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1 KBMAG
KBMAG (pronounced “Kay-bee-mag”) stands for Knuth–Bendix on Monoids, and Automatic Groups. It is a stand-
alone package written in C, for use under UNIX, with an interface to GAP. This chapter describes its use as an external
library from within GAP. There are interfaces for the use of KBMAG with finitely presented groups, monoids and
semigroups defined within GAP. The package also contains a collection of routines for manipulating finite state
automata, which can be accessed via the GAP interface.

To use this package effectively, some knowledge of the underlying theory and algorithms is advisable. The Knuth-
Bendix algorithm is described in various places in the literature. Good general references that deal with the applica-
tions to groups and monoids are [LeC86] and the first few chapters of [Sim94]. For the theory of automatic groups see
the multi-author book [ECH+92]. The algorithms employed by KBMAG are described more specifically in [HER91]
and [Holar].

The manual for the stand-alone KBMAG package (which can be found in the standalone/doc directory of the
package) provides more detailed information on the external C programs that are called from GAP.

Suppose that G is a finitely presented semigroup, monoid or group defined as a quotient of the free structure F. The
overall objective of KBMAG is to construct a normal form for the elements of G in terms of the generators of F,
together with a word reduction algorithm for calculating the normal form representative of an element in G, given by
a word in the generators of F. If this can be achieved, then it is also possible to enumerate the words in normal form up
to a given length, and to determine the order of G, by counting the number of words in normal form. In most serious
applications, this will be infinite, since (for example) finite groups are (with some exceptions) usually handled better
by Todd-Coxeter related methods. In fact a finite state automaton W is calculated that accepts precisely the language
of words in the monoid generators of F that are in normal form, and W is used for the enumeration and counting
functions.

The normal form of an element g ∈ G is defined to be the least word in the generators of F (and their inverses) that
represents g, with respect to a specified ordering on the set of all words in the generators of F. The available orderings
are described in 1.3 below.

KBMAG offers two possible means of achieving these objectives. The first is to apply the Knuth-Bendix algorithm to
the presentation, with one of the available orderings on words, and hope that the algorithm will complete with a finite
confluent presentation. (If G is finite, then it is guaranteed to complete eventually but, like the Todd-Coxeter procedure,
it may take a long time, or require more space than is available.) The second is to use the automatic group program,
which is only applicable to groups (not to monoids or semigroups). This also uses the Knuth-Bendix procedure as one
component of the algorithm, but it aims to compute certain finite state automata rather than to obtain a finite confluent
rewriting system, and it completes successfully on many examples for which such a finite system does not exist. In the
current standalone implementation, its use is restricted to the “shortlex” ordering on words. That is, words are ordered
first by increasing length, and then words of equal length are ordered lexicographically, using the specified ordering
of the generators. However, there are now some GAP procedures available in the package written by Sarah Rees that
enable it be used also for the “wtlex” ordering, and the “wreathprod” ordering. See below for further details of these
orderings.

For both of the above procedures, the first step is to create a GAP object known as a Knuth-Bendix rewriting system R
from the finitely presented structure G. There are functions available that can be used to specify the input parameters
for the external programs, such as the ordering on words to be used by the Knuth-Bendix procedure. One of the
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two external programs is then run on R. If successful, it updates R, which can then be used to reduce words in the
generators of F to normal form, and to count and enumerate the words in normal form.

There are also now some routines available for performing corresponding operations with the cosets of a specified
subgroup H of the group G. (These are not currently available for semigroups or monoids.) The words in normal
form then correspond to minimal representatives under the ordering of the system of the right cosets of H in G. If
successful, the index of H in G can be determined. The Knuth-Bendix routines also allow a confluent rewriting system
for H to be computed, whereas the automatic groups routines allow a presentation of H to be computed (although not
yet on a user-specified generating set).

In the descriptions of the functions that follow, it is important to distinguish between irreducible words, and words in
normal form. As already stated, a word is in normal form if it is the least word under the ordering of the rewriting
system that defines a particular group element or coset. So there is always a unique word in normal form for each group
element or coset, and it is determined by the group generators and the ordering on words in the group generators. A
word in a rewriting system is said to be irreducible if it does not contain the left hand side of any of the reduction rules
in the system as a subword. Words in normal form are always irreducible, but the converse is true if and only if the
rewriting system is confluent. The automatic groups programs provide a method of reducing words to normal form
without obtaining a finite confluent rewriting system (which may not even exist).

Various levels of diagnostic output from the GAP procedures can be turned on by setting the Info variable InfoRWS

to 1, 2 or 3.

1.1 Creating a rewriting system

First the user should be aware of a technicality. The words in a rewriting system created in GAP for use by KBMAG
are defined over an alphabet that consists of the generators of a free monoid, called the word-monoid of the system.
Suppose, as before, that the rewriting system is defined from the semigroup, monoid or group G which is a quotient
of the free structure F. Then the generators of this alphabet will be in one-one correspondence with the generators (or,
when G is a group, the generators and their inverses) of F, but will not be identical to them. This feature was necessary
for technical reasons. Most of the user-level functions take and return words in F rather than the alphabet, but they do
this by converting from one to the other and back.

User-level functions have also been provided to carry out this conversion explicitly if required.

The user should also be aware of a peculiarity in the way that rewriting sytems are displayed, which is really a
hangover from the GAP3 interface. They are displayed nicely as a record, which gives a useful description of the
system, but it does not correspond at all to the way that they are actually stored internally!

1 I KBMAGRewritingSystem( G ) O

constructs and returns a rewriting system R from a finitely presented semigroup, monoid or group G. When G is a
group, the alphabet members of R correspond to the generators of F together with inverses for those generators which
are not obviously involutory in G.

1.2 Elementary functions on rewriting systems

1 I IsKBMAGRewritingSystemRep( rws ) R

Returns true if rws is a rewriting system created by KBMAGRewritingSystem. The functions IsRewritingSystem
and IsKnuthBendixRewritingSystem will also return true on such a system.

2 I IsConfluent( rws ) A

Returns true if rws is a rewriting system that is known to be confluent.
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3 I SemigroupOfRewritingSytem( rws ) O

4 I FreeStructureOfSystem( rws ) O

5 I WordMonoidOfRewritingSystem( rws ) O

These return, respectively, the semigroup, monoid or group G, the free structure F, and the word-monoid of the
rewriting system, as defined in the preceding section.

6 I ExternalWordToInternalWordOfRewritingSystem( rws, w ) F

7 I InternalWordToExternalWordOfRewritingSystem( rws, w ) F

These are the functions for converting between external words, which are those defined over the free structure F of
rws, and the internal words, which are defined over the word-monoid of rws.

8 I Alphabet( rws )

This is an ordered list of the generators of the word-monoid of rws. It will not necessarily be in the normal order
of these generators, and it can be re-ordered by the function ReorderAlphabetOfKBMAGRewritingSystem (see
below).

9 I Rules( rws ) O

A list of the reduction rules of rws. Each rule is a two-element list containing the left and right hand sides of the rule,
which are words in the alphabet of rws.

10 I ResetRewritingSystem( rws ) F

This function resets the rewriting system rws back to its form as it was before the application of KnuthBendix or
AutomaticStructure. However, the current ordering and values of control parameters will not be changed. The
normal form and reduction algorithms will be unavailable after this call.

1.3 Setting the ordering

1 I SetOrderingOfKBMAGRewritingSystem( rws, ordering [,list] ) F

2 I ReorderAlphabetOfKBMAGRewritingSystem( rws, p ) F

3 I OrderingOfKBMAGRewritingSystem( rws ) F

4 I OrderingOfRewritingSystem( rws ) F

SetOrderingOfKBMAGRewritingSystem changes the ordering on the words of the rewriting system rws to ordering.
rws is reset when the ordering is changed, so any previously calculated results will be destroyed. ordering must be one
of the strings “shortlex”, “recursive”, “wtlex” and “wreathprod”. The default is “shortlex”, and this is the ordering of
rewriting systems returned by KBMAGRewritingSystem. The orderings “wtlex” and “wreathprod” require the third
parameter, list, which must be a list of positive integers in one-one correspondence with the alphabet of rws in its
current order. They have the effect of attaching weights or levels to the alphabet members, in the cases “wtlex” and
“wreathprod”, respectively.

Each of these orderings depends on the order of the alphabet, The current ordering of generators is displayed under the
generatorOrder field when rws is viewed. This ordering can be changed by the function ’ReorderAlphabetOfKB-
MAGRewritingSystem’. The second parameter p to this function should be a permutation that moves at most ng
points, where ng is the number of generators. This permutation is applied to the current list of generators.

OrderingOfKBMAGRewritingSystem merely prints out a description of the current ordering.
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In the “shortlex” ordering, shorter words come before longer ones, and, for words of equal length, the lexicographically
smaller word comes first, using the ordering of the alphabet. The “wtlex” ordering is similar, but instead of using the
length of the word as the first criterion, the total weight of the word is used; this is defined as the sum of the weights of
the generators in the word. So “shortlex” is the special case of “wtlex” in which all generators have the same nonzero
weight.

The “recursive” ordering is the special case of “wreathprod” in which the levels of the ng generators are 1, 2, . . . , ng,
in the order of the alphabet. We shall not attempt to give a complete definition of these orderings here, but refer
the reader instead to pages 46–50 of [Sim94]. The “recursive” ordering is the one appropriate for a power-conjugate
presentation of a polycyclic group, but where the generators are ordered in the reverse order from the usual convention
for polycyclic groups. The confluent presentation will then be the same as the power-conjugate presentation. For
example, for the Heisenberg group 〈x, y, z | [x, z] = [y, z] = 1, [y, x] = z〉, a good ordering is “recursive” with the order
of generators [z−1, z, y−1, y, x−1, x]. This example is included in 1.9 below.

Finally, OrderingOfRewritingSystem returns the appropriate GAP ordering on the elements of the word-monoid
of rws. The standard GAP ordering functions, such as IsLessThanUnder(ord,el1,el2) can then be used.

1.4 Control parameters

1 I InfoRWS V

This Info variable can be set to 0, 1, 2 or 3 to control the level of diagnostic output.

The Knuth-Bendix procedure is unusually sensitive to the settings of a number of parameters that control its operation.
In some examples, a small change in one of these parameters can mean the difference between obtaining a confluent
rewriting system fairly quickly on the one hand, and the procedure running on until it uses all available memory on
the other hand.

Unfortunately, it is almost impossible to give even very general guidelines on these settings, although the “wreathprod”
orderings appear to be more sensitive than the “shortlex” and “wtlex” orderings. The user can only acquire a feeling
for the influence of these parameters by experimentation on a large number of examples.

The control parameters are defined by the user by setting values of certain fields of the options record of a rewriting
system.

2 I OptionsRecordOfKBMAGRewritingSystem( rws ) F

Returns the options record OR of the rewriting system rws. The fields of OR listed below can be set by the user. Be
careful to spell them correctly, because otherwise they will have no effect!

OR.maxeqns:
A positive integer specifying the maximum number of rewriting rules allowed in rws. The default is 32767.
If this number is exceeded, then KnuthBendix or AutomaticStructure will abort.

OR.tidyint:
A positive integer, 100 by default. During the Knuth-Bendix procedure, the search for overlaps is interrupted
periodically to tidy up the existing system by removing and/or simplifying rewriting rules that have become
redundant. This tidying is done after finding OR.tidyint rules since the last tidying.

OR.confnum:
A positive integer, 500 by default. If OR.confnum overlaps are processed in the Knuth-Bendix procedure
but no new rules are found, then a fast test for confluence is carried out. This saves a lot of time if the system
really is confluent, but usually wastes time if it is not.

OR.maxstoredlen:
This is a list of two positive integers, maxlhs and maxrhs; the default is that both are infinite. Only those
rewriting rules for which the left hand side has length at most maxlhs and the right hand side has length at
most maxrhs are stored; longer rules are discarded. In some examples it is essential to impose such limits
in order to obtain a confluent rewriting system. Of course, if the Knuth-Bendix procedure halts with such
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limits imposed, then the resulting system need not be confluent. However, the confluence can then be tested
be re-running KnuthBendix with the limits removed. (To remove the limits, unbind the field.)

OR.maxoverlaplen:
This is apositive integer, which is infinite by default (when not set). Only those overlaps of total length
OR.maxoverlaplen are processed. Similar remarks apply to those for OR.maxstoredlen.

OR.sorteqns:
This should be true or false, and false is the default. When it is true, the rewriting rules are output in order of
increasing length of left hand side. (The default is that they are output in the order that they were found).

OR.maxoplen:
This is an integer, which is infinite by default (when not set). When it is set, the rewriting rules are output
in order of increasing length of left hand side (as if OR.sorteqns were true), and only those rules having
left hand sides of length up to OR.maxoplen are output at all. Again, similar remarks apply to those for
OR.maxstoredlen.

OR.maxreducelen:
A positive integer, 32767 by default. This is the maximum length that a word is allowed to have during the
reduction process. It is only likely to be exceeded when using the “wreathprod” or “recursive” ordering.

OR.maxstates, OR.maxwdiffs:
These are positive integers, controlling the maximum number of states of the word-reduction automaton used
by KnuthBendix, and the maximum number of word-differences allowed when running AutomaticStruc-

ture, respectively. These numbers are normally increased automatically when required, so it unusual to want
to set these flags. They can be set when either it is desired to limit these parameters (and prevent them being
increased automatically), or (as occasionally happens), the number of word-differences increases too rapidly
for the program to cope - when this happens, the run is usually doomed to failure anyway.

1.5 The Knuth-Bendix program

1 I KnuthBendix( rws ) O
I MakeConfluent( rws ) O

These two functions do the same thing, namely to run the external Knuth-Bendix program on the rewriting system
rws. KnuthBendix returns true if it finds a confluent rewriting system and otherwise false. In either case, if it halts
normally, then it will update the list of the rewriting rules of rws, and also store a finite state automaton Reductio-

nAutomaton(rws) that can be used for word reduction, and the counting and enumeration of irreducible words.

All control parameters (as defined in the preceding section) should be set before calling KnuthBendix. KnuthBendix
will halt either when it finds a finite confluent system of rewriting rules, or when one of the control parameters (such
as OR.maxeqns) requires it to stop. The program can also be made to halt and output manually at any time by hitting
the interrupt key (normally ctr-’C’) once. (Hitting it twice has unpredictable consequences, since GAP may intercept
the signal.)

If KnuthBendix halts without finding a confluent system, but still manages to output the current system and update
rws, then it is possible to use the resulting rewriting system to reduce words, and count and enumerate the irreducible
words; it cannot be guaranteed that the irreducible words are all in normal form, however. It is also possible to re-run
KnuthBendix on the current system, usually after altering some of the control parameters. In fact, is some more
difficult examples, this seems to be the only means of finding a finite confluent system.

2 I ReductionAutomaton( rws ) F

the reduction automaton of rws. Only expert users will wish to see this explicitly. See the section on finite state
automata below for general information on functions for manipulating automata.
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1.6 The automatic groups program

1 I AutomaticStructure( rws, [large], [filestore], [diff1]) O

Run the external automatic groups program on the rewriting system rws. AutomaticStructure returns true if
successful and false otherwise. If successful, it stores three finite state automata FirstWordDifferenceAutoma-

ton(rws), SecondWordDifferenceAutomaton(rws) and WordAcceptor(rws). The first two of these are used for
word-reduction, and the third for counting and enumeration of irreducible words (i.e. words in normal form).
The three optional parameters to AutomaticStructure are all boolean, and false by default. Setting large true results
in some of the control parameters (such as maxeqns and tidyint) being set larger than they would be otherwise. This
is necessary for examples that require a large amount of space. Setting filestore true results in more use being made
of temporary files than would be otherwise. This makes the program run slower, but it may be necessary if you
are short of core memory. Setting diff1 to be true is a more technical option, which is explained more fully in the
documentation for the stand-alone KBMAG package. It is not usually necessary or helpful, but it enables one or two
examples to complete that would otherwise run out of space.
The ordering field of rws will usually be equal to “shortlex” for AutomaticStructure to be applicable. However, it
is now possible to use some procedures written by Sarah Rees that work when the ordering is “wtlex” or “wreathprod”.
In the latter case, each generator must have the same level as its inverse.
The only control parameters for rws that are likely to be relevant are maxeqns and maxwdiffs.

2 I WordAcceptor( rws ) F

3 I FirstWordDifferenceAutomaton( rws ) F

4 I SecondWordDifferenceAutomaton( rws ) F

5 I GeneralMultiplier( rws ) F

These functions return, respectively, the word acceptor, the first and second word-difference automata, and the general
multiplier automaton of rws. They can only be called after a successful call of AutomaticStructure(rws). All
except the word-acceptor are 2-variable automata that read pairs of words in the alphabet of rws. Note that the general
multiplier has its states labeled, where the different labels represents the accepting states for the different letters in the
alphabet of rws.

1.7 Word reduction
1 I IsReducedWord( rws, w ) A
I IsReducedForm( rws, w ) A

These two functions do the same thing, namely to test whether the word w in the generators of the freestructure
FreeStructure(rws) of the rewriting system system rws is reduced or not, and return true or false.
IsReducedWord can only be used after KnuthBendix or AutomaticStructure has been run successfully on rws.
In the former case, if KnuthBendix halted without a confluent set of rules, then irreducible words are not necessarily
in normal form (but reducible words are definitely not in normal form). If KnuthBendix completes with a confluent
rewriting system or AutomaticStructure completes successfully, then it is guaranteed that all irreducible words are
in normal form.

2 I ReducedForm( rws, w ) O
I ReducedWord( rws, w ) O

Reduce the word w in the generators of the freestructure FreeStructure(rws) of the rewriting system rws (or,
equivalently, in the generators of the underlying group of rws), and return the result.
ReducedForm can only be used after KnuthBendix or AutomaticStructure has been run successfully on rws. In
the former case, if KnuthBendix halted without a confluent set of rules, then the irreducible word returned is not
necessarily in normal form. If KnuthBendix completes with a confluent rewriting system or AutomaticStructure
completes successfully, then it is guaranteed that all irreducible words are in normal form.
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1.8 Counting and enumerating irreducible words
1 I Size( rws ) M

Returns the number of irreducible words in the rewriting system rws.

Size can only be used after KnuthBendix or AutomaticStructure has been run successfully on rws. In the former
case, if KnuthBendix halted without a confluent set of rules, then the number of irreducible words may be greater than
the number of words in normal form (which is equal to the order of the underlying group, monoid or semigroup G of
rws). If KnuthBendix completes with a confluent rewriting system or AutomaticStructure completes successfully,
then it is guaranteed that Size will return the correct order of G.

2 I Order( rws, w ) M

The order of the element w of the free structure FreeStructure(rws) of rws as an element of the group or monoid
from which rws was defined.

Order can only be used after KnuthBendix or AutomaticStructure has been run successfully on rws. It is not
guaranteed to terminate in the case of infinite order, but it usually seems to do so in practice!

3 I EnumerateReducedWords(rws, min, max) O

Enumerate all irreducible words in the rewriting system rws that have lengths between min and max (inclusive), which
should be non-negative integers. The result is returned as a list of words. The enumeration is by depth-first search of
a finite state automaton, and so the words in the list returned are ordered lexicographically (not by shortlex).

EnumerateReducedWords can only be used after KnuthBendix or AutomaticStructure has been run successfully
on rws. In the former case, if KnuthBendix halted without a confluent set of rules, then not all irreducible words in
the list returned will necessarily be in normal form. If KnuthBendix completes with a confluent rewriting system or
AutomaticStructure completes successfully, then it is guaranteed that all words in the list will be in normal form.

4 I GrowthFunction( rws ) F

Returns the growth function of the set of irreducible words in the rewriting system rws. This is a rational function, of
which the coefficient of xn in its Taylor expansion is equal to the number of irreducible words of length n.

If the coefficients in this rational function are larger than about 16000 then strange error messages will appear and fail
will be returned.

GrowthFunction can only be used after KnuthBendix or AutomaticStructure has been run successfully on rws.
In the former case, if KnuthBendix halted without a confluent set of rules, then not all irreducible words in the
list returned will necessarily be in normal form. If KnuthBendix completes with a confluent rewriting system or
AutomaticStructure completes successfully, then it is guaranteed that all words in the list will be in normal form.

1.9 Rewriting System Examples

Example 1

We start with a easy example - the alternating group A4.

gap> F:=FreeGroup("a","b");;

gap> a:=F.1;; b:=F.2;;

gap> G:=F/[a^2, b^3, (a*b)^3];;

gap> R:=KBMAGRewritingSystem(G);

rec(

isRWS := true,

generatorOrder := [_g1,_g2,_g3],

inverses := [_g1,_g3,_g2],

ordering := "shortlex",

equations := [
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[_g2^2,_g3],

[_g1*_g2*_g1,_g3*_g1*_g3]

]

)

#Notice that monoid generators printed as _g1, _g2, _g3 are used

#internally. These correspond to the group generators a, b, b^-1.

gap> KnuthBendix(R);

true

gap> R;

rec(

isRWS := true,

isConfluent := true,

generatorOrder := [_g1,_g2,_g3],

inverses := [_g1,_g3,_g2],

ordering := "shortlex",

equations := [

[_g1^2,IdWord],

[_g2*_g3,IdWord],

[_g3*_g2,IdWord],

[_g2^2,_g3],

[_g3*_g1*_g3,_g1*_g2*_g1],

[_g3^2,_g2],

[_g2*_g1*_g2,_g1*_g3*_g1],

[_g3*_g1*_g2*_g1,_g2*_g1*_g3],

[_g1*_g2*_g1*_g3,_g3*_g1*_g2],

[_g2*_g1*_g3*_g1,_g3*_g1*_g2],

[_g1*_g3*_g1*_g2,_g2*_g1*_g3]

]

)

#The ‘equations’ field of <R> is now a complete system of rewriting rules

gap> Size(R);

12

gap> EnumerateReducedWords(R,0,12);

[ <identity ...>, a, a*b, a*b*a, a*b^-1, a*b^-1*a, b, b*a, b*a*b^-1, b^-1,

b^-1*a, b^-1*a*b ]

#We have enumerated all of the elements of the group - note that they

#are returned as words in the free group F.

Example 2

The Fibonacci group F(2, 5) defined by a semigroup rather than a group presentation. Interestingly this defines the
same structure (although ir would not do so for F(2, r) with r even).

gap> S:=FreeSemigroup(5);; a:=S.1;; b:=S.2;; c:=S.3;; d:=S.4;; e:=S.5;;

gap> Q := S/[ [a*b,c], [b*c,d], [c*d,e], [d*e,a], [e*a,b] ];

<fp semigroup on the generators [ s1, s2, s3, s4, s5 ]>

gap> R:=KBMAGRewritingSystem(Q);

rec(

isRWS := true,

silent := true,

generatorOrder := [_s1,_s2,_s3,_s4,_s5],

inverses := [,,,,],

ordering := "shortlex",
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equations := [

[_s1*_s2,_s3],

[_s2*_s3,_s4],

[_s3*_s4,_s5],

[_s4*_s5,_s1],

[_s5*_s1,_s2]

]

)

gap> KnuthBendix(R);

true

gap> Size(R);

11

gap> EnumerateReducedWords(R,0,4);

[ s1, s1^2, s1^2*s4, s1*s3, s1*s4, s2, s2^2, s2*s5, s3, s4, s5 ]

#Let’s do the same thing using the "recursive" ordering.

gap> SetOrderingOfKBMAGRewritingSystem(R,"recursive");

gap> KnuthBendix(R);

true

gap> Size(R);

11

gap> EnumerateReducedWords(R,0,11);

[ s1, s1^2, s1^3, s1^4, s1^5, s1^6, s1^7, s1^8, s1^9, s1^10, s1^11 ]

Example 3

The Heisenberg group - that is, the free 2-generator nilpotent group of class 2. For this to complete, we need to use the
recursive ordering, and reverse our initial order of generators. (Alternatively, we could avoid this reversal, by using a
“wreathprod” ordering, and setting the levels of the generators to be 6,5,4,3,2,1.)

gap> F:=FreeGroup("x","y","z");;

gap> x:=F.1;; y:=F.2;; z:=F.3;;

gap> G:=F/[Comm(y,x)*z^-1, Comm(z,x), Comm(z,y)];;

gap> R:=KBMAGRewritingSystem(G);

rec(

isRWS := true,

generatorOrder := [_g1,_g2,_g3,_g4,_g5,_g6],

inverses := [_g2,_g1,_g4,_g3,_g6,_g5],

ordering := "shortlex",

equations := [

[_g4*_g2*_g3,_g5*_g2],

[_g6*_g2,_g2*_g6],

[_g6*_g4,_g4*_g6]

]

)

gap> SetOrderingOfKBMAGRewritingSystem(R,"recursive");

gap> ReorderAlphabetOfKBMAGRewritingSystem(R,(1,6)(2,5)(3,4));

gap> R;

rec(

isRWS := true,

generatorOrder := [_g6,_g5,_g4,_g3,_g2,_g1],

inverses := [_g5,_g6,_g3,_g4,_g1,_g2],

ordering := "recursive",

equations := [
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[_g4*_g2*_g3,_g5*_g2],

[_g6*_g2,_g2*_g6],

[_g6*_g4,_g4*_g6]

]

)

gap> SetInfoLevel(InfoRWS,1);

gap> KnuthBendix(R);

#I Calling external Knuth-Bendix program.

#System is confluent.

#Halting with 18 equations.

#I External Knuth-Bendix program complete.

#I System computed is confluent.

true

gap> R;

rec(

isRWS := true,

isConfluent := true,

generatorOrder := [_g6,_g5,_g4,_g3,_g2,_g1],

inverses := [_g5,_g6,_g3,_g4,_g1,_g2],

ordering := "recursive",

equations := [

[_g6*_g5,IdWord],

[_g5*_g6,IdWord],

[_g4*_g3,IdWord],

[_g3*_g4,IdWord],

[_g2*_g1,IdWord],

[_g1*_g2,IdWord],

[_g6*_g2,_g2*_g6],

[_g6*_g4,_g4*_g6],

[_g4*_g2,_g2*_g4*_g5],

[_g5*_g2,_g2*_g5],

[_g6*_g1,_g1*_g6],

[_g5*_g4,_g4*_g5],

[_g6*_g3,_g3*_g6],

[_g3*_g1,_g1*_g3*_g5],

[_g4*_g1,_g1*_g4*_g6],

[_g3*_g2,_g2*_g3*_g6],

[_g5*_g1,_g1*_g5],

[_g5*_g3,_g3*_g5]

]

)

gap> Size(R);

infinity

gap> IsReducedWord(R,z*y*x);

false

gap> ReducedForm(R,z*y*x);

x*y*z^2

gap> IsReducedForm(R,x*y*z^2);

true

Example 4
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This is an example of the use of the Knuth-Bendix algorithm to prove the nilpotence of a finitely presented group.
(The method is due to Sims, and is described in Chapter 11.8 of [Sim94].) This example is of intermediate difficulty,
and demonstrates the necessity of using the maxstoredlen control parameter.

The group is
〈a, b | [b, a, b], [b, a, a, a, a], [b, a, a, a, b, a, a]〉

with left-normed commutators. The first step in the method is to check that there is a maximal nilpotent quotient of
the group, for which we could use, for example, the GAP NilpotentQuotient command, from the package “nq”.
We find that there is a maximal such quotient, and it has class 7, and the layers going down the lower central series
have the abelian structures [0,0], [0], [0], [0], [0], [2], [2].

By using the stand-alone C nilpotent quotient program, it is possible to find a power-commutator presentation of this
maximal quotient. We now construct a new presentation of the same group, by introducing the generators in this
power-commutator presentation, together with their definitions as powers or commutators of earlier generators. It is
this new presentation that we use as input for the Knuth-Bendix program. Again we use the recursive ordering, but
this time we will be careful to introduce the generators in the correct order in the first place!

gap> F:=FreeGroup("h","g","f","e","d","c","b","a");;

gap> h:=F.1;;g:=F.2;;f:=F.3;;e:=F.4;;d:=F.5;;c:=F.6;;b:=F.7;;a:=F.8;;

gap> G:=F/[Comm(b,a)*c^-1, Comm(c,a)*d^-1, Comm(d,a)*e^-1,

> Comm(e,b)*f^-1, Comm(f,a)*g^-1, Comm(g,b)*h^-1,

> Comm(g,a), Comm(c,b), Comm(e,a)];;

gap> R:=KBMAGRewritingSystem(G);

rec(

isRWS := true,

generatorOrder := [_g1,_g2,_g3,_g4,_g5,_g6,_g7,_g8,_g9,_g10,

_g11,_g12,_g13,_g14,_g15,_g16],

inverses := [_g2,_g1,_g4,_g3,_g6,_g5,_g8,_g7,_g10,_g9,

_g12,_g11,_g14,_g13,_g16,_g15],

ordering := "shortlex",

equations := [

[_g14*_g16*_g13,_g11*_g16],

[_g12*_g16*_g11,_g9*_g16],

[_g10*_g16*_g9,_g7*_g16],

[_g8*_g14*_g7,_g5*_g14],

[_g6*_g16*_g5,_g3*_g16],

[_g4*_g14*_g3,_g1*_g14],

[_g4*_g16,_g16*_g4],

[_g12*_g14,_g14*_g12],

[_g8*_g16,_g16*_g8]

]

)

gap> SetOrderingOfKBMAGRewritingSystem(R,"recursive");

A little experimentation reveals that this example works best when only those equations with left and right hand sides
of lengths at most 10 are kept.

gap> O:=OptionsRecordOfKBMAGRewritingSystem(R);

gap> O.maxstoredlen:=[10,10];;

gap> SetInfoLevel(InfoRWS,2);

gap> KnuthBendix(R);

# 60 eqns; total len: lhs, rhs = 129, 143; 25 states; 0 secs.

# 68 eqns; total len: lhs, rhs = 364, 326; 28 states; 0 secs.

# 77 eqns; total len: lhs, rhs = 918, 486; 45 states; 0 secs.
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# 91 eqns; total len: lhs, rhs = 728, 683; 58 states; 0 secs.

# 102 eqns; total len: lhs, rhs = 1385, 1479; 89 states; 0 secs.

. . . .

# 310 eqns; total len: lhs, rhs = 4095, 4313; 489 states; 1 secs.

# 200 eqns; total len: lhs, rhs = 2214, 2433; 292 states; 1 secs.

# 194 eqns; total len: lhs, rhs = 835, 922; 204 states; 1 secs.

# 157 eqns; total len: lhs, rhs = 702, 723; 126 states; 1 secs.

# 151 eqns; total len: lhs, rhs = 553, 444; 107 states; 1 secs.

# 101 eqns; total len: lhs, rhs = 204, 236; 19 states; 1 secs.

#No new eqns for some time - testing for confluence

#System is not confluent.

# 172 eqns; total len: lhs, rhs = 616, 473; 156 states; 1 secs.

# 171 eqns; total len: lhs, rhs = 606, 472; 156 states; 1 secs.

#No new eqns for some time - testing for confluence

#System is not confluent.

# 151 eqns; total len: lhs, rhs = 452, 453; 92 states; 1 secs.

# 151 eqns; total len: lhs, rhs = 452, 453; 92 states; 1 secs.

#No new eqns for some time - testing for confluence

#System is not confluent.

# 101 eqns; total len: lhs, rhs = 200, 239; 15 states; 1 secs.

# 101 eqns; total len: lhs, rhs = 200, 239; 15 states; 1 secs.

#No new eqns for some time - testing for confluence

#System is confluent.

#Halting with 101 equations.

WARNING: The monoid defined by the presentation may have changed,

since equations have been discarded.

If you re-run, include the original equations.

#Exit status is 0

#I External Knuth-Bendix program complete.

#WARNING: Because of the control parameters you set, the system may

# not be confluent. Unbind the parameters and re-run KnuthBendix

# to check!

#I System computed is NOT confluent.

false

#Now it is essential to re-run with the ‘maxstoredlen’ limit removed

#to check that the system really is confluent.

gap> Unbind(O.maxstoredlen);

gap> KnuthBendix(R);

# 101 eqns; total len: lhs, rhs = 200, 239; 15 states; 0 secs.

#No new eqns for some time - testing for confluence

#System is confluent.

#Halting with 101 equations.

#Exit status is 0

#I External Knuth-Bendix program complete.

#I System computed is confluent.

true

#In fact, in this case, we did have a confluent set already.
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Inspection of the confluent set now reveals it to be precisely a power-commutator presentation of a nilpotent group,
and so we have proved that the group we started with really is nilpotent. Of course, this means also that it is equal to
its largest nilpotent quotient, of which we already know the structure.

Example 5

Our final example illustrates the use of the AutomaticStructure command, which runs the automatic groups pro-
grams. The group has a balanced symmetrical presentation with 3 generators and 3 relators, and was originally pro-
posed by Heineken as a possible example of a finite group with such a presentation. In fact, the AutomaticStructure
command proves it to be infinite.

This example is of intermediate difficulty, but there is no need to use any special options. It takes a few minutes to run
on a WorkStation. It works better with the optional large parameter of AutomaticStructure set to true.

We will not attempt to explain all of the output in detail here; the interested user should consult the documentation
for the stand-alone KBMAG package. Roughly speaking, it first runs the Knuth-Bendix program, which does not halt
with a confluent rewriting system, but is used instead to construct a word-difference finite state automaton. This in turn
is used to construct the word-acceptor and multiplier automata for the group. Sometimes the initial constructions are
incorrect, and part of the procedure consists in checking for this, and making corrections. In fact, in this example, the
correct automata are considerably smaller than the ones first constructed. The final stage is to run an axiom-checking
program, which essentially checks that the automata satisfy the group relations. If this completes successfully, then
the correctness of the automata has been proved, and they can be used for correct word-reduction and enumeration in
the group.

gap> F:=FreeGroup("a","b","c");;

gap> a:=F.1;;b:=F.2;;c:=F.3;;

gap> G:=F/[Comm(a,Comm(a,b))*c^-1, Comm(b,Comm(b,c))*a^-1,

> Comm(c,Comm(c,a))*b^-1];;

gap> R:=KBMAGRewritingSystem(G);

rec(

isRWS := true,

verbose := true,

generatorOrder := [_g1,_g2,_g3,_g4,_g5,_g6],

inverses := [_g2,_g1,_g4,_g3,_g6,_g5],

ordering := "shortlex",

equations := [

[_g2*_g4*_g2*_g3*_g1,_g5*_g4*_g2*_g3],

[_g4*_g6*_g4*_g5*_g3,_g1*_g6*_g4*_g5],

[_g6*_g2*_g6*_g1*_g5,_g3*_g2*_g6*_g1]

]

)

gap> SetInfoLevel(InfoRWS,1);

gap> AutomaticStructure(R,true);

#I Calling external automatic groups program.

#Running Knuth-Bendix Program

(pathname)/kbprog -mt 20 -hf 100 -cn 0 -wd -me 262144 -t 500 (filename)

#Halting with 42317 equations.

#First word-difference machine with 271 states computed.

#Second word-difference machine with 271 states computed.

#System is confluent, or halting factor condition holds.
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#Running program to construct word-acceptor and multiplier automata

(pathname)/gpmakefsa -l (filename)

#Word-acceptor with 1106 states computed.

#General multiplier with 2428 states computed.

#Validity test on general multiplier succeeded.

#Running program to verify axioms on the automatic structure

(pathname)/gpaxioms -l (filename)

#General length-2 multiplier with 2820 states computed.

#Checking inverse and short relations.

#Checking relation: _g2*_g4*_g2*_g3*_g1 = _g5*_g4*_g2*_g3

#Checking relation: _g4*_g6*_g4*_g5*_g3 = _g1*_g6*_g4*_g5

#Checking relation: _g6*_g2*_g6*_g1*_g5 = _g3*_g2*_g6*_g1

#Axiom checking succeeded.

#I Computation was successful - automatic structure computed.

#Minimal reducible word acceptor with 1058 states computed.

#Minimal Knuth-Bendix equation fsa with 1891 states computed.

#Correct diff1 fsa with 271 states computed.

#Correct diff2 fsa with 271 states computed.

true

gap> Size(R);

infinity

gap> Order(R,a);

infinity

gap> Order(R,Comm(a,b));

infinity

1.10 Subgroups, cosets and subgroup presentations

This functions in this section are currently only applicable when the rewriting system is defined from a group G.

It is possible to use the Knuth-Bendix and Automatic groups program on cosets of a specified subgroup H of G.
Most of the functions in the preceding sections have analogues for cosets rather than for elements. It is also possible
sometimes to compute a complete rewriting system or a subgroup presentation of H.

1 I SubgroupOfKBMAGRewritingSystem( rws, H ) F

The subgroup H of the group G (= SemigroupOfRewritingSystem(rws)) from which rws is defined can be speci-
fied either as a subgroup of G or as a list of elements of G that generate H, or as a subgroup of F = FreeStructure-

OfRewritingSystem(rws) that maps onto H, or as a list of elements of F that generate a subgroup mapping onto
H.

SubgroupOfKBMAGRewritingSystem returns a rewriting system subrws for H, but subrws has no rules, and is only
intended to be used as a parameter in the functions that follow.

2 I ResetRewritingSystemOnCosets( rws, subrws ) F

This function resets subrws back to its form as it was before the application of KnuthBendixOnCosets or Automat-
icStructureOnCosets. The normal form and reduction algorithms on cosets will be unavailable after this call.

Any optional control parameters set for rws will automatically be used when applying the Knuth-Bendix and Auto-
matic Structure functions on cosets, that are now to be described.
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1.11 The Knuth-Bendix program on cosets

1 I KnuthBendixOnCosets( rws, subrws ) O

2 I KnuthBendixOnCosetsWithSubgroupRewritingSystem( rws, subrws ) O

Run the external Knuth-Bendix program on the rewriting system rws with respect to the cosets of the subgroup
corresponding to subrws. KnuthBendixOnCosets returns true if it finds a confluent rewriting system on coset repre-
sentatives, and otherwise false.

If KnuthBendixOnCosets halts without finding a confluent system, but still manages to output the current system
and update rws, then it is possible to use the resulting rewriting system to reduce coset representatives, and count and
enumerate the irreducible coset representatives; it cannot be guaranteed that the irreducible coset representatives are
all in normal form, however.

KnuthBendixOnCosetsWithSubgroupRewritingSystem does the same and, in addition, tries to compute a con-
fluent rewriting system for the subgroup H.

3 I RewritingSystemOfSubgroupOfKBMAGRewritingSystem( rws, subrws ) F

This can only be used after a successful call of KnuthBendixOnCosetsWithSubgroupRewritingSystem. It returns
a confluent rewriting system for H on a generating set corresponding to the generators of H that were used to define
subrws.

1.12 The automatic cosets program

1 I AutomaticStructureOnCosets(rws, subrws, [large], [filestore], [diff1]) O

2 I AutomaticStructureOnCosetsWithSubgroupPresentation(rws, subrws, [large], [filestore], [diff1])O

Run the external automatic cosets program on the rewriting system rws with respect to the cosets of the subgroup H
from which subrws was defined. AutomaticStructureOnCosets returns true if successful and false otherwise.

The optional parameters to AutomaticStructureOnCosets are the same as for AutomaticStructure.

The ordering of rws must be “shortlex”.

AutomaticStructureOnCosetsWithSubgroupPresentation does the same and, in addition, tries to compute a
presentation of the subgroup H.

3 I PresentationOfSubgroupOfKBMAGRewritingSystem( rws, subrws ) F

This can only be used after a successful call of AutomaticStructureOnCosetsWithSubgroupPresentation. It
returns a presentation for H, but this is not on the generators used to define H.

1.13 Word reduction on cosets
1 I IsReducedCosetRepresentative( rws, subrws, w ) A

Test whether the word w in the generators of the freestructure FreeStructure(rws) of the rewriting system system
rws is reduced or not as a coset representative of the subgroup H of G, and return true or false.

IsReducedCosetRepresentative can only be used after KnuthBendixOnCosets or AutomaticStructureOn-
Cosets has been run successfully on rws and subrws. In the former case, if KnuthBendixOnCosets halted without
a confluent set of rules, then irreducible words are not necessarily in normal form (but reducible words are definitely
not in normal form). If KnuthBendixOnCosets completes with a confluent rewriting system or AutomaticStruc-
tureOnCosets completes successfully, then it is guaranteed that all irreducible words are in normal form.



18 Chapter 1. KBMAG

2 I ReducedFormOfCosetRepresentative( rws, subrws, w ) O
I ReducedCosetRepresentative( rws, subrws, w ) O

Reduce the word w in the generators of the free structure FreeStructure(rws) of the rewriting system rws as a
coset representative of the subgroup H from which subrws was defined, and return the result.

ReducedFormOfCosetRepresentative can only be used after KnuthBendixOnCosets or AutomaticStructure-
OnCosets has been run successfully on rws and subrws. In the former case, if KnuthBendixOnCosets halted without
a confluent set of rules, then the irreducible word returned is not necessarily in normal form. If KnuthBendixOn-
Cosets completes with a confluent rewriting system or AutomaticStructureOnCosets completes successfully,
then it is guaranteed that all irreducible words are in normal form.

1.14 Counting and enumerating irreducible words for cosets
1 I Index( rws, subrws ) M

Returns the number of irreducible words for coset represenatitives of the subgroup H of G corresponding to subrws.

Index can only be used after KnuthBendixOnCosets or AutomaticStructureOnCosets has been run successfully
on rws and subrws. In the former case, if KnuthBendixOnCosets halted without a confluent set of rules, then the
number of irreducible words may be greater than the number of words in normal form (which is equal to the index of H
in G). If KnuthBendixOnCosets completes with a confluent rewriting system or AutomaticStructureOnCosets
completes successfully, then it is guaranteed that Index will return the correct index of H in G.

2 I EnumerateReducedCosetRepresentatives(rws, subrws, min, max) O

Enumerate all irreducible words for coset representatives of H in G, that have lengths between min and max (inclusive),
which should be non-negative integers. The result is returned as a list of words. The enumeration is by depth-first
search of a finite state automaton, and so the words in the list returned are ordered lexicographically (not by shortlex).

EnumerateReducedCosetRepresentatives can only be used after KnuthBendixOnCosets or AutomaticStruc-
tureOnCosets has been run successfully on rws and subrws. In the former case, if KnuthBendixOnCosets halted
without a confluent set of rules, then not all irreducible words in the list returned will necessarily be in normal form. If
KnuthBendixOnCosets completes with a confluent rewriting system or AutomaticStructureOnCosets completes
successfully, then it is guaranteed that all words in the list will be in normal form.

3 I GrowthFunctionOfCosetRepresentatives( rws, subrws ) F

Returns the growth function of the set of irreducible words for coset representatives of H in G, where subrws and rws
are the rewriting systems for H and G. This is a rational function, of which the coefficient of xn in its Taylor expansion
is equal to the number of coset representatives words of length n.

If the coefficients in this rational function are larger than about 16000 then strange error messages will appear and fail
will be returned.

GrowthFunctionOfCosetRepresentatives can only be used after KnuthBendixOnCosets or AutomaticStruc-
tureOnCosets has been run successfully on rws and subrws. In the former case, if KnuthBendixOnCosets halted
without a confluent set of rules, then not all irreducible words in the list returned will necessarily be in normal form. If
KnuthBendixOnCosets completes with a confluent rewriting system or AutomaticStructureOnCosets completes
successfully, then it is guaranteed that all words in the list will be in normal form.
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1.15 Examples of the Use of Rewriting System On Cosets

Example 1

gap> F:=FreeGroup("a","b","c");;

gap> a:=F.1;;b:=F.2;;c:=F.3;;

gap> G := F/[b^3,c^3,(b*c)^4,(b*c^-1)^5,a^-1*b^-1*c*b*c*b^-1*c*b*c^-1];

<fp group on the generators [ a, b, c ]>

gap> R:=KBMAGRewritingSystem(G);

rec(

isRWS := true,

silent := true,

generatorOrder := [_g1,_g2,_g3,_g4,_g5,_g6],

inverses := [_g2,_g1,_g4,_g3,_g6,_g5],

ordering := "shortlex",

equations := [

[_g3^2,_g4],

[_g5^2,_g6],

[_g3*_g5*_g3*_g5,_g6*_g4*_g6*_g4],

[_g3*_g6*_g3*_g6*_g3,_g5*_g4*_g5*_g4*_g5],

[_g2*_g4*_g5*_g3*_g5,_g5*_g4*_g6*_g3]

]

)

gap> S:=SubgroupOfKBMAGRewritingSystem(R,[a^3,c*a^2]);

rec(

isRWS := true,

silent := true,

generatorOrder := [_x1,_X1,_x2,_X2],

inverses := [_X1,_x1,_X2,_x2],

ordering := "shortlex",

equations := [

]

)

gap> KnuthBendixOnCosetsWithSubgroupRewritingSystem(R,S);

true

gap> Index(R,S);

18

gap> IsReducedCosetRepresentative(R,S,b*a*b*a);

false

gap> ReducedFormOfCosetRepresentative(R,S,b*a*b*a);

b^-1*a^-1

gap> EnumerateReducedCosetRepresentatives(R,S,0,4);

[ <identity ...>, a, a*b, a*b*c, a*b^-1, a^-1, a^-1*b, a^-1*b*c, a^-1*b^-1,

b, b*c, b*c*a, b*c*a^-1, b*c^-1, b^-1, b^-1*a, b^-1*a^-1, b^-1*a^-1*b ]

gap> SS:=RewritingSystemOfSubgroupOfKBMAGRewritingSystem(R,S);;

gap> Size(SS);

60

Example 2

We find a free subgroup of the Fibonacci group F(2, 8). This example may take about 20 minutes to run on a typical
WorkStation.
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gap> F:=FreeGroup(8);;

gap> a:=F.1; b:=F.2; c:=F.3; d:=F.4; e:=F.5; f:=F.6; g:=F.7; h:=F.8;

gap> G := F/[a*b*c^-1, b*c*d^-1, c*d*e^-1, d*e*f^-1,

> e*f*g^-1, f*g*h^-1, g*h*a^-1, h*a*b^-1];

gap> R:=KBMAGRewritingSystem(G);;

gap> S:=SubgroupOfKBMAGRewritingSystem(R,[a,e]);;

gap> AutomaticStructureOnCosetsWithSubgroupPresentation(R,S);

gap> P:=PresentationOfSubgroupOfKBMAGRewritingSystem(R,S);

<fp group on the generators [ f1, f3 ]>

gap> RelatorsOfFpGroup(P);

[ ]

gap> Index(R,S);

infinity

1.16 Functions for manipulating finite state automata

The KBMAG package contains GAP interfaces to many of the functions for manipulating finite state automata (fsa)
that are available in the standalone. We shall list these here, without giving much detail. For more detail, the user could
try looking in the source file gap/fsa4.g. fsa are currently implemented as GAP records, as they were previously
in GAP3. This interface may be updated to the style of GAP4 at some stage. (Note that the abbreviation fsa will be
used for both singular and the plural.)

The alphabet of an fsa is itself a record that must contain at least the two components type and size, where type

is a string, and size a positive integer. The easiest possibility is to use the type “simple”, and then no other record
components are necessary. There are several more complicated possibilities, which are used by the other rewriting
system functions. For example, there is the type “identifiers”, for which fields “format” and “names” are necessary.
For example

gap> M:=FreeMonoid(3);;

gap> alph := rec(type:="identifiers", size:=3,

format:="dense", names:=[M.1,M.2,M.3] );;

defines a valid alphabet for an fsa. The members of the alphabet are referred to as letters, and can be represented
either by a positive integer or by their name (usually a generator of a free group or monoid) if they have one.

The functions ReductionAutomaton(rws), WordAcceptor(rws), FirstWordDifferenceAutomaton(rws), Sec-
ondWordDifferenceAutomaton(rws) and GeneralMultiplie(rws) mentioned in earlier sections all return a fsa.
The other possibilities for the user to construct a fsa are to use the function FSA or to read one in from a file. In the
latter case, the user must immediately call InitializeFSA on the record that has been read in. For example, running
GAP from the package directory:

gap> Read("standalone/fsa_data/fsa_2");

gap> InitializeFSA(fsa_2);

1 I IsInitializedFSA( fsa ) F

Tests whether fsa is a record describing a valid initialized fsa.

2 I InitializeFSA( fsa ) F

Initializes a record representing a fsa that has been read in from a file.

3 I FSA( alph ) F

Returns an initialized fsa with alphabet alph having one state that is an initial and final state, and no transitions
(edges).

The arguments of the following functions must be initialized fsa.
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4 I WriteFSA( fsa )

Displays fsa nicely. (In a proper implementation, this would be the ViewObj function.)

5 I IsDeterministicFSA( fsa ) F

Tests whether fsa is a deterministic fsa. Many of the functions below work only for deterministic fsa. A deterministic
fsa with the same language as fsa can be constructed with the function DeterminizeFSA.

6 I AlphabetFSA( fsa ) F

7 I StatesFSA( fsa ) F

Return, respectively, the records representing the alphabet and state-set of fsa.

8 I NumberOfStatesFSA( fsa ) F

Returns the number of states of fsa.

9 I NumberOfLettersFSA( fsa ) F

10 I SizeOfAlphabetFSA( fsa ) F

Returns the size of the alphabet of fsa.

11 I AcceptingStatesFSA( fsa ) F

Returns the list of accepting states of fsa.

12 I InitialStatesFSA( fsa ) F

Returns the list of initial states of fsa.

13 I DenseDTableFSA( fsa ) F

fsa must be deterministic. The transition table is returned as a list of lists, where the e-th entry in the s-th inner list is
TargetDFA(fsa,e,s) (see below).

14 I SparseTableFSA( fsa ) F

The transition table is returned as a list of lists, where each entry in the s-th inner list is is a two-element list [e,t]
of integers that represents a transition from state number s to state number t under letter number e. We can also have
e=0, representing transitions with no label (ε transitions).

15 I TargetDFA( fsa, e, s ) F

fsa must be a deterministic fsa, e should be a number or name of a letter of the alphabet, and s a number of a state of
fsa. The target of s under e is returned, or 0 if there is no target.

16 I TargetsFSA( fsa, e, s ) F

Similar to TargetDFA, but fsa need not be deterministic, and a list of targets is returned.

17 I SourcesFSA( fsa, e, s ) F

Similar to TargetsFSA, but the list of sources of transitions to s under e is returned. e can also be zero here.

18 I WordTargetDFA( fsa, w ) F

fsa must be a deterministic fsa, and w should be a list of integers or a word in the alphabet (in the case when the
alphabet is defined from a free group or monoid). The target of the initial state of fsa under w is returned, or 0 if there
is no such target.
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19 I IsAcceptedWordDFA( fsa, w ) F

fsa must be a deterministic fsa, and w should be a list of integers or a word in the alphabet (in the case when the
alphabet is defined from a free group or monoid). This function tests whether w is in the language of fsa.

20 I AddStateFSA( fsa ) F

Adds an extra non-accepting state to fsa with no transitions to or from it.

21 I DeleteStateFSA( fsa ) F

Deletes the highest numbered state together with all transitions to and from it from fsa. Use PermuteStatesFSA first
to delete a different state.

22 I PermuteStatesFSA( fsa, p )

p should be a permutation of [1..ns], where fsa has ns states. The states are permuted, where the original state
number n becomes the new state number np.

23 I AddLetterFSA( fsa [,name] ) F

Adds an extra letter to the alphabet of fsa with no associated transitions. If the alphabet of fsa is defined over a free
group or monoid, then name specifies the element of this free structure corresponding to the new letter.

24 I DeleteLetterFSA( fsa ) F

Deletes the highest numbered letter together with all associated transitions from the alphabet of fsa. Use PermuteLet-
tersFSA first to delete a different letter.

25 I PermuteLettersFSA( fsa, p )

p should be a permutation of [1..na], where the alphabet of fsa has na letters. The letters are permuted, where the
original letter number n becomes the new letter number np.

26 I AddEdgeFSA( fsa, e, s, t ) F

Adds an extra transition to fsa with source s, target t and letter e. If there is already such a transition, then this function
does nothing.

27 I DeleteEdgeFSA( fsa, e, s, t ) F

Deletes the transition from fsa with source s, target t and letter e if there is one.

28 I SetAcceptingFSA( fsa, s, flag ) F

flag should be true or false, and state number s is made accepting or non-accepting, respectively.

29 I SetInitialFSA( fsa, s, flag ) F

flag should be true or false, and state number s is made initial or non-initial, respectively.

30 I IsAccessibleFSA( fsa ) F

Tests whether fsa is accessible; that is, whether all states can be reached from the initial states.

31 I AccessibleFSA( fsa ) F

Removes all inaccessible states from fsa thus rendering it accessible without altering its language.

32 I IsTrimFSA( fsa ) F

Tests whether fsa is trim; that is, whether all states can be reached from the initial states, and a final state can be
reached from all states.
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33 I TrimFSA( fsa ) F

Removes all inaccessible states from fsa and all states from which an accepting state cannot be reached, thus rendering
it trim without altering its language.

34 I IsBFSFSA( fsa ) F

Tests whether fsa is in bfs (breadth-first-search) form; that is, whether the initial states come first and the other states
appear in ascending order if one scans the transition table first by state number and then by alphabet number. Note
that fsa must be accessible for it to be bfs.

35 I BFSFSA( fsa ) F

Replaces fsa by one with the same language but in bfs form. This can be useful for comparing the languages of two
fsa. In fact MinimizeFSA and BFSFSA are applied in turn to a deteministic fsa, then the resulting transition table is
uniquely determined by the language of the fsa.

36 I LSizeDFA( fsa ) F

The size of the acceted language of fsa, which must be deterministic. This only works if fsa is trim. If not, then
TrimFSA must be called first.

37 I LEnumerateDFA( fsa, min, max ) F

The words in the language of fsa of length l satisfying min ≤ l ≤ max are returned in a list. The words will either be
lists of integers, for “simple” type alphabets, of lists of words in the underlying free group or monoid for alphabets of
type “identifiers”.

The remaining fsa functions all call external programs from the standalone. All of them except DeterminizeFSA
take only deterministic fsa as input, and all of them return deterministic fsa as output.

38 I DeterminizeFSA( fsa ) F

Returns a deterministic fsa with the same language as fsa.

39 I MinimizeFSA( fsa ) F

Returns a fsa with the same language as fsa and a minimal number of states.

40 I NotFSA( fsa ) F

Returns a fsa with the same alphabet as fsa whose language is the complement of that of fsa.

41 I StarFSA( fsa ) F

Returns a fsa whose language is L∗, where L is the langauge of fsa.

42 I ReverseFSA( fsa ) F

Returns a fsa whose language consists of the reversed words in the language of fsa.

43 I ExistsFSA( fsa ) F

fsa should be two-variable fsa on an alphabet A. An fsa is returned that accepts a word w1 ∈ A∗ if and only if there
exists a words w2 ∈ A∗ with (w1,w2) in the language of fsa.

44 I SwapCoordsFSA( fsa ) F

fsa should be two-variable fsa on an alphabet A. A two-variable fsa on A is returned that accepts (w1,w2) if and only
if (w2,w1) is accepted by fsa.

45 I AndFSA( fsa1, fsa2 ) F

fsa1 and fsa2 must have the same alphabet. The returned fsa has language equal to the interssection of those of fsa1
and fsa2.
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46 I OrFSA( fsa1, fsa2 ) F

fsa1 and fsa2 must have the same alphabet. The returned fsa has language equal to the union of those of fsa1 and fsa2.

47 I ConcatFSA( fsa1, fsa2 ) F

fsa1 and fsa2 must have the same alphabet. The returned fsa accepts words of the form w1w2, where w1 and w2 are in
the languages of fsa1 and fsa2, respectively.

48 I LanguagesEqualFSA( fsa1, fsa2 ) F

fsa1 and fsa2 must have the same alphabet. This function tests whether the languages of fsa1 and fsa2 are equal, and
returns True or false.

49 I GrowthFSA( fsa ) F

Returns the growth function of fsa. This is a rational function, of which the the coefficient of xn in its Taylor expansion
is equal to the number of words of length n in the accepted language of fsa.

If the coefficients in this rational function are larger than about 16000 then strange error messages will appear and fail
will be returned.
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