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Chapter 1

Introduction

The purpose of this package is to provide functionalities to work with torsion units in (integral) group
rings. It implements a method that was developed by I.S. Luthar and 1.B.S. Passi in [LP89] and which
was extended by M. Hertweck in [HerO7]. These names also constitute the name of the method, sug-
gested by A. Konovalov: Hertweck-Luthar-Passi. The theory behind the method is briefly described
in Chapter 5 and also in the survey article [BM15].

The package uses the software 4ti2 [tt] and/or normaliz [BIR "] and hence is only properly working
on systems which have at least one of the two installed. normaliz is usually automatically installed
with the GAP-package NormalizInterface, see the documentation of that package for details. For
more information on 4ti2 and to download it, please visit www.4ti2.de. To interact with these external
software the package makes use of the 4ti2-Interface and normaliz-Interface written by S. Gutsche, C.
Soger and M. Horn. The 4ti2-Interface in turn uses the package 10, that needs a C-part to be compiled;
see the readme-file or the documentation of the I0-package for details. The package also provides
the possibility to use redund form the Irslib software [Avi], to remove redundant inequalities before
solving the system, which might speed up the computations significantly when 4ti2 is used. However,
it is not a requirement to have Irslib installed. If the above mentioned preconditions are fulfilled, one
just has to copy the HeLLP-package in the GAP pkg-directory. Now the package can be loaded by
typing LoadPackage ("HeLP") ; during a GAP-session. If the HeLP-package doesn’t work properly
on your computer, you might want to check Section 6.1 for some trouble shooting.


http://www.4ti2.de

Chapter 2

The main functions

2.1 Zassenhaus Conjecture

This function checks whether the Zassenhaus Conjecture ((ZC) for short, cf. Section 5.1) can be
proved using the HeLP method with the data available in GAP.

2.1.1 HeLP_ZC

> HeLP_ZC(OrdinaryCharacterTable|Group) (function)

Returns: true if (ZC) can be solved using the given data, false otherwise

HeLP_ZC checks whether the Zassenhaus Conjecture can be solved for the given group using the
HeLP method, the Wagner test and all character data available. The argument of the function can be
either an ordinary character table or a group. In the second case it will first calculate the corresponding
ordinary character table. If the group in question is nilpotent, the Zassenhaus Conjecture holds by a
result of A. Weiss and the function will return true without performing any calculations.

If the group is not solvable, the function will check all orders which are divisors of the exponent
of the group. If the group is solvable, it will only check the orders of group elements, as there can’t be
any torsion units of another order. The function will use the ordinary table and, for the primes p for
which the group is not p-solvable, all p-Brauer tables which are available in GAP to produce as many
constraints on the torsion units as possible. Additionally, the Wagner test is applied to the results,
cf. Section 5.4. In case the information suffices to obtain a proof for the Zassenhaus Conjecture for
this group the function will return true and false otherwise. The possible partial augmentations for
elements of order k and all its powers will also be stored in the list entry HeLP_sol [k].

The prior computed partial augmentations in HeLP_sol will not be used and will be overwritten.
If you do not like the last fact, please use HeLP_All0rders (3.3.1).

Example

gap> G := AlternatingGroup(5);
Alt( [ 1 ..51)

gap> HeLP_ZC(G);

true

gap> C := CharacterTable("A5");

CharacterTable( "A5" )

gap> HeLP_ZC(C);

true

gap> HeLP_sol;

cccrc+1211, 0000207171, CCC1111,,
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rcrco,111, 01,0111, L[ 1,,,, I
]
gap> HeLP_PrintSolution();
Solutions for elements of order 2:

L ul,

[ ["2a" 11,

L -1,

L (1111
Solutions for elements of order 3:

L ul,

[ ["3" 11,

L -1,

L (1111
Solutions for elements of order 5:

[ ul,

[ [ll5all’ l|5bll ] ],

L -1,

L Lo, 111,

L [1, 07111
There are no admissible partial augmentations
There are no admissible partial augmentations
There are no admissible partial augmentations
There are no admissible partial augmentations

],’7’, [

for
for
for
for

]”1,,’7’,”1’,, [ :I

of
of
of
of

order 6.
10.
15.
30.

elements
order
order

elements
elements

elements order

This is the classical example of Luthar and Passi to verify the Zassenhaus Conjecture for the alternat-
ing group of degree 5, cf. [LP89]. In the first call of HeLP_ZC this is checked using the character table
computed by GAP using the given group, the second call uses the character table from the character

table library. The entries of HeLP_sol are

* lists with entries 0 and 1 (at the spots 1, 2, 3 and 5, which correspond to torsion units that are

conjugate to group elements),

* empty lists (at the spots 6, 10, 15 and 30, stating that there are no admissible partial augmenta-

tions for these orders),

* or are not bound (these orders were not checked as they don’t divide the exponent of the group).

The function HeLP_PrintSolution (3.8.1) can be used to display the result in a pretty way.

Example
gap> C := CharacterTable( "A6" );
CharacterTable( "A6" )
gap> SetInfolLevel (HeLP_Info, 2);
gap> HeLP_ZC(C);

#I Checking order 2

#I Checking order 3.
#I Checking order 4.
#I Checking order 5

#I Checking order 6.
#I Checking order 10.
#I Checking order 12.
#I Checking order 15.
#I Checking order 20.
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#I Checking order 30.

#I Checking order 60.

#I ZC can’t be solved, using the given data, for the orders: [ 6 ].
false

gap> HelLP_sol[6];
tcrft1+1,00,21,0-2,2,1211, (011, 01,01, [-2,1,211]1
gap> HeLP_PrintSolution(6) ;

Solutions for elements of order 6:

[ [ u~3, u~2, ul,
[ [ "ogn ] R [ n3g" s n3p" ] R [ nog" R n3g" R n3p" ] ] s
[ ] TT 7 I :I’
I: [ 1 :I E) I: O’ 1 :I > I: _21 2, 1 ] :I B
[ [ 1 ] H) [ 1’ 0 ] > [ _21 1’ 2 ] :I ]

gap> SetInfolevel (HeLP_Info, 1);

This is the example M. Hertweck deals with in his article [HerO8c]. The HeLP-method is not suf-
ficient to verify the Zassenhaus Conjecture for this group. There are two tuples of possible partial
augmentations for torsion units of order 6 which are admissible by the HeLP method. M. Hertweck

used a different argument to eliminate these possibilities.
Example

gap> G := SmallGroup(48,30);;

gap> StructureDescription(G) ;

"A4 : C4"

gap> HeLP_ZC(G);

#I ZC can’t be solved, using the given data, for the orders: [ 4 ].
false

gap> Size(HeLP_sol[4]);

10

The group SmallGroup(48,30) is the smallest group for which the HeLP method does not suffice to
prove the Zassenhaus Conjecture. However (ZC) was proved for this group in [HKO06], Proposition

4.2.
Example

gap> Cl1 := CharacterTable(SymmetricGroup(5));

CharacterTable( Sym( [ 1 .. 51 ) )

gap> HeLP_ZC(C1);

#I The Brauer tables for the following primes are not available: [ 2, 3, 5 ].
#I ZC can’t be solved, using the given data, for the orders: [ 4, 6 ].

false

gap> C2 := CharacterTable("S5");

CharacterTable( "A5.2" )

gap> HeLP_ZC(C2) ;

true

This example demonstrates the advantage of using the GAP character table library: Since GAP can’t
compute the Brauer tables from the ordinary table of S5 in the current implementation, they are not
used in the first calculation. But in the second calculation HeLP_ZC accesses the Brauer tables from
the library and can prove the Zassenhaus Conjecture for this group, see [HerO7], Section 5. This

example might of course change as soon as GAP will be able to compute the needed Brauer tables.
Example

gap> C := CharacterTable("M11");
CharacterTable( "M11" )
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gap> HeLP_ZC(C);

#I ZC can’t be solved, using the given data, for the orders: [ 4, 6, 8 ].
false

gap> HeLP_sol[12];

[ 1]

gap> HeLP_PrintSolution(8);

Solutions for elements of order 8:

[ [ u~4, u~2, ul,
[ [ "2a" 1], [ "2a", "4a" ], [ "2a", "4a", "8a", "8b" ] 1,
[ -—, -—, ---1,
L [ 11, [o, 11, [0, 0,0,111,
L [ 11, [0, 11, [0, 0,1, 011,
L [11, [0, 11, [0, 2, -1, 011,
[ [ 11, [o, 11, [o,2,0, -111,
[ [ 11, [2, -11, [o,o0,0,111,
L [ 11, [2, -11, [0, 0,1, 011,
L [ 11, [2, -11, [o, 2, -1, 011,
[ [11, (2, -11, [0,2,0,-1111

Comparing this example to the result in [BKO7a] one sees, that the existence of elements of order
12 in V(ZM;;) may not be eliminated using only the HeLP method. This may be done however by
applying also the Wagner test, cf. Section 5.4 and the example for the function HeLP_WagnerTest
(3.7.1).

This example also demonstrates, why also the partial augmentations of the powers of u must be
stored (and not only the partial augmentations of u). To prove that all elements of order 8 in V(ZM)
are rationally conjugate to group elements, it is not enough to prove that all elements u of order 8
in V(ZM;) have all partial augmentations 1 and 0, as the fifth and sixth possibility from above still
could exist in V(ZM,; ), which would not be rationally conjugate to group elements.

2.2 Prime Graph Question

This function checks whether the Prime Graph Question ((PQ) for short, cf. Section 5.1) can be
verified using the HeLP method with the data available in GAP.

2.2.1 HeLP_PQ

> HeLP_PQ(OrdinaryCharacterTable|Group) (function)

Returns: true if (PQ) can be solved using the given data, false otherwise

HeLP_PQ checks whether an affirmative answer for the Prime Graph Question for the given group
can be obtained using the HeLP method, the Wagner restrictions and the data available. The argument
of the function can be either an ordinary character table or a group. In the second case it will first
calculate the corresponding ordinary character table. If the group in question is solvable, the Prime
Graph Question has an affirmative answer by a result of W. Kimmerle and the function will return
true without performing any calculations.

If the group is non-solvable, the ordinary character table and all p-Brauer tables for primes p for
which the group is not p-solvable and which are available in GAP will be used to produce as many
constraints on the torsion units as possible. Additionally, the Wagner test is applied to the results,
cf. Section 5.4. In case the information suffices to obtain an affirmative answer for the Prime Graph
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Question, the function will return true and it will return false otherwise. Let p and ¢ be distinct
primes such that there are elements of order p and ¢ in G but no elements of order pg. Then for k
being p, g or pq the function will save the possible partial augmentations for elements of order £ and
its (non-trivial) powers in HeLP_sol[k]. The function also does not use the previously computed
partial augmentations for elements of these orders but will overwrite the content of HeLP_sol. If you
do not like the last fact, please use HeLP_A110rdersPQ (3.3.2).

Example

gap> C := CharacterTable("A7");
CharacterTable( "A7" )

gap> HeLP_PQ(C);

true

The Prime Graph Question for the alternating group of degree 7 was first proved by M. Salim [Sall1].
Example

gap> C := CharacterTable("L2(19)");

CharacterTable( "L2(19)" )

gap> HeLP_PQ(C);

true

gap> HeLP_ZC(C);

#I (ZC) can’t be solved, using the given data, for the orders: [ 10 ].

false

gap> HeLP_sol[10];
rcc+1,C00,21, L0, -1, 1,0, 111,
tc11,00,21,L0,0,0,1,011,
(c1+1,01,01,L0,0,0,0, 111,
cr+i,c0t,01, 00,1, -1,1,01711]1

The HeLLP method provides an affirmative answer to the Prime Graph Question for the group L2(19),
although the method doesn’t solve the Zassenhaus Conjecture for that group, as there are two sets of
possible partial augmentations for units of order 10 left, which do not correspond to elements which
are rationally conjugate to group elements. The Zassenhaus Conjecture for this group is proved in
[BM14].

Example

gap> Cl := CharacterTable(PSL(2,7));

CharacterTable( Group([ (3,7,5)(4,8,6), (1,2,6)(3,4,8) 1) )

gap> HeLP_PQ(C1);

#I The Brauer tables for the following primes are not available: [ 2, 3, 7 ].
#I PQ can’t be solved, using the given data, for the orders: [ 6 ].

false

gap> C2 := CharacterTable("L2(7)");

CharacterTable( "L3(2)" )

gap> HeLP_PQ(C2);

true

This example demonstrates the advantage of using tables from the GAP character table library: Since
GAP can not compute the Brauer tables corresponding to C1 they are not used in the first calculation.
But in the second calculation HeLP_PQ accesses the Brauer tables from the library and can prove the
Prime Graph Question for this group, see [Her07], Section 6. This example might change, as soon as
GAP will be able to compute the Brauer tables needed.
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Example
gap> SetInfolevel (HeLP_Info,2);

gap> C := CharacterTable("A6");
CharacterTable( "A6" )

gap> HeLP_PQ(C);

#I Checking order 2

#I Checking order 3.

#I Checking order 5.

#I Checking order 6.

#I Checking order 10.

#I Checking order 15.

#I PQ can’t be solved, using the given data, for the orders: [ 6 ].
false

gap> SetInfoLevel (HeLP_Info,1);

The Prime Graph Question can not be confirmed for the alternating group of degree 6 with the HeL.P-
method. This group is handled in [Her0O8c] by other means.
Example

gap> C := CharacterTable("L2(49)");

CharacterTable( "L2(49)" )

gap> HeLP_PQ(C);

#I The Brauer tables for the following primes are not available: [ 7 ].

#I (PQ) can’t be solved, using the given data, for the orders: [ 10, 15 ].
false

This example shows the limitations of the program. Using the Brauer table for the prime 7 one can
prove (PQ) for PSL(2,49), but this data is not available in GAP at the moment. The fact that there are
no torsion units of order 10 and 15 was proved in [Her07], Proposition 6.7. See also the example in
Section 4.5. The other critical orders were handled in a more general context in [BM16].



Chapter 3

Further functions

A short remark is probably in order on the three global variables the package is using: HeLP_CT,
HeLP_sol and HeLP_settings. The first one stores the character table for which the last calculations
were performed, the second one containing at the k’s spot the already calculated admissible partial
augmentations of elements of order k (and its powers u¢ for d # k a divisor of k). If a function
of the HeLLP-package is called with a character table different from the one saved in HeLP_CT then
the package tries to check if the character tables belong to the same group. This can be done in
particular for tables from the ATLAS. If this check is successful the solutions already written in
HeLP_sol are kept, otherwise this variable is reset. For a more detailed account see Sections 4.2, 5.2
and HeLP_ChangeCharKeepSols (3.4.1). In most situations, the user does not have to worry about
this, the program will take care of it as far as possible. HeLP_settings is a varaible which is used to
store some settings of the program.

3.1 Checks for specific orders

3.1.1 HeLP WithGivenOrder

> HeLP_WithGivenOrder (CharacterTable|ListO0fClassFunctions, ord) (function)
Returns: List of admissible partial augmentations
Calculates the admissible partial augmentations for elements of order ord using only the data
given in the first argument. The first argument can be an ordinary character table, a Brauer table, or a
list of class functions, all having the same underlying character table. This function only uses the con-
straints of the HeLLP method (from the class functions given), but does not apply the Wagner test 5.4. If
the constraints allow only a finite number of solutions, these lists will be written in HeLP_sol [ord].
If for divisors d of ord solutions are already calculated and stored in HeLP_sol[d], these will be
used, otherwise the function HeLP_WithGivenOrder will first be applied to this order and the data
given in the first argument.
Example

gap> C := CharacterTable("A5");

CharacterTable( "A5" )

gap> HeLP_WithGivenQOrder(C, 5);

#I Number of solutions for elements of order 5: 2; stored in HeLP_sol[5].
crco,111,C0C1,011]1

gap> HeLP_PrintSolution(5);

Solutions for elements of order 5:

[ [ ul,.

12
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[ [ ||5a|| s l|5b|| ] ] s
[ -—-1,
L Lo, 111,

[ [1,011]1

Tests which partial augmentations for elements of order 5 are admissible.
Example

gap> C := CharacterTable("A6");

CharacterTable( "A6" )

gap> HeLP_WithGivenOrder(C, 4);

#I Number of solutions for elements of order 4: 4; stored in HeLP_soll[4].

crft+1,0-1,211,0C11,[2,-1211, 011, 1,011,
L1111, [0,111]1

gap> HeLP_sol[4];

ccft+1,0-1,211,CCt1,[2,-211,CC11,C1,011,
L1211, [0,111]1]

Two of the non-trivial partial augmentations can be eliminated by using the Brauer table modulo the
prime 3:

Example
gap> HeLP_WithGivenOrder(C mod 3, 4);

#I Number of solutions for elements of order 4: 2; stored in HeLP_sol[4].

tcct1l,01,011, 0C1], C0,111]1

When using HeLP_ZC also the last remaining non-trivial partial augmentation disappears, as this func-
tion applies the Wagner test, cf. 5.4 and HeLP_WagnerTest (3.7.1):
Example

gap> HeLP_ZC(C);

#I ZC can’t be solved, using the given data, for the orders: [ 6 ].
false

gap> HeLP_sol[4]; HeLP_sol[6];

tcct1l,00,111]1
tcct1l,c00,11,0-2,2,211,C0C011,C1,01, [-2,1,21]11]

The following example demonstrates how one can use lists of characters to obtain constraints for
partial augmentations:

Example
gap> C := CharacterTable("L2(49).2_1");
CharacterTable( "L2(49).2_1" )

gap> HeLP_WithGivenOrder (Irr(C), 7);;

#I Number of solutions for elements of order 7: 1; stored in HeLP_soll[7].
gap> HeLP_WithGivenOrder (Irr(C){[2]}, 14);

#I The given data admit infinitely many solutions for elements of order 14.
gap> HeLP_WithGivenOrder (Irr(C){[44]}, 14);

#I The given data admit infinitely many solutions for elements of order 14.
gap> HeLP_WithGivenOrder (Irr(C){[2,44]1}, 14);

#I Number of solutions for elements of order 14: 0; stored in HeLP_sol[14].

(N

Brauer tables can provide more restrictions on partial augmentations of certain torsion units:
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Example
gap> C := CharacterTable("J1");
CharacterTable( "J1" )

gap> HeLP_WithGivenQOrder(C, 6);;

#I Number of solutions for elements of order 6: 73; stored in HeLP_sol[6].
gap> B := C mod 11;

BrauerTable( "J1", 11 )

gap> HeLP_WithGivenQOrder (B, 6);;

#I Number of solutions for elements of order 6: 6; stored in HeLP_sol[6].
gap> HeLP_WithGivenOrder (Irr(B){[2,3]}, 6);;

#I Number of solutions for elements of order 6: 6; stored in HeLP_soll[6].
gap> HeLP_PrintSolution(6);

Solutions for elements of order 6:

[ [ u~3, u~2, u ],
[ [ l|2al| ]’ [ l|3a|l ]’ [ ll2al|’ ||3al|’ l|6a|l ] ]’
L ---, -, ---1,
L L 11, [ 11, [ -2, 0,311,
L L 11, [ 11, [L2,0, -111,
L [11], [11], [0o,0, 111,
L [ 11, [11], [ -4, 3,211,
L [11], [11], Lo, 3, -211,
L L 11, [ 11, [ -2, 3, 0111

The result of the previous example can be found in [BJK11].
When dealing with many variables using lists of characters instead of a complete character table

might also speed up the calculations a lot, see Section 4.3.
Example

gap> C := CharacterTable("L2(27)");

CharacterTable( "L2(27)" )

gap> HeLP_WithGivenQOrder(C,7);;

#I Number of solutions for elements of order 7: 78; stored in HeLP_sol[7].
gap> SetInfolevel (HeLP_Info,4);

gap> HeLP_WithGivenOrder (C,3%7);

#I Solutions for order 3 not yet calculated. Restart for this order.
#I Number of solutions for elements of order 21: 0; stored in HeLP_sol[21].
[ 1]

gap> SetInfolevel (HeLP_Info,1);

HeLP_WithGivenOrder often needs to consider many cases. Set the info class HeLP_Info to a level
4 or higher to keep track of the progress, see Section 4.4 on info levels.

3.1.2 HeLP WithGivenOrderAndPA

> HeLP_WithGivenOrderAndPA(CharacterTable|ListOfClassFunctions, ord, partaugs)
(function)

Returns: List of admissible partial augmentations
Calculates the admissible partial augmentations for elements of order ord using only the data
given in the first argument. The first argument can be an ordinary character table, a Brauer table, or
a list of class functions, all having the same underlying character table. The function uses the partial
augmentations for the powers u¢ with d divisors of k different from 1 and k given in partaugs. Here,
the d’s have to be in a descending order (i.e. the orders of the u?’s are ascending). This function
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only uses the constraints of the HeLLP method, but does not apply the Wagner test 5.4. Note that this
function will not affect HeLP_sol.

Example
gap> G := SmallGroup(48,33);; StructureDescription(G);

"SL(2,3) : C2"

gap> C := CharacterTable(G);;

gap> HeLP_WithGivenOrder(C, 4);;

#I Number of solutions for elements of order 4: 4; stored in HeLP_soll[4].
gap> HeLP_WithGivenQOrder(C, 6);;

#I Number of solutions for elements of order 6: 2; stored in HeLP_sol[6].
gap> HeLP_sol[4]; HeLP_sol[6];

rrft,o01,0,1,0,0,011, 1,01, [0,0,0,0, 111,

trti o031, 00,0,0,2,011, (1,01, [0,0,1,0,011]1
rrri1,01, 00,11, [0,0,0,0,1,011,

(1,01, 1,01, [0,0,0,0,0,171711

gap> HeLP_WithGivenOrderAndPA(C, 12, [ [ 1, 01, [0, 1], [0, 0, 0,0, 11,
> [0, 0, 0,0,1,011);

#I Number of solutions for elements of order 12 with these partial augmentation
s for the powers: 1.

[ [ [ 1’ O ]’ [ 0’ 1 ]’ [ 0’ 07 O’ 0’ 1 ]’ [ O’ 07 O’ 0’ 1’ O ]7
£o,o,0,0,0,0,0,0,0,0,1,0,011]1]
gap> HeLP_WithGivenOrderAndPA(C, 12, [ [ 1, 01, [0, 11, [0, 0,0, 1,01,

> (0,0,0,0,1, 01 1);
#I Number of solutions for elements of order 12 with these partial augmentation
s for the powers: O.

(N

In the calls of HeLP_WithGivenOrderAndPA the function uses the following partial augmentations:
e [ 1, 0 ] for the element u® of order 2,
e [ 0, 1 ] forthe element u* of order 3,
«[0,0,0,0,1]and[ 0, 0, 0, 1, O ] for the element 13 of order 4 respectively,

« [0, 0, 0,0, 1, 0] forthe element u? of order 6.

3.1.3 HeLP_WithGivenOrderAndPAAndSpecificSystem

> HeLP_WithGivenOrderAndPAAndSpecificSystem(list, ord, partaugs[, bl) (function)

Returns: List of admissible partial augmentations

Calculates the admissible partial augmentations for elements of order ord using only the data
given in the first argument. The first argument is a list, which can contains as entries characters or
pairs with first entry a character and second entrie an integer or a mixture of these. The first argument
is understood as follows: If a character ) is not given in a pair all inequalities obtainable by this
character are used. If it is given in a pair with the integer m the inequalities obtainable from the
multiplicity of E(ord) taken to the power m as an eigenvalue of a representation affording y are used.
The function uses the partial augmentations for the powers u¢ with d divisors of k different from 1
and k given in partaugs. Here, the d’s have to be in a descending order (i.e. the orders of the u“’s
are ascending). This function only uses the constraints of the HeLP method, but does not apply the
Wagner test 5.4. Note that this function will not affect HeLP_sol.
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Example

gap> C := CharacterTable("A5");

CharacterTable( "A5" )

gap> chi := Irr(C)[2];; psi := Irr(C)[4];

Character( CharacterTable( "A5" ), [ 4, 0, 1, -1, -1 ] )

gap> HeLP_WithGivenOrderAndPAAndSpecificSystem([[chi, 11, [chi, 211,

> 5, [ 1, true);

rccco,111, 01,0111, CCTC-3/5,2/51, [2/5,-3511, [3/5,3/517]]1]
gap> solb := HeLP_WithGivenOrderAndPAAndSpecificSystem([[chi, 1], [chi, 217,

> 5, [ 1);

tcfto,111, 01,0111

The inequalities in the above examples are:

-3 2 3 2 -3 3
?SSa(u) + gesb(u) + 5 € Z>o and gSSa(u) + ?851,(11) + 3 € Z>o.

Continuing the above example:

Example
gap> HeLP_WithGivenOrderAndPAAndSpecificSystem([psi],

> 2x5, [[1], sol5[1]1[1]1], true);
(c 1, cro, -2/5, -2/51, [0, -1/10, -1/10 1, [ 0, 1/10, 1/10 1,
(o, -1/10, -t/101, [0, 1/10, 1/10 1, [ 0, 2/5, 2/5 1,
(o, t/10, /101, [ 0, -1/10, -1/10 1, [ 0, 1/10, 1/10 1],
(o, -1/10, -1/201 1, [ 0, 1/2, 1/2, 1/2, 1/2, 0, 1/2, 1/2, 1/2, 1/2 1 1]
gap> HeLP_WithGivenOrderAndPAAndSpecificSystem([[psi, 0], [psi, 21, [psi, 511,
> 2x5, [[1], sol5[2][1]], true);
rc 1, rcrcrto, -2/5, -2/51, [ 0, 1/10, 17101, [ 0, 2/5, 2/51 1, [0, 1/2, 01 ]

3.2 Checks for specific orders with s-constant characters

When considering elements of order st (in absence of elements of this order in the group ; in particular
when trying to prove (PQ)) and there are several conjugacy classes of elements of order s, it might be
useful to consider s-constant characters (cf. Section 5.5) to reduce the computational complexity.

3.2.1 HeLP_WithGivenOrderSConstant

> HeLP_WithGivenOrderSConstant(CharacterTable|List0fClassFunctions, s, t) (func-
tion)

Returns: List of admissible "partial augmentations” or "infinite"

Calculates the admissible partial augmentations for elements u of order s ¢ using only the s-
constant class functions that are contained in the first argument. The first argument can be an ordinary
character table, a Brauer table, or a list of class functions, all having the same underlying character
table. s and t have to be different prime numbers, such that there are elements of order s and t in
the group, but no elements of order sx*¢.

The function filters which class functions given in the first argument are constant on all conjugacy
classes of elements of order s. For the element #° of order t the partial augmentations given in
HeLP_sol[t] are used. If they are not yet calculated, the function calculates them first, using the data
given in the first argument and stores them in HeLP_sol[t]. This function only uses the constraints
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of the HeLLP method, but does not apply the Wagner test 5.4. If these calculations allow an infinite
number of solutions of elements of order st the function returns "infinite", otherwiese it returns the
finite list of solutions for elements of order s *¢. The first entry of every solution is a list of the partial
augmentations of #* and the second entry is a list of the "partial augmentations" for u: the first entry
of this list is the sum of the partial augmentations on all classes of elements of order s and the other
entries are the partial augmentations on the classes of order t. Only in the case that the existence of
units of order st can be excluded by this function the variable HeLP_sol [s*t] will be affected and
HeLP_sol[s*t] willbesetto [ ].

Example

gap> C := CharacterTable("A6");;

gap> HeLP_WithGivenQOrder(C, 6);

#I Number of solutions for elements of order 6: 2; stored in HeLP_sol[6].
tcft+1,00,11,0-2,2,2711,CC1]1, 01,01, [-2,1,211]1
gap> HeLP_WithGivenOrderSConstant(C, 2, 3);
tcto,11,0-2,2,111, (1,01, [-2,1,2711]1

gap> HeLP_WithGivenQOrderSConstant(C, 3, 2);

CCC11,[038,-2111

Example
gap> C := CharacterTable("Sz(8)");;

gap> SetInfolevel (HeLP_Info, 4);

gap> HeLP_WithGivenOrderSConstant(C, 7, 13);

#1 Partial augmentations for elements of order 13 not yet calculated. Restar
t for this order.

#I Number of non-trivial 7-constant characters in the list: 7.

L1

gap> SetInfolevel (HeLP_Info, 1);

The last example can also be checked by using all characters in C, but this takes notably longer.
Example

gap> C := CharacterTable("Sz(32)");
CharacterTable( "Sz(32)" )
gap> L := Filtered(OrdersClassRepresentatives(C), x-> x = 31);; Size(L);

15 # I.e. HeLP_WithGivenOrder(C,31) would take hopelessly long
gap> HeLP_WithGivenOrderSConstant(C mod 2, 31, 5);

L]

gap> IsBound(HeLP_sol[31]);

false

We still have no clue about elements of order 31, but there are none of order 5*31.

3.2.2 HeLP_AddGaloisCharacterSums

> HeLP_AddGaloisCharacterSums(CT) (function)
Returns: List of characters
Given an ordinary character table CT the function calculates the orbits under the action of the
Galois group and returns a list of characters containing the ones contained in CT and the ones obtained
by summing up the Galois-orbits.
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3.3 Checks for all orders

3.3.1 HeLP_AllOrders

> HeLP_Al10rders(CharacterTable/Group) (function)

Returns: true if (ZC) can be solved using the given data, false otherwise

This function does almost the same as HeLP_ZC (2.1.1). It checks whether the Zassenhaus Conjec-
ture can be verified for a group, but does not compute the partial augmentations of elements of order
k, if HeLP_sol [k] already exists. It does however verify the solutions given in HeLP_sol using all
available tables for the group, see HeLP_VerifySolution (3.6.1). Thus some precalculations using
e.g. HeLP_WithGivenOrder (3.1.1) are respected. In contrast to HeLP_ZC (2.1.1) this function also
does not check whether the group is nilpotent to use the Weiss-result to have an immediate positive
solution for (ZC).

This function is interesting if one wants to save time or possesses some information, which was
not obtained using this package and was entered manually into HeLP_sol.

Example

gap> C := CharacterTable(PSL(2,7));
CharacterTable( Group([ (3,7,5)(4,8,6), (1,2,6)(3,4,8) 1) )
gap> HeLP_ZC(C);

#I The Brauer tables for the following primes are not available: [ 2, 3, 7 ].
#I (ZC) can’t be solved, using the given data, for the orders: [ 6 ].

false

gap> HeLP_sol[6] := [ 1;

[ 1]

gap> HeLP_A110rders(C);

true

3.3.2 HeLP_AllOrdersPQ

> HeLP_A110rdersPQ(CharacterTable|Group) (function)

Returns: true if (PQ) can be solved using the given data, false otherwise

This function does almost the same as HeLP_PQ (2.2.1). It checks whether the Prime Graph Ques-
tion can be verified for a group, but does not compute the partial augmentations of elements of order k,
if HeLP_sol [k] already exists. Thus some precalculations using e.g. HeLP_WithGivenOrder (3.1.1)
are respected. In contrast to HeLP_PQ (2.2.1) this function also does not check whether the group is
solvable to use the Kimmerle-result to have an immediate positive solution for (ZC).

This function is interesting if one wants to save time or possesses some information, which was
not obtained using this package and was entered manually into HeLP_sol.

Example

gap> C := CharacterTable("A12");

CharacterTable( "A12" )

gap> HelP_WithGivenOrder (Irr(C){[2, 4, 71}, 2);;

#I Number of solutions for elements of order 2: 37; stored in HeLP_sol[2].
gap> HeLP_WithGivenQOrderSConstant(C mod 3,11,2);

[ ]

gap> HeLP_WithGivenOrder (Irr(C mod 2){[2, 3, 4, 61}, 3);;

#I Number of solutions for elements of order 3: 99; stored in HeLP_sol[3].
gap> HeLP_WithGivenOrderSConstant(C mod 2, 11, 3);

[ ]
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gap> HeLP_A110rdersPQ(C);
true

Thus the Prime Graph Question holds for the alternating group of degree 12. Just using HeLP_PQ(C)
would take hopelessly long.

3.4 Changing the used Character Table

3.4.1 HeLP_ChangeCharKeepSols

> HeLP_ChangeCharKeepSols(CT) (function)

Returns: nothing

This function changes the used character table to the character table CT and keeps all the solutions
calculated so far. It is in this case the responsibility of the user that the tables belong to the same
group and the ordering of the conjugacy classes in CT is consistent with the one in the previously
used table. This function can be used to change from one table of the group to another, e.g. from
a Brauer table to the ordinary table if the calculations will involve p-singular elements. (In case the
involved character tables come from the ATLAS and their InfoText begins with "origin: ATLAS of
finite groups", this is done automatically by the program.) A user may also use characters, which are
normally not accessible in GAP.

To keep track of the change of the character tables one can set HeLP_Info to level 5. In this
first example it is not realized that the character tables belong to the same group, so the solutions for
elements of order 2 are recalculated (they have been reset, as another character table is used).
Example

gap> SetInfoLevel (HeLP_Info, 5);

gap> C := CharacterTable(SymmetricGroup(4));

CharacterTable( Sym( [ 1 .. 41 ) )

gap> HeLP_WithGivenOrder (C mod 2, 3);

#I USED CHARACTER TABLE CHANGED TO BrauerTable( SymmetricGroup( [ 1 .. 41 ), 2
), ALL GLOBAL VARIABLES RESET.

#I Number of solutions for elements of order 3: 1; stored in HeLP_soll[3].
LLCL1111

gap> HeLP_WithGivenOrder (C, 2%3);

#I USED CHARACTER TABLE CHANGED TO CharacterTable( SymmetricGroup( [ 1 .. 4 ] )
), ALL GLOBAL VARIABLES RESET.

#1 Solutions for order 2 not yet calculated. Restart for this order.

#I Solutions for order 3 not yet calculated. Restart for this order.

#I Number of solutions for elements of order 6: 0; stored in HeLP_soll[6].

(N

The recalculations of the solutions can be avoided by calling HeLP_ChangeCharKeepSols before

using another character table.

Example

gap> D := CharacterTable(SymmetricGroup(4));

CharacterTable( Sym( [ 1 .. 41 ) )

gap> HeLP_WithGivenOrder (D mod 2, 3);

#I USED CHARACTER TABLE CHANGED TO BrauerTable( SymmetricGroup( [ 1 .. 41 ), 2
), ALL GLOBAL VARIABLES RESET.

#I Number of solutions for elements of order 3: 1; stored in HeLP_sol[3].
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[ I T I I

gap> HeLP_ChangeCharKeepSols (D) ;

#I WARNING: Change used character table without checking if the character table
s have the same underlying groups and the ordering of the conjugacy classes are
the same!

gap> HeLP_WithGivenQOrder (D, 2%3);

#I Using same character table as until now; all known solutions kept.

#I Solutions for order 2 not yet calculated. Restart for this order.

#I Number of solutions for elements of order 6: 0; stored in HeLP_soll[6].

L1

When using tables from the ATLAS this is done automatically:
Example

gap> CA := CharacterTable("A5");

CharacterTable( "A5" )

gap> HeLP_WithGivenOrder (CA mod 2, 5);

#I USED CHARACTER TABLE CHANGED TO BrauerTable( "A5", 2 ), ALL GLOBAL VARIABLES
RESET.

#I Testing possibility 1 out of 1.

#I Number of solutions for elements of order 5: 2; stored in HeLP_soll[5].
(cco, 111, [01,0171]1

gap> HeLP_WithGivenOrder (CA, 2%5);

#I Using character table of the same group; all known solutions kept.

#I Solutions for order 2 not yet calculated. Restart for this order.
#I Number of solutions for elements of order 10: 0; stored in HeLP_sol[10].
[ 1]

gap> SetInfoLevel (HeLP_Info, 1);

3.4.2 HeLP Reset

> HeLP_Reset() (function)
Returns: nothing
This function delets all the values calculated so far and resets the global variables HeLP_CT
and HeLP_CT to their initial value [ [ [1] ] ] and CharacterTable(SmallGroup(1,1)) respec-
tively.

3.5 Influencing how the Systems of Inequalities are solved

HeL P uses currently three external programs (i.e. programs that are not part of the GAP-system):
zsolve from 4ti2 and/or normaliz to solve the systems of linear inequalities and redund from Irslib to
simplify the inequlities before handing them over to the solver (HeLLP can also be used without Irslib
installed. In general it is recommanded to have Irslib installed, if 4ti2 is used as the solver). The
following functions can be used to influence the behaviour of these external programms.

3.5.1 HeLP_Solver

> HeLP_Solver([string]) (function)
Returns: nothing
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This function can be used to change the solver used for the HeLP-system between 4ti2 and nor-
maliz. If the function is called without an argument it prints which solver is currently used. If the
argument it is called with is one of the stings "4ti2" or "normaliz", then the solver used for future cal-
culations is changed to the one given as argument in case this solver is found by the HeLP-package.
If both solvers are found when the package is loaded normaliz is taken as default.

3.5.2 HeLP_UseRedund

> HeLP_UseRedund(bool) (function)

Returns: nothing

This function determines whether HeLLP uses 'redund’ from the Irslib-package to remove redun-
dant equations from the HeLLP system. If bool is true 'redund’ will be used in all calculation that
follow, if it is false, 'redund’ will not be used (which might take significantly longer). If 'redund’
was not found by GAP a warning will be printed and the calculations will be performed without ’re-
dund’. As default 'redund’ will be used in all calculations, if 4ti2 is the chosen solver, and 'redund’
will not be used, if normaliz is used.

3.5.3 HeLP_Change4ti2Precision

> HeLP_Change4ti2Precision(string) (function)
Returns: nothing
This function changes the maximum precision of the calculations of 4ti2 to solve the occurring
systems of linear inequalities. The possible arguments are "32", "64" and "gmp". After calling the
function the new precision will be used until this function is used again. The default value is "32". A
higher precision causes slower calculations. But this function might be used to increase the precision
of 4ti2, when one gets an error message like "Error, 4ti2 Error: Results were near maximum precision
(32bit). Please restart with higher precision!" stating that the results were close to the maximum
4ti2-precision. normaliz does automatically change its precision, when it reaches an overflow.
Sometimes it is desirable to perform calculations without redund (even if it is installed and in
many cases improves the performance of the package) or with a higher precision. For example,
determining the partial augmentations for units of order 14 for SmallGroup (392, 30) involves very
long calculations (when called with redund and precision 32) or cause errors (when called without
redund and precision 32). However, the following works in a reasonable time.
Example
gap> C := CharacterTable(SmallGroup(392,30));
CharacterTable( <pc group of size 392 with 5 generators> )
gap> HeLP_Solver("4ti2");
’4ti2’ will be used from now on.
gap> HeLP_UseRedund(false);
The calculations will be performed without using ’redund’ from now on.
gap> HeLP_ZC(C);
Error, 4ti2 Error:
Results were near maximum precision (32bit).
Please restart with higher precision!
If you continue, your results might be wrong called from
4ti2Interface_zsolve_equalities_and_inequalities(
[ ListWithIdenticalEntries( Size( T[1] ), 1) 1, [ 1 1, temp[1], - temp[2]
) called from
HeLP_TestSystemINTERNAL( W[1], W[2], k, arg[3] ) called from
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HeLP_WithGivenOrderAndPAINTERNAL( C, k, pa ) called from
HeLP_WithGivenOrderINTERNAL( Irr( T ), k ) called from
<function "HeLP_ZC">( <arguments> )
called from read-eval loop at line 19 of *stdinx*
you can ’quit;’ to quit to outer loop, or
you can ’return;’ to continue
gap> brk> quit;
#I Options stack has been reset
gap> HeLP_Change4ti2Precision("64");
The calculations of 4ti2 will be performed with precision 64 from now on.
gap> HeLP_ZC(C);
true

3.5.4 HeLP_Vertices

> HeLP_Vertices(string)
Returns: nothing
If normlaiz is used as the solver of the HeLLP-system this function influences, whether the "Ver-
ticesOfPolyhedron” are computed by normaliz. By default these are only computed, if the system has

a trivial solution. The function takes "vertices", "novertices" and "default" as arguments. If you do
not understand what this means, don’t worry.

(function)

3.6 Checking solutions, calculating and checking solutions

3.6.1 HeLP_VerifySolution

> HeLP_VerifySolution(CharacterTable|ListOfClassFunctions, k[, list_paraugs])
(function)

Returns: List of admissible partial augmentations

This function checks which of the partial augmentations for elements of order k given in
HeLP_sol[k] or the optional third argument 1ist_paraugs fulfill the HeLP equations obtained
from the characters in the first argument. This function does not solve any inequalities, but only
checks, if the given partial augmentations fulfill them. It is for this reason often faster then e.g.
HeLP_WithGivenOrder (3.1.1).

If there is no third argument given, i.e. the augmentations from HeLP_sol [k] are used, the result
overwrites HeLP_sol[k].

Example

gap> C := CharacterTable("A6");;

gap> HeLP_WithGivenOrder(C, 4);

#I Number of solutions for elements of order 4: 4; stored in HeLP_soll[4].

ccrft+1,0-1,211,0C11,[2,-1211, 011, [1,011,
[LL1]1,[0,111]1]

gap> HeLP_VerifySolution(C mod 3, 4);

ccft1+1, 01,011, CC11,C0,1111

gap> HelLP_sol[4];

ccft+1, 01,011, CC11,C00,1211]1

Example
gap> C := CharacterTable("S12");;

gap> HelP_WithGivenOrder (Irr(C mod 5){[2..6]1}, 2);;
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#I Number of solutions for elements of order 2: 563; stored in HeLP_sol[2].
gap> HeLP_VerifySolution(C mod 5, 2);;

gap> Size(HeLP_sol[2]);

387

gap> HeLP_VerifySolution(C mod 3, 2);;

gap> Size(HeLP_sol[2]);

324

Using HeLP_WithGivenOrder(C mod 5, 2) or HeLP_WithGivenOrder(C mod 3, 2) takes
much longer since in that case a bigger system of inequalities must be solved.

3.6.2 HeLP_FindAndVerifySolution

> HeLP_FindAndVerifySolution(CharacterTable[ListOfClassFunctions, k) (function)

Returns: List of admissible partial augmentations or "infinite"

This function provides the same functionality as HeLP_WithGivenOrder (3.1.1) but in-
stead of constructiong the corresponding system with all characters from the first argument
CharacterTable|ListOfClassFunctions it does it consecutively with larger sets of characters
from the argument until a finite list of solutions is found and then applies HeLP_VerifySolution
(3.6.1) to these solutions with the entirety of the class functions in the first argument.

This function is sometimes faster than HeLP_WithGivenOrder (3.1.1), but the output is the same,
thus the examples from HeLP_WithGivenOrder (3.1.1) also apply here.

3.6.3 HeLP_PossiblePartialAugmentationsOfPowers

> HeLP_PossiblePartialAugmentationsOfPowers(n) (function)

Returns: List of partial augmentations of powers.

This function provides the possible partial augmentations of the powers of units of a given order n,
if the partial augmentations if units of order n/p have been already computed for all primes p dividing
n. The possibilities are sorted in the same way as, if the order n is checked with any other function
like e.g. HeLP_WithGivenOrder (3.1.1) or HeLP_ZC (2.1.1). Thus, if the InfoLevel is high enough
and one obtains that the computation of some possibility is taking too long, one can check it using
HeLP_WithGivenOrderAndPA (3.1.2).

Example

gap> SetInfoLevel (HeLP_Info,4);

gap> C := CharacterTable(SmallGroup(160,91));

CharacterTable( <pc group of size 160 with 6 generators> )

gap> HeLP_WithGivenOrder(C,4);;

#1 Solutions for order 2 not yet calculated. Restart for this order.
#I Number of solutions for elements of order 4: 22; stored in HeLP_sol[4].
gap> HeLP_WithGivenOrder(C,10);;

#I Solutions for order 5 not yet calculated. Restart for this order.
#I Number of solutions for elements of order 10: 6; stored in HeLP_sol[10].
gap> LP := HeLP_PossiblePartialAugmentationsOfPowers(20);;

gap> HeLP_WithGivenOrderAndPA(Irr(C){[2..20]1},20,LP[1]);

#I Number of solutions for elements of order 20 with these partial augmentations
for the powers: 0.

L1
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3.7 The Wagner test

3.7.1 HeLP_WagnerTest

> HeLP_WagnerTest(k[, list_paraugs, OrdinaryCharacterTable]) (function)
Returns: List of admissible partial augmentations
This function applies the Wagner test (cf. Section 5.4) to the given data. If only the order k is
given as argument, the Wagner test will be applied to the solutions stored in HeLP_sol [k]. If the
arguments are the order k, a list of possible solutions 1ist_paraugs and an ordinary character table
OrdinaryCharacterTable it applies the test to the solutions given in 1ist_paraugs and using the
number of conjugacy classes for elements a divisor of k, which will be extracted from the head of

OrdinaryCharacterTable.
Example

gap> C := CharacterTable("M11");

CharacterTable( "M11" )

gap> HeLP_WithGivenQOrder(C,8);;

#I Number of solutions for elements of order 8: 36; stored in HeLP_sol[8].
gap> HeLP_sol[8] := HeLP_WagnerTest(8);;

gap> Size(HeLP_sol[8]);

24

Thus the Wagner-Test eliminates 12 possible partial augmentations for elements of order 8. Continu-
ing the example:

Example
gap> HeLP_WithGivenQOrder(C,12);
#I Number of solutions for elements of order 12: 7; stored in HeLP_sol[12].

tccct+1,€0121,02,-11,00,38,-21,[1,0, -1, 1711,
cc+1,01t1,01,01,C0,3,-21,[0,0,0,1711,

crs+1,011,0-1,21,00,3,-21,100,0,2,-111,
tc+J1,r0+1,00,121,C00,3, 21, [1,0,1, -111,
crc+1,011,00,1]1,00,3,-21,[-1,0,1, 111,
ctcs+31,011, 01,01, [0, -3,41,[0,0,0,111,

[[1],[1],[1, 1, L0,-3,41,[1,0, -1, 1111
gap> HeLP_sol[12] := HeLP_WagnerTest(12);

tcc11, [1],[1 01, [o0,3, -21,[00,0,0, 111,

ccs+1, 011, 0-1,21,00,3,-21,00,0,2,-111,
ctcs+1, 011,021,011, [0, -3,41,[0,0,0,17111

gap> HeLP_sol[4] HeLP_WagnerTest(4);;

gap> HeLP_WithGivenQOrder(C,12);

#I Number of solutions for elements of order 12: 3; stored in HeLP_sol[12].

cccs+11,011,02,-11,00,38,-21,T[1,0,-1,111,
crf+21,Ct31,00,131,00,3,-21,[1,0,1, -111,
rc+31,C02121,L00,171,L0,3, 21, [-1,0,1,171171]1

gap> HeLP_sol[12] := HeLP_WagnerTest(12);

[ ]

Thus there are no normalized units of order 12 in the integral group ring of My;.
Example

gap> C := CharacterTable("M22");

CharacterTable( "M22" )

gap> HeLP_WagnerTest(12, [ [ [1], [1], [1,0], [0,0,11, [-3,3,2,3,-4]1 1 1,0);
L1
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This example is taken from the appendix of [BKLOS].

Sometimes the Wagner-Test may even prove the Zassenhaus Conjecture:
Example

gap> G := SmallGroup(96,187);

<pc group of size 96 with 6 generators>

gap> C := CharacterTable(G);

CharacterTable( <pc group of size 96 with 6 generators> )

gap> HeLP_WithGivenOrder(C,4);;

#I Number of solutions for elements of order 4: 34; stored in HeLP_sol[4].
gap> HeLP_WagnerTest(4) ;

[ [ [ 0’ O, 1, O’ O ]’ [ O’ O’ O, O’ O’ 0’ O’ O, 1 ] ]’
[ [ o’ O’ 1’ O’ O ]’ [ o’ O’ 0’ 0’ O’ 0’ 1’ 0’ 0 ] ]’
rro, 1 0,0,01, 0, 0, 0,0,0,1,0,0,011,
rcro,1to0,0,01,00,0,0,0,0,0,0,1, 01171
gap> HeLP_ZC(C);
true
3.8 Output
3.8.1 HeLP_PrintSolution
> HeLP_PrintSolution([k]) (function)

Returns: nothing

This function prints the possible solutions in a pretty way. If a positive integer k as argument
is given, then it prints the admissible partial augmentations of units of order k, if they are already
calculated. If no argument is given, the function prints information on all orders for which there are
already informations.

Example
gap> C := CharacterTable("A5");;
gap> HeLP_ZC(C);
true
gap> HeLP_PrintSolution();
Solutions for elements of order 2:
L ul,
[ ["2a"11,
[ --- 1,
L (1111
Solutions for elements of order 3:
(L ul,
[ ["3" 11,
L -1,
L (1111
Solutions for elements of order 5:
(L u ],
[ [ ll5all’ l|5b|l ] ]’
L -1,
L Lo, 111,
L (1,071 11
There are no admissible partial augmentations for elements of order 6.
There are no admissible partial augmentations for elements of order 10.
There are no admissible partial augmentations for elements of order 15.
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There are no admissible partial augmentations for elements of order 30.
gap> C := CharacterTable("A6");;

gap> HeLP_ZC(C);

#I ZC can’t be solved, using the given data, for the orders: [ 6 ].
false

gap> HeLP_PrintSolution(6) ;

Solutions for elements of order 6:

[ [ u~3, u-2, ul,
[ [ l|2all ] s [ "Sa" s ll3bll ] , I: ll2all s |I3all s ll3bll ] :] s
[ ] T - ] b
[ [1]’ [0,1], [_2’ 2,1]]’
I: [1]: [1’01’ [_21 1,2]]]
3.9 Eigenvalue multiplicities and character values
3.9.1 HeLP_MultiplicitiesOfEigenvalues
> HeLP_MultiplicitiesOfEigenvalues(chi, k, paraugs) (function)

Returns: a list of multiplicities of eigenvalues

The returned list contains at the /-th spot the multiplicity of E(k) ~(1-1) as eigenvalue of a unit u
of order k under the representation corresponding to chi having the partial augmentations paraugs
for the elements u for divisors d different from k.

3.9.2 HeLP_CharacterValue

> HeLP_CharacterValue(chi, k, paraug) (function)
Returns: the character value chi(u)
The function returns the character value chi(u) of an element u of order k having the partial
augmentations paraug.

Example

gap> C := CharacterTable("A6");;

gap> HeLP_WithGivenQOrder(C, 6);

#I Number of solutions for elements of order 6: 2; stored in HeLP_sol[6].
rcft11, 00,1071, 0-2,2,1211, [C1]1, 01,01, [-2,1,211]1
gap> chi := Irr(C)[2];; # a character of degree 5

gap> HeLP_MultiplicitiesOfEigenvalues(chi, 6, HeLP_sol[6][2]);

[1, 0, 1, 2, 1, O]

gap> HeLP_CharacterValue(chi, 6, HeLP_sol[6][2][3]);

-2

gap> HeLP_CharacterValue(chi, 6, [-2,1,2]);
-2

gap> HelLP_CharacterValue(chi, 6, [-2,2,1]);
1

These eigenvalues were computed manually by M. Hertweck and may be found in [HerOS8c].
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Extended examples

We will give some more extended examples which are intended to give the user an idea of the be-
haviour on different inputs, how to use the package more efficently, to use characters not available in
libraries and how InfoLevels can be helpful. We will give some more examples which are intended to
give the user an idea of the behavior on different inputs and the variable HeLLP_sol. We also give hints
how to use the package more efficiently, to use characters not available in libraries and how InfoLevels
can be helpful.

4.1 The Character Table Library

Example

gap> G := SL(2,7);
SL(2,7)
gap> HeLP_ZC(G);

#I The Brauer tables for the following primes are not available: [ 2, 3, 7 ].
#I (ZC) can’t be solved, using the given data, for the orders: [ 8 ].

false

gap> Cl1 := CharacterTable(G);

CharacterTable( SL(2,7) )

gap> HeLP_ZC(C1);

#I The Brauer tables for the following primes are not available: [ 2, 3, 7 ].
#I (ZC) can’t be solved, using the given data, for the orders: [ 8 ].

false

gap> C2 := CharacterTable("2.L2(7)");
CharacterTable( "2.L3(2)" )

gap> HeLP_ZC(C2);

true

Note that the first and the second call of HeLP_ZC (2.1.1) are equivalent — the only difference being
that in the first version the character table of the group is also calculated by the function, in the second
version the calculations are performed with the given character table. For the third call of HeLP_ZC
(2.1.1) a character table for SL2(7) is used which comes from the character table library. The different
result is due to the fact, that in the third version the Brauer tables are available (the Brauer table for
the prime p = 7 is needed to rule out some non-trivial partial augmentations for elements of order 8),
whereas for the first and the second call no Brauer tables are available in GAP.

27
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4.2 The behavior of the variable HeLP sol

This sections demonstrates when the global variable HeLP_sol is reset. This is the case if calculations

are performed using (the character table of) another group than before:
Example

gap> C := CharacterTable("A5");

CharacterTable( "A5" )

gap> HeLP_ZC(C);

true

gap> HeLP_sol;

ccrcc131311, 00003711, 00C011711,,

CCCo, 111, 001, 0111, 0 Jssss [ Jsssss [ Jossssssssssssss [

]

gap> C := CharacterTable("L3(7).2");

CharacterTable( "L3(7).2" )

gap> HeLP_WithGivenOrderAndPA(Irr(C){[3,7,9,101},21,[[1],[3,9,-11]11);

#I Number of solutions for elements of order 21 with these partial augmentation
s for the powers: 1.

cfrf:11,08,9,-11]1,[-6,0,3,411]1]

gap> HeLP_sol;

(L0011 7171]1]

The function HeLP_WithGivenOrderAndPA (3.1.2) does not write a result in HeLP_so1l [k] (as it does
not calculate all possible solutions of order k). However HeLP_sol is reset as a different character

table is used. We continue the above example.
Example

gap> HeLP_WithGivenQOrder(C,3);

#I Number of solutions for elements of order 3: 1; stored in HeLP_sol[3].
LL L1111

gap> HeLP_sol;

cccrc+111,, CC1LT111

If HeLLP detects that the table used belongs to thpe sanlle group, HeLP_sol is not reset:
xample
gap> HeLP_WithGivenOrder(C mod 7, 19); ’
#I Number of solutions for elements of order 19: 3; stored in HeLP_sol[19].
rcro,o0,111,CCo0,1,011,[[1,0,011]1

gap> HeLP_sol;

CLLC11101,, CLL1TTd,,,,s5ss50550595

rrco,o0,111,0C0,1,011, [ [1,0,01111

# the previously calaculated result for order 3 is still there.

HeLP can detect that the character tables belong to the same group, if they are identical objects in
GAP or if both are tables of the same group from the ATLAS and their InfoText begins with "origin:
ATLAS of finite groups" (which is usually the case for ATLAS tables). If the program can verify that
the character table which is used at the current call of a function belongs to the same group as in the
previous call of a function, the solutions stored in HeLP_so1l are kept. If the character table belongs to
another group or it can not be made sure that the character tabel belongs to the same group, HeLP_sol
is reset to the initial value [ [ [1] ] 1] representing the trivial solution for units of order 1.

Not reseting HeLP_sol can also be achieved using HeLP_ChangeCharKeepSols (3.4.1). How-
ever, caution should be exercised when using this command since it may manipulate HeLP_sol into
something meaningless.
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Example

gap> G := PSL(2,7);

Group([ (8,7,5)(4,8,6), (1,2,6)(3,4,8) 1)

gap> HeLP_ZC(G);

#I The Brauer tables for the following primes are not available: [ 2, 3, 7 ].

#I (ZC) can’t be solved, using the given data, for the orders: [ 6 ].

false

gap> HeLP_sol;

ccccr32131, 221, ccc113131, 00011, 00,12111,,
cccvl, 021, 0-2,3111, cccCo0,111,CC1,0111,,,,, [ 1,,
Y O I L L O IO
5999333999995 L 1]

gap> C := CharacterTable("L2(7)") mod 7;

BrauerTable( "L3(2)", 7 )

gap> HeLP_ChangeCharKeepSols(C); #This table belongs to the same group.

gap> HeLP_WithGivenOrder(C,6);

#I Number of solutions for elements of order 6: 0; stored in HeLP_soll[6].

L1

gap> HeLP_sol;

ccccr3231, e, ccce13131, 00011, 00,1111,
L 1, 0L LCLo,10111, 001,011 1,,55, 0 1,5 [ Jsssssss [ Tsssssss
L Jssssnsnnssssss L Jassssssssssnsssssssnssssssssssssssssssssss L 1]

gap> C := CharacterTable("L3(7).2") mod 7;

BrauerTable( "L3(7).2", 7 )

gap> HeLP_ChangeCharKeepSols(C); #This table is from a different group

gap> HeLP_WithGivenQOrder(C,19);

#I Number of solutions for elements of order 19: 3; stored in HeLP_sol[19].

rccto,0,111,0C0,1,011,[[1,0,011]1]

gap> HeLP_sol;

ccrcrtcqes12, ccced1, ccced113, ccCe1,00,1111,,

t 1, tctto,111, 0Ct,0111,,,,, L 1,, T 1,,,,,
rrro,o0,1211, 000,121,011, [C1,0,01171,, [ 1,,,,,,, [ 1,,,,
D P R

# The content of HelP_sol does not have a mathematical value anymore.

The following functions manipulate the variable HeLP_sol: HeLP_ZC (2.1.1), HeLP_PQ (2.2.1),
HeLP_WithGivenOrder (3.1.1), HeLP_WithGivenOrderSConstant (3.2.1) (for elements of order ¢
and if the existence of elements of order st can be excluded also for this order), HeLP_Al110rders
(3.3.1), HeLP_A110rdersPQ (3.3.2), HeLP_VerifySolution (3.6.1) (if existing solutions were
checked), HeLP_FindAndVerifySolution (3.6.2). Note that the functions only will write results
in HeLP_sol[k] if k is a divisor of the exponent of the group as this information is enough to decide
whether (ZC) and (PQ) are valid for the group in consideration. In all other cases an empty list will
be returned but no value will be written in HeLP_sol [k].

4.3 Saving time

The most time consuming operation when using the functions of this package is solving the system of
inequalities given by the HeLP method, see Section 5.3. This package uses the programs 4ti2 and/or
normaliz to do this and it is not completely clear to the authors of this package which input is solved
faster by these programs. In any case it is helpful to reduce the number of variables, using e.g. p-
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constant characters, and in many situations it is useful to reduce the number of inequalities, i.e. of
used characters.

To measure the time a function needs we use I0_gettimeofday from the IO-package rather than
functions like time or Runtime, since these measure only the GAP time, but do not return the time
the functions spend using 4ti2 or normaliz. We used the following function (which is essentially due
to Alexander Konovalov) to meassure the time used for the computation:

Example
TimeFunction := function(f, args)
# input: the function of which the computing time should be measured
# and the list of arguments for this function

# output: time needed for the calculations in seconds
local start;

start := I0_gettimeofday();

CallFuncList(f,args);

return I0_gettimeofday().tv_sec - start.tv_sec;

end;

All times will be given in seconds. The computations were perfomed on an a machine with four 2,6
GHz kernels.

A lot of time might be saved by testing only a few characters instead of a whole character table:
Example

gap> C := CharacterTable("L2(49)");;

gap> HeLP_Solver("normaliz");

’normaliz’ will be used from now on.

gap> TimeFunction(HeLP_WithGivenOrder, [C,35]);

#I Number of solutions for elements of order 35: 0; stored in HeLP_sol[35].
6 # I.e.: The computation took 6 seconds.

gap> TimeFunction(HeLP_WithGivenOrder, [Irr(C){[2]}, 35]);

#I Number of solutions for elements of order 35: 0; stored in HeLP_sol[35].
0

gap> HeLP_Solver("4ti2");

’4ti2’ will be used from now on.

gap> TimeFunction(HeLP_WithGivenOrder, [C,35]);

#I Number of solutions for elements of order 35: 0; stored in HeLP_sol[35].
6

gap> TimeFunction(HeLP_WithGivenOrder, [Irr(C){[2]}, 351);

#I Number of solutions for elements of order 35: 0; stored in HeLP_sol[35].
1

Le.: Using only one character instead of all of them is about six times faster in this situation and this
is also quickly found by HeLP_FindAndVerifySolution.

Using only a few characters might even be a life saver:
Example
gap> C := CharacterTable("L4(3).272");;
gap> HeLP_WithGivenOrder(C, 3);;
#I Number of solutions for elements of order 3: 63; stored in HeLP_sol[3].
gap> HeLP_WithGivenOrder(C, 13);;
#I Number of solutions for elements of order 13: 198; stored in HeLP_sol[13].
gap> SetInfoLevel (HeLP_Info,4);
gap> HeLP_Solver("4ti2");
’4ti2’ will be used from now on.
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gap> HeLP_UseRedund(true) ;

’redund’ will be used from now on.

gap> TimeFunction(HeLP_WithGivenOrder, [Irr(C){[5,11,16]1}, 39]);

#I Number of solutions for elements of order 39: 0; stored in HeLP_sol[39].
438

gap> HeLP_UseRedund(false);

The calculations will be performed without using ’redund’ from now on.

gap> TimeFunction(HeLP_WithGivenOrder, [Irr(C){[5,11,16]1}, 39]1);

#I Number of solutions for elements of order 39: 0; stored in HeLP_sol[39].
430

gap> HeLP_Solver("normaliz");

’normaliz’ will be used from now on.

gap> TimeFunction(HeLP_WithGivenOrder, [Irr(C){[5,11,16]1}, 39]);

#I Number of solutions for elements of order 39: 0; stored in HeLP_sol[39].
340

gap> HeLP_UseRedund(true) ;

’redund’ will be used from now on.

gap> TimeFunction(HeLP_WithGivenOrder, [Irr(C){[5,11,16]1}, 39]);

#I Number of solutions for elements of order 39: 0; stored in HeLP_sol[39].
419

gap> HeLP_UseRedund(false);

The calculations will be performed without using ’redund’ from now on.

gap> HeLP_Solver("normaliz");

’normaliz’ will be used from now on.

gap> TimeFunction(HeLP_WithGivenOrder, [Irr(C), 39]1);

#I Number of solutions for elements of order 39: 0; stored in HeLP_sol[39].
6234
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Sometimes it is helpful to look at groups containing the group of interest:
Example

gap> C := CharacterTable("2F4(2)°");;

gap> HeLP_WithGivenOrder(C, 13);;

#I Number of solutions for elements of order 13: 316; stored in HeLP_sol[13].
gap> HeLP_WithGivenQOrder(C, 3);;

#I Number of solutions for elements of order 3: 1; stored in HeLP_sol[3].
gap> TimeFunction(HeLP_WithGivenOrder, [C, 39]);

#I Number of solutions for elements of order 39: 0; stored in HeLP_sol[39].
80

gap> C:=CharacterTable("2F4(2)’.2");

CharacterTable( "2F4(2)’.2" )

gap> TimeFunction(HeLP_WithGivenOrder, [C, 39]);

#I Number of solutions for elements of order 39: 0; stored in HeLP_sol[39].
1

This is also a good example to use p-constant characters:

Example
gap> C:=CharacterTable("2F4(2)’");
CharacterTable( "2F4(2)°" )

gap> TimeFunction(HeLP_WithGivenOrderSConstant, [C, 13, 31);

#I Number of non-trivial 13-constant characters in the list: 19.
0

If using 4ti2, for some groups switching redund on and off gives major improvements.
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Example

gap> HeLP_Solver("4ti2");

’4ti2’ will be used from now on.
gap> HeLP_UseRedund(true) ;

’redund’ will be used from now on.
gap> C := CharacterTable(SmallGroup(160,91));;
gap> TimeFunction(HeLP_ZC, [C]);

26

gap> HeLP_Solver("normaliz");
’normaliz’ will be used from now on.
gap> TimeFunction(HeLP_ZC, [C]);

12

Using 4ti2 but not redund HeLP_ZC(C) ran for over 400 hours without a result.
Example
gap> C := CharacterTable(SmallGroup(96,12));;

gap> HeLP_UseRedund(false);

The calculations will be performed without using ’redund’ from now on.
gap> HeLP_Solver ("4ti2");;

gap> TimeFunction(HeLP_ZC, [C]);

2

Running this example using redund the computations does not proceed for elements of order 12.

4.4 Using InfoLevels

HeLP provides different InfoLevels for different situations. The variable controlling the InfoLevel is
HeLP_Info and it might be changed using SetInfoLevel (HeLP_Info, n) to set the InfoLevel to n.
The maximal HeLP_Info entry is 5, the default InfolLevel is 1. The examples below give some idea,
how one can use HeLP_Info, but do not give complete information on all possibilities.

If one is only interested whether (ZC) or (PQ) can be solved using the HeLP method, one can set
HeLP_Info to O:

Example
gap> C := CharacterTable("M11");

CharacterTable( "M11" )

gap> HeLP_ZC(C);

#I ZC can’t be solved, using the given data, for the orders: [ 4, 6, 8 ].
false

gap> SetInfoLevel (HeLP_Info, 0);

gap> HeLP_ZC(C);

false

If the InfoLevel is set to 2, the functions HeLP_ZC (2.1.1) and HeLP_PQ (2.2.1) print information which
order of torsion units is currently considered, so that the user can keep track of the progress. This may
be used for bigger groups to see, if the calculations might finish at some point. Continuing the above
example:

Example

gap> SetInfolLevel (HeLP_Info, 2);
gap> HeLP_PQ(C);
#I Checking order 2.
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#I Checking order 3.
#I Checking order 5.
#I Checking order 10.
#I Checking order 11.
#I Checking order 15.
#I Checking order 22.
#I Checking order 33.
#I Checking order 55.
true

HeLP_Info at InfoLevel 3 provides also some information about the used ordinary character table or

Brauer tables:
Example

gap> SetInfolevel (HeLP_Info, 3);

gap> HeLP_PQ(C);

#I Checking order 2.

#1 Using table BrauerTable( "M11", 3 ).
#I Checking order 3.

#I Using table BrauerTable( "M11", 3 ).
#I Using table BrauerTable( "M11", 11 ).
#I Checking order 5.

#1 Using table BrauerTable( "M11", 3 ).
#I Checking order 10.

#1 Using table BrauerTable( "M11", 3 ).
#I Checking order 11.

#1 Using table BrauerTable( "M11", 3 ).
#I Checking order 15.

#1 Using table BrauerTable( "M11", 3 ).
#1 Using table BrauerTable( "M11", 11 ).
#I Checking order 22.

#I Using table BrauerTable( "M11", 3 ).
#I Checking order 33.

#1 Using table BrauerTable( "M11", 3 ).
#1 Using table BrauerTable( "M11", 11 ).
#I Using table BrauerTable( "M11", 2 ).
#I Checking order 55.

#1 Using table BrauerTable( "M11", 3 ).
true

Setting HeLP_Info to 4 is useful when there are many possibilities for the partial augmentations of the
powers of some unit. A good example is the example on "L4(3).2~2" in the section on Time Saving
4.3, see above: If you see quickly that almost nothing is happening, you might want to change your
strategy.

HeLP_Info at level 5 informs the user on all changes of the used character table. Using it makes
sense, if you work with the command HeLP_ChangeCharKeepSols (3.4.1).

4.5 Non-standard characters

The package also allows using characters even if the whole character table is not available. E.g.
induced characters:
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Example
gap> C := CharacterTable("U3(8)");
CharacterTable( "U3(8)" )

gap> G := PSU(3,8);

<permutation group of size 5515776 with 2 generators>
gap> A := AutomorphismGroup(G) ;

<group of size 99283968 with 4 generators>

gap> AllCharacterTableNames(Size,Size(A));

[ "3.U3(8).6", "3.U3(8).83" ]

This means: The character table of the automorphism group A of PSU(3,8) is not available in GAP.

However one can use induced characters:
Example

gap> NN := NormalSubgroups(4);

[ <trivial group>, <group of size 5515776 with 2 generators>,
<group with 3 generators>, <group of size 16547328 with 3 generators>,
<group of size 49641984 with 4 generators>,
<group of size 33094656 with 4 generators>,
<group of size 99283968 with 4 generators> ]

gap> H := NN[2]; #Subgroup of A isomorphic to G

<group of size 5515776 with 2 generators>

gap> CharacterTableWithStoredGroup(H,C);

CharacterTable( <group of size 5515776 with 2 generators> )

gap> D := CharacterTable(H);

CharacterTable( <group of size 5515776 with 2 generators> )

gap> chi := InducedClassFunction(Irr(D)[2],4);

Character( CharacterTable( <group of size 99283968 with 4 generators> ),
[ 1008, -144, -126, 18, 0, O, O, O, 36, 36, O, O, O, O, O, O, O, O, O, O, O,
o, o, o, o, 0, 0, 0, 0, 0, 0, 0, 0, 0, O, O, O, O, O, O, O, O, -18, O, O,
0, 01)

gap> HeLP_WithGivenOrder ([chi],7*19);

L1

#I Number of solutions for elements of order 133: 0; stored in HeLP_sol[133].

One can also use characters, which are not available in GAP, but are entered manually:

Example
gap> C := CharacterTable("L2(49)");
CharacterTable( "L2(49)" )

gap> HeLP_WithGivenOrder(C,15);;

#I Number of solutions for elements of order 15: 56; stored in HeLP_sol[15].
gap> C7 := C mod 7;

fail

The Brauer characters for the prime 7 are well known, see e.g. [Sri64] , but are not yet available in

GAP.
Example

gap> OrdersClassRepresentatives(C);

[1, 2, 3, 4, 5, b5, 6, 7, 7, 8, 8, 12, 12, 24, 24, 24, 24, 25, 25, 25, 25,
25, 25, 25, 25, 25, 25 ]

gap> chi := ClassFunction(C, [ 3, 0, -1, 0, -E(5)"2-E(5)"3, -E(5)-E(5)"4, 0,

> 0, 0,0, 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,01);

ClassFunction( CharacterTable( "L2(49)" ),
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[ 3, 0, -1, 0, -E(B)~2-E(5)~3, -E(b)-E(5)"4, 0, 0, 0, 0, 0, O, O, O, O, O,
0, 0, 0, 0, 0, 0, O, O, O, 0, O01])

gap> HeLP_WithGivenOrder([chi], 15);

#I Number of solutions for elements of order 15: 0; stored in HeLP_sol[15].

L1

The class function chi above is of course not a proper character of the group, but the values coincide
with the values of a 7-Brauer character of the group on the conjugacy classes of order 1, 3 and 5,
i.e. the one needed to use HeLLP for order 15. All functions of the HeLP-package only access values
of class functions on conjugacy classes of elements with an order dividing the order of the unit in
question. That is why this class function chi can be used in this setting.

4.6 A complete example: (PQ) for the MacLaughlin simple group

This section gives a demonstration of many functions of the package. The goal is to verify the Prime
Graph Question for the McLaughlin simple group, which was proved in [BKO7b]

Example

gap> C := CharacterTable("McL");
CharacterTable( "McL" )
gap> SetInfolevel (HeLP_Info,4);

The function HeLP_PQ(C) would take really long. Instead one can use HeLP_A110rdersPQ(C) sev-
eral times on a high InfoLevel. Any time you see the function needs long, just try some manual
calculations. Compute first the partial augmentations of elements of prime order:

Example

gap> HeLP_WithGivenQOrder(C,2);;

#I Number of solutions for elements of order 2: 1; stored in HeLP_sol[2].
gap> HeLP_WithGivenOrder (C mod 2,3);;

#I Number of solutions for elements of order 3: 4; stored in HeLP_soll[3].
gap> HeLP_WithGivenOrder(C mod 3,5);;

#I Number of solutions for elements of order 5: 6; stored in HeLP_sol[5].
gap> HeLP_WithGivenOrder(C mod 3,7);;

#I Number of solutions for elements of order 7: 174; stored in HeLP_soll[7].
gap> HeLP_WithGivenOrder(C mod 3,11);;

#I Number of solutions for elements of order 11: 20; stored in HeLP_sol[11].

For mixed order in most situations p-constant characters are interesting. Check the tables for such
characters of small degree.

Example
gap> HeLP_WithGivenOrderSConstant (Irr(C){[2,3,4,51},7,3);
#I Number of non-trivial 7-constant characters in the list: 4.
[ 1]
gap> HelP_WithGivenOrderSConstant (Irr(C){[2,3,4,5]},11,2);
#I Number of non-trivial 1l1-constant characters in the list: 4.
[ ]
gap> HelP_WithGivenOrderSConstant (Irr(C){[2,3,4,51},11,3);
#I Number of non-trivial 1l-constant characters in the list: 4.
[ ]
gap> HelP_WithGivenOrderSConstant (Irr(C mod 3){[2,3,4,5]},7,5);




HeLP

#1 Number of non-trivial 7-constant characters in the list: 4.
[ 1]

gap> HeLP_WithGivenOrderSConstant (Irr(C mod 3){[2,3,4,5]1},7,11);
#I Number of non-trivial 7-constant characters in the list: 4.
[ 1]

gap> HelP_WithGivenOrderSConstant (Irr(C mod 3){[2,3,4,5]},11,5);
#I Number of non-trivial 1l-constant characters in the list: 2.
[ 1]

36

These calculations are enough to obtain an affirmative answer to the Prime Graph Question:

Example
gap> HeLP_A110rdersPQ(C);
#I Checking order 2.
#1 Using the known solutions for elements of order 2.
#I Checking order 3.
#1 Using the known solutions for elements of order 3.
#I Checking order 5.
#I Using the known solutions for elements of order 5.
#I Checking order 7.
#1 Using the known solutions for elements of order 7.
#I Checking order 11.
#1 Using the known solutions for elements of order 11.
#I Checking order 21.
#I Using the known solutions for elements of order 21.
#I Checking order 22.
#1 Using the known solutions for elements of order 22.
#I Checking order 33.
#I Using the known solutions for elements of order 33.
#I Checking order 35.
#1 Using the known solutions for elements of order 35.
#I Checking order 55.
#I Using the known solutions for elements of order 55.
#I Checking order 77.
#I Using the known solutions for elements of order 77.
true

Checking these computations takes a few minutes.



Chapter 5

Background

In this chapter we give a brief overview of the Zassenhaus Conjecture and the Prime Graph Questions
and the techniques used in this package. For a more detailed exposition see [BM15].

5.1 The Zassenhaus Conjecture and the Prime Graph Question

Let G be a finite group and let ZG denote its integral group ring. Let V(ZG) be the group of units
of augmentation one, aka. normalized units. An element of the unit group of ZG is called a torsion
element, if it has finite order.

A long standing conjecture of H.J. Zassenhaus asserts that every normalized torsion unit of ZG is
conjugate within QG ("rationally conjugate") to an element of G, see [Zas74] or [Seh93], Section 37.
This is the first of his three famous conjectures about integral group rings and the only one which is
nowadays still open, hence it is referred to as the Zassenhaus Conjecture (ZC). This conjecture asserts
that the torsion part of the units of ZG is as far determined by G as possible.

Considering the difficulty of the problem W. Kimmerle raised the question, whether the Prime
Graph of the normalized units of ZG coincides with that one of G (cf. [Kim07] Problem 21). This
is the so called Prime Graph Question (PQ). The prime graph of a group is the loop-free, undirected
graph having as vertices those primes p, for which there is an element of order p in the group. Two
vertices p and g are joined by an edge, provided there is an element of order pq in the group. In the
light of this description, the Prime Graph Question asks, whether there exists an element of order pg
in G provided there exists an element of order pg in V(ZG) for every pair of primes (p,q).

In general, by a result of J. A. Cohn and D. Livingstone [CL65], Corollary 4.1, and a result of M.
Hertweck [Her0O8a], the following is known about the possible orders of torsion units in integral group
rings:

Theorem: The exponents of V(ZG) and G coincide. Moreover, if G is solvable, any torsion unit
in V(ZG) has the same order as some element in G.

5.2 Partial augmentations and the structure of HeLP sol

For a finite group G and an element x € G let x© denote the conjugacy class of x in G. The partial
augmentation with respect to x or rather the conjugacy class of x is the map &, sending an element u
to the sum of the coefficients at elements of the conjugacy class of x, i.e.

&:2.G — 7, Z 78 Z Zg-
8eG gext

37
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Let u be a torsion element in V(ZG). By results of G. Higman, S.D. Berman and M. Hertweck the
following is known for the partial augmentations of u:

Theorem: ([Seh93], Proposition (1.4); [Her07], Theorem 2.3) &;(u) = 0 if u # 1 and &,(u) = 0 if
the order of x does not divides the order of u.

Partial augmentations are connected to (ZC) and (PQ) via the following result, which is due to Z.
Marciniak, J. Ritter, S. Sehgal and A. Weiss [MRSW87], Theorem 2.5:

Theorem: A torsion unit u € V(ZG) of order k is rationally conjugate to an element of G if and
only if all partial augmentations of u¢ vanish, except one (which then is necessarily 1) for all divisors
d of k.

The last statement also explains the structure of the variable HeLP_sol. In HeLP_sol[k] the
possible partial augmentations for an element of order & and all powers u“ for d dividing k (except for
d = k) are stored, sorted ascending w.r.t. order of the element u?. For instance, for k = 12 an entry of
HeLP_so01[12] might be of the following form:

trc+31,00,1131,0-2,2,11,0t, -1,2121,L0,0,0,1, -1, 0,1, 0, 01
1.

The first sublist [ 1 ] indicates that the element u® of order 2 has the partial augmentation 1 at
the only class of elements of order 2, the second sublist [ 0, 1 ] indicates that u* of order 3 has
partial augmentation O at the first class of elements of order 3 and 1 at the second class. The third
sublist [ -2, 2, 1 1 states that the element > of order 4 has partial augmentation -2 at the class
of elements of order 2 while 2 and 1 are the partial augmentations at the two classes of elements of
order 4 respectively, and so on. Note that this format provides all necessary information on the partial
augmentations of u and its powers by the above restrictions on the partial augmentations.

For more details on when the variable HeLP_sol is modified or reset and how to influence this
behavior see Section 4.2 and HeLP_ChangeCharKeepSols (3.4.1).

5.3 The HeLLP equations

Denote by x the conjugacy class of an element x in G. Let u be a torsion unit in V(ZG) of order k
and D an ordinary representation of G over a field contained in C with character }. Then D(u) is a
matrix of finite order and thus diagonalizable over C. Let { be a primitive k-th root of unity, then the
multiplicity w;(u, x) of £’ as an eigenvalue of D(u) can be computed via Fourier inversion and equals

Mi(u, ) = Z Tro e /Q(X 4 fo u)Trg(¢) X(X)C_l)-
ki

As this multiplicity is a non-negative integer, we have the constraints

My (u,x) € Zxo

for all ordinary characters ) and all /. This formula was given by 1.S. Luthar and I.B.S. Passi [LP89].

Later M. Hertweck showed that it may also be used for a representation over a field of characteris-
tic p > 0 with Brauer character ¢, if p is coprime to k [Her07], § 4. In that case one has to ignore the
p-singular conjugacy classes (i.e. the classes of elements with an order divisible by p) and the above
formula becomes

Y e(w)Trge) (o)),
X6, pto(x)

Wi (u, @) = Z Troza) (@ (u u)¢ M+

1=
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Again, as this multiplicity is a non-negative integer, we have the constraints

Wi (u, @) € Z>o

for all Brauer characters ¢ and all /.

These equations allow to build a system of integral inequalities for the partial augmentations of u.
Solving these inequalities is exactly what the HeLP method does to obtain restrictions on the possible
values of the partial augmentations of u. Note that some of the &,(u) are a priori zero by the results in
the above sections.

For p-solvable groups representations over fields of characteristic p can not give any new informa-
tion compared to ordinary representations by the Fong-Swan-Rukolaine Theorem [CR90], Theorem
22.1.

5.4 The Wagner test

We also included a result motivated by a theorem R. Wagner proved 1995 in his Diplomarbeit
[Wag95]. This result gives a further restriction on the partial augmentations of torsion units. Though
the results was actually available before Wagner’s work, cf. [BHO8] Remark 6, we named the test
after him, since he was the first to use the HeLP-method on a computer. We included it into the func-
tions HeLP_ZC (2.1.1), HeLP_PQ (2.2.1), HeLP_A110rders (3.3.1), HeLP_A110rdersPQ (3.3.2) and
HeLP_WagnerTest (3.7.1) and call it "Wagner test".

Theorem: For a torsion unit u € V(ZG), a group element s, a prime p and a natural number j we
have .

Z &(u) = ss(u”'l) mod p.
xP! s

Combining the Theorem with the HeLP-method may only give new insight, if p/ is a proper divisor
of the order of u. Wagner did obtain this result for s = 1, when &(u) = 0 by the Berman-Higman
Theorem. In the case that u is of prime power order this is a result of J.A. Cohn and D. Livingstone
[CL65].

5.5 s-constant (and (s,t)-constant) characters

If one is interested in units of mixed order s for two primes s and ¢ (e.g. if one studies the Prime
Graph Question) an idea to make the HeLLP method more efficient was introduced by V. Bovdi and A.
Konovalov in [BK10], page 4. Assume one has several conjugacy classes of elements of order s, and a
character taking the same value on all of these classes. Then the coefficient of every of these conjugacy
classes in the system of inequalities of this character, which is obtained via the HeLP method, is
the same. Also the constant terms of the inequalities do not depend on the partial augmentations of
elements of order s. Thus for such characters one can reduce the number of variables in the inequalities
by replacing all the partial augmentations on classes of elements of order s by their sum. To obtain
the formulas for the multiplicities of the HeLP method one does not need the partial augmentations
of elements of order s. Characters having the above property are called s-constant. In this way the
existence of elements of order s ¢ can be excluded in a quite efficient way without doing calculations
for elements of order s.

There is also the concept of (s,7)-constant characters, being constant on both, the conjugacy
classes of elements of order s and on the conjugacy classes of elements of order . The implementation
of this is however not yet part of this package.
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5.6 Known results about (ZC) and (PQ)

At the moment as this documentation was written, to the best of our knowledge, the following results
were available for the Zassenhaus Conjecture and the Prime Graph Question:

For the Zassenhaus Conjecture only the following reduction is available:

Theorem: Assume the Zassenhaus Conjecture holds for a group G. Then (ZC) holds for G x C;
[HKO06], Corollary 3.3, and G x I1, where II denotes a nilpotent group of order prime to the order of
G [Her08b], Proposition 8.1.

With this reductions in mind the Zassenhaus Conjecture is known for:

* Nilpotent groups [Wei91],

* Cyclic-By-Abelian groups [CMdR13],

» Groups containing a normal Sylow subgroup with abelian complement [Her06],

* Frobenius groups whose order is divisible by at most two different primes [JPMO0O0],

* Groups X X A, where X is abelian, A elementary abelian and A acts faithfully and irreducibly
on X [SW86],

* Groups X x A, where X and A are abelian and A is of prime order p such that p is smaller then
any prime divisor of the order of X [MRSW87],

* All groups of order up to 71 [HKO06],

* The non-abelian simple groups As [LP89], A¢ ~ PSL(2,9) [Her08c], PSL(2,7), PSL(2,11),
PSL(2,13) [Her07], PSL(2,8), PSL(2,17) [KK15] [Gil13], PSL(2,19), PSL(2,23) [BM14]
and some extensions of these groups.

For the Prime Graph Question the following strong reduction was obtained in [KK15]:

Theorem: Assume the Prime Graph Question holds for all almost simple images of a group G.
Then (PQ) also holds for G.

Here a group G is called almost simple, if it is sandwiched between the inner automorphism
group and the whole automorphism group of a non-abelian simple group S. Le. Inn(S) < G < Aut(S).
Keeping this reduction in mind (PQ) is known for:

* Solvable groups [Kim06],

* Groups whose socle is isomorphic to a group PSL(2, p) or PSL(2, p*), where p denotes a prime,
[Her07], [BM16].

» Half of the sporadic simple groups and their automorphism groups; for an overview see [KK15],

* Groups whose socle is isomorphic to an alternating group of degree at most 17, [Salll]
[Sal13][BC15],

* Almost simple groups whose order is divisible by at most three different primes [KK15] and
[BM14]. (This implies that it holds for all groups with an order divisible by at most three
primes, using the reduction result above.)

* Many almost simple groups whose order is divisible by four different primes [BM16]



Chapter 6

Remarks on technical problems and the
implementation

6.1 Making the HeLLP-package run

For all basic functionalities of the HeL.P-package (using only the solver normaliz) the standard GAP-
installation should suffice to make everything work: Get the most recent GAP from the GAP-webpage
by following the instructions on the Download-page. Make sure to also run InstPackages.sh
as explained there. This should install all packages needed to run HeLP. Just start GAP and type
LoadPackage ("HeLP") ;. In GAP 4.8.2 the NormalizInterface has to be updated to version 0.9.6 or
newer which can be obtained from the website of the package. For GAP 4.8.3 or newer this should
not be necessary anymore.

Here is a checklist what to do, if the package does not work or you also want to use the solver

4ti2:

* Make sure you have sufficiently new versions of the following software:

GAP (at least 4.8.2)
the GAP-package CTblLib (at least 1.2.2)

the GAP-package 1O (at least 4.2; see also the next bullet point if this package can not be
loaded)

the GAP-package 4ti2Interface (at least 2015.04.29; this package needs the IO-package)

the GAP-package NormalizInterface (at least 0.9.6)

Usually all these packages should come with a sufficiently recent GAP-installation (4.8.2
or newer) and should be contained in the pkg-folder of the GAP-installation. To see if
they are working you can load them by typing LoadPackage (" [name]") ; after starting
GAP, where [name] is the name of the package.

* The IO-package needs a C-part to be compiled. To see if this has already been done on your
system, you can enter LoadPackage ("I0"); after starting GAP. If the result is fail and the
package is contained in the pkg-folder, than most likely the C-part is not yet compiled. For
information on installation and in particular on how to compile the C-part, see the manual (in
particular Chapter 2) or the README-file of that package.
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* The installation of normaliz is possible via the GAP-package NormalizInterface (at least 0.9.6).
Just access the folder in a terminal and do . /build-normaliz.sh; ./configure; make.

* If you want to use 4ti2, please make sure that www.4ti2.de (Version 1.6.5 or newer) is properly
installed. In case of an error-message "The executable ’zsolve’ provided by the software 4ti2
was not found." after typing LoadPackage ("HeLP") ; either the software is not properly in-
stalled or installed in a directory where GAP can not find it, i.e. a directory not contained in the
path-variable. The content of this variable can typically be displayed by typing echo $PATH
(Linux, Mac) echo %PATHY (Windows) in a terminal or a command prompt. The manual of
4ti2 contains several pages of information on how to install the program. Note that the installa-
tion of 4ti2 requires gcc (g++) and gmp installed (which come with many Linux installations or
can be installed using a package manager). Make sure to execute all four commands indicated
in the 4ti2 manual (possibly without the -prefix=-part):

./configure -prefix=INSTALLATION-DIRECTORY
make

make check

make install-exec

Depending on the settings of your system you might need root privileges (type sudo in front of
every command) to unpack the files and install them. To check whether the installation worked,
you can enter zsolve in a terminal. In case one of the required programs (g++ or gmp) was not
installed when running make for the first time, you might need to run make clean and the above
commands afterwards again (several times) to compile 4ti2 successfully. If you already have
4ti2 installed in a directory not contained in the path-variable and want to avoid a re-installation,
in many cases the following helps:

— Start a terminal and access a path written in your bash or system_bash. Typically
usr/local/bin should work.

— Run 1n -s /[PathToZsolve] zsolve, where [PathToZsolve] is the path to the
executable zsolve. This sets a symlink to the right place. E.g. 1n -s
/opt/4ti2/bin/zsolve zsolve was used on the (Linux) computers in Stuttgart.

* In case you use 4ti2, we also recommend to install Irslib, at least version 4.3 (note that ver-
sion 4.2 or older sometimes produces unwanted behavior). This software provides the 'redund’
command, which can be switched on and off within HeLLP, but which often leads to better perfor-
mances (cf. HeLP_UseRedund (3.5.2)). For installation see the User’s Guide or the Readme-file
on the above mentioned homepage. Usually, after unpacking in a directory contained in the
path-variable it should be enough to call

make all
(possibly as root) inside the Irslib-directory.

* If this does not help to get HeLP running, please feel more than welcome to contact one of the
maintainers of the package.


http://gap-packages.github.io/NormalizInterface//
http://www.4ti2.de
http://cgm.cs.mcgill.ca/~avis/C/lrs.html
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6.2 How much 4ti2 and normaliz is really there?

The reason, why the programs 4ti2 and normaliz are used in this package, is basically that they can
solve systems of linear inequalities efficiently and there exist good GAP-Interfaces for them. However
there is only one line of code where a function is called which accesses 4ti2 and a few more for
normaliz. Thus the effort of using another solver of inequalities would be not so big, if there is a
GAP-Interface for it. If you are aware of such a solver and would like to use it in this package, please
contact the authors of this package. We will be happy to help.
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