Gpd

Groupoids, graphs of groups, and graphs
of groupoids

Version 1.42

15/02/2016

Emma Moore
Chris Wensley

Chris Wensley Email: c.d.wensley@bangor.ac.uk
Homepage: http://pages.bangor.ac.uk/ " mas023/

Address: School of Computer Science, Bangor University,
Dean Street, Bangor, Gwynedd, LL57 1UT, U.K.

mailto://c.d.wensley@bangor.ac.uk
http://pages.bangor.ac.uk/~mas023/

Gpd 2

Abstract

The Gpd package for GAP4 provides functions for the computation with groupoids (categories with every
arrow invertible) and their morphisms; for graphs of groups, and graphs of groupoids. The most basic structure
introduced is that of magma with objects, followed by semigroup with objects, then monoid with objects and
finally groupoid which is a group with objects.

It provides normal forms for Free Products with Amalgamation and for HNN-extensions when the initial
groups have rewrite systems and the subgroups have finite index.

The Gpd package was originally implemented in 2000 (as GraphGpd) when the first author was studying
for a Ph.D. in Bangor.

Version 1.07 was released in July 2011, to be tested with GAP 4.5. Version 1.15 came out with the first
release of GAP 4.5 in June 2012, and was submitted for official acceptance as a GAP package. Gpd became
an accepted GAP package in May 2015. The latest version is 1.42 of 15th February 2016, prepared for GAP
4.8.

Recent versions implement many of the constructions described in the paper [AW10] for automorphisms
of groupoids.

Bug reports, suggestions and comments are, of course, welcome. Please contact the last author at
c.d.wensley@bangor.ac.uk or submit an issue at http://github.com/gap-packages/gpd/issues/.

Copyright

© 2000-2016 Emma Moore and Chris Wensley

Gpd is free software; you can redistribute it and/or modify it under the terms of the GNU General Public
License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any
later version.

Acknowledgements

This documentation was prepared with the GAPDoc package of Frank Liibeck and Max Neunhéffer.

mailto://c.d.wensley@bangor.ac.uk
http://github.com/gap-packages/gpd/issues/
http://www.fsf.org/licenses/gpl.html
http://www.fsf.org/licenses/gpl.html

Contents

1 Introduction

2 Many-object structures
2.1 Magmas with objects; arrows Lo e
2.2 Semigroups withobjects
2.3 Monoids withobjects L
2.4 Structures with one or more pieces it e

3 Homomorphisms of many-object structures
3.1 Homomorphisms of magmas withobjects
3.2 Homomorphisms of semigroups and monoids with objects
3.3 Homomorphisms to more thanone piece

4 Groupoids
4.1 Groupoids: their properties and attributes L Lo
4.2 Groupoid elements; stars; costars; homsets
4.3 Subgroupoids e
4.4 Left,rightanddoublecosets
45 Conjugation e e e e e e e e e e e e e e

S Homomorphisms of Groupoids
5.1 Homomorphisms from a connected groupoid oL
5.2 Homomorphisms to a connected groupoid
5.3 Homomorphisms to more thanone piece
5.4 Groupoid automorphisms

6 Graphs of Groups and Groupoids
6.1 Digraphs.
6.2 Graphsof Groups e
6.3 Words in a Graph of Groups and their normal forms
6.4 Free products with amalgamation and HNN extensions
6.5 GraphsOfGroupoids and theirWords

7 Technical Notes
7.1 Many object Structureso i e e e e e
7.2 Many object homomorphisms

16
16
20
23
25
26

29
29
30
31
32

36
36
37
39
40
43

8 Development History

8.1 Versions of the Package . . .

8.2 What needs to be done next?
References

Index

Gpd

48
48
48

50

51

Chapter 1

Introduction

Groupoids are mathematical categories in which every arrow is invertible. The Gpd package provides
functions for the computation with groupoids and their morphisms; for graphs of groups and graphs
of groupoids. The package is far from complete, and development continues.

It was used by Emma Moore in her thesis [Moo0O1] to calculate normal forms for free products
with amalgamation, and for HNN-extensions when the initial groups have rewriting systems.

The current version is 1.42 for GAP 4.8, released on 15th February 2016.

The package may be obtained as a compressed tar file gpd-1.42.tar.gz by ftp from one of the
following sites:

» any GAP archive, e.g. http://www.gap-system.org/Packages/packages.html;
* the Bangor site: http://www.maths.bangor.ac.uk/chda/gap4/gpd/gpd.html;
* the package GitHub repository: https://github.com/gap-packages/gpd.

The information parameter InfoGpd takes default value 1 which, for the benefit of new users,
causes more messages to be printed out when operations fail. When raised to a higher value, additional
information is printed out.

Help is available in the usual way.

Example

gap> LoadPackage("gpd");
Loading Gpd 1.41 for GAP 4.8 - Emma Moore and Chris Wensley ...
true

For version 1.05 the package was completely restructured, starting with magmas with objects and their
mappings, and building up to groupoids via semigroups with objects and monoids with objects. From
version 1.07 the package includes some functions to implement constructions contained in [AW10].
More functions will be released as soon as possible.

Once the package is loaded, it is possible to check the correct installation by running the test
suite of the package with the command ReadPackage("gpd", "tst/testall.g"); You may
reference this package by mentioning [BMPWO02], [Moo01] and [AW10].

http://www.gap-system.org/Packages/packages.html
http://www.maths.bangor.ac.uk/chda/gap4/gpd/gpd.html
https://github.com/gap-packages/gpd

Chapter 2

Many-object structures

The aim of this package is to provide operations for finite groupoids. A groupoid is constructed from
a group and a set of objects. In order to provide a sequence of categories, with increasing structure,
mimicing those for groups, we introduce in this chapter the notions of magma with objects; semigroup
with objects and monoid with objects. The next chapter introduces morphisms of these structures. At
a first reading of this manual, the user is advised to skip quickly through these first two chapters, and
then move on to groupoids in Chapter 3.

For the definitions of the standard properties of groupoids we refer to P. Higgins’ book “Categories
and Groupoids” [Hig05] (originally published in 1971, reprinted by TAC in 2005), and to R. Brown’s
book “Topology” [Bro88], recently revised and reissued as “Topology and Groupoids” [Bro06].

2.1 Magmas with objects; arrows

A magma with objects M consists of a set of objects Ob(M), and a set of arrows Arr(M) together with
tail and head maps t,h : Arr(M) — Ob(M), and a partial multiplication : Arr(M) — Arr(M), with
a* b defined precisely when the head of a coincides with the tail of . We write an arrow a with tail u
and head vas (a:u—v).

When this multiplication is associative we obtain a semigroup with objects.

A loop is an arrow whose tail and head are the same object. An identity arrow at object u is a loop
(1, :u— u) such that ax 1, = a and 1, xb = b whenever u is the head of a and the tail of b. When M
is a semigroup with objects and every object has an identity arrow, we obtain a monoid with objects,
which is just the usual notion of mathematical category.

An arrow (a : u — v) in a monoid with objects has inverse (a=' : v — u) provided axa™! = 1,
and a~' xa = 1,. A monoid with objects in which every arrow has an inverse is a group with objects,
usually called a groupoid.

-1

2.1.1 MagmaWithObjects

> MagmaWithObjects(args) (function)
> SinglePieceMagmaWithObjects(magma, obs) (operation)
> ObjectList (mwo) (attribute)
> RootObject (mwo) (operation)

Gpd 7

The simplest construction for a magma with objects M is to take a magma m and an ordered set s,
and form arrows (u,a,v) for every a in m and u, v in s. Multiplication is defined by (u,a,v) * (v,b,w) =
(u,a*b,w). In this package we prefer to write (u,a,v) as (a : u — v), so that the multiplication rule
becomes (a:u—v)*(b:v—w)=(axb:u—w).

Any finite, ordered set is in principle acceptable as the object list of M, but most of the time we
find it convenient to restrict ourselves to sets of non-positive integers.

This is the only construction implemented here for magmas, semigroups, and monoids with ob-
jects, and these all have the property IsDirectProductWithCompleteGraph. There are other con-
structions implemented for groupoids.

The output from function MagmaWithObjects lies in the categories IsDomainWithObjects,
IsMagmaWithObjects, CategoryCollections(IsMultiplicativeElementWithObjects) and
IsMagma. The root object of M is the first element in s.

Example

gap> tm := [[1,2,4,3],[1,2,4,31,[3,4,2,11,[3,4,2,111;;
gap> Display(tm);

(rc 1, 2, 4, 31,
[1, 2, 4, 31,
[3, 4, 2, 11,
[3, 4, 2, 111
gap> m := MagmaByMultiplicationTable(tm);; SetName(m, "m");

gap> ml := MagmaElement(m,1);; m2 := MagmaElement(m,2);;
gap> m3 := MagmaElement(m,3);; m4 := MagmaElement(m,4);;
gap> M78 := MagmaWithObjects(m, [-8,-7]);
magma with objects :-
magma = m

objects = [-8, -7]
gap> SetName(M78, "M78");
gap> [IsAssociative(M78), IsCommutative(M78), IsDomainWithObjects(M78) 1];
[false, false, true]
gap> [RootObject(M78), ObjectList(M78) 1;
[-8, [-8, -71]1]

2.1.2 Arrow

> Arrow(mwo, elt, tail, head) (operation)
> ElementOfArrow(arr) (attribute)
> TailOfArrow(arr) (attribute)
> HeadOfArrow(arr) (attribute)
> IsArrowIn(arr, mwo) (operation)

Arrows in a magma with objects lie in the category IsMultiplicativeElementWithObjects.
An attempt to multiply two arrows which do not compose resuts in fail being returned. Each
arrow arr = (a : u — v) has three components. The magma element a € m may be accessed by
ElementOfArrow(arr). Similarly, the tail object u and the head object v may be obtained using
TailOfArrow(arr) and HeadOfArrow(arr) respectively.

The operation IsArrowIn is added due to difficulties found when attempting to write a method
for \in.

Gpd 8

Example

gap> a78 := Arrow(M78, m2, -7, -8);

[m2 : -7 -> -8]

gap> [a78 in M78, IsArrowIn(a78, M78) 1;

[false, true]

gap> b87 := Arrow(M78, m4, -8, -7);;

gap> [ElementOfArrow(b87), TailOfArrow(b87), HeadOfArrow(b87) 1;
[m4, -8, -7 1]

gap> ba := b87*a78;; ab := a78*b87;; [ba, ab];
[[m4 : -8 -> -8], m3 : -7 -> -7]]

gap> [a78~2, ba~2, ba~3];

[fail, [m1 : -8 -> -8], [m3 : -8 -> -8] 1]

gap> ## this demonstrates non-associativity:

gap> [a78%ba, ab*a78, a78xba=ab*a78];

[m3 : -7 -> -8], [m4 : -7 -> -8], false]

2.1.3 IsSinglePiece

> IsSinglePiece(mwo)

(property)
> IsDirectProductWithCompleteGraph (mwo) (property)
> IsDiscrete(mwo) (property)

If the partial composition is forgotten, then what remains is a digraph (usually with multiple edges
and loops). Thus the notion of connected component may be inherited by magmas with objects from
digraphs. Unfortunately the terms Component and Constituent are already in considerable use
elsewhere in GAP, so (and this may change if a more suitable word is suggested) we use the term
IsSinglePiece to describe a connected magma with objects. When each connected component has
a single object, and there is more than one component, the magma with objects is discrete.

Example

gap> IsSinglePiece(M78);

true

gap> IsDirectProductWithCompleteGraph(M78);
true

gap> IsDiscrete(M78);

false

2.2 Semigroups with objects

2.2.1 SemigroupWithObjects

> SemigroupWithObjects(args) (function)
> SinglePieceSemigroupWithObjects(sgp, obs) (operation)

When the magma is a semigroup the construction gives a SinglePieceSemigroupWithObjects.
In the example we use a transformation semigroup and 3 objects.

Gpd 9

Example

gap> t := Transformation([1,1,2,3]);; s := Transformation([2,2,3,3]);;

gap> r := Transformation([2,3,4,4]);; sgp := Semigroup(t, s, r);;

gap> SetName(sgp, "sgp<t,s,r>");

gap> S123 := SemigroupWithObjects(sgp, [-3,-2,-1]);

semigroup with objects :-

magma = sgp<t,s,r>
objects = [-3, -2, -1]

gap> [IsAssociative(S123), IsCommutative(S123) 1;

[true, false]

gap> t12 := Arrow(S123, t,

[Transformation([1, 1, 2,

gap> s23 := Arrow(S123, s,

[Transformation([2, 2, 3, 31) : -2 -> -3]
r,
4,

31) : -1 ->-2]

gap> r31 := Arrow(S123,

[Transformation([2, 3, 471) : -3 > -1]

gap> tsl13 := t12 * s23;
[Transformation([2, 2, 2, 31) : -1 -> -3]
gap> sr2l1 := s23 * r31;
[Transformation([3, 3, 4, 4]) : -2 -> -1]
gap> rt32 := r31 * tl12;

[Transformation([1, 2, 3, 31) : -3 -> -2]
gap> tsrl := tsl3 * r31;
[Transformation([3, 3, 3]) : -1 -> -1]

2.3 Monoids with objects

2.3.1 MonoidWithObjects

> MonoidWithObjects(args) (function)
> SinglePieceMonoidWithObjects(mon, obs) (operation)
> GeneratorsOfMagmaWithObjects (mwo) (operation)

When the semigroup is a monoid the construction gives a SinglePieceMonoidWithObjects
The example uses a finitely presented monoid with 2 generators and 2 objects.

When the construction is the direct product of a monoid and the complete graph on the objects,
the generating set consists of two parts. Firstly, there is a loop at the root object for each generator of
the monoid. Secondly, for each pair of objects u, v, there are arrows (1 : u — v) and (1 :v — u).

Example
gap> fm := FreeMonoid(2, "f");;
gap> em := One(fm);;
gap> gm := GeneratorsOfMonoid(fm);;

gap> mon := fm/[[gm[1]~3,em], [gm[1]*gm[2],gm[2]] 1;;
gap> M49 := MonoidWithObjects(mon, [-9,-4]);
monoid with objects :-
magma = Monoid([f1, £2])
objects [-9, -4]

Gpd 10

gap> ktpo := KnownTrueProperties0fObject(M49);

["CanEasilyCompareElements", "CanEasilySortElements", "IsDuplicateFree",
"IsAssociative", "IsSinglePieceDomain",
"IsDirectProductWithCompleteGraphDomain"]

gap> genM := GeneratorsOfMagmaWithObjects(M49);

[[<identity ...> : -9 -> -9], [f1 : -9 -> -9], [f2 : -9 -> -9],
[<identity ...> : -9 -> -4], [<identity ...> : -4 -> -9]]

gap> g2:=genM[2];; g3:=genM[3];; gd:=genM[4];; gb:=genM[5];;

gap> [g5,g3,g2,g4];

[[<identity ...> : -4 -> -9], [f2 : -9 -> -9], [f1 : -9 -> -9],
[<identity ...> : -9 -> -4]]

gap> gbxg3*g2xgd;

[f2xf1 : -4 -> -4]

2.4 Structures with one or more pieces

2.4.1 DomainWithSingleObject

> DomainWithSingleObject (dom, Obj) (operation)

A magma, semigroup, monoid, or group can be made into a magma with objects by the addition
of a single object. The two are algebraically isomorphic, and there is one arrow (a loop) for each
element in the group. In the example we take the dihedral group of size 8 at the object 0.

Example

gap> d8 := Group((1,2,3,4), (1,3));;

gap> SetName(d8, "d8");

gap> DO := DomainWithSingleObject(d8, 0);
single piece groupoid: < d8, [0] >

gap> GeneratorsOfMagmaWithInverses(DO);

[[(1,2,3,4) : 0 -> 0], [(1,3) : 0 -> 0]]
gap> Size(DO);

8

2.4.2 UnionOfPieces

> UnionOfPieces(pieces) (operation)
> Pieces (mwo) (attribute)

A magma with objects whose underlying digraph has two or more connected components can be
constructed by taking the union of two or more connected structures. These, in turn, can be combined
together. The only requirement is that all the object lists should be disjoint.

Structures S123, M49, DO generated above have, respectively, GeneratorsOfMagma,
GeneratorsOfMagmaWithOne and GeneratorsOfMagmaWithInverses. The generators of a
structure with several pieces is the union of the generators of the individual pieces.

Gpd

11

Example

gap> N1 := UnionOfPieces([M78, S123]);; ObjectList(N1);
[-8, -7, -3, -2, -1]
gap> N2 := UnionOfPieces([M49, DO]);; Pieces(N2);
[monoid with objects :-
magma = Monoid([f1, £f2])
objects = [-9, -4]
, single piece groupoid: < d8, [0] >]

gap> N3 := UnionOfPieces([N1, N2]);
magma with objects having 4 pieces :-
1: monoid with objects :-

magma = Monoid([f1, £2])
objects = [-9, -4]
2: M78

3: semigroup with objects :-

magma = sgp<t,s,r>

objects = [-3, -2, -11]

4: single piece groupoid: < d8, [0] >
gap> ObjectList(N3);
[-9, -8, -7, -4, -3, -2, -1, 0]
gap> Length(GeneratorsOfMagmaWithObjects(N3));
50
gap> ## the next command returns fail since the object sets are not disjoint:
gap> N4 := UnionOfPieces([S123, DomainWithSingleObject(d8, -2) 1);
fail

Chapter 3

Homomorphisms of many-object
structures

A homomorphism f from a magma with objects M to a magma with objects N consists of
* amap fp from the objects of M to those of N,
* amap f4 from the arrows of M to those of N.
The map f4 is required to be compatible with the tail and head maps and to preserve multiplication:
fala:u—=v)xfa(b:v—w) = falaxb:u—w)
with tail fp(u) and head fo(w).

When M is a monoid or group, the map f; is required to preserve object identities and inverses.

3.1 Homomorphisms of magmas with objects

3.1.1 MagmaWithObjectsHomomorphism

> MagmaWithObjectsHomomorphism(args) (function)
> HomomorphismFromSinglePiece(src, rng, hom, imobs) (operation)
> HomomorphismToSinglePiece(src, rng, images) (operation)
> PieceImages (mwohom) (attribute)
> Homs0fMapping (mwohom) (attribute)
> Pieces0fMapping(mwohom) (attribute)
> IsomorphismNewObjects(src, objlist) (operation)

There are a variety of homomorphism constructors.

The simplest construction gives a homomorphism M — N with both M and N connected. It is
implemented as IsMappingToSinglePieceRep with attributes Source, Range and PieceImages.
The operation requires the following information:

* a magma homomorphism f from the underlying magma of M to the underlying magma of N,

¢ alist imobs of the images of the objects of M.

12

Gpd

In the first example we construct endomappings of m and M78.
Example

13

gap> tupl := [Tuple([ml,m2]), Tuple([m2,ml1]), Tuple([m3,m4]), Tuple([m4,m3])];
gap> f1 := GeneralMappingByElements(m, m, tupl);

gap> IsMagmaHomomorphism(f1);

true

gap> homl := MagmaWithObjectsHomomorphism(M78, M78, f1, [-8,-7]);;
gap> Display(homl);

homomorphism to single piece magma: M78 -> M78

magma hom: <mapping: m -> m >, object map: [-8, -7 1 -> [-8, -7 1]
gap> [Source(homl), Range(homl)];

[M78, M78 1]

gap> b87;

md : -8 -> -7]

gap> iml := ImageElm(homl, b87);

[m3 : -8 -> -7]

gap> 156 := IsomorphismNewObjects(M78, [-5,-6]);

magma with objects homomorphism :

[[IdentityMapping(m), [-5, -6 1 1]

gap> M65 := Range(i56);;

gap> SetName(M65, "M65");

gap> jb56 := InverseGeneralMapping(i56);;

gap> Images0fObjects(j56);

[-7, -8

gap> ib87 := ImageElm(i56, b87);

[m4 : -5 -> -6]

gap> comp := j56 * homl;

magma with objects homomorphism : M65 -> M78

[[<mapping: m ->m >, [-7, -8 1 11

gap> ImageElm(comp, ib87);

[m3 : -8 -> -7]

A homomorphism fo a connected magma with objects may have a source with several pieces, and so

is a union of homomorphisms from single pieces.

Example

gap> M4 := UnionOfPieces([M78, M65]);;

gap> images := [PieceImages(homl)[1], PieceImages(j56)I[1] 1;

[[<mapping: m ->m >, [-8, -7 1 1, [IdentityMapping(m), [-7, -8 1 1 1]
gap> map4 := HomomorphismToSinglePiece(M4, M78, images);

magma with objects homomorphism :

[[<mapping: m ->m >, [-8, -7 1], [IdentityMapping(m), [-7, -8 1 1]
gap> ImageElm(map4, b87);

[m3 : -8 -> -7]

gap> ImageElm(map4, ib87);

[m4 : -8 -> -7]

Gpd

3.2 Homomorphisms of semigroups and monoids with objects

The next example exhibits a homomorphism between transformation semigroups with objects.

14

Example
gap> t2 := Transformation([2,2,4,1]);;
gap> s2 := Transformation([1,1,4,4]);;
gap> r2 := Transformation([4,1,3,3]);;

gap> sgp2 := Semigroup([t2, s2, r2]);;

gap> SetName(sgp2, "sgp<t2,s2,r2>");

gap> ## apparently no method for transformation semigroups available for:
gap> ## nat := NaturalHomomorphismByGenerators(sgp, sgp2); so we use:
gap> ## in the function flip below t is a transformation on [1..n]

gap> flip := function(t)

> local i, j, k, L, L2, n;

> n := DegreeOfTransformation(t);

> L := ImagelListOfTransformation(t);

> if Is0ddInt(n) then n:=n+1; Li:=Concatenation(L, [n]);
> else L1:=L; fi;

> L2 := ShallowCopy(L1);

> for i in [1..n] do

> if Is0ddInt(i) then j:=i+1; else j:=i-1; fi;

> k := L1[j];

> if Is0ddInt(k) then L2[i]:=k+1; else L2[i]:=k-1; fi;
> od;

> return(Transformation(L2));

> end;;

gap> smap := MappingByFunction(sgp, sgp2, flip);;
gap> ok := RespectsMultiplication(smap);
true
gap> [t, Image(smap, t) 1;
[Transformation([1, 1, 2, 3]), Transformation([2, 2, 4, 11) 1]
gap> [s, Image(smap, s) 1;
[Transformation([2, 2, 3, 3]), Transformation([1, 1, 4, 471)]
gap> [r, Image(smap, r) 1;
[Transformation([2, 3, 4, 4]), Transformation([4, 1, 3, 3]) 1]
gap> SetName(smap, "smap");
gap> T123 := SemigroupWithObjects(sgp2, [-13,-12,-11]);;
gap> shom := MagmaWithObjectsHomomorphism(S123, T123, smap, [-11,-12,-13]);;
gap> it12 := ImageElm(shom, t12);; [t12, itl12];
[[Transformation([1, 1, 2, 31) : -1 -> -2],
[Transformation([2, 2, 4, 11) : -13 -> -12]]
gap> is23 := ImageElm(shom, s23);; [s23, is23];
[[Transformation([2, 2, 3, 3]) : -2 -> -3],
[Transformation([1, 1, 4, 4]) : -12 -> -11]]
gap> ir31 := ImageElm(shom, r31);; [r31, ir31];
[[Transformation([2, 3, 4, 41) : -3 -> -1],
[Transformation([4, 1, 3, 31) : -11 -> -13]]

Gpd

3.3 Homomorphisms to more than one piece

3.3.1 HomomorphismByUnion

IsInjectiveOnObjects (mwohom)
IsSurjectiveOnObjects (mwohom)
IsBijectiveOnObjects (mwohom)
IsEndomorphismWithQObjects (mwohom)
IsAutomorphismWithObjects (mwohom)

v VvV VvV VvV VvV V

15

HomomorphismByUnion(src, rng, homs) (operation)

(property)
(property)
(property)
(property)
(property)

When f: M — N and N has more than one connected component, then f is a union of homomor-

phisms, one for each piece in the range.
Example

gap> N4 := UnionOfPieces([M78, T123]);
magma with objects having 2 pieces :-
1: semigroup with objects :-
magma = sgp<t2,s2,r2>

objects [-13, -12, -11]
2: M78
gap> h14 := HomomorphismByUnionNC(N1, N4, [homl, shom]);
magma with objects homomorphism :
[magma with objects homomorphism : M78 -> M78

[[smap, [-11, -12, -13 111]
gap> IsInjectiveOnObjects(h14d);

true
gap> IsSurjectiveOnObjects(h14d);
true
gap> IsBijectiveOnObjects(hil4);
true

gap> ImageElm(hi4, t12);
[Transformation([2, 2, 4, 1]) : -13 -> -12]
gap> h45 := IsomorphismNewObjects(N4, [[-103,-102,-101], [-108,-107] 1);
magma with objects homomorphism :
[magma with objects homomorphism :
[[IdentityMapping(m), [-108, -107 1 1 1,
magma with objects homomorphism :
[[IdentityMapping(sgp<t2,s2,r2>), [-103, -102, -101 1 1 1]
gap> N5 := Range(h45);; SetName(N5, "N5");
gap> hi15 := h1d * h45;
magma with objects homomorphism :
[magma with objects homomorphism : [[<mapping: m -> m >, [-108, -107
, magma with objects homomorphism : [[smap, [-101, -102, -103]]
gap> ImageElm(hi5, t12);
[Transformation([2, 2, 4, 1]) : -103 -> -102]

11
11

[[<mapping: m ->m >, [-8, -7 1]], magma with objects homomorphism :

]

Chapter 4

Groupoids

A groupoid is a (mathematical) category in which every element is invertible. It consists of a set of
pieces, each of which is a connected groupoid. The usual terminology is ‘connected component’, but
in GAP ‘component’ is used for ‘record component’, so we use the term single piece.

The simplest form for a single piece groupoid is the direct product of a group and a complete
graph, and so is determined by a set of objects obs = Q (the least of which is the root object), and
a root group grp = G. Then the elements of the groupoid are arrows g : 01 — 03, stored as triples
[g,01,02], where g € G and 01,0, € Q. The objects will generally be chosen to be consecutive
negative integers, but any suitable ordered set is acceptable, and ‘consecutive’ is not a requirement.
The root group will usually be taken to be a permutation group, but pc-groups and fp-groups are also
supported.

A group may be considered as a single piece groupoid with one object.

A groupoid is a set of one or more single piece groupoids, its pieces, and is represented as
IsGroupoidRep, with attribute Pieces0fGroupoid.

A groupoid is homogeneous if it has two of more isomorphic pieces, with identical groups. The
special case of homogeneous, discrete groupoids, where each piece has a single object, is given its own
representation. These are used in the XMod package as the source of a crossed modules of groupoids.

For the definitions of the standard properties of groupoids we refer to R. Brown’s book “Topology™
[Bro88], recently revised and reissued as “Topology and Groupoids” [Bro06].

4.1 Groupoids: their properties and attributes

4.1.1 SinglePieceGroupoid

> SinglePieceGroupoid(grp, obs) (operation)
> Groupoid (args) (function)
> DomainWithSingleObject(gp, obj) (operation)

The simplest construction of a groupoid is as the direct product of a group and a complete graph.
Many subgroupoids of such a groupoid do not have this simple form, and will be considered in section
4.3. The global function Groupoid will normally find the appropriate constructor to call, the options
being:

* the object group, a set of objects;

16

Gpd

* a group being converted to a groupoid, a single object;

* a list of groupoids which have already been constructed (see 4.1.4).

17

Methods for ViewObj, PrintObj and Display are provided for groupoids and the other types
of object in this package. Users are advised to supply names for all the groups and groupoids they

construct.
In the last two examples Gf2c6 and Gabc show that the objects need not be integers.
Example

gap> s4 := Group((1,2,3,4), (3,4));;

gap> d8 := Subgroup(s4, [(1,2,3,4), (1,3) 1);;
gap> SetName(s4, "s4"); SetName(d8, "d8");

gap> Gs4 := SinglePieceGroupoid(s4, [-15 .. -11]);
single piece groupoid: < s4, [-15 .. -11] >

gap> Gd8 := Groupoid(d8, [-9,-8,-7]);

single piece groupoid: < d8, [-9, -8, -7 1] >

gap> c6 := Group((5,6,7)(8,9));;

gap> SetName(c6, "c6");

gap> Gc6 := DomainWithSingleObject(c6, -6);

single piece groupoid: < c6, [-6] >

gap> SetName(Gs4, "Gs4"); SetName(Gd8, "Gd8"); SetName(Gc6, "Gc6");
gap> G3 := Groupoid([Gc6, Gd8, Gs4]);

groupoid with 3 pieces:

[Gs4, Gd8, Gc6]

gap> f2 := FreeGroup(2);;

gap> Gf2c6 := Groupoid(c6, GeneratorsOfGroup(f2));
single piece groupoid: < c6, [f1, f2] >

gap> Gabc := Groupoid(48, ["a", "b", "c"]);
single piece groupoid: < 48, ["a", "b", "c" 1 >

4.1.2 ObjectList

> ObjectList (gpd)

> RootObject (gpd)

> RootGroup (gpd)

> ObjectGroup(gpd, obj)

(attribute)
(attribute)
(attribute)

(operation)

The ObjectList of a groupoid is the sorted list of objects. The RootObject in a single-piece
groupoid is the object with least label. A loop is an arrow of the form g : 0 — o, and the loops at a
particular object o form a group, the ObjectGroup at 0. The RootGroup is the ObjectGroup at the

RootObject.
Example

gap> ObjectList(Gs4);

[-15, -14, -13, -12, -11]
gap> RootObject(Gd8);

-9

gap> RootGroup(Gc6);

c6

Gpd 18

gap> ObjectGroup(Gs4, -11);
s4

4.1.3 IsPermGroupoid

> IsPermGroupoid(gpd) (property)
> IsPcGroupoid(gpd) (property)
> IsFpGroupoid(gpd) (property)
> IsMatrixGroupoid(gpd) (property)

A groupoid is a permutation groupoid if all its pieces have permutation groups. Most of the
examples in this chapter are permutation groupoids, but in principle any type of group known to GAP
may be used. In the following example Gf2 is an fp-groupoid, Gg8 is a pc-groupoid, and Gs143 is a
matrix groupoid.

Example

gap> f2 := FreeGroup(2);;

gap> Gf2 := Groupoid(f2, -22);;

gap> SetName(f2, "f2"); SetName(Gf2, "Gf2");

gap> g8 := SmallGroup(8, 4);;

gap> Gg8 := Groupoid(g8, [-28, -27 1);;

gap> SetName(g8, "q8"); SetName(Ggq8, "Gg8");

gap> s143 := SpecialLinearGroup(4, 3);;

gap> Gsl43 := SinglePieceGroupoid(s143, [-35..-31 1);;
gap> SetName(s143, "s143"); SetName(Gsl43, "Gs143");
gap> [IsMatrixGroupoid(Gsl43), IsFpGroupoid(Gf2),

> IsPcGroupoid(Gg8), IsPermGroupoid(Gs4) 1;

[true, true, true, true]

4.1.4 UnionOfPieces

> UnionOfPieces(pieces) (operation)
> Pieces(gpd) (attribute)
> Size(gpd) (attribute)
> ReplaceOnePieceInUnion(U, old_piece, new_piece) (operation)

When a groupoid consists of two or more pieces, we require their object lists to be disjoint.
The operation UnionOfPieces and the attribute Pieces, introduced in section 2.4, are also used
for groupoids. The pieces are sorted by the least object in their object lists. The ObjectList is the
sorted concatenation of the objects in the pieces.

The Size of a groupoid is the number of its arrows which, for a single piece groupoid, is the
product of the size of the group with the square of the number of objects.

One of the pieces in a groupoid may be replaced by an alternative piece using the operation
ReplaceOnePieceInUnion. The old_piece may be either the position oif the piece to be replaced, or
one of the pieces in U. The objects in the new piece may or may not overlap the objects in the piece
removed — we just require that the object lists in the new union are disjoint.

Gpd 19

Example

gap> U3 := UnionOfPieces([Gs4, Gd8, Gc6 1);;
gap> Display(U3);
groupoid with 3 pieces:
< objects: [-15 .. -11]
group: s4 = <[(1,2,3,4), (3,4) 1> >
< objects: [-9, -8, -7]
group: d8 = <[(1,2,3,4), (1,3) 1> >
< objects: [-6]
group: c6 = <[(5,6,7)(8,9) 1> >
gap> Pieces(U3);
[Gs4, Gd8, Gc6]
gap> ObjectList(U3);
[-15, -14, -13, -12, -11, -9, -8, -7, -6]
gap> U2 := Groupoid([Gf2, Gg8 1);;
gap> [Size(Gs4), Size(Gd8), Size(Gc6), Size(U3) 1;
[600, 72, 6, 678]
gap> [Size(Gf2), Size(Gq8), Size(U2) 1;
[infinity, 32, infinity]
gap> U5 := UnionOfPieces([U3, Gf2, Gg8 1);
groupoid with 5 pieces:
[Gg8, Gf2, Gs4, Gd8, Gc6]
gap> V5 := ReplaceOnePieceInUnion(U5, 3, Gsl43);
groupoid with 5 pieces:
[Gsl43, Gg8, Gf2, Gd8, Gc6]
gap> ObjectList (V5);
[-35, -34, -33, -32, -31, -28, -27, -22, -9, -8, -7, -6 1
gap> U5 = V5;
false
gap> W5 := ReplaceOnePieceInUnion(V5, Gc6, Gs4);
groupoid with 5 pieces:
[Gs143, Gg8, Gf2, Gs4, Gd8]

4.1.5 HomogeneousGroupoid

> HomogeneousGroupoid(gpd, oblist) (operation)
> HomogeneousDiscreteGroupoid(gp, obs) (operation)

Special functions are provided for the case where a groupoid has more than one connected com-
ponent, and these components are identical except for their object sets. Such groupoids are said to be
homogeneous

The operation HomogeneousGroupoid is used when the components each contain more than one
object. The arguments consist of a single piece groupoid gpd and a list of lists of objects oblist,
each of whose lists has the same length as the object list obs of gpd. Note that gpd is not included as
one of the pieces in the output unless obs is included as one of the lists in oblist.

The operation HomogeneousDiscreteGroupoid is used when the components each have a single
object. In this case the first argument is just a group — the root group for each component. These
groupoids are used in the XMod package as the source of many crossed modules of groupoids.

Gpd 20

Both types of groupoid have the property IsHomogeneousDomainWithObjects. In the latter case

a separate representation IsHomogeneousDiscreteGroupoidRep is used.

Example

gap> Hd8 := HomogeneousGroupoid(Gd8, [[-12,-11,-10], [-16,-15,-14] 1);
homogeneous groupoid with 2 pieces:

1: single piece groupoid: < d8, [-16, -15, -14] >

2: single piece groupoid: < 48, [-12, -11, -10 1] >

gap> IsHomogeneousDomainWithObjects (Hd8) ;

true
gap> Hc6 := HomogeneousDiscreteGroupoid(c6, [-7..-4]);
homogeneous, discrete groupoid: < c6, [-7 .. -4 1 >

gap> Representations0fObject(Gd8) ;

["IsComponentObjectRep", "IsAttributeStoringRep", "IsMWOSinglePieceRep"]

gap> Representations0fObject (Hd8) ;

["IsComponentObjectRep", "IsAttributeStoringRep", "IsPiecesRep"]

gap> Representations0f0Object (Hc6) ;

["IsComponentObjectRep", "IsAttributeStoringRep",
"IsHomogeneousDiscreteGroupoidRep"]

gap> KnownTrueProperties0f0bject (Hc6) ;

["CanEasilyCompareElements", "CanEasilySortElements", "IsDuplicateFree",
"IsAssociative", "IsCommutative", "IsDiscreteDomainWithObjects",
"IsHomogeneousDomainWithObjects"]

gap> Kd8 := UnionOfPieces([Gd8, HA8]);

groupoid with 3 pieces:

1: single piece groupoid: < d8, [-16, -15, -14] >

2: single piece groupoid: < d8, [-12, -11, -10] >

3: Gd8

gap> ObjectList(Kd8);

[-16, -15, -14, -12, -11, -10, -9, -8, -7 1]

gap> IsHomogeneousDomainWithObjects(Kd8);

true

4.2 Groupoid elements; stars; costars; homsets

4.2.1 Arrow

v VvV vV VvV V

Arrow(gpd, elt, tail, head) (operation)
ElementOfArrow(elt) (operation)
TailOfArrow(elt) (operation)
HeadOfArrow(elt) (operation)
IsArrowIn(arr, gpd) (operation)

A groupoid element is an arrow in a magma with objects, as described in subsection 2.1.2. To

recapitulate, an arrow e consists of a group element, ElementOfArrow(e); the tail (source) object,
TailOfArrow(e); and the head (target) object, HeadOfArrow(e). Arrows have a partial compo-
sition: two arrows may be multiplied when the head of the first coincides with the tail of the sec-
ond. When an attempt is made to multiply arrows where this condition does not hold, then the value

Gpd 21

fail is returned. (In earlier versions of the package there were functions GroupoidElement and
MultiplicativeElementWithObjects, but these have now been replaced by Arrow.)
Example

gap> el := Arrow(Gd8, (1,2,3,4), -9, -8);
[(1,2,3,4) : -9 -> -8]

gap> e2 := Arrow(Gd8, (1,3), -8, -7);
[(1,3) : -8 -> -7]

gap> Print([ElementOfArrow(e2), TailOfArrow(e2), HeadOfArrow(e2) 1, "\n");
[(1,3), -8, -7 1]

gap> prod := elxe2;

[(1,2)(3,4) : -9 -> -7]

gap> e2x*el;

fail

gap> e3 := Arrow(Gd8, (2,4), -7, -9);;
gap> loop := prod*e3;

[(1,4,3,2) : -9 -> -9]

gap> loop~2;

[(1,3)(2,4) : -9 -> -9]

4.2.2 IdentityArrow
> IdentityArrow(gpd, Obj) (operation)
The identity arrow 1, of G at object o is (e : 0 — o) where e is the identity element in the object

group. The inverse e ! of e=(c:p—¢q)is (c™':q— p),sothatexe ' =1,and e ' xe=1,.
Example

gap> i8 := IdentityArrow(Gd8, -8);

[O : -8 -> -8]

gap> [el*i8, i8%el, el~-1];

[[(1,2,3,4) : -9 -> -8], fail, [(1,4,3,2) : -8 -> -9] 1]

4.2.3 Order

> Order(arr) (attribute)

A groupoid element is a loop when the tail and head coincide. In this case the order of the element
is defined to be the order of its group element.

Example
gap> 1i8; Order(i8);
(O : -8 ->-8]
1

gap> loop; Order(loop);
[(1,4,3,2) : -9 > —9]
4

Gpd 22

4.2.4 ObjectStar

> ObjectStar(gpd, obj) (operation)
> ObjectCostar(gpd, obj) (operation)
> Homset (gpd, tail, head) (operation)

The star at obj is the set of arrows which have obj as tail, while the costar is the set of arrows
which have obj as head. The homset from obj1 to obj2 is the set of arrows with the specified tail
and head, and so is bijective with the elements of the object groups. Thus every star and every costar
is a union of homsets. The identity arrow at an object is a left identity for the star and a right identity
for the costar at that object.

In order not to create unneccessarily long lists, these operations return objects of type
IsHomsetCosetsRep for which an Iterator is provided. (An Enumerator is not yet implemented.)

Example

gap> star9 := ObjectStar(Gd8, -9);
<star at [-9] with group 48>
gap> Size(star9);

24

gap> for e in star9 do

> if (Order(ElementOfArrow(e)) = 4) then Print(e, "\n"); fi;
> od;

[(1,4,3,2) : -9 -> -9]

[(1,4,3,2) : -9 -> -8]

[(1,4,3,2) : -9 -> -T7]

[(1,2,3,4) : -9 -> -9]

[(1,2,3,4) : -9 -> -8]

[(1,2,3,4) : -9 -> -7]

gap> costar6 := ObjectCostar(Gc6, -6);
<costar at [-6] with group c6>

gap> Size(costar6);

6

gap> hsetq8 := Homset(Gq8, -28, -27);
<homset -28 -> -27 with group 8>

gap> for e in hsetq8 do Print(e,"\n"); od;
[<identity> of ... : -28 -> -27]

[£3 : -28 -> -27]

[f2 : -28 -> -27]

[f2+£3 : -28 -> -27]

[f1 : -28 -> -27]

[f1%£3 : -28 -> -27]

[f1%£f2 : -28 -> -27]

[f1*£2+£3 : -28 -> -27]

Gpd 23

4.3 Subgroupoids

4.3.1 Subgroupoid

> Subgroupoid(args) (function)
> SubgroupoidByPieces(gpd, obhoms) (operation)
> IsSubgroupoid (gpd , Sgpd) (operation)
> FullSubgroupoid(gpd, obs) (operation)
> MaximalDiscreteSubgroupoid(gpd) (attribute)
> DiscreteSubgroupoid(gpd, sgps, obs) (operation)
> FullTrivialSubgroupoid(gpd) (attribute)
> DiscreteTrivialSubgroupoid(gpd) (attribute)
> IsWide(gpd, sgpd) (operation)

A subgroupoid sgpd of a groupoid gpd has as objects some subset of the objects of gpd. It is wide
if all the objects are included. It is full if, for any two objects in sgpd, the Homset is the same as that
in gpd. The arrows of sgpd are a subset of those of gpd, closed under multiplication and with tail and
head in the chosen object set.

There are a variety of constructors for a subgroupoid of a groupoid, and the most general is the
operation SubgroupoidByPieces. Its two parameters are a groupoid and a list of pieces, each piece
being specified as a list [sgp,obs], where sgp is a subgroup of the root group in that piece, and obs
is a subset of the objects in that piece. The FullSubgroupoid of a groupoid gpd on a subset obs of
its objects contains all the arrows of gpd with tail and head in obs. A subgroupoid is discrete if it is
a union of groups. The MaximalDiscreteSubgroupoid of gpd is the union of all the single-object
full subgroupoids of gpd. A trivial subgroupoid has trivial object groups, but need not be discrete. A
single piece trivial groupoid is sometimes called a tree groupoid. (The term identity subgroupoid was
used in versions up to 1.14.) The global function Subgroupoid should call the appropriate operation.

Example
gap> c4 := Subgroup(48, [(1,2,3,4) 1);;
gap> k4 := Subgroup(d8, [(1,2)(3,4), (1,3)(2,4) 1);;

gap> SetName(c4, "c4"); SetName(k4, "k4");
gap> Ud8 := Subgroupoid(Gd8, [[k4, [-91 1, [c4, [-8,-71 11);;
gap> SetName(Ud8, "Ud8");
gap> Display(Ud8);
groupoid with 2 pieces:
< objects: [-9 1]
group: k4 = <[(1,2)(3,4), (1,3)(2,4) 1> >
< objects: [-8, -7 1]
group: c4 = <[(1,2,3,4) 1> >
gap> [Parent(Ud8), IsWide(Gd8, Ud8) 1;
[Gd8, true 1]
gap> genf2b := List(GeneratorsOfGroup(f2), g -> g~2);
[f1~2, £2~2]
gap> f2b := Subgroup(f2, genf2b);;
gap> SubgroupoidByPieces(U2, [[q8,[-27]11, [f2b,[-221]1 1);
groupoid with 2 pieces:
1: single piece groupoid: < g8, [-27 1 >
2: single piece groupoid: < Group([f1-~2, f2°2 1), [-22] >
gap> IsSubgroupoid(Gf2, Groupoid(f2b, [-22]));

Gpd 24

true

gap> FullSubgroupoid(U3, [-7,-6]);
groupoid with 2 pieces:

1: single piece groupoid: < d8, [-7]
2: single piece groupoid: < c6, [-6]
gap> DiscreteSubgroupoid(U3, [c4, k4 1, [-9,-7]);
groupoid with 2 pieces:

1: single piece groupoid: < c4, [-9] >

2: single piece groupoid: < k4, [-7] >

gap> FullTrivialSubgroupoid(Ud8);

groupoid with 2 pieces:

1: single piece groupoid: < id(k4), [-9 1] >

2: single piece groupoid: < id(c4), [-8, -7 1 >
gap> MaximalDiscreteSubgroupoid(U2);

groupoid with 3 pieces:

1: single piece groupoid: < g8, [-28] >
2: single piece groupoid: < g8, [-27 1 >
3: single piece groupoid: < f2, [-22] >

>
>

4.3.2 SubgroupoidWithRays

> SubgroupoidWithRays(gpd, sgp, rays) (operation)
> RaysO0fGroupoid(gpd) (operation)
> RayElements0fGroupoid(gpd) (operation)

If groupoid G is of type IsDirectProductWithCompleteGraph with group g and n objects, then
a typical wide subgroupoid H of G is formed by choosing a subgroup % of g to be the object group at
the root object ¢, and an arrow r : ¢ — p for each of the objects p. The chosen loop arrow at ¢ must be
the identity arrow. These n arrows are called the rays of the subgroupoid. The arrows in the homset
from p to p’ have the form r~'x#’ for all rays 7,7’ and all x in A.

The operation Rays0fGroupoid returns a list of arrows, one for each object, while the operation
RayElements0fGroupoid returns the list of group elements in these arrows.

In the following example we construct a subgroupoid with rays on four of the five objects. It is
therefore necessary to construct the full subgroupoid on these four objects first.

Note that it is also possible to construct a subgroupoid with rays of a subgroupoid with rays.

Note also that the function Ancestor provides an iteration of Parent.

Example

gap> Hs4 := FullSubgroupoid(Gs4, [-14,-13,-12]);;

gap> SetName(Hs4, "Hs4");

gap> HdB8a := SubgroupoidWithRays(Hs4, d8, [(),(2,3),(3,4)]);

single piece groupoid with rays: < d8, [-14, -13, -12 1, [O, (2,3), (3,4)
1>

gap> hs1413 := Homset(Hd8a, -14, -13);

<homset -14 -> -13 with group d8>

gap> for e in hs1413 do Print(e,", "); od; Print("\n");

[(2,3) : -14 -> -131, [(1,2,4,3) : -14 -> -13], [(1,4,2) : -14 -> -13], [
(1,3,4) : -14 -> -13], [(2,4,3) : -14 -> -13], [(1,2,3) : -14 -> -13], [
(1,4) : -14 -> -13], [(1,3,4,2) : -14 -> -13],

Gpd 25

gap> Hd8b := SubgroupoidWithRays(Hs4, 48, [(),(1,2,3),(1,2,4)]);
single piece groupoid with rays: < d8, [-14, -13, -12],

[O, 1,2,3), (1,2,4) 1 >

gap> Hd8a = Hd8b;

true

gap> Rays0fGroupoid(Hd8b);

[[O : -14 -> -14], [(1,2,3) : -14 -> -13], [(1,2,4) : -14 -> -12]]
gap> RayElements0fGroupoid(Hd8b);

[O, 1,2,3), (1,2,4) 1

gap> Parent(Hd8a);

Hs4

gap> Ancestor(Hd8a);

Gs4

gap> Fd8a := FullSubgroupoid(Hd8a, [-14,-13]);

single piece groupoid with rays: < d8, [-14, -13 1, [O, (2,3) 1 >
gap> Fd8b := FullSubgroupoid(Hd8a, [-13,-12]);

single piece groupoid with rays: < Group([(1,3,2,4), (1,2) 1),
[-13, -121, [O, (2,4,3) 1 >

gap> Fd8a := FullSubgroupoid(Hd8a, [-13,-12]);

single piece groupoid with rays: < Group([(1,3,2,4), (1,2) 1),

[-13, -121, [O, (2,4,3) 1 >

gap> Kd8a := SubgroupoidWithRays(Fd8a, k4, [(), (1,3) 1);

single piece groupoid with rays: < k4, [-13, -12 1, [OO, (1,3) 1 >

4.4 Left, right and double cosets

4.4.1 RightCoset

> RightCoset(G, U, elt) (operation)
> RightCosetRepresentatives(G, U) (operation)
> LeftCoset(G, U, elt) (operation)
> LeftCosetRepresentatives(G, U) (operation)
> LeftCosetRepresentativesFromObject(G, U, obj) (operation)
> DoubleCoset(G, U, elt, V) (operation)
> DoubleCosetRepresentatives(G, U, V) (operation)

If U is a wide subgroupoid of G, the right cosets Ug of U in G are the equivalence classes for the
relation on the arrows of G where g1 is related to g2 if and only if g2 = u * g1 for some arrow u of
U. The right coset containing g is written Ug. These right cosets partition the costars of G and, in
particular, the costar U1_o of U at object o, so that (unlike groups) U is itself a coset only when G has
a single object.

The right coset representatives for U in G form a list containing one arrow for each coset where,
in a particular piece of U, the group element chosen is the right coset representative of the group of U
in the group of G.

Similarly, the left cosets gU refine the stars of G, while double cosets are unions of left cosets
and right cosets. The operation LeftCosetRepresentativesFromObject(G, U, obj) is used
in Chapter 4, and returns only those representatives which have tail at obj.

As with stars and homsets, these cosets are implemented with representation

Gpd

26

IsHomsetCosetsRep and provided with an iterator. Note that, when U has more than one

piece, cosets may have differing lengths.

Example

gap> re2 := RightCoset(Gd8, Ud8, e2);

RightCoset(single piece groupoid: < c4, [-8, -7 1 >,[(1,3)

gap> for x in re2 do Print(x, "\n"); od;

[(1,3) : -8 -> -T7]

[(1,3) : -7 > -7]

[(2,4) : -8 -> -T7]

[(2,4) : -7 -> -7]

[(1,4)(2,3) : -8 -> -T7]

[(1,4)(2,3) : -7 -> -T7]

[(1,2)(3,4) : -8 -> -T7]

[(1,2)(3,4) : -7 -> -7]

gap> rcrd8 := RightCosetRepresentatives(Gd8, Ud8);

[[O:-9—>-9], [O:-9->-8], [O:-9->-7], [(2,4
[(2,4) : -9 -> -81, [(2,4) : -9 -> -7], [O : -8 -> -9],
[O : -8 -> -7]1, [(2,4) : -8 -> -9], [(2,4) : -8 -> -8],

]

: -8 > -7])

: -9 > -9],

: -8 > -8],

[(2,4) : -8 -> -T7]

gap> lcr7 := LeftCosetRepresentativesFromObject(Gd8, Ud8, -7);

[O :-7->-9]1, [(2,4) : -7 -> -9], [O : -7 -> -8], [(2,4) : -7 -> -8]]
4.5 Conjugation
4.5.1 ConjugateArrow
> ConjugateArrow(el, e) (operation)

When e = (¢ : p — ¢q) conjugation by e is the groupoid automorphism defined as follows. There

are two cases.
In the case p # g,

* objects p,q are interchanged, and the remaining objects are fixed;

* loops at p,q: (b:p—>p)>—>(bc:c]—>q)and(b:q—>q)»—>(bfI p—p);

» arrows between pand g: (b: p —q) v+ (¢ 'bc™' :q— p)and (b:q— p)+— (chc: p— q);

e costarat p,g: (b:r—p)r> (bc:r—gq)and (b:r—q) > (be™ ' :r— p);

e starat p,g: (b:p—r)(c'b:—=q)and (b:q—7r)— (chb:p—r);

¢ the remaining arrows are unchanged.
In the case p =g,
* all the objects are fixed;

* loops at p are conjugated by ¢, (b: p — p) — (b : p — p);

Gpd 27

* the rest of the costar and star at p are permuted, (b:r — p) — (bc:r— p)and (b:p—r) —
(c'b:p—r);

e the remaining arrows are unchanged.

The details of this construction may be found in [AW10].
(Note that it is more desirable to use the command e1~e2, but it has not yet been possible to get
this to work!)

Example
gap> x := Arrow(Gd8, (1,3), -9, -9);;
gap> y := Arrow(Gd8, (1,2,3,4), -8, -9);;
gap> z := Arrow(Gd8, (1,2)(3,4), -9, -7);;
gap> w := Arrow(Gd8, (1,2,3,4), -7, -8);;

gap> ## conjugation with arrows x, y, z and w in Gd8:
gap> ConjugateArrow(x,y);
[(2,4) : -8 -> -8]

gap> ConjugateArrow(x,z);
[(2,4) : -7 -> -7]

gap> ConjugateArrow(x,w);
[(1,3) : -9 -> -9]

gap> ConjugateArrow(y,x);
[O : -8 ->-9]

gap> ConjugateArrow(y,z);
[(2,4) : -8 -> -T7]

gap> ConjugateArrow(y,w) ;
[(1,3)(2,4) : -7 -> -9]
gap> ConjugateArrow(z,x);
[(1,4,3,2) : -9 -> -T7]
gap> ConjugateArrow(z,y);
[(2,4) : -8 -> -7]

gap> ConjugateArrow(z,w) ;
[(1,3) : -9 -> -8]

gap> ConjugateArrow(w,x);
[(1,2,3,4) : -7 -> -8]
gap> ConjugateArrow(w,y);
[(1,3)(2,4) : -7 -> -9]
gap> ConjugateArrow(w,z);
[(1,3) : -9 -> -8]

4.5.2 SinglePieceGroupoidByGenerators

> SinglePieceGroupoidByGenerators (parent, gens) (operation)

A set of arrows generates a groupoid by taking all possible products and inverses. So far, the
only implementation is for the case of loops generating a group at an object o andf a set of rays from
o, where o is not the least object. A suitably large supergroupoid, which must be a direct product
with a complete graph, should be provided. This is the case needed for ConjugateGroupoid in the
following section. Other cases will be added as time permits.

Gpd 28

Example

gap> u := Arrow(Gs4, (1,2,3), -15, -13);

[(1,2,3) : -156 -> -13]

gap> gensa := Generators0fGroupoid(Hd8a);

[[(1,2,3,4) : -14 -> -14], [(1,3) : -14 -> -14], [(2,3) : -14 -> -13],
[(3,4) : -14 > -12] 1]

gap> imsa := List(gensa, g -> ConjugateArrow(g, u));

[[(1,2,3,4) : -14 -> -14], [(1,3) : -14 -> -14], [(1,3) : -14 -> -15],
[(3,4) : -14 > -12]]

gap> C := SinglePieceGroupoidByGenerators(Gs4, imsa);

single piece groupoid with rays: < Group([(1,4,3,2), (1,3) 1),

[-15, -14, -121, [O, (1,3), (1,4,3) 1 >

4.5.3 ConjugateGroupoid

> ConjugateGroupoid(gpd, e)

(operation)

When H is a subgroupoid of a groupoid G and a is an arrow of G, then the conjugate of H by a is
the subgroupoid generated by the conjugates of the generators of H.

Example

gap> ConjugateGroupoid(Hd8a, u~-1);
single piece groupoid with rays: < Group([(1,4,3,2), (1,3) 1),
[_159 _14: -12], [()’ (133): (1)4,3)] >

More examples of all these operations may be found in the example file gpd/examples/gpd.g.

Chapter 5

Homomorphisms of Groupoids

A homomorphism m from a groupoid G to a groupoid H consists of a map from the objects of G to
those of H together with a map from the elements of G to those of H which is compatible with tail
and head and which preserves multiplication:

m(gl:ol — 02)xm(g2:02 — 03) = m(glxg2:0l — 03).

Note that when a homomorphism is not injective on objects, the image of the source need not be a
subgroupoid of the range. A simple example of this is given by a homomorphism from the two-object,
four-element groupoid with trivial group to the free group (a) on one generator, when the image is
[1,d",a "] for some n > 0.

5.1 Homomorphisms from a connected groupoid

5.1.1 GroupoidHomomorphismFromSinglePiece

> GroupoidHomomorphismFromSinglePiece(src, rng, hom, imobs, imrays) (operation)
> GroupoidHomomorphism(args) (function)
> InclusionMappingGroupoids(gpd, sgpd) (operation)
> IsomorphismNewObjects(src, objlist) (operation)

As usual, there are various homomorphism operations. The basic construction is a homomorphism
G — H with G the direct product of a group and a complete graph. The homomorphism has attributes
Source, Range, ImagesOfObjects and PieceImages. The input data consists of the source; the
range; and

* a homomorphism hom from the root group of G to that of H;
* alist imobs of the images of the objects of G;

* alist imrays of the images of the rays of G.
Example

gap> gend12 := [(15,16,17,18,19,20), (15,20)(16,19)(17,18) 1;;
gap> d12 := Group(gendl2);;

gap> Gd12 := Groupoid(d12, [-37,-36,-35,-34]);;

gap> SetName(d12, "d12");

29

Gpd

gap> SetName(Gd12, "Gd12");
gap> s3 := Subgroup(412, [(15,17,19)(16,18,20), (15,20)(16,19)(17,18) 1);;
gap> Gs3 := SubgroupoidByPieces(Gdi12, [[s3, [-36,-35,-34]1 1]);;
gap> SetName(s3, "s3");
gap> SetName(Gs3, "Gs3");
gap> gend8 := GeneratorsOfGroup(d8);;
gap> imhd8 := [(), (15,20)(16,19)(17,18) 1;;
gap> hd8 := GroupHomomorphismByImages(d8, s3, gend8, imhd8);;
gap> homd8 := GroupoidHomomorphism(Gd8, Gs3, hd8);
groupoid homomorphism : Gd8 -> Gs3
[[GroupHomomorphismByImages(d8, s3, [(1,2,3,4), (1,3) 1,
[O, (15,20)(16,19)(17,18) 1), [-36, -35, =34 1, [O, O, O 111
gap> e2; ImageElm(homd8, e2);
[(1,3) : -8 -> -T7]
[(15,20) (16,19) (17,18) : -35 -> -34]
gap> incGs3 := InclusionMappingGroupoids(Gd12, Gs3);;
gap> ihomd8 := homd8 * incGs3;;
gap> IsBijectiveOnObjects(ihomd8);
false
gap> Display(ihomd8) ;
groupoid mapping: [Gd8 1 -> [Gd12]
root homomorphism: [[(1,2,3,4), (1,3) 1, [O, (15,20)(16,19)(17,18) 1]
images of objects: [-36, -35, -34]
images of rays: [O, O, O]
gap> e2; ImageElm(homd8, e2);
[(1,3) : -8 -> -7]
[(15,20) (16,19)(17,18) : -35 -> -36]

30

5.2 Homomorphisms to a connected groupoid

5.2.1 HomomorphismToSinglePiece

> HomomorphismToSinglePiece(src, rng, pieces) (operation)

When G is made up of two or more pieces, all of which get mapped to a connected groupoid,
we have a homomorphism to a single piece. The third input parameter in this case is a list of the
PieceImages of the individual homomorphisms from the single pieces. See section 3.1 for the corre-

sponding operation on homomorphisms of magmas with objects.

In the following example the source V3 of homV3 has three pieces, and one of the component

homomorphisms is an IdentityMapping .
Example

gap> hc6 := GroupHomomorphismByImages(c6, s3,

> [(5,6,7)(8,9)]1, [(15,16)(17,20)(18,19)]);;
gap> Fs3 := FullSubgroupoid(Gs3, [-35 1);;

gap> SetName(Fs3, "Fs3");

gap> homc6 := GroupoidHomomorphism(Gc6, Fs3, hc6);;
gap> incFs3 := InclusionMappingGroupoids(Gs3, Fs3);;
gap> ihomc6 := homc6 * incFs3;

Gpd

groupoid homomorphism : Gc6 -> Gs3
[[GroupHomomorphismByImages(c6, s3, [(5,6,7)(8,9) 1,
[(15,16)(17,200(18,19) 1), [-351, [O 111

gap> idGs3 := IdentityMapping(Gs3);;

gap> V3 := ReplaceOnePieceInUnion(U3, 1, Gs3);

groupoid with 3 pieces:

[Gs3, Gd8, Gc6]

gap> images3 := [PiecelImages(idGs3)[1],

> PieceImages(homd8)[1],

> PieceImages(ihomc6) [1] 1;;

gap> homV3 := HomomorphismToSinglePiece(V3, Gs3, images3);;

gap> Display(homV3) ;

homomorphism to single piece magma with pieces:

(1): [Gs3] -> [Gs3]

magma mapping: [[(15,17,19)(16,18,20), (15,20)(16,19)(17,18) 1,
[(15,17,19)(16,18,20), (15,20)(16,19)(17,18) 1 1]
object map: [-36, -35, -34] -> [-36, -35, -34 1]

(2): [Ga8] -> [Gs3 1]

magma mapping: [[(1,2,3,4), (1,3) 1, [O, (15,20)(16,19)(17,18) 1]
object map: [-9, -8, -7 1 -> [-36, -35, -34]

(3): [Ge6 1 -> [Gs3]

magma mapping: [[(5,6,7)(8,9) 1, [(15,16)(17,20)(18,19)]]
object map: [-6] -> [-35]

31

5.3 Homomorphisms to more than one piece

5.3.1 HomomorphismByUnion

> HomomorphismByUnion(src, rng, homs)

(operation)

As in section 3.3, when the range H has more than one connected component, a homomorphism

is a union of homomorphisms, one for each piece.

Example

gap> isoq8 := IsomorphismNewObjects(Gq8, [-38,-37]);
groupoid homomorphism :
L

[IdentityMapping(¢8), [-38, -37 1],

[<identity> of ..., <identity> of ... 1 1 1]

gap> Gg8b := Range(isoqg8);;
gap> SetName(Gq8b, "Gq8b");
gap> V4 := UnionOfPieces([V3, Gg8 1);
groupoid with 4 pieces:
[Gs3, Gg8, Gd8, Gc6 1]
gap> SetName(V4, "V4");
gap> Vs3q8b := UnionOfPieces([Gs3, Gg8b 1);
gap> SetName(Vs3qg8b, "Vs3q8b");
gap> hom4 := HomomorphismByUnion(V4, Vs3g8b, [homV3, isoq8 1);;
gap> PiecesOfMapping(hom4);
[groupoid homomorphism : Gg8 -> Gq8b

Gpd 32

[[IdentityMapping(g8), [-38, -37 1,
[<identity> of ..., <identity> of ...] 11,
groupoid homomorphism :
[[IdentityMapping(s3), [-36, -35, -3¢ 1, [O, O, O 11,
[GroupHomomorphismByImages(d8, s3, [(1,2,3,4), (1,3) 1,
[O, (15,20)(16,19)(17,18) 1), [-36, -35, -34 1],
L O, O, O11,
[GroupHomomorphismByImages(c6, s3, [(5,6,7)(8,9) 1,
[(15,16)(17,20)(18,19) 1), [-351, [O 1111

5.4 Groupoid automorphisms

5.4.1 GroupoidAutomorphismByObjectPerm

> GroupoidAutomorphismByObjectPerm(gpd, imobs) (operation)
> GroupoidAutomorphismByGroupAuto(gpd, gpauto) (operation)
> GroupoidAutomorphismByRayImages(gpd, imrays) (operation)

We first describe automorphisms a of a groupoid G where G is the direct product of a group g and
a complete graph. The group of automorphisms is generated by three types of automorphism:

* a permutation of the n objects;
* an automorphism of the root group g;

* achoice of image for each ray: a(1: 01 — 0;) = (g; : 01 — 0;) for i # 1.

Example

gap> a4 := Subgroup(s4, [(1,2,3),(2,3,4)]);;
gap> SetName(a4, "ad");
gap> gensa4 := GeneratorsOfGroup(a4);;
gap> Ga4 := SubgroupoidByPieces(Gs4, [[a4, [-15,-13,-11]]1]);
single piece groupoid: < a4, [-15, -13, -11] >
gap> SetName(Ga4, "Gad");
gap> autl := GroupoidAutomorphismByObjectPerm(Ga4, [-13,-11,-15]);;
gap> Display(autl);
groupoid mapping: [Gad] -> [Gad]
root homomorphism: [[(1,2,3), (2,3,4) 1, [(1,2,3), (2,3,4) 1]
images of objects: [-13, -11, -15]
images of rays: [O, O, O]
gap> h2 := GroupHomomorphismByImages(a4, a4, gemsad, [(2,3,4), (1,3,4)]);;
gap> aut2 := GroupoidAutomorphismByGroupAuto(Ga4, h2);;
gap> Display(aut2);
groupoid mapping: [Ga4] -> [Gad]
root homomorphism: [[(1,2,3), (2,3,4) 1, [(2,3,4), (1,3,4) 11
images of objects: [-15, -13, -11]
images of rays: [O, O, O]
gap> im3 := [, (1,3,2), (2,4,3)];;
gap> aut3 := GroupoidAutomorphismByRayImages(Ga4, im3);;
gap> Display(aut3);

Gpd

groupoid mapping: [Gad 1 -> [Ga4d]
root homomorphism: [[(1,2,3), (2,3,4) 1, [(1,2,3), (2,3,4) 1]
images of objects: [-15, -13, -11]
images of rays: [(O, (1,3,2), (2,4,3)]
gap> autl23 := autl*aut2*aut3;;
gap> Display(autl123);
groupoid mapping: [Ga4] -> [Gad]
root homomorphism: [[(1,2,3), (2,3,4) 1, [(2,3,4), (1,3,4) 1]
images of objects: [-13, -11, -15]
images of rays: [(O, (1,4,3), (1,2,3)]
gap> inv123 := InverseGeneralMapping(auti23);;
gap> Display(inv123);
groupoid mapping: [Ga4 1 -> [Gad]
root homomorphism: [[(2,3,4), (1,3,4) 1, [(1,2,3), (2,3,4) 1]
images of objects: [-11, -15, -13 1]
images of rays: [O, (1,2,4), (1,3,4) |
gap> 1d123 := autl123 * inv123;;
gap> i1d123 = IdentityMapping(Gad);
true

33

The AutomorphismGroup of G is isomorphic to the quotient of S, X A x g" by a subgroup iso-
morphic to g, where A is the automorphism group of g and S,, is the symmetric group on the n objects.

This is one of the main topics in [AW10].

The current implementation is experimental, producing a nice monomorphism from the automor-
phism group to a pc-group, if one is available. However ImageElm at present only works on generating

elements.
Example

gap> AGa4 := AutomorphismGroup(Gad);
<group with 10 generators>
gap> NGad4 := NiceObject(AGa4d);
Group([f6, £3, f11xf12, f12, f2, f1, f4*f9, f4~2, £5*+f9*f10*xf11xf12, £5°2])
gap> MGa4 := NiceMonomorphism(AGa4);;
gap> Size(AGad);
20736
gap> SetName(AGa4, "AGad");
gap> SetName(NGa4, "NGad");
gap> Print(MGa4, "\n");
GroupHomomorphismByImages(AGa4, Group([f1, f2, £3, f4, f5, f6, f7, £8, f9,
£10, f11, £f12]), [magma with objects homomorphism : Gad -> Gad
[[InnerAutomorphism(a4, (2,4,3)), [-15, -13, -11 1, [O, O, O 11
]
, magma with objects homomorphism : Ga4 -> Ga4
[[ConjugatorAutomorphism(a4, (3,4)), [-15, -13, -11],
LO, O, 07111
, magma with objects homomorphism : Ga4 -> Ga4d
[[InnerAutomorphism(a4, (1,2)(3,4)), [-15, -13, -11 1],
L O, O, OT11]1
, magma with objects homomorphism : Gad -> Ga4d
[[InnerAutomorphism(a4, (1,4)(2,3)), [-15, -13, -11 1],
LO, O, 07111

Gpd 34

, magma with objects homomorphism : Gad4 -> Ga4d
[[GroupHomomorphismByImages(a4, a4, [(1,2,3), (2,3,4) 1,
[(1,2,3), (2,3,4) 1), [-13, -11, -1561, [O, O, O 111

, magma with objects homomorphism : Ga4 -> Ga4
[[GroupHomomorphismByImages(a4, a4, [(1,2,3), (2,3,4) 1,

[(1,2,3), (2,3,4) 1), [-138, -15, -11 1, [O, O, O 111
magma with objects homomorphism : Ga4 -> Ga4d
[IdentityMapping(a4), [-15, -13, -11 1, [O, (1,2,3), O 111
magma with objects homomorphism : Ga4 -> Ga4
[IdentityMapping(a4), [-15, -13, -11 1, [O, (2,3,4), O 111
magma with objects homomorphism : Ga4 -> Ga4
[IdentityMapping(a4), [-15, -13, -11 1, [O, O, (1,2,3) 111
, magma with objects homomorphism : Gad4 -> Ga4d
[[IdentityMapping(a4), [-15, -13, -11 1, [O, O, (2,3,4) 11 1]
1, [f6, £3, f11xf12, £12, £2, f1, f4xf9, f4~2, f5*xf9xf10*xf11*xf12, £5°2

[e B

/.

1)
gap> ## Now do some tests!
gap> mgi := MappingGeneratorsImages(MGas);;
gap> autgen := mgil[il];;
gap> pcgen := mgi[2];;
gap> ngen := Length(autgen);;
gap> ForAll([1..ngen], i -> Order(autgen[i]) = Order(pcgen[i]));
true

5.4.2 GroupoidAutomorphismByGroupAutos

> GroupoidAutomorphismByGroupAutos(gpd, auts) (operation)

Homogeneous, discrete groupoids are the second type of groupoid for which a method
is provided for AutomorphismGroup(gpd). This is used in the XMod package for con-
structing crossed modules of groupoids. The two types of generating automorphism are
GroupoidAutomorphismByGroupAutos, which requires a list of group automorphisms, one for each
object group, and GroupoidAutomorphismByQObjectPerm, which permutes the objects.

Example

gap> Hs3 := HomogeneousDiscreteGroupoid(s3, [-13..-10]);
homogeneous, discrete groupoid: < s3, [-13 .. -10] >

gap> auté4 := GroupoidAutomorphismByObjectPerm(Hs3, [-12,-10,-11,-13]);
morphism from a homogeneous discrete groupoid:

[-13, -12, -11, -10] -> [-12, -10, -11, -13]

object homomorphisms:

IdentityMapping(s3)

IdentityMapping(s3)

IdentityMapping(s3)

IdentityMapping(s3)

gap> gens3 := GeneratorsOfGroup(s3);;

gap> gl := gens3[1];;

gap> g2 := gens3[2];;

gap> bl := GroupHomomorphismByImages(s3, s3, gens3, [gl, g2~gl 1);;
gap> b2 := GroupHomomorphismByImages(s3, s3, gens3, [gl~g2, g2 1);;

]

Gpd 35

gap> b3 := GroupHomomorphismByImages(s3, s3, gens3, [gl~g2, g2~ (gl*g2) 1);;
gap> b4 := GroupHomomorphismByImages(s3, s3, gens3, [gl~(g2*gl), g2~gl 1);;
gap> autb := GroupoidAutomorphismByGroupAutos(Hs3, [b1,b2,b3,b4]);
morphism from a homogeneous discrete groupoid:

[-13, -12, -11, -10] -> [-13, -12, -11, -10 1]

object homomorphisms:

GroupHomomorphismByImages(s3, s3,

[(15,17,19)(16,18,20), (15,20)(16,19)(17,18) 1,

[(15,17,19)(16,18,20), (15,18)(16,17)(19,20) 1)
GroupHomomorphismByImages(s3, s3,

[(15,17,19)(16,18,20), (15,20)(16,19)(17,18) 1,

[(15,19,17)(16,20,18), (15,20)(16,19)(17,18) 1)
GroupHomomorphismByImages(s3, s3,

[(15,17,19)(16,18,20), (15,20)(16,19)(17,18) 1,

[(15,19,17)(16,20,18), (15,16)(17,20)(18,19) 1)
GroupHomomorphismByImages(s3, s3,

[(15,17,19)(16,18,20), (15,20)(16,19)(17,18) 1],

[(15,19,17)(16,20,18), (15,18)(16,17)(19,20) 1)

gap> AHs3 := AutomorphismGroup(Hs3);

<group of size 31104 with 4 generators>

gap> GeneratorsOfGroup(AHs3) [2];

morphism from a homogeneous discrete groupoid:

[-13, -12, -11, -10 1 -> [-13, -12, -11, -10]

object homomorphisms:

InnerAutomorphism(s3, (15,19,17)(16,20,18))

IdentityMapping(s3)

IdentityMapping(s3)

IdentityMapping(s3)

5.4.3 RootGroupHomomorphism

> RootGroupHomomorphism(gpdhom) (attribute)
> ObjectGroupHomomorphism(gpdhom, obj) (operation)

A homomorphism from a single piece groupoid has one further attribute, namely
RootGroupHomomorphism. This is the group homomorphism from the root group of the source
to the object group at the image object in the range. Similarly, the group homomorphism from
an object group of the source to the object group at the image object in the range is given by
ObjectGroupHomomorphism.

Example

gap> RootGroupHomomorphism(autl123);

[(1,2,3), (2,3,4) 1 > [(2,3,4), (1,3,4)]
gap> ObjectGroupHomomorphism(aut123, -13);
[(1,2,3), (2,3,4) 1 > [(1,3,2), (1,3,4)]

Chapter 6

Graphs of Groups and Groupoids

This package was originally designed to implement graphs of groups, a notion introduced by Serre in
[Ser80]. It was only when this was extended to graphs of groupoids that the functions for groupoids,
described in the previous chapters, were required. The methods described here are based on Philip
Higgins’ paper [Hig76]. For further details see Chapter 2 of [MooO1]. Since a graph of groups
involves a directed graph, with a group associated to each vertex and arc, we first define digraphs with
edges weighted by the generators of a free group.

6.1 Digraphs

6.1.1 FpWeightedDigraph

> FpWeightedDigraph(verts, arcs) (attribute)
> IsFpWeightedDigraph(dig) (attribute)
> InvolutoryArcs(dig) (attribute)

A weighted digraph is a record with two components: vertices, which are usually taken to be
positive integers (to distinguish them from the objects in a groupoid); and arcs, which take the form
of 3-element lists [weight,tail,head]. The tail and head are the two vertices of the arc. The
weight is taken to be an element of a finitely presented group, so as to produce digraphs of type
IsFpWeightedDigraph.

Example

gap> V1 := [5, 6 1;;

gap> fgl := FreeGroup("y");;

gap> y := fgl.1;;

gap> A1 := [[y, 5,61, [y-1,6,511;
gap> D1 := FpWeightedDigraph(fgl, V1, Al);
weighted digraph with vertices: [5, 6]

and arcs: [[y, 5, 61, [y=-1, 6, 511
gap> invl := InvolutoryArcs(D1);

[2, 1]

The example illustrates the fact that we require arcs to be defined in involutory pairs, as though they
were inverse elements in a groupoid. We may in future decide just to give [y,5,6] as the data and

36

Gpd 37

get the function to construct the reverse edge. The attribute InvolutoryArcs returns a list of the
positions of each inverse arc in the list of arcs. In the second example the graph is a complete digraph
on three vertices.

Example

gap> fg3 := FreeGroup(3, "z");;
gap> zl := fg3.1;; z2 := £g3.2;; z3 := £g3.3;;
gap> V3 := [7, 8, 9 1;;
gap> A3 := [[z1,7,8],[=22,8,9],[=23,9,7],[=z1"-1,8,7],[2z2°-1,9,8],[23"-1,7,9]]1;;
gap> D3 := FpWeightedDigraph(fg3, V3, A3);
weighted digraph with vertices: [7, 8, 9]
and arcs: [[z1, 7,81, [=z2,8, 9], [23,9, 71, [zt~-1, 8, 71,
[z2~-1, 9,81, [23°-1, 7, 911
[gap> inv3 := InvolutoryArcs(D3);
[4, 5,6, 1, 2, 31

6.2 Graphs of Groups

6.2.1 GraphOfGroups

> GraphOfGroups(dig, gps, isos) (operation)
> DigraphOfGraph0fGroups (gg) (attribute)
> Groups0fGraph0fGroups (gg) (attribute)
> Isomorphisms0fGraph0fGroups(gg) (attribute)

A graph of groups is traditionally defined as consisting of:

* adigraph with involutory pairs of arcs;
* a vertex group associated to each vertex;
* a group associated to each pair of arcs;

* an injective homomorphism from each arc group to the group at the head of the arc.
We have found it more convenient to associate to each arc:

* a subgroup of the vertex group at the tail;
* a subgroup of the vertex group at the head;

* an isomorphism between these subgroups, such that each involutory pair of arcs determines
inverse isomorphisms.

These two viewpoints are clearly equivalent.

In this implementation we require that all subgroups are of finite index in the vertex groups.

The three attributes provide a means of calling the three items of data in the construction of a
graph of groups.

We shall be representing free products with amalgamation of groups and HNN extensions of
groups, so we take as our first example the trefoil group with generators a,b and relation a® = b2
For this we take digraph D1 above with an infinite cyclic group at each vertex, generated by a and b
respectively. The two subgroups will be generated by > and b> with the obvious isomorphisms.

Gpd 38

Example

gap> ## free vertex group at 5
gap> fa := FreeGroup("a");;
gap> a := fa.l;;
gap> SetName(fa, "fa");
gap> hy := Subgroup(fa, [a~3]);;
gap> SetName(hy, "hy");
gap> ## free vertex group at 6
gap> fb := FreeGroup("b");;
gap> b := fb.1;;
gap> SetName(fb, "fb");
gap> hybar := Subgroup(fb, [b~2]);;
gap> SetName(hybar, "hybar");
gap> ## isomorphisms between subgroups
gap> homy := GroupHomomorphismByImagesNC(hy, hybar, [a~3], [b~2]);;
gap> homybar := GroupHomomorphismByImagesNC(hybar, hy, [b~2], [a~3]);;
gap> ## defining graph of groups Gl
gap> Gl := GraphOfGroups(D1, [fa,fb], [homy,homybar]);
Graph of Groups: 2 vertices; 2 arcs; groups [fa, fb]
gap> Display(G1);
Graph of Groups with :-
vertices: [5, 6]
arcs: [[y, 5,61, [y-1, 6, 511
groups: [fa, fb]
isomorphisms: [[[a~3], [211, [[b21], [a3]11]]

6.2.2 IsGraphOfFpGroups

> IsGraphOfFpGroups(gg) (property)
> IsGraphOfPcGroups(gg) (property)
> IsGraphOfPermGroups (gg) (property)

This is a list of properties to be expected of a graph of groups. In principle any type of group
known to GAP may be used as vertex groups, though these types are not normally mixed in a single

structure.
Example

gap> IsGraphOfFpGroups(G1);
true
gap> Isomorphisms0fGraphOfGroups(G1);

[GroupHomomorphismByImages(hy, hybar, [a~3 1, [b2]),
GroupHomomorphismByImages(hybar, hy, [b2 1, [a3])]
6.2.3 RightTransversalsOfGraphOfGroups
> RightTransversals0fGraphOfGroups(gg) (attribute)

> LeftTransversals0fGraphOfGroups(gg) (attribute)

Gpd 39

Computation with graph of groups words will require, for each arc subgroup ha, a set of represen-
tatives for the left cosets of ha in the tail vertex group. As already pointed out, we require subgroups
of finite index. Since GAP prefers to provide right cosets, we obtain the right representatives first,
and then invert them.

When the vertex groups are of type FpGroup we shall require normal forms for these groups, so
we assume that such vertex groups are provided with Knuth Bendix rewriting systems using functions
from the main GAP library, (e.g. IsomorphismFpSemigroup).

Example

gap> RTG1 := RightTransversals0fGraphOfGroups(G1);

[[<identity ...>, a, a~2], [<identity ...>, b] 1]

gap> LTG1 := LeftTransversals0fGraphOfGroups(G1);

[[<identity ...>, a~-1, a~-2], [<identity ...>, b~-1] 1]

6.3 Words in a Graph of Groups and their normal forms

6.3.1 GraphOfGroupsWord

> GraphOfGroupsWord(gg, tv, list) (operation)
> IsGraphOfGroupsWord (w) (property)
> GraphOfGroupsO0fWord (w) (attribute)
> Word0fGraph0fGroupsWord (w) (attribute)
> GGTail (W) (attribute)
> GGHead (w) (attribute)

If G is a graph of groups with underlying digraph D, the following groupoids may be considered.
First there is the free groupoid or path groupoid on D. Since we want each involutory pair of arcs to
represent inverse elements in the groupoid, we quotient out by the relations y~-1 = ybar to obtain
PG(D). Secondly, there is the discrete groupoid VG(D), namely the union of all the vertex groups.
Since these two groupoids have the same object set (the vertices of D) we can form A(G), the free
product of PG(D) and VG(D) amalgamated over the vertices. For further details of this universal
groupoid construction see [Moo01]. (Note that these groupoids are not implemented in this package.)

An element of A(G) is a graph of groups word which may be represented by a list of the form
w=1[g1,Y1,82,Y2,---s&n,Yn,&n+1]- Here each y; is an arc of D; the head of y;_; is a vertex v; which is
also the tail of y;; and g; is an element of the vertex group at v;.

The attributes GGTail and GGHead are femporary names for the tail and head of a graph of groups
word, and are likely to be replaced in future versions.

So a graph of groups word requires as data the graph of groups; the tail vertex for the word; and a
list of arcs and group elements. We may specify each arc by its position in the list of arcs.

In the following example, where gw1 is a word in the trefoil graph of groups, the y; are specified
by their positions in Al. Both arcs are traversed twice, so the resulting word is a loop at vertex 5.

Example

gap> L1 := [a°7, 1, b~-6, 2, a~-11, 1, b~9, 2, a~7 1;;
gap> gwl := GraphOfGroupsWord(Gi, 5, L1);

Gpd 40

(5)a~7.y.b"-6.y"-1.a"-11.y.b"9.y"-1.a~7(5)

gap> IsGraphOfGroupsWord(gwl);

true

gap> [GGTail(gwl), GGHead(gwl) 1;

[5, 5]

gap> GraphOfGroupsOfWord(gwl) ;

Graph of Groups: 2 vertices; 2 arcs; groups [fa, fb]
gap> WordOfGraphOfGroupsWord(gwl);

[a~7, 1, b~-6, 2, a~-11, 1, b™9, 2, a~7]

6.3.2 ReducedGraphOfGroupsWord

> ReducedGraphOfGroupsWord (w) (operation)
> IsReducedGraphOfGroupsWord (w) (property)

A graph of groups word may be reduced in two ways, to give a normal form. Firstly, if part of
the word has the form [yi, identity, yibar] then this subword may be omitted. This is known
as a length reduction. Secondly there are coset reductions. Working from the left-hand end of the
word, subwords of the form [g;,y;,gi+1] are replaced by [t;,yi,m;(h;) * gi+1] Where g; = t;* h; is the
unique factorisation of g; as a left coset representative times an element of the arc subgroup, and m;
is the isomorphism associated to y;. Thus we may consider a coset reduction as passing a subgroup
element along an arc. The resulting normal form (if no length reductions have taken place) is then
[11,91,2,Y2, -y tn, Yn, k| for some k in the head group of y,. For further details see Section 2.2 of
[MooO1].

The reduction of the word gwl in our example includes one length reduction. The four stages of
the reduction are as follows:

ab%a"pa’ — a?a"Vad — aBpd — a3 0d — a b a0,
Example

gap> nwl := ReducedGraphOfGroupsWord(gwl);
(5)a~-1.y.b"-1.y"-1.2~10(5)

6.4 Free products with amalgamation and HNN extensions

6.4.1 FreeProductWithAmalgamation

> FreeProductWithAmalgamation(gpl, gp2, iso) (operation)
> IsFpaGroup(fpa) (property)
> GraphOfGroupsRewritingSystem(fpa) (attribute)
> NormalFormGGRWS (fpa, word) (attribute)

As we have seen with the trefoil group example, graphs of groups can be used to obtain a normal
form for free products with amalgamation G| xg G, when G, G, both have rewrite systems, and H is
of finite index in both G; and G».

Gpd

When gpl and gp2 are fp-groups, the operation FreeProductWithAmalgamation constructs
the required fp-group. When the two groups are permutation groups, the IsomorphismFpGroup
operation is called on both gp1 and gp2, and the resulting isomorphism is transported to one between

the two new subgroups.

The attribute GraphOfGroupsRewritingSystem of fpa is the graph of groups which has under-
lying digraph D1, with two vertices and two arcs; the two groups as vertex groups; and the specified
isomorphisms on the arcs. Despite the name, graphs of groups constructed in this way do not belong

to the category IsRewritingSystem. This anomaly may be dealt with when time permits.

The example below shows a computation in the the free product of the symmetric s3 and the

alternating a4, amalgamated over a cyclic subgroup c3.
Example

gap> ## set up the first group s3 and a subgroup c3=<al>
gap> fg2 := FreeGroup(2, "a");;
gap> rell := [£fg2.1°3, £g2.272, (fg2.1%x£fg2.2)"2];;
gap> s3 := fg2/rell;;
gap> gs3 := Generators0fGroup(s3);;
gap> SetName(s3, "s3");
gap> al := gs3[1];; a2 := gs3[2];;
gap> H1 := Subgroup(s3,[all);;
gap> ## then the second group a4 and subgroup c3=<bl>
gap> f2 := FreeGroup(2, "b");;
gap> rel2 := [£2.1°3, £2.273, (£f2.1%f2.2)"2 1;;
gap> a4 := f2/rel2;;
gap> ga4 := GeneratorsOfGroup(a4);;
gap> SetName(a4, "ad");
gap> bl := gad4[1]; b2 := ga4[2];;
gap> H2 := Subgroup(a4, [b1]);;
gap> ## form the isomorphism and the fpa group
gap> iso := GroupHomomorphismByImages (H1,H2, [al], [b1]);;
gap> fpa := FreeProductWithAmalgamation(s3, a4, iso);
<fp group on the generators [fal, fa2, fa3, fa4 1>
gap> RelatorsOfFpGroup(fpa);
[fa1~3, fa2~2, (falxfa2)~2, fa3~3, fad4~3, (fa3*fad)~2, falxfa3~-1]
gap> ggl := GraphOfGroupsRewritingSystem(fpa);;
gap> Display(ggl);
Graph of Groups with :-
vertices: [5, 6]
arcs: [[y, 5,61, [y-1, 6, 511
groups: [s3, a4]
isomorphisms: [[[a1], [b1 11, [[b1td, [a1]1 1]
gap> LeftTransversals0fGraphOfGroups(ggl);
[[<identity ..>, a2~-1], [<identity ..>, b27-1, bl1~-1%b2"-1, bl*b2~-1]]
gap> ## choose a word in fpa and find its normal form
gap> gfpa := Generators0fGroup(fpa);;
gap> w2 := (gfpalll*gfpal2]*gfpal3]-gfpal4]l)"3;
(falxfa2*xfa4~-1*xfa3*fad)"3
gap> n2 := NormalFormGGRWS(fpa, w2);
fa2xfa3*(fad4~-1xfa2) ~2xfad~-1*fa3

Gpd 42

6.4.2 HnnExtension

> HnnExtension(gp, iso) (operation)
> IsHnnGroup (hnn) (property)

For HNN extensions, the appropriate graph of groups has underlying digraph with just one vertex
and one pair of loops, weighted with FpGroup generators z,z~!. There is one vertex group G, two
isomorphic subgroups H1,H2 of G, with the isomorphism and its inverse on the loops. The presentation
of the extension has one more generator than that of G and corresponds to the generator z.

The functions Graph0fGroupsRewritingSystem and NormalFormGGRWS may be applied to hnn-
groups as well as to fpa-groups.

In the example we take G=a4 and the two subgroups are cyclic groups of order 3.

Example

gap> H3 := Subgroup(a4, [b2]);;

gap> 123 := GroupHomomorphismByImages(H2, H3, [b1l], [b2]);;
gap> hnn := HnnExtension(a4, i23);

<fp group on the generators [fel, fe2, fe3]>

gap> phnn := PresentationFpGroup(hnn);;

gap> TzPrint(phnn);

#I generators: [fel, fe2, fe3]

#I relators:

#I 1. 3 [1,1, 1]

#I 2. 3 [2, 2, 2]

#I 3. 4 [1, 2,1, 2]
#I 4. 4 [-3, 1, 3, -21]

gap> gg2 := GraphOfGroupsRewritingSystem(hnn);
Graph of Groups: 1 vertices; 2 arcs; groups [a4]
gap> LeftTransversals0fGraphOfGroups(gg2) ;
[[<identity ...>, b27-1, b1~-1*b2~-1, bixb2~-1 1],
[<identity ...>, bl~-1, bl, b2~-1*bl]]
gap> gh := GeneratorsOfGroup(hnn);;
gap> w3 := (ghl[1]~gh[2])*gh[3]~-1x(gh[1]*gh[3]*gh[2]~2) ~2*gh[3]*gh[2];
fe2~-1*xfelxfe2xfe3~-1x(fel*xfe3xfe2~2) ~2xfe3*fe2
gap> n3 := NormalFormGGRWS(hnn, w3);
(fe2+fel*xfe3) "2

Both fpa-groups and hnn-groups are provided with a record attribute, FpaInfo(fpa) and
HnnInfo (hnn) respectively, storing the groups and isomorphisms involved in their construction.

Example

gap> fpainfo := Fpalnfo(fpa);

rec(groups := [s3, a4], positions := [[1, 21, [3,411,
isomorphism := [al] -> [b1 1)

gap> hnninfo := HnnInfo(hnn);

rec(group := a4, isomorphism := [b1] -> [b2])

Gpd

6.5 GraphsOfGroupoids and their Words

6.5.1 GraphOfGroupoids

GraphOfGroupoids(dig, gpds, subgpds, isos)
IsGraphOfPermGroupoids (gg)
IsGraph0fFpGroupoids (gg)
Groupoids0fGraph0fGroupoids(gg)
Digraph0fGraph0fGroupoids (gg)
Subgroupoids0fGraph0fGroupoids (gg)
Isomorphisms0fGraphOfGroupoids(gg)
RightTransversals0fGraphOfGroupoids(gg)
LeftTransversals0fGraphOfGroupoids(gg)

vV VvV VvV VvV VvV VvV Vv

Graphs of groups generalise naturally to graphs of groupoids,

43

(operation)
(property)
(property)
(attribute)
(attribute)
(attribute)
(attribute)
(attribute)
(attribute)

forming the class

IsGraphOfGroupoids. There is now a groupoid at each vertex and the isomorphism on an arc iden-
tifies wide subgroupoids at the tail and at the head. Since all subgroupoids are wide, every groupoid
in a connected constituent of the graph has the same number of objects, but there is no requirement

that the object sets are all the same.

The example below generalises the trefoil group example in subsection 4.4.1, taking at each vertex
of D1 a two-object groupoid with a free group on one generator, and full subgroupoids with groups

(a®) and (b?).
Example

gap> Gfa := SinglePieceGroupoid(fa, [-2,-1]);;
gap> ofa := One(fa);;

gap> SetName(Gfa, "Gfa");

gap> Uhy := Subgroupoid(Gfa, [[[-2,-1], hy 1 1);;
gap> SetName(Uhy, "Uhy");

gap> Gfb := SinglePieceGroupoid(fb, [-4,-3]);;
gap> ofb := One(fb);;

gap> SetName(Gfb, "Gfb");

gap> Uhybar := Subgroupoid(Gfb, [[[-4,-3], hybar 1 1);;
gap> SetName(Uhybar, "Uhybar");

gap> mory := GroupoidMappingOfSinglePieces(

Il

gap> Uhy, Uhybar, homy, [-4,-3], [ofb,ofb]);;
gap> morybar := GroupoidMappingOfSinglePieces(
gap> Uhybar, Uhy, homybar, [-2,-1], [ofa,ofal]);;

gap> gg3 := GraphOfGroupoids(D1, [Gfa,Gfb], [Uhy,Uhybar],
gap> Display(gg3);
Graph of Groupoids with :-
vertices: [5, 6]
arcs: [[y, 5,61, [y-1, 6, 511
groupoids:
fp single piece groupoid: Gfa
objects: [-2, -1]
group: fa = <[a 1>
fp single piece groupoid: Gfb
objects: [-4, -3 1]
group: fb = <[b 1>
subgroupoids: single piece groupoid: Uhy

[mory,morybar]

Gpd 44

objects: [-2, -1]
group: hy = <[a~3 1>
single piece groupoid: Uhybar
objects: [-4, -3 1]
group: hybar = <[b~2 1>
isomorphisms: [groupoid homomorphism : Uhy -> Uhybar
[[GroupHomomorphismByImages(hy, hybar, [a~3], [b21), [-4, -31,
[<identity ...>, <identity ...> 1 1 1],
groupoid homomorphism : Uhybar -> Uhy
[[GroupHomomorphismBylImages(hybar, hy, [b2 1, [a~3]1), [-2, -11,
[<identity ...>, <identity ...> 1 1 1]

6.5.2 GraphOfGroupoidsWord

v VvV VvV VvV VvV V

GraphOfGroupoidsWord(gg, tv, list) (operation)
IsGraph0fGroupoidsWord (w) (property)
Graph0fGroupoids0fWord (w) (attribute)
Word0fGraphOfGroupoidsWord (w) (attribute)
ReducedGraph0fGroupoidsWord (w) (operation)
IsReducedGraph0fGroupoidsWord (w) (property)

Having produced the graph of groupoids gg3, we may construct left coset representatives; choose

a graph of groupoids word; and reduce this to normal form. Compare the nw3 below with the normal
form nw1 in subsection 4.3.2.

Example

gap> f1 := Arrow(Gfa, a~7, -1, -2);;

gap> 2 := Arrow(Gfb, b~-6, -4, -4);;

gap> £3 := Arrow(Gfa, a~-11, -2, -1);;

gap> f4 := Arrow(Gfb, b~9, -3, -4);;

gap> f5 := Arrow(Gfa, a~7, -2, -1);;

gap> L3 := [f1, 1, f2, 2, £3, 1, f4, 2, f5 1;

[[a~7 : -1 -> -2], 1, [b~-6 : -4 —> -4], 2, [a~-11 : -2 -> -1], 1,
b~9 : -3 -> -41, 2, [a~7 : -2 -> -1]]

gap> gw3 := GraphOfGroupoidsWord(gg3, 5, L3);

B)a7: -1 > -2]l.y.[b"-6 : -4 -> -4].y"-1.[a"-11 : -2 -> -1].y.[b"9 :

-3 -> -4].y~-1.[a"7 : -2 -> -1](5)

gap> nw3 := ReducedGraphOfGroupoidsWord(gw3);

(5)[a~-1 : -1 > -2].y.[b~-1 : -4 > -4].y"-1.[a"10 : -2 -> -1]1(5)

More examples of these operations may be found in the example file gpd/examples/ggraph.g.

Chapter 7

Technical Notes

This short chapter is included for the benefit of anyone wishing to implement some other variety
of many-object structures, for example ringoids, which are rings with many objects; Lie groupoids,
which are Lie groups with many objects; and so on.

7.1 Many object structures

Structures with many objects, and their elements, are defined in a manner similar to the single object
case. For elements we have:

* DeclareCategory("IsMultiplicativeElementWithObjects",
IsMultiplicativeElement) ;

* DeclareCategory("IsMultiplicativeElementWithObjectsAndOnes",
IsMultiplicativeElementWithObjects);

* DeclareCategory("IsMultiplicativeElementWithObjectsAndInverses",
IsMultiplicativeElementWithObjectsAndOnes);

* DeclareCategory("IsGroupoidElement",

IsMultiplicativeElementWithObjectsAndInverses);
as well as various category collections. For the various structures we have:
* DeclareCategory("IsDomainWithObjects", IsDomain);

* DeclareCategory("IsMagmaWithObjects", IsDomainWithObjects and IsMagma
and IsMultiplicativeElementWithObjectsCollection);

* DeclareCategory("IsMagmaWithObjectsAndOnes", IsMagmaWithObjects and
IsMultiplicativeElementWithObjectsAndOnesCollection);

* DeclareCategory("IsMagmaWithObjectsAndInverses",
IsMagmaWithObjectsAndOnes and

IsMultiplicativeElementWithObjectsAndInversesCollection);

* DeclareCategory("IsGroupoid", IsMagmaWithObjectsAndInverses and
IsGroupoidElementCollection);

45

Gpd

46

Among the groupoids constructed earlier are the single piece Gd8 and the five component union U5:

Example

gap> CategoriesOfObject(Gd8);
["IsListOrCollection", "IsCollection", "IsExtLElement",

"CategoryCollections (IsExtLElement)", "IsExtRElement",
"CategoryCollections (IsExtRElement)",
"CategoryCollections(IsMultiplicativeElement)", "IsGeneralizedDomain",

"IsMagma", "IsDomainWithObjects",
"CategoryCollections(IsMultiplicativeElementWithObjects)",
"CategoryCollections(IsMultiplicativeElementWithObjectsAndOnes)",
"CategoryCollections(IsMultiplicativeElementWithObjectsAndInverses)\
"CategoryCollections (IsGroupoidElement)", "IsMagmaWithObjects",
"IsMagmaWithObjectsAndOnes", "IsMagmaWithObjectsAndInverses",
"IsGroupoid"]
gap> FamilyObj(Gd8); ## these numbers vary from one run to another
NewFamily("GroupoidFamily", [2722], [53, 54, 79, 80, 81, 82, 92, 93, 116,
117, 119, 120, 123, 205, 501, 2690, 2703, 2707, 2711, 2715, 2718, 2720,
2721, 2722 1)
gap> KnownAttributes0fObject(Gd8);

-

["Name", "Size", "GeneratorsOfMagmaWithInverses", "ObjectList", "Pieces"]

gap> KnownTruePropertiesO0fObject(Gd8);

["IsNonTrivial", "IsFinite", "CanEasilyCompareElements",
"CanEasilySortElements", "IsDuplicateFree", "IsAssociative",

"IsSinglePieceDomain", "IsDirectProductWithCompleteGraphDomain"]
gap> Representations0fObject(Gd8);
["IsComponentObjectRep", "IsAttributeStoringRep", "IsMWOSinglePieceRep"]
gap> Representations0fObject(U5);
["IsComponentObjectRep", "IsAttributeStoringRep", "IsPiecesRep"]

Similarly, for arrows, we have:

Example

gap> [a78, e2 1;
[[m2 : -7 -> -8], [(1,3) : -8 > -7] 1]
gap> Categories0f0Object(a78);

["IsExtLElement", "IsExtRElement", "IsMultiplicativeElement",
"IsMultiplicativeElementWithObjects"]
gap> FamilyObj(a78); ## again these numbers vary

NewFamily("MultiplicativeElementWithObjectsFamily", [2702],

[79, 80, 81, 82, 116, 119, 122, 2702])

gap> CategoriesOfObject(e2);

["IsExtLElement", "IsExtRElement", "IsMultiplicativeElement",
"IsMultiplicativeElementWithObjects",
"IsMultiplicativeElementWithObjectsAndOnes",
"IsMultiplicativeElementWithObjectsAndInverses",
"IsGroupoidElement"]

gap> FamilyObj(e2);

NewFamily("GroupoidElementFamily", [2714],

[79, 80, 81, 82, 116, 119, 122, 2702, 2706, 2710, 2714])

Gpd 47

7.2 Many object homomorphisms

Homomorphisms of structures with many objects have a similar heirarchy. A few examples:

* DeclareCategory("IsGeneralMappingWithObjects", IsGeneralMapping);

* DeclareSynonymAttr("IsMagmaWithObjectsGeneralMapping",
IsGeneralMappingWithObjects and RespectsMultiplication);

* DeclareSynonymAttr("IsMagmaWithObjectsHomomorphism",
IsMagmaWithObjectsGeneralMapping and IsMapping);

* DeclareCategory("IsGroupoidHomomorphism", IsMagmaWithObjectsHomomorphism) ;

Two forms of representation are used: for mappings to a single piece; and for unions of such
mappings:

* DeclareRepresentation("IsMappingToSinglePieceRep",
IsMagmaWithObjectsHomomorphism and IsAttributeStoringRep and
IsGeneralMapping, ["Source", "Range", "PieceImages"]);

* DeclareRepresentation("IsMappingWithObjectsRep",
IsMagmaWithObjectsHomomorphism and IsAttributeStoringRep and
IsGeneralMapping, ["Source", "Range", "PiecesOfMapping"]);

In previous chapters, homl was an endofunction on M78; homd8 was a homomorphism
from Gd8 to Gs3; and aut3 was an automorphism of Ga4. All homomorphisms have family

GeneralMappingWithObjectsFamily. Perhaps it would be better to have separate families for each
structure?

Example

gap> FamilyObj (homl) ;

NewFamily("GeneralMappingWithObjectsFamily", [2726],

[79, 80, 81, 82, 116, 119, 122, 126, 130, 149, 412, 2726])
gap> KnownAttributes0fObject(homl);

["Range", "Source", "PieceImages"]

gap> KnownTrueProperties0f0bject(homl);

["CanEasilyCompareElements", "CanEasilySortElements", "IsTotal",
"IsSingleValued", "RespectsMultiplication", "IsGeneralMappingToSinglePiece",
"IsGeneralMappingFromSinglePiece", "IsInjectiveOnObjects",

"IsSurjectiveOnObjects"]

gap> CategoriesOf0Object(homd8);

["IsExtLElement", "IsExtRElement", "IsMultiplicativeElement",
"IsMultiplicativeElementWithOne", "IsMultiplicativeElementWithInverse",

"IsAssociativeElement", "IsGeneralMapping", "IsGeneralMappingWithObjects",
"IsGroupoidHomomorphism"]

gap> KnownAttributes0fObject(homd8) ;

["Range", "Source", "Piecelmages", "ImagesOfObjects", "ImagesOfRays",
"ObjectTransformationOfGroupoidHomomorphism", "RootGroupHomomorphism"]

gap> KnownAttributesOfObject(aut3);

["Order", "Range", "Source", "PieceImages", "ImagesOfObjects",
"ImagesOfRays", "ObjectTransformationOfGroupoidHomomorphism",

"RootGroupHomomorphism"]

Chapter 8

Development History

8.1 Versions of the Package

The first version, GraphGpd 1.001, formed part of Emma Moore’s thesis [Moo01] in December 2000,
but was not made generally available.

Version 1.002 of GraphGpd was prepared to run under GAP 4.4 in January 2004; was submitted
to the GAP council to be considered as an accepted package; but suggestions from the referee were
not followed up.

In April 2006 the manual was converted to GAPDoc format. Variables Star, Costar and
CoveringGroup were found to conflict with usage in other packages, and were renamed VertexStar,
VertexCostar and CoveringGroup0fGroupoid respectively. Similarly, the Vertices and Arcs of
an FpWeightedDigraph were changed from attributes to record components.

In the spring of 2006 the package was extensively rewritten and renamed Gpd. Version 1.01
was submitted as a deposited package in June 2006. Version 1.03, of October 2007, fixed some file
protections, and introduced the test file gpd_manual.tst.

Version 1.05, of November 2008, was released when the website at Bangor changed.

Since then, the package has been rewritten again, introducing magmas with objects and their
mappings. Functions to implement constructions contained in [AW10] have been added, but this is
ongoing work.

Versions 1.09 to 1.15 were prepared for the anticipated release of GAP 4.5 in June 2012.

Gpd became an accepted GAP package in May 2015.

The latest version is 1.42 of 15th February 2016, for GAP 4.8.

(In this temporary version there have been a number of changes of function name, such as
IsDigraph becoming GpdIsDigraph. This is in order to avoid conflicts with the new digraphs
package. Further changes will be made once the digraphs package becomes part of the general GAP
distribution.)

8.2 What needs to be done next?

Computationally, there are three types of connected groupoid:
* those with identical object groups,

* those with object groups conjugate in some supergroup,

48

Gpd 49

those with object groups which are simply isomorphic.

GraphGpd attempted to implement the second case, while Gpd 1.01 and 1.03 considered only the
first case, and Gpd 1.05 extended 1.03 to the second case.

The third case has not yet been considered for implementation, and there does not appear to be
much need to do so.

Here are some other immediate requirements:

more work on automorphism groups of groupoids;

normal subgroupoids and quotient groupoids;

more methods for morphisms of groupoids, particularly when the range is not connected;
ImageElm and ImagesSource for the cases of groupoid morphisms not yet covered;
Enumerator for IsHomsetCosetsRep;

free groupoid on a graph;

methods for FreeProductWithAmalgamation and HnnEntension for pc-groups;
convert GraphOfGroupsRewritingSystem to the category IsRewritingSystem;

in XMod, implement crossed modules over groupoids (a start has been made).

References

[AW10]

[BMPWO02]

[Bro88]

[Bro06]

[Hig76]

[Hig05]

[MooO1]

[Ser80]

M. Alp and C. D. Wensley. Automorphisms and homotopies of groupoids and crossed
modules. Applied Categorical Structures, 18:473-495, 2010. 2, 5, 27, 33, 48

R. Brown, E. J. Moore, T. Porter, and C. D. Wensley. Crossed complexes, and free
crossed resolutions for amalgamated sums and hnn-extensions of groups. Georgian
Math. J., 9:623-644, 2002. 5

R. Brown. Topology: a geometric account of general topology, homotopy types, and the
Jfundamental groupoid. Ellis Horwood, Chichester, 1988. 6, 16

R. Brown. Topology and groupoids. Booksurge LLC, S.Carolina, 2006. 6, 16

P. Higgins. The fundamental groupoid of a graph of groups. J. London Math. Soc.,
13:145-149, 1976. 36

P. Higgins. Categories and groupoids. Reprints in Theory and Applications of Cate-
gories, 2005. http://www.tac.mta.ca/tac/reprints/articles/7/tr7abs.html.
6

E. J. Moore. Graphs of Groups: Word Computations and Free Crossed Resolutions.
PhD thesis, University of Wales, Bangor, 2001. http://www.maths.bangor.ac.uk/
research/ftp/theses/moore.ps.gz. 5, 36, 39, 40, 48

J. Serre. Trees. Springer-Verlag, Berlin, 1980. 36

50

http://www.tac.mta.ca/tac/reprints/articles/7/tr7abs.html
http://www.maths.bangor.ac.uk/research/ftp/theses/moore.ps.gz
http://www.maths.bangor.ac.uk/research/ftp/theses/moore.ps.gz

Index

* for groupoid elements, 21
\~{} for arrows, 27
\~{} for groupoids, 28

Ancestor, 24
Arrow, 7, 20
AutomorphismGroup, 33

ConjugateArrow, 26
ConjugateGroupoid, 28

Digraph0fGraph0fGroupoids, 43
Digraph0fGraph0fGroups, 37
DiscreteSubgroupoid, 23
DiscreteTrivialSubgroupoid, 23
DomainWithSingleObject, 10, 16
DoubleCoset, 25
DoubleCosetRepresentatives, 25

ElementOfArrow, 7, 20

FpWeightedDigraph, 36
FreeProductWithAmalgamation, 40
FullSubgroupoid, 23
FullTrivialSubgroupoid, 23

GeneratorsOfMagmaWithObjects, 9
GGHead, 39

GGTail, 39

GraphOfGroupoids, 43
Graph0fGroupoids0fWord, 44
Graph0fGroupoidsWord, 44
Graph0fGroups, 37
Graph0fGroups0fWord, 39
GraphOfGroupsRewritingSystem, 40
Graph0fGroupsWord, 39

Groupoid, 16
GroupoidAutomorphismByGroupAuto, 32
GroupoidAutomorphismByGroupAutos, 34
GroupoidAutomorphismByObjectPerm, 32
GroupoidAutomorphismByRayImages, 32

51

GroupoidHomomorphism, 29

GroupoidHomomorphismFromSinglePiece, 29

Groupoids0fGraph0fGroupoids, 43
Groups0fGraph0fGroups, 37

HeadOfArrow, 7, 20
HnnExtension, 42
HomogeneousDiscreteGroupoid, 19
HomogeneousGroupoid, 19
HomomorphismByUnion, 15, 31
HomomorphismFromSinglePiece, 12
HomomorphismToSinglePiece, 12, 30
Homset, 22

HomsO0fMapping, 12

identity subgroupoid, 23
IdentityArrow, 21
IdentityMapping, 30
InclusionMappingGroupoids, 29
InvolutoryArcs, 36
IsArrowln, 7, 20
IsAutomorphismWithObjects, 15
IsBijectiveOnQObjects, 15
IsDirectProductWithCompleteGraph, §
IsDiscrete, 8
IsDomainWithObjects, 7
IsEndomorphismWithObjects, 15
IsFpaGroup, 40
IsFpGroupoid, 18
IsFpWeightedDigraph, 36
IsGraphOfFpGroupoids, 43
IsGraphOfFpGroups, 38
IsGraphOfGroupoidsWord, 44
IsGraphOfGroupsWord, 39
IsGraph0fPcGroups, 38
IsGraphOfPermGroupoids, 43
IsGraphOfPermGroups, 38
IsHnnGroup, 42
IsHomogeneousDomainWithObjects, 20

Gpd

IsHomogeneousDiscreteGroupoidRep, 20
IsInjectiveOnObjects, 15
IsMagmaWithObjects, 7
IsMappingToSinglePieceRep, 12
IsMatrixGroupoid, 18
IsMultiplicativeElementWithObjects, 7
IsomorphismNewObjects, 12, 29
Isomorphisms0fGraph0fGroupoids, 43
Isomorphisms0fGraph0fGroups, 37
IsPcGroupoid, 18

IsPermGroupoid, 18
IsReducedGraphOfGroupoidsWord, 44
IsReducedGraph0fGroupsWord, 40
IsSinglePiece, 8

IsSubgroupoid, 23
IsSurjectiveOnObjects, 15

IsWide, 23

LeftCoset, 25
LeftCosetRepresentatives, 25
LeftCosetRepresentativesFromObject, 25
LeftTransversals0fGraphOfGroupoids, 43
LeftTransversals0fGraph0fGroups, 38
License, 2

loop, 21

MagmaWithObjects, 6
MagmaWithObjectsHomomorphism, 12
MaximalDiscreteSubgroupoid, 23
MonoidWithObjects, 9

NormalFormGGRWS, 40

ObjectCostar, 22
ObjectGroup, 17
ObjectGroupHomomorphism, 35
Objectlist, 6, 17
Objectlist

for groupoids, 18
ObjectStar, 22
Order, 21

PiecelImages, 12
Pieces, 10, 18
PiecesOfMapping, 12

Range, 12
RayElements0fGroupoid, 24

rays, 24

Rays0fGroupoid, 24
ReducedGraph0fGroupoidsWord, 44
ReducedGraph0fGroupsWord, 40
ReplaceOnePieceInUnion, 18
RightCoset, 25
RightCosetRepresentatives, 25

52

RightTransversals0fGraphOfGroupoids, 43

RightTransversals0fGraphOfGroups, 38
RootGroup, 17
RootGroupHomomorphism, 35
RootObject, 6, 17

SemigroupWithObjects, 8§
SinglePieceGroupoid, 16
SinglePieceGroupoidByGenerators, 27
SinglePieceMagmaWithObjects, 6
SinglePieceMonoidWithObjects, 9
SinglePieceSemigroupWithObjects, 8
Size, 18

Source, 12

Subgroupoid, 23
SubgroupoidByPieces, 23
Subgroupoids0fGraph0fGroupoids, 43
SubgroupoidWithRays, 24

TailOfArrow, 7, 20
tree groupoid, 23
trivial subgroupoid, 23

UnionOfPieces, 10, 18

Word0fGraph0fGroupoidsWord, 44
Word0fGraphOfGroupsWord, 39

	Introduction
	Many-object structures
	Magmas with objects; arrows
	Semigroups with objects
	Monoids with objects
	Structures with one or more pieces

	Homomorphisms of many-object structures
	Homomorphisms of magmas with objects
	Homomorphisms of semigroups and monoids with objects
	Homomorphisms to more than one piece

	Groupoids
	Groupoids: their properties and attributes
	Groupoid elements; stars; costars; homsets
	Subgroupoids
	Left, right and double cosets
	Conjugation

	Homomorphisms of Groupoids
	Homomorphisms from a connected groupoid
	Homomorphisms to a connected groupoid
	Homomorphisms to more than one piece
	Groupoid automorphisms

	Graphs of Groups and Groupoids
	Digraphs
	Graphs of Groups
	Words in a Graph of Groups and their normal forms
	Free products with amalgamation and HNN extensions
	GraphsOfGroupoids and their Words

	Technical Notes
	Many object structures
	Many object homomorphisms

	Development History
	Versions of the Package
	What needs to be done next?

	References
	Index

