<, for two elements in a PathAlgebraModule  6.7-12<, for two elements in a path algebra  4.5-2<, for two elements of a path algebra  4.13-4<, for two paths in a quiver  3.7-7*  3.7-5., for a path algebra  4.4-4., for quiver  3.5-1/  6.7-131stSyzygy  8.1-1=  3.7-6\* (maps)  7.2-3\+ (maps)  7.2-2\=, for two path algebra matrix modules  6.1-3\= (maps)  7.2-1\^  10.2-6\in, elt. in path alg. and ideal  4.7-6^, a PathAlgebraMatModule element and a PathAlgebra element  6.3-1^, a PathAlgebraModule element and a PathAlgebra element  6.7-11AddNthPowerToRelations  4.7-5AdjacencyMatrixOfQuiver  3.5-4AdmitsFinitelyManyNontips  5.3-1AlgebraAsModuleOverEnvelopingAlgebra  4.16-11AlgebraAsQuiverAlgebra  4.17-1AllComplementsOfAlmostCompleteCotiltingModule  8.1-2AllComplementsOfAlmostCompleteTiltingModule  8.1-2AlmostSplitSequence  9.1-1AnnihilatorOfModule  6.4-1ARQuiverNumerical  13.3-1ARQuiverNumerical  13.3-1ARQuiverNumerical  13.3-1ARQuiverNumerical  13.3-1ArrowsOfQuiver  3.5-3AssignGeneratorVariables  4.6-1AssociatedMonomialAlgebra  4.4-1BasicVersionOfModule  6.4-2BasisOfProjectives  6.5-1BilinearFormOfUnitForm  12.2-2BlockDecompositionOfModule  6.4-3BlockSplittingIdempotents  6.4-4BoundariesOfComplex  10.5-6BrutalTruncation  10.6-6BrutalTruncationAbove  10.6-5BrutalTruncationBelow  10.6-4CanonicalAlgebra  4.14-1CartanMatrix  4.12-1CatOfComplex  10.5-1CatOfRightAlgebraModules  10.3-2Centre/Center  4.12-2ChainMap  10.7-2Coefficients  4.13-2CoKernel  7.3-1CoKernelOfWhat  7.2-4CoKernelProjection  7.3-2CommonDirectSummand  6.4-5ComparisonLifting  10.7-8ComparisonLiftingToProjectiveResolution  10.7-9CompletelyReduce  5.3-2CompletelyReduceGroebnerBasis  5.3-3CompletelyReduceGroebnerBasisForModule  6.7-2Complex  10.4-3ComplexAndChainMaps  10.7-5ComplexityOfAlgebra  4.12-3ComplexityOfModule  6.4-6ConnectedComponentsOfQuiver  3.5-11ConstantInfList  10.2-25CosyzygyTruncation  10.6-8CotiltingModule  8.1-3CoxeterMatrix  4.12-4CoxeterPolynomial  4.12-5Cut  10.2-20CyclesOfComplex  10.5-5DecomposeModule  6.4-7DecomposeModuleWithMultiplicities  6.4-8DegOrderDirectPredecessors  13.5-3DegOrderDirectSuccessors  13.5-6DegOrderLEQ  13.4-6DegOrderLEQNC  13.4-7DegOrderPredecessors  13.5-2DegOrderPredecessorsWithDirect  13.5-4DegOrderSuccessors  13.5-5DegOrderSuccessorsWithDirect  13.5-7DifferentialOfComplex  10.5-3DifferentialsOfComplex  10.5-4DimEnd  13.4-3Dimension  4.12-6Dimension, for a PathAlgebraMatModule  6.4-9DimensionVector  6.4-10DimensionVector, DimVectFT  13.4-1DimHom  13.4-2Direction  10.2-9DirectSumInclusions  6.4-12DirectSumOfQPAModules  6.4-11DirectSumProjections  6.4-13DominantDimensionOfAlgebra  8.1-4DominantDimensionOfModule  8.1-5DTr  6.6-3DualOfAlgebraAsModuleOverEnvelopingAlgebra  4.16-12DualOfModule  6.6-1DualOfModuleHomomorphism  6.6-2DualOfTranspose  6.6-3DynkinQuiver, DynkinQuiver  3.2-2ElementFunction  10.2-12ElementOfPathAlgebra  4.5-1ElementOfQuotientOfPathAlgebra  4.13-5EndModuloProjOverAlgebra  7.3-3EndOfModuleAsQuiverAlgebra  7.3-4EndOverAlgebra  7.3-5Enumerator  5.3-4EnvelopingAlgebra  4.16-9EulerBilinearFormOfAlgebra  12.2-9ExtAlgebraGenerators  8.1-6ExtOverAlgebra  8.1-7FaithfulDimension  8.1-8FiniteChainMap  10.7-4FiniteComplex  10.4-5FiniteInfList  10.2-26FinitePartAsList  10.2-36ForEveryDegree  10.5-17FromEndMToHomMM  7.3-6FromHomMMToEndM  7.3-7FullSubquiver  3.5-10FunctionInfList  10.2-24GeneratorsOfQuiver  3.5-5GlobalDimension  4.12-7GlobalDimensionOfAlgebra  8.1-9GorensteinDimension  8.1-10GorensteinDimensionOfAlgebra  8.1-11GroebnerBasis  5.1-2GroebnerBasisOfIdeal  4.10-1HalfInfList  10.2-21HaveFiniteCoresolutionInAddM  8.1-12HaveFiniteResolutionInAddM  8.1-13HighestKnownDegree  10.5-12HighestKnownPosition  10.2-32HighestKnownValue  10.2-18HomFactoringThroughProjOverAlgebra  7.3-8HomFromProjective  7.3-9HomologyOfComplex  10.5-7HomomorphismFromImages  7.2-27HomOverAlgebra  7.3-10Ideal  4.7-1IdealOfQuotient  4.7-2IdentityMapping  7.2-5Image  7.3-11ImageElm  7.2-6ImageInclusion  7.3-12ImageOfWhat  7.2-8ImageProjection  7.3-13ImageProjectionInclusion  7.3-14ImagesSet  7.2-7IncludeInProductQuiver  4.16-4IncomingArrowsOfVertex  3.8-1IndecInjectiveModules  6.5-2IndecProjectiveModules  6.5-3InDegreeOfVertex  3.8-3InfConcatenation  10.2-41InfList  10.2-42InfListType  10.2-10InfoGroebnerBasis  5.1-1InfoQuiver  3.1-1InitialValue  10.2-16InjDimension  8.1-14InjDimensionOfModule  8.1-15IntegersList  10.2-43IntersectionOfSubmodules  6.4-14IsAcyclicQuiver  3.3-2IsAdmissibleIdeal  4.8-1IsAdmissibleQuotientOfPathAlgebra  4.11-1IsARQuiverNumerical  13.3-2IsArrow  3.6-3IsBasicAlgebra  4.17-2IsCanonicalAlgebra  4.11-4IsCat  10.3-1IsChainMap  10.7-1IsCompleteGroebnerBasis  5.2-2IsCompletelyReducedGroebnerBasis  5.2-1IsConnectedQuiver  3.3-4IsCotiltingModule  8.1-16IsDirectSummand  6.4-15IsDirectSumOfModules  6.4-16IsDistributiveAlgebra  4.11-5IsDynkinQuiver  3.3-6IsElementaryAlgebra  4.17-3IsElementOfQuotientOfPathAlgebra  4.13-1IsEnvelopingAlgebra  4.16-10IsExactInDegree  10.5-15IsExactSequence  10.5-14IsExceptionalModule  6.4-17IsFiniteComplex  10.5-8IsFiniteDimensional  4.11-3IsFiniteGlobalDimensionAlgebra  4.11-6IsFiniteTypeAlgebra  4.11-23IsGentleAlgebra  4.11-7IsGorensteinAlgebra  4.11-8IsGroebnerBasis  5.2-3IsHalfInfList  10.2-5IsHereditaryAlgebra  4.11-9IsHomogeneousGroebnerBasis  5.2-4IsIdealInPathAlgebra  4.8-2IsInAdditiveClosure  6.4-19IsIndecomposableModule  6.4-18IsInfiniteNumber  10.2-1IsInfList  10.2-4IsInjective  7.2-9IsInjectiveComplex  11.1-2IsInjectiveModule  6.4-20IsIsomorphism  7.2-10IsKroneckerAlgebra  4.11-10IsLeftDivisible  6.7-3IsLeftMinimal  7.2-11IsLeftUniform  4.5-3IsMonomialAlgebra  4.11-11IsMonomialIdeal  4.8-3IsNakayamaAlgebra  4.11-12IsNormalForm  4.13-3IsOmegaPeriodic  8.1-17IsomorphicModules  6.4-21IsomorphismOfModules  7.3-15IsPath  3.6-1IsPathAlgebra  4.3-1IsPathAlgebraMatModule  6.2-1IsPathAlgebraModule  6.7-4IsPathAlgebraModuleHomomorphism  7.1-1IsPathAlgebraVector  6.7-5IsPrefixOfTipInTipIdeal  5.3-5IsProjectiveComplex  11.1-1IsProjectiveModule  6.4-22IsQPAComplex  10.4-1IsQuadraticIdeal  4.8-4IsQuiver  3.3-1IsQuiverAlgebra  4.11-13IsQuiverProductDecomposition  4.16-3IsQuiverVertex  3.6-2IsQuotientOfPathAlgebra  4.11-2IsRadicalSquareZeroAlgebra  4.11-14IsRepeating  10.2-15IsRightGroebnerBasis  5.4-1IsRightMinimal  7.2-12IsRightUniform  4.5-4IsRigidModule  6.4-23IsSchurianAlgebra  4.11-15IsSelfinjectiveAlgebra  4.11-16IsSemicommutativeAlgebra  4.11-17IsSemisimpleAlgebra  4.11-18IsSemisimpleModule  6.4-24IsShortExactSequence  10.5-16IsSimpleQPAModule  6.4-25IsSpecialBiserialAlgebra  4.11-19IsSpecialBiserialQuiver  4.14-5IsSplitEpimorphism  7.2-13IsSplitMonomorphism  7.2-14IsStoringValues  10.2-13IsStringAlgebra  4.11-20IsSurjective  7.2-15IsSymmetricAlgebra  4.11-21IsTauPeriodic  9.1-2IsTauRigidModule  6.4-26IsTipReducedGroebnerBasis  5.2-5IsTreeQuiver  3.3-5IsTtiltingModule  8.1-18IsUAcyclicQuiver  3.3-3IsUniform  4.5-5IsUnitForm  12.2-1IsWeaklyNonnegativeUnitForm  12.2-3IsWeaklyPositiveUnitForm  12.2-4IsWeaklySymmetricAlgebra  4.11-22IsZero  6.4-28IsZero  7.2-16IsZeroComplex  10.4-2IsZeroPath  3.6-4Iterator  5.3-6IyamaGenerator  8.1-19Kernel  7.3-16KernelInclusion  7.3-16KernelOfWhat  7.2-17KroneckerAlgebra  4.14-2LeadingCoefficient  4.5-7LeadingCoefficient (of PathAlgebraVector)  6.7-6LeadingComponent  6.7-7LeadingMonomial  4.5-8LeadingPosition  6.7-8LeadingTerm  4.5-6LeadingTerm (of PathAlgebraVector)  6.7-9LeftDivision  6.7-10LeftFacMApproximation  8.1-20LeftInverseOfHomomorphism  7.2-18LeftMinimalVersion  7.3-17LeftMutationOfCotiltingModuleComplement  8.1-21LeftMutationOfTiltingModuleComplement  8.1-21LeftSubMApproximation  8.1-22LengthOfComplex  10.5-11LengthOfPath  3.7-3LiftingCompleteSetOfOrthogonalIdempotents  4.18-1LiftingIdempotent  4.18-2LiftingInclusionMorphisms  8.1-23LiftingMorphismFromProjective  8.1-24LoewyLength  4.12-8LoewyLength, for a PathAlgebraMatModule  6.4-27LowerBound  10.2-35LowerBound  10.5-10LowestKnownDegree  10.5-13LowestKnownPosition  10.2-17LowestKnownPosition  10.2-33MakeHalfInfList  10.2-7MakeInfList  10.2-23MakeInfListFromHalfInfLists  10.2-22MakeUniformOnRight  4.5-9MappedExpression  4.5-10MappingCone  10.7-10MatricesOfPathAlgebraMatModuleHomomorphism  7.2-19MatricesOfPathAlgebraModule  6.4-29MaximalCommonDirectSummand  6.4-30MiddleEnd  10.2-28MiddlePart  10.2-29MiddleStart  10.2-27MinimalGeneratingSetOfModule  6.4-32MinimalLeftAddMApproximation  8.1-25MinimalLeftApproximation  8.1-25MinimalLeftFacMApproximation  8.1-20MinimalLeftSubMApproximation  8.1-22MinimalRightAddMApproximation  8.1-26MinimalRightApproximation  8.1-26MinimalRightFacMApproximation  8.1-37MinimalRightSubMApproximation  8.1-39ModulesOfDimVect  13.5-1MorphismOfChainMap  10.7-6MorphismOnCoKernel  8.1-27MorphismOnImage  8.1-27MorphismOnKernel  8.1-27MorphismsOfChainMap  10.7-7N_RigidModule  8.1-40NakayamaAlgebra  4.14-3NakayamaAutomorphism  4.12-9NakayamaFunctorOfModule  6.6-4NakayamaFunctorOfModuleHomomorphism  6.6-5NakayamaPermutation  4.12-10NegativeInfinity  10.2-3NegativePart  10.2-31NegativePartFrom  10.2-38NeighborsOfVertex  3.8-5NewValueCallback  10.2-14Nontips  5.3-7NontipSize  5.3-8NthPowerOfArrowIdeal  4.7-4NthSyzygy  8.1-28NthSyzygyNC  8.1-29NumberOfArrows  3.5-7NumberOfComplementsOfAlmostCompleteCotiltingModule  8.1-30NumberOfComplementsOfAlmostCompleteTiltingModule  8.1-30NumberOfIndecomposables  13.3-3NumberOfNonIsoDirSummands  6.4-31NumberOfProjectives  13.3-4NumberOfVertices  3.5-6ObjectOfComplex  10.5-2OppositePath  4.15-1OppositePathAlgebra  4.15-2OppositePathAlgebraElement  4.15-3OppositeQuiver  3.5-9OrbitCodim  13.4-5OrbitDim  13.4-4OrderedBy  3.2-3OrderingOfAlgebra  4.4-3OrderingOfQuiver  3.5-8OrderOfNakayamaAutomorphism  4.12-11OriginalPathAlgebra  4.13-6OutDegreeOfVertex  3.8-4OutgoingArrowsOfVertex  3.8-2PathAlgebra  4.2-1PathAlgebraOfMatModuleMap  7.2-20PathAlgebraVector  6.7-14PathsOfLengthTwo  4.7-3PositiveInfinity  10.2-2PositivePart  10.2-30PositivePartFrom  10.2-37PositiveRootsOfUnitForm  12.2-5PredecessorOfModule  9.1-3PreImagesRepresentative  7.2-21PrimitiveIdempotents  4.17-4PrintMultiplicityVector  13.4-8PrintMultiplicityVectors  13.4-9ProductOfIdeals  4.9-1ProjDimension  8.1-31ProjDimensionOfModule  8.1-32ProjectFromProductQuiver  4.16-5ProjectiveCover  8.1-33ProjectivePathAlgebraPresentation  6.7-15ProjectiveResolution  11.1-3ProjectiveResolutionOfComplex  11.2-1ProjectiveResolutionOfPathAlgebraModule  8.1-34ProjectiveToInjectiveComplex  11.2-2ProjectiveToInjectiveFiniteComplex  11.2-2PullBack  8.1-35PushOut  8.1-36QuadraticFormOfUnitForm  12.2-6QuadraticPerpOfPathAlgebraIdeal  4.9-2Quiver, adjacenymatrix  3.2-1Quiver, lists of vertices and arrows  3.2-1Quiver, no. of vertices, list of arrows  3.2-1QuiverOfPathAlgebra  4.4-2QuiverProduct  4.16-1QuiverProductDecomposition  4.16-2RadicalOfModule  6.4-33RadicalOfModuleInclusion  7.3-19RadicalSeries  6.4-34RadicalSeriesOfAlgebra  4.12-12Range  7.2-22RelationsOfAlgebra  4.5-12RepeatingList  10.2-11RightAlgebraModuleToPathAlgebraMatModule  6.1-2RightFacMApproximation  8.1-37RightGroebnerBasis  5.4-2RightGroebnerBasisOfIdeal  5.4-3RightGroebnerBasisOfModule  6.7-16RightInverseOfHomomorphism  7.2-23RightMinimalVersion  7.3-18RightModuleHomOverAlgebra  7.1-2RightModuleOverPathAlgebra, no dimension vector  6.1-1RightModuleOverPathAlgebra, with dimension vector  6.1-1RightModuleOverPathAlgebraNC, no dimension vector  6.1-1RightMutationOfCotiltingModuleComplement  8.1-38RightMutationOfTiltingModuleComplement  8.1-38RightProjectiveModule  6.7-1RightSubMApproximation  8.1-39SeparatedQuiver  3.5-12Shift  10.2-19Shift  10.2-39Shift  10.6-1ShiftUnsigned  10.6-2ShortExactSequence  10.4-7SimpleModules  6.5-4SimpleTensor  4.16-7SocleOfModule  6.4-36SocleOfModuleInclusion  7.3-20SocleSeries  6.4-35Source  7.2-24SourceOfPath  3.7-1Splice  10.2-40StalkComplex  10.4-6StarOfMapBetweenDecompProjectives  11.2-5StarOfMapBetweenIndecProjectives  11.2-5StarOfMapBetweenProjectives  11.2-5StarOfModule  6.6-6StarOfModuleHomomorphism  6.6-7StartPosition  10.2-8SubRepresentation  6.4-37SubRepresentationInclusion  7.3-21SumOfSubmodules  6.4-38SupportModuleElement  6.4-39SymmetricMatrixOfUnitForm  12.2-7SyzygyCosyzygyTruncation  10.6-9SyzygyTruncation  10.6-7TargetOfPath  3.7-2TargetVertex  6.7-17TauOfComplex  11.2-3TensorProductDecomposition  4.16-8TensorProductOfAlgebras  4.16-6TiltingModule  8.1-41Tip  4.5-6TipCoefficient  4.5-7TipMonomial  4.5-8TipReduce  5.3-9TipReduceGroebnerBasis  5.3-10TitsUnitFormOfAlgebra  12.2-8TopOfModule  6.4-40TopOfModuleProjection  7.3-22TraceOfModule  7.3-23TransposeOfDual  6.6-8TransposeOfModule  6.6-9TrD  6.6-8TrivialExtensionOfQuiverAlgebra  4.16-13TruncatedPathAlgebra  4.14-4UniformGeneratorsOfModule  6.7-18UnitForm  12.2-10UpperBound  10.2-34UpperBound  10.5-9Vectorize  6.7-19VertexPosition  4.5-11VerticesOfQuiver  3.5-2WalkOfPath  3.7-4YonedaProduct  10.6-3Zero  7.2-25ZeroChainMap  10.7-3ZeroComplex  10.4-4ZeroMapping  7.2-26ZeroModule  6.5-5
generated by GAPDoc2HTML