Utils

Utility functions in GAP

0.39

04/03/2016

Sebastian Gutsche
Stefan Kohl

Christopher D. Wensley

Utils

Sebastian Gutsche
Email: gutsche@mathematik.uni-kl.de
Homepage: http://wwwb.math.rwth-aachen.de/ gutsche/
Address: Department of Mathematics
University of Kaiserslautern
67653 Kaiserslautern
Germany

Stefan Kohl
Email: stefan@mcs.st-and.ac.uk
Homepage: http://www.gap-system. org/DevelopersPages/StefanKohl/

Christopher D. Wensley
Email: c.d.wensley@bangor.ac.uk
Homepage: http://pages.bangor.ac.uk/ mas023/
Address: Dr. C.D. Wensley
School of Computer Science
Bangor University
Dean Street
Bangor
Gwynedd LL57 1UT
UK

mailto://gutsche@mathematik.uni-kl.de
http://wwwb.math.rwth-aachen.de/~gutsche/
mailto://stefan@mcs.st-and.ac.uk
http://www.gap-system.org/DevelopersPages/StefanKohl/
mailto://c.d.wensley@bangor.ac.uk
http://pages.bangor.ac.uk/~mas023/

Utils 2

Abstract

The Utils package provides a space for utility functions in a variety of GAP packages to be collected together
into a single package. In this way it is hoped that they will become more visible to package authors.

Any package author who transfers a function to Utils will become an author of Utils.

Bug reports, suggestions and comments are, of course, welcome. Please contact the
last author at c.d.wensley@bangor.ac.uk or submit an issue at the GitHub repository
http://github.com/gap-packages/utils/issues/.

Copyright
© 2015-2016, The GAP Group. Utils is free software; you can redistribute it and/or modify it under the terms

of the GNU General Public License as published by the Free Software Foundation; either version 2 of the
License, or (at your option) any later version.

Acknowledgements

This documentation was prepared with the GAPDoc package of Frank Liibeck and Max Neunhéffer.

mailto://c.d.wensley@bangor.ac.uk
http://github.com/gap-packages/utils/issues/
http://www.fsf.org/licenses/gpl.html

Contents

1 Introduction
1.1 Information for package authors L.
1.2 The current transfer procedure

2 Lists, Sets and Strings
2.1 Functionsforlists
2.2 Distinct and Common Representatives oL
2.3 Functions for strings e e

3 Number-theoretic functions
3.1 Functions forintegers e

4 Groups and homomorphisms
4.1 Functions for groups e e e e
4.2 Functions for group homomorphisms

5 Records
5.1 Functions forrecords

6 Various other functions
6.1 Operationsonfolders
6.2 Fileoperations e
6.3 IAEXStrings. o o o e e e e

References

15
15
16

18
18

19
19
19
20

21

Chapter 1

Introduction

The Utils package provides a space for utility functions from a variety of GAP packages to be col-
lected together into a single package. In this way it is hoped that they will become more visible to
other package authors. This package was first distributed as part of the GAP 4.8.2 distribution.

The package is loaded with the command

Example

gap> LoadPackage("utils");

Functions are currently being transferred from the following packages:

» ResClasses;

 RCWA;

Transfer is complete (for now) for functions from the following packages:
» AutoDoc (with function names changed);

* XMod.

The package may be obtained as a compressed tar file or a .zip file
utils-version_number.tar.gz by ftp from one of the following sites:

* the Utils GitHub release site: http://gap-packages.github.io/utils/.
 any GAP archive, e.g. http://www.gap-system.org/Packages/packages.html;

The package also has a GitHub repository at: https://github.com/gap-packages/utils.
Once the package is loaded, the manual doc/manual.pdf can be found in the documentation
folder. The html versions, with or without MathJax, may be rebuilt as follows:

Example

gap> ReadPackage("utils", "makedocrel.g");

It is possible to check that the package has been installed correctly by running the test files:

http://gap-packages.github.io/utils/
http://www.gap-system.org/Packages/packages.html
https://github.com/gap-packages/utils

Utils 5

Example

gap> ReadPackage("utils", "tst/testall.g");
#I Testing .../pkg/utils/tst/lists.tst

#I No errors detected while testing package utils

Note that functions listed in this manual that are currently being transferred are only read from the
source package Home (say), and so can only be used if Home has been previously loaded.

1.1 Information for package authors

A function (or collection of functions) is suitable for transfer from a package Home to Utils if the
following conditions are satisfied.

» The function is sufficiently non-specialised so that it might be of use to other authors.
* The function does not depend on the remaining functions in Home

* The function does not do what can already be done with a GAP library function.

* Documentation of the function and test examples are available.

Authors of packages may be reluctant to let go of their utility functions. The following principles
may help to reassure them. (Suggestions for more items here are welcome.)

A function that has been transferred to Utils will not be changed without the approval of the
original author.

* The current package maintainer has every intention of continuing to maintain Utils. In the event
that this proves impossible, the GAP development team will surely find someone to take over.

* Function names will not be changed unless specifically requested by Home’s author(s) or unless
they have the form HOME_FunctionName.

* In order to speed up the transfer process, only functions from one package will be in transition
at any given time. Hopefully a week or two will suffice for most packages.

* Any package author who transfers a function to Utils will become an author of Utils.

1.2 The current transfer procedure

We consider here the process for transferring utility functions from a package Home to Utils which
has to avoid the potential problem of duplicate declarations of a function causing loading problems in
GAP.

If the functions in Home all have names of the form HOME_FunctionName then, in Utils, these
functions are likely to be renamed as FunctionName or something similar. In this case the problem
of duplicate declarations does not arise. This is what has happened with transfers from the AutoDoc
package.

Utils 6

The case where the function names are unchanged is more complicated. Initially we tried out
a process which allowed repeated declarations and installations of the functions being transferred.
This involved additions to the main library files global.g and oper.g. Since there were misgivings
about interfering in this way with basic operations such as BIND_GLOBAL, a simpler (but slightly less
convenient) process has been adopted.

Using this alternative procedure, the following steps will be followed when making transfers from
Home to Utils.

1.

(Home:) Offer functions for inclusion. This may be simply done by emailing a list of func-
tions. More usefully, email the declaration, implementation, test and documentation files, e.g.:
home.gd, home.gi, home.tst and home.xml.

(Home:) Declare that M.N is the last version of Home to contain these functions, so that M.N+1
(or similar) will be the first version of Home to have all these functions removed, and to specify
Utils as a required package.

. (Utils:) Add strings "home" and "m.n" to the list UtilsPackageVersions in the file

utils/lib/start.gd.
Example

UtilsPackageVersions :=

["autodoc", "2016.01.31",
"resclasses", "4.2.5",
Ilhomell , Ilm.nll ,

1;

While the transfers are being made, it is essential that any new versions of Home should be
tested with the latest version of Utils before they are released, so as to avoid loading failures.

(Utils:) Include the function declaration and implementation sections in suitable files, enclosed

within a conditional clause of the form:
Example

if OKtoReadFromUtils("Home") then
<the code>

fi;

The function OKtoReadFromUtils returns true only if there is an installed version of Home
and if this version is greater than M.N. So, at this stage, the copied code will not be read.

(Utils:) Add the test and documentation material to the appropriate files. The copied code can
be tested by temporarily moving Home away from GAP’s package directory.

(Utils:) Release a new version of Utils containing all the transferred material.

Utils 7

7. (Home:) Edit out the declarations and implementations of all the transferred functions, and
remove references to them in the manual and tests. Possibly add a note to the manual that
these functions have been transferred. Add Utils to the list of Home’s required packages in
PackageInfo.g. Release a new version of Home.

8. (Utils:) In due course, when the new version(s) of Home are well established, it may be
safe to remove the conditional clauses mentioned in item 4 above. The entry for Home in
UtilsPackageLists may then be removed.

Finally, a note on the procedure for testing these functions. As long as a function being transferred
still exists in the Home package, the code will not be read from Utils. So, when the tests are run, it is
necessary to LoadPackage ("home") before the function is called. The file utils/tst/testall.g
makes sure that all the necessary packages are loaded before the individual tests are called.

Chapter 2

Lists, Sets and Strings

2.1 Functions for lists

2.1.1 DifferencesList

> DifferencesList (L) (function)
> QuotientsList (L) (function)
> FloatQuotientsList (L) (function)

These functions are in the process of being transferred from package ResClasses: for now you
should LoadPackage ("resclasses") in order to use them.

They take a list L of length n and output the lists of length n — 1 containing all the differences
L[i] — L[i — 1] and all the quotients L[i]/L[i — 1] of consecutive entries in L.

In the quotient functions an error is returned if an entry is zero.

Example

gap> L := [1, 3, 5, -1, -3, -5 1;;

gap> DifferencesList(L);

[2, 2, -6, -2, -2]

gap> QuotientsList(L);

[3, 5/3, -1/5, 3, 5/3]

gap> FloatQuotientsList(L);

[3., 1.66667, -0.2, 3., 1.66667]

gap> QuotientsList([2, 1, 0, -1, -2]);
[1/2, 0, fail, 2]

2.1.2 SearchCycle

> SearchCycle(L) (operation)

This function is in the process of being transferred from package RCWA: for now you should
LoadPackage ("rcwa") in order to use it.

SearchCycle is a tool to find likely cycles in lists. What, precisely, a cycle is, is deliberately
fuzzy here, and may possibly even change. The idea is that the beginning of the list may be anything,
following that the same pattern needs to be repeated several times in order to be recognized as a cycle.

Utils 9

Example
gap> L := [1..20];; L[1]:=13;;
gap> for i in [1..19] do
> if Is0ddInt(L[i]) then L[i+1]:=3%L[i]+1; else L[i+1]:=L[i]/2; fi;
> od;
gap> L;

[13, 40, 20, 10, 5, 16, 8, 4, 2, 1, 4, 2, 1, 4, 2, 1, 4, 2, 1, 4]
gap> SearchCycle(L);
(1,4, 2]

2.1.3 RandomCombination
> RandomCombination(S, k) (operation)
This function is in the process of being transferred from package ResClasses: for now you

should LoadPackage ("resclasses") in order to use it.
It returns a random unordered k-tuple of distinct elements of a set S.

Example
gap> RandomCombination([31..79],8);
[33, 45, 60, 63, 65, 69, 71, 77 1
2.1.4 PrintListOneltemPerLine
> PrintListOneItemPerLine(L) (operation)

This function has been transferred from package XMod. Printing lists vertically, rather than in the
usual horizontal form, may be useful when the entries are lengthy.

Example

gap> PrintListOneltemPerLine(KnownPropertiesOfObject(L));
[IsFinite,

IsSmalllist

]

2.2 Distinct and Common Representatives

2.2.1 DistinctRepresentatives

> DistinctRepresentatives(list) (operation)
> CommonRepresentatives(list) (operation)
> CommonTransversal(grp, subgrp) (operation)

> IsCommonTransversal(grp, subgrp, list) (operation)

Utils 10

These functions have been transferred from package XMod. They deal with lists of subsets of
[1...n] and construct systems of distinct and common representatives using simple, non-recursive,
combinatorial algorithms.

When L is a set of n subsets of [1...n] and the Hall condition is satisfied (the union of any k
subsets has at least k elements), a set of DistinctRepresentatives exists.

When J, K are both lists of n sets, the function CommonRepresentatives returns two lists: the set
of representatives, and a permutation of the subsets of the second list. It may also be used to provide a
common transversal for sets of left and right cosets of a subgroup H of a group G, although a greedy
algorithm is usually quicker.

Example

gap> J := [[1,2,3], [3,4], [3,4], [1,2,4] 1;;

gap> DistinctRepresentatives(J);

[1, 3, 4, 2]

gap> K := [[3,4], [1,2], [2,3], [2,3,4] 1;;

gap> CommonRepresentatives(J, K);

(038,33 11, [1,3,4,21]1

gap> d16 := DihedralGroup(IsPermGroup, 16); SetName(di6, "d16");

Group([(1,2,3,4,5,6,7,8), (2,8)(3,7)(4,6) 1)

gap> c4 := Subgroup(di16, [d16.1"2]); SetName(c4, "c4");

Group([(1,3,5,7)(2,4,6,8) 1)

gap> RightCosets(d16, c4);

[RightCoset(c4,()), RightCoset(c4,(2,8)(3,7)(4,6)), RightCoset(c4,(1,8,7,6,5,
4,3,2)), RightCoset(c4,(1,8)(2,7)(3,6)(4,5)) 1

gap> trans := CommonTransversal(d16, c4);

[O, (2,8@3,7)4,6), (1,2,3,4,5,6,7,8), (1,2)(3,8)(4,7)(5,6)]

gap> IsCommonTransversal(d16, c4, trans);

true

2.3 Functions for strings

2.3.1 BlankFreeString

> BlankFreeString(obj) (function)

This function is in the process of being transferred from package ResClasses: for now you
should LoadPackage ("resclasses") in order to use it.

The result of BlankFreeString(obj); is a composite of the functions String(obj) and
RemoveCharacters(obj, " ");.

Example

gap> D12 := DihedralGroup(12);;
gap> BlankFreeString(D12);
"Group([f1,f2,£3])"

2.3.2 StringDotSuffix

> StringDotSuffix(str, suf)

This function has been transferred from package AutoDoc, and was originally named

AUTODOC_GetSuffix.

When StringDotSuffix is given a string containing a

the last ".".

Utils

gap> StringDotSuffix("file.
n ext n
gap> StringDotSuffix("file.
I’bakll

gap> StringDotSuffix("file.
gap> StringDotSuffix("Hello
fail

Example
ext");
ext.bak");
")

")

it return its extension, i.e. the bit after

Chapter 3

Number-theoretic functions

3.1 Functions for integers

3.1.1 AllSmoothIntegers

> AllSmoothIntegers(maxp, maxn) (function)

This function is in the process of being transferred from package RCWA: for now you should
LoadPackage ("rcwa") in order to use it.

The function Al11SmoothIntegers (maxp ,maxn) returns a list of all integers less than or equal
to maxn which do not have prime divisors exceeding maxp.

Example

gap> AllSmoothIntegers(7, 100);

[1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 14, 15, 16, 18, 20, 21, 24, 25, 27, 28,
30, 32, 35, 36, 40, 42, 45, 48, 49, 50, 54, 56, 60, 63, 64, 70, 72, 75, 80,
81, 84, 90, 96, 98, 100]

gap> Length(last);

46

3.1.2 AllProducts

> AllPrOdUCtS(L, k) (function)

This function has been transferred from package RCWA.

The command A11Products (L, k) returns the list of all products of k entries of the list L. Note
that every ordering of the entries is used so that, in the commuting case, there are bound to be repeti-
tions.

Example

gap> AllProducts([1..4],3);

[1, 2, 3, 4, 2, 4, 6, 8, 3, 6, 9, 12, 4, 8, 12, 16, 2, 4, 6, 8, 4, 8, 12,
16, 6, 12, 18, 24, 8, 16, 24, 32, 3, 6, 9, 12, 6, 12, 18, 24, 9, 18, 27,
36, 12, 24, 36, 48, 4, 8, 12, 16, 8, 16, 24, 32, 12, 24, 36, 48, 16, 32,
48, 64]

12

Utils 13

gap> Set(last);

[1, 2, 3, 4, 6, 8, 9, 12, 16, 18, 24, 27, 32, 36, 48, 64]
gap> Al1Products([(1,2,3),(2,3,4)], 2);

[(2,4,3), (1,2)(3,4), (1,3)(2,4), (1,3,2) 1]

3.1.3 RestrictedPartitionsWithoutRepetitions

> RestrictedPartitionsWithoutRepetitions(n, S) (function)

This function is in the process of being transferred from package RCWA: for now you should
LoadPackage ("rcwa") in order to use it.

Given a positive integer n and a set of positive integers S, this function returns a list of all partitions
of n into distinct elements of S. The only difference to RestrictedPartitions is that no repetitions
are allowed.

Example
gap> RestrictedPartitions(20, [4..10]);
[[4, 4’ 4’ 4, 4], [5’ 5’ 5, 5], [6, 5’ 5’ 4]’ [6, 6, 4’ 4]’
[7’ 5, 4’ 4]’ [7’ 7’ 6]’ [8’ 4, 4’ 4]7 [8’ 6’ 6]’ [8’ 7’ 5]’
(s, 8,41,[9,6,5]1,[9,7,41, [10,5,5], [10, 6, 4],
[10, 101]
gap> RestrictedPartitionsWithoutRepetitions(20, [4..10]);
tf1,6,41,09,7,41,09,6,51, [8,7,51]1
3.1.4 ExponentOfPrime
> Exponent0fPrime(n, p) (function)

This function is in the process of being transferred from package RCWA: for now you should
LoadPackage ("rcwa") in order to use it.
The function Exponent0fPrime(n,p) returns the exponent of the prime p in the prime factor-

ization of n.
Example

gap> ExponentOfPrime(13577531, 11);
3

3.1.5 NextProbablyPrimelnt

> NextProbablyPrimeInt (n) (function)

This function is in the process of being transferred from package RCWA: for now you should
LoadPackage ("rcwa") in order to use it.

The function NextProbablyPrimeInt(n) does the same as NextPrimeInt(n) except that
for reasons of performance it tests numbers only for IsProbablyPrimelInt(n) instead of
IsPrimeInt(n). For large n, this function is much faster than NextPrimeInt (n)

Utils 14

Example

gap> n := 272b1;
3618502788666131106986593281521497120414687020801267626233049500247285301248
gap> time;

0

gap> NextProbablyPrimeInt(n);
3618502788666131106986593281521497120414687020801267626233049500247285301313
gap> time;

1

gap> NextPrimeInt(n);
3618502788666131106986593281521497120414687020801267626233049500247285301313
gap> time;

12346

3.1.6 PrimeNumberslterator

> PrimeNumbersIterator([chunksize]) (function)

This function is in the process of being transferred from package RCWA: for now you should
LoadPackage ("rcwa") in order to use it.

This function returns an iterator which runs over the prime numbers n ascending order; it takes an
optional argument chunksize which specifies the length of the interval which is sieved in one go (the
default is 107), and which can be used to balance runtime vs. memory consumption. It is assumed
that chunksize is larger than any gap between two consecutive primes within the range one intends
to run the iterator over.

Example

gap> iter := PrimeNumbersIterator();
<iterator>

gap> NextIterator(iter);

2

Chapter 4

Groups and homomorphisms

4.1 Functions for groups
4.1.1 Comm

> Comm(L) (operation)

This method is in the process of being transferred from package ResClasses: for now you should
LoadPackage ("resclasses") in order to use it. It provides a method for Comm when the argument
is a list (enclosed in square brackets), and calls the function LeftNormedComm.

Example

gap> Comm([(1,2), (2,3) 1);
(1,2,3)

4.1.2 IsCommuting

> IsCommuting(a, b) (operation)

This function is in the process of being transferred from package ResClasses: for now you
should LoadPackage ("resclasses") in order to use it. It tests whether two elements in a group
commute.

Example

gap> D12 := DihedralGroup(12); SetName(D12, "D12");
<pc group of size 12 with 3 generators>

gap> a := D12.1;; b := D12.2;;

gap> IsCommuting(a, b);

false

4.1.3 ListOfPowers

> ListOfPowers(g, exp) (operation)

15

Utils 16

This function is in the process of being transferred from package RCWA: for now you should
LoadPackage ("rcwa") in order to use it.
The operation ListOfPowers (g, exp) returns the list [g, >, ..., g°P] of powers of the element g.

Example
gap> ListOfPowers(D12.2, 6);
[£2, £3, £2x£3, £3-2, f2*f3~2, <identity> of ...]
4.1.4 GeneratorsAndInverses
> GeneratorsAndInverses(G) (operation)

This function is in the process of being transferred from package RCWA: for now you should
LoadPackage ("rcwa") in order to use it.

This operation returns a list containing the generators of G followed by the inverses of these
generators.

Example
gap> GeneratorsAndInverses(D12);
[£1, £2, £3, f1, f2%f3~2, £3-2]
4.1.5 UpperFittingSeries
> UpperFittingSeries(G) (attribute)
> LowerFittingSeries(G) (attribute)
> FittingLength(G) (attribute)

These three functions have been transferred from package ResClasses.
The upper and lower Fitting series and the Fitting length of a solvable group are described here:
https://en.wikipedia.org/wiki/Fitting_length.

Example

gap> UpperFittingSeries(D12);

[Group([1), Group([£3, £f2%£f3 1), Group([£3, f2*f3, f1 1)]
gap> LowerFittingSeries(D12);

[D12, Group([£3 1), Group([1)]

gap> Fittinglength(D12);

2

4.2 Functions for group homomorphisms

4.2.1 EpimorphismByGenerators

> EpimorphismByGenerators(G, H) (attribute)

https://en.wikipedia.org/wiki/Fitting_length

Utils 17

This function is in the process of being transferred from package RCWA: for now you should
LoadPackage ("rcwa") in order to use it. It maps the generators of G to those of H. It is not checked
that this map is a group homomorphism!

Example

gap> G := Group((1,2,3,4),(3,4));;

gap> H := Group((6,7),(7,8));;

gap> el := EpimorphismByGenerators(G,H);

[1,2,3,4), 3,41 > [(6,7, (7,8)]

gap> ## note that this is just an abbreviation for:

gap> e2 := GroupHomomorphismByImages(G, H,

> Generators0fGroup(G), Generators0fGroup(H));;
gap> el = e2;

true

gap> ## but the following is nonsense:

gap> e0 := EpimorphismByGenerators(Group((1,2,3)), Group((8,9)));
[(1,2,3) 1 > [(8,9 1

gap> IsGroupHomomorphism(eO) ;

true

Chapter 5

Records

5.1 Functions for records
5.1.1 SetlfMissing

> SetIfMissing(rec, name, val) (function)

This function is in the process of being transferred from package AutoDoc, where it was called
AUTODOC_WriteOnce. It writes into a record provided the position is not yet bound.

Example

gap> r :=rec(a :=1, b := 2);;
gap> SetIfMissing(r, "c", 3);
gap> RecNames(r);

["b", "c", "a"]

gap> SetIfMissing(r, "c", 4);
gap> r;

rec(a:=1, b :=2, ¢c :=3)

5.1.2 AssignGlobals

> AssignGlobals(rec) (function)

This function is in the process of being transferred from package RCWA: for now you should
LoadPackage ("rcwa") in order to use it.
This function assigns the record components of rec to global variables with the same names.

Example

gap> AssignGlobals(r);

The following global variables have been assigned:
[llall’ llbll’ nen]

gap> [a,b,cl;

[1,2,3]

18

Chapter 6

Various other functions

6.1 Operations on folders

6.1.1 FindMatchingFiles

> FindMatchingFiles(pkg, dirs, extns) (function)
> CreateDirIfMissing(str) (function)

These functions have been transferred from package AutoDoc where they were named
AutoDoc_FindMatchingFiles and AutoDoc_CreateDirIfMissing.

FindMatchingFiles scans the given (by name) subdirectories of a package directory for files
with one of the given extensions, and returns the corresponding filenames, as paths relative to the
package directory.

CreateDirIfMissing checks whether the given directory exists and, if not, attempts to create it.
In either case true is returned.

Warning: this function relies on the undocumented library function CreateDir, so use it with
caution.

Example

gap> FindMatchingFiles("utils", ["/", "tst" 1, ["g", "txt" 1);

["/LICENSE.txt", "/PackageInfo.g", "/init.g", "/makedoc.g", "/read.g",
"tst/testall.g"]

gap> CreateDirIfMissing("/Applications/gap/temp/");

true

6.2 File operations

6.2.1 Log2HTML

> Log2HTML (filename) (function)

This function is in the process of being transferred from package RCWA: for now you should
LoadPackage ("rcwa") in order to use it.

19

Utils 20

This function converts the GAP logfile logfilename to HTML. The extension of the input file must
be *.log. The name of the output file is the same as the one of the input file except that the extension

*.1log is replaced by *.html. There is a sample CSS file in utils/doc/gaplog.css, which you
can adjust to your taste.

Example

gap> LogTo("mar2.log");

gap> FindMatchingFiles("utils", [""], ["g"]);

["/PackageInfo.g", "/init.g", "/makedoc.g", "/read.g"]
gap> LogTo();

gap> Log2HTML("mar2.log");

gap> FindMatchingFiles("utils", [""], ["html", "log"l);
["/mar2.html", "/mar2.log"]

6.3 IATEX strings

6.3.1 IntOrOnfinityToLaTeX

> IntOrOnfinityToLaTeX(n)

(function)

This function is in the process of being transferred from package ResClasses: for now you
should LoadPackage ("resclasses") in order to use it.

IntOrInfinityToLaTeX(n) returns the IZIEX string for n.

Example
gap> IntOrInfinityToLaTeX(1073);
n 1000 n
gap> IntOrInfinityToLaTeX(infinity);
n \\1nfty n

6.3.2 LaTeXStringFactorsInt

> LaTeXStringFactorsInt(n)

(function)

This function is in the process of being transferred from package RCWA: for now you should
LoadPackage ("rcwa") in order to use it.

It returns the prime factorization of the integer n as a string in IXTX format.

Example

gap> LaTeXStringFactorsInt(Factorial(12));
"2~{10} \\cdot 375 \\cdot 572 \\cdot 7 \\cdot 11"

References

21

Index

Utils, 4 QuotientsList, 8

Al1Products, 12 RandomCombination, 9
Al1SmoothIntegers, 12 repository, 4

AssignGlobals, 18 RestrictedPartitionsWithout-

Repetitions, 13
BlankFreeString, 10

SearchCycle, 8

Comm, 15 SetIfMissing, 18
CommonRepresentatives, 9 StringDotSuffix, 11
CommonTransversal, 9

CreateDirIfMissing, 19 UpperFittingSeries, 16

DifferencesList, 8
distinct and common representatives, 9
DistinctRepresentatives, 9

EpimorphismByGenerators, 16
Exponent0fPrime, 13

FindMatchingFiles, 19
FittingLlength, 16
FloatQuotientsList, 8

GeneratorsAndInverses, 16

IntOrOnfinityToLaTeX, 20
IsCommonTransversal, 9
IsCommuting, 15

LaTeXStringFactorsInt, 20
License, 2

ListOfPowers, 15
Log2HTML, 19
LowerFittingSeries, 16

NextProbablyPrimelInt, 13
OKtoReadFromUtils, 6

PrimeNumbersIterator, 14
PrintListOneItemPerLine, 9

22

	Introduction
	Information for package authors
	The current transfer procedure

	Lists, Sets and Strings
	Functions for lists
	Distinct and Common Representatives
	Functions for strings

	Number-theoretic functions
	Functions for integers

	Groups and homomorphisms
	Functions for groups
	Functions for group homomorphisms

	Records
	Functions for records

	Various other functions
	Operations on folders
	File operations
	LaTeX strings

	References

