 
 
 
erfc takes as argument a number a.
erfc returns the value of the complementary error function at
x=a, this function is defined by :
| erfc(x)= | 
 | ∫ | 
 | e−t2dt=1−erf(x) | 
Hence erfc(0)=1, since :
| ∫ | 
 | e−t2dt= | 
 | 
Input :
Output :
Input :
Output :
Remark
The relation between erfc and normal_cdf is :
| normal_cdf(x)=1− | 
 | erfc ( | 
 | ) | 
Verification :
normal_cdf(1)=0.841344746069
 
 
