| v

ERLANG

STDLIB

Copyright © 1997-2016 Ericsson AB. All Rights Reserved.
STDLIB 3.0
June 21, 2016

Copyright © 1997-2016 Ericsson AB. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance
with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless
required by applicable law or agreed to in writing, software distributed under the License is distributed on an
"AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See

the License for the specific language governing permissions and limitations under the License. Ericsson AB. All
Rights Reserved..

June 21, 2016

Ericsson AB. All Rights Reserved.: STDLIB | 1

1.1 Introduction

1 STDLIB User's Guide

1.1 Introduction

1.1.1 Scope

The Standard Erlang Libraries application, STDLIB, is mandatory in the sense that the minimal system based on
Erlang/OTP consists of STDLIB and Kernel.

STDLIB contains the following functional areas:

* Erlang shell

e Command interface

* Query interface

e Interfaceto standard Erlang /O servers

» Interfaceto the Erlang built-in term storage BIFs

* Regular expression matching functions for strings and binaries
* Finite state machine

* Event handling

* Functionsfor the server of aclient-server relation

* Function to control applicationsin a distributed manner

e Start and control of slave nodes

» Operations on finite sets and relations represented as sets
e Library for handling binary data

e Disk-based term storage

e Listprocessing

e Mapsprocessing

1.1.2 Prerequisites
It is assumed that the reader is familiar with the Erlang programming language.

1.2 The Erlang I/O Protocol

The /O protocol in Erlang enables bi-directional communication between clients and servers.

» Thel/O serverisaprocessthat handlesthe requests and performsthe requested task on, for example, an /O device.
* Theclient isany Erlang process wishing to read or write data from/to the 1/O device.

The common 1/O protocol has been present in OTP since the beginning, but has been undocumented and has also
evolved over the years. In an addendum to Robert Virding's rationale, the original 1/0 protocol is described. This
section describes the current 1/O protocol.

Theoriginal I/0O protocol was simple and flexible. Demands for memory efficiency and execution time efficiency have
triggered extensions to the protocol over the years, making the protocol larger and somewhat less easy to implement
than the original. It can certainly be argued that the current protocol is too complex, but this section describes how
it looks today, not how it should have looked.

2 | Ericsson AB. All Rights Reserved.: STDLIB

1.2 The Erlang I/O Protocol

The basic ideas from the original protocol still hold. The 1/0 server and client communicate with one single, rather
simplistic protocol and no server state is ever present in the client. Any /O server can be used together with any client
code, and the client code does not need to be aware of the I/O device that the 1/0O server communicates with.

1.2.1 Protocol Basics

As described in Robert's paper, 1/0 servers and clients communicate using i o_r equest /i o_repl y tuples as
follows:

{io request, From, ReplyAs, Request}
{io reply, ReplyAs, Reply}

Theclientsendsani o_r equest tupletothel/O server and the server eventually sendsacorrespondingi o_r epl y
tuple.
 Fromisthepi d() of theclient, the process which the 1/0O server sendsthe /O reply to.

* Repl yAs can be any datum and is returned in the corresponding i o_r epl y. Thei o module monitors the the
I/0O server and uses the monitor reference as the Repl yAs datum. A more complicated client can have many
outstanding 1/0 regueststo the same /O server and can use different references (or something else) to differentiate
among the incoming 1/0 replies. Element Repl y As isto be considered opaque by the 1/O server.

Noticethat the pi d() of thel/O server isnot explicitly present intuplei o_r epl y. The reply can be sent from
any process, not necessarily the actual 1/0 server.
* Request and Repl y are described below.

When an 1/O server receives an i o_r equest tuple, it acts upon the Request part and eventually sends an
i o_reply tuplewith the corresponding Repl y part.

1.2.2 Output Requests

To output characters on an I/O device, the following Request sexist:

{put_chars, Encoding, Characters}
{put_chars, Encoding, Module, Function, Args}

e Encodi ngisuni code orl ati n1, meaning that the characters are (in case of binaries) encoded as UTF-8 or
SO Latin-1 (pure bytes). A well-behaved 1/0 server is also to return an error indication if list elements contain
integers > 255 when Encodi ng issettol at i nl.

Notice that this does not in any way tell how characters are to be put on the 1/0O device or handled by the 1/0O
server. Different 1/O servers can handle the characters however they want, this only tells the I/O server which
format the data is expected to have. In the Modul e/Funct i on/Ar gs case, Encodi ng tells which format the
designated function produces.

Notice also that byte-oriented datais simplest sent using the 1SO Latin-1 encoding.

e Characters are the data to be put on the I/O device. If Encodi ng isl ati nl, thisisaniolist().If
Encodi ng is uni code, this is an Erlang standard mixed Unicode list (one integer in a list per character,
charactersin binaries represented as UTF-8).

e Mbodul e,Functi on, and Ar gs denoteafunction that iscalled to producethedata(likei o_I i b: f or mat / 2).

Ar gs isalist of arguments to the function. The function is to produce data in the specified Encodi ng. The I/
O server isto cdl the function asappl y(Mod, Func, Args) and put the returned data on the I/O device as

Ericsson AB. All Rights Reserved.: STDLIB | 3

1.2 The Erlang I/O Protocol

ifitwassentina{put _chars, Encodi ng, Characters} request. If the function returns anything else
than abinary or list, or throws an exception, an error isto be sent back to the client.

The /O server repliesto the client withani o_r epl y tuple, where element Repl y isone of:

ok

{error, Error}

Er r or describesthe error to the client, which can do whatever it wantswith it. Thei o module typically
returnsit "asis".

For backward compatibility, the following Request s are also to be handled by an /O server (they are not to be
present after Erlang/OTP R15B):

{put_chars, Characters}
{put _chars, Module, Function, Args}

These areto behave as { put _chars, latinl, Characters} and{put_chars, latinl, Mbodule,
Functi on, Args}, respectively.

1.2.3 Input Requests

To read characters from an I/O device, the following Request sexist:

{get until, Encoding, Prompt, Module, Function, ExtraArgs}

Encodi ng denotes how data is to be sent back to the client and what data is sent to the function denoted by
Modul e/Funct i on/Ext r aAr gs. If the function supplied returns data as a list, the data is converted to this
encoding. If the function supplied returns data in some other format, no conversion can be done, and it is up to
the client-supplied function to return datain a proper way.

If Encodi ngisl ati nl, listsof integers 0. . 255 or binaries containing plain bytes are sent back to the client
when possible. If Encodi ng isuni code, listswith integers in the whole Unicode range or binaries encoded in
UTF-8 are sent to the client. The user-supplied function always sees lists of integers, never binaries, but the list
can contain numbers > 255 if Encodi ng isuni code.

Pr onpt isalist of characters (not mixed, no binaries) or an atom to be output as a prompt for input on the I/0O
device. Pr onpt isoftenignored by the /O server; if setto' ', it isalwaysto beignored (and results in nothing
being written to the 1/0 device).

Modul e, Functi on, and Ext r aAr gs denote a function and arguments to determine when enough data is
written. The function is to take two more arguments, the last state, and a list of characters. The function is to
return one of:

{done, Result, RestChars}
{more, Continuation}

Resul t canbeany Erlangterm, butifitisal i st () ,thel/O server canconvertittoabi nar y() of appropriate
format before returning it to the client, if the 1/0O server is set in binary mode (see below).

The function is called with the data the I/O server finds on its 1/0O device, returning one of:

4 | Ericsson AB. All Rights Reserved.: STDLIB

1.2 The Erlang I/O Protocol

e {done, Result, RestChars} whenenoughdataisread. InthiscaseResul t issent totheclient and
Rest Char s iskept inthe I/O server as a buffer for later input.

« {nore, Continuation},whichindicatesthat more characters are needed to complete the request.

Cont i nuati on issent as the state in later calls to the function when more characters are available. When no
more characters are available, the function must return { done, eof, Rest}. Theinitia state isthe empty
list. The data when an end of fileisreached on the |O device is the atom eof .

An emulation of theget | i ne request can be (inefficiently) implemented using the following functions:

-module(demo) .
-export([until newline/3, get line/1]).

until newline(ThisFar,eof, MyStopCharacter) ->
{done,eof,[]};
until newline(ThisFar,CharList,MyStopCharacter) ->
case
lists:splitwith(fun(X) -> X =/= MyStopCharacter end, CharlList)
of
{L,[1} ->
{more,ThisFar++L};
{L2, [MyStopCharacter|Rest]} ->
{done, ThisFar++L2++[MyStopCharacter],Rest}
end.

get line(IoServer) ->
IoServer ! {io request,

self(),
IoServer,
{get until, unicode, '', ?MODULE, until newline, [$\n]}},
receive
{io_reply, IoServer, Data} ->
Data
end.

Notice that the last element in the Request tuple ([$\ n]) is appended to the argument list when the functionis
called. Thefunctionistobecalledlikeappl y(Modul e, Function, [State, Data | ExtraArgs])
by the 1/O server.

A fixed number of charactersis requested using the following Request :
{get chars, Encoding, Prompt, N}

e Encodi ng and Pronpt asforget _until.
e Nisthe number of charactersto be read from the 1/O device.

A singleline (asin former example) is requested with the following Request :
{get line, Encoding, Prompt}

e Encodi ng and Pronpt asforget _until.

Clearly, get _chars and get _| i ne could be implemented with the get _unt i | request (and indeed they were
originally), but demands for efficiency have made these additions necessary.

Ericsson AB. All Rights Reserved.: STDLIB | 5

1.2 The Erlang I/O Protocol

The /O server repliesto theclient withani o_r epl y tuple, where element Repl y isone of:

Data
eof
{error, Error}

» Dat aisthecharactersread, in list or binary form (depending on the 1/O server mode, see the next section).

» eof isreturned when input end is reached and no more data is available to the client process.

e Error describesthe error to the client, which can do whatever it wantswith it. Thei o module typically returns
itasis.

For backward compatibility, the following Request s are also to be handled by an /O server (they are not to be

present after Erlang/OTP R15B):

{get until, Prompt, Module, Function, ExtraArgs}
{get chars, Prompt, N}
{get line, Prompt}

These are to behave as {get _until, latinl, Pronpt, Mdule, Function, ExtraArgs},
{get _chars, latinl, Pronpt, N},and{get _line, latinl, Pronpt},respectively.

1.2.4 1/0O Server Modes

Demands for efficiency when reading data from an 1/O server has not only lead to the addition of theget | i ne and
get _char s requests, but has also added the concept of 1/0 server options. No options are mandatory to implement,
but al 1/O servers in the Erlang standard libraries honor the bi nar y option, which allows element Dat a of the
i 0_reply tupleto be abinary instead of alist when possible. If the data is sent as a binary, Unicode data is sent
in the standard Erlang Unicode format, that is, UTF-8 (notice that the function of theget _unti | request till gets
list data regardless of the 1/0O server mode).

Notice that the get _unti | request alows for a function with the data specified as always being a list. Also, the
return value data from such afunction can be of any type (asisindeed the casewhen ani o: f r ead/ 2, 3 request is
senttoan 1/0 server). The client must be prepared for datareceived as answersto those requeststo bein variousforms.
However, the I/O server isto convert the results to binaries whenever possible (that is, when the function supplied to
get _until returnsalist). Thisisdonein the examplein section An Annotated and Working Example /O Server.

An |/O server in binary mode affects the data sent to the client, so that it must be able to handle binary data. For
convenience, the modes of an /O server can be set and retrieved using the following I/O requests:

{setopts, Opts}

e Optsisalist of optionsin the format recognized by the pr opl i st s module (and by the 1/0 server).
Asan example, the I/O server for the interactive shell (in gr oup. er |) understands the following options:

{binary, boolean()} (or binary/list)

{echo, boolean()}

{expand fun, fun()}

{encoding, unicode/latinl} (or unicode/latinl)

6 | Ericsson AB. All Rights Reserved.: STDLIB

1.2 The Erlang I/O Protocol

Options bi nary and encodi ng are common for al 1/0 serversin OTP, while echo and expand are valid only
for this1/O server. Option uni code notifies how characters are put on the physical 1/0 device, that is, if the terminal
itself is Unicode-aware. It does not affect how characters are sent in the 1/O protocol, where each request contains
encoding information for the provided or returned data.

The /O server isto send one of the following as Repl y:

ok
{error, Error}

An error (preferably enot sup) is to be expected if the option is not supported by the I/O server (like if an echo
optionissentinaset opt s request to aplainfile).

To retrieve options, the following request is used:

getopts

This regquest asks for acomplete list of al options supported by the I/O server as well as their current values.

The l/O server replies:

OptList
{error, Error}

e OptlList isalist of tuples{ Opt i on, Val ue}, where Opti on awaysisan atom.

1.2.5 Multiple I/O Requests

The Request element can initself contain many Request s by using the following format:

{requests, Requests}

« Requestsisalistof vaidi o_request tuplesfor the protocol. They must be executed in the order that
they appear in the list. The execution isto continue until one of the requests resultsin an error or thelist is
consumed. The result of the last request is sent back to the client.

Thel/O server can, for alist of requests, send any of the following valid resultsin the reply, depending on the requests
inthelist:

ok

{ok, Data}
{ok, Options}
{error, Error}

1.2.6 Optional I/O Request

Thefollowing I/O request is optional to implement and a client isto be prepared for an error return;

Ericsson AB. All Rights Reserved.: STDLIB | 7

1.2 The Erlang I/O Protocol

{get geometry, Geometry}

e Ceonetry istheatomr ows or theatom col umms.
The l/O server isto send the Repl y as:

{ok, N}
{error, Error}

* Nisthe number of character rows or columns that the 1/O device has, if applicable to the 1/O device handled by
the 1/O server, otherwise{ er r or, enot sup} isagood answer.

1.2.7 Unimplemented Request Types

If an 1/O server encounters a request that it does not recognize (that is, thei o_r equest tuple has the expected
format, but the Request isunknown), the I/O server isto send avalid reply with the error tuple:

{error, request}

This makes it possible to extend the protocol with optional requests and for the clients to be somewhat backward
compatible.

1.2.8 An Annotated and Working Example 1/O Server

An 1/O server is any process capable of handling the I/O protocol. Thereis no generic 1/0 server behavior, but could
well be. The framework is simple, a process handling incoming requests, usualy both 1/0O-requests and other 1/0
device-specific requests (positioning, closing, and so on).

The example I/O server stores charactersin an ETS table, making up afairly crude RAM file.
The module begins with the usual directives, afunction to start the 1/0 server and a main loop handling the requests:

-module(ets io server).
-export([start link/0, init/0, loop/1, until newline/3, until enough/3]).
-define(CHARS PER REC, 10).

-record(state, {
table,
position, % absolute
mode % binary | list

}.

start link() ->
spawn_link(?MODULE,init,[]).

init() ->
Table = ets:new(noname, [ordered set]),
?MODULE: loop (#state{table = Table, position = 0, mode=list}).

loop(State) ->
receive
{io_request, From, ReplyAs, Request} ->
case request(Request,State) of
{Tag, Reply, NewState} when Tag =:= ok; Tag =:= error ->

8 | Ericsson AB. All Rights Reserved.: STDLIB

1.2 The Erlang I/O Protocol

reply(From, ReplyAs, Reply),
?MODULE: loop (NewState) ;
{stop, Reply, NewState} ->
reply(From, ReplyAs, Reply),
exit(Reply)
end;
%% Private message
{From, rewind} ->
From ! {self(), ok},
?MODULE: loop(State#state{position = 0});
_Unknown ->
?MODULE: loop(State)
end.

The main loop receives messages from the client (which can usethethei o moduleto send requests). For each request,
thefunction r equest / 2 iscalled and areply is eventually sent using functionr epl y/ 3.

The "private" message { From rewi nd} results in the current position in the pseudo-file to be reset to 0 (the
beginning of the "file"). Thisis atypical example of 1/O device-specific messages not being part of the 1/O protocol.
It isusually abad ideato embed such private messagesini o_r equest tuples, asthat can confuse the reader.

First, we examine the reply function:

reply(From, ReplyAs, Reply) ->
From ! {io reply, ReplyAs, Reply}.

It sendsthei o_repl y tuple back to the client, providing element Repl y As received in the request along with the
result of the request, as described earlier.

We need to handle some requests. First the requests for writing characters:

request({put _chars, Encoding, Chars}, State) ->
put chars(unicode:characters to list(Chars,Encoding),State);
request({put _chars, Encoding, Module, Function, Args}, State) ->
try
request({put _chars, Encoding, apply(Module, Function, Args)}, State)
catch
—" ->
{error, {error,Function}, State}
end;

The Encodi ng says how the characters in the request are represented. We want to store the characters as lists in
the ETS table, so we convert them to lists using function uni code: characters_to | i st/ 2. The conversion
function conveniently accepts the encoding typesuni code and| at i n1, so wecan use Encodi ng directly.

When Modul e, Functi on, and Ar gunent s are provided, we apply it and do the same with the result as if the
data was provided directly.

We handle the requests for retrieving data:

request({get until, Encoding, Prompt, M, F, As}, State) ->
get until(Encoding, M, F, As, State);
request({get chars, Encoding, Prompt, N}, State) ->
%% To simplify the code, get chars is implemented using get until
get until(Encoding, ?MODULE, until enough, [N], State);
request({get line, Encoding, Prompt}, State) ->
%% To simplify the code, get line is implemented using get until

Ericsson AB. All Rights Reserved.: STDLIB | 9

1.2 The Erlang I/O Protocol

get until(Encoding, ?MODULE, until newline, [$\n], State);

Herewe have cheated alittle by more or lessonly implementingget _unt i | and using internal hel persto implement
get _chars and get _I i ne. In production code, this can be inefficient, but that depends on the frequency of the
different requests. Before we start implementing functionsput _char s/ 2 andget _unti | /5, weexaminethefew
remaining requests:

request({get geometry, }, State) ->
{error, {error,enotsup}, State};
request ({setopts, Opts}, State) ->
setopts(Opts, State);
request(getopts, State) ->
getopts(State);
request({requests, Regs}, State) ->
multi request(Reqgs, {ok, ok, State});

Request get _geonet r y hasno meaning for this1/O server, sothereplyis{ err or, enot sup}.Theonly option
we handleisbi nar y/l i st, whichisdonein separate functions.

The multi-request tag (r equest s) is handled in a separate loop function applying the requests in the list one after
another, returning the last result.

We need to handle backward compatibility and the fi | e module (which uses the old requests until backward
compatibility with pre-R13 nodes is no longer needed). Notice that the 1/0O server does not work with a simple
file:witel2if thesearenot added:

request({put chars,Chars}, State) ->

request({put chars,latinl,Chars}, State);
request({put chars,M,F,As}, State) ->

request({put chars,latinl,M,F,As}, State);
request({get chars,Prompt,N}, State) ->

request({get chars,latinl,Prompt,N}, State);
request({get line,Prompt}, State) ->

request({get line,latinl,Prompt}, State);
request({get until, Prompt,M,F,As}, State) ->

request({get until,latinl,Prompt,M,F,As}, State);

{error, request} must bereturned if the request is not recognized:

request(Other, State) ->
{error, {error, request}, State}.

Next we handle the different requests, first the fairly generic multi-request type:

multi request([R|Rs], {ok, Res, State}) ->
multi request(Rs, request(R, State));
multi request([| 1, Error) ->
Error;
multi request([], Result) ->
Result.

10 | Ericsson AB. All Rights Reserved.: STDLIB

1.2 The Erlang I/O Protocol

We loop through the requests one at the time, stopping when we either encounter an error or the list is exhausted.
The last return value is sent back to the client (it is first returned to the main loop and then sent back by function

io_reply).
Requests get opt s and set opt s are also ssimpleto handle. We only change or read the state record:

setopts(Opts0Q,State) ->
Opts = proplists:unfold(
proplists:substitute negations(
[{list,binary}],
Opts0))
case check valid opts(Opts) of
true ->
case proplists:get value(binary, Opts) of
true ->
{ok,ok,State#state{mode=binary}};
false ->
{ok,ok,State#state{mode=binary}};
->
{ok,ok,State}
end;
false ->
{error, {error,enotsup},State}
end.
check valid opts([]) ->
true;
check valid opts([{binary,Bool}|T]) when is boolean(Bool) ->
check valid opts(T);
check valid opts() ->
false.

getopts(#state{mode=M} = S) ->
{ok, [{binary, case M of
binary ->
true;
7—>
false
end}],S}.

As a convention, al /O servers handle both {set opt s, [binary]}, {setopts, [list]}, and
{setopts,[{binary, boolean()}]}, hencethetrick withpropli sts: substitute_negations/2
and proplists:unfol d/1.Ifinvalid optionsare sent to us, wesend{ error, enotsup} back to theclient.

Request get opt s istoreturnalist of { Opt i on, Val ue} tuples. This has the twofold function of providing both
the current values and the available options of this1/0O server. We have only one option, and hence return that.

So far this I/O server is fairly generic (except for request r ewi nd handled in the main loop and the creation of an
ETStable). Most I/O servers contain code similar to this one.

To make the example runnable, we start implementing the reading and writing of the datato/from the ETS table. First
function put _char s/ 3:

put chars(Chars, #state{table = T, position = P} = State) ->
R = P div ?CHARS PER REC,
C = P rem ?CHARS PER REC,
[apply update(T,U) || U <- split data(Chars, R, C) 1,
{ok, ok, State#state{position = (P + length(Chars))}}.

Ericsson AB. All Rights Reserved.: STDLIB | 11

1.2 The Erlang I/O Protocol

We aready have the data as (Unicode) lists and therefore only split the list in runs of a predefined size and put
each run in the table at the current position (and forward). Functionsspl i t _dat a/ 3 andappl y_updat e/ 2 are
implemented below.

Now we want to read data from the table. Function get _unt i | / 5 reads data and applies the function until it says
that it is done. The result is sent back to the client:

get until(Encoding, Mod, Func, As,
#state{position = P, mode = M, table = T} = State) ->
case get loop(Mod,Func,As,T,P,[]) of
{done,Data, ,NewP} when is binary(Data); is list(Data) ->
if
M =:= binary ->
{Okl
unicode:characters to binary(Data, unicode, Encoding),
State#state{position = NewP}};
true ->
case check(Encoding,
unicode:characters to list(Data, unicode))
of
{error, } =E ->
{error, E, State};
List ->
{ok, List,
State#state{position = NewP}}
end
end;
{done,Data, ,NewP} ->
{ok, Data, State#state{position = NewP}};
Error ->
{error, Error, State}
end.

get loop(M,F,A, T,P,C) ->
{NewP,L} = get(P,T),
case catch apply(M,F,[C,L|A]) of
{done, List, Rest} ->
{done, List, [], NewP - length(Rest)};
{more, NewC} ->
get loop(M,F,A,T,NewP,NewC);
->
{error,F}
end.

Herewealso handlethemode (bi nary orl i st) that canbeset by request set opt s. By default, all OTP1/O servers
send data back to the client as lists, but switching mode to bi nar y can increase efficiency if the I/O server handles
it in an appropriate way. The implementation of get _unt i | isdifficult to get efficient, as the supplied function is
defined to take lists as arguments, but get _char s and get _| i ne can be optimized for binary mode. However,
this example does not optimize anything.

It is important though that the returned datais of the correct type depending on the options set. We therefore convert
the lists to binaries in the correct encoding if possible before returning. The function supplied in the get _unt i |

request tuple can, asitsfinal result return anything, so only functions returning lists can get them converted to binaries.
If the request contains encoding tag uni code, thelists can contain al Unicode code points and the binaries are to be
inUTF-8. If theencodingtagisl at i nl,theclientisonly to get charactersintherangeO. . 255. Functioncheck/ 2
takes care of not returning arbitrary Unicode code points in lists if the encoding was specified as| ati nl. If the
function does not return alist, the check cannot be performed and the result is that of the supplied function untouched.

To manipulate the table we implement the following utility functions:

12 | Ericsson AB. All Rights Reserved.: STDLIB

1.2 The Erlang I/O Protocol

check(unicode, List) ->
List;

check(latinl, List) ->
try

[throw(not unicode) || X <- List,

X > 255],

List
catch

throw: ->

{error, {cannot convert, unicode, latinl}}

end.

The function check provides an error tuple if Unicode code points > 255 are to be returned if the client requested
latinl.

The two functions until _new ine/3 and until_enough/ 3 are helpers used together with function
get _until/5toimplement get _chars andget _I i ne (inefficiently):

until newline([],eof, MyStopCharacter) ->
{done,eof,[]};
until newline(ThisFar,eof, MyStopCharacter) ->
{done, ThisFar, [1};
until newline(ThisFar,CharList,MyStopCharacter) ->
case
lists:splitwith(fun(X) -> X =/= MyStopCharacter end, CharList)
of
{L,[1} ->
{more,ThisFar++L};
{L2, [MyStopCharacter|Rest]} ->
{done, ThisFar++L2++[MyStopCharacter],Rest}
end.

until enough([],eof, N) ->
{done,eof,[]};

until enough(ThisFar,eof, N) ->
{done, ThisFar, [1};

until enough(ThisFar,CharList,N)

when length(ThisFar) + length(CharList) >= N ->

{Res,Rest} = my split(N,ThisFar ++ CharList, []),
{done,Res,Rest};

until enough(ThisFar,CharList, N) ->
{more,ThisFar++CharList}.

As can be seen, the functions above are just the type of functions that areto be providedinget _unt i | requests.
To complete the I/O server, we only need to read and write the table in an appropriate way:

get(P,Tab) ->
R = P div ?CHARS PER REC,
C = P rem ?CHARS PER REC,
case ets:lookup(Tab,R) of
[1 ->
{P,eof};
[{R,List}] ->
case my split(C,List,[]) of

{.,[1} ->
{P+length(List),eof};
{ ,Data} ->

{P+length(Data),Data}

Ericsson AB. All Rights Reserved.: STDLIB | 13

1.3 Using Unicode in Erlang

end
end.

my split(0,Left,Acc) ->
{lists:reverse(Acc),Left};
my split(,[],Acc) ->
{lists:reverse(Acc),[]1};
my split(N,[H|T],Acc) ->
my split(N-1,T,[H|Acc]).

split data([], ,) ->
[1;

split data(Chars, Row, Col) ->
{This,Left} = my split(?CHARS PER REC - Col, Chars, [1),
[{Row, Col, This} | split data(Left, Row + 1, 0) 1.

apply update(Table, {Row, Col, List}) ->
case ets:lookup(Table,Row) of
[1 ->
ets:insert(Table, {Row, lists:duplicate(Col,0) ++ List});
[{Row, OldData}] ->

{Partl, } = my split(Col,0ldData,[]),

{ ,Part2} = my split(Col+length(List),0ldData,[]),
ets:insert(Table, {Row, Partl ++ List ++ Part2})
end.

The table is read or written in chunks of 2CHARS PER REC, overwriting when necessary. The implementation is
clearly not efficient, it is just working.

This concludes the example. It isfully runnable and you can read or write to the 1/O server by using, for example, the
i 0 module or eventhef i | e module. Itisassimple asthat to implement afully fledged I/O server in Erlang.

1.3 Using Unicode in Erlang

1.3.1 Unicode Implementation

Implementing support for Unicode character setsis an ongoing process. The Erlang Enhancement Proposal (EEP) 10
outlined the basics of Unicode support and specified a default encoding in binaries that all Unicode-aware modules
areto handlein the future.

Hereis an overview what has been done so far:

» Thefunctionality described in EEP10 was implemented in Erlang/OTP R13A.

* Erlang/OTP R14B01 added support for Unicode filenames, but it was not complete and was by default disabled
on platforms where no guarantee was given for the filename encoding.

e With Erlang/OTP R16A came support for UTF-8 encoded source code, with enhancements to many of
the applications to support both Unicode encoded filenames and support for UTF-8 encoded files in many
circumstances. Most notableisthe support for UTF-8infilesreadby f i | e: consul t/ 1, release handler support
for UTF-8, and more support for Unicode character setsin the I/O system.

* InErlang/OTP 17.0, the encoding default for Erlang source files was switched to UTF-8.

This section outlines the current Unicode support and gives some recipes for working with Unicode data.

1.3.2 Understanding Unicode

Experience with the Unicode support in Erlang has made it clear that understanding Unicode characters and encodings
isnot as easy as one would expect. The complexity of the field and the implications of the standard require thorough
understanding of concepts rarely before thought of.

14 | Ericsson AB. All Rights Reserved.: STDLIB

1.3 Using Unicode in Erlang

Also, the Erlang implementation requires understanding of concepts that were never an issue for many (Erlang)
programmers. To understand and use Unicode characters requires that you study the subject thoroughly, even if you
are an experienced programmer.

Asan example, contemplate the issue of converting between upper and lower case |etters. Reading the standard makes
you realize that there is not a simple one to one mapping in all scripts, for example:

e InGerman, theletter "[3' (sharp s) isin lower case, but the uppercase equivaent is"SS".

* InGreek, theletter "#' has two different lowercase forms, "#" in word-final position and "#" elsewhere.
e InTurkish, both dotted and dotless "i" exist in lower case and upper case forms.

e Cyrillic"I" has usually no lowercase form.

e Languages with no concept of upper case (or lower case).

So, a conversion function must know not only one character at atime, but possibly the whole sentence, the natural
language to translate to, the differences in input and output string length, and so on. Erlang/OTP has currently no
Unicodet o_upper /t o_| ower functionality, but publicly available libraries address these issues.

Another example is the accented characters, where the same glyph has two different representations. The Swedish
letter "6" is one example. The Unicode standard has a code point for it, but you can also write it as 0" followed by
"U+0308" (Combining Diageresis, with the simplified meaning that the last |etter isto have "™ above). They have the
same glyph. They are for most purposes the same, but have different representations. For example, MacOS X converts
all filenames to use Combining Diaeresis, while most other programs (including Erlang) try to hide that by doing the
oppositewhen, for example, listing directories. However itisdone, it isusually important to normalize such characters
to avoid confusion.

The list of examples can be made long. One need a kind of knowledge that was not needed when programs only
considered one or two languages. The complexity of human languages and scripts has certainly made this a challenge
when constructing a universal standard. Supporting Unicode properly in your program will require effort.

1.3.3 What Unicode Is

Unicodeisastandard defining code points (numbers) for al known, living or dead, scripts. In principle, every symbol
used in any language has a Unicode code point. Unicode code points are defined and published by the Unicode
Consortium, which is a non-profit organization.

Support for Unicode isincreasing throughout the world of computing, as the benefits of one common character set are
overwhelming when programs are used in aglobal environment. Along with the base of the standard, the code points
for all the scripts, some encoding standar ds are available.

Itisvita to understand the difference between encodings and Unicode characters. Unicode characters are code points
according to the Unicode standard, while the encodings are ways to represent such code points. An encoding isonly a
standard for representation. UTF-8 can, for example, be used to represent avery limited part of the Unicode character
set (for example | SO-Latin-1) or the full Unicode range. It is only an encoding format.

As long as all character sets were limited to 256 characters, each character could be stored in one single byte, so
there was more or less only one practical encoding for the characters. Encoding each character in one byte was so
common that the encoding was not even named. With the Unicode system there are much more than 256 characters, so
acommon way is needed to represent these. The common ways of representing the code points are the encodings. This
means awhole new concept to the programmer, the concept of character representation, which was anon-issue earlier.

Different operating systems and tools support different encodings. For example, Linux and MacOS X have chosen
the UTF-8 encoding, which is backward compatible with 7-bit ASCII and therefore affects programs written in plain
English the least. Windows supports alimited version of UTF-16, namely all the code planes where the characters can
be stored in one single 16-bit entity, which includes most living languages.

The following are the most widely spread encodings:

Ericsson AB. All Rights Reserved.: STDLIB | 15

1.3 Using Unicode in Erlang

Bytewise representation

Thisisnot aproper Unicode representation, but the representation used for charactersbefore the Unicode standard.
It can still be used to represent character code pointsin the Unicode standard with numbers < 256, which exactly
corresponds to the ISO Latin-1 character set. In Erlang, thisis commonly denoted | at i n1 encoding, whichis
slightly misleading as SO Latin-1 is a character code range, not an encoding.

UTF-8

Each character is stored in one to four bytes depending on code point. The encoding is backward compatible
with bytewise representation of 7-bit ASCII, as all 7-bit characters are stored in one single byte in UTF-8. The
characters beyond code point 127 are stored in more bytes, letting the most significant bit in the first character
indicate a multi-byte character. For details on the encoding, the RFC is publicly available.

Notice that UTF-8 is not compatible with bytewise representation for code points from 128 through 255, so an
SO Latin-1 bytewise representation is generally incompatible with UTF-8.

UTF-16

Thisencoding has many similaritiesto UTF-8, but the basic unit isa 16-bit number. Thismeansthat all characters
occupy at least two bytes, and some high numbers four bytes. Some programs, libraries, and operating systems
claimingtouse UTF-16 only allow for charactersthat can be stored in one 16-bit entity, which isusually sufficient
to handle living languages. Asthe basic unit is more than one byte, byte-order issues occur, whichiswhy UTF-16
existsin both abig-endian and alittle-endian variant.

In Erlang, thefull UTF-16 rangeis supported when applicable, likeintheuni code module and inthe bit syntax.
UTF-32

The most straightforward representation. Each character is stored in one single 32-bit number. Thereis no need
for escapes or any variable number of entities for one character. All Unicode code points can be stored in one
single 32-bit entity. Aswith UTF-16, there are byte-order issues. UTF-32 can be both big-endian and little-endian.

Ucs4

Basically the same as UTF-32, but without some Unicode semantics, defined by IEEE, and has little use as a
separate encoding standard. For all normal (and possibly abnormal) use, UTF-32 and UCS-4 areinterchangeable.

Certain number ranges are unused in the Unicode standard and certain ranges are even deemed invalid. The most
notable invalid range is 16#D800-16#DFFF, as the UTF-16 encoding does not allow for encoding of these numbers.
This is possibly because the UTF-16 encoding standard, from the beginning, was expected to be able to hold all
Unicode charactersin one 16-hit entity, but was then extended, |eaving aholein the Unicode range to handl e backward
compatibility.

Code point 16#FEFF is used for Byte Order Marks (BOMs) and use of that character is not encouraged in other
contexts. It isvalid though, as the character "ZWNBS' (Zero Width Non Breaking Space). BOMs are used to identify
encodings and byte order for programs where such parameters are not known in advance. BOMs are more seldom
used than expected, but can become more widely spread as they provide the means for programs to make educated
guesses about the Unicode format of acertain file.

1.3.4 Areas of Unicode Support

To support Unicode in Erlang, problemsin various areas have been addressed. This section describes each area briefly
and more thoroughly later in this User's Guide.

Representation

To handle Unicode characters in Erlang, a common representation in both lists and binaries is needed. EEP (10)
and the subsequent initial implementation in Erlang/OTP R13A settled a standard representation of Unicode
charactersin Erlang.

16 | Ericsson AB. All Rights Reserved.: STDLIB

1.3 Using Unicode in Erlang

Manipulation

The Unicode characters need to be processed by the Erlang program, which iswhy library functions must be able
to handle them. In some cases functionality has been added to already existing interfaces (asthe st r i ng module
now can handle lists with any code points). In some cases new functionality or options have been added (asin
thei o module, the file handling, the uni code module, and the bit syntax). Today most modules in Ker nel
and STDLI B, aswell asthe VM are Unicode-aware.

Filel/O

1/0 is by far the most problematic area for Unicode. A file is an entity where bytes are stored, and the lore of
programming has been to treat characters and bytes asinterchangeable. With Unicode characters, you must decide
on an encoding when you want to store the datain afile. In Erlang, you can open a text file with an encoding
option, so that you can read characters from it rather than bytes, but you can also open afile for bytewise 1/O.

The Erlang 1/0-system has been designed (or at least used) in away where you expect any 1/O server to handle any
string data. That is, however, no longer the case when working with Unicode characters. The Erlang programmer
must now know the capabilities of the device where the dataends up. Also, portsin Erlang are byte-oriented, so an
arbitrary string of (Unicode) characters cannot be sent to aport without first converting it to an encoding of choice.

Termina 1/0

Terminal 1/0O isdlightly easier than file I/0. The output is meant for human reading and is usually Erlang syntax
(for example, in the shell). There exists syntactic representation of any Unicode character without displaying the
glyph (instead written as\ x{ HHH}). Unicode data can therefore usually be displayed even if the terminal as such
does not support the whole Unicode range.

Filenames

Filenames can be stored as Unicode strings in different ways depending on the underlying operating system and
file system. This can be handled fairly easy by aprogram. The problems arise when the file system isinconsi stent
initsencodings. For example, Linux allowsfilesto be named with any sequence of bytes, leaving to each program
to interpret those bytes. On systems where these "transparent" filenames are used, Erlang must be informed about
thefilename encoding by astartup flag. The default is bytewise interpretation, which isusually wrong, but allows
for interpretation of all filenames.

The concept of "raw filenames" can be used to handlewrongly encoded filenamesif one enables Unicodefilename
trandation (+f nu) on platforms where thisis not the default.

Source code encoding

The Erlang source code has support for the UTF-8 encoding and bytewise encoding. The default in Erlang/OTP
R16B was bytewise (l at i n1) encoding. It was changed to UTF-8 in Erlang/OTP 17.0. Y ou can control the
encoding by acomment like the following in the beginning of thefile:

%% -*- coding: utf-8 -*-

This of course requires your editor to support UTF-8 as well. The same comment is also interpreted by functions
likefil e:consult/1, the release handler, and so on, so that you can have all text files in your source
directoriesin UTF-8 encoding.

The language

Having the source codein UTF-8 also allows you to write string literal s containing Unicode characters with code
points > 255, although atoms, module names, and function names are restricted to the SO Latin-1 range. Binary
literals, whereyou usetype/ ut f 8, can also be expressed using Unicode characters > 255. Having module names
using characters other than 7-bit ASCII can cause trouble on operating systems with inconsistent file naming
schemes, and can hurt portability, so it is not recommended.

Ericsson AB. All Rights Reserved.: STDLIB | 17

1.3 Using Unicode in Erlang

EEP 40 suggests that the language is also to allow for Unicode characters > 255 in variable names. Whether to
implement that EEP is yet to be decided.

1.3.5 Standard Unicode Representation

In Erlang, strings are lists of integers. A string was until Erlang/OTP R13 defined to be encoded in the ISO Latin-1
(1SO 8859-1) character set, which is, code point by code point, a subrange of the Unicode character set.

The standard list encoding for strings was therefore easily extended to handle the whole Unicode range. A Unicode
string in Erlang is a list containing integers, where each integer is a valid Unicode code point and represents one
character in the Unicode character set.

Erlang stringsin ISO Latin-1 are a subset of Unicode strings.

Only if a string contains code points < 256, can it be directly converted to a binary by using, for example,
erlang:iolist_to_binary/ 1 orcan be sent directly to a port. If the string contains Unicode characters >
255, an encoding must be decided upon and the string is to be converted to a binary in the preferred encoding using
uni code: characters_t o_bi nary/ 1, 2, 3. Stringsarenot generaly lists of bytes, asthey were before Erlang/
OTP R13, they arelists of characters. Characters are not generally bytes, they are Unicode code points.

Binaries are more troublesome. For performance reasons, programs often store textual datain binariesinstead of lists,
mainly because they are more compact (one byte per character instead of two words per character, as is the case
with lists). Using erl ang: | i st _to_bi nary/ 1, an ISO Latin-1 Erlang string can be converted into a binary,
effectively using bytewise encoding: one byte per character. This was convenient for those limited Erlang strings, but
cannot be done for arbitrary Unicode lists.

Asthe UTF-8 encoding is widely spread and provides some backward compatibility in the 7-bit ASCII range, it is
selected as the standard encoding for Unicode charactersin binaries for Erlang.

The standard binary encoding is used whenever alibrary function in Erlang is to handle Unicode datain binaries, but
is of course not enforced when communicating externally. Functions and bit syntax exist to encode and decode both
UTF-8, UTF-16, and UTF-32 in binaries. However, library functions dealing with binaries and Unicode in general
only deal with the default encoding.

Character data can be combined from many sources, sometimes available in amix of strings and binaries. Erlang has
for long had the concept of i odat a ori ol i st s, where binaries and lists can be combined to represent a sequence
of bytes. In the same way, the Unicode-aware modules often alow for combinations of binaries and lists, where the
binaries have characters encoded in UTF-8 and the lists contain such binaries or numbers representing Unicode code
points:

unicode binary() = binary() with characters encoded in UTF-8 coding standard
chardata() = charlist() | unicode binary()

charlist() = maybe improper list(char() | unicode binary() | charlist(),
unicode binary() | nil())

The module uni code even supports similar mixes with binaries containing other encodings than UTF-8, but that is
aspecia caseto alow for conversions to and from external data:

external _unicode binary() = binary() with characters coded in a user-specified
Unicode encoding other than UTF-8 (UTF-16 or UTF-32)

external chardata() = external charlist() | external unicode binary()

external charlist() = maybe improper list(char() | external unicode binary() |

18 | Ericsson AB. All Rights Reserved.: STDLIB

1.3 Using Unicode in Erlang

external charlist(), external unicode binary() | nil())

1.3.6 Basic Language Support

As from Erlang/OTP R16, Erlang source files can be written in UTF-8 or bytewise (I ati nl) encoding. For
information about how to state the encoding of an Erlang sourcefile, seethe epp(3) module. Strings and comments
can be written using Unicode, but functions must still be named using characters from the |SO Latin-1 character set,
and atoms are restricted to the same 1SO Latin-1 range. These restrictions in the language are of course independent
of the encoding of the sourcefile.

Bit Syntax

Thebit syntax containstypesfor handling binary datain thethree main encodings. Thetypesarenamedut f 8, ut f 16,
andut f 32. Theut f 16 and ut f 32 types can be in abig-endian or alittle-endian variant:

<<Ch/utf8, /binary>> = Binl,

<<Ch/utfl6-little, /binary>> = Bin2,

Bin3 = <<$H/utf32-little, $e/utf32-little, $l/utf32-little, $1/utf32-little,
$o0/utf32-little>>,

For convenience, literal strings can be encoded with a Unicode encoding in binaries using the following (or similar)
syntax:

Bin4 = <<"Hello"/utfl6>>,

String and Character Literals

For source code, there is an extension to syntax \ OOO (backslash followed by three octal humbers) and \ xHH
(backslash followed by x, followed by two hexadecimal characters), namely \ x{ H ...} (backslash followed by x,
followed by left curly bracket, any number of hexadecimal digits, and a terminating right curly bracket). This allows
for entering characters of any code point literally in a string even when the encoding of the source file is bytewise
(atinl).

Intheshdll, if using aUnicodeinput device, or in source code stored in UTF-8, $ can befollowed directly by aUnicode
character producing an integer. In the following example, the code point of a Cyrillic # is output:

7> $c.
1089

Heuristic String Detection

In certain output functions and in the output of return values in the shell, Erlang tries to detect string datain lists and
binaries heuristically. Typically you will see heuristic detection in a situation like this:

1> [97,98,99].

2> <<97,98,99>>.

<<"abc">>

3> <<195,165,195,164,195,182>>.
<<"3&06"/utf8>>

Ericsson AB. All Rights Reserved.: STDLIB | 19

1.3 Using Unicode in Erlang

Here the shell detects lists containing printable characters or binaries containing printable characters in bytewise or
UTF-8 encoding. But what is a printable character? One view isthat anything the Unicode standard thinksis printable,
is also printable according to the heuristic detection. The result is then that almost any list of integers are deemed a
string, and all sorts of characters are printed, maybe also characters that your terminal lacks in its font set (resulting
in some unappreciated generic output). Another way is to keep it backward compatible so that only the SO Latin-1
character set is used to detect a string. A third way is to let the user decide exactly what Unicode ranges that are to
be viewed as characters.

Asfrom Erlang/OTP R16B you can select the | SO Latin-1 range or the whole Unicode range by supplying startup flag
+pc latinlor+pc unicode, respectively. For backward compatibility, | at i nl isdefault. Thisonly controls
how heuristic string detection is done. More ranges are expected to be added in the future, enabling tailoring of the
heuristics to the language and region relevant to the user.

The following examples show the two startup options:

$ erl +pc latinl
Erlang R16B (erts-5.10.1) [source] [async-threads:0] [hipe] [kernel-poll:false]

Eshell V5.10.1 (abort with ~G)

1> [1024].

[1024]

2> [1070,1085,1080,1082,1086,1076].
[1070,1085,1080,1082,1086,1076]

3> [229,228,246].

"3306"

4> <<208,174,208,189,208,184,208,186,208,190,208,180>>.
<<208,174,208,189,208,184,208,186,208,190,208,180>>

5> <<229/utf8,228/utf8,246/utf8>>.

ns

<<"aao"/utf8>>

$ erl +pc unicode
Erlang R16B (erts-5.10.1) [source] [async-threads:0] [hipe] [kernel-poll:false]

Eshell V5.10.1 (abort with ~G)

1> [1024].

uEu

2> [1070,1085,1080,1082,1086,1076] .
"lOHnkop"

3> [229,228,246].

ne

aao"
4> <<208,174,208,189,208,184,208,186,208,190,208,180>>.
<<"lOHuKopn" /utf8>>
5> <<229/utf8,228/utf8,246/utf8>>.
<<"3a6"/utf8>>

In the examples, you can see that the default Erlang shell interprets only characters from the 1SO Latinl range as
printable and only detects lists or binaries with those "printabl€e" characters as containing string data. The valid UTF-8
binary containing the Russian word "######", is not printed as a string. When started with all Unicode characters
printable (+pc uni code), the shell outputs anything containing printable Unicode data (in binaries, either UTF-8
or bytewise encoded) as string data.

These heuristicsarealsoused by i o: format/ 2,i o_| i b: f or mat/ 2, and friends when modifier t is used with
~p or ~P:

$ erl +pc latinl

20 | Ericsson AB. All Rights Reserved.: STDLIB

1.3 Using Unicode in Erlang

Erlang R16B (erts-5.10.1) [source] [async-threads:0] [hipe] [kernel-poll:false]

Eshell V5.10.1 (abort with ~G)

1> io:format("~tp~n", [{<<"8&6">>, <<"8&0"/utf8>>, <<208,174,208,189,208,184,208,186,208,190,208,180>>}]).
{<<"380">>,<<"a46" /utf8>>,<<208,174,208,189,208,184,208,186,208,190,208,180>>}

ok

$ erl +pc unicode
Erlang R16B (erts-5.10.1) [source] [async-threads:0] [hipe] [kernel-poll:false]

Eshell V5.10.1 (abort with ~G)

1> io:format("~tp~n", [{<<"8&6">>, <<"8&0"/utf8>>, <<208,174,208,189,208,184,208,186,208,190,208,180>>}]).
{<<"846">>,<<"840" /utf8>>, <<"lHnkopn" /utf8>>}

ok

Notice that this only affects heuristic interpretation of lists and binaries on output. For example, the ~t s format
sequence always outputs a valid list of characters, regardless of the +pc setting, as the programmer has explicitly
reguested string output.

1.3.7 The Interactive Shell

The interactive Erlang shell, when started to a terminal or started using command wer | on Windows, can support
Unicode input and output.

On Windows, proper operation requires that a suitable font isinstalled and selected for the Erlang application to use.
If no suitable font is available on your system, try instaling the DejaVu fonts, which are freely available, and then
select that font in the Erlang shell application.

On Unix-like operating systems, the terminal is to be able to handle UTF-8 on input and output (this is done by, for
example, modern versions of XTerm, KDE K onsole, and the Gnome terminal) and your local e settings must be proper.
As an example, a LANG environment variable can be set as follows:

$ echo $LANG
en US.UTF-8

Most systems handle variable LC_CTYPE before LANG, so if that is set, it must be set to UTF- 8:

$ echo $LC CTYPE
en US.UTF-8

The LANGor LC_CTYPE setting are to be consistent with what the terminal is capable of. There is no portable way
for Erlang to ask the terminal about its UTF-8 capacity, we have to rely on the language and character type settings.

To investigate what Erlang thinks about the terminal, thecall i 0: get opt s() can be used when the shell is started:

$ LC CTYPE=en US.IS0-8859-1 erl
Erlang R16B (erts-5.10.1) [source] [async-threads:0] [hipe] [kernel-poll:false]

Eshell V5.10.1 (abort with "G)

1> lists:keyfind(encoding, 1, io:getopts()).
{encoding,latinl}

2> q().

ok

Ericsson AB. All Rights Reserved.: STDLIB | 21

href

1.3 Using Unicode in Erlang

$ LC CTYPE=en US.UTF-8 erl
Erlang R16B (erts-5.10.1) [source] [async-threads:0] [hipe] [kernel-poll:false]

Eshell V5.10.1 (abort with ~G)

1> lists:keyfind(encoding, 1, io:getopts()).
{encoding,unicode}

2>

When (finally?) everything is in order with the locale settings, fonts. and the terminal emulator, you have probably
found away to input charactersin the script you desire. For testing, the simplest way isto add some keyboard mappings
for other languages, usually done with some applet in your desktop environment.

In aKDE environment, select KDE Control Center (Personal Settings) > Regional and Accessibility > Keyboar d
Layout.

On Windows XP, select Control Panel > Regional and L anguage Options, select tab L anguage, and click button
Details... in the square named Text Servicesand I nput L anguages.

Y our environment probably provides similar means of changing the keyboard layout. Ensure that you have away to
switch back and forth between keyboards easily if you are not used to this. For example, entering commands using a
Cyrillic character set is not easily done in the Erlang shell.

Now you are set up for some Unicode input and output. The simplest thing to do isto enter a string in the shell:

$ erl
Erlang R16B (erts-5.10.1) [source] [async-threads:0] [hipe] [kernel-poll:false]

Eshell V5.10.1 (abort with ~G)

1> lists:keyfind(encoding, 1, io:getopts()).
{encoding,unicode}

2> "lOHukop" .

"lOHukopn"

3> io:format("~ts~n", [v(2)]).

0HWKOR

ok

4>

While strings can be input as Unicode characters, the language elements are still limited to the 1SO Latin-1 character
set. Only character constants and strings are allowed to be beyond that range:

$ erl
Erlang R16B (erts-5.10.1) [source] [async-threads:0] [hipe] [kernel-poll:false]

Eshell V5.10.1 (abort with ~G)
1> $E.

958

2> 0HuKOfO.

* 1: illegal character

2>

1.3.8 Unicode Filenames

Most modern operating systems support Unicode filenames in some way. There are many different ways to do this
and Erlang by default treats the different approaches differently:

22 | Ericsson AB. All Rights Reserved.: STDLIB

1.3 Using Unicode in Erlang

Mandatory Unicode file naming

Windows and, for most common uses, MacOS X enforce Unicode support for filenames. All files created in the
file system have names that can consistently be interpreted. In MacOS X, all filenames are retrieved in UTF-8
encoding. In Windows, each system call handling filenames has a specia Unicode-aware variant, giving much
the same effect. There are no filenames on these systems that are not Unicode filenames. So, the default behavior
of the Erlang VM isto work in"Unicode filename tranglation mode". This meansthat afilename can be specified
as a Unicode list, which is automatically transated to the proper name encoding for the underlying operating
system and file system.

Doing, for example, afil e: l'i st _di r/ 1 on one of these systems can return Unicode lists with code points
> 255, depending on the content of the file system.

Transparent file naming

Most Unix operating systems have adopted a simpler approach, namely that Unicode file naming is not enforced,
but by convention. Those systems usually use UTF-8 encoding for Unicode filenames, but do not enforce it.
On such a system, a filename containing characters with code points from 128 through 255 can be named as
plain ISO Latin-1 or use UTF-8 encoding. As no consistency is enforced, the Erlang VM cannot do consistent
translation of all filenames.

By default on such systems, Erlang startsin ut f 8 filename mode if the terminal supports UTF-8, otherwisein
| at i n1 mode.

Inl ati nl mode, filenames are bytewise encoded. This allows for list representation of all filenames in the
system. However, a afile named "Ostersund.txt", appearsinfil e: | i st _dir/ 1 either as"Ostersund.txt" (if
the filename was encoded in bytewise 1SO Latin-1 by the program creating the file) or more probably as
[195, 150, 115, 116, 101, 114, 115, 117, 110, 100], which isalist containing UTF-8 bytes (not what
you want). If you use Unicode filename trandation on such a system, non-UTF-8 filenames are ignored by
functions like fil e:list_dir/ 1. They can be retrieved with function file:list _dir_all/1, but
wrongly encoded filenames appear as "raw filenames".

The Unicode file naming support was introduced in Erlang/OTP R14B01. A VM operating in Unicode filename
translation mode can work with files having names in any language or character set (as long as it is supported by
the underlying operating system and file system). The Unicode character list is used to denote filenames or directory
names. If the file system content is listed, you also get Unicode lists as return value. The support liesin the Ker nel
and STDLI B modules, which iswhy most applications (that does not explicitly require the filenamesto bein the ISO
Latin-1 range) benefit from the Unicode support without change.

On operating systems with mandatory Unicode filenames, this means that you more easily conform to the filenames of
other (non-Erlang) applications. Y ou can also processfilenames that, at least on Windows, wereinaccessible (because
of having names that could not be represented in SO Latin-1). Also, you avoid creating incomprehensible filenames
on MacOS X, asthevf s layer of the operating system accepts all your filenames as UTF-8 does not rewrite them.

For most systems, turning on Unicode filename translation is no problem even if it uses transparent file naming. Very
few systems have mixed filename encodings. A consistent UTF-8 named system works perfectly in Unicode filename
mode. It wasstill, however, considered experimental in Erlang/OTP R14B01 and isstill not thedefault on such systems.

Unicode filename trandlation is turned on with switch +f nu. On Linux, a VM started without explicitly stating the
filenametranslation modedefaultstol at i n1 asthenativefilename encoding. On Windowsand MacOS X, the default
behavior isthat of Unicode filenametrandation. Thereforef i | e: nat i ve_name_encodi ng/ 0 by default returns
ut f 8 on those systems (Windows does not use UTF-8 on the file system level, but this can safely be ignored by the
Erlang programmer). Thedefault behavior can, asstated earlier, be changed using option +f nu or +f nl totheVM, see
theer | program. If theVVM isstarted in Unicode filenametranslation mode, f i | e: nati ve_name_encodi ng/ 0
returns atom ut f 8. Switch +f nu can be followed by w, i , or e to control how wrongly encoded filenames are to
be reported.

Ericsson AB. All Rights Reserved.: STDLIB | 23

1.3 Using Unicode in Erlang

e wmeansthat awarning is sent to the er r or _| ogger whenever awrongly encoded filename is "skipped" in
directory listings. wis the default.

* i meansthat wrongly encoded filenames are silently ignored.
e e means that the API function returns an error whenever a wrongly encoded filename (or directory name) is
encountered.

Noticethat fi | e: read_I i nk/ 1 alwaysreturns an error if the link pointsto an invalid filename.

In Unicode filename mode, filenames given to BIF open_port/ 2 with option { spawn_execut abl e, ...}
are also interpreted as Unicode. So is the parameter list specified in option ar gs available when using
spawn_execut abl e. The UTF-8 tranglation of arguments can be avoided using binaries, see section Notes About
Raw Filenames.

Notice that the file encoding options specified when opening a file has nothing to do with the filename encoding
convention. You can very well open files containing data encoded in UTF-8, but having filenames in bytewise
(I ati n1) encoding or conversely.

Note:

Erlang drivers and NIF-shared objects still cannot be named with names containing code points > 127. This
limitation will be removed in a future release. However, Erlang modules can, but it is definitely not a good idea
and is still considered experimental.

Notes About Raw Filenames

Raw filenames were introduced together with Unicode filename support in ERTS 5.8.2 (Erlang/OTP R14B01). The
reason "raw filenames' were introduced in the system was to be able to represent filenames, specified in different
encodings on the same system, consistently. It can seem practical to have the VM automatically translate a filename
that is not in UTF-8 to alist of Unicode characters, but this would open up for both duplicate filenames and other
inconsistent behavior.

Consider a directory containing a file named "bjérn" in 1SO Latin-1, while the Erlang VM is operating in Unicode
filename mode (and therefore expects UTF-8 file naming). The ISO Latin-1 nameis not valid UTF-8 and one can be
tempted to think that automatic conversion in, for example, fil e: 1ist_dir/ 1 isagood idea But what would
happen if we later tried to open the file and have the name as a Unicode list (magically converted from the SO Latin-1
filename)? The VM converts the filename to UTF-8, as this is the encoding expected. Effectively this means trying
to open the file named <<"bjorn"/utf8>>. This file does not exist, and even if it existed it would not be the same file
as the one that was listed. We could even create two files named "bjérn", one named in UTF-8 encoding and one not.
Iffile:list _dir/1wouldautomaticaly convert the SO Latin-1 filename to alist, we would get two identical
filenames asthe result. To avoid this, we must differentiate between filenames that are properly encoded according to
the Unicode file naming convention (that is, UTF-8) and filenamesthat areinvalid under the encoding. By the common
functionfil e: li st _dir/ 1, thewrongly encoded filenames are ignored in Unicode filename translation mode,
but by functionfi l e: i st _dir_al I /1 thefilenameswithinvalid encoding are returned as"raw" filenames, that
is, as binaries.

The fil e module accepts raw filenames as input. open_port ({spawn_executable, ...} ...)
aso accepts them. As mentioned earlier, the arguments specified in the option list to
open_port ({spawn_executable, ...} ...) undergothesameconversion asthefilenames, meaning that

the executable is provided with arguments in UTF-8 as well. This trandation is avoided consistently with how the
filenames are treated, by giving the argument as a binary.

To force Unicode filename transl ation mode on systems where thisis not the default was considered experimental in
Erlang/OTP R14B01. This was because the initial implementation did not ignore wrongly encoded filenames, so that
raw filenames could spread unexpectedly throughout the system. As from Erlang/OTP R16B, the wrongly encoded

24 | Ericsson AB. All Rights Reserved.: STDLIB

1.3 Using Unicode in Erlang

filenames are only retrieved by specia functions (suchasfil e: i st_dir_al | /1). Sincetheimpact on existing
code is therefore much lower it is now supported. Unicode filename translation is expected to be default in future
releases.

Even if you are operating without Unicode file naming transl ation automatically done by the VM, you can access and
create fileswith namesin UTF-8 encoding by using raw filenames encoded as UTF-8. Enforcing the UTF-8 encoding
regardless of the mode the Erlang VM is started in can in some circumstances be a good idea, as the convention of
using UTF-8 filenames is spreading.

Notes About MacOS X

The vf s layer of MacOS X enforces UTF-8 filenames in an aggressive way. Older versions did this by refusing to
create non-UTF-8 conforming filenames, while newer versions replace offending bytes with the sequence "%HH",
where HH is the original character in hexadecimal notation. As Unicode tranglation is enabled by default on MacOS
X, the only way to come up against thisisto either start the VM with flag +f nl or to use araw filename in bytewise
(I ati n1) encoding. If using araw filename, with a bytewise encoding containing characters from 127 through 255,
to create afile, the file cannot be opened using the same hame as the one used to create it. Thereis no remedy for this
behavior, except keeping the filenames in the correct encoding.

MacOS X reorganizes the filenames so that the representation of accents, and so on, uses the "combining characters'.
For example, character ¢ isrepresented as code points[111, 776] , where111 ischaracter o and 776 isthe special
accent character "Combining Diaeresis’. This way of normalizing Unicode is otherwise very seldom used. Erlang
normalizes those filenames in the opposite way upon retrieval, so that filenames using combining accents are not
passed up to the Erlang application. In Erlang, filename "bjorn" isretrieved as[98, 106, 246, 114, 110] , not as
[98, 106, 117, 776, 114, 110] , although thefile system can think differently. The normalization into combining
accents is redone when accessing files, so this can usually be ignored by the Erlang programmer.

1.3.9 Unicode in Environment and Parameters

Environment variables and their interpretation are handled much in the same way as filenames. If Unicode filenames
are enabled, environment variables as well as parameters to the Erlang VM are expected to be in Unicode.

If Unicode filenames are enabled, the callsto os: get env/ 0, 1, os: put env/ 2, and 0s: unset env/ 1 handle
Unicode strings. On Unix-like platforms, the built-in functions trandate environment variables in UTF-8 to/from
Unicode strings, possibly with code points > 255. On Windows, the Unicode versions of the environment system API
are used, and code points > 255 are allowed.

On Unix-like operating systems, parameters are expected to be UTF-8 without translation if Unicode filenames are
enabled.

1.3.10 Unicode-Aware Modules

Most of the modulesin Erlang/OTP are Unicode-unaware in the sense that they have no notion of Unicode and should
not have. Typically they handle non-textual or byte-oriented data (such asgen_t cp).

Modules handling textual data (such asi o_| i b and st ri ng are sometimes subject to conversion or extension to
be able to handle Unicode characters.

Fortunately, most textual data has been stored in lists and range checking has been sparse, so moduleslikest ri ng
work well for Unicode lists with little need for conversion or extension.

Some modules are, however, changed to be explicitly Unicode-aware. These modules include:
uni code

Theuni code moduleisclearly Unicode-aware. It contains functions for conversion between different Unicode
formats and some utilitiesfor identifying byte order marks. Few programs handling Unicode data survive without
this module.

Ericsson AB. All Rights Reserved.: STDLIB | 25

1.3 Using Unicode in Erlang

Thei o module has been extended along with the actual 1/0 protocol to handle Unicode data. This means that
many functions require binaries to bein UTF-8, and there are modifiersto format control sequencesto allow for
output of Unicode strings.

file,group,user

1/O-servers throughout the system can handle Unicode data and have options for converting data upon output or
input to/from the device. As shown earlier, the shel | module has support for Unicode terminals and thef i | e
module allows for translation to and from various Unicode formats on disk.

Reading and writing of fileswith Unicode dataiis, however, not best donewith thef i | e module, asitsinterface
isbyte-oriented. A file opened with a Unicode encoding (like UTF-8) isbest read or written using thei o module.

re

Ther e module alows for matching Unicode strings as a special option. Asthe library is centered on matching
in binaries, the Unicode support is UTF-8-centered.

The graphical library wx has extensive support for Unicode text.

The st ri ng module works perfectly for Unicode strings and SO Latin-1 strings, except the language-dependent
functionsstri ng: t o_upper/ landstring: to_| ower/ 1,whichareonly correctfor thel SO Latin-1 character
set. Thesetwo functions can never function correctly for Unicode charactersin their current form, asthere arelanguage
and locale issues as well as multi-character mappings to consider when converting text between cases. Converting
casein an international environment is alarge subject not yet addressed in OTP.

1.3.11 Unicode Data in Files

Although Erlang can handle Unicode datain many forms does not automatically mean that the content of any file can
be Unicode text. The external entities, such as ports and I/O servers, are not generally Unicode capable.

Ports are always byte-oriented, so before sending data that you are not sure is bytewise-encoded to a port, ensure to
encode it in a proper Unicode encoding. Sometimes this means that only part of the data must be encoded as, for
example, UTF-8. Some parts can be binary data (like a length indicator) or something else that must not undergo
character encoding, so no automatic trandation is present.

I/O servers behave a little differently. The I/O servers connected to terminals (or st dout) can usually cope with
Unicode data regardless of the encoding option. This is convenient when one expects a modern environment but do
not want to crash when writing to an archaic terminal or pipe.

A file can have an encoding option that makes it generaly usable by the i o module (for example
{encodi ng, ut f 8}), but is by default opened as a byte-oriented file. Thef i | e module is byte-oriented, so only
ISO Latin-1 characters can be written using that module. Use the i 0 module if Unicode data is to be output to afile
with other encodi ng than| at i n1 (bytewise encoding). It isdightly confusing that afile opened with, for example,
file:open(Name, [read, {encoding, utf8}]) cannotbeproperlyreadusingfil e: read(Fil e, N), but
using the i o module to retrieve the Unicode data from it. The reasonisthatfil e:read andfile: wite (and
friends) are purely byte-oriented, and should be, asthat isthe way to accessfiles other than text files, byte by byte. As
with ports, you can write encoded datainto afile by "manually" converting the data to the encoding of choice (using
theuni code module or the bit syntax) and then output it on abytewise (I at i n1) encoded file.

Recommendations:

e Usethefi |l e modulefor files opened for bytewise access ({ encodi ng, | ati nl1}).
* Usethei o module when accessing files with any other encoding (for example { encodi ng, uf 8}).

Functions reading Erlang syntax from files recognize the codi ng: comment and can therefore handle Unicode data
on input. When writing Erlang terms to afile, you are advised to insert such comments when applicable:

26 | Ericsson AB. All Rights Reserved.: STDLIB

1.3 Using Unicode in Erlang

$ erl +fna +pc unicode
Erlang R16B (erts-5.10.1) [source] [async-threads:0] [hipe] [kernel-poll:false]

Eshell V5.10.1 (abort with ~G)

1> file:write file("test.term",<<"%% coding: utf-8\n[{\"WOHnkop\",4711}].\n"/utf8>>).
ok

2> file:consult("test.term").

{ok, [[{"lOHukop" ,4711}]11}

1.3.12 Summary of Options

The Unicode support is controlled by both command-line switches, some standard environment variables, and the OTP
version you are using. Most options affect mainly how Unicode data is displayed, not the functionality of the APIsin
the standard libraries. This means that Erlang programs usually do not need to concern themsel ves with these options,
they are more for the development environment. An Erlang program can be written so that it works well regardless
of the type of system or the Unicode options that are in effect.

Here follows a summary of the settings affecting Unicode:
The LANGand LC_CTYPE environment variables

The language setting in the operating system mainly affects the shell. The terminal (that is, the group leader)
operates with { encodi ng, uni code} only if the environment tellsit that UTF-8 is allowed. This setting is
to correspond to the terminal you are using.

The environment can also affect filename interpretation, if Erlang is started with flag +f na (which is default
from Erlang/OTP 17.0).

You can check the setting of this by calling i o: get opt s(), which gives you an option list containing
{encodi ng, uni code} or{encodi ng, | ati nl}.

The+pc {uni code|l ati nl} flagtoer!| (1)

This flag affects what is interpreted as string data when doing heuristic string detection in the shell and ini o/
i o_lib:format withthe" ~t p" and ~t P formatting instructions, as described earlier.

You can check this option by calling i o: pri nt abl e_range/ 0, which returns uni code or | ati nl. To
be compatible with future (expected) extensions to the settings, rather usei o _|i b: printable list/1to
check if alist is printable according to the setting. That function takes into account new possible settings returned
fromi o: printabl e_range/ 0.

The +f n{l |ula} [{Wi |e}] flagtoer| (1)
This flag affects how the filenames are to be interpreted. On operating systems with transparent file naming,

this must be specified to alow for file naming in Unicode characters (and for correct interpretation of filenames
containing characters > 255).

« +fnl means bytewise interpretation of filenames, which was the usual way to represent 1SO Latin-1
filenames before UTF-8 file naming got widespread.

e +f nu means that filenames are encoded in UTF-8, which is nowadays the common scheme (although not
enforced).

e +f na meansthat you automatically select between +f nl and +f nu, based on environment variables LANG
and LC_CTYPE. This is optimistic heuristics indeed, nothing enforces a user to have a terminal with the
same encoding as the file system, but thisis usually the case. Thisis the default on all Unix-like operating
systems, except MacOS X.

Thefilename translation mode can beread with functionf i | e: nati ve_nane_encodi ng/ 0, which returns
| at i n1 (bytewise encoding) or ut f 8.

Ericsson AB. All Rights Reserved.: STDLIB | 27

1.3 Using Unicode in Erlang

epp: defaul t _encodi ng/ 0

This function returns the default encoding for Erlang source files (if no encoding comment is present) in the
currently running release. In Erlang/OTP R16B, | at i n1 (bytewise encoding) was returned. As from Erlang/
OTP 17.0, ut f 8 isreturned.

The encoding of each file can be specified using comments as described in the epp(3) module.
i 0: setopts/1,2andflags- ol dshel | /-noshel |

When Erlang is started with - ol dshel | or - noshel | , thel/O server for st andar d_i o isby default set to
bytewise encoding, while an interactive shell defaults to what the environment variables says.

You can set the encoding of a file or other 1/0O server with function i 0: set opt s/ 2. This can aso be
set when opening a file. Setting the terminal (or other st andar d_i o server) unconditionally to option
{encodi ng, ut f 8} impliesthat UTF-8 encoded characters are written to the device, regardless of how Erlang
was started or the user's environment.

Opening fileswith option encodi ng is convenient when writing or reading text files in a known encoding.

You can retrieve the encodi ng setting for an 1/0 server with functioni o: get opt s() .

1.3.13 Recipes

When starting with Unicode, one often stumbles over some common issues. This section describes some methods of
dealing with Unicode data.

Byte Order Marks

A common method of identifying encoding in text filesisto put a Byte Order Mark (BOM) first in the file. The BOM
isthe code point 16#FEFF encoded in the same way astheremaining file. If such afileisto beread, thefirst few bytes
(depending on encoding) are not part of the text. This code outlines how to open afile that is believed to have aBOM,
and sets the files encoding and position for further sequential reading (preferably using thei o module).

Notice that error handling is omitted from the code:

open_bom file for reading(File) ->
{ok,F} = file:open(File,[read,binary]),
{ok,Bin} = file:read(F,4),
{Type,Bytes} = unicode:bom to encoding(Bin),
file:position(F,Bytes),
io:setopts(F, [{encoding, Type}l),
{ok,F}.

Function uni code: bom t o_encodi ng/ 1 identifies the encoding from abinary of at least four bytes. It returns,
along with aterm suitable for setting the encoding of thefile, the byte length of the BOM, so that the file position can
be set accordingly. Notice that functionf i | e: posi ti on/ 2 always works on byte-offsets, so that the byte length
of the BOM is needed.

To open afilefor writing and place the BOM first is even simpler:

open bom file for writing(File,Encoding) ->
{ok,F} = file:open(File, [write,binary]),
ok = file:write(File,unicode:encoding to bom(Encoding)),
io:setopts(F, [{encoding,Encoding}]),
{ok,F}.

28 | Ericsson AB. All Rights Reserved.: STDLIB

1.3 Using Unicode in Erlang

Thefileisin both these cases then best processed using the i o module, as the functions in that module can handle
code points beyond the SO Latin-1 range.

Formatted I/O

When reading and writing to Unicode-aware entities, like afile opened for Unicode tranglation, you probably want to
format text strings using the functionsin thei o module or thei o_I i b module. For backward compatibility reasons,
thesefunctions do not accept any list asastring, but requireaspecial transation modifier when working with Unicode
texts. The modifier ist . When applied to control character s in aformatting string, it accepts all Unicode code points
and expects binariesto bein UTF-8:

1> io:format("~ts~n", [<<"8806"/utf8>>]).
EED)

ok

2> io:format("~s~n", [<<
A¥A=Aq

ok

"336" /utf8>>]).

Clearly, the second i o: f or mat / 2 gives undesired output, as the UTF-8 binary isnot in| at i nl. For backward
compatibility, the non-prefixed control character s expects bytewise-encoded I SO Latin-1 charactersin binaries and
lists containing only code points < 256.

Aslong asthe datais always lists, modifier t can be used for any string, but when binary dataisinvolved, care must
be taken to make the correct choice of formatting characters. A bytewise-encoded binary isalso interpreted asastring,
and printed even when using ~t s, but it can be mistaken for a valid UTF-8 string. Avoid therefore using the ~t s
control if the binary contains bytewise-encoded characters and not UTF-8.

Functioni o_| i b: f or mat / 2 behaves similarly. It is defined to return a deep list of characters and the output can
easily be converted to binary datafor outputting on any deviceby asimpleer| ang: I i st _to_bi nary/ 1. When
the trandation modifier is used, the list can, however, contain characters that cannot be stored in one byte. The call to
erlang:list_to_binary/ 1 thenfails. However, if the 1/O server you want to communicate with is Unicode-
aware, the returned list can still be used directly:

$ erl +pc unicode
Erlang R16B (erts-5.10.1) [source] [async-threads:0] [hipe] [kernel-poll:false]

Eshell V5.10.1 (abort with ~G)

1> io lib:format("~ts~n", ["Ftovvikovt"]).
["Ftodvikovt", "\n"]

2> io:put chars(io lib:format("~ts~n", ["ltoOvikovt"])).
F1ovv1kovT

ok

The Unicode string is returned as a Unicode list, which is recognized as such, as the Erlang shell uses the Unicode
encoding (and is started with all Unicode characters considered printable). The Unicode list is valid input to function
i 0: put _char s/ 2, so datacan be output on any Unicode-capable device. If the device isaterminal, characters are
output in format \ x{ H...} if encodingis| ati n1. Otherwisein UTF-8 (for the non-interactive terminal: "oldshell"
or "noshell") or whatever is suitable to show the character properly (for an interactive terminal: the regular shell).

So, you can always send Unicode datato the st andar d_i o device. Files, however, accept only Unicode code points
beyond ISO Latin-1if encodi ng is set to something elsethan| at i n1l.

Ericsson AB. All Rights Reserved.: STDLIB | 29

1.3 Using Unicode in Erlang

Heuristic Identification of UTF-8

While it is strongly encouraged that the encoding of charactersin binary data is known before processing, that is not
always possible. On atypical Linux system, thereisamix of UTF-8 and SO Latin-1 text files, and there are seldom
any BOMsiin the filesto identify them.

UTF-8 is designed so that 1SO Latin-1 characters with numbers beyond the 7-bit ASCII range are seldom considered
valid when decoded as UTF-8. Therefore one can usually use heuristics to determine if a fileisin UTF-8 or if it
is encoded in 1SO Latin-1 (one byte per character). The uni code module can be used to determine if data can be
interpreted as UTF-8:

heuristic_encoding bin(Bin) when is binary(Bin) ->
case unicode:characters to binary(Bin,utf8,utf8) of
Bin ->
utfs8;
7->
latinl
end.

If you do not have a complete binary of the file content, you can instead chunk through
the file and check part by part. The return-tuple {i nconpl ete, Decoded, Rest} from function
uni code: characters_to_binary/ 1, 2, 3 comesinhandy. Theincomplete rest from one chunk of data read
from thefile is prepended to the next chunk and we therefore avoid the problem of character boundaries when reading
chunks of bytesin UTF-8 encoding:

heuristic encoding file(FileName) ->
{ok,F} = file:open(FileName, [read,binary]),
loop through file(F,<<>>,file:read(F,1024)).

loop through file(,<<>>,eof) ->
utfs;
loop through file(, ,eof) ->
latinl;
loop through file(F,Acc,{ok,Bin}) when is binary(Bin) ->
case unicode:characters to binary([Acc,Bin]) of
{error, , } ->
latinl;
{incomplete, ,Rest} ->
loop through file(F,Rest,file:read(F,1024));
Res when is binary(Res) ->
loop through file(F,<<>>,file:read(F,1024))
end.

Another optionisto try to read the whole filein UTF-8 encoding and seeif it fails. Here we need to read thefile using
functioni o: get _char s/ 3, aswe have to read characters with a code point > 255:

heuristic encoding file2(FileName) ->
{ok,F} = file:open(FileName, [read,binary,{encoding,utf8}]),
loop through file2(F,io:get chars(F,'',1024)).

loop through file2(,eof) ->
utf8;
loop through file2(,{error, Err}) ->
latinl;
loop through file2(F,Bin) when is binary(Bin) ->

30 | Ericsson AB. All Rights Reserved.: STDLIB

1.3 Using Unicode in Erlang

loop through file2(F,io:get chars(F,'',1024)).

Lists of UTF-8 Bytes

For variousreasons, you can sometimes have alist of UTF-8 bytes. Thisisnot aregular string of Unicode characters, as
each list element does not contain one character. Instead you get the "raw" UTF-8 encoding that you havein binaries.
Thisiseasily converted to a proper Unicode string by first converting byte per byte into abinary, and then converting
the binary of UTF-8 encoded characters back to a Unicode string:

utf8 list to string(StrangelList) ->
unicode:characters to list(list to binary(StrangelList)).

Double UTF-8 Encoding

When working with binaries, you can get the horrible "double UTF-8 encoding”, where strange characters are encoded
in your binaries or files. In other words, you can get a UTF-8 encoded binary that for the second time is encoded
as UTF-8. A common situation is where you read a file, byte by byte, but the content is already UTF-8. If you then
convert the bytes to UTF-8, using, for example, the uni code module, or by writing to a file opened with option
{encodi ng, ut f 8}, you have each byte in the input file encoded as UTF-8, not each character of the original text
(one character can have been encoded in many bytes). Thereis no real remedy for this other than to be sure of which
data is encoded in which format, and never convert UTF-8 data (possibly read byte by byte from afile) into UTF-8
again.

By far the most common situation where this occurs, iswhen you get lists of UTF-8 instead of proper Unicode strings,
and then convert them to UTF-8 in abinary or on afile:

wrong_thing to do() ->

{ok,Bin} = file:read file("an utf8 encoded file.txt"),

MyList = binary to list(Bin), %% Wrong! It is an utf8 binary!

{ok,C} = file:open("catastrophe.txt", [write,{encoding,utf8}1),

io:put chars(C,MyList), %% Expects a Unicode string, but get UTF-8

%% bytes in a list!

The file catastrophe.txt contains more or less unreadable
garbage!

file:close(C).

Ensure you know what a binary contains before converting it to a string. If no other option exists, try heuristics:

if you can not know() ->
{ok,Bin} = file:read file("maybe utf8 encoded file.txt"),
MyList = case unicode:characters to list(Bin) of
L when is list(L) ->
L;
_ =>
binary to list(Bin) %% The file was bytewise encoded
end,
%% Now we know that the list is a Unicode string, not a list of UTF-8 bytes
{ok,G} = file:open("greatness.txt", [write,{encoding,utf8}]),
io:put chars(G,MyList), %% Expects a Unicode string, which is what it gets!
file:close(G). %% The file contains valid UTF-8 encoded Unicode characters!

Ericsson AB. All Rights Reserved.: STDLIB | 31

1.3 Using Unicode in Erlang

2 Reference Manual

32 | Ericsson AB. All Rights Reserved.: STDLIB

STDLIB

STDLIB

Application

The STDLI B application ismandatory in the sense that the minimal system based on Erlang/OTP consists of Ker nel
and STDLI B. The STDLI B application contains no services.
Configuration

The following configuration parameters are defined for the STDLI B application. For more information about
configuration parameters, seetheapp(4) modulein Kernel.

shell _esc = icl | abort
Can be used to change the behavior of the Erlang shell when A G is pressed.
restricted_shell = nodul e()

Can be used to run the Erlang shell in restricted mode.
shel | _catch_excepti on = bool ean()

Can be used to set the exception handling of the evaluator process of Erlang shell.
shel |l _history_length = integer() >= 0

Can be used to determine how many commands are saved by the Erlang shell.
shel | _pronpt _func = {Md, Func} | default

where

« Md = atom()

e Func = atom()

Can be used to set a customized Erlang shell prompt function.
shel | _saved_results = integer() >= 0

Can be used to determine how many results are saved by the Erlang shell.
shel |l _strings = bool ean()

Can be used to determine how the Erlang shell outputs lists of integers.

See Also
app(4),application(3),shdl(3)

Ericsson AB. All Rights Reserved.: STDLIB | 33

array

array

Erlang module

Functional, extendible arrays. Arrays can have fixed size, or can grow automatically as needed. A default valueisused
for entries that have not been explicitly set.

Arrays uses zer o-based indexing. Thisis a deliberate design choice and differs from other Erlang data structures, for
example, tuples.

Unless specified by the user when the array is created, the default value is the atom undef i ned. There is no
difference between an unset entry and an entry that has been explicitly set to the same value asthe default one (compare
reset/ 2). If you need to differentiate between unset and set entries, ensure that the default value cannot be confused
with the values of set entries.

The array never shrinks automatically. If anindex | has been used to set an entry successfully, al indicesin the range
[O,1] stay accessible unlessthe array size is explicitly changed by callingr esi ze/ 2.

Examples:

Create afixed-size array with entries 0-9 set to undef i ned:

AO
10

array:new(10).
array:size(A0).

Create an extendible array and set entry 17 tot r ue, causing the array to grow automatically:

Al
18

array:set(17, true, array:new()).
array:size(Al).

Read back a stored value:

true = array:get(17, Al).

Accessing an unset entry returns default value:

undefined = array:get(3, Al)

Accessing an entry beyond the last set entry also returns the default value, if the array does not have fixed size:

undefined = array:get(18, Al).

"Sparse" functions ignore default-valued entries:

A2 = array:set(4, false, Al).
[{4, false}, {17, true}] = array:sparse to orddict(A2).

34 | Ericsson AB. All Rights Reserved.: STDLIB

array

An extendible array can be made fixed-size |ater:

A3 = array:fix(A2).

A fixed-size array does not grow automatically and does not allow accesses beyond the last set entry:

{'EXIT', {badarg, }}
{'EXIT', {badarg, }}

(catch array:set(18, true, A3)).
(catch array:get(18, A3)).

Data Types

array(Type)

A functional, extendible array. The representation is not documented and is subject to change without notice. Notice
that arrays cannot be directly compared for equality.

array() = array(term())

array _indx() integer() >= 0

array opts() array_opt() | [array_opt()]

array opt() =
{fixed, boolean()} |

fixed |
{default, Type :: term()} |
{size, N :: integer() >= 0} |

(N :: integer() >= 0)
indx_pairs(Type) = [i ndx_pair (Type)]l
indx pair(Type) = {Index :: array_indx(), Type}

Exports

default(Array :: array(Type)) -> Value :: Type
Gets the value used for uninitialized entries.
Seealso new 2.

fix(Array :: array(Type)) -> array(Type)
Fixesthe array size. This prevents it from growing automatically upon insertion.
Seeasoset/ 3 andrel ax/ 1.

foldl(Function, InitialAcc :: A, Array :: array(Type)) -> B
Types:
Function =
fun((Index :: array_indx(), Value :: Type, Acc :: A) -> B)

Folds the array elements using the specified function and initial accumulator value. The elements are visited in order
from the lowest index to the highest. If Funct i on isnot afunction, the call fails with reason badar g.

Seeasofol dr/ 3, map/ 2,sparse_fol dl /3.

Ericsson AB. All Rights Reserved.: STDLIB | 35

array

foldr(Function, InitialAcc :: A, Array :: array(Type)) -> B
Types:
Function =
fun((Index :: array_indx(), Value :: Type, Acc :: A) -> B)

Folds the array elements right-to-left using the specified function and initial accumulator value. The elements are
visited in order from the highest index to thelowest. If Funct i on isnot afunction, the call failswith reasonbadar g.

Seedsofol dl /3, map/ 2.

from list(List :: [Value :: Typel) -> array(Type)
Equivalenttof rom | i st (Li st, undefi ned).

from list(List :: [Value :: Type], Default :: term()) ->
array (Type)

Converts alist to an extendible array. Def aul t isused asthe value for uninitialized entries of the array. If Li st is
not a proper list, the call fails with reason badar g.

Seealsonew 2,to_list/1.

from orddict(Orddict :: indx_pairs(Value :: Type)) -> array(Type)
Equivalenttof r om or ddi ct (Orddi ct, undefined).

from orddict(Orddict :: indx_pairs(Value :: Type),
Default :: Type) ->
array (Type)

Converts an ordered list of pairs{ | ndex, Val ue} to acorresponding extendible array. Def aul t isused asthe
value for uninitialized entries of the array. If Or ddi ct isnot aproper, ordered list of pairs whose first elements are
non-negative integers, the call fails with reason badar g.

Seedsonew 2,to_orddict/ 1.

get(I :: array_indx(), Array :: array(Type)) -> Value :: Type

Gets the value of entry | . If | is not a non-negative integer, or if the array has fixed size and | is larger than the
maximum index, the call fails with reason badar g.

If the array does not have fixed size, the default value for any index | greater than si ze(Arr ay) - 1 isreturned.
Seedsoset/ 3.

is array(X :: term()) -> boolean()

Returnst r ue if Xisan array, otherwise f al se. Natice that the check is only shallow, as there is ho guarantee that
Xisawell-formed array representation even if thisfunction returnst r ue.

is fix(Array :: array()) -> boolean()
Checksif the array hasfixed size. Returnst r ue if the array isfixed, otherwisef al se.
Seeadsofix/ 1.

36 | Ericsson AB. All Rights Reserved.: STDLIB

array

map (Function, Array :: array(Typel)) -> array(Type2)
Types:
Function = fun((Index :: array_indx(), Typel) -> Type2)

Maps the specified function onto each array element. The elements are visited in order from the lowest index to the
highest. If Funct i on isnot afunction, the call fails with reason badar g.

Seeasofoldl/3,foldr/3,sparse_nap/ 2.

new() -> array()
Creates anew, extendible array with initial size zero.
Seeadsonew 1, new 2.

new(Options :: array_opts()) -> array()

Creates a new array according to the specified otions. By default, the array is extendible and has initia size zero.
Array indices start at 0.

Opt i ons isasingleterm or alist of terms, selected from the following:
N::integer() >= Oor{size, N:integer() >= 0}

Specifies the initial array size; thisalso implies{fi xed, true}.If Nisnot anon-negative integer, the call
failswith reason badar g.

fixedor{fixed, true}
Creates afixed-size array. Seeadsofi x/ 1.
{fixed, false}
Creates an extendible (non-fixed-size) array.
{default, Value}
Sets the default value for the array to Val ue.
Options are processed in the order they occur inthelit, that is, later options have higher precedence.
The default value is used as the value of uninitialized entries, and cannot be changed once the array has been created.
Examples:

array:new(100)

creates afixed-size array of size 100.

array:new({default,0})

creates an empty, extendible array whose default value is 0.

array:new([{size, 10}, {fixed, false}, {default,-1}1)

creates an extendible array with initial size 10 whose default valueis- 1.
Seeasofix/1,fromlist/2,get/2,new 0,new 2,set/ 3.

Ericsson AB. All Rights Reserved.: STDLIB | 37

array

new(Size :: integer() >= 0, Options :: array_opts()) -> array()

Creates a new array according to the specified size and options. If Si ze is hot a non-negative integer, the cal fails
with reason badar g. By default, the array has fixed size. Notice that any size specificationsin Qpt i ons override
parameter Si ze.

If Options isaligt, thisisequivalentto new([{si ze, Size} | Options], otherwiseit is equivaent to
new([{size, Size} | [Options]].However, using thisfunction directly is more efficient.

Example:

array:new (100, {default,0})

creates afixed-size array of size 100, whose default valueis 0.
Seeasonew 1.

relax(Array :: array(Type)) -> array(Type)
Makes the array resizable. (Reversesthe effectsof fi x/ 1.)
Seedsofix/ 1.

reset(I :: array_indx(), Array :: array(Type)) -> array(Type)

Resets entry | to the default value for the array. If the value of entry | is the default value, the array is returned
unchanged. Reset never changes the array size. Shrinking can be done explicitly by calling r esi ze/ 2.

If I isnot anon-negative integer, or if the array hasfixed sizeand | islarger than the maximum index, the call fails
with reason badar g; compareset / 3

Seeadsonew 2,set/ 3.

resize(Array :: array(Type)) -> array(Type)

Changes the array size to that reported by spar se_si ze/ 1. If the specified array has fixed size, also the resulting
array hasfixed size.

Seealsoresi zel 2,sparse_si ze/ 1.

resize(Size :: integer() >= 0, Array :: array(Type)) ->
array (Type)

Changethe array size. If Si ze isnot anon-negative integer, the call failswith reason badar g. If the specified array
has fixed size, also the resulting array has fixed size.

set(I :: array_indx(), Value :: Type, Array :: array(Type)) ->
array (Type)

Setsentry | of thearray to Val ue. If | isnot anon-negative integer, or if the array hasfixed sizeand | islarger than
the maximum index, the call fails with reason badar g.

If the array does not have fixed size, and | isgreater thansi ze(Array) - 1, thearray growsto sizel +1.
Seeasoget/ 2,reset/ 2.

38 | Ericsson AB. All Rights Reserved.: STDLIB

array

size(Array :: array()) -> integer() >= 0

Gets the number of entries in the array. Entries are numbered from O to si ze(Array) - 1. Hence, thisis also the
index of thefirst entry that is guaranteed to not have been previously set.

Seeasoset/ 3,sparse_size/ 1.

sparse_foldl(Function, InitialAcc :: A, Array :: array(Type)) -> B
Types:
Function =
fun((Index :: array_indx(), Value :: Type, Acc :: A) -> B)

Folds the array elements using the specified function and initial accumulator value, skipping default-valued entries.
The elements are visited in order from the lowest index to the highest. If Funct i on isnot afunction, the call fails
with reason badar g.

Seeasofol dl/3,sparse_fol dr/3.

sparse_foldr(Function, InitialAcc :: A, Array :: array(Type)) -> B
Types:
Function =
fun((Index :: array_indx(), Value :: Type, Acc :: A) -> B)

Folds the array elements right-to-left using the specified function and initial accumulator value, skipping default-
valued entries. The elements are visited in order from the highest index to the lowest. If Funct i on isnot afunction,
the call fails with reason badar g.

Seeasofol dr/ 3,sparse_fol dl /3.

sparse_map(Function, Array :: array(Typel)) -> array(Type2)
Types:
Function = fun((Index :: array_indx(), Typel) -> Type2)

M aps the specified function onto each array element, skipping default-valued entries. The elements are visited in order
from the lowest index to the highest. If Funct i on isnot afunction, the call fails with reason badar g.

See dso map/ 2.

sparse _size(Array :: array()) -> integer() >= 0

Gets the number of entries in the array up until the last non-default-valued entry. That is, returns| +1 if | isthe last
non-default-valued entry in the array, or zero if no such entry exists.

Seeadsoresizel/ 1,sizel 1.

sparse_to list(Array :: array(Type)) -> [Value :: Type]l
Convertsthe array to alist, skipping default-valued entries.
Seealsoto |ist/1.

sparse_to orddict(Array :: array(Type)) ->
i ndx_pairs(Value :: Type)

Convertsthe array to an ordered list of pairs{ | ndex, Val ue}, skipping default-valued entries.
Seedsot o_orddict/ 1.

Ericsson AB. All Rights Reserved.: STDLIB | 39

array

to list(Array :: array(Type)) -> [Value :: Type]
Convertsthe array to alist.
Seedsofromlist/2,sparse_to_list/1.

to orddict(Array :: array(Type)) -> indx_pairs(Value ::

Convertsthe array to an ordered list of pairs{ | ndex, Val ue}.
Seealsofrom orddict/2,sparse_to_orddict/1.

40 | Ericsson AB. All Rights Reserved.: STDLIB

Type)

assert.hrl.xml

assert.hrl.xml

Name

Theincludefileassert . hrl provides macros for inserting assertionsin your program code.
Include the following directive in the module from which the function is called:

-include lib("stdlib/include/assert.hrl").

When an assertion succeeds, the assert macro yieldsthe atom ok . When an assertion fails, an exception of typeer r or

is generated. The associated error term has the form { Macr o, | nf 0o} . Macr o is the macro name, for example,
assert Equal . I nf o isalist of tagged values, such as[{ rodul e, M, {line, L}, ...],whichgives
more information about the location and cause of the exception. All entriesin the | nf o list are optional; do not rely
programatically on any of them being present.

If the macro NOASSERT isdefined whenassert . hr | isread by the compiler, the macros are defined as equivalent
to the atom ok. The test is not performed and there is no cost at runtime.

For example, using er | ¢ to compile your modules, the following disable all assertions:

erlc -DNOASSERT=true *.erl

The value of NOASSERT does not matter, only the fact that it is defined.
A few other macros also have effect on the enabling or disabling of assertions:

« |f NODEBUGIsdefined, itimpliesNOASSERT, unless DEBUGI s al so defined, which isassumed to take precedence.
e |f ASSERT isdefined, it overrides NOASSERT, that is, the assertions remain enabled.

If you prefer, you can thus use only DEBUGNCDEBUG as the main flags to control the behavior of the assertions
(which is useful if you have other compiler conditionals or debugging macros controlled by those flags), or you can
use ASSERT/NOASSERT to control only the assert macros.

Macros
assert (Bool Expr)
Teststhat Bool Expr completes normally returningt r ue.
assert Not (Bool Expr)
Teststhat Bool Expr completes normally returning f al se.
assert Mat ch(Guar dedPatt ern, Expr)
Teststhat Expr completes normally yielding a value that matches Guar dedPat t er n, for example:

?assertMatch({bork, }, f())

Noticethat aguard when . .. can beincluded:

Ericsson AB. All Rights Reserved.: STDLIB | 41

assert.hrl.xml

?assertMatch({bork, X} when X > 0, f())

assert Not Mat ch(Guar dedPattern, Expr)
Teststhat Expr completes normally yielding a value that does not match Guar dedPat t er n.
Asinassert Mat ch, Guar dedPat t er n can have awhen part.
assert Equal (Expect edVal ue, Expr)
Teststhat Expr completes normally yielding avalue that is exactly equal to Expect edVal ue.
assert Not Equal (Expect edVal ue, Expr)
Teststhat Expr completes normally yielding avalue that is not exactly equal to Expect edVal ue.
assert Exception(C ass, Term Expr)

Tests that Expr completes abnormally with an exception of type Cl ass and with the associated Ter m The
assertion failsif Expr raises adifferent exception or if it completes normally returning any value.

Notice that both O ass and Ter mcan be guarded patterns, asinassert Mat ch.
assert Not Exception(C ass, Term Expr)

Teststhat Expr does not evaluate abnormally with an exception of type Cl ass and with the associated Ter m
The assertion succeedsif Expr raises adifferent exception or if it completes normally returning any value.

Asinassert Excepti on, both O ass and Ter mcan be guarded patterns.
assertError(Term Expr)

Equivalenttoassert Exception(error, Term Expr)
assertExit(Term Expr)

Equivalenttoassert Exception(exit, Term Expr)
assert Throw Term Expr)

Equivalenttoassert Excepti on(throw, Term Expr)

See Also
conpil e(3),erlc(3)

42 | Ericsson AB. All Rights Reserved.: STDLIB

base64

base64

Erlang module

Provides base64 encode and decode, see RFC 2045.

Data Types
ascii string() = [1..255]
ascii binary() = binary()

A bi nary() with ASCII charactersin the range 1 to 255.

Exports

decode(Base64) -> Data
decode to string(Base64) -> DataString
mime decode(Base64) -> Data
mime decode to string(Base64) -> DataString
Types:
Base64 = ascii_string() | ascii_binary()
Data = ascii_binary()
DataString = ascii_string()
Decodes a base64-encoded string to plain ASCII. See RFC 4648.

m ne_decode/ 1 and nmi ne_decode to_string/ 1 strip away illegal characters, while decode/ 1 and
decode_to_string/ 1 only strip away whitespace characters.

encode(Data) -> Baseb64
encode to string(Data) -> Base64String
Types.

Data = ascii_string() | ascii_binary()

Baseb4 = ascii_binary()

Base64String = ascii _string()

Encodes aplain ASCII string into base64. The result is 33% larger than the data.

Ericsson AB. All Rights Reserved.: STDLIB | 43

href
href

beam_lib

beam_lib

Erlang module

Thismodule provides an interface to files created by the BEAM Compiler ("BEAM files'). Theformat used, avariant
of "EA IFF 1985" Standard for Interchange Format Files, divides datainto chunks.

Chunk data can be returned as binaries or as compound terms. Compound terms are returned when chunks are
referenced by names (atoms) rather than identifiers (strings). The recognized names and the corresponding identifiers
are asfollows:

e abstract _code ("Abst")

e atonms ("Atonl)

o attributes ("Attr")

e conpile_info ("CInf")

e exports ("ExpT")

e inports ("InmpT")

« indexed_inports ("InpT")

 labeled_exports ("ExpT")

e Jlabeled |locals ("LocT")

e locals ("LocT")

Debug Information/Abstract Code

Option debug_i nf o can be specified to the Compiler (see conpi | e(3)) to have debug information in the form
of abstract code (see section The Abstract Format in the ERTS User's Guide) stored intheabst r act _code chunk.
Tools such as Debugger and Xref require the debug information to be included.

Warning:

Source code can be reconstructed from the debug information. To prevent this, use encrypted debug information
(see below).

The debug information can also be removed from BEAM files using strip/ 1, strip_files/1, andlor
strip_rel ease/ 1.

Reconstruct Source Code

The following example shows how to reconstruct source code from the debug information in aBEAM file Beam

{ok,{ ,[{abstract code,{ ,AC}}1}} = beam 1lib:chunks(Beam, [abstract code]).
io:fwrite("~s~n", [erl prettypr:format(erl syntax:form list(AC))]).

Encrypted Debug Information

The debug information can be encrypted to keep the source code secret, but still be able to use tools such as Debugger
or Xref.

44 | Ericsson AB. All Rights Reserved.: STDLIB

beam_lib

To use encrypted debug information, a key must be provided to the compiler and beam | i b. The key is specified
asastring. It isrecommended that the string contains at least 32 characters and that both upper and lower case letters
aswell asdigits and special characters are used.

The default type (and currently the only type) of crypto algorithmisdes3_cbc, three rounds of DES. The key string
isscrambled using er | ang: nd5/ 1 to generate the keys used for des3_cbc.

Note:

Asfar aswe know by the time of writing, it isinfeasible to break des3_chbc encryption without any knowledge
of the key. Therefore, aslong asthe key is kept safe and is unguessable, the encrypted debug information should
be safe from intruders.

The key can be provided in the following two ways:

e UseCompiler option{ debug_i nf o, Key},seeconpi | e(3) andfunctioncrypt o_key_f un/ 1 toregister
afun that returns the key whenever beam | i b must decrypt the debug information.

If no such funisregistered, beam | i b instead searchesfor an. er | ang. crypt file, see the next section.
« Storethekey inatext filenamed . er | ang. crypt .

In this case, Compiler option encr ypt _debug_i nf o can be used, seeconpi | e(3).

.erlang.crypt

beam | i b searchesfor. er | ang. cr ypt inthecurrent directory and then the home directory for the current user.
If thefileisfound and contains akey, beam | i b implicitly creates a crypto key fun and registersit.

File. erl ang. crypt istocontain asinglelist of tuples:

{debug info, Mode, Module, Key}

Mode is the type of crypto agorithm; currently, the only allowed value is des3_cbc. Modul e is either an atom,
in which case Key is only used for the module Mbdul e, or [], in which case Key is used for al modules. Key is
the non-empty key string.

Key in the first tuple where both Mode and Modul e match is used.
Thefollowing isan exampleof an. er | ang. crypt filethat returns the same key for all modules:

[{debug_info, des3 cbc, [], "%>7}|pc/DM6Cga*68$Mw]L#& Gejr1G "}].

Thefollowing is aslightly more complicated example of an . er | ang. cr ypt providing one key for modulet and
another key for all other modules:

[{debug info, des3 cbc, t, "My KEY"},
{debug_info, des3 cbc, [], "%>7}|pc/DM6Cga*68$Mw]L#& Gejr]G "}].

Ericsson AB. All Rights Reserved.: STDLIB | 45

beam_lib

Note:

Do not use any of the keys in these examples. Use your own keys.

Data Types
beam() = module() | file:filenane() | binary()

Each of the functions described below accept either the module name, the filename, or a binary containing the BEAM
module.

chunkdata() =
{chunkid(), dataB()} |
{abstract code, abst_code()} |
{attributes, [attrib_entry()]1} |
{compile info, [conpinfo_entry()]1} |
{exports, [{atom(), arity()}]1} |
{labeled exports, [labeled_entry()1} |
{imports, [mfa()]} |
{indexed imports,

[{i ndex(), module(), Function :: atom(), arity()}1} |
{locals, [{atom(), arity()}1} |
{labeled locals, [labeled_entry()1} |
{atoms, [{integer(), atom()}1}

Thelist of attributesissortedon Attri bute (inattri b_entry()) and each attribute name occurs once in the
list. The attribute values occur in the same order asin the file. The lists of functions are also sorted.

chunkid() = nonempty string()
"Abst" | "Attr" | "CInf" | "ExpT" | "ImpT" | "LocT" | "Atom"
dataB() = binary()
abst code() =
{AbstVersion :: atom(), forns()} | no abstract code

It is not checked that the forms conform to the abstract format indicated by Abst Ver si on.no_abstract _code
means that chunk " Abst " is present, but empty.

forms() = [erl _parse:abstract _form)]

compinfo entry() = {InfoKey :: atom(), term()}

attrib entry() =

{Attribute :: atom(), [AttributeValue :: term()]}
labeled entry() = {Function :: atom(), arity(), label ()}
index() = integer() >= 0
label() = integer()
chunkref() = chunknanme() | chunki d()
chunkname() =

abstract code |

attributes |

compile info |

exports |

labeled exports |

imports |

46 | Ericsson AB. All Rights Reserved.: STDLIB

beam_lib

indexed imports |
locals |
labeled locals |
atoms
chnk rsn() =
{unknown chunk, file:filename(), atom()} |
{key missing or invalid, file:filenane(), abstract code} |
info_rsn()
info rsn() =
{chunk too big,
file:filenane(),

chunki d() ,
ChunkSize :: integer() >= 0,
FileSize :: integer() >= 0} |

{invalid beam file,

file:filenane(),

Position :: integer() >= 0} |

{invalid chunk, file:filename(), chunkid()} |
{missing chunk, file:filename(), chunkid()} |
{not a beam file, file:filename()} |

{file error, file:filenane(), file:posix()}

Exports

all_chunks(File :: bean()) ->
{ok, beam 1lib, [{chunkid(), dataB()}]1}

Reads chunk datafor al chunks.

build module(Chunks) -> {ok, Binary}
Types.
Chunks [{chunkid(), dataB() }]
Binary = binary()

Builds a BEAM module (as a binary) from alist of chunks.

chunks (Beam, ChunkRefs) ->
{ok, {module(), [chunkdata()]}} |
{error, beam 1lib, chnk_rsn()}

Types:
Beam = beam()
ChunkRefs = [chunkref ()]

Reads chunk data for selected chunks references. The order of the returned list of chunk data is determined by the
order of the list of chunks references.

chunks (Beam, ChunkRefs, Options) ->
{ok, {module(), [ChunkResult]}} |
{error, beam 1lib, chnk_rsn()}

Types.

Ericsson AB. All Rights Reserved.: STDLIB | 47

beam_lib

Beam = beam()
ChunkRefs = [chunkref ()]
Options = [allow missing chunks]
ChunkResult =
chunkdata() | {ChunkRef :: chunkref(), missing chunk}

Reads chunk data for selected chunks references. The order of the returned list of chunk data is determined by the
order of thelist of chunks references.

By default, if any requested chunk is missing in Beam an error tuple is returned. However, if option
al | ow_m ssi ng_chunks isspecified, aresult isreturned even if chunksare missing. Intheresult list, any missing
chunksare represented as{ ChunkRef , mi ssi ng_chunk} . Notice however that if chunk " At ont' ismissing, that
isconsidered afatal error and the return valueisan er r or tuple.

clear crypto key fun() -> undefined | {ok, Result}
Types:
Result = undefined | term()
Unregisters the crypto key fun and terminates the process holding it, started by cr ypt o_key fun/ 1.

Returns either { ok, undef i ned} if no crypto key funisregistered, or { ok, Ter n}, where Ter misthe return
valuefrom Cr ypt oKeyFun(cl ear),seecrypt o_key fun/1.

cmp (Beaml, Beam2) -> ok | {error, beam lib, cmp_rsn()}

Types.
Beaml = Beam2 = beam()
cmp_rsn() =

{modules different, module(), module()} |
{chunks different, chunkid()} |

different chunks |

info_rsn()

Comparesthe contents of two BEAM files. If the module names arethe same, and all chunks except for chunk " Cl nf "
(the chunk containing the compilation information that is returned by Modul e: nodul e_i nf o(conpi | €)) have
the same contents in both files, ok isreturned. Otherwise an error message is returned.

cmp dirs(Dirl, Dir2) ->
{Onlyl, Only2, Different} | {error, beam lib, Reason}

Types:
Dirl = Dir2 = atom() | file:filenane()
Onlyl = Only2 = [file:filename()]

Different =
[{Filenamel :: file:filenane(), Filename2 :: file:filenane()}]
Reason = {not a directory, term()} | info_rsn()

Compares the BEAM files in two directories. Only files with extension " . beam' are compared. BEAM files that
exist only in directory Di r 1 (Di r 2) are returned in Onl y1 (Onl y2). BEAM files that exist in both directories
but are considered different by cnp/ 2 are returned as pairs {Fi | enanel, Fi | enane2}, where Fi | enanel
(Fi I enane2) existsindirectory Di r 1 (Di r 2).

crypto_key fun(CryptoKeyFun) -> ok | {error, Reason}
Types:

48 | Ericsson AB. All Rights Reserved.: STDLIB

beam_lib

CryptoKeyFun = crypto_fun()
Reason = badfun | exists | term()
crypto fun() = fun((crypto_fun_arg()) -> term())
crypto _fun arg() =
init | clear | {debug info, mpde(), module(), file:filename()}
mode() = des3 cbc

Registers an unary fun that is called if beam | i b must read an abst r act _code chunk that has been encrypted.
Thefunisheldin aprocessthat is started by the function.

If afunisalready registered when attempting to register afun, { er r or, exi st s} isreturned.
The fun must handle the following arguments:

CryptoKeyFun(init) -> ok | {ok, NewCryptoKeyFun} | {error, Term}

Called when the fun is registered, in the process that holds the fun. Here the crypto key fun can do any
necessary initializations. If { ok, NewCr ypt oKeyFun} is returned, NewCr ypt oKeyFun is registered instead
of Crypt oKeyFun. If {error, Tern} isreturned, the registration is aborted and cr ypt o_key_fun/ 1 also
returns{error, Ternt.

CryptoKeyFun({debug info, Mode, Module, Filename}) -> Key

Called whenthekey isneeded for module Modul e inthefilenamedFi | enane. Mode isthetypeof crypto agorithm;
currently, the only possible valueisdes3_cbc. Thecall istofail (raise an exception) if no key is available.

CryptoKeyFun(clear) -> term()

Called beforethefunisunregistered. Here any cleaning up can be done. Thereturn valueis not important, but is passed
back to the caller of cl ear _crypt o_key_fun/ 0 aspart of itsreturn value.

diff dirs(Dirl, Dir2) -> ok | {error, beam lib, Reason}

Types.
Dirl = Dir2 = atom() | file:filenane()
Reason = {not a directory, term()} | info_rsn()

Compares the BEAM filesin two directoriesas cnp_di r s/ 2, but the names of filesthat exist in only one directory
or are different are presented on standard output.

format error(Reason) -> io_lib:chars()
Types:
Reason = term()

For a specified error returned by any function in this module, this function returns a descriptive string of the error in
English. For file errors, functionf i | e: f or mat _err or (Posi x) isto be caled.

info(Beam) -> [InfoPair] | {error, beam lib, info_rsn()}
Types:

Ericsson AB. All Rights Reserved.: STDLIB | 49

beam_lib

Beam = beam()
InfoPair =
{file, Filename :: file:filename()} |

{binary, Binary :: binary()} |
{module, Module :: module()} |

{chunks,
[{ChunkId :: chunkid(),
Pos :: integer() >= 0,

Size :: integer() >= 0}1}

Returns alist containing some information about a BEAM fileastuples{1tem | nf o}:
{file, Filenane} | {binary, Binary}

The name (string) of the BEAM file, or the binary from which the information was extracted.
{nodul e, Modul e}

The name (atom) of the module.
{chunks, [{Chunkld, Pos, Size}]}

For each chunk, the identifier (string) and the position and size of the chunk data, in bytes.

md5(Beam) -> {ok, {module(), MD5}} | {error, beam lib, chnk_rsn()}
Types.

Beam = beam()

MD5 = binary()

Calculates an MD5 redundancy check for the code of the module (compilation date and other attributes are not
included).

strip(Beaml) ->
{ok, {module(), Beam2}} | {error, beam lib, info_rsn()}

Types:
Beaml = Beam2 = beam()

Removesall chunksfrom aBEAM file except those needed by the loader. In particular, the debug information (chunk
abstract _code) isremoved.

strip files(Files) ->
{ok, [{module(), Beam}]} |
{error, beam lib, info_rsn()}

Types:
Files = [beam()]
Beam = beant()
Removes all chunks except those needed by the loader from BEAM files. In particular, the debug information (chunk

abstract code)isremoved. Thereturned list contains one element for each specified filename, in the same order
asinFi | es.

strip release(Dir) ->
{ok, [{module(), file:filename()}1} |

50 | Ericsson AB. All Rights Reserved.: STDLIB

beam_lib

{error, beam lib, Reason}

Types:
Dir = atom() | file:filenane()
Reason = {not a directory, term()} | info_rsn()

Removes all chunks except those needed by the loader from the BEAM files of a release. Dir is to
be the ingtallation root directory. For example, the current OTP release can be stripped with the call
beam|ib:strip _release(code:root _dir()).

version(Beam) ->
{ok, {module(), [Version :: term()1}} |
{error, beam 1lib, chnk_rsn()}
Types.
Beam = beam()
Returns the module version or versions. A version is defined by module attribute - vsn(Vsn) . If this attribute is
not specified, the version defaults to the checksum of the module. Notice that if version Vsn isnot alist, it is made

into one, that is { ok, { Modul e, [Vsn] } } isreturned. If there are many - vsn module attributes, the result is the
concatenated list of versions.

Examples:

1> beam lib:version(a). % -vsn(1).
{ok,{a, [1]}}
2> beam lib:version(b). % -vsn([1]).

{ok,{b, [1]}}

3> beam lib:version(c).
{ok,{c,[1,2]}}

4> beam lib:version(d). % no -vsn attribute
{ok,{d, [275613208176997377698094100858909383631] } }

o°

-vsn([1l]). -vsn(2).

Ericsson AB. All Rights Reserved.: STDLIB | 51

binary

binary

Erlang module

This module contains functions for manipulating byte-oriented binaries. Although the majority of functions could be
provided using bit-syntax, the functionsin this library are highly optimized and are expected to either execute faster
or consume less memory, or both, than a counterpart written in pure Erlang.

The module is provided according to Erlang Enhancement Proposal (EEP) 31.

Note:

The library handles byte-oriented data. For bitstrings that are not binaries (does not contain whole octets of bits)
abadar g exception isthrown from any of the functionsin this module.

Data Types

cp()

Opaque data type representing a compiled search pattern. Guaranteed to be a t upl e() to allow programs to
distinguish it from non-precompiled search patterns.

part() = {Start :: integer() >= 0, Length :: integer()}

A representaion of a part (or range) in abinary. St ar t isa zero-based offset into abi nary() and Lengt h isthe
length of that part. As input to functions in this module, a reverse part specification is allowed, constructed with a
negative Lengt h, so that the part of the binary beginsat St art + Lengt h and is-Lengt h long. Thisis useful
for referencing the last N bytes of abinary as{ si ze(Bi nary), -N}.Thefunctionsin this module always return
part () swith positive Lengt h.

Exports

at(Subject, Pos) -> byte()
Types:
Subject = binary()
Pos = integer() >= 0
Returnsthe byte at position Pos (zero-based) inbinary Subj ect asaninteger. If Pos >=byt e_si ze(Subj ect),
abadar g exception israised.

bin to list(Subject) -> [byte()]
Types:
Subject = binary()
Sameasbin _to |ist(Subject, {0, byte size(Subject)}).

bin to list(Subject, PosLen) -> [byte()]
Types.

52 | Ericsson AB. All Rights Reserved.: STDLIB

binary

Subject = binary()
PosLen = part ()

Converts Subj ect to alist of byt e() s, each representing the value of one byte. part () denotes which part of
thebi nary() to convert.

Example:

1> binary:bin to list(<<"erlang">>, {1,3}).
n rla n
%% or [114,108,97] in list notation.

If PosLen in any way references outside the binary, abadar g exception is raised.

bin to list(Subject, Pos, Len) -> [byte()]
Types:

Subject = binary()

Pos integer() >= 0

Len integer()

Sameas bin_to_list(Subject, {Pos, Len}).

compile pattern(Pattern) -> cp()
Types:
Pattern = binary() | [binary()]
Builds an internal structure representing a compilation of a search pattern, later to be used in functions mat ch/ 3,

mat ches/ 3,split/3,orreplace/ 4. Thecp() returned isguaranteed to beat upl e() to allow programsto
distinguish it from non-precompiled search patterns.

When a list of binaries is specified, it denotes a set of alternative binaries to search for. For
example, if [<<"functional ">>, <<"progranmi ng">>] is specified as Patt ern, this means either
<<"functional ">>or <<" programi ng" >>". The pattern is a set of aternatives, when only a single binary
is specified, the set has only one element. The order of alternativesin a pattern is not significant.

Thelist of binaries used for search alternatives must be flat and proper.

If Pat t er nisnot abinary or aflat proper list of binaries with length > 0, abadar g exception is raised.

copy(Subject) -> binary()
Types:

Subject = binary()
Sameascopy(Subj ect, 1).

copy(Subject, N) -> binary()
Types:
Subject = binary()
N = integer() >= 0
Creates abinary with the content of Subj ect duplicated N times.

Ericsson AB. All Rights Reserved.: STDLIB | 53

binary

This function always createsanew binary, evenif N = 1. By using copy/ 1 onabinary referencing alarger binary,
one can free up the larger binary for garbage collection.

Note:

By deliberately copying a single binary to avoid referencing a larger binary, one can, instead of freeing up the
larger binary for later garbage collection, create much more binary datathan needed. Sharing binary dataisusually
good. Only in specia cases, when small parts reference large binaries and the large binaries are no longer used
in any process, deliberate copying can be agood idea.

If N< O, abadar g exception israised.

decode unsigned(Subject) -> Unsigned
Types:

Subject = binary()

Unsigned = integer() >= 0
Sameasdecode_unsi gned(Subj ect, big).

decode unsigned(Subject, Endianness) -> Unsigned
Types.
Subject = binary()
Endianness = big | little
Unsigned = integer() >= 0
Converts the binary digit representation, in big endian or little endian, of a positive integer in Subj ect to an Erlang
i nteger().
Example:

1> binary:decode unsigned(<<169,138,199>>,big).
11111111

encode unsigned(Unsigned) -> binary()
Types:

Unsigned = integer() >= 0
Sameasencode_unsi gned(Unsi gned, big).

encode unsigned(Unsigned, Endianness) -> binary()
Types.

Unsigned = integer() >= 0

Endianness = big | little

Converts a positive integer to the smallest possible representation in a binary digit representation, either big endian
or little endian.

Example:

54 | Ericsson AB. All Rights Reserved.: STDLIB

binary

1> binary:encode unsigned(11111111, big).
<<169,138,199>>

first(Subject) -> byte()
Types:
Subject = binary()

Returnsthefirst byte of binary Subj ect asaninteger. If thesize of Subj ect iszero, abadar g exceptionisraised.

last(Subject) -> byte()
Types:
Subject = binary()

Returnsthelast byte of binary Subj ect asaninteger. If thesize of Subj ect iszero, abadar g exceptionisraised.

list to bin(BytelList) -> binary()
Types:
BytelList = iodata()
Worksexactly aser |l ang: | i st _to_bi nary/ 1, added for completeness.

longest common prefix(Binaries) -> integer() >= 0
Types.
Binaries = [binary()]
Returns the length of the longest common prefix of the binariesin list Bi nari es.
Example:

1> binary:longest common prefix([<<"erlang">>, <<"ergonomy">>]).
2

2> binary:longest common prefix([<<"erlang">>, <<"perl">>]).

0

If Bi nari es isnot aflat list of binaries, abadar g exception israised.

longest common suffix(Binaries) -> integer() >= 0
Types:
Binaries = [binary()]
Returns the length of the longest common suffix of the binariesin list Bi nari es.
Example:

1> binary:longest common suffix([<<"erlang">>, <<"fang">>]).
3
2> binary:longest common suffix([<<"erlang">>, <<"perl">>]).
0

If Bi nari es isnot aflat list of binaries, abadar g exception israised.

Ericsson AB. All Rights Reserved

.: STDLIB | 55

binary

match(Subject, Pattern) -> Found | nomatch

Types:
Subject = binary()
Pattern = binary() | [binary()] | cp()

Found = part()
Sameasmat ch(Subj ect, Pattern, []).

match(Subject, Pattern, Options) -> Found | nomatch

Types:
Subject = binary()
Pattern = binary() | [binary()] | cp()

Found = part()
Options = [Option]
Option = {scope, part()}
part() = {Start :: integer() >= 0, Length :: integer()}
Searches for the first occurrence of Pat t er n in Subj ect and returns the position and length.
Thefunction returns{ Pos, Lengt h} for the binary in Pat t er n, starting at the lowest position in Subj ect .

Example:

1> binary:match(<<"abcde">>, [<<"bcde">>, <<"cd">>]1,[]).
{1,4}

Even though <<" cd" >> ends before <<" bcde" >>, <<" bcde" >> begins first and is therefore the first match. If
two overlapping matches begin at the same position, the longest is returned.

Summary of the options:
{ scope, { Start, Length}}

Only the specified part is searched. Return values still have offsets from the beginning of Subj ect . A negative
Lengt h isallowed as described in section Data Types in this manual.

If none of the stringsin Pat t er n isfound, the atom nomat ch isreturned.
For adescription of Pat t er n, seefunction conpi | e_pattern/ 1.

If {scope, {Start, Length}} is specified in the options such that St art > size of Subj ect, Start +
Length<OQorStart +Lengt h >sizeof Subj ect, abadar g exceptionisraised.

matches(Subject, Pattern) -> Found

Types:
Subject = binary()
Pattern = binary() | [binary()] | cp()
Found = [part()]

Sameasmat ches(Subj ect, Pattern, []).

matches(Subject, Pattern, Options) -> Found
Types:

56 | Ericsson AB. All Rights Reserved.: STDLIB

binary

Subject = binary()

Pattern = binary() | [binary()] | cp()

Found = [part()]

Options = [Option]

Option = {scope, part()}

part() = {Start :: integer() >= 0, Length :: integer()}

Asnmat ch/ 2, but Subj ect is searched until exhausted and alist of all non-overlapping parts matching Pat t er n
isreturned (in order).

Thefirst and longest match is preferred to a shorter, which isillustrated by the following example:

1> binary:matches(<<"abcde">>,
[<<"dee">>,<<"bC">>,<<"de">>]) []))

[{1,4}]

Theresult showsthat <<"bcde">> is selected instead of the shorter match <<"bc">> (which would have givenraiseto
one more match, <<"de">>). This corresponds to the behavior of POSIX regular expressions (and programs like awk),
but is not consistent with alternative matches in r e (and Perl), where instead lexical ordering in the search pattern
selects which string matches.

If none of the stringsin a pattern is found, an empty list is returned.
For adescription of Pat t er n, seeconpi | e_patt er n/ 1. For adescription of available options, see mat ch/ 3.

If {scope, {Start, Length}} isspecified in the options such that St art > size of Subj ect, Start +
Length<QorStart + Lengthis>sizeof Subj ect,abadar g exceptionisraised.

part(Subject, PosLen) -> binary()
Types:

Subject = binary()

PosLen = part ()

Extracts the part of binary Subj ect described by PosLen.
A negative length can be used to extract bytes at the end of a binary:

1> Bin = <<1,2,3,4,5,6,7,8,9,10>>.
2> binary:part(Bin, {byte size(Bin), -5}).
<<6,7,8,9,10>>

Note:

part/2 and part/3 are aso available in the er| ang module under the names bi nary part/2 and
bi nary_part/ 3. Those BlIFs are alowed in guard tests.

If PosLen in any way references outside the binary, abadar g exception israised.

part(Subject, Pos, Len) -> binary()
Types:

Ericsson AB. All Rights Reserved.: STDLIB | 57

binary

Subject = binary()

Pos = integer() >= 0

Len = integer()
Sameaspart (Subj ect, {Pos, Len}).

referenced byte size(Binary) -> integer() >= 0
Types:
Binary = binary()

If a binary references a larger binary (often described as being a subbinary), it can be useful to get the size of the
referenced binary. This function can be used in aprogram to trigger the use of copy/ 1. By copying abinary, one can
dereference the original, possibly large, binary that a smaller binary is areference to.

Example:

store(Binary, GBSet) ->
NewBin =
case binary:referenced byte size(Binary) of
Large when Large > 2 * byte size(Binary) ->
binary:copy(Binary);
->
Binary

end,
gb sets:insert(NewBin,GBSet).

In this example, we chose to copy the binary content beforeinsertingitingb_set s: set () if it referencesabinary
more than twice the data size we want to keep. Of course, different rules apply when copying to different programs.

Binary sharing occurs whenever binaries are taken apart. This is the fundamental reason why binaries are fast,
decomposition can aways be done with O(1) complexity. In rare circumstances this data sharing is however
undesirable, why this function together with copy/ 1 can be useful when optimizing for memory use.

Example of binary sharing:

1> A = binary:copy(<<l>>, 100).
<<1,1,1,1,1 ...

2> byte size(A).

100

3> binary:referenced byte size(A)
100

4> << :10/binary,B:10/binary, /binary>> = A.
<<1,1,1,1,1 ...

5> byte size(B).

10

6> binary:referenced byte size(B)
100

Note:

Binary datais shared among processes. If another process still references the larger binary, copying the part this
process uses only consumes more memory and does not free up the larger binary for garbage collection. Use this
kind of intrusive functions with extreme care and only if areal problem is detected.

58 | Ericsson AB. All Rights Reserved.: STDLIB

binary

replace(Subject, Pattern, Replacement) -> Result
Types:
Subject binary()
Pattern binary() | [binary()]
Replacement = Result = binary()

| cp()

Sameasr epl ace(Subj ect, Pattern, Replacenent,[]).

replace(Subject, Pattern, Replacement, Options) -> Result

Types.
Subject = binary()
Pattern = binary() | [binary()] | cp()

Replacement = binary()
Options = [Option]

Option = global | {scope, part()} | {insert replaced, InsPos}
InsPos = OnePos | [OnePos]
OnePos = integer() >= 0

Aninteger() =< byte_size(Replacement)
Result = binary()
Constructs anew binary by replacing the partsin Subj ect matching Pat t er n with the content of Repl acenent .

If the matching subpart of Subj ect giving raise to the replacement is to be inserted in the result, option
{insert_replaced, |nsPos} insertsthe matching part into Repl acement at the specified position (or
positions) before inserting Repl acenent into Subj ect .

Example:

1> binary:replace(<<"abcde">>,<<"b">>,<<"[]">>, [{insert replaced,1}]).

<<"a[b]cde">>

2> binary:replace(<<"abcde">>, [<<"b">>,<<"d">>],<<"[]">>, [global, {insert replaced,1}]).
<<"a[blc[d]e">>

3> binary:replace(<<"abcde">>, [<<"b">>,<<"d">>],<<"[]">>, [global, {insert replaced,[1,1]}]).
<<"a[bb]c[dd]e">>

4> binary:replace(<<"abcde">>, [<<"b">>,<<"d">>],<<"[-]">>, [global, {insert replaced,[1,2]}]).
<<"a[b-b]c[d-d]e">>

If any position specified in | nsPos > size of the replacement binary, abadar g exception is raised.
Options gl obal and{scope, part ()} workasforsplit/ 3. Thereturntypeisawaysabi nary().
For adescription of Pat t er n, seeconpi l e_pattern/1

split(Subject, Pattern) -> Parts
Types.
Subject binary()
Pattern = binary() | [binary()] | cp()
Parts = [binary()]
Sameasspl it (Subject, Pattern, []).

Ericsson AB. All Rights Reserved.: STDLIB | 59

binary

split(Subject, Pattern, Options) -> Parts

Types:
Subject = binary()
Pattern = binary() | [binary()] | cp()
Options = [Option]

Option = {scope, part()} | trim | global | trim all
Parts = [binary()]

SplitsSubj ect intoalist of binariesbased on Pat t er n. If option gl obal isnot specified, only thefirst occurrence
of Patt erninSubj ect givesriseto asplit.

The partsof Pat t er n found in Subj ect arenot included in the result.
Example:

1> binary:split(<<1,255,4,0,0,0,2,3>>, [<<0,0,0>>,<<2>>],[]).
[<<1,255,4>>, <<2,3>>]

2> binary:split(<<0,1,0,0,4,255,255,9>>, [<<0,0>>, <<255,255>>],[global]).
[<<0, 1>>,<<4>>,<<9>>]

Summary of options:

{scope, part()}

Works as in nat ch/ 3 and mat ches/ 3. Notice that this only defines the scope of the search for matching
strings, it does not cut the binary before splitting. The bytes before and after the scope are kept in the result. See
the example below.

trim

Removes trailing empty parts of the result (asdoest ri minre: split/ 3.
trim_all

Removes all empty parts of the result.
global

Repeats the split until Subj ect is exhausted. Conceptually option gl obal makes split work on the positions
returned by mat ches/ 3, while it normally works on the position returned by nmat ch/ 3.

Example of the difference between a scope and taking the binary apart before splitting:

1> binary:split(<<"banana">>, [<<"a">>],[{scope,{2,3}}1]).
[<<"ban">>,<<"na">>]

2> binary:split(binary:part(<<"banana">>,{2,3}), [<<"a">>],[]).
[<<"n">>,<<"n">>]

Thereturntypeisawaysalist of binariesthat are all referencing Subj ect . Thismeansthat the datain Subj ect is
not copied to new binaries, and that Subj ect cannot be garbage collected until the results of the split are no longer
referenced.

For adescription of Pat t er n, seeconpi |l e_pattern/1.

60 | Ericsson AB. All Rights Reserved.: STDLIB

C

Erlang module

This module enables users to enter the short form of some commonly used commands.

Note:

These functions are intended for interactive use in the Erlang shell only. The module prefix can be omitted.

Exports

bt(Pid) -> ok | undefined
Types:
Pid = pid()
Stack backtrace for a process. Equivalent to er | ang: process_di spl ay(Pi d, backtrace).

c(File) -> {ok, Module} | error
c(File, Options) -> {ok, Module} | error
Types.
File = fil e: name()
Options = [conpile:option()]
Module = module()
Compiles and then purges and loads the code for afile. Opt i ons defaultsto[] . Compilation is equivalent to:

compile:file(, ++ [report errors, report warnings])

Noticethat purging the code meansthat any processes lingering in old code for the module are killed without warning.
For more information, see code/ 3.

cd(Dir) -> ok
Types:
Dir = fil e:nanme()

Changes working directory to Di r, which can be a relative name, and then prints the name of the new working
directory.

Example:

2> cd("../erlang").
/home/ron/erlang

Ericsson AB. All Rights Reserved.: STDLIB | 61

flush() -> ok
Flushes any messages sent to the shell.

help() -> ok
Displays help information: all valid shell internal commands, and commands in this module.

i() -> ok
ni() -> ok

i / 0 displays system information, listing information about all processes. ni / 0 does the same, but for all nodes the
network.

i(X, Y, Z) -> [{atom(), term()}]
Types.
X =Y =Z = integer() >= 0

Displaysinformation about a process, Equivalent to pr ocess_i nfo(pi d(X, Y, Z)), butlocation transparent.

1(Module) -> code:load ret()
Types:
Module = module()

Purges and loads, or reloads, a module by caling code: purge(Mdul e) followed by
code: | oad_fil e(Modul e).

Noticethat purging the code meansthat any processes lingering in old code for the modul e are killed without warning.
For moreinformation, see code/ 3.

lc(Files) -> ok

Types:
Files = [File]
File

Compiles alist of filesby calingconpile:file(File, [report_errors, report_warnings]) for
eachFileinFil es.

For information about Fi | e, seefil e: fil enane().

1s() -> ok
Listsfilesin the current directory.

ls(Dir) -> ok
Types.
Dir = file: name()

Listsfilesin directory Di r or, if Di r isafile, only listsit.

m() -> ok
Displays information about the loaded modules, including the files from which they have been loaded.

62 | Ericsson AB. All Rights Reserved.: STDLIB

m(Module) -> ok
Types:

Module = module()
Displays information about Modul e.

memory() -> [{Type, Size}]

Types:
Type = atom()
Size = integer() >= 0

Memory allocation information. Equivalent to er | ang: nenor y/ 0.

memory(Type) -> Size
memory(Types) -> [{Type, Size}]
Types:
Types = [Type]
Type = atom()
Size = integer() >= 0
Memory allocation information. Equivalentto er | ang: menory/ 1.

nc(File) -> {ok, Module} | error
nc(File, Options) -> {ok, Module} | error
Types.
File = fil e: name()
Options = [Option] | Option
Option = conpil e: option()
Module = module()
Compiles and then loads the code for afile on all nodes. Opt i ons defaultsto[] . Compilation is equivalent to:

compile:file(, ++ [report errors, report warnings])

nl(Module) -> abcast | error
Types:

Module = module()
Loads Mbdul e on all nodes.

pid(X, Y, Z) -> pid()
Types:
X =Y =Z = integer() >= 0

Converts X, Y, Z to pid <X. Y. Z>. Thisfunction is only to be used when debugging.

Ericsson AB. All Rights Reserved.: STDLIB | 63

pwd() -> ok
Prints the name of the working directory.

q() -> no_return()
Thisfunction is shorthand fori ni t : st op(), that is, it causes the node to stop in a controlled fashion.

regs() -> ok
nregs() -> ok
r egs/ 0 displaysinformation about all registered processes. nr egs/ 0 doesthe same, but for all nodesin the network.

uptime() -> ok
Prints the node uptime (as specified by er | ang: st ati sti cs(wal | _cl ock)) in human-readable form.

xm(ModSpec) -> void()

Types:
ModSpec = Mbdul e | Fil enane
Modul e = atom()
Fil ename = string()

Finds undefined functions, unused functions, and calls to deprecated functionsin amodule by calling xr ef : n1 1.

y(File) -> YeccRet
Types:
File = nane()
YeccRet
Generates an LALR-1 parser. Equivalent to:

yecc:file(File)

For information about File = nane(), see fil ename(3). For information about YeccRet, see
yecc: filel2.

y(File, Options) -> YeccRet
Types:

File = nane()

Options, YeccRet
Generates an LALR-1 parser. Equivalent to:

yecc:file(File, Options)

For information about Fi | e = name(), seefi | enanme(3) . For information about Opt i ons and YeccRet,
seeyecc: fil el 2.

64 | Ericsson AB. All Rights Reserved.: STDLIB

See Also
filenane(3),conpile(3),erlang(3),yecc(3),xref(3)

Ericsson AB. All Rights Reserved.: STDLIB | 65

calendar

calendar

Erlang module

This module provides computation of local and universal time, day of the week, and many time conversion functions.

Timeisloca whenit isadjusted in accordance with the current time zone and daylight saving. Timeisuniversal when
it reflects the time at longitude zero, without any adjustment for daylight saving. Universal Coordinated Time (UTC)
timeisaso caled Greenwich Mean Time (GMT).

The time functions| ocal _tine/ 0 and uni ver sal _ti ne/ 0 in this module both return date and time. The is
because separate functions for date and time can result in a date/time combination that is displaced by 24 hours. This
occursif one of the functionsis called before midnight, and the other after midnight. This problem also appliesto the
Erlang BIFsdat e/ 0 andt i ne/ 0, and their useis strongly discouraged if areliable date/time stamp is required.

All dates conform to the Gregorian calendar. This calendar was introduced by Pope Gregory XlI1 in 1582 and was
used in al Catholic countries from this year. Protestant parts of Germany and the Netherlands adopted it in 1698,
England followed in 1752, and Russia in 1918 (the October revolution of 1917 took place in November according
to the Gregorian calendar).

The Gregorian calendar in this module is extended back to year 0. For agiven date, the gregorian days is the number
of days up to and including the date specified. Similarly, the gregorian seconds for a specified date and time is the
number of seconds up to and including the specified date and time.

For computing differences between epochsin time, use the functions counting gregorian days or seconds. If epochsare
specified aslocal time, they must be converted to universal time to get the correct value of the elapsed time between
epochs. Use of functiont i ne_di f f er ence/ 2 isdiscouraged.

Different definitionsexist for theweek of theyear. Thismodul e containsaweek of theyear implementation conforming
to the ISO 8601 standard. As the week number for a specified date can fall on the previous, the current, or on the
next year, it is important to specify both the year and the week number. Functions i so_week _nunber/ 0 and
i so_week_nunber/ 1 return atuple of the year and the week number.

Data Types

datetime() = {date(), time()}

datetimel970() = {{year1970(), nonth(), day()}, time()}
date() {year (), nonth(), day()}

year() integer() >= 0

Y ear cannot be abbreviated. For example, 93 denotes year 93, not 1993. The valid range depends on the underlying
operating system. The date tuple must denote avalid date.

66 | Ericsson AB. All Rights Reserved.: STDLIB

calendar

yearl970() = 1970..10000

month() = 1..12

day() = 1..31

time() = {hour(), mnute(), second()}
hour() = 0..23

minute() = 0..59

second() = 0..59

daynum() = 1..7

ldom() = 28 | 29 | 30 | 31
yearweeknum() = {year(), weeknum() }
weeknum() = 1..53

Exports

date to gregorian days(Date) -> Days
date to gregorian days(Year, Month, Day) -> Days
Types:
Date = date()
Year = year ()
Month = nont h()
Day = day()
Computes the number of gregorian days starting with year 0 and ending at the specified date.

datetime to gregorian seconds(DateTime) -> Seconds
Types:
DateTime = dateti me()
Seconds = integer() >= 0
Computes the number of gregorian seconds starting with year 0 and ending at the specified date and time.

day of the week(Date) -> daynum()
day of the week(Year, Month, Day) -> daynum()
Types:
Date = date()
Year = year()
Month = nont h()
Day = day()
Computesthe day of the week from the specified Year , Mont h, and Day . Returnsthe day of the week as 1: Monday,
2: Tuesday, and so on.

gregorian days to date(Days) -> date()
Types:

Days = integer() >= 0
Computes the date from the specified number of gregorian days.

Ericsson AB. All Rights Reserved.: STDLIB | 67

calendar

gregorian seconds to datetime(Seconds) -> datetime()
Types:

Seconds = integer() >= 0
Computes the date and time from the specified number of gregorian seconds.

is leap year(Year) -> boolean()
Types:

Year = year()
Checksif the specified year isaleap year.

iso week number() -> yearweeknuny()

Returnstuple{ Year, WeekNum} representing the SO week number for the actual date. To determine the actual
date, use function| ocal _ti e/ 0.

iso week number(Date) -> yearweeknun()
Types:
Date = date()
Returnstuple{ Year, WeekNun} representing the SO week number for the specified date.

last day of the month(Year, Month) -> LastDay
Types:

Year = year()

Month = nont h()

LastDay = | dom()

Computes the number of daysin amonth.

local time() -> datetine()
Returns the local time reported by the underlying operating system.

local time to universal time(DateTimel) -> DateTime2
Types:
DateTimel = DateTime2 = dateti ne1970()

Converts from local time to Universal Coordinated Time (UTC). Dat eTi mel must refer to alocal date after Jan
1, 1970.

Warning:

This function is deprecated. Use | ocal _time_to_universal time_dst/1 instead, asit gives amore
correct and complete result. Especially for the period that does not exist, as it is skipped during the switch to
daylight saving time, this function still returns a resullt.

68 | Ericsson AB. All Rights Reserved.: STDLIB

calendar

local time to universal time dst(DateTimel) -> [DateTime]
Types:
DateTimel = DateTime = datetinel970()

Converts from local time to Universal Coordinated Time (UTC). Dat eTi mel must refer to alocal date after Jan
1, 1970.

Thereturn valueisalist of 0, 1, or 2 possible UTC times:

[]

For aloca { Dat el, Ti mel} during the period that is skipped when switching to daylight saving time, there
isno corresponding UTC, asthelocal timeisillegal (it has never occured).

[Dst Dat eTi neUTC, Dat eTi neUTC]

For alocal { Dat el, Ti mel} during the period that is repeated when switching from daylight saving time,
two corresponding UTCs exist; one for the first instance of the period when daylight saving time is still active,
and one for the second instance.

[Dat eTi neUTC]
For all other local times only one corresponding UTC exists.

now_to datetime(Now) -> datetinmel970()
Types:
Now = erl ang:ti nmestanmp()
Returns Universal Coordinated Time (UTC) converted from the return valuefromer | ang: ti mest anp/ 0.

now_to local time(Now) -> datetimel970()
Types:
Now = erlang:tinestanp()
Returnslocal date and time converted from the return valuefromer | ang: t i mest anp/ 0.

now to universal time(Now) -> datetinel970()
Types:
Now = erlang:tinestanp()
Returns Universal Coordinated Time (UTC) converted from the return valuefromer | ang: ti mest anp/ 0.

seconds _to _daystime(Seconds) -> {Days, Time}
Types:

Seconds = Days = integer()

Time = tinme()

Converts a specified number of seconds into days, hours, minutes, and seconds. Ti e is always non-negative, but
Days isnegative if argument Seconds is.

seconds _to time(Seconds) -> tine()
Types:

Ericsson AB. All Rights Reserved.: STDLIB | 69

calendar

Seconds = secs_per_day()
secs _per _day() = 0..86400

Computes the time from the specified number of seconds. Seconds must be less than the number of seconds per
day (86400).

time difference(Tl, T2) -> {Days, Time}
Types:
Tl = T2 = datetine()
Days = integer()
Time = tinme()
Returns the difference betweentwo { Dat e, Ti ne} tuples. T2 isto refer to an epoch later than T1.

Warning:

Thisfunction is obsolete. Use the conversion functions for gregorian days and seconds instead.

time to seconds(Time) -> secs_per_day()
Types:
Time = tinme()
secs_per_day() = 0..86400
Returns the number of seconds since midnight up to the specified time.

universal time() -> datetine()

Returns the Universal Coordinated Time (UTC) reported by the underlying operating system. Returns local time if
universal timeis unavailable.

universal time to local time(DateTime) -> datetime()
Types:
DateTime = dateti mel970()
Converts from Universal Coordinated Time (UTC) to local time. Dat eTi me must refer to a date after Jan 1, 1970.

valid date(Date) -> boolean()
valid date(Year, Month, Day) -> boolean()

Types.
Date = date()
Year = Month = Day = integer()

This function checksif adateisavalid.

Leap Years

The notion that every fourth year is aleap year is not completely true. By the Gregorian rule, ayear Y is aleap year
if one of the following rulesisvalid:

* Y isdivisible by 4, but not by 100.

70 | Ericsson AB. All Rights Reserved.: STDLIB

calendar

e Y isdivisible by 400.
Hence, 1996 isaleap year, 1900 is not, but 2000 is.

Date and Time Source

Loca time is obtained from the Erlang BIF [ocal ti ne/ 0. Universal time is computed from the BIF
uni versal ti ne/ 0.

The following fapply:

e Thereare 86400 secondsin a day.

e Thereare 365 daysin an ordinary year.

e Thereare 366 daysin aleap year.

e Thereare 1461 daysin a4 year period.

e Thereare 36524 daysin a 100 year period.

e Thereare 146097 daysin a 400 year period.

e Thereare 719528 days between Jan 1, 0 and Jan 1, 1970.

Ericsson AB. All Rights Reserved.: STDLIB | 71

dets

dets

Erlang module

This module provides aterm storage on file. The stored terms, in this module called obj ects, are tuples such that one
element isdefined to bethekey. A Detstableisacollection of objectswith thekey at the same position stored on afile.

Thismodule is used by the Mnesia application, and is provided "asis" for userswho are interested in efficient storage
of Erlang terms on disk only. Many applications only need to store some terms in a file. Mnesia adds transactions,
gueries, and distribution. The size of Dets files cannot exceed 2 GB. If larger tables are needed, table fragmentation
in Mnesia can be used.

Three types of Detstables exist:

« set. A table of thistype has at most one object with a given key. If an object with a key aready present in the
table isinserted, the existing object is overwritten by the new object.

e bag. A table of thistype has zero or more different objects with a given key.
* duplicate_bag. A table of thistype has zero or more possibly matching objects with a given key.

Dets tables must be opened before they can be updated or read, and when finished they must be properly closed. If a
table is not properly closed, Dets automatically repairs the table. This can take a substantial time if the table is large.
A Detstable is closed when the process which opened the table terminates. If many Erlang processes (users) open the
same Detstable, they share the table. The tableis properly closed when all users have either terminated or closed the
table. Dets tables are not properly closed if the Erlang runtime system terminates abnormally.

Note:

A ~C command abnormally terminates an Erlang runtime system in a Unix environment with a break-handler.

As all operations performed by Dets are disk operations, it is important to realize that a single look-up operation
involvesaseriesof disk seek and read operations. The Detsfunctions are therefore much slower than the corresponding
et s(3) functions, although Dets exports a similar interface.

Dets organizes dataas alinear hash list and the hash list grows gracefully as more dataisinserted into the table. Space
management on the file is performed by what is called a buddy system. The current implementation keeps the entire
buddy system in RAM, which implies that if the table gets heavily fragmented, quite some memory can be used up.
The only way to defragment atable isto close it and then open it again with option r epai r settof or ce.

Notice that type or der ed_set in Etsis not yet provided by Dets, neither is the limited support for concurrent
updates that makes asequence of f i r st and next calls safeto use on fixed ETS tables. Both these features will be
provided by Dets in a future release of Erlang/OTP. Until then, the Mnesia application (or some user-implemented
method for locking) must be used to implement safe concurrency. Currently, no Erlang/OTP library has support for
ordered disk-based term storage.

Two versions of the format used for storing objects on file are supported by Dets. The first version, 8, is the format
always used for tables created by Erlang/OTP R7 and earlier. The second version, 9, is the default version of tables
created by Erlang/OTP R8 (and later releases). Erlang/OTP R8 can create version 8 tables, and convert version 8 tables
to version 9, and conversely, upon request.

All Detsfunctionsreturn{ error, Reason} if anerror occurs(first/ 1 and next/ 2 are exceptions, they exit
the processwith the error tuple). If badly formed arguments are specified, al functions exit the processwith abadar g

message.

72 | Ericsson AB. All Rights Reserved.: STDLIB

dets

Data Types

access() = read | read write

auto save() = infinity | integer() >= 0

bindings cont()

Opaque continuation used by nat ch/ 1 and nat ch/ 3.

cont()

Opaque continuation used by bchunk/ 2.

keypos() = integer() >=1

match spec() = ets: match_spec()

Match specifications, see section Match Specificationin Erlangin ERTS User's Guideand therrs_t r ansf or n{ 3)
module.

no slots() = integer() >= 0 | default

object() = tuple()

object cont()
Opaque continuation used by mat ch_obj ect/ 1 and mat ch_obj ect/ 3.
pattern() = atom() | tuple()

For a description of patterns, seeet s: mat ch/ 2.

select cont()

Opaque continuation used by sel ect/ 1 and sel ect/ 3.

tab name() = term()
type() = bag | duplicate bag | set
version() =8 | 9 | default

Exports

all() -> [tab_nane()]
Returns alist of the names of all open tables on this node.

bchunk(Name, Continuation) ->
{Continuation2, Data} |
'$end of table' |
{error, Reason}
Types:
Name = tab_name()
Continuation = start | cont()
Continuation2 = cont ()
Data = binary() | tuple()
Reason = term()
Returns a list of objects stored in atable. The exact representation of the returned objects is not public. The lists of

data can be used for initializing atable by specifying value bchunk to optionf or mat of functioni nit _t abl e/ 3
The Mnesia application uses this function for copying open tables.

Ericsson AB. All Rights Reserved.: STDLIB | 73

dets

Unless the table is protected using saf e_fi xt abl e/ 2, calsto bchunk/ 2 do possibly not work as expected if
concurrent updates are made to the table.

Thefirst timebchunk/ 2 iscalled, aninitial continuation, the atom st ar t , must be provided.

bchunk/ 2 returns atuple { Cont i nuati on2, Dat a}, where Dat a isalist of objects. Conti nuati on2 is
another continuation that is to be passed on to a subsequent call to bchunk/ 2. With a series of callsto bchunk/ 2,
all table objects can be extracted.

bchunk/ 2 returns' $end_of _t abl e' when all objectsarereturned, or { error, Reason} if anerror occurs.

close(Name) -> ok | {error, Reason}
Types:

Name = tab_name()

Reason = term()

Closes atable. Only processes that have opened atable are allowed to close it.

All open tables must be closed before the system is stopped. If an attempt is made to open atable that is not properly
closed, Dets automatically triesto repair it.

delete(Name, Key) -> ok | {error, Reason}
Types.

Name = tab_nane()

Key = Reason = term()

Deletes al objects with key Key from table Nane.

delete all objects(Name) -> ok | {error, Reason}
Types.

Name = tab_nane()

Reason = term()

Deletes all objects from atable in almost constant time. However, if thetableif fixed, del et e_al | _obj ect s(T)
isequivalenttomat ch_del ete(T, ' _').

delete object(Name, Object) -> ok | {error, Reason}
Types:

Name = tab_name()

Object = object ()

Reason = term()

Deletes al instances of a specified object from atable. If atableis of type bag or dupl i cat e_bag, this function
can be used to delete only some of the objects with a specified key.

first(Name) -> Key | '$end of table'

Types:
Name = tab_name()
Key = term()

Returnsthe first key stored in table Nane according to the internal order of thetable, or ' $end_of _t abl e’ if the
tableis empty.

74 | Ericsson AB. All Rights Reserved.: STDLIB

dets

Unless the table is protected using saf e_fi xt abl e/ 2, subsequent calls to next /2 do possibly not work as
expected if concurrent updates are made to the table.

If an error occurs, the process is exited with an error tuple { error, Reason}. The error tupleis not returned, as
it cannot be distinguished from a key.

Therearetwo reasonswhy f i r st/ 1 and next / 2 are not to be used: they are not efficient, and they prevent the use
of key ' $end_of _t abl e' , asthisatom is used to indicate the end of the table. If possible, use functions mat ch,
mat ch_obj ect ,and sel ect for traversing tables.

foldl(Function, AccO, Name) -> Acc | {error, Reason}
foldr(Function, AccO, Name) -> Acc | {error, Reason}
Types.

Name = tab_nane()

Function = fun((Object :: object(), AccIn) -> AccOut)

AccO = Acc = AccIn = AccOut = Reason = term()

CalsFunct i on on successive elements of table Nane together with an extraargument Accl n. Thetable elements
are traversed in unspecified order. Funct i on must return a new accumulator that is passed to the next call. AccO
isreturned if the table is empty.

from ets(Name, EtsTab) -> ok | {error, Reason}

Types:
Name = tab_name()
EtsTab = ets:tab()
Reason = term()

Deletes all objects of table Narre and then inserts all the objects of the ETS table Et sTab. The objects are inserted
in unspecified order. Aset s: saf e_fi xt abl e/ 2 iscalled, the ETS table must be public or owned by the calling
process.

info(Name) -> InfolList | undefined
Types:

Name = tab_name()

InfoList = [InfoTuple]

InfoTuple =
{file size, integer() >= 0} |
{filename, file:nanme()} |

{keypos, keypos()} |
{size, integer() >= 0} |

{type, type()}
Returns information about table Nane asalist of tuples:
e {file_size, integer() >= 0}} - Thefilesize, in bytes.
o {filenane, file:name()} - Thename of thefile where objects are stored.
« {keypos, keypos()} - Thekey position.
e {size, integer() >= 0} - Thenumber of objects stored in the table.
« {type, type()} - Thetabletype.

Ericsson AB. All Rights Reserved.: STDLIB | 75

dets

info(Name, Item) -> Value | undefined
Types:

Name

Item =
access |
auto save |
bchunk format |
hash |
file size |
filename |
keypos |
memory |
no_keys |
no objects |
no_slots |
owner |
ram_file |
safe fixed |
safe fixed monotonic_time |
size |
type |
version

Value = term()

tab_name()

Returns the information associated with | t emfor table Nane. In addition tothe {1t em Val ue} pairs defined
fori nf o/ 1, the following items are allowed:

{access, access()} - Theaccess mode.
{auto_save, auto_save()} - Theautosaveinterval.

{bchunk_format, binary()} - An opague binary describing the format of the objects returned by
bchunk/ 2. The binary can be used as argument toi s_conpati bl e_chunk_f or mat/ 2. Only available
for version 9 tables.

{hash, Hash} - Describeswhich BIF is used to calculate the hash values of the objects stored in the det s
table. Possible values of Hash:

e hash - Impliesthat theer | ang: hash/ 2 BIF is used.

 phash - Impliesthat theer | ang: phash/ 2 BIF isused.

e phash2 - Impliesthat theer | ang: phash2/ 1 BIF isused.

{menory, integer() >= 0} - Thefilesize, inbytes. The samevalueisassociated withitemfil e_si ze

{no_keys, integer >= 0()} - Thenumber of different keysstored inthetable. Only availablefor version
9 tables.

{no_obj ects, integer >= 0()} - The number of objects stored in the table.

{no_slots, {Mn, Used, Max}} - The number of sots of the table. M n is the minimum number of
slots, Used is the number of currently used slots, and Max is the maximum number of dlots. Only available for
version 9 tables.

{owner, pid()} - Thepid of the process that handles requests to the Dets table.
{ramfile, boolean()} - Whetherthetableiskeptin RAM.

{safe_fixed _nonotonic_tineg, Saf eFi xed} - If the table is fixed, Saf eFi xed is a tuple
{Fi xedAt Ti ne, [{Pid, Ref Count}]}.Fi xedAt Ti e is the time when the table was first fixed, and

76 | Ericsson AB. All Rights Reserved.: STDLIB

dets

Pi d isthe pid of the process that fixes the table Ref Count times. There can be any number of processesin the
list. If thetableis not fixed, Saf eFi xed istheatom f al se.

Fi xedAt Ti me corresponds to the result returned by er | ang: monot oni ¢_ti me/ 0 at the time of fixation.
Theuseof saf e_fi xed_nonot oni c_ti neis timewarp safe.

e {safe_fixed, SafeFixed}-Thesameas{safe fi xed_nonotonic_tine, SafeFixed} except
the format and value of Fi xedAt Ti ne.

Fi xedAt Ti ne correspondsto the result returned by er | ang: t i nest anp/ 0 at the time of fixation. Notice
that when the system uses single or multi time warp modes, this can produce strange results. This is because the
useof saf e_fi xedisnot timewarp safe. Timewarp safe code must usesaf e_fi xed_nonotonic_tine
instead.

« {version, integer()} - Theversion of theformat of the table.

init table(Name, InitFun) -> ok | {error, Reason}
init table(Name, InitFun, Options) -> ok | {error, Reason}
Types.

Name = tab_nane()

InitFun = fun((Arg) -> Res)

Arg = read | close

Res =
end of input |
{[object()], InitFun} |
{Data, InitFun} |
term()

Options = Option | [Option]

Option = {min no slots, no_slots()} | {format, term | bchunk}
Reason = term()

Data = binary() | tuple()

Replaces the existing objects of table Nane with objects created by calling the input function | ni t Fun, see below.
The reason for using this function rather than calling i nsert/ 2 isthat of efficiency. Notice that the input functions
are called by the process that handles requests to the Dets table, not by the calling process.

When called with argument r ead, function | ni t Fun isassumed to returnend_of _i nput when thereisno more
input, or { Obj ect's, Fun},where Obj ect s isalist of objects and Fun isanew input function. Any other value
Val ue isreturnedasanerror {error, {init_fun, Value}}.Eachinputfunctioniscalled exactly once, and
if an error occurs, the last function is called with argument cl ose, the reply of which isignored.

If the table type is set and more than one object exists with a given key, one of the objects is chosen. This is not
necessarily thelast object with the given key in the sequence of objectsreturned by theinput functions. Avoid duplicate
keys, otherwise the file becomes unnecessarily fragmented. This holds also for duplicated objects stored in tables of
typebag.

It is important that the table has a sufficient number of dots for the objects. If not, the hash list starts to grow when
i nit_tabl e/ 2 returns, which significantly slows down access to the table for a period of time. The minimum
number of dlotsisset by theopen_fi |l e/ 2 optionmi n_no_sl ot s andreturned by thei nf o/ 2 itemno_sl ot s.
Seeasooptionni n_no_sl ot s below.

Argument Opt i ons isalist of { Key, Val } tuples, where the following values are allowed:

« {mn_no_slots, no_slots()} - Specifiesthe estimated number of different keysto be stored in thetable.
Theopen_fi |l e/ 2 optionwith the same nameisignored, unlessthetableis created, in which case performance
can be enhanced by supplying an estimate when initializing the table.

Ericsson AB. All Rights Reserved.: STDLIB | 77

dets

« {format, Format} - Specifiestheformat of the objectsreturned by function| ni t Fun. If For mat ist erm
(the default), 1 ni t Fun is assumed to return a list of tuples. If For mat isbchunk, | ni t Fun is assumed to
return Dat a asreturned by bchunk/ 2. This option overrides optionmi n_no_sl ot s.

insert(Name, Objects) -> ok | {error, Reason}
Types.

Name = tab_nane()

Objects = object() | [object()]

Reason = term()

Inserts one or more objects into the table Nane. If there already exists an object with a key matching the key of some
of the given objects and the table typeis set , the old object will be replaced.

insert new(Name, Objects) -> boolean() | {error, Reason}
Types.
Name = tab_nane()
Objects = object() | [object()]
Reason = term()
Inserts one or more objects into table Nane. If there already exists some object with a key matching the key of any

of the specified objects, the tableis not updated and f al se isreturned. Otherwise the objects areinserted and t r ue
returned.

is compatible bchunk format(Name, BchunkFormat) -> boolean()
Types:
Name = tab_nane()
BchunkFormat = binary()
Returns true if it would be possible to initidize table Nanme, using init_table/3 with option

{format, bchunk}, with objects read with bchunk/2 from some table T, such that calling
i nfo(T, bchunk_format) returnsBchunkFor nat .

is dets file(Filename) -> boolean() | {error, Reason}
Types:

Filename = fil e: nane()

Reason = term()

Returnst r ue if fileFi | enane isaDetstable, otherwisef al se.

lookup(Name, Key) -> Objects | {error, Reason}

Types.
Name = tab_nanme()
Key = term()

Objects = [object()]
Reason = term()
Returnsalist of all objects with key Key stored in table Nane, for example:

2> dets:open file(abc, [{type, bag}l).

78 | Ericsson AB. All Rights Reserved.: STDLIB

dets

{ok,abc}

3> dets:insert(abc, {1,2,3}).
ok

4> dets:insert(abc, {1,3,4}).
ok

5> dets:lookup(abc, 1).
[{1,2,3},{1,3,4}]

If thetabletypeisset , thefunction returns either the empty list or alist with one object, as there cannot be more than
oneobject withagivenkey. If thetabletypeisbag ordupl i cat e_bag, thefunctionreturnsalist of arbitrary length.

Notice that the order of objects returned is unspecified. In particular, the order in which objects were inserted is not
reflected.

match(Continuation) ->
{[Match], Continuation2} |
'$end of table' |
{error, Reason}
Types:
Continuation =
Match = [term()
Reason = term()
Matches some objects stored in a table and returns a non-empty list of the bindings matching a specified pattern

in some unspecified order. The table, the pattern, and the number of objects that are matched are al defined by
Cont i nuat i on, which has been returned by a previous call tomat ch/ 1 or mat ch/ 3.

When all table objects are matched, ' $end_of _t abl e' isreturned.

Continuation2 = bindi ngs_cont ()
]

match(Name, Pattern) -> [Match] | {error, Reason}
Types.
Name = tab_nane()
Pattern = pattern()
Match = [term()]
Reason = term()
Returns for each object of table Nane that matches Pat t er n alist of bindings in some unspecified order. For a

description of patterns, see et s: mat ch/ 2. If the keyposth element of Pat t er n is unbound, all table objects are
matched. If the keyposth element is bound, only the objects with the correct key are matched.

match(Name, Pattern, N) ->
{[Match], Continuation} |
"$end of table' |
{error, Reason}

Types:

Ericsson AB. All Rights Reserved.: STDLIB | 79

dets

Name = tab_name()

Pattern = pattern()

N = default | integer() >= 0
Continuation = bindi ngs_cont ()
Match = [term()]

Reason = term()

Matches some or all objects of table Nane and returns a non-empty list of the bindings that match Pat t er n in some
unspecified order. For adescription of patterns, seeet s: mat ch/ 2.

A tuple of the bindings and a continuation is returned, unless the table is empty, in which case' $end_of _t abl e’
isreturned. The continuation is to be used when matching further objects by calling mat ch/ 1.

If the keyposth element of Pat t er n is bound, all table objects are matched. If the keyposth element is unbound,
all table objects are matched, N objects at atime, until at |east one object matches or the end of the table is reached.
The default, indicated by giving Nthe value def aul t , isto let the number of objects vary depending on the sizes of
the objects. If Name isaversion 9 table, al objects with the same key are always matched at the same time, which
implies that more than N objects can sometimes be matched.

Thetableis awaysto be protected using saf e_f i xt abl e/ 2 before calling mat ch/ 3, otherwise errors can occur
when calling mat ch/ 1.

match delete(Name, Pattern) -> ok | {error, Reason}
Types:

Name = tab_name()

Pattern = pattern()

Reason = term()

Deletes all objects that match Pat t er n from table Narre. For a description of patterns, seeet s: mat ch/ 2.
If the keyposth element of Pat t er n isbound, only the objects with the correct key are matched.

match object(Continuation) ->
{Objects, Continuation2} |
'$end of table' |
{error, Reason}
Types:
Continuation = Continuation2 = object _cont ()
Objects = [object()]
Reason = term()
Returns a non-empty list of some objects stored in a table that match a given pattern in some unspecified order. The

table, the pattern, and the number of objects that are matched are al defined by Cont i nuat i on, which has been
returned by aprevious call tomat ch_obj ect/ 1 or mat ch_obj ect/ 3.

When all table objects are matched, ' $end_of _t abl e' isreturned.

match object(Name, Pattern) -> Objects | {error, Reason}
Types:

80 | Ericsson AB. All Rights Reserved.: STDLIB

dets

Name = tab_name()
Pattern = pattern()
Objects = [object()]
Reason = term()

Returnsalist of all objectsof table Nane that match Pat t er n in some unspecified order. For adescription of patterns,
seeet s: match/ 2.

If the keyposth element of Pat t er n isunbound, all table objects are matched. If the keyposth element of Pat t er n
is bound, only the objects with the correct key are matched.

Using the mat ch_obj ect functions for traversing all table objects is more efficient than calling fi rst/ 1 and
next/2orslot/2.

match object(Name, Pattern, N) ->
{Objects, Continuation} |
'$end of table' |
{error, Reason}

Types:
Name = tab_name()
Pattern = pattern()
N = default | integer() >= 0
Continuation = object_cont ()
Objects = [object()]
Reason = term()

Matches some or all objects stored in table Name and returns a non-empty list of the objectsthat match Pat t er nin
some unspecified order. For a description of patterns, seeet s: mat ch/ 2.

A list of objects and a continuation is returned, unless the table is empty, in which case ' $end_of tabl e’ is
returned. The continuation is to be used when matching further objects by calling mat ch_obj ect/ 1.

If the keyposth element of Pat t er n isbound, all table objects are matched. If the keyposth element is unbound, all
table objects are matched, N objects at atime, until at least one object matches or the end of the table is reached. The
default, indicated by giving N the value def aul t , isto let the number of objects vary depending on the sizes of the
objects. If Name is aversion 9 table, all matching objects with the same key are always returned in the same reply,
which implies that more than N objects can sometimes be returned.

Thetableis alwaysto be protected using saf e_f i xt abl e/ 2 before calling mat ch_obj ect / 3, otherwise errors
can occur when calling mat ch_obj ect/ 1.

member(Name, Key) -> boolean() | {error, Reason}
Types:

Name = tab_name()

Key = Reason = term()

Works like | ookup/ 2, but does not return the objects. Returnst r ue if one or more table elements has key Key,
otherwisef al se.

next (Name, Keyl) -> Key2 | '$end of table'’
Types:

Ericsson AB. All Rights Reserved.: STDLIB | 81

dets

Name
Keyl

tab_name()
Key2 = term()

Returns either the key following Keyl in table Name according to the internal order of the table, or
' $end_of tabl e' if thereisno next key.

If an error occurs, the processis exited with an error tuple{ error, Reason}.
To find thefirst key in the table, usefi rst/ 1.

open file(Filename) -> {ok, Reference} | {error, Reason}
Types:

Filename = file: nane()

Reference = reference()

Reason = term()

Opens an existing table. If the table is not properly closed, it is repaired. The returned reference is to be used as the
table name. This function is most useful for debugging purposes.

open file(Name, Args) -> {ok, Name} | {error, Reason}

Types:
Name = tab_name()
Args = [OpenArg]
OpenArg =

{access, access()} |

{auto_save, auto_save()} |
{estimated no objects, integer() >= 0} |
{file, file:name()} |

{max_no_slots, no_slots()} |
{min no slots, no_slots()} |

{keypos, keypos()} |
{ram_file, boolean()} |
{repair, boolean() | force} |
{type, type()} |

{version, version()}

Reason = term()
Opens atable. An empty Detstableis created if no file exists.

The atom Nane is the table name. The table name must be provided in all subsequent operations on the table. The
name can be used by other processes as well, and many processes can share one table.

If two processes open the same table by giving the same name and arguments, the table has two users. If one user
closesthe table, it remains open until the second user closesit.

Argument Ar gs isalist of { Key, Val} tuples, wherethe following values are allowed:

« {access, access()} - Existing tables can be opened in read-only mode. A table that is opened in read-
only mode is not subjected to the automatic file reparation algorithm if it is later opened after a crash. Defaults
toread_wite.

« {auto_save, auto_save()} - Theautosaveinterval. If theinterval isaninteger Ti nme, thetableisflushed
to disk whenever it is not accessed for Ti me milliseconds. A table that has been flushed requires no reparation
when reopened after an uncontrolled emulator halt. If the interval isthe atom i nf i ni t y, autosave is disabled.
Defaults to 180000 (3 minutes).

82 | Ericsson AB. All Rights Reserved.: STDLIB

dets

e {estimated no_objects, no_slots()} -Equivaenttooptionm n_no_sl ots.
« {file, file:name()} - Thename of thefileto be opened. Defaults to the table name.
« {max_no_slots, no_slots()} - Themaximum number of slotsto be used. Defaultsto 32 M, whichisthe

maximal value. Notice that a higher value can increase the table fragmentation, and a smaller value can decrease
the fragmentation, at the expense of execution time. Only available for version 9 tables.

« {mn_no_slots, no_slots()} -Application performance can be enhanced with this flag by specifying,
when the table is created, the estimated number of different keysto be stored in the table. Defaults to 256, which
is the minimum value.

 {keypos, keypos()} - The position of the element of each object to be used as key. Defaultsto 1. The
ability to explicitly state the key position is most convenient when we want to store Erlang records in which the
first position of the record is the name of the record type.

e {ramfile, boolean()} - Whether thetableisto be kept in RAM. Keeping the table in RAM can sound
like an anomaly, but can enhance the performance of applications that open atable, insert a set of objects, and
then close the table. When the table is closed, its contents are written to the disk file. Defaultsto f al se.

« {repair, Value} -Val ue canbeeither abool ean() or theatom f or ce. The flag specifiesif the Dets

server is to invoke the automatic file reparation algorithm. Defaultsto t r ue. If f al se is specified, no attempt
is made to repair the file, and { error, {needs_repair, FileNanme}} isreturned if the table must be
repaired.
Valuef or ce meansthat areparation is made even if the table is properly closed. Thisis how to convert tables
created by older versions of STDLIB. An example is tables hashed with the deprecated er | ang: hash/ 2 BIF.
Tables created with Dets from STDLIB version 1.8.2 or later use function er | ang: phash/ 2 or function
erl ang: phash2/ 1, whichis preferred.

Optionr epai r isignored if the table is already open.

« {type, type()} - Thetabletype. Defaultstoset .

« {version, version()} - Theversion of theformat used for the table. Defaultsto 9. Tables on the format
used before Erlang/OTP R8 can be created by specifying value 8. A version 8 table can be converted to aversion
9 table by specifying options{ ver si on, 9} and{repair, force}.

pid2name(Pid) -> {ok, Name} | undefined
Types.

Pid = pid()

Name = tab_name()

Returns the table name given the pid of a process that handles requests to atable, or undef i ned if thereis no such
table.

This function is meant to be used for debugging only.

repair_continuation(Continuation, MatchSpec) -> Continuation2
Types:

Continuation = Continuation2 = sel ect _cont ()

MatchSpec = mat ch_spec()

Thisfunction can be used to restore an opaque continuation returned by sel ect / 3 or sel ect / 1 if the continuation
has passed through external term format (been sent between nodes or stored on disk).

The reason for this function is that continuation terms contain compiled match specifications and therefore are
invalidated if converted to external term format. Given that the origina match specification is kept intact, the
continuation can be restored, meaning it can once again be used in subsequent sel ect / 1 calls even though it has
been stored on disk or on another node.

Ericsson AB. All Rights Reserved.: STDLIB | 83

dets

For more information and examples, seetheet s(3) module.

Note:

This function is rarely needed in application code. It is used by application Mnesia to provide distributed
sel ect/ 3 andsel ect/ 1 sequences. A normal application would either use Mnesia or keep the continuation
from being converted to external format.

The reason for not having an external representation of compiled match specifications is performance. It can be
subject to change in future releases, while this interface remains for backward compatibility.

safe fixtable(Name, Fix) -> ok
Types:
Name = tab_name()
Fix = boolean()
If Fi x istrue, table Nane is fixed (once more) by the calling process, otherwise the table isreleased. The tableis
also released when a fixing process terminates.

If many processes fix atable, the table remains fixed until all processes have released it or terminated. A reference
counter is kept on a per process basis, and N consecutive fixes require N releases to release the table.

Itisnot guaranteed that callstof i r st/ 1, next / 2, or select and match functions work as expected even if the table
is fixed; the limited support for concurrency provided by the et s(3) module is not yet provided by Dets. Fixing a
table currently only disables resizing of the hash list of the table.

If objects have been added while the table was fixed, the hash list starts to grow when the table is released, which
significantly slows down access to the table for a period of time.

select(Continuation) ->
{Selection, Continuation2} |
'$end of table' |
{error, Reason}
Types:
Continuation = Continuation2 = sel ect _cont ()
Selection = [term()]

Reason = term()

Applies amatch specification to some objects stored in atable and returns a non-empty list of the results. The table,
the match specification, and the number of objects that are matched are al defined by Cont i nuat i on, which is
returned by apreviouscall tosel ect/ 1 orsel ect/ 3.

When all objects of the table have been matched, ' $end_of _t abl e' isreturned.

select(Name, MatchSpec) -> Selection | {error, Reason}
Types.

84 | Ericsson AB. All Rights Reserved.: STDLIB

dets

Name = tab_name()
MatchSpec = mat ch_spec()
Selection = [term()]
Reason = term()

Returns the results of applying match specification Mat chSpec to al or some objects stored in table Nane. The
order of the objectsis not specified. For a description of match specifications, see the ERTS User's Guide.

If the keyposth element of Mat chSpec is unbound, the match specification is applied to all objects of the table. If
the keyposth element is bound, the match specification is applied to the objects with the correct key(s) only.

Usingthesel ect functionsfor traversing all objects of atableismore efficient than callingf i r st/ 1 andnext/ 2
orslot/2.

select(Name, MatchSpec, N) ->
{Selection, Continuation} |
'$end of table' |
{error, Reason}
Types:
Name = tab_name()
MatchSpec = mat ch_spec()
N = default | integer() >= 0
Continuation = select_cont ()
Selection = [term()]
Reason = term()

Returns the results of applying match specification Mat chSpec to some or al objects stored in table Nane. The
order of the objectsis not specified. For a description of match specifications, see the ERTS User's Guide.

A tuple of the results of applying the match specification and a continuation is returned, unless the table is empty, in
which case' $end_of _t abl e' isreturned. The continuation is to be used when matching more objects by calling
sel ect/ 1.

If the keypos'th element of Mat chSpec isbound, the match specification is applied to al objects of the table with the
correct key(s). If the keyposth element of Mat chSpec isunbound, the match specification is applied to all objects of
the table, N objects at atime, until at least one object matches or the end of the table is reached. The default, indicated
by giving N the value def aul t , isto let the number of objects vary depending on the sizes of the objects. If Nane
isaversion 9 table, all objects with the same key are always handled at the same time, which implies that the match
specification can be applied to more than N objects.

Thetableisalwaysto be protected usingsaf e_f i xt abl e/ 2 beforecallingsel ect / 3, otherwise errors can occur
when calling sel ect/ 1.

select delete(Name, MatchSpec) -> N | {error, Reason}
Types:

Name = tab_name()

MatchSpec = mat ch_spec()

N = integer() >= 0

Reason = term()

Deletes each object from table Nane such that applying match specification Mat chSpec to the object returns value
t r ue. For adescription of match specifications, see the ERTS User's Guide. Returns the number of deleted objects.

Ericsson AB. All Rights Reserved.: STDLIB | 85

dets

If the keyposth element of Mat chSpec is bound, the match specification is applied to the objects with the correct
key(s) only.

slot(Name, I) -> '$end of table' | Objects | {error, Reason}
Types.

Name = tab_nane()

I = integer() >= 0

Objects = [object ()]

Reason = term()

The objects of atable are distributed among slots, starting with slot 0 and ending with slot n. Returnsthe list of objects
associated with dlot | . If | >n,' $end_of _t abl e' isreturned.

sync(Name) -> ok | {error, Reason}
Types:

Name = tab_name()

Reason = term()

Ensuresthat all updates made to table Nane are written to disk. This also appliesto tables that have been opened with
flagram fil e settot r ue. Inthis case, the contents of the RAM file are flushed to disk.

Notice that the space management data structures kept in RAM, the buddy system, is also written to the disk. This
can take some time if the table is fragmented.

table(Name) -> QueryHandle
table(Name, Options) -> QueryHandle
Types.
Name = tab_name()
Options = Option | [Option]
Option = {n objects, Limit} | {traverse, TraverseMethod}
Limit = default | integer() >=1
TraverseMethod = first next | select | {select, match_spec()}
QueryHandle = gl c: query_handl e()
Returns a Query List Comprehension (QLC) query handle. The gl ¢(3) module provides a query language aimed

mainly for Mnesia, but ETS tables, Dets tables, and lists are also recognized by ql ¢ as sources of data. Calling
det s: tabl e/ 1, 2 isthe means to make Dets table Nare usableto gl c.

When there are only simple restrictions on the key position, gl ¢ usesdet s: | ookup/ 2 to look up the keys. When
that is not possible, the whole table istraversed. Optiont r aver se determines how thisis done:
« first_next - Thetableistraversed onekey at atimeby callingdet s: first/ 1 anddet s: next/ 2.
 select - Thetableis traversed by caling det s: sel ect/ 3 and det s: sel ect/ 1. Option n_obj ect s
determines the number of objects returned (the third argument of sel ect/ 3). The match specification (the
second argument of sel ect/ 3) isassembled by gl c:
« Simplefiltersare trandated into egquivalent match specifications.

» More complicated filters must be applied to all objects returned by sel ect / 3 given a match specification
that matches all objects.

86 | Ericsson AB. All Rights Reserved.: STDLIB

dets

« {select, match_spec()} - As for sel ect, the table is traversed by calling det s: sel ect/ 3 and
det s: sel ect/ 1. The difference is that the match specification is specified explicitly. This is how to state
match specifications that cannot easily be expressed within the syntax provided by gl c.

The following example uses an explicit match specification to traverse the table:

1> dets:open file(t, [1]),

ok dets:insert(t, [{1,a},{2,b},{3,c},{4,d}]),

MS ets:fun2ms (fun({X,Y}) when (X > 1) or (X <5) -> {Y} end),
QH1 = dets:table(t, [{traverse, {select, MS}}]).

An example with implicit match specification:

2> QH2 = qlc:q([{Y} || {X,Y} <- dets:table(t), (X > 1) or (X <5)]).

The latter example is equivalent to the former, which can be verified using function gl c: i nf o/ 1:

3> qlc:info(QH1) =:= qlc:info(QH2).
true

gl c: i nfo/ 1 returns information about a query handle. In this case identical information is returned for the two
query handles.

to ets(Name, EtsTab) -> EtsTab | {error, Reason}

Types:
Name = tab_name()
EtsTab = ets:tab()
Reason = term()

Inserts the objects of the Dets table Narre into the ETS table Et sTab. The order in which the objects are inserted is
not specified. The existing objects of the ETS table are kept unless overwritten.

traverse(Name, Fun) -> Return | {error, Reason}
Types:
Name = tab_name()
Fun = fun((Object) -> FunReturn)
Object = object()
FunReturn =
continue | {continue, Val} | {done, Value} | OtherValue

Return = [term()] | OtherValue
Val = Value = OtherValue = Reason = term()

Applies Fun to each object stored in table Nanme in some unspecified order. Different actions are taken depending on
the return value of Fun. The following Fun return values are allowed:

conti nue
Continueto perform the traversal. For example, the following function can be used to print the contents of atable:

Ericsson AB. All Rights Reserved.: STDLIB | 87

dets

fun(X) -> io:format("~p~n", [X]), continue end.

{continue, Val}
Continue the traversal and accumulate Val . The following function is supplied to collect all objects of atable

inalist:
fun(X) -> {continue, X} end.

{done, Val ue}
Terminate the traversal and return [Val ue | Acc].
Any other value Ot her Val ue returned by Fun terminates the traversal and is returned immediately.

update counter(Name, Key, Increment) -> Result

Types:
Name = tab_name()
Key = term()
Increment = {Pos, Incr} | Incr

Pos = Incr = Result = integer()

Updates the object with key Key stored in table Name of type set by adding | ncr to the element at the Pos:th
position. The new counter value is returned. If no position is specified, the element directly following the key is
updated.

This functions provides a way of updating a counter, without having to look up an object, update the object by
incrementing an element, and insert the resulting object into the table again.

See Also
ets(3),mesia(3),qlc(3)

88 | Ericsson AB. All Rights Reserved.: STDLIB

dict

dict

Erlang module

Thismodule providesaKey-Val ue dictionary. The representation of adictionary is not defined.

This module provides the same interface as the or ddi ¢t (3) module. One difference is that while this module
considers two keys as different if they do not match (=: =), or ddi ct considers two keys as different if and only if
they do not compare equal (==).

Data Types

dict(Key, Value)

Dictionary as returned by new/ 0.
dict() = dict (term(), term())

Exports

append(Key, Value, Dictl) -> Dict2
Types.
Dictl = Dict2 = dict (Key, Value)
Appends anew Val ue to the current list of values associated with Key.
See also section Notes.

append list(Key, VallList, Dictl) -> Dict2
Types:
Dictl = Dict2 = dict (Key, Value)
ValList = [Value]

Appends alist of values Val Li st to the current list of values associated with Key. An exception is generated if the
initial value associated with Key isnot alist of values.

See also section Notes.

erase(Key, Dictl) -> Dict2
Types:
Dictl = Dict2 = dict (Key, Value)

Erases all items with a given key from adictionary.

fetch(Key, Dict) -> Value
Types.
Dict = dict (Key, Value)

Returns the value associated with Key in dictionary Di ct . This function assumes that Key is present in dictionary
Di ct, and an exception is generated if Key isnot in the dictionary.

See also section Notes.

Ericsson AB. All Rights Reserved.: STDLIB | 89

dict

fetch keys(Dict) -> Keys

Types:
Dict = dict (Key, Value :: term())
Keys = [Key]

Returnsalist of all keysindictionary Di ct .

filter(Pred, Dictl) -> Dict2

Types.
Pred = fun((Key, Value) -> boolean())
Dictl = Dict2 = dict (Key, Value)

Di ct 2 isadictionary of al keysand valuesin Di ct 1 for which Pr ed(Key, Val ue) istrue.

find(Key, Dict) -> {ok, Value} | error
Types:
Dict = dict (Key, Value)
Searches for akey indictionary Di ct . Returns{ ok, Val ue}, where Val ue isthe value associated with Key, or
error if thekey isnot present in the dictionary.

See also section Notes.

fold(Fun, AccO, Dict) -> Accl

Types.
Fun = fun((Key, Value, AccIn) -> AccOut)
Dict di ct (Key, Value)
AccO Accl = AccIn = AccOut = Acc

Calls Fun on successive keys and values of dictionary Di ct together with an extra argument Acc (short for
accumulator). Fun must return a new accumulator that is passed to the next call. AccO is returned if the dictionary
is empty. The evaluation order is undefined.

from list(List) -> Dict

Types:
Dict = dict (Key, Value)
List = [{Key, Value}]

Convertsthe Key-Val ue list Li st todictionary Di ct .

is empty(Dict) -> boolean()
Types:
Dict = dict()
Returnst r ue if dictionary Di ct has no elements, otherwisef al se.

is key(Key, Dict) -> boolean()
Types.

90 | Ericsson AB. All Rights Reserved.: STDLIB

dict

Dict = dict (Key, Value :: term())
Testsif Key iscontained in dictionary Di ct .

map(Fun, Dictl) -> Dict2

Types:
Fun = fun((Key, Valuel) -> Value2)
Dictl = dict (Key, Valuel)
Dict2 = dict (Key, Value2)

Calls Fun on successive keys and values of dictionary Di ct 1 to return a new value for each key. The evauation
order is undefined.

merge(Fun, Dictl, Dict2) -> Dict3
Types.
Fun = fun((Key, Valuel, Value2) -> Value)

Dictl = dict (Key, Valuel)
Dict2 = dict (Key, Value2)
Dict3 = dict (Key, Value)

Merges two dictionaries, Di ct 1 and Di ct 2, to create a new dictionary. All the Key-Val ue pairs from both
dictionaries are included in the new dictionary. If a key occurs in both dictionaries, Fun is called with the key and
both values to return anew value. mer ge can be defined as follows, but is faster:

merge(Fun, D1, D2) ->
fold(fun (K, V1, D) ->
update(K, fun (V2) -> Fun(K, V1, V2) end, V1, D)
end, D2, D1).

new() -> dict()
Creates anew dictionary.

size(Dict) -> integer() >= 0
Types:
Dict = dict()
Returns the number of elementsin dictionary Di ct .

store(Key, Value, Dictl) -> Dict2
Types:
Dictl = Dict2 = dict (Key, Value)

Stores aKey-Val ue pair in dictionary Di ct 2. If Key aready existsin Di ct 1, the associated value is replaced by
Val ue.

to list(Dict) -> List
Types:

Ericsson AB. All Rights Reserved.: STDLIB | 91

dict

Dict di ct (Key, Value)
List [{Key, Value}]

Convertsdictionary Di ct to alist representation.

update(Key, Fun, Dictl) -> Dict2
Types.
Dictl = Dict2 = dict (Key, Value)
Fun = fun((Valuel :: Value) -> Value2 :: Value)

Updates avaue in adictionary by calling Fun on the value to get a new value. An exception is generated if Key is
not present in the dictionary.

update(Key, Fun, Initial, Dictl) -> Dict2

Types:
Dictl = Dict2 = dict (Key, Value)
Fun = fun((Valuel :: Value) -> Value2 :: Value)
Initial = Value

Updates avauein adictionary by calling Fun on the value to get anew value. If Key is not present in the dictionary,
Initial isstored asthefirst value. For example, append/ 3 can be defined as:

append(Key, Val, D) ->
update(Key, fun (0ld) -> Old ++ [Val] end, [Val], D).

update counter(Key, Increment, Dictl) -> Dict2
Types.

Dictl = Dict2 = dict (Key, Value)

Increment = number()

Adds | ncr enent to the value associated with Key and stores this value. If Key is not present in the dictionary,
I ncr enent isstored asthefirst value.

This can be defined as follows, but is faster:

update counter(Key, Incr, D) ->
update(Key, fun (0ld) -> Old + Incr end, Incr, D).

Notes

Functions append and append_l i st areincluded so that keyed values can be stored in a list accumulator, for
example:

> DO = dict:new(),
D1 = dict:store(files, [], DO),
D2 = dict:append(files, f1, D1),
D3 = dict:append(files, f2, D2),
D4 = dict:append(files, f3, D3),
dict:fetch(files, D4).

92 | Ericsson AB. All Rights Reserved.: STDLIB

dict

[f1,f2,f3]

This saves the trouble of first fetching a keyed value, appending a new value to the list of stored values, and storing
the result.

Function f et ch isto be used if the key is known to be in the dictionary, otherwise function f i nd.

See Also
gb_trees(3),orddict(3)

Ericsson AB. All Rights Reserved.: STDLIB | 93

digraph

digraph

Erlang module

This module provides aversion of labeled directed graphs. What makes the graphs provided here non-proper directed
graphs is that multiple edges between vertices are alowed. However, the customary definition of directed graphs is
used here.

A directed graph (or just "digraph™) isapair (V, E) of afinite set V of vertices and afinite set E of directed
edges (or just "edges'). The set of edges E isasubset of V x V (the Cartesian product of V with itself).

In this module, V is alowed to be empty. The so obtained unique digraph is called the empty digraph. Both
vertices and edges are represented by unique Erlang terms.

Digraphs can be annotated with more information. Such information can be attached to the vertices and to the
edges of the digraph. An annotated digraph is called alabeled digraph, and the information attached to a vertex
or an edgeiscalled alabel. Labels are Erlang terms.

An edge e = (v, w) issaid to emanate from vertex v and to be incident on vertex w.
The out-degree of avertex is the number of edges emanating from that vertex.
Thein-degree of avertex isthe number of edges incident on that vertex.

If an edge is emanating from v and incident on w, then w is said to be an out-neighbor of v, and v is said to
be an in-neighbor of w.

A path P from v[1] to v[k] in adigraph (V, E) is a non-empty sequence v[1], v[2], ..., V[K] of verticesin V such
that there is an edge (v[i],v[i+1]) inEfor 1 <=i <Kk.

The length of path Pisk-1.

Path Pissimpleif all vertices are distinct, except that the first and the last vertices can be the same.

Path P isacycleif the length of P isnot zero and v[1] = v[K].

A loop isacycle of length one.

A simple cycleis apath that is both a cycle and smple.

An acyclic digraph isadigraph without cycles.

Data Types

d type() = d_cyclicity() | d_protection()
d cyclicity() = acyclic | cyclic

d protection() = private | protected
graph()

A digraph asreturned by new/ 0, 1.

edge()

label() = term()

vertex()

Exports

add edge(G, V1, V2) -> edge() | {error, add_edge_err_rsn()}
add edge(G, V1, V2, Label) -> edge() | {error, add_edge_err_rsn()}
add edge(G, E, V1, V2, Label) ->

94 | Ericsson AB. All Rights Reserved.: STDLIB

digraph

edge() | {error, add_edge_err_rsn()}

Types:
G = graph()
E = edge()

V1 = V2 = vertex()
Label = | abel ()
add edge err _rsn() =
{bad _edge, Path :: [vertex()]} | {bad vertex, V :: vertex()}

add_edge/ 5 creates (or modifies) edge E of digraph G, using Label asthe (new) label of the edge. The edge is
emanating from V1 and incident on V2. Returns E.

add_edge(G V1, V2, Label) isequivaenttoadd edge(G E, V1, V2, Label),whereEisa
created edge. The created edgeisrepresented by teem [* $e' | N], where Nisan integer >= 0.
add_edge(G V1, V2) isequivalenttoadd_edge(G V1, V2, []).

If the edge would create a cyclein an acyclic digraph, { error, {bad_edge, Path}} isreturned. If either of
V1 or V2 isnot avertex of digraph G {error, {bad_vertex, V}} isreturned,V =V1orV =V2.

add vertex(G) -> vertex()
add vertex(G, V) -> vertex()
add vertex(G, V, Label) -> vertex()

Types.
G = graph()
V = vertex()

Label = | abel ()
add_vert ex/ 3 creates(or modifies) vertex V of digraph G, using Label asthe (new) label of thevertex. ReturnsV.
add_vertex(G V) isequivaenttoadd _vertex(G, V, []).

add_vert ex/ 1 creates a vertex using the empty list as label, and returns the created vertex. The created vertex is
represented by term [$v' | N], where Nisan integer >=0.

del edge(G, E) -> true

Types.
G = graph()
E = edge()
Deletes edge E from digraph G

del edges(G, Edges) -> true
Types:

G = graph()
Edges = [edge()]

Deletesthe edgesin list Edges from digraph G

del path(G, V1, V2) -> true
Types:

Ericsson AB. All Rights Reserved.: STDLIB | 95

digraph

G = graph()

V1 = V2 = vertex()
Deletes edges from digraph G until there are no paths from vertex V1 to vertex V2.
A sketch of the procedure employed:

e Find an arbitrary simple path v[1], v[2], ..., V[K] fromV1 to V2 in G
* Removeall edges of Gemanating from v[i] and incident to v[i+1] for 1 <=i <k (including multiple edges).
e Repeat until thereis no path between V1 and V2.

del vertex(G, V) -> true

Types.
G = graph()
V = vertex()

Deletes vertex V from digraph G. Any edges emanating from V or incident on V are also deleted.

del vertices(G, Vertices) -> true
Types:

G = graph()

Vertices = [vertex()]
Deletesthe verticesinlist Ver t i ces from digraph G

delete(G) -> true
Types:
G = graph()

Deletes digraph G. This call is important as digraphs are implemented with ETS. There is no garbage collection of
ETS tables. However, the digraph is deleted if the process that created the digraph terminates.

edge(G, E) -> {E, V1, V2, Label} | false

Types:
G = graph()
E = edge()

V1 = V2 = vertex()
Label = | abel ()

Returns{ E, V1, V2, Label}, wherelLabel isthelabel of edge E emanating from V1 and incident on V2 of
digraph G. If no edge E of digraph Gexists, f al se isreturned.

edges(G) -> Edges
Types:
G = graph()
Edges = [edge()]
Returns alist of all edges of digraph G, in some unspecified order.

edges(G, V) -> Edges
Types.

96 | Ericsson AB. All Rights Reserved.: STDLIB

digraph

G = graph()
V = vertex()
Edges = [edge()]
Returns alist of all edges emanating from or incident onV of digraph G, in some unspecified order.

get cycle(G, V) -> Vertices | false

Types:
G = graph()
V = vertex()
Vertices = [vertex(), ...]
If a simple cycle of length two or more exists through vertex V, the cycleisreturned asalist[V, ..., V] of

vertices. If aloop through V exists, theloop isreturned asalist [V] . If no cyclesthrough V exist, f al se isreturned.
get _pat h/ 3 isused for finding a simple cycle through V.

get path(G, V1, V2) -> Vertices | false

Types:
G = graph()
V1 = V2 = vertex()
Vertices = [vertex(), ...]
Triesto find asimple path from vertex V1 to vertex V2 of digraph G. Returnsthe pathasalist[V1, ..., V2] of

vertices, or f al se if no simple path from V1 to V2 of length one or more exists.
Digraph Gistraversed in adepth-first manner, and the first found path is returned.

get short cycle(G, V) -> Vertices | false

Types:
G = graph()
V = vertex()
Vertices = [vertex(), ...]
Triestofind an asshort as possible simple cyclethrough vertex V of digraph G. Returnsthecycleasalist[V, ..., V]

of vertices, or f al se if no simple cyclethrough V exists. Naotice that aloop through Visreturned aslist[V, V] .
get _short _pat h/ 3 isused for finding asimple cycle through V.

get short path(G, V1, V2) -> Vertices | false

Types:
G = graph()
V1 = V2 = vertex()
Vertices = [vertex(), ...]

Triesto find an as short as possible simple path from vertex V1 to vertex V2 of digraph G Returns the path as alist
[V1, ..., V2] of vertices, or f al se if no simple path from V1 to V2 of length one or more exists.

Digraph Gistraversed in a breadth-first manner, and the first found path is returned.

in _degree(G, V) -> integer() >= 0
Types.

Ericsson AB. All Rights Reserved.: STDLIB | 97

digraph

G
v

Returns the in-degree of vertex V of digraph G

graph()
vertex()

in edges(G, V) -> Edges
Types.
G = graph()
V = vertex()
Edges = [edge()]
Returnsalist of all edgesincident on V of digraph G, in some unspecified order.

in neighbours(G, V) -> Vertex

Types.
G = graph()
V = vertex()

Vertex = [vertex()]
Returnsalist of all in-neighbors of V of digraph G, in some unspecified order.

info(G) -> Infolist

Types.
G = graph()
InfolList =
[{cyclicity, Cyclicity :: d_cyclicity()} |
{memory, NoWords :: integer() >= 0} |
{protection, Protection :: d _protection()}]

d cyclicity() = acyclic | cyclic
d protection() = private | protected
Returnsalist of { Tag, Val ue} pairsdescribing digraph G The following pairs are returned:

e {cyclicity, Cyclicity},whereCyclicityiscyclicoracycli c,accordingto the optionsgiven
tonew.
e {nenory, NoWrds}, where NoWr ds isthe number of words allocated to the ETS tables.

« {protection, Protection},whereProtectionisprotectedorprivat e,accordingtotheoptions
givento new.

new() -> graph()
Equivalenttonew([]) .

new(Type) -> graph()
Types:

98 | Ericsson AB. All Rights Reserved.: STDLIB

digraph

Type = [d_type()]
d type() = d_cyclicity() | d_protection()
d cyclicity() = acyclic | cyclic
d protection() = private | protected
Returns an empty digraph with properties according to the optionsin Ty pe:
cyclic
Allows cyclesin the digraph (default).
acyclic
The digraph isto be kept acyclic.
pr ot ect ed
Other processes can read the digraph (default).
private
The digraph can be read and modified by the creating process only.

If an unrecognized type option T is specified or Type isnot aproper list, abadar g exception is raised.

no_edges(G) -> integer() >= 0
Types:

G = graph()
Returns the number of edges of digraph G

no vertices(G) -> integer() >= 0
Types:

G = graph()
Returns the number of vertices of digraph G

out degree(G, V) -> integer() >= 0

Types.
G = graph()
V = vertex()

Returns the out-degree of vertex V of digraph G

out edges(G, V) -> Edges
Types:
G = graph()
V = vertex()
Edges = [edge()]
Returns alist of all edges emanating from V of digraph G, in some unspecified order.

out neighbours(G, V) -> Vertices
Types:

Ericsson AB. All Rights Reserved.: STDLIB | 99

digraph

G gr aph()
V = vertex()
Vertices = [vertex()]

Returnsalist of all out-neighbors of V of digraph G, in some unspecified order.

vertex(G, V) -> {V, Label} | false

Types:
G = graph()
V = vertex()

Label = I abel ()

Returns{V, Label }, whereLabel isthelabel of the vertex V of digraph G, or f al se if no vertex V of digraph
Gexists.

vertices(G) -> Vertices
Types:
G = graph()
Vertices = [vertex()]
Returns alist of all vertices of digraph G, in some unspecified order.

See Also
di graph_utils(3),ets(3)

100 | Ericsson AB. All Rights Reserved.: STDLIB

digraph_utils

digraph_utils

Erlang module

This module provides algorithms based on depth-first traversal of directed graphs. For basic functions on directed
graphs, seethedi gr aph(3) module.

A directed graph (or just "digraph") isapair (V, E) of afinite set V of vertices and afinite set E of directed
edges (or just "edges'). The set of edges E isasubset of V x V (the Cartesian product of V with itself).

Digraphs can be annotated with more information. Such information can be attached to the vertices and to the
edges of the digraph. An annotated digraph is called alabeled digraph, and the information attached to a vertex
or an edgeiscalled alabel.

An edge e = (v, w) issaid to emanate from vertex v and to be incident on vertex w.

If an edge is emanating from v and incident on w, then w is said to be an out-neighbor of v, and v is said to
be an in-neighbor of w.

A path Pfrom v[1] to v[K] in adigraph (V, E) is a non-empty sequence v[1], v[2], ..., V[K] of verticesin V such
that thereisan edge (v[i],v[i+1]) inEfor 1<=i < k.

Thelength of path Pisk-1.

Path Pisacycleif the length of P isnot zero and v[1] = v[K].

A loop isacycle of length one.

An acyclic digraph isadigraph without cycles.

A depth-first traversal of adirected digraph can be viewed as a process that visits all vertices of the digraph.
Initially, all verticesare marked asunvisited. Thetraversal startswith an arbitrarily chosen vertex, whichismarked
as visited, and follows an edge to an unmarked vertex, marking that vertex. The search then proceeds from that
vertex inthe samefashion, until thereisno edgeleading to an unvisited vertex. At that point the process backtracks,
and the traversal continues as long as there are unexamined edges. If unvisited vertices remain when al edges
from the first vertex have been examined, some so far unvisited vertex is chosen, and the processis repeated.

A partial ordering of aset Sisatransitive, antisymmetric, and reflexive relation between the objects of S.

The problem of topological sorting isto find a total ordering of S that is a superset of the partial ordering. A
digraph G = (V, E) is equivalent to arelation E on V (we neglect that the version of directed graphs provided
by the di gr aph module allows multiple edges between vertices). If the digraph has no cycles of length two or
more, the reflexive and transitive closure of E isa partial ordering.

A subgraph G' of G isadigraph whose vertices and edges form subsets of the vertices and edges of G.

G' is maximal with respect to a property P if all other subgraphs that include the vertices of G' do not have
property P.

A strongly connected component isamaximal subgraph such that thereis a path between each pair of vertices.
A connected component isamaximal subgraph such that thereisapath between each pair of vertices, considering
al edges undirected.

An arborescenceis an acyclic digraph with avertex V, theroot, such that there is aunique path from V to every
other vertex of G.

A treeisan acyclic non-empty digraph such that there is aunique path between every pair of vertices, considering
all edges undirected.

Exports

arborescence root(Digraph) -> no | {yes, Root}
Types.

Ericsson AB. All Rights Reserved.: STDLIB | 101

digraph_utils

Digraph = di graph: graph()
Root = di graph: vertex()
Returns{yes, Root} if Root istheroot of the arborescence Di gr aph, otherwise no.

components(Digraph) -> [Component]
Types.
Digraph = di graph: graph()
Component = [di graph:vertex()]

Returns alist of connected components.. Each component is represented by its vertices. The order of the vertices and
the order of the components are arbitrary. Each vertex of digraph Di gr aph occursin exactly one component.

condensation(Digraph) -> CondensedDigraph
Types:
Digraph = CondensedDigraph = di graph: graph()
Creates a digraph where the vertices are the strongly connected components of Di gr aph as returned by
strong_conponent s/ 1.1f X and Y are two different strongly connected components, and vertices x and y exist

inX and Y, respectively, such that thereis an edge emanating from x and incident on y, then an edge emanating from
X andincident onY is created.

The created digraph has the same type as Di gr aph. All vertices and edges have the default label [] .

Each cycleisincluded in some strongly connected component, which impliesthat atopological ordering of the created
digraph always exists.

cyclic strong components(Digraph) -> [StrongComponent]
Types:
Digraph = di graph: graph()
StrongComponent = [digraph:vertex()]
Returnsalist of strongly connected components. Each strongly component is represented by its vertices. The order of

the vertices and the order of the components are arbitrary. Only vertices that are included in some cyclein Di gr aph
are returned, otherwise the returned list is equal to that returned by st rong_conponent s/ 1.

is acyclic(bDigraph) -> boolean()
Types:
Digraph = di graph: graph()
Returnst r ue if and only if digraph Di gr aph isacyclic.

is arborescence(Digraph) -> boolean()
Types:
Digraph = di graph: graph()
Returnst r ue if and only if digraph Di gr aph isan arborescence.

is tree(Digraph) -> boolean()
Types.

102 | Ericsson AB. All Rights Reserved.: STDLIB

digraph_utils

Digraph = di graph: graph()
Returnst r ue if and only if digraph Di gr aph isatree.

loop vertices(Digraph) -> Vertices
Types:
Digraph = di graph: graph()
Vertices = [digraph:vertex()]

Returnsalist of all verticesof Di gr aph that are included in some loop.

postorder(Digraph) -> Vertices
Types:
Digraph = di graph: graph()
Vertices = [di graph:vertex()]
Returns al vertices of digraph Di gr aph. The order is given by a depth-first traversal of the digraph, collecting

visited vertices in postorder. More precisely, the vertices visited while searching from an arbitrarily chosen vertex are
collected in postorder, and all those collected vertices are placed before the subsequently visited vertices.

preorder(Digraph) -> Vertices
Types.
Digraph = di graph: graph()
Vertices = [digraph:vertex()]

Returnsall verticesof digraph Di gr aph. Theorder isgiven by adepth-first traversal of the digraph, collecting visited
verticesin preorder.

reachable(Vertices, Digraph) -> Reachable
Types:
Digraph = di graph: graph()
Vertices = Reachable = [di graph:vertex()]
Returns an unsorted list of digraph vertices such that for each vertex in the list, there is a path in Di gr aph from

some vertex of Ver t i ces tothe vertex. In particular, as paths can have length zero, the verticesof Verti ces are
included in the returned list.

reachable neighbours(Vertices, Digraph) -> Reachable
Types:
Digraph = di graph: graph()
Vertices = Reachable = [di graph:vertex()]
Returns an unsorted list of digraph vertices such that for each vertex in thelist, thereisapathin Di gr aph of length

one or more from some vertex of Ver t i ces to the vertex. As a consequence, only those verticesof Ver t i ces that
areincluded in some cycle are returned.

reaching(Vertices, Digraph) -> Reaching
Types:

Ericsson AB. All Rights Reserved.: STDLIB | 103

digraph_utils

Digraph = di graph: graph()
Vertices = Reaching = [di graph:vertex()]
Returns an unsorted list of digraph vertices such that for each vertex in the list, there is a path from the vertex to

some vertex of Verti ces. In particular, as paths can have length zero, the vertices of Vert i ces areincluded in
the returned list.

reaching neighbours(Vertices, Digraph) -> Reaching
Types:
Digraph = di graph: graph()
Vertices = Reaching = [di graph:vertex()]
Returns an unsorted list of digraph vertices such that for each vertex in the list, there is a path of length one or more

from the vertex to some vertex of Ver t i ces. Therefore only those vertices of Ver t i ces that areincluded in some
cycle are returned.

strong_components(Digraph) -> [StrongComponent]
Types:
Digraph = di graph: graph()
StrongComponent = [di graph: vertex()]
Returns a list of strongly connected components. Each strongly component is represented by its vertices. The order

of the vertices and the order of the components are arbitrary. Each vertex of digraph Di gr aph occurs in exactly one
strong component.

subgraph(Digraph, Vertices) -> SubGraph
subgraph(Digraph, Vertices, Options) -> SubGraph
Types:
Digraph = SubGraph = di graph: graph()
Vertices = [digraph:vertex()]
Options = [{type, SubgraphType} | {keep labels, boolean()}]
SubgraphType = inherit | [digraph: d_type()]
Creates a maximal subgraph of Di gr aph having as vertices those vertices of Di gr aph that are mentioned in
Verti ces.

If thevalue of optiont ype isi nheri t, which isthe default, thetype of Di gr aph isused for the subgraph aswell.
Otherwise the option value of t ype isused asargument to di gr aph: new/ 1.

If thevalue of optionkeep_| abel s ist r ue, whichisthe default, the labels of vertices and edges of Di gr aph are
used for the subgraph aswell. If thevalueisf al se, defaultlabel [] isused for the vertices and edges of the subgroup.

subgraph(D graph, Vertices) isequivaenttosubgraph(D graph, Vertices, []).
If any of the arguments areinvalid, abadar g exception is raised.

topsort(Digraph) -> Vertices | false
Types:

104 | Ericsson AB. All Rights Reserved.: STDLIB

digraph_utils

Digraph = di graph: graph()
Vertices = [di graph:vertex()]

Returns atopological ordering of the vertices of digraph Di gr aph if such an ordering exists, otherwisef al se. For
each vertex in the returned list, no out-neighbors occur earlier in thelist.

See Also
di graph(3)

Ericsson AB. All Rights Reserved.: STDLIB | 105

€pp

€pp

Erlang module

The Erlang code preprocessor includes functions that are used by the conpi | e module to preprocess macros and
include files before the parsing takes place.

The Erlang source file encoding is selected by acomment in one of the first two lines of the sourcefile. Thefirst string
matching the regular expression codi ng\ s*[: =] \ s* ([- a- zA- Z0- 9]) + selects the encoding. If the matching
string is not a valid encoding, it is ignored. The valid encodings are Lat i n- 1 and UTF- 8, where the case of the
characters can be chosen freely.

Examples:

%% coding: utf-8

%% For this file we have chosen encoding = Latin-1

%% -*- coding: latin-1 -*-

Data Types

macros() = [atom() | {atom(), term()}]
epp_handle() = pid()

Handle to the epp server.
source_encoding() = latinl | utf8

Exports

close(Epp) -> ok
Types:

Epp = epp_handl e()
Closes the preprocessing of afile.

default encoding() -> source_encodi ng()
Returns the default encoding of Erlang source files.

encoding to string(Encoding) -> string()
Types:
Encoding = source_encodi ng()

Returns a string representation of an encoding. The string is recognized by read_encodi ng/ 1, 2,
read_encodi ng_frombinary/1, 2,andset _encodi ng/ 1, 2 asavalid encoding.

106 | Ericsson AB. All Rights Reserved.: STDLIB

€pp

format _error(ErrorDescriptor) -> io_lib:chars()
Types:
ErrorDescriptor = term()

Takesan Er r or Descri pt or and returnsastring that describes the error or warning. Thisfunctionisusualy called
implicitly when processing an Er r or | nf o structure (see section Error Information).

open(Options) ->
{ok, Epp} | {ok, Epp, Extra} | {error, ErrorDescriptor}

Types:
Options =
[{default _encoding, DefEncoding :: source_encoding()} |
{includes, IncludePath :: [DirectoryName :: file:name()]} |
{macros, PredefMacros :: macros()} |
{name, FileName :: file:nane()} |
extra]

Epp = epp_handl e()
Extra = [{encoding, source_encoding() | none}]
ErrorDescriptor = term()

Opens afile for preprocessing.
If ext r aisspecifiedin Opt i ons, thereturnvaueis{ ok, Epp, Extra} instead of { ok, Epp}.

open(FileName, IncludePath) ->
{ok, Epp} | {error, ErrorDescriptor}

Types:
FileName = fil e: name()
IncludePath = [DirectoryName :: file:name()]

Epp = epp_handl e()
ErrorDescriptor = term()

Equivalent to epp: open([{nanme, Fil eNanme}, {includes, |ncludePath}]).

open(FileName, IncludePath, PredefMacros) ->
{ok, Epp} | {error, ErrorDescriptor}

Types:
FileName = fil e: name()
IncludePath = [DirectoryName :: file:name()]

PredefMacros = nmacros()
Epp = epp_handl e()
ErrorDescriptor = term()

Equivalent to epp: open([{nane, Fi | eNane}, {i ncl udes, I ncl udePat h}, {macr os,
Pr edef Macros}]).

parse erl form(Epp) ->
{ok, AbsForm} |
{error, ErrorInfo} |
{warning, WarningInfo} |

Ericsson AB. All Rights Reserved.: STDLIB | 107

€pp

{eof, Line}
Types:
Epp = epp_handl e()
AbsForm = erl _parse: abstract _form)
Line = erl _anno:line()
ErrorInfo = erl _scan:error_info() | erl_parse:error_info()
WarningInfo = warni ng_i nfo()
warning info() = {erl _anno:location(), module(), term()}

Returns the next Erlang form from the opened Erlang sourcefile. Tuple{ eof , Li ne} isreturned at the end of the
file. Thefirst form corresponds to an implicit attribute- fi | e(Fi | e, 1) . , whereFi | e isthefile name.

parse file(FileName, Options) ->
{ok, [Form]} |
{ok, [Form], Extra} |
{error, OpenError}

Types:

FileName = file: nane()

Options =
[{includes, IncludePath :: [DirectoryName :: file:name() 1} |
{macros, PredefMacros :: macros()} |
{default_encoding, DefEncoding :: source_encoding()} |
extral

Form =

erl _parse:abstract_forn() | {error, ErrorInfo} | {eof, Line}
Line = erl _anno:line()
ErrorInfo = erl _scan:error_info() | erl_parse:error_info()
Extra = [{encoding, source_encodi ng() | none}]
OpenError = file:posix() | badarg | system limit
Preprocesses and parses an Erlang source file. Notice that tuple { eof , Li ne} returned at the end of the file is
included asa"form".

If ext raisspecifiedin Opt i ons, thereturnvalueis{ ok, [Form , Extra} insteadof {ok, [Fornj}.

parse file(FileName, IncludePath, PredefMacros) ->
{ok, [Form]} | {error, OpenError}

Types:
FileName = fil e: name()
IncludePath = [DirectoryName :: file:nane()]

Form =
erl _parse:abstract_form() | {error, ErrorInfo} | {eof, Line}

PredefMacros = macros()

Line = erl _anno:line()

ErrorInfo = erl _scan:error_info() | erl_parse:error_info()

OpenError = file:posix() | badarg | system limit
Equivalent to epp: parse_fil e(Fil eNane, [{incl udes, I ncl udePat h}, { macr os,
Pr edef Macr os}]).

108 | Ericsson AB. All Rights Reserved.: STDLIB

€pp

read encoding(FileName) -> source_encoding() | none
read encoding(FileName, Options) -> source_encoding() | none
Types.
FileName = fil e: name()
Options = [Option]
Option = {in_comment only, boolean()}
Read the encoding from afile. Returns the read encoding, or none if no valid encoding is found.

Option i n_conment _onl y istrue by default, which is correct for Erlang source files. If set to f al se, the
encoding string does not necessarily have to occur in a comment.

read _encoding from binary(Binary) -> source_encoding() | none

read encoding from binary(Binary, Options) ->
source_encodi ng() | none

Types.
Binary = binary()
Options = [Option]
Option = {in_comment only, boolean()}
Read the encoding from a binary. Returns the read encoding, or none if no valid encoding is found.

Option i n_conment _onl y istrue by default, which is correct for Erlang source files. If set to f al se, the
encoding string does not necessarily have to occur in a comment.

set _encoding(File) -> source_encoding() | none
Types:
File = i o:device()
Reads the encoding from an I/O device and sets the encoding of the device accordingly. The position of the 1/O device

referenced by Fi | e is not affected. If no valid encoding can be read from the 1/0 device, the encoding of the 1/0
deviceis set to the default encoding.

Returns the read encoding, or none if no valid encoding is found.

set _encoding(File, Default) -> source_encoding() | none

Types:
Default = source_encodi ng()
File = io:device()

Reads the encoding from an 1/0 device and sets the encoding of the device accordingly. The position of the 1/O device
referenced by Fi | e is not affected. If no valid encoding can be read from the I/O device, the encoding of the I/O
deviceis set to the encoding specified by Def aul t .

Returns the read encoding, or none if no valid encoding is found.

Error Information

Er r or | nf o isthe standard Er r or | nf o structure that is returned from all 1/O modules. The format is as follows:

{ErrorLine, Module, ErrorDescriptor}

Ericsson AB. All Rights Reserved.: STDLIB | 109

€pp

A string describing the error is obtained with the following call:

Module: format error(ErrorDescriptor)

See Also

erl _parse(3)

110 | Ericsson AB. All Rights Reserved.: STDLIB

erl_anno

erl_anno

Erlang module

This module provides an abstract type that is used by the Erlang Compiler and its helper modules for holding data
such as column, line number, and text. The data type is a collection of annotations as described in the following.

The Erlang Token Scanner returns tokens with a subset of the following annotations, depending on the options:
col um
The column where the token begins.
| ocation
The line and column where the token begins, or just the line if the column is unknown.
t ext
The token's text.
From this, the following annotation is derived:
line
The line where the token begins.

This module also supports the following annotations, which are used by various modules:

file
A filename,
gener at ed

A Boolean indicating if the abstract code is compiler-generated. The Erlang Compiler does not emit warnings
for such code.

record

A Boolean indicating if the origin of the abstract code is a record. Used by Dialyzer to assign types to tuple
elements.

The functionscol um(),end_| ocation(),line(),location(),andtext() intheerl _scan module
can be used for inspecting annotations in tokens.

The functions anno_fromterm), anno_to_ternm(), fold_anno(), map_anno(),
mapf ol d_anno(), and new_anno(), intheer| _par se module can be used for manipulating annotations in
abstract code.

Data Types

anno()

A collection of annotations.

anno_term() = term()

The term representing a collection of annotations. It iseither al ocat i on() or alist of key-value pairs.

Ericsson AB. All Rights Reserved.: STDLIB | 111

erl_anno

column() = integer() >=1

line() = integer() >= 0

location() =1line() | {line(), colum()}
text() = string()

Exports

column(Anno) -> colum() | undefined
Types:

Anno = anno()

column() = integer() >=1
Returns the column of the annotations Anno.

end location(Anno) -> location() | undefined

Types:
Anno = anno()
location() =1line() | {line(), colum()}

Returns the end location of the text of the annotations Anno. If thereis no text, undef i ned isreturned.

file(Anno) -> filenane() | undefined
Types.

Anno = anno()

filename() = file:filenanme_all ()

Returns the filename of the annotations Anno. If there isno filename, undef i ned isreturned.

from term(Term) -> Anno
Types:
Term = anno_term()
Anno = anno()

Returns annotations with representation Term.
Seealsoto_term().

generated(Anno) -> generated()
Types.

Anno = anno()

generated() = boolean()

Returnst r ue if annotations Anno is marked as generated. The default istoreturn f al se.

is anno(Term) -> boolean()
Types:
Term = any()
Returnst r ue if Termisacollection of annotations, otherwisef al se.

112 | Ericsson AB. All Rights Reserved.: STDLIB

erl_anno

line(Anno) -> line()
Types:

Anno = anno()

line() = integer() >= 0
Returns the line of the annotations Anno.

location(Anno) -> |l ocation()

Types:
Anno = anno()
location() = line() | {line(), colum()}

Returns the location of the annotations Anno.

new(Location) -> anno()

Types:
Location = location()
location() = line() | {line(), colum()}

Creates anew collection of annotations given alocation.

set file(File, Anno) -> Anno
Types:
File = fil enanme()
Anno = anno()
filename() = file:filenane_all ()

Modifies the filename of the annotations Anno.

set generated(Generated, Anno) -> Anno
Types.

Generated = generated()

Anno = anno()

generated() = boolean()

Modifies the generated marker of the annotations Anno.

set line(Line, Anno) -> Anno
Types.

Line = line()

Anno = anno()

line() = integer() >= 0
Modifies the line of the annotations Anno.

set location(Location, Anno) -> Anno
Types:

Ericsson AB. All Rights Reserved.: STDLIB | 113

erl_anno

Location = Il ocation()
Anno = anno()
location() = line() | {line(), colum()}

Modifies the location of the annotations Anno.

set record(Record, Anno) -> Anno
Types:

Record = record()

Anno = anno()

record() = boolean()

Modifies the record marker of the annotations Anno.

set text(Text, Anno) -> Anno
Types:

Text text ()

Anno = anno()

text() = string()

Modifies the text of the annotations Anno.

text(Anno) -> text() | undefined
Types:

Anno = anno()

text() = string()

Returns the text of the annotations Anno. If thereis no text, undef i ned isreturned.

to term(Anno) -> anno_term()
Types:
Anno = anno()
Returns the term representing the annotations Anno.

See also from_term().

See Also

erl _parse(3),erl_scan(3)

114 | Ericsson AB. All Rights Reserved.: STDLIB

erl_eval

erl_eval

Erlang module

This module provides an interpreter for Erlang expressions. The expressions are in the abstract syntax as returned by
er|l _par se, the Erlang parser, or i o.

Data Types

bindings() = [{nanme(), value() }]
binding struct() = orddict: orddict()

A binding structure.

expression() = erl _parse: abstract_expr()
expressions() = [er| _parse: abstract _expr()]

Asreturned by er| parse: parse_exprs/1or io: parse_erl _exprs/2.
expression list() = [expression()]
func_spec() =

{Module :: module(), Function :: atom()} | function()
1fun_eval handler() =
fun((Name :: atom(),
Arguments :: expression_list(),
Bindings :: binding struct()) ->
{value,
Value :: value(),

NewBindings :: binding_struct()})

1fun value handler() =
fun((Name :: atom(), Arguments :: [term()]) ->
Value :: value())

local function handler() =
{value, |fun_value_handler()} |
{eval, |fun_eval _handler()} |
none

Further described in section Local Function Handler in this module

name() = term()

nlfun_handler() =
fun((FuncSpec :: func_spec(), Arguments :: [term()]) -> term())

non local function handler() = {value, nlfun_handler()} | none
Further described in section Non-Local Function Handler in this module.
value() = term()

Exports

add binding(Name, Value, BindingStruct) -> binding_struct()
Types:

Ericsson AB. All Rights Reserved.: STDLIB | 115

erl_eval

Name = nane()
Value = val ue()
BindingStruct = bi ndi ng_struct()

Adds binding Nane=Val ue to Bi ndi ngSt r uct . Returns an updated binding structure.

binding(Name, BindingStruct) -> {value, value()} | unbound
Types:

Name = nane()

BindingStruct = bi ndi ng_struct ()

Returns the binding of Nane in Bi ndi ngSt r uct .

bindings(BindingStruct :: binding_struct()) -> bindings()
Returnsthe list of bindings contained in the binding structure.

del binding(Name, BindingStruct) -> binding_struct()
Types:

Name = nane()

BindingStruct = bi ndi ng_struct ()

Removes the binding of Nane in Bi ndi ngSt r uct . Returns an updated binding structure.

expr(Expression, Bindings) -> {value, Value, NewBindings}
expr(Expression, Bindings, LocalFunctionHandler) ->
{value, Value, NewBindings}
expr(Expression,
Bindings,
LocalFunctionHandler,
NonLocalFunctionHandler) ->
{value, Value, NewBindings}

expr(Expression,
Bindings,
LocalFunctionHandler,
NonLocalFunctionHandler,
ReturnFormat) ->
{value, Value, NewBindings} | Value

Types:
Expression = expression()
Bindings = bi ndi ng_struct ()
LocalFunctionHandler = | ocal _function_handl er ()
NonLocalFunctionHandler = non_Il ocal function_handl er ()
ReturnFormat = none | value
Value = val ue()
NewBindings = bi ndi ng_struct ()

Evaluates Expression with the set of bindings Bi ndi ngs. Expression is an expression in
abstract syntax. For an explanation of when and how to use arguments Local Functi onHandl er and

116 | Ericsson AB. All Rights Reserved.: STDLIB

erl_eval

NonLocal Functi onHandl er, see sections Local Function Handler and Non-Local Function Handler in this
module.

Returns{ val ue, Val ue, NewBi ndi ngs} by default. If Ret ur nFor nat isval ue, only Val ue isreturned.

expr list(ExpressionList, Bindings) -> {ValuelList, NewBindings}
expr list(ExpressionList, Bindings, LocalFunctionHandler) ->
{ValuelList, NewBindings}
expr list(ExpressionList,
Bindings,
LocalFunctionHandler,
NonLocalFunctionHandler) ->
{ValuelList, NewBindings}

Types:
ExpressionList = expression_list()
Bindings = bi ndi ng_struct ()
LocalFunctionHandler = | ocal function_handl er ()
NonLocalFunctionHandler = non_|l ocal _function_handl er()
ValuelList = [val ue()]
NewBindings = bi ndi ng_struct()
Evaluates a list of expressions in parallel, using the same initial bindings for each expression. Attempts are made to

merge the bindings returned from each evaluation. Thisfunctionisuseful inLocal Funct i onHandl er , see section
Local Function Handler in this module.

Returns{ Val ueLi st, NewBi ndi ngs}.

exprs(Expressions, Bindings) -> {value, Value, NewBindings}
exprs(Expressions, Bindings, LocalFunctionHandler) ->
{value, Value, NewBindings}

exprs(Expressions,
Bindings,
LocalFunctionHandler,
NonLocalFunctionHandler) ->
{value, Value, NewBindings}

Types:

Expressions = expressions()

Bindings = bi ndi ng_struct ()

LocalFunctionHandler = | ocal function_handl er ()

NonLocalFunctionHandler = non_l ocal _functi on_handl er()

Value = val ue()

NewBindings = bi ndi ng_struct()
Evaluates Expr essi ons with the set of bindings Bi ndi ngs, where Expr essi ons isa sequence of expressions
(in abstract syntax) of a type that can be returned by i 0: parse_er| _exprs/ 2. For an explanation of when

and how to use arguments Local Funct i onHandl er and NonLocal Functi onHandl er, see sections Local
Function Handler and Non-Local Function Handler in this module.

Returns{val ue, Val ue, NewBi ndi ngs}

Ericsson AB. All Rights Reserved.: STDLIB | 117

erl_eval

new bindings() -> binding_struct()
Returns an empty binding structure.

Local Function Handler

During evaluation of a function, no calls can be made to local functions. An undefined function error would be
generated. However, the optional argument Local Funct i onHandl er canbeusedtodefineafunctionthat iscalled
when thereisacall to alocal function. The argument can have the following formats:

{val ue, Func}
This defines alocal function handler that is called with:

Func(Name, Arguments)

Nane is the name of the local function (an atom) and Ar gurent s is alist of the evaluated arguments. The
function handler returns the value of the local function. In this case, the current bindings cannot be accessed. To
signal an error, the function handler callsexi t / 1 with a suitable exit value.

{eval , Func}
This defines alocal function handler that is called with:

Func(Name, Arguments, Bindings)

Nane is the name of the local function (an atom), Ar gunent s is alist of the unevaluated arguments, and
Bi ndi ngs arethe current variable bindings. The function handler returns:

{value,Value,NewBindings}

Val ue isthe value of thelocal function and NewBi ndi ngs are the updated variable bindings. In this case, the
function handler must itself evaluate all the function arguments and manage the bindings. To signal an error, the
function handler callsexi t / 1 with asuitable exit value.

none

Thereisno loca function handler.

Non-Local Function Handler

Theoptional argument NonLocal Funct i onHandl er canbeusedtodefineafunctionthatiscalledinthefollowing
cases:

e A functional object (fun) iscalled.

e A built-infunctionis called.

« Afunctioniscalled using theM F syntax, where Mand F are atoms or expressions.
* Anoperator Op/ Aiscaled (thisishandled asacall to functioner | ang: Op/ A).

Exceptionsarecalstoer | ang: appl y/ 2, 3; neither of thefunction handlersare called for such calls. The argument
can have the following formats:

{val ue, Func}
This defines anon-local function handler that is called with:

118 | Ericsson AB. All Rights Reserved.: STDLIB

erl_eval

Func (FuncSpec, Arguments)

Func Spec is the name of the function on the form { Modul e, Functi on} or afun, and Argunent s isa
list of the evaluated arguments. The function handler returns the value of the function. To signal an error, the
function handler callsexi t / 1 with asuitable exit value.

none

Thereis no non-local function handler.

Note:

For cals such aser | ang: appl y(Fun, Args) or erl ang: appl y(Mdul e, Function, Args),
the call of the non-local function handler corresponding to the call to erl ang: apply/ 2, 3 itsef
(Func({erl ang, apply}, [Fun, Args]) orFunc({erl ang, apply}, [Modul e, Functi on,
Ar gs])) never takes place.

The non-local function handler is however caled with the evaluated arguments of the call to
erl ang: appl y/ 2, 3: Func(Fun, Args) or Func({Mdul e, Function}, Args) (assuming that
{Modul e, Function} isnot{erlang, apply}).

Calls to functions defined by evaluating fun expressions"fun ... end" are aso hidden from non-local
function handlers.

The non-local function handler argument is probably not used as frequently as the local function handler argument. A
possibleuseisto cal exi t / 1 on callsto functions that for some reason are not allowed to be called.

Known Limitation

Undocumented functions in this module are not to be used.

Ericsson AB. All Rights Reserved.: STDLIB | 119

erl_expand_records

erl_expand_records

Erlang module

This module expands records in a module.

Exports

module(AbsForms, CompileOptions) -> AbsForms2

Types:
AbsForms = AbsForms2 = [erl| _parse:abstract_forn()]
CompileOptions = [conpile:option()]

Expands all records in amodule. The returned module has no references to records, attributes, or code.

See Also
Section The Abstract Format in ERTS User's Guide.

120 | Ericsson AB. All Rights Reserved.: STDLIB

erl_id_trans

erl_id_trans

Erlang module

This module performs an identity parse transformation of Erlang code. It is included as an example for users who
wants to write their own parse transformers. If option { par se_t r ansf or m Modul e} is passed to the compiler,
auser-written function par se_t r ansf or nf 2 iscalled by the compiler before the code is checked for errors.

Exports

parse transform(Forms, Options) -> Forms

Types:
Forms = [erl _parse:abstract _form() | erl_parse:form.info()]
Options = [conpile:option()]

Performs an identity transformation on Erlang forms, as an example.

Parse Transformations

Parse transformations are used if a programmer wants to use Erlang syntax, but with different semantics. The original
Erlang code is then transformed into other Erlang code.

Note:

Programmers are strongly advised not to engage in parse transformations. No support is offered for problems
encountered.

See Also
erl _parse(3),conpile(3)

Ericsson AB. All Rights Reserved.: STDLIB | 121

erl_internal

erl_internal

Erlang module

This module defines Erlang BIFs, guard tests, and operators. This module is only of interest to programmers who
mani pulate Erlang code.

Exports

arith op(OpName, Arity) -> boolean()
Types:
OpName = atom()
Arity = arity()
Returnst r ue if OpNane/ Ari ty isan arithmetic operator, otherwisef al se.

bif(Name, Arity) -> boolean()
Types:
Name = atom()
Arity = arity()
Returnst r ue if Nane/ Ari t y isan Erlang BIF that is automatically recognized by the compiler, otherwisef al se.

bool op(OpName, Arity) -> boolean()
Types:
OpName = atom()
Arity = arity()
Returnst r ue if OpNane/ Ari t y isaBoolean operator, otherwisef al se.

comp_op(OpName, Arity) -> boolean()
Types:
OpName = atom()
Arity = arity()
Returnst r ue if OpNane/ Ari t y isacomparison operator, otherwisef al se.

guard bif(Name, Arity) -> boolean()
Types:
Name = atom()
Arity = arity()
Returnst r ue if Nane/ Ari t y isan Erlang BIF that is allowed in guards, otherwisef al se.

list op(OpName, Arity) -> boolean()
Types:

122 | Ericsson AB. All Rights Reserved.: STDLIB

erl_internal

OpName = atom()
Arity = arity()
Returnst r ue if OpNane/ Ari ty isalist operator, otherwisef al se.

op_type(OpName, Arity) -> Type
Types.
OpName = atom()
Arity = arity()
Type = arith | bool | comp | list | send
Returns the Type of operator that OpNane/ Ari t y belongs to, or generates af unct i on_cl ause error if it is
not an operator.

send op(OpName, Arity) -> boolean()
Types:
OpName = atom()
Arity = arity()
Returnst r ue if CpNane/ Ari t y isasend operator, otherwisef al se.

type test(Name, Arity) -> boolean()
Types:
Name = atom()
Arity = arity()
Returnst r ue if Nane/ Ari t y isavalid Erlang type test, otherwisef al se.

Ericsson AB. All Rights Reserved.: STDLIB | 123

erl_lint

erl_lint

Erlang module

This module is used to check Erlang code for illegal syntax and other bugs. It also warns against coding practices
that are not recommended.

The errors detected include:

» Redefined and undefined functions

* Unbound and unsafe variables

* Illegal record use

The warnings detected include:

* Unused functions and imports

* Unused variables

e Variablesimported into matches

* Variablesexported fromi f /case/r ecei ve

e Variables shadowed in funs and list comprehensions
Some of the warnings are optional, and can be turned on by specifying the appropriate option, described below.

The functions in this module are invoked automatically by the Erlang compiler. There is no reason to invoke these
functions separately unless you have written your own Erlang compiler.

Data Types

error_info() = {erl _anno:1line(), module(), error_description()}
error _description() = term()

Exports

format error(ErrorDescriptor) -> io_lib:chars()
Types:
ErrorDescriptor = error_description()

TakesanEr r or Descr i pt or andreturns astring that describes the error or warning. Thisfunction isusualy called
implicitly when processing an Er r or | nf o structure (see section Error Information).

is guard test(Expr) -> boolean()
Types:
Expr = erl _parse: abstract_expr()

Tests if Expr is a legal guard test. Expr is an Erlang term representing the abstract form for the expression.
erl _parse: parse_exprs(Tokens) can beused to generatealist of Expr .

module(AbsForms) -> {ok, Warnings} | {error, Errors, Warnings}

module(AbsForms, FileName) ->
{ok, Warnings} | {error, Errors, Warnings}

module(AbsForms, FileName, CompileOptions) ->

124 | Ericsson AB. All Rights Reserved.: STDLIB

erl_lint

{ok, Warnings} | {error, Errors, Warnings}
Types:
AbsForms = [erl _parse:abstract_form() | erl_parse:form.info()]
FileName atom() | string()
CompileOptions = [conpile:option()]
Warnings = [{file:filenane(), [ErrorInfol}]
Errors = [{FileName2 :: file:filenane(), [ErrorInfo]l}]
ErrorInfo = error_info()

Checks dl the formsin amodule for errors. It returns:
{ ok, War ni ngs}

There are no errorsin the module.
{error, Errors, Vr ni ngs}

There are errorsin the module.

Asthismoduleis of interest only to the maintainers of the compiler, and to avoid the same description in two places,
the elements of Qpt i ons that control the warnings are only described inthe conpi | e(3) module.

AbsFor ns of amodule, which comes from afile that is read through epp, the Erlang preprocessor, can come from
many files. This meansthat any referencesto errors must include the filename, seethe epp(3) module or parser (see
theer| parse(3) module). The returned errors and warnings have the following format:

[{,[1}]

The errors and warnings are listed in the order in which they are encountered in the forms. The errors from one file
can therefore be split into different entriesin the list of errors.

Error Information

Er r or I nf o isthe standard Er r or | nf o structure that is returned from all I/O modules. The format is as follows:

{ErrorLine, Module, ErrorDescriptor}

A string describing the error is obtained with the following call:

Module: format error(ErrorDescriptor)

See Also
epp(3),erl _parse(3)

Ericsson AB. All Rights Reserved.: STDLIB | 125

erl_parse

erl_parse

Erlang module

This module is the basic Erlang parser that converts tokens into the abstract form of either forms (that is, top-level
constructs), expressions, or terms. The Abstract Format is described in the ERTS User's Guide. Notice that atoken list
must end with the dot token to be acceptable to the parse functions (seethe er | _scan(3)) module.

Data Types

abstract clause()

Abstract form of an Erlang clause.
abstract expr()

Abstract form of an Erlang expression.
abstract form()

Abstract form of an Erlang form.
abstract type()

Abstract form of an Erlang type.

erl parse tree() =
abstract _cl ause() |
abstract _expr() |
abstract _forn() |
abstract _type()

error_description() = term()
error_info() = {erl_anno:1line(), module(), error_description()}

form_info() =
{eof, erl_anno:line()} |
{error, erl_scan:error_info() | error_info()} |
{warning, erl_scan:error_info() | error_info()}

Tuples{error, error_info()} and{warning, error_info()},denoting syntacticaly incorrect forms
andwarnings,and{ eof , |i ne() }, denoting an end-of-stream encountered before acompl eteform had been parsed.

token() = erl _scan:token()

Exports

abstract(Data) -> AbsTerm
Types.

Data = term()

AbsTerm = abstract _expr()

Converts the Erlang data structure Dat a into an abstract form of type AbsTer m This function is the inverse of
nor mal i se/ 1.

erl _parse:abstract (T) isequivalenttoer| _parse: abstract(T, 0).

126 | Ericsson AB. All Rights Reserved.: STDLIB

erl_parse

abstract(Data, Options) -> AbsTerm
Types:
Data = term()
Options = Line | [Option]
Option = {line, Line} | {encoding, Encoding}
Encoding = latinl | unicode | utf8 | none | encodi ng_func()
Line = erl _anno:line()
AbsTerm = abstract _expr()
encoding func() = fun((integer() >= 0) -> boolean())

Converts the Erlang data structure Dat a into an abstract form of type AbsTer m
Option Li ne isthelineto be assigned to each node of AbsTer m

Option Encodi ng isused for selecting whichinteger liststo be considered asstrings. The default isto usethe encoding
returned by function epp: def aul t _encodi ng/ 0. Vaue none means that no integer lists are considered as
strings. encodi ng_f unc() iscalled with one integer of alist at atime; if it returnst r ue for every integer, the
list is considered a string.

anno_from term(Term) -> erl_parse_tree()
Types.
Term = term()
Assumes that Ter mis a term with the same structure as a er | _par se tree, but with terms, say T, where a

er | _par se tree has collections of annotations. Returnsaer | _par se tree where each term T is replaced by the
valuereturned by erl _anno: from tern(T). Theterm Ter mistraversed in a depth-first, left-to-right fashion.

anno_to term(Abstr) -> term()
Types:
Abstr = erl _parse_tree()
Returns a term where each collection of annotations Anno of the nodes of theer | _par se tree Abst r isreplaced

by the term returned by er| _anno:to_term Anno). Theer| _parse treeis traversed in a depth-first, left-
to-right fashion.

fold anno(Fun, AccO, Abstr) -> Accl
Types.
Fun = fun((Anno, AccIn) -> AccOut)
Anno = erl _anno: anno()

AccO = Accl = AccIn = AccOut = term()
Abstr = erl _parse_tree()

Updates an accumulator by applying Fun on each collection of annotationsof theer | _par se tree Abst r . Thefirst
call to Fun hasAccl n asargument, the returned accumulator AccQut is passed to the next call, and so on. Thefinal
value of the accumulator isreturned. Theer | _par se treeistraversed in a depth-first, left-to-right fashion.

format _error(ErrorDescriptor) -> Chars
Types.
ErrorDescriptor = error_description()
Chars = [char() | Chars]

Ericsson AB. All Rights Reserved.: STDLIB | 127

erl_parse

Usesan Er r or Descri pt or and returns a string that describes the error. This function is usually called implicitly
when an Er r or | nf o structure is processed (see section Error Information).

map_anno(Fun, Abstr) -> NewAbstr
Types.
Fun = fun((Anno) -> NewAnno)

)
Anno = NewAnno = erl _anno: anno()
Abstr = NewAbstr = erl _parse_tree()

Modifies the er | _par se tree Abstr by applying Fun on each collection of annotations of the nodes of the
erl _parsetree Theer| par se treeistraversed in adepth-first, left-to-right fashion.

mapfold anno(Fun, Acc@®, Abstr) -> {NewAbstr, Accl}
Types.
Fun = fun((Anno, AccIn) -> {NewAnno, AccOut})

Anno = NewAnno = erl _anno: anno()
AccO = Accl = AccIn = AccOut = term()
Abstr = NewAbstr = erl _parse_tree()

Modifies the er | _par se tree Abstr by applying Fun on each collection of annotations of the nodes of the
er|l _par se tree, while at the same time updating an accumulator. The first call to Fun has Accl n as second
argument, the returned accumulator AccQut ispassed to the next call, and so on. Themodifieder | _par se treeand
thefinal value of the accumulator arereturned. Theer | _par se treeistraversed in adepth-first, left-to-right fashion.

new anno(Term) -> Abstr
Types:
Term = term()
Abstr = erl _parse_tree()
Assumesthat Ter misaterm with the same structureasaer | _par se tree, but with locationswhereaer | _par se

tree has collections of annotations. Returnsaer | _par se treewhere each location L isreplaced by the value returned
by erl _anno: new(L) . Theterm Ter mistraversed in a depth-first, left-to-right fashion.

normalise(AbsTerm) -> Data
Types:
AbsTerm = abstract _expr()
Data = term()

Convertsthe abstract form Abs Ter mof aterm into aconventional Erlang data structure (that is, the term itself). This
functionistheinverse of abstract/ 1.

parse exprs(Tokens) -> {ok, ExprList} | {error, ErrorInfo}
Types.

Tokens = [token()]

ExprList = [abstract _expr()]

ErrorInfo = error_info()
Parses Tokens asif it was alist of expressions. Returns one of the following:

128 | Ericsson AB. All Rights Reserved.: STDLIB

erl_parse

{ok, ExprlList}

The parsing was successful. Expr Li st isalist of the abstract forms of the parsed expressions.
{error, Errorlnfo}

An error occurred.

parse form(Tokens) -> {ok, AbsForm} | {error, ErrorInfo}
Types:

Tokens = [token()]

AbsForm = abstract_form)

ErrorInfo = error_info()

Parses Tokens asif it was aform. Returns one of the following:
{ok, AbsForni}

The parsing was successful. Abs For misthe abstract form of the parsed form.
{error, Errorlnfo}

An error occurred.

parse_term(Tokens) -> {ok, Term} | {error, ErrorInfo}
Types:

Tokens = [token()]

Term = term()

ErrorInfo = error _info()

Parses Tokens asif it was aterm. Returns one of the following:
{ok, Tern}

The parsing was successful. Ter misthe Erlang term corresponding to the token list.
{error, Errorlnfo}

An error occurred.

tokens (AbsTerm) -> Tokens
tokens (AbsTerm, MoreTokens) -> Tokens
Types:
AbsTerm = abstract _expr()
MoreTokens = Tokens = [token()]

Generates a list of tokens representing the abstract form AbsTer mof an expression. Optionally, Mor eTokens is
appended.

Error Information

Err or I nf o isthe standard Er r or | nf o structure that is returned from all I/O modules. The format is as follows:

{ErrorLine, Module, ErrorDescriptor}

A string describing the error is obtained with the following call:

Ericsson AB. All Rights Reserved.: STDLIB | 129

erl_parse

Module: format error(ErrorDescriptor)

See Also
erl _anno(3),erl _scan(3),io(3), section The Abstract Format in the ERTS User's Guide

130 | Ericsson AB. All Rights Reserved.: STDLIB

erl_pp

erl_pp

Erlang module

The functions in this module are used to generate aesthetically attractive representations of abstract forms, which are
suitable for printing. All functions return (possibly deep) lists of characters and generate an error if the formiswrong.

All functions can have an optional argument, which specifies a hook that is called if an attempt is made to print an
unknown form

Data Types
hook function() =
none |
fun((Expr :: erl_parse:abstract_expr(),
CurrentIndentation :: integer(),
CurrentPrecedence :: integer() >= 0,
Options :: options()) ->

io_lib:chars())

Optiona argument HookFunct i on, shown in the functions described in thismodule, definesafunction that iscalled
when an unknown form occurs where there is to be a valid expression. If HookFunct i on isequal to none, there
is no hook function.

The called hook function isto return a (possibly deep) list of characters. Function expr / 4 is useful in a hook.
If Current| ndent at i on isnegative, there are no line breaks and only a space is used as a separator.

option() =
{hook, hook_function()} | {encoding, latinl | unicode | utf8}
options() = hook_function() | [option()]

Exports

attribute(Attribute) -> io_lib:chars()
attribute(Attribute, Options) -> io_lib:chars()
Types:
Attribute = erl _parse:abstract _form)
Options = options()
Sameasforni 1, 2, but only for attribute At t r i but e.

expr(Expression) -> io_lib:chars()

expr(Expression, Options) -> io_lib:chars()

expr(Expression, Indent, Options) -> io_lib:chars()
expr(Expression, Indent, Precedence, Options) -> io_lib:chars()
Types:

Ericsson AB. All Rights Reserved.: STDLIB | 131

erl_pp

Expression = erl _parse: abstract expr()
Indent = integer()
Precedence = integer() >= 0
Options = options()
Prints one expression. It is useful for implementing hooks (see section Known Limitations).

exprs(Expressions) -> io_lib:chars()
exprs(Expressions, Options) -> io_lib:chars()
exprs(Expressions, Indent, Options) -> io_lib:chars()
Types.

Expressions = [erl| _parse:abstract _expr()]

Indent = integer()

Options = options()
Sameasf ornt 1, 2, but only for the sequence of expressionsin Expr essi ons.

form(Form) -> io_lib:chars()
form(Form, Options) -> io_lib:chars()
Types:
Form = erl _parse:abstract_form() | erl_parse:form.info()
Options = options()
Pretty printsa For m which is an abstract form of atypethatisreturned by er| parse: parse_forni 1.

function(Function) -> io_lib:chars()
function(Function, Options) -> io_lib:chars()
Types:
Function = erl _parse: abstract_forn()
Options = options()
Sameasf ornt 1, 2, but only for function Funct i on.

guard(Guard) -> io_lib:chars()
guard(Guard, Options) -> io_lib:chars()

Types:
Guard = [erl _parse: abstract_expr()]
Options = options()

Sameasf orni 1, 2, but only for the guard test Guar d.

Known Limitations

Itis not possible to have hook functions for unknown forms at other places than expressions.

See Also
erl _eval (3),erl _parse(3),io(3)

132 | Ericsson AB. All Rights Reserved.: STDLIB

erl_scan

erl_scan

Erlang module

This module contains functions for tokenizing (scanning) characters into Erlang tokens.

Data Types

category() = atom()
error_description() = term()
error_info() =
{erl _anno: | ocation(), module(), error_description()}
option() =
return |
return white spaces |
return _comments |
text |
{reserved word fun, resword_fun()}
options() = option() | [option()]
symbol() = atom() | float() | integer() | string()
resword fun() = fun((atom()) -> boolean())

token() =
{category(), Anno :: erl_anno:anno(), synbol ()} |
{category(), Anno :: erl_anno: anno() }

tokens() = [token()]
tokens result() =

{ok, Tokens :: tokens(), EndLocation :: erl _anno:location()} |
{eof, EndLocation :: erl_anno:location()} |
{error,
ErrorInfo :: error_info(),
EndLocation :: erl_anno:location()}
Exports

category(Token) -> category()
Types:

Token = token()
Returns the category of Token.

column(Token) -> erl_anno:colum() | undefined
Types:

Token = token()
Returns the column of Token's collection of annotations.

end location(Token) -> erl_anno:location() | undefined
Types:

Ericsson AB. All Rights Reserved.: STDLIB | 133

erl_scan

Token = token()
Returns the end location of the text of Token's collection of annotations. If thereis no text, undef i ned isreturned.

format error(ErrorDescriptor) -> string()
Types:
ErrorDescriptor = error_description()

Usesan Error Descri pt or and returns a string that describes the error or warning. This function isusually called
implicitly when an Er r or | nf o structure is processed (see section Error Information).

line(Token) -> erl _anno:line()
Types.
Token = token()
Returns the line of Token's collection of annotations.

location(Token) -> erl _anno: |l ocation()
Types.

Token = token()
Returns the location of Token's collection of annotations.

reserved word(Atom :: atom()) -> boolean()
Returnst r ue if At omisan Erlang reserved word, otherwisef al se.

string(String) -> Return
string(String, StartLocation) -> Return
string(String, StartLocation, Options) -> Return
Types:

String = string()

Options = options()

Return =
{ok, Tokens :: tokens(), EndLocation} |
{error, ErrorInfo :: error_info(), ErrorLocation}

StartLocation = EndLocation = ErrorLocation = erl _anno: | ocation()

Takesthe list of characters St r i ng and tries to scan (tokenize) them. Returns one of the following:
{ok, Tokens, EndLocati on}

Tokens are the Erlang tokensfrom St r i ng. EndLocat i on isthefirst location after the last token.
{error, Errorlnfo, ErrorLocation}

An error occurred. Er r or Locat i on isthefirst location after the erroneous token.

string(String) iseguivdenttostring(String, 1),andstring(String, StartLocation) is
equivalenttostring(String, StartlLocation, []).

StartLocati on indicates the initial location when scanning starts. If StartLocati on is a line, Anno,
EndLocat i on,andError Locati on arelines. If St art Locat i on isapair of alineand acolumn, Anno takes
the form of an opague compound data type, and EndLocat i on and Err or Locat i on are pairs of aline and a
column. The token annotations contain information about the column and the line where the token begins, as well

134 | Ericsson AB. All Rights Reserved.: STDLIB

erl_scan

as the text of the token (if optiont ext is specified), al of which can be accessed by calling col um/ 1,1 i ne/ 1,
| ocation/1,andtext/1.

A token is atuple containing information about syntactic category, the token annotations, and the terminal symbol.
For punctuation characters (such as; and|) and reserved words, the category and the symbol coincide, and the token
is represented by atwo-tuple. Three-tuples have one of the following forms:

e {atom Anno, atom)}

e {char, Anno, char()}

« {conment, Anno, string()}

« {float, Anno, float()}

« {integer, Anno, integer()}

e {var, Anno, atom()}

« {white_space, Anno, string()}

Valid options:

{reserved word _fun, reserved word fun()}

A callback function that is called when the scanner has found an unquoted atom. If the function returnst r ue,
the unquoted atom itself becomes the category of the token. If the function returns f al se, at ombecomes the
category of the unquoted atom.

return_coments
Return comment tokens.
return_white_spaces

Return white space tokens. By convention, anewline character, if present, is alwaysthefirst character of the text
(there cannot be more than one newline in a white space token).

return
Shortfor[return_coments, return_white_spaces].
t ext
Include the token text in the token annotation. The text is the part of the input corresponding to the token.

symbol(Token) -> synbol ()
Types:

Token = token()
Returns the symbol of Token.

text(Token) -> erl_anno:text() | undefined
Types:
Token = token()
Returnsthe text of Token's collection of annotations. If thereis no text, undef i ned is returned.

tokens(Continuation, CharSpec, StartLocation) -> Return

tokens (Continuation, CharSpec, StartLocation, Options) -> Return
Types.

Ericsson AB. All Rights Reserved.: STDLIB | 135

erl_scan

Continuation = return_cont() | []
CharSpec = char_spec()
StartLocation = erl _anno: | ocation()
Options = options()
Return =
{done,
Result :: tokens_ result(),
LeftOverChars :: char_spec()} |
{more, Continuationl :: return_cont()}

char _spec() = string() | eof
return_cont()
An opague continuation.

Thisisthere-entrant scanner, which scans charactersuntil either adot ('.' followed by awhite space) or eof isreached.
It returns:

{done, Result, LeftOverChars}
Indicates that there is sufficient input datato get aresult. Resul t is:
{ok, Tokens, EndLocati on}

The scanning was successful. Tokens isthelist of tokens including dot.
{eof , EndLocati on}

End of file was encountered before any more tokens.
{error, Errorinfo, EndLocation}

An error occurred. Left Over Chars is the remaining characters of the input data, starting from
EndLocat i on.

{nore, Continuationl}

More data is required for building aterm. Cont i nuat i onl must be passed in anew call tot okens/ 3, 4
when more datais available.

The Char Spec eof signalsend of file. Lef t Over Char s then takes the value eof aswell.

t okens(Conti nuati on, CharSpec, StartlLocation) isequivaent totokens(Conti nuati on,
Char Spec, StartlLocation, []).

For a description of the options, seest ri ng/ 3.

Error Information

Er r or I nf o isthe standard Er r or | nf o structure that is returned from all I/O modules. The format is as follows:

{ErrorLocation, Module, ErrorDescriptor}

A string describing the error is obtained with the following call:

Module: format error(ErrorDescriptor)

136 | Ericsson AB. All Rights Reserved.: STDLIB

erl_scan

Notes

The continuation of thefirst call to the re-entrant input functionsmust be[] . For acomplete description of how there-
entrant input scheme works, see Armstrong, Virding and Williams: 'Concurrent Programming in Erlang’, Chapter 13.

See Also
erl _anno(3),erl _parse(3),io(3)

Ericsson AB. All Rights Reserved.: STDLIB | 137

erl_tar

erl_tar

Erlang module

Thismodule archives and extract filesto and from atar file. Thismodule supportstheust ar format (IEEE Std 1003.1
and ISO/IEC 9945-1). All modernt ar programs (including GNU tar) can read this format. To ensure that that GNU
tar produces atar filethat er | _t ar can read, specify option - - f or mat =ust ar to GNU tar.

By convention, the name of atar fileistoendin". t ar ". To abide to the convention, add ". t ar " to the name.
Tar files can be created in one operation using functioncr eat e/ 2 or cr eat e/ 3.
Alternatively, for more control, use functionsopen/ 2, add/ 3, 4, and cl ose/ 1.

To extract al filesfrom atar file, use function ext r act / 1. To extract only some files or to be able to specify some
more options, use function ext r act / 2.

Toreturn alist of thefilesin atar file, usefunctiont abl e/ 1 ort abl e/ 2. To print alist of filesto the Erlang shell,
usefunctiont/lortt/ 1.

To convert an error term returned from one of the functions above to a readable message, use function
format _error/ 1.

Unicode Support

If file:native_nane_encodi ng/ 0 returnsut f 8, path names are encoded in UTF-8 when creating tar files,
and path names are assumed to be encoded in UTF-8 when extracting ter files.

If file:native_nanme_encodi ng/ 0 returns! at i nl, no translation of path namesis done.

Other Storage Media

Thef t p module (Inets) normally accesses the tar file on disk using thef i | e module. When other needs arise, you
can define your own low-level Erlang functionsto perform the writing and reading on the storage media; use function
init/3.

An example of thisis the SFTP support in ssh_sft p: open_t ar/ 3. This function opens atar file on a remote
machine using an SFTP channel.

Limitations
* For maximum compatibility, it is safe to archive files with names up to 100 characters in length. Such tar files
can generally be extracted by any t ar program.

« For filenames exceeding 100 charactersin length, theresulting tar file can only be correctly extracted by aPOSI X -
compatiblet ar program (such as Solarist ar or amodern GNU t ar).

» Fileswith longer names than 256 bytes cannot be stored.
» Thefile name asymbolic link pointsis aways limited to 100 characters.

Exports

add(TarDescriptor, Filename, Options) -> RetValue
Types:

Tar Descriptor = tern()

Filename = fil enanme()

Options = [Option]

138 | Ericsson AB. All Rights Reserved.: STDLIB

erl_tar

Option = dereference| verbose| {chunks, ChunkSi ze}
ChunkSi ze = positive_integer()

Ret Val ue = ok|{error, {Fil enane, Reason}}

Reason = term()

Adds afileto atar file that has been opened for writing by open/ 1.
Options:
der ef erence

By default, symbolic links are stored as symbolic links in the tar file. To override the default and store the file
that the symbolic link pointsto into the tar file, use option der ef er ence.

ver bose
Prints an informational message about the added file.

{chunks, ChunkSi ze}

Reads data in parts from the file. Thisis intended for memory-limited machines that, for example, builds a tar
file on aremote machine over SFTP, see ssh_sft p: open_tar/ 3.

add(TarDescriptor, FilenameOrBin, NameInArchive, Options) -> RetValue
Types.

Tar Descri pt or term))

Fi | enameOr Bi n filename()| binary()

Filename = fil ename()

Nanel nArchive = fil enane()

Options = [Option]

Option = dereference|verbose

Ret Val ue = ok| {error, {Fi |l enane, Reason}}

Reason = term()

Addsafileto atar filethat has been opened for writing by open/ 2. Thisfunction acceptsthe same optionsasadd/ 3.

Nanel nAr chi ve isthe name under which the file becomes stored in the tar file. The file gets this name when it
is extracted from the tar file.

close(TarDescriptor)
Types.

Tar Descriptor = term()
Closes atar file opened by open/ 2.

create(Name, FilelList) ->RetValue
Types.
Name = fil enane()
Fi |l eLi st = [Fil enane| { Nanel nArchi ve, binary()},{Nanel nArchive, Filename}]
Filename = fil ename()
Nanel nArchive = fil enane()
Ret Val ue = ok| {error, { Nane, Reason}}
Reason = term()

Ericsson AB. All Rights Reserved.: STDLIB | 139

erl_tar

Creates atar file and archives the files whose names are specified in Fi | eLi st intoit. The files can either be read
from disk or be specified as binaries.

create(Name, FilelList, OptionList)
Types.
Name = fil enane()
Fi l eLi st = [Fil enanme| { Nanel nArchive, binary()},{Nanel nArchive, Filenanme}]
Filename = fil ename()
Narmel nArchive = fil enane()
OptionList = [Option]
Option = conpressed| cooked| der ef erence| ver bose
Ret Val ue = ok| {error, { Nane, Reason}}
Reason = term()

Creates atar file and archives the files whose names are specified in Fi | eLi st intoit. The files can either be read
from disk or be specified as binaries.

Theoptionsin Opt i onLi st modify the defaults as follows:
conpr essed

The entiretar fileis compressed, asif it has been run through thegzi p program. To abide to the convention that
acompressed tar fileistoendin™. tar. gz" or". t gz", add the appropriate extension.

cooked

By default, function open/ 2 opensthetar fileinr awmode, which isfaster but does not allow aremote (Erlang)
file server to be used. Adding cooked to the mode list overrides the default and opensthe tar file without option
raw.

der ef erence

By default, symbolic links are stored as symbolic links in the tar file. To override the default and store the file
that the symbolic link pointsto into the tar file, use option der ef er ence.

ver bose

Prints an informational message about each added file.

extract(Name) -> RetValue

Types:
Name = fil enane()
Ret Val ue = ok| {error, { Nane, Reason}}
Reason = term()

Extracts al filesfrom atar archive.
If argument Narmre is specified as{ bi nary, Bi nar y}, the contents of the binary is assumed to be atar archive.

If argument Nane is specified as {fi |l e, Fd}, Fd is assumed to be a file descriptor returned from function
file:open/2.

Otherwise, Nane isto be afilename.

extract(Name, OptionList)
Types.

140 | Ericsson AB. All Rights Reserved.: STDLIB

erl_tar

Name = filenane() | {binary,Binary} | {file, Fd}

Bi nary = binary()

Fd = file_descriptor()

OptionList = [Option]

Option = {cwd, Owd} | {files, FileList}|keep_old_files|verbose| nenory
owd = [dirnanme()]

FileList = [fil enane()]

Ret Val ue = ok| MenoryRet Val ue| {error, { Nane, Reason}}
MermoryRet Val ue = {ok, [{Nanel nArchive, binary()}]}
Nanel nArchive = fil enane()

Reason = term()

Extractsfiles from atar archive.
If argument Name is specified as{ bi nary, Bi nar y}, the contents of the binary is assumed to be atar archive.

If argument Narne is specified as {fil e, Fd}, Fd is assumed to be a file descriptor returned from function
file:open/2.

Otherwise, Nane isto be afilename.
The following options modify the defaults for the extraction as follows:
{cwd, Ond}

Files with relative filenames are by default extracted to the current working directory. With this option, files are
instead extracted into directory Ond.

{files, FileList}

By default, al files are extracted from the tar file. With this option, only those files are extracted whose names
areincludedinFi | eLi st.

conpr essed
With this option, the file is uncompressed while extracting. If thetar fileis not compressed, this option isignored.
cooked

By default, function open/ 2 function opensthetar fileinr awmode, which isfaster but does not allow aremote
(Erlang) file server to be used. Adding cooked to the mode list overrides the default and opens the tar file
without option r aw.

menory

Instead of extracting to adirectory, thisoption givestheresult asalist of tuples{ Fi | enane, Bi nary},where
Bi nary isabinary containing the extracted data of the file named Fi | enane inthetar file.

keep_ol d_files

By default, al existing files with the same name asfilesin the tar file are overwritten. With this option, existing
files are not overwriten.

ver bose
Prints an informational message for each extracted file.

format _error(Reason) -> string()

Types:
Reason = term)

Ericsson AB. All Rights Reserved.: STDLIB | 141

erl_tar

Cconverts an error reason term to a human-readable error message string.

init(UserPrivate, AccessMode, Fun) -> {ok,TarDescriptor} | {error,Reason}
Types.

UserPrivate = term)

AccessMbde = [write] | [read]

Fun when AccessMde is [wite] = fun(wite, {UserPrivate, DataToWite})-

> ..; (position,{UserPrivate, Position})->...; (close, UserPrivate)->...
end

Fun when AccessMde is [read] = fun(read2, {UserPrivate, Size})->...;
(position,{UserPrivate, Position})->...; (close, UserPrivate)->... end

Tar Descriptor = tern()
Reason = term()

The Fun isthe definition of what to do when the different storage operations functions are to be called from the higher
tar handling functions (such asadd/ 3, add/ 4, and cl ose/ 1).

The Fun is called when the tar function wants to do alow-level operation, like writing a block to afile. The Fun is
cadledasFun(Op, {UserPrivate, Paraneters...}),whereOp istheoperation name, User Pri vat e is
the term passed as the first argument toi ni t / 1 and Par anet er s. . . are the data added by the tar function to be
passed down to the storage handling function.

Parameter User Pri vat e is typically the result of opening a low-level structure like a file descriptor or an SFTP
channel id. The different Fun clauses operate on that very term.

The following are the fun clauses parameter lists:
(wite, {UserPrivate, DataToWite})
Writesterm Dat aToW i t e using User Pri vat e.
(cl ose, UserPrivate)
Closes the access.
(read2, {UserPrivate, Size})

Reads using User Pri vat e but only Si ze bytes. Notice that there is only an arity-2 read function, not an
arity-1 function.

(position, {UserPrivate, Position})
Setsthe position of User Pri vat e asdefined for filesin fi |l e: position/2
Example:

Thefollowing is acomplete Fun parameter for reading and writing on filesusing thef i | e module:

ExampleFun =
fun(write, {Fd,Data}) -> file:write(Fd, Data);
(position, {Fd,Pos}) -> file:position(Fd, Pos);
(read2, {Fd,Size}) -> file:read(Fd, Size);
(close, Fd) -> file:close(Fd)
end

Here Fd was specified to functioni ni t / 3 as:

142 | Ericsson AB. All Rights Reserved.: STDLIB

erl_tar

{ok,Fd} = file:open(Name, ...).
{ok,TarDesc} = erl tar:init(Fd, [write], ExampleFun),

Tar Desc isthen used:

erl tar:add(TarDesc, SomeValueIwantToAdd, FileNameInTarFile),

erl tar:close(TarDesc)

When the er | _t ar core wants to, for example, write a piece of Dat a, it would cal Exanpl eFun(write,
{UserPrivate, Data}).

Note:

Thisexamplewiththef i | e module operationsis not necessary to use directly, asthat iswhat function open/ 2
in principle does.

Warning:

The Tar Descr i pt or termisnot afile descriptor. You are advised not to rely on the specific contents of this
term, asit can change in future Erlang/OTP rel eases when more features are added to this module.

open(Name, OpenModelList) -> RetValue
Types:
Nanme = fil enane()
OpenMbdeli st = [OpenMbde]
Mode = write| conpressed| cooked
Ret Val ue = {ok, TarDescriptor}|{error, {Nane, Reason}}
Tar Descriptor = term()
Reason = term()
Creates atar file for writing (any existing file with the same name is truncated).
By convention, the name of atar fileistoend in". t ar ". To abide to the convention, add ". t ar " to the name.
Except for thewr i t e atom, the following atoms can be added to OpenModeli st :
conpr essed

The entiretar fileis compressed, asif it has been run through the gzi p program. To abide to the convention that
acompressed tar fileistoend in". tar. gz" or". t gz", add the appropriate extension.

cooked

By default, the tar fileis opened in r aw mode, which is faster but does not allow aremote (Erlang) file server to
be used. Adding cooked to the mode list overrides the default and opens the tar file without option r aw.

To add onefile at the time into an opened tar file, use function add/ 3, 4. When you are finished adding files, use
function cl ose/ 1 to closethetar file.

Ericsson AB. All Rights Reserved.: STDLIB | 143

erl_tar

Warning:

The Tar Descr i pt or termisnot afile descriptor. Y ou are advised not to rely on the specific contents of this
term, asit can change in future Erlang/OTP releases when more features are added to this module..

table(Name) -> RetValue

Types:
Name = fil enane()
Ret Val ue = {ok,[string()]}|{error, {Nane, Reason}}
Reason = term()

Retrieves the names of al filesin the tar file Nane.

table(Name, Options)
Types:

Name = fil enane()
Retrieves the names of al filesin the tar file Nane.

t (Name)
Types:
Name = fil enane()
Prints the names of all filesin the tar file Nane to the Erlang shell (smilarto "t ar t").

tt (Name)
Types:
Name = fil enane()

Prints names and information about all filesin the tar file Nane to the Erlang shell (similar to "t ar tv").

144 | Ericsson AB. All Rights Reserved.: STDLIB

ets

ets

Erlang module

This module is an interface to the Erlang built-in term storage BIFs. These provide the ability to store very large
quantities of data in an Erlang runtime system, and to have constant access time to the data. (In the case of
ordered_set, seebelow, accesstimeis proportional to the logarithm of the number of stored objects.)

Data is organized as a set of dynamic tables, which can store tuples. Each table is created by a process. When the
process terminates, the table is automatically destroyed. Every table has access rights set at creation.

Tables are divided into four different types, set, ordered_set, bag, and dupli cate_bag. A set or
or der ed_set tablecan only have one object associated with each key. A bag or dupl i cat e_bag table can have
many objects associated with each key.

The number of tables stored at one Erlang node is limited. The current default limit is about 1400 tables. The upper
limit can be increased by setting environment variable ERL_MAX_ETS_ TABLES before starting the Erlang runtime
system (that is, with option - env to er | /wer |). The actual limit can be slightly higher than the one specified, but
never lower.

Notice that there is no automatic garbage collection for tables. Even if there are no references to a table from any
process, it isnot automatically destroyed unlessthe owner processterminates. To destroy atable explicitly, usefunction
del et e/ 1. Thedefault owner isthe processthat created thetable. To transfer table ownership at process termination,
useoption hei r or call gi ve_away/ 3.

Some implementation details:

« Inthe current implementation, every object insert and |ook-up operation resultsin a copy of the object.

« '"$end_of _tabl e' isnotto be used as a key, as this atom is used to mark the end of the table when using
functionsfirst/ 1 andnext/ 2.

Notice the subtle difference between matching and comparing equal, which is demonstrated by table typesset and
ordered_set:

« Two Erlang termsmat ch if they are of the same type and have the same value, so that 1 matches 1, but not 1. 0
(asl.0isafloat() andnotani nt eger()).

e Two Erlang terms compare equal if they either are of the same type and value, or if both are numeric types and
extend to the same value, so that 1 compares equal to both 1 and 1. O.

e Theordered_set works on the Erlang term order and no defined order exists between an i nt eger ()
and af | oat () that extends to the same value. Hence the key 1 and the key 1. O are regarded as equal in an
ordered_set table.

Failure

The functions in this module exits with reason badar g if any argument has the wrong format, if the table identifier
isinvalid, or if the operation is denied because of table access rights (protected or private).

Concurrency

This module provides some limited support for concurrent access. All updates to single objects are guaranteed to be
both atomic and isolated. This means that an updating operation to a single object either succeeds or fails completely
without any effect (atomicity) and that no intermediate results of the update can be seen by other processes (isolation).
Some functionsthat update many objects state that they even guarantee atomicity and isolation for the entire operation.
In database terms the isolation level can be seen as "serializable", asif all isolated operations are carried out serially,
one after the other in a strict order.

Ericsson AB. All Rights Reserved.: STDLIB | 145

ets

No other support is available within this modul e that would guarantee consistency between objects. However, function
saf e _fi xtabl e/ 2 can be used to guarantee that a sequence of fi rst/ 1 and next/ 2 calls traverse the table
without errors and that each existing object in the table is visited exactly once, even if another (or the same) process
simultaneously deletes or inserts objectsinto the table. Nothing el seis guaranteed; in particular objectsthat areinserted
or deleted during such atraversal can be visited once or not at all. Functions that internally traverse over atable, like
sel ect and nat ch, givethe same guaranteeassaf e_fi xt abl e.

Match Specifications

Some of the functions use a match specification, mat ch_spec. For a brief explanation, see sel ect/ 2. For a
detailed description, see section Match Specificationsin Erlang in ERTS User's Guide.

Data Types

access() = public | protected | private
continuation()

Opaque continuation wused by select/ 1, 3, sel ect _reverse/1, 3, mat ch/ 1, 3, and
mat ch_obj ect/ 1, 3.

match spec() = [{match_pattern(), [term()], [term()]}]
A match specification, see above.

comp_match spec()

A compiled match specification.

match pattern() = atom() | tuple()

tab() = atom() | tid()

tid()

A tableidentifier, as returned by new/ 2.

type() = set | ordered set | bag | duplicate bag

Exports

all() -> [Tab]
Types:
Tab = tab()

Returns a list of all tables at the node. Named tables are specified by their names, unnamed tables are specified by
their table identifiers.

There is no guarantee of consistency in the returned list. Tables created or deleted by other processes "during” the
ets: all () cal ether are or are not included in the list. Only tables created/deleted beforeet s: al | () iscalled
are guaranteed to be included/excluded.

delete(Tab) -> true
Types:

Tab = tab()
Deletes the entire table Tab.

delete(Tab, Key) -> true
Types.

146 | Ericsson AB. All Rights Reserved.: STDLIB

ets

Tab = tab()
Key = term()

Deletes all objects with key Key from table Tab.

delete all objects(Tab) -> true
Types:
Tab = tab()
Delete all objectsin the ETS table Tab. The operation is guaranteed to be atomic and isolated.

delete object(Tab, Object) -> true
Types:

Tab = tab()

Object = tuple()

Delete the exact object Cbj ect from the ETS table, leaving objects with the same key but other differences (useful
for typebag). Inadupl i cat e_bag table, all instances of the object are del eted.

file2tab(Filename) -> {ok, Tab} | {error, Reason}

Types:
Filename = fil e: name()
Tab = tab()

Reason = term()
Reads afile produced by t ab2fil e/ 2 ort ab2fi | e/ 3 and creates the corresponding table Tab.
Equivalenttofi | e2t ab(Fi | enane, []).

file2tab(Filename, Options) -> {ok, Tab} | {error, Reason}

Types:
Filename = fil e: nane()
Tab = tab()

Options = [Option]
Option = {verify, boolean()}
Reason = term()
Reads afile produced by t ab2fil e/ 2 or t ab2fi | e/ 3 and createsthe corresponding table Tab.

The only supported option is {verify, bool ean()}. If verification is turned on (by specifying
{verify, true}), thefunction uses whatever information is present in the file to assert that the information is not
damaged. How this is done depends on which ext ended_i nf o waswrittenusingt ab2fi | e/ 3.

If no ext ended_i nf o ispresent in thefileand { veri fy, true} isspecified, the number of objects written is
compared to the size of the original table when the dump was started. This can make verification fail if the table was
publ i ¢ and objects were added or removed while the table was dumped to file. To avoid this problem, either do
not verify files dumped while updated simultaneously or use option { ext ended_i nf o, [object_count]} to
t ab2fi | e/ 3, which extends the information in the file with the number of objects written.

If verification isturned on and the file was written with option { ext ended_i nf o, [nd5sum }, readingthefile
is slower and consumes radically more CPU time than otherwise.

{verify, fal se} isthedefault.

Ericsson AB. All Rights Reserved.: STDLIB | 147

ets

first(Tab) -> Key | '$end of table'’

Types:
Tab = tab()
Key = term()

Returns the first key Key in table Tab. For an or der ed_set table, the first key in Erlang term order is returned.
For other table types, the first key according to the internal order of the table is returned. If the table is empty,
' $end_of _tabl e' isreturned.

To find subsequent keysin the table, use next / 2.

foldl(Function, AccO, Tab) -> Accl

Types.
Function = fun((Element :: term(), AccIn) -> AccOut)
Tab = tab()

AccO = Accl = AccIn = AccOut = term()

AccO isreturned if thetableisempty. Thisfunctionissimilartol i st s: f ol dl / 3. Thetable elementsaretraversed
is unspecified order, except for or der ed_set tables, where they are traversed first to last.

If Functi on inserts objects into the table, or another process inserts objects into the table, those objects can
(depending on key ordering) be included in the traversal.

foldr(Function, AccO, Tab) -> Accl

Types.
Function = fun((Element :: term(), AccIn) -> AccOut)
Tab = tab()

AccO = Accl = AccIn = AccOut = term()

AccO isreturnedif thetableisempty. Thisfunctionissimilartol i st s: f ol dr/ 3. Thetable elements are traversed
is unspecified order, except for or der ed_set tables, where they are traversed last to first.

If Functi on inserts objects into the table, or another process inserts objects into the table, those objects can
(depending on key ordering) be included in the traversal.

from dets(Tab, DetsTab) -> true
Types:

Tab = tab()

DetsTab = dets:tab_nane()

Fills an already created ETS table with the objects in the already opened Dets table Det sTab. Existing objectsin
the ETS table are kept unless overwritten.

If any of the tables does not exist or the Dets table is hot open, abadar g exception is raised.

fun2ms (LiteralFun) -> MatchSpec
Types:

148 | Ericsson AB. All Rights Reserved.: STDLIB

ets

LiteralFun = function()
MatchSpec = mat ch_spec()

Pseudo function that by apar se_t r ansf or mtranslates Li t er al Fun typed as parameter in the function call to
amatch specification. With "literal” is meant that the fun must textually be written as the parameter of the function,
it cannot be held in avariable that in turn is passed to the function.

The parse transform is provided in the ns_transform module and the source must include file
ns_transform hrl in STDLI B for this pseudo function to work. Failing to include the hrl file in the source
results in a runtime error, not a compile time error. The include file is easiest included by adding line -
include lib("stdlib/include/ns_transformhrl"). tothesourcefile.

Thefunisvery restricted, it can take only asingle parameter (the object to match): asole variable or atuple. It must use
thei s_ guard tests. Language constructs that have no representation in a match specification (i f , case, r ecei ve,
and so on) are not allowed.

The return value is the resulting match specification.
Example:

1> ets:fun2ms(fun({M,N}) when N > 3 -> M end).
[{{"$1","$2"},[{">","$2",3}],["$1"1}]

Variables from the environment can be imported, so that the following works:

2> X=3.

3

3> ets:fun2ms(fun({M,N}) when N > X -> M end).
[{{'$1",'$2"},[{'>","$2",{const,3}}],['$1'1}]

The imported variables are replaced by match specification const expressions, which is consistent with the static
scoping for Erlang funs. However, local or global function calls cannot be in the guard or body of the fun. Calls to
built-in match specification functionsis of course allowed:

4> ets:fun2ms(fun({M,N}) when N > X, is atomm(M) -> M end).
Error: fun containing local Erlang function calls

('is_atomm' called in guard) cannot be translated into match spec
{error,transform error}

5> ets:fun2ms(fun({M,N}) when N > X, is atom(M) -> M end).
[{{'$1","$2"},[{'>","'$2",{const,3}},{is_atom, "$1'}],['$1'1}]

As shown by the example, the function can be called from the shell also. The fun must be literaly in the call when
used from the shell aswell.

Warning:

If the par se_t r ansf or mis not applied to a module that calls this pseudo function, the call fails in runtime
(with a badar g). The et s module exports a function with this name, but it is never to be called except
when using the function in the shell. If the par se_t r ansf or mis properly applied by including header file
ns_transform hrl, compiled code never cals the function, but the function call is replaced by a literal
match specification.

Ericsson AB. All Rights Reserved.: STDLIB | 149

ets

For moreinformation, see ns_transfornm(3).

give away(Tab, Pid, GiftData) -> true
Types.

Tab = tab()

Pid = pid()

GiftData = term()

Make process Pid the new owner of table Tab. If successful, message {'ETS-
TRANSFER , Tab, FronPi d, G ft Dat a} issent tothe new owner.

The process Pi d must be alive, local, and not already the owner of the table. The calling process must be the table
owner.

Notice that this function does not affect option hei r of thetable. A table owner can, for example, set hei r toitself,
give the table away, and then get it back if the receiver terminates.

i() -> ok
Displaysinformation about all ETS tables on aterminal.

i(Tab) -> ok
Types.
Tab = tab()

Browses table Tab on aterminal.

info(Tab) -> InfolList | undefined
Types.

Tab = tab()

InfolList = [InfoTuple]

InfoTuple =
{compressed, boolean()} |
{heir, pid() | none} |
{keypos, integer() >= 1} |
{memory, integer() >= 0} |
{name, atom()} |
{named table, boolean()} |
{node, node()} |
{owner, pid()} |
{protection, access()} |
{size, integer() >= 0} |
{type, type()} |
{write concurrency, boolean()} |
{read concurrency, boolean()}

Returns information about table Tab asalist of tuples. If Tab has the correct type for atable identifier, but does not
refer toanexisting ETStable, undef i ned isreturned. If Tab isnot of the correct type, abadar g exceptionisraised.

{conpressed, bool ean()}
Indicatesif the table is compressed.

150 | Ericsson AB. All Rights Reserved.: STDLIB

ets

{heir, pid() | none}

The pid of the heir of the table, or none if no heir is set.
{keypos, integer() >= 1}

The key position.
{menory, integer() >=0

The number of words allocated to the table.
{nane, atom()}

The table name.
{named_t abl e, bool ean()}

Indicatesif the table is named.
{node, node()}

The node where the table is stored. Thisfield is no longer meaningful, as tables cannot be accessed from other
nodes.

{owner, pid()}
The pid of the owner of the table.
{protection, access()}
The table accessrights.
{size, integer() >=0
The number of objectsinserted in thetable.
{type, type()}
Thetable type.
{read_concurrency, bool ean()}
Indicates whether the table usesr ead_concur r ency or not.
{write_concurrency, bool ean()}
Indicates whether the table useswr i t e_concurrency.

info(Tab, Item) -> Value | undefined
Types:
Tab = tab()

Item =
compressed |
fixed |
heir |
keypos |
memory |
name |
named table |
node |
owner |
protection |
safe fixed |

Ericsson AB. All Rights Reserved.: STDLIB | 151

ets

safe fixed monotonic time |
size |

stats |

type |

write concurrency |

read concurrency

Value = term()

Returnsthe information associated with | t emfor table Tab, or returnsundef i ned if Tab doesnot refer an existing
ETStable. If Tab isnot of the correct type, or if | t emisnot one of the allowed values, abadar g exception israised.

Warning:

In Erlang/OTP R11B and earlier, thisfunction would not fail but returnundef i ned forinvalid valuesfor| t em

Inadditiontothe {1t em Val ue} pairsdefined fori nf o/ 1, thefollowing items are allowed:

Item=fi xed, Val ue=bool ean()

Indicatesif the tableisfixed by any process.

Itemrsaf e_fixed| safe_fixed_nonotonic_tine, Value={FixationTine,Info}|false

If the table has been fixed using saf e_f i xt abl e/ 2, the call returns atuple where Fi xat i onTi e isthe
time when the table was first fixed by a process, which either is or is not one of the processesit is fixed by now.

Theformat and value of Fi xat i onTi nme dependsonltem
safe_fixed

Fi xati onTi me corresponds to the result returned by er | ang: ti mest anp/ 0 at the time of fixation.
Notice that when the system uses single or multi time war p modes this can produce strange results, asthe use
of saf e_fi xedisnot timewarp safe. Timewarp safecodemust usesaf e_fi xed_nonotonic_ti ne
instead.

safe_fixed_nonotonic_tine

Fi xati onTi me corresponds to the result returned by er| ang: nonot oni c_t i ne/ 0 at the time of
fixation. Theuse of saf e_fi xed_nonot oni c_ti e is time warp safe.

I nf o isapossibly empty lists of tuples { Pi d, Ref Count }, one tuple for every process the table is fixed by
now. Ref Count isthe value of the reference counter and it keeps track of how many times the table has been
fixed by the process.

If the table never has been fixed, the call returnsf al se.

Itemsstats, Value=tuple()

Returnsinternal statistics about set , bag, and dupl i cat e_bag tables on an internal format used by OTP test
suites. Not for production use.

init table(Tab, InitFun) -> true
Types:

152 | Ericsson AB. All Rights Reserved.: STDLIB

ets

Tab = tab()
InitFun = fun((Arg) -> Res)
Arg = read | close
Res = end of input | {Objects :: [term()], InitFun} | term()
Replaces the existing objects of table Tab with objects created by calling the input function | ni t Fun, see below.

Thisfunction is provided for compatibility with thedet s module, it is not more efficient than filling atable by using
i nsert/2.

When called with argument r ead, the function | ni t Fun is assumed to return end_of _i nput when thereisno
moreinput, or { Obj ect's, Fun},where Obj ect s isalist of objects and Fun isanew input function. Any other
valueVal ueisreturnedasanerror{error, {init_fun, Val ue}}.Eachinputfunctioniscaledexactly once,
and if an error occur, the last function is called with argument cl ose, the reply of which isignored.

If the table type is set and more than one object exists with a given key, one of the objects is chosen. This is not
necessarily the last object with the given key in the sequence of objects returned by the input functions. This holds
also for duplicated objects stored in tables of type bag.

insert(Tab, ObjectOrObjects) -> true

Types:
Tab = tab()
ObjectOrObjects = tuple() | [tuple()]

Inserts the object or all of the objectsinlist Cbj ect Or Cbj ect s into table Tab.

« If thetable typeis set and the key of the inserted objects matches the key of any object in the table, the old
object is replaced.

« If thetabletypeisor der ed_set and the key of the inserted object compares equal to the key of any object
in the table, the old object is replaced.

« |f thelist contains more than one object with matching keys and the table typeisset , oneisinserted, which one
is not defined. The same holds for table type or der ed_set if the keys compare equal.

The entire operation is guaranteed to be atomic and isolated, even when alist of objectsisinserted.

insert new(Tab, ObjectOrObjects) -> boolean()
Types:
Tab = tab()
ObjectOrObjects = tuple() | [tuple()]
Same asi nsert/ 2 except that instead of overwriting objects with the same key (for set or or der ed_set) or
adding more objects with keys already existing in the table (for bag and dupl i cat e_bag), f al se isreturned.

If Obj ect Or Obj ect s isalist, the function checks every key before inserting anything. Nothing is inserted unless
all keys present in the list are absent from the table. Likei nsert / 2, the entire operation is guaranteed to be atomic
and isolated.

is compiled ms(Term) -> boolean()
Types:
Term = term()
Checks if aterm is avalid compiled match specification. The compiled match specification is an opaque datatype

that cannot be sent between Erlang nodes or be stored on disk. Any attempt to create an external representation of a
compiled match specification resultsin an empty binary (<<>>).

Ericsson AB. All Rights Reserved.: STDLIB | 153

ets

Examples:
Thefollowing expression yieldst r ue::

ets:is compiled ms(ets:match spec compile([{' ',[],[truel}]l)).

Thefollowing expressionsyieldf al se, asvariable Br oken contains acompiled match specification that has passed
through external representation:

MS = ets:match spec compile([{' ',[],[truel}l),
Broken = binary to term(term to binary(MS)),
ets:is compiled ms(Broken).

Note:

The reason for not having an external representation of compiled match specificationsis performance. It can be
subject to change in future releases, while this interface remains for backward compatibility.

last(Tab) -> Key | '$end of table'

Types:
Tab = tab()
Key = term()

Returnsthe last key Key according to Erlang term order in table Tab of type or der ed_set . For other table types,
the function issynonymoustof i r st/ 1. If thetableisempty,' $end_of _t abl e' isreturned.

To find preceding keysin the table, use pr ev/ 2.

lookup(Tab, Key) -> [Object]

Types.
Tab = tab()
Key = term()

Object = tuple()
Returns alist of all objects with key Key in table Tab.

e For tables of type set , bag, or dupl i cat e_bag, an object is returned only if the specified key matches the
key of the object in the table.

» For tables of type or der ed_set , an object is returned if the specified key compares equal to the key of an
object in the table.

The difference is the same as between =: = and ==.

Asanexample, onecaninsert an object withi nt eger () 1 asakeyinanor der ed_set and get the object returned
asaresult of doing al ookup/ 2 withf | oat () 1. 0 asthekey to search for.

For tables of type set or or der ed_set , the function returns either the empty list or alist with one element, as
there cannot be more than one object with the same key. For tables of type bag or dupl i cat e_bag, the function
returns alist of arbitrary length.

154 | Ericsson AB. All Rights Reserved.: STDLIB

ets

Notice that the time order of object insertions is preserved; the first object inserted with the specified key is the first
in the resulting list, and so on.

Insert and lookup timesin tables of type set , bag, and dupl i cat e_bag are constant, regardless of the table size.
For theor der ed_set datatype, timeis proportiona to the (binary) logarithm of the number of objects.

lookup element(Tab, Key, Pos) -> Elem

Types.
Tab = tab()
Key = term()
Pos = integer() >=1

Elem = term() | [term()]
For atable Tab of typeset or or der ed_set , the function returns the Pos :th element of the object with key Key.
For tables of type bag or dupl i cat e_bag, the functions returns a list with the Pos:th element of every object
with key Key.
If no object with key Key exists, the function exits with reason badar g.

The difference between set , bag, anddupl i cat e_bag ononehand, and or der ed_set onthe other, regarding
thefact that or der ed_set view keys as equal when they compar e equal whereas the other table types regard them
equal only when they match, holdsfor | ookup_el enent / 3.

match(Continuation) -> {[Match], Continuation} | '$end of table'’
Types:

Match = [term()]

Continuation = continuation()

Continues amatch started with mat ch/ 3. The next chunk of the size specified in theinitial mat ch/ 3 call isreturned
together with anew Cont i nuat i on, which can be used in subsequent calls to this function.

When there are no more objectsin thetable, ' $end_of _t abl e' isreturned.

match(Tab, Pattern) -> [Match]
Types:
Tab = tab()
Pattern = natch_pattern()
Match = [term()]
Matches the objectsin table Tab against pattern Pat t er n.
A pattern is aterm that can contain:
e Bound parts (Erlang terms)
e ' _' that matches any Erlang term
» Patternvariables' $N' , where N=0,1,...

The function returns alist with one element for each matching object, where each element is an ordered list of pattern
variable bindings, for example:

6> ets:match(T, '$1'). % Matches every object in table
[[{rufsen,dog,7}], [{brunte,horse,5}1, [{ludde,dog,5}1]
7> ets:match(T, {' ',dog,'$1'}).

Ericsson AB. All Rights Reserved.: STDLIB | 155

ets

[[71,[511]
8> ets:match(T, {' ',cow,'$1'}).
[1

If the key is specified in the pattern, the match is very efficient. If the key is not specified, that is, if it isavariable or
an underscore, the entire table must be searched. The search time can be substantial if the table is very large.

For tables of type or der ed_set , theresultisin the same order asinaf i r st /next traversal.

match(Tab, Pattern, Limit) ->
{[Match], Continuation} | '$end of table’

Types:
Tab = tab()
Pattern = match_pattern()
Limit = integer() >=1
Match = [term()]
Continuation = continuation()
Works like mat ch/ 2, but returns only alimited (Li m t) number of matching objects. Term Cont i nuat i on can

then be used in subsequent callsto mat ch/ 1 to get the next chunk of matching objects. Thisis a space-efficient way
to work on objectsin atable, which is faster than traversing the table object by object usingf i r st/ 1 and next / 2.

If thetableisempty, ' $end_of _t abl e' isreturned.

match delete(Tab, Pattern) -> true
Types.

Tab = tab()

Pattern = natch_pattern()

Deletes al objects that match pattern Pat t er n from table Tab. For a description of patterns, see mat ch/ 2.

match object(Continuation) ->
{[Match], Continuation} | '$end of table'

Types:
Match = [term()]
Continuation = continuation()
Continues a match started with mat ch_obj ect/ 3. The next chunk of the size specified in the initial

mat ch_obj ect / 3 call is returned together with a new Cont i nuat i on, which can be used in subsequent calls
to this function.

When there are no more objectsin thetable, ' $end_of _t abl e' isreturned.

match object(Tab, Pattern) -> [Object]
Types.
Tab = tab()
Pattern = natch_pattern()
Object = tuple()
Matchesthe objectsin table Tab against pattern Pat t er n. For adescription of patterns, seemat ch/ 2. The function
returns alist of al objects that match the pattern.

156 | Ericsson AB. All Rights Reserved.: STDLIB

ets

If the key is specified in the pattern, the match is very efficient. If the key is not specified, that is, if it isavariable or
an underscore, the entire table must be searched. The search time can be substantial if the tableis very large.

For tables of typeor der ed_set , theresultisinthe same order asinafi r st /next traversal.

match object(Tab, Pattern, Limit) ->
{[Match], Continuation} | '$end of table'

Types:

Tab = tab()

Pattern = match_pattern()

Limit integer() >=1

Match [term()]

Continuation = continuation()

Works like nmatch_object/ 2, but only returns a limited (Li nit) number of matching objects. Term
Cont i nuati on can then be used in subsequent callsto mat ch_obj ect/ 1 to get the next chunk of matching
objects. Thisis a space-efficient way to work on objectsin atable, which is faster than traversing the table object by
objectusingfirst/1andnext/ 2.

If thetableisempty, ' $end_of _t abl e' isreturned.

match spec compile(MatchSpec) -> CompiledMatchSpec
Types:

MatchSpec = mat ch_spec()

CompiledMatchSpec = conp_mat ch_spec()
Transforms a match specification into an internal representation that can be used in subsequent calls to
mat ch_spec_run/ 2. Theinterna representation is opague and cannot be converted to external term format and
then back again without losing its properties (that is, it cannot be sent to a process on another node and still remain

a valid compiled match specification, nor can it be stored on disk). To check the validity of a compiled match
specification, usei s_conpi | ed_mns/ 1.

If term Mat chSpec cannot be compiled (does not represent a valid match specification), a badar g exception is
raised.

Note:

This function has limited use in normal code. It is used by the det s module to perform the det s: sel ect ()
operations.

match spec run(List, CompiledMatchSpec) -> list()
Types:
List = [tuple()]
CompiledMatchSpec = conp_mat ch_spec()
Executes the matching specified in a compiled match specification on alist of tuples. Term Conpi | edMVat chSpec

is to be the result of acall to mat ch_spec_conpi | e/ 1 and is hence the internal representation of the match
specification one wants to use.

Ericsson AB. All Rights Reserved.: STDLIB | 157

ets

The matching is executed on each element in Li st and the function returns alist containing all results. If an element

in Li st does not match, nothing is returned for that element. The length of the result list is therefore equal or less
than the length of parameter Li st .

Example:

The following two calls give the same result (but certainly not the same execution time):

Table = ets:new...

MatchSpec = ...

% The following call...

ets:match spec run(ets:tab2list(Table),
ets:match spec compile(MatchSpec)),

% ...gives the same result as the more common (and more efficient)
ets:select(Table, MatchSpec),

Note:

This function has limited use in normal code. It is used by the det s module to perform the det s: sel ect ()
operations and by Mnesia during transactions.

member(Tab, Key) -> boolean()

Types:
Tab = tab()
Key = term()

Works like | ookup/ 2, but does not return the objects. Returnst r ue if one or more elements in the table has key
Key, otherwisef al se.

new(Name, Options) -> tid() | atom()
Types:
Name = atom()
Options = [Option]
Option =
Type |
Access |
named table |
{keypos, Pos} |
{heir, Pid :: pid(), HeirData} |
{heir, none} |
Tweaks
Type = type()
Access = access()
Tweaks =
{write concurrency, boolean()} |
{read concurrency, boolean()} |

158 | Ericsson AB. All Rights Reserved.: STDLIB

ets

compressed
Pos = integer() >=1
HeirData = term()

Creates a new table and returns atable identifier that can be used in subseguent operations. The table identifier can be
sent to other processes so that a table can be shared between different processes within a node.

Parameter Opt i ons is alist of atoms that specifies table type, access rights, key position, and whether the table
is named. Default values are used for omitted options. This means that not specifying any options ([]) is the same
as specifying [set, protected, {keypos, 1}, {heir,none}, {wite_concurrency,false},
{read_concurrency, fal se}].

set
Thetableisaset table: one key, one object, no order among objects. Thisis the default table type.
ordered_set

Thetableisaor der ed_set table: onekey, one object, ordered in Erlang term order, which isthe order implied
by the < and > operators. Tables of thistype have asomewhat different behavior in some situations than tabl es of
other types. Most notably, the or der ed_set tablesregard keys as equal when they compar e equal, not only
when they match. Thismeansthat to an or der ed_set table i nt eger () 1andfl oat () 1. O areregarded
as egual. This also meansthat the key used to lookup an element not necessarily matchesthe key in the returned
edements, if f | oat () 'sandi nt eger () 'sare mixed in keys of atable.

bag
Thetableisabag table, which can have many objects, but only one instance of each object, per key.
dupl i cat e_bag

The tableisadupl i cat e_bag table, which can have many objects, including multiple copies of the same
object, per key.

public
Any process can read or write to the table.
protected

The owner process can read and write to the table. Other processes can only read the table. This is the default
setting for the accessrights.

private
Only the owner process can read or write to the table.
naned_tabl e

If this option is present, name Nane is associated with the table identifier. The name can then be used instead
of the table identifier in subsequent operations.

{keypos, Pos}

Specifies which element in the stored tuples to use as key. By default, it is the first element, that is, Pos=1.
However, thisis not always appropriate. In particular, we do not want the first element to be the key if we want
to store Erlang records in atable.

Notice that any tuple stored in the table must have at least Pos number of elements.
{heir,Pid,HeirData} | {heir, none}

Set a process as heir. The heir inherits the table if the owner terminates. Message {' ETS-
TRANSFER , ti d(), FronPi d, Hei r Dat a} is sent to the heir when that occurs. The heir must be a local
process. Default heir isnone, which destroys the table when the owner terminates.

Ericsson AB. All Rights Reserved.: STDLIB | 159

ets

{write_concurrency, bool ean()}

Performance tuning. Defaults to f al se, in which case an operation that mutates (writes to) the table obtains
exclusive access, blocking any concurrent access of the same table until finished. If set to t r ue, the table is
optimized to concurrent write access. Different objects of the same table can be mutated (and read) by concurrent
processes. This is achieved to some degree at the expense of memory consumption and the performance of
sequential access and concurrent reading.

Option wri t e_concurrency can be combined with option read_concurrency. You typicaly want
to combine these when large concurrent read bursts and large concurrent write bursts are common; for more
information, seeoption read_concurrency.

Notice that this option does not change any guarantees about atomicity and isolation. Functions that makes such
promises over many objects (likei nsert / 2) gain less (or nothing) from this option.

Table type or der ed_set is not affected by this option. Also, the memory consumption inflicted by both
write_concurrency andread_concurrency is aconstant overhead per table. This overhead can be
especially large when both options are combined.

{read_concurrency, bool ean() }

Performancetuning. Defaultstof al se. Whensettot r ue, thetableisoptimized for concurrent read operations.
When this option is enabled on a runtime system with SMP support, read operations become much cheaper;
especially on systems with multiple physical processors. However, switching between read and write operations
becomes more expensive.

You typicaly want to enable this option when concurrent read operations are much more frequent than write
operations, or when concurrent reads and writes comes in large read and write bursts (that is, many reads not
interrupted by writes, and many writes not interrupted by reads).

You typically do not want to enable this option when the common access pattern is a few read operations
interleaved with a few write operations repeatedly. In this case, you would get a performance degradation by
enabling this option.

Option r ead_concur r ency can be combined with option wri t e_concurrency. You typicaly want to
combine these when large concurrent read bursts and large concurrent write bursts are common.
conpr essed

If this option is present, the table datais stored in a more compact format to consume less memory. However, it
will make table operations slower. Especially operations that need to inspect entire objects, such as mat ch and
sel ect , get much slower. The key element is not compressed.

next(Tab, Keyl) -> Key2 | '$end of table'
Types.
Tab = tab()
Keyl = Key2 = term()
Returns the next key Key 2, following key Key 1 in table Tab. For tabletypeor der ed_set , the next key in Erlang

term order isreturned. For other table types, the next key according to the internal order of the tableisreturned. If no
next key exists, ' $end_of _t abl e' isreturned.

To find thefirst key in thetable, usefi rst/ 1.

Unless atable of typeset , bag, or dupl i cat e_bag isprotected using saf e_fi xt abl e/ 2, atraversal can fall
if concurrent updates are made to the table. For table type or der ed_set , the function returns the next key in order,
even if the object does no longer exist.

160 | Ericsson AB. All Rights Reserved.: STDLIB

ets

prev(Tab, Keyl) -> Key2 | '$end of table'’
Types:
Tab = tab()
Keyl = Key2 = term()
Returns the previous key Key2, preceding key Keyl according to Erlang term order in table Tab of type

ordered_set. For other table types, the function is synonymous to next/ 2. If no previous key exists,
"$end_of table' isreturned.

Tofind thelast key inthetable, usel ast/ 1.

rename(Tab, Name) -> Name
Types:

Tab = tab()

Name = atom()

Renames the named table Tab to the new name Nane. Afterwards, the old name cannot be used to access the table.
Renaming an unnamed table has no effect.

repair_continuation(Continuation, MatchSpec) -> Continuation
Types.

Continuation = continuation()

MatchSpec = mat ch_spec()

Restoresan opague continuationreturned by sel ect / 3 orsel ect / 1 if the continuation has passed through external
term format (been sent between nodes or stored on disk).

The reason for this function is that continuation terms contain compiled match specifications and therefore are
invalidated if converted to external term format. Given that the original match specification is kept intact, the
continuation can be restored, meaning it can once again be used in subsequent sel ect / 1 calls even though it has
been stored on disk or on another node.

Examples:
The following sequence of calsfails:

T=ets:new(x,[1),

{ ,C} = ets:select(T,ets:fun2ms(fun({N, }=A)

when (N rem 10) =:= ->
A
end),10),

Broken = binary to term(term to binary(C)),
ets:select(Broken).

The following sequence works, as the call to repair_continuati on/ 2 reestablishes the (deliberately)
invalidated continuation Br oken.

T=ets:new(x,[1),

MS = ets:fun2ms(fun({N, }=A)
when (N rem 10) =:= ->

A

end),

Ericsson AB. All Rights Reserved.: STDLIB | 161

ets

{ ,C} = ets:select(T,MS,10),
Broken = binary to term(term to binary(C)),
ets:select(ets:repair continuation(Broken,MS)).

Note:

This function is rarely needed in application code. It is used by Mnesia to provide distributed sel ect / 3 and
sel ect/ 1 sequences. A normal application would either use Mnesia or keep the continuation from being
converted to external format.

The reason for not having an external representation of a compiled match specification is performance. It can be
subject to change in future rel eases, while this interface remains for backward compatibility.

safe fixtable(Tab, Fix) -> true

Types:
Tab = tab()
Fix = boolean()

Fixesatable of typeset , bag, or dupl i cat e_bag for safe traversal.

A processfixesatableby callingsaf e_f i xt abl e(Tab, true).Thetableremainsfixeduntil the processreleases
itby callingsaf e_fi xtabl e(Tab, fal se), oruntil the process terminates.

If many processes fix atable, the table remains fixed until all processes have released it (or terminated). A reference
counter is kept on a per process basis, and N consecutive fixes requires N releases to release the table.

When atableisfixed, asequenceof first/ 1 and next/ 2 cals are guaranteed to succeed, and each object in the
table is returned only once, even if objects are removed or inserted during the traversal. The keys for new objects
inserted during the traversal can be returned by next / 2 (it depends on the internal ordering of the keys).

Example:

clean_all with value(Tab,X) ->
safe fixtable(Tab,true),
clean all with value(Tab,X,ets:first(Tab)),
safe fixtable(Tab, false).

clean_all with value(Tab,X, '$end of table') ->
true;
clean_all with value(Tab,X,Key) ->
case ets:lookup(Tab,Key) of
[{Key,X}] ->
ets:delete(Tab,Key);
->
true
end,
clean all with value(Tab,X,ets:next(Tab,Key)).

Notice that no deleted objects are removed from a fixed table until it has been released. If a process fixes a table but
never releases it, the memory used by the deleted objects is never freed. The performance of operations on the table
also degrades significantly.

To retrieve information about which processes have fixed which tables, use i nf o(Tab,
saf e _fixed _nmonotonic_tine). A system with many processes fixing tables can need a monitor that sends
alarms when tables have been fixed for too long.

162 | Ericsson AB. All Rights Reserved.: STDLIB

ets

Noticethat for tabletypeor der ed_set ,saf e_fi xt abl e/ 2 isnot necessary, ascallstofi rst/ 1 andnext/ 2
always succeed.

select(Continuation) -> {[Match], Continuation} | '$end of table'
Types.

Match = term()

Continuation = continuation()

Continues a match started with sel ect / 3. The next chunk of the size specified in the initial sel ect/ 3 call is
returned together with anew Cont i nuat i on, which can be used in subsequent calls to this function.

When there are no more objectsin thetable, ' $end_of _t abl e’ isreturned.

select(Tab, MatchSpec) -> [Match]
Types:

Tab = tab()

MatchSpec = mat ch_spec()

Match = term()

Matches the objects in table Tab using a match specification. This is a more general call than nat ch/ 2 and
mat ch_obj ect/ 2 calls. Inits simplest form, the match specification is as follows:

MatchSpec = [MatchFunction]

MatchFunction = {MatchHead, [Guard], [Result]}
MatchHead = "Pattern as in ets:match"

Guard = {"Guardtest name", ...}

Result = "Term construct"

This means that the match specification isawaysalist of one or more tuples (of arity 3). Thefirst element of thetuple
is to be a pattern as described in mat ch/ 2. The second element of the tuple is to be alist of O or more guard tests
(described below). Thethird element of the tuple isto be alist containing a description of the valueto return. In almost
all normal cases, the list contains exactly one term that fully describes the value to return for each object.

Thereturn valueis constructed using the "match variables' boundin Mat chHead or using the special match variables
'$ ' (thewholematching object) and' $$' (all match variablesinalist), so that thefollowing mat ch/ 2 expression:

ets:match(Tab, {'$1','$2"','$3'})

is exactly equivalent to:

ets:select(Tab, [{{'$1",'$2","'$3"},[]1,['$$'1}1])

And that the following mat ch_obj ect / 2 call:

ets:match object(Tab,{'$1','$2"',"'$1'})

is exactly equivalent to

Ericsson AB. All Rights Reserved.: STDLIB | 163

ets

ets:select(Tab, [{{"'$1','$2",'$1'},[1,['$ "1}1)

Composite terms can be constructed in the Resul t part either by simply writing alist, so that the following code:

ets:select(Tab, [{{'$1','$2","'$3"'},[1,['$$'1}1)

gives the same output as:

ets:select(Tab, [{{'$1","$2","$3"},[]1,[["'$1","'$2","'$3"']1}1])

That is, all the bound variables in the match head as alist. If tuples are to be constructed, one has to write a tuple of
arity 1 where the single element in the tuple is the tuple one wants to construct (as an ordinary tuple can be mistaken
for aGuar d).

Therefore the following call:

ets:select(Tab, [{{'$1",'$2","'$1"},[1,['$_"1}1)

gives the same output as:

ets:select(Tab, [{{'$1','$2"','$1'},[1,[{{'$1"',"'$2"','$3'}}1}1)

This syntax is equivalent to the syntax used in the trace patterns (see the dbg(3)) module in Runtime_Toals.

The Guar dsare constructed as tuples, where the first element is the test name and the remaining elements are the test
parameters. To check for a specific type (say alist) of the element bound to the match variable' $1' , onewould write
thetestas{i s _list, '$1'}.Ifthetestfails, the object inthetabledoesnot match and thenext Mat chFunct i on
(if any) istried. Most guard tests present in Erlang can be used, but only the new versions prefixed i s_ are allowed
(is_float,is_atomandsoon).

The Guar d section can also contain logic and arithmetic operations, which are written with the same syntax as the
guard tests (prefix notation), so that the following guard test written in Erlang:

is integer(X), is integer(Y), X + Y < 4711

is expressed as follows (X replaced with* $1' and Y with' $2'):

[{is integer, '$1'}, {is integer, '$2'}, {'<', {'+', '$1', '$2'}, 4711}]

For tables of type or der ed_set , objects are visited in the same order asinafi r st /next traversal. This means
that the match specification is executed against objects with keysinthefi r st /next order and the corresponding
result list isin the order of that execution.

select(Tab, MatchSpec, Limit) ->

164 | Ericsson AB. All Rights Reserved.: STDLIB

ets

{[Match], Continuation} | '$end of table'

Types:

Tab = tab()

MatchSpec = mat ch_spec()

Limit = integer() >=1

Match = term()

Continuation = continuation()
Workslikesel ect/ 2, but only returnsalimited (Li m t) number of matching objects. Term Cont i nuat i on can
then be used in subsequent callsto sel ect/ 1 to get the next chunk of matching objects. This is a space-efficient

way to work on objectsin atable, which is still faster than traversing the table object by object usingfi rst/ 1 and
next/ 2.

If thetableisempty, ' $end_of _t abl e' isreturned.

select count(Tab, MatchSpec) -> NumMatched
Types.
Tab = tab()
MatchSpec = mat ch_spec()
NumMatched = integer() >= 0
Matches the objectsin table Tab using a match specificationc. If the match specification returnst r ue for an object,

that object considered a match and is counted. For any other result from the match specification the object is not
considered a match and is therefore not counted.

This function can be described asamnmat ch_del et e/ 2 function that does not delete any elements, but only counts
them.

The function returns the number of objects matched.

select delete(Tab, MatchSpec) -> NumDeleted
Types:

Tab = tab()

MatchSpec = mat ch_spec()

NumDeleted = integer() >= 0

Matches the objects in table Tab using a match specification. If the match specification returnst r ue for an object,
that object is removed from the table. For any other result from the match specification the object isretained. Thisis
amore genera call than the mat ch_del et e/ 2 call.

The function returns the number of objects deleted from the table.

Note:

The match specification hasto return the atomt r ue if the object isto be deleted. No other return value gets the
object deleted. So one cannot use the same match specification for looking up elements as for deleting them.

select reverse(Continuation) ->
{[Match], Continuation} | '$end of table'

Types:

Ericsson AB. All Rights Reserved.: STDLIB | 165

ets

Continuation = continuation()
Match = term()

Continues amatch started with sel ect _r ever se/ 3. For tablesof typeor der ed_set , thetraversal of thetable
continues to objects with keys earlier in the Erlang term order. The returned list also contains objects with keys in

reverse order. For all other table types, the behavior is exactly that of sel ect / 1.
Example:

1> T = ets:new(x, [ordered set]).
2> [ets:insert(T,{N}) || N <- lists:seq(1,10)].

é;.{RO,CG} = ets:select reverse(T,[{" ',[1,['$ '1}1.,4).
All;RO.

[{10},{9},{8},{7}]

5> {R1,C1} = ets:select reverse(CO).

(li;Rl.

[{6},{5},{4},{3}]

7> {R2,C2} = ets:select reverse(Cl).

é;RZ.

[{2},{1}]

9> '$end of table' = ets:select reverse(C2).

select reverse(Tab, MatchSpec) -> [Match]
Types.

Tab = tab()

MatchSpec = mat ch_spec()

Match = term()

Workslikesel ect / 2, but returns the list in reverse order for table type or der ed_set . For al other table types,

thereturn value isidentical to that of sel ect / 2.

select reverse(Tab, MatchSpec, Limit) ->
{[Match], Continuation} | '$end of table'

Types.

Tab = tab()

MatchSpec = mat ch_spec()

Limit = integer() >=1

Match = term()

Continuation = continuation()

Workslikesel ect/ 3, but for tabletypeor der ed_set traversingisdone starting at the last object in Erlang term

order and movesto thefirst. For al other table types, the return value isidentical to that of sel ect / 3.

Noticethat thisis not equivalent to reversing theresult list of asel ect / 3 call, astheresult list is not only reversed,

but also containsthe last Li mi t matching objectsin the table, not the first.

setopts(Tab, Opts) -> true
Types:

166 | Ericsson AB. All Rights Reserved.: STDLIB

ets

Tab = tab()

Opts = Opt | [Opt]

Opt = {heir, pid(), HeirData} | {heir, none}
HeirData = term()

Sets table options. The only allowed option to be set after the table has been created is hei r . The calling process
must be the table owner.

slot(Tab, I) -> [Object] | '$end of table'
Types.
Tab = tab()
I = integer() >= 0
Object = tuple()
This function is mostly for debugging purposes, Normally f i r st /next or | ast /pr ev areto be used instead.
Returns all objectsin dot | of table Tab. A table can be traversed by repeatedly calling the function, starting with

thefirst dot | =0 and ending when' $end_of _t abl e' isreturned. If argument | isout of range, the function fails
with reason badar g.

Unless atable of typeset , bag, or dupl i cat e_bag isprotected using saf e_fi xt abl e/ 2, atraversa can fall
if concurrent updates are madeto thetable. For tabletypeor der ed_set , thefunction returnsalist containing object
| in Erlang term order.

tab2file(Tab, Filename) -> ok | {error, Reason}
Types:

Tab = tab()

Filename = fil e: name()

Reason = term()

Dumpstable Tab tofileFi | enane.
Equivalenttot ab2fil e(Tab, Filenane,[])

tab2file(Tab, Filename, Options) -> ok | {error, Reason}
Types:

Tab = tab()

Filename = fil e: name()

Options = [Option]

Option = {extended info, [ExtInfo]} | {sync, boolean()}

ExtInfo = md5sum | object count

Reason = term()

Dumpstable Tab tofile Fi | enane.

When dumping the table, some information about the table is dumped to a header at the beginning of the dump. This
information contains dataabout the tabletype, name, protection, size, version, and if itisanamed table. It also contains
notes about what extended information is added to the file, which can be a count of the objects in the file or a MD5
sum of the header and recordsin thefile.

The size field in the header might not correspond to the number of recordsin the file if the table is public and records
are added or removed from the table during dumping. Public tables updated during dump, and that one wantsto verify
when reading, needs at |least one field of extended information for the read verification process to be reliable later.

Ericsson AB. All Rights Reserved.: STDLIB | 167

ets

Option ext ended_i nf o specifieswhat extrainformation is written to the table dump:
obj ect _count

The number of objects written to the file is noted in the file footer, so file truncation can be verified even if the
file was updated during dump.

nd5sum

The header and objectsin thefile are checksummed using the built-in MD5 functions. The MD5 sum of all objects
is written in the file footer, so that verification while reading detects the dlightest bitflip in the file data. Using
this costs a fair anount of CPU time.

Whenever optionext ended_i nf o isused, it resultsin afile not readable by versionsof ETS beforethat in STDLI B
1151

If option sync issettot r ue, it ensuresthat the content of the file is written to the disk beforet ab2f i | e returns.
Defaultsto{sync, fal se}.

tab2list(Tab) -> [Object]
Types:

Tab = tab()

Object = tuple()
Returnsalist of all objectsin table Tab.

tabfile info(Filename) -> {ok, TableInfo} | {error, Reason}
Types:

Filename = fil e: nane()

TableInfo = [InfoIltem]

Infoltem =

{name, atom()} |

{type, Type} |

{protection, Protection} |

{named table, boolean()} |

{keypos, integer() >= 0} |

{size, integer() >= 0} |

{extended info, [ExtInfol} |

{version,

{Major :: integer() >= 0, Minor :: integer() >= 0}}
ExtInfo = md5sum | object count
Type = bag | duplicate bag | ordered set | set
Protection = private | protected | public

Reason = term()
Returns information about the table dumped tofileby t ab2fi |l e/ 2 ort ab2fi |l e/ 3.
The following items are returned:
nane

The name of the dumped table. If the table was a named table, a table with the same name cannot exist when
the table is loaded from file with f i | e2t ab/ 2. If the table is not saved as a named table, this field has no
significance when loading the table from file.

168 | Ericsson AB. All Rights Reserved.: STDLIB

ets

type

The ETStype of the dumped table (that is, set , bag, dupl i cat e_bag, oror der ed_set). Thistypeisused
when loading the table again.

protection

The protection of the dumped table (that is, pri vat e, pr ot ect ed, or publ i c). A tableloaded from the file
gets the same protection.

nanmed_t abl e

t r ue if the table was a named table when dumped to file, otherwise f al se. Notice that when anamed tableis
loaded from afile, there cannot exist atable in the system with the same name.

keypos
Thekeypos of the table dumped to file, which is used when loading the table again.
si ze

The number of objects in the table when the table dump to file started. For a publ i ¢ table, this number does
not need to correspond to the number of objects saved to the file, as objects can have been added or deleted by
another process during table dump.

extended_info

The extended information written in the file footer to allow stronger verification during table loading from file,
as specified to t ab2fi | e/ 3. Notice that this function only tells which information is present, not the values
in thefilefooter. The value isalist containing one or more of the atoms obj ect _count and nd5sum

versi on

A tuple{ Maj or, M nor} containing the major and minor version of the file format for ETS table dumps. This
version field was added beginning with STDLI B 1.5.1. Files dumped with older versions return { 0, 0} in this
field.

An error isreturned if the fileisinaccessible, badly damaged, or not produced witht ab2fi |l e/ 2 ort ab2fi | e/ 3.

table(Tab) -> QueryHandle
table(Tab, Options) -> QueryHandle
Types.
Tab = tab()
QueryHandle = gl c: query_handl e()
Options = [Option] | Option
Option = {n objects, NObjects} | {traverse, TraverseMethod}
NObjects = default | integer() >=1

TraverseMethod =
first next |
last _prev |
select |
{select, MatchSpec :: match_spec()}

Returns a Query List Comprehension (QLC) query handle. The gl ¢ module provides aquery language aimed mainly
at Mnesia, but ETS tables, Detstables, and lists are also recognized by QL C as sources of data. Callingt abl e/ 1, 2
is the means to make the ETS table Tab usableto QLC.

When there are only simple restrictions on the key position, QLC uses| ookup/ 2 to look up the keys. When that is
not possible, the whole table is traversed. Optiont r aver se determines how thisis done:

Ericsson AB. All Rights Reserved.: STDLIB | 169

ets

first_next

Thetableistraversed onekey at atimeby calingfi rst/ 1 and next/ 2.
| ast_prev

Thetableistraversed one key at atime by caling | ast/ 1 and pr ev/ 2.
sel ect

The table is traversed by caling sel ect/ 3 and sel ect/ 1. Option n_obj ect s determines the number
of objects returned (the third argument of sel ect/ 3); the default is to return 100 objects at a time. The
match specification (the second argument of sel ect/ 3) is assembled by QLC: simple filters are trandated
into equivalent match specifications while more complicated filters must be applied to al objects returned by
sel ect / 3 given amatch specification that matches all objects.

{sel ect, MatchSpec}

Asfor sel ect , thetableistraversed by calling sel ect/ 3 and sel ect/ 1. The difference is that the match
specification is explicitly specified. This is how to state match specifications that cannot easily be expressed
within the syntax provided by QLC.

Examples:
An explicit match specification is here used to traverse the table:

9> true = ets:insert(Tab = ets:new(t, []), [{1,a},{2,b},{3,c},{4,d}]),
MS = ets:fun2ms(fun({X,Y}) when (X > 1) or (X < 5) -> {Y} end),
QH1 = ets:table(Tab, [{traverse, {select, MS}}]).

An example with an implicit match specification:

10> QH2 = qlc:q([{Y} || {X,Y} <- ets:table(Tab), (X > 1) or (X < 5)1).

The latter example is equivalent to the former, which can be verified using function gl c: i nf o/ 1:

11> qlc:info(QH1l) =:= glc:info(QH2).
true

gl c: i nf o/ 1 returnsinformation about a query handle, and in this caseidentical information is returned for the two
guery handles.

take(Tab, Key) -> [Object]

Types:
Tab = tab()
Key = term()

Object = tuple()
Returns and removes alist of all objects with key Key in table Tab.

The specified Key isused to identify the object by either comparing equal the key of an objectinanor der ed_set
table, or matching in other types of tables (for details on the difference, seel ookup/ 2 and new 2).

170 | Ericsson AB. All Rights Reserved.: STDLIB

ets

test ms(Tuple, MatchSpec) -> {ok, Result} | {error, Errors}
Types:

Tuple = tuple()

MatchSpec = mat ch_spec()

Result = term()

Errors = [{warning | error, string()}]

Thisfunctionisautility to test amatch specification usedin calstosel ect / 2. Thefunction both testsVat chSpec
for "syntactic" correctness and runs the match specification against object Tupl e.

If the match specification is syntactically correct, the function either returns{ ok, Resul t } , whereResul t iswhat
would havebeentheresultinareal sel ect / 2 cal, or f al se if thematch specification doesnot match object Tupl e.

If the match specification contains errors, tuple{ er r or, Error s} isreturned, where Er r or s isalist of natural
language descriptions of what was wrong with the match specification.

Thisisauseful debugging and test tool, especially when writing complicated sel ect / 2 calls.
See also: erlang:match_spec test/3.

to dets(Tab, DetsTab) -> DetsTab
Types:

Tab = tab()

DetsTab = dets:tab_name()

Fills an already created/opened Dets table with the objects in the already opened ETS table named Tab. The Dets
table is emptied before the objects are inserted.

update counter(Tab, Key, UpdateOp) -> Result

update counter(Tab, Key, UpdateOp, Default) -> Result

update counter(Tab, Key, X3 :: [UpdateOp]) -> [Result]

update counter(Tab, Key, X3 :: [UpdateOp], Default) -> [Result]
update counter(Tab, Key, Incr) -> Result

update counter(Tab, Key, Incr, Default) -> Result

Types.
Tab = tab()
Key = term(

)
UpdateOp = {Pos, Incr} | {Pos, Incr, Threshold, SetValue}
Pos = Incr = Threshold = SetValue = Result = integer()
Default = tuple()

This function provides an efficient way to update one or more counters, without the trouble of having to look up an
object, update the object by incrementing an element, and insert the resulting object into the table again. (The update
is done atomically, that is, no process can access the ETS table in the middle of the operation.)

This function destructively update the object with key Key in table Tab by adding | ncr to the element at position
Pos. The new counter value is returned. If no position is specified, the element directly following key (<keypos>
+1) is updated.

If aThr eshol d is specified, the counter isreset to value Set Val ue if the following conditions occur:

e | ncr isnot negative (>= 0) and the result would be greater than (>) Thr eshol d.
* | ncr isnegative (< 0) and the result would be less than (<) Thr eshol d.

Ericsson AB. All Rights Reserved.: STDLIB | 171

ets

A list of Updat eOp can be supplied to do many update operations within the object. The operations are carried out in
the order specified in thelist. If the same counter position occurs more than once in the list, the corresponding counter
isthus updated many times, each time based on the previous result. The return valueisalist of the new counter values
from each update operation in the same order as in the operation list. If an empty list is specified, nothing is updated
and an empty list isreturned. If the function fails, no updatesis done.

The specified Key is used to identify the object by either matching the key of an object inaset table, or compare
equal to the key of an objectinan or der ed_set table (for details on the difference, seel ookup/ 2 and new 2).

If adefault object Def aul t isspecified, it isused as the object to be updated if the key is missing from the table. The
value in place of the key isignored and replaced by the proper key value. The return value is as if the default object
had not been used, that is, asingle updated element or alist of them.

The function fails with reason badar g in the following situations:

* Thetabletypeisnotset or ordered_set.

» No object with the correct key exists and no default object was supplied.
e The object has the wrong arity.

» Thedefault object arity is smaller than <keypos>.

e Any field from the default object that is updated is not an integer.

* Theelement to update is not an integer.

e The element to update is also the key.

« Anyof Pos, | ncr, Threshol d, or Set Val ue isnot an integer.

update element(Tab, Key, ElementSpec :: {Pos, Value}) -> boolean()
update element(Tab, Key, ElementSpec :: [{Pos, Value}]) ->

boolean()
Types:
Tab = tab()
Key = term()

Value = term()
Pos = integer() >=1

Thisfunction provides an efficient way to update one or more elements within an object, without the trouble of having
to look up, update, and write back the entire object.

This function destructively updates the object with key Key in table Tab. The element at position Pos is given the
value Val ue.

A list of { Pos, Val ue} can be supplied to update many elements within the same object. If the same position occurs
more than once in the list, the last value in the list is written. If the list is empty or the function fails, no updates are
done. The function is aso atomic in the sense that other processes can never see any intermediate results.

Returnst r ue if an object with key Key isfound, otherwisef al se.

The specified Key is used to identify the object by either matching the key of an object in aset table, or compare
equal to the key of an object in an or der ed_set table (for details on the difference, seel ookup/ 2 and new 2).

The function fails with reason badar g in the following situations:

e Thetabletypeisnotset orordered_set.
* Pos<l

e Pos > object arity.

* Theelement to update is also the key.

172 | Ericsson AB. All Rights Reserved.: STDLIB

file_sorter

file_sorter

Erlang module

This module contains functions for sorting terms on files, merging already sorted files, and checking files for
sortedness. Chunks containing binary terms are read from a sequence of files, sorted internally in memory and written
on temporary files, which are merged producing one sorted file as output. Merging is provided as an optimization; it
is faster when the files are already sorted, but it always works to sort instead of merge.

On afile, aterm is represented by a header and a binary. Two options define the format of terms on files:
{header, Header Lengt h}

Header Lengt h determines the number of bytes preceding each binary and containing the length of the binary
in bytes. Defaults to 4. The order of the header bytes is defined as follows: if B is a binary containing a header
only, size Si ze of thebinary iscalculated as<<Si ze: Header Lengt h/ uni t: 8>> = B.

{format, Fornmat}

Option For mat determines the function that is applied to binaries to create the terms to be sorted. Defaults to
bi nary_t er mwhichisequivaenttof un binary_to_term 1.Vauebi nary isequivalenttof un(X)
-> X end, which means that the binaries are sorted asthey are. Thisisthe fastest format. If For mat ist erm
i 0: read/ 2 iscalledtoread terms. In that case, only the default value of option header isallowed.

Option for nat also determines what is written to the sorted output file: if Format is term then
i o: format/ 3 iscaled to write each term, otherwise the binary prefixed by a header is written. Notice that
the binary written is the same binary that was read; the results of applying function For nat are thrown away
when the terms have been sorted. Reading and writing terms using the i o module is much slower than reading
and writing binaries.

Other options are:
{order, Order}

The default isto sort termsin ascending order, but that can be changed by value descendi ng or by specifying
an ordering function Fun. An ordering function is antisymmetric, transitive, and total. Fun(A, B) isto return
t rue if A comes before B in the ordering, otherwise f al se. An example of atypical ordering function is less
than or equal to, =</ 2. Using an ordering function slows down the sort considerably. Functions keysort
keymer ge and keycheck do not accept ordering functions.

{uni que, bool ean()}

When sorting or merging files, only thefirst of asequence of termsthat compare equal (==) isoutput if thisoption
issettot rue. Defaultsto f al se, which implies that all terms that compare equal are output. When checking
filesfor sortedness, acheck that no pair of consecutive terms compares equal isdoneif thisoptionissettot r ue.

{tnpdir, TenpDirectory}

The directory where temporary files are put can be chosen explicitly. The default, implied by value
"" is to put temporary files on the same directory as the sorted output file. If output is a function
(see below), the directory returned by fil e: get _cwd() is used instead. The names of temporary files
are derived from the Erlang nodename (node()), the process identifier of the current Erlang emulator
(os: get pi d()), and aunique integer (er | ang: uni que_i nt eger ([posi tive])). A typica nameis
fs_nynode@ryhost 1763 4711. 17, where 17 is a sequence number. Existing files are overwritten.
Temporary files are deleted unless some uncaught EXI T signal occurs.

Ericsson AB. All Rights Reserved.: STDLIB | 173

file_sorter

{conpressed, boolean()}

Temporary files and the output file can be compressed. Defaultsf al se, which impliesthat written files are not
compressed. Regardless of the value of option conpr essed, compressed files can aways be read. Notice that
reading and writing compressed files are significantly slower than reading and writing uncompressed files.

{size, Size}

By default about 512* 1024 bytes read from files are sorted internally. This option is rarely needed.
{no_files, NoFiles}

By default 16 files are merged at atime. This option is rarely needed.

As an aternative to sorting files, a function of one argument can be specified as input. When called with argument
r ead, the function is assumed to return either of the following:

« end_of _input or{end_of i nput, Val ue}} whenthereisnomoreinput (Val ue isexplained below).

e {Objects, Fun},wherebj ects isalist of binaries or terms depending on the format, and Fun is a new
input function.

Any other value is immediately returned as value of the current call to sort or keysort. Each input function is
called exactly once. If an error occurs, the last function is called with argument cl ose, thereply of which isignored.

A function of one argument can be specified as output. The results of sorting or merging theinput is collected in anon-
empty sequence of variablelength lists of binaries or terms depending on theformat. The output function iscalled with
onelist at atime, and is assumed to return a new output function. Any other return value isimmediately returned as
value of the current call to the sort or merge function. Each output function is called exactly once. When some output
function has been applied to al of the results or an error occurs, the last function is called with argument cl ose, and
the reply isreturned as value of the current call to the sort or merge function.

If a function is specified as input and the last input function returns { end_of _i nput, Val ue}, the function
specified as output is called with argument { val ue, Val ue}. Thismakesit easy to initiate the sequence of output
functions with avalue calculated by the input functions.

Asan example, consider sorting the termson adisk log file. A function that reads chunks from the disk log and returns
alist of binariesis used asinput. The results are collected in alist of terms.

sort(Log) ->
{ok, } = disk log:open([{name,Log}, {mode,read only}]),
Input = input(Log, start),
Output = output([]),
Reply = file sorter:sort(Input, Output, {format,term}),
ok = disk log:close(Log),
Reply.

input(Log, Cont) ->
fun(close) ->
ok;
(read) ->
case disk log:chunk(Log, Cont) of
{error, Reason} ->
{error, Reason};
{Cont2, Terms} ->
{Terms, input(Log, Cont2)};
{Cont2, Terms, Badbytes} ->
{Terms, input(Log, Cont2)};
eof ->
end of input
end
end.

174 | Ericsson AB. All Rights Reserved.: STDLIB

file_sorter

output(L) ->
fun(close) ->
lists:append(lists:reverse(L));
(Terms) ->
output([Terms | L])
end.

For more examples of functions as input and output, see the end of thefi | e_sort er module; thet er mformat

isimplemented with functions.
The possible values of Reason returned when an error occurs are:

 bad_obj ect, {bad_object, FileNane} - Applying the format function failed for some binary, or the

key(s) could not be extracted from some term.
e {bad _term FileNane} -io:read/ 2 faledtoread someterm.

« {file_ error, FileNane, file:posix()} -Foranexplanationof fil e: posi x(),seefile(3).

* {premature_eof, FileNane} - End-of-file was encountered inside some binary term.

Data Types
file name() = file: nane()
file names() = [file:nanme()]
i command() = read | close
i reply() =
end of input |
{end of input, value()} |
{[object ()1, infun()} |
i nput _reply()
infun() = fun((i _command()) -> i _reply())
input() = file_nanes() | infun()
input_reply() = term()
o _command() = {value, value()} | [object()] | close
o reply() = outfun() | output_reply()

object() = term() | binary()
outfun() = fun((o_command()) -> o_reply())
output() = file_name() | outfun()

output reply() - term()

value() = term()

options() = [option()] | option()

option() =
{compressed, boolean()} |
{header, header _length()} |
{format, format()} |
{no_files, no_files()} |
{order, order()} |
{size, size()} |
{tmpdir, tnp_directory()} |

Ericsson AB. All Rights Reserved.: STDLIB | 175

file_sorter

{unique, boolean()}
format() = binary term | term | binary | format_fun()
format fun() = fun((binary()) -> term())
header length() = integer() >=1
key pos() = integer() >= 1 | [integer() >= 1]
no files() = integer() >=1
order() = ascending | descending | order_fun()
order fun() = fun((term(), term()) -> boolean())
size() = integer() >= 0
tmp directory() = [1 | file:nane()

reason() =
bad object |
{bad object, file_nane()} |
{bad_term, file_nane()} |
{file error,
file_name(),
file:posix() | badarg | system limit} |
{premature _eof, file_nane()}

Exports

check(FileName) -> Reply
check(FileNames, Options) -> Reply
Types:
FileNames = fil e_nanes()
Options = options()
Reply = {ok, [Resultl]} | {error, reason()}
Result = {FileName, TermPosition, term()}
FileName = file_nane()
TermPosition = integer() >=1
Checks files for sortedness. If afile is not sorted, the first out-of-order element is returned. The first term on afile
has position 1.

check(Fi | eNane) isequivalenttocheck([Fil eName], []).
keycheck(KeyPos, FileName) -> Reply

keycheck(KeyPos, FileNames, Options) -> Reply
Types.

176 | Ericsson AB. All Rights Reserved.: STDLIB

file_sorter

KeyPos = key pos()

FileNames = fil e_nanes()

Options = options()

Reply = {ok, [Result]} | {error, reason()}

Result = {FileName, TermPosition, term()}

FileName = file_nane()

TermPosition = integer() >=1
Checks files for sortedness. If afile is not sorted, the first out-of-order element is returned. The first term on afile
has position 1.

keycheck(KeyPos, Fil eNane) isequivaenttokeycheck(KeyPos, [FileNanme], []).

keymerge (KeyPos, FileNames, Output) -> Reply
keymerge (KeyPos, FileNames, Output, Options) -> Reply
Types:

KeyPos = key pos()

FileNames = fil e_nanes()

Output = out put ()

Options = options()

Reply = ok | {error, reason()} | output_reply()
Merges tuples on files. Each input file is assumed to be sorted on key(s).

keymer ge(KeyPos, Fil eNanes, CQutput) is equivalent to keynerge(KeyPos, Fil eNamnes,

keysort (KeyPos, FileName) -> Reply
Types.
KeyPos = key_ pos()
FileName = file_nane()
Reply = ok | {error, reason()} | input_reply() | output_reply()
Sorts tuples on files.
keysort (N, FileNane) isequivadenttokeysort(N, [FileNane], FileNane).

keysort(KeyPos, Input, Output) -> Reply
keysort(KeyPos, Input, Output, Options) -> Reply
Types:
KeyPos = key pos()
Input = input()
Output = out put ()
Options = options()
Reply = ok | {error, reason()} | input_reply() | output_reply()
Sortstupleson files. The sort is performed on the element(s) mentioned in Key Pos. If two tuples compare equal (==)
on one element, the next element according to Key Pos is compared. The sort is stable.

keysort (N, Input, Qutput) isequivalenttokeysort(N, Input, Qutput, []).

Ericsson AB. All Rights Reserved.: STDLIB | 177

file_sorter

merge (FileNames, Output) -> Reply
merge(FileNames, Output, Options) -> Reply
Types.

FileNames = fil e_nanmes()

Output = out put ()

Options = options()

Reply = ok | {error, reason()} | output_reply()
Merges terms on files. Each input file is assumed to be sorted.

mer ge(Fi | eNarmes, Qut put) isequivaenttonmer ge(Fi |l eNanes, CQutput, []).

sort(FileName) -> Reply
Types:
FileName = file_nane()
Reply = ok | {error, reason()} | input_reply() | output_reply()
Sortsterms on files.
sort (Fil eNane) isequivadenttosort ([Fi | eNane], Fil eNane).

sort(Input, Output) -> Reply
sort(Input, Output, Options) -> Reply
Types.
Input = input()
Output = out put ()
Options = options()
Reply = ok | {error, reason()} | input_reply() | output_reply()
Sortsterms on files.

sort (I nput, Qutput) isequivalenttosort (I nput, Qutput, []).

178 | Ericsson AB. All Rights Reserved.: STDLIB

filelib

filelib

Erlang module

This module contains utilities on a higher level thanthef i | e module.

This module does not support "raw"” filenames (that is, files whose names do not comply with the expected encoding).
Such files are ignored by the functions in this module.

For more information about raw filenames, seethef i | e module.

Data Types

filename() = file: nanme()
dirname() = filenane()

dirname all() = filename_all ()
filename all() = file:nanme_all ()

Exports

ensure dir(Name) -> ok | {error, Reason}
Types:
Name = filenane_all () | dirnane_all ()
Reason = file: posix()
Ensuresthat all parent directoriesfor the specified file or directory name Nane exist, trying to createthemif necessary.

Returns ok if all parent directories already exist or can be created. Returns { err or, Reason} if some parent
directory does not exist and cannot be created.

file size(Filename) -> integer() >= 0
Types:

Filename = filenane_all ()
Returns the size of the specified file.

fold files(Dir, RegExp, Recursive, Fun, AccIn) -> AccOut
Types:
Dir = dirname()
RegExp = string()
Recursive = boolean()
Fun = fun((F :: file:filename(), AccIn) -> AccOut)
AccIn = AccOut = term()

Folds function Fun over all (regular) files F in directory Di r that match the regular expression RegExp (for a
description of the allowed regular expressions, seether e module). If Recur si ve ist r ue, al subdirectoriesto Di r
are processed. The regular expression matching is only done on the filename without the directory part.

If Unicode filename trandlation is in effect and the file system is transparent, filenames that cannot be interpreted as
Unicode can be encountered, in which case the f un() must be prepared to handle raw filenames (that is, binaries).

Ericsson AB. All Rights Reserved.: STDLIB | 179

filelib

If the regular expression contains codepoints > 255, it does not match filenames that do not conform to the expected
character encoding (that is, are not encoded in valid UTF-8).

For more information about raw filenames, seethef i | e module.

is dir(Name) -> boolean()
Types.

Name = filenane_all () | dirnane_all ()
Returnst r ue if Nane refersto adirectory, otherwisef al se.

is file(Name) -> boolean()
Types:
Name = filenane_all () | dirnane_all ()
Returnst r ue if Nane refersto afile or adirectory, otherwisef al se.

is regular(Name) -> boolean()
Types:
Name = filenanme_all ()
Returnst r ue if Nane refersto a (regular) file, otherwisef al se.

last modified(Name) -> file:date_time() | O
Types:
Name = filenane_all () | dirnane_all ()
Returns the date and time the specified file or directory was last modified, or O if the file does not exist.

wildcard(Wildcard) -> [file:filenanme()]
Types:
Wildcard = filenane() | dirnane()
Returnsalist of al files that match Unix-style wildcard string W | dcar d.

The wildcard string looks like an ordinary filename, except that the following "wildcard characters' are interpreted
in aspecial way:
?

Matches one character.

Matches any number of characters up to the end of the filename, the next dot, or the next slash.
Two adjacent * used as a single pattern match all files and zero or more directories and subdirectories.
[Characterl,Character?,...]

Matches any of the characterslisted. Two characters separated by ahyphen match arange of characters. Example:
[A- Z] matches any uppercase letter.

{Item,...}
Alternation. Matches one of the aternatives.

180 | Ericsson AB. All Rights Reserved.: STDLIB

filelib

Other charactersrepresent themselves. Only filenamesthat have exactly the same character in the same position match.

Matching is case-sensitive, for example, "a" does not match "A".

Notice that multiple "*" characters are allowed (asin Unix wildcards, but opposed to Windows/DOS wildcards).

Examples:
The following examples assume that the current directory is the top of an Erlang/OTP installation.
Tofind al . beamfilesin all applications, use the following line:

filelib:wildcard("lib/*/ebin/*.beam") .

Tofind. erl or. hrl inall applicationssr c directories, use either of the following lines:

filelib:wildcard("lib/*/src/*.?2rl")

filelib:wildcard("lib/*/src/*.{erl,hrl}")

Tofindal . hrl filesinsrc ori ncl ude directories:

filelib:wildcard("lib/*/{src,include}/*.hrl").

Tofindall . erl or. hrl filesineither src ori ncl ude directories:

filelib:wildcard("lib/*/{src,include}/*.{erl, hrl}")

Tofindal . erl or. hrl filesinany subdirectory:

filelib:wildcard("lib/**/*.{erl,hrl}")

wildcard(Wildcard, Cwd) -> [file:filename()]
Types:

Wildcard = filenane() | dirnane()

Cwd = dirname()

Sameaswi | dcar d/ 1, except that Ond is used instead of the working directory.

Ericsson AB. All Rights Reserved

.. STDLIB | 181

filename

filename

Erlang module

This module provides functions for analyzing and manipulating filenames. These functions are designed so that the
Erlang code can work on many different platforms with different filename formats. With filenameis meant al strings
that can be used to denote a file. The filename can be a short relative name like f 0o. er | , along absolute name
including a drive designator, a directory name like D: \ usr/ | ocal \ bi n\erl /Il i b\tool s\foo. erl, or any
variations in between.

In Windows, al functions return filenames with forward slashes only, even if the arguments contain backslashes. To
normalize a filename by removing redundant directory separators, usej oi n/ 1.

Themodule supportsraw filenamesintheway that if abinary ispresent, or thefilename cannot beinterpreted according
tothereturnvalueof fil e: nati ve_nanme_encodi ng/ 0, araw filenameisalso returned. For example, j oi n/ 1
provided with apath component that isabinary (and cannot be interpreted under the current native filename encoding)
resultsin araw filename that is returned (the join operation is performed of course). For more information about raw
filenames, seethef i | e module.

Data Types

basedir type() =
user cache |
user config |
user data |
user log |
site config |
site data

Exports

absname(Filename) -> file:filenane_all ()
Types:
Filename = file:name_all ()

Convertsarelative Fi | ename and returns an absol ute name. No attempt is made to create the shortest absol ute name,
asthis can give incorrect results on file systems that allow links.

Unix examples:

1> pwd().

"/usr/local"

2> filename:absname("foo").
"/usr/local/foo"

3> filename:absname("../x").

"/usr/local/../x"
4> filename:absname("/").
wyn

Windows examples:

1> pwd().

182 | Ericsson AB. All Rights Reserved.: STDLIB

filename

"D:/usr/local"

2> filename:absname("foo").
"D:/usr/local/foo"

3> filename:absname("../x").
"D:/usr/local/../x"

4> filename:absname("/").
npy

absname(Filename, Dir) -> file:filenane_all ()
Types:
Filename = Dir = file:nane_all ()

Same asabsnane/ 1, except that the directory to which the filename is to be made relative is specified in argument
Dir.

absname join(Dir, Filename) -> file:filename_all ()
Types:
Dir = Filename = file:name_all ()
Joins an absolute directory with a relative filename. Similar to j oi n/ 2, but on platforms with tight restrictions
on raw filename length and no support for symbolic links (read: VxWorks), leading parent directory components

in Fi | enane are matched against trailing directory componentsin Di r so they can be removed from the result -
minimizing its length.

basedir(Type, Application) -> file:filenane_all ()
Types:

Type = basedir _type()

Application = string() | binary()
Equivalent to basedir(Type, Application, #{}).

basedir(Type, Application, Opts) -> file:filenane_all ()
Types:
Type = basedir_type()
Application = string() | binary()
Opts =
#{author => string() | binary(),
0s => windows | darwin | linux,
version => string() | binary()}

Returns a suitable path, or paths, for a given type. If 0os is not set in Opt s the function will default to the native
option, that is' i nux' ," darwi n" or' wi ndows' , asunderstood by os: t ype/ 0. Anything not recognized as
"darwi n' or' wi ndows' isinterpretedas’ | i nux' .
Theoptions' aut hor' and' ver si on' areonly used with' wi ndows' option mode.
e user_cache

The path location is intended for transient data files on alocal machine.

On Linux: Respects the os environment variable XDG_CACHE_HOMVE.

1> filename:basedir(user cache, "my application", #{os=>linux}).

Ericsson AB. All Rights Reserved.: STDLIB | 183

filename

"/home/otptest/.cache/my application"

On Darwin:

1> filename:basedir(user cache, "my application", #{os=>darwin}).
"/home/otptest/Library/Caches/my application"

On Windows:

1> filename:basedir(user cache, "My App").

"c:/Users/otptest/AppData/Local/My App/Cache"

2> filename:basedir(user cache, "My App").

"c:/Users/otptest/AppData/Local/My App/Cache"

3> filename:basedir(user cache, "My App", #{author=>"Erlang"}).
"c:/Users/otptest/AppData/Local/Erlang/My App/Cache"

4> filename:basedir(user cache, "My App", #{version=>"1.2"}).
"c:/Users/otptest/AppData/Local/My App/1l.2/Cache"

5> filename:basedir(user cache, "My App", #{author=>"Erlang",version=>"1.2"}).
"c:/Users/otptest/AppData/Local/Erlang/My App/1l.2/Cache"

e user_config
The path location is intended for persistent configuration files.
On Linux: Respects the os environment variable XDG_CONFI G_HOME.

2> filename:basedir(user config, "my application", #{os=>linux}).
"/home/otptest/.config/my application"

On Darwin:

2> filename:basedir(user config, "my application", #{os=>darwin}).
"/home/otptest/Library/Application Support/my application"

On Windows:

1> filename:basedir(user config, "My App").

"c:/Users/otptest/AppData/Roaming/My App"

2> filename:basedir(user config, "My App", #{author=>"Erlang", version=>"1.2"}).
"c:/Users/otptest/AppData/Roaming/Erlang/My App/1.2"

e user_data
The path location isintended for persistent data files.
On Linux: Respects the os environment variable XDG_DATA HOVE.

3> filename:basedir(user data, "my application", #{os=>linux}).

"/home/otptest/.local/my application"

On Darwin:

184 | Ericsson AB. All Rights Reserved.: STDLIB

filename

3> filename:basedir(user data, "my application", #{os=>darwin}).
"/home/otptest/Library/Application Support/my application"

On Windows:

8> filename:basedir(user data, "My App").

"c:/Users/otptest/AppData/Local/My App"

9> filename:basedir(user data, "My App",#{author=>"Erlang",version=>"1.2"}).
"c:/Users/otptest/AppData/Local/Erlang/My App/1.2"

user | og
The path location is intended for transient log files on alocal machine.
On Linux: Respects the os environment variable XDG_CACHE _HOMVE.

4> filename:basedir(user log, "my application", #{os=>linux}).
"/home/otptest/.cache/my application/log"

On Darwin:

4> filename:basedir(user log, "my application", #{os=>darwin}).
"/home/otptest/Library/Caches/my application"

On Windows:

12> filename:basedir(user log, "My App").

"c:/Users/otptest/AppData/Local/My App/Logs"

13> filename:basedir(user log, "My App",#{author=>"Erlang",version=>"1.2"}).
"c:/Users/otptest/AppData/Local/Erlang/My App/1l.2/Logs"

site_config
On Linux: Respects the os environment variable XDG_CONFI G_DI RS.

5> filename:basedir(site data, "my application", #{os=>linux}).
["/usr/local/share/my application",

"/usr/share/my application"]
6> os:getenv("XDG CONFIG DIRS").
"/etc/xdg/xdg-ubuntu:/usr/share/upstart/xdg:/etc/xdg"
7> filename:basedir(site config, "my application", #{os=>linux}).
["/etc/xdg/xdg-ubuntu/my application",

"/usr/share/upstart/xdg/my application",

"/etc/xdg/my application"]
8> os:unsetenv("XDG CONFIG DIRS").
true
9> filename:basedir(site config, "my application", #{os=>linux}).
["/etc/xdg/my application"]

On Darwin:

Ericsson AB. All Rights Reserved

. STDLIB | 185

filename

5> filename:basedir(site config, "my application", #{os=>darwin}).
["/Library/Application Support/my application"]

e site data
On Linux: Respects the os environment variable XDG_DATA DI RS.

10> os:getenv("XDG DATA DIRS").
"/usr/share/ubuntu:/usr/share/gnome:/usr/local/share/:/usr/share/"
11> filename:basedir(site data, "my application", #{os=>linux}).
["/usr/share/ubuntu/my application",

"/usr/share/gnome/my application",

"/usr/local/share/my application",

"/usr/share/my application"]
12> os:unsetenv("XDG DATA DIRS").
true
13> filename:basedir(site data, "my application", #{os=>linux}).
["/usr/local/share/my application",

"/usr/share/my application"]

On Darwin:

5> filename:basedir(site data, "my application", #{os=>darwin}).
["/Library/Application Support/my application"]

basename(Filename) -> file:filenane_all ()
Types:
Filename = file:name_all ()
Returnsthe last component of Fi | enane, or Fi | enane itself if it does not contain any directory separators.
Examples:

5> filename:basename("foo").
Ilfooll

6> filename:basename("/usr/foo").
Ilfooll

7> filename:basename("/").

[1

basename(Filename, Ext) -> file:filename_all ()
Types:
Filename = Ext = file:nanme_all ()
Returns the last component of Fi | enane with extension Ext stripped. This function is to be used to remove

a (possible) specific extension. To remove an existing extension when you are unsure which one it is, use
r oot name(basenane(Fil enane)).

Examples:

186 | Ericsson AB. All Rights Reserved.: STDLIB

filename

8> filename:basename("~/src/kalle.erl", ".erl").

"kalle"

9> filename:basename("~/src/kalle.beam", ".erl").
"kalle.beam"

10> filename:basename("~/src/kalle.old.erl", ".erl").
"kalle.old"

11> filename:rootname(filename:basename("~/src/kalle.erl")).
"kalle"

12> filename:rootname(filename:basename("~/src/kalle.beam")).
"kalle"

dirname(Filename) -> file:filename_all ()
Types:
Filename = file:nanme_all ()
Returns the directory part of Fi | enane.
Examples:

13> filename:dirname("/usr/src/kalle.erl").
"Jusr/src"
14> filename:dirname("kalle.erl").

5> filename:dirname("\\usr\\src/kalle.erl"). % Windows
"Jusr/src"

extension(Filename) -> file:filenane_all ()
Types:
Filename = file:nanme_all ()
Returnsthe file extension of Fi | enarme, including the period. Returns an empty string if no extension exists.
Examples:

15> filename:extension("foo.erl").
".erl"
16> filename:extension("beam.src/kalle").

[1

find src(Beam) ->

{SourceFile, Options} | {error, {ErrorReason, Module}}
find src(Beam, Rules) ->

{SourceFile, Options} | {error, {ErrorReason, Module}}
Types:

Ericsson AB. All Rights Reserved.: STDLIB | 187

filename

Beam = Module | Filename
Filename = atom() | string()
Rules = [{BinSuffix :: string(), SourceSuffix :: string()}]
Module = module()
SourceFile = string()
Options = [Option]
Option =
{i, Path :: string()} |
{outdir, Path :: string()} |
{d, atom()}

ErrorReason = non_existing | preloaded | interpreted

Findsthe source filename and compiler optionsfor amodule. Theresult canbefedto conpi | e: fi | e/ 2 tocompile
thefile again.

Warning:

It is not recommended to use this function. If possible, use the beam | i b(3) module to extract the abstract
code format from the Beam file and compile that instead.

Argument Beam which can be a string or an atom, specifies either the module name or the path to the source
code, with or without extension " . er | ". In either case, the module must be known by the code server, that is,
code: whi ch(Mbdul e) must succeed.

Rul es describes how the source directory can be found when the object code directory isknown. Itisalist of tuples
{Bi nSuf fi x, SourceSuffix} andisinterpreted as follows: if the end of the directory name where the object
is located matches Bi nSuf f i x, then the source code directory has the same name, but with Bi nSuf f i x replaced
by Sour ceSuf f i x. Rul es defaultsto:

g, """}y, {"ebin", "src"}, {"ebin", "esrc"}]

If the source file is found in the resulting directory, the function returns that location together with Opt i ons.
Otherwise the next ruleistried, and so on.

The function returns { SourceFil e, Options} if it succeeds. Sour ceFi | e is the absolute path to the
source file without extension " . er | " . Opt i ons includes the options that are necessary to recompile the file with
conpi l e: fil el 2, but excludes options such asr eport and ver bose, which do not change the way code is
generated. The pathsinoptions{ out di r, Path} and{i, Path} areguaranteed to be absolute.

flatten(Filename) -> file:filenane_all ()
Types:
Filename = file:name_all ()
Converts a possibly deep list filename consisting of characters and atoms into the corresponding flat string filename.

join(Components) -> file:filenanme_all ()
Types.

188 | Ericsson AB. All Rights Reserved.: STDLIB

filename

Components = [file:nanme_all ()]

Joins alist of filename Conponent s with directory separators. If one of the elements of Conponent s includes an
absolute path, such as" / xxx" , the preceding elements, if any, are removed from the result.

Theresult is"normalized":

e Redundant directory separators are removed.
e InWindows, all directory separators are forward slashes and the drive letter isin lower case.

Examples:

17> filename:join(["/usr", "local", "bin"]).
"/usr/local/bin"

18> filename:join(["a/b///c/"]).

"a/b/C"

6> filename:join(["B:a\\b///c/"]1). % Windows
"b:a/b/c"

join(Namel, Name2) -> file:filenanme_all ()
Types:
Namel = Name2 = file:name_all ()

Joins two filename components with directory separators. Equivalent toj oi n([Namel, Name2?]).

nativename(Path) -> file:filenanme_all ()
Types:
Path = file:nanme_all ()

ConvertsPat h toaform accepted by the command shell and native applications on the current platform. On Windows,
forward slashes are converted to backward slashes. On al platforms, the nameis normalized asdoneby j oi n/ 1.

Examples:

19> filename:nativename("/usr/local/bin/"). % Unix
"/usr/local/bin"

7> filename:nativename("/usr/local/bin/"). % Windows
"\\usr\\local\\bin"

pathtype(Path) -> absolute | relative | volumerelative
Types:
Path = file:nanme_all ()
Returns the path type, which is one of the following:
absol ute
The path name refers to a specific file on a specific volume.

Ericsson AB. All Rights Reserved.: STDLIB | 189

filename

Unix example: / usr/ | ocal / bi n
Windows example: D: / usr/ | ocal / bi n
relative

The path name is relative to the current working directory on the current volume.
Example: f oo/ bar, ../src
vol unerel ative

The path name is relative to the current working directory on a specified volume, or it is a specific file on the
current working volume.

Windows example: D: bar . erl, /bar/foo.erl

rootname(Filename) -> file:filenane_all ()
rootname(Filename, Ext) -> file:filenane_all ()
Types:
Filename = Ext = file:nanme_all ()
Removes a filename extension. r oot nane/ 2 works as r oot name/ 1, except that the extension is removed only
ifitisExt.

Examples:

20> filename:rootname("/beam.src/kalle").
/beam.src/kalle"

21> filename:rootname("/beam.src/foo.erl").
"/beam.src/foo"

22> filename:rootname("/beam.src/foo.erl", ".erl").
"/beam.src/foo"
23> filename:rootname("/beam.src/foo.beam", ".erl").

"/beam.src/foo.beam"

split(Filename) -> Components
Types:
Filename = file:nanme_all ()
Components = [file:name_all ()]

Returns alist whose elements are the path components of Fi | enane.
Examples:

24> filename:split("/usr/local/bin").
[*/","usr","local","bin"]

25> filename:split("foo/bar").

["foo", "bar"]

26> filename:split("a:\\msdev\\include").
["a:/","msdev", "include"]

190 | Ericsson AB. All Rights Reserved.: STDLIB

gb_sets

gb sets

Erlang module

This module provides ordered sets using Prof. Arne Andersson's General Balanced Trees. Ordered sets can be much
more efficient than using ordered lists, for larger sets, but depends on the application.

This module considers two elements as different if and only if they do not compare equal (==).

Complexity Note

The complexity on set operations is bounded by either O(|S]) or O(|T| * log(|S])), where S is the largest given
set, depending on which is fastest for any particular function call. For operating on sets of aimost equal size, this
implementation is about 3 times slower than using ordered-list sets directly. For sets of very different sizes, however,
this solution can be arbitrarily much faster; in practical cases, often 10-100 times. This implementation is particularly
suited for accumulating elements afew at atime, building up alarge set (> 100-200 elements), and repeatedly testing
for membership in the current set.

Aswith normal tree structures, lookup (membership testing), insertion, and deletion have logarithmic complexity.

Compatibility

The following functions in this module also exist and provides the same functionality in the set s(3) and
ordset s(3) modules. That is, by only changing the module name for each call, you can try out different set
representations.

e add_elenent/2

« del _elenent/2

« filter/2

- fold/3

o fromlist/1

e intersection/1

e intersection/2

e is_elenent/2

e is_set/l

e is_subset/2

* newo

e sizell

e subtract/2

e to list/1

e union/1l

e union/2

Data Types
set (Element)
A general balanced set.

Ericsson AB. All Rights Reserved.: STDLIB | 191

gb_sets

set() = set (term())
iter(Element)
A general balanced set iterator.

iter() = iter (term())

Exports

add(Element, Setl) -> Set2
add element(Element, Setl) -> Set2
Types:

Setl = Set2 = set (Element)

Returns anew set formed from Set 1 with El enent inserted. If El ement isalready an element in Set 1, nothing
is changed.

balance(Setl) -> Set2
Types:
Setl = Set2 = set (Element)
Rebalances the tree representation of Set 1. Notice that thisis rarely necessary, but can be motivated when a large

number of elements have been deleted from the tree without further insertions. Rebalancing can then be forced to
minimise lookup times, as deletion does not rebalance the tree.

del element(Element, Setl) -> Set2
Types:
Setl = Set2 = set (Element)

Returns a new set formed from Set 1 with El enent removed. If El ement isnot an element in Set 1, nothing is
changed.

delete(Element, Setl) -> Set2
Types.
Setl = Set2 = set (Element)

Returns a new set formed from Set 1 with El erent removed. Assumesthat El enment ispresentin Set 1.

delete any(Element, Setl) -> Set2
Types:
Setl = Set2 = set (Element)
Returns a new set formed from Set 1 with El enrent removed. If El enent isnot an element in Set 1, nothing is
changed.

difference(Setl, Set2) -> Set3
Types.
Setl = Set2 = Set3 = set (Element)

Returns only the elements of Set 1 that are not also elements of Set 2.

192 | Ericsson AB. All Rights Reserved.: STDLIB

gb_sets

empty() -> Set

Types:
Set = set()
Returns a new empty set.

filter(Pred, Setl) -> Set2

Types:
Pred fun((Element) -> boolean())
Setl = Set2 = set (Element)

Filters elementsin Set 1 using predicate function Pr ed.

fold(Function, AccO, Set) -> Accl

Types:
Function = fun((Element, AccIn) -> AccOut)
AccO = Accl = AccIn = AccOut = Acc
Set = set (Element)

FoldsFunct i on over every element in Set returning the fina value of the accumulator.

from list(List) -> Set
Types.
List = [Element]
Set = set (Element)

Returns a set of the elementsinLi st , whereLi st can be unordered and contain duplicates.

from ordset(List) -> Set
Types:

List = [Element]

Set = set (Element)

Turns an ordered-set list Li st into aset. Thelist must not contain duplicates.

insert(Element, Setl) -> Set2
Types:
Setl = Set2 = set (Element)

Returns anew set formed from Set 1 with El errent inserted. Assumesthat El errent isnot presentin Set 1.

intersection(SetList) -> Set
Types.
SetList = [set (Element), ...]
Set = set (Element)

Returns the intersection of the non-empty list of sets.

Ericsson AB. All Rights Reserved.: STDLIB | 193

gb_sets

intersection(Setl, Set2) -> Set3
Types:
Setl = Set2 = Set3 = set (Element)

Returns the intersection of Set 1 and Set 2.

is disjoint(Setl, Set2) -> boolean()
Types.
Setl = Set2 = set (Element)

Returnst r ue if Set 1 and Set 2 are digjoint (have no elementsin common), otherwisef al se.

is element(Element, Set) -> boolean()
Types:
Set = set (Element)
Returnst r ue if El enment isan element of Set , otherwisef al se.

is empty(Set) -> boolean()
Types:
Set = set ()
Returnst r ue if Set isan empty set, otherwisef al se.

is member(Element, Set) -> boolean()
Types.
Set = set (Element)
Returnst r ue if El ement isan element of Set , otherwisef al se.

is set(Term) -> boolean()
Types:
Term = term()
Returnst r ue if Ter mappearsto be a set, otherwisef al se.

is subset(Setl, Set2) -> boolean()
Types:
Setl = Set2 = set (Element)

Returnst r ue when every element of Set 1 isaso amember of Set 2, otherwisef al se.

iterator(Set) -> Iter
Types.
Set = set (Element)
Iter = iter (Element)

Returns an iterator that can be used for traversing the entries of Set ; see next / 1. The implementation of thisis
very efficient; traversing the whole set using next / 1 isonly slightly slower than getting the list of all elementsusing

194 | Ericsson AB. All Rights Reserved.: STDLIB

gb_sets

to_li st/ 1 andtraversing that. The main advantage of the iterator approach isthat it does not require the complete
list of all elementsto be built in memory at one time.

iterator from(Element, Set) -> Iter
Types.

Set = set (Element)

Iter = iter (Element)

Returns an iterator that can be used for traversing the entries of Set ; seenext / 1. The difference as compared to the
iterator returned by i t er at or/ 1 isthat the first element greater than or equal to El enent isreturned.

largest(Set) -> Element
Types:
Set = set (Element)
Returnsthe largest element in Set . Assumesthat Set is not empty.

new() -> Set
Types:

Set = set()
Returns a new empty set.

next(Iterl) -> {Element, Iter2} | none
Types.
Iterl = Iter2 = iter (Element)

Returns{ El ement, |t er2},whereEl ement isthe smallest element referred to by iterator 1 t er 1,and | t er 2
isthe new iterator to be used for traversing the remaining elements, or the atom none if no elements remain.

singleton(Element) -> set (Element)
Returns a set containing only element El enent .

size(Set) -> integer() >= 0
Types.

Set = set ()
Returns the number of elementsin Set .

smallest(Set) -> Element
Types.
Set = set (Element)
Returns the smallest element in Set . Assumesthat Set isnot empty.

subtract(Setl, Set2) -> Set3
Types.
Setl = Set2 = Set3 = set (Element)

Returns only the elements of Set 1 that are not also elements of Set 2.

Ericsson AB. All Rights Reserved.: STDLIB | 195

gb_sets

take largest(Setl) -> {Element, Set2}
Types:
Setl = Set2 = set (Element)

Returns{ El enent, Set 2},whereEl enent isthelargest elementin Set 1, and Set 2 isthis set with El enent
deleted. Assumesthat Set 1 isnot empty.

take smallest(Setl) -> {Element, Set2}
Types.
Setl = Set2 = set (Element)

Returns{ El erent, Set 2} ,whereEl enment isthesmallest elementin Set 1, and Set 2 isthisset with El enent
deleted. Assumesthat Set 1 isnot empty.

to list(Set) -> List
Types:
Set = set (Element)
List = [Element]

Returns the elements of Set asalist.

union(SetList) -> Set

Types.
SetList = [set (Element), ...]
Set = set (Element)

Returns the merged (union) set of the list of sets.

union(Setl, Set2) -> Set3
Types:
Setl = Set2 = Set3 = set (Element)

Returns the merged (union) set of Set 1 and Set 2.

See Also
gb_trees(3),ordsets(3),sets(3)

196 | Ericsson AB. All Rights Reserved.: STDLIB

gb_trees

gb trees

Erlang module

This module provides Prof. Arne Andersson's General Balanced Trees. These have no storage overhead compared to
unbalanced binary trees, and their performance is better than AVL trees.

This module considers two keys as different if and only if they do not compare equal (==).

Data Structure

{Size, Tree}

Tr ee is composed of nodes of theform { Key, Val ue, Snml |l er, Bi gger} andthe"empty tree" nodeni | .
Thereisno attempt to balance trees after deletions. As deletions do not increase the height of atree, this should be OK.

The original balance condition h(T) <= ceil(c * log(|T])) has been changed to the similar (but not quite equivalent)
condition 2 h(T) <= |T| " c. This should aso be OK.

Data Types
tree(Key, Value)
A general balanced tree.

tree() = tree(term(), term())
iter(Key, Value)

A general balanced tree iterator.
iter() =iter (term(), term())

Exports

balance(Treel) -> Tree2
Types.
Treel = Tree2 = tree(Key, Value)

Rebalances Tr eel. Notice that this is rarely necessary, but can be motivated when many nodes have been deleted
from the tree without further insertions. Rebalancing can then be forced to minimize lookup times, as deletion does
not rebalance the tree.

delete(Key, Treel) -> Tree2
Types:
Treel = Tree2 = tree(Key, Value)

Removes the node with key Key from Tr eel and returns the new tree. Assumes that the key is present in the tree,
crashes otherwise.

delete any(Key, Treel) -> Tree2
Types.

Ericsson AB. All Rights Reserved.: STDLIB | 197

gb_trees

Treel = Tree2 = tree(Key, Value)
Removes the node with key Key from Tr eel if the key is present in the tree, otherwise does nothing. Returns the
new tree.

empty() -> tree()
Returns a new empty tree.

enter(Key, Value, Treel) -> Tree2
Types:
Treel = Tree2 = tree(Key, Value)

InsertsKey withvalueVal ue into Tr eel if thekey isnot present in the tree, otherwise updates Key to valueVal ue
inTr eel. Returnsthe new tree.

from orddict(List) -> Tree

Types.
List = [{Key, Value}]
Tree = tree(Key, Value)

Turnsan ordered list Li st of key-valuetuplesinto atree. Thelist must not contain duplicate keys.

get(Key, Tree) -> Value
Types:
Tree = tree(Key, Value)
Retrieves the value stored with Key in Tr ee. Assumes that the key is present in the tree, crashes otherwise.

insert(Key, Value, Treel) -> Tree2
Types:
Treel = Tree2 = tree(Key, Value)

Inserts Key with value Val ue into Tr eel and returns the new tree. Assumes that the key is not present in the tree,
crashes otherwise.

is defined(Key, Tree) -> boolean()
Types:

Tree = tree(Key, Value :: term())
Returnst r ue if Key ispresentin Tr ee, otherwisef al se.

is empty(Tree) -> boolean()
Types:
Tree = tree()
Returnst r ue if Tr ee isan empty tree, othwewisef al se.

iterator(Tree) -> Iter
Types:

198 | Ericsson AB. All Rights Reserved.: STDLIB

gb_trees

Tree tree(Key, Value)

Iter = iter (Key, Value)
Returns an iterator that can be used for traversing the entries of Tr ee; see next / 1. The implementation of thisis
very efficient; traversing thewholetree using next / 1 isonly slightly slower than getting thelist of all elementsusing

to_li st/ 1 andtraversing that. The main advantage of the iterator approach isthat it does not require the complete
list of all elementsto be built in memory at one time.

iterator from(Key, Tree) -> Iter

Types.
Tree = tree(Key, Value)
Iter = iter (Key, Value)

Returns an iterator that can be used for traversing the entries of Tr ee; see next / 1. The difference as compared to
theiterator returned by i t er at or/ 1 isthat thefirst key greater than or equal to Key is returned.

keys(Tree) -> [Key]
Types.

Tree = tree(Key, Value :: term())
Returnsthe keysin Tr ee asan ordered list.

largest(Tree) -> {Key, Value}
Types.
Tree = tree(Key, Value)

Returns{ Key, Val ue}, where Key isthe largest key in Tr ee, and Val ue isthe value associated with this key.
Assumes that the tree is not empty.

lookup(Key, Tree) -> none | {value, Value}
Types:
Tree = tree(Key, Value)
Looksup Key inTr ee. Returns{ val ue, Val ue}, or none if Key isnot present.

map (Function, Treel) -> Tree2

Types:
Function = fun((K :: Key, V1 :: Valuel) -> V2 :: Value2)
Treel = tree(Key, Valuel)
Tree2 = tree(Key, Value2)

Maps function F(K, V1) -> V2 to all key-value pairs of tree Tr ee 1. Returns a new tree Tr ee2 with the same set of
keysas Tr eel and the new set of values V2.

next(Iterl) -> none | {Key, Value, Iter2}
Types:
Iterl = Iter2 = iter (Key, Value)

Returns{ Key, Val ue, Iter2},whereKey isthesmallest key referredto by iterator I t er 1, and | t er 2 isthe
new iterator to be used for traversing the remaining nodes, or the atom none if no nodes remain.

Ericsson AB. All Rights Reserved.: STDLIB | 199

gb_trees

size(Tree) -> integer() >= 0
Types:

Tree = tree()
Returns the number of nodesin Tr ee.

smallest(Tree) -> {Key, Value}
Types:
Tree = tree(Key, Value)

Returns{ Key, Val ue}, whereKey isthesmallest key in Tr ee, and Val ue isthe value associated with this key.
Assumes that the tree is not empty.

take largest(Treel) -> {Key, Value, Tree2}
Types:
Treel = Tree2 = tree(Key, Value)

Returns{ Key, Val ue, Tree2},whereKey isthelargestkeyinTreel, Val ue isthevalue associated with this
key, and Tr ee?2 isthistree with the corresponding node deleted. Assumes that the tree is not empty.

take smallest(Treel) -> {Key, Value, Tree2}
Types:
Treel = Tree2 = tree(Key, Value)

Returns{ Key, Val ue, Tree?2}, whereKey isthe smallest key in Tr eel, Val ue isthe value associated with
thiskey, and Tr ee2 isthistree with the corresponding node deleted. Assumes that the tree is not empty.

to list(Tree) -> [{Key, Value}]
Types:
Tree = tree(Key, Value)
Converts atree into an ordered list of key-value tuples.

update(Key, Value, Treel) -> Tree2
Types.
Treel = Tree2 = tree(Key, Value)

Updates Key to value Val ue in Tr eel and returns the new tree. Assumes that the key is present in the tree.

values(Tree) -> [Value]
Types:
Tree = tree(Key :: term(), Value)
Returnsthe valuesin Tr ee as an ordered list, sorted by their corresponding keys. Duplicates are not removed.

See Also
dict(3),gb_sets(3)

200 | Ericsson AB. All Rights Reserved.: STDLIB

gen_event

gen_event

Erlang module

This behavior module provides event handling functionality. It consists of a generic event manager process with any
number of event handlers that are added and deleted dynamically.

An event manager implemented using this module has a standard set of interface functions and includes functionality
for tracing and error reporting. It also fits into an OTP supervision tree. For more information, see OTP Design
Principles.

Each event handler is implemented as a callback module exporting a predefined set of functions. The relationship
between the behavior functions and the callback functionsis as follows:

gen_event module Callback module

gen_event:start
gen_event:start_link ----- > -

gen_event:add handler
gen_event:add sup handler ----- > Module:init/1

gen_event:notify
gen_event:sync notify = ----- > Module:handle event/2

gen event:call ----- > Module:handle call/2
----- > Module:handle info/2
gen_event:delete handler ----- > Module:terminate/2

gen_event:swap handler
gen_event:swap_sup handler ----- > Modulel:terminate/2
Module2:init/1

gen_event:which handlers ----- > -
gen event:stop = ----- > Module:terminate/2

----- > Module:code change/3

Aseach event handler isone callback module, an event manager has many callback modulesthat are added and deleted
dynamically. gen_event istherefore moretolerant of callback module errors than the other behaviors. If a callback
function for an installed event handler fails with Reason, or returns a bad value Ter m the event manager does not
fail. It deletesthe event handler by calling callback function Modul e: t er mi nat e/ 2, givingasargument{ er r or,
{'EXIT , Reason}} or{error, Ter n}, respectively. No other event handler is affected.

A gen_event processhandlessystem messagesasdescribedinsys(3) . Thesys modulecan beused for debugging
an event manager.

Notice that an event manager does trap exit signals automatically.

Thegen_event processcan gointo hibernation (see er | ang: hi ber nat e/ 3) if acallback function in ahandler
module specifieshi ber nat e initsreturn value. Thiscan be useful if the server is expected to beidlefor along time.
However, use this feature with care, as hibernation implies at least two garbage collections (when hibernating and
shortly after waking up) and is not something you want to do between each event handled by a busy event manager.

Ericsson AB. All Rights Reserved.: STDLIB | 201

gen_event

Notice that when multiple event handlers are invoked, it is sufficient that one single event handler returns a
hi ber nat e reguest for the whole event manager to go into hibernation.

Unless otherwise stated, all functions in this module fail if the specified event manager does not exist or if bad
arguments are specified.

Data Types

handler() = atom() | {atom(), term()}

handler args() = term()

add handler ret() = ok | term() | {'EXIT', term()}
del handler ret() = ok | term() | {'EXIT', term()}

Exports

add handler(EventMgrRef, Handler, Args) -> Result
Types:

Event Myr Ref = Nane | {Nane, Node} | {gl obal, d obal Nane} |

{vi a, Mbdul e, Vi aNane} | pid()

Name = Node = atom()

d obal Nane = ViaNane = term()

Handl er = Modul e | {Mdul e, | d}

Modul e = atom()

Id = term()

Args = term))

Result = ok | {'EXIT ,Reason} | term)

Reason = term()

Adds anew event handler to event manager Event Myr Ref . The event manager calls Modul e: i ni t/ 1 toinitiate
the event handler and itsinternal state.

Event Mgr Ref can be any of the following:

e Thepid

« Nane, if the event manager islocaly registered

 {Nane, Node}, if the event manager islocally registered at another node

« {gl obal, d obal Nane}, if the event manager is globally registered

« {via, Modul e, Vi aNane}, if the event manager is registered through an alternative process registry

Handl er is the name of the callback module Modul e or a tuple { Modul e, | d}, where | d is any term. The

{ Modul e, | d} representation makes it possible to identify a specific event handler when many event handlers use
the same callback module.

Ar gs isany term that is passed as the argument to Modul e: init/ 1.

If Modul e:init/1 returns a correct value indicating successful completion, the event manager adds the event
handler and this function returns ok. If Modul e: i ni t/ 1 failswith Reason or returns{ er r or, Reason}, the
event handler isignored and thisfunction returns{' EXI T' , Reason} or{error, Reason}, respectively.

add sup handler(EventMgrRef, Handler, Args) -> Result
Types:

202 | Ericsson AB. All Rights Reserved.: STDLIB

gen_event

Event Mgr Ref = Nane | {Nane, Node} | {gl obal, d obal Nane} |
{vi a, Modul e, Vi aNanme} | pid()

Name = Node = atom()

A obal Nane = ViaName = term()

Handl er = Modul e | {Mdul e, | d}

Modul e = atom()

Id = term)

Args = term)

Result = ok | {'EXIT ,Reason} | term()
Reason = term)

Adds a new event handler in the same way as add_handl er/ 3, but aso supervises the connection between the
event handler and the calling process.

e |If thecalling process later terminates with Reason, the event manager deletes the event handler by calling
Modul e: t er m nat e/ 2 with{ st op, Reason} asargument.
o |If the event handler is deleted later, the event manager sends a
message{ gen_event _EXI T, Handl er, Reason} tothe calling process. Reason isone of the following:
e normal, if the event handler has been removed because of a call to del ete_handl er/ 3, or
r enove_handl er hasbeen returned by a callback function (see below).
* shut down, if the event handler has been removed because the event manager is terminating.

 {swapped, NewHandl er, Pi d}, if the process Pi d has replaced the event handler with another event
handler NewHand! er usingacal to swap_handl er/ 3 or swap_sup_handl er/ 3.

e Aterm, if the event handler is removed because of an error. Which term depends on the error.

For a description of the arguments and return values, seeadd_handl er/ 3.

call(EventMgrRef, Handler, Request) -> Result
call(EventMgrRef, Handler, Request, Timeout) -> Result
Types:
Event Mgr Ref = Nane | {Nane, Node} | {gl obal, d obal Nane} |
{vi a, Modul e, Vi aNane} | pid()
Name = Node = atom()
A obal Nane = ViaName = term()
Handl er = Modul e | {Modul e, | d}
Modul e = atom()

Id = tern()

Request = term))

Timeout = int()>0 | infinity
Result = Reply | {error,Error}

Reply = term()
Error = bad_nodule | {'EXIT' ,Reason} | tern()
Reason = term()

Makesasynchronouscall to event handler Handl er installed in event manager Event Mgr Ref by sending arequest
and waiting until areply arrivesor atime-out occurs. The event manager calls Modul e: handl e_cal | / 2 tohandle
the request.

For adescription of Event Myr Ref and Handl er , seeadd_handl er/ 3.

Ericsson AB. All Rights Reserved.: STDLIB | 203

gen_event

Request isany term that is passed as one of the argumentsto Modul e: handl e_cal | / 2.

Ti meout is an integer greater than zero that specifies how many milliseconds to wait for a reply, or the atom
i nfinity towait indefinitely. Defaults to 5000. If no reply is received within the specified time, the function call
fails.

ThereturnvalueRepl y isdefinedinthereturnvalueof Modul e: handl e_cal | / 2. 1f thespecified event handler is
not installed, the function returns{ er r or , bad_nodul e} . If the callback function failswith Reason or returnsan
unexpected value Ter m thisfunction returns{ error, {" EXIT' , Reason}} or{error, Tern}, respectively.

delete handler(EventMgrRef, Handler, Args) -> Result
Types:
Event Mgr Ref = Nane | {Nane, Node} | {gl obal, d obal Nane} |
{vi a, Modul e, Vi aNanme} | pid()
Name = Node = atom()
A obal Nanme = ViaName = term()
Handl er = Modul e | {Modul e, | d}
Modul e = atom()
Id = term)
Args = term)
Result = term() | {error,nodule_not_found} | {' EXIT , Reason}
Reason = term()

Deletes an event handler from event manager Event Myr Ref . The event manager calls Modul e: term nat e/ 2
to terminate the event handler.

For adescription of Event Myr Ref and Handl er , seeadd_handl er/ 3.
Ar gs isany term that is passed as one of the argumentsto Modul e: t er mi nat e/ 2.

The return value is the return value of Modul e: t er mi nat e/ 2. If the specified event handler is not installed, the
functionreturns{ er r or, nodul e_not _f ound} . If the callback function failswith Reason, the function returns
{'EXIT , Reason}.

notify(EventMgrRef, Event) -> ok
sync_notify(EventMgrRef, Event) -> ok
Types.
Event Mgr Ref = Nane | {Nane, Node} | {gl obal, d obal Nane} |
{vi a, Modul e, Vi aNane} | pid()
Name = Node = atom()
G obal Name = ViaNane = term)
Event = tern()

Sends an event notification to event manager EventMgrRef. The event manager calls
Modul e: handl e_event / 2 for each installed event handler to handle the event.

not i f y/ 2 isasynchronous and returnsimmediately after the event notification has been sent. sync_noti fy/ 2 is
synchronousin the sense that it returns ok after the event has been handled by all event handlers.

For adescription of Event Myr Ref , seeadd_handl| er/ 3.
Event isany term that is passed as one of the argumentsto Modul e: handl e_event/ 2.
not i fy/ 1 doesnot fail even if the specified event manager does not exist, unlessit is specified as Nane.

204 | Ericsson AB. All Rights Reserved.: STDLIB

gen_event

start() -> Result
start(EventMgrName) -> Result
Types.
Event Mgr Nane = {l ocal , Nane} | {gl obal, d obal Nane} | {vi a, Modul e, Vi aNane}
Name = atom()
d obal Nane = ViaNanme = term()
Result = {ok,Pid} | {error,{already_started, Pid}}
Pid = pid()
Creates a stand-alone event manager process, that is, an event manager that is not part of a supervision tree and thus
has no supervisor.

For a description of the arguments and return values, seest art _| i nk/ 0, 1.

start _link() -> Result
start _link(EventMgrName) -> Result
Types.
Event Mgr Nane = {l ocal, Nane} | {gl obal, d obal Nane} | {via, Modul e, Vi aNane}
Name = atom()
G obal Name = ViaNane = term()
Result = {ok,Pid} | {error,{already_started, Pid}}
Pid = pid()
Creates an event manager process as part of a supervision tree. The function isto be called, directly or indirectly, by
the supervisor. For example, it ensures that the event manager is linked to the supervisor.
« If Event Mgr Name={| ocal , Nan®e}, the event manager isregistered locally as Nane using r egi st er/ 2.

e If Event Mgr Nane={ gl obal , G obal Nane}, the event manager is registered globally as @ obal Nane
using gl obal : regi st er _nane/ 2. If no name s provided, the event manager is not registered.

« If Event Mgr Nanme={vi a, Modul e, Vi aNane}, the event manager registers with the registry represented
by Modul e. The Modul e calback isto export the functionsr egi st er _name/ 2, unr egi st er _nane/ 1,
wher ei s_nane/ 1, and send/ 2, which are to behave as the corresponding functions in gl obal . Thus,
{vi a, gl obal , G obal Nane} isavalid reference.

If the event manager is successfully created, the function returns { ok, Pi d}, where Pi d is the pid of the
event manager. If a process with the specified Event Myr Nane exists aready, the function returns { er r or,
{already_started, Pid}},wherePi disthepid of that process.

stop(EventMgrRef) -> ok
stop(EventMgrRef, Reason, Timeout) -> ok
Types:
Event Mgr Ref = Nane | {Nane, Node} | {gl obal, d obal Nane} |
{vi a, Modul e, Vi aNane} | pid()
Name = Node = atom()
A obal Nane = ViaName = term()
Reason = term)
Timeout = int()>0 | infinity
Orders event manager Event Myr Ref to exit with the specifies Reason and waits for it to terminate. Before
terminating, gen_event calls Modul e: t er mi nat e(stop, .. .) for eachinstalled event handler.

Ericsson AB. All Rights Reserved.: STDLIB | 205

gen_event

The function returns ok if the event manager terminates with the expected reason. Any other reason than nor nal ,
shut down, or { shut down, Ter n} causesan error report to beissued using error _| ogger: format/ 2. The
default Reason isnor nmal .

Ti meout is an integer greater than zero that specifies how many milliseconds to wait for the event manager to
terminate, or theatomi nf i ni t y towaitindefinitely. Defaultstoi nf i ni t y. If theevent manager hasnot terminated
within the specified time, at i meout exception israised.

If the process does not exist, anopr oc exception is raised.
For adescription of Event Myr Ref , seeadd_handl er/ 3.

swap_handler(EventMgrRef, {Handlerl,Argsl}, {Handler2,Args2}) -> Result
Types:

Event Mgr Ref = Nane | {Nane, Node} | {gl obal, d obal Nane} |

{vi a, Modul e, Vi aNanme} | pid()

Name = Node = atom()

d obal Nane = ViaNane = term()

Handl er1 = Handl er2 = Mddul e | {Mdul e, Id}

Modul e = atom()

Id = ternm()

Argsl = Args2 = term()

Result = ok | {error,Error}

Error = {" EXIT',Reason} | term()

Reason = term()

Replaces an old event handler with a new event handler in event manager Event Mgr Ref .
For a description of the arguments, seeadd_handl er/ 3.

First theold event handler Handl er 1 isdeleted. Theevent manager callsModul el: t er mi nat e(Argsl, ...),
where Modul el isthe callback module of Handl er 1, and collects the return value.

Then the new event handler Handl er 2 is added and initiated by calling Modul e2:i nit ({Args2, Tern}),
where Modul e2 isthe callback module of Handl er 2 and Ter misthereturn value of Modul el: t er m nat e/ 2.
This makes it possible to transfer information from Handl er 1 to Handl er 2.

The new handler is added even if the the specified old event handler is not installed, in which case Ter m=er r or
or if Modul el: t er m nat e/ 2 fails with Reason, in which case Ter m={' EXI T' , Reason} . The old handler
is deleted even if Modul e2: i ni t/ 1 fails.

If there was a supervised connection between Handl er 1 and aprocessPi d, thereisasupervised connection between
Handl er 2 and Pi d instead.

If Modul e2:i ni t/ 1 returns a correct value, this function returns ok. If Modul e2: i ni t/ 1 fails with Reason
or returns an unexpected value Ter m this function returns{error, {' EXI T' , Reason}} or{error, Ternt},
respectively.

swap_sup_handler(EventMgrRef, {Handlerl,Argsl}, {Handler2,Args2}) -> Result
Types:
Event Myr Ref = Nane | {Nane, Node} | {gl obal, d obal Nane} |
{vi a, Mbdul e, Vi aNane} | pid()
Name = Node = atom()
d obal Nane = ViaNane = term()

206 | Ericsson AB. All Rights Reserved.: STDLIB

gen_event

Handl er1 = Handler 2 = Module | {Mdul e, | d}
Modul e = atom()
Id = term()
Argsl = Args2 = term()
Result = ok | {error,Error}
Error = {" EXIT', Reason} | tern()
Reason = term()

Replaces an event handler in event manager Event Myr Ref in the same way as swap_handl er/ 3, but also
supervises the connection between Handl er 2 and the calling process.

For a description of the arguments and return values, see swap_handl er/ 3.

which handlers(EventMgrRef) -> [Handler]

Types.
Event Mgr Ref = Nane | {Nanme, Node} | {gl obal, d obal Nane} |
{vi a, Modul e, Vi aNane} | pid()

Name = Node = atom()

G obal Name = ViaNane = term()
Handl er = Modul e | {Mdul e, | d}
Modul e = atom()

Id = tern()

Returnsalist of all event handlersinstalled in event manager Event Myr Ref .
For adescription of Event Myr Ref and Handl er , seeadd_handl er/ 3.

Callback Functions

The following functions are to be exported from agen_event calback module.

Exports

Module:code change(OldVsn, State, Extra) -> {ok, NewState}

Types:
advsn = Vsn | {down, Vsn}
Vsn = tern()
State = NewState = term))
Extra = tern()

This function is caled for an instaled event handler that is to update its internal state during
a release upgrade/downgrade, that is, when the instruction {updat e, Modul e, Change, ...}, where
Change={ advanced, Extr a},isspecifiedinthe. appup file. For moreinformation, see OTP Design Principles.

For an upgrade, O dVsn is Vsn, and for a downgrade, A dVsn is {down, Vsn}. Vsn is defined by the vsn
attribute(s) of the old version of the callback module Mbdul e. If no such attribute is defined, the version is the
checksum of the Beam file.

St at e istheinternal state of the event handler.
Ext raispassed "asis' fromthe{ advanced, Ext r a} part of the update instruction.
The function isto return the updated internal state.

Ericsson AB. All Rights Reserved.: STDLIB | 207

gen_event

Module:format status(Opt, [PDict, State]) -> Status

Types:
Opt = nornal | term nate
PDict = [{Key, Value}]
State = term)

Status = term()

Note:

This callback is optional, so event handler modules need not export it. If a handler does not export this function,
thegen_event module usesthe handler state directly for the purposes described below.

Thisfunction iscalled by agen_event processin the following situations:

e Oneof sys:get_status/1, 2isinvokedto getthegen_event status. Opt isset to the atom nor nal
for this case.

» Theevent handler terminates abnormally and gen_event logsan error. Opt isset to theatomt er ni nat e
for this case.

Thisfunctionisuseful for changing theform and appearance of the event handler statefor these cases. An event handler
callback module wishing to change the the sys: get _st at us/ 1, 2 return value as well as how its state appears
in termination error logs, exports an instance of f or mat _st at us/ 2 that returns aterm describing the current state
of the event handler.

PDi ct isthe current value of the process dictionary of gen_event .
St at e istheinternal state of the event handler.

Thefunctionisto return St at us, aterm that change the details of the current state of the event handler. Any termis
allowed for St at us. Thegen_event module uses St at us asfollows:

e Whensys: get _status/1, 2iscaled, gen_event ensuresthat itsreturn value contains St at us in place
of the state term of the event handler.

* When an event handler terminates abnormally, gen_event logs St at us in place of the state term of the event
handler.

Oneusefor thisfunction isto return compact alternative state representationsto avoid that large state terms are printed
inlog files.

Module:handle call(Request, State) -> Result
Types.

Request = term))

State = term))

Result = {ok, Reply, NewState} | {ok, Reply, NewSt at e, hi ber nat e}
| {swap_handl er, Repl y, Argsl, NewSt at e, Handl er 2, Args2}
| {renove_handl er, Reply}

Reply = tern()

NewState = term()

Argsl = Args2 = term()

Handl er2 = Modul e2 | {Modul e2, | d}

208 | Ericsson AB. All Rights Reserved.: STDLIB

gen_event

Modul e2 = atom()
Id =term))

Whenever an event manager receives areguest sent using cal | / 3, 4, this function is called for the specified event
handler to handle the request.

Request isthe Request argument of cal | / 3, 4.

St at e istheinternal state of the event handler.

The return values are the same as for Modul e: handl e_event / 2 except that they also contain aterm Repl y,
which isthe reply to the client asthe return value of cal | / 3, 4.

Module:handle event(Event, State) -> Result

Types:
Event = term()
State = term)

Result = {ok, NewSt ate} | {ok, NewSt at e, hi ber nat e}
| {swap_handl er, Argsl, NewSt at e, Handl er 2, Args2} | renove_handl er
NewState = term()
Argsl = Args2 = term()
Handl er2 = Modul e2 | {Modul e2, | d}
Modul e2 = atom()
Id = tern()

Whenever an event manager receives an event sent using noti fy/ 2 or sync_noti fy/ 2, this function is called
for each installed event handler to handle the event.

Event istheEvent argument of noti fy/ 2/sync_noti fy/ 2.

St at e istheinternal state of the event handler.

If { ok, NewSt at e} or { ok, NewSt at e, hi ber nat e} is returned, the event handler remains in the event
manager with the possible updated internal state NewSt at e.

If {ok, NewSt at e, hi ber nat e} is returned, the event manager also goes into hibernation (by calling
proc_| i b: hi ber nat e/ 3), waiting for the next event to occur. It is sufficient that one of the event handlers
return { ok, NewSt at e, hi ber nat e} for the whole event manager process to hibernate.

If {swap_handl er, Argsl, NewSt at e, Handl er 2, Args2} is returned, the event handler is
replaced by Handler2 by first caling Mdul e:term nate(Argsl, NewState) and then
Modul e2:init ({Args2, Tern}), where Ter misthereturn value of Modul e: t er mi nat e/ 2. For more
information, seeswap_handl er/ 3.

If renove_handl er is returned, the event handler is deleted by cdling
Modul e: term nat e(renove_handl er, State).

Module:handle info(Info, State) -> Result
Types:

Info = term()

State = term)

Result = {ok, NewState} | {ok, NewSt at e, hi ber nat e}

| {swap_handl er, Args1, NewSt at e, Handl er 2, Args2} | renove_handl er
NewState = term()

Argsl = Args2 = term()

Ericsson AB. All Rights Reserved.: STDLIB | 209

gen_event

Handl er2 = Modul e2 | {Mdul e2, | d}
Modul e2 = atom()
Id = ternm()
This function is called for each installed event handler when an event manager receives any other message than an
event or a synchronous reguest (or a system message).
I nf o isthe received message.

For adescription of St at e and possible return values, see Mbdul e: handl e_event/ 2.

Module:init(InitArgs) -> {ok,State} | {ok,State,hibernate} | {error,Reason}
Types:

InitArgs = Args | {Args, Tern

Args = Term= term)

State = term)

Reason = term()

Whenever anew event handler is added to an event manager, this function is called to initialize the event handler.

If the event handler is added because of acall toadd_handl er/ 3 or add_sup_handl er/ 3,1 ni t Ar gs isthe
Ar gs argument of these functions.

If the event handler replaces another event handler because of a cal to swap_handler/3 or
swap_sup_handl er/ 3, or because of aswap return tuple from one of the other callback functions, | ni t Ar gs
isatuple { Ar gs, Ter n}, where Ar gs is the argument provided in the function call/return tuple and Ter mis the
result of terminating the old event handler, see swap_handl er/ 3.

If successful, thefunctionreturns{ ok, St at e} or{ ok, St at e, hi ber nat e} , where St at e istheinitial internal
state of the event handler.

If {ok, State, hibernate} is returned, the event manager goes into hibernation (by calling
proc_I i b: hi ber nat e/ 3), waiting for the next event to occur.

Module:terminate(Arg, State) -> term()

Types.
Arg = Args | {stop, Reason} | stop | renobve_handl er
| {error,{'EXIT ,Reason}} | {error, Tern}
Args = Reason = Term = term)

Whenever an event handler is deleted from an event manager, this function is called. It is to be the opposite of
Modul e: i ni t/ 1 and do any necessary cleaning up.

If the event handler is deleted because of a cal to del ete_handl er/ 3, swap_handl er/ 3, or
swap_sup_handl er/ 3, Ar g isthe Ar gs argument of this function call.

Ar g={ st op, Reason} if the event handler has a supervised connection to a process that has terminated with reason
Reason.

Ar g=st op if the event handler is deleted because the event manager is terminating.

The event manager terminates if it is part of a supervision tree and it is ordered by its supervisor to terminate. Even if
itisnot part of asupervision tree, it terminatesif it receivesan' EXI T' message from its parent.

Arg=renove_handl er if the event handler is deleted because another callback function has returned
renove_handl er or{renove_handl er, Repl y}.

210 | Ericsson AB. All Rights Reserved.: STDLIB

gen_event

Arg={error, Tern} if theevent handler isdeleted because acallback function returned an unexpected value Ter m
orArg={error,{' EXIT , Reason}} if acalback function failed.

St at e istheinternal state of the event handler.

The function can retun any term. If the event handler is deleted because of a cal to
gen_event : del et e_handl er/ 3, the return value of that function becomes the return value of this function. If
the event handler is to be replaced with another event handler because of a swap, the return value is passed to the
i ni t function of the new event handler. Otherwise the return value isignored.

See Also
supervi sor (3),sys(3)

Ericsson AB. All Rights Reserved.: STDLIB | 211

gen_fsm

gen_fsm

Erlang module

Note:

Thereisanew behaviour gen_st at emthat isintended to replace gen_f smfor new code. gen_f smwill not
be removed for the foreseeable future to keep old state machine implementations running.

Thisbehavior module provides afinite state machine. A generic finite state machine process(gen_f sm implemented
using this module has a standard set of interface functions and includes functionality for tracing and error reporting.
It also fitsinto an OTP supervision tree. For more information, see OTP Design Principles.

A gen_f smprocess assumes all specific parts to be located in a callback module exporting a predefined set of
functions. The relationship between the behavior functions and the callback functionsis as follows:

gen_fsm module Callback module

gen fsm:start

gen fsm:start link ----- > Module:init/1

gen fsm:stop ----- > Module:terminate/3

gen fsm:send event ~ ----- > Module:StateName/2

gen fsm:send all state event = ----- > Module:handle event/3

gen fsm:sync send event = ----- > Module:StateName/3

gen_ fsm:sync send all state event ----- > Module:handle sync event/4

----- > Module:handle_info/3
----- > Module:terminate/3

----- > Module:code change/4

If acallback function fails or returns a bad value, the gen_f smprocess terminates.

A gen_f smprocess handles system messages as described in sy s(3) . Thesys module can be used for debugging
agen_f smprocess.

Noticethat agen_f smprocess does not trap exit signalsautomatically, this must be explicitly initiated in the callback
module.

Unless otherwise stated, all functions in this module fail if the specified gen_f smprocess does not exist or if bad
arguments are specified.

The gen_f smprocess can go into hibernation (see er | ang: hi ber nat e/ 3) if a callback function specifies
' hi ber nat e' instead of atime-out value. This can be useful if the server is expected to be idle for along time.
However, use this feature with care, as hibernation implies at least two garbage collections (when hibernating and
shortly after waking up) and is not something you want to do between each call to abusy state machine.

212 | Ericsson AB. All Rights Reserved.: STDLIB

gen_fsm

Exports

cancel timer(Ref) -> RemainingTime | false

Types:
Ref = reference()
Remai ni ngTi me = integer()

Cancels an internal timer referred by Ref inthe gen_f smprocess that cals this function.
Ref isareferencereturned from send_event after/2orstart tiner/2.

If the timer has already timed out, but the event not yet been delivered, it is cancelled as if it had not timed out, so
thereis no false timer event after returning from this function.

Returns the remaining time in milliseconds until the timer would have expired if Ref referred to an active timer,
otherwisef al se.

enter loop(Module, Options, StateName, StateData)
enter_loop(Module, Options, StateName, StateData, FsmName)
enter loop(Module, Options, StateName, StateData, Timeout)
enter loop(Module, Options, StateName, StateData, FsmName, Timeout)
Types:
Modul e = atom()
Options = [Option]
Option = {debug, Dbgs}
Dbgs = [Dbg]
Dbg = trace | log | statistics
| {log to file,FileNane} | {install,{Func, FuncState}}
StateNane = aton()
StateData = tern()
FsmNane = {local, Nane} | {gl obal, d obal Nane}
| {via, Modul e, Vi aNane}
Name = atom()
d obal Nane = ViaNane = term()
Timeout =int() | infinity

Makes an existing processinto agen_f smprocess. Does not return, instead the calling process entersthegen_f sm
receive loop and becomes agen_f smprocess. The process must have been started using one of the start functions
inproc_Ilib(3).Theuserisresponsiblefor any initialization of the process, including registering a name for it.

Thisfunction is useful when amore complex initialization procedure is needed than the gen_f smbehavior provides.

Modul e, Opt i ons, and FsnmNane have the same meanings aswhen callingstart[_I i nk]/ 3, 4. However, if
FsmNane is specified, the process must have been registered accordingly befor e this function is called.

St at eNane, St at eDat a, and Ti neout havethe same meaningsasin thereturnvalueof Modul e: i nit/ 1. The
callback module Modul e does not need to export ani ni t/ 1 function.

Thefunctionfailsif thecalling processwasnot started by apr oc_| i b start function, or if it isnot registered according
to FsmNane.

Ericsson AB. All Rights Reserved.: STDLIB | 213

gen_fsm

reply(Caller, Reply) -> Result
Types:
Caller - see bel ow
Reply = term()
Result = term)
This function can be used by a gen_f sm process to explicitly send a reply to a client process that called

sync_send_event/ 2,3 or sync_send_al | _state_event/ 2, 3 when the reply cannot be defined in the
return value of Modul e: St at eNane/ 3 or Mbdul e: handl e_sync_event/ 4.

Cal | er must be the Fr omargument provided to the callback function. Repl y is any term given back to the client
asthereturnvalueof sync_send_event/ 2, 3orsync_send_al | _state_event/ 2, 3.

Return value Resul t isnot further defined, and is always to be ignored.

send all state event(FsmRef, Event) -> ok
Types.
FsmRef = Nane | {Nane, Node} | {gl obal, d obal Nane}
| {via, Modul e, ViaNanme} | pid()
Name = Node = atom()
d obal Nane = ViaNane = term()
Event = term()

Sends an event asynchronously to the FsnmRef of thegen_f smprocess and returns ok immediately. Thegen_f sm
process calls Modul e: handl e_event / 3 to handle the event.

For a description of the arguments, seesend_event / 2.

The difference between send_event /2 andsend_al | _st at e_event/ 2 iswhich callback function isused to
handle the event. This function is useful when sending events that are handled the same way in every state, as only
onehandl e_event clauseis needed to handle the event instead of one clause in each state name function.

send _event(FsmRef, Event) -> ok
Types:
FsmRef = Nanme | {Nane, Node} | {gl obal, d obal Nane}
| {via, Modul e, ViaNane} | pid()
Name = Node = atom()
G obal Name = ViaNane = term)
Event = tern()
Sends an event asynchronously to the FsmRef of thegen_f smprocess and returns ok immediately. Thegen_f sm

process calls Modul e: St at eNanre/ 2 to handle the event, where St at eNare is the name of the current state of
thegen_f smprocess.

FsmRef can be any of the following:

e Thepid

* Nane, if thegen_f smprocessislocaly registered

« {Nane, Node}, if thegen_f smprocessislocally registered at another node

« {gl obal, d obal Nane}, if thegen_f smprocessis globally registered

« {via, Modul e, Vi aNane}, if thegen_f smprocessis registered through an alternative process registry

Event isany term that is passed as one of the argumentsto Modul e: St at eNane/ 2.

214 | Ericsson AB. All Rights Reserved.: STDLIB

gen_fsm

send event after(Time, Event) -> Ref
Types:

Time = integer()

Event = term()

Ref = reference()

Sends a delayed event internally in the gen_f smprocess that calls this function after Ti me milliseconds. Returns
immediately a reference that can be used to cancel the delayed send using cancel _tiner/ 1.

Thegen_f smprocess calls Mbdul e: St at eNane/ 2 to handle the event, where St at eNane is the name of the
current state of the gen_f smprocess at the time the delayed event is delivered.

Event isany term that is passed as one of the argumentsto Modul e: St at eNane/ 2.

start(Module, Args, Options) -> Result
start(FsmName, Module, Args, Options) -> Result
Types:
FsmNane = {local, Nane} | {gl obal, d obal Nane}
| {via, Modul e, Vi aNane}
Name = atom()
G obal Name = ViaNane = term()
Modul e = atom()
Args = term)
Options = [Option]
Option = {debug, Dbgs} | {tineout, Tine} | {spawn_opt, SOpt s}
Dbgs = [Dbg]
Dbg = trace | log | statistics
| {log_to file,FileNane} | {install,{Func, FuncState}}
SOpts = [tern()]
Result = {ok,Pid} | ignore | {error,Error}
Pid = pid()
Error = {already_started,Pid} | term)

Creates a standalone gen_f sm process, that is, a process that is not part of a supervision tree and thus has no
supervisor.

For a description of arguments and return values, seestart _| i nk/ 3, 4.

start_link(Module, Args, Options) -> Result
start_link(FsmName, Module, Args, Options) -> Result
Types:
FsmNane = {local, Nane} | {gl obal, d obal Nane}
| {via, Modul e, Vi aNane}
Name = atom()
d obal Nanme = ViaNane = term)
Modul e = atom()
Args = term))
Options = [Option]

Ericsson AB. All Rights Reserved.: STDLIB | 215

gen_fsm

Option = {debug, Dbgs} | {tineout,Tine} | {spawn_opt, SOpt s}

Dbgs = [Dbg]
Dbg = trace | log | statistics
| {log to file,FileNane} | {install,{Func, FuncState}}
SOpts = [SOpt]
SOpt - see erlang:spawn_opt/2,3,4,5
Result = {ok,Pid} | ignore | {error,Error}
Pid = pid()

Error = {already_started,Pid} | term))

Creates agen_f smprocess as part of a supervision tree. The function is to be called, directly or indirectly, by the
supervisor. For example, it ensures that the gen_f smprocessis linked to the supervisor.

The gen_f sm process calls Modul e:init/1 to initidlize. To ensure a synchronized startup procedure,
start _|ink/ 3, 4 doesnot return until Modul e: i ni t/ 1 hasreturned.
« If FsmName={| ocal , Nane}, thegen_f smprocessisregistered locally as Name using r egi st er/ 2.

« If FsmName={ gl obal , G obal Nane}, thegen_f smprocessis registered globaly asG obal Nane using
gl obal : regi st er _name/ 2.

 If FsmNanme={vi a, Modul e, Vi aNane}, the gen_f sm process registers with the registry represented by
Modul e. The Mbdul e callback is to export the functions r egi st er _name/ 2, unr egi st er _nane/ 1,
wher ei s_nane/ 1, and send/ 2, which are to behave like the corresponding functions in gl obal . Thus,
{vi a, gl obal , d obal Nane} isavalid reference.

If no nameis provided, the gen_f smprocessis not registered.
Modul e isthe name of the callback module.
Ar gs isany term that is passed as the argument to Modul e: init/ 1.

If option{ti meout, Ti me} ispresent, thegen_f smprocessisallowed to spend Ti me millisecondsinitializing or
it terminates and the start function returns{ error, ti meout }.

If option { debug, Dbgs} ispresent, the corresponding sys functioniscalled for each itemin Dbgs; seesys(3) .

If option { spawn_opt , SOpt s} is present, SOpt s is passed as option list to the spawn_opt BIF that is used to
spawn thegen_f smprocess; see spawn_opt / 2.

Note:

Using spawn option noni t or isnot allowed, it causes the function to fail with reason badar g.

If the gen_f smprocess is successfully created and initialized, the function returns { ok, Pi d}, where Pi d is the
pid of thegen_f smprocess. If a process with the specified FsnmNane exists already, the function returns{ er r or ,
{already_started, Pid}},wherePi disthepid of that process.

If Modul e: i nit/ 1 fails with Reason, the function returns { er r or , Reason}. If Modul e: i nit/ 1 returns
{st op, Reason} ori gnor e, the processis terminated and the function returns{ er r or , Reason} ori gnor e,
respectively.

start timer(Time, Msg) -> Ref

Types:
Time = integer()

216 | Ericsson AB. All Rights Reserved.: STDLIB

gen_fsm

Nsg
Ref

Sends a time-out event internally in the gen_f smprocess that calls this function after Ti me milliseconds. Returns
immediately areference that can be used to cancel the timer using cancel _timer/ 1.

term))

ref erence()

Thegen_f smprocess calls Mbdul e: St at eNane/ 2 to handle the event, where St at eNane is the name of the
current state of the gen_f smprocess at the time the time-out message is delivered.

Meg is any term that is passed in the time-out message, {ti meout, Ref, Msg}, asone of the arguments to
Modul e: St at eNane/ 2.

stop(FsmRef) -> ok
stop(FsmRef, Reason, Timeout) -> ok
Types:
FsnmRef = Name | {Nane, Node} | {gl obal, G obal Nane}
| {via, Modul e, ViaNane} | pid()
Node = atom()
A obal Nane = ViaName = term()
Reason = term)
Timeout = int()>0 | infinity
Orders a generic finite state machine to exit with the specified Reason and waits for it to terminate. Thegen_f sm
processcalls Modul e: t er mi nat e/ 3 before exiting.

The function returns ok if the generic finite state machine terminates with the expected reason. Any
other reason than nor mal , shut down, or {shut down, Ter n} causes an error report to be issued using
error _| ogger: format/ 2. Thedefault Reason isnor nal .

Ti meout isaninteger greater than zero that specifieshow many millisecondsto wait for the generic FSM to terminate,
or theatomi nf i ni ty to wait indefinitely. The default valueisi nf i ni t y. If the generic finite state machine has
not terminated within the specified time, at i meout exception israised.

If the process does not exist, anopr oc exception israised.

sync_send_all state event(FsmRef, Event) -> Reply
sync_send all state event(FsmRef, Event, Timeout) -> Reply
Types:
FsmRef = Nanme | {Nanme, Node} | {gl obal, @ obal Nane}
| {via, Modul e, ViaNane} | pid()
Name = Node = atom()
d obal Nane = ViaNanme = term()
Event = tern()
Timeout = int()>0 | infinity
Reply = term()
Sends an event to the FsnmRef of the gen_f smprocess and waits until a reply arrives or a time-out occurs. The
gen_f smprocesscals Modul e: handl e_sync_event/ 4 to handle the event.

For a description of FsnRef and Event, see send_event/2. For a description of Ti neout and Reply, see
sync_send_event/ 3.

For a discussion about the difference between sync_send_event andsync_send_al | _state_event, see
send_al |l _state_event/ 2.

Ericsson AB. All Rights Reserved.: STDLIB | 217

gen_fsm

sync_send _event(FsmRef, Event) -> Reply
sync_send event(FsmRef, Event, Timeout) -> Reply
Types.
FsmRef = Nane | {Nane, Node} | {gl obal, d obal Nane}
| {via, Modul e, ViaNane} | pid()
Name = Node = atom()
d obal Nanme = ViaNane = term()
Event = tern()
Tinmeout = int()>0 | infinity
Reply = tern()
Sends an event to the FsnRef of the gen_f smprocess and waits until a reply arrives or a time-out occurs. The

gen_f smprocesscalls Modul e: St at eNane/ 3 to handlethe event, where St at e Nane isthe name of the current
state of thegen_f smprocess.

For adescription of FsnRef and Event , seesend_event/ 2.

Ti meout is an integer greater than zero that specifies how many milliseconds to wait for a reply, or the atom
i nfinity towaitindefinitely. Defaults to 5000. If no reply is received within the specified time, the function call
falls.

Return value Repl y is defined in the return value of Modul e: St at eNane/ 3.

Note:

The ancient behavior of sometimes consuming the server exit message if the server died during the call while
linked to the client was removed in Erlang 5.6/0OTP R12B.

Callback Functions
The following functions are to be exported from agen_f smcallback module.
state name denotes a state of the state machine.

state data denotes the internal state of the Erlang process that implements the state machine.

Exports

Module:code change(OldVsn, StateName, StateData, Extra) -> {ok,
NextStateName, NewStateData}

Types.

advsn = Vsn | {down, Vsn}

Vsn = tern()

St at eNane = Next St at eNanme = atom()

StateData = NewStateData = tern()

Extra = ternm()
This function is cadled by a gen fsm process when it is to update its interna state data
during a release upgrade/downgrade, that is, when instruction {updat e, Modul e, Change, ...}, where

Change={ advanced, Extra}, is given in the appup file; see section Release Handling Instructions in OTP
Design Principles.

218 | Ericsson AB. All Rights Reserved.: STDLIB

gen_fsm

For an upgrade, O dVsn is Vsn, and for a downgrade, A dVsn is {down, Vsn}. Vsn is defined by the vsn
attribute(s) of the old version of the callback module Mbdul e. If no such attribute is defined, the version is the
checksum of the Beam file.

St at eNane isthe current state name and St at eDat a the internal state data of the gen_f smprocess.
Ext raispassed "asis' fromthe{ advanced, Ext r a} part of the update instruction.

The function isto return the new current state name and updated internal data.

Module:format status(Opt, [PDict, StateData]) -> Status
Types:

Opt = nornal | term nate

PDict = [{Key, Value}]

StateData = tern()

Status = tern()

Note:

This callback is optional, so callback modules need not export it. The gen_f smmodule provides a default
implementation of this function that returns the callback module state data.

Thisfunction iscalled by agen_f smprocessin the following situations:

e Oneof sys: get_status/1, 2isinvoked to get thegen_f smstatus. Opt isset to the atom nor mal for
this case.

* Thegen_f smprocess terminates abnormally and logs an error. Opt is set to theatomt er mi nat e for this
case.

Thisfunctionisuseful for changing the form and appearance of thegen_f smstatusfor these cases. A callback module
wishing to change the sys: get _st at us/ 1, 2 return value as well as how its status appears in termination error
logs, exports an instance of f or mat _st at us/ 2 that returns a term describing the current status of thegen_f sm
process.

PDi ct isthe current value of the process dictionary of thegen_f smprocess.
St at eDat a istheinternal state data of the gen_f smprocess.

The function is to return St at us, a term that change the details of the current state and status of the gen_fsm
process. There are no restrictions on the form St at us can take, but for the sys: get st at us/ 1, 2 case (when
Opt isnor nmal), the recommended form for the St at us valueis[{data, [{"StateData", Tern}]}],
where Ter mprovidesrelevant details of thegen_f smstate data. Following this recommendation is not required, but
it makes the callback module status consistent with the rest of thesys: get _st at us/ 1, 2 return value.

One use for this function is to return compact aternative state data representations to avoid that large state terms are
printed in log files.

Module:handle event(Event, StateName, StateData) -> Result
Types:

Event = term()

StateNane = aton()

StateData = tern()

Result = {next _state, Next St at eNane, NewSt at eDat a}

Ericsson AB. All Rights Reserved.: STDLIB | 219

gen_fsm

| {next_state, Next St at eNane, NewSt at eDat a, Ti meout }
| {next_state, Next St at eNane, NewSt at eDat a, hi ber nat e}
| {stop, Reason, NewSt at eDat a}

Next St at eNane = at on()

NewSt at eData = term)

Tinmeout = int()>0 | infinity

Reason = term()

Whenever agen_f smprocess receives an event sent using send_al | _state_event/ 2, thisfunctionis called
to handle the event.

St at eNane isthe current state name of the gen_f smprocess.
For a description of the other arguments and possible return values, see Modul e: St at eNane/ 2.

Module:handle info(Info, StateName, StateData) -> Result
Types.
Info = term()
St ateNane = aton()
StateData = tern()
Result = {next _state, Next St at eNane, NewSt at eDat a}
| {next_state, Next St at eNane, NewSt at eDat a, Ti meout }
| {next_state, Next St at eNane, NewSt at eDat a, hi ber nat e}
| {stop, Reason, NewSt at eDat a}
Next St at eNane = at on()
NewSt at eData = term)
Tinmeout = int()>0 | infinity
Reason = normal | tern()
Thisfunctioniscalled by agen_f smprocesswhen it receives any other message than a synchronous or asynchronous
event (or a system message).
I nf o isthe received message.
For a description of the other arguments and possible return values, see Modul e: St at eNane/ 2.

Module:handle sync event(Event, From, StateName, StateData) -> Result
Types.
Event = term)
From = {pid(), Tag}
St at eNane atom)
StateData = tern()
Result = {reply, Reply, Next St at eNane, NewSt at eDat a}
| {reply, Reply, Next St at eNane, NewSt at eDat a, Ti meout }
| {reply, Reply, Next St at eNane, NewSt at eDat a, hi ber nat e}
| {next_state, Next St at eNane, NewSt at eDat a}
|
|
|

{next _st at e, Next St at eNane, NewSt at eDat a, Ti neout }
{next _st at e, Next St at eNane, NewSt at eDat a, hi ber nat e}
{stop, Reason, Repl y, NewSt at eDat a} | {stop, Reason, NewSt at eDat a}

220 | Ericsson AB. All Rights Reserved.: STDLIB

gen_fsm

Reply = term()
Next St at eNane = at on()
NewSt at eData = term)
Timeout = int()>0 | infinity
Reason = term()

Whenever agen_f smprocessreceivesan event sentusing sync_send_al | _state_event/ 2, 3, thisfunction
is caled to handle the event.

St at eNane isthe current state name of the gen_f smprocess.

For a description of the other arguments and possible return values, see Modul e: St at eNane/ 3.

Module:init(Args) -> Result
Types.

Args = term)

Result = {ok, StateNane, St ateData} | {ok, StateNane, St at eDat a, Ti meout }

| {ok, StateNane, St at eDat a, hi ber nat e}
| {stop, Reason} | ignore

St at eNane = at on()

StateData = tern()

Timeout = int()>0 | infinity

Reason = term)

Whenever agen_f smprocessis started using start/ 3,4 or start _I i nk/ 3, 4, thisfunction is called by the
new processto initialize.

Ar gs isthe Ar gs argument provided to the start function.

If initidlization is successful, the function is to return {ok, StateNane, St ateDat a},
{ ok, St at eNan®e, St at eDat a, Ti neout}, or {ok, StateNane, St at eDat a, hi bernate}, where
St at eNane istheinitia state name and St at eDat a theinitia state data of thegen_f smprocess.

If an integer time-out value is provided, atime-out occurs unless an event or amessage is received within Ti meout
milliseconds. A time-out isrepresented by theatomt i meout andisto be handled by the Modul e: St at eNane/ 2
callback functions. Theatom i nf i ni t y can be used to wait indefinitely, thisis the default value.

If hi ber nat e is specified instead of atime-out value, the process goes into hibernation when waiting for the next
message to arrive (by calling proc_Ii b: hi ber nat e/ 3).

If theinitialization fails, the function returns{ st op, Reason}, where Reason isany term, or i gnor e.

Module:StateName(Event, StateData) -> Result
Types:
Event = tinmeout | tern()
StateData = tern()
Result = {next _state, Next St at eNanme, NewSt at eDat a}
| {next_state, Next St at eNane, NewSt at eDat a, Ti meout }
| {next_state, Next St at eNane, NewSt at eDat a, hi ber nat e}
| {stop, Reason, NewSt at eDat a}
Next St at eNane = at on()
NewSt at eData = term)

Ericsson AB. All Rights Reserved.: STDLIB | 221

gen_fsm

Timeout = int()>0 | infinity
Reason = term()
There is to be one instance of this function for each possible state name. Whenever a gen_f smprocess receives

an event sent using send_event / 2, the instance of this function with the same name as the current state name
St at eNane is called to handle the event. It isalso called if atime-out occurs.

Event iseithertheatomt i meout , if atime-out hasoccurred, or theEvent argument providedtosend_event/ 2.
St at eDat a isthe state data of the gen_f smprocess.

If the function returns {next st at e, Next St at eNane, NewSt at eDat a},
{next st at e, Next St at eNane, NewSt at eDat a, Ti meout }, or
{next st at e, Next St at eNane, NewSt at eDat a, hi ber nat e}, thegen_f smprocess continues executing
with the current state name set to Next St at eNane and with the possibly updated state data NewSt at eDat a. For
adescription of Ti meout and hi ber nat e, seeModul e: i nit/ 1.

If the function returns {stop, Reason, NewStateData}, the gen_fsm process cdls
Modul e: t er m nat e(Reason, St at eNane, NewSt at eDat a) and terminates.

Module:StateName(Event, From, StateData) -> Result
Types:
Event = tern()
From = {pid(), Tag}
StateData = tern()
Result = {reply, Reply, Next St at eNane, NewSt at eDat a}
| {reply, Reply, Next St at eNane, NewSt at eDat a, Ti meout }
| {reply, Reply, Next St at eNane, NewSt at eDat a, hi ber nat e}
| {next _state, Next St at eNane, NewSt at eDat a}
| {next_state, Next St at eNane, NewSt at eDat a, Ti meout }
| {next _state, Next St at eNane, NewSt at eDat a, hi ber nat e}
| {stop, Reason, Reply, NewSt at eData} | {stop, Reason, NewSt at eDat a}
Reply = term()
Next St at eNane = at on()
NewSt at eData = term)
Tinmeout = int()>0 | infinity
Reason = normal | term()
There is to be one instance of this function for each possible state name. Whenever agen_f smprocess receives an

event sent using sync_send_event/ 2, 3, the instance of this function with the same name as the current state
name St at eNarre is called to handle the event.

Event isthe Event argument providedtosync_send_event/ 2, 3.

Fromisatuple{Pi d, Tag} where Pi d isthe pid of the process that called sync_send_event/ 2, 3 and Tag

isaunique tag.

St at eDat a isthe state data of the gen_f smprocess.

e |If {reply, Repl y, Next St at eNane, NewSt at eDat a},
{reply, Repl y, Next St at eNane, NewSt at eDat a, Ti neout }, or

{reply, Repl y, Next St at eNane, NewSt at eDat a, hi ber nat e} isreturned, Repl y is given back to
Fr omasthereturn value of sync_send_event/ 2, 3. Thegen_f smprocess then continues executing with

222 | Ericsson AB. All Rights Reserved.: STDLIB

gen_fsm

the current state name set to Next St at eNane and with the possibly updated state data NewSt at eDat a. For
adescription of Ti meout and hi ber nat e, see Modul e: i nit/ 1.

o |If {next _st at e, Next St at eNare, NewSt at eDat a},
{next _st at e, Next St at eNane, NewSt at eDat a, Ti neout }, or
{next _st at e, Next St at eNane, NewSt at eDat a, hi ber nat e} is returned, the gen_f sm process
continuesexecutinginNext St at eNarmre withNewSt at eDat a. Any reply to Fr ommust be specified explicitly
usingrepl y/ 2.

e |If the function returns {stop, Reason, Reply, NewStateData}, Reply is given back
to From If the function retuns {stop, Reason, NewStateData}, any reply to
From must be specified explicitty using reply/2. The gen fsm process then cdls
Modul e: t er m nat e(Reason, St at eNane, NewSt at eDat a) and terminates.

Module:terminate(Reason, StateName, StateData)
Types:
Reason = normal | shutdown | {shutdown,tern()} | term))
Stat eNane = aton()
StateData = tern()
This function is called by a gen_f sm process when it is about to terminate. It is to be the opposite of

Modul e:init/1 and do any necessary cleaning up. When it returns, the gen_f sm process terminates with
Reason. Thereturn value isignored.

Reason isaterm denoting the stop reason, St at eNarme isthe current state name, and St at eDat a isthe state data
of thegen_f smprocess.

Reason dependsonwhy thegen_f smprocessisterminating. If it is because another callback function has returned
astop tuple{ st op, . . }, Reason has the value specified in that tuple. If it is because of afailure, Reason isthe
€rror reason.

If the gen_f smprocess is part of a supervision tree and is ordered by its supervisor to terminate, this function is
called with Reason=shut down if the following conditions apply:

e« Thegen_f smprocess has been set to trap exit signals.

* The shutdown strategy as defined in the child specification of the supervisor is an integer time-out value, not
brutal _Kkill.

Evenif thegen_f smprocessisnot part of asupervisiontree, thisfunctioniscalledif it receivesan' EXI T' message
fromits parent. Reason isthesameasinthe' EXI T' message.

Otherwise, the gen_f smprocess terminates immediately.

Notice that for any other reason than nor mal , shut down, or { shut down, Ter n} the gen_f smprocess is
assumed to terminate because of an error and an error report isissued using err or _| ogger : f or mat/ 2.

See Also
gen_event (3),gen_server(3),gen_staten(3),proc_lib(3),supervisor(3),sys(3)

Ericsson AB. All Rights Reserved.: STDLIB | 223

gen_server

gen_server

Erlang module

This behavior module provides the server of a client-server relation. A generic server process (gen_server)
implemented using this module has a standard set of interface functions and includes functionality for tracing and
error reporting. It also fits into an OTP supervision tree. For more information, see section gen_server Behaviour in
OTP Design Principles.

A gen_ser ver process assumes all specific parts to be located in a callback module exporting a predefined set of
functions. The relationship between the behavior functions and the callback functionsis as follows:

gen_server module Callback module

gen_server:start
gen server:start link ----- > Module:init/1

gen _server:stop = ----- > Module:terminate/2

gen_server:call
gen_server:multi call ----- > Module:handle call/3

gen_server:cast
gen _server:abcast = ----- > Module:handle cast/2

----- > Module:handle info/2
————— > Module:terminate/2

----- > Module:code change/3

If acallback function fails or returns abad value, thegen_ser ver process terminates.

A gen_server process handles system messages as described in sys(3) . The sys module can be used for
debugging agen_ser ver process.

Notice that agen_ser ver process does not trap exit signals automatically, this must be explicitly initiated in the
callback module.

Unless otherwise stated, all functions in this module fail if the specified gen_ser ver process does not exist or if
bad arguments are specified.

Thegen_server process can go into hibernation (see er | ang: hi ber nat e/ 3) if acallback function specifies
' hi ber nat e' instead of atime-out value. This can be useful if the server is expected to be idle for along time.
However, use this feature with care, as hibernation implies at least two garbage collections (when hibernating and
shortly after waking up) and is not something you want to do between each call to abusy server.

Exports

abcast(Name, Request) -> abcast
abcast(Nodes, Name, Request) -> abcast

Types:
Nodes = [Node]
Node = atom()

224 | Ericsson AB. All Rights Reserved.: STDLIB

gen_server

Name = atom()
Request = term))
Sends an asynchronous request to thegen_ser ver processeslocally registered as Nane at the specified nodes. The

function returns immediately and ignores nodes that do not exist, or where the gen_ser ver Nane does not exist.
Thegen_ser ver processescall Modul e: handl e_cast / 2 to handle the request.

For a description of the arguments, seenul ti _cal | / 2, 3, 4.

call(ServerRef, Request) -> Reply
call(ServerRef, Request, Timeout) -> Reply
Types:
Server Ref = Nane | {Nane, Node} | {gl obal, d obal Nane}
| {via, Modul e, ViaNane} | pid()
Node = atom()
G obal Name = ViaNane = term()
Request = term))
Timeout = int()>0 | infinity
Reply = term)
Makes a synchronous call to the Ser ver Ref of the gen_ser ver process by sending a request and waiting until

areply arrives or atime-out occurs. The gen_ser ver process cals Modul e: handl e_cal | / 3 to handle the
request.

Ser ver Ref can be any of the following:

e Thepid

 Nane, if thegen_ser ver processislocaly registered

« {Nane, Node}, if thegen_server processislocaly registered at another node

e {gl obal, d obal Nane}, if thegen_server processisglobally registered

« {via, Modul e, Vi aNane}, if thegen_ser ver processisregistered through an alternative process registry
Request isany term that is passed as one of the argumentsto Modul e: handl e_cal | / 3.

Ti meout is an integer greater than zero that specifies how many milliseconds to wait for a reply, or the atom
i nfinity towaitindefinitely. Defaults to 5000. If no reply is received within the specified time, the function call
fails. If the caler catches the failure and continues running, and the server isjust late with the reply, it can arrive at
any time later into the message queue of the caller. The caller must in this case be prepared for this and discard any
such garbage messages that are two element tuples with areference as the first element.

Thereturn value Repl y isdefined in thereturn value of Modul e: handl e_cal | / 3.

The call can fail for many reasons, including time-out and the called gen_ser ver process dying before or during
thecall.

Note:

The ancient behavior of sometimes consuming the server exit message if the server died during the call while
linked to the client was removed in Erlang 5.6/OTP R12B.

cast(ServerRef, Request) -> ok
Types:

Ericsson AB. All Rights Reserved.: STDLIB | 225

gen_server

Server Ref = Nane | {Nane, Node} | {gl obal, d obal Nane}
| {via, Modul e, ViaNane} | pid()
Node = atom()
G obal Name = ViaNane = term()
Request = term)
Sends an asynchronous request to the Ser ver Ref of the gen_ser ver process and returns ok immediately,

ignoring if the destination node or gen_server process does not exist. The gen_server process cals
Mbdul e: handl e_cast / 2 to handle the request.

For adescription of Ser ver Ref , seecal 1 / 2, 3.
Request isany term that is passed as one of the argumentsto Modul e: handl e_cast/ 2.

enter loop(Module, Options, State)

enter loop(Module, Options, State, ServerName)

enter loop(Module, Options, State, Timeout)

enter loop(Module, Options, State, ServerName, Timeout)

Types:
Modul e = atom()
Options = [Option]
Option = {debug, Dbgs}
Dbgs = [Dbg]
Dbg = trace | log | statistics
| {log_to file,FileNane} | {install,{Func, FuncState}}
State = term)
Server Name = {local, Nane} | {gl obal, G obal Nane}
| {via, Modul e, Vi aNane}
Name = atom()
A obal Nane = ViaName = term()
Timeout =int() | infinity
Makes an existing process into a gen_ser ver process. Does not return, instead the calling process enters the
gen_ser ver processreceiveloop and becomesagen_ser ver process. The process must have been started using

one of the start functionsin proc_| i b(3) . The user isresponsible for any initialization of the process, including
registering a name for it.

This function is useful when a more complex initialization procedure is needed than the gen_ser ver process
behavior provides.

Modul e, Opt i ons, and Ser ver Nane havethe same meaningsaswhencallingst art[_I i nk]/ 3, 4. However,
if Ser ver Nane is specified, the process must have been registered accordingly befor e this function is called.

St at e and Ti meout have the same meanings as in the return value of Modul e: i ni t/ 1. The callback module
Modul e does not need to export ani ni t/ 1 function.

Thefunctionfailsif thecalling processwasnot started by apr oc_| i b start function, or if it isnot registered according
to Ser ver Nane.

226 | Ericsson AB. All Rights Reserved.: STDLIB

gen_server

multi call(Name, Request) -> Result
multi call(Nodes, Name, Request) -> Result
multi call(Nodes, Name, Request, Timeout) -> Result

Types:
Nodes = [Node]
Node = atom()

Name = atom()
Request = term)
Timeout = int()>=0 | infinity
Result = {Replies, BadNodes}
Replies = [{Node, Repl y}]

Reply = term()

BadNodes = [Node]
Makes a synchronous call to al gen_server processes localy registered as Nane at the specified nodes

by first sending a request to every node and then waits for the replies. The gen_server process cals
Modul e: handl e_cal | / 3 to handle the request.

Thefunctionreturnsatuple{ Repl i es, BadNodes} ,whereRepl i es isalistof { Node, Repl y} andBadNodes
isalist of node that either did not exist, or wherethe gen_ser ver Nane did not exist or did not reply.

Nodes isalist of node namesto which therequest isto be sent. Default valueisthelist of al known nodes[node() |
nodes()] .

Nane isthelocally registered name of each gen_ser ver process.
Request isany term that is passed as one of the argumentsto Modul e: handl e_cal I / 3.

Ti meout isan integer greater than zero that specifies how many milliseconds to wait for each reply, or the atom
i nfinity towaitindefinitely. Defaultstoi nfi ni ty. If noreply isreceived from anode within the specified time,
the nodeis added to BadNodes.

When areply Repl y is received from the gen_ser ver process at a node Node, { Node, Repl y} is added to
Repl i es. Repl y isdefined in the return value of Modul e: handl e_cal | / 3.

Warning:

If one of the nodes cannot process monitors, for example, C or Java nodes, and thegen_ser ver processis not
started when the requests are sent, but starts within 2 seconds, this function waits the whole Ti meout , which
may be infinity.

This problem does not exist if al nodes are Erlang nodes.

To prevent late answers (after the time-out) from polluting the message queue of the caller, a middleman processis
used to do the calls. Late answers are then discarded when they arrive to aterminated process.

reply(Client, Reply) -> Result
Types.

Client - see bel ow

Reply = tern()

Result = term)

Ericsson AB. All Rights Reserved.: STDLIB | 227

gen_server

Thisfunction can be used by agen_ser ver processto explicitly send areply to aclient that calledcal | / 2, 3 or
mul ti _cal |l /2,3, 4, when thereply cannot be defined in the return value of Modul e: handl e_cal | / 3.

d i ent must be the Fr omargument provided to the callback function. Repl y is any term given back to the client
asthereturnvalueof cal | /2,3 ornul ti _call/2,3, 4.

Thereturn value Resul t isnot further defined, and is always to be ignored.

start(Module, Args, Options) -> Result
start(ServerName, Module, Args, Options) -> Result
Types.
Server Nane = {l ocal, Nane} | {gl obal, d obal Nane}
| {via, Modul e, Vi aNane}
Name = atom()
d obal Nane = ViaNane = term()
Modul e = atom()
Args = term)
Options = [Option]
Option = {debug, Dbgs} | {tineout,Tine} | {spawn_opt, SOpts}
Dbgs = [Dbg]

Dbg = trace | log | statistics | {log_ to file,FileNane} | {install,
{Func, FuncsSt at e} }

SOpts = [tern()]
Result = {ok,Pid} | ignore | {error,Error}
Pid = pid()

Error = {already_started,Pid} | term)

Creates a standalone gen_ser ver process, that is, agen_ser ver process that is not part of a supervision tree
and thus has no supervisor.

For a description of arguments and return values, seestart _| i nk/ 3, 4.

start_link(Module, Args, Options) -> Result
start _link(ServerName, Module, Args, Options) -> Result
Types.
Server Nane = {l ocal, Nane} | {gl obal, d obal Nane}
| {via, Modul e, Vi aNane}
Name = atom()
d obal Nane = ViaNane = term()
Modul e = atom()
Args = term)
Options = [Option]
Option = {debug, Dbgs} | {tineout,Tine} | {spawn_opt, SOpt s}
Dbgs = [Dbg]

Dbg = trace | log | statistics | {log_ to file,FileNane} | {install,
{Func, FuncsSt at e} }

SOpts = [tern()]

Result = {ok,Pid} | ignore | {error,Error}

228 | Ericsson AB. All Rights Reserved.: STDLIB

gen_server

Pid = pid()
Error = {already_started,Pid} | term))

Createsagen_ser ver process as part of a supervision tree. This function is to be called, directly or indirectly, by
the supervisor. For example, it ensuresthat thegen_ser ver processis linked to the supervisor.

The gen_server process cals Modul e: i nit/ 1 to initialize. To ensure a synchronized startup procedure,
start _|ink/ 3, 4 doesnot return until Modul e: i ni t/ 1 hasreturned.

« If ServerNane={l ocal , Nane}, the gen_server process is registered locally as Name using
register/ 2.

« If ServerNane={gl obal , G obal Nanme}, the gen_server process id registered globaly as
A obal Nane using gl obal : regi st er _nane/ 2 If no nameisprovided, thegen_ser ver processisnot
registered.

 If ServerNanme={vi a, Modul e, Vi aNane}, the gen_server process registers with the registry
represented by Modul e. The Modul e calback is to export the functions regi ster nane/ 2,
unregi ster_nane/ 1, wherei s_nane/ 1, and send/ 2, which are to behave like the corresponding
functionsin gl obal . Thus, { vi a, gl obal , G obal Nane} isavalid reference.

Modul e isthe name of the callback module.

Ar gs isany term that is passed as the argument to Modul e: init/ 1.

e If option {ti meout, Ti ne} is present, the gen_ser ver process is alowed to spend Ti me milliseconds
initializing or it is terminated and the start function returns{ err or, ti meout } .

« |If option { debug, Dbgs} is present, the corresponding sys function is called for each item in Dbgs; see
sys(3).

e If option { spawn_opt, SOpt s} is present, SOpt s is passed as option list to the spawn_opt BIF, whichis
used to spawn thegen_ser ver process, see spawn_opt/ 2.

Note:

Using spawn option noni t or isnot allowed, it causes the function to fail with reason badar g.

If the gen_ser ver processis successfully created and initialized, the function returns { ok, Pi d} , where Pi d is
thepid of thegen_ser ver process. If aprocesswith the specified Ser ver Name existsaready, the function returns
{error,{already_started, Pid}}, wherePi disthepid of that process.

If Modul e: i nit/ 1 fails with Reason, the function returns { er r or , Reason} . If Modul e: i ni t/ 1 returns
{st op, Reason} ori gnor e, the processis terminated and the function returns{ er r or , Reason} ori gnore,
respectively.

stop(ServerRef) -> ok
stop(ServerRef, Reason, Timeout) -> ok
Types:
Server Ref = Nane | {Nane, Node} | {gl obal, d obal Nane}
| {via, Modul e, ViaNane} | pid()
Node = atom()
G obal Name = ViaNane = term()
Reason = term()
Timeout = int()>0 | infinity

Ericsson AB. All Rights Reserved.: STDLIB | 229

gen_server

Orders a generic server to exit with the specified Reason and waits for it to terminate. The gen_ser ver process
cals Modul e: t er mi nat e/ 2 before exiting.

Thefunction returnsok if the server terminateswith the expected reason. Any other reasonthannor mal , shut down,
or { shut down, Ter n} causes an error report to be issued using error | ogger: format/ 2. The default
Reason isnor mal .

Ti meout isaninteger greater than zero that specifies how many milliseconds to wait for the server to terminate, or
theatomi nf i ni t y towait indefinitely. Defaultstoi nf i ni t y. If the server has not terminated within the specified
time, ati meout exceptionisraised.

If the process does not exist, anopr oc exception is raised.

Callback Functions

The following functions are to be exported fromagen_ser ver calback module.

Exports

Module:code change(OldVsn, State, Extra) -> {ok, NewState} | {error, Reason}
Types.
A dvsn = Vsn | {down, Vsn}

Vsn = tern()
State = NewState = term))
Extra = tern()

Reason = term()

This function is caled by a gen_server process when it is to update its interna state during
a release upgrade/downgrade, that is, when the instruction {updat e, Modul e, Change, ...}, where
Change={ advanced, Ext r a},isspecifedintheappup file. For moreinformation, see section Release Handling
Instructionsin OTP Design Principles.

For an upgrade, O dVsn is Vsn, and for a downgrade, A dVsn is { down, Vsn}. Vsn is defined by the vsn
attribute(s) of the old version of the callback module Modul e. If no such attribute is defined, the version is the
checksum of the Beam file.

St at e istheinternal state of thegen_ser ver process.
Ext raispassed "asis' fromthe{advanced, Extr a} part of the update instruction.
If successful, the function must return the updated internal state.

If the function returns{ er r or , Reason}, the ongoing upgrade fails and rolls back to the old release.

Module:format status(Opt, [PDict, State]) -> Status

Types:
Opt = nornal | terminate
PDict = [{Key, Value}]

State = term))
Status = tern()

230 | Ericsson AB. All Rights Reserved.: STDLIB

gen_server

Note:

This callback is optional, so callback modules need not export it. Thegen_ser ver module provides a default
implementation of this function that returns the callback module state.

Thisfunction iscalled by agen_ser ver processin the following situations:

e Oneof sys:get_status/1, 2isinvokedtogetthegen_server status. Opt isset tothe atom nor nmal .
« Thegen_server processterminates abnormally and logs an error. Opt issettotheatomt er m nat e.

This function is useful for changing the form and appearance of thegen_ser ver statusfor these cases. A callback
modulewishing to changethesys: get _st at us/ 1, 2 return value, aswell as how its status appearsin termination

error logs, exports an instance of f or mat _st at us/ 2 that returns a term describing the current status of the
gen_ser ver process.

PDi ct isthe current value of the process dictionary of thegen_ser ver process..
St at e istheinternal state of thegen_ser ver process.

Thefunctionisto return St at us, aterm that changes the details of the current state and status of thegen_ser ver
process. There are no restrictions on the form St at us can take, but for the sys: get _st atus/ 1, 2 case (when
Opt isnor nmal), the recommended form for the St at us valueis[{data, [{"State", Tern}]}], where
Ter mprovides relevant details of the gen_ser ver state. Following this recommendation is not required, but it
makes the callback module status consistent with therest of thesys: get _st at us/ 1, 2 return value.

Oneusefor thisfunction isto return compact alternative state representationsto avoid that large state terms are printed
inlog files.

Module:handle call(Request, From, State) -> Result
Types:
Request = term)
From = {pid(), Tag}
State = term))
Result = {reply, Reply, NewState} | {reply, Reply, NewSt at e, Ti neout }
| {reply, Reply, NewSt at e, hi ber nat e}
| {noreply, NewState} | {noreply, NewSt at e, Ti meout }
| {noreply, NewsSt at e, hi ber nat e}
| {stop, Reason, Reply, NewSt ate} | {stop, Reason, NewSt at e}
Reply = term()
NewState = term()
Timeout = int()>=0 | infinity
Reason = term)

Whenever agen_ser ver processreceivesarequestsentusingcal | /2, 3ornul ti _cal |/ 2, 3, 4, thisfunction
is called to handle the request.

Request isthe Request argument providedtocal | ornulti _call.
Fromisatuple{ Pi d, Tag}, where Pi d isthe pid of the client and Tag is a unique tag.
St at e istheinternal state of thegen_ser ver process.

« If {reply, Reply, NewSt at e} is returned, {reply, Reply, NewSt at e, Ti neout } or
{reply, Reply, NewSt at e, hi ber nat e}, Repl y isgiven back to Fr omasthereturnvalueofcal | / 2, 3

Ericsson AB. All Rights Reserved.: STDLIB | 231

gen_server

or included inthereturnvalueof mul ti _cal | / 2, 3, 4. Thegen_ser ver process then continues executing
with the possibly updated internal state NewSt at e.
For adescription of Ti neout and hi ber nat e, seeModul e: i nit/ 1.

o |If {noreply, NewSt at e} is returned, {noreply, NewSt at e, Ti neout }, or
{noreply, NewSt at e, hi ber nat e} ,thegen_ser ver processcontinuesexecutingwith NewSt at e. Any
reply to Fr ommust be specified explicitly using r epl y/ 2.

 If{stop, Reason, Repl y, NewSt at e} isreturned, Repl y isgiven back to Fr om

e If{stop, Reason, NewSt at e} isreturned, any reply to Fr ommust be specified explicitly usingr epl y/ 2.
Thegen_ser ver processthen callsMbdul e: t er mi nat e(Reason, NewSt at e) and terminates.

Module:handle cast(Request, State) -> Result
Types.
Request = term))
State = term))
Result = {noreply, NewState} | {noreply, NewSt at e, Ti neout }
| {noreply, NewSt at e, hi ber nat e}
| {stop, Reason, NewSt at e}
NewState = term()
Timeout = int()>=0 | infinity
Reason = term()

Whenever agen_ser ver process receives arequest sent using cast/ 2 or abcast / 2, 3, thisfunction is called
to handle the request.

For a description of the arguments and possible return values, see Mbdul e: handl e_cal | / 3.

Module:handle info(Info, State) -> Result
Types.
Info = tinmeout | term)
State = term)
Result = {noreply, NewState} | {noreply, NewSt at e, Ti neout }
| {noreply, NewsSt at e, hi ber nat e}
| {stop, Reason, NewSt at e}
NewState = term()
Timeout = int()>=0 | infinity
Reason = normal | tern()

Thisfunctioniscalledby agen_ser ver processwhen atime-out occurs or when it receives any other message than
a synchronous or asynchronous request (or a system message).

I nf o iseither theatomt i meout , if atime-out has occurred, or the received message.
For a description of the other arguments and possible return values, see Modul e: handl e_cal | / 3.

Module:init(Args) -> Result
Types:
Args = term)
Result = {ok, State} | {ok, State, Tineout} | {ok, State, hi bernate}

232 | Ericsson AB. All Rights Reserved.: STDLIB

gen_server

| {stop, Reason} | ignore
State = term)
Timeout = int()>=0 | infinity

Reason = term()

Whenever agen_ser ver processisstarted usingstart/ 3,4 orstart _|ink/ 3, 4, thisfunction is called by
the new processto initialize.

Ar gs isthe Ar gs argument provided to the start function.

If the initialization is successful, the function is to return {ok, State}, {ok, State, Ti meout}, or
{ ok, St at e, hi ber nat e}, where St at e istheinternal state of thegen_ser ver process.

If an integer time-out value is provided, a time-out occurs unless a request or a message is received within
Ti meout milliseconds. A time-out is represented by the atom ti meout, which is to be handled by the
Modul e: handl e_i nf o/ 2 calback function. The atom i nfi ni ty can be used to wait indefinitely, this is the
default value.

If hi ber nat e is specified instead of atime-out value, the process goes into hibernation when waiting for the next
message to arrive (by calling proc_I i b: hi ber nat e/ 3).

If theinitialization fails, the function isto return { st op, Reason} , where Reason isany term, or i gnor e.

Module:terminate(Reason, State)

Types.
Reason = nornmal | shutdown | {shutdown,tern()} | term)
State = term))

This function is called by a gen_server process when it is about to terminate. It is to be the opposite of
Modul e: i ni t/ 1 and do any necessary cleaning up. When it returns, the gen_ser ver process terminates with
Reason. Thereturn value isignored.

Reason isaterm denoting the stop reason and St at e istheinternal state of thegen_ser ver process.

Reason depends on why the gen_ser ver process is terminating. If it is because another callback function has
returned astop tuple{ st op, . . }, Reason hasthevalue specified in that tuple. If it is because of afailure, Reason
isthe error reason.

If thegen_server processis part of a supervision tree and is ordered by its supervisor to terminate, this function
iscalled with Reason=shut down if the following conditions apply:

e Thegen_server process has been set to trap exit signals.

» The shutdown strategy as defined in the child specification of the supervisor is an integer time-out value, not
brutal _Kkill.

Even if the gen_ser ver processis not part of a supervision tree, this function is called if it receivesan' EXI T'
message from its parent. Reason isthesameasinthe' EXI T' message.

Otherwise, thegen_ser ver processterminatesimmediately.

Notice that for any other reason than nor mal , shut down, or { shut down, Ter n} ,thegen_ser ver processis
assumed to terminate because of an error and an error report isissued using err or _| ogger : f or mat/ 2.

See Also
gen_event (3),gen_fsm3),gen_staten(3),proc_lib(3),supervisor(3),sys(3)

Ericsson AB. All Rights Reserved.: STDLIB | 233

gen_statem

gen_statem

Erlang module

This behavior module provides a state machine. Two callback modes are supported:

* Onefor finite-state machines (gen_f smlike), which requires the state to be an atom and uses that state as the
name of the current callback function

e Onewithout restriction on the state data type that uses one callback function for all states

Note:

Thisis anew behavior in Erlang/OTP 19.0. It has been thoroughly reviewed, is stable enough to be used by at
least two heavy OTP applications, and is here to stay. Depending on user feedback, we do not expect but can find
it necessary to make minor not backward compatible changes into Erlang/OTP 20.0.

The gen_st at embehavior is intended to replace gen_f smfor new code. It has the same features and adds some
really useful:

e State codeis gathered.

* The state can be any term.

e Events can be postponed.

» Events can be self-generated.

* A reply can be sent from alater state.

* Therecan bemultiple sys traceable replies.

The callback model(s) for gen_st at emdiffersfrom the onefor gen_f sm but it is till fairly easy to rewrite from
gen_f smtogen_st atem

A generic state machine process (gen_st at em) implemented using this module has a standard set of interface
functions and includes functionality for tracing and error reporting. It also fitsinto an OTP supervision tree. For more
information, see OTP Design Principles.

A gen_st at emassumes all specific partsto belocated in a callback module exporting a predefined set of functions.
The relationship between the behavior functions and the callback functionsis as follows:

gen_statem module Callback module

gen statem:start
gen statem:start link ----- > Module:init/1

gen statem:stop = ----- > Module:terminate/3
gen_statem:call
gen statem:cast
erlang:send
erlang:'!" ----- > Module:StateName/3
Module:handle event/4
----- > Module:terminate/3

----- > Module:code change/4

234 | Ericsson AB. All Rights Reserved.: STDLIB

gen_statem

Events are of different types, so the callback functions can know the origin of an event and how to respond.

If acallback functionfailsor returnsabad value, thegen_st at emterminates. However, an exception of classt hr ow
is not regarded as an error but as avalid return.

The"state function” for a specific stateinagen_st at emisthe callback function that is called for all eventsin this
state. It is selected depending on which callback mode that the implementation specifies when the server starts.

When the callback mode is state functions, the state must be an atom and is used as the state
function name; see Mbdul e: St at eNane/ 3. This gathers al code for a specific state in one function as the
gen_st at emengine branches depending on state name. Notice that in this mode the mandatory callback function
Modul e: t er mi nat e/ 3 makesthe state namet er i nat e unusable.

When the callback modeishandl e_event _f unct i on, the state can be any term and the state function nameis
Modul e: handl e_event/ 4. This makes it easy to branch depending on state or event as you desire. Be careful
about which events you handle in which states so that you do not accidentally postpone an event forever creating an
infinite busy loop.

Thegen_st at emengueuesincoming eventsin order of arrival and presents these to the state function in that order.
The state function can postpone an event so it is not retried in the current state. After a state change the queue restarts
with the postponed events.

The gen_st at emevent queue moddl is sufficient to emulate the normal process message queue with selective
receive. Postponing an event corresponds to not matching it in a receive statement, and changing states corresponds
to entering a new receive statement.

The state function can insert events using theact i on() next _event and such an event isinserted as the next to
present to the state function. That is, asif it isthe oldest incoming event. A dedicated event _type() i nternal
can be used for such events making them impossible to mistake for external events.

Inserting an event replaces the trick of calling your own state handling functions that you often would have to resort
toin, for example, gen_f smto force processing an inserted event before others.

Note:

If youingen_st at em for example, postpone an event in one state and then call another state function of yours,
you have not changed states and hence the postponed event is not retried, which islogical but can be confusing.

For the details of a state transition, seetypet ransi ti on_option().

A gen_st at emhandles system messages as described in sys. The sys module can be used for debugging a
gen_statem

Notice that agen_st at emdoes not trap exit signals automatically, this must be explicitly initiated in the callback
module (by calling process_flag(trap_exit, true).

Unless otherwise stated, all functions in this module fail if the specified gen_st at emdoes not exist or if bad
arguments are specified.

Thegen_st at emprocesscan gointo hibernation; seepr oc_I1 i b: hi ber nat e/ 3. Itisdonewhen astate function
or Modul e: i ni t/ 1 specifies hi ber nat e in the returned Act i ons list. This feature can be useful to reclaim
process heap memory while the server is expected to be idle for along time. However, use this feature with care, as
hibernation can be too costly to use after every event; seeer | ang: hi ber nat e/ 3.

Ericsson AB. All Rights Reserved.: STDLIB | 235

gen_statem

Example

Thefollowing exampl e shows a simple pushbutton model for atoggling pushbutton implemented with callback mode
state_functions. You can push the button and it repliesiif it went on or off, and you can ask for a count of how
many times it has been pushed to switch on.

The following is the complete callback module file pushbut t on. erl :

-module(pushbutton).
-behaviour(gen_statem).

-export([start/0,push/0,get count/0,stop/0]).
-export([terminate/3, code change/4,init/1]).
-export([on/3,0ff/3]).

name() -> pushbutton statem. % The registered server name
callback mode() -> state functions.

API. This example uses a registered name name()
and does not link to the caller.
start() ->
gen statem:start({local,name()}, ?MODULE, [], [1]).
push() ->
gen_statem:call(name(), push).
get count() ->
gen_statem:call(name(), get count).
stop() ->
gen statem:stop(name()).

%% Mandatory callback functions
terminate(Reason, State, Data) ->
void.
code change(Vsn, State, Data, Extra) ->
{callback mode(),State,Data}.
init([]) ->
%% Set the callback mode and initial state + data.
%% Data is used only as a counter.
State = off, Data = 0,
{callback mode(),State,Data}.

%%% State functions

off({call,From}, push, Data) ->

%% Go to 'on', increment count and reply

%% that the resulting status is 'on'

{next state,on,Data+1, [{reply,From,on}]1};
off (EventType, EventContent, Data) ->

handle event(EventType, EventContent, Data).

on({call,From}, push, Data) ->
%% Go to 'off' and reply that the resulting status is 'off'
{next state,off,Data, [{reply,From,off}1};

on(EventType, EventContent, Data) ->
handle event(EventType, EventContent, Data).

%% Handle events common to all states
handle event({call,From}, get count, Data) ->
%% Reply with the current count
{keep state,Data, [{reply,From,Data}]};
handle event(_, , Data) ->
%% Ignore all other events
{keep state,Data}.

236 | Ericsson AB. All Rights Reserved.: STDLIB

gen_statem

Thefollowing is a shell session when running it:

1> pushbutton:start().
{0k, <0.36.0>}

2> pushbutton:get count().
0

3> pushbutton:push().

on

4> pushbutton:get count().
1

5> pushbutton:push().

off

6> pushbutton:get count().
1

7> pushbutton:stop().

ok

8> pushbutton:push().

** exception exit: {noproc,{gen statem,call, [pushbutton statem,push,infinity]}}

in function gen:do for proc/2 (gen.erl, line 261)

in call from gen statem:call/3 (gen statem.erl, line 386)

To compare styles, here follows the same example using callback mode st at e_f unct i ons, or rather the code to

replace from functioni ni t / 1 of the pushbut t on. er | examplefile above:

[]

)
"6
)

"6

) ->
Set the callback mode and initial state + data.
Data is used only as a counter.

tate = off, Data = 0,

handle event function,State,Data}.

init

WU R P~

%%% Event handling

handle event({call,From}, push, off, Data) ->
%% Go to 'on', increment count and reply
%% that the resulting status is 'on'
{next state,on,Data+1, [{reply,From,on}]1};

handle event({call,From}, push, on, Data) ->

%% Go to 'off' and reply that the resulting status is 'off'

{next state,off,Data, [{reply,From,off}1};

o°
o°

%% Event handling common to all states
handle event({call,From}, get count, State, Data) ->
%% Reply with the current count
{next state,State,Data, [{reply,From,Data}]};
handle event(, , State, Data) ->
%% Ignore all other events
{next state,State,Data}.

Data Types

server_name() =
{global, GlobalName :: term()} |
{via, RegMod :: module(), Name :: term()} |

Ericsson AB. All Rights Reserved

. STDLIB | 237

gen_statem

{local, atom()}
Name specification to use when startingagen_st at emserver. Seestart _|i nk/ 3andserver _ref () below.

server ref() =
pid() |
(LocalName :: atom()) |
{Name :: atom(), Node :: atom()} |
{global, GlobalName :: term()} |
{via, RegMod :: module(), ViaName :: term()}

Server specification to use when addressing agen_st at emserver. Seecal | / 2 and ser ver _nane() above.
It can be:
pid() | Local Nane
Thegen_st at emislocally registered.
{ Nane, Node}
Thegen_st at emislocally registered on another node.
{gl obal , d obal Nane}
Thegen_st at emisglobally registered in gl obal .
{vi a, Reghbd, Vi aNane}

The gen_st at emisregistered in an alternative process registry. The registry callback module Reghod is to
export functions r egi st er _nane/ 2, unr egi st er _nane/ 1, wherei s_nane/ 1, and send/ 2, which
are to behave like the corresponding functionsin gl obal . Thus, { vi a, gl obal , d obal Nane} isthesame
as{ gl obal , d obal Nane}.

debug opt() =
{debug,
Dbgs ::

[trace | log | statistics | debug | {logfile, string()}1}

Debug option that can be used when starting agen_st at emserver through, for example, ent er _| oop/ 5.
For every entry in Dbgs, the corresponding function in sys iscalled.

start opt() =
debug_opt () |
{timeout, Time :: timeout()} |
{spawn_opt, [proc_lib:spawn_option()]}

Options that can be used when starting agen_st at emserver through, for example, st art _|i nk/ 3.
start_ret() = {ok, pid()} | ignore | {error, term()}

Return value from the start functions, for example, st art _| i nk/ 3.

from() = {To :: pid(), Tag :: term()}

Destination to use when replying through, for example, theacti on() {reply, From Repl y} to aprocess that
has called thegen_st at emserver usingcal | / 2.

state() = state_name() | term()

After astate change (Next St at e =/ = St at e), al postponed events are retried.
state name() = atom()

If the callback modeisst at e_f unct i ons, the state must be of thistype.

238 | Ericsson AB. All Rights Reserved.: STDLIB

gen_statem

data() = term()

A term in which the state machine implementation isto store any server datait needs. The difference between thisand
the st at e() itself isthat a change in this data does not cause postponed events to be retried. Hence, if achangein
this data would change the set of eventsthat are handled, then that dataitem is to be made a part of the state.

event type() =
{call, From :: from()} | cast | info | timeout | internal

External events are of three types: { cal | , Fron}, cast, or i nf 0. Calls (synchronous) and casts originate from
the corresponding API functions. For calls, the event contains whom to reply to. Typei nf o originates from regular
process messages sent to the gen_st at em Also, the state machine implementation can generate events of types
ti meout andi nt ernal toitself.

callback mode() = state functions | handle_event function

The callback mode is selected when starting the gen_st at emusing the return value from Modul e: init/ 1 or
when calling ent er _| oop/ 5, 6, 7, and with the return value from Modul e: code_change/ 4.

state_functions

The state must be of type state nane() and one calback function per state, that s,
Modul e: St at eNane/ 3, is used.

handl e_event _functi on
The state can be any term and the callback function Modul e: handl e_event / 4 isused for all states.

transition option() =
post pone() | hibernate() | event_tineout ()

Transition options can be set by actions and they modify the following in how the state transition is done:

e All actions are processed in order of appearance.

« If post pone() istrue,thecurrent event is postponed.

« |f the state changes, the queue of incoming eventsis reset to start with the oldest postponed.

* Alleventsstoredwithact i on() next _event areinserted inthe queueto be processed before all other events.

« Ifanevent _timeout () issetthroughacti on() ti meout,aneventtimer can be started or atime-out zero
event can be enqueued.

e The (possibly new) state function is called with the oldest enqueued event if there is any, otherwise the
gen_st at emgoesintor ecei ve or hibernation (if hi ber nat e() ist r ue) to wait for the next message. In
hibernation the next non-system event awakensthegen_st at em or rather the next incoming message awakens
thegen_st at em but if it isa system event it goes right back into hibernation.

postpone() = boolean()
If t r ue, postpones the current event and retries it when the state changes (Next St at e =/ = St at e).
hibernate() = boolean()

If true, hibernates the gen_st at em by caling proc_li b: hi ber nat e/ 3 before going into recei ve
to wait for a new externa event. If there are enqueued events, to prevent receiving any new event, an
erl ang: garbage_col | ect/ 0 is done instead to simulate that the gen_st at em entered hibernation and
immediately got awakened by the oldest enqueued event.

event timeout() = timeout()

Generates an event of event _type() ti neout after thistime (in milliseconds) unless another event arrives in
which case thistime-out is cancelled. Notice that aretried or inserted event counts like a new in this respect.

If thevalueisi nfi ni ty, notimerisstarted, asit never triggers anyway.

Ericsson AB. All Rights Reserved.: STDLIB | 239

gen_statem

If the value is 0, the time-out event isimmediately enqueued unless there already are enqueued events, as the time-
out is then immediately cancelled. Thisis a feature ensuring that atime-out O event is processed before any not yet
received external event.

Noticethat it is not possible or needed to cancel thistime-out, asit is cancelled automatically by any other event.

action() =
postpone |
{postpone, Postpone :: postpone()} |
hibernate |
{hibernate, Hibernate :: hibernate()} |
(Timeout :: event_tineout()) |
{timeout, Time :: event _tineout(), EventContent :: term()} |

reply_action() |

{next event,
EventType :: event _type(),
EventContent :: term()}

These state transition actions can be invoked by returning them from the state function, from Modul e:init/ 1 or
by giving themtoent er _| oop/ 6, 7.

Actions are executed in the containing list order.

Actions that set transition options override any previous of the same type, so the last in the containing list wins. For
example, thelast event _ti meout () overridesany other event _ti neout () inthelist.

post pone

Setsthet ransi ti on_option() post pone() forthisstatetransition. Thisaction isignored when returned
fromModul e: i nit/ 1 orgiventoent er | oop/ 5, 6, asthereisno event to postpone in those cases.

hi ber nat e
Setsthetransi ti on_option() hi bernate() for thisstate transition.
Ti meout

Shortfor{ti nmeout, Ti meout, Ti meout },thatis, thetime-out messageisthetime-out time. Thisform exists
to make the state function return value{ next _st at e, Next St at e, NewDat a, Ti meout } allowed likefor
gen_f smsModul e: St at eNane/ 2.

ti meout

Setsthetransition_option() event timeout () toTi me with Event Cont ent .
reply_action()

Repliesto acaller.
next _event

Stores the specified Event Type and Event Cont ent for insertion after all actions have been executed.

The stored events are inserted in the queue as the next to process before any already queued events. The order of
these stored eventsis preserved, so thefirst next _event inthe containing list becomes the first to process.

Anevent of typei nt er nal isto be used when you want to reliably distinguish an event inserted this way from
any external event.

reply action() = {reply, From :: from(), Reply :: term()}

Replies to a caller waiting for areply in cal | / 2. Fr ommust be the term from argument { cal | , Fr on} to the
state function.

state function result() =

240 | Ericsson AB. All Rights Reserved.: STDLIB

gen_statem

{next_state, NextStateName :: state_nane(), NewData :: data()} |
{next_state,

NextStateName :: state _nanme(),

NewData :: data(),

Actions :: [action()] | action()} |
common_state_cal | back_result()

next _state

The gen_st at emdoes a state transition to Next St at eNane (which can be the same as the current state),
sets NewDat a, and executes all Act i ons.

All these terms are tuples or atoms and this property will hold in any future version of gen_st at em

handle event result() =
{next_state, NextState :: state(), NewData :: data()} |
{next_state,
NextState :: state(),
NewData :: data(),
Actions :: [action()] | action()} |
common_state_cal | back_result()

next state

The gen_st at emdoes a state transition to Next St at e (which can be the same as the current state), sets
NewDat a, and executes all Act i ons.

All these terms are tuples or atoms and this property will hold in any future version of gen_st at em

common state callback result() =
stop |
{stop, Reason :: term()} |
{stop, Reason :: term(), NewData :: data()} |
{stop and reply,

Reason :: term(),

Replies :: [reply_action()] | reply_action()} |
{stop and reply,

Reason :: term(),

Replies :: [reply_action()] | reply_action(),

NewData :: data()} |

{keep state, NewData :: data()} |
{keep state,

NewData :: data(),

Actions :: [action()] | action()} |
keep state and data |
{keep state and data, Actions :: [action()] | action()}

st op
Terminatesthegen_st at emby calling Modul e: t er m nat e/ 3 with Reason and NewDat a, if specified.
stop_and_reply

Sendsall Repl i es, thenterminatesthegen_st at emby caling Modul e: t er m nat e/ 3 withReason and
NewDat a, if specified.

keep_state

Thegen_st at emkeepsthe current state, or doesastatetransition to the current stateif you like, setsNewDat a,
and executes all Act i ons. Thisisthesameas{ next _stat e, Current St at e, NewDat a, Acti ons}.

Ericsson AB. All Rights Reserved.: STDLIB | 241

gen_statem

keep_state_and _data

The gen_statem keeps the current state or does a state transition to the current state if
you like, keeps the current server data, and executes al Actions. This is the same as
{next _state, Current State, Current Dat a, Acti ons}.

All these terms are tuples or atoms and this property will hold in any future version of gen_st at em

Exports
call(ServerRef :: server_ref(), Request :: term()) ->
Reply :: term()
call(ServerRef :: server _ref(),
Request :: term(),
Timeout :: timeout()) ->

Reply :: term()

Makes a synchronous call tothegen_st at emSer ver Ref by sending areguest and waiting until its reply arrives.
Thegen_st at emcalls the state function withevent _t ype() {cal | , Fr on} and event content Request .

A Repl y is generated when a state function returns with { r epl y, From Repl y} asoneacti on(), and that
Repl y becomes the return value of this function.

Ti meout isaninteger > 0, which specifies how many milliseconds to wait for areply, or theatomi nfinity to
wait indefinitely, which is the default. If no reply is received within the specified time, the function call fails.

Note:

To avoid getting a late reply in the caller's inbox, this function spawns a proxy process that does the call. A late
reply gets delivered to the dead proxy process, hence gets discarded. This is less efficient than using Ti meout
== infinity.

The call can fail, for example, if thegen_st at emdies before or during this function call.

cast(ServerRef :: server_ref(), Msg :: term()) -> ok

Sends an asynchronous event to the gen_st at em Ser ver Ref and returns ok immediately, ignoring if the
destination node or gen_st at emdoes not exist. Thegen_st at emcalls the state function with event _t ype()
cast and event content Msg.

enter loop(Module :: module(),
Opts :: [debug_ opt()],
CallbackMode :: call back _node(),
State :: state(),
Data :: data()) ->
no_return()

Thesameasent er _| oop/ 7 except that noser ver _nane() must have been registered.

enter loop(Module :: module(),
Opts :: [debug_opt()],
CallbackMode :: cal |l back_node() ,
State :: state(),

242 | Ericsson AB. All Rights Reserved.: STDLIB

gen_statem

Data :: data(),
Server _or Actions :: server_name() | pid() | [action()]) ->
no_return()

If Server _or_ Actionsisalist(),thesameasent er | oop/ 7 exceptthatnoser ver _nane() must have
been registered and Acti ons = Server_or _Acti ons.

Otherwisethe sameasent er _| oop/ 7 with Server = Server_or_Actions andActions = [].

enter loop(Module :: module(),

Opts :: [debug_opt()],

CallbackMode :: call back_mode(),

State :: state(),

Data :: data(),

Server :: server_nane() | pid(),

Actions :: [action()] | action()) ->
no_return()

Makes the calling process become a gen_st at em Does not return, instead the calling process enters the
gen_st at emreceive loop and becomesagen_st at emserver. The process must have been started using one of
the start functionsin proc_| i b. The user is responsible for any initialization of the process, including registering
anamefor it.

This function is useful when a more complex initialization procedure is needed than the gen_st at em behavior
provides.

Modul e, Opt s, and Ser ver have the same meanings as when calling start[_Il i nk]/ 3, 4. However, the
server _nane() name must have been registered accordingly befor e this functionis called.

Cal | backMode, St at e, Dat a,andAct i ons havethesamemeaningsasinthereturnvalueof Modul e: i nit/ 1.
Also, the callback module Modul e does not need to export ani ni t / 1 function.

Thefunctionfailsif thecalling processwasnot started by apr oc_| i b start function, or if it isnot registered according
toserver_nane().

reply(Replies :: [reply_action()] | reply_action()) -> ok

reply(From :: fron(), Reply :: term()) -> ok

This function can be used by agen_st at emto explicitly send areply to a process that waitsin cal | / 2 when the
reply cannot be defined in the return value of a state function.

Fr ommust be the term from argument { cal | , Fr on} to the state function. Fr omand Repl y can also be specified
usingar eply_action() and multiple replies with alist of them.

Note:
A reply sent with this function is not visiblein sys debug output.

start(Module :: module(), Args :: term(), Opts :: [start_opt()]) ->
start _ret()
start(ServerName :: server_nane(),
Module :: module(),
Args :: term(),
Opts :: [start _opt()]) ->

Ericsson AB. All Rights Reserved.: STDLIB | 243

gen_statem

start _ret()

Createsastandalonegen_st at emprocess according to OTP design principles (using pr oc_| i b primitives). Asit
does not get linked to the calling process, this start function cannot be used by a supervisor to start a child.

For a description of arguments and return values, seestart _| i nk/ 3, 4.

start_link(Module :: module(),
Args :: term(),
Opts :: [start_opt()]) ->
start _ret()
start _link(ServerName :: server_nane(),
Module :: module(),
Args :: term(),
Opts :: [start _opt()]) ->
start _ret()
Createsagen_st at emprocess according to OTP design principles (using pr oc_| i b primitives) that islinked to
the calling process. This is essential when the gen_st at emmust be part of a supervision tree so it gets linked to
its supervisor.

The gen_st at em process calls Mbdul e: i nit/ 1 to initiadlize the server. To ensure a synchronized startup
procedure, st art _| i nk/ 3, 4 does not return until Modul e: i ni t/ 1 hasreturned.

Ser ver Nane specifiestheser ver _nane() toregister forthegen_st at em If thegen_st at emisstarted with
start _|ink/3,noServer Nane isprovided and thegen_st at emisnot registered.

Modul e isthe name of the callback module.
Ar gs isan arbitrary term that is passed as the argument to Modul e: init/ 1.

« If option {ti meout, Ti me} ispresent in Opt s, the gen_st at emis alowed to spend Ti ne milliseconds
initializing or it terminates and the start function returns{ error, ti meout }.

e Ifoption{debug, Dbgs} ispresentin Opt s, debugging through sys is activated.

« If option {spawn_opt, SpawnOpt s} is present in Opts, SpawnOpt s is passed as option list to
erl ang: spawn_opt / 2, which isused to spawn the gen_st at emprocess.

Note:

Using spawn option noni t or isnot allowed, it causes this function to fail with reason badar g.

If thegen_st at emissuccessfully created and initialized, thisfunction returns{ ok, Pi d} ,wherePi d isthepi d()
of the gen_st at em If a process with the specified Ser ver Nare exists aready, this function returns{ er r or,
{already_started, Pid}},wherePi disthepi d() of that process.

If Modul e: i ni t/ 1 fails with Reason, this function returns{ er r or, Reason} . If Modul e: i ni t/ 1 returns
{st op, Reason} ori gnor e, the processisterminated and this function returns{ er r or , Reason} ori gnor e,
respectively.

stop(ServerRef :: server_ref()) -> ok
Thesameasst op(ServerRef, normal, infinity).
stop(ServerRef :: server_ref(),

Reason :: term(),

244 | Ericsson AB. All Rights Reserved.: STDLIB

gen_statem

Timeout :: timeout()) ->
ok

Orders the gen_st at em Ser ver Ref to exit with the specified Reason and waits for it to terminate. The

gen_st at emcalsModul e: t er m nat e/ 3 before exiting.

This function returns ok if the server terminates with the expected reason. Any other reason than nor rmal ,
shut down, or { shut down, Ter n} causesan error report to beissued througher r or _I ogger: f ormat/ 2. The

default Reason isnor mal .

Ti meout isaninteger > 0, which specifies how many milliseconds to wait for the server to terminate, or the atom
i nfinity towait indefinitely. Defaultsto i nfi ni ty. If the server does not terminate within the specified time,

ati meout exception israised.
If the process does not exist, anopr oc exception is raised.

Callback Functions

The following functions are to be exported from agen_st at emcallback module.

Exports

Module:code change(0OldVsn, OldState, OldData, Extra) -> Result

Types.

advsn = Vsn | {down, Vsn}

Vsn = tern()

A dState = NewSt ate

Extra = tern()

Result = {NewCal | backMbde, NewSt at e, NewDat a} | Reason

NewCal | backMbde

Reason = term()

cal | back_node()
A dState = NewState
O dDat a = NewDat a

Thisfunction iscalled by agen_st at emwhen it isto update itsinternal state during a release upgrade/downgrade,
that is, when the instruction { updat e, Modul e, Change, . . .}, where Change={ advanced, Extra}, is
specified in the appup file. For more information, see OTP Design Principles.

For an upgrade, O dVsn is Vsn, and for a downgrade, O dVsn is { down, Vsn}. Vsn is defined by the vsn
attribute(s) of the old version of the callback module Modul e. If no such attribute is defined, the version is the

checksum of the Beam file.

Note:

If you would dare to change callback mode during rel ease upgrade/downgrade, the upgrade is no problem, asthe
new code surely knows what callback mode it needs. However, for a downgrade this function must know from
argument Ext r a that comesfromthesasl : appup filewhat callback modethe old code did use. It can also be
possibleto figurethisout from argument { down, Vsn} , asVsn in effect definesthe old callback moduleversion.

d dSt at e and A dDat a istheinterna state of thegen_st at em
Ext raispassed "asis' fromthe{ advanced, Ext r a} part of the update instruction.

Ericsson AB. All Rights Reserved.: STDLIB | 245

gen_statem

If successful, the function must return the updated internal state in an
{ NewCal | backMode, NewSt at e, NewDat a} tuple.

If the function returns Reason, the ongoing upgrade fails and rolls back to the old release.
Thisfunction canuseer | ang: t hr ow 1 toreturn Resul t or Reason.

Module:init(Args) -> Result
Types:

Args = term)

Result = {Cal | backMbde, St at e, Dat a}
| {Call backMode, St at e, Dat a, Act i ons}
| {stop, Reason} | ignore

Cal | backMode = cal | back_node()

State = state()

Data = data()

Actions = [action()] | action()

Reason = term()

Whenever agen_st at emisstarted usingstart _|ink/ 3, 4 orstart/ 3, 4, thisfunction is caled by the new
process to initialize the implementation state and server data.

Ar gs isthe Ar gs argument provided to the start function.

If the initidization is successful, the function is to return {Cal | backMode, State, Data} or
{Cal | backMode, St at e, Dat a, Acti ons}.Cal | backMode selectsthe callback mode of thegen_st at em
St at e istheinitial st at e() and Dat a theinitial server dat a() .

The Act i ons are executed when entering the first state just as for a state function.
If theinitiaization fails, the functionisto return { st op, Reason} ori gnore;seestart _|ink/ 3, 4.
Thisfunctioncanuseer | ang: t hrow 1 toreturn Resul t .

Module:format status(Opt, [PDict,State,Data]) -> Status

Types:
Opt = nornal | terminate
PDict = [{Key, Value}]
State = state()
Data = data()
Key = term)

Value = term)
Status = tern()

Note:

This callback is optional, so a callback module does not need to export it. Thegen_st at emmodule provides a
default implementation of this function that returns { St at e, Dat a} . If this callback fails, the default function
returns{ St at e, | nf o} , wherel nf o informs of the crash but no details, to hide possibly sensitive data.

Thisfunction is called by agen_st at emprocess when any of the following apply:

246 | Ericsson AB. All Rights Reserved.: STDLIB

gen_statem

e Oneofsys:get_status/1, 2isinvokedtogetthegen st at emstatus. Opt is set to the atom nor nal
for this case.

e Thegen_st at emterminates abnormally and logs an error. Opt isset to theatomt er ni nat e for this case.
This function is useful for changing the form and appearance of the gen_st at emstatus for these cases. A callback
module wishing to change the sys: get _status/ 1, 2 return value and how its status appears in termination

error logs exports an instance of f or mat _st at us/ 2, which returns a term describing the current status of the
gen_statem

PDi ct isthe current value of the process dictionary of thegen_st at em
St at e istheinternal state of thegen_st at em
Dat a istheinternal server data of thegen_st at em

Thefunctionisto return St at us, aterm that changes the details of the current state and status of thegen_st at em
There are no restrictions on the form St at us can take, but for the sys: get st at us/ 1, 2 case (when Opt is
nor mal), the recommended form for the St at us valueis[{data, [{"State", Tern}]}],whereTerm
provides relevant details of the gen_st at emstate. Following this recommendation is not required, but it makes the
callback module status consistent with the rest of thesys: get _st at us/ 1, 2 return value.

One usefor thisfunction isto return compact alternative state representationsto avoid having large state terms printed
in log files. Another use isto hide sensitive data from being written to the error log.

Thisfunction canuseer | ang: t hr ow' 1 toreturn St at us.

Module:StateName(EventType, EventContent, Data) -> StateFunctionResult

Module:handle event(EventType, EventContent, State, Data) ->
HandleEventResult

Types:
Event Type = event _type()
Event Content = term))
State = state()
Data = NewData = data()
StateFuncti onResult = state function_result()
Handl eEvent Resul t = handl e_event _result()
Whenever a gen_st at emreceives an event from cal | / 2, cast/ 2, or as a norma process message, one of

these functionsis called. If callback modeisst at e_f uncti ons, Modul e: St at eNane/ 3 iscaled, andif itis
handl e_event functi on, Modul e: handl e_event/ 4 iscalled.

If Event Type is{cal |, Fron}, the caller waits for a reply. The reply can be sent from this or from any other
state function by returning with{ r epl y, Fr om Repl y} inActi ons,inRepl i es,orby callingr epl y(From
Reply).

If this function returns with a next state that does not match equal (=/ =) to the current state, al postponed events
areretried in the next state.

The only difference between StateFunctionResult and Handl eEvent Result is that for
St at eFuncti onResul t the next state must be an atom, but for Handl eEvent Resul t there is no restriction
on the next state.

For options that can be set and actions that can be done by gen_st at emafter returning from this function, see
action().

These functionscan useer | ang: t hr ow' 1, to return the result.

Ericsson AB. All Rights Reserved.: STDLIB | 247

gen_statem

Module:terminate(Reason, State, Data) -> Ignored
Types:
Reason = normal | shutdown | {shutdown,tern()} | term)
State = state()
Data = data()
Ignored = term)

Thisfunctioniscaled by agen_st at emwhen it isabout to terminate. It isto be the opposite of Modul e:init/ 1
and do any necessary cleaning up. When it returns, the gen_st at emterminates with Reason. The return value
isignored.

Reason isaterm denoting the stop reason and St at e isthe internal state of thegen_st at em

Reason depends on why the gen_st at emisterminating. If it is because another callback function has returned, a
stop tuple{ st op, Reason} inAct i ons, Reason hasthe value specified in that tuple. If it is because of afailure,
Reason isthe error reason.

If the gen_st at emis part of a supervision tree and is ordered by its supervisor to terminate, this function is called
with Reason = shut down if both the following conditions apply:

 Thegen_st at emhas been set to trap exit signals.

» The shutdown strategy as defined in the supervisor's child specification is an integer time-out value, not
brutal _Kkill.

Even if the gen_st at emis not part of a supervision tree, this function is called if it receivesan' EXI T' message
from its parent. Reason isthesameasinthe' EXI T' message.

Otherwise, thegen_st at emisimmediately terminated.

Notice that for any other reason than nor mal , shut down, or { shut down, Ter n} , thegen_st at emisassumed
to terminate because of an error and an error report isissued using er r or _| ogger: f or mat/ 2.

Thisfunction canuseer | ang: t hr ow 1 toreturn | gnor ed, which isignored anyway.

See Also
gen_event (3),gen_fsm3),gen_server(3),proc_lib(3),supervisor(3),sys(3).

248 | Ericsson AB. All Rights Reserved.: STDLIB

io

Erlang module

This module provides an interface to standard Erlang I/O servers. The output functions all return ok if they are
successful, or exit if they are not.

All functions in this module have an optional parameter | oDevi ce. If included, it must be the pid of a process that
handles the I/O protocols. Normally, it isthel oDevi ce returnedby fi | e: open/ 2.

For a description of the I/O protocols, see section The Erlang 1/0 Protocol in the User's Guide.

Warning:

Asfrom Erlang/OTP R13A, data supplied to function put _char s/ 2 istobeinthe uni code: char dat a()
format. This means that programs supplying binaries to this function must convert them to UTF-8 before trying
to output the data on an /O device.

If an 1/O device is set in binary mode, functionsget chars/ 2, 3 andget | i ne/ 1, 2 can return binaries
instead of lists. The binaries are, as from Erlang/OTP R13A, encoded in UTF-8.

To work with binariesin SO Latin-1 encoding, usethef i | e module instead.

For conversion functions between character encodings, seethe uni code module.

Data Types
device() = atom() | pid()

An 1/O device, either st andard_i o, st andar d_err or, a registered name, or a pid handling 1/0 protocols
(returned fromfi | e: open/ 2).

opt pair() =

{binary, boolean()} |

{echo, boolean()} |

{expand_fun, expand_fun()} |

{encoding, encoding()}
expand fun() =

fun((term()) -> {yes | no, string(), [string(), ...1})
encoding() =

latinl |

unicode |

utf8 |

utfle |

utf32 |

{utfle, big | little} |

Ericsson AB. All Rights Reserved.: STDLIB | 249

{utf32, big | little}
setopt() binary | list | opt_pair()
format() = atom() | string() | binary()
location() = erl _anno:l ocation()
prompt() = atom() | uni code: chardat a()
server_no_data() = {error, ErrorDescription :: term()} | eof

What the I/0O server sends when thereis no data.

Exports

columns() -> {ok, integer() >= 1} | {error, enotsup}
columns(IoDevice) -> {ok, integer() >= 1} | {error, enotsup}
Types.

IoDevice = device()

Retrieves the number of columns of the | oDevi ce (that is, the width of a terminal). The function succeeds for
terminal devicesand returns{ error, enot sup} for al other 1/0 devices.

format (Format) -> ok
format(Format, Data) -> ok
format(IoDevice, Format, Data) -> ok
fwrite(Format) -> ok
fwrite(Format, Data) -> ok
fwrite(IoDevice, Format, Data) -> ok
Types:
IoDevice = device()
Format = format ()
Data = [term()]
Writestheitemsin Dat a ([]) on the standard output (I oDevi ce) in accordance with For mat . For mat contains

plain charactersthat are copied to the output device, and control sequences for formatting, see below. If For mat isan
atom or abinary, itisfirst convertedtoalist withtheaiddofatom to_|i st/ lorbinary_to _|ist/ 1. Example

1> io:fwrite("Hello world!~n", []).
Hello world!
ok

The general format of a control sequenceis~F. P. PadbdC.

Character C determines the type of control sequence to be used, F and P are optional numeric arguments. If F, P, or
Pad is*, the next argument in Dat a is used as the numeric value of F or P.

 Fisthefi el d wi dt h of the printed argument. A negative value meansthat the argument isleft-justified within
the field, otherwise right-justified. If no field width is specified, the required print width is used. If the field width
specified istoo small, the whole field is filled with * characters.

« Pisthepr eci si on of theprinted argument. A default valueisusedif no precisionisspecified. Theinterpretation
of precision depends on the control sequences. Unless otherwise specified, argumentwi t hi n isusedto determine
print width.

250 | Ericsson AB. All Rights Reserved.: STDLIB

e Pad isthe padding character. Thisis the character used to pad the printed representation of the argument so that
it conformsto the specified field width and precision. Only one padding character can be specified and, whenever
applicable, it isused for both the field width and precision. The default padding character is' ' (space).

« Mbd isthe control sequence modifier. It iseither asingle character (t , for Unicodetranglation, and | , for stopping
p and P from detecting printable characters) that changes the interpretation of Dat a.

Available control sequences:

Character ~ iswritten.

c
The argument isanumber that isinterpreted asan ASCI| code. The precision isthe number of timesthe character
is printed and defaults to the field width, which in turn defaults to 1. Example:
1> io:fwrite("|~10.5c|~-10.5c|~5c|~n", [$a, $b, $cl).
| aaaaa|bbbbb | ccecec|
ok
If the Unicode trandation modifier (t) isin effect, the integer argument can be any number representing a valid
Unicode codepoint, otherwise it isto be an integer less than or equal to 255, otherwise it is masked with 16#FF:
2> io:fwrite("~tc~n",[1024]).
\x{400}
ok
3> io:fwrite("~c~n",[1024]).
@
ok
f
The argument is a float that is written as [-] ddd. ddd, where the precision is the number of digits after the
decimal point. The default precision is 6 and it cannot be < 1.
e
Theargument isafloat that iswrittenas| -] d. ddde+- ddd, wherethe precision isthe number of digitswritten.
The default precision is 6 and it cannot be < 2.
g
The argument isafloat that iswritten asf , if it is>= 0.1 and < 10000.0. Otherwise, it iswritten in the e format.
The precision is the number of significant digits. It defaults to 6 and is not to be < 2. If the absolute value of
the float does not allow it to be written in the f format with the desired number of significant digits, it is also
written in the e format.
s

Prints the argument with the string syntax. The argument is, if no Unicode translation modifier is present, an
iolist(),abinary(),oranaton(). If theUnicode trandation modifier (t) isin effect, the argument is
uni code: char dat a() , meaning that binaries are in UTF-8. The characters are printed without quotes. The
string isfirst truncated by the specified precision and then padded and justified to the specified field width. The
default precision isthe field width.

Thisformat can be used for printing any object and truncating the output so it fits a specified field:

Ericsson AB. All Rights Reserved.: STDLIB | 251

1> io:fwrite("|~10w|~n", [{hey, hey, hey}]).

|**********|

ok

2> io:fwrite("|~10s|~n", [io lib:write({hey, hey, hey})]).

| {hey,hey,h|

3> io:fwrite("|~-10.8s|~n", [io lib:write({hey, hey, hey})]).
| {hey,hey |

ok

A list with integers > 255 is considered an error if the Unicode translation modifier is not specified:

4> io:fwrite("~ts~n",[[1024]]).

\x{400}

ok

5> io:fwrite("~s~n",[[1024]]).

** exception exit: {badarg, [{io,format,[<0.26.0>,"~s~n",[[1024]]1},

Writes data with the standard syntax. Thisis used to output Erlang terms. Atoms are printed within quotesif they
contain embedded non-printable characters. Floats are printed accurately asthe shortest, correctly rounded string.

Writes the data with standard syntax in the same way as ~w, but breaks terms whose printed representation is
longer than one lineinto many lines and indents each line sensibly. Left-justification isnot supported. It also tries
to detect lists of printable characters and to output these as strings. The Unicode translation modifier is used for
determining what characters are printable, for example:

1> T = [{attributes,[[{id,age,1.50000}, {mode,explicit},
{typename, "INTEGER"}1, [{id,cho}, {mode,explicit}, {typename, 'Cho'}11},
{typename, 'Person'},{tag, {'PRIVATE',3}}, {mode,implicit}].

2> io:fwrite("~w~n", [T]).
[{attributes, [[{id,age, 1.5}, {mode,explicit}, {typename,
[73,78,84,69,71,69,82]1}1, [{id,cho}, {mode,explicit}, {typena
me, 'Cho'}11}, {typename, 'Person'},{tag, {'PRIVATE',3}}, {mode
,implicit}]
ok
3> io:fwrite("~62p~n", [T]).
[{attributes, [[{id,age, 1.5},
{mode, explicit},
{typename, "INTEGER"}1,
[{id, cho}, {mode,explicit}, {typename, 'Cho'}11},
{typename, 'Person'},
{tag, {'PRIVATE',f3}},
{mode, implicit}]
ok

The field width specifies the maximum line length. Defaults to 80. The precision specifies theinitia indentation
of the term. It defaults to the number of characters printed on this line in the same call to wite/ 1 or
format/ 1, 2, 3. For example, using T above:

4> io:fwrite("Here T = ~62p~n", [T]).

252 | Ericsson AB. All Rights Reserved.: STDLIB

Here T = [{attributes,[[{id,age,1.5},
{mode,explicit},
{typename, "INTEGER"}1,
[{id, cho},
{mode,explicit},
{typename, 'Cho'}11},
{typename, 'Person'},
{tag, {' PRIVATE',3}},
{mode, implicit}]
ok

When the modifier | is specified, no detection of printable character lists takes place, for example:

5> S = [{a,"a"}, {b, "b"}].
6> io:fwrite("~15p~n", [S]).
[{a,"a"},

{b,"b"}]
ok
7> io:fwrite("~151p~n", [S]).
[{a, [97]},

{b, [98]1}]
ok

Binariesthat look like UTF-8 encoded strings are output with the string syntax if the Unicode translation modifier
is specified:

9> io:fwrite("~p~n",[[1024]]).

[1024]

10> io:fwrite("~tp~n",[[1024]1]).
"\x{400}"

11> io:fwrite("~tp~n", [<<128,128>>]).
<<128,128>>

12> io:fwrite("~tp~n", [<<208,128>>]).
<<"\x{400}"/utf8>>

ok

Writes data in the same way as ~w, but takes an extra argument that is the maximum depth to which terms are
printed. Anything below this depth isreplaced with For example, using T above:

8> io:fwrite("~W~n", [T,9]).

[{attributes, [[{id,age,1.5}, {mode,explicit}, {typename,...}],
[{id,cho}, {mode,...},{...}]11},{typename, 'Person'},

{tag, {'PRIVATE',3}},{mode,implicit}]

ok

If the maximum depth is reached, it cannot be read in the resultant output. Also, the, . . . forminatuple denotes
that there are more elements in the tuple but these are below the print depth.

Writes data in the same way as ~p, but takes an extra argument that is the maximum depth to which terms are
printed. Anything below this depth is replaced with . . . , for example:

Ericsson AB. All Rights Reserved.: STDLIB | 253

9> io:fwrite("~62P~n", [T,9]).
[{attributes, [[{id,age,1.5},{mode,explicit}, {typename,...}1,
[{id,cho},{mode, ...}, {...}11},
{typename, 'Person'},
{tag, {'PRIVATE',f3}},
{mode, implicit}]

ok
B
Writes an integer in base 2-36, the default base is 10. A leading dash is printed for negative integers.
The precision field selects base, for example:
1> io:fwrite("~.16B~n", [31]).
1F
ok
2> io:fwrite("~.2B~n", [-19]).
-10011
ok
3> io:fwrite("~.36B~n", [5*36+35]).
5Z
ok
X
Like B, but takes an extra argument that is a prefix to insert before the number, but after the leading dash, if any.
The prefix can be a possibly deep list of characters or an atom. Example:
1> io:fwrite("~X~n", [31,"10#"]).
10#31
ok
2> io:fwrite("~.16X~n", [-31,"0x"]).
-Ox1F
ok
#
Like B, but prints the number with an Erlang style #-separated base prefix. Example:
1> io:fwrite("~.10#~n", [31]).
10#31
ok
2> io:fwrite("~.16#~n", [-31]).
-16#1F
ok
b
Like B, but prints lowercase | etters.
X

Like X, but prints lowercase | etters.

254 | Ericsson AB. All Rights Reserved.: STDLIB

Like#, but prints lowercase | etters.

Writesanew line.

Ignores the next term.
The function returns:
ok
The formatting succeeded.
If an error occurs, there is no output. Example:

1> jo:fwrite("~s ~w ~i ~w ~c ~n",['abc def', 'abc def', {foo, 1},{foo, 1}, 651]).
abc def 'abc def' {foo,1} A
ok
2> io:fwrite("~s", [65]).
** exception exit: {badarg,[{io,format,[<0.22.0>,"~s",6 "A"]},
{erl eval,do apply,5},
{shell,exprs,6},
{shell,eval exprs,6},
{shell,eval loop,3}]}
in function io:o request/2

In this example, an attempt was made to output the single character 65 with the aid of the string formatting directive

~s".
fread(Prompt, Format) -> Result
fread(IoDevice, Prompt, Format) -> Result
Types.

IoDevice = device()

Prompt = pronpt ()

Format = format ()

Result =
{ok, Terms :: [term()]} |
{error, {fread, FreadError :: io_lib:fread_error()}} |
server_no_dat a()

server_no _data() = {error, ErrorDescription :: term()} | eof

Reads characters from the standard input (I oDevi ce), prompting it with Pr onpt . Interprets the characters in
accordance with For mat . For mat contains control sequences that directs the interpretation of the input.

For mat can contain the following:
» Whitespacecharacters(Space, Tab, and Newline) that causeinput to be read to the next non-whitespace character.

¢ Ordinary characters that must match the next input character.
« Control sequences, which have the general format ~* FMC, where:

e Character * isan optional return suppression character. It provides a method to specify afield that is to be
omitted.

« Fisthefield w dth of theinput field.

Ericsson AB. All Rights Reserved.: STDLIB | 255

Mis an optional translation modifier (of whicht isthe only supported, meaning Unicode translation).
C determines the type of control sequence.

Unless otherwise specified, leading whitespace isignored for all control sequences. Aninput field cannot be more
than one line wide.

Available control sequences:

A single ~ is expected in the input.

A decimal integer is expected.

An unsigned integer in base 2-36 is expected. The field width parameter is used to specify base. Leading
whitespace characters are not skipped.

An optional sign character is expected. A sign character - gives return value - 1. Sign character + or none
gives 1. Thefield width parameter isignored. L eading whitespace characters are not skipped.

An integer in base 2-36 with Erlang-style base prefix (for example, " 16#f f f f ") is expected.

A floating point number is expected. It must follow the Erlang floating point number syntax.

A string of non-whitespace charactersis read. If afield width has been specified, this number of characters
areread and al trailing whitespace characters are stripped. An Erlang string (list of characters) is returned.

If Unicode trandlation isin effect (~t s), characters > 255 are accepted, otherwise not. With the translation
modifier, the returned list can as a consequence aso contain integers > 255:

1> io:fread("Prompt> ","~s").

Prompt> <Characters beyond latinl range not printable in this medium>
{error,{fread,string}}

2> io:fread("Prompt> ","~ts").

Prompt> <Characters beyond latinl range not printable in this medium>
{ok,[[1691,1685,1680,1094,1086,1076,10771]}

Similar to s, but the resulting string is converted into an atom.

The Unicode translation modifier is not allowed (atoms cannot contain characters beyond the | ati nl
range).

The number of characters equal to the field width are read (default is 1) and returned as an Erlang string.
However, leading and trailing whitespace characters are not omitted as they are with s. All characters are
returned.

The Unicode trand ation modifier works aswith s:

256 | Ericsson AB. All Rights Reserved.: STDLIB

1> io:fread("Prompt> ","~c").

Prompt> <Character beyond latinl range not printable in this medium>
{error,{fread,string}}

2> io:fread("Prompt> ","~tc").

Prompt> <Character beyond latinl range not printable in this medium>
{ok,[[1691]]}

Returns the number of characters that have been scanned up to that point, including whitespace characters.
The function returns:
{ok, Terns}
The read was successful and Ter ns isthelist of successfully matched and read items.
eof
End of file was encountered.
{error, FreadError}
Thereading failed and Fr eadEr r or gives ahint about the error.
{error, ErrorDescription}
The read operation failed and parameter Er r or Descr i pt i on givesahint about the error.

Examples:

20> io:fread('enter>', "~f~f~f").
enter>1.9 35.5e3 15.0
{ok,[1.9,3.55e4,15.0]1}

21> io:fread('enter>', "~10f~d").
enter> 5.67899

{ok,[5.678,99]1}

22> io:fread('enter>', ":~10s:~10c:").
enter>: alan : joe

{ok, ["alan", " joe "1}

get chars(Prompt, Count) -> Data | server_no_data()
get chars(IoDevice, Prompt, Count) -> Data | server_no_data()
Types.

IoDevice = device()

Prompt = pronpt ()

Count = integer() >= 0

Data = string() | unicode: uni code_bi nary()

server_no _data() = {error, ErrorDescription :: term()} | eof

Reads Count characters from standard input (I oDevi ce), prompting it with Pr onpt .

The function returns:

Ericsson AB. All Rights Reserved.: STDLIB | 257

Dat a

The input characters. If the 1/0O device supports Unicode, the data can represent codepoints > 255 (thel ati nl
range). If the |/O server is set to deliver binaries, they are encoded in UTF-8 (regardl ess of whether the 1/0O device
supports Unicode).

eof
End of file was encountered.
{error, ErrorDescription}
Other (rare) error condition, suchas{ error, estal e} if reading from an NFSfile system.

get line(Prompt) -> Data | server_no_data()
get line(IoDevice, Prompt) -> Data | server_no_data()
Types:
IoDevice = device()
Prompt = pronpt ()
Data = string() | unicode: uni code_bi nary()
server no _data() = {error, ErrorDescription :: term()} | eof
Reads a line from the standard input (I oDevi ce), prompting it with Pr onpt .
The function returns:
Dat a

The characters in the line terminated by aline feed (or end of file). If the 1/O device supports Unicode, the data
can represent codepoints > 255 (thel at i nl range). If the I/O server is set to deliver binaries, they are encoded
in UTF-8 (regardless of if the 1/O device supports Unicode).

eof
End of file was encountered.
{error, ErrorDescription}
Other (rare) error condition, suchas{ error, estal e} if reading from an NFSfile system.

getopts() -> [opt_pair()] | {error, Reason}
getopts(IoDevice) -> [opt_pair()] | {error, Reason}
Types.

IoDevice = device()

Reason = term()

Requests al available options and their current values for a specific 1/0O device, for example:

1> {ok,F} = file:open("/dev/null", [read]).
{ok,<0.42.0>}

2> io:getopts(F).

[{binary, false}, {encoding,latinl}]

Herethefile /0O server returns al available optionsfor afile, which are the expected ones, encodi ng and bi nary.
However, the standard shell has some more options:

258 | Ericsson AB. All Rights Reserved.: STDLIB

3> io:getopts().

[{expand fun,#Fun<group.0.120017273>},
{echo, true},

{binary, false},

{encoding,unicode}]

This exampleis, as can be seen, run in an environment where the terminal supports Unicode input and output.

nl() -> ok
nl(IoDevice) -> ok
Types:
IoDevice = device()
Writes new line to the standard output (I oDevi ce).

parse erl exprs
parse_erl _exprs
parse _erl exprs
parse _erl _exprs

Prompt) -> Result
IoDevice, Prompt) -> Result
IoDevice, Prompt, StartLocation) -> Result

IoDevice, Prompt, StartLocation, Options) ->
Result

Py

Types:
IoDevice = device()
Prompt = pronpt ()
StartLocation = I ocation()
Options = erl _scan: options()
Result = parse_ret()
parse ret() =

{ok,
ExprList :: [erl _parse:abstract_expr()],
EndLocation :: location()} |

{eof, EndLocation :: location()} |

{error,
ErrorInfo :: erl_scan:error_info() | erl_parse:error_info(),
ErrorLocation :: location()} |

server_no_dat a()

server_no _data() = {error, ErrorDescription :: term()} | eof

Reads data from the standard input (I oDevi ce), prompting it with Pronpt. Starts reading at
location StartlLocation (1). Argument Options is passed on as argument Options of function
erl _scan: t okens/ 4. The dataistokenized and parsed asif it was a sequence of Erlang expressions until afinal
dot (.) isreached.

The function returns:
{ok, ExprlList, EndLocation}
The parsing was successful.
{eof, EndLocati on}
End of file was encountered by the tokenizer.

Ericsson AB. All Rights Reserved.: STDLIB | 259

eof
End of file was encountered by the 1/0 server.
{error, Errorinfo, ErrorLocation}
An error occurred while tokenizing or parsing.
{error, ErrorDescription}
Other (rare) error condition, suchas{ error, estal e} if reading from an NFSfile system.

Example:

25> io:parse _erl exprs('enter>').

enter>abc(), "hey".

{ok, [{call,1,{atom,1,abc},[1},{string,1,"hey"}],2}

26> io:parse erl exprs (‘'enter>').

enter>abc("hey".

{error,{1,erl parse,["syntax error before: ",["'.'"11},2}

parse erl form(Prompt) -> Result
parse erl form(IoDevice, Prompt) -> Result
parse _erl form(IoDevice, Prompt, StartLocation) -> Result
parse erl form(IoDevice, Prompt, StartLocation, Options) -> Result
Types.

IoDevice = device()

Prompt = pronpt ()

StartLocation = |l ocation()

Options = erl _scan: options()

Result = parse_formret ()

parse form ret() =

{ok,
AbsForm :: erl _parse:abstract _form(),
EndLocation :: location()} |
{eof, EndLocation :: location()} |
{error,
ErrorInfo :: erl_scan:error_info() | erl_parse:error_info(),
ErrorLocation :: location()} |
server_no_dat a()
server_no _data() = {error, ErrorDescription :: term()} | eof

Reads data from the standard input (I oDevi ce), prompting it with Pronpt. Starts reading at
location StartLocation (1). Argument Options is passed on as argument Qptions of function
erl _scan: t okens/ 4. The data is tokenized and parsed as if it was an Erlang form (one of the valid Erlang
expressionsin an Erlang source file) until afinal dot (.) isreached.

The function returns:
{ok, AbsForm EndLocati on}
The parsing was successful.
{eof , EndLocati on}
End of file was encountered by the tokenizer.

260 | Ericsson AB. All Rights Reserved.: STDLIB

eof
End of file was encountered by the 1/0 server.
{error, Errorinfo, ErrorLocation}
An error occurred while tokenizing or parsing.
{error, ErrorDescription}
Other (rare) error condition, suchas{ error, estal e} if reading from an NFSfile system.

printable range() -> unicode | latinl
Returns the user-requested range of printable Unicode characters.

The user can request arange of characters that are to be considered printable in heuristic detection of strings by the
shell and by the formatting functions. Thisis done by supplying +pc <r ange> when starting Erlang.

Theonly valid valuesfor <r ange> arel at i n1 and uni code. | at i n1 meansthat only code points < 256 (except
control characters, and so on) are considered printable. uni code means that al printable charactersin al Unicode
character ranges are considered printable by the I/O functions.

By default, Erlang is started so that only thel at i n1 range of charactersindicate that alist of integersisastring.

The simplest way to use the settingistocall i o _|ib: printabl e |ist/1,whichusesthereturn value of this
function to decideif alist isastring of printable characters.

Note:

In a future release, this function may return more values and ranges. To avoid compatibility problems, it is
recommended to usefunction i o_| i b: printable |ist/1.

put chars(CharData) -> ok
put chars(IoDevice, CharData) -> ok

Types:
IoDevice = device()
CharData = uni code: chardat a()

Writes the characters of Char Dat a to the I/O server (I oDevi ce).

read(Prompt) -> Result
read(IoDevice, Prompt) -> Result

Types:
IoDevice = device()
Prompt = pronpt ()
Result =
{ok, Term :: term()} | server_no_data() | {error, ErrorInfo}
ErrorInfo = erl _scan:error_info() | erl_parse:error_info()
server_no_data() = {error, ErrorDescription :: term()} | eof

Reads aterm Ter mfrom the standard input (1 oDevi ce), prompting it with Pr onpt .
The function returns:

Ericsson AB. All Rights Reserved.: STDLIB | 261

{ok, Ternm
The parsing was successful.
eof
End of file was encountered.
{error, Errorlnfo}
The parsing failed.
{error, ErrorDescription}
Other (rare) error condition, suchas{ error, estal e} if reading from an NFSfile system.

read(IoDevice, Prompt, StartLocation) -> Result
read(IoDevice, Prompt, StartLocation, Options) -> Result
Types.

IoDevice = device()

Prompt = pronpt ()

StartLocation = |l ocation()
Options = erl _scan: options()
Result =

{ok, Term :: term(), EndLocation :: location()} |

{eof, EndLocation :: location()} |

server_no_data() |

{error, ErrorInfo, ErrorLocation :: location()}
ErrorInfo = erl _scan:error_info() | erl_parse:error_info()
server_no _data() = {error, ErrorDescription :: term()} | eof

Reads a term Ter mfrom | oDevi ce, prompting it with Pr onpt . Reading starts at location St art Locat i on.
Argument Opt i ons is passed on asargument Qpt i ons of function er| _scan:t okens/ 4.

The function returns:
{ok, Term EndLocati on}
The parsing was successful.
{eof , EndLocati on}
End of file was encountered.
{error, Errorlnfo, ErrorLocation}
The parsing failed.
{error, ErrorDescription}
Other (rare) error condition, suchas{error, estal e} if reading from an NFSfile system.

rows() -> {ok, integer() >= 1} | {error, enotsup}
rows (IoDevice) -> {ok, integer() >= 1} | {error, enotsup}
Types:

IoDevice = device()

Retrievesthe number of rowsof | oDevi ce (that is, the height of aterminal). The function only succeedsfor terminal
devices, for al other 1/0 devicesthe function returns{ err or, enot sup}.

262 | Ericsson AB. All Rights Reserved.: STDLIB

Prompt) -> Result

Device, Prompt) -> Result

Device, Prompt, StartLocation) -> Result

Device, Prompt, StartLocation, Options) -> Result

scan_erl_exprs
scan_erl _exprs
scan _erl _exprs
scan_erl _exprs

Py

Types:
Device = device()
Prompt = pronpt ()
StartLocation = location()

Options = erl _scan: options()
Result = erl_scan:tokens_result() | server_no_data()
server_no _data() = {error, ErrorDescription :: term()} | eof

Reads data from the standard input (I oDevi ce), prompting it with Pronpt. Reading starts at
location StartLocation (1). Argument Options is passed on as argument Qptions of function
erl _scan: t okens/ 4. The dataistokenized as if it were a sequence of Erlang expressions until afinal dot (.) is
reached. Thistoken is also returned.

The function returns:
{ok, Tokens, EndLocati on}
The tokenization succeeded.
{eof , EndLocati on}
End of file was encountered by the tokenizer.
eof
End of file was encountered by the 1/0 server.
{error, Errorinfo, ErrorLocation}
An error occurred while tokenizing.
{error, ErrorDescription}
Other (rare) error condition, suchas{ error, estal e} if reading from an NFSfile system.

Example:

23> io:scan_erl _exprs(‘'enter>").

enter>abc(), "hey".

{ok, [{atom,1,abc},{"("',2},{")"',1},{"',"',1},{string, 1, "hey"}, {dot,1}],2}
24> io:scan_erl _exprs(‘'enter>").

enter>1.0er.

{error,{1,erl scan,{illegal, float}},2}

scan_erl form(Prompt) -> Result

scan_erl form(IoDevice, Prompt) -> Result

scan_erl form(IoDevice, Prompt, StartLocation) -> Result

scan _erl form(IoDevice, Prompt, StartLocation, Options) -> Result
Types:

Ericsson AB. All Rights Reserved.: STDLIB | 263

IoDevice = device()

Prompt = pronpt ()

StartLocation = location()

Options = erl _scan: options()

Result = erl _scan:tokens_result() | server_no_data()

server_no_data() = {error, ErrorDescription :: term()} | eof
Reads data from the standard input (I oDevice), prompting it with Pronpt. Starts reading at
location StartlLocation (1). Argument Options is passed on as argument Options of function

erl _scan: t okens/ 4. Thedataistokenized asif it was an Erlang form (one of the valid Erlang expressionsin an
Erlang source file) until afinal dot (.) isreached. Thislast token is aso returned.

The return values arethe same asfor scan_erl _exprs/ 1, 2, 3, 4.

setopts(Opts) -> ok | {error, Reason}
setopts(IoDevice, Opts) -> ok | {error, Reason}
Types.

IoDevice = device()

Opts = [setopt()]

Reason = term()
Set options for the standard I/O device (I oDevi ce).

Possible options and values vary depending on the 1/0O device. For alist of supported options and their current values
on a specific I/0 device, use function get opt s/ 1.

The options and values supported by the OTP I/O devices are as follows:
bi nary,list,or{binary, bool ean()}

If set in binary mode (bi nary or { bi nary, true}),thel/O server sends binary data (encoded in UTF-8)
asanswerstotheget _|i ne,get chars, and, if possible, get _unti | requests (for details, see section The
Erlang I/O Protocol) inthe User's Guide). Theimmediate effectisthat get _char s/ 2, 3andget _line/ 1, 2
return UTF-8 binaries instead of lists of characters for the affected 1/0O device.

By default, al 1/0O devicesin OTP aresetinl i st mode. However, the 1/0O functions can handle any of these
modes and so should other, user-written, modules behaving as clientsto 1/0 servers.

Thisoption issupported by the standard shell (gr oup. er 1), the'oldshell’ (user . er |), and thefilel/O servers.
{echo, bool ean()}

Denotes if the terminal isto echo input. Only supported for the standard shell 1/O server (gr oup. erl)
{expand_fun, expand_fun()}

Provides a function for tab-completion (expansion) like the Erlang shell. This function is called when the user
presses the Tab key. The expansion is active when calling line-reading functions, suchasget _|i ne/ 1, 2.

The function is called with the current line, up to the cursor, as a reversed string. It is to return a three-tuple:
{yes| no, string(), [string(), ...]}.Thefirstelementgivesabeepif no, otherwisetheexpansion
issilent; the second is a string that will be entered at the cursor position; thethird isalist of possible expansions.
If thislist isnot empty, it is printed and the current input line is written once again.

Trivia example (beep on anything except empty line, which isexpanded to " qui t *):

fun("") -> {yes, "quit", [1};

264 | Ericsson AB. All Rights Reserved.: STDLIB

() ->{no, "", ["quit"]} end

Thisoption is only supported by the standard shell (gr oup. er |).
{encoding, latinl | unicode}

Specifies how characters are input or output from or to the I/O device, implying that, for example, aterminal is
set to handle Unicode input and output or afileis set to handle UTF-8 data encoding.

The option does not affect how data is returned from the 1/0 functions or how it is sent in the 1/O protocoal, it
only affects how the I/O deviceis to handle Unicode characters to the "physical™ device.

The standard shell is set for uni code or | at i n1 encoding when the system is started. The encoding is set
with the help of the LANGor LC_CTYPE environment variables on Unix-like system or by other means on other
systems. So, the user can input Unicode characters and the I/O deviceisin{ encodi ng, uni code} mode
if the 1/0O device supports it. The mode can be changed, if the assumption of the runtime system is wrong, by
setting this option.

The 1/0 device used when Erlang is started with the "-oldshell" or "-noshell" flagsis by default setto | ati nl
encoding, meaning that any characters > codepoint 255 are escaped and that input is expected to be plain 8-bit
ISO Latin-1. If the encoding is changed to Unicode, input and output from the standard file descriptors are in
UTF-8 (regardless of operating system).

Files can also be set in { encodi ng, uni code}, meaning that data is written and read as UTF-8. More
encodings are possible for files, see below.

{encodi ng, uni code | |atinl} issupported by both the standard shell (gr oup. er | includingwer |
on Windows), the 'oldshell’ (user . er |), and thefile I/O servers.

{encoding, utf8 | utf16 | utf32 | {utf16,big} | {utf16,little} | {utf32, big}
| {utf32,little}}

For disk files, the encoding can be set to various UTF variants. This has the effect that datais expected to be read
as the specified encoding from the file, and the data is written in the specified encoding to the disk file.

{encodi ng, utf 8} hasthesameeffect as{ encodi ng, uni code} onfiles.
The extended encodings are only supported on disk files (opened by function fi | e: open/ 2).

write(Term) -> ok
write(IoDevice, Term) -> ok
Types.

IoDevice = device()

Term = term()

Writes term Ter mto the standard output (I oDevi ce).

Standard Input/Output

All Erlang processes have adefault standard I/O device. Thisdeviceisusedwhenno| oDevi ce argument isspecified
in the function calls in this module. However, it is sometimes desirable to use an explicit | oDevi ce argument that
refers to the default 1/0 device. Thisis the case with functions that can access either afile or the default 1/0O device.
The atom st andar d_i o hasthis special meaning. The following exampleillustrates this:

27> io:read('enter>').

enter>foo.

{ok, foo}

28> io:read(standard io, 'enter>').

Ericsson AB. All Rights Reserved.: STDLIB | 265

enter>bar.
{ok,bar}

There is aways a process registered under the name of user . This can be used for sending output to the user.

Standard Error

In certain situations, especially when the standard output is redirected, access to an 1/O server specific for error
messages can be convenient. The 1/O devicest andar d_er r or can be used to direct output to whatever the current
operating system considers a suitable 1/0 device for error output. Example on a Unix-like operating system:

$ erl -noshell -noinput -eval 'io:format(standard error,"Error: ~s~n",["error 11"]),'\
'init:stop().' > /dev/null
Error: error 11

Error Information

The Err or I nf o mentioned in this module is the standard Er r or | nf o structure that is returned from all 1/O
modules. It has the following format:

{ErrorLocation, Module, ErrorDescriptor}

A string that describes the error is obtained with the following call:

Module: format error(ErrorDescriptor)

266 | Ericsson AB. All Rights Reserved.: STDLIB

io_lib

io_lib

Erlang module

Thismodule containsfunctions for converting to and from strings (lists of characters). They are used for implementing
the functionsin thei o module. There is no guarantee that the character lists returned from some of the functions are
flat, they can be deep lists. Function| i st s: f| att en/ 1 can be used for flattening deep lists.

Data Types

chars() = [char() | chars()]
continuation()
A continuation asreturned by f r ead/ 3.
depth() = -1 | integer() >= 0
fread error() =

atom |

based |

character |

float |

format |

input |

integer |

string |

unsigned
fread item() = string() | atom() | integer() | float()
latinl string() = [unicode:latinl_char()]
format spec() =

#{control char := char(),
args := [any()],
width := none | integer(),
adjust := left | right,
precision := none | integer(),
pad char := char(),
encoding := unicode | latinl,
strings := boolean()}

Where:

e« control _char isthetypeof control sequence: $P, $w, and so on.

e args isalist of the arguments used by the control sequence, or an empty list if the control sequence does not
take any arguments.

e Wi dt histhefield width.

e adj ust isthe adjustment.

* preci sionistheprecision of the printed argument.

e pad_char isthe padding character.

e encodi ngissettot rue if trandation modifier t is present.
e stringsissettofal seif modifier | ispresent.

Ericsson AB. All Rights Reserved.: STDLIB | 267

io_lib

Exports

build text(FormatList) -> chars()
Types:

FormatList = [char() | format_spec()]
For details, seescan_f ormat/ 2.

char list(Term) -> boolean()
Types:
Term = term()
Returnst r ue if Ter misaflat list of charactersin the Unicode range, otherwisef al se.

deep char list(Term) -> boolean()
Types:
Term = term()
Returnst r ue if Ter misa, possibly deep, list of charactersin the Unicode range, otherwisef al se.

deep latinl char list(Term) -> boolean()
Types:
Term = term()
Returnst r ue if Ter mis a, possibly deep, list of charactersin the SO Latin-1 range, otherwisef al se.

format(Format, Data) -> chars()
fwrite(Format, Data) -> chars()
Types:
Format = io:format()
Data = [term()]
Returns a character list that represents Dat a formatted in accordance with For mat . For a detailed description of

the available formatting options, seei o: fwri te/ 1, 2, 3. If the format string or argument list contains an error, a
fault is generated.

If and only if the Unicode translation modifier is used in the format string (that is, ~t s or ~t ¢), theresulting list can
contain characters beyond the SO Latin-1 character range (that is, numbers > 255). If so, the result is not an ordinary
Erlang st ri ng() , but can well be used in any context where Unicode data is allowed.

fread(Format, String) -> Result

Types.
Format = String = string()
Result =
{ok, InputList :: [fread_iten()], LeftOverChars :: string()} |
{more,
RestFormat :: string(),
Nchars :: integer() >= 0,

InputStack :: chars()} |

268 | Ericsson AB. All Rights Reserved.: STDLIB

io_lib

{error, {fread, What :: fread error()}}

Triestoread St r i ng in accordance with the control sequencesin For mat . For adetailed description of the available
formatting options, seei o: f read/ 3. It isassumed that St r i ng contains whole lines.

The function returns:
{ok, InputlList, LeftOverChars}

Thestringwasread. | nput Li st isthelist of successfully matched and read items, and Lef t Over Char s are
the input characters not used.

{nmore, RestFormat, Nchars, | nputStack}

The string was read, but more input is needed to complete the original format string. Rest For mat is the
remaining format string, Nchar s is the number of characters scanned, and | nput St ack isthe reversed list
of inputs matched up to that point.

{error, What}
The read operation failed and parameter What gives a hint about the error.
Example:

3> io_lib:fread("~f~f~f", "15.6 17.3e-6 24.5").
{ok,[15.6,1.73e-5,24.5],[]}

fread(Continuation, CharSpec, Format) -> Return

Types:

Continuation = continuation() | []

CharSpec = string() | eof

Format = string()

Return =
{more, Continuationl :: continuation()} |
{done, Result, LeftOverChars :: string()}

Result =
{ok, InputList :: [fread_item()]} |

eof |
{error, {fread, What :: fread error()}}

This is the re-entrant formatted reader. The continuation of the first call to the functions must be [] . For a complete
description of how the re-entrant input scheme works, see Armstrong, Virding, Williams: 'Concurrent Programming
in Erlang’, Chapter 13.

The function returns:

{done, Result, LeftOverChars}
Theinput is complete. The result is one of the following:
{ok, InputList}

Thestringwasread. | nput Li st isthelist of successfully matched and read items, and Lef t Over Char s
are the remaining characters.

eof

End of file was encountered. Lef t Over Char s arethe input characters not used.

Ericsson AB. All Rights Reserved.: STDLIB | 269

io_lib

{error, Wat}
An error occurred and parameter What gives a hint about the error.
{nore, Continuation}

More datais required to build aterm. Cont i nuat i on must be passedto f r ead/ 3 when more data becomes
available

indentation(String, StartIndent) -> integer()
Types:
String = string()
StartIndent = integer()
Returnsthe indentation if St r i ng has been printed, starting at St ar t | ndent .

latinl char list(Term) -> boolean()
Types:
Term = term()
Returnst r ue if Ter misaflat list of charactersin the ISO Latin-1 range, otherwisef al se.

nl() -> string()
Returns a character list that represents a new line character.

print(Term) -> chars()
print(Term, Column, LinelLength, Depth) -> chars()
Types.
Term = term()
Column = LinelLength = integer() >= 0
Depth = depth()
Returns alist of characters that represents Ter m but breaks representations longer than one line into many lines and
indents each line sensibly. Also tries to detect and output lists of printable characters as strings.
e Col umn isthe starting column; defaultsto 1.
« Li neLengt h isthe maximum line length; defaults to 80.
* Dept h isthe maximum print depth; defaults to -1, which means no limitation.

printable latinl list(Term) -> boolean()
Types:
Term = term()
Returnst r ue if Ter misaflat list of printable ISO Latin-1 characters, otherwise f al se.

printable list(Term) -> boolean()
Types:
Term = term()
Returnst r ue if Ter misaflat list of printable characters, otherwisef al se.

What is a printable character in this case is determined by startup flag +pc to the Erlang VM; see
io:printable_range/Oanderl (1).

270 | Ericsson AB. All Rights Reserved.: STDLIB

io_lib

printable unicode list(Term) -> boolean()
Types:
Term = term()
Returnst r ue if Ter misaflat list of printable Unicode characters, otherwise f al se.

scan_format(Format, Data) -> FormatList
Types:
Format = io:format ()
Data = [term()]
FormatList = [char() | format_spec()]
Returns a list corresponding to the specified format string, where control sequences have been replaced with
corresponding tuples. Thislist can be passed to:
 build_text/1tohavethesameeffect asf or mat (For mat, Args)
e« unscan_fornat/ 1 to get the corresponding pair of For mat and Ar gs (with every * and corresponding
argument expanded to numeric values)

A typical use of this function is to replace unbounded-size control sequences like ~w and ~p with the depth-limited
variants ~Wand ~P before formatting to text in, for example, alogger.

unscan_format(FormatList) -> {Format, Data}

Types:
FormatList = [char() | fornat_spec()]
Format = io:format ()

Data = [term()]
For details, seescan_format/ 2.

write(Term) -> chars()
write(Term, Depth) -> chars()
Types.
Term = term()
Depth = dept h()
Returns a character list that represents Ter m Argument Dept h controls the depth of the structures written. When

the specified depth is reached, everything below thislevel isreplaced by ". . . ". Dept h defaultsto -1, which means
no limitation.

Example:

1> lists:flatten(io lib:write({1,[2],[3],[4,51,6,7,8,9})).
"{1,[21,(3],[4,51,6,7,8,9}"

2> lists:flatten(io lib:write({1,[2],[31,[4,51,6,7,8,9}, 5)).
"{1,121,[31,[...1,...}"

write atom(Atom) -> chars()
Types:

Ericsson AB. All Rights Reserved.: STDLIB | 271

io_lib

Atom = atom()
Returnsthelist of characters needed to print atom At om

write char(Char) -> chars()
Types.
Char = char()
Returnsthe list of characters needed to print a character constant in the Unicode character set.

write char _as latinl(Char) -> latinl_string()
Types:
Char = char()
Returnsthe list of characters needed to print a character constant in the Unicode character set. Non-Latin-1 characters
are escaped.

write latinl char(LatinlChar) -> latinl_string()
Types:
LatinlChar = unicode:latinl_char()
Returnsthelist of characters needed to print a character constant in the ISO Latin-1 character set.

write latinl string(LatinlString) -> latinl_string()
Types:

LatinlString = latinl_string()
Returnsthelist of characters needed to print Lat i n1St ri ng asastring.

write string(String) -> chars()
Types:
String = string()
Returnsthe list of characters needed to print St r i ng asastring.

write string as latinl(String) -> latinl_string()
Types:
String = string()
Returnsthelist of characters needed to print St r i ng as astring. Non-Latin-1 characters are escaped.

272 | Ericsson AB. All Rights Reserved.: STDLIB

lib

lib

Erlang module

Warning:

This module is retained for backward compatibility. It can disappear without warning in a future Erlang/OTP
release.

Exports

error_message(Format, Args) -> ok
Types:
Format = io:format ()
Args = [term()]
Prints error message Ar gs in accordance with For mat . Similar toi o: f or mat / 2.

flush receive() -> ok
Flushes the message buffer of the current process.

nonl(Stringl) -> String2
Types:
Stringl = String2 = string()

Removes the last newline character, if any, in St ri ngl.

progname() -> atom()
Returns the name of the script that started the current Erlang session.

send(To, Msg) -> Msg

Types:
To = pid() | atom() | {atom(), node()}
Msg = term()

Makes it possible to send a message using theappl y/ 3 BIF.

sendw(To, Msg) -> term()

Types.
To = pid() | atom() | {atom(), node()}
Msg = term()

Assend/ 2, but waits for an answer. It isimplemented as follows:

sendw(To, Msg) ->

Ericsson AB. All Rights Reserved.: STDLIB | 273

lib

To ! {self(),Msg},
receive

Reply -> Reply
end.

The returned message is not necessarily areply to the sent message.

274 | Ericsson AB. All Rights Reserved.: STDLIB

lists

lists

Erlang module

This module contains functions for list processing.

Unless otherwise stated, all functions assume that position numbering starts at 1. That is, the first element of alist
isat position 1.

TwotermsT1 and T2 compareequal if T1 == T2 evaluatestot r ue. They matchif T1 =: = T2 evaluatestot r ue.

Whenever an ordering function F is expected as argument, it is assumed that the following properties hold of F for
al x,y,and z:

e IfxFyandy Fx, thenx =y (F isantisymmetric).

e IfxFyandy F z thenx F z (F istransitive).

e XxFyoryFx(Fistota).

An example of atypical ordering function islessthan or equal to: =</ 2.

Exports

all(Pred, List) -> boolean()

Types.
Pred = fun((Elem :: T) -> boolean())
List = [T]
T = term()

Returnst r ue if Pred(El en) returnst r ue for al elementsEl eminLi st , otherwisef al se.

any(Pred, List) -> boolean()

Types.
Pred = fun((Elem :: T) -> boolean())
List = [T]
T = term()

Returnst r ue if Pred(El en) returnst r ue for at least one element El eminLi st .

append(ListOfLists) -> Listl
Types.

ListOfLists = [List]

List = Listl = [T]

T = term()

Returnsalist in which all the sublists of Li st Of Li st s have been appended.
Example:

> lists:append([[1, 2, 31, [a, bl, [4, 5, 6]]).
[1,2,3,a,b,4,5,6]

Ericsson AB. All Rights Reserved.: STDLIB | 275

lists

append(Listl, List2) -> List3

Types:
Listl = List2 = List3 = [T]
T = term()

Returnsanew list Li st 3, which is made from the elements of Li st 1 followed by the elements of Li st 2.

Example:

> lists:append("abc", "def").
"abcdef"

lists:append(A, B) isequivaenttoA ++ B

concat(Things) -> string()
Types:
Things = [Thing]
Thing = atom() | integer() | float() | string()

Concatenates the text representation of the elements of Thi ngs. The elements of Thi ngs can be atoms, integers,
floats, or strings.

Example:

> lists:concat([doc, '/', file, '.', 31).
"doc/file.3"

delete(Elem, Listl) -> List2

Types.
Elem = T
Listl = List2 = [T]
T = term()

Returnsacopy of Li st 1 wherethefirst element matching El emis deleted, if there is such an element.

droplast(List) -> InitList
Types:
List = [T, ...]
InitList = [T]
T = term()

Drops the last element of a Li st. The list is to be non-empty, otherwise the function crashes with a
function_cl ause.

dropwhile(Pred, Listl) -> List2
Types:

276 | Ericsson AB. All Rights Reserved.: STDLIB

lists

Pred = fun((Elem :: T) -> boolean())
Listl = List2 = [T]
T = term()

Drops elements El emfrom Li st 1 while Pr ed(El em) returnst r ue and returns the remaining list.

duplicate(N, Elem) -> List
Types.
N = integer() >= 0
Elem = T
List = [T]
T = term()
Returns alist containing N copies of term El em

Example:

> lists:duplicate(5, xx).
[XX, XX, XX, XX, xx]

filter(Pred, Listl) -> List2
Types:
Pred = fun((Elem :: T) -> boolean())
Listl = List2 = [T]
T = term()
Li st 2 isalist of all elementsEl emin Li st 1 for which Pr ed(El en) returnst r ue.

filtermap(Fun, Listl) -> List2
Types.
Fun = fun((Elem) -> boolean() | {true, Value})
Listl = [Elem]
List2 = [Elem | Value]
Elem = Value = term()

CalsFun(El em) onsuccessiveelementsEl emof Li st 1. Fun/ 2 must return either aBoolean or atuple{t r ue,
Val ue} . The function returns the list of elements for which Fun returns a new value, where a value of t r ue is
synonymouswith{true, Elent.

Thatis, filtermap behavesasif it had been defined as follows:

filtermap(Fun, Listl) ->
lists:foldr(fun(Elem, Acc) ->

case Fun(Elem) of
false -> Acc;
true -> [Elem|Acc];
{true,Value} -> [Value|Acc]

end

end, [], Listl).

Ericsson AB. All Rights Reserved.: STDLIB | 277

lists

Example:

> lists:filtermap(fun(X) -> case X rem 2 of @ -> {true, X div 2}; _ -> false end end, [1,2,3,4,5]).
[1,2]

flatlength(DeeplList) -> integer() >= 0
Types.
DeepList = [term() | DeepList]
Equivaenttol engt h(fl att en(DeepLi st)), but more efficient.

flatmap(Fun, Listl) -> List2

Types.
Fun = fun((A) -> [B])
Listl = [A]
List2 = [B]

A =B = term()
Takes a function from Asto lists of Bs, and alist of As(Li st 1) and produces alist of Bs by applying the function
to every element in Li st 1 and appending the resulting lists.

That is, f | at map behaves asif it had been defined as follows:

flatmap(Fun, Listl) ->
append(map(Fun, Listl)).

Example:

> lists:flatmap(fun(X)->[X,X] end, [a,b,c]).
[a,a,b,b,c,c]

flatten(DeeplList) -> List

Types.
DeepList = [term() | DeepList]
List = [term()]

Returns a flattened version of DeeplLi st .

flatten(DeeplList, Tail) -> List
Types:
DeepList = [term() | DeepList]
Tail = List = [term()]

Returns a flattened version of DeepLi st withtail Tai | appended.

278 | Ericsson AB. All Rights Reserved.: STDLIB

lists

foldl(Fun, AccO, List) -> Accl

Types:
Fun = fun((Elem :: T, AccIn) -> AccOut)
AccO = Accl = AccIn = AccOut = term()

List = [T]
T = term()
Calls Fun(El em Accl n) on successive elements A of Li st, starting with Accl n == AccO0. Fun/ 2 must

return a new accumulator, which is passed to the next call. The function returns the fina value of the accumulator.
AccO isreturned if thelist is empty.

Example:

> lists:foldl(fun(X, Sum) -> X + Sum end, 0, [1,2,3,4,5]).
15

> lists:foldl(fun(X, Prod) -> X * Prod end, 1, [1,2,3,4,5]).
120

foldr(Fun, AccO, List) -> Accl

Types:
Fun = fun((Elem :: T, AccIn) -> AccOut)
AccO = Accl = AccIn = AccOut = term()
List = [T]
T = term()

Likef ol dl / 3, but thelist istraversed from right to left.

Example:

> P = fun(A, AccIn) -> io:format("~p ", [A]), AccIn end.
#Fun<erl eval.12.2225172>

> lists:foldl(P, void, [1,2,3]).

1 2 3 void

> lists:foldr(P, void, [1,2,3]).

3 2 1 void

f ol dl / 3 istail recursive and isusually preferredtof ol dr/ 3.

join(Sep, Listl) -> List2
Types:

Sep =T

Listl = List2 = [T]

T = term()

Inserts Sep between each element in Li st 1. Has no effect on the empty list and on asingleton list. For example:

> lists:join(x, [a,b,c]).
[a,x,b,x,c]
> lists:join(x, [a]).

Ericsson AB. All Rights Reserved.: STDLIB | 279

lists

[a]
> lists:join(x, [1).

[1

foreach(Fun, List) -> ok

Types:
Fun = fun((Elem :: T) -> term())
List = [T]
T = term()

CallsFun(El em) for each element El eminLi st . Thisfunction isused for its side effects and the evaluation order
is defined to be the same as the order of the elementsin the list.

keydelete(Key, N, TupleListl) -> TuplelList2
Types:
Key = term()
N = integer() >=1
1..tuple_size(Tuple)
TupleListl = TupleList2 = [Tuple]
Tuple = tuple()
Returns a copy of Tupl eLi st 1 where the first occurrence of a tuple whose Nth element compares equal to Key is
deleted, if thereis such atuple.

keyfind(Key, N, TuplelList) -> Tuple | false
Types:
Key = term()
N = integer() >=1
1..tuple size(Tuple)
TupleList = [Tuple]
Tuple = tuple()
Searchesthelist of tuples Tupl eLi st for atuple whose Nth element compares equal to Key . Returns Tupl e if such
atupleisfound, otherwisef al se.

keymap(Fun, N, TuplelListl) -> TuplelList2
Types:
Fun = fun((Terml :: term()) -> Term2 :: term())
N = integer() >=1
1..tuple size(Tuple)
TupleListl = TuplelList2 = [Tuplel]
Tuple = tuple()
Returnsalist of tupleswhere, for each tuplein Tupl eLi st 1, the Nth element Ter L of the tuple has been replaced
with theresult of calling Fun(Ter mL) .

Examples:

280 | Ericsson AB. All Rights Reserved.: STDLIB

lists

> Fun = fun(Atom) -> atom to list(Atom) end.

#Fun<erl eval.6.10732646>

2> lists:keymap(Fun, 2, [{name,jane,22},{name,lizzie, 20}, {name,lydia, 15}]).
[{name, "jane", 22}, {name, "lizzie", 20}, {name, "lydia", 15}]

keymember (Key, N, TupleList) -> boolean()
Types:
Key = term()
N = integer() >=1
1..tuple_size(Tuple)
TupleList = [Tuple]
Tuple = tuple()
Returnst r ue if thereisatuplein Tupl eLi st whose Nth element compares equal to Key, otherwisef al se.

keymerge(N, TuplelListl, TupleList2) -> TuplelList3
Types.

N = integer() >=1

1..tuple size(Tuple)

TuplelListl = [T1]
TuplelList2 = [T2]
TupleList3 = [T1 | T2]

Tl = T2 = Tuple
Tuple = tuple()
Returns the sorted list formed by merging Tupl eLi st 1 and Tupl eLi st 2. The merge is performed on the Nth

element of each tuple. Both Tupl eLi st 1 and Tupl eLi st 2 must be key-sorted before evaluating this function.
When two tuples compare equal, the tuple from Tupl eLi st 1 ispicked before the tuple from Tupl eLi st 2.

keyreplace(Key, N, TupleListl, NewTuple) -> TuplelList2
Types:
Key = term()
N = integer() >=1
1..tuple_size(Tuple)
TuplelListl = TupleList2 = [Tuple]
NewTuple = Tuple
Tuple = tuple()
Returns a copy of Tupl eLi st 1 where the first occurrence of a T tuple whose Nth element compares equal to Key
isreplaced with NewTupl e, if thereissuch atupleT.

keysearch(Key, N, TupleList) -> {value, Tuple} | false
Types.

Key = term()

N = integer() >=1

1..tuple_size(Tuple)

Ericsson AB. All Rights Reserved.: STDLIB | 281

lists

TuplelList = [Tuple]

Tuple = tuple()
Searches the list of tuples Tupl eLi st for atuple whose Nth element compares equal to Key. Returns { val ue,
Tupl e} if such atupleisfound, otherwisef al se.

Note:

This function is retained for backward compatibility. Function keyf i nd/ 3 is usually more convenient.

keysort(N, TupleListl) -> TuplelList2
Types:
N = integer() >=1
1..tuple size(Tuple)
TupleListl = TuplelList2 = [Tuplel]
Tuple = tuple()
Returns a list containing the sorted elements of list Tupl eLi st 1. Sorting is performed on the Nth element of the
tuples. The sort is stable.

keystore(Key, N, TupleListl, NewTuple) -> TuplelList2
Types.
Key = term()
N = integer() >=1
1..tuple size(Tuple)
TupleListl = [Tuplel]
TuplelList2 [Tuple, ...]
NewTuple = Tuple
Tuple = tuple()
Returns a copy of Tupl eLi st 1 where the first occurrence of atuple T whose Nth element compares equal to Key

is replaced with NewTupl e, if there is such atuple T. If there is no such tuple T, a copy of Tupl eLi st 1 where
[NewTupl e] has been appended to the end is returned.

keytake(Key, N, TupleListl) -> {value, Tuple, TupleList2} | false
Types:

Key = term()

N = integer() >=1

1..tuple size(Tuple)

TupleListl = TuplelList2 = [tuple()]

Tuple = tuple()

Searches the list of tuples Tupl eLi st 1 for atuple whose Nth element compares equal to Key. Returns{ val ue,
Tupl e, Tupl eLi st 2} if such atuple is found, otherwise f al se. Tupl eLi st 2 isacopy of Tupl eLi st1
where the first occurrence of Tupl e has been removed.

282 | Ericsson AB. All Rights Reserved.: STDLIB

lists

last(List) -> Last

Types:
List = [T, ...]
Last = T
T = term()

Returnsthe last element in Li st .

map (Fun, Listl) -> List2

Types:
Fun = fun((A) -> B)
Listl = [A]
List2 = [B]
A =B = term()

Takes afunction from Asto Bs, and alist of Asand produces alist of Bs by applying the function to every element in
thelist. Thisfunction is used to obtain the return values. The evaluation order depends on the implementation.

mapfoldl(Fun, AccO, Listl) -> {List2, Accl}
Types:
Fun = fun((A, AccIn) -> {B, AccOut})

AccO = Accl = AccIn = AccOut = term()
Listl [A]

List2 [B]
A =B = term()

Combines the operations of map/ 2 and f ol dl / 3 into one pass.
Example:
Summing the elementsin alist and double them at the same time:

> lists:mapfoldl(fun(X, Sum) -> {2*X, X+Sum} end,
0, [1,2,3,4,5]).
{[2,4,6,8,10],15}

mapfoldr(Fun, AccO, Listl) -> {List2, Accl}
Types:
Fun = fun((A, AccIn) -> {B, AccOut})
AccO = Accl = AccIn = AccOut = term()

Listl = [A]
List2 = [B]
A =B = term()

Combines the operations of map/ 2 and f ol dr / 3 into one pass.

Ericsson AB. All Rights Reserved.: STDLIB | 283

lists

max(List) -> Max

Types:
List = [T, ...]
Max =T
T = term()

Returnsthe first element of Li st that compares greater than or equal to al other elementsof Li st .

member(Elem, List) -> boolean()

Types:
Elem = T
List = [T]
T = term()

Returnst r ue if EIl emmatches some element of Li st , otherwisef al se.

merge(ListOfLists) -> Listl
Types:
ListOfLists = [List]
List = Listl = [T]
T = term()
Returns the sorted list formed by merging all the sublists of Li st Of Li st's. All sublists must be sorted before

evaluating this function. When two elements compare equal, the element from the sublist with the lowest position in
Li st O Li st s is picked before the other element.

merge(Listl, List2) -> List3

Types.
Listl = [X]
List2 = [Y]
List3 = [X | Y]
X =Y = term()

Returns the sorted list formed by merging Li st 1 and Li st 2. Both Li st 1 and Li st 2 must be sorted before
evaluating this function. When two elements compare equal, the element from Li st 1 is picked before the element
fromLi st 2.

merge(Fun, Listl, List2) -> List3

Types.
Fun = fun((A, B) -> boolean())
Listl = [A]
List2 = [B]
List3 = [A | B]
A =B = term()

Returns the sorted list formed by merging Li st 1 and Li st 2. Both Li st 1 and Li st 2 must be sorted according to
the ordering function Fun before evaluating this function. Fun(A, B) istoreturnt r ue if A compareslessthan or
equal to B in the ordering, otherwisef al se. When two elements compare equal, the element from Li st 1 is picked
before the element from Li st 2.

284 | Ericsson AB. All Rights Reserved.: STDLIB

lists

merge3(Listl, List2, List3) -> List4

Types:
Listl = [X]
List2 = [Y]
List3 = [Z]
Listd = [X | Y | Z]
X =Y =2 = term()

Returns the sorted list formed by merging Li st 1, Li st 2, and Li st 3. All of Li st 1, Li st 2, and Li st 3 must
be sorted before evaluating this function. When two elements compare equal, the element from Li st 1, if thereis
such an element, is picked before the other element, otherwise the element from Li st 2 is picked before the element
fromLi st 3.

min(List) -> Min

Types:
List = [T, ...]
Min = T
T = term()

Returnsthe first element of Li st that compares less than or equal to al other elements of Li st .

nth(N, List) -> Elem
Types:
N = integer() >=1
1..length(List)
List = [T, ...]
Elem = T
T = term()
Returns the Nth element of Li st .

Example:

> lists:nth(3, [a, b, c, d, el).
c

nthtail(N, List) -> Tail
Types:
N = integer() >= 0
0..length(List)
List = [T, ...]
Tail = [T]
T = term()
Returnsthe Nth tail of Li st , that is, the sublist of Li st starting at N+1 and continuing up to the end of the list.

Example

Ericsson AB. All Rights Reserved.: STDLIB | 285

lists

> lists:nthtail(3, [a, b, c, d, e]).

[d,e]

> tl(tl(tl([a, b, c, d, el))).

[d,e]

> lists:nthtail(0, [a, b, c, d, e]).
[a,b,c,d,e]

> lists:nthtail(5, [a, b, c, d, e]).
[1

partition(Pred, List) -> {Satisfying, NotSatisfying}
Types:

Pred fun((Elem :: T) -> boolean())

List = Satisfying = NotSatisfying = [T]

T = term()

Partitions Li st into two lists, where the first list contains all elements for which Pr ed(El em) returnst r ue, and
the second list contains all elements for which Pr ed(El en) returnsf al se.

Examples:

> lists:partition(fun(A) -> A rem 2 == 1 end, [1,2,3,4,5,6,7]).
{[1,3,5,7],[2,4,61}

> lists:partition(fun(A) -> is atom(A) end, [a,b,1,c,d,2,3,4,e]).
{[a,b,c,d,e],[1,2,3,4]}

For adifferent way to partition alist, seespl i twi t h/ 2.

prefix(Listl, List2) -> boolean()

Types.
Listl = List2 = [T]
T = term()

Returnst r ue if Li st 1 isaprefix of Li st 2, otherwisef al se.

reverse(Listl) -> List2

Types.
Listl = List2 = [T]
T = term()

Returns alist with the elementsin Li st 1 inreverse order.

reverse(Listl, Tail) -> List2

Types:
Listl = [T]
Tail = term()
List2 = [T]
T = term()

Returns alist with the elementsin Li st 1 inreverse order, with tail Tai | appended.
Example:

286 | Ericsson AB. All Rights Reserved.: STDLIB

lists

> lists:reverse([1, 2, 3, 41, [a, b, c]).
[4,3,2,1,a,b,c]

seq(From, To) -> Seq
seq(From, To, Incr) -> Seq
Types:
From = To = Incr = integer()
Seq = [integer()]
Returnsaseguence of integersthat startswith Fr omand containsthe successiveresultsof adding | ncr tothe previous
element, until To isreached or passed (in the latter case, To is not an element of the sequence). | ncr defaultsto 1.

Failures:

e« IfTo < From- Incr andl ncr > 0.
e IfTo > From- Incr andlncr < 0.
e Iflncr == 0OandFrom =/ = To.

The following equalities hold for all sequences:

length(lists:seq(From, To)) =:= To - From + 1
length(lists:seq(From, To, Incr)) =:= (To - From + Incr) div Incr
Examples:

> lists:seq(l, 10).
[1,2,3,4,5,6,7,8,9,10]
> lists:seq(l, 20, 3).
[1,4,7,10,13,16,19]

> lists:seq(l, 0, 1).
[]

> lists:seq(10, 6, 4).
[]

> lists:seq(l, 1, 0).
[1]

sort(Listl) -> List2

Types:
Listl = List2 = [T]
T = term()

Returns alist containing the sorted elements of Li st 1.

sort(Fun, Listl) -> List2
Types:

Ericsson AB. All Rights Reserved.: STDLIB | 287

lists

Fun = fun((A :: T, B :: T) -> boolean())
Listl = List2 = [T]
T = term()

Returns alist containing the sorted elements of Li st 1, according to the ordering function Fun. Fun(A, B) isto
returnt r ue if A compares lessthan or equal to B in the ordering, otherwisef al se.

split(N, Listl) -> {List2, List3}
Types.

N = integer() >= 0

0..length(List1)

Listl = List2 = List3 = [T]

T = term()

SplitsLi st 1 intoLi st 2 and Li st 3. Li st 2 containsthefirst Nelementsand Li st 3 the remaining elements (the
Nth tail).

splitwith(Pred, List) -> {Listl, List2}
Types.
Pred = fun((T) -> boolean())
List = Listl = List2 = [T]
T = term()
Partitions Li st intotwo listsaccordingto Pr ed. spl i t wi t h/ 2 behavesasif it is defined as follows:

splitwith(Pred, List) ->
{takewhile(Pred, List), dropwhile(Pred, List)}.

Examples:

> lists:splitwith(fun(A) -> A rem 2 == 1 end, [1,2,3,4,5,6,7]).
{[11,[2,3,4,5,6,71}

> lists:splitwith(fun(A) -> is atom(A) end, [a,b,1,c,d,2,3,4,e]).
{[a,b],[1,c,d,2,3,4,e]l}

For adifferent way to partition alist, seeparti ti on/ 2.

sublist(Listl, Len) -> List2
Types:

Listl = List2 = [T]

Len = integer() >= 0

T = term()

Returns the sublist of Li st 1 starting at position 1 and with (maximum) Len elements. It is not an error for Len to
exceed the length of thelit, in that case the whole list is returned.

sublist(Listl, Start, Len) -> List2
Types.

288 | Ericsson AB. All Rights Reserved.: STDLIB

lists

Listl = List2 = [T]
Start = integer() >=1
1..(length(List1)+1)

Len = integer() >= 0

T = term()

Returns the sublist of Li st 1 starting at St art and with (maximum) Len elements. It is not an error for St ar t
+Len to exceed the length of thelist.

Examples:

> lists:sublist([1,2,3,4], 2, 2).
[2,3]

> lists:sublist([1,2,3,4], 2, 5).
[2,3,4]

> lists:sublist([1,2,3,4], 5, 2).
[

subtract(Listl, List2) -> List3

Types.
Listl = List2 = List3 = [T]
T = term()

Returnsanew listLi st 3 thatisacopy of Li st 1, subjected to the following procedure: for each elementinLi st 2,
itsfirst occurrencein Li st 1 isdeleted.

Example:

> lists:subtract("123212", "212").
II312II .

lists:subtract (A, B) isequivaenttoA -- B.

Warning:

The complexity of | i st s: subtract (A, B) isproportiona tol engt h(A) *| engt h(B) , meaning that it
is very slow if both A and B are long lists. (If both lists are long, it is a much better choice to use ordered lists
and ordsets: subtract/ 2.

suffix(Listl, List2) -> boolean()

Types.
Listl = List2 = [T]
T = term()

Returnst r ue if Li st 1 isasuffix of Li st 2, otherwisef al se.

sum(List) -> number()
Types.

Ericsson AB. All Rights Reserved.: STDLIB | 289

lists

List = [number()]
Returns the sum of the elementsin Li st .

takewhile(Pred, Listl) -> List2

Types.
Pred = fun((Elem :: T) -> boolean())
Listl = List2 = [T]
T = term()

TakeselementsEl emfrom Li st 1 whilePr ed(El en) returnst r ue, that is, the function returns the longest prefix
of the list for which all elements satisfy the predicate.

ukeymerge(N, TupleListl, TuplelList2) -> TuplelList3
Types:

N = integer() >=1

1..tuple_size(Tuple)

TuplelListl = [T1]
TuplelList2 = [T2]
TupleList3 = [T1 | T2]

Tl = T2 = Tuple

Tuple = tuple()
Returns the sorted list formed by merging Tupl eLi st 1 and Tupl eLi st 2. The merge is performed on the Nth
element of eachtuple. Both Tupl eLi st 1 and Tupl eLi st 2 must bekey-sorted without duplicates before eval uating
thisfunction. When two tuples compare equal, thetuplefrom Tupl eLi st 1 ispicked andtheonefrom Tupl eLi st 2
is deleted.

ukeysort(N, TuplelListl) -> TuplelList2
Types:
N = integer() >=1
1..tuple_size(Tuple)
TupleListl = TupleList2 = [Tuple]
Tuple = tuple()
Returns a list containing the sorted elements of list Tupl eLi st 1 where all except the first tuple of the tuples
comparing equal have been deleted. Sorting is performed on the Nth element of the tuples.

umerge(ListOfLists) -> Listl
Types:
ListOfLists = [List]
List = Listl = [T]
T = term()
Returns the sorted list formed by merging all the sublists of Li st OF Li st s. All sublists must be sorted and contain

no duplicates before evaluating this function. When two elements compare equal, the element from the sublist with
the lowest positionin Li st O Li st s is picked and the other is deleted.

290 | Ericsson AB. All Rights Reserved.: STDLIB

lists

umerge(Listl, List2) -> List3

Types:
Listl = [X]
List2 = [Y]
List3 = [X | Y]
X =Y = term()

Returns the sorted list formed by merging Li st 1 and Li st 2. Both Li st 1 and Li st 2 must be sorted and contain
no duplicates before evaluating this function. When two elements compare equal, the element from Li st 1 is picked
and the one from Li st 2 is deleted.

umerge(Fun, Listl, List2) -> List3

Types:
Fun = fun((A, B) -> boolean())
Listl = [A]
List2 = [B]
List3 = [A | B]
A =B = term()

Returns the sorted list formed by merging Li st 1 and Li st 2. Both Li st 1 and Li st 2 must be sorted according to
the ordering function Fun and contain no duplicates before evaluating thisfunction. Fun(A, B) istoreturnt r ue if
A compareslessthan or equal to B in the ordering, otherwisef al se. When two elements compare equal, the element
from Li st 1 ispicked and the one from Li st 2 is deleted.

umerge3(Listl, List2, List3) -> List4

Types:
Listl = [X]
List2 = [Y]
List3 = [Z]
List4d = [X | Y | Z]
X=Y=7=term()

Returns the sorted list formed by merging Li st 1, Li st 2, and Li st 3. All of Li st 1, Li st 2, and Li st 3 must be
sorted and contain no duplicates before eval uating this function. When two elements compare equal, the element from
Li st 1 ispicked if there is such an element, otherwise the element from Li st 2 is picked, and the other is deleted.

unzip(Listl) -> {List2, List3}

Types:
Listl = [{A, B}]
List2 = [A]
List3 = [B]
A =B = term()

"Unzips' alist of two-tuplesinto two lists, where the first list contains the first element of each tuple, and the second
list contains the second element of each tuple.

Ericsson AB. All Rights Reserved.: STDLIB | 291

lists

unzip3(Listl) -> {List2, List3, List4}

Types:
Listl = [{A, B, C}]
List2 = [A]
List3 = [B]
List4 = [C]
A=B=C=term()

"Unzips' alist of three-tuples into three lists, where the first list contains the first element of each tuple, the second
list contains the second element of each tuple, and the third list contains the third element of each tuple.

usort(Listl) -> List2

Types:
Listl = List2 = [T]
T = term()

Returns alist containing the sorted elements of Li st 1 where all except the first element of the elements comparing
equal have been deleted.

usort(Fun, Listl) -> List2
Types:
Fun = fun((T, T) -> boolean())
Listl = List2 = [T]
T = term()
Returns alist containing the sorted elements of Li st 1 where all except the first element of the elements comparing

equal according to the ordering function Fun have been deleted. Fun(A, B) istoreturnt r ue if A comparesless
than or equal to B in the ordering, otherwisef al se.

zip(Listl, List2) -> List3

Types:
Listl = [A]
List2 = [B]
List3 = [{A, B}]
A =B = term()

"Zips' two lists of equal length into one list of two-tuples, where the first element of each tupleistaken from the first
list and the second element is taken from the corresponding element in the second list.

zip3(Listl, List2, List3) -> List4
Types:

292 | Ericsson AB. All Rights Reserved.: STDLIB

lists

Listl = [A]
List2 = [B]
List3 = [(C]
List4 = [{A, B, C}]
A=B=C=term()

"Zips' three lists of equal length into one list of three-tuples, where the first element of each tuple is taken from the
first list, the second element is taken from the corresponding element in the second list, and the third element istaken
from the corresponding element in the third list.

zipwith(Combine, Listl, List2) -> List3

Types:
Combine = fun((X, Y) -> T)
Listl = [X]
List2 = [Y]
List3 = [T]
X=Y=T= term()

Combines the elements of two lists of equal length into one list. For each pair X, Y of list elements from the two
lists, the element in the result list is Corrbi ne(X, Y).

zipwith(fun(X, Y) -> {X Y} end, Listl, List2) isequivdenttozi p(Listl, List2).
Example:

> lists:zipwith(fun(X, Y) -> X+Y end, [1,2,3], [4,5,6]).
[5,7,9]

zipwith3(Combine, Listl, List2, List3) -> List4

Types:
Combine = fun((X, Y, Z) -> T)
Listl = [X]
List2 = [Y]
List3 = [Z]
List4 = [T]

X=Y=27Z=T=term()

Combines the elements of three lists of equal length into one list. For each triple X, Y, Z of list elements from the
threelists, the element in theresult listis Conbi ne(X, Y, Z).

zipwith3(fun(X, VY, 2) ->{X Y,Z} end, Listl, List2, List3)isequivaenttozi p3(List1,
List2, List3).

Examples:

> lists:zipwith3(fun(X, Y, Z) -> X+Y+Z end, [1,2,3], [4,5,6], [7,8,9]).
[12,15,18]
> lists:zipwith3(fun(X, Y, Z) -> [X,Y,Z] end, [a,b,c], [x,y,zl, [1,2,3]).

Ericsson AB. All Rights Reserved.: STDLIB | 293

lists

[[a,x,1],[b,y,2],[c,z,3]1]

294 | Ericsson AB. All Rights Reserved.: STDLIB

log_mf_h

log_ mf_h

Erlang module

Thismoduleisagen_event handler module that can beinstalled inany gen_event process. It logs onto disk all
eventsthat are sent to an event manager. Each event iswritten asabinary, which makesthelogging very fast. However,
atool such as the Report Browser (r b(3)) must be used to read the files. The events are written to multiple files.
When dl files have been used, the first oneis reused and overwritten. The directory location, the number of files, and
the size of each file are configurable. The directory will include onefilecaled i ndex, and report files1, 2,

Data Types

args()
Termtobesentto gen_event : add_handl er/ 3.

Exports

init(Dir, MaxBytes, MaxFiles) -> Args
init(Dir, MaxBytes, MaxFiles, Pred) -> Args
Types:

Dir = file:filenanme()

MaxBytes integer() >= 0

MaxFiles 1..255

Pred = fun((Event :: term()) -> boolean())

Args = args()

Initiates the event handler. Returns Args, which is to be wused in a cdl to
gen_event : add_handl er (Event Myr, log_nf_h, Args).

Di r specifieswhich directory to usefor thelogfiles. MaxByt es specifiesthesize of eachindividual file. MaxFi | es
specifies how many files are used. Pr ed is a predicate function used to filter the events. If no predicate function is
specified, all events are logged.

See Also
gen_event (3),rb(3)

Ericsson AB. All Rights Reserved.: STDLIB | 295

maps

maps

Erlang module

This module contains functions for maps processing.

Exports

filter(Pred, Mapl) -> Map2

Types.
Pred = fun((Key, Value) -> boolean())
Key = Value = term()
Mapl = Map2 = #{}

Returns amap Map2 for which predicate Pr ed holdstruein Mapl.

The call failswith a{badmap, Map} exception if Map1l is not a map, or with badar g if Pr ed is not a function
of arity 2.

Example:

>M=#{a=>2, b=>3, c=>4, "a" =1, "b" => 2, "c" => 4},
Pred = fun(K,V) -> is atom(K) andalso (V rem 2) =:= 0 end,
maps:filter(Pred,M).

#{a => 2,c => 4}

find(Key, Map) -> {ok, Value} | error

Types:
Key = term()
Map = #{}

Value = term()

Returnsatuple{ ok, Val ue}, whereVal ue isthe value associated with Key, or er r or if no valueis associated
with Key in Map.

The call failswith a{ badmap, Map} exceptionif Map isnot a map.

Example:
> Map = #{"hi" => 42},
Key = "hi",
maps: find(Key,Map) .
{ok, 42}

fold(Fun, Init, Map) -> Acc
Types.

296 | Ericsson AB. All Rights Reserved.: STDLIB

maps

Fun = fun((K, V, AccIn) -> AccOut)
Init = Acc = AccIn = AccOut = term()
Map = #{}
K=V = term()
CdlsF(K, V, Accln) forevery KtovalueV associationin Map in any order. Functionf un F/ 3 must return a

new accumulator, which is passed to the next successive call. Thisfunction returnsthe final value of the accumulator.
Theinitial accumulator value |l ni t isreturned if the map is empty.

Example:

> Fun = fun(K,V,AccIn) when is list(K) -> AccIn + V end,
Map = #{Ilklll => 1, IIk2II => 2' Ilk3ll => 3}’
maps:fold(Fun,®,Map) .

6

from list(List) -> Map
Types.
List = [{Key, Value}]
Key = Value = term()
Map = #{}

Takes alist of key-value tuples elements and builds a map. The associations can be in any order, and both keys and
values in the association can be of any term. If the same key appears more than once, the latter (right-most) valueis
used and the previous values are ignored.

Example:

> List = [{"a",ignored}, {1337, "value two"}, {42,value three},{"a",1}],
maps:from list(List).
#{42 => value three,1337 => "value two","a" => 1}

get(Key, Map) -> Value

Types:
Key = term()
Map = #{}

Value = term()
Returns value Val ue associated with Key if Map contains Key.

The call fails with a { badmap, Map} exception if Map is not a map, or with a{ badkey, Key} exception if no
value is associated with Key.

Example:

> Key = 1337,
Map = #{42 => value two, 1337 => "value one","a" => 1},
maps:get (Key,Map) .

"value one"

Ericsson AB. All Rights Reserved.: STDLIB | 297

maps

get(Key, Map, Default) -> Value | Default

Types:
Key = term()
Map = #{}

Value = Default = term()

Returns value Val ue associated with Key if Map contains Key. If no value is associated with Key, Def aul t is
returned.

Thecdl failswith a{ badmap, Map} exceptionif Map isnot a map.
Example:

> Map = #{ keyl => vall, key2 => val2 }.
#{keyl => vall,key2 => val2}

> maps:get(keyl, Map, "Default value").

vall

> maps:get(key3, Map, "Default value").

"Default value"

is key(Key, Map) -> boolean()

Types:
Key = term()
Map = #{}

Returnst r ue if map Map contains Key and returnsf al se if it does not contain the Key.
Thecdl failswith a{ badmap, Map} exceptionif Map isnot amap.
Example:

> Map = #{"42" => value}.
#{"42"> => value}

> maps:is key("42",Map) .
true

> maps:is key(value,Map).
false

keys(Map) -> Keys

Types:
Map = #{}
Keys = [Key]
Key = term()

Returns acomplete list of keys, in any order, which resides within Map.
The cdl failswith a{ badmap, Map} exceptionif Map isnot amap.
Example:

> Map = #{42 => value three,1337 => "value two","a" => 1},
maps: keys (Map) .

298 | Ericsson AB. All Rights Reserved.: STDLIB

maps

[42,1337,"a"]

map (Fun, Mapl) -> Map2

Types:
Fun = fun((K, V1) -> V2)
Mapl = Map2 = #{}
K=Vl =V2 = term()

Produces a new map Map2 by calling functionf un F(K, V1) for every Kto value V1 association in Map1 in any
order. Functionf un F/ 2 must return value V2 to be associated with key K for the new map Map2.

Example:

> Fun = fun(K,V1l) when is list(K) -> V1*2 end,
Map = #{Ilklll => 1' IIk2II => 2, Ilk3ll => 3}’
maps :map (Fun,Map) .

#{Ilklll => 2’IIk2II => 4'IIk3II => 6}

merge(Mapl, Map2) -> Map3
Types.
Mapl = Map2 = Map3 = #{}

Merges two maps into a single map Map3. If two keys exist in both maps, the value in Map1l is superseded by the
valuein Map2.

The cal failswith a{ badmap, Map} exceptionif Mapl or Map2 isnot a map.

Example:

> Mapl = #{a => "value one", b => "value two"},
Map2 = #{a => 1, c => 2},
maps:merge(Mapl,Map2) .

#{a => 1,b => "value two",c => 2}

new() -> Map
Types:

Map = #{}
Returns a new empty map.

Example:

> maps:new().

#{}

put(Key, Value, Mapl) -> Map2
Types:

Ericsson AB. All Rights Reserved.: STDLIB | 299

maps

Key = Value = term()
Mapl = Map2 = #{}

Associates Key with value Val ue and inserts the association into map Map2. If key Key aready exists in map
Mapl, the old associated value is replaced by value Val ue. The function returns a new map Map2 containing the

new association and the old associationsin Map1l.
Thecall failswith a{ badnmap, Map} exceptionif Map1 isnot amap.

Example:

> Map = #{"a" => 1}.

#{Ilall => 1}
> maps:put("a", 42, Map).
#{Ilall => 42}

> maps:put("b", 1337, Map).
#{uau = 1,"b" = 1337}

remove (Key, Mapl) -> Map2
Types:
Key = term()
Mapl = Map2 = #{}
Removesthe Key, if it exists, and its associated value from Map1 and returns a new map Map2 without key Key.
The call failswith a{ badmap, Map} exceptionif Mapl isnot amap.

Example:

> Map = #{"a" => 1}.
#{llall => 1}
> maps:remove("a",Map) .

#{}
> maps:remove("b",Map) .
#{llall => 1}

size(Map) -> integer() >= 0
Types:
Map = #{}
Returns the number of key-value associationsin Map. This operation occursin constant time.

Example:

> Map = #{42 => value two,1337 => "value one","a" => 1},
maps:size(Map) .
3

take(Key, Mapl) -> {Value, Map2} | error
Types:

300 | Ericsson AB. All Rights Reserved.: STDLIB

maps

Key = term()
Mapl = #{}
Value = term()
Map2 = #{}

The function removes the Key, if it exists, and its associated value from Map1 and returns a tuple with the removed
Val ue and the new map Map2 without key Key. If the key does not exist er r or isreturned.

The call will fail witha{badnmap, Map} exceptionif Map1 isnot amap.

Example:

> Map = #{"a" => "hello", "b" => "world"}.
#{"a" => "hello", "b" => "world"}

> maps:take("a",Map) .

{"hello",#{"b" => "world"}}

> maps:take("does not exist",Map).

error

to list(Map) -> [{Key, Value}]

Types:
Map = #{}
Key = Value = term()
Returnsalist of pairsrepresenting thekey-value associationsof Map, wherethepairs[{ K1, V1}, ..., {Kn, Vn}]

arereturned in arbitrary order.
Thecal failswith a{ badmap, Map} exceptionif Map isnot amap.

Example:

> Map = #{42 => value three,1337 => "value two","a" => 1},
maps:to list(Map).
[{42,value three}, {1337, "value two"},{"a",1}]

update(Key, Value, Mapl) -> Map2

Types:
Key = Value = term()
Mapl = Map2 = #{}

If Key existsin Map1, the old associated value is replaced by value Val ue. The function returns a new map Map2
containing the new associated value.

The call fails with a{ badmap, Map} exception if Map1l is not a map, or with a{ badkey, Key} exception if no
value is associated with Key.

Example:

> Map = #{"a" => 1}.

#{uau = 1}
> maps:update("a", 42, Map).
#{"a" => 42}

Ericsson AB. All Rights Reserved.: STDLIB | 301

maps

update with(Key, Fun, Mapl) -> Map2
Types:
Key = term()
Mapl = Map2 = #{}
Fun = fun((Valuel :: term()) -> Value2 :: term())

Update a value in a Map1l associated with Key by calling Fun on the old value to get a new value. An exception
{ badkey, Key} isgenerated if Key is not present in the map.

Example:

> Map = #{"counter" => 1},
Fun fun(V) -> V + 1 end,
maps:update with("counter", Fun,Map).
#{"counter" => 2}

update with(Key, Fun, Init, Mapl) -> Map2

Types.
Key = term()
Mapl = Mapl
Map2 = Map?2

Fun = fun((Valuel :: term()) -> Value2 :: term())
Init = term()

Update a value in a Map1l associated with Key by calling Fun on the old value to get a new value. If Key is not
present in Mapl then | ni t will be associated with Key.

Example:

> Map = #{"counter" => 1},

Fun fun(V) ->V + 1 end,

maps:update with("new counter",Fun,42,Map).
#{"counter" => 1,"new counter" => 42}

values(Map) -> Values
Types:
Map = #{}
Values = [Value]
Value = term()
Returns a complete list of values, in arbitrary order, contained in map Map.
The call failswith a{ badmap, Map} exceptionif Map isnot a map.

Example:

> Map = #{42 => value three,1337 => "value two","a" => 1},
maps:values (Map) .
[value three,"value two",1]

302 | Ericsson AB. All Rights Reserved.: STDLIB

maps

with(Ks, Mapl) -> Map2

Types:
Ks = [K]
Mapl = Map2 = #{}
K = term()

Returns a new map Map2 with the keys K1 through Kn and their associated values from map Mapl. Any key in Ks
that does not exist in Map1 isignored.

Example:

> Map = #{42 => value three,1337 => "value two","a" => 1},
Ks = ["a",42,"other key"],
maps :with(Ks,Map) .

#{42 => value three,"a" => 1}

without(Ks, Mapl) -> Map2

Types.
Ks = [K]
Mapl = Map2 = #{}
K = term()

Returns a new map Map2 without keys K1 through Kn and their associated values from map Mapl. Any key in Ks
that does not exist in Map1l isignored

Example:

> Map = #{42 => value three,1337 => "value two","a" => 1},
Ks = ["a",42,"other key"],
maps:without (Ks,Map) .

#{1337 => "value two"}

Ericsson AB. All Rights Reserved.: STDLIB | 303

math

math

Erlang module

This module provides an interface to a number of mathematical functions.

Note:

Not all functions are provided on al platforms. In particular, theer f / 1 and er f ¢/ 1 functions are not provided
on Windows.

Exports

acos(X) -> float()
acosh(X) -> float(
asin(X) -> float()
asinh(X) -> float()
atan(X) -> float()
atan2(Y, X) -> float()
atanh(X) -> float()
cos(X) -> float()
cosh(X) -> float()

)

)

)

(

exp(X) -> float()
log(X) -> float()
1og10(X) -> float()
log2(X) -> float()
pow(X, Y) -> float()
sin(X) -> float()
sinh(X) -> float()
sqrt(X) -> float()
tan(X) -> float()
tanh(X) -> float()
Types.

Y = X = number()
A collection of mathematical functions that return floats. Arguments are numbers.

erf(X) -> float()
Types:
X = number()
Returns the error function of X, where:

304 | Ericsson AB. All Rights Reserved.: STDLIB

math

erf(X) = 2/sqrt(pi)*integral from 0 to X of exp(-t*t) dt.

erfc(X) -> float()
Types:
X = number()
erfc(X) returnsl. O - er f (X), computed by methods that avoid cancellation for large X.

pi() -> float()
A useful number.

Limitations
Asthese are the C library, the same limitations apply.

Ericsson AB. All Rights Reserved.: STDLIB | 305

ms_transform

ms_transform

Erlang module

This module provides the parse transformation that makes calls to et s and dbg: f un2ns/ 1 trandate into literal
match specifications. It also provides the back end for the same functions when called from the Erlang shell.

The trandation from funs to match specifications is accessed through the two "pseudo functions' et s: f un2ns/ 1
anddbg: f un2ns/ 1.

Aseveryonetryingtouseet s: sel ect/ 2 or dbg seemsto end up reading this manual page, this description isan
introduction to the concept of match specifications.

Read the whole manual pageif it isthe first time you are using the transformations.

Match specifications are used more or less asfilters. They resemble usual Erlang matching in alist comprehension or
inafunusedwithl i st s: f ol dl / 3, and so on. However, the syntax of pure match specificationsisawkward, asthey
are made up purely by Erlang terms, and the language has no syntax to make the match specifications more readable.

As the execution and structure of the match specifications are like that of a fun, it is more straightforward to write it
using the familiar fun syntax and to have that translated into a match specification automatically. A real funisclearly
more powerful than the match specifications alow, but bearing the match specifications in mind, and what they can
do, it is still more convenient to write it all as afun. This module contains the code that translates the fun syntax into
match specification terms.

Example 1

Using et s: sel ect/ 2 and a match specification, one can filter out rows of a table and construct a list of tuples
containing relevant parts of the data in these rows. One can use et s: f ol dl / 3 instead, but the et s: sel ect/ 2
call isfar more efficient. Without the translation provided by ns_t r ansf or m one must struggle with writing match
specifications terms to accommodate this.

Consider asimple table of employees:

-record(emp, {empno, %Employee number as a string, the key
surname, %Surname of the employee
givenname, %Given name of employee
dept, %Department, one of {dev,sales,prod,adm}

empyear}). %Year the employee was employed

We create the table using:

ets:new(emp_tab, [{keypos,#emp.empno},named table,ordered set]).

We fill the table with randomly chosen data:

[{emp,"011103", "Black","Alfred",bsales, 2000},
{emp, "041231", "Doe", "John",prod, 2001},
{emp, "052341","Smith","John",dev, 1997},
{emp,"076324","Smith","Ella",sales, 1995},
{emp, "122334", "Weston", "Anna",prod, 2002},
{emp, "535216", "Chalker", "Samuel",adm, 1998},
{emp, "789789", "Harrysson","Joe",adm, 1996},

306 | Ericsson AB. All Rights Reserved.: STDLIB

ms_transform

{emp, "963721", "Scott","Juliana",dev, 2003},
{emp, "989891", "Brown", "Gabriel",prod, 1999}]

Assuming that we want the employee numbers of everyone in the sales department, there are several ways.
et s: mat ch/ 2 can be used:

1> ets:match(emp tab, {' ', '$1', ' ', ' ', sales, ' '}).
[["0611163"],["076324"]]

et s: mat ch/ 2 uses asimpler type of match specification, but it is still unreadable, and one has little control over
the returned result. It isalways alist of lists.

ets:foldl/3orets: fol dr/ 3 canbeusedto avoid the nested lists:

ets:foldr(fun(#emp{empno = E, dept = sales},Acc) -> [E | Accl;
(_,Acc) -> Acc
end,

[1,
emp_tab).

Theresultis["011103", "076324"] . The fun is straightforward, so the only problem is that all the data from
the table must be transferred from the table to the calling process for filtering. That is inefficient compared to the
et s: mat ch/ 2 cal where the filtering can be done "inside" the emulator and only the result is transferred to the
process.

Consider a"pure" et s: sel ect/ 2 call that doeswhat et s: f ol dr does:

ets:select(emp tab, [{#emp{empno = '$1', dept = sales, =' "},[1,['$1'1}]).

Although the record syntax is used, it is still hard to read and even harder to write. The first element of the tuple,
#enmp{enpno = '$1', dept = sales, _="_'},tellswhatto match. Elements not matching this are not
returned, asintheet s: mat ch/ 2 example. The second element, theempty list, isalist of guard expressions, whichwe
do not need. Thethird element isthelist of expressions constructing the return value (in ETSthisisalmost alwaysalist
containing onesingleterm). Inour case' $1' isbound to the employee number in the head (first element of thetuple),
and hence the employee number is returned. The result is[" 011103", "076324"], asintheets: fol dr/3
example, but the result is retrieved much more efficiently in terms of execution speed and memory consumption.

Using et s: fun2ns/ 1, we can combine the ease of use of the et s: f ol dr/ 3 and the efficiency of the pure
ets: sel ect/ 2 example:

-include lib("stdlib/include/ms transform.hrl").

ets:select(emp tab, ets:fun2ms(
fun (#emp{empno = E, dept = sales}) ->
E

end)).

This example requires no special knowledge of match specifications to understand. The head of the fun matches what
you want to filter out and the body returns what you want returned. Aslong as the fun can be kept within the limits of
the match specifications, thereis no need to transfer all table datato the processfor filteringasintheet s: f ol dr/ 3

Ericsson AB. All Rights Reserved.: STDLIB | 307

ms_transform

example. Itiseasiertoread thantheet s: f ol dr/ 3 example, asthe select call initself discards anything that does not
match, whilethefun of theet s: f ol dr/ 3 call needsto handle both the el ements matching and the ones not matching.

Intheet s: f un2ns/ 1 example above, it isneeded toincludens_t ransf or m hrl inthe source code, asthisis
what triggers the parse transformation of the et s: f un2ns/ 1 call to avalid match specification. This aso implies
that the transformation is done at compile time (except when called from the shell) and therefore takes no resources
in runtime. That is, athough you use the more intuitive fun syntax, it gets as efficient in runtime as writing match
specifications by hand.

Example 2

Assume that we want to get al the employee numbers of employees hired before year 2000. Using et s: mat ch/ 2
is not an alternative here, as relational operators cannot be expressed there. Once again, et s: f ol dr/ 3 can do it
(slowly, but correct):

ets:foldr(fun(#emp{empno = E, empyear = Y},Acc) when Y < 2000 -> [E | Acc];
(_,Acc) -> Acc
end,

(1,
emp_tab).

The result is ["052341","076324","535216", "789789", "989891"], as expected. The equivalent
expression using a handwritten match specification would look like this;

ets:select(emp tab, [{#emp{empno = '$1', empyear = '$2', =' "'},
[{'<', '$2', 2000}],
['$1'1}1).

Thisgivesthesameresult. [{' <', ' $2', 2000}] isinthe guard part and therefore discards anything that does
not have an enpyear (boundto' $2' inthe head) lessthan 2000, asthe guard inthe f ol dr/ 3 example.

Wewriteitusinget s: fun2ns/ 1:

-include lib("stdlib/include/ms transform.hrl").

ets:select(emp tab, ets:fun2ms(
fun (#emp{empno = E, empyear = Y}) when Y < 2000 ->
E
end)).

Example 3

Assume that we want the whole object matching instead of only one element. One alternative is to assign a variable
to every part of the record and build it up once again in the body of the fun, but the following is easier:

ets:select(emp tab, ets:fun2ms(
fun(0Obj = #emp{empno = E, empyear = Y})
when Y < 2000 ->
0bj
end)).

308 | Ericsson AB. All Rights Reserved.: STDLIB

ms_transform

As in ordinary Erlang matching, you can bind a variable to the whole matched object using a "match inside the
match", that is, a =. Unfortunately in funs trandated to match specifications, it is allowed only at the "top-level”,
that is, matching the whole object arriving to be matched into a separate variable. If you are used to writing match
specifications by hand, we mention that variable A is simply trandlated into '$ '. Alternatively, pseudo function
obj ect / 0 also returns the whole matched object, see section Warnings and Restrictions.

Example 4

This example concerns the body of the fun. Assume that all employee numbers beginning with zero (0) must be
changed to begin with one (1) instead, and that we want to createthelist[{ <O d enpno>, <New enpno>}]:

ets:select(emp tab, ets:fun2ms(
fun(#emp{empno = [$0 | Rest] }) ->
{[$0|Rest],[$1|Rest]}
end)).

This query hits the feature of partially bound keysin table type or der ed_set , so that not the whole table needs to
be searched, only the part containing keys beginning with 0 islooked into.

Example 5
The fun can have many clauses. Assume that we want to do the following:

« |If an employee started before 1997, return thetuple{i nvent ory, <enpl oyee nunber >}.
e |f an employee started 1997 or later, but before 2001, return{r ooki e, <enpl oyee numnber >}.

e For al other employees, return { newbi e, <enpl oyee nunber >}, except for those named Smi t h asthey
would be affronted by anything other than the tag gur u and that is also what is returned for their numbers:
{guru, <enpl oyee nunber>}.

Thisis accomplished as follows:

ets:select(emp tab, ets:fun2ms(
fun(#emp{empno = E, surname = "Smith" }) ->
{guru, E};
(#emp{empno = E, empyear = Y}) when Y < 1997 ->
{inventory, E};
(#emp{empno = E, empyear = Y}) when Y > 2001 ->
{newbie, E};
(#emp{empno = E, empyear = Y}) -> % 1997 -- 2001
{rookie, E}
end)).

Theresult is as follows:

[{rookie, "011103"},
{rookie, "041231"},
{guru, "052341"},
{guru,"076324"},
{newbie, "122334"},
{rookie, "535216"},
{inventory, "789789"},
{newbie, "963721"},
{rookie, "989891"}]

Ericsson AB. All Rights Reserved.: STDLIB | 309

ms_transform

Useful BIFs

What more can you do? A simple answer is. see the documentation of match specifications in ERTS User's Guide.
However, thefollowing isabrief overview of the most useful "built-in functions' that you can usewhen thefunisto be
translated into a match specification by et s: f un2ns/ 1. It isnot possible to call other functions than those allowed
in match specifications. No "usua" Erlang code can be executed by the fun that is translated by et s: f un2ns/ 1.
The funis limited exactly to the power of the match specifications, which is unfortunate, but the price one must pay
for the execution speed of et s: sel ect/ 2 comparedtoet s: fol dl / f ol dr.

The head of the fun is a head matching (or mismatching) one parameter, one object of the table we select from. The
object is aways a single variable (can be _) or atuple, as ETS, Dets, and Mnesia tables include that. The match
specificationreturned by et s: f un2ns/ 1 canbeused withdet s: sel ect / 2 andmmesi a: sel ect/ 2, andwith
et s: sel ect/ 2. Theuseof = inthe head is allowed (and encouraged) at the top-level.

The guard section can contain any guard expression of Erlang. The following isalist of BIFs and expressions:

e Type tests. is_atom is float, is_integer, is list, is _nunmber, is pid, is_port,
is_reference,is_tuple,is _binary,is_function,is record

* Boolean operators: not , and, or , andal so, or el se

» Relationa operators: >, >=, <, =<, ==, ==, =/=, /=

e Arithmetics: +,-,*,di v,rem

» Bitwise operators: band, bor , bxor , bnot , bsl , bsr

e Theguard BIFs: abs, el enent, hd, | engt h, node, round, si ze,tl,trunc,sel f

Contrary to the fact with "handwritten" match specifications, thei s_r ecor d guard worksasin ordinary Erlang code.

Semicolons (;) in guards are allowed, the result is (as expected) one "match specification clause” for each semicolon-
separated part of the guard. The semanticsisidentical to the Erlang semantics.

The body of the funisused to construct the resulting value. When selecting from tables, one usually construct a suiting
term here, using ordinary Erlang term construction, like tuple parentheses, list brackets, and variables matched out in
the head, possibly with the occasional constant. Whatever expressions are allowed in guards are also allowed here,
but no special functions exist except obj ect and bi ndi ngs (see further down), which returns the whole matched
object and all known variable bindings, respectively.

Thedbg variants of match specifications have an imperative approach to the match specification body, the ETS dial ect
has not. The fun body for et s: f un2ns/ 1 returns the result without side effects. As matching (=) in the body of the
match specificationsis not allowed (for performance reasons) the only thing left, more or less, is term construction.
Example with dbg

This section describes the dlightly different match specifications trandated by dbg: f un2ms/ 1.

The same reasons for using the parse transformation apply to dbg, maybe even more, asfiltering using Erlang codeis
not agood ideawhen tracing (except afterwards, if you tracetofile). Theconceptissimilartothat of et s: f un2ns/ 1
except that you usually useit directly from the shell (which can also be donewith et s: f un2ns/ 1).

The following is an example module to trace on:

-module(toy) .
-export([start/1l, store/2, retrieve/1]).

start(Args) ->
toy table = ets:new(toy table, Args).

store(Key, Value) ->

310 | Ericsson AB. All Rights Reserved.: STDLIB

ms_transform

ets:insert(toy table, {Key,Value}).
retrieve(Key) ->

[{Key, Value}] = ets:lookup(toy table, Key),
Value.

During model testing, the first test resultsin { badmat ch, 16} in{t oy, start, 1}, why?

We suspect theet s: new/ 2 call, aswe match hard on the return value, but want only the particular new’ 2 call with
t oy_t abl e asfirst parameter. So we start a default tracer on the node:

1> dbg:tracer().
{ok,<0.88.0>}

Weturn on call tracing for all processes, we want to make a pretty restrictive trace pattern, so there is no need to call
trace only afew processes (usually it is not):

2> dbg:p(all,call).
{ok, [{matched, nonode@nohost,25}]1}

We specify thefilter, we want to view callsthat resembleet s: new(t oy_t abl e, <sonet hi ng>):

3> dbg:tp(ets,new,dbg: fun2ms (fun([toy table,]) -> true end)).
{ok, [{matched, nonode@nohost, 1}, {saved,1}]}

As can be seen, the fun used with dbg: f un2ms/ 1 takes a single list as parameter instead of a single tuple. The
list matches a list of the parameters to the traced function. A single variable can also be used. The body of the fun
expresses, in a more imperative way, actions to be taken if the fun head (and the guards) matches. t r ue is returned
here, only because the body of afun cannot be empty. The return value is discarded.

The following trace output is received during test:
(<0.86.0>) call ets:new(toy table, [ordered set])

Assumethat we have not found the problem yet, and want to seewhat et s: new/ 2 returns. Weuse adlightly different
trace pattern:

4> dbg:tp(ets,new,dbg: fun2ms(fun([toy table,]) -> return trace() end)).

The following trace output is received during test:

(<0.86.0>) call ets:new(toy table, [ordered set])
(<0.86.0>) returned from ets:new/2 -> 24

The call to ret ur n_t race results in a trace message when the function returns. It applies only to the specific
function call triggering the match specification (and matching the head/guards of the match specification). Thisis by
far the most common call in the body of adbg match specification.

Ericsson AB. All Rights Reserved.: STDLIB | 311

ms_transform

The test now fails with { badmat ch, 24} because the atomt oy_t abl e does not match the number returned for
an unnamed table. So, the problem is found, the table is to be named, and the arguments supplied by the test program
do not include naned_t abl e. Werewrite the start function:

start(Args) ->
toy table = ets:new(toy table, [named table|Args]).

With the same tracing turned on, the following trace output is received:

(<0.86.0>) call ets:new(toy table,[named table,ordered set])
(<0.86.0>) returned from ets:new/2 -> toy table

Assume that the module now passes all testing and goes into the system. After a while, it is found that table
t oy_t abl e grows while the system is running and that there are many elements with atoms as keys. We expected
only integer keys and so does the rest of the system, but clearly not the entire system. We turn on call tracing and try
to see calls to the module with an atom as the key:

1> dbg:tracer().

{ok,<0.88.0>}

2> dbg:p(all,call).

{ok, [{matched, nonode@nohost,25}]}

3> dbg:tpl(toy,store,dbg:fun2ms(fun([A, 1) when is atom(A) -> true end)).
{ok, [{matched, nonode@nohost, 1}, {saved,1}]}

Weusedbg: t pl / 3 to ensure to catch local calls (assume that the module has grown since the smaller version and
we are unsure if thisinserting of atomsis not done locally). When in doubt, always use local call tracing.

Assumethat nothing happenswhen tracing in thisway. Thefunctionisnever called with these parameters. We conclude
that someone €else (some other module) is doing it and realize that we must trace on et s: i nsert/ 2 and want to
see the calling function. The calling function can be retrieved using the match specification function cal | er. To
get it into the trace message, the match specification function nessage must be used. The filter call looks like this
(looking for callstoet s: i nsert/ 2):

4> dbg:tpl(ets,insert,dbg: fun2ms(fun([toy table,{A, }]1) when is atom(A) ->
message(caller())
end)).
{ok, [{matched, nonode@nohost, 1}, {saved,2}]}

The caler is now displayed in the "additional message" part of the trace output, and the following is displayed after
awhile:

(<0.86.0>) call ets:insert(toy table,{garbage,can}) ({evil mod,evil fun,2})

Y ou have realized that function evi | _f un of theevi | _npd module, with arity 2, is causing al thistrouble.

This exampleillustrates the most used calls in match specifications for dbg. The other, more esoteric, calls are listed
and explained in Match specificationsin Erlang in ERTS User's Guide, asthey are beyond the scope of thisdescription.

312 | Ericsson AB. All Rights Reserved.: STDLIB

ms_transform

Warnings and Restrictions
The following warnings and restrictions apply to the funs used inwith et s: f un2nms/ 1 and dbg: f un2ns/ 1.

Warning:

To use the pseudo functions triggering the trandation, ensure to include the header filens_t r ansf orm hr |
in the source code. Failure to do so possibly results in runtime errors rather than compile time, as the expression
can be valid as aplain Erlang program without translation.

Warning:

Thefun must beliterally constructed inside the parameter list to the pseudo functions. The fun cannot be bound to
avariablefirst and then passedtoet s: f un2nms/ 1 ordbg: f un2mms/ 1. For example, et s: f un2nms(f un(A)

-> A end) works, butnotF = fun(A) -> A end, ets:fun2ns(F). Thelatter resultsin acompile-
time error if the header isincluded, otherwise a runtime error.

Many restrictionsapply to thefun that istranslated into amatch specification. To put it simple: you cannot use anything
in the fun that you cannot use in amatch specification. This meansthat, among others, the following restrictions apply
to the fun itself:

Functions written in Erlang cannot be called, neither can local functions, global functions, or real funs.

Everything that is written as a function call is translated into a match specification call to a built-in function, so
that thecall i s_l i st (X) istrandatedto{'is_list', '"$1'} (" $1' isonly an example, the numbering
can vary). If onetriesto call afunction that is not a match specification built-in, it causes an error.

Variables occurring in the head of the fun are replaced by match specification variablesin the order of occurrence,
so that fragment fun({ A, B, C}) isreplaced by {"' $1', '$2', '$3'}, and so on. Every occurrence
of such a variable in the match specification is replaced by a match specification variable in the same way,
so that the fun fun({A, B}) when is _atom(A) -> B endistrandated into [{{' $1',"' $2'},
[{is_atom ' $1'}],[' $2']}].

Variablesthat are not included in the head are imported from the environment and made into match specification
const expressions. Example from the shell:

1> X = 25.

25

2> ets:fun2ms(fun({A,B}) when A > X -> B end).
[{{'$1",'$2"},[{'>","$1",{const,25}}],["'$2"']}]

Matching with = cannot be used in the body. It can only be used on the top-level in the head of the fun. Example
from the shell again:

1> ets:fun2ms(fun({A,[B|C]} = D) when A > B -> D end).
[{{"$1",['$2"['$3"1},[{'>","$1","'$2"'}],['$_"1}1]

2> ets:fun2ms(fun({A, [B|C]=D}) when A > B -> D end).

Error: fun with head matching ('=' in head) cannot be translated into
match spec

{error,transform error}

3> ets:fun2ms(fun({A, [B|C]}) when A > B -> D = [B|C], D end).

Error: fun with body matching ('=' in body) is illegal as match spec

Ericsson AB. All Rights Reserved.: STDLIB | 313

ms_transform

{error,transform error}

All variables are bound in the head of a match specification, so the transdator cannot allow multiple bindings.
The special case when matching is done on the top-level makesthevariablebindto' $ ' in the resulting match
specification. It isto allow a more natural access to the whole matched object. Pseudo function obj ect () can
be used instead, see below.

The following expressions are translated equally:

ets:fun2ms(fun({a, } = A) -> A end).
ets:fun2ms(fun({a, }) -> object() end).

* The specia match specification variables ' $_' and ' $*' can be accessed through the pseudo functions
obj ect () (for ' $_") and bi ndi ngs() (for ' $*'). As an example, one can trandate the following
ets: match_object/2cdltoaets: sel ect/ 2 call:

ets:match object(Table, {'$1',6test,'$2'}).

Thisisthe same as:

ets:select(Table, ets:fun2ms(fun({A,test,B}) -> object() end)).

In this simple case, the former expression is probably preferable in terms of readability.

Theet s: sel ect/ 2 call conceptually looks like this in the resulting code:

ets:select(Table, [{{'$1',test,'$2'},[1,['$ "1}1).

Matching on the top-level of the fun head can be a more natural way to access' $ ', see above.

e Term constructiong/literalsare translated as much asis needed to get them into valid match specification. Thisway
tuples are made into match specification tuple constructions (aone element tupl e containing the tupl€) and constant
expressions are used when importing variables from the environment. Records are also trandated into plain tuple
constructions, calls to element, and so on. Theguardtesti s_r ecor d/ 2 istransated into match specification
code using the three parameter version that is built into match specification, so that i s_record(A, t) is
trandatedinto{i s_record, "' $1',t, 5} if therecord size of record typet is5.

» Languageconstructionssuchascase,i f ,and cat ch that arenot present in match specificationsare not allowed.

e If header filens_t ransform hrl isnot included, the fun is not trandated, which can result in a runtime
error (depending on whether the fun isvalid in a pure Erlang context).

Ensure that the header isincluded when using et s and dbg: f un2ns/ 1 in compiled code.

« If pseudofunctiontriggeringthetrandationiset s: f un2ns/ 1, the head of thefun must contain asinglevariable
or asingle tuple. If the pseudo function isdbg: f un2ns/ 1, the head of the fun must contain a single variable
or asinglelist.

The trandation from funs to match specifications is done at compile time, so runtime performance is not affected by
using these pseudo functions.

For more information about match specifications, see the Match specificationsin Erlang in ERTS User's Guide.

314 | Ericsson AB. All Rights Reserved.: STDLIB

ms_transform

Exports

format _error(Error) -> Chars

Types:
Error = {error, module(), term()}
Chars = io_lib:chars()

Takes an error code returned by one of the other functions in the module and creates atextual description of the error.

parse transform(Forms, Options) -> Forms2

Types:
Forms = Forms2 = [erl| _parse:abstract_form() | erl_parse:form.info()]
Options = term()
Option list, required but not used.

Implements the transformation at compile time. This function is called by the compiler to do the source code
transformation if and when header filens_t ransf or m hr | isincluded in the source code.

For information about how to use this parse transformation, seeet s and dbg: f un2ns/ 1.
For a description of match specifications, see section Match Specification in Erlang in ERTS User's Guide.

transform from shell(Dialect, Clauses, BoundEnvironment) -> term()
Types:
Dialect = ets | dbg
Clauses = [erl| _parse:abstract_cl ause()]
BoundEnvironment = erl _eval : bi ndi ng_struct ()
List of variable bindingsin the shell environment.
Implements the transformation when the f un2ns/ 1 functions are called from the shell. In this case, the abstract

form isfor one single fun (parsed by the Erlang shell). All imported variables are to bein the key-value list passed as
BoundEnvi r onnent . Theresult isaterm, normalized, that is, not in abstract format.

Ericsson AB. All Rights Reserved.: STDLIB | 315

orddict

orddict

Erlang module

Thismodule providesaKey-Val ue dictionary. Anor ddi ct isarepresentation of adictionary, where alist of pairs
isused to store the keys and values. The list is ordered after the keys.

This module provides the same interface asthe di ct (3) module but with a defined representation. One difference
isthat while di ct considers two keys as different if they do not match (=: =), this module considers two keys as
different if and only if they do not compare equa (==).

Data Types

orddict(Key, Value) = [{Key, Value}]
Dictionary as returned by new/ 0.

orddict() = orddict (term(), term())

Exports

append(Key, Value, Orddictl) -> Orddict2
Types:
Orddictl = Orddict2 = orddict (Key, Value)
Appends anew Val ue to the current list of values associated with Key. An exception is generated if theinitial value
associated with Key isnot alist of values.
See also section Notes.

append list(Key, VallList, Orddictl) -> Orddict2
Types:
ValList = [Value]
Orddictl = Orddict2 = orddict (Key, Value)
Appends alist of values Val Li st to the current list of values associated with Key. An exception is generated if the
initial value associated with Key isnot alist of values.

See also section Notes.

erase(Key, Orddictl) -> Orddict2
Types.
Orddictl = Orddict2 = orddict (Key, Value)

Erases dl items with a specified key from adictionary.

fetch(Key, Orddict) -> Value
Types:
Orddict = orddict (Key, Value)

Returns the value associated with Key in dictionary Or ddi ct . This function assumes that the Key is present in the
dictionary. An exception is generated if Key isnot in the dictionary.

316 | Ericsson AB. All Rights Reserved.: STDLIB

orddict

See also section Notes.

fetch keys(Orddict) -> Keys

Types.
Orddict = orddict (Key, Value :: term())
Keys = [Key]

Returnsalist of al keysin adictionary.

filter(Pred, Orddictl) -> Orddict2

Types:
Pred = fun((Key, Value) -> boolean())
Orddictl = Orddict2 = orddict (Key, Value)

O ddi ct 2 isadictionary of all keysand valuesin Or ddi ct 1 for which Pr ed(Key, Val ue) istrue.

find(Key, Orddict) -> {ok, Value} | error
Types:
Orddict = orddict (Key, Value)

Searchesfor akey inadictionary. Returns{ ok, Val ue},whereVal ue isthevaueassociated withKey, orer r or
if the key is not present in the dictionary.

See also section Notes.

fold(Fun, AccO, Orddict) -> Accl

Types:
Fun = fun((Key, Value, AccIn) -> AccOut)
Orddict = orddict (Key, Value)
AccO = Accl = AccIn = AccOut = Acc

Calls Fun on successive keys and values of Or ddi ct together with an extraargument Acc (short for accumulator).
Fun must return a new accumulator that is passed to the next call. AccO isreturned if thelist is empty.

from list(List) -> Orddict
Types.
List = [{Key, Value}]
Orddict = orddict (Key, Value)

Convertsthe Key-Val ue list Li st to adictionary.

is empty(Orddict) -> boolean()
Types:
Orddict = orddict()
Returnst r ue if Or ddi ct hasno elements, otherwisef al se.

is key(Key, 0Orddict) -> boolean()
Types:

Ericsson AB. All Rights Reserved.: STDLIB | 317

orddict

Orddict = orddict (Key, Value :: term())
Testsif Key iscontained in dictionary Or ddi ct .

map(Fun, Orddictl) -> Orddict2

Types:
Fun = fun((Key, Valuel) -> Value2)
Orddictl = orddict (Key, Valuel)
Orddict2 = orddict (Key, Value2)

Calls Fun on successive keys and values of Or ddi ct 1 tvo return anew value for each key.

merge(Fun, Orddictl, Orddict2) -> Orddict3
Types:
Fun = fun((Key, Valuel, Value2) -> Value)
Orddictl = orddict (Key, Valuel)
Orddict?2 orddi ct (Key, Value2)
Orddict3 = orddict (Key, Value)
Mergestwo dictionaries, Or ddi ct 1 and Or ddi ct 2, to create anew dictionary. All the Key-Val ue pairsfrom both

dictionaries are included in the new dictionary. If a key occurs in both dictionaries, Fun is called with the key and
both values to return anew value. mer ge/ 3 can be defined as follows, but is faster:

merge(Fun, D1, D2) ->
fold(fun (K, V1, D) ->
update(K, fun (V2) -> Fun(K, V1, V2) end, V1, D)
end, D2, D1).

new() -> orddict()
Creates anew dictionary.

size(Orddict) -> integer() >= 0
Types:

Orddict = orddict()
Returns the number of elementsinan Or ddi ct .

store(Key, Value, Orddictl) -> Orddict2
Types:
Orddictl = Orddict2 = orddict (Key, Value)

Stores a Key-Val ue pair in adictionary. If the Key already existsin Or ddi ct 1, the associated value is replaced
by Val ue.

to list(Orddict) -> List
Types:

318 | Ericsson AB. All Rights Reserved.: STDLIB

orddict

Orddict = orddict (Key, Value)
List = [{Key, Value}]
Converts adictionary to alist representation.

update(Key, Fun, Orddictl) -> Orddict2

Types.
Fun = fun((Valuel :: Value) -> Value2 :: Value)
Orddictl = Orddict2 = orddict (Key, Value)

Updates avalue in adictionary by calling Fun on the value to get a new value. An exception is generated if Key is
not present in the dictionary.

update(Key, Fun, Initial, Orddictl) -> Orddict2
Types.
Initial = Value
Fun = fun((Valuel :: Value) -> Value2 :: Value)
Orddictl = Orddict2 = orddict (Key, Value)

Updates avauein adictionary by calling Fun on the value to get anew value. If Key isnot present in the dictionary,
Initial isstored asthefirst value. For example, append/ 3 can be defined as follows:

append(Key, Val, D) ->
update(Key, fun (0ld) -> Old ++ [Val] end, [Val], D).

update counter(Key, Increment, Orddictl) -> Orddict2
Types:
Orddictl = Orddict2 = orddict (Key, Value)
Increment = number()

Adds | ncr enent to the value associated with Key and store this value. If Key is not present in the dictionary,
| ncr enent isstored asthefirst value.

This can be defined as follows, but is faster:

update counter(Key, Incr, D) ->
update(Key, fun (0ld) -> Old + Incr end, Incr, D).

Notes

Functionsappend/ 3 and append_| i st/ 3 areincluded so that keyed values can be stored in alist accumulator,
for example:

> DO = orddict:new(),
D1 = orddict:store(files, [], DO),
D2 = orddict:append(files, f1l, D1),
D3 = orddict:append(files, f2, D2),
D4 = orddict:append(files, f3, D3),

orddict:fetch(files, D4).

Ericsson AB. All Rights Reserved.: STDLIB | 319

orddict

[f1,f2,f3]

This saves the trouble of first fetching a keyed value, appending a new value to the list of stored values, and storing
the result.

Function f et ch/ 2 isto be used if the key is known to bein the dictionary, otherwise function f i nd/ 2.

See Also
dict(3),gb _trees(3)

320 | Ericsson AB. All Rights Reserved.: STDLIB

ordsets

ordsets

Erlang module

Sets are collections of elementswith no duplicate elements. Anor dset isarepresentation of a set, where an ordered
list is used to store the elements of the set. An ordered list is more efficient than an unordered list.

Thismodule providesthe sameinterface astheset s(3) module but with adefined representation. One differenceis
that while set s considers two elements as different if they do not match (=: =), this module considers two elements
asdifferent if and only if they do not compare equal (==).

Data Types
ordset(T) = [T]
Asreturned by new/ 0.

Exports

add element(Element, Ordsetl) -> Ordset2

Types.
Element = E
Ordsetl = ordset (T)
Ordset2 = ordset (T | E)

Returns a new ordered set formed from Or dset 1 with El enent inserted.

del element(Element, Ordsetl) -> Ordset2

Types.
Element = term()
Ordsetl = Ordset2 = ordset (T)

Returns Or dset 1, but with El enent removed.

filter(Pred, Ordsetl) -> Ordset2

Types.
Pred = fun((Element :: T) -> boolean())
Ordsetl = Ordset2 = ordset (T)

Filterselementsin Or dset 1 with boolean function Pr ed.

fold(Function, AccO, Ordset) -> Accl
Types.
Function =
fun((Element :: T, AccIn :: term()) -> AccOut :: term())

Ordset = ordset (T)
AccO = Accl = term()

Folds Funct i on over every element in O dset and returns the final value of the accumulator.

Ericsson AB. All Rights Reserved.: STDLIB | 321

ordsets

from list(List) -> Ordset

Types:
List = [T]
Ordset = ordset (T)

Returns an ordered set of the elementsin Li st .

intersection(OrdsetList) -> Ordset
Types.
OrdsetList = [ordset (term()), ...]
Ordset = ordset (term())

Returns the intersection of the non-empty list of sets.

intersection(Ordsetl, Ordset2) -> Ordset3
Types:
Ordsetl = Ordset2 = Ordset3 = ordset (term())

Returns the intersection of Or dset 1 and Or dset 2.

is disjoint(Ordsetl, Ordset2) -> boolean()
Types.
Ordsetl = Ordset2 = ordset (term())

Returnst r ue if Or dset 1 and Or dset 2 are digoint (have no elements in common), otherwisef al se.

is element(Element, Ordset) -> boolean()
Types:

Element = term()

Ordset = ordset (term())

Returnst r ue if El enment isan element of Or dset , otherwisef al se.

is set(Ordset) -> boolean()
Types:
Ordset = term()
Returnst r ue if Or dset isan ordered set of elements, otherwisef al se.

is subset(Ordsetl, Ordset2) -> boolean()
Types:
Ordsetl = Ordset2 = ordset (term())

Returnst r ue when every element of Or dset 1 isaso amember of Or dset 2, otherwisef al se.

new() -> []
Returns a new empty ordered set.

322 | Ericsson AB. All Rights Reserved.: STDLIB

ordsets

size(Ordset) -> integer() >= 0
Types:

Ordset = ordset (term())
Returns the number of elementsin Or dset .

subtract(Ordsetl, Ordset2) -> Ordset3
Types:

Ordsetl = Ordset2 = Ordset3 = ordset (term())

Returns only the elements of Or dset 1 that are not also elements of Or dset 2.

to list(Ordset) -> List

Types.
Ordset = ordset (T)
List = [T]

Returns the elements of Or dset asalist.

union(OrdsetlList) -> Ordset
Types.
OrdsetList = [ordset (T)]
Ordset = ordset (T)

Returns the merged (union) set of the list of sets.

union(Ordsetl, Ordset2) -> Ordset3

Types:
Ordsetl = ordset (T1)
Ordset2 = ordset (T2)
Ordset3 = ordset (T1 | T2)

Returns the merged (union) set of Or dset 1 and Or dset 2.

See Also
gb_sets(3),sets(3)

Ericsson AB. All Rights Reserved.: STDLIB | 323

pool

pool

Erlang module

This module can be used to run a set of Erlang nodes as a pool of computational processors. It isorganized as a master
and a set of slave nodes and includes the following features:

e The dave nodes send regular reports to the master about their current load.
e Queries can be sent to the master to determine which node will have the least load.

TheBIFstatistics(run_gueue) isused for estimating future loads. It returns the length of the queue of ready
to run processes in the Erlang runtime system.

The dlave nodes are started with the sl ave(3) module. This effects terminal 1/0, file I/O, and code loading.
If the master node fails, the entire pool exits.

Exports

attach(Node) -> already attached | attached
Types:
Node = node()
Ensures that a pool master is running and includes Node in the pool master's pool of nodes.

get node() -> node()
Returns the node with the expected lowest future load.

get nodes() -> [node()]
Returns alist of the current member nodes of the pool.

pspawn(Mod, Fun, Args) -> pid()
Types:
Mod = module()
Fun = atom()
Args = [term()]
Spawns a process on the pool node that is expected to have the lowest future load.

pspawn_link(Mod, Fun, Args) -> pid()

Types:
Mod = module()
Fun = atom()

Args = [term()]
Spawns and links to a process on the pool node that is expected to have the lowest future load.

start(Name) -> Nodes
start(Name, Args) -> Nodes
Types.

324 | Ericsson AB. All Rights Reserved.: STDLIB

pool

Name atom()
Args string()
Nodes = [node()]

Starts a new pool. The file. host s. erl ang is read to find host names where the pool nodes can be started; see
section Files. The startup procedure failsif the fileis not found.

The slave nodes are started with sl ave: st art/ 2, 3, passing aong Nare and, if provided, Ar gs. Nare is used
asthefirst part of the node names, Ar gs is used to specify command-line arguments.

Access rights must be set so that all nodes in the pool have the authority to access each other.
The function is synchronous and all the nodes, and all the system servers, are running when it returns a value.

stop() -> stopped
Stops the pool and kills al the slave nodes.

Files

. host s. er| ang is used to pick hosts where nodes can be started. For information about format and location of
thisfile, see net _adm host _fil e/0.

$HOVE/ . er | ang. sl ave. out . HOST isused for all extra l/O that can come from the slave nodes on standard 1/
O. If the startup procedure does not work, thisfile can indicate the reason.

Ericsson AB. All Rights Reserved.: STDLIB | 325

proc_lib

proc_lib

Erlang module

This module is used to start processes adhering to the OTP Design Principles. Specifically, the functions in this
module are used by the OTP standard behaviors (for example, gen_ser ver,gen_f sm and gen_st at en) when
starting new processes. The functions can also be used to start special processes, user-defined processes that comply
to the OTP design principles. For an example, see section sysand proc_libin OTP Design Principles.

Some useful information is initialized when a process starts. The registered names, or the process identifiers, of the
parent process, and the parent ancestors, are stored together with information about the function initialy called in
the process.

Whilein "plain Erlang", a processis said to terminate normally only for exit reason nor mal , a process started using
proc_| i bisasosaidtoterminate normally if it exitswith reason shut down or { shut down, Ter n} . shut down
is the reason used when an application (supervision tree) is stopped.

When aprocessthatisstartedusingpr oc_| i b terminatesabnormally (that is, with another exit reasonthannor ral ,
shut down, or { shut down, Ter n}), acrash report isgenerated, which iswritten to terminal by the default SASL
event handler. That is, the crash report is normally only visible if the SASL application is started; seesasl (6) and
section SASL Error Logging in the SASL User's Guide.

The crash report contains the previously stored information, such as ancestors and initial function, the termination
reason, and information about other processes that terminate as aresult of this process terminating.

Data Types

spawn_option() =
link |
monitor |
{priority, priority_level ()} |
{max_ heap size, max_heap_size()} |
{min heap size, integer() >= 0} |
{min bin vheap size, integer() >= 0} |
{fullsweep after, integer() >= 0} |
{message queue data, off heap | on heap | mixed}

See erl ang: spawn_opt/ 2, 3, 4, 5.
priority level() = high | low | max | normal

max_heap size() =
integer() >= 0 |
#{size => integer() >= 0,
kill => true,
error_logger => true}

See erlang: process flag(max_heap_size, MaxHeapSze).

dict or pid() =
pid() |
(ProcInfo :: [term()]) |

326 | Ericsson AB. All Rights Reserved.: STDLIB

proc_lib

{X :: integer(), Y :: integer(), Z :: integer()}
Exports

format (CrashReport) -> string()
Types.
CrashReport = [term()]
Equivalentto f or mat (CrashReport, latinl).

format (CrashReport, Encoding) -> string()
Types:
CrashReport = [term()]
Encoding = latinl | unicode | utf8
This function can be used by a user-defined event handler to format a crash report. The crash report is sent using
error_l ogger:error_report(crash_report, CrashReport). Thatis, the event to be handled is of

theformat{ error_report, G, {Pid, crash_report, CrashReport}},whereG isthegroupleader
pid of process Pi d that sent the crash report.

format (CrashReport, Encoding, Depth) -> string()
Types:
CrashReport = [term()]
Encoding = latinl | unicode | utf8
Depth = unlimited | integer() >=1
Thisfunction can be used by auser-defined event handler to format acrash report. When Depthis specified asapositive
integer, it is used in the format string to limit the output asfollows: i o_I i b: format (" ~P", [Term Depth]).

hibernate(Module, Function, Args) -> no_return()
Types:
Module = module()
Function = atom()
Args = [term()]
This function does the same as (and does call) the hi ber nat e/ 3 BIF, but ensures that exception handling and
logging continues to work as expected when the process wakes up.

Always use this function instead of the BIF for processes started using pr oc_I i b functions.

init ack(Ret) -> ok
init ack(Parent, Ret) -> ok
Types:
Parent = pid()
Ret = term()
Thisfunction must be used by aprocessthat hasbeen startedby ast art [_I i nk] / 3, 4, 5 function. It tellsPar ent
that the process has initialized itself, has started, or has failed to initiaize itself.

Functioni ni t _ack/ 1 usesthe parent value previoudly stored by the start function used.

Ericsson AB. All Rights Reserved.: STDLIB | 327

proc_lib

If this function is not called, the start function returns an error tuple (if a link and/or a time-out is used) or hang
otherwise.
The following example illustrates how thisfunctionand proc_|i b: start _|i nk/ 3 are used:

-module(my proc).
-export([start link/0]).
-export([init/1]).

start link() ->
proc_lib:start link(my proc, init, [self()]).

init(Parent) ->
case do initialization() of
ok ->
proc_lib:init ack(Parent, {ok, self()});
{error, Reason} ->
exit(Reason)
end,
loop() .

initial call(Process) -> {Module, Function, Args} | false
Types:

Process = dict_or_pid()

Module = module()

Function = atom()

Args = [atom()]
Extractstheinitial call of aprocessthat was started using one of the spawn or start functionsinthismodule. Pr ocess
can either be a pid, an integer tuple (from which a pid can be created), or the process information of a process Pi d
fetched through aner | ang: process_i nf o(Pi d) function call.

Note:

Thelist Ar gs no longer contains the arguments, but the same number of atoms as the number of arguments; the
first atomis' Argunent __ 1' ,thesecond' Argunment 2", and so on. Thereason is that the argument list
could waste a significant amount of memory, and if the argument list contained funs, it could be impossible to
upgrade the code for the module.

If the process was spawned using a fun, i nitial _call/1 no longer returns the fun, but the module,
function for the local function implementing the fun, and the arity, for example, { some_nodul e, - wor k/ 3-

fun-0-, 0} (meaning that the fun was created in function some_nodul e: wor k/ 3). The reason is that
keeping the fun would prevent code upgrade for the module, and that a significant amount of memory could be

wasted.

328 | Ericsson AB. All Rights Reserved.: STDLIB

proc_lib

spawn(Fun) -> pid()

spawn (Node, Fun) -> pid()

spawn (Module, Function, Args) -> pid()

spawn (Node, Module, Function, Args) -> pid()
Types:

Node = node()

Fun = function()
Module = module()
Function = atom()
Args = [term()]

Spawns a hew process and initializes it as described in the beginning of this manual page. The process is spawned
using the spawn BIFs.

spawn_link(Fun) -> pid()
spawn_link(Node, Fun) -> pid()
spawn_link(Module, Function, Args) -> pid()
spawn_link(Node, Module, Function, Args) -> pid()
Types:

Node = node()

Fun = function()

Module = module()

Function = atom()

Args = [term()]

Spawns a hew process and initializes it as described in the beginning of this manual page. The process is spawned
using thespawn_| i nk BIFs.

spawn_opt(Fun, SpawnOpts) -> pid()
spawn_opt(Node, Function, SpawnOpts) -> pid()
spawn_opt(Module, Function, Args, SpawnOpts) -> pid()
spawn_opt(Node, Module, Function, Args, SpawnOpts) -> pid()
Types.

Node = node()

Fun = function()

Module = module()

Function = atom()

Args = [term()]

SpawnOpts = [spawn_option()]
Spawns a hew process and initializes it as described in the beginning of this manual page. The process is spawned
using the spawn_opt BIFs.

Ericsson AB. All Rights Reserved.: STDLIB | 329

proc_lib

Note:

Using spawn option noni t or isnot allowed. It causes the function to fail with reason badar g.

start(Module, Function, Args) -> Ret
start(Module, Function, Args, Time) -> Ret
start(Module, Function, Args, Time, SpawnOpts) -> Ret
start_link(Module, Function, Args) -> Ret
start _link(Module, Function, Args, Time) -> Ret
start_link(Module, Function, Args, Time, SpawnOpts) -> Ret
Types:

Module = module()

Function = atom()

Args = [term()]

Time = timeout()

SpawnOpts = [spawn_option()]

Ret = term() | {error, Reason :: term()}
Starts anew process synchronously. Spawns the process and waits for it to start. When the process has started, it must

cadlinit_ack(Parent, Ret) orinit_ack(Ret),whereParent isthe processthat evaluatesthisfunction.
At thistime, Ret isreturned.

If functionstart | ink/3, 4, 5 isused and the process crashes beforeit hascalledi nit _ack/ 1, 2,{error,
Reason} isreturned if the calling process traps exits.

If Ti me is specified as an integer, this function waits for Ti me milliseconds for the new processto call i ni t _ack,
or{error, tinmeout} isreturned, and the processiskilled.

Argument SpawnQpt s, if specified, is passed as the last argument to the spawn_opt / 2, 3, 4, 5 BIF.

Note:

Using spawn option noni t or isnot allowed. It causes the function to fail with reason badar g.

stop(Process) -> ok
Types.

Process = pid() | RegName | {RegName, node()}
Equivalentto st op(Process, normal, infinity).

stop(Process, Reason, Timeout) -> ok

Types.
Process = pid() | RegName | {RegName, node()}
Reason = term()
Timeout = timeout()

Orders the process to exit with the specified Reason and waits for it to terminate.

330 | Ericsson AB. All Rights Reserved.: STDLIB

proc_lib

Returns ok if the process exits with the specified Reason within Ti meout milliseconds.
If thecall timesout, ati meout exceptionisraised.
If the process does not exist, anopr oc exception is raised.

Theimplementation of thisfunctionisbased onthet er m nat e system message, and requiresthat the process handles
system messages correctly. For information about system messages, see sys(3) and section sys and proc _lib in
OTP Design Principles.

translate initial call(Process) -> {Module, Function, Arity}
Types:
Process = dict_or_pid()
Module = module()
Function = atom()
Arity = byte()
Thisfunction isused by functionsc: i /0 andc: r egs/ 0 to present process information.
This function extracts the initial call of a process that was started using one of the spawn or start functions in this
module, and translates it to more useful information. Pr ocess can either be apid, an integer tuple (from which apid

can be created), or the process information of aprocess Pi d fetched through an er | ang: process_i nf o(Pi d)
function call.

If theinitia call isto one of the system-defined behaviors such asgen_ser ver or gen_event, itistrandated to
more useful information. If agen_ser ver is spawned, the returned Modul e is the name of the callback module
and Funct i onisi ni t (thefunction that initiates the new server).

A supervi sor and asupervi sor_bri dge areaso gen_ser ver processes. To return information that this
processis a supervisor and the name of the callback module, Modul e issuper vi sor and Funct i on isthe name
of the supervisor callback module. Ari ty is1, asthei ni t/ 1 functioniscalledinitially in the callback module.

By default, { proc_l i b, i nit_p, 5} isreturned if no information about the initial call can be found. It is assumed
that the caller knows that the process has been spawned with the pr oc_I i b module.

See Also
error_| ogger (3)

Ericsson AB. All Rights Reserved.: STDLIB | 331

proplists

proplists

Erlang module

Property lists are ordinary lists containing entries in the form of either tuples, whose first elements are keys used for
lookup and insertion, or atoms, which work as shorthand for tuples{ At om t r ue} . (Other termsare alowed inthe
lists, but are ignored by this module.) If there is more than one entry in alist for a certain key, the first occurrence
normally overrides any later (irrespective of the arity of the tuples).

Property lists are useful for representing inherited properties, such as options passed to a function where a user can
specify options overriding the default settings, object properties, annotations, and so on.

Two keys are considered equal if they match (=: =). That is, numbers are compared literally rather than by value, so
that, for example, 1 and 1. O are different keys.

Data Types
property() = atom() | tuple()

Exports

append values(Key, ListIn) -> ListOut
Types.

Key = term()

ListIn = ListOut = [term()]

Similartoget _al | _val ues/ 2, but each valueiswrappedin alist unlessitisalready itself alist. Theresulting list
of listsis concatenated. Thisis often useful for "incremental" options.

Example:
append_values(a, [{a, [1,2]}, {b, 0}, {a, 3}, {c, -1}, {a, [4]1}])

returns:
[1,2,3,4]

compact(ListIn) -> ListOut
Types:
ListIn = ListOut = [property()]
Minimizes the representation of all entriesin thelist. Thisisequivalentto [property(P) || P <- ListlIn].
Seeasoproperty/1,unfol d/ 1.

delete(Key, List) -> List
Types:

332 | Ericsson AB. All Rights Reserved.: STDLIB

proplists

Key = term()
List = [term()]

Deletes all entries associated with Key fromLi st .

expand(Expansions, ListIn) -> ListOut
Types:
Expansions = [{Property :: property(), Expansion :: [term()]}]
ListIn = ListOut = [term()]
Expands particular properties to corresponding sets of properties (or other terms). For each pair { Property,
Expansi on} in Expansi ons: if E is the first entry in Li st | n with the same key as Pr operty, and E and

Pr operty have equivalent normal forms, then E is replaced with the terms in Expansi on, and any following
entries with the same key are deleted from Li st | n.

For example, the following expressions all return[fi e, bar, baz, funi:

expand([{foo, [bar, baz]}], [fie, foo, fum])
expand([{{foo, true}, [bar, baz]}], [fie, foo, fum])
expand([{{foo, false}, [bar, baz]}], [fie, {foo, false}, fum])

However, no expansion is done in the following call because{ f oo, f al se} shadowsf oo:

expand([{{foo, true}, [bar, bazl}]l, [{foo, false}, fie, foo, fuml)

Notice that if the original property term is to be preserved in the result when expanded, it must be included in the
expansion list. The inserted terms are not expanded recursively. If Expansi ons contains more than one property
with the same key, only the first occurrenceis used.

Seedsonornualize/ 2.

get all values(Key, List) -> [term()]
Types:

Key = term()

List = [term()]

Similar to get _val ue/ 2, but returns the list of values for all entries { Key, Val ue} inLi st . If no such entry
exists, the result is the empty list.

get bool(Key, List) -> boolean()
Types.

Key = term()

List = [term()]

Returnsthevalue of aboolean key/valueoption. If | ookup(Key, Li st) wouldyield{ Key, true},thisfunction
returnst r ue, otherwisef al se.

Seeasoget val ue/ 2,1 ookup/ 2.

Ericsson AB. All Rights Reserved.: STDLIB | 333

proplists

get keys(List) -> [term()]
Types:
List = [term()]
Returns an unordered list of the keysused in Li st , not containing duplicates.

get value(Key, List) -> term()
Types:

Key = term()

List = [term()]

Equivalenttoget _val ue(Key, List, undefined).

get value(Key, List, Default) -> term()
Types.

Key = term()

List = [term()]

Default = term()

Returnsthe value of asimple key/value property inLi st . If | ookup(Key, Li st) wouldyield{Key, Val ue},
this function returns the corresponding Val ue, otherwise Def aul t .

Seealsoget _all _val ues/ 2,get _bool /2,get _val ue/ 2,1 ookup/ 2.

is defined(Key, List) -> boolean()
Types.

Key = term()

List = [term()]

Returnst r ue if Li st contains at least one entry associated with Key, otherwisef al se.

lookup(Key, List) -> none | tuple()
Types:

Key = term()

List = [term()]

Returns the first entry associated with Key in Li st , if one exists, otherwise returns none. For an atom Ain thelist,
thetuple{ A, true} istheentry associated with A.

Seealsoget bool /2,get _val ue/ 2,1 ookup_al I/ 2.

lookup all(Key, List) -> [tuple()]
Types:
Key = term()
List = [term()]
Returnsthelist of al entries associated with Key in Li st . If no such entry exists, the result is the empty list.

Seedsol ookup/ 2.

normalize(ListIn, Stages) -> ListOut
Types:

334 | Ericsson AB. All Rights Reserved.: STDLIB

proplists

ListIn = [term()]
Stages = [Operation]
Operation =

{aliases, Aliases} |
{negations, Negations} |
{expand, Expansions}

Aliases = Negations = [{Key, Key}]
Expansions = [{Property :: property(), Expansion :: [term()]}]

ListOut = [term()]
Passes Li st 1 n through a sequence of substitution/expansion stages. For an al i ases operation, function
substitute_aliases/2isapplied using the specified list of aliases:
 Foranegati ons operation, substit ut e_negati ons/ 2 isapplied using the specified negation list.
« For an expand operation, function expand/ 2 is applied using the specified list of expansions.

Thefinal result is automatically compacted (compare conpact / 1).

Typically you want to substitute negations first, then aliases, then perform one or more expansions (sometimes you
want to pre-expand particular entries before doing the main expansion). Y ou might want to substitute negations and/
or aliases repeatedly, to allow such formsin the right-hand side of aliases and expansion lists.

Seealso substitute_negations/ 2.

property(PropertyIn) -> PropertyOut
Types.
PropertyIn = PropertyOut = property()

Createsanormal form (minimal) representation of aproperty. If Propertyl nis{Key, true},whereKey isan
atom, Key isreturned, otherwise the whole term Pr oper t yI n isreturned.

Seeasoproperty/ 2.

property(Key, Value) -> Property
Types:
Key = Value = term()
Property = atom() | {term(), term()}

Creates anormal form (minimal) representation of a simple key/value property. Returns Key if Val ue ist r ue and
Key isan atom, otherwise atuple{ Key, Val ue} isreturned.

Seeasoproperty/ 1.

split(List, Keys) -> {Lists, Rest}
Types:
List = Keys = [term()]
Lists = [[term()]]
Rest = [term()]
Partitions Li st into a list of sublists and a remainder. Li st s contains one sublist for each key in Keys, in the
corresponding order. The relative order of the elements in each sublist is preserved from the origina Li st . Rest

contains the elementsin Li st that are not associated with any of the specified keys, also with their original relative
order preserved.

Ericsson AB. All Rights Reserved.: STDLIB | 335

proplists

Example:

split([{c, 2}, {e, 1}, a, {c, 3, 4}, d, {b, 5}, bl, [a, b, c])

returns:

{lfal, [{b, 5}, bl,[{c, 2}, {c, 3, 4}11, [{e, 1}, dI}

substitute aliases(Aliases, ListIn) -> ListOut

Types:
Aliases = [{Key, Key}]
Key = term()

ListIn = ListOut = [term()]

Substitutes keys of properties. For each entry inLi st | n, if it is associated with some key K1 such that { K1, K2}
occursin Al i ases, the key of the entry is changed to K2. If the same K1 occurs more than oncein Al i ases, only
the first occurrence is used.

For example, substitute_al i ases([{color, colour}], L) replacesaltuples{color, ...} inL
with{col our, ...},andal aomscol or withcol our.

Seealsonormal i ze/ 2, substitute_negations/?2.

substitute negations(Negations, ListIn) -> ListOut
Types:

Negations = [{Keyl, Key2}]

Keyl = Key2 = term()

ListIn = ListOut = [term()]

Substitutes keys of boolean-valued properties and simultaneously negates their values. For each entry in Li st | n, if
it is associated with some key K1 such that { K1, K2} occursin Negat i ons: if theentry was{ K1, true},itis
replacedwith{ K2, fal se},otherwisewith{ K2, t r ue},thuschangingthename of theoptionand simultaneously
negating the value specified by get _bool (Key, Li st n.If thesameK1 occurs morethan onceinNegat i ons,
only thefirst occurrenceis used.

For example, substitute_negations([{no_foo, foo}], L) replaces any atom no_f oo or tuple
{no_foo, true} inLwith{foo, false},andanyothertuple{no_foo, ...} with{foo, true}.

Seealsoget bool/2,normalize/ 2, substitute_aliases/2.

unfold(ListIn) -> ListOut
Types.
ListIn = ListOut = [term()]

Unfolds all occurrences of atomsin Li st | n totuples{ At om true}.

336 | Ericsson AB. All Rights Reserved.: STDLIB

qlc

qlc

Erlang module

This module provides a query interface to Mnesia, ETS, Dets, and other data structures that provide an iterator style
traversal of objects.

Overview

Thismodule provides aquery interfaceto QL C tables. Typical QLC tablesare Mnesia, ETS, and Detstables. Support
is also provided for user-defined tables, see section Implementing a QLC Table. A query is expressed using Query
List Comprehensions(QLCs). Theanswersto aquery are determined by datain QL C tablesthat fulfill the constraints
expressed by the QLCs of the query. QLCs are similar to ordinary list comprehensions as described in Erlang
Reference Manual and Programming Examples, except that variables introduced in patterns cannot be used in list
expressions. In the absence of optimizations and options such ascache and uni que (see section Common Options,
every QLC free of QLC tables evaluates to the same list of answers astheidentical ordinary list comprehension.

Whileordinary list comprehensions evaluatetolists, caling g/ 1, 2 returnsaquery handle. To obtain al the answers
toaquery, eval / 1, 2 isto be called with the query handle asfirst argument. Query handles are essentially functional
objects (funs) created in themodule calling g/ 1, 2. Asthefunsrefer to the module code, be careful not to keep query
handlestoo long if the module code isto be replaced. Code replacement is described in section Compilation and Code
Loading in the Erlang Reference Manual. Thelist of answers can also be traversed in chunks by use of aquery cursor.
Query cursorsarecreated by calling cur sor / 1, 2 withaquery handle asfirst argument. Query cursorsare essentially
Erlang processes. One answer at atime is sent from the query cursor process to the process that created the cursor.

Syntax

Syntactically QL Cs have the same parts as ordinary list comprehensions:

[Expression || Qualifierl, Qualifier2, ...]

Expr essi on (the template) is any Erlang expression. Qualifiers are either filters or generators. Filters are
Erlang expressions returning bool ean() . Generators have theform Patt ern <- Li st Expr essi on, where
Li st Expressi on is an expression evauating to a query handle or a list. Query handles are returned from
append/ 1, 2,keysort/2,3,q9/1,2,sort/ 1,2, string_to_handl e/ 1, 2, 3,andt abl e/ 2.

Evaluation
A query handleis evaluated in the following order:

« Inspection of options and the collection of information about tables. As a result, qualifiers are modified during
the optimization phase.

e All list expressions are evaluated. If a cursor has been created, evaluation takes place in the cursor process. For
list expressionsthat are QL Cs, the list expressions of the generators of the QL Cs are evaluated as well. Be careful
if list expressions have side effects, as list expressions are evaluated in unspecified order.

« Theanswersarefound by evaluating the qualifiersfromIeft to right, backtracking when somefilter returnsf al se,
or collecting the template when all filtersreturnt r ue.

Filtersthat do not returnbool ean() but fail are handled differently depending on their syntax: if thefilter isaguard,
itreturnsf al se, otherwise the query evaluation fails. Thisbehavior makesit possiblefor theql ¢ moduleto do some
optimizations without affecting the meaning of aquery. For example, when testing some position of atable and one or
more constants for equality, only the objects with equal values are candidates for further evaluation. The other objects

Ericsson AB. All Rights Reserved.: STDLIB | 337

qlc

are guaranteed to make thefilter return f al se, but never fail. The (small) set of candidate objects can often be found
by looking up some key values of the table or by traversing the table using a match specification. It is necessary to
place the guard filters immediately after the table generator, otherwise the candidate objects are not restricted to a
small set. The reason is that objects that could make the query evaluation fail must not be excluded by looking up a
key or running a match specification.

Join
Thegl ¢ module supportsfast join of two query handles. Fast joinis possibleif some position P1 of one query handler
and some position P2 of another query handler are tested for equality. Two fast join methods are provided:

* Lookup join traverses al objects of one query handle and finds objects of the other handle (a QLC table) such
that the values at P1 and P2 match or compare equal. The ql ¢ module does not create any indexes but |ooks up
values using the key position and the indexed positions of the QL C table.

 Mergejoin sorts the objects of each query handle if necessary and filters out objects where the values at P1
and P2 do not compare equal. If many objects with the same value of P2 exist, atemporary file is used for the
equivalence classes.

The gl ¢ module warns at compile time if a QLC combines query handles in such away that more than onejoinis
possible. That is, no query planner is provided that can select a good order between possible join operations. It is up
to the user to order the joins by introducing query handles.

The join is to be expressed as a guard filter. The filter must be placed immediately after the two joined generators,
possibly after guard filters that use variables from no other generators but the two joined generators. The gl ¢
moduleinspectstheoperandsof =: =/ 2,==/ 2,i s_record/ 2,el ement / 2, andlogical operators(and/ 2,or / 2,
andal so/ 2, or el se/ 2, xor / 2) when determining which joins to consider.

Common Options
The following options are accepted by cur sor/ 2,eval / 2,f ol d/ 4,andi nf o/ 2:

e {cache_all, Cache},whereCacheisequaltoets orli st addsa{cache, Cache} optiontoevery
list expression of the query except tables and lists. Defaultsto { cache_al |, no}. Option cache_al | is
equivalentto{ cache_al |, ets}.

« {max_list_size, MaxListSize}, where MaxLi st Si ze isthe size in bytes of terms on the external
format. If the accumulated size of collected objects exceeds MaxLi st Si ze, the objects are written onto a
temporary file. This option is used by option { cache, 1i st} and by the merge join method. Defaults to
512*1024 bytes.

« {tnpdir_usage, TnpFil eUsage} determines the action taken when gl ¢ is about to create temporary
filesonthe directory set by optiont npdi r . If thevalueisnot _al | owed, an error tuple is returned, otherwise
temporary files are created as needed. Default is al | owed, which means that no further action is taken. The
valuesi nf o_mnsg, war ni ng_nsg, and er r or _nsg mean that the function with the corresponding name in
moduleer r or _| ogger iscalled for printing some information (currently the stacktrace).

e {tmpdir, TenpDirectory} sets the directory used by merge join for temporary files and by option
{cache, Ilist}.Theoption also overrides optiont npdi r of keysort/ 3 and sort/ 2. Defaultsto" ",
which means that the directory returned by f i | e: get _cwd() isused.

e {unique_all, true} addsa{uni que, true} optionto every list expression of the query. Defaults to
{unique_all, false}.Optionuni que_al | isequivalentto{uni que_all, true}.

Getting Started

As mentioned earlier, queries are expressed in the list comprehension syntax as described in section Expressionsin
Erlang Reference Manual. In the following, some familiarity with list comprehensions is assumed. The examplesin
section List Comprehensions in Programming Examples can get you started. Notice that list comprehensions do not

338 | Ericsson AB. All Rights Reserved.: STDLIB

qlc

add any computational power to the language; anything that can be done with list comprehensions can also be done
without them. But they add syntax for expressing simple search problems, which is compact and clear once you get
used to it.

Many list comprehension expressions can be evaluated by the gl ¢ module. Exceptions are expressions, such that
variablesintroduced in patterns (or filters) are used in some generator later in the list comprehension. As an example,
consider an implementation of | i sts: append(L):[X ||Y < L, X <- Y].Yisintroduced in the first
generator and used in the second. The ordinary list comprehension is normally to be preferred when there is a choice
as to which to use. One difference is that eval / 1, 2 collects answers in a list that is finally reversed, while list
comprehensions collect answers on the stack that is finally unwound.

What the gl ¢ module primarily addsto list comprehensionsisthat data can be read from QL C tablesin small chunks.
A QLC tableis created by calling gl c: t abl e/ 2. Usualy gl c: t abl e/ 2 is not caled directly from the query
but through an interface function of some data structure. Erlang/OTP includes a few examples of such functions:
mesi a:tabl e/ 1, 2,ets:table/1, 2, anddets: tabl e/ 1, 2. For agiven data structure, many functions
can create QL C tables, but common for these functionsis that they return aquery handle created by gl c: t abl e/ 2.
Using the QL C tables provided by Erlang/OTP is usually probably sufficient, but for the more advanced user section
Implementing a QLC Table describes the implementation of afunction calling gl c: t abl e/ 2.

Besides gl c: t abl e/ 2, other functions return query handles. They are used more seldom than tables, but are
sometimes useful. gl c: append/ 1, 2 traverses objects from many tables or lists after each other. If, for example,
you want to traverse al answersto aquery QHand then finish off by aterm{ f i ni shed}, you can do that by calling
gl c: append(@H, [{finished}]).append/ 2 first returnsall objects of QH, then{fi ni shed}. If atuple
{fini shed} existsamong the answersto QH, it isreturned twice from append/ 2.

As another example, consider concatenating the answers to two queries QH1 and QH2 while removing all duplicates.
Thisis accomplished by using option uni que:

glc:q([X || X <- glc:append(QH1, QH2)1, {unique, true})

The cost is substantial: every returned answer is stored in an ETS table. Before returning an answer, it is looked up
in the ETS table to check if it has already been returned. Without the uni que option, al answers to QH1 would be
returned followed by all answersto QH2. The uni que option keeps the order between the remaining answers.

If the order of the answers is not important, there is an aternative to the uni que option, namely to sort the answers
uniquely:

glc:sort(qlc:q([X || X <- glc:append(QH1, QH2)], {unique, true})).

This query also removes duplicates but the answers are sorted. If there are many answers, temporary files are used.
Notice that to get the first unique answer, al answers must be found and sorted. Both alternatives find duplicates by
comparing answers, that is, if A1 and A2 are answers found in that order, then A2 isaremoved if A1 ==

To return only a few answers, cursors can be used. The following code returns no more than five answers using an
ETS table for storing the unique answers:

C = qlc:cursor(qlc:q([X || X <- gqlc:append(QH1, QH2)1,{unique,true})),
R = qlc:next answers(C, 5),

ok = qlc:delete cursor(C),

R.

Ericsson AB. All Rights Reserved.: STDLIB | 339

qlc

QLCs are convenient for stating constraints on data from two or more tables. The following example does a natural
join on two query handles on position 2;

qlc:q([{X1,X2,X3,Y1} ||
{X1,X2,X3} <- QHI1,
{Y1,Y2} <- QH2,
X2 =:= Y21)

The gl ¢ module evaluates this differently depending on the query handles QH1 and QH2. If, for example, X2 is
matched against the key of a QLC table, the lookup join method traverses the objects of QH2 while looking up key
values in the table. However, if not X2 or Y2 is matched against the key or an indexed position of a QLC table, the
merge join method ensures that QH1 and QH2 are both sorted on position 2 and next do the join by traversing the
objects one by one.

Optionj oi n canbeusedtoforcetheqgl ¢ moduleto useacertain join method. For therest of thissectionit isassumed
that the excessively slow join method called "nested loop” has been chosen:

qlc:q([{X1,X2,X3,Y1} ||
{X1,X2,X3} <- QH1,
{Y1,Y2} <- QH2,
X2 =:= Y2],
{join, nested loop})

In this case thefilter isapplied to every possible pair of answersto QHL and QH2, one at atime. If there are M answers
to QH1 and N answersto QH2, thefilter isrun M*N times.

If QH2 is a cal to the function for gb_trees, as defined in section Implementing a QLC Table, then
gb_t abl e: t abl e/ 1, theiterator for the gb-tree isinitiated for each answer to QH1. The objects of the gb-tree are
then returned one by one. Thisis probably the most efficient way of traversing thetablein that case, asit takes minimal
computational power to get the following object. But if QH2 isnot atable but amore complicated QL C, it can be more
efficient to use some RAM memory for collecting the answersin a cache, particularly if there are only afew answers.
It must then be assumed that evaluating QH2 has no side effects so that the meaning of the query does not change if
H2 is evaluated only once. One way of caching the answers is to evaluate QH2 first of all and substitute the list of
answers for QH2 in the query. Another way isto use option cache. It is expressed like this:

QH2' = glc:q([X || X <- QH2], {cache, ets})

or only

QH2' = qlc:q([X || X <- QH2], cache)

The effect of option cache isthat when generator QH2' isrun the first time, every answer is stored in an ETS table.
When the next answer of QHL is tried, answers to QH2' are copied from the ETS table, which is very fast. As for
option uni que the cost is a possibly substantial amount of RAM memory.

Option{ cache, |i st} offersthepossibility to storetheanswersin alist onthe process heap. This hasthe potential
of being faster than ETS tables, as there is no need to copy answers from the table. However, it can often result in
slower evaluation because of more garbage collections of the process heap and increased RAM memory consumption
because of larger heaps. Another drawback with cache lists is that if the list size exceeds a limit, atemporary fileis

340 | Ericsson AB. All Rights Reserved.: STDLIB

qlc

used. Reading the answers from afile is much slower than copying them from an ETStable. But if the available RAM
memory is scarce, setting the limit to some low value is an dternative.

Optioncache_al | canbesettoets orli st when evaluating aquery. It addsacache or {cache, |ist}
option to every list expression except QL C tables and lists on all levels of the query. This can be used for testing if
caching would improve efficiency at all. If the answer is yes, further testing is needed to pinpoint the generators that
are to be cached.

Implementing a QLC Table

As an example of how to use function t abl e/ 2, the implementation of a QLC table for the gb_t r ees module
isgiven:

-module(gb table).
-export([table/1]).

table(T) ->
TF = fun() -> qlc next(gb trees:next(gb trees:iterator(T))) end,
InfoFun = fun(num of objects) -> gb trees:size(T);
(keypos) -> 1;
(is sorted key) -> true;
(is unique objects) -> true;
() -> undefined
end,
LookupFun =
fun(l, Ks) ->
lists:flatmap(fun(K) ->
case gb trees:lookup(K, T) of
{value, V} -> [{K,V}];
none -> []
end
end, Ks)
end,
FormatFun =
fun({all, NElements, ElementFun}) ->
ValsS = io lib:format("gb trees:from orddict(~w)",
[gb nodes(T, NElements, ElementFun)]),
io lib:format("gb table:table(~s)", [ValsS]);
({lookup, 1, KeyValues, NElements, ElementFun}) ->
ValsS = io lib:format("gb trees:from orddict(~w)",
[gh nodes(T, infinity, ElementFun)]),
io lib:format("lists:flatmap(fun(K) -> "
"case gb trees:lookup(K, ~s) of "
"{value, V} -> [{K,V}];none -> [] end "
uend , ""W) n)
[ValsS, [ElementFun(KV) || KV <- KeyValues]])
end,
glc:table(TF, [{info fun, InfoFun}, {format fun, FormatFun},
{lookup fun, LookupFun},{key equality,'=='}]).

gqlc next({X, V, S}) ->
[{X,V} | fun() -> qlc_next(gb trees:next(S)) end];
glc _next(none) ->
[1.
gb nodes(T, infinity, ElementFun) ->
gb nodes(T, -1, ElementFun);
gb nodes(T, NElements, ElementFun) ->
gb iter(gb trees:iterator(T), NElements, ElementFun).

gb iter(I, 0, EFun) ->

Ericsson AB. All Rights Reserved.: STDLIB | 341

qlc

gb iter(I0, N, EFun) ->
case gb trees:next(I0) of
{X, v, I} ->
[EFun({X,V}) | gb iter(I, N-1, EFun)];
none ->

[1

end.

TF isthetraversal function. Theql ¢ modulerequiresthat thereisaway of traversing all objects of the data structure.
gb_tr ees hasaniterator function suitable for that purpose. Noticethat for each object returned, anew funis created.
Aslong asthelist is not terminated by [] , it is assumed that the tail of the list is a nullary function and that calling
the function returns further objects (and functions).

The lookup function is optional. It is assumed that the lookup function always finds values much faster than it would
take to traverse the table. The first argument is the position of the key. As gl ¢_next /1 returns the objects as
{Key, Val ue} pairs, the position is 1. Notice that the lookup function isto return { Key, Val ue} pairs, asthe
traversal function does.

The format function is also optional. Itiscalled by i nf o/ 1, 2 to give feedback at runtime of how the query isto be
evaluated. Try to give as good feedback as possible without showing too much details. In the example, at most seven
objects of the table are shown. The format function handles two cases: al | means that all objects of the table are
traversed; { | ookup, 1, KeyVal ues} meansthat the lookup function is used for looking up key values.

Whether the whole tableistraversed or only some keys|ooked up depends on how the query is expressed. If the query
has the form

qlc:q([T || P <- LE, FI)

and Pisatuple, theql ¢ moduleanalyzesP and F in compiletimeto find positions of tuple P that are tested for equality
to constants. If such a position at runtime turns out to be the key position, the lookup function can be used, otherwise
all objects of the table must be traversed. The info function | nf oFun returns the key position. There can be indexed
positions as well, also returned by the info function. An index is an extra table that makes lookup on some position
fast. Mnesia maintains indexes upon request, and introduces so called secondary keys. The gl ¢ module prefers to
look up objects using the key before secondary keys regardiess of the number of constantsto look up.

Key Equality
Erlang/OTP hastwo operatorsfor testing term equality: ==/ 2 and =: =/ 2. Thedifferenceisall about the integersthat
can be represented by floats. For example, 2 == 2. 0 evaluatestot rue while2 =: = 2. 0 evaluatestof al se.

Normally thisis a minor issue, but the gl ¢ module cannot ignore the difference, which affects the user's choice of
operatorsin QLCs.

If the gl ¢ module at compile time can determine that some constant is free of integers, it does not matter which one
of ==/ 2 or =: =/ 2 isused:

1> E1 = ets:new(t, [set]), % uses =:=/2 for key equality
Q1 = qlc:q([K ||
{K} <- ets:table(El),
K == 2.71 orelse K == al),
io:format("~s~n", [glc:info(Q1l)]).
ets:match spec run(lists:flatmap(fun(V) ->
ets:lookup (20493, V)
end,
[a,2.71]),

342 | Ericsson AB. All Rights Reserved.: STDLIB

qlc

ets:match spec compile([{{'$1'},[1,['$1'1}1))

In the example, operator ==/ 2 has been handled exactly as =: =/ 2 would have been handled. However, if it cannot
be determined at compile time that some constant is free of integers, and the table uses =: =/ 2 when comparing keys
for equality (see option key equality), then the gl ¢ module does not try to look up the constant. The reason is that
there is in the genera case no upper limit on the number of key values that can compare equal to such a constant;
every combination of integers and floats must be looked up:

2> E2 = ets:new(t, [set]),
true = ets:insert(E2, [{{2,2},a},{{2,2.0},b},{{2.0,2},c}]),
F2 = fun(I) ->
qlc:q([V || {K,V} <- ets:table(E2), K == I])
end,
Q2 = F2({2,2}),
io:format("~s~n", [qlc:info(Q2)]).
ets:table (53264,

[{traverse,

{select, [{{'$1"',"'$2'},[{'==","$1',{const,{2,2}}}],['$2"'1}1}}1])

3> lists:sort(qlc:e(Q2)).
[a,b,c]

Looking up only { 2, 2} would not returnb and c.

If the table uses ==/ 2 when comparing keys for equality, the ql ¢ module looks up the constant regardless of which
operator is used in the QLC. However, ==/ 2 isto be preferred:

4> E3 = ets:new(t, [ordered set]),
true = ets:insert(E3, [{{2,2.0},b}]
F3 = fun(I) ->
qlc:q([V || {K,V} <- ets:table(E3), K == I])
end,
Q3 = F3({2,2}),
io:format("~s~n", [qlc:info(Q3)]).
ets:match spec run(ets:lookup(86033, {2,2}),

ets:match spec compile([{{'$1','$2"'},[1,['$2'1}1))

% uses ==/2 for key equality
)I

5> qlc:e(Q3).
[b]

Lookup joinis handled analogously to lookup of constantsin atable: if the join operator is==/ 2, and the table where
constants are to be looked up uses =: =/ 2 when testing keys for equality, then the gl ¢ module does not consider
lookup join for that table.

Data Types

abstract expr() = erl _parse: abstract_expr()

Parse trees for Erlang expression, see section The Abstract Format in the ERTS User's Guide.

answer() = term()

answers() = [answer ()]

cache() = ets | list | no

match _expression() = ets: match_spec()

Match specification, see section Match Specificationsin Erlang in the ERTS User's Guideand ns_t r ansf or m(3) .

Ericsson AB. All Rights Reserved.: STDLIB | 343

qlc

no files() = integer() >=1

Aninteger > 1.

key pos() = integer() >= 1 | [integer() >= 1]
max list size() = integer() >= 0

order() = ascending | descending | order_fun()
order fun() = fun((term(), term()) -> boolean())
query cursor()

A query cursor.

query handle()

A query handle.

query handle or list() = query_handle() | list()
query list comprehension() = term()
A literal query list comprehension.
spawn_options() = default | [proc_lib:spawn_option()]
sort options() = [sort_option()] | sort_option()
sort option() =

{compressed, boolean()} |

{no_files, no_files()} |

{order, order()} |

{size, integer() >= 1} |

{tmpdir, tnp_directory()} |

{unique, boolean()}
Seefile_sorter(3).

tmp directory() = []1 | file:nanme()
tmp file usage() =
allowed | not allowed | info msg | warning msg | error _msg

Exports

append(QHL) -> QH

Types:
QHL = [query_handl e_or _list()]
QH = query_handl e()

Returns a query handle. When evaluating query handle QH, all answersto the first query handlein QHL are returned,
followed by all answers to the remaining query handlesin QHL.

append (QH1, QH2) -> QH3

Types:
QH1 = QH2 = query_handle_or_list()
QH3 = query_handl e()

Returns a query handle. When evaluating query handle QH3, all answersto QH1 are returned, followed by all answers
to QH2.

append(QHl, QH2) isequivaenttoappend([QHL, QH2]).

344 | Ericsson AB. All Rights Reserved.: STDLIB

qlc

cursor(QH) -> Cursor
cursor(QH, Options) -> Cursor
Types.
QH = query_handl e_or _list()
Options = [Option] | Option

Option =
{cache _all, cache()} |
cache all |

{max_list size, nmax_list_size()} |
{spawn_options, spawn_options()} |
{tmpdir usage, tnp_file_usage()} |
{tmpdir, tnp_directory()} |
{unique all, boolean()} |
unique all

Cursor = query_cursor ()

Creates aquery cursor and makes the calling process the owner of the cursor. The cursor is to be used as argument to
next answers/ 1, 2 and (eventually) del et e_cur sor/ 1. Cals er| ang: spawn_opt / 2 to spawn and link
to a process that evaluates the query handle. The value of option spawn_opt i ons isused as last argument when
calling spawn_opt / 2. Defaultsto [| i nk]

Example:

1> QH = gqlc:q([{X,Y} || X <- [a,b]l, Y <- [1,2]1),
QC = glc:cursor(QH),
glc:next answers(QC, 1).

[{a,1}]

2> qlc:next _answers(QC, 1).

[{a,2}]

3> qlc:next _answers(QC, all remaining).
[{b,1},{b,2}]

4> glc:delete cursor(QC).

ok

cur sor (QH) isequivalenttocursor (QH, [1).

delete cursor(QueryCursor) -> ok
Types:
QueryCursor = query_cursor ()
Deletes a query cursor. Only the owner of the cursor can delete the cursor.

e(QH) -> Answers | Error

e(QH, Options) -> Answers | Error
eval(QH) -> Answers | Error

eval(QH, Options) -> Answers | Error
Types.

Ericsson AB. All Rights Reserved.: STDLIB | 345

qlc

QH = query_handle_or _list()
Answers = answers()
Options = [Option] | Option

Option =
{cache_all, cache()} |
cache all |

{max_list size, max_list_size()} |
{tmpdir usage, tnp_file_usage()} |
{tmpdir, tnp_directory()} |
{unique_all, boolean()} |

unique all

Error = {error, module(), Reason}
Reason = file_sorter:reason()

Evaluates a query handle in the calling process and collects all answersin alist.
Example:

1> QH = qlc:q([{X,Y} || X <- [a,b], Y <- [1,2]]),
glc:eval(QH).
[{a,1},{a,2},{b,1},{b,2}]

eval (QH) isequivalenttoeval (QH, []).

fold(Function, AccO, QH) -> Accl | Error
fold(Function, AccO, QH, Options) -> Accl | Error
Types:

QH = query_handle_or _list()

Function = fun((answer(), AccIn) -> AccOut)

AccO = Accl = AccIn = AccOut = term()
Options = [Option] | Option

Option =
{cache _all, cache()} |
cache all |

{max_list size, nmax_list_size()} |
{tmpdir usage, tnp_file_usage()} |
{tmpdir, tnp_directory()} |
{unique_all, boolean()} |

unique all

Error = {error, module(), Reason}
Reason = file_sorter:reason()

Calls Funct i on on successive answers to the query handle together with an extra argument Accl n. The query
handle and the function are evaluated in the calling process. Funct i on must return a new accumulator, which is
passed to the next call. AccO isreturned if there are no answers to the query handle.

Example:

1> QH = [1,2,3,4,5,6],

346 | Ericsson AB. All Rights Reserved.: STDLIB

qlc

glc:fold(fun(X, Sum) -> X + Sum end, 0, QH).
21

fol d(Function, AccO, QH) isequivdenttof ol d(Function, AccO, H, []).

format error(Error) -> Chars

Types:
Error = {error, module(), term()}
Chars = io_lib:chars()

Returns a descriptive string in English of an error tuple returned by some of the functions of the ql ¢ module or the
parse transform. This function is mainly used by the compiler invoking the parse transform.

info(QH) -> Info
info(QH, Options) -> Info
Types:
QH = query_handl e_or _list()
Options = [Option] | Option
Option = EvalOption | ReturnOption
EvalOption =
{cache_all, cache()} |
cache all |
{max_list size, max_list_size()} |
{tmpdir usage, tnp_file_usage()} |
{tmpdir, tnp_directory()} |
{unique_all, boolean()} |
unique all

ReturnOption =
{depth, Depth} |
{flat, boolean()} |
{format, Format} |
{n_elements, NElements}

Depth = infinity | integer() >= 0
Format = abstract code | string
NElements = infinity | integer() >=1
Info = abstract_expr() | string()

Returns information about a query handle. The information describes the simplifications and optimizations that are
the results of preparing the query for evaluation. This function is probably mainly useful during debugging.

The information has the form of an Erlang expression where QLCs most likely occur. Depending on the format

functions of mentioned QL C tables, it is not certain that the information is absolutely accurate.

Options:

» Thedefault isto return a sequence of QLCsin ablock, but if option {f | at, fal se} isspecified, one single
QLC isreturned.

e The default is to return a string, but if option {f or mat, abstract code} is specified, abstract code is
returned instead. In the abstract code, port identifiers, references, and pids are represented by strings.

e Thedefault isto return al elementsin lists, but if option{ n_el ement s, NEl enent s} is specified, only a
limited number of elements are returned.

Ericsson AB. All Rights Reserved.: STDLIB | 347

qlc

e Thedefault isto show all parts of objects and match specifications, but if option{ dept h, Dept h} isspecified,
parts of terms below a certain depth arereplaced by ' . . . " .

i nfo(@H) isequivalenttoi nfo(QH, []).
Examples:

In the following example two simple QLCs are inserted only to hold option { uni que, true}:

1> QH = qlc:q([{X,Y} || X <- [x,y], Y <- [a,bl]),
io:format("~s~n", [qlc:info(QH, unique all)]).

begin
V1l =
glc:q(l
sQv ||
SQV <- [x,y]
1,
[{unique, true}l),
V2 =
glc:q(l
sQv ||
SQV <- [a,b]
1,
[{unique, true}l),
glc:q([
X, Y ||
X <- V1,
Y <- V2
1,
[{unique, true}])
end

In the following example QLC V2 has been inserted to show the joined generators and the join method chosen. A
convention is used for lookup join: the first generator (&) is the one traversed, the second (Gl) is the table where
constants are looked up.

1> E1 = ets:new(el, []),

E2 = ets:new(e2, [1]),

true = ets:insert(El, [{1,a},{2,b}]),
true = ets:insert(E2, [{a,1l},{b,2}]),
Q = qlC:Q([{X:ZrW} ||

{X, Z} <- ets:table(El),

{W, Y} <- ets:table(E2),

X =:=Y]),
io:format("~s~n", [qlc:info(Q)]).
begin
V1 =
qlc:q([
PO ||
PO = {W,Y} <- ets:table(17)
1),
V2 =
qlc:q(l
[61]G62] ||
G2 <- V1,
Gl <- ets:table(16),
element (2, Gl) =:= element(1l, G2)
]I
[{join, lookup}]),
qlc:q(l

348 | Ericsson AB. All Rights Reserved.: STDLIB

qlc

{X,Z,W} ||
[{X,Z} [{W,Y}] <- V2
1)
end

keysort (KeyPos, QHl1l) -> QH2
keysort(KeyPos, QH1l, SortOptions) -> QH2
Types:

KeyPos = key_pos()

SortOptions = sort_options()

QH1 = query_handle_or list()

QH2 = query_handl e()

Returns a query handle. When evaluating query handle QH2, the answers to query handle QHL are sorted by
file_sorter: keysort/ 4 according to the options.

The sorter uses temporary files only if QH1 does not evaluate to alist and the size of the binary representation of the
answers exceeds Si ze bytes, where Si ze isthe value of option si ze.

keysort (KeyPos, (H1) isequivaenttokeysort (KeyPos, H1, []).

next answers(QueryCursor) -> Answers | Error
next answers(QueryCursor, NumberOfAnswers) -> Answers | Error
Types.

QueryCursor = query_cursor()

Answers = answers()

NumberQOfAnswers = all remaining | integer() >=1

Error = {error, module(), Reason}

Reason = file_sorter:reason()

Returns some or al of the remaining answers to a query cursor. Only the owner of Quer yCur sor can retrieve
answers.

Optiona argument Nunber Of Answer s determines the maximum number of answers returned. Defaults to 10. If
less than the requested number of answers is returned, subsegquent callsto next _answer s return|[] .

q(QLC) -> QH
q(QLC, Options) -> QH
Types:

QH = query_handl e()
Options = [Option] | Option
Option =
{max_lookup, MaxLookup} |
{cache, cache()} |
cache |
{join, Join} |
{lookup, Lookup} |
{unique, boolean()} |

Ericsson AB. All Rights Reserved.: STDLIB | 349

qlc

unique
MaxLookup = integer() >= 0 | infinity
Join = any | lookup | merge | nested loop
Lookup = boolean() | any
QLC = query_list_conprehension()

Returns a query handle for a QLC. The QLC must be the first argument to this function, otherwise it is evaluated as
an ordinary list comprehension. It is also necessary to add the following line to the source code:

-include lib("stdlib/include/qlc.hrl").

This causes a parse transform to substitute a fun for the QLC. The (compiled) fun is called when the query handle
is evaluated.

When calling gl c: g/ 1, 2 from the Erlang shell, the parse transform is automatically called. When this occurs, the
fun substituted for the QLC is not compiled but is evaluated by er | _eval (3) . Thisis aso true when expressions
areevaluated by fi | e: eval / 1, 2 or in the debugger.

To be explicit, this does not work:

A= X] O3 < [{1},{2}11,
QH = qlc:q(A),

Variable A is bound to the evaluated value of the list comprehension ([1, 2]). The compiler complains with an error
message ("argument is not a query list comprehension"); the shell process stops with abadar g reason.

q(QO isequivaenttoq(QC, []).
Options:

e Option{cache, et s} canbeusedto cachetheanswerstoaQLC. Theanswersarestoredin one ETStablefor
each cached QL C. When acached QL C isevaluated again, answers are fetched from the table without any further
computations. Therefore, when all answers to a cached QL C have been found, the ETS tables used for caching
answers to the qualifiers of the QL C can be emptied. Option cache isequivalentto{ cache, ets}.

e« Option{cache, 1ist} canbeusedtocachetheanswerstoaQLC like{cache, ets}.Thedifferenceis
that the answers are kept in alist (on the process heap). If the answers would occupy more than a certain amount
of RAM memory, a temporary file is used for storing the answers. Option max_| i st _si ze setsthe limit in
bytes and the temporary file is put on the directory set by optiont npdi r .

Option cache has no effect if it is known that the QLC is to be evaluated at most once. Thisis always true for
the top-most QL C and aso for the list expression of the first generator in alist of qualifiers. Notice that in the
presence of side effectsin filters or callback functions, the answers to QL Cs can be affected by option cache.

e Option{uni que, true} canbeusedto remove duplicate answersto a QLC. The unique answers are stored
in one ETS table for each QLC. The table is emptied every time it is known that there are no more answers to
the QLC. Option uni que is equivalent to { uni que, true}. If option uni que is combined with option
{cache, ets},twoETStablesareused, but the full answers are stored in one table only. If option uni que
is combined with option { cache, |i st}, the answers are sorted twice using keysor t / 3; once to remove
duplicates and once to restore the order.

Options cache and uni que apply not only to the QLC itself but also to the results of looking up constants, running
match specifications, and joining handles.

350 | Ericsson AB. All Rights Reserved.: STDLIB

qlc

Example:

In the following example the cached results of the merge join are traversed for each value of A. Notice that without
option cache the join would have been carried out three times, once for each value of A.

1> Q = qlc:q([{A,X,Z,W} ||

A <- [alblc]l

{X,Z} <- [{a,l},{b,4},{c,6}],
{W,Y} <- [{zla}l{3!b}l{4lc}]l

X =:=Y],

{cache, list}),

io:format("~s~n", [qlc:info(Q)]).

begin
V1 =
qlc:q([
PO ||
PO = {X,Z} <-
glc:keysort(1l, [{a,1},{b,4},{c,6}], [1)
1),
V2 =
qlc:q([
PO ||
PO = {W,Y} <-
glc:keysort(2, [{2,a},{3,b},{4,c}], [1)
1),
V3 =
qlc:q([
[G1|G2] ||
Gl <- V1,
G2 <- V2,
element(1l, Gl) == element(2, G2)
]I
[{join,merge}, {cache,list}]),
qlc:q(l
{A,X,Z,W} ||
A <- [a,b,c],
[{X!Z}l{wlY}] <- V3r
X ==Y
1)
end

sort/ 1,2 and keysort/ 2, 3 can aso be used for caching answers and for removing duplicates. When sorting
answers are cached in alist, possibly stored on atemporary file, and no ETS tables are used.

Sometimes(seet abl e/ 2) traversal of tables can be done by looking up key values, whichisassumed to befast. Under
certain (rare) circumstances there can be too many key values to look up. Option { max_| ookup, MaxLookup}

can then be used to limit the number of lookups: if more than MaxLookup lookups would be required, no lookups
are done but the table is traversed instead. Defaultsto i nf i ni t y, which means that there is no limit on the number
of keysto look up.

Example:

Inthefollowing example, using thegb_t abl e module from section Implementing a QLC Table, there are six keysto
lookup:{1,a},{1,b},{1,c},{2,a},{2,b},and{2, c}. Thereasonisthat thetwo elementsof key { X, Y}
are compared separately.

= gb_trees:empty(),
glc:q([X || {{X,Y}, } <- gb table:table(T),
== 1) or (X == 2)) andalso

1> T
QH =
((X

Ericsson AB. All Rights Reserved.: STDLIB | 351

qlc

((Y ==a) or (Y ==Db) or (Y ==1¢))]),
io:format("~s~n", [qlc:info(QH)]).
ets:match spec run(
lists:flatmap(fun(K) ->
case
gb_trees:lookup(K,
gb _trees:from orddict([]))

of
{value,V} ->
[{K,V}I;
none ->
[]
end
end,
[{1,a},{1,b},{1,c},{2,a},{2,b},{2,c}]),
ets:match spec_compile([{{{'$1','$2'}," '},[1,['$1'1}1))

Options:

e Option{!| ookup, true} canbeusedtoensurethatthegl ¢ modulelooksup constantsin some QL C table. If
there are more than one QL C table among the list expressions of the generators, constants must be looked up in at
least one of the tables. The evaluation of the query failsif there are no constants to look up. This option is useful
when it would be unacceptable to traverse all objects in some table. Setting option | ookup to f al se ensures
that no constants are looked up ({ max_| ookup, 0} hasthe same effect). Defaults to any, which means that
constants are looked up whenever possible.

e Option{j oi n, Joi n} canbeused to ensure that a certain join method is used:

« {join, |ookup} invokesthelookup join method.

« {join, nerge} invokesthe mergejoin method.

« {join, nested_| oop} invokesthe method of matching every pair of objects from two handles. This
method is mostly very slow.

The evaluation of the query fails if the gl ¢ module cannot carry out the chosen join method. Defaults to any,
which means that some fast join method is used if possible.

sort(QH1l) -> QH2

sort(QHl1, SortOptions) -> QH2

Types:
SortOptions = sort_options()
QH1 query_handl e_or _list()
QH2 query_handl e()

Returns a query handle. When evauating query handle QH2, the answers to query handle QH1 are sorted by
file_sorter:sort/ 3 according to the options.

The sorter uses temporary files only if QH1 does not evaluate to alist and the size of the binary representation of the
answers exceeds Si ze bytes, where Si ze isthe value of option si ze.

sort (QHl) isequivdenttosort (QHL, []).

string to handle(QueryString) -> QH | Error

string to handle(QueryString, Options) -> QH | Error

string to handle(QueryString, Options, Bindings) -> QH | Error
Types:

352 | Ericsson AB. All Rights Reserved.: STDLIB

qlc

QueryString = string()
Options = [Option] | Option
Option =
{max_lookup, MaxLookup} |
{cache, cache()} |
cache |
{join, Join} |
{lookup, Lookup} |
{unique, boolean()} |
unique

MaxLookup = integer() >= 0 | infinity

Join = any | lookup | merge | nested loop

Lookup = boolean() | any

Bindings = erl _eval : bi nding_struct ()

QH = query_handl e()

Error = {error, module(), Reason}

Reason = erl _parse:error_info() | erl_scan:error_info()
A string version of g/ 1, 2. When the query handle is evaluated, the fun created by the parse transform is interpreted
by erl _eval (3) . Thequery string isto be one single QL C terminated by a period.

Example:

1> L = [1,2,3],

Bs = erl eval:add binding('L', L, erl eval:new bindings()),
QH = qlc:string to handle("[X+1 || X <- L1.", [, Bs),
glc:eval(QH).

[2,3,4]

string_to_handl e(QueryString) isequivdenttostring_to_handl e(QueryString, []).
string_to_handl e(QueryString, Options) isequivaenttostring to_handl e(QueryString
Options, erl_eval: new_ bindings()).

This function is probably mainly useful when called from outside of Erlang, for example from a driver written in C.

table(TraverseFun, Options) -> QH
Types:
TraverseFun = TraverseFunO | TraverseFunl
TraverseFun® = fun(() -> TraverseResult)
TraverseFunl = fun((match_expression()) -> TraverseResult)
TraverseResult = Objects | term()
Objects = []1 | [term() | ObjectList]
ObjectList = TraverseFun@ | Objects
Options = [Option] | Option
Option =
{format fun, FormatFun} |
{info_fun, InfoFun} |

{lookup fun, LookupFun} |
{parent fun, ParentFun} |

Ericsson AB. All Rights Reserved.: STDLIB | 353

qlc

{post_fun, PostFun} |
{pre_fun, PreFun} |
{key equality, KeyComparison}
FormatFun = undefined | fun((SelectedObjects) -> FormatedTable)

SelectedObjects =
all |
{all, NElements, DepthFun} |
{match spec, match_expression()} |
{lookup, Position, Keys} |
{lookup, Position, Keys, NElements, DepthFun}

NElements = infinity | integer() >=1
DepthFun = fun((term()) -> term())
FormatedTable = {Mod, Fun, Args} | abstract_expr() | string()
InfoFun = undefined | fun((InfoTag) -> InfoValue)
InfoTag = indices | is unique objects | keypos | num of objects
InfoValue undefined | term()
LookupFun = undefined | fun((Position, Keys) -> LookupResult)
LookupResult = [term()] | term()
ParentFun = undefined | fun(() -> ParentFunValue)
PostFun = undefined | fun(() -> term())
PreFun = undefined | fun((PreArgs) -> term())
PreArgs = [PreArgl
PreArg = {parent value, ParentFunValue} | {stop fun, StopFun}
ParentFunValue = undefined | term()
StopFun = undefined | fun(() -> term())
KeyComparison = '=:=' | '=='
Position = integer() >=1
Keys = [term()]
Mod = Fun = atom()
Args = [term()]
QH = query_handl e()
Returns a query handle for a QLC table. In Erlang/OTP there is support for ETS, Dets, and Mnesia tables, but
many other data structures can be turned into QL C tables. This is accomplished by letting function(s) in the module

implementing the data structure create a query handle by calling gl c: t abl e/ 2. The different ways to traverse the
table and properties of the table are handled by callback functions provided as optionsto gl c: t abl e/ 2.

e Cdlback function Tr aver seFun is used for traversing the table. It isto return alist of objects terminated by
either [] or anullary fun to be used for traversing the not yet traversed objects of the table. Any other return
value is immediately returned as value of the query evaluation. Unary Tr aver seFuns are to accept a match
specification as argument. The match specification is created by the parse transform by analyzing the pattern of
the generator calling gl c: t abl e/ 2 and filters using variables introduced in the pattern. If the parse transform
cannot find a match specification equivalent to the pattern and filters, Tr aver seFun is called with a match
specification returning every object.

» Modules that can use match specifications for optimized traversal of tablesareto call gl ¢c: t abl e/ 2 with
anunary Tr aver seFun. Anexampleis et s: t abl e/ 2

e Other modules can provide a nullary Tr aver seFun. An example isgb_t abl e: t abl e/ 1 in section
Implementing a QLC Table.

354 | Ericsson AB. All Rights Reserved.: STDLIB

qlc

Unary callback function Pr eFun is called once before the table is read for the first time. If the call fails, the
query evaluation fails.

Argument Pr eAr gs isalist of tagged values. There are two tags, par ent _val ue and st op_f un, used by
Mnesia for managing transactions.

e The value of parent _val ue is the value returned by Par ent Fun, or undef i ned if there is no
Par ent Fun. Par ent Fun iscalled oncejust beforethecall of Pr eFun in the context of the processcalling
eval /1, 2,fold/3,4,orcursor/1, 2.

e Thevaueof st op_f un isanullary fun that deletes the cursor if called from the parent, or undef i ned
if thereisno cursor.

Nullary callback function Post Fun iscalled once after the table was last read. The return value, which is caught,
isignored. If Pr eFun has been called for atable, Post Fun is guaranteed to be called for that table, even if the
evaluation of the query fails for some reason.

The pre (post) functions for different tables are evaluated in unspecified order.

Other table access than reading, such ascaling | nf oFun, isassumed to be OK at any time.

Binary callback function LookupFun isused for looking up objectsin thetable. Thefirst argument Posi ti on
is the key position or an indexed position and the second argument Keys is a sorted list of unique values. The
return value isto be alist of al objects (tuples), such that the element at Posi t i on isamember of Keys. Any
other return value is immediately returned as value of the query evaluation. LookupFun is called instead of
traversing the table if the parse transform at compile time can determine that the filters match and compare the
element at Posi ti on insuch away that only Keys need to be looked up to find al potential answers.

The key position is obtained by caling | nf oFun(keypos) and the indexed positions by caling
I nf oFun(i ndi ces) . If the key position can be used for lookup, it is always chosen, otherwise the indexed
position requiring the least number of lookups is chosen. If there is a tie between two indexed positions, the one
occurring first in the list returned by | nf oFun is chosen. Positions requiring more than max_lookup lookups
areignored.

Unary callback function | nf oFun isto return information about the table. undef i ned isto be returned if the
value of sometag is unknown:

i ndi ces

Returns alist of indexed positions, alist of positive integers.
i S_uni que_obj ects

Returnst r ue if the objectsreturned by Tr aver seFun are unique.
keypos

Returns the position of the table key, a positive integer.
is_sorted_key

Returnst r ue if the objectsreturned by Tr aver seFun are sorted on the key.
num of _objects

Returns the number of objectsin the table, a non-negative integer.
Unary callback function For mat Fun isused by i nf o/ 1, 2 for displaying the call that created the query handle
of thetable. Defaultsto undef i ned, which meansthat i nf o/ 1, 2 displaysacall to' $MOD' : ' $FUN /0. It
isup to For mat Fun to present the selected objects of the table in a suitable way. However, if acharacter list is
chosen for presentation, it must be an Erlang expression that can be scanned and parsed (atrailing dot is added
by i nf o/ 1, 2 though).

For mat Fun is called with an argument that describes the selected objects based on optimizations done as a
result of analyzing the filters of the QLC where the call to gl ¢: t abl e/ 2 occurs. The argument can have the
following values:

{l ookup, Position, Keys, NElenents, DepthFun}.
LookupFun isused for looking up objects in the table.

Ericsson AB. All Rights Reserved.: STDLIB | 355

qlc

{mat ch_spec, Mat chExpression}

No way of finding all possible answers by looking up keys was found, but the filters could be transformed
into a match specification. All answers are found by calling Tr aver seFun(Mat chExpr essi on) .

{all, NEl enments, DepthFun}

No optimization was found. A match specification matching all objectsis used if Tr aver seFun isunary.
NEl errent s isthevalue of thei nf o/ 1, 2 optionn_el enent s.

Dept hFun is a function that can be used for limiting the size of terms; calling Dept hFun(Ter m)
substitutes”’ . . . ' for parts of Ter mbelow the depth specified by thei nf o/ 1, 2 option dept h.

If cdling Format Fun with an argument including NEI enents and DepthFun fails,
For mat Fun is called once again with an argument excluding NEl ements and Dept hFun
({!1 ookup, Position, Keys} orall).

Thevalue of optionkey _equal i ty istobe' =: =" if the table considers two keys equal if they match, and to
be' ==' if two keysare equal if they compare equal. Defaultsto ' =: =" .

For thevariousoptionsrecognized by t abl e/ 1, 2 inrespectivemodule, seeet s(3) ,det s(3) ,andmmesi a(3) .

See Also

dets(3), erl _eval (3), erlang(3), error_|l ogger(3), ets(3), file(3), file_sorter(3),
mesi a(3),shel | (3), Erlang Reference Manual, Programming Examples

356 | Ericsson AB. All Rights Reserved.: STDLIB

queue

queue

Erlang module

This module provides (double-ended) FIFO queuesin an efficient manner.

All functionsfail with reason badar g if arguments are of wrong type, for example, queue arguments are not queues,
indexes are not integers, and list arguments are not lists. Improper lists cause internal crashes. An index out of range
for aqueue also causes a failure with reason badar g.

Some functions, where noted, fail with reason enpt y for an empty queue.

The datarepresenting aqueue as used by thismoduleisto be regarded as opaque by other modules. Any code assuming
knowledge of the format is running on thinice.

All operationshasan amortized O(1) running time, exceptf il t er/ 2,j oi n/ 2,1 en/ 1,menber/ 2,spl it/ 2 that
have O(n). To minimize the size of a queue minimizing the amount of garbage built by queue operations, the queues
do not contain explicit length information, and that iswhy | en/ 1 is O(n). If better performance for this particular
operation is essentia, it is easy for the caller to keep track of the length.

Queues are double-ended. The mental picture of aqueueis aline of people (items) waiting for their turn. The queue
front is the end with the item that has waited the longest. The queue rear is the end an item enters when it starts to
wait. If instead using the mental picture of alist, the front is called head and the rear is called tail.

Entering at the front and exiting at the rear are reverse operations on the queue.
This module has three sets of interface functions: the "Original API", the "Extended API", and the "Okasaki API".

The"Origina API" and the "Extended API" both use the mental picture of awaiting line of items. Both have reverse
operations suffixed "_r".

The "Original API" item removal functions return compound terms with both the removed item and the resulting
gueue. The "Extended API" contains alternative functions that build less garbage and functions for just inspecting the
gueue ends. Also the "Okasaki API" functions build less garbage.

The "Okasaki API" isinspired by "Purely Functional Data Structures' by Chris Okasaki. It regards queues as lists.
This APl isby many regarded as strange and avoidable. For example, many reverse operations have lexically reversed
names, some with more readable but perhaps less understandabl e aliases.

Original API
Data Types

queue(Item)
Asreturned by new/ 0.
queue() = queue(term())

Exports

filter(Fun, Ql :: queue(Item)) -> Q2 :: queue(Item)
Types.
Fun = fun((Item) -> boolean() | [Item])

Returns a queue Q2 that isthe result of calling Fun(1t em) onall itemsin QL, in order from front to rear.

Ericsson AB. All Rights Reserved.: STDLIB | 357

queue

If Fun(ltem returnst rue, | t emiscopiedtotheresult queue. If itreturnsf al se, | t emisnot copied. If it returns
aligt, thelist elements are inserted instead of | t emin the result queue.

So, Fun(ltem returning [| t en] is thereby semantically equivalent to returning t r ue, just asreturning [] is
semantically equivalent to returning f al se. But returning alist builds more garbage than returning an atom.

from list(L :: [Item]) -> queue(Item)

Returns a queue containing the items in L in the same order; the head item of the list becomes the front item of the
gueue.

in(Item, Q1 :: queue(Item)) -> Q2 :: queue(Item)
Inserts| t emat the rear of queue QL. Returns the resulting queue (2.

in r(Item, Q1 :: queue(Item)) -> Q2 :: queue(Item)
Inserts | t emat the front of queue QL. Returns the resulting queue Q2.

is empty(Q :: queue()) -> boolean()
Testsif Qisempty and returnst r ue if so, otherwise otherwise.

is queue(Term :: term()) -> boolean()
Testsif Ter misaqueue and returnst r ue if so, otherwisef al se.

join(Ql :: queue(Item), Q2 :: queue(Item)) -> Q3 :: queue(Item)
Returns a queue @ that is the result of joining QL and Q2 with QL in front of Q2.

len(Q :: queue()) -> integer() >= 0
Calculates and returns the length of queue Q.

member(Item, Q :: queue(Item)) -> boolean()
Returnst r ue if | t emmatches some element in Q otherwisef al se.

new() -> queue()
Returns an empty queue.

out(Ql :: queue(Item)) ->

{{value, Item}, Q2 :: queue(Item)} |

{empty, Q1 :: queue(Item)}
Removestheitem at thefront of queue QL. Returnstuple{{ val ue, Iten}, Q},wherel t emistheitemremoved
and Q2 isthe resulting queue. If QL isempty, tuple{ enpty, QL} isreturned.

out r(Ql :: queue(Item)) ->
{{value, Item}, Q2 :: queue(Item)} |
{empty, Q1 :: queue(Item)}

Removestheitem at therear of queue QL. Returnstuple{ { val ue, Iten}, Q},wherelt emistheitemremoved
and Q2 isthe new queue. If QL isempty, tuple{enpty, Ql} isreturned.

358 | Ericsson AB. All Rights Reserved.: STDLIB

queue

reverse(Ql :: queue(Item)) -> Q2 :: queue(Item)
Returns aqueue @ containing the items of QL in the reverse order.

split(N :: integer() >= 0, Q1 :: queue(Item)) ->
{Q2 :: queue(Item), Q3 :: queue(Item)}

Splits QL intwo. The Nfront items are put in 2 and the rest in (3.

to list(Q :: queue(Item)) -> [Item]
Returns alist of the itemsin the queue in the same order; the front item of the queue becomes the head of the list.

Extended API

Exports

drop(Ql :: queue(Item)) -> Q2 :: queue(Item)
Returns a queue 2 that isthe result of removing the front item from QL.
Failswith reason enpt y if QL isempty.

drop r(Ql :: queue(Item)) -> Q2 :: queue(Item)
Returns a queue @ that isthe result of removing the rear item from QL.
Failswith reason enpt y if QL isempty.

get(Q :: queue(Item)) -> Item
Returns | t emat the front of queue Q
Failswith reason enpt y if Qisempty.

get r(Q :: queue(Item)) -> Item
Returns| t emat the rear of queue Q
Failswith reason enpt y if Qisempty.

peek(Q :: queue(Item)) -> empty | {value, Item}
Returnstuple{val ue, 1ten},wherelt emisthefrontitemof Q orenpty if Qisempty.

peek r(Q :: queue(Item)) -> empty | {value, Item}
Returnstuple{ val ue, I|ten},wherelt emistherearitemof Q or enpty if Qisempty.

Okasaki API

Exports

cons(Item, Q1 :: queue(Item)) -> Q2 :: queue(Item)
Inserts| t emat the head of queue QL. Returns the new queue (2.

Ericsson AB. All Rights Reserved.: STDLIB | 359

queue

daeh(Q :: queue(Item)) -> Item
Returnsthe tail item of queue Q
Failswith reason enpt y if Qisempty.

head(Q :: queue(Item)) -> Item
Returns | t emfrom the head of queue Q
Failswith reason enpt y if Qisempty.

init(Ql :: queue(Item)) -> Q2 :: queue(Item)
Returns a queue Q2 that is the result of removing the tail item from QL.
Failswith reason enpt y if QL isempty.

lait(Ql :: queue(Item)) -> Q2 :: queue(Item)
Returns a queue 2 that isthe result of removing the tail item from QL.
Faillswith reason enpt y if QL isempty.

Thenamel ai t/ 1 isamisspelling - do not use it anymore.

last(Q :: queue(Item)) -> Item
Returnsthe tail item of queue Q
Faillswith reason enpt y if Qisempty.

liat(Ql :: queue(Item)) -> Q2 :: queue(Item)
Returns a queue 2 that isthe result of removing the tail item from QL.
Failswith reason enpt y if QL isempty.

snoc(Ql :: queue(Item), Item) -> Q2 :: queue(Item)
Inserts| t emasthetail item of queue QL. Returns the new queue Q2.

tail(Ql :: queue(Item)) -> Q2 :: queue(Item)
Returns a queue @2 that isthe result of removing the head item from QL.
Failswith reason enpt y if QL isempty.

360 | Ericsson AB. All Rights Reserved.: STDLIB

rand

rand

Erlang module

This module provides a random number generator. The module contains a number of algorithms. The uniform
distribution algorithms use the scrambled Xorshift algorithms by Sebastiano Vigna. The normal distribution
algorithm uses the Ziggurat M ethod by Marsaglia and Tsang.

The following algorithms are provided:

exspl us

Xorshift116+, 58 bits precision and period of 2"116-1
exs64

Xorshift64*, 64 bits precision and a period of 264-1
exs1024

Xorshift1024*, 64 bits precision and a period of 211024-1

The default algorithm is exspl us. If a specific algorithm is required, ensure to aways use seed/ 1 to initialize
the state.

Every time a random number is requested, a state is used to calculate it and a new state is produced. The state can
either be implicit or be an explicit argument and return value.

The functions with implicit state use the process dictionary variable r and_seed to remember the current state.

If aprocesscallsuni f or i 0 or uni f or m 1 without setting a seed first, seed/ 1 iscalled automatically with the
default algorithm and creates a non-constant seed.

The functions with explicit state never use the process dictionary.
Examples:
Simple use; creates and seeds the default algorithm with a non-constant seed if not already done:

RO
R1

rand:uniform(),
rand:uniform(),

Use a specified algorithm:

= rand:seed(exs1024),

R2 = rand:uniform(),

Use a specified algorithm with a constant seed:

_ = rand:seed(exs1024, {123, 123534, 345345}),
R3 = rand:uniform(),

Use the functional APl with a non-constant seed:

SO0 = rand:seed s(exsplus),

Ericsson AB. All Rights Reserved.: STDLIB | 361

href
href

rand

{R4, S1} = rand:uniform s(SO),

Create a standard normal deviate:

{SNDO, S2} = rand:normal s(S1),

Note:

This random number generator is not cryptographically strong. If a strong cryptographic random
number generator is needed, use one of functions in the crypto module, for example,
crypto: strong rand bytes/ 1.

Data Types

alg() = exs64 | exsplus | exsl024
state()

Algorithm-dependent state.
export state()
Algorithm-dependent state that can be printed or saved to file.

Exports

export seed() -> undefined | export_state()
Returns the random number state in an external format. To be used with seed/ 1.

export seed s(X1 :: state()) -> export_state()
Returns the random number generator state in an external format. To be used with seed/ 1.

normal() -> float()

Returns a standard normal deviate float (that is, the mean is 0 and the standard deviation is 1) and updates the state
in the process dictionary.

normal s(State® :: state()) -> {float(), NewS :: state()}

Returns, for a specified state, a standard normal deviate float (that is, the mean is 0 and the standard deviation is 1)
and anew state.

seed(AlgOrExpState :: alg() | export_state()) -> state()

Seeds random number generation with the specifed algorithm and time-dependent data if AlgOrExpState is an
algorithm.

Otherwise recreates the exported seed in the process dictionary, and returns the state. See also export _seed/ 0.

seed(Alg :: alg(), SO :: {integer(), integer(), integer()}) ->

362 | Ericsson AB. All Rights Reserved.: STDLIB

rand

state()

Seeds random number generation with the specified algorithm and integers in the process dictionary and returns the
State.

seed s(AlgOrExpState :: alg() | export_state()) -> state()

Seeds random number generation with the specifed agorithm and time-dependent data if AlgOrExpState is an
agorithm.

Otherwise recreates the exported seed and returns the state. Seealso export _seed/ 0.

seed s(Alg :: alg(), SO :: {integer(), integer(), integer()}) ->
state()

Seeds random number generation with the specified algorithm and integers and returns the state.

uniform() -> X :: float()

Returns a random float uniformly distributed in the valuerange 0. 0 < X < 1. 0 and updates the state in the
process dictionary.

uniform(N :: integer() >= 1) -> X :: integer() >=1

Returns, for a specified integer N >= 1, arandom integer uniformly distributed in the valuerangel <= X <= N
and updates the state in the process dictionary.

uniform s(State :: state()) -> {X :: float(), NewS :: state()}
Returns, for a specified state, random float uniformly distributed inthevaluerange0. 0 < X < 1. 0 and anew state.

uniform s(N :: integer() >= 1, State :: state()) ->
{X :: integer() >= 1, NewS :: state()}

Returns, for aspecified integer N >= 1 and astate, arandom integer uniformly distributed in the valuerange 1 <=
X <= Nand anew state.

Ericsson AB. All Rights Reserved.: STDLIB | 363

random

random

Erlang module

This module provides a random number generator. The method is attributed to B.A. Wichmann and I.D. Hill in'An
efficient and portabl e pseudo-random number generator’, Journal of Applied Statistics. AS183. 1982. Also Byte March
1987.

The algorithm is amodification of the version attributed to Richard A. O'Keefe in the standard Prolog library.

Every time a random number is requested, a state is used to calculate it, and a new state is produced. The state can
either be implicit (kept in the process dictionary) or be an explicit argument and return value. In thisimplementation,
the state (the typer an()) consists of atuple of three integers.

Note:

This random number generator is not cryptographically strong. If a strong cryptographic random
number generator is needed, use one of functions in the crypto module, for example,
crypto: strong rand bytes/ 1.

Note:
The improved r and module isto be used instead of this module.

Data Types
ran() = {integer(), integer(), integer()}
The state.

Exports

seed() -> ran()
Seeds random number generation with default (fixed) valuesin the process dictionary and returns the old state.

seed(SValue) -> undefined | ran()
Types:
SValue = {Al, A2, A3} | integer()
1 = A2 = A3 = integer()

seed({Al, A2, A3}) isequivalenttoseed(Al, A2, A3).

seed(Al, A2, A3) -> undefined | ran()
Types:
Al = A2 = A3 = integer()

Seeds random number generation with integer values in the process dictionary and returns the old state.

364 | Ericsson AB. All Rights Reserved.: STDLIB

random

Thefollowing is an easy way of obtaining a unique value to seed with:

random:seed(erlang:phash2([node()]1),
erlang:monotonic_time(),
erlang:unique_integer())

For details, see erlang: phash2/ 1, erl ang: node/ 0, erl ang: nonot oni c_time/0, and
erl ang: uni que_i nt eger/ 0.

seedd() -> ran()
Returns the default state.

uniform() -> float()
Returns arandom float uniformly distributed between 0. 0 and 1. 0, updating the state in the process dictionary.

uniform(N) -> integer() >=1
Types.
N = integer() >=1

Returns, for a specified integer N >= 1, arandom integer uniformly distributed between 1 and N, updating the state
in the process dictionary.

uniform s(State®) -> {float(), Statel}
Types.
State® = Statel = ran()

Returns, for a specified state, arandom float uniformly distributed between 0. 0 and 1. 0, and anew state.

uniform s(N, State0®) -> {integer(), Statel}
Types:

N = integer() >=1

State® = Statel = ran()

Returns, for a specified integer N >= 1 and a state, a random integer uniformly distributed between 1 and N, and
anew state.

Note
Some of the functions use the process dictionary variabler andom _seed to remember the current seed.
If aprocesscallsuni f or n1 0 or uni f or m 1 without setting a seed first, seed/ 0 is called automatically.

The implementation changed in Erlang/OTP R15. Upgrading to R15 breaks applications that expect a specific output
for a specified seed. The output is till deterministic number series, but different compared to releases older than R15.
Seed{ 0, 0, 0} does, for example, no longer produce a flawed series of only zeros.

Ericsson AB. All Rights Reserved.: STDLIB | 365

re

re

Erlang module

This module contains regular expression matching functions for strings and binaries.
Theregular expression syntax and semantics resemble that of Perl.

The matching algorithms of the library are based on the PCRE library, but not al of the PCRE library is interfaced
and some parts of the library go beyond what PCRE offers. The sections of the PCRE documentation that are relevant
to this module are included here.

Note:

The Erlang literal syntax for strings uses the "\" (backslash) character as an escape code. You need to escape
backslashesin literal strings, both in your code and in the shell, with an extra backslash, that is, "\\".

Data Types
mp() = {re pattern, term(), term(), term(), term()}

Opaque data type containing a compiled regular expression. np() is guaranteed to be a tuple() having the atom
re_pattern asitsfirst element, to allow for matching in guards. The arity of the tuple or the content of the other
fields can change in future Erlang/OTP releases.
nl spec() = cr | crlf | Lf | anycrlf | any
compile option() =

unicode |

anchored |

caseless |

dollar _endonly |

dotall |

extended |

firstline |

multiline |

no_auto capture |

dupnames |

ungreedy |

{newline, nl _spec()} |

bsr _anycrlf |

bsr unicode |

no start optimize |

ucp |

never utf

Exports

compile(Regexp) -> {ok, MP} | {error, ErrSpec}
Types:

366 | Ericsson AB. All Rights Reserved.: STDLIB

re

Regexp = iodata()

MP = mp()
ErrSpec =
{ErrString :: string(), Position :: integer() >= 0}

Thesameasconpi | e(Regexp, [])

compile(Regexp, Options) -> {ok, MP} | {error, ErrSpec}
Types:

Regexp = iodata() | unicode:charlist()

Options = [Option]

Option = conpile_option()

MP = np()

ErrSpec =
{ErrString :: string(), Position :: integer() >= 0}

Compilesaregular expression, with the syntax described below, into an internal format to be used later as a parameter
torun/2andrun/ 3.

Compiling the regular expression before matching is useful if the same expression is to be used in matching against
multiple subjects during the lifetime of the program. Compiling once and executing many times is far more efficient
than compiling each time one wants to match.

When option uni code is specified, the regular expression is to be specified as a valid Unicode charl i st (),
otherwiseasany validi odat a() .

Options:
uni code

Theregular expressionis specified asaUnicodechar | i st () and theresulting regular expression codeisto be
run against avalid Unicodechar | i st () subject. Also consider option ucp when using Unicode characters.

anchor ed

The pattern is forced to be "anchored”, that is, it is constrained to match only at the first matching point in the
string that is searched (the "subject string”). This effect can also be achieved by appropriate constructs in the
pattern itself.

casel ess

Letters in the pattern match both uppercase and lowercase letters. It is equivalent to Perl option/ i and can be
changed within a pattern by a (?i) option setting. Uppercase and lowercase |etters are defined as in the ISO
8859-1 character set.

dol I ar _endonly

A dollar metacharacter in the pattern matches only at the end of the subject string. Without this option, adollar
also matches immediately before a newline at the end of the string (but not before any other newlines). This
optionisignored if optionmul ti | i ne is specified. Thereis no equivaent option in Perl, and it cannot be set
within a pattern.

dot al |

A dot in the pattern matches all characters, including those indicating newline. Without it, a dot does not match
when the current position is at a newline. This option is equivalent to Perl option / s and it can be changed
within a pattern by a (?s) option setting. A negative class, such as[*a] , always matches newline characters,
independent of the setting of this option.

Ericsson AB. All Rights Reserved.: STDLIB | 367

re

ext ended

Whitespace data charactersin the pattern are ignored except when escaped or inside acharacter class. Whitespace
does not include character 'vt' (ASCII 11). Characters between an unescaped # outside a character class and the
next newline, inclusive, are also ignored. Thisisequivalent to Perl option/ x and can be changed within apattern
by a(?x) option setting.

With this option, comments inside complicated patterns can be included. However, notice that this applies only
to data characters. Whitespace characters can never appear within special character sequences in a pattern, for
example within sequence (?(that introduces a conditional subpattern.

firstline

Anunanchored patternisrequired to match before or at thefirst newlinein the subject string, although the matched
text can continue over the newline.

mul tiline

By default, PCRE treatsthe subject string as consisting of asingleline of characters (eveniif it contains newlines).
The"start of line" metacharacter (") matches only at the start of the string, while the "end of line" metacharacter
($) matches only at the end of the string, or before a terminating newline (unless option dol | ar _endonl y is
specified). Thisisthe sameasin Perl.

When this option is specified, the "start of line" and "end of line" constructs match immediately following or
immediately beforeinternal newlinesin the subject string, respectively, aswell as at the very start and end. This
is equivalent to Perl option / mand can be changed within a pattern by a (?nm) option setting. If there are no
newlinesin a subject string, or no occurrences of A or $ in a pattern, setting mul t i | i ne has no effect.

no_aut o_capture

Disables the use of numbered capturing parentheses in the pattern. Any opening parenthesis that is not followed
by ? behaves asiif it is followed by ?: . Named parentheses can still be used for capturing (and they acquire
numbers in the usual way). There is no equivalent option in Perl.

dupnanes

Names used to identify capturing subpatterns need not be unique. This can be helpful for certain types of pattern
when it is known that only one instance of the named subpattern can ever be matched. More details of named
subpatterns are provided below.

ungr eedy

Inverts the "greediness’ of the quantifiers so that they are not greedy by default, but become greedy if followed
by "?'. It is not compatible with Perl. It can also be set by a(?U) option setting within the pattern.

{new i ne, NLSpec}

Overrides the default definition of a newline in the subject string, which is LF (ASCII 10) in Erlang.
cr

Newlineisindicated by a single character cr (ASCII 13).
| f

Newlineisindicated by a single character LF (ASCII 10), the default.
crif

Newlineisindicated by the two-character CRLF (ASCII 13 followed by ASCII 10) sequence.
anycr| f

Any of the three preceding sequencesis to be recognized.

368 | Ericsson AB. All Rights Reserved.: STDLIB

re

any

Any of the newline sequences above, and the Unicode sequences VT (vertical tab, U+000B), FF (formfeed,
U+000C), NEL (next line, U+0085), LS (line separator, U+2028), and PS (paragraph separator, U+2029).

bsr_anycrl f

Specifies specifically that \R isto match only the CR, LF, or CRLF sequences, not the Unicode-specific newline
characters.

bsr _uni code

Specifies specifically that \R is to match al the Unicode newline characters (including CRLF, and so on, the
default).

no_start_optimnze

Disables optimization that can malfunctionif " Special start-of-patternitems" are present intheregular expression.
A typical examplewould bewhen matching "DEFABC" against"(* COMMIT)ABC", wherethe start optimization
of PCRE would skip the subject up to "A" and never realize that the (* COMMIT) instruction is to have made
the matching fail. This option is only relevant if you use "start-of-pattern items', as discussed in section PCRE
Regular Expression Details.

ucp

Specifiesthat Unicode character properties are to be used when resolving \B, \b, \D, \d, \S, \s, \W and \w. Without
thisflag, only 1SO Latin-1 properties are used. Using Unicode properties hurts performance, but is semantically
correct when working with Unicode characters beyond the |SO Latin-1 range.

never _utf

Specifies that the (*UTF) and/or (* UTF8) "start-of-pattern items" are forbidden. This flag cannot be combined
with option uni code. Useful if ISO Latin-1 patterns from an external source are to be compiled.

inspect(MP, Item) -> {namelist, [binary()1}
Types.

MP = ()
Item = namelist

Takes acompiled regular expression and an item, and returns the relevant data from the regular expression. The only
supported item isnanel i st , which returnsthe tuple { nanel i st, [binary()]}, containing the names of all
(unique) named subpatternsin the regular expression. For example:

1> {ok,MP} = re:compile("(?<A>A)|(?B)|(?<C>C)").
{ok,{re pattern,3,0,0,
<<69,82,67,80,119,0,0,0,0,0,0,0,1,0,0,0,255,255,255,255,
255,255, ...>>}}
2> re:inspect(MP,namelist).
{namelist, [<<"A">>,<<"B">>,<<"(C">>]}
3> {ok,MPD} = re:compile("(?<C>A)|(?B)|(?<C>C)", [dupnames]) .
{ok,{re pattern,3,0,0,
<<69,82,67,80,119,0,0,0,0,0,8,0,1,0,0,0,255,255,255,255,
255,255, ...>>}}
4> re:inspect (MPD,namelist).
{namelist, [<<"B">>,<<"(C">>]}

Notice in the second example that the duplicate name only occurs once in the returned list, and that the list isin
alphabetical order regardliess of where the names are positioned in the regular expression. The order of the names is

Ericsson AB. All Rights Reserved.: STDLIB | 369

re

the same as the order of captured subexpressionsif { capt ure, all _nanes} isspecifiedasanoptiontor un/ 3.

Y ou can therefore create a name-to-value mapping from the result of r un/ 3 like this:

1> {ok,MP} = re:compile("(?<A>A)|(?B)|(?<C>C)").

{ok,{re pattern,3,0,0,
<<69,82,67,80,119,0,0,0,0,0,0,0,1,0,0,0,255,255,255,255,

255,255, ...>>}}

2> {namelist, N} = re:inspect(MP,namelist).

{namelist, [<<"A">>,<<"B">>,<<"C">>]}

3> {match,L} = re:run("AA" ,MP, [{capture,all names,binary}]).

{match, [<<"A">>,<<>>, <<>>]}

4> NameMap = lists:zip(N,L).

[{<<"A">>,<<"A">>}, {<<"B">>,<<>>}, {<<"(C">>, <<>>1]

replace(Subject, RE, Replacement) -> iodata() | unicode:charlist()

Types.
Subject = iodata() | unicode:charlist()
RE = np() | iodata()
Replacement = iodata() | unicode:charlist()

Sameasr epl ace(Subj ect, RE, Replacenent, []).

replace(Subject, RE, Replacement, Options) ->
iodata() | unicode:charlist()
Types:
Subject = iodata() | unicode:charlist()
RE = np() | iodata() | unicode:charlist()
Replacement = iodata() | unicode:charlist()
Options = [Option]
Option =
anchored |
global |
notbol |
noteol |
notempty |
notempty atstart |
{offset, integer() >= 0} |
{newline, NLSpec} |
bsr_anycrlf |
{match limit, integer() >= 0} |
{match _limit recursion, integer() >= 0} |
bsr unicode |
{return, ReturnType} |
CompileOpt
ReturnType = iodata | list | binary
CompileOpt = conpile_option()
NLSpec = cr | crlf | Uf | anycrlf | any

Replaces the matched part of the Subj ect string with the contents of Repl acenent .

370 | Ericsson AB. All Rights Reserved.: STDLIB

re

Thepermissibleoptionsarethesameasfor r un/ 3, except that option capt ur e isnot allowed. Insteada{ r et ur n,
Ret ur nType} is present. The default return type is i odat a, constructed in a way to minimize copying. The
i odat a result can be used directly in many 1/0O operations. If aflat| i st () isdesired, specify{return, list}.
If abinary isdesired, specify {ret urn, binary}.

Asinfunctionr un/ 3,annp() compiled with option uni code requires Subj ect tobeaUnicodecharli st ().
If compilation is done implicitly and the uni code compilation option is specified to this function, both the regular
expression and Subj ect areto specified asvalid Unicodechar | i st ()s.

The replacement string can contain the specia character &, which inserts the whole matching expression in the resullt,
and the special sequence\ N (where N isaninteger > 0),\ gN, or\ g{ N}, resulting in the subexpression number N, is
inserted in the result. If no subexpression with that number is generated by the regular expression, nothing isinserted.

Toinsert an & or a\in theresult, precede it with a\. Notice that Erlang already gives a special meaning to\ in literal
strings, so asingle\ must bewrittenas" \ \ " and thereforeadouble\ as"\ \\\ ".

Example:
re:replace("abcd","c","[&]", [{return,list}]).

gives

"ab[c]d"

while

re:replace("abcd","c","[\\&]", [{return, list}]).

gives

"ab[&]d"

Aswithrun/ 3, compilation errors raise the badar g exception. conpi | e/ 2 can be used to get more information
about the error.

run(Subject, RE) -> {match, Captured} | nomatch
Types:

Subject = iodata() | unicode:charlist()

RE = np() | iodata()

Captured = [CaptureData]

CaptureData = {integer(), integer()}

Sameasr un(Subj ect,RE, []).
run(Subject, RE, Options) ->

{match, Captured} | match | nomatch | {error, ErrType}
Types.

Ericsson AB. All Rights Reserved.: STDLIB | 371

re

Subject = iodata() | unicode:charlist()
RE = np() | iodata() | unicode:charlist()
Options = [Option]
Option =
anchored |
global |
notbol |
noteol |
notempty |
notempty atstart |
report_errors |
{offset, integer() >= 0} |
{match limit, integer() >= 0} |
{match limit recursion, integer() >= 0} |
{newline, NLSpec :: nl_spec()} |
bsr _anycrlf |
bsr unicode |
{capture, ValueSpec} |
{capture, ValueSpec, Type} |
CompileOpt
Type = index | list | binary
ValueSpec =
all | all but first | all names | first | none | Valuelist

ValuelList = [ValuelID]

ValueID = integer() | string() | atom()
CompileOpt = conpile_option()

See conpi | e/ 2.

Captured = [CaptureData] | [[CaptureData]]

CaptureData =

{integer(), integer()} | ListConversionData | binary()
ListConversionData =

string() |

{error, string(), binary()} |
{incomplete, string(), binary()}

ErrType =
match_limit | match_limit recursion | {compile, CompileErr}
CompileErr =
{ErrString :: string(), Position :: integer() >= 0}
Executes a regular expression matching, and returns mat ch/ { mat ch, Capt ured} or nonat ch. The regular
expression can be specified either asi odat a() inwhich caseit isautomatically compiled (asby conpi | e/ 2) and
executed, or as aprecompiled np() inwhich caseit is executed against the subject directly.

When compilation is involved, exception badar g is thrown if a compilation error occurs. Call conpi | e/ 2 to get
information about the location of the error in the regular expression.

If the regular expression is previously compiled, the option list can only contain the following options:

 anchored
e {capture, ValueSpec}/{capture, Val ueSpec, Type}
e gl obal

372 | Ericsson AB. All Rights Reserved.: STDLIB

re

e« {match_lint, integer() >= 0}
e« {match_linmt_recursion, integer() >= 0}
e {newine, NLSpec}

e not bol

e notenpty

e notenpty_ atstart
* not eol

« {offset, integer() >= 0}
e report_errors

Otherwise al options valid for function conpi | e/ 2 are aso allowed. Options allowed both for compilation and
execution of a match, namely anchor ed and { new i ne, NLSpec}, affect both the compilation and execution
if present together with a non-precompiled regular expression.

If the regular expression was previously compiled with option uni code, Subj ect is to be provided as a valid
Unicode char | i st (), otherwise any i odat a() will do. If compilation is involved and option uni code is
specified, both Subj ect and the regular expression are to be specified asvalid Unicodechar | i st s() .

{capture, ValueSpec}/{capture, ValueSpec, Type} defines what to return from the function
upon successful matching. The capt ur e tuple can contain both a value specification, telling which of the captured
substrings are to be returned, and a type specification, telling how captured substrings are to be returned (as index
tuples, lists, or binaries). The options are described in detail below.

If the capture options describe that no substring capturing is to be done ({ capt ur e, none}), the function returns
thesingleatom mat ch upon successful matching, otherwisethetuple{ mat ch, Val uelLi st} . Disabling capturing
can be done either by specifying none or an empty list as Val ueSpec.

Optionr eport _errors adds the possibility that an error tuple is returned. The tuple either indicates a matching
error (match_limit ormatch_I i mt_recursi on),oracompilation error, wherethe error tuple has the format
{error, {conpile, ConpileErr}}.Noticethatif optionreport _errors isnot specified, the function
never returns error tuples, but reports compilation errors as a badar g exception and failed matches because of
exceeded match limits smply asnonat ch.

The following options are relevant for execution:
anchored

Limitsr un/ 3 to matching at the first matching position. If a pattern was compiled with anchor ed, or turned
out to be anchored by virtue of its contents, it cannot be made unanchored at matching time, hence there is no
unanchor ed option.

gl obal

Implements global (repetitive) search (flag g in Perl). Each match is returned as a separatel i st () containing
the specific match and any matching subexpressions (or as specified by option capt ur e. The Capt ur ed part
of thereturn valueishenceal i st () of | i st () swhen thisoption is specified.

The interaction of option gl obal with aregular expression that matches an empty string surprises some users.
When option gl obal isspecified, r un/ 3 handles empty matchesin the same way as Perl: azero-length match
at any point is also retried with options[anchor ed, notenpty_at start]. If that search gives a result
of length > 0, the result isincluded. Example:

re:run("cat","(|at)", [globall).

The following matchings are performed:

Ericsson AB. All Rights Reserved.: STDLIB | 373

re

At offset 0

Theregular expression (| at) first match at theinitia position of stringcat , givingtheresult set[{ 0, 0},
{0, 0}] (thesecond { O, 0} isbecause of the subexpression marked by the parentheses). As the length of
the match is 0, we do not advance to the next position yet.

At offset O with[anchored, notenpty_atstart]

Thesearchisretriedwithoptions[anchor ed, notenpty_at start] atthesameposition, which does
not give any interesting result of longer length, so the search position is advanced to the next character (a).

At offset 1
Thesearchresultsin[{1, 0}, {1, 0}], so thissearch is also repeated with the extra options.
At offset 1 with[anchored, notenpty atstart]

Alternative ab is found and the result is [{1,2},{1,2}]. The result is added to the list of results and the
position in the search string is advanced two steps.

At offset 3

The search once again matches the empty string, giving[{ 3, 0}, {3, 0}] .
At offset 1 with[anchored, notenpty_atstart]

This gives no result of length > 0 and we are at the last position, so the global search is complete.
The result of thecdl is:

{match, [[{0,0},{0,0}], [{1,6},{1,0}]1,[{1,2},{1,2}],[{3,0},{3,0}11}

not enpt y

An empty string is not considered to be avalid match if thisoption is specified. If alternativesin the pattern exist,
they aretried. If al the alternatives match the empty string, the entire match fails.

Example:

If the following pattern is applied to a string not beginning with "a* or "b", it would normally match the empty
string at the start of the subject:

arb?

With option not enpt y, thismatch isinvalid, so r un/ 3 searches further into the string for occurrences of "a"
or"b".
notenpty_atstart

Likenot enpt y, except that an empty string match that is not at the start of the subject is permitted. If the pattern
is anchored, such a match can occur only if the pattern contains \K.

Perl has no direct equivalent of not enpty or notenpty_atstart, but it does make a special case
of a pattern match of the empty string within its split() function, and when using modifier / g. The Perl
behavior can be emulated after matching a null string by first trying the match again at the same offset with
not enpty_at start andanchor ed, and then, if that fails, by advancing the starting offset (see below) and
trying an ordinary match again.

374 | Ericsson AB. All Rights Reserved.: STDLIB

re

not bol

Specifiesthat thefirst character of the subject string is not the beginning of aline, so the circumflex metacharacter
is not to match before it. Setting thiswithout mul ti | i ne (at compile time) causes circumflex never to match.
This option only affects the behavior of the circumflex metacharacter. It does not affect \A.

not eol

Specifies that the end of the subject string is not the end of aline, so the dollar metacharacter is not to match it
nor (except in multiline mode) a newline immediately before it. Setting this without rul ti | i ne (at compile
time) causes dollar never to match. This option affects only the behavior of the dollar metacharacter. It does not
affect \Z or \z.

report_errors

Givesbetter control of theerror handlinginr un/ 3. When specified, compilation errors(if the regular expression
isnot aready compiled) and runtime errors are explicitly returned as an error tuple.

The following are the possible runtime errors:
match limt

The PCRE library sets a limit on how many times the internal match function can be called. Defaults to
10,000,000 in the library compiled for Erlang. If {error, match_linit} isreturned, the execution
of the regular expression has reached this limit. Thisis normally to be regarded as anomat ch, which is
the default return value when this occurs, but by specifyingr eport _err or s, you areinformed when the
match fails because of too many internal calls.

match_limt_recursion

This error is very similar to mat ch_| i mi t, but occurs when the internal match function of PCRE is
"recursively” called moretimesthanthermat ch_| i mi t _r ecur si on limit, which defaultsto 10,000,000
aswell. Noticethat aslong asthemat ch_limit andmatch_I i mt _def aul t values are kept at the
default values, thermat ch_|i mit _recur si on error cannot occur, asthenat ch_I i mi t error occurs
beforethat (each recursive call isalso acall, but not conversely). Both limits can however be changed, either
by setting limits directly in the regular expression string (see section PCRE Regular Eexpression Details)
or by specifying optionstor un/ 3.

It isimportant to understand that what is referred to as "recursion” when limiting matchesis not recursion on the
C stack of the Erlang machine or on the Erlang process stack. The PCRE version compiled into the Erlang VM
uses machine "heap" memory to store values that must be kept over recursion in regular expression matches.

{match_linmt, integer() >= 0}

Limits the execution time of a match in an implementation-specific way. It is described as follows by the PCRE
documentation:

The match limit field provides a means of preventing PCRE from using
up a vast amount of resources when running patterns that are not going
to match, but which have a very large number of possibilities in their
search trees. The classic example is a pattern that uses nested
unlimited repeats.

Internally, pcre exec() uses a function called match(), which it calls
repeatedly (sometimes recursively). The limit set by match limit is
imposed on the number of times this function is called during a match,
which has the effect of limiting the amount of backtracking that can
take place. For patterns that are not anchored, the count restarts
from zero for each position in the subject string.

Ericsson AB. All Rights Reserved.: STDLIB | 375

re

This means that runaway regular expression matches can fail faster if the limit islowered using this option. The
default value 10,000,000 is compiled into the Erlang VM.

Note:

This option does in no way affect the execution of the Erlang VM in terms of "long running BIFs".
r un/ 3 always gives control back to the scheduler of Erlang processes at intervalsthat ensuresthe real-time
properties of the Erlang system.

{match_limt_recursion, integer() >= 0}

Limits the execution time and memory consumption of a match in an implementation-specific way, very similar
tomat ch_Iimt.Itisdescribed asfollows by the PCRE documentation:

The match limit recursion field is similar to match limit, but instead
of limiting the total number of times that match() is called, it
limits the depth of recursion. The recursion depth is a smaller number
than the total number of calls, because not all calls to match() are
recursive. This limit is of use only if it is set smaller than

match limit.

Limiting the recursion depth limits the amount of machine stack that
can be used, or, when PCRE has been compiled to use memory on the heap
instead of the stack, the amount of heap memory that can be used.

TheErlang VM usesaPCRE library where heap memory is used when regular expression match recursion occurs.
This therefore limits the use of machine heap, not C stack.

Specifying alower value can result in matches with deep recursion failing, when they should have matched:

1> re:run("aaaaaaaaaaaaaz","(a+)*z").

{match, [{0,14},{0,13}]1}

2> re:run("aaaaaaaaaaaaaz","(a+)*z", [{match limit recursion,5}]).

nomatch

3> re:run("aaaaaaaaaaaaaz"," (a+)*z",[{match limit recursion,5}, report errorsl]).
{error,match limit recursion}

This option and option mat ch_I i m t are only to be used in rare cases. Understanding of the PCRE library
internals is recommended before tampering with these limits.

{offset, integer() >= 0}

Start matching at the offset (position) specified in the subject string. The offset is zero-based, so that the default
is{of fset, 0} (al of the subject string).

{new i ne, NLSpec}
Overrides the default definition of anewline in the subject string, which is LF (ASCII 10) in Erlang.
cr
Newlineisindicated by a single character CR (ASCII 13).
| f
Newlineisindicated by a single character LF (ASCII 10), the default.

376 | Ericsson AB. All Rights Reserved.: STDLIB

re

crlf

Newlineisindicated by the two-character CRLF (ASCII 13 followed by ASCII 10) sequence.
anycr| f

Any of the three preceding sequencesis be recognized.
any

Any of the newline sequences above, and the Unicode sequences VT (vertical tab, U+000B), FF (formfeed,
U+000C), NEL (next line, U+0085), LS (line separator, U+2028), and PS (paragraph separator, U+2029).

bsr _anycrl f

Specifies specificaly that \R isto match only the CR LF, or CRLF sequences, not the Unicode-specific newline
characters. (Overrides the compilation option.)

bsr_uni code

Specifies specifically that \R is to match all the Unicode newline characters (including CRLF, and so on, the
default). (Overrides the compilation option.)

{capture, ValueSpec}/{capture, ValueSpec, Type}

Specifies which captured substrings are returned and in what format. By default, r un/ 3 captures al of the
matching part of the substring and al capturing subpatterns (all of the pattern is automatically captured). The
default return type is (zero-based) indexes of the captured parts of the string, specified as{ O f set , Lengt h}
pairs (thei ndex Type of capturing).

As an example of the default behavior, the following call returns, asfirst and only captured string, the matching
part of the subject ("abcd" in the middle) as an index pair { 3, 4} , where character positions are zero-based, just
asin offsets:

re:run("ABCabcdABC", "abcd",[]).

The return value of thiscall is:

{match, [{3,4}]}

Another (and quite common) case is where the regular expression matches all of the subject:

re:run("ABCabcdABC",".*abcd.*",[]).

Herethereturn value correspondingly pointsout all of the string, beginning at index 0, and it is 10 characterslong:

{match, [{0,10}]}

If the regular expression contains capturing subpatterns, like in:

re:run("ABCabcdABC",".*(abcd).*",[]).

al of the matched subject is captured, as well as the captured substrings:

Ericsson AB. All Rights Reserved.: STDLIB | 377

re

{match, [{0,10},{3,4}1}

The complete matching pattern always gives the first return value in the list and the remaining subpatterns are
added in the order they occurred in the regular expression.

The capture tupleis built up as follows:
Val ueSpec

Specifies which captured (sub)patterns are to be returned. Val ueSpec can either be an atom describing a
predefined set of return values, or alist containing the indexes or the names of specific subpatternsto return.

The following are the predefined sets of subpatterns:

al l
All captured subpatterns including the complete matching string. Thisis the defaullt.

al | _nares
All named subpatterns in the regular expression, as if al i st () of al the names in alphabetical
order was specified. Thelist of all names can also be retrieved with i nspect / 2.

first

Only the first captured subpattern, which is always the complete matching part of the subject. All
explicitly captured subpatterns are discarded.

all _but first

All but the first matching subpattern, that is, al explicitly captured subpatterns, but not the complete
matching part of the subject string. Thisis useful if the regular expression as a whole matches a large
part of the subject, but the part you are interested inisin an explicitly captured subpattern. If the return
typeisl i st or bi nar y, not returning subpatterns you are not interested in is agood way to optimize.

none

Returns no matching subpatterns, givesthe single atom mat ch asthe return value of the function when
matching successfully instead of the { mat ch, i st ()} return. Specifying an empty list givesthe
same behavior.

Thevauelistisalist of indexes for the subpatternsto return, whereindex O isfor al of the pattern, and 1is
for the first explicit capturing subpattern in the regular expression, and so on. When using named captured
subpatterns (see below) in the regular expression, one can use at or() sor stri ng() s to specify the
subpatterns to be returned. For example, consider the regular expression:

".*(abcd) .*"

matched against string "ABCabcdABC", capturing only the "abcd" part (the first explicit subpattern):

re:run("ABCabcdABC",".*(abcd) .*", [{capture, [11}]).

The call gives the following result, as the first explicitly captured subpattern is " (abed)", matching "abcd"
in the subject, at (zero-based) position 3, of length 4:

{match, [{3,4}1}

378 | Ericsson AB. All Rights Reserved.: STDLIB

re

Consider the same regular expression, but with the subpattern explicitly named 'FOO":

".*(?<F00>abcd) . *"

With this expression, we could still give the index of the subpattern with the following call:

re:run("ABCabcdABC",".*(?<F00>abcd) .*", [{capture, [1]}]).

giving the sameresult asbefore. But, asthe subpatternis named, we can also specify itsnameinthevaluelist:

re:run("ABCabcdABC",".*(?<F00>abcd) .*", [{capture,['FO0'1}]).

Thiswould give the same result as the earlier examples, namely:

{match, [{3,4}1}

The values list can specify indexes or names not present in the regular expression, in which case the return
values vary depending on the type. If thetypeisi ndex, thetuple{ - 1, 0} isreturned for values with no
corresponding subpattern in the regular expression, but for the other types (bi nary and | i st), the values
are the empty binary or list, respectively.

Type
Optionally specifies how captured substrings are to be returned. If omitted, the default of i ndex isused.
Type can be one of the following:
i ndex

Returns captured substrings as pairs of byte indexes into the subject string and length of the matching
string in the subject (asif the subject string wasflattened with er | ang: i ol i st _to_bi nary/ 1or
uni code: char act er s_t o_bi nar y/ 2 before matching). Notice that option uni code resultsin
byte-oriented indexes in a (possibly virtual) UTF-8 encoded binary. A byte index tuple { 0, 2} can
therefore represent one or two characterswhen uni code isin effect. This can seem counter-intuitive,
but has been deemed the most effective and useful way to do it. To return lists instead can result in
simpler code if that is desired. This return type is the default.

list

Returns matching substrings as lists of characters (Erlang st ri ng() s). It option uni code is used
in combination with the \C sequence in the regular expression, a captured subpattern can contain bytes
that are not valid UTF-8 (\C matches bytes regardless of character encoding). In that case thel i st

capturing can result in the same types of tuples that uni code: characters_to_list/2 can
return, namely three-tuples with tag i nconpl et e or er r or , the successfully converted characters
and the invalid UTF-8 tail of the conversion as a binary. The best strategy is to avoid using the \C
seguence when capturing lists.

bi nary

Returns matching substrings as binaries. If option uni code is used, these binaries are in UTF-8. If
the \C sequenceis used together with uni code, the binaries can beinvalid UTF-8.

Ericsson AB. All Rights Reserved.: STDLIB | 379

re

In general, subpatterns that were not assigned avalue in the match arereturned asthetuple{ - 1, 0} whent ype
isi ndex. Unassigned subpatterns are returned as the empty binary or list, respectively, for other return types.
Consider the following regular expression:

" *((?<F00>abdd) |a(..d)).*"

There are three explicitly capturing subpatterns, where the opening parenthesis position determines the order in
the result, hence ((?<FOC>abdd) | a(. . d)) issubpattern index 1, (?<FOO>abdd) is subpattern index 2,
and (. . d) issubpatternindex 3. When matched against the following string:

"ABCabcdABC"

the subpattern at index 2 does not match, as "abdd" is not present in the string, but the complete pattern matches
(because of the aternative a(. . d)). The subpattern at index 2 is therefore unassigned and the default return
vaueis:

{match, [{0,16},{3,4},{-1,0},{4,3}1}

Setting the capture Ty pe to bi nary gives:

{match, [<<"ABCabcdABC">>,<<"abcd">>,<<>>,<<"bcd">>]}

Here the empty binary (<<>>) represents the unassigned subpattern. In the bi nary case, some information
about the matching is therefore lost, as <<>> can also be an empty string captured.

If differentiation between empty matches and non-existing subpatterns is necessary, use thet ype i ndex and
do the conversion to the final typein Erlang code.

When option gl obal isspeciified, the capt ur e specification affects each match separately, so that:

re:run("cacb","c(a|b)",[global, {capture, [1],list}]).

gives

{match, [["a"],["b"]1}

For a descriptions of options only affecting the compilation step, seeconpi | e/ 2.

split(Subject, RE) -> SplitlList

Types:

Subject = iodata() | unicode:charlist()
RE = np() | iodata()
SplitList = [iodata() | unicode:charlist()]

Sameassplit(Subject, RE, []).

380 | Ericsson AB. All Rights Reserved.: STDLIB

re

split(Subject, RE, Options) -> SplitlList
Types:
Subject = iodata() | unicode:charlist()
RE = np() | iodata() | unicode:charlist()
Options = [Option]
Option =
anchored |
notbol |
noteol |
notempty |
notempty atstart |
{offset, integer() >= 0} |
{newline, nl _spec()} |
{match limit, integer() >= 0} |
{match limit recursion, integer() >= 0} |
bsr _anycrlf |
bsr unicode |
{return, ReturnType} |
{parts, NumParts} |

group |
trim |
CompileOpt
NumParts = integer() >= 0 | infinity
ReturnType = iodata | list | binary
CompileOpt = conpile_option()
See conpi | e/ 2.
SplitList = [RetData] | [GroupedRetData]
GroupedRetData = [RetDatal]
RetData = iodata() | unicode:charlist() | binary() | list()
Splitstheinput into parts by finding tokens according to the regular expression supplied. The splitting is basically done
by running a global regular expression match and dividing the initia string wherever a match occurs. The matching
part of the string is removed from the output.

Asinrun/ 3, an np() compiled with option uni code requires Subj ect to be a Unicode charlist (). If
compilation is done implicitly and the uni code compilation option is specified to this function, both the regular
expression and Subj ect areto be specified asvalid Unicodechar | i st () s.

Theresultisgiven asalist of "strings", the preferred data type specified in option r et ur n (default i odat a).

If subexpressions are specified in the regular expression, the matching subexpressions are returned in the resulting
list aswell. For example:

re:split("Erlang","[ln]", [{return,list}]).

gives

[”Er", ||a||, ||gu]

Ericsson AB. All Rights Reserved.: STDLIB | 381

re

while

re:split("Erlang","([ln])", [{return,list}]).

gives

[“Er", ||1||’ ||a||’ "n", ||g||]

The text matching the subexpression (marked by the parenthesesin the regular expression) isinserted in the result list
where it was found. This means that concatenating the result of a split where the whole regular expressionisasingle
subexpression (asin the last example) always resultsin the original string.

Asthereisno matching subexpression for the last part in the example (the "g"), nothing isinserted after that. To make
the group of strings and the parts matching the subexpressions more obvious, one can use option gr oup, which groups
together the part of the subject string with the parts matching the subexpressions when the string was split:

re:split("Erlang","([ln])", [{return,list},group]).

gives

[["Er","L"],["a","n"],["g"]]

Here the regular expression first matched the "I", causing "Er" to be the first part in the result. When the regular
expression matched, the (only) subexpression was bound to the "I", so the "I" is inserted in the group together with
"Er". The next match isof the"n", making "a"' the next part to be returned. Asthe subexpression is bound to substring
"n" inthis case, the"n" isinserted into this group. The last group consists of the remaining string, as no more matches
are found.

By default, all parts of the string, including the empty strings, are returned from the function, for example:

re:split("Erlang","[lg]", [{return,list}]).

gives

["Er","an", [1]

as the matching of the "g" in the end of the string leaves an empty rest, which is also returned. This behavior differs
from the default behavior of the split function in Perl, where empty strings at the end are by default removed. To get
the "trimming" default behavior of Perl, specify t r i mas an option:

re:split("Erlang","[lg]", [{return,list},trim]).

gives

382 | Ericsson AB. All Rights Reserved.: STDLIB

re

["Er","an"]

The "trim" option says; "give me as many parts as possible except the empty ones’, which sometimes can be useful.
Y ou can aso specify how many parts you want, by specifying { part s, N}:

re:split("Erlang","[lg]", [{return,list}, {parts,2}1).

gives

["Er", ||angu]

Noticethat thelast partis"ang", not "an", as splitting was specified into two parts, and the splitting stops when enough
parts are given, which iswhy the result differsfromthat of t ri m

More than three parts are not possible with thisindata, so

re:split("Erlang","[lg]l", [{return,list}, {parts,4}]).

gives the same result as the default, which is to be viewed as "an infinite number of parts’.

Specifying 0 as the number of parts gives the same effect as option t ri m If subexpressions are captured, empty
subexpressions matched at the end are also stripped from theresultif t ri mor { part s, 0} is specified.

Thet r i mbehavior corresponds exactly to the Perl default. { part s, N} , where N is a positive integer, corresponds
exactly to the Perl behavior with apositive numerical third parameter. The default behavior of spl i t / 3 corresponds
to the Perl behavior when a negative integer is specified as the third parameter for the Perl routine.

Summary of options not previously described for function r un/ 3:

{return, ReturnType}
Specifies how the parts of the original string are presented in the result list. Valid types:
i odat a

The variant of i odat a() that gives the least copying of data with the current implementation (often a
binary, but do not depend on it).

bi nary
All parts returned as binaries.

I'ist
All parts returned as lists of characters ("strings").
group
Groups together the part of the string with the parts of the string matching the subexpressions of the regular
expression.

The return value from the function isin thiscaseal i st () of | i st () s. Each sublist begins with the string
picked out of the subject string, followed by the parts matching each of the subexpressionsin order of occurrence
in the regular expression.

Ericsson AB. All Rights Reserved.: STDLIB | 383

re

{parts, N}
Specifies the number of parts the subject string is to be split into.

The number of parts is to be a positive integer for a specific maximum number of parts, and i nfi nity for
the maximum number of parts possible (the default). Specifying { part s, 0} gives as many parts as possible
disregarding empty parts at the end, the same as specifyingt ri m

trim
Specifiesthat empty parts at the end of the result list are to be disregarded. The same as specifying{ part s, 0} .
This corresponds to the default behavior of thespl i t built-in function in Perl.

Perl-Like Regular Expression Syntax

The following sections contain reference material for the regular expressions used by this module. The informationis
based on the PCRE documentation, with changes where this module behaves differently to the PCRE library.

PCRE Regular Expression Details

The syntax and semantics of the regular expressions supported by PCRE are described in detail in the following
sections. Perl's regular expressions are described in its own documentation, and regular expressions in general are
covered in many books, some with copious examples. Jeffrey Friedl's "Mastering Regular Expressions’, published
by O'Reilly, covers regular expressions in great detail. This description of the PCRE regular expressions is intended
as reference material.

The reference material is divided into the following sections:

o Special Sart-of-Pattern Items

* Characters and Metacharacters
* Backdash

e Circumflex and Dollar

e Full Sop (Period, Dot) and \N
e Matching a Sngle Data Unit

e Sguare Brackets and Character Classes
* Posix Character Classes

* Vertical Bar

e Internal Option Setting

e Subpatterns

* Duplicate Subpattern Numbers
e Named Subpatterns

* Repetition

e Atomic Grouping and Possessive Quantifiers
» Back References

e Assertions

» Conditional Subpatterns

+ Comments

* Recursive Patterns

» Subpatterns as Subroutines

e Oniguruma Subroutine Syntax

» Backtracking Control

384 | Ericsson AB. All Rights Reserved.: STDLIB

re

Special Start-of-Pattern Items

Some options that can be passed to conpi | e/ 2 can also be set by special items at the start of a pattern. These are
not Perl-compatible, but are provided to make these options accessible to pattern writers who are not able to change
the program that processes the pattern. Any number of these items can appear, but they must all be together right at
the start of the pattern string, and the letters must be in upper case.

UTF Support

Unicode support is basically UTF-8 based. To use Unicode characters, you either call conpi | e/ 2 or r un/ 3 with
option uni code, or the pattern must start with one of these special sequences:

(*UTF8)
(*UTF)

Both options give the same effect, the input string is interpreted as UTF-8. Notice that with these instructions, the
automatic conversion of liststo UTF-8 is not performed by ther e functions. Therefore, using these sequences is not
recommended. Add option uni code when running conpi | e/ 2 instead.

Some applications that allow their users to supply patterns can wish to restrict them to non-UTF data for security
reasons. If optionnever _ut f isset at compiletime, (*UTF), and so on, are not allowed, and their appearance causes
an error.

Unicode Property Support
The following is another special sequence that can appear at the start of a pattern:

(*UCP)

This has the same effect as setting option ucp: it causes sequences such as \d and \w to use Unicode properties to
determine character types, instead of recognizing only characters with codes < 256 through alookup table.

Disabling Startup Optimizations

If a pattern starts with (* NO_START_OPT) , it has the same effect as setting option no_start_opti ni ze at
compile time.

Newline Conventions

PCRE supports five conventions for indicating line breaks in strings. asingle CR (carriage return) character, asingle
LF (line feed) character, the two-character sequence CRLF, any of the three preceding, and any Unicode newline
sequence.

A newline convention can also be specified by starting a pattern string with one of the following five sequences:

(*CR)
Carriage return
(*LF)
Linefeed
(*CRLF)
>Carriage return followed by line feed
(*ANYCRLF)
Any of the three above
(*ANY)
All Unicode newline sequences

Ericsson AB. All Rights Reserved.: STDLIB | 385

re

These override the default and the options specified to conpi | e/ 2. For example, the following pattern changes the
convention to CR:

(*CR)a.b

This pattern matches a\ nb, as LF isno longer anewline. If more than one of them is present, the last one is used.

The newline convention affects where the circumflex and dollar assertions are true. It also affects the interpretation
of the dot metacharacter when dot al | is not set, and the behavior of \N. However, it does not affect what the \R
escape sequence matches. By default, thisis any Unicode newline sequence, for Perl compatibility. However, this can
be changed; see the description of \R in section Newline Sequences. A change of the \R setting can be combined with
achange of the newline convention.

Setting Match and Recursion Limits

Thecaller of r un/ 3 can set alimit on the number of timestheinternal match() functionis called and on the maximum
depth of recursive calls. These facilities are provided to catch runaway matches that are provoked by patterns with
huge matching trees (atypical exampleis a pattern with nested unlimited repeats) and to avoid running out of system
stack by too much recursion. When one of these limitsis reached, pcr e_exec() givesan error return. The limits
can also be set by items at the start of the pattern of the following forms:

(*LIMIT MATCH=d)
(*LIMIT_RECURSION=d)

Here d isany number of decimal digits. However, the value of the setting must be less than the value set by the caller
of run/ 3 for it to have any effect. That is, the pattern writer can lower the limit set by the programmer, but not raise
it. If there is more than one setting of one of these limits, the lower value is used.

The default value for both the limits is 10,000,000 in the Erlang VM. Natice that the recursion limit does not affect
the stack depth of the VM, as PCRE for Erlang is compiled in such away that the match function never doesrecursion
on the C stack.

Characters and Metacharacters

A regular expression is a pattern that is matched against a subject string from left to right. Most characters stand for
themselves in a pattern and match the corresponding characters in the subject. As a trivial example, the following
pattern matches a portion of a subject string that isidentical to itself:

The quick brown fox

When caseless matching is specified (option casel ess), letters are matched independently of case.

The power of regular expressions comes from the ability to include aternatives and repetitions in the pattern. These
are encoded in the pattern by the use of metachar acters, which do not stand for themselves but instead are interpreted
in some special way.

Two sets of metacharacters exist: those that are recognized anywhere in the pattern except within square brackets, and
those that are recognized within square brackets. Outside square brackets, the metacharacters are as follows:

\

General escape character with many uses
N

Assert start of string (or line, in multiline mode)

386 | Ericsson AB. All Rights Reserved.: STDLIB

re

Assert end of string (or line, in multiline mode)
Match any character except newline (by default)
Start character class definition

Start of alternative branch

Start subpattern

: End subpattern

?

. Extends the meaning of (, also 0 or 1 quantifier, also quantifier minimizer
0 or more quantifiers

: 1 or more quantifier, also "possessive quantifier”

Start min/max quantifier

Part of a pattern within square brackets is called a "character class'. The following are the only metacharactersin a
character class:

\

General escape character
N

Negate the class, but only if the first character
Indicates character range
Posix character class (only if followed by Posix syntax)

Terminates the character class
The following sections describe the use of each metacharacter.

Backslash

The backslash character has many uses. Firgt, if it is followed by a character that is not a number or aletter, it takes
away any special meaning that a character can have. This use of backslash as an escape character applies both inside
and outside character classes.

For example, if youwant to match a* character, youwrite* inthe pattern. This escaping action appliesif thefollowing
character would otherwise be interpreted as a metacharacter, so it is always safe to precede a non-alphanumeric with
backslash to specify that it stands for itself. In particular, if you want to match a backslash, write \\.

Inuni code mode, only ASCII numbers and letters have any special meaning after a backslash. All other characters
(in particular, those whose code points are > 127) are treated as literals.

If a pattern is compiled with option ext ended, whitespace in the pattern (other than in a character class) and
characters between a# outside a character class and the next newline are ignored. An escaping backslash can be used
to include a whitespace or # character as part of the pattern.

Ericsson AB. All Rights Reserved.: STDLIB | 387

re

To remove the special meaning from a sequence of characters, put them between \Q and \E. This is different from
Perl in that $ and @ are handled as literalsin \Q...\E sequences in PCRE, while $ and @ cause variable interpolation
in Perl. Notice the following examples:

Pattern PCRE matches Perl matches

\Qabc$xyz\E abc$xyz abc followed by the contents of $xyz
\Qabc\$xyz\E abc\$xyz abc\$xyz

\Qabc\E\$\Qxyz\E abc$xyz abc$xyz

The\Q...\E sequenceis recognized both inside and outside character classes. An isolated \E that is not preceded by \Q
isignored. If \Q is not followed by \E later in the pattern, the literal interpretation continues to the end of the pattern
(that is, \E is assumed at the end). If the isolated \Q is inside a character class, this causes an error, as the character
classis not terminated.

Non-Printing Characters

A second use of backslash provides away of encoding non-printing charactersin patterns in avisible manner. There
is no restriction on the appearance of non-printing characters, apart from the binary zero that terminates a pattern.
When a pattern is prepared by text editing, it is often easier to use one of the following escape sequences than the
binary character it represents:

\a
Alarm, that is, the BEL character (hex 07)
\cx
"Control-x", where x isany ASCI| character
\e
Escape (hex 1B)
\f
Form feed (hex OC)
\n
Linefeed (hex OA)
\r
Carriage return (hex 0D)
\t
Tab (hex 09)
\ddd
Character with octal code ddd, or back reference
\xhh
Character with hex code hh
\x{hhh..}
Character with hex code hhh..

The precise effect of \cx on ASCII charactersisasfollows: if X isalowercase letter, it is converted to upper case. Then
bit 6 of the character (hex 40) isinverted. Thus\cA to\cZ becomehex 01 to hex 1A (A is41, Zis5A), but \c{ becomes
hex 3B ({ is 7B), and \c; becomes hex 7B (; is 3B). If the data item (byte or 16-bit value) following \c has avalue >
127, acompile-time error occurs. Thislocks out non-ASCII charactersin al modes.

The \c facility was designed for use with ASCII characters, but with the extension to Unicode it is even less useful
than it once was.

By default, after \x, from zero to two hexadecimal digits are read (letters can be in upper or lower case). Any humber
of hexadecimal digits can appear between \x{ and }, but the character code is constrained as follows:

8-bit non-Unicode mode
< 0x100

388 | Ericsson AB. All Rights Reserved.: STDLIB

re

8-bit UTF-8 mode
< Ox10ffff and avalid code point

Invalid Unicode code points are the range 0xd800 to Oxdfff (the so-called "surrogate" code points), and Oxffef.

If characters other than hexadecimal digits appear between \x{ and }, or if thereisno terminating }, thisform of escape
is not recognized. Instead, theinitial \x is interpreted as a basic hexadecimal escape, with no following digits, giving
a character whose value is zero.

Characters whose value is < 256 can be defined by either of the two syntaxes for \x. There is no difference in the way
they are handled. For example, \xdc is the same as \x{dc} .

After \O up to two further octal digits are read. If there are fewer than two digits, only those that are present are used.
Thus the sequence \O\x\07 specifies two binary zeros followed by a BEL character (code value 7). Ensure to supply
two digits after the initial zero if the pattern character that followsisitself an octal digit.

The handling of a backslash followed by a digit other than 0 is complicated. Outside a character class, PCRE reads it
and any following digits as a decimal number. If the number is < 10, or if there have been at |east that many previous
capturing left parentheses in the expression, the entire sequence is taken as a back reference. A description of how
thisworks is provided later, following the discussion of parenthesized subpatterns.

Inside acharacter class, or if the decimal number is> 9 and there have not been that many capturing subpatterns, PCRE
re-reads up to three octal digits following the backslash, and uses them to generate a data character. Any subsequent
digits stand for themselves. The value of the character is constrained in the same way as characters specified in
hexadecimal. For example;

\040
Another way of writing an ASCI| space
\40
The same, provided there are < 40 previous capturing subpatterns
\7
Always aback reference
\11
Can be aback reference, or another way of writing atab
\011
Alwaysatab
\0113
A tab followed by character "3"
\113
Can be aback reference, otherwise the character with octal code 113
\377
Can be aback reference, otherwise value 255 (decimal)
\81

Either a back reference, or abinary zero followed by the two characters "8" and "1"
Noticethat octal values>= 100 must not beintroduced by aleading zero, asno morethan three octal digitsareever read.

All the sequencesthat define asingle character value can be used both inside and outside character classes. Also, inside
acharacter class, \b isinterpreted as the backspace character (hex 08).

\N isnot allowed in a character class. \B, \R, and \X are not special inside a character class. Like other unrecognized
escape sequences, they aretreated astheliteral characters"B", "R", and "X". Outside a character class, these sequences
have different meanings.

Unsupported Escape Sequences

In Perl, the sequences \I, \L, \u, and \U are recognized by its string handler and used to modify the case of following
characters. PCRE does not support these escape sequences.

Absolute and Relative Back References

Ericsson AB. All Rights Reserved.: STDLIB | 389

re

The sequence\g followed by an unsigned or a negative number, optionally enclosed in braces, isan absolute or relative
back reference. A named back reference can be coded as \g{ name} . Back references are discussed later, following the
discussion of parenthesized subpatterns.

Absolute and Relative Subroutine Calls

For compatibility with Oniguruma, the non-Perl syntax \g followed by a name or a humber enclosed either in angle
brackets or single quotes, is alternative syntax for referencing a subpattern as a "subroutine”. Details are discussed
later. Notice that \g{...} (Perl syntax) and \g<...> (Oniguruma syntax) are not synonymous. The former is a back
reference and the latter is a subroutine call.

Generic Character Types
Another use of backslash isfor specifying generic character types:

\d
Any decimal digit
\D
Any character that is not adecimal digit
\h
Any horizontal whitespace character
\H
Any character that is not a horizontal whitespace character
\s
Any whitespace character
\S
Any character that is not a whitespace character
\v
Any vertical whitespace character
\V
Any character that is not a vertical whitespace character
\w
Any "word" character
\W
Any "non-word" character

Thereisalso the single sequence \N, which matches anon-newline character. Thisisthe sasme asthe"." metacharacter
when dot al | isnot set. Perl also uses\N to match characters by name, but PCRE does not support this.

Each pair of lowercase and uppercase escape sequences partitions the complete set of characters into two disjoint
sets. Any given character matches one, and only one, of each pair. The sequences can appear both inside and outside
character classes. They each match one character of the appropriate type. If the current matching point is at the end
of the subject string, al fail, as there is no character to match.

For compatibility with Perl, \s does not match the VT character (code 11). This makes it different from the Posix
"space" class. The\s charactersare HT (9), LF (10), FF (12), CR (13), and space (32). If "use locale;" isincluded in
a Perl script, \s can match the VT character. In PCRE, it never does.

A "word" character is an underscore or any character that is a letter or a digit. By default, the definition of letters
and digits is controlled by the PCRE low-valued character tables, in Erlang's case (and without option uni code),
the 1SO Latin-1 character set.

By default, in uni code mode, characters with values > 255, that is, al characters outside the 1SO Latin-1 character
set, never match \d, \s, or \w, and always match \D, \S, and \W. These sequences retain their original meanings from
before UTF support wasavailable, mainly for efficiency reasons. However, if option ucp isset, the behavior ischanged
so that Unicode properties are used to determine character types, as follows:

390 | Ericsson AB. All Rights Reserved.: STDLIB

re

\d
Any character that \p{ Nd} matches (decimal digit)
\s
Any character that \p{ Z} matches, plusHT, LF, FF, CR
\w
Any character that \p{L} or \p{ N} matches, plus underscore

The uppercase escapes match the inverse sets of characters. Notice that \d matches only decimal digits, while \w
matches any Unicode digit, any Unicode letter, and underscore. Notice also that ucp affects \b and \B, as they are
defined in terms of \w and \W. Matching these sequencesis noticeably slower when ucp is set.

The sequences\h, \H, \v, and \V are featuresthat were added to Perl in release 5.10. In contrast to the other sequences,
which match only ASCII characters by default, these always match certain high-valued code points, regardlessif ucp
iS set.

The following are the horizontal space characters:

U+0009

Horizontal tab (HT)
U+0020

Space
U+00A0

Non-break space
U+1680

Ogham space mark
U+180E

Mongolian vowel separator
U+2000

En quad
U+2001

Em quad
U+2002

En space
U+2003

Em space
U+2004

Three-per-em space
U+2005

Four-per-em space
U+2006

Six-per-em space
U+2007

Figure space
U+2008

Punctuation space
U+2009

Thin space
U+200A

Hair space
U+202F

Narrow no-break space
U+205F

Medium mathematical space

Ericsson AB. All Rights Reserved.: STDLIB | 391

re

U+3000
I deographic space

The following are the vertical space characters:

U+000A

Linefeed (LF)
U+000B

Vertical tab (VT)
U+000C

Form feed (FF)
U+000D

Carriage return (CR)
U+0085

Next line (NEL)
U+2028

Line separator
U+2029

Paragraph separator

In 8-bit, non-UTF-8 mode, only the characters with code points < 256 are relevant.
Newline Sequences

Outside a character class, by default, the escape sequence \R matches any Unicode newline sequence. In non-UTF-8
mode, \R is equivalent to the following:

(?>\r\n|[\n|\x0b |\f|\r|\x85)

Thisis an example of an "atomic group", details are provided below.

This particular group matches either the two-character sequence CR followed by LF, or one of the single characters
LF (linefeed, U+000A), VT (vertical tab, U+000B), FF (form feed, U+000C), CR (carriage return, U+000D), or NEL
(next line, U+0085). The two-character sequenceis treated as a single unit that cannot be split.

In Unicode mode, two more characters whose code points are > 255 are added: LS (line separator, U+2028) and PS
(paragraph separator, U+2029). Unicode character property support isnot needed for these charactersto be recognized.

\R can be restricted to match only CR, LF, or CRLF (instead of the complete set of Unicode line endings) by setting
option bsr _anycr | f either at compile time or when the pattern is matched. (BSR is an acronym for "backslash
R".) This can be made the default when PCRE is built; if so, the other behavior can be requested through option
bsr _uni code. These settings can also be specified by starting a pattern string with one of the following sequences:

(*BSR_ANYCRLF)

CR, LF, or CRLF only
(*BSR_UNICODE)

Any Unicode newline sequence

These override the default and the options specified to the compiling function, but they can themselves be overridden
by options specified to a matching function. Notice that these special settings, which are not Perl-compatible, are
recoghized only at the very start of a pattern, and that they must be in upper case. If more than one of themis present,
thelast oneisused. They can be combined with achange of newline convention; for example, apattern can start with:

(*ANY) (*BSR_ANYCRLF)

392 | Ericsson AB. All Rights Reserved.: STDLIB

re

They can aso be combined with the (*UTF8), (*UTF), or (*UCP) specia sequences. Inside a character class, \R is
treated as an unrecognized escape sequence, and so matches the letter "R" by defaullt.

Unicode Character Properties

Three more escape sequences that match characters with specific properties are available. When in 8-bit non-UTF-8
mode, these sequences are limited to testing characters whose code points are < 256, but they do work in this mode.
The following are the extra escape sequences:

\p{xx}
A character with property xx
\P{xx}
A character without property xx
\X
A Unicode extended grapheme cluster

The property names represented by xx above are limited to the Unicode script names, the general category properties,
"Any", which matches any character (including newline), and some special PCRE properties (described in the next
section). Other Perl properties, such as "InMusicalSymbols', are currently not supported by PCRE. Notice that
\P{Any} does not match any characters and always causes a match failure.

Setsof Unicode characters are defined asbelonging to certain scripts. A character from one of these sets can be matched
using a script name, for example:

\p{Greek} \P{Han}

Those that are not part of an identified script are lumped together as "Common". The following is the current list of
scripts:

e Arabic

* Armenian
¢ Avestan

e Balinese

e Bamum

* Batak

e Bengdi

* Bopomofo
e Bralle

e Buginese
* Buhid

e Canadian_Aboriginal
e Carian

e Chakma

e« Cham

e Cherokee
e« Common

« Coptic

e Cuneiform
e Cypriot

e Cyrillic

Ericsson AB. All Rights Reserved.: STDLIB | 393

re

Deseret
Devanagari
Egyptian_Hieroglyphs
Ethiopic

Georgian
Glagolitic

Gothic

Greek

Gujarati

Gurmukhi

Han

Hangul

Hanunoo

Hebrew

Hiragana
Imperial_Aramaic
Inherited
Inscriptional_Pahlavi
Inscriptional_Parthian
Javanese

Kaithi

Kannada
Katakana
Kayah_Li
Kharoshthi

Khmer

Lao

Latin

Lepcha

Limbu

Linear B

Lisu

Lycian

Lydian
Malayalam
Mandaic
Meetei Mayek
Meroitic_Cursive
Meroitic_Hieroglyphs
Miao

Mongolian
Myanmar

New Ta Lue

394 | Ericsson AB. All Rights Reserved

.. STDLIB

re

« Nko

e Ogham

e Old Italic

e Old Persan
e Oriya

e Old_South Arabian
e Old_Turkic
e Ol_Chiki

¢ Osmanya

e Phags Pa

e Phoenician
* Rdang

* Runic

e Samaritan

e Saurashtra
e Sharada

e Shavian

e Sinhala

e Sora_Sompeng
e Sundanese

e Syloti_Nagri
e Syriac

e« Tagaog

» Tagbanwa
e Ta Le

e Ta_Tham
e Ta_Viet

o Takri

e Tamil

e Telugu

e Thaana

e Tha

e Tibetan

e Tifinagh

e Ugaritic

e Va

o i

Each character hasexactly one Unicode general category property, specified by atwo-letter acronym. For compatibility
with Perl, negation can be specified by including a circumflex between the opening brace and the property name. For
example, \p{~Lu} isthe same as\P{Lu}.

If only one letter is specified with \p or \P, it includes al the general category properties that start with that Ietter.
In this case, in the absence of negation, the curly brackets in the escape sequence are optional. The following two
examples have the same effect:

Ericsson AB. All Rights Reserved.: STDLIB | 395

re

\p{L}
\pL

The following general category property codes are supported:

C

Other
Cc

Control
Cf

Format
Cn

Unassigned
Co

Private use
Cs

Surrogate
L

Letter
LI

Lowercase letter
Lm

Modifier letter
Lo

Other letter
Lt

Title case letter
Lu

Uppercase letter
M

Mark
Mc

Spacing mark
Me

Enclosing mark
Mn

Non-spacing mark
N

Number
Nd

Decimal number
NI

L etter number
No

Other number

Punctuation
Connector punctuation

Dash punctuation

396 | Ericsson AB. All Rights Reserved.: STDLIB

re

&

Close punctuation

Pf

Final punctuation
Pi

Initial punctuation
Po

Other punctuation
Ps

Open punctuation
S

Symbol
Sc

Currency symbol
Sk

Modifier symbol
Sm

Mathematical symbol
So

Other symbol
z

Separator
Zl

Line separator
Zp

Paragraph separator
Zs

Space separator

The specia property L& is also supported. It matches a character that has the Lu, LI, or Lt property, that is, aletter
that is not classified as amodifier or "other".

The Cs (Surrogate) property applies only to charactersin the range U+D800 to U+DFFF. Such characters areinvalid
in Unicode strings and so cannot be tested by PCRE. Perl does not support the Cs property.

The long synonyms for property names supported by Perl (such as \p{Letter}) are not supported by PCRE. It is not
permitted to prefix any of these properties with "Is".

No character in the Unicode table has the Cn (unassigned) property. This property is instead assumed for any code
point that is not in the Unicode table.

Specifying caseless matching does not affect these escape sequences. For example, \p{Lu} aways matches only
uppercase letters. Thisis different from the behavior of current versions of Perl.

Matching characters by Unicode property is not fast, as PCRE must do a multistage table lookup to find a character
property. That is why the traditional escape sequences such as \d and \w do not use Unicode properties in PCRE by
default. However, you can make them do so by setting option ucp or by starting the pattern with (* UCP).

Extended Grapheme Clusters

The \X escape matches any number of Unicode characters that form an "extended grapheme cluster”, and treats the
sequenceasan atomic group (seebelow). Upto and including rel ease 8.31, PCRE matched an earlier, simpler definition
that was equivalent to (?>\ PM pM) . That is, it matched a character without the "mark" property, followed by zero
or more characters with the "mark" property. Characters with the "mark" property are typically non-spacing accents
that affect the preceding character.

Ericsson AB. All Rights Reserved.: STDLIB | 397

re

This simple definition was extended in Unicode to include more complicated kinds of composite character by giving
each character a grapheme breaking property, and creating rules that use these properties to define the boundaries of
extended grapheme clusters. In PCRE releases |ater than 8.31, \X matches one of these clusters.

\X always matches at |east one character. Then it decides whether to add more characters according to the following
rulesfor ending a cluster:

e End at the end of the subject string.

e Do not end between CR and LF; otherwise end after any control character.

» Do not break Hangul (a Korean script) syllable sequences. Hangul characters are of fivetypes: L, V, T, LV, and
LVT. AnL character can befollowed by anL, V, LV, or LVT character. An LV or V character can be followed
by aV or T character. An LVT or T character can be followed only by a T character.

« Do not end before extending characters or spacing marks. Characters with the "mark" property always have the
"extend" grapheme breaking property.

* Do not end after prepend characters.

* Otherwise, end the cluster.

PCRE Additional Properties

In addition to the standard Unicode properties described earlier, PCRE supports four more that make it possible
to convert traditional escape sequences, such as \w and \s, and Posix character classes to use Unicode properties.
PCRE uses these non-standard, non-Per| propertiesinternally when PCRE_UCP is set. However, they can also be used
explicitly. The properties are as follows:

Xan
Any aphanumeric character. Matches characters that have either the L (letter) or the N (number) property.
Xps

Any Posix space character. Matches the characters tab, line feed, vertical tab, form feed, carriage return, and any
other character that hasthe Z (separator) property.

Xsp

Any Perl space character. Matches the same as Xps, except that vertical tab is excluded.
Xwd

Any Perl "word" character. Matches the same characters as Xan, plus underscore.

There is another non-standard property, Xuc, which matches any character that can be represented by a Universal
Character Name in C++ and other programming languages. These are the characters $, @, ~ (grave accent), and all
characters with Unicode code points >= U+00AOQ, except for the surrogates U+D800 to U+DFFF. Notice that most
base (ASCII) characters are excluded. (Universal Character Names are of the form \uHHHH or \UHHHHHHHH,
where H is a hexadecimal digit. Notice that the Xuc property does not match these sequences but the characters that
they represent.)

Resetting the Match Start

The escape sequence \K causes any previously matched characters not to be included in the final matched sequence.
For example, the following pattern matches "foobar", but reports that it has matched "bar":

foo\Kbar

Thisfeatureissimilar to alookbehind assertion (described below). However, in this case, the part of the subject before
the real match does not have to be of fixed length, as lookbehind assertions do. The use of \K does not interfere with

398 | Ericsson AB. All Rights Reserved.: STDLIB

re

the setting of captured substrings. For example, when the following pattern matches "foobar”, the first substring is
still set to "foo":

(foo)\Kbar

Perl documents that the use of \K within assertionsis "not well defined”. In PCRE, \K is acted upon when it occurs
inside positive assertions, but isignored in negative assertions.

Simple Assertions

The final use of backslash is for certain simple assertions. An assertion specifies a condition that must be met at a
particular point in amatch, without consuming any characters from the subject string. The use of subpatterns for more
complicated assertions is described below. The following are the backslashed assertions:

K Matches at aword boundary.

® Matches when not at aword boundary.

” Matches at the start of the subject.

? Matches at the end of the subject, and before a newline at the end of the subject.
§ Matches only at the end of the subject.

© Matches at the first matching position in the subject.

Inside a character class, \b has a different meaning; it matches the backspace character. If any other of these assertions
appears in a character class, by default it matches the corresponding literal character (for example, \B matches the
|etter B).

A word boundary is a position in the subject string where the current character and the previous character do not both
match \w or \W (that is, one matches \w and the other matches\W), or the start or end of the string if the first or last
character matches \w, respectively. In UTF mode, the meanings of \w and \W can be changed by setting option ucp.
When thisis done, it also affects \b and \B. PCRE and Perl do not have a separate "start of word" or "end of word"
metasequence. However, whatever follows\b normally determineswhich it is. For example, the fragment \ba matches
"a" at the start of aword.

The\A,\Z, and \z assertions differ from the traditional circumflex and dollar (described in the next section) in that they
only ever match at the very start and end of the subject string, whatever options are set. Thus, they are independent of
multiline mode. Thesethree assertionsare not affected by optionsnot bol or not eol , which affect only the behavior
of the circumflex and dollar metacharacters. However, if argument st ar t of f set of r un/ 3 isnon-zero, indicating
that matching isto start at apoint other than the beginning of the subject, \A can never match. The difference between
\Z and\z isthat \Z matches before anewline at the end of the string and at the very end, while\z matchesonly at the end.

The \G assertion is true only when the current matching position is at the start point of the match, as specified by
argument st art of f set of run/ 3. It differs from \A when the value of st art of f set is non-zero. By calling
run/ 3 multiple times with appropriate arguments, you can mimic the Perl option / g, and it is in this kind of
implementation where \G can be useful.

Notice, however, that the PCRE interpretation of \G, as the start of the current match, is subtly different from Perl,
which definesit as the end of the previous match. In Perl, these can be different when the previously matched string
was empty. As PCRE does only one match at atime, it cannot reproduce this behavior.

If al the aternatives of a pattern begin with \G, the expression is anchored to the starting match position, and the
"anchored" flag is set in the compiled regular expression.

Ericsson AB. All Rights Reserved.: STDLIB | 399

re

Circumflex and Dollar

The circumflex and dollar metacharacters are zero-width assertions. That is, they test for a particular condition to be
true without consuming any characters from the subject string.

Outside a character class, in the default matching mode, the circumflex character is an assertion that is true only if
the current matching point is at the start of the subject string. If argument st art of f set of run/ 3 is non-zero,
circumflex can never matchif optionnul ti | i ne isunset. Insideacharacter class, circumflex hasan entirely different
meaning (see below).

Circumflex needs not to be the first character of the pattern if some alternatives are involved, but it is to be the first
thing in each alternative in which it appears if the pattern is ever to match that branch. If al possible alternatives
start with a circumflex, that is, if the pattern is constrained to match only at the start of the subject, it is said to be an
"anchored" pattern. (There are also other constructs that can cause a pattern to be anchored.)

The dollar character is an assertion that is true only if the current matching point is at the end of the subject string, or
immediately before anewline at the end of the string (by default). Notice however that it does not match the newline.
Dollar needs not to be the last character of the pattern if some alternatives are involved, but it isto be the last itemin
any branch in which it appears. Dollar has no special meaning in a character class.

The meaning of dollar can be changed so that it matches only at the very end of the string, by setting option
dol I ar _endonl y a compiletime. This does not affect the \Z assertion.

The meanings of the circumflex and dollar characters are changed if option nul ti | i ne is set. When this is the
case, a circumflex matchesimmediately after internal newlines and at the start of the subject string. It does not match
after a newline that ends the string. A dollar matches before any newlines in the string, and at the very end, when
mul tiline isset. When newlineis specified as the two-character sequence CRLF, isolated CR and LF characters
do not indicate newlines.

For example, the pattern /~abc$/ matches the subject string "def\nabc” (where \n represents a newline) in multiline
mode, but not otherwise. So, patterns that are anchored in single-line mode because all branches start with ~ are not
anchored in multiline mode, and amatch for circumflex is possible when argument startoffset of r un/ 3 is non-zero.
Optiondol | ar _endonl y isignoredif mul ti | i ne isset.

Notice that the sequences \A, \Z, and \z can be used to match the start and end of the subject in both modes. If all
branches of a pattern start with \A, it is always anchored, regardlessif rul ti | i ne isset.

Full Stop (Period, Dot) and \N

Outside acharacter class, adot in the pattern matches any character in the subject string except (by default) acharacter
that signifiesthe end of aline.

When aline ending isdefined asasingle character, dot never matchesthat character. When the two-character sequence
CRLF isused, dot doesnot match CRif itisimmediately followed by LF, otherwiseit matchesall characters (including
isolated CRs and LFs). When any Unicode line endings are recognized, dot does not match CR, LF, or any of the
other line-ending characters.

The behavior of dot regarding newlines can be changed. If optiondot al | isset, adot matches any character, without
exception. If the two-character sequence CRLF is present in the subject string, it takes two dots to match it.

The handling of dot is entirely independent of the handling of circumflex and dollar, the only relationship is that both
involve newlines. Dot has no special meaning in a character class.

The escape sequence \N behaveslike adot, except that it is not affected by option PCRE_DOTALL. That is, it matches
any character except one that signifies the end of a line. Perl also uses \N to match characters by name but PCRE
does not support this.

400 | Ericsson AB. All Rights Reserved.: STDLIB

re

Matching a Single Data Unit

Outside acharacter class, the escape sequence \C matches any data unit, regardliessif aUTF modeis set. One data unit
isone byte. Unlike adot, \C aways matchesline-ending characters. The featureis provided in Perl to match individual
bytesin UTF-8 mode, but it is unclear how it can usefully be used. As\C breaks up characters into individual data
units, matching one unit with \C in a UTF mode means that the remaining string can start with a malformed UTF
character. This has undefined results, as PCRE assumes that it deals with valid UTF strings.

PCRE does not allow \C to appear in lookbehind assertions (described below) in a UTF mode, as this would make it
impossible to calculate the length of the lookbehind.

The \C escape sequence is best avoided. However, one way of using it that avoids the problem of malformed UTF
characters is to use a lookahead to check the length of the next character, as in the following pattern, which can be
used with a UTF-8 string (ignore whitespace and line breaks):

(?] (?=[\x00-\x7f]) (\C) |
?=[\x80-\x{7ff}]) (\C) (\C) |
?=[\x{800} - \x{ffff}]) (\C) (\C) (\C) |

?=[\x{10000} -\x{1fffff}]) (\C) (\C) (\C) (\C))

—_———~ —~

A group that starts with (7| resets the capturing parentheses numbers in each alternative (see section Duplicate
Subpattern Numbers). The assertions at the start of each branch check the next UTF-8 character for values whose
encoding uses 1, 2, 3, or 4 bytes, respectively. Theindividual bytes of the character arethen captured by the appropriate
number of groups.

Square Brackets and Character Classes

An opening square bracket introduces a character class, terminated by a closing sguare bracket. A closing square
bracket on its own is not special by default. However, if option PCRE_JAVASCRI PT_COMPAT is set, alone closing
sguare bracket causes a compile-time error. If a closing square bracket is required as a member of the class, it isto be
the first data character in the class (after aninitial circumflex, if present) or escaped with a backslash.

A character class matches a single character in the subject. In a UTF mode, the character can be more than one data
unit long. A matched character must be in the set of characters defined by the class, unless the first character in the
class definition is a circumflex, in which case the subject character must not be in the set defined by the class. If a
circumflex isrequired as a member of the class, ensure that it is not the first character, or escape it with a backslash.

For example, the character class[aei ou] matches any lowercase vowel, while [*aei ou] matches any character
that is not alowercase vowel. Notice that a circumflex is just a convenient notation for specifying the characters that
are in the class by enumerating those that are not. A class that starts with a circumflex is not an assertion; it still
consumes a character from the subject string, and therefore it failsif the current pointer is at the end of the string.

In UTF-8 mode, characters with values > 255 (0xffff) can be included in a class as a litera string of data units, or
by using the \x{ escaping mechanism.

When casel essmatching isset, any lettersin aclassrepresent both their uppercase and lowercase versions. For example,
a caseless [aei ou] matches "A" and "&', and a caseless [“aei ou] does not match "A", but a caseful version
would. In a UTF mode, PCRE always understands the concept of case for characters whose values are < 256, so
caseless matching is always possible. For characters with higher values, the concept of caseis supported only if PCRE
is compiled with Unicode property support. If you want to use caseless matching in a UTF mode for characters >=,
ensure that PCRE is compiled with Unicode property support and with UTF support.

Charactersthat can indicate line breaks are never treated in any specia way when matching character classes, whatever
line-ending sequence is in use, and whatever setting of options PCRE_DOTALL and PCRE_MULTI LI NE isused. A
class such as["a] always matches one of these characters.

Ericsson AB. All Rights Reserved.: STDLIB | 401

re

The minus (hyphen) character can be used to specify arange of charactersin a character class. For example, [d-m]
matches any letter between d and m, inclusive. If a minus character is required in a class, it must be escaped with
a backslash or appear in a position where it cannot be interpreted as indicating a range, typicaly as the first or last
character in the class.

The literal character "]" cannot be the end character of arange. A pattern such as [W-]46] isinterpreted as a class of
two characters ("W" and "-") followed by aliteral string "46]", so it would match "W46]" or "-46]". However, if "]" is
escaped with a backslash, it isinterpreted as the end of range, so [W-\]46] is interpreted as a class containing a range
followed by two other characters. The octal or hexadecimal representation of "]" can also be used to end arange.

Ranges operate in the collating sequence of character values. They can aso be used for characters specified
numerically, for example, [\000-\037]. Ranges can include any charactersthat are valid for the current mode.

If arange that includes lettersis used when caseless matching is set, it matches the lettersin either case. For example,
[W-c] isequivalent to [][\W*_"wxyzabc], matched caselessly. Inanon-UTF mode, if character tablesfor aFrench locale
arein use, [\xc8-\xcb] matches accented E charactersin both cases. In UTF modes, PCRE supports the concept of case
for characters with values > 255 only when it is compiled with Unicode property support.

The character escape sequences\d, \D, \h, \H, \p, \P, \s,\S, \v, \V, \w, and \W can appear in a character class, and add
the characters that they match to the class. For example, [\dABCDEF] matches any hexadecimal digit. In UTF modes,
option ucp affects the meanings of \d, \s, \w and their uppercase partners, just as it does when they appear outside
a character class, as described in section Generic Character Types earlier. The escape sequence \b has a different
meaning inside a character class; it matches the backspace character. The sequences\B, \N, \R, and \X are not special
inside a character class. Like any other unrecognized escape sequences, they are treated as the literal characters "B",
"N","R", and "X".

A circumflex can conveniently be used with the uppercase character typesto specify amore restricted set of characters
than the matching lowercase type. For example, class [M\W_] matches any letter or digit, but not underscore, while

[\w] includes underscore. A positive character classisto be read as"something OR something OR ..." and a hegative
classas "NOT something AND NOT something AND NOT ...".

Only the following metacharacters are recognized in character classes:

* Backdash

* Hyphen (only where it can be interpreted as specifying arange)

e Circumflex (only at the start)

e Opening square bracket (only when it can be interpreted as introducing a Posix class name; see the next section)
* Terminating closing square bracket

However, escaping other non-alphanumeric characters does no harm.

Posix Character Classes

Perl supportsthe Posix notation for character classes. This uses names enclosed by [: and :] within the enclosing square
brackets. PCRE a so supports this notation. For example, the following matches "0", "1", any aphabetic character,
or "%":

[01[:alpha:]%]

The following are the supported class names:

alnum

Letters and digits
apha

Letters

402 | Ericsson AB. All Rights Reserved.: STDLIB

re

ascii
Character codes 0-127
blank
Space or tab only
cntrl
Control characters
digit
Decimal digits (same as \d)
graph
Printing characters, excluding space
lower
Lowercase letters
print
Printing characters, including space
punct
Printing characters, excluding letters, digits, and space
space
Whitespace (not quite the same as\s)
upper
Uppercase letters
word
"Word" characters (same as \w)
xdigit
Hexadecimal digits
The "space" characters are HT (9), LF (10), VT (11), FF (12), CR (13), and space (32). Natice that this list includes
the VT character (code 11). This makes "space" different to \s, which does not include VT (for Perl compatibility).

Thename"word" isaPerl extension, and "blank" isaGNU extension from Perl 5.8. Another Perl extensionisnegation,
whichisindicated by a” character after the colon. For example, the following matches 1", "2", or any non-digit:

[12[:~digit:]]

PCRE (and Perl) also recognize the Posix syntax [.ch.] and [=ch=] where "ch" is a"collating element", but these are
not supported, and an error is given if they are encountered.

By default, in UTF modes, characters with values > 255 do not match any of the Posix character classes. However,
if option PCRE_UCP is passed to pcr e_conpi | e(), some of the classes are changed so that Unicode character
properties are used. Thisis achieved by replacing the Posix classes by other sequences, as follows:

[:alnum:]

Becomes \p{Xan}
[:alpha]

Becomes\p{L}
[:blank:]

Becomes\h
[:digit:]

Becomes \p{Nd}
[:lower:]

Becomes\p{L I}
[:space]

Becomes \p{Xps}

Ericsson AB. All Rights Reserved.: STDLIB | 403

re

[:upper:]

Becomes \p{L u}
[:word:]

Becomes \p{Xwd}

Negated versions, such as [:"apha:], use \P instead of \p. The other Posix classes are unchanged, and match only
characters with code points < 256.

Vertical Bar

Vertical bar characters are used to separate aternative patterns. For example, the following pattern matches either
"gilbert" or "sullivan':

gilbert|sullivan

Any number of alternatives can appear, and an empty alternative is permitted (matching the empty string). The
matching process tries each alternative in turn, from left to right, and the first that succeedsis used. If the alternatives
are within a subpattern (defined in section Subpatterns), "succeeds' means matching the remaining main pattern and
the alternative in the subpattern.

Internal Option Setting

The settings of the Perl-compatible options casel ess, nul ti | i ne, dotal |, and ext ended can be changed
from within the pattern by a sequence of Perl option letters enclosed between "(?' and ")". The option letters are as
follows:
i

For casel ess

m
Formul tiline
S
For dot al |
X

For ext ended

For example, (?i m) sets caseless, multiline matching. These options can also be unset by preceding the letter with
a hyphen. A combined setting and unsetting such as (?i m sx), which setscasel ess and nul ti | i ne, while
unsetting dot al | and ext ended, is aso permitted. If aletter appears both before and after the hyphen, the option
IS unset.

The PCRE-specific options dupnanes, ungr eedy, and ext r a can be changed in the same way as the Perl-
compatible options by using the characters J, U, and X respectively.

When one of these option changes occurs at top-level (that is, not inside subpattern parentheses), the change applies
to the remainder of the pattern that follows. If the change is placed right at the start of a pattern, PCRE extracts it
into the global options.

An option change within a subpattern (see section Subpatterns) affects only that part of the subpattern that followsit.
So, the following matches abc and aBc and no other strings (assuming casel ess isnot used):

(a(?i)b)c

By this means, options can be made to have different settings in different parts of the pattern. Any changes made in
one alternative do carry on into subsequent branches within the same subpattern. For example:

404 | Ericsson AB. All Rights Reserved.: STDLIB

re

(a(?i)b|c)

matches"ab", "aB", "c", and "C", although when matching "C" thefirst branch is abandoned before the option setting.
Thisis because the effects of option settings occur at compile time. There would be some weird behavior otherwise.

Note:

Other PCRE-specific options can be set by the application when the compiling or matching functions are called.
Sometimes the pattern can contain special leading sequences, such as (* CRLF), to override what the application
has set or what has been defaulted. Details are provided in section Newline Sequences earlier.

The (*UTF8) and (*UCP) leading sequences can be used to set UTF and Unicode property modes. They are
equivalent to setting options uni code and ucp, respectively. The (*UTF) sequence is a generic version that
can be used with any of the libraries. However, the application can set option never _ut f , which locks out the
use of the (*UTF) sequences.

Subpatterns

Subpatterns are delimited by parentheses (round brackets), which can be nested. Turning part of a pattern into a
subpattern does two things:

1.
It localizes a set of alternatives. For example, the following pattern matches "cataract”, "caterpillar”, or "cat":
cat(aract|erpillar|)
Without the parentheses, it would match "cataract”, "erpillar”, or an empty string.
2.

It sets up the subpattern as a capturing subpattern. That is, when the complete pattern matches, that portion of the
subject string that matched the subpattern is passed back to the caller through the return value of r un/ 3.

Opening parentheses are counted from left to right (starting from 1) to obtain numbers for the capturing subpatterns.
For example, if the string "the red king" is matched against the following pattern, the captured substrings are "red
king", "red", and "king", and are numbered 1, 2, and 3, respectively:

the ((red|white) (king]|queen))

It is not always helpful that plain parentheses fulfill two functions. Often a grouping subpattern is required without
a capturing requirement. If an opening parenthesis is followed by a question mark and a colon, the subpattern does
not do any capturing, and is not counted when computing the number of any subsequent capturing subpatterns. For
example, if the string "the white queen" is matched against the following pattern, the captured substrings are "white
gueen” and "queen", and are numbered 1 and 2:

the ((?:red|white) (king]|queen))

The maximum number of capturing subpatterns is 65535.

Ericsson AB. All Rights Reserved.: STDLIB | 405

re

As a convenient shorthand, if any option settings are required at the start of a non-capturing subpattern, the option
letters can appear between "?' and ":". Thus, the following two patterns match the same set of strings:

(?i:saturday|sunday)
(?:(?1i)saturday|sunday)

As alternative branches are tried from left to right, and options are not reset until the end of the subpattern is reached,
an option setting in one branch does affect subsequent branches, so the above patterns match both "SUNDAY™" and
"Saturday”.

Duplicate Subpattern Numbers

Perl 5.10 introduced a feature where each aternative in a subpattern uses the same numbers for its capturing
parentheses. Such a subpattern starts with (?| and is itself a non-capturing subpattern. For example, consider the
following pattern:

(?](Sat)ur]| (Sun))day

As the two alternatives are inside a (?| group, both sets of capturing parentheses are numbered one. Thus, when
the pattern matches, you can look at captured substring number one, whichever alternative matched. This construct
is useful when you want to capture a part, but not al, of one of many alternatives. Inside a (?| group, parentheses
are numbered as usual, but the number is reset at the start of each branch. The numbers of any capturing parentheses
that follow the subpattern start after the highest number used in any branch. The following example is from the Perl
documentation; the numbers underneath show in which buffer the captured content is stored:

before --------------- branch-reset----------- after
/Ca) (2l x(Cy)z | (p(a)r) | (t)u(v)) (z) /x
#1 2 2 3 2 3 4

A back reference to a numbered subpattern uses the most recent value that is set for that number by any subpattern.
The following pattern matches "abcabc" or "defdef":

/(?] (abc) | (def))\1/

In contrast, a subroutine call to a numbered subpattern always refers to the first one in the pattern with the given
number. The following pattern matches "abcabc" or "defabc™:

/(7] (abc) | (def)) (?1)/

If acondition test for asubpattern having matched refersto anon-unique number, thetest istrueif any of the subpatterns
of that number have matched.

An alternative approach using this "branch reset” feature is to use duplicate named subpatterns, as described in the
next section.

406 | Ericsson AB. All Rights Reserved.: STDLIB

re

Named Subpatterns

I dentifying capturing parentheses by number is simple, but it can be hard to keep track of the numbersin complicated
regular expressions. Also, if an expression is modified, the numbers can change. To help with this difficulty, PCRE
supportsthe naming of subpatterns. Thisfeature was not added to Perl until release 5.10. Python had the feature earlier,
and PCRE introduced it at release 4.0, using the Python syntax. PCRE now supports both the Perl and the Python
syntax. Perl allows identically numbered subpatterns to have different names, but PCRE does not.

In PCRE, a subpattern can be named in one of three ways. (?<nane>...) or (?' nane'...) asin Perl, or
(?P<name>. . .) asin Python. References to capturing parentheses from other parts of the pattern, such as back
references, recursion, and conditions, can be made by name and by number.

Names consist of up to 32 alphanumeric characters and underscores. Named capturing parentheses are still allocated
numbers as well as names, exactly as if the names were not present. The capt ur e specificationto r un/ 3 can use
named valuesiif they are present in the regular expression.

By default, a name must be unique within a pattern, but this constraint can be relaxed by setting option dupnanes at
compile time. (Duplicate names are also always permitted for subpatterns with the same number, set up as described
in the previous section.) Duplicate names can be useful for patterns where only one instance of the named parentheses
can match. Suppose that you want to match the name of aweekday, either as a 3-letter abbreviation or asthe full name,
and in both cases you want to extract the abbreviation. The following pattern (ignoring the line breaks) does the job:

(?<DN>Mon|Fri|Sun) (?:day)?|
(?7<DN>Tue) (?:sday)?|
(?7<DN>Wed) (?:nesday)?|
(?<DN>Thu) (?:rsday)?|
(?<DN>Sat) (?:urday)?

There are five capturing substrings, but only oneis ever set after amatch. (An alternative way of solving this problem
isto use a"branch reset" subpattern, as described in the previous section.)

For capturing named subpatterns which names are not unique, the first matching occurrence (counted from left to right
in the subject) isreturned from r un/ 3, if the name is specified intheval ues part of the capt ur e statement. The
al I _nanes capturing value matches al the names in the same way.

Note:

Y ou cannot use different namesto distinguish between two subpatterns with the same number, as PCRE usesonly
the numbers when matching. For this reason, an error is given at compile time if different names are specified
to subpatterns with the same number. However, you can specify the same name to subpatterns with the same
number, even when dupnames isnot set.

Repetition

Repetition is specified by quantifiers, which can follow any of the following items:
* Aliteral datacharacter

* Thedot metacharacter

e The\C escape sequence

e The\X escape sequence

* The\R escape sequence
e Anescape such as\d or \pL that matches a single character

Ericsson AB. All Rights Reserved.: STDLIB | 407

re

* A character class

* A back reference (see the next section)

» A parenthesized subpattern (including assertions)

* A subroutine call to a subpattern (recursive or otherwise)

The general repetition quantifier specifies a minimum and maximum number of permitted matches, by giving the two

numbers in curly brackets (braces), separated by a comma. The numbers must be < 65536, and the first must be less

than or equal to the second. For example, the following matches "zz", "zzz", or "zzzz":

z{2,4}

A closing brace on itsown is not a special character. If the second number is omitted, but the commais present, there
is no upper limit. If the second number and the comma are both omitted, the quantifier specifies an exact number of
required matches. Thus, the following matches at least three successive vowels, but can match many more:

[aeioul{3,}

The following matches exactly eight digits:

\d{8}

An opening curly bracket that appears in a position where a quantifier is not allowed, or one that does not match the
syntax of a quantifier, istaken as aliteral character. For example, {,6} is not a quantifier, but a literal string of four
characters.

In Unicode mode, quantifiers apply to characters rather than to individual data units. Thus, for example, \x{ 100}{ 2}
matchestwo characters, each of which isrepresented by a2-byte sequencein aUTF-8 string. Similarly, \X{ 3} matches
three Unicode extended grapheme clusters, each of which can be many data units long (and they can be of different
lengths).

The quantifier {0} is permitted, causing the expression to behave as if the previous item and the quantifier were not
present. This can be useful for subpatterns that are referenced as subroutines from elsewhere in the pattern (but see
also section Defining Subpatterns for Use by Reference Only). Items other than subpatternsthat have a{0} quantifier
are omitted from the compiled pattern.

For convenience, the three most common quantifiers have single-character abbreviations:

*

Equivalent to{0,}
+

Equivalentto{1,}
?

Equivalent to { 0,1}

Infinite loops can be constructed by following a subpattern that can match no characters with a quantifier that has no
upper limit, for example:

(a?)*

408 | Ericsson AB. All Rights Reserved.: STDLIB

re

Earlier versions of Perl and PCRE used to give an error at compile time for such patterns. However, asthere are cases
where this can be useful, such patterns are now accepted. However, if any repetition of the subpattern matches no
characters, the loop isforcibly broken.

By default, the quantifiers are "greedy”, that is, they match as much as possible (up to the maximum number of
permitted times), without causing the remaining pattern to fail. The classic example of where this gives problemsis
in trying to match commentsin C programs. These appear between /* and */. Within the comment, individual * and /
characters can appear. An attempt to match C comments by applying the pattern

VAN

to the string

/* first comment */ not comment /* second comment */

fails, asit matches the entire string owing to the greediness of the .* item.

However, if a quantifier is followed by a question mark, it ceases to be greedy, and instead matches the minimum
number of times possible, so the following pattern does the right thing with the C comments:

VAN ANV

Themeaning of the various quantifiersisnot otherwise changed, only the preferred number of matches. Do not confuse
this use of question mark with its use as a quantifier in its own right. As it has two uses, it can sometimes appear
doubled, asin

\d??\d

which matches one digit by preference, but can match two if that is the only way the remaining pattern matches.

If option ungr eedy is set (an option that is not available in Perl), the quantifiers are not greedy by default, but
individual ones can be made greedy by following them with a question mark. That is, it inverts the default behavior.

When a parenthesized subpattern is quantified with a minimum repeat count that is > 1 or with alimited maximum,
more memory is required for the compiled pattern, in proportion to the size of the minimum or maximum.

If a pattern starts with .* or .{0,} and option dot al | (equivalent to Perl option/ s) is set, thus allowing the dot to
match newlines, the pattern isimplicitly anchored, because whatever followsiis tried against every character position
in the subject string. So, there is no point in retrying the overall match at any position after the first. PCRE normally
treats such a pattern asif it was preceded by \A.

In cases where it is known that the subject string contains no newlines, it is worth setting dot al | to obtain this
optimization, or alternatively using » to indicate anchoring explicitly.

However, there are some cases where the optimization cannot be used. When .* isinside capturing parentheses that
are the subject of a back reference elsewhere in the pattern, a match at the start can fail where a later one succeeds.
Consider, for example:

(.*)abc\1

Ericsson AB. All Rights Reserved.: STDLIB | 409

re

If the subject is "xyz123abc123", the match point is the fourth character. Therefore, such a pattern is not implicitly
anchored.

Another case where implicit anchoring is not applied is when the leading .* is inside an atomic group. Once again, a
match at the start can fail where alater one succeeds. Consider the following pattern:

(?>.*?a)b

It matches "ab" in the subject "aab". The use of the backtracking control verbs (*PRUNE) and (* SKIP) also disable
this optimization.

When a capturing subpattern is repeated, the value captured is the substring that matched the final iteration. For
example, after

(tweedle[dume]{3}\s*)+

has matched "tweedledum tweedledee”, the value of the captured substring is "tweedledee”. However, if there are
nested capturing subpatterns, the corresponding captured values can have been set in previous iterations. For example,
after

/(a](b))+/
matches "aba", the value of the second captured substring is"b".

Atomic Grouping and Possessive Quantifiers

With both maximizing ("greedy") and minimizing ("ungreedy" or "lazy") repetition, failure of what follows normally
causes the repeated item to be re-evaluated to see if a different number of repeats allows the remaining pattern to
match. Sometimesit is useful to prevent this, either to change the nature of the match, or to cause it to fail earlier than
it otherwise might, when the author of the pattern knows that there is no point in carrying on.

Consider, for example, the pattern \d+foo when applied to the following subject line:

123456bar

After matching all six digits and then failing to match "foo", the normal action of the matcher is to try again with
only five digits matching item \d+, and then with four, and so on, before ultimately failing. "Atomic grouping"” (aterm
taken from Jeffrey Friedl's book) provides the means for specifying that once a subpattern has matched, it is not to
be re-evaluated in this way.

If atomic grouping is used for the previous example, the matcher gives up immediately on failing to match "foo" the
first time. The notation isakind of specia parenthesis, starting with (?> asin the following example:

(?>\d+) foo

Thiskind of parenthesis"locks up" the part of the pattern it contains once it has matched, and afailure further into the
pattern is prevented from backtracking into it. Backtracking past it to previous items, however, works as normal.

410 | Ericsson AB. All Rights Reserved.: STDLIB

re

An alternative description is that a subpattern of this type matches the string of charactersthat an identical standalone
pattern would match, if anchored at the current point in the subject string.

Atomic grouping subpatterns are not capturing subpatterns. Simple cases such as the above example can be thought
of as amaximizing repeat that must swallow everything it can. So, while both \d+ and \d+? are prepared to adjust
the number of digits they match to make the remaining pattern match, (?>\ d+) can only match an entire sequence
of digits.

Atomic groupsin general can contain any complicated subpatterns, and can be nested. However, when the subpattern
for an atomic group is just a single repeated item, as in the example above, a simpler notation, called a "possessive
quantifier" can be used. This consists of an extra+ character following a quantifier. Using this notation, the previous
example can be rewritten as

\d++foo

Notice that a possessive quantifier can be used with an entire group, for example:

(abc|xyz){2,3}+

Possessive quantifiers are always greedy; the setting of option ungr eedy isignored. They are a convenient notation
for the simpler forms of an atomic group. However, thereis no difference in the meaning of a possessive quantifier and
the equivalent atomic group, but there can be a performance difference; possessive quantifiers are probably slightly
faster.

The possessive quantifier syntax isan extension to the Perl 5.8 syntax. Jeffrey Fried! originated theidea (and the name)
in the first edition of his book. Mike McCloskey liked it, so implemented it when he built the Sun Java package, and
PCRE copied it from there. It ultimately found its way into Perl at release 5.10.

PCRE has an optimization that automatically "possessifies' certain simple pattern constructs. For example, the
sequence A+B istreated as A++B, asthere is no point in backtracking into a sequence of A:swhen B must follow.

When a pattern contains an unlimited repeat inside a subpattern that can itself be repeated an unlimited number of
times, the use of an atomic group is the only way to avoid some failing matches taking along time. The pattern

(\D+|<\d+>)*[1?]

matches an unlimited number of substrings that either consist of non-digits, or digits enclosed in <>, followed by !
or 2. When it matches, it runs quickly. However, if it is applied to

ddddddddddadadaddddddddddaaaddaddddddaaaaaadddddaaaaaaaa

it takes along time before reporting failure. Thisis because the string can be divided between the internal \D+ repeat
and the external * repeat in many ways, and all must be tried. (The example uses [!7] rather than a single character
at the end, as both PCRE and Perl have an optimization that allows for fast failure when a single character is used.
They remember the last single character that is required for a match, and fail early if it is not present in the string.) If
the pattern is changed so that it uses an atomic group, like the following, sequences of non-digits cannot be broken,
and failure happens quickly:

Ericsson AB. All Rights Reserved.: STDLIB | 411

re

((?>\D+) |<\d+>)*[!?]

Back References

Outside a character class, a backslash followed by a digit > 0 (and possibly further digits) is a back reference to a
capturing subpattern earlier (that is, to its left) in the pattern, provided there have been that many previous capturing
left parentheses.

However, if the decimal number following the backslash is < 10, it is always taken as a back reference, and causes an
error only if there are not that many capturing left parentheses in the entire pattern. That is, the parentheses that are
referenced do need not be to the left of the reference for numbers < 10. A "forward back reference" of this type can
make sense when a repetition isinvolved and the subpattern to the right has participated in an earlier iteration.

It is not possible to have a numerical "forward back reference” to a subpattern whose number is 10 or more using
this syntax, as a sequence such as\50 is interpreted as a character defined in octal. For more details of the handling
of digits following a backslash, see section Non-Printing Characters earlier. There is no such problem when named
parentheses are used. A back reference to any subpattern is possible using named parentheses (see below).

Another way to avoid the ambiguity inherent in the use of digitsfollowing abackslash isto use the\g escape sequence.
This escape must be followed by an unsigned number or a negative number, optionally enclosed in braces. The
following examples are identical:

(ring), \1
(ring), \gl
(ring), \g{1}

An unsigned number specifies an absolute reference without the ambiguity that is present in the older syntax. It is
also useful when literal digits follow the reference. A negative number is arelative reference. Consider the following
example:

(abc(def)ghi)\g{-1}

The sequence \g{ -1} is areference to the most recently started capturing subpattern before \g, that is, it is equivalent
to\2inthisexample. Similarly, \g{-2} would be equivalent to\1. The use of relative references can be helpful inlong
patterns, and also in patterns that are created by joining fragments containing references within themselves.

A back reference matches whatever matched the capturing subpattern in the current subject string, rather than anything
matching the subpattern itself (section Subpattern as Subroutines describes a way of doing that). So, the following
pattern matches "sense and sensibility” and "response and responsibility", but not "sense and responsibility":

(sens|respons)e and \1libility

If caseful matching is in force at the time of the back reference, the case of letters is relevant. For example, the
following matches "rah rah" and "RAH RAH", but not "RAH rah", although the origina capturing subpattern is
matched caselesdly:

((?i)rah)\s+\1

There are many different ways of writing back references to named subpatterns. The .NET syntax \ k{ nane} and
the Perl syntax \ k<name> or \ k' nanme' are supported, as is the Python syntax (?P=nan®) . The unified back

412 | Ericsson AB. All Rights Reserved.: STDLIB

re

reference syntax in Perl 5.10, in which \g can be used for both numeric and named references, is also supported. The
previous example can be rewritten in the following ways:

(?<pl>(?1i)rah)\s+\k<pl>
(?'pl' (?1i)rah)\s+\k{pl}
(?P<pl>(?i)rah)\s+(?P=pl)
(?<pl>(?i)rah)\s+\g{pl}

A subpattern that is referenced by name can appear in the pattern before or after the reference.

There can be more than one back reference to the same subpattern. If a subpattern has not been used in a particular
match, any back referencesto it always fails. For example, the following pattern aways fails if it starts to match "a"
rather than "bc":

(al (bc))\2

Asthere can be many capturing parenthesesin apattern, all digitsfollowing the backslash aretaken aspart of apotential
back reference number. If the pattern continueswith adigit character, some delimiter must be used to terminate the back
reference. If option ext ended is set, this can be whitespace. Otherwise an empty comment (see section Comments)
can be used.

Recursive Back References

A back reference that occurs inside the parentheses to which it refers fails when the subpattern is first used, so, for
example, (a\1) never matches. However, such references can be useful inside repeated subpatterns. For example, the
following pattern matches any number of "a's and also "aba", "ababbaa’, and so on:

(alb\1)+

At each iteration of the subpattern, the back reference matches the character string corresponding to the previous
iteration. In order for this to work, the pattern must be such that the first iteration does not need to match the back
reference. This can be done using alternation, asin the example above, or by a quantifier with a minimum of zero.

Back references of thistype cause the group that they referenceto be treated as an atomic group. Once the whole group
has been matched, a subsequent matching failure cannot cause backtracking into the middle of the group.

Assertions

An assertion is atest on the characters following or preceding the current matching point that does not consume any
characters. The simple assertions coded as \b, \B, \A, \G, \Z, \z, , and $ are described in the previous sections.

More complicated assertions are coded as subpatterns. There aretwo kinds: thosethat look ahead of the current position
in the subject string, and those that look behind it. An assertion subpattern is matched in the normal way, except that
it does not cause the current matching position to be changed.

Assertion subpatterns are not capturing subpatterns. If such an assertion contains capturing subpatterns within it, these
are counted for the purposes of numbering the capturing subpatternsin the whol e pattern. However, substring capturing
is done only for positive assertions. (Perl sometimes, but not always, performs capturing in negative assertions.)

For compatibility with Perl, assertion subpatterns can be repeated. However, it makes no sense to assert the samething
many times, the side effect of capturing parentheses can occasionally be useful. In practice, there are only three cases:

« If thequantifier is{ 0}, the assertion is never obeyed during matching. However, it can contain internal capturing
parenthesized groups that are called from elsewhere through the subroutine mechanism.

Ericsson AB. All Rights Reserved.: STDLIB | 413

re

e |If quantifier is{0,n}, wheren >0, it istreated asif it was {0,1}. At runtime, the remaining pattern match is tried
with and without the assertion, the order depends on the greediness of the quantifier.

e |If the minimum repetition is > 0, the quantifier isignored. The assertion is obeyed only once when encountered
during matching.

L ookahead Assertions

Lookahead assertions start with (?= for positive assertions and (?! for negative assertions. For example, the following
matches aword followed by a semicolon, but does not include the semicolon in the match:

\w+(?=;)

The following matches any occurrence of "foo" that is not followed by "bar":

foo(?!bar)

Notice that the apparently similar pattern

(?!foo)bar

does not find an occurrence of "bar" that is preceded by something other than "foo". It finds any occurrence of "bar"
whatsoever, as the assertion (?1foo) is always true when the next three characters are "bar". A lookbehind assertion
is needed to achieve the other effect.

If you want to force a matching failure at some point in a pattern, the most convenient way to do it iswith (?!), asan
empty string always matches. So, an assertion that requires there is not to be an empty string must always fail. The
backtracking control verb (*FAIL) or (*F) isasynonym for (?).

L ookbehind Assertions

Lookbehind assertions start with (?<= for positive assertions and (?<! for negative assertions. For example, the
following finds an occurrence of "bar" that is not preceded by "foo":

(?<!foo)bar

The contents of a lookbehind assertion are restricted such that all the strings it matches must have a fixed length.
However, if thereare many top-level aternatives, they do not al haveto havethe samefixed length. Thus, thefollowing
is permitted:

(?<=bullock|donkey)

The following causes an error at compile time:

(?<!dogs?|cats?)

414 | Ericsson AB. All Rights Reserved.: STDLIB

re

Branches that match different length strings are permitted only at the top-level of alookbehind assertion. Thisis an
extension compared with Perl, which requires all branches to match the same length of string. An assertion such as
the following is not permitted, asits single top-level branch can match two different lengths:

(?<=ab(c|de))

However, it is acceptable to PCRE if rewritten to use two top-level branches:

(?<=abc|abde)

Sometimes the escape sequence \K (see above) can be used instead of alookbehind assertion to get round the fixed-
length restriction.

The implementation of lookbehind assertionsis, for each alternative, to move the current position back temporarily by
the fixed length and then try to match. If there are insufficient characters before the current position, the assertion fails.

In aUTF mode, PCRE does not allow the \C escape (which matches a single data unit even in aUTF mode) to appear
in lookbehind assertions, as it makes it impossible to calculate the length of the lookbehind. The \X and \R escapes,
which can match different numbers of data units, are not permitted either.

"Subroutine” calls (see below), such as (?2) or (?& X), are permitted in lookbehinds, as long as the subpattern matches
afixed-length string. Recursion, however, is not supported.

Possessive quantifiers can be used with lookbehind assertions to specify efficient matching of fixed-length strings at
the end of subject strings. Consider the following simple pattern when applied to along string that does not match:

abcd$

As matching proceeds from left to right, PCRE looks for each "a" in the subject and then sees if what follows matches
the remaining pattern. If the pattern is specified as

~.*abcd$

theinitial .* matches the entire string at first. However, when this fails (as there is no following "a"), it backtracks to
match al but the last character, then all but the last two characters, and so on. Once again the search for "a" coversthe
entire string, from right to left, so we are no better off. However, if the pattern is written as

k4 (?<=abcd)

there can be no backtracking for the .*+ item; it can match only the entire string. The subsequent lookbehind assertion
does a single test on the last four characters. If it fails, the match fails immediately. For long strings, this approach
makes a significant difference to the processing time.

Using Multiple Assertions

Many assertions (of any sort) can occur in succession. For example, the following matches "foo" preceded by three
digitsthat are not "999":

Ericsson AB. All Rights Reserved.: STDLIB | 415

re

(?<=\d{3}) (?<!999) foo

Notice that each of the assertionsis applied independently at the same point in the subject string. First thereis a check
that the previous three characters are al digits, and then there is a check that the same three characters are not "999".
This pattern does not match "foo" preceded by six characters, the first of which are digits and the last three of which
arenot "999". For example, it does not match "123abcfoo”. A pattern to do that is the following:

(?7<=\d{3}...) (?<1999) foo

This time the first assertion looks at the preceding six characters, checks that the first three are digits, and then the
second assertion checks that the preceding three characters are not "999".

Assertions can be nested in any combination. For example, the following matches an occurrence of "baz" that is
preceded by "bar", which in turn is not preceded by "foo":

(?<=(?<!foo)bar)baz

The following pattern matches "foo" preceded by three digits and any three characters that are not *999":

(7<=\d{3}(?1999)...)foo

Conditional Subpatterns

It is possible to cause the matching process to obey a subpattern conditionally or to choose between two alternative
subpatterns, depending on the result of an assertion, or whether a specific capturing subpattern has already been
matched. The following are the two possible forms of conditional subpattern:

(?(condition)yes-pattern)
(?(condition)yes-pattern|no-pattern)

If the condition is satisfied, the yes-pattern is used, otherwise the no-pattern (if present). If more than two alternatives
exist in the subpattern, acompile-time error occurs. Each of thetwo alternatives can itself contain nested subpatterns of
any form, including conditional subpatterns; the restriction to two alternatives applies only at thelevel of the condition.
The following pattern fragment is an example where the aternatives are complex:

(?(1) (AIBIC) | (D | (?(2)E|F) | E))

There are four kinds of condition: references to subpatterns, references to recursion, a pseudo-condition called
DEFINE, and assertions.

Checking for a Used Subpattern By Number

If the text between the parentheses consists of a sequence of digits, the condition is true if a capturing subpattern of
that number has previously matched. If more than one capturing subpattern with the same number exists (see section
Duplicate Subpattern Numbers earlier), the condition is true if any of them have matched. An alternative notation is
to precede the digits with a plus or minus sign. In this case, the subpattern number is relative rather than absolute. The
most recently opened parentheses can be referenced by (?(-1), the next most recent by (?(-2), and so on. Inside loops,

416 | Ericsson AB. All Rights Reserved.: STDLIB

re

it can also make sense to refer to subsequent groups. The next parentheses to be opened can be referenced as (2(+1),
and so on. (The value zero in any of these formsis not used; it provokes a compile-time error.)

Consider the following pattern, which contains non-significant whitespace to make it more readable (assume option
ext ended) and to divideit into three parts for ease of discussion:

(\N(C)? [~O1+ (7(1) \))

The first part matches an optional opening parenthesis, and if that character is present, sets it as the first captured
substring. The second part matches one or more characters that are not parentheses. The third part is a conditional
subpattern that tests whether the first set of parentheses matched or not. If they did, that is, if subject started with an
opening parenthesis, the condition is true, and so the yes-pattern is executed and a closing parenthesis is required.
Otherwise, as no-pattern is not present, the subpattern matches nothing. That is, this pattern matches a sequence of
non-parentheses, optionally enclosed in parentheses.

If this pattern is embedded in alarger one, arelative reference can be used:

...other stuff... (\()? [~()1+ (?7(-1) \)) ...

This makes the fragment independent of the parentheses in the larger pattern.
Checking for a Used Subpattern By Name

Perl usesthe syntax (?(<name>)...) or (?('name’)...) to test for aused subpattern by name. For compatibility with earlier
versions of PCRE, which had this facility before Perl, the syntax (?(name)...) is also recognized. However, thereisa
possible ambiguity with this syntax, as subpattern names can consist entirely of digits. PCRE looks first for a named
subpattern; if it cannot find one and the name consists entirely of digits, PCRE looks for a subpattern of that number,
which must be > 0. Using subpattern names that consist entirely of digitsis not recommended.

Rewriting the previous example to use a named subpattern gives:

(?7<OPEN> \()? [~()1+ (?(<OPEN>) \))

If the name used in a condition of thiskind is a duplicate, the test is applied to all subpatterns of the same name, and
istrueif any one of them has matched.

Checking for Pattern Recursion

If the condition is the string (R), and there is no subpattern with the name R, the condition is true if a recursive call
to the whole pattern or any subpattern has been made. If digits or a name preceded by ampersand follow the letter
R, for example:

(?(R3)...) or (?(R&name)...)

the condition is true if the most recent recursion is into a subpattern whose number or name is given. This condition
does not check the entire recursion stack. If the name used in a condition of thiskind is aduplicate, the test is applied
to al subpatterns of the same name, and istrue if any one of them is the most recent recursion.

At "top-level", all these recursion test conditions are false. The syntax for recursive patternsis described below.

Defining Subpatternsfor Use By Reference Only

Ericsson AB. All Rights Reserved.: STDLIB | 417

re

If the condition isthe string (DEFINE), and thereis no subpattern with the name DEFINE, the conditionisalwaysfal se.
In this case, there can be only one alternative in the subpattern. It is always skipped if control reaches this point in the
pattern. Theidea of DEFINE isthat it can be used to define "subroutines' that can be referenced from elsewhere. (The
use of subroutines is described below.) For example, a pattern to match an |Pv4 address, such as "192.168.23.245",
can be written like this (ignore whitespace and line breaks):

(?(DEFINE) (?<byte> 2[0-4]\d | 25[0-5] | 1\d\d | [1-9]?\d)) \b (?&byte) (\.(?&byte)){3} \b

Thefirst part of the pattern isa DEFINE group inside which is aanother group named "byte" is defined. This matches
an individual component of an |Pv4 address (a number < 256). When matching takes place, this part of the pattern is
skipped, as DEFINE acts like a false condition. The remaining pattern uses references to the named group to match
the four dot-separated components of an 1Pv4 address, insisting on aword boundary at each end.

Assertion Conditions

If the condition is not in any of the above formats, it must be an assertion. This can be a positive or negative |lookahead
or lookbehind assertion. Consider the following pattern, containing non-significant whitespace, and with the two
alternatives on the second line:

(?(7=["a-z]*[a-2z])
\d{2}-[a-z]{3}-\d{2} | \d{2}-\d{2}-\d{2})

The condition is a positive |ookahead assertion that matches an optional sequence of non-letters followed by aletter.
That is, it tests for the presence of at least one letter in the subject. If aletter is found, the subject is matched against
the first alternative, otherwise it is matched against the second. This pattern matches strings in one of the two forms
dd-aaa-dd or dd-dd-dd, where aaa are letters and dd are digits.

Comments

Therearetwo waysto include commentsin patternsthat are processed by PCRE. In both cases, the start of the comment
must not bein a character class, or in the middle of any other sequence of related characters such as (?: or a subpattern
name or number. The characters that make up a comment play no part in the pattern matching.

The sequence (?# marksthe start of acomment that continues up to the next closing parenthesis. Nested parenthesesare
not permitted. If option PCRE_EXTENDED is set, an unescaped # character also introduces acomment, whichin this
case continues to immediately after the next newline character or character sequence in the pattern. Which characters
are interpreted as newlinesis controlled by the options passed to a compiling function or by a special sequence at the
start of the pattern, as described in section Newline Conventions earlier.

Notice that the end of thistype of comment isaliteral newline sequence in the pattern; escape sequences that happen
to represent a newline do not count. For example, consider the following pattern when ext ended is set, and the
default newline conventionisin force:

abc #comment \n still comment

On encountering character #, pcr e_conpi | e() skipsaong, looking for a newline in the pattern. The sequence \n
isstill literal at this stage, so it does not terminate the comment. Only a character with code value Ox0a (the default
newline) does so.

418 | Ericsson AB. All Rights Reserved.: STDLIB

re

Recursive Patterns

Consider the problem of matching a string in parentheses, allowing for unlimited nested parentheses. Without the use
of recursion, the best that can be done is to use a pattern that matches up to some fixed depth of nesting. It is not
possible to handle an arbitrary nesting depth.

For sometime, Perl has provided afacility that allows regular expressionsto recurse (among other things). It doesthis
by interpolating Perl code in the expression at runtime, and the code can refer to the expression itself. A Perl pattern
using code interpolation to solve the parentheses problem can be created like this:

$re = qr{\((?: (?>[~0)1+) | (?p{$re}))* \)}x;

Item (?7p{...}) interpolates Perl code at runtime, and in this case refers recursively to the pattern in which it appears.

Obviously, PCRE cannot support the interpolation of Perl code. Instead, it supports special syntax for recursion of
the entire pattern, and for individual subpattern recursion. After its introduction in PCRE and Python, this kind of
recursion was later introduced into Perl at release 5.10.

A special item that consists of (? followed by a number > 0 and a closing parenthesis is a recursive subroutine call
of the subpattern of the given number, if it occurs inside that subpattern. (If not, it is a non-recursive subroutine call,
which isdescribed in the next section.) The special item (?R) or (?0) isarecursive call of the entire regular expression.

This PCRE pattern solves the nested parentheses problem (assume that option ext ended is set so that whitespace
isignored):

NC CI7OT++ | (7R))* \)

First it matches an opening parenthesis. Then it matches any number of substrings, which can either be a sequence of
non-parentheses or arecursive match of the patternitself (that is, a correctly parenthesized substring). Finally thereisa
closing parenthesis. Notice the use of a possessive quantifier to avoid backtracking into sequences of non-parentheses.

If thiswas part of alarger pattern, you would not want to recurse the entire pattern, so instead you can use:

CNCC IO+ | (71))* \))

The pattern is here within parentheses so that the recursion refers to them instead of the whole pattern.

In alarger pattern, keeping track of parenthesis numbers can be tricky. This is made easier by the use of relative
references. Instead of (?1) in the pattern above, you can write (?-2) to refer to the second most recently opened
parentheses preceding the recursion. That is, a negative number counts capturing parentheses leftwards from the point
at which it is encountered.

It isaso possible to refer to later opened parentheses, by writing references such as (?+2). However, these cannot be
recursive, asthe reference is not inside the parentheses that are referenced. They are always non-recursive subroutine
calls, as described in the next section.

An alternative approach is to use named parentheses instead. The Perl syntax for thisis (?&name). The earlier PCRE
syntax (?P>name) is also supported. We can rewrite the above example as follows:

(?7<pn> \(([*O)1++ | (?&n))* \))

If there is more than one subpattern with the same name, the earliest oneis used.

Ericsson AB. All Rights Reserved.: STDLIB | 419

re

This particular example pattern that we have studied contains nested unlimited repeats, and so the use of a possessive
quantifier for matching strings of non-parentheses isimportant when applying the pattern to strings that do not match.
For example, when this pattern is applied to

(aaal)

it gives"nomatch" quickly. However, if apossessive quantifier isnot used, the match runsfor along time, asthere are
so many different waysthe + and * repeats can carve up the subject, and all must betested beforefailure can bereported.

At the end of a match, the values of capturing parentheses are those from the outermost level. If the pattern above
is matched against

(ab(cd)ef)

the value for the inner capturing parentheses (numbered 2) is "ef", which is the last value taken on at the top-level.
If a capturing subpattern is not matched at the top level, itsfinal captured value is unset, even if it was (temporarily)
set at a deeper level during the matching process.

Do not confuse item (?R) with condition (R), which testsfor recursion. Consider the following pattern, which matches
text in anglebrackets, allowing for arbitrary nesting. Only digitsareallowedin nested brackets (that is, when recursing),
while any characters are permitted at the outer level.

< (70 (?2(R) \d++ | ["<>]*+) | (7R)) * >

Here (A(R) is the start of a conditional subpattern, with two different alternatives for the recursive and non-recursive
cases. Item (7R) isthe actual recursive call.

Differencesin Recursion Processing between PCRE and Per|

Recursion processing in PCRE differs from Perl in two important ways. In PCRE (like Python, but unlike Perl), a
recursive subpattern call is always treated as an atomic group. That is, once it has matched some of the subject string,
it is never re-entered, even if it contains untried alternatives and there is a subsequent matching failure. This can be
illustrated by thefoll owing pattern, which meansto match a palindromic string containing an odd number of characters
(for example, "a", "aba", "abcha’, "abcdcba’):

21 (?71)N\2)$

Theideaisthat it either matches a single character, or two identical characters surrounding a subpalindrome. In Perl,
this pattern works; in PCRE it does not work if the pattern islonger than three characters. Consider the subject string
"abcha".

At the top level, the first character is matched, but as it is not at the end of the string, the first aternative fails, the
second alternativeistaken, and the recursion kicksin. Therecursive call to subpattern 1 successfully matches the next
character ("b"). (Notice that the beginning and end of line tests are not part of the recursion.)

Back at the top level, the next character ("c") is compared with what subpattern 2 matched, which was"a'. Thisfalls.
Astherecursion istreated as an atomic group, there are now no backtracking points, and so the entire match fails. (Perl
can now re-enter the recursion and try the second alternative.) However, if the pattern is written with the alternatives
in the other order, things are different:

420 | Ericsson AB. All Rights Reserved.: STDLIB

re

S (PDN2]) $

Thistime, the recursing aternative istried first, and continues to recurse until it runs out of characters, at which point
therecursion fails. But thistime we have another alternativeto try at the higher level. That isthe significant difference:
in the previous case the remaining aternative is at a deeper recursion level, which PCRE cannot use.

To change the pattern so that it matches all palindromic strings, not only those with an odd number of characters, it
is tempting to change the pattern to this:

S (?D)N2].7)8

Again, thisworks in Perl, but not in PCRE, and for the same reason. When a deeper recursion has matched a single
character, it cannot be entered again to match an empty string. The solution isto separate the two cases, and write out
the odd and even cases as alternatives at the higher level:

A2 CC) (ZDN2]) | (L) (23)\4].))

If you want to match typical palindromic phrases, the pattern must ignore all non-word characters, which can be done
asfollows:

ANWEE (20 () \WE+(2)\WEHN2 [) | CCO)\WH+(23) \WHH\4 | \W*+. \W*+)) \W*+$

If run with option casel ess, this pattern matches phrases such as"A man, a plan, a canal: Panama!l" and it works
well in both PCRE and Perl. Notice the use of the possessive quantifier *+ to avoid backtracking into sequences of
non-word characters. Without this, PCRE takes much longer (10 times or more) to match typical phrases, and Perl
takes so long that you think it has gone into a loop.

Note:

The palindrome-matching patterns above work only if the subject string does not start with a palindrome that is
shorter than the entire string. For exampl e, although "abcba" is correctly matched, if the subject is"ababa’', PCRE
finds palindrome "aba" at the start, and then fails at top level, asthe end of the string does not follow. Once again,
it cannot jump back into the recursion to try other alternatives, so the entire match fails.

The second way in which PCRE and Perl differ in their recursion processing is in the handling of captured values. In
Perl, when a subpattern is called recursively or as a subpattern (see the next section), it has no access to any values
that were captured outside the recursion. In PCRE these values can be referenced. Consider the following pattern:

() (\1]a(?2))

In PCRE, it matches "bab". The first capturing parentheses match "b", then in the second group, when the back
reference \1 fails to match "b", the second alternative matches "a’', and then recurses. In the recursion, \1 does now
match "b" and so the whole match succeeds. In Perl, the pattern fails to match because inside the recursive call \1
cannot access the externally set value.

Ericsson AB. All Rights Reserved.: STDLIB | 421

re

Subpatterns as Subroutines

If the syntax for arecursive subpattern call (either by number or by name) is used outside the parentheses to which it
refers, it operates like a subroutine in a programming language. The called subpattern can be defined before or after
the reference. A numbered reference can be absolute or relative, as in the following examples:

(...(absolute)...)...(?2)...
(...(relative)...)...(?-1)...
(...(?+1)...(relative)...

An earlier example pointed out that the following pattern matches "sense and sensibility" and "response and
responsibility", but not "sense and responsibility":

(sens|respons)e and \libility

If instead the following pattern is used, it matches "sense and responsibility" and the other two strings:

(sens|respons)e and (?1)ibility

Another exampleis provided in the discussion of DEFINE earlier.

All subroutine calls, recursive or not, are always treated as atomic groups. That is, once a subroutine has matched some
of the subject string, it is never re-entered, even if it contains untried alternatives and there is a subsequent matching
failure. Any capturing parentheses that are set during the subroutine call revert to their previous val ues afterwards.

Processing options such as case-independence are fixed when a subpattern is defined, so if it is used as a subroutine,
such options cannot be changed for different calls. For example, the following pattern matches "abcabc" but not
"abcABC", as the change of processing option does not affect the called subpattern:

(abc) (?1i:(?-1))

Oniguruma Subroutine Syntax

For compatibility with Oniguruma, the non-Perl syntax \g followed by a name or a humber enclosed either in angle
brackets or single quotes, is aternative syntax for referencing a subpattern as a subroutine, possibly recursively. Here
follows two of the examples used above, rewritten using this syntax:

(?7<pn> \(((?>[*()1+) | \g<pn>)* \))

(sens|respons)e and \g'l'ibility

PCRE supports an extension to Oniguruma: if a number is preceded by a plus or minus sign, it is taken as arelative
reference, for example:

(abc) (?i:\g<-1>)

422 | Ericsson AB. All Rights Reserved.: STDLIB

re

Noticethat \g{...} (Perl syntax) and \g<...> (Oniguruma syntax) are not synonymous. The former is a back reference;
the latter is a subroutine call.

Backtracking Control

Perl 5.10 introduced some " Special Backtracking Control Verbs', which are still described in the Perl documentation
as "experimental and subject to change or remova in a future version of Perl". It goes on to say: "Their usage in
production code should be noted to avoid problems during upgrades." The same remarks apply to the PCRE features
described in this section.

The new verbs make use of what was previoudly invalid syntax: an opening parenthesis followed by an asterisk. They
are generally of the form (*VERB) or (*VERB:NAME). Some can take either form, possibly behaving differently
depending on whether a name is present. A name is any sequence of characters that does not include a closing
parenthesis. The maximum name length is 255 in the 8-bit library and 65535 in the 16-bit and 32-bit libraries. If the
name is empty, that is, if the closing parenthesis immediately follows the colon, the effect is as if the colon was not
there. Any number of these verbs can occur in a pattern.

The behavior of these verbs in repeated groups, assertions, and in subpatterns called as subroutines (whether or not
recursively) is described below.

Optimizations That Affect Backtracking Verbs

PCRE contains some optimizations that are used to speed up matching by running some checks at the start of each
match attempt. For example, it can know the minimum length of matching subject, or that a particular character must
be present. When one of these optimizations bypasses the running of a match, any included backtracking verbs are not
processed. processed. You can suppress the start-of-match optimizations by setting optionno_start _opti ni ze
when calling conpi | e/ 2 or r un/ 3, or by starting the pattern with (*NO_START_OPT).

Experiments with Perl suggest that it too has similar optimizations, sometimes leading to anomal ous resullts.
Verbs That Act Immediately
The following verbs act as soon as they are encountered. They must not be followed by a name.

(*ACCEPT)

This verb causes the match to end successfully, skipping the remainder of the pattern. However, when it isinside a
subpattern that is called as a subroutine, only that subpattern is ended successfully. Matching then continues at the
outer level. If (*ACCEPT) is triggered in a positive assertion, the assertion succeeds; in a negative assertion, the
assertion fails.

If (*ACCEPT) isinside capturing parentheses, the data so far is captured. For example, the following matches"AB",
"AAD", or "ACD". When it matches "AB", "B" is captured by the outer parentheses.

A((?:A|B(*ACCEPT) |C)D)

The following verb causes a matching failure, forcing backtracking to occur. It is equivaent to (?!) but easier to read.

(*FAIL) or (*F)

The Perl documentation states that it is probably useful only when combined with ({}) or (?}). Those are Perl
features that are not present in PCRE.

Ericsson AB. All Rights Reserved.: STDLIB | 423

re

A match with the string "aaaa" always fails, but the callout is taken before each backtrack occurs (in this example,
10 times).

Recording Which Path Was Taken

The main purpose of this verb is to track how a match was arrived at, although it also has a secondary use in with
advancing the match starting point (see (* SK1P) below).

Note:

In Erlang, there is no interface to retrieve a mark with r un/ 2, 3, so only the secondary purpose is relevant to
the Erlang programmer.

The rest of this section is therefore deliberately not adapted for reading by the Erlang programmer, but the
examples can help in understanding NAMES as they can be used by (* SKIP).

(*MARK:NAME) or (*:NAME)

A name is always required with this verb. There can be as many instances of (*MARK) asyou like in a pattern, and
their names do not have to be unique.

When amatch succeeds, the name of thelast encountered (*MARK:NAME), (* PRUNE:NAME), or (* THEN:NAME)
on the matching path is passed back to the caller as described in section "Extra data for pcr e_exec() " in the
pcr eapi documentation. In the following example of pcr et est output, the /K modifier requests the retrieval and
outputting of (*MARK) data:

re> /X(*MARK:A)Y|X(*MARK:B)Z/K
data> XY
0: XY
MK: A
Xz
0: XZ
MK: B

The (*MARK) nameistagged with "MK:" in this output, and in this example it indicates which of the two alternatives
matched. Thisis amore efficient way of obtaining this information than putting each aternative in its own capturing
parentheses.

If averb with a name is encountered in a positive assertion that is true, the name is recorded and passed back if it is
the last encountered. This does not occur for negative assertions or failing positive assertions.

After apartial match or afailed match, thelast encountered name in the entire match processis returned, for example:

re> /X(*MARK:A)Y|X(*MARK:B)Z/K
data> XP
No match, mark = B

Notice that in this unanchored example, the mark is retained from the match attempt that started at letter "X" in the
subject. Subsequent match attempts starting at "P* and then with an empty string do not get as far as the (*MARK)
item, nevertheless do not reset it.

Verbs That Act after Backtracking

424 | Ericsson AB. All Rights Reserved.: STDLIB

re

The following verbs do nothing when they are encountered. Matching continues with what follows, but if thereis no
subsequent match, causing a backtrack to the verb, afailureisforced. That is, backtracking cannot pass to the |eft of
the verb. However, when one of these verbs appears inside an atomic group or an assertion that is true, its effect is
confined to that group, as once the group has been matched, there is never any backtracking into it. In this situation,
backtracking can "jump back" to the left of the entire atomic group or assertion. (Remember also, as stated above, that
thislocalization also applies in subroutine calls.)

These verbs differ in exactly what kind of failure occurs when backtracking reaches them. The behavior described
below iswhat occurswhen the verb isnot in a subroutine or an assertion. Subsequent sections cover these special cases.

The following verb, which must not be followed by a name, causes the whole match to fail outright if thereis alater
matching failure that causes backtracking to reach it. Even if the pattern is unanchored, no further attemptsto find a
match by advancing the starting point take place.

(*COMMIT)

If (*COMMIT) isthe only backtracking verb that is encountered, once it has been passed, r un/ 2, 3 is committed to
find a match at the current starting point, or not at all, for example:

a+(*COMMIT)b

This matches "xxaab" but not "aacaab". It can be thought of as a kind of dynamic anchor, or "I've started, so | must
finish". The name of the most recently passed (* MARK) in the path is passed back when (* COMMIT) forces amatch
failure.

If more than one backtracking verb existsin a pattern, a different one that follows (* COMMIT) can be triggered first,
so merely passing (* COMMIT) during a match does not always guarantee that a match must be at this starting point.

Notice that (*COMMIT) at the start of a pattern is not the same as an anchor, unless the PCRE start-of-match
optimizations are turned off, as shown in the following example:

1> re:run("xyzabc"," (*COMMIT)abc", [{capture,all,list}]).

{match,["abc"]}

2> re:run("xyzabc"," (*COMMIT)abc", [{capture,all,list},no start optimize]).
nomatch

PCRE knows that any match must start with "a", so the optimization skips along the subject to "a" before running the
first match attempt, which succeeds. When the optimization isdisabled by optionno_st art _opt i m ze, thematch
starts at "x" and so the (*COMMIT) causesit to fail without trying any other starting points.

The following verb causes the match to fail at the current starting position in the subject if there is a later matching
failure that causes backtracking to reach it:

(*PRUNE) or (*PRUNE:NAME)

If the pattern is unanchored, the normal "bumpalong" advance to the next starting character then occurs. Backtracking
can occur as usual to the left of (* PRUNE), before it is reached, or when matching to the right of (* PRUNE), but if
there is no match to the right, backtracking cannot cross (* PRUNE). In simple cases, the use of (*PRUNE) isjust an
alternative to an atomic group or possessive quantifier, but there are some uses of (* PRUNE) that cannot be expressed
in any other way. In an anchored pattern, (* PRUNE) has the same effect as (* COMMIT).

Ericsson AB. All Rights Reserved.: STDLIB | 425

re

The behavior of (*PRUNE:NAME) is the not the same as (* MARK:NAME)(* PRUNE). It islike (*MARK:NAME)
in that the name is remembered for passing back to the caller. However, (* SKIP:.NAME) searches only for names
set with (*MARK).

Note:

The fact that (*PRUNE:NAME) remembers the name is useless to the Erlang programmer, as names cannot be
retrieved.

The following verb, when specified without a name, is like (*PRUNE), except that if the pattern is unanchored, the
"bumpalong” advance is not to the next character, but to the position in the subject where (* SK1P) was encountered.

(*SKIP)

(*SKIP) signifies that whatever text was matched leading up to it cannot be part of a successful match. Consider:

a+(*SKIP)b

If the subject is "aaaac...", after the first match attempt fails (starting at the first character in the string), the starting
point skips on to start the next attempt at "c". Notice that a possessive quantifier does not have the same effect as this
example; although it would suppress backtracking during the first match attempt, the second attempt would start at
the second character instead of skipping onto "c".

When (* SKIP) has an associated hame, its behavior is modified:

(*SKIP:NAME)

When this is triggered, the previous path through the pattern is searched for the most recent (*MARK) that has the
same name. If one is found, the "bumpalong” advance is to the subject position that corresponds to that (*MARK)
instead of to where (* SKIP) was encountered. If no (*MARK) with amatching nameisfound, (* SKIP) isignored.

Notice that (*SKIP.NAME) searches only for names set by (*MARK:NAME). It ignores names that are set by
(*PRUNE:NAME) or (*THEN:NAME).

The following verb causes a skip to the next innermost alternative when backtracking reaches it. That is, it cancels
any further backtracking within the current alternative.

(*THEN) or (*THEN:NAME)

The verb name comes from the observation that it can be used for a pattern-based if-then-else block:

(COND1 (*THEN) FOO | COND2 (*THEN) BAR | COND3 (*THEN) BAZ) ...

If the CONDZ1 pattern matches, FOO istried (and possibly further items after the end of the group if FOO succeeds).
On failure, the matcher skips to the second alternative and tries COND2, without backtracking into CONDL. If that

426 | Ericsson AB. All Rights Reserved.: STDLIB

re

succeeds and BAR fails, COND3 istried. If BAZ then fails, there are no more alternatives, so there is a backtrack to
whatever came before the entire group. If (* THEN) is not inside an alternation, it acts like (* PRUNE).

The behavior of (* THEN:NAME) is the not the same as (*MARK:NAME)(* THEN). It islike * MARK:NAME) in
that the name is remembered for passing back to the caller. However, (* SKIP.NAME) searches only for names set
with (*MARK).

Note:

The fact that (* THEN:NAME) remembers the name is useless to the Erlang programmer, as names cannot be
retrieved.

A subpattern that does not contain a| character isjust apart of the enclosing alternative; it isnot anested alternation with
only one alternative. The effect of (* THEN) extends beyond such a subpattern to the enclosing alternative. Consider
the following pattern, where A, B, and so on, are complex pattern fragments that do not contain any | characters at
thislevel:

A (B(*THEN)C) | D

If A and B are matched, but there is afailure in C, matching does not backtrack into A; instead it moves to the next
alternative, that is, D. However, if the subpattern containing (* THEN) is given an alternative, it behaves differently:

A (B(*THEN)C | (*FAIL)) | D

The effect of (*THEN) is nhow confined to the inner subpattern. After a failure in C, matching moves to (*FAIL),
which causes the whole subpattern to fail, as there are no more aternatives to try. In this case, matching does now
backtrack into A.

Notice that a conditional subpattern is not considered as having two alternatives, as only oneis ever used. That is, the
| character in a conditional subpattern has a different meaning. Ignoring whitespace, consider:

~.¥7 (?7(?7=a) a | b(*THEN)c)

If the subjectis"ba’, this pattern does not match. As.*?isungreedy, it initially matches zero characters. The condition
(?=a) then fails, the character "b" is matched, but "c" is not. At this point, matching does not backtrack to .*? as can
perhaps be expected from the presence of the | character. The conditional subpattern is part of the single alternative
that comprises the whole pattern, and so the match fails. (If there was a backtrack into .*?, allowing it to match "b",
the match would succeed.)

The verbs described above provide four different "strengths" of control when subsequent matching fails:

* (*THEN) isthe weakest, carrying on the match at the next alternative.

e (*PRUNE) comes next, failsthe match at the current starting position, but allows an advance to the next character
(for an unanchored pattern).

e (*SKIP) issimilar, except that the advance can be more than one character.
e (*COMMIT) isthe strongest, causing the entire match to fail.

Morethan One Backtracking Verb

Ericsson AB. All Rights Reserved.: STDLIB | 427

re

If more than one backtracking verb is present in a pattern, the one that is backtracked onto first acts. For example,
consider the following pattern, where A, B, and so on, are complex pattern fragments:

(A(*COMMIT)B(*THEN)C|ABD)

If A matches but B fails, the backtrack to (* COMMIT) causes the entire match to fail. However, if A and B match,
but C fails, the backtrack to (* THEN) causes the next aternative (ABD) to betried. This behavior is consistent, but is
not always the same as in Perl. It meansthat if two or more backtracking verbs appear in succession, the last of them
has no effect. Consider the following example:

... (*COMMIT) (*PRUNE). ..

If there isamatching failure to the right, backtracking onto (* PRUNE) casesit to be triggered, and its action is taken.
There can never be a backtrack onto (*COMMIT).

Backtracking Verbsin Repeated Groups
PCRE differs from Perl in its handling of backtracking verbsin repeated groups. For example, consider:

/(a(*COMMIT)b)+ac/

If the subject is"abac", Perl matches, but PCRE fails because the (* COMMIT) in the second repeat of the group acts.
Backtracking Verbsin Assertions
(*FAIL) in an assertion hasits normal effect: it forces an immediate backtrack.

(*ACCEPT) in a positive assertion causes the assertion to succeed without any further processing. In a negative
assertion, (* ACCEPT) causes the assertion to fail without any further processing.

Theother backtracking verbsare not treated specially if they appear in apositive assertion. In particular, (* THEN) skips
to the next alternative in the innermost enclosing group that has alternations, regardless if thisiswithin the assertion.

Negative assertions are, however, different, to ensure that changing a positive assertion into a negative assertion
changes its result. Backtracking into (*COMMIT), (*SKIP), or (*PRUNE) causes a negative assertion to be true,
without considering any further aternative branches in the assertion. Backtracking into (* THEN) causes it to skip to
the next enclosing aternative within the assertion (the normal behavior), but if the assertion does not have such an
aternative, (* THEN) behaveslike (*PRUNE).

Backtracking Verbsin Subroutines

These behaviorsoccur regardlessif the subpatterniscalled recursively. Thetreatment of subroutinesin Perl isdifferent
in some cases.
* (*FAIL) in asubpattern called as a subroutine hasits normal effect: it forces an immediate backtrack.

* (*ACCEPT) in a subpattern called as a subroutine causes the subroutine match to succeed without any further
processing. Matching then continues after the subroutine call.

e (*COMMIT), (*SKIP), and (*PRUNE) in a subpattern called as a subroutine cause the subroutine match to fail.

* (*THEN) skipsto the next aternative in theinnermost enclosing group within the subpattern that has alternatives.
If there is no such group within the subpattern, (* THEN) causes the subroutine match to fail.

428 | Ericsson AB. All Rights Reserved.: STDLIB

sets

sets

Erlang module

Sets are collections of elements with no duplicate elements. The representation of a set is undefined.

This module provides the same interface as the or dset s(3) module but with a defined representation. One
differenceisthat whilethismodul e considerstwo elementsasdifferent if they do not match (=: =), or dset s considers
two elements as different if and only if they do not compare equal (==).

Data Types

set (Element)
Asreturned by new/ 0.
set() = set (term())

Exports

add element(Element, Setl) -> Set2
Types.
Setl = Set2 = set (Element)

Returns a new set formed from Set 1 with El enment inserted.

del element(Element, Setl) -> Set2
Types:
Setl = Set2 = set (Element)

Returns Set 1, but with El enent removed.

filter(Pred, Setl) -> Set2

Types.
Pred = fun((Element) -> boolean())
Setl = Set2 = set (Element)

Filters elementsin Set 1 with boolean function Pr ed.

fold(Function, AccO, Set) -> Accl

Types.
Function = fun((Element, AccIn) -> AccOut)
Set = set (Element)
AccO = Accl = AccIn = AccOut = Acc

Folds Funct i on over every element in Set and returns the final value of the accumulator. The evaluation order
is undefined

from list(List) -> Set
Types:

Ericsson AB. All Rights Reserved.: STDLIB | 429

sets

List = [Element]
Set = set (Element)

Returns a set of the elementsin Li st .

intersection(SetList) -> Set
Types.
SetList = [set (Element), ...]
Set = set (Element)

Returns the intersection of the non-empty list of sets.

intersection(Setl, Set2) -> Set3
Types:
Setl = Set2 = Set3 = set (Element)

Returns the intersection of Set 1 and Set 2.

is disjoint(Setl, Set2) -> boolean()
Types:
Setl = Set2 = set (Element)

Returnst r ue if Set 1 and Set 2 are digoint (have no elementsin common), otherwisef al se.

is element(Element, Set) -> boolean()
Types.
Set = set (Element)
Returnst r ue if El ement isan element of Set , otherwisef al se.

is set(Set) -> boolean()
Types.
Set = term()
Returnst r ue if Set isaset of elements, otherwisef al se.

is subset(Setl, Set2) -> boolean()
Types:
Setl = Set2 = set (Element)

Returnst r ue when every element of Set 1 isaso amember of Set 2, otherwisef al se.

new() -> set()
Returns a new empty set.

size(Set) -> integer() >= 0
Types.
Set = set ()

Returns the number of elementsin Set .

430 | Ericsson AB. All Rights Reserved.: STDLIB

sets

subtract(Setl, Set2) -> Set3
Types:
Setl = Set2 = Set3 = set (Element)

Returns only the elements of Set 1 that are not also elements of Set 2.

to list(Set) -> List
Types.
Set = set (Element)
List = [Element]

Returns the e ements of Set asalist. The order of the returned elements is undefined.

union(SetList) -> Set

Types:
SetlList = [set (Element)]
Set = set (Element)

Returns the merged (union) set of the list of sets.

union(Setl, Set2) -> Set3
Types.
Setl = Set2 = Set3 = set (Element)

Returns the merged (union) set of Set 1 and Set 2.

See Also
gb_sets(3),ordsets(3)

Ericsson AB. All Rights Reserved.: STDLIB | 431

shell

shell

Erlang module

This module provides an Erlang shell.

The shell is a user interface program for entering expression sequences. The expressions are evaluated and a value
isreturned. A history mechanism saves previous commands and their values, which can then be incorporated in later
commands. How many commands and results to save can be determined by the user, either interactively, by calling
hi story/ 1andresul ts/ 1, or by setting the application configuration parametersshel | _hi story_| ength
andshel | _saved_resul t s for the STDLIB application.

The shell usesahelper process for eval uating commands to protect the history mechanism from exceptions. By default
the evaluator process is killed when an exception occurs, but by calling cat ch_excepti on/ 1 or by setting the
application configuration parameter shel | _cat ch_except i on for the STDLIB application this behavior can be
changed. See also the example below.

Variable bindings, and local process dictionary changes that are generated in user expressions are preserved, and the
variables can be used in later commands to access their values. The bindings can aso be forgotten so the variables
can be reused.

The special shell commands all have the syntax of (local) function calls. They are evaluated as normal function calls
and many commands can be used in one expression sequence.

If acommand (local function call) isnot recognized by the shell, an attempt isfirst made to find the function in module
user _def aul t , where customized local commands can be placed. If found, the function is evaluated, otherwise an
attempt is made to evaluate the function in module shel | _def aul t . Module user _def aul t must be explicitly
loaded.

The shell also permits the user to start multiple concurrent jobs. A job can be regarded as a set of processes that can
communicate with the shell.

Thereissomesupport for reading and printing recordsin the shell. During compilation record expressionsaretrans ated
to tuple expressions. In runtime it is not known whether a tuple represents a record, and the record definitions used
by the compiler are unavailable at runtime. So, to read the record syntax and print tuples as records when possible,
record definitions must be maintained by the shell itself.

The shell commands for reading, defining, forgetting, listing, and printing records are described below. Notice that
each job hasits own set of record definitions. To facilitate matters, record definitionsin modulesshel | _def aul t
and user _def aul t (if loaded) are read each time anew job is started. For example, adding the following line to
user _def aul t makesthedefinitionof fi | e_i nf o readily availablein the shell:

-include lib("kernel/include/file.hrl").

The shell runs in two modes:

e Nornmal (possibly restricted) mode, inwhich commands can be edited and expressions eval uated
e Job Control Mode, JCL, in which jobs can be started, killed, detached, and connected

Only the currently connected job can 'talk’ to the shell.

Shell Commands
b()

Prints the current variable bindings.

432 | Ericsson AB. All Rights Reserved.: STDLIB

shell

f()

Removes all variable bindings.
f(X)

Removes the binding of variable X.
h()

Prints the history list.

hi story(N)

Sets the number of previous commandsto keep in the history list to N. The previous number isreturned. Defaults
to 20.

resul ts(N)

Sets the number of results from previous commands to keep in the history list to N. The previous number is
returned. Defaults to 20.

e(N
Repeats command N, if N is positive. If it is negative, the Nth previous command is repeated (that is, e(- 1)
repeats the previous command).

V(N

Uses the return value of command Nin the current command, if Nis positive. If it is negative, the return value of
the Nth previous command is used (that is, v(- 1) usesthe value of the previous command).

hel p()
Evaluatesshel | _def aul t: hel p().
c(File)

Evaluates shel | _defaul t: c(File). This compiles and loads code in Fi | e and purges old versions of
code, if necessary. Assumes that the file and module names are the same.

cat ch_excepti on(Bool)

Sets the exception handling of the evaluator process. The previous exception handling is returned. The default
(f al se)istokill theevaluator processwhen an exception occurs, which causesthe shell to create anew evaluator
process. When the exception handling is set to t r ue, the evaluator process lives on. This means, for example,
that ports and ETS tables as well as processes linked to the evaluator process survive the exception.

rd(Recor dNane, RecordDefinition)

Defines a record in the shell. Recor dNan®e is an atom and Recor dDef i ni t i on lists the field names and
the default values. Usually record definitions are made known to the shell by use of therr/ 1, 2, 3 commands
described below, but sometimesit is handy to define records on the fly.

rf()

Removes all record definitions, then reads record definitions from the modules shel | _defaul t and
user _def aul t (if loaded). Returns the names of the records defined.

r f (Recor dNanes)
Removes selected record definitions. Recor dNanes is arecord name or alist of record names. To remove all

record definitions, use' ' .

ri()

Prints all record definitions.

Ericsson AB. All Rights Reserved.: STDLIB | 433

shell

r1 (Recor dNanes)
Prints selected record definitions. Recor dNanes isarecord name or alist of record names.

rp(Term

Prints a term using the record definitions known to the shell. All of Ter mis printed; the depth is not limited as
isthe case when areturn value is printed.

rr(Modul e)

Reads record definitions from a module's BEAM file. If there are no record definitions in the BEAM file, the
source fileislocated and read instead. Returns the names of the record definitions read. Modul e isan atom.

rr(WIdcard)

Readsrecord definitions from files. Existing definitions of any of the record namesread arereplaced. W | dcar d
isawildcard string asdefined infi | el i b(3), but not an atom.

rr(WIdcardO Modul e, Recor dNanes)

Reads record definitions from files but discards record names not mentioned in Recor dNanes (arecord name
or alist of record names).

rr(WIdcardO Modul e, RecordNames, Options)

Reads record definitions from files. The compiler options {i, Dir}, {d, Macro}, and
{d, Macro, Val ue} arerecognized and used for setting up the include path and macro definitions. To read
al record definitions, use' ' asvalue of Recor dNanes.

Example

The following example is a long dialog with the shell. Commands starting with > are inputs to the shell. All other
lines are output from the shell.

strider 1> erl
Erlang (BEAM) emulator version 5.3 [hipe] [threads:0]

Eshell V5.3 (abort with ~G)
1> Str = "abcd".
"abcd"

Command 1 setsvariable St r to string " abcd™.

2> L = length(Str).
4

Command 2 sets L to the length of string St r .
3> Descriptor = {L, list to atom(Str)}.

{4,abcd}

Command 3 buildsthetuple Descr i pt or, evaluatingthe BIFl i st _to_atonl 1.

434 | Ericsson AB. All Rights Reserved.: STDLIB

shell

Command 4 prints the value of variable L.

5> b().

Descriptor = {4,abcd}
L=4

Str = "abcd"

ok

Command 5 evaluatesthe internal shell command b() , whichisan abbreviation of "bindings'. This printsthe current
shell variables and their bindings. ok at the end is the return value of function b() .

6> f(L).
ok

Command 6 evaluatestheinternal shell commandf (L) (abbreviation of "forget"). Thevalue of variableL isremoved.

7> b().

Descriptor = {4,abcd}
Str = "abcd"

ok

Command 7 prints the new bindings.

8> f(L).
ok

Command 8 has no effect, as L has no value.
9> {L, } = Descriptor.
{4,abcd}
Command 9 performs a pattern matching operation on Descr i pt or , binding anew valueto L.
10> L.
Command 10 prints the current value of L.
11> {P, Q, R} = Descriptor.
** exception error: no match of right hand side value {4,abcd}

Command 11 triesto match { P, Q R} against Descri pt or, whichis{4, abc}. The match fails and none
of the new variables become bound. The printout starting with"** excepti on error: " isnot the value of the

Ericsson AB. All Rights Reserved.: STDLIB | 435

shell

expression (the expression had no value because its evaluation failed), but awarning printed by the system to inform
the user that an error has occurred. The values of the other variables (L, St r, and so on) are unchanged.

12> P.

* 1: variable 'P' is unbound
13> Descriptor.

{4,abcd}

Commands 12 and 13 show that P is unbound because the previous command failed, and that Descr i pt or has not
changed.

14>{P, Q} = Descriptor.
{4,abcd}

15> P.

4

Commands 14 and 15 show a correct match where P and Qare bound.

16> f().
ok

Command 16 clears all bindings.
The next few commands assumethat t est 1: denp(X) isdefined asfollows:

demo(X) ->
put (aa, worked),
X =1,
X + 10.

17> put(aa, hello).
undefined

18> get(aa).

hello

Commands 17 and 18 set and inspect the value of item aa in the process dictionary.

19> Y = testl:demo(1l).
11

Command 19 evaluatest est 1: deno(1) . The evaluation succeeds and the changes made in the process dictionary
become visible to the shell. The new value of dictionary item aa can be seen in command 20.

20> get().

[{aa,worked}]

21> put(aa, hello).

worked

22> Z = testl:demo(2).

** exception error: no match of right hand side value 1

436 | Ericsson AB. All Rights Reserved.: STDLIB

shell

in function testl:demo/1

Commands 21 and 22 change the value of dictionary itemaatohel | o andcall t est 1: denp(2) . Evaluation fails
and the changes made to the dictionary int est 1: deno(2) , before the error occurred, are discarded.

23> Z.

* 1: variable 'Z' is unbound
24> get(aa).

hello

Commands 23 and 24 show that Z was not bound and that dictionary item aa has retained its original value.

25> erase(), put(aa, hello).
undefined

26> spawn(testl, demo, [1]).
<0.57.0>

27> get(aa).

hello

Commands 25, 26, and 27 show the effect of evaluating t est 1: deno(1) in the background. In this case, the
expression isevaluated in anewly spawned process. Any changes madein the processdictionary arelocal to the newly
spawned process and therefore not visible to the shell.

28> io:format("hello hello\n").
hello hello

ok

29> e(28).

hello hello

ok

30> v(28).

ok

Commands 28, 29 and 30 use the history facilities of the shell. Command 29 re-evaluates command 28. Command 30
uses the value (result) of command 28. In the cases of a pure function (a function with no side effects), the result is
the same. For afunction with side effects, the result can be different.

The next few commands show some record manipulation. It is assumed that ex. er | definesarecord asfollows:
-record(rec, {a, b =val()}).

val () ->
3.

31> c(ex).
{ok,ex}
32> rr(ex).
[rec]

Commands 31 and 32 compilefileex. er | andread therecord definitionsinex. beam If the compiler did not output
any record definitions on the BEAM file, r r (ex) triesto read record definitions from the source file instead.

Ericsson AB. All Rights Reserved.: STDLIB | 437

shell

33> rl(rec).
-record(rec,{a,b = val()}).
ok

Command 33 prints the definition of the record named r ec.

34> #rec{}.
** exception error: undefined shell command val/0

Command 34 triesto create ar ec record, but fails as function val / O is undefined.

35> #rec{b = 3}.
#rec{a = undefined,b = 3}

Command 35 shows the workaround: explicitly assign values to record fields that cannot otherwise be initialized.

36> rp(v(-1)).
#rec{a = undefined,b = 3}
ok

Command 36 prints the newly created record using record definitions maintained by the shell.

37> rd(rec, {f = orddict:new()}).
rec

Command 37 defines arecord directly in the shell. The definition replaces the one read from fileex. beam

38> #rec{}.
#rec{f = [1}
ok

Command 38 creates a record using the new definition, and prints the result.

39> rd(rec, {c}), A.
* 1: variable 'A' is unbound

40> #rec{}.
#rec{c = undefined}
ok

Command 39 and 40 show that record definitions are updated as side effects. The evaluation of the command fails,
but the definition of r ec has been carried out.

For the next command, itisassumedthatt est 1: | oop(N) isdefined asfollows:

[oop(N) ->
io:format ("Hell o Number: ~w-n", [N]),

| oop(N+1).

438 | Ericsson AB. All Rights Reserved.: STDLIB

shell

41> testl:loop
Hello Number:

(0).
0
Hello Number: 1
2
3

Hello Number:
Hello Number:

User switch command
--> i
--> C

Hello Number: 3374
Hello Number: 3375
Hello Number: 3376
Hello Number: 3377
Hello Number: 3378
** exception exit: killed

Command 41 evaluatest est 1: | oop(0) , which puts the system into an infinite loop. At this point the user types
A G (Control G), which suspends output from the current process, which is stuck in aloop, and activates JCL mode.
In JCL mode the user can start and stop jobs.

In thisparticular case, commandi ("interrupt") terminates the looping program, and command ¢ connectsto the shell
again. As the process was running in the background before we killed it, more printouts occur before message "* *
exception exit: killed"isshown.

42> E = ets:new(t, []).
17

Command 42 creates an ETS table.

43> ets:insert({d,1,2}).
** exception error: undefined function ets:insert/1

Command 43 tries to insert a tuple into the ETS table, but the first argument (the table) is missing. The exception
kills the evaluator process.

44> ets:insert(E, {d,1,2}).
** exception error: argument is of wrong type
in function ets:insert/2
called as ets:insert(16,{d,1,2})

Command 44 correctsthe mistake, but the ET Stable has been destroyed asit was owned by thekilled evaluator process.

45> f(E).

ok

46> catch _exception(true).
false

Command 46 sets the exception handling of the evaluator processto t r ue. The exception handling can also be set
when starting Erlangby er| -stdlib shell _catch_exception true.

Ericsson AB. All Rights Reserved.: STDLIB | 439

shell

47> E = ets:new(t, []).

18

48> ets:insert({d,1,2}).

* exception error: undefined function ets:insert/1

Command 48 makes the same mistake asin command 43, but this time the evaluator process lives on. The single star
at the beginning of the printout signals that the exception has been caught.

49> ets:insert(E, {d,1,2}).
true

Command 49 successfully inserts the tuple into the ETS table.

50> halt().
strider 2>

Command 50 exits the Erlang runtime system.

JCL Mode

When the shell starts, it startsasingle evaluator process. This process, together with any local processesthat it spawns,
isreferred to asaj ob. Only the current job, which is said to be connect ed, can perform operations with standard
I/O. All other jobs, which are said to be det ached, are bl ocked if they attempt to use standard I/O.

All jobs that do not use standard 1/O run in the normal way.

The shell escape key " G(Control G) detaches the current job and activates JCL mode. The JCL mode prompt is" - -
>"If " ?" isentered at the prompt, the following help message is displayed:

--> ?

c [nn] - connect to job

i [nn] - interrupt job

k [nn] - kill job

j - list all jobs

s [shell] - start local shell
r [node [shell]] - start remote shell
q - quit erlang

? | h - this message

The JCL commands have the following meaning:
c [nn]

Connects to job number <nn> or the current job. The standard shell is resumed. Operations that use standard 1/
O by the current job are interleaved with user inputs to the shell.

i [nn]

Stops the current evaluator process for job number nn or the current job, but does not kill the shell process. So,
any variable bindings and the process dictionary are preserved and the job can be connected again. Thiscommand
can be used to interrupt an endless loop.

440 | Ericsson AB. All Rights Reserved.: STDLIB

shell

k [nn]

Kills job humber nn or the current job. All spawned processes in the job are killed, provided they have not
evauatedthegr oup_| eader/ 1 BIF and arelocated on thelocal machine. Processes spawned on remote nodes
are not killed.

Listsall jobs. A list of all known jobsis printed. The current job name is prefixed with ",

Startsanew job. Thisis assigned the new index [nn] , which can be used in references.
[shel I']

Starts a new job. This is assigned the new index [nn] , which can be used in references. If optional argument
shel | isspecified, it isassumed to be a module that implements an alternative shell.

(2]

-

[node]

Starts aremote job on node. Thisis used in distributed Erlang to alow a shell running on one node to control
anumber of applications running on a network of nodes. If optional argument shel | is specified, it is assumed
to be amodule that implements an alternative shell.

QuitsErlang. Noticethat thisoption isdisabled if Erlang is started with theignore break, +Bi , system flag (which
can be useful, for example when running a restricted shell, see the next section).

Displays the help message above.

The behavior of shell escape can be changed by the STDLIB application variable shel | _esc. The value of the
variablecanbeeitherj cl (erl -stdlib shell _esc jcl)orabort (erl -stdlib shell _esc abort).
The first option sets * G to activate JCL mode (which is also default behavior). The latter sets * G to terminate the
current shell and start a new one. JCL mode cannot be invoked whenshel | _esc issettoabort .

If you want an Erlang node to have a remote job active from the start (rather than the default local job), start Erlang
with flag - r ensh, for example, er| -snane this_node -rensh ot her _node@t her _host

Restricted Shell

The shell can be started in a restricted mode. In this mode, the shell evaluates a function call only if allowed. This
feature makes it possible to, for example, prevent a user from accidentally calling a function from the prompt that
could harm arunning system (useful in combination with system flag +Bi).

When the restricted shell evaluates an expression and encounters a function call or an operator application, it callsa
callback function (with information about the function call in question). This callback function returnst r ue to let
the shell go ahead with the evaluation, or f al se to abort it. There are two possible callback functions for the user
to implement:

e local _allowed(Func, ArgList, State) -> {bool ean(), NewSt at e}

Thisisused to determineif the call to the local function Func with arguments Ar gLi st isto be alowed.

e non_local _all owed(FuncSpec, ArgList, State) -> {boolean(),NewState} |
{{redirect, NewFuncSpec, NewAr gLi st }, NewSt at e}

Thisisusedto determineif thecall to non-local function Func Spec ({ Modul e, Func} or afun) with arguments
Ar gLi st istobealowed. Thereturnvalue{r edi r ect , NewFuncSpec, NewAr gLi st} canbeusedtolet
the shell evaluate some other function than the one specified by Func Spec and Ar gLi st .

Ericsson AB. All Rights Reserved.: STDLIB | 441

shell

These callback functionsare called fromlocal and non-local evaluation function handlers, describedintheer | _eval
manual page. (Argumentsin Ar gLi st are evaluated before the callback functions are called.)

Argument St at e isatuple{ Shel | St at e, Expr St at e} . Thereturn value NewSt at e has the same form. This
can be used to carry a state between calls to the callback functions. Data saved in Shel | St at e lives through an
entire shell session. Data saved in Expr St at e lives only through the evaluation of the current expression.

There are two waysto start a restricted shell session:

e Use STDLIB application variable restri ct ed_shel | and specify, as its value, the name of the callback
module. Example (with callback functions implemented in cal | back_nod.erl): $ erl -stdlib
restricted_shell call back_nod.

e Fromanormal shell session, call function start _restri ct ed/ 1. Thisexitsthe current evaluator and starts
anew onein restricted mode.

Notes:

* When restricted shell mode is activated or deactivated, new jobs started on the node run in restricted or normal
mode, respectively.

e |f restricted mode has been enabled on aparticular node, remote shells connecting to thisnode also runin restricted
mode.

» The callback functions cannot be used to allow or disallow execution of functions called from compiled code
(only functions called from expressions entered at the shell prompt).

Errorswhen | oading the callback moduleishandled in different ways depending on how therestricted shell isactivated:

« |ftherestricted shell isactivated by setting the STDLIB variable during emulator startup, and the callback module
cannot be loaded, a default restricted shell allowing only the commands () andinit: stop() isused as
fallback.

* If therestricted shell isactivated using st art _restri ct ed/ 1 and the callback module cannot be loaded, an
error report is sent to the error logger and the call returns{ er r or , Reason}.

Prompting

The default shell prompt function displaysthe name of the node (if the node can be part of adistributed system) and the
current command number. The user can customize the prompt function by caling pronpt _func/ 1 or by setting
application configuration parameter shel | _pr onpt _f unc for the STDLIB application.

A customized prompt function is stated asatuple { Mod, Func}. Thefunctioniscalled asMbd: Func(L) , where
L isalist of key-value pairs created by the shell. Currently thereis only one pair: { hi st ory, N}, where Nisthe
current command number. The function is to return alist of characters or an atom. This constraint is because of the
Erlang 1/0O protocol. Unicode characters beyond code point 255 are allowed in the list. Notice that in restricted mode
the call Mod: Func (L) must be allowed or the default shell prompt function is called.

Exports

catch exception(Bool) -> boolean()
Types:
Bool = bool ean()
Setsthe exception handling of the evaluator process. The previous exception handling isreturned. Thedefault (f al se)
isto kill the evaluator process when an exception occurs, which causes the shell to create a new evaluator process.

When the exception handlingisset tot r ue, the evaluator process lives on, which meansthat, for example, ports and
ETS tables as well as processes linked to the evaluator process survive the exception.

442 | Ericsson AB. All Rights Reserved.: STDLIB

shell

history(N) -> integer() >= 0
Types:
N = integer() >= 0
Setsthe number of previous commandsto keep in the history list to N. The previous number isreturned. Defaultsto 20.

prompt func(PromptFunc) -> PromptFunc2
Types:
PromptFunc = PromptFunc2 = default | {module(), atom()}

Sets the shell prompt function to Pr onpt Func. The previous prompt function is returned.

results(N) -> integer() >= 0
Types.
N = integer() >= 0

Sets the number of results from previous commands to keep in the history list to N. The previous humber is returned.
Defaultsto 20.

start _restricted(Module) -> {error, Reason}
Types:

Module module()

Reason = code: |l oad_error_rsn()

Exits a norma shell and starts a restricted shell. Modul e specifies the callback module for the functions
| ocal _al | owed/ 3 andnon_I ocal _al | owed/ 3. The function is meant to be called from the shell.

If the callback module cannot be loaded, an error tupleis returned. The Reason in the error tupleis the one returned
by the code loader when trying to load the code of the callback module.

stop restricted() -> no_return()
Exits arestricted shell and starts anormal shell. The function is meant to be called from the shell.

strings(Strings) -> Strings2
Types.
Strings = Strings2 = boolean()
Sets pretty printing of liststo St ri ngs. The previous value of the flag is returned.

The flag can also be set by the STDLIB application variable shel | _stri ngs. Defaultsto t r ue, which means
that lists of integers are printed using the string syntax, when possible. Value f al se means that no lists are printed
using the string syntax.

Ericsson AB. All Rights Reserved.: STDLIB | 443

shell_default

shell default

Erlang module

The functions in this module are called when no module name is specified in a shell command.

Consider the following shell dialog:

1> lists:reverse("abc").
Ilcball

2> c(foo).

{ok, foo}

In command one, modulel i st s iscalled. In command two, no module name is specified. The shell searches module
user _def aul t followed by moduleshel | _def aul t for functionf oo/ 1.

shel | _def aul t isintended for "systemwide" customizationstotheshell. user _def aul t isintended for "local"
or individual user customizations.

Hint
To add your own commands to the shell, create a module called user _def aul t and add the commands you want.
Then add the following line asthefirst linein your . er | ang filein your home directory.

code:load abs("$PATH/user default").

$PATH isthe directory where your user _def aul t module can be found.

444 | Ericsson AB. All Rights Reserved.: STDLIB

slave

slave

Erlang module

This module provides functions for starting Erlang slave nodes. All slave nodes that are started by a master terminate
automatically when the master terminates. All terminal output produced at the slave is sent back to the master node.
File1/O is done through the master.

Slave nodes on other hosts than the current one are started with ther sh program. The user must be allowed tor sh to
the remote hosts without being prompted for apassword. This can be arranged in anumber of ways (for details, seethe
r sh documentation). A slave node started on the same host asthe master inherits certain environment values from the
master, such as the current directory and the environment variables. For what can be assumed about the environment
when adave is started on another host, see the documentation for ther sh program.

An alternative to the r sh program can be specified on the command linetoer | (1) asfollows:

-rsh Program

The slave node is to use the same file system at the master. At least, Erlang/OTP is to be installed in the same place
on both computers and the same version of Erlang isto be used.

A node running on Windows can only start slave nodes on the host on which it is running.
The master node must be alive.

Exports

pseudo([Master | ServerList]) -> ok
Types:

Mast er = node()

ServerList = [atom)]

Calspseudo(Mast er, ServerList).If youwant to start anode from the command line and set up a number
of pseudo servers, an Erlang runtime system can be started as follows:

% erl -name abc -s slave pseudo klacke@super x --

pseudo(Master, ServerList) -> ok
Types:
Master = node()
ServerList = [atom()]
Starts anumber of pseudo servers. A pseudo server isaserver with aregistered name that does nothing but pass on all

message to the real server that executes at a master node. A pseudo server is an intermediary that only has the same
registered name as the real server.

For example, if you have started a slave node N and want to execute pxw graphics code on this node, you can start
server pxw_ser ver asapseudo server at the slave node. Thisisillustrated as follows:

Ericsson AB. All Rights Reserved.: STDLIB | 445

slave

rpc:call(N, slave, pseudo, [node(), [pxw server]]).

relay(Pid) -> no return()
Types:
Pid = pid()
Runs a pseudo server. This function never returns any value and the process that executes the function receives
messages. All messages received are simply passed on to Pi d.

start(Host) -> {ok, Node} | {error, Reason}
start(Host, Name) -> {ok, Node} | {error, Reason}
start(Host, Name, Args) -> {ok, Node} | {error, Reason}

Types:
Host = inet: host nanme()
Name = atom() | string()
Args = string()
Node = node()

Reason = timeout | no_rsh | {already running, Node}

Starts aslave node on host Host . Host names need not necessarily be specified as fully qualified names; short names
can also be used. Thisis the same condition that appliesto names of distributed Erlang nodes.

The name of the started node becomes Nane @Host . If no nameis provided, the name becomes the same as the node
that executes the call (except the host name part of the node name).

The slave node resetsits user process so that al termina 1/O that is produced at the dave is automatically relayed
to the master. Also, the file processisrelayed to the master.

Argument Ar gs isused to set er | command-line arguments. If provided, it is passed to the new node and can be
used for avariety of purposes; seeer | (1) .

As an example, suppose that you want to start a slave node at host H with node name Narne @H and want the slave
node to have the following properties:

» Directory Di r isto be added to the code path.
 TheMnesiadirectory isto be set to M
e TheUnix DI SPLAY environment variableisto be set to the display of the master node.

The following code is executed to achieve this:

E = " -env DISPLAY " ++ net adm:localhost() ++ ":0 ",
Arg = "-mnesia dir " ++ M ++ " -pa " ++ Dir ++ E,
slave:start(H, Name, Arg).

The function returns { ok, Node}, where Node is the name of the new node, otherwise {error, Reason},
where Reason can be one of:

ti meout
The master node failed to get in contact with the slave node. This can occur in a number of circumstances:

e Erlang/OTPis not installed on the remote host.
* Thefile system on the other host has a different structure to the the master.
e TheErlang nodes have different cookies.

446 | Ericsson AB. All Rights Reserved.: STDLIB

slave

no_rsh
Thereisnor sh program on the computer.
{al ready_runni ng, Node}
A node with name Narre @Host aready exists.

start_link(Host) -> {ok, Node} | {error, Reason}
start _link(Host, Name) -> {ok, Node} | {error, Reason}
start link(Host, Name, Args) -> {ok, Node} | {error, Reason}

Types:
Host = inet: host name()
Name = atom() | string()
Args = string()
Node = node()

Reason = timeout | no_rsh | {already running, Node}

Startsaslavenodeinthesameway asst art/ 1, 2, 3, except that the lave node islinked to the currently executing
process. If that process terminates, the slave node also terminates.

For a description of arguments and return values, seestart/ 1, 2, 3.

stop(Node) -> ok
Types.

Node = node()
Stops (kills) anode.

Ericsson AB. All Rights Reserved.: STDLIB | 447

sofs

sofs

Erlang module

This module provides operations on finite sets and relations represented as sets. Intuitively, a set is a collection of
elements; every element belongs to the set, and the set contains every element.

Given aset A and a sentence S(x), where x is afree variable, anew set B whose elements are exactly those elements
of A for which S(x) holds can be formed, thisisdenoted B = {x in A : S(x)}. Sentences are expressed using the logi cal
operators "for some" (or "thereexists'), “for al”, "and", "or", "not". If the existence of aset containing all the specified
elementsis known (asis aways the case in this module), thisis denoted B = {x : S(x)}.

 Theunordered set containing the elements a, b, and ¢ is denoted {a, b, c}. This notation is not to be confused
with tuples.

The ordered pair of a and b, with first coordinate a and second coordinate b, is denoted (a, b). An ordered
pair isan ordered set of two elements. In this module, ordered sets can contain one, two, or more elements, and
parentheses are used to enclose the elements.

Unordered sets and ordered sets are orthogonal, again in this module; there is no unordered set equal to any
ordered set.

» Theempty set contains no elements.

Set A isequal to set B if they contain the same elements, which is denoted A = B. Two ordered sets are equal if
they contain the same number of elements and have equal elements at each coordinate.

Set B isasubset of set A if A containsal elementsthat B contains.

The union of two sets A and B is the smallest set that contains all elements of A and all elements of B.
Theinter section of two sets A and B isthe set that contains al elements of A that belong to B.

Two setsare digjoint if their intersection is the empty set.

The difference of two sets A and B isthe set that contains all elements of A that do not belong to B.

The symmetric difference of two setsis the set that contains those element that belong to either of the two sets,
but not both.

The union of a collection of setsisthe smallest set that contains all the elements that belong to at least one set
of the collection.

The intersection of a non-empty collection of setsis the set that contains all elements that belong to every set
of the collection.

e The Cartesian product of two sets X and Y, denoted X x Y, isthe set {a: a=(x, y) for some x in X and for
someyinY}.

A relation isasubset of X x Y. Let R be arelation. The fact that (X, y) belongsto R is written asx Ry. As
relations are sets, the definitions of the last item (subset, union, and so on) apply to relations as well.

Thedomain of Ristheset {x : x Ry for someyinY}.
Therangeof Ristheset{y : x Ry for somexin X}.
The converse of Ristheset {a: a= (y, x) for some (x, y) inR}.

If A isasubset of X, theimage of A under Ristheset{y: x Ry for somex in A}. If B isasubset of Y, the
inverseimage of B istheset {x : x Ry for somey in B}.

If Risarelation from X to Y, and Sisarelation from Y to Z, the relative product of R and Sistherelation T
from X to Z defined so that x T z if and only if there existsan elementy inY suchthatx Ry andy S z.

448 | Ericsson AB. All Rights Reserved.: STDLIB

sofs

Therestriction of Rto A istheset Sdefined sothat x Sy if and only if thereexistsan element X in A suchthat X Ry.
If Sisarestriction of Rto A, then Risan extension of Sto X.

If X =Y, thenRiscdled arelationin X.

Thefield of arelation R in X isthe union of the domain of R and the range of R.

If Risareationin X, and if Sis defined so that x Sy if x Ry and not x =y, then S is the strict relation
corresponding to R. Conversely, if Sisarelationin X, and if R is defined so that x Ry if x Sy or x =y, then
R istheweak relation corresponding to S.

A relation Rin X isreflexive if x R x for every element x of X, itissymmetricif x Ry impliesthat y R x, and
itistransitiveif x Ry andy R zimply that x R z.

A function Fis arelation, a subset of X x Y, such that the domain of F is equal to X and such that for every
X in X thereis a unique element y in Y with (X, y) in F. The latter condition can be formulated as follows: if
x Fy and x F z, then'y = z. In this module, it is not required that the domain of F is equal to X for a relation
to be considered a function.

Instead of writing (X, y) in F or x Fy, we write F(xX) =y when F is a function, and say that F maps x onto y, or
that the value of Fat x isy.

Asfunctions are relations, the definitions of the last item (domain, range, and so on) apply to functions as well.
If the converse of afunction Fisafunction F, then F' is called theinverse of F.

Therelative product of two functions F1 and F2 is called the composite of F1 and F2 if the range of F1 isa subset
of the domain of F2.

Sometimes, when the range of afunction ismoreimportant than the function itself, the functionis called afamily.
The domain of afamily is caled theindex set, and the rangeis called the indexed set.

If x isafamily from | to X, then x[i] denotes the value of the function at index i. The notation "a family in X"
isused for such afamily.

When the indexed set is a set of subsets of aset X, we call x afamily of subsets of X.
If x isafamily of subsets of X, the union of the range of x is called the union of the family x.
If X isnon-empty (theindex set isnon-empty), theinter section of thefamily x istheintersection of therange of x.

In this module, the only families that are considered are families of subsets of some set X; in the following, the
word "family" is used for such families of subsets.

A partition of aset X isacollection S of non-empty subsets of X whose union is X and whose elements are
pairwise digoint.

A relation in aset isan equivalencerelation if it isreflexive, symmetric, and transitive.

If Risan equivalence relation in X, and x is an element of X, the equivalence class of x with respect to R is
the set of all those elementsy of X for which x Ry holds. The equivalence classes constitute a partitioning of X.

Conversely, if Cisapartition of X, the relation that holds for any two elements of X if they belong to the same
equivalence class, is an equivalence relation induced by the partition C.

If R is an equivalence relation in X, the canonical map is the function that maps every element of X onto its
equivalence class.

Relations as defined above (as sets of ordered pairs) are from now on referred to as binary relations.

Wecall aset of ordered sets(x[1], ..., X[n]) an (n-ary) relation, and say that therelation is a subset of the Cartesian
product X[1] x ... x X[n], where x[i] isan element of X[i], 1 <=i<=n.

Ericsson AB. All Rights Reserved.: STDLIB | 449

sofs

The projection of an n-ary relation R onto coordinate i is the set {x[i] : (x[1], ..., X[i], ..., X[n]) in R for some
X[j]1inX[j], 1<=j<=nandnoti=j}. The projections of abinary relation R onto the first and second coordinates
are the domain and the range of R, respectively.

The relative product of binary relations can be generalized to n-ary relations as follows. Let TR be an ordered
set (R[1], ..., R[n]) of binary relations from X to Y[i] and S a binary relation from (Y[1] x ... x Y[n]) to Z. The
relative product of TR and Sisthe binary relation T from X to Z defined so that x T z if and only if there exists
anelement y[i] in Y[i] for each 1 <=i <=nsuchthat x R[i] y[i] and (y[1], ..., Y[n]) Sz. Now |let TR be aan ordered
set (R[1], ..., R[n]) of binary relations from X[i] to Y[i] and Sasubset of X[1] x ... x X[n]. The multiplerelative
product of TR and Sisdefined to betheset{z: z=((x[1], ..., X[n]), (y[1],....y[n])) for some (x[1], ..., X[n]) in S
and for some (X[i], y[i]) in R[i], 1 <=i <=n}.
The natural join of an n-ary relation R and an m-ary relation S on coordinate i and j is defined to bethe set {z :
z=(X[1], ..., x[n], y[1], ..., Y[j-1], y[i+1], ..., y[m]) for some (X[1], ..., X[n]) in R and for some (y[1], ..., y[m]) in S
such that x[i] = y[j]}.

e The sets recognized by this module are represented by elements of the relation Sets, which is defined as the
smallest set such that:

e Forevery atom T, except' ', and for every term X, (T, X) belongs to Sets (atomic sets).

* (I'1, 1D belongsto Sets (the untyped empty set).

e Forevery tuple T ={T[1], ..., T[n]} and for every tuple X = {X[1], ..., X[n]}, if (T[i], X][i]) belongs to Sets
for every 1 <=i <=n, then (T, X) belongs to Sets (or dered sets).

e For every term T, if X isthe empty list or a non-empty sorted list [X[1], ..., X[n]] without duplicates such
that (T, X[i]) belongsto Setsfor every 1 <=1 <=n, then ([T], X) belongs to Sets (typed unordered sets).

An external set isan element of the range of Sets.

A typeisan element of the domain of Sets.

If Sisan element (T, X) of Sets, then T isavalid type of X, T isthe type of S, and X is the external set of S.
fromterm 2 creates aset from atype and an Erlang term turned into an external set.

The sets represented by Sets are the elements of the range of function Set from Sets to Erlang terms and sets of
Erlang terms:

e Set(T,Term) = Term, where T is an atom

o Set({T[al, ..., T[]}, {X[1], ..., X[n]}) = (Set(T[1], X[1]), ..., Set(T[n], X[n]))

o Set([T], [X[1], ..., X[n]]) = {Set(T, X[1]), ..., Set(T, X[n])}

« ST D ={}

When there is no risk of confusion, elements of Sets are identified with the sets they represent. For example, if

U istheresult of calling uni on/ 2 with S1 and S2 as arguments, then U is said to be the union of S1 and S2. A
more precise formulation is that Set(U) is the union of Set(S1) and Set(S2).

The types are used to implement the various conditions that sets must fulfill. As an example, consider the relative
product of two sets R and S, and recall that the relative product of R and Sisdefined if Risabinary relationto Y and
Sisabinary relation from Y. The function that implements the relative product, r el ati ve_pr oduct / 2, checks
that the arguments represent binary relations by matching [{ A,B}] against the type of the first argument (Argl say),
and [{ C,D}] against the type of the second argument (Arg2 say). The fact that [{ A,B}] matches the type of Argl is
to be interpreted as Argl representing a binary relation from X to Y, where X is defined as all sets Set(x) for some
element x in Sets the type of which is A, and similarly for Y. In the same way Arg2 is interpreted as representing a
binary relation from W to Z. Finally it is checked that B matches C, which is sufficient to ensure that W isequal to Y.
The untyped empty set is handled separately: itstype, ['_], matches the type of any unordered set.

A few functions of this module (drestriction/3, famly projection/2, partition/2,
partition fam ly/2,projection/2,restriction/3,substitution/2)acceptanErlang function

450 | Ericsson AB. All Rights Reserved.: STDLIB

sofs

as ameans to modify each element of a given unordered set. Such afunction, called SetFun in the following, can be
specified as afunctional object (fun), atuple{ ext ernal , Fun}, or aninteger:

« |If SetFunis specified as afun, the fun is applied to each element of the given set and the return value is assumed
to be a set.

e |If SetFunis specified asatuple{ ext ernal , Fun}, Funisapplied to the external set of each element of the
given set and the return value is assumed to be an external set. Selecting the elements of an unordered set as
external setsand assembling anew unordered set from alist of external setsisin the present implementation more
efficient than modifying each element as a set. However, this optimization can only be used when the elements of
the unordered set are atomic or ordered sets. It must also be the case that the type of the elements matches some
clause of Fun (the type of the created set is the result of applying Fun to the type of the given set), and that Fun
does nothing but selecting, duplicating, or rearranging parts of the elements.

* Specifying a SetFun as an integer | is equivdent to specifying {external, fun(X) ->
el ement (1, X) end},butistobe preferred, asit makesit possible to handle this case even more efficiently.

Examples of SetFuns:

fun sofs:union/1

fun(S) -> sofs:partition(1l, S) end
{external, fun(A) -> A end}
{external, fun({A, ,C}) -> {C,A} end}
{external, fun

_,C}}) -> C end}
{external, fun

_if
A, {_,E}=C}}) -> {E,{E,C}} end}
2

The order in which a SetFun is applied to the elements of an unordered set is not specified, and can change in future
versions of this module.

The execution time of the functions of this module is dominated by the time it takes to sort lists. When no sorting is
needed, the execution time is in the worst case proportional to the sum of the sizes of the input arguments and the
returned value. A few functions execute in constant time: f rom external / 2,i s_enpty_set/1,is_set/1,
is_sofs _set/1,to_external/1ltype/l.

Thefunctions of thismodule exit the processwithabadar g,bad_f uncti on,ort ype_ni smat ch messagewhen
given badly formed arguments or sets the types of which are not compatible.

When comparing external sets, operator ==/ 2 isused.

Data Types

anyset() = ordset() | a_set()
Any kind of set (also included are the atomic sets).
binary relation() = rel ation()
A binary relation.

external set() = term()

An external set.

family () = a_function()

A family (of subsets).

a_function() = relation()

A function.

Ericsson AB. All Rights Reserved.: STDLIB | 451

sofs

ordset()

An ordered set.

relation() = a_set()

An n-ary relation.

a set()

An unordered set.

set of sets() = a_set()
An unordered set of unordered sets.

set fun() =
integer() >= 1 |
{external, fun((external _set()) -> external _set())} |
fun((anyset()) -> anyset())

A SetFun.

spec_fun() =
{external, fun((external _set()) -> boolean())} |
fun((anyset()) -> boolean())

type() = term()

A type.

tuple of(T)

A tuple where the elements are of type T.

Exports

a_function(Tuples) -> Function
a_function(Tuples, Type) -> Function
Types:
Function = a_function()
Tuples = [tuple()]
Type = type()
Createsafunction.a_function(F, T) isequivdenttofromterm(F, T) iftheresultisafunction. If notype
is explicitly specified, [{ at om at on}] isused asthe function type.

canonical relation(Set0fSets) -> BinRel
Types:
BinRel = binary relation()
Set0fSets = set_of _sets()
Returns the binary relation containing the elements (E, Set) such that Set belongs to Set OF Set s and E belongs to

Set. If Set OF Set s isapartition of aset X and R isthe equivalencerelationin X induced by Set Of Set s, then the
returned relation is the canonical map from X onto the equivalence classes with respect to R.

1> Ss = sofs:from term([[a,b],[b,cl]),
CR = sofs:canonical relation(Ss),
sofs:to _external(CR).

452 | Ericsson AB. All Rights Reserved.: STDLIB

sofs

[{a,[a,bl},{b, [a,b]},{b, [b,cI},{c, [b,cl}]

composite(Functionl, Function2) -> Function3
Types:
Functionl = Function2 = Function3 = a_function()

Returns the composite of the functions Funct i onl and Functi on2.

1> F1 = sofs:a function([{a,1},{b,2},{c,2}]1),
F2 = sofs:a function([{1,x},{2,y},{3,2}1),

F = sofs:composite(Fl, F2),

sofs:to external(F).

[{a,x},{b,y},{c,y}]

constant function(Set, AnySet) -> Function
Types.

AnySet = anyset ()

Function = a_function()

Set = a_set()
Creates the function that maps each element of set Set onto Any Set .

1> S = sofs:set([a,b]),

E = sofs:from term(1),

R = sofs:constant function(S, E),
sofs:to _external(R).
[{a,1},{b,1}]

converse(BinRell) -> BinRel2
Types.
BinRell = BinRel2 = binary_rel ation()

Returns the conver se of the binary relation Bi nRel 1.

1> R1 = sofs:relation([{1,a},{2,b},{3,a}]),
R2 = sofs:converse(R1),
sofs:to external(R2).

[{a,1},{a,3},{b,2}]

difference(Setl, Set2) -> Set3
Types:
Setl = Set2 = Set3 = a_set ()

Returns the difference of the sets Set 1 and Set 2.

Ericsson AB. All Rights Reserved.: STDLIB | 453

sofs

digraph to family(Graph) -> Family
digraph to family(Graph, Type) -> Family
Types.
Graph = di graph: graph()
Family = fam |l y()
Type = type()
Creates afamily from the directed graph Gr aph. Each vertex aof Gr aph isrepresented by apair (a, {b[1], ..., b[n]}),

where the b[i]:s are the out-neighbors of a. If no typeis explicitly specified, [{ atom, [atom]}] is used as type of the
family. It isassumed that Type isavalid type of the external set of the family.

If G is a directed graph, it holds that the vertices and edges of G are the same as the vertices and edges of
famly to _digraph(digraph to famly(Q).

domain(BinRel) -> Set
Types:
BinRel = binary relation()
Set = a_set ()
Returns the domain of the binary relation Bi nRel .

1> R = sofs:relation([{1,a},{1,b},{2,b},{2,c}]),
S = sofs:domain(R),

sofs:to _external(S).

[1,2]

drestriction(BinRell, Set) -> BinRel?2
Types:
BinRell = BinRel2 = binary_rel ation()
Set = a_set ()
Returns the difference between the binary relation Bi nRel 1 and therestriction of Bi nRel 1 to Set .

1> R1 = sofs:relation([{1,a},{2,b},{3,c}l),
S = sofs:set([2,4,6]1),

R2 = sofs:drestriction(R1, S),

sofs:to external(R2).

[{1,a},{3,c}]
drestriction(R, S) isequivalenttodifference(R, restriction(R S)).

drestriction(SetFun, Setl, Set2) -> Set3
Types:

SetFun = set_fun()

Setl = Set2 = Set3 = a_set ()

Returns a subset of Set 1 containing those elements that do not give an element in Set 2 as the result of applying
Set Fun.

454 | Ericsson AB. All Rights Reserved.: STDLIB

sofs

1> SetFun = {external, fun({ A,B,C}) -> {B,C} end},
R1 sofs:relation([{a,aa,l},{b,bb,2},{c,cc,3}]),
R2 sofs:relation([{bb, 2}, {cc,3},{dd,4}]),

R3 sofs:drestriction(SetFun, R1l, R2),

sofs:to external(R3).

[{a,aa,1}]

drestriction(F, S1, S2) isequivalenttodifference(Sl, restriction(F, S1, S2)).

empty set() -> Set
Types:
Set = a_set()
Returns the untyped empty set. enpt y_set () isequivalenttofromterm([], [' _']).

extension(BinRell, Set, AnySet) -> BinRel2
Types:
AnySet = anyset ()
BinRell = BinRel2 = binary_rel ation()
Set = a_set ()

Returns the extension of Bi nRel 1 such that for each element E in Set that does not belong to the domain of
Bi nRel 1, Bi nRel 2 containsthe pair (E, Any Set).

1> S = sofs:set([b,cl),

A = sofs:empty set(),
R = sofs:family([{a,[1,2]1},{b,[31}]),
X = sofs:extension(R, S, A),

sofs:to external(X).

[{a,[1,2]1},{b, [31},{c, [1}]

family(Tuples) -> Family
family(Tuples, Type) -> Family

Types.
Family = fam |l y()
Tuples = [tuple()]

Type = type()
Createsafamily of subsets. f ami | y(F, T) isequivdenttofrom term(F, T) iftheresultisafamily. If notype
isexplicitly specified, [{at om [aton]}] isused asthe family type.

family difference(Familyl, Family2) -> Family3
Types:

Familyl = Family2 = Family3 = famly()
If Fam | y1 and Fani | y2 arefamilies, then Fami | y3 isthefamily such that theindex set isequal to theindex set of
Fam | y1, and Fami | y3Ji] isthe difference between Fami | y1[i] and Fami | y2[i] if Fami | y2 mapsi, otherwise
Fam | y1[i].

Ericsson AB. All Rights Reserved.: STDLIB | 455

sofs

1> F1 = sofs:family([{a,[1,2]},{b,[3,41}]),
F2 = sofs:family([{b,[4,5]1},{c,[6,71}]1),

F3 = sofs:family difference(Fl, F2),
sofs:to external(F3).

[{a,[1,21},{b, [31}]

family domain(Familyl) -> Family2
Types:
Familyl = Family2 = famly()

If Fam | y1 isafamily and Fami | y1[i] isabinary relation for every i intheindex set of Fani | y1, then Fami | y2
isthe family with the sameindex set asFam | y1 such that Fami | y2[i] isthedomain of Fam | y1[i].

1> FR = sofs:from_term([{a,[{1,a},{2,b},{3,c}1},{b,[1},{c,[{4,d},{5,e}1}]),
F = sofs:family domain(FR),

sofs:to _external(F).

[{a,[1,2,3]1},{b,[1},{c,[4,5]}]

family field(Familyl) -> Family2
Types.
Familyl = Family2 = famly()

If Fami | y1 isafamily and Fami | y1[i] isabinary relation for every i intheindex set of Fani | y1, then Fami | y2
isthe family with the same index set as Fami | y1 such that Fami | y2[i] isthefield of Fami | y1[i].

1> FR = sofs:from term([{a,[{1,a},{2,b},{3,c}1},{b,[1},{c,[{4,d},{5,e}]1}]),
F = sofs:family field(FR),

sofs:to external(F).

[{a,[1,2,3,a,b,c]},{b,[1},{c,[4,5,d,e]}]

famly field(Famlyl) is equivdent to famly union(fam |y _domain(Famlyl),
fam ly range(Famlyl)).

family intersection(Familyl) -> Family2
Types:
Familyl = Family2 = famly()

If Fam | y1 isafamily and Fami | y1[i] isaset of setsfor every i in theindex set of Fani | y1, then Fami | y2 is
the family with the same index set as Fami | y1 such that Fami | y2[i] istheintersection of Fani | y1][i].

If Fam | y1[i] isan empty set for somei, the process exits with abadar g message.

1> F1 = sofs:from term([{a,[[1,2,31,[2,3,411},{b,[[x,y,z],[x,yl1}1),
F2 = sofs:family intersection(F1),

sofs:to _external(F2).

[{a,[2,31},{b, [x,y]1}]

456 | Ericsson AB. All Rights Reserved.: STDLIB

sofs

family intersection(Familyl, Family2) -> Family3
Types:
Familyl = Family2 = Family3 = fam | y()

If Fam | y1 and Fami | y2 are families, then Fami | y3 is the family such that the index set is the intersection of
Fam | yl:sand Fam | y2:sindex sets, and Fam | y3[i] istheintersection of Fami | y1[i] and Fam | y2[i].

1> F1 = sofs:family([{a,[1,2]1},{b,[3,4]1},{c,[5,61}]),
F2 = sofs:family([{b,[4,5]1},{c,[7,8]1},{d,[9,10]1}1),
F3 = sofs:family intersection(F1, F2),

sofs:to _external(F3).

[{b,[41},{c,[1}]

family projection(SetFun, Familyl) -> Family2
Types.

SetFun = set_fun()

Familyl = Family2 = family()

If Fam | y1 isafamily, then Fam | y2 isthe family with the sameindex set as Fami | y1 such that Fami | y2Ji] is
the result of calling Set Fun with Fani | y1[i] asargument.

1> F1 = sofs:from_term([{a,[[1,2],[2,3]11},{b,[[11}]),
F2 = sofs:family projection(fun sofs:union/1, F1),
sofs:to external(F2).

[{a,[1,2,3]1},{b,[1}]

family range(Familyl) -> Family2
Types:
Familyl = Family2 = famly()

If Fam | y1 isafamilyand Fami | y1[i] isabinary relation for every i intheindex set of Fani | y1, then Fami | y2
isthe family with the same index set as Fami | y1 such that Fani | y2[i] istherange of Fani | y1[i].

1> FR = sofs:from term([{a, [{1,a},{2,b},{3,c}1},{b,[1},{c,[{4,d},{5,e}]1}]),
F = sofs:family range(FR),

sofs:to external(F).

[{a,[a,b,c]},{b,[1},{c,[d,el}]

family specification(Fun, Familyl) -> Family2
Types:
Fun = spec_fun()
Familyl = Family2 = famly()
If Fam | y1 isafamily, then Fami | y2 istherestriction of Fami | y1 to those elementsi of the index set for which

Fun applied to Fami | y1[i] returnst r ue. If Fun isatuple{ext ernal , Fun2}, then Fun2 is applied to the
external set of Fami | y1[i], otherwise Fun isapplied to Fami | y1[i].

Ericsson AB. All Rights Reserved.: STDLIB | 457

sofs

1> F1 = sofs:family([{a,[1,2,31},{b,[1,21},{c,[1]}]),
SpecFun = fun(S) -> sofs:no_elements(S) =:= 2 end,

F2 = sofs:family specification(SpecFun, F1),

sofs:to external(F2).

[{b,[1,2]}]

family to digraph(Family) -> Graph
family to digraph(Family, GraphType) -> Graph
Types:
Graph = di graph: graph()
Family = fam |l y()
GraphType = [digraph:d_type()]
Creates a directed graph from family Fami | y. For each pair (a, {b[1], ..., b[n]}) of Fam | y, vertex aand the edges
(a b[i]) for 1 <=i <= n are added to a newly created directed graph.
If no graph type is specified, di graph: new O is used for creating the directed graph, otherwise argument
G aphType ispassed on as second argument to di gr aph: new/ 1.
It Fisafamily, it holdsthat Fisasubset of di graph_to famly(fanmly_to_digraph(F), type(F)).
Equality holdsif uni on_of _fami | y(F) isasubset of domai n(F) .
Creating acycle in an acyclic graph exits the processwith acycl i ¢ message.

family to relation(Family) -> BinRel
Types.

Family = famly()

BinRel = binary relation()

If Fam | y isafamily, then Bi nRel isthe binary relation containing al pairs (i, x) such that i belongs to the index
set of Fami | y and x belongsto Fami | y[i].

1> F = sofs:family([{a,[]}, {b,[1]}, {c,[2,3]1}]),
R = sofs:family to relation(F),

sofs:to external(R).

[{b,1},{c,2},{c,3}]

family union(Familyl) -> Family2
Types:
Familyl = Family2 = famly()

If Fami | y1 isafamily and Fami | y1[i] isaset of setsfor eachi intheindex set of Fani | y1, then Fami | y2 isthe
family with the sameindex set asFami | y1 such that Fani | y2[i] isthe union of Fami | y1[i].

1> F1 = sofs:from term([{a,[[1,2],[2,3]11},{b,[[11}1),
F2 = sofs:family union(F1),

sofs:to external(F2).

[{a,[1,2,31},{b, [1}]

fam |y _uni on(F) isequivalenttofam |y _projection(fun sofs:union/1, F).

458 | Ericsson AB. All Rights Reserved.: STDLIB

sofs

family union(Familyl, Family2) -> Family3
Types:

Familyl = Family2 = Family3 = fam | y()
If Fam | y1landFam | y2 arefamilies, then Fami | y 3 isthefamily suchthat theindex setistheunionof Fani | y1:s
and Fam | y2:sindex sets, and Fam | y3Ji] isthe union of Fanmi | y1[i] and Fam | y2[i] if both map i, otherwise
Fam | y1[i] or Fam | y2Ji].

1> F1 = sofs:family([{a,[1,2]1},{b,[3,4]1},{c,[5,61}]),
F2 = sofs:family([{b,[4,5]1},{c,[7,8]1},{d,[9,10]1}1),
F3 = sofs:family union(Fl, F2),

sofs:to _external(F3).
[{a,[1,21},{b,[3,4,5]1},{c,[5,6,7,8]1},{d,[9,10]}]

field(BinRel) -> Set
Types:
BinRel = binary_rel ation()
Set = a_set()
Returns the field of the binary relation Bi nRel .

1> R = sofs:relation([{1,a},{1,b},{2,b},{2,c}]),
S = sofs:field(R),

sofs:to external(S).

[1,2,a,b,c]

fiel d(R) isequivaenttouni on(domai n(R), range(R)).

from external(ExternalSet, Type) -> AnySet
Types.
ExternalSet = external _set()
AnySet = anyset ()
Type = type()
Creates a set from the external set Ext er nal Set and the type Type. It is assumed that Type is avalid type of
Ext er nal Set .

from sets(ListOfSets) -> Set
Types:
Set = a_set()
ListOfSets = [anyset ()]
Returns the unordered set containing the sets of list Li st Of Set s.

1> S1 = sofs:relation([{a,1},{b,2}]),
S2 = sofs:relation([{x,3},{y,4}1),

S = sofs:from sets([S1,S2]),

sofs:to external(S).

Ericsson AB. All Rights Reserved.: STDLIB | 459

sofs

[[{a,1},{b,2}]1, [{x,3},{y,4}]]

from sets(TupleOfSets) -> Ordset
Types:

Ordset = ordset()

TupleOfSets = tupl e_of (anyset())

Returns the ordered set containing the sets of the non-empty tuple Tupl eCf Set s.

from term(Term) -> AnySet
from term(Term, Type) -> AnySet

Types:
AnySet = anyset ()
Term = term()
Type = type()

Creates an element of Sets by traversing term Ter m sorting lists, removing duplicates, and deriving or verifying a
valid type for the so obtained external set. An explicitly specified type Type can be used to limit the depth of the
traversal; an atomic type stops the traversal, as shown by the following example where " f 00" and { " f 00"} are
left unmodified:

1> S = sofs:from term([{{"fo0"},[1,1]},{"fo0",[2,2]1}],
[{atom, [atom]}]),

sofs:to _external(S).

[{{"foo"},[11},{"foo", [2]}]

from_t er mcan be used for creating atomic or ordered sets. The only purpose of such a set isthat of later building
unordered sets, as al functions in this module that do anything operate on unordered sets. Creating unordered sets
from a collection of ordered sets can be the way to go if the ordered sets are big and one does not want to waste heap
by rebuilding the elements of the unordered set. The following example shows that a set can be built "layer by layer":

1> A = sofs:from term(a),
S = sofs:set([1,2,3]),

P1 = sofs:from sets({A,S}),
P2 = sofs:from term({b,[6,5,4]1}),
Ss =

(
sofs:from sets([P1,P2]),
sofs:to external(Ss).
[{a,[1,2,3]1},{b,[4,5,6]}]

Other functions that create setsaref rom ext ernal / 2 andfrom set s/ 1. Specia casesof from t er nf 2 are
a function/1, 2,enpty_set/0,famly/1,2,relation/1,2,andset/ 1, 2.

image(BinRel, Setl) -> Set2
Types.
BinRel = binary_rel ation()
Setl = Set2 = a_set ()

Returns the image of set Set 1 under the binary relation Bi nRel .

460 | Ericsson AB. All Rights Reserved.: STDLIB

sofs

1> R = sofs:relation([{1,a},{2,b},{2,c},{3,d}]),
S1 sofs:set([1,2]),

S2 sofs:image(R, S1),

sofs:to external(S2).

[a,b,c]

intersection(Set0fSets) -> Set
Types:
Set = a_set ()
Set0fSets = set _of sets()
Returns the intersection of the set of sets Set Of Set s.

Intersecting an empty set of sets exits the process with abadar g message.

intersection(Setl, Set2) -> Set3
Types:
Setl = Set2 = Set3 = a_set()

Returns the intersection of Set 1 and Set 2.

intersection of family(Family) -> Set
Types:
Family = famly()
Set = a_set()
Returns the intersection of family Fami | y.
Intersecting an empty family exits the process with abadar g message.

1> F = sofs:family([{a,[0,2,4]},{b,[0,1,2]},{c,[2,3]}]),
S = sofs:intersection of family(F),

sofs:to _external(S).

[2]

inverse(Functionl) -> Function2
Types:
Functionl = Function2 = a_function()

Returns the inverse of function Functi onl.

1> R1 = sofs:relation([{1,a},{2,b},{3,c}]),
R2 = sofs:inverse(R1l),
sofs:to external(R2).

[{a,1},{b,2},{c,3}]

inverse image(BinRel, Setl) -> Set2
Types:

Ericsson AB. All Rights Reserved

.. STDLIB | 461

sofs

BinRel = binary relation()
Setl = Set2 = a_set ()

Returns the inverseimage of Set 1 under the binary relation Bi nRel .

1> R = sofs:relation([{1,a},{2,b},{2,c},{3,d}]),
S1 = sofs:set([c,d,e]),

S2 = sofs:inverse image(R, S1),

sofs:to external(S2).

[2,3]

is_a function(BinRel) -> Bool
Types:

Bool = boolean()

BinRel = binary_rel ation()

Returnst r ue if the binary relation Bi nRel isafunction or the untyped empty set, otherwisef al se.

is disjoint(Setl, Set2) -> Bool
Types.

Bool boolean()

Setl = Set2 = a_set()

Returnst r ue if Set 1 and Set 2 aredigoint, otherwisef al se.

is empty set(AnySet) -> Bool
Types:
AnySet = anyset ()
Bool = boolean()
Returnst r ue if AnySet isan empty unordered set, otherwisef al se.

is equal(AnySetl, AnySet2) -> Bool
Types.
AnySetl = AnySet2 = anyset ()
Bool = boolean()

Returnst r ue if AnySet 1 and Any Set 2 are equal, otherwisef al se. The following example showsthat ==/ 2 is
used when comparing sets for equality:

1> S1 = sofs:set([1.0]),
S2 = sofs:set([1]),
sofs:is equal(S1l, S2).
true

is set(AnySet) -> Bool
Types:

462 | Ericsson AB. All Rights Reserved.: STDLIB

sofs

AnySet = anyset ()
Bool = boolean()
Returnst r ue if AnySet isan unordered set, and f al se if AnySet isan ordered set or an atomic set.

is sofs set(Term) -> Bool

Types.
Bool = boolean()
Term = term()

Returnst r ue if Ter misan unordered set, an ordered set, or an atomic set, otherwisef al se.

is subset(Setl, Set2) -> Bool

Types.
Bool = boolean()
Setl = Set2 = a_set ()

Returnst r ue if Set 1 isasubset of Set 2, otherwisef al se.

is type(Term) -> Bool
Types.
Bool = boolean()
Term = term()

Returnst r ue if term Ter misatype.

join(Relationl, I, Relation2, J) -> Relation3
Types:
Relationl = Relation2 = Relation3 = relation()
I =] = integer() >=1

Returnsthe natural join of therelationsRel ati onl and Rel at i on2 on coordinates| and J.

1> R1 = sofs:relation([{a,x,1},{b,y,2}1),

R2 = sofs:relation([{1,f,qg},{1,h,i},{2,3,4}1),
J = sofs:join(R1, 3, R2, 1),

sofs:to _external(J).
[{a,x,1,f,g},{a,x,1,h,i},{b,y,2,3,4}]

multiple relative product(TupleOfBinRels, BinRell) -> BinRel2
Types.

TupleOfBinRels = tupl e_of (BinRel)

BinRel = BinRell = BinRel2 = binary relation()

If Tupl e Bi nRel s isanon-empty tuple {R[1], ..., R[n]} of binary relations and Bi nRel 1 is abinary relation,
then Bi nRel 2 isthe multiple relative product of the ordered set (R]i], ..., R[n]) and Bi nRel 1.

1> Ri = sofs:relation([{a,1},{b,2},{c,3}1),

Ericsson AB. All Rights Reserved.: STDLIB | 463

sofs

R = sofs:relation([{a,b},{b,c}, {c,a}l),
MP = sofs:multiple relative product({Ri, Ri}, R),
sofs:to external(sofs:range(MP)).

[{1,2},{2,3},{3,1}]

no elements(ASet) -> NoElements
Types:
ASet = a_set() | ordset()
NoElements = integer() >= 0

Returns the number of elements of the ordered or unordered set ASet .

partition(Set0OfSets) -> Partition
Types.
Set0fSets = set_of _sets()
Partition = a_set()

Returns the partition of the union of the set of sets Set OF Set s such that two elements are considered equal if they
belong to the same elements of Set OF Set s.

1> Setsl = sofs:from term([[a,b,c],[d,e,f],[g,h,1]1]),
Sets2 = sofs:from term([[b,c,d],[e,f,q],[h,i,711),

P = sofs:partition(sofs:union(Setsl, Sets2)),

sofs:to external(P).
[[al,[b,c],[d],[e,f],[g],[h,i],[j]]

partition(SetFun, Set) -> Partition
Types:

SetFun = set _fun()

Partition = Set = a_set()

Returnsthe partition of Set such that two elements are considered equal if the results of applying Set Fun are equal.

1> Ss = sofs:from term([[a],[b],[c,d],[e,f]1]),

SetFun = fun(S) -> sofs:from term(sofs:no elements(S)) end,
P = sofs:partition(SetFun, Ss),

sofs:to external(P).

[[[al,[bl],[[c,d],[e,f]]]

partition(SetFun, Setl, Set2) -> {Set3, Set4}
Types:

SetFun = set _fun()

Setl = Set2 = Set3 = Setd4 = a_set()

Returnsapair of setsthat, regarded as constituting aset, formsapartition of Set 1. If theresult of applying Set Fun to
an element of Set 1 givesan element in Set 2, the element belongsto Set 3, otherwise the element belongsto Set 4.

1> R1 = sofs:relation([{1,a},{2,b},{3,c}]),

464 | Ericsson AB. All Rights Reserved.: STDLIB

sofs

S = sofs:set([2,4,6]1),

{R2,R3} = sofs:partition(1l, R1l, S),

{sofs:to external(R2),sofs:to external(R3)}.
{[{2,b}],[{1,a},{3,c}I}

partition(F, S1, S2) isequivaentto{restriction(F, S1, S2), drestriction(F, S1, S2)}.

partition family(SetFun, Set) -> Family

Types:
Family = fam | y()
SetFun = set_fun()

Set = a_set()

Returnsfamily Fani | y wheretheindexed setisapartition of Set such that two elements are considered equal if the
results of applying Set Fun are the samevaluei. Thisi istheindex that Famni | y maps onto the equivalence class.

1> S = sofs:relation([{a,a,a,a},{a,a,b,b},{a,b,b,b}]),
SetFun = {external, fun({A, ,C, }) -> {A,C} end},

F = sofs:partition family(SetFun, S),

sofs:to external(F).

[{{a,a},[{a,a,a,a}]},{{a,b}, [{a,a,b,b},{a,b,b,b}]}]

product(TupleOfSets) -> Relation
Types:
Relation = rel ation()
TupleOfSets = tuple_of (a_set())

Returns the Cartesian product of the non-empty tuple of sets Tupl eOf Set s. If (x[1], ..., X[n]) is an element of the
n-ary relation Rel at i on, then x[i] is drawn from element i of Tupl eCf Set s.

1 = sofs:set([a,b]),

sofs:set([1,2]),

sofs:set([x,y]l),

= sofs:product({S1,S52,S3}),

sofs:to _external(P3).
[{a,1,x},{a,1,y},{a,2,x},{a,2,y},{b,1,x},{b,1,y},{b,2,x},{b,2,y}]

fary
)
I wm

o
w
|

product(Setl, Set2) -> BinRel
Types.
BinRel = binary_rel ation()
Setl = Set2 = a_set()

Returns the Cartesian product of Set 1 and Set 2.

1> S1 = sofs:set([1,2]),
S2 = sofs:set([a,b]),

R = sofs:product(S1, S2),
sofs:to _external(R).
[{1,a},{1,b},{2,a},{2,b}]

Ericsson AB. All Rights Reserved.: STDLIB | 465

sofs

product (S1, S2) isequivaenttoproduct ({S1, S2}).

projection(SetFun, Setl) -> Set2
Types.

SetFun = set_fun()

Setl = Set2 = a_set ()

Returns the set created by substituting each element of Set 1 by the result of applying Set Fun to the element.
If Set Fun isanumberi>=1and Set 1 isarelation, then the returned set isthe projection of Set 1 onto coordinatei.

1> S1 = sofs:from term([{1,a},{2,b},{3,a}]),
S2 = sofs:projection(2, S1),

sofs:to external(S2).

[a,b]

range(BinRel) -> Set
Types:
BinRel = binary_rel ation()
Set = a_set ()
Returns the range of the binary relation Bi nRel .

1> R = sofs:relation([{1,a},{1,b},{2,b},{2,c}]),
S = sofs:range(R),

sofs:to external(S).

[a,b,c]

relation(Tuples) -> Relation
relation(Tuples, Type) -> Relation
Types:
N = integer()
Type = N | type()
Relation = rel ation()
Tuples = [tuple()]
Createsarelation.rel ati on(R, T) isequivalenttof rom term(R, T),if Tisatypeandtheresultisarelation.
If Typeisaninteger N,then[{atom ..., aton}]),wherethetuplesizeisN, isused astype of therelation. If

no type is explicitly specified, the size of thefirst tuple of Tupl es isused if thereissuch atuple.r el ati on([])
isequivalenttorel ation([], 2).

relation to family(BinRel) -> Family
Types.

Family = famly()

BinRel = binary relation()

Returnsfamily Fami | y such that theindex set is equal to the domain of the binary relation Bi nRel , and Fam | y]i]
isthe image of the set of i under Bi nRel .

466 | Ericsson AB. All Rights Reserved.: STDLIB

sofs

1> R = sofs:relation([{b,1},{c,2},{c,3}1),
F = sofs:relation _to family(R),

sofs:to _external (F).

[{b,[11},{c,[2,31}]

relative product(ListOfBinRels) -> BinRel2
relative product(ListOfBinRels, BinRell) -> BinRel2
Types:

ListOfBinRels = [BinRel, ...]

BinRel = BinRell = BinRel2 = binary_relation()

If Li st Of Bi nRel s isanon-empty list [R[1], ..., R[n]] of binary relations and Bi nRel 1 isabinary relation, then
Bi nRel 2 istherelative product of the ordered set (R[i], ..., R[n]) and Bi nRel 1.

If Bi nRel 1 isomitted, the relation of equality between the elements of the Cartesian product of the ranges of R]i],
range R[1] x ... x range R[N, is used instead (intuitively, nothing is"lost").

1> TR = sofs:relation([{1,a},{1,aa},{2,b}]),
R1 = sofs:relation([{1,u},{2,v},{3,c}]),

R2 = sofs:relative product([TR, R1]),
sofs:to external(R2).

[{1,{a,u}},{1,{aa,u}},{2,{b,v}}]

Noticethatrel ati ve_product ([Rl], R2) isdifferentfromrel ati ve_product (Rl, R2);thelist of
one element is not identified with the element itself.

relative product(BinRell, BinRel2) -> BinRel3
Types.
BinRell = BinRel2 = BinRel3 = binary_relation()

Returns the relative product of the binary relations Bi nRel 1 and Bi nRel 2.

relative productl(BinRell, BinRel2) -> BinRel3
Types:
BinRell = BinRel2 = BinRel3 = binary_rel ation()

Returns the relative product of the converse of the binary relation Bi nRel 1 and the binary relation Bi nRel 2.

1> R1 = sofs:relation([{1,a},{1,aa},{2,b}]),
R2 = sofs:relation([{1,u},{2,v},{3,c}]),

R3 = sofs:relative productl(R1l, R2),

sofs:to _external(R3).

[{a,u},{aa,u},{b,v}]
rel ative_product 1(Rl, R2) isequivalenttorel ati ve_product (converse(Rl), R2).

restriction(BinRell, Set) -> BinRel2
Types:

Ericsson AB. All Rights Reserved.: STDLIB | 467

sofs

BinRell = BinRel2 = binary _relation()
Set = a_set()

Returnsthe restriction of the binary relation Bi nRel 1 to Set .

1> Rl = sofs:relation([{1,a},{2,b},{3,c}]),
S = sofs:set([1,2,4]),

R2 = sofs:restriction(R1l, S),

sofs:to external(R2).

[{1,a},{2,b}]

restriction(SetFun, Setl, Set2) -> Set3
Types:

SetFun = set_fun()

Setl = Set2 = Set3 = a_set ()

Returns a subset of Set 1 containing those elementsthat gives an element in Set 2 astheresult of applying Set Fun.

1> S1 = sofs:relation([{1,a},{2,b},{3,c}]),
S2 = sofs:set([b,c,d]),

S3 = sofs:restriction(2, S1, S2),

sofs:to external(S3).

[{2,b},{3,c}]

set(Terms) -> Set
set(Terms, Type) -> Set
Types.
Set = a_set ()
Terms = [term()]
Type = type()
Createsan unordered set. set (L, T) isequivalenttofrom tern(L, T),iftheresultisan unordered set. If no
typeis explicitly specified, [at on] isused asthe set type.

specification(Fun, Setl) -> Set2
Types:

Fun = spec_fun()

Setl = Set2 = a_set()

Returns the set containing every element of Set1l for which Fun returns true. If Fun is a tuple
{external, Fun2},Fun2isappliedtotheexternal set of each element, otherwise Fun isapplied to each element.

1> R1 = sofs:relation([{a,1},{b,2}1),

R2 = sofs:relation([{x,1},{x,2},{y,3}1),
S1 = sofs:from sets([R1,R2]),
S2 = sofs:specification(fun sofs:is a function/1, S1),

sofs:to _external(S2).

[[{a,1},{b,2}]1]

468 | Ericsson AB. All Rights Reserved.: STDLIB

sofs

strict relation(BinRell) -> BinRel2
Types:
BinRell = BinRel2 = binary_relation()

Returns the strict relation corresponding to the binary relation Bi nRel 1.

1> R1 = sofs:relation([{1,1},{1,2},{2,1},{2,2}1),
R2 = sofs:strict relation(R1),
sofs:to external(R2).

[{1,2},{2,1}]

substitution(SetFun, Setl) -> Set2
Types.

SetFun = set_fun()

Setl = Set2 = a_set()

Returns a function, the domain of which is Set 1. The value of an element of the domain is the result of applying
Set Fun to the element.

1> L = [{a,1},{b,2}].

[{a,1},{b,2}]

2> sofs:to external(sofs:projection(1l,sofs:relation(L))).
[a,b]

3> sofs:to external(sofs:substitution(1l,sofs:relation(L))).
[{{a,1},a},{{b,2},b}]

4> SetFun = {external, fun({A, }=E) -> {E,A} end},

sofs:to _external(sofs:projection(SetFun,sofs:relation(L))).

[{{a,1},a},{{b,2},b}]

Therelation of equality between the elements of {a,b,c}:

1> I = sofs:substitution(fun(A) -> A end, sofs:set([a,b,c])),
sofs:to external(I).

[{a,a},{b,b},{c,c}]

Let Set Of Set s be a set of sets and Bi nRel a binary relation. The function that maps each element Set of
Set O Set s onto theimage of Set under Bi nRel isreturned by the following function:

images(Set0OfSets, BinRel) ->
Fun = fun(Set) -> sofs:image(BinRel, Set) end,
sofs:substitution(Fun, SetOfSets).

External unordered sets are represented as sorted lists. So, creating the image of a set under arelation R can traverse
all elements of R (to that comes the sorting of results, theimage). Ini nage/ 2, Bi nRel istraversed once for each
element of Set Of Set s, which can take too long. The following efficient function can be used instead under the
assumption that the image of each element of Set O Set s under Bi nRel isnon-empty:

images2(Set0fSets, BinRel) ->

Ericsson AB. All Rights Reserved.: STDLIB | 469

sofs

CR = sofs:canonical relation(SetOfSets),
R = sofs:relative productl(CR, BinRel),
sofs:relation to family(R).

symdiff(Setl, Set2) -> Set3
Types:
Setl = Set2 = Set3 = a_set ()

Returns the symmetric difference (or the Boolean sum) of Set 1 and Set 2.

1> S1 = sofs:set([1,2,3]),
S2 = sofs:set([2,3,4]),

P = sofs:symdiff(S1, S2),
sofs:to external(P).

[1,4]

symmetric partition(Setl, Set2) -> {Set3, Set4, Set5}
Types.
Setl = Set2 = Set3 = Set4 = Set5 = a_set ()

Returns atriple of sets:

e Set 3 contains the elements of Set 1 that do not belong to Set 2.
* Set 4 containsthe elements of Set 1 that belong to Set 2.
e Set 5 containsthe elements of Set 2 that do not belong to Set 1.

to_external(AnySet) -> ExternalSet
Types:
ExternalSet = external _set()
AnySet = anyset ()
Returns the external set of an atomic, ordered, or unordered set.

to_sets(ASet) -> Sets

Types:
ASet = a_set() | ordset()
Sets = tupl e_of (AnySet) | [AnySet]

AnySet = anyset ()

Returnsthe elements of the ordered set ASet asatuple of sets, and the elements of the unordered set ASet asasorted
list of setswithout duplicates.

type(AnySet) -> Type
Types:
AnySet = anyset ()
Type = type()
Returns the type of an atomic, ordered, or unordered set.

470 | Ericsson AB. All Rights Reserved.: STDLIB

sofs

union(Set0fSets) -> Set
Types:

Set = a_set()

Set0fSets = set_of _sets()
Returns the union of the set of sets Set Of Set s.

union(Setl, Set2) -> Set3
Types.
Setl = Set2 = Set3 = a_set ()

Returns the union of Set 1 and Set 2.

union of family(Family) -> Set
Types:

Family = famly()

Set = a_set()
Returns the union of family Fam | y.

1> F = sofs:family([{a,[0,2,4]},{b,[0,1,2]},{c,[2,31}]),
S = sofs:union_of family(F),

sofs:to _external(S).

[0,1,2,3,4]

weak relation(BinRell) -> BinRel2
Types:
BinRell = BinRel2 = binary_rel ation()

Returns a subset S of the weak relation W corresponding to the binary relation Bi nRel 1. Let F be the field of
Bi nRel 1. The subset Sisdefined sothat x Sy if x Wy for somex in Fand for somey in F.

1> Rl = sofs:relation([{1,1},{1,2},{3,1}1),
R2 = sofs:weak relation(R1),

sofs:to external(R2).
[{1,1},{1,2},{2,2},4{3,1},{3,3}]

See Also
dict(3),digraph(3),orddict(3),ordsets(3),sets(3)

Ericsson AB. All Rights Reserved.: STDLIB | 471

string

string

Erlang module

This module provides functions for string processing.

Exports

centre(String, Number) -> Centered
centre(String, Number, Character) -> Centered

Types:
String = Centered = string()
Number = integer() >= 0

Character = char()

Returns a string, where St r i ng is centered in the string and surrounded by blanks or Char act er . The resulting
string has length Nunber .

chars(Character, Number) -> String
chars(Character, Number, Tail) -> String
Types:

Character = char()

Number = integer() >= 0

Tail = String = string()

Returns a string consisting of Nunber characters Char act er . Optionally, the string can end with string Tai | .

chr(String, Character) -> Index
Types:
String = string()
Character = char()
Index = integer() >= 0
Returnsthe index of the first occurrence of Char act er inStri ng. ReturnsO if Char act er does not occur.

concat(Stringl, String2) -> String3
Types:
Stringl = String2 = String3 = string()

Concatenates St ri ngl and St ri ng2 to form anew string St r i ng3, which is returned.

copies(String, Number) -> Copies

Types:
String = Copies = string()
Number = integer() >= 0

Returns a string containing St r i ng repeated Nunber times.

472 | Ericsson AB. All Rights Reserved.: STDLIB

string

cspan(String, Chars) -> Length
Types:
String = Chars = string()

Length = integer() >= 0
Returnsthelength of the maximum initial segment of St r i ng, which consistsentirely of charactersnot from Char s.
Example:
> string:cspan("\t abcdef", " \t").
0

equal(Stringl, String2) -> boolean()
Types:
Stringl = String2 = string()

Returnst rue if Stri ngl and St ri ng2 are equal, otherwisef al se.

join(StringlList, Separator) -> String
Types:
StringlList = [string()]
Separator = String = string()
Returns a string with the elements of St ri ngLi st separated by the string in Separ at or .

Example:

> _‘join(["One", ||twou, "three"], ||, ||).
"one, two, three"

left(String, Number) -> Left
left(String, Number, Character) -> Left

Types:
String = Left = string()
Number = integer() >= 0

Character = char()

Returns String with the length adjusted in accordance with Nunber. The left margin is fixed. If
| engt h(String) <Nunber,then Stri ng ispadded with blanks or Char act er s.

Example:

> string:left("Hello",10,%.).
"Hello..... "

len(String) -> Length
Types:

Ericsson AB. All Rights Reserved.: STDLIB | 473

string

String
Length

Returns the number of charactersin St ri ng.

string()
integer() >= 0

rchr(String, Character) -> Index
Types.
String = string()
Character = char()
Index = integer() >= 0
Returns the index of the last occurrence of Char act er in St ri ng. ReturnsO if Char act er does not occur.

right(String, Number) -> Right
right(String, Number, Character) -> Right
Types:

String = Right = string()

Number = integer() >= 0

Character = char()

Returns St r i ng with the length adjusted in accordance with Nunber . The right margin is fixed. If the length of
(String) <Number,then Stri ng ispadded with blanksor Char act er s.

Example:

> string:right("Hello", 10, $.).
R Hello"

rstr(String, SubString) -> Index
Types.
String = SubString = string()
Index = integer() >= 0

Returns the position where the last occurrence of SubSt ri ng beginsin St ri ng. Returns O if SubSt ri ng does
not existin St r i ng.

Example:

> string:rstr(" Hello Hello World World ", "Hello World").
8

span(String, Chars) -> Length

Types.
String = Chars = string()
Length = integer() >= 0

Returns the length of the maximum initial segment of St r i ng, which consists entirely of charactersfrom Char s.
Example:

474 | Ericsson AB. All Rights Reserved.: STDLIB

string

> string:span("\t abcdef", " \t").
5

str(String, SubString) -> Index
Types:
String = SubString = string()
Index = integer() >= 0
Returns the position where the first occurrence of SubSt ri ng beginsin St ri ng. Returns 0 if SubSt ri ng does
not existin St ri ng.

Example:

> string:str(" Hello Hello World World ", "Hello World").
8

strip(String :: string()) -> string()
strip(String, Direction) -> Stripped
strip(String, Direction, Character) -> Stripped
Types.
String = Stripped = string()
Direction = left | right | both
Character = char()
Returns a string, where leading and/or trailing blanks or anumber of Char act er havebeenremoved. Di r ect i on,

which can be | ef t, ri ght, or bot h, indicates from which direction blanks are to be removed. stri p/ 1 is
equivalenttostri p(String, both).

Example:

> string:strip("...Hello..... ", both, $.).
"Hello"

sub_string(String, Start) -> SubString
sub _string(String, Start, Stop) -> SubString
Types:
String = SubString = string()
Start = Stop = integer() >=1
Returnsasubstring of St r i ng, starting at position St ar t to the end of the string, or to and including position St op.

Example:

sub_string("Hello World", 4, 8).
"lo Wo"

Ericsson AB. All Rights Reserved.: STDLIB | 475

string

substr(String, Start) -> SubString
substr(String, Start, Length) -> SubString
Types.
String = SubString = string()
Start = integer() >=1
Length = integer() >= 0
Returns a substring of St r i ng, starting at position St ar t , and ending at the end of the string or at length Lengt h.
Example:

> substr("Hello World", 4, 5).
"lo Wo"

sub word(String, Number) -> Word
sub word(String, Number, Character) -> Word

Types:
String = Word = string()
Number = integer()

Character = char()
Returns the word in position Nunber of St ri ng. Words are separated by blanks or Char act er s.
Example:

> string:sub word(" Hello old boy !",3,%0).
II'Ld bll

to float(String) -> {Float, Rest} | {error, Reason}
Types.

String = string()

Float = float()

Rest = string()

Reason = no float | not a list

Argument St ri ng is expected to start with avalid text represented float (the digits are ASCII values). Remaining
charactersin the string after the float are returned in Rest .

Example:

> {F1,Fs} = string:to float("1.0-1.0e-1"),
> {F2,[1} = string:to float(Fs),

> F1+F2.

0.9

> string:to float("3/2=1.5").

{error,no_float}
> string:to float("-1.5eXx").
{-1.5,"exX"}

476 | Ericsson AB. All Rights Reserved.: STDLIB

string

to integer(String) -> {Int, Rest} | {error, Reason}
Types:
String = string()
Int = integer()
Rest = string()
Reason = no integer | not a list
Argument St r i ng isexpected to start with avalid text represented integer (the digits are ASCII values). Remaining
charactersin the string after the integer are returned in Rest .

Example:

> {I1,Is}
> {I2,[]}
> I1-1I2.
11

> string:to _integer("0.5").
{0,".5"}

> string:to _integer("x=2").
{error,no_integer}

string:to integer("33+22"),
string:to _integer(Is),

to lower(String) -> Result

to lower(Char) -> CharResult

to upper(String) -> Result

to upper(Char) -> CharResult

Types.
String = Result = io_lib:latinl_string()
Char = CharResult = char()

The specified string or character is case-converted. Notice that the supported character set is |SO/IEC 8859-1 (also
called Latin 1); al values outside this set are unchanged

tokens(String, SeparatorList) -> Tokens
Types:
String = SeparatorList = string()
Tokens [Token :: nonempty string()]

Returns alist of tokensin St r i ng, separated by the charactersin Separ at or Li st .
Example:

> tokens("abc defxxghix jkl", "x ").
[llabcll' Ildefll' llghill' IIjk'LII]

Notice that, as shown in this example, two or more adjacent separator charactersin St r i ng are treated as one. That
is, there are no empty stringsin the resulting list of tokens.

Ericsson AB. All Rights Reserved.: STDLIB | 477

string

words(String) -> Count
words(String, Character) -> Count
Types.
String = string()
Character = char()
Count = integer() >=1
Returns the number of wordsin St r i ng, separated by blanks or Char act er .
Example:

> words (" Hello old boy!", $0).
4

Notes

Some of the general string functions can seem to overlap each other. The reason is that this string package is the
combination of two earlier packages and all functions of both packages have been retained.

Note:

Any undocumented functionsin st r i ng are not to be used.

478 | Ericsson AB. All Rights Reserved.: STDLIB

supervisor

supervisor

Erlang module

This behavior module provides a supervisor, a process that supervises other processes called child processes. A child
process can either be another supervisor or aworker process. Worker processes are normally implemented using one
of thegen_event, gen_fsmgen_server, or gen_st at embehaviors. A supervisor implemented using this
module has a standard set of interface functions and include functionality for tracing and error reporting. Supervisors
are used to build a hierarchical process structure called a supervision tree, a nice way to structure a fault-tolerant
application. For more information, see Supervisor Behaviour in OTP Design Principles.

A supervisor expectsthe definition of which child processesto superviseto be specified in acallback module exporting
apredefined set of functions.

Unless otherwise stated, all functionsin this module fail if the specified supervisor does not exist or if bad arguments
are specified.

Supervision Principles

The supervisor is responsible for starting, stopping, and monitoring its child processes. The basic idea of a supervisor
isthat it must keep its child processes alive by restarting them when necessary.

The children of a supervisor are defined as a list of child specifications. When the supervisor is started, the child
processes are started in order from | eft to right according to thislist. When the supervisor terminates, it first terminates
its child processes in reversed start order, from right to left.

The supervisor properties are defined by the supervisor flags. The type definition for the supervisor flagsisasfollows:

sup_flags() = #{strategy => strategy(), % optional
intensity => non neg integer(), % optional
period => pos integer()} % optional

A supervisor can have one of the following restart strategies specified with the st r at egy key in the above map:

« one_for_one - If one child process terminates and is to be restarted, only that child process is affected. This
isthe default restart strategy.

 one_for_all -If onechild process terminates and is to be restarted, all other child processes are terminated
and then all child processes are restarted.

e« rest_for_one - If onechild process terminates and is to be restarted, the 'rest' of the child processes (that is,
the child processes after the terminated child process in the start order) are terminated. Then the terminated child
process and all child processes after it are restarted.

« sinple_one_for_one-Asimplifiedone_f or _one supervisor, where al child processes are dynamically
added instances of the same process type, that is, running the same code.

Functionsdel et e_chi |l d/ 2andrestart _chil d/ 2 areinvalidforsi npl e_one_f or _one supervisors
andreturn{ error, si npl e_one_f or _one} if the specified supervisor uses this restart strategy.

Function term nate_chil d/ 2 can be used for children under si npl e_one_f or _one supervisors by
specifying the child's pi d() as the second argument. If instead the child specification identifier is used,
term nate_child/ 2return{error, si npl e_one_f or_one}.

Asasi npl e_one_f or _one supervisor can have many children, it shuts them all down asynchronously. This
meansthat the children do their cleanupin parallel, and thereforethe order in which they are stopped is not defined.

Ericsson AB. All Rights Reserved.: STDLIB | 479

supervisor

To prevent a supervisor from getting into an infinite loop of child process terminations and restarts, a maximum
restart intensity isdefined using two integer values specified with keysi nt ensi t y and per i od in the above map.
Assuming the values MaxR for i nt ensi ty and MaxT for per i od, then, if more than Max R restarts occur within
MaxT seconds, the supervisor terminates all child processes and then itself. i nt ensi t y defaultsto 1 and peri od
defaultsto 5.

The type definition of a child specification is as follows:

child spec() = #{id => child id(), % mandatory
start => mfargs(), % mandatory
restart => restart(), % optional
shutdown => shutdown(), % optional
type => worker(), % optional
modules => modules()} % optional

The old tuple format is kept for backwards compatibility, see child_spec(), but the map is preferred.

i d isused to identify the child specification internally by the supervisor.
Thei d key is mandatory.

Notice that this identifier on occations has been called "name". As far as possible, the terms "identifier" or "id"
are now used but to keep backward compatibility, some occurences of "name" can still be found, for example
in error messages.

st art defines the function call used to start the child process. It must be a module-function-arguments tuple
{MF, A} usedasappl y(M F, A).

The start function must create and link to the child process, and must return {ok, Child} or
{ ok, Chi |l d, | nf o}, where Chi | d isthe pid of the child process and | nf o any term that is ignored by the
supervisor.

The start function can also return i gnor e if the child process for some reason cannot be started, in which case
the child specification is kept by the supervisor (unlessit is atemporary child) but the non-existing child process
isignored.

If something goes wrong, the function can also return an error tuple{ error, Error}.
Noticethat thest art _| i nk functions of the different behavior modules fulfill the above requirements.

Thest art key ismandatory.

restart defines when aterminated child process must be restarted. A per manent child process is always
restarted. A t enporary child process is never restarted (even when the supervisor's restart strategy is
rest_for_one orone_for_all andasibling's death causes the temporary process to be terminated). A
transi ent child process is restarted only if it terminates abnormally, that is, with another exit reason than
nor mal , shut down, or { shut down, Ter n} .

Ther est art keyisoptional. If it isnot specified, it defaultsto per manent .

shut down defines how a child process must be terminated. br ut al _ki | | means that the child process is
unconditionally terminated using exi t (Chi | d, ki I 1). An integer time-out value means that the supervisor
tells the child process to terminate by calling exi t (Chi | d, shut down) and then wait for an exit signal with
reason shut down back from the child process. If no exit signa is received within the specified number of
milliseconds, the child processis unconditionally terminated usingexi t (Chi I d, ki I I').

If the child processis another supervisor, the shutdown timeistobesettoi nf i ni t y to give the subtree ample
time to shut down. Itisalso alowed to setittoi nfi ni ty, if the child processis aworker.

480 | Ericsson AB. All Rights Reserved.: STDLIB

supervisor

Warning:

Be careful when setting the shutdown time to i nf i ni t y when the child process is a worker. Because, in
this situation, the termination of the supervision tree depends on the child process, it must be implemented
in asafe way and its cleanup procedure must always return.

Notice that all child processes implemented using the standard OTP behavior modules automatically adhere to
the shutdown protocol.

The shut down key is optional. If it is not specified, it defaults to 5000 if the child is of type wor ker and it
defaultstoi nfi ni ty if thechildisof typesuper vi sor.

* type specifiesif the child processis a supervisor or aworker.

Thet ype key isoptional. If it is not specified, it defaultsto wor ker .

* nodul es isused by therelease handler during code replacement to determine which processes are using acertain
module. Asarule of thumb, if thechild processisasuper vi sor,gen_server,gen_statemorgen_fsm
thisisto be alist with one element [Modul e] , where Mbdul e isthe callback module. If the child processisan
event manager (gen_event) with adynamic set of callback modules, value dynani ¢ must be used. For more
information about release handling, see Release Handling in OTP Design Principles.

The nodul es key is optional. If it is not specified, it defaults to [M , where M comes from the child's start
* Internaly, the supervisor also keepstrack of the pid Chi | d of the child process, or undef i ned if no pid exists.

Data Types

child() = undefined | pid()
child id() = term()

Notapi d() .

child spec() =
#{id := child_id(),
start := nfargs(),
restart => restart(),
shutdown => shut down() ,
type => worker(),
modules => nodul es() } |
{Id :: child_id(),
StartFunc :: nfargs(),
Restart :: restart(),
Shutdown :: shutdown(),
Type :: worker(),
Modules :: nodul es()}

The tuple format is kept for backward compatibility only. A map is preferred; see more details above.

mfargs() =
{M :: module(), F :: atom(), A :: [term()] | undefined}

Value undef i ned for A (the argument list) is only to be used internally in super vi sor . If the restart type of the
childist erpor ar y, the processis never to be restarted and therefore there is no need to store the real argument list.
Vaueundef i ned isthen stored instead.

Ericsson AB. All Rights Reserved.: STDLIB | 481

supervisor

modules() = [module()] | dynamic
restart() = permanent | transient | temporary
shutdown() = brutal kill | timeout()
strategy() =
one for all | one for one | rest for one | simple one for one
sup_flags() =
#{strategy => strategy(),
intensity => integer() >= 0,
period => integer() >= 1} |
{RestartStrategy :: strategy(),
Intensity :: integer() >= 0,
Period :: integer() >= 1}
The tuple format is kept for backward compatibility only. A map is preferred; see more details above.
sup_ref() =
(Name :: atom()) |
{Name :: atom(), Node :: node()} |
{global, Name :: atom()} |
{via, Module :: module(), Name :: any()} |
pid()
worker() = worker | supervisor

Exports

check childspecs(ChildSpecs) -> Result

Types:
ChildSpecs = [child_spec()]
Result = ok | {error, Error :: term()}

Takes a list of child specification as argument and returns ok if all of them are syntactically correct, otherwise
{error,Error}.

count _children(SupRef) -> PropListOfCounts
Types:

SupRef = sup_ref()

PropListOfCounts = [Count]

Count =
{specs, ChildSpecCount :: integer() >= 0} |
{active, ActiveProcessCount :: integer() >= 0} |
{supervisors, ChildSupervisorCount :: integer() >= 0} |

{workers, ChildWorkerCount :: integer() >= 0}

Returns aproperty list (see pr opl i st s) containing the countsfor each of the following elements of the supervisor's
child specifications and managed processes:
e specs - Thetotal count of children, dead or dlive.

e active - The count of al actively running child processes managed by this supervisor. For a
si nmpl e_one_f or _one supervisors, no check is done to ensure that each child processis till aive, athough
the result provided hereislikely to be very accurate unless the supervisor is heavily overloaded.

482 | Ericsson AB. All Rights Reserved.: STDLIB

supervisor

e supervisors - Thecount of al childrenmarked aschi | d_t ype = super vi sor inthe specification list,
regardlessif the child processis still alive.

 workers - The count of al children marked aschi | d_t ype = wor ker inthe specification list, regardless
if the child processisstill alive.

For adescription of SupRef ,seestart _chil d/ 2.

delete child(SupRef, Id) -> Result
Types.
SupRef = sup_ref()
Id = child_id()
Result = ok | {error, Error}
Error = running | restarting | not found | simple one for one

Tells supervisor SupRef to delete the child specification identified by | d. The corresponding child process must not
berunning. Use t er m nat e_chi | d/ 2 to terminate it.

For adescription of SupRef , seestart _chil d/ 2.

If successful, the function returns ok. If the child specification identified by | d exists but the corresponding child
processisrunning or isabout to berestarted, thefunctionreturns{ er r or , runni ng} or{error, restarti ng},
respectively. If the child specification identified by | d does not exist, the function returns{ er r or , not _f ound} .

get childspec(SupRef, Id) -> Result
Types:
SupRef = sup_ref()
Id = pid() | child_id()
Result = {ok, child_spec()} | {error, Error}
Error = not found

Returnsthe child specification map for thechild identified by | d under supervisor SupRef . Thereturned map contains
all keys, both mandatory and optional.

For adescription of SupRef , seestart _chil d/ 2.

restart child(SupRef, Id) -> Result
Types:
SupRef = sup_ref()
Id = child_id()
Result =
{ok, Child :: child()} |
{ok, Child :: child(), Info :: term()} |
{error, Error}

Error =
running | restarting | not found | simple one for one | term()

Tellssupervisor SupRef torestart achild process corresponding to the child specification identified by | d. The child
specification must exist, and the corresponding child process must not be running.

Notice that for temporary children, the child specification is automatically deleted when the child terminates; thus, it
is not possible to restart such children.

For adescription of SupRef , seestart _chil d/ 2.

Ericsson AB. All Rights Reserved.: STDLIB | 483

supervisor

If the child specification identified by | d does not exist, the function returns { er r or , not _f ound} . If the child
specification exists but the corresponding process is already running, the function returns{ er r or, r unni ng}.

If the child process start function returns { ok, Chi | d} or { ok, Chi | d, | nf 0}, the pid is added to the supervisor
and the function returns the same value.

If the child process start function returns i gnor e, the pid remains set to undef i ned and the function returns
{ ok, undefi ned}.

If the child process start function returns an error tuple or an erroneous value, or if it fails, the function returns
{error, Error},whereError isaterm containing information about the error.

start _child(SupRef, ChildSpec) -> startchild_ret()
Types:
SupRef = sup_ref()
ChildSpec = child_spec() | (List :: [term()])
startchild ret() =
{ok, Child :: child()} |
{ok, Child :: child(), Info :: term()} |
{error, startchild_err()}

startchild err() =
already present | {already started, Child :: child()} | term()

Dynamically adds a child specification to supervisor SupRef , which starts the corresponding child process.
SupRef can be any of the following:
e Thepid
e Nane, if the supervisor islocaly registered
 {Nane, Node}, if the supervisor islocally registered at another node
« {gl obal , Nane}, if the supervisor is globally registered
 {via, Modul e, Nane}, if the supervisor is registered through an alternative process registry

Chi | dSpec must be avalid child specification (unlessthe supervisor isasi npl e_one_f or _one supervisor; see
below). The child processis started by using the start function as defined in the child specification.

For a si npl e_one_f or_one supervisor, the child specification defined in Modul e:init/1 is used, and
Chi | dSpec must instead be an arbitrary list of terms Li st . The child process is then started by appending Li st
to the existing start function arguments, that is, by callingappl y(M F, A++Li st),where{ M F, A} isthe start
function defined in the child specification.

» If thereaready existsachild specification with the specified identifier, Chi | dSpec isdiscarded, and thefunction
retuns{error, al ready_present} or{error, {al ready_started, Child}}, dependingonif the
corresponding child processis running or not.

e If thechild process start function returns{ ok, Chi | d} or{ ok, Chi | d, | nf 0}, the child specification and pid
are added to the supervisor and the function returns the same value.

« |f the child process start function returnsi gnor e, the child specification is added to the supervisor (unless the
supervisor isasi npl e_one_f or _one supervisor, see below), the pid isset to undef i ned, and the function
returns{ ok, undef i ned}.

Forasi mpl e_one_f or _one supervisor, when achild process start function returnsi gnor e, thefunctionsreturns
{ ok, undef i ned} and no child is added to the supervisor.

If the child process start function returns an error tuple or an erroneous value, or if it fails, the child specification is
discarded, and thefunctionreturns{ er r or , Err or } , where Er r or isaterm containing information about the error
and child specification.

484 | Ericsson AB. All Rights Reserved.: STDLIB

supervisor

start_link(Module, Args) -> startlink_ret()
start _link(SupName, Module, Args) -> startlink_ret()
Types:

SupName = sup_nane()
Module = module()
Args = term()

startlink ret() =

{ok, pid()} | ignore | {error, startlink_ err()}
startlink err() =

{already started, pid()} | {shutdown, term()} | term()
sup_name() =

{local, Name :: atom()} |
{global, Name :: atom()} |
{via, Module :: module(), Name :: any()}

Creates a supervisor process as part of a supervision tree. For example, the function ensures that the supervisor is
linked to the calling process (its supervisor).

The created supervisor process calls Modul e: i ni t/ 1 tofind out about restart strategy, maximum restart intensity,
and child processes. To ensure a synchronized startup procedure, start | i nk/2, 3 does not return until
Modul e: i ni t/ 1 hasreturned and all child processes have been started.

If SupNarme={I| ocal , Nane}, the supervisor isregistered locally as Narre usingr egi st er/ 2.

If SupNane={gl obal , Nane}, the supervisor is registered globally as Name using
gl obal : regi st er _name/ 2.

If SupName={vi a, Modul e, Nane}, the supervisor is registered as Nane using the registry represented by
Modul e. TheMbdul e callback must export thefunctionsr egi st er _nane/ 2,unr egi st er _nane/ 1, and
send/ 2, which must behave like the corresponding functionsin gl obal . Thus, { vi a, gl obal , Nane} isa
valid reference.

If no name s provided, the supervisor is not registered.

Modul e isthe name of the callback module.

Ar gs isany term that is passed asthe argument to Modul e: init/ 1.

If the supervisor and its child processes are successfully created (that is, if all child process start functions return
{ok, Chil d}, {ok, Child,Info}, orignore), the function returns { ok, Pi d}, where Pi d is the pid of
the supervisor.

If there already exists a process with the specified SupNane, the function returns {error,
{already_started, Pid}},wherePi disthepid of that process.

If Modul e: i ni t/ 1returnsi gnor e, thisfunctionreturnsi gnor e aswell, and the supervisor terminates with
reason nor nal .

If Modul e: i ni t/ 1 failsor returns an incorrect value, this function returns{ er r or , Ter n} , where Ter mis
aterm with information about the error, and the supervisor terminates with reason Ter m

If any child process start function failsor returnsan error tuple or an erroneous val ue, the supervisor first terminates
al aready started child processes with reason shut down and then terminate itself and returns { err or,
{shut down, Reason}}.

terminate child(SupRef, Id) -> Result
Types:

Ericsson AB. All Rights Reserved.: STDLIB | 485

supervisor

SupRef = sup_ref()

Id = pid() | child_id()

Result = ok | {error, Error}

Error = not_found | simple one for one
Tells supervisor SupRef to terminate the specified child.

If the supervisor isnot si npl e_one_f or _one, | d must be the child specification identifier. The process, if any,
isterminated and, unlessit isatemporary child, the child specification is kept by the supervisor. The child process can
later be restarted by the supervisor. The child process can also berestarted explicitly by callingr est art _chi | d/ 2.
Usedel et e_chi | d/ 2 to remove the child specification.

If the child is temporary, the child specification is deleted as soon as the process terminates. This means that
del ete_chil d/ 2 hasnomeaningandrestart _chi | d/ 2 cannot be used for these children.

If the supervisor issi npl e_one_f or _one, | d must bethe pi d() of the child process. If the specified process
is aive, but is not a child of the specified supervisor, the function returns { er r or, not _f ound} . If the child
specification identifier is specified instead of api d() , thefunctionreturns{ er r or , si npl e_one_f or _one}.

If successful, the function returns ok. If there is no child specification with the specified | d, the function returns
{error,not_found}.

For adescription of SupRef ,seestart _chil d/ 2.

which children(SupRef) -> [{Id, Child, Type, Modules}]
Types.

SupRef = sup_ref()

Id = child_id() | undefined

Child = child() | restarting

Type = worker ()

Modules = nodul es()

Returnsanewly created list with information about all child specifications and child processes belonging to supervisor
SupRef .

Notice that calling this function when supervising many childrens under low memory conditions can cause an out of
memory exception.

For adescription of SupRef , seestart _chil d/ 2.
The following information is given for each child specification/process:

e | d-Asdefined in the child specification or undef i ned for asi npl e_one_f or _one supervisor.

e Chi | d-Thepid of the corresponding child process, theatomr est ar t i ng if theprocessisabout to berestarted,
or undef i ned if there is no such process.

* Type - Asdefined in the child specification.
* Modul es - Asdefined in the child specification.

Callback Functions

The following function must be exported from asuper vi sor calback module.

486 | Ericsson AB. All Rights Reserved.: STDLIB

supervisor

Exports

Module:init(Args) -> Result
Types:
Args = term)
Result = {ok, { SupFl ags, [ChildSpec]}} | ignore
SupFl ags = sup_flags()
Chi | dSpec = chil d_spec()
Whenever a supervisor is started using st art _| i nk/ 2, 3, this function is called by the new process to find out
about restart strategy, maximum restart intensity, and child specifications.
Ar gs isthe Ar gs argument provided to the start function.

SupFl ags is the supervisor flags defining the restart strategy and maximum restart intensity for the supervisor.
[Chi | dSpec] isalist of valid child specifications defining which child processes the supervisor must start and
monitor. See the discussionin section Super vi si on Pri nci pl es earlier.

Notice that when the restart strategy issi npl e_one_f or _one, thelist of child specifications must be alist with
one child specification only. (The child specification identifier isignored.) No child processis then started during the
initialization phase, but all children are assumed to be started dynamically usingst art _chi | d/ 2.

The function can also returni gnor e.

Notice that this function can also be called as a part of a code upgrade procedure. Therefore, the function is not to
have any side effects. For more information about code upgrade of supervisors, see section Changing a Supervisor
in OTP Design Principles.

See Also
gen_event (3),gen_fsm3),gen_staten(3),gen_server(3),sys(3)

Ericsson AB. All Rights Reserved.: STDLIB | 487

supervisor_bridge

supervisor_bridge

Erlang module

This behavior module provides a supervisor bridge, a process that connects a subsystem not designed according to
the OTP design principles to a supervision tree. The supervisor bridge sits between a supervisor and the subsystem. It
behaveslikeareal supervisor toitsown supervisor, but hasadifferent interface than areal supervisor to the subsystem.
For moreinformation, see Supervisor Behaviour in OTP Design Principles.

A supervisor bridge assumes the functions for starting and stopping the subsystem to be located in a callback module
exporting a predefined set of functions.

Thesys(3) module can be used for debugging a supervisor bridge.

Unless otherwise stated, all functions in this module fail if the specified supervisor bridge does not exist or if bad
arguments are specified.

Exports

start_link(Module, Args) -> Result
start _link(SupBridgeName, Module, Args) -> Result
Types:
SupBridgeName = {local, Name} | {global, Name}
Name = atom()
Module = module()
Args = term()
Result = {ok, Pid} | ignore | {error, Error}
Error = {already started, Pid} | term()
Pid = pid()
Createsasupervisor bridge process, linked to the calling process, which callsModul e: i ni t / 1 tostart the subsystem.
To ensure a synchronized startup procedure, this function does not return until Modul e: i ni t/ 1 has returned.
e If SupBridgeName={l ocal , Name}, the supervisor bridge is registered locally as Nane using
register/2.

 |If SupBridgeNane={gl obal , Nane}, the supervisor bridge is registered globally as Nane using
gl obal : regi st er _nane/ 2.

« If SupBridgeNanme={vi a, Modul e, Nane}, the supervisor bridge is registered as Nane using a
registry represented by Module. The Modul e callback is to export functions regi st er_nane/ 2,
unr egi st er _nane/ 1, andsend/ 2, which are to behave like the corresponding functionsin gl obal . Thus,
{vi a, gl obal , d obal Nane} isavalid reference.

If no nameis provided, the supervisor bridge is not registered.
Modul e isthe name of the callback module.
Ar gs isan arbitrary term that is passed as the argument to Modul e: init/ 1.

» |f the supervisor bridge and the subsystem are successfully started, the function returns{ ok, Pi d} , where Pi d
isisthe pid of the supervisor bridge.

e |If there aready exists a process with the specified SupBri dgeNane, the function returns {error,
{already_started, Pid}},wherePi disthepid of that process.

488 | Ericsson AB. All Rights Reserved.: STDLIB

supervisor_bridge

e IfMbdul e: i nit/ 1returnsi gnor e, thisfunctionreturnsi gnor e aswell and the supervisor bridge terminates
with reason nor mal .

e If Module:init/1 fals or retuns an error tuple or an incorrect value, this function returns
{error, Errorr}, where Error is aterm with information about the error, and the supervisor bridge
terminates with reason Er r or .

Callback Functions

The following functions must be exported from asuper vi sor _bri dge callback module.

Exports

Module:init(Args) -> Result

Types:
Args = term)
Result = {ok,Pid,State} | ignore | {error,Error}
Pid = pid()

State = term)
Error = term()

Whenever asupervisor bridgeis started using st art _| i nk/ 2, 3, thisfunctionis called by the new processto start
the subsystem and initialize.

Ar gs isthe Ar gs argument provided to the start function.

Thefunctionistoreturn{ ok, Pi d, St at e}, wherePi d isthe pid of the main processin the subsystem and St at e
isany term.

If later Pid terminates with a reason Reason, the supervisor bridge terminates with reason Reason
as well. If later the supervisor bridge is stopped by its supervisor with reason Reason, it calls
Modul e: t er m nat e(Reason, St at e) to terminate.

If theinitialization fails, the functionistoreturn{ error, Err or } , where Er r or isany term, ori gnor e.

Module:terminate(Reason, State)
Types.
Reason = shutdown | term()
State = term))

This function is called by the supervisor bridge when it is about to terminate. It is to be the opposite of
Modul e: i ni t/ 1 and stop the subsystem and do any necessary cleaning up. The return valueis ignored.

Reason is shut down if the supervisor bridge is terminated by its supervisor. If the supervisor bridge terminates
because a a linked process (apart from the main process of the subsystem) has terminated with reason Ter m then
Reason becomes Ter m

St at e istaken from thereturn value of Modul e: i ni t/ 1.

See Also

supervi sor (3),sys(3)

Ericsson AB. All Rights Reserved.: STDLIB | 489

sys

Sys

Erlang module

This module contains functions for sending system messages used by programs, and messages used for debugging
purposes.

Functions used for implementation of processes are also expected to understand system messages, such as debug
messages and code change. These functions must be used to implement the use of system messages for a process;
either directly, or through standard behaviors, suchasgen_ser ver.

The default time-out is 5000 ms, unless otherwise specified. t i meout defines the time to wait for the process to
respond to arequest. If the process does not respond, the function evaluatesexi t ({ti meout, {M F, A}}).

The functions make references to a debug structure. The debug structureisalist of dbg_opt () , whichisaninternal
datatype used by function handl e_syst em nsg/ 6. No debugging is performed if it isan empty list.

System Messages

Processes that are not implemented as one of the standard behaviors must still understand system messages. The
following three messages must be understood:

e Plain system messages. These are received as { system From Msg}. The content and meaning of this
message are not interpreted by the receiving process module. When a system message is received, function
handl e_syst em nsg/ 6 iscaled to handle the request.

» Shutdown messages. If the process traps exits, it must be able to handle a shutdown request from its parent, the
supervisor. Themessage{' EXI T', Parent, Reason} fromtheparentisan order toterminate. The process
must terminate when this message is received, normally with the same Reason asPar ent .

e |f the modules used to implement the process change dynamically during runtime, the process must understand
one more message. An exampleisthegen_event processes. Themessageis{ get _nodul es, Front}.The
reply to thismessageisFrom ! {nodul es, Mdul es}, where Modul es isalist of the currently active
modules in the process.

This message is used by the release handler to find which processes that execute a certain module. The process
can later be suspended and ordered to perform a code change for one of its modules.

System Events

When debugging a process with the functions of this module, the process generates system_events, which are then
treated in the debug function. For example, t r ace formats the system events to the terminal.

Three predefined system events are used when a process receives or sends a message. The process can also define its
own system events. It is aways up to the process itself to format these events.

Data Types

name() = pid() | atom() | {global, atom()}
system event() =

{in, Msg :: term()} |
From :: term(

{in, Msg :: term(),)} |
{out, Msg :: term(), To :: term()} |
term()

dbg opt()

See the introduction of this manual page.

490 | Ericsson AB. All Rights Reserved.: STDLIB

Ssys

dbg fun() =
fun((FuncState :: term(),
Event :: systemevent(),
ProcState :: term()) ->
done | (NewFuncState :: term()))
format fun() =
fun((Device :: io:device() | file:io_device(),
Event :: system event(),
Extra :: term()) ->
any())
Exports

change code(Name, Module, 0ldVsn, Extra) -> ok | {error, Reason}

change code(Name, Module, 0ldVsn, Extra, Timeout) ->
ok | {error, Reason}

Types:
Name = nane()
Module = module()
0ldVsn = undefined | term()

Extra = term()
Timeout = timeout()
Reason = term()
Tellsthe processto change code. The process must be suspended to handl e this message. Argument Ext r a isreserved

for each process to use as its own. Function Modul e: syst em code_change/ 4 is called. O dVsn is the old
version of the Modul e.

get state(Name) -> State
get state(Name, Timeout) -> State
Types:

Name = nane()

Timeout = timeout()

State = term()

Gets the state of the process.

Note:

These functions are intended only to help with debugging. They are provided for convenience, allowing
developers to avoid having to create their own state extraction functions and aso avoid having to interactively
extract the state from the return values of get st at us/ 1 or get _st at us/ 2 while debugging.

Thevalue of St at e variesfor different types of processes, asfollows:

 Foragen_server process, thereturned St at e isthe state of the callback module.
« Foragen_f smprocess, St at e isthetuple{ Cur r ent St at eNane, Current St at eDat a}.
« Foragen_st at emprocess, St at e isthetuple{ Cur r ent St at e, Cur r ent Dat a} .

Ericsson AB. All Rights Reserved.: STDLIB | 491

sys

e« Foragen_event process, St at e isalist of tuples, where each tuple correspondsto an event handler registered
in the process and contains{ Modul e, 1d, Handl er St at e}, asfollows:

Modul e

The module name of the event handler.
Id

The ID of the handler (whichisf al se if it was registered without an ID).
Handl er St at e

The state of the handler.

If the callback module exports a function system get state/ 1, it is caled in the target process to
get its state. Its argument is the same as the M sc vaue returned by get status/1, 2, and function
Modul e: system get _state/ 1 is expected to extract the state of the callback module from it. Function
system get state/ 1 mustreturn{ok, State},whereSt at e isthe state of the callback module.

If the callback module does not export asyst em get st at e/ 1 function, get _st at e/ 1, 2 assumes that the
M sc vaueisthe state of the callback module and returnsiit directly instead.

If the callback module'ssyst em get _st at e/ 1 function crashes or throws an exception, the caller exitswith error
{cal | back_failed, {Mdule, systemget state}, {C ass, Reason}},whereMdul e isthe
name of the callback module and Cl ass and Reason indicate details of the exception.

Function syst em get _st at e/ 1 isprimarily useful for user-defined behaviors and modules that implement OTP
special processes. Thegen_server, gen_f smgen_st at em and gen_event OTP behavior modules export
this function, so callback modules for those behaviors need not to supply their own.

For more information about a process, including its state, seeget _st at us/ 1 andget _st at us/ 2.

get status(Name) -> Status
get status(Name, Timeout) -> Status
Types:

Name = nane()

Timeout = timeout()

Status =
{status, Pid :: pid(), {module, Module :: module()}, [SItem]}

SItem =

(PDict :: [{Key :: term(), Value :: term()}]) |
(SysState :: running | suspended) |
(Parent :: pid()) |
(Dbg :: [dbg opt()1) |
(Misc :: term())

Gets the status of the process.

Thevalue of M sc variesfor different types of processes, for example:

* Agen_server processreturnsthe state of the callback module.

e A gen_f smprocess returns information, such asits current state name and state data.

* A gen_st at emprocess returns information, such asits current state name and state data.
e« A gen_event process returnsinformation about each of itsregistered handlers.

Callback modules for gen_server, gen_fsm gen_st at em and gen_event can aso change the value of
M sc by exporting afunction f or mat _st at us/ 2, which contributes module-specific information. For details, see

492 | Ericsson AB. All Rights Reserved.: STDLIB

Ssys

gen_server:formt_status/ 2, gen_fsmformat_status/2, gen_statem formt_status/2,
and gen_event: fornat _status/2

install(Name, FuncSpec) -> ok
install(Name, FuncSpec, Timeout) -> ok
Types:

Name = nane()

FuncSpec = {Func, FuncState}

Func = dbg_fun()

FuncState = term()

Timeout = timeout()

Enablesinstallation of alternative debug functions. An example of such afunctionisatrigger, afunction that waitsfor
some special event and performs some action when the event is generated. For example, turning on low-level tracing.

Func is called whenever a system event is generated. This function is to return done, or anew Func state. In the
first case, the function is removed. It is also removed if the function fails.

log(Name, Flag) -> ok | {ok, [systemevent()]}
log(Name, Flag, Timeout) -> ok | {ok, [systemevent()]1}

Types:
Name = nane()
Flag = true | {true, N :: integer() >= 1} | false | get | print

Timeout = timeout()

Turns the logging of system events on or off. If on, a maximum of N events are kept in the debug structure (default
is10).

If Fl agisget, alist of al logged eventsis returned.
If Fl agispri nt,thelogged events are printed to st andar d_i o.

The events are formatted with a function that is defined by the process that generated the event (with a call to
handl e_debug/ 4).

log to file(Name, Flag) -> ok | {error, open file}
log to file(Name, Flag, Timeout) -> ok | {error, open file}

Types:
Name = nane()
Flag = (FileName :: string()) | false

Timeout = timeout()

Enables or disables the logging of all system eventsin text format to thefile. The events are formatted with afunction
that is defined by the process that generated the event (with acall to handl e_debug/ 4).

no_debug(Name) -> ok

no_debug(Name, Timeout) -> ok
Types.

Ericsson AB. All Rights Reserved.: STDLIB | 493

sys

Name = nane()
Timeout = timeout()

Turns off al debugging for the process. This includes functions that are installed explicitly with function
i nstall/2, 3, for example, triggers.

remove (Name, Func) -> ok
remove (Name, Func, Timeout) -> ok

Types:
Name = nane()
Func = dbg_fun()

Timeout = timeout()
Removes an installed debug function from the process. Func must be the same as previously installed.

replace state(Name, StateFun) -> NewState
replace state(Name, StateFun, Timeout) -> NewState
Types.
Name = nane()
StateFun = fun((State :: term()) -> NewState :: term())
Timeout = timeout()
NewState = term()

Replaces the state of the process, and returns the new state.

Note:

These functions are intended only to help with debugging, and are not to be called from normal code. They are
provided for convenience, allowing developers to avoid having to create their own custom state replacement
functions.

Function St at eFun provides a new state for the process. Argument St at e and the NewSt at e return value of
St at eFun vary for different types of processes as follows:

« Foragen_server process, St at e is the state of the callback module and NewSt at e is a hew instance of
that state.

e For a gen_fsm process, St at e is the tuple { Current St at eNane, Current StateData}, and
NewSt at e isasimilar tuple, which can contain a new state name, new state data, or both.

 For agen_st at emprocess, St at e isthetuple{ Current St at e, Curr ent Dat a}, and NewSt at e isa
similar tuple, which can contain a new current state, new state data, or both.

 Foragen_event process, St at e isthetuple{ Modul e, 1d, Handl er St at e} asfollows:
Modul e
The module name of the event handler.
Id
The ID of the handler (whichisf al se if it was registered without an ID).

494 | Ericsson AB. All Rights Reserved.: STDLIB

Ssys

Handl er St at e
The state of the handler.

NewSt at e isasimilar tuple where Modul e and | d areto have the same values asin St at e, but the value of
Handl er St at e can be different. Returning a NewSt at e, whose Modul e or | d values differ from those of
St at e, leaves the state of the event handler unchanged. For agen_event process, St at eFun is called once
for each event handler registered inthe gen_event process.

If aSt at eFun function decides not to effect any changein process state, then regardless of processtype, it can return
its St at e argument.

If a StateFun function crashes or throws an exception, the original state of the process is unchanged for
gen_server, gen_fsm and gen_st at em processes. For gen_event processes, a crashing or failing
St at eFun function meansthat only the state of the particular event handler it wasworking onwhenit failed or crashed
is unchanged; it can still succeed in changing the states of other event handlers registered in the same gen_event
process.

If the callback module exportsa syst em r epl ace_st at e/ 2 function, it iscalled in the target processto replace
its state using St at eFun. Its two arguments are St at eFun and M sc, where M sc is the same as the M sc
value returned by get _status/ 1, 2. A system repl ace_st at e/ 2 function is expected to return { ok,

NewSt at e, NewM sc},whereNewSt at e isthe new state of the callback module, obtained by calling St at eFun,
and NewM sc isapossibly new value used to replace the origina M sc (required as M sc often contains the state
of the callback module within it).

If the callback module doesnot export asyst em r epl ace_st at e/ 2 function, r epl ace_st at e/ 2, 3 assumes
that M sc isthe state of the callback module, passesit to St at eFun and uses the return value as both the new state
and as the new value of M sc.

If the callback modul€e's function syst em r epl ace_st at e/ 2 crashes or throws an exception, the caller exits
witherror { cal | back_fail ed, {Mdule, systemreplace state}, {dass, Reason}},where
Modul e isthe name of the callback moduleand Cl ass and Reason indicate details of the exception. If the callback
module does not provideasyst em r epl ace_st at e/ 2 function and St at eFun crashes or throws an exception,
the caller exitswith error { cal | back_fail ed, StateFun, {d ass, Reason}}.

Functionsyst em r epl ace_st at e/ 2 isprimarily useful for user-defined behaviors and modules that implement
OTP special processes. The OTP behavior modules gen_ser ver, gen_f sm gen_st at em and gen_event
export this function, so callback modules for those behaviors need not to supply their own.

resume(Name) -> ok
resume(Name, Timeout) -> ok
Types.

Name = nane()

Timeout = timeout()

Resumes a suspended process.

statistics(Name, Flag) -> ok | {ok, Statistics}
statistics(Name, Flag, Timeout) -> ok | {ok, Statistics}

Types:
Name = nane()
Flag = true | false | get

Statistics = [StatisticsTuple] | no statistics
StatisticsTuple =

Ericsson AB. All Rights Reserved.: STDLIB | 495

sys

{start_time, DateTimel} |

{current_time, DateTime2} |

{reductions, integer() >= 0} |

{messages_in, integer() >= 0} |

{messages out, integer() >= 0}
DateTimel = DateTime2 = file:date tine()
Timeout = timeout()

Enables or disables the collection of statistics. If Fl ag isget , the statistical collection is returned.

suspend(Name) -> ok
suspend(Name, Timeout) -> ok
Types:
Name = nane()
Timeout = timeout()
Suspends the process. When the process is suspended, it only responds to other system messages, but not other
messages.

terminate(Name, Reason) -> ok
terminate(Name, Reason, Timeout) -> ok
Types:

Name = nane()

Reason = term()

Timeout = timeout()

Orders the process to terminate with the specified Reason. The termination is done asynchronously, so it is not
guaranteed that the process is terminated when the function returns.

trace(Name, Flag) -> ok
trace(Name, Flag, Timeout) -> ok

Types:
Name = nane()
Flag = boolean()

Timeout = timeout()

Prints all system eventson st andar d_i o. The events are formatted with a function that is defined by the process
that generated the event (with acall to handl e_debug/ 4).

Process Implementation Functions

The following functions are used when implementing a special process. Thisis an ordinary process, which does not
use a standard behavior, but a process that understands the standard system messages.

Exports

debug options(Options) -> [dbg_opt()]
Types:

496 | Ericsson AB. All Rights Reserved.: STDLIB

Ssys

Options = [Opt]

Opt =
trace |
log |
{log, integer() >= 1} |
statistics |
{log to file, FileName} |
{install, FuncSpec}

FileName = fil e: nane()
FuncSpec = {Func, FuncState}
Func = dbg_fun()

FuncState = term()

Can be used by a process that initiates a debug structure from a list of options. The values of argument Opt are the
same as for the corresponding functions.

get debug(Item, Debug, Default) -> term()
Types.

Item = log | statistics

Debug = [dbg opt ()]

Default = term()

Gets the data associated with a debug option. Def aul t isreturned if | t emis not found. Can be used by the process
to retrieve debug data for printing before it terminates.

handle debug(Debug, FormFunc, Extra, Event) -> [dbg_opt()]
Types.
Debug = [dbg_opt ()]
FormFunc = format _fun()
Extra = term()
Event = system event ()
This function is called by a process when it generates a system event. For nFunc is aformatting function, called as

For nFunc(Devi ce, Event, Extra) to print the events, which is necessary if tracing is activated. Ext r a is
any extrainformation that the process needs in the format function, for example, the process name.

handle system msg(Msg, From, Parent, Module, Debug, Misc) ->
no return()

Types:
Msg = term()
From = {pid(), Tag :: term()}
Parent = pid()
Module module()
Debug = [dbg_opt ()]
Misc = term()

Thisfunction isused by aprocess moduleto take care of system messages. The processreceivesa{ syst em From
Msg} message and passes Msg and Fr omto this function.

This function never returns. It calls either of the following functions:

Ericsson AB. All Rights Reserved.: STDLIB | 497

sys

e« Mbodul e: system conti nue(Parent, NDebug, M sc),wherethe process continuesthe execution.
« Mbdul e: system terni nat e(Reason, Parent, Debug, M sc), if theprocessisto terminate.

Modul e must export the following:

e systemcontinue/3

e systemtermninate/4

e system code_change/ 4

e systemget state/l

e systemreplace_state/2

Argument M sc can be used to save internal data in a process, for example, its state. It is sent to
Modul e: system conti nue/ 3 or Modul e: system term nat e/ 4.

print_log(Debug) -> ok
Types:
Debug = [dbg_opt ()]

Prints the logged system events in the debug structure, using For nFunc as defined when the event was generated
by acdl tohandl e_debug/ 4.

Module:system code change(Misc, Module, 0ldVsn, Extra) -> {ok, NMisc}
Types:
Msc = term)
A dVsn = undefined | term)
Modul e = atom()
Extra = tern()
NMsc = tern()
Cdledfrom handl e_syst em nsg/ 6 whentheprocessisto perform acode change. The code changeisused when

the internal data structure has changed. This function converts argument M sc to the new data structure. O dVsn is
attribute vsn of the old version of the Modul e. If no such attribute is defined, the atom undef i ned is sent.

Module:system continue(Parent, Debug, Misc) -> none()
Types:

Parent = pid()

Debug = [dbg_opt ()]

Msc = term)

Cdled from handl e_syst em nmsg/ 6 when the processisto continueits execution (for example, after it has been
suspended). This function never returns.

Module:system get state(Misc) -> {ok, State}
Types:

Msc = term)

State = term)

Cdled from handl e_syst em nsg/ 6 when the process is to return aterm that reflects its current state. St at e
isthevaluereturned by get _st at e/ 2.

498 | Ericsson AB. All Rights Reserved.: STDLIB

Ssys

Module:system replace state(StateFun, Misc) -> {ok, NState, NMisc}
Types:

StateFun = fun((State :: term()) -> NState)

Msc = term)

NState = term)

NMsc = term()

Cdledfrom handl e_syst em nsg/ 6 whenthe processisto replaceitscurrent state. NSt at e isthevaluereturned
by repl ace_state/ 3.

Module:system terminate(Reason, Parent, Debug, Misc) -> none()
Types:
Reason = term)
Parent = pid()
Debug = [dbg_opt ()]
Msc = term)
Called from handl e_syst em nsg/ 6 when the processisto terminate. For example, this function is called when

the process is suspended and its parent orders shutdown. It gives the process a chance to do a cleanup. This function
never returns.

Ericsson AB. All Rights Reserved.: STDLIB | 499

timer

timer

Erlang module

This module provides useful functions related to time. Unless otherwise stated, time is always measured in
milliseconds. All timer functions return immediately, regardless of work done by another process.

Successful evaluations of the timer functions give return values containing atimer reference, denoted TRef . By using
cancel / 1, the returned reference can be used to cancel any requested action. A TRef is an Erlang term, which
contents must not be changed.

The time-outs are not exact, but are at least as long as requested.

Data Types

time() = integer() >= 0
Time in milliseconds.

tref()

A timer reference.

Exports

apply after(Time, Module, Function, Arguments) ->
{ok, TRef} | {error, Reason}

Types:
Time = tinme()
Module = module()
Function = atom()
Arguments = [term()]
TRef = tref ()
Reason = term()

Evaluatesappl y(Modul e, Function, Argunents) after Ti me milliseconds.
Returns{ ok, TRef} or{error, Reason}.

apply interval(Time, Module, Function, Arguments) ->
{ok, TRef} | {error, Reason}

Types:
Time = tinme()
Module = module()
Function = atom()
Arguments = [term()]
TRef = tref()
Reason = term()
Evaluatesappl y(Modul e, Function, Argunents) repeatedly at intervalsof Ti ne.

Returns{ ok, TRef} or{error, Reason}.

500 | Ericsson AB. All Rights Reserved.: STDLIB

timer

cancel(TRef) -> {ok, cancel} | {error, Reason}
Types:
TRef = tref ()
Reason = term()
Cancels apreviously requested time-out. TRef is aunique timer reference returned by the related timer function.

Returns{ ok, cancel },or{error, Reason} whenTRef isnotatimer reference.

exit after(Time, Reasonl) -> {ok, TRef} | {error, Reason2}
exit after(Time, Pid, Reasonl) -> {ok, TRef} | {error, Reason2}
Types:

Time = time()

Pid = pid() | (RegName :: atom())

TRef = tref()

Reasonl = Reason2 = term()

exit_after/2isthesameasexit_after(Tine, self(), Reasonl).

exit_after/ 3 sends an exit signa with reason Reasonl to pid Pi d. Returns { ok, TRef} or {error,
Reason2}.

hms (Hours, Minutes, Seconds) -> MilliSeconds
Types.
Hours = Minutes = Seconds = MilliSeconds = integer() >= 0

Returns the number of millisecondsin Hours + M nutes + Seconds.

hours(Hours) -> MilliSeconds
Types:
Hours = MilliSeconds = integer() >= 0

Returns the number of millisecondsin Hour s.

kill after(Time) -> {ok, TRef} | {error, Reason2}
kill after(Time, Pid) -> {ok, TRef} | {error, Reason2}
Types:
Time = tinme()
Pid = pid() | (RegName :: atom())
TRef = tref ()
Reason2 = term()
kill _after/1listhesameasexit _after(Tine, self(), kill).

kill _after/2isthesameasexit_after(Tine, Pid, kill).

minutes(Minutes) -> MilliSeconds
Types.

Ericsson AB. All Rights Reserved.: STDLIB | 501

timer

Minutes = MilliSeconds = integer() >= 0

Returns the number of millisecondsin M nut es.

now diff(T2, T1) -> Tdiff

Types:
Tl = T2 = erlang:timestanp()
Tdiff = integer()

In microseconds

Calculates the time difference Tdi ff = T2 - T1 in microseconds, where T1 and T2 are time-stamp tuples on
the same format as returned from er | ang: ti nest anp/ 0 or os: ti nest anp/ 0.

seconds(Seconds) -> MilliSeconds
Types:
Seconds = MilliSeconds = integer() >= 0

Returns the number of millisecondsin Seconds.

send after(Time, Message) -> {ok, TRef} | {error, Reason}
send after(Time, Pid, Message) -> {ok, TRef} | {error, Reason}
Types:
Time = time()
Pid = pid() | (RegName :: atom())
Message = term()
TRef = tref()
Reason = term()
send_after/3
EvaluatesPi d ! Message after Ti me milliseconds. (Pi d can also be an atom of aregistered name.)
Returns{ ok, TRef} or{error, Reason}.
send_after/2

Sameassend_after(Tine, self(), Message).

send interval(Time, Message) -> {ok, TRef} | {error, Reason}
send interval(Time, Pid, Message) -> {ok, TRef} | {error, Reason}
Types.
Time = time()
Pid = pid() | (RegName :: atom())
Message = term()
TRef = tref ()
Reason = term()
send_interval /3
EvaluatesPi d ! Message repeatedly after Ti me milliseconds. (Pi d can also be an atom of aregistered name.)

Returns{ ok, TRef} or{error, Reason}.

502 | Ericsson AB. All Rights Reserved.: STDLIB

timer

send_interval/2
Sameassend_interval (Tinme, self(), Message).

sleep(Time) -> ok
Types.
Time = timeout()

Suspends the process calling thisfunction for Ti me milliseconds and then returns ok, or suspends the process forever
if Ti me istheatomi nfi ni ty. Naturaly, thisfunction does not return immediately.

start() -> ok

Starts the timer server. Normally, the server does not need to be started explicitly. It is started dynamically if it is
needed. Thisisuseful during development, but in atarget system the server isto be started explicitly. Use configuration
parameters for Ker nel for this.

tc(Fun) -> {Time, Value}
tc(Fun, Arguments) -> {Time, Value}
tc(Module, Function, Arguments) -> {Time, Value}
Types.

Module = module()

Function = atom()

Arguments = [term()]

Time = integer()

In microseconds

Value = term()
tc/3

Evaluatesappl y(Modul e, Function, Argunents) and measuresthe elapsed rea time as reported by
os:tinmestanp/O0.

Returns{ Ti me, Val ue},whereTi ne istheelapsed real timein microseconds, and Val ue iswhat isreturned
from the apply.

tc/2

Evaluatesappl y(Fun, Argunents) . Otherwisethe sameast c/ 3.
tc/l

Evaluates Fun() . Otherwisethe sameast ¢/ 2.

Examples
Example 1
The following example shows how to print "Hello World!" in 5 seconds:

1> timer:apply after(5000, io, format, ["~nHello World!~n", [1]).
{ok, TRef}
Hello World!

Example 2

Ericsson AB. All Rights Reserved.: STDLIB | 503

timer

Thefollowing example shows a process performing a certain action, and if this action isnot completed within acertain
limit, the processiskilled:

Pid = spawn(mod, fun, [foo, barl]),
%% If pid is not finished in 10 seconds, kill him
{ok, R} = timer:kill after(timer:seconds(10), Pid),

%% We change our mind...
timer:cancel(R),

Notes
A timer can always be removed by calling cancel / 1.

An interval timer, that is, a timer created by evaluating any of the functions apply_interval /4,
send_i nterval / 3,andsend_i nt er val / 2 islinked to the process to which the timer performs its task.

A one-shot timer, that is, atimer created by evaluating any of the functionsappl y_after/ 4,send_after/ 3,
send after/2,exit_after/3,exit_after/2,kill_after/2,andkill _after/1isnotlinked to
any process. Hence, such atimer is removed only when it reaches its time-out, or if it is explicitly removed by a call
tocancel / 1.

504 | Ericsson AB. All Rights Reserved.: STDLIB

unicode

unicode

Erlang module

This module contains functions for converting between different character representations. It converts between 1SO
Latin-1 characters and Unicode characters, but it can also convert between different Unicode encodings (like UTF-8,
UTF-16, and UTF-32).

The default Unicode encoding in Erlang is in binaries UTF-8, which is aso the format in which built-in functions
and libraries in OTP expect to find binary Unicode data. In lists, Unicode data is encoded as integers, each integer
representing one character and encoded simply as the Unicode code point for the character.

Other Unicode encodings than integers representing code points or UTF-8 in binaries are referred to as "external
encodings'. The ISO Latin-1 encoding isin binaries and lists referred to as latinl-encoding.

It is recommended to only use external encodings for communication with external entities where this is required.
When working inside the Erlang/OTP environment, it is recommended to keep binaries in UTF-8 when representing
Unicode characters. 1SO Latin-1 encoding is supported both for backward compatibility and for communication with
external entities not supporting Unicode character sets.

Data Types

encoding() =

latinl |

unicode |

utf8 |

utfle

{utfle, endian()} |

utf32 |

{utf32, endian()}
endian() = big | little
unicode binary() = binary()
A bi nar y() with characters encoded in the UTF-8 coding standard.

chardata()

charlist() =
maybe improper list(char() | unicode_binary() | charlist(),
uni code_binary() | [1)

external unicode binary() = binary()

charlist() | unicode_binary()

A bi nary() with characters coded in a user-specified Unicode encoding other than UTF-8 (that is, UTF-16 or
UTF-32).
external chardata() =
external _charlist() | external _uni code_binary()
external charlist() =
maybe improper list(char() |
ext ernal _uni code_bi nary() |
external _charlist(),
ext ernal _uni code_binary() | [])
latinl binary() = binary()

A bi nary() with characterscoded in 1SO Latin-1.

Ericsson AB. All Rights Reserved.: STDLIB | 505

unicode

latinl char() = byte()

Ani nt eger () representing avalid 1SO Latin-1 character (0-255).

latinl chardata() = latinl_charlist() | latinl_binary()
Sameasi odat a() .

latinl charlist() =
maybe improper list(latinl_char() |
latinl_binary() |
latinl_charlist(),
latinl_binary() | [1)

Sameasi ol ist().

Exports

bom to encoding(Bin) -> {Encoding, Length}
Types.

Bin = binary()

A bi nary() suchthat byte_si ze(Bin) >= 4.

Encoding =
latinl | utf8 | {utfl6, endian()} | {utf32, endian()}

Length = integer() >= 0
endian() = big | little

Checks for a UTF Byte Order Mark (BOM) in the beginning of a binary. If the supplied binary Bi n begins with a
valid BOM for either UTF-8, UTF-16, or UTF-32, the function returns the encoding identified along with the BOM
length in bytes.

If no BOM isfound, the function returns{ | ati n1, 0}.

characters to binary(Data) -> Result

Types:
Data = latinl_chardata() | chardata() | external _chardata()
Result =
binary() |
{error, binary(), RestData} |
{incomplete, binary(), binary()}
RestData = latinl_chardata() | chardata() | external _chardata()

Sameascharacters_to_bi nary(Data, unicode, unicode).

characters to binary(Data, InEncoding) -> Result

Types:
Data = latinl_chardata() | chardata() | external _chardata()
InEncoding = encodi ng()
Result =

binary() |
{error, binary(), RestData} |

506 | Ericsson AB. All Rights Reserved.: STDLIB

unicode

{incomplete, binary(), binary()}
RestData = latinl _chardata() | chardata() | external _chardata()

Sameascharacters_to_bi nary(Data, |nEncoding, unicode).

characters to binary(Data, InEncoding, OutEncoding) -> Result
Types.

Data = latinl_chardata() | chardata() | external _chardata()
InEncoding = OutEncoding = encodi ng()
Result =

binary() |

{error, binary(), RestData} |
{incomplete, binary(), binary()}

RestData = latinl _chardata() | chardata() | external _chardata()
Behavesas characters_to_I|i st/ 2, but producesabinary instead of a Unicode list.
| nEncodi ng defines how input isto be interpreted if binaries are present in Dat a
Qut Encodi ng definesin what format output is to be generated.

Options:
uni code

An diasfor ut f 8, asthisisthe preferred encoding for Unicode characters in binaries.
utf 16

Analiasfor{utf 16, bi g}.
ut f 32

Analiasfor{utf 32, bi g}.

Theatomsbi gandl i tt| e denotebig- or little-endian encoding.

Errors and exceptions occur as in characters_to_list/2, but the second element in tuple error or
i nconpl et eisabi nary() andnotal i st().

characters to list(Data) -> Result

Types:
Data = latinl_chardata() | chardata() | external _chardata()
Result =
list() |
{error, list(), RestData} |
{incomplete, list(), binary()}
RestData = latinl_chardata() | chardata() | external _chardata()

Sameascharacters_to_list(Data, unicode).

characters to list(Data, InEncoding) -> Result

Types:
Data = latinl_chardata() | chardata() | external _chardata()
InEncoding = encodi ng()
Result =

Ericsson AB. All Rights Reserved.: STDLIB | 507

unicode

list() |
{error, list(), RestData} |
{incomplete, list(), binary()}

RestData = latinl _chardata() | chardata() | external _chardata()

Converts a possibly deep list of integers and binaries into a list of integers representing Unicode characters. The
binaries in the input can have characters encoded as one of the following:

e IS0 Latin-1 (0-255, one character per byte). Here, case parameter | nEncodi ng isto be specified as| at i nl.
* Oneof the UTF-encodings, which is specified as parameter | nEncodi ng.
Only when | nEncodi ng isone of the UTF encodings, integersin the list are allowed to be > 255.

If I nEncodi ng isl ati nl, parameter Dat a corresponds to the i odat a() type, but for uni code, parameter
Dat a can contain integers > 255 (Unicode characters beyond the 1SO Latin-1 range), which makes it invalid as
i odata().

The purpose of the function is mainly to convert combinations of Unicode characters into a pure Unicode string
in list representation for further processing. For writing the data to an external entity, the reverse function
characters_to_bi nary/ 3 comesin handy.

Option uni code isan diasfor ut f 8, as thisis the preferred encoding for Unicode charactersin binaries. ut f 16
isanaliasfor {utf 16, bi g} andut f 32 isan aliasfor{ut f 32, bi g} . Theatomsbi gand| i tt| e denote big-
or little-endian encoding.

If the datacannot be converted, either because of illegal Unicode/| SO Latin-1 charactersinthelist, or becauseof invalid
UTF encoding in any binaries, an error tupleisreturned. The error tuple containsthetag er r or , alist representing the
characters that could be converted before the error occurred and a representation of the characters including and after
the offending integer/bytes. The last part is mostly for debugging, asit still constitutes a possibly deep or mixed list,
or both, not necessarily of the same depth as the original data. The error occurs when traversing the list and whatever
isleft to decodeis returned "asis’".

However, if theinput Dat a is apure binary, the third part of the error tuple is guaranteed to be a binary as well.
Errors occur for the following reasons:
* Integers out of range.

If I nEncodi ngisl ati nl, an error occurs whenever an integer > 255 isfound in the lists.

If | nEncodi ng isof aUnicode type, an error occurs whenever either of the following is found:

* Aninteger > 16#10FFFF (the maximum Unicode character)
e Aninteger in the range 16#D800 to 16#DFFF (invalid range reserved for UTF-16 surrogate pairs)
* Incorrect UTF encoding.

If | nEncodi ng isone of the UTF types, the bytesin any binaries must be valid in that encoding.
Errors can occur for various reasons, including the following:

e "Pure" decoding errors (like the upper bits of the bytes being wrong).

e Thebytes are decoded to atoo large number.

* Thebytes are decoded to a code point in the invalid Unicode range.

* Encoding is"overlong", meaning that a number should have been encoded in fewer bytes.

The case of atruncated UTF is handled specially, see the paragraph about incomplete binaries below.

If | nEncodi ng isl ati nl, binaries are always valid as long as they contain whole bytes, as each byte falls
into the valid SO Latin-1 range.

A special type of error iswhen no actual invalid integers or bytes are found, but atrailing bi nar y() consists of too
few bytesto decode the last character. Thiserror can occur if bytesare read from afilein chunks or if binariesin other

508 | Ericsson AB. All Rights Reserved.: STDLIB

unicode

ways are split on non-UTF character boundaries. Ani nconpl et e tupleisthen returned instead of theer r or tuple.
It consists of the same parts astheer r or tuple, but thetagisi nconpl et e instead of er r or and the last element
is always guaranteed to be a binary consisting of the first part of a(so far) valid UTF character.

If one UTF character is split over two consecutive binaries in the Dat a, the conversion succeeds. This means that
a character can be decoded from a range of binaries as long as the whole range is specified as input without errors
occurring.

Example:

decode data(Data) ->
case unicode:characters to list(Data,unicode) of
{incomplete,Encoded, Rest} ->
More = get some more data(),
Encoded ++ decode data([Rest, Morel);
{error,Encoded,Rest} ->
handle error(Encoded,Rest);
List ->
List
end.

However, bit strings that are not whole bytes are not allowed, so a UTF character must be split along 8-bit boundaries
to ever be decoded.

A badar g exception isthrown for the following cases:
* Any parameters are of the wrong type.

e Thelist structure isinvalid (anumber astail).
* Thebinaries do not contain whole bytes (bit strings).

encoding to bom(InEncoding) -> Bin
Types:
Bin = binary()
A bi nary() suchthat byte_si ze(Bi n) >= 4.
InEncoding = encodi ng()

Creates a UTF Byte Order Mark (BOM) as a binary from the supplied | nEncodi ng. The BOM s, if supported at
all, expected to be placed first in UTF encoded files or messages.

The function returns <<>> for | at i n1 encoding, asthereisno BOM for 1SO Latin-1.

Notice that the BOM for UTF-8 is seldom used, and it is really not a byte order mark. There are obviously no byte
order issues with UTF-8, so the BOM is only there to differentiate UTF-8 encoding from other UTF formats.

Ericsson AB. All Rights Reserved.: STDLIB | 509

win32reg

win32reg

Erlang module

This module provides read and write access to the registry on Windows. It is essentially a port driver wrapped around
the Win32 API callsfor accessing the registry.

Theregistry isahierarchical database, used to store various system and software information in Windows. It contains
installation data, and is updated by installers and system programs. The Erlang installer updates the registry by adding
data that Erlang needs.

The registry contains keys and values. Keys are like the directoriesin afile system, they form ahierarchy. Vaues are
likefiles, they have aname and avalue, and also atype.

Pathsto keysareleft to right, with subkeys to the right and backs ash between keys. (Remember that backslashes must
be doubled in Erlang strings.) Case is preserved but not significant.

For example, "\ \ hkey_| ocal _nachi ne\\ software\\ Eri csson\\ Erl ang\\ 5. 0" is the key for the
installation data for the latest Erlang rel ease.

There are six entry pointsin the Windows registry, top-level keys. They can be abbreviated in this module as follows:

Abbreviation Registry key

hkcr HKEY CLASSES ROOT
current _user HKEY CURRENT USER
hkcu HKEY CURRENT USER
local machine HKEY LOCAL MACHINE
hklm HKEY LOCAL MACHINE
users HKEY USERS

hku HKEY USERS

current config HKEY_ CURRENT CONFIG
hkcc HKEY CURRENT CONFIG
dyn data HKEY DYN DATA

hkdd HKEY DYN DATA

The key above can bewrittenas"\ \ hkl M\ sof t ware\\ eri csson\\erl ang\\5. 0".

This module uses a current key. It works much like the current directory. From the current key, values can be fetched,
subkeys can be listed, and so on.

Under akey, any number of named values can be stored. They have names, types, and data.
W n32r eg supports storing of the following types:

e REG _DWORD, whichisan integer
e REG SZ,whichisastring
* REG_BI NARY, whichisabinary

Other types can be read, and are returned as binaries.

There is also a "default” value, which has the empty string as name. It is read and written with the atom def aul t
instead of the name.

Some registry values are stored as strings with references to environment variables, for example, %8y st enRoot
%NV ndows. Syst enRoot isan environment variable, and is to be replaced with its value. Function expand/ 1 is
provided so that environment variables surrounded by %can be expanded to their values.

For more information on the Windows registry, see consult the Win32 Programmer's Reference.

510 | Ericsson AB. All Rights Reserved.: STDLIB

win32reg

Data Types
reg _handle()
Asreturned by open/ 1.

name() = string() | default
value() = string() | integer() | binary()

Exports

change key(RegHandle, Key) -> ReturnValue
Types.

RegHandle = reg_handl e()

Key = string()

ReturnValue = ok | {error, ErrorId :: atom()}

Changes the current key to another key. Works like cd. The key can be specified as a relative path or as an absolute
path, starting with\ .

change key create(RegHandle, Key) -> ReturnValue
Types.
RegHandle = reg_handl e()
Key = string()
ReturnValue = ok | {error, ErrorId :: atom()}

Createsakey, or just changesto it, if it isalready there. Works like a combination of nkdi r and cd. Callsthe Win32
API function RegCr eat eKeyEx() .

The registry must have been opened in write mode.

close(RegHandle) -> ok
Types:
RegHandle = reg_handl e()
Closestheregistry. After that, the RegHandl e cannot be used.

current key(RegHandle) -> ReturnValue
Types.
RegHandle = reg_handl e()
ReturnValue = {ok, string()}

Returns the path to the current key. Thisis the equivaent of pwd.
Notice that the current key is stored in the driver, and can beinvalid (for example, if the key has been removed).

delete key(RegHandle) -> ReturnValue

Types:
RegHandle = reg_handl e()
ReturnValue = ok | {error, ErrorId :: atom()}

Deletesthe current key, if itisvalid. Callsthe Win32 API function RegDel et eKey() . Noticethat this call does not
change the current key (unlike change_key_cr eat e/ 2). Thismeansthat after the call, the current key isinvalid.

Ericsson AB. All Rights Reserved.: STDLIB | 511

win32reg

delete value(RegHandle, Name) -> ReturnValue
Types:
RegHandle = reg_handl e()
Name = nane()
ReturnValue = ok | {error, ErrorId :: atom()}
Deletes a named value on the current key. The atom def aul t isused for the default value.

The registry must have been opened in write mode.

expand(String) -> ExpandedString
Types:
String = ExpandedString = string()

Expands a string containing environment variables between percent characters. Anything between two %is taken for
an environment variable, and is replaced by the value. Two consecutive %are replaced by one %

A variable name that is not in the environment results in an error.

format error(ErrorId) -> ErrorString
Types:

ErrorId = atom()

ErrorString = string()

Convertsa POSIX error code to astring (by callinger| _posi x_nsg: nessage/ 1).

open(OpenModeList) -> ReturnValue
Types:
OpenModelList = [OpenMode]
OpenMode = read | write
ReturnValue = {ok, RegHandle} | {error, ErrorId :: enotsup}
RegHandle = reg_handl e()

Opens the registry for reading or writing. The current key is the root (HKEY _CLASSES ROOT). Flag r ead in the
mode list can be omitted.

Usechange_key/ 2 with an absolute path after open.

set value(RegHandle, Name, Value) -> ReturnValue
Types:
RegHandle = reg_handl e()
Name = nane()
Value = val ue()
ReturnValue = ok | {error, ErrorId :: atom()}
Sets the named (or default) value to val ue. Callsthe Win32 API function RegSet Val ueEx() . The value can be
of three types, and the corresponding registry typeis used. The supported types are the following:
 REG DWORDfor integers
 REG_SZfor strings
* REG_BI NARY for binaries

512 | Ericsson AB. All Rights Reserved.: STDLIB

win32reg

Other types cannot be added or changed.
The registry must have been opened in write mode.

sub_keys(RegHandle) -> ReturnValue

Types:
RegHandle = reg_handl e()
ReturnValue = {ok, [SubKeyl} | {error, ErrorId :: atom()}
SubKey = string()

Returns alist of subkeysto the current key. Callsthe Win32 API function EnunRegKeysEXx() .
Avoid calling this on the root keys, asit can be slow.

value(RegHandle, Name) -> ReturnValue
Types:
RegHandle = reg_handl e()
Name = nane()
ReturnValue =
{ok, Value :: value()} | {error, ErrorId :: atom()}

Retrieves the named value (or default) on the current key. Registry values of type REG_SZ are returned as strings.
Type REG_DWORD values are returned as integers. All other types are returned as binaries.

values(RegHandle) -> ReturnValue

Types:
RegHandle = reg_handl e()
ReturnValue = {ok, [ValuePair]} | {error, ErrorId :: atom()}
ValuePair = {Name :: nane(), Value :: value()}

Retrieves a list of al values on the current key. The values have types corresponding to the registry types, see
val ue/ 2. Callsthe Win32 API function EnunRegVal uesEx() .

See Also

erl _posi x_msg, The Windows 95 Registry (book from O'Reilly), Win32 Programmer's Reference (from
Microsoft)

Ericsson AB. All Rights Reserved.: STDLIB | 513

zip

Zip

Erlang module

Thismodule archives and extractsfilesto and from azip archive. The zip format is specified by the"ZIP Appnote.txt"
file, available on the PKWARE web site www.pkwar e.com.

The zip module supports zip archive versions up to 6.1. However, password-protection and Zip64 are not supported.

By convention, the name of azipfileisto end with . zi p. To abide to the convention, add . zi p to the filename.

» To create zip archives, use function zi p/ 2 or zi p/ 3. They are dso available as cr eat e/ 2, 3, to resemble
theer| _tar module.

e« To extract files from a zip archive, use function unzi p/ 1 or unzi p/ 2. They are aso available as
extract/ 1, 2,toresembletheer| _t ar module.

« Tofold afunction over al filesin a zip archive, use functionf ol dl / 3.

e Toreturnalist of thefilesinazip archive, usefunctionl i st _dir/lorli st _dir/2.Theyarealsoavailable
ast abl e/ 1, 2,toresembletheer| _t ar module.

e Toprintalist of filesto the Erlang shell, use functiont/ 1 ortt/ 1.

» Sometimes it is desirable to open a zip archive, and to unzip files from it file by file, without having to
reopen the archive. Thiscan bedone by functionszi p_open/ 1, 2,zip_get/1,2,zip_list_dir/1,and
zi p_cl ose/ 1.

Limitations

e Zip64 archives are not supported.

» Password-protected and encrypted archives are not supported.

e Only the DEFLATE (zlib-compression) and the STORE (uncompressed data) zip methods are supported.
* Thearchivesizeislimited to 2 GB (32 hits).

e Comments for individua files are not supported when creating zip archives. The zip archive comment for the
whole zip archive is supported.

» Changing a zip archive is not supported. To add or remove a file from an archive, the whole archive must be
recreated.

Data Types
zip comment() = #zip comment{comment = string()}
Therecord zi p_conment only contains the archive comment for a zip archive.

zip file() =
#zip file{name string(),
info = file:file_info(),
comment = string(),
offset = integer() >= 0,
comp size = integer() >= 0}

Therecord zi p_f i | e containsthe following fields:
name

The filename
i nfo

Fileinformationasin fil e:read_fil e_i nfo/ 1inKer nel

514 | Ericsson AB. All Rights Reserved.: STDLIB

href

zip

coment
The comment for the filein the zip archive
of f set
Thefile offset in the zip archive (used internally)
conp_si ze
The size of the compressed file (the size of the uncompressed fileisfound ini nf 0)
filename() = file:fil enane()
The name of azip file.

extension() = string()

extension spec() =
all |
[extension()] |
{add, [extension()]} |
{del, [extension()]1}
create option() =
memory |
cooked |
verbose |
{comment, string()} |
{cwd, file:filename()} |
{compress, extension_spec()} |
{uncompress, extension_spec()}

These options are described in cr eat e/ 3.
handle()
Asreturned by zi p_open/ 2.

Exports

foldl(Fun, AccO, Archive) -> {ok, Accl} | {error, Reason}

Types.
Fun = fun((FileInArchive, GetInfo, GetBin, AccIn) -> AccOut)
FileInArchive = fil e: name()

GetInfo = fun(() -> file:file_info())
GetBin = fun(() -> binary())

AccO = Accl = AccIn = AccOut = term()
Archive = file:name() | {file:name(), binary()}

Reason = term()

CdlsFun(Fil el nArchive, Getlnfo, GetBin, Accln) onsuccessivefilesinthe Archi ve, starting

with Accl n == AccO.

Fi | el nAr chi ve isthe name that the file has in the archive.
CGet | nf o isafunthat returnsinformation about the file.

CGet Bi n returns the file contents.

Ericsson AB. All Rights Reserved.: STDLIB | 515

zip

Both Get | nf o and Get Bi n must be called within the Fun. Their behavior is undefined if they are called outside
the context of Fun.

The Fun must return a new accumulator, which is passed to the next call. f ol dI / 3 returns the final accumulator
value. AccO isreturned if the archiveis empty. It is not necessary to iterate over al filesin the archive. Theiteration
can be ended prematurely in a controlled manner by throwing an exception.

Example:

> Name = "dummy.zip".
"dummy.zip"
> {ok, {Name, Bin}} = zip:create(Name, [{"fo0", <<"F00">>}, {"bar", <<"BAR">>}], [memory]).
{ok, {"dummy.zip",
<<80,75,3,4,20,0,0,0,0,0,74,152,97,60,171,39,212,26,3,0,
0,0,3,0,0,...>>}}
> {ok, FileSpec} = zip:foldl(fun(N, I, B, Acc) -> [{N, B(), I()} | Acc] end, [], {Name, Bin}).
{ok, [{"bar",<<"BAR">>,
{file info,3, regular, read write,
{{2010,3,1},{19,2,10}},
{{2010,3,1},{19,2,10}},
{{2010,3,1},{19,2,10}},
5471!070I01010}}I
{"foo",<<"F00">>,
{file info,3, regular, read write,
{{2010,3,1},{19,2,10}},
{{2010,3,1},{19,2,10}},
{{2010,3,1},{19,2,10}},
54,1,0,0,0,0,0}}1}
> {ok, {Name, Bin}} = zip:create(Name, lists:reverse(FileSpec), [memory]).
{ok, {"dummy.zip",
<<80,75,3,4,20,0,0,0,0,0,74,152,97,60,171,39,212,26,3,0,
0,0,3,0,0,...>>}}
> catch zip:foldl(fun("foo", , B,) -> throw(B()); (, , ,Acc) -> Acc end, [], {Name, Bin}).
<<"F00">>

list _dir(Archive) -> RetValue

list dir(Archive, Options) -> RetValue
table(Archive) -> RetValue
table(Archive, Options) -> RetValue

Types.
Archive = file:name() | binary()
RetValue = {ok, CommentAndFiles} | {error, Reason :: term()}

CommentAndFiles = [zip_comrent() | zip_file()]
Options = [Option]
Option = cooked
I'ist_dir/1retrievesdl filenamesinthezip archive Ar chi ve.
l'ist_dir/ 2 providesoptions.
tabl e/ 1 andt abl e/ 2 are provided as synonymsto resembletheer | _t ar module.
Theresult valueisthetuple{ ok, Li st},whereLi st containsthe zip archive comment as the first element.

One option isavailable:

516 | Ericsson AB. All Rights Reserved.: STDLIB

zip

cooked

By default, this function opensthe zip fileinr awmode, which is faster but does not allow aremote (Erlang) file
server to be used. Adding cook ed tothemodelist overridesthe default and opensthe zip filewithout optionr aw.

t(Archive) -> ok

Types:
Archive = file:name() | binary() | ZipHandle
ZipHandle = handl e()

Prints all filenamesin the zip archive Ar chi ve to the Erlang shell. (Smilartot ar t.)

tt(Archive) -> ok

Types:
Archive = file:nane() | binary() | ZipHandle
ZipHandle = handl e()

Prints filenames and information about all filesin the zip archive Ar chi ve tothe Erlang shell. (Similartot ar tv.)

unzip(Archive) -> RetValue
unzip(Archive, Options) -> RetValue
extract(Archive) -> RetValue
extract(Archive, Options) -> RetValue

Types:
Archive = file:name() | binary()
Options = [Option]
Option =

{file list, Filelist} |
keep old files |
verbose |
memory |
{file filter, FileFilter} |
{cwd, CWD}
FileList = [file:nane()]
FileBinList = [{file:name(), binary()}]
FileFilter = fun((ZipFile) -> boolean())
CWD = file:fil enane()
ZipFile = zip_file()
RetValue =
{ok, FilelList} |
{ok, FileBinList} |
{error, Reason :: term()} |
{error, {Name :: file:nanme(), Reason :: term()}}
unzi p/ 1 extracts al files from a zip archive.
unzi p/ 2 provides options to extract some files, and more.

extract/1 andextract/ 2 are provided as synonymsto resemble moduleer | _t ar .

Ericsson AB. All Rights Reserved.: STDLIB | 517

zip

If argument Ar chi ve is specified as a binary, the contents of the binary is assumed to be a zip archive, otherwise
afilename.
Options:
{file_list, FilelList}
By default, al files are extracted from the zip archive. With option {file_list, FileList}, function

unzi p/ 2 only extracts the files whose names are included in Fi | eLi st . The full paths, including the names
of al subdirectories within the zip archive, must be specified.

cooked

By default, this function opensthe zip filein r awmode, which is faster but does not alow aremote (Erlang) file
server to be used. Adding cooked to the mode list overrides the default and opens the zip file without option
r aw. The same applies for the files extracted.

keep_old files

By default, al files with the same name as files in the zip archive are overwritten. With option
keep_ol d files set, function unzi p/ 2 does not overwrite existing files. Notice that even with option
menor y specified, which means that no files are overwritten, existing files are excluded from the result.

ver bose
Prints an informational message for each extracted file.
nenory

Instead of extracting to the current directory, the result is given as alist of tuples{ Fi | enanme, Bi nary},
where Bi nar y isabinary containing the extracted data of file Fi | enane in the zip archive.
{cwd, CWD}

Uses the specified directory as current directory. It is prepended to filenames when extracting them from the zip
archive. (Acting like fil e: set _cwd/ 1 inKer nel , but without changing the global cwd property.)

zip(Name, FilelList) -> RetValue
zip(Name, FilelList, Options) -> RetValue
create(Name, FilelList) -> RetValue
create(Name, FilelList, Options) -> RetValue
Types.
Name = fil e: nane()
FileList = [FileSpec]
FileSpec =
file:name() |
{file:name(), binary()} |
{file:name(), binary(), file:file_info()}
Options = [Option]
Option = create_option()

RetValue =
{ok, FileName :: filenane()} |
{ok, {FileName :: filename(), binary()}} |
{error, Reason :: term()}

Creates azip archive containing the files specified in Fi | eLi st .

create/ 2 andcr eat e/ 3 are provided as synonyms to resemble moduleer | _t ar.

518 | Ericsson AB. All Rights Reserved.: STDLIB

zip

Fi | eLi st isalist of files, with paths relative to the current directory, which are stored with this path in the archive.
Files can also be specified with datain binaries to create an archive directly from data.

Files are compressed using the DEFLATE compression, as described in the "Appnote.txt" file. However, files are
stored without compression if they are already compressed. zi p/ 2 and zi p/ 3 check thefile extension to determine
if the file is to be stored without compression. Files with the following extensions are not compressed: . Z, . zi p,
.zoo,.arc,.lzh,.arj.

It is possible to override the default behavior and control what types of filesthat are to be compressed by using options
{conpress, What} and{unconpress, \Wat}.Itisasopossibletousemany conpress andunconpr ess
options.

To trigger file compression, its extension must match with the conpr ess condition and must not match the
unconpr ess condition. For example, if conpress issetto["gif", "jpg"] and unconpress is set to
["jpg"],only fileswith extension " gi f " are compressed.

Options:
cooked

By default, this function opens the zip file in mode r aw, which is faster but does not allow a remote (Erlang)
file server to be used. Adding cooked to the mode list overrides the default and opens the zip file without the
r aw option. The same applies for the files added.

ver bose
Prints an informational message about each added file.
nenory

The output is not to afile, but instead as atuple { Fi | eName, binary()}. Thebinary isafull zip archive
with header and can be extracted with, for example, unzi p/ 2.

{coment, Conment}
Adds acomment to the zip archive.
{cwd, COWD}

Uses the specified directory as current work directory (cwd). Thisis prepended to filenames when adding them,
although not in the zip archive (acting like fil e: set _cwd/ 1 in Ker nel , but without changing the global
cwd property.).

{conpress, \Wat}
Controls what types of files to be compressed. Defaultsto al | . The following values of What are allowed:
al |
All files are compressed (as long as they passthe unconpr ess condition).
[Ext ensi on]
Only files with exactly these extensions are compressed.
{add, [Ext ensi on] }
Adds these extensionsto the list of compress extensions.
{del , [Ext ensi on] }
Deletes these extensions from the list of compress extensions.
{unconpress, Wat}

Controls what types of files to be uncompressed. Defaultsto [. 2", ". zi p",
".1zh", ".arj"].Thefollowing valuesof What areallowed:

Ericsson AB. All Rights Reserved.: STDLIB | 519

zip

al |

No files are compressed.
[Ext ensi on]

Files with these extensions are uncompressed.
{add, [Ext ensi on] }

Adds these extensions to the list of uncompress extensions.
{del , [Extensi on] }

Deletes these extensions from the list of uncompress extensions.

zip close(ZipHandle) -> ok | {error, einval}
Types:
ZipHandle = handl e()

Closes azip archive, previously opened with zi p_open/ 1, 2. All resources are closed, and the handle is not to be
used after closing.

zip get(ZipHandle) -> {ok, [Result]} | {error, Reason}
zip get(FileName, ZipHandle) -> {ok, Result} | {error, Reason}
Types:
FileName = fil e: nanme()
ZipHandle = handl e()
Result = file:nanme() | {file:name(), binary()}
Reason = term()
Extracts one or al files from an open archive.

The files are unzipped to memory or to file, depending on the options specified to function zi p_open/ 1, 2 when
opening the archive.

zip list dir(ZipHandle) -> {ok, Result} | {error, Reason}
Types:

Result = [zip_comment() | zip_file()]

ZipHandle = handl e()

Reason = term()

Returns the file list of an open zip archive. Thefirst returned element is the zip archive comment.
zip open(Archive) -> {ok, ZipHandle} | {error, Reason}

zip open(Archive, Options) -> {ok, ZipHandle} | {error, Reason}
Types.

520 | Ericsson AB. All Rights Reserved.: STDLIB

zip

Archive = file:name() | binary()

ZipHandle = handl e()

Options = [Option]

Option = cooked | memory | {cwd, CWD :: file:filenanme()}
Reason = term()

Opens a zip archive, and reads and saves its directory. This means that later reading files from the archive is faster
than unzipping filesone at atime with unzi p/ 1, 2.

The archive must be closed with zi p_cl ose/ 1.
The Zi pHandl e isclosed if the process that originally opened the archive dies.

Ericsson AB. All Rights Reserved.: STDLIB | 521

	STDLIB
	STDLIB User's Guide
	Introduction
	Scope
	Prerequisites

	The Erlang I/O Protocol
	Protocol Basics
	Output Requests
	Input Requests
	I/O Server Modes
	Multiple I/O Requests
	Optional I/O Request
	Unimplemented Request Types
	An Annotated and Working Example I/O Server

	Using Unicode in Erlang
	Unicode Implementation
	Understanding Unicode
	What Unicode Is
	Areas of Unicode Support
	Standard Unicode Representation
	Basic Language Support
	Bit Syntax
	String and Character Literals
	Heuristic String Detection

	The Interactive Shell
	Unicode Filenames
	Notes About Raw Filenames
	Notes About MacOS X

	Unicode in Environment and Parameters
	Unicode-Aware Modules
	Unicode Data in Files
	Summary of Options
	Recipes
	Byte Order Marks
	Formatted I/O
	Heuristic Identification of UTF-8
	Lists of UTF-8 Bytes
	Double UTF-8 Encoding

	Reference Manual
	STDLIB
	array
	default/1
	fix/1
	foldl/3
	foldr/3
	from_list/1
	from_list/2
	from_orddict/1
	from_orddict/2
	get/2
	is_array/1
	is_fix/1
	map/2
	new/0
	new/1
	new/2
	relax/1
	reset/2
	resize/1
	resize/2
	set/3
	size/1
	sparse_foldl/3
	sparse_foldr/3
	sparse_map/2
	sparse_size/1
	sparse_to_list/1
	sparse_to_orddict/1
	to_list/1
	to_orddict/1

	assert.hrl.xml
	base64
	decode/1
	decode_to_string/1
	mime_decode/1
	mime_decode_to_string/1
	encode/1
	encode_to_string/1

	beam_lib
	all_chunks/1
	build_module/1
	chunks/2
	chunks/3
	clear_crypto_key_fun/0
	cmp/2
	cmp_dirs/2
	crypto_key_fun/1
	diff_dirs/2
	format_error/1
	info/1
	md5/1
	strip/1
	strip_files/1
	strip_release/1
	version/1

	binary
	at/2
	bin_to_list/1
	bin_to_list/2
	bin_to_list/3
	compile_pattern/1
	copy/1
	copy/2
	decode_unsigned/1
	decode_unsigned/2
	encode_unsigned/1
	encode_unsigned/2
	first/1
	last/1
	list_to_bin/1
	longest_common_prefix/1
	longest_common_suffix/1
	match/2
	match/3
	matches/2
	matches/3
	part/2
	part/3
	referenced_byte_size/1
	replace/3
	replace/4
	split/2
	split/3

	c
	bt/1
	c/1
	c/2
	cd/1
	flush/0
	help/0
	i/0
	ni/0
	i/3
	l/1
	lc/1
	ls/0
	ls/1
	m/0
	m/1
	memory/0
	memory/1
	memory/1
	nc/1
	nc/2
	nl/1
	pid/3
	pwd/0
	q/0
	regs/0
	nregs/0
	uptime/0
	xm/1
	y/1
	y/2

	calendar
	date_to_gregorian_days/1
	date_to_gregorian_days/3
	datetime_to_gregorian_seconds/1
	day_of_the_week/1
	day_of_the_week/3
	gregorian_days_to_date/1
	gregorian_seconds_to_datetime/1
	is_leap_year/1
	iso_week_number/0
	iso_week_number/1
	last_day_of_the_month/2
	local_time/0
	local_time_to_universal_time/1
	local_time_to_universal_time_dst/1
	now_to_datetime/1
	now_to_local_time/1
	now_to_universal_time/1
	seconds_to_daystime/1
	seconds_to_time/1
	time_difference/2
	time_to_seconds/1
	universal_time/0
	universal_time_to_local_time/1
	valid_date/1
	valid_date/3

	dets
	all/0
	bchunk/2
	close/1
	delete/2
	delete_all_objects/1
	delete_object/2
	first/1
	foldl/3
	foldr/3
	from_ets/2
	info/1
	info/2
	init_table/2
	init_table/3
	insert/2
	insert_new/2
	is_compatible_bchunk_format/2
	is_dets_file/1
	lookup/2
	match/1
	match/2
	match/3
	match_delete/2
	match_object/1
	match_object/2
	match_object/3
	member/2
	next/2
	open_file/1
	open_file/2
	pid2name/1
	repair_continuation/2
	safe_fixtable/2
	select/1
	select/2
	select/3
	select_delete/2
	slot/2
	sync/1
	table/1
	table/2
	to_ets/2
	traverse/2
	update_counter/3

	dict
	append/3
	append_list/3
	erase/2
	fetch/2
	fetch_keys/1
	filter/2
	find/2
	fold/3
	from_list/1
	is_empty/1
	is_key/2
	map/2
	merge/3
	new/0
	size/1
	store/3
	to_list/1
	update/3
	update/4
	update_counter/3

	digraph
	add_edge/3
	add_edge/4
	add_edge/5
	add_vertex/1
	add_vertex/2
	add_vertex/3
	del_edge/2
	del_edges/2
	del_path/3
	del_vertex/2
	del_vertices/2
	delete/1
	edge/2
	edges/1
	edges/2
	get_cycle/2
	get_path/3
	get_short_cycle/2
	get_short_path/3
	in_degree/2
	in_edges/2
	in_neighbours/2
	info/1
	new/0
	new/1
	no_edges/1
	no_vertices/1
	out_degree/2
	out_edges/2
	out_neighbours/2
	vertex/2
	vertices/1

	digraph_utils
	arborescence_root/1
	components/1
	condensation/1
	cyclic_strong_components/1
	is_acyclic/1
	is_arborescence/1
	is_tree/1
	loop_vertices/1
	postorder/1
	preorder/1
	reachable/2
	reachable_neighbours/2
	reaching/2
	reaching_neighbours/2
	strong_components/1
	subgraph/2
	subgraph/3
	topsort/1

	epp
	close/1
	default_encoding/0
	encoding_to_string/1
	format_error/1
	open/1
	open/2
	open/3
	parse_erl_form/1
	parse_file/2
	parse_file/3
	read_encoding/1
	read_encoding/2
	read_encoding_from_binary/1
	read_encoding_from_binary/2
	set_encoding/1
	set_encoding/2

	erl_anno
	column/1
	end_location/1
	file/1
	from_term/1
	generated/1
	is_anno/1
	line/1
	location/1
	new/1
	set_file/2
	set_generated/2
	set_line/2
	set_location/2
	set_record/2
	set_text/2
	text/1
	to_term/1

	erl_eval
	add_binding/3
	binding/2
	bindings/1
	del_binding/2
	expr/2
	expr/3
	expr/4
	expr/5
	expr_list/2
	expr_list/3
	expr_list/4
	exprs/2
	exprs/3
	exprs/4
	new_bindings/0

	erl_expand_records
	module/2

	erl_id_trans
	parse_transform/2

	erl_internal
	arith_op/2
	bif/2
	bool_op/2
	comp_op/2
	guard_bif/2
	list_op/2
	op_type/2
	send_op/2
	type_test/2

	erl_lint
	format_error/1
	is_guard_test/1
	module/1
	module/2
	module/3

	erl_parse
	abstract/1
	abstract/2
	anno_from_term/1
	anno_to_term/1
	fold_anno/3
	format_error/1
	map_anno/2
	mapfold_anno/3
	new_anno/1
	normalise/1
	parse_exprs/1
	parse_form/1
	parse_term/1
	tokens/1
	tokens/2

	erl_pp
	attribute/1
	attribute/2
	expr/1
	expr/2
	expr/3
	expr/4
	exprs/1
	exprs/2
	exprs/3
	form/1
	form/2
	function/1
	function/2
	guard/1
	guard/2

	erl_scan
	category/1
	column/1
	end_location/1
	format_error/1
	line/1
	location/1
	reserved_word/1
	string/1
	string/2
	string/3
	symbol/1
	text/1
	tokens/3
	tokens/4

	erl_tar
	add/3
	add/4
	close/1
	create/2
	create/3
	extract/1
	extract/2
	format_error/1
	init/3
	open/2
	table/1
	table/2
	t/1
	tt/1

	ets
	all/0
	delete/1
	delete/2
	delete_all_objects/1
	delete_object/2
	file2tab/1
	file2tab/2
	first/1
	foldl/3
	foldr/3
	from_dets/2
	fun2ms/1
	give_away/3
	i/0
	i/1
	info/1
	info/2
	init_table/2
	insert/2
	insert_new/2
	is_compiled_ms/1
	last/1
	lookup/2
	lookup_element/3
	match/1
	match/2
	match/3
	match_delete/2
	match_object/1
	match_object/2
	match_object/3
	match_spec_compile/1
	match_spec_run/2
	member/2
	new/2
	next/2
	prev/2
	rename/2
	repair_continuation/2
	safe_fixtable/2
	select/1
	select/2
	select/3
	select_count/2
	select_delete/2
	select_reverse/1
	select_reverse/2
	select_reverse/3
	setopts/2
	slot/2
	tab2file/2
	tab2file/3
	tab2list/1
	tabfile_info/1
	table/1
	table/2
	take/2
	test_ms/2
	to_dets/2
	update_counter/3
	update_counter/4
	update_counter/3
	update_counter/4
	update_counter/3
	update_counter/4
	update_element/3
	update_element/3

	file_sorter
	check/1
	check/2
	keycheck/2
	keycheck/3
	keymerge/3
	keymerge/4
	keysort/2
	keysort/3
	keysort/4
	merge/2
	merge/3
	sort/1
	sort/2
	sort/3

	filelib
	ensure_dir/1
	file_size/1
	fold_files/5
	is_dir/1
	is_file/1
	is_regular/1
	last_modified/1
	wildcard/1
	wildcard/2

	filename
	absname/1
	absname/2
	absname_join/2
	basedir/2
	basedir/3
	basename/1
	basename/2
	dirname/1
	extension/1
	find_src/1
	find_src/2
	flatten/1
	join/1
	join/2
	nativename/1
	pathtype/1
	rootname/1
	rootname/2
	split/1

	gb_sets
	add/2
	add_element/2
	balance/1
	del_element/2
	delete/2
	delete_any/2
	difference/2
	empty/0
	filter/2
	fold/3
	from_list/1
	from_ordset/1
	insert/2
	intersection/1
	intersection/2
	is_disjoint/2
	is_element/2
	is_empty/1
	is_member/2
	is_set/1
	is_subset/2
	iterator/1
	iterator_from/2
	largest/1
	new/0
	next/1
	singleton/1
	size/1
	smallest/1
	subtract/2
	take_largest/1
	take_smallest/1
	to_list/1
	union/1
	union/2

	gb_trees
	balance/1
	delete/2
	delete_any/2
	empty/0
	enter/3
	from_orddict/1
	get/2
	insert/3
	is_defined/2
	is_empty/1
	iterator/1
	iterator_from/2
	keys/1
	largest/1
	lookup/2
	map/2
	next/1
	size/1
	smallest/1
	take_largest/1
	take_smallest/1
	to_list/1
	update/3
	values/1

	gen_event
	add_handler/3
	add_sup_handler/3
	call/3
	call/4
	delete_handler/3
	notify/2
	sync_notify/2
	start/0
	start/1
	start_link/0
	start_link/1
	stop/1
	stop/3
	swap_handler/3
	swap_sup_handler/3
	which_handlers/1
	Module:code_change/3
	Module:format_status/2
	Module:handle_call/2
	Module:handle_event/2
	Module:handle_info/2
	Module:init/1
	Module:terminate/2

	gen_fsm
	cancel_timer/1
	enter_loop/4
	enter_loop/5
	enter_loop/5
	enter_loop/6
	reply/2
	send_all_state_event/2
	send_event/2
	send_event_after/2
	start/3
	start/4
	start_link/3
	start_link/4
	start_timer/2
	stop/1
	stop/3
	sync_send_all_state_event/2
	sync_send_all_state_event/3
	sync_send_event/2
	sync_send_event/3
	Module:code_change/4
	Module:format_status/2
	Module:handle_event/3
	Module:handle_info/3
	Module:handle_sync_event/4
	Module:init/1
	Module:StateName/2
	Module:StateName/3
	Module:terminate/3

	gen_server
	abcast/2
	abcast/3
	call/2
	call/3
	cast/2
	enter_loop/3
	enter_loop/4
	enter_loop/4
	enter_loop/5
	multi_call/2
	multi_call/3
	multi_call/4
	reply/2
	start/3
	start/4
	start_link/3
	start_link/4
	stop/1
	stop/3
	Module:code_change/3
	Module:format_status/2
	Module:handle_call/3
	Module:handle_cast/2
	Module:handle_info/2
	Module:init/1
	Module:terminate/2

	gen_statem
	call/2
	call/3
	cast/2
	enter_loop/5
	enter_loop/6
	enter_loop/7
	reply/1
	reply/2
	start/3
	start/4
	start_link/3
	start_link/4
	stop/1
	stop/3
	Module:code_change/4
	Module:init/1
	Module:format_status/2
	Module:StateName/3
	Module:handle_event/4
	Module:terminate/3

	io
	columns/0
	columns/1
	format/1
	format/2
	format/3
	fwrite/1
	fwrite/2
	fwrite/3
	fread/2
	fread/3
	get_chars/2
	get_chars/3
	get_line/1
	get_line/2
	getopts/0
	getopts/1
	nl/0
	nl/1
	parse_erl_exprs/1
	parse_erl_exprs/2
	parse_erl_exprs/3
	parse_erl_exprs/4
	parse_erl_form/1
	parse_erl_form/2
	parse_erl_form/3
	parse_erl_form/4
	printable_range/0
	put_chars/1
	put_chars/2
	read/1
	read/2
	read/3
	read/4
	rows/0
	rows/1
	scan_erl_exprs/1
	scan_erl_exprs/2
	scan_erl_exprs/3
	scan_erl_exprs/4
	scan_erl_form/1
	scan_erl_form/2
	scan_erl_form/3
	scan_erl_form/4
	setopts/1
	setopts/2
	write/1
	write/2

	io_lib
	build_text/1
	char_list/1
	deep_char_list/1
	deep_latin1_char_list/1
	format/2
	fwrite/2
	fread/2
	fread/3
	indentation/2
	latin1_char_list/1
	nl/0
	print/1
	print/4
	printable_latin1_list/1
	printable_list/1
	printable_unicode_list/1
	scan_format/2
	unscan_format/1
	write/1
	write/2
	write_atom/1
	write_char/1
	write_char_as_latin1/1
	write_latin1_char/1
	write_latin1_string/1
	write_string/1
	write_string_as_latin1/1

	lib
	error_message/2
	flush_receive/0
	nonl/1
	progname/0
	send/2
	sendw/2

	lists
	all/2
	any/2
	append/1
	append/2
	concat/1
	delete/2
	droplast/1
	dropwhile/2
	duplicate/2
	filter/2
	filtermap/2
	flatlength/1
	flatmap/2
	flatten/1
	flatten/2
	foldl/3
	foldr/3
	join/2
	foreach/2
	keydelete/3
	keyfind/3
	keymap/3
	keymember/3
	keymerge/3
	keyreplace/4
	keysearch/3
	keysort/2
	keystore/4
	keytake/3
	last/1
	map/2
	mapfoldl/3
	mapfoldr/3
	max/1
	member/2
	merge/1
	merge/2
	merge/3
	merge3/3
	min/1
	nth/2
	nthtail/2
	partition/2
	prefix/2
	reverse/1
	reverse/2
	seq/2
	seq/3
	sort/1
	sort/2
	split/2
	splitwith/2
	sublist/2
	sublist/3
	subtract/2
	suffix/2
	sum/1
	takewhile/2
	ukeymerge/3
	ukeysort/2
	umerge/1
	umerge/2
	umerge/3
	umerge3/3
	unzip/1
	unzip3/1
	usort/1
	usort/2
	zip/2
	zip3/3
	zipwith/3
	zipwith3/4

	log_mf_h
	init/3
	init/4

	maps
	filter/2
	find/2
	fold/3
	from_list/1
	get/2
	get/3
	is_key/2
	keys/1
	map/2
	merge/2
	new/0
	put/3
	remove/2
	size/1
	take/2
	to_list/1
	update/3
	update_with/3
	update_with/4
	values/1
	with/2
	without/2

	math
	acos/1
	acosh/1
	asin/1
	asinh/1
	atan/1
	atan2/2
	atanh/1
	cos/1
	cosh/1
	exp/1
	log/1
	log10/1
	log2/1
	pow/2
	sin/1
	sinh/1
	sqrt/1
	tan/1
	tanh/1
	erf/1
	erfc/1
	pi/0

	ms_transform
	format_error/1
	parse_transform/2
	transform_from_shell/3

	orddict
	append/3
	append_list/3
	erase/2
	fetch/2
	fetch_keys/1
	filter/2
	find/2
	fold/3
	from_list/1
	is_empty/1
	is_key/2
	map/2
	merge/3
	new/0
	size/1
	store/3
	to_list/1
	update/3
	update/4
	update_counter/3

	ordsets
	add_element/2
	del_element/2
	filter/2
	fold/3
	from_list/1
	intersection/1
	intersection/2
	is_disjoint/2
	is_element/2
	is_set/1
	is_subset/2
	new/0
	size/1
	subtract/2
	to_list/1
	union/1
	union/2

	pool
	attach/1
	get_node/0
	get_nodes/0
	pspawn/3
	pspawn_link/3
	start/1
	start/2
	stop/0

	proc_lib
	format/1
	format/2
	format/3
	hibernate/3
	init_ack/1
	init_ack/2
	initial_call/1
	spawn/1
	spawn/2
	spawn/3
	spawn/4
	spawn_link/1
	spawn_link/2
	spawn_link/3
	spawn_link/4
	spawn_opt/2
	spawn_opt/3
	spawn_opt/4
	spawn_opt/5
	start/3
	start/4
	start/5
	start_link/3
	start_link/4
	start_link/5
	stop/1
	stop/3
	translate_initial_call/1

	proplists
	append_values/2
	compact/1
	delete/2
	expand/2
	get_all_values/2
	get_bool/2
	get_keys/1
	get_value/2
	get_value/3
	is_defined/2
	lookup/2
	lookup_all/2
	normalize/2
	property/1
	property/2
	split/2
	substitute_aliases/2
	substitute_negations/2
	unfold/1

	qlc
	append/1
	append/2
	cursor/1
	cursor/2
	delete_cursor/1
	e/1
	e/2
	eval/1
	eval/2
	fold/3
	fold/4
	format_error/1
	info/1
	info/2
	keysort/2
	keysort/3
	next_answers/1
	next_answers/2
	q/1
	q/2
	sort/1
	sort/2
	string_to_handle/1
	string_to_handle/2
	string_to_handle/3
	table/2

	queue
	filter/2
	from_list/1
	in/2
	in_r/2
	is_empty/1
	is_queue/1
	join/2
	len/1
	member/2
	new/0
	out/1
	out_r/1
	reverse/1
	split/2
	to_list/1
	drop/1
	drop_r/1
	get/1
	get_r/1
	peek/1
	peek_r/1
	cons/2
	daeh/1
	head/1
	init/1
	lait/1
	last/1
	liat/1
	snoc/2
	tail/1

	rand
	export_seed/0
	export_seed_s/1
	normal/0
	normal_s/1
	seed/1
	seed/2
	seed_s/1
	seed_s/2
	uniform/0
	uniform/1
	uniform_s/1
	uniform_s/2

	random
	seed/0
	seed/1
	seed/3
	seed0/0
	uniform/0
	uniform/1
	uniform_s/1
	uniform_s/2

	re
	compile/1
	compile/2
	inspect/2
	replace/3
	replace/4
	run/2
	run/3
	split/2
	split/3

	sets
	add_element/2
	del_element/2
	filter/2
	fold/3
	from_list/1
	intersection/1
	intersection/2
	is_disjoint/2
	is_element/2
	is_set/1
	is_subset/2
	new/0
	size/1
	subtract/2
	to_list/1
	union/1
	union/2

	shell
	catch_exception/1
	history/1
	prompt_func/1
	results/1
	start_restricted/1
	stop_restricted/0
	strings/1

	shell_default
	slave
	pseudo/1
	pseudo/2
	relay/1
	start/1
	start/2
	start/3
	start_link/1
	start_link/2
	start_link/3
	stop/1

	sofs
	a_function/1
	a_function/2
	canonical_relation/1
	composite/2
	constant_function/2
	converse/1
	difference/2
	digraph_to_family/1
	digraph_to_family/2
	domain/1
	drestriction/2
	drestriction/3
	empty_set/0
	extension/3
	family/1
	family/2
	family_difference/2
	family_domain/1
	family_field/1
	family_intersection/1
	family_intersection/2
	family_projection/2
	family_range/1
	family_specification/2
	family_to_digraph/1
	family_to_digraph/2
	family_to_relation/1
	family_union/1
	family_union/2
	field/1
	from_external/2
	from_sets/1
	from_sets/1
	from_term/1
	from_term/2
	image/2
	intersection/1
	intersection/2
	intersection_of_family/1
	inverse/1
	inverse_image/2
	is_a_function/1
	is_disjoint/2
	is_empty_set/1
	is_equal/2
	is_set/1
	is_sofs_set/1
	is_subset/2
	is_type/1
	join/4
	multiple_relative_product/2
	no_elements/1
	partition/1
	partition/2
	partition/3
	partition_family/2
	product/1
	product/2
	projection/2
	range/1
	relation/1
	relation/2
	relation_to_family/1
	relative_product/1
	relative_product/2
	relative_product/2
	relative_product1/2
	restriction/2
	restriction/3
	set/1
	set/2
	specification/2
	strict_relation/1
	substitution/2
	symdiff/2
	symmetric_partition/2
	to_external/1
	to_sets/1
	type/1
	union/1
	union/2
	union_of_family/1
	weak_relation/1

	string
	centre/2
	centre/3
	chars/2
	chars/3
	chr/2
	concat/2
	copies/2
	cspan/2
	equal/2
	join/2
	left/2
	left/3
	len/1
	rchr/2
	right/2
	right/3
	rstr/2
	span/2
	str/2
	strip/1
	strip/2
	strip/3
	sub_string/2
	sub_string/3
	substr/2
	substr/3
	sub_word/2
	sub_word/3
	to_float/1
	to_integer/1
	to_lower/1
	to_lower/1
	to_upper/1
	to_upper/1
	tokens/2
	words/1
	words/2

	supervisor
	check_childspecs/1
	count_children/1
	delete_child/2
	get_childspec/2
	restart_child/2
	start_child/2
	start_link/2
	start_link/3
	terminate_child/2
	which_children/1
	Module:init/1

	supervisor_bridge
	start_link/2
	start_link/3
	Module:init/1
	Module:terminate/2

	sys
	change_code/4
	change_code/5
	get_state/1
	get_state/2
	get_status/1
	get_status/2
	install/2
	install/3
	log/2
	log/3
	log_to_file/2
	log_to_file/3
	no_debug/1
	no_debug/2
	remove/2
	remove/3
	replace_state/2
	replace_state/3
	resume/1
	resume/2
	statistics/2
	statistics/3
	suspend/1
	suspend/2
	terminate/2
	terminate/3
	trace/2
	trace/3
	debug_options/1
	get_debug/3
	handle_debug/4
	handle_system_msg/6
	print_log/1
	Module:system_code_change/4
	Module:system_continue/3
	Module:system_get_state/1
	Module:system_replace_state/2
	Module:system_terminate/4

	timer
	apply_after/4
	apply_interval/4
	cancel/1
	exit_after/2
	exit_after/3
	hms/3
	hours/1
	kill_after/1
	kill_after/2
	minutes/1
	now_diff/2
	seconds/1
	send_after/2
	send_after/3
	send_interval/2
	send_interval/3
	sleep/1
	start/0
	tc/1
	tc/2
	tc/3

	unicode
	bom_to_encoding/1
	characters_to_binary/1
	characters_to_binary/2
	characters_to_binary/3
	characters_to_list/1
	characters_to_list/2
	encoding_to_bom/1

	win32reg
	change_key/2
	change_key_create/2
	close/1
	current_key/1
	delete_key/1
	delete_value/2
	expand/1
	format_error/1
	open/1
	set_value/3
	sub_keys/1
	value/2
	values/1

	zip
	foldl/3
	list_dir/1
	list_dir/2
	table/1
	table/2
	t/1
	tt/1
	unzip/1
	unzip/2
	extract/1
	extract/2
	zip/2
	zip/3
	create/2
	create/3
	zip_close/1
	zip_get/1
	zip_get/2
	zip_list_dir/1
	zip_open/1
	zip_open/2

