31 #include "Bullet3Common/b3Logging.h" 44 void SpatialTransform(
const btMatrix3x3 &rotation_matrix,
51 top_out = rotation_matrix * top_in;
52 bottom_out = -displacement.
cross(top_out) + rotation_matrix * bottom_in;
55 void InverseSpatialTransform(
const btMatrix3x3 &rotation_matrix,
62 top_out = rotation_matrix.
transpose() * top_in;
63 bottom_out = rotation_matrix.
transpose() * (bottom_in + displacement.
cross(top_in));
71 return a_bottom.
dot(b_top) + a_top.
dot(b_bottom);
74 void SpatialCrossProduct(
const btVector3 &a_top,
81 top_out = a_top.
cross(b_top);
82 bottom_out = a_bottom.
cross(b_top) + a_top.
cross(b_bottom);
101 m_baseQuat(0, 0, 0, 1),
103 m_baseInertia(inertia),
105 m_fixedBase(fixedBase),
107 m_canSleep(canSleep),
110 m_linearDamping(0.04f),
111 m_angularDamping(0.04f),
113 m_maxAppliedImpulse(1000.f),
114 m_maxCoordinateVelocity(100.f),
115 m_hasSelfCollision(true),
120 m_useGlobalVelocities(false),
121 m_internalNeedsJointFeedback(false)
140 const btVector3 &parentComToThisPivotOffset,
141 const btVector3 &thisPivotToThisComOffset,
bool )
145 m_links[i].m_inertiaLocal = inertia;
147 m_links[i].m_zeroRotParentToThis = rotParentToThis;
148 m_links[i].m_dVector = thisPivotToThisComOffset;
149 m_links[i].m_eVector = parentComToThisPivotOffset;
157 m_links[i].updateCacheMultiDof();
170 const btVector3 &parentComToThisPivotOffset,
171 const btVector3 &thisPivotToThisComOffset,
172 bool disableParentCollision)
178 m_links[i].m_inertiaLocal = inertia;
180 m_links[i].m_zeroRotParentToThis = rotParentToThis;
181 m_links[i].setAxisTop(0, 0., 0., 0.);
182 m_links[i].setAxisBottom(0, jointAxis);
183 m_links[i].m_eVector = parentComToThisPivotOffset;
184 m_links[i].m_dVector = thisPivotToThisComOffset;
185 m_links[i].m_cachedRotParentToThis = rotParentToThis;
190 m_links[i].m_jointPos[0] = 0.f;
191 m_links[i].m_jointTorque[0] = 0.f;
193 if (disableParentCollision)
197 m_links[i].updateCacheMultiDof();
208 const btVector3 &parentComToThisPivotOffset,
209 const btVector3 &thisPivotToThisComOffset,
210 bool disableParentCollision)
216 m_links[i].m_inertiaLocal = inertia;
218 m_links[i].m_zeroRotParentToThis = rotParentToThis;
219 m_links[i].setAxisTop(0, jointAxis);
220 m_links[i].setAxisBottom(0, jointAxis.
cross(thisPivotToThisComOffset));
221 m_links[i].m_dVector = thisPivotToThisComOffset;
222 m_links[i].m_eVector = parentComToThisPivotOffset;
227 m_links[i].m_jointPos[0] = 0.f;
228 m_links[i].m_jointTorque[0] = 0.f;
230 if (disableParentCollision)
233 m_links[i].updateCacheMultiDof();
245 const btVector3 &parentComToThisPivotOffset,
246 const btVector3 &thisPivotToThisComOffset,
247 bool disableParentCollision)
254 m_links[i].m_inertiaLocal = inertia;
256 m_links[i].m_zeroRotParentToThis = rotParentToThis;
257 m_links[i].m_dVector = thisPivotToThisComOffset;
258 m_links[i].m_eVector = parentComToThisPivotOffset;
263 m_links[i].setAxisTop(0, 1.f, 0.f, 0.f);
264 m_links[i].setAxisTop(1, 0.f, 1.f, 0.f);
265 m_links[i].setAxisTop(2, 0.f, 0.f, 1.f);
266 m_links[i].setAxisBottom(0,
m_links[i].getAxisTop(0).cross(thisPivotToThisComOffset));
267 m_links[i].setAxisBottom(1,
m_links[i].getAxisTop(1).cross(thisPivotToThisComOffset));
268 m_links[i].setAxisBottom(2,
m_links[i].getAxisTop(2).cross(thisPivotToThisComOffset));
273 if (disableParentCollision)
276 m_links[i].updateCacheMultiDof();
287 const btVector3 &parentComToThisComOffset,
288 bool disableParentCollision)
295 m_links[i].m_inertiaLocal = inertia;
297 m_links[i].m_zeroRotParentToThis = rotParentToThis;
298 m_links[i].m_dVector.setZero();
299 m_links[i].m_eVector = parentComToThisComOffset;
302 static btVector3 vecNonParallelToRotAxis(1, 0, 0);
303 if(rotationAxis.
normalized().
dot(vecNonParallelToRotAxis) > 0.999)
304 vecNonParallelToRotAxis.
setValue(0, 1, 0);
311 m_links[i].setAxisTop(0, n[0],n[1],n[2]);
312 m_links[i].setAxisTop(1,0,0,0);
313 m_links[i].setAxisTop(2,0,0,0);
314 m_links[i].setAxisBottom(0,0,0,0);
316 m_links[i].setAxisBottom(1,cr[0],cr[1],cr[2]);
318 m_links[i].setAxisBottom(2,cr[0],cr[1],cr[2]);
322 if (disableParentCollision)
325 m_links[i].updateCacheMultiDof();
352 return m_links[i].m_inertiaLocal;
357 return m_links[i].m_jointPos[0];
367 return &
m_links[i].m_jointPos[0];
377 return &
m_links[i].m_jointPos[0];
389 m_links[i].updateCacheMultiDof();
394 for(
int pos = 0; pos <
m_links[i].m_posVarCount; ++pos)
395 m_links[i].m_jointPos[pos] = q[pos];
397 m_links[i].updateCacheMultiDof();
407 for(
int dof = 0; dof <
m_links[i].m_dofCount; ++dof)
413 return m_links[i].m_cachedRVector;
418 return m_links[i].m_cachedRotParentToThis;
476 for (
int i = 0; i < num_links; ++i) {
477 const int parent =
m_links[i].m_parent;
481 omega[parent+1], vel[parent+1],
482 omega[i+1], vel[i+1]);
502 for (
int i = 0; i < num_links; ++i) {
503 result +=
m_links[i].m_mass * vel[i+1].dot(vel[i+1]);
504 result += omega[i+1].dot(
m_links[i].m_inertiaLocal * omega[i+1]);
507 return 0.5f * result;
522 for (
int i = 0; i < num_links; ++i) {
523 rot_from_world[i+1] =
m_links[i].m_cachedRotParentToThis * rot_from_world[
m_links[i].m_parent+1];
524 result += (
quatRotate(rot_from_world[i+1].
inverse() , (m_links[i].m_inertiaLocal * omega[i+1])));
537 m_links[i].m_appliedConstraintForce.setValue(0, 0, 0);
538 m_links[i].m_appliedConstraintTorque.setValue(0, 0, 0);
548 m_links[i].m_appliedForce.setValue(0, 0, 0);
549 m_links[i].m_appliedTorque.setValue(0, 0, 0);
563 m_links[i].m_appliedForce += f;
568 m_links[i].m_appliedTorque += t;
573 m_links[i].m_appliedConstraintForce += f;
578 m_links[i].m_appliedConstraintTorque += t;
585 m_links[i].m_jointTorque[0] += Q;
590 m_links[i].m_jointTorque[dof] += Q;
595 for(
int dof = 0; dof <
m_links[i].m_dofCount; ++dof)
596 m_links[i].m_jointTorque[dof] = Q[dof];
601 return m_links[i].m_appliedForce;
606 return m_links[i].m_appliedTorque;
611 return m_links[i].m_jointTorque[0];
616 return &
m_links[i].m_jointTorque[0];
635 row1[0],row1[1],row1[2],
636 row2[0],row2[1],row2[2]);
640 #define vecMulVecTranspose(v0, v1Transposed) outerProduct(v0, v1Transposed) 647 bool isConstraintPass)
680 scratch_v.
resize(8*num_links + 6);
681 scratch_m.
resize(4*num_links + 4);
689 v_ptr += num_links * 2 + 2;
693 v_ptr += num_links * 2 + 2;
697 v_ptr += num_links * 2;
710 v_ptr += num_links * 2 + 2;
730 btScalar * joint_accel = output + 6;
740 spatVel[0].
setVector(rot_from_parent[0] * base_omega, rot_from_parent[0] * base_vel);
751 zeroAccSpatFrc[0].
setVector(-(rot_from_parent[0] * baseTorque), -(rot_from_parent[0] * baseForce));
754 btScalar linDampMult = 1., angDampMult = 1.;
755 zeroAccSpatFrc[0].
addVector(angDampMult *
m_baseInertia * spatVel[0].getAngular() * (DAMPING_K1_ANGULAR + DAMPING_K2_ANGULAR * spatVel[0].getAngular().norm()),
756 linDampMult *
m_baseMass * spatVel[0].getLinear() * (DAMPING_K1_LINEAR + DAMPING_K2_LINEAR * spatVel[0].getLinear().norm()));
763 zeroAccSpatFrc[0].
addLinear(
m_baseMass * spatVel[0].getAngular().cross(spatVel[0].getLinear()));
779 rot_from_world[0] = rot_from_parent[0];
782 for (
int i = 0; i < num_links; ++i) {
783 const int parent =
m_links[i].m_parent;
785 rot_from_world[i+1] = rot_from_parent[i+1] * rot_from_world[parent+1];
788 fromWorld.
m_rotMat = rot_from_world[i+1];
789 fromParent.
transform(spatVel[parent+1], spatVel[i+1]);
797 for(
int dof = 0; dof <
m_links[i].m_dofCount; ++dof)
801 spatVel[i+1] += spatJointVel;
815 spatVel[i+1].
cross(spatJointVel, spatCoriolisAcc[i]);
820 btVector3 linkAppliedForce = isConstraintPass?
m_links[i].m_appliedConstraintForce :
m_links[i].m_appliedForce;
821 btVector3 linkAppliedTorque =isConstraintPass ?
m_links[i].m_appliedConstraintTorque :
m_links[i].m_appliedTorque;
823 zeroAccSpatFrc[i+1].
setVector(-(rot_from_world[i+1] * linkAppliedTorque), -(rot_from_world[i+1] * linkAppliedForce ));
828 b3Printf(
"stepVelocitiesMultiDof zeroAccSpatFrc[%d] linear:%f,%f,%f, angular:%f,%f,%f",
830 zeroAccSpatFrc[i+1].m_topVec[0],
831 zeroAccSpatFrc[i+1].m_topVec[1],
832 zeroAccSpatFrc[i+1].m_topVec[2],
834 zeroAccSpatFrc[i+1].m_bottomVec[0],
835 zeroAccSpatFrc[i+1].m_bottomVec[1],
836 zeroAccSpatFrc[i+1].m_bottomVec[2]);
841 btScalar linDampMult = 1., angDampMult = 1.;
842 zeroAccSpatFrc[i+1].
addVector(angDampMult *
m_links[i].m_inertiaLocal * spatVel[i+1].getAngular() * (DAMPING_K1_ANGULAR + DAMPING_K2_ANGULAR * spatVel[i+1].getAngular().norm()),
843 linDampMult *
m_links[i].m_mass * spatVel[i+1].getLinear() * (DAMPING_K1_LINEAR + DAMPING_K2_LINEAR * spatVel[i+1].getLinear().norm()));
854 0,
m_links[i].m_inertiaLocal[1], 0,
855 0, 0,
m_links[i].m_inertiaLocal[2])
860 zeroAccSpatFrc[i+1].
addAngular(spatVel[i+1].getAngular().cross(
m_links[i].m_inertiaLocal * spatVel[i+1].getAngular()));
862 zeroAccSpatFrc[i+1].
addLinear(
m_links[i].m_mass * spatVel[i+1].getAngular().cross(spatVel[i+1].getLinear()));
883 for (
int i = num_links - 1; i >= 0; --i)
885 const int parent =
m_links[i].m_parent;
888 for(
int dof = 0; dof <
m_links[i].m_dofCount; ++dof)
892 hDof = spatInertia[i+1] * m_links[i].m_axes[dof];
894 Y[m_links[i].m_dofOffset + dof] = m_links[i].m_jointTorque[dof]
895 - m_links[i].m_axes[dof].dot(zeroAccSpatFrc[i+1])
896 - spatCoriolisAcc[i].
dot(hDof)
900 for(
int dof = 0; dof <
m_links[i].m_dofCount; ++dof)
903 for(
int dof2 = 0; dof2 < m_links[i].m_dofCount; ++dof2)
906 D_row[dof2] = m_links[i].m_axes[dof].dot(hDof2);
916 invDi[0] = 1.0f / D[0];
922 static btMatrix3x3 D3x3; D3x3.
setValue(D[0], D[1], D[2], D[3], D[4], D[5], D[6], D[7], D[8]);
926 for(
int row = 0; row < 3; ++row)
928 for(
int col = 0; col < 3; ++col)
930 invDi[row * 3 + col] = invD3x3[row][col];
943 for(
int dof = 0; dof <
m_links[i].m_dofCount; ++dof)
945 spatForceVecTemps[dof].
setZero();
947 for(
int dof2 = 0; dof2 <
m_links[i].m_dofCount; ++dof2)
951 spatForceVecTemps[dof] += hDof2 * invDi[dof2 * m_links[i].m_dofCount + dof];
955 dyadTemp = spatInertia[i+1];
958 for(
int dof = 0; dof <
m_links[i].m_dofCount; ++dof)
967 for(
int dof = 0; dof <
m_links[i].m_dofCount; ++dof)
969 invD_times_Y[dof] = 0.f;
971 for(
int dof2 = 0; dof2 <
m_links[i].m_dofCount; ++dof2)
973 invD_times_Y[dof] += invDi[dof *
m_links[i].m_dofCount + dof2] * Y[
m_links[i].m_dofOffset + dof2];
977 spatForceVecTemps[0] = zeroAccSpatFrc[i+1] + spatInertia[i+1] * spatCoriolisAcc[i];
979 for(
int dof = 0; dof <
m_links[i].m_dofCount; ++dof)
983 spatForceVecTemps[0] += hDof * invD_times_Y[dof];
988 zeroAccSpatFrc[parent+1] += spatForceVecTemps[1];
1011 spatAcc[0] = -result;
1016 for (
int i = 0; i < num_links; ++i)
1024 const int parent =
m_links[i].m_parent;
1027 fromParent.
transform(spatAcc[parent+1], spatAcc[i+1]);
1029 for(
int dof = 0; dof <
m_links[i].m_dofCount; ++dof)
1033 Y_minus_hT_a[dof] = Y[m_links[i].m_dofOffset + dof] - spatAcc[i+1].
dot(hDof);
1040 spatAcc[i+1] += spatCoriolisAcc[i];
1042 for(
int dof = 0; dof <
m_links[i].m_dofCount; ++dof)
1043 spatAcc[i+1] +=
m_links[i].m_axes[dof] * joint_accel[
m_links[i].m_dofOffset + dof];
1045 if (
m_links[i].m_jointFeedback)
1049 btVector3 angularBotVec = (spatInertia[i+1]*spatAcc[i+1]+zeroAccSpatFrc[i+1]).m_bottomVec;
1050 btVector3 linearTopVec = (spatInertia[i+1]*spatAcc[i+1]+zeroAccSpatFrc[i+1]).m_topVec;
1057 angularBotVec = angularBotVec - linearTopVec.
cross(
m_links[i].m_dVector);
1063 if (isConstraintPass)
1065 m_links[i].m_jointFeedback->m_reactionForces.m_bottomVec +=
m_links[i].m_cachedWorldTransform.getBasis()*angularBotVec;
1066 m_links[i].m_jointFeedback->m_reactionForces.m_topVec +=
m_links[i].m_cachedWorldTransform.getBasis()*linearTopVec;
1069 m_links[i].m_jointFeedback->m_reactionForces.m_bottomVec =
m_links[i].m_cachedWorldTransform.getBasis()*angularBotVec;
1070 m_links[i].m_jointFeedback->m_reactionForces.m_topVec =
m_links[i].m_cachedWorldTransform.getBasis()*linearTopVec;
1074 if (isConstraintPass)
1076 m_links[i].m_jointFeedback->m_reactionForces.m_bottomVec += angularBotVec;
1077 m_links[i].m_jointFeedback->m_reactionForces.m_topVec += linearTopVec;
1082 m_links[i].m_jointFeedback->m_reactionForces.m_bottomVec = angularBotVec;
1083 m_links[i].m_jointFeedback->m_reactionForces.m_topVec = linearTopVec;
1092 output[0] = omegadot_out[0];
1093 output[1] = omegadot_out[1];
1094 output[2] = omegadot_out[2];
1097 output[3] = vdot_out[0];
1098 output[4] = vdot_out[1];
1099 output[5] = vdot_out[2];
1121 if (!isConstraintPass)
1157 for (
int i = 0; i < num_links; ++i)
1159 const int parent =
m_links[i].m_parent;
1164 fromWorld.
m_rotMat = rot_from_world[i+1];
1167 fromParent.
transform(spatVel[parent+1], spatVel[i+1]);
1175 for(
int dof = 0; dof <
m_links[i].m_dofCount; ++dof)
1179 spatVel[i+1] += spatJointVel;
1213 btMatrix3x3 invI_lower_right = (invI_upper_left).transpose();
1222 btVector3 vtop = invI_upper_left*rhs_top;
1224 tmp = invIupper_right * rhs_bot;
1226 btVector3 vbot = invI_lower_left*rhs_top;
1227 tmp = invI_lower_right * rhs_bot;
1229 result[0] = vtop[0];
1230 result[1] = vtop[1];
1231 result[2] = vtop[2];
1232 result[3] = vbot[0];
1233 result[4] = vbot[1];
1234 result[5] = vbot[2];
1257 btMatrix3x3 invI_lower_right = (invI_upper_left).transpose();
1281 for (
int row = 0; row < rowsA; row++)
1283 for (
int col = 0; col < colsB; col++)
1285 pC[row * colsB + col] = 0.f;
1286 for (
int inner = 0; inner < rowsB; inner++)
1288 pC[row * colsB + col] += pA[row * colsA + inner] * pB[col + inner * colsB];
1303 scratch_v.
resize(4*num_links + 4);
1310 v_ptr += num_links * 2 + 2;
1319 v_ptr += num_links * 2 + 2;
1344 fromParent.
m_rotMat = rot_from_parent[0];
1347 for (
int i = 0; i < num_links; ++i)
1349 zeroAccSpatFrc[i+1].
setZero();
1354 for (
int i = num_links - 1; i >= 0; --i)
1356 const int parent =
m_links[i].m_parent;
1359 for(
int dof = 0; dof <
m_links[i].m_dofCount; ++dof)
1361 Y[
m_links[i].m_dofOffset + dof] = force[6 + m_links[i].m_dofOffset + dof]
1362 - m_links[i].m_axes[dof].dot(zeroAccSpatFrc[i+1])
1366 btVector3 in_top, in_bottom, out_top, out_bottom;
1369 for(
int dof = 0; dof <
m_links[i].m_dofCount; ++dof)
1371 invD_times_Y[dof] = 0.f;
1373 for(
int dof2 = 0; dof2 <
m_links[i].m_dofCount; ++dof2)
1375 invD_times_Y[dof] += invDi[dof *
m_links[i].m_dofCount + dof2] * Y[
m_links[i].m_dofOffset + dof2];
1380 spatForceVecTemps[0] = zeroAccSpatFrc[i+1];
1382 for(
int dof = 0; dof <
m_links[i].m_dofCount; ++dof)
1386 spatForceVecTemps[0] += hDof * invD_times_Y[dof];
1392 zeroAccSpatFrc[parent+1] += spatForceVecTemps[1];
1396 btScalar * joint_accel = output + 6;
1409 spatAcc[0] = -result;
1414 for (
int i = 0; i < num_links; ++i)
1416 const int parent =
m_links[i].m_parent;
1419 fromParent.
transform(spatAcc[parent+1], spatAcc[i+1]);
1421 for(
int dof = 0; dof <
m_links[i].m_dofCount; ++dof)
1425 Y_minus_hT_a[dof] = Y[m_links[i].m_dofOffset + dof] - spatAcc[i+1].
dot(hDof);
1431 for(
int dof = 0; dof <
m_links[i].m_dofCount; ++dof)
1432 spatAcc[i+1] +=
m_links[i].m_axes[dof] * joint_accel[
m_links[i].m_dofOffset + dof];
1438 output[0] = omegadot_out[0];
1439 output[1] = omegadot_out[1];
1440 output[2] = omegadot_out[2];
1444 output[3] = vdot_out[0];
1445 output[4] = vdot_out[1];
1446 output[5] = vdot_out[2];
1469 pBasePos[0] += dt * pBaseVel[0];
1470 pBasePos[1] += dt * pBaseVel[1];
1471 pBasePos[2] += dt * pBaseVel[2];
1501 axis = angvel*(
btScalar(0.5)*dt-(dt*dt*dt)*(
btScalar(0.020833333333))*fAngle*fAngle );
1525 static btQuaternion baseQuat; baseQuat.
setValue(pBaseQuat[0], pBaseQuat[1], pBaseQuat[2], pBaseQuat[3]);
1526 static btVector3 baseOmega; baseOmega.
setValue(pBaseOmega[0], pBaseOmega[1], pBaseOmega[2]);
1527 pQuatUpdateFun(baseOmega, baseQuat,
true, dt);
1528 pBaseQuat[0] = baseQuat.
x();
1529 pBaseQuat[1] = baseQuat.
y();
1530 pBaseQuat[2] = baseQuat.
z();
1531 pBaseQuat[3] = baseQuat.
w();
1544 for (
int i = 0; i < num_links; ++i)
1549 switch(
m_links[i].m_jointType)
1555 pJointPos[0] += dt * jointVel;
1560 static btVector3 jointVel; jointVel.
setValue(pJointVel[0], pJointVel[1], pJointVel[2]);
1561 static btQuaternion jointOri; jointOri.
setValue(pJointPos[0], pJointPos[1], pJointPos[2], pJointPos[3]);
1562 pQuatUpdateFun(jointVel, jointOri,
false, dt);
1563 pJointPos[0] = jointOri.
x(); pJointPos[1] = jointOri.
y(); pJointPos[2] = jointOri.
z(); pJointPos[3] = jointOri.
w();
1572 pJointPos[1] +=
m_links[i].getAxisBottom(1).dot(no_q0_coors_qd1qd2) * dt;
1573 pJointPos[2] +=
m_links[i].getAxisBottom(2).dot(no_q0_coors_qd1qd2) * dt;
1583 m_links[i].updateCacheMultiDof(pq);
1586 pq +=
m_links[i].m_posVarCount;
1604 scratch_v.
resize(3*num_links + 3);
1605 scratch_m.
resize(num_links + 1);
1608 btVector3 * p_minus_com_local = v_ptr; v_ptr += num_links + 1;
1609 btVector3 * n_local_lin = v_ptr; v_ptr += num_links + 1;
1610 btVector3 * n_local_ang = v_ptr; v_ptr += num_links + 1;
1613 scratch_r.
resize(m_dofCount);
1614 btScalar * results = m_dofCount > 0 ? &scratch_r[0] : 0;
1619 const btVector3 &normal_lin_world = normal_lin;
1620 const btVector3 &normal_ang_world = normal_ang;
1626 omega_coeffs_world = p_minus_com_world.
cross(normal_lin_world);
1627 jac[0] = omega_coeffs_world[0] + normal_ang_world[0];
1628 jac[1] = omega_coeffs_world[1] + normal_ang_world[1];
1629 jac[2] = omega_coeffs_world[2] + normal_ang_world[2];
1631 jac[3] = normal_lin_world[0];
1632 jac[4] = normal_lin_world[1];
1633 jac[5] = normal_lin_world[2];
1636 p_minus_com_local[0] = rot_from_world[0] * p_minus_com_world;
1637 n_local_lin[0] = rot_from_world[0] * normal_lin_world;
1638 n_local_ang[0] = rot_from_world[0] * normal_ang_world;
1647 if (num_links > 0 && link > -1) {
1654 for (
int i = 0; i < num_links; ++i) {
1657 const int parent =
m_links[i].m_parent;
1659 rot_from_world[i+1] = mtx * rot_from_world[parent+1];
1661 n_local_lin[i+1] = mtx * n_local_lin[parent+1];
1662 n_local_ang[i+1] = mtx * n_local_ang[parent+1];
1663 p_minus_com_local[i+1] = mtx * p_minus_com_local[parent+1] -
m_links[i].m_cachedRVector;
1666 switch(
m_links[i].m_jointType)
1670 results[
m_links[i].m_dofOffset] = n_local_lin[i+1].dot(m_links[i].getAxisTop(0).cross(p_minus_com_local[i+1]) + m_links[i].getAxisBottom(0));
1671 results[m_links[i].m_dofOffset] += n_local_ang[i+1].dot(m_links[i].getAxisTop(0));
1676 results[
m_links[i].m_dofOffset] = n_local_lin[i+1].dot(m_links[i].getAxisBottom(0));
1681 results[
m_links[i].m_dofOffset + 0] = n_local_lin[i+1].dot(m_links[i].getAxisTop(0).cross(p_minus_com_local[i+1]) + m_links[i].getAxisBottom(0));
1682 results[m_links[i].m_dofOffset + 1] = n_local_lin[i+1].dot(m_links[i].getAxisTop(1).cross(p_minus_com_local[i+1]) + m_links[i].getAxisBottom(1));
1683 results[m_links[i].m_dofOffset + 2] = n_local_lin[i+1].dot(m_links[i].getAxisTop(2).cross(p_minus_com_local[i+1]) + m_links[i].getAxisBottom(2));
1685 results[m_links[i].m_dofOffset + 0] += n_local_ang[i+1].dot(m_links[i].getAxisTop(0));
1686 results[m_links[i].m_dofOffset + 1] += n_local_ang[i+1].dot(m_links[i].getAxisTop(1));
1687 results[m_links[i].m_dofOffset + 2] += n_local_ang[i+1].dot(m_links[i].getAxisTop(2));
1693 results[
m_links[i].m_dofOffset + 0] = n_local_lin[i+1].dot(m_links[i].getAxisTop(0).cross(p_minus_com_local[i+1]));
1694 results[m_links[i].m_dofOffset + 1] = n_local_lin[i+1].dot(m_links[i].getAxisBottom(1));
1695 results[m_links[i].m_dofOffset + 2] = n_local_lin[i+1].dot(m_links[i].getAxisBottom(2));
1710 for(
int dof = 0; dof <
m_links[link].m_dofCount; ++dof)
1712 jac[6 +
m_links[link].m_dofOffset + dof] = results[m_links[link].m_dofOffset + dof];
1716 link =
m_links[link].m_parent;
1752 if (motion < SLEEP_EPSILON) {
1775 for (
int i = 0; i < num_links; ++i)
1782 world_to_local.
resize(nLinks+1);
1783 local_origin.
resize(nLinks+1);
1800 btScalar quat[4]={-world_to_local[index].x(),-world_to_local[index].y(),-world_to_local[index].z(),world_to_local[index].w()};
1823 btScalar quat[4]={-world_to_local[0].x(),-world_to_local[0].y(),-world_to_local[0].z(),world_to_local[0].w()};
1853 btScalar quat[4]={-world_to_local[index].x(),-world_to_local[index].y(),-world_to_local[index].z(),world_to_local[index].w()};
1880 if (mbd->m_baseName)
1886 if (mbd->m_numLinks)
1889 int numElem = mbd->m_numLinks;
1892 for (
int i=0;i<numElem;i++,memPtr++)
1916 for (
int posvar = 0; posvar < numPosVar;posvar++)
1925 if (memPtr->m_linkName)
1933 if (memPtr->m_jointName)
btMatrix3x3 inverse() const
Return the inverse of the matrix.
void setupPlanar(int i, btScalar mass, const btVector3 &inertia, int parent, const btQuaternion &rotParentToThis, const btVector3 &rotationAxis, const btVector3 &parentComToThisComOffset, bool disableParentCollision=false)
btQuaternion m_zeroRotParentToThis
void clearConstraintForces()
void setupRevolute(int linkIndex, btScalar mass, const btVector3 &inertia, int parentIndex, const btQuaternion &rotParentToThis, const btVector3 &jointAxis, const btVector3 &parentComToThisPivotOffset, const btVector3 &thisPivotToThisComOffset, bool disableParentCollision=false)
btAlignedObjectArray< btMatrix3x3 > m_matrixBuf
const btMultibodyLink & getLink(int index) const
void setupFixed(int linkIndex, btScalar mass, const btVector3 &inertia, int parent, const btQuaternion &rotParentToThis, const btVector3 &parentComToThisPivotOffset, const btVector3 &thisPivotToThisComOffset, bool deprecatedDisableParentCollision=true)
const btVector3 & getAxisBottom(int dof) const
const btVector3 getBaseVel() const
void serialize(struct btQuaternionData &dataOut) const
void setValue(const btScalar &_x, const btScalar &_y, const btScalar &_z)
These spatial algebra classes are used for btMultiBody, see BulletDynamics/Featherstone.
#define btMultiBodyLinkDataName
btScalar btSin(btScalar x)
void stepPositionsMultiDof(btScalar dt, btScalar *pq=0, btScalar *pqd=0)
eFeatherstoneJointType m_jointType
const btScalar & z() const
Return the z value.
class btMultiBodyLinkCollider * m_collider
btTransform getBaseWorldTransform() const
bool gDisableDeactivation
void computeAccelerationsArticulatedBodyAlgorithmMultiDof(btScalar dt, btAlignedObjectArray< btScalar > &scratch_r, btAlignedObjectArray< btVector3 > &scratch_v, btAlignedObjectArray< btMatrix3x3 > &scratch_m, bool isConstraintPass=false)
const btVector3 & getLinkForce(int i) const
virtual int calculateSerializeBufferSize() const
virtual void * getUniquePointer(void *oldPtr)=0
btScalar getBaseMass() const
bool gJointFeedbackInWorldSpace
todo: determine if we need these options. If so, make a proper API, otherwise delete those globals ...
void setupSpherical(int linkIndex, btScalar mass, const btVector3 &inertia, int parent, const btQuaternion &rotParentToThis, const btVector3 &parentComToThisPivotOffset, const btVector3 &thisPivotToThisComOffset, bool disableParentCollision=false)
btVector3 localDirToWorld(int i, const btVector3 &vec) const
void addLinkConstraintForce(int i, const btVector3 &f)
btMatrix3x3 m_cachedInertiaLowerRight
btScalar * getJointVelMultiDof(int i)
void addLinkForce(int i, const btVector3 &f)
void mulMatrix(btScalar *pA, btScalar *pB, int rowsA, int colsA, int rowsB, int colsB, btScalar *pC) const
void addLinear(const btVector3 &linear)
btScalar getJointPos(int i) const
bool gJointFeedbackInJointFrame
const btScalar & y() const
Return the y value.
const btVector3 & getAngular() const
void setJointPosMultiDof(int i, btScalar *q)
void symmetricSpatialOuterProduct(const SpatialVectorType &a, const SpatialVectorType &b, btSymmetricSpatialDyad &out)
btScalar dot(const btSpatialForceVector &b) const
void updateCollisionObjectWorldTransforms(btAlignedObjectArray< btQuaternion > &scratch_q, btAlignedObjectArray< btVector3 > &scratch_m)
btVector3 m_baseConstraintTorque
#define btCollisionObjectData
void applyDeltaVeeMultiDof(const btScalar *delta_vee, btScalar multiplier)
btQuaternion inverse(const btQuaternion &q)
Return the inverse of a quaternion.
const btScalar & w() const
Return the w value.
btAlignedObjectArray< btScalar > m_deltaV
btScalar dot(const btVector3 &v) const
Return the dot product.
btMatrix3x3 outerProduct(const btVector3 &v0, const btVector3 &v1)
void clearForcesAndTorques()
const btScalar & x() const
Return the x value.
btVector3 quatRotate(const btQuaternion &rotation, const btVector3 &v)
btVector3 getAngularMomentum() const
void addAngular(const btVector3 &angular)
void addLinkConstraintTorque(int i, const btVector3 &t)
void forwardKinematics(btAlignedObjectArray< btQuaternion > &scratch_q, btAlignedObjectArray< btVector3 > &scratch_m)
btMatrix3x3 m_cachedInertiaTopLeft
const btVector3 & getBaseInertia() const
void setupPrismatic(int i, btScalar mass, const btVector3 &inertia, int parent, const btQuaternion &rotParentToThis, const btVector3 &jointAxis, const btVector3 &parentComToThisPivotOffset, const btVector3 &thisPivotToThisComOffset, bool disableParentCollision)
btScalar m_jointTorque[6]
int size() const
return the number of elements in the array
void setVector(const btVector3 &angular, const btVector3 &linear)
btMatrix3x3 m_cachedInertiaLowerLeft
btQuaternion & normalize()
Normalize the quaternion Such that x^2 + y^2 + z^2 +w^2 = 1.
const btVector3 & getLinkTorque(int i) const
void addLinkTorque(int i, const btVector3 &t)
void fillConstraintJacobianMultiDof(int link, const btVector3 &contact_point, const btVector3 &normal_ang, const btVector3 &normal_lin, btScalar *jac, btAlignedObjectArray< btScalar > &scratch_r, btAlignedObjectArray< btVector3 > &scratch_v, btAlignedObjectArray< btMatrix3x3 > &scratch_m) const
void compTreeLinkVelocities(btVector3 *omega, btVector3 *vel) const
void setValue(const btScalar &_x, const btScalar &_y, const btScalar &_z)
Set x,y,z and zero w.
void setLinear(const btVector3 &linear)
btVector3 cross(const btVector3 &v) const
Return the cross product between this and another vector.
void serialize(struct btVector3Data &dataOut) const
void addJointTorque(int i, btScalar Q)
void setValue(const btScalar &xx, const btScalar &xy, const btScalar &xz, const btScalar &yx, const btScalar &yy, const btScalar &yz, const btScalar &zx, const btScalar &zy, const btScalar &zz)
Set the values of the matrix explicitly (row major)
void solveImatrix(const btVector3 &rhs_top, const btVector3 &rhs_bot, float result[6]) const
const btVector3 & getRVector(int i) const
btScalar length() const
Return the length of the vector.
void setJointVel(int i, btScalar qdot)
void setAngular(const btVector3 &angular)
void setJointPos(int i, btScalar q)
void cross(const SpatialVectorType &b, SpatialVectorType &out) const
void setWorldTransform(const btTransform &worldTrans)
const btScalar & y() const
Return the y value.
void checkMotionAndSleepIfRequired(btScalar timestep)
btVector3 m_baseConstraintForce
btVector3 can be used to represent 3D points and vectors.
bool m_internalNeedsJointFeedback
the m_needsJointFeedback gets updated/computed during the stepVelocitiesMultiDof and it for internal ...
btMultiBody(int n_links, btScalar mass, const btVector3 &inertia, bool fixedBase, bool canSleep, bool deprecatedMultiDof=true)
btScalar getLinkMass(int i) const
btAlignedObjectArray< btScalar > m_realBuf
void setMatrix(const btMatrix3x3 &topLeftMat, const btMatrix3x3 &topRightMat, const btMatrix3x3 &bottomLeftMat)
virtual void finalizeChunk(btChunk *chunk, const char *structType, int chunkCode, void *oldPtr)=0
void calcAccelerationDeltasMultiDof(const btScalar *force, btScalar *output, btAlignedObjectArray< btScalar > &scratch_r, btAlignedObjectArray< btVector3 > &scratch_v) const
void updateLinksDofOffsets()
#define btMultiBodyDataName
btVector3 getBaseOmega() const
btVector3 normalized() const
Return a normalized version of this vector.
#define btMultiBodyData
serialization data, don't change them if you are not familiar with the details of the serialization m...
bool m_useGlobalVelocities
virtual void serializeName(const char *ptr)=0
void resize(int newsize, const T &fillData=T())
const btVector3 & getLinear() const
void addJointTorqueMultiDof(int i, int dof, btScalar Q)
btMatrix3x3 transpose() const
Return the transpose of the matrix.
btVector3 worldPosToLocal(int i, const btVector3 &vec) const
const btQuaternion & getParentToLocalRot(int i) const
const btVector3 & getAngular() const
btMatrix3x3 m_bottomLeftMat
void setVector(const btVector3 &angular, const btVector3 &linear)
btAlignedObjectArray< btVector3 > m_vectorBuf
btTransform m_cachedWorldTransform
const btScalar & x() const
Return the x value.
The btMatrix3x3 class implements a 3x3 rotation matrix, to perform linear algebra in combination with...
void setJointVelMultiDof(int i, btScalar *qdot)
const btMultiBodyLinkCollider * getBaseCollider() const
btVector3 worldDirToLocal(int i, const btVector3 &vec) const
const btVector3 & getLinkInertia(int i) const
virtual const char * findNameForPointer(const void *ptr) const =0
The btQuaternion implements quaternion to perform linear algebra rotations in combination with btMatr...
void addVector(const btVector3 &angular, const btVector3 &linear)
btScalar getJointTorque(int i) const
const btQuaternion & getWorldToBaseRot() const
int getParent(int link_num) const
const btVector3 & getBasePos() const
const btVector3 & getAxisTop(int dof) const
btVector3 localPosToWorld(int i, const btVector3 &vec) const
btAlignedObjectArray< btMultibodyLink > m_links
btScalar * getJointTorqueMultiDof(int i)
#define btMultiBodyLinkData
btMatrix3x3 m_cachedInertiaTopRight
btScalar * getJointPosMultiDof(int i)
virtual btChunk * allocate(size_t size, int numElements)=0
virtual const char * serialize(void *dataBuffer, class btSerializer *serializer) const
fills the dataBuffer and returns the struct name (and 0 on failure)
float btScalar
The btScalar type abstracts floating point numbers, to easily switch between double and single floati...
btScalar m_angularDamping
btScalar btCos(btScalar x)
btMatrix3x3 m_topRightMat
btScalar getJointVel(int i) const
btScalar getKineticEnergy() const
const btScalar & z() const
Return the z value.
const btVector3 & getLinear() const