AddSpecialGapOfNumericalSemigroup  5.1-2AdjacentCatenaryDegreeOfSetOfFactorizations  9.3-2AdjustmentOfNumericalSemigroup  9.2-11AffineSemigroup  11.2-1AlmostSymmetricNumericalSemigroupsFromIrreducible  6.3-1AlmostSymmetricNumericalSemigroupsWithFrobeniusNumber  6.3-3AmbientNumericalSemigroupOfIdeal  7.1-5AnIrreducibleNumericalSemigroupWithFrobeniusNumber  6.1-4AperyListOfIdealOfNumericalSemigroupWRTElement  7.2-8AperyListOfNumericalSemigroup  3.1-7AperyListOfNumericalSemigroupAsGraph  3.1-9AperyListOfNumericalSemigroupWRTElement  3.1-6AperyListOfNumericalSemigroupWRTInteger  3.1-8AperyTableOfNumericalSemigroup  7.2-9ArfNumericalSemigroupClosure  8.2-2ArfNumericalSemigroupsWithFrobeniusNumber  8.2-4AsAffineSemigroup  11.2-2AsGluingOfNumericalSemigroups  6.2-1BasisOfGroupGivenByEquations  11.2-9BelongsToAffineSemigroup  11.2-4BelongsToHomogenizationOfNumericalSemigroup  9.5-1BelongsToIdealOfNumericalSemigroup  7.1-7BelongsToNumericalSemigroup  2.2-6BettiElementsOfAffineSemigroup  11.4-3BettiElementsOfNumericalSemigroup  4.1-3BezoutSequence  A.1-1BlowUpIdealOfNumericalSemigroup  7.2-2BlowUpOfNumericalSemigroup  7.2-4CanonicalIdealOfNumericalSemigroup  7.1-15CatenaryDegreeOfAffineSemigroup  11.5-3CatenaryDegreeOfElementInNumericalSemigroup  9.3-5CatenaryDegreeOfNumericalSemigroup  9.3-7CatenaryDegreeOfSetOfFactorizations  9.3-1CeilingOfRational  A.1-3CompleteIntersectionNumericalSemigroupsWithFrobeniusNumber  6.2-3ConductorOfNumericalSemigroup  3.2-3CurveAssociatedToDeltaSequence  10.2-4DecomposeIntoIrreducibles  6.1-6DeltaSequencesWithFrobeniusNumber  10.2-3DeltaSetListUpToElementWRTNumericalSemigroup  C.2-5DeltaSetOfFactorizationsElementWRTNumericalSemigroup  9.2-6DeltaSetOfNumericalSemigroup  C.2-7DeltaSetOfSetOfIntegers  9.2-5DeltaSetPeriodicityBoundForNumericalSemigroup  C.2-3DeltaSetPeriodicityStartForNumericalSemigroup  C.2-4DeltaSetUnionUpToElementWRTNumericalSemigroup  C.2-6DenumerantOfElementInNumericalSemigroup  9.1-5DifferenceOfIdealsOfNumericalSemigroup  7.1-11ElasticityOfAffineSemigroup  11.5-2ElasticityOfFactorizationsElementWRTNumericalSemigroup  9.2-3ElasticityOfNumericalSemigroup  9.2-4EmbeddingDimensionOfNumericalSemigroup  3.1-3EqualCatenaryDegreeOfAffineSemigroup  11.5-4EqualCatenaryDegreeOfNumericalSemigroup  9.3-9EqualCatenaryDegreeOfSetOfFactorizations  9.3-3EqualPrimitiveElementsOfNumericalSemigroup  9.3-8EquationsOfGroupGeneratedBy  11.2-8FactorizationsElementListWRTNumericalSemigroup  C.2-2FactorizationsElementWRTNumericalSemigroup  9.1-2FactorizationsInHomogenizationOfNumericalSemigroup  9.5-2FactorizationsIntegerWRTList  9.1-1FactorizationsVectorWRTList  11.5-1FirstElementsOfNumericalSemigroup  3.1-5ForcedIntegersForPseudoFrobenius  5.6-1FreeNumericalSemigroupsWithFrobeniusNumber  6.2-5FrobeniusNumber  3.2-2FrobeniusNumberOfNumericalSemigroup  3.2-1FundamentalGapsOfNumericalSemigroup  3.3-3GapsOfNumericalSemigroup  3.3-1GeneratorsOfIdealOfNumericalSemigroup  7.1-4GeneratorsOfIdealOfNumericalSemigroupNC  7.1-4GeneratorsOfKernelCongruence  11.4-1GeneratorsOfNumericalSemigroup  3.1-2GenusOfNumericalSemigroup  3.3-2GluingOfAffineSemigroups  11.3-1GraeffePolynomial  10.1-3GraphAssociatedToElementInNumericalSemigroup  4.1-2HilbertBasisOfSystemOfHomogeneousEquations  11.2-6HilbertBasisOfSystemOfHomogeneousInequalities  11.2-7HilbertFunctionOfIdealOfNumericalSemigroup  7.2-1HilbertSeriesOfNumericalSemigroup  10.1-2HomogeneousBettiElementsOfNumericalSemigroup  9.5-3HomogeneousCatenaryDegreeOfAffineSemigroup  11.5-5HomogeneousCatenaryDegreeOfNumericalSemigroup  9.5-4IdealOfNumericalSemigroup  7.1-1IntersectionIdealsOfNumericalSemigroup  7.1-13IntersectionOfNumericalSemigroups  5.2-1IrreducibleNumericalSemigroupsWithFrobeniusNumber  6.1-5IsACompleteIntersectionNumericalSemigroup  6.2-2IsAdditiveNumericalSemigroup  9.2-12IsAffineSemigroup  11.2-3IsAffineSemigroupByEquations  11.2-3IsAffineSemigroupByGenerators  11.2-3IsAffineSemigroupByInequalities  11.2-3IsAffineSemigroupByMinimalGenerators  11.2-3IsAlmostSymmetricNumericalSemigroup  6.3-2IsAperyListOfNumericalSemigroup  2.2-4IsAperySetAlphaRectangular  C.1-8IsAperySetBetaRectangular  C.1-7IsAperySetGammaRectangular  C.1-6IsArfNumericalSemigroup  8.2-1IsBezoutSequence  A.1-2IsCyclotomicNumericalSemigroup  10.1-6IsCyclotomicPolynomial  10.1-4IsDeltaSequence  10.2-2IsFreeNumericalSemigroup  6.2-4IsFullAffineSemigroup  11.2-5IsGenericAffineSemigroup  11.4-5IsGenericNumericalSemigroup  4.2-2IsGradedAssociatedRingNumericalSemigroupBuchsbaum  C.1-1IsGradedAssociatedRingNumericalSemigroupCI  C.1-5IsGradedAssociatedRingNumericalSemigroupCM  7.2-6IsGradedAssociatedRingNumericalSemigroupGorenstein  C.1-4IsIdealOfNumericalSemigroup  7.1-2IsIrreducibleNumericalSemigroup  6.1-1IsKroneckerPolynomial  10.1-5IsListOfIntegersNS  A.2-2IsMEDNumericalSemigroup  8.1-1IsModularNumericalSemigroup  2.2-1IsMonomialNumericalSemigroup  7.2-7IsMpureNumericalSemigroup  C.1-2IsNumericalSemigroup  2.2-1IsNumericalSemigroupAssociatedIrreduciblePlanarCurveSingularity  6.2-8IsNumericalSemigroupByAperyList  2.2-1IsNumericalSemigroupByFundamentalGaps  2.2-1IsNumericalSemigroupByGaps  2.2-1IsNumericalSemigroupByGenerators  2.2-1IsNumericalSemigroupByInterval  2.2-1IsNumericalSemigroupByMinimalGenerators  2.2-1IsNumericalSemigroupByOpenInterval  2.2-1IsNumericalSemigroupBySmallElements  2.2-1IsNumericalSemigroupBySubAdditiveFunction  2.2-1IsProportionallyModularNumericalSemigroup  2.2-1IsPseudoSymmetricNumericalSemigroup  6.1-3IsPureNumericalSemigroup  C.1-3IsSaturatedNumericalSemigroup  8.3-1IsSelfReciprocalUnivariatePolynomial  10.1-7IsSubsemigroupOfNumericalSemigroup  2.2-5IsSuperSymmetricNumericalSemigroup  9.2-13IsSymmetricNumericalSemigroup  6.1-2IsTelescopicNumericalSemigroup  6.2-6IsUniquelyPresentedAffineSemigroup  11.4-6IsUniquelyPresentedNumericalSemigroup  4.2-1KunzCoordinatesOfNumericalSemigroup  3.1-10KunzPolytope  3.1-11LengthsOfFactorizationsElementWRTNumericalSemigroup  9.2-2LengthsOfFactorizationsIntegerWRTList  9.2-1LShapesOfNumericalSemigroup  9.1-4MaximalDenumerantOfElementInNumericalSemigroup  9.2-8MaximalDenumerantOfNumericalSemigroup  9.2-10MaximalDenumerantOfSetOfFactorizations  9.2-9MaximalIdealOfNumericalSemigroup  7.1-14MaximumDegreeOfElementWRTNumericalSemigroup  9.2-7MEDNumericalSemigroupClosure  8.1-2MicroInvariantsOfNumericalSemigroup  7.2-5MinimalArfGeneratingSystemOfArfNumericalSemigroup  8.2-3MinimalGeneratingSystem  3.1-2MinimalGeneratingSystem  7.1-3MinimalGeneratingSystemOfIdealOfNumericalSemigroup  7.1-3MinimalGeneratingSystemOfNumericalSemigroup  3.1-2MinimalMEDGeneratingSystemOfMEDNumericalSemigroup  8.1-3MinimalPresentationOfAffineSemigroup  11.4-2MinimalPresentationOfNumericalSemigroup  4.1-1ModularNumericalSemigroup  2.1-2MoebiusFunctionAssociatedToNumericalSemigroup  9.6-1MonotoneCatenaryDegreeOfAffineSemigroup  11.5-6MonotoneCatenaryDegreeOfNumericalSemigroup  9.3-11MonotoneCatenaryDegreeOfSetOfFactorizations  9.3-4MonotonePrimitiveElementsOfNumericalSemigroup  9.3-10MultipleOfIdealOfNumericalSemigroup  7.1-9MultiplicityOfNumericalSemigroup  3.1-1NumericalSemigroup  2.1-1NumericalSemigroupByAperyList  2.1-4NumericalSemigroupByFundamentalGaps  2.1-4NumericalSemigroupByGaps  2.1-4NumericalSemigroupByGenerators  2.1-4NumericalSemigroupByInterval  2.1-4NumericalSemigroupByMinimalGenerators  2.1-4NumericalSemigroupByMinimalGeneratorsNC  2.1-4NumericalSemigroupByOpenInterval  2.1-4NumericalSemigroupBySmallElements  2.1-4NumericalSemigroupBySubAdditiveFunction  2.1-4NumericalSemigroupPolynomial  10.1-1NumericalSemigroupsAssociatedIrreduciblePlanarCurveSingularityWithFrobeniusNumber  6.2-9NumericalSemigroupsWithFrobeniusNumber  5.4-1NumericalSemigroupsWithGenus  5.5-1NumericalSemigroupsWithPseudoFrobeniusNumbers  5.6-3NumSgpsUse4ti2  11.1-1NumSgpsUse4ti2gap  11.1-2NumSgpsUseNormalize  11.1-3NumSgpsUseSingular  11.1-4NumSgpsUseSingularGradedModules  11.1-6NumSgpsUseSingularInterface  11.1-5OmegaPrimalityOfAffineSemigroup  11.5-9OmegaPrimalityOfElementInAffineSemigroup  11.5-8OmegaPrimalityOfElementInNumericalSemigroup  9.4-1OmegaPrimalityOfElementListInNumericalSemigroup  C.2-1OmegaPrimalityOfNumericalSemigroup  9.4-2OverSemigroupsNumericalSemigroup  5.3-1PrimitiveElementsOfAffineSemigroup  11.4-7PrimitiveElementsOfNumericalSemigroup  4.1-4ProportionallyModularNumericalSemigroup  2.1-3PseudoFrobeniusOfNumericalSemigroup  3.2-4QuotientOfNumericalSemigroup  5.2-2RandomListForNS  B.1-2RandomListRepresentingSubAdditiveFunction  B.1-5RandomModularNumericalSemigroup  B.1-3RandomNumericalSemigroup  B.1-1RandomNumericalSemigroupWithPseudoFrobeniusNumbers  5.6-4RandomProportionallyModularNumericalSemigroup  B.1-4RClassesOfSetOfFactorizations  9.1-3ReductionNumberIdealNumericalSemigroup  7.2-3RemoveMinimalGeneratorFromNumericalSemigroup  5.1-1RepresentsGapsOfNumericalSemigroup  2.2-3RepresentsPeriodicSubAdditiveFunction  A.2-1RepresentsSmallElementsOfNumericalSemigroup  2.2-2SaturatedNumericalSemigroupClosure  8.3-2SaturatedNumericalSemigroupsWithFrobeniusNumber  8.3-3SemigroupOfValuesOfCurve_Global  10.2-6SemigroupOfValuesOfCurve_Local  10.2-5SemigroupOfValuesOfPlaneCurveWithSinglePlaceAtInfinity  10.2-1ShadedSetOfElementInAffineSemigroup  11.4-4ShadedSetOfElementInNumericalSemigroup  4.1-5SimpleForcedIntegersForPseudoFrobenius  5.6-2SmallElements  3.1-4SmallElements  7.1-6SmallElementsOfIdealOfNumericalSemigroup  7.1-6SmallElementsOfNumericalSemigroup  3.1-4SpecialGapsOfNumericalSemigroup  3.3-4StarClosureOfIdealOfNumericalSemigroup  7.2-10SubtractIdealsOfNumericalSemigroup  7.1-10SumIdealsOfNumericalSemigroup  7.1-8TameDegreeOfAffineSemigroup  11.5-7TameDegreeOfElementInNumericalSemigroup  9.3-13TameDegreeOfNumericalSemigroup  9.3-12TameDegreeOfSetOfFactorizations  9.3-6TelescopicNumericalSemigroupsWithFrobeniusNumber  6.2-7TranslationOfIdealOfNumericalSemigroup  7.1-12TypeOfNumericalSemigroup  3.2-5TypeSequenceOfNumericalSemigroup  C.1-9
generated by GAPDoc2HTML