the dictionary,
Increment is stored as the first value.

This can be defined as follows, but is faster:

update_counter(Key, Incr, D) ->
 update(Key, fun (Old) -> Old + Incr end, Incr, D).

Notes
Functions append and append_list are included so that keyed values can be stored in a list accumulator, for
example:

> D0 = dict:new(),
 D1 = dict:store(files, [], D0),
 D2 = dict:append(files, f1, D1),
 D3 = dict:append(files, f2, D2),
 D4 = dict:append(files, f3, D3),
 dict:fetch(files, D4).

dict

Ericsson AB. All Rights Reserved.: STDLIB | 93

[f1,f2,f3]

This saves the trouble of first fetching a keyed value, appending a new value to the list of stored values, and storing
the result.

Function fetch is to be used if the key is known to be in the dictionary, otherwise function find.

See Also
gb_trees(3), orddict(3)

digraph

94 | Ericsson AB. All Rights Reserved.: STDLIB

digraph
Erlang module

This module provides a version of labeled directed graphs. What makes the graphs provided here non-proper directed
graphs is that multiple edges between vertices are allowed. However, the customary definition of directed graphs is
used here.

• A directed graph (or just "digraph") is a pair (V, E) of a finite set V of vertices and a finite set E of directed
edges (or just "edges"). The set of edges E is a subset of V × V (the Cartesian product of V with itself).

In this module, V is allowed to be empty. The so obtained unique digraph is called the empty digraph. Both
vertices and edges are represented by unique Erlang terms.

• Digraphs can be annotated with more information. Such information can be attached to the vertices and to the
edges of the digraph. An annotated digraph is called a labeled digraph, and the information attached to a vertex
or an edge is called a label. Labels are Erlang terms.

• An edge e = (v, w) is said to emanate from vertex v and to be incident on vertex w.

• The out-degree of a vertex is the number of edges emanating from that vertex.

• The in-degree of a vertex is the number of edges incident on that vertex.

• If an edge is emanating from v and incident on w, then w is said to be an out-neighbor of v, and v is said to
be an in-neighbor of w.

• A path P from v[1] to v[k] in a digraph (V, E) is a non-empty sequence v[1], v[2], ..., v[k] of vertices in V such
that there is an edge (v[i],v[i+1]) in E for 1 <= i < k.

• The length of path P is k-1.

• Path P is simple if all vertices are distinct, except that the first and the last vertices can be the same.

• Path P is a cycle if the length of P is not zero and v[1] = v[k].

• A loop is a cycle of length one.

• A simple cycle is a path that is both a cycle and simple.

• An acyclic digraph is a digraph without cycles.

Data Types
d_type() = d_cyclicity() | d_protection()
d_cyclicity() = acyclic | cyclic
d_protection() = private | protected
graph()
A digraph as returned by new/0,1.

edge()
label() = term()
vertex()

Exports

add_edge(G, V1, V2) -> edge() | {error, add_edge_err_rsn()}
add_edge(G, V1, V2, Label) -> edge() | {error, add_edge_err_rsn()}
add_edge(G, E, V1, V2, Label) ->

digraph

Ericsson AB. All Rights Reserved.: STDLIB | 95

 edge() | {error, add_edge_err_rsn()}
Types:

G = graph()
E = edge()
V1 = V2 = vertex()
Label = label()
add_edge_err_rsn() =
 {bad_edge, Path :: [vertex()]} | {bad_vertex, V :: vertex()}

add_edge/5 creates (or modifies) edge E of digraph G, using Label as the (new) label of the edge. The edge is
emanating from V1 and incident on V2. Returns E.

add_edge(G, V1, V2, Label) is equivalent to add_edge(G, E, V1, V2, Label), where E is a
created edge. The created edge is represented by term ['$e' | N], where N is an integer >= 0.

add_edge(G, V1, V2) is equivalent to add_edge(G, V1, V2, []).

If the edge would create a cycle in an acyclic digraph, {error, {bad_edge, Path}} is returned. If either of
V1 or V2 is not a vertex of digraph G, {error, {bad_vertex, V}} is returned, V = V1 or V = V2.

add_vertex(G) -> vertex()
add_vertex(G, V) -> vertex()
add_vertex(G, V, Label) -> vertex()
Types:

G = graph()
V = vertex()
Label = label()

add_vertex/3 creates (or modifies) vertex V of digraph G, using Label as the (new) label of the vertex. Returns V.

add_vertex(G, V) is equivalent to add_vertex(G, V, []).

add_vertex/1 creates a vertex using the empty list as label, and returns the created vertex. The created vertex is
represented by term ['$v' | N], where N is an integer >= 0.

del_edge(G, E) -> true
Types:

G = graph()
E = edge()

Deletes edge E from digraph G.

del_edges(G, Edges) -> true
Types:

G = graph()
Edges = [edge()]

Deletes the edges in list Edges from digraph G.

del_path(G, V1, V2) -> true
Types:

digraph

96 | Ericsson AB. All Rights Reserved.: STDLIB

G = graph()
V1 = V2 = vertex()

Deletes edges from digraph G until there are no paths from vertex V1 to vertex V2.

A sketch of the procedure employed:

• Find an arbitrary simple path v[1], v[2], ..., v[k] from V1 to V2 in G.

• Remove all edges of G emanating from v[i] and incident to v[i+1] for 1 <= i < k (including multiple edges).

• Repeat until there is no path between V1 and V2.

del_vertex(G, V) -> true
Types:

G = graph()
V = vertex()

Deletes vertex V from digraph G. Any edges emanating from V or incident on V are also deleted.

del_vertices(G, Vertices) -> true
Types:

G = graph()
Vertices = [vertex()]

Deletes the vertices in list Vertices from digraph G.

delete(G) -> true
Types:

G = graph()
Deletes digraph G. This call is important as digraphs are implemented with ETS. There is no garbage collection of
ETS tables. However, the digraph is deleted if the process that created the digraph terminates.

edge(G, E) -> {E, V1, V2, Label} | false
Types:

G = graph()
E = edge()
V1 = V2 = vertex()
Label = label()

Returns {E, V1, V2, Label}, where Label is the label of edge E emanating from V1 and incident on V2 of
digraph G. If no edge E of digraph G exists, false is returned.

edges(G) -> Edges
Types:

G = graph()
Edges = [edge()]

Returns a list of all edges of digraph G, in some unspecified order.

edges(G, V) -> Edges
Types:

digraph

Ericsson AB. All Rights Reserved.: STDLIB | 97

G = graph()
V = vertex()
Edges = [edge()]

Returns a list of all edges emanating from or incident onV of digraph G, in some unspecified order.

get_cycle(G, V) -> Vertices | false
Types:

G = graph()
V = vertex()
Vertices = [vertex(), ...]

If a simple cycle of length two or more exists through vertex V, the cycle is returned as a list [V, ..., V] of
vertices. If a loop through V exists, the loop is returned as a list [V]. If no cycles through V exist, false is returned.

get_path/3 is used for finding a simple cycle through V.

get_path(G, V1, V2) -> Vertices | false
Types:

G = graph()
V1 = V2 = vertex()
Vertices = [vertex(), ...]

Tries to find a simple path from vertex V1 to vertex V2 of digraph G. Returns the path as a list [V1, ..., V2] of
vertices, or false if no simple path from V1 to V2 of length one or more exists.

Digraph G is traversed in a depth-first manner, and the first found path is returned.

get_short_cycle(G, V) -> Vertices | false
Types:

G = graph()
V = vertex()
Vertices = [vertex(), ...]

Tries to find an as short as possible simple cycle through vertex V of digraph G. Returns the cycle as a list [V, ..., V]
of vertices, or false if no simple cycle through V exists. Notice that a loop through V is returned as list [V, V].

get_short_path/3 is used for finding a simple cycle through V.

get_short_path(G, V1, V2) -> Vertices | false
Types:

G = graph()
V1 = V2 = vertex()
Vertices = [vertex(), ...]

Tries to find an as short as possible simple path from vertex V1 to vertex V2 of digraph G. Returns the path as a list
[V1, ..., V2] of vertices, or false if no simple path from V1 to V2 of length one or more exists.

Digraph G is traversed in a breadth-first manner, and the first found path is returned.

in_degree(G, V) -> integer() >= 0
Types:

digraph

98 | Ericsson AB. All Rights Reserved.: STDLIB

G = graph()
V = vertex()

Returns the in-degree of vertex V of digraph G.

in_edges(G, V) -> Edges
Types:

G = graph()
V = vertex()
Edges = [edge()]

Returns a list of all edges incident on V of digraph G, in some unspecified order.

in_neighbours(G, V) -> Vertex
Types:

G = graph()
V = vertex()
Vertex = [vertex()]

Returns a list of all in-neighbors of V of digraph G, in some unspecified order.

info(G) -> InfoList
Types:

G = graph()
InfoList =
 [{cyclicity, Cyclicity :: d_cyclicity()} |
 {memory, NoWords :: integer() >= 0} |
 {protection, Protection :: d_protection()}]
d_cyclicity() = acyclic | cyclic
d_protection() = private | protected

Returns a list of {Tag, Value} pairs describing digraph G. The following pairs are returned:

• {cyclicity, Cyclicity}, where Cyclicity is cyclic or acyclic, according to the options given
to new.

• {memory, NoWords}, where NoWords is the number of words allocated to the ETS tables.

• {protection, Protection}, where Protection is protected or private, according to the options
given to new.

new() -> graph()
Equivalent to new([]).

new(Type) -> graph()
Types:

digraph

Ericsson AB. All Rights Reserved.: STDLIB | 99

Type = [d_type()]
d_type() = d_cyclicity() | d_protection()
d_cyclicity() = acyclic | cyclic
d_protection() = private | protected

Returns an empty digraph with properties according to the options in Type:

cyclic

Allows cycles in the digraph (default).

acyclic

The digraph is to be kept acyclic.

protected

Other processes can read the digraph (default).

private

The digraph can be read and modified by the creating process only.

If an unrecognized type option T is specified or Type is not a proper list, a badarg exception is raised.

no_edges(G) -> integer() >= 0
Types:

G = graph()
Returns the number of edges of digraph G.

no_vertices(G) -> integer() >= 0
Types:

G = graph()
Returns the number of vertices of digraph G.

out_degree(G, V) -> integer() >= 0
Types:

G = graph()
V = vertex()

Returns the out-degree of vertex V of digraph G.

out_edges(G, V) -> Edges
Types:

G = graph()
V = vertex()
Edges = [edge()]

Returns a list of all edges emanating from V of digraph G, in some unspecified order.

out_neighbours(G, V) -> Vertices
Types:

digraph

100 | Ericsson AB. All Rights Reserved.: STDLIB

G = graph()
V = vertex()
Vertices = [vertex()]

Returns a list of all out-neighbors of V of digraph G, in some unspecified order.

vertex(G, V) -> {V, Label} | false
Types:

G = graph()
V = vertex()
Label = label()

Returns {V, Label}, where Label is the label of the vertex V of digraph G, or false if no vertex V of digraph
G exists.

vertices(G) -> Vertices
Types:

G = graph()
Vertices = [vertex()]

Returns a list of all vertices of digraph G, in some unspecified order.

See Also
digraph_utils(3), ets(3)

digraph_utils

Ericsson AB. All Rights Reserved.: STDLIB | 101

digraph_utils
Erlang module

This module provides algorithms based on depth-first traversal of directed graphs. For basic functions on directed
graphs, see the digraph(3) module.

• A directed graph (or just "digraph") is a pair (V, E) of a finite set V of vertices and a finite set E of directed
edges (or just "edges"). The set of edges E is a subset of V × V (the Cartesian product of V with itself).

• Digraphs can be annotated with more information. Such information can be attached to the vertices and to the
edges of the digraph. An annotated digraph is called a labeled digraph, and the information attached to a vertex
or an edge is called a label.

• An edge e = (v, w) is said to emanate from vertex v and to be incident on vertex w.

• If an edge is emanating from v and incident on w, then w is said to be an out-neighbor of v, and v is said to
be an in-neighbor of w.

• A path P from v[1] to v[k] in a digraph (V, E) is a non-empty sequence v[1], v[2], ..., v[k] of vertices in V such
that there is an edge (v[i],v[i+1]) in E for 1 <= i < k.

• The length of path P is k-1.

• Path P is a cycle if the length of P is not zero and v[1] = v[k].

• A loop is a cycle of length one.

• An acyclic digraph is a digraph without cycles.

• A depth-first traversal of a directed digraph can be viewed as a process that visits all vertices of the digraph.
Initially, all vertices are marked as unvisited. The traversal starts with an arbitrarily chosen vertex, which is marked
as visited, and follows an edge to an unmarked vertex, marking that vertex. The search then proceeds from that
vertex in the same fashion, until there is no edge leading to an unvisited vertex. At that point the process backtracks,
and the traversal continues as long as there are unexamined edges. If unvisited vertices remain when all edges
from the first vertex have been examined, some so far unvisited vertex is chosen, and the process is repeated.

• A partial ordering of a set S is a transitive, antisymmetric, and reflexive relation between the objects of S.

• The problem of topological sorting is to find a total ordering of S that is a superset of the partial ordering. A
digraph G = (V, E) is equivalent to a relation E on V (we neglect that the version of directed graphs provided
by the digraph module allows multiple edges between vertices). If the digraph has no cycles of length two or
more, the reflexive and transitive closure of E is a partial ordering.

• A subgraph G' of G is a digraph whose vertices and edges form subsets of the vertices and edges of G.

• G' is maximal with respect to a property P if all other subgraphs that include the vertices of G' do not have
property P.

• A strongly connected component is a maximal subgraph such that there is a path between each pair of vertices.

• A connected component is a maximal subgraph such that there is a path between each pair of vertices, considering
all edges undirected.

• An arborescence is an acyclic digraph with a vertex V, the root, such that there is a unique path from V to every
other vertex of G.

• A tree is an acyclic non-empty digraph such that there is a unique path between every pair of vertices, considering
all edges undirected.

Exports

arborescence_root(Digraph) -> no | {yes, Root}
Types:

digraph_utils

102 | Ericsson AB. All Rights Reserved.: STDLIB

Digraph = digraph:graph()
Root = digraph:vertex()

Returns {yes, Root} if Root is the root of the arborescence Digraph, otherwise no.

components(Digraph) -> [Component]
Types:

Digraph = digraph:graph()
Component = [digraph:vertex()]

Returns a list of connected components.. Each component is represented by its vertices. The order of the vertices and
the order of the components are arbitrary. Each vertex of digraph Digraph occurs in exactly one component.

condensation(Digraph) -> CondensedDigraph
Types:

Digraph = CondensedDigraph = digraph:graph()

Creates a digraph where the vertices are the strongly connected components of Digraph as returned by
strong_components/1. If X and Y are two different strongly connected components, and vertices x and y exist
in X and Y, respectively, such that there is an edge emanating from x and incident on y, then an edge emanating from
X and incident on Y is created.

The created digraph has the same type as Digraph. All vertices and edges have the default label [].

Each cycle is included in some strongly connected component, which implies that a topological ordering of the created
digraph always exists.

cyclic_strong_components(Digraph) -> [StrongComponent]
Types:

Digraph = digraph:graph()
StrongComponent = [digraph:vertex()]

Returns a list of strongly connected components. Each strongly component is represented by its vertices. The order of
the vertices and the order of the components are arbitrary. Only vertices that are included in some cycle in Digraph
are returned, otherwise the returned list is equal to that returned by strong_components/1.

is_acyclic(Digraph) -> boolean()
Types:

Digraph = digraph:graph()
Returns true if and only if digraph Digraph is acyclic.

is_arborescence(Digraph) -> boolean()
Types:

Digraph = digraph:graph()
Returns true if and only if digraph Digraph is an arborescence.

is_tree(Digraph) -> boolean()
Types:

digraph_utils

Ericsson AB. All Rights Reserved.: STDLIB | 103

Digraph = digraph:graph()
Returns true if and only if digraph Digraph is a tree.

loop_vertices(Digraph) -> Vertices
Types:

Digraph = digraph:graph()
Vertices = [digraph:vertex()]

Returns a list of all vertices of Digraph that are included in some loop.

postorder(Digraph) -> Vertices
Types:

Digraph = digraph:graph()
Vertices = [digraph:vertex()]

Returns all vertices of digraph Digraph. The order is given by a depth-first traversal of the digraph, collecting
visited vertices in postorder. More precisely, the vertices visited while searching from an arbitrarily chosen vertex are
collected in postorder, and all those collected vertices are placed before the subsequently visited vertices.

preorder(Digraph) -> Vertices
Types:

Digraph = digraph:graph()
Vertices = [digraph:vertex()]

Returns all vertices of digraph Digraph. The order is given by a depth-first traversal of the digraph, collecting visited
vertices in preorder.

reachable(Vertices, Digraph) -> Reachable
Types:

Digraph = digraph:graph()
Vertices = Reachable = [digraph:vertex()]

Returns an unsorted list of digraph vertices such that for each vertex in the list, there is a path in Digraph from
some vertex of Vertices to the vertex. In particular, as paths can have length zero, the vertices of Vertices are
included in the returned list.

reachable_neighbours(Vertices, Digraph) -> Reachable
Types:

Digraph = digraph:graph()
Vertices = Reachable = [digraph:vertex()]

Returns an unsorted list of digraph vertices such that for each vertex in the list, there is a path in Digraph of length
one or more from some vertex of Vertices to the vertex. As a consequence, only those vertices of Vertices that
are included in some cycle are returned.

reaching(Vertices, Digraph) -> Reaching
Types:

digraph_utils

104 | Ericsson AB. All Rights Reserved.: STDLIB

Digraph = digraph:graph()
Vertices = Reaching = [digraph:vertex()]

Returns an unsorted list of digraph vertices such that for each vertex in the list, there is a path from the vertex to
some vertex of Vertices. In particular, as paths can have length zero, the vertices of Vertices are included in
the returned list.

reaching_neighbours(Vertices, Digraph) -> Reaching
Types:

Digraph = digraph:graph()
Vertices = Reaching = [digraph:vertex()]

Returns an unsorted list of digraph vertices such that for each vertex in the list, there is a path of length one or more
from the vertex to some vertex of Vertices. Therefore only those vertices of Vertices that are included in some
cycle are returned.

strong_components(Digraph) -> [StrongComponent]
Types:

Digraph = digraph:graph()
StrongComponent = [digraph:vertex()]

Returns a list of strongly connected components. Each strongly component is represented by its vertices. The order
of the vertices and the order of the components are arbitrary. Each vertex of digraph Digraph occurs in exactly one
strong component.

subgraph(Digraph, Vertices) -> SubGraph
subgraph(Digraph, Vertices, Options) -> SubGraph
Types:

Digraph = SubGraph = digraph:graph()
Vertices = [digraph:vertex()]
Options = [{type, SubgraphType} | {keep_labels, boolean()}]
SubgraphType = inherit | [digraph:d_type()]

Creates a maximal subgraph of Digraph having as vertices those vertices of Digraph that are mentioned in
Vertices.

If the value of option type is inherit, which is the default, the type of Digraph is used for the subgraph as well.
Otherwise the option value of type is used as argument to digraph:new/1.

If the value of option keep_labels is true, which is the default, the labels of vertices and edges of Digraph are
used for the subgraph as well. If the value is false, default label [] is used for the vertices and edges of the subgroup.

subgraph(Digraph, Vertices) is equivalent to subgraph(Digraph, Vertices, []).

If any of the arguments are invalid, a badarg exception is raised.

topsort(Digraph) -> Vertices | false
Types:

digraph_utils

Ericsson AB. All Rights Reserved.: STDLIB | 105

Digraph = digraph:graph()
Vertices = [digraph:vertex()]

Returns a topological ordering of the vertices of digraph Digraph if such an ordering exists, otherwise false. For
each vertex in the returned list, no out-neighbors occur earlier in the list.

See Also
digraph(3)

epp

106 | Ericsson AB. All Rights Reserved.: STDLIB

epp
Erlang module

The Erlang code preprocessor includes functions that are used by the compile module to preprocess macros and
include files before the parsing takes place.

The Erlang source file encoding is selected by a comment in one of the first two lines of the source file. The first string
matching the regular expression coding\s*[:=]\s*([-a-zA-Z0-9])+ selects the encoding. If the matching
string is not a valid encoding, it is ignored. The valid encodings are Latin-1 and UTF-8, where the case of the
characters can be chosen freely.

Examples:

%% coding: utf-8

%% For this file we have chosen encoding = Latin-1

%% -*- coding: latin-1 -*-

Data Types
macros() = [atom() | {atom(), term()}]
epp_handle() = pid()
Handle to the epp server.

source_encoding() = latin1 | utf8

Exports

close(Epp) -> ok
Types:

Epp = epp_handle()
Closes the preprocessing of a file.

default_encoding() -> source_encoding()
Returns the default encoding of Erlang source files.

encoding_to_string(Encoding) -> string()
Types:

Encoding = source_encoding()
Returns a string representation of an encoding. The string is recognized by read_encoding/1,2,
read_encoding_from_binary/1,2, and set_encoding/1,2 as a valid encoding.

epp

Ericsson AB. All Rights Reserved.: STDLIB | 107

format_error(ErrorDescriptor) -> io_lib:chars()
Types:

ErrorDescriptor = term()
Takes an ErrorDescriptor and returns a string that describes the error or warning. This function is usually called
implicitly when processing an ErrorInfo structure (see section Error Information).

open(Options) ->
 {ok, Epp} | {ok, Epp, Extra} | {error, ErrorDescriptor}
Types:

Options =
 [{default_encoding, DefEncoding :: source_encoding()} |
 {includes, IncludePath :: [DirectoryName :: file:name()]} |
 {macros, PredefMacros :: macros()} |
 {name, FileName :: file:name()} |
 extra]
Epp = epp_handle()
Extra = [{encoding, source_encoding() | none}]
ErrorDescriptor = term()

Opens a file for preprocessing.

If extra is specified in Options, the return value is {ok, Epp, Extra} instead of {ok, Epp}.

open(FileName, IncludePath) ->
 {ok, Epp} | {error, ErrorDescriptor}
Types:

FileName = file:name()
IncludePath = [DirectoryName :: file:name()]
Epp = epp_handle()
ErrorDescriptor = term()

Equivalent to epp:open([{name, FileName}, {includes, IncludePath}]).

open(FileName, IncludePath, PredefMacros) ->
 {ok, Epp} | {error, ErrorDescriptor}
Types:

FileName = file:name()
IncludePath = [DirectoryName :: file:name()]
PredefMacros = macros()
Epp = epp_handle()
ErrorDescriptor = term()

Equivalent to epp:open([{name, FileName}, {includes, IncludePath}, {macros,
PredefMacros}]).

parse_erl_form(Epp) ->
 {ok, AbsForm} |
 {error, ErrorInfo} |
 {warning, WarningInfo} |

epp

108 | Ericsson AB. All Rights Reserved.: STDLIB

 {eof, Line}
Types:

Epp = epp_handle()
AbsForm = erl_parse:abstract_form()
Line = erl_anno:line()
ErrorInfo = erl_scan:error_info() | erl_parse:error_info()
WarningInfo = warning_info()
warning_info() = {erl_anno:location(), module(), term()}

Returns the next Erlang form from the opened Erlang source file. Tuple {eof, Line} is returned at the end of the
file. The first form corresponds to an implicit attribute -file(File,1)., where File is the file name.

parse_file(FileName, Options) ->
 {ok, [Form]} |
 {ok, [Form], Extra} |
 {error, OpenError}
Types:

FileName = file:name()
Options =
 [{includes, IncludePath :: [DirectoryName :: file:name()]} |
 {macros, PredefMacros :: macros()} |
 {default_encoding, DefEncoding :: source_encoding()} |
 extra]
Form =
 erl_parse:abstract_form() | {error, ErrorInfo} | {eof, Line}
Line = erl_anno:line()
ErrorInfo = erl_scan:error_info() | erl_parse:error_info()
Extra = [{encoding, source_encoding() | none}]
OpenError = file:posix() | badarg | system_limit

Preprocesses and parses an Erlang source file. Notice that tuple {eof, Line} returned at the end of the file is
included as a "form".

If extra is specified in Options, the return value is {ok, [Form], Extra} instead of {ok, [Form]}.

parse_file(FileName, IncludePath, PredefMacros) ->
 {ok, [Form]} | {error, OpenError}
Types:

FileName = file:name()
IncludePath = [DirectoryName :: file:name()]
Form =
 erl_parse:abstract_form() | {error, ErrorInfo} | {eof, Line}
PredefMacros = macros()
Line = erl_anno:line()
ErrorInfo = erl_scan:error_info() | erl_parse:error_info()
OpenError = file:posix() | badarg | system_limit

Equivalent to epp:parse_file(FileName, [{includes, IncludePath}, {macros,
PredefMacros}]).

epp

Ericsson AB. All Rights Reserved.: STDLIB | 109

read_encoding(FileName) -> source_encoding() | none
read_encoding(FileName, Options) -> source_encoding() | none
Types:

FileName = file:name()
Options = [Option]
Option = {in_comment_only, boolean()}

Read the encoding from a file. Returns the read encoding, or none if no valid encoding is found.

Option in_comment_only is true by default, which is correct for Erlang source files. If set to false, the
encoding string does not necessarily have to occur in a comment.

read_encoding_from_binary(Binary) -> source_encoding() | none
read_encoding_from_binary(Binary, Options) ->
 source_encoding() | none
Types:

Binary = binary()
Options = [Option]
Option = {in_comment_only, boolean()}

Read the encoding from a binary. Returns the read encoding, or none if no valid encoding is found.

Option in_comment_only is true by default, which is correct for Erlang source files. If set to false, the
encoding string does not necessarily have to occur in a comment.

set_encoding(File) -> source_encoding() | none
Types:

File = io:device()
Reads the encoding from an I/O device and sets the encoding of the device accordingly. The position of the I/O device
referenced by File is not affected. If no valid encoding can be read from the I/O device, the encoding of the I/O
device is set to the default encoding.

Returns the read encoding, or none if no valid encoding is found.

set_encoding(File, Default) -> source_encoding() | none
Types:

Default = source_encoding()
File = io:device()

Reads the encoding from an I/O device and sets the encoding of the device accordingly. The position of the I/O device
referenced by File is not affected. If no valid encoding can be read from the I/O device, the encoding of the I/O
device is set to the encoding specified by Default.

Returns the read encoding, or none if no valid encoding is found.

Error Information
ErrorInfo is the standard ErrorInfo structure that is returned from all I/O modules. The format is as follows:

{ErrorLine, Module, ErrorDescriptor}

epp

110 | Ericsson AB. All Rights Reserved.: STDLIB

A string describing the error is obtained with the following call:

Module:format_error(ErrorDescriptor)

See Also
erl_parse(3)

erl_anno

Ericsson AB. All Rights Reserved.: STDLIB | 111

erl_anno
Erlang module

This module provides an abstract type that is used by the Erlang Compiler and its helper modules for holding data
such as column, line number, and text. The data type is a collection of annotations as described in the following.

The Erlang Token Scanner returns tokens with a subset of the following annotations, depending on the options:

column

The column where the token begins.

location

The line and column where the token begins, or just the line if the column is unknown.

text

The token's text.

From this, the following annotation is derived:

line

The line where the token begins.

This module also supports the following annotations, which are used by various modules:

file

A filename.

generated

A Boolean indicating if the abstract code is compiler-generated. The Erlang Compiler does not emit warnings
for such code.

record

A Boolean indicating if the origin of the abstract code is a record. Used by Dialyzer to assign types to tuple
elements.

The functions column(), end_location(), line(), location(), and text() in the erl_scan module
can be used for inspecting annotations in tokens.

The functions anno_from_term(), anno_to_term(), fold_anno(), map_anno(),
mapfold_anno(), and new_anno(), in the erl_parse module can be used for manipulating annotations in
abstract code.

Data Types
anno()
A collection of annotations.

anno_term() = term()
The term representing a collection of annotations. It is either a location() or a list of key-value pairs.

erl_anno

112 | Ericsson AB. All Rights Reserved.: STDLIB

column() = integer() >= 1
line() = integer() >= 0
location() = line() | {line(), column()}
text() = string()

Exports

column(Anno) -> column() | undefined
Types:

Anno = anno()
column() = integer() >= 1

Returns the column of the annotations Anno.

end_location(Anno) -> location() | undefined
Types:

Anno = anno()
location() = line() | {line(), column()}

Returns the end location of the text of the annotations Anno. If there is no text, undefined is returned.

file(Anno) -> filename() | undefined
Types:

Anno = anno()
filename() = file:filename_all()

Returns the filename of the annotations Anno. If there is no filename, undefined is returned.

from_term(Term) -> Anno
Types:

Term = anno_term()
Anno = anno()

Returns annotations with representation Term.

See also to_term().

generated(Anno) -> generated()
Types:

Anno = anno()
generated() = boolean()

Returns true if annotations Anno is marked as generated. The default is to return false.

is_anno(Term) -> boolean()
Types:

Term = any()
Returns true if Term is a collection of annotations, otherwise false.

erl_anno

Ericsson AB. All Rights Reserved.: STDLIB | 113

line(Anno) -> line()
Types:

Anno = anno()
line() = integer() >= 0

Returns the line of the annotations Anno.

location(Anno) -> location()
Types:

Anno = anno()
location() = line() | {line(), column()}

Returns the location of the annotations Anno.

new(Location) -> anno()
Types:

Location = location()
location() = line() | {line(), column()}

Creates a new collection of annotations given a location.

set_file(File, Anno) -> Anno
Types:

File = filename()
Anno = anno()
filename() = file:filename_all()

Modifies the filename of the annotations Anno.

set_generated(Generated, Anno) -> Anno
Types:

Generated = generated()
Anno = anno()
generated() = boolean()

Modifies the generated marker of the annotations Anno.

set_line(Line, Anno) -> Anno
Types:

Line = line()
Anno = anno()
line() = integer() >= 0

Modifies the line of the annotations Anno.

set_location(Location, Anno) -> Anno
Types:

erl_anno

114 | Ericsson AB. All Rights Reserved.: STDLIB

Location = location()
Anno = anno()
location() = line() | {line(), column()}

Modifies the location of the annotations Anno.

set_record(Record, Anno) -> Anno
Types:

Record = record()
Anno = anno()
record() = boolean()

Modifies the record marker of the annotations Anno.

set_text(Text, Anno) -> Anno
Types:

Text = text()
Anno = anno()
text() = string()

Modifies the text of the annotations Anno.

text(Anno) -> text() | undefined
Types:

Anno = anno()
text() = string()

Returns the text of the annotations Anno. If there is no text, undefined is returned.

to_term(Anno) -> anno_term()
Types:

Anno = anno()
Returns the term representing the annotations Anno.

See also from_term().

See Also
erl_parse(3), erl_scan(3)

erl_eval

Ericsson AB. All Rights Reserved.: STDLIB | 115

erl_eval
Erlang module

This module provides an interpreter for Erlang expressions. The expressions are in the abstract syntax as returned by
erl_parse, the Erlang parser, or io.

Data Types
bindings() = [{name(), value()}]
binding_struct() = orddict:orddict()
A binding structure.

expression() = erl_parse:abstract_expr()
expressions() = [erl_parse:abstract_expr()]
As returned by erl_parse:parse_exprs/1 or io:parse_erl_exprs/2.

expression_list() = [expression()]
func_spec() =
 {Module :: module(), Function :: atom()} | function()
lfun_eval_handler() =
 fun((Name :: atom(),
 Arguments :: expression_list(),
 Bindings :: binding_struct()) ->
 {value,
 Value :: value(),
 NewBindings :: binding_struct()})
lfun_value_handler() =
 fun((Name :: atom(), Arguments :: [term()]) ->
 Value :: value())
local_function_handler() =
 {value, lfun_value_handler()} |
 {eval, lfun_eval_handler()} |
 none
Further described in section Local Function Handler in this module

name() = term()
nlfun_handler() =
 fun((FuncSpec :: func_spec(), Arguments :: [term()]) -> term())
non_local_function_handler() = {value, nlfun_handler()} | none
Further described in section Non-Local Function Handler in this module.

value() = term()

Exports

add_binding(Name, Value, BindingStruct) -> binding_struct()
Types:

erl_eval

116 | Ericsson AB. All Rights Reserved.: STDLIB

Name = name()
Value = value()
BindingStruct = binding_struct()

Adds binding Name=Value to BindingStruct. Returns an updated binding structure.

binding(Name, BindingStruct) -> {value, value()} | unbound
Types:

Name = name()
BindingStruct = binding_struct()

Returns the binding of Name in BindingStruct.

bindings(BindingStruct :: binding_struct()) -> bindings()
Returns the list of bindings contained in the binding structure.

del_binding(Name, BindingStruct) -> binding_struct()
Types:

Name = name()
BindingStruct = binding_struct()

Removes the binding of Name in BindingStruct. Returns an updated binding structure.

expr(Expression, Bindings) -> {value, Value, NewBindings}
expr(Expression, Bindings, LocalFunctionHandler) ->
 {value, Value, NewBindings}
expr(Expression,
 Bindings,
 LocalFunctionHandler,
 NonLocalFunctionHandler) ->
 {value, Value, NewBindings}
expr(Expression,
 Bindings,
 LocalFunctionHandler,
 NonLocalFunctionHandler,
 ReturnFormat) ->
 {value, Value, NewBindings} | Value
Types:

Expression = expression()
Bindings = binding_struct()
LocalFunctionHandler = local_function_handler()
NonLocalFunctionHandler = non_local_function_handler()
ReturnFormat = none | value
Value = value()
NewBindings = binding_struct()

Evaluates Expression with the set of bindings Bindings. Expression is an expression in
abstract syntax. For an explanation of when and how to use arguments LocalFunctionHandler and

erl_eval

Ericsson AB. All Rights Reserved.: STDLIB | 117

NonLocalFunctionHandler, see sections Local Function Handler and Non-Local Function Handler in this
module.

Returns {value, Value, NewBindings} by default. If ReturnFormat is value, only Value is returned.

expr_list(ExpressionList, Bindings) -> {ValueList, NewBindings}
expr_list(ExpressionList, Bindings, LocalFunctionHandler) ->
 {ValueList, NewBindings}
expr_list(ExpressionList,
 Bindings,
 LocalFunctionHandler,
 NonLocalFunctionHandler) ->
 {ValueList, NewBindings}
Types:

ExpressionList = expression_list()
Bindings = binding_struct()
LocalFunctionHandler = local_function_handler()
NonLocalFunctionHandler = non_local_function_handler()
ValueList = [value()]
NewBindings = binding_struct()

Evaluates a list of expressions in parallel, using the same initial bindings for each expression. Attempts are made to
merge the bindings returned from each evaluation. This function is useful in LocalFunctionHandler, see section
Local Function Handler in this module.

Returns {ValueList, NewBindings}.

exprs(Expressions, Bindings) -> {value, Value, NewBindings}
exprs(Expressions, Bindings, LocalFunctionHandler) ->
 {value, Value, NewBindings}
exprs(Expressions,
 Bindings,
 LocalFunctionHandler,
 NonLocalFunctionHandler) ->
 {value, Value, NewBindings}
Types:

Expressions = expressions()
Bindings = binding_struct()
LocalFunctionHandler = local_function_handler()
NonLocalFunctionHandler = non_local_function_handler()
Value = value()
NewBindings = binding_struct()

Evaluates Expressions with the set of bindings Bindings, where Expressions is a sequence of expressions
(in abstract syntax) of a type that can be returned by io:parse_erl_exprs/2. For an explanation of when
and how to use arguments LocalFunctionHandler and NonLocalFunctionHandler, see sections Local
Function Handler and Non-Local Function Handler in this module.

Returns {value, Value, NewBindings}

erl_eval

118 | Ericsson AB. All Rights Reserved.: STDLIB

new_bindings() -> binding_struct()
Returns an empty binding structure.

Local Function Handler
During evaluation of a function, no calls can be made to local functions. An undefined function error would be
generated. However, the optional argument LocalFunctionHandler can be used to define a function that is called
when there is a call to a local function. The argument can have the following formats:

{value,Func}

This defines a local function handler that is called with:

Func(Name, Arguments)

Name is the name of the local function (an atom) and Arguments is a list of the evaluated arguments. The
function handler returns the value of the local function. In this case, the current bindings cannot be accessed. To
signal an error, the function handler calls exit/1 with a suitable exit value.

{eval,Func}

This defines a local function handler that is called with:

Func(Name, Arguments, Bindings)

Name is the name of the local function (an atom), Arguments is a list of the unevaluated arguments, and
Bindings are the current variable bindings. The function handler returns:

{value,Value,NewBindings}

Value is the value of the local function and NewBindings are the updated variable bindings. In this case, the
function handler must itself evaluate all the function arguments and manage the bindings. To signal an error, the
function handler calls exit/1 with a suitable exit value.

none

There is no local function handler.

Non-Local Function Handler
The optional argument NonLocalFunctionHandler can be used to define a function that is called in the following
cases:

• A functional object (fun) is called.

• A built-in function is called.

• A function is called using the M:F syntax, where M and F are atoms or expressions.

• An operator Op/A is called (this is handled as a call to function erlang:Op/A).

Exceptions are calls to erlang:apply/2,3; neither of the function handlers are called for such calls. The argument
can have the following formats:

{value,Func}

This defines a non-local function handler that is called with:

erl_eval

Ericsson AB. All Rights Reserved.: STDLIB | 119

Func(FuncSpec, Arguments)

FuncSpec is the name of the function on the form {Module,Function} or a fun, and Arguments is a
list of the evaluated arguments. The function handler returns the value of the function. To signal an error, the
function handler calls exit/1 with a suitable exit value.

none

There is no non-local function handler.

Note:
For calls such as erlang:apply(Fun, Args) or erlang:apply(Module, Function, Args),
the call of the non-local function handler corresponding to the call to erlang:apply/2,3 itself
(Func({erlang, apply}, [Fun, Args]) or Func({erlang, apply}, [Module, Function,
Args])) never takes place.

The non-local function handler is however called with the evaluated arguments of the call to
erlang:apply/2,3: Func(Fun, Args) or Func({Module, Function}, Args) (assuming that
{Module, Function} is not {erlang, apply}).

Calls to functions defined by evaluating fun expressions "fun ... end" are also hidden from non-local
function handlers.

The non-local function handler argument is probably not used as frequently as the local function handler argument. A
possible use is to call exit/1 on calls to functions that for some reason are not allowed to be called.

Known Limitation
Undocumented functions in this module are not to be used.

erl_expand_records

120 | Ericsson AB. All Rights Reserved.: STDLIB

erl_expand_records
Erlang module

This module expands records in a module.

Exports

module(AbsForms, CompileOptions) -> AbsForms2
Types:

AbsForms = AbsForms2 = [erl_parse:abstract_form()]
CompileOptions = [compile:option()]

Expands all records in a module. The returned module has no references to records, attributes, or code.

See Also
Section The Abstract Format in ERTS User's Guide.

erl_id_trans

Ericsson AB. All Rights Reserved.: STDLIB | 121

erl_id_trans
Erlang module

This module performs an identity parse transformation of Erlang code. It is included as an example for users who
wants to write their own parse transformers. If option {parse_transform,Module} is passed to the compiler,
a user-written function parse_transform/2 is called by the compiler before the code is checked for errors.

Exports

parse_transform(Forms, Options) -> Forms
Types:

Forms = [erl_parse:abstract_form() | erl_parse:form_info()]

Options = [compile:option()]

Performs an identity transformation on Erlang forms, as an example.

Parse Transformations
Parse transformations are used if a programmer wants to use Erlang syntax, but with different semantics. The original
Erlang code is then transformed into other Erlang code.

Note:
Programmers are strongly advised not to engage in parse transformations. No support is offered for problems
encountered.

See Also
erl_parse(3), compile(3)

erl_internal

122 | Ericsson AB. All Rights Reserved.: STDLIB

erl_internal
Erlang module

This module defines Erlang BIFs, guard tests, and operators. This module is only of interest to programmers who
manipulate Erlang code.

Exports

arith_op(OpName, Arity) -> boolean()
Types:

OpName = atom()
Arity = arity()

Returns true if OpName/Arity is an arithmetic operator, otherwise false.

bif(Name, Arity) -> boolean()
Types:

Name = atom()
Arity = arity()

Returns true if Name/Arity is an Erlang BIF that is automatically recognized by the compiler, otherwise false.

bool_op(OpName, Arity) -> boolean()
Types:

OpName = atom()
Arity = arity()

Returns true if OpName/Arity is a Boolean operator, otherwise false.

comp_op(OpName, Arity) -> boolean()
Types:

OpName = atom()
Arity = arity()

Returns true if OpName/Arity is a comparison operator, otherwise false.

guard_bif(Name, Arity) -> boolean()
Types:

Name = atom()
Arity = arity()

Returns true if Name/Arity is an Erlang BIF that is allowed in guards, otherwise false.

list_op(OpName, Arity) -> boolean()
Types:

erl_internal

Ericsson AB. All Rights Reserved.: STDLIB | 123

OpName = atom()
Arity = arity()

Returns true if OpName/Arity is a list operator, otherwise false.

op_type(OpName, Arity) -> Type
Types:

OpName = atom()
Arity = arity()
Type = arith | bool | comp | list | send

Returns the Type of operator that OpName/Arity belongs to, or generates a function_clause error if it is
not an operator.

send_op(OpName, Arity) -> boolean()
Types:

OpName = atom()
Arity = arity()

Returns true if OpName/Arity is a send operator, otherwise false.

type_test(Name, Arity) -> boolean()
Types:

Name = atom()
Arity = arity()

Returns true if Name/Arity is a valid Erlang type test, otherwise false.

erl_lint

124 | Ericsson AB. All Rights Reserved.: STDLIB

erl_lint
Erlang module

This module is used to check Erlang code for illegal syntax and other bugs. It also warns against coding practices
that are not recommended.

The errors detected include:

• Redefined and undefined functions

• Unbound and unsafe variables

• Illegal record use

The warnings detected include:

• Unused functions and imports

• Unused variables

• Variables imported into matches

• Variables exported from if/case/receive

• Variables shadowed in funs and list comprehensions

Some of the warnings are optional, and can be turned on by specifying the appropriate option, described below.

The functions in this module are invoked automatically by the Erlang compiler. There is no reason to invoke these
functions separately unless you have written your own Erlang compiler.

Data Types
error_info() = {erl_anno:line(), module(), error_description()}
error_description() = term()

Exports

format_error(ErrorDescriptor) -> io_lib:chars()
Types:

ErrorDescriptor = error_description()
Takes an ErrorDescriptor and returns a string that describes the error or warning. This function is usually called
implicitly when processing an ErrorInfo structure (see section Error Information).

is_guard_test(Expr) -> boolean()
Types:

Expr = erl_parse:abstract_expr()
Tests if Expr is a legal guard test. Expr is an Erlang term representing the abstract form for the expression.
erl_parse:parse_exprs(Tokens) can be used to generate a list of Expr.

module(AbsForms) -> {ok, Warnings} | {error, Errors, Warnings}
module(AbsForms, FileName) ->
 {ok, Warnings} | {error, Errors, Warnings}
module(AbsForms, FileName, CompileOptions) ->

erl_lint

Ericsson AB. All Rights Reserved.: STDLIB | 125

 {ok, Warnings} | {error, Errors, Warnings}
Types:

AbsForms = [erl_parse:abstract_form() | erl_parse:form_info()]
FileName = atom() | string()
CompileOptions = [compile:option()]
Warnings = [{file:filename(), [ErrorInfo]}]
Errors = [{FileName2 :: file:filename(), [ErrorInfo]}]
ErrorInfo = error_info()

Checks all the forms in a module for errors. It returns:

{ok,Warnings}

There are no errors in the module.

{error,Errors,Warnings}

There are errors in the module.

As this module is of interest only to the maintainers of the compiler, and to avoid the same description in two places,
the elements of Options that control the warnings are only described in the compile(3) module.

AbsForms of a module, which comes from a file that is read through epp, the Erlang preprocessor, can come from
many files. This means that any references to errors must include the filename, see the epp(3) module or parser (see
the erl_parse(3) module). The returned errors and warnings have the following format:

[{,[]}]

The errors and warnings are listed in the order in which they are encountered in the forms. The errors from one file
can therefore be split into different entries in the list of errors.

Error Information
ErrorInfo is the standard ErrorInfo structure that is returned from all I/O modules. The format is as follows:

{ErrorLine, Module, ErrorDescriptor}

A string describing the error is obtained with the following call:

Module:format_error(ErrorDescriptor)

See Also
epp(3), erl_parse(3)

erl_parse

126 | Ericsson AB. All Rights Reserved.: STDLIB

erl_parse
Erlang module

This module is the basic Erlang parser that converts tokens into the abstract form of either forms (that is, top-level
constructs), expressions, or terms. The Abstract Format is described in the ERTS User's Guide. Notice that a token list
must end with the dot token to be acceptable to the parse functions (see the erl_scan(3)) module.

Data Types
abstract_clause()
Abstract form of an Erlang clause.

abstract_expr()
Abstract form of an Erlang expression.

abstract_form()
Abstract form of an Erlang form.

abstract_type()
Abstract form of an Erlang type.

erl_parse_tree() =
 abstract_clause() |
 abstract_expr() |
 abstract_form() |
 abstract_type()
error_description() = term()
error_info() = {erl_anno:line(), module(), error_description()}
form_info() =
 {eof, erl_anno:line()} |
 {error, erl_scan:error_info() | error_info()} |
 {warning, erl_scan:error_info() | error_info()}
Tuples {error, error_info()} and {warning, error_info()}, denoting syntactically incorrect forms
and warnings, and {eof, line()}, denoting an end-of-stream encountered before a complete form had been parsed.

token() = erl_scan:token()

Exports

abstract(Data) -> AbsTerm
Types:

Data = term()
AbsTerm = abstract_expr()

Converts the Erlang data structure Data into an abstract form of type AbsTerm. This function is the inverse of
normalise/1.

erl_parse:abstract(T) is equivalent to erl_parse:abstract(T, 0).

erl_parse

Ericsson AB. All Rights Reserved.: STDLIB | 127

abstract(Data, Options) -> AbsTerm
Types:

Data = term()
Options = Line | [Option]
Option = {line, Line} | {encoding, Encoding}
Encoding = latin1 | unicode | utf8 | none | encoding_func()
Line = erl_anno:line()
AbsTerm = abstract_expr()
encoding_func() = fun((integer() >= 0) -> boolean())

Converts the Erlang data structure Data into an abstract form of type AbsTerm.

Option Line is the line to be assigned to each node of AbsTerm.

Option Encoding is used for selecting which integer lists to be considered as strings. The default is to use the encoding
returned by function epp:default_encoding/0. Value none means that no integer lists are considered as
strings. encoding_func() is called with one integer of a list at a time; if it returns true for every integer, the
list is considered a string.

anno_from_term(Term) -> erl_parse_tree()
Types:

Term = term()
Assumes that Term is a term with the same structure as a erl_parse tree, but with terms, say T, where a
erl_parse tree has collections of annotations. Returns a erl_parse tree where each term T is replaced by the
value returned by erl_anno:from_term(T). The term Term is traversed in a depth-first, left-to-right fashion.

anno_to_term(Abstr) -> term()
Types:

Abstr = erl_parse_tree()
Returns a term where each collection of annotations Anno of the nodes of the erl_parse tree Abstr is replaced
by the term returned by erl_anno:to_term(Anno). The erl_parse tree is traversed in a depth-first, left-
to-right fashion.

fold_anno(Fun, Acc0, Abstr) -> Acc1
Types:

Fun = fun((Anno, AccIn) -> AccOut)
Anno = erl_anno:anno()
Acc0 = Acc1 = AccIn = AccOut = term()
Abstr = erl_parse_tree()

Updates an accumulator by applying Fun on each collection of annotations of the erl_parse tree Abstr. The first
call to Fun has AccIn as argument, the returned accumulator AccOut is passed to the next call, and so on. The final
value of the accumulator is returned. The erl_parse tree is traversed in a depth-first, left-to-right fashion.

format_error(ErrorDescriptor) -> Chars
Types:

ErrorDescriptor = error_description()

Chars = [char() | Chars]

erl_parse

128 | Ericsson AB. All Rights Reserved.: STDLIB

Uses an ErrorDescriptor and returns a string that describes the error. This function is usually called implicitly
when an ErrorInfo structure is processed (see section Error Information).

map_anno(Fun, Abstr) -> NewAbstr
Types:

Fun = fun((Anno) -> NewAnno)
Anno = NewAnno = erl_anno:anno()
Abstr = NewAbstr = erl_parse_tree()

Modifies the erl_parse tree Abstr by applying Fun on each collection of annotations of the nodes of the
erl_parse tree. The erl_parse tree is traversed in a depth-first, left-to-right fashion.

mapfold_anno(Fun, Acc0, Abstr) -> {NewAbstr, Acc1}
Types:

Fun = fun((Anno, AccIn) -> {NewAnno, AccOut})
Anno = NewAnno = erl_anno:anno()
Acc0 = Acc1 = AccIn = AccOut = term()
Abstr = NewAbstr = erl_parse_tree()

Modifies the erl_parse tree Abstr by applying Fun on each collection of annotations of the nodes of the
erl_parse tree, while at the same time updating an accumulator. The first call to Fun has AccIn as second
argument, the returned accumulator AccOut is passed to the next call, and so on. The modified erl_parse tree and
the final value of the accumulator are returned. The erl_parse tree is traversed in a depth-first, left-to-right fashion.

new_anno(Term) -> Abstr
Types:

Term = term()
Abstr = erl_parse_tree()

Assumes that Term is a term with the same structure as a erl_parse tree, but with locations where a erl_parse
tree has collections of annotations. Returns a erl_parse tree where each location L is replaced by the value returned
by erl_anno:new(L). The term Term is traversed in a depth-first, left-to-right fashion.

normalise(AbsTerm) -> Data
Types:

AbsTerm = abstract_expr()
Data = term()

Converts the abstract form AbsTerm of a term into a conventional Erlang data structure (that is, the term itself). This
function is the inverse of abstract/1.

parse_exprs(Tokens) -> {ok, ExprList} | {error, ErrorInfo}
Types:

Tokens = [token()]
ExprList = [abstract_expr()]
ErrorInfo = error_info()

Parses Tokens as if it was a list of expressions. Returns one of the following:

erl_parse

Ericsson AB. All Rights Reserved.: STDLIB | 129

{ok, ExprList}

The parsing was successful. ExprList is a list of the abstract forms of the parsed expressions.

{error, ErrorInfo}

An error occurred.

parse_form(Tokens) -> {ok, AbsForm} | {error, ErrorInfo}
Types:

Tokens = [token()]
AbsForm = abstract_form()
ErrorInfo = error_info()

Parses Tokens as if it was a form. Returns one of the following:

{ok, AbsForm}

The parsing was successful. AbsForm is the abstract form of the parsed form.

{error, ErrorInfo}

An error occurred.

parse_term(Tokens) -> {ok, Term} | {error, ErrorInfo}
Types:

Tokens = [token()]
Term = term()
ErrorInfo = error_info()

Parses Tokens as if it was a term. Returns one of the following:

{ok, Term}

The parsing was successful. Term is the Erlang term corresponding to the token list.

{error, ErrorInfo}

An error occurred.

tokens(AbsTerm) -> Tokens
tokens(AbsTerm, MoreTokens) -> Tokens
Types:

AbsTerm = abstract_expr()
MoreTokens = Tokens = [token()]

Generates a list of tokens representing the abstract form AbsTerm of an expression. Optionally, MoreTokens is
appended.

Error Information
ErrorInfo is the standard ErrorInfo structure that is returned from all I/O modules. The format is as follows:

{ErrorLine, Module, ErrorDescriptor}

A string describing the error is obtained with the following call:

erl_parse

130 | Ericsson AB. All Rights Reserved.: STDLIB

Module:format_error(ErrorDescriptor)

See Also
erl_anno(3), erl_scan(3), io(3), section The Abstract Format in the ERTS User's Guide

erl_pp

Ericsson AB. All Rights Reserved.: STDLIB | 131

erl_pp
Erlang module

The functions in this module are used to generate aesthetically attractive representations of abstract forms, which are
suitable for printing. All functions return (possibly deep) lists of characters and generate an error if the form is wrong.

All functions can have an optional argument, which specifies a hook that is called if an attempt is made to print an
unknown form.

Data Types
hook_function() =
 none |
 fun((Expr :: erl_parse:abstract_expr(),
 CurrentIndentation :: integer(),
 CurrentPrecedence :: integer() >= 0,
 Options :: options()) ->
 io_lib:chars())
Optional argument HookFunction, shown in the functions described in this module, defines a function that is called
when an unknown form occurs where there is to be a valid expression. If HookFunction is equal to none, there
is no hook function.

The called hook function is to return a (possibly deep) list of characters. Function expr/4 is useful in a hook.

If CurrentIndentation is negative, there are no line breaks and only a space is used as a separator.

option() =
 {hook, hook_function()} | {encoding, latin1 | unicode | utf8}
options() = hook_function() | [option()]

Exports

attribute(Attribute) -> io_lib:chars()
attribute(Attribute, Options) -> io_lib:chars()
Types:

Attribute = erl_parse:abstract_form()
Options = options()

Same as form/1,2, but only for attribute Attribute.

expr(Expression) -> io_lib:chars()
expr(Expression, Options) -> io_lib:chars()
expr(Expression, Indent, Options) -> io_lib:chars()
expr(Expression, Indent, Precedence, Options) -> io_lib:chars()
Types:

erl_pp

132 | Ericsson AB. All Rights Reserved.: STDLIB

Expression = erl_parse:abstract_expr()
Indent = integer()
Precedence = integer() >= 0
Options = options()

Prints one expression. It is useful for implementing hooks (see section Known Limitations).

exprs(Expressions) -> io_lib:chars()
exprs(Expressions, Options) -> io_lib:chars()
exprs(Expressions, Indent, Options) -> io_lib:chars()
Types:

Expressions = [erl_parse:abstract_expr()]
Indent = integer()
Options = options()

Same as form/1,2, but only for the sequence of expressions in Expressions.

form(Form) -> io_lib:chars()
form(Form, Options) -> io_lib:chars()
Types:

Form = erl_parse:abstract_form() | erl_parse:form_info()
Options = options()

Pretty prints a Form, which is an abstract form of a type that is returned by erl_parse:parse_form/1.

function(Function) -> io_lib:chars()
function(Function, Options) -> io_lib:chars()
Types:

Function = erl_parse:abstract_form()
Options = options()

Same as form/1,2, but only for function Function.

guard(Guard) -> io_lib:chars()
guard(Guard, Options) -> io_lib:chars()
Types:

Guard = [erl_parse:abstract_expr()]
Options = options()

Same as form/1,2, but only for the guard test Guard.

Known Limitations
It is not possible to have hook functions for unknown forms at other places than expressions.

See Also
erl_eval(3), erl_parse(3), io(3)

erl_scan

Ericsson AB. All Rights Reserved.: STDLIB | 133

erl_scan
Erlang module

This module contains functions for tokenizing (scanning) characters into Erlang tokens.

Data Types
category() = atom()
error_description() = term()
error_info() =
 {erl_anno:location(), module(), error_description()}
option() =
 return |
 return_white_spaces |
 return_comments |
 text |
 {reserved_word_fun, resword_fun()}
options() = option() | [option()]
symbol() = atom() | float() | integer() | string()
resword_fun() = fun((atom()) -> boolean())
token() =
 {category(), Anno :: erl_anno:anno(), symbol()} |
 {category(), Anno :: erl_anno:anno()}
tokens() = [token()]
tokens_result() =
 {ok, Tokens :: tokens(), EndLocation :: erl_anno:location()} |
 {eof, EndLocation :: erl_anno:location()} |
 {error,
 ErrorInfo :: error_info(),
 EndLocation :: erl_anno:location()}

Exports

category(Token) -> category()
Types:

Token = token()
Returns the category of Token.

column(Token) -> erl_anno:column() | undefined
Types:

Token = token()
Returns the column of Token's collection of annotations.

end_location(Token) -> erl_anno:location() | undefined
Types:

erl_scan

134 | Ericsson AB. All Rights Reserved.: STDLIB

Token = token()
Returns the end location of the text of Token's collection of annotations. If there is no text, undefined is returned.

format_error(ErrorDescriptor) -> string()
Types:

ErrorDescriptor = error_description()
Uses an ErrorDescriptor and returns a string that describes the error or warning. This function is usually called
implicitly when an ErrorInfo structure is processed (see section Error Information).

line(Token) -> erl_anno:line()
Types:

Token = token()
Returns the line of Token's collection of annotations.

location(Token) -> erl_anno:location()
Types:

Token = token()
Returns the location of Token's collection of annotations.

reserved_word(Atom :: atom()) -> boolean()
Returns true if Atom is an Erlang reserved word, otherwise false.

string(String) -> Return
string(String, StartLocation) -> Return
string(String, StartLocation, Options) -> Return
Types:

String = string()
Options = options()
Return =
 {ok, Tokens :: tokens(), EndLocation} |
 {error, ErrorInfo :: error_info(), ErrorLocation}
StartLocation = EndLocation = ErrorLocation = erl_anno:location()

Takes the list of characters String and tries to scan (tokenize) them. Returns one of the following:

{ok, Tokens, EndLocation}

Tokens are the Erlang tokens from String. EndLocation is the first location after the last token.

{error, ErrorInfo, ErrorLocation}

An error occurred. ErrorLocation is the first location after the erroneous token.

string(String) is equivalent to string(String, 1), and string(String, StartLocation) is
equivalent to string(String, StartLocation, []).

StartLocation indicates the initial location when scanning starts. If StartLocation is a line, Anno,
EndLocation, and ErrorLocation are lines. If StartLocation is a pair of a line and a column, Anno takes
the form of an opaque compound data type, and EndLocation and ErrorLocation are pairs of a line and a
column. The token annotations contain information about the column and the line where the token begins, as well

erl_scan

Ericsson AB. All Rights Reserved.: STDLIB | 135

as the text of the token (if option text is specified), all of which can be accessed by calling column/1, line/1,
location/1, and text/1.

A token is a tuple containing information about syntactic category, the token annotations, and the terminal symbol.
For punctuation characters (such as ; and |) and reserved words, the category and the symbol coincide, and the token
is represented by a two-tuple. Three-tuples have one of the following forms:

• {atom, Anno, atom()}

• {char, Anno, char()}

• {comment, Anno, string()}

• {float, Anno, float()}

• {integer, Anno, integer()}

• {var, Anno, atom()}

• {white_space, Anno, string()}

Valid options:

{reserved_word_fun, reserved_word_fun()}

A callback function that is called when the scanner has found an unquoted atom. If the function returns true,
the unquoted atom itself becomes the category of the token. If the function returns false, atom becomes the
category of the unquoted atom.

return_comments

Return comment tokens.

return_white_spaces

Return white space tokens. By convention, a newline character, if present, is always the first character of the text
(there cannot be more than one newline in a white space token).

return

Short for [return_comments, return_white_spaces].

text

Include the token text in the token annotation. The text is the part of the input corresponding to the token.

symbol(Token) -> symbol()
Types:

Token = token()
Returns the symbol of Token.

text(Token) -> erl_anno:text() | undefined
Types:

Token = token()
Returns the text of Token's collection of annotations. If there is no text, undefined is returned.

tokens(Continuation, CharSpec, StartLocation) -> Return
tokens(Continuation, CharSpec, StartLocation, Options) -> Return
Types:

erl_scan

136 | Ericsson AB. All Rights Reserved.: STDLIB

Continuation = return_cont() | []
CharSpec = char_spec()
StartLocation = erl_anno:location()
Options = options()
Return =
 {done,
 Result :: tokens_result(),
 LeftOverChars :: char_spec()} |
 {more, Continuation1 :: return_cont()}
char_spec() = string() | eof
return_cont()
An opaque continuation.

This is the re-entrant scanner, which scans characters until either a dot ('.' followed by a white space) or eof is reached.
It returns:

{done, Result, LeftOverChars}

Indicates that there is sufficient input data to get a result. Result is:

{ok, Tokens, EndLocation}

The scanning was successful. Tokens is the list of tokens including dot.

{eof, EndLocation}

End of file was encountered before any more tokens.

{error, ErrorInfo, EndLocation}

An error occurred. LeftOverChars is the remaining characters of the input data, starting from
EndLocation.

{more, Continuation1}

More data is required for building a term. Continuation1 must be passed in a new call to tokens/3,4
when more data is available.

The CharSpec eof signals end of file. LeftOverChars then takes the value eof as well.

tokens(Continuation, CharSpec, StartLocation) is equivalent to tokens(Continuation,
CharSpec, StartLocation, []).

For a description of the options, see string/3.

Error Information
ErrorInfo is the standard ErrorInfo structure that is returned from all I/O modules. The format is as follows:

{ErrorLocation, Module, ErrorDescriptor}

A string describing the error is obtained with the following call:

Module:format_error(ErrorDescriptor)

erl_scan

Ericsson AB. All Rights Reserved.: STDLIB | 137

Notes
The continuation of the first call to the re-entrant input functions must be []. For a complete description of how the re-
entrant input scheme works, see Armstrong, Virding and Williams: 'Concurrent Programming in Erlang', Chapter 13.

See Also
erl_anno(3), erl_parse(3), io(3)

erl_tar

138 | Ericsson AB. All Rights Reserved.: STDLIB

erl_tar
Erlang module

This module archives and extract files to and from a tar file. This module supports the ustar format (IEEE Std 1003.1
and ISO/IEC 9945-1). All modern tar programs (including GNU tar) can read this format. To ensure that that GNU
tar produces a tar file that erl_tar can read, specify option --format=ustar to GNU tar.

By convention, the name of a tar file is to end in ".tar". To abide to the convention, add ".tar" to the name.

Tar files can be created in one operation using function create/2 or create/3.

Alternatively, for more control, use functions open/2, add/3,4, and close/1.

To extract all files from a tar file, use function extract/1. To extract only some files or to be able to specify some
more options, use function extract/2.

To return a list of the files in a tar file, use function table/1 or table/2. To print a list of files to the Erlang shell,
use function t/1 or tt/1.

To convert an error term returned from one of the functions above to a readable message, use function
format_error/1.

Unicode Support
If file:native_name_encoding/0 returns utf8, path names are encoded in UTF-8 when creating tar files,
and path names are assumed to be encoded in UTF-8 when extracting tar files.

If file:native_name_encoding/0 returns latin1, no translation of path names is done.

Other Storage Media
The ftp module (Inets) normally accesses the tar file on disk using the file module. When other needs arise, you
can define your own low-level Erlang functions to perform the writing and reading on the storage media; use function
init/3.

An example of this is the SFTP support in ssh_sftp:open_tar/3. This function opens a tar file on a remote
machine using an SFTP channel.

Limitations
• For maximum compatibility, it is safe to archive files with names up to 100 characters in length. Such tar files

can generally be extracted by any tar program.

• For filenames exceeding 100 characters in length, the resulting tar file can only be correctly extracted by a POSIX-
compatible tar program (such as Solaris tar or a modern GNU tar).

• Files with longer names than 256 bytes cannot be stored.

• The file name a symbolic link points is always limited to 100 characters.

Exports

add(TarDescriptor, Filename, Options) -> RetValue
Types:

TarDescriptor = term()

Filename = filename()

Options = [Option]

erl_tar

Ericsson AB. All Rights Reserved.: STDLIB | 139

Option = dereference|verbose|{chunks,ChunkSize}

ChunkSize = positive_integer()

RetValue = ok|{error,{Filename,Reason}}

Reason = term()

Adds a file to a tar file that has been opened for writing by open/1.

Options:

dereference

By default, symbolic links are stored as symbolic links in the tar file. To override the default and store the file
that the symbolic link points to into the tar file, use option dereference.

verbose

Prints an informational message about the added file.

{chunks,ChunkSize}

Reads data in parts from the file. This is intended for memory-limited machines that, for example, builds a tar
file on a remote machine over SFTP, see ssh_sftp:open_tar/3.

add(TarDescriptor, FilenameOrBin, NameInArchive, Options) -> RetValue
Types:

TarDescriptor = term()

FilenameOrBin = filename()|binary()

Filename = filename()

NameInArchive = filename()

Options = [Option]

Option = dereference|verbose

RetValue = ok|{error,{Filename,Reason}}

Reason = term()

Adds a file to a tar file that has been opened for writing by open/2. This function accepts the same options as add/3.

NameInArchive is the name under which the file becomes stored in the tar file. The file gets this name when it
is extracted from the tar file.

close(TarDescriptor)
Types:

TarDescriptor = term()

Closes a tar file opened by open/2.

create(Name, FileList) ->RetValue
Types:

Name = filename()

FileList = [Filename|{NameInArchive, binary()},{NameInArchive, Filename}]

Filename = filename()

NameInArchive = filename()

RetValue = ok|{error,{Name,Reason}}

Reason = term()

erl_tar

140 | Ericsson AB. All Rights Reserved.: STDLIB

Creates a tar file and archives the files whose names are specified in FileList into it. The files can either be read
from disk or be specified as binaries.

create(Name, FileList, OptionList)
Types:

Name = filename()

FileList = [Filename|{NameInArchive, binary()},{NameInArchive, Filename}]

Filename = filename()

NameInArchive = filename()

OptionList = [Option]

Option = compressed|cooked|dereference|verbose

RetValue = ok|{error,{Name,Reason}}

Reason = term()

Creates a tar file and archives the files whose names are specified in FileList into it. The files can either be read
from disk or be specified as binaries.

The options in OptionList modify the defaults as follows:

compressed

The entire tar file is compressed, as if it has been run through the gzip program. To abide to the convention that
a compressed tar file is to end in ".tar.gz" or ".tgz", add the appropriate extension.

cooked

By default, function open/2 opens the tar file in raw mode, which is faster but does not allow a remote (Erlang)
file server to be used. Adding cooked to the mode list overrides the default and opens the tar file without option
raw.

dereference

By default, symbolic links are stored as symbolic links in the tar file. To override the default and store the file
that the symbolic link points to into the tar file, use option dereference.

verbose

Prints an informational message about each added file.

extract(Name) -> RetValue
Types:

Name = filename()

RetValue = ok|{error,{Name,Reason}}

Reason = term()

Extracts all files from a tar archive.

If argument Name is specified as {binary,Binary}, the contents of the binary is assumed to be a tar archive.

If argument Name is specified as {file,Fd}, Fd is assumed to be a file descriptor returned from function
file:open/2.

Otherwise, Name is to be a filename.

extract(Name, OptionList)
Types:

erl_tar

Ericsson AB. All Rights Reserved.: STDLIB | 141

Name = filename() | {binary,Binary} | {file,Fd}

Binary = binary()

Fd = file_descriptor()

OptionList = [Option]

Option = {cwd,Cwd}|{files,FileList}|keep_old_files|verbose|memory

Cwd = [dirname()]

FileList = [filename()]

RetValue = ok|MemoryRetValue|{error,{Name,Reason}}

MemoryRetValue = {ok, [{NameInArchive,binary()}]}

NameInArchive = filename()

Reason = term()

Extracts files from a tar archive.

If argument Name is specified as {binary,Binary}, the contents of the binary is assumed to be a tar archive.

If argument Name is specified as {file,Fd}, Fd is assumed to be a file descriptor returned from function
file:open/2.

Otherwise, Name is to be a filename.

The following options modify the defaults for the extraction as follows:

{cwd,Cwd}

Files with relative filenames are by default extracted to the current working directory. With this option, files are
instead extracted into directory Cwd.

{files,FileList}

By default, all files are extracted from the tar file. With this option, only those files are extracted whose names
are included in FileList.

compressed

With this option, the file is uncompressed while extracting. If the tar file is not compressed, this option is ignored.

cooked

By default, function open/2 function opens the tar file in raw mode, which is faster but does not allow a remote
(Erlang) file server to be used. Adding cooked to the mode list overrides the default and opens the tar file
without option raw.

memory

Instead of extracting to a directory, this option gives the result as a list of tuples {Filename, Binary}, where
Binary is a binary containing the extracted data of the file named Filename in the tar file.

keep_old_files

By default, all existing files with the same name as files in the tar file are overwritten. With this option, existing
files are not overwriten.

verbose

Prints an informational message for each extracted file.

format_error(Reason) -> string()
Types:

Reason = term()

erl_tar

142 | Ericsson AB. All Rights Reserved.: STDLIB

Cconverts an error reason term to a human-readable error message string.

init(UserPrivate, AccessMode, Fun) -> {ok,TarDescriptor} | {error,Reason}
Types:

UserPrivate = term()

AccessMode = [write] | [read]

Fun when AccessMode is [write] = fun(write, {UserPrivate,DataToWrite})-
>...; (position,{UserPrivate,Position})->...; (close, UserPrivate)->...
end

Fun when AccessMode is [read] = fun(read2, {UserPrivate,Size})->...;
(position,{UserPrivate,Position})->...; (close, UserPrivate)->... end

TarDescriptor = term()

Reason = term()

The Fun is the definition of what to do when the different storage operations functions are to be called from the higher
tar handling functions (such as add/3, add/4, and close/1).

The Fun is called when the tar function wants to do a low-level operation, like writing a block to a file. The Fun is
called as Fun(Op, {UserPrivate,Parameters...}), where Op is the operation name, UserPrivate is
the term passed as the first argument to init/1 and Parameters... are the data added by the tar function to be
passed down to the storage handling function.

Parameter UserPrivate is typically the result of opening a low-level structure like a file descriptor or an SFTP
channel id. The different Fun clauses operate on that very term.

The following are the fun clauses parameter lists:

(write, {UserPrivate,DataToWrite})

Writes term DataToWrite using UserPrivate.

(close, UserPrivate)

Closes the access.

(read2, {UserPrivate,Size})

Reads using UserPrivate but only Size bytes. Notice that there is only an arity-2 read function, not an
arity-1 function.

(position,{UserPrivate,Position})

Sets the position of UserPrivate as defined for files in file:position/2

Example:

The following is a complete Fun parameter for reading and writing on files using the file module:

ExampleFun =
 fun(write, {Fd,Data}) -> file:write(Fd, Data);
 (position, {Fd,Pos}) -> file:position(Fd, Pos);
 (read2, {Fd,Size}) -> file:read(Fd, Size);
 (close, Fd) -> file:close(Fd)
 end

Here Fd was specified to function init/3 as:

erl_tar

Ericsson AB. All Rights Reserved.: STDLIB | 143

{ok,Fd} = file:open(Name, ...).
{ok,TarDesc} = erl_tar:init(Fd, [write], ExampleFun),

TarDesc is then used:

erl_tar:add(TarDesc, SomeValueIwantToAdd, FileNameInTarFile),
...,
erl_tar:close(TarDesc)

When the erl_tar core wants to, for example, write a piece of Data, it would call ExampleFun(write,
{UserPrivate,Data}).

Note:
This example with the file module operations is not necessary to use directly, as that is what function open/2
in principle does.

Warning:
The TarDescriptor term is not a file descriptor. You are advised not to rely on the specific contents of this
term, as it can change in future Erlang/OTP releases when more features are added to this module.

open(Name, OpenModeList) -> RetValue
Types:

Name = filename()

OpenModeList = [OpenMode]

Mode = write|compressed|cooked

RetValue = {ok,TarDescriptor}|{error,{Name,Reason}}

TarDescriptor = term()

Reason = term()

Creates a tar file for writing (any existing file with the same name is truncated).

By convention, the name of a tar file is to end in ".tar". To abide to the convention, add ".tar" to the name.

Except for the write atom, the following atoms can be added to OpenModeList:

compressed

The entire tar file is compressed, as if it has been run through the gzip program. To abide to the convention that
a compressed tar file is to end in ".tar.gz" or ".tgz", add the appropriate extension.

cooked

By default, the tar file is opened in raw mode, which is faster but does not allow a remote (Erlang) file server to
be used. Adding cooked to the mode list overrides the default and opens the tar file without option raw.

To add one file at the time into an opened tar file, use function add/3,4. When you are finished adding files, use
function close/1 to close the tar file.

erl_tar

144 | Ericsson AB. All Rights Reserved.: STDLIB

Warning:
The TarDescriptor term is not a file descriptor. You are advised not to rely on the specific contents of this
term, as it can change in future Erlang/OTP releases when more features are added to this module..

table(Name) -> RetValue
Types:

Name = filename()

RetValue = {ok,[string()]}|{error,{Name,Reason}}

Reason = term()

Retrieves the names of all files in the tar file Name.

table(Name, Options)
Types:

Name = filename()

Retrieves the names of all files in the tar file Name.

t(Name)
Types:

Name = filename()

Prints the names of all files in the tar file Name to the Erlang shell (similar to "tar t").

tt(Name)
Types:

Name = filename()

Prints names and information about all files in the tar file Name to the Erlang shell (similar to "tar tv").

ets

Ericsson AB. All Rights Reserved.: STDLIB | 145

ets
Erlang module

This module is an interface to the Erlang built-in term storage BIFs. These provide the ability to store very large
quantities of data in an Erlang runtime system, and to have constant access time to the data. (In the case of
ordered_set, see below, access time is proportional to the logarithm of the number of stored objects.)

Data is organized as a set of dynamic tables, which can store tuples. Each table is created by a process. When the
process terminates, the table is automatically destroyed. Every table has access rights set at creation.

Tables are divided into four different types, set, ordered_set, bag, and duplicate_bag. A set or
ordered_set table can only have one object associated with each key. A bag or duplicate_bag table can have
many objects associated with each key.

The number of tables stored at one Erlang node is limited. The current default limit is about 1400 tables. The upper
limit can be increased by setting environment variable ERL_MAX_ETS_TABLES before starting the Erlang runtime
system (that is, with option -env to erl/werl). The actual limit can be slightly higher than the one specified, but
never lower.

Notice that there is no automatic garbage collection for tables. Even if there are no references to a table from any
process, it is not automatically destroyed unless the owner process terminates. To destroy a table explicitly, use function
delete/1. The default owner is the process that created the table. To transfer table ownership at process termination,
use option heir or call give_away/3.

Some implementation details:

• In the current implementation, every object insert and look-up operation results in a copy of the object.

• '$end_of_table' is not to be used as a key, as this atom is used to mark the end of the table when using
functions first/1 and next/2.

Notice the subtle difference between matching and comparing equal, which is demonstrated by table types set and
ordered_set:

• Two Erlang terms match if they are of the same type and have the same value, so that 1 matches 1, but not 1.0
(as 1.0 is a float() and not an integer()).

• Two Erlang terms compare equal if they either are of the same type and value, or if both are numeric types and
extend to the same value, so that 1 compares equal to both 1 and 1.0.

• The ordered_set works on the Erlang term order and no defined order exists between an integer()
and a float() that extends to the same value. Hence the key 1 and the key 1.0 are regarded as equal in an
ordered_set table.

Failure
The functions in this module exits with reason badarg if any argument has the wrong format, if the table identifier
is invalid, or if the operation is denied because of table access rights (protected or private).

Concurrency
This module provides some limited support for concurrent access. All updates to single objects are guaranteed to be
both atomic and isolated. This means that an updating operation to a single object either succeeds or fails completely
without any effect (atomicity) and that no intermediate results of the update can be seen by other processes (isolation).
Some functions that update many objects state that they even guarantee atomicity and isolation for the entire operation.
In database terms the isolation level can be seen as "serializable", as if all isolated operations are carried out serially,
one after the other in a strict order.

ets

146 | Ericsson AB. All Rights Reserved.: STDLIB

No other support is available within this module that would guarantee consistency between objects. However, function
safe_fixtable/2 can be used to guarantee that a sequence of first/1 and next/2 calls traverse the table
without errors and that each existing object in the table is visited exactly once, even if another (or the same) process
simultaneously deletes or inserts objects into the table. Nothing else is guaranteed; in particular objects that are inserted
or deleted during such a traversal can be visited once or not at all. Functions that internally traverse over a table, like
select and match, give the same guarantee as safe_fixtable.

Match Specifications
Some of the functions use a match specification, match_spec. For a brief explanation, see select/2. For a
detailed description, see section Match Specifications in Erlang in ERTS User's Guide.

Data Types
access() = public | protected | private
continuation()
Opaque continuation used by select/1,3, select_reverse/1,3, match/1,3, and
match_object/1,3.

match_spec() = [{match_pattern(), [term()], [term()]}]
A match specification, see above.

comp_match_spec()
A compiled match specification.

match_pattern() = atom() | tuple()
tab() = atom() | tid()
tid()
A table identifier, as returned by new/2.

type() = set | ordered_set | bag | duplicate_bag

Exports

all() -> [Tab]
Types:

Tab = tab()
Returns a list of all tables at the node. Named tables are specified by their names, unnamed tables are specified by
their table identifiers.

There is no guarantee of consistency in the returned list. Tables created or deleted by other processes "during" the
ets:all() call either are or are not included in the list. Only tables created/deleted before ets:all() is called
are guaranteed to be included/excluded.

delete(Tab) -> true
Types:

Tab = tab()
Deletes the entire table Tab.

delete(Tab, Key) -> true
Types:

ets

Ericsson AB. All Rights Reserved.: STDLIB | 147

Tab = tab()
Key = term()

Deletes all objects with key Key from table Tab.

delete_all_objects(Tab) -> true
Types:

Tab = tab()
Delete all objects in the ETS table Tab. The operation is guaranteed to be atomic and isolated.

delete_object(Tab, Object) -> true
Types:

Tab = tab()
Object = tuple()

Delete the exact object Object from the ETS table, leaving objects with the same key but other differences (useful
for type bag). In a duplicate_bag table, all instances of the object are deleted.

file2tab(Filename) -> {ok, Tab} | {error, Reason}
Types:

Filename = file:name()
Tab = tab()
Reason = term()

Reads a file produced by tab2file/2 or tab2file/3 and creates the corresponding table Tab.

Equivalent to file2tab(Filename, []).

file2tab(Filename, Options) -> {ok, Tab} | {error, Reason}
Types:

Filename = file:name()
Tab = tab()
Options = [Option]
Option = {verify, boolean()}
Reason = term()

Reads a file produced by tab2file/2 or tab2file/3 and creates the corresponding table Tab.

The only supported option is {verify,boolean()}. If verification is turned on (by specifying
{verify,true}), the function uses whatever information is present in the file to assert that the information is not
damaged. How this is done depends on which extended_info was written using tab2file/3.

If no extended_info is present in the file and {verify,true} is specified, the number of objects written is
compared to the size of the original table when the dump was started. This can make verification fail if the table was
public and objects were added or removed while the table was dumped to file. To avoid this problem, either do
not verify files dumped while updated simultaneously or use option {extended_info, [object_count]} to
tab2file/3, which extends the information in the file with the number of objects written.

If verification is turned on and the file was written with option {extended_info, [md5sum]}, reading the file
is slower and consumes radically more CPU time than otherwise.

{verify,false} is the default.

ets

148 | Ericsson AB. All Rights Reserved.: STDLIB

first(Tab) -> Key | '$end_of_table'
Types:

Tab = tab()
Key = term()

Returns the first key Key in table Tab. For an ordered_set table, the first key in Erlang term order is returned.
For other table types, the first key according to the internal order of the table is returned. If the table is empty,
'$end_of_table' is returned.

To find subsequent keys in the table, use next/2.

foldl(Function, Acc0, Tab) -> Acc1
Types:

Function = fun((Element :: term(), AccIn) -> AccOut)
Tab = tab()
Acc0 = Acc1 = AccIn = AccOut = term()

Acc0 is returned if the table is empty. This function is similar to lists:foldl/3. The table elements are traversed
is unspecified order, except for ordered_set tables, where they are traversed first to last.

If Function inserts objects into the table, or another process inserts objects into the table, those objects can
(depending on key ordering) be included in the traversal.

foldr(Function, Acc0, Tab) -> Acc1
Types:

Function = fun((Element :: term(), AccIn) -> AccOut)
Tab = tab()
Acc0 = Acc1 = AccIn = AccOut = term()

Acc0 is returned if the table is empty. This function is similar to lists:foldr/3. The table elements are traversed
is unspecified order, except for ordered_set tables, where they are traversed last to first.

If Function inserts objects into the table, or another process inserts objects into the table, those objects can
(depending on key ordering) be included in the traversal.

from_dets(Tab, DetsTab) -> true
Types:

Tab = tab()
DetsTab = dets:tab_name()

Fills an already created ETS table with the objects in the already opened Dets table DetsTab. Existing objects in
the ETS table are kept unless overwritten.

If any of the tables does not exist or the Dets table is not open, a badarg exception is raised.

fun2ms(LiteralFun) -> MatchSpec
Types:

ets

Ericsson AB. All Rights Reserved.: STDLIB | 149

LiteralFun = function()
MatchSpec = match_spec()

Pseudo function that by a parse_transform translates LiteralFun typed as parameter in the function call to
a match specification. With "literal" is meant that the fun must textually be written as the parameter of the function,
it cannot be held in a variable that in turn is passed to the function.

The parse transform is provided in the ms_transform module and the source must include file
ms_transform.hrl in STDLIB for this pseudo function to work. Failing to include the hrl file in the source
results in a runtime error, not a compile time error. The include file is easiest included by adding line -
include_lib("stdlib/include/ms_transform.hrl"). to the source file.

The fun is very restricted, it can take only a single parameter (the object to match): a sole variable or a tuple. It must use
the is_ guard tests. Language constructs that have no representation in a match specification (if, case, receive,
and so on) are not allowed.

The return value is the resulting match specification.

Example:

1> ets:fun2ms(fun({M,N}) when N > 3 -> M end).
[{{'$1','$2'},[{'>','$2',3}],['$1']}]

Variables from the environment can be imported, so that the following works:

2> X=3.
3
3> ets:fun2ms(fun({M,N}) when N > X -> M end).
[{{'$1','$2'},[{'>','$2',{const,3}}],['$1']}]

The imported variables are replaced by match specification const expressions, which is consistent with the static
scoping for Erlang funs. However, local or global function calls cannot be in the guard or body of the fun. Calls to
built-in match specification functions is of course allowed:

4> ets:fun2ms(fun({M,N}) when N > X, is_atomm(M) -> M end).
Error: fun containing local Erlang function calls
('is_atomm' called in guard) cannot be translated into match_spec
{error,transform_error}
5> ets:fun2ms(fun({M,N}) when N > X, is_atom(M) -> M end).
[{{'$1','$2'},[{'>','$2',{const,3}},{is_atom,'$1'}],['$1']}]

As shown by the example, the function can be called from the shell also. The fun must be literally in the call when
used from the shell as well.

Warning:
If the parse_transform is not applied to a module that calls this pseudo function, the call fails in runtime
(with a badarg). The ets module exports a function with this name, but it is never to be called except
when using the function in the shell. If the parse_transform is properly applied by including header file
ms_transform.hrl, compiled code never calls the function, but the function call is replaced by a literal
match specification.

ets

150 | Ericsson AB. All Rights Reserved.: STDLIB

For more information, see ms_transform(3).

give_away(Tab, Pid, GiftData) -> true
Types:

Tab = tab()
Pid = pid()
GiftData = term()

Make process Pid the new owner of table Tab. If successful, message {'ETS-
TRANSFER',Tab,FromPid,GiftData} is sent to the new owner.

The process Pid must be alive, local, and not already the owner of the table. The calling process must be the table
owner.

Notice that this function does not affect option heir of the table. A table owner can, for example, set heir to itself,
give the table away, and then get it back if the receiver terminates.

i() -> ok
Displays information about all ETS tables on a terminal.

i(Tab) -> ok
Types:

Tab = tab()
Browses table Tab on a terminal.

info(Tab) -> InfoList | undefined
Types:

Tab = tab()
InfoList = [InfoTuple]
InfoTuple =
 {compressed, boolean()} |
 {heir, pid() | none} |
 {keypos, integer() >= 1} |
 {memory, integer() >= 0} |
 {name, atom()} |
 {named_table, boolean()} |
 {node, node()} |
 {owner, pid()} |
 {protection, access()} |
 {size, integer() >= 0} |
 {type, type()} |
 {write_concurrency, boolean()} |
 {read_concurrency, boolean()}

Returns information about table Tab as a list of tuples. If Tab has the correct type for a table identifier, but does not
refer to an existing ETS table, undefined is returned. If Tab is not of the correct type, a badarg exception is raised.

{compressed, boolean()}

Indicates if the table is compressed.

ets

Ericsson AB. All Rights Reserved.: STDLIB | 151

{heir, pid() | none}

The pid of the heir of the table, or none if no heir is set.

{keypos, integer() >= 1}

The key position.

{memory, integer() >= 0

The number of words allocated to the table.

{name, atom()}

The table name.

{named_table, boolean()}

Indicates if the table is named.

{node, node()}

The node where the table is stored. This field is no longer meaningful, as tables cannot be accessed from other
nodes.

{owner, pid()}

The pid of the owner of the table.

{protection, access()}

The table access rights.

{size, integer() >= 0

The number of objects inserted in the table.

{type, type()}

The table type.

{read_concurrency, boolean()}

Indicates whether the table uses read_concurrency or not.

{write_concurrency, boolean()}

Indicates whether the table uses write_concurrency.

info(Tab, Item) -> Value | undefined
Types:

Tab = tab()
Item =
 compressed |
 fixed |
 heir |
 keypos |
 memory |
 name |
 named_table |
 node |
 owner |
 protection |
 safe_fixed |

ets

152 | Ericsson AB. All Rights Reserved.: STDLIB

 safe_fixed_monotonic_time |
 size |
 stats |
 type |
 write_concurrency |
 read_concurrency
Value = term()

Returns the information associated with Item for table Tab, or returns undefined if Tab does not refer an existing
ETS table. If Tab is not of the correct type, or if Item is not one of the allowed values, a badarg exception is raised.

Warning:
In Erlang/OTP R11B and earlier, this function would not fail but return undefined for invalid values for Item.

In addition to the {Item,Value} pairs defined for info/1, the following items are allowed:

• Item=fixed, Value=boolean()

Indicates if the table is fixed by any process.

• Item=safe_fixed|safe_fixed_monotonic_time, Value={FixationTime,Info}|false

If the table has been fixed using safe_fixtable/2, the call returns a tuple where FixationTime is the
time when the table was first fixed by a process, which either is or is not one of the processes it is fixed by now.

The format and value of FixationTime depends on Item:

safe_fixed

FixationTime corresponds to the result returned by erlang:timestamp/0 at the time of fixation.
Notice that when the system uses single or multi time warp modes this can produce strange results, as the use
of safe_fixed is not time warp safe. Time warp safe code must use safe_fixed_monotonic_time
instead.

safe_fixed_monotonic_time

FixationTime corresponds to the result returned by erlang:monotonic_time/0 at the time of
fixation. The use of safe_fixed_monotonic_time is time warp safe.

Info is a possibly empty lists of tuples {Pid,RefCount}, one tuple for every process the table is fixed by
now. RefCount is the value of the reference counter and it keeps track of how many times the table has been
fixed by the process.

If the table never has been fixed, the call returns false.

• Item=stats, Value=tuple()

Returns internal statistics about set, bag, and duplicate_bag tables on an internal format used by OTP test
suites. Not for production use.

init_table(Tab, InitFun) -> true
Types:

ets

Ericsson AB. All Rights Reserved.: STDLIB | 153

Tab = tab()
InitFun = fun((Arg) -> Res)
Arg = read | close
Res = end_of_input | {Objects :: [term()], InitFun} | term()

Replaces the existing objects of table Tab with objects created by calling the input function InitFun, see below.
This function is provided for compatibility with the dets module, it is not more efficient than filling a table by using
insert/2.

When called with argument read, the function InitFun is assumed to return end_of_input when there is no
more input, or {Objects, Fun}, where Objects is a list of objects and Fun is a new input function. Any other
value Value is returned as an error {error, {init_fun, Value}}. Each input function is called exactly once,
and if an error occur, the last function is called with argument close, the reply of which is ignored.

If the table type is set and more than one object exists with a given key, one of the objects is chosen. This is not
necessarily the last object with the given key in the sequence of objects returned by the input functions. This holds
also for duplicated objects stored in tables of type bag.

insert(Tab, ObjectOrObjects) -> true
Types:

Tab = tab()
ObjectOrObjects = tuple() | [tuple()]

Inserts the object or all of the objects in list ObjectOrObjects into table Tab.

• If the table type is set and the key of the inserted objects matches the key of any object in the table, the old
object is replaced.

• If the table type is ordered_set and the key of the inserted object compares equal to the key of any object
in the table, the old object is replaced.

• If the list contains more than one object with matching keys and the table type is set, one is inserted, which one
is not defined. The same holds for table type ordered_set if the keys compare equal.

The entire operation is guaranteed to be atomic and isolated, even when a list of objects is inserted.

insert_new(Tab, ObjectOrObjects) -> boolean()
Types:

Tab = tab()
ObjectOrObjects = tuple() | [tuple()]

Same as insert/2 except that instead of overwriting objects with the same key (for set or ordered_set) or
adding more objects with keys already existing in the table (for bag and duplicate_bag), false is returned.

If ObjectOrObjects is a list, the function checks every key before inserting anything. Nothing is inserted unless
all keys present in the list are absent from the table. Like insert/2, the entire operation is guaranteed to be atomic
and isolated.

is_compiled_ms(Term) -> boolean()
Types:

Term = term()
Checks if a term is a valid compiled match specification. The compiled match specification is an opaque datatype
that cannot be sent between Erlang nodes or be stored on disk. Any attempt to create an external representation of a
compiled match specification results in an empty binary (<<>>).

ets

154 | Ericsson AB. All Rights Reserved.: STDLIB

Examples:

The following expression yields true::

ets:is_compiled_ms(ets:match_spec_compile([{'_',[],[true]}])).

The following expressions yield false, as variable Broken contains a compiled match specification that has passed
through external representation:

MS = ets:match_spec_compile([{'_',[],[true]}]),
Broken = binary_to_term(term_to_binary(MS)),
ets:is_compiled_ms(Broken).

Note:
The reason for not having an external representation of compiled match specifications is performance. It can be
subject to change in future releases, while this interface remains for backward compatibility.

last(Tab) -> Key | '$end_of_table'
Types:

Tab = tab()
Key = term()

Returns the last key Key according to Erlang term order in table Tab of type ordered_set. For other table types,
the function is synonymous to first/1. If the table is empty, '$end_of_table' is returned.

To find preceding keys in the table, use prev/2.

lookup(Tab, Key) -> [Object]
Types:

Tab = tab()
Key = term()
Object = tuple()

Returns a list of all objects with key Key in table Tab.

• For tables of type set, bag, or duplicate_bag, an object is returned only if the specified key matches the
key of the object in the table.

• For tables of type ordered_set, an object is returned if the specified key compares equal to the key of an
object in the table.

The difference is the same as between =:= and ==.

As an example, one can insert an object with integer() 1 as a key in an ordered_set and get the object returned
as a result of doing a lookup/2 with float() 1.0 as the key to search for.

For tables of type set or ordered_set, the function returns either the empty list or a list with one element, as
there cannot be more than one object with the same key. For tables of type bag or duplicate_bag, the function
returns a list of arbitrary length.

ets

Ericsson AB. All Rights Reserved.: STDLIB | 155

Notice that the time order of object insertions is preserved; the first object inserted with the specified key is the first
in the resulting list, and so on.

Insert and lookup times in tables of type set, bag, and duplicate_bag are constant, regardless of the table size.
For the ordered_set datatype, time is proportional to the (binary) logarithm of the number of objects.

lookup_element(Tab, Key, Pos) -> Elem
Types:

Tab = tab()
Key = term()
Pos = integer() >= 1
Elem = term() | [term()]

For a table Tab of type set or ordered_set, the function returns the Pos:th element of the object with key Key.

For tables of type bag or duplicate_bag, the functions returns a list with the Pos:th element of every object
with key Key.

If no object with key Key exists, the function exits with reason badarg.

The difference between set, bag, and duplicate_bag on one hand, and ordered_set on the other, regarding
the fact that ordered_set view keys as equal when they compare equal whereas the other table types regard them
equal only when they match, holds for lookup_element/3.

match(Continuation) -> {[Match], Continuation} | '$end_of_table'
Types:

Match = [term()]
Continuation = continuation()

Continues a match started with match/3. The next chunk of the size specified in the initial match/3 call is returned
together with a new Continuation, which can be used in subsequent calls to this function.

When there are no more objects in the table, '$end_of_table' is returned.

match(Tab, Pattern) -> [Match]
Types:

Tab = tab()
Pattern = match_pattern()
Match = [term()]

Matches the objects in table Tab against pattern Pattern.

A pattern is a term that can contain:

• Bound parts (Erlang terms)

• '_' that matches any Erlang term

• Pattern variables '$N', where N=0,1,...

The function returns a list with one element for each matching object, where each element is an ordered list of pattern
variable bindings, for example:

6> ets:match(T, '$1'). % Matches every object in table
[[{rufsen,dog,7}],[{brunte,horse,5}],[{ludde,dog,5}]]
7> ets:match(T, {'_',dog,'$1'}).

ets

156 | Ericsson AB. All Rights Reserved.: STDLIB

[[7],[5]]
8> ets:match(T, {'_',cow,'$1'}).
[]

If the key is specified in the pattern, the match is very efficient. If the key is not specified, that is, if it is a variable or
an underscore, the entire table must be searched. The search time can be substantial if the table is very large.

For tables of type ordered_set, the result is in the same order as in a first/next traversal.

match(Tab, Pattern, Limit) ->
 {[Match], Continuation} | '$end_of_table'
Types:

Tab = tab()
Pattern = match_pattern()
Limit = integer() >= 1
Match = [term()]
Continuation = continuation()

Works like match/2, but returns only a limited (Limit) number of matching objects. Term Continuation can
then be used in subsequent calls to match/1 to get the next chunk of matching objects. This is a space-efficient way
to work on objects in a table, which is faster than traversing the table object by object using first/1 and next/2.

If the table is empty, '$end_of_table' is returned.

match_delete(Tab, Pattern) -> true
Types:

Tab = tab()
Pattern = match_pattern()

Deletes all objects that match pattern Pattern from table Tab. For a description of patterns, see match/2.

match_object(Continuation) ->
 {[Match], Continuation} | '$end_of_table'
Types:

Match = [term()]
Continuation = continuation()

Continues a match started with match_object/3. The next chunk of the size specified in the initial
match_object/3 call is returned together with a new Continuation, which can be used in subsequent calls
to this function.

When there are no more objects in the table, '$end_of_table' is returned.

match_object(Tab, Pattern) -> [Object]
Types:

Tab = tab()
Pattern = match_pattern()
Object = tuple()

Matches the objects in table Tab against pattern Pattern. For a description of patterns, see match/2. The function
returns a list of all objects that match the pattern.

ets

Ericsson AB. All Rights Reserved.: STDLIB | 157

If the key is specified in the pattern, the match is very efficient. If the key is not specified, that is, if it is a variable or
an underscore, the entire table must be searched. The search time can be substantial if the table is very large.

For tables of type ordered_set, the result is in the same order as in a first/next traversal.

match_object(Tab, Pattern, Limit) ->
 {[Match], Continuation} | '$end_of_table'
Types:

Tab = tab()
Pattern = match_pattern()
Limit = integer() >= 1
Match = [term()]
Continuation = continuation()

Works like match_object/2, but only returns a limited (Limit) number of matching objects. Term
Continuation can then be used in subsequent calls to match_object/1 to get the next chunk of matching
objects. This is a space-efficient way to work on objects in a table, which is faster than traversing the table object by
object using first/1 and next/2.

If the table is empty, '$end_of_table' is returned.

match_spec_compile(MatchSpec) -> CompiledMatchSpec
Types:

MatchSpec = match_spec()
CompiledMatchSpec = comp_match_spec()

Transforms a match specification into an internal representation that can be used in subsequent calls to
match_spec_run/2. The internal representation is opaque and cannot be converted to external term format and
then back again without losing its properties (that is, it cannot be sent to a process on another node and still remain
a valid compiled match specification, nor can it be stored on disk). To check the validity of a compiled match
specification, use is_compiled_ms/1.

If term MatchSpec cannot be compiled (does not represent a valid match specification), a badarg exception is
raised.

Note:
This function has limited use in normal code. It is used by the dets module to perform the dets:select()
operations.

match_spec_run(List, CompiledMatchSpec) -> list()
Types:

List = [tuple()]
CompiledMatchSpec = comp_match_spec()

Executes the matching specified in a compiled match specification on a list of tuples. Term CompiledMatchSpec
is to be the result of a call to match_spec_compile/1 and is hence the internal representation of the match
specification one wants to use.

ets

158 | Ericsson AB. All Rights Reserved.: STDLIB

The matching is executed on each element in List and the function returns a list containing all results. If an element
in List does not match, nothing is returned for that element. The length of the result list is therefore equal or less
than the length of parameter List.

Example:

The following two calls give the same result (but certainly not the same execution time):

Table = ets:new...
MatchSpec = ...
% The following call...
ets:match_spec_run(ets:tab2list(Table),
ets:match_spec_compile(MatchSpec)),
% ...gives the same result as the more common (and more efficient)
ets:select(Table, MatchSpec),

Note:
This function has limited use in normal code. It is used by the dets module to perform the dets:select()
operations and by Mnesia during transactions.

member(Tab, Key) -> boolean()
Types:

Tab = tab()
Key = term()

Works like lookup/2, but does not return the objects. Returns true if one or more elements in the table has key
Key, otherwise false.

new(Name, Options) -> tid() | atom()
Types:

Name = atom()
Options = [Option]
Option =
 Type |
 Access |
 named_table |
 {keypos, Pos} |
 {heir, Pid :: pid(), HeirData} |
 {heir, none} |
 Tweaks
Type = type()
Access = access()
Tweaks =
 {write_concurrency, boolean()} |
 {read_concurrency, boolean()} |

ets

Ericsson AB. All Rights Reserved.: STDLIB | 159

 compressed
Pos = integer() >= 1
HeirData = term()

Creates a new table and returns a table identifier that can be used in subsequent operations. The table identifier can be
sent to other processes so that a table can be shared between different processes within a node.

Parameter Options is a list of atoms that specifies table type, access rights, key position, and whether the table
is named. Default values are used for omitted options. This means that not specifying any options ([]) is the same
as specifying [set, protected, {keypos,1}, {heir,none}, {write_concurrency,false},
{read_concurrency,false}].

set

The table is a set table: one key, one object, no order among objects. This is the default table type.

ordered_set

The table is a ordered_set table: one key, one object, ordered in Erlang term order, which is the order implied
by the < and > operators. Tables of this type have a somewhat different behavior in some situations than tables of
other types. Most notably, the ordered_set tables regard keys as equal when they compare equal, not only
when they match. This means that to an ordered_set table, integer() 1 and float() 1.0 are regarded
as equal. This also means that the key used to lookup an element not necessarily matches the key in the returned
elements, if float()'s and integer()'s are mixed in keys of a table.

bag

The table is a bag table, which can have many objects, but only one instance of each object, per key.

duplicate_bag

The table is a duplicate_bag table, which can have many objects, including multiple copies of the same
object, per key.

public

Any process can read or write to the table.

protected

The owner process can read and write to the table. Other processes can only read the table. This is the default
setting for the access rights.

private

Only the owner process can read or write to the table.

named_table

If this option is present, name Name is associated with the table identifier. The name can then be used instead
of the table identifier in subsequent operations.

{keypos,Pos}

Specifies which element in the stored tuples to use as key. By default, it is the first element, that is, Pos=1.
However, this is not always appropriate. In particular, we do not want the first element to be the key if we want
to store Erlang records in a table.

Notice that any tuple stored in the table must have at least Pos number of elements.

{heir,Pid,HeirData} | {heir,none}

Set a process as heir. The heir inherits the table if the owner terminates. Message {'ETS-
TRANSFER',tid(),FromPid,HeirData} is sent to the heir when that occurs. The heir must be a local
process. Default heir is none, which destroys the table when the owner terminates.

ets

160 | Ericsson AB. All Rights Reserved.: STDLIB

{write_concurrency,boolean()}

Performance tuning. Defaults to false, in which case an operation that mutates (writes to) the table obtains
exclusive access, blocking any concurrent access of the same table until finished. If set to true, the table is
optimized to concurrent write access. Different objects of the same table can be mutated (and read) by concurrent
processes. This is achieved to some degree at the expense of memory consumption and the performance of
sequential access and concurrent reading.

Option write_concurrency can be combined with option read_concurrency. You typically want
to combine these when large concurrent read bursts and large concurrent write bursts are common; for more
information, see option read_concurrency.

Notice that this option does not change any guarantees about atomicity and isolation. Functions that makes such
promises over many objects (like insert/2) gain less (or nothing) from this option.

Table type ordered_set is not affected by this option. Also, the memory consumption inflicted by both
write_concurrency and read_concurrency is a constant overhead per table. This overhead can be
especially large when both options are combined.

{read_concurrency,boolean()}

Performance tuning. Defaults to false. When set to true, the table is optimized for concurrent read operations.
When this option is enabled on a runtime system with SMP support, read operations become much cheaper;
especially on systems with multiple physical processors. However, switching between read and write operations
becomes more expensive.

You typically want to enable this option when concurrent read operations are much more frequent than write
operations, or when concurrent reads and writes comes in large read and write bursts (that is, many reads not
interrupted by writes, and many writes not interrupted by reads).

You typically do not want to enable this option when the common access pattern is a few read operations
interleaved with a few write operations repeatedly. In this case, you would get a performance degradation by
enabling this option.

Option read_concurrency can be combined with option write_concurrency. You typically want to
combine these when large concurrent read bursts and large concurrent write bursts are common.

compressed

If this option is present, the table data is stored in a more compact format to consume less memory. However, it
will make table operations slower. Especially operations that need to inspect entire objects, such as match and
select, get much slower. The key element is not compressed.

next(Tab, Key1) -> Key2 | '$end_of_table'
Types:

Tab = tab()
Key1 = Key2 = term()

Returns the next key Key2, following key Key1 in table Tab. For table type ordered_set, the next key in Erlang
term order is returned. For other table types, the next key according to the internal order of the table is returned. If no
next key exists, '$end_of_table' is returned.

To find the first key in the table, use first/1.

Unless a table of type set, bag, or duplicate_bag is protected using safe_fixtable/2, a traversal can fail
if concurrent updates are made to the table. For table type ordered_set, the function returns the next key in order,
even if the object does no longer exist.

ets

Ericsson AB. All Rights Reserved.: STDLIB | 161

prev(Tab, Key1) -> Key2 | '$end_of_table'
Types:

Tab = tab()
Key1 = Key2 = term()

Returns the previous key Key2, preceding key Key1 according to Erlang term order in table Tab of type
ordered_set. For other table types, the function is synonymous to next/2. If no previous key exists,
'$end_of_table' is returned.

To find the last key in the table, use last/1.

rename(Tab, Name) -> Name
Types:

Tab = tab()
Name = atom()

Renames the named table Tab to the new name Name. Afterwards, the old name cannot be used to access the table.
Renaming an unnamed table has no effect.

repair_continuation(Continuation, MatchSpec) -> Continuation
Types:

Continuation = continuation()
MatchSpec = match_spec()

Restores an opaque continuation returned by select/3 or select/1 if the continuation has passed through external
term format (been sent between nodes or stored on disk).

The reason for this function is that continuation terms contain compiled match specifications and therefore are
invalidated if converted to external term format. Given that the original match specification is kept intact, the
continuation can be restored, meaning it can once again be used in subsequent select/1 calls even though it has
been stored on disk or on another node.

Examples:

The following sequence of calls fails:

T=ets:new(x,[]),
...
{_,C} = ets:select(T,ets:fun2ms(fun({N,_}=A)
when (N rem 10) =:= 0 ->
A
end),10),
Broken = binary_to_term(term_to_binary(C)),
ets:select(Broken).

The following sequence works, as the call to repair_continuation/2 reestablishes the (deliberately)
invalidated continuation Broken.

T=ets:new(x,[]),
...
MS = ets:fun2ms(fun({N,_}=A)
when (N rem 10) =:= 0 ->
A
end),

ets

162 | Ericsson AB. All Rights Reserved.: STDLIB

{_,C} = ets:select(T,MS,10),
Broken = binary_to_term(term_to_binary(C)),
ets:select(ets:repair_continuation(Broken,MS)).

Note:
This function is rarely needed in application code. It is used by Mnesia to provide distributed select/3 and
select/1 sequences. A normal application would either use Mnesia or keep the continuation from being
converted to external format.

The reason for not having an external representation of a compiled match specification is performance. It can be
subject to change in future releases, while this interface remains for backward compatibility.

safe_fixtable(Tab, Fix) -> true
Types:

Tab = tab()
Fix = boolean()

Fixes a table of type set, bag, or duplicate_bag for safe traversal.

A process fixes a table by calling safe_fixtable(Tab, true). The table remains fixed until the process releases
it by calling safe_fixtable(Tab, false), or until the process terminates.

If many processes fix a table, the table remains fixed until all processes have released it (or terminated). A reference
counter is kept on a per process basis, and N consecutive fixes requires N releases to release the table.

When a table is fixed, a sequence of first/1 and next/2 calls are guaranteed to succeed, and each object in the
table is returned only once, even if objects are removed or inserted during the traversal. The keys for new objects
inserted during the traversal can be returned by next/2 (it depends on the internal ordering of the keys).

Example:

clean_all_with_value(Tab,X) ->
 safe_fixtable(Tab,true),
 clean_all_with_value(Tab,X,ets:first(Tab)),
 safe_fixtable(Tab,false).

clean_all_with_value(Tab,X,'$end_of_table') ->
 true;
clean_all_with_value(Tab,X,Key) ->
 case ets:lookup(Tab,Key) of
 [{Key,X}] ->
 ets:delete(Tab,Key);
 _ ->
 true
 end,
 clean_all_with_value(Tab,X,ets:next(Tab,Key)).

Notice that no deleted objects are removed from a fixed table until it has been released. If a process fixes a table but
never releases it, the memory used by the deleted objects is never freed. The performance of operations on the table
also degrades significantly.

To retrieve information about which processes have fixed which tables, use info(Tab,
safe_fixed_monotonic_time). A system with many processes fixing tables can need a monitor that sends
alarms when tables have been fixed for too long.

ets

Ericsson AB. All Rights Reserved.: STDLIB | 163

Notice that for table type ordered_set, safe_fixtable/2 is not necessary, as calls to first/1 and next/2
always succeed.

select(Continuation) -> {[Match], Continuation} | '$end_of_table'
Types:

Match = term()
Continuation = continuation()

Continues a match started with select/3. The next chunk of the size specified in the initial select/3 call is
returned together with a new Continuation, which can be used in subsequent calls to this function.

When there are no more objects in the table, '$end_of_table' is returned.

select(Tab, MatchSpec) -> [Match]
Types:

Tab = tab()
MatchSpec = match_spec()
Match = term()

Matches the objects in table Tab using a match specification. This is a more general call than match/2 and
match_object/2 calls. In its simplest form, the match specification is as follows:

MatchSpec = [MatchFunction]
MatchFunction = {MatchHead, [Guard], [Result]}
MatchHead = "Pattern as in ets:match"
Guard = {"Guardtest name", ...}
Result = "Term construct"

This means that the match specification is always a list of one or more tuples (of arity 3). The first element of the tuple
is to be a pattern as described in match/2. The second element of the tuple is to be a list of 0 or more guard tests
(described below). The third element of the tuple is to be a list containing a description of the value to return. In almost
all normal cases, the list contains exactly one term that fully describes the value to return for each object.

The return value is constructed using the "match variables" bound in MatchHead or using the special match variables
'$_' (the whole matching object) and '$$' (all match variables in a list), so that the following match/2 expression:

ets:match(Tab,{'$1','$2','$3'})

is exactly equivalent to:

ets:select(Tab,[{{'$1','$2','$3'},[],['$$']}])

And that the following match_object/2 call:

ets:match_object(Tab,{'$1','$2','$1'})

is exactly equivalent to

ets

164 | Ericsson AB. All Rights Reserved.: STDLIB

ets:select(Tab,[{{'$1','$2','$1'},[],['$_']}])

Composite terms can be constructed in the Result part either by simply writing a list, so that the following code:

ets:select(Tab,[{{'$1','$2','$3'},[],['$$']}])

gives the same output as:

ets:select(Tab,[{{'$1','$2','$3'},[],[['$1','$2','$3']]}])

That is, all the bound variables in the match head as a list. If tuples are to be constructed, one has to write a tuple of
arity 1 where the single element in the tuple is the tuple one wants to construct (as an ordinary tuple can be mistaken
for a Guard).

Therefore the following call:

ets:select(Tab,[{{'$1','$2','$1'},[],['$_']}])

gives the same output as:

ets:select(Tab,[{{'$1','$2','$1'},[],[{{'$1','$2','$3'}}]}])

This syntax is equivalent to the syntax used in the trace patterns (see the dbg(3)) module in Runtime_Tools.

The Guards are constructed as tuples, where the first element is the test name and the remaining elements are the test
parameters. To check for a specific type (say a list) of the element bound to the match variable '$1', one would write
the test as {is_list, '$1'}. If the test fails, the object in the table does not match and the next MatchFunction
(if any) is tried. Most guard tests present in Erlang can be used, but only the new versions prefixed is_ are allowed
(is_float, is_atom, and so on).

The Guard section can also contain logic and arithmetic operations, which are written with the same syntax as the
guard tests (prefix notation), so that the following guard test written in Erlang:

is_integer(X), is_integer(Y), X + Y < 4711

is expressed as follows (X replaced with '$1' and Y with '$2'):

[{is_integer, '$1'}, {is_integer, '$2'}, {'<', {'+', '$1', '$2'}, 4711}]

For tables of type ordered_set, objects are visited in the same order as in a first/next traversal. This means
that the match specification is executed against objects with keys in the first/next order and the corresponding
result list is in the order of that execution.

select(Tab, MatchSpec, Limit) ->

ets

Ericsson AB. All Rights Reserved.: STDLIB | 165

 {[Match], Continuation} | '$end_of_table'
Types:

Tab = tab()
MatchSpec = match_spec()
Limit = integer() >= 1
Match = term()
Continuation = continuation()

Works like select/2, but only returns a limited (Limit) number of matching objects. Term Continuation can
then be used in subsequent calls to select/1 to get the next chunk of matching objects. This is a space-efficient
way to work on objects in a table, which is still faster than traversing the table object by object using first/1 and
next/2.

If the table is empty, '$end_of_table' is returned.

select_count(Tab, MatchSpec) -> NumMatched
Types:

Tab = tab()
MatchSpec = match_spec()
NumMatched = integer() >= 0

Matches the objects in table Tab using a match specificationc. If the match specification returns true for an object,
that object considered a match and is counted. For any other result from the match specification the object is not
considered a match and is therefore not counted.

This function can be described as a match_delete/2 function that does not delete any elements, but only counts
them.

The function returns the number of objects matched.

select_delete(Tab, MatchSpec) -> NumDeleted
Types:

Tab = tab()
MatchSpec = match_spec()
NumDeleted = integer() >= 0

Matches the objects in table Tab using a match specification. If the match specification returns true for an object,
that object is removed from the table. For any other result from the match specification the object is retained. This is
a more general call than the match_delete/2 call.

The function returns the number of objects deleted from the table.

Note:
The match specification has to return the atom true if the object is to be deleted. No other return value gets the
object deleted. So one cannot use the same match specification for looking up elements as for deleting them.

select_reverse(Continuation) ->
 {[Match], Continuation} | '$end_of_table'
Types:

ets

166 | Ericsson AB. All Rights Reserved.: STDLIB

Continuation = continuation()
Match = term()

Continues a match started with select_reverse/3. For tables of type ordered_set, the traversal of the table
continues to objects with keys earlier in the Erlang term order. The returned list also contains objects with keys in
reverse order. For all other table types, the behavior is exactly that of select/1.

Example:

1> T = ets:new(x,[ordered_set]).
2> [ets:insert(T,{N}) || N <- lists:seq(1,10)].
...
3> {R0,C0} = ets:select_reverse(T,[{'_',[],['$_']}],4).
...
4> R0.
[{10},{9},{8},{7}]
5> {R1,C1} = ets:select_reverse(C0).
...
6> R1.
[{6},{5},{4},{3}]
7> {R2,C2} = ets:select_reverse(C1).
...
8> R2.
[{2},{1}]
9> '$end_of_table' = ets:select_reverse(C2).
...

select_reverse(Tab, MatchSpec) -> [Match]
Types:

Tab = tab()
MatchSpec = match_spec()
Match = term()

Works like select/2, but returns the list in reverse order for table type ordered_set. For all other table types,
the return value is identical to that of select/2.

select_reverse(Tab, MatchSpec, Limit) ->
 {[Match], Continuation} | '$end_of_table'
Types:

Tab = tab()
MatchSpec = match_spec()
Limit = integer() >= 1
Match = term()
Continuation = continuation()

Works like select/3, but for table type ordered_set traversing is done starting at the last object in Erlang term
order and moves to the first. For all other table types, the return value is identical to that of select/3.

Notice that this is not equivalent to reversing the result list of a select/3 call, as the result list is not only reversed,
but also contains the last Limit matching objects in the table, not the first.

setopts(Tab, Opts) -> true
Types:

ets

Ericsson AB. All Rights Reserved.: STDLIB | 167

Tab = tab()
Opts = Opt | [Opt]
Opt = {heir, pid(), HeirData} | {heir, none}
HeirData = term()

Sets table options. The only allowed option to be set after the table has been created is heir. The calling process
must be the table owner.

slot(Tab, I) -> [Object] | '$end_of_table'
Types:

Tab = tab()
I = integer() >= 0
Object = tuple()

This function is mostly for debugging purposes, Normally first/next or last/prev are to be used instead.

Returns all objects in slot I of table Tab. A table can be traversed by repeatedly calling the function, starting with
the first slot I=0 and ending when '$end_of_table' is returned. If argument I is out of range, the function fails
with reason badarg.

Unless a table of type set, bag, or duplicate_bag is protected using safe_fixtable/2, a traversal can fail
if concurrent updates are made to the table. For table type ordered_set, the function returns a list containing object
I in Erlang term order.

tab2file(Tab, Filename) -> ok | {error, Reason}
Types:

Tab = tab()
Filename = file:name()
Reason = term()

Dumps table Tab to file Filename.

Equivalent to tab2file(Tab, Filename,[])

tab2file(Tab, Filename, Options) -> ok | {error, Reason}
Types:

Tab = tab()
Filename = file:name()
Options = [Option]
Option = {extended_info, [ExtInfo]} | {sync, boolean()}
ExtInfo = md5sum | object_count
Reason = term()

Dumps table Tab to file Filename.

When dumping the table, some information about the table is dumped to a header at the beginning of the dump. This
information contains data about the table type, name, protection, size, version, and if it is a named table. It also contains
notes about what extended information is added to the file, which can be a count of the objects in the file or a MD5
sum of the header and records in the file.

The size field in the header might not correspond to the number of records in the file if the table is public and records
are added or removed from the table during dumping. Public tables updated during dump, and that one wants to verify
when reading, needs at least one field of extended information for the read verification process to be reliable later.

ets

168 | Ericsson AB. All Rights Reserved.: STDLIB

Option extended_info specifies what extra information is written to the table dump:

object_count

The number of objects written to the file is noted in the file footer, so file truncation can be verified even if the
file was updated during dump.

md5sum

The header and objects in the file are checksummed using the built-in MD5 functions. The MD5 sum of all objects
is written in the file footer, so that verification while reading detects the slightest bitflip in the file data. Using
this costs a fair amount of CPU time.

Whenever option extended_info is used, it results in a file not readable by versions of ETS before that in STDLIB
1.15.1

If option sync is set to true, it ensures that the content of the file is written to the disk before tab2file returns.
Defaults to {sync, false}.

tab2list(Tab) -> [Object]
Types:

Tab = tab()
Object = tuple()

Returns a list of all objects in table Tab.

tabfile_info(Filename) -> {ok, TableInfo} | {error, Reason}
Types:

Filename = file:name()
TableInfo = [InfoItem]
InfoItem =
 {name, atom()} |
 {type, Type} |
 {protection, Protection} |
 {named_table, boolean()} |
 {keypos, integer() >= 0} |
 {size, integer() >= 0} |
 {extended_info, [ExtInfo]} |
 {version,
 {Major :: integer() >= 0, Minor :: integer() >= 0}}
ExtInfo = md5sum | object_count
Type = bag | duplicate_bag | ordered_set | set
Protection = private | protected | public
Reason = term()

Returns information about the table dumped to file by tab2file/2 or tab2file/3.

The following items are returned:

name

The name of the dumped table. If the table was a named table, a table with the same name cannot exist when
the table is loaded from file with file2tab/2. If the table is not saved as a named table, this field has no
significance when loading the table from file.

ets

Ericsson AB. All Rights Reserved.: STDLIB | 169

type

The ETS type of the dumped table (that is, set, bag, duplicate_bag, or ordered_set). This type is used
when loading the table again.

protection

The protection of the dumped table (that is, private, protected, or public). A table loaded from the file
gets the same protection.

named_table

true if the table was a named table when dumped to file, otherwise false. Notice that when a named table is
loaded from a file, there cannot exist a table in the system with the same name.

keypos

The keypos of the table dumped to file, which is used when loading the table again.

size

The number of objects in the table when the table dump to file started. For a public table, this number does
not need to correspond to the number of objects saved to the file, as objects can have been added or deleted by
another process during table dump.

extended_info

The extended information written in the file footer to allow stronger verification during table loading from file,
as specified to tab2file/3. Notice that this function only tells which information is present, not the values
in the file footer. The value is a list containing one or more of the atoms object_count and md5sum.

version

A tuple {Major,Minor} containing the major and minor version of the file format for ETS table dumps. This
version field was added beginning with STDLIB 1.5.1. Files dumped with older versions return {0,0} in this
field.

An error is returned if the file is inaccessible, badly damaged, or not produced with tab2file/2 or tab2file/3.

table(Tab) -> QueryHandle
table(Tab, Options) -> QueryHandle
Types:

Tab = tab()
QueryHandle = qlc:query_handle()
Options = [Option] | Option
Option = {n_objects, NObjects} | {traverse, TraverseMethod}
NObjects = default | integer() >= 1
TraverseMethod =
 first_next |
 last_prev |
 select |
 {select, MatchSpec :: match_spec()}

Returns a Query List Comprehension (QLC) query handle. The qlc module provides a query language aimed mainly
at Mnesia, but ETS tables, Dets tables, and lists are also recognized by QLC as sources of data. Calling table/1,2
is the means to make the ETS table Tab usable to QLC.

When there are only simple restrictions on the key position, QLC uses lookup/2 to look up the keys. When that is
not possible, the whole table is traversed. Option traverse determines how this is done:

ets

170 | Ericsson AB. All Rights Reserved.: STDLIB

first_next

The table is traversed one key at a time by calling first/1 and next/2.

last_prev

The table is traversed one key at a time by calling last/1 and prev/2.

select

The table is traversed by calling select/3 and select/1. Option n_objects determines the number
of objects returned (the third argument of select/3); the default is to return 100 objects at a time. The
match specification (the second argument of select/3) is assembled by QLC: simple filters are translated
into equivalent match specifications while more complicated filters must be applied to all objects returned by
select/3 given a match specification that matches all objects.

{select, MatchSpec}

As for select, the table is traversed by calling select/3 and select/1. The difference is that the match
specification is explicitly specified. This is how to state match specifications that cannot easily be expressed
within the syntax provided by QLC.

Examples:

An explicit match specification is here used to traverse the table:

9> true = ets:insert(Tab = ets:new(t, []), [{1,a},{2,b},{3,c},{4,d}]),
MS = ets:fun2ms(fun({X,Y}) when (X > 1) or (X < 5) -> {Y} end),
QH1 = ets:table(Tab, [{traverse, {select, MS}}]).

An example with an implicit match specification:

10> QH2 = qlc:q([{Y} || {X,Y} <- ets:table(Tab), (X > 1) or (X < 5)]).

The latter example is equivalent to the former, which can be verified using function qlc:info/1:

11> qlc:info(QH1) =:= qlc:info(QH2).
true

qlc:info/1 returns information about a query handle, and in this case identical information is returned for the two
query handles.

take(Tab, Key) -> [Object]
Types:

Tab = tab()
Key = term()
Object = tuple()

Returns and removes a list of all objects with key Key in table Tab.

The specified Key is used to identify the object by either comparing equal the key of an object in an ordered_set
table, or matching in other types of tables (for details on the difference, see lookup/2 and new/2).

ets

Ericsson AB. All Rights Reserved.: STDLIB | 171

test_ms(Tuple, MatchSpec) -> {ok, Result} | {error, Errors}
Types:

Tuple = tuple()
MatchSpec = match_spec()
Result = term()
Errors = [{warning | error, string()}]

This function is a utility to test a match specification used in calls to select/2. The function both tests MatchSpec
for "syntactic" correctness and runs the match specification against object Tuple.

If the match specification is syntactically correct, the function either returns {ok,Result}, where Result is what
would have been the result in a real select/2 call, or false if the match specification does not match object Tuple.

If the match specification contains errors, tuple {error, Errors} is returned, where Errors is a list of natural
language descriptions of what was wrong with the match specification.

This is a useful debugging and test tool, especially when writing complicated select/2 calls.

See also: erlang:match_spec_test/3.

to_dets(Tab, DetsTab) -> DetsTab
Types:

Tab = tab()
DetsTab = dets:tab_name()

Fills an already created/opened Dets table with the objects in the already opened ETS table named Tab. The Dets
table is emptied before the objects are inserted.

update_counter(Tab, Key, UpdateOp) -> Result
update_counter(Tab, Key, UpdateOp, Default) -> Result
update_counter(Tab, Key, X3 :: [UpdateOp]) -> [Result]
update_counter(Tab, Key, X3 :: [UpdateOp], Default) -> [Result]
update_counter(Tab, Key, Incr) -> Result
update_counter(Tab, Key, Incr, Default) -> Result
Types:

Tab = tab()
Key = term()
UpdateOp = {Pos, Incr} | {Pos, Incr, Threshold, SetValue}
Pos = Incr = Threshold = SetValue = Result = integer()
Default = tuple()

This function provides an efficient way to update one or more counters, without the trouble of having to look up an
object, update the object by incrementing an element, and insert the resulting object into the table again. (The update
is done atomically, that is, no process can access the ETS table in the middle of the operation.)

This function destructively update the object with key Key in table Tab by adding Incr to the element at position
Pos. The new counter value is returned. If no position is specified, the element directly following key (<keypos>
+1) is updated.

If a Threshold is specified, the counter is reset to value SetValue if the following conditions occur:

• Incr is not negative (>= 0) and the result would be greater than (>) Threshold.

• Incr is negative (< 0) and the result would be less than (<) Threshold.

ets

172 | Ericsson AB. All Rights Reserved.: STDLIB

A list of UpdateOp can be supplied to do many update operations within the object. The operations are carried out in
the order specified in the list. If the same counter position occurs more than once in the list, the corresponding counter
is thus updated many times, each time based on the previous result. The return value is a list of the new counter values
from each update operation in the same order as in the operation list. If an empty list is specified, nothing is updated
and an empty list is returned. If the function fails, no updates is done.

The specified Key is used to identify the object by either matching the key of an object in a set table, or compare
equal to the key of an object in an ordered_set table (for details on the difference, see lookup/2 and new/2).

If a default object Default is specified, it is used as the object to be updated if the key is missing from the table. The
value in place of the key is ignored and replaced by the proper key value. The return value is as if the default object
had not been used, that is, a single updated element or a list of them.

The function fails with reason badarg in the following situations:

• The table type is not set or ordered_set.

• No object with the correct key exists and no default object was supplied.

• The object has the wrong arity.

• The default object arity is smaller than <keypos>.

• Any field from the default object that is updated is not an integer.

• The element to update is not an integer.

• The element to update is also the key.

• Any of Pos, Incr, Threshold, or SetValue is not an integer.

update_element(Tab, Key, ElementSpec :: {Pos, Value}) -> boolean()
update_element(Tab, Key, ElementSpec :: [{Pos, Value}]) ->
 boolean()
Types:

Tab = tab()
Key = term()
Value = term()
Pos = integer() >= 1

This function provides an efficient way to update one or more elements within an object, without the trouble of having
to look up, update, and write back the entire object.

This function destructively updates the object with key Key in table Tab. The element at position Pos is given the
value Value.

A list of {Pos,Value} can be supplied to update many elements within the same object. If the same position occurs
more than once in the list, the last value in the list is written. If the list is empty or the function fails, no updates are
done. The function is also atomic in the sense that other processes can never see any intermediate results.

Returns true if an object with key Key is found, otherwise false.

The specified Key is used to identify the object by either matching the key of an object in a set table, or compare
equal to the key of an object in an ordered_set table (for details on the difference, see lookup/2 and new/2).

The function fails with reason badarg in the following situations:

• The table type is not set or ordered_set.

• Pos < 1.

• Pos > object arity.

• The element to update is also the key.

file_sorter

Ericsson AB. All Rights Reserved.: STDLIB | 173

file_sorter
Erlang module

This module contains functions for sorting terms on files, merging already sorted files, and checking files for
sortedness. Chunks containing binary terms are read from a sequence of files, sorted internally in memory and written
on temporary files, which are merged producing one sorted file as output. Merging is provided as an optimization; it
is faster when the files are already sorted, but it always works to sort instead of merge.

On a file, a term is represented by a header and a binary. Two options define the format of terms on files:

{header, HeaderLength}

HeaderLength determines the number of bytes preceding each binary and containing the length of the binary
in bytes. Defaults to 4. The order of the header bytes is defined as follows: if B is a binary containing a header
only, size Size of the binary is calculated as <<Size:HeaderLength/unit:8>> = B.

{format, Format}

Option Format determines the function that is applied to binaries to create the terms to be sorted. Defaults to
binary_term, which is equivalent to fun binary_to_term/1. Value binary is equivalent to fun(X)
-> X end, which means that the binaries are sorted as they are. This is the fastest format. If Format is term,
io:read/2 is called to read terms. In that case, only the default value of option header is allowed.

Option format also determines what is written to the sorted output file: if Format is term, then
io:format/3 is called to write each term, otherwise the binary prefixed by a header is written. Notice that
the binary written is the same binary that was read; the results of applying function Format are thrown away
when the terms have been sorted. Reading and writing terms using the io module is much slower than reading
and writing binaries.

Other options are:

{order, Order}

The default is to sort terms in ascending order, but that can be changed by value descending or by specifying
an ordering function Fun. An ordering function is antisymmetric, transitive, and total. Fun(A, B) is to return
true if A comes before B in the ordering, otherwise false. An example of a typical ordering function is less
than or equal to, =</2. Using an ordering function slows down the sort considerably. Functions keysort,
keymerge and keycheck do not accept ordering functions.

{unique, boolean()}

When sorting or merging files, only the first of a sequence of terms that compare equal (==) is output if this option
is set to true. Defaults to false, which implies that all terms that compare equal are output. When checking
files for sortedness, a check that no pair of consecutive terms compares equal is done if this option is set to true.

{tmpdir, TempDirectory}

The directory where temporary files are put can be chosen explicitly. The default, implied by value
"", is to put temporary files on the same directory as the sorted output file. If output is a function
(see below), the directory returned by file:get_cwd() is used instead. The names of temporary files
are derived from the Erlang nodename (node()), the process identifier of the current Erlang emulator
(os:getpid()), and a unique integer (erlang:unique_integer([positive])). A typical name is
fs_mynode@myhost_1763_4711.17, where 17 is a sequence number. Existing files are overwritten.
Temporary files are deleted unless some uncaught EXIT signal occurs.

file_sorter

174 | Ericsson AB. All Rights Reserved.: STDLIB

{compressed, boolean()}

Temporary files and the output file can be compressed. Defaults false, which implies that written files are not
compressed. Regardless of the value of option compressed, compressed files can always be read. Notice that
reading and writing compressed files are significantly slower than reading and writing uncompressed files.

{size, Size}

By default about 512*1024 bytes read from files are sorted internally. This option is rarely needed.

{no_files, NoFiles}

By default 16 files are merged at a time. This option is rarely needed.

As an alternative to sorting files, a function of one argument can be specified as input. When called with argument
read, the function is assumed to return either of the following:

• end_of_input or {end_of_input, Value}} when there is no more input (Value is explained below).

• {Objects, Fun}, where Objects is a list of binaries or terms depending on the format, and Fun is a new
input function.

Any other value is immediately returned as value of the current call to sort or keysort. Each input function is
called exactly once. If an error occurs, the last function is called with argument close, the reply of which is ignored.

A function of one argument can be specified as output. The results of sorting or merging the input is collected in a non-
empty sequence of variable length lists of binaries or terms depending on the format. The output function is called with
one list at a time, and is assumed to return a new output function. Any other return value is immediately returned as
value of the current call to the sort or merge function. Each output function is called exactly once. When some output
function has been applied to all of the results or an error occurs, the last function is called with argument close, and
the reply is returned as value of the current call to the sort or merge function.

If a function is specified as input and the last input function returns {end_of_input, Value}, the function
specified as output is called with argument {value, Value}. This makes it easy to initiate the sequence of output
functions with a value calculated by the input functions.

As an example, consider sorting the terms on a disk log file. A function that reads chunks from the disk log and returns
a list of binaries is used as input. The results are collected in a list of terms.

sort(Log) ->
 {ok, _} = disk_log:open([{name,Log}, {mode,read_only}]),
 Input = input(Log, start),
 Output = output([]),
 Reply = file_sorter:sort(Input, Output, {format,term}),
 ok = disk_log:close(Log),
 Reply.

input(Log, Cont) ->
 fun(close) ->
 ok;
 (read) ->
 case disk_log:chunk(Log, Cont) of
 {error, Reason} ->
 {error, Reason};
 {Cont2, Terms} ->
 {Terms, input(Log, Cont2)};
 {Cont2, Terms, _Badbytes} ->
 {Terms, input(Log, Cont2)};
 eof ->
 end_of_input
 end
 end.

file_sorter

Ericsson AB. All Rights Reserved.: STDLIB | 175

output(L) ->
 fun(close) ->
 lists:append(lists:reverse(L));
 (Terms) ->
 output([Terms | L])
 end.

For more examples of functions as input and output, see the end of the file_sorter module; the term format
is implemented with functions.

The possible values of Reason returned when an error occurs are:

• bad_object, {bad_object, FileName} - Applying the format function failed for some binary, or the
key(s) could not be extracted from some term.

• {bad_term, FileName} - io:read/2 failed to read some term.

• {file_error, FileName, file:posix()} - For an explanation of file:posix(), see file(3).

• {premature_eof, FileName} - End-of-file was encountered inside some binary term.

Data Types
file_name() = file:name()
file_names() = [file:name()]
i_command() = read | close
i_reply() =
 end_of_input |
 {end_of_input, value()} |
 {[object()], infun()} |
 input_reply()
infun() = fun((i_command()) -> i_reply())
input() = file_names() | infun()
input_reply() = term()
o_command() = {value, value()} | [object()] | close
o_reply() = outfun() | output_reply()
object() = term() | binary()
outfun() = fun((o_command()) -> o_reply())
output() = file_name() | outfun()
output_reply() = term()
value() = term()
options() = [option()] | option()
option() =
 {compressed, boolean()} |
 {header, header_length()} |
 {format, format()} |
 {no_files, no_files()} |
 {order, order()} |
 {size, size()} |
 {tmpdir, tmp_directory()} |

file_sorter

176 | Ericsson AB. All Rights Reserved.: STDLIB

 {unique, boolean()}
format() = binary_term | term | binary | format_fun()
format_fun() = fun((binary()) -> term())
header_length() = integer() >= 1
key_pos() = integer() >= 1 | [integer() >= 1]
no_files() = integer() >= 1
order() = ascending | descending | order_fun()
order_fun() = fun((term(), term()) -> boolean())
size() = integer() >= 0
tmp_directory() = [] | file:name()
reason() =
 bad_object |
 {bad_object, file_name()} |
 {bad_term, file_name()} |
 {file_error,
 file_name(),
 file:posix() | badarg | system_limit} |
 {premature_eof, file_name()}

Exports

check(FileName) -> Reply
check(FileNames, Options) -> Reply
Types:

FileNames = file_names()
Options = options()
Reply = {ok, [Result]} | {error, reason()}
Result = {FileName, TermPosition, term()}
FileName = file_name()
TermPosition = integer() >= 1

Checks files for sortedness. If a file is not sorted, the first out-of-order element is returned. The first term on a file
has position 1.

check(FileName) is equivalent to check([FileName], []).

keycheck(KeyPos, FileName) -> Reply
keycheck(KeyPos, FileNames, Options) -> Reply
Types:

file_sorter

Ericsson AB. All Rights Reserved.: STDLIB | 177

KeyPos = key_pos()
FileNames = file_names()
Options = options()
Reply = {ok, [Result]} | {error, reason()}
Result = {FileName, TermPosition, term()}
FileName = file_name()
TermPosition = integer() >= 1

Checks files for sortedness. If a file is not sorted, the first out-of-order element is returned. The first term on a file
has position 1.

keycheck(KeyPos, FileName) is equivalent to keycheck(KeyPos, [FileName], []).

keymerge(KeyPos, FileNames, Output) -> Reply
keymerge(KeyPos, FileNames, Output, Options) -> Reply
Types:

KeyPos = key_pos()
FileNames = file_names()
Output = output()
Options = options()
Reply = ok | {error, reason()} | output_reply()

Merges tuples on files. Each input file is assumed to be sorted on key(s).

keymerge(KeyPos, FileNames, Output) is equivalent to keymerge(KeyPos, FileNames,
Output, []).

keysort(KeyPos, FileName) -> Reply
Types:

KeyPos = key_pos()
FileName = file_name()
Reply = ok | {error, reason()} | input_reply() | output_reply()

Sorts tuples on files.

keysort(N, FileName) is equivalent to keysort(N, [FileName], FileName).

keysort(KeyPos, Input, Output) -> Reply
keysort(KeyPos, Input, Output, Options) -> Reply
Types:

KeyPos = key_pos()
Input = input()
Output = output()
Options = options()
Reply = ok | {error, reason()} | input_reply() | output_reply()

Sorts tuples on files. The sort is performed on the element(s) mentioned in KeyPos. If two tuples compare equal (==)
on one element, the next element according to KeyPos is compared. The sort is stable.

keysort(N, Input, Output) is equivalent to keysort(N, Input, Output, []).

file_sorter

178 | Ericsson AB. All Rights Reserved.: STDLIB

merge(FileNames, Output) -> Reply
merge(FileNames, Output, Options) -> Reply
Types:

FileNames = file_names()
Output = output()
Options = options()
Reply = ok | {error, reason()} | output_reply()

Merges terms on files. Each input file is assumed to be sorted.

merge(FileNames, Output) is equivalent to merge(FileNames, Output, []).

sort(FileName) -> Reply
Types:

FileName = file_name()
Reply = ok | {error, reason()} | input_reply() | output_reply()

Sorts terms on files.

sort(FileName) is equivalent to sort([FileName], FileName).

sort(Input, Output) -> Reply
sort(Input, Output, Options) -> Reply
Types:

Input = input()
Output = output()
Options = options()
Reply = ok | {error, reason()} | input_reply() | output_reply()

Sorts terms on files.

sort(Input, Output) is equivalent to sort(Input, Output, []).

filelib

Ericsson AB. All Rights Reserved.: STDLIB | 179

filelib
Erlang module

This module contains utilities on a higher level than the file module.

This module does not support "raw" filenames (that is, files whose names do not comply with the expected encoding).
Such files are ignored by the functions in this module.

For more information about raw filenames, see the file module.

Data Types
filename() = file:name()
dirname() = filename()
dirname_all() = filename_all()
filename_all() = file:name_all()

Exports

ensure_dir(Name) -> ok | {error, Reason}
Types:

Name = filename_all() | dirname_all()
Reason = file:posix()

Ensures that all parent directories for the specified file or directory name Name exist, trying to create them if necessary.

Returns ok if all parent directories already exist or can be created. Returns {error, Reason} if some parent
directory does not exist and cannot be created.

file_size(Filename) -> integer() >= 0
Types:

Filename = filename_all()
Returns the size of the specified file.

fold_files(Dir, RegExp, Recursive, Fun, AccIn) -> AccOut
Types:

Dir = dirname()
RegExp = string()
Recursive = boolean()
Fun = fun((F :: file:filename(), AccIn) -> AccOut)
AccIn = AccOut = term()

Folds function Fun over all (regular) files F in directory Dir that match the regular expression RegExp (for a
description of the allowed regular expressions, see the re module). If Recursive is true, all subdirectories to Dir
are processed. The regular expression matching is only done on the filename without the directory part.

If Unicode filename translation is in effect and the file system is transparent, filenames that cannot be interpreted as
Unicode can be encountered, in which case the fun() must be prepared to handle raw filenames (that is, binaries).

filelib

180 | Ericsson AB. All Rights Reserved.: STDLIB

If the regular expression contains codepoints > 255, it does not match filenames that do not conform to the expected
character encoding (that is, are not encoded in valid UTF-8).

For more information about raw filenames, see the file module.

is_dir(Name) -> boolean()
Types:

Name = filename_all() | dirname_all()
Returns true if Name refers to a directory, otherwise false.

is_file(Name) -> boolean()
Types:

Name = filename_all() | dirname_all()
Returns true if Name refers to a file or a directory, otherwise false.

is_regular(Name) -> boolean()
Types:

Name = filename_all()
Returns true if Name refers to a (regular) file, otherwise false.

last_modified(Name) -> file:date_time() | 0
Types:

Name = filename_all() | dirname_all()
Returns the date and time the specified file or directory was last modified, or 0 if the file does not exist.

wildcard(Wildcard) -> [file:filename()]
Types:

Wildcard = filename() | dirname()
Returns a list of all files that match Unix-style wildcard string Wildcard.

The wildcard string looks like an ordinary filename, except that the following "wildcard characters" are interpreted
in a special way:

?

Matches one character.

*

Matches any number of characters up to the end of the filename, the next dot, or the next slash.

**

Two adjacent * used as a single pattern match all files and zero or more directories and subdirectories.

[Character1,Character2,...]

Matches any of the characters listed. Two characters separated by a hyphen match a range of characters. Example:
[A-Z] matches any uppercase letter.

{Item,...}

Alternation. Matches one of the alternatives.

filelib

Ericsson AB. All Rights Reserved.: STDLIB | 181

Other characters represent themselves. Only filenames that have exactly the same character in the same position match.
Matching is case-sensitive, for example, "a" does not match "A".

Notice that multiple "*" characters are allowed (as in Unix wildcards, but opposed to Windows/DOS wildcards).

Examples:

The following examples assume that the current directory is the top of an Erlang/OTP installation.

To find all .beam files in all applications, use the following line:

filelib:wildcard("lib/*/ebin/*.beam").

To find .erl or .hrl in all applications src directories, use either of the following lines:

filelib:wildcard("lib/*/src/*.?rl")

filelib:wildcard("lib/*/src/*.{erl,hrl}")

To find all .hrl files in src or include directories:

filelib:wildcard("lib/*/{src,include}/*.hrl").

To find all .erl or .hrl files in either src or include directories:

filelib:wildcard("lib/*/{src,include}/*.{erl,hrl}")

To find all .erl or .hrl files in any subdirectory:

filelib:wildcard("lib/**/*.{erl,hrl}")

wildcard(Wildcard, Cwd) -> [file:filename()]
Types:

Wildcard = filename() | dirname()
Cwd = dirname()

Same as wildcard/1, except that Cwd is used instead of the working directory.

filename

182 | Ericsson AB. All Rights Reserved.: STDLIB

filename
Erlang module

This module provides functions for analyzing and manipulating filenames. These functions are designed so that the
Erlang code can work on many different platforms with different filename formats. With filename is meant all strings
that can be used to denote a file. The filename can be a short relative name like foo.erl, a long absolute name
including a drive designator, a directory name like D:\usr/local\bin\erl/lib\tools\foo.erl, or any
variations in between.

In Windows, all functions return filenames with forward slashes only, even if the arguments contain backslashes. To
normalize a filename by removing redundant directory separators, use join/1.

The module supports raw filenames in the way that if a binary is present, or the filename cannot be interpreted according
to the return value of file:native_name_encoding/0, a raw filename is also returned. For example, join/1
provided with a path component that is a binary (and cannot be interpreted under the current native filename encoding)
results in a raw filename that is returned (the join operation is performed of course). For more information about raw
filenames, see the file module.

Data Types
basedir_type() =
 user_cache |
 user_config |
 user_data |
 user_log |
 site_config |
 site_data

Exports

absname(Filename) -> file:filename_all()
Types:

Filename = file:name_all()
Converts a relative Filename and returns an absolute name. No attempt is made to create the shortest absolute name,
as this can give incorrect results on file systems that allow links.

Unix examples:

1> pwd().
"/usr/local"
2> filename:absname("foo").
"/usr/local/foo"
3> filename:absname("../x").
"/usr/local/../x"
4> filename:absname("/").
"/"

Windows examples:

1> pwd().

filename

Ericsson AB. All Rights Reserved.: STDLIB | 183

"D:/usr/local"
2> filename:absname("foo").
"D:/usr/local/foo"
3> filename:absname("../x").
"D:/usr/local/../x"
4> filename:absname("/").
"D:/"

absname(Filename, Dir) -> file:filename_all()
Types:

Filename = Dir = file:name_all()

Same as absname/1, except that the directory to which the filename is to be made relative is specified in argument
Dir.

absname_join(Dir, Filename) -> file:filename_all()
Types:

Dir = Filename = file:name_all()

Joins an absolute directory with a relative filename. Similar to join/2, but on platforms with tight restrictions
on raw filename length and no support for symbolic links (read: VxWorks), leading parent directory components
in Filename are matched against trailing directory components in Dir so they can be removed from the result -
minimizing its length.

basedir(Type, Application) -> file:filename_all()
Types:

Type = basedir_type()
Application = string() | binary()

Equivalent to basedir(Type, Application, #{}).

basedir(Type, Application, Opts) -> file:filename_all()
Types:

Type = basedir_type()
Application = string() | binary()
Opts =
 #{author => string() | binary(),
 os => windows | darwin | linux,
 version => string() | binary()}

Returns a suitable path, or paths, for a given type. If os is not set in Opts the function will default to the native
option, that is 'linux', 'darwin' or 'windows', as understood by os:type/0. Anything not recognized as
'darwin' or 'windows' is interpreted as 'linux'.

The options 'author' and 'version' are only used with 'windows' option mode.

• user_cache

The path location is intended for transient data files on a local machine.

On Linux: Respects the os environment variable XDG_CACHE_HOME.

1> filename:basedir(user_cache, "my_application", #{os=>linux}).

filename

184 | Ericsson AB. All Rights Reserved.: STDLIB

"/home/otptest/.cache/my_application"

On Darwin:

1> filename:basedir(user_cache, "my_application", #{os=>darwin}).
"/home/otptest/Library/Caches/my_application"

On Windows:

1> filename:basedir(user_cache, "My App").
"c:/Users/otptest/AppData/Local/My App/Cache"
2> filename:basedir(user_cache, "My App").
"c:/Users/otptest/AppData/Local/My App/Cache"
3> filename:basedir(user_cache, "My App", #{author=>"Erlang"}).
"c:/Users/otptest/AppData/Local/Erlang/My App/Cache"
4> filename:basedir(user_cache, "My App", #{version=>"1.2"}).
"c:/Users/otptest/AppData/Local/My App/1.2/Cache"
5> filename:basedir(user_cache, "My App", #{author=>"Erlang",version=>"1.2"}).
"c:/Users/otptest/AppData/Local/Erlang/My App/1.2/Cache"

• user_config

The path location is intended for persistent configuration files.

On Linux: Respects the os environment variable XDG_CONFIG_HOME.

2> filename:basedir(user_config, "my_application", #{os=>linux}).
"/home/otptest/.config/my_application"

On Darwin:

2> filename:basedir(user_config, "my_application", #{os=>darwin}).
"/home/otptest/Library/Application Support/my_application"

On Windows:

1> filename:basedir(user_config, "My App").
"c:/Users/otptest/AppData/Roaming/My App"
2> filename:basedir(user_config, "My App", #{author=>"Erlang", version=>"1.2"}).
"c:/Users/otptest/AppData/Roaming/Erlang/My App/1.2"

• user_data

The path location is intended for persistent data files.

On Linux: Respects the os environment variable XDG_DATA_HOME.

3> filename:basedir(user_data, "my_application", #{os=>linux}).
"/home/otptest/.local/my_application"

On Darwin:

filename

Ericsson AB. All Rights Reserved.: STDLIB | 185

3> filename:basedir(user_data, "my_application", #{os=>darwin}).
"/home/otptest/Library/Application Support/my_application"

On Windows:

8> filename:basedir(user_data, "My App").
"c:/Users/otptest/AppData/Local/My App"
9> filename:basedir(user_data, "My App",#{author=>"Erlang",version=>"1.2"}).
"c:/Users/otptest/AppData/Local/Erlang/My App/1.2"

• user_log

The path location is intended for transient log files on a local machine.

On Linux: Respects the os environment variable XDG_CACHE_HOME.

4> filename:basedir(user_log, "my_application", #{os=>linux}).
"/home/otptest/.cache/my_application/log"

On Darwin:

4> filename:basedir(user_log, "my_application", #{os=>darwin}).
"/home/otptest/Library/Caches/my_application"

On Windows:

12> filename:basedir(user_log, "My App").
"c:/Users/otptest/AppData/Local/My App/Logs"
13> filename:basedir(user_log, "My App",#{author=>"Erlang",version=>"1.2"}).
"c:/Users/otptest/AppData/Local/Erlang/My App/1.2/Logs"

• site_config

On Linux: Respects the os environment variable XDG_CONFIG_DIRS.

5> filename:basedir(site_data, "my_application", #{os=>linux}).
["/usr/local/share/my_application",
 "/usr/share/my_application"]
6> os:getenv("XDG_CONFIG_DIRS").
"/etc/xdg/xdg-ubuntu:/usr/share/upstart/xdg:/etc/xdg"
7> filename:basedir(site_config, "my_application", #{os=>linux}).
["/etc/xdg/xdg-ubuntu/my_application",
 "/usr/share/upstart/xdg/my_application",
 "/etc/xdg/my_application"]
8> os:unsetenv("XDG_CONFIG_DIRS").
true
9> filename:basedir(site_config, "my_application", #{os=>linux}).
["/etc/xdg/my_application"]

On Darwin:

filename

186 | Ericsson AB. All Rights Reserved.: STDLIB

5> filename:basedir(site_config, "my_application", #{os=>darwin}).
["/Library/Application Support/my_application"]

• site_data

On Linux: Respects the os environment variable XDG_DATA_DIRS.

10> os:getenv("XDG_DATA_DIRS").
"/usr/share/ubuntu:/usr/share/gnome:/usr/local/share/:/usr/share/"
11> filename:basedir(site_data, "my_application", #{os=>linux}).
["/usr/share/ubuntu/my_application",
 "/usr/share/gnome/my_application",
 "/usr/local/share/my_application",
 "/usr/share/my_application"]
12> os:unsetenv("XDG_DATA_DIRS").
true
13> filename:basedir(site_data, "my_application", #{os=>linux}).
["/usr/local/share/my_application",
 "/usr/share/my_application"]

On Darwin:

5> filename:basedir(site_data, "my_application", #{os=>darwin}).
["/Library/Application Support/my_application"]

basename(Filename) -> file:filename_all()
Types:

Filename = file:name_all()
Returns the last component of Filename, or Filename itself if it does not contain any directory separators.

Examples:

5> filename:basename("foo").
"foo"
6> filename:basename("/usr/foo").
"foo"
7> filename:basename("/").
[]

basename(Filename, Ext) -> file:filename_all()
Types:

Filename = Ext = file:name_all()

Returns the last component of Filename with extension Ext stripped. This function is to be used to remove
a (possible) specific extension. To remove an existing extension when you are unsure which one it is, use
rootname(basename(Filename)).

Examples:

filename

Ericsson AB. All Rights Reserved.: STDLIB | 187

8> filename:basename("~/src/kalle.erl", ".erl").
"kalle"
9> filename:basename("~/src/kalle.beam", ".erl").
"kalle.beam"
10> filename:basename("~/src/kalle.old.erl", ".erl").
"kalle.old"
11> filename:rootname(filename:basename("~/src/kalle.erl")).
"kalle"
12> filename:rootname(filename:basename("~/src/kalle.beam")).
"kalle"

dirname(Filename) -> file:filename_all()
Types:

Filename = file:name_all()
Returns the directory part of Filename.

Examples:

13> filename:dirname("/usr/src/kalle.erl").
"/usr/src"
14> filename:dirname("kalle.erl").
"."

5> filename:dirname("\\usr\\src/kalle.erl"). % Windows
"/usr/src"

extension(Filename) -> file:filename_all()
Types:

Filename = file:name_all()
Returns the file extension of Filename, including the period. Returns an empty string if no extension exists.

Examples:

15> filename:extension("foo.erl").
".erl"
16> filename:extension("beam.src/kalle").
[]

find_src(Beam) ->
 {SourceFile, Options} | {error, {ErrorReason, Module}}
find_src(Beam, Rules) ->
 {SourceFile, Options} | {error, {ErrorReason, Module}}
Types:

filename

188 | Ericsson AB. All Rights Reserved.: STDLIB

Beam = Module | Filename
Filename = atom() | string()
Rules = [{BinSuffix :: string(), SourceSuffix :: string()}]
Module = module()
SourceFile = string()
Options = [Option]
Option =
 {i, Path :: string()} |
 {outdir, Path :: string()} |
 {d, atom()}
ErrorReason = non_existing | preloaded | interpreted

Finds the source filename and compiler options for a module. The result can be fed to compile:file/2 to compile
the file again.

Warning:
It is not recommended to use this function. If possible, use the beam_lib(3) module to extract the abstract
code format from the Beam file and compile that instead.

Argument Beam, which can be a string or an atom, specifies either the module name or the path to the source
code, with or without extension ".erl". In either case, the module must be known by the code server, that is,
code:which(Module) must succeed.

Rules describes how the source directory can be found when the object code directory is known. It is a list of tuples
{BinSuffix, SourceSuffix} and is interpreted as follows: if the end of the directory name where the object
is located matches BinSuffix, then the source code directory has the same name, but with BinSuffix replaced
by SourceSuffix. Rules defaults to:

[{"", ""}, {"ebin", "src"}, {"ebin", "esrc"}]

If the source file is found in the resulting directory, the function returns that location together with Options.
Otherwise the next rule is tried, and so on.

The function returns {SourceFile, Options} if it succeeds. SourceFile is the absolute path to the
source file without extension ".erl". Options includes the options that are necessary to recompile the file with
compile:file/2, but excludes options such as report and verbose, which do not change the way code is
generated. The paths in options {outdir, Path} and {i, Path} are guaranteed to be absolute.

flatten(Filename) -> file:filename_all()
Types:

Filename = file:name_all()
Converts a possibly deep list filename consisting of characters and atoms into the corresponding flat string filename.

join(Components) -> file:filename_all()
Types:

filename

Ericsson AB. All Rights Reserved.: STDLIB | 189

Components = [file:name_all()]
Joins a list of filename Components with directory separators. If one of the elements of Components includes an
absolute path, such as "/xxx", the preceding elements, if any, are removed from the result.

The result is "normalized":

• Redundant directory separators are removed.

• In Windows, all directory separators are forward slashes and the drive letter is in lower case.

Examples:

17> filename:join(["/usr", "local", "bin"]).
"/usr/local/bin"
18> filename:join(["a/b///c/"]).
"a/b/c"

6> filename:join(["B:a\\b///c/"]). % Windows
"b:a/b/c"

join(Name1, Name2) -> file:filename_all()
Types:

Name1 = Name2 = file:name_all()

Joins two filename components with directory separators. Equivalent to join([Name1, Name2]).

nativename(Path) -> file:filename_all()
Types:

Path = file:name_all()
Converts Path to a form accepted by the command shell and native applications on the current platform. On Windows,
forward slashes are converted to backward slashes. On all platforms, the name is normalized as done by join/1.

Examples:

19> filename:nativename("/usr/local/bin/"). % Unix
"/usr/local/bin"

7> filename:nativename("/usr/local/bin/"). % Windows
"\\usr\\local\\bin"

pathtype(Path) -> absolute | relative | volumerelative
Types:

Path = file:name_all()
Returns the path type, which is one of the following:

absolute

The path name refers to a specific file on a specific volume.

filename

190 | Ericsson AB. All Rights Reserved.: STDLIB

Unix example: /usr/local/bin

Windows example: D:/usr/local/bin

relative

The path name is relative to the current working directory on the current volume.

Example: foo/bar, ../src

volumerelative

The path name is relative to the current working directory on a specified volume, or it is a specific file on the
current working volume.

Windows example: D:bar.erl, /bar/foo.erl

rootname(Filename) -> file:filename_all()
rootname(Filename, Ext) -> file:filename_all()
Types:

Filename = Ext = file:name_all()

Removes a filename extension. rootname/2 works as rootname/1, except that the extension is removed only
if it is Ext.

Examples:

20> filename:rootname("/beam.src/kalle").
/beam.src/kalle"
21> filename:rootname("/beam.src/foo.erl").
"/beam.src/foo"
22> filename:rootname("/beam.src/foo.erl", ".erl").
"/beam.src/foo"
23> filename:rootname("/beam.src/foo.beam", ".erl").
"/beam.src/foo.beam"

split(Filename) -> Components
Types:

Filename = file:name_all()
Components = [file:name_all()]

Returns a list whose elements are the path components of Filename.

Examples:

24> filename:split("/usr/local/bin").
["/","usr","local","bin"]
25> filename:split("foo/bar").
["foo","bar"]
26> filename:split("a:\\msdev\\include").
["a:/","msdev","include"]

gb_sets

Ericsson AB. All Rights Reserved.: STDLIB | 191

gb_sets
Erlang module

This module provides ordered sets using Prof. Arne Andersson's General Balanced Trees. Ordered sets can be much
more efficient than using ordered lists, for larger sets, but depends on the application.

This module considers two elements as different if and only if they do not compare equal (==).

Complexity Note
The complexity on set operations is bounded by either O(|S|) or O(|T| * log(|S|)), where S is the largest given
set, depending on which is fastest for any particular function call. For operating on sets of almost equal size, this
implementation is about 3 times slower than using ordered-list sets directly. For sets of very different sizes, however,
this solution can be arbitrarily much faster; in practical cases, often 10-100 times. This implementation is particularly
suited for accumulating elements a few at a time, building up a large set (> 100-200 elements), and repeatedly testing
for membership in the current set.

As with normal tree structures, lookup (membership testing), insertion, and deletion have logarithmic complexity.

Compatibility
The following functions in this module also exist and provides the same functionality in the sets(3) and
ordsets(3) modules. That is, by only changing the module name for each call, you can try out different set
representations.

• add_element/2

• del_element/2

• filter/2

• fold/3

• from_list/1

• intersection/1

• intersection/2

• is_element/2

• is_set/1

• is_subset/2

• new/0

• size/1

• subtract/2

• to_list/1

• union/1

• union/2

Data Types
set(Element)
A general balanced set.

gb_sets

192 | Ericsson AB. All Rights Reserved.: STDLIB

set() = set(term())
iter(Element)
A general balanced set iterator.

iter() = iter(term())

Exports

add(Element, Set1) -> Set2
add_element(Element, Set1) -> Set2
Types:

Set1 = Set2 = set(Element)

Returns a new set formed from Set1 with Element inserted. If Element is already an element in Set1, nothing
is changed.

balance(Set1) -> Set2
Types:

Set1 = Set2 = set(Element)

Rebalances the tree representation of Set1. Notice that this is rarely necessary, but can be motivated when a large
number of elements have been deleted from the tree without further insertions. Rebalancing can then be forced to
minimise lookup times, as deletion does not rebalance the tree.

del_element(Element, Set1) -> Set2
Types:

Set1 = Set2 = set(Element)

Returns a new set formed from Set1 with Element removed. If Element is not an element in Set1, nothing is
changed.

delete(Element, Set1) -> Set2
Types:

Set1 = Set2 = set(Element)

Returns a new set formed from Set1 with Element removed. Assumes that Element is present in Set1.

delete_any(Element, Set1) -> Set2
Types:

Set1 = Set2 = set(Element)

Returns a new set formed from Set1 with Element removed. If Element is not an element in Set1, nothing is
changed.

difference(Set1, Set2) -> Set3
Types:

Set1 = Set2 = Set3 = set(Element)

Returns only the elements of Set1 that are not also elements of Set2.

gb_sets

Ericsson AB. All Rights Reserved.: STDLIB | 193

empty() -> Set
Types:

Set = set()
Returns a new empty set.

filter(Pred, Set1) -> Set2
Types:

Pred = fun((Element) -> boolean())
Set1 = Set2 = set(Element)

Filters elements in Set1 using predicate function Pred.

fold(Function, Acc0, Set) -> Acc1
Types:

Function = fun((Element, AccIn) -> AccOut)
Acc0 = Acc1 = AccIn = AccOut = Acc
Set = set(Element)

Folds Function over every element in Set returning the final value of the accumulator.

from_list(List) -> Set
Types:

List = [Element]
Set = set(Element)

Returns a set of the elements in List, where List can be unordered and contain duplicates.

from_ordset(List) -> Set
Types:

List = [Element]
Set = set(Element)

Turns an ordered-set list List into a set. The list must not contain duplicates.

insert(Element, Set1) -> Set2
Types:

Set1 = Set2 = set(Element)

Returns a new set formed from Set1 with Element inserted. Assumes that Element is not present in Set1.

intersection(SetList) -> Set
Types:

SetList = [set(Element), ...]
Set = set(Element)

Returns the intersection of the non-empty list of sets.

gb_sets

194 | Ericsson AB. All Rights Reserved.: STDLIB

intersection(Set1, Set2) -> Set3
Types:

Set1 = Set2 = Set3 = set(Element)

Returns the intersection of Set1 and Set2.

is_disjoint(Set1, Set2) -> boolean()
Types:

Set1 = Set2 = set(Element)

Returns true if Set1 and Set2 are disjoint (have no elements in common), otherwise false.

is_element(Element, Set) -> boolean()
Types:

Set = set(Element)
Returns true if Element is an element of Set, otherwise false.

is_empty(Set) -> boolean()
Types:

Set = set()
Returns true if Set is an empty set, otherwise false.

is_member(Element, Set) -> boolean()
Types:

Set = set(Element)
Returns true if Element is an element of Set, otherwise false.

is_set(Term) -> boolean()
Types:

Term = term()
Returns true if Term appears to be a set, otherwise false.

is_subset(Set1, Set2) -> boolean()
Types:

Set1 = Set2 = set(Element)

Returns true when every element of Set1 is also a member of Set2, otherwise false.

iterator(Set) -> Iter
Types:

Set = set(Element)
Iter = iter(Element)

Returns an iterator that can be used for traversing the entries of Set; see next/1. The implementation of this is
very efficient; traversing the whole set using next/1 is only slightly slower than getting the list of all elements using

gb_sets

Ericsson AB. All Rights Reserved.: STDLIB | 195

to_list/1 and traversing that. The main advantage of the iterator approach is that it does not require the complete
list of all elements to be built in memory at one time.

iterator_from(Element, Set) -> Iter
Types:

Set = set(Element)
Iter = iter(Element)

Returns an iterator that can be used for traversing the entries of Set; see next/1. The difference as compared to the
iterator returned by iterator/1 is that the first element greater than or equal to Element is returned.

largest(Set) -> Element
Types:

Set = set(Element)
Returns the largest element in Set. Assumes that Set is not empty.

new() -> Set
Types:

Set = set()
Returns a new empty set.

next(Iter1) -> {Element, Iter2} | none
Types:

Iter1 = Iter2 = iter(Element)

Returns {Element, Iter2}, where Element is the smallest element referred to by iterator Iter1, and Iter2
is the new iterator to be used for traversing the remaining elements, or the atom none if no elements remain.

singleton(Element) -> set(Element)
Returns a set containing only element Element.

size(Set) -> integer() >= 0
Types:

Set = set()
Returns the number of elements in Set.

smallest(Set) -> Element
Types:

Set = set(Element)
Returns the smallest element in Set. Assumes that Set is not empty.

subtract(Set1, Set2) -> Set3
Types:

Set1 = Set2 = Set3 = set(Element)

Returns only the elements of Set1 that are not also elements of Set2.

gb_sets

196 | Ericsson AB. All Rights Reserved.: STDLIB

take_largest(Set1) -> {Element, Set2}
Types:

Set1 = Set2 = set(Element)

Returns {Element, Set2}, where Element is the largest element in Set1, and Set2 is this set with Element
deleted. Assumes that Set1 is not empty.

take_smallest(Set1) -> {Element, Set2}
Types:

Set1 = Set2 = set(Element)

Returns {Element, Set2}, where Element is the smallest element in Set1, and Set2 is this set with Element
deleted. Assumes that Set1 is not empty.

to_list(Set) -> List
Types:

Set = set(Element)
List = [Element]

Returns the elements of Set as a list.

union(SetList) -> Set
Types:

SetList = [set(Element), ...]
Set = set(Element)

Returns the merged (union) set of the list of sets.

union(Set1, Set2) -> Set3
Types:

Set1 = Set2 = Set3 = set(Element)

Returns the merged (union) set of Set1 and Set2.

See Also
gb_trees(3), ordsets(3), sets(3)

gb_trees

Ericsson AB. All Rights Reserved.: STDLIB | 197

gb_trees
Erlang module

This module provides Prof. Arne Andersson's General Balanced Trees. These have no storage overhead compared to
unbalanced binary trees, and their performance is better than AVL trees.

This module considers two keys as different if and only if they do not compare equal (==).

Data Structure

{Size, Tree}

Tree is composed of nodes of the form {Key, Value, Smaller, Bigger} and the "empty tree" node nil.

There is no attempt to balance trees after deletions. As deletions do not increase the height of a tree, this should be OK.

The original balance condition h(T) <= ceil(c * log(|T|)) has been changed to the similar (but not quite equivalent)
condition 2 ^ h(T) <= |T| ^ c. This should also be OK.

Data Types
tree(Key, Value)
A general balanced tree.

tree() = tree(term(), term())
iter(Key, Value)
A general balanced tree iterator.

iter() = iter(term(), term())

Exports

balance(Tree1) -> Tree2
Types:

Tree1 = Tree2 = tree(Key, Value)

Rebalances Tree1. Notice that this is rarely necessary, but can be motivated when many nodes have been deleted
from the tree without further insertions. Rebalancing can then be forced to minimize lookup times, as deletion does
not rebalance the tree.

delete(Key, Tree1) -> Tree2
Types:

Tree1 = Tree2 = tree(Key, Value)

Removes the node with key Key from Tree1 and returns the new tree. Assumes that the key is present in the tree,
crashes otherwise.

delete_any(Key, Tree1) -> Tree2
Types:

gb_trees

198 | Ericsson AB. All Rights Reserved.: STDLIB

Tree1 = Tree2 = tree(Key, Value)

Removes the node with key Key from Tree1 if the key is present in the tree, otherwise does nothing. Returns the
new tree.

empty() -> tree()
Returns a new empty tree.

enter(Key, Value, Tree1) -> Tree2
Types:

Tree1 = Tree2 = tree(Key, Value)

Inserts Key with value Value into Tree1 if the key is not present in the tree, otherwise updates Key to value Value
in Tree1. Returns the new tree.

from_orddict(List) -> Tree
Types:

List = [{Key, Value}]
Tree = tree(Key, Value)

Turns an ordered list List of key-value tuples into a tree. The list must not contain duplicate keys.

get(Key, Tree) -> Value
Types:

Tree = tree(Key, Value)
Retrieves the value stored with Key in Tree. Assumes that the key is present in the tree, crashes otherwise.

insert(Key, Value, Tree1) -> Tree2
Types:

Tree1 = Tree2 = tree(Key, Value)

Inserts Key with value Value into Tree1 and returns the new tree. Assumes that the key is not present in the tree,
crashes otherwise.

is_defined(Key, Tree) -> boolean()
Types:

Tree = tree(Key, Value :: term())
Returns true if Key is present in Tree, otherwise false.

is_empty(Tree) -> boolean()
Types:

Tree = tree()
Returns true if Tree is an empty tree, othwewise false.

iterator(Tree) -> Iter
Types:

gb_trees

Ericsson AB. All Rights Reserved.: STDLIB | 199

Tree = tree(Key, Value)
Iter = iter(Key, Value)

Returns an iterator that can be used for traversing the entries of Tree; see next/1. The implementation of this is
very efficient; traversing the whole tree using next/1 is only slightly slower than getting the list of all elements using
to_list/1 and traversing that. The main advantage of the iterator approach is that it does not require the complete
list of all elements to be built in memory at one time.

iterator_from(Key, Tree) -> Iter
Types:

Tree = tree(Key, Value)
Iter = iter(Key, Value)

Returns an iterator that can be used for traversing the entries of Tree; see next/1. The difference as compared to
the iterator returned by iterator/1 is that the first key greater than or equal to Key is returned.

keys(Tree) -> [Key]
Types:

Tree = tree(Key, Value :: term())
Returns the keys in Tree as an ordered list.

largest(Tree) -> {Key, Value}
Types:

Tree = tree(Key, Value)
Returns {Key, Value}, where Key is the largest key in Tree, and Value is the value associated with this key.
Assumes that the tree is not empty.

lookup(Key, Tree) -> none | {value, Value}
Types:

Tree = tree(Key, Value)
Looks up Key in Tree. Returns {value, Value}, or none if Key is not present.

map(Function, Tree1) -> Tree2
Types:

Function = fun((K :: Key, V1 :: Value1) -> V2 :: Value2)
Tree1 = tree(Key, Value1)
Tree2 = tree(Key, Value2)

Maps function F(K, V1) -> V2 to all key-value pairs of tree Tree1. Returns a new tree Tree2 with the same set of
keys as Tree1 and the new set of values V2.

next(Iter1) -> none | {Key, Value, Iter2}
Types:

Iter1 = Iter2 = iter(Key, Value)

Returns {Key, Value, Iter2}, where Key is the smallest key referred to by iterator Iter1, and Iter2 is the
new iterator to be used for traversing the remaining nodes, or the atom none if no nodes remain.

gb_trees

200 | Ericsson AB. All Rights Reserved.: STDLIB

size(Tree) -> integer() >= 0
Types:

Tree = tree()
Returns the number of nodes in Tree.

smallest(Tree) -> {Key, Value}
Types:

Tree = tree(Key, Value)
Returns {Key, Value}, where Key is the smallest key in Tree, and Value is the value associated with this key.
Assumes that the tree is not empty.

take_largest(Tree1) -> {Key, Value, Tree2}
Types:

Tree1 = Tree2 = tree(Key, Value)

Returns {Key, Value, Tree2}, where Key is the largest key in Tree1, Value is the value associated with this
key, and Tree2 is this tree with the corresponding node deleted. Assumes that the tree is not empty.

take_smallest(Tree1) -> {Key, Value, Tree2}
Types:

Tree1 = Tree2 = tree(Key, Value)

Returns {Key, Value, Tree2}, where Key is the smallest key in Tree1, Value is the value associated with
this key, and Tree2 is this tree with the corresponding node deleted. Assumes that the tree is not empty.

to_list(Tree) -> [{Key, Value}]
Types:

Tree = tree(Key, Value)
Converts a tree into an ordered list of key-value tuples.

update(Key, Value, Tree1) -> Tree2
Types:

Tree1 = Tree2 = tree(Key, Value)

Updates Key to value Value in Tree1 and returns the new tree. Assumes that the key is present in the tree.

values(Tree) -> [Value]
Types:

Tree = tree(Key :: term(), Value)
Returns the values in Tree as an ordered list, sorted by their corresponding keys. Duplicates are not removed.

See Also
dict(3), gb_sets(3)

gen_event

Ericsson AB. All Rights Reserved.: STDLIB | 201

gen_event
Erlang module

This behavior module provides event handling functionality. It consists of a generic event manager process with any
number of event handlers that are added and deleted dynamically.

An event manager implemented using this module has a standard set of interface functions and includes functionality
for tracing and error reporting. It also fits into an OTP supervision tree. For more information, see OTP Design
Principles.

Each event handler is implemented as a callback module exporting a predefined set of functions. The relationship
between the behavior functions and the callback functions is as follows:

gen_event module Callback module
---------------- ---------------
gen_event:start
gen_event:start_link -----> -

gen_event:add_handler
gen_event:add_sup_handler -----> Module:init/1

gen_event:notify
gen_event:sync_notify -----> Module:handle_event/2

gen_event:call -----> Module:handle_call/2

- -----> Module:handle_info/2

gen_event:delete_handler -----> Module:terminate/2

gen_event:swap_handler
gen_event:swap_sup_handler -----> Module1:terminate/2
 Module2:init/1

gen_event:which_handlers -----> -

gen_event:stop -----> Module:terminate/2

- -----> Module:code_change/3

As each event handler is one callback module, an event manager has many callback modules that are added and deleted
dynamically. gen_event is therefore more tolerant of callback module errors than the other behaviors. If a callback
function for an installed event handler fails with Reason, or returns a bad value Term, the event manager does not
fail. It deletes the event handler by calling callback function Module:terminate/2, giving as argument {error,
{'EXIT',Reason}} or {error,Term}, respectively. No other event handler is affected.

A gen_event process handles system messages as described in sys(3). The sys module can be used for debugging
an event manager.

Notice that an event manager does trap exit signals automatically.

The gen_event process can go into hibernation (see erlang:hibernate/3) if a callback function in a handler
module specifies hibernate in its return value. This can be useful if the server is expected to be idle for a long time.
However, use this feature with care, as hibernation implies at least two garbage collections (when hibernating and
shortly after waking up) and is not something you want to do between each event handled by a busy event manager.

gen_event

202 | Ericsson AB. All Rights Reserved.: STDLIB

Notice that when multiple event handlers are invoked, it is sufficient that one single event handler returns a
hibernate request for the whole event manager to go into hibernation.

Unless otherwise stated, all functions in this module fail if the specified event manager does not exist or if bad
arguments are specified.

Data Types
handler() = atom() | {atom(), term()}
handler_args() = term()
add_handler_ret() = ok | term() | {'EXIT', term()}
del_handler_ret() = ok | term() | {'EXIT', term()}

Exports

add_handler(EventMgrRef, Handler, Args) -> Result
Types:

EventMgrRef = Name | {Name,Node} | {global,GlobalName} |
{via,Module,ViaName} | pid()

 Name = Node = atom()

 GlobalName = ViaName = term()

Handler = Module | {Module,Id}

 Module = atom()

 Id = term()

Args = term()

Result = ok | {'EXIT',Reason} | term()

 Reason = term()

Adds a new event handler to event manager EventMgrRef. The event manager calls Module:init/1 to initiate
the event handler and its internal state.

EventMgrRef can be any of the following:

• The pid

• Name, if the event manager is locally registered

• {Name,Node}, if the event manager is locally registered at another node

• {global,GlobalName}, if the event manager is globally registered

• {via,Module,ViaName}, if the event manager is registered through an alternative process registry

Handler is the name of the callback module Module or a tuple {Module,Id}, where Id is any term. The
{Module,Id} representation makes it possible to identify a specific event handler when many event handlers use
the same callback module.

Args is any term that is passed as the argument to Module:init/1.

If Module:init/1 returns a correct value indicating successful completion, the event manager adds the event
handler and this function returns ok. If Module:init/1 fails with Reason or returns {error,Reason}, the
event handler is ignored and this function returns {'EXIT',Reason} or {error,Reason}, respectively.

add_sup_handler(EventMgrRef, Handler, Args) -> Result
Types:

gen_event

Ericsson AB. All Rights Reserved.: STDLIB | 203

EventMgrRef = Name | {Name,Node} | {global,GlobalName} |
{via,Module,ViaName} | pid()

 Name = Node = atom()

 GlobalName = ViaName = term()

Handler = Module | {Module,Id}

 Module = atom()

 Id = term()

Args = term()

Result = ok | {'EXIT',Reason} | term()

 Reason = term()

Adds a new event handler in the same way as add_handler/3, but also supervises the connection between the
event handler and the calling process.

• If the calling process later terminates with Reason, the event manager deletes the event handler by calling
Module:terminate/2 with {stop,Reason} as argument.

• If the event handler is deleted later, the event manager sends a
message{gen_event_EXIT,Handler,Reason} to the calling process. Reason is one of the following:

• normal, if the event handler has been removed because of a call to delete_handler/3, or
remove_handler has been returned by a callback function (see below).

• shutdown, if the event handler has been removed because the event manager is terminating.

• {swapped,NewHandler,Pid}, if the process Pid has replaced the event handler with another event
handler NewHandler using a call to swap_handler/3 or swap_sup_handler/3.

• A term, if the event handler is removed because of an error. Which term depends on the error.

For a description of the arguments and return values, see add_handler/3.

call(EventMgrRef, Handler, Request) -> Result
call(EventMgrRef, Handler, Request, Timeout) -> Result
Types:

EventMgrRef = Name | {Name,Node} | {global,GlobalName} |
{via,Module,ViaName} | pid()

 Name = Node = atom()

 GlobalName = ViaName = term()

Handler = Module | {Module,Id}

 Module = atom()

 Id = term()

Request = term()

Timeout = int()>0 | infinity

Result = Reply | {error,Error}

 Reply = term()

 Error = bad_module | {'EXIT',Reason} | term()

 Reason = term()

Makes a synchronous call to event handler Handler installed in event manager EventMgrRef by sending a request
and waiting until a reply arrives or a time-out occurs. The event manager calls Module:handle_call/2 to handle
the request.

For a description of EventMgrRef and Handler, see add_handler/3.

gen_event

204 | Ericsson AB. All Rights Reserved.: STDLIB

Request is any term that is passed as one of the arguments to Module:handle_call/2.

Timeout is an integer greater than zero that specifies how many milliseconds to wait for a reply, or the atom
infinity to wait indefinitely. Defaults to 5000. If no reply is received within the specified time, the function call
fails.

The return value Reply is defined in the return value of Module:handle_call/2. If the specified event handler is
not installed, the function returns {error,bad_module}. If the callback function fails with Reason or returns an
unexpected value Term, this function returns {error,{'EXIT',Reason}} or {error,Term}, respectively.

delete_handler(EventMgrRef, Handler, Args) -> Result
Types:

EventMgrRef = Name | {Name,Node} | {global,GlobalName} |
{via,Module,ViaName} | pid()

 Name = Node = atom()

 GlobalName = ViaName = term()

Handler = Module | {Module,Id}

 Module = atom()

 Id = term()

Args = term()

Result = term() | {error,module_not_found} | {'EXIT',Reason}

 Reason = term()

Deletes an event handler from event manager EventMgrRef. The event manager calls Module:terminate/2
to terminate the event handler.

For a description of EventMgrRef and Handler, see add_handler/3.

Args is any term that is passed as one of the arguments to Module:terminate/2.

The return value is the return value of Module:terminate/2. If the specified event handler is not installed, the
function returns {error,module_not_found}. If the callback function fails with Reason, the function returns
{'EXIT',Reason}.

notify(EventMgrRef, Event) -> ok
sync_notify(EventMgrRef, Event) -> ok
Types:

EventMgrRef = Name | {Name,Node} | {global,GlobalName} |
{via,Module,ViaName} | pid()

 Name = Node = atom()

 GlobalName = ViaName = term()

Event = term()

Sends an event notification to event manager EventMgrRef. The event manager calls
Module:handle_event/2 for each installed event handler to handle the event.

notify/2 is asynchronous and returns immediately after the event notification has been sent. sync_notify/2 is
synchronous in the sense that it returns ok after the event has been handled by all event handlers.

For a description of EventMgrRef, see add_handler/3.

Event is any term that is passed as one of the arguments to Module:handle_event/2.

notify/1 does not fail even if the specified event manager does not exist, unless it is specified as Name.

gen_event

Ericsson AB. All Rights Reserved.: STDLIB | 205

start() -> Result
start(EventMgrName) -> Result
Types:

EventMgrName = {local,Name} | {global,GlobalName} | {via,Module,ViaName}

 Name = atom()

 GlobalName = ViaName = term()

Result = {ok,Pid} | {error,{already_started,Pid}}

 Pid = pid()

Creates a stand-alone event manager process, that is, an event manager that is not part of a supervision tree and thus
has no supervisor.

For a description of the arguments and return values, see start_link/0,1.

start_link() -> Result
start_link(EventMgrName) -> Result
Types:

EventMgrName = {local,Name} | {global,GlobalName} | {via,Module,ViaName}

 Name = atom()

 GlobalName = ViaName = term()

Result = {ok,Pid} | {error,{already_started,Pid}}

 Pid = pid()

Creates an event manager process as part of a supervision tree. The function is to be called, directly or indirectly, by
the supervisor. For example, it ensures that the event manager is linked to the supervisor.

• If EventMgrName={local,Name}, the event manager is registered locally as Name using register/2.

• If EventMgrName={global,GlobalName}, the event manager is registered globally as GlobalName
using global:register_name/2. If no name is provided, the event manager is not registered.

• If EventMgrName={via,Module,ViaName}, the event manager registers with the registry represented
by Module. The Module callback is to export the functions register_name/2, unregister_name/1,
whereis_name/1, and send/2, which are to behave as the corresponding functions in global. Thus,
{via,global,GlobalName} is a valid reference.

If the event manager is successfully created, the function returns {ok,Pid}, where Pid is the pid of the
event manager. If a process with the specified EventMgrName exists already, the function returns {error,
{already_started,Pid}}, where Pid is the pid of that process.

stop(EventMgrRef) -> ok
stop(EventMgrRef, Reason, Timeout) -> ok
Types:

EventMgrRef = Name | {Name,Node} | {global,GlobalName} |
{via,Module,ViaName} | pid()

Name = Node = atom()

GlobalName = ViaName = term()

Reason = term()

Timeout = int()>0 | infinity

Orders event manager EventMgrRef to exit with the specifies Reason and waits for it to terminate. Before
terminating, gen_event calls Module:terminate(stop,...) for each installed event handler.

gen_event

206 | Ericsson AB. All Rights Reserved.: STDLIB

The function returns ok if the event manager terminates with the expected reason. Any other reason than normal,
shutdown, or {shutdown,Term} causes an error report to be issued using error_logger:format/2. The
default Reason is normal.

Timeout is an integer greater than zero that specifies how many milliseconds to wait for the event manager to
terminate, or the atom infinity to wait indefinitely. Defaults to infinity. If the event manager has not terminated
within the specified time, a timeout exception is raised.

If the process does not exist, a noproc exception is raised.

For a description of EventMgrRef, see add_handler/3.

swap_handler(EventMgrRef, {Handler1,Args1}, {Handler2,Args2}) -> Result
Types:

EventMgrRef = Name | {Name,Node} | {global,GlobalName} |
{via,Module,ViaName} | pid()

 Name = Node = atom()

 GlobalName = ViaName = term()

Handler1 = Handler2 = Module | {Module,Id}

 Module = atom()

 Id = term()

Args1 = Args2 = term()

Result = ok | {error,Error}

 Error = {'EXIT',Reason} | term()

 Reason = term()

Replaces an old event handler with a new event handler in event manager EventMgrRef.

For a description of the arguments, see add_handler/3.

First the old event handler Handler1 is deleted. The event manager calls Module1:terminate(Args1, ...),
where Module1 is the callback module of Handler1, and collects the return value.

Then the new event handler Handler2 is added and initiated by calling Module2:init({Args2,Term}),
where Module2 is the callback module of Handler2 and Term is the return value of Module1:terminate/2.
This makes it possible to transfer information from Handler1 to Handler2.

The new handler is added even if the the specified old event handler is not installed, in which case Term=error,
or if Module1:terminate/2 fails with Reason, in which case Term={'EXIT',Reason}. The old handler
is deleted even if Module2:init/1 fails.

If there was a supervised connection between Handler1 and a process Pid, there is a supervised connection between
Handler2 and Pid instead.

If Module2:init/1 returns a correct value, this function returns ok. If Module2:init/1 fails with Reason
or returns an unexpected value Term, this function returns {error,{'EXIT',Reason}} or {error,Term},
respectively.

swap_sup_handler(EventMgrRef, {Handler1,Args1}, {Handler2,Args2}) -> Result
Types:

EventMgrRef = Name | {Name,Node} | {global,GlobalName} |
{via,Module,ViaName} | pid()

 Name = Node = atom()

 GlobalName = ViaName = term()

gen_event

Ericsson AB. All Rights Reserved.: STDLIB | 207

Handler1 = Handler 2 = Module | {Module,Id}

 Module = atom()

 Id = term()

Args1 = Args2 = term()

Result = ok | {error,Error}

 Error = {'EXIT',Reason} | term()

 Reason = term()

Replaces an event handler in event manager EventMgrRef in the same way as swap_handler/3, but also
supervises the connection between Handler2 and the calling process.

For a description of the arguments and return values, see swap_handler/3.

which_handlers(EventMgrRef) -> [Handler]
Types:

EventMgrRef = Name | {Name,Node} | {global,GlobalName} |
{via,Module,ViaName} | pid()

 Name = Node = atom()

 GlobalName = ViaName = term()

Handler = Module | {Module,Id}

 Module = atom()

 Id = term()

Returns a list of all event handlers installed in event manager EventMgrRef.

For a description of EventMgrRef and Handler, see add_handler/3.

Callback Functions
The following functions are to be exported from a gen_event callback module.

Exports

Module:code_change(OldVsn, State, Extra) -> {ok, NewState}
Types:

OldVsn = Vsn | {down, Vsn}

 Vsn = term()

State = NewState = term()

Extra = term()

This function is called for an installed event handler that is to update its internal state during
a release upgrade/downgrade, that is, when the instruction {update,Module,Change,...}, where
Change={advanced,Extra}, is specified in the .appup file. For more information, see OTP Design Principles.

For an upgrade, OldVsn is Vsn, and for a downgrade, OldVsn is {down,Vsn}. Vsn is defined by the vsn
attribute(s) of the old version of the callback module Module. If no such attribute is defined, the version is the
checksum of the Beam file.

State is the internal state of the event handler.

Extra is passed "as is" from the {advanced,Extra} part of the update instruction.

The function is to return the updated internal state.

gen_event

208 | Ericsson AB. All Rights Reserved.: STDLIB

Module:format_status(Opt, [PDict, State]) -> Status
Types:

Opt = normal | terminate

PDict = [{Key, Value}]

State = term()

Status = term()

Note:
This callback is optional, so event handler modules need not export it. If a handler does not export this function,
the gen_event module uses the handler state directly for the purposes described below.

This function is called by a gen_event process in the following situations:

• One of sys:get_status/1,2 is invoked to get the gen_event status. Opt is set to the atom normal
for this case.

• The event handler terminates abnormally and gen_event logs an error. Opt is set to the atom terminate
for this case.

This function is useful for changing the form and appearance of the event handler state for these cases. An event handler
callback module wishing to change the the sys:get_status/1,2 return value as well as how its state appears
in termination error logs, exports an instance of format_status/2 that returns a term describing the current state
of the event handler.

PDict is the current value of the process dictionary of gen_event.

State is the internal state of the event handler.

The function is to return Status, a term that change the details of the current state of the event handler. Any term is
allowed for Status. The gen_event module uses Status as follows:

• When sys:get_status/1,2 is called, gen_event ensures that its return value contains Status in place
of the state term of the event handler.

• When an event handler terminates abnormally, gen_event logs Status in place of the state term of the event
handler.

One use for this function is to return compact alternative state representations to avoid that large state terms are printed
in log files.

Module:handle_call(Request, State) -> Result
Types:

Request = term()

State = term()

Result = {ok,Reply,NewState} | {ok,Reply,NewState,hibernate}

 | {swap_handler,Reply,Args1,NewState,Handler2,Args2}

 | {remove_handler, Reply}

 Reply = term()

 NewState = term()

 Args1 = Args2 = term()

 Handler2 = Module2 | {Module2,Id}

gen_event

Ericsson AB. All Rights Reserved.: STDLIB | 209

 Module2 = atom()

 Id = term()

Whenever an event manager receives a request sent using call/3,4, this function is called for the specified event
handler to handle the request.

Request is the Request argument of call/3,4.

State is the internal state of the event handler.

The return values are the same as for Module:handle_event/2 except that they also contain a term Reply,
which is the reply to the client as the return value of call/3,4.

Module:handle_event(Event, State) -> Result
Types:

Event = term()

State = term()

Result = {ok,NewState} | {ok,NewState,hibernate}

 | {swap_handler,Args1,NewState,Handler2,Args2} | remove_handler

 NewState = term()

 Args1 = Args2 = term()

 Handler2 = Module2 | {Module2,Id}

 Module2 = atom()

 Id = term()

Whenever an event manager receives an event sent using notify/2 or sync_notify/2, this function is called
for each installed event handler to handle the event.

Event is the Event argument of notify/2/sync_notify/2.

State is the internal state of the event handler.

• If {ok,NewState} or {ok,NewState,hibernate} is returned, the event handler remains in the event
manager with the possible updated internal state NewState.

• If {ok,NewState,hibernate} is returned, the event manager also goes into hibernation (by calling
proc_lib:hibernate/3), waiting for the next event to occur. It is sufficient that one of the event handlers
return {ok,NewState,hibernate} for the whole event manager process to hibernate.

• If {swap_handler,Args1,NewState,Handler2,Args2} is returned, the event handler is
replaced by Handler2 by first calling Module:terminate(Args1,NewState) and then
Module2:init({Args2,Term}), where Term is the return value of Module:terminate/2. For more
information, see swap_handler/3.

• If remove_handler is returned, the event handler is deleted by calling
Module:terminate(remove_handler,State).

Module:handle_info(Info, State) -> Result
Types:

Info = term()

State = term()

Result = {ok,NewState} | {ok,NewState,hibernate}

 | {swap_handler,Args1,NewState,Handler2,Args2} | remove_handler

 NewState = term()

 Args1 = Args2 = term()

gen_event

210 | Ericsson AB. All Rights Reserved.: STDLIB

 Handler2 = Module2 | {Module2,Id}

 Module2 = atom()

 Id = term()

This function is called for each installed event handler when an event manager receives any other message than an
event or a synchronous request (or a system message).

Info is the received message.

For a description of State and possible return values, see Module:handle_event/2.

Module:init(InitArgs) -> {ok,State} | {ok,State,hibernate} | {error,Reason}
Types:

InitArgs = Args | {Args,Term}

 Args = Term = term()

State = term()

Reason = term()

Whenever a new event handler is added to an event manager, this function is called to initialize the event handler.

If the event handler is added because of a call to add_handler/3 or add_sup_handler/3, InitArgs is the
Args argument of these functions.

If the event handler replaces another event handler because of a call to swap_handler/3 or
swap_sup_handler/3, or because of a swap return tuple from one of the other callback functions, InitArgs
is a tuple {Args,Term}, where Args is the argument provided in the function call/return tuple and Term is the
result of terminating the old event handler, see swap_handler/3.

If successful, the function returns {ok,State} or {ok,State,hibernate}, where State is the initial internal
state of the event handler.

If {ok,State,hibernate} is returned, the event manager goes into hibernation (by calling
proc_lib:hibernate/3), waiting for the next event to occur.

Module:terminate(Arg, State) -> term()
Types:

Arg = Args | {stop,Reason} | stop | remove_handler

 | {error,{'EXIT',Reason}} | {error,Term}

 Args = Reason = Term = term()

Whenever an event handler is deleted from an event manager, this function is called. It is to be the opposite of
Module:init/1 and do any necessary cleaning up.

If the event handler is deleted because of a call to delete_handler/3, swap_handler/3, or
swap_sup_handler/3, Arg is the Args argument of this function call.

Arg={stop,Reason} if the event handler has a supervised connection to a process that has terminated with reason
Reason.

Arg=stop if the event handler is deleted because the event manager is terminating.

The event manager terminates if it is part of a supervision tree and it is ordered by its supervisor to terminate. Even if
it is not part of a supervision tree, it terminates if it receives an 'EXIT' message from its parent.

Arg=remove_handler if the event handler is deleted because another callback function has returned
remove_handler or {remove_handler,Reply}.

gen_event

Ericsson AB. All Rights Reserved.: STDLIB | 211

Arg={error,Term} if the event handler is deleted because a callback function returned an unexpected value Term,
or Arg={error,{'EXIT',Reason}} if a callback function failed.

State is the internal state of the event handler.

The function can return any term. If the event handler is deleted because of a call to
gen_event:delete_handler/3, the return value of that function becomes the return value of this function. If
the event handler is to be replaced with another event handler because of a swap, the return value is passed to the
init function of the new event handler. Otherwise the return value is ignored.

See Also
supervisor(3), sys(3)

gen_fsm

212 | Ericsson AB. All Rights Reserved.: STDLIB

gen_fsm
Erlang module

Note:
There is a new behaviour gen_statem that is intended to replace gen_fsm for new code. gen_fsm will not
be removed for the foreseeable future to keep old state machine implementations running.

This behavior module provides a finite state machine. A generic finite state machine process (gen_fsm) implemented
using this module has a standard set of interface functions and includes functionality for tracing and error reporting.
It also fits into an OTP supervision tree. For more information, see OTP Design Principles.

A gen_fsm process assumes all specific parts to be located in a callback module exporting a predefined set of
functions. The relationship between the behavior functions and the callback functions is as follows:

gen_fsm module Callback module
-------------- ---------------
gen_fsm:start
gen_fsm:start_link -----> Module:init/1

gen_fsm:stop -----> Module:terminate/3

gen_fsm:send_event -----> Module:StateName/2

gen_fsm:send_all_state_event -----> Module:handle_event/3

gen_fsm:sync_send_event -----> Module:StateName/3

gen_fsm:sync_send_all_state_event -----> Module:handle_sync_event/4

- -----> Module:handle_info/3

- -----> Module:terminate/3

- -----> Module:code_change/4

If a callback function fails or returns a bad value, the gen_fsm process terminates.

A gen_fsm process handles system messages as described in sys(3). The sys module can be used for debugging
a gen_fsm process.

Notice that a gen_fsm process does not trap exit signals automatically, this must be explicitly initiated in the callback
module.

Unless otherwise stated, all functions in this module fail if the specified gen_fsm process does not exist or if bad
arguments are specified.

The gen_fsm process can go into hibernation (see erlang:hibernate/3) if a callback function specifies
'hibernate' instead of a time-out value. This can be useful if the server is expected to be idle for a long time.
However, use this feature with care, as hibernation implies at least two garbage collections (when hibernating and
shortly after waking up) and is not something you want to do between each call to a busy state machine.

gen_fsm

Ericsson AB. All Rights Reserved.: STDLIB | 213

Exports

cancel_timer(Ref) -> RemainingTime | false
Types:

Ref = reference()

RemainingTime = integer()

Cancels an internal timer referred by Ref in the gen_fsm process that calls this function.

Ref is a reference returned from send_event_after/2 or start_timer/2.

If the timer has already timed out, but the event not yet been delivered, it is cancelled as if it had not timed out, so
there is no false timer event after returning from this function.

Returns the remaining time in milliseconds until the timer would have expired if Ref referred to an active timer,
otherwise false.

enter_loop(Module, Options, StateName, StateData)
enter_loop(Module, Options, StateName, StateData, FsmName)
enter_loop(Module, Options, StateName, StateData, Timeout)
enter_loop(Module, Options, StateName, StateData, FsmName, Timeout)
Types:

Module = atom()

Options = [Option]

 Option = {debug,Dbgs}

 Dbgs = [Dbg]

 Dbg = trace | log | statistics

 | {log_to_file,FileName} | {install,{Func,FuncState}}

StateName = atom()

StateData = term()

FsmName = {local,Name} | {global,GlobalName}

 | {via,Module,ViaName}

 Name = atom()

 GlobalName = ViaName = term()

Timeout = int() | infinity

Makes an existing process into a gen_fsm process. Does not return, instead the calling process enters the gen_fsm
receive loop and becomes a gen_fsm process. The process must have been started using one of the start functions
in proc_lib(3). The user is responsible for any initialization of the process, including registering a name for it.

This function is useful when a more complex initialization procedure is needed than the gen_fsm behavior provides.

Module, Options, and FsmName have the same meanings as when calling start[_link]/3,4. However, if
FsmName is specified, the process must have been registered accordingly before this function is called.

StateName, StateData, and Timeout have the same meanings as in the return value of Module:init/1. The
callback module Module does not need to export an init/1 function.

The function fails if the calling process was not started by a proc_lib start function, or if it is not registered according
to FsmName.

gen_fsm

214 | Ericsson AB. All Rights Reserved.: STDLIB

reply(Caller, Reply) -> Result
Types:

Caller - see below

Reply = term()

Result = term()

This function can be used by a gen_fsm process to explicitly send a reply to a client process that called
sync_send_event/2,3 or sync_send_all_state_event/2,3 when the reply cannot be defined in the
return value of Module:StateName/3 or Module:handle_sync_event/4.

Caller must be the From argument provided to the callback function. Reply is any term given back to the client
as the return value of sync_send_event/2,3 or sync_send_all_state_event/2,3.

Return value Result is not further defined, and is always to be ignored.

send_all_state_event(FsmRef, Event) -> ok
Types:

FsmRef = Name | {Name,Node} | {global,GlobalName}

 | {via,Module,ViaName} | pid()

 Name = Node = atom()

 GlobalName = ViaName = term()

Event = term()

Sends an event asynchronously to the FsmRef of the gen_fsm process and returns ok immediately. The gen_fsm
process calls Module:handle_event/3 to handle the event.

For a description of the arguments, see send_event/2.

The difference between send_event/2 and send_all_state_event/2 is which callback function is used to
handle the event. This function is useful when sending events that are handled the same way in every state, as only
one handle_event clause is needed to handle the event instead of one clause in each state name function.

send_event(FsmRef, Event) -> ok
Types:

FsmRef = Name | {Name,Node} | {global,GlobalName}

 | {via,Module,ViaName} | pid()

 Name = Node = atom()

 GlobalName = ViaName = term()

Event = term()

Sends an event asynchronously to the FsmRef of the gen_fsm process and returns ok immediately. The gen_fsm
process calls Module:StateName/2 to handle the event, where StateName is the name of the current state of
the gen_fsm process.

FsmRef can be any of the following:

• The pid

• Name, if the gen_fsm process is locally registered

• {Name,Node}, if the gen_fsm process is locally registered at another node

• {global,GlobalName}, if the gen_fsm process is globally registered

• {via,Module,ViaName}, if the gen_fsm process is registered through an alternative process registry

Event is any term that is passed as one of the arguments to Module:StateName/2.

gen_fsm

Ericsson AB. All Rights Reserved.: STDLIB | 215

send_event_after(Time, Event) -> Ref
Types:

Time = integer()

Event = term()

Ref = reference()

Sends a delayed event internally in the gen_fsm process that calls this function after Time milliseconds. Returns
immediately a reference that can be used to cancel the delayed send using cancel_timer/1.

The gen_fsm process calls Module:StateName/2 to handle the event, where StateName is the name of the
current state of the gen_fsm process at the time the delayed event is delivered.

Event is any term that is passed as one of the arguments to Module:StateName/2.

start(Module, Args, Options) -> Result
start(FsmName, Module, Args, Options) -> Result
Types:

FsmName = {local,Name} | {global,GlobalName}

 | {via,Module,ViaName}

 Name = atom()

 GlobalName = ViaName = term()

Module = atom()

Args = term()

Options = [Option]

 Option = {debug,Dbgs} | {timeout,Time} | {spawn_opt,SOpts}

 Dbgs = [Dbg]

 Dbg = trace | log | statistics

 | {log_to_file,FileName} | {install,{Func,FuncState}}

 SOpts = [term()]

Result = {ok,Pid} | ignore | {error,Error}

 Pid = pid()

 Error = {already_started,Pid} | term()

Creates a standalone gen_fsm process, that is, a process that is not part of a supervision tree and thus has no
supervisor.

For a description of arguments and return values, see start_link/3,4.

start_link(Module, Args, Options) -> Result
start_link(FsmName, Module, Args, Options) -> Result
Types:

FsmName = {local,Name} | {global,GlobalName}

 | {via,Module,ViaName}

 Name = atom()

 GlobalName = ViaName = term()

Module = atom()

Args = term()

Options = [Option]

gen_fsm

216 | Ericsson AB. All Rights Reserved.: STDLIB

 Option = {debug,Dbgs} | {timeout,Time} | {spawn_opt,SOpts}

 Dbgs = [Dbg]

 Dbg = trace | log | statistics

 | {log_to_file,FileName} | {install,{Func,FuncState}}

 SOpts = [SOpt]

 SOpt - see erlang:spawn_opt/2,3,4,5

Result = {ok,Pid} | ignore | {error,Error}

 Pid = pid()

 Error = {already_started,Pid} | term()

Creates a gen_fsm process as part of a supervision tree. The function is to be called, directly or indirectly, by the
supervisor. For example, it ensures that the gen_fsm process is linked to the supervisor.

The gen_fsm process calls Module:init/1 to initialize. To ensure a synchronized startup procedure,
start_link/3,4 does not return until Module:init/1 has returned.

• If FsmName={local,Name}, the gen_fsm process is registered locally as Name using register/2.

• If FsmName={global,GlobalName}, the gen_fsm process is registered globally as GlobalName using
global:register_name/2.

• If FsmName={via,Module,ViaName}, the gen_fsm process registers with the registry represented by
Module. The Module callback is to export the functions register_name/2, unregister_name/1,
whereis_name/1, and send/2, which are to behave like the corresponding functions in global. Thus,
{via,global,GlobalName} is a valid reference.

If no name is provided, the gen_fsm process is not registered.

Module is the name of the callback module.

Args is any term that is passed as the argument to Module:init/1.

If option {timeout,Time} is present, the gen_fsm process is allowed to spend Time milliseconds initializing or
it terminates and the start function returns {error,timeout}.

If option {debug,Dbgs} is present, the corresponding sys function is called for each item in Dbgs; see sys(3).

If option {spawn_opt,SOpts} is present, SOpts is passed as option list to the spawn_opt BIF that is used to
spawn the gen_fsm process; see spawn_opt/2.

Note:
Using spawn option monitor is not allowed, it causes the function to fail with reason badarg.

If the gen_fsm process is successfully created and initialized, the function returns {ok,Pid}, where Pid is the
pid of the gen_fsm process. If a process with the specified FsmName exists already, the function returns {error,
{already_started,Pid}}, where Pid is the pid of that process.

If Module:init/1 fails with Reason, the function returns {error,Reason}. If Module:init/1 returns
{stop,Reason} or ignore, the process is terminated and the function returns {error,Reason} or ignore,
respectively.

start_timer(Time, Msg) -> Ref
Types:

Time = integer()

gen_fsm

Ericsson AB. All Rights Reserved.: STDLIB | 217

Msg = term()

Ref = reference()

Sends a time-out event internally in the gen_fsm process that calls this function after Time milliseconds. Returns
immediately a reference that can be used to cancel the timer using cancel_timer/1.

The gen_fsm process calls Module:StateName/2 to handle the event, where StateName is the name of the
current state of the gen_fsm process at the time the time-out message is delivered.

Msg is any term that is passed in the time-out message, {timeout, Ref, Msg}, as one of the arguments to
Module:StateName/2.

stop(FsmRef) -> ok
stop(FsmRef, Reason, Timeout) -> ok
Types:

FsmRef = Name | {Name,Node} | {global,GlobalName}

 | {via,Module,ViaName} | pid()

 Node = atom()

 GlobalName = ViaName = term()

Reason = term()

Timeout = int()>0 | infinity

Orders a generic finite state machine to exit with the specified Reason and waits for it to terminate. The gen_fsm
process calls Module:terminate/3 before exiting.

The function returns ok if the generic finite state machine terminates with the expected reason. Any
other reason than normal, shutdown, or {shutdown,Term} causes an error report to be issued using
error_logger:format/2. The default Reason is normal.

Timeout is an integer greater than zero that specifies how many milliseconds to wait for the generic FSM to terminate,
or the atom infinity to wait indefinitely. The default value is infinity. If the generic finite state machine has
not terminated within the specified time, a timeout exception is raised.

If the process does not exist, a noproc exception is raised.

sync_send_all_state_event(FsmRef, Event) -> Reply
sync_send_all_state_event(FsmRef, Event, Timeout) -> Reply
Types:

FsmRef = Name | {Name,Node} | {global,GlobalName}

 | {via,Module,ViaName} | pid()

 Name = Node = atom()

 GlobalName = ViaName = term()

Event = term()

Timeout = int()>0 | infinity

Reply = term()

Sends an event to the FsmRef of the gen_fsm process and waits until a reply arrives or a time-out occurs. The
gen_fsm process calls Module:handle_sync_event/4 to handle the event.

For a description of FsmRef and Event, see send_event/2. For a description of Timeout and Reply, see
sync_send_event/3.

For a discussion about the difference between sync_send_event and sync_send_all_state_event, see
send_all_state_event/2.

gen_fsm

218 | Ericsson AB. All Rights Reserved.: STDLIB

sync_send_event(FsmRef, Event) -> Reply
sync_send_event(FsmRef, Event, Timeout) -> Reply
Types:

FsmRef = Name | {Name,Node} | {global,GlobalName}

 | {via,Module,ViaName} | pid()

 Name = Node = atom()

 GlobalName = ViaName = term()

Event = term()

Timeout = int()>0 | infinity

Reply = term()

Sends an event to the FsmRef of the gen_fsm process and waits until a reply arrives or a time-out occurs. The
gen_fsm process calls Module:StateName/3 to handle the event, where StateName is the name of the current
state of the gen_fsm process.

For a description of FsmRef and Event, see send_event/2.

Timeout is an integer greater than zero that specifies how many milliseconds to wait for a reply, or the atom
infinity to wait indefinitely. Defaults to 5000. If no reply is received within the specified time, the function call
fails.

Return value Reply is defined in the return value of Module:StateName/3.

Note:
The ancient behavior of sometimes consuming the server exit message if the server died during the call while
linked to the client was removed in Erlang 5.6/OTP R12B.

Callback Functions
The following functions are to be exported from a gen_fsm callback module.

state name denotes a state of the state machine.

state data denotes the internal state of the Erlang process that implements the state machine.

Exports

Module:code_change(OldVsn, StateName, StateData, Extra) -> {ok,
NextStateName, NewStateData}
Types:

OldVsn = Vsn | {down, Vsn}

 Vsn = term()

StateName = NextStateName = atom()

StateData = NewStateData = term()

Extra = term()

This function is called by a gen_fsm process when it is to update its internal state data
during a release upgrade/downgrade, that is, when instruction {update,Module,Change,...}, where
Change={advanced,Extra}, is given in the appup file; see section Release Handling Instructions in OTP
Design Principles.

gen_fsm

Ericsson AB. All Rights Reserved.: STDLIB | 219

For an upgrade, OldVsn is Vsn, and for a downgrade, OldVsn is {down,Vsn}. Vsn is defined by the vsn
attribute(s) of the old version of the callback module Module. If no such attribute is defined, the version is the
checksum of the Beam file.

StateName is the current state name and StateData the internal state data of the gen_fsm process.

Extra is passed "as is" from the {advanced,Extra} part of the update instruction.

The function is to return the new current state name and updated internal data.

Module:format_status(Opt, [PDict, StateData]) -> Status
Types:

Opt = normal | terminate

PDict = [{Key, Value}]

StateData = term()

Status = term()

Note:
This callback is optional, so callback modules need not export it. The gen_fsm module provides a default
implementation of this function that returns the callback module state data.

This function is called by a gen_fsm process in the following situations:

• One of sys:get_status/1,2 is invoked to get the gen_fsm status. Opt is set to the atom normal for
this case.

• The gen_fsm process terminates abnormally and logs an error. Opt is set to the atom terminate for this
case.

This function is useful for changing the form and appearance of the gen_fsm status for these cases. A callback module
wishing to change the sys:get_status/1,2 return value as well as how its status appears in termination error
logs, exports an instance of format_status/2 that returns a term describing the current status of the gen_fsm
process.

PDict is the current value of the process dictionary of the gen_fsm process.

StateData is the internal state data of the gen_fsm process.

The function is to return Status, a term that change the details of the current state and status of the gen_fsm
process. There are no restrictions on the form Status can take, but for the sys:get_status/1,2 case (when
Opt is normal), the recommended form for the Status value is [{data, [{"StateData", Term}]}],
where Term provides relevant details of the gen_fsm state data. Following this recommendation is not required, but
it makes the callback module status consistent with the rest of the sys:get_status/1,2 return value.

One use for this function is to return compact alternative state data representations to avoid that large state terms are
printed in log files.

Module:handle_event(Event, StateName, StateData) -> Result
Types:

Event = term()

StateName = atom()

StateData = term()

Result = {next_state,NextStateName,NewStateData}

gen_fsm

220 | Ericsson AB. All Rights Reserved.: STDLIB

 | {next_state,NextStateName,NewStateData,Timeout}

 | {next_state,NextStateName,NewStateData,hibernate}

 | {stop,Reason,NewStateData}

 NextStateName = atom()

 NewStateData = term()

 Timeout = int()>0 | infinity

 Reason = term()

Whenever a gen_fsm process receives an event sent using send_all_state_event/2, this function is called
to handle the event.

StateName is the current state name of the gen_fsm process.

For a description of the other arguments and possible return values, see Module:StateName/2.

Module:handle_info(Info, StateName, StateData) -> Result
Types:

Info = term()

StateName = atom()

StateData = term()

Result = {next_state,NextStateName,NewStateData}

 | {next_state,NextStateName,NewStateData,Timeout}

 | {next_state,NextStateName,NewStateData,hibernate}

 | {stop,Reason,NewStateData}

 NextStateName = atom()

 NewStateData = term()

 Timeout = int()>0 | infinity

 Reason = normal | term()

This function is called by a gen_fsm process when it receives any other message than a synchronous or asynchronous
event (or a system message).

Info is the received message.

For a description of the other arguments and possible return values, see Module:StateName/2.

Module:handle_sync_event(Event, From, StateName, StateData) -> Result
Types:

Event = term()

From = {pid(),Tag}

StateName = atom()

StateData = term()

Result = {reply,Reply,NextStateName,NewStateData}

 | {reply,Reply,NextStateName,NewStateData,Timeout}

 | {reply,Reply,NextStateName,NewStateData,hibernate}

 | {next_state,NextStateName,NewStateData}

 | {next_state,NextStateName,NewStateData,Timeout}

 | {next_state,NextStateName,NewStateData,hibernate}

 | {stop,Reason,Reply,NewStateData} | {stop,Reason,NewStateData}

gen_fsm

Ericsson AB. All Rights Reserved.: STDLIB | 221

 Reply = term()

 NextStateName = atom()

 NewStateData = term()

 Timeout = int()>0 | infinity

 Reason = term()

Whenever a gen_fsm process receives an event sent using sync_send_all_state_event/2,3, this function
is called to handle the event.

StateName is the current state name of the gen_fsm process.

For a description of the other arguments and possible return values, see Module:StateName/3.

Module:init(Args) -> Result
Types:

Args = term()

Result = {ok,StateName,StateData} | {ok,StateName,StateData,Timeout}

 | {ok,StateName,StateData,hibernate}

 | {stop,Reason} | ignore

 StateName = atom()

 StateData = term()

 Timeout = int()>0 | infinity

 Reason = term()

Whenever a gen_fsm process is started using start/3,4 or start_link/3,4, this function is called by the
new process to initialize.

Args is the Args argument provided to the start function.

If initialization is successful, the function is to return {ok,StateName,StateData},
{ok,StateName,StateData,Timeout}, or {ok,StateName,StateData,hibernate}, where
StateName is the initial state name and StateData the initial state data of the gen_fsm process.

If an integer time-out value is provided, a time-out occurs unless an event or a message is received within Timeout
milliseconds. A time-out is represented by the atom timeout and is to be handled by the Module:StateName/2
callback functions. The atom infinity can be used to wait indefinitely, this is the default value.

If hibernate is specified instead of a time-out value, the process goes into hibernation when waiting for the next
message to arrive (by calling proc_lib:hibernate/3).

If the initialization fails, the function returns {stop,Reason}, where Reason is any term, or ignore.

Module:StateName(Event, StateData) -> Result
Types:

Event = timeout | term()

StateData = term()

Result = {next_state,NextStateName,NewStateData}

 | {next_state,NextStateName,NewStateData,Timeout}

 | {next_state,NextStateName,NewStateData,hibernate}

 | {stop,Reason,NewStateData}

 NextStateName = atom()

 NewStateData = term()

gen_fsm

222 | Ericsson AB. All Rights Reserved.: STDLIB

 Timeout = int()>0 | infinity

 Reason = term()

There is to be one instance of this function for each possible state name. Whenever a gen_fsm process receives
an event sent using send_event/2, the instance of this function with the same name as the current state name
StateName is called to handle the event. It is also called if a time-out occurs.

Event is either the atom timeout, if a time-out has occurred, or the Event argument provided to send_event/2.

StateData is the state data of the gen_fsm process.

If the function returns {next_state,NextStateName,NewStateData},
{next_state,NextStateName,NewStateData,Timeout}, or
{next_state,NextStateName,NewStateData,hibernate}, the gen_fsm process continues executing
with the current state name set to NextStateName and with the possibly updated state data NewStateData. For
a description of Timeout and hibernate, see Module:init/1.

If the function returns {stop,Reason,NewStateData}, the gen_fsm process calls
Module:terminate(Reason,StateName,NewStateData) and terminates.

Module:StateName(Event, From, StateData) -> Result
Types:

Event = term()

From = {pid(),Tag}

StateData = term()

Result = {reply,Reply,NextStateName,NewStateData}

 | {reply,Reply,NextStateName,NewStateData,Timeout}

 | {reply,Reply,NextStateName,NewStateData,hibernate}

 | {next_state,NextStateName,NewStateData}

 | {next_state,NextStateName,NewStateData,Timeout}

 | {next_state,NextStateName,NewStateData,hibernate}

 | {stop,Reason,Reply,NewStateData} | {stop,Reason,NewStateData}

 Reply = term()

 NextStateName = atom()

 NewStateData = term()

 Timeout = int()>0 | infinity

 Reason = normal | term()

There is to be one instance of this function for each possible state name. Whenever a gen_fsm process receives an
event sent using sync_send_event/2,3, the instance of this function with the same name as the current state
name StateName is called to handle the event.

Event is the Event argument provided to sync_send_event/2,3.

From is a tuple {Pid,Tag} where Pid is the pid of the process that called sync_send_event/2,3 and Tag
is a unique tag.

StateData is the state data of the gen_fsm process.

• If {reply,Reply,NextStateName,NewStateData},
{reply,Reply,NextStateName,NewStateData,Timeout}, or
{reply,Reply,NextStateName,NewStateData,hibernate} is returned, Reply is given back to
From as the return value of sync_send_event/2,3. The gen_fsm process then continues executing with

gen_fsm

Ericsson AB. All Rights Reserved.: STDLIB | 223

the current state name set to NextStateName and with the possibly updated state data NewStateData. For
a description of Timeout and hibernate, see Module:init/1.

• If {next_state,NextStateName,NewStateData},
{next_state,NextStateName,NewStateData,Timeout}, or
{next_state,NextStateName,NewStateData,hibernate} is returned, the gen_fsm process
continues executing in NextStateName with NewStateData. Any reply to From must be specified explicitly
using reply/2.

• If the function returns {stop,Reason,Reply,NewStateData}, Reply is given back
to From. If the function returns {stop,Reason,NewStateData}, any reply to
From must be specified explicitly using reply/2. The gen_fsm process then calls
Module:terminate(Reason,StateName,NewStateData) and terminates.

Module:terminate(Reason, StateName, StateData)
Types:

Reason = normal | shutdown | {shutdown,term()} | term()

StateName = atom()

StateData = term()

This function is called by a gen_fsm process when it is about to terminate. It is to be the opposite of
Module:init/1 and do any necessary cleaning up. When it returns, the gen_fsm process terminates with
Reason. The return value is ignored.

Reason is a term denoting the stop reason, StateName is the current state name, and StateData is the state data
of the gen_fsm process.

Reason depends on why the gen_fsm process is terminating. If it is because another callback function has returned
a stop tuple {stop,..}, Reason has the value specified in that tuple. If it is because of a failure, Reason is the
error reason.

If the gen_fsm process is part of a supervision tree and is ordered by its supervisor to terminate, this function is
called with Reason=shutdown if the following conditions apply:

• The gen_fsm process has been set to trap exit signals.

• The shutdown strategy as defined in the child specification of the supervisor is an integer time-out value, not
brutal_kill.

Even if the gen_fsm process is not part of a supervision tree, this function is called if it receives an 'EXIT' message
from its parent. Reason is the same as in the 'EXIT' message.

Otherwise, the gen_fsm process terminates immediately.

Notice that for any other reason than normal, shutdown, or {shutdown,Term} the gen_fsm process is
assumed to terminate because of an error and an error report is issued using error_logger:format/2.

See Also
gen_event(3), gen_server(3), gen_statem(3), proc_lib(3), supervisor(3), sys(3)

gen_server

224 | Ericsson AB. All Rights Reserved.: STDLIB

gen_server
Erlang module

This behavior module provides the server of a client-server relation. A generic server process (gen_server)
implemented using this module has a standard set of interface functions and includes functionality for tracing and
error reporting. It also fits into an OTP supervision tree. For more information, see section gen_server Behaviour in
OTP Design Principles.

A gen_server process assumes all specific parts to be located in a callback module exporting a predefined set of
functions. The relationship between the behavior functions and the callback functions is as follows:

gen_server module Callback module
----------------- ---------------
gen_server:start
gen_server:start_link -----> Module:init/1

gen_server:stop -----> Module:terminate/2

gen_server:call
gen_server:multi_call -----> Module:handle_call/3

gen_server:cast
gen_server:abcast -----> Module:handle_cast/2

- -----> Module:handle_info/2

- -----> Module:terminate/2

- -----> Module:code_change/3

If a callback function fails or returns a bad value, the gen_server process terminates.

A gen_server process handles system messages as described in sys(3). The sys module can be used for
debugging a gen_server process.

Notice that a gen_server process does not trap exit signals automatically, this must be explicitly initiated in the
callback module.

Unless otherwise stated, all functions in this module fail if the specified gen_server process does not exist or if
bad arguments are specified.

The gen_server process can go into hibernation (see erlang:hibernate/3) if a callback function specifies
'hibernate' instead of a time-out value. This can be useful if the server is expected to be idle for a long time.
However, use this feature with care, as hibernation implies at least two garbage collections (when hibernating and
shortly after waking up) and is not something you want to do between each call to a busy server.

Exports

abcast(Name, Request) -> abcast
abcast(Nodes, Name, Request) -> abcast
Types:

Nodes = [Node]

 Node = atom()

gen_server

Ericsson AB. All Rights Reserved.: STDLIB | 225

Name = atom()

Request = term()

Sends an asynchronous request to the gen_server processes locally registered as Name at the specified nodes. The
function returns immediately and ignores nodes that do not exist, or where the gen_server Name does not exist.
The gen_server processes call Module:handle_cast/2 to handle the request.

For a description of the arguments, see multi_call/2,3,4.

call(ServerRef, Request) -> Reply
call(ServerRef, Request, Timeout) -> Reply
Types:

ServerRef = Name | {Name,Node} | {global,GlobalName}

 | {via,Module,ViaName} | pid()

 Node = atom()

 GlobalName = ViaName = term()

Request = term()

Timeout = int()>0 | infinity

Reply = term()

Makes a synchronous call to the ServerRef of the gen_server process by sending a request and waiting until
a reply arrives or a time-out occurs. The gen_server process calls Module:handle_call/3 to handle the
request.

ServerRef can be any of the following:

• The pid

• Name, if the gen_server process is locally registered

• {Name,Node}, if the gen_server process is locally registered at another node

• {global,GlobalName}, if the gen_server process is globally registered

• {via,Module,ViaName}, if the gen_server process is registered through an alternative process registry

Request is any term that is passed as one of the arguments to Module:handle_call/3.

Timeout is an integer greater than zero that specifies how many milliseconds to wait for a reply, or the atom
infinity to wait indefinitely. Defaults to 5000. If no reply is received within the specified time, the function call
fails. If the caller catches the failure and continues running, and the server is just late with the reply, it can arrive at
any time later into the message queue of the caller. The caller must in this case be prepared for this and discard any
such garbage messages that are two element tuples with a reference as the first element.

The return value Reply is defined in the return value of Module:handle_call/3.

The call can fail for many reasons, including time-out and the called gen_server process dying before or during
the call.

Note:
The ancient behavior of sometimes consuming the server exit message if the server died during the call while
linked to the client was removed in Erlang 5.6/OTP R12B.

cast(ServerRef, Request) -> ok
Types:

gen_server

226 | Ericsson AB. All Rights Reserved.: STDLIB

ServerRef = Name | {Name,Node} | {global,GlobalName}

 | {via,Module,ViaName} | pid()

 Node = atom()

 GlobalName = ViaName = term()

Request = term()

Sends an asynchronous request to the ServerRef of the gen_server process and returns ok immediately,
ignoring if the destination node or gen_server process does not exist. The gen_server process calls
Module:handle_cast/2 to handle the request.

For a description of ServerRef, see call/2,3.

Request is any term that is passed as one of the arguments to Module:handle_cast/2.

enter_loop(Module, Options, State)
enter_loop(Module, Options, State, ServerName)
enter_loop(Module, Options, State, Timeout)
enter_loop(Module, Options, State, ServerName, Timeout)
Types:

Module = atom()

Options = [Option]

 Option = {debug,Dbgs}

 Dbgs = [Dbg]

 Dbg = trace | log | statistics

 | {log_to_file,FileName} | {install,{Func,FuncState}}

State = term()

ServerName = {local,Name} | {global,GlobalName}

 | {via,Module,ViaName}

 Name = atom()

 GlobalName = ViaName = term()

Timeout = int() | infinity

Makes an existing process into a gen_server process. Does not return, instead the calling process enters the
gen_server process receive loop and becomes a gen_server process. The process must have been started using
one of the start functions in proc_lib(3). The user is responsible for any initialization of the process, including
registering a name for it.

This function is useful when a more complex initialization procedure is needed than the gen_server process
behavior provides.

Module, Options, and ServerName have the same meanings as when calling start[_link]/3,4. However,
if ServerName is specified, the process must have been registered accordingly before this function is called.

State and Timeout have the same meanings as in the return value of Module:init/1. The callback module
Module does not need to export an init/1 function.

The function fails if the calling process was not started by a proc_lib start function, or if it is not registered according
to ServerName.

gen_server

Ericsson AB. All Rights Reserved.: STDLIB | 227

multi_call(Name, Request) -> Result
multi_call(Nodes, Name, Request) -> Result
multi_call(Nodes, Name, Request, Timeout) -> Result
Types:

Nodes = [Node]

 Node = atom()

Name = atom()

Request = term()

Timeout = int()>=0 | infinity

Result = {Replies,BadNodes}

 Replies = [{Node,Reply}]

 Reply = term()

BadNodes = [Node]

Makes a synchronous call to all gen_server processes locally registered as Name at the specified nodes
by first sending a request to every node and then waits for the replies. The gen_server process calls
Module:handle_call/3 to handle the request.

The function returns a tuple {Replies,BadNodes}, where Replies is a list of {Node,Reply} and BadNodes
is a list of node that either did not exist, or where the gen_server Name did not exist or did not reply.

Nodes is a list of node names to which the request is to be sent. Default value is the list of all known nodes [node()|
nodes()].

Name is the locally registered name of each gen_server process.

Request is any term that is passed as one of the arguments to Module:handle_call/3.

Timeout is an integer greater than zero that specifies how many milliseconds to wait for each reply, or the atom
infinity to wait indefinitely. Defaults to infinity. If no reply is received from a node within the specified time,
the node is added to BadNodes.

When a reply Reply is received from the gen_server process at a node Node, {Node,Reply} is added to
Replies. Reply is defined in the return value of Module:handle_call/3.

Warning:
If one of the nodes cannot process monitors, for example, C or Java nodes, and the gen_server process is not
started when the requests are sent, but starts within 2 seconds, this function waits the whole Timeout, which
may be infinity.

This problem does not exist if all nodes are Erlang nodes.

To prevent late answers (after the time-out) from polluting the message queue of the caller, a middleman process is
used to do the calls. Late answers are then discarded when they arrive to a terminated process.

reply(Client, Reply) -> Result
Types:

Client - see below

Reply = term()

Result = term()

gen_server

228 | Ericsson AB. All Rights Reserved.: STDLIB

This function can be used by a gen_server process to explicitly send a reply to a client that called call/2,3 or
multi_call/2,3,4, when the reply cannot be defined in the return value of Module:handle_call/3.

Client must be the From argument provided to the callback function. Reply is any term given back to the client
as the return value of call/2,3 or multi_call/2,3,4.

The return value Result is not further defined, and is always to be ignored.

start(Module, Args, Options) -> Result
start(ServerName, Module, Args, Options) -> Result
Types:

ServerName = {local,Name} | {global,GlobalName}

 | {via,Module,ViaName}

 Name = atom()

 GlobalName = ViaName = term()

Module = atom()

Args = term()

Options = [Option]

 Option = {debug,Dbgs} | {timeout,Time} | {spawn_opt,SOpts}

 Dbgs = [Dbg]

 Dbg = trace | log | statistics | {log_to_file,FileName} | {install,
{Func,FuncState}}

 SOpts = [term()]

Result = {ok,Pid} | ignore | {error,Error}

 Pid = pid()

 Error = {already_started,Pid} | term()

Creates a standalone gen_server process, that is, a gen_server process that is not part of a supervision tree
and thus has no supervisor.

For a description of arguments and return values, see start_link/3,4.

start_link(Module, Args, Options) -> Result
start_link(ServerName, Module, Args, Options) -> Result
Types:

ServerName = {local,Name} | {global,GlobalName}

 | {via,Module,ViaName}

 Name = atom()

 GlobalName = ViaName = term()

Module = atom()

Args = term()

Options = [Option]

 Option = {debug,Dbgs} | {timeout,Time} | {spawn_opt,SOpts}

 Dbgs = [Dbg]

 Dbg = trace | log | statistics | {log_to_file,FileName} | {install,
{Func,FuncState}}

 SOpts = [term()]

Result = {ok,Pid} | ignore | {error,Error}

gen_server

Ericsson AB. All Rights Reserved.: STDLIB | 229

 Pid = pid()

 Error = {already_started,Pid} | term()

Creates a gen_server process as part of a supervision tree. This function is to be called, directly or indirectly, by
the supervisor. For example, it ensures that the gen_server process is linked to the supervisor.

The gen_server process calls Module:init/1 to initialize. To ensure a synchronized startup procedure,
start_link/3,4 does not return until Module:init/1 has returned.

• If ServerName={local,Name}, the gen_server process is registered locally as Name using
register/2.

• If ServerName={global,GlobalName}, the gen_server process id registered globally as
GlobalName using global:register_name/2 If no name is provided, the gen_server process is not
registered.

• If ServerName={via,Module,ViaName}, the gen_server process registers with the registry
represented by Module. The Module callback is to export the functions register_name/2,
unregister_name/1, whereis_name/1, and send/2, which are to behave like the corresponding
functions in global. Thus, {via,global,GlobalName} is a valid reference.

Module is the name of the callback module.

Args is any term that is passed as the argument to Module:init/1.

• If option {timeout,Time} is present, the gen_server process is allowed to spend Time milliseconds
initializing or it is terminated and the start function returns {error,timeout}.

• If option {debug,Dbgs} is present, the corresponding sys function is called for each item in Dbgs; see
sys(3).

• If option {spawn_opt,SOpts} is present, SOpts is passed as option list to the spawn_opt BIF, which is
used to spawn the gen_server process; see spawn_opt/2.

Note:
Using spawn option monitor is not allowed, it causes the function to fail with reason badarg.

If the gen_server process is successfully created and initialized, the function returns {ok,Pid}, where Pid is
the pid of the gen_server process. If a process with the specified ServerName exists already, the function returns
{error,{already_started,Pid}}, where Pid is the pid of that process.

If Module:init/1 fails with Reason, the function returns {error,Reason}. If Module:init/1 returns
{stop,Reason} or ignore, the process is terminated and the function returns {error,Reason} or ignore,
respectively.

stop(ServerRef) -> ok
stop(ServerRef, Reason, Timeout) -> ok
Types:

ServerRef = Name | {Name,Node} | {global,GlobalName}

 | {via,Module,ViaName} | pid()

 Node = atom()

 GlobalName = ViaName = term()

Reason = term()

Timeout = int()>0 | infinity

gen_server

230 | Ericsson AB. All Rights Reserved.: STDLIB

Orders a generic server to exit with the specified Reason and waits for it to terminate. The gen_server process
calls Module:terminate/2 before exiting.

The function returns ok if the server terminates with the expected reason. Any other reason than normal, shutdown,
or {shutdown,Term} causes an error report to be issued using error_logger:format/2. The default
Reason is normal.

Timeout is an integer greater than zero that specifies how many milliseconds to wait for the server to terminate, or
the atom infinity to wait indefinitely. Defaults to infinity. If the server has not terminated within the specified
time, a timeout exception is raised.

If the process does not exist, a noproc exception is raised.

Callback Functions
The following functions are to be exported from a gen_server callback module.

Exports

Module:code_change(OldVsn, State, Extra) -> {ok, NewState} | {error, Reason}
Types:

OldVsn = Vsn | {down, Vsn}

 Vsn = term()

State = NewState = term()

Extra = term()

Reason = term()

This function is called by a gen_server process when it is to update its internal state during
a release upgrade/downgrade, that is, when the instruction {update,Module,Change,...}, where
Change={advanced,Extra}, is specifed in the appup file. For more information, see section Release Handling
Instructions in OTP Design Principles.

For an upgrade, OldVsn is Vsn, and for a downgrade, OldVsn is {down,Vsn}. Vsn is defined by the vsn
attribute(s) of the old version of the callback module Module. If no such attribute is defined, the version is the
checksum of the Beam file.

State is the internal state of the gen_server process.

Extra is passed "as is" from the {advanced,Extra} part of the update instruction.

If successful, the function must return the updated internal state.

If the function returns {error,Reason}, the ongoing upgrade fails and rolls back to the old release.

Module:format_status(Opt, [PDict, State]) -> Status
Types:

Opt = normal | terminate

PDict = [{Key, Value}]

State = term()

Status = term()

gen_server

Ericsson AB. All Rights Reserved.: STDLIB | 231

Note:
This callback is optional, so callback modules need not export it. The gen_server module provides a default
implementation of this function that returns the callback module state.

This function is called by a gen_server process in the following situations:

• One of sys:get_status/1,2 is invoked to get the gen_server status. Opt is set to the atom normal.

• The gen_server process terminates abnormally and logs an error. Opt is set to the atom terminate.

This function is useful for changing the form and appearance of the gen_server status for these cases. A callback
module wishing to change the sys:get_status/1,2 return value, as well as how its status appears in termination
error logs, exports an instance of format_status/2 that returns a term describing the current status of the
gen_server process.

PDict is the current value of the process dictionary of the gen_server process..

State is the internal state of the gen_server process.

The function is to return Status, a term that changes the details of the current state and status of the gen_server
process. There are no restrictions on the form Status can take, but for the sys:get_status/1,2 case (when
Opt is normal), the recommended form for the Status value is [{data, [{"State", Term}]}], where
Term provides relevant details of the gen_server state. Following this recommendation is not required, but it
makes the callback module status consistent with the rest of the sys:get_status/1,2 return value.

One use for this function is to return compact alternative state representations to avoid that large state terms are printed
in log files.

Module:handle_call(Request, From, State) -> Result
Types:

Request = term()

From = {pid(),Tag}

State = term()

Result = {reply,Reply,NewState} | {reply,Reply,NewState,Timeout}

 | {reply,Reply,NewState,hibernate}

 | {noreply,NewState} | {noreply,NewState,Timeout}

 | {noreply,NewState,hibernate}

 | {stop,Reason,Reply,NewState} | {stop,Reason,NewState}

 Reply = term()

 NewState = term()

 Timeout = int()>=0 | infinity

 Reason = term()

Whenever a gen_server process receives a request sent using call/2,3 or multi_call/2,3,4, this function
is called to handle the request.

Request is the Request argument provided to call or multi_call.

From is a tuple {Pid,Tag}, where Pid is the pid of the client and Tag is a unique tag.

State is the internal state of the gen_server process.

• If {reply,Reply,NewState} is returned, {reply,Reply,NewState,Timeout} or
{reply,Reply,NewState,hibernate}, Reply is given back to From as the return value of call/2,3

gen_server

232 | Ericsson AB. All Rights Reserved.: STDLIB

or included in the return value of multi_call/2,3,4. The gen_server process then continues executing
with the possibly updated internal state NewState.

For a description of Timeout and hibernate, see Module:init/1.

• If {noreply,NewState} is returned, {noreply,NewState,Timeout}, or
{noreply,NewState,hibernate}, the gen_server process continues executing with NewState. Any
reply to From must be specified explicitly using reply/2.

• If {stop,Reason,Reply,NewState} is returned, Reply is given back to From.

• If {stop,Reason,NewState} is returned, any reply to From must be specified explicitly using reply/2.
The gen_server process then calls Module:terminate(Reason,NewState) and terminates.

Module:handle_cast(Request, State) -> Result
Types:

Request = term()

State = term()

Result = {noreply,NewState} | {noreply,NewState,Timeout}

 | {noreply,NewState,hibernate}

 | {stop,Reason,NewState}

 NewState = term()

 Timeout = int()>=0 | infinity

 Reason = term()

Whenever a gen_server process receives a request sent using cast/2 or abcast/2,3, this function is called
to handle the request.

For a description of the arguments and possible return values, see Module:handle_call/3.

Module:handle_info(Info, State) -> Result
Types:

Info = timeout | term()

State = term()

Result = {noreply,NewState} | {noreply,NewState,Timeout}

 | {noreply,NewState,hibernate}

 | {stop,Reason,NewState}

 NewState = term()

 Timeout = int()>=0 | infinity

 Reason = normal | term()

This function is called by a gen_server process when a time-out occurs or when it receives any other message than
a synchronous or asynchronous request (or a system message).

Info is either the atom timeout, if a time-out has occurred, or the received message.

For a description of the other arguments and possible return values, see Module:handle_call/3.

Module:init(Args) -> Result
Types:

Args = term()

Result = {ok,State} | {ok,State,Timeout} | {ok,State,hibernate}

gen_server

Ericsson AB. All Rights Reserved.: STDLIB | 233

 | {stop,Reason} | ignore

 State = term()

 Timeout = int()>=0 | infinity

 Reason = term()

Whenever a gen_server process is started using start/3,4 or start_link/3,4, this function is called by
the new process to initialize.

Args is the Args argument provided to the start function.

If the initialization is successful, the function is to return {ok,State}, {ok,State,Timeout}, or
{ok,State,hibernate}, where State is the internal state of the gen_server process.

If an integer time-out value is provided, a time-out occurs unless a request or a message is received within
Timeout milliseconds. A time-out is represented by the atom timeout, which is to be handled by the
Module:handle_info/2 callback function. The atom infinity can be used to wait indefinitely, this is the
default value.

If hibernate is specified instead of a time-out value, the process goes into hibernation when waiting for the next
message to arrive (by calling proc_lib:hibernate/3).

If the initialization fails, the function is to return {stop,Reason}, where Reason is any term, or ignore.

Module:terminate(Reason, State)
Types:

Reason = normal | shutdown | {shutdown,term()} | term()

State = term()

This function is called by a gen_server process when it is about to terminate. It is to be the opposite of
Module:init/1 and do any necessary cleaning up. When it returns, the gen_server process terminates with
Reason. The return value is ignored.

Reason is a term denoting the stop reason and State is the internal state of the gen_server process.

Reason depends on why the gen_server process is terminating. If it is because another callback function has
returned a stop tuple {stop,..}, Reason has the value specified in that tuple. If it is because of a failure, Reason
is the error reason.

If the gen_server process is part of a supervision tree and is ordered by its supervisor to terminate, this function
is called with Reason=shutdown if the following conditions apply:

• The gen_server process has been set to trap exit signals.

• The shutdown strategy as defined in the child specification of the supervisor is an integer time-out value, not
brutal_kill.

Even if the gen_server process is not part of a supervision tree, this function is called if it receives an 'EXIT'
message from its parent. Reason is the same as in the 'EXIT' message.

Otherwise, the gen_server process terminates immediately.

Notice that for any other reason than normal, shutdown, or {shutdown,Term}, the gen_server process is
assumed to terminate because of an error and an error report is issued using error_logger:format/2.

See Also
gen_event(3), gen_fsm(3), gen_statem(3), proc_lib(3), supervisor(3), sys(3)

gen_statem

234 | Ericsson AB. All Rights Reserved.: STDLIB

gen_statem
Erlang module

This behavior module provides a state machine. Two callback modes are supported:

• One for finite-state machines (gen_fsm like), which requires the state to be an atom and uses that state as the
name of the current callback function

• One without restriction on the state data type that uses one callback function for all states

Note:
This is a new behavior in Erlang/OTP 19.0. It has been thoroughly reviewed, is stable enough to be used by at
least two heavy OTP applications, and is here to stay. Depending on user feedback, we do not expect but can find
it necessary to make minor not backward compatible changes into Erlang/OTP 20.0.

The gen_statem behavior is intended to replace gen_fsm for new code. It has the same features and adds some
really useful:

• State code is gathered.

• The state can be any term.

• Events can be postponed.

• Events can be self-generated.

• A reply can be sent from a later state.

• There can be multiple sys traceable replies.

The callback model(s) for gen_statem differs from the one for gen_fsm, but it is still fairly easy to rewrite from
gen_fsm to gen_statem.

A generic state machine process (gen_statem) implemented using this module has a standard set of interface
functions and includes functionality for tracing and error reporting. It also fits into an OTP supervision tree. For more
information, see OTP Design Principles.

A gen_statem assumes all specific parts to be located in a callback module exporting a predefined set of functions.
The relationship between the behavior functions and the callback functions is as follows:

gen_statem module Callback module
----------------- ---------------
gen_statem:start
gen_statem:start_link -----> Module:init/1

gen_statem:stop -----> Module:terminate/3

gen_statem:call
gen_statem:cast
erlang:send
erlang:'!' -----> Module:StateName/3
 Module:handle_event/4

- -----> Module:terminate/3

- -----> Module:code_change/4

gen_statem

Ericsson AB. All Rights Reserved.: STDLIB | 235

Events are of different types, so the callback functions can know the origin of an event and how to respond.

If a callback function fails or returns a bad value, the gen_statem terminates. However, an exception of class throw
is not regarded as an error but as a valid return.

The "state function" for a specific state in a gen_statem is the callback function that is called for all events in this
state. It is selected depending on which callback mode that the implementation specifies when the server starts.

When the callback mode is state_functions, the state must be an atom and is used as the state
function name; see Module:StateName/3. This gathers all code for a specific state in one function as the
gen_statem engine branches depending on state name. Notice that in this mode the mandatory callback function
Module:terminate/3 makes the state name terminate unusable.

When the callback mode is handle_event_function, the state can be any term and the state function name is
Module:handle_event/4. This makes it easy to branch depending on state or event as you desire. Be careful
about which events you handle in which states so that you do not accidentally postpone an event forever creating an
infinite busy loop.

The gen_statem enqueues incoming events in order of arrival and presents these to the state function in that order.
The state function can postpone an event so it is not retried in the current state. After a state change the queue restarts
with the postponed events.

The gen_statem event queue model is sufficient to emulate the normal process message queue with selective
receive. Postponing an event corresponds to not matching it in a receive statement, and changing states corresponds
to entering a new receive statement.

The state function can insert events using the action() next_event and such an event is inserted as the next to
present to the state function. That is, as if it is the oldest incoming event. A dedicated event_type() internal
can be used for such events making them impossible to mistake for external events.

Inserting an event replaces the trick of calling your own state handling functions that you often would have to resort
to in, for example, gen_fsm to force processing an inserted event before others.

Note:
If you in gen_statem, for example, postpone an event in one state and then call another state function of yours,
you have not changed states and hence the postponed event is not retried, which is logical but can be confusing.

For the details of a state transition, see type transition_option().

A gen_statem handles system messages as described in sys. The sys module can be used for debugging a
gen_statem.

Notice that a gen_statem does not trap exit signals automatically, this must be explicitly initiated in the callback
module (by calling process_flag(trap_exit, true).

Unless otherwise stated, all functions in this module fail if the specified gen_statem does not exist or if bad
arguments are specified.

The gen_statem process can go into hibernation; see proc_lib:hibernate/3. It is done when a state function
or Module:init/1 specifies hibernate in the returned Actions list. This feature can be useful to reclaim
process heap memory while the server is expected to be idle for a long time. However, use this feature with care, as
hibernation can be too costly to use after every event; see erlang:hibernate/3.

gen_statem

236 | Ericsson AB. All Rights Reserved.: STDLIB

Example
The following example shows a simple pushbutton model for a toggling pushbutton implemented with callback mode
state_functions. You can push the button and it replies if it went on or off, and you can ask for a count of how
many times it has been pushed to switch on.

The following is the complete callback module file pushbutton.erl:

-module(pushbutton).
-behaviour(gen_statem).

-export([start/0,push/0,get_count/0,stop/0]).
-export([terminate/3,code_change/4,init/1]).
-export([on/3,off/3]).

name() -> pushbutton_statem. % The registered server name
callback_mode() -> state_functions.

%% API. This example uses a registered name name()
%% and does not link to the caller.
start() ->
 gen_statem:start({local,name()}, ?MODULE, [], []).
push() ->
 gen_statem:call(name(), push).
get_count() ->
 gen_statem:call(name(), get_count).
stop() ->
 gen_statem:stop(name()).

%% Mandatory callback functions
terminate(_Reason, _State, _Data) ->
 void.
code_change(_Vsn, State, Data, _Extra) ->
 {callback_mode(),State,Data}.
init([]) ->
 %% Set the callback mode and initial state + data.
 %% Data is used only as a counter.
 State = off, Data = 0,
 {callback_mode(),State,Data}.

%%% State functions

off({call,From}, push, Data) ->
 %% Go to 'on', increment count and reply
 %% that the resulting status is 'on'
 {next_state,on,Data+1,[{reply,From,on}]};
off(EventType, EventContent, Data) ->
 handle_event(EventType, EventContent, Data).

on({call,From}, push, Data) ->
 %% Go to 'off' and reply that the resulting status is 'off'
 {next_state,off,Data,[{reply,From,off}]};
on(EventType, EventContent, Data) ->
 handle_event(EventType, EventContent, Data).

%% Handle events common to all states
handle_event({call,From}, get_count, Data) ->
 %% Reply with the current count
 {keep_state,Data,[{reply,From,Data}]};
handle_event(_, _, Data) ->
 %% Ignore all other events
 {keep_state,Data}.

gen_statem

Ericsson AB. All Rights Reserved.: STDLIB | 237

The following is a shell session when running it:

1> pushbutton:start().
{ok,<0.36.0>}
2> pushbutton:get_count().
0
3> pushbutton:push().
on
4> pushbutton:get_count().
1
5> pushbutton:push().
off
6> pushbutton:get_count().
1
7> pushbutton:stop().
ok
8> pushbutton:push().
** exception exit: {noproc,{gen_statem,call,[pushbutton_statem,push,infinity]}}
 in function gen:do_for_proc/2 (gen.erl, line 261)
 in call from gen_statem:call/3 (gen_statem.erl, line 386)

To compare styles, here follows the same example using callback mode state_functions, or rather the code to
replace from function init/1 of the pushbutton.erl example file above:

init([]) ->
 %% Set the callback mode and initial state + data.
 %% Data is used only as a counter.
 State = off, Data = 0,
 {handle_event_function,State,Data}.

%%% Event handling

handle_event({call,From}, push, off, Data) ->
 %% Go to 'on', increment count and reply
 %% that the resulting status is 'on'
 {next_state,on,Data+1,[{reply,From,on}]};
handle_event({call,From}, push, on, Data) ->
 %% Go to 'off' and reply that the resulting status is 'off'
 {next_state,off,Data,[{reply,From,off}]};
%%
%% Event handling common to all states
handle_event({call,From}, get_count, State, Data) ->
 %% Reply with the current count
 {next_state,State,Data,[{reply,From,Data}]};
handle_event(_, _, State, Data) ->
 %% Ignore all other events
 {next_state,State,Data}.

Data Types
server_name() =
 {global, GlobalName :: term()} |
 {via, RegMod :: module(), Name :: term()} |

gen_statem

238 | Ericsson AB. All Rights Reserved.: STDLIB

 {local, atom()}
Name specification to use when starting a gen_statem server. See start_link/3 and server_ref() below.

server_ref() =
 pid() |
 (LocalName :: atom()) |
 {Name :: atom(), Node :: atom()} |
 {global, GlobalName :: term()} |
 {via, RegMod :: module(), ViaName :: term()}
Server specification to use when addressing a gen_statem server. See call/2 and server_name() above.

It can be:

pid() | LocalName

The gen_statem is locally registered.

{Name,Node}

The gen_statem is locally registered on another node.

{global,GlobalName}

The gen_statem is globally registered in global.

{via,RegMod,ViaName}

The gen_statem is registered in an alternative process registry. The registry callback module RegMod is to
export functions register_name/2, unregister_name/1, whereis_name/1, and send/2, which
are to behave like the corresponding functions in global. Thus, {via,global,GlobalName} is the same
as {global,GlobalName}.

debug_opt() =
 {debug,
 Dbgs ::
 [trace | log | statistics | debug | {logfile, string()}]}
Debug option that can be used when starting a gen_statem server through, for example, enter_loop/5.

For every entry in Dbgs, the corresponding function in sys is called.

start_opt() =
 debug_opt() |
 {timeout, Time :: timeout()} |
 {spawn_opt, [proc_lib:spawn_option()]}
Options that can be used when starting a gen_statem server through, for example, start_link/3.

start_ret() = {ok, pid()} | ignore | {error, term()}
Return value from the start functions, for example, start_link/3.

from() = {To :: pid(), Tag :: term()}
Destination to use when replying through, for example, the action() {reply,From,Reply} to a process that
has called the gen_statem server using call/2.

state() = state_name() | term()
After a state change (NextState =/= State), all postponed events are retried.

state_name() = atom()
If the callback mode is state_functions, the state must be of this type.

gen_statem

Ericsson AB. All Rights Reserved.: STDLIB | 239

data() = term()
A term in which the state machine implementation is to store any server data it needs. The difference between this and
the state() itself is that a change in this data does not cause postponed events to be retried. Hence, if a change in
this data would change the set of events that are handled, then that data item is to be made a part of the state.

event_type() =
 {call, From :: from()} | cast | info | timeout | internal
External events are of three types: {call,From}, cast, or info. Calls (synchronous) and casts originate from
the corresponding API functions. For calls, the event contains whom to reply to. Type info originates from regular
process messages sent to the gen_statem. Also, the state machine implementation can generate events of types
timeout and internal to itself.

callback_mode() = state_functions | handle_event_function
The callback mode is selected when starting the gen_statem using the return value from Module:init/1 or
when calling enter_loop/5,6,7, and with the return value from Module:code_change/4.

state_functions

The state must be of type state_name() and one callback function per state, that is,
Module:StateName/3, is used.

handle_event_function

The state can be any term and the callback function Module:handle_event/4 is used for all states.

transition_option() =
 postpone() | hibernate() | event_timeout()
Transition options can be set by actions and they modify the following in how the state transition is done:

• All actions are processed in order of appearance.

• If postpone() is true, the current event is postponed.

• If the state changes, the queue of incoming events is reset to start with the oldest postponed.

• All events stored with action() next_event are inserted in the queue to be processed before all other events.

• If an event_timeout() is set through action() timeout, an event timer can be started or a time-out zero
event can be enqueued.

• The (possibly new) state function is called with the oldest enqueued event if there is any, otherwise the
gen_statem goes into receive or hibernation (if hibernate() is true) to wait for the next message. In
hibernation the next non-system event awakens the gen_statem, or rather the next incoming message awakens
the gen_statem, but if it is a system event it goes right back into hibernation.

postpone() = boolean()
If true, postpones the current event and retries it when the state changes (NextState =/= State).

hibernate() = boolean()
If true, hibernates the gen_statem by calling proc_lib:hibernate/3 before going into receive
to wait for a new external event. If there are enqueued events, to prevent receiving any new event, an
erlang:garbage_collect/0 is done instead to simulate that the gen_statem entered hibernation and
immediately got awakened by the oldest enqueued event.

event_timeout() = timeout()
Generates an event of event_type() timeout after this time (in milliseconds) unless another event arrives in
which case this time-out is cancelled. Notice that a retried or inserted event counts like a new in this respect.

If the value is infinity, no timer is started, as it never triggers anyway.

gen_statem

240 | Ericsson AB. All Rights Reserved.: STDLIB

If the value is 0, the time-out event is immediately enqueued unless there already are enqueued events, as the time-
out is then immediately cancelled. This is a feature ensuring that a time-out 0 event is processed before any not yet
received external event.

Notice that it is not possible or needed to cancel this time-out, as it is cancelled automatically by any other event.

action() =
 postpone |
 {postpone, Postpone :: postpone()} |
 hibernate |
 {hibernate, Hibernate :: hibernate()} |
 (Timeout :: event_timeout()) |
 {timeout, Time :: event_timeout(), EventContent :: term()} |
 reply_action() |
 {next_event,
 EventType :: event_type(),
 EventContent :: term()}
These state transition actions can be invoked by returning them from the state function, from Module:init/1 or
by giving them to enter_loop/6,7.

Actions are executed in the containing list order.

Actions that set transition options override any previous of the same type, so the last in the containing list wins. For
example, the last event_timeout() overrides any other event_timeout() in the list.

postpone

Sets the transition_option() postpone() for this state transition. This action is ignored when returned
from Module:init/1 or given to enter_loop/5,6, as there is no event to postpone in those cases.

hibernate

Sets the transition_option() hibernate() for this state transition.

Timeout

Short for {timeout,Timeout,Timeout}, that is, the time-out message is the time-out time. This form exists
to make the state function return value {next_state,NextState,NewData,Timeout} allowed like for
gen_fsm's Module:StateName/2.

timeout

Sets the transition_option() event_timeout() to Time with EventContent.

reply_action()

Replies to a caller.

next_event

Stores the specified EventType and EventContent for insertion after all actions have been executed.

The stored events are inserted in the queue as the next to process before any already queued events. The order of
these stored events is preserved, so the first next_event in the containing list becomes the first to process.

An event of type internal is to be used when you want to reliably distinguish an event inserted this way from
any external event.

reply_action() = {reply, From :: from(), Reply :: term()}
Replies to a caller waiting for a reply in call/2. From must be the term from argument {call,From} to the
state function.

state_function_result() =

gen_statem

Ericsson AB. All Rights Reserved.: STDLIB | 241

 {next_state, NextStateName :: state_name(), NewData :: data()} |
 {next_state,
 NextStateName :: state_name(),
 NewData :: data(),
 Actions :: [action()] | action()} |
 common_state_callback_result()
next_state

The gen_statem does a state transition to NextStateName (which can be the same as the current state),
sets NewData, and executes all Actions.

All these terms are tuples or atoms and this property will hold in any future version of gen_statem.

handle_event_result() =
 {next_state, NextState :: state(), NewData :: data()} |
 {next_state,
 NextState :: state(),
 NewData :: data(),
 Actions :: [action()] | action()} |
 common_state_callback_result()
next_state

The gen_statem does a state transition to NextState (which can be the same as the current state), sets
NewData, and executes all Actions.

All these terms are tuples or atoms and this property will hold in any future version of gen_statem.

common_state_callback_result() =
 stop |
 {stop, Reason :: term()} |
 {stop, Reason :: term(), NewData :: data()} |
 {stop_and_reply,
 Reason :: term(),
 Replies :: [reply_action()] | reply_action()} |
 {stop_and_reply,
 Reason :: term(),
 Replies :: [reply_action()] | reply_action(),
 NewData :: data()} |
 {keep_state, NewData :: data()} |
 {keep_state,
 NewData :: data(),
 Actions :: [action()] | action()} |
 keep_state_and_data |
 {keep_state_and_data, Actions :: [action()] | action()}
stop

Terminates the gen_statem by calling Module:terminate/3 with Reason and NewData, if specified.

stop_and_reply

Sends all Replies, then terminates the gen_statem by calling Module:terminate/3 with Reason and
NewData, if specified.

keep_state

The gen_statem keeps the current state, or does a state transition to the current state if you like, sets NewData,
and executes all Actions. This is the same as {next_state,CurrentState,NewData,Actions}.

gen_statem

242 | Ericsson AB. All Rights Reserved.: STDLIB

keep_state_and_data

The gen_statem keeps the current state or does a state transition to the current state if
you like, keeps the current server data, and executes all Actions. This is the same as
{next_state,CurrentState,CurrentData,Actions}.

All these terms are tuples or atoms and this property will hold in any future version of gen_statem.

Exports

call(ServerRef :: server_ref(), Request :: term()) ->
 Reply :: term()
call(ServerRef :: server_ref(),
 Request :: term(),
 Timeout :: timeout()) ->
 Reply :: term()
Makes a synchronous call to the gen_statem ServerRef by sending a request and waiting until its reply arrives.
The gen_statem calls the state function with event_type() {call,From} and event content Request.

A Reply is generated when a state function returns with {reply,From,Reply} as one action(), and that
Reply becomes the return value of this function.

Timeout is an integer > 0, which specifies how many milliseconds to wait for a reply, or the atom infinity to
wait indefinitely, which is the default. If no reply is received within the specified time, the function call fails.

Note:
To avoid getting a late reply in the caller's inbox, this function spawns a proxy process that does the call. A late
reply gets delivered to the dead proxy process, hence gets discarded. This is less efficient than using Timeout
=:= infinity.

The call can fail, for example, if the gen_statem dies before or during this function call.

cast(ServerRef :: server_ref(), Msg :: term()) -> ok
Sends an asynchronous event to the gen_statem ServerRef and returns ok immediately, ignoring if the
destination node or gen_statem does not exist. The gen_statem calls the state function with event_type()
cast and event content Msg.

enter_loop(Module :: module(),
 Opts :: [debug_opt()],
 CallbackMode :: callback_mode(),
 State :: state(),
 Data :: data()) ->
 no_return()
The same as enter_loop/7 except that no server_name() must have been registered.

enter_loop(Module :: module(),
 Opts :: [debug_opt()],
 CallbackMode :: callback_mode(),
 State :: state(),

gen_statem

Ericsson AB. All Rights Reserved.: STDLIB | 243

 Data :: data(),
 Server_or_Actions :: server_name() | pid() | [action()]) ->
 no_return()
If Server_or_Actions is a list(), the same as enter_loop/7 except that no server_name() must have
been registered and Actions = Server_or_Actions.

Otherwise the same as enter_loop/7 with Server = Server_or_Actions and Actions = [].

enter_loop(Module :: module(),
 Opts :: [debug_opt()],
 CallbackMode :: callback_mode(),
 State :: state(),
 Data :: data(),
 Server :: server_name() | pid(),
 Actions :: [action()] | action()) ->
 no_return()
Makes the calling process become a gen_statem. Does not return, instead the calling process enters the
gen_statem receive loop and becomes a gen_statem server. The process must have been started using one of
the start functions in proc_lib. The user is responsible for any initialization of the process, including registering
a name for it.

This function is useful when a more complex initialization procedure is needed than the gen_statem behavior
provides.

Module, Opts, and Server have the same meanings as when calling start[_link]/3,4. However, the
server_name() name must have been registered accordingly before this function is called.

CallbackMode, State, Data, and Actions have the same meanings as in the return value of Module:init/1.
Also, the callback module Module does not need to export an init/1 function.

The function fails if the calling process was not started by a proc_lib start function, or if it is not registered according
to server_name().

reply(Replies :: [reply_action()] | reply_action()) -> ok
reply(From :: from(), Reply :: term()) -> ok
This function can be used by a gen_statem to explicitly send a reply to a process that waits in call/2 when the
reply cannot be defined in the return value of a state function.

From must be the term from argument {call,From} to the state function. From and Reply can also be specified
using a reply_action() and multiple replies with a list of them.

Note:
A reply sent with this function is not visible in sys debug output.

start(Module :: module(), Args :: term(), Opts :: [start_opt()]) ->
 start_ret()
start(ServerName :: server_name(),
 Module :: module(),
 Args :: term(),
 Opts :: [start_opt()]) ->

gen_statem

244 | Ericsson AB. All Rights Reserved.: STDLIB

 start_ret()
Creates a standalone gen_statem process according to OTP design principles (using proc_lib primitives). As it
does not get linked to the calling process, this start function cannot be used by a supervisor to start a child.

For a description of arguments and return values, see start_link/3,4.

start_link(Module :: module(),
 Args :: term(),
 Opts :: [start_opt()]) ->
 start_ret()
start_link(ServerName :: server_name(),
 Module :: module(),
 Args :: term(),
 Opts :: [start_opt()]) ->
 start_ret()
Creates a gen_statem process according to OTP design principles (using proc_lib primitives) that is linked to
the calling process. This is essential when the gen_statem must be part of a supervision tree so it gets linked to
its supervisor.

The gen_statem process calls Module:init/1 to initialize the server. To ensure a synchronized startup
procedure, start_link/3,4 does not return until Module:init/1 has returned.

ServerName specifies the server_name() to register for the gen_statem. If the gen_statem is started with
start_link/3, no ServerName is provided and the gen_statem is not registered.

Module is the name of the callback module.

Args is an arbitrary term that is passed as the argument to Module:init/1.

• If option {timeout,Time} is present in Opts, the gen_statem is allowed to spend Time milliseconds
initializing or it terminates and the start function returns {error,timeout}.

• If option {debug,Dbgs} is present in Opts, debugging through sys is activated.

• If option {spawn_opt,SpawnOpts} is present in Opts, SpawnOpts is passed as option list to
erlang:spawn_opt/2, which is used to spawn the gen_statem process.

Note:
Using spawn option monitor is not allowed, it causes this function to fail with reason badarg.

If the gen_statem is successfully created and initialized, this function returns {ok,Pid}, where Pid is the pid()
of the gen_statem. If a process with the specified ServerName exists already, this function returns {error,
{already_started,Pid}}, where Pid is the pid() of that process.

If Module:init/1 fails with Reason, this function returns {error,Reason}. If Module:init/1 returns
{stop,Reason} or ignore, the process is terminated and this function returns {error,Reason} or ignore,
respectively.

stop(ServerRef :: server_ref()) -> ok
The same as stop(ServerRef, normal, infinity).

stop(ServerRef :: server_ref(),
 Reason :: term(),

gen_statem

Ericsson AB. All Rights Reserved.: STDLIB | 245

 Timeout :: timeout()) ->
 ok
Orders the gen_statem ServerRef to exit with the specified Reason and waits for it to terminate. The
gen_statem calls Module:terminate/3 before exiting.

This function returns ok if the server terminates with the expected reason. Any other reason than normal,
shutdown, or {shutdown,Term} causes an error report to be issued through error_logger:format/2. The
default Reason is normal.

Timeout is an integer > 0, which specifies how many milliseconds to wait for the server to terminate, or the atom
infinity to wait indefinitely. Defaults to infinity. If the server does not terminate within the specified time,
a timeout exception is raised.

If the process does not exist, a noproc exception is raised.

Callback Functions
The following functions are to be exported from a gen_statem callback module.

Exports

Module:code_change(OldVsn, OldState, OldData, Extra) -> Result
Types:

OldVsn = Vsn | {down,Vsn}

 Vsn = term()

OldState = NewState = term()

Extra = term()

Result = {NewCallbackMode,NewState,NewData} | Reason

NewCallbackMode = callback_mode()

OldState = NewState = state()

OldData = NewData = data()

Reason = term()

This function is called by a gen_statem when it is to update its internal state during a release upgrade/downgrade,
that is, when the instruction {update,Module,Change,...}, where Change={advanced,Extra}, is
specified in the appup file. For more information, see OTP Design Principles.

For an upgrade, OldVsn is Vsn, and for a downgrade, OldVsn is {down,Vsn}. Vsn is defined by the vsn
attribute(s) of the old version of the callback module Module. If no such attribute is defined, the version is the
checksum of the Beam file.

Note:
If you would dare to change callback mode during release upgrade/downgrade, the upgrade is no problem, as the
new code surely knows what callback mode it needs. However, for a downgrade this function must know from
argument Extra that comes from the sasl:appup file what callback mode the old code did use. It can also be
possible to figure this out from argument {down,Vsn}, as Vsn in effect defines the old callback module version.

OldState and OldData is the internal state of the gen_statem.

Extra is passed "as is" from the {advanced,Extra} part of the update instruction.

gen_statem

246 | Ericsson AB. All Rights Reserved.: STDLIB

If successful, the function must return the updated internal state in an
{NewCallbackMode,NewState,NewData} tuple.

If the function returns Reason, the ongoing upgrade fails and rolls back to the old release.

This function can use erlang:throw/1 to return Result or Reason.

Module:init(Args) -> Result
Types:

Args = term()

Result = {CallbackMode,State,Data}

 | {CallbackMode,State,Data,Actions}

 | {stop,Reason} | ignore

CallbackMode = callback_mode()

State = state()

Data = data()

Actions = [action()] | action()

Reason = term()

Whenever a gen_statem is started using start_link/3,4 or start/3,4, this function is called by the new
process to initialize the implementation state and server data.

Args is the Args argument provided to the start function.

If the initialization is successful, the function is to return {CallbackMode,State,Data} or
{CallbackMode,State,Data,Actions}. CallbackMode selects the callback mode of the gen_statem.
State is the initial state() and Data the initial server data().

The Actions are executed when entering the first state just as for a state function.

If the initialization fails, the function is to return {stop,Reason} or ignore; see start_link/3,4.

This function can use erlang:throw/1 to return Result.

Module:format_status(Opt, [PDict,State,Data]) -> Status
Types:

Opt = normal | terminate

PDict = [{Key, Value}]

State = state()

Data = data()

Key = term()

Value = term()

Status = term()

Note:
This callback is optional, so a callback module does not need to export it. The gen_statem module provides a
default implementation of this function that returns {State,Data}. If this callback fails, the default function
returns {State,Info}, where Info informs of the crash but no details, to hide possibly sensitive data.

This function is called by a gen_statem process when any of the following apply:

gen_statem

Ericsson AB. All Rights Reserved.: STDLIB | 247

• One of sys:get_status/1,2 is invoked to get the gen_statem status. Opt is set to the atom normal
for this case.

• The gen_statem terminates abnormally and logs an error. Opt is set to the atom terminate for this case.

This function is useful for changing the form and appearance of the gen_statem status for these cases. A callback
module wishing to change the sys:get_status/1,2 return value and how its status appears in termination
error logs exports an instance of format_status/2, which returns a term describing the current status of the
gen_statem.

PDict is the current value of the process dictionary of the gen_statem.

State is the internal state of the gen_statem.

Data is the internal server data of the gen_statem.

The function is to return Status, a term that changes the details of the current state and status of the gen_statem.
There are no restrictions on the form Status can take, but for the sys:get_status/1,2 case (when Opt is
normal), the recommended form for the Status value is [{data, [{"State", Term}]}], where Term
provides relevant details of the gen_statem state. Following this recommendation is not required, but it makes the
callback module status consistent with the rest of the sys:get_status/1,2 return value.

One use for this function is to return compact alternative state representations to avoid having large state terms printed
in log files. Another use is to hide sensitive data from being written to the error log.

This function can use erlang:throw/1 to return Status.

Module:StateName(EventType, EventContent, Data) -> StateFunctionResult
Module:handle_event(EventType, EventContent, State, Data) ->
HandleEventResult
Types:

EventType = event_type()

EventContent = term()

State = state()

Data = NewData = data()

StateFunctionResult = state_function_result()

HandleEventResult = handle_event_result()

Whenever a gen_statem receives an event from call/2, cast/2, or as a normal process message, one of
these functions is called. If callback mode is state_functions, Module:StateName/3 is called, and if it is
handle_event_function, Module:handle_event/4 is called.

If EventType is {call,From}, the caller waits for a reply. The reply can be sent from this or from any other
state function by returning with {reply,From,Reply} in Actions, in Replies, or by calling reply(From,
Reply).

If this function returns with a next state that does not match equal (=/=) to the current state, all postponed events
are retried in the next state.

The only difference between StateFunctionResult and HandleEventResult is that for
StateFunctionResult the next state must be an atom, but for HandleEventResult there is no restriction
on the next state.

For options that can be set and actions that can be done by gen_statem after returning from this function, see
action().

These functions can use erlang:throw/1, to return the result.

gen_statem

248 | Ericsson AB. All Rights Reserved.: STDLIB

Module:terminate(Reason, State, Data) -> Ignored
Types:

Reason = normal | shutdown | {shutdown,term()} | term()

State = state()

Data = data()

Ignored = term()

This function is called by a gen_statem when it is about to terminate. It is to be the opposite of Module:init/1
and do any necessary cleaning up. When it returns, the gen_statem terminates with Reason. The return value
is ignored.

Reason is a term denoting the stop reason and State is the internal state of the gen_statem.

Reason depends on why the gen_statem is terminating. If it is because another callback function has returned, a
stop tuple {stop,Reason} in Actions, Reason has the value specified in that tuple. If it is because of a failure,
Reason is the error reason.

If the gen_statem is part of a supervision tree and is ordered by its supervisor to terminate, this function is called
with Reason = shutdown if both the following conditions apply:

• The gen_statem has been set to trap exit signals.

• The shutdown strategy as defined in the supervisor's child specification is an integer time-out value, not
brutal_kill.

Even if the gen_statem is not part of a supervision tree, this function is called if it receives an 'EXIT' message
from its parent. Reason is the same as in the 'EXIT' message.

Otherwise, the gen_statem is immediately terminated.

Notice that for any other reason than normal, shutdown, or {shutdown,Term}, the gen_statem is assumed
to terminate because of an error and an error report is issued using error_logger:format/2.

This function can use erlang:throw/1 to return Ignored, which is ignored anyway.

See Also
gen_event(3), gen_fsm(3), gen_server(3), proc_lib(3), supervisor(3), sys(3).

io

Ericsson AB. All Rights Reserved.: STDLIB | 249

io
Erlang module

This module provides an interface to standard Erlang I/O servers. The output functions all return ok if they are
successful, or exit if they are not.

All functions in this module have an optional parameter IoDevice. If included, it must be the pid of a process that
handles the I/O protocols. Normally, it is the IoDevice returned by file:open/2.

For a description of the I/O protocols, see section The Erlang I/O Protocol in the User's Guide.

Warning:
As from Erlang/OTP R13A, data supplied to function put_chars/2 is to be in the unicode:chardata()
format. This means that programs supplying binaries to this function must convert them to UTF-8 before trying
to output the data on an I/O device.

If an I/O device is set in binary mode, functions get_chars/2,3 and get_line/1,2 can return binaries
instead of lists. The binaries are, as from Erlang/OTP R13A, encoded in UTF-8.

To work with binaries in ISO Latin-1 encoding, use the file module instead.

For conversion functions between character encodings, see the unicode module.

Data Types
device() = atom() | pid()
An I/O device, either standard_io, standard_error, a registered name, or a pid handling I/O protocols
(returned from file:open/2).

opt_pair() =
 {binary, boolean()} |
 {echo, boolean()} |
 {expand_fun, expand_fun()} |
 {encoding, encoding()}
expand_fun() =
 fun((term()) -> {yes | no, string(), [string(), ...]})
encoding() =
 latin1 |
 unicode |
 utf8 |
 utf16 |
 utf32 |
 {utf16, big | little} |

io

250 | Ericsson AB. All Rights Reserved.: STDLIB

 {utf32, big | little}
setopt() = binary | list | opt_pair()
format() = atom() | string() | binary()
location() = erl_anno:location()
prompt() = atom() | unicode:chardata()
server_no_data() = {error, ErrorDescription :: term()} | eof
What the I/O server sends when there is no data.

Exports

columns() -> {ok, integer() >= 1} | {error, enotsup}
columns(IoDevice) -> {ok, integer() >= 1} | {error, enotsup}
Types:

IoDevice = device()
Retrieves the number of columns of the IoDevice (that is, the width of a terminal). The function succeeds for
terminal devices and returns {error, enotsup} for all other I/O devices.

format(Format) -> ok
format(Format, Data) -> ok
format(IoDevice, Format, Data) -> ok
fwrite(Format) -> ok
fwrite(Format, Data) -> ok
fwrite(IoDevice, Format, Data) -> ok
Types:

IoDevice = device()
Format = format()
Data = [term()]

Writes the items in Data ([]) on the standard output (IoDevice) in accordance with Format. Format contains
plain characters that are copied to the output device, and control sequences for formatting, see below. If Format is an
atom or a binary, it is first converted to a list with the aid of atom_to_list/1 or binary_to_list/1. Example:

1> io:fwrite("Hello world!~n", []).
Hello world!
ok

The general format of a control sequence is ~F.P.PadModC.

Character C determines the type of control sequence to be used, F and P are optional numeric arguments. If F, P, or
Pad is *, the next argument in Data is used as the numeric value of F or P.

• F is the field width of the printed argument. A negative value means that the argument is left-justified within
the field, otherwise right-justified. If no field width is specified, the required print width is used. If the field width
specified is too small, the whole field is filled with * characters.

• P is the precision of the printed argument. A default value is used if no precision is specified. The interpretation
of precision depends on the control sequences. Unless otherwise specified, argument within is used to determine
print width.

io

Ericsson AB. All Rights Reserved.: STDLIB | 251

• Pad is the padding character. This is the character used to pad the printed representation of the argument so that
it conforms to the specified field width and precision. Only one padding character can be specified and, whenever
applicable, it is used for both the field width and precision. The default padding character is ' ' (space).

• Mod is the control sequence modifier. It is either a single character (t, for Unicode translation, and l, for stopping
p and P from detecting printable characters) that changes the interpretation of Data.

Available control sequences:

~

Character ~ is written.

c

The argument is a number that is interpreted as an ASCII code. The precision is the number of times the character
is printed and defaults to the field width, which in turn defaults to 1. Example:

1> io:fwrite("|~10.5c|~-10.5c|~5c|~n", [$a, $b, $c]).
| aaaaa|bbbbb |ccccc|
ok

If the Unicode translation modifier (t) is in effect, the integer argument can be any number representing a valid
Unicode codepoint, otherwise it is to be an integer less than or equal to 255, otherwise it is masked with 16#FF:

2> io:fwrite("~tc~n",[1024]).
\x{400}
ok
3> io:fwrite("~c~n",[1024]).
^@
ok

f

The argument is a float that is written as [-]ddd.ddd, where the precision is the number of digits after the
decimal point. The default precision is 6 and it cannot be < 1.

e

The argument is a float that is written as [-]d.ddde+-ddd, where the precision is the number of digits written.
The default precision is 6 and it cannot be < 2.

g

The argument is a float that is written as f, if it is >= 0.1 and < 10000.0. Otherwise, it is written in the e format.
The precision is the number of significant digits. It defaults to 6 and is not to be < 2. If the absolute value of
the float does not allow it to be written in the f format with the desired number of significant digits, it is also
written in the e format.

s

Prints the argument with the string syntax. The argument is, if no Unicode translation modifier is present, an
iolist(), a binary(), or an atom(). If the Unicode translation modifier (t) is in effect, the argument is
unicode:chardata(), meaning that binaries are in UTF-8. The characters are printed without quotes. The
string is first truncated by the specified precision and then padded and justified to the specified field width. The
default precision is the field width.

This format can be used for printing any object and truncating the output so it fits a specified field:

io

252 | Ericsson AB. All Rights Reserved.: STDLIB

1> io:fwrite("|~10w|~n", [{hey, hey, hey}]).
|**********|
ok
2> io:fwrite("|~10s|~n", [io_lib:write({hey, hey, hey})]).
|{hey,hey,h|
3> io:fwrite("|~-10.8s|~n", [io_lib:write({hey, hey, hey})]).
|{hey,hey |
ok

A list with integers > 255 is considered an error if the Unicode translation modifier is not specified:

4> io:fwrite("~ts~n",[[1024]]).
\x{400}
ok
5> io:fwrite("~s~n",[[1024]]).
** exception exit: {badarg,[{io,format,[<0.26.0>,"~s~n",[[1024]]]},
 ...

w

Writes data with the standard syntax. This is used to output Erlang terms. Atoms are printed within quotes if they
contain embedded non-printable characters. Floats are printed accurately as the shortest, correctly rounded string.

p

Writes the data with standard syntax in the same way as ~w, but breaks terms whose printed representation is
longer than one line into many lines and indents each line sensibly. Left-justification is not supported. It also tries
to detect lists of printable characters and to output these as strings. The Unicode translation modifier is used for
determining what characters are printable, for example:

1> T = [{attributes,[[{id,age,1.50000},{mode,explicit},
{typename,"INTEGER"}], [{id,cho},{mode,explicit},{typename,'Cho'}]]},
{typename,'Person'},{tag,{'PRIVATE',3}},{mode,implicit}].
...
2> io:fwrite("~w~n", [T]).
[{attributes,[[{id,age,1.5},{mode,explicit},{typename,
[73,78,84,69,71,69,82]}],[{id,cho},{mode,explicit},{typena
me,'Cho'}]]},{typename,'Person'},{tag,{'PRIVATE',3}},{mode
,implicit}]
ok
3> io:fwrite("~62p~n", [T]).
[{attributes,[[{id,age,1.5},
 {mode,explicit},
 {typename,"INTEGER"}],
 [{id,cho},{mode,explicit},{typename,'Cho'}]]},
 {typename,'Person'},
 {tag,{'PRIVATE',3}},
 {mode,implicit}]
ok

The field width specifies the maximum line length. Defaults to 80. The precision specifies the initial indentation
of the term. It defaults to the number of characters printed on this line in the same call to write/1 or
format/1,2,3. For example, using T above:

4> io:fwrite("Here T = ~62p~n", [T]).

io

Ericsson AB. All Rights Reserved.: STDLIB | 253

Here T = [{attributes,[[{id,age,1.5},
 {mode,explicit},
 {typename,"INTEGER"}],
 [{id,cho},
 {mode,explicit},
 {typename,'Cho'}]]},
 {typename,'Person'},
 {tag,{'PRIVATE',3}},
 {mode,implicit}]
ok

When the modifier l is specified, no detection of printable character lists takes place, for example:

5> S = [{a,"a"}, {b, "b"}].
6> io:fwrite("~15p~n", [S]).
[{a,"a"},
 {b,"b"}]
ok
7> io:fwrite("~15lp~n", [S]).
[{a,[97]},
 {b,[98]}]
ok

Binaries that look like UTF-8 encoded strings are output with the string syntax if the Unicode translation modifier
is specified:

9> io:fwrite("~p~n",[[1024]]).
[1024]
10> io:fwrite("~tp~n",[[1024]]).
"\x{400}"
11> io:fwrite("~tp~n", [<<128,128>>]).
<<128,128>>
12> io:fwrite("~tp~n", [<<208,128>>]).
<<"\x{400}"/utf8>>
ok

W

Writes data in the same way as ~w, but takes an extra argument that is the maximum depth to which terms are
printed. Anything below this depth is replaced with For example, using T above:

8> io:fwrite("~W~n", [T,9]).
[{attributes,[[{id,age,1.5},{mode,explicit},{typename,...}],
[{id,cho},{mode,...},{...}]]},{typename,'Person'},
{tag,{'PRIVATE',3}},{mode,implicit}]
ok

If the maximum depth is reached, it cannot be read in the resultant output. Also, the ,... form in a tuple denotes
that there are more elements in the tuple but these are below the print depth.

P

Writes data in the same way as ~p, but takes an extra argument that is the maximum depth to which terms are
printed. Anything below this depth is replaced with ..., for example:

io

254 | Ericsson AB. All Rights Reserved.: STDLIB

9> io:fwrite("~62P~n", [T,9]).
[{attributes,[[{id,age,1.5},{mode,explicit},{typename,...}],
 [{id,cho},{mode,...},{...}]]},
 {typename,'Person'},
 {tag,{'PRIVATE',3}},
 {mode,implicit}]
ok

B

Writes an integer in base 2-36, the default base is 10. A leading dash is printed for negative integers.

The precision field selects base, for example:

1> io:fwrite("~.16B~n", [31]).
1F
ok
2> io:fwrite("~.2B~n", [-19]).
-10011
ok
3> io:fwrite("~.36B~n", [5*36+35]).
5Z
ok

X

Like B, but takes an extra argument that is a prefix to insert before the number, but after the leading dash, if any.

The prefix can be a possibly deep list of characters or an atom. Example:

1> io:fwrite("~X~n", [31,"10#"]).
10#31
ok
2> io:fwrite("~.16X~n", [-31,"0x"]).
-0x1F
ok

#

Like B, but prints the number with an Erlang style #-separated base prefix. Example:

1> io:fwrite("~.10#~n", [31]).
10#31
ok
2> io:fwrite("~.16#~n", [-31]).
-16#1F
ok

b

Like B, but prints lowercase letters.

x

Like X, but prints lowercase letters.

io

Ericsson AB. All Rights Reserved.: STDLIB | 255

+

Like #, but prints lowercase letters.

n

Writes a new line.

i

Ignores the next term.

The function returns:

ok

The formatting succeeded.

If an error occurs, there is no output. Example:

1> io:fwrite("~s ~w ~i ~w ~c ~n",['abc def', 'abc def', {foo, 1},{foo, 1}, 65]).
abc def 'abc def' {foo,1} A
ok
2> io:fwrite("~s", [65]).
** exception exit: {badarg,[{io,format,[<0.22.0>,"~s","A"]},
 {erl_eval,do_apply,5},
 {shell,exprs,6},
 {shell,eval_exprs,6},
 {shell,eval_loop,3}]}
 in function io:o_request/2

In this example, an attempt was made to output the single character 65 with the aid of the string formatting directive
"~s".

fread(Prompt, Format) -> Result
fread(IoDevice, Prompt, Format) -> Result
Types:

IoDevice = device()
Prompt = prompt()
Format = format()
Result =
 {ok, Terms :: [term()]} |
 {error, {fread, FreadError :: io_lib:fread_error()}} |
 server_no_data()
server_no_data() = {error, ErrorDescription :: term()} | eof

Reads characters from the standard input (IoDevice), prompting it with Prompt. Interprets the characters in
accordance with Format. Format contains control sequences that directs the interpretation of the input.

Format can contain the following:

• Whitespace characters (Space, Tab, and Newline) that cause input to be read to the next non-whitespace character.

• Ordinary characters that must match the next input character.

• Control sequences, which have the general format ~*FMC, where:

• Character * is an optional return suppression character. It provides a method to specify a field that is to be
omitted.

• F is the field width of the input field.

io

256 | Ericsson AB. All Rights Reserved.: STDLIB

• M is an optional translation modifier (of which t is the only supported, meaning Unicode translation).

• C determines the type of control sequence.

Unless otherwise specified, leading whitespace is ignored for all control sequences. An input field cannot be more
than one line wide.

Available control sequences:

~

A single ~ is expected in the input.

d

A decimal integer is expected.

u

An unsigned integer in base 2-36 is expected. The field width parameter is used to specify base. Leading
whitespace characters are not skipped.

-

An optional sign character is expected. A sign character - gives return value -1. Sign character + or none
gives 1. The field width parameter is ignored. Leading whitespace characters are not skipped.

#

An integer in base 2-36 with Erlang-style base prefix (for example, "16#ffff") is expected.

f

A floating point number is expected. It must follow the Erlang floating point number syntax.

s

A string of non-whitespace characters is read. If a field width has been specified, this number of characters
are read and all trailing whitespace characters are stripped. An Erlang string (list of characters) is returned.

If Unicode translation is in effect (~ts), characters > 255 are accepted, otherwise not. With the translation
modifier, the returned list can as a consequence also contain integers > 255:

1> io:fread("Prompt> ","~s").
Prompt> <Characters beyond latin1 range not printable in this medium>
{error,{fread,string}}
2> io:fread("Prompt> ","~ts").
Prompt> <Characters beyond latin1 range not printable in this medium>
{ok,[[1091,1085,1080,1094,1086,1076,1077]]}

a

Similar to s, but the resulting string is converted into an atom.

The Unicode translation modifier is not allowed (atoms cannot contain characters beyond the latin1
range).

c

The number of characters equal to the field width are read (default is 1) and returned as an Erlang string.
However, leading and trailing whitespace characters are not omitted as they are with s. All characters are
returned.

The Unicode translation modifier works as with s:

io

Ericsson AB. All Rights Reserved.: STDLIB | 257

1> io:fread("Prompt> ","~c").
Prompt> <Character beyond latin1 range not printable in this medium>
{error,{fread,string}}
2> io:fread("Prompt> ","~tc").
Prompt> <Character beyond latin1 range not printable in this medium>
{ok,[[1091]]}

l

Returns the number of characters that have been scanned up to that point, including whitespace characters.

The function returns:

{ok, Terms}

The read was successful and Terms is the list of successfully matched and read items.

eof

End of file was encountered.

{error, FreadError}

The reading failed and FreadError gives a hint about the error.

{error, ErrorDescription}

The read operation failed and parameter ErrorDescription gives a hint about the error.

Examples:

20> io:fread('enter>', "~f~f~f").
enter>1.9 35.5e3 15.0
{ok,[1.9,3.55e4,15.0]}
21> io:fread('enter>', "~10f~d").
enter> 5.67899
{ok,[5.678,99]}
22> io:fread('enter>', ":~10s:~10c:").
enter>: alan : joe :
{ok, ["alan", " joe "]}

get_chars(Prompt, Count) -> Data | server_no_data()
get_chars(IoDevice, Prompt, Count) -> Data | server_no_data()
Types:

IoDevice = device()
Prompt = prompt()
Count = integer() >= 0
Data = string() | unicode:unicode_binary()
server_no_data() = {error, ErrorDescription :: term()} | eof

Reads Count characters from standard input (IoDevice), prompting it with Prompt.

The function returns:

io

258 | Ericsson AB. All Rights Reserved.: STDLIB

Data

The input characters. If the I/O device supports Unicode, the data can represent codepoints > 255 (the latin1
range). If the I/O server is set to deliver binaries, they are encoded in UTF-8 (regardless of whether the I/O device
supports Unicode).

eof

End of file was encountered.

{error, ErrorDescription}

Other (rare) error condition, such as {error, estale} if reading from an NFS file system.

get_line(Prompt) -> Data | server_no_data()
get_line(IoDevice, Prompt) -> Data | server_no_data()
Types:

IoDevice = device()
Prompt = prompt()
Data = string() | unicode:unicode_binary()
server_no_data() = {error, ErrorDescription :: term()} | eof

Reads a line from the standard input (IoDevice), prompting it with Prompt.

The function returns:

Data

The characters in the line terminated by a line feed (or end of file). If the I/O device supports Unicode, the data
can represent codepoints > 255 (the latin1 range). If the I/O server is set to deliver binaries, they are encoded
in UTF-8 (regardless of if the I/O device supports Unicode).

eof

End of file was encountered.

{error, ErrorDescription}

Other (rare) error condition, such as {error, estale} if reading from an NFS file system.

getopts() -> [opt_pair()] | {error, Reason}
getopts(IoDevice) -> [opt_pair()] | {error, Reason}
Types:

IoDevice = device()
Reason = term()

Requests all available options and their current values for a specific I/O device, for example:

1> {ok,F} = file:open("/dev/null",[read]).
{ok,<0.42.0>}
2> io:getopts(F).
[{binary,false},{encoding,latin1}]

Here the file I/O server returns all available options for a file, which are the expected ones, encoding and binary.
However, the standard shell has some more options:

io

Ericsson AB. All Rights Reserved.: STDLIB | 259

3> io:getopts().
[{expand_fun,#Fun<group.0.120017273>},
 {echo,true},
 {binary,false},
 {encoding,unicode}]

This example is, as can be seen, run in an environment where the terminal supports Unicode input and output.

nl() -> ok
nl(IoDevice) -> ok
Types:

IoDevice = device()
Writes new line to the standard output (IoDevice).

parse_erl_exprs(Prompt) -> Result
parse_erl_exprs(IoDevice, Prompt) -> Result
parse_erl_exprs(IoDevice, Prompt, StartLocation) -> Result
parse_erl_exprs(IoDevice, Prompt, StartLocation, Options) ->
 Result
Types:

IoDevice = device()
Prompt = prompt()
StartLocation = location()
Options = erl_scan:options()
Result = parse_ret()
parse_ret() =
 {ok,
 ExprList :: [erl_parse:abstract_expr()],
 EndLocation :: location()} |
 {eof, EndLocation :: location()} |
 {error,
 ErrorInfo :: erl_scan:error_info() | erl_parse:error_info(),
 ErrorLocation :: location()} |
 server_no_data()
server_no_data() = {error, ErrorDescription :: term()} | eof

Reads data from the standard input (IoDevice), prompting it with Prompt. Starts reading at
location StartLocation (1). Argument Options is passed on as argument Options of function
erl_scan:tokens/4. The data is tokenized and parsed as if it was a sequence of Erlang expressions until a final
dot (.) is reached.

The function returns:

{ok, ExprList, EndLocation}

The parsing was successful.

{eof, EndLocation}

End of file was encountered by the tokenizer.

io

260 | Ericsson AB. All Rights Reserved.: STDLIB

eof

End of file was encountered by the I/O server.

{error, ErrorInfo, ErrorLocation}

An error occurred while tokenizing or parsing.

{error, ErrorDescription}

Other (rare) error condition, such as {error, estale} if reading from an NFS file system.

Example:

25> io:parse_erl_exprs('enter>').
enter>abc(), "hey".
{ok, [{call,1,{atom,1,abc},[]},{string,1,"hey"}],2}
26> io:parse_erl_exprs ('enter>').
enter>abc("hey".
{error,{1,erl_parse,["syntax error before: ",["'.'"]]},2}

parse_erl_form(Prompt) -> Result
parse_erl_form(IoDevice, Prompt) -> Result
parse_erl_form(IoDevice, Prompt, StartLocation) -> Result
parse_erl_form(IoDevice, Prompt, StartLocation, Options) -> Result
Types:

IoDevice = device()
Prompt = prompt()
StartLocation = location()
Options = erl_scan:options()
Result = parse_form_ret()
parse_form_ret() =
 {ok,
 AbsForm :: erl_parse:abstract_form(),
 EndLocation :: location()} |
 {eof, EndLocation :: location()} |
 {error,
 ErrorInfo :: erl_scan:error_info() | erl_parse:error_info(),
 ErrorLocation :: location()} |
 server_no_data()
server_no_data() = {error, ErrorDescription :: term()} | eof

Reads data from the standard input (IoDevice), prompting it with Prompt. Starts reading at
location StartLocation (1). Argument Options is passed on as argument Options of function
erl_scan:tokens/4. The data is tokenized and parsed as if it was an Erlang form (one of the valid Erlang
expressions in an Erlang source file) until a final dot (.) is reached.

The function returns:

{ok, AbsForm, EndLocation}

The parsing was successful.

{eof, EndLocation}

End of file was encountered by the tokenizer.

io

Ericsson AB. All Rights Reserved.: STDLIB | 261

eof

End of file was encountered by the I/O server.

{error, ErrorInfo, ErrorLocation}

An error occurred while tokenizing or parsing.

{error, ErrorDescription}

Other (rare) error condition, such as {error, estale} if reading from an NFS file system.

printable_range() -> unicode | latin1
Returns the user-requested range of printable Unicode characters.

The user can request a range of characters that are to be considered printable in heuristic detection of strings by the
shell and by the formatting functions. This is done by supplying +pc <range> when starting Erlang.

The only valid values for <range> are latin1 and unicode. latin1 means that only code points < 256 (except
control characters, and so on) are considered printable. unicode means that all printable characters in all Unicode
character ranges are considered printable by the I/O functions.

By default, Erlang is started so that only the latin1 range of characters indicate that a list of integers is a string.

The simplest way to use the setting is to call io_lib:printable_list/1, which uses the return value of this
function to decide if a list is a string of printable characters.

Note:
In a future release, this function may return more values and ranges. To avoid compatibility problems, it is
recommended to use function io_lib:printable_list/1.

put_chars(CharData) -> ok
put_chars(IoDevice, CharData) -> ok
Types:

IoDevice = device()
CharData = unicode:chardata()

Writes the characters of CharData to the I/O server (IoDevice).

read(Prompt) -> Result
read(IoDevice, Prompt) -> Result
Types:

IoDevice = device()
Prompt = prompt()
Result =
 {ok, Term :: term()} | server_no_data() | {error, ErrorInfo}
ErrorInfo = erl_scan:error_info() | erl_parse:error_info()
server_no_data() = {error, ErrorDescription :: term()} | eof

Reads a term Term from the standard input (IoDevice), prompting it with Prompt.

The function returns:

io

262 | Ericsson AB. All Rights Reserved.: STDLIB

{ok, Term}

The parsing was successful.

eof

End of file was encountered.

{error, ErrorInfo}

The parsing failed.

{error, ErrorDescription}

Other (rare) error condition, such as {error, estale} if reading from an NFS file system.

read(IoDevice, Prompt, StartLocation) -> Result
read(IoDevice, Prompt, StartLocation, Options) -> Result
Types:

IoDevice = device()
Prompt = prompt()
StartLocation = location()
Options = erl_scan:options()
Result =
 {ok, Term :: term(), EndLocation :: location()} |
 {eof, EndLocation :: location()} |
 server_no_data() |
 {error, ErrorInfo, ErrorLocation :: location()}
ErrorInfo = erl_scan:error_info() | erl_parse:error_info()
server_no_data() = {error, ErrorDescription :: term()} | eof

Reads a term Term from IoDevice, prompting it with Prompt. Reading starts at location StartLocation.
Argument Options is passed on as argument Options of function erl_scan:tokens/4.

The function returns:

{ok, Term, EndLocation}

The parsing was successful.

{eof, EndLocation}

End of file was encountered.

{error, ErrorInfo, ErrorLocation}

The parsing failed.

{error, ErrorDescription}

Other (rare) error condition, such as {error, estale} if reading from an NFS file system.

rows() -> {ok, integer() >= 1} | {error, enotsup}
rows(IoDevice) -> {ok, integer() >= 1} | {error, enotsup}
Types:

IoDevice = device()
Retrieves the number of rows of IoDevice (that is, the height of a terminal). The function only succeeds for terminal
devices, for all other I/O devices the function returns {error, enotsup}.

io

Ericsson AB. All Rights Reserved.: STDLIB | 263

scan_erl_exprs(Prompt) -> Result
scan_erl_exprs(Device, Prompt) -> Result
scan_erl_exprs(Device, Prompt, StartLocation) -> Result
scan_erl_exprs(Device, Prompt, StartLocation, Options) -> Result
Types:

Device = device()
Prompt = prompt()
StartLocation = location()
Options = erl_scan:options()
Result = erl_scan:tokens_result() | server_no_data()
server_no_data() = {error, ErrorDescription :: term()} | eof

Reads data from the standard input (IoDevice), prompting it with Prompt. Reading starts at
location StartLocation (1). Argument Options is passed on as argument Options of function
erl_scan:tokens/4. The data is tokenized as if it were a sequence of Erlang expressions until a final dot (.) is
reached. This token is also returned.

The function returns:

{ok, Tokens, EndLocation}

The tokenization succeeded.

{eof, EndLocation}

End of file was encountered by the tokenizer.

eof

End of file was encountered by the I/O server.

{error, ErrorInfo, ErrorLocation}

An error occurred while tokenizing.

{error, ErrorDescription}

Other (rare) error condition, such as {error, estale} if reading from an NFS file system.

Example:

23> io:scan_erl_exprs('enter>').
enter>abc(), "hey".
{ok,[{atom,1,abc},{'(',1},{')',1},{',',1},{string,1,"hey"},{dot,1}],2}
24> io:scan_erl_exprs('enter>').
enter>1.0er.
{error,{1,erl_scan,{illegal,float}},2}

scan_erl_form(Prompt) -> Result
scan_erl_form(IoDevice, Prompt) -> Result
scan_erl_form(IoDevice, Prompt, StartLocation) -> Result
scan_erl_form(IoDevice, Prompt, StartLocation, Options) -> Result
Types:

io

264 | Ericsson AB. All Rights Reserved.: STDLIB

IoDevice = device()
Prompt = prompt()
StartLocation = location()
Options = erl_scan:options()
Result = erl_scan:tokens_result() | server_no_data()
server_no_data() = {error, ErrorDescription :: term()} | eof

Reads data from the standard input (IoDevice), prompting it with Prompt. Starts reading at
location StartLocation (1). Argument Options is passed on as argument Options of function
erl_scan:tokens/4. The data is tokenized as if it was an Erlang form (one of the valid Erlang expressions in an
Erlang source file) until a final dot (.) is reached. This last token is also returned.

The return values are the same as for scan_erl_exprs/1,2,3,4.

setopts(Opts) -> ok | {error, Reason}
setopts(IoDevice, Opts) -> ok | {error, Reason}
Types:

IoDevice = device()
Opts = [setopt()]
Reason = term()

Set options for the standard I/O device (IoDevice).

Possible options and values vary depending on the I/O device. For a list of supported options and their current values
on a specific I/O device, use function getopts/1.

The options and values supported by the OTP I/O devices are as follows:

binary, list, or {binary, boolean()}

If set in binary mode (binary or {binary, true}), the I/O server sends binary data (encoded in UTF-8)
as answers to the get_line, get_chars, and, if possible, get_until requests (for details, see section The
Erlang I/O Protocol) in the User's Guide). The immediate effect is that get_chars/2,3 and get_line/1,2
return UTF-8 binaries instead of lists of characters for the affected I/O device.

By default, all I/O devices in OTP are set in list mode. However, the I/O functions can handle any of these
modes and so should other, user-written, modules behaving as clients to I/O servers.

This option is supported by the standard shell (group.erl), the 'oldshell' (user.erl), and the file I/O servers.

{echo, boolean()}

Denotes if the terminal is to echo input. Only supported for the standard shell I/O server (group.erl)

{expand_fun, expand_fun()}

Provides a function for tab-completion (expansion) like the Erlang shell. This function is called when the user
presses the Tab key. The expansion is active when calling line-reading functions, such as get_line/1,2.

The function is called with the current line, up to the cursor, as a reversed string. It is to return a three-tuple:
{yes|no, string(), [string(), ...]}. The first element gives a beep if no, otherwise the expansion
is silent; the second is a string that will be entered at the cursor position; the third is a list of possible expansions.
If this list is not empty, it is printed and the current input line is written once again.

Trivial example (beep on anything except empty line, which is expanded to "quit"):

fun("") -> {yes, "quit", []};

io

Ericsson AB. All Rights Reserved.: STDLIB | 265

 (_) -> {no, "", ["quit"]} end

This option is only supported by the standard shell (group.erl).

{encoding, latin1 | unicode}

Specifies how characters are input or output from or to the I/O device, implying that, for example, a terminal is
set to handle Unicode input and output or a file is set to handle UTF-8 data encoding.

The option does not affect how data is returned from the I/O functions or how it is sent in the I/O protocol, it
only affects how the I/O device is to handle Unicode characters to the "physical" device.

The standard shell is set for unicode or latin1 encoding when the system is started. The encoding is set
with the help of the LANG or LC_CTYPE environment variables on Unix-like system or by other means on other
systems. So, the user can input Unicode characters and the I/O device is in {encoding, unicode} mode
if the I/O device supports it. The mode can be changed, if the assumption of the runtime system is wrong, by
setting this option.

The I/O device used when Erlang is started with the "-oldshell" or "-noshell" flags is by default set to latin1
encoding, meaning that any characters > codepoint 255 are escaped and that input is expected to be plain 8-bit
ISO Latin-1. If the encoding is changed to Unicode, input and output from the standard file descriptors are in
UTF-8 (regardless of operating system).

Files can also be set in {encoding, unicode}, meaning that data is written and read as UTF-8. More
encodings are possible for files, see below.

{encoding, unicode | latin1} is supported by both the standard shell (group.erl including werl
on Windows), the 'oldshell' (user.erl), and the file I/O servers.

{encoding, utf8 | utf16 | utf32 | {utf16,big} | {utf16,little} | {utf32,big}
| {utf32,little}}

For disk files, the encoding can be set to various UTF variants. This has the effect that data is expected to be read
as the specified encoding from the file, and the data is written in the specified encoding to the disk file.

{encoding, utf8} has the same effect as {encoding, unicode} on files.

The extended encodings are only supported on disk files (opened by function file:open/2).

write(Term) -> ok
write(IoDevice, Term) -> ok
Types:

IoDevice = device()
Term = term()

Writes term Term to the standard output (IoDevice).

Standard Input/Output
All Erlang processes have a default standard I/O device. This device is used when no IoDevice argument is specified
in the function calls in this module. However, it is sometimes desirable to use an explicit IoDevice argument that
refers to the default I/O device. This is the case with functions that can access either a file or the default I/O device.
The atom standard_io has this special meaning. The following example illustrates this:

27> io:read('enter>').
enter>foo.
{ok,foo}
28> io:read(standard_io, 'enter>').

io

266 | Ericsson AB. All Rights Reserved.: STDLIB

enter>bar.
{ok,bar}

There is always a process registered under the name of user. This can be used for sending output to the user.

Standard Error
In certain situations, especially when the standard output is redirected, access to an I/O server specific for error
messages can be convenient. The I/O device standard_error can be used to direct output to whatever the current
operating system considers a suitable I/O device for error output. Example on a Unix-like operating system:

$ erl -noshell -noinput -eval 'io:format(standard_error,"Error: ~s~n",["error 11"]),'\
'init:stop().' > /dev/null
Error: error 11

Error Information
The ErrorInfo mentioned in this module is the standard ErrorInfo structure that is returned from all I/O
modules. It has the following format:

{ErrorLocation, Module, ErrorDescriptor}

A string that describes the error is obtained with the following call:

Module:format_error(ErrorDescriptor)

io_lib

Ericsson AB. All Rights Reserved.: STDLIB | 267

io_lib
Erlang module

This module contains functions for converting to and from strings (lists of characters). They are used for implementing
the functions in the io module. There is no guarantee that the character lists returned from some of the functions are
flat, they can be deep lists. Function lists:flatten/1 can be used for flattening deep lists.

Data Types
chars() = [char() | chars()]
continuation()
A continuation as returned by fread/3.

depth() = -1 | integer() >= 0
fread_error() =
 atom |
 based |
 character |
 float |
 format |
 input |
 integer |
 string |
 unsigned
fread_item() = string() | atom() | integer() | float()
latin1_string() = [unicode:latin1_char()]
format_spec() =
 #{control_char := char(),
 args := [any()],
 width := none | integer(),
 adjust := left | right,
 precision := none | integer(),
 pad_char := char(),
 encoding := unicode | latin1,
 strings := boolean()}
Where:

• control_char is the type of control sequence: $P, $w, and so on.

• args is a list of the arguments used by the control sequence, or an empty list if the control sequence does not
take any arguments.

• width is the field width.

• adjust is the adjustment.

• precision is the precision of the printed argument.

• pad_char is the padding character.

• encoding is set to true if translation modifier t is present.

• strings is set to false if modifier l is present.

io_lib

268 | Ericsson AB. All Rights Reserved.: STDLIB

Exports

build_text(FormatList) -> chars()
Types:

FormatList = [char() | format_spec()]
For details, see scan_format/2.

char_list(Term) -> boolean()
Types:

Term = term()
Returns true if Term is a flat list of characters in the Unicode range, otherwise false.

deep_char_list(Term) -> boolean()
Types:

Term = term()
Returns true if Term is a, possibly deep, list of characters in the Unicode range, otherwise false.

deep_latin1_char_list(Term) -> boolean()
Types:

Term = term()
Returns true if Term is a, possibly deep, list of characters in the ISO Latin-1 range, otherwise false.

format(Format, Data) -> chars()
fwrite(Format, Data) -> chars()
Types:

Format = io:format()
Data = [term()]

Returns a character list that represents Data formatted in accordance with Format. For a detailed description of
the available formatting options, see io:fwrite/1,2,3. If the format string or argument list contains an error, a
fault is generated.

If and only if the Unicode translation modifier is used in the format string (that is, ~ts or ~tc), the resulting list can
contain characters beyond the ISO Latin-1 character range (that is, numbers > 255). If so, the result is not an ordinary
Erlang string(), but can well be used in any context where Unicode data is allowed.

fread(Format, String) -> Result
Types:

Format = String = string()
Result =
 {ok, InputList :: [fread_item()], LeftOverChars :: string()} |
 {more,
 RestFormat :: string(),
 Nchars :: integer() >= 0,
 InputStack :: chars()} |

io_lib

Ericsson AB. All Rights Reserved.: STDLIB | 269

 {error, {fread, What :: fread_error()}}
Tries to read String in accordance with the control sequences in Format. For a detailed description of the available
formatting options, see io:fread/3. It is assumed that String contains whole lines.

The function returns:

{ok, InputList, LeftOverChars}

The string was read. InputList is the list of successfully matched and read items, and LeftOverChars are
the input characters not used.

{more, RestFormat, Nchars, InputStack}

The string was read, but more input is needed to complete the original format string. RestFormat is the
remaining format string, Nchars is the number of characters scanned, and InputStack is the reversed list
of inputs matched up to that point.

{error, What}

The read operation failed and parameter What gives a hint about the error.

Example:

3> io_lib:fread("~f~f~f", "15.6 17.3e-6 24.5").
{ok,[15.6,1.73e-5,24.5],[]}

fread(Continuation, CharSpec, Format) -> Return
Types:

Continuation = continuation() | []
CharSpec = string() | eof
Format = string()
Return =
 {more, Continuation1 :: continuation()} |
 {done, Result, LeftOverChars :: string()}
Result =
 {ok, InputList :: [fread_item()]} |
 eof |
 {error, {fread, What :: fread_error()}}

This is the re-entrant formatted reader. The continuation of the first call to the functions must be []. For a complete
description of how the re-entrant input scheme works, see Armstrong, Virding, Williams: 'Concurrent Programming
in Erlang', Chapter 13.

The function returns:

{done, Result, LeftOverChars}

The input is complete. The result is one of the following:

{ok, InputList}

The string was read. InputList is the list of successfully matched and read items, and LeftOverChars
are the remaining characters.

eof

End of file was encountered. LeftOverChars are the input characters not used.

io_lib

270 | Ericsson AB. All Rights Reserved.: STDLIB

{error, What}

An error occurred and parameter What gives a hint about the error.

{more, Continuation}

More data is required to build a term. Continuation must be passed to fread/3 when more data becomes
available.

indentation(String, StartIndent) -> integer()
Types:

String = string()
StartIndent = integer()

Returns the indentation if String has been printed, starting at StartIndent.

latin1_char_list(Term) -> boolean()
Types:

Term = term()
Returns true if Term is a flat list of characters in the ISO Latin-1 range, otherwise false.

nl() -> string()
Returns a character list that represents a new line character.

print(Term) -> chars()
print(Term, Column, LineLength, Depth) -> chars()
Types:

Term = term()
Column = LineLength = integer() >= 0
Depth = depth()

Returns a list of characters that represents Term, but breaks representations longer than one line into many lines and
indents each line sensibly. Also tries to detect and output lists of printable characters as strings.

• Column is the starting column; defaults to 1.

• LineLength is the maximum line length; defaults to 80.

• Depth is the maximum print depth; defaults to -1, which means no limitation.

printable_latin1_list(Term) -> boolean()
Types:

Term = term()
Returns true if Term is a flat list of printable ISO Latin-1 characters, otherwise false.

printable_list(Term) -> boolean()
Types:

Term = term()
Returns true if Term is a flat list of printable characters, otherwise false.

What is a printable character in this case is determined by startup flag +pc to the Erlang VM; see
io:printable_range/0 and erl(1).

io_lib

Ericsson AB. All Rights Reserved.: STDLIB | 271

printable_unicode_list(Term) -> boolean()
Types:

Term = term()
Returns true if Term is a flat list of printable Unicode characters, otherwise false.

scan_format(Format, Data) -> FormatList
Types:

Format = io:format()
Data = [term()]
FormatList = [char() | format_spec()]

Returns a list corresponding to the specified format string, where control sequences have been replaced with
corresponding tuples. This list can be passed to:

• build_text/1 to have the same effect as format(Format, Args)

• unscan_format/1 to get the corresponding pair of Format and Args (with every * and corresponding
argument expanded to numeric values)

A typical use of this function is to replace unbounded-size control sequences like ~w and ~p with the depth-limited
variants ~W and ~P before formatting to text in, for example, a logger.

unscan_format(FormatList) -> {Format, Data}
Types:

FormatList = [char() | format_spec()]
Format = io:format()
Data = [term()]

For details, see scan_format/2.

write(Term) -> chars()
write(Term, Depth) -> chars()
Types:

Term = term()
Depth = depth()

Returns a character list that represents Term. Argument Depth controls the depth of the structures written. When
the specified depth is reached, everything below this level is replaced by "...". Depth defaults to -1, which means
no limitation.

Example:

1> lists:flatten(io_lib:write({1,[2],[3],[4,5],6,7,8,9})).
"{1,[2],[3],[4,5],6,7,8,9}"
2> lists:flatten(io_lib:write({1,[2],[3],[4,5],6,7,8,9}, 5)).
"{1,[2],[3],[...],...}"

write_atom(Atom) -> chars()
Types:

io_lib

272 | Ericsson AB. All Rights Reserved.: STDLIB

Atom = atom()
Returns the list of characters needed to print atom Atom.

write_char(Char) -> chars()
Types:

Char = char()
Returns the list of characters needed to print a character constant in the Unicode character set.

write_char_as_latin1(Char) -> latin1_string()
Types:

Char = char()
Returns the list of characters needed to print a character constant in the Unicode character set. Non-Latin-1 characters
are escaped.

write_latin1_char(Latin1Char) -> latin1_string()
Types:

Latin1Char = unicode:latin1_char()
Returns the list of characters needed to print a character constant in the ISO Latin-1 character set.

write_latin1_string(Latin1String) -> latin1_string()
Types:

Latin1String = latin1_string()
Returns the list of characters needed to print Latin1String as a string.

write_string(String) -> chars()
Types:

String = string()
Returns the list of characters needed to print String as a string.

write_string_as_latin1(String) -> latin1_string()
Types:

String = string()
Returns the list of characters needed to print String as a string. Non-Latin-1 characters are escaped.

lib

Ericsson AB. All Rights Reserved.: STDLIB | 273

lib
Erlang module

Warning:
This module is retained for backward compatibility. It can disappear without warning in a future Erlang/OTP
release.

Exports

error_message(Format, Args) -> ok
Types:

Format = io:format()
Args = [term()]

Prints error message Args in accordance with Format. Similar to io:format/2.

flush_receive() -> ok
Flushes the message buffer of the current process.

nonl(String1) -> String2
Types:

String1 = String2 = string()

Removes the last newline character, if any, in String1.

progname() -> atom()
Returns the name of the script that started the current Erlang session.

send(To, Msg) -> Msg
Types:

To = pid() | atom() | {atom(), node()}
Msg = term()

Makes it possible to send a message using the apply/3 BIF.

sendw(To, Msg) -> term()
Types:

To = pid() | atom() | {atom(), node()}
Msg = term()

As send/2, but waits for an answer. It is implemented as follows:

sendw(To, Msg) ->

lib

274 | Ericsson AB. All Rights Reserved.: STDLIB

 To ! {self(),Msg},
 receive
 Reply -> Reply
 end.

The returned message is not necessarily a reply to the sent message.

lists

Ericsson AB. All Rights Reserved.: STDLIB | 275

lists
Erlang module

This module contains functions for list processing.

Unless otherwise stated, all functions assume that position numbering starts at 1. That is, the first element of a list
is at position 1.

Two terms T1 and T2 compare equal if T1 == T2 evaluates to true. They match if T1 =:= T2 evaluates to true.

Whenever an ordering function F is expected as argument, it is assumed that the following properties hold of F for
all x, y, and z:

• If x F y and y F x, then x = y (F is antisymmetric).

• If x F y and y F z, then x F z (F is transitive).

• x F y or y F x (F is total).

An example of a typical ordering function is less than or equal to: =</2.

Exports

all(Pred, List) -> boolean()
Types:

Pred = fun((Elem :: T) -> boolean())
List = [T]
T = term()

Returns true if Pred(Elem) returns true for all elements Elem in List, otherwise false.

any(Pred, List) -> boolean()
Types:

Pred = fun((Elem :: T) -> boolean())
List = [T]
T = term()

Returns true if Pred(Elem) returns true for at least one element Elem in List.

append(ListOfLists) -> List1
Types:

ListOfLists = [List]
List = List1 = [T]
T = term()

Returns a list in which all the sublists of ListOfLists have been appended.

Example:

> lists:append([[1, 2, 3], [a, b], [4, 5, 6]]).
[1,2,3,a,b,4,5,6]

lists

276 | Ericsson AB. All Rights Reserved.: STDLIB

append(List1, List2) -> List3
Types:

List1 = List2 = List3 = [T]
T = term()

Returns a new list List3, which is made from the elements of List1 followed by the elements of List2.

Example:

> lists:append("abc", "def").
"abcdef"

lists:append(A, B) is equivalent to A ++ B.

concat(Things) -> string()
Types:

Things = [Thing]
Thing = atom() | integer() | float() | string()

Concatenates the text representation of the elements of Things. The elements of Things can be atoms, integers,
floats, or strings.

Example:

> lists:concat([doc, '/', file, '.', 3]).
"doc/file.3"

delete(Elem, List1) -> List2
Types:

Elem = T
List1 = List2 = [T]
T = term()

Returns a copy of List1 where the first element matching Elem is deleted, if there is such an element.

droplast(List) -> InitList
Types:

List = [T, ...]
InitList = [T]
T = term()

Drops the last element of a List. The list is to be non-empty, otherwise the function crashes with a
function_clause.

dropwhile(Pred, List1) -> List2
Types:

lists

Ericsson AB. All Rights Reserved.: STDLIB | 277

Pred = fun((Elem :: T) -> boolean())
List1 = List2 = [T]
T = term()

Drops elements Elem from List1 while Pred(Elem) returns true and returns the remaining list.

duplicate(N, Elem) -> List
Types:

N = integer() >= 0
Elem = T
List = [T]
T = term()

Returns a list containing N copies of term Elem.

Example:

> lists:duplicate(5, xx).
[xx,xx,xx,xx,xx]

filter(Pred, List1) -> List2
Types:

Pred = fun((Elem :: T) -> boolean())
List1 = List2 = [T]
T = term()

List2 is a list of all elements Elem in List1 for which Pred(Elem) returns true.

filtermap(Fun, List1) -> List2
Types:

Fun = fun((Elem) -> boolean() | {true, Value})
List1 = [Elem]
List2 = [Elem | Value]
Elem = Value = term()

Calls Fun(Elem) on successive elements Elem of List1. Fun/2 must return either a Boolean or a tuple {true,
Value}. The function returns the list of elements for which Fun returns a new value, where a value of true is
synonymous with {true, Elem}.

That is, filtermap behaves as if it had been defined as follows:

filtermap(Fun, List1) ->
 lists:foldr(fun(Elem, Acc) ->
 case Fun(Elem) of
 false -> Acc;
 true -> [Elem|Acc];
 {true,Value} -> [Value|Acc]
 end
 end, [], List1).

lists

278 | Ericsson AB. All Rights Reserved.: STDLIB

Example:

> lists:filtermap(fun(X) -> case X rem 2 of 0 -> {true, X div 2}; _ -> false end end, [1,2,3,4,5]).
[1,2]

flatlength(DeepList) -> integer() >= 0
Types:

DeepList = [term() | DeepList]
Equivalent to length(flatten(DeepList)), but more efficient.

flatmap(Fun, List1) -> List2
Types:

Fun = fun((A) -> [B])
List1 = [A]
List2 = [B]
A = B = term()

Takes a function from As to lists of Bs, and a list of As (List1) and produces a list of Bs by applying the function
to every element in List1 and appending the resulting lists.

That is, flatmap behaves as if it had been defined as follows:

flatmap(Fun, List1) ->
 append(map(Fun, List1)).

Example:

> lists:flatmap(fun(X)->[X,X] end, [a,b,c]).
[a,a,b,b,c,c]

flatten(DeepList) -> List
Types:

DeepList = [term() | DeepList]
List = [term()]

Returns a flattened version of DeepList.

flatten(DeepList, Tail) -> List
Types:

DeepList = [term() | DeepList]
Tail = List = [term()]

Returns a flattened version of DeepList with tail Tail appended.

lists

Ericsson AB. All Rights Reserved.: STDLIB | 279

foldl(Fun, Acc0, List) -> Acc1
Types:

Fun = fun((Elem :: T, AccIn) -> AccOut)
Acc0 = Acc1 = AccIn = AccOut = term()
List = [T]
T = term()

Calls Fun(Elem, AccIn) on successive elements A of List, starting with AccIn == Acc0. Fun/2 must
return a new accumulator, which is passed to the next call. The function returns the final value of the accumulator.
Acc0 is returned if the list is empty.

Example:

> lists:foldl(fun(X, Sum) -> X + Sum end, 0, [1,2,3,4,5]).
15
> lists:foldl(fun(X, Prod) -> X * Prod end, 1, [1,2,3,4,5]).
120

foldr(Fun, Acc0, List) -> Acc1
Types:

Fun = fun((Elem :: T, AccIn) -> AccOut)
Acc0 = Acc1 = AccIn = AccOut = term()
List = [T]
T = term()

Like foldl/3, but the list is traversed from right to left.

Example:

> P = fun(A, AccIn) -> io:format("~p ", [A]), AccIn end.
#Fun<erl_eval.12.2225172>
> lists:foldl(P, void, [1,2,3]).
1 2 3 void
> lists:foldr(P, void, [1,2,3]).
3 2 1 void

foldl/3 is tail recursive and is usually preferred to foldr/3.

join(Sep, List1) -> List2
Types:

Sep = T
List1 = List2 = [T]
T = term()

Inserts Sep between each element in List1. Has no effect on the empty list and on a singleton list. For example:

> lists:join(x, [a,b,c]).
[a,x,b,x,c]
> lists:join(x, [a]).

lists

280 | Ericsson AB. All Rights Reserved.: STDLIB

[a]
> lists:join(x, []).
[]

foreach(Fun, List) -> ok
Types:

Fun = fun((Elem :: T) -> term())
List = [T]
T = term()

Calls Fun(Elem) for each element Elem in List. This function is used for its side effects and the evaluation order
is defined to be the same as the order of the elements in the list.

keydelete(Key, N, TupleList1) -> TupleList2
Types:

Key = term()
N = integer() >= 1
1..tuple_size(Tuple)

TupleList1 = TupleList2 = [Tuple]
Tuple = tuple()

Returns a copy of TupleList1 where the first occurrence of a tuple whose Nth element compares equal to Key is
deleted, if there is such a tuple.

keyfind(Key, N, TupleList) -> Tuple | false
Types:

Key = term()
N = integer() >= 1
1..tuple_size(Tuple)

TupleList = [Tuple]
Tuple = tuple()

Searches the list of tuples TupleList for a tuple whose Nth element compares equal to Key. Returns Tuple if such
a tuple is found, otherwise false.

keymap(Fun, N, TupleList1) -> TupleList2
Types:

Fun = fun((Term1 :: term()) -> Term2 :: term())
N = integer() >= 1
1..tuple_size(Tuple)

TupleList1 = TupleList2 = [Tuple]
Tuple = tuple()

Returns a list of tuples where, for each tuple in TupleList1, the Nth element Term1 of the tuple has been replaced
with the result of calling Fun(Term1).

Examples:

lists

Ericsson AB. All Rights Reserved.: STDLIB | 281

> Fun = fun(Atom) -> atom_to_list(Atom) end.
#Fun<erl_eval.6.10732646>
2> lists:keymap(Fun, 2, [{name,jane,22},{name,lizzie,20},{name,lydia,15}]).
[{name,"jane",22},{name,"lizzie",20},{name,"lydia",15}]

keymember(Key, N, TupleList) -> boolean()
Types:

Key = term()
N = integer() >= 1
1..tuple_size(Tuple)

TupleList = [Tuple]
Tuple = tuple()

Returns true if there is a tuple in TupleList whose Nth element compares equal to Key, otherwise false.

keymerge(N, TupleList1, TupleList2) -> TupleList3
Types:

N = integer() >= 1
1..tuple_size(Tuple)

TupleList1 = [T1]
TupleList2 = [T2]
TupleList3 = [T1 | T2]
T1 = T2 = Tuple
Tuple = tuple()

Returns the sorted list formed by merging TupleList1 and TupleList2. The merge is performed on the Nth
element of each tuple. Both TupleList1 and TupleList2 must be key-sorted before evaluating this function.
When two tuples compare equal, the tuple from TupleList1 is picked before the tuple from TupleList2.

keyreplace(Key, N, TupleList1, NewTuple) -> TupleList2
Types:

Key = term()
N = integer() >= 1
1..tuple_size(Tuple)

TupleList1 = TupleList2 = [Tuple]
NewTuple = Tuple
Tuple = tuple()

Returns a copy of TupleList1 where the first occurrence of a T tuple whose Nth element compares equal to Key
is replaced with NewTuple, if there is such a tuple T.

keysearch(Key, N, TupleList) -> {value, Tuple} | false
Types:

Key = term()
N = integer() >= 1
1..tuple_size(Tuple)

lists

282 | Ericsson AB. All Rights Reserved.: STDLIB

TupleList = [Tuple]
Tuple = tuple()

Searches the list of tuples TupleList for a tuple whose Nth element compares equal to Key. Returns {value,
Tuple} if such a tuple is found, otherwise false.

Note:
This function is retained for backward compatibility. Function keyfind/3 is usually more convenient.

keysort(N, TupleList1) -> TupleList2
Types:

N = integer() >= 1
1..tuple_size(Tuple)

TupleList1 = TupleList2 = [Tuple]
Tuple = tuple()

Returns a list containing the sorted elements of list TupleList1. Sorting is performed on the Nth element of the
tuples. The sort is stable.

keystore(Key, N, TupleList1, NewTuple) -> TupleList2
Types:

Key = term()
N = integer() >= 1
1..tuple_size(Tuple)

TupleList1 = [Tuple]
TupleList2 = [Tuple, ...]
NewTuple = Tuple
Tuple = tuple()

Returns a copy of TupleList1 where the first occurrence of a tuple T whose Nth element compares equal to Key
is replaced with NewTuple, if there is such a tuple T. If there is no such tuple T, a copy of TupleList1 where
[NewTuple] has been appended to the end is returned.

keytake(Key, N, TupleList1) -> {value, Tuple, TupleList2} | false
Types:

Key = term()
N = integer() >= 1
1..tuple_size(Tuple)

TupleList1 = TupleList2 = [tuple()]
Tuple = tuple()

Searches the list of tuples TupleList1 for a tuple whose Nth element compares equal to Key. Returns {value,
Tuple, TupleList2} if such a tuple is found, otherwise false. TupleList2 is a copy of TupleList1
where the first occurrence of Tuple has been removed.

lists

Ericsson AB. All Rights Reserved.: STDLIB | 283

last(List) -> Last
Types:

List = [T, ...]
Last = T
T = term()

Returns the last element in List.

map(Fun, List1) -> List2
Types:

Fun = fun((A) -> B)
List1 = [A]
List2 = [B]
A = B = term()

Takes a function from As to Bs, and a list of As and produces a list of Bs by applying the function to every element in
the list. This function is used to obtain the return values. The evaluation order depends on the implementation.

mapfoldl(Fun, Acc0, List1) -> {List2, Acc1}
Types:

Fun = fun((A, AccIn) -> {B, AccOut})
Acc0 = Acc1 = AccIn = AccOut = term()
List1 = [A]
List2 = [B]
A = B = term()

Combines the operations of map/2 and foldl/3 into one pass.

Example:

Summing the elements in a list and double them at the same time:

> lists:mapfoldl(fun(X, Sum) -> {2*X, X+Sum} end,
0, [1,2,3,4,5]).
{[2,4,6,8,10],15}

mapfoldr(Fun, Acc0, List1) -> {List2, Acc1}
Types:

Fun = fun((A, AccIn) -> {B, AccOut})
Acc0 = Acc1 = AccIn = AccOut = term()
List1 = [A]
List2 = [B]
A = B = term()

Combines the operations of map/2 and foldr/3 into one pass.

lists

284 | Ericsson AB. All Rights Reserved.: STDLIB

max(List) -> Max
Types:

List = [T, ...]
Max = T
T = term()

Returns the first element of List that compares greater than or equal to all other elements of List.

member(Elem, List) -> boolean()
Types:

Elem = T
List = [T]
T = term()

Returns true if Elem matches some element of List, otherwise false.

merge(ListOfLists) -> List1
Types:

ListOfLists = [List]
List = List1 = [T]
T = term()

Returns the sorted list formed by merging all the sublists of ListOfLists. All sublists must be sorted before
evaluating this function. When two elements compare equal, the element from the sublist with the lowest position in
ListOfLists is picked before the other element.

merge(List1, List2) -> List3
Types:

List1 = [X]
List2 = [Y]
List3 = [X | Y]
X = Y = term()

Returns the sorted list formed by merging List1 and List2. Both List1 and List2 must be sorted before
evaluating this function. When two elements compare equal, the element from List1 is picked before the element
from List2.

merge(Fun, List1, List2) -> List3
Types:

Fun = fun((A, B) -> boolean())
List1 = [A]
List2 = [B]
List3 = [A | B]
A = B = term()

Returns the sorted list formed by merging List1 and List2. Both List1 and List2 must be sorted according to
the ordering function Fun before evaluating this function. Fun(A, B) is to return true if A compares less than or
equal to B in the ordering, otherwise false. When two elements compare equal, the element from List1 is picked
before the element from List2.

lists

Ericsson AB. All Rights Reserved.: STDLIB | 285

merge3(List1, List2, List3) -> List4
Types:

List1 = [X]
List2 = [Y]
List3 = [Z]
List4 = [X | Y | Z]
X = Y = Z = term()

Returns the sorted list formed by merging List1, List2, and List3. All of List1, List2, and List3 must
be sorted before evaluating this function. When two elements compare equal, the element from List1, if there is
such an element, is picked before the other element, otherwise the element from List2 is picked before the element
from List3.

min(List) -> Min
Types:

List = [T, ...]
Min = T
T = term()

Returns the first element of List that compares less than or equal to all other elements of List.

nth(N, List) -> Elem
Types:

N = integer() >= 1
1..length(List)

List = [T, ...]
Elem = T
T = term()

Returns the Nth element of List.

Example:

> lists:nth(3, [a, b, c, d, e]).
c

nthtail(N, List) -> Tail
Types:

N = integer() >= 0
0..length(List)

List = [T, ...]
Tail = [T]
T = term()

Returns the Nth tail of List, that is, the sublist of List starting at N+1 and continuing up to the end of the list.

Example

lists

286 | Ericsson AB. All Rights Reserved.: STDLIB

> lists:nthtail(3, [a, b, c, d, e]).
[d,e]
> tl(tl(tl([a, b, c, d, e]))).
[d,e]
> lists:nthtail(0, [a, b, c, d, e]).
[a,b,c,d,e]
> lists:nthtail(5, [a, b, c, d, e]).
[]

partition(Pred, List) -> {Satisfying, NotSatisfying}
Types:

Pred = fun((Elem :: T) -> boolean())
List = Satisfying = NotSatisfying = [T]
T = term()

Partitions List into two lists, where the first list contains all elements for which Pred(Elem) returns true, and
the second list contains all elements for which Pred(Elem) returns false.

Examples:

> lists:partition(fun(A) -> A rem 2 == 1 end, [1,2,3,4,5,6,7]).
{[1,3,5,7],[2,4,6]}
> lists:partition(fun(A) -> is_atom(A) end, [a,b,1,c,d,2,3,4,e]).
{[a,b,c,d,e],[1,2,3,4]}

For a different way to partition a list, see splitwith/2.

prefix(List1, List2) -> boolean()
Types:

List1 = List2 = [T]
T = term()

Returns true if List1 is a prefix of List2, otherwise false.

reverse(List1) -> List2
Types:

List1 = List2 = [T]
T = term()

Returns a list with the elements in List1 in reverse order.

reverse(List1, Tail) -> List2
Types:

List1 = [T]
Tail = term()
List2 = [T]
T = term()

Returns a list with the elements in List1 in reverse order, with tail Tail appended.

Example:

lists

Ericsson AB. All Rights Reserved.: STDLIB | 287

> lists:reverse([1, 2, 3, 4], [a, b, c]).
[4,3,2,1,a,b,c]

seq(From, To) -> Seq
seq(From, To, Incr) -> Seq
Types:

From = To = Incr = integer()
Seq = [integer()]

Returns a sequence of integers that starts with From and contains the successive results of adding Incr to the previous
element, until To is reached or passed (in the latter case, To is not an element of the sequence). Incr defaults to 1.

Failures:

• If To < From - Incr and Incr > 0.

• If To > From - Incr and Incr < 0.

• If Incr =:= 0 and From =/= To.

The following equalities hold for all sequences:

length(lists:seq(From, To)) =:= To - From + 1
length(lists:seq(From, To, Incr)) =:= (To - From + Incr) div Incr

Examples:

> lists:seq(1, 10).
[1,2,3,4,5,6,7,8,9,10]
> lists:seq(1, 20, 3).
[1,4,7,10,13,16,19]
> lists:seq(1, 0, 1).
[]
> lists:seq(10, 6, 4).
[]
> lists:seq(1, 1, 0).
[1]

sort(List1) -> List2
Types:

List1 = List2 = [T]
T = term()

Returns a list containing the sorted elements of List1.

sort(Fun, List1) -> List2
Types:

lists

288 | Ericsson AB. All Rights Reserved.: STDLIB

Fun = fun((A :: T, B :: T) -> boolean())
List1 = List2 = [T]
T = term()

Returns a list containing the sorted elements of List1, according to the ordering function Fun. Fun(A, B) is to
return true if A compares less than or equal to B in the ordering, otherwise false.

split(N, List1) -> {List2, List3}
Types:

N = integer() >= 0
0..length(List1)

List1 = List2 = List3 = [T]
T = term()

Splits List1 into List2 and List3. List2 contains the first N elements and List3 the remaining elements (the
Nth tail).

splitwith(Pred, List) -> {List1, List2}
Types:

Pred = fun((T) -> boolean())
List = List1 = List2 = [T]
T = term()

Partitions List into two lists according to Pred. splitwith/2 behaves as if it is defined as follows:

splitwith(Pred, List) ->
 {takewhile(Pred, List), dropwhile(Pred, List)}.

Examples:

> lists:splitwith(fun(A) -> A rem 2 == 1 end, [1,2,3,4,5,6,7]).
{[1],[2,3,4,5,6,7]}
> lists:splitwith(fun(A) -> is_atom(A) end, [a,b,1,c,d,2,3,4,e]).
{[a,b],[1,c,d,2,3,4,e]}

For a different way to partition a list, see partition/2.

sublist(List1, Len) -> List2
Types:

List1 = List2 = [T]
Len = integer() >= 0
T = term()

Returns the sublist of List1 starting at position 1 and with (maximum) Len elements. It is not an error for Len to
exceed the length of the list, in that case the whole list is returned.

sublist(List1, Start, Len) -> List2
Types:

lists

Ericsson AB. All Rights Reserved.: STDLIB | 289

List1 = List2 = [T]
Start = integer() >= 1
1..(length(List1)+1)

Len = integer() >= 0
T = term()

Returns the sublist of List1 starting at Start and with (maximum) Len elements. It is not an error for Start
+Len to exceed the length of the list.

Examples:

> lists:sublist([1,2,3,4], 2, 2).
[2,3]
> lists:sublist([1,2,3,4], 2, 5).
[2,3,4]
> lists:sublist([1,2,3,4], 5, 2).
[]

subtract(List1, List2) -> List3
Types:

List1 = List2 = List3 = [T]
T = term()

Returns a new list List3 that is a copy of List1, subjected to the following procedure: for each element in List2,
its first occurrence in List1 is deleted.

Example:

> lists:subtract("123212", "212").
"312".

lists:subtract(A, B) is equivalent to A -- B.

Warning:
The complexity of lists:subtract(A, B) is proportional to length(A)*length(B), meaning that it
is very slow if both A and B are long lists. (If both lists are long, it is a much better choice to use ordered lists
and ordsets:subtract/2.

suffix(List1, List2) -> boolean()
Types:

List1 = List2 = [T]
T = term()

Returns true if List1 is a suffix of List2, otherwise false.

sum(List) -> number()
Types:

lists

290 | Ericsson AB. All Rights Reserved.: STDLIB

List = [number()]
Returns the sum of the elements in List.

takewhile(Pred, List1) -> List2
Types:

Pred = fun((Elem :: T) -> boolean())
List1 = List2 = [T]
T = term()

Takes elements Elem from List1 while Pred(Elem) returns true, that is, the function returns the longest prefix
of the list for which all elements satisfy the predicate.

ukeymerge(N, TupleList1, TupleList2) -> TupleList3
Types:

N = integer() >= 1
1..tuple_size(Tuple)

TupleList1 = [T1]
TupleList2 = [T2]
TupleList3 = [T1 | T2]
T1 = T2 = Tuple
Tuple = tuple()

Returns the sorted list formed by merging TupleList1 and TupleList2. The merge is performed on the Nth
element of each tuple. Both TupleList1 and TupleList2 must be key-sorted without duplicates before evaluating
this function. When two tuples compare equal, the tuple from TupleList1 is picked and the one from TupleList2
is deleted.

ukeysort(N, TupleList1) -> TupleList2
Types:

N = integer() >= 1
1..tuple_size(Tuple)

TupleList1 = TupleList2 = [Tuple]
Tuple = tuple()

Returns a list containing the sorted elements of list TupleList1 where all except the first tuple of the tuples
comparing equal have been deleted. Sorting is performed on the Nth element of the tuples.

umerge(ListOfLists) -> List1
Types:

ListOfLists = [List]
List = List1 = [T]
T = term()

Returns the sorted list formed by merging all the sublists of ListOfLists. All sublists must be sorted and contain
no duplicates before evaluating this function. When two elements compare equal, the element from the sublist with
the lowest position in ListOfLists is picked and the other is deleted.

lists

Ericsson AB. All Rights Reserved.: STDLIB | 291

umerge(List1, List2) -> List3
Types:

List1 = [X]
List2 = [Y]
List3 = [X | Y]
X = Y = term()

Returns the sorted list formed by merging List1 and List2. Both List1 and List2 must be sorted and contain
no duplicates before evaluating this function. When two elements compare equal, the element from List1 is picked
and the one from List2 is deleted.

umerge(Fun, List1, List2) -> List3
Types:

Fun = fun((A, B) -> boolean())
List1 = [A]
List2 = [B]
List3 = [A | B]
A = B = term()

Returns the sorted list formed by merging List1 and List2. Both List1 and List2 must be sorted according to
the ordering function Fun and contain no duplicates before evaluating this function. Fun(A, B) is to return true if
A compares less than or equal to B in the ordering, otherwise false. When two elements compare equal, the element
from List1 is picked and the one from List2 is deleted.

umerge3(List1, List2, List3) -> List4
Types:

List1 = [X]
List2 = [Y]
List3 = [Z]
List4 = [X | Y | Z]
X = Y = Z = term()

Returns the sorted list formed by merging List1, List2, and List3. All of List1, List2, and List3 must be
sorted and contain no duplicates before evaluating this function. When two elements compare equal, the element from
List1 is picked if there is such an element, otherwise the element from List2 is picked, and the other is deleted.

unzip(List1) -> {List2, List3}
Types:

List1 = [{A, B}]
List2 = [A]
List3 = [B]
A = B = term()

"Unzips" a list of two-tuples into two lists, where the first list contains the first element of each tuple, and the second
list contains the second element of each tuple.

lists

292 | Ericsson AB. All Rights Reserved.: STDLIB

unzip3(List1) -> {List2, List3, List4}
Types:

List1 = [{A, B, C}]
List2 = [A]
List3 = [B]
List4 = [C]
A = B = C = term()

"Unzips" a list of three-tuples into three lists, where the first list contains the first element of each tuple, the second
list contains the second element of each tuple, and the third list contains the third element of each tuple.

usort(List1) -> List2
Types:

List1 = List2 = [T]
T = term()

Returns a list containing the sorted elements of List1 where all except the first element of the elements comparing
equal have been deleted.

usort(Fun, List1) -> List2
Types:

Fun = fun((T, T) -> boolean())
List1 = List2 = [T]
T = term()

Returns a list containing the sorted elements of List1 where all except the first element of the elements comparing
equal according to the ordering function Fun have been deleted. Fun(A, B) is to return true if A compares less
than or equal to B in the ordering, otherwise false.

zip(List1, List2) -> List3
Types:

List1 = [A]
List2 = [B]
List3 = [{A, B}]
A = B = term()

"Zips" two lists of equal length into one list of two-tuples, where the first element of each tuple is taken from the first
list and the second element is taken from the corresponding element in the second list.

zip3(List1, List2, List3) -> List4
Types:

lists

Ericsson AB. All Rights Reserved.: STDLIB | 293

List1 = [A]
List2 = [B]
List3 = [C]
List4 = [{A, B, C}]
A = B = C = term()

"Zips" three lists of equal length into one list of three-tuples, where the first element of each tuple is taken from the
first list, the second element is taken from the corresponding element in the second list, and the third element is taken
from the corresponding element in the third list.

zipwith(Combine, List1, List2) -> List3
Types:

Combine = fun((X, Y) -> T)
List1 = [X]
List2 = [Y]
List3 = [T]
X = Y = T = term()

Combines the elements of two lists of equal length into one list. For each pair X, Y of list elements from the two
lists, the element in the result list is Combine(X, Y).

zipwith(fun(X, Y) -> {X,Y} end, List1, List2) is equivalent to zip(List1, List2).

Example:

> lists:zipwith(fun(X, Y) -> X+Y end, [1,2,3], [4,5,6]).
[5,7,9]

zipwith3(Combine, List1, List2, List3) -> List4
Types:

Combine = fun((X, Y, Z) -> T)
List1 = [X]
List2 = [Y]
List3 = [Z]
List4 = [T]
X = Y = Z = T = term()

Combines the elements of three lists of equal length into one list. For each triple X, Y, Z of list elements from the
three lists, the element in the result list is Combine(X, Y, Z).

zipwith3(fun(X, Y, Z) -> {X,Y,Z} end, List1, List2, List3) is equivalent to zip3(List1,
List2, List3).

Examples:

> lists:zipwith3(fun(X, Y, Z) -> X+Y+Z end, [1,2,3], [4,5,6], [7,8,9]).
[12,15,18]
> lists:zipwith3(fun(X, Y, Z) -> [X,Y,Z] end, [a,b,c], [x,y,z], [1,2,3]).

lists

294 | Ericsson AB. All Rights Reserved.: STDLIB

[[a,x,1],[b,y,2],[c,z,3]]

log_mf_h

Ericsson AB. All Rights Reserved.: STDLIB | 295

log_mf_h
Erlang module

This module is a gen_event handler module that can be installed in any gen_event process. It logs onto disk all
events that are sent to an event manager. Each event is written as a binary, which makes the logging very fast. However,
a tool such as the Report Browser (rb(3)) must be used to read the files. The events are written to multiple files.
When all files have been used, the first one is reused and overwritten. The directory location, the number of files, and
the size of each file are configurable. The directory will include one file called index, and report files 1, 2,

Data Types
args()
Term to be sent to gen_event:add_handler/3.

Exports

init(Dir, MaxBytes, MaxFiles) -> Args
init(Dir, MaxBytes, MaxFiles, Pred) -> Args
Types:

Dir = file:filename()
MaxBytes = integer() >= 0
MaxFiles = 1..255
Pred = fun((Event :: term()) -> boolean())
Args = args()

Initiates the event handler. Returns Args, which is to be used in a call to
gen_event:add_handler(EventMgr, log_mf_h, Args).

Dir specifies which directory to use for the log files. MaxBytes specifies the size of each individual file. MaxFiles
specifies how many files are used. Pred is a predicate function used to filter the events. If no predicate function is
specified, all events are logged.

See Also
gen_event(3), rb(3)

maps

296 | Ericsson AB. All Rights Reserved.: STDLIB

maps
Erlang module

This module contains functions for maps processing.

Exports

filter(Pred, Map1) -> Map2
Types:

Pred = fun((Key, Value) -> boolean())
Key = Value = term()
Map1 = Map2 = #{}

Returns a map Map2 for which predicate Pred holds true in Map1.

The call fails with a {badmap,Map} exception if Map1 is not a map, or with badarg if Pred is not a function
of arity 2.

Example:

> M = #{a => 2, b => 3, c=> 4, "a" => 1, "b" => 2, "c" => 4},
 Pred = fun(K,V) -> is_atom(K) andalso (V rem 2) =:= 0 end,
 maps:filter(Pred,M).
#{a => 2,c => 4}

find(Key, Map) -> {ok, Value} | error
Types:

Key = term()
Map = #{}
Value = term()

Returns a tuple {ok, Value}, where Value is the value associated with Key, or error if no value is associated
with Key in Map.

The call fails with a {badmap,Map} exception if Map is not a map.

Example:

> Map = #{"hi" => 42},
 Key = "hi",
 maps:find(Key,Map).
{ok,42}

fold(Fun, Init, Map) -> Acc
Types:

maps

Ericsson AB. All Rights Reserved.: STDLIB | 297

Fun = fun((K, V, AccIn) -> AccOut)
Init = Acc = AccIn = AccOut = term()
Map = #{}
K = V = term()

Calls F(K, V, AccIn) for every K to value V association in Map in any order. Function fun F/3 must return a
new accumulator, which is passed to the next successive call. This function returns the final value of the accumulator.
The initial accumulator value Init is returned if the map is empty.

Example:

> Fun = fun(K,V,AccIn) when is_list(K) -> AccIn + V end,
 Map = #{"k1" => 1, "k2" => 2, "k3" => 3},
 maps:fold(Fun,0,Map).
6

from_list(List) -> Map
Types:

List = [{Key, Value}]
Key = Value = term()
Map = #{}

Takes a list of key-value tuples elements and builds a map. The associations can be in any order, and both keys and
values in the association can be of any term. If the same key appears more than once, the latter (right-most) value is
used and the previous values are ignored.

Example:

> List = [{"a",ignored},{1337,"value two"},{42,value_three},{"a",1}],
 maps:from_list(List).
#{42 => value_three,1337 => "value two","a" => 1}

get(Key, Map) -> Value
Types:

Key = term()
Map = #{}
Value = term()

Returns value Value associated with Key if Map contains Key.

The call fails with a {badmap,Map} exception if Map is not a map, or with a {badkey,Key} exception if no
value is associated with Key.

Example:

> Key = 1337,
 Map = #{42 => value_two,1337 => "value one","a" => 1},
 maps:get(Key,Map).
"value one"

maps

298 | Ericsson AB. All Rights Reserved.: STDLIB

get(Key, Map, Default) -> Value | Default
Types:

Key = term()
Map = #{}
Value = Default = term()

Returns value Value associated with Key if Map contains Key. If no value is associated with Key, Default is
returned.

The call fails with a {badmap,Map} exception if Map is not a map.

Example:

> Map = #{ key1 => val1, key2 => val2 }.
#{key1 => val1,key2 => val2}
> maps:get(key1, Map, "Default value").
val1
> maps:get(key3, Map, "Default value").
"Default value"

is_key(Key, Map) -> boolean()
Types:

Key = term()
Map = #{}

Returns true if map Map contains Key and returns false if it does not contain the Key.

The call fails with a {badmap,Map} exception if Map is not a map.

Example:

> Map = #{"42" => value}.
#{"42"> => value}
> maps:is_key("42",Map).
true
> maps:is_key(value,Map).
false

keys(Map) -> Keys
Types:

Map = #{}
Keys = [Key]
Key = term()

Returns a complete list of keys, in any order, which resides within Map.

The call fails with a {badmap,Map} exception if Map is not a map.

Example:

> Map = #{42 => value_three,1337 => "value two","a" => 1},
 maps:keys(Map).

maps

Ericsson AB. All Rights Reserved.: STDLIB | 299

[42,1337,"a"]

map(Fun, Map1) -> Map2
Types:

Fun = fun((K, V1) -> V2)
Map1 = Map2 = #{}
K = V1 = V2 = term()

Produces a new map Map2 by calling function fun F(K, V1) for every K to value V1 association in Map1 in any
order. Function fun F/2 must return value V2 to be associated with key K for the new map Map2.

Example:

> Fun = fun(K,V1) when is_list(K) -> V1*2 end,
 Map = #{"k1" => 1, "k2" => 2, "k3" => 3},
 maps:map(Fun,Map).
#{"k1" => 2,"k2" => 4,"k3" => 6}

merge(Map1, Map2) -> Map3
Types:

Map1 = Map2 = Map3 = #{}

Merges two maps into a single map Map3. If two keys exist in both maps, the value in Map1 is superseded by the
value in Map2.

The call fails with a {badmap,Map} exception if Map1 or Map2 is not a map.

Example:

> Map1 = #{a => "value_one", b => "value_two"},
 Map2 = #{a => 1, c => 2},
 maps:merge(Map1,Map2).
#{a => 1,b => "value_two",c => 2}

new() -> Map
Types:

Map = #{}
Returns a new empty map.

Example:

> maps:new().
#{}

put(Key, Value, Map1) -> Map2
Types:

maps

300 | Ericsson AB. All Rights Reserved.: STDLIB

Key = Value = term()
Map1 = Map2 = #{}

Associates Key with value Value and inserts the association into map Map2. If key Key already exists in map
Map1, the old associated value is replaced by value Value. The function returns a new map Map2 containing the
new association and the old associations in Map1.

The call fails with a {badmap,Map} exception if Map1 is not a map.

Example:

> Map = #{"a" => 1}.
#{"a" => 1}
> maps:put("a", 42, Map).
#{"a" => 42}
> maps:put("b", 1337, Map).
#{"a" => 1,"b" => 1337}

remove(Key, Map1) -> Map2
Types:

Key = term()
Map1 = Map2 = #{}

Removes the Key, if it exists, and its associated value from Map1 and returns a new map Map2 without key Key.

The call fails with a {badmap,Map} exception if Map1 is not a map.

Example:

> Map = #{"a" => 1}.
#{"a" => 1}
> maps:remove("a",Map).
#{}
> maps:remove("b",Map).
#{"a" => 1}

size(Map) -> integer() >= 0
Types:

Map = #{}
Returns the number of key-value associations in Map. This operation occurs in constant time.

Example:

> Map = #{42 => value_two,1337 => "value one","a" => 1},
 maps:size(Map).
3

take(Key, Map1) -> {Value, Map2} | error
Types:

maps

Ericsson AB. All Rights Reserved.: STDLIB | 301

Key = term()
Map1 = #{}
Value = term()
Map2 = #{}

The function removes the Key, if it exists, and its associated value from Map1 and returns a tuple with the removed
Value and the new map Map2 without key Key. If the key does not exist error is returned.

The call will fail with a {badmap,Map} exception if Map1 is not a map.

Example:

> Map = #{"a" => "hello", "b" => "world"}.
#{"a" => "hello", "b" => "world"}
> maps:take("a",Map).
{"hello",#{"b" => "world"}}
> maps:take("does not exist",Map).
error

to_list(Map) -> [{Key, Value}]
Types:

Map = #{}
Key = Value = term()

Returns a list of pairs representing the key-value associations of Map, where the pairs [{K1,V1}, ..., {Kn,Vn}]
are returned in arbitrary order.

The call fails with a {badmap,Map} exception if Map is not a map.

Example:

> Map = #{42 => value_three,1337 => "value two","a" => 1},
 maps:to_list(Map).
[{42,value_three},{1337,"value two"},{"a",1}]

update(Key, Value, Map1) -> Map2
Types:

Key = Value = term()
Map1 = Map2 = #{}

If Key exists in Map1, the old associated value is replaced by value Value. The function returns a new map Map2
containing the new associated value.

The call fails with a {badmap,Map} exception if Map1 is not a map, or with a {badkey,Key} exception if no
value is associated with Key.

Example:

> Map = #{"a" => 1}.
#{"a" => 1}
> maps:update("a", 42, Map).
#{"a" => 42}

maps

302 | Ericsson AB. All Rights Reserved.: STDLIB

update_with(Key, Fun, Map1) -> Map2
Types:

Key = term()
Map1 = Map2 = #{}
Fun = fun((Value1 :: term()) -> Value2 :: term())

Update a value in a Map1 associated with Key by calling Fun on the old value to get a new value. An exception
{badkey,Key} is generated if Key is not present in the map.

Example:

> Map = #{"counter" => 1},
 Fun = fun(V) -> V + 1 end,
 maps:update_with("counter",Fun,Map).
#{"counter" => 2}

update_with(Key, Fun, Init, Map1) -> Map2
Types:

Key = term()
Map1 = Map1
Map2 = Map2
Fun = fun((Value1 :: term()) -> Value2 :: term())
Init = term()

Update a value in a Map1 associated with Key by calling Fun on the old value to get a new value. If Key is not
present in Map1 then Init will be associated with Key.

Example:

> Map = #{"counter" => 1},
 Fun = fun(V) -> V + 1 end,
 maps:update_with("new counter",Fun,42,Map).
#{"counter" => 1,"new counter" => 42}

values(Map) -> Values
Types:

Map = #{}
Values = [Value]
Value = term()

Returns a complete list of values, in arbitrary order, contained in map Map.

The call fails with a {badmap,Map} exception if Map is not a map.

Example:

> Map = #{42 => value_three,1337 => "value two","a" => 1},
 maps:values(Map).
[value_three,"value two",1]

maps

Ericsson AB. All Rights Reserved.: STDLIB | 303

with(Ks, Map1) -> Map2
Types:

Ks = [K]
Map1 = Map2 = #{}
K = term()

Returns a new map Map2 with the keys K1 through Kn and their associated values from map Map1. Any key in Ks
that does not exist in Map1 is ignored.

Example:

> Map = #{42 => value_three,1337 => "value two","a" => 1},
 Ks = ["a",42,"other key"],
 maps:with(Ks,Map).
#{42 => value_three,"a" => 1}

without(Ks, Map1) -> Map2
Types:

Ks = [K]
Map1 = Map2 = #{}
K = term()

Returns a new map Map2 without keys K1 through Kn and their associated values from map Map1. Any key in Ks
that does not exist in Map1 is ignored

Example:

> Map = #{42 => value_three,1337 => "value two","a" => 1},
 Ks = ["a",42,"other key"],
 maps:without(Ks,Map).
#{1337 => "value two"}

math

304 | Ericsson AB. All Rights Reserved.: STDLIB

math
Erlang module

This module provides an interface to a number of mathematical functions.

Note:
Not all functions are provided on all platforms. In particular, the erf/1 and erfc/1 functions are not provided
on Windows.

Exports

acos(X) -> float()
acosh(X) -> float()
asin(X) -> float()
asinh(X) -> float()
atan(X) -> float()
atan2(Y, X) -> float()
atanh(X) -> float()
cos(X) -> float()
cosh(X) -> float()
exp(X) -> float()
log(X) -> float()
log10(X) -> float()
log2(X) -> float()
pow(X, Y) -> float()
sin(X) -> float()
sinh(X) -> float()
sqrt(X) -> float()
tan(X) -> float()
tanh(X) -> float()
Types:

Y = X = number()
A collection of mathematical functions that return floats. Arguments are numbers.

erf(X) -> float()
Types:

X = number()
Returns the error function of X, where:

math

Ericsson AB. All Rights Reserved.: STDLIB | 305

erf(X) = 2/sqrt(pi)*integral from 0 to X of exp(-t*t) dt.

erfc(X) -> float()
Types:

X = number()
erfc(X) returns 1.0 - erf(X), computed by methods that avoid cancellation for large X.

pi() -> float()
A useful number.

Limitations
As these are the C library, the same limitations apply.

ms_transform

306 | Ericsson AB. All Rights Reserved.: STDLIB

ms_transform
Erlang module

This module provides the parse transformation that makes calls to ets and dbg:fun2ms/1 translate into literal
match specifications. It also provides the back end for the same functions when called from the Erlang shell.

The translation from funs to match specifications is accessed through the two "pseudo functions" ets:fun2ms/1
and dbg:fun2ms/1.

As everyone trying to use ets:select/2 or dbg seems to end up reading this manual page, this description is an
introduction to the concept of match specifications.

Read the whole manual page if it is the first time you are using the transformations.

Match specifications are used more or less as filters. They resemble usual Erlang matching in a list comprehension or
in a fun used with lists:foldl/3, and so on. However, the syntax of pure match specifications is awkward, as they
are made up purely by Erlang terms, and the language has no syntax to make the match specifications more readable.

As the execution and structure of the match specifications are like that of a fun, it is more straightforward to write it
using the familiar fun syntax and to have that translated into a match specification automatically. A real fun is clearly
more powerful than the match specifications allow, but bearing the match specifications in mind, and what they can
do, it is still more convenient to write it all as a fun. This module contains the code that translates the fun syntax into
match specification terms.

Example 1
Using ets:select/2 and a match specification, one can filter out rows of a table and construct a list of tuples
containing relevant parts of the data in these rows. One can use ets:foldl/3 instead, but the ets:select/2
call is far more efficient. Without the translation provided by ms_transform, one must struggle with writing match
specifications terms to accommodate this.

Consider a simple table of employees:

-record(emp, {empno, %Employee number as a string, the key
 surname, %Surname of the employee
 givenname, %Given name of employee
 dept, %Department, one of {dev,sales,prod,adm}
 empyear}). %Year the employee was employed

We create the table using:

ets:new(emp_tab, [{keypos,#emp.empno},named_table,ordered_set]).

We fill the table with randomly chosen data:

[{emp,"011103","Black","Alfred",sales,2000},
 {emp,"041231","Doe","John",prod,2001},
 {emp,"052341","Smith","John",dev,1997},
 {emp,"076324","Smith","Ella",sales,1995},
 {emp,"122334","Weston","Anna",prod,2002},
 {emp,"535216","Chalker","Samuel",adm,1998},
 {emp,"789789","Harrysson","Joe",adm,1996},

ms_transform

Ericsson AB. All Rights Reserved.: STDLIB | 307

 {emp,"963721","Scott","Juliana",dev,2003},
 {emp,"989891","Brown","Gabriel",prod,1999}]

Assuming that we want the employee numbers of everyone in the sales department, there are several ways.

ets:match/2 can be used:

1> ets:match(emp_tab, {'_', '$1', '_', '_', sales, '_'}).
[["011103"],["076324"]]

ets:match/2 uses a simpler type of match specification, but it is still unreadable, and one has little control over
the returned result. It is always a list of lists.

ets:foldl/3 or ets:foldr/3 can be used to avoid the nested lists:

ets:foldr(fun(#emp{empno = E, dept = sales},Acc) -> [E | Acc];
 (_,Acc) -> Acc
 end,
 [],
 emp_tab).

The result is ["011103","076324"]. The fun is straightforward, so the only problem is that all the data from
the table must be transferred from the table to the calling process for filtering. That is inefficient compared to the
ets:match/2 call where the filtering can be done "inside" the emulator and only the result is transferred to the
process.

Consider a "pure" ets:select/2 call that does what ets:foldr does:

ets:select(emp_tab, [{#emp{empno = '$1', dept = sales, _='_'},[],['$1']}]).

Although the record syntax is used, it is still hard to read and even harder to write. The first element of the tuple,
#emp{empno = '$1', dept = sales, _='_'}, tells what to match. Elements not matching this are not
returned, as in the ets:match/2 example. The second element, the empty list, is a list of guard expressions, which we
do not need. The third element is the list of expressions constructing the return value (in ETS this is almost always a list
containing one single term). In our case '$1' is bound to the employee number in the head (first element of the tuple),
and hence the employee number is returned. The result is ["011103","076324"], as in the ets:foldr/3
example, but the result is retrieved much more efficiently in terms of execution speed and memory consumption.

Using ets:fun2ms/1, we can combine the ease of use of the ets:foldr/3 and the efficiency of the pure
ets:select/2 example:

-include_lib("stdlib/include/ms_transform.hrl").

ets:select(emp_tab, ets:fun2ms(
 fun(#emp{empno = E, dept = sales}) ->
 E
 end)).

This example requires no special knowledge of match specifications to understand. The head of the fun matches what
you want to filter out and the body returns what you want returned. As long as the fun can be kept within the limits of
the match specifications, there is no need to transfer all table data to the process for filtering as in the ets:foldr/3

ms_transform

308 | Ericsson AB. All Rights Reserved.: STDLIB

example. It is easier to read than the ets:foldr/3 example, as the select call in itself discards anything that does not
match, while the fun of the ets:foldr/3 call needs to handle both the elements matching and the ones not matching.

In the ets:fun2ms/1 example above, it is needed to include ms_transform.hrl in the source code, as this is
what triggers the parse transformation of the ets:fun2ms/1 call to a valid match specification. This also implies
that the transformation is done at compile time (except when called from the shell) and therefore takes no resources
in runtime. That is, although you use the more intuitive fun syntax, it gets as efficient in runtime as writing match
specifications by hand.

Example 2
Assume that we want to get all the employee numbers of employees hired before year 2000. Using ets:match/2
is not an alternative here, as relational operators cannot be expressed there. Once again, ets:foldr/3 can do it
(slowly, but correct):

ets:foldr(fun(#emp{empno = E, empyear = Y},Acc) when Y < 2000 -> [E | Acc];
 (_,Acc) -> Acc
 end,
 [],
 emp_tab).

The result is ["052341","076324","535216","789789","989891"], as expected. The equivalent
expression using a handwritten match specification would look like this:

ets:select(emp_tab, [{#emp{empno = '$1', empyear = '$2', _='_'},
 [{'<', '$2', 2000}],
 ['$1']}]).

This gives the same result. [{'<', '$2', 2000}] is in the guard part and therefore discards anything that does
not have an empyear (bound to '$2' in the head) less than 2000, as the guard in the foldr/3 example.

We write it using ets:fun2ms/1:

-include_lib("stdlib/include/ms_transform.hrl").

ets:select(emp_tab, ets:fun2ms(
 fun(#emp{empno = E, empyear = Y}) when Y < 2000 ->
 E
 end)).

Example 3
Assume that we want the whole object matching instead of only one element. One alternative is to assign a variable
to every part of the record and build it up once again in the body of the fun, but the following is easier:

ets:select(emp_tab, ets:fun2ms(
 fun(Obj = #emp{empno = E, empyear = Y})
 when Y < 2000 ->
 Obj
 end)).

ms_transform

Ericsson AB. All Rights Reserved.: STDLIB | 309

As in ordinary Erlang matching, you can bind a variable to the whole matched object using a "match inside the
match", that is, a =. Unfortunately in funs translated to match specifications, it is allowed only at the "top-level",
that is, matching the whole object arriving to be matched into a separate variable. If you are used to writing match
specifications by hand, we mention that variable A is simply translated into '$_'. Alternatively, pseudo function
object/0 also returns the whole matched object, see section Warnings and Restrictions.

Example 4
This example concerns the body of the fun. Assume that all employee numbers beginning with zero (0) must be
changed to begin with one (1) instead, and that we want to create the list [{<Old empno>,<New empno>}]:

ets:select(emp_tab, ets:fun2ms(
 fun(#emp{empno = [$0 | Rest] }) ->
 {[$0|Rest],[$1|Rest]}
 end)).

This query hits the feature of partially bound keys in table type ordered_set, so that not the whole table needs to
be searched, only the part containing keys beginning with 0 is looked into.

Example 5
The fun can have many clauses. Assume that we want to do the following:

• If an employee started before 1997, return the tuple {inventory, <employee number>}.

• If an employee started 1997 or later, but before 2001, return {rookie, <employee number>}.

• For all other employees, return {newbie, <employee number>}, except for those named Smith as they
would be affronted by anything other than the tag guru and that is also what is returned for their numbers:
{guru, <employee number>}.

This is accomplished as follows:

ets:select(emp_tab, ets:fun2ms(
 fun(#emp{empno = E, surname = "Smith" }) ->
 {guru,E};
 (#emp{empno = E, empyear = Y}) when Y < 1997 ->
 {inventory, E};
 (#emp{empno = E, empyear = Y}) when Y > 2001 ->
 {newbie, E};
 (#emp{empno = E, empyear = Y}) -> % 1997 -- 2001
 {rookie, E}
 end)).

The result is as follows:

[{rookie,"011103"},
 {rookie,"041231"},
 {guru,"052341"},
 {guru,"076324"},
 {newbie,"122334"},
 {rookie,"535216"},
 {inventory,"789789"},
 {newbie,"963721"},
 {rookie,"989891"}]

ms_transform

310 | Ericsson AB. All Rights Reserved.: STDLIB

Useful BIFs
What more can you do? A simple answer is: see the documentation of match specifications in ERTS User's Guide.
However, the following is a brief overview of the most useful "built-in functions" that you can use when the fun is to be
translated into a match specification by ets:fun2ms/1. It is not possible to call other functions than those allowed
in match specifications. No "usual" Erlang code can be executed by the fun that is translated by ets:fun2ms/1.
The fun is limited exactly to the power of the match specifications, which is unfortunate, but the price one must pay
for the execution speed of ets:select/2 compared to ets:foldl/foldr.

The head of the fun is a head matching (or mismatching) one parameter, one object of the table we select from. The
object is always a single variable (can be _) or a tuple, as ETS, Dets, and Mnesia tables include that. The match
specification returned by ets:fun2ms/1 can be used with dets:select/2 and mnesia:select/2, and with
ets:select/2. The use of = in the head is allowed (and encouraged) at the top-level.

The guard section can contain any guard expression of Erlang. The following is a list of BIFs and expressions:

• Type tests: is_atom, is_float, is_integer, is_list, is_number, is_pid, is_port,
is_reference, is_tuple, is_binary, is_function, is_record

• Boolean operators: not, and, or, andalso, orelse

• Relational operators: >, >=, <, =<, =:=, ==, =/=, /=

• Arithmetics: +, -, *, div, rem

• Bitwise operators: band, bor, bxor, bnot, bsl, bsr

• The guard BIFs: abs, element, hd, length, node, round, size, tl, trunc, self

Contrary to the fact with "handwritten" match specifications, the is_record guard works as in ordinary Erlang code.

Semicolons (;) in guards are allowed, the result is (as expected) one "match specification clause" for each semicolon-
separated part of the guard. The semantics is identical to the Erlang semantics.

The body of the fun is used to construct the resulting value. When selecting from tables, one usually construct a suiting
term here, using ordinary Erlang term construction, like tuple parentheses, list brackets, and variables matched out in
the head, possibly with the occasional constant. Whatever expressions are allowed in guards are also allowed here,
but no special functions exist except object and bindings (see further down), which returns the whole matched
object and all known variable bindings, respectively.

The dbg variants of match specifications have an imperative approach to the match specification body, the ETS dialect
has not. The fun body for ets:fun2ms/1 returns the result without side effects. As matching (=) in the body of the
match specifications is not allowed (for performance reasons) the only thing left, more or less, is term construction.

Example with dbg
This section describes the slightly different match specifications translated by dbg:fun2ms/1.

The same reasons for using the parse transformation apply to dbg, maybe even more, as filtering using Erlang code is
not a good idea when tracing (except afterwards, if you trace to file). The concept is similar to that of ets:fun2ms/1
except that you usually use it directly from the shell (which can also be done with ets:fun2ms/1).

The following is an example module to trace on:

-module(toy).

-export([start/1, store/2, retrieve/1]).

start(Args) ->
 toy_table = ets:new(toy_table, Args).

store(Key, Value) ->

ms_transform

Ericsson AB. All Rights Reserved.: STDLIB | 311

 ets:insert(toy_table, {Key,Value}).

retrieve(Key) ->
 [{Key, Value}] = ets:lookup(toy_table, Key),
 Value.

During model testing, the first test results in {badmatch,16} in {toy,start,1}, why?

We suspect the ets:new/2 call, as we match hard on the return value, but want only the particular new/2 call with
toy_table as first parameter. So we start a default tracer on the node:

1> dbg:tracer().
{ok,<0.88.0>}

We turn on call tracing for all processes, we want to make a pretty restrictive trace pattern, so there is no need to call
trace only a few processes (usually it is not):

2> dbg:p(all,call).
{ok,[{matched,nonode@nohost,25}]}

We specify the filter, we want to view calls that resemble ets:new(toy_table, <something>):

3> dbg:tp(ets,new,dbg:fun2ms(fun([toy_table,_]) -> true end)).
{ok,[{matched,nonode@nohost,1},{saved,1}]}

As can be seen, the fun used with dbg:fun2ms/1 takes a single list as parameter instead of a single tuple. The
list matches a list of the parameters to the traced function. A single variable can also be used. The body of the fun
expresses, in a more imperative way, actions to be taken if the fun head (and the guards) matches. true is returned
here, only because the body of a fun cannot be empty. The return value is discarded.

The following trace output is received during test:

(<0.86.0>) call ets:new(toy_table, [ordered_set])

Assume that we have not found the problem yet, and want to see what ets:new/2 returns. We use a slightly different
trace pattern:

4> dbg:tp(ets,new,dbg:fun2ms(fun([toy_table,_]) -> return_trace() end)).

The following trace output is received during test:

(<0.86.0>) call ets:new(toy_table,[ordered_set])
(<0.86.0>) returned from ets:new/2 -> 24

The call to return_trace results in a trace message when the function returns. It applies only to the specific
function call triggering the match specification (and matching the head/guards of the match specification). This is by
far the most common call in the body of a dbg match specification.

ms_transform

312 | Ericsson AB. All Rights Reserved.: STDLIB

The test now fails with {badmatch,24} because the atom toy_table does not match the number returned for
an unnamed table. So, the problem is found, the table is to be named, and the arguments supplied by the test program
do not include named_table. We rewrite the start function:

start(Args) ->
 toy_table = ets:new(toy_table, [named_table|Args]).

With the same tracing turned on, the following trace output is received:

(<0.86.0>) call ets:new(toy_table,[named_table,ordered_set])
(<0.86.0>) returned from ets:new/2 -> toy_table

Assume that the module now passes all testing and goes into the system. After a while, it is found that table
toy_table grows while the system is running and that there are many elements with atoms as keys. We expected
only integer keys and so does the rest of the system, but clearly not the entire system. We turn on call tracing and try
to see calls to the module with an atom as the key:

1> dbg:tracer().
{ok,<0.88.0>}
2> dbg:p(all,call).
{ok,[{matched,nonode@nohost,25}]}
3> dbg:tpl(toy,store,dbg:fun2ms(fun([A,_]) when is_atom(A) -> true end)).
{ok,[{matched,nonode@nohost,1},{saved,1}]}

We use dbg:tpl/3 to ensure to catch local calls (assume that the module has grown since the smaller version and
we are unsure if this inserting of atoms is not done locally). When in doubt, always use local call tracing.

Assume that nothing happens when tracing in this way. The function is never called with these parameters. We conclude
that someone else (some other module) is doing it and realize that we must trace on ets:insert/2 and want to
see the calling function. The calling function can be retrieved using the match specification function caller. To
get it into the trace message, the match specification function message must be used. The filter call looks like this
(looking for calls to ets:insert/2):

4> dbg:tpl(ets,insert,dbg:fun2ms(fun([toy_table,{A,_}]) when is_atom(A) ->
 message(caller())
 end)).
{ok,[{matched,nonode@nohost,1},{saved,2}]}

The caller is now displayed in the "additional message" part of the trace output, and the following is displayed after
a while:

(<0.86.0>) call ets:insert(toy_table,{garbage,can}) ({evil_mod,evil_fun,2})

You have realized that function evil_fun of the evil_mod module, with arity 2, is causing all this trouble.

This example illustrates the most used calls in match specifications for dbg. The other, more esoteric, calls are listed
and explained in Match specifications in Erlang in ERTS User's Guide, as they are beyond the scope of this description.

ms_transform

Ericsson AB. All Rights Reserved.: STDLIB | 313

Warnings and Restrictions
The following warnings and restrictions apply to the funs used in with ets:fun2ms/1 and dbg:fun2ms/1.

Warning:
To use the pseudo functions triggering the translation, ensure to include the header file ms_transform.hrl
in the source code. Failure to do so possibly results in runtime errors rather than compile time, as the expression
can be valid as a plain Erlang program without translation.

Warning:
The fun must be literally constructed inside the parameter list to the pseudo functions. The fun cannot be bound to
a variable first and then passed to ets:fun2ms/1 or dbg:fun2ms/1. For example, ets:fun2ms(fun(A)
-> A end) works, but not F = fun(A) -> A end, ets:fun2ms(F). The latter results in a compile-
time error if the header is included, otherwise a runtime error.

Many restrictions apply to the fun that is translated into a match specification. To put it simple: you cannot use anything
in the fun that you cannot use in a match specification. This means that, among others, the following restrictions apply
to the fun itself:

• Functions written in Erlang cannot be called, neither can local functions, global functions, or real funs.

• Everything that is written as a function call is translated into a match specification call to a built-in function, so
that the call is_list(X) is translated to {'is_list', '$1'} ('$1' is only an example, the numbering
can vary). If one tries to call a function that is not a match specification built-in, it causes an error.

• Variables occurring in the head of the fun are replaced by match specification variables in the order of occurrence,
so that fragment fun({A,B,C}) is replaced by {'$1', '$2', '$3'}, and so on. Every occurrence
of such a variable in the match specification is replaced by a match specification variable in the same way,
so that the fun fun({A,B}) when is_atom(A) -> B end is translated into [{{'$1','$2'},
[{is_atom,'$1'}],['$2']}].

• Variables that are not included in the head are imported from the environment and made into match specification
const expressions. Example from the shell:

1> X = 25.
25
2> ets:fun2ms(fun({A,B}) when A > X -> B end).
[{{'$1','$2'},[{'>','$1',{const,25}}],['$2']}]

• Matching with = cannot be used in the body. It can only be used on the top-level in the head of the fun. Example
from the shell again:

1> ets:fun2ms(fun({A,[B|C]} = D) when A > B -> D end).
[{{'$1',['$2'|'$3']},[{'>','$1','$2'}],['$_']}]
2> ets:fun2ms(fun({A,[B|C]=D}) when A > B -> D end).
Error: fun with head matching ('=' in head) cannot be translated into
match_spec
{error,transform_error}
3> ets:fun2ms(fun({A,[B|C]}) when A > B -> D = [B|C], D end).
Error: fun with body matching ('=' in body) is illegal as match_spec

ms_transform

314 | Ericsson AB. All Rights Reserved.: STDLIB

{error,transform_error}

All variables are bound in the head of a match specification, so the translator cannot allow multiple bindings.
The special case when matching is done on the top-level makes the variable bind to '$_' in the resulting match
specification. It is to allow a more natural access to the whole matched object. Pseudo function object() can
be used instead, see below.

The following expressions are translated equally:

ets:fun2ms(fun({a,_} = A) -> A end).
ets:fun2ms(fun({a,_}) -> object() end).

• The special match specification variables '$_' and '$*' can be accessed through the pseudo functions
object() (for '$_') and bindings() (for '$*'). As an example, one can translate the following
ets:match_object/2 call to a ets:select/2 call:

ets:match_object(Table, {'$1',test,'$2'}).

This is the same as:

ets:select(Table, ets:fun2ms(fun({A,test,B}) -> object() end)).

In this simple case, the former expression is probably preferable in terms of readability.

The ets:select/2 call conceptually looks like this in the resulting code:

ets:select(Table, [{{'$1',test,'$2'},[],['$_']}]).

Matching on the top-level of the fun head can be a more natural way to access '$_', see above.

• Term constructions/literals are translated as much as is needed to get them into valid match specification. This way
tuples are made into match specification tuple constructions (a one element tuple containing the tuple) and constant
expressions are used when importing variables from the environment. Records are also translated into plain tuple
constructions, calls to element, and so on. The guard test is_record/2 is translated into match specification
code using the three parameter version that is built into match specification, so that is_record(A,t) is
translated into {is_record,'$1',t,5} if the record size of record type t is 5.

• Language constructions such as case, if, and catch that are not present in match specifications are not allowed.

• If header file ms_transform.hrl is not included, the fun is not translated, which can result in a runtime
error (depending on whether the fun is valid in a pure Erlang context).

Ensure that the header is included when using ets and dbg:fun2ms/1 in compiled code.

• If pseudo function triggering the translation is ets:fun2ms/1, the head of the fun must contain a single variable
or a single tuple. If the pseudo function is dbg:fun2ms/1, the head of the fun must contain a single variable
or a single list.

The translation from funs to match specifications is done at compile time, so runtime performance is not affected by
using these pseudo functions.

For more information about match specifications, see the Match specifications in Erlang in ERTS User's Guide.

ms_transform

Ericsson AB. All Rights Reserved.: STDLIB | 315

Exports

format_error(Error) -> Chars
Types:

Error = {error, module(), term()}
Chars = io_lib:chars()

Takes an error code returned by one of the other functions in the module and creates a textual description of the error.

parse_transform(Forms, Options) -> Forms2
Types:

Forms = Forms2 = [erl_parse:abstract_form() | erl_parse:form_info()]
Options = term()
Option list, required but not used.

Implements the transformation at compile time. This function is called by the compiler to do the source code
transformation if and when header file ms_transform.hrl is included in the source code.

For information about how to use this parse transformation, see ets and dbg:fun2ms/1.

For a description of match specifications, see section Match Specification in Erlang in ERTS User's Guide.

transform_from_shell(Dialect, Clauses, BoundEnvironment) -> term()
Types:

Dialect = ets | dbg
Clauses = [erl_parse:abstract_clause()]
BoundEnvironment = erl_eval:binding_struct()
List of variable bindings in the shell environment.

Implements the transformation when the fun2ms/1 functions are called from the shell. In this case, the abstract
form is for one single fun (parsed by the Erlang shell). All imported variables are to be in the key-value list passed as
BoundEnvironment. The result is a term, normalized, that is, not in abstract format.

orddict

316 | Ericsson AB. All Rights Reserved.: STDLIB

orddict
Erlang module

This module provides a Key-Value dictionary. An orddict is a representation of a dictionary, where a list of pairs
is used to store the keys and values. The list is ordered after the keys.

This module provides the same interface as the dict(3) module but with a defined representation. One difference
is that while dict considers two keys as different if they do not match (=:=), this module considers two keys as
different if and only if they do not compare equal (==).

Data Types
orddict(Key, Value) = [{Key, Value}]
Dictionary as returned by new/0.

orddict() = orddict(term(), term())

Exports

append(Key, Value, Orddict1) -> Orddict2
Types:

Orddict1 = Orddict2 = orddict(Key, Value)

Appends a new Value to the current list of values associated with Key. An exception is generated if the initial value
associated with Key is not a list of values.

See also section Notes.

append_list(Key, ValList, Orddict1) -> Orddict2
Types:

ValList = [Value]
Orddict1 = Orddict2 = orddict(Key, Value)

Appends a list of values ValList to the current list of values associated with Key. An exception is generated if the
initial value associated with Key is not a list of values.

See also section Notes.

erase(Key, Orddict1) -> Orddict2
Types:

Orddict1 = Orddict2 = orddict(Key, Value)

Erases all items with a specified key from a dictionary.

fetch(Key, Orddict) -> Value
Types:

Orddict = orddict(Key, Value)
Returns the value associated with Key in dictionary Orddict. This function assumes that the Key is present in the
dictionary. An exception is generated if Key is not in the dictionary.

orddict

Ericsson AB. All Rights Reserved.: STDLIB | 317

See also section Notes.

fetch_keys(Orddict) -> Keys
Types:

Orddict = orddict(Key, Value :: term())
Keys = [Key]

Returns a list of all keys in a dictionary.

filter(Pred, Orddict1) -> Orddict2
Types:

Pred = fun((Key, Value) -> boolean())
Orddict1 = Orddict2 = orddict(Key, Value)

Orddict2 is a dictionary of all keys and values in Orddict1 for which Pred(Key, Value) is true.

find(Key, Orddict) -> {ok, Value} | error
Types:

Orddict = orddict(Key, Value)
Searches for a key in a dictionary. Returns {ok, Value}, where Value is the value associated with Key, or error
if the key is not present in the dictionary.

See also section Notes.

fold(Fun, Acc0, Orddict) -> Acc1
Types:

Fun = fun((Key, Value, AccIn) -> AccOut)
Orddict = orddict(Key, Value)
Acc0 = Acc1 = AccIn = AccOut = Acc

Calls Fun on successive keys and values of Orddict together with an extra argument Acc (short for accumulator).
Fun must return a new accumulator that is passed to the next call. Acc0 is returned if the list is empty.

from_list(List) -> Orddict
Types:

List = [{Key, Value}]
Orddict = orddict(Key, Value)

Converts the Key-Value list List to a dictionary.

is_empty(Orddict) -> boolean()
Types:

Orddict = orddict()
Returns true if Orddict has no elements, otherwise false.

is_key(Key, Orddict) -> boolean()
Types:

orddict

318 | Ericsson AB. All Rights Reserved.: STDLIB

Orddict = orddict(Key, Value :: term())
Tests if Key is contained in dictionary Orddict.

map(Fun, Orddict1) -> Orddict2
Types:

Fun = fun((Key, Value1) -> Value2)
Orddict1 = orddict(Key, Value1)
Orddict2 = orddict(Key, Value2)

Calls Fun on successive keys and values of Orddict1 tvo return a new value for each key.

merge(Fun, Orddict1, Orddict2) -> Orddict3
Types:

Fun = fun((Key, Value1, Value2) -> Value)
Orddict1 = orddict(Key, Value1)
Orddict2 = orddict(Key, Value2)
Orddict3 = orddict(Key, Value)

Merges two dictionaries, Orddict1 and Orddict2, to create a new dictionary. All the Key-Value pairs from both
dictionaries are included in the new dictionary. If a key occurs in both dictionaries, Fun is called with the key and
both values to return a new value. merge/3 can be defined as follows, but is faster:

merge(Fun, D1, D2) ->
 fold(fun (K, V1, D) ->
 update(K, fun (V2) -> Fun(K, V1, V2) end, V1, D)
 end, D2, D1).

new() -> orddict()
Creates a new dictionary.

size(Orddict) -> integer() >= 0
Types:

Orddict = orddict()
Returns the number of elements in an Orddict.

store(Key, Value, Orddict1) -> Orddict2
Types:

Orddict1 = Orddict2 = orddict(Key, Value)

Stores a Key-Value pair in a dictionary. If the Key already exists in Orddict1, the associated value is replaced
by Value.

to_list(Orddict) -> List
Types:

orddict

Ericsson AB. All Rights Reserved.: STDLIB | 319

Orddict = orddict(Key, Value)
List = [{Key, Value}]

Converts a dictionary to a list representation.

update(Key, Fun, Orddict1) -> Orddict2
Types:

Fun = fun((Value1 :: Value) -> Value2 :: Value)
Orddict1 = Orddict2 = orddict(Key, Value)

Updates a value in a dictionary by calling Fun on the value to get a new value. An exception is generated if Key is
not present in the dictionary.

update(Key, Fun, Initial, Orddict1) -> Orddict2
Types:

Initial = Value
Fun = fun((Value1 :: Value) -> Value2 :: Value)
Orddict1 = Orddict2 = orddict(Key, Value)

Updates a value in a dictionary by calling Fun on the value to get a new value. If Key is not present in the dictionary,
Initial is stored as the first value. For example, append/3 can be defined as follows:

append(Key, Val, D) ->
 update(Key, fun (Old) -> Old ++ [Val] end, [Val], D).

update_counter(Key, Increment, Orddict1) -> Orddict2
Types:

Orddict1 = Orddict2 = orddict(Key, Value)
Increment = number()

Adds Increment to the value associated with Key and store this value. If Key is not present in the dictionary,
Increment is stored as the first value.

This can be defined as follows, but is faster:

update_counter(Key, Incr, D) ->
 update(Key, fun (Old) -> Old + Incr end, Incr, D).

Notes
Functions append/3 and append_list/3 are included so that keyed values can be stored in a list accumulator,
for example:

> D0 = orddict:new(),
 D1 = orddict:store(files, [], D0),
 D2 = orddict:append(files, f1, D1),
 D3 = orddict:append(files, f2, D2),
 D4 = orddict:append(files, f3, D3),
 orddict:fetch(files, D4).

orddict

320 | Ericsson AB. All Rights Reserved.: STDLIB

[f1,f2,f3]

This saves the trouble of first fetching a keyed value, appending a new value to the list of stored values, and storing
the result.

Function fetch/2 is to be used if the key is known to be in the dictionary, otherwise function find/2.

See Also
dict(3), gb_trees(3)

ordsets

Ericsson AB. All Rights Reserved.: STDLIB | 321

ordsets
Erlang module

Sets are collections of elements with no duplicate elements. An ordset is a representation of a set, where an ordered
list is used to store the elements of the set. An ordered list is more efficient than an unordered list.

This module provides the same interface as the sets(3) module but with a defined representation. One difference is
that while sets considers two elements as different if they do not match (=:=), this module considers two elements
as different if and only if they do not compare equal (==).

Data Types
ordset(T) = [T]
As returned by new/0.

Exports

add_element(Element, Ordset1) -> Ordset2
Types:

Element = E
Ordset1 = ordset(T)
Ordset2 = ordset(T | E)

Returns a new ordered set formed from Ordset1 with Element inserted.

del_element(Element, Ordset1) -> Ordset2
Types:

Element = term()
Ordset1 = Ordset2 = ordset(T)

Returns Ordset1, but with Element removed.

filter(Pred, Ordset1) -> Ordset2
Types:

Pred = fun((Element :: T) -> boolean())
Ordset1 = Ordset2 = ordset(T)

Filters elements in Ordset1 with boolean function Pred.

fold(Function, Acc0, Ordset) -> Acc1
Types:

Function =
 fun((Element :: T, AccIn :: term()) -> AccOut :: term())
Ordset = ordset(T)
Acc0 = Acc1 = term()

Folds Function over every element in Ordset and returns the final value of the accumulator.

ordsets

322 | Ericsson AB. All Rights Reserved.: STDLIB

from_list(List) -> Ordset
Types:

List = [T]
Ordset = ordset(T)

Returns an ordered set of the elements in List.

intersection(OrdsetList) -> Ordset
Types:

OrdsetList = [ordset(term()), ...]
Ordset = ordset(term())

Returns the intersection of the non-empty list of sets.

intersection(Ordset1, Ordset2) -> Ordset3
Types:

Ordset1 = Ordset2 = Ordset3 = ordset(term())

Returns the intersection of Ordset1 and Ordset2.

is_disjoint(Ordset1, Ordset2) -> boolean()
Types:

Ordset1 = Ordset2 = ordset(term())

Returns true if Ordset1 and Ordset2 are disjoint (have no elements in common), otherwise false.

is_element(Element, Ordset) -> boolean()
Types:

Element = term()
Ordset = ordset(term())

Returns true if Element is an element of Ordset, otherwise false.

is_set(Ordset) -> boolean()
Types:

Ordset = term()
Returns true if Ordset is an ordered set of elements, otherwise false.

is_subset(Ordset1, Ordset2) -> boolean()
Types:

Ordset1 = Ordset2 = ordset(term())

Returns true when every element of Ordset1 is also a member of Ordset2, otherwise false.

new() -> []
Returns a new empty ordered set.

ordsets

Ericsson AB. All Rights Reserved.: STDLIB | 323

size(Ordset) -> integer() >= 0
Types:

Ordset = ordset(term())
Returns the number of elements in Ordset.

subtract(Ordset1, Ordset2) -> Ordset3
Types:

Ordset1 = Ordset2 = Ordset3 = ordset(term())

Returns only the elements of Ordset1 that are not also elements of Ordset2.

to_list(Ordset) -> List
Types:

Ordset = ordset(T)
List = [T]

Returns the elements of Ordset as a list.

union(OrdsetList) -> Ordset
Types:

OrdsetList = [ordset(T)]
Ordset = ordset(T)

Returns the merged (union) set of the list of sets.

union(Ordset1, Ordset2) -> Ordset3
Types:

Ordset1 = ordset(T1)
Ordset2 = ordset(T2)
Ordset3 = ordset(T1 | T2)

Returns the merged (union) set of Ordset1 and Ordset2.

See Also
gb_sets(3), sets(3)

pool

324 | Ericsson AB. All Rights Reserved.: STDLIB

pool
Erlang module

This module can be used to run a set of Erlang nodes as a pool of computational processors. It is organized as a master
and a set of slave nodes and includes the following features:

• The slave nodes send regular reports to the master about their current load.

• Queries can be sent to the master to determine which node will have the least load.

The BIF statistics(run_queue) is used for estimating future loads. It returns the length of the queue of ready
to run processes in the Erlang runtime system.

The slave nodes are started with the slave(3) module. This effects terminal I/O, file I/O, and code loading.

If the master node fails, the entire pool exits.

Exports

attach(Node) -> already_attached | attached
Types:

Node = node()
Ensures that a pool master is running and includes Node in the pool master's pool of nodes.

get_node() -> node()
Returns the node with the expected lowest future load.

get_nodes() -> [node()]
Returns a list of the current member nodes of the pool.

pspawn(Mod, Fun, Args) -> pid()
Types:

Mod = module()
Fun = atom()
Args = [term()]

Spawns a process on the pool node that is expected to have the lowest future load.

pspawn_link(Mod, Fun, Args) -> pid()
Types:

Mod = module()
Fun = atom()
Args = [term()]

Spawns and links to a process on the pool node that is expected to have the lowest future load.

start(Name) -> Nodes
start(Name, Args) -> Nodes
Types:

pool

Ericsson AB. All Rights Reserved.: STDLIB | 325

Name = atom()
Args = string()
Nodes = [node()]

Starts a new pool. The file .hosts.erlang is read to find host names where the pool nodes can be started; see
section Files. The startup procedure fails if the file is not found.

The slave nodes are started with slave:start/2,3, passing along Name and, if provided, Args. Name is used
as the first part of the node names, Args is used to specify command-line arguments.

Access rights must be set so that all nodes in the pool have the authority to access each other.

The function is synchronous and all the nodes, and all the system servers, are running when it returns a value.

stop() -> stopped
Stops the pool and kills all the slave nodes.

Files
.hosts.erlang is used to pick hosts where nodes can be started. For information about format and location of
this file, see net_adm:host_file/0.

$HOME/.erlang.slave.out.HOST is used for all extra I/O that can come from the slave nodes on standard I/
O. If the startup procedure does not work, this file can indicate the reason.

proc_lib

326 | Ericsson AB. All Rights Reserved.: STDLIB

proc_lib
Erlang module

This module is used to start processes adhering to the OTP Design Principles. Specifically, the functions in this
module are used by the OTP standard behaviors (for example, gen_server, gen_fsm, and gen_statem) when
starting new processes. The functions can also be used to start special processes, user-defined processes that comply
to the OTP design principles. For an example, see section sys and proc_lib in OTP Design Principles.

Some useful information is initialized when a process starts. The registered names, or the process identifiers, of the
parent process, and the parent ancestors, are stored together with information about the function initially called in
the process.

While in "plain Erlang", a process is said to terminate normally only for exit reason normal, a process started using
proc_lib is also said to terminate normally if it exits with reason shutdown or {shutdown,Term}. shutdown
is the reason used when an application (supervision tree) is stopped.

When a process that is started using proc_lib terminates abnormally (that is, with another exit reason than normal,
shutdown, or {shutdown,Term}), a crash report is generated, which is written to terminal by the default SASL
event handler. That is, the crash report is normally only visible if the SASL application is started; see sasl(6) and
section SASL Error Logging in the SASL User's Guide.

The crash report contains the previously stored information, such as ancestors and initial function, the termination
reason, and information about other processes that terminate as a result of this process terminating.

Data Types
spawn_option() =
 link |
 monitor |
 {priority, priority_level()} |
 {max_heap_size, max_heap_size()} |
 {min_heap_size, integer() >= 0} |
 {min_bin_vheap_size, integer() >= 0} |
 {fullsweep_after, integer() >= 0} |
 {message_queue_data, off_heap | on_heap | mixed}
See erlang:spawn_opt/2,3,4,5.

priority_level() = high | low | max | normal
max_heap_size() =
 integer() >= 0 |
 #{size => integer() >= 0,
 kill => true,
 error_logger => true}
See erlang:process_flag(max_heap_size, MaxHeapSize).

dict_or_pid() =
 pid() |
 (ProcInfo :: [term()]) |

proc_lib

Ericsson AB. All Rights Reserved.: STDLIB | 327

 {X :: integer(), Y :: integer(), Z :: integer()}

Exports

format(CrashReport) -> string()
Types:

CrashReport = [term()]
Equivalent to format(CrashReport, latin1).

format(CrashReport, Encoding) -> string()
Types:

CrashReport = [term()]
Encoding = latin1 | unicode | utf8

This function can be used by a user-defined event handler to format a crash report. The crash report is sent using
error_logger:error_report(crash_report, CrashReport). That is, the event to be handled is of
the format {error_report, GL, {Pid, crash_report, CrashReport}}, where GL is the group leader
pid of process Pid that sent the crash report.

format(CrashReport, Encoding, Depth) -> string()
Types:

CrashReport = [term()]
Encoding = latin1 | unicode | utf8
Depth = unlimited | integer() >= 1

This function can be used by a user-defined event handler to format a crash report. When Depth is specified as a positive
integer, it is used in the format string to limit the output as follows: io_lib:format("~P", [Term,Depth]).

hibernate(Module, Function, Args) -> no_return()
Types:

Module = module()
Function = atom()
Args = [term()]

This function does the same as (and does call) the hibernate/3 BIF, but ensures that exception handling and
logging continues to work as expected when the process wakes up.

Always use this function instead of the BIF for processes started using proc_lib functions.

init_ack(Ret) -> ok
init_ack(Parent, Ret) -> ok
Types:

Parent = pid()
Ret = term()

This function must be used by a process that has been started by a start[_link]/3,4,5 function. It tells Parent
that the process has initialized itself, has started, or has failed to initialize itself.

Function init_ack/1 uses the parent value previously stored by the start function used.

proc_lib

328 | Ericsson AB. All Rights Reserved.: STDLIB

If this function is not called, the start function returns an error tuple (if a link and/or a time-out is used) or hang
otherwise.

The following example illustrates how this function and proc_lib:start_link/3 are used:

-module(my_proc).
-export([start_link/0]).
-export([init/1]).

start_link() ->
 proc_lib:start_link(my_proc, init, [self()]).

init(Parent) ->
 case do_initialization() of
 ok ->
 proc_lib:init_ack(Parent, {ok, self()});
 {error, Reason} ->
 exit(Reason)
 end,
 loop().

...

initial_call(Process) -> {Module, Function, Args} | false
Types:

Process = dict_or_pid()
Module = module()
Function = atom()
Args = [atom()]

Extracts the initial call of a process that was started using one of the spawn or start functions in this module. Process
can either be a pid, an integer tuple (from which a pid can be created), or the process information of a process Pid
fetched through an erlang:process_info(Pid) function call.

Note:
The list Args no longer contains the arguments, but the same number of atoms as the number of arguments; the
first atom is 'Argument__1', the second 'Argument__2', and so on. The reason is that the argument list
could waste a significant amount of memory, and if the argument list contained funs, it could be impossible to
upgrade the code for the module.

If the process was spawned using a fun, initial_call/1 no longer returns the fun, but the module,
function for the local function implementing the fun, and the arity, for example, {some_module,-work/3-
fun-0-,0} (meaning that the fun was created in function some_module:work/3). The reason is that
keeping the fun would prevent code upgrade for the module, and that a significant amount of memory could be
wasted.

proc_lib

Ericsson AB. All Rights Reserved.: STDLIB | 329

spawn(Fun) -> pid()
spawn(Node, Fun) -> pid()
spawn(Module, Function, Args) -> pid()
spawn(Node, Module, Function, Args) -> pid()
Types:

Node = node()
Fun = function()
Module = module()
Function = atom()
Args = [term()]

Spawns a new process and initializes it as described in the beginning of this manual page. The process is spawned
using the spawn BIFs.

spawn_link(Fun) -> pid()
spawn_link(Node, Fun) -> pid()
spawn_link(Module, Function, Args) -> pid()
spawn_link(Node, Module, Function, Args) -> pid()
Types:

Node = node()
Fun = function()
Module = module()
Function = atom()
Args = [term()]

Spawns a new process and initializes it as described in the beginning of this manual page. The process is spawned
using the spawn_link BIFs.

spawn_opt(Fun, SpawnOpts) -> pid()
spawn_opt(Node, Function, SpawnOpts) -> pid()
spawn_opt(Module, Function, Args, SpawnOpts) -> pid()
spawn_opt(Node, Module, Function, Args, SpawnOpts) -> pid()
Types:

Node = node()
Fun = function()
Module = module()
Function = atom()
Args = [term()]
SpawnOpts = [spawn_option()]

Spawns a new process and initializes it as described in the beginning of this manual page. The process is spawned
using the spawn_opt BIFs.

proc_lib

330 | Ericsson AB. All Rights Reserved.: STDLIB

Note:
Using spawn option monitor is not allowed. It causes the function to fail with reason badarg.

start(Module, Function, Args) -> Ret
start(Module, Function, Args, Time) -> Ret
start(Module, Function, Args, Time, SpawnOpts) -> Ret
start_link(Module, Function, Args) -> Ret
start_link(Module, Function, Args, Time) -> Ret
start_link(Module, Function, Args, Time, SpawnOpts) -> Ret
Types:

Module = module()
Function = atom()
Args = [term()]
Time = timeout()
SpawnOpts = [spawn_option()]
Ret = term() | {error, Reason :: term()}

Starts a new process synchronously. Spawns the process and waits for it to start. When the process has started, it must
call init_ack(Parent, Ret) or init_ack(Ret), where Parent is the process that evaluates this function.
At this time, Ret is returned.

If function start_link/3,4,5 is used and the process crashes before it has called init_ack/1,2, {error,
Reason} is returned if the calling process traps exits.

If Time is specified as an integer, this function waits for Time milliseconds for the new process to call init_ack,
or {error, timeout} is returned, and the process is killed.

Argument SpawnOpts, if specified, is passed as the last argument to the spawn_opt/2,3,4,5 BIF.

Note:
Using spawn option monitor is not allowed. It causes the function to fail with reason badarg.

stop(Process) -> ok
Types:

Process = pid() | RegName | {RegName, node()}
Equivalent to stop(Process, normal, infinity).

stop(Process, Reason, Timeout) -> ok
Types:

Process = pid() | RegName | {RegName, node()}
Reason = term()
Timeout = timeout()

Orders the process to exit with the specified Reason and waits for it to terminate.

proc_lib

Ericsson AB. All Rights Reserved.: STDLIB | 331

Returns ok if the process exits with the specified Reason within Timeout milliseconds.

If the call times out, a timeout exception is raised.

If the process does not exist, a noproc exception is raised.

The implementation of this function is based on the terminate system message, and requires that the process handles
system messages correctly. For information about system messages, see sys(3) and section sys and proc_lib in
OTP Design Principles.

translate_initial_call(Process) -> {Module, Function, Arity}
Types:

Process = dict_or_pid()
Module = module()
Function = atom()
Arity = byte()

This function is used by functions c:i/0 and c:regs/0 to present process information.

This function extracts the initial call of a process that was started using one of the spawn or start functions in this
module, and translates it to more useful information. Process can either be a pid, an integer tuple (from which a pid
can be created), or the process information of a process Pid fetched through an erlang:process_info(Pid)
function call.

If the initial call is to one of the system-defined behaviors such as gen_server or gen_event, it is translated to
more useful information. If a gen_server is spawned, the returned Module is the name of the callback module
and Function is init (the function that initiates the new server).

A supervisor and a supervisor_bridge are also gen_server processes. To return information that this
process is a supervisor and the name of the callback module, Module is supervisor and Function is the name
of the supervisor callback module. Arity is 1, as the init/1 function is called initially in the callback module.

By default, {proc_lib,init_p,5} is returned if no information about the initial call can be found. It is assumed
that the caller knows that the process has been spawned with the proc_lib module.

See Also
error_logger(3)

proplists

332 | Ericsson AB. All Rights Reserved.: STDLIB

proplists
Erlang module

Property lists are ordinary lists containing entries in the form of either tuples, whose first elements are keys used for
lookup and insertion, or atoms, which work as shorthand for tuples {Atom, true}. (Other terms are allowed in the
lists, but are ignored by this module.) If there is more than one entry in a list for a certain key, the first occurrence
normally overrides any later (irrespective of the arity of the tuples).

Property lists are useful for representing inherited properties, such as options passed to a function where a user can
specify options overriding the default settings, object properties, annotations, and so on.

Two keys are considered equal if they match (=:=). That is, numbers are compared literally rather than by value, so
that, for example, 1 and 1.0 are different keys.

Data Types
property() = atom() | tuple()

Exports

append_values(Key, ListIn) -> ListOut
Types:

Key = term()
ListIn = ListOut = [term()]

Similar to get_all_values/2, but each value is wrapped in a list unless it is already itself a list. The resulting list
of lists is concatenated. This is often useful for "incremental" options.

Example:

append_values(a, [{a, [1,2]}, {b, 0}, {a, 3}, {c, -1}, {a, [4]}])

returns:

[1,2,3,4]

compact(ListIn) -> ListOut
Types:

ListIn = ListOut = [property()]

Minimizes the representation of all entries in the list. This is equivalent to [property(P) || P <- ListIn].

See also property/1, unfold/1.

delete(Key, List) -> List
Types:

proplists

Ericsson AB. All Rights Reserved.: STDLIB | 333

Key = term()
List = [term()]

Deletes all entries associated with Key from List.

expand(Expansions, ListIn) -> ListOut
Types:

Expansions = [{Property :: property(), Expansion :: [term()]}]
ListIn = ListOut = [term()]

Expands particular properties to corresponding sets of properties (or other terms). For each pair {Property,
Expansion} in Expansions: if E is the first entry in ListIn with the same key as Property, and E and
Property have equivalent normal forms, then E is replaced with the terms in Expansion, and any following
entries with the same key are deleted from ListIn.

For example, the following expressions all return [fie, bar, baz, fum]:

expand([{foo, [bar, baz]}], [fie, foo, fum])
expand([{{foo, true}, [bar, baz]}], [fie, foo, fum])
expand([{{foo, false}, [bar, baz]}], [fie, {foo, false}, fum])

However, no expansion is done in the following call because {foo, false} shadows foo:

expand([{{foo, true}, [bar, baz]}], [{foo, false}, fie, foo, fum])

Notice that if the original property term is to be preserved in the result when expanded, it must be included in the
expansion list. The inserted terms are not expanded recursively. If Expansions contains more than one property
with the same key, only the first occurrence is used.

See also normalize/2.

get_all_values(Key, List) -> [term()]
Types:

Key = term()
List = [term()]

Similar to get_value/2, but returns the list of values for all entries {Key, Value} in List. If no such entry
exists, the result is the empty list.

get_bool(Key, List) -> boolean()
Types:

Key = term()
List = [term()]

Returns the value of a boolean key/value option. If lookup(Key, List) would yield {Key, true}, this function
returns true, otherwise false.

See also get_value/2, lookup/2.

proplists

334 | Ericsson AB. All Rights Reserved.: STDLIB

get_keys(List) -> [term()]
Types:

List = [term()]
Returns an unordered list of the keys used in List, not containing duplicates.

get_value(Key, List) -> term()
Types:

Key = term()
List = [term()]

Equivalent to get_value(Key, List, undefined).

get_value(Key, List, Default) -> term()
Types:

Key = term()
List = [term()]
Default = term()

Returns the value of a simple key/value property in List. If lookup(Key, List) would yield {Key, Value},
this function returns the corresponding Value, otherwise Default.

See also get_all_values/2, get_bool/2, get_value/2, lookup/2.

is_defined(Key, List) -> boolean()
Types:

Key = term()
List = [term()]

Returns true if List contains at least one entry associated with Key, otherwise false.

lookup(Key, List) -> none | tuple()
Types:

Key = term()
List = [term()]

Returns the first entry associated with Key in List, if one exists, otherwise returns none. For an atom A in the list,
the tuple {A, true} is the entry associated with A.

See also get_bool/2, get_value/2, lookup_all/2.

lookup_all(Key, List) -> [tuple()]
Types:

Key = term()
List = [term()]

Returns the list of all entries associated with Key in List. If no such entry exists, the result is the empty list.

See also lookup/2.

normalize(ListIn, Stages) -> ListOut
Types:

proplists

Ericsson AB. All Rights Reserved.: STDLIB | 335

ListIn = [term()]
Stages = [Operation]
Operation =
 {aliases, Aliases} |
 {negations, Negations} |
 {expand, Expansions}
Aliases = Negations = [{Key, Key}]
Expansions = [{Property :: property(), Expansion :: [term()]}]
ListOut = [term()]

Passes ListIn through a sequence of substitution/expansion stages. For an aliases operation, function
substitute_aliases/2 is applied using the specified list of aliases:

• For a negations operation, substitute_negations/2 is applied using the specified negation list.

• For an expand operation, function expand/2 is applied using the specified list of expansions.

The final result is automatically compacted (compare compact/1).

Typically you want to substitute negations first, then aliases, then perform one or more expansions (sometimes you
want to pre-expand particular entries before doing the main expansion). You might want to substitute negations and/
or aliases repeatedly, to allow such forms in the right-hand side of aliases and expansion lists.

See also substitute_negations/2.

property(PropertyIn) -> PropertyOut
Types:

PropertyIn = PropertyOut = property()

Creates a normal form (minimal) representation of a property. If PropertyIn is {Key, true}, where Key is an
atom, Key is returned, otherwise the whole term PropertyIn is returned.

See also property/2.

property(Key, Value) -> Property
Types:

Key = Value = term()
Property = atom() | {term(), term()}

Creates a normal form (minimal) representation of a simple key/value property. Returns Key if Value is true and
Key is an atom, otherwise a tuple {Key, Value} is returned.

See also property/1.

split(List, Keys) -> {Lists, Rest}
Types:

List = Keys = [term()]
Lists = [[term()]]
Rest = [term()]

Partitions List into a list of sublists and a remainder. Lists contains one sublist for each key in Keys, in the
corresponding order. The relative order of the elements in each sublist is preserved from the original List. Rest
contains the elements in List that are not associated with any of the specified keys, also with their original relative
order preserved.

proplists

336 | Ericsson AB. All Rights Reserved.: STDLIB

Example:

split([{c, 2}, {e, 1}, a, {c, 3, 4}, d, {b, 5}, b], [a, b, c])

returns:

{[[a], [{b, 5}, b],[{c, 2}, {c, 3, 4}]], [{e, 1}, d]}

substitute_aliases(Aliases, ListIn) -> ListOut
Types:

Aliases = [{Key, Key}]
Key = term()
ListIn = ListOut = [term()]

Substitutes keys of properties. For each entry in ListIn, if it is associated with some key K1 such that {K1, K2}
occurs in Aliases, the key of the entry is changed to K2. If the same K1 occurs more than once in Aliases, only
the first occurrence is used.

For example, substitute_aliases([{color, colour}], L) replaces all tuples {color, ...} in L
with {colour, ...}, and all atoms color with colour.

See also normalize/2, substitute_negations/2.

substitute_negations(Negations, ListIn) -> ListOut
Types:

Negations = [{Key1, Key2}]
Key1 = Key2 = term()
ListIn = ListOut = [term()]

Substitutes keys of boolean-valued properties and simultaneously negates their values. For each entry in ListIn, if
it is associated with some key K1 such that {K1, K2} occurs in Negations: if the entry was {K1, true}, it is
replaced with {K2, false}, otherwise with {K2, true}, thus changing the name of the option and simultaneously
negating the value specified by get_bool(Key, ListIn. If the same K1 occurs more than once in Negations,
only the first occurrence is used.

For example, substitute_negations([{no_foo, foo}], L) replaces any atom no_foo or tuple
{no_foo, true} in L with {foo, false}, and any other tuple {no_foo, ...} with {foo, true}.

See also get_bool/2, normalize/2, substitute_aliases/2.

unfold(ListIn) -> ListOut
Types:

ListIn = ListOut = [term()]

Unfolds all occurrences of atoms in ListIn to tuples {Atom, true}.

qlc

Ericsson AB. All Rights Reserved.: STDLIB | 337

qlc
Erlang module

This module provides a query interface to Mnesia, ETS, Dets, and other data structures that provide an iterator style
traversal of objects.

Overview
This module provides a query interface to QLC tables. Typical QLC tables are Mnesia, ETS, and Dets tables. Support
is also provided for user-defined tables, see section Implementing a QLC Table. A query is expressed using Query
List Comprehensions (QLCs). The answers to a query are determined by data in QLC tables that fulfill the constraints
expressed by the QLCs of the query. QLCs are similar to ordinary list comprehensions as described in Erlang
Reference Manual and Programming Examples, except that variables introduced in patterns cannot be used in list
expressions. In the absence of optimizations and options such as cache and unique (see section Common Options,
every QLC free of QLC tables evaluates to the same list of answers as the identical ordinary list comprehension.

While ordinary list comprehensions evaluate to lists, calling q/1,2 returns a query handle. To obtain all the answers
to a query, eval/1,2 is to be called with the query handle as first argument. Query handles are essentially functional
objects (funs) created in the module calling q/1,2. As the funs refer to the module code, be careful not to keep query
handles too long if the module code is to be replaced. Code replacement is described in section Compilation and Code
Loading in the Erlang Reference Manual. The list of answers can also be traversed in chunks by use of a query cursor.
Query cursors are created by calling cursor/1,2 with a query handle as first argument. Query cursors are essentially
Erlang processes. One answer at a time is sent from the query cursor process to the process that created the cursor.

Syntax
Syntactically QLCs have the same parts as ordinary list comprehensions:

[Expression || Qualifier1, Qualifier2, ...]

Expression (the template) is any Erlang expression. Qualifiers are either filters or generators. Filters are
Erlang expressions returning boolean(). Generators have the form Pattern <- ListExpression, where
ListExpression is an expression evaluating to a query handle or a list. Query handles are returned from
append/1,2, keysort/2,3, q/1,2, sort/1,2, string_to_handle/1,2,3, and table/2.

Evaluation
A query handle is evaluated in the following order:

• Inspection of options and the collection of information about tables. As a result, qualifiers are modified during
the optimization phase.

• All list expressions are evaluated. If a cursor has been created, evaluation takes place in the cursor process. For
list expressions that are QLCs, the list expressions of the generators of the QLCs are evaluated as well. Be careful
if list expressions have side effects, as list expressions are evaluated in unspecified order.

• The answers are found by evaluating the qualifiers from left to right, backtracking when some filter returns false,
or collecting the template when all filters return true.

Filters that do not return boolean() but fail are handled differently depending on their syntax: if the filter is a guard,
it returns false, otherwise the query evaluation fails. This behavior makes it possible for the qlc module to do some
optimizations without affecting the meaning of a query. For example, when testing some position of a table and one or
more constants for equality, only the objects with equal values are candidates for further evaluation. The other objects

qlc

338 | Ericsson AB. All Rights Reserved.: STDLIB

are guaranteed to make the filter return false, but never fail. The (small) set of candidate objects can often be found
by looking up some key values of the table or by traversing the table using a match specification. It is necessary to
place the guard filters immediately after the table generator, otherwise the candidate objects are not restricted to a
small set. The reason is that objects that could make the query evaluation fail must not be excluded by looking up a
key or running a match specification.

Join
The qlc module supports fast join of two query handles. Fast join is possible if some position P1 of one query handler
and some position P2 of another query handler are tested for equality. Two fast join methods are provided:

• Lookup join traverses all objects of one query handle and finds objects of the other handle (a QLC table) such
that the values at P1 and P2 match or compare equal. The qlc module does not create any indexes but looks up
values using the key position and the indexed positions of the QLC table.

• Merge join sorts the objects of each query handle if necessary and filters out objects where the values at P1
and P2 do not compare equal. If many objects with the same value of P2 exist, a temporary file is used for the
equivalence classes.

The qlc module warns at compile time if a QLC combines query handles in such a way that more than one join is
possible. That is, no query planner is provided that can select a good order between possible join operations. It is up
to the user to order the joins by introducing query handles.

The join is to be expressed as a guard filter. The filter must be placed immediately after the two joined generators,
possibly after guard filters that use variables from no other generators but the two joined generators. The qlc
module inspects the operands of =:=/2, ==/2, is_record/2, element/2, and logical operators (and/2, or/2,
andalso/2, orelse/2, xor/2) when determining which joins to consider.

Common Options
The following options are accepted by cursor/2, eval/2, fold/4, and info/2:

• {cache_all, Cache}, where Cache is equal to ets or list adds a {cache, Cache} option to every
list expression of the query except tables and lists. Defaults to {cache_all, no}. Option cache_all is
equivalent to {cache_all, ets}.

• {max_list_size, MaxListSize}, where MaxListSize is the size in bytes of terms on the external
format. If the accumulated size of collected objects exceeds MaxListSize, the objects are written onto a
temporary file. This option is used by option {cache, list} and by the merge join method. Defaults to
512*1024 bytes.

• {tmpdir_usage, TmpFileUsage} determines the action taken when qlc is about to create temporary
files on the directory set by option tmpdir. If the value is not_allowed, an error tuple is returned, otherwise
temporary files are created as needed. Default is allowed, which means that no further action is taken. The
values info_msg, warning_msg, and error_msg mean that the function with the corresponding name in
module error_logger is called for printing some information (currently the stacktrace).

• {tmpdir, TempDirectory} sets the directory used by merge join for temporary files and by option
{cache, list}. The option also overrides option tmpdir of keysort/3 and sort/2. Defaults to "",
which means that the directory returned by file:get_cwd() is used.

• {unique_all, true} adds a {unique, true} option to every list expression of the query. Defaults to
{unique_all, false}. Option unique_all is equivalent to {unique_all, true}.

Getting Started
As mentioned earlier, queries are expressed in the list comprehension syntax as described in section Expressions in
Erlang Reference Manual. In the following, some familiarity with list comprehensions is assumed. The examples in
section List Comprehensions in Programming Examples can get you started. Notice that list comprehensions do not

qlc

Ericsson AB. All Rights Reserved.: STDLIB | 339

add any computational power to the language; anything that can be done with list comprehensions can also be done
without them. But they add syntax for expressing simple search problems, which is compact and clear once you get
used to it.

Many list comprehension expressions can be evaluated by the qlc module. Exceptions are expressions, such that
variables introduced in patterns (or filters) are used in some generator later in the list comprehension. As an example,
consider an implementation of lists:append(L): [X ||Y <- L, X <- Y]. Y is introduced in the first
generator and used in the second. The ordinary list comprehension is normally to be preferred when there is a choice
as to which to use. One difference is that eval/1,2 collects answers in a list that is finally reversed, while list
comprehensions collect answers on the stack that is finally unwound.

What the qlc module primarily adds to list comprehensions is that data can be read from QLC tables in small chunks.
A QLC table is created by calling qlc:table/2. Usually qlc:table/2 is not called directly from the query
but through an interface function of some data structure. Erlang/OTP includes a few examples of such functions:
mnesia:table/1,2, ets:table/1,2, and dets:table/1,2. For a given data structure, many functions
can create QLC tables, but common for these functions is that they return a query handle created by qlc:table/2.
Using the QLC tables provided by Erlang/OTP is usually probably sufficient, but for the more advanced user section
Implementing a QLC Table describes the implementation of a function calling qlc:table/2.

Besides qlc:table/2, other functions return query handles. They are used more seldom than tables, but are
sometimes useful. qlc:append/1,2 traverses objects from many tables or lists after each other. If, for example,
you want to traverse all answers to a query QH and then finish off by a term {finished}, you can do that by calling
qlc:append(QH, [{finished}]). append/2 first returns all objects of QH, then {finished}. If a tuple
{finished} exists among the answers to QH, it is returned twice from append/2.

As another example, consider concatenating the answers to two queries QH1 and QH2 while removing all duplicates.
This is accomplished by using option unique:

qlc:q([X || X <- qlc:append(QH1, QH2)], {unique, true})

The cost is substantial: every returned answer is stored in an ETS table. Before returning an answer, it is looked up
in the ETS table to check if it has already been returned. Without the unique option, all answers to QH1 would be
returned followed by all answers to QH2. The unique option keeps the order between the remaining answers.

If the order of the answers is not important, there is an alternative to the unique option, namely to sort the answers
uniquely:

qlc:sort(qlc:q([X || X <- qlc:append(QH1, QH2)], {unique, true})).

This query also removes duplicates but the answers are sorted. If there are many answers, temporary files are used.
Notice that to get the first unique answer, all answers must be found and sorted. Both alternatives find duplicates by
comparing answers, that is, if A1 and A2 are answers found in that order, then A2 is a removed if A1 == A2.

To return only a few answers, cursors can be used. The following code returns no more than five answers using an
ETS table for storing the unique answers:

C = qlc:cursor(qlc:q([X || X <- qlc:append(QH1, QH2)],{unique,true})),
R = qlc:next_answers(C, 5),
ok = qlc:delete_cursor(C),
R.

qlc

340 | Ericsson AB. All Rights Reserved.: STDLIB

QLCs are convenient for stating constraints on data from two or more tables. The following example does a natural
join on two query handles on position 2:

qlc:q([{X1,X2,X3,Y1} ||
 {X1,X2,X3} <- QH1,
 {Y1,Y2} <- QH2,
 X2 =:= Y2])

The qlc module evaluates this differently depending on the query handles QH1 and QH2. If, for example, X2 is
matched against the key of a QLC table, the lookup join method traverses the objects of QH2 while looking up key
values in the table. However, if not X2 or Y2 is matched against the key or an indexed position of a QLC table, the
merge join method ensures that QH1 and QH2 are both sorted on position 2 and next do the join by traversing the
objects one by one.

Option join can be used to force the qlc module to use a certain join method. For the rest of this section it is assumed
that the excessively slow join method called "nested loop" has been chosen:

qlc:q([{X1,X2,X3,Y1} ||
 {X1,X2,X3} <- QH1,
 {Y1,Y2} <- QH2,
 X2 =:= Y2],
 {join, nested_loop})

In this case the filter is applied to every possible pair of answers to QH1 and QH2, one at a time. If there are M answers
to QH1 and N answers to QH2, the filter is run M*N times.

If QH2 is a call to the function for gb_trees, as defined in section Implementing a QLC Table, then
gb_table:table/1, the iterator for the gb-tree is initiated for each answer to QH1. The objects of the gb-tree are
then returned one by one. This is probably the most efficient way of traversing the table in that case, as it takes minimal
computational power to get the following object. But if QH2 is not a table but a more complicated QLC, it can be more
efficient to use some RAM memory for collecting the answers in a cache, particularly if there are only a few answers.
It must then be assumed that evaluating QH2 has no side effects so that the meaning of the query does not change if
QH2 is evaluated only once. One way of caching the answers is to evaluate QH2 first of all and substitute the list of
answers for QH2 in the query. Another way is to use option cache. It is expressed like this:

QH2' = qlc:q([X || X <- QH2], {cache, ets})

or only

QH2' = qlc:q([X || X <- QH2], cache)

The effect of option cache is that when generator QH2' is run the first time, every answer is stored in an ETS table.
When the next answer of QH1 is tried, answers to QH2' are copied from the ETS table, which is very fast. As for
option unique the cost is a possibly substantial amount of RAM memory.

Option {cache, list} offers the possibility to store the answers in a list on the process heap. This has the potential
of being faster than ETS tables, as there is no need to copy answers from the table. However, it can often result in
slower evaluation because of more garbage collections of the process heap and increased RAM memory consumption
because of larger heaps. Another drawback with cache lists is that if the list size exceeds a limit, a temporary file is

qlc

Ericsson AB. All Rights Reserved.: STDLIB | 341

used. Reading the answers from a file is much slower than copying them from an ETS table. But if the available RAM
memory is scarce, setting the limit to some low value is an alternative.

Option cache_all can be set to ets or list when evaluating a query. It adds a cache or {cache, list}
option to every list expression except QLC tables and lists on all levels of the query. This can be used for testing if
caching would improve efficiency at all. If the answer is yes, further testing is needed to pinpoint the generators that
are to be cached.

Implementing a QLC Table
As an example of how to use function table/2, the implementation of a QLC table for the gb_trees module
is given:

-module(gb_table).

-export([table/1]).

table(T) ->
 TF = fun() -> qlc_next(gb_trees:next(gb_trees:iterator(T))) end,
 InfoFun = fun(num_of_objects) -> gb_trees:size(T);
 (keypos) -> 1;
 (is_sorted_key) -> true;
 (is_unique_objects) -> true;
 (_) -> undefined
 end,
 LookupFun =
 fun(1, Ks) ->
 lists:flatmap(fun(K) ->
 case gb_trees:lookup(K, T) of
 {value, V} -> [{K,V}];
 none -> []
 end
 end, Ks)
 end,
 FormatFun =
 fun({all, NElements, ElementFun}) ->
 ValsS = io_lib:format("gb_trees:from_orddict(~w)",
 [gb_nodes(T, NElements, ElementFun)]),
 io_lib:format("gb_table:table(~s)", [ValsS]);
 ({lookup, 1, KeyValues, _NElements, ElementFun}) ->
 ValsS = io_lib:format("gb_trees:from_orddict(~w)",
 [gb_nodes(T, infinity, ElementFun)]),
 io_lib:format("lists:flatmap(fun(K) -> "
 "case gb_trees:lookup(K, ~s) of "
 "{value, V} -> [{K,V}];none -> [] end "
 "end, ~w)",
 [ValsS, [ElementFun(KV) || KV <- KeyValues]])
 end,
 qlc:table(TF, [{info_fun, InfoFun}, {format_fun, FormatFun},
 {lookup_fun, LookupFun},{key_equality,'=='}]).

qlc_next({X, V, S}) ->
 [{X,V} | fun() -> qlc_next(gb_trees:next(S)) end];
qlc_next(none) ->
 [].

gb_nodes(T, infinity, ElementFun) ->
 gb_nodes(T, -1, ElementFun);
gb_nodes(T, NElements, ElementFun) ->
 gb_iter(gb_trees:iterator(T), NElements, ElementFun).

gb_iter(_I, 0, _EFun) ->

qlc

342 | Ericsson AB. All Rights Reserved.: STDLIB

 '...';
gb_iter(I0, N, EFun) ->
 case gb_trees:next(I0) of
 {X, V, I} ->
 [EFun({X,V}) | gb_iter(I, N-1, EFun)];
 none ->
 []
 end.

TF is the traversal function. The qlc module requires that there is a way of traversing all objects of the data structure.
gb_trees has an iterator function suitable for that purpose. Notice that for each object returned, a new fun is created.
As long as the list is not terminated by [], it is assumed that the tail of the list is a nullary function and that calling
the function returns further objects (and functions).

The lookup function is optional. It is assumed that the lookup function always finds values much faster than it would
take to traverse the table. The first argument is the position of the key. As qlc_next/1 returns the objects as
{Key, Value} pairs, the position is 1. Notice that the lookup function is to return {Key, Value} pairs, as the
traversal function does.

The format function is also optional. It is called by info/1,2 to give feedback at runtime of how the query is to be
evaluated. Try to give as good feedback as possible without showing too much details. In the example, at most seven
objects of the table are shown. The format function handles two cases: all means that all objects of the table are
traversed; {lookup, 1, KeyValues} means that the lookup function is used for looking up key values.

Whether the whole table is traversed or only some keys looked up depends on how the query is expressed. If the query
has the form

qlc:q([T || P <- LE, F])

and P is a tuple, the qlc module analyzes P and F in compile time to find positions of tuple P that are tested for equality
to constants. If such a position at runtime turns out to be the key position, the lookup function can be used, otherwise
all objects of the table must be traversed. The info function InfoFun returns the key position. There can be indexed
positions as well, also returned by the info function. An index is an extra table that makes lookup on some position
fast. Mnesia maintains indexes upon request, and introduces so called secondary keys. The qlc module prefers to
look up objects using the key before secondary keys regardless of the number of constants to look up.

Key Equality
Erlang/OTP has two operators for testing term equality: ==/2 and =:=/2. The difference is all about the integers that
can be represented by floats. For example, 2 == 2.0 evaluates to true while 2 =:= 2.0 evaluates to false.
Normally this is a minor issue, but the qlc module cannot ignore the difference, which affects the user's choice of
operators in QLCs.

If the qlc module at compile time can determine that some constant is free of integers, it does not matter which one
of ==/2 or =:=/2 is used:

1> E1 = ets:new(t, [set]), % uses =:=/2 for key equality
Q1 = qlc:q([K ||
{K} <- ets:table(E1),
K == 2.71 orelse K == a]),
io:format("~s~n", [qlc:info(Q1)]).
ets:match_spec_run(lists:flatmap(fun(V) ->
 ets:lookup(20493, V)
 end,
 [a,2.71]),

qlc

Ericsson AB. All Rights Reserved.: STDLIB | 343

 ets:match_spec_compile([{{'$1'},[],['$1']}]))

In the example, operator ==/2 has been handled exactly as =:=/2 would have been handled. However, if it cannot
be determined at compile time that some constant is free of integers, and the table uses =:=/2 when comparing keys
for equality (see option key_equality), then the qlc module does not try to look up the constant. The reason is that
there is in the general case no upper limit on the number of key values that can compare equal to such a constant;
every combination of integers and floats must be looked up:

2> E2 = ets:new(t, [set]),
true = ets:insert(E2, [{{2,2},a},{{2,2.0},b},{{2.0,2},c}]),
F2 = fun(I) ->
qlc:q([V || {K,V} <- ets:table(E2), K == I])
end,
Q2 = F2({2,2}),
io:format("~s~n", [qlc:info(Q2)]).
ets:table(53264,
 [{traverse,
 {select,[{{'$1','$2'},[{'==','$1',{const,{2,2}}}],['$2']}]}}])
3> lists:sort(qlc:e(Q2)).
[a,b,c]

Looking up only {2,2} would not return b and c.

If the table uses ==/2 when comparing keys for equality, the qlc module looks up the constant regardless of which
operator is used in the QLC. However, ==/2 is to be preferred:

4> E3 = ets:new(t, [ordered_set]), % uses ==/2 for key equality
true = ets:insert(E3, [{{2,2.0},b}]),
F3 = fun(I) ->
qlc:q([V || {K,V} <- ets:table(E3), K == I])
end,
Q3 = F3({2,2}),
io:format("~s~n", [qlc:info(Q3)]).
ets:match_spec_run(ets:lookup(86033, {2,2}),
 ets:match_spec_compile([{{'$1','$2'},[],['$2']}]))
5> qlc:e(Q3).
[b]

Lookup join is handled analogously to lookup of constants in a table: if the join operator is ==/2, and the table where
constants are to be looked up uses =:=/2 when testing keys for equality, then the qlc module does not consider
lookup join for that table.

Data Types
abstract_expr() = erl_parse:abstract_expr()
Parse trees for Erlang expression, see section The Abstract Format in the ERTS User's Guide.

answer() = term()
answers() = [answer()]
cache() = ets | list | no
match_expression() = ets:match_spec()
Match specification, see section Match Specifications in Erlang in the ERTS User's Guide and ms_transform(3).

qlc

344 | Ericsson AB. All Rights Reserved.: STDLIB

no_files() = integer() >= 1
An integer > 1.

key_pos() = integer() >= 1 | [integer() >= 1]
max_list_size() = integer() >= 0
order() = ascending | descending | order_fun()
order_fun() = fun((term(), term()) -> boolean())
query_cursor()
A query cursor.

query_handle()
A query handle.

query_handle_or_list() = query_handle() | list()
query_list_comprehension() = term()
A literal query list comprehension.

spawn_options() = default | [proc_lib:spawn_option()]
sort_options() = [sort_option()] | sort_option()
sort_option() =
 {compressed, boolean()} |
 {no_files, no_files()} |
 {order, order()} |
 {size, integer() >= 1} |
 {tmpdir, tmp_directory()} |
 {unique, boolean()}
See file_sorter(3).

tmp_directory() = [] | file:name()
tmp_file_usage() =
 allowed | not_allowed | info_msg | warning_msg | error_msg

Exports

append(QHL) -> QH
Types:

QHL = [query_handle_or_list()]
QH = query_handle()

Returns a query handle. When evaluating query handle QH, all answers to the first query handle in QHL are returned,
followed by all answers to the remaining query handles in QHL.

append(QH1, QH2) -> QH3
Types:

QH1 = QH2 = query_handle_or_list()
QH3 = query_handle()

Returns a query handle. When evaluating query handle QH3, all answers to QH1 are returned, followed by all answers
to QH2.

append(QH1, QH2) is equivalent to append([QH1, QH2]).

qlc

Ericsson AB. All Rights Reserved.: STDLIB | 345

cursor(QH) -> Cursor
cursor(QH, Options) -> Cursor
Types:

QH = query_handle_or_list()
Options = [Option] | Option
Option =
 {cache_all, cache()} |
 cache_all |
 {max_list_size, max_list_size()} |
 {spawn_options, spawn_options()} |
 {tmpdir_usage, tmp_file_usage()} |
 {tmpdir, tmp_directory()} |
 {unique_all, boolean()} |
 unique_all
Cursor = query_cursor()

Creates a query cursor and makes the calling process the owner of the cursor. The cursor is to be used as argument to
next_answers/1,2 and (eventually) delete_cursor/1. Calls erlang:spawn_opt/2 to spawn and link
to a process that evaluates the query handle. The value of option spawn_options is used as last argument when
calling spawn_opt/2. Defaults to [link].

Example:

1> QH = qlc:q([{X,Y} || X <- [a,b], Y <- [1,2]]),
QC = qlc:cursor(QH),
qlc:next_answers(QC, 1).
[{a,1}]
2> qlc:next_answers(QC, 1).
[{a,2}]
3> qlc:next_answers(QC, all_remaining).
[{b,1},{b,2}]
4> qlc:delete_cursor(QC).
ok

cursor(QH) is equivalent to cursor(QH, []).

delete_cursor(QueryCursor) -> ok
Types:

QueryCursor = query_cursor()
Deletes a query cursor. Only the owner of the cursor can delete the cursor.

e(QH) -> Answers | Error
e(QH, Options) -> Answers | Error
eval(QH) -> Answers | Error
eval(QH, Options) -> Answers | Error
Types:

qlc

346 | Ericsson AB. All Rights Reserved.: STDLIB

QH = query_handle_or_list()
Answers = answers()
Options = [Option] | Option
Option =
 {cache_all, cache()} |
 cache_all |
 {max_list_size, max_list_size()} |
 {tmpdir_usage, tmp_file_usage()} |
 {tmpdir, tmp_directory()} |
 {unique_all, boolean()} |
 unique_all
Error = {error, module(), Reason}
Reason = file_sorter:reason()

Evaluates a query handle in the calling process and collects all answers in a list.

Example:

1> QH = qlc:q([{X,Y} || X <- [a,b], Y <- [1,2]]),
qlc:eval(QH).
[{a,1},{a,2},{b,1},{b,2}]

eval(QH) is equivalent to eval(QH, []).

fold(Function, Acc0, QH) -> Acc1 | Error
fold(Function, Acc0, QH, Options) -> Acc1 | Error
Types:

QH = query_handle_or_list()
Function = fun((answer(), AccIn) -> AccOut)
Acc0 = Acc1 = AccIn = AccOut = term()
Options = [Option] | Option
Option =
 {cache_all, cache()} |
 cache_all |
 {max_list_size, max_list_size()} |
 {tmpdir_usage, tmp_file_usage()} |
 {tmpdir, tmp_directory()} |
 {unique_all, boolean()} |
 unique_all
Error = {error, module(), Reason}
Reason = file_sorter:reason()

Calls Function on successive answers to the query handle together with an extra argument AccIn. The query
handle and the function are evaluated in the calling process. Function must return a new accumulator, which is
passed to the next call. Acc0 is returned if there are no answers to the query handle.

Example:

1> QH = [1,2,3,4,5,6],

qlc

Ericsson AB. All Rights Reserved.: STDLIB | 347

qlc:fold(fun(X, Sum) -> X + Sum end, 0, QH).
21

fold(Function, Acc0, QH) is equivalent to fold(Function, Acc0, QH, []).

format_error(Error) -> Chars
Types:

Error = {error, module(), term()}
Chars = io_lib:chars()

Returns a descriptive string in English of an error tuple returned by some of the functions of the qlc module or the
parse transform. This function is mainly used by the compiler invoking the parse transform.

info(QH) -> Info
info(QH, Options) -> Info
Types:

QH = query_handle_or_list()
Options = [Option] | Option
Option = EvalOption | ReturnOption
EvalOption =
 {cache_all, cache()} |
 cache_all |
 {max_list_size, max_list_size()} |
 {tmpdir_usage, tmp_file_usage()} |
 {tmpdir, tmp_directory()} |
 {unique_all, boolean()} |
 unique_all
ReturnOption =
 {depth, Depth} |
 {flat, boolean()} |
 {format, Format} |
 {n_elements, NElements}
Depth = infinity | integer() >= 0
Format = abstract_code | string
NElements = infinity | integer() >= 1
Info = abstract_expr() | string()

Returns information about a query handle. The information describes the simplifications and optimizations that are
the results of preparing the query for evaluation. This function is probably mainly useful during debugging.

The information has the form of an Erlang expression where QLCs most likely occur. Depending on the format
functions of mentioned QLC tables, it is not certain that the information is absolutely accurate.

Options:

• The default is to return a sequence of QLCs in a block, but if option {flat, false} is specified, one single
QLC is returned.

• The default is to return a string, but if option {format, abstract_code} is specified, abstract code is
returned instead. In the abstract code, port identifiers, references, and pids are represented by strings.

• The default is to return all elements in lists, but if option {n_elements, NElements} is specified, only a
limited number of elements are returned.

qlc

348 | Ericsson AB. All Rights Reserved.: STDLIB

• The default is to show all parts of objects and match specifications, but if option {depth, Depth} is specified,
parts of terms below a certain depth are replaced by '...'.

info(QH) is equivalent to info(QH, []).

Examples:

In the following example two simple QLCs are inserted only to hold option {unique, true}:

1> QH = qlc:q([{X,Y} || X <- [x,y], Y <- [a,b]]),
io:format("~s~n", [qlc:info(QH, unique_all)]).
begin
 V1 =
 qlc:q([
 SQV ||
 SQV <- [x,y]
],
 [{unique,true}]),
 V2 =
 qlc:q([
 SQV ||
 SQV <- [a,b]
],
 [{unique,true}]),
 qlc:q([
 {X,Y} ||
 X <- V1,
 Y <- V2
],
 [{unique,true}])
end

In the following example QLC V2 has been inserted to show the joined generators and the join method chosen. A
convention is used for lookup join: the first generator (G2) is the one traversed, the second (G1) is the table where
constants are looked up.

1> E1 = ets:new(e1, []),
E2 = ets:new(e2, []),
true = ets:insert(E1, [{1,a},{2,b}]),
true = ets:insert(E2, [{a,1},{b,2}]),
Q = qlc:q([{X,Z,W} ||
{X, Z} <- ets:table(E1),
{W, Y} <- ets:table(E2),
X =:= Y]),
io:format("~s~n", [qlc:info(Q)]).
begin
 V1 =
 qlc:q([
 P0 ||
 P0 = {W,Y} <- ets:table(17)
]),
 V2 =
 qlc:q([
 [G1|G2] ||
 G2 <- V1,
 G1 <- ets:table(16),
 element(2, G1) =:= element(1, G2)
],
 [{join,lookup}]),
 qlc:q([

qlc

Ericsson AB. All Rights Reserved.: STDLIB | 349

 {X,Z,W} ||
 [{X,Z}|{W,Y}] <- V2
])
end

keysort(KeyPos, QH1) -> QH2
keysort(KeyPos, QH1, SortOptions) -> QH2
Types:

KeyPos = key_pos()
SortOptions = sort_options()
QH1 = query_handle_or_list()
QH2 = query_handle()

Returns a query handle. When evaluating query handle QH2, the answers to query handle QH1 are sorted by
file_sorter:keysort/4 according to the options.

The sorter uses temporary files only if QH1 does not evaluate to a list and the size of the binary representation of the
answers exceeds Size bytes, where Size is the value of option size.

keysort(KeyPos, QH1) is equivalent to keysort(KeyPos, QH1, []).

next_answers(QueryCursor) -> Answers | Error
next_answers(QueryCursor, NumberOfAnswers) -> Answers | Error
Types:

QueryCursor = query_cursor()
Answers = answers()
NumberOfAnswers = all_remaining | integer() >= 1
Error = {error, module(), Reason}
Reason = file_sorter:reason()

Returns some or all of the remaining answers to a query cursor. Only the owner of QueryCursor can retrieve
answers.

Optional argument NumberOfAnswers determines the maximum number of answers returned. Defaults to 10. If
less than the requested number of answers is returned, subsequent calls to next_answers return [].

q(QLC) -> QH
q(QLC, Options) -> QH
Types:

QH = query_handle()
Options = [Option] | Option
Option =
 {max_lookup, MaxLookup} |
 {cache, cache()} |
 cache |
 {join, Join} |
 {lookup, Lookup} |
 {unique, boolean()} |

qlc

350 | Ericsson AB. All Rights Reserved.: STDLIB

 unique
MaxLookup = integer() >= 0 | infinity
Join = any | lookup | merge | nested_loop
Lookup = boolean() | any
QLC = query_list_comprehension()

Returns a query handle for a QLC. The QLC must be the first argument to this function, otherwise it is evaluated as
an ordinary list comprehension. It is also necessary to add the following line to the source code:

-include_lib("stdlib/include/qlc.hrl").

This causes a parse transform to substitute a fun for the QLC. The (compiled) fun is called when the query handle
is evaluated.

When calling qlc:q/1,2 from the Erlang shell, the parse transform is automatically called. When this occurs, the
fun substituted for the QLC is not compiled but is evaluated by erl_eval(3). This is also true when expressions
are evaluated by file:eval/1,2 or in the debugger.

To be explicit, this does not work:

...
A = [X || {X} <- [{1},{2}]],
QH = qlc:q(A),
...

Variable A is bound to the evaluated value of the list comprehension ([1,2]). The compiler complains with an error
message ("argument is not a query list comprehension"); the shell process stops with a badarg reason.

q(QLC) is equivalent to q(QLC, []).

Options:

• Option {cache, ets} can be used to cache the answers to a QLC. The answers are stored in one ETS table for
each cached QLC. When a cached QLC is evaluated again, answers are fetched from the table without any further
computations. Therefore, when all answers to a cached QLC have been found, the ETS tables used for caching
answers to the qualifiers of the QLC can be emptied. Option cache is equivalent to {cache, ets}.

• Option {cache, list} can be used to cache the answers to a QLC like {cache, ets}. The difference is
that the answers are kept in a list (on the process heap). If the answers would occupy more than a certain amount
of RAM memory, a temporary file is used for storing the answers. Option max_list_size sets the limit in
bytes and the temporary file is put on the directory set by option tmpdir.

Option cache has no effect if it is known that the QLC is to be evaluated at most once. This is always true for
the top-most QLC and also for the list expression of the first generator in a list of qualifiers. Notice that in the
presence of side effects in filters or callback functions, the answers to QLCs can be affected by option cache.

• Option {unique, true} can be used to remove duplicate answers to a QLC. The unique answers are stored
in one ETS table for each QLC. The table is emptied every time it is known that there are no more answers to
the QLC. Option unique is equivalent to {unique, true}. If option unique is combined with option
{cache, ets}, two ETS tables are used, but the full answers are stored in one table only. If option unique
is combined with option {cache, list}, the answers are sorted twice using keysort/3; once to remove
duplicates and once to restore the order.

Options cache and unique apply not only to the QLC itself but also to the results of looking up constants, running
match specifications, and joining handles.

qlc

Ericsson AB. All Rights Reserved.: STDLIB | 351

Example:

In the following example the cached results of the merge join are traversed for each value of A. Notice that without
option cache the join would have been carried out three times, once for each value of A.

1> Q = qlc:q([{A,X,Z,W} ||
A <- [a,b,c],
{X,Z} <- [{a,1},{b,4},{c,6}],
{W,Y} <- [{2,a},{3,b},{4,c}],
X =:= Y],
{cache, list}),
io:format("~s~n", [qlc:info(Q)]).
begin
 V1 =
 qlc:q([
 P0 ||
 P0 = {X,Z} <-
 qlc:keysort(1, [{a,1},{b,4},{c,6}], [])
]),
 V2 =
 qlc:q([
 P0 ||
 P0 = {W,Y} <-
 qlc:keysort(2, [{2,a},{3,b},{4,c}], [])
]),
 V3 =
 qlc:q([
 [G1|G2] ||
 G1 <- V1,
 G2 <- V2,
 element(1, G1) == element(2, G2)
],
 [{join,merge},{cache,list}]),
 qlc:q([
 {A,X,Z,W} ||
 A <- [a,b,c],
 [{X,Z}|{W,Y}] <- V3,
 X =:= Y
])
end

sort/1,2 and keysort/2,3 can also be used for caching answers and for removing duplicates. When sorting
answers are cached in a list, possibly stored on a temporary file, and no ETS tables are used.

Sometimes (see table/2) traversal of tables can be done by looking up key values, which is assumed to be fast. Under
certain (rare) circumstances there can be too many key values to look up. Option {max_lookup, MaxLookup}
can then be used to limit the number of lookups: if more than MaxLookup lookups would be required, no lookups
are done but the table is traversed instead. Defaults to infinity, which means that there is no limit on the number
of keys to look up.

Example:

In the following example, using the gb_table module from section Implementing a QLC Table, there are six keys to
look up: {1,a}, {1,b}, {1,c}, {2,a}, {2,b}, and {2,c}. The reason is that the two elements of key {X, Y}
are compared separately.

1> T = gb_trees:empty(),
QH = qlc:q([X || {{X,Y},_} <- gb_table:table(T),
((X == 1) or (X == 2)) andalso

qlc

352 | Ericsson AB. All Rights Reserved.: STDLIB

((Y == a) or (Y == b) or (Y == c))]),
io:format("~s~n", [qlc:info(QH)]).
ets:match_spec_run(
 lists:flatmap(fun(K) ->
 case
 gb_trees:lookup(K,
 gb_trees:from_orddict([]))
 of
 {value,V} ->
 [{K,V}];
 none ->
 []
 end
 end,
 [{1,a},{1,b},{1,c},{2,a},{2,b},{2,c}]),
 ets:match_spec_compile([{{{'$1','$2'},'_'},[],['$1']}]))

Options:

• Option {lookup, true} can be used to ensure that the qlc module looks up constants in some QLC table. If
there are more than one QLC table among the list expressions of the generators, constants must be looked up in at
least one of the tables. The evaluation of the query fails if there are no constants to look up. This option is useful
when it would be unacceptable to traverse all objects in some table. Setting option lookup to false ensures
that no constants are looked up ({max_lookup, 0} has the same effect). Defaults to any, which means that
constants are looked up whenever possible.

• Option {join, Join} can be used to ensure that a certain join method is used:

• {join, lookup} invokes the lookup join method.

• {join, merge} invokes the merge join method.

• {join, nested_loop} invokes the method of matching every pair of objects from two handles. This
method is mostly very slow.

The evaluation of the query fails if the qlc module cannot carry out the chosen join method. Defaults to any,
which means that some fast join method is used if possible.

sort(QH1) -> QH2
sort(QH1, SortOptions) -> QH2
Types:

SortOptions = sort_options()
QH1 = query_handle_or_list()
QH2 = query_handle()

Returns a query handle. When evaluating query handle QH2, the answers to query handle QH1 are sorted by
file_sorter:sort/3 according to the options.

The sorter uses temporary files only if QH1 does not evaluate to a list and the size of the binary representation of the
answers exceeds Size bytes, where Size is the value of option size.

sort(QH1) is equivalent to sort(QH1, []).

string_to_handle(QueryString) -> QH | Error
string_to_handle(QueryString, Options) -> QH | Error
string_to_handle(QueryString, Options, Bindings) -> QH | Error
Types:

qlc

Ericsson AB. All Rights Reserved.: STDLIB | 353

QueryString = string()
Options = [Option] | Option
Option =
 {max_lookup, MaxLookup} |
 {cache, cache()} |
 cache |
 {join, Join} |
 {lookup, Lookup} |
 {unique, boolean()} |
 unique
MaxLookup = integer() >= 0 | infinity
Join = any | lookup | merge | nested_loop
Lookup = boolean() | any
Bindings = erl_eval:binding_struct()
QH = query_handle()
Error = {error, module(), Reason}
Reason = erl_parse:error_info() | erl_scan:error_info()

A string version of q/1,2. When the query handle is evaluated, the fun created by the parse transform is interpreted
by erl_eval(3). The query string is to be one single QLC terminated by a period.

Example:

1> L = [1,2,3],
Bs = erl_eval:add_binding('L', L, erl_eval:new_bindings()),
QH = qlc:string_to_handle("[X+1 || X <- L].", [], Bs),
qlc:eval(QH).
[2,3,4]

string_to_handle(QueryString) is equivalent to string_to_handle(QueryString, []).

string_to_handle(QueryString, Options) is equivalent to string_to_handle(QueryString,
Options, erl_eval:new_bindings()).

This function is probably mainly useful when called from outside of Erlang, for example from a driver written in C.

table(TraverseFun, Options) -> QH
Types:

TraverseFun = TraverseFun0 | TraverseFun1
TraverseFun0 = fun(() -> TraverseResult)
TraverseFun1 = fun((match_expression()) -> TraverseResult)
TraverseResult = Objects | term()
Objects = [] | [term() | ObjectList]
ObjectList = TraverseFun0 | Objects
Options = [Option] | Option
Option =
 {format_fun, FormatFun} |
 {info_fun, InfoFun} |
 {lookup_fun, LookupFun} |
 {parent_fun, ParentFun} |

qlc

354 | Ericsson AB. All Rights Reserved.: STDLIB

 {post_fun, PostFun} |
 {pre_fun, PreFun} |
 {key_equality, KeyComparison}
FormatFun = undefined | fun((SelectedObjects) -> FormatedTable)
SelectedObjects =
 all |
 {all, NElements, DepthFun} |
 {match_spec, match_expression()} |
 {lookup, Position, Keys} |
 {lookup, Position, Keys, NElements, DepthFun}
NElements = infinity | integer() >= 1
DepthFun = fun((term()) -> term())
FormatedTable = {Mod, Fun, Args} | abstract_expr() | string()
InfoFun = undefined | fun((InfoTag) -> InfoValue)
InfoTag = indices | is_unique_objects | keypos | num_of_objects
InfoValue = undefined | term()
LookupFun = undefined | fun((Position, Keys) -> LookupResult)
LookupResult = [term()] | term()
ParentFun = undefined | fun(() -> ParentFunValue)
PostFun = undefined | fun(() -> term())
PreFun = undefined | fun((PreArgs) -> term())
PreArgs = [PreArg]
PreArg = {parent_value, ParentFunValue} | {stop_fun, StopFun}
ParentFunValue = undefined | term()
StopFun = undefined | fun(() -> term())
KeyComparison = '=:=' | '=='
Position = integer() >= 1
Keys = [term()]
Mod = Fun = atom()
Args = [term()]
QH = query_handle()

Returns a query handle for a QLC table. In Erlang/OTP there is support for ETS, Dets, and Mnesia tables, but
many other data structures can be turned into QLC tables. This is accomplished by letting function(s) in the module
implementing the data structure create a query handle by calling qlc:table/2. The different ways to traverse the
table and properties of the table are handled by callback functions provided as options to qlc:table/2.

• Callback function TraverseFun is used for traversing the table. It is to return a list of objects terminated by
either [] or a nullary fun to be used for traversing the not yet traversed objects of the table. Any other return
value is immediately returned as value of the query evaluation. Unary TraverseFuns are to accept a match
specification as argument. The match specification is created by the parse transform by analyzing the pattern of
the generator calling qlc:table/2 and filters using variables introduced in the pattern. If the parse transform
cannot find a match specification equivalent to the pattern and filters, TraverseFun is called with a match
specification returning every object.

• Modules that can use match specifications for optimized traversal of tables are to call qlc:table/2 with
an unary TraverseFun. An example is ets:table/2.

• Other modules can provide a nullary TraverseFun. An example is gb_table:table/1 in section
Implementing a QLC Table.

qlc

Ericsson AB. All Rights Reserved.: STDLIB | 355

• Unary callback function PreFun is called once before the table is read for the first time. If the call fails, the
query evaluation fails.

Argument PreArgs is a list of tagged values. There are two tags, parent_value and stop_fun, used by
Mnesia for managing transactions.

• The value of parent_value is the value returned by ParentFun, or undefined if there is no
ParentFun. ParentFun is called once just before the call of PreFun in the context of the process calling
eval/1,2, fold/3,4, or cursor/1,2.

• The value of stop_fun is a nullary fun that deletes the cursor if called from the parent, or undefined
if there is no cursor.

• Nullary callback function PostFun is called once after the table was last read. The return value, which is caught,
is ignored. If PreFun has been called for a table, PostFun is guaranteed to be called for that table, even if the
evaluation of the query fails for some reason.

The pre (post) functions for different tables are evaluated in unspecified order.

Other table access than reading, such as calling InfoFun, is assumed to be OK at any time.

• Binary callback function LookupFun is used for looking up objects in the table. The first argument Position
is the key position or an indexed position and the second argument Keys is a sorted list of unique values. The
return value is to be a list of all objects (tuples), such that the element at Position is a member of Keys. Any
other return value is immediately returned as value of the query evaluation. LookupFun is called instead of
traversing the table if the parse transform at compile time can determine that the filters match and compare the
element at Position in such a way that only Keys need to be looked up to find all potential answers.

The key position is obtained by calling InfoFun(keypos) and the indexed positions by calling
InfoFun(indices). If the key position can be used for lookup, it is always chosen, otherwise the indexed
position requiring the least number of lookups is chosen. If there is a tie between two indexed positions, the one
occurring first in the list returned by InfoFun is chosen. Positions requiring more than max_lookup lookups
are ignored.

• Unary callback function InfoFun is to return information about the table. undefined is to be returned if the
value of some tag is unknown:

indices
Returns a list of indexed positions, a list of positive integers.

is_unique_objects
Returns true if the objects returned by TraverseFun are unique.

keypos
Returns the position of the table key, a positive integer.

is_sorted_key
Returns true if the objects returned by TraverseFun are sorted on the key.

num_of_objects
Returns the number of objects in the table, a non-negative integer.

• Unary callback function FormatFun is used by info/1,2 for displaying the call that created the query handle
of the table. Defaults to undefined, which means that info/1,2 displays a call to '$MOD':'$FUN'/0. It
is up to FormatFun to present the selected objects of the table in a suitable way. However, if a character list is
chosen for presentation, it must be an Erlang expression that can be scanned and parsed (a trailing dot is added
by info/1,2 though).

FormatFun is called with an argument that describes the selected objects based on optimizations done as a
result of analyzing the filters of the QLC where the call to qlc:table/2 occurs. The argument can have the
following values:

{lookup, Position, Keys, NElements, DepthFun}.

LookupFun is used for looking up objects in the table.

qlc

356 | Ericsson AB. All Rights Reserved.: STDLIB

{match_spec, MatchExpression}

No way of finding all possible answers by looking up keys was found, but the filters could be transformed
into a match specification. All answers are found by calling TraverseFun(MatchExpression).

{all, NElements, DepthFun}

No optimization was found. A match specification matching all objects is used if TraverseFun is unary.

NElements is the value of the info/1,2 option n_elements.

DepthFun is a function that can be used for limiting the size of terms; calling DepthFun(Term)
substitutes '...' for parts of Term below the depth specified by the info/1,2 option depth.

If calling FormatFun with an argument including NElements and DepthFun fails,
FormatFun is called once again with an argument excluding NElements and DepthFun
({lookup, Position, Keys} or all).

• The value of option key_equality is to be '=:=' if the table considers two keys equal if they match, and to
be '==' if two keys are equal if they compare equal. Defaults to '=:='.

For the various options recognized by table/1,2 in respective module, see ets(3), dets(3), and mnesia(3).

See Also
dets(3), erl_eval(3), erlang(3), error_logger(3), ets(3), file(3), file_sorter(3),
mnesia(3), shell(3), Erlang Reference Manual, Programming Examples

queue

Ericsson AB. All Rights Reserved.: STDLIB | 357

queue
Erlang module

This module provides (double-ended) FIFO queues in an efficient manner.

All functions fail with reason badarg if arguments are of wrong type, for example, queue arguments are not queues,
indexes are not integers, and list arguments are not lists. Improper lists cause internal crashes. An index out of range
for a queue also causes a failure with reason badarg.

Some functions, where noted, fail with reason empty for an empty queue.

The data representing a queue as used by this module is to be regarded as opaque by other modules. Any code assuming
knowledge of the format is running on thin ice.

All operations has an amortized O(1) running time, except filter/2, join/2, len/1, member/2, split/2 that
have O(n). To minimize the size of a queue minimizing the amount of garbage built by queue operations, the queues
do not contain explicit length information, and that is why len/1 is O(n). If better performance for this particular
operation is essential, it is easy for the caller to keep track of the length.

Queues are double-ended. The mental picture of a queue is a line of people (items) waiting for their turn. The queue
front is the end with the item that has waited the longest. The queue rear is the end an item enters when it starts to
wait. If instead using the mental picture of a list, the front is called head and the rear is called tail.

Entering at the front and exiting at the rear are reverse operations on the queue.

This module has three sets of interface functions: the "Original API", the "Extended API", and the "Okasaki API".

The "Original API" and the "Extended API" both use the mental picture of a waiting line of items. Both have reverse
operations suffixed "_r".

The "Original API" item removal functions return compound terms with both the removed item and the resulting
queue. The "Extended API" contains alternative functions that build less garbage and functions for just inspecting the
queue ends. Also the "Okasaki API" functions build less garbage.

The "Okasaki API" is inspired by "Purely Functional Data Structures" by Chris Okasaki. It regards queues as lists.
This API is by many regarded as strange and avoidable. For example, many reverse operations have lexically reversed
names, some with more readable but perhaps less understandable aliases.

Original API

Data Types
queue(Item)
As returned by new/0.

queue() = queue(term())

Exports

filter(Fun, Q1 :: queue(Item)) -> Q2 :: queue(Item)
Types:

Fun = fun((Item) -> boolean() | [Item])
Returns a queue Q2 that is the result of calling Fun(Item) on all items in Q1, in order from front to rear.

queue

358 | Ericsson AB. All Rights Reserved.: STDLIB

If Fun(Item) returns true, Item is copied to the result queue. If it returns false, Item is not copied. If it returns
a list, the list elements are inserted instead of Item in the result queue.

So, Fun(Item) returning [Item] is thereby semantically equivalent to returning true, just as returning [] is
semantically equivalent to returning false. But returning a list builds more garbage than returning an atom.

from_list(L :: [Item]) -> queue(Item)
Returns a queue containing the items in L in the same order; the head item of the list becomes the front item of the
queue.

in(Item, Q1 :: queue(Item)) -> Q2 :: queue(Item)
Inserts Item at the rear of queue Q1. Returns the resulting queue Q2.

in_r(Item, Q1 :: queue(Item)) -> Q2 :: queue(Item)
Inserts Item at the front of queue Q1. Returns the resulting queue Q2.

is_empty(Q :: queue()) -> boolean()
Tests if Q is empty and returns true if so, otherwise otherwise.

is_queue(Term :: term()) -> boolean()
Tests if Term is a queue and returns true if so, otherwise false.

join(Q1 :: queue(Item), Q2 :: queue(Item)) -> Q3 :: queue(Item)
Returns a queue Q3 that is the result of joining Q1 and Q2 with Q1 in front of Q2.

len(Q :: queue()) -> integer() >= 0
Calculates and returns the length of queue Q.

member(Item, Q :: queue(Item)) -> boolean()
Returns true if Item matches some element in Q, otherwise false.

new() -> queue()
Returns an empty queue.

out(Q1 :: queue(Item)) ->
 {{value, Item}, Q2 :: queue(Item)} |
 {empty, Q1 :: queue(Item)}
Removes the item at the front of queue Q1. Returns tuple {{value, Item}, Q2}, where Item is the item removed
and Q2 is the resulting queue. If Q1 is empty, tuple {empty, Q1} is returned.

out_r(Q1 :: queue(Item)) ->
 {{value, Item}, Q2 :: queue(Item)} |
 {empty, Q1 :: queue(Item)}
Removes the item at the rear of queue Q1. Returns tuple {{value, Item}, Q2}, where Item is the item removed
and Q2 is the new queue. If Q1 is empty, tuple {empty, Q1} is returned.

queue

Ericsson AB. All Rights Reserved.: STDLIB | 359

reverse(Q1 :: queue(Item)) -> Q2 :: queue(Item)
Returns a queue Q2 containing the items of Q1 in the reverse order.

split(N :: integer() >= 0, Q1 :: queue(Item)) ->
 {Q2 :: queue(Item), Q3 :: queue(Item)}
Splits Q1 in two. The N front items are put in Q2 and the rest in Q3.

to_list(Q :: queue(Item)) -> [Item]
Returns a list of the items in the queue in the same order; the front item of the queue becomes the head of the list.

Extended API

Exports

drop(Q1 :: queue(Item)) -> Q2 :: queue(Item)
Returns a queue Q2 that is the result of removing the front item from Q1.

Fails with reason empty if Q1 is empty.

drop_r(Q1 :: queue(Item)) -> Q2 :: queue(Item)
Returns a queue Q2 that is the result of removing the rear item from Q1.

Fails with reason empty if Q1 is empty.

get(Q :: queue(Item)) -> Item
Returns Item at the front of queue Q.

Fails with reason empty if Q is empty.

get_r(Q :: queue(Item)) -> Item
Returns Item at the rear of queue Q.

Fails with reason empty if Q is empty.

peek(Q :: queue(Item)) -> empty | {value, Item}
Returns tuple {value, Item}, where Item is the front item of Q, or empty if Q is empty.

peek_r(Q :: queue(Item)) -> empty | {value, Item}
Returns tuple {value, Item}, where Item is the rear item of Q, or empty if Q is empty.

Okasaki API

Exports

cons(Item, Q1 :: queue(Item)) -> Q2 :: queue(Item)
Inserts Item at the head of queue Q1. Returns the new queue Q2.

queue

360 | Ericsson AB. All Rights Reserved.: STDLIB

daeh(Q :: queue(Item)) -> Item
Returns the tail item of queue Q.

Fails with reason empty if Q is empty.

head(Q :: queue(Item)) -> Item
Returns Item from the head of queue Q.

Fails with reason empty if Q is empty.

init(Q1 :: queue(Item)) -> Q2 :: queue(Item)
Returns a queue Q2 that is the result of removing the tail item from Q1.

Fails with reason empty if Q1 is empty.

lait(Q1 :: queue(Item)) -> Q2 :: queue(Item)
Returns a queue Q2 that is the result of removing the tail item from Q1.

Fails with reason empty if Q1 is empty.

The name lait/1 is a misspelling - do not use it anymore.

last(Q :: queue(Item)) -> Item
Returns the tail item of queue Q.

Fails with reason empty if Q is empty.

liat(Q1 :: queue(Item)) -> Q2 :: queue(Item)
Returns a queue Q2 that is the result of removing the tail item from Q1.

Fails with reason empty if Q1 is empty.

snoc(Q1 :: queue(Item), Item) -> Q2 :: queue(Item)
Inserts Item as the tail item of queue Q1. Returns the new queue Q2.

tail(Q1 :: queue(Item)) -> Q2 :: queue(Item)
Returns a queue Q2 that is the result of removing the head item from Q1.

Fails with reason empty if Q1 is empty.

rand

Ericsson AB. All Rights Reserved.: STDLIB | 361

rand
Erlang module

This module provides a random number generator. The module contains a number of algorithms. The uniform
distribution algorithms use the scrambled Xorshift algorithms by Sebastiano Vigna. The normal distribution
algorithm uses the Ziggurat Method by Marsaglia and Tsang.

The following algorithms are provided:

exsplus

Xorshift116+, 58 bits precision and period of 2^116-1

exs64

Xorshift64*, 64 bits precision and a period of 2^64-1

exs1024

Xorshift1024*, 64 bits precision and a period of 2^1024-1

The default algorithm is exsplus. If a specific algorithm is required, ensure to always use seed/1 to initialize
the state.

Every time a random number is requested, a state is used to calculate it and a new state is produced. The state can
either be implicit or be an explicit argument and return value.

The functions with implicit state use the process dictionary variable rand_seed to remember the current state.

If a process calls uniform/0 or uniform/1 without setting a seed first, seed/1 is called automatically with the
default algorithm and creates a non-constant seed.

The functions with explicit state never use the process dictionary.

Examples:

Simple use; creates and seeds the default algorithm with a non-constant seed if not already done:

R0 = rand:uniform(),
R1 = rand:uniform(),

Use a specified algorithm:

_ = rand:seed(exs1024),
R2 = rand:uniform(),

Use a specified algorithm with a constant seed:

_ = rand:seed(exs1024, {123, 123534, 345345}),
R3 = rand:uniform(),

Use the functional API with a non-constant seed:

S0 = rand:seed_s(exsplus),

href
href

rand

362 | Ericsson AB. All Rights Reserved.: STDLIB

{R4, S1} = rand:uniform_s(S0),

Create a standard normal deviate:

{SND0, S2} = rand:normal_s(S1),

Note:
This random number generator is not cryptographically strong. If a strong cryptographic random
number generator is needed, use one of functions in the crypto module, for example,
crypto:strong_rand_bytes/1.

Data Types
alg() = exs64 | exsplus | exs1024
state()
Algorithm-dependent state.

export_state()
Algorithm-dependent state that can be printed or saved to file.

Exports

export_seed() -> undefined | export_state()
Returns the random number state in an external format. To be used with seed/1.

export_seed_s(X1 :: state()) -> export_state()
Returns the random number generator state in an external format. To be used with seed/1.

normal() -> float()
Returns a standard normal deviate float (that is, the mean is 0 and the standard deviation is 1) and updates the state
in the process dictionary.

normal_s(State0 :: state()) -> {float(), NewS :: state()}
Returns, for a specified state, a standard normal deviate float (that is, the mean is 0 and the standard deviation is 1)
and a new state.

seed(AlgOrExpState :: alg() | export_state()) -> state()
Seeds random number generation with the specifed algorithm and time-dependent data if AlgOrExpState is an
algorithm.

Otherwise recreates the exported seed in the process dictionary, and returns the state. See also export_seed/0.

seed(Alg :: alg(), S0 :: {integer(), integer(), integer()}) ->

rand

Ericsson AB. All Rights Reserved.: STDLIB | 363

 state()
Seeds random number generation with the specified algorithm and integers in the process dictionary and returns the
state.

seed_s(AlgOrExpState :: alg() | export_state()) -> state()
Seeds random number generation with the specifed algorithm and time-dependent data if AlgOrExpState is an
algorithm.

Otherwise recreates the exported seed and returns the state. See also export_seed/0.

seed_s(Alg :: alg(), S0 :: {integer(), integer(), integer()}) ->
 state()
Seeds random number generation with the specified algorithm and integers and returns the state.

uniform() -> X :: float()
Returns a random float uniformly distributed in the value range 0.0 < X < 1.0 and updates the state in the
process dictionary.

uniform(N :: integer() >= 1) -> X :: integer() >= 1
Returns, for a specified integer N >= 1, a random integer uniformly distributed in the value range 1 <= X <= N
and updates the state in the process dictionary.

uniform_s(State :: state()) -> {X :: float(), NewS :: state()}
Returns, for a specified state, random float uniformly distributed in the value range 0.0 < X < 1.0 and a new state.

uniform_s(N :: integer() >= 1, State :: state()) ->
 {X :: integer() >= 1, NewS :: state()}
Returns, for a specified integer N >= 1 and a state, a random integer uniformly distributed in the value range 1 <=
X <= N and a new state.

random

364 | Ericsson AB. All Rights Reserved.: STDLIB

random
Erlang module

This module provides a random number generator. The method is attributed to B.A. Wichmann and I.D. Hill in 'An
efficient and portable pseudo-random number generator', Journal of Applied Statistics. AS183. 1982. Also Byte March
1987.

The algorithm is a modification of the version attributed to Richard A. O'Keefe in the standard Prolog library.

Every time a random number is requested, a state is used to calculate it, and a new state is produced. The state can
either be implicit (kept in the process dictionary) or be an explicit argument and return value. In this implementation,
the state (the type ran()) consists of a tuple of three integers.

Note:
This random number generator is not cryptographically strong. If a strong cryptographic random
number generator is needed, use one of functions in the crypto module, for example,
crypto:strong_rand_bytes/1.

Note:
The improved rand module is to be used instead of this module.

Data Types
ran() = {integer(), integer(), integer()}
The state.

Exports

seed() -> ran()
Seeds random number generation with default (fixed) values in the process dictionary and returns the old state.

seed(SValue) -> undefined | ran()
Types:

SValue = {A1, A2, A3} | integer()
A1 = A2 = A3 = integer()

seed({A1, A2, A3}) is equivalent to seed(A1, A2, A3).

seed(A1, A2, A3) -> undefined | ran()
Types:

A1 = A2 = A3 = integer()

Seeds random number generation with integer values in the process dictionary and returns the old state.

random

Ericsson AB. All Rights Reserved.: STDLIB | 365

The following is an easy way of obtaining a unique value to seed with:

random:seed(erlang:phash2([node()]),
 erlang:monotonic_time(),
 erlang:unique_integer())

For details, see erlang:phash2/1, erlang:node/0, erlang:monotonic_time/0, and
erlang:unique_integer/0.

seed0() -> ran()
Returns the default state.

uniform() -> float()
Returns a random float uniformly distributed between 0.0 and 1.0, updating the state in the process dictionary.

uniform(N) -> integer() >= 1
Types:

N = integer() >= 1
Returns, for a specified integer N >= 1, a random integer uniformly distributed between 1 and N, updating the state
in the process dictionary.

uniform_s(State0) -> {float(), State1}
Types:

State0 = State1 = ran()

Returns, for a specified state, a random float uniformly distributed between 0.0 and 1.0, and a new state.

uniform_s(N, State0) -> {integer(), State1}
Types:

N = integer() >= 1
State0 = State1 = ran()

Returns, for a specified integer N >= 1 and a state, a random integer uniformly distributed between 1 and N, and
a new state.

Note
Some of the functions use the process dictionary variable random_seed to remember the current seed.

If a process calls uniform/0 or uniform/1 without setting a seed first, seed/0 is called automatically.

The implementation changed in Erlang/OTP R15. Upgrading to R15 breaks applications that expect a specific output
for a specified seed. The output is still deterministic number series, but different compared to releases older than R15.
Seed {0,0,0} does, for example, no longer produce a flawed series of only zeros.

re

366 | Ericsson AB. All Rights Reserved.: STDLIB

re
Erlang module

This module contains regular expression matching functions for strings and binaries.

The regular expression syntax and semantics resemble that of Perl.

The matching algorithms of the library are based on the PCRE library, but not all of the PCRE library is interfaced
and some parts of the library go beyond what PCRE offers. The sections of the PCRE documentation that are relevant
to this module are included here.

Note:
The Erlang literal syntax for strings uses the "\" (backslash) character as an escape code. You need to escape
backslashes in literal strings, both in your code and in the shell, with an extra backslash, that is, "\\".

Data Types
mp() = {re_pattern, term(), term(), term(), term()}
Opaque data type containing a compiled regular expression. mp() is guaranteed to be a tuple() having the atom
re_pattern as its first element, to allow for matching in guards. The arity of the tuple or the content of the other
fields can change in future Erlang/OTP releases.

nl_spec() = cr | crlf | lf | anycrlf | any
compile_option() =
 unicode |
 anchored |
 caseless |
 dollar_endonly |
 dotall |
 extended |
 firstline |
 multiline |
 no_auto_capture |
 dupnames |
 ungreedy |
 {newline, nl_spec()} |
 bsr_anycrlf |
 bsr_unicode |
 no_start_optimize |
 ucp |
 never_utf

Exports

compile(Regexp) -> {ok, MP} | {error, ErrSpec}
Types:

re

Ericsson AB. All Rights Reserved.: STDLIB | 367

Regexp = iodata()
MP = mp()
ErrSpec =
 {ErrString :: string(), Position :: integer() >= 0}

The same as compile(Regexp,[])

compile(Regexp, Options) -> {ok, MP} | {error, ErrSpec}
Types:

Regexp = iodata() | unicode:charlist()
Options = [Option]
Option = compile_option()
MP = mp()
ErrSpec =
 {ErrString :: string(), Position :: integer() >= 0}

Compiles a regular expression, with the syntax described below, into an internal format to be used later as a parameter
to run/2 and run/3.

Compiling the regular expression before matching is useful if the same expression is to be used in matching against
multiple subjects during the lifetime of the program. Compiling once and executing many times is far more efficient
than compiling each time one wants to match.

When option unicode is specified, the regular expression is to be specified as a valid Unicode charlist(),
otherwise as any valid iodata().

Options:

unicode

The regular expression is specified as a Unicode charlist() and the resulting regular expression code is to be
run against a valid Unicode charlist() subject. Also consider option ucp when using Unicode characters.

anchored

The pattern is forced to be "anchored", that is, it is constrained to match only at the first matching point in the
string that is searched (the "subject string"). This effect can also be achieved by appropriate constructs in the
pattern itself.

caseless

Letters in the pattern match both uppercase and lowercase letters. It is equivalent to Perl option /i and can be
changed within a pattern by a (?i) option setting. Uppercase and lowercase letters are defined as in the ISO
8859-1 character set.

dollar_endonly

A dollar metacharacter in the pattern matches only at the end of the subject string. Without this option, a dollar
also matches immediately before a newline at the end of the string (but not before any other newlines). This
option is ignored if option multiline is specified. There is no equivalent option in Perl, and it cannot be set
within a pattern.

dotall

A dot in the pattern matches all characters, including those indicating newline. Without it, a dot does not match
when the current position is at a newline. This option is equivalent to Perl option /s and it can be changed
within a pattern by a (?s) option setting. A negative class, such as [^a], always matches newline characters,
independent of the setting of this option.

re

368 | Ericsson AB. All Rights Reserved.: STDLIB

extended

Whitespace data characters in the pattern are ignored except when escaped or inside a character class. Whitespace
does not include character 'vt' (ASCII 11). Characters between an unescaped # outside a character class and the
next newline, inclusive, are also ignored. This is equivalent to Perl option /x and can be changed within a pattern
by a (?x) option setting.

With this option, comments inside complicated patterns can be included. However, notice that this applies only
to data characters. Whitespace characters can never appear within special character sequences in a pattern, for
example within sequence (?(that introduces a conditional subpattern.

firstline

An unanchored pattern is required to match before or at the first newline in the subject string, although the matched
text can continue over the newline.

multiline

By default, PCRE treats the subject string as consisting of a single line of characters (even if it contains newlines).
The "start of line" metacharacter (^) matches only at the start of the string, while the "end of line" metacharacter
($) matches only at the end of the string, or before a terminating newline (unless option dollar_endonly is
specified). This is the same as in Perl.

When this option is specified, the "start of line" and "end of line" constructs match immediately following or
immediately before internal newlines in the subject string, respectively, as well as at the very start and end. This
is equivalent to Perl option /m and can be changed within a pattern by a (?m) option setting. If there are no
newlines in a subject string, or no occurrences of ^ or $ in a pattern, setting multiline has no effect.

no_auto_capture

Disables the use of numbered capturing parentheses in the pattern. Any opening parenthesis that is not followed
by ? behaves as if it is followed by ?:. Named parentheses can still be used for capturing (and they acquire
numbers in the usual way). There is no equivalent option in Perl.

dupnames

Names used to identify capturing subpatterns need not be unique. This can be helpful for certain types of pattern
when it is known that only one instance of the named subpattern can ever be matched. More details of named
subpatterns are provided below.

ungreedy

Inverts the "greediness" of the quantifiers so that they are not greedy by default, but become greedy if followed
by "?". It is not compatible with Perl. It can also be set by a (?U) option setting within the pattern.

{newline, NLSpec}

Overrides the default definition of a newline in the subject string, which is LF (ASCII 10) in Erlang.

cr

Newline is indicated by a single character cr (ASCII 13).

lf

Newline is indicated by a single character LF (ASCII 10), the default.

crlf

Newline is indicated by the two-character CRLF (ASCII 13 followed by ASCII 10) sequence.

anycrlf

Any of the three preceding sequences is to be recognized.

re

Ericsson AB. All Rights Reserved.: STDLIB | 369

any

Any of the newline sequences above, and the Unicode sequences VT (vertical tab, U+000B), FF (formfeed,
U+000C), NEL (next line, U+0085), LS (line separator, U+2028), and PS (paragraph separator, U+2029).

bsr_anycrlf

Specifies specifically that \R is to match only the CR, LF, or CRLF sequences, not the Unicode-specific newline
characters.

bsr_unicode

Specifies specifically that \R is to match all the Unicode newline characters (including CRLF, and so on, the
default).

no_start_optimize

Disables optimization that can malfunction if "Special start-of-pattern items" are present in the regular expression.
A typical example would be when matching "DEFABC" against "(*COMMIT)ABC", where the start optimization
of PCRE would skip the subject up to "A" and never realize that the (*COMMIT) instruction is to have made
the matching fail. This option is only relevant if you use "start-of-pattern items", as discussed in section PCRE
Regular Expression Details.

ucp

Specifies that Unicode character properties are to be used when resolving \B, \b, \D, \d, \S, \s, \W and \w. Without
this flag, only ISO Latin-1 properties are used. Using Unicode properties hurts performance, but is semantically
correct when working with Unicode characters beyond the ISO Latin-1 range.

never_utf

Specifies that the (*UTF) and/or (*UTF8) "start-of-pattern items" are forbidden. This flag cannot be combined
with option unicode. Useful if ISO Latin-1 patterns from an external source are to be compiled.

inspect(MP, Item) -> {namelist, [binary()]}
Types:

MP = mp()
Item = namelist

Takes a compiled regular expression and an item, and returns the relevant data from the regular expression. The only
supported item is namelist, which returns the tuple {namelist, [binary()]}, containing the names of all
(unique) named subpatterns in the regular expression. For example:

1> {ok,MP} = re:compile("(?<A>A)|(?B)|(?<C>C)").
{ok,{re_pattern,3,0,0,
 <<69,82,67,80,119,0,0,0,0,0,0,0,1,0,0,0,255,255,255,255,
 255,255,...>>}}
2> re:inspect(MP,namelist).
{namelist,[<<"A">>,<<"B">>,<<"C">>]}
3> {ok,MPD} = re:compile("(?<C>A)|(?B)|(?<C>C)",[dupnames]).
{ok,{re_pattern,3,0,0,
 <<69,82,67,80,119,0,0,0,0,0,8,0,1,0,0,0,255,255,255,255,
 255,255,...>>}}
4> re:inspect(MPD,namelist).
{namelist,[<<"B">>,<<"C">>]}

Notice in the second example that the duplicate name only occurs once in the returned list, and that the list is in
alphabetical order regardless of where the names are positioned in the regular expression. The order of the names is

re

370 | Ericsson AB. All Rights Reserved.: STDLIB

the same as the order of captured subexpressions if {capture, all_names} is specified as an option to run/3.
You can therefore create a name-to-value mapping from the result of run/3 like this:

1> {ok,MP} = re:compile("(?<A>A)|(?B)|(?<C>C)").
{ok,{re_pattern,3,0,0,
 <<69,82,67,80,119,0,0,0,0,0,0,0,1,0,0,0,255,255,255,255,
 255,255,...>>}}
2> {namelist, N} = re:inspect(MP,namelist).
{namelist,[<<"A">>,<<"B">>,<<"C">>]}
3> {match,L} = re:run("AA",MP,[{capture,all_names,binary}]).
{match,[<<"A">>,<<>>,<<>>]}
4> NameMap = lists:zip(N,L).
[{<<"A">>,<<"A">>},{<<"B">>,<<>>},{<<"C">>,<<>>}]

replace(Subject, RE, Replacement) -> iodata() | unicode:charlist()
Types:

Subject = iodata() | unicode:charlist()
RE = mp() | iodata()
Replacement = iodata() | unicode:charlist()

Same as replace(Subject, RE, Replacement, []).

replace(Subject, RE, Replacement, Options) ->
 iodata() | unicode:charlist()
Types:

Subject = iodata() | unicode:charlist()
RE = mp() | iodata() | unicode:charlist()
Replacement = iodata() | unicode:charlist()
Options = [Option]
Option =
 anchored |
 global |
 notbol |
 noteol |
 notempty |
 notempty_atstart |
 {offset, integer() >= 0} |
 {newline, NLSpec} |
 bsr_anycrlf |
 {match_limit, integer() >= 0} |
 {match_limit_recursion, integer() >= 0} |
 bsr_unicode |
 {return, ReturnType} |
 CompileOpt
ReturnType = iodata | list | binary
CompileOpt = compile_option()
NLSpec = cr | crlf | lf | anycrlf | any

Replaces the matched part of the Subject string with the contents of Replacement.

re

Ericsson AB. All Rights Reserved.: STDLIB | 371

The permissible options are the same as for run/3, except that option capture is not allowed. Instead a {return,
ReturnType} is present. The default return type is iodata, constructed in a way to minimize copying. The
iodata result can be used directly in many I/O operations. If a flat list() is desired, specify {return, list}.
If a binary is desired, specify {return, binary}.

As in function run/3, an mp() compiled with option unicode requires Subject to be a Unicode charlist().
If compilation is done implicitly and the unicode compilation option is specified to this function, both the regular
expression and Subject are to specified as valid Unicode charlist()s.

The replacement string can contain the special character &, which inserts the whole matching expression in the result,
and the special sequence \N (where N is an integer > 0), \gN, or \g{N}, resulting in the subexpression number N, is
inserted in the result. If no subexpression with that number is generated by the regular expression, nothing is inserted.

To insert an & or a \ in the result, precede it with a \. Notice that Erlang already gives a special meaning to \ in literal
strings, so a single \ must be written as "\\" and therefore a double \ as "\\\\".

Example:

re:replace("abcd","c","[&]",[{return,list}]).

gives

"ab[c]d"

while

re:replace("abcd","c","[\\&]",[{return,list}]).

gives

"ab[&]d"

As with run/3, compilation errors raise the badarg exception. compile/2 can be used to get more information
about the error.

run(Subject, RE) -> {match, Captured} | nomatch
Types:

Subject = iodata() | unicode:charlist()
RE = mp() | iodata()
Captured = [CaptureData]
CaptureData = {integer(), integer()}

Same as run(Subject,RE,[]).

run(Subject, RE, Options) ->
 {match, Captured} | match | nomatch | {error, ErrType}
Types:

re

372 | Ericsson AB. All Rights Reserved.: STDLIB

Subject = iodata() | unicode:charlist()
RE = mp() | iodata() | unicode:charlist()
Options = [Option]
Option =
 anchored |
 global |
 notbol |
 noteol |
 notempty |
 notempty_atstart |
 report_errors |
 {offset, integer() >= 0} |
 {match_limit, integer() >= 0} |
 {match_limit_recursion, integer() >= 0} |
 {newline, NLSpec :: nl_spec()} |
 bsr_anycrlf |
 bsr_unicode |
 {capture, ValueSpec} |
 {capture, ValueSpec, Type} |
 CompileOpt
Type = index | list | binary
ValueSpec =
 all | all_but_first | all_names | first | none | ValueList
ValueList = [ValueID]
ValueID = integer() | string() | atom()
CompileOpt = compile_option()
See compile/2.

Captured = [CaptureData] | [[CaptureData]]
CaptureData =
 {integer(), integer()} | ListConversionData | binary()
ListConversionData =
 string() |
 {error, string(), binary()} |
 {incomplete, string(), binary()}
ErrType =
 match_limit | match_limit_recursion | {compile, CompileErr}
CompileErr =
 {ErrString :: string(), Position :: integer() >= 0}

Executes a regular expression matching, and returns match/{match, Captured} or nomatch. The regular
expression can be specified either as iodata() in which case it is automatically compiled (as by compile/2) and
executed, or as a precompiled mp() in which case it is executed against the subject directly.

When compilation is involved, exception badarg is thrown if a compilation error occurs. Call compile/2 to get
information about the location of the error in the regular expression.

If the regular expression is previously compiled, the option list can only contain the following options:

• anchored

• {capture, ValueSpec}/{capture, ValueSpec, Type}

• global

re

Ericsson AB. All Rights Reserved.: STDLIB | 373

• {match_limit, integer() >= 0}

• {match_limit_recursion, integer() >= 0}

• {newline, NLSpec}

• notbol

• notempty

• notempty_atstart

• noteol

• {offset, integer() >= 0}

• report_errors

Otherwise all options valid for function compile/2 are also allowed. Options allowed both for compilation and
execution of a match, namely anchored and {newline, NLSpec}, affect both the compilation and execution
if present together with a non-precompiled regular expression.

If the regular expression was previously compiled with option unicode, Subject is to be provided as a valid
Unicode charlist(), otherwise any iodata() will do. If compilation is involved and option unicode is
specified, both Subject and the regular expression are to be specified as valid Unicode charlists().

{capture, ValueSpec}/{capture, ValueSpec, Type} defines what to return from the function
upon successful matching. The capture tuple can contain both a value specification, telling which of the captured
substrings are to be returned, and a type specification, telling how captured substrings are to be returned (as index
tuples, lists, or binaries). The options are described in detail below.

If the capture options describe that no substring capturing is to be done ({capture, none}), the function returns
the single atom match upon successful matching, otherwise the tuple {match, ValueList}. Disabling capturing
can be done either by specifying none or an empty list as ValueSpec.

Option report_errors adds the possibility that an error tuple is returned. The tuple either indicates a matching
error (match_limit or match_limit_recursion), or a compilation error, where the error tuple has the format
{error, {compile, CompileErr}}. Notice that if option report_errors is not specified, the function
never returns error tuples, but reports compilation errors as a badarg exception and failed matches because of
exceeded match limits simply as nomatch.

The following options are relevant for execution:

anchored

Limits run/3 to matching at the first matching position. If a pattern was compiled with anchored, or turned
out to be anchored by virtue of its contents, it cannot be made unanchored at matching time, hence there is no
unanchored option.

global

Implements global (repetitive) search (flag g in Perl). Each match is returned as a separate list() containing
the specific match and any matching subexpressions (or as specified by option capture. The Captured part
of the return value is hence a list() of list()s when this option is specified.

The interaction of option global with a regular expression that matches an empty string surprises some users.
When option global is specified, run/3 handles empty matches in the same way as Perl: a zero-length match
at any point is also retried with options [anchored, notempty_atstart]. If that search gives a result
of length > 0, the result is included. Example:

re:run("cat","(|at)",[global]).

The following matchings are performed:

re

374 | Ericsson AB. All Rights Reserved.: STDLIB

At offset 0

The regular expression (|at) first match at the initial position of string cat, giving the result set [{0,0},
{0,0}] (the second {0,0} is because of the subexpression marked by the parentheses). As the length of
the match is 0, we do not advance to the next position yet.

At offset 0 with [anchored, notempty_atstart]

The search is retried with options [anchored, notempty_atstart] at the same position, which does
not give any interesting result of longer length, so the search position is advanced to the next character (a).

At offset 1

The search results in [{1,0},{1,0}], so this search is also repeated with the extra options.

At offset 1 with [anchored, notempty_atstart]

Alternative ab is found and the result is [{1,2},{1,2}]. The result is added to the list of results and the
position in the search string is advanced two steps.

At offset 3

The search once again matches the empty string, giving [{3,0},{3,0}].

At offset 1 with [anchored, notempty_atstart]

This gives no result of length > 0 and we are at the last position, so the global search is complete.

The result of the call is:

{match,[[{0,0},{0,0}],[{1,0},{1,0}],[{1,2},{1,2}],[{3,0},{3,0}]]}

notempty

An empty string is not considered to be a valid match if this option is specified. If alternatives in the pattern exist,
they are tried. If all the alternatives match the empty string, the entire match fails.

Example:

If the following pattern is applied to a string not beginning with "a" or "b", it would normally match the empty
string at the start of the subject:

a?b?

With option notempty, this match is invalid, so run/3 searches further into the string for occurrences of "a"
or "b".

notempty_atstart

Like notempty, except that an empty string match that is not at the start of the subject is permitted. If the pattern
is anchored, such a match can occur only if the pattern contains \K.

Perl has no direct equivalent of notempty or notempty_atstart, but it does make a special case
of a pattern match of the empty string within its split() function, and when using modifier /g. The Perl
behavior can be emulated after matching a null string by first trying the match again at the same offset with
notempty_atstart and anchored, and then, if that fails, by advancing the starting offset (see below) and
trying an ordinary match again.

re

Ericsson AB. All Rights Reserved.: STDLIB | 375

notbol

Specifies that the first character of the subject string is not the beginning of a line, so the circumflex metacharacter
is not to match before it. Setting this without multiline (at compile time) causes circumflex never to match.
This option only affects the behavior of the circumflex metacharacter. It does not affect \A.

noteol

Specifies that the end of the subject string is not the end of a line, so the dollar metacharacter is not to match it
nor (except in multiline mode) a newline immediately before it. Setting this without multiline (at compile
time) causes dollar never to match. This option affects only the behavior of the dollar metacharacter. It does not
affect \Z or \z.

report_errors

Gives better control of the error handling in run/3. When specified, compilation errors (if the regular expression
is not already compiled) and runtime errors are explicitly returned as an error tuple.

The following are the possible runtime errors:

match_limit

The PCRE library sets a limit on how many times the internal match function can be called. Defaults to
10,000,000 in the library compiled for Erlang. If {error, match_limit} is returned, the execution
of the regular expression has reached this limit. This is normally to be regarded as a nomatch, which is
the default return value when this occurs, but by specifying report_errors, you are informed when the
match fails because of too many internal calls.

match_limit_recursion

This error is very similar to match_limit, but occurs when the internal match function of PCRE is
"recursively" called more times than the match_limit_recursion limit, which defaults to 10,000,000
as well. Notice that as long as the match_limit and match_limit_default values are kept at the
default values, the match_limit_recursion error cannot occur, as the match_limit error occurs
before that (each recursive call is also a call, but not conversely). Both limits can however be changed, either
by setting limits directly in the regular expression string (see section PCRE Regular Eexpression Details)
or by specifying options to run/3.

It is important to understand that what is referred to as "recursion" when limiting matches is not recursion on the
C stack of the Erlang machine or on the Erlang process stack. The PCRE version compiled into the Erlang VM
uses machine "heap" memory to store values that must be kept over recursion in regular expression matches.

{match_limit, integer() >= 0}

Limits the execution time of a match in an implementation-specific way. It is described as follows by the PCRE
documentation:

The match_limit field provides a means of preventing PCRE from using
up a vast amount of resources when running patterns that are not going
to match, but which have a very large number of possibilities in their
search trees. The classic example is a pattern that uses nested
unlimited repeats.

Internally, pcre_exec() uses a function called match(), which it calls
repeatedly (sometimes recursively). The limit set by match_limit is
imposed on the number of times this function is called during a match,
which has the effect of limiting the amount of backtracking that can
take place. For patterns that are not anchored, the count restarts
from zero for each position in the subject string.

re

376 | Ericsson AB. All Rights Reserved.: STDLIB

This means that runaway regular expression matches can fail faster if the limit is lowered using this option. The
default value 10,000,000 is compiled into the Erlang VM.

Note:
This option does in no way affect the execution of the Erlang VM in terms of "long running BIFs".
run/3 always gives control back to the scheduler of Erlang processes at intervals that ensures the real-time
properties of the Erlang system.

{match_limit_recursion, integer() >= 0}

Limits the execution time and memory consumption of a match in an implementation-specific way, very similar
to match_limit. It is described as follows by the PCRE documentation:

The match_limit_recursion field is similar to match_limit, but instead
of limiting the total number of times that match() is called, it
limits the depth of recursion. The recursion depth is a smaller number
than the total number of calls, because not all calls to match() are
recursive. This limit is of use only if it is set smaller than
match_limit.

Limiting the recursion depth limits the amount of machine stack that
can be used, or, when PCRE has been compiled to use memory on the heap
instead of the stack, the amount of heap memory that can be used.

The Erlang VM uses a PCRE library where heap memory is used when regular expression match recursion occurs.
This therefore limits the use of machine heap, not C stack.

Specifying a lower value can result in matches with deep recursion failing, when they should have matched:

1> re:run("aaaaaaaaaaaaaz","(a+)*z").
{match,[{0,14},{0,13}]}
2> re:run("aaaaaaaaaaaaaz","(a+)*z",[{match_limit_recursion,5}]).
nomatch
3> re:run("aaaaaaaaaaaaaz","(a+)*z",[{match_limit_recursion,5},report_errors]).
{error,match_limit_recursion}

This option and option match_limit are only to be used in rare cases. Understanding of the PCRE library
internals is recommended before tampering with these limits.

{offset, integer() >= 0}

Start matching at the offset (position) specified in the subject string. The offset is zero-based, so that the default
is {offset,0} (all of the subject string).

{newline, NLSpec}

Overrides the default definition of a newline in the subject string, which is LF (ASCII 10) in Erlang.

cr

Newline is indicated by a single character CR (ASCII 13).

lf

Newline is indicated by a single character LF (ASCII 10), the default.

re

Ericsson AB. All Rights Reserved.: STDLIB | 377

crlf

Newline is indicated by the two-character CRLF (ASCII 13 followed by ASCII 10) sequence.

anycrlf

Any of the three preceding sequences is be recognized.

any

Any of the newline sequences above, and the Unicode sequences VT (vertical tab, U+000B), FF (formfeed,
U+000C), NEL (next line, U+0085), LS (line separator, U+2028), and PS (paragraph separator, U+2029).

bsr_anycrlf

Specifies specifically that \R is to match only the CR LF, or CRLF sequences, not the Unicode-specific newline
characters. (Overrides the compilation option.)

bsr_unicode

Specifies specifically that \R is to match all the Unicode newline characters (including CRLF, and so on, the
default). (Overrides the compilation option.)

{capture, ValueSpec}/{capture, ValueSpec, Type}

Specifies which captured substrings are returned and in what format. By default, run/3 captures all of the
matching part of the substring and all capturing subpatterns (all of the pattern is automatically captured). The
default return type is (zero-based) indexes of the captured parts of the string, specified as {Offset,Length}
pairs (the index Type of capturing).

As an example of the default behavior, the following call returns, as first and only captured string, the matching
part of the subject ("abcd" in the middle) as an index pair {3,4}, where character positions are zero-based, just
as in offsets:

re:run("ABCabcdABC","abcd",[]).

The return value of this call is:

{match,[{3,4}]}

Another (and quite common) case is where the regular expression matches all of the subject:

re:run("ABCabcdABC",".*abcd.*",[]).

Here the return value correspondingly points out all of the string, beginning at index 0, and it is 10 characters long:

{match,[{0,10}]}

If the regular expression contains capturing subpatterns, like in:

re:run("ABCabcdABC",".*(abcd).*",[]).

all of the matched subject is captured, as well as the captured substrings:

re

378 | Ericsson AB. All Rights Reserved.: STDLIB

{match,[{0,10},{3,4}]}

The complete matching pattern always gives the first return value in the list and the remaining subpatterns are
added in the order they occurred in the regular expression.

The capture tuple is built up as follows:

ValueSpec

Specifies which captured (sub)patterns are to be returned. ValueSpec can either be an atom describing a
predefined set of return values, or a list containing the indexes or the names of specific subpatterns to return.

The following are the predefined sets of subpatterns:

all

All captured subpatterns including the complete matching string. This is the default.

all_names

All named subpatterns in the regular expression, as if a list() of all the names in alphabetical
order was specified. The list of all names can also be retrieved with inspect/2.

first

Only the first captured subpattern, which is always the complete matching part of the subject. All
explicitly captured subpatterns are discarded.

all_but_first

All but the first matching subpattern, that is, all explicitly captured subpatterns, but not the complete
matching part of the subject string. This is useful if the regular expression as a whole matches a large
part of the subject, but the part you are interested in is in an explicitly captured subpattern. If the return
type is list or binary, not returning subpatterns you are not interested in is a good way to optimize.

none

Returns no matching subpatterns, gives the single atom match as the return value of the function when
matching successfully instead of the {match, list()} return. Specifying an empty list gives the
same behavior.

The value list is a list of indexes for the subpatterns to return, where index 0 is for all of the pattern, and 1 is
for the first explicit capturing subpattern in the regular expression, and so on. When using named captured
subpatterns (see below) in the regular expression, one can use atom()s or string()s to specify the
subpatterns to be returned. For example, consider the regular expression:

".*(abcd).*"

matched against string "ABCabcdABC", capturing only the "abcd" part (the first explicit subpattern):

re:run("ABCabcdABC",".*(abcd).*",[{capture,[1]}]).

The call gives the following result, as the first explicitly captured subpattern is "(abcd)", matching "abcd"
in the subject, at (zero-based) position 3, of length 4:

{match,[{3,4}]}

re

Ericsson AB. All Rights Reserved.: STDLIB | 379

Consider the same regular expression, but with the subpattern explicitly named 'FOO':

".*(?<FOO>abcd).*"

With this expression, we could still give the index of the subpattern with the following call:

re:run("ABCabcdABC",".*(?<FOO>abcd).*",[{capture,[1]}]).

giving the same result as before. But, as the subpattern is named, we can also specify its name in the value list:

re:run("ABCabcdABC",".*(?<FOO>abcd).*",[{capture,['FOO']}]).

This would give the same result as the earlier examples, namely:

{match,[{3,4}]}

The values list can specify indexes or names not present in the regular expression, in which case the return
values vary depending on the type. If the type is index, the tuple {-1,0} is returned for values with no
corresponding subpattern in the regular expression, but for the other types (binary and list), the values
are the empty binary or list, respectively.

Type

Optionally specifies how captured substrings are to be returned. If omitted, the default of index is used.

Type can be one of the following:

index

Returns captured substrings as pairs of byte indexes into the subject string and length of the matching
string in the subject (as if the subject string was flattened with erlang:iolist_to_binary/1 or
unicode:characters_to_binary/2 before matching). Notice that option unicode results in
byte-oriented indexes in a (possibly virtual) UTF-8 encoded binary. A byte index tuple {0,2} can
therefore represent one or two characters when unicode is in effect. This can seem counter-intuitive,
but has been deemed the most effective and useful way to do it. To return lists instead can result in
simpler code if that is desired. This return type is the default.

list

Returns matching substrings as lists of characters (Erlang string()s). It option unicode is used
in combination with the \C sequence in the regular expression, a captured subpattern can contain bytes
that are not valid UTF-8 (\C matches bytes regardless of character encoding). In that case the list
capturing can result in the same types of tuples that unicode:characters_to_list/2 can
return, namely three-tuples with tag incomplete or error, the successfully converted characters
and the invalid UTF-8 tail of the conversion as a binary. The best strategy is to avoid using the \C
sequence when capturing lists.

binary

Returns matching substrings as binaries. If option unicode is used, these binaries are in UTF-8. If
the \C sequence is used together with unicode, the binaries can be invalid UTF-8.

re

380 | Ericsson AB. All Rights Reserved.: STDLIB

In general, subpatterns that were not assigned a value in the match are returned as the tuple {-1,0} when type
is index. Unassigned subpatterns are returned as the empty binary or list, respectively, for other return types.
Consider the following regular expression:

".*((?<FOO>abdd)|a(..d)).*"

There are three explicitly capturing subpatterns, where the opening parenthesis position determines the order in
the result, hence ((?<FOO>abdd)|a(..d)) is subpattern index 1, (?<FOO>abdd) is subpattern index 2,
and (..d) is subpattern index 3. When matched against the following string:

"ABCabcdABC"

the subpattern at index 2 does not match, as "abdd" is not present in the string, but the complete pattern matches
(because of the alternative a(..d)). The subpattern at index 2 is therefore unassigned and the default return
value is:

{match,[{0,10},{3,4},{-1,0},{4,3}]}

Setting the capture Type to binary gives:

{match,[<<"ABCabcdABC">>,<<"abcd">>,<<>>,<<"bcd">>]}

Here the empty binary (<<>>) represents the unassigned subpattern. In the binary case, some information
about the matching is therefore lost, as <<>> can also be an empty string captured.

If differentiation between empty matches and non-existing subpatterns is necessary, use the type index and
do the conversion to the final type in Erlang code.

When option global is speciified, the capture specification affects each match separately, so that:

re:run("cacb","c(a|b)",[global,{capture,[1],list}]).

gives

{match,[["a"],["b"]]}

For a descriptions of options only affecting the compilation step, see compile/2.

split(Subject, RE) -> SplitList
Types:

Subject = iodata() | unicode:charlist()
RE = mp() | iodata()
SplitList = [iodata() | unicode:charlist()]

Same as split(Subject, RE, []).

re

Ericsson AB. All Rights Reserved.: STDLIB | 381

split(Subject, RE, Options) -> SplitList
Types:

Subject = iodata() | unicode:charlist()
RE = mp() | iodata() | unicode:charlist()
Options = [Option]
Option =
 anchored |
 notbol |
 noteol |
 notempty |
 notempty_atstart |
 {offset, integer() >= 0} |
 {newline, nl_spec()} |
 {match_limit, integer() >= 0} |
 {match_limit_recursion, integer() >= 0} |
 bsr_anycrlf |
 bsr_unicode |
 {return, ReturnType} |
 {parts, NumParts} |
 group |
 trim |
 CompileOpt
NumParts = integer() >= 0 | infinity
ReturnType = iodata | list | binary
CompileOpt = compile_option()
See compile/2.

SplitList = [RetData] | [GroupedRetData]
GroupedRetData = [RetData]
RetData = iodata() | unicode:charlist() | binary() | list()

Splits the input into parts by finding tokens according to the regular expression supplied. The splitting is basically done
by running a global regular expression match and dividing the initial string wherever a match occurs. The matching
part of the string is removed from the output.

As in run/3, an mp() compiled with option unicode requires Subject to be a Unicode charlist(). If
compilation is done implicitly and the unicode compilation option is specified to this function, both the regular
expression and Subject are to be specified as valid Unicode charlist()s.

The result is given as a list of "strings", the preferred data type specified in option return (default iodata).

If subexpressions are specified in the regular expression, the matching subexpressions are returned in the resulting
list as well. For example:

re:split("Erlang","[ln]",[{return,list}]).

gives

["Er","a","g"]

re

382 | Ericsson AB. All Rights Reserved.: STDLIB

while

re:split("Erlang","([ln])",[{return,list}]).

gives

["Er","l","a","n","g"]

The text matching the subexpression (marked by the parentheses in the regular expression) is inserted in the result list
where it was found. This means that concatenating the result of a split where the whole regular expression is a single
subexpression (as in the last example) always results in the original string.

As there is no matching subexpression for the last part in the example (the "g"), nothing is inserted after that. To make
the group of strings and the parts matching the subexpressions more obvious, one can use option group, which groups
together the part of the subject string with the parts matching the subexpressions when the string was split:

re:split("Erlang","([ln])",[{return,list},group]).

gives

[["Er","l"],["a","n"],["g"]]

Here the regular expression first matched the "l", causing "Er" to be the first part in the result. When the regular
expression matched, the (only) subexpression was bound to the "l", so the "l" is inserted in the group together with
"Er". The next match is of the "n", making "a" the next part to be returned. As the subexpression is bound to substring
"n" in this case, the "n" is inserted into this group. The last group consists of the remaining string, as no more matches
are found.

By default, all parts of the string, including the empty strings, are returned from the function, for example:

re:split("Erlang","[lg]",[{return,list}]).

gives

["Er","an",[]]

as the matching of the "g" in the end of the string leaves an empty rest, which is also returned. This behavior differs
from the default behavior of the split function in Perl, where empty strings at the end are by default removed. To get
the "trimming" default behavior of Perl, specify trim as an option:

re:split("Erlang","[lg]",[{return,list},trim]).

gives

re

Ericsson AB. All Rights Reserved.: STDLIB | 383

["Er","an"]

The "trim" option says; "give me as many parts as possible except the empty ones", which sometimes can be useful.
You can also specify how many parts you want, by specifying {parts,N}:

re:split("Erlang","[lg]",[{return,list},{parts,2}]).

gives

["Er","ang"]

Notice that the last part is "ang", not "an", as splitting was specified into two parts, and the splitting stops when enough
parts are given, which is why the result differs from that of trim.

More than three parts are not possible with this indata, so

re:split("Erlang","[lg]",[{return,list},{parts,4}]).

gives the same result as the default, which is to be viewed as "an infinite number of parts".

Specifying 0 as the number of parts gives the same effect as option trim. If subexpressions are captured, empty
subexpressions matched at the end are also stripped from the result if trim or {parts,0} is specified.

The trim behavior corresponds exactly to the Perl default. {parts,N}, where N is a positive integer, corresponds
exactly to the Perl behavior with a positive numerical third parameter. The default behavior of split/3 corresponds
to the Perl behavior when a negative integer is specified as the third parameter for the Perl routine.

Summary of options not previously described for function run/3:

{return,ReturnType}

Specifies how the parts of the original string are presented in the result list. Valid types:

iodata

The variant of iodata() that gives the least copying of data with the current implementation (often a
binary, but do not depend on it).

binary

All parts returned as binaries.

list

All parts returned as lists of characters ("strings").

group

Groups together the part of the string with the parts of the string matching the subexpressions of the regular
expression.

The return value from the function is in this case a list() of list()s. Each sublist begins with the string
picked out of the subject string, followed by the parts matching each of the subexpressions in order of occurrence
in the regular expression.

re

384 | Ericsson AB. All Rights Reserved.: STDLIB

{parts,N}

Specifies the number of parts the subject string is to be split into.

The number of parts is to be a positive integer for a specific maximum number of parts, and infinity for
the maximum number of parts possible (the default). Specifying {parts,0} gives as many parts as possible
disregarding empty parts at the end, the same as specifying trim.

trim

Specifies that empty parts at the end of the result list are to be disregarded. The same as specifying {parts,0}.
This corresponds to the default behavior of the split built-in function in Perl.

Perl-Like Regular Expression Syntax
The following sections contain reference material for the regular expressions used by this module. The information is
based on the PCRE documentation, with changes where this module behaves differently to the PCRE library.

PCRE Regular Expression Details
The syntax and semantics of the regular expressions supported by PCRE are described in detail in the following
sections. Perl's regular expressions are described in its own documentation, and regular expressions in general are
covered in many books, some with copious examples. Jeffrey Friedl's "Mastering Regular Expressions", published
by O'Reilly, covers regular expressions in great detail. This description of the PCRE regular expressions is intended
as reference material.

The reference material is divided into the following sections:

• Special Start-of-Pattern Items

• Characters and Metacharacters

• Backslash

• Circumflex and Dollar

• Full Stop (Period, Dot) and \N

• Matching a Single Data Unit

• Square Brackets and Character Classes

• Posix Character Classes

• Vertical Bar

• Internal Option Setting

• Subpatterns

• Duplicate Subpattern Numbers

• Named Subpatterns

• Repetition

• Atomic Grouping and Possessive Quantifiers

• Back References

• Assertions

• Conditional Subpatterns

• Comments

• Recursive Patterns

• Subpatterns as Subroutines

• Oniguruma Subroutine Syntax

• Backtracking Control

re

Ericsson AB. All Rights Reserved.: STDLIB | 385

Special Start-of-Pattern Items
Some options that can be passed to compile/2 can also be set by special items at the start of a pattern. These are
not Perl-compatible, but are provided to make these options accessible to pattern writers who are not able to change
the program that processes the pattern. Any number of these items can appear, but they must all be together right at
the start of the pattern string, and the letters must be in upper case.

UTF Support

Unicode support is basically UTF-8 based. To use Unicode characters, you either call compile/2 or run/3 with
option unicode, or the pattern must start with one of these special sequences:

(*UTF8)
(*UTF)

Both options give the same effect, the input string is interpreted as UTF-8. Notice that with these instructions, the
automatic conversion of lists to UTF-8 is not performed by the re functions. Therefore, using these sequences is not
recommended. Add option unicode when running compile/2 instead.

Some applications that allow their users to supply patterns can wish to restrict them to non-UTF data for security
reasons. If option never_utf is set at compile time, (*UTF), and so on, are not allowed, and their appearance causes
an error.

Unicode Property Support

The following is another special sequence that can appear at the start of a pattern:

(*UCP)

This has the same effect as setting option ucp: it causes sequences such as \d and \w to use Unicode properties to
determine character types, instead of recognizing only characters with codes < 256 through a lookup table.

Disabling Startup Optimizations

If a pattern starts with (*NO_START_OPT), it has the same effect as setting option no_start_optimize at
compile time.

Newline Conventions

PCRE supports five conventions for indicating line breaks in strings: a single CR (carriage return) character, a single
LF (line feed) character, the two-character sequence CRLF, any of the three preceding, and any Unicode newline
sequence.

A newline convention can also be specified by starting a pattern string with one of the following five sequences:

(*CR)
Carriage return

(*LF)
Line feed

(*CRLF)
>Carriage return followed by line feed

(*ANYCRLF)
Any of the three above

(*ANY)
All Unicode newline sequences

re

386 | Ericsson AB. All Rights Reserved.: STDLIB

These override the default and the options specified to compile/2. For example, the following pattern changes the
convention to CR:

(*CR)a.b

This pattern matches a\nb, as LF is no longer a newline. If more than one of them is present, the last one is used.

The newline convention affects where the circumflex and dollar assertions are true. It also affects the interpretation
of the dot metacharacter when dotall is not set, and the behavior of \N. However, it does not affect what the \R
escape sequence matches. By default, this is any Unicode newline sequence, for Perl compatibility. However, this can
be changed; see the description of \R in section Newline Sequences. A change of the \R setting can be combined with
a change of the newline convention.

Setting Match and Recursion Limits

The caller of run/3 can set a limit on the number of times the internal match() function is called and on the maximum
depth of recursive calls. These facilities are provided to catch runaway matches that are provoked by patterns with
huge matching trees (a typical example is a pattern with nested unlimited repeats) and to avoid running out of system
stack by too much recursion. When one of these limits is reached, pcre_exec() gives an error return. The limits
can also be set by items at the start of the pattern of the following forms:

(*LIMIT_MATCH=d)
(*LIMIT_RECURSION=d)

Here d is any number of decimal digits. However, the value of the setting must be less than the value set by the caller
of run/3 for it to have any effect. That is, the pattern writer can lower the limit set by the programmer, but not raise
it. If there is more than one setting of one of these limits, the lower value is used.

The default value for both the limits is 10,000,000 in the Erlang VM. Notice that the recursion limit does not affect
the stack depth of the VM, as PCRE for Erlang is compiled in such a way that the match function never does recursion
on the C stack.

Characters and Metacharacters
A regular expression is a pattern that is matched against a subject string from left to right. Most characters stand for
themselves in a pattern and match the corresponding characters in the subject. As a trivial example, the following
pattern matches a portion of a subject string that is identical to itself:

The quick brown fox

When caseless matching is specified (option caseless), letters are matched independently of case.

The power of regular expressions comes from the ability to include alternatives and repetitions in the pattern. These
are encoded in the pattern by the use of metacharacters, which do not stand for themselves but instead are interpreted
in some special way.

Two sets of metacharacters exist: those that are recognized anywhere in the pattern except within square brackets, and
those that are recognized within square brackets. Outside square brackets, the metacharacters are as follows:

\
General escape character with many uses

^
Assert start of string (or line, in multiline mode)

re

Ericsson AB. All Rights Reserved.: STDLIB | 387

$
Assert end of string (or line, in multiline mode)

.
Match any character except newline (by default)

[
Start character class definition

|
Start of alternative branch

(
Start subpattern

)
End subpattern

?
Extends the meaning of (, also 0 or 1 quantifier, also quantifier minimizer

*
0 or more quantifiers

+
1 or more quantifier, also "possessive quantifier"

{
Start min/max quantifier

Part of a pattern within square brackets is called a "character class". The following are the only metacharacters in a
character class:

\
General escape character

^
Negate the class, but only if the first character

-
Indicates character range

[
Posix character class (only if followed by Posix syntax)

]
Terminates the character class

The following sections describe the use of each metacharacter.

Backslash
The backslash character has many uses. First, if it is followed by a character that is not a number or a letter, it takes
away any special meaning that a character can have. This use of backslash as an escape character applies both inside
and outside character classes.

For example, if you want to match a * character, you write * in the pattern. This escaping action applies if the following
character would otherwise be interpreted as a metacharacter, so it is always safe to precede a non-alphanumeric with
backslash to specify that it stands for itself. In particular, if you want to match a backslash, write \\.

In unicode mode, only ASCII numbers and letters have any special meaning after a backslash. All other characters
(in particular, those whose code points are > 127) are treated as literals.

If a pattern is compiled with option extended, whitespace in the pattern (other than in a character class) and
characters between a # outside a character class and the next newline are ignored. An escaping backslash can be used
to include a whitespace or # character as part of the pattern.

re

388 | Ericsson AB. All Rights Reserved.: STDLIB

To remove the special meaning from a sequence of characters, put them between \Q and \E. This is different from
Perl in that $ and @ are handled as literals in \Q...\E sequences in PCRE, while $ and @ cause variable interpolation
in Perl. Notice the following examples:

Pattern PCRE matches Perl matches

\Qabc$xyz\E abc$xyz abc followed by the contents of $xyz
\Qabc\$xyz\E abc\$xyz abc\$xyz
\Qabc\E\$\Qxyz\E abc$xyz abc$xyz

The \Q...\E sequence is recognized both inside and outside character classes. An isolated \E that is not preceded by \Q
is ignored. If \Q is not followed by \E later in the pattern, the literal interpretation continues to the end of the pattern
(that is, \E is assumed at the end). If the isolated \Q is inside a character class, this causes an error, as the character
class is not terminated.

Non-Printing Characters

A second use of backslash provides a way of encoding non-printing characters in patterns in a visible manner. There
is no restriction on the appearance of non-printing characters, apart from the binary zero that terminates a pattern.
When a pattern is prepared by text editing, it is often easier to use one of the following escape sequences than the
binary character it represents:

\a
Alarm, that is, the BEL character (hex 07)

\cx
"Control-x", where x is any ASCII character

\e
Escape (hex 1B)

\f
Form feed (hex 0C)

\n
Line feed (hex 0A)

\r
Carriage return (hex 0D)

\t
Tab (hex 09)

\ddd
Character with octal code ddd, or back reference

\xhh
Character with hex code hh

\x{hhh..}
Character with hex code hhh..

The precise effect of \cx on ASCII characters is as follows: if x is a lowercase letter, it is converted to upper case. Then
bit 6 of the character (hex 40) is inverted. Thus \cA to \cZ become hex 01 to hex 1A (A is 41, Z is 5A), but \c{ becomes
hex 3B ({ is 7B), and \c; becomes hex 7B (; is 3B). If the data item (byte or 16-bit value) following \c has a value >
127, a compile-time error occurs. This locks out non-ASCII characters in all modes.

The \c facility was designed for use with ASCII characters, but with the extension to Unicode it is even less useful
than it once was.

By default, after \x, from zero to two hexadecimal digits are read (letters can be in upper or lower case). Any number
of hexadecimal digits can appear between \x{ and }, but the character code is constrained as follows:

8-bit non-Unicode mode
< 0x100

re

Ericsson AB. All Rights Reserved.: STDLIB | 389

8-bit UTF-8 mode
< 0x10ffff and a valid code point

Invalid Unicode code points are the range 0xd800 to 0xdfff (the so-called "surrogate" code points), and 0xffef.

If characters other than hexadecimal digits appear between \x{ and }, or if there is no terminating }, this form of escape
is not recognized. Instead, the initial \x is interpreted as a basic hexadecimal escape, with no following digits, giving
a character whose value is zero.

Characters whose value is < 256 can be defined by either of the two syntaxes for \x. There is no difference in the way
they are handled. For example, \xdc is the same as \x{dc}.

After \0 up to two further octal digits are read. If there are fewer than two digits, only those that are present are used.
Thus the sequence \0\x\07 specifies two binary zeros followed by a BEL character (code value 7). Ensure to supply
two digits after the initial zero if the pattern character that follows is itself an octal digit.

The handling of a backslash followed by a digit other than 0 is complicated. Outside a character class, PCRE reads it
and any following digits as a decimal number. If the number is < 10, or if there have been at least that many previous
capturing left parentheses in the expression, the entire sequence is taken as a back reference. A description of how
this works is provided later, following the discussion of parenthesized subpatterns.

Inside a character class, or if the decimal number is > 9 and there have not been that many capturing subpatterns, PCRE
re-reads up to three octal digits following the backslash, and uses them to generate a data character. Any subsequent
digits stand for themselves. The value of the character is constrained in the same way as characters specified in
hexadecimal. For example:

\040
Another way of writing an ASCII space

\40
The same, provided there are < 40 previous capturing subpatterns

\7
Always a back reference

\11
Can be a back reference, or another way of writing a tab

\011
Always a tab

\0113
A tab followed by character "3"

\113
Can be a back reference, otherwise the character with octal code 113

\377
Can be a back reference, otherwise value 255 (decimal)

\81
Either a back reference, or a binary zero followed by the two characters "8" and "1"

Notice that octal values >= 100 must not be introduced by a leading zero, as no more than three octal digits are ever read.

All the sequences that define a single character value can be used both inside and outside character classes. Also, inside
a character class, \b is interpreted as the backspace character (hex 08).

\N is not allowed in a character class. \B, \R, and \X are not special inside a character class. Like other unrecognized
escape sequences, they are treated as the literal characters "B", "R", and "X". Outside a character class, these sequences
have different meanings.

Unsupported Escape Sequences

In Perl, the sequences \l, \L, \u, and \U are recognized by its string handler and used to modify the case of following
characters. PCRE does not support these escape sequences.

Absolute and Relative Back References

re

390 | Ericsson AB. All Rights Reserved.: STDLIB

The sequence \g followed by an unsigned or a negative number, optionally enclosed in braces, is an absolute or relative
back reference. A named back reference can be coded as \g{name}. Back references are discussed later, following the
discussion of parenthesized subpatterns.

Absolute and Relative Subroutine Calls

For compatibility with Oniguruma, the non-Perl syntax \g followed by a name or a number enclosed either in angle
brackets or single quotes, is alternative syntax for referencing a subpattern as a "subroutine". Details are discussed
later. Notice that \g{...} (Perl syntax) and \g<...> (Oniguruma syntax) are not synonymous. The former is a back
reference and the latter is a subroutine call.

Generic Character Types

Another use of backslash is for specifying generic character types:

\d
Any decimal digit

\D
Any character that is not a decimal digit

\h
Any horizontal whitespace character

\H
Any character that is not a horizontal whitespace character

\s
Any whitespace character

\S
Any character that is not a whitespace character

\v
Any vertical whitespace character

\V
Any character that is not a vertical whitespace character

\w
Any "word" character

\W
Any "non-word" character

There is also the single sequence \N, which matches a non-newline character. This is the same as the "." metacharacter
when dotall is not set. Perl also uses \N to match characters by name, but PCRE does not support this.

Each pair of lowercase and uppercase escape sequences partitions the complete set of characters into two disjoint
sets. Any given character matches one, and only one, of each pair. The sequences can appear both inside and outside
character classes. They each match one character of the appropriate type. If the current matching point is at the end
of the subject string, all fail, as there is no character to match.

For compatibility with Perl, \s does not match the VT character (code 11). This makes it different from the Posix
"space" class. The \s characters are HT (9), LF (10), FF (12), CR (13), and space (32). If "use locale;" is included in
a Perl script, \s can match the VT character. In PCRE, it never does.

A "word" character is an underscore or any character that is a letter or a digit. By default, the definition of letters
and digits is controlled by the PCRE low-valued character tables, in Erlang's case (and without option unicode),
the ISO Latin-1 character set.

By default, in unicode mode, characters with values > 255, that is, all characters outside the ISO Latin-1 character
set, never match \d, \s, or \w, and always match \D, \S, and \W. These sequences retain their original meanings from
before UTF support was available, mainly for efficiency reasons. However, if option ucp is set, the behavior is changed
so that Unicode properties are used to determine character types, as follows:

re

Ericsson AB. All Rights Reserved.: STDLIB | 391

\d
Any character that \p{Nd} matches (decimal digit)

\s
Any character that \p{Z} matches, plus HT, LF, FF, CR

\w
Any character that \p{L} or \p{N} matches, plus underscore

The uppercase escapes match the inverse sets of characters. Notice that \d matches only decimal digits, while \w
matches any Unicode digit, any Unicode letter, and underscore. Notice also that ucp affects \b and \B, as they are
defined in terms of \w and \W. Matching these sequences is noticeably slower when ucp is set.

The sequences \h, \H, \v, and \V are features that were added to Perl in release 5.10. In contrast to the other sequences,
which match only ASCII characters by default, these always match certain high-valued code points, regardless if ucp
is set.

The following are the horizontal space characters:

U+0009
Horizontal tab (HT)

U+0020
Space

U+00A0
Non-break space

U+1680
Ogham space mark

U+180E
Mongolian vowel separator

U+2000
En quad

U+2001
Em quad

U+2002
En space

U+2003
Em space

U+2004
Three-per-em space

U+2005
Four-per-em space

U+2006
Six-per-em space

U+2007
Figure space

U+2008
Punctuation space

U+2009
Thin space

U+200A
Hair space

U+202F
Narrow no-break space

U+205F
Medium mathematical space

re

392 | Ericsson AB. All Rights Reserved.: STDLIB

U+3000
Ideographic space

The following are the vertical space characters:

U+000A
Line feed (LF)

U+000B
Vertical tab (VT)

U+000C
Form feed (FF)

U+000D
Carriage return (CR)

U+0085
Next line (NEL)

U+2028
Line separator

U+2029
Paragraph separator

In 8-bit, non-UTF-8 mode, only the characters with code points < 256 are relevant.

Newline Sequences

Outside a character class, by default, the escape sequence \R matches any Unicode newline sequence. In non-UTF-8
mode, \R is equivalent to the following:

(?>\r\n|\n|\x0b|\f|\r|\x85)

This is an example of an "atomic group", details are provided below.

This particular group matches either the two-character sequence CR followed by LF, or one of the single characters
LF (line feed, U+000A), VT (vertical tab, U+000B), FF (form feed, U+000C), CR (carriage return, U+000D), or NEL
(next line, U+0085). The two-character sequence is treated as a single unit that cannot be split.

In Unicode mode, two more characters whose code points are > 255 are added: LS (line separator, U+2028) and PS
(paragraph separator, U+2029). Unicode character property support is not needed for these characters to be recognized.

\R can be restricted to match only CR, LF, or CRLF (instead of the complete set of Unicode line endings) by setting
option bsr_anycrlf either at compile time or when the pattern is matched. (BSR is an acronym for "backslash
R".) This can be made the default when PCRE is built; if so, the other behavior can be requested through option
bsr_unicode. These settings can also be specified by starting a pattern string with one of the following sequences:

(*BSR_ANYCRLF)
CR, LF, or CRLF only

(*BSR_UNICODE)
Any Unicode newline sequence

These override the default and the options specified to the compiling function, but they can themselves be overridden
by options specified to a matching function. Notice that these special settings, which are not Perl-compatible, are
recognized only at the very start of a pattern, and that they must be in upper case. If more than one of them is present,
the last one is used. They can be combined with a change of newline convention; for example, a pattern can start with:

(*ANY)(*BSR_ANYCRLF)

re

Ericsson AB. All Rights Reserved.: STDLIB | 393

They can also be combined with the (*UTF8), (*UTF), or (*UCP) special sequences. Inside a character class, \R is
treated as an unrecognized escape sequence, and so matches the letter "R" by default.

Unicode Character Properties

Three more escape sequences that match characters with specific properties are available. When in 8-bit non-UTF-8
mode, these sequences are limited to testing characters whose code points are < 256, but they do work in this mode.
The following are the extra escape sequences:

\p{xx}
A character with property xx

\P{xx}
A character without property xx

\X
A Unicode extended grapheme cluster

The property names represented by xx above are limited to the Unicode script names, the general category properties,
"Any", which matches any character (including newline), and some special PCRE properties (described in the next
section). Other Perl properties, such as "InMusicalSymbols", are currently not supported by PCRE. Notice that
\P{Any} does not match any characters and always causes a match failure.

Sets of Unicode characters are defined as belonging to certain scripts. A character from one of these sets can be matched
using a script name, for example:

\p{Greek} \P{Han}

Those that are not part of an identified script are lumped together as "Common". The following is the current list of
scripts:

• Arabic

• Armenian

• Avestan

• Balinese

• Bamum

• Batak

• Bengali

• Bopomofo

• Braille

• Buginese

• Buhid

• Canadian_Aboriginal

• Carian

• Chakma

• Cham

• Cherokee

• Common

• Coptic

• Cuneiform

• Cypriot

• Cyrillic

re

394 | Ericsson AB. All Rights Reserved.: STDLIB

• Deseret

• Devanagari

• Egyptian_Hieroglyphs

• Ethiopic

• Georgian

• Glagolitic

• Gothic

• Greek

• Gujarati

• Gurmukhi

• Han

• Hangul

• Hanunoo

• Hebrew

• Hiragana

• Imperial_Aramaic

• Inherited

• Inscriptional_Pahlavi

• Inscriptional_Parthian

• Javanese

• Kaithi

• Kannada

• Katakana

• Kayah_Li

• Kharoshthi

• Khmer

• Lao

• Latin

• Lepcha

• Limbu

• Linear_B

• Lisu

• Lycian

• Lydian

• Malayalam

• Mandaic

• Meetei_Mayek

• Meroitic_Cursive

• Meroitic_Hieroglyphs

• Miao

• Mongolian

• Myanmar

• New_Tai_Lue

re

Ericsson AB. All Rights Reserved.: STDLIB | 395

• Nko

• Ogham

• Old_Italic

• Old_Persian

• Oriya

• Old_South_Arabian

• Old_Turkic

• Ol_Chiki

• Osmanya

• Phags_Pa

• Phoenician

• Rejang

• Runic

• Samaritan

• Saurashtra

• Sharada

• Shavian

• Sinhala

• Sora_Sompeng

• Sundanese

• Syloti_Nagri

• Syriac

• Tagalog

• Tagbanwa

• Tai_Le

• Tai_Tham

• Tai_Viet

• Takri

• Tamil

• Telugu

• Thaana

• Thai

• Tibetan

• Tifinagh

• Ugaritic

• Vai

• Yi

Each character has exactly one Unicode general category property, specified by a two-letter acronym. For compatibility
with Perl, negation can be specified by including a circumflex between the opening brace and the property name. For
example, \p{^Lu} is the same as \P{Lu}.

If only one letter is specified with \p or \P, it includes all the general category properties that start with that letter.
In this case, in the absence of negation, the curly brackets in the escape sequence are optional. The following two
examples have the same effect:

re

396 | Ericsson AB. All Rights Reserved.: STDLIB

\p{L}
\pL

The following general category property codes are supported:

C
Other

Cc
Control

Cf
Format

Cn
Unassigned

Co
Private use

Cs
Surrogate

L
Letter

Ll
Lowercase letter

Lm
Modifier letter

Lo
Other letter

Lt
Title case letter

Lu
Uppercase letter

M
Mark

Mc
Spacing mark

Me
Enclosing mark

Mn
Non-spacing mark

N
Number

Nd
Decimal number

Nl
Letter number

No
Other number

P
Punctuation

Pc
Connector punctuation

Pd
Dash punctuation

re

Ericsson AB. All Rights Reserved.: STDLIB | 397

Pe
Close punctuation

Pf
Final punctuation

Pi
Initial punctuation

Po
Other punctuation

Ps
Open punctuation

S
Symbol

Sc
Currency symbol

Sk
Modifier symbol

Sm
Mathematical symbol

So
Other symbol

Z
Separator

Zl
Line separator

Zp
Paragraph separator

Zs
Space separator

The special property L& is also supported. It matches a character that has the Lu, Ll, or Lt property, that is, a letter
that is not classified as a modifier or "other".

The Cs (Surrogate) property applies only to characters in the range U+D800 to U+DFFF. Such characters are invalid
in Unicode strings and so cannot be tested by PCRE. Perl does not support the Cs property.

The long synonyms for property names supported by Perl (such as \p{Letter}) are not supported by PCRE. It is not
permitted to prefix any of these properties with "Is".

No character in the Unicode table has the Cn (unassigned) property. This property is instead assumed for any code
point that is not in the Unicode table.

Specifying caseless matching does not affect these escape sequences. For example, \p{Lu} always matches only
uppercase letters. This is different from the behavior of current versions of Perl.

Matching characters by Unicode property is not fast, as PCRE must do a multistage table lookup to find a character
property. That is why the traditional escape sequences such as \d and \w do not use Unicode properties in PCRE by
default. However, you can make them do so by setting option ucp or by starting the pattern with (*UCP).

Extended Grapheme Clusters

The \X escape matches any number of Unicode characters that form an "extended grapheme cluster", and treats the
sequence as an atomic group (see below). Up to and including release 8.31, PCRE matched an earlier, simpler definition
that was equivalent to (?>\PM\pM*). That is, it matched a character without the "mark" property, followed by zero
or more characters with the "mark" property. Characters with the "mark" property are typically non-spacing accents
that affect the preceding character.

re

398 | Ericsson AB. All Rights Reserved.: STDLIB

This simple definition was extended in Unicode to include more complicated kinds of composite character by giving
each character a grapheme breaking property, and creating rules that use these properties to define the boundaries of
extended grapheme clusters. In PCRE releases later than 8.31, \X matches one of these clusters.

\X always matches at least one character. Then it decides whether to add more characters according to the following
rules for ending a cluster:

• End at the end of the subject string.

• Do not end between CR and LF; otherwise end after any control character.

• Do not break Hangul (a Korean script) syllable sequences. Hangul characters are of five types: L, V, T, LV, and
LVT. An L character can be followed by an L, V, LV, or LVT character. An LV or V character can be followed
by a V or T character. An LVT or T character can be followed only by a T character.

• Do not end before extending characters or spacing marks. Characters with the "mark" property always have the
"extend" grapheme breaking property.

• Do not end after prepend characters.

• Otherwise, end the cluster.

PCRE Additional Properties

In addition to the standard Unicode properties described earlier, PCRE supports four more that make it possible
to convert traditional escape sequences, such as \w and \s, and Posix character classes to use Unicode properties.
PCRE uses these non-standard, non-Perl properties internally when PCRE_UCP is set. However, they can also be used
explicitly. The properties are as follows:

Xan

Any alphanumeric character. Matches characters that have either the L (letter) or the N (number) property.

Xps

Any Posix space character. Matches the characters tab, line feed, vertical tab, form feed, carriage return, and any
other character that has the Z (separator) property.

Xsp

Any Perl space character. Matches the same as Xps, except that vertical tab is excluded.

Xwd

Any Perl "word" character. Matches the same characters as Xan, plus underscore.

There is another non-standard property, Xuc, which matches any character that can be represented by a Universal
Character Name in C++ and other programming languages. These are the characters $, @, ` (grave accent), and all
characters with Unicode code points >= U+00A0, except for the surrogates U+D800 to U+DFFF. Notice that most
base (ASCII) characters are excluded. (Universal Character Names are of the form \uHHHH or \UHHHHHHHH,
where H is a hexadecimal digit. Notice that the Xuc property does not match these sequences but the characters that
they represent.)

Resetting the Match Start

The escape sequence \K causes any previously matched characters not to be included in the final matched sequence.
For example, the following pattern matches "foobar", but reports that it has matched "bar":

foo\Kbar

This feature is similar to a lookbehind assertion (described below). However, in this case, the part of the subject before
the real match does not have to be of fixed length, as lookbehind assertions do. The use of \K does not interfere with

re

Ericsson AB. All Rights Reserved.: STDLIB | 399

the setting of captured substrings. For example, when the following pattern matches "foobar", the first substring is
still set to "foo":

(foo)\Kbar

Perl documents that the use of \K within assertions is "not well defined". In PCRE, \K is acted upon when it occurs
inside positive assertions, but is ignored in negative assertions.

Simple Assertions

The final use of backslash is for certain simple assertions. An assertion specifies a condition that must be met at a
particular point in a match, without consuming any characters from the subject string. The use of subpatterns for more
complicated assertions is described below. The following are the backslashed assertions:

\b
Matches at a word boundary.

\B
Matches when not at a word boundary.

\A
Matches at the start of the subject.

\Z
Matches at the end of the subject, and before a newline at the end of the subject.

\z
Matches only at the end of the subject.

\G
Matches at the first matching position in the subject.

Inside a character class, \b has a different meaning; it matches the backspace character. If any other of these assertions
appears in a character class, by default it matches the corresponding literal character (for example, \B matches the
letter B).

A word boundary is a position in the subject string where the current character and the previous character do not both
match \w or \W (that is, one matches \w and the other matches \W), or the start or end of the string if the first or last
character matches \w, respectively. In UTF mode, the meanings of \w and \W can be changed by setting option ucp.
When this is done, it also affects \b and \B. PCRE and Perl do not have a separate "start of word" or "end of word"
metasequence. However, whatever follows \b normally determines which it is. For example, the fragment \ba matches
"a" at the start of a word.

The \A, \Z, and \z assertions differ from the traditional circumflex and dollar (described in the next section) in that they
only ever match at the very start and end of the subject string, whatever options are set. Thus, they are independent of
multiline mode. These three assertions are not affected by options notbol or noteol, which affect only the behavior
of the circumflex and dollar metacharacters. However, if argument startoffset of run/3 is non-zero, indicating
that matching is to start at a point other than the beginning of the subject, \A can never match. The difference between
\Z and \z is that \Z matches before a newline at the end of the string and at the very end, while \z matches only at the end.

The \G assertion is true only when the current matching position is at the start point of the match, as specified by
argument startoffset of run/3. It differs from \A when the value of startoffset is non-zero. By calling
run/3 multiple times with appropriate arguments, you can mimic the Perl option /g, and it is in this kind of
implementation where \G can be useful.

Notice, however, that the PCRE interpretation of \G, as the start of the current match, is subtly different from Perl,
which defines it as the end of the previous match. In Perl, these can be different when the previously matched string
was empty. As PCRE does only one match at a time, it cannot reproduce this behavior.

If all the alternatives of a pattern begin with \G, the expression is anchored to the starting match position, and the
"anchored" flag is set in the compiled regular expression.

re

400 | Ericsson AB. All Rights Reserved.: STDLIB

Circumflex and Dollar
The circumflex and dollar metacharacters are zero-width assertions. That is, they test for a particular condition to be
true without consuming any characters from the subject string.

Outside a character class, in the default matching mode, the circumflex character is an assertion that is true only if
the current matching point is at the start of the subject string. If argument startoffset of run/3 is non-zero,
circumflex can never match if option multiline is unset. Inside a character class, circumflex has an entirely different
meaning (see below).

Circumflex needs not to be the first character of the pattern if some alternatives are involved, but it is to be the first
thing in each alternative in which it appears if the pattern is ever to match that branch. If all possible alternatives
start with a circumflex, that is, if the pattern is constrained to match only at the start of the subject, it is said to be an
"anchored" pattern. (There are also other constructs that can cause a pattern to be anchored.)

The dollar character is an assertion that is true only if the current matching point is at the end of the subject string, or
immediately before a newline at the end of the string (by default). Notice however that it does not match the newline.
Dollar needs not to be the last character of the pattern if some alternatives are involved, but it is to be the last item in
any branch in which it appears. Dollar has no special meaning in a character class.

The meaning of dollar can be changed so that it matches only at the very end of the string, by setting option
dollar_endonly at compile time. This does not affect the \Z assertion.

The meanings of the circumflex and dollar characters are changed if option multiline is set. When this is the
case, a circumflex matches immediately after internal newlines and at the start of the subject string. It does not match
after a newline that ends the string. A dollar matches before any newlines in the string, and at the very end, when
multiline is set. When newline is specified as the two-character sequence CRLF, isolated CR and LF characters
do not indicate newlines.

For example, the pattern /^abc$/ matches the subject string "def\nabc" (where \n represents a newline) in multiline
mode, but not otherwise. So, patterns that are anchored in single-line mode because all branches start with ^ are not
anchored in multiline mode, and a match for circumflex is possible when argument startoffset of run/3 is non-zero.
Option dollar_endonly is ignored if multiline is set.

Notice that the sequences \A, \Z, and \z can be used to match the start and end of the subject in both modes. If all
branches of a pattern start with \A, it is always anchored, regardless if multiline is set.

Full Stop (Period, Dot) and \N
Outside a character class, a dot in the pattern matches any character in the subject string except (by default) a character
that signifies the end of a line.

When a line ending is defined as a single character, dot never matches that character. When the two-character sequence
CRLF is used, dot does not match CR if it is immediately followed by LF, otherwise it matches all characters (including
isolated CRs and LFs). When any Unicode line endings are recognized, dot does not match CR, LF, or any of the
other line-ending characters.

The behavior of dot regarding newlines can be changed. If option dotall is set, a dot matches any character, without
exception. If the two-character sequence CRLF is present in the subject string, it takes two dots to match it.

The handling of dot is entirely independent of the handling of circumflex and dollar, the only relationship is that both
involve newlines. Dot has no special meaning in a character class.

The escape sequence \N behaves like a dot, except that it is not affected by option PCRE_DOTALL. That is, it matches
any character except one that signifies the end of a line. Perl also uses \N to match characters by name but PCRE
does not support this.

re

Ericsson AB. All Rights Reserved.: STDLIB | 401

Matching a Single Data Unit
Outside a character class, the escape sequence \C matches any data unit, regardless if a UTF mode is set. One data unit
is one byte. Unlike a dot, \C always matches line-ending characters. The feature is provided in Perl to match individual
bytes in UTF-8 mode, but it is unclear how it can usefully be used. As \C breaks up characters into individual data
units, matching one unit with \C in a UTF mode means that the remaining string can start with a malformed UTF
character. This has undefined results, as PCRE assumes that it deals with valid UTF strings.

PCRE does not allow \C to appear in lookbehind assertions (described below) in a UTF mode, as this would make it
impossible to calculate the length of the lookbehind.

The \C escape sequence is best avoided. However, one way of using it that avoids the problem of malformed UTF
characters is to use a lookahead to check the length of the next character, as in the following pattern, which can be
used with a UTF-8 string (ignore whitespace and line breaks):

(?| (?=[\x00-\x7f])(\C) |
 (?=[\x80-\x{7ff}])(\C)(\C) |
 (?=[\x{800}-\x{ffff}])(\C)(\C)(\C) |
 (?=[\x{10000}-\x{1fffff}])(\C)(\C)(\C)(\C))

A group that starts with (?| resets the capturing parentheses numbers in each alternative (see section Duplicate
Subpattern Numbers). The assertions at the start of each branch check the next UTF-8 character for values whose
encoding uses 1, 2, 3, or 4 bytes, respectively. The individual bytes of the character are then captured by the appropriate
number of groups.

Square Brackets and Character Classes
An opening square bracket introduces a character class, terminated by a closing square bracket. A closing square
bracket on its own is not special by default. However, if option PCRE_JAVASCRIPT_COMPAT is set, a lone closing
square bracket causes a compile-time error. If a closing square bracket is required as a member of the class, it is to be
the first data character in the class (after an initial circumflex, if present) or escaped with a backslash.

A character class matches a single character in the subject. In a UTF mode, the character can be more than one data
unit long. A matched character must be in the set of characters defined by the class, unless the first character in the
class definition is a circumflex, in which case the subject character must not be in the set defined by the class. If a
circumflex is required as a member of the class, ensure that it is not the first character, or escape it with a backslash.

For example, the character class [aeiou] matches any lowercase vowel, while [^aeiou] matches any character
that is not a lowercase vowel. Notice that a circumflex is just a convenient notation for specifying the characters that
are in the class by enumerating those that are not. A class that starts with a circumflex is not an assertion; it still
consumes a character from the subject string, and therefore it fails if the current pointer is at the end of the string.

In UTF-8 mode, characters with values > 255 (0xffff) can be included in a class as a literal string of data units, or
by using the \x{ escaping mechanism.

When caseless matching is set, any letters in a class represent both their uppercase and lowercase versions. For example,
a caseless [aeiou] matches "A" and "a", and a caseless [^aeiou] does not match "A", but a caseful version
would. In a UTF mode, PCRE always understands the concept of case for characters whose values are < 256, so
caseless matching is always possible. For characters with higher values, the concept of case is supported only if PCRE
is compiled with Unicode property support. If you want to use caseless matching in a UTF mode for characters >=,
ensure that PCRE is compiled with Unicode property support and with UTF support.

Characters that can indicate line breaks are never treated in any special way when matching character classes, whatever
line-ending sequence is in use, and whatever setting of options PCRE_DOTALL and PCRE_MULTILINE is used. A
class such as [^a] always matches one of these characters.

re

402 | Ericsson AB. All Rights Reserved.: STDLIB

The minus (hyphen) character can be used to specify a range of characters in a character class. For example, [d-m]
matches any letter between d and m, inclusive. If a minus character is required in a class, it must be escaped with
a backslash or appear in a position where it cannot be interpreted as indicating a range, typically as the first or last
character in the class.

The literal character "]" cannot be the end character of a range. A pattern such as [W-]46] is interpreted as a class of
two characters ("W" and "-") followed by a literal string "46]", so it would match "W46]" or "-46]". However, if "]" is
escaped with a backslash, it is interpreted as the end of range, so [W-\]46] is interpreted as a class containing a range
followed by two other characters. The octal or hexadecimal representation of "]" can also be used to end a range.

Ranges operate in the collating sequence of character values. They can also be used for characters specified
numerically, for example, [\000-\037]. Ranges can include any characters that are valid for the current mode.

If a range that includes letters is used when caseless matching is set, it matches the letters in either case. For example,
[W-c] is equivalent to [][\\^_`wxyzabc], matched caselessly. In a non-UTF mode, if character tables for a French locale
are in use, [\xc8-\xcb] matches accented E characters in both cases. In UTF modes, PCRE supports the concept of case
for characters with values > 255 only when it is compiled with Unicode property support.

The character escape sequences \d, \D, \h, \H, \p, \P, \s, \S, \v, \V, \w, and \W can appear in a character class, and add
the characters that they match to the class. For example, [\dABCDEF] matches any hexadecimal digit. In UTF modes,
option ucp affects the meanings of \d, \s, \w and their uppercase partners, just as it does when they appear outside
a character class, as described in section Generic Character Types earlier. The escape sequence \b has a different
meaning inside a character class; it matches the backspace character. The sequences \B, \N, \R, and \X are not special
inside a character class. Like any other unrecognized escape sequences, they are treated as the literal characters "B",
"N", "R", and "X".

A circumflex can conveniently be used with the uppercase character types to specify a more restricted set of characters
than the matching lowercase type. For example, class [^\W_] matches any letter or digit, but not underscore, while
[\w] includes underscore. A positive character class is to be read as "something OR something OR ..." and a negative
class as "NOT something AND NOT something AND NOT ...".

Only the following metacharacters are recognized in character classes:

• Backslash

• Hyphen (only where it can be interpreted as specifying a range)

• Circumflex (only at the start)

• Opening square bracket (only when it can be interpreted as introducing a Posix class name; see the next section)

• Terminating closing square bracket

However, escaping other non-alphanumeric characters does no harm.

Posix Character Classes
Perl supports the Posix notation for character classes. This uses names enclosed by [: and :] within the enclosing square
brackets. PCRE also supports this notation. For example, the following matches "0", "1", any alphabetic character,
or "%":

[01[:alpha:]%]

The following are the supported class names:

alnum
Letters and digits

alpha
Letters

re

Ericsson AB. All Rights Reserved.: STDLIB | 403

ascii
Character codes 0-127

blank
Space or tab only

cntrl
Control characters

digit
Decimal digits (same as \d)

graph
Printing characters, excluding space

lower
Lowercase letters

print
Printing characters, including space

punct
Printing characters, excluding letters, digits, and space

space
Whitespace (not quite the same as \s)

upper
Uppercase letters

word
"Word" characters (same as \w)

xdigit
Hexadecimal digits

The "space" characters are HT (9), LF (10), VT (11), FF (12), CR (13), and space (32). Notice that this list includes
the VT character (code 11). This makes "space" different to \s, which does not include VT (for Perl compatibility).

The name "word" is a Perl extension, and "blank" is a GNU extension from Perl 5.8. Another Perl extension is negation,
which is indicated by a ^ character after the colon. For example, the following matches "1", "2", or any non-digit:

[12[:^digit:]]

PCRE (and Perl) also recognize the Posix syntax [.ch.] and [=ch=] where "ch" is a "collating element", but these are
not supported, and an error is given if they are encountered.

By default, in UTF modes, characters with values > 255 do not match any of the Posix character classes. However,
if option PCRE_UCP is passed to pcre_compile(), some of the classes are changed so that Unicode character
properties are used. This is achieved by replacing the Posix classes by other sequences, as follows:

[:alnum:]
Becomes \p{Xan}

[:alpha:]
Becomes \p{L}

[:blank:]
Becomes \h

[:digit:]
Becomes \p{Nd}

[:lower:]
Becomes \p{Ll}

[:space:]
Becomes \p{Xps}

re

404 | Ericsson AB. All Rights Reserved.: STDLIB

[:upper:]
Becomes \p{Lu}

[:word:]
Becomes \p{Xwd}

Negated versions, such as [:^alpha:], use \P instead of \p. The other Posix classes are unchanged, and match only
characters with code points < 256.

Vertical Bar
Vertical bar characters are used to separate alternative patterns. For example, the following pattern matches either
"gilbert" or "sullivan":

gilbert|sullivan

Any number of alternatives can appear, and an empty alternative is permitted (matching the empty string). The
matching process tries each alternative in turn, from left to right, and the first that succeeds is used. If the alternatives
are within a subpattern (defined in section Subpatterns), "succeeds" means matching the remaining main pattern and
the alternative in the subpattern.

Internal Option Setting
The settings of the Perl-compatible options caseless, multiline, dotall, and extended can be changed
from within the pattern by a sequence of Perl option letters enclosed between "(?" and ")". The option letters are as
follows:

i
For caseless

m
For multiline

s
For dotall

x
For extended

For example, (?im) sets caseless, multiline matching. These options can also be unset by preceding the letter with
a hyphen. A combined setting and unsetting such as (?im-sx), which sets caseless and multiline, while
unsetting dotall and extended, is also permitted. If a letter appears both before and after the hyphen, the option
is unset.

The PCRE-specific options dupnames, ungreedy, and extra can be changed in the same way as the Perl-
compatible options by using the characters J, U, and X respectively.

When one of these option changes occurs at top-level (that is, not inside subpattern parentheses), the change applies
to the remainder of the pattern that follows. If the change is placed right at the start of a pattern, PCRE extracts it
into the global options.

An option change within a subpattern (see section Subpatterns) affects only that part of the subpattern that follows it.
So, the following matches abc and aBc and no other strings (assuming caseless is not used):

(a(?i)b)c

By this means, options can be made to have different settings in different parts of the pattern. Any changes made in
one alternative do carry on into subsequent branches within the same subpattern. For example:

re

Ericsson AB. All Rights Reserved.: STDLIB | 405

(a(?i)b|c)

matches "ab", "aB", "c", and "C", although when matching "C" the first branch is abandoned before the option setting.
This is because the effects of option settings occur at compile time. There would be some weird behavior otherwise.

Note:
Other PCRE-specific options can be set by the application when the compiling or matching functions are called.
Sometimes the pattern can contain special leading sequences, such as (*CRLF), to override what the application
has set or what has been defaulted. Details are provided in section Newline Sequences earlier.

The (*UTF8) and (*UCP) leading sequences can be used to set UTF and Unicode property modes. They are
equivalent to setting options unicode and ucp, respectively. The (*UTF) sequence is a generic version that
can be used with any of the libraries. However, the application can set option never_utf, which locks out the
use of the (*UTF) sequences.

Subpatterns
Subpatterns are delimited by parentheses (round brackets), which can be nested. Turning part of a pattern into a
subpattern does two things:

1.

It localizes a set of alternatives. For example, the following pattern matches "cataract", "caterpillar", or "cat":

cat(aract|erpillar|)

Without the parentheses, it would match "cataract", "erpillar", or an empty string.

2.

It sets up the subpattern as a capturing subpattern. That is, when the complete pattern matches, that portion of the
subject string that matched the subpattern is passed back to the caller through the return value of run/3.

Opening parentheses are counted from left to right (starting from 1) to obtain numbers for the capturing subpatterns.
For example, if the string "the red king" is matched against the following pattern, the captured substrings are "red
king", "red", and "king", and are numbered 1, 2, and 3, respectively:

the ((red|white) (king|queen))

It is not always helpful that plain parentheses fulfill two functions. Often a grouping subpattern is required without
a capturing requirement. If an opening parenthesis is followed by a question mark and a colon, the subpattern does
not do any capturing, and is not counted when computing the number of any subsequent capturing subpatterns. For
example, if the string "the white queen" is matched against the following pattern, the captured substrings are "white
queen" and "queen", and are numbered 1 and 2:

the ((?:red|white) (king|queen))

The maximum number of capturing subpatterns is 65535.

re

406 | Ericsson AB. All Rights Reserved.: STDLIB

As a convenient shorthand, if any option settings are required at the start of a non-capturing subpattern, the option
letters can appear between "?" and ":". Thus, the following two patterns match the same set of strings:

(?i:saturday|sunday)
(?:(?i)saturday|sunday)

As alternative branches are tried from left to right, and options are not reset until the end of the subpattern is reached,
an option setting in one branch does affect subsequent branches, so the above patterns match both "SUNDAY" and
"Saturday".

Duplicate Subpattern Numbers
Perl 5.10 introduced a feature where each alternative in a subpattern uses the same numbers for its capturing
parentheses. Such a subpattern starts with (?| and is itself a non-capturing subpattern. For example, consider the
following pattern:

(?|(Sat)ur|(Sun))day

As the two alternatives are inside a (?| group, both sets of capturing parentheses are numbered one. Thus, when
the pattern matches, you can look at captured substring number one, whichever alternative matched. This construct
is useful when you want to capture a part, but not all, of one of many alternatives. Inside a (?| group, parentheses
are numbered as usual, but the number is reset at the start of each branch. The numbers of any capturing parentheses
that follow the subpattern start after the highest number used in any branch. The following example is from the Perl
documentation; the numbers underneath show in which buffer the captured content is stored:

before ---------------branch-reset----------- after
/ (a) (?| x (y) z | (p (q) r) | (t) u (v)) (z) /x
1 2 2 3 2 3 4

A back reference to a numbered subpattern uses the most recent value that is set for that number by any subpattern.
The following pattern matches "abcabc" or "defdef":

/(?|(abc)|(def))\1/

In contrast, a subroutine call to a numbered subpattern always refers to the first one in the pattern with the given
number. The following pattern matches "abcabc" or "defabc":

/(?|(abc)|(def))(?1)/

If a condition test for a subpattern having matched refers to a non-unique number, the test is true if any of the subpatterns
of that number have matched.

An alternative approach using this "branch reset" feature is to use duplicate named subpatterns, as described in the
next section.

re

Ericsson AB. All Rights Reserved.: STDLIB | 407

Named Subpatterns
Identifying capturing parentheses by number is simple, but it can be hard to keep track of the numbers in complicated
regular expressions. Also, if an expression is modified, the numbers can change. To help with this difficulty, PCRE
supports the naming of subpatterns. This feature was not added to Perl until release 5.10. Python had the feature earlier,
and PCRE introduced it at release 4.0, using the Python syntax. PCRE now supports both the Perl and the Python
syntax. Perl allows identically numbered subpatterns to have different names, but PCRE does not.

In PCRE, a subpattern can be named in one of three ways: (?<name>...) or (?'name'...) as in Perl, or
(?P<name>...) as in Python. References to capturing parentheses from other parts of the pattern, such as back
references, recursion, and conditions, can be made by name and by number.

Names consist of up to 32 alphanumeric characters and underscores. Named capturing parentheses are still allocated
numbers as well as names, exactly as if the names were not present. The capture specification to run/3 can use
named values if they are present in the regular expression.

By default, a name must be unique within a pattern, but this constraint can be relaxed by setting option dupnames at
compile time. (Duplicate names are also always permitted for subpatterns with the same number, set up as described
in the previous section.) Duplicate names can be useful for patterns where only one instance of the named parentheses
can match. Suppose that you want to match the name of a weekday, either as a 3-letter abbreviation or as the full name,
and in both cases you want to extract the abbreviation. The following pattern (ignoring the line breaks) does the job:

(?<DN>Mon|Fri|Sun)(?:day)?|
(?<DN>Tue)(?:sday)?|
(?<DN>Wed)(?:nesday)?|
(?<DN>Thu)(?:rsday)?|
(?<DN>Sat)(?:urday)?

There are five capturing substrings, but only one is ever set after a match. (An alternative way of solving this problem
is to use a "branch reset" subpattern, as described in the previous section.)

For capturing named subpatterns which names are not unique, the first matching occurrence (counted from left to right
in the subject) is returned from run/3, if the name is specified in the values part of the capture statement. The
all_names capturing value matches all the names in the same way.

Note:
You cannot use different names to distinguish between two subpatterns with the same number, as PCRE uses only
the numbers when matching. For this reason, an error is given at compile time if different names are specified
to subpatterns with the same number. However, you can specify the same name to subpatterns with the same
number, even when dupnames is not set.

Repetition
Repetition is specified by quantifiers, which can follow any of the following items:

• A literal data character

• The dot metacharacter

• The \C escape sequence

• The \X escape sequence

• The \R escape sequence

• An escape such as \d or \pL that matches a single character

re

408 | Ericsson AB. All Rights Reserved.: STDLIB

• A character class

• A back reference (see the next section)

• A parenthesized subpattern (including assertions)

• A subroutine call to a subpattern (recursive or otherwise)

The general repetition quantifier specifies a minimum and maximum number of permitted matches, by giving the two
numbers in curly brackets (braces), separated by a comma. The numbers must be < 65536, and the first must be less
than or equal to the second. For example, the following matches "zz", "zzz", or "zzzz":

z{2,4}

A closing brace on its own is not a special character. If the second number is omitted, but the comma is present, there
is no upper limit. If the second number and the comma are both omitted, the quantifier specifies an exact number of
required matches. Thus, the following matches at least three successive vowels, but can match many more:

[aeiou]{3,}

The following matches exactly eight digits:

\d{8}

An opening curly bracket that appears in a position where a quantifier is not allowed, or one that does not match the
syntax of a quantifier, is taken as a literal character. For example, {,6} is not a quantifier, but a literal string of four
characters.

In Unicode mode, quantifiers apply to characters rather than to individual data units. Thus, for example, \x{100}{2}
matches two characters, each of which is represented by a 2-byte sequence in a UTF-8 string. Similarly, \X{3} matches
three Unicode extended grapheme clusters, each of which can be many data units long (and they can be of different
lengths).

The quantifier {0} is permitted, causing the expression to behave as if the previous item and the quantifier were not
present. This can be useful for subpatterns that are referenced as subroutines from elsewhere in the pattern (but see
also section Defining Subpatterns for Use by Reference Only). Items other than subpatterns that have a {0} quantifier
are omitted from the compiled pattern.

For convenience, the three most common quantifiers have single-character abbreviations:

*
Equivalent to {0,}

+
Equivalent to {1,}

?
Equivalent to {0,1}

Infinite loops can be constructed by following a subpattern that can match no characters with a quantifier that has no
upper limit, for example:

(a?)*

re

Ericsson AB. All Rights Reserved.: STDLIB | 409

Earlier versions of Perl and PCRE used to give an error at compile time for such patterns. However, as there are cases
where this can be useful, such patterns are now accepted. However, if any repetition of the subpattern matches no
characters, the loop is forcibly broken.

By default, the quantifiers are "greedy", that is, they match as much as possible (up to the maximum number of
permitted times), without causing the remaining pattern to fail. The classic example of where this gives problems is
in trying to match comments in C programs. These appear between /* and */. Within the comment, individual * and /
characters can appear. An attempt to match C comments by applying the pattern

/*.**/

to the string

/* first comment */ not comment /* second comment */

fails, as it matches the entire string owing to the greediness of the .* item.

However, if a quantifier is followed by a question mark, it ceases to be greedy, and instead matches the minimum
number of times possible, so the following pattern does the right thing with the C comments:

/*.*?*/

The meaning of the various quantifiers is not otherwise changed, only the preferred number of matches. Do not confuse
this use of question mark with its use as a quantifier in its own right. As it has two uses, it can sometimes appear
doubled, as in

\d??\d

which matches one digit by preference, but can match two if that is the only way the remaining pattern matches.

If option ungreedy is set (an option that is not available in Perl), the quantifiers are not greedy by default, but
individual ones can be made greedy by following them with a question mark. That is, it inverts the default behavior.

When a parenthesized subpattern is quantified with a minimum repeat count that is > 1 or with a limited maximum,
more memory is required for the compiled pattern, in proportion to the size of the minimum or maximum.

If a pattern starts with .* or .{0,} and option dotall (equivalent to Perl option /s) is set, thus allowing the dot to
match newlines, the pattern is implicitly anchored, because whatever follows is tried against every character position
in the subject string. So, there is no point in retrying the overall match at any position after the first. PCRE normally
treats such a pattern as if it was preceded by \A.

In cases where it is known that the subject string contains no newlines, it is worth setting dotall to obtain this
optimization, or alternatively using ^ to indicate anchoring explicitly.

However, there are some cases where the optimization cannot be used. When .* is inside capturing parentheses that
are the subject of a back reference elsewhere in the pattern, a match at the start can fail where a later one succeeds.
Consider, for example:

(.*)abc\1

re

410 | Ericsson AB. All Rights Reserved.: STDLIB

If the subject is "xyz123abc123", the match point is the fourth character. Therefore, such a pattern is not implicitly
anchored.

Another case where implicit anchoring is not applied is when the leading .* is inside an atomic group. Once again, a
match at the start can fail where a later one succeeds. Consider the following pattern:

(?>.*?a)b

It matches "ab" in the subject "aab". The use of the backtracking control verbs (*PRUNE) and (*SKIP) also disable
this optimization.

When a capturing subpattern is repeated, the value captured is the substring that matched the final iteration. For
example, after

(tweedle[dume]{3}\s*)+

has matched "tweedledum tweedledee", the value of the captured substring is "tweedledee". However, if there are
nested capturing subpatterns, the corresponding captured values can have been set in previous iterations. For example,
after

/(a|(b))+/

matches "aba", the value of the second captured substring is "b".

Atomic Grouping and Possessive Quantifiers
With both maximizing ("greedy") and minimizing ("ungreedy" or "lazy") repetition, failure of what follows normally
causes the repeated item to be re-evaluated to see if a different number of repeats allows the remaining pattern to
match. Sometimes it is useful to prevent this, either to change the nature of the match, or to cause it to fail earlier than
it otherwise might, when the author of the pattern knows that there is no point in carrying on.

Consider, for example, the pattern \d+foo when applied to the following subject line:

123456bar

After matching all six digits and then failing to match "foo", the normal action of the matcher is to try again with
only five digits matching item \d+, and then with four, and so on, before ultimately failing. "Atomic grouping" (a term
taken from Jeffrey Friedl's book) provides the means for specifying that once a subpattern has matched, it is not to
be re-evaluated in this way.

If atomic grouping is used for the previous example, the matcher gives up immediately on failing to match "foo" the
first time. The notation is a kind of special parenthesis, starting with (?> as in the following example:

(?>\d+)foo

This kind of parenthesis "locks up" the part of the pattern it contains once it has matched, and a failure further into the
pattern is prevented from backtracking into it. Backtracking past it to previous items, however, works as normal.

re

Ericsson AB. All Rights Reserved.: STDLIB | 411

An alternative description is that a subpattern of this type matches the string of characters that an identical standalone
pattern would match, if anchored at the current point in the subject string.

Atomic grouping subpatterns are not capturing subpatterns. Simple cases such as the above example can be thought
of as a maximizing repeat that must swallow everything it can. So, while both \d+ and \d+? are prepared to adjust
the number of digits they match to make the remaining pattern match, (?>\d+) can only match an entire sequence
of digits.

Atomic groups in general can contain any complicated subpatterns, and can be nested. However, when the subpattern
for an atomic group is just a single repeated item, as in the example above, a simpler notation, called a "possessive
quantifier" can be used. This consists of an extra + character following a quantifier. Using this notation, the previous
example can be rewritten as

\d++foo

Notice that a possessive quantifier can be used with an entire group, for example:

(abc|xyz){2,3}+

Possessive quantifiers are always greedy; the setting of option ungreedy is ignored. They are a convenient notation
for the simpler forms of an atomic group. However, there is no difference in the meaning of a possessive quantifier and
the equivalent atomic group, but there can be a performance difference; possessive quantifiers are probably slightly
faster.

The possessive quantifier syntax is an extension to the Perl 5.8 syntax. Jeffrey Friedl originated the idea (and the name)
in the first edition of his book. Mike McCloskey liked it, so implemented it when he built the Sun Java package, and
PCRE copied it from there. It ultimately found its way into Perl at release 5.10.

PCRE has an optimization that automatically "possessifies" certain simple pattern constructs. For example, the
sequence A+B is treated as A++B, as there is no point in backtracking into a sequence of A:s when B must follow.

When a pattern contains an unlimited repeat inside a subpattern that can itself be repeated an unlimited number of
times, the use of an atomic group is the only way to avoid some failing matches taking a long time. The pattern

(\D+|<\d+>)*[!?]

matches an unlimited number of substrings that either consist of non-digits, or digits enclosed in <>, followed by !
or ?. When it matches, it runs quickly. However, if it is applied to

aa

it takes a long time before reporting failure. This is because the string can be divided between the internal \D+ repeat
and the external * repeat in many ways, and all must be tried. (The example uses [!?] rather than a single character
at the end, as both PCRE and Perl have an optimization that allows for fast failure when a single character is used.
They remember the last single character that is required for a match, and fail early if it is not present in the string.) If
the pattern is changed so that it uses an atomic group, like the following, sequences of non-digits cannot be broken,
and failure happens quickly:

re

412 | Ericsson AB. All Rights Reserved.: STDLIB

((?>\D+)|<\d+>)*[!?]

Back References
Outside a character class, a backslash followed by a digit > 0 (and possibly further digits) is a back reference to a
capturing subpattern earlier (that is, to its left) in the pattern, provided there have been that many previous capturing
left parentheses.

However, if the decimal number following the backslash is < 10, it is always taken as a back reference, and causes an
error only if there are not that many capturing left parentheses in the entire pattern. That is, the parentheses that are
referenced do need not be to the left of the reference for numbers < 10. A "forward back reference" of this type can
make sense when a repetition is involved and the subpattern to the right has participated in an earlier iteration.

It is not possible to have a numerical "forward back reference" to a subpattern whose number is 10 or more using
this syntax, as a sequence such as \50 is interpreted as a character defined in octal. For more details of the handling
of digits following a backslash, see section Non-Printing Characters earlier. There is no such problem when named
parentheses are used. A back reference to any subpattern is possible using named parentheses (see below).

Another way to avoid the ambiguity inherent in the use of digits following a backslash is to use the \g escape sequence.
This escape must be followed by an unsigned number or a negative number, optionally enclosed in braces. The
following examples are identical:

(ring), \1
(ring), \g1
(ring), \g{1}

An unsigned number specifies an absolute reference without the ambiguity that is present in the older syntax. It is
also useful when literal digits follow the reference. A negative number is a relative reference. Consider the following
example:

(abc(def)ghi)\g{-1}

The sequence \g{-1} is a reference to the most recently started capturing subpattern before \g, that is, it is equivalent
to \2 in this example. Similarly, \g{-2} would be equivalent to \1. The use of relative references can be helpful in long
patterns, and also in patterns that are created by joining fragments containing references within themselves.

A back reference matches whatever matched the capturing subpattern in the current subject string, rather than anything
matching the subpattern itself (section Subpattern as Subroutines describes a way of doing that). So, the following
pattern matches "sense and sensibility" and "response and responsibility", but not "sense and responsibility":

(sens|respons)e and \1ibility

If caseful matching is in force at the time of the back reference, the case of letters is relevant. For example, the
following matches "rah rah" and "RAH RAH", but not "RAH rah", although the original capturing subpattern is
matched caselessly:

((?i)rah)\s+\1

There are many different ways of writing back references to named subpatterns. The .NET syntax \k{name} and
the Perl syntax \k<name> or \k'name' are supported, as is the Python syntax (?P=name). The unified back

re

Ericsson AB. All Rights Reserved.: STDLIB | 413

reference syntax in Perl 5.10, in which \g can be used for both numeric and named references, is also supported. The
previous example can be rewritten in the following ways:

(?<p1>(?i)rah)\s+\k<p1>
(?'p1'(?i)rah)\s+\k{p1}
(?P<p1>(?i)rah)\s+(?P=p1)
(?<p1>(?i)rah)\s+\g{p1}

A subpattern that is referenced by name can appear in the pattern before or after the reference.

There can be more than one back reference to the same subpattern. If a subpattern has not been used in a particular
match, any back references to it always fails. For example, the following pattern always fails if it starts to match "a"
rather than "bc":

(a|(bc))\2

As there can be many capturing parentheses in a pattern, all digits following the backslash are taken as part of a potential
back reference number. If the pattern continues with a digit character, some delimiter must be used to terminate the back
reference. If option extended is set, this can be whitespace. Otherwise an empty comment (see section Comments)
can be used.

Recursive Back References

A back reference that occurs inside the parentheses to which it refers fails when the subpattern is first used, so, for
example, (a\1) never matches. However, such references can be useful inside repeated subpatterns. For example, the
following pattern matches any number of "a"s and also "aba", "ababbaa", and so on:

(a|b\1)+

At each iteration of the subpattern, the back reference matches the character string corresponding to the previous
iteration. In order for this to work, the pattern must be such that the first iteration does not need to match the back
reference. This can be done using alternation, as in the example above, or by a quantifier with a minimum of zero.

Back references of this type cause the group that they reference to be treated as an atomic group. Once the whole group
has been matched, a subsequent matching failure cannot cause backtracking into the middle of the group.

Assertions
An assertion is a test on the characters following or preceding the current matching point that does not consume any
characters. The simple assertions coded as \b, \B, \A, \G, \Z, \z, ^, and $ are described in the previous sections.

More complicated assertions are coded as subpatterns. There are two kinds: those that look ahead of the current position
in the subject string, and those that look behind it. An assertion subpattern is matched in the normal way, except that
it does not cause the current matching position to be changed.

Assertion subpatterns are not capturing subpatterns. If such an assertion contains capturing subpatterns within it, these
are counted for the purposes of numbering the capturing subpatterns in the whole pattern. However, substring capturing
is done only for positive assertions. (Perl sometimes, but not always, performs capturing in negative assertions.)

For compatibility with Perl, assertion subpatterns can be repeated. However, it makes no sense to assert the same thing
many times, the side effect of capturing parentheses can occasionally be useful. In practice, there are only three cases:

• If the quantifier is {0}, the assertion is never obeyed during matching. However, it can contain internal capturing
parenthesized groups that are called from elsewhere through the subroutine mechanism.

re

414 | Ericsson AB. All Rights Reserved.: STDLIB

• If quantifier is {0,n}, where n > 0, it is treated as if it was {0,1}. At runtime, the remaining pattern match is tried
with and without the assertion, the order depends on the greediness of the quantifier.

• If the minimum repetition is > 0, the quantifier is ignored. The assertion is obeyed only once when encountered
during matching.

Lookahead Assertions

Lookahead assertions start with (?= for positive assertions and (?! for negative assertions. For example, the following
matches a word followed by a semicolon, but does not include the semicolon in the match:

\w+(?=;)

The following matches any occurrence of "foo" that is not followed by "bar":

foo(?!bar)

Notice that the apparently similar pattern

(?!foo)bar

does not find an occurrence of "bar" that is preceded by something other than "foo". It finds any occurrence of "bar"
whatsoever, as the assertion (?!foo) is always true when the next three characters are "bar". A lookbehind assertion
is needed to achieve the other effect.

If you want to force a matching failure at some point in a pattern, the most convenient way to do it is with (?!), as an
empty string always matches. So, an assertion that requires there is not to be an empty string must always fail. The
backtracking control verb (*FAIL) or (*F) is a synonym for (?!).

Lookbehind Assertions

Lookbehind assertions start with (?<= for positive assertions and (?<! for negative assertions. For example, the
following finds an occurrence of "bar" that is not preceded by "foo":

(?<!foo)bar

The contents of a lookbehind assertion are restricted such that all the strings it matches must have a fixed length.
However, if there are many top-level alternatives, they do not all have to have the same fixed length. Thus, the following
is permitted:

(?<=bullock|donkey)

The following causes an error at compile time:

(?<!dogs?|cats?)

re

Ericsson AB. All Rights Reserved.: STDLIB | 415

Branches that match different length strings are permitted only at the top-level of a lookbehind assertion. This is an
extension compared with Perl, which requires all branches to match the same length of string. An assertion such as
the following is not permitted, as its single top-level branch can match two different lengths:

(?<=ab(c|de))

However, it is acceptable to PCRE if rewritten to use two top-level branches:

(?<=abc|abde)

Sometimes the escape sequence \K (see above) can be used instead of a lookbehind assertion to get round the fixed-
length restriction.

The implementation of lookbehind assertions is, for each alternative, to move the current position back temporarily by
the fixed length and then try to match. If there are insufficient characters before the current position, the assertion fails.

In a UTF mode, PCRE does not allow the \C escape (which matches a single data unit even in a UTF mode) to appear
in lookbehind assertions, as it makes it impossible to calculate the length of the lookbehind. The \X and \R escapes,
which can match different numbers of data units, are not permitted either.

"Subroutine" calls (see below), such as (?2) or (?&X), are permitted in lookbehinds, as long as the subpattern matches
a fixed-length string. Recursion, however, is not supported.

Possessive quantifiers can be used with lookbehind assertions to specify efficient matching of fixed-length strings at
the end of subject strings. Consider the following simple pattern when applied to a long string that does not match:

abcd$

As matching proceeds from left to right, PCRE looks for each "a" in the subject and then sees if what follows matches
the remaining pattern. If the pattern is specified as

^.*abcd$

the initial .* matches the entire string at first. However, when this fails (as there is no following "a"), it backtracks to
match all but the last character, then all but the last two characters, and so on. Once again the search for "a" covers the
entire string, from right to left, so we are no better off. However, if the pattern is written as

^.*+(?<=abcd)

there can be no backtracking for the .*+ item; it can match only the entire string. The subsequent lookbehind assertion
does a single test on the last four characters. If it fails, the match fails immediately. For long strings, this approach
makes a significant difference to the processing time.

Using Multiple Assertions

Many assertions (of any sort) can occur in succession. For example, the following matches "foo" preceded by three
digits that are not "999":

re

416 | Ericsson AB. All Rights Reserved.: STDLIB

(?<=\d{3})(?<!999)foo

Notice that each of the assertions is applied independently at the same point in the subject string. First there is a check
that the previous three characters are all digits, and then there is a check that the same three characters are not "999".
This pattern does not match "foo" preceded by six characters, the first of which are digits and the last three of which
are not "999". For example, it does not match "123abcfoo". A pattern to do that is the following:

(?<=\d{3}...)(?<!999)foo

This time the first assertion looks at the preceding six characters, checks that the first three are digits, and then the
second assertion checks that the preceding three characters are not "999".

Assertions can be nested in any combination. For example, the following matches an occurrence of "baz" that is
preceded by "bar", which in turn is not preceded by "foo":

(?<=(?<!foo)bar)baz

The following pattern matches "foo" preceded by three digits and any three characters that are not "999":

(?<=\d{3}(?!999)...)foo

Conditional Subpatterns
It is possible to cause the matching process to obey a subpattern conditionally or to choose between two alternative
subpatterns, depending on the result of an assertion, or whether a specific capturing subpattern has already been
matched. The following are the two possible forms of conditional subpattern:

(?(condition)yes-pattern)
(?(condition)yes-pattern|no-pattern)

If the condition is satisfied, the yes-pattern is used, otherwise the no-pattern (if present). If more than two alternatives
exist in the subpattern, a compile-time error occurs. Each of the two alternatives can itself contain nested subpatterns of
any form, including conditional subpatterns; the restriction to two alternatives applies only at the level of the condition.
The following pattern fragment is an example where the alternatives are complex:

(?(1) (A|B|C) | (D | (?(2)E|F) | E))

There are four kinds of condition: references to subpatterns, references to recursion, a pseudo-condition called
DEFINE, and assertions.

Checking for a Used Subpattern By Number

If the text between the parentheses consists of a sequence of digits, the condition is true if a capturing subpattern of
that number has previously matched. If more than one capturing subpattern with the same number exists (see section
Duplicate Subpattern Numbers earlier), the condition is true if any of them have matched. An alternative notation is
to precede the digits with a plus or minus sign. In this case, the subpattern number is relative rather than absolute. The
most recently opened parentheses can be referenced by (?(-1), the next most recent by (?(-2), and so on. Inside loops,

re

Ericsson AB. All Rights Reserved.: STDLIB | 417

it can also make sense to refer to subsequent groups. The next parentheses to be opened can be referenced as (?(+1),
and so on. (The value zero in any of these forms is not used; it provokes a compile-time error.)

Consider the following pattern, which contains non-significant whitespace to make it more readable (assume option
extended) and to divide it into three parts for ease of discussion:

(\()? [^()]+ (?(1) \))

The first part matches an optional opening parenthesis, and if that character is present, sets it as the first captured
substring. The second part matches one or more characters that are not parentheses. The third part is a conditional
subpattern that tests whether the first set of parentheses matched or not. If they did, that is, if subject started with an
opening parenthesis, the condition is true, and so the yes-pattern is executed and a closing parenthesis is required.
Otherwise, as no-pattern is not present, the subpattern matches nothing. That is, this pattern matches a sequence of
non-parentheses, optionally enclosed in parentheses.

If this pattern is embedded in a larger one, a relative reference can be used:

...other stuff... (\()? [^()]+ (?(-1) \)) ...

This makes the fragment independent of the parentheses in the larger pattern.

Checking for a Used Subpattern By Name

Perl uses the syntax (?(<name>)...) or (?('name')...) to test for a used subpattern by name. For compatibility with earlier
versions of PCRE, which had this facility before Perl, the syntax (?(name)...) is also recognized. However, there is a
possible ambiguity with this syntax, as subpattern names can consist entirely of digits. PCRE looks first for a named
subpattern; if it cannot find one and the name consists entirely of digits, PCRE looks for a subpattern of that number,
which must be > 0. Using subpattern names that consist entirely of digits is not recommended.

Rewriting the previous example to use a named subpattern gives:

(?<OPEN> \()? [^()]+ (?(<OPEN>) \))

If the name used in a condition of this kind is a duplicate, the test is applied to all subpatterns of the same name, and
is true if any one of them has matched.

Checking for Pattern Recursion

If the condition is the string (R), and there is no subpattern with the name R, the condition is true if a recursive call
to the whole pattern or any subpattern has been made. If digits or a name preceded by ampersand follow the letter
R, for example:

(?(R3)...) or (?(R&name)...)

the condition is true if the most recent recursion is into a subpattern whose number or name is given. This condition
does not check the entire recursion stack. If the name used in a condition of this kind is a duplicate, the test is applied
to all subpatterns of the same name, and is true if any one of them is the most recent recursion.

At "top-level", all these recursion test conditions are false. The syntax for recursive patterns is described below.

Defining Subpatterns for Use By Reference Only

re

418 | Ericsson AB. All Rights Reserved.: STDLIB

If the condition is the string (DEFINE), and there is no subpattern with the name DEFINE, the condition is always false.
In this case, there can be only one alternative in the subpattern. It is always skipped if control reaches this point in the
pattern. The idea of DEFINE is that it can be used to define "subroutines" that can be referenced from elsewhere. (The
use of subroutines is described below.) For example, a pattern to match an IPv4 address, such as "192.168.23.245",
can be written like this (ignore whitespace and line breaks):

(?(DEFINE) (?<byte> 2[0-4]\d | 25[0-5] | 1\d\d | [1-9]?\d)) \b (?&byte) (\.(?&byte)){3} \b

The first part of the pattern is a DEFINE group inside which is a another group named "byte" is defined. This matches
an individual component of an IPv4 address (a number < 256). When matching takes place, this part of the pattern is
skipped, as DEFINE acts like a false condition. The remaining pattern uses references to the named group to match
the four dot-separated components of an IPv4 address, insisting on a word boundary at each end.

Assertion Conditions

If the condition is not in any of the above formats, it must be an assertion. This can be a positive or negative lookahead
or lookbehind assertion. Consider the following pattern, containing non-significant whitespace, and with the two
alternatives on the second line:

(?(?=[^a-z]*[a-z])
\d{2}-[a-z]{3}-\d{2} | \d{2}-\d{2}-\d{2})

The condition is a positive lookahead assertion that matches an optional sequence of non-letters followed by a letter.
That is, it tests for the presence of at least one letter in the subject. If a letter is found, the subject is matched against
the first alternative, otherwise it is matched against the second. This pattern matches strings in one of the two forms
dd-aaa-dd or dd-dd-dd, where aaa are letters and dd are digits.

Comments
There are two ways to include comments in patterns that are processed by PCRE. In both cases, the start of the comment
must not be in a character class, or in the middle of any other sequence of related characters such as (?: or a subpattern
name or number. The characters that make up a comment play no part in the pattern matching.

The sequence (?# marks the start of a comment that continues up to the next closing parenthesis. Nested parentheses are
not permitted. If option PCRE_EXTENDED is set, an unescaped # character also introduces a comment, which in this
case continues to immediately after the next newline character or character sequence in the pattern. Which characters
are interpreted as newlines is controlled by the options passed to a compiling function or by a special sequence at the
start of the pattern, as described in section Newline Conventions earlier.

Notice that the end of this type of comment is a literal newline sequence in the pattern; escape sequences that happen
to represent a newline do not count. For example, consider the following pattern when extended is set, and the
default newline convention is in force:

abc #comment \n still comment

On encountering character #, pcre_compile() skips along, looking for a newline in the pattern. The sequence \n
is still literal at this stage, so it does not terminate the comment. Only a character with code value 0x0a (the default
newline) does so.

re

Ericsson AB. All Rights Reserved.: STDLIB | 419

Recursive Patterns
Consider the problem of matching a string in parentheses, allowing for unlimited nested parentheses. Without the use
of recursion, the best that can be done is to use a pattern that matches up to some fixed depth of nesting. It is not
possible to handle an arbitrary nesting depth.

For some time, Perl has provided a facility that allows regular expressions to recurse (among other things). It does this
by interpolating Perl code in the expression at runtime, and the code can refer to the expression itself. A Perl pattern
using code interpolation to solve the parentheses problem can be created like this:

$re = qr{\((?: (?>[^()]+) | (?p{$re}))* \)}x;

Item (?p{...}) interpolates Perl code at runtime, and in this case refers recursively to the pattern in which it appears.

Obviously, PCRE cannot support the interpolation of Perl code. Instead, it supports special syntax for recursion of
the entire pattern, and for individual subpattern recursion. After its introduction in PCRE and Python, this kind of
recursion was later introduced into Perl at release 5.10.

A special item that consists of (? followed by a number > 0 and a closing parenthesis is a recursive subroutine call
of the subpattern of the given number, if it occurs inside that subpattern. (If not, it is a non-recursive subroutine call,
which is described in the next section.) The special item (?R) or (?0) is a recursive call of the entire regular expression.

This PCRE pattern solves the nested parentheses problem (assume that option extended is set so that whitespace
is ignored):

\(([^()]++ | (?R))* \)

First it matches an opening parenthesis. Then it matches any number of substrings, which can either be a sequence of
non-parentheses or a recursive match of the pattern itself (that is, a correctly parenthesized substring). Finally there is a
closing parenthesis. Notice the use of a possessive quantifier to avoid backtracking into sequences of non-parentheses.

If this was part of a larger pattern, you would not want to recurse the entire pattern, so instead you can use:

(\(([^()]++ | (?1))* \))

The pattern is here within parentheses so that the recursion refers to them instead of the whole pattern.

In a larger pattern, keeping track of parenthesis numbers can be tricky. This is made easier by the use of relative
references. Instead of (?1) in the pattern above, you can write (?-2) to refer to the second most recently opened
parentheses preceding the recursion. That is, a negative number counts capturing parentheses leftwards from the point
at which it is encountered.

It is also possible to refer to later opened parentheses, by writing references such as (?+2). However, these cannot be
recursive, as the reference is not inside the parentheses that are referenced. They are always non-recursive subroutine
calls, as described in the next section.

An alternative approach is to use named parentheses instead. The Perl syntax for this is (?&name). The earlier PCRE
syntax (?P>name) is also supported. We can rewrite the above example as follows:

(?<pn> \(([^()]++ | (?&pn))* \))

If there is more than one subpattern with the same name, the earliest one is used.

re

420 | Ericsson AB. All Rights Reserved.: STDLIB

This particular example pattern that we have studied contains nested unlimited repeats, and so the use of a possessive
quantifier for matching strings of non-parentheses is important when applying the pattern to strings that do not match.
For example, when this pattern is applied to

(aaa()

it gives "no match" quickly. However, if a possessive quantifier is not used, the match runs for a long time, as there are
so many different ways the + and * repeats can carve up the subject, and all must be tested before failure can be reported.

At the end of a match, the values of capturing parentheses are those from the outermost level. If the pattern above
is matched against

(ab(cd)ef)

the value for the inner capturing parentheses (numbered 2) is "ef", which is the last value taken on at the top-level.
If a capturing subpattern is not matched at the top level, its final captured value is unset, even if it was (temporarily)
set at a deeper level during the matching process.

Do not confuse item (?R) with condition (R), which tests for recursion. Consider the following pattern, which matches
text in angle brackets, allowing for arbitrary nesting. Only digits are allowed in nested brackets (that is, when recursing),
while any characters are permitted at the outer level.

< (?: (?(R) \d++ | [^<>]*+) | (?R)) * >

Here (?(R) is the start of a conditional subpattern, with two different alternatives for the recursive and non-recursive
cases. Item (?R) is the actual recursive call.

Differences in Recursion Processing between PCRE and Perl

Recursion processing in PCRE differs from Perl in two important ways. In PCRE (like Python, but unlike Perl), a
recursive subpattern call is always treated as an atomic group. That is, once it has matched some of the subject string,
it is never re-entered, even if it contains untried alternatives and there is a subsequent matching failure. This can be
illustrated by the following pattern, which means to match a palindromic string containing an odd number of characters
(for example, "a", "aba", "abcba", "abcdcba"):

^(.|(.)(?1)\2)$

The idea is that it either matches a single character, or two identical characters surrounding a subpalindrome. In Perl,
this pattern works; in PCRE it does not work if the pattern is longer than three characters. Consider the subject string
"abcba".

At the top level, the first character is matched, but as it is not at the end of the string, the first alternative fails, the
second alternative is taken, and the recursion kicks in. The recursive call to subpattern 1 successfully matches the next
character ("b"). (Notice that the beginning and end of line tests are not part of the recursion.)

Back at the top level, the next character ("c") is compared with what subpattern 2 matched, which was "a". This fails.
As the recursion is treated as an atomic group, there are now no backtracking points, and so the entire match fails. (Perl
can now re-enter the recursion and try the second alternative.) However, if the pattern is written with the alternatives
in the other order, things are different:

re

Ericsson AB. All Rights Reserved.: STDLIB | 421

^((.)(?1)\2|.)$

This time, the recursing alternative is tried first, and continues to recurse until it runs out of characters, at which point
the recursion fails. But this time we have another alternative to try at the higher level. That is the significant difference:
in the previous case the remaining alternative is at a deeper recursion level, which PCRE cannot use.

To change the pattern so that it matches all palindromic strings, not only those with an odd number of characters, it
is tempting to change the pattern to this:

^((.)(?1)\2|.?)$

Again, this works in Perl, but not in PCRE, and for the same reason. When a deeper recursion has matched a single
character, it cannot be entered again to match an empty string. The solution is to separate the two cases, and write out
the odd and even cases as alternatives at the higher level:

^(?:((.)(?1)\2|)|((.)(?3)\4|.))

If you want to match typical palindromic phrases, the pattern must ignore all non-word characters, which can be done
as follows:

^\W*+(?:((.)\W*+(?1)\W*+\2|)|((.)\W*+(?3)\W*+\4|\W*+.\W*+))\W*+$

If run with option caseless, this pattern matches phrases such as "A man, a plan, a canal: Panama!" and it works
well in both PCRE and Perl. Notice the use of the possessive quantifier *+ to avoid backtracking into sequences of
non-word characters. Without this, PCRE takes much longer (10 times or more) to match typical phrases, and Perl
takes so long that you think it has gone into a loop.

Note:
The palindrome-matching patterns above work only if the subject string does not start with a palindrome that is
shorter than the entire string. For example, although "abcba" is correctly matched, if the subject is "ababa", PCRE
finds palindrome "aba" at the start, and then fails at top level, as the end of the string does not follow. Once again,
it cannot jump back into the recursion to try other alternatives, so the entire match fails.

The second way in which PCRE and Perl differ in their recursion processing is in the handling of captured values. In
Perl, when a subpattern is called recursively or as a subpattern (see the next section), it has no access to any values
that were captured outside the recursion. In PCRE these values can be referenced. Consider the following pattern:

^(.)(\1|a(?2))

In PCRE, it matches "bab". The first capturing parentheses match "b", then in the second group, when the back
reference \1 fails to match "b", the second alternative matches "a", and then recurses. In the recursion, \1 does now
match "b" and so the whole match succeeds. In Perl, the pattern fails to match because inside the recursive call \1
cannot access the externally set value.

re

422 | Ericsson AB. All Rights Reserved.: STDLIB

Subpatterns as Subroutines
If the syntax for a recursive subpattern call (either by number or by name) is used outside the parentheses to which it
refers, it operates like a subroutine in a programming language. The called subpattern can be defined before or after
the reference. A numbered reference can be absolute or relative, as in the following examples:

(...(absolute)...)...(?2)...
(...(relative)...)...(?-1)...
(...(?+1)...(relative)...

An earlier example pointed out that the following pattern matches "sense and sensibility" and "response and
responsibility", but not "sense and responsibility":

(sens|respons)e and \1ibility

If instead the following pattern is used, it matches "sense and responsibility" and the other two strings:

(sens|respons)e and (?1)ibility

Another example is provided in the discussion of DEFINE earlier.

All subroutine calls, recursive or not, are always treated as atomic groups. That is, once a subroutine has matched some
of the subject string, it is never re-entered, even if it contains untried alternatives and there is a subsequent matching
failure. Any capturing parentheses that are set during the subroutine call revert to their previous values afterwards.

Processing options such as case-independence are fixed when a subpattern is defined, so if it is used as a subroutine,
such options cannot be changed for different calls. For example, the following pattern matches "abcabc" but not
"abcABC", as the change of processing option does not affect the called subpattern:

(abc)(?i:(?-1))

Oniguruma Subroutine Syntax
For compatibility with Oniguruma, the non-Perl syntax \g followed by a name or a number enclosed either in angle
brackets or single quotes, is alternative syntax for referencing a subpattern as a subroutine, possibly recursively. Here
follows two of the examples used above, rewritten using this syntax:

(?<pn> \(((?>[^()]+) | \g<pn>)* \))
(sens|respons)e and \g'1'ibility

PCRE supports an extension to Oniguruma: if a number is preceded by a plus or minus sign, it is taken as a relative
reference, for example:

(abc)(?i:\g<-1>)

re

Ericsson AB. All Rights Reserved.: STDLIB | 423

Notice that \g{...} (Perl syntax) and \g<...> (Oniguruma syntax) are not synonymous. The former is a back reference;
the latter is a subroutine call.

Backtracking Control
Perl 5.10 introduced some "Special Backtracking Control Verbs", which are still described in the Perl documentation
as "experimental and subject to change or removal in a future version of Perl". It goes on to say: "Their usage in
production code should be noted to avoid problems during upgrades." The same remarks apply to the PCRE features
described in this section.

The new verbs make use of what was previously invalid syntax: an opening parenthesis followed by an asterisk. They
are generally of the form (*VERB) or (*VERB:NAME). Some can take either form, possibly behaving differently
depending on whether a name is present. A name is any sequence of characters that does not include a closing
parenthesis. The maximum name length is 255 in the 8-bit library and 65535 in the 16-bit and 32-bit libraries. If the
name is empty, that is, if the closing parenthesis immediately follows the colon, the effect is as if the colon was not
there. Any number of these verbs can occur in a pattern.

The behavior of these verbs in repeated groups, assertions, and in subpatterns called as subroutines (whether or not
recursively) is described below.

Optimizations That Affect Backtracking Verbs

PCRE contains some optimizations that are used to speed up matching by running some checks at the start of each
match attempt. For example, it can know the minimum length of matching subject, or that a particular character must
be present. When one of these optimizations bypasses the running of a match, any included backtracking verbs are not
processed. processed. You can suppress the start-of-match optimizations by setting option no_start_optimize
when calling compile/2 or run/3, or by starting the pattern with (*NO_START_OPT).

Experiments with Perl suggest that it too has similar optimizations, sometimes leading to anomalous results.

Verbs That Act Immediately

The following verbs act as soon as they are encountered. They must not be followed by a name.

(*ACCEPT)

This verb causes the match to end successfully, skipping the remainder of the pattern. However, when it is inside a
subpattern that is called as a subroutine, only that subpattern is ended successfully. Matching then continues at the
outer level. If (*ACCEPT) is triggered in a positive assertion, the assertion succeeds; in a negative assertion, the
assertion fails.

If (*ACCEPT) is inside capturing parentheses, the data so far is captured. For example, the following matches "AB",
"AAD", or "ACD". When it matches "AB", "B" is captured by the outer parentheses.

A((?:A|B(*ACCEPT)|C)D)

The following verb causes a matching failure, forcing backtracking to occur. It is equivalent to (?!) but easier to read.

(*FAIL) or (*F)

The Perl documentation states that it is probably useful only when combined with (?{}) or (??{}). Those are Perl
features that are not present in PCRE.

re

424 | Ericsson AB. All Rights Reserved.: STDLIB

A match with the string "aaaa" always fails, but the callout is taken before each backtrack occurs (in this example,
10 times).

Recording Which Path Was Taken

The main purpose of this verb is to track how a match was arrived at, although it also has a secondary use in with
advancing the match starting point (see (*SKIP) below).

Note:
In Erlang, there is no interface to retrieve a mark with run/2,3, so only the secondary purpose is relevant to
the Erlang programmer.

The rest of this section is therefore deliberately not adapted for reading by the Erlang programmer, but the
examples can help in understanding NAMES as they can be used by (*SKIP).

(*MARK:NAME) or (*:NAME)

A name is always required with this verb. There can be as many instances of (*MARK) as you like in a pattern, and
their names do not have to be unique.

When a match succeeds, the name of the last encountered (*MARK:NAME), (*PRUNE:NAME), or (*THEN:NAME)
on the matching path is passed back to the caller as described in section "Extra data for pcre_exec()" in the
pcreapi documentation. In the following example of pcretest output, the /K modifier requests the retrieval and
outputting of (*MARK) data:

 re> /X(*MARK:A)Y|X(*MARK:B)Z/K
data> XY
 0: XY
MK: A
XZ
 0: XZ
MK: B

The (*MARK) name is tagged with "MK:" in this output, and in this example it indicates which of the two alternatives
matched. This is a more efficient way of obtaining this information than putting each alternative in its own capturing
parentheses.

If a verb with a name is encountered in a positive assertion that is true, the name is recorded and passed back if it is
the last encountered. This does not occur for negative assertions or failing positive assertions.

After a partial match or a failed match, the last encountered name in the entire match process is returned, for example:

 re> /X(*MARK:A)Y|X(*MARK:B)Z/K
data> XP
No match, mark = B

Notice that in this unanchored example, the mark is retained from the match attempt that started at letter "X" in the
subject. Subsequent match attempts starting at "P" and then with an empty string do not get as far as the (*MARK)
item, nevertheless do not reset it.

Verbs That Act after Backtracking

re

Ericsson AB. All Rights Reserved.: STDLIB | 425

The following verbs do nothing when they are encountered. Matching continues with what follows, but if there is no
subsequent match, causing a backtrack to the verb, a failure is forced. That is, backtracking cannot pass to the left of
the verb. However, when one of these verbs appears inside an atomic group or an assertion that is true, its effect is
confined to that group, as once the group has been matched, there is never any backtracking into it. In this situation,
backtracking can "jump back" to the left of the entire atomic group or assertion. (Remember also, as stated above, that
this localization also applies in subroutine calls.)

These verbs differ in exactly what kind of failure occurs when backtracking reaches them. The behavior described
below is what occurs when the verb is not in a subroutine or an assertion. Subsequent sections cover these special cases.

The following verb, which must not be followed by a name, causes the whole match to fail outright if there is a later
matching failure that causes backtracking to reach it. Even if the pattern is unanchored, no further attempts to find a
match by advancing the starting point take place.

(*COMMIT)

If (*COMMIT) is the only backtracking verb that is encountered, once it has been passed, run/2,3 is committed to
find a match at the current starting point, or not at all, for example:

a+(*COMMIT)b

This matches "xxaab" but not "aacaab". It can be thought of as a kind of dynamic anchor, or "I've started, so I must
finish". The name of the most recently passed (*MARK) in the path is passed back when (*COMMIT) forces a match
failure.

If more than one backtracking verb exists in a pattern, a different one that follows (*COMMIT) can be triggered first,
so merely passing (*COMMIT) during a match does not always guarantee that a match must be at this starting point.

Notice that (*COMMIT) at the start of a pattern is not the same as an anchor, unless the PCRE start-of-match
optimizations are turned off, as shown in the following example:

1> re:run("xyzabc","(*COMMIT)abc",[{capture,all,list}]).
{match,["abc"]}
2> re:run("xyzabc","(*COMMIT)abc",[{capture,all,list},no_start_optimize]).
nomatch

PCRE knows that any match must start with "a", so the optimization skips along the subject to "a" before running the
first match attempt, which succeeds. When the optimization is disabled by option no_start_optimize, the match
starts at "x" and so the (*COMMIT) causes it to fail without trying any other starting points.

The following verb causes the match to fail at the current starting position in the subject if there is a later matching
failure that causes backtracking to reach it:

(*PRUNE) or (*PRUNE:NAME)

If the pattern is unanchored, the normal "bumpalong" advance to the next starting character then occurs. Backtracking
can occur as usual to the left of (*PRUNE), before it is reached, or when matching to the right of (*PRUNE), but if
there is no match to the right, backtracking cannot cross (*PRUNE). In simple cases, the use of (*PRUNE) is just an
alternative to an atomic group or possessive quantifier, but there are some uses of (*PRUNE) that cannot be expressed
in any other way. In an anchored pattern, (*PRUNE) has the same effect as (*COMMIT).

re

426 | Ericsson AB. All Rights Reserved.: STDLIB

The behavior of (*PRUNE:NAME) is the not the same as (*MARK:NAME)(*PRUNE). It is like (*MARK:NAME)
in that the name is remembered for passing back to the caller. However, (*SKIP:NAME) searches only for names
set with (*MARK).

Note:
The fact that (*PRUNE:NAME) remembers the name is useless to the Erlang programmer, as names cannot be
retrieved.

The following verb, when specified without a name, is like (*PRUNE), except that if the pattern is unanchored, the
"bumpalong" advance is not to the next character, but to the position in the subject where (*SKIP) was encountered.

(*SKIP)

(*SKIP) signifies that whatever text was matched leading up to it cannot be part of a successful match. Consider:

a+(*SKIP)b

If the subject is "aaaac...", after the first match attempt fails (starting at the first character in the string), the starting
point skips on to start the next attempt at "c". Notice that a possessive quantifier does not have the same effect as this
example; although it would suppress backtracking during the first match attempt, the second attempt would start at
the second character instead of skipping on to "c".

When (*SKIP) has an associated name, its behavior is modified:

(*SKIP:NAME)

When this is triggered, the previous path through the pattern is searched for the most recent (*MARK) that has the
same name. If one is found, the "bumpalong" advance is to the subject position that corresponds to that (*MARK)
instead of to where (*SKIP) was encountered. If no (*MARK) with a matching name is found, (*SKIP) is ignored.

Notice that (*SKIP:NAME) searches only for names set by (*MARK:NAME). It ignores names that are set by
(*PRUNE:NAME) or (*THEN:NAME).

The following verb causes a skip to the next innermost alternative when backtracking reaches it. That is, it cancels
any further backtracking within the current alternative.

(*THEN) or (*THEN:NAME)

The verb name comes from the observation that it can be used for a pattern-based if-then-else block:

(COND1 (*THEN) FOO | COND2 (*THEN) BAR | COND3 (*THEN) BAZ) ...

If the COND1 pattern matches, FOO is tried (and possibly further items after the end of the group if FOO succeeds).
On failure, the matcher skips to the second alternative and tries COND2, without backtracking into COND1. If that

re

Ericsson AB. All Rights Reserved.: STDLIB | 427

succeeds and BAR fails, COND3 is tried. If BAZ then fails, there are no more alternatives, so there is a backtrack to
whatever came before the entire group. If (*THEN) is not inside an alternation, it acts like (*PRUNE).

The behavior of (*THEN:NAME) is the not the same as (*MARK:NAME)(*THEN). It is like (*MARK:NAME) in
that the name is remembered for passing back to the caller. However, (*SKIP:NAME) searches only for names set
with (*MARK).

Note:
The fact that (*THEN:NAME) remembers the name is useless to the Erlang programmer, as names cannot be
retrieved.

A subpattern that does not contain a | character is just a part of the enclosing alternative; it is not a nested alternation with
only one alternative. The effect of (*THEN) extends beyond such a subpattern to the enclosing alternative. Consider
the following pattern, where A, B, and so on, are complex pattern fragments that do not contain any | characters at
this level:

A (B(*THEN)C) | D

If A and B are matched, but there is a failure in C, matching does not backtrack into A; instead it moves to the next
alternative, that is, D. However, if the subpattern containing (*THEN) is given an alternative, it behaves differently:

A (B(*THEN)C | (*FAIL)) | D

The effect of (*THEN) is now confined to the inner subpattern. After a failure in C, matching moves to (*FAIL),
which causes the whole subpattern to fail, as there are no more alternatives to try. In this case, matching does now
backtrack into A.

Notice that a conditional subpattern is not considered as having two alternatives, as only one is ever used. That is, the
| character in a conditional subpattern has a different meaning. Ignoring whitespace, consider:

^.*? (?(?=a) a | b(*THEN)c)

If the subject is "ba", this pattern does not match. As .*? is ungreedy, it initially matches zero characters. The condition
(?=a) then fails, the character "b" is matched, but "c" is not. At this point, matching does not backtrack to .*? as can
perhaps be expected from the presence of the | character. The conditional subpattern is part of the single alternative
that comprises the whole pattern, and so the match fails. (If there was a backtrack into .*?, allowing it to match "b",
the match would succeed.)

The verbs described above provide four different "strengths" of control when subsequent matching fails:

• (*THEN) is the weakest, carrying on the match at the next alternative.

• (*PRUNE) comes next, fails the match at the current starting position, but allows an advance to the next character
(for an unanchored pattern).

• (*SKIP) is similar, except that the advance can be more than one character.

• (*COMMIT) is the strongest, causing the entire match to fail.

More than One Backtracking Verb

re

428 | Ericsson AB. All Rights Reserved.: STDLIB

If more than one backtracking verb is present in a pattern, the one that is backtracked onto first acts. For example,
consider the following pattern, where A, B, and so on, are complex pattern fragments:

(A(*COMMIT)B(*THEN)C|ABD)

If A matches but B fails, the backtrack to (*COMMIT) causes the entire match to fail. However, if A and B match,
but C fails, the backtrack to (*THEN) causes the next alternative (ABD) to be tried. This behavior is consistent, but is
not always the same as in Perl. It means that if two or more backtracking verbs appear in succession, the last of them
has no effect. Consider the following example:

...(*COMMIT)(*PRUNE)...

If there is a matching failure to the right, backtracking onto (*PRUNE) cases it to be triggered, and its action is taken.
There can never be a backtrack onto (*COMMIT).

Backtracking Verbs in Repeated Groups

PCRE differs from Perl in its handling of backtracking verbs in repeated groups. For example, consider:

/(a(*COMMIT)b)+ac/

If the subject is "abac", Perl matches, but PCRE fails because the (*COMMIT) in the second repeat of the group acts.

Backtracking Verbs in Assertions

(*FAIL) in an assertion has its normal effect: it forces an immediate backtrack.

(*ACCEPT) in a positive assertion causes the assertion to succeed without any further processing. In a negative
assertion, (*ACCEPT) causes the assertion to fail without any further processing.

The other backtracking verbs are not treated specially if they appear in a positive assertion. In particular, (*THEN) skips
to the next alternative in the innermost enclosing group that has alternations, regardless if this is within the assertion.

Negative assertions are, however, different, to ensure that changing a positive assertion into a negative assertion
changes its result. Backtracking into (*COMMIT), (*SKIP), or (*PRUNE) causes a negative assertion to be true,
without considering any further alternative branches in the assertion. Backtracking into (*THEN) causes it to skip to
the next enclosing alternative within the assertion (the normal behavior), but if the assertion does not have such an
alternative, (*THEN) behaves like (*PRUNE).

Backtracking Verbs in Subroutines

These behaviors occur regardless if the subpattern is called recursively. The treatment of subroutines in Perl is different
in some cases.

• (*FAIL) in a subpattern called as a subroutine has its normal effect: it forces an immediate backtrack.

• (*ACCEPT) in a subpattern called as a subroutine causes the subroutine match to succeed without any further
processing. Matching then continues after the subroutine call.

• (*COMMIT), (*SKIP), and (*PRUNE) in a subpattern called as a subroutine cause the subroutine match to fail.

• (*THEN) skips to the next alternative in the innermost enclosing group within the subpattern that has alternatives.
If there is no such group within the subpattern, (*THEN) causes the subroutine match to fail.

sets

Ericsson AB. All Rights Reserved.: STDLIB | 429

sets
Erlang module

Sets are collections of elements with no duplicate elements. The representation of a set is undefined.

This module provides the same interface as the ordsets(3) module but with a defined representation. One
difference is that while this module considers two elements as different if they do not match (=:=), ordsets considers
two elements as different if and only if they do not compare equal (==).

Data Types
set(Element)
As returned by new/0.

set() = set(term())

Exports

add_element(Element, Set1) -> Set2
Types:

Set1 = Set2 = set(Element)

Returns a new set formed from Set1 with Element inserted.

del_element(Element, Set1) -> Set2
Types:

Set1 = Set2 = set(Element)

Returns Set1, but with Element removed.

filter(Pred, Set1) -> Set2
Types:

Pred = fun((Element) -> boolean())
Set1 = Set2 = set(Element)

Filters elements in Set1 with boolean function Pred.

fold(Function, Acc0, Set) -> Acc1
Types:

Function = fun((Element, AccIn) -> AccOut)
Set = set(Element)
Acc0 = Acc1 = AccIn = AccOut = Acc

Folds Function over every element in Set and returns the final value of the accumulator. The evaluation order
is undefined.

from_list(List) -> Set
Types:

sets

430 | Ericsson AB. All Rights Reserved.: STDLIB

List = [Element]
Set = set(Element)

Returns a set of the elements in List.

intersection(SetList) -> Set
Types:

SetList = [set(Element), ...]
Set = set(Element)

Returns the intersection of the non-empty list of sets.

intersection(Set1, Set2) -> Set3
Types:

Set1 = Set2 = Set3 = set(Element)

Returns the intersection of Set1 and Set2.

is_disjoint(Set1, Set2) -> boolean()
Types:

Set1 = Set2 = set(Element)

Returns true if Set1 and Set2 are disjoint (have no elements in common), otherwise false.

is_element(Element, Set) -> boolean()
Types:

Set = set(Element)
Returns true if Element is an element of Set, otherwise false.

is_set(Set) -> boolean()
Types:

Set = term()
Returns true if Set is a set of elements, otherwise false.

is_subset(Set1, Set2) -> boolean()
Types:

Set1 = Set2 = set(Element)

Returns true when every element of Set1 is also a member of Set2, otherwise false.

new() -> set()
Returns a new empty set.

size(Set) -> integer() >= 0
Types:

Set = set()
Returns the number of elements in Set.

sets

Ericsson AB. All Rights Reserved.: STDLIB | 431

subtract(Set1, Set2) -> Set3
Types:

Set1 = Set2 = Set3 = set(Element)

Returns only the elements of Set1 that are not also elements of Set2.

to_list(Set) -> List
Types:

Set = set(Element)
List = [Element]

Returns the elements of Set as a list. The order of the returned elements is undefined.

union(SetList) -> Set
Types:

SetList = [set(Element)]
Set = set(Element)

Returns the merged (union) set of the list of sets.

union(Set1, Set2) -> Set3
Types:

Set1 = Set2 = Set3 = set(Element)

Returns the merged (union) set of Set1 and Set2.

See Also
gb_sets(3), ordsets(3)

shell

432 | Ericsson AB. All Rights Reserved.: STDLIB

shell
Erlang module

This module provides an Erlang shell.

The shell is a user interface program for entering expression sequences. The expressions are evaluated and a value
is returned. A history mechanism saves previous commands and their values, which can then be incorporated in later
commands. How many commands and results to save can be determined by the user, either interactively, by calling
history/1 and results/1, or by setting the application configuration parameters shell_history_length
and shell_saved_results for the STDLIB application.

The shell uses a helper process for evaluating commands to protect the history mechanism from exceptions. By default
the evaluator process is killed when an exception occurs, but by calling catch_exception/1 or by setting the
application configuration parameter shell_catch_exception for the STDLIB application this behavior can be
changed. See also the example below.

Variable bindings, and local process dictionary changes that are generated in user expressions are preserved, and the
variables can be used in later commands to access their values. The bindings can also be forgotten so the variables
can be reused.

The special shell commands all have the syntax of (local) function calls. They are evaluated as normal function calls
and many commands can be used in one expression sequence.

If a command (local function call) is not recognized by the shell, an attempt is first made to find the function in module
user_default, where customized local commands can be placed. If found, the function is evaluated, otherwise an
attempt is made to evaluate the function in module shell_default. Module user_default must be explicitly
loaded.

The shell also permits the user to start multiple concurrent jobs. A job can be regarded as a set of processes that can
communicate with the shell.

There is some support for reading and printing records in the shell. During compilation record expressions are translated
to tuple expressions. In runtime it is not known whether a tuple represents a record, and the record definitions used
by the compiler are unavailable at runtime. So, to read the record syntax and print tuples as records when possible,
record definitions must be maintained by the shell itself.

The shell commands for reading, defining, forgetting, listing, and printing records are described below. Notice that
each job has its own set of record definitions. To facilitate matters, record definitions in modules shell_default
and user_default (if loaded) are read each time a new job is started. For example, adding the following line to
user_default makes the definition of file_info readily available in the shell:

-include_lib("kernel/include/file.hrl").

The shell runs in two modes:

• Normal (possibly restricted) mode, in which commands can be edited and expressions evaluated

• Job Control Mode, JCL, in which jobs can be started, killed, detached, and connected

Only the currently connected job can 'talk' to the shell.

Shell Commands
b()

Prints the current variable bindings.

shell

Ericsson AB. All Rights Reserved.: STDLIB | 433

f()

Removes all variable bindings.

f(X)

Removes the binding of variable X.

h()

Prints the history list.

history(N)

Sets the number of previous commands to keep in the history list to N. The previous number is returned. Defaults
to 20.

results(N)

Sets the number of results from previous commands to keep in the history list to N. The previous number is
returned. Defaults to 20.

e(N)

Repeats command N, if N is positive. If it is negative, the Nth previous command is repeated (that is, e(-1)
repeats the previous command).

v(N)

Uses the return value of command N in the current command, if N is positive. If it is negative, the return value of
the Nth previous command is used (that is, v(-1) uses the value of the previous command).

help()

Evaluates shell_default:help().

c(File)

Evaluates shell_default:c(File). This compiles and loads code in File and purges old versions of
code, if necessary. Assumes that the file and module names are the same.

catch_exception(Bool)

Sets the exception handling of the evaluator process. The previous exception handling is returned. The default
(false) is to kill the evaluator process when an exception occurs, which causes the shell to create a new evaluator
process. When the exception handling is set to true, the evaluator process lives on. This means, for example,
that ports and ETS tables as well as processes linked to the evaluator process survive the exception.

rd(RecordName, RecordDefinition)

Defines a record in the shell. RecordName is an atom and RecordDefinition lists the field names and
the default values. Usually record definitions are made known to the shell by use of the rr/1,2,3 commands
described below, but sometimes it is handy to define records on the fly.

rf()

Removes all record definitions, then reads record definitions from the modules shell_default and
user_default (if loaded). Returns the names of the records defined.

rf(RecordNames)

Removes selected record definitions. RecordNames is a record name or a list of record names. To remove all
record definitions, use '_'.

rl()

Prints all record definitions.

shell

434 | Ericsson AB. All Rights Reserved.: STDLIB

rl(RecordNames)

Prints selected record definitions. RecordNames is a record name or a list of record names.

rp(Term)

Prints a term using the record definitions known to the shell. All of Term is printed; the depth is not limited as
is the case when a return value is printed.

rr(Module)

Reads record definitions from a module's BEAM file. If there are no record definitions in the BEAM file, the
source file is located and read instead. Returns the names of the record definitions read. Module is an atom.

rr(Wildcard)

Reads record definitions from files. Existing definitions of any of the record names read are replaced. Wildcard
is a wildcard string as defined in filelib(3), but not an atom.

rr(WildcardOrModule, RecordNames)

Reads record definitions from files but discards record names not mentioned in RecordNames (a record name
or a list of record names).

rr(WildcardOrModule, RecordNames, Options)

Reads record definitions from files. The compiler options {i, Dir}, {d, Macro}, and
{d, Macro, Value} are recognized and used for setting up the include path and macro definitions. To read
all record definitions, use '_' as value of RecordNames.

Example
The following example is a long dialog with the shell. Commands starting with > are inputs to the shell. All other
lines are output from the shell.

strider 1> erl
Erlang (BEAM) emulator version 5.3 [hipe] [threads:0]

Eshell V5.3 (abort with ^G)
1> Str = "abcd".
"abcd"

Command 1 sets variable Str to string "abcd".

2> L = length(Str).
4

Command 2 sets L to the length of string Str.

3> Descriptor = {L, list_to_atom(Str)}.
{4,abcd}

Command 3 builds the tuple Descriptor, evaluating the BIF list_to_atom/1 .

4> L.

shell

Ericsson AB. All Rights Reserved.: STDLIB | 435

4

Command 4 prints the value of variable L.

5> b().
Descriptor = {4,abcd}
L = 4
Str = "abcd"
ok

Command 5 evaluates the internal shell command b(), which is an abbreviation of "bindings". This prints the current
shell variables and their bindings. ok at the end is the return value of function b().

6> f(L).
ok

Command 6 evaluates the internal shell command f(L) (abbreviation of "forget"). The value of variable L is removed.

7> b().
Descriptor = {4,abcd}
Str = "abcd"
ok

Command 7 prints the new bindings.

8> f(L).
ok

Command 8 has no effect, as L has no value.

9> {L, _} = Descriptor.
{4,abcd}

Command 9 performs a pattern matching operation on Descriptor, binding a new value to L.

10> L.
4

Command 10 prints the current value of L.

11> {P, Q, R} = Descriptor.
** exception error: no match of right hand side value {4,abcd}

Command 11 tries to match {P, Q, R} against Descriptor, which is {4, abc}. The match fails and none
of the new variables become bound. The printout starting with "** exception error:" is not the value of the

shell

436 | Ericsson AB. All Rights Reserved.: STDLIB

expression (the expression had no value because its evaluation failed), but a warning printed by the system to inform
the user that an error has occurred. The values of the other variables (L, Str, and so on) are unchanged.

12> P.
* 1: variable 'P' is unbound
13> Descriptor.
{4,abcd}

Commands 12 and 13 show that P is unbound because the previous command failed, and that Descriptor has not
changed.

14>{P, Q} = Descriptor.
{4,abcd}
15> P.
4

Commands 14 and 15 show a correct match where P and Q are bound.

16> f().
ok

Command 16 clears all bindings.

The next few commands assume that test1:demo(X) is defined as follows:

demo(X) ->
 put(aa, worked),
 X = 1,
 X + 10.

17> put(aa, hello).
undefined
18> get(aa).
hello

Commands 17 and 18 set and inspect the value of item aa in the process dictionary.

19> Y = test1:demo(1).
11

Command 19 evaluates test1:demo(1). The evaluation succeeds and the changes made in the process dictionary
become visible to the shell. The new value of dictionary item aa can be seen in command 20.

20> get().
[{aa,worked}]
21> put(aa, hello).
worked
22> Z = test1:demo(2).
** exception error: no match of right hand side value 1

shell

Ericsson AB. All Rights Reserved.: STDLIB | 437

 in function test1:demo/1

Commands 21 and 22 change the value of dictionary item aa to hello and call test1:demo(2). Evaluation fails
and the changes made to the dictionary in test1:demo(2), before the error occurred, are discarded.

23> Z.
* 1: variable 'Z' is unbound
24> get(aa).
hello

Commands 23 and 24 show that Z was not bound and that dictionary item aa has retained its original value.

25> erase(), put(aa, hello).
undefined
26> spawn(test1, demo, [1]).
<0.57.0>
27> get(aa).
hello

Commands 25, 26, and 27 show the effect of evaluating test1:demo(1) in the background. In this case, the
expression is evaluated in a newly spawned process. Any changes made in the process dictionary are local to the newly
spawned process and therefore not visible to the shell.

28> io:format("hello hello\n").
hello hello
ok
29> e(28).
hello hello
ok
30> v(28).
ok

Commands 28, 29 and 30 use the history facilities of the shell. Command 29 re-evaluates command 28. Command 30
uses the value (result) of command 28. In the cases of a pure function (a function with no side effects), the result is
the same. For a function with side effects, the result can be different.

The next few commands show some record manipulation. It is assumed that ex.erl defines a record as follows:

-record(rec, {a, b = val()}).

val() ->
 3.

31> c(ex).
{ok,ex}
32> rr(ex).
[rec]

Commands 31 and 32 compile file ex.erl and read the record definitions in ex.beam. If the compiler did not output
any record definitions on the BEAM file, rr(ex) tries to read record definitions from the source file instead.

shell

438 | Ericsson AB. All Rights Reserved.: STDLIB

33> rl(rec).
-record(rec,{a,b = val()}).
ok

Command 33 prints the definition of the record named rec.

34> #rec{}.
** exception error: undefined shell command val/0

Command 34 tries to create a rec record, but fails as function val/0 is undefined.

35> #rec{b = 3}.
#rec{a = undefined,b = 3}

Command 35 shows the workaround: explicitly assign values to record fields that cannot otherwise be initialized.

36> rp(v(-1)).
#rec{a = undefined,b = 3}
ok

Command 36 prints the newly created record using record definitions maintained by the shell.

37> rd(rec, {f = orddict:new()}).
rec

Command 37 defines a record directly in the shell. The definition replaces the one read from file ex.beam.

38> #rec{}.
#rec{f = []}
ok

Command 38 creates a record using the new definition, and prints the result.

39> rd(rec, {c}), A.
* 1: variable 'A' is unbound
40> #rec{}.
#rec{c = undefined}
ok

Command 39 and 40 show that record definitions are updated as side effects. The evaluation of the command fails,
but the definition of rec has been carried out.

For the next command, it is assumed that test1:loop(N) is defined as follows:

loop(N) ->
 io:format("Hello Number: ~w~n", [N]),
 loop(N+1).

shell

Ericsson AB. All Rights Reserved.: STDLIB | 439

41> test1:loop(0).
Hello Number: 0
Hello Number: 1
Hello Number: 2
Hello Number: 3

User switch command
 --> i
 --> c
.
.
.
Hello Number: 3374
Hello Number: 3375
Hello Number: 3376
Hello Number: 3377
Hello Number: 3378
** exception exit: killed

Command 41 evaluates test1:loop(0), which puts the system into an infinite loop. At this point the user types
^G (Control G), which suspends output from the current process, which is stuck in a loop, and activates JCL mode.
In JCL mode the user can start and stop jobs.

In this particular case, command i ("interrupt") terminates the looping program, and command c connects to the shell
again. As the process was running in the background before we killed it, more printouts occur before message "**
exception exit: killed" is shown.

42> E = ets:new(t, []).
17

Command 42 creates an ETS table.

43> ets:insert({d,1,2}).
** exception error: undefined function ets:insert/1

Command 43 tries to insert a tuple into the ETS table, but the first argument (the table) is missing. The exception
kills the evaluator process.

44> ets:insert(E, {d,1,2}).
** exception error: argument is of wrong type
 in function ets:insert/2
 called as ets:insert(16,{d,1,2})

Command 44 corrects the mistake, but the ETS table has been destroyed as it was owned by the killed evaluator process.

45> f(E).
ok
46> catch_exception(true).
false

Command 46 sets the exception handling of the evaluator process to true. The exception handling can also be set
when starting Erlang by erl -stdlib shell_catch_exception true.

shell

440 | Ericsson AB. All Rights Reserved.: STDLIB

47> E = ets:new(t, []).
18
48> ets:insert({d,1,2}).
* exception error: undefined function ets:insert/1

Command 48 makes the same mistake as in command 43, but this time the evaluator process lives on. The single star
at the beginning of the printout signals that the exception has been caught.

49> ets:insert(E, {d,1,2}).
true

Command 49 successfully inserts the tuple into the ETS table.

50> halt().
strider 2>

Command 50 exits the Erlang runtime system.

JCL Mode
When the shell starts, it starts a single evaluator process. This process, together with any local processes that it spawns,
is referred to as a job. Only the current job, which is said to be connected, can perform operations with standard
I/O. All other jobs, which are said to be detached, are blocked if they attempt to use standard I/O.

All jobs that do not use standard I/O run in the normal way.

The shell escape key ^G (Control G) detaches the current job and activates JCL mode. The JCL mode prompt is "--
>". If "?" is entered at the prompt, the following help message is displayed:

--> ?
c [nn] - connect to job
i [nn] - interrupt job
k [nn] - kill job
j - list all jobs
s [shell] - start local shell
r [node [shell]] - start remote shell
q - quit erlang
? | h - this message

The JCL commands have the following meaning:

c [nn]

Connects to job number <nn> or the current job. The standard shell is resumed. Operations that use standard I/
O by the current job are interleaved with user inputs to the shell.

i [nn]

Stops the current evaluator process for job number nn or the current job, but does not kill the shell process. So,
any variable bindings and the process dictionary are preserved and the job can be connected again. This command
can be used to interrupt an endless loop.

shell

Ericsson AB. All Rights Reserved.: STDLIB | 441

k [nn]

Kills job number nn or the current job. All spawned processes in the job are killed, provided they have not
evaluated the group_leader/1 BIF and are located on the local machine. Processes spawned on remote nodes
are not killed.

j

Lists all jobs. A list of all known jobs is printed. The current job name is prefixed with '*'.

s

Starts a new job. This is assigned the new index [nn], which can be used in references.

s [shell]

Starts a new job. This is assigned the new index [nn], which can be used in references. If optional argument
shell is specified, it is assumed to be a module that implements an alternative shell.

r [node]

Starts a remote job on node. This is used in distributed Erlang to allow a shell running on one node to control
a number of applications running on a network of nodes. If optional argument shell is specified, it is assumed
to be a module that implements an alternative shell.

q

Quits Erlang. Notice that this option is disabled if Erlang is started with the ignore break, +Bi, system flag (which
can be useful, for example when running a restricted shell, see the next section).

?

Displays the help message above.

The behavior of shell escape can be changed by the STDLIB application variable shell_esc. The value of the
variable can be either jcl (erl -stdlib shell_esc jcl) or abort (erl -stdlib shell_esc abort).
The first option sets ^G to activate JCL mode (which is also default behavior). The latter sets ^G to terminate the
current shell and start a new one. JCL mode cannot be invoked when shell_esc is set to abort.

If you want an Erlang node to have a remote job active from the start (rather than the default local job), start Erlang
with flag -remsh, for example, erl -sname this_node -remsh other_node@other_host

Restricted Shell
The shell can be started in a restricted mode. In this mode, the shell evaluates a function call only if allowed. This
feature makes it possible to, for example, prevent a user from accidentally calling a function from the prompt that
could harm a running system (useful in combination with system flag +Bi).

When the restricted shell evaluates an expression and encounters a function call or an operator application, it calls a
callback function (with information about the function call in question). This callback function returns true to let
the shell go ahead with the evaluation, or false to abort it. There are two possible callback functions for the user
to implement:

• local_allowed(Func, ArgList, State) -> {boolean(),NewState}

This is used to determine if the call to the local function Func with arguments ArgList is to be allowed.

• non_local_allowed(FuncSpec, ArgList, State) -> {boolean(),NewState} |
{{redirect,NewFuncSpec,NewArgList},NewState}

This is used to determine if the call to non-local function FuncSpec ({Module,Func} or a fun) with arguments
ArgList is to be allowed. The return value {redirect,NewFuncSpec,NewArgList} can be used to let
the shell evaluate some other function than the one specified by FuncSpec and ArgList.

shell

442 | Ericsson AB. All Rights Reserved.: STDLIB

These callback functions are called from local and non-local evaluation function handlers, described in the erl_eval
manual page. (Arguments in ArgList are evaluated before the callback functions are called.)

Argument State is a tuple {ShellState,ExprState}. The return value NewState has the same form. This
can be used to carry a state between calls to the callback functions. Data saved in ShellState lives through an
entire shell session. Data saved in ExprState lives only through the evaluation of the current expression.

There are two ways to start a restricted shell session:

• Use STDLIB application variable restricted_shell and specify, as its value, the name of the callback
module. Example (with callback functions implemented in callback_mod.erl): $ erl -stdlib
restricted_shell callback_mod.

• From a normal shell session, call function start_restricted/1. This exits the current evaluator and starts
a new one in restricted mode.

Notes:

• When restricted shell mode is activated or deactivated, new jobs started on the node run in restricted or normal
mode, respectively.

• If restricted mode has been enabled on a particular node, remote shells connecting to this node also run in restricted
mode.

• The callback functions cannot be used to allow or disallow execution of functions called from compiled code
(only functions called from expressions entered at the shell prompt).

Errors when loading the callback module is handled in different ways depending on how the restricted shell is activated:

• If the restricted shell is activated by setting the STDLIB variable during emulator startup, and the callback module
cannot be loaded, a default restricted shell allowing only the commands q() and init:stop() is used as
fallback.

• If the restricted shell is activated using start_restricted/1 and the callback module cannot be loaded, an
error report is sent to the error logger and the call returns {error,Reason}.

Prompting
The default shell prompt function displays the name of the node (if the node can be part of a distributed system) and the
current command number. The user can customize the prompt function by calling prompt_func/1 or by setting
application configuration parameter shell_prompt_func for the STDLIB application.

A customized prompt function is stated as a tuple {Mod, Func}. The function is called as Mod:Func(L), where
L is a list of key-value pairs created by the shell. Currently there is only one pair: {history, N}, where N is the
current command number. The function is to return a list of characters or an atom. This constraint is because of the
Erlang I/O protocol. Unicode characters beyond code point 255 are allowed in the list. Notice that in restricted mode
the call Mod:Func(L) must be allowed or the default shell prompt function is called.

Exports

catch_exception(Bool) -> boolean()
Types:

Bool = boolean()

Sets the exception handling of the evaluator process. The previous exception handling is returned. The default (false)
is to kill the evaluator process when an exception occurs, which causes the shell to create a new evaluator process.
When the exception handling is set to true, the evaluator process lives on, which means that, for example, ports and
ETS tables as well as processes linked to the evaluator process survive the exception.

shell

Ericsson AB. All Rights Reserved.: STDLIB | 443

history(N) -> integer() >= 0
Types:

N = integer() >= 0
Sets the number of previous commands to keep in the history list to N. The previous number is returned. Defaults to 20.

prompt_func(PromptFunc) -> PromptFunc2
Types:

PromptFunc = PromptFunc2 = default | {module(), atom()}

Sets the shell prompt function to PromptFunc. The previous prompt function is returned.

results(N) -> integer() >= 0
Types:

N = integer() >= 0
Sets the number of results from previous commands to keep in the history list to N. The previous number is returned.
Defaults to 20.

start_restricted(Module) -> {error, Reason}
Types:

Module = module()
Reason = code:load_error_rsn()

Exits a normal shell and starts a restricted shell. Module specifies the callback module for the functions
local_allowed/3 and non_local_allowed/3. The function is meant to be called from the shell.

If the callback module cannot be loaded, an error tuple is returned. The Reason in the error tuple is the one returned
by the code loader when trying to load the code of the callback module.

stop_restricted() -> no_return()
Exits a restricted shell and starts a normal shell. The function is meant to be called from the shell.

strings(Strings) -> Strings2
Types:

Strings = Strings2 = boolean()

Sets pretty printing of lists to Strings. The previous value of the flag is returned.

The flag can also be set by the STDLIB application variable shell_strings. Defaults to true, which means
that lists of integers are printed using the string syntax, when possible. Value false means that no lists are printed
using the string syntax.

shell_default

444 | Ericsson AB. All Rights Reserved.: STDLIB

shell_default
Erlang module

The functions in this module are called when no module name is specified in a shell command.

Consider the following shell dialog:

1> lists:reverse("abc").
"cba"
2> c(foo).
{ok, foo}

In command one, module lists is called. In command two, no module name is specified. The shell searches module
user_default followed by module shell_default for function foo/1.

shell_default is intended for "system wide" customizations to the shell. user_default is intended for "local"
or individual user customizations.

Hint
To add your own commands to the shell, create a module called user_default and add the commands you want.
Then add the following line as the first line in your .erlang file in your home directory.

code:load_abs("$PATH/user_default").

$PATH is the directory where your user_default module can be found.

slave

Ericsson AB. All Rights Reserved.: STDLIB | 445

slave
Erlang module

This module provides functions for starting Erlang slave nodes. All slave nodes that are started by a master terminate
automatically when the master terminates. All terminal output produced at the slave is sent back to the master node.
File I/O is done through the master.

Slave nodes on other hosts than the current one are started with the rsh program. The user must be allowed to rsh to
the remote hosts without being prompted for a password. This can be arranged in a number of ways (for details, see the
rsh documentation). A slave node started on the same host as the master inherits certain environment values from the
master, such as the current directory and the environment variables. For what can be assumed about the environment
when a slave is started on another host, see the documentation for the rsh program.

An alternative to the rsh program can be specified on the command line to erl(1) as follows:

-rsh Program

The slave node is to use the same file system at the master. At least, Erlang/OTP is to be installed in the same place
on both computers and the same version of Erlang is to be used.

A node running on Windows can only start slave nodes on the host on which it is running.

The master node must be alive.

Exports

pseudo([Master | ServerList]) -> ok
Types:

Master = node()

ServerList = [atom()]

Calls pseudo(Master, ServerList). If you want to start a node from the command line and set up a number
of pseudo servers, an Erlang runtime system can be started as follows:

% erl -name abc -s slave pseudo klacke@super x --

pseudo(Master, ServerList) -> ok
Types:

Master = node()
ServerList = [atom()]

Starts a number of pseudo servers. A pseudo server is a server with a registered name that does nothing but pass on all
message to the real server that executes at a master node. A pseudo server is an intermediary that only has the same
registered name as the real server.

For example, if you have started a slave node N and want to execute pxw graphics code on this node, you can start
server pxw_server as a pseudo server at the slave node. This is illustrated as follows:

slave

446 | Ericsson AB. All Rights Reserved.: STDLIB

rpc:call(N, slave, pseudo, [node(), [pxw_server]]).

relay(Pid) -> no_return()
Types:

Pid = pid()
Runs a pseudo server. This function never returns any value and the process that executes the function receives
messages. All messages received are simply passed on to Pid.

start(Host) -> {ok, Node} | {error, Reason}
start(Host, Name) -> {ok, Node} | {error, Reason}
start(Host, Name, Args) -> {ok, Node} | {error, Reason}
Types:

Host = inet:hostname()
Name = atom() | string()
Args = string()
Node = node()
Reason = timeout | no_rsh | {already_running, Node}

Starts a slave node on host Host. Host names need not necessarily be specified as fully qualified names; short names
can also be used. This is the same condition that applies to names of distributed Erlang nodes.

The name of the started node becomes Name@Host. If no name is provided, the name becomes the same as the node
that executes the call (except the host name part of the node name).

The slave node resets its user process so that all terminal I/O that is produced at the slave is automatically relayed
to the master. Also, the file process is relayed to the master.

Argument Args is used to set erl command-line arguments. If provided, it is passed to the new node and can be
used for a variety of purposes; see erl(1).

As an example, suppose that you want to start a slave node at host H with node name Name@H and want the slave
node to have the following properties:

• Directory Dir is to be added to the code path.

• The Mnesia directory is to be set to M.

• The Unix DISPLAY environment variable is to be set to the display of the master node.

The following code is executed to achieve this:

E = " -env DISPLAY " ++ net_adm:localhost() ++ ":0 ",
Arg = "-mnesia_dir " ++ M ++ " -pa " ++ Dir ++ E,
slave:start(H, Name, Arg).

The function returns {ok, Node}, where Node is the name of the new node, otherwise {error, Reason},
where Reason can be one of:

timeout

The master node failed to get in contact with the slave node. This can occur in a number of circumstances:

• Erlang/OTP is not installed on the remote host.

• The file system on the other host has a different structure to the the master.

• The Erlang nodes have different cookies.

slave

Ericsson AB. All Rights Reserved.: STDLIB | 447

no_rsh

There is no rsh program on the computer.

{already_running, Node}

A node with name Name@Host already exists.

start_link(Host) -> {ok, Node} | {error, Reason}
start_link(Host, Name) -> {ok, Node} | {error, Reason}
start_link(Host, Name, Args) -> {ok, Node} | {error, Reason}
Types:

Host = inet:hostname()
Name = atom() | string()
Args = string()
Node = node()
Reason = timeout | no_rsh | {already_running, Node}

Starts a slave node in the same way as start/1,2,3, except that the slave node is linked to the currently executing
process. If that process terminates, the slave node also terminates.

For a description of arguments and return values, see start/1,2,3.

stop(Node) -> ok
Types:

Node = node()
Stops (kills) a node.

sofs

448 | Ericsson AB. All Rights Reserved.: STDLIB

sofs
Erlang module

This module provides operations on finite sets and relations represented as sets. Intuitively, a set is a collection of
elements; every element belongs to the set, and the set contains every element.

Given a set A and a sentence S(x), where x is a free variable, a new set B whose elements are exactly those elements
of A for which S(x) holds can be formed, this is denoted B = {x in A : S(x)}. Sentences are expressed using the logical
operators "for some" (or "there exists"), "for all", "and", "or", "not". If the existence of a set containing all the specified
elements is known (as is always the case in this module), this is denoted B = {x : S(x)}.

• The unordered set containing the elements a, b, and c is denoted {a, b, c}. This notation is not to be confused
with tuples.

The ordered pair of a and b, with first coordinate a and second coordinate b, is denoted (a, b). An ordered
pair is an ordered set of two elements. In this module, ordered sets can contain one, two, or more elements, and
parentheses are used to enclose the elements.

Unordered sets and ordered sets are orthogonal, again in this module; there is no unordered set equal to any
ordered set.

• The empty set contains no elements.

Set A is equal to set B if they contain the same elements, which is denoted A = B. Two ordered sets are equal if
they contain the same number of elements and have equal elements at each coordinate.

Set B is a subset of set A if A contains all elements that B contains.

The union of two sets A and B is the smallest set that contains all elements of A and all elements of B.

The intersection of two sets A and B is the set that contains all elements of A that belong to B.

Two sets are disjoint if their intersection is the empty set.

The difference of two sets A and B is the set that contains all elements of A that do not belong to B.

The symmetric difference of two sets is the set that contains those element that belong to either of the two sets,
but not both.

The union of a collection of sets is the smallest set that contains all the elements that belong to at least one set
of the collection.

The intersection of a non-empty collection of sets is the set that contains all elements that belong to every set
of the collection.

• The Cartesian product of two sets X and Y, denoted X × Y, is the set {a : a = (x, y) for some x in X and for
some y in Y}.

A relation is a subset of X × Y. Let R be a relation. The fact that (x, y) belongs to R is written as x R y. As
relations are sets, the definitions of the last item (subset, union, and so on) apply to relations as well.

The domain of R is the set {x : x R y for some y in Y}.

The range of R is the set {y : x R y for some x in X}.

The converse of R is the set {a : a = (y, x) for some (x, y) in R}.

If A is a subset of X, the image of A under R is the set {y : x R y for some x in A}. If B is a subset of Y, the
inverse image of B is the set {x : x R y for some y in B}.

If R is a relation from X to Y, and S is a relation from Y to Z, the relative product of R and S is the relation T
from X to Z defined so that x T z if and only if there exists an element y in Y such that x R y and y S z.

sofs

Ericsson AB. All Rights Reserved.: STDLIB | 449

The restriction of R to A is the set S defined so that x S y if and only if there exists an element x in A such that x R y.

If S is a restriction of R to A, then R is an extension of S to X.

If X = Y, then R is called a relation in X.

The field of a relation R in X is the union of the domain of R and the range of R.

If R is a relation in X, and if S is defined so that x S y if x R y and not x = y, then S is the strict relation
corresponding to R. Conversely, if S is a relation in X, and if R is defined so that x R y if x S y or x = y, then
R is the weak relation corresponding to S.

A relation R in X is reflexive if x R x for every element x of X, it is symmetric if x R y implies that y R x, and
it is transitive if x R y and y R z imply that x R z.

• A function F is a relation, a subset of X × Y, such that the domain of F is equal to X and such that for every
x in X there is a unique element y in Y with (x, y) in F. The latter condition can be formulated as follows: if
x F y and x F z, then y = z. In this module, it is not required that the domain of F is equal to X for a relation
to be considered a function.

Instead of writing (x, y) in F or x F y, we write F(x) = y when F is a function, and say that F maps x onto y, or
that the value of F at x is y.

As functions are relations, the definitions of the last item (domain, range, and so on) apply to functions as well.

If the converse of a function F is a function F', then F' is called the inverse of F.

The relative product of two functions F1 and F2 is called the composite of F1 and F2 if the range of F1 is a subset
of the domain of F2.

• Sometimes, when the range of a function is more important than the function itself, the function is called a family.

The domain of a family is called the index set, and the range is called the indexed set.

If x is a family from I to X, then x[i] denotes the value of the function at index i. The notation "a family in X"
is used for such a family.

When the indexed set is a set of subsets of a set X, we call x a family of subsets of X.

If x is a family of subsets of X, the union of the range of x is called the union of the family x.

If x is non-empty (the index set is non-empty), the intersection of the family x is the intersection of the range of x.

In this module, the only families that are considered are families of subsets of some set X; in the following, the
word "family" is used for such families of subsets.

• A partition of a set X is a collection S of non-empty subsets of X whose union is X and whose elements are
pairwise disjoint.

A relation in a set is an equivalence relation if it is reflexive, symmetric, and transitive.

If R is an equivalence relation in X, and x is an element of X, the equivalence class of x with respect to R is
the set of all those elements y of X for which x R y holds. The equivalence classes constitute a partitioning of X.
Conversely, if C is a partition of X, the relation that holds for any two elements of X if they belong to the same
equivalence class, is an equivalence relation induced by the partition C.

If R is an equivalence relation in X, the canonical map is the function that maps every element of X onto its
equivalence class.

• Relations as defined above (as sets of ordered pairs) are from now on referred to as binary relations.

We call a set of ordered sets (x[1], ..., x[n]) an (n-ary) relation, and say that the relation is a subset of the Cartesian
product X[1] × ... × X[n], where x[i] is an element of X[i], 1 <= i <= n.

sofs

450 | Ericsson AB. All Rights Reserved.: STDLIB

The projection of an n-ary relation R onto coordinate i is the set {x[i] : (x[1], ..., x[i], ..., x[n]) in R for some
x[j] in X[j], 1 <= j <= n and not i = j}. The projections of a binary relation R onto the first and second coordinates
are the domain and the range of R, respectively.

The relative product of binary relations can be generalized to n-ary relations as follows. Let TR be an ordered
set (R[1], ..., R[n]) of binary relations from X to Y[i] and S a binary relation from (Y[1] × ... × Y[n]) to Z. The
relative product of TR and S is the binary relation T from X to Z defined so that x T z if and only if there exists
an element y[i] in Y[i] for each 1 <= i <= n such that x R[i] y[i] and (y[1], ..., y[n]) S z. Now let TR be a an ordered
set (R[1], ..., R[n]) of binary relations from X[i] to Y[i] and S a subset of X[1] × ... × X[n]. The multiple relative
product of TR and S is defined to be the set {z : z = ((x[1], ..., x[n]), (y[1],...,y[n])) for some (x[1], ..., x[n]) in S
and for some (x[i], y[i]) in R[i], 1 <= i <= n}.

The natural join of an n-ary relation R and an m-ary relation S on coordinate i and j is defined to be the set {z :
z = (x[1], ..., x[n], y[1], ..., y[j-1], y[j+1], ..., y[m]) for some (x[1], ..., x[n]) in R and for some (y[1], ..., y[m]) in S
such that x[i] = y[j]}.

• The sets recognized by this module are represented by elements of the relation Sets, which is defined as the
smallest set such that:

• For every atom T, except '_', and for every term X, (T, X) belongs to Sets (atomic sets).

• (['_'], []) belongs to Sets (the untyped empty set).

• For every tuple T = {T[1], ..., T[n]} and for every tuple X = {X[1], ..., X[n]}, if (T[i], X[i]) belongs to Sets
for every 1 <= i <= n, then (T, X) belongs to Sets (ordered sets).

• For every term T, if X is the empty list or a non-empty sorted list [X[1], ..., X[n]] without duplicates such
that (T, X[i]) belongs to Sets for every 1 <= i <= n, then ([T], X) belongs to Sets (typed unordered sets).

An external set is an element of the range of Sets.

A type is an element of the domain of Sets.

If S is an element (T, X) of Sets, then T is a valid type of X, T is the type of S, and X is the external set of S.
from_term/2 creates a set from a type and an Erlang term turned into an external set.

The sets represented by Sets are the elements of the range of function Set from Sets to Erlang terms and sets of
Erlang terms:

• Set(T,Term) = Term, where T is an atom

• Set({T[1], ..., T[n]}, {X[1], ..., X[n]}) = (Set(T[1], X[1]), ..., Set(T[n], X[n]))

• Set([T], [X[1], ..., X[n]]) = {Set(T, X[1]), ..., Set(T, X[n])}

• Set([T], []) = {}

When there is no risk of confusion, elements of Sets are identified with the sets they represent. For example, if
U is the result of calling union/2 with S1 and S2 as arguments, then U is said to be the union of S1 and S2. A
more precise formulation is that Set(U) is the union of Set(S1) and Set(S2).

The types are used to implement the various conditions that sets must fulfill. As an example, consider the relative
product of two sets R and S, and recall that the relative product of R and S is defined if R is a binary relation to Y and
S is a binary relation from Y. The function that implements the relative product, relative_product/2, checks
that the arguments represent binary relations by matching [{A,B}] against the type of the first argument (Arg1 say),
and [{C,D}] against the type of the second argument (Arg2 say). The fact that [{A,B}] matches the type of Arg1 is
to be interpreted as Arg1 representing a binary relation from X to Y, where X is defined as all sets Set(x) for some
element x in Sets the type of which is A, and similarly for Y. In the same way Arg2 is interpreted as representing a
binary relation from W to Z. Finally it is checked that B matches C, which is sufficient to ensure that W is equal to Y.
The untyped empty set is handled separately: its type, ['_'], matches the type of any unordered set.

A few functions of this module (drestriction/3, family_projection/2, partition/2,
partition_family/2, projection/2, restriction/3, substitution/2) accept an Erlang function

sofs

Ericsson AB. All Rights Reserved.: STDLIB | 451

as a means to modify each element of a given unordered set. Such a function, called SetFun in the following, can be
specified as a functional object (fun), a tuple {external, Fun}, or an integer:

• If SetFun is specified as a fun, the fun is applied to each element of the given set and the return value is assumed
to be a set.

• If SetFun is specified as a tuple {external, Fun}, Fun is applied to the external set of each element of the
given set and the return value is assumed to be an external set. Selecting the elements of an unordered set as
external sets and assembling a new unordered set from a list of external sets is in the present implementation more
efficient than modifying each element as a set. However, this optimization can only be used when the elements of
the unordered set are atomic or ordered sets. It must also be the case that the type of the elements matches some
clause of Fun (the type of the created set is the result of applying Fun to the type of the given set), and that Fun
does nothing but selecting, duplicating, or rearranging parts of the elements.

• Specifying a SetFun as an integer I is equivalent to specifying {external, fun(X) ->
element(I, X) end}, but is to be preferred, as it makes it possible to handle this case even more efficiently.

Examples of SetFuns:

fun sofs:union/1
fun(S) -> sofs:partition(1, S) end
{external, fun(A) -> A end}
{external, fun({A,_,C}) -> {C,A} end}
{external, fun({_,{_,C}}) -> C end}
{external, fun({_,{_,{_,E}=C}}) -> {E,{E,C}} end}
2

The order in which a SetFun is applied to the elements of an unordered set is not specified, and can change in future
versions of this module.

The execution time of the functions of this module is dominated by the time it takes to sort lists. When no sorting is
needed, the execution time is in the worst case proportional to the sum of the sizes of the input arguments and the
returned value. A few functions execute in constant time: from_external/2, is_empty_set/1, is_set/1,
is_sofs_set/1, to_external/1 type/1.

The functions of this module exit the process with a badarg, bad_function, or type_mismatch message when
given badly formed arguments or sets the types of which are not compatible.

When comparing external sets, operator ==/2 is used.

Data Types
anyset() = ordset() | a_set()
Any kind of set (also included are the atomic sets).

binary_relation() = relation()
A binary relation.

external_set() = term()
An external set.

family() = a_function()
A family (of subsets).

a_function() = relation()
A function.

sofs

452 | Ericsson AB. All Rights Reserved.: STDLIB

ordset()
An ordered set.

relation() = a_set()
An n-ary relation.

a_set()
An unordered set.

set_of_sets() = a_set()
An unordered set of unordered sets.

set_fun() =
 integer() >= 1 |
 {external, fun((external_set()) -> external_set())} |
 fun((anyset()) -> anyset())
A SetFun.

spec_fun() =
 {external, fun((external_set()) -> boolean())} |
 fun((anyset()) -> boolean())
type() = term()
A type.

tuple_of(T)
A tuple where the elements are of type T.

Exports

a_function(Tuples) -> Function
a_function(Tuples, Type) -> Function
Types:

Function = a_function()
Tuples = [tuple()]
Type = type()

Creates a function. a_function(F, T) is equivalent to from_term(F, T) if the result is a function. If no type
is explicitly specified, [{atom, atom}] is used as the function type.

canonical_relation(SetOfSets) -> BinRel
Types:

BinRel = binary_relation()
SetOfSets = set_of_sets()

Returns the binary relation containing the elements (E, Set) such that Set belongs to SetOfSets and E belongs to
Set. If SetOfSets is a partition of a set X and R is the equivalence relation in X induced by SetOfSets, then the
returned relation is the canonical map from X onto the equivalence classes with respect to R.

1> Ss = sofs:from_term([[a,b],[b,c]]),
CR = sofs:canonical_relation(Ss),
sofs:to_external(CR).

sofs

Ericsson AB. All Rights Reserved.: STDLIB | 453

[{a,[a,b]},{b,[a,b]},{b,[b,c]},{c,[b,c]}]

composite(Function1, Function2) -> Function3
Types:

Function1 = Function2 = Function3 = a_function()

Returns the composite of the functions Function1 and Function2.

1> F1 = sofs:a_function([{a,1},{b,2},{c,2}]),
F2 = sofs:a_function([{1,x},{2,y},{3,z}]),
F = sofs:composite(F1, F2),
sofs:to_external(F).
[{a,x},{b,y},{c,y}]

constant_function(Set, AnySet) -> Function
Types:

AnySet = anyset()
Function = a_function()
Set = a_set()

Creates the function that maps each element of set Set onto AnySet.

1> S = sofs:set([a,b]),
E = sofs:from_term(1),
R = sofs:constant_function(S, E),
sofs:to_external(R).
[{a,1},{b,1}]

converse(BinRel1) -> BinRel2
Types:

BinRel1 = BinRel2 = binary_relation()

Returns the converse of the binary relation BinRel1.

1> R1 = sofs:relation([{1,a},{2,b},{3,a}]),
R2 = sofs:converse(R1),
sofs:to_external(R2).
[{a,1},{a,3},{b,2}]

difference(Set1, Set2) -> Set3
Types:

Set1 = Set2 = Set3 = a_set()

Returns the difference of the sets Set1 and Set2.

sofs

454 | Ericsson AB. All Rights Reserved.: STDLIB

digraph_to_family(Graph) -> Family
digraph_to_family(Graph, Type) -> Family
Types:

Graph = digraph:graph()
Family = family()
Type = type()

Creates a family from the directed graph Graph. Each vertex a of Graph is represented by a pair (a, {b[1], ..., b[n]}),
where the b[i]:s are the out-neighbors of a. If no type is explicitly specified, [{atom, [atom]}] is used as type of the
family. It is assumed that Type is a valid type of the external set of the family.

If G is a directed graph, it holds that the vertices and edges of G are the same as the vertices and edges of
family_to_digraph(digraph_to_family(G)).

domain(BinRel) -> Set
Types:

BinRel = binary_relation()
Set = a_set()

Returns the domain of the binary relation BinRel.

1> R = sofs:relation([{1,a},{1,b},{2,b},{2,c}]),
S = sofs:domain(R),
sofs:to_external(S).
[1,2]

drestriction(BinRel1, Set) -> BinRel2
Types:

BinRel1 = BinRel2 = binary_relation()
Set = a_set()

Returns the difference between the binary relation BinRel1 and the restriction of BinRel1 to Set.

1> R1 = sofs:relation([{1,a},{2,b},{3,c}]),
S = sofs:set([2,4,6]),
R2 = sofs:drestriction(R1, S),
sofs:to_external(R2).
[{1,a},{3,c}]

drestriction(R, S) is equivalent to difference(R, restriction(R, S)).

drestriction(SetFun, Set1, Set2) -> Set3
Types:

SetFun = set_fun()
Set1 = Set2 = Set3 = a_set()

Returns a subset of Set1 containing those elements that do not give an element in Set2 as the result of applying
SetFun.

sofs

Ericsson AB. All Rights Reserved.: STDLIB | 455

1> SetFun = {external, fun({_A,B,C}) -> {B,C} end},
R1 = sofs:relation([{a,aa,1},{b,bb,2},{c,cc,3}]),
R2 = sofs:relation([{bb,2},{cc,3},{dd,4}]),
R3 = sofs:drestriction(SetFun, R1, R2),
sofs:to_external(R3).
[{a,aa,1}]

drestriction(F, S1, S2) is equivalent to difference(S1, restriction(F, S1, S2)).

empty_set() -> Set
Types:

Set = a_set()
Returns the untyped empty set. empty_set() is equivalent to from_term([], ['_']).

extension(BinRel1, Set, AnySet) -> BinRel2
Types:

AnySet = anyset()
BinRel1 = BinRel2 = binary_relation()
Set = a_set()

Returns the extension of BinRel1 such that for each element E in Set that does not belong to the domain of
BinRel1, BinRel2 contains the pair (E, AnySet).

1> S = sofs:set([b,c]),
A = sofs:empty_set(),
R = sofs:family([{a,[1,2]},{b,[3]}]),
X = sofs:extension(R, S, A),
sofs:to_external(X).
[{a,[1,2]},{b,[3]},{c,[]}]

family(Tuples) -> Family
family(Tuples, Type) -> Family
Types:

Family = family()
Tuples = [tuple()]
Type = type()

Creates a family of subsets. family(F, T) is equivalent to from_term(F, T) if the result is a family. If no type
is explicitly specified, [{atom, [atom]}] is used as the family type.

family_difference(Family1, Family2) -> Family3
Types:

Family1 = Family2 = Family3 = family()

If Family1 and Family2 are families, then Family3 is the family such that the index set is equal to the index set of
Family1, and Family3[i] is the difference between Family1[i] and Family2[i] if Family2 maps i, otherwise
Family1[i].

sofs

456 | Ericsson AB. All Rights Reserved.: STDLIB

1> F1 = sofs:family([{a,[1,2]},{b,[3,4]}]),
F2 = sofs:family([{b,[4,5]},{c,[6,7]}]),
F3 = sofs:family_difference(F1, F2),
sofs:to_external(F3).
[{a,[1,2]},{b,[3]}]

family_domain(Family1) -> Family2
Types:

Family1 = Family2 = family()

If Family1 is a family and Family1[i] is a binary relation for every i in the index set of Family1, then Family2
is the family with the same index set as Family1 such that Family2[i] is the domain of Family1[i].

1> FR = sofs:from_term([{a,[{1,a},{2,b},{3,c}]},{b,[]},{c,[{4,d},{5,e}]}]),
F = sofs:family_domain(FR),
sofs:to_external(F).
[{a,[1,2,3]},{b,[]},{c,[4,5]}]

family_field(Family1) -> Family2
Types:

Family1 = Family2 = family()

If Family1 is a family and Family1[i] is a binary relation for every i in the index set of Family1, then Family2
is the family with the same index set as Family1 such that Family2[i] is the field of Family1[i].

1> FR = sofs:from_term([{a,[{1,a},{2,b},{3,c}]},{b,[]},{c,[{4,d},{5,e}]}]),
F = sofs:family_field(FR),
sofs:to_external(F).
[{a,[1,2,3,a,b,c]},{b,[]},{c,[4,5,d,e]}]

family_field(Family1) is equivalent to family_union(family_domain(Family1),
family_range(Family1)).

family_intersection(Family1) -> Family2
Types:

Family1 = Family2 = family()

If Family1 is a family and Family1[i] is a set of sets for every i in the index set of Family1, then Family2 is
the family with the same index set as Family1 such that Family2[i] is the intersection of Family1[i].

If Family1[i] is an empty set for some i, the process exits with a badarg message.

1> F1 = sofs:from_term([{a,[[1,2,3],[2,3,4]]},{b,[[x,y,z],[x,y]]}]),
F2 = sofs:family_intersection(F1),
sofs:to_external(F2).
[{a,[2,3]},{b,[x,y]}]

sofs

Ericsson AB. All Rights Reserved.: STDLIB | 457

family_intersection(Family1, Family2) -> Family3
Types:

Family1 = Family2 = Family3 = family()

If Family1 and Family2 are families, then Family3 is the family such that the index set is the intersection of
Family1:s and Family2:s index sets, and Family3[i] is the intersection of Family1[i] and Family2[i].

1> F1 = sofs:family([{a,[1,2]},{b,[3,4]},{c,[5,6]}]),
F2 = sofs:family([{b,[4,5]},{c,[7,8]},{d,[9,10]}]),
F3 = sofs:family_intersection(F1, F2),
sofs:to_external(F3).
[{b,[4]},{c,[]}]

family_projection(SetFun, Family1) -> Family2
Types:

SetFun = set_fun()
Family1 = Family2 = family()

If Family1 is a family, then Family2 is the family with the same index set as Family1 such that Family2[i] is
the result of calling SetFun with Family1[i] as argument.

1> F1 = sofs:from_term([{a,[[1,2],[2,3]]},{b,[[]]}]),
F2 = sofs:family_projection(fun sofs:union/1, F1),
sofs:to_external(F2).
[{a,[1,2,3]},{b,[]}]

family_range(Family1) -> Family2
Types:

Family1 = Family2 = family()

If Family1 is a family and Family1[i] is a binary relation for every i in the index set of Family1, then Family2
is the family with the same index set as Family1 such that Family2[i] is the range of Family1[i].

1> FR = sofs:from_term([{a,[{1,a},{2,b},{3,c}]},{b,[]},{c,[{4,d},{5,e}]}]),
F = sofs:family_range(FR),
sofs:to_external(F).
[{a,[a,b,c]},{b,[]},{c,[d,e]}]

family_specification(Fun, Family1) -> Family2
Types:

Fun = spec_fun()
Family1 = Family2 = family()

If Family1 is a family, then Family2 is the restriction of Family1 to those elements i of the index set for which
Fun applied to Family1[i] returns true. If Fun is a tuple {external, Fun2}, then Fun2 is applied to the
external set of Family1[i], otherwise Fun is applied to Family1[i].

sofs

458 | Ericsson AB. All Rights Reserved.: STDLIB

1> F1 = sofs:family([{a,[1,2,3]},{b,[1,2]},{c,[1]}]),
SpecFun = fun(S) -> sofs:no_elements(S) =:= 2 end,
F2 = sofs:family_specification(SpecFun, F1),
sofs:to_external(F2).
[{b,[1,2]}]

family_to_digraph(Family) -> Graph
family_to_digraph(Family, GraphType) -> Graph
Types:

Graph = digraph:graph()
Family = family()
GraphType = [digraph:d_type()]

Creates a directed graph from family Family. For each pair (a, {b[1], ..., b[n]}) of Family, vertex a and the edges
(a, b[i]) for 1 <= i <= n are added to a newly created directed graph.

If no graph type is specified, digraph:new/0 is used for creating the directed graph, otherwise argument
GraphType is passed on as second argument to digraph:new/1.

It F is a family, it holds that F is a subset of digraph_to_family(family_to_digraph(F), type(F)).
Equality holds if union_of_family(F) is a subset of domain(F).

Creating a cycle in an acyclic graph exits the process with a cyclic message.

family_to_relation(Family) -> BinRel
Types:

Family = family()
BinRel = binary_relation()

If Family is a family, then BinRel is the binary relation containing all pairs (i, x) such that i belongs to the index
set of Family and x belongs to Family[i].

1> F = sofs:family([{a,[]}, {b,[1]}, {c,[2,3]}]),
R = sofs:family_to_relation(F),
sofs:to_external(R).
[{b,1},{c,2},{c,3}]

family_union(Family1) -> Family2
Types:

Family1 = Family2 = family()

If Family1 is a family and Family1[i] is a set of sets for each i in the index set of Family1, then Family2 is the
family with the same index set as Family1 such that Family2[i] is the union of Family1[i].

1> F1 = sofs:from_term([{a,[[1,2],[2,3]]},{b,[[]]}]),
F2 = sofs:family_union(F1),
sofs:to_external(F2).
[{a,[1,2,3]},{b,[]}]

family_union(F) is equivalent to family_projection(fun sofs:union/1, F).

sofs

Ericsson AB. All Rights Reserved.: STDLIB | 459

family_union(Family1, Family2) -> Family3
Types:

Family1 = Family2 = Family3 = family()

If Family1 and Family2 are families, then Family3 is the family such that the index set is the union of Family1:s
and Family2:s index sets, and Family3[i] is the union of Family1[i] and Family2[i] if both map i, otherwise
Family1[i] or Family2[i].

1> F1 = sofs:family([{a,[1,2]},{b,[3,4]},{c,[5,6]}]),
F2 = sofs:family([{b,[4,5]},{c,[7,8]},{d,[9,10]}]),
F3 = sofs:family_union(F1, F2),
sofs:to_external(F3).
[{a,[1,2]},{b,[3,4,5]},{c,[5,6,7,8]},{d,[9,10]}]

field(BinRel) -> Set
Types:

BinRel = binary_relation()
Set = a_set()

Returns the field of the binary relation BinRel.

1> R = sofs:relation([{1,a},{1,b},{2,b},{2,c}]),
S = sofs:field(R),
sofs:to_external(S).
[1,2,a,b,c]

field(R) is equivalent to union(domain(R), range(R)).

from_external(ExternalSet, Type) -> AnySet
Types:

ExternalSet = external_set()
AnySet = anyset()
Type = type()

Creates a set from the external set ExternalSet and the type Type. It is assumed that Type is a valid type of
ExternalSet.

from_sets(ListOfSets) -> Set
Types:

Set = a_set()
ListOfSets = [anyset()]

Returns the unordered set containing the sets of list ListOfSets.

1> S1 = sofs:relation([{a,1},{b,2}]),
S2 = sofs:relation([{x,3},{y,4}]),
S = sofs:from_sets([S1,S2]),
sofs:to_external(S).

sofs

460 | Ericsson AB. All Rights Reserved.: STDLIB

[[{a,1},{b,2}],[{x,3},{y,4}]]

from_sets(TupleOfSets) -> Ordset
Types:

Ordset = ordset()
TupleOfSets = tuple_of(anyset())

Returns the ordered set containing the sets of the non-empty tuple TupleOfSets.

from_term(Term) -> AnySet
from_term(Term, Type) -> AnySet
Types:

AnySet = anyset()
Term = term()
Type = type()

Creates an element of Sets by traversing term Term, sorting lists, removing duplicates, and deriving or verifying a
valid type for the so obtained external set. An explicitly specified type Type can be used to limit the depth of the
traversal; an atomic type stops the traversal, as shown by the following example where "foo" and {"foo"} are
left unmodified:

1> S = sofs:from_term([{{"foo"},[1,1]},{"foo",[2,2]}],
[{atom,[atom]}]),
sofs:to_external(S).
[{{"foo"},[1]},{"foo",[2]}]

from_term can be used for creating atomic or ordered sets. The only purpose of such a set is that of later building
unordered sets, as all functions in this module that do anything operate on unordered sets. Creating unordered sets
from a collection of ordered sets can be the way to go if the ordered sets are big and one does not want to waste heap
by rebuilding the elements of the unordered set. The following example shows that a set can be built "layer by layer":

1> A = sofs:from_term(a),
S = sofs:set([1,2,3]),
P1 = sofs:from_sets({A,S}),
P2 = sofs:from_term({b,[6,5,4]}),
Ss = sofs:from_sets([P1,P2]),
sofs:to_external(Ss).
[{a,[1,2,3]},{b,[4,5,6]}]

Other functions that create sets are from_external/2 and from_sets/1. Special cases of from_term/2 are
a_function/1,2, empty_set/0, family/1,2, relation/1,2, and set/1,2.

image(BinRel, Set1) -> Set2
Types:

BinRel = binary_relation()
Set1 = Set2 = a_set()

Returns the image of set Set1 under the binary relation BinRel.

sofs

Ericsson AB. All Rights Reserved.: STDLIB | 461

1> R = sofs:relation([{1,a},{2,b},{2,c},{3,d}]),
S1 = sofs:set([1,2]),
S2 = sofs:image(R, S1),
sofs:to_external(S2).
[a,b,c]

intersection(SetOfSets) -> Set
Types:

Set = a_set()
SetOfSets = set_of_sets()

Returns the intersection of the set of sets SetOfSets.

Intersecting an empty set of sets exits the process with a badarg message.

intersection(Set1, Set2) -> Set3
Types:

Set1 = Set2 = Set3 = a_set()

Returns the intersection of Set1 and Set2.

intersection_of_family(Family) -> Set
Types:

Family = family()
Set = a_set()

Returns the intersection of family Family.

Intersecting an empty family exits the process with a badarg message.

1> F = sofs:family([{a,[0,2,4]},{b,[0,1,2]},{c,[2,3]}]),
S = sofs:intersection_of_family(F),
sofs:to_external(S).
[2]

inverse(Function1) -> Function2
Types:

Function1 = Function2 = a_function()

Returns the inverse of function Function1.

1> R1 = sofs:relation([{1,a},{2,b},{3,c}]),
R2 = sofs:inverse(R1),
sofs:to_external(R2).
[{a,1},{b,2},{c,3}]

inverse_image(BinRel, Set1) -> Set2
Types:

sofs

462 | Ericsson AB. All Rights Reserved.: STDLIB

BinRel = binary_relation()
Set1 = Set2 = a_set()

Returns the inverse image of Set1 under the binary relation BinRel.

1> R = sofs:relation([{1,a},{2,b},{2,c},{3,d}]),
S1 = sofs:set([c,d,e]),
S2 = sofs:inverse_image(R, S1),
sofs:to_external(S2).
[2,3]

is_a_function(BinRel) -> Bool
Types:

Bool = boolean()
BinRel = binary_relation()

Returns true if the binary relation BinRel is a function or the untyped empty set, otherwise false.

is_disjoint(Set1, Set2) -> Bool
Types:

Bool = boolean()
Set1 = Set2 = a_set()

Returns true if Set1 and Set2 are disjoint, otherwise false.

is_empty_set(AnySet) -> Bool
Types:

AnySet = anyset()
Bool = boolean()

Returns true if AnySet is an empty unordered set, otherwise false.

is_equal(AnySet1, AnySet2) -> Bool
Types:

AnySet1 = AnySet2 = anyset()
Bool = boolean()

Returns true if AnySet1 and AnySet2 are equal, otherwise false. The following example shows that ==/2 is
used when comparing sets for equality:

1> S1 = sofs:set([1.0]),
S2 = sofs:set([1]),
sofs:is_equal(S1, S2).
true

is_set(AnySet) -> Bool
Types:

sofs

Ericsson AB. All Rights Reserved.: STDLIB | 463

AnySet = anyset()
Bool = boolean()

Returns true if AnySet is an unordered set, and false if AnySet is an ordered set or an atomic set.

is_sofs_set(Term) -> Bool
Types:

Bool = boolean()
Term = term()

Returns true if Term is an unordered set, an ordered set, or an atomic set, otherwise false.

is_subset(Set1, Set2) -> Bool
Types:

Bool = boolean()
Set1 = Set2 = a_set()

Returns true if Set1 is a subset of Set2, otherwise false.

is_type(Term) -> Bool
Types:

Bool = boolean()
Term = term()

Returns true if term Term is a type.

join(Relation1, I, Relation2, J) -> Relation3
Types:

Relation1 = Relation2 = Relation3 = relation()
I = J = integer() >= 1

Returns the natural join of the relations Relation1 and Relation2 on coordinates I and J.

1> R1 = sofs:relation([{a,x,1},{b,y,2}]),
R2 = sofs:relation([{1,f,g},{1,h,i},{2,3,4}]),
J = sofs:join(R1, 3, R2, 1),
sofs:to_external(J).
[{a,x,1,f,g},{a,x,1,h,i},{b,y,2,3,4}]

multiple_relative_product(TupleOfBinRels, BinRel1) -> BinRel2
Types:

TupleOfBinRels = tuple_of(BinRel)
BinRel = BinRel1 = BinRel2 = binary_relation()

If TupleOfBinRels is a non-empty tuple {R[1], ..., R[n]} of binary relations and BinRel1 is a binary relation,
then BinRel2 is the multiple relative product of the ordered set (R[i], ..., R[n]) and BinRel1.

1> Ri = sofs:relation([{a,1},{b,2},{c,3}]),

sofs

464 | Ericsson AB. All Rights Reserved.: STDLIB

R = sofs:relation([{a,b},{b,c},{c,a}]),
MP = sofs:multiple_relative_product({Ri, Ri}, R),
sofs:to_external(sofs:range(MP)).
[{1,2},{2,3},{3,1}]

no_elements(ASet) -> NoElements
Types:

ASet = a_set() | ordset()
NoElements = integer() >= 0

Returns the number of elements of the ordered or unordered set ASet.

partition(SetOfSets) -> Partition
Types:

SetOfSets = set_of_sets()
Partition = a_set()

Returns the partition of the union of the set of sets SetOfSets such that two elements are considered equal if they
belong to the same elements of SetOfSets.

1> Sets1 = sofs:from_term([[a,b,c],[d,e,f],[g,h,i]]),
Sets2 = sofs:from_term([[b,c,d],[e,f,g],[h,i,j]]),
P = sofs:partition(sofs:union(Sets1, Sets2)),
sofs:to_external(P).
[[a],[b,c],[d],[e,f],[g],[h,i],[j]]

partition(SetFun, Set) -> Partition
Types:

SetFun = set_fun()
Partition = Set = a_set()

Returns the partition of Set such that two elements are considered equal if the results of applying SetFun are equal.

1> Ss = sofs:from_term([[a],[b],[c,d],[e,f]]),
SetFun = fun(S) -> sofs:from_term(sofs:no_elements(S)) end,
P = sofs:partition(SetFun, Ss),
sofs:to_external(P).
[[[a],[b]],[[c,d],[e,f]]]

partition(SetFun, Set1, Set2) -> {Set3, Set4}
Types:

SetFun = set_fun()
Set1 = Set2 = Set3 = Set4 = a_set()

Returns a pair of sets that, regarded as constituting a set, forms a partition of Set1. If the result of applying SetFun to
an element of Set1 gives an element in Set2, the element belongs to Set3, otherwise the element belongs to Set4.

1> R1 = sofs:relation([{1,a},{2,b},{3,c}]),

sofs

Ericsson AB. All Rights Reserved.: STDLIB | 465

S = sofs:set([2,4,6]),
{R2,R3} = sofs:partition(1, R1, S),
{sofs:to_external(R2),sofs:to_external(R3)}.
{[{2,b}],[{1,a},{3,c}]}

partition(F, S1, S2) is equivalent to {restriction(F, S1, S2), drestriction(F, S1, S2)}.

partition_family(SetFun, Set) -> Family
Types:

Family = family()
SetFun = set_fun()
Set = a_set()

Returns family Family where the indexed set is a partition of Set such that two elements are considered equal if the
results of applying SetFun are the same value i. This i is the index that Family maps onto the equivalence class.

1> S = sofs:relation([{a,a,a,a},{a,a,b,b},{a,b,b,b}]),
SetFun = {external, fun({A,_,C,_}) -> {A,C} end},
F = sofs:partition_family(SetFun, S),
sofs:to_external(F).
[{{a,a},[{a,a,a,a}]},{{a,b},[{a,a,b,b},{a,b,b,b}]}]

product(TupleOfSets) -> Relation
Types:

Relation = relation()
TupleOfSets = tuple_of(a_set())

Returns the Cartesian product of the non-empty tuple of sets TupleOfSets. If (x[1], ..., x[n]) is an element of the
n-ary relation Relation, then x[i] is drawn from element i of TupleOfSets.

1> S1 = sofs:set([a,b]),
S2 = sofs:set([1,2]),
S3 = sofs:set([x,y]),
P3 = sofs:product({S1,S2,S3}),
sofs:to_external(P3).
[{a,1,x},{a,1,y},{a,2,x},{a,2,y},{b,1,x},{b,1,y},{b,2,x},{b,2,y}]

product(Set1, Set2) -> BinRel
Types:

BinRel = binary_relation()
Set1 = Set2 = a_set()

Returns the Cartesian product of Set1 and Set2.

1> S1 = sofs:set([1,2]),
S2 = sofs:set([a,b]),
R = sofs:product(S1, S2),
sofs:to_external(R).
[{1,a},{1,b},{2,a},{2,b}]

sofs

466 | Ericsson AB. All Rights Reserved.: STDLIB

product(S1, S2) is equivalent to product({S1, S2}).

projection(SetFun, Set1) -> Set2
Types:

SetFun = set_fun()
Set1 = Set2 = a_set()

Returns the set created by substituting each element of Set1 by the result of applying SetFun to the element.

If SetFun is a number i >= 1 and Set1 is a relation, then the returned set is the projection of Set1 onto coordinate i.

1> S1 = sofs:from_term([{1,a},{2,b},{3,a}]),
S2 = sofs:projection(2, S1),
sofs:to_external(S2).
[a,b]

range(BinRel) -> Set
Types:

BinRel = binary_relation()
Set = a_set()

Returns the range of the binary relation BinRel.

1> R = sofs:relation([{1,a},{1,b},{2,b},{2,c}]),
S = sofs:range(R),
sofs:to_external(S).
[a,b,c]

relation(Tuples) -> Relation
relation(Tuples, Type) -> Relation
Types:

N = integer()
Type = N | type()
Relation = relation()
Tuples = [tuple()]

Creates a relation. relation(R, T) is equivalent to from_term(R, T), if T is a type and the result is a relation.
If Type is an integer N, then [{atom, ..., atom}]), where the tuple size is N, is used as type of the relation. If
no type is explicitly specified, the size of the first tuple of Tuples is used if there is such a tuple. relation([])
is equivalent to relation([], 2).

relation_to_family(BinRel) -> Family
Types:

Family = family()
BinRel = binary_relation()

Returns family Family such that the index set is equal to the domain of the binary relation BinRel, and Family[i]
is the image of the set of i under BinRel.

sofs

Ericsson AB. All Rights Reserved.: STDLIB | 467

1> R = sofs:relation([{b,1},{c,2},{c,3}]),
F = sofs:relation_to_family(R),
sofs:to_external(F).
[{b,[1]},{c,[2,3]}]

relative_product(ListOfBinRels) -> BinRel2
relative_product(ListOfBinRels, BinRel1) -> BinRel2
Types:

ListOfBinRels = [BinRel, ...]
BinRel = BinRel1 = BinRel2 = binary_relation()

If ListOfBinRels is a non-empty list [R[1], ..., R[n]] of binary relations and BinRel1 is a binary relation, then
BinRel2 is the relative product of the ordered set (R[i], ..., R[n]) and BinRel1.

If BinRel1 is omitted, the relation of equality between the elements of the Cartesian product of the ranges of R[i],
range R[1] × ... × range R[n], is used instead (intuitively, nothing is "lost").

1> TR = sofs:relation([{1,a},{1,aa},{2,b}]),
R1 = sofs:relation([{1,u},{2,v},{3,c}]),
R2 = sofs:relative_product([TR, R1]),
sofs:to_external(R2).
[{1,{a,u}},{1,{aa,u}},{2,{b,v}}]

Notice that relative_product([R1], R2) is different from relative_product(R1, R2); the list of
one element is not identified with the element itself.

relative_product(BinRel1, BinRel2) -> BinRel3
Types:

BinRel1 = BinRel2 = BinRel3 = binary_relation()

Returns the relative product of the binary relations BinRel1 and BinRel2.

relative_product1(BinRel1, BinRel2) -> BinRel3
Types:

BinRel1 = BinRel2 = BinRel3 = binary_relation()

Returns the relative product of the converse of the binary relation BinRel1 and the binary relation BinRel2.

1> R1 = sofs:relation([{1,a},{1,aa},{2,b}]),
R2 = sofs:relation([{1,u},{2,v},{3,c}]),
R3 = sofs:relative_product1(R1, R2),
sofs:to_external(R3).
[{a,u},{aa,u},{b,v}]

relative_product1(R1, R2) is equivalent to relative_product(converse(R1), R2).

restriction(BinRel1, Set) -> BinRel2
Types:

sofs

468 | Ericsson AB. All Rights Reserved.: STDLIB

BinRel1 = BinRel2 = binary_relation()
Set = a_set()

Returns the restriction of the binary relation BinRel1 to Set.

1> R1 = sofs:relation([{1,a},{2,b},{3,c}]),
S = sofs:set([1,2,4]),
R2 = sofs:restriction(R1, S),
sofs:to_external(R2).
[{1,a},{2,b}]

restriction(SetFun, Set1, Set2) -> Set3
Types:

SetFun = set_fun()
Set1 = Set2 = Set3 = a_set()

Returns a subset of Set1 containing those elements that gives an element in Set2 as the result of applying SetFun.

1> S1 = sofs:relation([{1,a},{2,b},{3,c}]),
S2 = sofs:set([b,c,d]),
S3 = sofs:restriction(2, S1, S2),
sofs:to_external(S3).
[{2,b},{3,c}]

set(Terms) -> Set
set(Terms, Type) -> Set
Types:

Set = a_set()
Terms = [term()]
Type = type()

Creates an unordered set. set(L, T) is equivalent to from_term(L, T), if the result is an unordered set. If no
type is explicitly specified, [atom] is used as the set type.

specification(Fun, Set1) -> Set2
Types:

Fun = spec_fun()
Set1 = Set2 = a_set()

Returns the set containing every element of Set1 for which Fun returns true. If Fun is a tuple
{external, Fun2}, Fun2 is applied to the external set of each element, otherwise Fun is applied to each element.

1> R1 = sofs:relation([{a,1},{b,2}]),
R2 = sofs:relation([{x,1},{x,2},{y,3}]),
S1 = sofs:from_sets([R1,R2]),
S2 = sofs:specification(fun sofs:is_a_function/1, S1),
sofs:to_external(S2).
[[{a,1},{b,2}]]

sofs

Ericsson AB. All Rights Reserved.: STDLIB | 469

strict_relation(BinRel1) -> BinRel2
Types:

BinRel1 = BinRel2 = binary_relation()

Returns the strict relation corresponding to the binary relation BinRel1.

1> R1 = sofs:relation([{1,1},{1,2},{2,1},{2,2}]),
R2 = sofs:strict_relation(R1),
sofs:to_external(R2).
[{1,2},{2,1}]

substitution(SetFun, Set1) -> Set2
Types:

SetFun = set_fun()
Set1 = Set2 = a_set()

Returns a function, the domain of which is Set1. The value of an element of the domain is the result of applying
SetFun to the element.

1> L = [{a,1},{b,2}].
[{a,1},{b,2}]
2> sofs:to_external(sofs:projection(1,sofs:relation(L))).
[a,b]
3> sofs:to_external(sofs:substitution(1,sofs:relation(L))).
[{{a,1},a},{{b,2},b}]
4> SetFun = {external, fun({A,_}=E) -> {E,A} end},
sofs:to_external(sofs:projection(SetFun,sofs:relation(L))).
[{{a,1},a},{{b,2},b}]

The relation of equality between the elements of {a,b,c}:

1> I = sofs:substitution(fun(A) -> A end, sofs:set([a,b,c])),
sofs:to_external(I).
[{a,a},{b,b},{c,c}]

Let SetOfSets be a set of sets and BinRel a binary relation. The function that maps each element Set of
SetOfSets onto the image of Set under BinRel is returned by the following function:

images(SetOfSets, BinRel) ->
 Fun = fun(Set) -> sofs:image(BinRel, Set) end,
 sofs:substitution(Fun, SetOfSets).

External unordered sets are represented as sorted lists. So, creating the image of a set under a relation R can traverse
all elements of R (to that comes the sorting of results, the image). In image/2, BinRel is traversed once for each
element of SetOfSets, which can take too long. The following efficient function can be used instead under the
assumption that the image of each element of SetOfSets under BinRel is non-empty:

images2(SetOfSets, BinRel) ->

sofs

470 | Ericsson AB. All Rights Reserved.: STDLIB

 CR = sofs:canonical_relation(SetOfSets),
 R = sofs:relative_product1(CR, BinRel),
 sofs:relation_to_family(R).

symdiff(Set1, Set2) -> Set3
Types:

Set1 = Set2 = Set3 = a_set()

Returns the symmetric difference (or the Boolean sum) of Set1 and Set2.

1> S1 = sofs:set([1,2,3]),
S2 = sofs:set([2,3,4]),
P = sofs:symdiff(S1, S2),
sofs:to_external(P).
[1,4]

symmetric_partition(Set1, Set2) -> {Set3, Set4, Set5}
Types:

Set1 = Set2 = Set3 = Set4 = Set5 = a_set()

Returns a triple of sets:

• Set3 contains the elements of Set1 that do not belong to Set2.

• Set4 contains the elements of Set1 that belong to Set2.

• Set5 contains the elements of Set2 that do not belong to Set1.

to_external(AnySet) -> ExternalSet
Types:

ExternalSet = external_set()
AnySet = anyset()

Returns the external set of an atomic, ordered, or unordered set.

to_sets(ASet) -> Sets
Types:

ASet = a_set() | ordset()
Sets = tuple_of(AnySet) | [AnySet]
AnySet = anyset()

Returns the elements of the ordered set ASet as a tuple of sets, and the elements of the unordered set ASet as a sorted
list of sets without duplicates.

type(AnySet) -> Type
Types:

AnySet = anyset()
Type = type()

Returns the type of an atomic, ordered, or unordered set.

sofs

Ericsson AB. All Rights Reserved.: STDLIB | 471

union(SetOfSets) -> Set
Types:

Set = a_set()
SetOfSets = set_of_sets()

Returns the union of the set of sets SetOfSets.

union(Set1, Set2) -> Set3
Types:

Set1 = Set2 = Set3 = a_set()

Returns the union of Set1 and Set2.

union_of_family(Family) -> Set
Types:

Family = family()
Set = a_set()

Returns the union of family Family.

1> F = sofs:family([{a,[0,2,4]},{b,[0,1,2]},{c,[2,3]}]),
S = sofs:union_of_family(F),
sofs:to_external(S).
[0,1,2,3,4]

weak_relation(BinRel1) -> BinRel2
Types:

BinRel1 = BinRel2 = binary_relation()

Returns a subset S of the weak relation W corresponding to the binary relation BinRel1. Let F be the field of
BinRel1. The subset S is defined so that x S y if x W y for some x in F and for some y in F.

1> R1 = sofs:relation([{1,1},{1,2},{3,1}]),
R2 = sofs:weak_relation(R1),
sofs:to_external(R2).
[{1,1},{1,2},{2,2},{3,1},{3,3}]

See Also
dict(3), digraph(3), orddict(3), ordsets(3), sets(3)

string

472 | Ericsson AB. All Rights Reserved.: STDLIB

string
Erlang module

This module provides functions for string processing.

Exports

centre(String, Number) -> Centered
centre(String, Number, Character) -> Centered
Types:

String = Centered = string()
Number = integer() >= 0
Character = char()

Returns a string, where String is centered in the string and surrounded by blanks or Character. The resulting
string has length Number.

chars(Character, Number) -> String
chars(Character, Number, Tail) -> String
Types:

Character = char()
Number = integer() >= 0
Tail = String = string()

Returns a string consisting of Number characters Character. Optionally, the string can end with string Tail.

chr(String, Character) -> Index
Types:

String = string()
Character = char()
Index = integer() >= 0

Returns the index of the first occurrence of Character in String. Returns 0 if Character does not occur.

concat(String1, String2) -> String3
Types:

String1 = String2 = String3 = string()

Concatenates String1 and String2 to form a new string String3, which is returned.

copies(String, Number) -> Copies
Types:

String = Copies = string()
Number = integer() >= 0

Returns a string containing String repeated Number times.

string

Ericsson AB. All Rights Reserved.: STDLIB | 473

cspan(String, Chars) -> Length
Types:

String = Chars = string()
Length = integer() >= 0

Returns the length of the maximum initial segment of String, which consists entirely of characters not from Chars.

Example:

> string:cspan("\t abcdef", " \t").
0

equal(String1, String2) -> boolean()
Types:

String1 = String2 = string()

Returns true if String1 and String2 are equal, otherwise false.

join(StringList, Separator) -> String
Types:

StringList = [string()]
Separator = String = string()

Returns a string with the elements of StringList separated by the string in Separator.

Example:

> join(["one", "two", "three"], ", ").
"one, two, three"

left(String, Number) -> Left
left(String, Number, Character) -> Left
Types:

String = Left = string()
Number = integer() >= 0
Character = char()

Returns String with the length adjusted in accordance with Number. The left margin is fixed. If
length(String) < Number, then String is padded with blanks or Characters.

Example:

> string:left("Hello",10,$.).
"Hello....."

len(String) -> Length
Types:

string

474 | Ericsson AB. All Rights Reserved.: STDLIB

String = string()
Length = integer() >= 0

Returns the number of characters in String.

rchr(String, Character) -> Index
Types:

String = string()
Character = char()
Index = integer() >= 0

Returns the index of the last occurrence of Character in String. Returns 0 if Character does not occur.

right(String, Number) -> Right
right(String, Number, Character) -> Right
Types:

String = Right = string()
Number = integer() >= 0
Character = char()

Returns String with the length adjusted in accordance with Number. The right margin is fixed. If the length of
(String) < Number, then String is padded with blanks or Characters.

Example:

> string:right("Hello", 10, $.).
".....Hello"

rstr(String, SubString) -> Index
Types:

String = SubString = string()
Index = integer() >= 0

Returns the position where the last occurrence of SubString begins in String. Returns 0 if SubString does
not exist in String.

Example:

> string:rstr(" Hello Hello World World ", "Hello World").
8

span(String, Chars) -> Length
Types:

String = Chars = string()
Length = integer() >= 0

Returns the length of the maximum initial segment of String, which consists entirely of characters from Chars.

Example:

string

Ericsson AB. All Rights Reserved.: STDLIB | 475

> string:span("\t abcdef", " \t").
5

str(String, SubString) -> Index
Types:

String = SubString = string()
Index = integer() >= 0

Returns the position where the first occurrence of SubString begins in String. Returns 0 if SubString does
not exist in String.

Example:

> string:str(" Hello Hello World World ", "Hello World").
8

strip(String :: string()) -> string()
strip(String, Direction) -> Stripped
strip(String, Direction, Character) -> Stripped
Types:

String = Stripped = string()
Direction = left | right | both
Character = char()

Returns a string, where leading and/or trailing blanks or a number of Character have been removed. Direction,
which can be left, right, or both, indicates from which direction blanks are to be removed. strip/1 is
equivalent to strip(String, both).

Example:

> string:strip("...Hello.....", both, $.).
"Hello"

sub_string(String, Start) -> SubString
sub_string(String, Start, Stop) -> SubString
Types:

String = SubString = string()
Start = Stop = integer() >= 1

Returns a substring of String, starting at position Start to the end of the string, or to and including position Stop.

Example:

sub_string("Hello World", 4, 8).
"lo Wo"

string

476 | Ericsson AB. All Rights Reserved.: STDLIB

substr(String, Start) -> SubString
substr(String, Start, Length) -> SubString
Types:

String = SubString = string()
Start = integer() >= 1
Length = integer() >= 0

Returns a substring of String, starting at position Start, and ending at the end of the string or at length Length.

Example:

> substr("Hello World", 4, 5).
"lo Wo"

sub_word(String, Number) -> Word
sub_word(String, Number, Character) -> Word
Types:

String = Word = string()
Number = integer()
Character = char()

Returns the word in position Number of String. Words are separated by blanks or Characters.

Example:

> string:sub_word(" Hello old boy !",3,$o).
"ld b"

to_float(String) -> {Float, Rest} | {error, Reason}
Types:

String = string()
Float = float()
Rest = string()
Reason = no_float | not_a_list

Argument String is expected to start with a valid text represented float (the digits are ASCII values). Remaining
characters in the string after the float are returned in Rest.

Example:

> {F1,Fs} = string:to_float("1.0-1.0e-1"),
> {F2,[]} = string:to_float(Fs),
> F1+F2.
0.9
> string:to_float("3/2=1.5").
{error,no_float}
> string:to_float("-1.5eX").
{-1.5,"eX"}

string

Ericsson AB. All Rights Reserved.: STDLIB | 477

to_integer(String) -> {Int, Rest} | {error, Reason}
Types:

String = string()
Int = integer()
Rest = string()
Reason = no_integer | not_a_list

Argument String is expected to start with a valid text represented integer (the digits are ASCII values). Remaining
characters in the string after the integer are returned in Rest.

Example:

> {I1,Is} = string:to_integer("33+22"),
> {I2,[]} = string:to_integer(Is),
> I1-I2.
11
> string:to_integer("0.5").
{0,".5"}
> string:to_integer("x=2").
{error,no_integer}

to_lower(String) -> Result
to_lower(Char) -> CharResult
to_upper(String) -> Result
to_upper(Char) -> CharResult
Types:

String = Result = io_lib:latin1_string()
Char = CharResult = char()

The specified string or character is case-converted. Notice that the supported character set is ISO/IEC 8859-1 (also
called Latin 1); all values outside this set are unchanged

tokens(String, SeparatorList) -> Tokens
Types:

String = SeparatorList = string()
Tokens = [Token :: nonempty_string()]

Returns a list of tokens in String, separated by the characters in SeparatorList.

Example:

> tokens("abc defxxghix jkl", "x ").
["abc", "def", "ghi", "jkl"]

Notice that, as shown in this example, two or more adjacent separator characters in String are treated as one. That
is, there are no empty strings in the resulting list of tokens.

string

478 | Ericsson AB. All Rights Reserved.: STDLIB

words(String) -> Count
words(String, Character) -> Count
Types:

String = string()
Character = char()
Count = integer() >= 1

Returns the number of words in String, separated by blanks or Character.

Example:

> words(" Hello old boy!", $o).
4

Notes
Some of the general string functions can seem to overlap each other. The reason is that this string package is the
combination of two earlier packages and all functions of both packages have been retained.

Note:
Any undocumented functions in string are not to be used.

supervisor

Ericsson AB. All Rights Reserved.: STDLIB | 479

supervisor
Erlang module

This behavior module provides a supervisor, a process that supervises other processes called child processes. A child
process can either be another supervisor or a worker process. Worker processes are normally implemented using one
of the gen_event, gen_fsm, gen_server, or gen_statem behaviors. A supervisor implemented using this
module has a standard set of interface functions and include functionality for tracing and error reporting. Supervisors
are used to build a hierarchical process structure called a supervision tree, a nice way to structure a fault-tolerant
application. For more information, see Supervisor Behaviour in OTP Design Principles.

A supervisor expects the definition of which child processes to supervise to be specified in a callback module exporting
a predefined set of functions.

Unless otherwise stated, all functions in this module fail if the specified supervisor does not exist or if bad arguments
are specified.

Supervision Principles
The supervisor is responsible for starting, stopping, and monitoring its child processes. The basic idea of a supervisor
is that it must keep its child processes alive by restarting them when necessary.

The children of a supervisor are defined as a list of child specifications. When the supervisor is started, the child
processes are started in order from left to right according to this list. When the supervisor terminates, it first terminates
its child processes in reversed start order, from right to left.

The supervisor properties are defined by the supervisor flags. The type definition for the supervisor flags is as follows:

sup_flags() = #{strategy => strategy(), % optional
 intensity => non_neg_integer(), % optional
 period => pos_integer()} % optional

A supervisor can have one of the following restart strategies specified with the strategy key in the above map:

• one_for_one - If one child process terminates and is to be restarted, only that child process is affected. This
is the default restart strategy.

• one_for_all - If one child process terminates and is to be restarted, all other child processes are terminated
and then all child processes are restarted.

• rest_for_one - If one child process terminates and is to be restarted, the 'rest' of the child processes (that is,
the child processes after the terminated child process in the start order) are terminated. Then the terminated child
process and all child processes after it are restarted.

• simple_one_for_one - A simplified one_for_one supervisor, where all child processes are dynamically
added instances of the same process type, that is, running the same code.

Functions delete_child/2 and restart_child/2 are invalid for simple_one_for_one supervisors
and return {error,simple_one_for_one} if the specified supervisor uses this restart strategy.

Function terminate_child/2 can be used for children under simple_one_for_one supervisors by
specifying the child's pid() as the second argument. If instead the child specification identifier is used,
terminate_child/2 return {error,simple_one_for_one}.

As a simple_one_for_one supervisor can have many children, it shuts them all down asynchronously. This
means that the children do their cleanup in parallel, and therefore the order in which they are stopped is not defined.

supervisor

480 | Ericsson AB. All Rights Reserved.: STDLIB

To prevent a supervisor from getting into an infinite loop of child process terminations and restarts, a maximum
restart intensity is defined using two integer values specified with keys intensity and period in the above map.
Assuming the values MaxR for intensity and MaxT for period, then, if more than MaxR restarts occur within
MaxT seconds, the supervisor terminates all child processes and then itself. intensity defaults to 1 and period
defaults to 5.

The type definition of a child specification is as follows:

child_spec() = #{id => child_id(), % mandatory
 start => mfargs(), % mandatory
 restart => restart(), % optional
 shutdown => shutdown(), % optional
 type => worker(), % optional
 modules => modules()} % optional

The old tuple format is kept for backwards compatibility, see child_spec(), but the map is preferred.

• id is used to identify the child specification internally by the supervisor.

The id key is mandatory.

Notice that this identifier on occations has been called "name". As far as possible, the terms "identifier" or "id"
are now used but to keep backward compatibility, some occurences of "name" can still be found, for example
in error messages.

• start defines the function call used to start the child process. It must be a module-function-arguments tuple
{M,F,A} used as apply(M,F,A).

The start function must create and link to the child process, and must return {ok,Child} or
{ok,Child,Info}, where Child is the pid of the child process and Info any term that is ignored by the
supervisor.

The start function can also return ignore if the child process for some reason cannot be started, in which case
the child specification is kept by the supervisor (unless it is a temporary child) but the non-existing child process
is ignored.

If something goes wrong, the function can also return an error tuple {error,Error}.

Notice that the start_link functions of the different behavior modules fulfill the above requirements.

The start key is mandatory.

• restart defines when a terminated child process must be restarted. A permanent child process is always
restarted. A temporary child process is never restarted (even when the supervisor's restart strategy is
rest_for_one or one_for_all and a sibling's death causes the temporary process to be terminated). A
transient child process is restarted only if it terminates abnormally, that is, with another exit reason than
normal, shutdown, or {shutdown,Term}.

The restart key is optional. If it is not specified, it defaults to permanent.

• shutdown defines how a child process must be terminated. brutal_kill means that the child process is
unconditionally terminated using exit(Child,kill). An integer time-out value means that the supervisor
tells the child process to terminate by calling exit(Child,shutdown) and then wait for an exit signal with
reason shutdown back from the child process. If no exit signal is received within the specified number of
milliseconds, the child process is unconditionally terminated using exit(Child,kill).

If the child process is another supervisor, the shutdown time is to be set to infinity to give the subtree ample
time to shut down. It is also allowed to set it to infinity, if the child process is a worker.

supervisor

Ericsson AB. All Rights Reserved.: STDLIB | 481

Warning:
Be careful when setting the shutdown time to infinity when the child process is a worker. Because, in
this situation, the termination of the supervision tree depends on the child process, it must be implemented
in a safe way and its cleanup procedure must always return.

Notice that all child processes implemented using the standard OTP behavior modules automatically adhere to
the shutdown protocol.

The shutdown key is optional. If it is not specified, it defaults to 5000 if the child is of type worker and it
defaults to infinity if the child is of type supervisor.

• type specifies if the child process is a supervisor or a worker.

The type key is optional. If it is not specified, it defaults to worker.

• modules is used by the release handler during code replacement to determine which processes are using a certain
module. As a rule of thumb, if the child process is a supervisor, gen_server, gen_statem, or gen_fsm,
this is to be a list with one element [Module], where Module is the callback module. If the child process is an
event manager (gen_event) with a dynamic set of callback modules, value dynamic must be used. For more
information about release handling, see Release Handling in OTP Design Principles.

The modules key is optional. If it is not specified, it defaults to [M], where M comes from the child's start
{M,F,A}.

• Internally, the supervisor also keeps track of the pid Child of the child process, or undefined if no pid exists.

Data Types
child() = undefined | pid()
child_id() = term()
Not a pid().

child_spec() =
 #{id := child_id(),
 start := mfargs(),
 restart => restart(),
 shutdown => shutdown(),
 type => worker(),
 modules => modules()} |
 {Id :: child_id(),
 StartFunc :: mfargs(),
 Restart :: restart(),
 Shutdown :: shutdown(),
 Type :: worker(),
 Modules :: modules()}
The tuple format is kept for backward compatibility only. A map is preferred; see more details above.

mfargs() =
 {M :: module(), F :: atom(), A :: [term()] | undefined}
Value undefined for A (the argument list) is only to be used internally in supervisor. If the restart type of the
child is temporary, the process is never to be restarted and therefore there is no need to store the real argument list.
Value undefined is then stored instead.

supervisor

482 | Ericsson AB. All Rights Reserved.: STDLIB

modules() = [module()] | dynamic
restart() = permanent | transient | temporary
shutdown() = brutal_kill | timeout()
strategy() =
 one_for_all | one_for_one | rest_for_one | simple_one_for_one
sup_flags() =
 #{strategy => strategy(),
 intensity => integer() >= 0,
 period => integer() >= 1} |
 {RestartStrategy :: strategy(),
 Intensity :: integer() >= 0,
 Period :: integer() >= 1}
The tuple format is kept for backward compatibility only. A map is preferred; see more details above.

sup_ref() =
 (Name :: atom()) |
 {Name :: atom(), Node :: node()} |
 {global, Name :: atom()} |
 {via, Module :: module(), Name :: any()} |
 pid()
worker() = worker | supervisor

Exports

check_childspecs(ChildSpecs) -> Result
Types:

ChildSpecs = [child_spec()]
Result = ok | {error, Error :: term()}

Takes a list of child specification as argument and returns ok if all of them are syntactically correct, otherwise
{error,Error}.

count_children(SupRef) -> PropListOfCounts
Types:

SupRef = sup_ref()
PropListOfCounts = [Count]
Count =
 {specs, ChildSpecCount :: integer() >= 0} |
 {active, ActiveProcessCount :: integer() >= 0} |
 {supervisors, ChildSupervisorCount :: integer() >= 0} |
 {workers, ChildWorkerCount :: integer() >= 0}

Returns a property list (see proplists) containing the counts for each of the following elements of the supervisor's
child specifications and managed processes:

• specs - The total count of children, dead or alive.

• active - The count of all actively running child processes managed by this supervisor. For a
simple_one_for_one supervisors, no check is done to ensure that each child process is still alive, although
the result provided here is likely to be very accurate unless the supervisor is heavily overloaded.

supervisor

Ericsson AB. All Rights Reserved.: STDLIB | 483

• supervisors - The count of all children marked as child_type = supervisor in the specification list,
regardless if the child process is still alive.

• workers - The count of all children marked as child_type = worker in the specification list, regardless
if the child process is still alive.

For a description of SupRef, see start_child/2.

delete_child(SupRef, Id) -> Result
Types:

SupRef = sup_ref()
Id = child_id()
Result = ok | {error, Error}
Error = running | restarting | not_found | simple_one_for_one

Tells supervisor SupRef to delete the child specification identified by Id. The corresponding child process must not
be running. Use terminate_child/2 to terminate it.

For a description of SupRef, see start_child/2.

If successful, the function returns ok. If the child specification identified by Id exists but the corresponding child
process is running or is about to be restarted, the function returns {error,running} or {error,restarting},
respectively. If the child specification identified by Id does not exist, the function returns {error,not_found}.

get_childspec(SupRef, Id) -> Result
Types:

SupRef = sup_ref()
Id = pid() | child_id()
Result = {ok, child_spec()} | {error, Error}
Error = not_found

Returns the child specification map for the child identified by Id under supervisor SupRef. The returned map contains
all keys, both mandatory and optional.

For a description of SupRef, see start_child/2.

restart_child(SupRef, Id) -> Result
Types:

SupRef = sup_ref()
Id = child_id()
Result =
 {ok, Child :: child()} |
 {ok, Child :: child(), Info :: term()} |
 {error, Error}
Error =
 running | restarting | not_found | simple_one_for_one | term()

Tells supervisor SupRef to restart a child process corresponding to the child specification identified by Id. The child
specification must exist, and the corresponding child process must not be running.

Notice that for temporary children, the child specification is automatically deleted when the child terminates; thus, it
is not possible to restart such children.

For a description of SupRef, see start_child/2.

supervisor

484 | Ericsson AB. All Rights Reserved.: STDLIB

If the child specification identified by Id does not exist, the function returns {error,not_found}. If the child
specification exists but the corresponding process is already running, the function returns {error,running}.

If the child process start function returns {ok,Child} or {ok,Child,Info}, the pid is added to the supervisor
and the function returns the same value.

If the child process start function returns ignore, the pid remains set to undefined and the function returns
{ok,undefined}.

If the child process start function returns an error tuple or an erroneous value, or if it fails, the function returns
{error,Error}, where Error is a term containing information about the error.

start_child(SupRef, ChildSpec) -> startchild_ret()
Types:

SupRef = sup_ref()
ChildSpec = child_spec() | (List :: [term()])
startchild_ret() =
 {ok, Child :: child()} |
 {ok, Child :: child(), Info :: term()} |
 {error, startchild_err()}
startchild_err() =
 already_present | {already_started, Child :: child()} | term()

Dynamically adds a child specification to supervisor SupRef, which starts the corresponding child process.

SupRef can be any of the following:

• The pid

• Name, if the supervisor is locally registered

• {Name,Node}, if the supervisor is locally registered at another node

• {global,Name}, if the supervisor is globally registered

• {via,Module,Name}, if the supervisor is registered through an alternative process registry

ChildSpec must be a valid child specification (unless the supervisor is a simple_one_for_one supervisor; see
below). The child process is started by using the start function as defined in the child specification.

For a simple_one_for_one supervisor, the child specification defined in Module:init/1 is used, and
ChildSpec must instead be an arbitrary list of terms List. The child process is then started by appending List
to the existing start function arguments, that is, by calling apply(M, F, A++List), where {M,F,A} is the start
function defined in the child specification.

• If there already exists a child specification with the specified identifier, ChildSpec is discarded, and the function
returns {error,already_present} or {error,{already_started,Child}}, depending on if the
corresponding child process is running or not.

• If the child process start function returns {ok,Child} or {ok,Child,Info}, the child specification and pid
are added to the supervisor and the function returns the same value.

• If the child process start function returns ignore, the child specification is added to the supervisor (unless the
supervisor is a simple_one_for_one supervisor, see below), the pid is set to undefined, and the function
returns {ok,undefined}.

For a simple_one_for_one supervisor, when a child process start function returns ignore, the functions returns
{ok,undefined} and no child is added to the supervisor.

If the child process start function returns an error tuple or an erroneous value, or if it fails, the child specification is
discarded, and the function returns {error,Error}, where Error is a term containing information about the error
and child specification.

supervisor

Ericsson AB. All Rights Reserved.: STDLIB | 485

start_link(Module, Args) -> startlink_ret()
start_link(SupName, Module, Args) -> startlink_ret()
Types:

SupName = sup_name()
Module = module()
Args = term()
startlink_ret() =
 {ok, pid()} | ignore | {error, startlink_err()}
startlink_err() =
 {already_started, pid()} | {shutdown, term()} | term()
sup_name() =
 {local, Name :: atom()} |
 {global, Name :: atom()} |
 {via, Module :: module(), Name :: any()}

Creates a supervisor process as part of a supervision tree. For example, the function ensures that the supervisor is
linked to the calling process (its supervisor).

The created supervisor process calls Module:init/1 to find out about restart strategy, maximum restart intensity,
and child processes. To ensure a synchronized startup procedure, start_link/2,3 does not return until
Module:init/1 has returned and all child processes have been started.

• If SupName={local,Name}, the supervisor is registered locally as Name using register/2.

• If SupName={global,Name}, the supervisor is registered globally as Name using
global:register_name/2.

• If SupName={via,Module,Name}, the supervisor is registered as Name using the registry represented by
Module. The Module callback must export the functions register_name/2, unregister_name/1, and
send/2, which must behave like the corresponding functions in global. Thus, {via,global,Name} is a
valid reference.

If no name is provided, the supervisor is not registered.

Module is the name of the callback module.

Args is any term that is passed as the argument to Module:init/1.

• If the supervisor and its child processes are successfully created (that is, if all child process start functions return
{ok,Child}, {ok,Child,Info}, or ignore), the function returns {ok,Pid}, where Pid is the pid of
the supervisor.

• If there already exists a process with the specified SupName, the function returns {error,
{already_started,Pid}}, where Pid is the pid of that process.

• If Module:init/1 returns ignore, this function returns ignore as well, and the supervisor terminates with
reason normal.

• If Module:init/1 fails or returns an incorrect value, this function returns {error,Term}, where Term is
a term with information about the error, and the supervisor terminates with reason Term.

• If any child process start function fails or returns an error tuple or an erroneous value, the supervisor first terminates
all already started child processes with reason shutdown and then terminate itself and returns {error,
{shutdown, Reason}}.

terminate_child(SupRef, Id) -> Result
Types:

supervisor

486 | Ericsson AB. All Rights Reserved.: STDLIB

SupRef = sup_ref()
Id = pid() | child_id()
Result = ok | {error, Error}
Error = not_found | simple_one_for_one

Tells supervisor SupRef to terminate the specified child.

If the supervisor is not simple_one_for_one, Id must be the child specification identifier. The process, if any,
is terminated and, unless it is a temporary child, the child specification is kept by the supervisor. The child process can
later be restarted by the supervisor. The child process can also be restarted explicitly by calling restart_child/2.
Use delete_child/2 to remove the child specification.

If the child is temporary, the child specification is deleted as soon as the process terminates. This means that
delete_child/2 has no meaning and restart_child/2 cannot be used for these children.

If the supervisor is simple_one_for_one, Id must be the pid() of the child process. If the specified process
is alive, but is not a child of the specified supervisor, the function returns {error,not_found}. If the child
specification identifier is specified instead of a pid(), the function returns {error,simple_one_for_one}.

If successful, the function returns ok. If there is no child specification with the specified Id, the function returns
{error,not_found}.

For a description of SupRef, see start_child/2.

which_children(SupRef) -> [{Id, Child, Type, Modules}]
Types:

SupRef = sup_ref()
Id = child_id() | undefined
Child = child() | restarting
Type = worker()
Modules = modules()

Returns a newly created list with information about all child specifications and child processes belonging to supervisor
SupRef.

Notice that calling this function when supervising many childrens under low memory conditions can cause an out of
memory exception.

For a description of SupRef, see start_child/2.

The following information is given for each child specification/process:

• Id - As defined in the child specification or undefined for a simple_one_for_one supervisor.

• Child - The pid of the corresponding child process, the atom restarting if the process is about to be restarted,
or undefined if there is no such process.

• Type - As defined in the child specification.

• Modules - As defined in the child specification.

Callback Functions
The following function must be exported from a supervisor callback module.

supervisor

Ericsson AB. All Rights Reserved.: STDLIB | 487

Exports

Module:init(Args) -> Result
Types:

Args = term()

Result = {ok,{SupFlags,[ChildSpec]}} | ignore

 SupFlags = sup_flags()

 ChildSpec = child_spec()

Whenever a supervisor is started using start_link/2,3, this function is called by the new process to find out
about restart strategy, maximum restart intensity, and child specifications.

Args is the Args argument provided to the start function.

SupFlags is the supervisor flags defining the restart strategy and maximum restart intensity for the supervisor.
[ChildSpec] is a list of valid child specifications defining which child processes the supervisor must start and
monitor. See the discussion in section Supervision Principles earlier.

Notice that when the restart strategy is simple_one_for_one, the list of child specifications must be a list with
one child specification only. (The child specification identifier is ignored.) No child process is then started during the
initialization phase, but all children are assumed to be started dynamically using start_child/2.

The function can also return ignore.

Notice that this function can also be called as a part of a code upgrade procedure. Therefore, the function is not to
have any side effects. For more information about code upgrade of supervisors, see section Changing a Supervisor
in OTP Design Principles.

See Also
gen_event(3), gen_fsm(3), gen_statem(3), gen_server(3), sys(3)

supervisor_bridge

488 | Ericsson AB. All Rights Reserved.: STDLIB

supervisor_bridge
Erlang module

This behavior module provides a supervisor bridge, a process that connects a subsystem not designed according to
the OTP design principles to a supervision tree. The supervisor bridge sits between a supervisor and the subsystem. It
behaves like a real supervisor to its own supervisor, but has a different interface than a real supervisor to the subsystem.
For more information, see Supervisor Behaviour in OTP Design Principles.

A supervisor bridge assumes the functions for starting and stopping the subsystem to be located in a callback module
exporting a predefined set of functions.

The sys(3) module can be used for debugging a supervisor bridge.

Unless otherwise stated, all functions in this module fail if the specified supervisor bridge does not exist or if bad
arguments are specified.

Exports

start_link(Module, Args) -> Result
start_link(SupBridgeName, Module, Args) -> Result
Types:

SupBridgeName = {local, Name} | {global, Name}
Name = atom()
Module = module()
Args = term()
Result = {ok, Pid} | ignore | {error, Error}
Error = {already_started, Pid} | term()
Pid = pid()

Creates a supervisor bridge process, linked to the calling process, which calls Module:init/1 to start the subsystem.
To ensure a synchronized startup procedure, this function does not return until Module:init/1 has returned.

• If SupBridgeName={local,Name}, the supervisor bridge is registered locally as Name using
register/2.

• If SupBridgeName={global,Name}, the supervisor bridge is registered globally as Name using
global:register_name/2.

• If SupBridgeName={via,Module,Name}, the supervisor bridge is registered as Name using a
registry represented by Module. The Module callback is to export functions register_name/2,
unregister_name/1, and send/2, which are to behave like the corresponding functions in global. Thus,
{via,global,GlobalName} is a valid reference.

If no name is provided, the supervisor bridge is not registered.

Module is the name of the callback module.

Args is an arbitrary term that is passed as the argument to Module:init/1.

• If the supervisor bridge and the subsystem are successfully started, the function returns {ok,Pid}, where Pid
is is the pid of the supervisor bridge.

• If there already exists a process with the specified SupBridgeName, the function returns {error,
{already_started,Pid}}, where Pid is the pid of that process.

supervisor_bridge

Ericsson AB. All Rights Reserved.: STDLIB | 489

• If Module:init/1 returns ignore, this function returns ignore as well and the supervisor bridge terminates
with reason normal.

• If Module:init/1 fails or returns an error tuple or an incorrect value, this function returns
{error,Errorr}, where Error is a term with information about the error, and the supervisor bridge
terminates with reason Error.

Callback Functions
The following functions must be exported from a supervisor_bridge callback module.

Exports

Module:init(Args) -> Result
Types:

Args = term()

Result = {ok,Pid,State} | ignore | {error,Error}

 Pid = pid()

 State = term()

 Error = term()

Whenever a supervisor bridge is started using start_link/2,3, this function is called by the new process to start
the subsystem and initialize.

Args is the Args argument provided to the start function.

The function is to return {ok,Pid,State}, where Pid is the pid of the main process in the subsystem and State
is any term.

If later Pid terminates with a reason Reason, the supervisor bridge terminates with reason Reason
as well. If later the supervisor bridge is stopped by its supervisor with reason Reason, it calls
Module:terminate(Reason,State) to terminate.

If the initialization fails, the function is to return {error,Error}, where Error is any term, or ignore.

Module:terminate(Reason, State)
Types:

Reason = shutdown | term()

State = term()

This function is called by the supervisor bridge when it is about to terminate. It is to be the opposite of
Module:init/1 and stop the subsystem and do any necessary cleaning up. The return value is ignored.

Reason is shutdown if the supervisor bridge is terminated by its supervisor. If the supervisor bridge terminates
because a a linked process (apart from the main process of the subsystem) has terminated with reason Term, then
Reason becomes Term.

State is taken from the return value of Module:init/1.

See Also
supervisor(3), sys(3)

sys

490 | Ericsson AB. All Rights Reserved.: STDLIB

sys
Erlang module

This module contains functions for sending system messages used by programs, and messages used for debugging
purposes.

Functions used for implementation of processes are also expected to understand system messages, such as debug
messages and code change. These functions must be used to implement the use of system messages for a process;
either directly, or through standard behaviors, such as gen_server.

The default time-out is 5000 ms, unless otherwise specified. timeout defines the time to wait for the process to
respond to a request. If the process does not respond, the function evaluates exit({timeout, {M, F, A}}).

The functions make references to a debug structure. The debug structure is a list of dbg_opt(), which is an internal
data type used by function handle_system_msg/6. No debugging is performed if it is an empty list.

System Messages
Processes that are not implemented as one of the standard behaviors must still understand system messages. The
following three messages must be understood:

• Plain system messages. These are received as {system, From, Msg}. The content and meaning of this
message are not interpreted by the receiving process module. When a system message is received, function
handle_system_msg/6 is called to handle the request.

• Shutdown messages. If the process traps exits, it must be able to handle a shutdown request from its parent, the
supervisor. The message {'EXIT', Parent, Reason} from the parent is an order to terminate. The process
must terminate when this message is received, normally with the same Reason as Parent.

• If the modules used to implement the process change dynamically during runtime, the process must understand
one more message. An example is the gen_event processes. The message is {get_modules, From}. The
reply to this message is From ! {modules, Modules}, where Modules is a list of the currently active
modules in the process.

This message is used by the release handler to find which processes that execute a certain module. The process
can later be suspended and ordered to perform a code change for one of its modules.

System Events
When debugging a process with the functions of this module, the process generates system_events, which are then
treated in the debug function. For example, trace formats the system events to the terminal.

Three predefined system events are used when a process receives or sends a message. The process can also define its
own system events. It is always up to the process itself to format these events.

Data Types
name() = pid() | atom() | {global, atom()}
system_event() =
 {in, Msg :: term()} |
 {in, Msg :: term(), From :: term()} |
 {out, Msg :: term(), To :: term()} |
 term()
dbg_opt()
See the introduction of this manual page.

sys

Ericsson AB. All Rights Reserved.: STDLIB | 491

dbg_fun() =
 fun((FuncState :: term(),
 Event :: system_event(),
 ProcState :: term()) ->
 done | (NewFuncState :: term()))
format_fun() =
 fun((Device :: io:device() | file:io_device(),
 Event :: system_event(),
 Extra :: term()) ->
 any())

Exports

change_code(Name, Module, OldVsn, Extra) -> ok | {error, Reason}
change_code(Name, Module, OldVsn, Extra, Timeout) ->
 ok | {error, Reason}
Types:

Name = name()
Module = module()
OldVsn = undefined | term()
Extra = term()
Timeout = timeout()
Reason = term()

Tells the process to change code. The process must be suspended to handle this message. Argument Extra is reserved
for each process to use as its own. Function Module:system_code_change/4 is called. OldVsn is the old
version of the Module.

get_state(Name) -> State
get_state(Name, Timeout) -> State
Types:

Name = name()
Timeout = timeout()
State = term()

Gets the state of the process.

Note:
These functions are intended only to help with debugging. They are provided for convenience, allowing
developers to avoid having to create their own state extraction functions and also avoid having to interactively
extract the state from the return values of get_status/1 or get_status/2 while debugging.

The value of State varies for different types of processes, as follows:

• For a gen_server process, the returned State is the state of the callback module.

• For a gen_fsm process, State is the tuple {CurrentStateName, CurrentStateData}.

• For a gen_statem process, State is the tuple {CurrentState,CurrentData}.

sys

492 | Ericsson AB. All Rights Reserved.: STDLIB

• For a gen_event process, State is a list of tuples, where each tuple corresponds to an event handler registered
in the process and contains {Module, Id, HandlerState}, as follows:

Module

The module name of the event handler.

Id

The ID of the handler (which is false if it was registered without an ID).

HandlerState

The state of the handler.

If the callback module exports a function system_get_state/1, it is called in the target process to
get its state. Its argument is the same as the Misc value returned by get_status/1,2, and function
Module:system_get_state/1 is expected to extract the state of the callback module from it. Function
system_get_state/1 must return {ok, State}, where State is the state of the callback module.

If the callback module does not export a system_get_state/1 function, get_state/1,2 assumes that the
Misc value is the state of the callback module and returns it directly instead.

If the callback module's system_get_state/1 function crashes or throws an exception, the caller exits with error
{callback_failed, {Module, system_get_state}, {Class, Reason}}, where Module is the
name of the callback module and Class and Reason indicate details of the exception.

Function system_get_state/1 is primarily useful for user-defined behaviors and modules that implement OTP
special processes. The gen_server, gen_fsm, gen_statem, and gen_event OTP behavior modules export
this function, so callback modules for those behaviors need not to supply their own.

For more information about a process, including its state, see get_status/1 and get_status/2.

get_status(Name) -> Status
get_status(Name, Timeout) -> Status
Types:

Name = name()
Timeout = timeout()
Status =
 {status, Pid :: pid(), {module, Module :: module()}, [SItem]}
SItem =
 (PDict :: [{Key :: term(), Value :: term()}]) |
 (SysState :: running | suspended) |
 (Parent :: pid()) |
 (Dbg :: [dbg_opt()]) |
 (Misc :: term())

Gets the status of the process.

The value of Misc varies for different types of processes, for example:

• A gen_server process returns the state of the callback module.

• A gen_fsm process returns information, such as its current state name and state data.

• A gen_statem process returns information, such as its current state name and state data.

• A gen_event process returns information about each of its registered handlers.

Callback modules for gen_server, gen_fsm, gen_statem, and gen_event can also change the value of
Misc by exporting a function format_status/2, which contributes module-specific information. For details, see

sys

Ericsson AB. All Rights Reserved.: STDLIB | 493

gen_server:format_status/2, gen_fsm:format_status/2, gen_statem:format_status/2,
and gen_event:format_status/2.

install(Name, FuncSpec) -> ok
install(Name, FuncSpec, Timeout) -> ok
Types:

Name = name()
FuncSpec = {Func, FuncState}
Func = dbg_fun()
FuncState = term()
Timeout = timeout()

Enables installation of alternative debug functions. An example of such a function is a trigger, a function that waits for
some special event and performs some action when the event is generated. For example, turning on low-level tracing.

Func is called whenever a system event is generated. This function is to return done, or a new Func state. In the
first case, the function is removed. It is also removed if the function fails.

log(Name, Flag) -> ok | {ok, [system_event()]}
log(Name, Flag, Timeout) -> ok | {ok, [system_event()]}
Types:

Name = name()
Flag = true | {true, N :: integer() >= 1} | false | get | print
Timeout = timeout()

Turns the logging of system events on or off. If on, a maximum of N events are kept in the debug structure (default
is 10).

If Flag is get, a list of all logged events is returned.

If Flag is print, the logged events are printed to standard_io.

The events are formatted with a function that is defined by the process that generated the event (with a call to
handle_debug/4).

log_to_file(Name, Flag) -> ok | {error, open_file}
log_to_file(Name, Flag, Timeout) -> ok | {error, open_file}
Types:

Name = name()
Flag = (FileName :: string()) | false
Timeout = timeout()

Enables or disables the logging of all system events in text format to the file. The events are formatted with a function
that is defined by the process that generated the event (with a call to handle_debug/4).

no_debug(Name) -> ok
no_debug(Name, Timeout) -> ok
Types:

sys

494 | Ericsson AB. All Rights Reserved.: STDLIB

Name = name()
Timeout = timeout()

Turns off all debugging for the process. This includes functions that are installed explicitly with function
install/2,3, for example, triggers.

remove(Name, Func) -> ok
remove(Name, Func, Timeout) -> ok
Types:

Name = name()
Func = dbg_fun()
Timeout = timeout()

Removes an installed debug function from the process. Func must be the same as previously installed.

replace_state(Name, StateFun) -> NewState
replace_state(Name, StateFun, Timeout) -> NewState
Types:

Name = name()
StateFun = fun((State :: term()) -> NewState :: term())
Timeout = timeout()
NewState = term()

Replaces the state of the process, and returns the new state.

Note:
These functions are intended only to help with debugging, and are not to be called from normal code. They are
provided for convenience, allowing developers to avoid having to create their own custom state replacement
functions.

Function StateFun provides a new state for the process. Argument State and the NewState return value of
StateFun vary for different types of processes as follows:

• For a gen_server process, State is the state of the callback module and NewState is a new instance of
that state.

• For a gen_fsm process, State is the tuple {CurrentStateName, CurrentStateData}, and
NewState is a similar tuple, which can contain a new state name, new state data, or both.

• For a gen_statem process, State is the tuple {CurrentState,CurrentData}, and NewState is a
similar tuple, which can contain a new current state, new state data, or both.

• For a gen_event process, State is the tuple {Module, Id, HandlerState} as follows:

Module

The module name of the event handler.

Id

The ID of the handler (which is false if it was registered without an ID).

sys

Ericsson AB. All Rights Reserved.: STDLIB | 495

HandlerState

The state of the handler.

NewState is a similar tuple where Module and Id are to have the same values as in State, but the value of
HandlerState can be different. Returning a NewState, whose Module or Id values differ from those of
State, leaves the state of the event handler unchanged. For a gen_event process, StateFun is called once
for each event handler registered in the gen_event process.

If a StateFun function decides not to effect any change in process state, then regardless of process type, it can return
its State argument.

If a StateFun function crashes or throws an exception, the original state of the process is unchanged for
gen_server, gen_fsm, and gen_statem processes. For gen_event processes, a crashing or failing
StateFun function means that only the state of the particular event handler it was working on when it failed or crashed
is unchanged; it can still succeed in changing the states of other event handlers registered in the same gen_event
process.

If the callback module exports a system_replace_state/2 function, it is called in the target process to replace
its state using StateFun. Its two arguments are StateFun and Misc, where Misc is the same as the Misc
value returned by get_status/1,2. A system_replace_state/2 function is expected to return {ok,
NewState, NewMisc}, where NewState is the new state of the callback module, obtained by calling StateFun,
and NewMisc is a possibly new value used to replace the original Misc (required as Misc often contains the state
of the callback module within it).

If the callback module does not export a system_replace_state/2 function, replace_state/2,3 assumes
that Misc is the state of the callback module, passes it to StateFun and uses the return value as both the new state
and as the new value of Misc.

If the callback module's function system_replace_state/2 crashes or throws an exception, the caller exits
with error {callback_failed, {Module, system_replace_state}, {Class, Reason}}, where
Module is the name of the callback module and Class and Reason indicate details of the exception. If the callback
module does not provide a system_replace_state/2 function and StateFun crashes or throws an exception,
the caller exits with error {callback_failed, StateFun, {Class, Reason}}.

Function system_replace_state/2 is primarily useful for user-defined behaviors and modules that implement
OTP special processes. The OTP behavior modules gen_server, gen_fsm, gen_statem, and gen_event
export this function, so callback modules for those behaviors need not to supply their own.

resume(Name) -> ok
resume(Name, Timeout) -> ok
Types:

Name = name()
Timeout = timeout()

Resumes a suspended process.

statistics(Name, Flag) -> ok | {ok, Statistics}
statistics(Name, Flag, Timeout) -> ok | {ok, Statistics}
Types:

Name = name()
Flag = true | false | get
Statistics = [StatisticsTuple] | no_statistics
StatisticsTuple =

sys

496 | Ericsson AB. All Rights Reserved.: STDLIB

 {start_time, DateTime1} |
 {current_time, DateTime2} |
 {reductions, integer() >= 0} |
 {messages_in, integer() >= 0} |
 {messages_out, integer() >= 0}
DateTime1 = DateTime2 = file:date_time()
Timeout = timeout()

Enables or disables the collection of statistics. If Flag is get, the statistical collection is returned.

suspend(Name) -> ok
suspend(Name, Timeout) -> ok
Types:

Name = name()
Timeout = timeout()

Suspends the process. When the process is suspended, it only responds to other system messages, but not other
messages.

terminate(Name, Reason) -> ok
terminate(Name, Reason, Timeout) -> ok
Types:

Name = name()
Reason = term()
Timeout = timeout()

Orders the process to terminate with the specified Reason. The termination is done asynchronously, so it is not
guaranteed that the process is terminated when the function returns.

trace(Name, Flag) -> ok
trace(Name, Flag, Timeout) -> ok
Types:

Name = name()
Flag = boolean()
Timeout = timeout()

Prints all system events on standard_io. The events are formatted with a function that is defined by the process
that generated the event (with a call to handle_debug/4).

Process Implementation Functions
The following functions are used when implementing a special process. This is an ordinary process, which does not
use a standard behavior, but a process that understands the standard system messages.

Exports

debug_options(Options) -> [dbg_opt()]
Types:

sys

Ericsson AB. All Rights Reserved.: STDLIB | 497

Options = [Opt]
Opt =
 trace |
 log |
 {log, integer() >= 1} |
 statistics |
 {log_to_file, FileName} |
 {install, FuncSpec}
FileName = file:name()
FuncSpec = {Func, FuncState}
Func = dbg_fun()
FuncState = term()

Can be used by a process that initiates a debug structure from a list of options. The values of argument Opt are the
same as for the corresponding functions.

get_debug(Item, Debug, Default) -> term()
Types:

Item = log | statistics
Debug = [dbg_opt()]
Default = term()

Gets the data associated with a debug option. Default is returned if Item is not found. Can be used by the process
to retrieve debug data for printing before it terminates.

handle_debug(Debug, FormFunc, Extra, Event) -> [dbg_opt()]
Types:

Debug = [dbg_opt()]
FormFunc = format_fun()
Extra = term()
Event = system_event()

This function is called by a process when it generates a system event. FormFunc is a formatting function, called as
FormFunc(Device, Event, Extra) to print the events, which is necessary if tracing is activated. Extra is
any extra information that the process needs in the format function, for example, the process name.

handle_system_msg(Msg, From, Parent, Module, Debug, Misc) ->
 no_return()
Types:

Msg = term()
From = {pid(), Tag :: term()}
Parent = pid()
Module = module()
Debug = [dbg_opt()]
Misc = term()

This function is used by a process module to take care of system messages. The process receives a {system, From,
Msg} message and passes Msg and From to this function.

This function never returns. It calls either of the following functions:

sys

498 | Ericsson AB. All Rights Reserved.: STDLIB

• Module:system_continue(Parent, NDebug, Misc), where the process continues the execution.

• Module:system_terminate(Reason, Parent, Debug, Misc), if the process is to terminate.

Module must export the following:

• system_continue/3

• system_terminate/4

• system_code_change/4

• system_get_state/1

• system_replace_state/2

Argument Misc can be used to save internal data in a process, for example, its state. It is sent to
Module:system_continue/3 or Module:system_terminate/4.

print_log(Debug) -> ok
Types:

Debug = [dbg_opt()]
Prints the logged system events in the debug structure, using FormFunc as defined when the event was generated
by a call to handle_debug/4.

Module:system_code_change(Misc, Module, OldVsn, Extra) -> {ok, NMisc}
Types:

Misc = term()

OldVsn = undefined | term()

Module = atom()

Extra = term()

NMisc = term()

Called from handle_system_msg/6 when the process is to perform a code change. The code change is used when
the internal data structure has changed. This function converts argument Misc to the new data structure. OldVsn is
attribute vsn of the old version of the Module. If no such attribute is defined, the atom undefined is sent.

Module:system_continue(Parent, Debug, Misc) -> none()
Types:

Parent = pid()

Debug = [dbg_opt()]

Misc = term()

Called from handle_system_msg/6 when the process is to continue its execution (for example, after it has been
suspended). This function never returns.

Module:system_get_state(Misc) -> {ok, State}
Types:

Misc = term()

State = term()

Called from handle_system_msg/6 when the process is to return a term that reflects its current state. State
is the value returned by get_state/2.

sys

Ericsson AB. All Rights Reserved.: STDLIB | 499

Module:system_replace_state(StateFun, Misc) -> {ok, NState, NMisc}
Types:

StateFun = fun((State :: term()) -> NState)

Misc = term()

NState = term()

NMisc = term()

Called from handle_system_msg/6 when the process is to replace its current state. NState is the value returned
by replace_state/3.

Module:system_terminate(Reason, Parent, Debug, Misc) -> none()
Types:

Reason = term()

Parent = pid()

Debug = [dbg_opt()]

Misc = term()

Called from handle_system_msg/6 when the process is to terminate. For example, this function is called when
the process is suspended and its parent orders shutdown. It gives the process a chance to do a cleanup. This function
never returns.

timer

500 | Ericsson AB. All Rights Reserved.: STDLIB

timer
Erlang module

This module provides useful functions related to time. Unless otherwise stated, time is always measured in
milliseconds. All timer functions return immediately, regardless of work done by another process.

Successful evaluations of the timer functions give return values containing a timer reference, denoted TRef. By using
cancel/1, the returned reference can be used to cancel any requested action. A TRef is an Erlang term, which
contents must not be changed.

The time-outs are not exact, but are at least as long as requested.

Data Types
time() = integer() >= 0
Time in milliseconds.

tref()
A timer reference.

Exports

apply_after(Time, Module, Function, Arguments) ->
 {ok, TRef} | {error, Reason}
Types:

Time = time()
Module = module()
Function = atom()
Arguments = [term()]
TRef = tref()
Reason = term()

Evaluates apply(Module, Function, Arguments) after Time milliseconds.

Returns {ok, TRef} or {error, Reason}.

apply_interval(Time, Module, Function, Arguments) ->
 {ok, TRef} | {error, Reason}
Types:

Time = time()
Module = module()
Function = atom()
Arguments = [term()]
TRef = tref()
Reason = term()

Evaluates apply(Module, Function, Arguments) repeatedly at intervals of Time.

Returns {ok, TRef} or {error, Reason}.

timer

Ericsson AB. All Rights Reserved.: STDLIB | 501

cancel(TRef) -> {ok, cancel} | {error, Reason}
Types:

TRef = tref()
Reason = term()

Cancels a previously requested time-out. TRef is a unique timer reference returned by the related timer function.

Returns {ok, cancel}, or {error, Reason} when TRef is not a timer reference.

exit_after(Time, Reason1) -> {ok, TRef} | {error, Reason2}
exit_after(Time, Pid, Reason1) -> {ok, TRef} | {error, Reason2}
Types:

Time = time()
Pid = pid() | (RegName :: atom())
TRef = tref()
Reason1 = Reason2 = term()

exit_after/2 is the same as exit_after(Time, self(), Reason1).

exit_after/3 sends an exit signal with reason Reason1 to pid Pid. Returns {ok, TRef} or {error,
Reason2}.

hms(Hours, Minutes, Seconds) -> MilliSeconds
Types:

Hours = Minutes = Seconds = MilliSeconds = integer() >= 0

Returns the number of milliseconds in Hours + Minutes + Seconds.

hours(Hours) -> MilliSeconds
Types:

Hours = MilliSeconds = integer() >= 0

Returns the number of milliseconds in Hours.

kill_after(Time) -> {ok, TRef} | {error, Reason2}
kill_after(Time, Pid) -> {ok, TRef} | {error, Reason2}
Types:

Time = time()
Pid = pid() | (RegName :: atom())
TRef = tref()
Reason2 = term()

kill_after/1 is the same as exit_after(Time, self(), kill).

kill_after/2 is the same as exit_after(Time, Pid, kill).

minutes(Minutes) -> MilliSeconds
Types:

timer

502 | Ericsson AB. All Rights Reserved.: STDLIB

Minutes = MilliSeconds = integer() >= 0

Returns the number of milliseconds in Minutes.

now_diff(T2, T1) -> Tdiff
Types:

T1 = T2 = erlang:timestamp()
Tdiff = integer()
In microseconds

Calculates the time difference Tdiff = T2 - T1 in microseconds, where T1 and T2 are time-stamp tuples on
the same format as returned from erlang:timestamp/0 or os:timestamp/0.

seconds(Seconds) -> MilliSeconds
Types:

Seconds = MilliSeconds = integer() >= 0

Returns the number of milliseconds in Seconds.

send_after(Time, Message) -> {ok, TRef} | {error, Reason}
send_after(Time, Pid, Message) -> {ok, TRef} | {error, Reason}
Types:

Time = time()
Pid = pid() | (RegName :: atom())
Message = term()
TRef = tref()
Reason = term()

send_after/3

Evaluates Pid ! Message after Time milliseconds. (Pid can also be an atom of a registered name.)

Returns {ok, TRef} or {error, Reason}.

send_after/2

Same as send_after(Time, self(), Message).

send_interval(Time, Message) -> {ok, TRef} | {error, Reason}
send_interval(Time, Pid, Message) -> {ok, TRef} | {error, Reason}
Types:

Time = time()
Pid = pid() | (RegName :: atom())
Message = term()
TRef = tref()
Reason = term()

send_interval/3

Evaluates Pid ! Message repeatedly after Time milliseconds. (Pid can also be an atom of a registered name.)

Returns {ok, TRef} or {error, Reason}.

timer

Ericsson AB. All Rights Reserved.: STDLIB | 503

send_interval/2

Same as send_interval(Time, self(), Message).

sleep(Time) -> ok
Types:

Time = timeout()
Suspends the process calling this function for Time milliseconds and then returns ok, or suspends the process forever
if Time is the atom infinity. Naturally, this function does not return immediately.

start() -> ok
Starts the timer server. Normally, the server does not need to be started explicitly. It is started dynamically if it is
needed. This is useful during development, but in a target system the server is to be started explicitly. Use configuration
parameters for Kernel for this.

tc(Fun) -> {Time, Value}
tc(Fun, Arguments) -> {Time, Value}
tc(Module, Function, Arguments) -> {Time, Value}
Types:

Module = module()
Function = atom()
Arguments = [term()]
Time = integer()
In microseconds

Value = term()
tc/3

Evaluates apply(Module, Function, Arguments) and measures the elapsed real time as reported by
os:timestamp/0.

Returns {Time, Value}, where Time is the elapsed real time in microseconds, and Value is what is returned
from the apply.

tc/2

Evaluates apply(Fun, Arguments). Otherwise the same as tc/3.

tc/1

Evaluates Fun(). Otherwise the same as tc/2.

Examples
Example 1

The following example shows how to print "Hello World!" in 5 seconds:

1> timer:apply_after(5000, io, format, ["~nHello World!~n", []]).
{ok,TRef}
Hello World!

Example 2

timer

504 | Ericsson AB. All Rights Reserved.: STDLIB

The following example shows a process performing a certain action, and if this action is not completed within a certain
limit, the process is killed:

Pid = spawn(mod, fun, [foo, bar]),
%% If pid is not finished in 10 seconds, kill him
{ok, R} = timer:kill_after(timer:seconds(10), Pid),
...
%% We change our mind...
timer:cancel(R),
...

Notes
A timer can always be removed by calling cancel/1.

An interval timer, that is, a timer created by evaluating any of the functions apply_interval/4,
send_interval/3, and send_interval/2 is linked to the process to which the timer performs its task.

A one-shot timer, that is, a timer created by evaluating any of the functions apply_after/4, send_after/3,
send_after/2, exit_after/3, exit_after/2, kill_after/2, and kill_after/1 is not linked to
any process. Hence, such a timer is removed only when it reaches its time-out, or if it is explicitly removed by a call
to cancel/1.

unicode

Ericsson AB. All Rights Reserved.: STDLIB | 505

unicode
Erlang module

This module contains functions for converting between different character representations. It converts between ISO
Latin-1 characters and Unicode characters, but it can also convert between different Unicode encodings (like UTF-8,
UTF-16, and UTF-32).

The default Unicode encoding in Erlang is in binaries UTF-8, which is also the format in which built-in functions
and libraries in OTP expect to find binary Unicode data. In lists, Unicode data is encoded as integers, each integer
representing one character and encoded simply as the Unicode code point for the character.

Other Unicode encodings than integers representing code points or UTF-8 in binaries are referred to as "external
encodings". The ISO Latin-1 encoding is in binaries and lists referred to as latin1-encoding.

It is recommended to only use external encodings for communication with external entities where this is required.
When working inside the Erlang/OTP environment, it is recommended to keep binaries in UTF-8 when representing
Unicode characters. ISO Latin-1 encoding is supported both for backward compatibility and for communication with
external entities not supporting Unicode character sets.

Data Types
encoding() =
 latin1 |
 unicode |
 utf8 |
 utf16 |
 {utf16, endian()} |
 utf32 |
 {utf32, endian()}
endian() = big | little
unicode_binary() = binary()
A binary() with characters encoded in the UTF-8 coding standard.

chardata() = charlist() | unicode_binary()
charlist() =
 maybe_improper_list(char() | unicode_binary() | charlist(),
 unicode_binary() | [])
external_unicode_binary() = binary()
A binary() with characters coded in a user-specified Unicode encoding other than UTF-8 (that is, UTF-16 or
UTF-32).

external_chardata() =
 external_charlist() | external_unicode_binary()
external_charlist() =
 maybe_improper_list(char() |
 external_unicode_binary() |
 external_charlist(),
 external_unicode_binary() | [])
latin1_binary() = binary()
A binary() with characters coded in ISO Latin-1.

unicode

506 | Ericsson AB. All Rights Reserved.: STDLIB

latin1_char() = byte()
An integer() representing a valid ISO Latin-1 character (0-255).

latin1_chardata() = latin1_charlist() | latin1_binary()
Same as iodata().

latin1_charlist() =
 maybe_improper_list(latin1_char() |
 latin1_binary() |
 latin1_charlist(),
 latin1_binary() | [])
Same as iolist().

Exports

bom_to_encoding(Bin) -> {Encoding, Length}
Types:

Bin = binary()
A binary() such that byte_size(Bin) >= 4.

Encoding =
 latin1 | utf8 | {utf16, endian()} | {utf32, endian()}
Length = integer() >= 0
endian() = big | little

Checks for a UTF Byte Order Mark (BOM) in the beginning of a binary. If the supplied binary Bin begins with a
valid BOM for either UTF-8, UTF-16, or UTF-32, the function returns the encoding identified along with the BOM
length in bytes.

If no BOM is found, the function returns {latin1,0}.

characters_to_binary(Data) -> Result
Types:

Data = latin1_chardata() | chardata() | external_chardata()
Result =
 binary() |
 {error, binary(), RestData} |
 {incomplete, binary(), binary()}
RestData = latin1_chardata() | chardata() | external_chardata()

Same as characters_to_binary(Data, unicode, unicode).

characters_to_binary(Data, InEncoding) -> Result
Types:

Data = latin1_chardata() | chardata() | external_chardata()
InEncoding = encoding()
Result =
 binary() |
 {error, binary(), RestData} |

unicode

Ericsson AB. All Rights Reserved.: STDLIB | 507

 {incomplete, binary(), binary()}
RestData = latin1_chardata() | chardata() | external_chardata()

Same as characters_to_binary(Data, InEncoding, unicode).

characters_to_binary(Data, InEncoding, OutEncoding) -> Result
Types:

Data = latin1_chardata() | chardata() | external_chardata()
InEncoding = OutEncoding = encoding()
Result =
 binary() |
 {error, binary(), RestData} |
 {incomplete, binary(), binary()}
RestData = latin1_chardata() | chardata() | external_chardata()

Behaves as characters_to_list/2, but produces a binary instead of a Unicode list.

InEncoding defines how input is to be interpreted if binaries are present in Data

OutEncoding defines in what format output is to be generated.

Options:

unicode

An alias for utf8, as this is the preferred encoding for Unicode characters in binaries.

utf16

An alias for {utf16,big}.

utf32

An alias for {utf32,big}.

The atoms big and little denote big- or little-endian encoding.

Errors and exceptions occur as in characters_to_list/2, but the second element in tuple error or
incomplete is a binary() and not a list().

characters_to_list(Data) -> Result
Types:

Data = latin1_chardata() | chardata() | external_chardata()
Result =
 list() |
 {error, list(), RestData} |
 {incomplete, list(), binary()}
RestData = latin1_chardata() | chardata() | external_chardata()

Same as characters_to_list(Data, unicode).

characters_to_list(Data, InEncoding) -> Result
Types:

Data = latin1_chardata() | chardata() | external_chardata()
InEncoding = encoding()
Result =

unicode

508 | Ericsson AB. All Rights Reserved.: STDLIB

 list() |
 {error, list(), RestData} |
 {incomplete, list(), binary()}
RestData = latin1_chardata() | chardata() | external_chardata()

Converts a possibly deep list of integers and binaries into a list of integers representing Unicode characters. The
binaries in the input can have characters encoded as one of the following:

• ISO Latin-1 (0-255, one character per byte). Here, case parameter InEncoding is to be specified as latin1.

• One of the UTF-encodings, which is specified as parameter InEncoding.

Only when InEncoding is one of the UTF encodings, integers in the list are allowed to be > 255.

If InEncoding is latin1, parameter Data corresponds to the iodata() type, but for unicode, parameter
Data can contain integers > 255 (Unicode characters beyond the ISO Latin-1 range), which makes it invalid as
iodata().

The purpose of the function is mainly to convert combinations of Unicode characters into a pure Unicode string
in list representation for further processing. For writing the data to an external entity, the reverse function
characters_to_binary/3 comes in handy.

Option unicode is an alias for utf8, as this is the preferred encoding for Unicode characters in binaries. utf16
is an alias for {utf16,big} and utf32 is an alias for {utf32,big}. The atoms big and little denote big-
or little-endian encoding.

If the data cannot be converted, either because of illegal Unicode/ISO Latin-1 characters in the list, or because of invalid
UTF encoding in any binaries, an error tuple is returned. The error tuple contains the tag error, a list representing the
characters that could be converted before the error occurred and a representation of the characters including and after
the offending integer/bytes. The last part is mostly for debugging, as it still constitutes a possibly deep or mixed list,
or both, not necessarily of the same depth as the original data. The error occurs when traversing the list and whatever
is left to decode is returned "as is".

However, if the input Data is a pure binary, the third part of the error tuple is guaranteed to be a binary as well.

Errors occur for the following reasons:

• Integers out of range.

If InEncoding is latin1, an error occurs whenever an integer > 255 is found in the lists.

If InEncoding is of a Unicode type, an error occurs whenever either of the following is found:

• An integer > 16#10FFFF (the maximum Unicode character)

• An integer in the range 16#D800 to 16#DFFF (invalid range reserved for UTF-16 surrogate pairs)

• Incorrect UTF encoding.

If InEncoding is one of the UTF types, the bytes in any binaries must be valid in that encoding.

Errors can occur for various reasons, including the following:

• "Pure" decoding errors (like the upper bits of the bytes being wrong).

• The bytes are decoded to a too large number.

• The bytes are decoded to a code point in the invalid Unicode range.

• Encoding is "overlong", meaning that a number should have been encoded in fewer bytes.

The case of a truncated UTF is handled specially, see the paragraph about incomplete binaries below.

If InEncoding is latin1, binaries are always valid as long as they contain whole bytes, as each byte falls
into the valid ISO Latin-1 range.

A special type of error is when no actual invalid integers or bytes are found, but a trailing binary() consists of too
few bytes to decode the last character. This error can occur if bytes are read from a file in chunks or if binaries in other

unicode

Ericsson AB. All Rights Reserved.: STDLIB | 509

ways are split on non-UTF character boundaries. An incomplete tuple is then returned instead of the error tuple.
It consists of the same parts as the error tuple, but the tag is incomplete instead of error and the last element
is always guaranteed to be a binary consisting of the first part of a (so far) valid UTF character.

If one UTF character is split over two consecutive binaries in the Data, the conversion succeeds. This means that
a character can be decoded from a range of binaries as long as the whole range is specified as input without errors
occurring.

Example:

decode_data(Data) ->
 case unicode:characters_to_list(Data,unicode) of
 {incomplete,Encoded, Rest} ->
 More = get_some_more_data(),
 Encoded ++ decode_data([Rest, More]);
 {error,Encoded,Rest} ->
 handle_error(Encoded,Rest);
 List ->
 List
 end.

However, bit strings that are not whole bytes are not allowed, so a UTF character must be split along 8-bit boundaries
to ever be decoded.

A badarg exception is thrown for the following cases:

• Any parameters are of the wrong type.

• The list structure is invalid (a number as tail).

• The binaries do not contain whole bytes (bit strings).

encoding_to_bom(InEncoding) -> Bin
Types:

Bin = binary()
A binary() such that byte_size(Bin) >= 4.

InEncoding = encoding()
Creates a UTF Byte Order Mark (BOM) as a binary from the supplied InEncoding. The BOM is, if supported at
all, expected to be placed first in UTF encoded files or messages.

The function returns <<>> for latin1 encoding, as there is no BOM for ISO Latin-1.

Notice that the BOM for UTF-8 is seldom used, and it is really not a byte order mark. There are obviously no byte
order issues with UTF-8, so the BOM is only there to differentiate UTF-8 encoding from other UTF formats.

win32reg

510 | Ericsson AB. All Rights Reserved.: STDLIB

win32reg
Erlang module

This module provides read and write access to the registry on Windows. It is essentially a port driver wrapped around
the Win32 API calls for accessing the registry.

The registry is a hierarchical database, used to store various system and software information in Windows. It contains
installation data, and is updated by installers and system programs. The Erlang installer updates the registry by adding
data that Erlang needs.

The registry contains keys and values. Keys are like the directories in a file system, they form a hierarchy. Values are
like files, they have a name and a value, and also a type.

Paths to keys are left to right, with subkeys to the right and backslash between keys. (Remember that backslashes must
be doubled in Erlang strings.) Case is preserved but not significant.

For example, "\\hkey_local_machine\\software\\Ericsson\\Erlang\\5.0" is the key for the
installation data for the latest Erlang release.

There are six entry points in the Windows registry, top-level keys. They can be abbreviated in this module as follows:

Abbreviation Registry key
============ ============
hkcr HKEY_CLASSES_ROOT
current_user HKEY_CURRENT_USER
hkcu HKEY_CURRENT_USER
local_machine HKEY_LOCAL_MACHINE
hklm HKEY_LOCAL_MACHINE
users HKEY_USERS
hku HKEY_USERS
current_config HKEY_CURRENT_CONFIG
hkcc HKEY_CURRENT_CONFIG
dyn_data HKEY_DYN_DATA
hkdd HKEY_DYN_DATA

The key above can be written as "\\hklm\\software\\ericsson\\erlang\\5.0".

This module uses a current key. It works much like the current directory. From the current key, values can be fetched,
subkeys can be listed, and so on.

Under a key, any number of named values can be stored. They have names, types, and data.

win32reg supports storing of the following types:

• REG_DWORD, which is an integer

• REG_SZ, which is a string

• REG_BINARY, which is a binary

Other types can be read, and are returned as binaries.

There is also a "default" value, which has the empty string as name. It is read and written with the atom default
instead of the name.

Some registry values are stored as strings with references to environment variables, for example, %SystemRoot
%Windows. SystemRoot is an environment variable, and is to be replaced with its value. Function expand/1 is
provided so that environment variables surrounded by % can be expanded to their values.

For more information on the Windows registry, see consult the Win32 Programmer's Reference.

win32reg

Ericsson AB. All Rights Reserved.: STDLIB | 511

Data Types
reg_handle()
As returned by open/1.

name() = string() | default
value() = string() | integer() | binary()

Exports

change_key(RegHandle, Key) -> ReturnValue
Types:

RegHandle = reg_handle()
Key = string()
ReturnValue = ok | {error, ErrorId :: atom()}

Changes the current key to another key. Works like cd. The key can be specified as a relative path or as an absolute
path, starting with \.

change_key_create(RegHandle, Key) -> ReturnValue
Types:

RegHandle = reg_handle()
Key = string()
ReturnValue = ok | {error, ErrorId :: atom()}

Creates a key, or just changes to it, if it is already there. Works like a combination of mkdir and cd. Calls the Win32
API function RegCreateKeyEx().

The registry must have been opened in write mode.

close(RegHandle) -> ok
Types:

RegHandle = reg_handle()
Closes the registry. After that, the RegHandle cannot be used.

current_key(RegHandle) -> ReturnValue
Types:

RegHandle = reg_handle()
ReturnValue = {ok, string()}

Returns the path to the current key. This is the equivalent of pwd.

Notice that the current key is stored in the driver, and can be invalid (for example, if the key has been removed).

delete_key(RegHandle) -> ReturnValue
Types:

RegHandle = reg_handle()
ReturnValue = ok | {error, ErrorId :: atom()}

Deletes the current key, if it is valid. Calls the Win32 API function RegDeleteKey(). Notice that this call does not
change the current key (unlike change_key_create/2). This means that after the call, the current key is invalid.

win32reg

512 | Ericsson AB. All Rights Reserved.: STDLIB

delete_value(RegHandle, Name) -> ReturnValue
Types:

RegHandle = reg_handle()
Name = name()
ReturnValue = ok | {error, ErrorId :: atom()}

Deletes a named value on the current key. The atom default is used for the default value.

The registry must have been opened in write mode.

expand(String) -> ExpandedString
Types:

String = ExpandedString = string()

Expands a string containing environment variables between percent characters. Anything between two % is taken for
an environment variable, and is replaced by the value. Two consecutive % are replaced by one %.

A variable name that is not in the environment results in an error.

format_error(ErrorId) -> ErrorString
Types:

ErrorId = atom()
ErrorString = string()

Converts a POSIX error code to a string (by calling erl_posix_msg:message/1).

open(OpenModeList) -> ReturnValue
Types:

OpenModeList = [OpenMode]
OpenMode = read | write
ReturnValue = {ok, RegHandle} | {error, ErrorId :: enotsup}
RegHandle = reg_handle()

Opens the registry for reading or writing. The current key is the root (HKEY_CLASSES_ROOT). Flag read in the
mode list can be omitted.

Use change_key/2 with an absolute path after open.

set_value(RegHandle, Name, Value) -> ReturnValue
Types:

RegHandle = reg_handle()
Name = name()
Value = value()
ReturnValue = ok | {error, ErrorId :: atom()}

Sets the named (or default) value to value. Calls the Win32 API function RegSetValueEx(). The value can be
of three types, and the corresponding registry type is used. The supported types are the following:

• REG_DWORD for integers

• REG_SZ for strings

• REG_BINARY for binaries

win32reg

Ericsson AB. All Rights Reserved.: STDLIB | 513

Other types cannot be added or changed.

The registry must have been opened in write mode.

sub_keys(RegHandle) -> ReturnValue
Types:

RegHandle = reg_handle()
ReturnValue = {ok, [SubKey]} | {error, ErrorId :: atom()}
SubKey = string()

Returns a list of subkeys to the current key. Calls the Win32 API function EnumRegKeysEx().

Avoid calling this on the root keys, as it can be slow.

value(RegHandle, Name) -> ReturnValue
Types:

RegHandle = reg_handle()
Name = name()
ReturnValue =
 {ok, Value :: value()} | {error, ErrorId :: atom()}

Retrieves the named value (or default) on the current key. Registry values of type REG_SZ are returned as strings.
Type REG_DWORD values are returned as integers. All other types are returned as binaries.

values(RegHandle) -> ReturnValue
Types:

RegHandle = reg_handle()
ReturnValue = {ok, [ValuePair]} | {error, ErrorId :: atom()}
ValuePair = {Name :: name(), Value :: value()}

Retrieves a list of all values on the current key. The values have types corresponding to the registry types, see
value/2. Calls the Win32 API function EnumRegValuesEx().

See Also
erl_posix_msg, The Windows 95 Registry (book from O'Reilly), Win32 Programmer's Reference (from
Microsoft)

zip

514 | Ericsson AB. All Rights Reserved.: STDLIB

zip
Erlang module

This module archives and extracts files to and from a zip archive. The zip format is specified by the "ZIP Appnote.txt"
file, available on the PKWARE web site www.pkware.com.

The zip module supports zip archive versions up to 6.1. However, password-protection and Zip64 are not supported.

By convention, the name of a zip file is to end with .zip. To abide to the convention, add .zip to the filename.

• To create zip archives, use function zip/2 or zip/3. They are also available as create/2,3, to resemble
the erl_tar module.

• To extract files from a zip archive, use function unzip/1 or unzip/2. They are also available as
extract/1,2, to resemble the erl_tar module.

• To fold a function over all files in a zip archive, use function foldl/3.

• To return a list of the files in a zip archive, use function list_dir/1 or list_dir/2. They are also available
as table/1,2, to resemble the erl_tar module.

• To print a list of files to the Erlang shell, use function t/1 or tt/1.

• Sometimes it is desirable to open a zip archive, and to unzip files from it file by file, without having to
reopen the archive. This can be done by functions zip_open/1,2, zip_get/1,2, zip_list_dir/1, and
zip_close/1.

Limitations
• Zip64 archives are not supported.

• Password-protected and encrypted archives are not supported.

• Only the DEFLATE (zlib-compression) and the STORE (uncompressed data) zip methods are supported.

• The archive size is limited to 2 GB (32 bits).

• Comments for individual files are not supported when creating zip archives. The zip archive comment for the
whole zip archive is supported.

• Changing a zip archive is not supported. To add or remove a file from an archive, the whole archive must be
recreated.

Data Types
zip_comment() = #zip_comment{comment = string()}
The record zip_comment only contains the archive comment for a zip archive.

zip_file() =
 #zip_file{name = string(),
 info = file:file_info(),
 comment = string(),
 offset = integer() >= 0,
 comp_size = integer() >= 0}
The record zip_file contains the following fields:

name

The filename

info

File information as in file:read_file_info/1 in Kernel

href

zip

Ericsson AB. All Rights Reserved.: STDLIB | 515

comment

The comment for the file in the zip archive

offset

The file offset in the zip archive (used internally)

comp_size

The size of the compressed file (the size of the uncompressed file is found in info)

filename() = file:filename()
The name of a zip file.

extension() = string()
extension_spec() =
 all |
 [extension()] |
 {add, [extension()]} |
 {del, [extension()]}
create_option() =
 memory |
 cooked |
 verbose |
 {comment, string()} |
 {cwd, file:filename()} |
 {compress, extension_spec()} |
 {uncompress, extension_spec()}
These options are described in create/3.

handle()
As returned by zip_open/2.

Exports

foldl(Fun, Acc0, Archive) -> {ok, Acc1} | {error, Reason}
Types:

Fun = fun((FileInArchive, GetInfo, GetBin, AccIn) -> AccOut)
FileInArchive = file:name()
GetInfo = fun(() -> file:file_info())
GetBin = fun(() -> binary())
Acc0 = Acc1 = AccIn = AccOut = term()
Archive = file:name() | {file:name(), binary()}
Reason = term()

Calls Fun(FileInArchive, GetInfo, GetBin, AccIn) on successive files in the Archive, starting
with AccIn == Acc0.

FileInArchive is the name that the file has in the archive.

GetInfo is a fun that returns information about the file.

GetBin returns the file contents.

zip

516 | Ericsson AB. All Rights Reserved.: STDLIB

Both GetInfo and GetBin must be called within the Fun. Their behavior is undefined if they are called outside
the context of Fun.

The Fun must return a new accumulator, which is passed to the next call. foldl/3 returns the final accumulator
value. Acc0 is returned if the archive is empty. It is not necessary to iterate over all files in the archive. The iteration
can be ended prematurely in a controlled manner by throwing an exception.

Example:

> Name = "dummy.zip".
"dummy.zip"
> {ok, {Name, Bin}} = zip:create(Name, [{"foo", <<"FOO">>}, {"bar", <<"BAR">>}], [memory]).
{ok,{"dummy.zip",
 <<80,75,3,4,20,0,0,0,0,0,74,152,97,60,171,39,212,26,3,0,
 0,0,3,0,0,...>>}}
> {ok, FileSpec} = zip:foldl(fun(N, I, B, Acc) -> [{N, B(), I()} | Acc] end, [], {Name, Bin}).
{ok,[{"bar",<<"BAR">>,
 {file_info,3,regular,read_write,
 {{2010,3,1},{19,2,10}},
 {{2010,3,1},{19,2,10}},
 {{2010,3,1},{19,2,10}},
 54,1,0,0,0,0,0}},
 {"foo",<<"FOO">>,
 {file_info,3,regular,read_write,
 {{2010,3,1},{19,2,10}},
 {{2010,3,1},{19,2,10}},
 {{2010,3,1},{19,2,10}},
 54,1,0,0,0,0,0}}]}
> {ok, {Name, Bin}} = zip:create(Name, lists:reverse(FileSpec), [memory]).
{ok,{"dummy.zip",
 <<80,75,3,4,20,0,0,0,0,0,74,152,97,60,171,39,212,26,3,0,
 0,0,3,0,0,...>>}}
> catch zip:foldl(fun("foo", _, B, _) -> throw(B()); (_,_,_,Acc) -> Acc end, [], {Name, Bin}).
<<"FOO">>

list_dir(Archive) -> RetValue
list_dir(Archive, Options) -> RetValue
table(Archive) -> RetValue
table(Archive, Options) -> RetValue
Types:

Archive = file:name() | binary()
RetValue = {ok, CommentAndFiles} | {error, Reason :: term()}
CommentAndFiles = [zip_comment() | zip_file()]
Options = [Option]
Option = cooked

list_dir/1 retrieves all filenames in the zip archive Archive.

list_dir/2 provides options.

table/1 and table/2 are provided as synonyms to resemble the erl_tar module.

The result value is the tuple {ok, List}, where List contains the zip archive comment as the first element.

One option is available:

zip

Ericsson AB. All Rights Reserved.: STDLIB | 517

cooked

By default, this function opens the zip file in raw mode, which is faster but does not allow a remote (Erlang) file
server to be used. Adding cooked to the mode list overrides the default and opens the zip file without option raw.

t(Archive) -> ok
Types:

Archive = file:name() | binary() | ZipHandle
ZipHandle = handle()

Prints all filenames in the zip archive Archive to the Erlang shell. (Similar to tar t.)

tt(Archive) -> ok
Types:

Archive = file:name() | binary() | ZipHandle
ZipHandle = handle()

Prints filenames and information about all files in the zip archive Archive to the Erlang shell. (Similar to tar tv.)

unzip(Archive) -> RetValue
unzip(Archive, Options) -> RetValue
extract(Archive) -> RetValue
extract(Archive, Options) -> RetValue
Types:

Archive = file:name() | binary()
Options = [Option]
Option =
 {file_list, FileList} |
 keep_old_files |
 verbose |
 memory |
 {file_filter, FileFilter} |
 {cwd, CWD}
FileList = [file:name()]
FileBinList = [{file:name(), binary()}]
FileFilter = fun((ZipFile) -> boolean())
CWD = file:filename()
ZipFile = zip_file()
RetValue =
 {ok, FileList} |
 {ok, FileBinList} |
 {error, Reason :: term()} |
 {error, {Name :: file:name(), Reason :: term()}}

unzip/1 extracts all files from a zip archive.

unzip/2 provides options to extract some files, and more.

extract/1 and extract/2 are provided as synonyms to resemble module erl_tar.

zip

518 | Ericsson AB. All Rights Reserved.: STDLIB

If argument Archive is specified as a binary, the contents of the binary is assumed to be a zip archive, otherwise
a filename.

Options:

{file_list, FileList}

By default, all files are extracted from the zip archive. With option {file_list, FileList}, function
unzip/2 only extracts the files whose names are included in FileList. The full paths, including the names
of all subdirectories within the zip archive, must be specified.

cooked

By default, this function opens the zip file in raw mode, which is faster but does not allow a remote (Erlang) file
server to be used. Adding cooked to the mode list overrides the default and opens the zip file without option
raw. The same applies for the files extracted.

keep_old_files

By default, all files with the same name as files in the zip archive are overwritten. With option
keep_old_files set, function unzip/2 does not overwrite existing files. Notice that even with option
memory specified, which means that no files are overwritten, existing files are excluded from the result.

verbose

Prints an informational message for each extracted file.

memory

Instead of extracting to the current directory, the result is given as a list of tuples {Filename, Binary},
where Binary is a binary containing the extracted data of file Filename in the zip archive.

{cwd, CWD}

Uses the specified directory as current directory. It is prepended to filenames when extracting them from the zip
archive. (Acting like file:set_cwd/1 in Kernel, but without changing the global cwd property.)

zip(Name, FileList) -> RetValue
zip(Name, FileList, Options) -> RetValue
create(Name, FileList) -> RetValue
create(Name, FileList, Options) -> RetValue
Types:

Name = file:name()
FileList = [FileSpec]
FileSpec =
 file:name() |
 {file:name(), binary()} |
 {file:name(), binary(), file:file_info()}
Options = [Option]
Option = create_option()
RetValue =
 {ok, FileName :: filename()} |
 {ok, {FileName :: filename(), binary()}} |
 {error, Reason :: term()}

Creates a zip archive containing the files specified in FileList.

create/2 and create/3 are provided as synonyms to resemble module erl_tar.

zip

Ericsson AB. All Rights Reserved.: STDLIB | 519

FileList is a list of files, with paths relative to the current directory, which are stored with this path in the archive.
Files can also be specified with data in binaries to create an archive directly from data.

Files are compressed using the DEFLATE compression, as described in the "Appnote.txt" file. However, files are
stored without compression if they are already compressed. zip/2 and zip/3 check the file extension to determine
if the file is to be stored without compression. Files with the following extensions are not compressed: .Z, .zip,
.zoo, .arc, .lzh, .arj.

It is possible to override the default behavior and control what types of files that are to be compressed by using options
{compress, What} and {uncompress, What}. It is also possible to use many compress and uncompress
options.

To trigger file compression, its extension must match with the compress condition and must not match the
uncompress condition. For example, if compress is set to ["gif", "jpg"] and uncompress is set to
["jpg"], only files with extension "gif" are compressed.

Options:

cooked

By default, this function opens the zip file in mode raw, which is faster but does not allow a remote (Erlang)
file server to be used. Adding cooked to the mode list overrides the default and opens the zip file without the
raw option. The same applies for the files added.

verbose

Prints an informational message about each added file.

memory

The output is not to a file, but instead as a tuple {FileName, binary()}. The binary is a full zip archive
with header and can be extracted with, for example, unzip/2.

{comment, Comment}

Adds a comment to the zip archive.

{cwd, CWD}

Uses the specified directory as current work directory (cwd). This is prepended to filenames when adding them,
although not in the zip archive (acting like file:set_cwd/1 in Kernel, but without changing the global
cwd property.).

{compress, What}

Controls what types of files to be compressed. Defaults to all. The following values of What are allowed:

all

All files are compressed (as long as they pass the uncompress condition).

[Extension]

Only files with exactly these extensions are compressed.

{add,[Extension]}

Adds these extensions to the list of compress extensions.

{del,[Extension]}

Deletes these extensions from the list of compress extensions.

{uncompress, What}

Controls what types of files to be uncompressed. Defaults to [".Z", ".zip", ".zoo", ".arc",
".lzh", ".arj"]. The following values of What are allowed:

zip

520 | Ericsson AB. All Rights Reserved.: STDLIB

all

No files are compressed.

[Extension]

Files with these extensions are uncompressed.

{add,[Extension]}

Adds these extensions to the list of uncompress extensions.

{del,[Extension]}

Deletes these extensions from the list of uncompress extensions.

zip_close(ZipHandle) -> ok | {error, einval}
Types:

ZipHandle = handle()
Closes a zip archive, previously opened with zip_open/1,2. All resources are closed, and the handle is not to be
used after closing.

zip_get(ZipHandle) -> {ok, [Result]} | {error, Reason}
zip_get(FileName, ZipHandle) -> {ok, Result} | {error, Reason}
Types:

FileName = file:name()
ZipHandle = handle()
Result = file:name() | {file:name(), binary()}
Reason = term()

Extracts one or all files from an open archive.

The files are unzipped to memory or to file, depending on the options specified to function zip_open/1,2 when
opening the archive.

zip_list_dir(ZipHandle) -> {ok, Result} | {error, Reason}
Types:

Result = [zip_comment() | zip_file()]
ZipHandle = handle()
Reason = term()

Returns the file list of an open zip archive. The first returned element is the zip archive comment.

zip_open(Archive) -> {ok, ZipHandle} | {error, Reason}
zip_open(Archive, Options) -> {ok, ZipHandle} | {error, Reason}
Types:

zip

Ericsson AB. All Rights Reserved.: STDLIB | 521

Archive = file:name() | binary()
ZipHandle = handle()
Options = [Option]
Option = cooked | memory | {cwd, CWD :: file:filename()}
Reason = term()

Opens a zip archive, and reads and saves its directory. This means that later reading files from the archive is faster
than unzipping files one at a time with unzip/1,2.

The archive must be closed with zip_close/1.

The ZipHandle is closed if the process that originally opened the archive dies.

	STDLIB
	STDLIB User's Guide
	Introduction
	Scope
	Prerequisites

	The Erlang I/O Protocol
	Protocol Basics
	Output Requests
	Input Requests
	I/O Server Modes
	Multiple I/O Requests
	Optional I/O Request
	Unimplemented Request Types
	An Annotated and Working Example I/O Server

	Using Unicode in Erlang
	Unicode Implementation
	Understanding Unicode
	What Unicode Is
	Areas of Unicode Support
	Standard Unicode Representation
	Basic Language Support
	Bit Syntax
	String and Character Literals
	Heuristic String Detection

	The Interactive Shell
	Unicode Filenames
	Notes About Raw Filenames
	Notes About MacOS X

	Unicode in Environment and Parameters
	Unicode-Aware Modules
	Unicode Data in Files
	Summary of Options
	Recipes
	Byte Order Marks
	Formatted I/O
	Heuristic Identification of UTF-8
	Lists of UTF-8 Bytes
	Double UTF-8 Encoding

	Reference Manual
	STDLIB
	array
	default/1
	fix/1
	foldl/3
	foldr/3
	from_list/1
	from_list/2
	from_orddict/1
	from_orddict/2
	get/2
	is_array/1
	is_fix/1
	map/2
	new/0
	new/1
	new/2
	relax/1
	reset/2
	resize/1
	resize/2
	set/3
	size/1
	sparse_foldl/3
	sparse_foldr/3
	sparse_map/2
	sparse_size/1
	sparse_to_list/1
	sparse_to_orddict/1
	to_list/1
	to_orddict/1

	assert.hrl.xml
	base64
	decode/1
	decode_to_string/1
	mime_decode/1
	mime_decode_to_string/1
	encode/1
	encode_to_string/1

	beam_lib
	all_chunks/1
	build_module/1
	chunks/2
	chunks/3
	clear_crypto_key_fun/0
	cmp/2
	cmp_dirs/2
	crypto_key_fun/1
	diff_dirs/2
	format_error/1
	info/1
	md5/1
	strip/1
	strip_files/1
	strip_release/1
	version/1

	binary
	at/2
	bin_to_list/1
	bin_to_list/2
	bin_to_list/3
	compile_pattern/1
	copy/1
	copy/2
	decode_unsigned/1
	decode_unsigned/2
	encode_unsigned/1
	encode_unsigned/2
	first/1
	last/1
	list_to_bin/1
	longest_common_prefix/1
	longest_common_suffix/1
	match/2
	match/3
	matches/2
	matches/3
	part/2
	part/3
	referenced_byte_size/1
	replace/3
	replace/4
	split/2
	split/3

	c
	bt/1
	c/1
	c/2
	cd/1
	flush/0
	help/0
	i/0
	ni/0
	i/3
	l/1
	lc/1
	ls/0
	ls/1
	m/0
	m/1
	memory/0
	memory/1
	memory/1
	nc/1
	nc/2
	nl/1
	pid/3
	pwd/0
	q/0
	regs/0
	nregs/0
	uptime/0
	xm/1
	y/1
	y/2

	calendar
	date_to_gregorian_days/1
	date_to_gregorian_days/3
	datetime_to_gregorian_seconds/1
	day_of_the_week/1
	day_of_the_week/3
	gregorian_days_to_date/1
	gregorian_seconds_to_datetime/1
	is_leap_year/1
	iso_week_number/0
	iso_week_number/1
	last_day_of_the_month/2
	local_time/0
	local_time_to_universal_time/1
	local_time_to_universal_time_dst/1
	now_to_datetime/1
	now_to_local_time/1
	now_to_universal_time/1
	seconds_to_daystime/1
	seconds_to_time/1
	time_difference/2
	time_to_seconds/1
	universal_time/0
	universal_time_to_local_time/1
	valid_date/1
	valid_date/3

	dets
	all/0
	bchunk/2
	close/1
	delete/2
	delete_all_objects/1
	delete_object/2
	first/1
	foldl/3
	foldr/3
	from_ets/2
	info/1
	info/2
	init_table/2
	init_table/3
	insert/2
	insert_new/2
	is_compatible_bchunk_format/2
	is_dets_file/1
	lookup/2
	match/1
	match/2
	match/3
	match_delete/2
	match_object/1
	match_object/2
	match_object/3
	member/2
	next/2
	open_file/1
	open_file/2
	pid2name/1
	repair_continuation/2
	safe_fixtable/2
	select/1
	select/2
	select/3
	select_delete/2
	slot/2
	sync/1
	table/1
	table/2
	to_ets/2
	traverse/2
	update_counter/3

	dict
	append/3
	append_list/3
	erase/2
	fetch/2
	fetch_keys/1
	filter/2
	find/2
	fold/3
	from_list/1
	is_empty/1
	is_key/2
	map/2
	merge/3
	new/0
	size/1
	store/3
	to_list/1
	update/3
	update/4
	update_counter/3

	digraph
	add_edge/3
	add_edge/4
	add_edge/5
	add_vertex/1
	add_vertex/2
	add_vertex/3
	del_edge/2
	del_edges/2
	del_path/3
	del_vertex/2
	del_vertices/2
	delete/1
	edge/2
	edges/1
	edges/2
	get_cycle/2
	get_path/3
	get_short_cycle/2
	get_short_path/3
	in_degree/2
	in_edges/2
	in_neighbours/2
	info/1
	new/0
	new/1
	no_edges/1
	no_vertices/1
	out_degree/2
	out_edges/2
	out_neighbours/2
	vertex/2
	vertices/1

	digraph_utils
	arborescence_root/1
	components/1
	condensation/1
	cyclic_strong_components/1
	is_acyclic/1
	is_arborescence/1
	is_tree/1
	loop_vertices/1
	postorder/1
	preorder/1
	reachable/2
	reachable_neighbours/2
	reaching/2
	reaching_neighbours/2
	strong_components/1
	subgraph/2
	subgraph/3
	topsort/1

	epp
	close/1
	default_encoding/0
	encoding_to_string/1
	format_error/1
	open/1
	open/2
	open/3
	parse_erl_form/1
	parse_file/2
	parse_file/3
	read_encoding/1
	read_encoding/2
	read_encoding_from_binary/1
	read_encoding_from_binary/2
	set_encoding/1
	set_encoding/2

	erl_anno
	column/1
	end_location/1
	file/1
	from_term/1
	generated/1
	is_anno/1
	line/1
	location/1
	new/1
	set_file/2
	set_generated/2
	set_line/2
	set_location/2
	set_record/2
	set_text/2
	text/1
	to_term/1

	erl_eval
	add_binding/3
	binding/2
	bindings/1
	del_binding/2
	expr/2
	expr/3
	expr/4
	expr/5
	expr_list/2
	expr_list/3
	expr_list/4
	exprs/2
	exprs/3
	exprs/4
	new_bindings/0

	erl_expand_records
	module/2

	erl_id_trans
	parse_transform/2

	erl_internal
	arith_op/2
	bif/2
	bool_op/2
	comp_op/2
	guard_bif/2
	list_op/2
	op_type/2
	send_op/2
	type_test/2

	erl_lint
	format_error/1
	is_guard_test/1
	module/1
	module/2
	module/3

	erl_parse
	abstract/1
	abstract/2
	anno_from_term/1
	anno_to_term/1
	fold_anno/3
	format_error/1
	map_anno/2
	mapfold_anno/3
	new_anno/1
	normalise/1
	parse_exprs/1
	parse_form/1
	parse_term/1
	tokens/1
	tokens/2

	erl_pp
	attribute/1
	attribute/2
	expr/1
	expr/2
	expr/3
	expr/4
	exprs/1
	exprs/2
	exprs/3
	form/1
	form/2
	function/1
	function/2
	guard/1
	guard/2

	erl_scan
	category/1
	column/1
	end_location/1
	format_error/1
	line/1
	location/1
	reserved_word/1
	string/1
	string/2
	string/3
	symbol/1
	text/1
	tokens/3
	tokens/4

	erl_tar
	add/3
	add/4
	close/1
	create/2
	create/3
	extract/1
	extract/2
	format_error/1
	init/3
	open/2
	table/1
	table/2
	t/1
	tt/1

	ets
	all/0
	delete/1
	delete/2
	delete_all_objects/1
	delete_object/2
	file2tab/1
	file2tab/2
	first/1
	foldl/3
	foldr/3
	from_dets/2
	fun2ms/1
	give_away/3
	i/0
	i/1
	info/1
	info/2
	init_table/2
	insert/2
	insert_new/2
	is_compiled_ms/1
	last/1
	lookup/2
	lookup_element/3
	match/1
	match/2
	match/3
	match_delete/2
	match_object/1
	match_object/2
	match_object/3
	match_spec_compile/1
	match_spec_run/2
	member/2
	new/2
	next/2
	prev/2
	rename/2
	repair_continuation/2
	safe_fixtable/2
	select/1
	select/2
	select/3
	select_count/2
	select_delete/2
	select_reverse/1
	select_reverse/2
	select_reverse/3
	setopts/2
	slot/2
	tab2file/2
	tab2file/3
	tab2list/1
	tabfile_info/1
	table/1
	table/2
	take/2
	test_ms/2
	to_dets/2
	update_counter/3
	update_counter/4
	update_counter/3
	update_counter/4
	update_counter/3
	update_counter/4
	update_element/3
	update_element/3

	file_sorter
	check/1
	check/2
	keycheck/2
	keycheck/3
	keymerge/3
	keymerge/4
	keysort/2
	keysort/3
	keysort/4
	merge/2
	merge/3
	sort/1
	sort/2
	sort/3

	filelib
	ensure_dir/1
	file_size/1
	fold_files/5
	is_dir/1
	is_file/1
	is_regular/1
	last_modified/1
	wildcard/1
	wildcard/2

	filename
	absname/1
	absname/2
	absname_join/2
	basedir/2
	basedir/3
	basename/1
	basename/2
	dirname/1
	extension/1
	find_src/1
	find_src/2
	flatten/1
	join/1
	join/2
	nativename/1
	pathtype/1
	rootname/1
	rootname/2
	split/1

	gb_sets
	add/2
	add_element/2
	balance/1
	del_element/2
	delete/2
	delete_any/2
	difference/2
	empty/0
	filter/2
	fold/3
	from_list/1
	from_ordset/1
	insert/2
	intersection/1
	intersection/2
	is_disjoint/2
	is_element/2
	is_empty/1
	is_member/2
	is_set/1
	is_subset/2
	iterator/1
	iterator_from/2
	largest/1
	new/0
	next/1
	singleton/1
	size/1
	smallest/1
	subtract/2
	take_largest/1
	take_smallest/1
	to_list/1
	union/1
	union/2

	gb_trees
	balance/1
	delete/2
	delete_any/2
	empty/0
	enter/3
	from_orddict/1
	get/2
	insert/3
	is_defined/2
	is_empty/1
	iterator/1
	iterator_from/2
	keys/1
	largest/1
	lookup/2
	map/2
	next/1
	size/1
	smallest/1
	take_largest/1
	take_smallest/1
	to_list/1
	update/3
	values/1

	gen_event
	add_handler/3
	add_sup_handler/3
	call/3
	call/4
	delete_handler/3
	notify/2
	sync_notify/2
	start/0
	start/1
	start_link/0
	start_link/1
	stop/1
	stop/3
	swap_handler/3
	swap_sup_handler/3
	which_handlers/1
	Module:code_change/3
	Module:format_status/2
	Module:handle_call/2
	Module:handle_event/2
	Module:handle_info/2
	Module:init/1
	Module:terminate/2

	gen_fsm
	cancel_timer/1
	enter_loop/4
	enter_loop/5
	enter_loop/5
	enter_loop/6
	reply/2
	send_all_state_event/2
	send_event/2
	send_event_after/2
	start/3
	start/4
	start_link/3
	start_link/4
	start_timer/2
	stop/1
	stop/3
	sync_send_all_state_event/2
	sync_send_all_state_event/3
	sync_send_event/2
	sync_send_event/3
	Module:code_change/4
	Module:format_status/2
	Module:handle_event/3
	Module:handle_info/3
	Module:handle_sync_event/4
	Module:init/1
	Module:StateName/2
	Module:StateName/3
	Module:terminate/3

	gen_server
	abcast/2
	abcast/3
	call/2
	call/3
	cast/2
	enter_loop/3
	enter_loop/4
	enter_loop/4
	enter_loop/5
	multi_call/2
	multi_call/3
	multi_call/4
	reply/2
	start/3
	start/4
	start_link/3
	start_link/4
	stop/1
	stop/3
	Module:code_change/3
	Module:format_status/2
	Module:handle_call/3
	Module:handle_cast/2
	Module:handle_info/2
	Module:init/1
	Module:terminate/2

	gen_statem
	call/2
	call/3
	cast/2
	enter_loop/5
	enter_loop/6
	enter_loop/7
	reply/1
	reply/2
	start/3
	start/4
	start_link/3
	start_link/4
	stop/1
	stop/3
	Module:code_change/4
	Module:init/1
	Module:format_status/2
	Module:StateName/3
	Module:handle_event/4
	Module:terminate/3

	io
	columns/0
	columns/1
	format/1
	format/2
	format/3
	fwrite/1
	fwrite/2
	fwrite/3
	fread/2
	fread/3
	get_chars/2
	get_chars/3
	get_line/1
	get_line/2
	getopts/0
	getopts/1
	nl/0
	nl/1
	parse_erl_exprs/1
	parse_erl_exprs/2
	parse_erl_exprs/3
	parse_erl_exprs/4
	parse_erl_form/1
	parse_erl_form/2
	parse_erl_form/3
	parse_erl_form/4
	printable_range/0
	put_chars/1
	put_chars/2
	read/1
	read/2
	read/3
	read/4
	rows/0
	rows/1
	scan_erl_exprs/1
	scan_erl_exprs/2
	scan_erl_exprs/3
	scan_erl_exprs/4
	scan_erl_form/1
	scan_erl_form/2
	scan_erl_form/3
	scan_erl_form/4
	setopts/1
	setopts/2
	write/1
	write/2

	io_lib
	build_text/1
	char_list/1
	deep_char_list/1
	deep_latin1_char_list/1
	format/2
	fwrite/2
	fread/2
	fread/3
	indentation/2
	latin1_char_list/1
	nl/0
	print/1
	print/4
	printable_latin1_list/1
	printable_list/1
	printable_unicode_list/1
	scan_format/2
	unscan_format/1
	write/1
	write/2
	write_atom/1
	write_char/1
	write_char_as_latin1/1
	write_latin1_char/1
	write_latin1_string/1
	write_string/1
	write_string_as_latin1/1

	lib
	error_message/2
	flush_receive/0
	nonl/1
	progname/0
	send/2
	sendw/2

	lists
	all/2
	any/2
	append/1
	append/2
	concat/1
	delete/2
	droplast/1
	dropwhile/2
	duplicate/2
	filter/2
	filtermap/2
	flatlength/1
	flatmap/2
	flatten/1
	flatten/2
	foldl/3
	foldr/3
	join/2
	foreach/2
	keydelete/3
	keyfind/3
	keymap/3
	keymember/3
	keymerge/3
	keyreplace/4
	keysearch/3
	keysort/2
	keystore/4
	keytake/3
	last/1
	map/2
	mapfoldl/3
	mapfoldr/3
	max/1
	member/2
	merge/1
	merge/2
	merge/3
	merge3/3
	min/1
	nth/2
	nthtail/2
	partition/2
	prefix/2
	reverse/1
	reverse/2
	seq/2
	seq/3
	sort/1
	sort/2
	split/2
	splitwith/2
	sublist/2
	sublist/3
	subtract/2
	suffix/2
	sum/1
	takewhile/2
	ukeymerge/3
	ukeysort/2
	umerge/1
	umerge/2
	umerge/3
	umerge3/3
	unzip/1
	unzip3/1
	usort/1
	usort/2
	zip/2
	zip3/3
	zipwith/3
	zipwith3/4

	log_mf_h
	init/3
	init/4

	maps
	filter/2
	find/2
	fold/3
	from_list/1
	get/2
	get/3
	is_key/2
	keys/1
	map/2
	merge/2
	new/0
	put/3
	remove/2
	size/1
	take/2
	to_list/1
	update/3
	update_with/3
	update_with/4
	values/1
	with/2
	without/2

	math
	acos/1
	acosh/1
	asin/1
	asinh/1
	atan/1
	atan2/2
	atanh/1
	cos/1
	cosh/1
	exp/1
	log/1
	log10/1
	log2/1
	pow/2
	sin/1
	sinh/1
	sqrt/1
	tan/1
	tanh/1
	erf/1
	erfc/1
	pi/0

	ms_transform
	format_error/1
	parse_transform/2
	transform_from_shell/3

	orddict
	append/3
	append_list/3
	erase/2
	fetch/2
	fetch_keys/1
	filter/2
	find/2
	fold/3
	from_list/1
	is_empty/1
	is_key/2
	map/2
	merge/3
	new/0
	size/1
	store/3
	to_list/1
	update/3
	update/4
	update_counter/3

	ordsets
	add_element/2
	del_element/2
	filter/2
	fold/3
	from_list/1
	intersection/1
	intersection/2
	is_disjoint/2
	is_element/2
	is_set/1
	is_subset/2
	new/0
	size/1
	subtract/2
	to_list/1
	union/1
	union/2

	pool
	attach/1
	get_node/0
	get_nodes/0
	pspawn/3
	pspawn_link/3
	start/1
	start/2
	stop/0

	proc_lib
	format/1
	format/2
	format/3
	hibernate/3
	init_ack/1
	init_ack/2
	initial_call/1
	spawn/1
	spawn/2
	spawn/3
	spawn/4
	spawn_link/1
	spawn_link/2
	spawn_link/3
	spawn_link/4
	spawn_opt/2
	spawn_opt/3
	spawn_opt/4
	spawn_opt/5
	start/3
	start/4
	start/5
	start_link/3
	start_link/4
	start_link/5
	stop/1
	stop/3
	translate_initial_call/1

	proplists
	append_values/2
	compact/1
	delete/2
	expand/2
	get_all_values/2
	get_bool/2
	get_keys/1
	get_value/2
	get_value/3
	is_defined/2
	lookup/2
	lookup_all/2
	normalize/2
	property/1
	property/2
	split/2
	substitute_aliases/2
	substitute_negations/2
	unfold/1

	qlc
	append/1
	append/2
	cursor/1
	cursor/2
	delete_cursor/1
	e/1
	e/2
	eval/1
	eval/2
	fold/3
	fold/4
	format_error/1
	info/1
	info/2
	keysort/2
	keysort/3
	next_answers/1
	next_answers/2
	q/1
	q/2
	sort/1
	sort/2
	string_to_handle/1
	string_to_handle/2
	string_to_handle/3
	table/2

	queue
	filter/2
	from_list/1
	in/2
	in_r/2
	is_empty/1
	is_queue/1
	join/2
	len/1
	member/2
	new/0
	out/1
	out_r/1
	reverse/1
	split/2
	to_list/1
	drop/1
	drop_r/1
	get/1
	get_r/1
	peek/1
	peek_r/1
	cons/2
	daeh/1
	head/1
	init/1
	lait/1
	last/1
	liat/1
	snoc/2
	tail/1

	rand
	export_seed/0
	export_seed_s/1
	normal/0
	normal_s/1
	seed/1
	seed/2
	seed_s/1
	seed_s/2
	uniform/0
	uniform/1
	uniform_s/1
	uniform_s/2

	random
	seed/0
	seed/1
	seed/3
	seed0/0
	uniform/0
	uniform/1
	uniform_s/1
	uniform_s/2

	re
	compile/1
	compile/2
	inspect/2
	replace/3
	replace/4
	run/2
	run/3
	split/2
	split/3

	sets
	add_element/2
	del_element/2
	filter/2
	fold/3
	from_list/1
	intersection/1
	intersection/2
	is_disjoint/2
	is_element/2
	is_set/1
	is_subset/2
	new/0
	size/1
	subtract/2
	to_list/1
	union/1
	union/2

	shell
	catch_exception/1
	history/1
	prompt_func/1
	results/1
	start_restricted/1
	stop_restricted/0
	strings/1

	shell_default
	slave
	pseudo/1
	pseudo/2
	relay/1
	start/1
	start/2
	start/3
	start_link/1
	start_link/2
	start_link/3
	stop/1

	sofs
	a_function/1
	a_function/2
	canonical_relation/1
	composite/2
	constant_function/2
	converse/1
	difference/2
	digraph_to_family/1
	digraph_to_family/2
	domain/1
	drestriction/2
	drestriction/3
	empty_set/0
	extension/3
	family/1
	family/2
	family_difference/2
	family_domain/1
	family_field/1
	family_intersection/1
	family_intersection/2
	family_projection/2
	family_range/1
	family_specification/2
	family_to_digraph/1
	family_to_digraph/2
	family_to_relation/1
	family_union/1
	family_union/2
	field/1
	from_external/2
	from_sets/1
	from_sets/1
	from_term/1
	from_term/2
	image/2
	intersection/1
	intersection/2
	intersection_of_family/1
	inverse/1
	inverse_image/2
	is_a_function/1
	is_disjoint/2
	is_empty_set/1
	is_equal/2
	is_set/1
	is_sofs_set/1
	is_subset/2
	is_type/1
	join/4
	multiple_relative_product/2
	no_elements/1
	partition/1
	partition/2
	partition/3
	partition_family/2
	product/1
	product/2
	projection/2
	range/1
	relation/1
	relation/2
	relation_to_family/1
	relative_product/1
	relative_product/2
	relative_product/2
	relative_product1/2
	restriction/2
	restriction/3
	set/1
	set/2
	specification/2
	strict_relation/1
	substitution/2
	symdiff/2
	symmetric_partition/2
	to_external/1
	to_sets/1
	type/1
	union/1
	union/2
	union_of_family/1
	weak_relation/1

	string
	centre/2
	centre/3
	chars/2
	chars/3
	chr/2
	concat/2
	copies/2
	cspan/2
	equal/2
	join/2
	left/2
	left/3
	len/1
	rchr/2
	right/2
	right/3
	rstr/2
	span/2
	str/2
	strip/1
	strip/2
	strip/3
	sub_string/2
	sub_string/3
	substr/2
	substr/3
	sub_word/2
	sub_word/3
	to_float/1
	to_integer/1
	to_lower/1
	to_lower/1
	to_upper/1
	to_upper/1
	tokens/2
	words/1
	words/2

	supervisor
	check_childspecs/1
	count_children/1
	delete_child/2
	get_childspec/2
	restart_child/2
	start_child/2
	start_link/2
	start_link/3
	terminate_child/2
	which_children/1
	Module:init/1

	supervisor_bridge
	start_link/2
	start_link/3
	Module:init/1
	Module:terminate/2

	sys
	change_code/4
	change_code/5
	get_state/1
	get_state/2
	get_status/1
	get_status/2
	install/2
	install/3
	log/2
	log/3
	log_to_file/2
	log_to_file/3
	no_debug/1
	no_debug/2
	remove/2
	remove/3
	replace_state/2
	replace_state/3
	resume/1
	resume/2
	statistics/2
	statistics/3
	suspend/1
	suspend/2
	terminate/2
	terminate/3
	trace/2
	trace/3
	debug_options/1
	get_debug/3
	handle_debug/4
	handle_system_msg/6
	print_log/1
	Module:system_code_change/4
	Module:system_continue/3
	Module:system_get_state/1
	Module:system_replace_state/2
	Module:system_terminate/4

	timer
	apply_after/4
	apply_interval/4
	cancel/1
	exit_after/2
	exit_after/3
	hms/3
	hours/1
	kill_after/1
	kill_after/2
	minutes/1
	now_diff/2
	seconds/1
	send_after/2
	send_after/3
	send_interval/2
	send_interval/3
	sleep/1
	start/0
	tc/1
	tc/2
	tc/3

	unicode
	bom_to_encoding/1
	characters_to_binary/1
	characters_to_binary/2
	characters_to_binary/3
	characters_to_list/1
	characters_to_list/2
	encoding_to_bom/1

	win32reg
	change_key/2
	change_key_create/2
	close/1
	current_key/1
	delete_key/1
	delete_value/2
	expand/1
	format_error/1
	open/1
	set_value/3
	sub_keys/1
	value/2
	values/1

	zip
	foldl/3
	list_dir/1
	list_dir/2
	table/1
	table/2
	t/1
	tt/1
	unzip/1
	unzip/2
	extract/1
	extract/2
	zip/2
	zip/3
	create/2
	create/3
	zip_close/1
	zip_get/1
	zip_get/2
	zip_list_dir/1
	zip_open/1
	zip_open/2

