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Abstract
The Digraphs package is a GAP package containing methods for graphs, digraphs, and multidigraphs.

Copyright
© 2014-16 by Julius Jonušas, J.D. Mitchell, Michael Torpey, Wilf Wilson.

Digraphs is free software; you can redistribute it and/or modify it under the terms of the GNU General
Public License as published by the Free Software Foundation; either version 3 of the License, or (at your
option) any later version.
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Chapter 1

The Digraphs package

1.1 Introduction

This is the manual for the Digraphs package version 0.5. This package was developed at the Univer-
sity of St Andrews by:

• Jan De Beule

• Julius Jonusas

• James D. Mitchell

• Michael C. Torpey

• Wilf A. Wilson

The Digraphs package contains a variety of methods for efficiently creating and storing digraphs and
computing information about them. Full explanations of all the functions contained in the package
are provided below.

If the Grape package is available, it will be loaded automatically. Digraphs created with the
Digraphs package can be converted to Grape graphs with Graph (3.2.3), and conversely Grape graphs
can be converted to Digraphs objects with Digraph (3.1.5). Grape is not required for Digraphs to
run.

The bliss tool [JK07] is included in this package. It is an open-source tool for computing automor-
phism groups and canonical forms of graphs, written by Tommi Junttila and Petteri Kaski. Several of
the methods in the Digraphs package rely on bliss.

For the purposes of this package and its documentation, the following definitions apply:
A digraph E = (E0,E1,r,s), also known as a directed graph, consists of a set of vertices E0 and a

set of edges E1 together with functions s,r : E1→ E0, called the source and range, respectively. The
source and range of an edge is respectively the values of s,r at that edge. An edge is called a loop if
its source and range are the same. A digraph is called a multidigraph if there exist two or more edges
with the same source and the same range.

A directed path on a digraph is a sequence of alternating vertices and edges
(v1,e1,v2,e2, ...,en−1,vn) such that each edge ei has source vi and range vi+1, and no vertex is
repeated. A directed walk is defined similarly, but vertices may be repeated. A cycle is defined
similarly to a directed path, except that v1 = vn. The length of a directed path, walk, or cycle
(v1,e1,v2,e2, ...,en−1,vn) is equal to n−1, the number of edges it contains.
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Chapter 2

Installing Digraphs

2.1 For those in a hurry

In this section we give a brief description of how to start using Digraphs.
It is assumed that you have a working copy of GAP with version number 4.8.2 or higher. The

most up-to-date version of GAP and instructions on how to install it can be obtained from the main
GAP webpage http://www.gap-system.org.

The following is a summary of the steps that should lead to a successful installation of Digraphs:

• ensure that the IO package version 4.4.4 or higher is available. IO must be compiled before
Digraphs can be loaded.

• ensure that the Orb package version 4.7.5 or higher is available. Orb has better performance
when compiled, but although compilation is recommended, it is not required to be compiled for
Digraphs to be loaded.

• THIS STEP IS OPTIONAL: certain functions in Digraphs require the Grape package to be avail-
able; see Section 2.2.1 for full details. To use these functions make sure that the Grape package
version 4.5 or higher is available. If Grape is not available, then Digraphs can be used as
normal with the exception that the functions listed in Subsection 2.2.1 will not work.

• download the package archive digraphs-0.5.tar.gz from the Digraph package webpage.

• unzip and untar the file, this should create a directory called digraphs-0.5.

• locate the pkg directory of your GAP directory, which contains the directories lib, doc and so
on. Move the directory digraphs-0.5 into the pkg directory.

• it is necessary to compile the Digraphs package. Inside the pkg/digraphs-0.5 directory, type

./configure
make

Further information about this step can be found in Section 2.3.

• start GAP in the usual way (i.e. type gap at the command line).

• type LoadPackage("digraphs");

6
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If you want to check that the package is working correctly, you should run some of the tests described
in Section 2.5.

2.2 Optional package dependencies

The Digraphs package is written in GAP and C code and requires the IO package. The IO package
is used to read and write transformations, partial permutations, and bipartitions to a file.

2.2.1 The Grape package

The Grape package must be available for the following operations to be available:

• Graph (3.2.3) with a digraph argument

• AsGraph (3.2.4) with a digraph argument

• Digraph (3.1.5) with a Grape graph argument

If Grape is not available, then Digraphs can be used as normal with the exception that the functions
above will not work.

2.3 Compiling the kernel module

The Digraphs package has a GAP kernel component in C which should be compiled. This component
contains certain low-level functions required by Digraphs.

It is not possible to use the Digraphs package without compiling it.
To compile the kernel component inside the pkg/digraphs-0.5 directory, type

./configure
make

If you installed the package in another ’pkg’ directory than the standard ’pkg’ directory in your
GAP installation, then you have to do two things. Firstly during compilation you have to use the
option ’–with-gaproot=PATH’ of the ’configure’ script where ’PATH’ is a path to the main GAP root
directory (if not given the default ’../..’ is assumed).

If you installed GAP on several architectures, you must execute the configure/make step for each
of the architectures. You can either do this immediately after configuring and compiling GAP itself
on this architecture, or alternatively (when using version 4.5 of GAP or newer) set the environment
variable ’CONFIGNAME’ to the name of the configuration you used when compiling GAP before
running ’./configure’. Note however that your compiler choice and flags (environment variables ’CC’
and ’CFLAGS’) need to be chosen to match the setup of the original GAP compilation. For example
you have to specify 32-bit or 64-bit mode correctly!

2.4 Rebuilding the documentation

The Digraphs package comes complete with pdf, html, and text versions of the documentation. How-
ever, you might find it necessary, at some point, to rebuild the documentation. To rebuild the docu-
mentation use the DigraphsMakeDoc (2.4.1).

 http://gap-packages.github.io/io/ 
 http://gap-packages.github.io/io/ 
http://www.maths.qmul.ac.uk/~leonard/grape/
http://www.maths.qmul.ac.uk/~leonard/grape/
http://www.maths.qmul.ac.uk/~leonard/grape/
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2.4.1 DigraphsMakeDoc

. DigraphsMakeDoc() (function)

Returns: Nothing
This function should be called with no argument to compile the Digraphs documentation.

2.5 Testing your installation

In this section we describe how to test that Digraphs is working as intended. To test that Di-
graphs is installed correctly use DigraphsTestInstall (2.5.1) or for more extensive tests use
DigraphsTestStandard (2.5.2).

If something goes wrong, then please review the instructions in Section 2.1 and ensure that Di-
graphs has been properly installed. If you continue having problems, please use the issue tracker to
report the issues you are having.

2.5.1 DigraphsTestInstall

. DigraphsTestInstall() (function)

Returns: true or false.
This function should be called with no argument to test your installation of Digraphs is working

correctly. These tests should take no more than a fraction of a second to complete. To test more
comprehensively that Digraphs is working correctly, use DigraphsTestStandard (2.5.2).

2.5.2 DigraphsTestStandard

. DigraphsTestStandard() (function)

Returns: true or false.
This function should be called to test all the methods included in Digraphs. These tests should

take only a few seconds to complete.
To quickly test that Digraphs is installed correctly use DigraphsTestInstall (2.5.1). For a

more thorough test, use DigraphsTestStandard.

http://bitbucket.org/james-d-mitchell/digraphs/issues


Chapter 3

Creating digraphs

In this chapter we describe how to create digraphs.

3.1 Creating digraphs

3.1.1 IsDigraph

. IsDigraph (Category)

Every digraph in Digraphs belongs to the category IsDigraph. Basic attributes and opera-
tions for digraphs are: DigraphVertices (5.1.1), DigraphRange (5.2.4), DigraphSource (5.2.4),
OutNeighbours (5.2.5), and DigraphEdges (5.1.3).

3.1.2 IsCayleyDigraph

. IsCayleyDigraph (Category)

IsCayleyDigraph is a subcategory of IsDigraph. Digraphs that are Cayley digraphs of a group
and that are constructed by the operation CayleyDigraph (3.5.6) are constructed in this category.

3.1.3 IsDigraphWithAdjacencyFunction

. IsDigraphWithAdjacencyFunction (Category)

IsCayleyDigraph is a subcategory of IsDigraph. Digraphs that are created using an adjacency
function are constructed in this category

3.1.4 DigraphType

. DigraphType (global variable)

. DigraphFamily (global variable)

The type of all digraphs is DigraphType. The family of all digraphs is DigraphFamily.

9
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3.1.5 Digraph

. Digraph(obj[, source, range]) (operation)

. Digraph(list, func) (operation)

. Digraph(G, list, act, adj) (operation)

Returns: A digraph.

for a list (i.e. an adjacency list)
if obj is a list of lists of positive integers in the range from 1 to Length(obj), then this function
returns the digraph with vertices E0 =[1 .. Length(obj)], and edges corresponding to the
entries of obj .

More precisely, there is an edge from vertex i to j if and only if j is in obj[i]; the source of
this edge is i and the range is j. If j occurs in obj[i] with multiplicity k, then there are k
edges from i to j.

for three lists
if obj is a duplicate-free list, and source and range are lists of equal length consisting
of positive integers in the list [1 .. Length(obj)], then this function returns a digraph
with vertices E0 =[1 .. Length(obj)], and Length(source) edges. For each i in [1
.. Length(source)] there exists an edge with source vertex source[i] and range vertex
range[i]. See DigraphSource (5.2.4) and DigraphRange (5.2.4).

The vertices of the digraph will be labelled by the elements of obj .

for an integer, and two lists
if obj is an integer, and source and range are lists of equal length consisting of positive
integers in the list [1 .. obj], then this function returns a digraph with vertices E0 =[1 ..
obj], and Length(source) edges. For each i in [1 .. Length(source)] there exists an
edge with source vertex source[i] and range vertex range[i]. See DigraphSource (5.2.4)
and DigraphRange (5.2.4).

for a list and a function
if list is a list and func is a function taking 2 arguments that are elements of list ,
and func returns true or false, then this operation creates a digraph with vertices [1
.. Length(list)] and an edge from vertex i to vertex j if and only if func(list[i],
list[j]) returns true.

for a group, a list, and two functions
The arguments will be G, list, act, adj .

Let G be a group acting on the objects in list via the action act , and let adj be a function
taking two objects from list as arguments and returning true or false. The function adj
will describe the adjacency between objects from list , which is invariant under the action
of G . This variant of the constructor returns a digraph with vertices the objects of list and
directed edges [x, y] when f(x, y) is true.

The action of the group G on the objects in list is stored in the attribute DigraphGroup (7.2.3),
and is used to speed up operations like DigraphDiameter (5.3.1).

for a Grape package graph
if obj is a Grape package graph (i.e. a record for which the function IsGraph returns true),
then this function returns a digraph isomorphic to obj .

http://www.maths.qmul.ac.uk/~leonard/grape/
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for a binary relation
if obj is a binary relation on the points [1 .. n] for some posititve integer n, then this
function returns the digraph defined by obj . Specifically, this function returns a digraph which
has n vertices, and which has an edge with source i and range j if and only if [i,j] is a pair
in the binary relation obj .

Example
gap> gr := Digraph([[2, 5, 8, 10], [2, 3, 4, 2, 5, 6, 8, 9, 10],
> [1], [3, 5, 7, 8, 10], [2, 5, 7], [3, 6, 7, 9, 10], [1, 4],
> [1, 5, 9], [1, 2, 7, 8], [3, 5]]);
<multidigraph with 10 vertices, 38 edges>
gap> gr := Digraph(["a", "b", "c"], ["a"], ["b"]);
<digraph with 3 vertices, 1 edge>
gap> gr := Digraph(5, [1, 2, 2, 4, 1, 1], [2, 3, 5, 5, 1, 1]);
<multidigraph with 5 vertices, 6 edges>
gap> Petersen := Graph(SymmetricGroup(5), [[1, 2]], OnSets,
> function(x, y) return Intersection(x, y) = []; end);;
gap> Digraph(Petersen);
<digraph with 10 vertices, 30 edges>
gap> b := BinaryRelationOnPoints(
> [[3], [1, 3, 5], [1], [1, 2, 4], [2, 3, 5]]);
Binary Relation on 5 points
gap> gr := Digraph(b);
<digraph with 5 vertices, 11 edges>
gap> gr := Digraph([1 .. 10], ReturnTrue);
<digraph with 10 vertices, 100 edges>

The next example illustrates the uses of the fourth and fifth variants of this constructor. The resulting
digraph is a strongly regular graph, and it is actually the point graph of the van Lint-Schrijver partial
geometry, [vLS81]. The algebraic description is taken from the seminal paper of Calderbank and
Kantor [CK86].

Example
gap> f := GF(3^4);
GF(3^4)
gap> gamma := First(f, x -> Order(x) = 5);
Z(3^4)^64
gap> L := Union([Zero(f)], List(Group(gamma)));
[ 0*Z(3), Z(3)^0, Z(3^4)^16, Z(3^4)^32, Z(3^4)^48, Z(3^4)^64 ]
gap> omega := Union(List(L, x -> List(Difference(L, [x]), y -> x - y)));
[ Z(3)^0, Z(3), Z(3^4)^5, Z(3^4)^7, Z(3^4)^8, Z(3^4)^13, Z(3^4)^15,

Z(3^4)^16, Z(3^4)^21, Z(3^4)^23, Z(3^4)^24, Z(3^4)^29, Z(3^4)^31,
Z(3^4)^32, Z(3^4)^37, Z(3^4)^39, Z(3^4)^45, Z(3^4)^47, Z(3^4)^48,
Z(3^4)^53, Z(3^4)^55, Z(3^4)^56, Z(3^4)^61, Z(3^4)^63, Z(3^4)^64,
Z(3^4)^69, Z(3^4)^71, Z(3^4)^72, Z(3^4)^77, Z(3^4)^79 ]

gap> adj := function(x, y)
> return x - y in omega;
> end;
function( x, y ) ... end
gap> digraph := Digraph(AsList(f), adj);
<digraph with 81 vertices, 2430 edges>
gap> group := Group(Z(3));
<group with 1 generators>
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gap> act := \*;
<Operation "*">
gap> digraph := Digraph(group, List(f), act, adj);
<digraph with 81 vertices, 2430 edges>

3.1.6 DigraphByAdjacencyMatrix

. DigraphByAdjacencyMatrix(adj) (operation)

Returns: A digraph.
If adj is the adjacency matrix of a digraph in the sense of AdjacencyMatrix (5.2.1), then this

operation returns the digraph which is defined by adj .
Alternatively, if adj is a square boolean matrix, then this operation returns the digraph with

Length(adj) vertices which has the edge [i,j] if and only if adj[i][j] is true.
Example

gap> DigraphByAdjacencyMatrix([
> [0, 1, 0, 2, 0],
> [1, 1, 1, 0, 1],
> [0, 3, 2, 1, 1],
> [0, 0, 1, 0, 1],
> [2, 0, 0, 0, 0]]);
<multidigraph with 5 vertices, 18 edges>
gap> gr := DigraphByAdjacencyMatrix([
> [true, false, true],
> [false, false, true],
> [false, true, false]]);
<digraph with 3 vertices, 4 edges>
gap> OutNeighbours(gr);
[ [ 1, 3 ], [ 3 ], [ 2 ] ]

3.1.7 DigraphByEdges

. DigraphByEdges(edges[, n]) (operation)

Returns: A digraph.
If edges is list of pairs of positive integers, then this function returns the digraph with the mini-

mum number of vertices m such that its edges equal edges .
If the optional second argument n is a positive integer with n >= m (with m defined as above),

then this function returns the digraph with n vertices and edges edges .
See DigraphEdges (5.1.3).

Example
gap> DigraphByEdges(
> [[1, 3], [2, 1], [2, 3], [2, 5], [3, 6],
> [4, 6], [5, 2], [5, 4], [5, 6], [6, 6]]);
<digraph with 6 vertices, 10 edges>
gap> DigraphByEdges(
> [[1, 3], [2, 1], [2, 3], [2, 5], [3, 6],
> [4, 6], [5, 2], [5, 4], [5, 6], [6, 6]], 10);
<digraph with 10 vertices, 10 edges>
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3.1.8 EdgeOrbitsDigraph

. EdgeOrbitsDigraph(G, edges[, n]) (operation)

Returns: A new digraph.
If G is a permutation group, edges is an edge or list of edges, and n is a non-negative integer

such that G fixes [1 .. n] setwise, then this operation returns a new digraph with n vertices and
the union of the orbits of the edges in edges under the action of the permutation group G . An edge
in this context is simply a pair of positive integers.

If the optional third argument n is not present, then the largest moved point of the permutation
group G is used by default.

Example
gap> digraph := EdgeOrbitsDigraph(Group((1,3), (1,2)(3,4)),
> [[1, 2], [4, 5]], 5);
<digraph with 5 vertices, 12 edges>
gap> OutNeighbours(digraph);
[ [ 2, 4, 5 ], [ 1, 3, 5 ], [ 2, 4, 5 ], [ 1, 3, 5 ], [ ] ]
gap> RepresentativeOutNeighbours(digraph);
[ [ 2, 4, 5 ], [ ] ]

3.1.9 DigraphByInNeighbours

. DigraphByInNeighbours(in) (operation)

. DigraphByInNeighbors(in) (operation)

Returns: A digraph.
If in is a list of lists of positive integers in the range [1 .. Length(in)], then this function

returns the digraph with vertices E0 =[1 .. Length(in)], and edges corresponding to the entries
of in . More precisely, there is an edge with source vertex i and range vertex j if i is in in[j].

If i occurs in in[j] with multiplicity k, then there are k multiple edges from i to j.
See InNeighbours (5.2.6).

Example
gap> gr := DigraphByInNeighbours([
> [2, 5, 8, 10], [2, 3, 4, 5, 6, 8, 9, 10],
> [1], [3, 5, 7, 8, 10], [2, 5, 7], [3, 6, 7, 9, 10], [1, 4],
> [1, 5, 9], [1, 2, 7, 8], [3, 5]]);
<digraph with 10 vertices, 37 edges>
gap> gr := DigraphByInNeighbours([[2, 3, 2], [1], [1, 2, 3]]);
<multidigraph with 3 vertices, 7 edges>

3.2 Changing representations

3.2.1 AsBinaryRelation

. AsBinaryRelation(digraph) (operation)

Returns: A binary relation.
If digraph is a digraph with a positive number of vertices n, and no multiple edges, then this

operation returns a binary relation on the points [1..n]. The pair [i,j] is in the binary relation if
and only if [i,j] is an edge in digraph .
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Example
gap> gr := Digraph([[3, 2], [1, 2], [2], [3, 4]]);
<digraph with 4 vertices, 7 edges>
gap> AsBinaryRelation(gr);
Binary Relation on 4 points

3.2.2 AsDigraph

. AsDigraph(trans[, n]) (operation)

Returns: A digraph.
If trans is a transformation and n is a non-negative integer, then this function returns the func-

tional digraph with n vertices defined by trans . See IsFunctionalDigraph (6.1.7). Specifically,
the graph has n edges: for each vertex x, there is a unique edge with source x; this edge has range
x^trans .

If the optional second argument n is not supplied, then the degree of the transformation trans is
used by default.

Example
gap> f := Transformation([7, 10, 10, 1, 7, 9, 10, 4, 2, 3]);
Transformation( [ 7, 10, 10, 1, 7, 9, 10, 4, 2, 3 ] )
gap> AsDigraph(f);
<digraph with 10 vertices, 10 edges>
gap> AsDigraph(f, 4);
<digraph with 4 vertices, 4 edges>

3.2.3 Graph

. Graph(digraph) (operation)

Returns: A Grape package graph.
If digraph is a digraph without multiple edges, then this operation returns a Grape package graph

that is isomorphic to digraph .
If digraph is a multidigraph, then since Grape does not support multiple edges, the multiple

edges will be reduced to a single edge in the result. In order words, for a multidigraph this operation
will return the same as Graph(DigraphRemoveAllMultipleEdges(digraph)).

Example
gap> Petersen := Graph(SymmetricGroup(5), [[1, 2]], OnSets,
> function(x, y) return Intersection(x, y) = []; end);
rec( adjacencies := [ [ 3, 5, 8 ] ], group := Group([ (1,2,3,5,7)

(4,6,8,9,10), (2,4)(6,9)(7,10) ]), isGraph := true,
names := [ [ 1, 2 ], [ 2, 3 ], [ 3, 4 ], [ 1, 3 ], [ 4, 5 ],

[ 2, 4 ], [ 1, 5 ], [ 3, 5 ], [ 1, 4 ], [ 2, 5 ] ],
order := 10, representatives := [ 1 ],
schreierVector := [ -1, 1, 1, 2, 1, 1, 1, 1, 2, 2 ] )

gap> Digraph(Petersen);
<digraph with 10 vertices, 30 edges>
gap> Graph(last);
rec( adjacencies := [ [ 3, 5, 8 ] ], group := Group([ (1,2,3,5,7)

(4,6,8,9,10), (2,4)(6,9)(7,10) ]), isGraph := true,
names := [ [ 1, 2 ], [ 2, 3 ], [ 3, 4 ], [ 1, 3 ], [ 4, 5 ],

[ 2, 4 ], [ 1, 5 ], [ 3, 5 ], [ 1, 4 ], [ 2, 5 ] ],

http://www.maths.qmul.ac.uk/~leonard/grape/
http://www.maths.qmul.ac.uk/~leonard/grape/
http://www.maths.qmul.ac.uk/~leonard/grape/
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order := 10, representatives := [ 1 ],
schreierVector := [ -1, 1, 1, 2, 1, 1, 1, 1, 2, 2 ] )

3.2.4 AsGraph

. AsGraph(digraph) (attribute)

Returns: A Grape package graph.
If digraph is a digraph, then this method returns the same as Graph (3.2.3), except that the result

will be stored as a mutable attribute of digraph .
If AsGraph(digraph) is called subsequently, then the same GAP object will be returned as

before.
Example

gap> d := Digraph([[1, 2], [3], []]);
<digraph with 3 vertices, 3 edges>
gap> g := AsGraph(d);
rec( adjacencies := [ [ 1, 2 ], [ 3 ], [ ] ], group := Group(()),

isGraph := true, names := [ 1 .. 3 ], order := 3,
representatives := [ 1, 2, 3 ], schreierVector := [ -1, -2, -3 ] )

3.2.5 AsTransformation

. AsTransformation(digraph) (attribute)

Returns: A transformation, or fail
If digraph is a functional digraph, then AsTransformation returns the transforma-

tion which is defined by digraph . See IsFunctionalDigraph (6.1.7). Otherwise,
AsTransformation(digraph) returns fail.

If digraph is a functional digraph with n vertices, then AsTransformation(digraph) will
return the transformation f of degree at most n where for each 1≤ i≤ n, i ^ f is equal to the unique
out-neighbour of vertex i in digraph .

Example
gap> gr := Digraph([[1], [3], [2]]);
<digraph with 3 vertices, 3 edges>
gap> gr := CycleDigraph(3);
<digraph with 3 vertices, 3 edges>
gap> AsTransformation(gr);
Transformation( [ 2, 3, 1 ] )
gap> AsPermutation(last);
(1,2,3)
gap> gr := Digraph([[2, 3], [], []]);
<digraph with 3 vertices, 2 edges>
gap> AsTransformation(gr);
fail

3.3 New digraphs from old

3.3.1 DigraphCopy

. DigraphCopy(digraph) (operation)

Returns: A digraph.

http://www.maths.qmul.ac.uk/~leonard/grape/
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This function returns a new copy of digraph , retaining none of the attributes or properties of
digraph .

Example
gap> gr := CycleDigraph(10);
<digraph with 10 vertices, 10 edges>
gap> DigraphCopy(gr) = gr;
true

3.3.2 InducedSubdigraph

. InducedSubdigraph(digraph, verts) (operation)

Returns: A digraph.
If digraph is a digraph, and verts is a subset of the vertices of digraph , then this operation

returns a digraph constructed from digraph by retaining precisely those vertices in verts , and those
edges whose source and range vertices are both contained in verts .

The vertices of the induced subdigraph are [1..Length(verts)] but the original vertex labels
can be accessed via DigraphVertexLabels (5.1.10).

Example
gap> gr := Digraph([[1, 1, 2, 3, 4, 4], [1, 3, 4], [3, 1],
> [1, 1]]);
<multidigraph with 4 vertices, 13 edges>
gap> InducedSubdigraph(gr, [1, 3, 4]);
<multidigraph with 3 vertices, 9 edges>
gap> DigraphVertices(last);
[ 1 .. 3 ]

3.3.3 ReducedDigraph

. ReducedDigraph(digraph) (attribute)

Returns: A digraph.
This function returns a digraph isomorphic to the subdigraph of digraph induced by the set of

non-isolated vertices, i.e. the set of those vertices of digraph which are the source or range of some
edge in digraph . See InducedSubdigraph (3.3.2).

The vertex labels of the graph are preserved, so that a vertex in the new digraph can be matched
to the corresponding vertex in digraph .

Example
gap> d := Digraph([ [ 1, 2 ], [ ], [ ], [ 1, 4 ], [ ] ]);
<digraph with 5 vertices, 4 edges>
gap> r := ReducedDigraph(d);
<digraph with 3 vertices, 4 edges>
gap> OutNeighbours(r);
[ [ 1, 3 ], [ 1, 2 ], [ ] ]
gap> DigraphEdges(r); DigraphEdges(d);
[ [ 1, 1 ], [ 1, 3 ], [ 2, 1 ], [ 2, 2 ] ]
[ [ 1, 1 ], [ 1, 2 ], [ 4, 1 ], [ 4, 4 ] ]
gap> DigraphVertexLabel(r, 3);
2
gap> DigraphVertexLabel(r, 2);
4
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3.3.4 MaximalSymmetricSubdigraph

. MaximalSymmetricSubdigraph(digraph) (attribute)

. MaximalSymmetricSubdigraphWithoutLoops(digraph) (attribute)

Returns: A digraph.
If digraph is a digraph, then MaximalSymmetricSubdigraph returns a symmetric digraph with-

out multiple edges which has the same vertex set as digraph , and whose edge list is formed from
digraph by ignoring the multiplicity of edges, and by ignoring edges [u,v] for which there does not
exist an edge [v,u].

The digraph returned by MaximalSymmetricSubdigraphWithoutLoops is the same, except that
loops are removed.

See IsSymmetricDigraph (6.1.10), IsMultiDigraph (6.1.8), and DigraphHasLoops (6.1.1)
for more information.

Example
gap> gr := Digraph([[2, 2], [1, 3], [4], [3, 1]]);
<multidigraph with 4 vertices, 7 edges>
gap> not IsSymmetricDigraph(gr) and IsMultiDigraph(gr);
true
gap> OutNeighbours(gr);
[ [ 2, 2 ], [ 1, 3 ], [ 4 ], [ 3, 1 ] ]
gap> sym := MaximalSymmetricSubdigraph(gr);
<digraph with 4 vertices, 4 edges>
gap> IsSymmetricDigraph(sym) and not IsMultiDigraph(sym);
true
gap> OutNeighbours(sym);
[ [ 2 ], [ 1 ], [ 4 ], [ 3 ] ]

3.3.5 QuotientDigraph

. QuotientDigraph(digraph, p) (operation)

Returns: A digraph.
If digraph is a digraph, and p is a partition of the vertices of digraph , then this operation returns

a new digraph constructed by amalgamating all vertices of digraph which lie in the same part of p .
A partition of the vertices of digraph is a list of non-empty disjoint lists, such that the union of all

the sub-lists is equal to the vertex set of digraph . In particular, each vertex must appear in precisely
one sub-list.

The vertices of digraph in part i of p will become vertex i in the quotient, and every edge of
digraph with source in part i and range in part j becomes an edge from i to j in the quotient. In
particular, this means that the quotient of a digraph without multiple edges can have multiple edges.

Example
gap> gr := Digraph([[2, 1], [4], [1], [1, 3, 4]]);
<digraph with 4 vertices, 7 edges>
gap> DigraphVertices(gr);
[ 1 .. 4 ]
gap> DigraphEdges(gr);
[ [ 1, 2 ], [ 1, 1 ], [ 2, 4 ], [ 3, 1 ], [ 4, 1 ], [ 4, 3 ],

[ 4, 4 ] ]
gap> p := [[1], [2, 4], [3]];
[ [ 1 ], [ 2, 4 ], [ 3 ] ]
gap> qr := QuotientDigraph(gr, p);



Digraphs 18

<multidigraph with 3 vertices, 7 edges>
gap> DigraphVertices(qr);
[ 1 .. 3 ]
gap> DigraphEdges(qr);
[ [ 1, 2 ], [ 1, 1 ], [ 2, 2 ], [ 2, 1 ], [ 2, 3 ], [ 2, 2 ],

[ 3, 1 ] ]
gap> QuotientDigraph(EmptyDigraph(0), []);
<digraph with 0 vertices, 0 edges>

3.3.6 DigraphReverse

. DigraphReverse(digraph) (operation)

Returns: A digraph.
If digraph is a digraph, then this operation returns a digraph constructed from digraph by

reversing the orientation of every edge.
Example

gap> gr := Digraph([[3], [1, 3, 5], [1], [1, 2, 4],
> [2, 3, 5]]);
<digraph with 5 vertices, 11 edges>
gap> DigraphReverse(gr);
<digraph with 5 vertices, 11 edges>
gap> OutNeighbours(last);
[ [ 2, 3, 4 ], [ 4, 5 ], [ 1, 2, 5 ], [ 4 ], [ 2, 5 ] ]
gap> gr := Digraph(4,
> [1, 1, 1, 2, 3, 3, 4, 4],
> [1, 2, 4, 1, 2, 4, 3, 4]);
<digraph with 4 vertices, 8 edges>
gap> gr := DigraphReverse(gr);
<digraph with 4 vertices, 8 edges>
gap> DigraphRange(gr);
[ 1, 2, 1, 3, 4, 1, 3, 4 ]
gap> DigraphSource(gr);
[ 1, 1, 2, 2, 3, 4, 4, 4 ]

3.3.7 DigraphDual

. DigraphDual(digraph) (attribute)

Returns: A digraph.
If digraph is a digraph without multiple edges, then this returns the dual of digraph . The dual

is sometimes called the complement.
The dual of digraph has the same vertices as digraph , and there is an edge in the dual from i

to j whenever there is no edge from i to j in digraph .
Example

gap> gr := Digraph([[2, 3], [], [4, 6], [5], [],
> [7, 8, 9], [], [], []]);
<digraph with 9 vertices, 8 edges>
gap> DigraphDual(gr);
<digraph with 9 vertices, 73 edges>
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3.3.8 DigraphSymmetricClosure

. DigraphSymmetricClosure(digraph) (attribute)

Returns: A digraph.
If digraph is a digraph, then this attribute gives the minimal symmetric digraph which has the

same vertices and contains all the edges of digraph . See IsSymmetricDigraph (6.1.10). A digraph
is symmetric if, whenever there is an edge from i to j, there is also an edge from j to i.

Example
gap> gr := Digraph([[1,2,3], [2,4], [1], [3,4]]);
<digraph with 4 vertices, 8 edges>
gap> gr1 := DigraphSymmetricClosure(gr);
<digraph with 4 vertices, 11 edges>
gap> IsSymmetricDigraph(gr1);
true
gap> OutNeighbours(gr1);
[ [ 1, 2, 3 ], [ 2, 4, 1 ], [ 1, 4 ], [ 3, 4, 2 ] ]
gap> gr := Digraph([[2, 2], [1]]);
<multidigraph with 2 vertices, 3 edges>
gap> gr1 := DigraphSymmetricClosure(gr);
<multidigraph with 2 vertices, 4 edges>
gap> OutNeighbours(gr1);
[ [ 2, 2 ], [ 1, 1 ] ]

3.3.9 DigraphReflexiveTransitiveClosure

. DigraphReflexiveTransitiveClosure(digraph) (attribute)

. DigraphTransitiveClosure(digraph) (attribute)

Returns: A digraph.
If digraph is a digraph with no multiple edges, then these attributes return the (reflexive) transi-

tive closure of digraph .
A digraph is reflexive if it has a loop at every vertex, and it is transitive if whenever [i,j] and

[j,k] are edges of digraph , [i,k] is also an edge. The (reflexive) transitive closure of a digraph
digraph is the least (reflexive and) transitive digraph containing digraph .

Let n be the number of vertices of digraph , and let m be the number of edges. For an arbi-
trary digraph, these attributes will use a version of the Floyd-Warshall algorithm, with complexity
O(n3). However, for a topologically sortable digraph [see DigraphTopologicalSort (5.1.7)], these
attributes will use methods with complexity O(m+n+m ·n) when this is faster.

Example
gap> gr := Digraph( [ [ 4, 6 ], [ 1, 3 ], [ ], [ 5 ], [ ],
> [ 7, 8, 9 ], [ ], [ ], [ ] ] );;
gap> DigraphTransitiveClosure(gr);
<digraph with 9 vertices, 18 edges>
gap> OutNeighbours(last);
[ [ 4, 5, 6, 7, 8, 9 ], [ 1, 3, 4, 5, 6, 7, 8, 9 ], [ ], [ 5 ],

[ ], [ 7, 8, 9 ], [ ], [ ], [ ] ]
gap> DigraphReflexiveTransitiveClosure(gr);
<digraph with 9 vertices, 27 edges>
gap> OutNeighbours(last);
[ [ 1, 4, 5, 6, 7, 8, 9 ], [ 1, 2, 3, 4, 5, 6, 7, 8, 9 ], [ 3 ],

[ 4, 5 ], [ 5 ], [ 6, 7, 8, 9 ], [ 7 ], [ 8 ], [ 9 ] ]
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3.3.10 DigraphReflexiveTransitiveReduction

. DigraphReflexiveTransitiveReduction(digraph) (operation)

. DigraphTransitiveReduction(digraph) (operation)

Returns: A digraph.
If digraph is a topologically sortable digraph [see DigraphTopologicalSort (5.1.7)] with no

multiple edges, then these operations return the (reflexive) transitive reduction of digraph .
The (reflexive) transitive reduction of such a digraph is the unique least subgraph such that the

(reflexive) transitive closure of the subgraph is equal to the (reflexive) transitive closure of digraph
[see DigraphReflexiveTransitiveClosure (3.3.9)]. In order words, it is the least subgraph of
digraph which retains the same reachability as digraph .

Let n be the number of vertices of an arbitrary digraph, and let m be the number of edges. Then
these operations use methods with complexity O(m+n+m ·n).

Example
gap> gr := Digraph([[1, 2, 3], [3], [3]]);;
gap> DigraphHasLoops(gr);
true
gap> gr1 := DigraphReflexiveTransitiveReduction(gr);
<digraph with 3 vertices, 2 edges>
gap> DigraphHasLoops(gr1);
false
gap> OutNeighbours(gr1);
[ [ 2 ], [ 3 ], [ ] ]
gap> gr2 := DigraphTransitiveReduction(gr);
<digraph with 3 vertices, 4 edges>
gap> DigraphHasLoops(gr2);
true
gap> OutNeighbours(gr2);
[ [ 2, 1 ], [ 3 ], [ 3 ] ]
gap> DigraphReflexiveTransitiveClosure(gr)
> = DigraphReflexiveTransitiveClosure(gr1);
true
gap> DigraphTransitiveClosure(gr)
> = DigraphTransitiveClosure(gr2);
true

3.3.11 DigraphAddVertex

. DigraphAddVertex(digraph[, label]) (operation)

Returns: A digraph.
The operation returns a new digraph constructed from digraph by adding a single new vertex.
If the optional second argument label is a GAP object, then the new vertex will be labelled

label .
Example

gap> gr := CompleteDigraph(3);
<digraph with 3 vertices, 6 edges>
gap> new := DigraphAddVertex(gr);
<digraph with 4 vertices, 6 edges>
gap> DigraphVertices(new);
[ 1 .. 4 ]
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gap> new := DigraphAddVertex(gr, Group((1,2)));
<digraph with 4 vertices, 6 edges>
gap> DigraphVertexLabels(new);
[ 1, 2, 3, Group([ (1,2) ]) ]

3.3.12 DigraphAddVertices

. DigraphAddVertices(digraph, m[, labels]) (operation)

Returns: A digraph.
For a non-negative integer m , this operation returns a new digraph constructed from digraph by

adding m new vertices.
If the optional third argument labels is a list of length m consisting of GAP objects, then the

new vertices will be labelled according to this list.
Example

gap> gr := CompleteDigraph(3);
<digraph with 3 vertices, 6 edges>
gap> new := DigraphAddVertices(gr, 3);
<digraph with 6 vertices, 6 edges>
gap> DigraphVertices(new);
[ 1 .. 6 ]
gap> new := DigraphAddVertices(gr, 2, [Group([(1,2)]), "d"]);
<digraph with 5 vertices, 6 edges>
gap> DigraphVertexLabels(new);
[ 1, 2, 3, Group([ (1,2) ]), "d" ]
gap> DigraphAddVertices(gr, 0) = gr;
true

3.3.13 DigraphAddEdge

. DigraphAddEdge(digraph, edge) (operation)

Returns: A digraph.
If edge is a pairs of vertices of digraph , then this operation returns a new digraph constructed

from digraph by adding a new edge with source edge[1] and range edge[2].
Example

gap> gr1 := Digraph([[2], [3], []]);
<digraph with 3 vertices, 2 edges>
gap> DigraphEdges(gr1);
[ [ 1, 2 ], [ 2, 3 ] ]
gap> gr2 := DigraphAddEdge(gr1, [3, 1]);
<digraph with 3 vertices, 3 edges>
gap> DigraphEdges(gr2);
[ [ 1, 2 ], [ 2, 3 ], [ 3, 1 ] ]
gap> gr3 := DigraphAddEdge(gr2, [2, 3]);
<multidigraph with 3 vertices, 4 edges>
gap> DigraphEdges(gr3);
[ [ 1, 2 ], [ 2, 3 ], [ 2, 3 ], [ 3, 1 ] ]
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3.3.14 DigraphAddEdgeOrbit

. DigraphAddEdgeOrbit(digraph, edge) (operation)

Returns: A new digraph.
This operation returns a new digraph with the same vertices and edges as digraph and with

additional edges consisting of the orbit of the edge edge under the action of the DigraphGroup
(7.2.3) of digraph . If edge is already an edge in digraph , then digraph is returns unchanged.

An edge is simply a pair of vertices of digraph .
Example

gap> gr1 := CayleyDigraph(DihedralGroup(8));
<digraph with 8 vertices, 24 edges>
gap> gr2 := DigraphAddEdgeOrbit(gr1, [1, 8]);
<digraph with 8 vertices, 32 edges>
gap> DigraphEdges(gr1);
[ [ 1, 2 ], [ 1, 3 ], [ 1, 4 ], [ 2, 1 ], [ 2, 8 ], [ 2, 6 ],

[ 3, 5 ], [ 3, 4 ], [ 3, 7 ], [ 4, 6 ], [ 4, 7 ], [ 4, 1 ],
[ 5, 3 ], [ 5, 2 ], [ 5, 8 ], [ 6, 4 ], [ 6, 5 ], [ 6, 2 ],
[ 7, 8 ], [ 7, 1 ], [ 7, 3 ], [ 8, 7 ], [ 8, 6 ], [ 8, 5 ] ]

gap> DigraphEdges(gr2);
[ [ 1, 2 ], [ 1, 3 ], [ 1, 4 ], [ 1, 8 ], [ 2, 1 ], [ 2, 8 ],

[ 2, 6 ], [ 2, 3 ], [ 3, 5 ], [ 3, 4 ], [ 3, 7 ], [ 3, 2 ],
[ 4, 6 ], [ 4, 7 ], [ 4, 1 ], [ 4, 5 ], [ 5, 3 ], [ 5, 2 ],
[ 5, 8 ], [ 5, 4 ], [ 6, 4 ], [ 6, 5 ], [ 6, 2 ], [ 6, 7 ],
[ 7, 8 ], [ 7, 1 ], [ 7, 3 ], [ 7, 6 ], [ 8, 7 ], [ 8, 6 ],
[ 8, 5 ], [ 8, 1 ] ]

gap> gr3 := DigraphRemoveEdgeOrbit(gr2, [1, 8]);
<digraph with 8 vertices, 24 edges>
gap> gr3 = gr1;
true

3.3.15 DigraphAddEdges

. DigraphAddEdges(digraph, edges) (operation)

Returns: A digraph.
If edges is a (possibly empty) list of pairs of vertices of digraph , then this operation returns a

new digraph constructed from digraph by adding the edges specified by edges . More precisely, for
every edge in edges , a new edge will be added with source edge[1] and range edges[2].

If an edge is included in edges with multiplicity k, then it will be added k times.
Example

gap> func := function(n)
> local source, range, i;
> source := [];
> range := [];
> for i in [1 .. n - 2] do
> Add(source, i);
> Add(range, i + 1);
> od;
> return Digraph(n, source, range);
> end;;
gap> gr := func(1024);
<digraph with 1024 vertices, 1022 edges>
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gap> gr := DigraphAddEdges(gr,
> [[1023, 1024], [1, 1024], [1023, 1024], [1024, 1]]);
<multidigraph with 1024 vertices, 1026 edges>

3.3.16 DigraphRemoveVertex

. DigraphRemoveVertex(digraph, v) (operation)

Returns: A digraph.
If v is a vertex of digraph , then this operation returns a new digraph constructed from digraph

by removing vertex v , along with any edge whose source or range vertex is v .
If digraph has n vertices, then the vertices of the new digraph are [1..n-1], but the original

labels can be accessed via DigraphVertexLabels (5.1.10).
Example

gap> gr := Digraph(["a", "b", "c"],
> ["a", "a", "b", "c", "c"],
> ["b", "c", "a", "a", "c"]);
<digraph with 3 vertices, 5 edges>
gap> DigraphVertexLabels(gr);
[ "a", "b", "c" ]
gap> DigraphEdges(gr);
[ [ 1, 2 ], [ 1, 3 ], [ 2, 1 ], [ 3, 1 ], [ 3, 3 ] ]
gap> new := DigraphRemoveVertex(gr, 2);
<digraph with 2 vertices, 3 edges>
gap> DigraphVertexLabels(new);
[ "a", "c" ]

3.3.17 DigraphRemoveVertices

. DigraphRemoveVertices (digraph, verts) (operation)

Returns: A digraph.
If verts is a (possibly empty) duplicate-free list of vertices of digraph , then this operation

returns a new digraph constructed from digraph by removing every vertex in verts , along with any
edge whose source or range vertex is in verts .

If digraph has n vertices, then the vertices of the new digraph are [1..n-Length(verts)], but
the original labels can be accessed via DigraphVertexLabels (5.1.10).

Example
gap> gr := Digraph([[3], [1, 3, 5], [1], [1, 2, 4], [2, 3, 5]]);
<digraph with 5 vertices, 11 edges>
gap> SetDigraphVertexLabels(gr, ["a", "b", "c", "d", "e"]);
gap> new := DigraphRemoveVertices(gr, [2, 4]);
<digraph with 3 vertices, 4 edges>
gap> DigraphVertexLabels(new);
[ "a", "c", "e" ]

3.3.18 DigraphRemoveEdge

. DigraphRemoveEdge(digraph, edge) (operation)

Returns: A digraph.
If one of the following holds:
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• digraph is a digraph with no multiple edges, and edge is a pair of vertices of digraph , or

• digraph is any digraph and edge is the index of an edge of digraph ,

then this operation returns a new digraph constructed from digraph by removing the edges specified
by edges . If, in the first case, the pair of vertices edge does not specify an edge of digraph , then a
new copy of digraph will be returned.

Example
gap> gr := CycleDigraph(250000);
<digraph with 250000 vertices, 250000 edges>
gap> gr := DigraphRemoveEdge(gr, [250000, 1]);
<digraph with 250000 vertices, 249999 edges>
gap> gr := DigraphRemoveEdge(gr, 10);
<digraph with 250000 vertices, 249998 edges>

3.3.19 DigraphRemoveEdgeOrbit

. DigraphRemoveEdgeOrbit(digraph, edge) (operation)

Returns: A new digraph.
This operation returns a new digraph with the same vertices as digraph and with the orbit of the

edge edge (under the action of the DigraphGroup (7.2.3) of digraph ) removed. If edge is not an
edge in digraph , then digraph is returned unchanged.

An edge is simply a pair of vertices of digraph .
Example

gap> gr1 := CayleyDigraph(DihedralGroup(8));
<digraph with 8 vertices, 24 edges>
gap> gr2 := DigraphAddEdgeOrbit(gr1, [1, 8]);
<digraph with 8 vertices, 32 edges>
gap> DigraphEdges(gr1);
[ [ 1, 2 ], [ 1, 3 ], [ 1, 4 ], [ 2, 1 ], [ 2, 8 ], [ 2, 6 ],

[ 3, 5 ], [ 3, 4 ], [ 3, 7 ], [ 4, 6 ], [ 4, 7 ], [ 4, 1 ],
[ 5, 3 ], [ 5, 2 ], [ 5, 8 ], [ 6, 4 ], [ 6, 5 ], [ 6, 2 ],
[ 7, 8 ], [ 7, 1 ], [ 7, 3 ], [ 8, 7 ], [ 8, 6 ], [ 8, 5 ] ]

gap> DigraphEdges(gr2);
[ [ 1, 2 ], [ 1, 3 ], [ 1, 4 ], [ 1, 8 ], [ 2, 1 ], [ 2, 8 ],

[ 2, 6 ], [ 2, 3 ], [ 3, 5 ], [ 3, 4 ], [ 3, 7 ], [ 3, 2 ],
[ 4, 6 ], [ 4, 7 ], [ 4, 1 ], [ 4, 5 ], [ 5, 3 ], [ 5, 2 ],
[ 5, 8 ], [ 5, 4 ], [ 6, 4 ], [ 6, 5 ], [ 6, 2 ], [ 6, 7 ],
[ 7, 8 ], [ 7, 1 ], [ 7, 3 ], [ 7, 6 ], [ 8, 7 ], [ 8, 6 ],
[ 8, 5 ], [ 8, 1 ] ]

gap> gr3 := DigraphRemoveEdgeOrbit(gr2, [1, 8]);
<digraph with 8 vertices, 24 edges>
gap> gr3 = gr1;
true

3.3.20 DigraphRemoveEdges

. DigraphRemoveEdges(digraph, edges) (operation)

Returns: A digraph.
If one of the following holds:
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• digraph is a digraph with no multiple edges, and edges is a list of pairs of vertices of
digraph , or

• digraph is any digraph and edges is a list of indices of edges of digraph ,

then this operation returns a new digraph constructed from digraph by removing all of the edges
specified by edges [see DigraphRemoveEdge (3.3.18)].

Example
gap> gr := CycleDigraph(250000);
<digraph with 250000 vertices, 250000 edges>
gap> gr := DigraphRemoveEdges(gr, [[250000, 1]]);
<digraph with 250000 vertices, 249999 edges>
gap> gr := DigraphRemoveEdges(gr, [10]);
<digraph with 250000 vertices, 249998 edges>

3.3.21 DigraphRemoveLoops

. DigraphRemoveLoops(digraph) (operation)

Returns: A digraph.
If digraph is a digraph, then this operation returns a new digraph constructed from digraph by

removing every loop. A loop is an edge with equal source and range.
Example

gap> gr := Digraph([[1, 2, 4], [1, 4], [3, 4], [1, 4, 5],
> [1, 5]]);
<digraph with 5 vertices, 12 edges>
gap> DigraphRemoveLoops(gr);
<digraph with 5 vertices, 8 edges>

3.3.22 DigraphRemoveAllMultipleEdges

. DigraphRemoveAllMultipleEdges(digraph) (operation)

Returns: A digraph.
If digraph is a digraph, then this operation returns a new digraph constructed from digraph by

removing all multiple edges. The result is the largest subdigraph of digraph which does not contain
multiple edges.

Example
gap> gr1 := Digraph([[1, 2, 3, 2], [1, 1, 3], [2, 2, 2]]);
<multidigraph with 3 vertices, 10 edges>
gap> gr2 := DigraphRemoveAllMultipleEdges(gr1);
<digraph with 3 vertices, 6 edges>
gap> OutNeighbours(gr2);
[ [ 1, 2, 3 ], [ 1, 3 ], [ 2 ] ]

3.3.23 DigraphReverseEdges

. DigraphReverseEdges(digraph, edges) (operation)

. DigraphReverseEdge(digraph, edge) (operation)

Returns: A digraph.
If digraph is a digraph without multiple edges, and edges is either:
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• a list of pairs of vertices of digraph (the entries of each pair corresponding to the source and
the range of an edge, respectively),

• a list of positions of elements in the list DigraphEdges (5.1.3),

then DigraphReverseEdges returns a new digraph constructed from digraph by reversing
the orientation of every edge specified by edges . If only one edge is to be reversed, then
DigraphReverseEdge can be used instead. In this case, the second argument should just be a single
vertex-pair or a single position.

Note that even though digraph cannot have multiple edges, the output may have multiple edges.
Example

gap> gr := Digraph(21,
> [1, 1, 1, 5, 7, 9, 11, 21],
> [7, 2, 8, 21, 19, 1, 2, 1]);
<digraph with 21 vertices, 8 edges>
gap> DigraphEdges(gr);
[ [ 1, 7 ], [ 1, 2 ], [ 1, 8 ], [ 5, 21 ], [ 7, 19 ], [ 9, 1 ],

[ 11, 2 ], [ 21, 1 ] ]
gap> gr2 := DigraphReverseEdges(gr, [1, 2, 4]);
<digraph with 21 vertices, 8 edges>
gap> gr = DigraphReverseEdges(gr2,
> [[7, 1], [2, 1], [21, 5]]);
true
gap> gr2 := DigraphReverseEdge(gr, 5);
<digraph with 21 vertices, 8 edges>
gap> gr2 = DigraphReverseEdge(gr, [7, 19]);
true

3.3.24 DigraphDisjointUnion (for an arbitrary number of digraphs)

. DigraphDisjointUnion(gr1, gr2, ...) (function)

. DigraphDisjointUnion(list) (function)

Returns: A digraph.
In the first form, if gr1 , gr2 , etc. are digraphs, then DigraphDisjointUnion returns their dis-

joint union. In the second form, if list is a non-empty list of digraphs, then DigraphDisjointUnion
returns the disjoint union of the digraphs contained in the list.

For a disjoint union of digraphs, the vertex set is the disjoint union of the vertex sets, and the edge
list is the disjoint union of the edge lists.

More specifically, for a collection of digraphs gr1 , gr2 , ..., the disjoint union with have
DigraphNrVertices(gr1) + DigraphNrVertices(gr2) + ... vertices. The edges of gr1
will remain unchanged, whilst the edges of the ith digraph, gr[i], will be changed so that they
belong to the vertices of the disjoint union corresponding to gr[i]. In particular, the edges
of gr[i] will have their source and range increased by DigraphNrVertices(gr1) + ... +
DigraphNrVertices(gr[i-1]).

Note that previously set DigraphVertexLabels (5.1.10) will be lost.
Example

gap> gr1 := CycleDigraph(3);
<digraph with 3 vertices, 3 edges>
gap> OutNeighbours(gr1);
[ [ 2 ], [ 3 ], [ 1 ] ]
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gap> gr2 := CompleteDigraph(3);
<digraph with 3 vertices, 6 edges>
gap> OutNeighbours(gr2);
[ [ 2, 3 ], [ 1, 3 ], [ 1, 2 ] ]
gap> union := DigraphDisjointUnion(gr1, gr2);
<digraph with 6 vertices, 9 edges>
gap> OutNeighbours(union);
[ [ 2 ], [ 3 ], [ 1 ], [ 5, 6 ], [ 4, 6 ], [ 4, 5 ] ]

3.3.25 DigraphEdgeUnion (for an arbitrary number of digraphs)

. DigraphEdgeUnion(gr1, gr2, ...) (function)

. DigraphEdgeUnion(list) (function)

Returns: A digraph.
In the first form, if gr1 , gr2 , etc. are digraphs, then DigraphEdgeUnion returns their edge union.

In the second form, if list is a non-empty list of digraphs, then DigraphEdgeUnion returns the edge
union of the digraphs contained in the list.

The vertex set of the edge union of a collection of digraphs is the union of the vertex sets, whilst
the edge list of the edge union is the concatenation of the edge lists. The number of vertices of the
edge union is equal to the maximum number of vertices of one of the digraphs, whilst the number of
edges of the edge union will equal the sum of the number of edges of each digraph.

Note that previously set DigraphVertexLabels (5.1.10) will be lost.
Example

gap> gr := CycleDigraph(10);
<digraph with 10 vertices, 10 edges>
gap> DigraphEdgeUnion(gr, gr);
<multidigraph with 10 vertices, 20 edges>
gap> gr1 := Digraph([[2], [1]]);
<digraph with 2 vertices, 2 edges>
gap> gr2 := Digraph([[2, 3], [2], [1]]);
<digraph with 3 vertices, 4 edges>
gap> union := DigraphEdgeUnion(gr1, gr2);
<multidigraph with 3 vertices, 6 edges>
gap> OutNeighbours(union);
[ [ 2, 2, 3 ], [ 1, 2 ], [ 1 ] ]
gap> union = DigraphByEdges(
> Concatenation(DigraphEdges(gr1), DigraphEdges(gr2)));
true

3.3.26 DigraphJoin (for an arbitrary number of digraphs)

. DigraphJoin(gr1, gr2, ...) (function)

. DigraphJoin(list) (function)

Returns: A digraph.
In the first form, if gr1 , gr2 , etc. are digraphs, then DigraphJoin returns their join. In the

second form, if list is a non-empty list of digraphs, then DigraphJoin returns the join of the
digraphs contained in the list.

The join of a collection of digraphs gr1 , gr2 , ... is formed by first taking the
DigraphDisjointUnion (3.3.24) of the collection. In the disjoint union, if i 6= j then there are
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no edges between vertices corresponding to digraphs gr[i] and gr[j] in the collection; the join is
created by including all such edges.

For example, the join of two empty digraphs is a complete bipartite digraph.
Note that previously set DigraphVertexLabels (5.1.10) will be lost.

Example
gap> gr := CompleteDigraph(3);
<digraph with 3 vertices, 6 edges>
gap> IsCompleteDigraph(DigraphJoin(gr, gr));
true
gap> gr2 := CycleDigraph(3);
<digraph with 3 vertices, 3 edges>
gap> DigraphJoin(gr, gr2);
<digraph with 6 vertices, 27 edges>

3.3.27 LineDigraph

. LineDigraph(digraph) (operation)

. EdgeDigraph(digraph) (operation)

Returns: A digraph.
Given a digraph digraph , the operation returns the digraph obtained by associating a vertex with

each edge of digraph , and creating an edge from a vertex v to a vertex u if and only if the terminal
vertex of the edge associated with v is the start vertex of the edge associated with u.

Example
gap> LineDigraph(CompleteDigraph(3));
<digraph with 6 vertices, 12 edges>
gap> LineDigraph(ChainDigraph(3));
<digraph with 2 vertices, 1 edge>

3.3.28 LineUndirectedDigraph

. LineUndirectedDigraph(digraph) (operation)

. EdgeUndirectedDigraph(digraph) (operation)

Returns: A digraph.
Given a symmetric digraph digraph , the operation returns the symmetric digraph obtained by

associating a vertex with each edge of digraph , ignoring directions and multiplicites, and adding an
edge between two vertices if and only if the corresponding edges have a vertex in common.

Example
gap> LineUndirectedDigraph(CompleteDigraph(3));
<digraph with 3 vertices, 6 edges>
gap> LineUndirectedDigraph(DigraphSymmetricClosure(ChainDigraph(3)));
<digraph with 2 vertices, 2 edges>

3.3.29 DoubleDigraph

. DoubleDigraph(digraph) (operation)

Returns: A digraph.
Let digraph be a digraph with vertex set V. This function returns the double digraph of digraph .

The vertex set of the double digraph is the orginal vertex set together with a duplicate. The edges are
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[u_1,v_2] and [u_2,v_1] if and only if [u,v] is an edge in digraph , together with the original
edges and their duplicates.

Example
gap> out := [[2],[3],[1]];
[ [ 2 ], [ 3 ], [ 1 ] ]
gap> gamma := Digraph(out);
<digraph with 3 vertices, 3 edges>
gap> DoubleDigraph(gamma);
<digraph with 6 vertices, 12 edges>

3.3.30 BipartiteDoubleDigraph

. BipartiteDoubleDigraph(digraph) (operation)

Returns: A digraph.
Let digraph be a digraph with vertex set V. This function returns the bipartite double digraph

of digraph . The vertex set of the double digraph is the orginal vertex set together with a duplicate.
The edges are [u_1,v_2] and [u_2,v_1] if and only if [u,v] is an edge in digraph . The resulting
graph is bipartite, since the orignal edges are not included in the resulting digraph.

Example
gap> out := [[2],[3],[1]];
[ [ 2 ], [ 3 ], [ 1 ] ]
gap> gamma := Digraph(out);
<digraph with 3 vertices, 3 edges>
gap> BipartiteDoubleDigraph(gamma);
<digraph with 6 vertices, 6 edges>

3.3.31 DigraphAddAllLoops

. DigraphAddAllLoops(digraph) (operation)

Returns: A digraph.
For a digraph digraph this operation return a copy of digraph such that a loop is added for

every vertex which did not have a loop in digraph .
Example

gap> gr := EmptyDigraph(13);
<digraph with 13 vertices, 0 edges>
gap> gr := DigraphAddAllLoops(gr);
<digraph with 13 vertices, 13 edges>
gap> OutNeighbours(gr);
[ [ 1 ], [ 2 ], [ 3 ], [ 4 ], [ 5 ], [ 6 ], [ 7 ], [ 8 ], [ 9 ],

[ 10 ], [ 11 ], [ 12 ], [ 13 ] ]
gap> gr := Digraph([ [1, 2, 3], [1, 3], [1] ]);
<digraph with 3 vertices, 6 edges>
gap> gr := DigraphAddAllLoops(gr);
<digraph with 3 vertices, 8 edges>
gap> OutNeighbours(gr);
[ [ 1, 2, 3 ], [ 1, 3, 2 ], [ 1, 3 ] ]
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3.3.32 DistanceDigraph (for digraph and int)

. DistanceDigraph(digraph, i) (operation)

. DistanceDigraph(digraph, list) (operation)

Returns: A digraph.
The first argument is a digraph, the second argument is a non-negative integer or a list of positive

integers. This operation returns a digraph on the same set of vertices as digraph , with two vertices
being adjacent if and only if the distance between them in digraph equals i or is a number in list .
See DigraphShortestDistance (5.3.2).

Example
gap> out := [ [ 16, 18, 25 ], [ 17, 20, 25 ], [ 16, 21, 28 ],
> [ 17, 19, 28 ], [ 17, 24, 26 ], [ 18, 22, 26 ],
> [ 18, 19, 23 ], [ 19, 27, 29 ], [ 20, 21, 23 ],
> [ 21, 26, 29 ], [ 20, 22, 27 ], [ 22, 28, 30 ],
> [ 23, 24, 30 ], [ 16, 24, 27 ], [ 25, 29, 30 ],
> [ 1, 3, 14 ], [ 2, 4, 5 ], [ 1, 6, 7 ], [ 4, 7, 8 ],
> [ 2, 9, 11 ], [ 3, 9, 10 ], [ 6, 11, 12 ], [ 7, 9, 13 ],
> [ 5, 13, 14 ], [ 1, 2, 15 ], [ 5, 6, 10 ], [ 8, 11, 14 ],
> [ 3, 4, 12 ], [ 8, 10, 15 ], [ 12, 13, 15 ] ];;
gap> digraph := Digraph(out);
<digraph with 30 vertices, 90 edges>
gap> DistanceDigraph(digraph,1);
<digraph with 30 vertices, 90 edges>
gap> DistanceDigraph(digraph,[1,2]);
<digraph with 30 vertices, 270 edges>

3.4 Random digraphs

3.4.1 RandomDigraph

. RandomDigraph(n[, p]) (operation)

Returns: A digraph.
If n is a positive integer, then this function returns a random digraph with n vertices and without

multiple edges. The result may or may not have loops.
If the optional second argument p is a float with value 0≤ p ≤ 1, then an edge will exist between

each pair of vertices with probability approximately p . If p is not specified, then a random probability
will be assumed (chosen with uniform probability).

Example
gap> RandomDigraph(1000);
<digraph with 1000 vertices, 364444 edges>
gap> RandomDigraph(10000, 0.023);
<digraph with 10000 vertices, 2300438 edges>

3.4.2 RandomMultiDigraph

. RandomMultiDigraph(n[, m]) (operation)

Returns: A digraph.
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If n is a positive integer, then this function returns a random digraph with n vertices. If the optional
second argument m is a positive integer, then the digraph will have m edges. If m is not specified, then
the number of edges will be chosen randomly (with uniform probability) from the range [1 ..

(n
2

)
].

The method used by this function chooses each edge from the set of all possible edges with
uniform probability. No effort is made to avoid creating multiple edges, so it is possible (but not
guaranteed) that the result will have multiple edges. The result may or may not have loops.

Example
gap> RandomMultiDigraph(1000);
<multidigraph with 1000 vertices, 216659 edges>
gap> RandomMultiDigraph(1000, 950);
<multidigraph with 1000 vertices, 950 edges>

3.4.3 RandomTournament

. RandomTournament(n) (operation)

Returns: A digraph.
If n is a non-negative integer, this function returns a random tournament with n vertices. See

IsTournament (6.1.11).
Example

gap> RandomTournament(10);
<digraph with 10 vertices, 45 edges>

3.5 Standard examples

3.5.1 ChainDigraph

. ChainDigraph(n) (operation)

Returns: A digraph.
If n is a positive integer, this function returns a chain with n vertices and n - 1 edges. Specifi-

cally, for each vertex i (with i < n), there is a directed edge with source i and range i + 1.
The DigraphReflexiveTransitiveClosure (3.3.9) of a chain represents a total order.

Example
gap> ChainDigraph(42);
<digraph with 42 vertices, 41 edges>

3.5.2 CompleteDigraph

. CompleteDigraph(n) (operation)

Returns: A digraph.
If n is a non-negative integer, this function returns the complete digraph with n vertices. See

IsCompleteDigraph (6.1.5).
Example

gap> CompleteDigraph(20);
<digraph with 20 vertices, 380 edges>
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3.5.3 CompleteBipartiteDigraph

. CompleteBipartiteDigraph(m, n) (operation)

Returns: A digraph.
A complete bipartite digraph is a digraph whose vertices can be partitioned into two non-empty

vertex sets, such there exists a unique edge with source i and range j if and only if i and j lie in
different vertex sets.

If m and n are positive integers, this function returns the complete bipartite digraph with vertex
sets of sizes m (containing the vertices [1 .. m]) and n (containing the vertices [m + 1 .. m +
n]).

Example
gap> CompleteBipartiteDigraph(2, 3);
<digraph with 5 vertices, 12 edges>

3.5.4 CycleDigraph

. CycleDigraph(n) (operation)

Returns: A digraph.
If n is a positive integer, this function returns a cycle digraph with n vertices and n edges. Specif-

ically, for each vertex i (with i < n), there is a directed edge with source i and range i + 1. In
addition, there is an edge with source n and range 1.

Example
gap> CycleDigraph(1);
<digraph with 1 vertex, 1 edge>
gap> CycleDigraph(123);
<digraph with 123 vertices, 123 edges>

3.5.5 EmptyDigraph

. EmptyDigraph(n) (operation)

. NullDigraph(n) (operation)

Returns: A digraph.
If n is a non-negative integer, this function returns the empty or null digraph with n vertices. An

empty digraph is one with no edges.
NullDigraph is a synonym for EmptyDigraph.

Example
gap> EmptyDigraph(20);
<digraph with 20 vertices, 0 edges>
gap> NullDigraph(10);
<digraph with 10 vertices, 0 edges>

3.5.6 CayleyDigraph

. CayleyDigraph(G[, gens]) (operation)

Returns: A digraph.
Let G be any group and let gens be a list of elements of G . This function returns the Cayley graph

of the group with respect gens . The vertices are the elements of G . There exists an edge from the
vertex u to the vertex v if and only if there exists a generator g in gens such that x * g = y.

If the optional second argument gens is not present, then the generators of G are used by default.
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Example
gap> G := DihedralGroup(8);
<pc group of size 8 with 3 generators>
gap> CayleyDigraph(G);
<digraph with 8 vertices, 24 edges>
gap> G := DihedralGroup(IsPermGroup, 8);
Group([ (1,2,3,4), (2,4) ])
gap> CayleyDigraph(G);
<digraph with 8 vertices, 16 edges>
gap> CayleyDigraph(G, [()]);
<digraph with 8 vertices, 8 edges>

3.5.7 JohnsonDigraph

. JohnsonDigraph(n, k) (operation)

Returns: A digraph.
If n and k are non-negative integers, then this operation returns a symmetric digraph which cor-

responds to the undirected Johnson graph J(n,k).
The Johnson graph J(n,k) has vertices given by all the k -subsets of the range [1 .. k], and

two vertices are connected by an edge iff their intersection has size k −1.
Example

gap> gr := JohnsonDigraph(3, 1);
<digraph with 3 vertices, 6 edges>
gap> OutNeighbours(gr);
[ [ 2, 3 ], [ 1, 3 ], [ 1, 2 ] ]
gap> gr := JohnsonDigraph(4, 2);
<digraph with 6 vertices, 24 edges>
gap> OutNeighbours(gr);
[ [ 2, 3, 4, 5 ], [ 1, 3, 4, 6 ], [ 1, 2, 5, 6 ], [ 1, 2, 5, 6 ],

[ 1, 3, 4, 6 ], [ 2, 3, 4, 5 ] ]
gap> JohnsonDigraph(1,0);
<digraph with 1 vertex, 0 edges>



Chapter 4

Operators

4.1 Operators for digraphs

digraph1 = digraph2
returns true if digraph1 and digraph2 have the same vertices, and
DigraphEdges(digraph1) = DigraphEdges(digraph2), up to some re-ordering of
the edge lists.

Note that this operator does not compare the vertex labels of digraph1 and digraph2 .

digraph1 < digraph2
This operator returns true if one of the following holds:

• The number n1 of vertices in digraph1 is less than the number n2 of vertices in
digraph2 ;

• n1 = n2, and the number m1 of edges in digraph1 is less than the number m2 of edges in
digraph2 ;

• n1 = n2, m1 = m2, and DigraphEdges(digraph1) is less than
DigraphEdges(digraph2) after having both of these sets have been sorted with
respect to the lexicographical order.

34



Chapter 5

Attributes and operations

5.1 Vertices and edges

5.1.1 DigraphVertices

. DigraphVertices(digraph) (attribute)

Returns: A list of integers.
Returns the vertices of the digraph digraph .
Note that the vertices of a digraph are always a range of positive integers from 1 to the number of

vertices of the graph.
Example

gap> gr := Digraph( [ "a", "b", "c" ],
> [ "a", "b", "b" ],
> [ "b", "c", "a" ] );
<digraph with 3 vertices, 3 edges>
gap> DigraphVertices(gr);
[ 1 .. 3 ]
gap> gr := Digraph( [ 1, 2, 3, 4, 5, 7 ],
> [ 1, 2, 2, 4, 4 ],
> [ 2, 3, 5, 3, 5 ] );
<digraph with 6 vertices, 5 edges>
gap> DigraphVertices(gr);
[ 1 .. 6 ]
gap> DigraphVertices(RandomDigraph(100));
[ 1 .. 100 ]

5.1.2 DigraphNrVertices

. DigraphNrVertices(digraph) (attribute)

Returns: An integer.
Returns the number of vertices of the digraph digraph .

Example
gap> gr := Digraph( [ "a", "b", "c" ],
> [ "a", "b", "b" ],
> [ "b", "c", "a" ] );
<digraph with 3 vertices, 3 edges>
gap> DigraphNrVertices(gr);

35



Digraphs 36

3
gap> gr := Digraph( [ 1, 2, 3, 4, 5, 7 ],
> [ 1, 2, 2, 4, 4 ],
> [ 2, 3, 5, 3, 5 ] );
<digraph with 6 vertices, 5 edges>
gap> DigraphNrVertices(gr);
6
gap> DigraphNrVertices(RandomDigraph(100));
100

5.1.3 DigraphEdges

. DigraphEdges(digraph) (attribute)

Returns: A list of lists.
DigraphEdges returns a list of edges of the digraph digraph , where each edge is a pair of

elements of DigraphVertices (5.1.1) of the form [source,range].
The entries of DigraphEdges(digraph) are in one-to-one corresponence with the edges of

digraph . Hence DigraphEdges(digraph) is duplicate-free if and only if digraph contains no
multiple edges.

The entries of DigraphEdges are guaranteed to be sorted by their first component (i.e. by the
source of each edge), but they are not necessarily then sorted by the second component.

Example
gap> gr := Digraph([[1, 3, 4, 3, 5], [1, 2, 3, 5], [2, 4, 5],
> [2, 4, 5], [1]]);
<multidigraph with 5 vertices, 16 edges>
gap> DigraphEdges(gr);
[ [ 1, 1 ], [ 1, 3 ], [ 1, 4 ], [ 1, 3 ], [ 1, 5 ], [ 2, 1 ],

[ 2, 2 ], [ 2, 3 ], [ 2, 5 ], [ 3, 2 ], [ 3, 4 ], [ 3, 5 ],
[ 4, 2 ], [ 4, 4 ], [ 4, 5 ], [ 5, 1 ] ]

5.1.4 DigraphNrEdges

. DigraphNrEdges(digraph) (attribute)

Returns: An integer.
This function returns the number of edges of the digraph digraph .

Example
gap> gr := Digraph([[1, 3, 4, 5], [1, 2, 3, 5], [2, 4, 5],
> [2, 4, 5], [1]]);;
gap> DigraphNrEdges(gr);
15
gap> gr := Digraph(["a", "b", "c"],
> ["a", "b", "b"],
> ["b", "a", "a"]);
<multidigraph with 3 vertices, 3 edges>
gap> DigraphNrEdges(gr);
3
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5.1.5 DigraphSinks

. DigraphSinks(digraph) (attribute)

Returns: A list of vertices.
This function returns a list of the sinks of the digraph digraph . A sink of a digraph is a vertex

with out-degree zero. See OutDegreeOfVertex (5.2.9).
Example

gap> gr := Digraph( [ [ 3, 5, 2, 2 ], [ 3 ], [ ], [ 5, 2, 5, 3 ], [ ] ] );
<multidigraph with 5 vertices, 9 edges>
gap> DigraphSinks(gr);
[ 3, 5 ]

5.1.6 DigraphSources

. DigraphSources(digraph) (attribute)

Returns: A list of vertices.
This function returns a list of the sources of the digraph digraph . A source of a digraph is a

vertex with in-degree zero. See InDegreeOfVertex (5.2.11).
Example

gap> gr := Digraph( [ [ 3, 5, 2, 2 ], [ 3 ], [ ], [ 5, 2, 5, 3 ], [ ] ] );
<multidigraph with 5 vertices, 9 edges>
gap> DigraphSources(gr);
[ 1, 4 ]

5.1.7 DigraphTopologicalSort

. DigraphTopologicalSort(digraph) (attribute)

Returns: A list of positive integers, or fail.
If digraph is a digraph with no cycles of length greater than 1, then DigraphTopologicalSort

returns the vertices of digraph ordered so that every edge’s source appears no earlier in the list than
its range. If the digraph digraph contains cycles of length greater than 1, then this operation returns
fail.

The method used for this attribute has complexity O(m+ n) where m is the number of edges
(counting multiple edges as one) and n is the number of vertices in the digraph.

Example
gap> gr := Digraph([[2, 3], [], [4, 6], [5], [], [7, 8, 9], [],
> [], []]);
<digraph with 9 vertices, 8 edges>
gap> DigraphTopologicalSort(gr);
[ 2, 5, 4, 7, 8, 9, 6, 3, 1 ]

5.1.8 DigraphBicomponents

. DigraphBicomponents(digraph) (attribute)

Returns: A pair of lists of vertices, or fail.
If digraph is a bipartite digraph, i.e. if it satisfies IsBipartiteDigraph (6.1.3),

then DigraphBicomponents returns a pair of bicomponents of digraph . Otherwise,
DigraphBicomponents returns fail.
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For a bipartite digraph, the vertices can be partitioned into two non-empty sets such that the
source and range of any edge are in distinct sets. The parts of this partition are called bicomponents
of digraph . Equivalently, a pair of bicomponents of digraph consists of the color-classes of a
2-coloring of digraph .

For a bipartite digraph with at least 3 vertices, there is a unique pair of bicomponents of bipartite
if and only if the digraph is connected. See IsConnectedDigraph (6.3.2) for more information.

Example
gap> gr := CycleDigraph(3);
<digraph with 3 vertices, 3 edges>
gap> DigraphBicomponents(gr);
fail
gap> gr := ChainDigraph(5);
<digraph with 5 vertices, 4 edges>
gap> DigraphBicomponents(gr);
[ [ 1, 3, 5 ], [ 2, 4 ] ]
gap> gr := Digraph([[5], [1, 4], [5], [5], []]);
<digraph with 5 vertices, 5 edges>
gap> DigraphBicomponents(gr);
[ [ 1, 3, 4 ], [ 2, 5 ] ]

5.1.9 DigraphVertexLabel

. DigraphVertexLabel(digraph, i) (operation)

. SetDigraphVertexLabel(digraph, i, obj) (operation)

If digraph is a digraph, then the first operation returns the label of the vertex i . The second
operation can be used to set the label of the vertex i in digraph to the arbitrary GAP object obj .

The label of a vertex can be changed an arbitrary number of times. If no label has been set for the
vertex i , then the default value is i .

If digraph is a digraph created from a record with a component vertices, then the labels of the
vertices are set to the value of this component.

Induced subdigraphs, and other operations which create new digraphs from old ones, inherit their
labels from their parents.

Example
gap> gr := Digraph([[3], [1, 3, 5], [1], [1, 2, 4], [2, 3, 5]]);
<digraph with 5 vertices, 11 edges>
gap> DigraphVertexLabel(gr, 3);
3
gap> gr := Digraph(["a", "b", "c"], [], []);
<digraph with 3 vertices, 0 edges>
gap> DigraphVertexLabel(gr, 2);
"b"
gap> SetDigraphVertexLabel(gr, 2, "d");
gap> DigraphVertexLabel(gr, 2);
"d"
gap> gr := InducedSubdigraph(gr, [1, 2]);
<digraph with 2 vertices, 0 edges>
gap> DigraphVertexLabel(gr, 2);
"d"
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5.1.10 DigraphVertexLabels

. DigraphVertexLabels(digraph) (operation)

. SetDigraphVertexLabels(digraph, list) (operation)

If digraph is a digraph, then DigraphVertexLabels returns a copy of the labels of the vertices
in digraph . SetDigraphVertexLabels can be used to set the labels of the vertices in digraph to
the list of arbitrary GAP objects list .

The label of a vertex can be changed an arbitrary number of times. If no label has been set for the
vertex i , then the default value is i .

If digraph is a digraph created from a record with a component vertices, then the labels of the
vertices are set to the value of this component.

Induced subdigraphs, and other operations which create new digraphs from old ones, inherit their
labels from their parents.

Example
gap> gr := Digraph([[3], [1, 3, 5], [1], [1, 2, 4], [2, 3, 5]]);
<digraph with 5 vertices, 11 edges>
gap> DigraphVertexLabels(gr);
[ 1 .. 5 ]
gap> gr := Digraph(["a", "b", "c"], [], []);
<digraph with 3 vertices, 0 edges>
gap> DigraphVertexLabels(gr);
[ "a", "b", "c" ]
gap> SetDigraphVertexLabel(gr, 2, "d");
gap> DigraphVertexLabels(gr);
[ "a", "d", "c" ]
gap> gr := InducedSubdigraph(gr, [1, 3]);
<digraph with 2 vertices, 0 edges>
gap> DigraphVertexLabels(gr);
[ "a", "c" ]

5.1.11 DigraphInEdges

. DigraphInEdges(digraph, vertex) (operation)

Returns: A list of edges.
DigraphInEdges returns the list of all edges of digraph which have vertex as their range.

Example
gap> gr := Digraph([[2, 2], [3, 3], [4, 4], [1, 1]]);
<multidigraph with 4 vertices, 8 edges>
gap> DigraphInEdges(gr, 2);
[ [ 1, 2 ], [ 1, 2 ] ]

5.1.12 DigraphOutEdges

. DigraphOutEdges(digraph, vertex) (operation)

Returns: A list of edges.
DigraphOutEdges returns the list of all edges of digraph which have vertex as their source.

Example
gap> gr := Digraph([[2, 2], [3, 3], [4, 4], [1, 1]]);
<multidigraph with 4 vertices, 8 edges>
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gap> DigraphOutEdges(gr, 2);
[ [ 2, 3 ], [ 2, 3 ] ]

5.1.13 IsDigraphEdge (for digraph and list)

. IsDigraphEdge(digraph, list) (operation)

. IsDigraphEdge(digraph, u, v) (operation)

Returns: true or false.
In the first form, this function returns true if and only if the list list specifies an edge in the

digraph digraph . Specifically, this operation returns true if list is a pair of positive integers where
list[1] is the source and list[2] is the range of an edge in digraph , and false otherwise.

The second form simply returns true if [u, v] is an edge in digraph , and false otherwise.
Example

gap> gr := Digraph(6, [1, 1, 2, 4, 6], [2, 2, 6, 3, 1]);
<multidigraph with 6 vertices, 5 edges>
gap> IsDigraphEdge(gr, [1, 1]);
false
gap> IsDigraphEdge(gr, [1, 2]);
true
gap> IsDigraphEdge(gr, [1, 8]);
false

5.2 Neighbours and degree

5.2.1 AdjacencyMatrix

. AdjacencyMatrix(digraph) (attribute)

Returns: A square matrix of non-negative integers.
This function returns the adjacency matrix mat of the digraph digraph . The value of the matrix

entry mat[i][j] is the number of edges in digraph with source i and range j.
Example

gap> gr := Digraph([[2, 2, 2], [1, 3, 6, 8, 9, 10], [4, 6, 8],
> [1, 2, 3, 9], [3, 3], [3, 5, 6, 10], [1, 2, 7],
> [1, 2, 3, 10, 5, 6, 10], [1, 3, 4, 5, 8, 10],
> [2, 3, 4, 6, 7, 10]]);
<multidigraph with 10 vertices, 44 edges>
gap> mat := AdjacencyMatrix(gr);;
gap> Display(mat);
[ [ 0, 3, 0, 0, 0, 0, 0, 0, 0, 0 ],

[ 1, 0, 1, 0, 0, 1, 0, 1, 1, 1 ],
[ 0, 0, 0, 1, 0, 1, 0, 1, 0, 0 ],
[ 1, 1, 1, 0, 0, 0, 0, 0, 1, 0 ],
[ 0, 0, 2, 0, 0, 0, 0, 0, 0, 0 ],
[ 0, 0, 1, 0, 1, 1, 0, 0, 0, 1 ],
[ 1, 1, 0, 0, 0, 0, 1, 0, 0, 0 ],
[ 1, 1, 1, 0, 1, 1, 0, 0, 0, 2 ],
[ 1, 0, 1, 1, 1, 0, 0, 1, 0, 1 ],
[ 0, 1, 1, 1, 0, 1, 1, 0, 0, 1 ] ]
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5.2.2 BooleanAdjacencyMatrix

. BooleanAdjacencyMatrix(digraph) (attribute)

Returns: A square matrix of booleans.
If digraph is a digraph with a positive number of vertices n, then

BooleanAdjacencyMatrix(digraph) returns the boolean adjacency matrix mat of digraph .
The value of the matrix entry mat[j][i] is true if and only if there exists an edge in digraph with
source j and range i.

Note this the boolean adjacency loses information about multiple edges.
If digraph has no vertices, then this attribute returns the empty list.

Example
gap> gr := Digraph([[3, 4], [2, 3], [1, 2, 4], [4]]);
<digraph with 4 vertices, 8 edges>
gap> BooleanAdjacencyMatrix(gr);
[ [ false, false, true, true ], [ false, true, true, false ],

[ true, true, false, true ], [ false, false, false, true ] ]
gap> gr := CycleDigraph(4);;
gap> BooleanAdjacencyMatrix(gr);
[ [ false, true, false, false ], [ false, false, true, false ],

[ false, false, false, true ], [ true, false, false, false ] ]
gap> BooleanAdjacencyMatrix(EmptyDigraph(0));
[ ]

5.2.3 DigraphAdjacencyFunction

. DigraphAdjacencyFunction(digraph) (attribute)

Returns: A function.
If digraph is a digraph, then DigraphAdjacencyFunction returns a function which takes two

integer parameters x, y and returns true if there exists an edge from vertex x to vertex y in digraph
and false if not.

Example
gap> digraph := Digraph([[1, 2], [3], []]);
<digraph with 3 vertices, 3 edges>
gap> foo := DigraphAdjacencyFunction(digraph);
function( u, v ) ... end
gap> foo(1, 1);
true
gap> foo(1, 2);
true
gap> foo(1, 3);
false
gap> foo(3, 1);
false
gap> gr := Digraph(["a", "b", "c"],
> ["a", "b", "b"],
> ["b", "a", "a"]);
<multidigraph with 3 vertices, 3 edges>
gap> foo := DigraphAdjacencyFunction(gr);
function( u, v ) ... end
gap> foo(1, 2);
true
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gap> foo(3, 2);
false
gap> foo(3, 1);
false

5.2.4 DigraphRange

. DigraphRange(digraph) (attribute)

. DigraphSource(digraph) (attribute)

Returns: A list of positive integers.
DigraphRange and DigraphSource return the range and source of the digraph digraph . More

precisely, position i in DigraphRange(digraph) is the range of the ith edge of digraph .
Example

gap> gr := Digraph([[1, 2, 3, 5], [1, 3, 4], [2, 3],
> [2], [1, 2, 3, 4]]);
<digraph with 5 vertices, 14 edges>
gap> DigraphRange(gr);
[ 1, 2, 3, 5, 1, 3, 4, 2, 3, 2, 1, 2, 3, 4 ]
gap> DigraphSource(gr);
[ 1, 1, 1, 1, 2, 2, 2, 3, 3, 4, 5, 5, 5, 5 ]
gap> DigraphEdges(gr);
[ [ 1, 1 ], [ 1, 2 ], [ 1, 3 ], [ 1, 5 ], [ 2, 1 ], [ 2, 3 ],

[ 2, 4 ], [ 3, 2 ], [ 3, 3 ], [ 4, 2 ], [ 5, 1 ], [ 5, 2 ],
[ 5, 3 ], [ 5, 4 ] ]

5.2.5 OutNeighbours

. OutNeighbours(digraph) (attribute)

. OutNeighbors(digraph) (attribute)

. OutNeighboursCopy(digraph) (operation)

. OutNeighborsCopy(digraph) (operation)

Returns: The adjacencies of a digraph.
This function returns the list out of out-neighbours of each vertex of the digraph digraph . More

specifically, a vertex j appears in out[i] each time there exists an edge with source i and range j in
digraph .

The function OutNeighbours returns an immutable list of immutable lists, whereas the function
OutNeighboursCopy returns a copy of OutNeighbours which is a mutable list of mutable lists.

Example
gap> gr := Digraph(["a", "b", "c"],
> ["a", "b", "b"],
> ["b", "a", "c"]);
<digraph with 3 vertices, 3 edges>
gap> OutNeighbours(gr);
[ [ 2 ], [ 1, 3 ], [ ] ]
gap> gr := Digraph(3,
> [1, 2, 3, 1, 1, 2],
> [1, 2, 3, 2, 3, 1]);
<digraph with 3 vertices, 6 edges>
gap> OutNeighbours(gr);
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[ [ 1, 2, 3 ], [ 2, 1 ], [ 3 ] ]
gap> gr := Digraph(3,
> [1, 2, 3, 1, 1, 2, 1],
> [1, 2, 3, 2, 3, 1, 2]);
<multidigraph with 3 vertices, 7 edges>
gap> OutNeighbours(gr);
[ [ 1, 2, 3, 2 ], [ 2, 1 ], [ 3 ] ]
gap> OutNeighboursCopy(gr);
[ [ 1, 2, 3, 2 ], [ 2, 1 ], [ 3 ] ]

5.2.6 InNeighbours

. InNeighbours(digraph) (attribute)

. InNeighbors(digraph) (attribute)

Returns: A list of lists of vertices.
This function returns the list inn of in-neighbours of each vertex of the digraph digraph . More

specifically, a vertex j appears in inn[i] each time there exists an edge with source j and range i in
digraph .

Note that each entry of inn is sorted into ascending order.
Example

gap> gr := Digraph(["a", "b", "c"],
> ["a", "b", "b"],
> ["b", "a", "c"]);
<digraph with 3 vertices, 3 edges>
gap> InNeighbours(gr);
[ [ 2 ], [ 1 ], [ 2 ] ]
gap> gr := Digraph(3,
> [1, 2, 3, 1, 1, 2],
> [1, 2, 3, 2, 3, 1]);
<digraph with 3 vertices, 6 edges>
gap> InNeighbours(gr);
[ [ 1, 2 ], [ 1, 2 ], [ 1, 3 ] ]
gap> gr := Digraph(3,
> [1, 2, 3, 1, 1, 2, 1],
> [1, 2, 3, 2, 3, 1, 2]);
<multidigraph with 3 vertices, 7 edges>
gap> InNeighbours(gr);
[ [ 1, 2 ], [ 1, 1, 2 ], [ 1, 3 ] ]

5.2.7 OutDegrees

. OutDegrees(digraph) (attribute)

. OutDegreeSequence(digraph) (attribute)

. OutDegreeSet(digraph) (attribute)

Returns: A list of non-negative integers.
Given a digraph digraph with n vertices, the function OutDegrees returns a list out of length

n, such that for a vertex i in digraph , the value of out[i] is the out-degree of vertex i. See
OutDegreeOfVertex (5.2.9).
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The function OutDegreeSequence returns the same list, after it has been sorted into non-
increasing order.

The function OutDegreeSet returns the same list, sorted into increasing order with duplicate
entries removed.

Example
gap> gr := Digraph([[1, 3, 2, 2], [], [2, 1], []]);
<multidigraph with 4 vertices, 6 edges>
gap> OutDegrees(gr);
[ 4, 0, 2, 0 ]
gap> OutDegreeSequence(gr);
[ 4, 2, 0, 0 ]
gap> OutDegreeSet(gr);
[ 0, 2, 4 ]

5.2.8 InDegrees

. InDegrees(digraph) (attribute)

. InDegreeSequence(digraph) (attribute)

. InDegreeSet(digraph) (attribute)

Returns: A list of non-negative integers.
Given a digraph digraph with n vertices, the function InDegrees returns a list inn of length

n, such that for a vertex i in digraph , the value of inn[i] is the in-degree of vertex i. See
InDegreeOfVertex (5.2.11).

The function InDegreeSequence returns the same list, after it has been sorted into non-increasing
order.

The function InDegreeSet returns the same list, sorted into increasing order with duplicate en-
tries removed.

Example
gap> gr := Digraph( [ [ 1, 3, 2, 2, 4 ], [ ], [ 2, 1, 4 ], [ ] ] );
<multidigraph with 4 vertices, 8 edges>
gap> InDegrees(gr);
[ 2, 3, 1, 2 ]
gap> InDegreeSequence(gr);
[ 3, 2, 2, 1 ]
gap> InDegreeSet(gr);
[ 1, 2, 3 ]

5.2.9 OutDegreeOfVertex

. OutDegreeOfVertex(digraph, vertex) (operation)

Returns: The non-negative integer.
This operation returns the out-degree of the vertex vertex in the digraph digraph . The out-

degree of vertex is the number of edges in digraph whose source is vertex .
Example

gap> gr := Digraph([[2, 2, 1], [1, 4], [2, 2, 4, 2],
> [1, 1, 2, 2, 1, 2, 2]]);
<multidigraph with 4 vertices, 16 edges>
gap> OutDegreeOfVertex(gr, 1);
3
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gap> OutDegreeOfVertex(gr, 2);
2
gap> OutDegreeOfVertex(gr, 3);
4
gap> OutDegreeOfVertex(gr, 4);
7

5.2.10 OutNeighboursOfVertex

. OutNeighboursOfVertex(digraph, vertex) (operation)

. OutNeighborsOfVertex(digraph, vertex) (operation)

Returns: A list of vertices.
This operation returns the list out of vertices of the digraph digraph . A vertex i appears in the

list out each time there exists an edge with source vertex and range i in digraph ; in particular, this
means that out may contain duplicates.

Example
gap> gr := Digraph([[2, 2, 3], [1, 3, 4], [2, 2, 3],
> [1, 1, 2, 2, 1, 2, 2]]);
<multidigraph with 4 vertices, 16 edges>
gap> OutNeighboursOfVertex(gr, 1);
[ 2, 2, 3 ]
gap> OutNeighboursOfVertex(gr, 3);
[ 2, 2, 3 ]

5.2.11 InDegreeOfVertex

. InDegreeOfVertex(digraph, vertex) (operation)

Returns: A non-negative integer.
This operation returns the in-degree of the vertex vertex in the digraph digraph . The in-degree

of vertex is the number of edges in digraph whose range is vertex .
Example

gap> gr := Digraph([[2, 2, 1], [1, 4], [2, 2, 4, 2],
> [1, 1, 2, 2, 1, 2, 2]]);
<multidigraph with 4 vertices, 16 edges>
gap> InDegreeOfVertex(gr, 1);
5
gap> InDegreeOfVertex(gr, 2);
9
gap> InDegreeOfVertex(gr, 3);
0
gap> InDegreeOfVertex(gr, 4);
2

5.2.12 InNeighboursOfVertex

. InNeighboursOfVertex(digraph, vertex) (operation)

. InNeighborsOfVertex(digraph, vertex) (operation)

Returns: A list of postitive vertices.
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This operation returns the list inn of vertices of the digraph digraph . A vertex i appears in the
list inn each time there exists an edge with source i and range vertex in digraph ; in particular, this
means that inn may contain duplicates.

Example
gap> gr := Digraph([[2, 2, 3], [1, 3, 4], [2, 2, 3],
> [1, 1, 2, 2, 1, 2, 2]]);
<multidigraph with 4 vertices, 16 edges>
gap> InNeighboursOfVertex(gr, 1);
[ 2, 4, 4, 4 ]
gap> InNeighboursOfVertex(gr, 2);
[ 1, 1, 3, 3, 4, 4, 4, 4 ]

5.2.13 DigraphLoops

. DigraphLoops(digraph) (attribute)

Returns: A list of vertices.
If digraph is a digraph, then DigraphLoops returns the list consisting of the DigraphVertices

(5.1.1) of digraph at which there is a loop. See DigraphHasLoops (6.1.1).
Example

gap> gr := Digraph([[2], [3], []]);
<digraph with 3 vertices, 2 edges>
gap> DigraphHasLoops(gr);
false
gap> DigraphLoops(gr);
[ ]
gap> gr := Digraph([[3, 5], [1], [2, 4, 3], [4], [2, 1]]);
<digraph with 5 vertices, 9 edges>
gap> DigraphLoops(gr);
[ 3, 4 ]

5.3 Reachability and connectivity

5.3.1 DigraphDiameter

. DigraphDiameter(digraph) (attribute)

Returns: An integer or fail.
This function returns the diameter of the digraph digraph .
If a digraph digraph is strongly connected and has at least 1 vertex, then the diameter is the

maximum shortest distance between any pair of distinct vertices. Otherwise then the diameter of
digraph is undefined, and this function returns the value fail.

See DigraphShortestDistances (5.3.3).
Example

gap> gr := Digraph( [ [ 2 ], [ 3 ], [ 4, 5 ], [ 5 ],
> [ 1, 2, 3, 4, 5 ] ] );
<digraph with 5 vertices, 10 edges>
gap> DigraphDiameter(gr);
3
gap> gr := Digraph( [ [ 2 ], [ ] ] );
<digraph with 2 vertices, 1 edge>
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gap> DigraphDiameter(gr);
fail
gap> IsStronglyConnectedDigraph(gr);
false

5.3.2 DigraphShortestDistance (for a digraph and two vertices)

. DigraphShortestDistance(digraph, u, v) (operation)

. DigraphShortestDistance(digraph, list) (operation)

. DigraphShortestDistance(digraph, list1, list2) (operation)

Returns: An integer or fail
If there is a path in the digraph digraph between vertex u and vertex v , then this operation returns

the length of the shortest such path. If no such path exists, then this operation returns fail.
If the second form is used, then list should be a list of length two, containing two positive

integers which correspond to the vertices u and v .
Note that as usual a vertex is considered to be at distance 0 from itself.
If the third form is used, then list1 and list2 are both lists of vertices. The shortest path be-

tween list1 and list2 is then the length of the shortest path which starts with a vertex in list1 and
terminates at a vertex in list2 , if such path exists. If list1 and list2 have non-empty intersection,
the operation returns 0.

Example
gap> gr := Digraph([[2], [3], [1, 4], [1, 3], [5]]);
<digraph with 5 vertices, 7 edges>
gap> DigraphShortestDistance(gr, 1, 3);
2
gap> DigraphShortestDistance(gr, [3, 3]);
0
gap> DigraphShortestDistance(gr, 5, 2);
fail
gap> DigraphShortestDistance(gr, [1, 2], [4, 5]);
2
gap> DigraphShortestDistance(gr, [1, 3], [3, 5]);
0

5.3.3 DigraphShortestDistances

. DigraphShortestDistances(digraph) (attribute)

Returns: A square matrix.
If digraph is a digraph with n vertices, then this function returns an n×n matrix mat, where each

entry is either a non-negative integer or fail. If n = 0, then an empty list is returned.
If there is a directed path from vertex i to vertex j, then the value of mat[i][j] is the length

of the shortest such path. If no such path exists, then the value of mat[i][j] is fail. We use the
convention that the distance from every vertex to itself is 0, i.e. mat[i][i] = 0 for all vertices i.

The method used in this function is a version of the Floyd-Warshall algorithm, and has complexity
O(n3).

Example
gap> gr := Digraph( [ [ 1, 2 ], [ 3 ], [ 1, 2 ], [ 4 ] ] );
<digraph with 4 vertices, 6 edges>
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gap> mat := DigraphShortestDistances(gr);;
gap> Display(mat);
[ [ 0, 1, 2, fail ],

[ 2, 0, 1, fail ],
[ 1, 1, 0, fail ],
[ fail, fail, fail, 0 ] ]

5.3.4 DigraphLongestDistanceFromVertex

. DigraphLongestDistanceFromVertex(digraph, v) (operation)

Returns: An integer.
If digraph is a digraph and v is a vertex in digraph , then this operation returns the length of the

longest directed walk in digraph which begins at vertex v .

• If there exists a directed walk starting at vertex v which traverses a cycle or a loop, then
we consider there to be a walk of infinite length from v (realised by repeatedly traversing
the loop/cycle), and so the result is infinity. To disallow walks using loops, try using
DigraphRemoveLoops (3.3.21):

DigraphLongestDistanceFromVertex(DigraphRemoveLoops(digraph,v)).

• If no walk from vertex v exists, i.e. if v is a sink of the digraph (DigraphSinks (5.1.5)), then
the result is 0.

• Otherwise, if all directed walks starting at vertex v have finite length, then the length of the
longest such walk is returned.

Example
gap> gr := Digraph([[2], [3, 4], [], [5], [], [6]]);
<digraph with 6 vertices, 5 edges>
gap> DigraphLongestDistanceFromVertex(gr, 1);
3
gap> DigraphLongestDistanceFromVertex(gr, 3);
0
gap> 3 in DigraphSinks(gr);
true
gap> DigraphLongestDistanceFromVertex(gr, 6);
infinity

5.3.5 DigraphDistanceSet (for a digraph, a pos int, and an int)

. DigraphDistanceSet(digraph, vertex, distance) (operation)

. DigraphDistanceSet(digraph, vertex, distances) (operation)

Returns: A list of vertices
This operation returns the list of all vertices in digraph digraph such that the shortest distance to

a vertex vertex is distance or is in the list distances .
digraph should be a digraph, vertex should be a positive integer, distance should be a non-

negative integer, and distances should be a list of non-negative integers.
Example

gap> gr := Digraph([[2], [3], [1, 4], [1, 3]]);
<digraph with 4 vertices, 6 edges>
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gap> DigraphDistanceSet(gr, 2, [1, 2]);
[ 3, 1, 4 ]
gap> DigraphDistanceSet(gr, 3, 1);
[ 1, 4 ]
gap> DigraphDistanceSet(gr, 2, 0);
[ 2 ]

5.3.6 DigraphGirth

. DigraphGirth(digraph) (attribute)

Returns: An integer or infinity.
The girth of a digraph is the length of its shortest simple cycle, i.e. the shortest non-trivial directed

path starting and ending at the same vertex and passing through no vertex more than once.
If digraph has no cycles, then this function will return infinity. If digraph contains a loop,

then this function will return 1.
In the worst case, the method used in this function is a version of the Floyd-Warshall algorithm,

and has complexity O(n ^ 3), where n is the number of vertices in digraph . If the digraph has
known automorphisms [see DigraphGroup (7.2.3)], then the performance is likely to be better.

For symmetric digraphs, see also DigraphUndirectedGirth (5.3.7).
Example

gap> gr := Digraph([[1], [1]]);
<digraph with 2 vertices, 2 edges>
gap> DigraphGirth(gr);
1
gap> gr := Digraph([[2, 3], [3], [4], []]);
<digraph with 4 vertices, 4 edges>
gap> DigraphGirth(gr);
infinity
gap> gr := Digraph([[2, 3], [3], [4], [1]]);
<digraph with 4 vertices, 5 edges>
gap> DigraphGirth(gr);
3

5.3.7 DigraphUndirectedGirth

. DigraphUndirectedGirth(digraph) (attribute)

Returns: An integer or infinity.
If digraph is a symmetric digraph, then this function returns the girth of digraph when treated

as an undirected graph (i.e. each pair of edges [i, j] and [ j, i] is treated as a single edge between i and
j).

The girth of an undirected graph is the length of its shortest simple cycle, i.e. the shortest non-
trivial path starting and ending at the same vertex and passing through no vertex more than once.

If digraph has no cycles, then this function will return infinity.
Example

gap> gr := Digraph([[2,4], [1,3], [2,4], [1,3]]);
<digraph with 4 vertices, 8 edges>
gap> DigraphUndirectedGirth(gr);
4
gap> gr := Digraph([[2], [1,3], [2]]);
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<digraph with 3 vertices, 4 edges>
gap> DigraphUndirectedGirth(gr);
infinity
gap> gr := Digraph([[1], [], [4], [3]]);
<digraph with 4 vertices, 3 edges>
gap> DigraphUndirectedGirth(gr);
1

5.3.8 DigraphConnectedComponents

. DigraphConnectedComponents(digraph) (attribute)

Returns: A record.
This function returns the record wcc corresponding to the weakly connected components of the

digraph digraph . Two vertices of digraph are in the same weakly connected component whenever
they are equal, or there exists a path (ignoring the orientation of edges) between them. In other words,
two vertices are in the same weakly connected component of digraph if and only if they are in the
same strongly connected component (see DigraphStronglyConnectedComponents (5.3.10)) of the
DigraphSymmetricClosure (3.3.8) of digraph .

The set of weakly connected components is a partition of the vertex set of digraph .
The record wcc has 2 components: comps and id. The component comps is a list of the weakly

connected components of digraph (each of which is a list of vertices). The component id is a list
such that the vertex i is an element of the weakly connected component comps[id[i]].

The method used in this function has complexity O(m+n), where m is the number of edges and
n is the number of vertices in the digraph.

Example
gap> gr := Digraph( [ "a", "b", "c" ],
> [ "a", "b", "b" ],
> [ "b", "c", "a" ] );
<digraph with 3 vertices, 3 edges>
gap> DigraphConnectedComponents(gr);
rec( comps := [ [ 1, 2, 3 ] ], id := [ 1, 1, 1 ] )
gap> gr := Digraph( [ [ 1 ], [ 1, 2 ], [ ] ] );
<digraph with 3 vertices, 3 edges>
gap> DigraphConnectedComponents(gr);
rec( comps := [ [ 1, 2 ], [ 3 ] ], id := [ 1, 1, 2 ] )
gap> gr := Digraph( [ ] );
<digraph with 0 vertices, 0 edges>
gap> DigraphConnectedComponents(gr);
rec( comps := [ ], id := [ ] )

5.3.9 DigraphConnectedComponent

. DigraphConnectedComponent(digraph, vertex) (operation)

Returns: A list of vertices.
If vertex is a vertex in the digraph digraph , then this operation returns the connected component

of vertex in digraph . See DigraphConnectedComponents (5.3.8) for more information.
Example

gap> gr := Digraph([[3], [2], [1, 2], [4]]);
<digraph with 4 vertices, 5 edges>



Digraphs 51

gap> DigraphConnectedComponent(gr, 3);
[ 1, 2, 3 ]
gap> DigraphConnectedComponent(gr, 2);
[ 1, 2, 3 ]
gap> DigraphConnectedComponent(gr, 4);
[ 4 ]

5.3.10 DigraphStronglyConnectedComponents

. DigraphStronglyConnectedComponents(digraph) (attribute)

Returns: A record.
This function returns the record scc corresponding to the strongly connected components of the

digraph digraph . Two vertices of digraph are in the same strongly connected component whenever
they are equal, or there is a directed path from each vertex to the other. The set of strongly connected
components is a partition of the vertex set of digraph .

The record scc has 2 components: comps and id. The component comps is a list of the strongly
connected components of digraph (each of which is a list of vertices). The component id is a list
such that the vertex i is an element of the strongly connected component comps[id[i]].

The method used in this function is a non-recursive version of Gabow’s Algorithm [Gab00] and
has complexity O(m+ n) where m is the number of edges (counting multiple edges as one) and n is
the number of vertices in the digraph.

Example
gap> gr := Digraph( [ "a", "b", "c" ],
> [ "a", "b", "b" ],
> [ "b", "c", "a" ] );
<digraph with 3 vertices, 3 edges>
gap> DigraphStronglyConnectedComponents(gr);
rec( comps := [ [ 3 ], [ 1, 2 ] ], id := [ 2, 2, 1 ] )

5.3.11 DigraphStronglyConnectedComponent

. DigraphStronglyConnectedComponent(digraph, vertex) (operation)

Returns: A list of vertices.
If vertex is a vertex in the digraph digraph , then this operation returns the strongly con-

nected component of vertex in digraph . See DigraphStronglyConnectedComponents (5.3.10)
for more information.

Example
gap> gr := Digraph([[3], [2], [1, 2], [3]]);
<digraph with 4 vertices, 5 edges>
gap> DigraphStronglyConnectedComponent(gr, 3);
[ 1, 3 ]
gap> DigraphStronglyConnectedComponent(gr, 2);
[ 2 ]
gap> DigraphStronglyConnectedComponent(gr, 4);
[ 4 ]
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5.3.12 DigraphPeriod

. DigraphPeriod(digraph) (attribute)

Returns: An integer.
This function returns the period of the digraph digraph .
If a digraph digraph has at least one cycle, then the period is the greatest positive integer which

divides the lengths of all cycles of digraph . If digraph has no cycles, then this function returns 0.
A digraph with a period of 1 is said to be aperiodic. See IsAperiodicDigraph (6.3.4).

Example
gap> gr := Digraph( [ [ 6 ], [ 1 ], [ 2 ], [ 3 ], [ 4, 4 ], [ 5 ] ] );
<multidigraph with 6 vertices, 7 edges>
gap> DigraphPeriod(gr);
6
gap> gr := Digraph( [ [ 2 ], [ 3, 5 ], [ 4 ], [ 5 ], [ 1, 2 ] ] );
<digraph with 5 vertices, 7 edges>
gap> DigraphPeriod(gr);
1
gap> gr := Digraph( [ [ 2 ], [ ] ] );
<digraph with 2 vertices, 1 edge>
gap> DigraphPeriod(gr);
0
gap> IsAcyclicDigraph(gr);
true

5.3.13 DigraphFloydWarshall

. DigraphFloydWarshall(digraph, func, nopath, edge) (operation)

Returns: A matrix.
If digraph is a digraph with n vertices, then this operation returns an n×n matrix mat containing

the output of a generalised version of the Floyd-Warshall algorithm, applied to digraph .
The operation DigraphFloydWarshall is customised by the arguments func , nopath , and

edge . The arguments nopath and edge can be arbitrary GAP objects. The argument func must
be a function which accepts 4 arguments: the matrix mat, followed by 3 postive integers. The func-
tion func is where the work to calculate the desired outcome must be performed.

This method initialises the matrix mat by setting entry mat[i][j] to equal edge if there is an
edge with source i and range j, and by setting entry mat[i][j] to equal nopath otherwise. The
final part of DigraphFloydWarshall then calls the function func inside three nested for loops, over
the vertices of digraph :

for i in DigraphsVertices(digraph) do
for j in DigraphsVertices(digraph) do

for k in DigraphsVertices(digraph) do
func(mat, i, j, k);

od;
od;

od;

The matrix mat is then returned as the result. An example of using DigraphFloydWarshall to
calculate the shortest (non-zero) distances between the vertices of a digraph is shown below:



Digraphs 53

Example
gap> gr := Digraph([[5], [3, 6], [2, 5], [1, 4, 5],
> [4, 6], [5, 6]]);
<digraph with 6 vertices, 12 edges>
gap> func := function(mat, i, j, k)
> if mat[i][k] <> -1 and mat[k][j] <> -1 then
> if (mat[i][j] = -1) or (mat[i][j] > mat[i][k] + mat[k][j]) then
> mat[i][j] := mat[i][k] + mat[k][j];
> fi;
> fi;
> end;
function( mat, i, j, k ) ... end
gap> shortest_distances := DigraphFloydWarshall(gr, func, -1, 1);;
gap> Display(shortest_distances);
[ [ 3, -1, -1, 2, 1, 2 ],

[ 4, 2, 1, 3, 2, 1 ],
[ 3, 1, 2, 2, 1, 2 ],
[ 1, -1, -1, 1, 1, 2 ],
[ 2, -1, -1, 1, 2, 1 ],
[ 3, -1, -1, 2, 1, 1 ] ]

5.3.14 IsReachable

. IsReachable(digraph, u, v) (operation)

Returns: true or false.
This operation returns true if there exists a directed walk (of non-zero length) from vertex u to

vertex v in the digraph digraph , and false if there does not exist such a walk.
The method for IsReachable has worst case complexity of O(m+n) where m is the number of

edges and n the number of vertices in digraph .
Example

gap> gr := Digraph([[2], [3], [2, 3]]);
<digraph with 3 vertices, 4 edges>
gap> IsReachable(gr, 1, 3);
true
gap> IsReachable(gr, 2, 1);
false
gap> IsReachable(gr, 3, 3);
true
gap> IsReachable(gr, 1, 1);
false

5.3.15 DigraphPath

. DigraphPath(digraph, u, v) (operation)

Returns: A pair of lists, or fail.
If there exists a directed path (or a cycle, in the case that u = v ) of non-zero length from vertex

u to vertex v in the digraph digraph , then this operation returns such a directed path (or cycle).
Otherwise, this operation returns fail. See Chapter 1 for the definition of a path and a cycle.

A directed path (or cycle) of non-zero length n-1, (v1,e1,v2,e2, ...,en−1,vn), is represented by a
pair of lists [v,a] as follows:
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• v is the list [v1,v2, ...,vn].

• a is the list of positive integers [a1,a2, ...,an−1] where for each each i < n, ai is the position of
vi+1 in OutNeighboursOfVertex(digraph,vi) corresponding to the edge ei. This is can be
useful if the position of a vertex in a list of out-neighours is significant, for example in orbit
digraphs.

The method for DigraphPath has worst case complexity of O(m+n) where m is the number of edges
and n the number of vertices in digraph .

Example
gap> gr := Digraph([[2], [3], [2, 3]]);
<digraph with 3 vertices, 4 edges>
gap> DigraphPath(gr, 1, 3);
[ [ 1, 2, 3 ], [ 1, 1 ] ]
gap> DigraphPath(gr, 2, 1);
fail
gap> DigraphPath(gr, 3, 3);
[ [ 3, 3 ], [ 2 ] ]
gap> DigraphPath(gr, 1, 1);
fail

5.3.16 IteratorOfPaths

. IteratorOfPaths(digraph, u, v) (operation)

Returns: An iterator.
If digraph is a digraph or a list of adjacencies which defines a digraph - see OutNeighbours

(5.2.5) - then this operation returns an iterator of the directed paths (or cycles, in the case that u = v )
of non-zero length in digraph from the vertex u to the vertex v .

See DigraphPath (5.3.15) for more information about the repesentation of a directed path or
cycle which is used, and see (Reference: Iterators) for more information about iterators.

Example
gap> gr := Digraph([[1, 4, 4, 2], [3, 5], [2, 3], [1, 2], [4]]);
<multidigraph with 5 vertices, 11 edges>
gap> iter := IteratorOfPaths(gr, 1, 4);
<iterator>
gap> NextIterator(iter);
[ [ 1, 4 ], [ 2 ] ]
gap> NextIterator(iter);
[ [ 1, 4 ], [ 3 ] ]
gap> NextIterator(iter);
[ [ 1, 2, 5, 4 ], [ 4, 2, 1 ] ]
gap> IsDoneIterator(iter);
true
gap> iter := IteratorOfPaths(gr, 4, 3);
<iterator>
gap> NextIterator(iter);
[ [ 4, 1, 2, 3 ], [ 1, 4, 1 ] ]
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5.3.17 DigraphAllSimpleCircuits

. DigraphAllSimpleCircuits(digraph) (attribute)

Returns: A list of lists of vertices.
If digraph is a digraph, then DigraphAllSimpleCircuits returns a list of the simple circuits

in digraph .
A simple circuit in digraph is a non-trivial directed path in digraph from a vertex v back to

v, in which no vertex is visited more than once. Since a circuit of length n is determined by its first
n vertices, a circuit v1 → ·· · → vn → v1 can be represented as the list [v1, . . . ,vn]. For each simple
circuit of digraph , DigraphAllSimpleCircuits(digraph) will include precisely one such list to
represents the circuit (cyclic permutations of such a list describe the same circuit).

Note that a loop is a simple circuit.
Example

gap> gr := Digraph([[], [3], [2, 4], [5, 4], [4]]);
<digraph with 5 vertices, 6 edges>
gap> DigraphAllSimpleCircuits(gr);
[ [ 4 ], [ 4, 5 ], [ 2, 3 ] ]
gap> gr := ChainDigraph(10);;
gap> DigraphAllSimpleCircuits(gr);
[ ]
gap> gr := Digraph([[3], [1], [1]]);
<digraph with 3 vertices, 3 edges>
gap> DigraphAllSimpleCircuits(gr);
[ [ 1, 3 ] ]

5.3.18 DigraphLongestSimpleCircuit

. DigraphLongestSimpleCircuit(digraph) (attribute)

Returns: A list of vertices or fail.
If digraph is a digraph, then DigraphLongestSimpleCircuit returns the longest simple circuit

in digraph .
A simple circuit in digraph is a non-trivial directed path in digraph from a vertex v back to v,

in which no vertex is visited more than once. Since a circuit of length n is determined by its first n
vertices, a circuit v1→ ·· · → vn→ v1 can be represented as the list [v1, . . . ,vn]. Note that a loop is a
simple circuit.

If digraph has no simple circuits, then this attribute returns fail. If digraph has multiple
simple circuits of maximum length, then this attribute returns one of them.

See DigraphAllSimpleCircuits (5.3.17).
Example

gap> gr := Digraph([[], [3], [2, 4], [5, 4], [4]]);;
gap> DigraphLongestSimpleCircuit(gr);
[ 4, 5 ]
gap> gr := ChainDigraph(10);;
gap> DigraphLongestSimpleCircuit(gr);
fail
gap> gr := Digraph([[3], [1], [1, 4], [1, 1]]);;
gap> DigraphLongestSimpleCircuit(gr);
[ 1, 3, 4 ]
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5.3.19 DigraphLayers

. DigraphLayers(digraph, vertex) (operation)

Returns: A list.
This operation returns a list list such that list[i] is the list of vertices whose minimum distance

from the vertex vertex in digraph is i - 1. Vertex vertex is assumed to be at distance 0 from
itself.

Example
gap> gr := CompleteDigraph(4);;
gap> DigraphLayers(gr,1);
[ [ 1 ], [ 2, 3, 4 ] ]

5.3.20 DigraphDegeneracy

. DigraphDegeneracy(digraph) (attribute)

Returns: A non-negative integer, or fail.
If digraph is a symmetric digraph without multiple edges - see IsSymmetricDigraph (6.1.10)

and IsMultiDigraph (6.1.8) - then this attribute returns the degeneracy of digraph .
The degeneracy of a digraph is the least integer k such that every induced of digraph contains a

vertex whose number of neighbours (excluding itself) is at most k. Note that this means that loops are
ignored.

If digraph is not symmetric or has multiple edges then this attribute returns fail.
Example

gap> gr := DigraphSymmetricClosure(ChainDigraph(5));;
gap> DigraphDegeneracy(gr);
1
gap> gr := CompleteDigraph(5);;
gap> DigraphDegeneracy(gr);
4
gap> gr := Digraph([[1], [2, 4, 5], [3, 4], [2, 3, 4], [2], []]);
<digraph with 6 vertices, 10 edges>
gap> DigraphDegeneracy(gr);
1

5.3.21 DigraphDegeneracyOrdering

. DigraphDegeneracyOrdering(digraph) (attribute)

Returns: A list of integers, or fail.
If digraph is a digraph for which DigraphDegeneracy(digraph) is a non-negative integer k -

see DigraphDegeneracy (5.3.20) - then this attribute returns a degeneracy ordering of the vertices of
the vertices of digraph .

A degeneracy ordering of digraph is a list ordering of the vertices of digraph ordered such
that for any position i of the list, the vertex ordering[i] has at most k neighbours in later position
of the list.

If DigraphDegeneracy(digraph) returns fail, then this attribute returns fail.
Example

gap> gr := DigraphSymmetricClosure(ChainDigraph(5));;
gap> DigraphDegeneracyOrdering(gr);
[ 5, 4, 3, 2, 1 ]
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gap> gr := CompleteDigraph(5);;
gap> DigraphDegeneracyOrdering(gr);
[ 5, 4, 3, 2, 1 ]
gap> gr := Digraph([[1], [2, 4, 5], [3, 4], [2, 3, 4], [2], []]);
<digraph with 6 vertices, 10 edges>
gap> DigraphDegeneracyOrdering(gr);
[ 1, 6, 5, 2, 4, 3 ]



Chapter 6

Properties of digraphs

6.1 Edge properties

6.1.1 DigraphHasLoops

. DigraphHasLoops(digraph) (property)

Returns: true or false.
Returns true if the digraph digraph is has loops, and false if it does not. A loop is an edge

with equal source and range.
Example

gap> gr := Digraph( [ [ 1, 2 ], [ 2 ] ] );
<digraph with 2 vertices, 3 edges>
gap> DigraphEdges(gr);
[ [ 1, 1 ], [ 1, 2 ], [ 2, 2 ] ]
gap> DigraphHasLoops(gr);
true
gap> gr := Digraph( [ [ 2, 3 ], [ 1 ], [ 2 ] ] );
<digraph with 3 vertices, 4 edges>
gap> DigraphEdges(gr);
[ [ 1, 2 ], [ 1, 3 ], [ 2, 1 ], [ 3, 2 ] ]
gap> DigraphHasLoops(gr);
false

6.1.2 IsAntisymmetricDigraph

. IsAntisymmetricDigraph(digraph) (property)

Returns: true or false.
This property is true if the digraph digraph is antisymmetric, and false if it is not.
A digraph is antisymmetric if whenever there is an edge with source u and range v, and an edge

with source v and range u, then the vertices u and v are equal.
Example

gap> gr1 := Digraph( [ [ 2 ], [ 1, 3 ], [ 2, 3 ] ] );
<digraph with 3 vertices, 5 edges>
gap> IsAntisymmetricDigraph(gr1);
false
gap> DigraphEdges(gr1){[ 1, 2 ]};
[ [ 1, 2 ], [ 2, 1 ] ]

58
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gap> gr2 := Digraph( [ [ 1, 2 ], [ 3, 3 ], [ 1 ] ] );
<multidigraph with 3 vertices, 5 edges>
gap> IsAntisymmetricDigraph(gr2);
true
gap> DigraphEdges(gr2);
[ [ 1, 1 ], [ 1, 2 ], [ 2, 3 ], [ 2, 3 ], [ 3, 1 ] ]

6.1.3 IsBipartiteDigraph

. IsBipartiteDigraph(digraph) (property)

Returns: true or false.
This property is true if the digraph digraph is bipartite, and false if it is not. A digraph is

bipartite if and only if the vertices of digraph can be partitioned into two non-empty sets such that
the source and range of any edge of digraph lie in distinct sets. Equivalently, a digraph is bipartite if
and only if it is 2-colorable; see DigraphColoring (7.3.9).

See also DigraphBicomponents (5.1.8).
Example

gap> gr := ChainDigraph(4);
<digraph with 4 vertices, 3 edges>
gap> IsBipartiteDigraph(gr);
true
gap> gr := CycleDigraph(3);
<digraph with 3 vertices, 3 edges>
gap> IsBipartiteDigraph(gr);
false

6.1.4 IsCompleteBipartiteDigraph

. IsCompleteBipartiteDigraph(digraph) (property)

Returns: true or false.
Returns true if the digraph digraph is a complete bipartite digraph, and false if it is not.
A digraph is a complete bipartite digraph if it is bipartite, see IsBipartiteDigraph (6.1.3), and

there exists a unique edge with source i and range j if and only if i and j lie in different bicomponents
of digraph , see DigraphBicomponents (5.1.8).

Equivalently, a bipartite digraph with bicomponents of size m and n is complete precisely when it
has 2mn edges, none of which are multiple edges.

See also CompleteBipartiteDigraph (3.5.3).
Example

gap> gr := CycleDigraph(2);
<digraph with 2 vertices, 2 edges>
gap> IsCompleteBipartiteDigraph(gr);
true
gap> gr := CycleDigraph(4);
<digraph with 4 vertices, 4 edges>
gap> IsBipartiteDigraph(gr);
true
gap> IsCompleteBipartiteDigraph(gr);
false
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6.1.5 IsCompleteDigraph

. IsCompleteDigraph(digraph) (property)

Returns: true or false.
Returns true if the digraph digraph is complete, and false if it is not.
A digraph is complete if it has no loops, and for all distinct vertices i and j, there is exactly one

edge with source i and range j. Equivalently, a digraph with n vertices is complete precisely when it
has n(n−1) edges, no loops, and no multiple edges.

Example
gap> gr := Digraph( [ [ 2, 3 ], [ 1, 3 ], [ 1, 2 ] ] );
<digraph with 3 vertices, 6 edges>
gap> IsCompleteDigraph(gr);
true
gap> gr := Digraph( [ [ 2, 2 ], [ 1 ] ] );
<multidigraph with 2 vertices, 3 edges>
gap> IsCompleteDigraph(gr);
false

6.1.6 IsEmptyDigraph

. IsEmptyDigraph(digraph) (property)

. IsNullDigraph(digraph) (property)

Returns: true or false.
Returns true if the digraph digraph is empty, and false if it is not. A digraph is empty if it has

no edges.
IsNullDigraph is a synonym for IsEmptyDigraph.

Example
gap> gr := Digraph( [ [ ], [ ] ] );
<digraph with 2 vertices, 0 edges>
gap> IsEmptyDigraph(gr);
true
gap> IsNullDigraph(gr);
true
gap> gr := Digraph( [ [ ], [ 1 ] ] );
<digraph with 2 vertices, 1 edge>
gap> IsEmptyDigraph(gr);
false
gap> IsNullDigraph(gr);
false

6.1.7 IsFunctionalDigraph

. IsFunctionalDigraph(digraph) (property)

Returns: true or false.
This property is true if the digraph digraph is functional.
A digraph is functional if every vertex is the source of a unique edge.

Example
gap> gr1 := Digraph( [ [ 3 ], [ 2 ], [ 2 ], [ 1 ], [ 6 ], [ 5 ] ] );
<digraph with 6 vertices, 6 edges>
gap> IsFunctionalDigraph(gr1);
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true
gap> gr2 := Digraph( [ [ 1, 2 ], [ 1 ] ] );
<digraph with 2 vertices, 3 edges>
gap> IsFunctionalDigraph(gr2);
false
gap> gr3 := Digraph( 3, [ 1, 2, 3 ], [ 2, 3, 1 ] );
<digraph with 3 vertices, 3 edges>
gap> IsFunctionalDigraph(gr3);
true

6.1.8 IsMultiDigraph

. IsMultiDigraph(digraph) (property)

Returns: true or false.
A multidigraph is one that has at least two edges with equal source and range.

Example
gap> gr := Digraph(["a", "b", "c"], ["a", "b", "b"], ["b", "c", "a"]);
<digraph with 3 vertices, 3 edges>
gap> IsMultiDigraph(gr);
false
gap> gr := Digraph(3, [1, 2, 3, 1, 1, 2], [1, 2, 3, 2, 3, 1]);
<digraph with 3 vertices, 6 edges>
gap> IsMultiDigraph(gr);
false
gap> gr := Digraph(3, [1, 2, 3, 1, 1, 2, 1], [1, 2, 3, 2, 3, 1, 2]);
<multidigraph with 3 vertices, 7 edges>
gap> IsMultiDigraph(gr);
true

6.1.9 IsReflexiveDigraph

. IsReflexiveDigraph(digraph) (property)

Returns: true or false.
This property is true if the digraph digraph is reflexive, and false if it is not. A digraph is

reflexive if it has a loop at every vertex.
Example

gap> gr := Digraph( [ [ 1, 2 ], [ 2 ] ] );
<digraph with 2 vertices, 3 edges>
gap> IsReflexiveDigraph(gr);
true
gap> gr := Digraph( rec ( nrvertices := 4,
> source := [ 1, 1, 2, 2, 3, 4, 4 ],
> range := [ 3, 1, 4, 2, 3, 2, 1 ] ) );
<digraph with 4 vertices, 7 edges>
gap> IsReflexiveDigraph(gr);
false
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6.1.10 IsSymmetricDigraph

. IsSymmetricDigraph(digraph) (property)

Returns: true or false.
This property is true if the digraph digraph is symmetric, and false if it is not.
A symmetric digraph is one where for each non-loop edge, having source u and range v, there is

a corresponding edge with source v and range u. If there are n edges with source u and range v, then
there must be precisely n edges with source v and range u. In other words, an undirected digraph has
a symmetric adjacency matrix AdjacencyMatrix (5.2.1).

Example
gap> gr1 := Digraph( [ [ 2 ], [ 1, 3 ], [ 2, 3 ] ] );
<digraph with 3 vertices, 5 edges>
gap> IsSymmetricDigraph(gr1);
true
gap> adj1 := AdjacencyMatrix(gr1);;
gap> Display(adj1);
[ [ 0, 1, 0 ],

[ 1, 0, 1 ],
[ 0, 1, 1 ] ]

gap> adj1 = TransposedMat(adj1);
true
gap> gr1 = DigraphReverse(gr1);
true
gap> gr2 := Digraph( [ [ 2, 3 ], [ 1, 3 ], [ 2, 3 ] ] );
<digraph with 3 vertices, 6 edges>
gap> IsSymmetricDigraph(gr2);
false
gap> adj2 := AdjacencyMatrix(gr2);;
gap> Display(adj2);
[ [ 0, 1, 1 ],

[ 1, 0, 1 ],
[ 0, 1, 1 ] ]

gap> adj2 = TransposedMat(adj2);
false

6.1.11 IsTournament

. IsTournament(digraph) (property)

Returns: true or false.
This property is true if the digraph digraph is a tournament, and false if it is not.
A tournament is an orientation of a complete (undirected) graph. Specifically, a tournament is a

digraph which has a unique directed edge (of some orientation) between any pair of distinct vertices,
and no loops.

Example
gap> gr := Digraph( [ [ 2, 3, 4 ], [ 3, 4 ], [ 4 ], [ ] ] );
<digraph with 4 vertices, 6 edges>
gap> IsTournament(gr);
true
gap> gr := Digraph( [ [ 2 ], [ 1 ], [ 3 ] ] );
<digraph with 3 vertices, 3 edges>
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gap> IsTournament(gr);
false

6.1.12 IsTransitiveDigraph

. IsTransitiveDigraph(digraph) (property)

Returns: true or false.
This property is true if the digraph digraph is transitive, and false if it is not. A digraph is

transitive if whenever [ i, j ] and [ j, k ] are edges of the digraph, then [ i, k ] is also an
edge of the digraph.

Let n be the number of vertices of an arbitrary digraph, and let m be the number of edges.
For general digraphs, the methods used for this property use a version of the Floyd-Warshall
algorithm, and have complexity O(n3). However for digraphs which are topologically sortable
[DigraphTopologicalSort (5.1.7)], then methods with complexity O(m+ n+m · n) will be used
when appropriate.

Example
gap> gr := Digraph( [ [ 1, 2 ], [ 3 ], [ 3 ] ] );
<digraph with 3 vertices, 4 edges>
gap> IsTransitiveDigraph(gr);
false
gap> gr2 := Digraph( [ [ 1, 2, 3 ], [ 3 ], [ 3 ] ] );
<digraph with 3 vertices, 5 edges>
gap> IsTransitiveDigraph(gr2);
true
gap> gr2 = DigraphTransitiveClosure(gr);
true
gap> gr3 := Digraph( [ [ 1, 2, 2, 3 ], [ 3, 3 ], [ 3 ] ] );
<multidigraph with 3 vertices, 7 edges>
gap> IsTransitiveDigraph(gr3);
true

6.2 Regularity

6.2.1 IsInRegularDigraph

. IsInRegularDigraph(digraph) (property)

Returns: true or false.
This property is true if there is an integer n such that for every vertex v of digraph

digraph there are exactly n edges terminating in v. See also IsOutRegularDigraph (6.2.2) and
IsRegularDigraph (6.2.3).

Example
gap> IsInRegularDigraph(CompleteDigraph(4));
true
gap> IsInRegularDigraph(ChainDigraph(4));
false
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6.2.2 IsOutRegularDigraph

. IsOutRegularDigraph(digraph) (property)

Returns: true or false.
This property is true if there is an integer n such that for every vertex v of digraph digraph there

are exactly n edges starting at v. See also IsInRegularDigraph (6.2.1) and IsRegularDigraph
(6.2.3).

Example
gap> IsOutRegularDigraph(CompleteDigraph(4));
true
gap> IsOutRegularDigraph(ChainDigraph(4));
false

6.2.3 IsRegularDigraph

. IsRegularDigraph(digraph) (property)

Returns: true or false.
This property is true if there is an integer n such that for every vertex v of digraph digraph

there are exactly n edges starting and terminating at v. In other words, the property is true
if digraph is both in-regular and and out-regular. See also IsInRegularDigraph (6.2.1) and
IsOutRegularDigraph (6.2.2).

Example
gap> IsRegularDigraph(CompleteDigraph(4));
true
gap> IsRegularDigraph(ChainDigraph(4));
false

6.2.4 IsDistanceRegularDigraph

. IsDistanceRegularDigraph(digraph) (property)

Returns: true or false.
If digraph is a connected symmetric graph, this property returns true if for any two vertices u

and v of digraph and any two integers i and j between 0 and the diameter of digraph , the number
of vertices at distance i from u and distance j from v depends only on i, j, and the distance between
vertices u and v.

Alternatively, a distance regular graph is a graph for which there exist integers b_i, c_i, and
i such that for any two vertices u, v in digraph which are distance i apart, there are exactly b_i
neighbors of v which are at distance i - 1 away from u, and c_i neighbors of v which are at distance
i + 1 away from u. This definition is used to check whether digraph is distance regular.

In the case where digraph is not symmetric or not connected, the property is false.
Example

gap> gr := DigraphSymmetricClosure(ChainDigraph(5));;
gap> IsDistanceRegularDigraph(gr);
false
gap> gr := Digraph([[2, 3, 4], [1, 3, 4], [1, 2, 4], [1, 2, 3]]);
<digraph with 4 vertices, 12 edges>
gap> IsDistanceRegularDigraph(gr);
true
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6.3 Connectivity and cycles

6.3.1 IsAcyclicDigraph

. IsAcyclicDigraph(digraph) (property)

Returns: true or false.
Returns true if the digraph digraph is acyclic and false if it is not. A digraph is acyclic if there

are no cycles, i.e. if there are no directed walks which start and end at the same vertex.
The method used in this operation has complexity O(m+ n) where m is the number of edges

(counting multiple edges as one) and n is the number of vertices in the digraph.
Example

gap> Petersen := Graph( SymmetricGroup(5), [ [ 1, 2 ] ], OnSets,
> function(x, y) return IsEmpty(Intersection(x, y)); end );;
gap> gr:=Digraph(Petersen);
<digraph with 10 vertices, 30 edges>
gap> IsAcyclicDigraph(gr);
false
gap> gr:=Digraph( [ [ ], [ 1 ], [ 1 ], [ 1 ], [ 3 ], [ 3 ],
> [ 4 ], [ 4 ], [ 5 ], [ 5 ], [ 5 ], [ 6 ], [ 6 ], [ 7 ], [ 7 ],
> [ 7 ], [ 8 ], [ 9 ], [ 9 ], [ 11 ], [ 11 ], [ 12 ], [ 12 ], [ 13 ],
> [ 14 ], [ 15 ], [ 15 ], [ 16 ], [ 16 ], [ 17 ], [ 17 ], [ 18 ],
> [ 18 ], [ 19 ], [ 20 ], [ 20 ], [ 21 ], [ 22 ], [ 22 ], [ 23 ],
> [ 23 ], [ 24 ], [ 28 ], [ 29 ], [ 30 ], [ 30 ], [ 31 ], [ 32 ],
> [ 32 ], [ 33 ], [ 34 ], [ 41 ], [ 46 ], [ 47 ], [ 51 ] ] );;
gap> IsAcyclicDigraph(gr);
true

6.3.2 IsConnectedDigraph

. IsConnectedDigraph(digraph) (property)

Returns: true or false.
This property is true if the digraph digraph is weakly connected and false if it is not. A

digraph digraph is weakly connected if it is possible to travel from any vertex to any other vertex by
traversing edges in either direction (possibly against the orientation of some of them).

The method used in this function has complexity O(m) if the digraph’s DigraphSource (5.2.4)
attribute is set, otherwise it has complexity O(m+ n) (where m is the number of edges and n is the
number of vertices of the digraph).

Example
gap> gr := Digraph( [ [ 2 ], [ 3 ], [ ] ] );;
gap> IsConnectedDigraph(gr);
true
gap> gr := Digraph( [ [ 1, 3 ], [ 4 ], [ 3 ], [ ] ] );;
gap> IsConnectedDigraph(gr);
false

6.3.3 IsStronglyConnectedDigraph

. IsStronglyConnectedDigraph(digraph) (property)

Returns: true or false.
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This property is true if the digraph digraph is strongly connected and false if it is not. A
digraph digraph is strongly connected if there is a directed path from every vertex to every other
vertex.

The method used in this operation is based on Gabow’s Algorithm [Gab00] and has complexity
O(m+ n), where m is the number of edges (counting multiple edges as one) and n is the number of
vertices in the digraph.

Example
gap> gr := CycleDigraph(250000);
<digraph with 250000 vertices, 250000 edges>
gap> IsStronglyConnectedDigraph(gr);
true
gap> gr:=DigraphRemoveEdges(gr, [ [ 250000, 1 ] ]);
<digraph with 250000 vertices, 249999 edges>
gap> IsStronglyConnectedDigraph(gr);
false

6.3.4 IsAperiodicDigraph

. IsAperiodicDigraph(digraph) (property)

Returns: true or false.
This property is true if the digraph digraph is aperiodic, i.e. if its DigraphPeriod (5.3.12) is

equal to 1. Otherwise, the property is false.
Example

gap> gr := Digraph( [ [ 6 ], [ 1 ], [ 2 ], [ 3 ], [ 4, 4 ], [ 5 ] ] );
<multidigraph with 6 vertices, 7 edges>
gap> IsAperiodicDigraph(gr);
false
gap> gr := Digraph( [ [ 2 ], [ 3, 5 ], [ 4 ], [ 5 ], [ 1, 2 ] ] );
<digraph with 5 vertices, 7 edges>
gap> IsAperiodicDigraph(gr);
true
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Homomorphisms

7.1 Acting on digraphs

7.1.1 OnDigraphs (for a digraph and a perm)

. OnDigraphs(digraph, perm) (operation)

. OnDigraphs(digraph, trans) (operation)

Returns: A digraph.
If digraph is a digraph, and the second argument perm is a permutation of the vertices of

digraph , then this operation returns a digraph constructed by relabelling the vertices of digraph
according to perm . Note that for an automorphism f of a digraph, we have OnDigraphs(digraph ,
f) = digraph .

If the second argument is a transformation trans of the vertices of digraph , then this operation
returns a digraph constructed by transforming the source and range of each edge according to trans ,
and then removing any multiple edges. If trans is indeed a permutation, then the result coincides
with relabelling the vertices of digraph according to trans .

The DigraphVertexLabels (5.1.10) of digraph will not be retained in the returned digraph.
Example

gap> gr := Digraph([[3], [1, 3, 5], [1], [1, 2, 4],
> [2, 3, 5]]);
<digraph with 5 vertices, 11 edges>
gap> new := OnDigraphs(gr, (1,2));
<digraph with 5 vertices, 11 edges>
gap> OutNeighbours(new);
[ [ 2, 3, 5 ], [ 3 ], [ 2 ], [ 2, 1, 4 ], [ 1, 3, 5 ] ]
gap> gr := Digraph([[2], [], [2]]);
<digraph with 3 vertices, 2 edges>
gap> t := Transformation([1, 2, 1]);;
gap> new := OnDigraphs(gr, t);
<digraph with 3 vertices, 1 edge>
gap> OutNeighbours(new);
[ [ 2 ], [ ], [ ] ]
gap> ForAll(DigraphEdges(gr),
> e -> IsDigraphEdge(new, [e[1] ^ t, e[2] ^ t]));
true

67
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7.1.2 OnMultiDigraphs

. OnMultiDigraphs(digraph, pair) (operation)

. OnMultiDigraphs(digraph, perm1, perm2) (operation)

Returns: A digraph.
If digraph is a digraph, and pair is a pair consisting of a permutation of the vertices and a

permutation of the edges of digraph , then this operation returns a digraph constructed by relabelling
the vertices and edges of digraph according to perm[1] and perm[2] , respectively.

In its second form, OnMultiDigraphs returns a digraph with vertices and edges permuted by
perm1 and perm2 , respectively.

Note that OnDigraphs(digraph, perm)=OnMultiDigraphs(digraph, [perm, ()]) where
perm is a permutation of the vertices of digraph . If you are only interested in the action of a permu-
tation on the vertices of a digraph, then you can use OnDigraphs instead of OnMultiDigraphs.

Example
gap> gr1 := Digraph([[3, 6, 3], [], [3], [9, 10], [9],
> [], [], [10, 4, 10], [], []]);
<multidigraph with 10 vertices, 10 edges>
gap> p := DigraphCanonicalLabelling(gr1);
[ (1,9,5,3,10,6,4,7), (1,7,9,5,2,8,4,10,3,6) ]
gap> gr2 := OnMultiDigraphs(gr1, p);
<multidigraph with 10 vertices, 10 edges>
gap> OutNeighbours(gr2);
[ [ ], [ ], [ 5 ], [ ], [ ], [ ], [ 5, 6 ], [ 6, 7, 6 ],

[ 10, 4, 10 ], [ 10 ] ]

7.2 Isomorphisms, and Canonical labellings

7.2.1 AutomorphismGroup (for a digraph)

. AutomorphismGroup(digraph) (attribute)

. AutomorphismGroup(digraph, colors) (operation)

Returns: A permutation group.
If digraph is a digraph without multiple edges, then this function returns the automorphism group

of digraph , as a group of permutations on the vertices of digraph .
If the colors argument is specified, then the group will consist of only those automorphisms

which respect the given colouring. The colouring colors can be in one of two forms:

• A list of positive integers of size the number of vertices of digraph , where colors[i] is the
colour of vertex i.

• A list of lists, such that colors[i] is a list of all vertices with colour i.

The automorphism group is found using bliss by Tommi Junttila and Petteri Kaski.
Example

gap> johnson := Digraph([[2, 3, 4, 5], [1, 3, 4, 6],
> [1, 2, 5, 6], [1, 2, 5, 6], [1, 3, 4, 6],
> [2, 3, 4, 5]]);
<digraph with 6 vertices, 24 edges>
gap> AutomorphismGroup(johnson);
Group([ (3,4), (2,3)(4,5), (1,2)(5,6) ])

http://www.tcs.tkk.fi/Software/bliss/index.html
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gap> Size(last);
48
gap> cycle := CycleDigraph(9);
<digraph with 9 vertices, 9 edges>
gap> a := AutomorphismGroup(cycle);;
gap> StructureDescription(a);
"C9"
gap> a := AutomorphismGroup(cycle, [1, 2, 3, 1, 2, 3, 1, 2, 3]);;
gap> StructureDescription(a);
"C3"
gap> a := AutomorphismGroup(cycle, [[1, 4, 7], [2, 5, 8], [3, 6, 9]]);;
gap> StructureDescription(a);
"C3"

7.2.2 AutomorphismGroup (for a multidigraph)

. AutomorphismGroup(digraph) (attribute)

Returns: A direct product of permutation groups.
If digraph is a multidigraph, then this function returns the automorphism group of digraph , as

a group of permutations on the vertices and edges of digraph .
For convenience, the returned group is the direct product of the group of automorphisms of the

vertices of digraph with the stabiliser of the vertices in the automorphism group of the edges. These
two groups can be accessed using the Projection (Reference: Projection) with second argument 1
and 2, respectively.

The permutations in the automorphism group of the edges act on the indices of the edges of
digraph .

The automorphism group is found using bliss by Tommi Junttila and Petteri Kaski.
Example

gap> gr := DigraphEdgeUnion(CycleDigraph(3), CycleDigraph(3));
<multidigraph with 3 vertices, 6 edges>
gap> G := AutomorphismGroup(gr);
Group([ (1,2,3), (8,9), (6,7), (4,5) ])
gap> Range(Projection(G, 1));
Group([ (1,2,3) ])
gap> Range(Projection(G, 2));
Group([ (5,6), (3,4), (1,2) ])
gap> Size(G);
24

7.2.3 DigraphGroup

. DigraphGroup(digraph) (attribute)

Returns: A permutation group.
If digraph was created knowing a subgroup of its automorphism group, then this group is stored

in the attribute DigraphGroup. If digraph is not created knowing a subgroup of it automorphism
group, then DigraphGroup returns the entire automorphism group of digraph .

Note that certain other constructor operations such as CayleyDigraph (3.5.6),
BipartiteDoubleDigraph (3.3.30), and DoubleDigraph (3.3.29), may not require a group

http://www.tcs.tkk.fi/Software/bliss/index.html
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as one of the arguments, but use the standard constructor method using a group, and hence set the
DigraphGroup attribute for the resulting digraph.

Example
gap> n := 4;;
gap> adj := function(x, y)
> return (((x-y) mod n) = 1) or (((x-y) mod n) = n-1);
> end;;
gap> group := CyclicGroup(IsPermGroup, n);
Group([ (1,2,3,4) ])
gap> digraph := Digraph(group, [1..n], \^, adj);
<digraph with 4 vertices, 8 edges>
gap> HasDigraphGroup(digraph);
true
gap> DigraphGroup(digraph);
Group([ (1,2,3,4) ])
gap> AutomorphismGroup(digraph);
Group([ (2,4), (1,2,3,4) ])
gap> ddigraph := DoubleDigraph(digraph);
<digraph with 8 vertices, 32 edges>
gap> HasDigraphGroup(ddigraph);
true
gap> DigraphGroup(ddigraph);
Group([ (1,2,3,4)(5,6,7,8), (1,5)(2,6)(3,7)(4,8) ])
gap> AutomorphismGroup(ddigraph);
Group([ (6,8), (5,7), (4,6), (3,5), (2,4), (1,2,3,4)(5,6)(7,8) ])
gap> digraph := Digraph([[2, 3], [], []]);
<digraph with 3 vertices, 2 edges>
gap> HasDigraphGroup(digraph);
false
gap> HasAutomorphismGroup(digraph);
false
gap> DigraphGroup(digraph);
Group([ (2,3) ])
gap> HasAutomorphismGroup(digraph);
true
gap> group := DihedralGroup(8);
<pc group of size 8 with 3 generators>
gap> digraph := CayleyDigraph(group);
<digraph with 8 vertices, 24 edges>
gap> HasDigraphGroup(digraph);
true
gap> DigraphGroup(digraph);
Group([ (1,2)(3,8)(4,6)(5,7), (1,3,4,7)(2,5,6,8), (1,4)(2,6)(3,7)
(5,8) ])

7.2.4 DigraphSchreierVector

. DigraphSchreierVector(digraph) (attribute)

Returns: A list of integers.
DigraphSchreierVector returns the so-called Schreier vector of the action of the

DigraphGroup (7.2.3) on the set of vertices of digraph . The Schreier vector is a list sch of in-
tegers with with length DigraphNrVertices(digraph) where:
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sch[i] < 0:
implies that i is an orbit representative and DigraphOrbitReps(digraph)[-sch[i]] = i.

sch[i] > 0:
implies that i / gens[sch[i]] is one step closer to the root (or representative) of the tree,
where gens is the generators of DigraphGroup(digraph).

Example
gap> digraph := CayleyDigraph(AlternatingGroup(4));
<digraph with 12 vertices, 24 edges>
gap> sch := DigraphSchreierVector(digraph);
[ -1, 2, 2, 1, 1, 1, 1, 1, 2, 2, 2, 1 ]
gap> DigraphOrbitReps(digraph);
[ 1 ]
gap> gens := GeneratorsOfGroup(DigraphGroup(digraph));
[ (1,5,7)(2,4,8)(3,6,9)(10,11,12), (1,2,3)(4,7,10)(5,9,11)(6,8,12) ]
gap> 10 / gens[sch[10]];
7
gap> 7 / gens[sch[7]];
5
gap> 5 / gens[sch[5]];
1

7.2.5 DigraphOrbitReps

. DigraphOrbitReps(digraph) (attribute)

Returns: A list of integers.
DigraphOrbitReps returns a list of orbit representatives of the action of the DigraphGroup

(7.2.3) on the set of vertices of digraph .
Example

gap> digraph := CayleyDigraph(AlternatingGroup(4));
<digraph with 12 vertices, 24 edges>
gap> DigraphOrbitReps(digraph);
[ 1 ]
gap> digraph := Digraph([[3, 8], [], [6, 8], [7], [2, 9], [10], [7], [1],
> [2, 7, 8], [8]]);
<digraph with 10 vertices, 14 edges>
gap> DigraphOrbitReps(digraph);
[ 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 ]

7.2.6 DigraphStabilizer

. DigraphStabilizer(digraph, v) (operation)

Returns: A permutation group.
DigraphStabilizer returns the stabilizer of the vertex v under of the action of the

DigraphGroup (7.2.3) on the set of vertices of digraph .
Example

gap> digraph := Digraph([[2, 3, 5], [1, 4, 6], [4, 2, 7], [3, 1, 8], [6, 8, 1],
> [5, 7, 2], [8, 5, 3], [7, 6, 4]]);
<digraph with 8 vertices, 24 edges>
gap> DigraphStabilizer(digraph, 8);
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Group(())
gap> DigraphStabilizer(digraph, 2);
Group(())

7.2.7 DigraphOrbits

. DigraphOrbits(digraph) (attribute)

Returns: A list of lists of integers.
DigraphOrbits returns the orbits of the action of the DigraphGroup (7.2.3) on the set of vertices

of digraph .
Example

gap> G := Group((1,2,3), (1,2), (4,5,6), (7,8,9), (7,8));;
gap> gr := EdgeOrbitsDigraph(G, [1, 2]);
<digraph with 9 vertices, 6 edges>
gap> DigraphOrbits(gr);
[ [ 1, 2, 3 ], [ 4, 5, 6 ], [ 7, 8, 9 ] ]

7.2.8 RepresentativeOutNeighbours

. RepresentativeOutNeighbours(digraph) (attribute)

Returns: An immutable list of immutable lists.
This function returns the list out of out-neighbours of each representative of the orbits of the

action of DigraphGroup (7.2.3) on the vertex set of the digraph digraph .
More specifically, if reps is the list of orbit representatives, then a vertex j appears in out[i]

each time there exists an edge with source reps[i] and range j in digraph .
If DigraphGroup (7.2.3) is trivial, then OutNeighbours (5.2.5) is returned.

Example
gap> digraph := Digraph([[1, 2, 3, 4, 5], [3, 5], [2], [1, 2, 3, 5],
> [1, 2, 3, 4]]);
<digraph with 5 vertices, 16 edges>
gap> DigraphGroup(digraph);
Group(())
gap> RepresentativeOutNeighbours(digraph);
[ [ 1, 2, 3, 4, 5 ], [ 3, 5 ], [ 2 ], [ 1, 2, 3, 5 ], [ 1, 2, 3, 4 ] ]
gap> digraph := Digraph([[2, 3, 5], [1, 4, 6], [4, 2, 7], [3, 1, 8], [6, 8, 1],
> [5, 7, 2], [8, 5, 3], [7, 6, 4]]);
<digraph with 8 vertices, 24 edges>
gap> DigraphGroup(digraph);
Group([ (1,2)(3,4)(5,6)(7,8), (1,3,2,4)(5,7,6,8), (1,5)(2,6)(3,8)
(4,7) ])
gap> RepresentativeOutNeighbours(digraph);
[ [ 2, 3, 5 ] ]

7.2.9 DigraphCanonicalLabelling (for a digraph)

. DigraphCanonicalLabelling(digraph) (attribute)

. DigraphCanonicalLabelling(digraph, colors) (operation)

Returns: A permutation.
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A function ρ from a digraph to a digraph is a canonical representative map if the following two
conditions hold:

• ρ(G) and G are isomorphic; and

• ρ(G) = ρ(H) if and only if G and H are isomorphic.

A canonical labelling of a digraph digraph (under ρ) is an isomorphism of digraph onto its canoni-
cal representative ρ(digraph) given as a permutation of the vertices (and the edges in case digraph
has multiple edges).

If the colors argument is specified, then the canonical labelling will respect the given colouring.
The colouring colors can be in one of two forms:

• A list of positive integers of size the number of vertices of digraph , where colors[i] is the
colour of vertex i.

• A list of lists, such that colors[i] is a list of all vertices with colour i.

The canonical labelling is found using bliss by Tommi Junttila and Petteri Kaski.
Example

gap> G := Digraph(10, [1, 1, 3, 4, 4, 5, 8, 8], [6, 3, 3, 9, 10, 9, 4, 10]);
<digraph with 10 vertices, 8 edges>
gap> DigraphCanonicalLabelling(G);
(1,8,5,3,10,6,4,9,7)
gap> DigraphCanonicalLabelling(G, [[1 .. 5], [6 .. 10]]);
(1,3,5,2)(6,7)(8,9,10)
gap> DigraphCanonicalLabelling(G, [1, 1, 1, 1, 2, 3, 1, 3, 2, 1]);
(1,4,5,7)(3,6,9,8,10)
gap> p := (1,2,7,5)(3,9)(6,10,8);;
gap> H := Digraph(
> 10,
> OnTuples([1, 1, 3, 4, 4, 5, 8, 8], p),
> OnTuples([6, 3, 3, 9, 10, 9, 4, 10], p)
> );
<digraph with 10 vertices, 8 edges>
gap> G = H;
false
gap> OnDigraphs(G, DigraphCanonicalLabelling(G)) =
> OnDigraphs(H, DigraphCanonicalLabelling(H));
true
gap> gr := Digraph([[7, 2, 8, 2], [7, 6], [9], [],
> [], [], [], [2], [6], [4]]);
<multidigraph with 10 vertices, 10 edges>
gap> DigraphCanonicalLabelling(gr);
[ (1,9,7,5)(2,10,3), (1,7,3,8,2,6,10,4,5,9) ]

7.2.10 IsIsomorphicDigraph (for digraphs)

. IsIsomorphicDigraph(digraph1, digraph2) (operation)

Returns: true or false.
This operation returns true if the digraph digraph1 is isomorphic to the digraph digraph2 .
This operation uses the canonical labelling of the digraphs found with bliss by Tommi Junttila and

Petteri Kaski.

http://www.tcs.tkk.fi/Software/bliss/index.html
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Example
gap> digraph1 := CycleDigraph(4);
<digraph with 4 vertices, 4 edges>
gap> digraph2 := CycleDigraph(5);
<digraph with 5 vertices, 5 edges>
gap> IsIsomorphicDigraph(digraph1, digraph2);
false
gap> digraph2 := DigraphReverse(digraph1);
<digraph with 4 vertices, 4 edges>
gap> IsIsomorphicDigraph(digraph1, digraph2);
true
gap> digraph1 := Digraph([[], [9, 8, 9], [7],
> [], [], [5, 3], [8], [6], [4, 5], []]);
<multidigraph with 10 vertices, 10 edges>
gap> digraph2 := Digraph([[], [4], [], [7], [],
> [4, 5, 10, 5], [], [9], [4, 2], [2]]);
<multidigraph with 10 vertices, 10 edges>
gap> IsIsomorphicDigraph(digraph1, digraph2);
false
gap> digraph1 := Digraph([[3], [], []]);
<digraph with 3 vertices, 1 edge>
gap> digraph2 := Digraph([[], [], [2]]);
<digraph with 3 vertices, 1 edge>
gap> IsIsomorphicDigraph(digraph1, digraph2);
true

7.2.11 IsomorphismDigraphs (for digraphs)

. IsomorphismDigraphs(digraph1, digraph2) (operation)

Returns: A permutation or fail.
If digraph1 and digraph2 are isomorphic digraphs, then this operation returns an isomorphism

from digraph1 to digraphs2 . More precisely,

for multidigraphs
this operation returns a pair of permutations P such that OnMultiDigraphs(digraph1, P) =
digraph2. The first permutation is defined on the vertices of digraph1 and the second on the
edges.

for digraphs without multiple edges
this operation returns a permutation p such that OnDigraphs(digraph1, p) = digraph2.

If digraph1 and digraph2 are not isomorphic, then fail is returned.
This operation uses the canonical labelling of the digraphs found with bliss by Tommi Junttila and

Petteri Kaski.
Example

gap> digraph1 := CycleDigraph(4);
<digraph with 4 vertices, 4 edges>
gap> digraph2 := CycleDigraph(5);
<digraph with 5 vertices, 5 edges>
gap> IsomorphismDigraphs(digraph1, digraph2);
fail
gap> gr1 := CompleteBipartiteDigraph(10, 5);

http://www.tcs.tkk.fi/Software/bliss/index.html
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<digraph with 15 vertices, 100 edges>
gap> gr2 := CompleteBipartiteDigraph(5, 10);
<digraph with 15 vertices, 100 edges>
gap> p := IsomorphismDigraphs(gr1, gr2);
(1,6,11)(2,7,12)(3,8,13)(4,9,14)(5,10,15)
gap> OnDigraphs(gr1, p) = gr2;
true
gap> gr1 := Digraph([[3, 6, 3], [], [3], [9, 10], [9], [],
> [], [10, 4, 10], [], []]);
<multidigraph with 10 vertices, 10 edges>
gap> gr2 := Digraph([[], [], [5], [], [], [],
> [5, 6], [6, 7, 6], [10, 4, 10], [10]]);
<multidigraph with 10 vertices, 10 edges>
gap> IsomorphismDigraphs(gr1, gr2);
[ (1,9,5,3,10,6,4,7,2), (1,7)(2,8,4,10,6,3,9,5) ]
gap> digraph1 := Digraph([[], [], [], [], [], [],
> [10, 10], [], [], []]);
<multidigraph with 10 vertices, 2 edges>
gap> digraph2 := Digraph([[], [3, 3], [], [], [], [],
> [], [], [], []]);
<multidigraph with 10 vertices, 2 edges>
gap> IsomorphismDigraphs(digraph1, digraph2);
[ (2,4,6,8,9,10,3,5,7), () ]

7.3 Homomorphisms of digraphs

The following methods exist to find homomorphisms between digraphs. If an argument to one of
these methods is a digraph with multiple edges, then the multiplicity of edges will be ignored in order
to perform the calculation; the digraph will be treated as if it has no multiple edges.

7.3.1 HomomorphismDigraphsFinder

. HomomorphismDigraphsFinder(gr1, gr2, hook, user_param, limit, hint,
injective, image, map) (function)

Returns: The argument user_param .
This function finds homomorphisms from the graph gr1 to the graph gr2 subject to the conditions

imposed by the other arguments as described below.
If f and g are homomorphisms found by HomomorphismGraphsFinder, then f cannot be obtained

from g by right multiplying by an automorphism of gr2 .

hook
This argument should be a function or fail.

If hook is a function, then it should have two arguments user_param (see below) and a trans-
formation t. The function hook(user_param, t) is called every time a new homomorphism
t is found by HomomorphismGraphsFinder.

If hook is fail, then a default function is used which simply adds every new homomorphism
found by HomomorphismGraphsFinder to user_param , which must be a list in this case.
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user_param
If hook is a function, then user_param can be any GAP object. The object user_param is
used as the first argument for the function hook . For example, user_param might be a trans-
formation semigroup, and hook(user_param, t) might set user_param to be the closure of
user_param and t.

If the value of hook is fail, then the value of user_param must be a list.

limit
This argument should be a positive integer or infinity. HomomorphismGraphsFinder will
return after it has found limit homomorphisms or the search is complete.

hint
This argument should be a positive integer or fail.

If hint is a positive integer, then only homorphisms of rank hint are found.

If hint is fail, then no restriction is put on the rank of homomorphisms found.

injective
This argument should be true or false. If it is true, then only injective homomorphisms are
found, and if it is false there are no restrictions imposed by this argument.

image
This argument should be a subset of the vertices of the graph gr2 .
HomomorphismGraphsFinder only finds homomorphisms from gr1 to the subgraph of
gr2 induced by the vertices image .

map This argument should be a partial map from gr1 to gr2 , that is, a (not necessarily dense) list
of vertices of the graph gr2 of length no greater than the number vertices in the graph gr1 .
HomomorphismGraphsFinder only finds homomorphisms extending map (if any).

Example
gap> gr := ChainDigraph(10);
<digraph with 10 vertices, 9 edges>
gap> gr := DigraphSymmetricClosure(gr);
<digraph with 10 vertices, 18 edges>
gap> HomomorphismDigraphsFinder(gr, gr, fail, [], infinity, 2, false,
> [3, 4], [], fail, fail);
[ Transformation( [ 3, 4, 3, 4, 3, 4, 3, 4, 3, 4 ] ),

Transformation( [ 4, 3, 4, 3, 4, 3, 4, 3, 4, 3 ] ) ]
gap> gr2 := CompleteDigraph(6);;
gap> HomomorphismDigraphsFinder(gr, gr2, fail, [], 1, fail, false,
> [1 .. 6], [1, 2, 1], fail, fail);
[ Transformation( [ 1, 2, 1, 3, 4, 5, 6, 1, 2, 1 ] ) ]
gap> func := function(user_param, t)
> Add(user_param, t * user_param[1]);
> end;;
gap> HomomorphismDigraphsFinder(gr, gr2, func, [Transformation([2, 2])],
> 3, fail, false, [1 .. 6], [1, 2, 1], fail, fail);
[ Transformation( [ 2, 2 ] ),

Transformation( [ 2, 2, 2, 3, 4, 5, 6, 2, 2, 2 ] ),
Transformation( [ 2, 2, 2, 3, 4, 5, 6, 2, 2, 3 ] ),
Transformation( [ 2, 2, 2, 3, 4, 5, 6, 2, 2, 4 ] ) ]
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7.3.2 DigraphHomomorphism

. DigraphHomomorphism(digraph1, digraph2) (operation)

Returns: A transformation, or fail.
A homomorphism from digraph1 to digraph2 is a mapping from the vertex set of digraph1 to

a subset of the vertices of digraph2 , such that every pair of vertices [i,j] which has an edge i->j
is mapped to a pair of vertices [a,b] which has an edge a->b. Note that non adjacent vertices can
still be mapped onto adjacent ones.

DigraphHomomorphism returns a single homomorphism between digraph1 and digraph2 if it
exists, otherwise it returns fail.

Example
gap> gr1 := ChainDigraph(3);;
gap> gr2 := Digraph([[3, 5], [2], [3, 1], [], [4]]);
<digraph with 5 vertices, 6 edges>
gap> DigraphHomomorphism(gr1, gr1);
IdentityTransformation
gap> DigraphHomomorphism(gr1, gr2);
Transformation( [ 1, 3, 1 ] )

7.3.3 HomomorphismsDigraphs

. HomomorphismsDigraphs(digraph1, digraph2) (operation)

. HomomorphismsDigraphsRepresentatives(digraph1, digraph2) (operation)

Returns: A list of transformations.
HomomorphismsDigraphsRepresentatives finds every DigraphHomomorphism (7.3.2) be-

tween digraph1 and digraph2 , up to right multiplication by an element of the AutomorphismGroup
(7.2.1) of digraph2 . In other words, every homomorphism f between digraph1
and digraph2 can be written as the composition f = g * x, where g is one of the
HomomorphismsDigraphsRepresentatives and x is an automorphism of digraph2 .

HomomorphismsDigraphs returns all homomorphisms between digraph1 and digraph2 .
Example

gap> gr1 := ChainDigraph(3);;
gap> gr2 := Digraph([[3, 5], [2], [3, 1], [], [4]]);
<digraph with 5 vertices, 6 edges>
gap> HomomorphismsDigraphs(gr1, gr2);
[ Transformation( [ 1, 3, 1 ] ), Transformation( [ 1, 3, 3 ] ),

Transformation( [ 1, 5, 4, 4, 5 ] ), Transformation( [ 2, 2, 2 ] ),
Transformation( [ 3, 1, 3 ] ), Transformation( [ 3, 1, 5, 4, 5 ] ),
Transformation( [ 3, 3, 1 ] ), Transformation( [ 3, 3, 3 ] ) ]

gap> HomomorphismsDigraphsRepresentatives(gr1, CompleteDigraph(3));
[ IdentityTransformation, Transformation( [ 1, 2, 1 ] ) ]

7.3.4 DigraphMonomorphism

. DigraphMonomorphism(digraph1, digraph2) (operation)

Returns: A transformation, or fail.
DigraphMonomorphism returns a single injective DigraphHomomorphism (7.3.2) between

digraph1 and digraph2 if one exists, otherwise it returns fail.
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Example
gap> gr1 := ChainDigraph(3);;
gap> gr2 := Digraph([[3, 5], [2], [3, 1], [], [4]]);
<digraph with 5 vertices, 6 edges>
gap> DigraphMonomorphism(gr1, gr1);
IdentityTransformation
gap> DigraphMonomorphism(gr1, gr2);
Transformation( [ 1, 5, 4, 4, 5 ] )

7.3.5 MonomorphismsDigraphs

. MonomorphismsDigraphs(digraph1, digraph2) (operation)

. MonomorphismsDigraphsRepresentatives(digraph1, digraph2) (operation)

Returns: A list of transformations.
These operations behave the same as HomomorphismsDigraphs (7.3.3) and

HomomorphismsDigraphsRepresentatives (7.3.3), expect they only return injective homo-
morphisms.

Example
gap> gr1 := ChainDigraph(3);;
gap> gr2 := Digraph([[3, 5], [2], [3, 1], [], [4]]);
<digraph with 5 vertices, 6 edges>
gap> MonomorphismsDigraphs(gr1, gr2);
[ Transformation( [ 1, 5, 4, 4, 5 ] ),

Transformation( [ 3, 1, 5, 4, 5 ] ) ]
gap> MonomorphismsDigraphsRepresentatives(gr1, CompleteDigraph(3));
[ IdentityTransformation ]

7.3.6 DigraphEpimorphism

. DigraphEpimorphism(digraph1, digraph2) (operation)

Returns: A transformation, or fail.
DigraphEpimorphism returns a single surjective DigraphHomomorphism (7.3.2) between

digraph1 and digraph2 if one exists, otherwise it returns fail.
Example

gap> gr1 := DigraphReverse(ChainDigraph(4));
<digraph with 4 vertices, 3 edges>
gap> gr2 := DigraphRemoveEdge(CompleteDigraph(3), [1, 2]);
<digraph with 3 vertices, 5 edges>
gap> DigraphEpimorphism(gr2, gr1);
fail
gap> DigraphEpimorphism(gr1, gr2);
Transformation( [ 1, 2, 3, 1 ] )

7.3.7 EpimorphismsDigraphs

. EpimorphismsDigraphs(digraph1, digraph2) (operation)

. EpimorphismsDigraphsRepresentatives(digraph1, digraph2) (operation)

Returns: A list of transformations.
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These operations behave the same as HomomorphismsDigraphs (7.3.3) and
HomomorphismsDigraphsRepresentatives (7.3.3), expect they only return surjective homo-
morphisms.

Example
gap> gr1 := DigraphReverse(ChainDigraph(4));
<digraph with 4 vertices, 3 edges>
gap> gr2 := DigraphSymmetricClosure(CycleDigraph(3));
<digraph with 3 vertices, 6 edges>
gap> EpimorphismsDigraphsRepresentatives(gr1, gr2);
[ Transformation( [ 1, 2, 3, 1 ] ), Transformation( [ 1, 2, 3, 2 ] ),

Transformation( [ 1, 2, 1, 3 ] ) ]
gap> EpimorphismsDigraphs(gr1, gr2);
[ Transformation( [ 1, 2, 1, 3 ] ), Transformation( [ 1, 2, 3, 1 ] ),

Transformation( [ 1, 2, 3, 2 ] ), Transformation( [ 1, 3, 1, 2 ] ),
Transformation( [ 1, 3, 2, 1 ] ), Transformation( [ 1, 3, 2, 3 ] ),
Transformation( [ 2, 1, 2, 3 ] ), Transformation( [ 2, 1, 3, 1 ] ),
Transformation( [ 2, 1, 3, 2 ] ), Transformation( [ 2, 3, 1, 2 ] ),
Transformation( [ 2, 3, 1, 3 ] ), Transformation( [ 2, 3, 2, 1 ] ),
Transformation( [ 3, 1, 2, 1 ] ), Transformation( [ 3, 1, 2, 3 ] ),
Transformation( [ 3, 1, 3, 2 ] ), Transformation( [ 3, 2, 1, 2 ] ),
Transformation( [ 3, 2, 1, 3 ] ), Transformation( [ 3, 2, 3, 1 ] ) ]

7.3.8 GeneratorsOfEndomorphismMonoid

. GeneratorsOfEndomorphismMonoid(digraph[, colors][, limit]) (function)

. GeneratorsOfEndomorphismMonoidAttr(digraph) (attribute)

Returns: A list of transformations.
An endomorphism of digraph is a homomorphism DigraphHomomorphism (7.3.2) from

digraph back to itself. GeneratorsOfEndomorphismMonoid, called with a single argument, re-
turns a generating set for the monoid of all endomorphisms of digraph .

If the colors argument is specified, then it will return a generating set for the monoid of endo-
morphisms which respect the given colouring. The colouring colors can be in one of two forms:

• A list of positive integers of size the number of vertices of digraph , where colors[i] is the
colour of vertex i.

• A list of lists, such that colors[i] is a list of all vertices with colour i.

If the limit argument is specified, then it will return only the first limit homomorphisms, where
limit must be a positive integer or infinity.

Example
gap> gr := Digraph(List([1 .. 3], x -> [1 .. 3]));;
gap> GeneratorsOfEndomorphismMonoid(gr);
[ Transformation( [ 1, 3, 2 ] ), Transformation( [ 2, 1 ] ),

IdentityTransformation, Transformation( [ 1, 2, 1 ] ),
Transformation( [ 1, 2, 2 ] ), Transformation( [ 1, 1, 2 ] ),
Transformation( [ 1, 1, 1 ] ) ]

gap> GeneratorsOfEndomorphismMonoid(gr, 3);
[ Transformation( [ 1, 3, 2 ] ), Transformation( [ 2, 1 ] ),

IdentityTransformation ]
gap> gr := CompleteDigraph(3);;
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gap> GeneratorsOfEndomorphismMonoid(gr);
[ Transformation( [ 1, 3, 2 ] ), Transformation( [ 2, 1 ] ),

IdentityTransformation ]
gap> GeneratorsOfEndomorphismMonoid(gr, [1, 2, 2]);
[ Transformation( [ 1, 3, 2 ] ), IdentityTransformation ]
gap> GeneratorsOfEndomorphismMonoid(gr, [[1], [2, 3]]);
[ Transformation( [ 1, 3, 2 ] ), IdentityTransformation ]

7.3.9 DigraphColoring (for a digraph and number of colors)

. DigraphColoring(digraph, n) (operation)

. DigraphColouring(digraph, n) (operation)

. DigraphColoring(digraph) (operation)

Returns: A transformation, or fail.
A digraph coloring is a labeling of the vertices (using precisely n colors) in such a way

that two adjacent vertices can not have the same label. Alternatively, it can be defined to be a
DigraphEpimorphism (7.3.6) from digraph onto a complete digraph with n vertices.

DigraphColoring returns such an epimorphism if one exists, else it returns fail.
Note that a digraph has a 2-coloring if and only if it is bipartite, see IsBipartiteDigraph (6.1.3).
If the third form is used, a greedy algorithm is used to obtain a colouring, which possibly is not

minimal.
Example

gap> DigraphColoring(CompleteDigraph(5), 4);
fail
gap> DigraphColoring(ChainDigraph(10), 1);
fail
gap> gr := ChainDigraph(10);;
gap> t := DigraphColoring(gr, 2);
Transformation( [ 1, 2, 1, 2, 1, 2, 1, 2, 1, 2 ] )
gap> ForAll(DigraphEdges(gr), e -> e[1] ^ t <> e[2] ^ t);
true
gap> DigraphColoring(gr);
Transformation( [ 1, 2, 1, 2, 1, 2, 1, 2, 1, 2 ] )

7.3.10 DigraphEmbedding

. DigraphEmbedding(digraph1, digraph2) (operation)

Returns: A transformation, or fail.
An embedding of a digraph digraph1 into another digraph digraph2 is a

DigraphMonomorphism (7.3.4) from digraph1 to digraph2 which has the additional prop-
erty that a pair of vertices [i,j] which have no edge i->j in digraph1 are mapped to a pair of
vertices [a,b] which have no edge a->b in digraph2 .

In other words, an embedding t is an isomorphism from digraph1 to the InducedSubdigraph
(3.3.2) of digraph2 on the image of t.

DigraphEmbedding returns a single embedding if one exists, otherwise it returns fail.
Example

gap> gr := ChainDigraph(3);
<digraph with 3 vertices, 2 edges>
gap> DigraphEmbedding(gr, CompleteDigraph(4));
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fail
gap> DigraphEmbedding(gr, Digraph([[3], [1, 4], [1], [3]]));
Transformation( [ 2, 4, 3, 4 ] )



Chapter 8

Finding cliques and independent sets

In Digraphs, a clique of a digraph is a set of mutually adjacent vertices of the digraph, and an inde-
pendent set is a set of mutually non-adjacent vertices of the digraph. A maximal clique is a clique
which is not properly contained in another clique, and a maximal independent set is an independent
set which is not properly contained in another independent set. Using this definition in Digraphs,
cliques and independent sets are both permitted, but not required, to contain vertices at which there is
a loop. Another name for a clique is a complete subgraph.

Digraphs provides extensive functionality for computing cliques and independent sets of a di-
graph, whether maximal or not. The fundamental algorithm used in most of the methods in Digraphs
to calculate cliques and independent sets is a version of the Bron-Kerbosch algorithm. Calculating
the cliques and independent sets of a digraph is a well-known and hard problem, and searching for
cliques or independent sets in a digraph can be very length, even for a digraph with a small number of
vertices. Digraphs uses several strategies to increase the performance of these calculations.

From the definition of cliques and independent sets, it follows that the presence of loops and mul-
tiple edges in a digraph is irrelevant to the existence of cliques and independent sets in the digraph.
See DigraphHasLoops (6.1.1) and IsMultiDigraph (6.1.8) for more information about these prop-
erties. Therefore given a digraph digraph , the cliques and independent sets of digraph are equal to
the cliques and independent sets of the digraph:

• DigraphRemoveLoops(DigraphRemoveAllMultipleEdges(digraph)).

See DigraphRemoveLoops (3.3.21) and DigraphRemoveAllMultipleEdges (3.3.22) for more in-
formation about these attributes. Furthermore, the cliques of this digraph are equal to the cliques of
the digraph formed by removing any edge [u,v] for which the corresponding reverse edge [v,u]
is not present. Therefore, overall, the cliques of digraph are equal to the cliques of the symmetric
digraph:

• MaximalSymmetricSubdigraphWithoutLoops(digraph).

See MaximalSymmetricSubdigraphWithoutLoops (3.3.4) for more information about this at-
tribute. The AutomorphismGroup (7.2.1) of this symmetric digraph contains the automorphism group
of digraph as a subgroup. By performing the search for maximal cliques with the help of this larger
automorphism group to reduce the search space, the computation time may be reduced. The functions
and attributes which return representatives of cliques of digraph will return orbit representatives of
cliques under the action of the automorphism group of the maximal symmetric subdigraph without
loops on sets of vertices.

82
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The independent sets of a digraph are equal to the independent sets of the
DigraphSymmetricClosure (3.3.8). Therefore, overall, the independent sets of digraph are
equal to the independent sets of the symmetric digraph:

• DigraphSymmetricClosure(DigraphRemoveLoops(DigraphRemoveAllMultipleEdges(
digraph))).

Again, the automorphism group of this symmetric digraph contains the automorphism group of
digraph . Since a search for independent sets is equal to a search for cliques in the DigraphDual
(3.3.7), the methods used in Digraphs usually transform a search for independent sets into a search
for cliques, as described above. The functions and attributes which return representatives of inde-
pendent sets of digraph will return orbit representatives of independent sets under the action of the
automorphism group of the symmetric closure of the digraph formed by removing loops and multiple
edges.

Please note that in Digraphs, cliques and indepedent sets are not required to be maximal. Some
authors use the word clique to mean maximal clique, and some authors use the phrase independent set
to mean maximal independent set, but please note that Digraphs does not use this definition.

8.1 Finding cliques

8.1.1 IsClique

. IsClique(digraph, l) (operation)

. IsMaximalClique(digraph, l) (operation)

Returns: true or false.
If digraph is a digraph and l is a duplicate-free list of vertices of digraph , then

IsClique(digraph,l) returns true if l is a clique of digraph and false if it is not. Similarly,
IsMaximalClique(digraph,l) returns true if l is a maximal clique of digraph and false if it
is not.

A clique of a digraph is a set of mutually adjacent vertices of the digraph. A maximal clique is a
clique which is not properly contained in another clique. A clique is permitted, but not required, to
contain vertices at which there is a loop.

Example
gap> gr := CompleteDigraph(4);;
gap> IsClique(gr, [1, 3, 2]);
true
gap> IsMaximalClique(gr, [1, 3, 2]);
false
gap> IsMaximalClique(gr, DigraphVertices(gr));
true
gap> gr := Digraph([[1, 2, 4, 4], [1, 3, 4], [2, 1], [1, 2]]);
<multidigraph with 4 vertices, 11 edges>
gap> IsClique(gr, [2, 3, 4]);
false
gap> IsMaximalClique(gr, [1, 2, 4]);
true
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8.1.2 CliquesFinder

. CliquesFinder(digraph, hook, user_param, limit, include, exclude, max, size,
reps) (function)

Returns: The argument user_param .
This function finds cliques of the digraph digraph subject to the conditions imposed by the other

arguments as described below. Note that a clique is represented by a list of the vertices which it
contains.

Let G denote the automorphism group of the maximal symmetric subdigraph of digraph with-
out loops (see AutomorphismGroup (7.2.1) and MaximalSymmetricSubdigraphWithoutLoops
(3.3.4)).

hook
This argument should be a function or fail.

If hook is a function, then it should have two arguments user_param (see below) and a clique
c. The function hook(user_param, c) is called every time a new clique c is found by
CliquesFinder.

If hook is fail, then a default function is used which simply adds every new clique found by
CliquesFinder to user_param , which must be a list in this case.

user_param
If hook is a function, then user_param can be any GAP object. The object user_param is
used as the first argument for the function hook . For example, user_param might be a list, and
hook(user_param, c) might add the size of the clique c to the list user_param .

If the value of hook is fail, then the value of user_param must be a list.

limit
This argument should be a positive integer or infinity. CliquesFinder will return after it
has found limit cliques or the search is complete.

include and exclude
These arguments should each be a (possibly empty) duplicate-free list of vertices of digraph
(i.e. positive integers less than the number of vertices of digraph ).

CliquesFinder will only look for cliques containing all of the vertices in include and con-
taining none of the vertices in exclude .

Note that the search may be much more efficient if each of these lists is invariant under the
action of G on sets of vertices.

max This argument should be true or false. If max is true then CliquesFinder will only search
for maximal cliques. If max is false then non-maximal cliques may be found.

size
This argument should be fail or a positive integer. If size is a positive integer then
CliquesFinder will only search for cliques which contain precisely size vertices. If size is
fail then cliques of any size may be found.

reps
This argument should be true or false.
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If reps is true then the arguments include and exclude are each required to be invariant
under the action of G on sets of vertices. In this case, CliquesFinder will find representatives
of the orbits of the desired cliques under the action of G, although representatives may be re-
turned which are in the same orbit. If reps is false then CliquesFinder will not take this into
consideration.

For a digraph such that G is non-trivial, the search for clique representatives can be much more
efficient than the search for all cliques.

This function uses a version of the Bron-Kerbosch algorithm.
Example

gap> gr := CompleteDigraph(5);
<digraph with 5 vertices, 20 edges>
gap> user_param := [];;
gap> f := function(a, b) # Calculate size of clique
> AddSet(user_param, Size(b));
> end;
function( a, b ) ... end
gap> CliquesFinder(gr, f, user_param, infinity, [], [], false, fail, true);
[ 1, 2, 3, 4, 5 ]
gap> CliquesFinder(gr, fail, [], 5, [2, 4], [3], false, fail, false);
[ [ 2, 4 ], [ 1, 2, 4 ], [ 2, 4, 5 ], [ 1, 2, 4, 5 ] ]
gap> CliquesFinder(gr, fail, [], 2, [2, 4], [3], false, fail, false);
[ [ 2, 4 ], [ 1, 2, 4 ] ]
gap> CliquesFinder(gr, fail, [], infinity, [], [], true, 5, false);
[ [ 1, 2, 3, 4, 5 ] ]
gap> CliquesFinder(gr, fail, [], infinity, [1, 3], [], false, 3, false);
[ [ 1, 2, 3 ], [ 1, 3, 4 ], [ 1, 3, 5 ] ]
gap> CliquesFinder(gr, fail, [], infinity, [1, 3], [], true, 3, false);
[ ]

8.1.3 DigraphClique

. DigraphClique(digraph[, include[, exclude[, size]]]) (function)

. DigraphMaximalClique(digraph[, include[, exclude[, size]]]) (function)

Returns: A list of positive integers, or fail.
If digraph is a digraph, then these functions returns a clique of digraph if one exists which

satisfies the arguments, else it returns fail. A clique is defined by the set of vertices which it contains;
see IsClique (8.1.1) and IsMaximalClique (8.1.1).

The optional arguments include and exclude must each be a (possibly empty) duplicate-free
list of vertices of digraph , and the optional argument size must be a positive integer. By default,
include and exclude are empty. These functions will search for a clique of digraph which includes
the vertices of include and which does not include any vertices in exclude ; if the argument size
is supplied, then additionally the clique will be required to contain precisely size vertices.

If include is not a clique, then these functions return fail. Otherwise, the functions behave in
the following way, depending on the number of arguments:

One or two arguments
If one or two arguments are supplied, then DigraphClique and DigraphMaximalClique
greedily enlarge the clique include until it can not continue. The result is guaranteed
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to be a maximal clique. This may or may not return an answer more quickly than using
DigraphMaximalCliques (8.1.4). with a limit of 1.

Three arguments
If three arguments are supplied, then DigraphClique greedily enlarges the clique include
until it can not continue, although this clique may not be maximal.

Given three arguments, DigraphMaximalClique returns the maximal clique returned by
DigraphMaximalCliques(digraph, include, exclude, 1) if one exists, else fail.

Four arguments
If four arguments are supplied, then DigraphClique returns the clique returned by
DigraphCliques(digraph, include, exclude, 1, size) if one exists, else fail. This
clique may not be maximal.

Given four arguments, DigraphMaximalClique returns the maximal clique returned by
DigraphMaximalCliques(digraph, include, exclude, 1, size) if one exists, else
fail.

Example
gap> gr := Digraph([[2, 3, 4], [1, 3], [1, 2], [1, 5], []]);
<digraph with 5 vertices, 9 edges>
gap> IsSymmetricDigraph(gr);
false
gap> DigraphClique(gr);
[ 5 ]
gap> DigraphMaximalClique(gr);
[ 5 ]
gap> DigraphClique(gr, [1, 2]);
[ 1, 2, 3 ]
gap> DigraphMaximalClique(gr, [1, 3]);
[ 1, 3, 2 ]
gap> DigraphClique(gr, [1], [2]);
[ 1, 4 ]
gap> DigraphMaximalClique(gr, [1], [3, 4]);
fail
gap> DigraphClique(gr, [1, 5]);
fail
gap> DigraphClique(gr, [], [], 2);
[ 1, 2 ]

8.1.4 DigraphMaximalCliques

. DigraphMaximalCliques(digraph[, include[, exclude[, limit[, size]]]]) (function)

. DigraphMaximalCliquesReps(digraph[, include[, exclude[, limit[, size]]]])
(function)

. DigraphCliques(digraph[, include[, exclude[, limit[, size]]]]) (function)

. DigraphCliquesReps(digraph[, include[, exclude[, limit[, size]]]]) (function)

. DigraphMaximalCliquesAttr(digraph) (attribute)

. DigraphMaximalCliquesRepsAttr(digraph) (attribute)

Returns: A list of lists of positive integers.
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If digraph is digraph, then these functions and attributes use CliquesFinder (8.1.2) to return
cliques of digraph . A clique is defined by the set of vertices which it contains; see IsClique (8.1.1)
and IsMaximalClique (8.1.1).

The optional arguments include and exclude must each be a (possibly empty) list of vertices
of digraph , the optional argument limit must be either a positive integer or infinity, and the
optional argument size must be a positive integer. If not specified, then include and exclude are
empty lists, and limit is infinity.

The functions will return as many suitable cliques as possible, up to the number limit . These
functions will find cliques which contain all of the vertices of include and which do not contain any
of the vertices of exclude . The argument size restricts the search to those cliques which contain
precisely size vertices. If the function or attribute has Maximal in its name, then only maximal
cliques will be returned; otherwise non-maximal cliques may be returned.

Let G denote the automorphism group of maximal symmetric subdigraph of digraph with-
out loops (see AutomorphismGroup (7.2.1) and MaximalSymmetricSubdigraphWithoutLoops
(3.3.4)).

Distinct cliques
DigraphMaximalCliques and DigraphCliques each return a duplicate-free list of at most
limit cliques of digraph which satisfy the arguments.

The computation may be significantly faster if include and exclude are invariant under the
action of G on sets of vertices.

Orbit representatives of cliques
To use DigraphMaximalCliquesReps or DigraphCliquesReps, the arguments include and
exclude must each be invariant under the action of G on sets of vertices.

If this is the case, then DigraphMaximalCliquesReps and DigraphCliquesReps each re-
turn a duplicate-free list of at most limit orbits representatives (under the action of G on sets
vertices) of cliques of digraph which satisfy the arguments.

The representatives are not guaranteed to be in distinct orbits. However, if lim is not specified,
or fewer than lim results are returned, then there will be at least one representative from each
orbit of maximal cliques.

Example
gap> gr := Digraph([[2, 3], [1, 3], [1, 2, 4], [3, 5, 6],
> [4, 6], [4, 5]]);
<digraph with 6 vertices, 14 edges>
gap> IsSymmetricDigraph(gr);
true
gap> G := AutomorphismGroup(gr);
Group([ (5,6), (1,2), (1,5)(2,6)(3,4) ])
gap> DigraphMaximalCliques(gr);
[ [ 1, 2, 3 ], [ 4, 5, 6 ], [ 3, 4 ] ]
gap> DigraphMaximalCliquesReps(gr);
[ [ 1, 2, 3 ], [ 3, 4 ] ]
gap> Orbit(G, [1, 2, 3], OnSets);
[ [ 1, 2, 3 ], [ 4, 5, 6 ] ]
gap> Orbit(G, [3, 4], OnSets);
[ [ 3, 4 ] ]
gap> DigraphMaximalCliquesReps(gr, [3, 4], [], 1);
[ [ 3, 4 ] ]
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gap> DigraphMaximalCliques(gr, [1, 2], [5, 6], 1, 2);
[ ]
gap> DigraphCliques(gr, [1], [5, 6], infinity, 2);
[ [ 1, 2 ], [ 1, 3 ] ]

8.2 Finding independent sets

8.2.1 IsIndependentSet

. IsIndependentSet(digraph, l) (operation)

. IsMaximalIndependentSet(digraph, l) (operation)

Returns: true or false.
If digraph is a digraph and l is a duplicate-free list of vertices of digraph , then

IsIndependentSet(digraph,l) returns true if l is an independent set of digraph and false
if it is not. Similarly, IsMaximalIndependentSet(digraph,l) returns true if l is a maximal
independent set of digraph and false if it is not.

An independent set of a digraph is a set of mutually non-adjacent vertices of the digraph. A
maximal independent set is an independent set which is not properly contained in another independent
set. An independent set is permitted, but not required, to contain vertices at which there is a loop.

Example
gap> gr := CycleDigraph(4);;
gap> IsIndependentSet(gr, [1]);
true
gap> IsMaximalIndependentSet(gr, [1]);
false
gap> IsIndependentSet(gr, [1, 4, 3]);
false
gap> IsIndependentSet(gr, [2, 4]);
true
gap> IsMaximalIndependentSet(gr, [2, 4]);
true

8.2.2 DigraphIndependentSet

. DigraphIndependentSet(digraph[, include[, exclude[, size]]]) (function)

. DigraphMaximalIndependentSet(digraph[, include[, exclude[, size]]]) (function)

Returns: A lists of positive integers, or fail.
If digraph is a digraph, then these functions returns a independent set of digraph if one exists

which satisfies the arguments, else it returns fail. A independent set is defined by the set of vertices
which it contains; see IsIndependentSet (8.2.1) and IsMaximalIndependentSet (8.2.1).

The optional arguments include and exclude must each be a (possibly empty) duplicate-free
list of vertices of digraph , and the optional argument size must be a positive integer. By default,
include and exclude are empty. These functions will search for a independent set of digraph
which includes the vertices of include and which does not include any vertices in exclude ; if the
argument size is supplied, then additionally the independent set will be required to contain precisely
size vertices.

If include is not a independent set, then these functions return fail. Otherwise, the functions
behave in the following way, depending on the number of arguments:
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One or two arguments
If one or two arguments are supplied, then DigraphIndependentSet and
DigraphMaximalIndependentSet greedily enlarge the independent set include until
it can not continue. The result is guaranteed to be a maximal independent set. This may or may
not return an answer more quickly than using DigraphMaximalIndependentSets (8.2.3).
with a limit of 1.

Three arguments
If three arguments are supplied, then DigraphIndependentSet greedily enlarges the indepen-
dent set include until it can not continue, although this independent set may not be maximal.

Given three arguments, DigraphMaximalIndependentSet returns the maximal independent
set returned by DigraphMaximalIndependentSets(digraph, include, exclude, 1) if
one exists, else fail.

Four arguments
If four arguments are supplied, then DigraphIndependentSet returns the independent set
returned by DigraphIndependentSets(digraph, include, exclude, 1, size) if one
exists, else fail. This independent set may not be maximal.

Given four arguments, DigraphMaximalIndependentSet returns the maximal independent
set returned by DigraphMaximalIndependentSets(digraph, include, exclude, 1,
size) if one exists, else fail.

Example
gap> gr := ChainDigraph(6);
<digraph with 6 vertices, 5 edges>
gap> DigraphIndependentSet(gr);
[ 6, 4, 2 ]
gap> DigraphMaximalIndependentSet(gr);
[ 6, 4, 2 ]
gap> DigraphIndependentSet(gr, [2, 4]);
[ 2, 4, 6 ]
gap> DigraphMaximalIndependentSet(gr, [1, 3]);
[ 1, 3, 6 ]
gap> DigraphIndependentSet(gr, [2, 4], [6]);
[ 2, 4 ]
gap> DigraphMaximalIndependentSet(gr, [2, 4], [6]);
fail
gap> DigraphIndependentSet(gr, [1], [], 2);
[ 1, 3 ]
gap> DigraphMaximalIndependentSet(gr, [1], [], 2);
fail
gap> DigraphMaximalIndependentSet(gr, [1], [], 3);
[ 1, 3, 5 ]

8.2.3 DigraphMaximalIndependentSets

. DigraphMaximalIndependentSets(digraph[, include[, exclude[, limit[,
size]]]]) (function)

. DigraphMaximalIndependentSetsReps(digraph[, include[, exclude[, limit[,
size]]]]) (function)
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. DigraphIndependentSets(digraph[, include[, exclude[, limit[, size]]]]) (func-

tion)

. DigraphIndependentSetsReps(digraph[, include[, exclude[, limit[, size]]]])
(function)

. DigraphMaximalIndependentSetsAttr(digraph) (attribute)

. DigraphMaximalIndependentSetsRepsAttr(digraph) (attribute)

Returns: A list of lists of positive integers.
If digraph is digraph, then these functions and attributes use CliquesFinder (8.1.2) to return

independent sets of digraph . An independent set is defined by the set of vertices which it contains;
see IsMaximalIndependentSet (8.2.1) and IsIndependentSet (8.2.1).

The optional arguments include and exclude must each be a (possibly empty) list of vertices
of digraph , the optional argument limit must be either a positive integer or infinity, and the
optional argument size must be a positive integer. If not specified, then include and exclude are
empty lists, and limit is infinity.

The functions will return as many suitable independent sets as possible, up to the number limit .
These functions will find independent sets which contain all of the vertices of include and which do
not contain any of the vertices of exclude The argument size restricts the search to those cliques
which contain precisely size vertices. If the function or attribute has Maximal in its name, then only
maximal independent sets will be returned; otherwise non-maximal independent sets may be returned.

Let G denote the AutomorphismGroup (7.2.1) of the DigraphSymmetricClosure (3.3.8) of the
digraph formed from digraph by removing loops and ignoring the multiplicity of edges.

Distinct independent sets
DigraphMaximalIndependentSets and DigraphIndependentSets each return a duplicate-
free list of at most limit independent sets of digraph which satisfy the arguments.

The computation may be significantly faster if include and exclude are invariant under the
action of G on sets of vertices.

Representatives of distinct orbits of independent sets
To use DigraphMaximalIndependentSetsReps or DigraphIndependentSetsReps, the ar-
guments include and exclude must each be invariant under the action of G on sets of vertices.

If this is the case, then DigraphMaximalIndependentSetsReps and
DigraphIndependentSetsReps each return a list of at most limit orbits representa-
tives (under the action of G on sets of vertices) of independent sets of digraph which satisfy
the arguments.

The representatives are not guaranteed to be in distinct orbits. However, if lim is not specified,
or fewer than lim results are returned, then there will be at least one representative from each
orbit of maximal independent sets.

Example
gap> gr := CycleDigraph(5);
<digraph with 5 vertices, 5 edges>
gap> DigraphMaximalIndependentSetsReps(gr);
[ [ 1, 3 ] ]
gap> DigraphIndependentSetsReps(gr);
[ [ 1 ], [ 1, 3 ] ]
gap> DigraphMaximalIndependentSets(gr);
[ [ 1, 3 ], [ 1, 4 ], [ 2, 4 ], [ 2, 5 ], [ 3, 5 ] ]
gap> DigraphMaximalIndependentSets(gr, [1]);
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[ [ 1, 3 ], [ 1, 4 ] ]
gap> DigraphIndependentSets(gr, [], [4, 5]);
[ [ 1 ], [ 2 ], [ 3 ], [ 1, 3 ] ]
gap> DigraphIndependentSets(gr, [], [4, 5], 1, 2);
[ [ 1, 3 ] ]



Chapter 9

Visualising and IO

9.1 Visualising a digraph

9.1.1 Splash

. Splash(str[, opts]) (function)

Returns: Nothing.
This function attempts to convert the string str into a pdf document and open this document, i.e.

to splash it all over your monitor.
The string str must correspond to a valid dot or LaTeX text file and you must have have

GraphViz and pdflatex installed on your computer. For details about these file formats, see
http://www.latex-project.org and http://www.graphviz.org.

This function is provided to allow convenient, immediate viewing of the pictures produced by the
function DotDigraph (9.1.2).

The optional second argument opts should be a record with components corresponding to various
options, given below.

path this should be a string representing the path to the directory where you want Splash to do its
work. The default value of this option is "~/".

directory
this should be a string representing the name of the directory in path where you want Splash
to do its work. This function will create this directory if does not already exist.

The default value of this option is "tmp.viz" if the option path is present, and the result of
DirectoryTemporary (Reference: DirectoryTemporary) is used otherwise.

filename
this should be a string representing the name of the file where str will be written. The default
value of this option is "vizpicture".

viewer
this should be a string representing the name of the program which should open the files pro-
duced by GraphViz or pdflatex.

type this option can be used to specify that the string str contains a LATEX or dot document. You
can specify this option in str directly by making the first line "%latex" or "//dot". There is
no default value for this option, this option must be specified in str or in opt.type .

92

http://www.latex-project.org
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filetype
this should be a string representing the type of file which Splash should produce. For LATEX
files, this option is ignored and the default value "pdf" is used.

This function was written by Attila Egri-Nagy and Manuel Delgado with some minor changes by J.
D. Mitchell.

Example
gap> Splash(DotDigraph(RandomDigraph(4)));

9.1.2 DotDigraph

. DotDigraph(digraph) (attribute)

Returns: A string.
This function produces a graphical representation of the digraph digraph . Vertices are displayed

as circles, numbered consistently with digraph . Edges are displayed as arrowed lines between ver-
tices, with the arrowhead of each line pointing towards the range of the edge.

The output is in dot format (also known as GraphViz) format. For details about this file format,
and information about how to display or edit this format see http://www.graphviz.org.

The string returned by DotDigraph can be written to a file using the command FileString
(GAPDoc: FileString).

Example
gap> adj := List( [ 1 .. 4 ], x -> List( [ 1 .. 4 ], y -> 1 ));
[ [ 1, 1, 1, 1 ], [ 1, 1, 1, 1 ], [ 1, 1, 1, 1 ], [ 1, 1, 1, 1 ] ]
gap> adj[1][1] := 1;
2
gap> adj[1][3] := 0;
0
gap> gr := DigraphByAdjacencyMatrix(adj);
<digraph with 4 vertices, 16 edges>
gap> FileString("dot/k4.dot", DotDigraph(gr));
146

9.1.3 DotSymmetricDigraph

. DotSymmetricDigraph(digraph) (attribute)

Returns: A string.
This function produces a graphical representation of the symmetric digraph digraph .

DotSymmetricDigraph will return an error if digraph is not a symmetric digraph. See
IsSymmetricDigraph (6.1.10).

Vertices are displayed as circles, numbered consistently with digraph . Since digraph is sym-
metric, for every non-loop edge there is a complementary edge with opposite source and range.
DotSymmetricDigraph displays each pair of complementary edges as a single line between the rel-
evant vertices, with no arrowhead.

The output is in dot format (also known as GraphViz) format. For details about this file format,
and information about how to display or edit this format see http://www.graphviz.org.

The string returned by DotSymmetricDigraph can be written to a file using the command
FileString (GAPDoc: FileString).

http://www.graphviz.org
http://www.graphviz.org
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Example
gap> r := rec ( vertices := [ 1 .. 4 ],
> source := [ 1, 1, 1, 1, 2, 2, 3, 4, 4 ],
> range := [ 2, 2, 3, 4, 1, 1, 1, 1, 4 ] );;
gap> star := Digraph(r);
<digraph with 4 vertices, 9 edges>
gap> IsSymmetricDigraph(star);
true
gap> FileString("dot/star.dot", DotSymmetricDigraph(gr));;

9.2 Reading and writing graphs to a file

This section describes different ways to store and read graphs from a file in the Digraphs package.

Graph6
Graph6 is a graph data format for storing undirected graphs with no multiple edges nor loops
of size up to 236−1 in printable chracters. The format consists of two parts. The first part uses
one to eight bytes to store the number of vertices. And the second part is the upper half of the
adjacency matrix converted into ASCII characters. For a more detail description see Graph6.

Sparse6
Sparse6 is a graph data format for storing undirected graphs with possibly multiple edges or
loops. The maximal number of vertices allowed is 236− 1. The format consists of two parts.
The first part uses one to eight bytes to store the number of vertices. And the second part only
stores information about the edges. Therefore, the Sparse6 format return a more compact
encoding then Graph6 for sparse graph, i.e. graphs where the number of edges is much less
than the number of vertices squared. For a more detail description see Sparse6.

Digraph6
Digraph6 is a new format based on Graph6 , but designed for digraphs. The entire adjacency
matrix is stored, and therefore there is support for directed edges and single-vertex loops. How-
ever, multiple edges are not supported.

DiSparse6
DiSparse6 is a new format based on Sparse6 , but designed for digraphs. In this format the list
of edges is partitioned into inceasing and decreasing edges, depending whether the edge has it’s
source bigger than the range. Then both sets of edges are written separetly in Sparse6 format
with a separation symbol in between.

9.2.1 DigraphFromGraph6String

. DigraphFromGraph6String(str) (operation)

. DigraphFromDigraph6String(str) (operation)

. DigraphFromSparse6String(str) (operation)

. DigraphFromDiSparse6String(str) (operation)

Returns: A digraph.
If str is a string encoding a graph in Graph6, Digraph6, Sparse6 or DiSparse6 format, then the

corresponging function returns a digraph. In the case of either Graph6 or Sparse6, formats which

 http://cs.anu.edu.au/~bdm/data/formats.txt
 http://cs.anu.edu.au/~bdm/data/formats.txt


Digraphs 95

do not support directed edges, this will be a digraph such that for every edge, the edge going in the
opposite direction is also present.

Example
gap> DigraphFromGraph6String("?");
<digraph with 0 vertices, 0 edges>
gap> DigraphFromGraph6String("C]");
<digraph with 4 vertices, 8 edges>
gap> DigraphFromGraph6String("H?AAEM{");
<digraph with 9 vertices, 22 edges>
gap> DigraphFromDigraph6String("+?");
<digraph with 0 vertices, 0 edges>
gap> DigraphFromDigraph6String("+CQFG");
<digraph with 4 vertices, 6 edges>
gap> DigraphFromDigraph6String("+IM[SrKLc~lhesbU[F_");
<digraph with 10 vertices, 51 edges>
gap> DigraphFromDiSparse6String(".CaWBGA?b");
<multidigraph with 4 vertices, 9 edges>

9.2.2 Graph6String

. Graph6String(digraph) (operation)

. Digraph6String(digraph) (operation)

. Sparse6String(digraph) (operation)

. DiSparse6String(digraph) (operation)

Returns: A string.
These four functions return a highly compressed string fully describing the digraph digraph .
Graph6 and Digraph6 are formats best used on small, dense graphs, if applicable. For larger,

sparse graphs use Sparse6 and Disparse6 (this latter also preserves multiple edges).
See WriteDigraphs (9.2.5).

Example
gap> gr := Digraph([[2,3], [1], [1]]);
<digraph with 3 vertices, 4 edges>
gap> Sparse6String(gr);
":Bc"
gap> DiSparse6String(gr);
".Bc{f"

9.2.3 DigraphFile

. DigraphFile(filename[, coder][, mode]) (function)

Returns: An IO file object.
If filename is a string representing the name of a file, then DigraphFile returns an IO package

file object for that file.
If the optional argument coder is specified and is a function which either encodes a digraph as

a string, or decodes a string into a digraph, then this function will be used when reading or writing
to the returned file object. If the optional argument coder is not specified, then the encoding of the
digraphs in the returned file object must be specified in the the file extension. The file extension must
be one of: .g6, .s6, .d6, .ds6, .txt, .p, or .pickle; more details of these file formats is given
below.

 http://gap-packages.github.io/io/ 
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If the optional argument mode is specified, then it must be one of: "w" (for write), "a" (for
append), or "r" (for read). If mode is not specified, then "r" is used by default.

If filename is ends in one of: .gz, .bz2, or .xz, then the digraphs which are read from, or
written to, the returned file object are decompressed, or compressed, appropriately.

The file object returned by DigraphFile can be given as the first argument for either of the
functions ReadDigraphs (9.2.4) or WriteDigraphs (9.2.5). The purpose of this is to reduce the
overhead of recreating the file object inside the functions ReadDigraphs (9.2.4) or WriteDigraphs
(9.2.5) when, for example, reading or writing many digraphs in a loop.

The currently supported file formats, and associated filename extensions, are:

graph6 (.g6)
A standard and widely-used format for undirected graphs, with no support for loops or multiple
edges. Only symmetric graphs are allowed – each edge is combined with its converse edge to
produce a single undirected edge. This format is best used for "dense" graphs – those with many
edges per vertex.

sparse6 (.s6)
Unlike graph6, sparse6 has support for loops and multiple edges. However, its use is still limited
to symmetric graphs. This format is better-suited to "sparse" graphs – those with few edges per
vertex.

digraph6 (.d6)
This format is based on graph6, but stores direction information - therefore is not limited to
symmetric graphs. Loops are allowed, but multiple edges are not. Best compression with
"dense" graphs.

disparse6 (.ds6)
Any type of digraph can be encoded in disparse6: directions, loops, and multiple edges are all
allowed. Similar to sparse6, this has the best compression rate with "sparse" graphs.

plain text (.txt)
This is a human-readable format which stores graphs in the form 0 7 0 8 1 7 2 8 3 8 4
8 5 8 6 8 i.e. pairs of vertices describing edges in a graph. More specifically, the vertices
making up one edge must be separated by a single space, and pairs of vertices must be separated
by two spaces.

See ReadPlainTextDigraph (9.2.12) for a more flexible way to store digraphs in a plain text
file.

pickled (.p or .pickle)
Digraphs are pickled using the IO package. This is particularly good when the DigraphGroup
(7.2.3) is non-trivial.

Example
gap> filename := Concatenation(DIGRAPHS_Dir(), "/tst/out/man.d6.gz");;
gap> file := DigraphFile(filename, "w");;
gap> for i in [1 .. 10] do
> WriteDigraphs(file, Digraph([[1, 3], [2], [1, 2]]));
> od;
gap> IO_Close(file);;
gap> file := DigraphFile(filename, "r");;

 http://gap-packages.github.io/io/ 
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gap> ReadDigraphs(file, 9);
<digraph with 3 vertices, 5 edges>

9.2.4 ReadDigraphs

. ReadDigraphs(filename[, decoder][, n]) (function)

Returns: A digraph, or a list of digraphs.
If filename is a string containing the name of a file containing encoded digraphs or an IO file

object created using DigraphFile (9.2.3), then ReadDigraphs returns the digraphs encoded in the
file as a list. Note that if filename is a compressed file, which has been compressed appropriately to
give a filename extension of .gz, .bz2, or .xz, then ReadDigraphs can read filename without it
first needing to be decompressed.

If the optional argument n is specified, then ReadDigraphs returns the n th digraph encoded in
the file filename .

If the optional argument decoder is specified and is a function which decodes a string into a
digraph, then ReadDigraphs will use decoder to decode the digraphs contained in filename . If
the optional argument decoder is not specified, then ReadDigraphs will deduce which decoder to
use based on the filename extension of filename (after removing the compression-related filename
extensions .gz, .bz2, and .xz). For example, if the filename extension if .g6, then ReadDigraphs
will use the graph6 decoder DigraphFromGraph6String (9.2.1).

The currently supported file formats, and associated filename extensions, are:

graph6 (.g6)
A standard and widely-used format for undirected graphs, with no support for loops or multiple
edges. Only symmetric graphs are allowed – each edge is combined with its converse edge to
produce a single undirected edge. This format is best used for "dense" graphs – those with many
edges per vertex.

sparse6 (.s6)
Unlike graph6, sparse6 has support for loops and multiple edges. However, its use is still limited
to symmetric graphs. This format is better-suited to "sparse" graphs – those with few edges per
vertex.

digraph6 (.d6)
This format is based on graph6, but stores direction information - therefore is not limited to
symmetric graphs. Loops are allowed, but multiple edges are not. Best compression with
"dense" graphs.

disparse6 (.ds6)
Any type of digraph can be encoded in disparse6: directions, loops, and multiple edges are all
allowed. Similar to sparse6, this has the best compression rate with "sparse" graphs.

plain text (.txt)
This is a human-readable format which stores graphs in the form 0 7 0 8 1 7 2 8 3 8 4
8 5 8 6 8 i.e. pairs of vertices describing edges in a graph. More specifically, the vertices
making up one edge must be separated by a single space, and pairs of vertices must be separated
by two spaces.

See ReadPlainTextDigraph (9.2.12) for a more flexible way to store digraphs in a plain text
file.
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pickled (.p or .pickle)
Digraphs are pickled using the IO package. This is particularly good when the DigraphGroup
(7.2.3) is non-trivial.

Example
gap> ReadDigraphs(
> Concatenation(DIGRAPHS_Dir(), "/data/graph5.g6.gz"), 10);
<digraph with 5 vertices, 8 edges>
gap> ReadDigraphs(
> Concatenation(DIGRAPHS_Dir(), "/data/graph5.g6.gz"), 17);
<digraph with 5 vertices, 12 edges>
gap> ReadDigraphs(
> Concatenation(DIGRAPHS_Dir(), "/data/tree9.4.txt"));
[ <digraph with 9 vertices, 8 edges>,

<digraph with 9 vertices, 8 edges>,
<digraph with 9 vertices, 8 edges>,
<digraph with 9 vertices, 8 edges>,
<digraph with 9 vertices, 8 edges>,
<digraph with 9 vertices, 8 edges>,
<digraph with 9 vertices, 8 edges>,
<digraph with 9 vertices, 8 edges>,
<digraph with 9 vertices, 8 edges>,
<digraph with 9 vertices, 8 edges>,
<digraph with 9 vertices, 8 edges>,
<digraph with 9 vertices, 8 edges>,
<digraph with 9 vertices, 8 edges>,
<digraph with 9 vertices, 8 edges> ]

9.2.5 WriteDigraphs

. WriteDigraphs(filename, digraphs[, encoder][, mode]) (function)

If digraphs is a list of digraphs or a digraph and filename is a string or an IO file object
created using DigraphFile (9.2.3), then WriteDigraphs writes the digraphs to the file represented
by filename . If the supplied filename ends in one of the extensions .gz, .bz2, or .xz, then the file
will be compressed appropriately. Excluding these extensions, if the file ends with an extension in
the list below, the corresponding graph format will be used to encode it. If such an extension is not
included, an appropriate format will be chosen intelligently, and an extension appended, to minimise
file size.

For more verbose information on the progress of the function, set the info level of InfoDigraphs
to 1 or higher, using SetInfoLevel.

The currently supported file formats are:

graph6 (.g6)
A standard and widely-used format for undirected graphs, with no support for loops or multiple
edges. Only symmetric graphs are allowed – each edge is combined with its converse edge to
produce a single undirected edge. This format is best used for "dense" graphs – those with many
edges per vertex.

sparse6 (.s6)
Unlike graph6, sparse6 has support for loops and multiple edges. However, its use is still limited

 http://gap-packages.github.io/io/ 
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to symmetric graphs. This format is better-suited to "sparse" graphs – those with few edges per
vertex.

digraph6 (.d6)
This format is based on graph6, but stores direction information - therefore is not limited to
symmetric graphs. Loops are allowed, but multiple edges are not. Best compression with
"dense" graphs.

disparse6 (.ds6)
Any type of digraph can be encoded in disparse6: directions, loops, and multiple edges are all
allowed. Similar to sparse6, this has the best compression rate with "sparse" graphs.

plain text (.txt)
This is a human-readable format which stores graphs in the form 0 7 0 8 1 7 2 8 3 8 4
8 5 8 6 8 i.e. pairs of vertices describing edges in a graph. More specifically, the vertices
making up one edge must be separated by a single space, and pairs of vertices must be separated
by two spaces.

See ReadPlainTextDigraph (9.2.12) for a more flexible way to store digraphs in a plain text
file.

pickled (.p or .pickle)
Digraphs are pickled using the IO package. This is particularly good when the DigraphGroup
(7.2.3) is non-trivial.

Example
gap> grs := [];;
gap> grs[1] := Digraph([]);
<digraph with 0 vertices, 0 edges>
gap> grs[2] := Digraph([[1, 3], [2], [1, 2]]);
<digraph with 3 vertices, 5 edges>
gap> grs[3] := Digraph([[6, 7], [6, 9], [1, 3, 4, 5, 8, 9],
> [1, 2, 3, 4, 5, 6, 7, 10], [1, 5, 6, 7, 10], [2, 4, 5, 9, 10],
> [3, 4, 5, 6, 7, 8, 9, 10], [1, 3, 5, 7, 8, 9], [1, 2, 5],
> [1, 2, 4, 6, 7, 8]]);
<digraph with 10 vertices, 51 edges>
gap> filename := Concatenation(DIGRAPHS_Dir(), "/tst/out/man.d6.gz");;
gap> WriteDigraphs(filename, grs, "w");
IO_OK
gap> ReadDigraphs(filename);
[ <digraph with 0 vertices, 0 edges>,

<digraph with 3 vertices, 5 edges>,
<digraph with 10 vertices, 51 edges> ]

9.2.6 IteratorFromDigraphFile

. IteratorFromDigraphFile(filename[, decoder]) (function)

Returns: An iterator.
If filename is a string representing the name of a file containing encoded digraphs, then

IteratorFromDigraphFile returns an iterator for which the value of NextIterator (Reference:
NextIterator) is the next digraph encoded in the file.
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If the optional argument decoder is specified and is a function which decodes a string into a
digraph, then IteratorFromDigraphFile will use decoder to decode the digraphs contained in
filename .

The purpose of this function is to easily allow looping over digraphs encoded in a file when loading
all of the encoded digraphs would require too much memory.

To see what file types are available, see WriteDigraphs (9.2.5).
Example

gap> filename := Concatenation(DIGRAPHS_Dir(), "/tst/out/man.d6.gz");;
gap> file := DigraphFile(filename, "w");;
gap> for i in [1 .. 10] do
> WriteDigraphs(file, Digraph([[1, 3], [2], [1, 2]]));
> od;
gap> IO_Close(file);;
gap> iter := IteratorFromDigraphFile(filename);
<iterator>
gap> for x in iter do od;

9.2.7 DigraphPlainTextLineEncoder

. DigraphPlainTextLineEncoder(delimiter1[, delimiter2], offset) (function)

. DigraphPlainTextLineDecoder(delimiter1[, delimiter2], offset) (function)

Returns: A string.
These two functions return a function which encodes or decodes a digraph in a plain text format.
DigraphPlainTextLineEncoder returns a function which takes a single digraph as an argu-

ment. The function returns a string describing the edges of that digraph; each edge is written as a pair
of integers separated by the string delimiter2 , and the edges themselves are separated by the string
delimiter1 . DigraphPlainTextLineDecoder returns the corresponding decoder function, which
takes a string argument in this format and returns a digraph.

If only one delimiter is passed as an argument to DigraphPlainTextLineDecoder , it will return
a function which decodes a single edge, returning its contents as a list of integers.

The argument offset should be an integer, which will describe a number to be added to each
vertex before it is encoded, or after it is decoded. This may be used, for example, to label vertices
starting at 0 instead of 1.

Note that the number of vertices of a digraph is not stored, and so vertices which are not connected
to any edge may be lost.

Example
gap> gr := Digraph([[2,3], [1], [1]]);
<digraph with 3 vertices, 4 edges>
gap> enc := DigraphPlainTextLineEncoder(" ", " ", -1);;
gap> dec := DigraphPlainTextLineDecoder(" ", " ", 1);;
gap> enc(gr);
"0 1 0 2 1 0 2 0"
gap> dec(last);
<digraph with 3 vertices, 4 edges>

9.2.8 TournamentLineDecoder

. TournamentLineDecoder(str) (function)

Returns: A digraph.
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This function takes a string str , decodes it, and then returns the tournament [see IsTournament
(6.1.11)] which it defines, according to the following rules.

The characters of the string str represent the entries in the upper triangle of a tournament’s
adjacency matrix. The number of vertices n will be detected from the length of the string and will be
as large as possible.

The first character represents the possible edge 1 -> 2, the second represents 1 -> 3 and so on
until 1 -> n; then the following character represents 2 -> 3, and so on up to the character which
represents the edge n-1 -> n.

If a character of the string with corresponding edge i -> j is equal to 1, then the edge i -> j is
present in the tournament. Otherwise, the edge i -> j is present instead. In this way, all the possible
edges are encoded one-by-one.

Example
gap> gr := TournamentLineDecoder("100001");
<digraph with 4 vertices, 6 edges>
gap> OutNeighbours(gr);
[ [ 2 ], [ ], [ 1, 2, 4 ], [ 1, 2 ] ]

9.2.9 AdjacencyMatrixUpperTriangleLineDecoder

. AdjacencyMatrixUpperTriangleLineDecoder(str) (function)

Returns: A digraph.
This function takes a string str , decodes it, and then returns the topologically sorted digraph [see

DigraphTopologicalSort (5.1.7)] which it defines, according to the following rules.
The characters of the string str represent the entries in the upper triangle of a digraph’s adjacency

matrix. The number of vertices n will be detected from the length of the string and will be as large as
possible.

The first character represents the possible edge 1 -> 2, the second represents 1 -> 3 and so on
until 1 -> n; then the following character represents 2 -> 3, and so on up to the character which
represents the edge n-1 -> n. If a character of the string with corresponding edge i -> j is equal
to 1, then this edge is present in the digraph. Otherwise, it is not present. In this way, all the possible
edges are encoded one-by-one.

In particular, note that there exists no edge [i, j] if j ≤ i. In order words, the digraph will be
topologically sorted.

Example
gap> gr := AdjacencyMatrixUpperTriangleLineDecoder("100001");
<digraph with 4 vertices, 2 edges>
gap> OutNeighbours(gr);
[ [ 2 ], [ ], [ 4 ], [ ] ]
gap> gr := AdjacencyMatrixUpperTriangleLineDecoder("111111x111");
<digraph with 5 vertices, 9 edges>
gap> OutNeighbours(gr);
[ [ 2, 3, 4, 5 ], [ 3, 4 ], [ 4, 5 ], [ 5 ], [ ] ]

9.2.10 TCodeDecoder

. TCodeDecoder(str) (function)

Returns: A digraph.
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If str is a string consisting of at least two non-negative integers separated by spaces, then this
function will attempt to return the digraph which it defines as a TCode string.

The first integer of the string defines the number of vertices v in the digraph, and the second
defines the number of edges e. The following 2e integers should be vertex numbers in the range [0
.. v-1]. These integers are read in pairs and define the digraph’s edges. This function will return
an error if str has fewer than 2e+2 entries.

Note that the vertex numbers will be incremented by 1 in the digraph returned. Hence the string
fragment 0 6 will describe the edge [1,7].

Example
gap> gr := TCodeDecoder("3 2 0 2 2 1");
<digraph with 3 vertices, 2 edges>
gap> OutNeighbours(gr);
[ [ 3 ], [ ], [ 2 ] ]
gap> gr := TCodeDecoder("12 3 0 10 5 2 8 8");
<digraph with 12 vertices, 3 edges>
gap> OutNeighbours(gr);
[ [ 11 ], [ ], [ ], [ ], [ ], [ 3 ], [ ], [ ], [ 9 ], [ ],

[ ], [ ] ]

9.2.11 PlainTextString

. PlainTextString(digraph) (operation)

. DigraphFromPlainTextString(s) (operation)

Returns: A string.
PlainTextString takes a single digraph, and returns a string describing the edges of that di-

graph. DigraphFromPlainTextString takes such a string and returns the digraph which it de-
scribes. Each edge is written as a pair of integers separated by a single space. The edges themselves
are separated by a double space. Vertex numbers are reduced by 1 when they are encoded, so that
vertices in the string are labelled starting at 0.

Note that the number of vertices of a digraph is not stored, and so vertices which are not connected
to any edge may be lost.

Example
gap> gr := Digraph([[2,3], [1], [1]]);
<digraph with 3 vertices, 4 edges>
gap> PlainTextString(gr);
"0 1 0 2 1 0 2 0"
gap> DigraphFromPlainTextString(last);
<digraph with 3 vertices, 4 edges>

9.2.12 WritePlainTextDigraph

. WritePlainTextDigraph(filename, digraph, delimiter, offset) (function)

. ReadPlainTextDigraph(filename, delimiter, offset, ignore) (function)

These functions write and read a single digraph in a human-readable plain text format as follows:
each line contains a single edge, and each edge is written as a pair of integers separated by the string
delimiter .

filename should be the name of a file which will be written to or read from, and offset
should be an integer which is added to each vertex number as it is written or read. For example,
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if WritePlainTextDigraph is called with offset -1, then the vertices will be numbered in the file
starting from 0 instead of 1 - ReadPlainTextDigraph would then need to be called with offset 1
to convert back to the original graph.

ignore should be a list of characters which will be ignored when reading the graph.
Example

gap> gr := Digraph([[1,2,3], [1,1], [2]]);
<multidigraph with 3 vertices, 6 edges>
gap> filename := Concatenation(DIGRAPHS_Dir(), "/tst/out/plain.txt");;
gap> WritePlainTextDigraph(filename, gr, ",", -1);
gap> ReadPlainTextDigraph(filename, ",", 1, [’/’,’%’]);
<multidigraph with 3 vertices, 6 edges>



Appendix A

Grape to Digraphs Command Map

Below is a table of Grape commands with the Digraphs counterparts. The sections in this chapter
correspond to the chapters in the Grape manual.

A.1 Functions to construct and modify graphs

The table in this section contains more information when viewed in html format.

Grape command Digraphs command
Graph Digraph (3.1.5)
EdgeOrbitsGraph EdgeOrbitsDigraph (3.1.8)
NullGraph NullDigraph (3.5.5)
CompleteGraph CompleteDigraph (3.5.2)
JohnsonGraph JohnsonDigraph (3.5.7)
CayleyGraph CayleyDigraph (3.5.6)
AddEdgeOrbit DigraphAddEdgeOrbit (3.3.14)
RemoveEdgeOrbit DigraphRemoveEdgeOrbit (3.3.19)
AssignVertexNames SetDigraphVertexLabels (5.1.10)

A.2 Functions to inspect graphs, vertices and edges

The table in this section contains more information when viewed in html format.
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Grape command Digraphs command
IsGraph IsDigraph (3.1.1)
OrderGraph DigraphNrVertices (5.1.2)
IsVertex(graph, v) v in DigraphVertices(digraph)
VertexName DigraphVertexLabel (5.1.9)
VertexNames DigraphVertexLabels (5.1.10)
Vertices DigraphVertices (5.1.1)
VertexDegree OutDegreeOfVertex (5.2.9)
VertexDegrees OutDegreeSet (5.2.7)
IsLoopy DigraphHasLoops (6.1.1)
IsSimpleGraph IsSymmetricDigraph (6.1.10)
Adjacency OutNeighboursOfVertex (5.2.10)
IsEdge IsDigraphEdge (5.1.13)
DirectedEdges DigraphEdges (5.1.3)
UndirectedEdges None
Distance DigraphShortestDistance (5.3.2)
Diameter DigraphDiameter (5.3.1)
Girth DigraphUndirectedGirth (5.3.7)
IsConnectedGraph IsStronglyConnectedDigraph (6.3.3)
IsBipartite IsBipartiteDigraph (6.1.3)
IsNullGraph IsNullDigraph (6.1.6)
IsCompleteGraph IsCompleteDigraph (6.1.5)

A.3 Functions to determine regularity properties of graphs

The table in this section contains more information when viewed in html format.

Grape command Digraphs command
IsRegularGraph IsOutRegularDigraph (6.2.2)
LocalParameters None
GlobalParameters None
IsDistanceRegular IsDistanceRegularDigraph (6.2.4)
CollapsedAdjacencyMat None
OrbitalGraphColadjMats None
VertexTransitiveDRGs None

A.4 Some special vertex subsets of a graph

The table in this section contains more information when viewed in html format.

Grape command Digraphs command
ConnectedComponent DigraphConnectedComponent (5.3.9)
ConnectedComponents DigraphConnectedComponents (5.3.8)
Bicomponents DigraphBicomponents (5.1.8)
DistanceSet DigraphDistanceSet (5.3.5)
Layers DigraphLayers (5.3.19)
IndependentSet DigraphIndependentSet (8.2.2)

http://www.maths.qmul.ac.uk/~leonard/grape/
http://www.maths.qmul.ac.uk/~leonard/grape/
http://www.maths.qmul.ac.uk/~leonard/grape/
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A.5 Functions to construct new graphs from old

The table in this section contains more information when viewed in html format.

Grape command Digraphs command
InducedSubgraph InducedSubdigraph (3.3.2)
DistanceSetInduced None
DistanceGraph DistanceDigraph (3.3.32)
ComplementGraph DigraphDual (3.3.7)
PointGraph None
EdgeGraph EdgeUndirectedDigraph (3.3.28)
SwitchedGraph None
UnderlyingGraph DigraphSymmetricClosure (3.3.8)
QuotientGraph QuotientDigraph (3.3.5)
BipartiteDouble BipartiteDoubleDigraph (3.3.30)
GeodesicsGraph None
CollapsedIndependentOrbitsGraph None
CollapsedCompleteOrbitsGraph None
NewGroupGraph None

A.6 Vertex-Colouring and Complete Subgraphs

The table in this section contains more information when viewed in html format.

Grape command Digraphs command
VertexColouring DigraphColoring (7.3.9)
CompleteSubgraphs DigraphCliques (8.1.4)
CompleteSubgraphsOfGivenSize DigraphCliques (8.1.4)

A.7 Automorphism groups and isomorphism testing for graphs

The table in this section contains more information when viewed in html format.

Grape command Digraphs command
AutGroupGraph AutomorphismGroup (7.2.1)
GraphIsomorphism IsomorphismDigraphs (7.2.11)
IsIsomorphicGraph IsIsomorphicDigraph (7.2.10)
GraphIsomorphismClassRepresentatives None

http://www.maths.qmul.ac.uk/~leonard/grape/
http://www.maths.qmul.ac.uk/~leonard/grape/
http://www.maths.qmul.ac.uk/~leonard/grape/
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Index

< (for digraphs), 34
= (for digraphs), 34

AdjacencyMatrix, 40
AdjacencyMatrixUpperTriangleLine-

Decoder, 101
AsBinaryRelation, 13
AsDigraph, 14
AsGraph, 15
AsTransformation, 15
AutomorphismGroup

for a digraph, 68
for a digraph and a homogeneous list, 68
for a multidigraph, 69

BipartiteDoubleDigraph, 29
BooleanAdjacencyMatrix, 41

CayleyDigraph, 32
ChainDigraph, 31
CliquesFinder, 84
CompleteBipartiteDigraph, 32
CompleteDigraph, 31
CycleDigraph, 32

Digraph, 10
for a group, list, function, and function, 10
for a list and function, 10

Digraph6String, 95
DigraphAddAllLoops, 29
DigraphAddEdge, 21
DigraphAddEdgeOrbit, 22
DigraphAddEdges, 22
DigraphAddVertex, 20
DigraphAddVertices, 21
DigraphAdjacencyFunction, 41
DigraphAllSimpleCircuits, 55
DigraphBicomponents, 37
DigraphByAdjacencyMatrix, 12
DigraphByEdges, 12

DigraphByInNeighbors, 13
DigraphByInNeighbours, 13
DigraphCanonicalLabelling

for a digraph, 72
for a digraph and a list, 72

DigraphClique, 85
DigraphCliques, 86
DigraphCliquesReps, 86
DigraphColoring

for a digraph, 80
for a digraph and number of colors, 80

DigraphColouring, 80
DigraphConnectedComponent, 50
DigraphConnectedComponents, 50
DigraphCopy, 15
DigraphDegeneracy, 56
DigraphDegeneracyOrdering, 56
DigraphDiameter, 46
DigraphDisjointUnion

for a list of digraphs, 26
for an arbitrary number of digraphs, 26

DigraphDistanceSet
for a digraph, a pos int, and a list, 48
for a digraph, a pos int, and an int, 48

DigraphDual, 18
DigraphEdges, 36
DigraphEdgeUnion

for a list of digraphs, 27
for an arbitrary number of digraphs, 27

DigraphEmbedding, 80
DigraphEpimorphism, 78
DigraphFamily, 9
DigraphFile, 95
DigraphFloydWarshall, 52
DigraphFromDigraph6String, 94
DigraphFromDiSparse6String, 94
DigraphFromGraph6String, 94
DigraphFromPlainTextString, 102
DigraphFromSparse6String, 94

108



Digraphs 109

DigraphGirth, 49
DigraphGroup, 69
DigraphHasLoops, 58
DigraphHomomorphism, 77
DigraphIndependentSet, 88
DigraphIndependentSets, 90
DigraphIndependentSetsReps, 90
DigraphInEdges, 39
DigraphJoin

for a list of digraphs, 27
for an arbitrary number of digraphs, 27

DigraphLayers, 56
DigraphLongestDistanceFromVertex, 48
DigraphLongestSimpleCircuit, 55
DigraphLoops, 46
DigraphMaximalClique, 85
DigraphMaximalCliques, 86
DigraphMaximalCliquesAttr, 86
DigraphMaximalCliquesReps, 86
DigraphMaximalCliquesRepsAttr, 86
DigraphMaximalIndependentSet, 88
DigraphMaximalIndependentSets, 89
DigraphMaximalIndependentSetsAttr, 90
DigraphMaximalIndependentSetsReps, 89
DigraphMaximalIndependentSetsRepsAttr,

90
DigraphMonomorphism, 77
DigraphNrEdges, 36
DigraphNrVertices, 35
DigraphOrbitReps, 71
DigraphOrbits, 72
DigraphOutEdges, 39
DigraphPath, 53
DigraphPeriod, 52
DigraphPlainTextLineDecoder, 100
DigraphPlainTextLineEncoder, 100
DigraphRange, 42
DigraphReflexiveTransitiveClosure, 19
DigraphReflexiveTransitiveReduction, 20
DigraphRemoveAllMultipleEdges, 25
DigraphRemoveEdge, 23
DigraphRemoveEdgeOrbit, 24
DigraphRemoveEdges, 24
DigraphRemoveLoops, 25
DigraphRemoveVertex, 23
DigraphRemoveVertices , 23
DigraphReverse, 18

DigraphReverseEdge, 25
DigraphReverseEdges, 25
Digraphs package overview, 5
DigraphSchreierVector, 70
DigraphShortestDistance

for a digraph and a list, 47
for a digraph and two vertices, 47
for a digraph, a list, and a list, 47

DigraphShortestDistances, 47
DigraphSinks, 37
DigraphsMakeDoc, 8
DigraphSource, 42
DigraphSources, 37
DigraphStabilizer, 71
DigraphsTestInstall, 8
DigraphsTestStandard, 8
DigraphStronglyConnectedComponent, 51
DigraphStronglyConnectedComponents, 51
DigraphSymmetricClosure, 19
DigraphTopologicalSort, 37
DigraphTransitiveClosure, 19
DigraphTransitiveReduction, 20
DigraphType, 9
DigraphUndirectedGirth, 49
DigraphVertexLabel, 38
DigraphVertexLabels, 39
DigraphVertices, 35
DiSparse6String, 95
DistanceDigraph

for digraph and int, 30
for digraph and list, 30

DotDigraph, 93
DotSymmetricDigraph, 93
DoubleDigraph, 28

EdgeDigraph, 28
EdgeOrbitsDigraph, 13
EdgeUndirectedDigraph, 28
EmptyDigraph, 32
EpimorphismsDigraphs, 78
EpimorphismsDigraphsRepresentatives, 78

GeneratorsOfEndomorphismMonoid, 79
GeneratorsOfEndomorphismMonoidAttr, 79
Graph, 14
Graph6String, 95

HomomorphismDigraphsFinder, 75
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HomomorphismsDigraphs, 77
HomomorphismsDigraphsRepresentatives,

77

InDegreeOfVertex, 45
InDegrees, 44
InDegreeSequence, 44
InDegreeSet, 44
InducedSubdigraph, 16
InNeighbors, 43
InNeighborsOfVertex, 45
InNeighbours, 43
InNeighboursOfVertex, 45
IsAcyclicDigraph, 65
IsAntisymmetricDigraph, 58
IsAperiodicDigraph, 66
IsBipartiteDigraph, 59
IsCayleyDigraph, 9
IsClique, 83
IsCompleteBipartiteDigraph, 59
IsCompleteDigraph, 60
IsConnectedDigraph, 65
IsDigraph, 9
IsDigraphEdge

for digraph and list, 40
for digraph and two pos ints, 40

IsDigraphWithAdjacencyFunction, 9
IsDistanceRegularDigraph, 64
IsEmptyDigraph, 60
IsFunctionalDigraph, 60
IsIndependentSet, 88
IsInRegularDigraph, 63
IsIsomorphicDigraph

for digraphs, 73
IsMaximalClique, 83
IsMaximalIndependentSet, 88
IsMultiDigraph, 61
IsNullDigraph, 60
IsomorphismDigraphs

for digraphs, 74
IsOutRegularDigraph, 64
IsReachable, 53
IsReflexiveDigraph, 61
IsRegularDigraph, 64
IsStronglyConnectedDigraph, 65
IsSymmetricDigraph, 62
IsTournament, 62

IsTransitiveDigraph, 63
IteratorFromDigraphFile, 99
IteratorOfPaths, 54

JohnsonDigraph, 33

LineDigraph, 28
LineUndirectedDigraph, 28

MaximalSymmetricSubdigraph, 17
MaximalSymmetricSubdigraphWithout-

Loops, 17
MonomorphismsDigraphs, 78
MonomorphismsDigraphsRepresentatives,

78

NullDigraph, 32

OnDigraphs
for a digraph and a perm, 67
for a digraph and a transformation, 67

OnMultiDigraphs, 68
for a digraph, perm, and perm, 68

OutDegreeOfVertex, 44
OutDegrees, 43
OutDegreeSequence, 43
OutDegreeSet, 43
OutNeighbors, 42
OutNeighborsCopy, 42
OutNeighborsOfVertex, 45
OutNeighbours, 42
OutNeighboursCopy, 42
OutNeighboursOfVertex, 45

PlainTextString, 102

QuotientDigraph, 17

RandomDigraph, 30
RandomMultiDigraph, 30
RandomTournament, 31
ReadDigraphs, 97
ReadPlainTextDigraph, 102
ReducedDigraph, 16
RepresentativeOutNeighbours, 72

SetDigraphVertexLabel, 38
SetDigraphVertexLabels, 39
Sparse6String, 95
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Splash, 92

TCodeDecoder, 101
TournamentLineDecoder, 100

WriteDigraphs, 98
WritePlainTextDigraph, 102
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