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Chapter 1

Introduction

1.1 Philosophy

FinInG (pronounciation: [fInIN]) is a package for computation in Finite Incidence Geometry. It pro-
vides users with the basic tools to work in various areas of finite geometry from the realms of pro-
jective spaces to the flat lands of generalised polygons. The algebraic power of GAP is employed,
particularly in its facility with matrix and permutation groups.

1.2 How to cite FinInG

The development group of FinInG welcomes contact with users. In case you have obtained the pack-
age as a deposited package part of archive during the installation of GAP, we call on your beneficence
to register at http://cage.ugent.be/fining when you use FinInG.

Please tell us about the use of FinInG in your research or teaching. We are very interested in results
obtained using FinInG and we might refer to your work in the future. If your work is published, we
ask you to cite FinInG like a journal article or book.

If you are using BibTeX, you can use the following BibTeX entry for the current FinInG version:
Example

@manual{fining,
Author = {Bamberg, John and Betten, Anton and Cara, Philippe and

De Beule, Jan and Lavrauw, Michel and Neunh\"offer, Max },
Key = {fining},
Title = {{FinInG -- Finite Incidence Geometry, Version 1.3}},
Url = {\verb+(http://cage.ugent.be/fining)+},
Year = 2015}

Here is the bibliography entry produced by BibTeX (in bibliography style ‘alpha’), to be pasted di-
rectly inside the bibliography environment of your LaTeX document:

Example
\bibitem[FinInG]{fining}
J.~Bamberg, A.~Betten, {Ph}. Cara, J.~De~Beule, M.~Lavrauw, and

M.~Neunh\"offer.
\newblock {\em Finite Incidence Geometry}.
\newblock FInInG -- a {GAP} package, version 1.3, 2015.

When linking to FinInG from a web page you can use the link

6
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Example
<a href="http://cage.ugent.be/fining/">FinInG</a>.

1.3 Overview of this manual

This chapter (section 1.4) describes the installation of the package. Chapter 2 contains some extended
examples to introduce the user to the basic functionality and philosophy to get started. Chapter 3
contains a rigorous discription of the basic structures. This chapter can be omitted at first reading,
since the set of consequent chapters is also self contained. Chapters 4, 5 and 6 deal with projective
spaces, projective semilinear groups and polarities of projective spaces, respectively. In Chapter 7 the
functionality for classical polar spaces is treated and in Chapter 9 affine spaces and their groups are
considered. Geometry morphisms between various geometries that are available in the package, are
introduced and discussed in Chapter 10. The final three chapters, 11, 12, and 13 explain the basic
functionality which is provided for algebraic varieties (in projective or affine spaces), generalised
polygons, of which several models can be constructed, and finally coset geometries and diagrams.

1.4 Installing FinInG

This package requires the GAP packages GAPDoc, version 1.5.1 or higher, Forms, version 1.2.3 or
higher, Orb, version 4.7.3 or higher, cvec, version 2.5.3 or higher, GenSS, version 1.6.2 or higher,
and GRAPE, version 4.6.1 or higher. Currently, one function will use the Design package, but this
package is not required to load FinInG. The package GenSS requires the package IO. The packages
required by FinInG are all part of the standard GAP distribution but some of them have to be compiled.
Make sure (at least) IO, orb and cvec have been compiled before trying to load FinInG. You can find
instructions on how to compile packages for your operating system on the GAP webpage. Here we
just show how to compile the required packages on a UNIX-like system. In case you don’t have write
access to the gap installation on your computer, you should ask your system administrator to do this
for you. We assume your GAP installation resides in /opt/gap4r7

Example
user@computer:~/$ cd /opt/gap4r7/pkg
user@computer:/opt/gap4r7/pkg/$ cd orb
user@computer:/opt/gap4r7/pkg/orb$ ./configure
checking for a BSD-compatible install... /usr/bin/install -c
...
...lots of output...
...
user@computer:/opt/gap4r7/pkg/orb$ make
make[1]: Entering directory ‘/opt/gap4r7/pkg/orb’
...
...lots of output...
...
user@computer:/opt/gap4r7/pkg/orb$ cd ../io
user@computer:/opt/gap4r7/pkg/io$ ./configure
checking for a BSD-compatible install... /usr/bin/install -c
...
...lots of output...
...
user@computer:/opt/gap4r7/pkg/io$ make
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make[1]: Entering directory ‘/opt/gap4r7/pkg/io’
...
...lots of output...
...
user@computer:/opt/gap4r7/pkg/io$ cd ../cvec
user@computer:/opt/gap4r7/pkg/cvec$ ./configure
checking for a BSD-compatible install... /usr/bin/install -c
...
...lots of output...
...
user@computer:/opt/gap4r7/pkg/cvec$ make
make[1]: Entering directory ‘/opt/gap4r7/pkg/cvec’
...
...lots of output...
...
user@computer:/opt/gap4r7/pkg/cvec$ cd ../grape/
user@computer:/opt/gap4r7/pkg/grape$ ./configure
user@computer:/opt/gap4r7/pkg/grape$ make
if test ! -d bin; then mkdir bin; chmod 755 bin; fi
...
...lots of output...
...

The recent development stage of FinInG is based on GAP4r5. We have done testing using GAP4r7,
and no installation differences occured. In this section, we describe in detail the installation procedure
for FinInG, assuming the use of GAP4r7. We have also (succesfully) tested this procedure with some
older GAP releases but these required manual installation of GenSS, IO and Orb. The installation
of FinInG itself is generic for each UNIX like system, including the different flavours of MacOSX.
You only need a terminal application, and you need acces to the standard unix tools gunzip and tar.
The installation procedure for FinInG, a standard GAP package, does not require compilation. Each
GAP installation has a pkg directory, containing supplemental GAP packages. If you have acces to
this filesystem, you can locate it, e.g.

/usr/local/gap4r7/pkg/

Download the FinInG archive "fining-....tgz" to this location, and unpack the archive. This can be
done by issuing

gunzip f ining− ....tgz

which yields a file "fining-....tar", in the pkg directory, after which issuing the command

tar− x f f ining− ....tar

unpacks the archive in a subdirectory fining. After successfully unpacking the archive, you can locate
the directory

/usr/local/gap4r7/pkg/ f ining/.

This directory contains a subdirectory "./doc", containing an html and pdf version of the manual. The
html version is accessible by opening the file "chap0.html" in your favorite browser. The pdf version
of the manual can be found in the file "manual.pdf".

Please notice that you can unpack your archive in your favorite local "./pkg" directory, e.g.
"/home/yourself/pkg/", in case you are using GAP on a server on which you have only a restricted
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access. If you installed FinInG in the central GAP pkg directory, you can startup gap using the
usual command. We suppose this is gap4r7. If you installed FinInG in your local pkg directory, e.g.
"/home/yourself/pkg/", then move to "/home/yourself", and issue the command

gap− l”/usr/local/gap4r7; ./”

This will cause gap to startup and use as pkg directory both its own central pkg directory, i.e.
"/usr/local/gap4r7/pkg", as well as your local pkg directory, i.e. "/home/yourself/pkg/". You should
see something like the following output. Notice that the packages GAPDoc and IO are loaded by de-
fault. This is not necessarily the case, but loading fining will force to load required packages anyway.

Example
+-------+ GAP, Version 4.7.8 of 09-Jun-2015 (free software, GPL)
| GAP | http://www.gap-system.org
+-------+ Architecture: x86_64-unknown-linux-gnu-gcc-default64
Libs used: gmp
Loading the library and packages ...
Components: trans 1.0, prim 2.1, small* 1.0, id* 1.0
Packages: AClib 1.2, Alnuth 3.0.0, AtlasRep 1.5.0, AutPGrp 1.6,

Browse 1.8.6, CRISP 1.3.8, Cryst 4.1.12, CrystCat 1.1.6,
CTblLib 1.2.2, FactInt 1.5.3, FGA 1.2.0, GAPDoc 1.5.1, IO 4.4.4,
IRREDSOL 1.2.4, LAGUNA 3.7.0, Polenta 1.3.2, Polycyclic 2.11,
RadiRoot 2.7, ResClasses 3.4.0, Sophus 1.23, SpinSym 1.5,
TomLib 1.2.5

Try ’?help’ for help. See also ’?copyright’ and ’?authors’
gap>

To load FinInG, issue
LoadPackage(” f ining”);

If this fails, in most cases, the reason is that either GAP does not find the directory in which FinInG is
installed, or one of the required packages for FinInG is not installed or not compiled. Make sure (at
least) IO, orb and cvec have been compiled before trying to load FinInG. The easiest way to find out
what goes wrong is to load each required package before issuing the LoadPackage command to load
FinInG. The example below shows this situation, the packages Forms and FinInG itself are installed
in a local pkg directory, the other packages are installed centrally. Starting up gap not pointing to the
local pkg directory, causes the locally installed packages to be unloadable.

Example
gap> LoadPackage("fining");
fail
gap> LoadPackage("forms");
fail
gap> LoadPackage("grape");
-----------------------------------------------------------------------------
Loading GRAPE 4.6.1 (GRaph Algorithms using PErmutation groups)
by Leonard H. Soicher (http://www.maths.qmul.ac.uk/~leonard/).
Homepage: http://www.maths.qmul.ac.uk/~leonard/grape/
-----------------------------------------------------------------------------
true
gap> LoadPackage("orb");
-----------------------------------------------------------------------------
Loading orb 4.7.3 (Methods to enumerate orbits)
by Juergen Mueller (http://www.math.rwth-aachen.de/~Juergen.Mueller),
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Max Neunhöffer (http://www-groups.mcs.st-and.ac.uk/~neunhoef), and
Felix Noeske (http://www.math.rwth-aachen.de/~Felix.Noeske).

Homepage: http://gap-system.github.io/orb/
-----------------------------------------------------------------------------
gap> LoadPackage("genss");
-----------------------------------------------------------------------------
Loading genss 1.6.2 (Generic Schreier-Sims)
by Max Neunhöffer (http://www-groups.mcs.st-and.ac.uk/~neunhoef) and

Felix Noeske (http://www.math.rwth-aachen.de/~Felix.Noeske).
Homepage: http://gap-system.github.io/genss/
-----------------------------------------------------------------------------
true

If the installation was successful, then, the following output should be visible.
Example

gap> LoadPackage("fining");
---------------------------------------------------------------------
Loading ’Forms’ 1.2.3 (26/10/2015)
by John Bamberg (http://school.maths.uwa.edu.au/~bamberg/)

Jan De Beule (http://www.debeule.eu)
For help, type: ?Forms
---------------------------------------------------------------------
-----------------------------------------------------------------------------
Loading orb 4.7.3 (Methods to enumerate orbits)
by Juergen Mueller (http://www.math.rwth-aachen.de/~Juergen.Mueller),

Max Neunhöffer (http://www-groups.mcs.st-and.ac.uk/~neunhoef), and
Felix Noeske (http://www.math.rwth-aachen.de/~Felix.Noeske).

Homepage: http://gap-system.github.io/orb/
-----------------------------------------------------------------------------
-----------------------------------------------------------------------------
Loading cvec 2.5.3 (Compact vectors over finite fields)
by Max Neunhöffer (http://www-groups.mcs.st-and.ac.uk/~neunhoef).
Homepage: http://gap-system.github.io/cvec/
-----------------------------------------------------------------------------
-----------------------------------------------------------------------------
Loading genss 1.6.2 (Generic Schreier-Sims)
by Max Neunhöffer (http://www-groups.mcs.st-and.ac.uk/~neunhoef) and

Felix Noeske (http://www.math.rwth-aachen.de/~Felix.Noeske).
Homepage: http://gap-system.github.io/genss/
-----------------------------------------------------------------------------
-----------------------------------------------------------------------------
Loading GRAPE 4.6.1 (GRaph Algorithms using PErmutation groups)
by Leonard H. Soicher (http://www.maths.qmul.ac.uk/~leonard/).
Homepage: http://www.maths.qmul.ac.uk/~leonard/grape/
-----------------------------------------------------------------------------
loading: geometry, liegeometry, group, projectivespace, correlations, polarspace
/morphisms, enumerators, diagram, varieties, affinespace/affinegroup, gpolygons,
orbits+stabilisers

-------------------------------------------------------------------------------
______________ ________ _________ ______________
___ ____/__(_)__________ _/________ ____/ __< /__|__ /
__ /_ __ /__ __ \__ / __ __ \ / __ __ / ___/_ <
_ __/ _ / _ / / /_/ / _ / / / /_/ / _ /______/ /
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/_/ /_/ /_/ /_//___/ /_/ /_/\____/ /_/_(_)____/
-------------------------------------------------------------------------------
Loading FinInG 1.3 (Finite Incidence Geometry)
by John Bamberg (http://school.maths.uwa.edu.au/~bamberg/)

Anton Betten (http://www.math.colostate.edu/~betten)
Jan De Beule (http://www.debeule.eu)
Philippe Cara (http://homepages.vub.ac.be/~pcara)
Michel Lavrauw (http://cage.ugent.be/~ml)
Max Neunhoeffer (http://www-groups.mcs.st-and.ac.uk/~neunhoef/)

For help, type: ?FinInG
---------------------------------------------------------------------
true

1.5 The Development Team

This is the development team (without Anton), meeting in St. Andrews in september 2008, from left
to right: Philippe Cara, Michel Lavrauw, Max Neunhöffer, Jan De Beule and John Bamberg

The development team meeting again (without Anton and Max), now in Vicenza in april 2011.
from left to right: Michel Lavrauw, John Bamberg, Philippe Cara, Jan De Beule.
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Survivors of the first version of FinInG, enjoying a trip to Chioggia, december 2011.

The same survivors, staring at the destiny.
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Anton Betten, during a milestone meeting at the finite geometries conference in Irsee, september
2014.



Chapter 2

Examples

In this chapter we provide some simple examples of the use of FinInG.

2.1 Elementary examples

2.1.1 subspaces of projective spaces

The following example shows how to create some subspaces of a projective space, test their incidence,
and determine their span and intersection. Projective spaces are considered as incidence geometries
too. Incidence, to be tested with IsIncident or equivalently \*, is symmetrized set-theoretic con-
tainment, the latter which can be tested through the operation in.

Example
gap> pg := PG(3,8);
ProjectiveSpace(3, 8)
gap> vec := [0,1,0,1]*Z(8)^0;
[ 0*Z(2), Z(2)^0, 0*Z(2), Z(2)^0 ]
gap> point := VectorSpaceToElement(pg,vec);
<a point in ProjectiveSpace(3, 8)>
gap> mat := [[0,0,1,1],[0,1,0,0]]*Z(8)^0;
[ [ 0*Z(2), 0*Z(2), Z(2)^0, Z(2)^0 ], [ 0*Z(2), Z(2)^0, 0*Z(2), 0*Z(2) ] ]
gap> line := VectorSpaceToElement(pg,mat);
<a line in ProjectiveSpace(3, 8)>
gap> mat2 := [[1,0,0,1],[1,0,1,0],[1,1,0,0]]*Z(8)^0;
[ [ Z(2)^0, 0*Z(2), 0*Z(2), Z(2)^0 ], [ Z(2)^0, 0*Z(2), Z(2)^0, 0*Z(2) ],

[ Z(2)^0, Z(2)^0, 0*Z(2), 0*Z(2) ] ]
gap> plane := VectorSpaceToElement(pg,mat2);
<a plane in ProjectiveSpace(3, 8)>
gap> IsIncident(point,line);
false
gap> IsIncident(line,point);
false
gap> point * line;
false
gap> line * point
> point in line;
Syntax error: ; expected
point in line;

^

14
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gap> line in point;
false
gap> IsIncident(point,plane);
true
gap> IsIncident(line,plane);
false
gap> line in plane;
false
gap> plane2 := Span(point,line);
<a plane in ProjectiveSpace(3, 8)>
gap> Meet(plane,plane2);
<a line in ProjectiveSpace(3, 8)>
gap> mat3 := [[1,0,0,0],[0,0,0,1]]*Z(8)^0;
[ [ Z(2)^0, 0*Z(2), 0*Z(2), 0*Z(2) ], [ 0*Z(2), 0*Z(2), 0*Z(2), Z(2)^0 ] ]
gap> line2 := VectorSpaceToElement(pg,mat3);
<a line in ProjectiveSpace(3, 8)>
gap> Meet(line,line2);
< empty subspace >
gap> Span(plane,plane2);
ProjectiveSpace(3, 8)

2.1.2 Subspaces of classical polar spaces

FinInG provides classical polar spaces. Subspaces can be constructed the same way as subspaces of
projective spaces. Upon construction, it is checked whether the given vector space does determine a
subspace of the polar space. Subspaces of polar spaces are also subspaces of the ambient projective
space. Operations like Span and Meet are naturally applicable. However, the span of two subspaces
might not be a subspace of the polar space anymore, and if the two subspaces belong to two different
polar spaces in the same ambient projective space, it cannot be determined in which polar space the
span should be constructed. Therefore the result of Span of two subspaces of a polar space is a
subspace of the ambient projective space. It can be checked whether the result belongs to a polar
space using in. This illustrates very well a general philosophy: a subspace of a polar space, and
more generally, an element of any incidence structure is always aware of its ambient geometry. This
example also illustrates how to create an element that belongs to the polar space from the subspace
of the ambient projective geometry by using ElementToElement. Finally note the behaviour of =
applied on the two subspaces. Clearly, a subspace of a polar space is really also a subspace of the
ambient projective space.

Example
gap> ps := EllipticQuadric(5,7);
Q-(5, 7)
gap> vec := [1,0,0,0,0,0]*Z(7)^0;
[ Z(7)^0, 0*Z(7), 0*Z(7), 0*Z(7), 0*Z(7), 0*Z(7) ]
gap> point := VectorSpaceToElement(ps,vec);
Error, <v> does not generate an element of <geom> called from
<function "unknown">( <arguments> )
called from read-eval loop at line 10 of *stdin*

you can ’quit;’ to quit to outer loop, or
you can ’return;’ to continue
brk> quit;
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gap> EquationForPolarSpace(ps);
x_1^2+x_2^2+x_3*x_4+x_5*x_6
gap> vec := [0,0,1,0,0,0]*Z(7)^0;
[ 0*Z(7), 0*Z(7), Z(7)^0, 0*Z(7), 0*Z(7), 0*Z(7) ]
gap> point := VectorSpaceToElement(ps,vec);
<a point in Q-(5, 7)>
gap> vec2 := [0,0,0,1,0,0]*Z(7)^0;
[ 0*Z(7), 0*Z(7), 0*Z(7), Z(7)^0, 0*Z(7), 0*Z(7) ]
gap> point2 := VectorSpaceToElement(ps,vec2);
<a point in Q-(5, 7)>
gap> line := Span(point,point2);
<a line in ProjectiveSpace(5, 7)>
gap> mat := [[0,0,1,0,0,0],[0,0,0,0,1,0]]*Z(7)^0;
[ [ 0*Z(7), 0*Z(7), Z(7)^0, 0*Z(7), 0*Z(7), 0*Z(7) ],

[ 0*Z(7), 0*Z(7), 0*Z(7), 0*Z(7), Z(7)^0, 0*Z(7) ] ]
gap> line2 := VectorSpaceToElement(ps,mat);
<a line in Q-(5, 7)>
gap> meet := Meet(line,line2);
<a point in ProjectiveSpace(5, 7)>
gap> meet in ps;
true
gap> point3 := ElementToElement(ps,meet);
<a point in Q-(5, 7)>

2.1.3 Underlying objects

Subspaces of projective spaces and polar spaces (and in general, elements of incidence structures),
are determined by a mathematical object, called in FinInG the underlying object. The operation
UnderlyingObject simply returns this underlying object. For elements determined by vectors or
sub vector spaces, the underlying objects are a vector or a matrix. To represent these objects and to
do very efficient orbit calculations under groups, we use the cvec. This can be noted when applying
UnderlyingObject. The operation Unpack simply converts the cvec objects into GAP vectors and
matrices. The example also illustrates how the underlying object of an element of an affine spaces
looks like.

Example
gap> pg := PG(3,169);
ProjectiveSpace(3, 169)
gap> p := Random(Points(pg));
<a point in ProjectiveSpace(3, 169)>
gap> UnderlyingObject(p);
<cvec over GF(13,2) of length 4>
gap> Unpack(last);
[ Z(13)^0, Z(13^2)^49, Z(13^2)^31, Z(13^2)^143 ]
gap> l := Random(Lines(pg));
<a line in ProjectiveSpace(3, 169)>
gap> UnderlyingObject(l);
<cmat 2x4 over GF(13,2)>
gap> Unpack(last);
[ [ Z(13)^0, 0*Z(13), 0*Z(13), Z(13^2)^96 ],

[ 0*Z(13), Z(13)^0, Z(13^2)^113, Z(13^2)^99 ] ]
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gap> quadric := EllipticQuadric(5,2);
Q-(5, 2)
gap> line := Random(Lines(quadric));
<a line in Q-(5, 2)>
gap> UnderlyingObject(line);
<cmat 2x6 over GF(2,1)>
gap> Unpack(last);
[ [ 0*Z(2), 0*Z(2), Z(2)^0, 0*Z(2), 0*Z(2), Z(2)^0 ],

[ 0*Z(2), 0*Z(2), 0*Z(2), Z(2)^0, Z(2)^0, 0*Z(2) ] ]
gap> ag := AG(4,3);
AG(4, 3)
gap> plane := Random(Planes(ag));
<a plane in AG(4, 3)>
gap> UnderlyingObject(plane);
[ <cvec over GF(3,1) of length 4>, <cmat 2x4 over GF(3,1)> ]

2.1.4 Constructing polar spaces

FinInG provides the classical polar spaces as the geometries of which the subspaces are represented
by the totally isotropic (resp. totally singular) vector subspaces with relation to a chosen sesquilin-
ear (resp. quadratic form). The user may choose any non-degenerate (resp. non-singular) form to
construct the polar space. The usage of the forms makes FinInG dependent on the package forms.
Shortcuts to polar spaces in standard representation are included. Detailed information can be found
in Section 7.2.

Example
gap> ps := HermitianPolarSpace(4,9);
H(4, 3^2)
gap> EquationForPolarSpace(ps);
x_1^4+x_2^4+x_3^4+x_4^4+x_5^4
gap> ps := HyperbolicQuadric(5,7);
Q+(5, 7)
gap> EquationForPolarSpace(ps);
x_1*x_2+x_3*x_4+x_5*x_6
gap> ps := SymplecticSpace(3,3);
W(3, 3)
gap> EquationForPolarSpace(ps);
x1*y2-x2*y1+x3*y4-x4*y3
gap> mat := IdentityMat(4,GF(11));
[ [ Z(11)^0, 0*Z(11), 0*Z(11), 0*Z(11) ],

[ 0*Z(11), Z(11)^0, 0*Z(11), 0*Z(11) ],
[ 0*Z(11), 0*Z(11), Z(11)^0, 0*Z(11) ],
[ 0*Z(11), 0*Z(11), 0*Z(11), Z(11)^0 ] ]

gap> form := BilinearFormByMatrix(mat,GF(11));
< bilinear form >
gap> ps := PolarSpace(form);
<polar space in ProjectiveSpace(3,GF(11)): x_1^2+x_2^2+x_3^2+x_4^2=0 >
gap> Rank(ps);
2
gap> ps;
Q+(3, 11): x_1^2+x_2^2+x_3^2+x_4^2=0
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2.1.5 Some collineation groups

In principle, the full group of collineations of almost any incidence structure can be computed in
FinInG. Mathematically, this is almost obvious for projective spaces and affine spaces. For classical
polar spaces, the particular forms plays a role. The coordinate change capabilities of the package
forms, together with the standard theory (see [KL90]), ensure that the full collineation group of a
classical polar space can be relatively easily obtained. The computation of the full collineation group
of particular incidence structures, such as generalised polygons, may rely on the computation of the
automorphism group of an underlying incidence graph, which is done by using nauty through the
package GRAPE. Note that the elements of a projective collineation group are semilinear maps, they
consist of a matrix together with a field automorphism.

Example
gap> pg := PG(3,4);
ProjectiveSpace(3, 4)
gap> coll := CollineationGroup(pg);
The FinInG collineation group PGammaL(4,4)
gap> gens := GeneratorsOfGroup(coll);
[ < a collineation: <cmat 4x4 over GF(2,2)>, F^0>,

< a collineation: <cmat 4x4 over GF(2,2)>, F^0>,
< a collineation: <cmat 4x4 over GF(2,2)>, F^2> ]

gap> UnderlyingMatrix(gens[2]);
<cmat 4x4 over GF(2,2)>
gap> Unpack(last);
[ [ Z(2)^0, 0*Z(2), 0*Z(2), Z(2)^0 ], [ Z(2)^0, 0*Z(2), 0*Z(2), 0*Z(2) ],

[ 0*Z(2), Z(2)^0, 0*Z(2), 0*Z(2) ], [ 0*Z(2), 0*Z(2), Z(2)^0, 0*Z(2) ] ]
gap> as := AffineSpace(3,4);
AG(3, 4)
gap> coll := CollineationGroup(as);
AGammaL(3,4)
gap> GeneratorsOfGroup(coll);
[ < a collineation: <cmat 4x4 over GF(2,2)>, F^0>,

< a collineation: <cmat 4x4 over GF(2,2)>, F^0>,
< a collineation: <cmat 4x4 over GF(2,2)>, F^0>,
< a collineation: <cmat 4x4 over GF(2,2)>, F^2> ]

gap> gp := SplitCayleyHexagon(3);
H(3)
gap> coll:= CollineationGroup(gp);
#I for Split Cayley Hexagon
#I Computing nice monomorphism...
#I Found permutation domain...
G_2(3)
gap> GeneratorsOfGroup(coll);
[ < a collineation: <cmat 7x7 over GF(3,1)>, F^0>,

< a collineation: <cmat 7x7 over GF(3,1)>, F^0>,
< a collineation: <cmat 7x7 over GF(3,1)>, F^0>,
< a collineation: <cmat 7x7 over GF(3,1)>, F^0>,
< a collineation: <cmat 7x7 over GF(3,1)>, F^0> ]

gap> egq := EGQByqClan(LinearqClan(3));
#I Computed Kantor family. Now computing EGQ...
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<EGQ of order [ 9, 3 ] and basepoint 0>
gap> coll := CollineationGroup(egq);
#I Computing incidence graph of generalised polygon...
#I Using elation of the collineation group...
<permutation group of size 26127360 with 6 generators>

2.2 Some objects with interesting combinatorial properties

The examples here are meant to give a flavour of how to explore geometrical objects from different
point of views.

2.2.1 The Tits ovoid

In this example we consider the Tits ovoid in PG(3,8). We explicitly check the intersection number of
the Tits-ovoid with planes of the projective space, and compute its stabiliser group inside the homog-
raphy group of PG(3,8). The use of ;; after a command suppresses its output, which is particularly
interesting if the output is a long list. The operation Collected is self-explanatory, and a very useful
GAP command. The computed stabiliser is the Suzuki group Sz(8), a finite simple group.

Example
gap> q := 8;
8
gap> pg := PG(3,q);
ProjectiveSpace(3, 8)
gap> f := GF(q);
GF(2^3)
gap> vecs := Union(List(f,x->List(f,y->[One(f),x*y+x^6+y^4,x,y])));;
gap> Add(vecs,[0,1,0,0]*Z(q)^0);
gap> ovoid := List(vecs,x->VectorSpaceToElement(pg,x));;
gap> numbers := List(Planes(pg),x->Number(ovoid,y->y in x));
[ 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9,

9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9,
9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 1, 1, 9,
9, 9, 9, 9, 9, 9, 9, 9, 1, 9, 9, 1, 9, 9, 9, 9, 9, 1, 1, 9, 9, 9, 9, 9, 9,
9, 9, 9, 9, 9, 9, 1, 9, 9, 9, 9, 1, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9,
9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 1,
9, 1, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 1, 9, 9, 9, 9, 9, 1,
9, 9, 1, 9, 9, 1, 9, 9, 9, 9, 9, 1, 1, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9,
9, 9, 9, 9, 9, 9, 9, 9, 1, 9, 9, 9, 1, 9, 9, 9, 9, 9, 1, 9, 9, 9, 1, 9, 9,
1, 9, 9, 9, 9, 9, 1, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 1, 9, 1, 9, 9, 9, 9,
9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 1, 1, 9, 9, 9, 9,
9, 9, 9, 9, 9, 9, 1, 9, 1, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9,
9, 9, 9, 9, 1, 9, 1, 9, 9, 9, 9, 9, 9, 9, 9, 9, 1, 9, 9, 1, 9, 9, 9, 9, 9,
9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 1, 9, 9, 9, 9, 9,
9, 1, 9, 9, 1, 9, 9, 1, 9, 9, 9, 9, 9, 1, 1, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9,
9, 9, 1, 9, 9, 9, 9, 1, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 1, 9, 9, 9, 1,
9, 1, 1, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 1, 9, 1, 9, 9,
9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 1, 9, 9, 9, 9, 1, 9, 9, 9, 9,
9, 9, 9, 9, 9, 9, 9, 9, 1, 9, 1, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9,
9, 9, 9, 9, 9, 1, 9, 9, 1, 9, 9, 9, 9, 9, 1, 9, 9, 9, 1, 9, 9, 9, 9, 9, 9,



GAP 4 Package FinInG 20

9, 9, 1, 1, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 1, 9, 9, 9,
9, 9, 9, 9, 9, 9, 1, 9, 9, 9, 9, 9, 9, 9, 9, 9, 1, 9, 9, 9, 9, 9, 9, 9, 9,
9, 1, 9, 9, 1, 9, 9, 9, 9, 9, 9, 9, 9, 9, 1, 9, 9, 9, 9, 9, 9, 9, 9, 9, 1,
9, 1, 9, 9, 9, 9, 9, 9, 9, 1 ]

gap> Collected(numbers);
[ [ 1, 65 ], [ 9, 520 ] ]
gap> group := HomographyGroup(pg);
The FinInG projectivity group PGL(4,8)
gap> stab := FiningSetwiseStabiliser(group,ovoid);
#I Computing adjusted stabilizer chain...
<projective collineation group with 5 generators>
gap> time;
55290
gap> IsSimple(stab);
true
gap> Order(stab);
29120

2.2.2 Lines meeting a hermitian curve

Here we see how the lines of a projective plane PG(2,q2) meet a hermitian curve. It is well known
that every line meets in either 1 or q+1 points. Note that the last comment takes a while to complete.

Example
gap> h:=HermitianPolarSpace(2, 7^2);
H(2, 7^2)
gap> pg := AmbientSpace( h );
ProjectiveSpace(2, 49)
gap> lines := Lines( pg );
<lines of ProjectiveSpace(2, 49)>
gap> curve := AsList( Points( h ) );;
gap> Size(curve);
344
gap> Collected( List(lines, t -> Number(curve, c-> c in t)));
[ [ 1, 344 ], [ 8, 2107 ] ]
gap> time;
26412

2.2.3 The Patterson ovoid

In this example, we construct the unique ovoid of the parabolic quadric Q(6,3), first discovered by
Patterson, but for which was given a nice construction by E. E. Shult. We begin with the “sums of
squares” quadratic form over GF(3) and the associated polar space.

Example
gap> id := IdentityMat(7, GF(3));;
gap> form := QuadraticFormByMatrix(id, GF(3));
< quadratic form >
gap> ps := PolarSpace( form );
<polar space in ProjectiveSpace(
6,GF(3)): x_1^2+x_2^2+x_3^2+x_4^2+x_5^2+x_6^2+x_7^2=0 >
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The construction of the ovoid (a la Shult):
Example

gap> psl32 := PSL(3,2);
Group([ (4,6)(5,7), (1,2,4)(3,6,5) ])
gap> reps:=[[1,1,1,0,0,0,0], [-1,1,1,0,0,0,0],
> [1,-1,1,0,0,0,0], [1,1,-1,0,0,0,0]]*Z(3)^0;
[ [ Z(3)^0, Z(3)^0, Z(3)^0, 0*Z(3), 0*Z(3), 0*Z(3), 0*Z(3) ],

[ Z(3), Z(3)^0, Z(3)^0, 0*Z(3), 0*Z(3), 0*Z(3), 0*Z(3) ],
[ Z(3)^0, Z(3), Z(3)^0, 0*Z(3), 0*Z(3), 0*Z(3), 0*Z(3) ],
[ Z(3)^0, Z(3)^0, Z(3), 0*Z(3), 0*Z(3), 0*Z(3), 0*Z(3) ] ]

gap> ovoid := Union( List(reps, x-> Orbit(psl32, x, Permuted)) );;
gap> ovoid := List(ovoid, x -> VectorSpaceToElement(ps, x));;

We check that this is indeed an ovoid. The observant reader will notice #I Computing collineation
group of canonical polar space... which is caused by the command AsList applied to the collection
of elements planes . The use of AsList invokes the computation of all elements in planes as an orbit
under the collineation group of the ambient polar space. The reader is invited to redo, in a new GAP
session, the same example omitting the AsList command, just defining planes := Planes(ps);;.
The result will be te same, but the computation of all elements will now be done using an enumerator,
and will be slower. Example

gap> planes := AsList(Planes( ps ));;
#I Computing collineation group of canonical polar space...
gap> ForAll(planes, p -> Number(ovoid, x -> x * p) = 1);
true

The stabiliser is interesting since it yields the embedding of Sp(6,2) in PO(7,3). To efficiently com-
pute the set-wise stabiliser, we refer to the induced permutation representation.

Example
gap> g := IsometryGroup( ps );
#I Computing collineation group of canonical polar space...
<projective collineation group of size 9170703360 with 2 generators>
gap> stabovoid := FiningSetwiseStabiliser(g, ovoid);
#I Computing adjusted stabilizer chain...
<projective collineation group with 13 generators>
gap> DisplayCompositionSeries(stabovoid);
G (size 1451520)
| B(3,2) = O(7,2) ~ C(3,2) = S(6,2)

1 (size 1)
gap> OrbitLengths(stabovoid, ovoid);
[ 28 ]
gap> IsTransitive(stabovoid, ovoid);
true

2.2.4 A hyperoval

In this example, we consider a hyperoval of the projective plane PG(2,4), that is, six points no three
collinear. We will construct such a hyperoval by some basic explorations into particular properties of
the projective plane PG(2,4). The projective plane is initialised, its points are computed and listed;
then a standard frame is constructed, of which we may assume that it is a subset of the hyperoval. Fi-
nally, the stabiliser group of the hyperoval is computed, and it is checked that this group is isomorphic
with the symmetric group on six elements.
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Example
gap> pg := ProjectiveSpace(2,4);
ProjectiveSpace(2, 4)
gap> points := Points(pg);
<points of ProjectiveSpace(2, 4)>
gap> pointslist := AsList(points);
[ <a point in ProjectiveSpace(2, 4)>, <a point in ProjectiveSpace(2, 4)>,

<a point in ProjectiveSpace(2, 4)>, <a point in ProjectiveSpace(2, 4)>,
<a point in ProjectiveSpace(2, 4)>, <a point in ProjectiveSpace(2, 4)>,
<a point in ProjectiveSpace(2, 4)>, <a point in ProjectiveSpace(2, 4)>,
<a point in ProjectiveSpace(2, 4)>, <a point in ProjectiveSpace(2, 4)>,
<a point in ProjectiveSpace(2, 4)>, <a point in ProjectiveSpace(2, 4)>,
<a point in ProjectiveSpace(2, 4)>, <a point in ProjectiveSpace(2, 4)>,
<a point in ProjectiveSpace(2, 4)>, <a point in ProjectiveSpace(2, 4)>,
<a point in ProjectiveSpace(2, 4)>, <a point in ProjectiveSpace(2, 4)>,
<a point in ProjectiveSpace(2, 4)>, <a point in ProjectiveSpace(2, 4)>,
<a point in ProjectiveSpace(2, 4)> ]

gap> Display(pointslist[1]);
. . 1

Now we may assume that our hyperoval contains the fundamental frame.
Example

gap> frame := [[1,0,0],[0,1,0],[0,0,1],[1,1,1]]*Z(2)^0;
[ [ Z(2)^0, 0*Z(2), 0*Z(2) ], [ 0*Z(2), Z(2)^0, 0*Z(2) ],

[ 0*Z(2), 0*Z(2), Z(2)^0 ], [ Z(2)^0, Z(2)^0, Z(2)^0 ] ]
gap> frame := List(frame,x -> VectorSpaceToElement(pg,x));
[ <a point in ProjectiveSpace(2, 4)>, <a point in ProjectiveSpace(2, 4)>,

<a point in ProjectiveSpace(2, 4)>, <a point in ProjectiveSpace(2, 4)> ]

Alternatively, we could use:
Example

gap> frame := StandardFrame( pg );
[ <a point in ProjectiveSpace(2, 4)>, <a point in ProjectiveSpace(2, 4)>,

<a point in ProjectiveSpace(2, 4)>, <a point in ProjectiveSpace(2, 4)> ]

There are six secant lines to this frame (“four choose two”). So we put together these secant lines
from the pairs of points of this frame.

Example
gap> pairs := Combinations(frame,2);
[ [ <a point in ProjectiveSpace(2, 4)>, <a point in ProjectiveSpace(2, 4)> ],

[ <a point in ProjectiveSpace(2, 4)>, <a point in ProjectiveSpace(2, 4)> ],
[ <a point in ProjectiveSpace(2, 4)>, <a point in ProjectiveSpace(2, 4)> ],
[ <a point in ProjectiveSpace(2, 4)>, <a point in ProjectiveSpace(2, 4)> ],
[ <a point in ProjectiveSpace(2, 4)>, <a point in ProjectiveSpace(2, 4)> ],
[ <a point in ProjectiveSpace(2, 4)>, <a point in ProjectiveSpace(2, 4)> ] ]

gap> secants := List(pairs,p -> Span(p[1],p[2]));
[ <a line in ProjectiveSpace(2, 4)>, <a line in ProjectiveSpace(2, 4)>,

<a line in ProjectiveSpace(2, 4)>, <a line in ProjectiveSpace(2, 4)>,
<a line in ProjectiveSpace(2, 4)>, <a line in ProjectiveSpace(2, 4)> ]

By a counting argument, it is known that the frame of PG(2,4) completes uniquely to a hyperoval.
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Example
gap> leftover := Filtered(pointslist,t->not ForAny(secants,s->t in s));
[ <a point in ProjectiveSpace(2, 4)>, <a point in ProjectiveSpace(2, 4)> ]
gap> hyperoval := Union(frame,leftover);
[ <a point in ProjectiveSpace(2, 4)>, <a point in ProjectiveSpace(2, 4)>,

<a point in ProjectiveSpace(2, 4)>, <a point in ProjectiveSpace(2, 4)>,
<a point in ProjectiveSpace(2, 4)>, <a point in ProjectiveSpace(2, 4)> ]

This hyperoval has the symmetric group on six symbols as its stabiliser, which can easily be calcu-
lated:

Example
gap> g := CollineationGroup(pg);
The FinInG collineation group PGammaL(3,4)
gap> stab := Stabilizer(g,Set(hyperoval),OnSets);
<projective collineation group of size 720>
gap> StructureDescription(stab);
"S6"

2.3 Geometry morphisms

A geometry morphism in FinInG is a map between (a subset of) the elements of one geometry to
(a subset of) the elements of a second geometry, preserving the incidence. Geometry morphisms are
not necessarily type preserving. This section is meant to illustrate, in a non exhaustive way the basis
philisophy behind geometry morphisms in FinInG.

2.3.1 Isomorphic polar spaces

We’ve seen already that a polar space can be constructed from any non-degenerate sesquilinear or
non-singular quadratic form. An isomorphism between polar spaces of the same type, can easily
be obtained. This example illustrates IsomorphismPolarSpaces, which is in its basic use self-
explanatory, and the use of the obtained map to compute images and pre-images of elements.

Example
gap> mat1 := IdentityMat(4,GF(16));
[ [ Z(2)^0, 0*Z(2), 0*Z(2), 0*Z(2) ], [ 0*Z(2), Z(2)^0, 0*Z(2), 0*Z(2) ],

[ 0*Z(2), 0*Z(2), Z(2)^0, 0*Z(2) ], [ 0*Z(2), 0*Z(2), 0*Z(2), Z(2)^0 ] ]
gap> form1 := HermitianFormByMatrix(mat1,GF(16));
< hermitian form >
gap> ps1 := PolarSpace(form1);
<polar space in ProjectiveSpace(3,GF(2^4)): x_1^5+x_2^5+x_3^5+x_4^5=0 >
gap> mat2 := [[0,1,0,0],[1,0,0,0],[0,0,0,1],[0,0,1,0]]*Z(16)^0;
[ [ 0*Z(2), Z(2)^0, 0*Z(2), 0*Z(2) ], [ Z(2)^0, 0*Z(2), 0*Z(2), 0*Z(2) ],

[ 0*Z(2), 0*Z(2), 0*Z(2), Z(2)^0 ], [ 0*Z(2), 0*Z(2), Z(2)^0, 0*Z(2) ] ]
gap> form2 := HermitianFormByMatrix(mat2,GF(16));
< hermitian form >
gap> ps2 := PolarSpace(form2);
<polar space in ProjectiveSpace(
3,GF(2^4)): x_1^4*x_2+x_1*x_2^4+x_3^4*x_4+x_3*x_4^4=0 >
gap> map := IsomorphismPolarSpaces(ps1,ps2);
#I No intertwiner computed. One of the polar spaces must have a collineation group computed
<geometry morphism from <Elements of H(3,
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4^2): x_1^5+x_2^5+x_3^5+x_4^5=0> to <Elements of H(3,
4^2): x_1^4*x_2+x_1*x_2^4+x_3^4*x_4+x_3*x_4^4=0>>
gap> p := Random(Points(ps1));
<a point in H(3, 4^2): x_1^5+x_2^5+x_3^5+x_4^5=0>
gap> p^map;
<a point in H(3, 4^2): x_1^4*x_2+x_1*x_2^4+x_3^4*x_4+x_3*x_4^4=0>
gap> l := Random(Lines(ps2));
<a line in H(3, 4^2): x_1^4*x_2+x_1*x_2^4+x_3^4*x_4+x_3*x_4^4=0>
gap> PreImageElm(map,l);
<a line in H(3, 4^2): x_1^5+x_2^5+x_3^5+x_4^5=0>

2.3.2 Intertwiners

We reconsider the previous example. The observant reader might have noticed the message #I No
intertwiner computed.... Given a geometry morphism f from S to S′, an intertwiner φ is a map from
the automorphism group of S to the automorphism group of S′, such that for every element p of S and
every automorphism g of S, we have

f (pg) = f (p)φ(g).

Example
gap> mat1 := IdentityMat(4,GF(16));
[ [ Z(2)^0, 0*Z(2), 0*Z(2), 0*Z(2) ], [ 0*Z(2), Z(2)^0, 0*Z(2), 0*Z(2) ],

[ 0*Z(2), 0*Z(2), Z(2)^0, 0*Z(2) ], [ 0*Z(2), 0*Z(2), 0*Z(2), Z(2)^0 ] ]
gap> form1 := HermitianFormByMatrix(mat1,GF(16));
< hermitian form >
gap> ps1 := PolarSpace(form1);
<polar space in ProjectiveSpace(3,GF(2^4)): x_1^5+x_2^5+x_3^5+x_4^5=0 >
gap> mat2 := [[0,1,0,0],[1,0,0,0],[0,0,0,1],[0,0,1,0]]*Z(16)^0;
[ [ 0*Z(2), Z(2)^0, 0*Z(2), 0*Z(2) ], [ Z(2)^0, 0*Z(2), 0*Z(2), 0*Z(2) ],

[ 0*Z(2), 0*Z(2), 0*Z(2), Z(2)^0 ], [ 0*Z(2), 0*Z(2), Z(2)^0, 0*Z(2) ] ]
gap> form2 := HermitianFormByMatrix(mat2,GF(16));
< hermitian form >
gap> ps2 := PolarSpace(form2);
<polar space in ProjectiveSpace(
3,GF(2^4)): x_1^4*x_2+x_1*x_2^4+x_3^4*x_4+x_3*x_4^4=0 >
gap> CollineationGroup(ps1);
#I Computing collineation group of canonical polar space...
<projective collineation group of size 4073472000 with 3 generators>
gap> map := IsomorphismPolarSpaces(ps1,ps2);
<geometry morphism from <Elements of H(3,
4^2): x_1^5+x_2^5+x_3^5+x_4^5=0> to <Elements of H(3,
4^2): x_1^4*x_2+x_1*x_2^4+x_3^4*x_4+x_3*x_4^4=0>>
gap> phi := Intertwiner(map);
MappingByFunction( <projective collineation group of size 4073472000 with
3 generators>, <projective collineation group of size 4073472000 with
3 generators>, function( y ) ... end, function( x ) ... end )
gap> g := Random(CollineationGroup(ps1));
< a collineation: <cmat 4x4 over GF(2,4)>, F^4>
gap> h := g^phi;
< a collineation: <cmat 4x4 over GF(2,4)>, F^4>
gap> h in CollineationGroup(ps2);
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#I Computing collineation group of canonical polar space...
true
gap> h := Random(CollineationGroup(ps2));
< a collineation: <cmat 4x4 over GF(2,4)>, F^2>
gap> g := PreImageElm(phi,h);
< a collineation: <cmat 4x4 over GF(2,4)>, F^2>
gap> g in CollineationGroup(ps1);
true

2.3.3 Klein correspondence

The Klein correspondence is well known. The user may define its own hyperbolic quadric as range
for the geometry morphism in FinInG. Note that more is possible than illustrated in the elementary
example, see Section 10.3.

Example
gap> ps := HyperbolicQuadric(5,5);
Q+(5, 5)
gap> klein := KleinCorrespondence(ps);
<geometry morphism from <lines of ProjectiveSpace(3, 5)> to <points of Q+(5,
5)>>
gap> line1 := Random(Lines(PG(3,5)));
<a line in ProjectiveSpace(3, 5)>
gap> line2 := Random(Lines(PG(3,5)));
<a line in ProjectiveSpace(3, 5)>
gap> p := line1^klein;
<a point in Q+(5, 5)>
gap> q := line2^klein;
<a point in Q+(5, 5)>
gap> p in ps;
true
gap> q in ps;
true
gap> IsCollinear(ps,p,q);
false
gap> Meet(line1,line2);
< empty subspace >

2.3.4 Embedding in a subspace

A projective space can be embedded as a subspace in a higher dimensional projective space. A compa-
rable embedding is possible for polar spaces, clearly only when a given subspace intersects the polar
space of higher rank in a polar space of the same type as the polar space to be embedded.

Example
gap> pg2 := PG(2,5);
ProjectiveSpace(2, 5)
gap> pg3 := PG(3,5);
ProjectiveSpace(3, 5)
gap> hyp := VectorSpaceToElement(pg3,[[1,2,4,0],[0,3,2,0],[1,1,0,1]]*Z(5)^0);
<a plane in ProjectiveSpace(3, 5)>
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gap> em := NaturalEmbeddingBySubspace( pg2, pg3, hyp );
<geometry morphism from <All elements of ProjectiveSpace(2,
5)> to <All elements of ProjectiveSpace(3, 5)>>
gap> l := Random(Lines(pg2));
<a line in ProjectiveSpace(2, 5)>
gap> l^em;
<a line in ProjectiveSpace(3, 5)>
gap> p := Random(Points(hyp));
<a point in ProjectiveSpace(3, 5)>
gap> PreImageElm(em,p);
<a point in ProjectiveSpace(2, 5)>
gap> mat := [[0,0,0,1],[0,0,1,0],[0,-1,0,0],[-1,0,0,0]]*Z(3);
[ [ 0*Z(3), 0*Z(3), 0*Z(3), Z(3) ], [ 0*Z(3), 0*Z(3), Z(3), 0*Z(3) ],

[ 0*Z(3), Z(3)^0, 0*Z(3), 0*Z(3) ], [ Z(3)^0, 0*Z(3), 0*Z(3), 0*Z(3) ] ]
gap> form := BilinearFormByMatrix(mat,GF(3));
< bilinear form >
gap> w3 := PolarSpace(form);
<polar space in ProjectiveSpace(3,GF(3)): -x1*y4-x2*y3+x3*y2+x4*y1=0 >
gap> w5 := SymplecticSpace(5, 3);
W(5, 3)
gap> pg := AmbientSpace( w5 );
ProjectiveSpace(5, 3)
gap> solid := VectorSpaceToElement(pg,[[1,0,0,0,0,0],[0,1,0,0,0,0],
> [0,0,1,0,0,0],[0,0,0,1,0,0]]*Z(3)^0);
<a solid in ProjectiveSpace(5, 3)>
gap> TypeOfSubspace(w5,solid);
"symplectic"
gap> em := NaturalEmbeddingBySubspace( w3, w5, solid );
<geometry morphism from <Elements of <polar space in ProjectiveSpace(
3,GF(3)): -x1*y4-x2*y3+x3*y2+x4*y1=0 >> to <Elements of W(5, 3)>>
gap> points := Points( w3 );
<points of W(3, 3): -x1*y4-x2*y3+x3*y2+x4*y1=0>
gap> points2 := ImagesSet(em, AsSet(points));;
#I Computing collineation group of canonical polar space...
gap> ForAll(points2, x -> x in solid);
true

2.3.5 subgeometries

A projective space can be embedded as a subgeometry in a projective space of the same dimension
but over a field extension. A polar space, determined by a form f can be embedded in a polar space
considered over a field extension by interpreting the form f over this field extension. This is an
interesting tool to construct geometrical objects in projective and polar spaces.

Example
gap> pgsub := PG(2,7);
ProjectiveSpace(2, 7)
gap> pg := PG(2,7^2);
ProjectiveSpace(2, 49)
gap> em := NaturalEmbeddingBySubfield(pgsub,pg);
<geometry morphism from <All elements of ProjectiveSpace(2,
7)> to <All elements of ProjectiveSpace(2, 49)>>
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gap> baer := List(Points(pgsub),x->x^em);;
gap> numbers := Collected(List(Lines(pg),x->Number(baer,y->y in x)));
[ [ 1, 2394 ], [ 8, 57 ] ]
gap> mat := [[0,0,0,1],[0,0,-1,0],[0,1,0,0],[-1,0,0,0]]*Z(5)^0;
[ [ 0*Z(5), 0*Z(5), 0*Z(5), Z(5)^0 ], [ 0*Z(5), 0*Z(5), Z(5)^2, 0*Z(5) ],

[ 0*Z(5), Z(5)^0, 0*Z(5), 0*Z(5) ], [ Z(5)^2, 0*Z(5), 0*Z(5), 0*Z(5) ] ]
gap> form := BilinearFormByMatrix(mat,GF(5));
< bilinear form >
gap> symplecticspace := PolarSpace(form);
<polar space in ProjectiveSpace(3,GF(5)): x1*y4-x2*y3+x3*y2-x4*y1=0 >
gap> hermitianspace := HermitianPolarSpace(3,25);
H(3, 5^2)
gap> em := NaturalEmbeddingBySubfield(symplecticspace,hermitianspace);
#I No intertwiner computed. <geom1> must have a collineation group computed
<geometry morphism from <Elements of <polar space in ProjectiveSpace(
3,GF(5)): x1*y4-x2*y3+x3*y2-x4*y1=0 >> to <Elements of H(3, 5^2)>>
gap> l := Random(Lines(symplecticspace));
<a line in W(3, 5): x1*y4-x2*y3+x3*y2-x4*y1=0>
gap> l^em;
<a line in H(3, 5^2)>

2.3.6 Embedding by field reduction

Field reduction is a power full tool to embedd low dimensional projective (and polar spaces) over a
field K in to high dimensional spaces over a subfield of K. The mathematics behind field reduction
is explained in sections 10.4.3 and 10.5.3. The examples here show the use of these embedings to
construct a regular spread of a projective space and a so-called Hermitian spread of a hyperbolic
quadric.

Example
gap> pg1 := PG(1,3^2);
ProjectiveSpace(1, 9)
gap> pg2 := PG(3,3);
ProjectiveSpace(3, 3)
gap> em := NaturalEmbeddingByFieldReduction(pg1,pg2);
<geometry morphism from <All elements of ProjectiveSpace(1,
9)> to <All elements of ProjectiveSpace(3, 3)>>
gap> spread := List(Points(pg1),x->x^em);
[ <a line in ProjectiveSpace(3, 3)>, <a line in ProjectiveSpace(3, 3)>,

<a line in ProjectiveSpace(3, 3)>, <a line in ProjectiveSpace(3, 3)>,
<a line in ProjectiveSpace(3, 3)>, <a line in ProjectiveSpace(3, 3)>,
<a line in ProjectiveSpace(3, 3)>, <a line in ProjectiveSpace(3, 3)>,
<a line in ProjectiveSpace(3, 3)>, <a line in ProjectiveSpace(3, 3)> ]

gap> Union(List(spread,x->List(Points(x))))=Set(Points(pg2));
true
gap> ps1 := HermitianPolarSpace(3,3^2);
H(3, 3^2)
gap> ps2 := HyperbolicQuadric(7,3);
Q+(7, 3)
gap> em := NaturalEmbeddingByFieldReduction(ps1,ps2);
#I These polar spaces are suitable for field reduction
<geometry morphism from <Elements of H(3, 3^2)> to <Elements of Q+(7, 3)>>
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gap> spread := List(Points(ps1),x->x^em);;
gap> Union(List(spread,x->List(Points(x))))=Set(Points(ps2));
true

2.4 Some geometrical objects

2.4.1 Spreads of W (5,3)

A spread of W (5,q) is a set of q3+1 planes which partition the points of W (5,q). Here we enumerate
all spreads of W (5,3) which have a set-wise stabiliser of order a multiple of 13.

Example
gap> w := SymplecticSpace(5, 3);
W(5, 3)
gap> g := IsometryGroup(w);
PSp(6,3)
gap> syl := SylowSubgroup(g, 13);
<projective collineation group of size 13>
gap> planes := Planes( w );
<planes of W(5, 3)>
gap> points := Points( w );
<points of W(5, 3)>
gap> orbs := Orbits(syl, planes , OnProjSubspaces);;
gap> IsPartialSpread := x -> Number(points, p ->
> ForAny(x, i-> p in i)) = Size(x)*13;;
gap> partialspreads := Filtered(orbs, IsPartialSpread);;
gap> Length(partialspreads);
8
gap> 13s := Filtered(partialspreads, i -> Size(i) = 13);;
gap> Length(13s);
6
gap> 13s[1];
[ <a plane in W(5, 3)>, <a plane in W(5, 3)>, <a plane in W(5, 3)>,

<a plane in W(5, 3)>, <a plane in W(5, 3)>, <a plane in W(5, 3)>,
<a plane in W(5, 3)>, <a plane in W(5, 3)>, <a plane in W(5, 3)>,
<a plane in W(5, 3)>, <a plane in W(5, 3)>, <a plane in W(5, 3)>,
<a plane in W(5, 3)> ]

gap> 26s := List(Combinations(13s,2), Union);;
gap> two := Union(Filtered(partialspreads, i -> Size(i) = 1));;
gap> good26s := Filtered(26s, x->IsPartialSpread(Union(x, two)));;
gap> spreads := List(good26s, x->Union(x, two));;
gap> Length(spreads);
5

2.4.2 Distance-6 spread of the split Cayley hexagon

A distance 6 spread of a split Cayley hexagon is a set of lines mutually at maximal distance in the
incidence graph. It is well known that the lines of the hexagon contained in a hyperplane meeting the
ambient polar space in an elliptic quadric, yield such a spread. This example also illustrates how an
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element of a geometry remembers its ambient geometry, and how ElementToElement can be used to
embed an element in another geometry, see 3.8.1.

Example
gap> gh := SplitCayleyHexagon(3);
H(3)
gap> q6 := AmbientPolarSpace(gh);
Q(6, 3): -x_1*x_5-x_2*x_6-x_3*x_7+x_4^2=0
gap> hyp := First(Hyperplanes(PG(6,3)),x->TypeOfSubspace(q6,x)="elliptic");
<a proj. 5-space in ProjectiveSpace(6, 3)>
gap> q5 := EllipticQuadric(5,3);
Q-(5, 3)
gap> lines := AsList(Lines(q5));
<closed orbit, 280 points>
gap> em := NaturalEmbeddingBySubspace(q5,q6,hyp);
<geometry morphism from <Elements of Q-(5, 3)> to <Elements of Q(6,
3): -x_1*x_5-x_2*x_6-x_3*x_7+x_4^2=0>>
gap> spread := Filtered(lines,x->x^em in gh);
[ <a line in Q-(5, 3)>, <a line in Q-(5, 3)>, <a line in Q-(5, 3)>,

<a line in Q-(5, 3)>, <a line in Q-(5, 3)>, <a line in Q-(5, 3)>,
<a line in Q-(5, 3)>, <a line in Q-(5, 3)>, <a line in Q-(5, 3)>,
<a line in Q-(5, 3)>, <a line in Q-(5, 3)>, <a line in Q-(5, 3)>,
<a line in Q-(5, 3)>, <a line in Q-(5, 3)>, <a line in Q-(5, 3)>,
<a line in Q-(5, 3)>, <a line in Q-(5, 3)>, <a line in Q-(5, 3)>,
<a line in Q-(5, 3)>, <a line in Q-(5, 3)>, <a line in Q-(5, 3)>,
<a line in Q-(5, 3)>, <a line in Q-(5, 3)>, <a line in Q-(5, 3)>,
<a line in Q-(5, 3)>, <a line in Q-(5, 3)>, <a line in Q-(5, 3)>,
<a line in Q-(5, 3)> ]

gap> spread := List(spread,x->ElementToElement(gh,x^em));
[ <a line in H(3)>, <a line in H(3)>, <a line in H(3)>, <a line in H(3)>,

<a line in H(3)>, <a line in H(3)>, <a line in H(3)>, <a line in H(3)>,
<a line in H(3)>, <a line in H(3)>, <a line in H(3)>, <a line in H(3)>,
<a line in H(3)>, <a line in H(3)>, <a line in H(3)>, <a line in H(3)>,
<a line in H(3)>, <a line in H(3)>, <a line in H(3)>, <a line in H(3)>,
<a line in H(3)>, <a line in H(3)>, <a line in H(3)>, <a line in H(3)>,
<a line in H(3)>, <a line in H(3)>, <a line in H(3)>, <a line in H(3)> ]

gap> Collected(Concatenation(List(spread,x->List(spread,y->DistanceBetweenElements(x,y)))));
[ [ 0, 28 ], [ 6, 756 ] ]

2.5 Some particular incidence geometries

2.5.1 The split Cayley hexagon

The split Cayley hexagon is one the well known classical generalised hexagons that are obtained using
a triality of the hyperbolic quadric in 7 dimensions. This example shows some basic properties of this
geometry.

Example
gap> hexagon := SplitCayleyHexagon(5);
H(5)
gap> Order(hexagon);
[ 5, 5 ]



GAP 4 Package FinInG 30

gap> g := CollineationGroup( hexagon );
#I for Split Cayley Hexagon
#I Computing nice monomorphism...
#I Found permutation domain...
G_2(5)
gap> incgraph := IncidenceGraph( hexagon );;
#I Computing incidence graph of generalised polygon...
gap> Diameter(incgraph);
6
gap> Girth(incgraph);
12
gap> points := Points(hexagon);
<points of H(5)>
gap> lines := Lines(hexagon);
<lines of H(5)>
gap> iter := Iterator(points);
<iterator>
gap> x := NextIterator(iter);
<a point in H(5)>
gap> Display(x);
[.1.....]
gap> UnderlyingObject(x);
<cvec over GF(5,1) of length 7>
gap> onx := Lines(x);
<shadow lines in H(5)>
gap> l := Random(onx);
<a line in H(5)>
gap> onl := Points(l);
<shadow points in H(5)>
gap> List(onl, t -> DistanceBetweenElements(x,t));
[ 0, 2, 2, 2, 2, 2 ]
gap> stabl := FiningStabiliser(g, l);
<projective collineation group of size 1500000 with 3 generators>
gap> gl := Action(stabl, onl);
Group([ (1,6,5,4,3), (1,4,3,6), (1,5,4,3,6,2) ])
gap> StructureDescription(gl);
"S5"
gap> Transitivity(gl);
3

2.5.2 An (apartment of) a building of type E6

This example shows the constructions of an incidence geometry whose automorphism group is an
exceptional group of type E6. The construction is done as a coset geometry. This example also
illustrates how to get a diagram of such a coset geometry.

Example
gap> L := SimpleLieAlgebra("E",6,Rationals);
<Lie algebra of dimension 78 over Rationals>
gap> rs := RootSystem(L);
<root system of rank 6>
gap> w := WeylGroup(rs);
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<matrix group with 6 generators>
gap> gens := GeneratorsOfGroup(w);;
gap> pabs := List(gens, g -> Group(Difference(gens, [g])));
[ <matrix group with 5 generators>, <matrix group with 5 generators>,

<matrix group with 5 generators>, <matrix group with 5 generators>,
<matrix group with 5 generators>, <matrix group with 5 generators> ]

gap> g := Group(gens);
<matrix group with 6 generators>
gap> cg := CosetGeometry(g,pabs);;
gap> diag := DiagramOfGeometry( cg );;
#I Using NiceMonomorphism...
#I Using NiceMonomorphism...
#I Using NiceMonomorphism...
#I Using NiceMonomorphism...
#I Using NiceMonomorphism...
#I Using NiceMonomorphism...
#I Using NiceMonomorphism...
#I Using NiceMonomorphism...
#I Using NiceMonomorphism...
#I Using NiceMonomorphism...
#I Using NiceMonomorphism...
#I Using NiceMonomorphism...
#I Using NiceMonomorphism...
#I Using NiceMonomorphism...
#I Using NiceMonomorphism...
gap> DrawDiagram(diag, "E6");
gap> #Exec("open E6.ps");

2.5.3 A rank 4 geometry for PSL(2,11)

Here we look at a particular flag-transitive geometry constructed from four subgroups of PSL(2,11),
and we construct the diagram for this geometry. To view this diagram, you need to either use a
postscript viewer or a dotty viewer (such as GraphViz).

Example
gap> g := PSL(2,11);
Group([ (3,11,9,7,5)(4,12,10,8,6), (1,2,8)(3,7,9)(4,10,5)(6,12,11) ])
gap> g1 := Group([ (1,2,3)(4,8,12)(5,10,9)(6,11,7), (1,2)(3,4)(5,12)(6,11)(7,10)(8,9) ]);
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Group([ (1,2,3)(4,8,12)(5,10,9)(6,11,7), (1,2)(3,4)(5,12)(6,11)(7,10)(8,9) ])
gap> g2 := Group([ (1,2,7)(3,9,4)(5,11,10)(6,8,12), (1,2)(3,4)(5,12)(6,11)(7,10)(8,9) ]);
Group([ (1,2,7)(3,9,4)(5,11,10)(6,8,12), (1,2)(3,4)(5,12)(6,11)(7,10)(8,9) ])
gap> g3 := Group([ (1,2,11)(3,8,7)(4,9,5)(6,10,12), (1,2)(3,12)(4,11)(5,10)(6,9)(7,8) ]);
Group([ (1,2,11)(3,8,7)(4,9,5)(6,10,12), (1,2)(3,12)(4,11)(5,10)(6,9)(7,8) ])
gap> g4 := Group([ (1,2,11)(3,8,7)(4,9,5)(6,10,12), (1,2)(3,10)(4,9)(5,8)(6,7)(11,12) ]);
Group([ (1,2,11)(3,8,7)(4,9,5)(6,10,12), (1,2)(3,10)(4,9)(5,8)(6,7)(11,12) ])
gap> cg := CosetGeometry(g, [g1,g2,g3,g4]);
CosetGeometry( Group( [ ( 3,11, 9, 7, 5)( 4,12,10, 8, 6),

( 1, 2, 8)( 3, 7, 9)( 4,10, 5)( 6,12,11) ] ) )
gap> SetName(cg, "Gamma");
gap> ParabolicSubgroups(cg);
[ Group([ (1,2,3)(4,8,12)(5,10,9)(6,11,7), (1,2)(3,4)(5,12)(6,11)(7,10)

(8,9) ]), Group([ (1,2,7)(3,9,4)(5,11,10)(6,8,12), (1,2)(3,4)(5,12)(6,11)
(7,10)(8,9) ]), Group([ (1,2,11)(3,8,7)(4,9,5)(6,10,12), (1,2)(3,12)(4,11)
(5,10)(6,9)(7,8) ]), Group([ (1,2,11)(3,8,7)(4,9,5)(6,10,12), (1,2)(3,10)
(4,9)(5,8)(6,7)(11,12) ]) ]

gap> BorelSubgroup(cg);
Group(())
gap> AmbientGroup(cg);
Group([ (3,11,9,7,5)(4,12,10,8,6), (1,2,8)(3,7,9)(4,10,5)(6,12,11) ])
gap> type2 := ElementsOfIncidenceStructure( cg, 2 );
<elements of type 2 of Gamma>
gap> IsFlagTransitiveGeometry( cg );
true
gap> DrawDiagram( DiagramOfGeometry(cg), "PSL211");

The output of this example uses dotty which is a sophisticated graph drawing program.
We also provide DrawDiagramWithNeato to make a diagram with straight lines, using
neato. Here is what the output looks like with the standard DrawDiagram command:

2.5.4 The Ree-Tits octagon of order [2,4] as coset geometry

In this example we construct the Ree-Tits octagon of order [2,4] as a coset geometry. From the com-
putation of the so-called rank 2 parameters, it can be observed already that the constructed geometry
must be a generalised octagon. Then the points and lines are computed explicitely, and together with
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the incidence and the available group as a subgroup of the collineation group, a generalised octagon
is constructed.

Example
gap> LoadPackage( "AtlasRep" );
true
gap> titsgroup:=AtlasGroup("2F4(2)’");
<permutation group of size 17971200 with 2 generators>
gap> g1:=AtlasSubgroup(titsgroup,3);
<permutation group of size 10240 with 2 generators>
gap> g2:=AtlasSubgroup(titsgroup,5);
<permutation group of size 6144 with 2 generators>
gap> conj:=ConjugacyClassSubgroups(titsgroup,g1);;
gap> # Now look for the conjugate of g1 with maximal intersection
gap> g1:=First(conj, sg -> Size(Intersection(sg,g2))=2048);
<permutation group of size 10240 with 2 generators>
gap> cg:=CosetGeometry(titsgroup,[g1,g2]);;
gap> Rank2Parameters(cg);
[ [ 8, 8, 8 ], [ 2, 1755 ], [ 4, 2925 ] ]
gap> pts := Set(ElementsOfIncidenceStructure(cg,1));;
gap> lines := Set(ElementsOfIncidenceStructure(cg,2));;
gap> gp := GeneralisedPolygonByElements(pts,lines,\*,titsgroup,OnCosetGeometryElement);
<generalised octagon of order [ 2, 4 ]>

2.6 Elation generalised quadrangles

In this section, we construct a classical elation generalised quadrangle from a q-clan, and we see that
the associated BLT-set is a conic.

2.6.1 The classical q-clan
Example

gap> f := GF(3);
GF(3)
gap> id := IdentityMat(2, f);;
gap> clan := List( f, t -> t*id );;
gap> IsqClan( clan, f );
true
gap> clan := qClan(clan, f);
<q-clan over GF(3)>
gap> egq := EGQByqClan( clan );
#I Computed Kantor family. Now computing EGQ...
<EGQ of order [ 9, 3 ] and basepoint 0>
gap> elations := ElationGroup( egq );
<matrix group of size 243 with 8 generators>
gap> points := Points( egq );
<points of <EGQ of order [ 9, 3 ] and basepoint 0>>
gap> p := Random(points);
<a point of class 2 of <EGQ of order [ 9, 3 ] and basepoint 0>>
gap> x := Random(elations);
[ [ Z(3)^0, 0*Z(3), 0*Z(3), Z(3)^0 ], [ 0*Z(3), Z(3)^0, 0*Z(3), Z(3)^0 ],

[ 0*Z(3), 0*Z(3), Z(3)^0, Z(3)^0 ], [ 0*Z(3), 0*Z(3), 0*Z(3), Z(3)^0 ] ]
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gap> OnKantorFamily(p,x);
<a point of class 2 of <EGQ of order [ 9, 3 ] and basepoint 0>>
gap> orbs := Orbits( elations, points, OnKantorFamily);;
gap> Collected(List( orbs, Size ));
[ [ 1, 1 ], [ 9, 4 ], [ 243, 1 ] ]
gap> blt := BLTSetByqClan( clan );
[ <a point in Q(4, 3): -x_1*x_5-x_2*x_4+x_3^2=0>,

<a point in Q(4, 3): -x_1*x_5-x_2*x_4+x_3^2=0>,
<a point in Q(4, 3): -x_1*x_5-x_2*x_4+x_3^2=0>,
<a point in Q(4, 3): -x_1*x_5-x_2*x_4+x_3^2=0> ]

gap> q4q := AmbientGeometry( blt[1] );
Q(4, 3): -x_1*x_5-x_2*x_4+x_3^2=0
gap> span := Span( blt );
<a plane in ProjectiveSpace(4, 3)>
gap> ProjectiveDimension( span );
2

2.6.2 Two ways to construct a flock generalised quadrangle from a Kantor-Knuth
semifield q-clan

We will construct an elation generalised quadrangle directly from the Kantor-Knuth semifield q-clan
and also via its corresponding BLT-set. The q-clan in question here are the set of matrices Ct of the

form
(

t 0
0 −ntφ

)
where t runs over the elements of GF(q), q is odd and not prime, n is a fixed

nonsquare and φ is a nontrivial automorphism of GF(q).
Example

gap> q := 9;
9
gap> f := GF(q);
GF(3^2)
gap> squares := AsList(Group(Z(q)^2));
[ Z(3)^0, Z(3^2)^6, Z(3), Z(3^2)^2 ]
gap> n := First(GF(q), x -> not IsZero(x) and not x in squares);
Z(3^2)
gap> sigma := FrobeniusAutomorphism( f );
FrobeniusAutomorphism( GF(3^2) )
gap> zero := Zero(f);
0*Z(3)
gap> qclan := List(GF(q), t -> [[t, zero], [zero,-n * t^sigma]] );
[ [ [ 0*Z(3), 0*Z(3) ], [ 0*Z(3), 0*Z(3) ] ],

[ [ Z(3^2), 0*Z(3) ], [ 0*Z(3), Z(3)^0 ] ],
[ [ Z(3^2)^5, 0*Z(3) ], [ 0*Z(3), Z(3) ] ],
[ [ Z(3)^0, 0*Z(3) ], [ 0*Z(3), Z(3^2)^5 ] ],
[ [ Z(3^2)^2, 0*Z(3) ], [ 0*Z(3), Z(3^2)^3 ] ],
[ [ Z(3^2)^3, 0*Z(3) ], [ 0*Z(3), Z(3^2)^6 ] ],
[ [ Z(3), 0*Z(3) ], [ 0*Z(3), Z(3^2) ] ],
[ [ Z(3^2)^7, 0*Z(3) ], [ 0*Z(3), Z(3^2)^2 ] ],
[ [ Z(3^2)^6, 0*Z(3) ], [ 0*Z(3), Z(3^2)^7 ] ] ]

gap> IsqClan( qclan, f );
true
gap> qclan := qClan(qclan , f);
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<q-clan over GF(3^2)>
gap> egq1 := EGQByqClan( qclan);
#I Computed Kantor family. Now computing EGQ...
<EGQ of order [ 81, 9 ] and basepoint 0>
gap> blt := BLTSetByqClan( qclan );
[ <a point in Q(4, 9): -x_1*x_5-x_2*x_4+Z(3^2)^5*x_3^2=0>,

<a point in Q(4, 9): -x_1*x_5-x_2*x_4+Z(3^2)^5*x_3^2=0>,
<a point in Q(4, 9): -x_1*x_5-x_2*x_4+Z(3^2)^5*x_3^2=0>,
<a point in Q(4, 9): -x_1*x_5-x_2*x_4+Z(3^2)^5*x_3^2=0>,
<a point in Q(4, 9): -x_1*x_5-x_2*x_4+Z(3^2)^5*x_3^2=0>,
<a point in Q(4, 9): -x_1*x_5-x_2*x_4+Z(3^2)^5*x_3^2=0>,
<a point in Q(4, 9): -x_1*x_5-x_2*x_4+Z(3^2)^5*x_3^2=0>,
<a point in Q(4, 9): -x_1*x_5-x_2*x_4+Z(3^2)^5*x_3^2=0>,
<a point in Q(4, 9): -x_1*x_5-x_2*x_4+Z(3^2)^5*x_3^2=0>,
<a point in Q(4, 9): -x_1*x_5-x_2*x_4+Z(3^2)^5*x_3^2=0> ]

gap> egq2 := EGQByBLTSet( blt );
#I Now embedding dual BLT-set into W(5,q)...
#I Computing elation group...
<EGQ of order [ 81, 9 ] and basepoint in W(5, 9 ) >

2.7 Algebraic varieties

2.7.1 A projective variety

In this example we demonstrate the construction of projective varieties.
Example

gap> pg1 := PG(1, 7);
ProjectiveSpace(1, 7)
gap> pg3 := PG(3, 7);
ProjectiveSpace(3, 7)
gap> points := Points(pg1);
<points of ProjectiveSpace(1, 7)>
gap> coords := List(points, Coordinates);
[ [ Z(7)^0, 0*Z(7) ], [ Z(7)^0, Z(7)^0 ], [ Z(7)^0, Z(7) ],

[ Z(7)^0, Z(7)^2 ], [ Z(7)^0, Z(7)^3 ], [ Z(7)^0, Z(7)^4 ],
[ Z(7)^0, Z(7)^5 ], [ 0*Z(7), Z(7)^0 ] ]

gap> curve := List(coords, t -> VectorSpaceToElement(pg3, [ t[1]^3, t[1]^2 * t[2], t[1] * t[2]^2, t[2]^3 ] ));;
gap> pgl := ProjectivityGroup( pg3 );
The FinInG projectivity group PGL(4,7)
gap> stabcurve := FiningSetwiseStabiliser( pgl, curve );
#I Computing adjusted stabilizer chain...
<projective collineation group with 6 generators>
gap> StructureDescription( stabcurve );
"PSL(3,2) : C2"
gap> Span( curve );
ProjectiveSpace(3, 7)
gap> pg3lines := Lines( pg3 );
<lines of ProjectiveSpace(3, 7)>
gap> orbits := FiningOrbits(stabcurve, pg3lines);
2%..3%..9%..15%..16%..21%..22%..28%..34%..40%..46%..52%..64%..75%..81%..84%..88%..94%..95%..99%..100%..[ <closed orbit, 8 points>, <closed orbit, 56 points>,

<closed orbit, 28 points>, <closed orbit, 168 points>,
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<closed orbit, 168 points>, <closed orbit, 28 points>,
<closed orbit, 168 points>, <closed orbit, 28 points>,
<closed orbit, 168 points>, <closed orbit, 168 points>,
<closed orbit, 168 points>, <closed orbit, 168 points>,
<closed orbit, 168 points>, <closed orbit, 336 points>,
<closed orbit, 336 points>, <closed orbit, 168 points>,
<closed orbit, 84 points>, <closed orbit, 112 points>,
<closed orbit, 168 points>, <closed orbit, 21 points>,
<closed orbit, 112 points>, <closed orbit, 21 points> ]

gap> List(orbits, Size);
[ 8, 56, 28, 168, 168, 28, 168, 28, 168, 168, 168, 168, 168, 336, 336, 168,

84, 112, 168, 21, 112, 21 ]
gap> pg3points := Points( pg3 );
<points of ProjectiveSpace(3, 7)>
gap> orbits := FiningOrbits(stabcurve, pg3points);
2%..16%..30%..72%..100%..[ <closed orbit, 8 points>, <closed orbit, 56 points>,

<closed orbit, 56 points>, <closed orbit, 168 points>,
<closed orbit, 112 points> ]

gap> List(orbits, Size);
[ 8, 56, 56, 168, 112 ]
gap> reps := List(orbits, Representative);
[ <a point in ProjectiveSpace(3, 7)>, <a point in ProjectiveSpace(3, 7)>,

<a point in ProjectiveSpace(3, 7)>, <a point in ProjectiveSpace(3, 7)>,
<a point in ProjectiveSpace(3, 7)> ]

gap> x := reps[2];
<a point in ProjectiveSpace(3, 7)>
gap> proj := NaturalProjectionBySubspace(pg3, x);
<geometry morphism from <All elements of ProjectiveSpace(3,
7)> to <All elements of ProjectiveSpace(2, 7)>>
gap> curveminusx := Difference(curve, [x]);
[ <a point in ProjectiveSpace(3, 7)>, <a point in ProjectiveSpace(3, 7)>,

<a point in ProjectiveSpace(3, 7)>, <a point in ProjectiveSpace(3, 7)>,
<a point in ProjectiveSpace(3, 7)>, <a point in ProjectiveSpace(3, 7)>,
<a point in ProjectiveSpace(3, 7)>, <a point in ProjectiveSpace(3, 7)> ]

gap> cuspidal := ImagesSet(proj, List(curveminusx, t -> Span(x, t)));
[ <a point in ProjectiveSpace(2, 7)>, <a point in ProjectiveSpace(2, 7)>,

<a point in ProjectiveSpace(2, 7)>, <a point in ProjectiveSpace(2, 7)>,
<a point in ProjectiveSpace(2, 7)>, <a point in ProjectiveSpace(2, 7)>,
<a point in ProjectiveSpace(2, 7)>, <a point in ProjectiveSpace(2, 7)> ]

gap> coords := List(cuspidal, Coordinates);
[ [ Z(7)^0, 0*Z(7), 0*Z(7) ], [ 0*Z(7), 0*Z(7), Z(7)^0 ],

[ Z(7)^0, Z(7)^0, Z(7)^0 ], [ Z(7)^0, Z(7)^2, Z(7)^0 ],
[ Z(7)^0, Z(7)^4, Z(7)^0 ], [ Z(7)^0, Z(7)^0, Z(7)^3 ],
[ Z(7)^0, Z(7)^2, Z(7)^3 ], [ Z(7)^0, Z(7)^4, Z(7)^3 ] ]

gap> r := PolynomialRing(GF(7), 3);
GF(7)[x_1,x_2,x_3]
gap> indets := IndeterminatesOfPolynomialRing(r);
[ x_1, x_2, x_3 ]
gap> shapes := Filtered(Tuples([0,1,2,3], 3), t -> Sum(t) = 3);
[ [ 0, 0, 3 ], [ 0, 1, 2 ], [ 0, 2, 1 ], [ 0, 3, 0 ], [ 1, 0, 2 ],

[ 1, 1, 1 ], [ 1, 2, 0 ], [ 2, 0, 1 ], [ 2, 1, 0 ], [ 3, 0, 0 ] ]
gap> mat := List(coords, t -> List(shapes, u -> Product([1,2,3], i -> t[i]^u[i])));
[ [ 0*Z(7), 0*Z(7), 0*Z(7), 0*Z(7), 0*Z(7), 0*Z(7), 0*Z(7), 0*Z(7), 0*Z(7),



GAP 4 Package FinInG 37

Z(7)^0 ],
[ Z(7)^0, 0*Z(7), 0*Z(7), 0*Z(7), 0*Z(7), 0*Z(7), 0*Z(7), 0*Z(7), 0*Z(7),

0*Z(7) ],
[ Z(7)^0, Z(7)^0, Z(7)^0, Z(7)^0, Z(7)^0, Z(7)^0, Z(7)^0, Z(7)^0, Z(7)^0,

Z(7)^0 ],
[ Z(7)^0, Z(7)^2, Z(7)^4, Z(7)^0, Z(7)^0, Z(7)^2, Z(7)^4, Z(7)^0, Z(7)^2,

Z(7)^0 ],
[ Z(7)^0, Z(7)^4, Z(7)^2, Z(7)^0, Z(7)^0, Z(7)^4, Z(7)^2, Z(7)^0, Z(7)^4,

Z(7)^0 ],
[ Z(7)^3, Z(7)^0, Z(7)^3, Z(7)^0, Z(7)^0, Z(7)^3, Z(7)^0, Z(7)^3, Z(7)^0,

Z(7)^0 ],
[ Z(7)^3, Z(7)^2, Z(7), Z(7)^0, Z(7)^0, Z(7)^5, Z(7)^4, Z(7)^3, Z(7)^2,

Z(7)^0 ],
[ Z(7)^3, Z(7)^4, Z(7)^5, Z(7)^0, Z(7)^0, Z(7), Z(7)^2, Z(7)^3, Z(7)^4,

Z(7)^0 ] ]
gap> mat2 := ShallowCopy(mat);
[ [ 0*Z(7), 0*Z(7), 0*Z(7), 0*Z(7), 0*Z(7), 0*Z(7), 0*Z(7), 0*Z(7), 0*Z(7),

Z(7)^0 ],
[ Z(7)^0, 0*Z(7), 0*Z(7), 0*Z(7), 0*Z(7), 0*Z(7), 0*Z(7), 0*Z(7), 0*Z(7),

0*Z(7) ],
[ Z(7)^0, Z(7)^0, Z(7)^0, Z(7)^0, Z(7)^0, Z(7)^0, Z(7)^0, Z(7)^0, Z(7)^0,

Z(7)^0 ],
[ Z(7)^0, Z(7)^2, Z(7)^4, Z(7)^0, Z(7)^0, Z(7)^2, Z(7)^4, Z(7)^0, Z(7)^2,

Z(7)^0 ],
[ Z(7)^0, Z(7)^4, Z(7)^2, Z(7)^0, Z(7)^0, Z(7)^4, Z(7)^2, Z(7)^0, Z(7)^4,

Z(7)^0 ],
[ Z(7)^3, Z(7)^0, Z(7)^3, Z(7)^0, Z(7)^0, Z(7)^3, Z(7)^0, Z(7)^3, Z(7)^0,

Z(7)^0 ],
[ Z(7)^3, Z(7)^2, Z(7), Z(7)^0, Z(7)^0, Z(7)^5, Z(7)^4, Z(7)^3, Z(7)^2,

Z(7)^0 ],
[ Z(7)^3, Z(7)^4, Z(7)^5, Z(7)^0, Z(7)^0, Z(7), Z(7)^2, Z(7)^3, Z(7)^4,

Z(7)^0 ] ]
gap> sol := NullspaceMat(TransposedMat(mat2))[1];
[ 0*Z(7), 0*Z(7), 0*Z(7), Z(7)^3, Z(7)^0, 0*Z(7), 0*Z(7), 0*Z(7), 0*Z(7),

0*Z(7) ]
gap> terms := List(shapes, u -> Product([1,2,3], i -> indets[i]^u[i]));
[ x_3^3, x_2*x_3^2, x_2^2*x_3, x_2^3, x_1*x_3^2, x_1*x_2*x_3, x_1*x_2^2,

x_1^2*x_3, x_1^2*x_2, x_1^3 ]
gap> poly := terms * sol;
x_1*x_3^2-x_2^3
gap> pg2 := AmbientGeometry(Range(proj));
ProjectiveSpace(2, 7)
gap> variety := ProjectiveVariety(pg2, [poly]);
Projective Variety in ProjectiveSpace(2, 7)
gap> points := Points(variety);
<points of Projective Variety in ProjectiveSpace(2, 7)>
gap> Size(points);
8



Chapter 3

Incidence Geometry

We follow [BC13] for the definitions of incidence structure and incidence geometry. An incidence
structure consists of a set of elements, a symmetric relation on the elements and a type function from
the set of elements to an index set (i.e., every element has a “type”). It satisfies the following axiom: (i)
no two elements of the same type are incident. An incidence structure without type function is in fact
a multipartite graph where the adjacency is the incidence (so with a loop on each vertex). The term
geometry, or incidence geometry, is interpreted broadly in this package. Particularly, an incidence
geometry is an incidence structure satisfying the following axiom: (ii) every maximal flag contains an
element of each type. In graph terminology, this means that every maximal clique contains an element
of each type. Thus, a projective 5-space is an incidence geometry with five types of elements: points,
lines, planes, solids, and hyperplanes. A finite classical polar space of rank 3 is an incidence geometry
with three types of elements: points, lines, and planes. Depending on the viewpoint, the Grassmann
variety of the lines of a projective 4-space, is an incidence structure that is not an incidence geometry.

FinInG concerns itself primarily with the most commonly studied incidence geometries of rank
at least 2: projective spaces, polar spaces, and affine spaces. Throughout, no matter the geometry,
we have made the convention that an element of type 1 is a “point”, an element of type 2 is a “line”,
and so forth. The examples we use in this section use projective spaces, which have not yet been
introduced to the reader in this manual. For further information on projective spaces, see Chapter 4.

In this chapter we describe functionality that is DECLARED for incidence structures, which does
not imply that operations described here will work for arbitrary user-constructed incidence structures.
Its aim is furthermore to allow the user to become familiar with the general philosophy of the package,
using examples that are self-explanatory. Not all details of the commands used in the examples will
be explained in this chapter, therefore we refer to the relevant chapter for the commands. These can
easily be found using the index.

3.1 Incidence structures

Incidence structures can be more general than incidence geometries, e.g., if they do not satisfy axiom
(ii) mentioned above. We allow the construction of such objects. This explains one of the top level
categories in FinInG.

38
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3.1.1 IsIncidenceStructure

. IsIncidenceStructure (Category)

Top level category for all objects representing an incidence structure.

3.1.2 IsIncidenceGeometry

. IsIncidenceGeometry (Category)

Category for all objects representing an incidence geometry. All particular geometries imple-
mented in FinInG are incidence geometries.

3.1.3 IncidenceStructure

. IncidenceStructure(eles, inc_rel, type, typeset) (operation)

Returns: an incidence structure
eles is a set containing the elements of the incidence structure. inc_rel must be a function that

determines whether two objects in the set eles are incident. type is a function mapping any element
to its type, which is a unique element in the set typeset .

In the following example we define an incidence structure that is not an incidence geometry. The
example used is the incidence structure with elements the subspaces contained in the line Grassman-
nian of PG(4,2). This example is not meant to create this incidence structure in an efficient way, but
just to demonstrate the general philosophy.

Example
gap> pg := PG(4,2);
ProjectiveSpace(4, 2)
gap> pg2 := PG(9,2);
ProjectiveSpace(9, 2)
gap> points := List(Lines(pg),x->VectorSpaceToElement(pg2,GrassmannCoordinates(x)));;
gap> flags := Concatenation(List(Points(pg),x->List(Planes(x),y->FlagOfIncidenceStructure(pg,[x,y]))));;
gap> prelines := List(flags,flag->ShadowOfFlag(pg,flag,2));;
gap> lines := List(prelines,x->VectorSpaceToElement(pg2,List(x,y->GrassmannCoordinates(y))));;
gap> flags2 := Concatenation(List(Points(pg),x->List(Solids(x),y->FlagOfIncidenceStructure(pg,[x,y]))));;
gap> preplanes := List(flags2,flag->ShadowOfFlag(pg,flag,2));;
gap> planes := List(preplanes,x->VectorSpaceToElement(pg2,List(x,y->GrassmannCoordinates(y))));;
gap> maximals1 := List(Planes(pg),x->VectorSpaceToElement(pg2,List(Lines(x),y->GrassmannCoordinates(y))));;
gap> maximals2 := List(Points(pg),x->VectorSpaceToElement(pg2,List(Lines(x),y->GrassmannCoordinates(y))));;
gap> elements := Union(points,lines,planes,maximals1,maximals2);;
gap> Length(elements);
1891
gap> type := x -> ProjectiveDimension(x)+1;
function( x ) ... end
gap> inc_rel := \*;
<Operation "*">
gap> inc := IncidenceStructure(elements,inc_rel,type,[1,2,3,4]);
Incidence structure of rank 4
gap> Rank(inc);
4
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Lie Geometries, i.e., geometries with a projective space as ambient space, affine spaces and gen-
eralised polygons have their own category, which is a subcategory of IsIncidenceGeometry.

3.1.4 Main categories in IsIncidenceGeometry

. IsLieGeometry (Category)

. IsAffineSpace (Category)

. IsGeneralisedPolygon (Category)

. IsCosetGeometry (Category)

Within each category, several subcategories are declared. Subcategories of IsLieGeometry are
discussed in Section 3.6 and subcategories of IsGeneralisedPolygon are discussed in Chapter 12

3.1.5 Examples of categories of incidence geometries
Example

gap> CategoriesOfObject(ProjectiveSpace(5,7));
[ "IsIncidenceStructure", "IsIncidenceGeometry", "IsLieGeometry",

"IsProjectiveSpace" ]
gap> CategoriesOfObject(HermitianPolarSpace(5,9));
[ "IsIncidenceStructure", "IsIncidenceGeometry", "IsLieGeometry",

"IsClassicalPolarSpace", "IsAlgebraicVariety", "IsProjectiveVariety",
"IsHermitianVariety" ]

gap> CategoriesOfObject(AffineSpace(3,3));
[ "IsIncidenceStructure", "IsIncidenceGeometry", "IsAffineSpace" ]
gap> CategoriesOfObject(SymplecticSpace(3,11));
[ "IsIncidenceStructure", "IsIncidenceGeometry", "IsLieGeometry",

"IsClassicalPolarSpace", "IsGeneralisedPolygon", "IsGeneralisedQuadrangle",
"IsClassicalGQ" ]

gap> CategoriesOfObject(SplitCayleyHexagon(9));
[ "IsIncidenceStructure", "IsIncidenceGeometry", "IsLieGeometry",

"IsGeneralisedPolygon", "IsGeneralisedHexagon",
"IsClassicalGeneralisedHexagon" ]

gap> CategoriesOfObject(ParabolicQuadric(4,16));
[ "IsIncidenceStructure", "IsIncidenceGeometry", "IsLieGeometry",

"IsClassicalPolarSpace", "IsGeneralisedPolygon", "IsGeneralisedQuadrangle",
"IsClassicalGQ", "IsAlgebraicVariety", "IsProjectiveVariety" ]

3.1.6 TypesOfElementsOfIncidenceStructure

. TypesOfElementsOfIncidenceStructure(inc) (attribute)

. TypesOfElementsOfIncidenceStructurePlural(inc) (attribute)

Returns: a list of strings or integers
Both attributes are declared for objects in the category IsIncidenceStructure. Any incidence

structure has a set of types, which is usually just the list 1..n. If specific names are given to each
type, like points, lines, etc., this attribute returns the names for the particular incidence structure inc .
The second variant returns the list of plurals of these names. For genericly constructed incidence
structures, the names of the Elements are also generic: elements of type 1, elements of type 2, etc.



GAP 4 Package FinInG 41

Example
gap> TypesOfElementsOfIncidenceStructure(ProjectiveSpace(5,4));
[ "point", "line", "plane", "solid", "proj. 4-space" ]
gap> TypesOfElementsOfIncidenceStructurePlural(AffineSpace(7,4));
[ "points", "lines", "planes", "solids", "affine. subspaces of dim. 4",

"affine. subspaces of dim. 5", "affine. subspaces of dim. 6" ]

3.1.7 Rank

. Rank(inc) (operation)

. RankAttr(inc) (attribute)

Returns: rank of inc , an object which must belong to the category IsIncidenceStructure
The operation Rank returns the rank of the incidence structure inc. The highest level method for

Rank, applicable to objects in IsIncidenceStructure simply refers to the attribute RankAttr. In
FinInG, the rank of an incidence structure is determined upon creation, when also RankAttr is set.

Example
gap> Rank(ProjectiveSpace(5,5));
5
gap> Rank(AffineSpace(3,5));
3
gap> Rank(SymplecticSpace(5,5));
3

3.1.8 IncidenceGraph

. IncidenceGraph(inc) (attribute)

Returns: a graph
The vertices are the elements of inc , adjacency between different vertices is equal to inci-

dence, and there are of course no loops. For generic incidence structures, i.e. constructed through
IncidenceStructure, there is no efficient method installed, so this operation can be time consum-
ing.

If inc is a generic incidence structure, i.e. created using IncidenceStructure, the vertex names
of the graph are integers. It is not by default possible to use the elements of inc as vertex names, since
it is not known in the generic case whether the elements of different type of inc can be ordered. For
particular incidence geometries, e.g. projective spaces, etc., the vertex names will be the elements,
which will be demonstrated through examples in the appropriate chapters.

In the example we consider the so-called doubling of the smallest generalised quadrangle: the
points of the incidence structure are the points and the lines of the GQ, the lines of the incidence
structure are all the point-line flags of the GQ. The incidence is the natural one. It is then checked that
diameter and girth of the incidence graph are 8 and 16 respectively, which makes that the incidence
structure is a generalised octagon.

Example
gap> ps := SymplecticSpace(3,2);
W(3, 2)
gap> pts := List(Points(ps));;
gap> lines := List(Lines(ps));;
gap> flags := Union(List(pts,x->List(Lines(x),y->FlagOfIncidenceStructure(ps,[x,y]))));;
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gap> inc := function(x,y)
> if x = y then
> return true;
> elif IsFlagOfIncidenceStructure(x) and IsElementOfIncidenceStructure(y) then
> return IsIncident(x,y);
> elif IsElementOfIncidenceStructure(x) and IsElementOfIncidenceStructure(y) then
> return false;
> elif IsFlagOfIncidenceStructure(x) and IsFlagOfIncidenceStructure(y) then
> return false;
> else
> return inc(y,x);
> fi;
> end;
function( x, y ) ... end
gap> type := function(x)
> if IsList(Type(x)) then
> return 2;
> else
> return 1;
> fi;
> end;
function( x ) ... end
gap> els := Union(pts,lines,flags);;
gap> struc := IncidenceStructure(els,inc,type,[1,2]);
Incidence structure of rank 2
gap> gamma := IncidenceGraph(struc);
rec( adjacencies := [ [ 31, 32, 33 ], [ 34, 35, 36 ], [ 37, 38, 39 ],

[ 40, 41, 42 ], [ 43, 44, 45 ], [ 46, 47, 48 ], [ 49, 50, 51 ],
[ 52, 53, 54 ], [ 55, 56, 57 ], [ 58, 59, 60 ], [ 61, 62, 63 ],
[ 64, 65, 66 ], [ 67, 68, 69 ], [ 70, 71, 72 ], [ 73, 74, 75 ],
[ 31, 40, 43 ], [ 32, 52, 55 ], [ 33, 64, 67 ], [ 34, 41, 46 ],
[ 35, 53, 58 ], [ 36, 65, 70 ], [ 37, 42, 49 ], [ 38, 54, 61 ],
[ 39, 66, 73 ], [ 44, 59, 74 ], [ 45, 62, 71 ], [ 47, 56, 75 ],
[ 50, 57, 72 ], [ 48, 63, 68 ], [ 51, 60, 69 ], [ 1, 16 ], [ 1, 17 ],
[ 1, 18 ], [ 2, 19 ], [ 2, 20 ], [ 2, 21 ], [ 3, 22 ], [ 3, 23 ],
[ 3, 24 ], [ 4, 16 ], [ 4, 19 ], [ 4, 22 ], [ 5, 16 ], [ 5, 25 ],
[ 5, 26 ], [ 6, 19 ], [ 6, 27 ], [ 6, 29 ], [ 7, 22 ], [ 7, 28 ],
[ 7, 30 ], [ 8, 17 ], [ 8, 20 ], [ 8, 23 ], [ 9, 17 ], [ 9, 27 ],
[ 9, 28 ], [ 10, 20 ], [ 10, 25 ], [ 10, 30 ], [ 11, 23 ], [ 11, 26 ],
[ 11, 29 ], [ 12, 18 ], [ 12, 21 ], [ 12, 24 ], [ 13, 18 ], [ 13, 29 ],
[ 13, 30 ], [ 14, 21 ], [ 14, 26 ], [ 14, 28 ], [ 15, 24 ], [ 15, 25 ],
[ 15, 27 ] ], group := Group(()), isGraph := true, names := [ 1 .. 75 ],

order := 75,
representatives := [ 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16,

17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34,
35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52,
53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70,
71, 72, 73, 74, 75 ],

schreierVector := [ -1, -2, -3, -4, -5, -6, -7, -8, -9, -10, -11, -12, -13,
-14, -15, -16, -17, -18, -19, -20, -21, -22, -23, -24, -25, -26, -27,
-28, -29, -30, -31, -32, -33, -34, -35, -36, -37, -38, -39, -40, -41,
-42, -43, -44, -45, -46, -47, -48, -49, -50, -51, -52, -53, -54, -55,
-56, -57, -58, -59, -60, -61, -62, -63, -64, -65, -66, -67, -68, -69,
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-70, -71, -72, -73, -74, -75 ] )
gap> Diameter(gamma);
8
gap> Girth(gamma);
16

3.2 Elements of incidence structures

3.2.1 Main categories for individual elements of incidence structures

. IsElementOfIncidenceStructure (Category)

. IsElementOfIncidenceGeometry (Category)

. IsElementOfLieGeometry (Category)

. IsElementOfAffineSpace (Category)

. IsElementOfCosetGeometry (Category)

. IsSubspaceOfProjectiveSpace (Category)

. IsSubspaceOfClassicalPolarSpace (Category)

. IsElementOfGeneralisedPolygon (Category)

In general, elements of an incidence structure belonging to IsIncStr, are in the category
IsElementOfIncStr. The inclusion for different categories of geometries is followed for their
elements, with an exception for IsSubspaceOfClassicalPolarSpace, which is a subcategory
of IsSubspaceOfProjectiveSpace, while IsClassicalPolarSpace is not a subcategory of
IsProjectiveSpace.

Example
gap> Random(Lines(SplitCayleyHexagon(3)));
#I for Split Cayley Hexagon
#I Computing nice monomorphism...
#I Found permutation domain...
<a line in H(3)>
gap> CategoriesOfObject(last);
[ "IsElementOfIncidenceStructure", "IsElementOfIncidenceGeometry",

"IsElementOfLieGeometry", "IsSubspaceOfProjectiveSpace",
"IsSubspaceOfClassicalPolarSpace", "IsElementOfGeneralisedPolygon" ]

gap> Random(Solids(AffineSpace(7,17)));
<a solid in AG(7, 17)>
gap> CategoriesOfObject(last);
[ "IsElementOfIncidenceStructure", "IsElementOfIncidenceGeometry",

"IsSubspaceOfAffineSpace" ]

3.2.2 UnderlyingObject

. UnderlyingObject(el) (operation)

Returns: an object
An element of an incidence structure has a type and an underlying object. E.g. a line of a projective

space is determined by a two dimensional sub vector space, which is determined by a basis. Elements
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of incidence structure can also be objects representing elements of other incidence structures, as is
e.g. the case in the example of 3.1.3. The examples shows the underlying objects of elements of three
totally different incidence geometries.

Example
gap> pg := PG(2,2);
ProjectiveSpace(2, 2)
gap> p := Random(Points(pg));
<a point in ProjectiveSpace(2, 2)>
gap> UnderlyingObject(p);
<cvec over GF(2,1) of length 3>
gap> l := Random(Lines(pg));
<a line in ProjectiveSpace(2, 2)>
gap> UnderlyingObject(l);
<cmat 2x3 over GF(2,1)>
gap> mat := [ [ 1, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0 ],
> [ 0, 1, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0 ],
> [ 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0 ],
> [ 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0 ],
> [ 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0 ],
> [ 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0 ],
> [ 0, 0, 1, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0 ],
> [ 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0 ],
> [ 0, 0, 0, 0, 1, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0 ],
> [ 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 1, 0 ],
> [ 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0 ],
> [ 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 1 ],
> [ 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 1 ],
> [ 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0 ],
> [ 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 1 ] ];
[ [ 1, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0 ],

[ 0, 1, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0 ],
[ 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0 ],
[ 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0 ],
[ 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0 ],
[ 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0 ],
[ 0, 0, 1, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0 ],
[ 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0 ],
[ 0, 0, 0, 0, 1, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0 ],
[ 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 1, 0 ],
[ 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0 ],
[ 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 1 ],
[ 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 1 ],
[ 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0 ],
[ 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 1 ] ]

gap> gp := GeneralisedPolygonByIncidenceMatrix(mat);
<generalised quadrangle of order [ 2, 2 ]>
gap> p := Random(Points(gp));
<a point in <generalised quadrangle of order [ 2, 2 ]>>
gap> UnderlyingObject(p);
15
gap> l := Random(Lines(gp));
<a line in <generalised quadrangle of order [ 2, 2 ]>>
gap> UnderlyingObject(l);
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[ 7, 13, 15 ]
gap> egq := EGQByBLTSet(BLTSetByqClan(LinearqClan(3)));
#I Now embedding dual BLT-set into W(5,q)...
#I Computing elation group...
<EGQ of order [ 9, 3 ] and basepoint in W(5, 3 ) >
gap> p := Random(Points(egq));
<a point in <EGQ of order [ 9, 3 ] and basepoint in W(5, 3 ) >>
gap> UnderlyingObject(p);
<a point in W(5, 3)>

3.2.3 Type

. Type(el) (operation)

Returns: an integer
An element of an incidence structure has a type and an underlying object. Its type is always a

non-negative integer. This operation returns the type of an element.
Example

gap> pg := PG(2,2);
ProjectiveSpace(2, 2)
gap> p := Random(Points(pg));
<a point in ProjectiveSpace(2, 2)>
gap> Type(p);
1
gap> l := Random(Lines(pg));
<a line in ProjectiveSpace(2, 2)>
gap> Type(l);
2

3.2.4 ObjectToElement

. ObjectToElement(inc, t, obj) (operation)

Returns: an element of the incidence structure inc
If obj represents an element of inc of type t , this operation returns the element. An error (or

no method found error) is shown when obj does not represent an element of type t . Note that
ObjectToElement is a generic operation. Versions with a different argument set and even alternative
operations exist for some particular geometries to construct particular elements.

3.2.5 Main categories for collections of all the elements of a given type of an incidence
structure

. IsElementsOfIncidenceStructure (Category)

. IsElementsOfIncidenceGeometry (Category)

. IsElementsOfLieGeometry (Category)

. IsElementsOfAffineSpace (Category)

. IsElementsOfCosetGeometry (Category)

. IsSubspacesOfProjectiveSpace (Category)
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. IsSubspacesOfClassicalPolarSpace (Category)

For a given incidence structure, the collection of elements of a given type can be constructed.
constructed here means that an object is returned that represents all the elements of a given type,
rather than listing them immediately, to avoid long computation times. Such an abstract ob-
ject is e.g. used as a range for In general, the collection of elements of a given type of an
incidence structure belonging to IsIncStr, is in the category IsElementsOfIncStr. The in-
clusion for different categories of geometries is followed for their collection of elements of a
given type, with an exception for IsSubspacesOfClassicalPolarSpace, which is a subcategory
of IsSubspacesOfProjectiveSpace, while IsClassicalPolarSpace is not a subcategory of
IsProjectiveSpace.

The object representing the set of elements of a given type can be computed using the general
operation ElementsOfIncidenceStructure.

3.2.6 ElementsOfIncidenceStructure

. ElementsOfIncidenceStructure(inc, j) (operation)

. ElementsOfIncidenceStructure(inc, str) (operation)

Returns: a collection of elements
inc must be an incidence structure, j must be a type of element of inc . This func-

tion returns all elements of inc of type j , and an error is displayed if inc has no elements
of type j . Calling the elements (of a given type) of inc yields an object in the category
IsElementsOfIncidenceStructure (or the appropriate category for projective spaces and clas-
sical polar spaces), which does not imply that all elements are computed and stored. In an al-
ternative form of this function str can be one of the strings found in the list obtained by call-
ing TypesOfElementsOfIncidenceStructurePlural(inc). E.g. for projective spaces, “points",
“lines", “planes" or “solids" are the names for elements of type 1,2,3 or 4, respectively, of course if
inc has elements of the deduced type.

Example
gap> ps := ProjectiveSpace(3,3);
ProjectiveSpace(3, 3)
gap> l := ElementsOfIncidenceStructure(ps,2);
<lines of ProjectiveSpace(3, 3)>
gap> ps := EllipticQuadric(5,9);
Q-(5, 9)
gap> lines := ElementsOfIncidenceStructure(ps,2);
<lines of Q-(5, 9)>
gap> planes := ElementsOfIncidenceStructure(ps,3);
Error, <geo> has no elements of type <j> called from
<function "unknown">( <arguments> )
called from read-eval loop at line 12 of *stdin*

you can ’quit;’ to quit to outer loop, or
you can ’return;’ to continue
brk> quit;
gap> as := AffineSpace(3,9);
AG(3, 9)
gap> lines := ElementsOfIncidenceStructure(as,"lines");
<lines of AG(3, 9)>
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3.2.7 ElementsOfIncidenceStructure

. ElementsOfIncidenceStructure(inc) (operation)

Returns: a collection of elements
inc must be an incidence structure, then this operation returns the collection of all elements of

inc . Such a collection can e.g. be the range of a geometry morphism. Note that this operation has no
method for generic incidence structures constructed using Incidence Structure.

3.2.8 Short names for ElementsOfIncidenceStructure

. Points(inc) (operation)

. Lines(inc) (operation)

. Planes(inc) (operation)

. Solids(inc) (operation)

Returns: The points, lines, planes, solids, respectively of inc
For geometries in IsLieGeometry, IsAffineSpace, and IsGeneralisedPolygon, the elements

of type 1,2,3,4 respectively are called usually points, lines, planes, solids, respectively. These methods
are, for such geometries, are shortcuts to ElementsOfIncidenceStructure(inc,j), with j equal
to 1,2,3,4, respectively.

Example
gap> Points(HermitianVariety(2,64));
<points of Hermitian Variety in ProjectiveSpace(2, 64)>
gap> Lines(EllipticQuadric(5,2));
<lines of Q-(5, 2)>
gap> Planes(SymplecticSpace(7,3));
<planes of W(7, 3)>
gap> Lines(TwistedTrialityHexagon(2^3));
<lines of T(8, 2)>

3.2.9 NrElementsOfIncidenceStructure

. NrElementsOfIncidenceStructure(inc, j) (operation)

. NrElementsOfIncidenceStructure(inc, str) (operation)

Returns: a positive integer
inc must be an incidence structure, j must be a type of element of inc . This function returns

the number of elements of inc of type j , and an error is displayed if inc has no elements of type
j . In the alternative form of this function str can be one of “points", “lines", “planes" or “solids"
and the function returns the number of elements of type 1, 2, 3 or 4 respectively, of course if inc has
elements of the deduced type. For geometries in the category IsLieGeometry, IsAffineSpace, and
IsGeneralisedPolygon, the number of elements of a given type is known upon construction of the
geometry. As such, for these geometries, this operation requires no computing time.

Example
gap> ps:=ProjectiveSpace(4,3);
ProjectiveSpace(4, 3)
gap> NrElementsOfIncidenceStructure(ps, 2);
1210
gap> NrElementsOfIncidenceStructure(ps, "points");
121
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3.2.10 Random

. Random(C) (operation)

Returns: an element in the collection C
C is a collection of elements of an incidence structure, i.e., an object in the category

IsElementsOfIncidenceStructure. Random(C) will return a random element in C provided there
is a method installed. The generic method will compute all elements in C and return a random member
from the list. For e.g. Lie geometries, more efficient methods are installed.

Example
gap> coll := Hyperplanes(PG(5,7));
<proj. 4-subspaces of ProjectiveSpace(5, 7)>
gap> Random(coll);
<a proj. 4-space in ProjectiveSpace(5, 7)>

3.2.11 IsIncident

. IsIncident(u, v) (operation)

. \*(u, v) (operation)

Returns: true or false
u and v must be elements of an incidence structure. This function returns true if and only if u is

incident with v . Recall that IsIncident is a symmetric relation, while in is not. A method for the
operation \* is installed, applicable to objects in IsElementOfIncidenceStructure. It just calls
IsIncident.

Example
gap> p := Random(Points(PG(5,4)));
<a point in ProjectiveSpace(5, 4)>
gap> l := Random(Lines(p));
<a line in ProjectiveSpace(5, 4)>
gap> IsIncident(p,l);
true
gap> IsIncident(l,p);
true
gap> p * l;
true
gap> l * p;
true
gap> p * p;
true
gap> l * l;
true

3.2.12 AmbientGeometry

. AmbientGeometry(v) (operation)

Returns: the ambient geometry of the element v
If v is an element of an incidence geometry currently implemented in FinInG, then this operation

returns the ambient geometry of v , i.e., in general the geometry in which v was created. If an inci-
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dence structure is created with elements that are a subset of elements of another incidence structure,
the ambient geometry might stay unchanged.

Example
gap> plane := Random(Planes(HyperbolicQuadric(5,2)));
<a plane in Q+(5, 2)>
gap> AmbientGeometry(plane);
Q+(5, 2)
gap> l := Random(Lines(SplitCayleyHexagon(3)));
#I for Split Cayley Hexagon
#I Computing nice monomorphism...
#I Found permutation domain...
<a line in H(3)>
gap> Print(l);
NewMatrix(IsCMatRep,GF(3,1),7,[[ Z(3)^0, 0*Z(3), 0*Z(3), 0*Z(3), 0*Z(3),

Z(3)^0, Z(3)^0 ],[ 0*Z(3), Z(3)^0, Z(3), Z(3)^0, 0*Z(3), Z(3)^0, 0*Z(3) ],])
gap> AmbientGeometry(l);
H(3)
gap> p := Random(Points(EGQByBLTSet(BLTSetByqClan(LinearqClan(3)))));
#I Now embedding dual BLT-set into W(5,q)...
#I Computing elation group...
<a point in <EGQ of order [ 9, 3 ] and basepoint in W(5, 3 ) >>
gap> Print(p);
NewRowVector(IsCVecRep,GF(3,1),[Z(3)^0,Z(3),Z(3),Z(3),Z(3)^0,0*Z(3),])
gap> AmbientGeometry(p);
<EGQ of order [ 9, 3 ] and basepoint in W(5, 3 ) >

3.3 Flags of incidence structures

A flag of an incidence structure S is a set F of elements of S that are two by two incident. This implies
that all elements in F have a different type. A flag is maximal if it cannot be extended with more
elements. FinInG provides a basic category IsFlagOfIncidenceStructure. For different types of
incidence structures, methods to create a flag can be installed. A chamber is a flag of size n, where
n is the rank of the incidence structure. Recall that an incidence structure is an incidence geometry if
every maximal flag is a chamber.

3.3.1 FlagOfIncidenceStructure

. FlagOfIncidenceStructure(inc, l) (operation)

Returns: the flag consisting of the elements of inc in the list l
It is checked if all elements in l are incident and belong to the same incidence structure. An

empty list is allowed.
Example

gap> ps := PG(3,7);
ProjectiveSpace(3, 7)
gap> point := VectorSpaceToElement(ps,[1,2,0,0]*Z(7)^0);
<a point in ProjectiveSpace(3, 7)>
gap> line := VectorSpaceToElement(ps,[[1,0,0,0],[0,1,0,0]]*Z(7)^0);
<a line in ProjectiveSpace(3, 7)>
gap> plane := VectorSpaceToElement(ps,[[1,0,0,0],[0,1,0,0],[0,0,0,1]]*Z(7)^0);
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<a plane in ProjectiveSpace(3, 7)>
gap> flag := FlagOfIncidenceStructure(ps,[point,line,plane]);
<a flag of ProjectiveSpace(3, 7)>

3.3.2 IsChamberOfIncidenceStructure

. IsChamberOfIncidenceStructure(flag) (operation)

Returns: true if and only if flag contains an element of each type
The incidence structure is determined by the elements.

Example
gap> ps := PG(3,7);
ProjectiveSpace(3, 7)
gap> point := VectorSpaceToElement(ps,[1,2,0,0]*Z(7)^0);
<a point in ProjectiveSpace(3, 7)>
gap> line := VectorSpaceToElement(ps,[[1,0,0,0],[0,1,0,0]]*Z(7)^0);
<a line in ProjectiveSpace(3, 7)>
gap> plane := VectorSpaceToElement(ps,[[1,0,0,0],[0,1,0,0],[0,0,0,1]]*Z(7)^0);
<a plane in ProjectiveSpace(3, 7)>
gap> flag1 := FlagOfIncidenceStructure(ps,[point,plane]);
<a flag of ProjectiveSpace(3, 7)>
gap> IsChamberOfIncidenceStructure(flag1);
false
gap> flag2 := FlagOfIncidenceStructure(ps,[point,line,plane]);
<a flag of ProjectiveSpace(3, 7)>
gap> IsChamberOfIncidenceStructure(flag2);
true

3.3.3 IsEmptyFlag

. IsEmptyFlag(flag) (operation)

Returns: true or false
It is possible to construct the empty flag of an incidence structure. This operation tests whether a

given flag is empty.

3.3.4 ElementsOfFlag

. ElementsOfFlag(flag) (operation)

Returns: a list of elements
This operations simply returns the list of elements that define flag

Example
gap> gp := SplitCayleyHexagon(4);
H(4)
gap> p := Random(Points(gp));
#I for Split Cayley Hexagon
#I Computing nice monomorphism...
#I Found permutation domain...
<a point in H(4)>
gap> l := Random(Lines(p));
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<a line in H(4)>
gap> flag := FlagOfIncidenceStructure(gp,[l,p]);
<a flag of H(4)>
gap> ElementsOfFlag(flag);
[ <a point in H(4)>, <a line in H(4)> ]

3.3.5 Rank

. Rank(flag) (attribute)

Returns: an integer
This operations returns the number of elements that define flag

Example
gap> ps := ParabolicQuadric(8,3);
Q(8, 3)
gap> l := Random(Lines(ps));
<a line in Q(8, 3)>
gap> plane := Random(Planes(l));
<a plane in Q(8, 3)>
gap> solid := Random(Solids(plane));
<a solid in Q(8, 3)>
gap> flag := FlagOfIncidenceStructure(ps,[l,plane,solid]);
<a flag of Q(8, 3) >
gap> Rank(flag);
3

3.3.6 Size

. Size(flag) (attribute)

Returns: an integer
This operations returns the number of elements that define flag

Example
gap> ps := SymplecticSpace(5,7);
W(5, 7)
gap> p := Random(Points(ps));
<a point in W(5, 7)>
gap> plane := Random(Planes(p));
<a plane in W(5, 7)>
gap> flag := FlagOfIncidenceStructure(ps,[p,p,plane]);
<a flag of W(5, 7) >
gap> Size(flag);
2
gap> ElementsOfFlag(flag);
[ <a point in W(5, 7)>, <a plane in W(5, 7)> ]

3.3.7 AmbientGeometry

. AmbientGeometry(flag) (attribute)

Returns: an incidence structure
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This operations returns the ambient geometry of the flag
Example

gap> ps := SymplecticSpace(5,7);
W(5, 7)
gap> p := Random(Points(ps));
<a point in W(5, 7)>
gap> plane := Random(Planes(p));
<a plane in W(5, 7)>
gap> flag := FlagOfIncidenceStructure(ps,[p,p,plane]);
<a flag of W(5, 7) >
gap> Size(flag);
2
gap> ElementsOfFlag(flag);
[ <a point in W(5, 7)>, <a plane in W(5, 7)> ]

3.3.8 Type

. Type(flag) (operation)

Returns: an list of integers
This operations returns the list of types of the elements defining flag

Example
gap> pg := PG(8,9);
ProjectiveSpace(8, 9)
gap> l := Random(Lines(pg));
<a line in ProjectiveSpace(8, 9)>
gap> s := Random(Solids(l));
<a solid in ProjectiveSpace(8, 9)>
gap> flag := FlagOfIncidenceStructure(pg,[l,s]);
<a flag of ProjectiveSpace(8, 9)>
gap> Type(flag);
[ 2, 4 ]
gap> p := Random(Points(pg));
<a point in ProjectiveSpace(8, 9)>
gap> flag := FlagOfIncidenceStructure(pg,[p]);
<a flag of ProjectiveSpace(8, 9)>
gap> Type(flag);
[ 1 ]

3.3.9 IsIncident

. IsIncident(el, flag) (operation)

. IsIncident(flag, el) (operation)

Returns: true or false
An element is incident with a flag if and only if it is incident with all elements defining the flag.

Example
gap> pg := PG(3,5);
ProjectiveSpace(3, 5)
gap> p := Random(Points(pg));
<a point in ProjectiveSpace(3, 5)>
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gap> l := Random(Lines(p));
<a line in ProjectiveSpace(3, 5)>
gap> plane := Random(Planes(l));
<a plane in ProjectiveSpace(3, 5)>
gap> flag := FlagOfIncidenceStructure(pg,[l,plane]);
<a flag of ProjectiveSpace(3, 5)>
gap> IsIncident(flag,l);
true
gap> IsIncident(l,flag);
true

3.4 Shadow of elements

3.4.1 ShadowOfElement

. ShadowOfElement(inc, v, str) (operation)

. ShadowOfElement(inc, v, j) (operation)

Returns: The collection of elements of type str or type j incident with v
inc is an incidence structure, v must be an element of inc , str must be a string which is

THE PLURAL of the name of one of the types of the elements of inc . For the second variant,
j is an integer representing one of the types of the elements of inc . This first variant relies on
TypesOfElementsOfIncidenceStructurePlural and on a particular method installed for the sec-
ond variant for particular incidence structures. The use of the argument inc makes it flexible, i.e., if
the element v can belong to different incidence structures, its shadow can be different, as the second
example shows.

Example
gap> ps := ProjectiveSpace(3,3);
ProjectiveSpace(3, 3)
gap> pi := Random(Planes(ps));
<a plane in ProjectiveSpace(3, 3)>
gap> lines := ShadowOfElement(ps,pi,"lines");
<shadow lines in ProjectiveSpace(3, 3)>
gap> Size(lines);
13

gap> p := Random(Points(PG(3,3)));
<a point in ProjectiveSpace(3, 3)>
gap> lines1 := ShadowOfElement(SymplecticSpace(3,3),p,2);
<shadow lines in W(3, 3)>
gap> Size(lines1);
4
gap> lines2 := ShadowOfElement(PG(3,3),p,2);
<shadow lines in ProjectiveSpace(3, 3)>
gap> Size(lines2);
13
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3.4.2 ElementsIncidentWithElementOfIncidenceStructure

. ElementsIncidentWithElementOfIncidenceStructure(v, j) (operation)

Returns: The collection of elements of type j incident with v
This operation is applicable for objects v belonging to IsElementOfIncidenceStructure, and

is a shortcut to ShadowOfElement(AmbientGeometry(v),v,j).

3.4.3 ShadowOfFlag

. ShadowOfFlag(inc, flag, str) (operation)

. ShadowOfFlag(inc, list, str) (operation)

. ShadowOfFlag(inc, flag, j) (operation)

. ShadowOfFlag(inc, list, j) (operation)

Returns: The collection of elements of type str or type j incident with all elements of flag ,
or with all elements of list

Variants 2 and 4 convert list to a flag of inc , using FlagOfIcidenceStructure, which per-
forms the necessary checks. Variants 1 and 2 rely on variants 3 and 4 respectively, for which a method
must be installed for the particular incidence structure inc .

Example
gap> ps := PG(3,7);
ProjectiveSpace(3, 7)
gap> point := VectorSpaceToElement(ps,[1,2,0,0]*Z(7)^0);
<a point in ProjectiveSpace(3, 7)>
gap> plane := VectorSpaceToElement(ps,[[1,0,0,0],[0,1,0,0],[0,0,0,1]]*Z(7)^0);
<a plane in ProjectiveSpace(3, 7)>
gap> flag := FlagOfIncidenceStructure(ps,[point,plane]);
<a flag of ProjectiveSpace(3, 7)>
gap> lines := ShadowOfFlag(ps,flag,"lines");
<shadow lines in ProjectiveSpace(3, 7)>

3.4.4 ResidueOfFlag

. ResidueOfFlag(flag) (operation)

Returns: an incidence structure
Consider the flag flag , and its ambient geometry G. All elements of G incident with all elements

of flag , together with the incidence of G, determine an incidence structure. This incidence structure
is returned by this operation. Note that independently of the Category of G, the returned incidence
structure is constructed using the operation IncidenceStructure.

Example
gap> pg := PG(4,5);
ProjectiveSpace(4, 5)
gap> p := Random(Points(pg));
<a point in ProjectiveSpace(4, 5)>
gap> l := Random(Lines(p));
<a line in ProjectiveSpace(4, 5)>
gap> flag := FlagOfIncidenceStructure(pg,[p,l]);
<a flag of ProjectiveSpace(4, 5)>
gap> res := ResidueOfFlag(flag);
Incidence structure of rank 2
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gap> gamma := IncidenceGraph(res);;
gap> Diameter(gamma);
3
gap> Girth(gamma);
6

3.4.5 Short names for ElementsIncidentWithElementOfIncidenceStructure

. Points(inc, v) (operation)

. Lines(inc, v) (operation)

. Planes(inc, v) (operation)

. Solids(inc, v) (operation)

. Points(v) (operation)

. Lines(v) (operation)

. Planes(v) (operation)

. Solids(v) (operation)

Returns: The collections of elements of inc of respective type 1, 2, 3 and 4, that are incident
with v

If inc , or the ambient geometry of v is an incidence structure, where the elements of type 1, 2, 3
and 4 are called "points", "lines", "planes", and "solids" respectively, these operations are shortcuts to
ShadowOfElement. If this is not the case, a method for these operations is not installed.

Example
gap> line := Random(Lines(AG(5,4)));
<a line in AG(5, 4)>
gap> Points(line);
<shadow points in AG(5, 4)>
gap> Planes(line);
<shadow planes in AG(5, 4)>

3.5 Enumerating elements of an incidence structure

In several situations, it can be usful to compute a complete list of objects statisfying one or more
conditions. To list all elements of a given type of an incidence structure, is a typical example. FinInG
provides functionality that is common in GAP for this purpose.

In FinInG, typically a list of all elements satisfying a property, e.g. all points of a projective space,
are represented by a GAP object that is a collection. The word ’collection’ is important here. E.g.
subspaces of a vector space are not calculated on calling Subspaces, rather primitive information is
stored in an IsComponentObjectRep. So for example

Example
gap> v:=GF(31)^5;
( GF(31)^5 )
gap> subs:=Subspaces(v,1);
Subspaces( ( GF(31)^5 ), 1 )

For a given collection C , one can use the GAP function List to compute all objects in the collection
C . Such a list can be used to iterate over all objects in the list. However, if one needs only few random
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objects from C , or if one needs to iterate over the list of objects until a certain condition is satisfied, it
can be highly inefficient to first compute all these objects. Therefore iterators and enumerators come
into the picture.

An iterator is a GAP object that gives a user friendly way to loop over all elements without
repetition. Only three operations are applicable on an iterator: NextIterator, IsDoneIterator and
ShallowCopy. Clearly, all elements of a collection can be obtained by using an available iterator.

3.5.1 Iterator

. Iterator(C) (operation)

Returns: an iterator for the collection C
C is a collection of elements of an incidence structure. An iterator is returned. The second example

demonstrates how an iterator is used by First. Clearly, not all points of the projective space are
computed.

Example
gap> ps := PG(3,7);
ProjectiveSpace(3, 7)
gap> planes := Planes(ps);
<planes of ProjectiveSpace(3, 7)>
gap> iter := Iterator(planes);
<iterator>
gap> NextIterator(iter);
<a plane in ProjectiveSpace(3, 7)>
gap> IsDoneIterator(iter);
false

gap> pg := PG(12,81);
ProjectiveSpace(12, 81)
gap> pts := Points(pg);
<points of ProjectiveSpace(12, 81)>
gap> Size(pts);
80763523615333416236653
gap> ps := ParabolicQuadric(12,81);
Q(12, 81)
gap> First(pts,x->x in ps);
<a point in ProjectiveSpace(12, 81)>
gap> time;
23

In its simplest form, an enumerator is just a list containing all the elements of the collection. Given
any object in the list, it is possible to retrieve its number in the list (which is then just its position).
Also, given any number between 1 and the length of the list, it is possible to get the corresponding
element. For some collections of elements of particular incidence structures, a more advanced version
of enumerators is implemented. Such an advanced version is an object containing the two functions
ElementNumber and NumberElement. Such functions are able to compute directly, without listing
all elements, the element with a given number, or, conversely, compute directly the number of a given
element. Clearly, using an enumerator, it is possible to obtain a list containing all elements of a
collection.
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3.5.2 Enumerator

. Enumerator(C) (operation)

Returns: an enumerator for the collection C
C is a collection of elements of an incidence structure. An enumerator is returned. The second

example demonstrates how an enumerator is used by Random. Clearly, not all points of the polar space
are to obtain an random point.

Example
gap> lines := Lines( ParabolicQuadric(6,3) );
<lines of Q(6, 3)>
gap> enum := Enumerator( lines );
EnumeratorOfSubspacesOfClassicalPolarSpace( <lines of Q(6, 3)> )
gap> s := Size(enum);
3640
gap> n := Random([1..s]);
3081
gap> l := enum[n];
<a line in Q(6, 3)>
gap> Position(enum, l);
3081

gap> ps := ParabolicQuadric(16,7^4);
Q(16, 2401)
gap> pts := Points(ps);
<points of Q(16, 2401)>
gap> Size(pts);
508233536514931541724405776067904925314839705888016
gap> Random(pts);
<a point in Q(16, 2401)>
gap> time;
565

When an iterator or enumerator is installed for a collection, List can be used to obtain all objects
in that collection.

3.5.3 List

. List(C) (operation)

Returns: all objects in the collection C
Example

gap> pg := PG(2,2);
ProjectiveSpace(2, 2)
gap> List(Points(pg));
[ <a point in ProjectiveSpace(2, 2)>, <a point in ProjectiveSpace(2, 2)>,

<a point in ProjectiveSpace(2, 2)>, <a point in ProjectiveSpace(2, 2)>,
<a point in ProjectiveSpace(2, 2)>, <a point in ProjectiveSpace(2, 2)>,
<a point in ProjectiveSpace(2, 2)> ]

gap> List(Lines(pg));
[ <a line in ProjectiveSpace(2, 2)>, <a line in ProjectiveSpace(2, 2)>,

<a line in ProjectiveSpace(2, 2)>, <a line in ProjectiveSpace(2, 2)>,
<a line in ProjectiveSpace(2, 2)>, <a line in ProjectiveSpace(2, 2)>,
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<a line in ProjectiveSpace(2, 2)> ]
gap> ps := ParabolicQuadric(6,2);
Q(6, 2)
gap> lines := List(Lines(ps));
[ <a line in Q(6, 2)>, <a line in Q(6, 2)>, <a line in Q(6, 2)>,

<a line in Q(6, 2)>, <a line in Q(6, 2)>, <a line in Q(6, 2)>,
<a line in Q(6, 2)>, <a line in Q(6, 2)>, <a line in Q(6, 2)>,
<a line in Q(6, 2)>, <a line in Q(6, 2)>, <a line in Q(6, 2)>,
<a line in Q(6, 2)>, <a line in Q(6, 2)>, <a line in Q(6, 2)>,
<a line in Q(6, 2)>, <a line in Q(6, 2)>, <a line in Q(6, 2)>,
<a line in Q(6, 2)>, <a line in Q(6, 2)>, <a line in Q(6, 2)>,
<a line in Q(6, 2)>, <a line in Q(6, 2)>, <a line in Q(6, 2)>,
<a line in Q(6, 2)>, <a line in Q(6, 2)>, <a line in Q(6, 2)>,
<a line in Q(6, 2)>, <a line in Q(6, 2)>, <a line in Q(6, 2)>,
<a line in Q(6, 2)>, <a line in Q(6, 2)>, <a line in Q(6, 2)>,
<a line in Q(6, 2)>, <a line in Q(6, 2)>, <a line in Q(6, 2)>,
<a line in Q(6, 2)>, <a line in Q(6, 2)>, <a line in Q(6, 2)>,
<a line in Q(6, 2)>, <a line in Q(6, 2)>, <a line in Q(6, 2)>,
<a line in Q(6, 2)>, <a line in Q(6, 2)>, <a line in Q(6, 2)>,
<a line in Q(6, 2)>, <a line in Q(6, 2)>, <a line in Q(6, 2)>,
<a line in Q(6, 2)>, <a line in Q(6, 2)>, <a line in Q(6, 2)>,
<a line in Q(6, 2)>, <a line in Q(6, 2)>, <a line in Q(6, 2)>,
<a line in Q(6, 2)>, <a line in Q(6, 2)>, <a line in Q(6, 2)>,
<a line in Q(6, 2)>, <a line in Q(6, 2)>, <a line in Q(6, 2)>,
<a line in Q(6, 2)>, <a line in Q(6, 2)>, <a line in Q(6, 2)>,
<a line in Q(6, 2)>, <a line in Q(6, 2)>, <a line in Q(6, 2)>,
<a line in Q(6, 2)>, <a line in Q(6, 2)>, <a line in Q(6, 2)>,
<a line in Q(6, 2)>, <a line in Q(6, 2)>, <a line in Q(6, 2)>,
<a line in Q(6, 2)>, <a line in Q(6, 2)>, <a line in Q(6, 2)>,
<a line in Q(6, 2)>, <a line in Q(6, 2)>, <a line in Q(6, 2)>,
<a line in Q(6, 2)>, <a line in Q(6, 2)>, <a line in Q(6, 2)>,
<a line in Q(6, 2)>, <a line in Q(6, 2)>, <a line in Q(6, 2)>,
<a line in Q(6, 2)>, <a line in Q(6, 2)>, <a line in Q(6, 2)>,
<a line in Q(6, 2)>, <a line in Q(6, 2)>, <a line in Q(6, 2)>,
<a line in Q(6, 2)>, <a line in Q(6, 2)>, <a line in Q(6, 2)>,
<a line in Q(6, 2)>, <a line in Q(6, 2)>, <a line in Q(6, 2)>,
<a line in Q(6, 2)>, <a line in Q(6, 2)>, <a line in Q(6, 2)>,
<a line in Q(6, 2)>, <a line in Q(6, 2)>, <a line in Q(6, 2)>,
<a line in Q(6, 2)>, <a line in Q(6, 2)>, <a line in Q(6, 2)>,
<a line in Q(6, 2)>, <a line in Q(6, 2)>, <a line in Q(6, 2)>,
<a line in Q(6, 2)>, <a line in Q(6, 2)>, <a line in Q(6, 2)>,
<a line in Q(6, 2)>, <a line in Q(6, 2)>, <a line in Q(6, 2)>,
<a line in Q(6, 2)>, <a line in Q(6, 2)>, <a line in Q(6, 2)>,
<a line in Q(6, 2)>, <a line in Q(6, 2)>, <a line in Q(6, 2)>,
<a line in Q(6, 2)>, <a line in Q(6, 2)>, <a line in Q(6, 2)>,
<a line in Q(6, 2)>, <a line in Q(6, 2)>, <a line in Q(6, 2)>,
<a line in Q(6, 2)>, <a line in Q(6, 2)>, <a line in Q(6, 2)>,
<a line in Q(6, 2)>, <a line in Q(6, 2)>, <a line in Q(6, 2)>,
<a line in Q(6, 2)>, <a line in Q(6, 2)>, <a line in Q(6, 2)>,
<a line in Q(6, 2)>, <a line in Q(6, 2)>, <a line in Q(6, 2)>,
<a line in Q(6, 2)>, <a line in Q(6, 2)>, <a line in Q(6, 2)>,
<a line in Q(6, 2)>, <a line in Q(6, 2)>, <a line in Q(6, 2)>,
<a line in Q(6, 2)>, <a line in Q(6, 2)>, <a line in Q(6, 2)>,
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<a line in Q(6, 2)>, <a line in Q(6, 2)>, <a line in Q(6, 2)>,
<a line in Q(6, 2)>, <a line in Q(6, 2)>, <a line in Q(6, 2)>,
<a line in Q(6, 2)>, <a line in Q(6, 2)>, <a line in Q(6, 2)>,
<a line in Q(6, 2)>, <a line in Q(6, 2)>, <a line in Q(6, 2)>,
<a line in Q(6, 2)>, <a line in Q(6, 2)>, <a line in Q(6, 2)>,
<a line in Q(6, 2)>, <a line in Q(6, 2)>, <a line in Q(6, 2)>,
<a line in Q(6, 2)>, <a line in Q(6, 2)>, <a line in Q(6, 2)>,
<a line in Q(6, 2)>, <a line in Q(6, 2)>, <a line in Q(6, 2)>,
<a line in Q(6, 2)>, <a line in Q(6, 2)>, <a line in Q(6, 2)>,
<a line in Q(6, 2)>, <a line in Q(6, 2)>, <a line in Q(6, 2)>,
<a line in Q(6, 2)>, <a line in Q(6, 2)>, <a line in Q(6, 2)>,
<a line in Q(6, 2)>, <a line in Q(6, 2)>, <a line in Q(6, 2)>,
<a line in Q(6, 2)>, <a line in Q(6, 2)>, <a line in Q(6, 2)>,
<a line in Q(6, 2)>, <a line in Q(6, 2)>, <a line in Q(6, 2)>,
<a line in Q(6, 2)>, <a line in Q(6, 2)>, <a line in Q(6, 2)>,
<a line in Q(6, 2)>, <a line in Q(6, 2)>, <a line in Q(6, 2)>,
<a line in Q(6, 2)>, <a line in Q(6, 2)>, <a line in Q(6, 2)>,
<a line in Q(6, 2)>, <a line in Q(6, 2)>, <a line in Q(6, 2)>,
<a line in Q(6, 2)>, <a line in Q(6, 2)>, <a line in Q(6, 2)>,
<a line in Q(6, 2)>, <a line in Q(6, 2)>, <a line in Q(6, 2)>,
<a line in Q(6, 2)>, <a line in Q(6, 2)>, <a line in Q(6, 2)>,
<a line in Q(6, 2)>, <a line in Q(6, 2)>, <a line in Q(6, 2)>,
<a line in Q(6, 2)>, <a line in Q(6, 2)>, <a line in Q(6, 2)>,
<a line in Q(6, 2)>, <a line in Q(6, 2)>, <a line in Q(6, 2)>,
<a line in Q(6, 2)>, <a line in Q(6, 2)>, <a line in Q(6, 2)>,
<a line in Q(6, 2)>, <a line in Q(6, 2)>, <a line in Q(6, 2)>,
<a line in Q(6, 2)>, <a line in Q(6, 2)>, <a line in Q(6, 2)>,
<a line in Q(6, 2)>, <a line in Q(6, 2)>, <a line in Q(6, 2)>,
<a line in Q(6, 2)>, <a line in Q(6, 2)>, <a line in Q(6, 2)>,
<a line in Q(6, 2)>, <a line in Q(6, 2)>, <a line in Q(6, 2)>,
<a line in Q(6, 2)>, <a line in Q(6, 2)>, <a line in Q(6, 2)>,
<a line in Q(6, 2)>, <a line in Q(6, 2)>, <a line in Q(6, 2)>,
<a line in Q(6, 2)>, <a line in Q(6, 2)>, <a line in Q(6, 2)>,
<a line in Q(6, 2)>, <a line in Q(6, 2)>, <a line in Q(6, 2)>,
<a line in Q(6, 2)>, <a line in Q(6, 2)>, <a line in Q(6, 2)>,
<a line in Q(6, 2)>, <a line in Q(6, 2)>, <a line in Q(6, 2)>,
<a line in Q(6, 2)>, <a line in Q(6, 2)>, <a line in Q(6, 2)>,
<a line in Q(6, 2)>, <a line in Q(6, 2)>, <a line in Q(6, 2)>,
<a line in Q(6, 2)>, <a line in Q(6, 2)>, <a line in Q(6, 2)>,
<a line in Q(6, 2)>, <a line in Q(6, 2)>, <a line in Q(6, 2)>,
<a line in Q(6, 2)>, <a line in Q(6, 2)>, <a line in Q(6, 2)>,
<a line in Q(6, 2)>, <a line in Q(6, 2)>, <a line in Q(6, 2)>,
<a line in Q(6, 2)>, <a line in Q(6, 2)>, <a line in Q(6, 2)>,
<a line in Q(6, 2)>, <a line in Q(6, 2)>, <a line in Q(6, 2)>,
<a line in Q(6, 2)>, <a line in Q(6, 2)>, <a line in Q(6, 2)>,
<a line in Q(6, 2)>, <a line in Q(6, 2)>, <a line in Q(6, 2)>,
<a line in Q(6, 2)>, <a line in Q(6, 2)>, <a line in Q(6, 2)>,
<a line in Q(6, 2)>, <a line in Q(6, 2)>, <a line in Q(6, 2)>,
<a line in Q(6, 2)>, <a line in Q(6, 2)>, <a line in Q(6, 2)>,
<a line in Q(6, 2)>, <a line in Q(6, 2)>, <a line in Q(6, 2)>,
<a line in Q(6, 2)>, <a line in Q(6, 2)>, <a line in Q(6, 2)>,
<a line in Q(6, 2)>, <a line in Q(6, 2)>, <a line in Q(6, 2)>,
<a line in Q(6, 2)>, <a line in Q(6, 2)>, <a line in Q(6, 2)>,
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<a line in Q(6, 2)>, <a line in Q(6, 2)>, <a line in Q(6, 2)>,
<a line in Q(6, 2)>, <a line in Q(6, 2)>, <a line in Q(6, 2)>,
<a line in Q(6, 2)>, <a line in Q(6, 2)>, <a line in Q(6, 2)> ]

gap> time;
3661
gap> Size(lines);
315

From the example in 3.5.3 it can be noted that although the number of lines is only 315, already
3 seconds of computing time are needed. This is typically observed for elements of classicla polar
spaces different from points or generators, and is explained by the recursive nature of the implemen-
tation of the enumerator. Computing a list of these objects as an orbit under the collineation group
is, even taking into account the computation of the nice monomorphism of the collineation group,
often much faster. Given a collection C , the function AsList performs this computation using the
collineation group.

3.5.4 AsList

. AsList(C) (operation)

Returns: an ORB object containing all objects in C
The returned object is an ORB object. All objects can easily be obtained by applying the operation

List.
Example

gap> ps := ParabolicQuadric(6,2);
Q(6, 2)
gap> lines := AsList(Lines(ps));
<closed orbit, 315 points>
gap> time;
58
gap> List(lines);
[ <a line in Q(6, 2)>, <a line in Q(6, 2)>, <a line in Q(6, 2)>,

<a line in Q(6, 2)>, <a line in Q(6, 2)>, <a line in Q(6, 2)>,
<a line in Q(6, 2)>, <a line in Q(6, 2)>, <a line in Q(6, 2)>,
<a line in Q(6, 2)>, <a line in Q(6, 2)>, <a line in Q(6, 2)>,
<a line in Q(6, 2)>, <a line in Q(6, 2)>, <a line in Q(6, 2)>,
<a line in Q(6, 2)>, <a line in Q(6, 2)>, <a line in Q(6, 2)>,
<a line in Q(6, 2)>, <a line in Q(6, 2)>, <a line in Q(6, 2)>,
<a line in Q(6, 2)>, <a line in Q(6, 2)>, <a line in Q(6, 2)>,
<a line in Q(6, 2)>, <a line in Q(6, 2)>, <a line in Q(6, 2)>,
<a line in Q(6, 2)>, <a line in Q(6, 2)>, <a line in Q(6, 2)>,
<a line in Q(6, 2)>, <a line in Q(6, 2)>, <a line in Q(6, 2)>,
<a line in Q(6, 2)>, <a line in Q(6, 2)>, <a line in Q(6, 2)>,
<a line in Q(6, 2)>, <a line in Q(6, 2)>, <a line in Q(6, 2)>,
<a line in Q(6, 2)>, <a line in Q(6, 2)>, <a line in Q(6, 2)>,
<a line in Q(6, 2)>, <a line in Q(6, 2)>, <a line in Q(6, 2)>,
<a line in Q(6, 2)>, <a line in Q(6, 2)>, <a line in Q(6, 2)>,
<a line in Q(6, 2)>, <a line in Q(6, 2)>, <a line in Q(6, 2)>,
<a line in Q(6, 2)>, <a line in Q(6, 2)>, <a line in Q(6, 2)>,
<a line in Q(6, 2)>, <a line in Q(6, 2)>, <a line in Q(6, 2)>,
<a line in Q(6, 2)>, <a line in Q(6, 2)>, <a line in Q(6, 2)>,
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<a line in Q(6, 2)>, <a line in Q(6, 2)>, <a line in Q(6, 2)>,
<a line in Q(6, 2)>, <a line in Q(6, 2)>, <a line in Q(6, 2)>,
<a line in Q(6, 2)>, <a line in Q(6, 2)>, <a line in Q(6, 2)>,
<a line in Q(6, 2)>, <a line in Q(6, 2)>, <a line in Q(6, 2)>,
<a line in Q(6, 2)>, <a line in Q(6, 2)>, <a line in Q(6, 2)>,
<a line in Q(6, 2)>, <a line in Q(6, 2)>, <a line in Q(6, 2)>,
<a line in Q(6, 2)>, <a line in Q(6, 2)>, <a line in Q(6, 2)>,
<a line in Q(6, 2)>, <a line in Q(6, 2)>, <a line in Q(6, 2)>,
<a line in Q(6, 2)>, <a line in Q(6, 2)>, <a line in Q(6, 2)>,
<a line in Q(6, 2)>, <a line in Q(6, 2)>, <a line in Q(6, 2)>,
<a line in Q(6, 2)>, <a line in Q(6, 2)>, <a line in Q(6, 2)>,
<a line in Q(6, 2)>, <a line in Q(6, 2)>, <a line in Q(6, 2)>,
<a line in Q(6, 2)>, <a line in Q(6, 2)>, <a line in Q(6, 2)>,
<a line in Q(6, 2)>, <a line in Q(6, 2)>, <a line in Q(6, 2)>,
<a line in Q(6, 2)>, <a line in Q(6, 2)>, <a line in Q(6, 2)>,
<a line in Q(6, 2)>, <a line in Q(6, 2)>, <a line in Q(6, 2)>,
<a line in Q(6, 2)>, <a line in Q(6, 2)>, <a line in Q(6, 2)>,
<a line in Q(6, 2)>, <a line in Q(6, 2)>, <a line in Q(6, 2)>,
<a line in Q(6, 2)>, <a line in Q(6, 2)>, <a line in Q(6, 2)>,
<a line in Q(6, 2)>, <a line in Q(6, 2)>, <a line in Q(6, 2)>,
<a line in Q(6, 2)>, <a line in Q(6, 2)>, <a line in Q(6, 2)>,
<a line in Q(6, 2)>, <a line in Q(6, 2)>, <a line in Q(6, 2)>,
<a line in Q(6, 2)>, <a line in Q(6, 2)>, <a line in Q(6, 2)>,
<a line in Q(6, 2)>, <a line in Q(6, 2)>, <a line in Q(6, 2)>,
<a line in Q(6, 2)>, <a line in Q(6, 2)>, <a line in Q(6, 2)>,
<a line in Q(6, 2)>, <a line in Q(6, 2)>, <a line in Q(6, 2)>,
<a line in Q(6, 2)>, <a line in Q(6, 2)>, <a line in Q(6, 2)>,
<a line in Q(6, 2)>, <a line in Q(6, 2)>, <a line in Q(6, 2)>,
<a line in Q(6, 2)>, <a line in Q(6, 2)>, <a line in Q(6, 2)>,
<a line in Q(6, 2)>, <a line in Q(6, 2)>, <a line in Q(6, 2)>,
<a line in Q(6, 2)>, <a line in Q(6, 2)>, <a line in Q(6, 2)>,
<a line in Q(6, 2)>, <a line in Q(6, 2)>, <a line in Q(6, 2)>,
<a line in Q(6, 2)>, <a line in Q(6, 2)>, <a line in Q(6, 2)>,
<a line in Q(6, 2)>, <a line in Q(6, 2)>, <a line in Q(6, 2)>,
<a line in Q(6, 2)>, <a line in Q(6, 2)>, <a line in Q(6, 2)>,
<a line in Q(6, 2)>, <a line in Q(6, 2)>, <a line in Q(6, 2)>,
<a line in Q(6, 2)>, <a line in Q(6, 2)>, <a line in Q(6, 2)>,
<a line in Q(6, 2)>, <a line in Q(6, 2)>, <a line in Q(6, 2)>,
<a line in Q(6, 2)>, <a line in Q(6, 2)>, <a line in Q(6, 2)>,
<a line in Q(6, 2)>, <a line in Q(6, 2)>, <a line in Q(6, 2)>,
<a line in Q(6, 2)>, <a line in Q(6, 2)>, <a line in Q(6, 2)>,
<a line in Q(6, 2)>, <a line in Q(6, 2)>, <a line in Q(6, 2)>,
<a line in Q(6, 2)>, <a line in Q(6, 2)>, <a line in Q(6, 2)>,
<a line in Q(6, 2)>, <a line in Q(6, 2)>, <a line in Q(6, 2)>,
<a line in Q(6, 2)>, <a line in Q(6, 2)>, <a line in Q(6, 2)>,
<a line in Q(6, 2)>, <a line in Q(6, 2)>, <a line in Q(6, 2)>,
<a line in Q(6, 2)>, <a line in Q(6, 2)>, <a line in Q(6, 2)>,
<a line in Q(6, 2)>, <a line in Q(6, 2)>, <a line in Q(6, 2)>,
<a line in Q(6, 2)>, <a line in Q(6, 2)>, <a line in Q(6, 2)>,
<a line in Q(6, 2)>, <a line in Q(6, 2)>, <a line in Q(6, 2)>,
<a line in Q(6, 2)>, <a line in Q(6, 2)>, <a line in Q(6, 2)>,
<a line in Q(6, 2)>, <a line in Q(6, 2)>, <a line in Q(6, 2)>,
<a line in Q(6, 2)>, <a line in Q(6, 2)>, <a line in Q(6, 2)>,
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<a line in Q(6, 2)>, <a line in Q(6, 2)>, <a line in Q(6, 2)>,
<a line in Q(6, 2)>, <a line in Q(6, 2)>, <a line in Q(6, 2)>,
<a line in Q(6, 2)>, <a line in Q(6, 2)>, <a line in Q(6, 2)>,
<a line in Q(6, 2)>, <a line in Q(6, 2)>, <a line in Q(6, 2)>,
<a line in Q(6, 2)>, <a line in Q(6, 2)>, <a line in Q(6, 2)>,
<a line in Q(6, 2)>, <a line in Q(6, 2)>, <a line in Q(6, 2)>,
<a line in Q(6, 2)>, <a line in Q(6, 2)>, <a line in Q(6, 2)>,
<a line in Q(6, 2)>, <a line in Q(6, 2)>, <a line in Q(6, 2)>,
<a line in Q(6, 2)>, <a line in Q(6, 2)>, <a line in Q(6, 2)>,
<a line in Q(6, 2)>, <a line in Q(6, 2)>, <a line in Q(6, 2)>,
<a line in Q(6, 2)>, <a line in Q(6, 2)>, <a line in Q(6, 2)>,
<a line in Q(6, 2)>, <a line in Q(6, 2)>, <a line in Q(6, 2)>,
<a line in Q(6, 2)>, <a line in Q(6, 2)>, <a line in Q(6, 2)>,
<a line in Q(6, 2)>, <a line in Q(6, 2)>, <a line in Q(6, 2)>,
<a line in Q(6, 2)>, <a line in Q(6, 2)>, <a line in Q(6, 2)>,
<a line in Q(6, 2)>, <a line in Q(6, 2)>, <a line in Q(6, 2)>,
<a line in Q(6, 2)>, <a line in Q(6, 2)>, <a line in Q(6, 2)>,
<a line in Q(6, 2)>, <a line in Q(6, 2)>, <a line in Q(6, 2)>,
<a line in Q(6, 2)>, <a line in Q(6, 2)>, <a line in Q(6, 2)>,
<a line in Q(6, 2)>, <a line in Q(6, 2)>, <a line in Q(6, 2)>,
<a line in Q(6, 2)>, <a line in Q(6, 2)>, <a line in Q(6, 2)>,
<a line in Q(6, 2)>, <a line in Q(6, 2)>, <a line in Q(6, 2)>,
<a line in Q(6, 2)>, <a line in Q(6, 2)>, <a line in Q(6, 2)>,
<a line in Q(6, 2)>, <a line in Q(6, 2)>, <a line in Q(6, 2)>,
<a line in Q(6, 2)>, <a line in Q(6, 2)>, <a line in Q(6, 2)>,
<a line in Q(6, 2)>, <a line in Q(6, 2)>, <a line in Q(6, 2)>,
<a line in Q(6, 2)>, <a line in Q(6, 2)>, <a line in Q(6, 2)>,
<a line in Q(6, 2)>, <a line in Q(6, 2)>, <a line in Q(6, 2)>,
<a line in Q(6, 2)>, <a line in Q(6, 2)>, <a line in Q(6, 2)>,
<a line in Q(6, 2)>, <a line in Q(6, 2)>, <a line in Q(6, 2)>,
<a line in Q(6, 2)>, <a line in Q(6, 2)>, <a line in Q(6, 2)>,
<a line in Q(6, 2)>, <a line in Q(6, 2)>, <a line in Q(6, 2)> ]

gap> time;
1

3.6 Lie geometries

3.6.1 Main categories in IsLieGeometry

. IsProjectiveSpace (Category)

. IsClassicalPolarSpace (Category)

Lie geometries bundle projective spaces and classical polar spaces together. In the future, more
subcategories could be added since the term “Lie geometry” refers to a geometry whose automorphism
group lies in some group of Lie type. Both classes of geometries have their category, as a subcategory
of IsLieGeometry.

One common fact of Lie geometries is that their elements are represented by subspaces of a vector
space. In these geometries, incidence is symmetrized set-theoretic containment. In this section we
describe methods that are declared in a generic way for (elements of) Lie geometries. These operations
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are applicable to Lie geometries and related objects.

3.6.2 AmbientSpace

. AmbientSpace(ig) (attribute)

Returns: the ambient projective space of a Lie geometry ig
Example

gap> AmbientSpace(PG(3,4));
ProjectiveSpace(3, 4)
gap> AmbientSpace(ParabolicQuadric(4,4));
ProjectiveSpace(4, 4)
gap> AmbientSpace(SplitCayleyHexagon(3));
ProjectiveSpace(6, 3)

3.6.3 UnderlyingVectorSpace

. UnderlyingVectorSpace(ig) (operation)

Returns: the underlying vectorspace of the Lie geometry ig
Example

gap> UnderlyingVectorSpace(PG(5,4));
( GF(2^2)^6 )
gap> UnderlyingVectorSpace(HermitianPolarSpace(4,4));
( GF(2^2)^5 )

3.6.4 ProjectiveDimension

. ProjectiveDimension(ig) (operation)

Returns: the projective dimension of the ambient projective space of ig
Example

gap> ProjectiveDimension(PG(7,7));
7
gap> ProjectiveDimension(EllipticQuadric(5,2));
5

Mathematically, it makes sense to implement an object representing the empty subspace, since this
is typically obtained as a result of a Meet operation, which computes the intersection of two or more
elements. On the other hand, we do not consider the empty subspace as an element of the incidence
geometry. Hence, using the empty subspace as an argument of IsIncident (and consequently of \*),
will result in a “no method found” error.

3.6.5 IsEmptySubspace

. IsEmptySubspace (Category)

Category for objects representing the empty subspace of a particular Lie geometry. Empty sub-
spaces of different geometries will be different objects, and have a different ambient geometry.
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3.7 Elements of Lie geometries

Elements of a Lie geometry are constructed using a list of vectors. The methods installed for the
particular Lie geometries check whether the subspace of the vector space represents an element of the
Lie geometry.

3.7.1 VectorSpaceToElement

. VectorSpaceToElement(ig, v) (operation)

. VectorSpaceToElement(ig, l) (operation)

Returns: the element of ig , represented by the subspace spanned by v or l , or returns the empty
subspace.

The first variant of this operation takes as second argument a vector of the underlying vector space
of ig . Such a vector possibly represents a point of ig . The second variant takes as second argument
a list of vectors in the underlying vector space of ig . Such a list represents a subspace of the vector
space. If the dimension of the subspace generated by l is larger than zero and strictly less than the
dimension of the vector space, it is checked if the subspace represents an element of ig , except when
ig is a projective space. If l is a list of vectors generating the whole vector space, then ig is returned
if and only if ig is a projective space, otherwise an error is produced. An empty list is not allowed as
second argument.

Example
gap> v := [1,1,1,0,0,0]*Z(7)^0;
[ Z(7)^0, Z(7)^0, Z(7)^0, 0*Z(7), 0*Z(7), 0*Z(7) ]
gap> w := [0,0,0,1,1,1]*Z(7)^0;
[ 0*Z(7), 0*Z(7), 0*Z(7), Z(7)^0, Z(7)^0, Z(7)^0 ]
gap> VectorSpaceToElement(PG(5,7),v);
<a point in ProjectiveSpace(5, 7)>
gap> VectorSpaceToElement(PG(5,7),[v,w]);
<a line in ProjectiveSpace(5, 7)>
gap> VectorSpaceToElement(SymplecticSpace(5,7),v);
<a point in W(5, 7)>
gap> VectorSpaceToElement(SymplecticSpace(5,7),[v,w]);
Error, <x> does not generate an element of <geom> called from
<function "unknown">( <arguments> )
called from read-eval loop at line 13 of *stdin*

you can ’quit;’ to quit to outer loop, or
you can ’return;’ to continue
brk> quit;
gap> VectorSpaceToElement(HyperbolicQuadric(5,7),v);
Error, <v> does not generate an element of <geom> called from
<function "unknown">( <arguments> )
called from read-eval loop at line 13 of *stdin*

you can ’quit;’ to quit to outer loop, or
you can ’return;’ to continue
brk> quit;
gap> VectorSpaceToElement(HyperbolicQuadric(5,7),0*v);
< empty subspace >
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3.7.2 UnderlyingObject

. UnderlyingObject(v) (operation)

Returns: a CVEC object, which is the vector or matrix representing the element v
The argument v must be an element, so it is not allowed that v is the empty subspace, or just a

projective space. Note that Unpack can be used to convert the CVEC object into a usual GAP vector
or matrix.

Example
gap> l := Random(Lines(PG(4,3)));
<a line in ProjectiveSpace(4, 3)>
gap> UnderlyingObject(l);
<cmat 2x5 over GF(3,1)>
gap> Unpack(last);
[ [ Z(3)^0, Z(3), 0*Z(3), 0*Z(3), Z(3) ],

[ 0*Z(3), 0*Z(3), Z(3)^0, Z(3)^0, 0*Z(3) ] ]

3.7.3 \in

. \in(u, v) (operation)

Returns: true if and only if the element u is set-theoretically contained in the element w
Both arguments must be elements of the same Lie geometry. The empty subspace and a Lie geom-

etry are also allowed as arguments. This relation is not symmetric, and the methods for IsIncident
use this method to test incidence between elements.

Example
gap> p := VectorSpaceToElement(PG(3,3),[1,0,0,0]*Z(3)^0);
<a point in ProjectiveSpace(3, 3)>
gap> l := VectorSpaceToElement(PG(3,3),[[1,0,0,0],[0,1,0,0]]*Z(3)^0);
<a line in ProjectiveSpace(3, 3)>
gap> p in l;
true
gap> p in p;
true
gap> l in p;
false
gap> l in PG(3,3);
true

3.7.4 More short names for ElementsIncidentWithElementOfIncidenceStructure

. Hyperplanes(inc, v) (operation)

. Hyperplanes(v) (operation)

Returns: the elements of type j−1 incident with v , which is an element of type j
This operation is a shortcut to the operation ShadowOfElement, where the geometry is taken from

v , and where the elements of type one less than the type of v are asked. v is allowed to be a complete
projective space here, yielding the hyperplanes of that space.

Example
gap> pg := PG(3,7);
ProjectiveSpace(3, 7)
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gap> hyp := Random(Hyperplanes(pg));
<a plane in ProjectiveSpace(3, 7)>
gap> h1 := Random(Hyperplanes(hyp));
<a line in ProjectiveSpace(3, 7)>
gap> h2 := Random(Hyperplanes(h1));
<a point in ProjectiveSpace(3, 7)>
gap> ps := SymplecticSpace(7,3);
W(7, 3)
gap> solid := Random(Solids(ps));
<a solid in W(7, 3)>
gap> plane := Random(Hyperplanes(solid));
<a plane in W(7, 3)>

3.8 Changing the ambient geometry of elements of a Lie geometry

A Lie geometry, i.e., an object in the category IsLieGeometry, is naturally embedded in a projective
space. This is of course in a mathematical sense. In FinInG, certain embeddings are implemented by
providing a mapping between geometries. The Lie geometries are in some sense hard wired embed-
ded, just simply because a category containing elements of a Lie geometry, is always a subcategory
of IsSubspaceOfProjectiveSpace. As a consequence, operations applicable to objects in the cat-
egory IsSubspaceOfProjectiveSpace are by default applicable to objects in any subcategory, so
to elements of any Lie geometry. When dealing with elements of e.g. different polar spaces in the
same projective space, this yields a natural way of working with them, and investigating relations be-
tween them, without bothering about all necessary mappings. On the other hand, in some situations,
it is impossible to decide in which geometry an element has to be considered. An easy example is
the following. Consider two different quadrics in the same projective space. The intersection of two
elements, one of each quadric, is clearly an element of the ambient projective space. But also of both
quadrics. Without extra input of the user, the system cannot decide in which geometry to construct
the intersection. To avoid complicated methods with many arguments, in such situations, the resulting
element will be constructed in the common ambient projective space. Only in clear situations, where
the ambient geometry of all elements is the same, and equal to the geometry of the resulting element,
the resulting element will be constructed in this common geometry. We provide however conversion
operations for elements of Lie gometries.

3.8.1 ElementToElement

. ElementToElement(ps, el) (operation)

. Embed(ps, el) (operation)

Returns: el as an element of ps
Let ps be any Lie geometry. This method returns

VectorSpaceToElement(ps,ElementToVectorSpace(el)), if the conversion is possible.
Embed is declared as a synonym of ElementToElement.

Example
gap> p := VectorSpaceToElement(PG(3,7),[0,1,0,0]*Z(7)^0);
<a point in ProjectiveSpace(3, 7)>
gap> q := ElementToElement(HyperbolicQuadric(3,7),p);
<a point in Q+(3, 7)>
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gap> r := VectorSpaceToElement(PG(3,7),[1,1,0,0]*Z(7)^0);
<a point in ProjectiveSpace(3, 7)>
gap> ElementToElement(HyperbolicQuadric(3,7),r);
Error, <v> does not generate an element of <geom> called from
VectorSpaceToElement( geom, Unpack( v ) ) called from
VectorSpaceToElement( ps, UnderlyingObject( el ) ) called from
<function "unknown">( <arguments> )
called from read-eval loop at line 11 of *stdin*

you can ’quit;’ to quit to outer loop, or
you can ’return;’ to continue
brk> quit;



Chapter 4

Projective Spaces

In this chapter we describe how to use FinInG to work with finite projective spaces.

4.1 Projective Spaces and basic operations

A projective space is a point-line incidence geometry, satisfying a few well known axioms. An ax-
iomatic treatment can be found in [VY65a] and [VY65b]. In FinInG, we deal with finite Desarguesian
projective spaces. It is well known that these geometries can be described completely using vector
spaces over finite fields. The elements of the projective space are all nontrivial subspaces of the vector
space. So the projective points are the one-dimensional subspaces, the projective lines are the two-
dimensional subspaces, and so on. From the axiomatic point of view, a projective space is a point-line
geometry, and has rank at least 2. But a projective line is obtained if we start with a two dimensional
vector space. Starting with a one dimensional vector space yields a single projective point. Both
examples are not a projective space in the axiomatic point of view, but in FinInG they are considered
as projective spaces.

4.1.1 IsProjectiveSpace

. IsProjectiveSpace (Category)

This category is a subcategory of IsLieGeometry, and contains all finite Desarguesian projective
spaces.

We refer the reader to [HT91] for the necessary background theory in case it is not provided in the
manual.

4.1.2 ProjectiveSpace

. ProjectiveSpace(d, F) (operation)

. ProjectiveSpace(d, q) (operation)

. PG(d, q) (operation)

Returns: a projective space
d must be a positive integer. In the first form, F is a field and the function returns the projective

space of dimension d over F . In the second form, q is a prime power specifying the size of the field.
The user may also use an alias, namely, the common abbreviation PG(d, q).

68
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Example
gap> ProjectiveSpace(3,GF(3));
ProjectiveSpace(3, 3)
gap> ProjectiveSpace(3,3);
ProjectiveSpace(3, 3)

4.1.3 ProjectiveDimension

. ProjectiveDimension(ps) (attribute)

. Dimension(ps) (attribute)

. Rank(ps) (attribute)

Returns: the projective dimension of the projective space ps
Example

gap> ps := PG(5,8);
ProjectiveSpace(5, 8)
gap> ProjectiveDimension(ps);
5
gap> Dimension(ps);
5
gap> Rank(ps);
5

4.1.4 BaseField

. BaseField(ps) (operation)

Returns: returns the base field for the projective space ps
Example

gap> BaseField(ProjectiveSpace(3,81));
GF(3^4)

4.1.5 UnderlyingVectorSpace

. UnderlyingVectorSpace(ps) (operation)

Returns: a vector space
If ps is a projective space of dimension n over the field of order q, then this operation simply

returns the underlying vector space, i.e. the n+1 dimensional vector space over the field of order q.
Example

gap> ps := ProjectiveSpace(4,7);
ProjectiveSpace(4, 7)
gap> vs := UnderlyingVectorSpace(ps);
( GF(7)^5 )
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4.1.6 AmbientSpace

. AmbientSpace(ps) (attribute)

Returns: a projective space
The ambient space of a projective space ps is the projective space itself. Hence, simply ps will

be returned.

4.2 Subspaces of projective spaces

The elements of a projective space PG(n,q) are the subspaces of a suitable dimension. The empty
subspace, also called the trivial subspace, has dimension −1 and corresponds to the zero dimen-
sional vector subspace of the underlying vector space of PG(n,q), and is hence represented by
the zero vector of length n + 1 over the underlying field GF(q). The trivial subspace and the
whole projective space are mathematically considered as a subspace of the projective geometry, but
not as elements of the incidence geometry, and hence do in FinInG NOT belong to the category
IsSubspaceOfProjectiveSpace.

4.2.1 VectorSpaceToElement

. VectorSpaceToElement(geo, v) (operation)

Returns: an element
geo is a projective space, and v is either a row vector (for points) or an mxn matrix (for an (m−1)-

subspace of projective space of dimension n− 1). In the case that v is a matrix, the rows represent
generators for the subspace. An exceptional case is when v is a zero-vector, in which case the trivial
subspace is returned.

Example
gap> ps := ProjectiveSpace(6,7);
ProjectiveSpace(6, 7)
gap> v := [3,5,6,0,3,2,3]*Z(7)^0;
[ Z(7), Z(7)^5, Z(7)^3, 0*Z(7), Z(7), Z(7)^2, Z(7) ]
gap> p := VectorSpaceToElement(ps,v);
<a point in ProjectiveSpace(6, 7)>
gap> Display(p);
[142.131]
gap> ps := ProjectiveSpace(3,4);
ProjectiveSpace(3, 4)
gap> v := [1,1,0,1]*Z(4)^0;
[ Z(2)^0, Z(2)^0, 0*Z(2), Z(2)^0 ]
gap> p := VectorSpaceToElement(ps,v);
<a point in ProjectiveSpace(3, 4)>
gap> mat := [[1,0,0,1],[0,1,1,0]]*Z(4)^0;
[ [ Z(2)^0, 0*Z(2), 0*Z(2), Z(2)^0 ], [ 0*Z(2), Z(2)^0, Z(2)^0, 0*Z(2) ] ]
gap> line := VectorSpaceToElement(ps,mat);
<a line in ProjectiveSpace(3, 4)>
gap> e := VectorSpaceToElement(ps,[]);
Error, <v> does not represent any element called from
<function "unknown">( <arguments> )
called from read-eval loop at line 17 of *stdin*

you can ’quit;’ to quit to outer loop, or
you can ’return;’ to continue



GAP 4 Package FinInG 71

brk> quit;

4.2.2 EmptySubspace

. EmptySubspace(ps) (operation)

Returns: the trivial subspace in the projective ps
The object returned by this operation is contained in every projective subspace of the projective

space ps , but is not an element of ps . Hence, testing incidence results in an error message.
Example

gap> e := EmptySubspace(PG(5,9));
< empty subspace >
gap> p := VectorSpaceToElement(PG(5,9),[1,0,0,0,0,0]*Z(9)^0);
<a point in ProjectiveSpace(5, 9)>
gap> e*p;
Error, no method found! For debugging hints type ?Recovery from NoMethodFound
Error, no 1st choice method found for ‘*’ on 2 arguments called from
<function "HANDLE_METHOD_NOT_FOUND">( <arguments> )
called from read-eval loop at line 10 of *stdin*

you can ’quit;’ to quit to outer loop, or
you can ’return;’ to continue
brk> quit;
gap> e in p;
true

4.2.3 ProjectiveDimension

. ProjectiveDimension(sub) (operation)

Returns: the projective dimension of a subspace of a projective space. The operation
ProjectiveDimension is also applicable on the EmptySubspace.

Example
gap> ps := PG(2,5);
ProjectiveSpace(2, 5)
gap> v := [[1,1,0],[0,3,2]]*Z(5)^0;
[ [ Z(5)^0, Z(5)^0, 0*Z(5) ], [ 0*Z(5), Z(5)^3, Z(5) ] ]
gap> line := VectorSpaceToElement(ps,v);
<a line in ProjectiveSpace(2, 5)>
gap> ProjectiveDimension(line);
1
gap> Dimension(line);
1
gap> p := VectorSpaceToElement(ps,[1,2,3]*Z(5)^0);
<a point in ProjectiveSpace(2, 5)>
gap> ProjectiveDimension(p);
0
gap> Dimension(p);
0
gap> ProjectiveDimension(EmptySubspace(ps));
-1
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4.2.4 ElementsOfIncidenceStructure

. ElementsOfIncidenceStructure(ps, j) (operation)

Returns: the collection of elements of the projective space ps of type j
For the projective space ps of dimension d and the type j (where 1≤ j≤d), this operation returns

the collection of j− 1 dimensional subspaces. An error message is produced when the projective
space ps has no elements of the required type.

Example
gap> ps := ProjectiveSpace(6,7);
ProjectiveSpace(6, 7)
gap> ElementsOfIncidenceStructure(ps,1);
<points of ProjectiveSpace(6, 7)>
gap> ElementsOfIncidenceStructure(ps,2);
<lines of ProjectiveSpace(6, 7)>
gap> ElementsOfIncidenceStructure(ps,3);
<planes of ProjectiveSpace(6, 7)>
gap> ElementsOfIncidenceStructure(ps,4);
<solids of ProjectiveSpace(6, 7)>
gap> ElementsOfIncidenceStructure(ps,5);
<proj. 4-subspaces of ProjectiveSpace(6, 7)>
gap> ElementsOfIncidenceStructure(ps,6);
<proj. 5-subspaces of ProjectiveSpace(6, 7)>
gap> ElementsOfIncidenceStructure(ps,7);
Error, <ps> has no elements of type <j> called from
<function "unknown">( <arguments> )
called from read-eval loop at line 15 of *stdin*

you can ’quit;’ to quit to outer loop, or
you can ’return;’ to continue
brk> quit;

4.2.5 Short names for ElementsOfIncidenceStructure

. Points(ps) (operation)

. Lines(ps) (operation)

. Planes(ps) (operation)

. Solids(ps) (operation)

. Hyperplanes(ps) (operation)

Returns: The elements of ps of respective type 1, 2, 3, 4, and the hyperplanes
An error message is produced when the projective space ps has no elements of a required type.

Example
gap> ps := PG(6,13);
ProjectiveSpace(6, 13)
gap> Points(ps);
<points of ProjectiveSpace(6, 13)>
gap> Lines(ps);
<lines of ProjectiveSpace(6, 13)>
gap> Planes(ps);
<planes of ProjectiveSpace(6, 13)>
gap> Solids(ps);
<solids of ProjectiveSpace(6, 13)>
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gap> Hyperplanes(ps);
<proj. 5-subspaces of ProjectiveSpace(6, 13)>
gap> ps := PG(2,2);
ProjectiveSpace(2, 2)
gap> Hyperplanes(ps);
<lines of ProjectiveSpace(2, 2)>

4.2.6 Incidence and containment

. IsIncident(el1, el2) (operation)

. \*(el1, el2) (operation)

. \in(el1, el2) (operation)

Returns: true or false
Recall that for projective spaces, incidence is symmetrized containment, where the empty sub-

space and the whole projective space are excluded as arguments for this operation, since they are not
considered as elements of the geometry, but both the empty subspace and the whole projective space
are allowed as arguments for \in.

Example
gap> ps := ProjectiveSpace(5,9);
ProjectiveSpace(5, 9)
gap> p := VectorSpaceToElement(ps,[1,1,1,1,0,0]*Z(9)^0);
<a point in ProjectiveSpace(5, 9)>
gap> l := VectorSpaceToElement(ps,[[1,1,1,1,0,0],[0,0,0,0,1,0]]*Z(9)^0);
<a line in ProjectiveSpace(5, 9)>
gap> plane := VectorSpaceToElement(ps,[[1,0,0,0,0,0],[0,1,0,0,0,0],[0,0,1,0,0,0]]*Z(9)^0);
<a plane in ProjectiveSpace(5, 9)>
gap> p * l;
true
gap> l * p;
true
gap> IsIncident(p,l);
true
gap> p in l;
true
gap> l in p;
false
gap> p * plane;
false
gap> l * plane;
false
gap> l in plane;
false
gap> e := EmptySubspace(ps);
< empty subspace >
gap> e * l;
Error, no method found! For debugging hints type ?Recovery from NoMethodFound
Error, no 1st choice method found for ‘*’ on 2 arguments called from
<function "HANDLE_METHOD_NOT_FOUND">( <arguments> )
called from read-eval loop at line 21 of *stdin*

you can ’quit;’ to quit to outer loop, or
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you can ’return;’ to continue
brk> quit;
gap> e in l;
true
gap> l in ps;
true

4.2.7 StandardFrame

. StandardFrame(ps) (operation)

Returns: the standard frame of the projective space ps
Example

gap> StandardFrame(PG(5,4));
[ <a point in ProjectiveSpace(5, 4)>, <a point in ProjectiveSpace(5, 4)>,

<a point in ProjectiveSpace(5, 4)>, <a point in ProjectiveSpace(5, 4)>,
<a point in ProjectiveSpace(5, 4)>, <a point in ProjectiveSpace(5, 4)>,
<a point in ProjectiveSpace(5, 4)> ]

gap> Display(last);
[ NewRowVector(IsCVecRep,GF(2,2),[Z(2)^0,0*Z(2),0*Z(2),0*Z(2),0*Z(2),0*Z(2),])

, NewRowVector(IsCVecRep,GF(2,2),[0*Z(2),Z(2)^0,0*Z(2),0*Z(2),0*Z(2),
0*Z(2),]), NewRowVector(IsCVecRep,GF(2,2),[0*Z(2),0*Z(2),Z(2)^0,0*Z(2),
0*Z(2),0*Z(2),]), NewRowVector(IsCVecRep,GF(2,2),[0*Z(2),0*Z(2),0*Z(2),
Z(2)^0,0*Z(2),0*Z(2),]), NewRowVector(IsCVecRep,GF(2,2),[0*Z(2),0*Z(2),
0*Z(2),0*Z(2),Z(2)^0,0*Z(2),]), NewRowVector(IsCVecRep,GF(2,2),[0*Z(2),
0*Z(2),0*Z(2),0*Z(2),0*Z(2),Z(2)^0,]), NewRowVector(IsCVecRep,GF(2,2),[
Z(2)^0,Z(2)^0,Z(2)^0,Z(2)^0,Z(2)^0,Z(2)^0,]) ]

4.2.8 Coordinates

. Coordinates(p) (operation)

Returns: the homogeneous coordinates of the projective point p
Example

gap> p := Random(Points(PG(5,16)));
<a point in ProjectiveSpace(5, 16)>
gap> Coordinates(p);
[ Z(2)^0, Z(2^4)^13, Z(2)^0, Z(2^4)^8, Z(2^4)^3, Z(2^4)^7 ]

4.2.9 DualCoordinatesOfHyperplane

. DualCoordinatesOfHyperplane(hyp) (operation)

Returns: a list
The argument hyp is a hyperplane of a projective space. This operation returns the dual coordi-

nates of the hyperplane hyp , i.e. the list with the coefficients of the equation defining the hyperplane
hyp as an algebraic variety.
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4.2.10 HyperplaneByDualCoordinates

. HyperplaneByDualCoordinates(pg, list) (operation)

Returns: a hyperplane of a projective space
The argument pg is a projective space, and list is the coordinate vector of a point of pg . This

operation returns the hyperplane that has list as the list of coefficients of the equation defining the
hyperplane as an algebraic variety.

4.2.11 EquationOfHyperplane

. EquationOfHyperplane(h) (operation)

Returns: the equation of the hyperplane h of a projective space
Example

gap> hyperplane := VectorSpaceToElement(PG(3,2),[[1,1,0,0],[0,0,1,0],[0,0,0,1]]*Z(2)^0);
<a plane in ProjectiveSpace(3, 2)>
gap> EquationOfHyperplane(hyperplane);
x_1+x_2

4.2.12 AmbientSpace

. AmbientSpace(el) (operation)

Returns: returns the ambient space of an element el of a projective space
This operation is also applicable on the empty subspace and the whole space.

Example
gap> ps := PG(3,27);
ProjectiveSpace(3, 27)
gap> p := VectorSpaceToElement(ps,[1,2,1,0]*Z(3)^3);
<a point in ProjectiveSpace(3, 27)>
gap> AmbientSpace(p);
ProjectiveSpace(3, 27)

4.2.13 BaseField

. BaseField(el) (operation)

Returns: returns the base field of an element el of a projective space
This operation is also applicable on the trivial subspace and the whole space.

Example
gap> ps := PG(5,8);
ProjectiveSpace(5, 8)
gap> p := VectorSpaceToElement(ps,[1,1,1,0,0,1]*Z(2));
<a point in ProjectiveSpace(5, 8)>
gap> BaseField(p);
GF(2^3)
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4.2.14 Random

. Random(elements) (operation)

Returns: a random element from the collection elements
The collection elements is an object in the category IsElementsOfIncidenceStructure, i.e.

an object representing the set of elements of a certain incidence structure of a given type. The latter
information can be derived e.g. using AmbientSpace and Type.

Example
gap> ps := PG(9,49);
ProjectiveSpace(9, 49)
gap> Random(Lines(ps));
<a line in ProjectiveSpace(9, 49)>
gap> Random(Points(ps));
<a point in ProjectiveSpace(9, 49)>
gap> Random(Solids(ps));
<a solid in ProjectiveSpace(9, 49)>
gap> Random(Hyperplanes(ps));
<a proj. 8-space in ProjectiveSpace(9, 49)>
gap> elts := ElementsOfIncidenceStructure(ps,6);
<proj. 5-subspaces of ProjectiveSpace(9, 49)>
gap> Random(elts);
<a proj. 5-space in ProjectiveSpace(9, 49)>
gap> Display(last);
[[Z(7)^0,0*Z(7),0*Z(7),0*Z(7),0*Z(7),0*Z(7),Z(7^2)^14,Z(7^2)^44,Z(7^2)^14,
Z(7)^5,]
[0*Z(7),Z(7)^0,0*Z(7),0*Z(7),0*Z(7),0*Z(7),Z(7^2)^29,Z(7^2)^13,Z(7^2)^19,

Z(7^2)^27,]
[0*Z(7),0*Z(7),Z(7)^0,0*Z(7),0*Z(7),0*Z(7),Z(7^2)^20,Z(7^2)^10,Z(7^2)^18,

Z(7^2)^27,]
[0*Z(7),0*Z(7),0*Z(7),Z(7)^0,0*Z(7),0*Z(7),Z(7),Z(7^2)^30,Z(7^2)^18,Z(7^2)^

14,]
[0*Z(7),0*Z(7),0*Z(7),0*Z(7),Z(7)^0,0*Z(7),Z(7^2)^10,Z(7^2)^28,Z(7^2)^47,

Z(7^2)^29,]
[0*Z(7),0*Z(7),0*Z(7),0*Z(7),0*Z(7),Z(7)^0,Z(7^2)^9,Z(7^2)^42,Z(7^2)^34,

Z(7^2)^25,]
]
gap> RandomSubspace(ps,3);
<a solid in ProjectiveSpace(9, 49)>
gap> Display(last);
[[Z(7)^0,0*Z(7),0*Z(7),0*Z(7),Z(7^2)^17,Z(7^2)^33,Z(7^2)^4,0*Z(7),Z(7^2),
Z(7^2)^33,]
[0*Z(7),Z(7)^0,0*Z(7),0*Z(7),Z(7^2)^30,Z(7)^2,Z(7)^3,Z(7)^0,Z(7^2)^20,Z(7^2)^

42,]
[0*Z(7),0*Z(7),Z(7)^0,0*Z(7),Z(7^2)^20,Z(7^2)^30,Z(7^2)^11,Z(7^2)^39,Z(7)^3,

Z(7),]
[0*Z(7),0*Z(7),0*Z(7),Z(7)^0,Z(7^2)^21,Z(7)^0,Z(7^2)^11,Z(7^2)^45,Z(7^2),

Z(7^2)^9,]
]
gap> RandomSubspace(ps,7);
<a proj. 7-space in ProjectiveSpace(9, 49)>
gap> Display(last);
[[Z(7)^0,0*Z(7),0*Z(7),0*Z(7),0*Z(7),0*Z(7),0*Z(7),0*Z(7),Z(7^2)^42,Z(7^2)^
35,]



GAP 4 Package FinInG 77

[0*Z(7),Z(7)^0,0*Z(7),0*Z(7),0*Z(7),0*Z(7),0*Z(7),0*Z(7),Z(7^2)^43,Z(7^2),]
[0*Z(7),0*Z(7),Z(7)^0,0*Z(7),0*Z(7),0*Z(7),0*Z(7),0*Z(7),Z(7^2)^44,Z(7)^4,]
[0*Z(7),0*Z(7),0*Z(7),Z(7)^0,0*Z(7),0*Z(7),0*Z(7),0*Z(7),Z(7^2)^41,Z(7^2)^

10,]
[0*Z(7),0*Z(7),0*Z(7),0*Z(7),Z(7)^0,0*Z(7),0*Z(7),0*Z(7),Z(7^2)^37,Z(7^2)^

12,]
[0*Z(7),0*Z(7),0*Z(7),0*Z(7),0*Z(7),Z(7)^0,0*Z(7),0*Z(7),Z(7^2)^11,Z(7^2)^

39,]
[0*Z(7),0*Z(7),0*Z(7),0*Z(7),0*Z(7),0*Z(7),Z(7)^0,0*Z(7),Z(7^2)^22,Z(7^2)^

10,]
[0*Z(7),0*Z(7),0*Z(7),0*Z(7),0*Z(7),0*Z(7),0*Z(7),Z(7)^0,Z(7^2)^43,Z(7^2)^

22,]
]
gap> RandomSubspace(ps);
<a plane in ProjectiveSpace(9, 49)>
gap> RandomSubspace(ps);
<a proj. 6-space in ProjectiveSpace(9, 49)>

4.2.15 RandomSubspace

. RandomSubspace(ps, i) (operation)

. RandomSubspace(ps) (operation)

Returns: the first variant returns a random element of type i of the projective space ps . The
second variant returns a random element of a random type of the projective space ps

Example
gap> ps := PG(8,16);
ProjectiveSpace(8, 16)
gap> RandomSubspace(ps);
<a point in ProjectiveSpace(8, 16)>
gap> RandomSubspace(ps);
<a proj. 5-space in ProjectiveSpace(8, 16)>
gap> RandomSubspace(ps);
<a proj. 7-space in ProjectiveSpace(8, 16)>
gap> RandomSubspace(ps);
<a proj. 4-space in ProjectiveSpace(8, 16)>
gap> RandomSubspace(ps);
<a plane in ProjectiveSpace(8, 16)>
gap> RandomSubspace(ps);
<a plane in ProjectiveSpace(8, 16)>
gap> RandomSubspace(ps);
<a plane in ProjectiveSpace(8, 16)>

4.2.16 Span

. Span(u, v) (operation)

. Span(list) (operation)

Returns: an element or the empty subspace or the whole space



GAP 4 Package FinInG 78

When u and v are elements of a projective space. This function returns the span of the two
elements. When list is a list of elements of the same projective space, then this function returns
the span of all elements in list . It is checked whether the elements u and v are elements of the
same projective space. Although the trivial subspace and the whole projective space are not objects
in the category IsSubspaceOfProjectiveSpace, they are allowed as arguments for this operation,
and also for the second variant of this operation.

Example
gap> ps := ProjectiveSpace(3,3);
ProjectiveSpace(3, 3)
gap> p := Random(Planes(ps));
<a plane in ProjectiveSpace(3, 3)>
gap> q := Random(Planes(ps));
<a plane in ProjectiveSpace(3, 3)>
gap> s := Span(p,q);
ProjectiveSpace(3, 3)
gap> s = Span([p,q]);
true
gap> t := Span(EmptySubspace(ps),p);
<a plane in ProjectiveSpace(3, 3)>
gap> t = p;
true
gap> Span(ps,p);
ProjectiveSpace(3, 3)

4.2.17 Meet

. Meet(u, v) (operation)

. Meet(list) (operation)

Returns: an element or the empty subspace or the whole space
When u and v are elements of a projective space. This function returns the intersection of the two

elements. When list is a list of elements of the same projective space, then this function returns the
intersection of all elements in list . It is checked whether the elements u and v are elements of the
same projective space. Although the trivial subspace and the whole projective space are not objects
in the category IsSubspaceOfProjectiveSpace, they are allowed as arguments for this operation,
and also for the second variant of this operation. We remark that the result of a Meet operation can be
the empty subspace.

Example
ProjectiveSpace(7, 8)
gap> p := Random(Solids(ps));
<a solid in ProjectiveSpace(7, 8)>
gap> q := Random(Solids(ps));
<a solid in ProjectiveSpace(7, 8)>
gap> s := Meet(p,q);
< empty subspace >
gap> Display(s);
< empty subspace >
gap> r := Random(Hyperplanes(ps));
<a proj. 6-space in ProjectiveSpace(7, 8)>
gap> Meet(p,r);
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<a plane in ProjectiveSpace(7, 8)>
gap> Meet(q,r);
<a plane in ProjectiveSpace(7, 8)>
gap> Meet([p,q,r]);
< empty subspace >

4.2.18 FlagOfIncidenceStructure

. FlagOfIncidenceStructure(ps, els) (operation)

Returns: the flag of the projetcive space ps , determined by the subspaces of ps in the list els .
When els is empty, the empty flag is returned.

Example
gap> ps := ProjectiveSpace(12,11);
ProjectiveSpace(12, 11)
gap> s1 := RandomSubspace(ps,8);
<a proj. 8-space in ProjectiveSpace(12, 11)>
gap> s2 := RandomSubspace(s1,6);
<a proj. 6-space in ProjectiveSpace(12, 11)>
gap> s3 := RandomSubspace(s2,4);
<a proj. 4-space in ProjectiveSpace(12, 11)>
gap> s4 := Random(Solids(s3));
<a solid in ProjectiveSpace(12, 11)>
gap> s5 := Random(Points(s4));
<a point in ProjectiveSpace(12, 11)>
gap> flag := FlagOfIncidenceStructure(ps,[s1,s3,s2,s5,s4]);
<a flag of ProjectiveSpace(12, 11)>
gap> ps := PG(4,5);
ProjectiveSpace(4, 5)
gap> p := Random(Points(ps));
<a point in ProjectiveSpace(4, 5)>
gap> l := Random(Lines(ps));
<a line in ProjectiveSpace(4, 5)>
gap> v := Random(Solids(ps));
<a solid in ProjectiveSpace(4, 5)>
gap> flag := FlagOfIncidenceStructure(ps,[v,l,p]);
Error, <els> does not determine a flag> called from
<function "unknown">( <arguments> )
called from read-eval loop at line 19 of *stdin*

you can ’quit;’ to quit to outer loop, or
you can ’return;’ to continue
brk> quit;
gap> flag := FlagOfIncidenceStructure(ps,[]);
<a flag of ProjectiveSpace(4, 5)>

4.2.19 IsEmptyFlag

. IsEmptyFlag(flag) (operation)

Returns: return true if flag is the empty flag
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4.2.20 IsChamberOfIncidenceStructure

. IsChamberOfIncidenceStructure(flag) (operation)

Returns: true if flag is a chamber
Example

gap> ps := PG(3,13);
ProjectiveSpace(3, 13)
gap> plane := Random(Planes(ps));
<a plane in ProjectiveSpace(3, 13)>
gap> line := Random(Lines(plane));
<a line in ProjectiveSpace(3, 13)>
gap> point := Random(Points(line));
<a point in ProjectiveSpace(3, 13)>
gap> flag := FlagOfIncidenceStructure(ps,[point,line,plane]);
<a flag of ProjectiveSpace(3, 13)>
gap> IsChamberOfIncidenceStructure(flag);
true

4.3 Shadows of Projective Subspaces

4.3.1 ShadowOfElement

. ShadowOfElement(ps, el, i) (operation)

. ShadowOfElement(ps, el, str) (operation)

Returns: the elements of type i incident with el . The second variant determines the type i
from the position of str in the list returned by TypesOfElementsOfIncidenceStructurePlural

Example
gap> ps := PG(4,3);
ProjectiveSpace(4, 3)
gap> plane := Random(Planes(ps));
<a plane in ProjectiveSpace(4, 3)>
gap> shadowpoints := ShadowOfElement(ps,plane,1);
<shadow points in ProjectiveSpace(4, 3)>
gap> List(shadowpoints);
[ <a point in ProjectiveSpace(4, 3)>, <a point in ProjectiveSpace(4, 3)>,

<a point in ProjectiveSpace(4, 3)>, <a point in ProjectiveSpace(4, 3)>,
<a point in ProjectiveSpace(4, 3)>, <a point in ProjectiveSpace(4, 3)>,
<a point in ProjectiveSpace(4, 3)>, <a point in ProjectiveSpace(4, 3)>,
<a point in ProjectiveSpace(4, 3)>, <a point in ProjectiveSpace(4, 3)>,
<a point in ProjectiveSpace(4, 3)>, <a point in ProjectiveSpace(4, 3)>,
<a point in ProjectiveSpace(4, 3)> ]

gap> shadowlines := ShadowOfElement(ps,plane,2);
<shadow lines in ProjectiveSpace(4, 3)>
gap> List(shadowlines);
[ <a line in ProjectiveSpace(4, 3)>, <a line in ProjectiveSpace(4, 3)>,

<a line in ProjectiveSpace(4, 3)>, <a line in ProjectiveSpace(4, 3)>,
<a line in ProjectiveSpace(4, 3)>, <a line in ProjectiveSpace(4, 3)>,
<a line in ProjectiveSpace(4, 3)>, <a line in ProjectiveSpace(4, 3)>,
<a line in ProjectiveSpace(4, 3)>, <a line in ProjectiveSpace(4, 3)>,
<a line in ProjectiveSpace(4, 3)>, <a line in ProjectiveSpace(4, 3)>,
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<a line in ProjectiveSpace(4, 3)> ]

4.3.2 ShadowOfFlag

. ShadowOfFlag(ps, flag, i) (operation)

. ShadowOfFlag(ps, flag, str) (operation)

Returns: the type i shadow elements of the flag flag , i.e. the elements of type i incident with
all elements of flag . The second variant determines the type i from the position of str in the list
returned by TypesOfElementsOfIncidenceStructurePlural.

Example
gap> ps := PG(5,7);
ProjectiveSpace(5, 7)
gap> p := VectorSpaceToElement(ps,[1,0,0,0,0,0]*Z(7)^0);
<a point in ProjectiveSpace(5, 7)>
gap> l := VectorSpaceToElement(ps,[[1,0,0,0,0,0],[0,1,0,0,0,0]]*Z(7)^0);
<a line in ProjectiveSpace(5, 7)>
gap> v := VectorSpaceToElement(ps,[[1,0,0,0,0,0],[0,1,0,0,0,0],[0,0,1,0,0,0]]*Z(7)^0);
<a plane in ProjectiveSpace(5, 7)>
gap> flag := FlagOfIncidenceStructure(ps,[v,l,p]);
<a flag of ProjectiveSpace(5, 7)>
gap> s := ShadowOfFlag(ps,flag,4);
<shadow solids in ProjectiveSpace(5, 7)>
gap> s := ShadowOfFlag(ps,flag,"solids");
<shadow solids in ProjectiveSpace(5, 7)>

4.3.3 ElementsIncidentWithElementOfIncidenceStructure

. ElementsIncidentWithElementOfIncidenceStructure(el, i) (operation)

Returns: the elements of type i incident with el , in other words, the type i shadow of the
element el

Internally, the function FlagOfIncidenceStructure is used to create a flag from list . This
function also performs the checking.

Example
gap> ps := PG(6,9);
ProjectiveSpace(6, 9)
gap> p := VectorSpaceToElement(ps,[1,0,1,0,0,0,0]*Z(9)^0);
<a point in ProjectiveSpace(6, 9)>
gap> els := ElementsIncidentWithElementOfIncidenceStructure(p,3);
<shadow planes in ProjectiveSpace(6, 9)>
gap> line := VectorSpaceToElement(ps,[[1,1,1,1,0,0,0],[0,0,0,0,1,1,1]]*Z(9)^0);
<a line in ProjectiveSpace(6, 9)>
gap> els := ElementsIncidentWithElementOfIncidenceStructure(line,1);
<shadow points in ProjectiveSpace(6, 9)>
gap> List(els);
[ <a point in ProjectiveSpace(6, 9)>, <a point in ProjectiveSpace(6, 9)>,

<a point in ProjectiveSpace(6, 9)>, <a point in ProjectiveSpace(6, 9)>,
<a point in ProjectiveSpace(6, 9)>, <a point in ProjectiveSpace(6, 9)>,
<a point in ProjectiveSpace(6, 9)>, <a point in ProjectiveSpace(6, 9)>,
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<a point in ProjectiveSpace(6, 9)>, <a point in ProjectiveSpace(6, 9)> ]

4.3.4 Short names for ElementsIncidentWithElementOfIncidenceStructure

. Points(ps, v) (operation)

. Lines(ps, v) (operation)

. Planes(ps, v) (operation)

. Solids(ps, v) (operation)

. Hyperplanes(inc, v) (operation)

. Points(v) (operation)

. Lines(v) (operation)

. Planes(v) (operation)

. Solids(v) (operation)

. Hyperplanes(v) (operation)

Returns: The elements of the incidence geometry of the according type. If ps is not given as an
argument, it is deduced from v as its ambient geometry.

Example
gap> ps := PG(6,13);
ProjectiveSpace(6, 13)
gap> plane := Random(Planes(ps));
<a plane in ProjectiveSpace(6, 13)>
gap> Points(plane);
<shadow points in ProjectiveSpace(6, 13)>
gap> Lines(plane);
<shadow lines in ProjectiveSpace(6, 13)>
gap> Solids(plane);
<shadow solids in ProjectiveSpace(6, 13)>
gap> Hyperplanes(plane);
<shadow lines in ProjectiveSpace(6, 13)>
gap> ElementsIncidentWithElementOfIncidenceStructure(plane,6);
<shadow proj. 5-subspaces in ProjectiveSpace(6, 13)>

4.4 Enumerating subspaces of a projective space

4.4.1 Iterator

. Iterator(subspaces) (operation)

Returns: an iterator for the collection subspaces
We refer to the GAP operation Iterator for the definition of an iterator.

Example
gap> pg := PG(5,7);
ProjectiveSpace(5, 7)
gap> planes := Planes(pg);
<planes of ProjectiveSpace(5, 7)>
gap> iter := Iterator(planes);
<iterator>
gap> NextIterator(iter);
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<a plane in ProjectiveSpace(5, 7)>
gap> NextIterator(iter);
<a plane in ProjectiveSpace(5, 7)>
gap> NextIterator(iter);
<a plane in ProjectiveSpace(5, 7)>

4.4.2 Enumerator

. Enumerator(subspaces) (operation)

Returns: an enumerator for the collection subspaces
For complete collections of subspaces of a given type of a projective space, currently, no non-

trivial enumerator is installed, i.e. this operation just returns a list containing all elements of the
collection subspaces . Such a list can, of course, be used as an enumerator, but this might be time
consuming.

Example
gap> pg := PG(3,4);
ProjectiveSpace(3, 4)
gap> lines := Lines(pg);
<lines of ProjectiveSpace(3, 4)>
gap> enum := Enumerator(lines);;
gap> Length(enum);
357

4.4.3 List

. List(subspaces) (operation)

. AsList(subspaces) (operation)

Returns: the complete list of elements in the collection subspaces
The operation List will return a complete list, the operation AsList will return an orb object,

representing a complete orbit, i.e. representing in this case a complete list. To obtain the elements
explicitly, one has to issue the List operation with as argument the orb object again. Applying List
directly to a collection of subspaces, refers to the enumerator for the collection, while using AsList
uses the orb to compute all subspaces as an orbit.

Example
gap> pg := PG(3,4);
ProjectiveSpace(3, 4)
gap> lines := Lines(pg);
<lines of ProjectiveSpace(3, 4)>
gap> list := List(lines);;
gap> Length(list);
357
gap> aslist := AsList(lines);
<closed orbit, 357 points>
gap> list2 := List(aslist);;
gap> Length(list2);
357



Chapter 5

Projective Groups

A collineation of a projective space is a type preserving bijection of the elements of the projective
space, that preserves incidence. The Fundamental Theorem of Projective Geometry states that every
collineation of a Desarguesian projective space of dimension at least two is induced by a semilinear
map of the underlying vector space. The group of all linear maps of a given n+1-dimensional vector
space over a given field GF(q) is denoted by GL(n+ 1,q). This is a matrix group consisting of all
non-singular square n+ 1-dimensional matrices over GF(q). The group of all semilinear maps of
the vector space V (n,q) is obtained as the semidirect product of GL(n,q) and Aut(GF(q)), and is
denoted by ΓL(n+ 1,q). Each semilinear map induces a collineation of PG(n,q). The Fundamental
theorem of Projective Geometry also guarantees that the converse holds. Note also that ΓL(n+ 1,q)
does not act faithfully on the projective points, and the kernel of its action is the group of scalar
matrices, Sc(n+ 1,q). So the group PΓL(n+ 1,q) is defined as the group ΓL(n+ 1,q)/Sc(n+ 1,q),
and PGL(n+1,q) = GL(n+1,q)/Sc(n+1,q). An element of the group PGL(n+1,q) is also called
a projectivity or homography of PG(n,q), and the group PGL(n+1,q) is called the projectivity group
or homography group of PG(n,q). An element of PΓL(n+ 1,q) is called a collineation of PG(n,q)
and the group PΓL(n+1,q) is the collineation group of PG(n,q).

As usual, we also consider the special linear group SL(n + 1,q), which is the subgroup of
GL(n + 1,q) of all matrices having determinant one. Its projective variant, i.e. PSL(n + 1,q) =
SL(n + 1,q)/Sc(n + 1,q) is called the special homography group or special projectivity group of
PG(n,q).

Consider the projective space PG(n,q). As described in Chapter 4, a point of PG(n,q) is rep-
resented by a row vector. A k-dimensional subspace of PG(n,q) is represented by a generating set
of k + 1 points, and as such, by a (k + 1)× (n + 1) matrix. The convention in FinInG is that a
collineation φ with underlying matrix A and field automorphism θ maps that projective point repre-
sented by row vector (x0,x1, . . . ,xn) to the projective point represented by row vector (y0,y1, . . . ,yn) =
((x0,x1, . . . ,xn)A)θ . This convention determines completely the action of collineations on all elements
of a projective space, and it follows that the product of two collineations φ1,φ2 with respective un-
derlying matrices A1,A2 and respective underlying field automorphisms θ1,θ2 is the collineation with

underlying matrix A1 ·A
θ
−1
1

2 and underlying field automorphism θ1θ2 .
A correlation of the projective space PG(n,q) is a collineation from PG(n,q) to its dual. A pro-

jectivity from PG(n,q) to its dual is sometimes called a reciprocity. The standard duality of the
projective space PG(n,q) maps any point v with coordinates (x0,x1, . . . ,xn) on the hyperplane with
equation x0X0 + x1X1 + · · ·+ xnXn. The standard duality acts as an automorphism on PΓL(n+ 1,q)
by mapping the underlying matrix of a collineation to its inverse transpose matrix. (Recall that

84
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the frobenius automorphism and the standard duality commute.) The convention in FinInG is that
a correlation φ with underlying matrix A and field automorphism θ maps that projective point
represented by row vector (x0,x1, . . . ,xn) to the projective hyperplane represented by row vector
(y0,y1, . . . ,yn) = ((x0,x1, . . . ,xn)A)θ ., i.e. (y0,y1, . . . ,yn) = ((x0,x1, . . . ,xn)A)θ . are the dual coordi-
nates of the hyperplane.

The product of two correlations of PG(n,q) is a collineation, and the product of a collineation and
a correlaton is a correlation. So the set of all collineations and correlations of PG(n,q) forms a group,
called the correlation-collineation group of PG(n,q). The correlation-collineation group of PG(n,q)
is isomorphic to the semidirect product of PΓL(n+1,q) with the cyclic group of order 2 generated by
the standard duality of the projective space PG(n,q). The convention determines completely the ac-
tion of correlations and collineations on all elements of a projective space, and it follows that the prod-
uct of two elements of the correlation-collineation group φ1,φ2 with respective underlying matrices
A1,A2, respective underlying field automorphisms θ1,θ2, and respective underlying projective space
isomorphisms (standard duality or identity map) δ1,δ2, is the element of the correlation-collineation

group with underlying matrix A1(A
θ
−1
1

2 )δ1 , underlying field automorphism θ1θ2 , and underlying pro-
jective space automorphism δ1δ2. , where the action of δ1 on the matrix A2 is defined as the transpose
inverse if δ1 is the standard duality, and as the identity if δ1 is the identity.

Action functions for collineations and correlations on the subspaces of a projective space are
described in detail in Section 5.8

We mention that the commands PGL (and ProjectiveGeneralLinearGroup) and PSL (and
ProjectiveSpecialLinearGroup) are available in GAP and return a (permutation) group isomor-
phic to the required group. Therefore we do not provide new methods for these commands, but assume
that the user will obtain these groups as homography or special homography group of the appropri-
ate projective space. We will follow this philosophy for the other classical groups. The terminology
projective semilinear group will be used for a group generated by collineations of a projective space.

5.1 Projectivities, collineations and correlations of projective spaces.

These are the different type of actions on projective spaces in FinInG, and they naturally give rise to
the following distinct categories and representations. Note that these categories and representations
are to be considered on a non-user level. Below we describe all user constuction methods that hide
nicely these technical details.

5.1.1 Categories for group elements

. IsProjGrpEl (Category)

. IsProjGrpElWithFrob (Category)

. IsProjGrpElWithFrobWithPSIsom (Category)

IsProjGrpEl, IsProjGrpElWithFrob, and IsProjGrpElWithFrobWithPSIsom are the cate-
gories naturally induced by the notions of projectivities, collineations, and correlations of a projective
space.

5.1.2 Representations for group elements

. IsProjGrpElRep (Representation)

. IsProjGrpElWithFrobRep (Representation)
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. IsProjGrpElWithFrobWithPSIsomRep (Representation)

IsProjGrpElRep is the representation naturally induced by a projectivity;
IsProjGrpElWithFrobRep is the representation naturally induced by the notion of a collineation
of projective space; and IsProjGrpElWithFrobWithPSIsomRep is the representation natu-
rally induced by a correlation of a projective space. This means that an object in the rep-
resentation IsProjGrpElRep has as underlying object a matrix; an object in the category
IsProjGrpElWithFrobRep has as underlying object a pair consisting of a matrix and a field auto-
morphism; and IsProjGrpElWithFrobWithPSIsomRep has as underlying object a triple consisting
of a matrix, a field automorphism and an isomorphism from the projective space to its dual space.
Also the basefield is stored as a component in the representation.

The above mentioned categories allow us to make a distinction between projectivities,
collineations and correlations apart from their representation. However, in FinInG, a group ele-
ment constructed in the categories IsProjGrpElMore is always constructed in the representation
IsProjGrpElMoreRep. Furthermore, projectivities of projective spaces (and also collineations of
projective spaces) will by default be constructed in the category IsProjGrpElWithFrobRep. This
technical choice was made by the developpers to have the projectivity groups naturally embedded
in the collineation groups. Correlations of projective spaces will be constructed in the category
IsProjGrpElWithFrobWithPSIsom.

5.1.3 Projectivities

. IsProjectivity (Property)

IsProjectivity is a property. Projectivities are the elements of PGL(n + 1,q). Every el-
ement belonging to IsProjGrpEl is by construction a projectivity. If IsProjectivity is ap-
plied to a an element belonging to IsProjGrpElWithFrob, then it verifies whether the underlying
field automorphism is the identity. If IsProjectivity is applied to a an element belonging to
IsProjGrpElWithFrobWithPSIsom, then it verifies whether the underlying field automorphism is
the identity, and whether the projective space isomorphism is the identity. This operation provides a
user-friendly method to distinguish the projectivities from the projective strictly semilinear maps, and
the correlations of a projective space.

Example
gap> g := Random(HomographyGroup(PG(3,4)));
< a collineation: <cmat 4x4 over GF(2,2)>, F^0>
gap> IsProjectivity(g);
true
gap> g := Random(CollineationGroup(PG(3,4)));
< a collineation: <cmat 4x4 over GF(2,2)>, F^0>
gap> IsProjectivity(g);
true
gap> g := Random(CorrelationCollineationGroup(PG(3,4)));
<projective element with Frobenius with projectivespace isomorphism: <immutabl
e cmat 4x4 over GF(2,2)>, F^
2, StandardDuality( AllElementsOfIncidenceStructure( ProjectiveSpace(
3,GF(2^2)) ) ) >
gap> IsProjectivity(g);
false
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5.1.4 Collineations of projective spaces

. IsCollineation (Property)

IsCollineation is property. All elements of PΓL(n + 1,q) are collineations, and therefore
all elements belonging to IsProjGrpElWithFrob are collineations. But also a projectivity is a
collineation, as well as an element belonging to IsProjGrpElWithFrobWithPSIsom with projec-
tive space isomorphism equal to the identity, is a collineation.

Example
gap> g := Random(HomographyGroup(PG(2,27)));
< a collineation: <cmat 3x3 over GF(3,3)>, F^0>
gap> IsCollineation(g);
true
gap> g := Random(CollineationGroup(PG(2,27)));
< a collineation: <cmat 3x3 over GF(3,3)>, F^0>
gap> IsCollineation(g);
true
gap> g := Random(CorrelationCollineationGroup(PG(2,27)));
<projective element with Frobenius with projectivespace isomorphism: <cmat 3x
3 over GF(3,3)>, F^0, IdentityMapping( <All elements of ProjectiveSpace(2,
27)> ) >
gap> IsCollineation(g);
true

5.1.5 Projective strictly semilinear maps

. IsStrictlySemilinear (Property)

IsStrictlySemilinear is a property that checks whether a given collineation has a non-
trivial underlying field automorphisms, i.e. whether the element belongs to PΓL(n + 1,q), but
not to PGL(n + 1,q). If IsStrictlySemilinear is applied to a an element belonging to
IsProjGrpElWithFrobWithPSIsom, then it verifies whether the underlying field automorphism is
different from the identity, and whether the projective space isomorphism equals the identity. This
operation provides a user-friendly method to distinguish the projective strictly semilinear maps from
projectivities inside the category of collineations of a projective space.

Example
gap> g := Random(HomographyGroup(PG(3,25)));
< a collineation: <cmat 4x4 over GF(5,2)>, F^0>
gap> IsStrictlySemilinear(g);
false
gap> g := Random(CollineationGroup(PG(3,25)));
< a collineation: <cmat 4x4 over GF(5,2)>, F^5>
gap> IsStrictlySemilinear(g);
true
gap> g := Random(CorrelationCollineationGroup(PG(3,25)));
<projective element with Frobenius with projectivespace isomorphism: <cmat 4x
4 over GF(5,2)>, F^5, IdentityMapping( <All elements of ProjectiveSpace(3,
25)> ) >
gap> IsStrictlySemilinear(g);
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true

5.1.6 Correlations and collineations

. IsProjGrpElWithFrobWithPSIsom (Category)

. IsCorrelationCollineation (Category)

. IsCorrelation (Property)

The underlying objects of a correlation-collineation in FinInG are a nonsingular matrix, a field
automorphism and a projective space isomorphism. IsProjGrpElWithFrobWithPSIsom is the cat-
egory of these objects. If the projective space isomorphism is not the identity, then the element is a
correlation, and IsCorrelation will return true. IsCorrelationCollineation is a synonym of
IsProjGrpElWithFrobWithPSIsom.

Example
gap> g := Random(CollineationGroup(PG(4,7)));
< a collineation: <cmat 5x5 over GF(7,1)>, F^0>
gap> IsCorrelationCollineation(g);
false
gap> IsCorrelation(g);
false
gap> g := Random(CorrelationCollineationGroup(PG(4,7)));
<projective element with Frobenius with projectivespace isomorphism: <cmat 5x
5 over GF(7,1)>, F^0, IdentityMapping( <All elements of ProjectiveSpace(4,
7)> ) >
gap> IsCorrelationCollineation(g);
true
gap> IsCorrelation(g);
false

5.2 Construction of projectivities, collineations and correlations.

In FinInG, projectivities and collineations are both constructed in the cat-
egory IsProjGrpElWithFrob; correlations are constructed in the category
IsProjGrpElWithFrobWithPSIsom.

5.2.1 Projectivity

. Projectivity(mat, f) (operation)

. Projectivity(pg, mat) (operation)

Returns: a projectivity of a projective space
The argument mat must be a nonsingular matrix over the finite field f . In the second vari-

ant, the size of the nonsingular matrix mat must be one more than the dimension of the projec-
tive space pg . This creates an element of a projectivity group. But the returned object belongs to
IsProjGrpElWithFrob!

Example
gap> mat := [[1,0,0],[0,1,0],[0,0,1]]*Z(9)^0;
[ [ Z(3)^0, 0*Z(3), 0*Z(3) ], [ 0*Z(3), Z(3)^0, 0*Z(3) ],
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[ 0*Z(3), 0*Z(3), Z(3)^0 ] ]
gap> Projectivity(mat,GF(9));
< a collineation: <cmat 3x3 over GF(3,2)>, F^0>

5.2.2 CollineationOfProjectiveSpace

. CollineationOfProjectiveSpace(mat, frob, f) (operation)

. CollineationOfProjectiveSpace(mat, f) (operation)

. CollineationOfProjectiveSpace(mat, frob, f) (operation)

. CollineationOfProjectiveSpace(mat, f) (operation)

. CollineationOfProjectiveSpace(pg, mat) (operation)

. CollineationOfProjectiveSpace(pg, mat, frob) (operation)

. Collineation(pg, mat) (operation)

. Collineation(pg, mat, frob) (operation)

mat is a nonsingular matrix, frob is a field automorphism, f is a field, and pg is a projec-
tive space. This function (and its shorter version) returns the collineation with matrix mat and au-
tomorphism frob of the field f . If frob is not specified then the companion automorphism of
the resulting group element will be the identity map. The returned object belongs to the category
IsProjGrpElWithFrob. When the argument frob is given, it is checked whether the source of
frob equals f . When the arguments pg and mat are used, then it is checked that these two arguments
are compatible.

Example
gap> mat:=
> [[Z(2^3)^6,Z(2^3),Z(2^3)^3,Z(2^3)^3],[Z(2^3)^6,Z(2)^0,Z(2^3)^2,Z(2^3)^3],
> [0*Z(2),Z(2^3)^4,Z(2^3),Z(2^3)],[Z(2^3)^6,Z(2^3)^5,Z(2^3)^3,Z(2^3)^5 ]];
[ [ Z(2^3)^6, Z(2^3), Z(2^3)^3, Z(2^3)^3 ],

[ Z(2^3)^6, Z(2)^0, Z(2^3)^2, Z(2^3)^3 ],
[ 0*Z(2), Z(2^3)^4, Z(2^3), Z(2^3) ],
[ Z(2^3)^6, Z(2^3)^5, Z(2^3)^3, Z(2^3)^5 ] ]

gap> frob := FrobeniusAutomorphism(GF(8));
FrobeniusAutomorphism( GF(2^3) )
gap> phi := ProjectiveSemilinearMap(mat,frob^2,GF(8));
< a collineation: <cmat 4x4 over GF(2,3)>, F^4>
gap> mat2 := [[Z(2^8)^31,Z(2^8)^182,Z(2^8)^49],[Z(2^8)^224,Z(2^8)^25,Z(2^8)^45],
> [Z(2^8)^128,Z(2^8)^165,Z(2^8)^217]];
[ [ Z(2^8)^31, Z(2^8)^182, Z(2^8)^49 ], [ Z(2^8)^224, Z(2^8)^25, Z(2^8)^45 ],

[ Z(2^8)^128, Z(2^8)^165, Z(2^8)^217 ] ]
gap> psi := CollineationOfProjectiveSpace(mat2,GF(256));
< a collineation: <cmat 3x3 over GF(2,8)>, F^0>

5.2.3 ProjectiveSemilinearMap

. ProjectiveSemilinearMap(mat, frob, f) (operation)

Returns: a projectivity of a projective space
mat is a nonsingular matrix, frob is a field automorphism, and f is a field. This function returns

the collineation with matrix mat and automorphism frob . The returned object belongs to the category
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IsProjGrpElWithFrob. When the argument frob is given, it is checked whether the source of frob
equals f .

5.2.4 IdentityMappingOfElementsOfProjectiveSpace

. IdentityMappingOfElementsOfProjectiveSpace(ps) (operation)

This operation returns the identity mapping on the collection of subspaces of a projective space
ps .

5.2.5 StandardDualityOfProjectiveSpace

. StandardDualityOfProjectiveSpace(ps) (operation)

This operation returns the standard duality of the projective space ps
Example

gap> ps := ProjectiveSpace(4,5);
ProjectiveSpace(4, 5)
gap> delta := StandardDualityOfProjectiveSpace(ps);
StandardDuality( AllElementsOfIncidenceStructure( ProjectiveSpace(4,GF(5)) ) )
gap> delta^2;
IdentityMapping( <All elements of ProjectiveSpace(4, 5)> )
gap> p := VectorSpaceToElement(ps,[1,2,3,0,1]*Z(5)^0);
<a point in ProjectiveSpace(4, 5)>
gap> h := p^delta;
<a solid in ProjectiveSpace(4, 5)>
gap> UnderlyingObject(h);
<cmat 4x5 over GF(5,1)>
gap> Unpack(last);
[ [ Z(5)^0, 0*Z(5), 0*Z(5), 0*Z(5), Z(5)^2 ],

[ 0*Z(5), Z(5)^0, 0*Z(5), 0*Z(5), Z(5)^3 ],
[ 0*Z(5), 0*Z(5), Z(5)^0, 0*Z(5), Z(5) ],
[ 0*Z(5), 0*Z(5), 0*Z(5), Z(5)^0, 0*Z(5) ] ]

5.2.6 CorrelationOfProjectiveSpace

. CorrelationOfProjectiveSpace(mat, f) (operation)

. CorrelationOfProjectiveSpace(mat, frob, f) (operation)

. CorrelationOfProjectiveSpace(mat, f, delta) (operation)

. CorrelationOfProjectiveSpace(mat, frob, f, delta) (operation)

. CorrelationOfProjectiveSpace(pg, mat, frob, delta) (operation)

. Correlation(pg, mat, frob, delta) (operation)

mat is a nonsingular matrix, frob is a field automorphism, f is a field, and delta is the standard
duality of the projective space PG(n,q). This function returns the correlation with matrix mat , auto-
morphism frob , and standard duality delta . If frob is not specified then the companion automor-
phism of the resulting group element will be the identity map. If the user specifies delta , then it must
be the standard duality of a projective space, created using StandardDualityOfProjectiveSpace
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(5.2.5), or the identity mapping on the collection of subspaces of a projective space, created using
IdentityMappingOfElementsOfProjectiveSpace (5.2.4). If not specified, then the companion
vector space isomorphism is the identity mapping. The returned object belongs to the category
IsProjGrpElWithFrobWithPSIsom

Example
gap> mat := [[1,0,0],[3,0,2],[0,5,4]]*Z(7^3);
[ [ Z(7^3), 0*Z(7), 0*Z(7) ], [ Z(7^3)^58, 0*Z(7), Z(7^3)^115 ],

[ 0*Z(7), Z(7^3)^286, Z(7^3)^229 ] ]
gap> phi1 := CorrelationOfProjectiveSpace(mat,GF(7^3));
<projective element with Frobenius with projectivespace isomorphism: <cmat 3x
3 over GF(7,3)>, F^0, IdentityMapping( <All elements of ProjectiveSpace(2,
343)> ) >
gap> frob := FrobeniusAutomorphism(GF(7^3));
FrobeniusAutomorphism( GF(7^3) )
gap> phi2 := CorrelationOfProjectiveSpace(mat,frob,GF(7^3));
<projective element with Frobenius with projectivespace isomorphism: <cmat 3x
3 over GF(7,3)>, F^7, IdentityMapping( <All elements of ProjectiveSpace(2,
343)> ) >
gap> delta := StandardDualityOfProjectiveSpace(ProjectiveSpace(2,GF(7^3)));
StandardDuality( AllElementsOfIncidenceStructure( ProjectiveSpace(
2,GF(7^3)) ) )
gap> phi3 := CorrelationOfProjectiveSpace(mat,GF(7^3),delta);
<projective element with Frobenius with projectivespace isomorphism: <cmat 3x
3 over GF(7,
3)>, F^0, StandardDuality( AllElementsOfIncidenceStructure( ProjectiveSpace(
2,GF(7^3)) ) ) >
gap> phi4 := CorrelationOfProjectiveSpace(mat,frob,GF(7^3),delta);
<projective element with Frobenius with projectivespace isomorphism: <cmat 3x
3 over GF(7,3)>, F^
7, StandardDuality( AllElementsOfIncidenceStructure( ProjectiveSpace(
2,GF(7^3)) ) ) >

5.3 Basic operations for projectivities, collineations and correlations of
projective spaces

5.3.1 Representative

. Representative(g) (operation)

g is a projectivity, collineation or correlation of a projective space. This function returns the
reresentative components that determine g , i.e. a matrix, a matrix and a field automorphism, and a
matrix, a field automorphism, and a vector space isomorphism, respectively.

Example
gap> g:=CollineationGroup( ProjectiveSpace(2,49));
The FinInG collineation group PGammaL(3,49)
gap> x:=Random(g);;
gap> Representative(x);
[ <immutable cmat 3x3 over GF(7,2)>, FrobeniusAutomorphism( GF(7^2) ) ]
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5.3.2 MatrixOfCollineation

. MatrixOfCollineation(g) (operation)

g is a collineation (including a projectivity) of a projective space. This function returns the matrix
that was used to construct g .

Example
gap> g:=CollineationGroup( ProjectiveSpace(3,3));
The FinInG collineation group PGL(4,3)
gap> x:=Random(g);;
gap> MatrixOfCollineation(x);
<cmat 4x4 over GF(3,1)>
gap> Unpack(last);
[ [ 0*Z(3), 0*Z(3), Z(3)^0, Z(3) ], [ Z(3), 0*Z(3), 0*Z(3), 0*Z(3) ],

[ Z(3)^0, Z(3)^0, Z(3), 0*Z(3) ], [ Z(3), Z(3), 0*Z(3), 0*Z(3) ] ]

5.3.3 MatrixOfCorrelation

. MatrixOfCorrelation(g) (operation)

g is a correlation of a projective space. This function returns the matrix that was used to construct
g .

Example
gap> g:=CorrelationCollineationGroup( ProjectiveSpace(4,9));
The FinInG correlation-collineation group PGammaL(5,9) : 2
gap> x:=Random(g);;
gap> MatrixOfCorrelation(x);
<cmat 5x5 over GF(3,2)>
gap> Unpack(last);
[ [ Z(3^2)^3, Z(3^2)^6, 0*Z(3), 0*Z(3), 0*Z(3) ],

[ Z(3^2), Z(3^2)^3, Z(3^2)^2, Z(3^2)^5, Z(3^2) ],
[ Z(3^2)^2, Z(3^2)^3, Z(3^2), Z(3^2), Z(3^2)^3 ],
[ Z(3^2)^2, Z(3^2), Z(3^2)^6, Z(3^2), Z(3^2)^5 ],
[ Z(3^2), Z(3^2)^3, Z(3)^0, 0*Z(3), Z(3^2)^6 ] ]

5.3.4 BaseField

. BaseField(g) (operation)

Returns: a field
g is a projectivity, collineation or correlation of a projective space. This function returns the base

field that was used to construct g .
Example

gap> mat := [[0,1,0],[1,0,0],[0,0,2]]*Z(3)^0;
[ [ 0*Z(3), Z(3)^0, 0*Z(3) ], [ Z(3)^0, 0*Z(3), 0*Z(3) ],

[ 0*Z(3), 0*Z(3), Z(3) ] ]
gap> g := Projectivity(mat,GF(3^6));
< a collineation: <cmat 3x3 over GF(3,6)>, F^0>
gap> BaseField(g);
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GF(3^6)

5.3.5 FieldAutomorphism

. FieldAutomorphism(g) (operation)

g is a collineation of a projective space or a correlation of a projective space. This function
returns the companion field automorphism which defines g . Note that in the following example, you
may want to execute it several times to see the different possible results generated by the random
choice of projective semilinear map here.

Example
gap> g:=CollineationGroup( ProjectiveSpace(3,9));
The FinInG collineation group PGammaL(4,9)
gap> x:=Random(g);;
gap> FieldAutomorphism(x);
IdentityMapping( GF(3^2) )

5.3.6 ProjectiveSpaceIsomorphism

. ProjectiveSpaceIsomorphism(g) (operation)

g is a correlation of a projective space. This function returns the companion isomorphism of the
projective space which defines g .

Example
gap> mat := [[1,0,0],[3,0,2],[0,5,4]]*Z(7^3);
[ [ Z(7^3), 0*Z(7), 0*Z(7) ], [ Z(7^3)^58, 0*Z(7), Z(7^3)^115 ],

[ 0*Z(7), Z(7^3)^286, Z(7^3)^229 ] ]
gap> frob := FrobeniusAutomorphism(GF(7^3));
FrobeniusAutomorphism( GF(7^3) )
gap> delta := StandardDualityOfProjectiveSpace(ProjectiveSpace(2,GF(7^3)));
StandardDuality( AllElementsOfIncidenceStructure( ProjectiveSpace(
2,GF(7^3)) ) )
gap> phi := CorrelationOfProjectiveSpace(mat,frob,GF(7^3),delta);
<projective element with Frobenius with projectivespace isomorphism: <cmat 3x
3 over GF(7,3)>, F^
7, StandardDuality( AllElementsOfIncidenceStructure( ProjectiveSpace(
2,GF(7^3)) ) ) >
gap> ProjectiveSpaceIsomorphism(phi);
StandardDuality( AllElementsOfIncidenceStructure( ProjectiveSpace(
2,GF(7^3)) ) )

5.3.7 Order

. Order(g) (operation)

g is a projectivity, collineation or correlation of a projective space. This function returns the order
of g .
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Example
gap> x := Random(CollineationGroup(PG(4,9)));
< a collineation: <cmat 5x5 over GF(3,2)>, F^3>
gap> t := Order(x);
32
gap> IsOne(x^t);
true

5.4 The groups PΓL, PGL, and PSL in FinInG

As mentioned before the commands PGL (and ProjectiveGeneralLinearGroup) and PSL (and
ProjectiveSpecialLinearGroup) are already available in GAP and return a (permutation) group
isomorphic to the required group. In FinInG, different categories are created for these groups.

5.4.1 ProjectivityGroup

. ProjectivityGroup(geom) (operation)

. HomographyGroup(geom) (operation)

Returns: the group of projectivities of geom
Let geom be the projective space PG(n,q) This operation (and its synonym) returns the group

of projectivities PGL(n+ 1,q) of the projective space PG(n,q). Note that although a projectivity is
a collineation with the identity as associated field isomorphism, this group belongs to the category
IsProjectiveGroupWithFrob, and its elements belong to IsProjGrpElWithFrob.

Example
gap> ps := ProjectiveSpace(3,16);
ProjectiveSpace(3, 16)
gap> ProjectivityGroup(ps);
The FinInG projectivity group PGL(4,16)
gap> HomographyGroup(ps);
The FinInG projectivity group PGL(4,16)
gap> ps := ProjectiveSpace(4,81);
ProjectiveSpace(4, 81)
gap> ProjectivityGroup(ps);
The FinInG projectivity group PGL(5,81)
gap> HomographyGroup(ps);
The FinInG projectivity group PGL(5,81)
gap> ps := ProjectiveSpace(5,3);
ProjectiveSpace(5, 3)
gap> ProjectivityGroup(ps);
The FinInG projectivity group PGL(6,3)
gap> HomographyGroup(ps);
The FinInG projectivity group PGL(6,3)
gap> ps := ProjectiveSpace(2,2);
ProjectiveSpace(2, 2)
gap> ProjectivityGroup(ps);
The FinInG projectivity group PGL(3,2)
gap> HomographyGroup(ps);
The FinInG projectivity group PGL(3,2)
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5.4.2 CollineationGroup

. CollineationGroup(geom) (operation)

Returns: the group of collineations of geom
Let geom be the projective space PG(n,q). This operation returns the group of collineations

ΓL(n+ 1,q) of the projective space PG(n,q). If GF(q) has no non-trivial field automorphisms, i.e.
when q is prime, the group PGL(n+1,q) is the full collineation group and will be returned.

Example
gap> ps := ProjectiveSpace(3,16);
ProjectiveSpace(3, 16)
gap> CollineationGroup(ps);
The FinInG collineation group PGammaL(4,16)
gap> ps := ProjectiveSpace(4,81);
ProjectiveSpace(4, 81)
gap> CollineationGroup(ps);
The FinInG collineation group PGammaL(5,81)
gap> ps := ProjectiveSpace(5,3);
ProjectiveSpace(5, 3)
gap> CollineationGroup(ps);
The FinInG collineation group PGL(6,3)
gap> ps := ProjectiveSpace(2,2);
ProjectiveSpace(2, 2)
gap> CollineationGroup(ps);
The FinInG collineation group PGL(3,2)

5.4.3 SpecialProjectivityGroup

. SpecialProjectivityGroup(geom) (operation)

. SpecialHomographyGroup(geom) (operation)

Returns: the group of special projectivities of geom
Let geom be the projective space PG(n,q) This operation (and its synonym) returns the group of

special projectivities PSL(n+1,q) of the projective space PG(n,q).
Example

gap> ps := ProjectiveSpace(3,16);
ProjectiveSpace(3, 16)
gap> SpecialProjectivityGroup(ps);
The FinInG PSL group PSL(4,16)
gap> SpecialHomographyGroup(ps);
The FinInG PSL group PSL(4,16)
gap> ps := ProjectiveSpace(4,81);
ProjectiveSpace(4, 81)
gap> SpecialProjectivityGroup(ps);
The FinInG PSL group PSL(5,81)
gap> SpecialHomographyGroup(ps);
The FinInG PSL group PSL(5,81)
gap> ps := ProjectiveSpace(5,3);
ProjectiveSpace(5, 3)
gap> SpecialProjectivityGroup(ps);
The FinInG PSL group PSL(6,3)
gap> SpecialHomographyGroup(ps);
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The FinInG PSL group PSL(6,3)
gap> ps := ProjectiveSpace(2,2);
ProjectiveSpace(2, 2)
gap> SpecialProjectivityGroup(ps);
The FinInG PSL group PSL(3,2)
gap> SpecialHomographyGroup(ps);
The FinInG PSL group PSL(3,2)

5.4.4 IsProjectivityGroup

. IsProjectivityGroup (Property)

IsProjectivityGroup is a property, which subgroups of a the CollineationGroup or a
CorrelationCollineationGroup of a projective space might have. It checks whether the gen-
erators are projectivities. Of course ProjectivityGroup has this property.

5.4.5 IsCollineationGroup

. IsCollineationGroup (Property)

IsCollineationGroup is a property, which subgroups of a the
CorrelationCollineationGroup of a projective space might have. It checks whether the
generators are collineations. Of course ProjectivityGroup and CollineationGroup have this
property.

5.4.6 CorrelationCollineationGroup

. CorrelationCollineationGroup(geom) (operation)

Returns: the group of correlations and collineations of geom
Let geom be the projective space PG(n,q). This operation returns the correlations and

collineations of PG(n,q).
Example

gap> pg := PG(4,3);
ProjectiveSpace(4, 3)
gap> group := CorrelationCollineationGroup(pg);
The FinInG correlation-collineation group PGL(5,3) : 2
gap> pg := PG(3,8);
ProjectiveSpace(3, 8)
gap> group := CorrelationCollineationGroup(pg);
The FinInG correlation-collineation group PGammaL(4,8) : 2

5.5 Basic operations for projective groups

5.5.1 BaseField

. BaseField(g) (operation)

Returns: a field
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g must be a projective group. This function finds the base field of the vector space on which the
group acts.

5.5.2 Dimension

. Dimension(g) (attribute)

Returns: a number
g must be a projective group. This function finds the dimension of the vector space on which the

group acts.

5.6 Natural embedding of a collineation group in a correlation-
collineation group

In FinInG a collineation group is not constructed as a subgroup of a correlation group. However,
collineations can be multiplied with correlations (if they both belong mathematically to the same
correlation group.

Example
gap> x := Random(CollineationGroup(PG(3,4)));
< a collineation: <cmat 4x4 over GF(2,2)>, F^2>
gap> y := Random(CorrelationCollineationGroup(PG(3,4)));
<projective element with Frobenius with projectivespace isomorphism: <immutabl
e cmat 4x4 over GF(2,
2)>, F^0, StandardDuality( AllElementsOfIncidenceStructure( ProjectiveSpace(
3,GF(2^2)) ) ) >
gap> x*y;
<projective element with Frobenius with projectivespace isomorphism: <cmat 4x
4 over GF(2,2)>, F^
2, StandardDuality( AllElementsOfIncidenceStructure( ProjectiveSpace(
3,GF(2^2)) ) ) >

5.6.1 Embedding

. Embedding(coll, corr) (function)

Let coll be a the full collineation group of a projective space, and corr its full correlation group.
FinInG provides a method for this operation Embedding, returning the natural embedding from coll
into corr . Remark that only an embedding of a collineation group into a correlation group with
exactly the same underlying projective space is possible.

Example
gap> coll := CollineationGroup(PG(4,8));
The FinInG collineation group PGammaL(5,8)
gap> corr := CorrelationCollineationGroup(PG(4,8));
The FinInG correlation-collineation group PGammaL(5,8) : 2
gap> phi := Embedding(coll,corr);
MappingByFunction( The FinInG collineation group PGammaL(5,8), The FinInG corr
elation-collineation group PGammaL(5,8) : 2, function( y ) ... end )
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5.7 Basic action of projective group elements

5.7.1 \^

. \^(x, g) (operation)

Returns: a subspace of a projective space
This is an operation which returns the image of x , a subspace of a projective space, under g , an

element of the projective group, the collineation group, or the correlation group.

5.8 Projective group actions

In this section we give more detailed about the actions that are used in FinInG for projective groups.
Consider the projective space PG(n,q). As described in Chapter 4, a point of PG(n,q) is represented
by a row vector and a k-dimensional subspace of PG(n,q) is represented by a (k+1)×(n+1) matrix.

Consider a point p with row vector (x0,x1, . . . ,xn), and a collineation or correlation φ with under-
lying matrix A and field automorphism θ . Define the row vector (y0,y1, . . . ,yn) = ((x0,x1, . . . ,xn)A)θ .
When φ is a collineation, pφ is the point with underlying row vector (y0,y1, . . . ,yn). When φ is a corre-
lation, is a hyperplane of PG(n,q) with equation y0X0 +y1X1 + . . .+ynXn. The action of collineations
or correlations on points determines the action on subspaces of arbitrary dimension completely.

5.8.1 OnProjSubspaces

. OnProjSubspaces(subspace, el) (function)

Returns: a subspace of a projective space
This is a global function that returns the action of an element el of the collineation group on a

subspace subspace of a projective space.
IMPORTANT: This function should only be used for objects el in the category

IsProjGrpElWithFrob! This is because this function does not check whether el is a correlation
or a collineation. So when el is a object in the category IsProjGrpElWithFrobWithPSIsom, and
el is a correlation (i.e. the associated PSIsom is NOT the identity) then this action will not give
the image of the subspace under the correlation el . For the action of an object el in the cat-
egory IsProjGrpElWithFrobWithPSIsom, the action OnProjSubspacesExtended (8.3.1) should
be used.

Example
gap> ps := ProjectiveSpace(4,27);
ProjectiveSpace(4, 27)
gap> p := VectorSpaceToElement(ps,[ Z(3^3)^22,Z(3^3)^10,Z(3^3),Z(3^3)^3,Z(3^3)^3]);
<a point in ProjectiveSpace(4, 27)>
gap> ps := ProjectiveSpace(3,27);
ProjectiveSpace(3, 27)
gap> p := VectorSpaceToElement(ps,[ Z(3^3)^22,Z(3^3)^10,Z(3^3),Z(3^3)^3]);
<a point in ProjectiveSpace(3, 27)>
gap> Display(p);
[16nh]
gap> mat := [[ Z(3^3)^25,Z(3^3)^6,Z(3^3)^7,Z(3^3)^15],
> [Z(3^3)^9,Z(3)^0,Z(3^3)^10,Z(3^3)^18],
> [Z(3^3)^19,0*Z(3),Z(3),Z(3^3)^12],
> [Z(3^3)^4,Z(3^3),Z(3^3),Z(3^3)^22]];
[ [ Z(3^3)^25, Z(3^3)^6, Z(3^3)^7, Z(3^3)^15 ],
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[ Z(3^3)^9, Z(3)^0, Z(3^3)^10, Z(3^3)^18 ],
[ Z(3^3)^19, 0*Z(3), Z(3), Z(3^3)^12 ],
[ Z(3^3)^4, Z(3^3), Z(3^3), Z(3^3)^22 ] ]

gap> theta := FrobeniusAutomorphism(GF(27));
FrobeniusAutomorphism( GF(3^3) )
gap> phi := CollineationOfProjectiveSpace(mat,theta,GF(27));
< a collineation: <cmat 4x4 over GF(3,3)>, F^3>
gap> r := OnProjSubspaces(p,phi);
<a point in ProjectiveSpace(3, 27)>
gap> Display(r);
[1..l]
gap> vect := [[Z(3^3)^9,Z(3^3)^5,Z(3^3)^19,Z(3^3)^17],
> [Z(3^3)^22,Z(3^3)^22,Z(3^3)^4,Z(3^3)^17],
> [Z(3^3)^8,0*Z(3),Z(3^3)^24,Z(3^3)^21]];
[ [ Z(3^3)^9, Z(3^3)^5, Z(3^3)^19, Z(3^3)^17 ],

[ Z(3^3)^22, Z(3^3)^22, Z(3^3)^4, Z(3^3)^17 ],
[ Z(3^3)^8, 0*Z(3), Z(3^3)^24, Z(3^3)^21 ] ]

gap> s := VectorSpaceToElement(ps,vect);
<a plane in ProjectiveSpace(3, 27)>
gap> r := OnProjSubspaces(s,phi);
<a plane in ProjectiveSpace(3, 27)>
gap> Display(r);
[[1..c]
[.1.7]
[..17]

]

5.8.2 ActionOnAllProjPoints

. ActionOnAllProjPoints(g) (function)

g must be a projective group. This function returns the action homomorphism of g acting on its
projective points. This function is used by NiceMonomorphism when the number of points is small
enough for the action to be easy to calculate.

5.8.3 OnProjSubspacesExtended

. OnProjSubspacesExtended(subspace, el) (function)

Returns: a subspace of a projective space
This should be used for the action of elements in the category

IsProjGrpElWithFrobWithPSIsom where subspace is a subspace of a projective or polar
space and el is an element of the correlation group of the ambient geometry of subspace . This
function returns the image of subspace under el , which is a subspace of the same dimension as
subspace if el is a collineation and an element of codimension equal to the dimension of subspace
if el is a correlation.

Example
gap> ps := ProjectiveSpace(3,27);
ProjectiveSpace(3, 27)
gap> mat := IdentityMat(4,GF(27));
[ [ Z(3)^0, 0*Z(3), 0*Z(3), 0*Z(3) ], [ 0*Z(3), Z(3)^0, 0*Z(3), 0*Z(3) ],
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[ 0*Z(3), 0*Z(3), Z(3)^0, 0*Z(3) ], [ 0*Z(3), 0*Z(3), 0*Z(3), Z(3)^0 ] ]
gap> delta := StandardDualityOfProjectiveSpace(ps);
StandardDuality( AllElementsOfIncidenceStructure( ProjectiveSpace(
3,GF(3^3)) ) )
gap> frob := FrobeniusAutomorphism(GF(27));
FrobeniusAutomorphism( GF(3^3) )
gap> phi := CorrelationOfProjectiveSpace(mat,frob,GF(27),delta);
<projective element with Frobenius with projectivespace isomorphism: <cmat 4x
4 over GF(3,3)>, F^
3, StandardDuality( AllElementsOfIncidenceStructure( ProjectiveSpace(
3,GF(3^3)) ) ) >
gap> p := Random(Points(ps));
<a point in ProjectiveSpace(3, 27)>
gap> OnProjSubspacesExtended(p,phi);
<a plane in ProjectiveSpace(3, 27)>
gap> l := Random(Lines(ps));
<a line in ProjectiveSpace(3, 27)>
gap> OnProjSubspacesExtended(p,phi);
<a plane in ProjectiveSpace(3, 27)>
gap> psi := CorrelationOfProjectiveSpace(mat,frob^2,GF(27));
<projective element with Frobenius with projectivespace isomorphism: <cmat 4x
4 over GF(3,3)>, F^9, IdentityMapping( <All elements of ProjectiveSpace(3,
27)> ) >
gap> OnProjSubspacesExtended(p,psi);
<a point in ProjectiveSpace(3, 27)>
gap> OnProjSubspacesExtended(l,psi);
<a line in ProjectiveSpace(3, 27)>

5.9 Special subgroups of the projectivity group

A transvection of the vector space V =V (n+1,F) is a linear map τ from V to V with matrix M such
that rk(M− I) = 1 and (M− I)2 = 0. Different equivalent definitions are found in the literature, here
we followed [Cam00a]. Choosing a basis e1, . . . ,en,en+1 such that e1, . . . ,en generates the kernel of
M− I, it follows that M equals 

1 0 . . . 0 0
0 1 . . . 0 0
...

...
. . .

...
...

0 0 . . . 1 0
x1 x2 . . . xn−1 1

 .

It is also a well known fact that all transvections generate the group SL(n+1,F). A transvection gives
rise to a projectivity of PG(n,F), we call such an element an elation, and it is a projectivity φ fixing a
hyperplane H pointwise, and such that there exists exactly one point p ∈ H such that all hyperplanes
through p are stabilized. The hyperplane H is called the axis of φ , and the point p is called the centre
of φ . As a transvection is an element of SL(n,F), an elation is an element of PSL(n,F). An elation is
completely determind by its axis and the image of one point (not contained in the axis). The group of
elations with a given axis and centre, is isomorphic with the additive group of F . Finally, the group of
all elations with a given axis H, acts regularly on the points of PG(n,F)\H, and is isomorphic with
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the additive group of the vectorspace V (n,F).

5.9.1 ElationOfProjectiveSpace

. ElationOfProjectiveSpace(sub, point1, point2) (operation)

Returns: the unique elation with axis sub mapping point1 on point2
It is checked whether the two points do not belong to sub . If point1 equals point2 , the identity

mapping is returned.
Example

gap> ps := PG(3,9);
ProjectiveSpace(3, 9)
gap> sub := VectorSpaceToElement(ps,[[1,0,1,0],[0,1,0,1],[1,2,3,0]]*Z(3)^0);
<a plane in ProjectiveSpace(3, 9)>
gap> p1 := VectorSpaceToElement(ps,[1,0,1,2]*Z(3)^0);
<a point in ProjectiveSpace(3, 9)>
gap> p2 := VectorSpaceToElement(ps,[1,2,0,2]*Z(3)^0);
<a point in ProjectiveSpace(3, 9)>
gap> phi := ElationOfProjectiveSpace(sub,p1,p2);
< a collineation: <cmat 4x4 over GF(3,2)>, F^0>

5.9.2 ProjectiveElationGroup

. ProjectiveElationGroup(axis, centre) (operation)

. ProjectiveElationGroup(axis) (operation)

Returns: A group of elations
The first version returns the group of elations with with given axis axis and centre centre . It

is checked whether centre belongs to axis . The second version returns the group of elations with
given axis axis .

Example
gap> ps := PG(2,27);
ProjectiveSpace(2, 27)
gap> sub := VectorSpaceToElement(ps,[[1,0,1,],[0,1,0]]*Z(3)^0);
<a line in ProjectiveSpace(2, 27)>
gap> p := VectorSpaceToElement(ps,[1,1,1]*Z(3)^0);
<a point in ProjectiveSpace(2, 27)>
gap> g := ProjectiveElationGroup(sub,p);
<projective collineation group with 3 generators>
gap> Order(g);
27
gap> StructureDescription(g);
"C3 x C3 x C3"
gap> ps := PG(3,4);
ProjectiveSpace(3, 4)
gap> sub := Random(Hyperplanes(ps));
<a plane in ProjectiveSpace(3, 4)>
gap> g := ProjectiveElationGroup(sub);
<projective collineation group with 6 generators>
gap> Order(g);
64
gap> Transitivity(g,Difference(Points(ps),Points(sub)),OnProjSubspaces);
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1
gap> StructureDescription(g);
"C2 x C2 x C2 x C2 x C2 x C2"

A homology of the projective space PG(n,q) is a collineation fixing a hyperplane H pointwise and
fixing one more point p 6∈ H. It is easily seen that after a suitable choice of a basis for the space, the
matrix of a homology is a diagonal matrix with all its diagonal entries except one equal to 1. We call
the hyperplane the axis and the point the centre of the homology. Homologies with a common axis
and centre are a group isomorphic to the multiplicative group of the field GF(q).

5.9.3 HomologyOfProjectiveSpace

. HomologyOfProjectiveSpace(sub, centre, point1, point2) (operation)

Returns: the unique homology with axis sub and centre centre that maps point1 on point2
It is checked whether the three points do not belong to sub and whether they are collinear. If

point1 equals point2 , the identity mapping is returned.
Example

gap> ps := PG(3,81);
ProjectiveSpace(3, 81)
gap> sub := VectorSpaceToElement(ps,[[1,0,1,0],[0,1,0,1],[1,2,3,0]]*Z(3)^0);
<a plane in ProjectiveSpace(3, 81)>
gap> centre := VectorSpaceToElement(ps,[0*Z(3),Z(3)^0,Z(3^4)^36,0*Z(3)]);
<a point in ProjectiveSpace(3, 81)>
gap> p1 := VectorSpaceToElement(ps,[0*Z(3),Z(3)^0,Z(3^4)^51,0*Z(3)]);
<a point in ProjectiveSpace(3, 81)>
gap> p2 := VectorSpaceToElement(ps,[0*Z(3),Z(3)^0,Z(3^4)^44,0*Z(3)]);
<a point in ProjectiveSpace(3, 81)>
gap> phi := HomologyOfProjectiveSpace(sub,centre,p1,p2);
< a collineation: <cmat 4x4 over GF(3,4)>, F^0>

5.9.4 ProjectiveHomologyGroup

. ProjectiveHomologyGroup(axis, centre) (operation)

Returns: the group of homologies with with given axis axis and centre centre .
It is checked whether centre does not belong to axis .

Example
gap> ps := PG(2,27);
ProjectiveSpace(2, 27)
gap> sub := VectorSpaceToElement(ps,[[1,0,1,],[0,1,0]]*Z(3)^0);
<a line in ProjectiveSpace(2, 27)>
gap> p := VectorSpaceToElement(ps,[1,0,2]*Z(3)^0);
<a point in ProjectiveSpace(2, 27)>
gap> g := ProjectiveHomologyGroup(sub,p);
<projective collineation group with 1 generators>
gap> Order(g);
26
gap> StructureDescription(g);
"C26"
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5.10 Nice Monomorphisms

A nice monomorphism of a group G is roughly just a permutation representation of G on a suitable
action domain. An easy example is the permutation action of the full collineation group of a projective
space on its points. FinInG provides (automatic) functionality to compute nice monomorphisms.
Typically, for a geometry S with G a (subgroup of the) collineation group of S, a nice monomorphism
for G is a homomorphism from G to the permutation action of S on a collection of elements of
S. Thus, to obtain such a homomorphism, one has to enumerate the collection of elements. As
nice monomorphisms for projective semilinear groups are often computed as a byproduct of some
operations, suddenly, these operations get time consuming (when executed for the first time). In
general, it is decided automatically whether a nice monomorphism is computed or not. A typical
example is the following.

Example
gap> pg := PG(4,8);
ProjectiveSpace(4, 8)
gap> group := CollineationGroup(pg);
The FinInG collineation group PGammaL(5,8)
gap> HasNiceMonomorphism(group);
false
gap> Random(group);
< a collineation: <cmat 5x5 over GF(2,3)>, F^4>
gap> time;
1028
gap> HasNiceMonomorphism(group);
true
gap> Random(group);
< a collineation: <cmat 5x5 over GF(2,3)>, F^0>
gap> time;
3

5.10.1 NiceMonomorphism

. NiceMonomorphism(g) (operation)

Returns: an action, i.e. a group homomorphism
g is a projective semilinear group. If g was constructed as a group stabilizing a geometry, the

action of g on the points of the geometry is returned.
Example

gap> g := HomographyGroup(PG(4,8));
The FinInG projectivity group PGL(5,8)
gap> NiceMonomorphism(g);
<action isomorphism>
gap> Image(last);
<permutation group of size 4638226007491010887680 with 2 generators>
gap> g := CollineationGroup(PG(4,8));
The FinInG collineation group PGammaL(5,8)
gap> NiceMonomorphism(g);
<action isomorphism>
gap> Image(last);
<permutation group of size 13914678022473032663040 with 3 generators>
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5.10.2 NiceObject

. NiceObject(g) (operation)

Returns: a permutation group
g is a projective semilinear group. If g was constructed as a group stabilizing a geometry, the

permutation representation of g acting on the points of the geometry is returned. This is actually
equivalent with Image(NiceMonomorphism(g)).

Example
gap> g := HomographyGroup(PG(4,8));
The FinInG projectivity group PGL(5,8)
gap> NiceObject(g);
<permutation group of size 4638226007491010887680 with 2 generators>
gap> g := CollineationGroup(PG(4,8));
The FinInG collineation group PGammaL(5,8)
gap> NiceObject(g);
<permutation group of size 13914678022473032663040 with 3 generators>

5.10.3 FINING

. FINING (global variable)

The global variable FINING stores a record with two components, FINING.Fast and
FINING.LimitForCanComputeActionOnPoints By default, FINING.Fast is set to true. Setting
FINING.Fast to false causes the use of the generic GAP function ActionHomomorphism instead
of the functions NiceMonomorphismByDomain and NiceMonomorphismByOrbit, which both rely on
the packages GenSS and Orb.

5.10.4 CanComputeActionOnPoints

. CanComputeActionOnPoints(g) (operation)

Returns: true or false
g must be a projective group. This function returns true if GAP can feasibly compute the action

of g on the points of the projective space on which it acts. This function can be used (and is, by
other parts of FinInG) to determine whether it is worth trying to compute the action. This function
actually checks if the number of points of the corresponding projective space is less than the con-
stant FINING.LimitForCanComputeActionOnPoints, which is by default set to 1000000. The next
example requires about 500M of memory.

Example
gap> NiceMonomorphism(CollineationGroup(ProjectiveSpace(7,8)));
Error, action on projective points not feasible to calculate called from
<function "unknown">( <arguments> )
called from read-eval loop at line 8 of *stdin*

you can ’quit;’ to quit to outer loop, or
you can ’return;’ to continue
brk> quit;
gap> FINING.LimitForCanComputeActionOnPoints := 3*10^6;
3000000
gap> NiceMonomorphism(CollineationGroup(ProjectiveSpace(7,8)));
<action isomorphism>
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gap> time;
39619

5.10.5 NiceMonomorphismByDomain

. NiceMonomorphismByDomain(g, dom, op) (operation)

Returns: an action, i.e. a group homomorphism
This operaion is not intended for the user. It relies on GenSS and Orb. The argument g is a

projective group (in the category IsProjectiveGroupWithFrob) with a set Size attribute, dom is
an orbit of g , and op an operation suitable for x and g .

5.10.6 NiceMonomorphismByOrbit

. NiceMonomorphismByOrbit(g, dom, op, orblen) (operation)

Returns: an action, i.e. a group homomorphism
This operaion is not intended for the user. It relies on GenSS and Orb. The argument g is a

projective group (in the category IsProjectiveGroupWithFrob) with a set Size attribute, dom is
an orbit of g , op an operation suitable for x and g , and orblen is the length of the final orbit.



Chapter 6

Polarities of Projective Spaces

A polarity of a incidence structure is an incidence reversing, bijective, and involutory map on the
elements of the incidence structure. It is well known that every polarity of a projective space is just
an involutory correlation of the projective space. The construction of correlations of a projective
space is described in Chapter 5. In this chapter we describe methods and operations dealing with the
construction and use of polarities of projective spaces in FinInG.

6.1 Creating polarities of projective spaces

Since polarities of a projective space necessarily have an involutory field automorphism as companion
automorphism and the standard duality of the projective space as the companion projective space
isomorphism, a polarity of a projective space is determined completely by a suitable matrix A. Every
polarity of a projective space PG(n,q) is listed in the following table, including the conditions on the
matrix A.

q odd q even
hermitian Aθ = AT Aθ = AT

symplectic AT =−A AT = A, all aii = 0
orthogonal AT = A
pseudo AT = A, not all aii = 0

Table: polarities of a projective space

A hermitian polarity of the projective space PG(n,q) exists if and only if the field GF(q) admits
an involutory field automorphism θ .

It is well known that there is a correspondence between polarities of projective spaces and non-
degenerate sesquilinear forms on the underlying vector space. Consider a sesquilinear form f on
the vector space V (n+ 1,q). Then f induces a map on the elements of PG(n,q) as follows: every
element with underlying subspace α is mapped to the element with underlying subspace α⊥, i.e.
the subspace of V (n+ 1,q) orthogonal to α with respect to the form f . It is clear that this induced
map is a polarity of PG(n,q). Also the converse is true, with any polarity of PG(n,q) corresponds
a sesquilinear form on V (n+ 1,q). The above classification of polarities of PG(n,q) follows from
the classification of sesquilinear forms on V (n+1,q). For more information, we refer to [HT91] and
[KL90]. We mention that the implementation of the action of correlations on projective points (see
5.8) guarantees that a sesquilinear form with matrix M and field automorphism θ corresponds to a
polarity with matrix M and field automorphism θ and vice versa.
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In FinInG, polarities of projective spaces are always objects in the cate-
gory IsPolarityOfProjectiveSpace, which is a subcategory of the category
IsProjGrpElWithFrobWithPSIsom.

6.1.1 PolarityOfProjectiveSpace

. PolarityOfProjectiveSpace(mat, f) (operation)

Returns: a polarity of a projective space
The underlying correlation of the projective space is constructed using matrix mat , field f , the

identity mapping as field automorphism and the standard duality of the projective space. It is checked
whether the matrix mat satisfies the necessary conditions to induce a polarity.

Example
gap> mat := [[0,1,0],[1,0,0],[0,0,1]]*Z(169)^0;
[ [ 0*Z(13), Z(13)^0, 0*Z(13) ], [ Z(13)^0, 0*Z(13), 0*Z(13) ],

[ 0*Z(13), 0*Z(13), Z(13)^0 ] ]
gap> phi := PolarityOfProjectiveSpace(mat,GF(169));
<polarity of PG(2, GF(13^2)) >

6.1.2 PolarityOfProjectiveSpace

. PolarityOfProjectiveSpace(mat, frob, f) (operation)

. HermitianPolarityOfProjectiveSpace(mat, f) (operation)

Returns: a polarity of a projective space
The underlying correlation of the projective space is constructed using matrix mat , field auto-

morphism frob , f and the standard duality of the projective space. It is checked whether the mat
satisfies the necessary conditions to induce a polarity, and whether frob is a non-trivial involutory
field automorphism. The second operation only needs the arguments mat and f to construct a hermi-
tian polarity of a projective space, provided the field f allows an involutory field automorphism and
mat satisfies the necessary conditions. The latter is checked by constructing the underlying hermitian
form.

Example
gap> mat := [[Z(11)^0,0*Z(11),0*Z(11)],[0*Z(11),0*Z(11),Z(11)],
> [0*Z(11),Z(11),0*Z(11)]];
[ [ Z(11)^0, 0*Z(11), 0*Z(11) ], [ 0*Z(11), 0*Z(11), Z(11) ],

[ 0*Z(11), Z(11), 0*Z(11) ] ]
gap> frob := FrobeniusAutomorphism(GF(121));
FrobeniusAutomorphism( GF(11^2) )
gap> phi := PolarityOfProjectiveSpace(mat,frob,GF(121));
<polarity of PG(2, GF(11^2)) >
gap> psi := HermitianPolarityOfProjectiveSpace(mat,GF(121));
<polarity of PG(2, GF(11^2)) >
gap> phi = psi;
true

6.1.3 PolarityOfProjectiveSpace

. PolarityOfProjectiveSpace(form) (operation)

Returns: a polarity of a projective space
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The polarity of the projective space is constructed using a non-degenerate sesquilinear form form .
It is checked whether the given form is non-degenerate.

Example
gap> mat := [[0,1,0,0],[1,0,0,0],[0,0,0,1],[0,0,1,0]]*Z(16)^0;
[ [ 0*Z(2), Z(2)^0, 0*Z(2), 0*Z(2) ], [ Z(2)^0, 0*Z(2), 0*Z(2), 0*Z(2) ],

[ 0*Z(2), 0*Z(2), 0*Z(2), Z(2)^0 ], [ 0*Z(2), 0*Z(2), Z(2)^0, 0*Z(2) ] ]
gap> form := BilinearFormByMatrix(mat,GF(16));
< bilinear form >
gap> phi := PolarityOfProjectiveSpace(form);
<polarity of PG(3, GF(2^4)) >

6.1.4 PolarityOfProjectiveSpace

. PolarityOfProjectiveSpace(ps) (operation)

Returns: a polarity of a projective space
The polarity of the projective space is constructed using the non-degenerate sesquilinear form that

defines the polar space ps . When ps is a parabolic quadric in even characteristic, no polarity of the
ambient projective space can be associated to ps , and an error message is returned.

Example
gap> ps := HermitianPolarSpace(4,64);
H(4, 8^2)
gap> phi := PolarityOfProjectiveSpace(ps);
<polarity of PG(4, GF(2^6)) >
gap> ps := ParabolicQuadric(6,8);
Q(6, 8)
gap> PolarityOfProjectiveSpace(ps);
Error, no polarity of the ambient projective space can be associated to <ps> called from
<function "unknown">( <arguments> )
called from read-eval loop at line 11 of *stdin*

you can ’quit;’ to quit to outer loop, or
you can ’return;’ to continue
brk> quit;

6.2 Operations, attributes and properties for polarities of projective
spaces

6.2.1 SesquilinearForm

. SesquilinearForm(phi) (attribute)

Returns: a sesquilinear form
The sesquilinear form corresponding to the given polarity phi is returned.

Example
gap> mat := [[0,-2,0,1],[2,0,3,0],[0,-3,0,1],[-1,0,-1,0]]*Z(19)^0;
[ [ 0*Z(19), Z(19)^10, 0*Z(19), Z(19)^0 ],

[ Z(19), 0*Z(19), Z(19)^13, 0*Z(19) ],
[ 0*Z(19), Z(19)^4, 0*Z(19), Z(19)^0 ],
[ Z(19)^9, 0*Z(19), Z(19)^9, 0*Z(19) ] ]

gap> phi := PolarityOfProjectiveSpace(mat,GF(19));
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<polarity of PG(3, GF(19)) >
gap> form := SesquilinearForm(phi);
< non-degenerate bilinear form >

6.2.2 BaseField

. BaseField(phi) (attribute)

Returns: a field
The base field over which the polarity phi was constructed.

Example
gap> mat := [[1,0,0],[0,0,2],[0,2,0]]*Z(5)^0;
[ [ Z(5)^0, 0*Z(5), 0*Z(5) ], [ 0*Z(5), 0*Z(5), Z(5) ],

[ 0*Z(5), Z(5), 0*Z(5) ] ]
gap> phi := PolarityOfProjectiveSpace(mat,GF(25));
<polarity of PG(2, GF(5^2)) >
gap> BaseField(phi);
GF(5^2)

6.2.3 GramMatrix

. GramMatrix(phi) (attribute)

Returns: a matrix
The Gram matrix of the polarity phi .

Example
gap> mat := [[1,0,0],[0,0,3],[0,3,0]]*Z(11)^0;
[ [ Z(11)^0, 0*Z(11), 0*Z(11) ], [ 0*Z(11), 0*Z(11), Z(11)^8 ],

[ 0*Z(11), Z(11)^8, 0*Z(11) ] ]
gap> phi := PolarityOfProjectiveSpace(mat,GF(11));
<polarity of PG(2, GF(11)) >
gap> GramMatrix(phi);
<immutable cmat 3x3 over GF(11,1)>

6.2.4 CompanionAutomorphism

. CompanionAutomorphism(phi) (attribute)

Returns: a field automorphism
The involutory field automorphism accompanying the polarity phi .

Example
gap> mat := [[0,2,0,0],[2,0,0,0],[0,0,0,5],[0,0,5,0]]*Z(7)^0;
[ [ 0*Z(7), Z(7)^2, 0*Z(7), 0*Z(7) ], [ Z(7)^2, 0*Z(7), 0*Z(7), 0*Z(7) ],

[ 0*Z(7), 0*Z(7), 0*Z(7), Z(7)^5 ], [ 0*Z(7), 0*Z(7), Z(7)^5, 0*Z(7) ] ]
gap> phi := HermitianPolarityOfProjectiveSpace(mat,GF(49));
<polarity of PG(3, GF(7^2)) >
gap> CompanionAutomorphism(phi);
FrobeniusAutomorphism( GF(7^2) )
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6.2.5 IsHermitianPolarityOfProjectiveSpace

. IsHermitianPolarityOfProjectiveSpace(phi) (property)

Returns: true or false
The polarity phi is a hermitian polarity of a projective space if and only if the underlying matrix

is hermitian.
Example

gap> mat := [[0,2,7,1],[2,0,3,0],[7,3,0,1],[1,0,1,0]]*Z(19)^0;
[ [ 0*Z(19), Z(19), Z(19)^6, Z(19)^0 ], [ Z(19), 0*Z(19), Z(19)^13, 0*Z(19) ],

[ Z(19)^6, Z(19)^13, 0*Z(19), Z(19)^0 ],
[ Z(19)^0, 0*Z(19), Z(19)^0, 0*Z(19) ] ]

gap> frob := FrobeniusAutomorphism(GF(19^4));
FrobeniusAutomorphism( GF(19^4) )
gap> phi := PolarityOfProjectiveSpace(mat,frob^2,GF(19^4));
<polarity of PG(3, GF(19^4)) >
gap> IsHermitianPolarityOfProjectiveSpace(phi);
true

6.2.6 IsSymplecticPolarityOfProjectiveSpace

. IsSymplecticPolarityOfProjectiveSpace(phi) (property)

Returns: true or false
The polarity phi is a symplectic polarity of a projective space if and only if the underlying matrix

is symplectic.
Example

gap> mat := [[0,0,1,0],[0,0,0,1],[1,0,0,0],[0,1,0,0]]*Z(8)^0;
[ [ 0*Z(2), 0*Z(2), Z(2)^0, 0*Z(2) ], [ 0*Z(2), 0*Z(2), 0*Z(2), Z(2)^0 ],

[ Z(2)^0, 0*Z(2), 0*Z(2), 0*Z(2) ], [ 0*Z(2), Z(2)^0, 0*Z(2), 0*Z(2) ] ]
gap> phi := PolarityOfProjectiveSpace(mat,GF(8));
<polarity of PG(3, GF(2^3)) >
gap> IsSymplecticPolarityOfProjectiveSpace(phi);
true

6.2.7 IsOrthogonalPolarityOfProjectiveSpace

. IsOrthogonalPolarityOfProjectiveSpace(phi) (property)

Returns: true or false
The polarity phi is an orthogonal polarity of a projective space if and only if the underlying matrix

is symmetric and the characteristic of the field is odd.
Example

gap> mat := [[1,0,2,0],[0,2,0,1],[2,0,0,0],[0,1,0,0]]*Z(9)^0;
[ [ Z(3)^0, 0*Z(3), Z(3), 0*Z(3) ], [ 0*Z(3), Z(3), 0*Z(3), Z(3)^0 ],

[ Z(3), 0*Z(3), 0*Z(3), 0*Z(3) ], [ 0*Z(3), Z(3)^0, 0*Z(3), 0*Z(3) ] ]
gap> phi := PolarityOfProjectiveSpace(mat,GF(9));
<polarity of PG(3, GF(3^2)) >
gap> IsOrthogonalPolarityOfProjectiveSpace(phi);
true
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6.2.8 IsPseudoPolarityOfProjectiveSpace

. IsPseudoPolarityOfProjectiveSpace(phi) (property)

Returns: true or false
The polarity phi is a pseudo-polarity of a projective space if and only if the underlying matrix is

symmetric, not all elements on the main diagonal are zero and the characteristic of the field is even.
Example

gap> mat := [[1,0,1,0],[0,1,0,1],[1,0,0,0],[0,1,0,0]]*Z(16)^0;
[ [ Z(2)^0, 0*Z(2), Z(2)^0, 0*Z(2) ], [ 0*Z(2), Z(2)^0, 0*Z(2), Z(2)^0 ],

[ Z(2)^0, 0*Z(2), 0*Z(2), 0*Z(2) ], [ 0*Z(2), Z(2)^0, 0*Z(2), 0*Z(2) ] ]
gap> phi := PolarityOfProjectiveSpace(mat,GF(16));
<polarity of PG(3, GF(2^4)) >
gap> IsPseudoPolarityOfProjectiveSpace(phi);
true

6.3 Polarities, absolute points, totally isotropic elements and finite clas-
sical polar spaces

We already mentioned the equivalence between polarities of PG(n,q) and sesquilinear forms on V (n+
1,q), hence there is a relation between polarities of PG(n,q) and polar spaces induced by sesquilinear
forms. The following concepts express these relations geometrically.

Suppose that φ is a polarity of PG(n,q) and that α is an element of PG(n,q). We call α a totally
isotropic element or an absolute element if and only if α is incident with αφ . An absolute element that
is a point is also called an absolute point or an isotropic point. It is clear that an element of PG(n,q) is
absolute if and only if the underlying vector space is totally isotropic with respect to the sesquilinear
form equivalent to φ . Hence the absolute elements induce a finite classical polar space, the same
that is induced by the equivalent sesquilinear form. When φ is a pseudo-polarity, the set of absolute
elements are the elements of a hyperplane of PG(n,q).

We restrict our introduction to finite classical polar spaces in this section to the following exam-
ples. Many aspects of these geometries are extensively described in Chapter 7.

6.3.1 GeometryOfAbsolutePoints

. GeometryOfAbsolutePoints(f) (operation)

Returns: a polar space or a hyperplane
When f is not a pseudo-polarity, this operation returns the polar space induced by f . When f is

a pseudo-polarity, this operation returns the hyperplane containing all absolute elements.
Example

gap> mat := IdentityMat(4,GF(16));
[ [ Z(2)^0, 0*Z(2), 0*Z(2), 0*Z(2) ], [ 0*Z(2), Z(2)^0, 0*Z(2), 0*Z(2) ],

[ 0*Z(2), 0*Z(2), Z(2)^0, 0*Z(2) ], [ 0*Z(2), 0*Z(2), 0*Z(2), Z(2)^0 ] ]
gap> phi := HermitianPolarityOfProjectiveSpace(mat,GF(16));
<polarity of PG(3, GF(2^4)) >
gap> geom := GeometryOfAbsolutePoints(phi);
<polar space in ProjectiveSpace(3,GF(2^4)): x_1^5+x_2^5+x_3^5+x_4^5=0 >
gap> mat := [[1,0,0,0],[0,0,1,1],[0,1,1,0],[0,1,0,0]]*Z(32)^0;
[ [ Z(2)^0, 0*Z(2), 0*Z(2), 0*Z(2) ], [ 0*Z(2), 0*Z(2), Z(2)^0, Z(2)^0 ],

[ 0*Z(2), Z(2)^0, Z(2)^0, 0*Z(2) ], [ 0*Z(2), Z(2)^0, 0*Z(2), 0*Z(2) ] ]
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gap> phi := PolarityOfProjectiveSpace(mat,GF(32));
<polarity of PG(3, GF(2^5)) >
gap> geom := GeometryOfAbsolutePoints(phi);
<a plane in ProjectiveSpace(3, 32)>

6.3.2 AbsolutePoints

. AbsolutePoints(f) (operation)

Returns: a set of points
This operation returns all points that are absolute with respect to f .

Example
gap> mat := IdentityMat(4,GF(3));
[ [ Z(3)^0, 0*Z(3), 0*Z(3), 0*Z(3) ], [ 0*Z(3), Z(3)^0, 0*Z(3), 0*Z(3) ],

[ 0*Z(3), 0*Z(3), Z(3)^0, 0*Z(3) ], [ 0*Z(3), 0*Z(3), 0*Z(3), Z(3)^0 ] ]
gap> phi := PolarityOfProjectiveSpace(mat,GF(3));
<polarity of PG(3, GF(3)) >
gap> points := AbsolutePoints(phi);
<points of Q+(3, 3): x_1^2+x_2^2+x_3^2+x_4^2=0>
gap> List(points);
[ <a point in Q+(3, 3): x_1^2+x_2^2+x_3^2+x_4^2=0>,

<a point in Q+(3, 3): x_1^2+x_2^2+x_3^2+x_4^2=0>,
<a point in Q+(3, 3): x_1^2+x_2^2+x_3^2+x_4^2=0>,
<a point in Q+(3, 3): x_1^2+x_2^2+x_3^2+x_4^2=0>,
<a point in Q+(3, 3): x_1^2+x_2^2+x_3^2+x_4^2=0>,
<a point in Q+(3, 3): x_1^2+x_2^2+x_3^2+x_4^2=0>,
<a point in Q+(3, 3): x_1^2+x_2^2+x_3^2+x_4^2=0>,
<a point in Q+(3, 3): x_1^2+x_2^2+x_3^2+x_4^2=0>,
<a point in Q+(3, 3): x_1^2+x_2^2+x_3^2+x_4^2=0>,
<a point in Q+(3, 3): x_1^2+x_2^2+x_3^2+x_4^2=0>,
<a point in Q+(3, 3): x_1^2+x_2^2+x_3^2+x_4^2=0>,
<a point in Q+(3, 3): x_1^2+x_2^2+x_3^2+x_4^2=0>,
<a point in Q+(3, 3): x_1^2+x_2^2+x_3^2+x_4^2=0>,
<a point in Q+(3, 3): x_1^2+x_2^2+x_3^2+x_4^2=0>,
<a point in Q+(3, 3): x_1^2+x_2^2+x_3^2+x_4^2=0>,
<a point in Q+(3, 3): x_1^2+x_2^2+x_3^2+x_4^2=0> ]

6.3.3 PolarSpace

. PolarSpace(f) (operation)

Returns: a polar space
When f is not a pseudo-polarity, this operation returns the polar space induced by f .

Example
gap> mat := [[1,0,0,0],[0,0,1,1],[0,1,1,0],[0,1,0,0]]*Z(32)^0;
[ [ Z(2)^0, 0*Z(2), 0*Z(2), 0*Z(2) ], [ 0*Z(2), 0*Z(2), Z(2)^0, Z(2)^0 ],

[ 0*Z(2), Z(2)^0, Z(2)^0, 0*Z(2) ], [ 0*Z(2), Z(2)^0, 0*Z(2), 0*Z(2) ] ]
gap> phi := PolarityOfProjectiveSpace(mat,GF(32));
<polarity of PG(3, GF(2^5)) >
gap> ps := PolarSpace(phi);
Error, <polarity> is pseudo and does not induce a polar space called from
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<function "unknown">( <arguments> )
called from read-eval loop at line 10 of *stdin*

you can ’quit;’ to quit to outer loop, or
you can ’return;’ to continue
brk> quit;
gap> mat := IdentityMat(5,GF(7));
[ [ Z(7)^0, 0*Z(7), 0*Z(7), 0*Z(7), 0*Z(7) ],

[ 0*Z(7), Z(7)^0, 0*Z(7), 0*Z(7), 0*Z(7) ],
[ 0*Z(7), 0*Z(7), Z(7)^0, 0*Z(7), 0*Z(7) ],
[ 0*Z(7), 0*Z(7), 0*Z(7), Z(7)^0, 0*Z(7) ],
[ 0*Z(7), 0*Z(7), 0*Z(7), 0*Z(7), Z(7)^0 ] ]

gap> phi := PolarityOfProjectiveSpace(mat,GF(7));
<polarity of PG(4, GF(7)) >
gap> ps := PolarSpace(phi);
<polar space in ProjectiveSpace(4,GF(7)): x_1^2+x_2^2+x_3^2+x_4^2+x_5^2=0 >

6.4 Commuting polarities

FinInG constructs polarities of projective spaces as correlations. This allows polarities to be mul-
tiplied easily, resulting in a collineation. The resulting collineation is constructed in the correlation
group but can be mapped onto its unique representative in the collineation group. We provide an
example with two commuting polarities.

Example
gap> mat := [[0,1,0,0],[1,0,0,0],[0,0,0,1],[0,0,1,0]]*Z(5)^0;
[ [ 0*Z(5), Z(5)^0, 0*Z(5), 0*Z(5) ], [ Z(5)^0, 0*Z(5), 0*Z(5), 0*Z(5) ],

[ 0*Z(5), 0*Z(5), 0*Z(5), Z(5)^0 ], [ 0*Z(5), 0*Z(5), Z(5)^0, 0*Z(5) ] ]
gap> phi := HermitianPolarityOfProjectiveSpace(mat,GF(25));
<polarity of PG(3, GF(5^2)) >
gap> mat2 := IdentityMat(4,GF(5));
[ [ Z(5)^0, 0*Z(5), 0*Z(5), 0*Z(5) ], [ 0*Z(5), Z(5)^0, 0*Z(5), 0*Z(5) ],

[ 0*Z(5), 0*Z(5), Z(5)^0, 0*Z(5) ], [ 0*Z(5), 0*Z(5), 0*Z(5), Z(5)^0 ] ]
gap> psi := PolarityOfProjectiveSpace(mat2,GF(25));
<polarity of PG(3, GF(5^2)) >
gap> phi*psi = psi*phi;
true
gap> g := CorrelationCollineationGroup(PG(3,25));
The FinInG correlation-collineation group PGammaL(4,25) : 2
gap> h := CollineationGroup(PG(3,25));
The FinInG collineation group PGammaL(4,25)
gap> hom := Embedding(h,g);
MappingByFunction( The FinInG collineation group PGammaL(4,25), The FinInG cor
relation-collineation group PGammaL(4,25) : 2, function( y ) ... end )
gap> coll := PreImagesRepresentative(hom,phi*psi);
< a collineation: <cmat 4x4 over GF(5,2)>, F^5>



Chapter 7

Finite Classical Polar Spaces

In this chapter we describe how to use FinInG to work with finite classical polar spaces.

7.1 Finite Classical Polar Spaces

A polar space is a point-line incidence geometry, satisfying the famous one-or-all axiom, i.e. for any
point P, not incident with a line l, P is collinear with exactly one point of l or with all points of l.
The axiomatic treatment of polar spaces has its foundations in [Vel59], [Tit74], and [BS74], the latter
in which the one-or-all axiom is described. Polar spaces are axiomatically, point-line geometries,
but may contain higher dimensional projective subspaces too. All maximal subspaces have the same
projective dimension, and this determines the rank of the polar space.

Well known examples of finite polar spaces are the geometries attached to sesquilinear and
quadratic forms of vector spaces over a finite field, these geometries are called the finite classical
polar spaces. For a given sesquilinear, respectively quadratic, form f , the elements of the associated
geometry are the totally isotropic, respectively totally singular, subspaces of the vectors space with
relation to the form f . The treatment of the forms is done through the package Forms.

From the axiomatic point of view, a polar space is a point-line geometry, and has rank at least
2. Considering a sesquilinear or quadratic form f , of Witt index 1, the associated geometry consists
only of projective points, and is then in the axiomatic treatment, not a polar space. However, as
is the case for projective spaces, we will consider the rank one geometries associated to forms of
Witt index 1 as examples of classical polar spaces. Even the elliptic quadric on the projective line,
a geometry associated to an elliptic quadratic form on a two dimensional vector space over a finite
field, is considered as a classical polar space, though it has no singular subspaces. The reason for this
treatment is that most, if not all, methods for operations applicable on these geometries, rely on the
same algebraic methodology. So, in FinInG, a classical polar space (sometimes abbreviated to polar
space), is the geometry associated with a sesquilinear or quadratic form on a finite dimensional vector
space over a finite field.

7.1.1 IsClassicalPolarSpace

. IsClassicalPolarSpace (Category)

This category is a subcategory of IsLieGeometry, and contains all the geometries associated to
a non-degenerate sesquilinear or quadratic form.

114
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The underlying vector space and matrix group are to our advantage in the treatment of classical
polar spaces. We refer the reader to [HT91] and [Cam00b] for the necessary background theory (if it is
not otherwise provided), and we follow the approach of [Cam00b] to introduce all different flavours.

Consider the projective space PG(n,q) with underlying vector space V (n+1,q). Consider a non-
degenerate sesquilinear form f . Then f is Hermitian, alternating or symmetric. When the characteris-
tic of the field is odd, respectively even, a symmetric bilinear form is called orthogonal, respectively,
pseudo. We do not consider the pseudo case, so we suppose that f is Hermitian, symplectic or or-
thogonal. The classical polar space associated with f is the incidence geometry whose elements are
of the subspaces of PG(n,q) whose underlying vector subspace is totally isotropic with relation to f .
We call a polar space Hermitian, respectively, symplectic, orthogonal, if the underlying sesquilinear
form is Hermitian, respectively, symplectic, orthogonal.

Symmetric bilinear forms have completely different geometric properties in even characteristic
than in odd characteristic. On the other hand, polar spaces geometrically comparable to orthogonal
polar spaces in odd characteristic, do exist in even characteristic. The algebraic background is now
established by quadratic forms on a vector space instead of bilinear forms. Consider a non-singular
quadratic form q on a vector space V (n+1,q). The classical polar space associated with f is the in-
cidence geometry whose elements are the subspaces of PG(n,q) whose underlying vector subspace is
totally singular with relation to q. The connection with orthogonal polar spaces in odd characteristic is
clear, since in odd characteristic, quadratic forms and symmetric bilinear forms are equivalent. There-
fore, we call polar spaces with an underlying quadratic form in even characteristic also orthogonal
polar spaces.

7.1.2 PolarSpace

. PolarSpace(form) (operation)

. PolarSpace(pol) (operation)

Returns: a classical polar space
form must be a sesquilinear or quadratic form created by use of the GAP package Forms. In

the second variant, the argument pol must be a polarity of a projective space. An error message will
be displayed if pol is a pseudo polarity. We refer to Chapter 6 for more information on polarities
of projective spaces, and more particularly to Section 6.3 for the connection between polarities and
forms.

Example
gap> mat := [[0,0,0,1],[0,0,-2,0],[0,2,0,0],[-1,0,0,0]]*Z(5)^0;
[ [ 0*Z(5), 0*Z(5), 0*Z(5), Z(5)^0 ], [ 0*Z(5), 0*Z(5), Z(5)^3, 0*Z(5) ],

[ 0*Z(5), Z(5), 0*Z(5), 0*Z(5) ], [ Z(5)^2, 0*Z(5), 0*Z(5), 0*Z(5) ] ]
gap> form := BilinearFormByMatrix(mat,GF(25));
< bilinear form >
gap> ps := PolarSpace(form);
<polar space in ProjectiveSpace(
3,GF(5^2)): x1*y4+Z(5)^3*x2*y3+Z(5)*x3*y2-x4*y1=0 >
gap> r := PolynomialRing(GF(32),4);
GF(2^5)[x_1,x_2,x_3,x_4]
gap> poly := r.3*r.2+r.1*r.4;
x_1*x_4+x_2*x_3
gap> form := QuadraticFormByPolynomial(poly,r);
< quadratic form >
gap> ps := PolarSpace(form);
<polar space in ProjectiveSpace(3,GF(2^5)): x_1*x_4+x_2*x_3=0 >
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gap> mat := IdentityMat(5,GF(7));
[ [ Z(7)^0, 0*Z(7), 0*Z(7), 0*Z(7), 0*Z(7) ],

[ 0*Z(7), Z(7)^0, 0*Z(7), 0*Z(7), 0*Z(7) ],
[ 0*Z(7), 0*Z(7), Z(7)^0, 0*Z(7), 0*Z(7) ],
[ 0*Z(7), 0*Z(7), 0*Z(7), Z(7)^0, 0*Z(7) ],
[ 0*Z(7), 0*Z(7), 0*Z(7), 0*Z(7), Z(7)^0 ] ]

gap> phi := PolarityOfProjectiveSpace(mat,GF(7));
<polarity of PG(4, GF(7)) >
gap> ps := PolarSpace(phi);
<polar space in ProjectiveSpace(4,GF(7)): x_1^2+x_2^2+x_3^2+x_4^2+x_5^2=0 >

FinInG relies on the package Forms for its facility with sesquilinear and quadratic forms. One
can specify a polar space with a user-defined form, and we refer to the documentation for Forms for
information on how one can create and use forms. Here we just display a worked example.

Example
gap> id := IdentityMat(7, GF(3));;
gap> form := QuadraticFormByMatrix(id, GF(3));
< quadratic form >
gap> ps := PolarSpace( form );
<polar space in ProjectiveSpace(
6,GF(3)): x_1^2+x_2^2+x_3^2+x_4^2+x_5^2+x_6^2+x_7^2=0 >
gap> psl32 := PSL(3,2);
Group([ (4,6)(5,7), (1,2,4)(3,6,5) ])
gap> reps:=[[1,1,1,0,0,0,0], [-1,1,1,0,0,0,0], [1,-1,1,0,0,0,0], [1,1,-1,0,0,0,0]]*Z(3)^0;;
gap> ovoid := Union( List(reps, x-> Orbit(psl32, x, Permuted)) );;
gap> ovoid := List(ovoid, x -> VectorSpaceToElement(ps, x));;
gap> planes := AsList( Planes( ps ) );;
#I Computing collineation group of canonical polar space...
gap> ForAll(planes, p -> Number(ovoid, x -> x in p) = 1);
true

7.2 Canonical and standard Polar Spaces

To introduce the classification of polar spaces, we use the classification of the underlying forms in
similarity classes. We follow mostly the approach and terminology of [KL90], as we did in the
manual of the package Forms.

Consider a vector space V =V (n+1,q) and a sesquilinear form f on V . The pair (V, f ) is called a
formed space. Consider now two formed spaces (V, f ) and (V, f ′), where f and f ′ are two sesquilinear
forms on V . A non-singular linear map φ from V to itself induces a similarity of the formed space
(V, f ) to the formed space (V, f ′) if and only if f (v,w) = λ f ′(φ(v),φ(w)) , for all vectors v,w some
non-zero . Up to similarity, there is only one class of non-degenerate Hermitian forms, and one class
of non-degenerate symplectic forms on a given vector space V . For symmetric bilinear forms in odd
characteristic, the number of similarity classes depends on the dimension of V . In odd dimension,
there is only one similarity class, and non-degenerate forms in this class are called parabolic (bilinear)
forms. In even dimension, there are two similarity classes, and non-degenerate forms are either elliptic
(bilinear) forms or hyperbolic (bilinear) forms.
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Consider now a vector space V and a quadratic form q on V . The pair (V,q) is called a formed
space. Consider now two formed spaces (V,q) and (V,q′), where q and q′ are two quadratic forms
on V . A non-degenerate linear map φ from V to itself induces a similarity of the formed space (V,q)
to the formed space (V,q′) if and only if q(v) = λ f ′(φ(v))) , for all vectors v some non-zero . For
quadratic forms in even characteristic, the number of similarity classes depends on the dimension of V .
In odd dimension, there is only one similarity class, and non-degenerate forms in this class are called
parabolic (bilinear) forms. In even dimension, there are two similarity classes, and non-degenerate
forms are either elliptic (bilinear) forms or hyperbolic (bilinear) forms.

If φ induces a similarity of a formed vector space such that λ = 1 , then the similarity is called
an isometry of the formed vector space. In almost all cases, each similarity class contains exactly
one isometry class. Only the orthogonal sesquilinear forms (in odd characteristic) have two isometry
classes. Consequently, if an isometry exists between formed vector spaces, they are called isometric.
Projectively, a formed vector space becomes a classical polar space embedded in a projective space.
Obviously, forms in the same similarity class determine exactly the same classical polar space. Con-
versely, it is well known that a classical polar space determines a form up to a constant factor, i.e.
it determines a similarity class of forms. In FinInG, the word canonical is used in the mathematical
sense, i.e. a classical polar space is canonical if its determining form belongs to a fixed similarity
class. A classical polar space is called standard if its determining form is the fixed representative of
the canonical similarity class. Hence a standard classical polar space is always a canonical classical
polar space, a canonical polar space is determined by a standard form up to a constant factor. In
the following table, we summerise the above information on polar spaces, together with the standard
forms that are chosen in FinInG. Note that Tr refers to the absolute Trace.

polar space standard form characteristic p projective dimension
hermitian polar space Xq+1

0 +Xq+1
1 + . . .+Xq+1

n odd and even odd and even
symplectic space X0Y1−Y0X1 + . . .+Xn−1Yn−Yn−1Xn odd and even odd
hyperbolic quadric X0X1 + . . .+Xn−1Xn p≡ 3mod4 and p even odd
hyperbolic quadric 2(X0X1 + . . .+Xn−1Xn) p≡ 1mod4 odd
parabolic quadric X2

0 +X1X2 + . . .+Xn−1Xn p≡ 1,3mod8 and p even even
parabolic quadric t(X2

0 +X1X2 + . . .+Xn−1Xn), t a primitive element of GF(p) p≡ 5,7mod8 even
elliptic quadric X2

0 +X2
1 +X2X3 + . . .+Xn−1Xn p≡ 3mod4 odd

elliptic quadric X2
0 + tX2

1 +X2X3 + . . .+Xn−1Xn, t a primitive element of GF(p) odd odd
elliptic quadric X2

0 +X0X1 +dX2
1 +X2X3 + . . .+Xn−1Xn, Tr(d) = 1 even odd

Table: finite classical polar spaces

We refer to Appendix B for information on the operations that construct gram matrices that are
used to obtain the above standard forms.

The FinInG provides a wealth of flexibility in constructing polar spaces. The user may choose a
particular quadratic or sesquilinear form, but may also chose to construct polars spaces that have one
of the above mentioned forms as underlying form. Furthermore, FinInG will detect when necessary
if the user-constructed polar space is canonical. This mechanism gives the user complete flexibility
while avoiding unnecessary computations when, for example, constructing the collineation group of
a user-defined polar space.

The following five operations always return polar spaces induced by one of the above standard
forms.
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7.2.1 SymplecticSpace

. SymplecticSpace(d, F) (operation)

. SymplecticSpace(d, q) (operation)

Returns: a symplectic polar space
This function returns the symplectic polar space of dimension d over F for a field F or over GF(q )

for a prime power q .
Example

gap> ps := SymplecticSpace(3,4);
W(3, 4)
gap> Display(ps);
W(3, 4)
Symplectic form
Gram Matrix:
. 1 . .
1 . . .
. . . 1
. . 1 .

Witt Index: 2

7.2.2 HermitianPolarSpace

. HermitianPolarSpace(d, F) (operation)

. HermitianPolarSpace(d, q) (operation)

Returns: a Hermitian polar space
This function returns the Hermitian polar space of dimension d over F for a field F or over GF(q )

for a prime power q .
Example

gap> ps := HermitianPolarSpace(2,25);
H(2, 5^2)
gap> Display(ps);
H(2, 25)
Hermitian form
Gram Matrix:
1 . .
. 1 .
. . 1

Polynomial: [ [ x_1^6+x_2^6+x_3^6 ] ]
Witt Index: 1

7.2.3 ParabolicQuadric

. ParabolicQuadric(d, F) (operation)

. ParabolicQuadric(d, q) (operation)

Returns: a parabolic quadric
d must be an even positive integer. This function returns the parabolic quadric of dimension d

over F for a field F or over GF(q ) for a prime power q .
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Example
gap> ps := ParabolicQuadric(2,9);
Q(2, 9)
gap> Display(ps);
Q(2, 9)
Parabolic bilinear form
Gram Matrix:
1 . .
. . 2
. 2 .

Polynomial: [ [ x_1^2+x_2*x_3 ] ]
Witt Index: 1
gap> ps := ParabolicQuadric(4,16);
Q(4, 16)
gap> Display(ps);
Q(4, 16)
Parabolic quadratic form
Gram Matrix:
1 . . . .
. . 1 . .
. . . . .
. . . . 1
. . . . .

Polynomial: [ [ x_1^2+x_2*x_3+x_4*x_5 ] ]
Witt Index: 2
Bilinear form
Gram Matrix:
. . . . .
. . 1 . .
. 1 . . .
. . . . 1
. . . 1 .

7.2.4 HyperbolicQuadric

. HyperbolicQuadric(d, F) (operation)

. HyperbolicQuadric(d, q) (operation)

Returns: a hyperbolic quadric
d must be an odd positive integer. This function returns the hyperbolic quadric of dimension d

over F for a field F or over GF(q ) for a prime power q .
Example

gap> ps := HyperbolicQuadric(5,3);
Q+(5, 3)
gap> Display(ps);
Q+(5, 3)
Hyperbolic bilinear form
Gram Matrix:
. 2 . . . .
2 . . . . .
. . . 2 . .
. . 2 . . .
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. . . . . 2

. . . . 2 .
Polynomial: [ [ x_1*x_2+x_3*x_4+x_5*x_6 ] ]
Witt Index: 3
gap> ps := HyperbolicQuadric(3,4);
Q+(3, 4)
gap> Display(ps);
Q+(3, 4)
Hyperbolic quadratic form
Gram Matrix:
. 1 . .
. . . .
. . . 1
. . . .

Polynomial: [ [ x_1*x_2+x_3*x_4 ] ]
Witt Index: 2
Bilinear form
Gram Matrix:
. 1 . .
1 . . .
. . . 1
. . 1 .

7.2.5 EllipticQuadric

. EllipticQuadric(d, F) (operation)

. EllipticQuadric(d, q) (operation)

Returns: an elliptic quadric
d must be an odd positive integer. This function returns the elliptic quadric of dimension d over

F for a field F or over GF(q ) for a prime power q .
Example

gap> ps := EllipticQuadric(3,27);
Q-(3, 27)
gap> Display(ps);
Q-(3, 27)
Elliptic bilinear form
Gram Matrix:
1 . . .
. 1 . .
. . . 2
. . 2 .

Polynomial: [ [ x_1^2+x_2^2+x_3*x_4 ] ]
Witt Index: 1
gap> ps := EllipticQuadric(5,8);
Q-(5, 8)
gap> Display(ps);
Q-(5, 8)
Elliptic quadratic form
Gram Matrix:
1 1 . . . .
. 1 . . . .
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. . . 1 . .

. . . . . .

. . . . . 1

. . . . . .
Polynomial: [ [ x_1^2+x_1*x_2+x_2^2+x_3*x_4+x_5*x_6 ] ]
Witt Index: 2
Bilinear form
Gram Matrix:
. 1 . . . .
1 . . . . .
. . . 1 . .
. . 1 . . .
. . . . . 1
. . . . 1 .

The following operations are applicable on any classical polar space in FinInG.

7.2.6 IsCanonicalPolarSpace

. IsCanonicalPolarSpace(ps) (attribute)

Returns: true or false
This attribute returns true when a polar space with a particular underlying form is canonical. The

execution of this attribute on a general user constructed polar space needs to check the type of ps . The
obtained extra information is stored automatically as attribute for ps , as can be noted by the different
printing of ps before and after execution.

Example
gap> mat := [[0,1,0,0],[0,0,0,0],[0,0,0,1],[0,0,0,0]]*Z(5)^0;
[ [ 0*Z(5), Z(5)^0, 0*Z(5), 0*Z(5) ], [ 0*Z(5), 0*Z(5), 0*Z(5), 0*Z(5) ],

[ 0*Z(5), 0*Z(5), 0*Z(5), Z(5)^0 ], [ 0*Z(5), 0*Z(5), 0*Z(5), 0*Z(5) ] ]
gap> form := QuadraticFormByMatrix(mat,GF(5));
< quadratic form >
gap> ps := PolarSpace(form);
<polar space in ProjectiveSpace(3,GF(5)): x_1*x_2+x_3*x_4=0 >
gap> IsCanonicalPolarSpace(ps);
true
gap> ps;
Q+(3, 5): x_1*x_2+x_3*x_4=0
gap> mat := [[1,0,0],[0,0,1],[0,1,0]]*Z(3)^0;
[ [ Z(3)^0, 0*Z(3), 0*Z(3) ], [ 0*Z(3), 0*Z(3), Z(3)^0 ],

[ 0*Z(3), Z(3)^0, 0*Z(3) ] ]
gap> form := QuadraticFormByMatrix(mat,GF(3));
< quadratic form >
gap> ps := PolarSpace(form);
<polar space in ProjectiveSpace(2,GF(3)): x_1^2-x_2*x_3=0 >
gap> IsCanonicalPolarSpace(ps);
false
gap> ps;
Q(2, 3): x_1^2-x_2*x_3=0
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7.2.7 CanonicalPolarSpace

. CanonicalPolarSpace(form) (operation)

. CanonicalPolarSpace(P) (operation)

Returns: a classical polar space
the canonical polar space isometric to the given polar space P or the classical polar space with

underlying form form .

7.2.8 StandardPolarSpace

. StandardPolarSpace(form) (operation)

. StandardPolarSpace(P) (operation)

Returns: a classical polar space
the polar space induced by a standard form and similar to the given polar space P or the classical

polar space with underlying form form .

7.3 Basic operations for finite classical polar spaces

7.3.1 UnderlyingVectorSpace

. UnderlyingVectorSpace(ps) (operation)

Returns: a vector space
The polar space ps is the geometry associated with a sesquilinear or quadratic form f . The vector

space on which f is acting is returned.
Example

gap> ps := EllipticQuadric(5,4);
Q-(5, 4)
gap> vs := UnderlyingVectorSpace(ps);
( GF(2^2)^6 )
gap> ps := SymplecticSpace(3,81);
W(3, 81)
gap> vs := UnderlyingVectorSpace(ps);
( GF(3^4)^4 )

7.3.2 AmbientSpace

. AmbientSpace(ps) (operation)

Returns: the ambient projective space
When ps is a polar space, this operation returns the ambient projective space, i.e. the underlying

projective space of the sequilinear or quadratic form that defines ps .
Example

gap> ps := EllipticQuadric(5,4);
Q-(5, 4)
gap> AmbientSpace(ps);
ProjectiveSpace(5, 4)
gap> ps := SymplecticSpace(3,81);
W(3, 81)
gap> AmbientSpace(ps);
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ProjectiveSpace(3, 81)

7.3.3 ProjectiveDimension

. ProjectiveDimension(ps) (operation)

. Dimension(ps) (operation)

Returns: the dimension of the ambient projective space of ps
When ps is a polar space, an ambient projective space P is uniquely defined and can be asked

using AmbientSpace. This operation and its synomym Dimension returns the dimension of P.
Example

gap> ps := EllipticQuadric(5,4);
Q-(5, 4)
gap> ProjectiveDimension(ps);
5
gap> ps := SymplecticSpace(3,81);
W(3, 81)
gap> ProjectiveDimension(ps);
3

7.3.4 Rank

. Rank(ps) (operation)

Returns: the rank of ps
When ps is a polar space, its rank, i.e. the number of different types, equals the Witt index of the

defining sesquilinear or quadratic form.
Example

gap> ps := EllipticQuadric(5,4);
Q-(5, 4)
gap> Rank(ps);
2
gap> ps := HyperbolicQuadric(5,4);
Q+(5, 4)
gap> Rank(ps);
3
gap> ps := SymplecticSpace(7,81);
W(7, 81)
gap> Rank(ps);
4

7.3.5 BaseField

. BaseField(ps) (operation)

Returns: the base field of the polar space ps
Example

gap> ps := HyperbolicQuadric(5,7);
Q+(5, 7)
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gap> BaseField(ps);
GF(7)
gap> ps := HermitianPolarSpace(2,256);
H(2, 16^2)
gap> BaseField(ps);
GF(2^8)

7.3.6 IsHyperbolicQuadric

. IsHyperbolicQuadric(ps) (property)

Returns: true or false
returns true if and only if ps is a hyperbolic quadric.

Example
gap> mat := IdentityMat(6,GF(5));
< mutable compressed matrix 6x6 over GF(5) >
gap> form := BilinearFormByMatrix(mat,GF(5));
< bilinear form >
gap> ps := PolarSpace(form);
<polar space in ProjectiveSpace(
5,GF(5)): x_1^2+x_2^2+x_3^2+x_4^2+x_5^2+x_6^2=0 >
gap> IsHyperbolicQuadric(ps);
true
gap> mat := IdentityMat(6,GF(7));
< mutable compressed matrix 6x6 over GF(7) >
gap> form := BilinearFormByMatrix(mat,GF(7));
< bilinear form >
gap> ps := PolarSpace(form);
<polar space in ProjectiveSpace(
5,GF(7)): x_1^2+x_2^2+x_3^2+x_4^2+x_5^2+x_6^2=0 >
gap> IsHyperbolicQuadric(ps);
false

7.3.7 IsEllipticQuadric

. IsEllipticQuadric(ps) (property)

Returns: true or false
returns true if and only if ps is an elliptic quadric.

Example
gap> mat := IdentityMat(6,GF(5));
< mutable compressed matrix 6x6 over GF(5) >
gap> form := BilinearFormByMatrix(mat,GF(5));
< bilinear form >
gap> ps := PolarSpace(form);
<polar space in ProjectiveSpace(
5,GF(5)): x_1^2+x_2^2+x_3^2+x_4^2+x_5^2+x_6^2=0 >
gap> IsEllipticQuadric(ps);
false
gap> mat := IdentityMat(6,GF(7));
< mutable compressed matrix 6x6 over GF(7) >
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gap> form := BilinearFormByMatrix(mat,GF(7));
< bilinear form >
gap> ps := PolarSpace(form);
<polar space in ProjectiveSpace(
5,GF(7)): x_1^2+x_2^2+x_3^2+x_4^2+x_5^2+x_6^2=0 >
gap> IsEllipticQuadric(ps);
true

7.3.8 IsParabolicQuadric

. IsParabolicQuadric(ps) (property)

Returns: true or false
returns true if and only if ps is a parabolic quadric.

Example
gap> mat := IdentityMat(5,GF(9));
[ [ Z(3)^0, 0*Z(3), 0*Z(3), 0*Z(3), 0*Z(3) ],

[ 0*Z(3), Z(3)^0, 0*Z(3), 0*Z(3), 0*Z(3) ],
[ 0*Z(3), 0*Z(3), Z(3)^0, 0*Z(3), 0*Z(3) ],
[ 0*Z(3), 0*Z(3), 0*Z(3), Z(3)^0, 0*Z(3) ],
[ 0*Z(3), 0*Z(3), 0*Z(3), 0*Z(3), Z(3)^0 ] ]

gap> form := BilinearFormByMatrix(mat,GF(9));
< bilinear form >
gap> ps := PolarSpace(form);
<polar space in ProjectiveSpace(4,GF(3^2)): x_1^2+x_2^2+x_3^2+x_4^2+x_5^2=0 >
gap> IsParabolicQuadric(ps);
true
gap> mat := [[1,0,0,0,0],[0,0,1,0,0],[0,0,0,0,0],[0,0,0,0,1],[0,0,0,0,0]]*Z(2)^0;
[ [ Z(2)^0, 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2) ],

[ 0*Z(2), 0*Z(2), Z(2)^0, 0*Z(2), 0*Z(2) ],
[ 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2) ],
[ 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2), Z(2)^0 ],
[ 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2) ] ]

gap> form := QuadraticFormByMatrix(mat,GF(8));
< quadratic form >
gap> ps := PolarSpace(form);
<polar space in ProjectiveSpace(4,GF(2^3)): x_1^2+x_2*x_3+x_4*x_5=0 >
gap> IsParabolicQuadric(ps);
true

7.4 Subspaces of finite classical polar spaces

The elements of a finite classical polar space P are the subspaces of the ambient projective space that
are totally isotropic with relation to the sesquilinear or quadratic form that defines P. Constructing
subspaces of finite classical polar spaces is done as in the projective space case, except that addi-
tional checks are implemented in the methods to check that the subspace of the vector space is totally
isotropic. The empty subspace, also called the trivial subspace, which has dimension -1, corresponds
with the zero dimensional vector space of the underlying vector space of the ambient projective space
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of P, and is of course totally isotropic. As such, is is considered as a subspace of a finite classical
polar space in the mathematical sense, but not as an element of the incidence geometry, and hence do
in FinInG not belong to the category IsSubspaceOfClassicalPolarSpace.

7.4.1 VectorSpaceToElement

. VectorSpaceToElement(ps, v) (operation)

Returns: an element of the polar space geo
Let ps be a polar space, and v is either a row vector (for points) or an mxn matrix (for an (m−1)-

subspace of a polar space with an (n− 1)-dimensional ambient projective space. In the case that v
is a matrix, the rows represent basis vectors for the subspace. An exceptional case is when v is a
zero-vector, whereby the trivial subspace is returned. It is checked that the subspace defined by v is
totally isotropic with relation to the form defining ps .

Example
gap> ps := SymplecticSpace(3,4);
W(3, 4)
gap> v := [1,0,1,0]*Z(4)^0;
[ Z(2)^0, 0*Z(2), Z(2)^0, 0*Z(2) ]
gap> p := VectorSpaceToElement(ps,v);
<a point in W(3, 4)>
gap> mat := [[1,1,0,1],[0,0,1,0]]*Z(4)^0;
[ [ Z(2)^0, Z(2)^0, 0*Z(2), Z(2)^0 ], [ 0*Z(2), 0*Z(2), Z(2)^0, 0*Z(2) ] ]
gap> line := VectorSpaceToElement(ps,mat);
Error, <x> does not generate an element of <geom> called from
<function "unknown">( <arguments> )
called from read-eval loop at line 12 of *stdin*

you can ’quit;’ to quit to outer loop, or
you can ’return;’ to continue
brk> quit;
gap> mat := [[1,1,0,0],[0,0,1,0]]*Z(4)^0;
[ [ Z(2)^0, Z(2)^0, 0*Z(2), 0*Z(2) ], [ 0*Z(2), 0*Z(2), Z(2)^0, 0*Z(2) ] ]
gap> line := VectorSpaceToElement(ps,mat);
<a line in W(3, 4)>
gap> p := VectorSpaceToElement(ps,[0,0,0,0]*Z(4)^0);
< empty subspace >

7.4.2 EmptySubspace

. EmptySubspace(ps) (operation)

Returns: the trivial subspace in the projective ps
The object returned by this operation is contained in every projective subspace of the projective

space ps , but is not an element of ps . Hence, testing incidence results in an error message.
Example

gap> ps := HermitianPolarSpace(10,49);
H(10, 7^2)
gap> e := EmptySubspace(ps);
< empty subspace >



GAP 4 Package FinInG 127

7.4.3 ProjectiveDimension

. ProjectiveDimension(sub) (operation)

. Dimension(sub) (operation)

Returns: the projective dimension of a subspace of a polar space. The operation
ProjectiveDimension is also applicable on the EmptySubspace

Example
gap> ps := EllipticQuadric(7,8);
Q-(7, 8)
gap> mat := [[0,0,1,0,0,0,0,0],[0,0,0,0,1,0,0,0]]*Z(8)^0;
[ [ 0*Z(2), 0*Z(2), Z(2)^0, 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2) ],

[ 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2), Z(2)^0, 0*Z(2), 0*Z(2), 0*Z(2) ] ]
gap> line := VectorSpaceToElement(ps,mat);
<a line in Q-(7, 8)>
gap> ProjectiveDimension(line);
1
gap> Dimension(line);
1
gap> e := EmptySubspace(ps);
< empty subspace >
gap> ProjectiveDimension(e);
-1

7.4.4 ElementsOfIncidenceStructure

. ElementsOfIncidenceStructure(ps, j) (operation)

Returns: the collection of elements of the projective space ps of type j
For the projective space ps of dimension d and the type j , 1 ≤ j ≤ d this operation returns the

collection of j−1 dimensional subspaces.
Example

gap> ps := HermitianPolarSpace(8,13^2);
H(8, 13^2)
gap> planes := ElementsOfIncidenceStructure(ps,3);
<planes of H(8, 13^2)>
gap> solids := ElementsOfIncidenceStructure(ps,4);
<solids of H(8, 13^2)>
gap> ElementsOfIncidenceStructure(ps,5);
Error, <geo> has no elements of type <j> called from
<function "unknown">( <arguments> )
called from read-eval loop at line 11 of *stdin*

you can ’quit;’ to quit to outer loop, or
you can ’return;’ to continue
brk> quit;

7.4.5 AmbientSpace

. AmbientSpace(el) (operation)

Returns: returns the ambient space of an element el of a polar space
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This operation is also applicable on the trivial subspace. For a Lie geometry, the ambient space of
an element is defined as the ambient space of the Lie geometry, i.e. a projective space.

Example
gap> ps := HermitianPolarSpace(3,7^2);
H(3, 7^2)
gap> line := VectorSpaceToElement(ps,[[Z(7)^0,0*Z(7),Z(7^2)^34,Z(7^2)^44],
> [0*Z(7),Z(7)^0,Z(7^2)^2,Z(7^2)^4]]);
<a line in H(3, 7^2)>
gap> AmbientSpace(line);
ProjectiveSpace(3, 49)

7.4.6 Coordinates

. Coordinates(p) (operation)

Returns: the homogeneous coordinates of the point p
Example

gap> ps := ParabolicQuadric(6,5);
Q(6, 5)
gap> p := VectorSpaceToElement(ps,[0,1,0,0,0,0,0]*Z(5)^0);
<a point in Q(6, 5)>
gap> Coordinates(p);
[ 0*Z(5), Z(5)^0, 0*Z(5), 0*Z(5), 0*Z(5), 0*Z(5), 0*Z(5) ]

7.5 Basic operations for polar spaces and subspaces of projective spaces

7.5.1 Incidence and containment

. IsIncident(el1, el2) (operation)

. \*(el1, el2) (operation)

. \in(el1, el2) (operation)

Returns: true or false
Recall that for projective spaces, incidence is symmetrized containment, where the empty sub-

space and the whole projective space are excluded as arguments for this operation, since they are not
considered as elements of the geometry, but both the empty subspace and the whole projective space
are allowed as arguments for \in.

Example
gap> ps := HyperbolicQuadric(7,7);
Q+(7, 7)
gap> p := VectorSpaceToElement(ps,[1,0,1,0,0,0,0,0]*Z(7)^0);
<a point in Q+(7, 7)>
gap> l := VectorSpaceToElement(ps,[[1,0,1,0,0,0,0,0],[0,-1,0,1,0,0,0,0]]*Z(7)^0);
<a line in Q+(7, 7)>
gap> p * l;
true
gap> l * p;
true
gap> IsIncident(p,l);
true
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gap> p in l;
true
gap> l in p;
false
gap> e := EmptySubspace(ps);
< empty subspace >
gap> e * l;
Error, no method found! For debugging hints type ?Recovery from NoMethodFound
Error, no 1st choice method found for ‘*’ on 2 arguments called from
<function "HANDLE_METHOD_NOT_FOUND">( <arguments> )
called from read-eval loop at line 17 of *stdin*

you can ’quit;’ to quit to outer loop, or
you can ’return;’ to continue
brk> quit;
gap> e in l;
true
gap> l in ps;
true

7.5.2 Span

. Span(u, v) (operation)

Returns: an element
u and v are elements of a projective or polar space. This function returns the join of the two

elements, that is, the span of the two subspaces.
Example

gap> ps := HyperbolicQuadric(5,2);
Q+(5, 2)
gap> p := Random(Planes(ps));
<a plane in Q+(5, 2)>
gap> q := Random(Planes(ps));
<a plane in Q+(5, 2)>
gap> s := Span(p,q);
<a proj. 4-space in ProjectiveSpace(5, 2)>
gap> s = Span([p,q]);
true
gap> t := Span(EmptySubspace(ps),p);
<a plane in Q+(5, 2)>
gap> t = p;
true

7.5.3 Meet

. Meet(u, v) (operation)

Returns: an element
u and v are elements of a projective or polar space. This function returns the meet of the two

elements. If two elements do not meet, then Meet returns EmptySubspace, which in FinInG, is an
element with projective dimension -1. (Note that the poset of subspaces of a polar space is a meet-
semilattice, but not closed under taking spans).
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Example
gap> ps := HyperbolicQuadric(5,3);;
gap> pi := Random( Planes(ps) );;
gap> tau := Random( Planes(ps) );;
gap> Meet(pi,tau);
<a point in Q+(5, 3)>

Note: the above example will return different answers depending on the two planes chosen at random.

7.5.4 IsCollinear

. IsCollinear(ps, u, v) (operation)

Returns: Boolean
u and v are points of the ambient space of the polar space ps . This function returns True if u and

v are collinear in ps . Note that belonging to ps is a necessary condition for u and v to be collinear.
Example

gap> ps := ParabolicQuadric(4,9);
Q(4, 9)
gap> p := VectorSpaceToElement(PG(4,9),[0,1,0,0,0]*Z(9)^0);
<a point in ProjectiveSpace(4, 9)>
gap> q := VectorSpaceToElement(PG(4,9),[0,0,1,0,0]*Z(9)^0);
<a point in ProjectiveSpace(4, 9)>
gap> r := VectorSpaceToElement(PG(4,9),[0,0,0,1,0]*Z(9)^0);
<a point in ProjectiveSpace(4, 9)>
gap> p in ps;
true
gap> q in ps;
true
gap> r in ps;
true
gap> IsCollinear(ps,p,q);
false
gap> IsCollinear(ps,p,r);
true
gap> IsCollinear(ps,q,r);
true
gap> ps := ParabolicQuadric(4,4);
Q(4, 4)
gap> p := VectorSpaceToElement(PG(4,4),[1,0,0,0,0]*Z(2)^0);
<a point in ProjectiveSpace(4, 4)>
gap> q := VectorSpaceToElement(PG(4,4),[0,1,0,0,0]*Z(2)^0);
<a point in ProjectiveSpace(4, 4)>
gap> r := VectorSpaceToElement(PG(4,4),[0,0,0,1,0]*Z(2)^0);
<a point in ProjectiveSpace(4, 4)>
gap> p in ps;
false
gap> q in ps;
true
gap> r in ps;
true
gap> IsCollinear(ps,p,q);
false
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gap> IsCollinear(ps,q,r);
true

7.5.5 PolarityOfProjectiveSpace

. PolarityOfProjectiveSpace(ps) (operation)

Returns: a polarity of a projective space
ps must be a polar space. This operation returns, when possible a polarity of the ambient pro-

jective space of ps . It is well known that except for orthogonal polar spaces in even characteristic, a
classical polar space is in fact the geometry of absolute points of a polarity of a projective space, and
that no polarity can be associated to parabolic quadrics in even characteristic. Polarities of projective
spaces are discussed in more detail in Chapter 6.

Example
gap> ps := SymplecticSpace(5,9);
W(5, 9)
gap> phi := PolarityOfProjectiveSpace(ps);
<polarity of PG(5, GF(3^2)) >
gap> ps := EllipticQuadric(3,4);
Q-(3, 4)
gap> phi := PolarityOfProjectiveSpace(ps);
<polarity of PG(3, GF(2^2)) >
gap> ps := ParabolicQuadric(4,4);
Q(4, 4)
gap> phi := PolarityOfProjectiveSpace(ps);
Error, no polarity of the ambient projective space can be associated to <ps> called from
<function "unknown">( <arguments> )
called from read-eval loop at line 13 of *stdin*

you can ’quit;’ to quit to outer loop, or
you can ’return;’ to continue
brk> quit;

7.5.6 TypeOfSubspace

. TypeOfSubspace(ps, v) (operation)

Returns: a string
This operation is a convenient way to find out the intersection type of a projective subspace with

a polar space. The argument ps is a nondegenerate polar space, and the argument v is a subspace of
the ambient projective space. The operation returns a string in accordance with the type of subspace:
“degenerate”, “symplectic”, “hermitian”, “elliptic”, “hyperbolic” or “parabolic”.

Example
gap> h1 := HermitianPolarSpace(2, 3^2);
H(2, 3^2)
gap> h2 := HermitianPolarSpace(3, 3^2);
H(3, 3^2)
gap> pg := AmbientSpace( h2 );
ProjectiveSpace(3, 9)
gap> pi := VectorSpaceToElement( pg, [[1,0,0,0],[0,1,0,0],[0,0,1,0]] * Z(9)^0 );
<a plane in ProjectiveSpace(3, 9)>
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gap> TypeOfSubspace(h2, pi);
"hermitian"
gap> pi := VectorSpaceToElement( pg, [[1,0,0,0],[0,1,0,0],[0,0,1,Z(9)]] * Z(9)^0 );
<a plane in ProjectiveSpace(3, 9)>
gap> TypeOfSubspace(h2, pi);
"degenerate"

7.5.7 TangentSpace

. TangentSpace(el) (operation)

. TangentSpace(ps, el) (operation)

Returns: A subspace of a projective space
Let el be an element of a classical polar space. The first version returns the tangent space at el to

this polar space. Let el be a subspace of the ambient space of the polar space ps . The second version
checks whether el belongs to ps and returns the tangent space at el to ps . Some obvious properties
are demonstrated in the example.

Example
gap> ps := HermitianPolarSpace(3,4^2);
H(3, 4^2)
gap> p := Random(Points(ps));
<a point in H(3, 4^2)>
gap> plane := TangentSpace(p);
<a plane in ProjectiveSpace(3, 16)>
gap> TypeOfSubspace(ps,plane);
"degenerate"
gap> ps := ParabolicQuadric(6,4);
Q(6, 4)
gap> p := VectorSpaceToElement(PG(6,4),[0,1,0,0,0,0,0]*Z(4)^0);
<a point in ProjectiveSpace(6, 4)>
gap> hyp := TangentSpace(ps,p);
<a proj. 5-space in ProjectiveSpace(6, 4)>
gap> NucleusOfParabolicQuadric(ps) in hyp;
true
gap> ps := EllipticQuadric(5,2);
Q-(5, 2)
gap> line := Random(Lines(ps));
<a line in Q-(5, 2)>
gap> TangentSpace(line);
<a solid in ProjectiveSpace(5, 2)>
gap> ps := HermitianPolarSpace(5,4);
H(5, 2^2)
gap> plane := Random(Planes(ps));
<a plane in H(5, 2^2)>
gap> tan := TangentSpace(plane);
<a plane in ProjectiveSpace(5, 4)>
gap> tan in ps;
true
gap> tan = plane;
true
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7.5.8 Pole

. Pole(ps, el) (operation)

Returns: A subspace of a projective space
Let el be a subspace of the ambient space of the polar space ps . This operation returns the pole

of el with relation to the polar space ps .
Example

gap> conic := ParabolicQuadric(2,13);
Q(2, 13)
gap> p := VectorSpaceToElement(PG(2,13),[1,0,0]*Z(13)^0);
<a point in ProjectiveSpace(2, 13)>
gap> pole := Pole(conic,p);
<a line in ProjectiveSpace(2, 13)>
gap> TypeOfSubspace(conic,pole);
"hyperbolic"
gap> tangent_points := Filtered(Points(pole),x->x in conic);
[ <a point in ProjectiveSpace(2, 13)>, <a point in ProjectiveSpace(2, 13)> ]
gap> tangent_lines_on_p := List(tangent_points,x->Span(x,p));
[ <a line in ProjectiveSpace(2, 13)>, <a line in ProjectiveSpace(2, 13)> ]
gap> List(tangent_lines_on_p,x->Number(Points(x),y->y in conic));
[ 1, 1 ]

7.6 Shadow of elements

The functionality in this section is comparable to the shadow functionality for elements of projec-
tive spaces, which are described in Section 4.3. The generic description of shadows of elements of
incidence structures can be found in Section 3.4.

7.6.1 ShadowOfElement

. ShadowOfElement(ps, el, i) (operation)

. ShadowOfElement(ps, el, str) (operation)

Returns: the elements of type i incident with el . The second variant determines the type i
from the position of str in the list returned by TypesOfElementsOfIncidenceStructurePlural

Example
gap> id := IdentityMat(8,GF(7));
< mutable compressed matrix 8x8 over GF(7) >
gap> form := BilinearFormByMatrix(id,GF(7));
< bilinear form >
gap> ps := PolarSpace(form);
<polar space in ProjectiveSpace(
7,GF(7)): x_1^2+x_2^2+x_3^2+x_4^2+x_5^2+x_6^2+x_7^2+x_8^2=0 >
gap> Rank(ps);
4
gap> ps;
Q+(7, 7): x_1^2+x_2^2+x_3^2+x_4^2+x_5^2+x_6^2+x_7^2+x_8^2=0
gap> mat := [[1,0,0,0,3,2,0,0],[0,1,0,0,0,0,3,2],[0,0,1,0,5,3,0,0]]*Z(7)^0;
[ [ Z(7)^0, 0*Z(7), 0*Z(7), 0*Z(7), Z(7), Z(7)^2, 0*Z(7), 0*Z(7) ],

[ 0*Z(7), Z(7)^0, 0*Z(7), 0*Z(7), 0*Z(7), 0*Z(7), Z(7), Z(7)^2 ],
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[ 0*Z(7), 0*Z(7), Z(7)^0, 0*Z(7), Z(7)^5, Z(7), 0*Z(7), 0*Z(7) ] ]
gap> plane := VectorSpaceToElement(ps,mat);
<a plane in Q+(7, 7): x_1^2+x_2^2+x_3^2+x_4^2+x_5^2+x_6^2+x_7^2+x_8^2=0>
gap> time;
1
gap> shadow := ShadowOfElement(ps,plane,4);
<shadow solids in Q+(7, 7): x_1^2+x_2^2+x_3^2+x_4^2+x_5^2+x_6^2+x_7^2+x_8^2=0>
gap> List(shadow);
[ <a solid in Q+(7, 7): x_1^2+x_2^2+x_3^2+x_4^2+x_5^2+x_6^2+x_7^2+x_8^2=0>,

<a solid in Q+(7, 7): x_1^2+x_2^2+x_3^2+x_4^2+x_5^2+x_6^2+x_7^2+x_8^2=0> ]
gap> shadow := ShadowOfElement(ps,plane,2);
<shadow lines in Q+(7, 7): x_1^2+x_2^2+x_3^2+x_4^2+x_5^2+x_6^2+x_7^2+x_8^2=0>

7.6.2 ElementsIncidentWithElementOfIncidenceStructure

. ElementsIncidentWithElementOfIncidenceStructure(el, i) (operation)

Returns: the elements of type i incident with el , in other words, the type i shadow of the
element el

Internally, the function FlagOfIncidenceStructure is used to create a flag from list . This
function also performs the checking.

Example

7.7 Projective Orthogonal/Unitary/Symplectic groups in FinInG

The classical groups (apart from the general lines group), are the matrix groups that respect, in a
certain way, a sesquilinear or quadratic form. We formally recall the definitions used in FinInG.
These definitions are exactly the same as in Forms.

Let (V, f ) and (W,g) be two formed vector spaces over the same field F , where both f and g are
sesquilinear forms. Suppose that φ is a linear map from V to W . The map φ is an isometry from the
formed space (V, f ) to the formed space (W,g) if for all v,w in V we have

f (v,w) = f ′(φ(v),φ(w)).

The map φ is a similarity from the formed space (V, f ) to the formed space (W,g) if for all v,w in V
we have

f (v,w) = λ f ′(φ(v),φ(w)).

for some non-zero λ ∈ F . Finally, the map φ . is a semi-similarity from the formed space (V, f ) to the
formed space (W,g) if for all v,w in V we have

f (v,w) = λ f ′(φ(v),φ(w))α

for some non-zero λ ∈ F and a field automorphism α of F .
Let (V, f ) and (W,g) be two formed vector spaces over the same field F , where both f and g are

quadratic forms. Suppose that φ is a linear map from V to W . The map φ is an isometry from the
formed space (V, f ) to the formed space (W,g) if for all v,w in V we have

f (v) = f ′(φ(v)).
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The map φ is a similarity from the formed space (V, f ) to a formed space (W,g) if for all v,w in V we
have

f (v) = λ f ′(φ(v)).

for some non-zero λ ∈ F . Finally, the map φ . is a semi-similarity from the formed space (V, f ) to the
formed space (W,g) if for all v,w in V we have

f (v) = λ f ′(φ(v))α

for some non-zero λ ∈ F and a field automorphism α of F .
Collineations of classical polar spaces are induced by semi-similarities of the underlying formed

vector space, and vice versa, analoguously by factoring out scalar matrices. The only exceptions are
the two-dimensional unitary groups where the the full semi-similarity group can contain elements of
its centre that are not scalars. In FinInG, the subgroups corresponding with similarities and isometries
are also implemented, including a special variant, corresponding with the matrices having determinant
one. We use a consistent terminology, where isometries, similarities, respectively, of the polar space,
correspond with isometries, similarities, respectively, of the underlying formed vector space. Special
isometries of a polar space are induced by isometries of the formed vector space that have a matrix with
determinant one. If P is a polar space with special isometry group, isometry group, similarity group,
collineation group, respectively, SI, I, G, Γ, respectively, then clearly SI 6 I 6 G 6 Γ . Equalities can
occur in certain cases, and will, as we will see in the following overview.

(sub)group symplectic hyperbolic elliptic parabolic hermitian
special isometry PSp(d,q) PSO(1,d,q) PSO(−1,d,q) PSO(0,d,q) PSU(d,q2)
isometry PSp(d,q) PGO(1,d,q) PGO(−1,d,q) PGO(0,d,q) PGU(d,q2)
similarity PGSp(d,q) P∆O+(d,q) P∆O−(d,q) PGO(0,d,q) PGU(d,q2)
collineation PΓSp(d,q) PΓO+(d,q) PΓO−(d,q) PΓO(d,q) PΓU(d,q2)

Table: projective finite classical groups

7.7.1 SpecialIsometryGroup

. SpecialIsometryGroup(ps) (operation)

Returns: the special isometry group of the polar space ps
Example

gap> ps := SymplecticSpace(3,4);
W(3, 4)
gap> SpecialIsometryGroup(ps);
PSp(4,4)
gap> ps := HyperbolicQuadric(5,8);
Q+(5, 8)
gap> SpecialIsometryGroup(ps);
PSO(1,6,8)
gap> ps := EllipticQuadric(3,27);
Q-(3, 27)
gap> SpecialIsometryGroup(ps);
PSO(-1,4,27)
gap> ps := ParabolicQuadric(4,8);
Q(4, 8)
gap> SpecialIsometryGroup(ps);
PSO(0,5,8)
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gap> ps := HermitianPolarSpace(4,9);
H(4, 3^2)
gap> SpecialIsometryGroup(ps);
PSU(5,3^2)

7.7.2 IsometryGroup

. IsometryGroup(ps) (operation)

Returns: the isometry group of the polar space ps
Example

gap> ps := SymplecticSpace(3,4);
W(3, 4)
gap> IsometryGroup(ps);
PSp(4,4)
gap> ps := HyperbolicQuadric(5,8);
Q+(5, 8)
gap> IsometryGroup(ps);
PGO(1,6,8)
gap> ps := EllipticQuadric(3,27);
Q-(3, 27)
gap> IsometryGroup(ps);
PGO(-1,4,27)
gap> ps := ParabolicQuadric(4,8);
Q(4, 8)
gap> IsometryGroup(ps);
PGO(0,5,8)
gap> ps := HermitianPolarSpace(4,9);
H(4, 3^2)
gap> IsometryGroup(ps);
PGU(5,3^2)

7.7.3 SimilarityGroup

. SimilarityGroup(ps) (operation)

Returns: the similarity group of the polar space ps
Example

gap> ps := SymplecticSpace(3,4);
W(3, 4)
gap> SimilarityGroup(ps);
PGSp(4,4)
gap> ps := HyperbolicQuadric(5,8);
Q+(5, 8)
gap> SimilarityGroup(ps);
PDeltaO+(6,8)
gap> ps := EllipticQuadric(3,27);
Q-(3, 27)
gap> SimilarityGroup(ps);
PDeltaO-(4,27)
gap> ps := ParabolicQuadric(4,8);
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Q(4, 8)
gap> SimilarityGroup(ps);
PGO(0,5,8)
gap> ps := HermitianPolarSpace(4,9);
H(4, 3^2)
gap> SimilarityGroup(ps);
PGU(5,3^2)

7.7.4 CollineationGroup

. CollineationGroup(ps) (operation)

Returns: the collineation group of the polar space ps
In most cases, the full projective semisimilarity group is returned. For two-dimensional unitary

groups, the centre may contain elements that are not scalars. In this case, we return a central extension
of the projective semisimilarity group. If the basefield of ps is GF(q2), q prime, the similarity group
is returned.

Example
gap> ps := SymplecticSpace(3,4);
W(3, 4)
gap> CollineationGroup(ps);
PGammaSp(4,4)
gap> ps := HyperbolicQuadric(5,8);
Q+(5, 8)
gap> CollineationGroup(ps);
PGammaO+(6,8)
gap> ps := EllipticQuadric(3,27);
Q-(3, 27)
gap> CollineationGroup(ps);
PGammaO-(4,27)
gap> ps := ParabolicQuadric(4,8);
Q(4, 8)
gap> CollineationGroup(ps);
PGammaO(5,8)
gap> ps := HermitianPolarSpace(4,9);
H(4, 3^2)
gap> CollineationGroup(ps);
PGammaU(5,3^2)

7.8 Enumerating subspaces of polar spaces

7.8.1 Enumerators for polar spaces

An enumerator for a collection of subspaces of a given type of a polar space is provided in FinInG. If
C is such a collection, then List(C) will use the enumerator to compute a list with all the elements
of C .
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7.8.2 Enumerator

. Enumerator(C) (operation)

. List(C) (operation)

Returns: an enumerator for the collection C and a list with all elements of C
The argument C is a collection of subspaces of a polar space.

Example
gap> Enumerator(Points(ParabolicQuadric(6,3)));
EnumeratorOfSubspacesOfClassicalPolarSpace( <points of Q(6, 3)> )
gap> Enumerator(Lines(HermitianPolarSpace(4,4)));
EnumeratorOfSubspacesOfClassicalPolarSpace( <lines of H(4, 2^2)> )
gap> planes := List(Planes(HermitianPolarSpace(5,4)));;
gap> time;
11515
gap> Length(planes);
891

7.8.3 Iterators for polar spaces

For all polar spaces an iterator is constructed using IteratorList(enum), where enum is an appro-
priate enumerator.

7.8.4 Iterator

. Iterator(elements) (operation)

Returns: an iterator
C is a collection of subspaces of a polar space.

Example
gap> iter := Iterator(Lines(ParabolicQuadric(4,2)));
<iterator>
gap> NextIterator(iter);
<a line in Q(4, 2)>
gap> NextIterator(iter);
<a line in Q(4, 2)>
gap> NextIterator(iter);
<a line in Q(4, 2)>
gap> NextIterator(iter);
<a line in Q(4, 2)>
gap> NextIterator(iter);
<a line in Q(4, 2)>

7.8.5 AsList

. AsList(subspaces) (operation)

Returns: an Orb object or list
Example

gap> ps := HyperbolicQuadric(5,3);
Q+(5, 3)
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gap> lines := AsList(Lines(ps));
<closed orbit, 520 points>



Chapter 8

Orbits, stabilisers and actions

8.1 Orbits

GAP provides generic functionality to compute orbits. These functions are, generally spoken, applica-
ble to the groups implemented in FinInG, combined with the appropriate action functions. However,
the generic functions applied in such situations are rather time comsuming. FinInG therefore provides
alternative functions to compute orbits.

8.1.1 FiningOrbit

. FiningOrbit(g, obj, act) (operation)

Returns: The orbit of the object obj under the action act of the group g .
The argument obj is either a subspace of a projective space, then combined with the action func-

tion OnProjSubspaces, or a set of elements of a projective space, then combined with the action
function OnSetsProjSubspaces. The group g is a subgroup of a collineation group of a projective
space. In both cases the action function computes the action of el under the group element g .

Example
gap> ps := ParabolicQuadric(6,3);
Q(6, 3)
gap> g := CollineationGroup(ps);
PGammaO(7,3)
gap> pg := PG(6,3);
ProjectiveSpace(6, 3)
gap> s := First(Solids(pg),t -> TypeOfSubspace(ps,t) = "elliptic" );
<a solid in ProjectiveSpace(6, 3)>
gap> orbit := FiningOrbit(g,s,OnProjSubspaces);
<closed orbit, 265356 points>
gap> time;
33555

The second example shows the possible use of FiningOrbit in combination with the action function
OnSetsProjSubspaces. Please note that this variant is probably not the most efficient way to com-
pute all elliptic quadrics contained in the parabolic quadric ps. Experiments show that for q = 5 the
second variant takes an unreasonable amount of time. Also note that the second argument el must be
a set (and therefore it might be necessary to apply Set on a collection of elements).

140
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Example
gap> ps := ParabolicQuadric(4,3);
Q(4, 3)
gap> g := CollineationGroup(ps);
PGammaO(5,3)
gap> pg := PG(4,3);
ProjectiveSpace(4, 3)
gap> s := First(Solids(pg),t -> TypeOfSubspace(ps,t) = "elliptic" );
<a solid in ProjectiveSpace(4, 3)>
gap> orbit1 := FiningOrbit(g,s,OnProjSubspaces);
<closed orbit, 36 points>
gap> time;
9
gap> spts := Filtered(Points(s),s->s in ps);
[ <a point in ProjectiveSpace(4, 3)>, <a point in ProjectiveSpace(4, 3)>,

<a point in ProjectiveSpace(4, 3)>, <a point in ProjectiveSpace(4, 3)>,
<a point in ProjectiveSpace(4, 3)>, <a point in ProjectiveSpace(4, 3)>,
<a point in ProjectiveSpace(4, 3)>, <a point in ProjectiveSpace(4, 3)>,
<a point in ProjectiveSpace(4, 3)>, <a point in ProjectiveSpace(4, 3)> ]

gap> orbit2 := FiningOrbit(g,Set(spts),OnSetsProjSubspaces);
<closed orbit, 36 points>
gap> time;
18

8.1.2 FiningOrbits

. FiningOrbits(g, set, act) (operation)

. FiningOrbits(g, coll) (operation)

Returns: The orbits of the group g on set under the action of act .
The set is a set of elements of a projective space, the group g is a subgroup of the collineation

group of a projective space, and act is the function OnProjSubspaces. If coll is a collection of
elements of a projective space (i.e. not a list or set, but and object representing the collection of
elements of a given type, such as Lines(PG(3,4))), then the second versions returns the orbits of g
on the elements of coll under the action OnProjSubspaces.

Example
gap> ps := HermitianPolarSpace(3,9);
H(3, 3^2)
gap> g := CollineationGroup(ps);
PGammaU(4,3^2)
gap> FiningOrbits(g,Lines(PG(3,9)));
75%..98%..100%..[ <closed orbit, 5670 points>, <closed orbit, 1680 points>,

<closed orbit, 112 points> ]
gap> FiningOrbits(g,Planes(PG(3,9)));
65%..100%..[ <closed orbit, 540 points>, <closed orbit, 280 points> ]
gap> ps := ParabolicQuadric(2,5);
Q(2, 5)
gap> g := CollineationGroup(ps);
PGammaO(3,5)
gap> pts := Filtered(Points(PG(2,5)),x->not x in ps);;
gap> Length(pts);
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25
gap> FiningOrbits(g,Points(PG(2,5)));
48%..67%..100%..[ <closed orbit, 15 points>, <closed orbit, 6 points>,

<closed orbit, 10 points> ]
gap> FiningOrbits(g,pts,OnProjSubspaces);
60%..100%..[ <closed orbit, 15 points>, <closed orbit, 10 points> ]

8.2 Stabilisers

The GAP function Stabilizer is a generic function to compute stabilisers of one object (or sets
or tuples etc. of objects) under a group, using a specified action function. This generic function
can be used together with the in FinInG implemented groups and elements of geometries. However,
computing time can be very long, already in small geometries.

Example
gap> ps := PG(3,8);
ProjectiveSpace(3, 8)
gap> g := CollineationGroup(ps);
The FinInG collineation group PGammaL(4,8)
gap> p := Random(Points(ps));
<a point in ProjectiveSpace(3, 8)>
gap> Stabilizer(g,p,OnProjSubspaces);
<projective collineation group of size 177223237632 with 2 generators>
gap> time;
10026
gap> line := Random(Lines(ps));
<a line in ProjectiveSpace(3, 8)>
gap> Stabilizer(g,line,OnProjSubspaces);
<projective collineation group of size 21849440256 with 2 generators>
gap> time;
78126

The packages GenSS and orb required by FinInG provide efficient operations to compute stabilisers,
and FinInG provides functionality to use these operations for the particular groups and (elements) of
geometries.

8.2.1 FiningStabiliser

. FiningStabiliser(g, el) (operation)

Returns: The subgroup of g stabilising the element el
The argument g is a group of collineations acting on the element el , being a subspace of a

projective space (and hence, all elements of a Lie geometry are allowed as second argument). This
operation relies on the GenSS operation Stab.

Example
gap> ps := PG(5,4);
ProjectiveSpace(5, 4)
gap> g := SpecialHomographyGroup(ps);
The FinInG PSL group PSL(6,4)
gap> p := Random(Points(ps));
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<a point in ProjectiveSpace(5, 4)>
gap> FiningStabiliser(g,p);
<projective collineation group of size 264696069567283200 with 2 generators>
gap> line := Random(Lines(ps));
<a line in ProjectiveSpace(5, 4)>
gap> FiningStabiliser(g,line);
<projective collineation group of size 3881174040576000 with 3 generators>
gap> plane := Random(Planes(ps));
<a plane in ProjectiveSpace(5, 4)>
gap> FiningStabiliser(g,plane);
#I Have 106048 points.
#I Have 158748 points.
<projective collineation group of size 958878292377600 with 2 generators>
gap> ps := HyperbolicQuadric(5,5);
Q+(5, 5)
gap> g := IsometryGroup(ps);
PGO(1,6,5)
gap> p := Random(Points(ps));
<a point in Q+(5, 5)>
gap> FiningStabiliser(g,p);
<projective collineation group of size 36000000 with 3 generators>
gap> line := Random(Lines(ps));
<a line in Q+(5, 5)>
gap> FiningStabiliser(g,line);
<projective collineation group of size 6000000 with 3 generators>
gap> plane := Random(Planes(ps));
<a plane in Q+(5, 5)>
gap> FiningStabiliser(g,plane);
<projective collineation group of size 93000000 with 2 generators>
gap> h := SplitCayleyHexagon(3);
H(3)
gap> g := CollineationGroup(h);
#I for Split Cayley Hexagon
#I Computing nice monomorphism...
#I Found permutation domain...
G_2(3)
gap> p := Random(Points(h));
<a point in H(3)>
gap> FiningStabiliser(g,p);
<projective collineation group of size 11664 with 2 generators>
gap> line := Random(Lines(h));
<a line in H(3)>
gap> FiningStabiliser(g,line);
<projective collineation group of size 11664 with 2 generators>

8.2.2 FiningStabiliserOrb

. FiningStabiliserOrb(g, el) (operation)

Returns: The subgroup of g stabilising the element el
The argument g is a group of collineations acting on the element el , being a subspace of a
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projective space (and hence, all elements of a Lie geometry are allowed as second argument). This
operation relies on some particular orb functionality.

Example
gap> ps := PG(5,4);
ProjectiveSpace(5, 4)
gap> g := SpecialHomographyGroup(ps);
The FinInG PSL group PSL(6,4)
gap> p := Random(Points(ps));
<a point in ProjectiveSpace(5, 4)>
gap> FiningStabiliserOrb(g,p);
<projective collineation group with 15 generators>
gap> line := Random(Lines(ps));
<a line in ProjectiveSpace(5, 4)>
gap> FiningStabiliserOrb(g,line);
<projective collineation group with 15 generators>
gap> plane := Random(Planes(ps));
<a plane in ProjectiveSpace(5, 4)>
gap> FiningStabiliserOrb(g,plane);
<projective collineation group with 15 generators>
gap> ps := HyperbolicQuadric(5,5);
Q+(5, 5)
gap> g := IsometryGroup(ps);
PGO(1,6,5)
gap> p := Random(Points(ps));
<a point in Q+(5, 5)>
gap> FiningStabiliserOrb(g,p);
<projective collineation group with 15 generators>
gap> line := Random(Lines(ps));
<a line in Q+(5, 5)>
gap> FiningStabiliserOrb(g,line);
<projective collineation group with 15 generators>
gap> plane := Random(Planes(ps));
<a plane in Q+(5, 5)>
gap> FiningStabiliserOrb(g,plane);
<projective collineation group with 15 generators>
gap> h := SplitCayleyHexagon(3);
H(3)
gap> g := CollineationGroup(h);
#I for Split Cayley Hexagon
#I Computing nice monomorphism...
#I Found permutation domain...
G_2(3)
gap> p := Random(Points(h));
<a point in H(3)>
gap> FiningStabiliserOrb(g,p);
<projective collineation group with 15 generators>
gap> line := Random(Lines(h));
<a line in H(3)>
gap> FiningStabiliserOrb(g,line);
<projective collineation group with 15 generators>

A small example shows the difference in computing time. Clearly the FiningStabiliserOrb is
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the fastest way to compute stabilizers of one element.
Example

gap> ps := PG(3,8);
ProjectiveSpace(3, 8)
gap> g := CollineationGroup(ps);
The FinInG collineation group PGammaL(4,8)
gap> p := Random(Points(ps));
<a point in ProjectiveSpace(3, 8)>
gap> g1 := Stabilizer(g,p);
<projective collineation group of size 177223237632 with 2 generators>
gap> time;
9576
gap> g2 := FiningStabiliser(g,p);
<projective collineation group of size 177223237632 with 2 generators>
gap> time;
244
gap> g3 := FiningStabiliserOrb(g,p);
<projective collineation group with 15 generators>
gap> time;
46
gap> g1=g2;
true
gap> g2=g3;
true

8.2.3 FiningSetwiseStabiliser

. FiningSetwiseStabiliser(g, els) (operation)

Returns: The subgroup of g stabilising the set els
The argument g is a group of collineations acting on the element el , being a subspace of a

projective space (and hence, all elements of a Lie geometry are allowed as second argument). The
argument els is a set of elements of the same type of the same Lie geometry, the elements are all
in the category IsSubspaceOfProjectiveSpace. The underlying action function is assumed to be
OnProjSubspaces

Example
gap> ps := HyperbolicQuadric(5,5);
Q+(5, 5)
gap> g := IsometryGroup(ps);
PGO(1,6,5)
gap> plane1 := Random(Planes(ps));
<a plane in Q+(5, 5)>
gap> plane2 := Random(Planes(ps));
<a plane in Q+(5, 5)>
gap> FiningSetwiseStabiliser(g,Set([plane1,plane2]));
#I Computing adjusted stabilizer chain...
<projective collineation group with 4 generators>

Computing the setwise stabiliser under a group is also possible using Stabilizer. But, not
suprisingly, the computing time can be very long.
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Example
gap> ps := PG(3,4);
ProjectiveSpace(3, 4)
gap> p := Random(Points(ps));
<a point in ProjectiveSpace(3, 4)>
gap> q := Random(Points(ps));
<a point in ProjectiveSpace(3, 4)>
gap> g := CollineationGroup(ps);
The FinInG collineation group PGammaL(4,4)
gap> Stabilizer(g,Set([p,q]),OnSets);
<projective collineation group of size 552960 with 5 generators>
gap> time;
10440

The package GenSS provides an efficient operations to compute setwise stabilisers. This is why
FinInG provides functionality, such as FiningSetwiseStabiliser, to use these GenSS operations
for the particular groups and (elements) of geometries. A small example shows the difference in
computing time.

Example
gap> ps := ParabolicQuadric(4,4);
Q(4, 4)
gap> g := CollineationGroup(ps);
PGammaO(5,4)
gap> l1 := Random(Lines(ps));
<a line in Q(4, 4)>
gap> l2 := Random(Lines(ps));
<a line in Q(4, 4)>
gap> g1 := Stabilizer(g,Set([l1,l2]),OnSets);
<projective collineation group of size 2304 with 6 generators>
gap> time;
2633
gap> g2 := FiningSetwiseStabiliser(g,Set([l1,l2]));
#I Computing adjusted stabilizer chain...
<projective collineation group with 5 generators>
gap> time;
70
gap> g1=g2;
true

8.3 Actions and nice monomorphisms revisited

GAP provides generic functions to compute action homomorphisms and their images for arbitrary
groups. These functions are applicable on the projective groups implemented in FinInG.

8.3.1 Action functions

. OnProjSubspaces(el, g) (function)

. OnProjSubspacesExtended(el, g) (function)
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. OnSetsProjSubspaces(set, g) (function)

Returns: a element of a Lie geometry
Let el be an element of any Lie geometry, and g an element of a projective group acting on the

elements of the ambient Lie geometry of el . Then then OnProjSubspaces will return simply the
image of el under g . When g is an element of the correlationcollineation group of a projective space,
OnProjSubspacesExtended returns the image of el under g . Finally, when set is a set of elements
of a Lie geometry, OnSetsProjSubspaces returns the set of images under g . OnProjSubspaces is
also explained in 5.8.1, OnProjSubspacesExtended is also explained in 5.8.3.

8.3.2 Generic GAP functions

. ActionHomomorphism(g, S, act) (operation)

. Action(g, S, act) (operation)

g is a projective group, S is a set or a collection of elements, act is an action function. Action
simply returns Image(hom), if hom is the result of ActionHomomorphism. The examples are self-
explanatory.

Example
gap> pg := PG(2,3);
ProjectiveSpace(2, 3)
gap> conic := Set(Points(ParabolicQuadric(2,3)));;
gap> coll := CollineationGroup(pg);
The FinInG collineation group PGL(3,3)
gap> orb := Orbit(coll,conic,OnSetsProjSubspaces);;
gap> Length(orb);
234
gap> hom := ActionHomomorphism(coll,orb,OnSetsProjSubspaces);
<action homomorphism>
gap> perm := Image(hom);
<permutation group with 2 generators>
gap> Order(perm);
5616
gap> NrMovedPoints(perm);
234
gap> ps := SymplecticSpace(5,2);
W(5, 2)
gap> coll := CollineationGroup(ps);
PGammaSp(6,2)
gap> perm := Action(coll,Lines(ps),OnProjSubspaces);
<permutation group with 4 generators>
gap> NrMovedPoints(perm);
315

A nice monomorphism of a group G is roughly just a permutation representation of G on a suitable
action domain. An easy example is the permutation action of the full collineation group of a projective
space on its points.



GAP 4 Package FinInG 148

8.3.3 NiceMonomorphism

. NiceMonomorphism(group) (attribute)

Returns: A group homomorphism
This is a generic GAP function, and returns a homorphism to a "better" representation.

8.3.4 NiceObject

. NiceObject(group) (attribute)

Returns: A permutation group
group is a projective group. The object this operation returns is actually equivalent with

Image(NiceMonomorphism(group)).

8.3.5 Different behaviour for different collineation groups

For the different Lie geometries implemented in FinInG, nicemonomorphisms are (necessarily)
treated in a different way. As the aim of a nicemonomorphism of group G is to provide a permuta-
tion representation, such that efficient algorithms for permutation groups become available for certain
operations applicable on G, clearly the efficiency will be increased if the degree of the permutation
representation is as small as possible.

For the collineation group, projectivity group and special projectivity group of a projective space,
it is clear that the smallest degree permutation representation is the action of the group on the projec-
tive points. In principle, one could also consider the action on the hyerplanes. For the collineation
group, similarity group and isometry group of a classical polar space, in most cases, the smallest
degree permutation representation is the action on the points. A notorious exception to this is the
hermitian polar space in three dimensions, of which the number of lines is smaller than the number of
points, and hence of which the smallest degree permutation representation is the action of the group
on the lines. When constructing a collineation group (or (special) projectiviity group) of a projective
space, the nicemonomorphism is not computed. It is only computed when needed. The reason is that
from the underlying field and dimension, the underlying projective space can be determined at any
time, and hence the smallest degree representation can be computed. For the collineation groups (and
similarity and isometry groups) of classical polar spaces, this behaviour is different. Indeed, given a
group of collineations, from the underlying field and dimension, the original polar space can not be
determined. Of course one could consider the action on the points of the underlying projective space,
but typically the number of points of a classical polar space is much smaller than the number points of
the underlying projective space. This explains why, currently, a nice monomorphism is computed at
the moment a collineation group of a classical polar space is computed. As a consequence, just asking
the collineation group of a polar space can be time consuming.

Example
gap> g := CollineationGroup(PG(5,9));
The FinInG collineation group PGammaL(6,9)
gap> time;
28
gap> HasNiceMonomorphism(g);
false
gap> h := CollineationGroup(EllipticQuadric(5,9));
PGammaO-(6,9)
gap> time;
1584
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gap> HasNiceMonomorphism(h);
true

8.3.6 SetParent

. SetParent(group) (operation)

Assume that G is a group of collineations. As mentioned already, from the underlying field and
dimension, only the underlying projective space can be determined. An operation like Order requires
a nice monomorphism, so for an arbitrary group G, the action on the points of the underlying projective
space will be computed, which can be time consuming for large projective spaces. However, if it is
known that G is a subgroup of another collineation group H, this group H can be set as a parent
group for G. If a nice monomorphism is available for H, it will become available for G. In the
example we construct the collineation group of the hermtian polar space H(3,81). As explained, a
nice monomorphism is computed upon construction. Then construct a group generated by two random
elements of this collineation group of H(3,81), and compute its order. Without further information, it
will be assumed by the system that this new group is a subgroup of the collineation group of PG(3,81),
and a nice monomorphism will be computed through this group. In the second part we set the parent
group as the collineation group of H(3,81), and compute the order again. Compare the different
timings.

Example
gap> ps := HermitianPolarSpace(3,81);
H(3, 9^2)
gap> group := CollineationGroup(ps);
PGammaU(4,9^2)
gap> time;
2219
gap> g := Random(group);
< a collineation: <cmat 4x4 over GF(3,4)>, F^27>
gap> h := Random(group);
< a collineation: <cmat 4x4 over GF(3,4)>, F^3>
gap> group2 := Group([g,h]);
<projective collineation group with 2 generators>
gap> HasNiceMonomorphism(group2);
false
gap> Order(group2);
407194345728000
gap> time;
371559
gap> HasNiceMonomorphism(group2);
true
gap> NrMovedPoints(NiceObject(group2));
538084
gap> Size(Points(PG(3,81)));
538084
gap> group2 := Group([g,h]);
<projective collineation group with 2 generators>
gap> SetParent(group2,group);
gap> HasNiceMonomorphism(group2);
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true
gap> HasNiceObject(group2);
false
gap> Order(group2);
407194345728000
gap> time;
888
gap> HasNiceObject(group2);
true
gap> NrMovedPoints(NiceObject(group2));
7300
gap> Size(Lines(ps));
7300



Chapter 9

Affine Spaces

In this chapter we show how one can work with finite affine spaces in FinInG.

9.1 Affine spaces and basic operations

An affine space is a point-line incidence geometry, satisfying few well known axioms. An axiomatic
treatment can e.g. be found in [VY65a] and [VY65b]. As is the case with projective spaces, affine
spaces are axiomatically point-line geometries, but may contain higher dimensional affine subspaces
too. An affine space can also be described as the “geometry you get” when you remove a hyperplane
from a projective space. Conversely, each affine space can be extended to a projective space in a
unique way (by "adding its hyperplane at infinity"). In FinInG, we deal with finite Desarguesian
affine spaces, i.e. an affine space, such that its projective completion is Desarguesian. Other concepts
can be easily defined using this projective completion. E.g. lines of the projective space which are
concurrent in a point of the hyperplane at infinity, become now parallel in the affine space. In order
to implement (Desarguesian) affine spaces in FinInG, we have to represent the elements of the affine
space (the affine subspaces), in a standard way. By definition, the points (i.e. the elements of type
1) of the n-dimensional affine space AG(n,q) are the vectors of the underlying n-dimensional vector
space over the finite field GF(q). The i-dimensional subspaces of AG(n,q) (i.e. the elements of type
i−1) are defined as the cosets of the i-dimensional subspaces of the underlying vector space. Hence,
the common representation of such a subspace is

v+S,

where v is a vector and S is a subspace of a vector space. Equivalently one can also think of a subspace
of an affine space as consisting of: (i) an affine point, representing the coset, and and (ii) a “direction”,
which is an element of an n−1-dimensional projective space, representing the hyperplane at infinity.
In FinInG, we represent an i-dimensional subspace, 1≤i≤n−1 as

[v,mat]

where v is a row vector and mat is a matrix (representing a basis of the projective element representing
the direction at infinity). For affine points, we simply use vectors.

9.1.1 IsAffineSpace

. IsAffineSpace (Category)

151
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This category is a subcategory of IsIncidenceGeometry, and contains all finite Desarguesian
affine spaces.

9.1.2 AffineSpace

. AffineSpace(d, F) (operation)

. AffineSpace(d, q) (operation)

. AG(d, F) (operation)

. AG(d, q) (operation)

Returns: an affine space
d must be a positive integer. In the first form, F is a field and the function returns the affine space

of dimension d over F . In the second form, q is a prime power specifying the size of the field. The
user may also use an alias, namely, the common abbreviation AG(d, q).

Example
gap> AffineSpace(3,GF(4));
AG(3, 4)
gap> AffineSpace(3,4);
AG(3, 4)
gap> AG(3,GF(4));
AG(3, 4)
gap> AG(3,4);
AG(3, 4)

9.1.3 Dimension

. Dimension(as) (attribute)

. Rank(as) (attribute)

Returns: the dimension of the affine space as (which is equal to its rank)
Example

gap> Dimension(AG(5,7));
5
gap> Rank(AG(5,7));
5

9.1.4 BaseField

. BaseField(as) (operation)

Returns: returns the base field for the affine space as
Example

gap> BaseField(AG(6,49));
GF(7^2)

9.1.5 UnderlyingVectorSpace

. UnderlyingVectorSpace(as) (operation)

Returns: a vector space
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The underlying vectorspace of AG(n,q) is simply V (n,q).
Example

gap> UnderlyingVectorSpace(AG(4,5));
( GF(5)^4 )

9.1.6 AmbientSpace

. AmbientSpace(as) (attribute)

Returns: an affine space
The ambient space of an affine space as is the affine space itself. Hence, simply as will be

returned.
Example

gap> AmbientSpace(AG(4,7));
AG(4, 7)

9.2 Subspaces of affine spaces

9.2.1 AffineSubspace

. AffineSubspace(geo, v) (operation)

. AffineSubspace(geo, v, M) (operation)

Returns: a subspace of an affine space
geo is an affine space, v is a row vector, and M is a matrix. There are two representations necessary

for affine subspaces in FinInG: (i) points represented as vectors and (ii) subspaces of dimension at
least 1 represented as a coset of a vector subspace:

v+S.

For the former, the underlying object is just a vector, whereas the second is a pair [v,M] where v is a
vector and M is a matrix representing the basis of S. Now there is a canonical representative for the
coset v+ S, and the matrix M is in semi-echelon form, therefore we can easily compare two affine
subspaces. If no matrix is given in the arguments, then it is assumed that the user is constructing an
affine point.

Example
gap> ag := AffineSpace(3, 3);
AG(3, 3)
gap> x := [[1,1,0]]*Z(3)^0;
[ [ Z(3)^0, Z(3)^0, 0*Z(3) ] ]
gap> v := [0,-1,1] * Z(3)^0;
[ 0*Z(3), Z(3), Z(3)^0 ]
gap> line := AffineSubspace(ag, v, x);
<a line in AG(3, 3)>
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9.2.2 ElementsOfIncidenceStructure

. ElementsOfIncidenceStructure(as, j) (operation)

Returns: the collection of elements of the affine space as of type j
For the affine space as of dimension d and the type j , 1 ≤ j ≤ d this operation returns the

collection of j− 1 dimensional subspaces. An error message is produced when the projective space
ps has no elements of a required type.

Example
gap> ag := AffineSpace(9, 64);
AG(9, 64)
gap> ElementsOfIncidenceStructure(ag,1);
<points of AG(9, 64)>
gap> ElementsOfIncidenceStructure(ag,2);
<lines of AG(9, 64)>
gap> ElementsOfIncidenceStructure(ag,3);
<planes of AG(9, 64)>
gap> ElementsOfIncidenceStructure(ag,4);
<solids of AG(9, 64)>
gap> ElementsOfIncidenceStructure(ag,6);
<affine. subspaces of dim. 5 of AG(9, 64)>
gap> ElementsOfIncidenceStructure(ag,9);
<affine. subspaces of dim. 8 of AG(9, 64)>
gap> ElementsOfIncidenceStructure(ag,10);
Error, <as> has no elements of type <j> called from
<function "unknown">( <arguments> )
called from read-eval loop at line 15 of *stdin*

you can ’quit;’ to quit to outer loop, or
you can ’return;’ to continue
brk> quit;

9.2.3 Short names for ElementsOfIncidenceStructure

. Points(ps) (operation)

. Lines(ps) (operation)

. Planes(ps) (operation)

. Solids(ps) (operation)

. Hyperplanes(ps) (operation)

Returns: The elements of ps of respective type 1, 2, 3, 4, and the hyperplanes
An error message is produced when the projective space ps has no elements of a required type.

Example
gap> as := AG(5,4);
AG(5, 4)
gap> Points(as);
<points of AG(5, 4)>
gap> Lines(as);
<lines of AG(5, 4)>
gap> Planes(as);
<planes of AG(5, 4)>
gap> Solids(as);
<solids of AG(5, 4)>
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gap> Hyperplanes(as);
<affine. subspaces of dim. 4 of AG(5, 4)>
gap> as := AG(2,8);
AG(2, 8)
gap> Hyperplanes(as);
<lines of AG(2, 8)>

9.2.4 Incidence and containment

. IsIncident(el1, el2) (operation)

. \*(el1, el2) (operation)

. \in(el1, el2) (operation)

Returns: true or false
Recall that for affine spaces, incidence is symmetrized containment, where the whole affine space

is excluded as one of the arguments for the operation IsIncident, since they it is not considered as
an element of the geometry, but the whole affine space is allowed as one of the arguments for \in.
The method for \* is using IsIncident.

Example
gap> as := AG(3,16);
AG(3, 16)
gap> p := AffineSubspace(as,[1,0,0]*Z(16)^0);
<a point in AG(3, 16)>
gap> l := AffineSubspace(as,[1,0,0]*Z(16),[[0,1,1]]*Z(16)^0);
<a line in AG(3, 16)>
gap> plane := AffineSubspace(as,[1,0,0]*Z(16)^0,[[1,0,0],[0,1,1]]*Z(16)^0);
<a plane in AG(3, 16)>
gap> p in p;
true
gap> p in l;
false
gap> l in p;
false
gap> l in plane;
true
gap> plane in l;
false
gap> p in plane;
true
gap> p in as;
true
gap> l in as;
true
gap> plane in as;
true
gap> as in p;
false
gap> IsIncident(p,l);
false
gap> IsIncident(l,p);
false
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gap> IsIncident(l,plane);
true
gap> IsIncident(plane,l);
true
gap> IsIncident(p,plane);
true
gap> IsIncident(plane,p);
true

9.2.5 AmbientSpace

. AmbientSpace(el) (operation)

Returns: returns the ambient space of an element el of an affine space
Example

gap> as := AG(5,7);
AG(5, 7)
gap> solid := AffineSubspace(as,[1,0,0,1,0]*Z(7)^3,[[1,0,0,0,0],[0,1,1,1,0]]*Z(7)^0);
<a plane in AG(5, 7)>
gap> AmbientSpace(solid);
AG(5, 7)

9.2.6 BaseField

. BaseField(el) (operation)

Returns: returns the base field of an element el of an affine space
Example

gap> as := AG(5,11);
AG(5, 11)
gap> sub := AffineSubspace(as,[1,4,3,1,0]*Z(11)^5,[[1,0,0,0,0],[0,1,1,1,0],
> [0,0,0,0,1]]*Z(11)^0);
<a solid in AG(5, 11)>
gap> BaseField(sub);
GF(11)

9.2.7 Span

. Span(u, v) (operation)

Returns: a subspace
u and v are subspaces of an affine space. This function returns the span of the two subspaces.

Example
gap> ag := AffineSpace(4,5);
AG(4, 5)
gap> p := AffineSubspace(ag, [1,0,0,0] * One(GF(5)) );
<a point in AG(4, 5)>
gap> r := AffineSubspace(ag, [0,1,0,0] * One(GF(5)) );
<a point in AG(4, 5)>
gap> l := Span(p, r);
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<a line in AG(4, 5)>
gap> l^_;
[ [ 0*Z(5), Z(5)^0, 0*Z(5), 0*Z(5) ], [ [ Z(5)^0, Z(5)^2, 0*Z(5), 0*Z(5) ] ] ]
gap> Display(l);
Affine line:
Coset representative: [ 0*Z(5), Z(5)^0, 0*Z(5), 0*Z(5) ]
Coset (direction): [ [ Z(5)^0, Z(5)^2, 0*Z(5), 0*Z(5) ] ]

9.2.8 Meet

. Meet(u, v) (operation)

Returns: an affine subspace or the empty list
u and v are subspaces of an affine space. This function returns the meet of the two subspaces. If

the two subspaces are disjoint, then Meet returns the empty list.
Example

gap> ag := AffineSpace(4,5);
AG(4, 5)
gap> p := AffineSubspace(ag, [1,0,0,0] * One(GF(5)),
> [[1,0,0,-1], [0,1,0,0],[0,0,1,3]] * One(GF(5)));
<a solid in AG(4, 5)>
gap> l := AffineSubspace(ag, [0,0,0,0] * One(GF(5)), [[1,1,0,0]] * One(GF(5)) );
<a line in AG(4, 5)>
gap> x := Meet(p, l);
<a point in AG(4, 5)>
gap> x^_;
[ Z(5)^0, Z(5)^0, 0*Z(5), 0*Z(5) ]
gap> Display(x);
Affine point: 1 1 . .

9.2.9 IsParallel

. IsParallel(u, v) (operation)

Returns: true or false
The arguments u and v must be affine subspaces of a common affine space. Two subspaces are

parallel if and only if the direction space of the first is contained in the direction space of the second
or viceversa.

Example
gap> as := AffineSpace(3, 3);
AG(3, 3)
gap> l := AffineSubspace(as,[0,0,0]*Z(3)^0,[[1,0,0]]*Z(3)^0);
<a line in AG(3, 3)>
gap> m := AffineSubspace(as,[1,0,0]*Z(3)^0,[[1,0,0]]*Z(3)^0);
<a line in AG(3, 3)>
gap> n := AffineSubspace(as,[1,0,0]*Z(3)^0,[[0,1,0]]*Z(3)^0);
<a line in AG(3, 3)>
gap> IsParallel(l,m);
true
gap> IsParallel(m,n);
false
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gap> IsParallel(l,n);
false

9.2.10 ParallelClass

. ParallelClass(as, v) (operation)

. ParallelClass(v) (operation)

Returns: a collection of affine subspaces
The argument v is an affine subspace of as . This operation returns a collection for which an

iterator is installed. The collection represents the set of elements of as of the same type as v which
are parallel to v ; they have the same direction. If v is a point, then this operation returns the collection
of all points of as . If one argument is given, then it is assumed that the affine space which we are
working with is the ambient space of v .

Example
gap> as := AffineSpace(3, 3);
AG(3, 3)
gap> l := Random( Lines( as ) );
<a line in AG(3, 3)>
gap> pclass := ParallelClass( l );
<parallel class of lines in AG(3, 3)>
gap> AsList(pclass);
[ <a line in AG(3, 3)>, <a line in AG(3, 3)>, <a line in AG(3, 3)>,

<a line in AG(3, 3)>, <a line in AG(3, 3)>, <a line in AG(3, 3)>,
<a line in AG(3, 3)>, <a line in AG(3, 3)>, <a line in AG(3, 3)> ]

9.3 Shadows of Affine Subspaces

9.3.1 ShadowOfElement

. ShadowOfElement(as, v, type) (operation)

Returns: the subspaces of the affine space as of dimension type which are incident with v
as is an affine space and v is an element of as . This operation computes and returns the subspaces

of dimension type which are incident with v . In fact, this operation returns a collection which is only
computed when iterated (e.g. when applying AsList to the collection). Some shorthand notation for
ShadowOfElement is available for affine spaces: Points(as,v), Points(v), Lines(v), etc.

Example
gap> as := AffineSpace(3, 3);
AG(3, 3)
gap> l := Random( Lines( as ) );
<a line in AG(3, 3)>
gap> planesonl := Planes(l);
<shadow planes in AG(3, 3)>
gap> AsList(planesonl);
[ <a plane in AG(3, 3)>, <a plane in AG(3, 3)>, <a plane in AG(3, 3)>,

<a plane in AG(3, 3)> ]
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9.3.2 ShadowOfFlag

. ShadowOfFlag(as, list, type) (operation)

Returns: the subspaces of the affine space as of dimension type which are incident with each
element of list

as is an affine space and list is a list of pairwise incident elements of as . This operation
computes and returns the subspaces of dimension type which are incident with every element of
list . In fact, this operation returns a collection which is only computed when iterated (e.g. when
applying AsList to the collection).

Example
gap> as := AffineSpace(3, 3);
AG(3, 3)
gap> l := Random( Lines( as ) );
<a line in AG(3, 3)>
gap> x := Random( Points( l ) );
<a point in AG(3, 3)>
gap> flag := FlagOfIncidenceStructure(as,[x,l]);
<a flag of AffineSpace(3, 3)>
gap> shadow := ShadowOfFlag( as, flag, 3 );
<shadow planes in AG(3, 3)>
gap> AsList(shadow);
Iterators of shadows of flags in affine spaces are not complete in this versio
n
[ <a plane in AG(3, 3)>, <a plane in AG(3, 3)>, <a plane in AG(3, 3)>,

<a plane in AG(3, 3)> ]

9.4 Iterators and enumerators

Recall from Section 4.4 (“Enumerating subspaces of a projective space”, Chapter 4), that an iterator
allows us to obtain elements from a collection one at a time in sequence, whereas an enumerator for a
collection give us a way of picking out the i-th element. In FinInG we have enumerators and iterators
for subspace collections of affine spaces.

9.4.1 Iterator

. Iterator(subs) (operation)

Returns: an iterator for the given subspaces collection
subs is a collection of subspaces of an affine space, such as Points( AffineSpace(3, 3) ).

Example
gap> ag := AffineSpace(3, 3);
AG(3, 3)
gap> lines := Lines( ag );
<lines of AG(3, 3)>
gap> iter := Iterator( lines );
<iterator>
gap> l := NextIterator( iter );
<a line in AG(3, 3)>
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9.4.2 Enumerator

. Enumerator(subs) (operation)

Returns: an enumerator for the given subspaces collection
subs is a collection of subspaces of an affine space, such as Points( AffineSpace(3, 3) ).

Example
gap> ag := AffineSpace(3, 3);
AG(3, 3)
gap> lines := Lines( ag );
<lines of AG(3, 3)>
gap> enum := Enumerator( lines );
<enumerator of <lines of AG(3, 3)>>
gap> l := enum[20];
<a line in AG(3, 3)>
gap> Display(l);
Affine line:
Coset representative: [ 0*Z(3), 0*Z(3), Z(3)^0 ]
Coset (direction): [ [ Z(3)^0, 0*Z(3), Z(3) ] ]

9.5 Affine groups

A collineation of an affine space is a permutation of the points which preserves the relation of
collinearity within the affine space. The fundamental theorem of affine geometry states that the group
AΓL(d,F) of collineations of an affine space AG(d,F) is generated by the translations T , matrices
of GL(d,F) and the automorphisms of the field F . The translations T form a normal subgroup of
AΓL(d,F), and AΓL(d,F) is the semidirect product of T and ΓL(d,F).

Suppose we have an affine transformation of the form x+A where x is a vector representing a
translation, and A is a matrix in GL(d,q). Then by using the natural embedding of AGL(d,q) in

PGL(d + 1,q), we can write this collineation as a matrix:


0

A 0
0

x 1

 . We can extend

this idea to the full affine collineation group by adjoining the field automorphisms as we would for
projective collineations. Here is an example:

Example
gap> ag := AffineSpace(3,3);
AG(3, 3)
gap> g := AffineGroup(ag);
AGL(3,3)
gap> x:=Random(g);;
gap> Display(x);
<a collineation , underlying matrix:
. 1 1 .
2 2 . .
2 1 . .
1 2 1 1

, F^0>
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Here we see that this affine transformation is

(1,2,1)+



1
1
2
2
0
2
1
1


.

As we have seen, in FinInG, we represent an element of an affine collineation group as a projective
semilinear element, i.e. as an object in the category ProjElsWithFrob, so that we can use all the
functionality that exists for such objects. However, an affine collineation group is not by default
constructed as a subgroup of PΓL(d,F), but the compatibility between the elements of both groups
enables testing for such relations.

Example
gap> G := CollineationGroup(AG(3,27));
AGammaL(3,27)
gap> H := CollineationGroup(PG(3,27));
The FinInG collineation group PGammaL(4,27)
gap> g := Random(G);
< a collineation: [ [ Z(3^3)^25, Z(3^3)^11, Z(3^3)^23, 0*Z(3) ],

[ Z(3^3)^20, 0*Z(3), Z(3^3), 0*Z(3) ],
[ Z(3^3)^16, Z(3^3)^15, Z(3^3)^21, 0*Z(3) ],
[ Z(3^3)^20, Z(3^3)^4, 0*Z(3), Z(3)^0 ] ], F^3>

gap> g in H;
true
gap> IsSubgroup(H,G);
true

9.5.1 AffineGroup

. AffineGroup(as) (operation)

Returns: a group
This operation returnes the affine linear group AGL(V ) acting on the affine space with underly-

ing vector space V . The elements of this group are projectivities of the associated projective space.
In order to get the full group of collineations of the affine space, one needs to use the operation
CollineationGroup.

Example
gap> as := AffineSpace(4,7);
AG(4, 7)
gap> g := AffineGroup(as);
AGL(4,7)
gap> as := AffineSpace(4,8);
AG(4, 8)
gap> g := AffineGroup(as);
AGL(4,8)
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9.5.2 CollineationGroup

. CollineationGroup(as) (operation)

Returns: a group
If as is the affine space AG(d,q), then this operation returns the affine semilinear group AΓL(d,q)

The elements of this group are collineations of the associated projective space. Note that if the defining
field has prime order, then AΓL(d,q) = AGL(d,q).

Example
gap> as := AffineSpace(4,8);
AG(4, 8)
gap> g := CollineationGroup(as);
AGammaL(4,8)
gap> h := AffineGroup(as);
AGL(4,8)
gap> IsSubgroup(g,h);
true
gap> as := AffineSpace(4,7);
AG(4, 7)
gap> g := CollineationGroup(as);
AGL(4,7)

9.5.3 OnAffineSpaces

. OnAffineSpaces(subspace, el) (operation)

. \^(subspace, el) (operation)

Returns: an element of an affine space
subspace must be an element of an affine space and el a collineation of an affine space (which

is in fact also a collineation of an associated projective space). This is the action one should use for
collineations of affine spaces, and it acts on subspaces of all types of affine spaces: points, lines,
planes, etc.

Example
gap> as := AG(3,27);
AG(3, 27)
gap> p := Random(Points(as));
<a point in AG(3, 27)>
gap> g := Random(CollineationGroup(as));
< a collineation: [ [ Z(3^3)^25, Z(3^3)^11, Z(3^3)^23, 0*Z(3) ],

[ Z(3^3)^20, 0*Z(3), Z(3^3), 0*Z(3) ],
[ Z(3^3)^16, Z(3^3)^15, Z(3^3)^21, 0*Z(3) ],
[ Z(3^3)^20, Z(3^3)^4, 0*Z(3), Z(3)^0 ] ], F^3>

gap> OnAffineSubspaces(p,g);
<a point in AG(3, 27)>
gap> p^g;
<a point in AG(3, 27)>
gap> l := Random(Lines(as));
<a line in AG(3, 27)>
gap> OnAffineSubspaces(l,g);
<a line in AG(3, 27)>
gap> l^g;



GAP 4 Package FinInG 163

<a line in AG(3, 27)>

9.6 Low level operations

One technical aspect of the design behind affine spaces in FinInG is having canonical transversals for
subspaces of vector spaces. We provide some documentation below for the interested user.

9.6.1 IsVectorSpaceTransversal

. IsVectorSpaceTransversal (filter)

The category IsVectorSpaceTransversal represents a special object in FinInG which car-
ries a record with two components: space and subspace . This category is a subcate-
gory of IsSubspacesOfVectorSpace, however, we do not recommend the user to apply meth-
ods to objects in IsVectorSpaceTransversal, which are normally used for the category
IsSubspacesOfVectorSpace (they won’t work!). The objects in IsVectorSpaceTransversal are
only used in order to facilitate computing enumerators of subspace collections.

9.6.2 VectorSpaceTransversal

. VectorSpaceTransversal(space, mat) (operation)

Returns: a collection for representing a transversal of a subspaces of a vector space
space is a vector space V and mat is a matrix whose rows are a basis for a subspace U of V . A

transversal for U in V is a set of coset representatives for the quotient V/U . This collection comes
equipped with an enumerator operation.

9.6.3 VectorSpaceTransversalElement

. VectorSpaceTransversalElement(space, mat, vector) (operation)

Returns: a canonical coset representative
space is a vector space V , mat is a matrix whose rows are a basis for a subspace U of V , and

vector is a vector v of V . A canonical representative v′ is returned for the coset U + v.

9.6.4 ComplementSpace

. ComplementSpace(space, mat) (operation)

Returns: a collection for representing a transversal of a subspaces of a vector space
space is a vector space V and mat is a matrix whose rows are a basis for a subspace U of V . The

operation is almost a complete copy of the function BaseSteinitzVector except that just a basis for
the complement of U is returned instead of a full record.



Chapter 10

Geometry Morphisms

Here we describe what is meant by a geometry morphism in FinInG and the various operations and
tools available to the user. When using groups in GAP, we often use homomorphisms to pass from
one situation to another, even though mathematically it may appear to be unneccessary, there can be
ambiguities if the functionality is too flexible. This also applies to finite geometry. Take for example
the usual exercise of thinking of a hyperplane in a projective space as another projective space. To
conform with similar situations in GAP, the right thing to do is to embed one projective space into
another, rather than having one projective space automatically as a substructure of another. The reason
for this is that there are many ways one can do this embedding, even though we may dispense with
this choice when we are working mathematically. So to avoid ambiguity, we stipulate that one should
construct the embedding explicitly. How this is done will be described this chapter.

Suppose that S and S′ are two incidence geometries. A geometry morphism from S to S′ is defined
to be a map from the elements of S to the elements of S′ which preserves incidence and induces a
function from the type set of S to the type set of S′. For instance, a correlation and a collineation are
examples of geometry morphisms, but they have been dealt with in more specific ways in FinInG. We
will mainly be concerned with geometry morphisms where the source and range are different. Hence,
the natural embedding of a projective space in a larger projective space, the mapping induced by field
reduction, and e.g. the Klein correspondence are examples of such geometry morphisms.

As a geometry morphism from S to S′ preserves incidence, it also preserves the symmetry, and
hence it induces also a map from the collineation group of S into the collineation group of S′. Such
a map will be called an Intertwiner, and FinInG can provide these maps for some of the geometry
morphisms.

Note that quite some technicalities are needed in the implementation of some geometry mor-
phisms. This chapters deals only with the user interface. Some low level functions for geometry
morphisms are described in Appendix C.

10.1 Geometry morphisms in FinInG

10.1.1 IsGeometryMorphism

. IsGeometryMorphism (family)

The category IsGeometryMorphism represents a special object in FinInG which carries attributes
and the given element map. The element map is given as a IsGeneralMapping, and so has a source

164
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and range.
Example

gap> ShowImpliedFilters(IsGeometryMorphism);
Implies:

IsGeneralMapping
IsTotal
Tester(IsTotal)
IsSingleValued
Tester(IsSingleValued)

The usual operations of ImageElm, and PreImageElm, have methods installed for geometry mor-
phisms, as well as the overload operator \^.

10.1.2 Intertwiner

. Intertwiner(f) (attribute)

Returns: a group homomorphism
The argument f is a geometry morphism. If f comes equipped with a natural intertwiner from

an automorphism group of the source of f to the automorphism group to the image of f , then the
user may is able to obtain the intertwiner by calling this operation (see the individual geometry mor-
phism constructions). For most geometry morphisms, there is also an accompanying intertwiner for
the automorphism groups of the source and range. Given a geometry morphism f from S to S′, an
intertwiner φ is a map from the automorphism group of S to the automorphism group of S′, such that
for every element p of S and every automorphism g of S, we have

f (pg) = f (p)φ(g).

There is no method to compute an intertwiner for a given geometry morphism, the attribute is or is not
set during the construction of the geometry morphism, depending whether the Source and Range of
the morphism have the appropriate automorphism group known as an attribute. When this condition
is not satisfied, the user is expected to call the appropriate automorphism groups, so that they are
computed, and to recompute the geometry morphism (which will not cost a lot of computation time
then). This will make the attribute Intertwiner available. Here is a simple example of the intertwiner
for the isomorphism of two polar spaces (see IsomorphismPolarSpaces (10.2.1)). The source of
the homomorphism is dependent on the geometry.

Example
gap> form := BilinearFormByMatrix( IdentityMat(3,GF(3)), GF(3) );
< bilinear form >
gap> ps := PolarSpace(form);
<polar space in ProjectiveSpace(2,GF(3)): x_1^2+x_2^2+x_3^2=0 >
gap> pq := ParabolicQuadric(2,3);
standard Q(2, 3)
gap> iso := IsomorphismPolarSpaces(ps, pq);
#I Computing nice monomorphism...
<geometry morphism from <Elements of <polar space in ProjectiveSpace(2,GF(
3)): x_1^2+x_2^2+x_3^2=0 >> to <Elements of standard Q(2, 3)>>
gap> KnownAttributesOfObject(iso);
[ "Range", "Source", "Intertwiner" ]
gap> hom := Intertwiner(iso);
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MappingByFunction( <projective semilinear group with
3 generators>, PGammaO(3,3), function( y ) ... end, function( x ) ... end )

10.2 Type preserving bijective geometry morphisms

An important class of geometry morphisms in FinInG are the isomorphisms between polar spaces of
the same kind that are induced by coordinate transformations.

10.2.1 IsomorphismPolarSpaces

. IsomorphismPolarSpaces(ps1, ps2) (operation)

. IsomorphismPolarSpaces(ps1, ps2, boolean) (operation)

Returns: a geometry morphism
The arguments ps1 and ps2 are equivalent polar spaces, i.e. up to coordinate transformation,

the underlying sesquilinear or quadratic form determines the same polar space, or, ps1 is a parabolic
quadric over a finite field f of even charateristic in dimension 2n and ps2 is a symplectic space over f
in dimension 2n−1, then this operation returns a geometry isomorphism between them. The optional
third argument boolean can take either true or false as input, and then the operation will or will
not compute the intertwiner accordingly. The user may wish that the intertwiner is not computed
when working with large polar spaces. The default (when calling the operation with two arguments)
is set to true, and in this case, if at least one of ps1 or ps2 has a collineation group installed as
an attribute, then an intertwining homomorphism is installed as an attribute of the resulting geometry
morphism. Hence we also obtain a natural group isomorphism from the collineation group of ps1
onto the collineation group of ps2 (see also Intertwiner (10.1.2)).

Example
gap> mat1 := IdentityMat(6,GF(5));
< mutable compressed matrix 6x6 over GF(5) >
gap> form1 := BilinearFormByMatrix(mat1,GF(5));
< bilinear form >
gap> ps1 := PolarSpace(form1);
<polar space in ProjectiveSpace(
5,GF(5)): x_1^2+x_2^2+x_3^2+x_4^2+x_5^2+x_6^2=0 >
gap> mat2 := [[0,0,0,0,0,1],[0,0,0,0,1,0],[0,0,0,1,0,0],
> [0,0,0,0,0,0],[0,0,0,0,0,0],[0,0,0,0,0,0]]*Z(5)^0;
[ [ 0*Z(5), 0*Z(5), 0*Z(5), 0*Z(5), 0*Z(5), Z(5)^0 ],

[ 0*Z(5), 0*Z(5), 0*Z(5), 0*Z(5), Z(5)^0, 0*Z(5) ],
[ 0*Z(5), 0*Z(5), 0*Z(5), Z(5)^0, 0*Z(5), 0*Z(5) ],
[ 0*Z(5), 0*Z(5), 0*Z(5), 0*Z(5), 0*Z(5), 0*Z(5) ],
[ 0*Z(5), 0*Z(5), 0*Z(5), 0*Z(5), 0*Z(5), 0*Z(5) ],
[ 0*Z(5), 0*Z(5), 0*Z(5), 0*Z(5), 0*Z(5), 0*Z(5) ] ]

gap> form2 := QuadraticFormByMatrix(mat2,GF(5));
< quadratic form >
gap> ps2 := PolarSpace(form2);
<polar space in ProjectiveSpace(5,GF(5)): x_1*x_6+x_2*x_5+x_3*x_4=0 >
gap> iso := IsomorphismPolarSpaces(ps1,ps2,true);
#I No intertwiner computed. One of the polar spaces must have a collineation group computed
<geometry morphism from <Elements of Q+(5,
5): x_1^2+x_2^2+x_3^2+x_4^2+x_5^2+x_6^2=0> to <Elements of Q+(5,
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5): x_1*x_6+x_2*x_5+x_3*x_4=0>>
gap> CollineationGroup(ps1);
#I Computing collineation group of canonical polar space...
<projective collineation group of size 58032000000 with 4 generators>
gap> CollineationGroup(ps2);
#I Computing collineation group of canonical polar space...
<projective collineation group of size 58032000000 with 4 generators>
gap> iso := IsomorphismPolarSpaces(ps1,ps2,true);
<geometry morphism from <Elements of Q+(5,
5): x_1^2+x_2^2+x_3^2+x_4^2+x_5^2+x_6^2=0> to <Elements of Q+(5,
5): x_1*x_6+x_2*x_5+x_3*x_4=0>>
gap> hom := Intertwiner( iso );
MappingByFunction( <projective collineation group of size 58032000000 with
4 generators>, <projective collineation group of size 58032000000 with
4 generators>, function( y ) ... end, function( x ) ... end )
gap> ps1 := ParabolicQuadric(6,8);
Q(6, 8)
gap> ps2 := SymplecticSpace(5,8);
W(5, 8)
gap> em := IsomorphismPolarSpaces(ps1,ps2);
#I Have 36171 points.
#I Have 37381 points in new orbit.
#I Have 36171 points.
#I Have 37388 points in new orbit.
<geometry morphism from <Elements of Q(6, 8)> to <Elements of W(5, 8)>>
gap> hom := Intertwiner(em);
MappingByFunction( PGammaO(7,8), <projective collineation group of size
27231016821530296320 with
3 generators>, function( el ) ... end, function( el ) ... end )

10.3 Klein correspondence and derived dualities

The Klein correspondence is a well known geometry morphism from the lines of PG(3,q) to the
points of a hyperbolic quadric in PG(5,q). This morphism and some derived morphisms are provided
in FinInG. The bare essential of the Klein corresondence is the so-called Plücker map.

10.3.1 PluckerCoordinates

. PluckerCoordinates(line) (operation)

This operation takes a line of PG(3,q) as argument. It returns the plucker coordinates of
the argument as list of finite field elements. The retured list can be used in operations as
VectorSpaceToElement, and represents a point of the hyperbolic quadric in PG(5,q) with equa-
tion X0X5 +X1X4 +X2X3 = 0

Example
gap> pg := PG(3,169);
ProjectiveSpace(3, 169)
gap> l := Random(Lines(pg));
<a line in ProjectiveSpace(3, 169)>
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gap> vec := PluckerCoordinates(l);
[ Z(13)^0, Z(13^2)^138, Z(13^2)^93, Z(13^2)^53, Z(13^2)^71, Z(13^2)^106 ]
gap> mat := [[0,0,0,0,0,1],[0,0,0,0,1,0],[0,0,0,1,0,0],
> [0,0,0,0,0,0],[0,0,0,0,0,0],[0,0,0,0,0,0]]*Z(13)^0;
[ [ 0*Z(13), 0*Z(13), 0*Z(13), 0*Z(13), 0*Z(13), Z(13)^0 ],

[ 0*Z(13), 0*Z(13), 0*Z(13), 0*Z(13), Z(13)^0, 0*Z(13) ],
[ 0*Z(13), 0*Z(13), 0*Z(13), Z(13)^0, 0*Z(13), 0*Z(13) ],
[ 0*Z(13), 0*Z(13), 0*Z(13), 0*Z(13), 0*Z(13), 0*Z(13) ],
[ 0*Z(13), 0*Z(13), 0*Z(13), 0*Z(13), 0*Z(13), 0*Z(13) ],
[ 0*Z(13), 0*Z(13), 0*Z(13), 0*Z(13), 0*Z(13), 0*Z(13) ] ]

gap> form := QuadraticFormByMatrix(mat,GF(169));
< quadratic form >
gap> klein := PolarSpace(form);
<polar space in ProjectiveSpace(5,GF(13^2)): x_1*x_6+x_2*x_5+x_3*x_4=0 >
gap> VectorSpaceToElement(klein,vec);
<a point in Q+(5, 169): x_1*x_6+x_2*x_5+x_3*x_4=0>

10.3.2 KleinCorrespondence

. KleinCorrespondence(f) (operation)

. KleinCorrespondence(f, boolean) (operation)

. KleinCorrespondence(q) (operation)

. KleinCorrespondence(q, boolean) (operation)

Returns: a geometry morphism
The argument f is a finite field, the argument q is a prime power. The first an the third version use

true as value for boolean . When using true as value for the boolean, the intertwiner is computed.
This variant of the operation KleinCorrespondence has always as ambient geometry of its range the
hyperbolic quadric Q+(5,q) with equation X0X5+X1X4+X2X3 = 0 The returned geometry morphism
has the lines of PG(3,q) as source and the points of Q+(5,q) as range.

Example
gap> k := KleinCorrespondence( 9 );
<geometry morphism from <lines of ProjectiveSpace(3, 9)> to <points of Q+(5,
9): x_1*x_6+x_2*x_5+x_3*x_4=0>>
gap> Intertwiner(k);
MappingByFunction( The FinInG collineation group PGammaL(4,9), <projective col
lineation group with
3 generators>, function( g ) ... end, function( g ) ... end )
gap> pg := ProjectiveSpace(3, 9);
ProjectiveSpace(3, 9)
gap> AmbientGeometry(Range(k));
Q+(5, 9): x_1*x_6+x_2*x_5+x_3*x_4=0
gap> l := Random( Lines(pg) );
<a line in ProjectiveSpace(3, 9)>
gap> l^k;
<a point in Q+(5, 9): x_1*x_6+x_2*x_5+x_3*x_4=0>
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10.3.3 KleinCorrespondence

. KleinCorrespondence(quadric) (operation)

. KleinCorrespondence(quadric, boolean) (operation)

Returns: a geometry morphism
The argument quadric is a hyperbolic quadric in a 5 dimensional projective space. If boolean

is true or not given, this operation returns the geometry morphism equipped with an intertwiner. The
returned geometry morphism has the lines of PG(3,q) as source and the points of Q+(5,q) as range.

Example
gap> quadric := HyperbolicQuadric(5,3);
Q+(5, 3)
gap> k := KleinCorrespondence( quadric );
<geometry morphism from <lines of ProjectiveSpace(3, 3)> to <points of Q+(5,
3)>>
gap> pg := ProjectiveSpace(3, 3);
ProjectiveSpace(3, 3)
gap> l := Random( Lines(pg) );
<a line in ProjectiveSpace(3, 3)>
gap> l^k;
<a point in Q+(5, 3)>
gap> id := IdentityMat(6,GF(13));
< mutable compressed matrix 6x6 over GF(13) >
gap> form := QuadraticFormByMatrix(id,GF(13));
< quadratic form >
gap> quadric := PolarSpace(form);
<polar space in ProjectiveSpace(
5,GF(13)): x_1^2+x_2^2+x_3^2+x_4^2+x_5^2+x_6^2=0 >
gap> k := KleinCorrespondence( quadric );
<geometry morphism from <lines of ProjectiveSpace(3, 13)> to <points of Q+(5,
13): x_1^2+x_2^2+x_3^2+x_4^2+x_5^2+x_6^2=0>>
gap> pg := AmbientGeometry(Source(k));
ProjectiveSpace(3, 13)
gap> l := Random(Lines(pg));
<a line in ProjectiveSpace(3, 13)>
gap> l^k;
<a point in Q+(5, 13): x_1^2+x_2^2+x_3^2+x_4^2+x_5^2+x_6^2=0>

10.3.4 KleinCorrespondenceExtended

. KleinCorrespondenceExtended(quadric) (operation)

. KleinCorrespondenceExtended(quadric, boolean) (operation)

Returns: a geometry morphism
The argument quadric is a hyperbolic quadric in a 5 dimensional projective space. If boolean

is true or not given, this operation returns the geometry morphism equipped with an intertwiner. The
returned geometry morphism has all the elements of PG(3,q) as source (not just the lines) and the
elements of Q+(5,q) as range, hence this operation is a kind of extension of KleinCorrespondence.

Example
gap> ps := HyperbolicQuadric(5,7);
Q+(5, 7)
gap> em := KleinCorrespondenceExtended(ps);
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<geometry morphism from <All elements of ProjectiveSpace(3,
7)> to <Elements of Q+(5, 7)>>
gap> hom := Intertwiner(em);
MappingByFunction( The FinInG collineation group PGL(4,7), <projective colline
ation group with 2 generators>, function( g ) ... end, function( g ) ... end )
gap> mat := [[0,0,0,0,0,1],[0,0,0,0,1,0],[0,0,0,1,0,0],
> [0,0,1,0,0,0],[0,1,0,0,0,0],[1,0,0,0,0,0]]*Z(7)^0;
[ [ 0*Z(7), 0*Z(7), 0*Z(7), 0*Z(7), 0*Z(7), Z(7)^0 ],

[ 0*Z(7), 0*Z(7), 0*Z(7), 0*Z(7), Z(7)^0, 0*Z(7) ],
[ 0*Z(7), 0*Z(7), 0*Z(7), Z(7)^0, 0*Z(7), 0*Z(7) ],
[ 0*Z(7), 0*Z(7), Z(7)^0, 0*Z(7), 0*Z(7), 0*Z(7) ],
[ 0*Z(7), Z(7)^0, 0*Z(7), 0*Z(7), 0*Z(7), 0*Z(7) ],
[ Z(7)^0, 0*Z(7), 0*Z(7), 0*Z(7), 0*Z(7), 0*Z(7) ] ]

gap> g := Projectivity(mat,GF(7));
< a collineation: <cmat 6x6 over GF(7,1)>, F^0>
gap> g in CollineationGroup(ps);
true
gap> PreImageElm(hom,g);
#I <el> is not inducing a collineation of PG(3,q)
fail

It is well known that the classical generalised quadrangles W (3,q) and Q(4,q) are dual inci-
dence structures, the same holds for the classical generalised quadrangles Q−(5,q) and H(3,q2).
Essentially, these dual dualities are based on the Klein correspondence, and are implemented
through the operation NaturalDuality, this operation will return a geometry morphism with
ElementsOfIncidenceStructure(gq1) as source and ElementsOfIncidenceStructure(gq2)
as range, in other words, it is a geometry morphism from all the elements of gq1 onto all the elements
of gq2 , preserving the incidence, and swapping the types.

10.3.5 NaturalDuality

. NaturalDuality(gq1, gq2) (operation)

. NaturalDuality(gq1, gq2, boolean) (operation)

. NaturalDuality(gq) (operation)

. NaturalDuality(gq, boolean) (operation)

Returns: a geometry morphism
The operation allows the construction of the duality between W (3,q) and Q(4,q), respectively

Q−(5,q), or H(3,q2), in two directions. It is checked if the arguments are appropriate, i.e. the right
type of generalised quadrangle(s). The first version requires two arguments: either the symplectic or
parabolic quadrangle, in any order, and defined by any suitable bilinear/quadratic and bilinear form;
or the elliptic or hermitian quadrangle (in dimension 3), in any order, and defined by any suitable
bilinear/quadratic and hermitian form. In all cases the generalised quadrangles may be the standard
one provided by the package FinInG.

The third version requires only one argument, either W (3,q), Q(4,q), Q−(5,q), or H(3,q2), stan-
dard or user specified using an appropriate bilinear, quadratic or hermitian form. The range of the
returned geometry morphism will be the set of all elements of a suitable generalised quadrangle, in
standard form.

The first and third version without a boolean as argument will, if possible return a geometry
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morphism equipped with an intertwiner. Using the boolean argument false will return a geometry
morphism that is not equipped with an intertwiner.

Example
gap> w := SymplecticSpace(3,5);
W(3, 5)
gap> lines:=AsList(Lines(w));;
gap> duality := NaturalDuality(w);
<geometry morphism from <Elements of W(3, 5)> to <Elements of Q(4, 5)>>
gap> l:=lines[1];
<a line in W(3, 5)>
gap> l^duality;
<a point in Q(4, 5)>
gap> PreImageElm(duality,last);
<a line in W(3, 5)>
gap> hom := Intertwiner(duality);
MappingByFunction( PGammaSp(4,5), <projective collineation group of size
9360000 with 4 generators>, function( g ) ... end, function( g ) ... end )
gap> q := 5;
5
gap> q5q := EllipticQuadric(5,q);
Q-(5, 5)
gap> mat := [[0,1,0,0],[1,0,0,0],[0,0,0,Z(q)],[0,0,Z(q),0]]*Z(q)^0;
[ [ 0*Z(5), Z(5)^0, 0*Z(5), 0*Z(5) ], [ Z(5)^0, 0*Z(5), 0*Z(5), 0*Z(5) ],

[ 0*Z(5), 0*Z(5), 0*Z(5), Z(5) ], [ 0*Z(5), 0*Z(5), Z(5), 0*Z(5) ] ]
gap> hform := HermitianFormByMatrix(mat,GF(q^2));
< hermitian form >
gap> herm := PolarSpace(hform);
<polar space in ProjectiveSpace(
3,GF(5^2)): x1^5*x2+x1*x2^5+Z(5)*x3^5*x4+Z(5)*x3*x4^5=0 >
gap> duality := NaturalDuality(q5q,herm,true);
<geometry morphism from <Elements of Q-(5, 5)> to <Elements of H(3,
5^2): x1^5*x2+x1*x2^5+Z(5)*x3^5*x4+Z(5)*x3*x4^5=0>>
gap> hom := Intertwiner(duality);
MappingByFunction( PDeltaO-(6,5), <projective collineation group of size
58968000000 with 3 generators>, function( g ) ... end, function( g ) ... end )
gap> g := Random(CollineationGroup(q5q));
< a collineation: <cmat 6x6 over GF(5,1)>, F^0>
gap> g^hom;
< a collineation: <cmat 4x4 over GF(5,2)>, F^5>

The combination of the isomorphism of the GQs W (3,q), Q(4,q) when q is even and the duality
between the same GQs, yields a duality from each of these GQs itself. The operation SelfDuality
implements this combination.

10.3.6 SelfDuality

. SelfDuality(gq) (operation)

. SelfDuality(gq, boolean) (operation)

Returns: a geometry morphism
It is checked wheter the base field of gq is a field of charateristic 2 and whether gq is a symplectic

generalised quadrangle in 3-dimensional projective space or a parabolic quadric in 4-dimensional
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projective space. The first version will return, when possible, a geometry morphism equipped with an
intertwiner. Using the boolean argument false will return a geometry morphism that is not equipped
with an intertwiner. The example shows the use of the boolean argument.

Example
gap> q := 16;
16
gap> mat := [[0,1,0,0,0],[0,0,0,0,0],[0,0,1,0,0],[0,0,0,0,0],[0,0,0,1,0]]*Z(q)^0;
[ [ 0*Z(2), Z(2)^0, 0*Z(2), 0*Z(2), 0*Z(2) ],

[ 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2) ],
[ 0*Z(2), 0*Z(2), Z(2)^0, 0*Z(2), 0*Z(2) ],
[ 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2) ],
[ 0*Z(2), 0*Z(2), 0*Z(2), Z(2)^0, 0*Z(2) ] ]

gap> form := QuadraticFormByMatrix(mat,GF(q));
< quadratic form >
gap> q4q := PolarSpace(form);
<polar space in ProjectiveSpace(4,GF(2^4)): x_1*x_2+x_3^2+x_4*x_5=0 >
gap> em := SelfDuality(q4q);
#I No intertwiner computed. The polar space must have a collineation group computed
<geometry morphism from <Elements of Q(4,
16): x_1*x_2+x_3^2+x_4*x_5=0> to <Elements of Q(4,
16): x_1*x_2+x_3^2+x_4*x_5=0>>
gap> CollineationGroup(q4q);
#I Computing collineation group of canonical polar space...
<projective collineation group of size 4380799795200 with 3 generators>
gap> em := SelfDuality(q4q);
<geometry morphism from <Elements of Q(4,
16): x_1*x_2+x_3^2+x_4*x_5=0> to <Elements of Q(4,
16): x_1*x_2+x_3^2+x_4*x_5=0>>
gap> hom := Intertwiner(em);
MappingByFunction( <projective collineation group of size 4380799795200 with
3 generators>, <projective collineation group of size 4380799795200 with
3 generators>, function( el ) ... end, function( el ) ... end )
gap> q := 16;
16
gap> w := SymplecticSpace(3,q);
W(3, 16)
gap> em := SelfDuality(w);
<geometry morphism from <Elements of W(3, 16)> to <Elements of W(3, 16)>>

10.4 Embeddings of projective spaces

The most natural of geometry morphisms include, for example, the embedding of a projective space
into another via a subspace, the embedding of a projective space over a field into a projective space of
the same dimension over an extended field, or the embedding of a projective space over a field into a
projective space of higher dimension over a subfield through so-called field reduction.

10.4.1 NaturalEmbeddingBySubspace

. NaturalEmbeddingBySubspace(geom1, geom2, v) (operation)

Returns: a geometry morphism
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The arguments geom1 and geom2 are both projective spaces, and v is an element of a geom2.
This function returns a geometry morphism representing the natural embedding of geom1 into geom2
as the subspace v . Hence geom1 and v must be equivalent as geometries. An Intertwiner is not
implemented for this geometry morphism.

Example
gap> geom1 := ProjectiveSpace(2, 3);
ProjectiveSpace(2, 3)
gap> geom2 := ProjectiveSpace(3, 3);
ProjectiveSpace(3, 3)
gap> planes := Planes(geom2);
<planes of ProjectiveSpace(3, 3)>
gap> hyp := Random(planes);
<a plane in ProjectiveSpace(3, 3)>
gap> em := NaturalEmbeddingBySubspace(geom1, geom2, hyp);
<geometry morphism from <All elements of ProjectiveSpace(2,
3)> to <All elements of ProjectiveSpace(3, 3)>>
gap> points := Points(geom1);
<points of ProjectiveSpace(2, 3)>
gap> x := Random(points);
<a point in ProjectiveSpace(2, 3)>
gap> x^em;
<a point in ProjectiveSpace(3, 3)>

10.4.2 NaturalEmbeddingBySubField

. NaturalEmbeddingBySubField(geom1, geom2) (operation)

. NaturalEmbeddingBySubField(geom1, geom2, boolean) (operation)

Returns: a geometry morphism
The arguments geom1 and geom2 are projective spaces of the same dimension. This function

returns a geometry morphism representing the natural embedding of geom1 into geom2 as a sub-
field geometry. The geometry morphism also comes equipped with an intertwiner (see Intertwiner
(10.1.2)). The optional third argument boolean can take either true or false as input, and then our
operation will or will not compute the intertwiner accordingly. The default (when calling the operation
with two arguments) is set to true. Note that the source of the intertwiner is the projectivity group
of geom1 and its range is a subgroup of the projectivity group of geom2 . Here is a simple example
where the geometry morphism embeds PG(2,3) into PG(2,9).

Example
gap> pg1 := PG(2,3);
ProjectiveSpace(2, 3)
gap> pg2 := PG(2,9);
ProjectiveSpace(2, 9)
gap> em := NaturalEmbeddingBySubfield(pg1,pg2);
<geometry morphism from <All elements of ProjectiveSpace(2,
3)> to <All elements of ProjectiveSpace(2, 9)>>
gap> points := AsList(Points( pg1 ));
[ <a point in ProjectiveSpace(2, 3)>, <a point in ProjectiveSpace(2, 3)>,

<a point in ProjectiveSpace(2, 3)>, <a point in ProjectiveSpace(2, 3)>,
<a point in ProjectiveSpace(2, 3)>, <a point in ProjectiveSpace(2, 3)>,
<a point in ProjectiveSpace(2, 3)>, <a point in ProjectiveSpace(2, 3)>,
<a point in ProjectiveSpace(2, 3)>, <a point in ProjectiveSpace(2, 3)>,
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<a point in ProjectiveSpace(2, 3)>, <a point in ProjectiveSpace(2, 3)>,
<a point in ProjectiveSpace(2, 3)> ]

gap> image := ImagesSet(em, points);
[ <a point in ProjectiveSpace(2, 9)>, <a point in ProjectiveSpace(2, 9)>,

<a point in ProjectiveSpace(2, 9)>, <a point in ProjectiveSpace(2, 9)>,
<a point in ProjectiveSpace(2, 9)>, <a point in ProjectiveSpace(2, 9)>,
<a point in ProjectiveSpace(2, 9)>, <a point in ProjectiveSpace(2, 9)>,
<a point in ProjectiveSpace(2, 9)>, <a point in ProjectiveSpace(2, 9)>,
<a point in ProjectiveSpace(2, 9)>, <a point in ProjectiveSpace(2, 9)>,
<a point in ProjectiveSpace(2, 9)> ]

gap> hom := Intertwiner(em);
MappingByFunction( The FinInG projectivity group PGL(3,3), <projective colline
ation group of size 5616 with
2 generators>, function( x ) ... end, function( y ) ... end )
gap> group1 := ProjectivityGroup(pg1);
The FinInG projectivity group PGL(3,3)
gap> gens := GeneratorsOfGroup(group1);
[ < a collineation: <cmat 3x3 over GF(3,1)>, F^0>,

< a collineation: <cmat 3x3 over GF(3,1)>, F^0> ]
gap> group1_image := Group(List(gens,x->x^hom));
<projective collineation group with 2 generators>
gap> Order(group1_image);
5616
gap> group2 := ProjectivityGroup(pg2);
The FinInG projectivity group PGL(3,9)
gap> Order(group2);
42456960
gap> g := Random(group2);
< a collineation: <cmat 3x3 over GF(3,2)>, F^0>
gap> PreImageElm(hom,g);
#I <el> is not in the range of the intertwiner
fail

10.4.3 Embedding of projective spaces by field reduction

We briefly describe the mathematics behind field reduction. For more details we refer to [LVdV].
Consider the fields K = GF(q) and L = GF(qt) . The field L is a t-dimensional vector space over
K. Hence, with respect to a chosen basis B for L as a K-vectorspace, the bijection between the
vectorspaces V (n,qt) and V (tn,q) can be implemented. Consider the projective space PG(n−1,qt).
The elements are represented by subspaces of V (n,qt). Clearly, a k dimensional subspace of V (n,qt)
is also a kn-dimensional subspace of the V (nt,q). This induces an embedding from PG(n−1,qt) into
PG(nt − 1,q). The embedding will be determined by the chosen basis of L as a vector space over
GF(q).

10.4.4 BlownUpSubspaceOfProjectiveSpace

. BlownUpSubspaceOfProjectiveSpace(B, subspace) (operation)

Returns: a subspace of a projective space
Let B be a basis for the field L = GF(qt) as GF(q) vector space, and let subspace be a k− 1-
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dimensional subspace of PG(n− 1,qt) represented by a k-dimensional subspace S of V (n,qt). This
operation returns the kt−1-dimensional subspace of PG(nt−1,q) represented by blowing up S with
respect to the base B . This operation relies on the GAP operation BlownUpMat. In the example, the
effect of chosen a different basis is shown.

Example
gap> pg := PG(3,5^2);
ProjectiveSpace(3, 25)
gap> basis := Basis(AsVectorSpace(GF(5),GF(5^2)));
CanonicalBasis( GF(5^2) )
gap> line := Random(Lines(pg));
<a line in ProjectiveSpace(3, 25)>
gap> solid1 := BlownUpSubspaceOfProjectiveSpace(basis,line);
<a solid in ProjectiveSpace(7, 5)>
gap> BasisVectors(basis);
[ Z(5)^0, Z(5^2) ]
gap> basis := Basis(AsVectorSpace(GF(5),GF(5^2)),[Z(5),Z(5^2)^8]);
Basis( GF(5^2), [ Z(5), Z(5^2)^8 ] )
gap> solid2 := BlownUpSubspaceOfProjectiveSpace(basis,line);
<a solid in ProjectiveSpace(7, 5)>
gap> solid1 = solid2;
false

10.4.5 NaturalEmbeddingByFieldReduction

. NaturalEmbeddingByFieldReduction(geom1, f2, B) (operation)

. NaturalEmbeddingByFieldReduction(geom1, f2) (operation)

. NaturalEmbeddingByFieldReduction(geom1, geom2) (operation)

. NaturalEmbeddingByFieldReduction(geom1, geom2, B) (operation)

Returns: a geometry morphism
This operation comes in four flavours. For the first flavour, the argument geom1 is a projective

space over a field L = GF(qt). The argument f2 is a subfield K = GF(q) of L. The argument B is a
basis for L as a K-vectorspace. When this argument is not given, a basis for L over K is computed using
Basis(AsVectorSpace(K,L)). It is checked whether f2 is a subfield of the basefield of geom1 . The
third and fourth flavour are comparable, where now K is found as the basefield of geom2 . In fact the
arguments geom1 and geom2 are the projective spaces PG(r− 1,qt) and PG(rt− 1,q) respectively.
As in the previous flavours, the argument B is optional.

An intertwiner is always available for this geometry morphism, and has source the homography
group of geom1 and as range a subgroup of the homography group of geom2 (or the projective space
of the appropriate dimension over f2 . Notice in the example below the difference of a factor 2 in the
orders of the group, which comes of course from restricing the homomorphism to the homography
group, which differes a factor 2 from the collineation group of the projective line, that has an extra
automorphism of order two, corresponding with the Frobenius automorphism.

Example
gap> pg1 := ProjectiveSpace(2,81);
ProjectiveSpace(2, 81)
gap> f2 := GF(9);
GF(3^2)
gap> em := NaturalEmbeddingByFieldReduction(pg1,f2);
<geometry morphism from <All elements of ProjectiveSpace(2,
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81)> to <All elements of ProjectiveSpace(5, 9)>>
gap> f2 := GF(3);
GF(3)
gap> em := NaturalEmbeddingByFieldReduction(pg1,f2);
<geometry morphism from <All elements of ProjectiveSpace(2,
81)> to <All elements of ProjectiveSpace(11, 3)>>
gap> pg2 := ProjectiveSpace(11,3);
ProjectiveSpace(11, 3)
gap> em := NaturalEmbeddingByFieldReduction(pg1,pg2);
<geometry morphism from <All elements of ProjectiveSpace(2,
81)> to <All elements of ProjectiveSpace(11, 3)>>
gap> pg1 := PG(1,9);
ProjectiveSpace(1, 9)
gap> em := NaturalEmbeddingByFieldReduction(pg1,GF(3));
<geometry morphism from <All elements of ProjectiveSpace(1,
9)> to <All elements of ProjectiveSpace(3, 3)>>
gap> i := Intertwiner(em);
MappingByFunction( The FinInG projectivity group PGL(2,9), <projective colline
ation group of size 720 with
2 generators>, function( m ) ... end, function( m ) ... end )
gap> spread := List(Points(pg1),x->x^em);
[ <a line in ProjectiveSpace(3, 3)>, <a line in ProjectiveSpace(3, 3)>,

<a line in ProjectiveSpace(3, 3)>, <a line in ProjectiveSpace(3, 3)>,
<a line in ProjectiveSpace(3, 3)>, <a line in ProjectiveSpace(3, 3)>,
<a line in ProjectiveSpace(3, 3)>, <a line in ProjectiveSpace(3, 3)>,
<a line in ProjectiveSpace(3, 3)>, <a line in ProjectiveSpace(3, 3)> ]

gap> stab := Stabilizer(CollineationGroup(PG(3,3)),Set(spread),OnSets);
<projective collineation group of size 5760 with 3 generators>
gap> hom := HomographyGroup(pg1);
The FinInG projectivity group PGL(2,9)
gap> gens := GeneratorsOfGroup(hom);;
gap> group := Group(List(gens,x->x^i));
<projective collineation group with 2 generators>
gap> Order(group);
2880
gap> IsSubgroup(stab,group);
true

10.5 Embeddings of polar spaces

10.5.1 NaturalEmbeddingBySubspace

. NaturalEmbeddingBySubspace(geom1, geom2, v) (operation)

Returns: a geometry morphism
The arguments geom1 and geom2 both polar spaces, and v is an element of a projective space.

This function returns a geometry morphism representing the natural embedding of geom1 into the
intersection of geom2 and v . Hence the intersection of geom2 and v must induce a polar space of
the same type as geom1 in v . This operation performs all necessary checks. An Intertwiner is not
implemented for this geometry morphism.
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Example
gap> h1 := HermitianPolarSpace(2, 3^2);
H(2, 3^2)
gap> h2 := HermitianPolarSpace(3, 3^2);
H(3, 3^2)
gap> pg := AmbientSpace( h2 );
ProjectiveSpace(3, 9)
gap> pi := VectorSpaceToElement( pg, [[1,0,0,0],[0,1,0,0],[0,0,1,0]] * Z(9)^0 );
<a plane in ProjectiveSpace(3, 9)>
gap> em := NaturalEmbeddingBySubspace( h1, h2, pi );
<geometry morphism from <Elements of H(2, 3^2)> to <Elements of H(3, 3^2)>>
gap> ps1 := ParabolicQuadric(4,4);
Q(4, 4)
gap> ps2 := ParabolicQuadric(6,4);
Q(6, 4)
gap> pg := AmbientSpace( ps2 );
ProjectiveSpace(6, 4)
gap> pi := VectorSpaceToElement( pg, [[1,0,0,0,0,0,0],[0,1,0,0,0,0,0],[0,0,1,0,0,0,0],
> [0,0,0,1,0,0,0],[0,0,0,0,1,0,0]] * Z(4)^0 );
<a proj. 4-space in ProjectiveSpace(6, 4)>
gap> em := NaturalEmbeddingBySubspace( ps1, ps2, pi );
<geometry morphism from <Elements of Q(4, 4)> to <Elements of Q(6, 4)>>
gap> List(Lines(ps1),x->x^em);
[ <a line in Q(6, 4)>, <a line in Q(6, 4)>, <a line in Q(6, 4)>,

<a line in Q(6, 4)>, <a line in Q(6, 4)>, <a line in Q(6, 4)>,
<a line in Q(6, 4)>, <a line in Q(6, 4)>, <a line in Q(6, 4)>,
<a line in Q(6, 4)>, <a line in Q(6, 4)>, <a line in Q(6, 4)>,
<a line in Q(6, 4)>, <a line in Q(6, 4)>, <a line in Q(6, 4)>,
<a line in Q(6, 4)>, <a line in Q(6, 4)>, <a line in Q(6, 4)>,
<a line in Q(6, 4)>, <a line in Q(6, 4)>, <a line in Q(6, 4)>,
<a line in Q(6, 4)>, <a line in Q(6, 4)>, <a line in Q(6, 4)>,
<a line in Q(6, 4)>, <a line in Q(6, 4)>, <a line in Q(6, 4)>,
<a line in Q(6, 4)>, <a line in Q(6, 4)>, <a line in Q(6, 4)>,
<a line in Q(6, 4)>, <a line in Q(6, 4)>, <a line in Q(6, 4)>,
<a line in Q(6, 4)>, <a line in Q(6, 4)>, <a line in Q(6, 4)>,
<a line in Q(6, 4)>, <a line in Q(6, 4)>, <a line in Q(6, 4)>,
<a line in Q(6, 4)>, <a line in Q(6, 4)>, <a line in Q(6, 4)>,
<a line in Q(6, 4)>, <a line in Q(6, 4)>, <a line in Q(6, 4)>,
<a line in Q(6, 4)>, <a line in Q(6, 4)>, <a line in Q(6, 4)>,
<a line in Q(6, 4)>, <a line in Q(6, 4)>, <a line in Q(6, 4)>,
<a line in Q(6, 4)>, <a line in Q(6, 4)>, <a line in Q(6, 4)>,
<a line in Q(6, 4)>, <a line in Q(6, 4)>, <a line in Q(6, 4)>,
<a line in Q(6, 4)>, <a line in Q(6, 4)>, <a line in Q(6, 4)>,
<a line in Q(6, 4)>, <a line in Q(6, 4)>, <a line in Q(6, 4)>,
<a line in Q(6, 4)>, <a line in Q(6, 4)>, <a line in Q(6, 4)>,
<a line in Q(6, 4)>, <a line in Q(6, 4)>, <a line in Q(6, 4)>,
<a line in Q(6, 4)>, <a line in Q(6, 4)>, <a line in Q(6, 4)>,
<a line in Q(6, 4)>, <a line in Q(6, 4)>, <a line in Q(6, 4)>,
<a line in Q(6, 4)>, <a line in Q(6, 4)>, <a line in Q(6, 4)>,
<a line in Q(6, 4)>, <a line in Q(6, 4)>, <a line in Q(6, 4)>,
<a line in Q(6, 4)>, <a line in Q(6, 4)>, <a line in Q(6, 4)>,
<a line in Q(6, 4)> ]
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10.5.2 NaturalEmbeddingBySubField

. NaturalEmbeddingBySubField(geom1, geom2) (operation)

. NaturalEmbeddingBySubField(geom1, geom2, boolean) (operation)

Returns: a geometry morphism
The arguments geom1 and geom2 are projective or polar spaces with an underlying vector space

of the same dimension and the basefield L of geom2 is an extension of the basefield K of geom1 . The
form f determining geom1 also defines a form over L, and determines a polar space. By considering
the underlying vectorspaces determining the elements of geom1 over the extension field L, there is an
obvious embedding of geom1 in the polar space over the extension field. Considering f over a field
extension might change its type. The possible embeddings, where the polar spaces may be chosen up
to equivalent form, are listed in the table below (see [KL90]):

Polar Space 1 Polar Space 2 Conditions
W (2n−1,q) W (2n−1,qa) –
W (2n−1,q) H(2n−1,q2) –
H(d,q2) H(d,q2r) r odd
Oε(d,q) H(d,q2) q odd
Oε(d,q) Oε ′(d,qr) ε = (ε ′)r

Table: Subfield embeddings of polar spaces

The geometry morphism also comes equipped with an intertwiner (see Intertwiner (10.1.2)).
The optional third argument boolean can take either true or false as input, and then our operation
will or will not compute the intertwiner accordingly. When set true, the intertwiner will be computed
if HasCollineationGroup(geom1) is true. The user may wish that the intertwiner is not computed
when embedding large polar spaces. The default (when calling the operation with two arguments) is
set to true.

Example
gap> w := SymplecticSpace(5, 3);
W(5, 3)
gap> h := HermitianPolarSpace(5, 3^2);
H(5, 3^2)
gap> em := NaturalEmbeddingBySubfield(w, h);
#I No intertwiner computed. <geom1> must have a collineation group computed
<geometry morphism from <Elements of W(5, 3)> to <Elements of H(5, 3^2)>>
gap> points := AsList(Points(w));;
gap> image := ImagesSet(em, points);;
gap> ForAll(image, x -> x in h);
true
gap> hq:=HyperbolicQuadric(3,4);
Q+(3, 4)
gap> eq:=EllipticQuadric(3,2);
Q-(3, 2)
gap> em:=NaturalEmbeddingBySubfield(eq,hq);
#I No intertwiner computed. <geom1> must have a collineation group computed
<geometry morphism from <Elements of Q-(3, 2)> to <Elements of Q+(3, 4)>>
gap> eqpts:=ImagesSet(em,AsList(Points(eq)));
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[ <a point in Q+(3, 4)>, <a point in Q+(3, 4)>, <a point in Q+(3, 4)>,
<a point in Q+(3, 4)>, <a point in Q+(3, 4)> ]

10.5.3 Embedding of polar spaces by field reduction

Field reduction for polar spaces is somewhat more involved than for projective spaces, and we give a
brief description. Let P be a polar space over a field L = GF(qt) and let K = GF(q). Let f be the form
on the r dimensional vector space V over L determining P. Consider the trace map T :L = GF(qt)→
GF(q) : x 7→ xqt

+ xqt−1
+ . . .x . Define for any α ∈ L the map Tα : GF(qt)→ GF(q) : Tα(x) = T (αx)

. Consider the rt dimensional vector space W over K. There is a bijective map Φ from V to W
and Tα ◦ f ◦Φ−1 defines a quadratic or sesquilinear form (depending on α , and f being quadratic or
sesquilinear) acting on W , and hence, if not singular or degenerate, inducing a polar space S over the
finite field GF(q). An element of P can be mapped onto an element of S by simply blowing up P
using field reduction for projective spaces. So the resulting polar space W is dependent on the original
form f , the parameter α and the blowing up of elements by field reduction, the latter being dependent
on the basis of L as a K vector space. FinInG provides two approaches. The first approach starts from
P and the parameters K, α and a basis for L as K vector space. Then the resulting form Tα ◦ f ◦Φ−1

is determined, and the associated polar space W will be the range of the embedding. Note that the
resulting polar space will not necessarily be canonical. The second approach starts from two given
polar spaces P and S. Based on this input, it is determined wheter an embedding based on the above
described principle is possible, and the necessary parameters are computed. The resulting embedding
is a geometry morhpism from P to S. Note that the polar spaces used as an argument may be freely
chosen and are not required to be in the canonical form.

Fo the embeddings by field reduction of polar spaces, including conditions on the parameter α ,
we refer to [Gil08] and [LVdV]. The possible embeddings are listed in the following table.

Polar Space 1 Polar Space 2 Conditions
W (2n−1,qt) W (2nt−1,q) –
Q+(2n−1,qt) Q+(2nt−1,q) –
Q−(2n−1,qt) Q−(2nt−1,q) –
Q(2n,q2a+1) Q((2a+1)(2n+1)−1,q) q odd
Q(2n,q2a) Q−(2a(2n+1)−1,q) q=1 mod 4
Q(2n,q4a+2) Q+((4a+2)(2n+1)−1,q) q=3 mod 4
Q(2n,q4a) Q−(4a(2n+1)−1,q) q=3 mod 4
H(n,q2a+1) H((n+1)(2a+1)−1,q) q square
H(n,q2a) W (2a(n+1)−1,q) q even
H(2n,q2a) Q−(2a(2n+1)−1,q) q odd
H(2n+1,q2a) Q+(2a(2n+2)−1,q) q odd

Table: Field reduction of polar spaces

10.5.4 NaturalEmbeddingByFieldReduction

. NaturalEmbeddingByFieldReduction(ps1, f2, alpha, basis, bool) (operation)

. NaturalEmbeddingByFieldReduction(ps1, f2, alpha, basis) (operation)

. NaturalEmbeddingByFieldReduction(ps1, f2, alpha, bool) (operation)

. NaturalEmbeddingByFieldReduction(ps1, f2, alpha) (operation)
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. NaturalEmbeddingByFieldReduction(ps1, f2, bool) (operation)

. NaturalEmbeddingByFieldReduction(ps1, f2) (operation)

Returns: a geometry morphism
ps1 is a polar space over a field extension L of f2 , basis is a basis for L over f2 , alpha is a

non-zero element of L. The version of NaturalEmbeddingByFieldReduction implements the first
approach as explained in 10.5.3. When no argument basis is given, a basis for L over f2 is computed
using Basis(AsVectorSpace(K,L)). When no argument alpha is given, One(f2) is used as value
for alpha . When bool is true or not given, an intertwiner is computed, when bool is false , no
intertwiner is computed. This intertwiner has as its domain the ISOMETRY GROUP of ps1 . The user
may wish that the intertwiner is not computed when embedding large polar spaces. The default (when
calling the operation with two arguments) is set to true. In the first example, we construct a spread
of maximal subspaces (solids) in a 7 dimensional symplectic space. We compute a subgroup of its
stabilizer group using the intertwiner. In the second example, we construct a linear blocking set of the
symplectic generalised quadrangle over GF(9).

Example
gap> ps1 := SymplecticSpace(1,3^3);
W(1, 27)
gap> em := NaturalEmbeddingByFieldReduction(ps1,GF(3),true);
<geometry morphism from <Elements of W(1,
27)> to <Elements of <polar space in ProjectiveSpace(
5,GF(3)): -x1*y6-x2*y5-x3*y4-x3*y6+x4*y3+x5*y2+x6*y1+x6*y3=0 >>>
gap> ps2 := AmbientGeometry(Range(em));
<polar space in ProjectiveSpace(
5,GF(3)): -x1*y6-x2*y5-x3*y4-x3*y6+x4*y3+x5*y2+x6*y1+x6*y3=0 >
gap> spread := List(Points(ps1),x->x^em);;
gap> i := Intertwiner(em);
MappingByFunction( PSp(2,27), <projective collineation group of size
9828 with 2 generators>, function( m ) ... end, function( m ) ... end )
gap> coll := CollineationGroup(ps2);
#I Computing collineation group of canonical polar space...
<projective collineation group of size 9170703360 with 4 generators>
gap> stab := Group(ImagesSet(i,GeneratorsOfGroup(IsometryGroup(ps1))));
<projective collineation group with 2 generators>
gap> IsSubgroup(coll,stab);
true
gap> List(Orbit(stab,spread[1]),x->x in spread);
[ true, true, true, true, true, true, true, true, true, true, true, true,

true, true, true, true, true, true, true, true, true, true, true, true,
true, true, true, true ]

gap> ps1 := SymplecticSpace(3,9);
W(3, 9)
gap> em := NaturalEmbeddingByFieldReduction(ps1,GF(3),true);
<geometry morphism from <Elements of W(3,
9)> to <Elements of <polar space in ProjectiveSpace(
7
,GF(3)): -x1*y3+x1*y4+x2*y3+x3*y1-x3*y2-x4*y1-x5*y7+x5*y8+x6*y7+x7*y5-x7*y6-x8

*y5=0 >>>
gap> ps2 := AmbientGeometry(Range(em));
<polar space in ProjectiveSpace(
7
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,GF(3)): -x1*y3+x1*y4+x2*y3+x3*y1-x3*y2-x4*y1-x5*y7+x5*y8+x6*y7+x7*y5-x7*y6-x8
*y5=0 >
gap> pg := AmbientSpace(ps2);
ProjectiveSpace(7, 3)
gap> spread := List(Points(ps1),x->x^em);;
gap> el := Random(ElementsOfIncidenceStructure(pg,5));
<a proj. 4-space in ProjectiveSpace(7, 3)>
gap> prebs := Filtered(spread,x->Meet(x,el) <> EmptySubspace(pg));;
gap> bs := List(prebs,x->PreImageElm(em,x));;
gap> Length(bs);
118
gap> lines := List(Lines(ps1));;
gap> Collected(List(lines,x->Length(Filtered(bs,y->y * x))));
[ [ 1, 702 ], [ 4, 117 ], [ 10, 1 ] ]

10.5.5 NaturalEmbeddingByFieldReduction

. NaturalEmbeddingByFieldReduction(ps1, ps2, bool) (operation)

. NaturalEmbeddingByFieldReduction(ps1, ps2) (operation)

Returns: a geometry morphism
If ps1 and ps2 are two polar spaces which are suitable for field reduction as listed in the table

with possible embeddings in Section 10.5.3, then this operation returns the corresponding embedding.
An intertwiner is computed if the third argument bool is true, or if there is no third argument. This
intertwiner has as its domain the ISOMETRY GROUP of ps1 . The example shows two cases where a
spread is computed, including a subgroup of its stabiliser group using the intertwiner.

Example
gap> ps1 := SymplecticSpace(1,5^3);
W(1, 125)
gap> ps2 := SymplecticSpace(5,5);
W(5, 5)
gap> em := NaturalEmbeddingByFieldReduction(ps1,ps2);
#I These polar spaces are suitable for field reduction
<geometry morphism from <Elements of W(1, 125)> to <Elements of W(5, 5)>>
gap> pts := Points(ps1);
<points of W(1, 125)>
gap> spread := List(pts,x->x^em);;
gap> test := Union(List(spread,x->List(Points(x))));;
gap> Set(test)=Set(AsList(Points(ps2)));
true
gap> hom := Intertwiner(em);
MappingByFunction( PSp(2,125), <projective collineation group of size
976500 with 2 generators>, function( m ) ... end, function( m ) ... end )
gap> group := IsometryGroup(ps1);
PSp(2,125)
gap> Order(group);
976500
gap> gens := List(GeneratorsOfGroup(group),x->x^hom);
[ < a collineation: <cmat 6x6 over GF(5,1)>, F^0>,

< a collineation: <cmat 6x6 over GF(5,1)>, F^0> ]
gap> group2 := Range(hom);
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<projective collineation group of size 976500 with 2 generators>
gap> Order(group2);
976500
gap> biggroup := CollineationGroup(ps2);
PGammaSp(6,5)
gap> stab := FiningSetwiseStabiliser(biggroup,spread);
#I Computing adjusted stabilizer chain...
<projective collineation group with 7 generators>
gap> time;
6907
gap> Order(stab);
5859000
gap> ps1 := HermitianPolarSpace(2,7^2);
H(2, 7^2)
gap> ps2 := EllipticQuadric(5,7);
Q-(5, 7)
gap> em := NaturalEmbeddingByFieldReduction(ps1,ps2);
#I These polar spaces are suitable for field reduction
<geometry morphism from <Elements of H(2, 7^2)> to <Elements of Q-(5, 7)>>
gap> pts := Points(ps1);
<points of H(2, 7^2)>
gap> spread := List(pts,x->x^em);;
gap> test := Union(List(spread,x->List(Points(x))));;
gap> Set(test)=Set(AsList(Points(ps2)));
true
gap> hom := Intertwiner(em);
MappingByFunction( PGU(3,7^2), <projective collineation group of size
5663616 with 2 generators>, function( m ) ... end, function( m ) ... end )
gap> group := IsometryGroup(ps1);
PGU(3,7^2)
gap> Order(group);
5663616
gap> gens := List(GeneratorsOfGroup(group),x->x^hom);
[ < a collineation: <cmat 6x6 over GF(7,1)>, F^0>,

< a collineation: <cmat 6x6 over GF(7,1)>, F^0> ]
gap> group2 := Range(hom);
<projective collineation group of size 5663616 with 2 generators>
gap> Order(group2);
5663616
gap> biggroup := CollineationGroup(ps2);
PDeltaO-(6,7)
gap> stab := FiningSetwiseStabiliser(biggroup,spread);
#I Computing adjusted stabilizer chain...
<projective collineation group with 10 generators>
gap> time;
3438
gap> Order(stab);
90617856
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10.6 Projections

10.6.1 NaturalProjectionBySubspace

. NaturalProjectionBySubspace(ps, v) (operation)

Returns: a geometry morphism
The argument ps is a projective or polar space, and v is a subspace of ps . In the case that ps is

a projective space, the geometry of subspaces containing v is a projective space of lower dimension
over the same basefield, and this operation returns the corresponding geometry morphism. In the case
that ps is a polar space, the geometry of elements pf ps containing v is a polar space of lower rank
and of the same type over the same basefield, and this operation returns the corresponding geometry
morphism. It is checked whether v is a subspace of ps , and whether the input of the function and
preimage of the returned geometry morphism is valid or not. There is a shorthand for this operation
which is basically an overload of the quotient operation. So, for example, ps / v achieves the same
thing as AmbientGeometry(Range(NaturalProjectionBySubspace(ps, v))). An intertwiner
is not available for this geometry morphism.

Example
gap> ps := HyperbolicQuadric(5,3);
Q+(5, 3)
gap> x := Random(Points(ps));;
gap> planes_on_x := AsList( Planes(x) );
[ <a plane in Q+(5, 3)>, <a plane in Q+(5, 3)>, <a plane in Q+(5, 3)>,

<a plane in Q+(5, 3)>, <a plane in Q+(5, 3)>, <a plane in Q+(5, 3)>,
<a plane in Q+(5, 3)>, <a plane in Q+(5, 3)> ]

gap> proj := NaturalProjectionBySubspace(ps, x);
<geometry morphism from <Elements of Q+(5,
3)> to <Elements of <polar space in ProjectiveSpace(
3,GF(3)): x_1*x_2+x_3*x_4=0 >>>
gap> image := ImagesSet(proj, planes_on_x);
[ <a line in Q+(3, 3): x_1*x_2+x_3*x_4=0>,

<a line in Q+(3, 3): x_1*x_2+x_3*x_4=0>,
<a line in Q+(3, 3): x_1*x_2+x_3*x_4=0>,
<a line in Q+(3, 3): x_1*x_2+x_3*x_4=0>,
<a line in Q+(3, 3): x_1*x_2+x_3*x_4=0>,
<a line in Q+(3, 3): x_1*x_2+x_3*x_4=0>,
<a line in Q+(3, 3): x_1*x_2+x_3*x_4=0>,
<a line in Q+(3, 3): x_1*x_2+x_3*x_4=0> ]

10.7 Projective completion

10.7.1 ProjectiveCompletion

. ProjectiveCompletion(as) (operation)

Returns: a geometry morphism
The argument as is an affine space. This operation returns an embedding of as into the projective

space ps of the same dimension, and over the same field. For example, the point (x,y,z) is mapped
onto the projective point with homogeneous coordinates (1,x,y,z). An intertwiner is unnecessary,
CollineationGroup(as) is a subgroup of CollineationGroup(ps).
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Example
gap> as := AffineSpace(3,5);
AG(3, 5)
gap> map := ProjectiveCompletion(as);
<geometry morphism from <Elements of AG(3,
5)> to <All elements of ProjectiveSpace(3, 5)>>
gap> p := Random( Points(as) );
<a point in AG(3, 5)>
gap> p^map;
<a point in ProjectiveSpace(3, 5)>



Chapter 11

Algebraic Varieties

In FinInG we provide some basic functionality for algebraic varieties defined over finite fields. The
algebraic varieties in FinInG are defined by a list of multivariate polynomials over a finite field, and an
ambient geometry. This ambient geometry is either a projective space, and then the algebraic variety
is called a projective variety, or an affine geometry, and then the algebraic variety is called an affine
variety. In this chapter we give a brief overview of the features of FinInG concerning these two types
of algebraic varieties. The package FinInG also contains the Veronese varieties VeroneseVariety
(11.7.1), the Segre varieties SegreVariety (11.6.1) and the Grassmann varieties GrassmannVariety
(11.8.1); three classical projective varieties. These varieties have an associated geometry map (the
VeroneseMap (11.7.3), SegreMap (11.6.3) and GrassmannMap (11.8.3)) and FinInG also provides
some general functionality for these.

11.1 Algebraic Varieties

An algebraic variety in FinInG is an algebraic variety in a projective space or affine space, defined by
a list of polynomials over a finite field.

11.1.1 AlgebraicVariety

. AlgebraicVariety(space, pring, pollist) (operation)

. AlgebraicVariety(space, pollist) (operation)

Returns: an algebraic variety
The argument space is an affine or projective space over a finite field F , the argument pring is

a multivariate polynomial ring defined over (a subfield of) F , and pollist is a list of polynomials
in pring . If the space is a projective space, then pollist needs to be a list of homogeneous
polynomials. In FinInG there are two types of projective varieties: projective varieties and affine
varieties. The following operations apply to both types.

Example
gap> F:=GF(9);
GF(3^2)
gap> r:=PolynomialRing(F,4);
GF(3^2)[x_1,x_2,x_3,x_4]
gap> pg:=PG(3,9);
ProjectiveSpace(3, 9)
gap> f1:=r.1*r.3-r.2^2;
x_1*x_3-x_2^2

185
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gap> f2:=r.4*r.1^2-r.4^3;
x_1^2*x_4-x_4^3
gap> var:=AlgebraicVariety(pg,[f1,f2]);
Projective Variety in ProjectiveSpace(3, 9)
gap> DefiningListOfPolynomials(var);
[ x_1*x_3-x_2^2, x_1^2*x_4-x_4^3 ]
gap> AmbientSpace(var);
ProjectiveSpace(3, 9)

11.1.2 DefiningListOfPolynomials

. DefiningListOfPolynomials(var) (attribute)

Returns: a list of polynomials
The argument var is an algebraic variety. This attribute returns the list of polynomials that was

used to define the variety var .

11.1.3 AmbientSpace

. AmbientSpace(var) (attribute)

Returns: an affine or projective space
The argument var is an algebraic variety. This attribute returns the affine or projective space in

which the variety var was defined.

11.1.4 PointsOfAlgebraicVariety

. PointsOfAlgebraicVariety(var) (operation)

. Points(var) (operation)

Returns: a list of points
The argument var is an algebraic variety. This operation returns the list of points

of the AmbientSpace (11.1.3) of the algebraic variety var whose coordinates satify the
DefiningListOfPolynomials (11.1.2) of the algebraic variety var .

Example
gap> F:=GF(9);
GF(3^2)
gap> r:=PolynomialRing(F,4);
GF(3^2)[x_1,x_2,x_3,x_4]
gap> pg:=PG(3,9);
ProjectiveSpace(3, 9)
gap> f1:=r.1*r.3-r.2^2;
x_1*x_3-x_2^2
gap> f2:=r.4*r.1^2-r.4^3;
x_1^2*x_4-x_4^3
gap> var:=AlgebraicVariety(pg,[f1,f2]);
Projective Variety in ProjectiveSpace(3, 9)
gap> points:=Points(var);
<points of Projective Variety in ProjectiveSpace(3, 9)>
gap> Size(points);
28
gap> iter := Iterator(points);
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<iterator>
gap> for i in [1..4] do
> x := NextIterator(iter);
> Display(x);
> od;
[1...]
[1..1]
[1..2]
[111.]

11.1.5 Iterator

. Iterator(pts) (operation)

Returns: an iterator
The argument pts is the set of PointsOfAlgebraicVariety (11.1.4) of an algebraic variety

var . This operation returns an iterator for the points of an algebraic variety.

11.1.6 \in

. \in(x, var) (operation)

. \in(x, pts) (operation)

Returns: true or false
The argument x is a point of the AmbientSpace (11.1.3) of an algebraic variety

AlgebraicVariety (11.4.1). This operation also works for a point x and the collection pts returned
by PointsOfAlgebraicVariety (11.1.4).

11.2 Projective Varieties

A projective variety in FinInG is an algebraic variety in a projective space defined by a list of homo-
geneous polynomials over a finite field.

11.2.1 ProjectiveVariety

. ProjectiveVariety(pg, pring, pollist) (operation)

. ProjectiveVariety(pg, pollist) (operation)

. AlgebraicVariety(pg, pring, pollist) (operation)

. AlgebraicVariety(pg, pollist) (operation)

Returns: a projective algebraic variety
Example

gap> F:=GF(9);
GF(3^2)
gap> r:=PolynomialRing(F,4);
GF(3^2)[x_1,x_2,x_3,x_4]
gap> pg:=PG(3,9);
ProjectiveSpace(3, 9)
gap> f1:=r.1*r.3-r.2^2;
x_1*x_3-x_2^2
gap> f2:=r.4*r.1^2-r.4^3;
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x_1^2*x_4-x_4^3
gap> var:=AlgebraicVariety(pg,[f1,f2]);
Projective Variety in ProjectiveSpace(3, 9)
gap> DefiningListOfPolynomials(var);
[ x_1*x_3-x_2^2, x_1^2*x_4-x_4^3 ]
gap> AmbientSpace(var);
ProjectiveSpace(3, 9)

11.3 Quadrics and Hermitian varieties

Quadrics (QuadraticVariety (11.3.2)) and Hermitian varieties (HermitianVariety (11.3.1)) are
projective varieties that have the associated quadratic or hermitian form as an extra attribute installed.
Furthermore, we provide a method for PolarSpace taking as an argument a projective algebraic
variety.

11.3.1 HermitianVariety

. HermitianVariety(pg, pring, pol) (operation)

. HermitianVariety(pg, pol) (operation)

. HermitianVariety(n, F) (operation)

. HermitianVariety(n, q) (operation)

Returns: a hermitian variety in a projective space
For the first two methods, the argument pg is a projective space, pring is a polynomial ring, and

pol is polynomial. For the third and fourth variations, the argument n is an integer, the argument
F is a finite field, and the argument q is a prime power. These variations of the operation return the
hermitian variety associated to the standard hermitian form in the projective space of dimension n
over the field F of order q.

Example
gap> F:=GF(25);
GF(5^2)
gap> r:=PolynomialRing(F,3);
GF(5^2)[x_1,x_2,x_3]
gap> x:=IndeterminatesOfPolynomialRing(r);
[ x_1, x_2, x_3 ]
gap> pg:=PG(2,F);
ProjectiveSpace(2, 25)
gap> f:=x[1]^6+x[2]^6+x[3]^6;
x_1^6+x_2^6+x_3^6
gap> hv:=HermitianVariety(pg,f);
Hermitian Variety in ProjectiveSpace(2, 25)
gap> AsSet(List(Lines(pg),l->Size(Filtered(Points(l),x->x in hv))));
[ 1, 6 ]
gap> hv:=HermitianVariety(5,4);
Hermitian Variety in ProjectiveSpace(5, 4)
gap> hps:=PolarSpace(hv);
<polar space in ProjectiveSpace(
5,GF(2^2)): x_1^3+x_2^3+x_3^3+x_4^3+x_5^3+x_6^3=0 >
gap> hf:=SesquilinearForm(hv);
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< hermitian form >
gap> PolynomialOfForm(hf);
x_1^3+x_2^3+x_3^3+x_4^3+x_5^3+x_6^3

11.3.2 QuadraticVariety

. QuadraticVariety(pg, pring, pol) (operation)

. QuadraticVariety(pg, pol) (operation)

. QuadraticVariety(n, F, type) (operation)

. QuadraticVariety(n, q, type) (operation)

. QuadraticVariety(n, F) (operation)

. QuadraticVariety(n, q) (operation)

Returns: a quadratic variety in a projective space
In the first two methods, the argument pg is a projective space, pring is a polynomial ring, and

pol is a polynomial. The latter four return a standard non-degenerate quadric. The argument n is a
projective dimension, F is a field, and q is a prime power that gives just the order of the defining field.
If the type is given, then it will return a quadric of a particular type as follows:

variety standard form characteristic p proj. dim. type
hyperbolic quadric X0X1 + . . .+Xn−1Xn p≡ 3mod4 and p even odd "hyperbolic", "+", or "1"
hyperbolic quadric 2(X0X1 + . . .+Xn−1Xn) p≡ 1mod4 odd "hyperbolic", "+", or "1"
parabolic quadric X2

0 +X1X2 + . . .+Xn−1Xn p≡ 1,3mod8 and p even even "parabolic", "o", or "0"
parabolic quadric t(X2

0 +X1X2 + . . .+Xn−1Xn), t a primitive element of GF(p) p≡ 5,7mod8 even "parabolic", "o", or "0"
elliptic quadric X2

0 +X2
1 +X2X3 + . . .+Xn−1Xn p≡ 3mod4 odd "elliptic", "-", or "-1"

elliptic quadric X2
0 + tX2

1 +X2X3 + . . .+Xn−1Xn, t a primitive element of GF(p) odd odd "elliptic", "-", or "-1"
elliptic quadric X2

0 +X0X1 +dX2
1 +X2X3 + . . .+Xn−1Xn, Tr(d) = 1 even odd "elliptic", "-", or "-1"

Table: standard quadratic varieties

If no type is given, and only the dimension and field/field order are given, then it is assumed that
the dimension is even and the user wants a standard parabolic quadric.

Example
gap> F:=GF(5);
GF(5)
gap> r:=PolynomialRing(F,4);
GF(5)[x_1,x_2,x_3,x_4]
gap> x:=IndeterminatesOfPolynomialRing(r);
[ x_1, x_2, x_3, x_4 ]
gap> pg:=PG(3,F);
ProjectiveSpace(3, 5)
gap> Q:=x[2]*x[3]+x[4]^2;
x_2*x_3+x_4^2
gap> qv:=QuadraticVariety(pg,Q);
Quadratic Variety in ProjectiveSpace(3, 5)
gap> AsSet(List(Planes(pg),z->Size(Filtered(Points(z),x->x in qv))));
[ 1, 6, 11 ]
gap> qf:=QuadraticForm(qv);
< quadratic form >
gap> Display(qf);
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Quadratic form
Gram Matrix:
. . . .
. . 1 .
. . . .
. . . 1

Polynomial: [ [ x_2*x_3+x_4^2 ] ]
gap> IsDegenerateForm(qf);
#I Testing degeneracy of the *associated bilinear form*
true
gap> qv:=QuadraticVariety(3,F,"-");
Quadratic Variety in ProjectiveSpace(3, 5)
gap> PolarSpace(qv);
<polar space in ProjectiveSpace(3,GF(5)): x_1^2+Z(5)*x_2^2+x_3*x_4=0 >
gap> Display(last);
<polar space of rank 3 over GF(5)>
Non-singular elliptic quadratic form
Gram Matrix:
1 . . .
. 2 . .
. . . 1
. . . .

Polynomial: [ [ x_1^2+Z(5)*x_2^2+x_3*x_4 ] ]
Witt Index: 1
Bilinear form
Gram Matrix:
2 . . .
. 4 . .
. . . 1
. . 1 .

gap> qv:=QuadraticVariety(3,F,"+");
Quadratic Variety in ProjectiveSpace(3, 5)
gap> Display(last);
Quadratic Variety in ProjectiveSpace(3, 5)
Polynomial: [ Z(5)*x_1*x_2+Z(5)*x_3*x_4 ]

11.3.3 QuadraticForm

. QuadraticForm(var) (attribute)

Returns: a quadratic form
When the argument var is a QuadraticVariety (11.3.2), this returns the associated quadratic

form.

11.3.4 SesquilinearForm

. SesquilinearForm(var) (attribute)

Returns: a hermitian form
If the argument var is a HermitianVariety (11.3.1), this returns the associated hermitian form.
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11.3.5 PolarSpace

. PolarSpace(var) (operation)

the argument var is a projective algebraic variety. When its list of definining polynomial contains
exactly one polynomial, depending on its degree, the operation QuadraticFormByPolynomial or
HermitianFormByPolynomial is used to compute a quadratic form or a hermitian form. These
operations check whether this is possible, and produce an error message if not. If the conversion is
possible, then the appropriate polar space is returned.

Example
gap> f := GF(25);
GF(5^2)
gap> r := PolynomialRing(f,4);
GF(5^2)[x_1,x_2,x_3,x_4]
gap> ind := IndeterminatesOfPolynomialRing(r);
[ x_1, x_2, x_3, x_4 ]
gap> eq1 := Sum(List(ind,t->t^2));
x_1^2+x_2^2+x_3^2+x_4^2
gap> var := ProjectiveVariety(PG(3,f),[eq1]);
Projective Variety in ProjectiveSpace(3, 25)
gap> PolarSpace(var);
<polar space in ProjectiveSpace(3,GF(5^2)): x_1^2+x_2^2+x_3^2+x_4^2=0 >
gap> eq2 := Sum(List(ind,t->t^4));
x_1^4+x_2^4+x_3^4+x_4^4
gap> var := ProjectiveVariety(PG(3,f),[eq2]);
Projective Variety in ProjectiveSpace(3, 25)
gap> PolarSpace(var);
Error, <poly> does not generate a Hermitian matrix called from
GramMatrixByPolynomialForHermitianForm( pol, gf, n, vars ) called from
HermitianFormByPolynomial( pol, pring, n ) called from
HermitianFormByPolynomial( eq, r ) called from
<function "unknown">( <arguments> )
called from read-eval loop at line 16 of *stdin*

you can ’quit;’ to quit to outer loop, or
you can ’return;’ to continue
brk> quit;
gap> eq3 := Sum(List(ind,t->t^6));
x_1^6+x_2^6+x_3^6+x_4^6
gap> var := ProjectiveVariety(PG(3,f),[eq3]);
Projective Variety in ProjectiveSpace(3, 25)
gap> PolarSpace(var);
<polar space in ProjectiveSpace(3,GF(5^2)): x_1^6+x_2^6+x_3^6+x_4^6=0 >

11.4 Affine Varieties

An affine variety in FinInG is an algebraic variety in an affine space defined by a list of polynomials
over a finite field.
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11.4.1 AffineVariety

. AffineVariety(ag, pring, pollist) (operation)

. AffineVariety(ag, pollist) (operation)

. AlgebraicVariety(ag, pring, pollist) (operation)

. AlgebraicVariety(ag, pollist) (operation)

Returns: an affine algebraic variety
The argument ag is an affine space over a finite field F , the argument pring is a multivariate

polynomial ring defined over (a subfield of) F , and pollist is a list of polynomials in pring .

11.5 Geometry maps

A geometry map is a map from a set of elements of a geometry to a set of elements of another
geometry, which is not necessarily a geometry morphism. Examples are the SegreMap (11.6.3), the
VeroneseMap (11.7.3), and the GrassmannMap (11.8.3).

11.5.1 Source

. Source(gm) (operation)

Returns: the source of a geometry map
The argument gm is a geometry map.

11.5.2 Range

. Range(gm) (operation)

Returns: the range of a geometry map
The argument gm is a geometry map.

11.5.3 ImageElm

. ImageElm(gm, x) (operation)

Returns: the image of an element under a geometry map
The argument gm is a geometry map, the element x is an element of the Source (11.8.4) of the

geometry map gm .

11.5.4 ImagesSet

. ImagesSet(gm, elms) (operation)

Returns: the image of a subset of the source under a geometry map
The argument gm is a geometry map, the elements elms is a subset of the Source (11.8.4) of the

geometry map gm .

11.5.5 \^

. \^(x, gm) (operation)

Returns: the image of an element of the source under a geometry map
The argument gm is a geometry map, the element x is an element of the Source (11.8.4) of the

geometry map gm .
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11.6 Segre Varieties

A Segre variety in FinInG is a projective algebraic variety in a projective space over a finite field. The
set of points that lie on this variety is the image of the Segre map.

11.6.1 SegreVariety

. SegreVariety(listofpgs) (operation)

. SegreVariety(listofdims, field) (operation)

. SegreVariety(pg1, pg2) (operation)

. SegreVariety(d1, d2, field) (operation)

. SegreVariety(d1, d2, q) (operation)

Returns: a Segre variety
The argument listofpgs is a list of projective spaces defined over the same finite field, say

[PG(n1 − 1,q) , PG(n2 − 1,q) , ..., PG(nk − 1,q)] . The operation also takes as input the list of
dimensions (listofdims ) and a finite field field (e.g. [n1,n2, . . . ,nk,GF(q)] ). A Segre variety
with only two factors (k = 2), can also be constructed using the operation with two projective spaces
pg1 and pg2 as arguments, or with two dimensions d1 , d2 , and a finite field field (or a prime
power q ). The operation returns a projective algebraic variety in the projective space of dimension
n1n2 . . .nk−1 .

11.6.2 PointsOfSegreVariety

. PointsOfSegreVariety(sv) (operation)

. Points(sv) (operation)

Returns: the points of a Segre variety
The argument sv is a Segre variety. This operation returns a set of points of the AmbientSpace

(11.1.3) of the Segre variety. This set of points corresponds to the image of the SegreMap (11.6.3).

11.6.3 SegreMap

. SegreMap(listofpgs) (operation)

. SegreMap(listofdims, field) (operation)

. SegreMap(pg1, pg2) (operation)

. SegreMap(d1, d2, field) (operation)

. SegreMap(d1, d2, q) (operation)

. SegreMap(sv) (operation)

Returns: a geometry map
The argument listofpgs is a list of projective spaces defined over the same finite field, say

[PG(n1 − 1,q) , PG(n2 − 1,q) , ..., PG(nk − 1,q)] . The operation also takes as input the list of
dimensions (listofdims ) and a finite field field (e.g. [n1,n2, . . . ,nk,GF(q)] ). A Segre map with
only two factors (k = 2), can also be constructed using the operation with two projective spaces pg1
and pg2 as arguments, or with two dimensions d1 , d2 , and a finite field field (or a prime power q ).
The operation returns a function with domain the product of the point sets of projective spaces in the
list [PG(n1−1,q) , PG(n2−1,q) , ..., PG(nk−1,q)] and image the set of points of the Segre variety
(PointsOfSegreVariety (11.6.2)) in the projective space of dimension n1n2 . . .nk − 1 . When a
Segre variety sv is given as input, the operation returns the associated Segre map.
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Example
gap> sv:=SegreVariety(2,2,9);
Segre Variety in ProjectiveSpace(8, 9)
gap> sm:=SegreMap(sv);
Segre Map of [ <points of ProjectiveSpace(2, 9)>,

<points of ProjectiveSpace(2, 9)> ]
gap> cart1:=Cartesian(Points(PG(2,9)),Points(PG(2,9)));;
gap> im1:=ImagesSet(sm,cart1);;
gap> Span(im1);
ProjectiveSpace(8, 9)
gap> l:=Random(Lines(PG(2,9)));
<a line in ProjectiveSpace(2, 9)>
gap> cart2:=Cartesian(Points(l),Points(PG(2,9)));;
gap> im2:=ImagesSet(sm,cart2);;
gap> Span(im2);
<a proj. 5-space in ProjectiveSpace(8, 9)>
gap> x:=Random(Points(PG(2,9)));
<a point in ProjectiveSpace(2, 9)>
gap> cart3:=Cartesian(Points(PG(2,9)),Points(x));;
gap> im3:=ImagesSet(sm,cart3);;
gap> pi:=Span(im3);
<a plane in ProjectiveSpace(8, 9)>
gap> AsSet(List(Points(pi),y->y in sv));
[ true ]

11.6.4 Source

. Source(sm) (operation)

Returns: the source of a Segre map
The argument sm is a SegreMap (11.6.3). This operation returns the cartesian product of the list

consisting of the pointsets of the projective spaces that were used to construct the SegreMap (11.6.3).

11.7 Veronese Varieties

A Veronese variety in FinInG is a projective algebraic variety in a projective space over a finite field.
The set of points that lie on this variety is the image of the Veronese map.

11.7.1 VeroneseVariety

. VeroneseVariety(pg) (operation)

. VeroneseVariety(n-1, field) (operation)

. VeroneseVariety(n-1, q) (operation)

Returns: a Veronese variety
The argument pg is a projective space defined over a finite field, say PG(n− 1,q). The op-

eration also takes as input the dimension and a finite field field (e.g. [n− 1,q]). The op-
eration returns a projective algebraic variety in the projective space of dimension (n2 + n)/2−
1, known as the (quadratic) Veronese variety. It is the image of the map (x0,x1, . . . ,xn) 7→
(x2

0,x0x1, . . . ,x0xn,x2
1,x1x2, . . . ,x1xn, . . . ,x2

n)
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11.7.2 PointsOfVeroneseVariety

. PointsOfVeroneseVariety(vv) (operation)

. Points(vv) (operation)

Returns: the points of a Veronese variety
The argument vv is a Veronese variety. This operation returns a set of points of the AmbientSpace

(11.1.3) of the Veronese variety. This set of points corresponds to the image of the VeroneseMap
(11.7.3).

11.7.3 VeroneseMap

. VeroneseMap(pg) (operation)

. VeroneseMap(n-1, field) (operation)

. VeroneseMap(n-1, q) (operation)

. VeroneseMap(vv) (operation)

Returns: a geometry map
The argument pg is a projective space defined over a finite field, say PG(n−1,q). The operation

also takes as input the dimension and a finite field field (e.g. [n− 1,q]). The operation returns a
function with domain the product of the point set of the projective space PG(n−1,q) and image the
set of points of the Veronese variety (PointsOfVeroneseVariety (11.7.2)) in the projective space
of dimension (n2 +n)/2−1. When a Veronese variety vv is given as input, the operation returns the
associated Veronese map.

Example
gap> pg:=PG(2,5);
ProjectiveSpace(2, 5)
gap> vv:=VeroneseVariety(pg);
Veronese Variety in ProjectiveSpace(5, 5)
gap> Size(Points(vv))=Size(Points(pg));
true
gap> vm:=VeroneseMap(vv);
Veronese Map of <points of ProjectiveSpace(2, 5)>
gap> r:=PolynomialRing(GF(5),3);
GF(5)[x_1,x_2,x_3]
gap> f:=r.1^2-r.2*r.3;
x_1^2-x_2*x_3
gap> c:=AlgebraicVariety(pg,r,[f]);
Projective Variety in ProjectiveSpace(2, 5)
gap> pts:=List(Points(c));
[ <a point in ProjectiveSpace(2, 5)>, <a point in ProjectiveSpace(2, 5)>,

<a point in ProjectiveSpace(2, 5)>, <a point in ProjectiveSpace(2, 5)>,
<a point in ProjectiveSpace(2, 5)>, <a point in ProjectiveSpace(2, 5)> ]

gap> Dimension(Span(ImagesSet(vm,pts)));
4

11.7.4 Source

. Source(vm) (operation)

Returns: the source of a Veronese map
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The argument vm is a VeroneseMap (11.7.3). This operation returns the pointset of the projective
space that was used to construct the VeroneseMap (11.7.3).

11.8 Grassmann Varieties

A Grassmann variety in FinInG is a projective algebraic variety in a projective space over a finite
field. The set of points that lie on this variety is the image of the Grassmann map.

11.8.1 GrassmannVariety

. GrassmannVariety(k, pg) (operation)

. GrassmannVariety(subspaces) (operation)

. GrassmannVariety(k, n, q) (operation)

Returns: a Grassmann variety
The argument pg is a projective space defined over a finite field, say PG(n,q), and argument k

is an integer (k at least 1 and at most n− 2) and denotes the projective dimension determining the
Grassmann Variety. The operation also takes as input the set subspaces of subspaces of a projective
space, or the dimension k , the dimension n and the size q of the finite field (k at least 1 and at most
n−2). The operation returns a projective algebraic variety known as the Grassmann variety.

11.8.2 PointsOfGrassmannVariety

. PointsOfGrassmannVariety(gv) (operation)

. Points(gv) (operation)

Returns: the points of a Grassmann variety
The argument gv is a Grassmann variety. This operation returns a set of points of the

AmbientSpace (11.1.3) of the Grassmann variety. This set of points corresponds to the image of
the GrassmannMap (11.8.3).

11.8.3 GrassmannMap

. GrassmannMap(k, pg) (operation)

. GrassmannMap(subspaces) (operation)

. GrassmannMap(k, n, q) (operation)

. GrassmannMap(gv) (operation)

Returns: a geometry map
The argument pg is a projective space defined over a finite field, say PG(n,q), and argument k

is an integer (k at least 1 and at most n− 2), and denotes the projective dimension determining the
Grassmann Variety. The operation also takes as input the set subspaces of subspaces of a projec-
tive space, or the dimension k , the dimension n and the size q of the finite field (k at least 1 and at
most n− 2). The operation returns a function with domain the set of subspaces of dimension k in
the n-dimensional projective space over GF(q), and image the set of points of the Grassmann vari-
ety (PointsOfGrassmannVariety (11.8.2)). When a Grassmann variety gv is given as input, the
operation returns the associated Grassmann map.
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11.8.4 Source

. Source(gm) (operation)

Returns: the source of a Grassmann map
The argument gm is a GrassmannMap (11.8.3). This operation returns the set of subspaces of the

projective space that was used to construct the GrassmannMap (11.8.3).



Chapter 12

Generalised Polygons

A generalised n-gon is a point/line geometry whose incidence graph is bipartite of diameter n and
girth 2n . Although these rank 2 structures are very much a subdomain of GRAPE and Design, their
significance in finite geometry warrants their inclusion in FinInG. By the famous theorem of Feit and
Higman, a generalised n-gon which has at least three points on every line, must have n in {2,3,4,6,8}.
The case n = 2 concerns the complete multipartite graphs, which we disregard. The more interesting
cases are accordingly projective planes (n= 3), generalised quadrangles (n= 4), generalised hexagons
(n = 6), and generalised octagons (n = 8).

FinInG provides some basic functionality to deal with generalised polygons as incidence geome-
tries. A lot of non-trivial interaction with the package GRAPE has been very useful and even nec-
essary. Currently, generic functions to create generalised polygons, to create elements of generalised
polygons, and to explore the elements are implemented. This generic functionality allows the user to
construct generalised polygons through many different objects available in GAP and FinInG. Apart
from these generic functions, some particular generalised polygons are available: the classical gener-
alised hexagons and elation generalised quadrangles from different perspectives can be constructed.

12.1 Categories

12.1.1 IsGeneralisedPolygon

. IsGeneralisedPolygon (Category)

. IsGeneralisedPolygonRep (Representation)

This category is a subcategory of IsIncidenceGeometry, and contains all generalised poly-
gons. Generalised polygons constructed through functions described in this chapter, all belong to
IsGeneralisedPolygonRep.

12.1.2 Subcategories in IsGeneralisedPolygon

. IsProjectivePlaneCategory (Category)

. IsGeneralisedQuadrangle (Category)

. IsGeneralisedHexagon (Category)

. IsGeneralisedOctagon (Category)

198
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All generalised polygons in FinInG belong to one of these four categories. It is not possible
to construct generalised polygons of which the gonality is not known (or checked). Note that the
classical generalised quadrangles (which are the classical polar spaces of rank 2) belong also to
IsGeneralisedQuadrangle and that the desarguesian projective planes (which are the projective
spaces of dimension 2) also belong to IsProjectivePlaneCategory, but both do not belong to
IsGeneralisedPolygonRep.

12.1.3 IsWeakGeneralisedPolygon

. IsWeakGeneralisedPolygon (Category)

IsWeakGeneralisedPolygon is the category for weak generalised polygons.

12.1.4 Subcategories in IsProjectivePlaneCategory

. IsDesarguesianPlane (Category)

IsDesarguesianPlane is declared as a subcategory of IsProjectivePlaneCategory and
IsProjecticeSpace. Projective spaces of dimension 2 constructed using ProjectiveSpace be-
long to IsDesarguesianPlane.

12.1.5 Subcategories in IsGeneralisedQuadrangle

. IsClassicalGQ (Category)

. IsElationGQ (Category)

IsClassicalGQ is declared as a subcategory of IsGeneralisedQuadrangle and
IsClassicalPolarSpace. All classical polar spaces of rank 2 belong to IsClassicalGQ.
IsElationGQ is declared as subcategory of IsGeneralisedQuadrangle. Elation GQs will be
discusedd in detail in Section 12.6

Example
gap> gp := SymplecticSpace(3,2);
W(3, 2)
gap> IsGeneralisedPolygon(gp);
true
gap> IsGeneralisedQuadrangle(gp);
true
gap> IsClassicalGQ(gp);
true
gap> IsGeneralisedPolygonRep(gp);
false

12.1.6 IsClassicalGeneralisedHexagon

. IsClassicalGeneralisedHexagon (Category)

IsClassicalGeneralisedHexagon is declared as subcategory of IsGeneralisedHexagon and
IsLieGeometry. The so called classical generalised hexagons are the hexagons that come from the
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triality of the hyperbolic quadric Q+(7,q). The Split Cayley hexagon is embedded in the parabolic
quadric Q(6,q), or W (5,q) in even characteristic. The twisted triality hexagon is embedded in the
hyperbolic quadric Q+(7,q) . The construction of these hexagons in a subcategory of IsLieGeometry
means that the usual operations for Lie geometries become applicable. The classical generalised
hexagons are in detail discussed in Section 12.5

Example
gap> gp := SplitCayleyHexagon(3);
H(3)
gap> IsGeneralisedHexagon(gp);
true
gap> IsClassicalGeneralisedHexagon(gp);
true
gap> IsLieGeometry(gp);
true
gap> IsGeneralisedPolygonRep(gp);
true

12.2 Generic functions to create generalised polygons

12.2.1 GeneralisedPolygonByBlocks

. GeneralisedPolygonByBlocks(l) (operation)

Returns: a generalised polygon
The argument l is a finite homogeneous list consisting of ordered sets of a common size n+ 1.

This operation will assume that each element of l represents a line of the generalised polygon. Its
points are assumed to be the union of all elements of l . The incidence is assumed to be symmetrised
containment. From this information, an incidence graph is computed using GRAPE. If this graph has
diameter d and girth 2d, a generalised polygon is returned. The thickness condition is not checked.
If d ∈ {3,4,6,8}, a projective plane, a generalised quadrangle, a generalised hexagon, a generalised
octagon respectively, is returned. Note that for large input, this operation can be time consuming.

Example
gap> blocks := [
> [ 1, 2, 3, 4, 5 ], [ 1, 6, 7, 8, 9 ], [ 1, 10, 11, 12, 13 ],
> [ 1, 14, 15, 16, 17 ], [ 1, 18, 19, 20, 21 ], [ 2, 6, 10, 14, 18 ],
> [ 2, 7, 11, 15, 19 ], [ 2, 8, 12, 16, 20 ], [ 2, 9, 13, 17, 21 ],
> [ 3, 6, 11, 16, 21 ], [ 3, 7, 10, 17, 20 ], [ 3, 8, 13, 14, 19 ],
> [ 3, 9, 12, 15, 18 ], [ 4, 6, 12, 17, 19 ], [ 4, 7, 13, 16, 18 ],
> [ 4, 8, 10, 15, 21 ], [ 4, 9, 11, 14, 20 ], [ 5, 6, 13, 15, 20 ],
> [ 5, 7, 12, 14, 21 ], [ 5, 8, 11, 17, 18 ], [ 5, 9, 10, 16, 19 ] ];;
gap> gp := GeneralisedPolygonByBlocks( blocks );
<projective plane order 4>

12.2.2 GeneralisedPolygonByIncidenceMatrix

. GeneralisedPolygonByIncidenceMatrix(incmat) (operation)

Returns: a generalised polygon
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The argument incmat is a matrix representing the incidence matrix of a point line geometry. The
points are represented by the columns, the rows represent the lines. From incmat a homogeneous
list of sets of column entries is derived, which is then passed to GeneralisedPolygonByBlocks.
When incmat indeed represents a generalised polygon, it is returned. The checks are performed by
GeneralisedPolygonByBlocks.

Example
gap> incmat := [
> [ 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ],
> [ 1, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ],
> [ 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0 ],
> [ 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0 ],
> [ 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1 ],
> [ 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0 ],
> [ 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0 ],
> [ 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0 ],
> [ 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1 ],
> [ 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1 ],
> [ 0, 0, 1, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0 ],
> [ 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 1, 0, 0 ],
> [ 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 0 ],
> [ 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 1, 0, 0 ],
> [ 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 1, 0, 0, 0 ],
> [ 0, 0, 0, 1, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1 ],
> [ 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0 ],
> [ 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 1, 0 ],
> [ 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 1 ],
> [ 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0 ],
> [ 0, 0, 0, 0, 1, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0 ] ];;
gap> pp := GeneralisedPolygonByIncidenceMatrix( incmat );
<projective plane order 4>

12.2.3 GeneralisedPolygonByElements

. GeneralisedPolygonByElements(pts, lns, inc) (operation)

. GeneralisedPolygonByElements(pts, lns, inc, grp, act) (operation)

Returns: a generalised polygon
The argument pts , lns and inc are respectively a set of objects, a set of objects and a function.

The function inc must represent an incidence relation between objects of pts and lns . The first
version of GeneralisedPolygonByElements will construct an incidence graph, and if this graph has
diameter d and girth 2d, a generalised polygon is returned. The thickness condition is not checked.
If d ∈ {3,4,6,8}, a projective plane, a generalised quadrangle, a generalised hexagon, a generalised
octagon respectively, is returned. The argument grp is a group, and act a function, representing
an action of the elements of grp on the objects in the lists pts and lns , preserving the incidence.
The second version of GeneralisedPolygonByElements acts as the first version, but uses grp and
act to construct the incidence graph in a more efficient way, so if grp is a non trivial group, the
construction of the graph will be faster. This operation can typically be used to construct generalised
polygons from objects that are available in FinInG. This difference in time is shown in the first two
examples. The third examples shows the construction of the generalised quadrangle T2(O).
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Example
gap> pg := PG(2,25);
ProjectiveSpace(2, 25)
gap> pts := Set(Points(pg));;
gap> lns := Set(Lines(pg));;
gap> inc := \*;
<Operation "*">
gap> gp := GeneralisedPolygonByElements(pts,lns,inc);
<projective plane order 25>
gap> time;
26427
gap> grp := CollineationGroup(pg);
The FinInG collineation group PGammaL(3,25)
gap> act := OnProjSubspaces;
function( var, el ) ... end
gap> gp := GeneralisedPolygonByElements(pts,lns,inc,grp,act);
<projective plane order 25>
gap> time;
127
gap> q := 4;
4
gap> conic := Set(Points(ParabolicQuadric(2,q)));
[ <a point in Q(2, 4)>, <a point in Q(2, 4)>, <a point in Q(2, 4)>,

<a point in Q(2, 4)>, <a point in Q(2, 4)> ]
gap> pg := PG(3,q);
ProjectiveSpace(3, 4)
gap> hyp := HyperplaneByDualCoordinates(pg,[1,0,0,0]*Z(q)^0);
<a plane in ProjectiveSpace(3, 4)>
gap> em := NaturalEmbeddingBySubspace(PG(2,q),pg,hyp);
<geometry morphism from <All elements of ProjectiveSpace(2,
4)> to <All elements of ProjectiveSpace(3, 4)>>
gap> O := List(conic,x->x^em);;
gap> group := CollineationGroup(pg);
The FinInG collineation group PGammaL(4,4)
gap> stab := FiningSetwiseStabiliser(group,O);
#I Computing adjusted stabilizer chain...
<projective collineation group with 6 generators>
gap> points1 := Set(Filtered(Points(pg),x->not x in hyp));;
gap> tangents := List(conic,x->TangentSpace(x)^em);
[ <a line in ProjectiveSpace(3, 4)>, <a line in ProjectiveSpace(3, 4)>,

<a line in ProjectiveSpace(3, 4)>, <a line in ProjectiveSpace(3, 4)>,
<a line in ProjectiveSpace(3, 4)> ]

gap> planes := List(tangents,x->Filtered(Planes(x),y->not y in hyp));;
gap> points2 := Union(planes);;
gap> points3 := [hyp];
[ <a plane in ProjectiveSpace(3, 4)> ]
gap> linesa := Union(List(O,x->Filtered(Lines(x),y->not y in hyp)));;
gap> linesb := Set(O);;
gap> pts := Union(points1,points2,points3);;
gap> lns := Union(linesa,linesb);;
gap> inc := \*;
<Operation "*">
gap> gp := GeneralisedPolygonByElements(pts,lns,inc,stab,\^);
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<generalised quadrangle of order [ 4, 4 ]>
gap> time;
50

12.3 Attributes and operations for generalised polygons

All operations described in this section are applicable on objects in the category
IsGeneralisedPolygon.

12.3.1 Order

. Order(gp) (attribute)

Returns: a pair of positive integers
This method returns the parameters (s, t) of the generalised polygon gp . That is, s+ 1 is the

number of points on any line of gp , and t +1 is the number of lines incident with any point of gp .
Example

gap> gp := TwistedTrialityHexagon(2^3);
T(8, 2)
gap> Order(gp);
[ 8, 2 ]
gap> gp := HermitianPolarSpace(4,25);
H(4, 5^2)
gap> Order(gp);
[ 25, 125 ]
gap> gp := EGQByqClan(LinearqClan(3));
#I Computed Kantor family. Now computing EGQ...
<EGQ of order [ 9, 3 ] and basepoint 0>
gap> Order(gp);
[ 9, 3 ]

12.3.2 IncidenceGraphAttr

. IncidenceGraphAttr(gp) (attribute)

This attribute is declared for objects in IsGeneralisedPolygon. It is a mutable attribute and can
be accessed by the operation IncidenceGraph.

12.3.3 IncidenceGraph

. IncidenceGraph(gp) (operation)

Returns: a graph
The argument gp is a generalised polygon. This operation returns the incidence graph of gp .

If gp is constructed using GeneralisedPolygonByBlocks, GeneralisedPolygonByElements or
GeneralisedPolygonByIncidenceMatrix, an incidence graph is computed to check the input, and
is stored as an attribute. For the particular generalised polygons available in FinInG, there is no



GAP 4 Package FinInG 204

precomputed incidence graph. Note that computing an incidence graph may require some time, es-
pecially when the gp has no collineation group computed. Therefore, this operation will return an
error when gp has no collineation group computed. As CollineationGroup is an attribute for ob-
jects in IsGeneralisedPolygon, the user should compute the collineation group and then reissue
the command to compute the incidence graph.

We should also point out that this method returns a mutable attribute of gp , so that acquired
information about the incidence graph can be added. For example, the automorphism group of the
incidence graph may be computed and stored as a record component after the incidence graph is
stored as an attribute of gp . Normally, attributes of GAP objects are immutable.

Note that the factor 2 as difference in the order of the collineation group of Q(4,4) and the order
of the automorphism group of its incidence graph is easily explained by the fact that the Q(4,4) is self
dual.

Example
gap> blocks := [
> [ 1, 2, 3, 4, 5 ], [ 1, 6, 7, 8, 9 ], [ 1, 10, 11, 12, 13 ],
> [ 1, 14, 15, 16, 17 ], [ 1, 18, 19, 20, 21 ], [ 2, 6, 10, 14, 18 ],
> [ 2, 7, 11, 15, 19 ], [ 2, 8, 12, 16, 20 ], [ 2, 9, 13, 17, 21 ],
> [ 3, 6, 11, 16, 21 ], [ 3, 7, 10, 17, 20 ], [ 3, 8, 13, 14, 19 ],
> [ 3, 9, 12, 15, 18 ], [ 4, 6, 12, 17, 19 ], [ 4, 7, 13, 16, 18 ],
> [ 4, 8, 10, 15, 21 ], [ 4, 9, 11, 14, 20 ], [ 5, 6, 13, 15, 20 ],
> [ 5, 7, 12, 14, 21 ], [ 5, 8, 11, 17, 18 ], [ 5, 9, 10, 16, 19 ] ];;
gap> gp := GeneralisedPolygonByBlocks( blocks );
<projective plane order 4>
gap> incgraph := IncidenceGraph( gp );;
gap> Diameter( incgraph );
3
gap> Girth( incgraph );
6
gap> VertexDegrees( incgraph );
[ 5 ]
gap> aut := AutGroupGraph( incgraph );
<permutation group with 9 generators>
gap> DisplayCompositionSeries(aut);
G (9 gens, size 241920)
| Z(2)

S (5 gens, size 120960)
| Z(2)

S (5 gens, size 60480)
| Z(3)

S (4 gens, size 20160)
| A(2,4) = L(3,4)

1 (0 gens, size 1)
gap> gp := ParabolicQuadric(4,4);
Q(4, 4)
gap> incgraph := IncidenceGraph( gp );;
Error, No collineation group computed. Please compute collineation group before compu
ting incidence graph,n called from
<function "unknown">( <arguments> )
called from read-eval loop at line 24 of *stdin*

you can ’quit;’ to quit to outer loop, or
you can ’return;’ to continue
brk> quit;
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gap> CollineationGroup(gp);
PGammaO(5,4)
gap> Order(last);
1958400
gap> incgraph := IncidenceGraph( gp );;
#I Computing incidence graph of generalised polygon...
gap> aut := AutGroupGraph( incgraph );
<permutation group with 10 generators>
gap> Order(aut);
3916800

12.3.4 IncidenceMatrixOfGeneralisedPolygon

. IncidenceMatrixOfGeneralisedPolygon(gp) (attribute)

Returns: a matrix
This method returns the incidence matrix of the generalised polygon via the operation

CollapsedAdjacencyMat in the GRAPE package. The rows of the matrix correspond to the
points of gp , and the columns correspond to the lines. Note that since this operation relies on
IncidenceGraph, for some generalised polygons, it is necessary to compute a collineation group
first.

Example
gap> gp := SymplecticSpace(3,2);
W(3, 2)
gap> CollineationGroup(gp);
PGammaSp(4,2)
gap> mat := IncidenceMatrixOfGeneralisedPolygon(gp);
#I Computing incidence graph of generalised polygon...
[ [ 1, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0 ],

[ 0, 1, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0 ],
[ 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0 ],
[ 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0 ],
[ 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0 ],
[ 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0 ],
[ 0, 0, 1, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0 ],
[ 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0 ],
[ 0, 0, 0, 0, 1, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0 ],
[ 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 1, 0 ],
[ 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0 ],
[ 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 1 ],
[ 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 1 ],
[ 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0 ],
[ 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 1 ] ]

12.3.5 CollineationGroup

. CollineationGroup(gp) (attribute)

Returns: a group
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This attribute returns the full collineation group of the generalised polygon gp . For some
particular generalised polygons, a (subgroup) of the full collineation group can be computed ef-
ficiently without computing the incidence graph of gp : the full collineation group of classi-
cal generalised quadrangles and classical generalised hexagons; and an elation group with re-
lation to a base-point of an elation generalised quadrangle. For generalised polygons con-
structed by the operations GeneralisedPolygonByBlocks, GeneralisedPolygonByElements or
GeneralisedPolygonByIncidenceMatrix, the full collineation group is computed using the full
automorphism group of the underlying incidence graph, the latter being computed by the package
GRAPE.

The collineation groups computed for classical generalised quadrangles and classical generalised
hexagons are collineation groups in the sense of FinInG, and come equipped with a NiceMonomor-
phism. The collineation groups computed in all other cases are permutations groups, acting on the
vertices of the underlying incidence graph.

Note that the computation of the automorphism group of the underlying graph can be time con-
suming, also if the complete collineation group of the generalised polygon has been used as an argu-
ment in e.g. GeneralisedPolygonByElements.

The first example illustrates that CollineationGroup is naturally applicable to all classical gen-
eralised Polygons.

Example
gap> gp := PG(2,2);
ProjectiveSpace(2, 2)
gap> CollineationGroup(gp);
The FinInG collineation group PGL(3,2)
gap> gp := EllipticQuadric(5,4);
Q-(5, 4)
gap> CollineationGroup(gp);
PGammaO-(6,4)
gap> gp := TwistedTrialityHexagon(3^3);
T(27, 3)
gap> CollineationGroup(gp);
#I Computing nice monomorphism...
#I Found permutation domain...
3D_4(27)
gap> time;
40691

The second example illustrates the computation of collineation groups of generalised polygons con-
structed using different objects.

Example
gap> mat := [ [ 1, 1, 0, 0, 0, 1, 0 ], [ 1, 0, 0, 1, 1, 0, 0 ],
> [ 1, 0, 1, 0, 0, 0, 1 ], [ 0, 1, 1, 1, 0, 0, 0 ],
> [ 0, 1, 0, 0, 1, 0, 1 ], [ 0, 0, 0, 1, 0, 1, 1 ],
> [ 0, 0, 1, 0, 1, 1, 0 ] ];
[ [ 1, 1, 0, 0, 0, 1, 0 ], [ 1, 0, 0, 1, 1, 0, 0 ], [ 1, 0, 1, 0, 0, 0, 1 ],

[ 0, 1, 1, 1, 0, 0, 0 ], [ 0, 1, 0, 0, 1, 0, 1 ], [ 0, 0, 0, 1, 0, 1, 1 ],
[ 0, 0, 1, 0, 1, 1, 0 ] ]

gap> gp := GeneralisedPolygonByIncidenceMatrix(mat);
<projective plane order 2>
gap> group := CollineationGroup(gp);
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Group([ (3,4)(5,7)(9,10)(13,14), (3,7)(4,5)(11,12)(13,14), (2,3)(6,7)(8,9)
(12,13), (2,6)(4,5)(11,13)(12,14), (1,2)(4,7)(9,11)(10,12) ])
gap> gp := EGQByqClan(FisherqClan(3));
#I Computed Kantor family. Now computing EGQ...
<EGQ of order [ 9, 3 ] and basepoint 0>
gap> group := CollineationGroup(gp);
#I Computing incidence graph of generalised polygon...
#I Using elation of the collineation group...
<permutation group of size 26127360 with 8 generators>
gap> Order(group);
26127360
gap> Random(group);
(1,75,27,191,96,50,9,110,88,53,63,154,115,213,229,19,236,226,49,143,16,266,58,
245,11,270,57,44)(2,181,116,225,262,223,17)(3,33,187,149,108,120,177,164,167,
261,198,26,196,276,52,73,94,222,101,176,32,39,43,89,31,280,65,71)(4,250,173,
112,246,38,142,138,54,208,69,243,197,42,269,242,125,8,134,265,67,206,20,13,29,
182,205,36)(5,109,129,82,210,277,185,56,104,114,90,68,61,228,132,235,78,257,
10,238,145,184,241,170,153,263,45,179)(6,159,230,106,147,91,22,137,256,113,
117,180,7,133,279,100,55,156,168,86,122,131,12,35,273,264,254,152)(14,62,66,
268,51,233,253,218,172,130,144,25,169,83,234,127,171,221,34,190,21,46,272,224,
239,267,60,98)(15,40,278,128,160,215,87,178,203,166,247,119,209,84,255,271,
232,81,193,252,92,95,111,201,107,140,135,258)( [...] )
gap> q := 4;
4
gap> conic := ParabolicQuadric(2,q);
Q(2, 4)
gap> nucleus := NucleusOfParabolicQuadric(conic);
<a point in ProjectiveSpace(2, 4)>
gap> conic := ParabolicQuadric(2,q);
Q(2, 4)
gap> nucleus := NucleusOfParabolicQuadric(conic);
<a point in ProjectiveSpace(2, 4)>
gap> hyperoval := Union(List(Points(conic)),[nucleus]);
[ <a point in ProjectiveSpace(2, 4)>, <a point in Q(2, 4)>,

<a point in Q(2, 4)>, <a point in Q(2, 4)>, <a point in Q(2, 4)>,
<a point in Q(2, 4)> ]

gap> pg := PG(3,q);
ProjectiveSpace(3, 4)
gap> hyp := HyperplaneByDualCoordinates(pg,[1,0,0,0]*Z(q)^0);
<a plane in ProjectiveSpace(3, 4)>
gap> em := NaturalEmbeddingBySubspace(PG(2,q),pg,hyp);
<geometry morphism from <All elements of ProjectiveSpace(2,
4)> to <All elements of ProjectiveSpace(3, 4)>>
gap> O := List(hyperoval,x->x^em);
[ <a point in ProjectiveSpace(3, 4)>, <a point in ProjectiveSpace(3, 4)>,

<a point in ProjectiveSpace(3, 4)>, <a point in ProjectiveSpace(3, 4)>,
<a point in ProjectiveSpace(3, 4)>, <a point in ProjectiveSpace(3, 4)> ]

gap> points := Set(Filtered(Points(pg),x->not x in hyp));;
gap> lines := Union(List(O,x->Filtered(Lines(x),y->not y in hyp)));;
gap> inc := \*;
<Operation "*">
gap> gp := GeneralisedPolygonByElements(points,lines,inc);
<generalised quadrangle of order [ 3, 5 ]>
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gap> coll := CollineationGroup(gp);
<permutation group of size 138240 with 8 generators>
gap> Order(coll);
138240
gap> Random(coll);
(1,29,60,40)(2,42,4,10,3,61,59,19,57,51,58,8)(5,21,17,25,52,13,64,48,44,36,9,
56)(6,34,41,55,50,45,63,27,20,14,11,24)(7,53,18,46,12,35,62,16,43,23,49,
26)(15,32,47,31,28,39,54,37,22,38,33,30)(65,74,83,111,66,117,149,104,70,151,
142,78)(67,135,139,136,68,109,98,125,69,95,120,137)(71,92,73,128,77,106,141,
105,145,150,88,155)(72,121,158,160,76,143,119,103,138,152,134,84)(75,153,133,
107,115,122,118,85,154,116,147,91)(79,110,101,159,126,90,157,81,112,100,89,
108)(80,99,97,86,156,129,144,94,127,114,148,82)(87,132,102,131,123,130,124,96,
93,113,146,140)

In the third example, the use of an precomputed automorphism group is illustrated. It speeds up
the construction of the underlying graph and the computation of the automorphism group of the un-
derlying graph. However, as is also illustrated in the example, despite that the precomputed auto-
morphism group of the generalised polygon is actually the full collineation group, still some time
is needed to compute the automorphism group of the underlying graph. The timings after both
CollineationGroup commands are wrong. This is because GRAPE relies on an external binary
to computed the automorphism group of a graph. The generalised quadrangle in this example is
known as T2(O).

Example
gap> q := 8;
8
gap> conic := ParabolicQuadric(2,q);
Q(2, 8)
gap> nucleus := NucleusOfParabolicQuadric(conic);
<a point in ProjectiveSpace(2, 8)>
gap> hyperoval := Union(List(Points(conic)),[nucleus]);
[ <a point in ProjectiveSpace(2, 8)>, <a point in Q(2, 8)>,

<a point in Q(2, 8)>, <a point in Q(2, 8)>, <a point in Q(2, 8)>,
<a point in Q(2, 8)>, <a point in Q(2, 8)>, <a point in Q(2, 8)>,
<a point in Q(2, 8)>, <a point in Q(2, 8)> ]

gap> pg := PG(3,q);
ProjectiveSpace(3, 8)
gap> hyp := HyperplaneByDualCoordinates(pg,[1,0,0,0]*Z(q)^0);
<a plane in ProjectiveSpace(3, 8)>
gap> em := NaturalEmbeddingBySubspace(PG(2,q),pg,hyp);
<geometry morphism from <All elements of ProjectiveSpace(2,
8)> to <All elements of ProjectiveSpace(3, 8)>>
gap> O := List(hyperoval,x->x^em);
[ <a point in ProjectiveSpace(3, 8)>, <a point in ProjectiveSpace(3, 8)>,

<a point in ProjectiveSpace(3, 8)>, <a point in ProjectiveSpace(3, 8)>,
<a point in ProjectiveSpace(3, 8)>, <a point in ProjectiveSpace(3, 8)>,
<a point in ProjectiveSpace(3, 8)>, <a point in ProjectiveSpace(3, 8)>,
<a point in ProjectiveSpace(3, 8)>, <a point in ProjectiveSpace(3, 8)> ]

gap> points := Set(Filtered(Points(pg),x->not x in hyp));;
gap> lines := Union(List(O,x->Filtered(Lines(x),y->not y in hyp)));;
gap> inc := \*;
<Operation "*">
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gap> gp := GeneralisedPolygonByElements(points,lines,inc);
<generalised quadrangle of order [ 7, 9 ]>
gap> time;
17466
gap> coll := CollineationGroup(gp);
<permutation group of size 5419008 with 9 generators>
gap> time;
69
gap> group := CollineationGroup(pg);
The FinInG collineation group PGammaL(4,8)
gap> stab := FiningSetwiseStabiliser(group,O);
#I Computing adjusted stabilizer chain...
<projective collineation group with 11 generators>
gap> time;
2045
gap> gp := GeneralisedPolygonByElements(points,lines,inc,stab,\^);
<generalised quadrangle of order [ 7, 9 ]>
gap> time;
394
gap> coll := CollineationGroup(gp);
<permutation group of size 5419008 with 9 generators>
gap> time;
62
gap> Order(coll);
5419008
gap> Order(stab);
5419008

12.3.6 CollineationAction

. CollineationAction(group) (attribute)

Returns: a function
group is a collineation group of a generalised polygon, computed using CollineationGroup.

The collineation group of classical generalised polygons will be a collineation group in the sense
of FinInG. The natural action is OnProjectiveSubspaces. The collineation group of any other
generalised polygons will be a permutation group. The result of CollineationAction for such a
group is a function with input a pair (x,g) where x is an element of the generalised polygon, and g
is a collineation of the generalised polygon, so an element of group . The example illustrates the use
in the generalised quadrangle.

Example
gap> q := 4;
4
gap> conic := ParabolicQuadric(2,q);
Q(2, 4)
gap> nucleus := NucleusOfParabolicQuadric(conic);
<a point in ProjectiveSpace(2, 4)>
gap> hyperoval := Union(List(Points(conic)),[nucleus]);
[ <a point in ProjectiveSpace(2, 4)>, <a point in Q(2, 4)>,

<a point in Q(2, 4)>, <a point in Q(2, 4)>, <a point in Q(2, 4)>,
<a point in Q(2, 4)> ]
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gap> pg := PG(3,q);
ProjectiveSpace(3, 4)
gap> hyp := HyperplaneByDualCoordinates(pg,[1,0,0,0]*Z(q)^0);
<a plane in ProjectiveSpace(3, 4)>
gap> em := NaturalEmbeddingBySubspace(PG(2,q),pg,hyp);
<geometry morphism from <All elements of ProjectiveSpace(2,
4)> to <All elements of ProjectiveSpace(3, 4)>>
gap> O := List(hyperoval,x->x^em);
[ <a point in ProjectiveSpace(3, 4)>, <a point in ProjectiveSpace(3, 4)>,

<a point in ProjectiveSpace(3, 4)>, <a point in ProjectiveSpace(3, 4)>,
<a point in ProjectiveSpace(3, 4)>, <a point in ProjectiveSpace(3, 4)> ]

gap> points := Set(Filtered(Points(pg),x->not x in hyp));;
gap> lines := Union(List(O,x->Filtered(Lines(x),y->not y in hyp)));;
gap> inc := \*;
<Operation "*">
gap> gp := GeneralisedPolygonByElements(points,lines,inc);
<generalised quadrangle of order [ 3, 5 ]>
gap> coll := CollineationGroup(gp);
<permutation group of size 138240 with 8 generators>
gap> act := CollineationAction(coll);
function( el, g ) ... end
gap> g := Random(coll);
(1,37,45,63,27,19)(2,53,13,64,11,51)(3,33,38,61,31,28)(4,49,6,62,15,60)(5,46,
47,59,20,17)(7,42,40,57,24,26)(8,58)(9,55)(10,39,41,56,25,23)(12,35,34,54,29,
32)(14,48,43,52,18,21)(16,44,36,50,22,30)(65,132,90,157,89,105)(66,68,131,143,
119,103)(67,135,76,123,130,106)(69,133,112,100,81,107)(70,134,150,88,155,
104)(71,99,79,144,93,149)(72,153,95,120,73,122)(74,125,115,128,140,87)(75,121,
136,117,113,91)(77,124,98,83,147,146)(78,145,84,118,85,142)(80,92,137,141,108,
97)(82,86,116,111,138,101)(94,127,126,102,109,96)(110,152,151,154,156,
129)(114,160,139,158,148,159)
gap> l := Random(Lines(gp));
<a line in <generalised quadrangle of order [ 3, 5 ]>>
gap> act(l,g);
<a line in <generalised quadrangle of order [ 3, 5 ]>>
gap> p := Random(Points(gp));
<a point in <generalised quadrangle of order [ 3, 5 ]>>
gap> act(p,g);
<a point in <generalised quadrangle of order [ 3, 5 ]>>
gap> stab := Stabilizer(coll,p,act);
<permutation group of size 2160 with 3 generators>
gap> List(Orbits(stab,List(Points(gp)),act),x->Length(x));
[ 45, 18, 1 ]
gap> List(Orbits(stab,List(Lines(gp)),act),x->Length(x));
[ 90, 6 ]

12.3.7 BlockDesignOfGeneralisedPolygon

. BlockDesignOfGeneralisedPolygon(gp) (attribute)

Returns: a block design
This method allows one to use the GAP package DESIGN to analyse a generalised polygon, so the
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user must first load this package. The argument gp is a generalised polygon, and if it has a collineation
group, the block design is computed with this extra information and thus the resulting design is easier
to work with. Likewise, if gp is an elation generalised quadrangle and it has an elation group, then we
use the elation group’s action to efficiently compute the block design. We should also point out that
this method returns a mutable attribute of gp , so that accquired information about the block design
can be added. For example, the automorphism group of the block design may be computed after the
design is stored as an attribute of gp . Normally, attributes of GAP objects are immutable.

Example
gap> LoadPackage("design");
#W BIND_GLOBAL: variable ‘BlockDesign’ already has a value
-----------------------------------------------------------------------------
Loading DESIGN 1.6 (The Design Package for GAP)
by Leonard H. Soicher (http://www.maths.qmul.ac.uk/~leonard/).
Homepage: http://www.designtheory.org/software/gap_design/
-----------------------------------------------------------------------------
true
gap> gh := SplitCayleyHexagon(2);
H(2)
gap> CollineationGroup(gh);
#I for Split Cayley Hexagon
#I Computing nice monomorphism...
#I Found permutation domain...
G_2(2)
gap> des := BlockDesignOfGeneralisedPolygon(gh);
rec( autSubgroup := <permutation group with 3 generators>,

blocks := [ [ 1, 29, 52 ], [ 1, 34, 36 ], [ 1, 37, 48 ], [ 2, 13, 60 ],
[ 2, 44, 53 ], [ 2, 45, 52 ], [ 3, 17, 35 ], [ 3, 22, 51 ],
[ 3, 23, 48 ], [ 4, 16, 57 ], [ 4, 19, 36 ], [ 4, 54, 56 ],
[ 5, 22, 63 ], [ 5, 31, 57 ], [ 5, 49, 52 ], [ 6, 7, 60 ],
[ 6, 28, 57 ], [ 6, 35, 43 ], [ 7, 26, 27 ], [ 7, 33, 34 ],
[ 8, 9, 53 ], [ 8, 22, 33 ], [ 8, 38, 56 ], [ 9, 25, 61 ],
[ 9, 28, 37 ], [ 10, 18, 53 ], [ 10, 32, 35 ], [ 10, 36, 62 ],
[ 11, 12, 63 ], [ 11, 26, 54 ], [ 11, 37, 42 ], [ 12, 41, 43 ],
[ 12, 44, 50 ], [ 13, 15, 42 ], [ 13, 19, 51 ], [ 14, 15, 31 ],
[ 14, 17, 61 ], [ 14, 34, 50 ], [ 15, 20, 38 ], [ 16, 23, 44 ],
[ 16, 40, 59 ], [ 17, 45, 54 ], [ 18, 24, 26 ], [ 18, 30, 31 ],
[ 19, 25, 41 ], [ 20, 21, 62 ], [ 20, 23, 27 ], [ 21, 28, 55 ],
[ 21, 39, 45 ], [ 24, 29, 59 ], [ 24, 51, 55 ], [ 25, 27, 49 ],
[ 29, 38, 43 ], [ 30, 39, 41 ], [ 30, 46, 48 ], [ 32, 40, 42 ],
[ 32, 47, 49 ], [ 33, 39, 40 ], [ 46, 47, 56 ], [ 46, 58, 60 ],
[ 47, 50, 55 ], [ 58, 59, 61 ], [ 58, 62, 63 ] ], isBlockDesign := true,

v := 63 )
gap> f := GF(3);
GF(3)
gap> id := IdentityMat(2, f);;
gap> clan := List( f, t -> t*id );;
gap> clan := qClan(clan,f);
<q-clan over GF(3)>
gap> egq := EGQByqClan( clan );
#I Computed Kantor family. Now computing EGQ...
<EGQ of order [ 9, 3 ] and basepoint 0>
gap> HasElationGroup( egq );



GAP 4 Package FinInG 212

true
gap> design := BlockDesignOfGeneralisedPolygon( egq );;
#I Computing orbits on lines of gen. polygon...
#I Computing block design of generalised polygon...
gap> aut := AutGroupBlockDesign( design );
<permutation group with 6 generators>
gap> NrBlockDesignPoints( design );
280
gap> NrBlockDesignBlocks( design );
112
gap> DisplayCompositionSeries(aut);
G (6 gens, size 26127360)
| Z(2)

S (5 gens, size 13063680)
| Z(2)

S (5 gens, size 6531840)
| Z(2)

S (4 gens, size 3265920)
| 2A(3,3) = U(4,3) ~ 2D(3,3) = O-(6,3)

1 (0 gens, size 1)

12.4 Elements of generalised polygons

12.4.1 Collections of elements of generalised polygons

. ElementsOfIncidencStructure(gp, i) (attribute)

. Points(gp) (attribute)

. Lines(gp) (attribute)

Returns: a collection of elements of a generalised polygon
gp is any generalised polygon, i is a natural number, necessarily 1 or 2.

ElementsOfIncidenceStructure returns the elements of type i of gp , Points and Lines
are the usual shortcuts.

12.4.2 Size

. Size(els) (operation)

Returns: a number
els is a collection of elements of a generalised polygon. This operation returns the number of

element in els .

12.4.3 Creating elements from objects and retrieving objects from elements

. ObjectToElement(gp, obj) (operation)

. ObjectToElement(gp, type, obj) (operation)

. UnderlyingObject(el) (operation)

Returns: a collection of elements of a generalised polygon
To create elements in gp (of type type ), one of the versions of ObjectToElement can be used.

It is checked whether obj represents an element (of type type ). To retrieve an underlying object of
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an element el , UnderlyingObject can be used.
Example

gap> mat := [ [ 1, 1, 0, 0, 0, 1, 0 ], [ 1, 0, 0, 1, 1, 0, 0 ],
> [ 1, 0, 1, 0, 0, 0, 1 ], [ 0, 1, 1, 1, 0, 0, 0 ],
> [ 0, 1, 0, 0, 1, 0, 1 ], [ 0, 0, 0, 1, 0, 1, 1 ],
> [ 0, 0, 1, 0, 1, 1, 0 ] ];
[ [ 1, 1, 0, 0, 0, 1, 0 ], [ 1, 0, 0, 1, 1, 0, 0 ], [ 1, 0, 1, 0, 0, 0, 1 ],

[ 0, 1, 1, 1, 0, 0, 0 ], [ 0, 1, 0, 0, 1, 0, 1 ], [ 0, 0, 0, 1, 0, 1, 1 ],
[ 0, 0, 1, 0, 1, 1, 0 ] ]

gap> gp := GeneralisedPolygonByIncidenceMatrix(mat);
<projective plane order 2>
gap> p := Random(Points(gp));
<a point in <projective plane order 2>>
gap> UnderlyingObject(p);
7
gap> l := Random(Lines(gp));
<a line in <projective plane order 2>>
gap> UnderlyingObject(l);
[ 4, 6, 7 ]
gap> ObjectToElement(gp,1,4);
<a point in <projective plane order 2>>
gap> ObjectToElement(gp,2,5);
Error, <obj> does not represent a line of <gp> called from
<function "unknown">( <arguments> )
called from read-eval loop at line 18 of *stdin*

you can ’quit;’ to quit to outer loop, or
you can ’return;’ to continue
brk> quit;
gap> ObjectToElement(gp,2,[1,2,3]);
Error, <obj> does not represent a line of <gp> called from
<function "unknown">( <arguments> )
called from read-eval loop at line 18 of *stdin*

you can ’quit;’ to quit to outer loop, or
you can ’return;’ to continue
brk> quit;
gap> ObjectToElement(gp,[1,2,6]);
<a line in <projective plane order 2>>

12.4.4 Incidence

. IsIncident(v, w) (operation)

. \*(v, w) (operation)

Returns: true or false
Let v and w be two elements of a generalised polygon. It is checked if the ambient geometry of

the two elements are identical, and true is returned if and only if the two elements are incident in their
ambient geometry.
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12.4.5 Span

. Span(v, w) (operation)

Returns: a line of a generalised polygon or fail
Let v and w be two elements of a generalised polygon. It is checked if the ambient geome-

tries of the two elements are identical, and if the two elements are points. If v and w are in-
cidence with a common line, this line is returned. Otherwise fail is returned. For generalised
polygons constructed with GeneralisedPolygonByBlocks, GeneralisedPolygonByElements an
GeneralisedPolygonByInidenceMatrix, the underlying graph is used. Note that the behaviour of
Span is different for elements of generalised polygons that belong to IsLieGeometry, see 4.2.16.

Example
gap> mat := [ [ 1, 1, 0, 0, 0, 1, 0 ], [ 1, 0, 0, 1, 1, 0, 0 ],
> [ 1, 0, 1, 0, 0, 0, 1 ], [ 0, 1, 1, 1, 0, 0, 0 ],
> [ 0, 1, 0, 0, 1, 0, 1 ], [ 0, 0, 0, 1, 0, 1, 1 ],
> [ 0, 0, 1, 0, 1, 1, 0 ] ];
[ [ 1, 1, 0, 0, 0, 1, 0 ], [ 1, 0, 0, 1, 1, 0, 0 ], [ 1, 0, 1, 0, 0, 0, 1 ],

[ 0, 1, 1, 1, 0, 0, 0 ], [ 0, 1, 0, 0, 1, 0, 1 ], [ 0, 0, 0, 1, 0, 1, 1 ],
[ 0, 0, 1, 0, 1, 1, 0 ] ]

gap> gp := GeneralisedPolygonByIncidenceMatrix(mat);
<projective plane order 2>
gap> p := Random(Points(gp));
<a point in <projective plane order 2>>
gap> q := Random(Points(gp));
<a point in <projective plane order 2>>
gap> Span(p,q);
<a line in <projective plane order 2>>
gap> ps := ParabolicQuadric(4,3);
Q(4, 3)
gap> gp := GeneralisedPolygonByElements(Set(Points(ps)),Set(Lines(ps)),\*);
<generalised quadrangle of order [ 3, 3 ]>
gap> p := Random(Points(gp));
<a point in <generalised quadrangle of order [ 3, 3 ]>>
gap> q := Random(Points(gp));
<a point in <generalised quadrangle of order [ 3, 3 ]>>
gap> Span(p,q);
#I <x> and <y> do not span a line of gp
fail

12.4.6 Meet

. Meet(v, w) (operation)

Returns: a point of a generalised polygon or fail
Let v and w be two elements of a generalised polygon. It is checked if the ambient geome-

tries of the two elements are identical, and if the two elements are lines. If v and w are inci-
dence with a common point, this point is returned. Otherwise fail is returned. For generalised
polygons constructed with GeneralisedPolygonByBlocks, GeneralisedPolygonByElements an
GeneralisedPolygonByInidenceMatrix, the underlying graph is used. Note that the behavior of
Meet is different for elements of generalised polygongs that belong to IsLieGeometry, see 4.2.17

Example
gap> mat := [ [ 1, 1, 0, 0, 0, 1, 0 ], [ 1, 0, 0, 1, 1, 0, 0 ],
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> [ 1, 0, 1, 0, 0, 0, 1 ], [ 0, 1, 1, 1, 0, 0, 0 ],
> [ 0, 1, 0, 0, 1, 0, 1 ], [ 0, 0, 0, 1, 0, 1, 1 ],
> [ 0, 0, 1, 0, 1, 1, 0 ] ];
[ [ 1, 1, 0, 0, 0, 1, 0 ], [ 1, 0, 0, 1, 1, 0, 0 ], [ 1, 0, 1, 0, 0, 0, 1 ],

[ 0, 1, 1, 1, 0, 0, 0 ], [ 0, 1, 0, 0, 1, 0, 1 ], [ 0, 0, 0, 1, 0, 1, 1 ],
[ 0, 0, 1, 0, 1, 1, 0 ] ]

gap> gp := GeneralisedPolygonByIncidenceMatrix(mat);
<projective plane order 2>
gap> l := Random(Lines(gp));
<a line in <projective plane order 2>>
gap> m := Random(Lines(gp));
<a line in <projective plane order 2>>
gap> Meet(l,m);
<a point in <projective plane order 2>>
gap> ps := ParabolicQuadric(4,3);
Q(4, 3)
gap> gp := GeneralisedPolygonByElements(Set(Points(ps)),Set(Lines(ps)),\*);
<generalised quadrangle of order [ 3, 3 ]>
gap> l := Random(Lines(gp));
<a line in <generalised quadrangle of order [ 3, 3 ]>>
gap> m := Random(Lines(gp));
<a line in <generalised quadrangle of order [ 3, 3 ]>>
gap> Meet(l,m);
#I <x> and <y> do meet in a common point of gp
fail

12.4.7 Shadow elements

. ShadowOfElement(geo, v, j) (operation)

. Points(el) (operation)

. Lines(el) (operation)

. ElementsIncidentWithElementOfIncidenceStructure(el, i) (operation)

Returns: A collection of elements
geo is a generalised polygon, v must be an element of geo , j is an integer equal to 1 or

2, since geo is a rank two geometry. The operation ShadowOfElement returns the collection
of elements of geo of type j , incident with the element v . The operations Points and Lines
with argument are the usual shortcuts to ShadowOfElement with j respectively equal to 1, 2.
The operation ElementsIncidentWithElementOfIncidenceStructure is the usual shortcut to
ShadowOfElement.

Example
gap> blocks := [
> [ 1, 2, 3, 4, 5 ], [ 1, 6, 7, 8, 9 ], [ 1, 10, 11, 12, 13 ],
> [ 1, 14, 15, 16, 17 ], [ 1, 18, 19, 20, 21 ], [ 2, 6, 10, 14, 18 ],
> [ 2, 7, 11, 15, 19 ], [ 2, 8, 12, 16, 20 ], [ 2, 9, 13, 17, 21 ],
> [ 3, 6, 11, 16, 21 ], [ 3, 7, 10, 17, 20 ], [ 3, 8, 13, 14, 19 ],
> [ 3, 9, 12, 15, 18 ], [ 4, 6, 12, 17, 19 ], [ 4, 7, 13, 16, 18 ],
> [ 4, 8, 10, 15, 21 ], [ 4, 9, 11, 14, 20 ], [ 5, 6, 13, 15, 20 ],
> [ 5, 7, 12, 14, 21 ], [ 5, 8, 11, 17, 18 ], [ 5, 9, 10, 16, 19 ] ];;
gap> gp := GeneralisedPolygonByBlocks( blocks );
<projective plane order 4>
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gap> l := Random(Lines(gp));
<a line in <projective plane order 4>>
gap> pts := ShadowOfElement(gp,l,1);
<shadow points in <projective plane order 4>>
gap> List(pts);
[ <a point in <projective plane order 4>>,

<a point in <projective plane order 4>>,
<a point in <projective plane order 4>>,
<a point in <projective plane order 4>>,
<a point in <projective plane order 4>> ]

gap> p := Random(Points(gp));
<a point in <projective plane order 4>>
gap> lines := Lines(p);
<shadow lines in <projective plane order 4>>
gap> List(lines);
[ <a line in <projective plane order 4>>, <a line in <projective plane order

4>>, <a line in <projective plane order 4>>,
<a line in <projective plane order 4>>, <a line in <projective plane order

4>> ]

12.4.8 DistanceBetweenElements

. DistanceBetweenElements(v, w) (operation)

Returns: a number
Let v and w be two elements of a generalised polygon. It is checked if the ambient geometry of

the two elements are identical, and the distance between the two elements in the incidence graph of
their ambient geometry is returned.

Example
gap> g := ElementaryAbelianGroup(27);
<pc group of size 27 with 3 generators>
gap> flist1 := [ Group(g.1), Group(g.2), Group(g.3), Group(g.1*g.2*g.3) ];;
gap> flist2 := [ Group([g.1, g.2^2*g.3]), Group([g.2, g.1^2*g.3 ]),
> Group([g.3, g.1^2*g.2]), Group([g.1^2*g.2, g.1^2*g.3 ]) ];;
gap> egq := EGQByKantorFamily(g, flist1, flist2);
<EGQ of order [ 3, 3 ] and basepoint 0>
gap> p := Random(Points(egq));
<a point of class 2 of <EGQ of order [ 3, 3 ] and basepoint 0>>
gap> q := Random(Points(egq));
<a point of class 3 of <EGQ of order [ 3, 3 ] and basepoint 0>>
gap> DistanceBetweenElements(p,q);
2
gap> gh := SplitCayleyHexagon(3);
H(3)
gap> l := Random(Lines(gh));
#I for Split Cayley Hexagon
#I Computing nice monomorphism...
#I Found permutation domain...
<a line in H(3)>
gap> m := First(Lines(gh),x->DistanceBetweenElements(l,x)=6);
<a line in H(3)>
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12.5 The classical generalised hexagons

12.5.1 Trialities of the hyperbolic quadric and generalised hexagons

Consider the hyperbolic quadric Q+(7,q). This is a polar space of rank 4. It is well known that its
generators fall into two systems. Each system contains exactly (q3+q2+q+1)(q2+q+1) generators,
which is equal to the number of points of Q+(7,q) . Generators from the same system meet each
other in an empty subspace or in a line, Generators from a different system meet each other in a
point of a plane. One defines the rank 4 geometry Ω(7,q) as follows. The 0-points are the points of
Q+(7,q) , the 1-points are the generators of the first system, the 2-points are the generators of the
second system, and the lines are the lines of Q+(7,q) . The incidence is the natural incidence of the
underlying projective space. Denote the set of i-points as P(i) , i = 0,1,2.

A triality of Ω(7,q) is a map τ : P(i)→ P(i+1) (where i+1 is computed modulo 3) preserving the
incidence and for which τ3 = 1 . Note that the image of a line under τ is determined by the image of
the points incident with the line.

An i-point is absolute with respect to a fixed triality if it is incident with its image under the triality.
Consequently, a line is absolute with if it is fixed by the triality.

A generalised hexagon might be obtained as geometry of absolute points of one kind and absolute
lines with relation to a fixed triality. Note that not all trialities yield (thick) generalised quadrangles.
There are different types of trialities, for some of them the absolute geometry is degenerate.

The triality used in FinInG to construct the classical generalised hexagons is fixed. It is described
explicitely in [VM98]. To describe the triality, a trilinear form expressing the incidence between i-
points of Ω(7,q) is used. Given the fact that, because of the existence of a triality, the role of the 0,
1 and 2 points are the same, each of the 1 and 2 points can be labelled the same way as the 0-points,
which are effectively labelled by 8-tuples (x0, . . . ,x7) ∈V (8,q) =V where each 8-tuples represents a
projective point of Q+(7,q).

Consider the hyperbolic quadric determined by the quadratic form X0X4 +X1X5 +X2X6 +X3X7 .
Consider the trilinear map T ,

T (x,y,z) =

∣∣∣∣∣∣
x0 x1 x2
y0 y1 y2
z0 z1 z2

∣∣∣∣∣∣+
∣∣∣∣∣∣

x4 x5 x6
y4 y5 y6
z4 z5 z6

∣∣∣∣∣∣+ x3(z0y4 + z1y5 + z2y6) + x7(y0z4 + y1z5 + y2z6) +

y3(x0z4 + x1z5 + x2z6) + y7(z0x4 + z1x5 + z2x6) + z3(y0x4 + y1x5 + y2x6) + z7(x0y4 + x1y5 + x2y6)−
x3y3z3− x7y7z7.

Now a pair (x,y) ∈V ×V represents an incident 0-1 pair of points if and only if T (x,y,z) vanishes
in the variable z, and similarly for any cyclic permutation of the letters x,y,z. So given a 1-point
y, T (x,y,z) = 0, where z is a variable, and x is an unknown, gives a set of equations representing a
generator of Q+(7,q), this the generator of Q+(7,q) represented by y as label of a 1-point.

Let σ be an automorphism of GF(q) of order 3, or the identity. Consider the map
τσ : P(i)→ P(i+1)

(x j) 7→ (xσ
j ), j = 0 . . .7 .

This map clearly preserves T (x,y,z), so preserves the incidence, and has order three, so it is
a triality of Ω(7,q). We call an element p absolute with respect to a triality τ if and only if pI pτ .
Consequently, a line is absolute if and only if it is fixed by the triality. Denote the set of i-points that are
absolute with respect to the triality as P(i)

abs, and set of absolute lines with respect to the triality as Labs.
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Then a famous theorem of Tits ([Tit59]) says that for the triality τσ , the point-line geometry Γ(i) =

(P(i)
abs,Labs), I) is a generalised hexagon of order (|K|, |L|), K = GF(q) and L the subfield of invariant

elements of K under the field automorphism σ . Note that a finite field has a field automorphism of
order three if and only if its order equals q3. So, for K = GF(q) and σ = 1, Γ(i) is a generalised
hexagon of order q, which is called the split Cayley hexagon of order q, denoted H(q). For K =
GF(q3), and σ a non-trival field automorphism of order 3, Γ(i) is a generalised hexagon of order
(q3,q) , which is called the twisted triality hexagon of order (q3,q) , denoted T (q3,q) . Note that for a
given triality, the hexagons Γ(i), i = 0,1,2 are isomorphic. Consequently, Γ(0) is a point-line geometry
of which the point set, line set respectively, is a subset of the points, lines respectively of Q+(7,q)
. Finally, we mention the following important theorem, which was shown by Tits ([Tit59]): the split
Cayley hexagon, obtained by the triliaty with σ = 1, is contained in the hyperplane with equation
X3 +X7 = 0, which intersects the hyperbolic quadric in the parabolic quadric Q(6,q). The points of
the split Cayley hexagon are the points of Q(6,q).

This above description of the triality and the associated generalised hexagons, contains sufficient
analytical information to implement the split Cayley hexagon and the twisted triality hexagon in an
efficient way. The user is allowed to choose a representation for the ambient polar space. For q = 2h

the polar spaces Q(6,q) and W (5,q) are isomorphic. Consequently, the user may choose W (5,q) as
ambient polar space for the split Cayley hexagon of even order. This embedding in W (5,q) is called
the perfect symplectic embedding of the split Cayley hexagon. Finally, [VM98] contains an explicit
description of the generators of the collineation groups of both generalised hexagons.

12.5.2 IsLieGeometry

. IsLieGeometry (Category)

Recall that the classical generalised hexagons are constructed as an object in IsLieGeometry.
This makes most operations described in the appropriate chapters on Lie geometries, projective spaces
and polar spaces applicable.

12.5.3 SplitCayleyHexagon

. SplitCayleyHexagon(q) (operation)

. SplitCayleyHexagon(f) (operation)

. SplitCayleyHexagon(ps) (operation)

Returns: a generalised hexagon
Example

gap> hexagon := SplitCayleyHexagon( 3 );
H(3)
gap> AmbientPolarSpace(hexagon);
Q(6, 3): -x_1*x_5-x_2*x_6-x_3*x_7+x_4^2=0
gap> ps := ParabolicQuadric(6,3);
Q(6, 3)
gap> hexagon := SplitCayleyHexagon( ps );
H(3) in Q(6, 3)
gap> AmbientPolarSpace(hexagon);
Q(6, 3)
gap> hexagon := SplitCayleyHexagon( 4 );
H(4)
gap> AmbientPolarSpace(hexagon);
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W(5, 4): x1*y4+x2*y5+x3*y6+x4*y1+x5*y2+x6*y3=0
gap> ps := ParabolicQuadric(6,4);
Q(6, 4)
gap> hexagon := SplitCayleyHexagon( ps );
H(4) in Q(6, 4)
gap> AmbientPolarSpace(hexagon);
Q(6, 4)

12.5.4 TwistedTrialityHexagon

. TwistedTrialityHexagon(q) (operation)

. TwistedTrialityHexagon(f) (operation)

. TwistedTrialityHexagon(ps) (operation)

Returns: a generalised hexagon
Example

gap> hexagon := TwistedTrialityHexagon(2^3);
T(8, 2)
gap> AmbientPolarSpace(hexagon);
<polar space in ProjectiveSpace(
7,GF(2^3)): x_1*x_5+x_2*x_6+x_3*x_7+x_4*x_8=0 >
gap> ps := HyperbolicQuadric(7,2^3);
Q+(7, 8)
gap> hexagon := TwistedTrialityHexagon(ps);
T(8, 2) in Q+(7, 8)
gap> AmbientPolarSpace(hexagon);
Q+(7, 8)

12.5.5 VectorSpaceToElement

. VectorSpaceToElement(gh, vec) (operation)

Returns: an element of a classical generlised hexagon
The argument vec is one vector or a list of vectors from the underlying vectorspace of gh . This

operation checks whether vec represents a point or a line of gh . Note that vectors and matrices in
different representations are allowed as argument.

Example
gap> ps := ParabolicQuadric(6,9);
Q(6, 9)
gap> gh := SplitCayleyHexagon(ps);
H(9) in Q(6, 9)
gap> vec := [ Z(3)^0, Z(3^2), 0*Z(3), Z(3^2), Z(3^2)^3, Z(3^2)^5, 0*Z(3) ];
[ Z(3)^0, Z(3^2), 0*Z(3), Z(3^2), Z(3^2)^3, Z(3^2)^5, 0*Z(3) ]
gap> p := VectorSpaceToElement(gh,vec);
<a point in H(9) in Q(6, 9)>
gap> vec := [ [ Z(3)^0, 0*Z(3), Z(3^2)^7, 0*Z(3), Z(3)^0, Z(3^2)^2, Z(3^2)^2 ],
> [ 0*Z(3), Z(3)^0, 0*Z(3), Z(3)^0, 0*Z(3), Z(3^2)^3, 0*Z(3) ] ];
[ [ Z(3)^0, 0*Z(3), Z(3^2)^7, 0*Z(3), Z(3)^0, Z(3^2)^2, Z(3^2)^2 ],

[ 0*Z(3), Z(3)^0, 0*Z(3), Z(3)^0, 0*Z(3), Z(3^2)^3, 0*Z(3) ] ]
gap> line := VectorSpaceToElement(gh,vec);



GAP 4 Package FinInG 220

Error, <x> does not generate an element of <geom> called from
<function "unknown">( <arguments> )
called from read-eval loop at line 14 of *stdin*

you can ’quit;’ to quit to outer loop, or
you can ’return;’ to continue
brk> quit;

12.5.6 ObjectToElement

. ObjectToElement(gh, obj) (operation)

Returns: an element of a classical generlised hexagon
The argument obj is one vector or a list of vectors from the underlying vectorspace of gh . This

operation checks whether obj represents a point or a line of gh . Note that vectors and matrices in
different representations are allowed as argument.

Example
gap> mat := IdentityMat(8,GF(5^3));
< mutable compressed matrix 8x8 over GF(125) >
gap> form := BilinearFormByMatrix(mat,GF(5^3));
< bilinear form >
gap> ps := PolarSpace(form);
<polar space in ProjectiveSpace(
7,GF(5^3)): x_1^2+x_2^2+x_3^2+x_4^2+x_5^2+x_6^2+x_7^2+x_8^2=0 >
gap> gh := TwistedTrialityHexagon(ps);
T(125, 5) in Q+(7, 125): x_1^2+x_2^2+x_3^2+x_4^2+x_5^2+x_6^2+x_7^2+x_8^2
gap> vec := [ Z(5)^0, Z(5^3)^55, Z(5^3)^99, Z(5^3)^107, Z(5^3)^8, Z(5^3)^35, Z(5^3)^73,
> Z(5^3)^115 ];
[ Z(5)^0, Z(5^3)^55, Z(5^3)^99, Z(5^3)^107, Z(5^3)^8, Z(5^3)^35, Z(5^3)^73,

Z(5^3)^115 ]
gap> p := ObjectToElement(gh,vec);
<a point in T(125, 5) in Q+(7, 125): x_1^2+x_2^2+x_3^2+x_4^2+x_5^2+x_6^2+x_7^2
+x_8^2>
gap> vec := [ [ Z(5)^0, 0*Z(5), Z(5^3)^76, Z(5^3)^117, Z(5^3)^80, Z(5^3)^19, Z(5^3)^48,
> Z(5^3)^100 ],
> [ 0*Z(5), Z(5)^0, Z(5^3)^115, Z(5^3)^14, Z(5^3)^40, Z(5^3)^67, Z(5^3)^123,
> Z(5^3)^3 ] ];
[ [ Z(5)^0, 0*Z(5), Z(5^3)^76, Z(5^3)^117, Z(5^3)^80, Z(5^3)^19, Z(5^3)^48,

Z(5^3)^100 ],
[ 0*Z(5), Z(5)^0, Z(5^3)^115, Z(5^3)^14, Z(5^3)^40, Z(5^3)^67, Z(5^3)^123,

Z(5^3)^3 ] ]
gap> line := ObjectToElement(gh,vec);
<a line in T(125, 5) in Q+(7, 125): x_1^2+x_2^2+x_3^2+x_4^2+x_5^2+x_6^2+x_7^2+
x_8^2>

12.5.7 UnderlyingObject

. UnderlyingObject(gh, obj) (operation)

Returns: a vector or a matrix
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12.5.8 \in

. \in(x, gh) (operation)

Returns: true or false
Example

gap> ps := HyperbolicQuadric(7,5^3);
Q+(7, 125)
gap> gh := TwistedTrialityHexagon(ps);
T(125, 5) in Q+(7, 125)
gap> repeat
> p := Random(Points(ps));
> until p in gh;
gap> time;
18399
gap> p in gh;
true
gap> q := ElementToElement(gh,p);
<a point in T(125, 5) in Q+(7, 125)>
gap> l := Random(Lines(p));
<a line in Q+(7, 125)>
gap> l in gh;
false
gap> List(Lines(q),x->x in gh);
[ true, true, true, true, true, true ]

12.5.9 Span and meet of elements

. Span(x, y) (operation)

. Meet(x, y) (operation)

Returns: a subspace of a projective space
x and y are two elements of a classical generalised hexagon. The operation Span returns the

projective line spanned by x and y . The operation Meet returns the intersection of the elements x
and y . Note that the classical generalised hexagons are Lie geometries, so their elements belong to a
subcategory of IsSubspaceOfProjectiveSpace. Therefore, the operations Span and Meet behave
as described in 7.5.2 and 7.5.3.

Example
gap> ps := SymplecticSpace(5,8);
W(5, 8)
gap> gh := SplitCayleyHexagon(ps);
H(8) in W(5, 8)
gap> vec := [ Z(2)^0, Z(2^3)^6, Z(2^3)^5, Z(2^3)^6, Z(2)^0, Z(2^3) ];
[ Z(2)^0, Z(2^3)^6, Z(2^3)^5, Z(2^3)^6, Z(2)^0, Z(2^3) ]
gap> p := VectorSpaceToElement(gh,vec);
<a point in H(8) in W(5, 8)>
gap> vec := [ Z(2)^0, Z(2^3)^2, Z(2^3), Z(2^3)^3, Z(2^3)^5, Z(2^3)^5 ];
[ Z(2)^0, Z(2^3)^2, Z(2^3), Z(2^3)^3, Z(2^3)^5, Z(2^3)^5 ]
gap> q := VectorSpaceToElement(gh,vec);
<a point in H(8) in W(5, 8)>
gap> span := Span(p,q);
<a line in ProjectiveSpace(5, 8)>
gap> ElementToElement(gh,span);
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<a line in H(8) in W(5, 8)>
gap> vec := [ [ Z(2)^0, 0*Z(2), Z(2^3)^6, Z(2)^0, 0*Z(2), Z(2^3) ],
> [ 0*Z(2), Z(2)^0, Z(2^3)^6, Z(2^3)^4, Z(2^3)^4, 0*Z(2) ] ];
[ [ Z(2)^0, 0*Z(2), Z(2^3)^6, Z(2)^0, 0*Z(2), Z(2^3) ],

[ 0*Z(2), Z(2)^0, Z(2^3)^6, Z(2^3)^4, Z(2^3)^4, 0*Z(2) ] ]
gap> l := VectorSpaceToElement(gh,vec);
<a line in H(8) in W(5, 8)>
gap> vec := [ [ Z(2)^0, 0*Z(2), Z(2)^0, Z(2^3), 0*Z(2), Z(2^3) ],
> [ 0*Z(2), Z(2)^0, Z(2)^0, Z(2^3)^2, Z(2^3)^4, Z(2^3)^4 ] ];
[ [ Z(2)^0, 0*Z(2), Z(2)^0, Z(2^3), 0*Z(2), Z(2^3) ],

[ 0*Z(2), Z(2)^0, Z(2)^0, Z(2^3)^2, Z(2^3)^4, Z(2^3)^4 ] ]
gap> m := VectorSpaceToElement(gh,vec);
<a line in H(8) in W(5, 8)>
gap> Meet(l,m);
< empty subspace >
gap> DistanceBetweenElements(l,m);
6

12.5.10 CollineationGroup

. CollineationGroup(gh) (attribute)

Returns: a group of collineations
gh is a classical generalised hexagon. This attribute returns the full collineation group, equipped

with a nice monomorphism.
Example

gap> mat := IdentityMat(7,GF(9));
< mutable compressed matrix 7x7 over GF(9) >
gap> form := BilinearFormByMatrix(mat,GF(9));
< bilinear form >
gap> ps := PolarSpace(form);
<polar space in ProjectiveSpace(
6,GF(3^2)): x_1^2+x_2^2+x_3^2+x_4^2+x_5^2+x_6^2+x_7^2=0 >
gap> gh := SplitCayleyHexagon(ps);
H(9) in Q(6, 9): x_1^2+x_2^2+x_3^2+x_4^2+x_5^2+x_6^2+x_7^2
gap> group := CollineationGroup(gh);
#I for Split Cayley Hexagon
#I Computing nice monomorphism...
#I Found permutation domain...
<projective collineation group with 18 generators>
gap> time;
19602
gap> HasNiceMonomorphism(group);
true
gap> gh := TwistedTrialityHexagon(2^3);
T(8, 2)
gap> group := CollineationGroup(gh);
#I Computing nice monomorphism...
#I Found permutation domain...
3D_4(8)
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12.6 Elation generalised quadrangles

12.6.1 Elation generalised quadrangles and Kantor families

Suppose S = (P,B, I) is a generalised quadrangle of order (s, t) for which there exists a point p and a
group of collineations G fixing p and each line through p, with the extra property that G acts regularly
on the points not collinear with p. Then S is called an elation generalised quadrangle with base-point
p and elation group G, and G has order s2t. Let y be a fixed point of S, not collinear with p. Denote the
t + 1 lines incident with p as Li, i = 0 . . . t . Define for each line Li the unique point-line pair (zi,Mi)
such that LiIziIMiIy . Define the groups Si as the subgroups of G fixing the lines Mi, and define the
groups S∗i as the subgroups of G fixing the point zi. Define the set J = {Si : i = 0 . . . t}, and the set
J∗ = {Si : i = 0 . . . t} . Since S is an elation generalised quadrangle, J is a collection of t+1 subgroups
of G of order s, and each S∗i contains has order st and contains Si as a subgroup. Furthermore, the
following two conditions are satisfied.

(K1) SiS j ∩Sk = {1} , for distinct i, j,k.
(K2) Si∩S∗j = {1} , for distinct i, j.
The pair (J,J∗) is called a 4-gonal family or Kantor family in G.
Remarkably, each Kantor family in a group of order s2t gives rise to an elation generalised quad-

rangle. Kantor families and elation generalised quadrangles are equivalent objects, and one of the
motivations to study Kantor families in groups was to find examples of non-classical elation gener-
alised quadrangles.

Given a group G, together with a Kantor family (J,J∗), a generalised quadrangle is defined as
follows.

The points are of three types:
(i) points of type 1 are the elements of G;
(ii) points of of type 2 are the right cosets S∗g,s∗ ∈ J∗

(iii) the unique point of type (iii) is the symbol (∞).
The lines are of two types:
(a) lines of type (a) are the right cosets Sg, S ∈ J;
(b) Lines of type (b) are the symbols [S],S ∈ J.
Incidence is defined as follows. A point g of type (i) is incident with each line Sg,S ∈ J of type

(a). A point of type (ii) S∗g is incident the line [S] of type (b) and the t lines of type (a) for which
Sh⊂ S∗g . Finally, the unique point of type (iii) is incident with the lines of type (b), and there are no
further incidences.

It is shown, see e.g. the standard work in this field of Payne and Thas [PT84], that this point-line
geoemtry is a generalised quadrangle of order (s, t).

FinInG provides functions to construct elation generalised quadrangles directly from a Kantor
family. The constructed generalised quadrangles are generalised polygons in the sense of FinInG, i.e.
all generic operations described in Sections 12.3 and 12.4.

12.6.2 Categories

. IsEGQByKantorFamily (Category)

. IsElementOfKantorFamily (Category)

IsEGQByKantorFamily is a subcategory of IsElationGQ. It contains all elations generalised
quadrangles that are constructed from a Kantor family. IsElementOfKantorFamily is a subcategory
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of IsElementOfGeneralisedPolygon. It contains the elements from generalised quadrangles in the
category IsEGQByKantorFamily.

12.6.3 Kantor families

. IsKantorFamily(g, f, fstar) (operation)

Returns: true or false
There is no specific way to construct a Kantor family in FinInG. However, given a group G and

two collections of subgroups, IsKantorFamily will check whether the input satisfies the conditions
of a Kantor family. If so, the input can be used directly for the operation EGQByKantorFamily.

12.6.4 EGQByKantorFamily

. EGQByKantorFamily(g, f, fstar) (operation)

Returns: a generalised quadrangle
Let g be a group and f and fstar two collections of subgroups, satisfying the conditions of a

Kantor family. This operation returns the corresponding elation generalised quadrangle. Note that
this operation does not check if the input satisfies the conditions to be a Kantor family, it only checks
whether the group f[i] is a subgroup of the group fstar[i] . In the example below, the use of
IsKantorFamily is also demonstrated, and some categories are displayed.

Example
gap> g := ElementaryAbelianGroup(27);
<pc group of size 27 with 3 generators>
gap> flist1 := [ Group(g.1), Group(g.2), Group(g.3), Group(g.1*g.2*g.3) ];;
gap> flist2 := [ Group([g.1, g.2^2*g.3]), Group([g.2, g.1^2*g.3 ]),
> Group([g.3, g.1^2*g.2]), Group([g.1^2*g.2, g.1^2*g.3 ]) ];;
gap> IsKantorFamily( g, flist1, flist2 );
#I Checking tangency condition...
#I Checking triple condition...
true
gap> egq := EGQByKantorFamily(g, flist1, flist2);
<EGQ of order [ 3, 3 ] and basepoint 0>
gap> CategoriesOfObject(egq);
[ "IsIncidenceStructure", "IsIncidenceGeometry", "IsGeneralisedPolygon",

"IsGeneralisedQuadrangle", "IsElationGQ", "IsElationGQByKantorFamily" ]
gap> p := Random(Points(egq));
<a point of class 2 of <EGQ of order [ 3, 3 ] and basepoint 0>>
gap> CategoriesOfObject(p);
[ "IsElementOfIncidenceStructure", "IsElementOfIncidenceGeometry",

"IsElementOfGeneralisedPolygon", "IsElementOfKantorFamily" ]

12.6.5 Representation of elements and underlying objects

. ObjectToElement(egq, t, obj) (operation)

. ObjectToElement(egq, obj) (operation)

. BasePointOfEGQ(egq) (operation)

. UnderlyingObject(el) (operation)
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For technical reasons, the underlying objects of the elements of an elation generalised quadran-
gle constructed from a Kantor family, are not exactly the mathematical objects from the definition.
However, these technicalities are almost completely hidden for the user, except for the representation
of lines of type (b), which are represented in FinInG by the elements of the collection J∗ (instead
of the elements of the collection J). This change from the original definition has no mathematical
implications, since there is a bijective correspondence between the elements of J∗ and J. Notice also
that it is only possible to obtain the base-point of an elation generalised quadrangle constructed from
a Kantor family through calling the attribute BasePointOfEGQ.

Example
gap> g := ElementaryAbelianGroup(27);
<pc group of size 27 with 3 generators>
gap> flist1 := [ Group(g.1), Group(g.2), Group(g.3), Group(g.1*g.2*g.3) ];;
gap> flist2 := [ Group([g.1, g.2^2*g.3]), Group([g.2, g.1^2*g.3 ]),
> Group([g.3, g.1^2*g.2]), Group([g.1^2*g.2, g.1^2*g.3 ]) ];;
gap> egq := EGQByKantorFamily(g, flist1, flist2);
<EGQ of order [ 3, 3 ] and basepoint 0>
gap> h := Random(g);
f1*f2^2
gap> p := ObjectToElement(egq,h);
<a point of class 1 of <EGQ of order [ 3, 3 ] and basepoint 0>>
gap> coset := RightCoset(flist1[1],h);
RightCoset(Group( [ f1 ] ),f1*f2^2)
gap> l := ObjectToElement(egq,coset);
<a line of class 1 of <EGQ of order [ 3, 3 ] and basepoint 0>>
gap> p * l;
true
gap> S := flist2[2];
<pc group of size 9 with 2 generators>
gap> m := ObjectToElement(egq,S);
<a line of class 2 of <EGQ of order [ 3, 3 ] and basepoint 0>>
gap> q := BasePointOfEGQ(egq);
<a point of class 3 of <EGQ of order [ 3, 3 ] and basepoint 0>>
gap> m * q;
true
gap> lines := List(Lines(p));
[ <a line of class 1 of <EGQ of order [ 3, 3 ] and basepoint 0>>,

<a line of class 1 of <EGQ of order [ 3, 3 ] and basepoint 0>>,
<a line of class 1 of <EGQ of order [ 3, 3 ] and basepoint 0>>,
<a line of class 1 of <EGQ of order [ 3, 3 ] and basepoint 0>> ]

gap> pts1 := List(Points(m));
[ <a point of class 2 of <EGQ of order [ 3, 3 ] and basepoint 0>>,

<a point of class 2 of <EGQ of order [ 3, 3 ] and basepoint 0>>,
<a point of class 2 of <EGQ of order [ 3, 3 ] and basepoint 0>>,
<a point of class 3 of <EGQ of order [ 3, 3 ] and basepoint 0>> ]

gap> pts2 := List(Points(l));
[ <a point of class 1 of <EGQ of order [ 3, 3 ] and basepoint 0>>,

<a point of class 1 of <EGQ of order [ 3, 3 ] and basepoint 0>>,
<a point of class 1 of <EGQ of order [ 3, 3 ] and basepoint 0>>,
<a point of class 2 of <EGQ of order [ 3, 3 ] and basepoint 0>> ]

gap> List(pts2,x->UnderlyingObject(x));
[ f2^2, f1*f2^2, f1^2*f2^2, RightCoset(Group( [ f1, f2^2*f3 ] ),f3^2) ]
gap> UnderlyingObject(q);
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0

12.6.6 Elation group and natural action on elements

. ElationGroup(egq) (attribute)

. OnKantorFamily(g, el) (function)

. CollineationAction(g) (attribute)

The attribute ElationGroup is naturally set upon creation of an elation generalised quadrangle
from a Kantor family. The elements of the elation group act "naturally" on the elements of the elation
generalised quadrangle. This natural action is implemented in the action function OnKantorFamily.
When g is the elation group of an elation generalised quadrangle constructed from a Kantor family,
the attribute CollineationAction will return the action function OnKantorFamily. The action
function makes use of generic GAP operations possible, as is demonstrated in the example.

Example
gap> g := ElementaryAbelianGroup(27);
<pc group of size 27 with 3 generators>
gap> flist1 := [ Group(g.1), Group(g.2), Group(g.3), Group(g.1*g.2*g.3) ];;
gap> flist2 := [ Group([g.1, g.2^2*g.3]), Group([g.2, g.1^2*g.3 ]),
> Group([g.3, g.1^2*g.2]), Group([g.1^2*g.2, g.1^2*g.3 ]) ];;
gap> egq := EGQByKantorFamily(g, flist1, flist2);
<EGQ of order [ 3, 3 ] and basepoint 0>
gap> group := ElationGroup(egq);
<pc group of size 27 with 3 generators>
gap> CollineationAction(group) = OnKantorFamily;
true
gap> l := ObjectToElement(egq,RightCoset(flist1[1],One(g)));
<a line of class 1 of <EGQ of order [ 3, 3 ] and basepoint 0>>
gap> stab := Stabilizer(group,l,OnKantorFamily);
Group([ f1 ])
gap> pts := List(Points(egq));
[ <a point of class 1 of <EGQ of order [ 3, 3 ] and basepoint 0>>,

<a point of class 1 of <EGQ of order [ 3, 3 ] and basepoint 0>>,
<a point of class 1 of <EGQ of order [ 3, 3 ] and basepoint 0>>,
<a point of class 1 of <EGQ of order [ 3, 3 ] and basepoint 0>>,
<a point of class 1 of <EGQ of order [ 3, 3 ] and basepoint 0>>,
<a point of class 1 of <EGQ of order [ 3, 3 ] and basepoint 0>>,
<a point of class 1 of <EGQ of order [ 3, 3 ] and basepoint 0>>,
<a point of class 1 of <EGQ of order [ 3, 3 ] and basepoint 0>>,
<a point of class 1 of <EGQ of order [ 3, 3 ] and basepoint 0>>,
<a point of class 1 of <EGQ of order [ 3, 3 ] and basepoint 0>>,
<a point of class 1 of <EGQ of order [ 3, 3 ] and basepoint 0>>,
<a point of class 1 of <EGQ of order [ 3, 3 ] and basepoint 0>>,
<a point of class 1 of <EGQ of order [ 3, 3 ] and basepoint 0>>,
<a point of class 1 of <EGQ of order [ 3, 3 ] and basepoint 0>>,
<a point of class 1 of <EGQ of order [ 3, 3 ] and basepoint 0>>,
<a point of class 1 of <EGQ of order [ 3, 3 ] and basepoint 0>>,
<a point of class 1 of <EGQ of order [ 3, 3 ] and basepoint 0>>,
<a point of class 1 of <EGQ of order [ 3, 3 ] and basepoint 0>>,
<a point of class 1 of <EGQ of order [ 3, 3 ] and basepoint 0>>,
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<a point of class 1 of <EGQ of order [ 3, 3 ] and basepoint 0>>,
<a point of class 1 of <EGQ of order [ 3, 3 ] and basepoint 0>>,
<a point of class 1 of <EGQ of order [ 3, 3 ] and basepoint 0>>,
<a point of class 1 of <EGQ of order [ 3, 3 ] and basepoint 0>>,
<a point of class 1 of <EGQ of order [ 3, 3 ] and basepoint 0>>,
<a point of class 1 of <EGQ of order [ 3, 3 ] and basepoint 0>>,
<a point of class 1 of <EGQ of order [ 3, 3 ] and basepoint 0>>,
<a point of class 1 of <EGQ of order [ 3, 3 ] and basepoint 0>>,
<a point of class 2 of <EGQ of order [ 3, 3 ] and basepoint 0>>,
<a point of class 2 of <EGQ of order [ 3, 3 ] and basepoint 0>>,
<a point of class 2 of <EGQ of order [ 3, 3 ] and basepoint 0>>,
<a point of class 2 of <EGQ of order [ 3, 3 ] and basepoint 0>>,
<a point of class 2 of <EGQ of order [ 3, 3 ] and basepoint 0>>,
<a point of class 2 of <EGQ of order [ 3, 3 ] and basepoint 0>>,
<a point of class 2 of <EGQ of order [ 3, 3 ] and basepoint 0>>,
<a point of class 2 of <EGQ of order [ 3, 3 ] and basepoint 0>>,
<a point of class 2 of <EGQ of order [ 3, 3 ] and basepoint 0>>,
<a point of class 2 of <EGQ of order [ 3, 3 ] and basepoint 0>>,
<a point of class 2 of <EGQ of order [ 3, 3 ] and basepoint 0>>,
<a point of class 2 of <EGQ of order [ 3, 3 ] and basepoint 0>>,
<a point of class 3 of <EGQ of order [ 3, 3 ] and basepoint 0>> ]

gap> Orbits(group,pts,OnKantorFamily);
[ [ <a point of class 1 of <EGQ of order [ 3, 3 ] and basepoint 0>>,

<a point of class 1 of <EGQ of order [ 3, 3 ] and basepoint 0>>,
<a point of class 1 of <EGQ of order [ 3, 3 ] and basepoint 0>>,
<a point of class 1 of <EGQ of order [ 3, 3 ] and basepoint 0>>,
<a point of class 1 of <EGQ of order [ 3, 3 ] and basepoint 0>>,
<a point of class 1 of <EGQ of order [ 3, 3 ] and basepoint 0>>,
<a point of class 1 of <EGQ of order [ 3, 3 ] and basepoint 0>>,
<a point of class 1 of <EGQ of order [ 3, 3 ] and basepoint 0>>,
<a point of class 1 of <EGQ of order [ 3, 3 ] and basepoint 0>>,
<a point of class 1 of <EGQ of order [ 3, 3 ] and basepoint 0>>,
<a point of class 1 of <EGQ of order [ 3, 3 ] and basepoint 0>>,
<a point of class 1 of <EGQ of order [ 3, 3 ] and basepoint 0>>,
<a point of class 1 of <EGQ of order [ 3, 3 ] and basepoint 0>>,
<a point of class 1 of <EGQ of order [ 3, 3 ] and basepoint 0>>,
<a point of class 1 of <EGQ of order [ 3, 3 ] and basepoint 0>>,
<a point of class 1 of <EGQ of order [ 3, 3 ] and basepoint 0>>,
<a point of class 1 of <EGQ of order [ 3, 3 ] and basepoint 0>>,
<a point of class 1 of <EGQ of order [ 3, 3 ] and basepoint 0>>,
<a point of class 1 of <EGQ of order [ 3, 3 ] and basepoint 0>>,
<a point of class 1 of <EGQ of order [ 3, 3 ] and basepoint 0>>,
<a point of class 1 of <EGQ of order [ 3, 3 ] and basepoint 0>>,
<a point of class 1 of <EGQ of order [ 3, 3 ] and basepoint 0>>,
<a point of class 1 of <EGQ of order [ 3, 3 ] and basepoint 0>>,
<a point of class 1 of <EGQ of order [ 3, 3 ] and basepoint 0>>,
<a point of class 1 of <EGQ of order [ 3, 3 ] and basepoint 0>>,
<a point of class 1 of <EGQ of order [ 3, 3 ] and basepoint 0>>,
<a point of class 1 of <EGQ of order [ 3, 3 ] and basepoint 0>> ],

[ <a point of class 2 of <EGQ of order [ 3, 3 ] and basepoint 0>>,
<a point of class 2 of <EGQ of order [ 3, 3 ] and basepoint 0>>,
<a point of class 2 of <EGQ of order [ 3, 3 ] and basepoint 0>> ],

[ <a point of class 2 of <EGQ of order [ 3, 3 ] and basepoint 0>>,
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<a point of class 2 of <EGQ of order [ 3, 3 ] and basepoint 0>>,
<a point of class 2 of <EGQ of order [ 3, 3 ] and basepoint 0>> ],

[ <a point of class 2 of <EGQ of order [ 3, 3 ] and basepoint 0>>,
<a point of class 2 of <EGQ of order [ 3, 3 ] and basepoint 0>>,
<a point of class 2 of <EGQ of order [ 3, 3 ] and basepoint 0>> ],

[ <a point of class 2 of <EGQ of order [ 3, 3 ] and basepoint 0>>,
<a point of class 2 of <EGQ of order [ 3, 3 ] and basepoint 0>>,
<a point of class 2 of <EGQ of order [ 3, 3 ] and basepoint 0>> ],

[ <a point of class 3 of <EGQ of order [ 3, 3 ] and basepoint 0>> ] ]
gap> lines := List(Lines(egq));
[ <a line of class 1 of <EGQ of order [ 3, 3 ] and basepoint 0>>,

<a line of class 1 of <EGQ of order [ 3, 3 ] and basepoint 0>>,
<a line of class 1 of <EGQ of order [ 3, 3 ] and basepoint 0>>,
<a line of class 1 of <EGQ of order [ 3, 3 ] and basepoint 0>>,
<a line of class 1 of <EGQ of order [ 3, 3 ] and basepoint 0>>,
<a line of class 1 of <EGQ of order [ 3, 3 ] and basepoint 0>>,
<a line of class 1 of <EGQ of order [ 3, 3 ] and basepoint 0>>,
<a line of class 1 of <EGQ of order [ 3, 3 ] and basepoint 0>>,
<a line of class 1 of <EGQ of order [ 3, 3 ] and basepoint 0>>,
<a line of class 1 of <EGQ of order [ 3, 3 ] and basepoint 0>>,
<a line of class 1 of <EGQ of order [ 3, 3 ] and basepoint 0>>,
<a line of class 1 of <EGQ of order [ 3, 3 ] and basepoint 0>>,
<a line of class 1 of <EGQ of order [ 3, 3 ] and basepoint 0>>,
<a line of class 1 of <EGQ of order [ 3, 3 ] and basepoint 0>>,
<a line of class 1 of <EGQ of order [ 3, 3 ] and basepoint 0>>,
<a line of class 1 of <EGQ of order [ 3, 3 ] and basepoint 0>>,
<a line of class 1 of <EGQ of order [ 3, 3 ] and basepoint 0>>,
<a line of class 1 of <EGQ of order [ 3, 3 ] and basepoint 0>>,
<a line of class 1 of <EGQ of order [ 3, 3 ] and basepoint 0>>,
<a line of class 1 of <EGQ of order [ 3, 3 ] and basepoint 0>>,
<a line of class 1 of <EGQ of order [ 3, 3 ] and basepoint 0>>,
<a line of class 1 of <EGQ of order [ 3, 3 ] and basepoint 0>>,
<a line of class 1 of <EGQ of order [ 3, 3 ] and basepoint 0>>,
<a line of class 1 of <EGQ of order [ 3, 3 ] and basepoint 0>>,
<a line of class 1 of <EGQ of order [ 3, 3 ] and basepoint 0>>,
<a line of class 1 of <EGQ of order [ 3, 3 ] and basepoint 0>>,
<a line of class 1 of <EGQ of order [ 3, 3 ] and basepoint 0>>,
<a line of class 1 of <EGQ of order [ 3, 3 ] and basepoint 0>>,
<a line of class 1 of <EGQ of order [ 3, 3 ] and basepoint 0>>,
<a line of class 1 of <EGQ of order [ 3, 3 ] and basepoint 0>>,
<a line of class 1 of <EGQ of order [ 3, 3 ] and basepoint 0>>,
<a line of class 1 of <EGQ of order [ 3, 3 ] and basepoint 0>>,
<a line of class 1 of <EGQ of order [ 3, 3 ] and basepoint 0>>,
<a line of class 1 of <EGQ of order [ 3, 3 ] and basepoint 0>>,
<a line of class 1 of <EGQ of order [ 3, 3 ] and basepoint 0>>,
<a line of class 1 of <EGQ of order [ 3, 3 ] and basepoint 0>>,
<a line of class 2 of <EGQ of order [ 3, 3 ] and basepoint 0>>,
<a line of class 2 of <EGQ of order [ 3, 3 ] and basepoint 0>>,
<a line of class 2 of <EGQ of order [ 3, 3 ] and basepoint 0>>,
<a line of class 2 of <EGQ of order [ 3, 3 ] and basepoint 0>> ]

gap> Orbits(group,lines,OnKantorFamily);
[ [ <a line of class 1 of <EGQ of order [ 3, 3 ] and basepoint 0>>,

<a line of class 1 of <EGQ of order [ 3, 3 ] and basepoint 0>>,
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<a line of class 1 of <EGQ of order [ 3, 3 ] and basepoint 0>>,
<a line of class 1 of <EGQ of order [ 3, 3 ] and basepoint 0>>,
<a line of class 1 of <EGQ of order [ 3, 3 ] and basepoint 0>>,
<a line of class 1 of <EGQ of order [ 3, 3 ] and basepoint 0>>,
<a line of class 1 of <EGQ of order [ 3, 3 ] and basepoint 0>>,
<a line of class 1 of <EGQ of order [ 3, 3 ] and basepoint 0>>,
<a line of class 1 of <EGQ of order [ 3, 3 ] and basepoint 0>> ],

[ <a line of class 1 of <EGQ of order [ 3, 3 ] and basepoint 0>>,
<a line of class 1 of <EGQ of order [ 3, 3 ] and basepoint 0>>,
<a line of class 1 of <EGQ of order [ 3, 3 ] and basepoint 0>>,
<a line of class 1 of <EGQ of order [ 3, 3 ] and basepoint 0>>,
<a line of class 1 of <EGQ of order [ 3, 3 ] and basepoint 0>>,
<a line of class 1 of <EGQ of order [ 3, 3 ] and basepoint 0>>,
<a line of class 1 of <EGQ of order [ 3, 3 ] and basepoint 0>>,
<a line of class 1 of <EGQ of order [ 3, 3 ] and basepoint 0>>,
<a line of class 1 of <EGQ of order [ 3, 3 ] and basepoint 0>> ],

[ <a line of class 1 of <EGQ of order [ 3, 3 ] and basepoint 0>>,
<a line of class 1 of <EGQ of order [ 3, 3 ] and basepoint 0>>,
<a line of class 1 of <EGQ of order [ 3, 3 ] and basepoint 0>>,
<a line of class 1 of <EGQ of order [ 3, 3 ] and basepoint 0>>,
<a line of class 1 of <EGQ of order [ 3, 3 ] and basepoint 0>>,
<a line of class 1 of <EGQ of order [ 3, 3 ] and basepoint 0>>,
<a line of class 1 of <EGQ of order [ 3, 3 ] and basepoint 0>>,
<a line of class 1 of <EGQ of order [ 3, 3 ] and basepoint 0>>,
<a line of class 1 of <EGQ of order [ 3, 3 ] and basepoint 0>> ],

[ <a line of class 1 of <EGQ of order [ 3, 3 ] and basepoint 0>>,
<a line of class 1 of <EGQ of order [ 3, 3 ] and basepoint 0>>,
<a line of class 1 of <EGQ of order [ 3, 3 ] and basepoint 0>>,
<a line of class 1 of <EGQ of order [ 3, 3 ] and basepoint 0>>,
<a line of class 1 of <EGQ of order [ 3, 3 ] and basepoint 0>>,
<a line of class 1 of <EGQ of order [ 3, 3 ] and basepoint 0>>,
<a line of class 1 of <EGQ of order [ 3, 3 ] and basepoint 0>>,
<a line of class 1 of <EGQ of order [ 3, 3 ] and basepoint 0>>,
<a line of class 1 of <EGQ of order [ 3, 3 ] and basepoint 0>> ],

[ <a line of class 2 of <EGQ of order [ 3, 3 ] and basepoint 0>> ],
[ <a line of class 2 of <EGQ of order [ 3, 3 ] and basepoint 0>> ],
[ <a line of class 2 of <EGQ of order [ 3, 3 ] and basepoint 0>> ],
[ <a line of class 2 of <EGQ of order [ 3, 3 ] and basepoint 0>> ] ]

12.6.7 Kantor families, q-clans, and elation generalised quadrangles

Let C = {Ai : i = 1 . . .q} be a set of q distinct upper triangle 2×2 matrices over the finite field GF(q).
Then C is called a q-clan if Ar−At is anistropic for r 6= t.

Define G = {(α,c,β ) : α,β ∈ GF(q)2,c ∈ GF(q)} , and define the binary operator × as
(α,c,β )× (α ′,c′,β ′) = (α +α ′,c+ c′+β ·α ′T ,β +β ′). Then G,× is a group with center Z(G) =
{(0,c,0) : c ∈ GF(q)}. Consider a q-clan C = {Ai : i = 1 . . .q}, define Ki = Ai +AT

i . Now define the
following subgroups of G

A(i) = {(α,αAt ,αKt) : α ∈ GF(q)2, i = 1 . . .q} and A(∞) = 0,0,γ) : γ ∈ GF(q)2} , and
A∗(i) = {(α, ,

¯
αKt) : α ∈GF(q)2,b ∈GF(q), i = 1 . . .q} and A∗(∞) = {(0,b,γ) : γ ∈GF(q)2,b ∈

GF(q)}
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Define J = {A(i) : i = 1 . . .q}∪{A(∞)} and J∗ = {A∗(i) : i = 1 . . .q}∪{A∗(∞)}
A combination of results of Payne and Kantor yield the famous theorem that (J,J^*) is a Kantor

family in G if and only if C is a q-clan. FinInG provides functionality to construct q-clans and to
construct the corresponding Kantor family. As such, elation generalised quadrangles can directly
constructed from q-clans.

12.6.8 qClan

. qClan(list, f) (operation)

Returns: a q-clan.
Given a list list of 2× matrices over the field f , it is checked if the matrices in the list satisfy

the condition to constitute a q-clan over f . If so, the q-clan is returned.

12.6.9 Particular q-clans

. LinearqClan(q) (operation)

. FisherThasWalkerKantorBettenqClan(q) (operation)

. KantorMonomialqClan(q) (operation)

. KantorKnuthqClan(q) (operation)

. FisherqClan(q) (operation)

Returns: a q-clan
Some famous q-clans are built in. We refer to ... for more information on these.

12.6.10 KantorFamilyByqClan

. KantorFamilyByqClan(clan) (operation)

Returns: A Kantor family.
The Kantor family constructed from a q-clan will be a matrix group together with the correspond-

ing collections J and J^* .

12.6.11 EGQByqClan

. EGQByqClan(clan) (operation)

Returns: An elation generalised quadrangle constructed from a q-clan.
Given a q-clan clan , the operation KantorFamilyByqClan will be used to construct the Kantor

family from clan , followed by the construction of the elation generalised quadrangle using the oper-
ation EGQByKantorFamily. The first example shows also the use of qClan, and shows that a linear
q-clan yields a classical generalised quadrangle.

Example
gap> f := GF(3);
GF(3)
gap> id := IdentityMat(2, f);;
gap> list := List( f, t -> t * id );;
gap> clan := qClan(list,f);
<q-clan over GF(3)>
gap> egq := EGQByqClan(clan);
#I Computed Kantor family. Now computing EGQ...
<EGQ of order [ 9, 3 ] and basepoint 0>
gap> incgraph := IncidenceGraph(egq);;
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#I Computing incidence graph of generalised polygon...
#I Using elation of the collineation group...
gap> group := AutomorphismGroup(incgraph);
<permutation group with 6 generators>
gap> Order(group);
26127360
gap> Order(CollineationGroup(HermitianPolarSpace(3,9)));
26127360
gap> clan := KantorKnuthqClan(9);
<q-clan over GF(3^2)>
gap> egq := EGQByqClan(clan);
#I Computed Kantor family. Now computing EGQ...
<EGQ of order [ 81, 9 ] and basepoint 0>
gap> clan := FisherThasWalkerKantorBettenqClan(11);
<q-clan over GF(11)>

12.6.12 BLT-sets, flocks, q-clans, and elation generalised quadrangles

A flock is a partition of the points of a quadratic cone in PG(3,q) minus its vertex into conics. Each
conic is determined by a plane, and each plane is determined uniquely by a triple of elements of the
field GF(q). So a flock is determined by q such triples. Remarkably, as was shown by J.A. Thas, the
conditions for these triples to constitute a flock, are exactly the same conditions for these triples to
constitute q upper triangle matrices making a q-clan over GF(q). Hence, q-clans and flocks, and thus
flocks and elation generalised quadrangles, are equivalent objects.

The quadratic cone can be embedded as a hyperplane section into the parabolic quadric Q(4,q).
L. Bader, G. Lunardon and J.A. Thas observed that a set of q points of Q(4,q) can be constructed
from the q planes determining the flock, and this set of points satisfies certain geometric conditions.
Such a set is called a BLT-set. Dually, a BLT-set corresponds to a set of lines of W (3,q). Furthermore,
from this BLT-set of lines, it is possible to construct directly an elation generalised quadrangle from
carefully selecting points and lines from the symplectic space W (5,q). This construction is called the
Knarr construction.

Consider the symplectic polar space W (5,q) and choose a point P ∈W (5,q). Its tangent space is
a 4-dimensional space F . Embed W (3,q) in a solid of F not on the point p, and let L be the set of
BLT lines. Each line spans with p a plane of W (5,q), call these q planes the BLT-planes. Now we can
define the points an lines of the elation generalised quadrangle as follows.

Points of type (i) are the points of W (5,q)\F , points of type (ii) are the lines of each BLT-plane
not on p and the unique point of type (iii) is the point p. Lines of type (a) are the planes of W (5,q)
meeting a BLT-plane in a line. Note that no plane of W (5,q) meeting two BLT planes in a line can
exist. Lines of type (b) are the BLT-planes. Incidence is the natural incidence (so the incidence
inherited) from the polar space W (5,q), and this geometry is a elation generalised quadrangle with
base-point p and of order (q2,q).

FinInG provides functions to construct elation generalised quadrangles using this model from
BLT-sets, and provides a function to compute a BLT set from a q-clan directly. The advantage of
constructing a elation generalised from elements of Lie geometries is the availability of the underlying
projective groups and their action on elements of Lie geometries.
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12.6.13 IsEGQByBLTSet

. IsEGQByBLTSet (Category)

IsEGQByBLTSet is a subcategory of IsElationGQ. It contains all elations generalised quadran-
gles that are constructed from a BLT set.

12.6.14 BLTSetByqClan

. BLTSetByqClan(clan) (operation)

Returns: A BLT-set.
The BLT-set is a set of points of the parabolic quadric in PG(4,q) with particular equation 2X1x5+

2X2X4 +w(q+1)/2 = 0, where w is a primitive element of the underlying field of clan .
Example

gap> clan := KantorKnuthqClan(9);
<q-clan over GF(3^2)>
gap> blt := BLTSetByqClan(clan);
[ <a point in Q(4, 9): -x_1*x_5-x_2*x_4+Z(3^2)^5*x_3^2=0>,

<a point in Q(4, 9): -x_1*x_5-x_2*x_4+Z(3^2)^5*x_3^2=0>,
<a point in Q(4, 9): -x_1*x_5-x_2*x_4+Z(3^2)^5*x_3^2=0>,
<a point in Q(4, 9): -x_1*x_5-x_2*x_4+Z(3^2)^5*x_3^2=0>,
<a point in Q(4, 9): -x_1*x_5-x_2*x_4+Z(3^2)^5*x_3^2=0>,
<a point in Q(4, 9): -x_1*x_5-x_2*x_4+Z(3^2)^5*x_3^2=0>,
<a point in Q(4, 9): -x_1*x_5-x_2*x_4+Z(3^2)^5*x_3^2=0>,
<a point in Q(4, 9): -x_1*x_5-x_2*x_4+Z(3^2)^5*x_3^2=0>,
<a point in Q(4, 9): -x_1*x_5-x_2*x_4+Z(3^2)^5*x_3^2=0>,
<a point in Q(4, 9): -x_1*x_5-x_2*x_4+Z(3^2)^5*x_3^2=0> ]

gap> clan := FisherThasWalkerKantorBettenqClan(11);
<q-clan over GF(11)>
gap> blt := BLTSetByqClan(clan);
[ <a point in Q(4, 11): Z(11)*x_1*x_5+Z(11)*x_2*x_4+Z(11)^6*x_3^2=0>,

<a point in Q(4, 11): Z(11)*x_1*x_5+Z(11)*x_2*x_4+Z(11)^6*x_3^2=0>,
<a point in Q(4, 11): Z(11)*x_1*x_5+Z(11)*x_2*x_4+Z(11)^6*x_3^2=0>,
<a point in Q(4, 11): Z(11)*x_1*x_5+Z(11)*x_2*x_4+Z(11)^6*x_3^2=0>,
<a point in Q(4, 11): Z(11)*x_1*x_5+Z(11)*x_2*x_4+Z(11)^6*x_3^2=0>,
<a point in Q(4, 11): Z(11)*x_1*x_5+Z(11)*x_2*x_4+Z(11)^6*x_3^2=0>,
<a point in Q(4, 11): Z(11)*x_1*x_5+Z(11)*x_2*x_4+Z(11)^6*x_3^2=0>,
<a point in Q(4, 11): Z(11)*x_1*x_5+Z(11)*x_2*x_4+Z(11)^6*x_3^2=0>,
<a point in Q(4, 11): Z(11)*x_1*x_5+Z(11)*x_2*x_4+Z(11)^6*x_3^2=0>,
<a point in Q(4, 11): Z(11)*x_1*x_5+Z(11)*x_2*x_4+Z(11)^6*x_3^2=0>,
<a point in Q(4, 11): Z(11)*x_1*x_5+Z(11)*x_2*x_4+Z(11)^6*x_3^2=0>,
<a point in Q(4, 11): Z(11)*x_1*x_5+Z(11)*x_2*x_4+Z(11)^6*x_3^2=0> ]

12.6.15 EGQByBLTSet

. EGQByBLTSet(blt) (operation)

Returns: An elation generalised quadrangle.
blt is a BLT-set, this operation returns an elation generalised quadrangle constructed as described

above consisting of elements of W (5,q). Notice in the example that computing the full collineation
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group of the GQ constructed directly from the q-clan (hence a group coset geometry) is substantially
slower than computing the full collineation group of the GQ constructed from the BLT-set.

Example
gap> clan := LinearqClan(3);
<q-clan over GF(3)>
gap> bltset := BLTSetByqClan( clan);
[ <a point in Q(4, 3): -x_1*x_5-x_2*x_4+x_3^2=0>,

<a point in Q(4, 3): -x_1*x_5-x_2*x_4+x_3^2=0>,
<a point in Q(4, 3): -x_1*x_5-x_2*x_4+x_3^2=0>,
<a point in Q(4, 3): -x_1*x_5-x_2*x_4+x_3^2=0> ]

gap> egq := EGQByBLTSet( bltset );
#I Now embedding dual BLT-set into W(5,q)...
#I Computing elation group...
<EGQ of order [ 9, 3 ] and basepoint in W(5, 3 ) >
gap> p := BasePointOfEGQ(egq);
<a point in <EGQ of order [ 9, 3 ] and basepoint in W(5, 3 ) >>
gap> UnderlyingObject(p);
<a point in W(5, 3)>
gap> l := Random(Lines(egq));
<a line in <EGQ of order [ 9, 3 ] and basepoint in W(5, 3 ) >>
gap> UnderlyingObject(l);
<a plane in W(5, 3)>
gap> group := ElationGroup(egq);
<projective collineation group with 5 generators>
gap> Order(group);
243
gap> CollineationGroup(egq);
#I Using elation group to enumerate elements
#I Using elation group to enumerate elements
#I Computing incidence graph of generalised polygon...
#I Using elation of the collineation group...
#I Using elation group to enumerate elements
<permutation group of size 26127360 with 7 generators>
gap> time;
147
gap> egq := EGQByqClan(clan);
#I Computed Kantor family. Now computing EGQ...
<EGQ of order [ 9, 3 ] and basepoint 0>
gap> CollineationGroup(egq);
#I Computing incidence graph of generalised polygon...
#I Using elation of the collineation group...
<permutation group of size 26127360 with 6 generators>
gap> time;
1139

12.6.16 DefiningPlanesOfEGQByBLTSet

. DefiningPlanesOfEGQByBLTSet(egq) (attribute)

For an elation generalised quadrangle in the category IsEGQByBLTSet (constructed from a BLT-
set), the planes of the polar space W (5,q), as described in the introduction, determine the generalised
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quadrangle completely. This attribute returns these q planes of W (5,q).
Example

gap> clan := KantorKnuthqClan(9);
<q-clan over GF(3^2)>
gap> blt := BLTSetByqClan(clan);
[ <a point in Q(4, 9): -x_1*x_5-x_2*x_4+Z(3^2)^5*x_3^2=0>,

<a point in Q(4, 9): -x_1*x_5-x_2*x_4+Z(3^2)^5*x_3^2=0>,
<a point in Q(4, 9): -x_1*x_5-x_2*x_4+Z(3^2)^5*x_3^2=0>,
<a point in Q(4, 9): -x_1*x_5-x_2*x_4+Z(3^2)^5*x_3^2=0>,
<a point in Q(4, 9): -x_1*x_5-x_2*x_4+Z(3^2)^5*x_3^2=0>,
<a point in Q(4, 9): -x_1*x_5-x_2*x_4+Z(3^2)^5*x_3^2=0>,
<a point in Q(4, 9): -x_1*x_5-x_2*x_4+Z(3^2)^5*x_3^2=0>,
<a point in Q(4, 9): -x_1*x_5-x_2*x_4+Z(3^2)^5*x_3^2=0>,
<a point in Q(4, 9): -x_1*x_5-x_2*x_4+Z(3^2)^5*x_3^2=0>,
<a point in Q(4, 9): -x_1*x_5-x_2*x_4+Z(3^2)^5*x_3^2=0> ]

gap> egq := EGQByBLTSet(blt);
#I Now embedding dual BLT-set into W(5,q)...
#I Computing elation group...
<EGQ of order [ 81, 9 ] and basepoint in W(5, 9 ) >
gap> DefiningPlanesOfEGQByBLTSet(egq);
[ <a plane in W(5, 9)>, <a plane in W(5, 9)>, <a plane in W(5, 9)>,

<a plane in W(5, 9)>, <a plane in W(5, 9)>, <a plane in W(5, 9)>,
<a plane in W(5, 9)>, <a plane in W(5, 9)>, <a plane in W(5, 9)>,
<a plane in W(5, 9)> ]

12.6.17 Representation of elements and underlying objects

. ObjectToElement(egq, t, obj) (operation)

. ObjectToElement(egq, obj) (operation)

. UnderlyingObject(el) (operation)

The underlying objects of the elements of an elation generalised quadrangle in the category
IsEGQByBLTSet are elements of the polar space W (5,q) in its standard representation. These ele-
ments can be used as underlying object to construct elements of egq . The example also demonstrates
the use of DistanceBetweenElements.

Example
gap> clan := FisherThasWalkerKantorBettenqClan(11);
<q-clan over GF(11)>
gap> blt := BLTSetByqClan(clan);
[ <a point in Q(4, 11): Z(11)*x_1*x_5+Z(11)*x_2*x_4+Z(11)^6*x_3^2=0>,

<a point in Q(4, 11): Z(11)*x_1*x_5+Z(11)*x_2*x_4+Z(11)^6*x_3^2=0>,
<a point in Q(4, 11): Z(11)*x_1*x_5+Z(11)*x_2*x_4+Z(11)^6*x_3^2=0>,
<a point in Q(4, 11): Z(11)*x_1*x_5+Z(11)*x_2*x_4+Z(11)^6*x_3^2=0>,
<a point in Q(4, 11): Z(11)*x_1*x_5+Z(11)*x_2*x_4+Z(11)^6*x_3^2=0>,
<a point in Q(4, 11): Z(11)*x_1*x_5+Z(11)*x_2*x_4+Z(11)^6*x_3^2=0>,
<a point in Q(4, 11): Z(11)*x_1*x_5+Z(11)*x_2*x_4+Z(11)^6*x_3^2=0>,
<a point in Q(4, 11): Z(11)*x_1*x_5+Z(11)*x_2*x_4+Z(11)^6*x_3^2=0>,
<a point in Q(4, 11): Z(11)*x_1*x_5+Z(11)*x_2*x_4+Z(11)^6*x_3^2=0>,
<a point in Q(4, 11): Z(11)*x_1*x_5+Z(11)*x_2*x_4+Z(11)^6*x_3^2=0>,
<a point in Q(4, 11): Z(11)*x_1*x_5+Z(11)*x_2*x_4+Z(11)^6*x_3^2=0>,
<a point in Q(4, 11): Z(11)*x_1*x_5+Z(11)*x_2*x_4+Z(11)^6*x_3^2=0> ]
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gap> egq := EGQByBLTSet(blt);
#I Now embedding dual BLT-set into W(5,q)...
#I Computing elation group...
<EGQ of order [ 121, 11 ] and basepoint in W(5, 11 ) >
gap> planes := DefiningPlanesOfEGQByBLTSet(egq);
[ <a plane in W(5, 11)>, <a plane in W(5, 11)>, <a plane in W(5, 11)>,

<a plane in W(5, 11)>, <a plane in W(5, 11)>, <a plane in W(5, 11)>,
<a plane in W(5, 11)>, <a plane in W(5, 11)>, <a plane in W(5, 11)>,
<a plane in W(5, 11)>, <a plane in W(5, 11)>, <a plane in W(5, 11)> ]

gap> p := BasePointOfEGQ(egq);
<a point in <EGQ of order [ 121, 11 ] and basepoint in W(5, 11 ) >>
gap> up := UnderlyingObject(p);
<a point in W(5, 11)>
gap> ps := SymplecticSpace(5,11);
W(5, 11)
gap> uq := VectorSpaceToElement(ps,[1,1,0,0,0,0]*Z(11)^0);
<a point in W(5, 11)>
gap> q := ObjectToElement(egq,1,uq);
<a point in <EGQ of order [ 121, 11 ] and basepoint in W(5, 11 ) >>
gap> DistanceBetweenElements(p,q);
4
gap> l := ObjectToElement(egq,2,planes[1]);
<a line in <EGQ of order [ 121, 11 ] and basepoint in W(5, 11 ) >>
gap> DistanceBetweenElements(p,l);
1
gap> DistanceBetweenElements(q,l);
3
gap> um := VectorSpaceToElement(ps,[[1,0,0,0,1,1],[0,1,0,9,1,0],[0,0,1,9,9,9]]*Z(11)^0);
<a plane in W(5, 11)>
gap> m := ObjectToElement(egq,2,um);
<a line in <EGQ of order [ 121, 11 ] and basepoint in W(5, 11 ) >>
gap> DistanceBetweenElements(p,m);
3
gap> DistanceBetweenElements(q,m);
3
gap> DistanceBetweenElements(l,m);
2

12.6.18 CollineationSubgroup

. CollineationSubgroup(egq) (attribute)

For an elation generalised quadrangle in the category IsEGQByBLTSet (constructed from a BLT
set), the planes of the polar space W (5,q), as described in the introduction, determine the generalised
quadrangle completely. The setwise stabiliser of these planes in the collineation group of W (5,q) is a
subgroup of the completely collineation group of the elation generalised quadrangle, and can be com-
puted much faster than the complete collineation group. This attribute returns this setwise stabiliser.
The returned group is equipped with the CollineationACtion attribute. If CollineationSubgroup
is computed, this group will be used instead of the elation group to compute the incidence graph.
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Example
gap> clan := FisherThasWalkerKantorBettenqClan(5);
<q-clan over GF(5)>
gap> blt := BLTSetByqClan(clan);
[ <a point in Q(4, 5): Z(5)*x_1*x_5+Z(5)*x_2*x_4+Z(5)^3*x_3^2=0>,

<a point in Q(4, 5): Z(5)*x_1*x_5+Z(5)*x_2*x_4+Z(5)^3*x_3^2=0>,
<a point in Q(4, 5): Z(5)*x_1*x_5+Z(5)*x_2*x_4+Z(5)^3*x_3^2=0>,
<a point in Q(4, 5): Z(5)*x_1*x_5+Z(5)*x_2*x_4+Z(5)^3*x_3^2=0>,
<a point in Q(4, 5): Z(5)*x_1*x_5+Z(5)*x_2*x_4+Z(5)^3*x_3^2=0>,
<a point in Q(4, 5): Z(5)*x_1*x_5+Z(5)*x_2*x_4+Z(5)^3*x_3^2=0> ]

gap> egq := EGQByBLTSet(blt);
#I Now embedding dual BLT-set into W(5,q)...
#I Computing elation group...
<EGQ of order [ 25, 5 ] and basepoint in W(5, 5 ) >
gap> coll := CollineationSubgroup(egq);
#I Computing adjusted stabilizer chain...
<projective collineation group with 13 generators>
gap> Order(coll);
9000000
gap> act := CollineationAction(coll);
function( el, x ) ... end
gap> orbs := Orbits(coll,Points(egq),act);;
#I Using elation group to enumerate elements
gap> List(orbs,x->Length(x));
[ 1, 3125, 150 ]
gap> el := ElationGroup(egq);
<projective collineation group with 5 generators>
gap> orbs := Orbits(el,Points(egq),act);;
#I Using elation group to enumerate elements
gap> List(orbs,x->Length(x));
[ 1, 3125, 25, 25, 25, 25, 25, 25 ]



Chapter 13

Coset Geometries and Diagrams

This part of FinInG depends on GRAPE.

13.1 Coset Geometries

Suppose we have an incidence geometry Γ (as defined in chapter 3), together with a group G of
automorphisms of Γ such that G is transitive on the set of chambers of Γ (also defined in chapter 3).
This implies that G is also transitive on the set of all elements of any chosen type i. If we consider
a chamber {c1,c2, ...,cn} such that ci is of type i, we can look at the stabilizer Gi of ci in G. The
subgroups Gi are called parabolic subgroups of Γ. For a type i, transitivity of G on the elements of
type i gives a correspondence between the cosets of the stabilizer Gi and the elements of type i in Γ.
Two elements of Γ are incident if and only if the corresponding cosets have a nonempty intersection.

We now use the above observation to define an incidence structure from a group G together with
a set of subgroups {G1,G2, ...,Gn}. The type set is {1,2, ...,n}. By definition the elements of type
i are the (right) cosets of the subgroup Gi. Two cosets are incident if and only if their intersection
is not empty. This is an incidence structure which is not necessarily a geometry (see Chapter 3 for
definitions). In order to check whether a coset incidence structure is indeed a geometry you can use the
command IsFlagTransitiveGeometry which (in case it returns true) guarantees that the argument
is a geometry.

13.1.1 IsCosetGeometry

. IsCosetGeometry (Category)

This category is a subcategory of IsIncidenceGeometry, and contains all coset geometries.

13.1.2 CosetGeometry

. CosetGeometry(G, l) (operation)

Returns: the coset incidence structure defined by the list l of subgroups of the group G .
G must be a group and l is a list of subgroups of G . The subgroups in l will be the parabolic

subgroups of the coset incidence structure whose rank equals the length of l .
Example

gap> g:=SymmetricGroup(5);
Sym( [ 1 .. 5 ] )

237
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gap> g1:=Stabilizer(g,[1,2],OnSets);
Group([ (4,5), (3,5), (1,2)(4,5) ])
gap> g2:=Stabilizer(g,[1,2,3],OnSets);
Group([ (4,5), (2,3), (1,2,3) ])
gap> cg:=CosetGeometry(g,[g1,g2]);
CosetGeometry( SymmetricGroup( [ 1 .. 5 ] ) )
gap> p:=Random(ElementsOfIncidenceStructure(cg,1));
<element of type 1 of CosetGeometry( SymmetricGroup( [ 1 .. 5 ] ) )>
gap> q:=Random(ElementsOfIncidenceStructure(cg,2));
<element of type 2 of CosetGeometry( SymmetricGroup( [ 1 .. 5 ] ) )>
gap> IsIncident(p,q);
false
gap> IsIncident(p,p);
true
gap> ParabolicSubgroups(cg);
[ Group([ (4,5), (3,5), (1,2)(4,5) ]), Group([ (4,5), (2,3), (1,2,3) ]) ]
gap> Rank(cg) = Size(last);
true
gap> BorelSubgroup(cg);
Group([ (1,2), (4,5) ])
gap> AmbientGroup(cg);
Sym( [ 1 .. 5 ] )

13.1.3 IsIncident

. IsIncident(ele1, ele2) (operation)

Returns: true if and only if ele1 and ele2 are incident
ele1 and ele2 must be two elements in the same coset geometry.

13.1.4 ParabolicSubgroups

. ParabolicSubgroups(cg) (operation)

Returns: the list of parabolic subgroups defining the coset geometry cg

13.1.5 AmbientGroup

. AmbientGroup(cg) (operation)

Returns: the group used to define the coset geometry cg
cg must be a coset geometry.

13.1.6 Borelsubgroup

. Borelsubgroup(cg) (operation)

Returns: the Borel subgroup of de geometry cg
The Borel subgroup is equal to the stabilizer of a chamber. It corresponds to the intersection of all

parabolic subgroups.
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13.1.7 RandomElement

. RandomElement(cg) (operation)

Returns: a random element of cg
cg must be a coset geometry.

13.1.8 RandomFlag

. RandomFlag(cg) (operation)

Returns: a random flag of cg
cg must be a coset geometry.

13.1.9 RandomChamber

. RandomChamber(cg) (operation)

Returns: a random chamber of cg
cg must be a coset geometry.

Example
gap> g:=SymmetricGroup(5);
Sym( [ 1 .. 5 ] )
gap> g1:=Stabilizer(g,[1,2],OnSets);
Group([ (4,5), (3,5), (1,2)(4,5) ])
gap> g2:=Stabilizer(g,[[1,2],[3,4]],OnSetsSets);
Group([ (1,2), (3,4), (1,3)(2,4) ])
gap> cg:=CosetGeometry(g,[g1,g2]);
CosetGeometry( SymmetricGroup( [ 1 .. 5 ] ) )
gap> RandomElement(cg);
<element of type 1 of CosetGeometry( SymmetricGroup( [ 1 .. 5 ] ) )>
gap> Display(last);
RightCoset(Group( [ (4,5), (3,5), (1,2)(4,5) ] ),(1,4,2,5,3))
gap> RandomFlag(cg);
<Flag of coset geometry < CosetGeometry( SymmetricGroup( [ 1 .. 5 ] ) ,
[ Group( [ (4,5), (3,5), (1,2)(4,5) ] ),

Group( [ (1,2), (3,4), (1,3)(2,4) ] ) ] ) >>
gap> flg:=RandomFlag(cg);
<Flag of coset geometry < CosetGeometry( SymmetricGroup( [ 1 .. 5 ] ) ,
[ Group( [ (4,5), (3,5), (1,2)(4,5) ] ),

Group( [ (1,2), (3,4), (1,3)(2,4) ] ) ] ) >>
gap> Type(flg);
[ 1 ]
gap> flg2:=RandomFlag(cg);
<Flag of coset geometry < CosetGeometry( SymmetricGroup( [ 1 .. 5 ] ) ,
[ Group( [ (4,5), (3,5), (1,2)(4,5) ] ),

Group( [ (1,2), (3,4), (1,3)(2,4) ] ) ] ) >>
gap> Type(flg2);
[ 2 ]
gap> IsChamberOfIncidenceStructure(flg2);
false
gap> IsChamberOfIncidenceStructure(flg);
false
gap> Display(flg2);
Flag of coset geometry CosetGeometry( SymmetricGroup( [ 1 .. 5 ] ) ,
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[ Group( [ (4,5), (3,5), (1,2)(4,5) ] ),
Group( [ (1,2), (3,4), (1,3)(2,4) ] ) ] ) with elements

[ RightCoset(Group( [ (1,2), (3,4), (1,3)(2,4) ] ),(2,3,5)) ]
gap> cham:=RandomChamber(cg);
<Flag of coset geometry < CosetGeometry( SymmetricGroup( [ 1 .. 5 ] ) ,
[ Group( [ (4,5), (3,5), (1,2)(4,5) ] ),

Group( [ (1,2), (3,4), (1,3)(2,4) ] ) ] ) >>
gap> IsChamberOfIncidenceStructure(cham);
true
gap> ElementsOfFlag(cham);
[ <element of type 1 of CosetGeometry( SymmetricGroup( [ 1 .. 5 ] ) )>,

<element of type 2 of CosetGeometry( SymmetricGroup( [ 1 .. 5 ] ) )> ]
gap> IsIncident(last[1],last[2]);
true

13.1.10 IsFlagTransitiveGeometry

. IsFlagTransitiveGeometry(cg) (operation)

Returns: true if and only if the group G defining cg acts flag-transitively.
cg must be a coset geometry.
The group G used to define cg acts naturally on the elements of cg by right translation: a coset

Gig is mapped to Gi(gx) by an element x∈G. This test can be quite time consuming. You can bind the
attribute IsFlagTransitiveGeometry if you are sure the coset geometry is indeed flag-transitive.

Example
gap> g:=SymmetricGroup(4);
Sym( [ 1 .. 4 ] )
gap> g1:=Subgroup(g,[(1,2,3)]);
Group([ (1,2,3) ])
gap> g2:=Subgroup(g,[(1,4)]);
Group([ (1,4) ])
gap> g3:=Subgroup(g,[(1,2,3,4)]);
Group([ (1,2,3,4) ])
gap> cg:=CosetGeometry(g,[g1,g2,g3]);
CosetGeometry( SymmetricGroup( [ 1 .. 4 ] ) )
gap> IsFlagTransitiveGeometry(cg);
false
gap> cg2:=CosetGeometry(g,[g1,g2]);
CosetGeometry( SymmetricGroup( [ 1 .. 4 ] ) )
gap> IsFlagTransitiveGeometry(cg2);
true

13.1.11 OnCosetGeometryElement

. OnCosetGeometryElement(ele, g) (operation)

Returns: the image of the CosetGeometryElement ele under the action of g
The group element g must belong to AmbientGroup(AmbientGeometry(ele)).
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13.1.12 \^

. \^(ele, g) (operation)

Returns: an element of a coset geometry
This is an operation which returns the image of ele , an element of a coset incidence structure,

under g , an element of AmbientGroup(AmbientGeometry(ele)).

13.1.13 \^

. \^(flg, g) (operation)

Returns: a flag of a coset geometry
This is an operation which returns the image of flg , a flag of a coset incidence structure, under

g , an element of AmbientGroup(AmbientGeometry(flg)).

13.1.14 IsFirmGeometry

. IsFirmGeometry(cg) (operation)

Returns: true if and only if cg is firm.
An incidence geometry is said to be firm if every nonmaximal flag is contained in at least two

chambers. cg must be a coset geometry.

13.1.15 IsThickGeometry

. IsThickGeometry(cg) (operation)

Returns: true if and only if cg is thick.
An incidence geometry is said to be thick if every nonmaximal flag is contained in at least three

chambers. cg must be a coset geometry.

13.1.16 IsThinGeometry

. IsThinGeometry(cg) (operation)

Returns: true if and only if cg is thin.
An incidence geometry is said to be thin if every rank one residue contains exactly 2 elements.

This means that every comaximal flag is contained in exactly 2 chambers. cg must be a coset geome-
try.

Example
gap> g:=SymmetricGroup(8);;
gap> pabs:=[];;
gap> pabs[1]:=Stabilizer(g,1);; pabs[2]:=Stabilizer(g,2);;
gap> pabs[3]:=Stabilizer(g,3);;
gap> pabs[4]:=Stabilizer(g,[1,2,3,4],OnSets);;
gap> pabs[5]:=Stabilizer(g,[1,2,3,4,5],OnSets);;
gap> pabs[6]:=Stabilizer(g,6);; pabs[7]:=Stabilizer(g,7);;
gap> cg:=CosetGeometry(g,pabs);
CosetGeometry( SymmetricGroup( [ 1 .. 8 ] ) )
gap> IsFirmGeometry(cg);
true
gap> IsThinGeometry(cg);
true
gap> IsThickGeometry(cg);
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false
gap> truncation:=CosetGeometry(g,pabs{[1..5]});
CosetGeometry( SymmetricGroup( [ 1 .. 8 ] ) )
gap> IsFirmGeometry(truncation);
true
gap> IsThinGeometry(truncation);
false
gap> IsThickGeometry(truncation);
false
gap> truncation2:=CosetGeometry(g,pabs{[4,5]});
CosetGeometry( SymmetricGroup( [ 1 .. 8 ] ) )
gap> IsFirmGeometry(truncation2);
true
gap> IsThinGeometry(truncation2);
false
gap> IsThickGeometry(truncation2);
true

13.1.17 IsConnected

. IsConnected(cg) (operation)

Returns: true if and only if cg is connected.
A geometry is connected if and only if its incidence graph is connected. cg must be a coset

geometry.

13.1.18 IsResiduallyConnected

. IsResiduallyConnected(cg) (operation)

Returns: true if and only if cg is residually connected.
A geometry is residually connected if the incidence graphs of all its residues of rank at least 2 are

connected. cg must be a coset geometry.
This test is quite time consuming. You can bind the attribute IsResiduallyConnected if you

are sure the coset geometry is indeed residually connected.
Example

gap> ps:=HyperbolicQuadric(7,2);
Q+(7, 2)
gap> g:=IsometryGroup(ps);;
gap> reps:=RepresentativesOfElements(ps);
[ <a point in Q+(7, 2)>, <a line in Q+(7, 2)>, <a plane in Q+(7, 2)>,

<a solid in Q+(7, 2)> ]
gap> solids:=Orbit(g,reps[4]);;
gap> ps:=HyperbolicQuadric(7,2);
Q+(7, 2)
gap> g:=IsometryGroup(ps);;
gap> reps:=RepresentativesOfElements(ps);
[ <a point in Q+(7, 2)>, <a line in Q+(7, 2)>, <a plane in Q+(7, 2)>,

<a solid in Q+(7, 2)> ]
gap> h:=DerivedSubgroup(g);; # to get greek and latin solids
gap> orbs:=FiningOrbits(h,Solids(ps));;
50%..100%..gap> List(orbs, Size);
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[ 135, 135 ]
gap> Filtered(orbs[2], s -> ProjectiveDimension(Meet(orbs[1][1],s))=2); # to
[ <a solid in Q+(7, 2)>, <a solid in Q+(7, 2)>, <a solid in Q+(7, 2)>,

<a solid in Q+(7, 2)>, <a solid in Q+(7, 2)>, <a solid in Q+(7, 2)>,
<a solid in Q+(7, 2)>, <a solid in Q+(7, 2)>, <a solid in Q+(7, 2)>,
<a solid in Q+(7, 2)>, <a solid in Q+(7, 2)>, <a solid in Q+(7, 2)>,
<a solid in Q+(7, 2)>, <a solid in Q+(7, 2)>, <a solid in Q+(7, 2)> ]

gap> #find a latin incident with the greek which is orbs[1][1]
gap> # Now we have a chamber
gap> goodreps:=[reps[1],reps[2],orbs[1][1],last[1]];
[ <a point in Q+(7, 2)>, <a line in Q+(7, 2)>, <a solid in Q+(7, 2)>,

<a solid in Q+(7, 2)> ]
gap> pabs:=List(goodreps, r -> FiningStabiliser(h,r));
[ <projective collineation group of size 1290240 with 2 generators>,

<projective collineation group of size 110592 with 4 generators>,
<projective collineation group of size 1290240 with 2 generators>,
<projective collineation group of size 1290240 with 4 generators> ]

gap> cos:=CosetGeometry(h,pabs);
CosetGeometry( Group(
[ ProjElWithFrob(NewMatrix(IsCMatRep,GF(2,1),8,[

[ Z(2)^0, Z(2)^0, Z(2)^0, 0*Z(2), 0*Z(2), Z(2)^0, Z(2)^0, Z(2)^0 ],
[ 0*Z(2), Z(2)^0, 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2) ],
[ 0*Z(2), Z(2)^0, Z(2)^0, 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2), Z(2)^0 ],
[ 0*Z(2), 0*Z(2), 0*Z(2), Z(2)^0, Z(2)^0, 0*Z(2), 0*Z(2), 0*Z(2) ],
[ 0*Z(2), Z(2)^0, Z(2)^0, 0*Z(2), 0*Z(2), Z(2)^0, 0*Z(2), Z(2)^0 ],
[ 0*Z(2), Z(2)^0, 0*Z(2), 0*Z(2), Z(2)^0, 0*Z(2), 0*Z(2), 0*Z(2) ],
[ 0*Z(2), Z(2)^0, 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2), Z(2)^0 ],
[ 0*Z(2), 0*Z(2), 0*Z(2), Z(2)^0, 0*Z(2), 0*Z(2), Z(2)^0, 0*Z(2)
],]),IdentityMapping( GF(2) )), ProjElWithFrob(NewMatrix(IsCMatRep,GF(2,

1),8,[[ Z(2)^0, 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2) ],
[ 0*Z(2), Z(2)^0, 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2) ],
[ 0*Z(2), 0*Z(2), Z(2)^0, 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2), Z(2)^0 ],
[ 0*Z(2), 0*Z(2), 0*Z(2), Z(2)^0, Z(2)^0, 0*Z(2), 0*Z(2), 0*Z(2) ],
[ 0*Z(2), 0*Z(2), Z(2)^0, 0*Z(2), 0*Z(2), Z(2)^0, 0*Z(2), Z(2)^0 ],
[ 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2), Z(2)^0, 0*Z(2), 0*Z(2), 0*Z(2) ],
[ 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2), Z(2)^0 ],
[ 0*Z(2), 0*Z(2), 0*Z(2), Z(2)^0, 0*Z(2), 0*Z(2), Z(2)^0, 0*Z(2)
],]),IdentityMapping( GF(2) )), ProjElWithFrob(NewMatrix(IsCMatRep,GF(2,

1),8,[[ Z(2)^0, 0*Z(2), 0*Z(2), 0*Z(2), Z(2)^0, 0*Z(2), 0*Z(2), 0*Z(2) ],
[ 0*Z(2), Z(2)^0, 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2), Z(2)^0, 0*Z(2) ],
[ 0*Z(2), 0*Z(2), Z(2)^0, 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2) ],
[ 0*Z(2), 0*Z(2), 0*Z(2), Z(2)^0, 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2) ],
[ 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2), Z(2)^0, 0*Z(2), 0*Z(2), 0*Z(2) ],
[ 0*Z(2), Z(2)^0, 0*Z(2), 0*Z(2), 0*Z(2), Z(2)^0, 0*Z(2), 0*Z(2) ],
[ 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2), Z(2)^0, 0*Z(2) ],
[ Z(2)^0, 0*Z(2), 0*Z(2), 0*Z(2), Z(2)^0, 0*Z(2), 0*Z(2), Z(2)^0
],]),IdentityMapping( GF(2) )) ] ) )

gap> IsConnected(cos);
true
gap> IsResiduallyConnected(cos);
true
gap> time;
419960
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13.1.19 StandardFlagOfCosetGeometry

. StandardFlagOfCosetGeometry(cg) (operation)

Returns: standard chamber of cg
The standard chamber just consists of all parabolic subgroups (i.e. the trivial cosets of these

subgroups). The object returned is a FlagOfIncidenceStructure. cg must be a coset geometry.

13.1.20 FlagToStandardFlag

. FlagToStandardFlag(cg, fl) (operation)

Returns: element of the defining group of cg which maps fl to the standard chamber of cg .
fl must be a chamber given as a list of cosets of the parabolic subgroups of cg .

Example
gap> L:=SimpleLieAlgebra("D",8,Rationals);
<Lie algebra of dimension 120 over Rationals>
gap> rs:=RootSystem(L);
<root system of rank 8>
gap> w:=WeylGroup(rs);
<matrix group with 8 generators>
gap> gens:=GeneratorsOfGroup(w);;
gap> pabs:=List(gens, g -> Group(Difference(gens, [g])));
[ <matrix group with 7 generators>, <matrix group with 7 generators>,

<matrix group with 7 generators>, <matrix group with 7 generators>,
<matrix group with 7 generators>, <matrix group with 7 generators>,
<matrix group with 7 generators>, <matrix group with 7 generators> ]

gap> g:=Group(gens);
<matrix group with 8 generators>
gap> cg:=CosetGeometry(g,pabs);;
gap> cham:=RandomChamber(cg);; # Time of last command: 23945 ms
gap> FlagToStandardFlag(cg,cham); # Time of last command: 1720 ms
[ [ 0, 0, 0, 0, 1, -1, 0, 0 ], [ 0, 0, 0, 1, 0, -1, 0, 0 ],

[ 0, 0, 0, 1, 0, 0, -1, -1 ], [ 1, -1, 0, 1, 0, 0, -1, -1 ],
[ 0, -1, 0, 1, 0, 0, -1, -1 ], [ 0, -1, 0, 1, 0, 0, 0, -2 ],
[ 0, -1, 1, 0, 0, 0, 0, -1 ], [ 0, -1, 0, 1, 0, 0, 0, -1 ] ]

gap> cham^last = StandardFlagOfCosetGeometry(cg); # Time of last command:1005 ms
true

13.1.21 CanonicalResidueOfFlag

. CanonicalResidueOfFlag(cg, fl) (operation)

Returns: coset geometry isomorphic to residue of fl in cg
cg must be a coset incidence structure and fl must be a flag in that incidence structure. The

returned coset incidence structure for a flag {Gi1gi1 ,Gi2gi2 , . . . ,Gik gik} is the coset incidence struc-
ture defined by the group H := ∩k

j=1Gi j and parabolic subgroups G j ∩H for j not in the type set
{i1, i2, . . . , ik} of fl .
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13.1.22 ResidueOfFlag

. ResidueOfFlag(fl) (operation)

Returns: the residue of fl in AmbientGeometry(fl).
This is a CosetGeometry method for the ResidueOfFlag operation given in Chapter 3. Note

that the related operation CanonicalResidueOfFlag takes two arguments.
Example

gap> pg:=SymplecticSpace(5,2);
W(5, 2)
gap> pi:=Random(Planes(pg));
<a plane in W(5, 2)>
gap> l:=Random(Lines(pi));
<a line in W(5, 2)>
gap> p:=Random(Points(l));
<a point in W(5, 2)>
gap> g:=CollineationGroup(pg);
PGammaSp(6,2)
gap> g1:=Stabilizer(g,p);
<projective collineation group of size 23040 with 3 generators>
gap> g2:=Stabilizer(g,l);
<projective collineation group of size 4608 with 4 generators>
gap> g3:=Stabilizer(g,pi);
<projective collineation group of size 10752 with 3 generators>
gap> cg:=CosetGeometry(g, [g1,g2,g3]);
CosetGeometry( PGammaSp(6,2) )
gap> RandomFlag(cg); # Time of last command: 10745 ms
<Flag of coset geometry < CosetGeometry( PGammaSp(6,2) ,
[

Group(
[ ProjElWithFrob(NewMatrix(IsCMatRep,GF(2,1),6,[

[ Z(2)^0, Z(2)^0, 0*Z(2), 0*Z(2), Z(2)^0, Z(2)^0 ],
[ Z(2)^0, Z(2)^0, 0*Z(2), 0*Z(2), Z(2)^0, 0*Z(2) ],
[ 0*Z(2), 0*Z(2), 0*Z(2), Z(2)^0, 0*Z(2), 0*Z(2) ],
[ 0*Z(2), 0*Z(2), Z(2)^0, 0*Z(2), 0*Z(2), 0*Z(2) ],
[ 0*Z(2), Z(2)^0, 0*Z(2), 0*Z(2), 0*Z(2), Z(2)^0 ],
[ Z(2)^0, Z(2)^0, 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2)
],]),IdentityMapping( GF(2) )),

ProjElWithFrob(NewMatrix(IsCMatRep,GF(2,1),6,[
[ Z(2)^0, Z(2)^0, 0*Z(2), 0*Z(2), 0*Z(2), Z(2)^0 ],
[ Z(2)^0, Z(2)^0, 0*Z(2), Z(2)^0, Z(2)^0, Z(2)^0 ],
[ Z(2)^0, 0*Z(2), Z(2)^0, Z(2)^0, Z(2)^0, Z(2)^0 ],
[ 0*Z(2), 0*Z(2), 0*Z(2), Z(2)^0, 0*Z(2), 0*Z(2) ],
[ Z(2)^0, Z(2)^0, 0*Z(2), Z(2)^0, 0*Z(2), 0*Z(2) ],
[ Z(2)^0, 0*Z(2), 0*Z(2), Z(2)^0, Z(2)^0, 0*Z(2)
],]),IdentityMapping( GF(2) )),

ProjElWithFrob(NewMatrix(IsCMatRep,GF(2,1),6,[
[ Z(2)^0, 0*Z(2), Z(2)^0, 0*Z(2), Z(2)^0, Z(2)^0 ],
[ Z(2)^0, 0*Z(2), 0*Z(2), Z(2)^0, 0*Z(2), 0*Z(2) ],
[ 0*Z(2), 0*Z(2), 0*Z(2), Z(2)^0, Z(2)^0, 0*Z(2) ],
[ 0*Z(2), Z(2)^0, Z(2)^0, Z(2)^0, 0*Z(2), 0*Z(2) ],
[ 0*Z(2), Z(2)^0, Z(2)^0, Z(2)^0, Z(2)^0, Z(2)^0 ],
[ Z(2)^0, 0*Z(2), 0*Z(2), Z(2)^0, Z(2)^0, 0*Z(2)
],]),IdentityMapping( GF(2) )) ] ),
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Group(
[ ProjElWithFrob(NewMatrix(IsCMatRep,GF(2,1),6,[

[ 0*Z(2), Z(2)^0, 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2) ],
[ Z(2)^0, 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2) ],
[ 0*Z(2), 0*Z(2), 0*Z(2), Z(2)^0, 0*Z(2), 0*Z(2) ],
[ 0*Z(2), 0*Z(2), Z(2)^0, 0*Z(2), 0*Z(2), 0*Z(2) ],
[ 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2), Z(2)^0 ],
[ 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2), Z(2)^0, 0*Z(2)
],]),IdentityMapping( GF(2) )),

ProjElWithFrob(NewMatrix(IsCMatRep,GF(2,1),6,[
[ 0*Z(2), Z(2)^0, Z(2)^0, 0*Z(2), 0*Z(2), Z(2)^0 ],
[ 0*Z(2), 0*Z(2), Z(2)^0, Z(2)^0, 0*Z(2), Z(2)^0 ],
[ Z(2)^0, 0*Z(2), Z(2)^0, Z(2)^0, 0*Z(2), 0*Z(2) ],
[ Z(2)^0, Z(2)^0, Z(2)^0, Z(2)^0, 0*Z(2), Z(2)^0 ],
[ Z(2)^0, Z(2)^0, Z(2)^0, 0*Z(2), Z(2)^0, Z(2)^0 ],
[ 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2), Z(2)^0
],]),IdentityMapping( GF(2) )),

ProjElWithFrob(NewMatrix(IsCMatRep,GF(2,1),6,[
[ Z(2)^0, 0*Z(2), 0*Z(2), Z(2)^0, Z(2)^0, Z(2)^0 ],
[ 0*Z(2), Z(2)^0, 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2) ],
[ 0*Z(2), Z(2)^0, 0*Z(2), Z(2)^0, 0*Z(2), Z(2)^0 ],
[ 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2), Z(2)^0, Z(2)^0 ],
[ 0*Z(2), Z(2)^0, Z(2)^0, Z(2)^0, Z(2)^0, Z(2)^0 ],
[ 0*Z(2), Z(2)^0, Z(2)^0, 0*Z(2), Z(2)^0, Z(2)^0
],]),IdentityMapping( GF(2) )),

ProjElWithFrob(NewMatrix(IsCMatRep,GF(2,1),6,[
[ 0*Z(2), Z(2)^0, 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2) ],
[ Z(2)^0, Z(2)^0, Z(2)^0, 0*Z(2), Z(2)^0, Z(2)^0 ],
[ 0*Z(2), Z(2)^0, 0*Z(2), Z(2)^0, 0*Z(2), 0*Z(2) ],
[ 0*Z(2), 0*Z(2), Z(2)^0, Z(2)^0, Z(2)^0, 0*Z(2) ],
[ 0*Z(2), Z(2)^0, 0*Z(2), Z(2)^0, Z(2)^0, Z(2)^0 ],
[ 0*Z(2), Z(2)^0, 0*Z(2), 0*Z(2), Z(2)^0, 0*Z(2)
],]),IdentityMapping( GF(2) )) ] ),

Group(
[ ProjElWithFrob(NewMatrix(IsCMatRep,GF(2,1),6,[

[ 0*Z(2), Z(2)^0, 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2) ],
[ Z(2)^0, 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2) ],
[ 0*Z(2), 0*Z(2), 0*Z(2), Z(2)^0, 0*Z(2), 0*Z(2) ],
[ 0*Z(2), 0*Z(2), Z(2)^0, 0*Z(2), 0*Z(2), 0*Z(2) ],
[ 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2), Z(2)^0 ],
[ 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2), Z(2)^0, 0*Z(2)
],]),IdentityMapping( GF(2) )),

ProjElWithFrob(NewMatrix(IsCMatRep,GF(2,1),6,[
[ Z(2)^0, Z(2)^0, 0*Z(2), Z(2)^0, 0*Z(2), Z(2)^0 ],
[ 0*Z(2), Z(2)^0, 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2) ],
[ 0*Z(2), Z(2)^0, Z(2)^0, 0*Z(2), 0*Z(2), Z(2)^0 ],
[ 0*Z(2), 0*Z(2), 0*Z(2), Z(2)^0, 0*Z(2), 0*Z(2) ],
[ 0*Z(2), Z(2)^0, 0*Z(2), Z(2)^0, Z(2)^0, Z(2)^0 ],
[ 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2), Z(2)^0
],]),IdentityMapping( GF(2) )),

ProjElWithFrob(NewMatrix(IsCMatRep,GF(2,1),6,[
[ 0*Z(2), 0*Z(2), 0*Z(2), Z(2)^0, Z(2)^0, 0*Z(2) ],
[ 0*Z(2), Z(2)^0, Z(2)^0, Z(2)^0, 0*Z(2), 0*Z(2) ],
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[ 0*Z(2), Z(2)^0, Z(2)^0, Z(2)^0, Z(2)^0, Z(2)^0 ],
[ 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2), Z(2)^0, 0*Z(2) ],
[ Z(2)^0, 0*Z(2), 0*Z(2), Z(2)^0, 0*Z(2), 0*Z(2) ],
[ 0*Z(2), Z(2)^0, 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2)
],]),IdentityMapping( GF(2) )) ] ) ] ) >>

gap> Type(last);
[ ]
gap> ResidueOfFlag(last2);
CosetGeometry( PGammaSp(6,2) )
gap> Rank(last);
3
gap> NrElementsOfIncidenceStructure(last2,1);
63
gap> flg:=RandomFlag(cg);;
gap> can:=CanonicalResidueOfFlag(cg,flg);
CosetGeometry( Group( ... ) )
gap> Type(flg);
[ 1, 2 ]
gap> Rank(can);
1
gap> res:=ResidueOfFlag(flg);
CosetGeometry( Group(
[ ProjElWithFrob(NewMatrix(IsCMatRep,GF(2,1),6,[

[ Z(2)^0, 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2) ],
[ Z(2)^0, Z(2)^0, Z(2)^0, 0*Z(2), Z(2)^0, Z(2)^0 ],
[ 0*Z(2), 0*Z(2), Z(2)^0, 0*Z(2), 0*Z(2), 0*Z(2) ],
[ Z(2)^0, 0*Z(2), Z(2)^0, Z(2)^0, Z(2)^0, Z(2)^0 ],
[ Z(2)^0, 0*Z(2), Z(2)^0, 0*Z(2), 0*Z(2), Z(2)^0 ],
[ Z(2)^0, 0*Z(2), Z(2)^0, 0*Z(2), Z(2)^0, 0*Z(2)
],]),IdentityMapping( GF(2) )), ProjElWithFrob(NewMatrix(IsCMatRep,GF(2,

1),6,[[ Z(2)^0, 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2) ],
[ Z(2)^0, Z(2)^0, 0*Z(2), 0*Z(2), Z(2)^0, 0*Z(2) ],
[ 0*Z(2), 0*Z(2), Z(2)^0, 0*Z(2), 0*Z(2), 0*Z(2) ],
[ 0*Z(2), 0*Z(2), 0*Z(2), Z(2)^0, 0*Z(2), 0*Z(2) ],
[ 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2), Z(2)^0, 0*Z(2) ],
[ Z(2)^0, 0*Z(2), 0*Z(2), 0*Z(2), Z(2)^0, Z(2)^0
],]),IdentityMapping( GF(2) )), ProjElWithFrob(NewMatrix(IsCMatRep,GF(2,

1),6,[[ 0*Z(2), Z(2)^0, Z(2)^0, Z(2)^0, Z(2)^0, Z(2)^0 ],
[ 0*Z(2), 0*Z(2), 0*Z(2), Z(2)^0, 0*Z(2), 0*Z(2) ],
[ Z(2)^0, Z(2)^0, 0*Z(2), Z(2)^0, Z(2)^0, Z(2)^0 ],
[ 0*Z(2), Z(2)^0, 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2) ],
[ 0*Z(2), Z(2)^0, 0*Z(2), Z(2)^0, Z(2)^0, 0*Z(2) ],
[ 0*Z(2), Z(2)^0, 0*Z(2), Z(2)^0, 0*Z(2), Z(2)^0
],]),IdentityMapping( GF(2) )), ProjElWithFrob(NewMatrix(IsCMatRep,GF(2,

1),6,[[ Z(2)^0, Z(2)^0, 0*Z(2), Z(2)^0, 0*Z(2), 0*Z(2) ],
[ Z(2)^0, Z(2)^0, Z(2)^0, 0*Z(2), Z(2)^0, Z(2)^0 ],
[ 0*Z(2), Z(2)^0, Z(2)^0, Z(2)^0, 0*Z(2), 0*Z(2) ],
[ Z(2)^0, 0*Z(2), Z(2)^0, Z(2)^0, Z(2)^0, Z(2)^0 ],
[ Z(2)^0, 0*Z(2), Z(2)^0, 0*Z(2), 0*Z(2), Z(2)^0 ],
[ Z(2)^0, 0*Z(2), Z(2)^0, 0*Z(2), Z(2)^0, 0*Z(2)
],]),IdentityMapping( GF(2) )), ProjElWithFrob(NewMatrix(IsCMatRep,GF(2,

1),6,[[ 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2), Z(2)^0, 0*Z(2) ],
[ Z(2)^0, 0*Z(2), 0*Z(2), 0*Z(2), Z(2)^0, Z(2)^0 ],
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[ 0*Z(2), 0*Z(2), Z(2)^0, 0*Z(2), 0*Z(2), 0*Z(2) ],
[ 0*Z(2), 0*Z(2), 0*Z(2), Z(2)^0, 0*Z(2), 0*Z(2) ],
[ Z(2)^0, 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2) ],
[ Z(2)^0, Z(2)^0, 0*Z(2), 0*Z(2), Z(2)^0, 0*Z(2)
],]),IdentityMapping( GF(2) )), ProjElWithFrob(NewMatrix(IsCMatRep,GF(2,

1),6,[[ Z(2)^0, 0*Z(2), Z(2)^0, 0*Z(2), 0*Z(2), Z(2)^0 ],
[ Z(2)^0, 0*Z(2), Z(2)^0, Z(2)^0, 0*Z(2), Z(2)^0 ],
[ 0*Z(2), 0*Z(2), 0*Z(2), Z(2)^0, Z(2)^0, 0*Z(2) ],
[ Z(2)^0, 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2), Z(2)^0 ],
[ Z(2)^0, 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2) ],
[ 0*Z(2), Z(2)^0, 0*Z(2), 0*Z(2), Z(2)^0, 0*Z(2)
],]),IdentityMapping( GF(2) )) ] ) )

gap> IsIsomorphicIncidenceStructureWithNauty(res,can);
#I Using NiceMonomorphism...
#I Using NiceMonomorphism...
true

13.1.23 IncidenceGraph

. IncidenceGraph(cg) (operation)

Returns: incidence graph of cg .
cg must be a coset geometry. The graph returned is a GRAPE object. All GRAPE functionality

can now be used to analyse cg via its incidence graph.

13.1.24 Rk2GeoGonality

. Rk2GeoGonality(cg) (operation)

Returns: the gonality (i.e. half the girth) of the incidence graph of cg .
cg must be a coset geometry of rank 2.

13.1.25 Rk2GeoDiameter

. Rk2GeoDiameter(cg, type) (operation)

Returns: the point (or line) diameter.
cg must be a coset geometry of rank 2. type must be either 1 or 2. This function computes the

point diameter of cg when type is 1 and the line diameter when type is 2.

13.1.26 GeometryOfRank2Residue

. GeometryOfRank2Residue(resi) (operation)

Returns: the geometry of the Rank2Residue object resi .
The rank 2 residues of a geometry are fundamental when dealing with diagrams. Therefore they

are kept in an attribute as (a list of) objects of type Rank2Residue. The present operation just extracts
the residue as a coset geometry from such a Rank2Residue object.
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13.1.27 Rank2Parameters

. Rank2Parameters(cg) (operation)

Returns: a list of length 3.
cg must be a coset geometry of rank 2. This function computes the gonality, point and line

diameter of cg . These appear as a list in the first entry of the returned list. The second entry contains
a list of length 2 with the point order and the total number of points (i.e. elements of type 1) in the
geometry. The last entry contains the line order and the number of lines (i.e. elements of type 2).

The following example illustrates Rank2Parameters. It uses AtlasRep to fetch the second Janko
group, also known as the Hall-Janko group. Beware that AtlasRep needs special write permissions
on some systems. The constructed geometry has gonality 6 and both diameters equal to 8. It is known
as the Cohen-Tits near octagon.

Example
gap> LoadPackage("atlasrep");
true
gap> j2:=AtlasGroup("J2"); #Uses AtlasRep package
<permutation group of size 604800 with 2 generators>
gap> max3:=AtlasSubgroup(j2,3); #member of 3rd ATLAS class of max. subgps
<permutation group of size 1920 with 2 generators>
gap> max4:=AtlasSubgroup(j2,4); #member of 4th ATLAS class of max. subgps
<permutation group of size 1152 with 2 generators>
gap> conj3:=ConjugacyClassSubgroups(j2,max3);;
gap> g1:=First(conj3, c -> Size(Intersection(c,max4))=384);;
gap> g2:=max4;;
gap> cg:=CosetGeometry(j2,[g1,g2]);;
gap> Rank2Parameters(cg);
[ [ 6, 8, 8 ], [ 2, 315 ], [ 4, 525 ] ]

13.2 Automorphisms, Correlations and Isomorphisms

An automorphism of an incidence structure Γ is a permutation of the element set of Γ such that
incidence is preserved and types are fixed (i.e. the type of the image of an element coincides with
the type of that element). One way to compute the (full) automorphism group of Γ is to compute its
incidence graph and then use the available nauty machinery to obtain the group.

13.2.1 AutGroupIncidenceStructureWithNauty

. AutGroupIncidenceStructureWithNauty(cg) (operation)

Returns: permutation group isomorphic to the full automorphism group of cg .
The group is computed with nauty, which is part of GRAPE but has to be

compiled on your system before use. The group returned is a permutation group
acting on the set [1..Sum(TypesOfElementsOfIncidenceStructure(cg), t ->
NrElementsOfIncidenceStructure(cg,t))], which is exactly the vertex set of
IncidenceGraph(cg). At the moment the action of the automorphism group on cg is not
provided but it can be recovered from the knowledge that the vertex set of IncidenceGraph(cg)
first contains all elements of type 1 in cg, then all elements of type 2, etc. or, better still, with the
GRAPE command VertexNames (see example below).
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13.2.2 CorGroupIncidenceStructureWithNauty

. CorGroupIncidenceStructureWithNauty(cg) (operation)

Returns: permutation group isomorphic to the full automorphism group of cg .
The group is computed with nauty, which is part of GRAPE but has to be

compiled on your system before use. The group returned is a permutation group
acting on the set [1..Sum(TypesOfElementsOfIncidenceStructure(cg), t ->
NrElementsOfIncidenceStructure(cg,t))], which is exactly the vertex set of
IncidenceGraph(cg). At the moment the action of the automorphism group on cg is not
provided but it can be recovered from the knowledge that the vertex set of IncidenceGraph(cg)
first contains all elements of type 1 in cg, then all elements of type 2, etc. or with the GRAPE
command VertexNames.

Example
gap> g := PSL(2,11);;
gap> g1 := Group([ (1,2,3)(4,8,12)(5,10,9)(6,11,7),
> (1,2)(3,4)(5,12)(6,11)(7,10)(8,9) ]);;
gap> g2 := Group([ (1,2,7)(3,9,4)(5,11,10)(6,8,12),
> (1,2)(3,4)(5,12)(6,11)(7,10)(8,9) ]);;
gap> g3 := Group([ (1,2,11)(3,8,7)(4,9,5)(6,10,12),
> (1,2)(3,12)(4,11)(5,10)(6,9)(7,8) ]);;
gap> g4 := Group([ (1,2,11)(3,8,7)(4,9,5)(6,10,12),
> (1,2)(3,10)(4,9)(5,8)(6,7)(11,12) ]);;
gap> cg:=CosetGeometry(g,[g1,g2,g3,g4]);
CosetGeometry( Group( [ ( 3,11, 9, 7, 5)( 4,12,10, 8, 6),

( 1, 2, 8)( 3, 7, 9)( 4,10, 5)( 6,12,11) ] ) )
gap> aut:=AutGroupIncidenceStructureWithNauty(cg);
<permutation group with 4 generators>
gap> StructureDescription(aut);
"PSL(2,11)"
gap> cor:=CorGroupIncidenceStructureWithNauty(cg);
<permutation group with 5 generators>
gap> StructureDescription(cor);
"C2 x PSL(2,11)"
gap> incgrph:=IncidenceGraph(cg);;
gap> names:=VertexNames(incgrph);;
gap> g:=Random(aut);
(1,9,7,6,2,3,5,11,4,8,10)(12,13,15,17,14,19,22,16,18,21,20)(23,28,33,25,29,31,
32,26,27,24,30)(34,44,38,41,42,35,43,39,40,36,37)
gap> e:=RandomElement(cg);
<element of type 3 of CosetGeometry( Group(
[ ( 3,11, 9, 7, 5)( 4,12,10, 8, 6), ( 1, 2, 8)( 3, 7, 9)( 4,10, 5)( 6,12,11)
] ) )>

gap> pos:=Position(names, e);
26
gap> names[pos^g];
<element of type 3 of CosetGeometry( Group(
[ ( 3,11, 9, 7, 5)( 4,12,10, 8, 6), ( 1, 2, 8)( 3, 7, 9)( 4,10, 5)( 6,12,11)
] ) )>
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13.2.3 IsIsomorphicIncidenceStructureWithNauty

. IsIsomorphicIncidenceStructureWithNauty(cg1, cg2) (operation)

Returns: true iff cg1 and cg2 are isomorphic.
We use nauty, which is part of GRAPE but has to be compiled on your system before use.

Isomorphism is tested (with nauty) after converting the coset geometries cg1 and cg2 to coloured
graphs.

Example
gap> g:=SymmetricGroup(4); g1:=Subgroup(g,[(1,2,3)]);
Sym( [ 1 .. 4 ] )
Group([ (1,2,3) ])
gap> g2:=Subgroup(g,[(1,4)]); g3:=Subgroup(g,[(1,2,3,4)]);
Group([ (1,4) ])
Group([ (1,2,3,4) ])
gap> cg:=CosetGeometry(g,[g1,g2,g3]);
CosetGeometry( SymmetricGroup( [ 1 .. 4 ] ) )
gap> IsFlagTransitiveGeometry(cg);
false
gap> aut:=AutGroupIncidenceStructureWithNauty(cg);
<permutation group with 4 generators>
gap> Size(aut);
48
gap> Size(g);
24
gap> newg1:=Stabilizer(aut, 1);
Group([ (5,7)(6,8)(10,15)(11,12)(13,16)(14,18)(17,19)(21,25)(23,26), (3,6)
(4,5)(9,18)(10,16)(12,20)(13,17)(15,19)(21,22)(24,26) ])
gap> newg2:=Stabilizer(aut, NrElementsOfIncidenceStructure(cg,1) + 1);
Group([ (5,7)(6,8)(10,15)(11,12)(13,16)(14,18)(17,19)(21,25)(23,26), (1,3)
(2,4)(5,6)(7,8)(10,11)(12,15)(13,16)(14,17)(18,19)(21,25)(22,24)(23,26) ])
gap> newg3:=Stabilizer(aut, NrElementsOfIncidenceStructure(cg,1) +
> NrElementsOfIncidenceStructure(cg,2) + 1);
Group([ (1,3)(2,4)(5,8)(6,7)(10,12)(11,15)(14,19)(17,18)(22,24), (3,8)(4,7)
(9,14)(10,17)(11,20)(13,15)(16,19)(22,25)(23,24) ])
gap> newcg:=CosetGeometry(aut, [newg1, newg2, newg3]);
CosetGeometry( Group(
[ ( 5, 7)( 6, 8)(10,15)(11,12)(13,16)(14,18)(17,19)(21,25)(23,26),

( 3, 6)( 4, 5)( 9,18)(10,16)(12,20)(13,17)(15,19)(21,22)(24,26),
( 1, 2)( 3, 4)( 5, 6)( 7, 8)( 9,20)(10,17)(11,14)(12,18)(13,16)(15,19)

(21,26)(22,24)(23,25), ( 1, 3)( 2, 4)( 5, 6)( 7, 8)(10,11)(12,15)(13,16)
(14,17)(18,19)(21,25)(22,24)(23,26) ] ) )

gap> IsFlagTransitiveGeometry(newcg);
true
gap> IsIsomorphicIncidenceStructureWithNauty(cg, newcg);
true

13.3 Diagrams

The diagram of a flag-transitive incidence geometry is a schematic description of the structure of the
geometry. It is based on the collection of rank 2 residues of the geometry.
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Technically, the diagram is added to a CosetGeometry object as a mutable attribute. Also the list
of rank 2 residues of the geometry is added as an attribute once these have been computed. This is
done with the operations Rank2Residues (to add the attribute) and MakeRank2Residue (to actually
compute the resiudes). These operations are not for everyday use and hence remain undocumented.

Since the geometry is flag-transitive, all chambers are equivalent. Let’s fix a chamber C =
{c1,c2, . . . ,cn} , with ci of type i. For each subset {i, j} of size two in I = {1,2, . . . ,n} we take the
residue of the flag C \{ci,c j} . Flag transitivity ensures that all residues of type {i, j} are isomorphic
to each other. For each such residue, the structure is described by some parameters: the gonality and
the point and line diameters. For each type i, we also define the i-order to be one less than the number
of elements of type i in the residue of a(ny) flag of type I \ {i}. All this information is depicted in a
diagram which is bascically a labelled graph with vertex set I and edges whenever the point diamater,
the line diameter and the gonality are all greater than 2.

13.3.1 DiagramOfGeometry

. DiagramOfGeometry(Gamma) (operation)

Returns: the diagram of the geometry Gamma
Gamma must be a flag-transitive coset geometry.
The flag-transitivity is not tested by this operation because such a test can be time consuming. The

command IsFlagTransitiveGeometry can be used to check flag-transitivity if needed.

13.3.2 GeometryOfDiagram

. GeometryOfDiagram(diag) (operation)

Returns: the geometry of which diag is the diagram
diag must be a diagram object.

13.3.3 DrawDiagram

. DrawDiagram(diag, filename) (operation)

. DrawDiagram(diag, filename, vertexverbosity) (operation)

. DrawDiagram(diag, filename, vertexverbosity, edgeverbosity) (operation)

Returns: does not return anything but writes a file filename .ps
diag must be a diagram. Writes a file filename .ps in the current directory with a picto-

rial version of the diagram. This command uses the graphviz package which is available from
http://www.graphviz.org.

In case graphviz is not available on your system, you will get an friendly error message and a
file filename .dot will be written. You can then compile this file later or ask a friend to help you.
By default the diagram provides for each type i the i-order and the number of elements of type i.
This behaviour can be changed by providing a vertexverbosity level. A value 2 results in no
label under the vertices and a value 1 gives only the i-order. Any other potitive integer value yields
the default behaviour. The default labels for the edges of the diagram use the standard convention
that a [g,d p,dl]-gon with all three parameters equal is labelled only with the number g. Putting
edgeverbosity equal to 2 puts no labels at all. This yields the so called “basic diagram” of the
geometry. With edgeverbosity equal to any integer greater than 2 all labels contain girth and both
diameters.
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We illustrate the diagram feature with Neumaier’s A8-geometry. The affine space of dimension 3
over the field with two elements is denoted by AG(3,2). If we fix a plane Π in PG(3,2), the structure
induced on the 8 points not in Π by the lines and planes of PG(3,2) is isomorphic to AG(3,2). Since
every two points of AG(3,2) define a line, the collinearity graph of AG(3,2) (that is the graph whose
vertices are the points of AG(3,2) and in which two vertices are adjacent whenever they are collinear)
is the complete graph K8 on 8 vertices. Given two copies of the complete graph on 8 vertices, one can
label the vertices of each of them with the numbers from 1 to 8. These labelings are always equivalent
when the two copies are seen as graphs, but not if they are understood as models of the affine space.
The reason is that an affine space has parallel lines and to be affinely equivalent, the labelings must be
such that edges which were parallel in the first labeling remain parallel in the second labeling. In fact
there are 15 affinely nonequivalent ways to label the vertices of K8. The affine space has 14 planes
of 4 points and there are 70 subsets of 4 elements in the vertex set of K8. Each time we label K8,
there are 14 of the 70 sets of 4 elements which become planes of AG(3,2). The remaining 4-subsets
will be called nonplanes for that labeling. A well-known rank 4 geometry discovered by Neumaier
in 1984 can be described using these concepts. This geometry is quite important since its residue of
cotype 1 is the famous A7-geometry which is known to be the only flag-transitive locally classical C3-
geometry which is not a polar space (see Aschbacher1984 for details). The Neumaier geometry can
be constructed as follows. The elements of types 1 and 2 are the vertices and edges of the complete
graph K8, the elements of type 3 are the 4-subsets of the vertex set of K8 and the elements of type 4 are
the 15 nonequivalent labelings of K8. Incidences are mostly the natural ones. A 4-subset is incident
with a labeling of K8 if it is the set of points of a nonplane in the model of AG(3,2) defined by the
labeling.

Example
Alt( [ 1 .. 8 ] )
gap> pabs:= [
> Group([ (2,4,6), (1,3,2)(4,8)(6,7) ]),
> Group([ (1,6,7,8,4), (2,5)(3,4) ]),
> Group([ (3,6)(7,8), (2,4,5), (1,5)(2,4), (2,4)(6,7), (6,8,7),
> (1,2)(4,5), (3,7)(6,8) ]),
> Group([ (1,7,8,4)(2,5,3,6), (1,3)(2,6)(4,8)(5,7), (1,5)(2,4)(3,7)(6,8),
> (1,8)(2,7)(3,4)(5,6), (1,3)(2,6)(4,7)(5,8) ]) ];
[ Group([ (2,4,6), (1,3,2)(4,8)(6,7) ]), Group([ (1,6,7,8,4), (2,5)(3,4) ]),

Group([ (3,6)(7,8), (2,4,5), (1,5)(2,4), (2,4)(6,7), (6,8,7), (1,2)
(4,5), (3,7)(6,8) ]), Group([ (1,7,8,4)(2,5,3,6), (1,3)(2,6)(4,8)
(5,7), (1,5)(2,4)(3,7)(6,8), (1,8)(2,7)(3,4)(5,6), (1,3)(2,6)(4,7)(5,8) ]) ]

gap> cg:=CosetGeometry(g,pabs);
CosetGeometry( AlternatingGroup( [ 1 .. 8 ] ) )
gap> diag:=DiagramOfGeometry(cg);
< Diagram of CosetGeometry( AlternatingGroup( [ 1 .. 8 ] ) ,
[ Group( [ (2,4,6), (1,3,2)(4,8)(6,7) ] ),

Group( [ (1,6,7,8,4), (2,5)(3,4) ] ),
Group( [ (3,6)(7,8), (2,4,5), (1,5)(2,4), (2,4)(6,7), (6,8,7), (1,2)(4,5),

(3,7)(6,8) ] ),
Group( [ (1,7,8,4)(2,5,3,6), (1,3)(2,6)(4,8)(5,7), (1,5)(2,4)(3,7)(6,8),

(1,8)(2,7)(3,4)(5,6), (1,3)(2,6)(4,7)(5,8) ] ) ] ) >
gap> DrawDiagram(diag, "neuma8");
gap> #Exec("gv neuma8.ps");
gap> point:=Random(ElementsOfIncidenceStructure(cg,1));
<element of type 1 of CosetGeometry( AlternatingGroup( [ 1 .. 8 ] ) )>
gap> residue:=ResidueOfFlag(FlagOfIncidenceStructure(cg,[point]));
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CosetGeometry( Group( [ (3,5,7), (1,7)(2,4,3)(5,8) ] ) )
gap> diagc3:=DiagramOfGeometry(residue);
< Diagram of CosetGeometry( Group( [ (3,5,7), (1,7)(2,4,3)(5,8) ] ) ,
[ Group( [ (4,5,8), (1,4,5), (1,7,8), (1,8,4,2,7) ] ),

Group( [ (1,8)(4,7), (2,5,3), (1,7)(2,3), (1,7,8), (1,4)(7,8) ] ),
Group( [ (1,5,4,3)(7,8), (2,4)(5,8) ] ) ] ) >

gap> DrawDiagram(diagc3, "a7geo");
gap> #Exec("gv a7geo.ps");

The produced diagrams are included here: Neumaier’s A8
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The A7 geometry:

2
7

2
35

2
15

3 4

On a UNIX system we can start an external viewer (“gv” or ghostview in this case) from within
GAP with the Exec command.

13.3.4 DrawDiagramWithNeato

. DrawDiagramWithNeato(diag, filename) (operation)

Returns: does not return anything but writes a file filename .ps
diag must be a diagram. Writes a file filename .ps in the current directory with a pictorial

version of the diagram.
This command uses a "spring tension" algorithm to draw the diagram diag with straight edges.

For some diagrams this looks better than the result of DrawDiagram. However this algorithm does not
print the vertex labels.

This command uses the graphviz package which is available from http://www.graphviz.org. In
case graphviz is not available on your system, you will get an friendly error message and a file
filename .dot will be written. You can then compile this file later or ask a friend to help you. An E6
geometry for comparison: on the left hand side we have the output of DrawDiagram and on the right
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hand side we see the result of DrawDiagramWithNeato



Appendix A

The structure of FinInG

A.1 The different components

Loading FinInG shows the following message:
Example

---------------------------------------------------------------------
loading: geometry, liegeometry, group, projectivespace, correlations,
polarspace/morphisms, enumerators, diagram, varieties, affinespace/affinegroup,
gpolygons

The different components are listed and refer to the corresponding filenames. So component refers to
component.gd and component.gi. When When component1/component2 is displayed, Both compo-
nent1.gi and component2.gi depend on the declarations in both component1.gd and component2.gd.
In other cases, component_n is only dependent on its own declarations and the ones before.

A.2 The complete inventory

A.2.1 Declarations
Example

Operations

geometry.gd: operations

O: IncidenceStructure: [IsList, IsFunction, IsFunction, IsList]
O: ResidueOfFlag: [IsFlagOfIncidenceStructure]
O: ElementsOfIncidenceStructure: [IsIncidenceStructure]
O: ElementsOfIncidenceStructure: [IsIncidenceStructure, IsPosInt]
O: ElementsOfIncidenceStructure: [IsIncidenceStructure, IsString]
O: NrElementsOfIncidenceStructure: [IsIncidenceStructure, IsPosInt]
O: NrElementsOfIncidenceStructure: [IsIncidenceStructure, IsString]
O: IncidenceGraph: [IsIncidenceStructure]
O: Points: [IsIncidenceStructure]
O: Lines: [IsIncidenceStructure]
O: Planes: [IsIncidenceStructure]
O: Solids: [IsIncidenceStructure]
O: FlagOfIncidenceStructure: [IsIncidenceStructure, IsElementOfIncidenceStructureCollection]
O: FlagOfIncidenceStructure: [IsIncidenceStructure, IsListandIsEmpty]

258
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O: ChamberOfIncidenceStructure: [IsElementOfIncidenceStructureCollection]
O: ElementsOfFlag: [IsFlagOfIncidenceStructure]
O: IsIncident: [IsElementOfIncidenceStructure, IsElementOfIncidenceStructure]
O: IsIncident: [IsElementOfIncidenceStructure, IsFlagOfIncidenceStructure]
O: IsIncident: [IsFlagOfIncidenceStructure, IsElementOfIncidenceStructure]
O: ShadowOfElement: [IsElementOfIncidenceStructure, IsPosInt]
O: IsCollinear: [IsIncidenceStructure, IsElementOfIncidenceStructure, IsElementOfIncidenceStructure]
O: Span: [IsElementOfIncidenceStructure, IsElementOfIncidenceStructure]
O: Meet: [IsElementOfIncidenceStructure, IsElementOfIncidenceStructure]
O: Type: [IsElementOfIncidenceStructureandIsElementOfIncidenceStructureRep]
O: Type: [IsElementsOfIncidenceStructureandIsElementsOfIncidenceStructureRep]
O: Type: [IsFlagOfIncidenceStructureandIsFlagOfIncidenceStructureRep]
O: Wrap: [IsIncidenceStructure, IsPosInt, IsObject]
O: Unwrap: [IsElementOfIncidenceStructure]
O: ObjectToElement: [IsIncidenceStructure, IsPosInt, IsObject]
O: ObjectToElement: [IsIncidenceStructure, IsObject]
O: UnderlyingObject: [IsElementOfIncidenceStructure]
O: ShadowOfElement: [IsIncidenceStructure, IsElementOfIncidenceStructure, IsPosInt]
O: ShadowOfElement: [IsIncidenceStructure, IsElementOfIncidenceStructure, IsString]
O: ShadowOfFlag: [IsIncidenceStructure, IsFlagOfIncidenceStructure, IsPosInt]
O: ShadowOfFlag: [IsIncidenceStructure, IsFlagOfIncidenceStructure, IsString]
O: ShadowOfFlag: [IsIncidenceStructure, IsList, IsPosInt]
O: ShadowOfFlag: [IsIncidenceStructure, IsList, IsString]
O: ElementsIncidentWithElementOfIncidenceStructure: [IsElementOfIncidenceStructure, IsPosInt]
O: Points: [IsElementOfIncidenceStructure]
O: Lines: [IsElementOfIncidenceStructure]
O: Planes: [IsElementOfIncidenceStructure]
O: Solids: [IsElementOfIncidenceStructure]
O: Hyperplanes: [IsElementOfIncidenceStructure]
O: Points: [IsIncidenceStructure, IsElementOfIncidenceStructure]
O: Lines: [IsIncidenceStructure, IsElementOfIncidenceStructure]
O: Planes: [IsIncidenceStructure, IsElementOfIncidenceStructure]
O: Solids: [IsIncidenceStructure, IsElementOfIncidenceStructure]
O: Hyperplanes: [IsIncidenceStructure, IsElementOfIncidenceStructure]

liegeometry.gd: operations

O: UnderlyingVectorSpace: [IsLieGeometry]
O: UnderlyingVectorSpace: [IsElementOfLieGeometry]
O: UnderlyingVectorSpace: [IsFlagOfLieGeometry]
O: VectorSpaceToElement: [IsLieGeometry, IsRowVector]
O: VectorSpaceToElement: [IsLieGeometry, Is8BitVectorRep]
O: VectorSpaceToElement: [IsLieGeometry, IsPlistRep]
O: VectorSpaceToElement: [IsLieGeometry, Is8BitMatrixRep]
O: VectorSpaceToElement: [IsLieGeometry, IsGF2MatrixRep]
O: VectorSpaceToElement: [IsLieGeometry, IsCVecRep]
O: VectorSpaceToElement: [IsLieGeometry, IsCMatRep]
O: EmptySubspace: [IsLieGeometry]
O: RandomSubspace: [IsVectorSpace, IsInt]
O: IsIncident: [IsEmptySubspace, IsElementOfLieGeometry]
O: IsIncident: [IsElementOfLieGeometry, IsEmptySubspace]
O: IsIncident: [IsEmptySubspace, IsLieGeometry]
O: IsIncident: [IsLieGeometry, IsEmptySubspace]
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O: IsIncident: [IsEmptySubspace, IsEmptySubspace]
O: Span: [IsEmptySubspace, IsElementOfLieGeometry]
O: Span: [IsElementOfLieGeometry, IsEmptySubspace]
O: Span: [IsEmptySubspace, IsLieGeometry]
O: Span: [IsLieGeometry, IsEmptySubspace]
O: Span: [IsEmptySubspace, IsEmptySubspace]
O: Meet: [IsEmptySubspace, IsElementOfLieGeometry]
O: Meet: [IsElementOfLieGeometry, IsEmptySubspace]
O: Meet: [IsEmptySubspace, IsLieGeometry]
O: Meet: [IsLieGeometry, IsEmptySubspace]
O: Meet: [IsEmptySubspace, IsEmptySubspace]
O: ElementToElement: [IsLieGeometry, IsElementOfLieGeometry]
O: ConvertElement: [IsLieGeometry, IsElementOfLieGeometry]
O: ConvertElementNC: [IsLieGeometry, IsElementOfLieGeometry]

group.gd: operations

O: FindBasePointCandidates: [IsGroup, IsRecord, IsInt]
O: FindBasePointCandidates: [IsGroup, IsRecord, IsInt, IsObject]
O: ProjEl: [IsMatrixandIsFFECollColl]
O: ProjEls: [IsList]
O: Projectivity: [IsList, IsField]
O: Projectivity: [IsProjectiveSpace, IsMatrix]
O: ProjElWithFrob: [IsMatrixandIsFFECollColl, IsMapping]
O: ProjElWithFrob: [IsMatrixandIsFFECollColl, IsMapping, IsField]
O: ProjElsWithFrob: [IsList]
O: ProjElsWithFrob: [IsList, IsField]
O: CollineationOfProjectiveSpace: [IsList, IsField]
O: CollineationOfProjectiveSpace: [IsList, IsMapping, IsField]
O: CollineationOfProjectiveSpace: [IsProjectiveSpace, IsMatrix]
O: CollineationOfProjectiveSpace: [IsProjectiveSpace, IsMatrix, IsMapping]
O: Collineation: [IsProjectiveSpace, IsMatrix]
O: Collineation: [IsProjectiveSpace, IsMatrix, IsMapping]
O: ProjectiveSemilinearMap: [IsList, IsMapping, IsField]
O: ProjectivityByImageOfStandardFrameNC: [IsProjectiveSpace, IsList]
O: MatrixOfCollineation: [IsProjGrpElWithFrobandIsProjGrpElWithFrobRep]
O: MatrixOfCollineation: [IsProjGrpElandIsProjGrpElRep]
O: FieldAutomorphism: [IsProjGrpElWithFrobandIsProjGrpElWithFrobRep]
O: ActionOnAllProjPoints: [IsProjectiveGroupWithFrob]
O: SetAsNiceMono: [IsProjectiveGroupWithFrob, IsGroupHomomorphism]
O: CanonicalGramMatrix: [IsString, IsPosInt, IsField]
O: CanonicalQuadraticForm: [IsString, IsPosInt, IsField]
O: SOdesargues: [IsInt, IsPosInt, IsFieldandIsFinite]
O: GOdesargues: [IsInt, IsPosInt, IsFieldandIsFinite]
O: SUdesargues: [IsPosInt, IsFieldandIsFinite]
O: GUdesargues: [IsPosInt, IsFieldandIsFinite]
O: Spdesargues: [IsPosInt, IsFieldandIsFinite]
O: GeneralSymplecticGroup: [IsPosInt, IsFieldandIsFinite]
O: GSpdesargues: [IsPosInt, IsFieldandIsFinite]
O: DeltaOminus: [IsPosInt, IsFieldandIsFinite]
O: DeltaOplus: [IsPosInt, IsFieldandIsFinite]
O: GammaOminus: [IsPosInt, IsFieldandIsFinite]
O: GammaO: [IsPosInt, IsFieldandIsFinite]
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O: GammaOplus: [IsPosInt, IsFieldandIsFinite]
O: GammaU: [IsPosInt, IsFieldandIsFinite]
O: GammaSp: [IsPosInt, IsFieldandIsFinite]

projectivespace.gd: operations

O: ProjectiveSpace: [IsInt, IsField]
O: ProjectiveSpace: [IsInt, IsPosInt]
O: IsIncident: [IsSubspaceOfProjectiveSpace, IsProjectiveSpace]
O: IsIncident: [IsProjectiveSpace, IsSubspaceOfProjectiveSpace]
O: IsIncident: [IsProjectiveSpace, IsProjectiveSpace]
O: Hyperplanes: [IsProjectiveSpace]
O: BaerSublineOnThreePoints: [ IsSubspaceOfProjectiveSpace, IsSubspaceOfProjectiveSpace, IsSubspaceOfProjectiveSpace]
O: BaerSubplaneOnQuadrangle: [ IsSubspaceOfProjectiveSpace, IsSubspaceOfProjectiveSpace, IsSubspaceOfProjectiveSpace, IsSubspaceOfProjectiveSpace ]
O: RandomSubspace: [IsProjectiveSpace, IsInt]
O: RandomSubspace: [IsSubspaceOfProjectiveSpace, IsInt]
O: RandomSubspace: [IsProjectiveSpace]
O: Span: [IsProjectiveSpace, IsSubspaceOfProjectiveSpace]
O: Span: [IsSubspaceOfProjectiveSpace, IsProjectiveSpace]
O: Span: [IsSubspaceOfProjectiveSpace, IsSubspaceOfProjectiveSpace, IsBool]
O: Span: [IsList]
O: Span: [IsList, IsBool]
O: Meet: [IsSubspaceOfProjectiveSpace, IsProjectiveSpace]
O: Meet: [IsProjectiveSpace, IsSubspaceOfProjectiveSpace]
O: Meet: [IsList]
O: DualCoordinatesOfHyperplane: [IsSubspaceOfProjectiveSpace]
O: HyperplaneByDualCoordinates: [IsProjectiveSpace, IsList]
O: ComplementSpace: [IsVectorSpace, IsFFECollColl]
O: ElationOfProjectiveSpace: [IsSubspaceOfProjectiveSpace, IsSubspaceOfProjectiveSpace, IsSubspaceOfProjectiveSpace]
O: ProjectiveElationGroup: [IsSubspaceOfProjectiveSpace, IsSubspaceOfProjectiveSpace]
O: ProjectiveElationGroup: [IsSubspaceOfProjectiveSpace]
O: HomologyOfProjectiveSpace: [IsSubspaceOfProjectiveSpace, IsSubspaceOfProjectiveSpace, IsSubspaceOfProjectiveSpace, IsSubspaceOfProjectiveSpace ]
O: ProjectiveHomologyGroup: [IsSubspaceOfProjectiveSpace, IsSubspaceOfProjectiveSpace]

correlations.gd: operations

O: StandardDualityOfProjectiveSpace: [IsProjectiveSpace]
O: IdentityMappingOfElementsOfProjectiveSpace: [IsProjectiveSpace]
O: ActionOnAllPointsHyperplanes: [IsProjGroupWithFrobWithPSIsom]
O: ProjElWithFrobWithPSIsom: [IsMatrix and IsFFECollColl, IsMapping, IsField]
O: ProjElWithFrobWithPSIsom: [IsMatrix and IsFFECollColl, IsMapping, IsField, IsStandardDualityOfProjectiveSpace]
O: ProjElWithFrobWithPSIsom: [IsMatrix and IsFFECollColl, IsMapping, IsField, IsGeneralMapping and IsSPGeneralMapping and IsOne]
O: ProjElsWithFrobWithPSIsom: [IsList, IsField]
O: SetAsNiceMono: [IsProjGroupWithFrobWithPSIsom, IsGroupHomomorphism]
O: CorrelationOfProjectiveSpace: [IsList, IsField]
O: CorrelationOfProjectiveSpace: [IsList, IsMapping, IsField]
O: CorrelationOfProjectiveSpace: [IsList, IsField, IsStandardDualityOfProjectiveSpace]
O: CorrelationOfProjectiveSpace: [IsList, IsField, IsIdentityMappingOfElementsOfProjectiveSpace]
O: CorrelationOfProjectiveSpace: [IsList, IsMapping, IsField, IsStandardDualityOfProjectiveSpace]
O: CorrelationOfProjectiveSpace: [IsList, IsMapping, IsField, IsIdentityMappingOfElementsOfProjectiveSpace]
O: CorrelationOfProjectiveSpace: [IsProjectiveSpace, IsMatrix, IsMapping, IsStandardDualityOfProjectiveSpace]
O: CorrelationOfProjectiveSpace: [IsProjectiveSpace, IsMatrix, IsMapping, IsIdentityMappingOfElementsOfProjectiveSpace]
O: Correlation: [IsProjectiveSpace, IsMatrix, IsMapping, IsStandardDualityOfProjectiveSpace]
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O: Correlation: [IsProjectiveSpace, IsMatrix, IsMapping, IsIdentityMappingOfElementsOfProjectiveSpace]
O: MatrixOfCorrelation: [IsProjGrpElWithFrobWithPSIsomandIsProjGrpElWithFrobWithPSIsomRep]
O: FieldAutomorphism: [IsProjGrpElWithFrobWithPSIsomandIsProjGrpElWithFrobWithPSIsomRep]
O: ProjectiveSpaceIsomorphism: [IsProjGrpElWithFrobWithPSIsomandIsProjGrpElWithFrobWithPSIsomRep]
O: PolarityOfProjectiveSpaceOp: [IsForm]
O: PolarityOfProjectiveSpace: [IsForm]
O: PolarityOfProjectiveSpace: [IsMatrix, IsFieldandIsFinite]
O: PolarityOfProjectiveSpace: [IsMatrix, IsFrobeniusAutomorphism, IsFieldandIsFinite]
O: HermitianPolarityOfProjectiveSpace: [IsMatrix, IsFieldandIsFinite]
O: PolarityOfProjectiveSpace: [IsClassicalPolarSpace]
O: BaseField: [IsPolarityOfProjectiveSpace]
O: IsAbsoluteElement: [IsElementOfIncidenceStructure, IsPolarityOfProjectiveSpace]
O: GeometryOfAbsolutePoints: [IsPolarityOfProjectiveSpace]
O: AbsolutePoints: [IsPolarityOfProjectiveSpace]
O: PolarSpace: [IsPolarityOfProjectiveSpace]

polarspace.gd: operations

O: PolarSpaceStandard: [IsForm, IsBool]
O: PolarSpace: [IsForm, IsField, IsGroup, IsFunction]
O: PolarSpace: [IsForm]
O: PolarMap: [IsClassicalPolarSpace]
O: TangentSpace: [IsSubspaceOfClassicalPolarSpace]
O: TangentSpace: [IsClassicalPolarSpace, IsSubspaceOfProjectiveSpace]
O: Pole: [IsClassicalPolarSpace, IsSubspaceOfProjectiveSpace]
O: TypeOfSubspace: [IsClassicalPolarSpace, IsSubspaceOfProjectiveSpace]
O: CanonicalOrbitRepresentativeForSubspaces: [IsString, IsPosInt, IsField]
O: RandomSubspace: [IsClassicalPolarSpace, IsPosInt]
O: NumberOfTotallySingularSubspaces: [IsClassicalPolarSpace, IsPosInt]
O: EllipticQuadric: [IsPosInt, IsField]
O: EllipticQuadric: [IsPosInt, IsPosInt]
O: SymplecticSpace: [IsPosInt, IsField]
O: SymplecticSpace: [IsPosInt, IsPosInt]
O: ParabolicQuadric: [IsPosInt, IsField]
O: ParabolicQuadric: [IsPosInt, IsPosInt]
O: HyperbolicQuadric: [IsPosInt, IsField]
O: HyperbolicQuadric: [IsPosInt, IsPosInt]
O: HermitianPolarSpace: [IsPosInt, IsField]
O: HermitianPolarSpace: [IsPosInt, IsPosInt]
O: CanonicalPolarSpace: [IsClassicalPolarSpace]
O: StandardPolarSpace: [IsClassicalPolarSpace]
O: Span: [IsSubspaceOfClassicalPolarSpace, IsSubspaceOfClassicalPolarSpace, IsBool]

morphisms.gd: operations

O: GeometryMorphismByFunction: [ IsAnyElementsOfIncidenceStructure, IsAnyElementsOfIncidenceStructure, IsFunction, IsBool, IsFunction ]
O: GeometryMorphismByFunction: [ IsAnyElementsOfIncidenceStructure, IsAnyElementsOfIncidenceStructure, IsFunction, IsFunction ]
O: GeometryMorphismByFunction: [ IsAnyElementsOfIncidenceStructure, IsAnyElementsOfIncidenceStructure, IsFunction ]
O: IsomorphismPolarSpacesProjectionFromNucleus: [IsClassicalPolarSpace, IsClassicalPolarSpace, IsBool]
O: IsomorphismPolarSpacesNC: [ IsClassicalPolarSpace, IsClassicalPolarSpace, IsBool ]
O: IsomorphismPolarSpacesNC: [ IsClassicalPolarSpace, IsClassicalPolarSpace ]
O: IsomorphismPolarSpaces: [ IsClassicalPolarSpace, IsClassicalPolarSpace, IsBool ]
O: IsomorphismPolarSpaces: [ IsClassicalPolarSpace, IsClassicalPolarSpace ]
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O: NaturalEmbeddingBySubspace: [ IsLieGeometry, IsLieGeometry, IsSubspaceOfProjectiveSpace ]
O: NaturalEmbeddingBySubspaceNC: [ IsLieGeometry, IsLieGeometry, IsSubspaceOfProjectiveSpace ]
O: NaturalProjectionBySubspace: [ IsClassicalPolarSpace, IsSubspaceOfClassicalPolarSpace ]
O: NaturalProjectionBySubspace: [ IsProjectiveSpace, IsSubspaceOfProjectiveSpace ]
O: NaturalProjectionBySubspaceNC: [ IsClassicalPolarSpace, IsSubspaceOfClassicalPolarSpace ]
O: NaturalProjectionBySubspaceNC: [ IsProjectiveSpace, IsSubspaceOfProjectiveSpace ]
O: ShrinkMat: [IsBasis, IsMatrix]
O: ShrinkMat: [IsField, IsField, IsVector]
O: ShrinkVec: [IsField, IsField, IsVector]
O: ShrinkVec: [IsField, IsField, IsVector, IsBasis]
O: BlownUpProjectiveSpace: [IsBasis, IsProjectiveSpace]
O: BlownUpProjectiveSpaceBySubfield: [IsField, IsProjectiveSpace]
O: BlownUpSubspaceOfProjectiveSpace: [IsBasis, IsSubspaceOfProjectiveSpace]
O: BlownUpSubspaceOfProjectiveSpaceBySubfield: [IsField, IsSubspaceOfProjectiveSpace]
O: IsDesarguesianSpreadElement: [IsBasis, IsSubspaceOfProjectiveSpace]
O: IsBlownUpSubspaceOfProjectiveSpace: [IsBasis, IsSubspaceOfProjectiveSpace]
O: NaturalEmbeddingByFieldReduction: [ IsProjectiveSpace, IsField, IsBasis ]
O: NaturalEmbeddingByFieldReduction: [ IsProjectiveSpace, IsField ]
O: NaturalEmbeddingByFieldReduction: [ IsProjectiveSpace, IsProjectiveSpace ]
O: NaturalEmbeddingByFieldReduction: [ IsProjectiveSpace, IsProjectiveSpace, IsBasis ]
O: BilinearFormFieldReduction: [IsBilinearForm, IsField, IsFFE, IsBasis]
O: QuadraticFormFieldReduction: [IsQuadraticForm, IsField, IsFFE, IsBasis]
O: HermitianFormFieldReduction: [IsHermitianForm, IsField, IsFFE, IsBasis]
O: BilinearFormFieldReduction: [IsBilinearForm, IsField, IsFFE]
O: QuadraticFormFieldReduction: [IsQuadraticForm, IsField, IsFFE]
O: HermitianFormFieldReduction: [IsHermitianForm, IsField, IsFFE]
O: NaturalEmbeddingByFieldReduction: [IsClassicalPolarSpace, IsField, IsFFE, IsBasis, IsBool]
O: NaturalEmbeddingByFieldReduction: [IsClassicalPolarSpace, IsField, IsFFE, IsBasis]
O: NaturalEmbeddingByFieldReduction: [IsClassicalPolarSpace, IsField, IsFFE, IsBool]
O: NaturalEmbeddingByFieldReduction: [IsClassicalPolarSpace, IsField, IsFFE]
O: NaturalEmbeddingByFieldReduction: [IsClassicalPolarSpace, IsField, IsBool]
O: NaturalEmbeddingByFieldReduction: [IsClassicalPolarSpace, IsField]
O: NaturalEmbeddingByFieldReduction: [IsClassicalPolarSpace, IsClassicalPolarSpace, IsBool]
O: NaturalEmbeddingByFieldReduction: [IsClassicalPolarSpace, IsClassicalPolarSpace]
O: CanonicalEmbeddingByFieldReduction: [ IsClassicalPolarSpace, IsField, IsBool ]
O: CanonicalEmbeddingByFieldReduction: [ IsClassicalPolarSpace, IsClassicalPolarSpace, IsBool ]
O: NaturalEmbeddingBySubfield: [ IsProjectiveSpace, IsProjectiveSpace ]
O: NaturalEmbeddingBySubfield: [ IsClassicalPolarSpace, IsClassicalPolarSpace, IsBool ]
O: NaturalEmbeddingBySubfield: [ IsClassicalPolarSpace, IsClassicalPolarSpace ]
O: PluckerCoordinates: [IsMatrix]
O: InversePluckerCoordinates: [IsVector]
O: PluckerCoordinates: [IsSubspaceOfProjectiveSpace]
O: KleinCorrespondence: [IsField, IsBool]
O: KleinCorrespondence: [IsField]
O: KleinCorrespondence: [IsPosInt, IsBool]
O: KleinCorrespondence: [IsPosInt]
O: KleinCorrespondence: [IsClassicalPolarSpace, IsBool]
O: KleinCorrespondence: [IsClassicalPolarSpace]
O: KleinCorrespondenceExtended: [IsField, IsBool]
O: KleinCorrespondenceExtended: [IsField]
O: KleinCorrespondenceExtended: [IsPosInt, IsBool]
O: KleinCorrespondenceExtended: [IsPosInt]
O: KleinCorrespondenceExtended: [IsClassicalPolarSpace, IsBool]
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O: KleinCorrespondenceExtended: [IsClassicalPolarSpace]
O: NaturalDualitySymplectic: [IsClassicalGQ, IsClassicalGQ, IsBool, IsBool]
O: NaturalDualityHermitian: [IsClassicalGQ, IsClassicalGQ, IsBool, IsBool]
O: SelfDualitySymplectic: [IsClassicalGQ, IsBool]
O: SelfDualityParabolic: [IsClassicalGQ, IsBool]
O: NaturalDuality: [IsClassicalGQ, IsClassicalGQ, IsBool]
O: NaturalDuality: [IsClassicalGQ, IsClassicalGQ]
O: NaturalDuality: [IsClassicalGQ, IsBool]
O: NaturalDuality: [IsClassicalGQ]
O: SelfDuality: [IsClassicalGQ, IsBool]
O: SelfDuality: [IsClassicalGQ]
O: ProjectiveCompletion: [IsAffineSpace]

enumerators.gd: operations

O: AntonEnumerator: [IsSubspacesOfClassicalPolarSpace]
O: EnumeratorByOrbit: [IsSubspacesOfClassicalPolarSpace]

diagram.gd: operations

O: CosetGeometry: [IsGroup, IsHomogeneousList]
O: ParabolicSubgroups: [IsCosetGeometry]
O: AmbientGroup: [IsCosetGeometry]
O: FlagToStandardFlag: [IsCosetGeometry, IsFlagOfCosetGeometry]
O: ResidueOfFlag: [IsFlagOfCosetGeometry]
O: CanonicalResidueOfFlag: [IsCosetGeometry, IsFlagOfCosetGeometry]
O: RandomElement: [IsCosetGeometry]
O: RandomFlag: [IsCosetGeometry]
O: RandomChamber: [IsCosetGeometry]
O: AutGroupIncidenceStructureWithNauty: [IsCosetGeometry]
O: CorGroupIncidenceStructureWithNauty: [IsCosetGeometry]
O: IsIsomorphicIncidenceStructureWithNauty: [IsCosetGeometry, IsCosetGeometry]
O: Rk2GeoDiameter: [IsCosetGeometry, IsPosInt]
O: Rk2GeoGonality: [IsCosetGeometry]
O: GeometryOfRank2Residue: [IsRank2Residue]
O: GeometryFromLabelledGraph: [IsObjectandIS_REC]
O: Rank2Residues: [IsIncidenceGeometry]
O: MakeRank2Residue: [IsRank2Residue]

varieties.gd: operations

O: AlgebraicVariety: [IsProjectiveSpace, IsList]
O: AlgebraicVariety: [IsAffineSpace, IsList]
O: AlgebraicVariety: [IsProjectiveSpace, IsPolynomialRing, IsList]
O: AlgebraicVariety: [IsAffineSpace, IsPolynomialRing, IsList]
O: PointsOfAlgebraicVariety: [IsAlgebraicVariety]
O: Points: [IsAlgebraicVariety]
O: ProjectiveVariety: [IsProjectiveSpace, IsPolynomialRing, IsList]
O: ProjectiveVariety: [IsProjectiveSpace, IsList]
O: HermitianVariety: [IsPosInt, IsField]
O: HermitianVariety: [IsPosInt, IsPosInt]
O: HermitianVariety: [IsProjectiveSpace, IsPolynomialRing, IsPolynomial]
O: HermitianVariety: [IsProjectiveSpace, IsPolynomial]
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O: QuadraticVariety: [IsPosInt, IsField]
O: QuadraticVariety: [IsPosInt, IsField, IsString]
O: QuadraticVariety: [IsPosInt, IsPosInt]
O: QuadraticVariety: [IsPosInt, IsPosInt, IsString]
O: QuadraticVariety: [IsProjectiveSpace, IsPolynomialRing, IsPolynomial]
O: QuadraticVariety: [IsProjectiveSpace, IsPolynomial]
O: PolarSpace: [IsProjectiveVariety]
O: AffineVariety: [IsAffineSpace, IsPolynomialRing, IsList]
O: AffineVariety: [IsAffineSpace, IsList]
O: SegreMap: [IsHomogeneousList]
O: SegreMap: [IsHomogeneousList, IsField]
O: SegreVariety: [IsHomogeneousList]
O: SegreVariety: [IsHomogeneousList, IsField]
O: PointsOfSegreVariety: [IsSegreVariety]
O: SegreMap: [IsSegreVariety]
O: SegreMap: [IsProjectiveSpace, IsProjectiveSpace]
O: SegreMap: [IsPosInt, IsPosInt, IsField]
O: SegreMap: [IsPosInt, IsPosInt, IsPosInt]
O: SegreVariety: [IsProjectiveSpace, IsProjectiveSpace]
O: SegreVariety: [IsPosInt, IsPosInt, IsField]
O: SegreVariety: [IsPosInt, IsPosInt, IsPosInt]
O: VeroneseMap: [IsProjectiveSpace]
O: VeroneseMap: [IsPosInt, IsField]
O: VeroneseMap: [IsPosInt, IsPosInt]
O: VeroneseVariety: [IsProjectiveSpace]
O: VeroneseVariety: [IsPosInt, IsField]
O: VeroneseVariety: [IsPosInt, IsPosInt]
O: PointsOfVeroneseVariety: [IsVeroneseVariety]
O: VeroneseMap: [IsVeroneseVariety]
O: GrassmannCoordinates: [IsSubspaceOfProjectiveSpace]
O: GrassmannMap: [IsPosInt, IsProjectiveSpace]
O: GrassmannMap: [IsPosInt, IsPosInt, IsPosInt]
O: GrassmannMap: [IsSubspacesOfProjectiveSpace]
O: GrassmannMap: [IsGrassmannVariety]
O: GrassmannVariety: [IsPosInt, IsProjectiveSpace]
O: GrassmannVariety: [IsPosInt, IsPosInt, IsField]
O: GrassmannVariety: [IsPosInt, IsPosInt, IsPosInt]
O: GrassmannVariety: [IsSubspacesOfProjectiveSpace]
O: PointsOfGrassmannVariety: [IsGrassmannVariety]
O: ConicOnFivePoints: [IsHomogeneousListand IsSubspaceOfProjectiveSpaceCollection ]

affinespace.gd: operations

O: VectorSpaceTransversal: [IsVectorSpace, IsFFECollColl]
O: VectorSpaceTransversalElement: [IsVectorSpace, IsFFECollColl, IsVector]
O: AffineSpace: [IsPosInt, IsField]
O: AffineSpace: [IsPosInt, IsPosInt]
O: Hyperplanes: [IsAffineSpace]
O: AffineSubspace: [IsAffineSpace, IsRowVector]
O: AffineSubspace: [IsAffineSpace, IsCVecRep]
O: AffineSubspace: [IsAffineSpace, IsRowVector, IsPlistRep]
O: AffineSubspace: [IsAffineSpace, IsRowVector, Is8BitMatrixRep]
O: AffineSubspace: [IsAffineSpace, IsRowVector, IsGF2MatrixRep]
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O: AffineSubspace: [IsAffineSpace, IsCVecRep, IsCMatRep]
O: RandomSubspace: [IsAffineSpace, IsInt]
O: IsParallel: [IsSubspaceOfAffineSpace, IsSubspaceOfAffineSpace]
O: UnderlyingVectorSpace: [IsAffineSpace]
O: ParallelClass: [IsAffineSpace, IsSubspaceOfAffineSpace]
O: ParallelClass: [IsSubspaceOfAffineSpace]

affinegroup.gd: operations

gpolygons.gd: operations

O: GeneralisedPolygonByBlocks: [IsHomogeneousList]
O: GeneralisedPolygonByIncidenceMatrix: [IsMatrix]
O: GeneralisedPolygonByElements: [IsSet, IsSet, IsFunction]
O: GeneralisedPolygonByElements: [IsSet, IsSet, IsFunction, IsGroup, IsFunction]
O: DistanceBetweenElements: [IsElementOfGeneralisedPolygon, IsElementOfGeneralisedPolygon]
O: DistanceBetweenElements: [IsSubspaceOfProjectiveSpace, IsSubspaceOfProjectiveSpace]
O: BlockDesignOfGeneralisedPolygon: [IsGeneralisedPolygon]
O: SplitCayleyHexagon: [IsFieldandIsFinite]
O: SplitCayleyHexagon: [IsPosInt]
O: SplitCayleyHexagon: [IsClassicalPolarSpace]
O: TwistedTrialityHexagon: [IsFieldandIsFinite]
O: TwistedTrialityHexagon: [IsPosInt]
O: TwistedTrialityHexagon: [IsClassicalPolarSpace]
O: G2fining: [IsPosInt, IsFieldandIsFinite]
O: 3D4fining: [IsFieldandIsFinite]
O: IsKantorFamily: [IsGroup, IsList, IsList]
O: EGQByKantorFamily: [IsGroup, IsList, IsList]
O: Wrap: [IsElationGQByKantorFamily, IsPosInt, IsPosInt, IsObject]
O: IsAnisotropic: [IsFFECollColl, IsFieldandIsFinite]
O: IsqClan: [IsFFECollCollColl, IsFieldandIsFinite]
O: qClan: [IsFFECollCollColl, IsField]
O: LinearqClan: [IsPosInt]
O: FisherThasWalkerKantorBettenqClan: [IsPosInt]
O: KantorMonomialqClan: [IsPosInt]
O: KantorKnuthqClan: [IsPosInt]
O: FisherqClan: [IsPosInt]
O: BLTSetByqClan: [IsqClanObjandIsqClanRep]
O: KantorFamilyByqClan: [IsqClanObjandIsqClanRep]
O: EGQByqClan: [IsqClanObjandIsqClanRep]
O: EGQByBLTSet: [IsList, IsSubspaceOfProjectiveSpace, IsSubspaceOfProjectiveSpace]
O: EGQByBLTSet: [IsList]
O: FlockGQByqClan: [IsqClanObj]

Example
Attributes

geometry.gd: attributes

A: IsChamberOfIncidenceStructure: IsFlagOfIncidenceStructure
A: IsEmptyFlag: IsFlagOfIncidenceStructure
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A: RankAttr: IsIncidenceStructure
A: RankAttr: IsFlagOfIncidenceStructure
A: TypesOfElementsOfIncidenceStructure: IsIncidenceStructure
A: TypesOfElementsOfIncidenceStructurePlural: IsIncidenceStructure
A: CollineationGroup: IsIncidenceStructure
A: CorrelationCollineationGroup: IsIncidenceStructure
A: CollineationAction: IsIncidenceStructure
A: CorrelationAction: IsIncidenceStructure
A: RepresentativesOfElements: IsIncidenceStructure
A: AmbientGeometry: IsIncidenceStructure
A: AmbientGeometry: IsFlagOfIncidenceStructure
A: Size: IsFlagOfIncidenceStructure
A: AmbientGeometry: IsElementOfIncidenceStructureandIsElementOfIncidenceStructureRep
A: AmbientGeometry: IsElementsOfIncidenceStructureandIsElementsOfIncidenceStructureRep
A: AmbientGeometry: IsAllElementsOfIncidenceStructure
A: CollineationAction: IsGroup

liegeometry.gd: attributes

A: AmbientSpace: IsLieGeometry
A: AmbientSpace: IsElementOfLieGeometry
A: ProjectiveDimension: IsLieGeometry
A: ProjectiveDimension: IsElementOfLieGeometry
A: ProjectiveDimension: IsEmptySubspace
A: Dimension: IsLieGeometry

group.gd: attributes

A: Dimension: IsProjectiveGroupWithFrob

projectivespace.gd: attributes

A: ProjectivityGroup: IsProjectiveSpace
A: SpecialProjectivityGroup: IsProjectiveSpace
A: Dimension: IsSubspaceOfProjectiveSpace
A: Dimension: IsEmpty
A: Coordinates: IsSubspaceOfProjectiveSpace
A: CoordinatesOfHyperplane: IsSubspaceOfProjectiveSpace
A: EquationOfHyperplane: IsSubspaceOfProjectiveSpace
A: StandardFrame: IsProjectiveSpace
A: StandardFrame: IsSubspaceOfProjectiveSpace

correlations.gd: attributes

A: Dimension: IsProjGroupWithFrobWithPSIsom
A: GramMatrix: IsPolarityOfProjectiveSpace
A: CompanionAutomorphism: IsPolarityOfProjectiveSpace
A: SesquilinearForm: IsPolarityOfProjectiveSpace

polarspace.gd: attributes

A: SesquilinearForm: IsClassicalPolarSpace
A: QuadraticForm: IsClassicalPolarSpace
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A: AmbientSpace: IsClassicalPolarSpace
A: SimilarityGroup: IsClassicalPolarSpace
A: IsometryGroup: IsClassicalPolarSpace
A: SpecialIsometryGroup: IsClassicalPolarSpace
A: IsomorphismCanonicalPolarSpace: IsClassicalPolarSpace
A: IsomorphismCanonicalPolarSpaceWithIntertwiner: IsClassicalPolarSpace
A: IsCanonicalPolarSpace: IsClassicalPolarSpace
A: PolarSpaceType: IsClassicalPolarSpace
A: CompanionAutomorphism: IsClassicalPolarSpace
A: ClassicalGroupInfo: IsClassicalPolarSpace
A: EquationForPolarSpace: IsClassicalPolarSpace
A: NucleusOfParabolicQuadric: IsClassicalPolarSpace

morphisms.gd: attributes

A: Intertwiner: IsGeometryMorphism

enumerators.gd: attributes

diagram.gd: attributes

A: DiagramOfGeometry: IsIncidenceGeometry
A: IsFlagTransitiveGeometry: IsIncidenceGeometry
A: IsResiduallyConnected: IsIncidenceGeometry
A: IsConnected: IsIncidenceGeometry
A: IsFirmGeometry: IsIncidenceGeometry
A: IsThinGeometry: IsIncidenceGeometry
A: IsThickGeometry: IsIncidenceGeometry
A: BorelSubgroup: IsCosetGeometry
A: StandardFlagOfCosetGeometry: IsCosetGeometry
A: Rank2Parameters: IsCosetGeometry
A: OrderVertex: IsVertexOfDiagram
A: NrElementsVertex: IsVertexOfDiagram
A: StabiliserVertex: IsVertexOfDiagram
A: ResidueLabelForEdge: IsEdgeOfDiagram
A: GirthEdge: IsEdgeOfDiagram
A: PointDiamEdge: IsEdgeOfDiagram
A: LineDiamEdge: IsEdgeOfDiagram
A: ParametersEdge: IsEdgeOfDiagram
A: GeometryOfDiagram: IsDiagram

varieties.gd: attributes

A: DefiningListOfPolynomials: IsAlgebraicVariety
A: AmbientSpace: IsAlgebraicVariety
A: SesquilinearForm: IsHermitianVariety
A: QuadraticForm: IsQuadraticVariety
A: Source: IsGeometryMap
A: Range: IsGeometryMap

affinespace.gd: attributes
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A: Dimension: IsAffineSpace
A: AmbientSpace: IsAffineSpace
A: AmbientSpace: IsSubspaceOfAffineSpace

affinegroup.gd: attributes

A: AffineGroup: IsAffineSpace

gpolygons.gd: attributes

A: Order: IsGeneralisedPolygon
A: IncidenceMatrixOfGeneralisedPolygon: IsGeneralisedPolygon
A: AmbientPolarSpace: IsGeneralisedHexagon
A: ElationGroup: IsElationGQ
A: BasePointOfEGQ: IsElationGQ
A: IsLinearqClan: IsqClanObj
A: DefiningPlanesOfEGQByBLTSet: IsElationGQByBLTSet
A: CollineationSubgroup: IsElationGQByBLTSet

Example
Properties

geometry.gd: properties

P: IsConfiguration: IsIncidenceStructure
P: IsConstellation: IsIncidenceStructure

liegeometry.gd: properties

group.gd: properties

P: IsProjectivity: IsProjGrpEl
P: IsProjectivity: IsProjGrpElWithFrob
P: IsStrictlySemilinear: IsProjGrpEl
P: IsStrictlySemilinear: IsProjGrpElWithFrob
P: IsCollineation: IsProjGrpEl
P: IsCollineation: IsProjGrpElWithFrob
P: IsProjectivityGroup: IsProjectiveGroupWithFrob
P: IsCollineationGroup: IsProjectiveGroupWithFrob
P: CanComputeActionOnPoints: IsProjectiveGroupWithFrob

projectivespace.gd: properties

correlations.gd: properties

P: IsCorrelation: IsProjGrpElWithFrobWithPSIsom
P: IsCorrelation: IsProjGrpElWithFrob
P: IsCorrelation: IsProjGrpEl
P: CanComputeActionOnPoints: IsProjGroupWithFrobWithPSIsom
P: IsProjectivity: IsProjGrpElWithFrobWithPSIsom
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P: IsStrictlySemilinear: IsProjGrpElWithFrobWithPSIsom
P: IsCollineation: IsProjGrpElWithFrobWithPSIsom
P: IsProjectivityGroup: IsProjGroupWithFrobWithPSIsom
P: IsCollineationGroup: IsProjGroupWithFrobWithPSIsom
P: IsHermitianPolarityOfProjectiveSpace: IsPolarityOfProjectiveSpace
P: IsSymplecticPolarityOfProjectiveSpace: IsPolarityOfProjectiveSpace
P: IsOrthogonalPolarityOfProjectiveSpace: IsPolarityOfProjectiveSpace
P: IsPseudoPolarityOfProjectiveSpace: IsPolarityOfProjectiveSpace

polarspace.gd: properties

P: IsEllipticQuadric: IsClassicalPolarSpace
P: IsSymplecticSpace: IsClassicalPolarSpace
P: IsParabolicQuadric: IsClassicalPolarSpace
P: IsHyperbolicQuadric: IsClassicalPolarSpace
P: IsHermitianPolarSpace: IsClassicalPolarSpace
P: IsStandardPolarSpace: IsClassicalPolarSpace

morphisms.gd: properties

enumerators.gd: properties

diagram.gd: properties

varieties.gd: properties

P: IsStandardHermitianVariety: IsHermitianVariety
P: IsStandardQuadraticVariety: IsQuadraticVariety

affinespace.gd: properties

affinegroup.gd: properties

gpolygons.gd: properties

P: HasGraphWithUnderlyingObjectsAsVertices: IsGeneralisedPolygon

A.2.2 Functions/Methods
Example

Functions

geometry.gi: global functions

F: HashFuncForElements
F: HashFuncForSetElements
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liegeometry.gi: global functions

group.gi: global functions

F: MakeAllProjectivePoints
F: IsFiningScalarMatrix
F: OnProjPoints
F: OnProjPointsWithFrob
F: OnProjSubspacesNoFrob
F: OnProjSubspacesWithFrob
F: NiceMonomorphismByOrbit
F: NiceMonomorphismByDomain

projectivespace.gi: global functions

F: OnProjSubspaces
F: OnSetsProjSubspaces

correlations.gi: global functions

F: OnProjPointsWithFrobWithPSIsom
F: OnProjSubspacesWithFrobWithPSIsom
F: OnProjSubspacesExtended

polarspace.gi: global functions

morphisms.gi: global functions

enumerators.gi: global functions

F: PositionNonZeroFromRight
F: FG_pos
F: FG_div
F: FG_ffenumber
F: FG_alpha_power
F: FG_log_alpha
F: FG_beta_power
F: FG_log_beta
F: FG_norm_one_element
F: FG_index_of_norm_one_element
F: PG_element_normalize
F: FG_evaluate_hyperbolic_quadratic_form
F: FG_evaluate_hermitian_form
F: FG_nb_pts_Nbar
F: FG_nb_pts_S
F: FG_nb_pts_N
F: FG_nb_pts_N1
F: FG_nb_pts_Sbar
F: FG_herm_nb_pts_N
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F: FG_herm_nb_pts_S
F: FG_herm_nb_pts_N1
F: FG_herm_nb_pts_Sbar
F: FG_N1_unrank
F: FG_S_unrank
F: FG_Sbar_unrank
F: FG_Nbar_unrank
F: FG_N_unrank
F: FG_herm_N_unrank
F: FG_herm_N_rank
F: FG_herm_S_unrank
F: FG_herm_S_rank
F: FG_herm_N1_unrank
F: FG_herm_N1_rank
F: FG_herm_Sbar_unrank
F: FG_herm_Sbar_rank
F: FG_S_rank
F: FG_N_rank
F: FG_N1_rank
F: FG_Sbar_rank
F: FG_Nbar_rank
F: QElementNumber
F: QplusElementNumber
F: QminusElementNumber
F: QNumberElement
F: QplusNumberElement
F: QminusNumberElement
F: HermElementNumber
F: HermNumberElement
F: FG_specialresidual
F: FG_enum_orthogonal
F: FG_enum_hermitian
F: FG_enum_symplectic

diagram.gi: global functions

F: OnCosetGeometryElement
F: DrawDiagram
F: DrawDiagramWithNeato
F: Drawing_Diagram

varieties.gi: global functions

affinespace.gi: global functions

affinegroup.gi: global functions

F: OnAffinePoints
F: OnAffineNotPoints
F: OnAffineSubspaces
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gpolygons.gi: global functions

F: SplitCayleyPointToPlane5
F: SplitCayleyPointToPlane
F: ZeroPointToOnePointsSpaceByTriality
F: TwistedTrialityHexagonPointToPlaneByTwoTimesTriality
F: OnKantorFamily

orbits-stabilisers.gi: global functions

Example
Methods

geometry.gi: methods

M: IncidenceStructure, [ IsList, IsFunction, IsFunction, IsList ],
M: Rank, [IsIncidenceStructure],
M: IncidenceGraph, [ IsIncidenceStructure ],
M: ElementsOfIncidenceStructure, [IsIncidenceStructure, IsPosInt],
M: ElementsOfIncidenceStructure, [IsIncidenceStructure, IsString],
M: Iterator, [ IsElementsOfIncidenceStructure ],
M: Enumerator, [ IsElementsOfIncidenceStructure ],
M: NrElementsOfIncidenceStructure, [IsIncidenceStructure, IsString],
M: NrElementsOfIncidenceStructure, [IsIncidenceStructure, IsPosInt],
M: ChooseHashFunction, [ IsElementOfIncidenceStructure, IsPosInt ],
M: ChooseHashFunction, [ CategoryCollections(IsElementOfIncidenceStructure), IsPosInt ],
M: AmbientGeometry, [ IsElementsOfIncidenceStructure and IsElementsOfIncidenceStructureRep ],
M: AmbientGeometry, [ IsAllElementsOfIncidenceStructure ],
M: Type, [IsElementsOfIncidenceStructure and IsElementsOfIncidenceStructureRep],
M: Wrap, [IsIncidenceStructure, IsPosInt, IsObject],
M: Unwrap, [IsElementOfIncidenceStructure and IsElementOfIncidenceStructureRep],
M: UnderlyingObject, [ IsElementOfIncidenceStructure and IsElementOfIncidenceStructureRep ],
M: ObjectToElement, [ IsIncidenceStructure, IsPosInt, IsObject ],
M: AmbientGeometry, [ IsElementOfIncidenceStructure and IsElementOfIncidenceStructureRep ],
M: Intersection2, [IsElementOfIncidenceStructure, IsElementOfIncidenceStructure],
M: Type, [ IsElementOfIncidenceStructure and IsElementOfIncidenceStructureRep ],
M: \=, [IsElementOfIncidenceStructure, IsElementOfIncidenceStructure],
M: \<, [IsElementOfIncidenceStructure, IsElementOfIncidenceStructure],
M: \*, [IsElementOfIncidenceStructure, IsElementOfIncidenceStructure],
M: IsIncident, [IsElementOfIncidenceStructure, IsElementOfIncidenceStructure],
M: FlagOfIncidenceStructure, [ IsIncidenceStructure, IsElementOfIncidenceStructureCollection ],
M: FlagOfIncidenceStructure, [ IsIncidenceStructure, IsList and IsEmpty ],
M: IsChamberOfIncidenceStructure, [ IsFlagOfIncidenceStructure and IsFlagOfIncidenceStructureRep ],
M: AmbientGeometry, [ IsFlagOfIncidenceStructure and IsFlagOfIncidenceStructureRep],
M: ElementsOfFlag, [ IsFlagOfIncidenceStructure and IsFlagOfIncidenceStructureRep ],
M: Size, [ IsFlagOfIncidenceStructure and IsFlagOfIncidenceStructureRep ],
M: Rank, [ IsFlagOfIncidenceStructure ],
M: Type, [ IsFlagOfIncidenceStructure and IsFlagOfIncidenceStructureRep ],
M: ResidueOfFlag, [ IsFlagOfIncidenceStructure ],
M: \=, [ IsFlagOfIncidenceStructure, IsFlagOfIncidenceStructure ],
M: \<, [ IsFlagOfIncidenceStructure, IsFlagOfIncidenceStructure ],
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M: \<, [ IsFlagOfIncidenceStructure, IsElementOfIncidenceStructure ],
M: \<, [ IsElementOfIncidenceStructure, IsFlagOfIncidenceStructure ],
M: IsIncident, [ IsElementOfIncidenceStructure, IsFlagOfIncidenceStructure ],
M: IsIncident, [IsFlagOfIncidenceStructure, IsElementOfIncidenceStructure],
M: \in, [ IsElementOfIncidenceStructure, IsFlagOfIncidenceStructure ],
M: ShadowOfElement, [IsIncidenceStructure, IsElementOfIncidenceStructure, IsPosInt],
M: ShadowOfElement, [IsIncidenceStructure, IsElementOfIncidenceStructure, IsString],
M: ElementsIncidentWithElementOfIncidenceStructure, [ IsElementOfIncidenceStructure, IsPosInt],
M: ShadowOfFlag, [IsIncidenceStructure, IsFlagOfIncidenceStructure, IsPosInt],
M: ShadowOfFlag, [IsIncidenceStructure, IsFlagOfIncidenceStructure, IsString],
M: ShadowOfFlag, [IsIncidenceStructure, IsList, IsPosInt],
M: ShadowOfFlag, [IsIncidenceStructure, IsList, IsString],
M: Iterator, [ IsShadowElementsOfIncidenceStructure ],
M: ViewObj, [ IsElementOfIncidenceStructure and IsElementOfIncidenceStructureRep ],
M: ViewObj, [ IsFlagOfIncidenceStructure and IsFlagOfIncidenceStructureRep ],
M: PrintObj, [ IsElementOfIncidenceStructure and IsElementOfIncidenceStructureRep ],
M: Display, [ IsElementOfIncidenceStructure and IsElementOfIncidenceStructureRep ],
M: ViewObj, [ IsAllElementsOfIncidenceStructure ],
M: PrintObj, [ IsAllElementsOfIncidenceStructure ],
M: ViewObj, [ IsShadowElementsOfIncidenceStructure ],
M: ViewObj, [ IsElementsOfIncidenceStructure ],
M: PrintObj, [ IsElementsOfIncidenceStructure ],
M: ViewObj, [ IsIncidenceStructure ],
M: PrintObj, [ IsIncidenceStructure ],
M: Display, [ IsIncidenceStructure ],
M: IsConfiguration, [ IsIncidenceStructure],
M: IsConstellation, [ IsIncidenceStructure],

liegeometry.gi: methods

M: UnderlyingVectorSpace, [ IsLieGeometry],
M: ProjectiveDimension, [ IsLieGeometry ],
M: Dimension, [ IsLieGeometry ],
M: BaseField, [ IsLieGeometry ],
M: Wrap, [IsLieGeometry, IsPosInt, IsObject],
M: UnderlyingObject, [IsElementOfLieGeometry],
M: AmbientSpace, [IsElementOfLieGeometry],
M: ViewObj, [ IsAllElementsOfLieGeometry and IsAllElementsOfLieGeometryRep ],
M: PrintObj, [ IsAllElementsOfLieGeometry and IsAllElementsOfLieGeometryRep ],
M: ViewObj, [ IsElementsOfLieGeometry and IsElementsOfLieGeometryRep ],
M: PrintObj, [ IsElementsOfLieGeometry and IsElementsOfLieGeometryRep ],
M: Points, [IsLieGeometry],
M: Lines, [IsLieGeometry],
M: Planes, [IsLieGeometry],
M: Solids, [IsLieGeometry],
M: EmptySubspace, [IsLieGeometry],
M: BaseField, [IsEmptySubspace and IsEmptySubspaceRep],
M: ViewObj, InstallMethod(ViewObj,[IsEmptySubspace],
M: PrintObj, InstallMethod(PrintObj,[IsEmptySubspace],
M: Display, InstallMethod(Display,[IsEmptySubspace],
M: \=, [IsEmptySubspace, IsEmptySubspace],
M: \in, [ IsEmptySubspace, IsEmptySubspace ],
M: \in, [ IsEmptySubspace, IsElementOfLieGeometry ],
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M: \in, [ IsElementOfLieGeometry, IsEmptySubspace ],
M: \in, [ IsEmptySubspace, IsLieGeometry ],
M: Span, [ IsEmptySubspace, IsElementOfLieGeometry ],
M: Span, [ IsElementOfLieGeometry, IsEmptySubspace ],
M: Span, [IsEmptySubspace, IsEmptySubspace],
M: Meet, [ IsEmptySubspace, IsElementOfLieGeometry ],
M: Meet, [ IsElementOfLieGeometry, IsEmptySubspace ],
M: Meet, [IsEmptySubspace, IsEmptySubspace],
M: Points, [ IsElementOfLieGeometry ],
M: Points, [ IsLieGeometry, IsElementOfLieGeometry ],
M: Lines, [ IsElementOfLieGeometry ],
M: Lines, [ IsLieGeometry, IsElementOfLieGeometry ],
M: Planes, [ IsElementOfLieGeometry ],
M: Planes, [ IsLieGeometry, IsElementOfLieGeometry ],
M: Solids, InstallMethod(Solids,[IsElementOfLieGeometry],
M: Solids, [ IsLieGeometry, IsElementOfLieGeometry ],
M: Hyperplanes, [ IsElementOfLieGeometry ],
M: Hyperplanes, [ IsLieGeometry, IsElementOfLieGeometry ],
M: ViewObj, [ IsShadowElementsOfLieGeometry and IsShadowElementsOfLieGeometryRep ],
M: \in, [IsElementOfLieGeometry, IsElementOfLieGeometry],
M: Random, [ IsSubspacesVectorSpace ],
M: RandomSubspace, [IsVectorSpace,IsInt],
M: ElementToElement, [IsLieGeometry, IsElementOfLieGeometry],
M: ObjectToElement, [IsLieGeometry, IsPosInt, IsObject],
M: ObjectToElement, [IsLieGeometry, IsObject],

group.gi: methods

M: ProjEl, [IsMatrix and IsFFECollColl],
M: ProjEls, [IsList],
M: Projectivity, InstallMethod(Projectivity,[IsMatrixandIsFFECollColl,IsField],
M: Projectivity, InstallMethod(Projectivity,[IsCMatRepandIsFFECollColl,IsField],
M: Projectivity, InstallMethod(Projectivity,[IsProjectiveSpace,IsMatrix],
M: Projectivity, InstallMethod(Projectivity,[IsProjectiveSpace,IsCMatRep],
M: IsProjectivity, InstallMethod(IsProjectivity,[IsProjGrpEl],
M: IsProjectivity, InstallMethod(IsProjectivity,[IsProjGrpElWithFrob],
M: IsStrictlySemilinear, InstallMethod(IsStrictlySemilinear,[IsProjGrpEl],
M: IsStrictlySemilinear, InstallMethod(IsStrictlySemilinear,[IsProjGrpElWithFrob],
M: IsCollineation, InstallMethod(IsCollineation,[IsProjGrpEl],
M: IsCollineation, InstallMethod(IsCollineation,[IsProjGrpElWithFrob],
M: IsProjectivityGroup, InstallMethod(IsProjectivityGroup,[IsProjectiveGroupWithFrob],
M: IsCollineationGroup, InstallMethod(IsCollineationGroup,[IsProjectiveGroupWithFrob],
M: ProjElWithFrob, [IsCMatRep and IsFFECollColl, #changed 19/3/14 to cmat. IsRingHomomorphism and IsMultiplicativeElementWithInverse, IsField],
M: ProjElWithFrob, [IsMatrix and IsFFECollColl, IsRingHomomorphism and IsMultiplicativeElementWithInverse, IsField],
M: ProjElWithFrob, [IsCMatRep and IsFFECollColl, #changed 19/3/14. IsRingHomomorphism and IsMultiplicativeElementWithInverse],
M: ProjElWithFrob, [IsCMatRep and IsFFECollColl, IsRingHomomorphism and IsMultiplicativeElementWithInverse],
M: ProjElsWithFrob, [IsList, IsField],
M: ProjElsWithFrob, [IsList],
M: CollineationOfProjectiveSpace, [ IsMatrix and IsFFECollColl, IsField],
M: CollineationOfProjectiveSpace, InstallMethod(CollineationOfProjectiveSpace,[IsProjectiveSpace,IsMatrix],
M: CollineationOfProjectiveSpace, InstallMethod(CollineationOfProjectiveSpace,[IsProjectiveSpace,IsMatrix,IsMapping],
M: Collineation, InstallMethod(Collineation,[IsProjectiveSpace,IsMatrix],
M: Collineation, InstallMethod(Collineation,[IsProjectiveSpace,IsMatrix,IsMapping],
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M: CollineationOfProjectiveSpace, [ IsMatrix and IsFFECollColl, IsRingHomomorphism and IsMultiplicativeElementWithInverse, IsField],
M: ProjectiveSemilinearMap, [ IsMatrix and IsFFECollColl, IsRingHomomorphism and IsMultiplicativeElementWithInverse, IsField],
M: ProjectivityByImageOfStandardFrameNC, InstallMethod(ProjectivityByImageOfStandardFrameNC,[IsProjectiveSpace,IsList],
M: MatrixOfCollineation, InstallMethod(MatrixOfCollineation,[IsProjGrpElandIsProjGrpElRep],
M: MatrixOfCollineation, InstallMethod(MatrixOfCollineation,[IsProjGrpElWithFrobandIsProjGrpElWithFrobRep],
M: FieldAutomorphism, InstallMethod(FieldAutomorphism,[IsProjGrpElWithFrobandIsProjGrpElWithFrobRep],
M: Representative, [IsProjGrpEl and IsProjGrpElRep],
M: BaseField, [IsProjGrpEl and IsProjGrpElRep],
M: Representative, [IsProjGrpElWithFrob and IsProjGrpElWithFrobRep],
M: BaseField, [IsProjGrpElWithFrob and IsProjGrpElWithFrobRep],
M: ViewObj, [IsProjGrpEl and IsProjGrpElRep],
M: Display, [IsProjGrpEl and IsProjGrpElRep],
M: PrintObj, [IsProjGrpEl and IsProjGrpElRep],
M: ViewObj, [IsProjGrpElWithFrob and IsProjGrpElWithFrobRep],
M: Display, [IsProjGrpElWithFrob and IsProjGrpElWithFrobRep],
M: PrintObj, [IsProjGrpElWithFrob and IsProjGrpElWithFrobRep],
M: \=, [IsProjGrpEl and IsProjGrpElRep, IsProjGrpEl and IsProjGrpElRep],
M: \<, [IsProjGrpEl, IsProjGrpEl],
M: \=, [IsProjGrpElWithFrob and IsProjGrpElWithFrobRep, IsProjGrpElWithFrob and IsProjGrpElWithFrobRep],
M: \<, [IsProjGrpElWithFrob, IsProjGrpElWithFrob],
M: Order, [IsProjGrpEl and IsProjGrpElRep],
M: Order, [IsProjGrpElWithFrob and IsProjGrpElWithFrobRep],
M: IsOne, [IsProjGrpEl and IsProjGrpElRep],
M: IsOne, [IsProjGrpElWithFrob and IsProjGrpElWithFrobRep],
M: DegreeFFE, [IsProjGrpEl and IsProjGrpElRep],
M: DegreeFFE, [IsProjGrpElWithFrob and IsProjGrpElWithFrobRep],
M: Characteristic, [IsProjGrpEl and IsProjGrpElRep],
M: Characteristic, [IsProjGrpElWithFrob and IsProjGrpElWithFrobRep],
M: \*, [IsProjGrpEl and IsProjGrpElRep, IsProjGrpEl and IsProjGrpElRep],
M: InverseSameMutability, [IsProjGrpEl and IsProjGrpElRep],
M: InverseMutable, [IsProjGrpEl and IsProjGrpElRep],
M: OneImmutable, [IsProjGrpEl and IsProjGrpElRep],
M: OneSameMutability, [IsProjGrpEl and IsProjGrpElRep],
M: \^, [ IsVector and IsFFECollection and IsMutable, IsFrobeniusAutomorphism ],
M: \^, [ IsCVecRep and IsFFECollection and IsMutable, IsFrobeniusAutomorphism ],
M: \^, [ IsVector and IsFFECollection, IsFrobeniusAutomorphism ],
M: \^, [ IsCVecRep and IsFFECollection, IsFrobeniusAutomorphism ],
M: \^, [ IsVector and IsFFECollection and IsMutable, IsMapping and IsOne ],
M: \^, [ IsCVecRep and IsFFECollection and IsMutable, IsMapping and IsOne ],
M: \^, [ IsVector and IsFFECollection and IsGF2VectorRep, IsFrobeniusAutomorphism ],
M: \^, [ IsVector and IsFFECollection and IsGF2VectorRep and IsMutable, IsFrobeniusAutomorphism ],
M: \^, [ IsVector and IsFFECollection and IsGF2VectorRep, IsMapping and IsOne ],
M: \^, [ IsVector and IsFFECollection and IsGF2VectorRep and IsMutable, IsMapping and IsOne ],
M: \^, [ IsVector and IsFFECollection and Is8BitVectorRep, IsFrobeniusAutomorphism ],
M: \^, [ IsVector and IsFFECollection and Is8BitVectorRep and IsMutable, IsFrobeniusAutomorphism ],
M: \^, [ IsVector and IsFFECollection and Is8BitVectorRep, IsMapping and IsOne ],
M: \^, [ IsVector and IsFFECollection and Is8BitVectorRep and IsMutable, IsMapping and IsOne ],
M: \^, [ IsMatrix and IsFFECollColl, IsFrobeniusAutomorphism ],
M: \^, [ IsCMatRep and IsFFECollColl, IsFrobeniusAutomorphism ],
M: \^, [ IsMatrix and IsFFECollColl and IsMutable, IsFrobeniusAutomorphism ],
M: \^, [ IsCMatRep and IsFFECollColl and IsMutable, IsFrobeniusAutomorphism ],
M: \^, [ IsMatrix and IsFFECollColl, IsMapping and IsOne ],
M: \^, [ IsCMatRep and IsFFECollColl and IsMutable, IsMapping and IsOne ],
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M: \^, [ IsMatrix and IsFFECollColl, IsMapping and IsOne ],
M: \^, [ IsCMatRep and IsFFECollColl , IsMapping and IsOne ],
M: \^, [ IsMatrix and IsFFECollColl and IsGF2MatrixRep, IsFrobeniusAutomorphism ],
M: \^, [ IsMatrix and IsFFECollColl and IsGF2MatrixRep and IsMutable, IsFrobeniusAutomorphism ],
M: \^, [ IsMatrix and IsFFECollColl and IsGF2MatrixRep, IsMapping and IsOne ],
M: \^, [ IsMatrix and IsFFECollColl and IsGF2MatrixRep and IsMutable, IsMapping and IsOne ],
M: \^, [ IsMatrix and IsFFECollColl and Is8BitMatrixRep, IsFrobeniusAutomorphism ],
M: \^, [ IsMatrix and IsFFECollColl and Is8BitMatrixRep and IsMutable, IsFrobeniusAutomorphism ],
M: \^, [ IsMatrix and IsFFECollColl and Is8BitMatrixRep, IsMapping and IsOne ],
M: \^, [ IsMatrix and IsFFECollColl and Is8BitMatrixRep and IsMutable, IsMapping and IsOne ],
M: \*, [IsProjGrpElWithFrob and IsProjGrpElWithFrobRep, IsProjGrpElWithFrob and IsProjGrpElWithFrobRep],
M: InverseSameMutability, [IsProjGrpElWithFrob and IsProjGrpElWithFrobRep],
M: InverseMutable, [IsProjGrpElWithFrob and IsProjGrpElWithFrobRep],
M: OneImmutable, [IsProjGrpElWithFrob and IsProjGrpElWithFrobRep],
M: OneSameMutability, [IsProjGrpElWithFrob and IsProjGrpElWithFrobRep],
M: ViewObj, [IsProjectiveGroupWithFrob],
M: ViewObj, [IsProjectiveGroupWithFrob and IsTrivial],
M: ViewObj, [IsProjectiveGroupWithFrob and HasGeneratorsOfGroup],
M: ViewObj, [IsProjectiveGroupWithFrob and HasSize],
M: ViewObj, [IsProjectiveGroupWithFrob and HasGeneratorsOfGroup and HasSize],
M: BaseField, [IsProjectiveGroupWithFrob],
M: Dimension, [IsProjectiveGroupWithFrob],
M: OneImmutable, # was [IsGroup and IsProjectiveGroupWithFrob], I think might be
M: CanComputeActionOnPoints, [IsProjectiveGroupWithFrob],
M: ActionOnAllProjPoints, [ IsProjectiveGroupWithFrob ],
M: SetAsNiceMono, [IsProjectiveGroupWithFrob, IsGroupHomomorphism and IsInjective],
M: NiceMonomorphism, [IsProjectivityGroup and CanComputeActionOnPoints and IsHandledByNiceMonomorphism],
M: NiceMonomorphism, [IsProjectiveGroupWithFrob and IsHandledByNiceMonomorphism],
M: NiceMonomorphism, [IsProjectiveGroupWithFrob and CanComputeActionOnPoints and IsHandledByNiceMonomorphism], 1,
M: NiceMonomorphism, [IsProjectiveGroupWithFrob and IsHandledByNiceMonomorphism], 50,
M: FindBasePointCandidates, [IsProjectivityGroup,IsRecord,IsInt],
M: FindBasePointCandidates, [IsProjectiveGroupWithFrob,IsRecord,IsInt],
M: FindBasePointCandidates, [IsProjectiveGroupWithFrob,IsRecord,IsInt,IsObject],
M: CanonicalGramMatrix, [IsString, IsPosInt, IsField],
M: CanonicalQuadraticForm, [IsString, IsPosInt, IsField],
M: SOdesargues, [IsInt, IsPosInt, IsField and IsFinite],
M: GOdesargues, InstallMethod(GOdesargues,[IsInt,IsPosInt,IsFieldandIsFinite],
M: SUdesargues, InstallMethod(SUdesargues,[IsPosInt,IsFieldandIsFinite],
M: GUdesargues, InstallMethod(GUdesargues,[IsPosInt,IsFieldandIsFinite],
M: Spdesargues, InstallMethod(Spdesargues,[IsPosInt,IsFieldandIsFinite],
M: GeneralSymplecticGroup, InstallMethod(GeneralSymplecticGroup,[IsPosInt,IsFieldandIsFinite],
M: GSpdesargues, InstallMethod(GSpdesargues,[IsPosInt,IsFieldandIsFinite],
M: GammaSp, InstallMethod(GammaSp,[IsPosInt,IsFieldandIsFinite],
M: DeltaOminus, InstallMethod(DeltaOminus,[IsPosInt,IsFieldandIsFinite],
M: GammaOminus, InstallMethod(GammaOminus,[IsPosInt,IsFieldandIsFinite],
M: GammaO, InstallMethod(GammaO,[IsPosInt,IsFieldandIsFinite],
M: DeltaOplus, InstallMethod(DeltaOplus,[IsPosInt,IsFieldandIsFinite],
M: GammaOplus, InstallMethod(GammaOplus,[IsPosInt,IsFieldandIsFinite],
M: GammaU, InstallMethod(GammaU,[IsPosInt,IsFieldandIsFinite],

projectivespace.gi: methods

M: Wrap, [IsProjectiveSpace, IsPosInt, IsObject],
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M: ProjectiveSpace, [ IsInt, IsField ],
M: ProjectiveSpace, [ IsInt, IsPosInt ],
M: ViewObj, InstallMethod(ViewObj,[IsProjectiveSpaceandIsProjectiveSpaceRep],
M: ViewString, [ IsProjectiveSpace and IsProjectiveSpaceRep ],
M: PrintObj, InstallMethod(PrintObj,[IsProjectiveSpaceandIsProjectiveSpaceRep],
M: Display, InstallMethod(Display,[IsProjectiveSpaceandIsProjectiveSpaceRep],
M: \=, [IsProjectiveSpace, IsProjectiveSpace],
M: Rank, [ IsProjectiveSpace and IsProjectiveSpaceRep ],
M: BaseField, [IsSubspaceOfProjectiveSpace],
M: StandardFrame, [IsProjectiveSpace],
M: RepresentativesOfElements, "for a projective space", [IsProjectiveSpace],
M: Hyperplanes, [ IsProjectiveSpace ],
M: TypesOfElementsOfIncidenceStructure, "for a projective space", [IsProjectiveSpace],
M: TypesOfElementsOfIncidenceStructurePlural, [IsProjectiveSpace],
M: ElementsOfIncidenceStructure, [IsProjectiveSpace, IsPosInt],
M: ElementsOfIncidenceStructure, [IsProjectiveSpace],
M: \=, [ IsAllSubspacesOfProjectiveSpace, IsAllSubspacesOfProjectiveSpace ],
M: Size, [IsSubspacesOfProjectiveSpace and IsSubspacesOfProjectiveSpaceRep],
M: \in, [IsElementOfIncidenceStructure, IsElementsOfIncidenceStructure], 1*SUM_FLAGS+3,
M: \in, [IsElementOfIncidenceStructure, IsAllElementsOfIncidenceStructure], 1*SUM_FLAGS+3,
M: VectorSpaceToElement, [IsProjectiveSpace, IsCMatRep],
M: VectorSpaceToElement, [IsProjectiveSpace, IsPlistRep],
M: VectorSpaceToElement, [IsProjectiveSpace, IsGF2MatrixRep],
M: VectorSpaceToElement, [IsProjectiveSpace, Is8BitMatrixRep],
M: VectorSpaceToElement, [IsProjectiveSpace, IsCVecRep],
M: VectorSpaceToElement, [IsProjectiveSpace, IsRowVector],
M: VectorSpaceToElement, [IsProjectiveSpace, Is8BitVectorRep],
M: UnderlyingVectorSpace, [IsSubspaceOfProjectiveSpace],
M: ProjectiveDimension, [ IsSubspaceOfProjectiveSpace ],
M: Dimension, [ IsSubspaceOfProjectiveSpace ],
M: StandardFrame, [IsSubspaceOfProjectiveSpace],
M: Coordinates, [IsSubspaceOfProjectiveSpace],
M: DualCoordinatesOfHyperplane, [IsSubspaceOfProjectiveSpace],
M: HyperplaneByDualCoordinates, [IsProjectiveSpace,IsList],
M: EquationOfHyperplane, [IsSubspaceOfProjectiveSpace],
M: Span, [ IsEmptySubspace, IsProjectiveSpace ],
M: Span, [ IsProjectiveSpace, IsEmptySubspace ],
M: Meet, [ IsEmptySubspace, IsProjectiveSpace ],
M: Meet, [ IsProjectiveSpace, IsEmptySubspace ],
M: ShadowOfElement, [IsProjectiveSpace, IsSubspaceOfProjectiveSpace, IsPosInt],
M: Size, [IsShadowSubspacesOfProjectiveSpace and IsShadowSubspacesOfProjectiveSpaceRep ],
M: CollineationGroup, [ IsProjectiveSpace and IsProjectiveSpaceRep ],
M: ProjectivityGroup, [ IsProjectiveSpace ],
M: SpecialProjectivityGroup, [ IsProjectiveSpace ],
M: \^, [IsElementOfIncidenceStructure, IsProjGrpElWithFrob],
M: \^, [IsElementOfIncidenceStructure, IsProjGrpElWithFrobWithPSIsom],
M: AsList, [IsSubspacesOfProjectiveSpace],
M: Iterator, [IsSubspacesOfProjectiveSpace],
M: FlagOfIncidenceStructure, [ IsProjectiveSpace, IsSubspaceOfProjectiveSpaceCollection ],
M: FlagOfIncidenceStructure, [ IsProjectiveSpace, IsList and IsEmpty ],
M: UnderlyingVectorSpace, [ IsFlagOfProjectiveSpace and IsFlagOfIncidenceStructureRep ],
M: ViewObj, [ IsFlagOfProjectiveSpace and IsFlagOfIncidenceStructureRep ],
M: PrintObj, [ IsFlagOfProjectiveSpace and IsFlagOfIncidenceStructureRep ],
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M: Display, [ IsFlagOfProjectiveSpace and IsFlagOfIncidenceStructureRep ],
M: ShadowOfFlag, [IsProjectiveSpace, IsFlagOfProjectiveSpace, IsPosInt],
M: Iterator, [IsShadowSubspacesOfProjectiveSpace and IsShadowSubspacesOfProjectiveSpaceRep ],
M: \in, [ IsProjectiveSpace, IsSubspaceOfProjectiveSpace ],
M: \in, [ IsProjectiveSpace, IsEmptySubspace ],
M: \in, [IsSubspaceOfProjectiveSpace, IsProjectiveSpace],
M: \in, [IsProjectiveSpace, IsSubspaceOfProjectiveSpace],
M: IsIncident, [IsSubspaceOfProjectiveSpace, IsSubspaceOfProjectiveSpace],
M: Span, [IsProjectiveSpace, IsSubspaceOfProjectiveSpace],
M: Span, [IsSubspaceOfProjectiveSpace, IsProjectiveSpace],
M: Span, [IsSubspaceOfProjectiveSpace, IsSubspaceOfProjectiveSpace],
M: Span, [IsSubspaceOfProjectiveSpace, IsSubspaceOfProjectiveSpace, IsBool],
M: Span, [ IsHomogeneousList and IsSubspaceOfProjectiveSpaceCollection ],
M: Span, [ IsList ],
M: Span, [IsList, IsBool],
M: Meet, [IsProjectiveSpace, IsSubspaceOfProjectiveSpace],
M: Meet, [IsSubspaceOfProjectiveSpace, IsProjectiveSpace],
M: Meet, [IsSubspaceOfProjectiveSpace, IsSubspaceOfProjectiveSpace],
M: Meet, [ IsHomogeneousList and IsSubspaceOfProjectiveSpaceCollection],
M: Meet, [ IsList ],
M: RandomSubspace, [IsProjectiveSpace,IsInt],
M: RandomSubspace, [IsSubspaceOfProjectiveSpace,IsInt],
M: RandomSubspace, [IsProjectiveSpace],
M: Random, [ IsSubspacesOfProjectiveSpace ],
M: Random, [ IsAllSubspacesOfProjectiveSpace ],
M: Random, [ IsShadowSubspacesOfProjectiveSpace ],
M: BaerSublineOnThreePoints, [IsSubspaceOfProjectiveSpace, IsSubspaceOfProjectiveSpace, IsSubspaceOfProjectiveSpace],
M: BaerSubplaneOnQuadrangle, InstallMethod(BaerSubplaneOnQuadrangle,[IsSubspaceOfProjectiveSpace, IsSubspaceOfProjectiveSpace, IsSubspaceOfProjectiveSpace, IsSubspaceOfProjectiveSpace],
M: ComplementSpace, [IsVectorSpace, IsFFECollColl],
M: ElationOfProjectiveSpace, [ IsSubspaceOfProjectiveSpace, IsSubspaceOfProjectiveSpace, IsSubspaceOfProjectiveSpace ],
M: ProjectiveElationGroup, [ IsSubspaceOfProjectiveSpace, IsSubspaceOfProjectiveSpace ],
M: ProjectiveElationGroup, [ IsSubspaceOfProjectiveSpace ],
M: HomologyOfProjectiveSpace, [ IsSubspaceOfProjectiveSpace, IsSubspaceOfProjectiveSpace, IsSubspaceOfProjectiveSpace, IsSubspaceOfProjectiveSpace ],
M: ProjectiveHomologyGroup, [ IsSubspaceOfProjectiveSpace, IsSubspaceOfProjectiveSpace ],
M: IncidenceGraph, [ IsProjectiveSpace ],

correlations.gi: methods

M: IdentityMappingOfElementsOfProjectiveSpace, [IsProjectiveSpace],
M: StandardDualityOfProjectiveSpace, [IsProjectiveSpace],
M: IsCollineation, InstallMethod(IsCollineation,[IsProjGrpElWithFrobWithPSIsom],
M: IsCorrelation, InstallMethod(IsCorrelation,[IsProjGrpElWithFrobWithPSIsom],
M: IsCorrelation, InstallMethod(IsCorrelation,[IsProjGrpElWithFrob],
M: IsCorrelation, InstallMethod(IsCorrelation,[IsProjGrpEl],
M: IsProjectivity, [ IsProjGrpElWithFrobWithPSIsom and IsProjGrpElWithFrobWithPSIsomRep],
M: IsStrictlySemilinear, [ IsProjGrpElWithFrobWithPSIsom and IsProjGrpElWithFrobWithPSIsomRep],
M: IsProjectivityGroup, InstallMethod(IsProjectivityGroup,[IsProjGroupWithFrobWithPSIsom],
M: IsCollineationGroup, InstallMethod(IsCollineationGroup,[IsProjGroupWithFrobWithPSIsom],
M: ViewObj, [IsStandardDualityOfProjectiveSpace and IsSPMappingByFunctionWithInverseRep],
M: Display, [IsStandardDualityOfProjectiveSpace and IsSPMappingByFunctionWithInverseRep],
M: PrintObj, [IsStandardDualityOfProjectiveSpace and IsSPMappingByFunctionWithInverseRep],
M: \*, [IsStandardDualityOfProjectiveSpace, IsStandardDualityOfProjectiveSpace],
M: \*, [IsIdentityMappingOfElementsOfProjectiveSpace, IsStandardDualityOfProjectiveSpace],
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M: \*, [IsStandardDualityOfProjectiveSpace, IsIdentityMappingOfElementsOfProjectiveSpace],
M: \*, [IsIdentityMappingOfElementsOfProjectiveSpace, IsIdentityMappingOfElementsOfProjectiveSpace],
M: \^, [ IsProjectiveSpaceIsomorphism, IsZeroCyc ],
M: \=, [IsStandardDualityOfProjectiveSpace, IsStandardDualityOfProjectiveSpace],
M: \=, [IsStandardDualityOfProjectiveSpace, IsIdentityMappingOfElementsOfProjectiveSpace],
M: \=, [IsIdentityMappingOfElementsOfProjectiveSpace, IsStandardDualityOfProjectiveSpace],
M: \=, [IsIdentityMappingOfElementsOfProjectiveSpace, IsIdentityMappingOfElementsOfProjectiveSpace],
M: ProjElWithFrobWithPSIsom, [IsCMatRep and IsFFECollColl, IsRingHomomorphism and IsMultiplicativeElementWithInverse, IsField, IsStandardDualityOfProjectiveSpace],
M: ProjElWithFrobWithPSIsom, [IsMatrix and IsFFECollColl, IsRingHomomorphism and IsMultiplicativeElementWithInverse, IsField, IsStandardDualityOfProjectiveSpace],
M: ProjElWithFrobWithPSIsom, [IsCMatRep and IsFFECollColl, IsRingHomomorphism and IsMultiplicativeElementWithInverse, IsField],
M: ProjElWithFrobWithPSIsom, [IsMatrix and IsFFECollColl, IsRingHomomorphism and IsMultiplicativeElementWithInverse, IsField],
M: ProjElWithFrobWithPSIsom, [IsCMatRep and IsFFECollColl, IsRingHomomorphism and IsMultiplicativeElementWithInverse, IsField, IsGeneralMappingand IsSPGeneralMapping and IsOne],
M: ProjElWithFrobWithPSIsom, [IsMatrix and IsFFECollColl, IsRingHomomorphism and IsMultiplicativeElementWithInverse, IsField, IsGeneralMappingand IsSPGeneralMapping and IsOne],
M: ViewObj, [IsProjGrpElWithFrobWithPSIsom and IsProjGrpElWithFrobWithPSIsomRep],
M: Display, [IsProjGrpElWithFrobWithPSIsom and IsProjGrpElWithFrobWithPSIsomRep],
M: PrintObj, [IsProjGrpElWithFrobWithPSIsom and IsProjGrpElWithFrobWithPSIsomRep],
M: Representative, [IsProjGrpElWithFrobWithPSIsom and IsProjGrpElWithFrobWithPSIsomRep],
M: BaseField, [IsProjGrpElWithFrobWithPSIsom and IsProjGrpElWithFrobWithPSIsomRep],
M: BaseField, [IsProjGroupWithFrobWithPSIsom],
M: \=, [IsProjGrpElWithFrobWithPSIsom and IsProjGrpElWithFrobWithPSIsomRep, IsProjGrpElWithFrobWithPSIsom and IsProjGrpElWithFrobWithPSIsomRep],
M: IsOne, [IsProjGrpElWithFrobWithPSIsom and IsProjGrpElWithFrobWithPSIsomRep],
M: OneImmutable, [IsProjGrpElWithFrobWithPSIsom and IsProjGrpElWithFrobWithPSIsomRep],
M: OneImmutable, [IsGroup and IsProjGrpElWithFrobWithPSIsom],
M: OneSameMutability, [IsProjGrpElWithFrobWithPSIsom and IsProjGrpElWithFrobWithPSIsomRep],
M: \^, [ IsCVecRep and IsFFECollection, IsIdentityMappingOfElementsOfProjectiveSpace ],
M: \^, [ IsVector and IsFFECollection, IsIdentityMappingOfElementsOfProjectiveSpace ],
M: \^, [ IsVector and IsFFECollection and IsGF2VectorRep, IsIdentityMappingOfElementsOfProjectiveSpace ],
M: \^, [ IsVector and IsFFECollection and Is8BitVectorRep, IsIdentityMappingOfElementsOfProjectiveSpace ],
M: \^, [ IsCMatRep and IsFFECollColl, IsStandardDualityOfProjectiveSpace ],
M: \^, [ IsMatrix and IsFFECollColl, IsStandardDualityOfProjectiveSpace ],
M: \^, [ IsCMatRep and IsFFECollColl, IsIdentityMappingOfElementsOfProjectiveSpace ],
M: \^, [ IsMatrix and IsFFECollColl, IsIdentityMappingOfElementsOfProjectiveSpace ],
M: \^, [ IsSubspaceOfProjectiveSpace, IsIdentityMappingOfElementsOfProjectiveSpace ],
M: \^, [ IsSubspaceOfProjectiveSpace, IsStandardDualityOfProjectiveSpace ],
M: \*, [IsProjGrpElWithFrobWithPSIsom and IsProjGrpElWithFrobWithPSIsomRep, IsProjGrpElWithFrobWithPSIsom and IsProjGrpElWithFrobWithPSIsomRep],
M: \<, [IsProjGrpElWithFrobWithPSIsom, IsProjGrpElWithFrobWithPSIsom],
M: InverseSameMutability, [IsProjGrpElWithFrobWithPSIsom and IsProjGrpElWithFrobWithPSIsomRep],
M: InverseMutable, [IsProjGrpElWithFrobWithPSIsom and IsProjGrpElWithFrobWithPSIsomRep],
M: \*, [IsProjGrpElWithFrob and IsProjGrpElWithFrobRep, IsProjGrpElWithFrobWithPSIsom and IsProjGrpElWithFrobWithPSIsomRep],
M: \*, [IsProjGrpElWithFrobWithPSIsom and IsProjGrpElWithFrobWithPSIsomRep, IsProjGrpElWithFrob and IsProjGrpElWithFrobRep],
M: ProjElsWithFrobWithPSIsom, [IsList, IsField],
M: CorrelationCollineationGroup, [ IsProjectiveSpace and IsProjectiveSpaceRep ],
M: CorrelationOfProjectiveSpace, [ IsMatrix and IsFFECollColl, IsField],
M: CorrelationOfProjectiveSpace, [ IsMatrix and IsFFECollColl, IsRingHomomorphism and IsMultiplicativeElementWithInverse, IsField],
M: CorrelationOfProjectiveSpace, [ IsMatrix and IsFFECollColl, IsField, IsStandardDualityOfProjectiveSpace],
M: CorrelationOfProjectiveSpace, [ IsMatrix and IsFFECollColl, IsField, IsIdentityMappingOfElementsOfProjectiveSpace],
M: CorrelationOfProjectiveSpace, [ IsMatrix and IsFFECollColl, IsRingHomomorphism and IsMultiplicativeElementWithInverse, IsField, IsStandardDualityOfProjectiveSpace],
M: CorrelationOfProjectiveSpace, [ IsMatrix and IsFFECollColl, IsRingHomomorphism and IsMultiplicativeElementWithInverse, IsField, IsIdentityMappingOfElementsOfProjectiveSpace],
M: CorrelationOfProjectiveSpace, [ IsProjectiveSpace, IsMatrix and IsFFECollColl, IsRingHomomorphism and IsMultiplicativeElementWithInverse, IsStandardDualityOfProjectiveSpace],
M: CorrelationOfProjectiveSpace, [ IsProjectiveSpace, IsMatrix and IsFFECollColl, IsRingHomomorphism and IsMultiplicativeElementWithInverse, IsIdentityMappingOfElementsOfProjectiveSpace],
M: Correlation, [ IsProjectiveSpace, IsMatrix and IsFFECollColl, IsRingHomomorphism and IsMultiplicativeElementWithInverse, IsStandardDualityOfProjectiveSpace],
M: Correlation, [ IsProjectiveSpace, IsMatrix and IsFFECollColl, IsRingHomomorphism and IsMultiplicativeElementWithInverse, IsIdentityMappingOfElementsOfProjectiveSpace],
M: MatrixOfCorrelation, InstallMethod(MatrixOfCorrelation,[IsProjGrpElWithFrobWithPSIsomand IsProjGrpElWithFrobWithPSIsomRep],
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M: FieldAutomorphism, InstallMethod(FieldAutomorphism,[IsProjGrpElWithFrobWithPSIsomand IsProjGrpElWithFrobWithPSIsomRep],
M: ProjectiveSpaceIsomorphism, InstallMethod(ProjectiveSpaceIsomorphism,[IsProjGrpElWithFrobWithPSIsomand IsProjGrpElWithFrobWithPSIsomRep],
M: Embedding, [IsProjectiveGroupWithFrob, IsProjGroupWithFrobWithPSIsom],
M: Dimension, [IsProjGroupWithFrobWithPSIsom],
M: ActionOnAllPointsHyperplanes, [ IsProjGroupWithFrobWithPSIsom ],
M: CanComputeActionOnPoints, [IsProjGroupWithFrobWithPSIsom],
M: SetAsNiceMono, [IsProjGroupWithFrobWithPSIsom, IsGroupHomomorphism and IsInjective],
M: NiceMonomorphism, [IsProjGroupWithFrobWithPSIsom and CanComputeActionOnPoints and IsHandledByNiceMonomorphism], 50,
M: NiceMonomorphism, [IsProjGroupWithFrobWithPSIsom and IsHandledByNiceMonomorphism], 50,
M: ViewObj, [IsProjGroupWithFrobWithPSIsom],
M: ViewObj, [IsProjGroupWithFrobWithPSIsom and IsTrivial],
M: ViewObj, [IsProjGroupWithFrobWithPSIsom and HasGeneratorsOfGroup],
M: ViewObj, [IsProjGroupWithFrobWithPSIsom and HasSize],
M: ViewObj, [IsProjGroupWithFrobWithPSIsom and HasGeneratorsOfGroup and HasSize],
M: PolarityOfProjectiveSpaceOp, [IsSesquilinearForm and IsFormRep],
M: ViewObj, [IsPolarityOfProjectiveSpace and IsPolarityOfProjectiveSpaceRep],
M: PrintObj, [IsPolarityOfProjectiveSpace and IsPolarityOfProjectiveSpaceRep],
M: Display, [IsPolarityOfProjectiveSpace and IsPolarityOfProjectiveSpaceRep],
M: PolarityOfProjectiveSpace, [IsSesquilinearForm and IsFormRep],
M: PolarityOfProjectiveSpace, [IsMatrix,IsField and IsFinite],
M: PolarityOfProjectiveSpace, [IsMatrix, IsFrobeniusAutomorphism, IsField and IsFinite],
M: HermitianPolarityOfProjectiveSpace, [IsMatrix,IsField and IsFinite],
M: GramMatrix, [IsPolarityOfProjectiveSpace and IsPolarityOfProjectiveSpaceRep],
M: BaseField, [IsPolarityOfProjectiveSpace and IsPolarityOfProjectiveSpaceRep],
M: CompanionAutomorphism, [IsPolarityOfProjectiveSpace and IsPolarityOfProjectiveSpaceRep],
M: SesquilinearForm, [IsPolarityOfProjectiveSpace and IsPolarityOfProjectiveSpaceRep],
M: IsHermitianPolarityOfProjectiveSpace, [IsPolarityOfProjectiveSpace and IsPolarityOfProjectiveSpaceRep],
M: IsOrthogonalPolarityOfProjectiveSpace, [IsPolarityOfProjectiveSpace and IsPolarityOfProjectiveSpaceRep],
M: IsSymplecticPolarityOfProjectiveSpace, [IsPolarityOfProjectiveSpace and IsPolarityOfProjectiveSpaceRep],
M: IsPseudoPolarityOfProjectiveSpace, [IsPolarityOfProjectiveSpace and IsPolarityOfProjectiveSpaceRep],
M: \^, [ IsSubspaceOfProjectiveSpace, IsPolarityOfProjectiveSpace],

polarspace.gi: methods

M: Wrap, [IsClassicalPolarSpace, IsPosInt, IsObject],
M: PolarSpace, [ IsSesquilinearForm, IsField, IsGroup, IsFunction ],
M: PolarSpaceStandard, [ IsSesquilinearForm, IsBool ],
M: PolarSpaceStandard, [ IsQuadraticForm, IsBool ],
M: PolarSpace, [ IsSesquilinearForm ],
M: PolarSpace, [ IsQuadraticForm ],
M: PolarSpace, [ IsHermitianForm ],
M: CanonicalOrbitRepresentativeForSubspaces, [IsString, IsPosInt, IsField],
M: EllipticQuadric, [ IsPosInt, IsField ],
M: EllipticQuadric, [ IsPosInt, IsPosInt ],
M: SymplecticSpace, [ IsPosInt, IsField ],
M: SymplecticSpace, [ IsPosInt, IsPosInt ],
M: ParabolicQuadric, [ IsPosInt, IsField ],
M: ParabolicQuadric, [ IsPosInt, IsPosInt ],
M: HyperbolicQuadric, [ IsPosInt, IsField ],
M: HyperbolicQuadric, [ IsPosInt, IsPosInt ],
M: HermitianPolarSpace, [ IsPosInt, IsField ],
M: HermitianPolarSpace, [ IsPosInt, IsPosInt ],
M: StandardPolarSpace, [ IsClassicalPolarSpace ],
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M: IsCanonicalPolarSpace, [ IsClassicalPolarSpace and IsClassicalPolarSpaceRep ],
M: CanonicalPolarSpace, [ IsClassicalPolarSpace ],
M: QuadraticForm, [ IsClassicalPolarSpace ],
M: PolarSpaceType, [ IsClassicalPolarSpace and IsClassicalPolarSpaceRep ],
M: CompanionAutomorphism, [ IsClassicalPolarSpace ],
M: ViewObj, [ IsClassicalPolarSpace and IsClassicalPolarSpaceRep ],
M: ViewString, [ IsClassicalPolarSpace and IsClassicalPolarSpaceRep ],
M: ViewObj, [ IsClassicalPolarSpace and IsClassicalPolarSpaceRep and IsEllipticQuadric],
M: ViewObj, [ IsClassicalPolarSpace and IsClassicalPolarSpaceRep and IsEllipticQuadric and IsStandardPolarSpace],
M: ViewString, [ IsClassicalPolarSpace and IsClassicalPolarSpaceRep and IsEllipticQuadric and IsStandardPolarSpace],
M: ViewString, [ IsClassicalPolarSpace and IsClassicalPolarSpaceRep and IsEllipticQuadric],
M: ViewObj, [ IsClassicalPolarSpace and IsClassicalPolarSpaceRep and IsSymplecticSpace],
M: ViewObj, [ IsClassicalPolarSpace and IsClassicalPolarSpaceRep and IsSymplecticSpace and IsStandardPolarSpace],
M: ViewString, [ IsClassicalPolarSpace and IsClassicalPolarSpaceRep and IsSymplecticSpace and IsStandardPolarSpace],
M: ViewString, [ IsClassicalPolarSpace and IsClassicalPolarSpaceRep and IsSymplecticSpace],
M: ViewObj, [ IsClassicalPolarSpace and IsClassicalPolarSpaceRep and IsParabolicQuadric ],
M: ViewObj, [ IsClassicalPolarSpace and IsClassicalPolarSpaceRep and IsParabolicQuadric and IsStandardPolarSpace ],
M: ViewString, [ IsClassicalPolarSpace and IsClassicalPolarSpaceRep and IsParabolicQuadric and IsStandardPolarSpace ],
M: ViewString, [ IsClassicalPolarSpace and IsClassicalPolarSpaceRep and IsParabolicQuadric ],
M: ViewObj, [ IsClassicalPolarSpace and IsClassicalPolarSpaceRep and IsParabolicQuadric ],
M: ViewObj, [ IsClassicalPolarSpace and IsClassicalPolarSpaceRep and IsHyperbolicQuadric ],
M: ViewObj, [ IsClassicalPolarSpace and IsClassicalPolarSpaceRep and IsHyperbolicQuadric and IsStandardPolarSpace],
M: ViewString, [ IsClassicalPolarSpace and IsClassicalPolarSpaceRep and IsHyperbolicQuadric and IsStandardPolarSpace],
M: ViewString, [ IsClassicalPolarSpace and IsClassicalPolarSpaceRep and IsHyperbolicQuadric],
M: ViewObj, [IsClassicalPolarSpace and IsClassicalPolarSpaceRep and IsHermitianPolarSpace ],
M: ViewObj, [IsClassicalPolarSpace and IsClassicalPolarSpaceRep and IsHermitianPolarSpace and IsStandardPolarSpace],
M: ViewString, [IsClassicalPolarSpace and IsClassicalPolarSpaceRep and IsHermitianPolarSpace and IsStandardPolarSpace],
M: ViewString, [IsClassicalPolarSpace and IsClassicalPolarSpaceRep and IsHermitianPolarSpace],
M: PrintObj, InstallMethod(PrintObj,[IsClassicalPolarSpaceandIsClassicalPolarSpaceRep],
M: Display, InstallMethod(Display,[IsClassicalPolarSpaceandIsClassicalPolarSpaceRep],
M: PrintObj, [ IsClassicalPolarSpace and IsClassicalPolarSpaceRep and IsEllipticQuadric ],
M: Display, [ IsClassicalPolarSpace and IsClassicalPolarSpaceRep and IsEllipticQuadric ],
M: PrintObj, [ IsClassicalPolarSpace and IsClassicalPolarSpaceRep and IsSymplecticSpace ],
M: Display, [ IsClassicalPolarSpace and IsClassicalPolarSpaceRep and IsSymplecticSpace ],
M: PrintObj, [ IsClassicalPolarSpace and IsClassicalPolarSpaceRep and IsParabolicQuadric ],
M: Display, [ IsClassicalPolarSpace and IsClassicalPolarSpaceRep and IsParabolicQuadric ],
M: PrintObj, [ IsClassicalPolarSpace and IsClassicalPolarSpaceRep and IsHyperbolicQuadric ],
M: Display, [ IsClassicalPolarSpace and IsClassicalPolarSpaceRep and IsHyperbolicQuadric ],
M: PrintObj, [IsClassicalPolarSpace and IsClassicalPolarSpaceRep and IsHermitianPolarSpace ],
M: Display, [ IsClassicalPolarSpace and IsClassicalPolarSpaceRep and IsHermitianPolarSpace ],
M: IsomorphismCanonicalPolarSpace, [ IsClassicalPolarSpace and IsClassicalPolarSpaceRep ],
M: IsomorphismCanonicalPolarSpaceWithIntertwiner, [ IsClassicalPolarSpace and IsClassicalPolarSpaceRep ],
M: RankAttr, [ IsClassicalPolarSpace and IsClassicalPolarSpaceRep ],
M: TypesOfElementsOfIncidenceStructure, [ IsClassicalPolarSpace and IsClassicalPolarSpaceRep ],
M: TypesOfElementsOfIncidenceStructurePlural, [IsClassicalPolarSpace],
M: Order, [ IsClassicalPolarSpace and IsClassicalPolarSpaceRep ],
M: RepresentativesOfElements, [ IsClassicalPolarSpace and IsClassicalPolarSpaceRep ],
M: \QUO, [ IsClassicalPolarSpace and IsClassicalPolarSpaceRep, IsSubspaceOfClassicalPolarSpace],
M: Size, [IsSubspacesOfClassicalPolarSpace],
M: VectorSpaceToElement, [IsClassicalPolarSpace, IsCMatRep],
M: VectorSpaceToElement, [IsClassicalPolarSpace, IsCVecRep],
M: VectorSpaceToElement, [IsClassicalPolarSpace, IsPlistRep],
M: VectorSpaceToElement, [IsClassicalPolarSpace, IsGF2MatrixRep],



GAP 4 Package FinInG 283

M: VectorSpaceToElement, [IsClassicalPolarSpace, Is8BitMatrixRep],
M: VectorSpaceToElement, [IsClassicalPolarSpace, IsRowVector],
M: VectorSpaceToElement, [IsClassicalPolarSpace, Is8BitVectorRep],
M: \in, [IsElementOfIncidenceStructure, IsClassicalPolarSpace],
M: Span, [IsSubspaceOfProjectiveSpace, IsSubspaceOfProjectiveSpace, IsBool],
M: Meet, [IsSubspaceOfClassicalPolarSpace, IsSubspaceOfClassicalPolarSpace],
M: ElementsOfIncidenceStructure, [IsClassicalPolarSpace and IsClassicalPolarSpaceRep, IsPosInt],
M: ElementsOfIncidenceStructure, [IsClassicalPolarSpace and IsClassicalPolarSpaceRep],
M: NumberOfTotallySingularSubspaces, [IsClassicalPolarSpace, IsPosInt],
M: TypeOfSubspace, [ IsClassicalPolarSpace, IsSubspaceOfProjectiveSpace ],
M: FlagOfIncidenceStructure, [ IsClassicalPolarSpace, IsSubspaceOfProjectiveSpaceCollection ],
M: FlagOfIncidenceStructure, [ IsClassicalPolarSpace, IsList and IsEmpty ],
M: ViewObj, [ IsFlagOfClassicalPolarSpace and IsFlagOfIncidenceStructureRep ],
M: PrintObj, [ IsFlagOfClassicalPolarSpace and IsFlagOfIncidenceStructureRep ],
M: Display, [ IsFlagOfClassicalPolarSpace and IsFlagOfIncidenceStructureRep ],
M: RandomSubspace, [ IsClassicalPolarSpace, IsPosInt ],
M: Random, [ IsSubspacesOfClassicalPolarSpace ],
M: Iterator, [IsSubspacesOfClassicalPolarSpace],
M: ShadowOfElement, [IsClassicalPolarSpace, IsSubspaceOfProjectiveSpace, IsPosInt],
M: Iterator, [ IsShadowSubspacesOfClassicalPolarSpace ],
M: Size, [IsShadowSubspacesOfClassicalPolarSpace andIsShadowSubspacesOfClassicalPolarSpaceRep ],
M: IsCollinear, [IsClassicalPolarSpace and IsClassicalPolarSpaceRep, IsSubspaceOfProjectiveSpace, IsSubspaceOfProjectiveSpace],
M: PolarityOfProjectiveSpace, [IsClassicalPolarSpace],
M: PolarSpace, [ IsPolarityOfProjectiveSpace ],
M: GeometryOfAbsolutePoints, [ IsPolarityOfProjectiveSpace ],
M: AbsolutePoints, [ IsPolarityOfProjectiveSpace ],
M: AbsolutePoints, [ IsPolarityOfProjectiveSpace ],
M: PolarMap, [IsClassicalPolarSpace],
M: CollineationGroup, [ IsClassicalPolarSpace and IsClassicalPolarSpaceRep ],
M: SpecialIsometryGroup, [ IsClassicalPolarSpace and IsClassicalPolarSpaceRep ],
M: IsometryGroup, [ IsClassicalPolarSpace and IsClassicalPolarSpaceRep ],
M: SimilarityGroup, InstallMethod(SimilarityGroup,[IsClassicalPolarSpaceandIsClassicalPolarSpaceRep],
M: IsParabolicQuadric, [IsClassicalPolarSpace],
M: IsParabolicQuadric, [IsClassicalPolarSpace],
M: IsHyperbolicQuadric, [IsClassicalPolarSpace],
M: IsHyperbolicQuadric, [IsClassicalPolarSpace],
M: IsEllipticQuadric, [IsClassicalPolarSpace],
M: IsEllipticQuadric, [IsClassicalPolarSpace],
M: IsSymplecticSpace, [IsClassicalPolarSpace],
M: IsHermitianPolarSpace, [IsClassicalPolarSpace],
M: DefiningListOfPolynomials, [IsProjectiveVariety and IsClassicalPolarSpace and IsClassicalPolarSpaceRep],
M: NucleusOfParabolicQuadric, [ IsClassicalPolarSpace ],
M: TangentSpace, [ IsSubspaceOfClassicalPolarSpace ],
M: TangentSpace, [ IsClassicalPolarSpace, IsSubspaceOfProjectiveSpace ],
M: Pole, [ IsClassicalPolarSpace, IsSubspaceOfProjectiveSpace ],
M: IncidenceGraph, [ IsClassicalPolarSpace ],

morphisms.gi: methods

M: GeometryMorphismByFunction, [ IsAnyElementsOfIncidenceStructure, IsAnyElementsOfIncidenceStructure, IsFunction, IsBool, IsFunction ],
M: GeometryMorphismByFunction, [ IsAnyElementsOfIncidenceStructure, IsAnyElementsOfIncidenceStructure, IsFunction, IsFunction ],
M: GeometryMorphismByFunction, [ IsAnyElementsOfIncidenceStructure, IsAnyElementsOfIncidenceStructure, IsFunction ],
M: ViewObj, [ IsGeometryMorphism ],
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M: PrintObj, [ IsGeometryMorphism ],
M: Display, [ IsGeometryMorphism ],
M: ViewObj, [ IsGeometryMorphism and IsMappingByFunctionWithInverseRep ],
M: ViewObj, [ IsGeometryMorphism and IsMappingByFunctionRep ],
M: PrintObj, [ IsGeometryMorphism and IsMappingByFunctionRep ],
M: Display, [ IsGeometryMorphism and IsMappingByFunctionRep ],
M: ImageElm, [IsGeometryMorphism, IsElementOfIncidenceStructure],
M: \^, [IsElementOfIncidenceStructure, IsGeometryMorphism],
M: ImagesSet, [IsGeometryMorphism, IsElementOfIncidenceStructureCollection],
M: PreImageElm, [IsGeometryMorphism, IsElementOfIncidenceStructure],
M: PreImagesSet, [IsGeometryMorphism, IsElementOfIncidenceStructureCollection],
M: NaturalEmbeddingBySubspace, [ IsProjectiveSpace, IsProjectiveSpace, IsSubspaceOfProjectiveSpace ],
M: NaturalEmbeddingBySubspaceNC, [ IsProjectiveSpace, IsProjectiveSpace, IsSubspaceOfProjectiveSpace ],
M: NaturalEmbeddingBySubspace, [ IsClassicalPolarSpace, IsClassicalPolarSpace, IsSubspaceOfProjectiveSpace ],
M: NaturalEmbeddingBySubspaceNC, [ IsClassicalPolarSpace, IsClassicalPolarSpace, IsSubspaceOfProjectiveSpace ],
M: IsomorphismPolarSpaces, [ IsClassicalPolarSpace, IsClassicalPolarSpace, IsBool ],
M: IsomorphismPolarSpaces, [ IsClassicalPolarSpace, IsClassicalPolarSpace ],
M: IsomorphismPolarSpacesNC, [ IsClassicalPolarSpace, IsClassicalPolarSpace, IsBool ],
M: IsomorphismPolarSpacesNC, [ IsClassicalPolarSpace, IsClassicalPolarSpace ],
M: ShrinkMat, [ IsBasis, IsMatrix ],
M: ShrinkMat, [ IsField,IsField, IsMatrix ],
M: ShrinkVec, [ IsField, IsField, IsVector ],
M: ShrinkVec, [ IsField, IsField, IsVector, IsBasis ],
M: BlownUpProjectiveSpace, [ IsBasis, IsProjectiveSpace ],
M: BlownUpProjectiveSpaceBySubfield, [ IsField, IsProjectiveSpace ],
M: BlownUpSubspaceOfProjectiveSpace, [ IsBasis, IsSubspaceOfProjectiveSpace ],
M: BlownUpSubspaceOfProjectiveSpaceBySubfield, [ IsField, IsSubspaceOfProjectiveSpace],
M: IsDesarguesianSpreadElement, [ IsBasis, IsSubspaceOfProjectiveSpace ],
M: IsBlownUpSubspaceOfProjectiveSpace, [ IsBasis, IsSubspaceOfProjectiveSpace ],
M: NaturalEmbeddingByFieldReduction, [ IsProjectiveSpace, IsField, IsBasis ],
M: NaturalEmbeddingByFieldReduction, [ IsProjectiveSpace, IsField ],
M: NaturalEmbeddingByFieldReduction, [ IsProjectiveSpace, IsProjectiveSpace, IsBasis ],
M: NaturalEmbeddingByFieldReduction, [ IsProjectiveSpace, IsProjectiveSpace ],
M: BilinearFormFieldReduction, [ IsBilinearForm, IsField, IsFFE, IsBasis ],
M: BilinearFormFieldReduction, [ IsBilinearForm, IsField, IsFFE ],
M: QuadraticFormFieldReduction, [ IsQuadraticForm, IsField, IsFFE, IsBasis ],
M: QuadraticFormFieldReduction, [ IsQuadraticForm, IsField, IsFFE ],
M: HermitianFormFieldReduction, [ IsHermitianForm, IsField, IsFFE, IsBasis ],
M: HermitianFormFieldReduction, [ IsHermitianForm, IsField, IsFFE ],
M: NaturalEmbeddingByFieldReduction, [IsClassicalPolarSpace, IsField, IsFFE, IsBasis, IsBool],
M: NaturalEmbeddingByFieldReduction, [IsClassicalPolarSpace, IsField, IsFFE, IsBasis],
M: NaturalEmbeddingByFieldReduction, [IsClassicalPolarSpace, IsField, IsFFE, IsBool],
M: NaturalEmbeddingByFieldReduction, [IsClassicalPolarSpace, IsField, IsFFE],
M: NaturalEmbeddingByFieldReduction, [IsClassicalPolarSpace, IsField, IsBool],
M: NaturalEmbeddingByFieldReduction, [IsClassicalPolarSpace, IsField],
M: NaturalEmbeddingByFieldReduction, [ IsClassicalPolarSpace, IsClassicalPolarSpace ],
M: NaturalEmbeddingByFieldReduction, [IsClassicalPolarSpace, IsClassicalPolarSpace, IsBool],
M: NaturalEmbeddingByFieldReduction, [IsClassicalPolarSpace, IsClassicalPolarSpace],
M: NaturalEmbeddingBySubfield, [ IsProjectiveSpace, IsProjectiveSpace ],
M: NaturalEmbeddingBySubfield, [ IsClassicalPolarSpace, IsClassicalPolarSpace, IsBool ],
M: NaturalEmbeddingBySubfield, [ IsClassicalPolarSpace, IsClassicalPolarSpace ],
M: NaturalProjectionBySubspace, [ IsProjectiveSpace, IsSubspaceOfProjectiveSpace ],
M: NaturalProjectionBySubspaceNC, [ IsProjectiveSpace, IsSubspaceOfProjectiveSpace ],
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M: \QUO, [ IsProjectiveSpace and IsProjectiveSpaceRep, IsSubspaceOfProjectiveSpace],
M: NaturalProjectionBySubspace, [ IsClassicalPolarSpace, IsSubspaceOfClassicalPolarSpace ],
M: NaturalProjectionBySubspaceNC, [ IsClassicalPolarSpace, IsSubspaceOfClassicalPolarSpace ],
M: PluckerCoordinates, [ IsMatrix ],
M: InversePluckerCoordinates, [ IsVector ],
M: PluckerCoordinates, [ IsSubspaceOfProjectiveSpace ],
M: KleinCorrespondence, [ IsField, IsBool ],
M: KleinCorrespondence, [ IsPosInt ],
M: KleinCorrespondence, [ IsPosInt, IsBool ],
M: KleinCorrespondence, [ IsField ],
M: KleinCorrespondence, [ IsClassicalPolarSpace, IsBool ],
M: KleinCorrespondence, [ IsClassicalPolarSpace ],
M: KleinCorrespondenceExtended, [ IsField, IsBool ],
M: KleinCorrespondenceExtended, [ IsPosInt ],
M: KleinCorrespondenceExtended, [ IsClassicalPolarSpace, IsBool ],
M: KleinCorrespondenceExtended, [ IsClassicalPolarSpace ],
M: NaturalDualitySymplectic, [ IsClassicalGQ, IsClassicalGQ, IsBool, IsBool ],
M: NaturalDualityHermitian, [ IsClassicalGQ, IsClassicalGQ, IsBool, IsBool ],
M: NaturalDuality, [ IsClassicalGQ, IsClassicalGQ, IsBool ],
M: NaturalDuality, [ IsClassicalGQ, IsClassicalGQ ],
M: NaturalDuality, [ IsClassicalGQ, IsBool ],
M: NaturalDuality, [ IsClassicalGQ ],
M: IsomorphismPolarSpacesProjectionFromNucleus, [ IsClassicalPolarSpace, IsClassicalPolarSpace, IsBool ],
M: SelfDualitySymplectic, [ IsClassicalGQ, IsBool ],
M: SelfDualityParabolic, [ IsClassicalGQ, IsBool ],
M: SelfDuality, [ IsClassicalGQ, IsBool ],
M: SelfDuality, [ IsClassicalGQ ],

enumerators.gi: methods

M: AntonEnumerator, [IsSubspacesOfClassicalPolarSpace],
M: EnumeratorByOrbit, [ IsSubspacesOfClassicalPolarSpace ],
M: AsList, [IsSubspacesOfClassicalPolarSpace],
M: AsSortedList, [IsSubspacesOfClassicalPolarSpace],
M: AsSSortedList, [IsSubspacesOfClassicalPolarSpace],
M: Enumerator, [ IsSubspacesOfClassicalPolarSpace ],
M: Enumerator, [IsShadowSubspacesOfClassicalPolarSpace and IsShadowSubspacesOfClassicalPolarSpaceRep ],

diagram.gi: methods

M: CosetGeometry, InstallMethod(CosetGeometry,"forgroupsandlistofsubgroups",[IsGroup,IsHomogeneousList],
M: Rank2Residues, InstallMethod(Rank2Residues,[IsIncidenceGeometry],
M: MakeRank2Residue, InstallMethod(MakeRank2Residue,[IsRank2Residue],
M: \^, [IsElementOfCosetGeometry, IsMultiplicativeElementWithInverse],
M: \^, [IsFlagOfCosetGeometry, IsMultiplicativeElementWithInverse],
M: FlagOfIncidenceStructure, [ IsCosetGeometry, IsElementOfIncidenceStructureCollection ],
M: FlagOfIncidenceStructure, [ IsCosetGeometry, IsList and IsEmpty ],
M: \=, InstallOtherMethod(\=,[IsCosetGeometry,IsCosetGeometry ],
M: ElementsOfIncidenceStructure, InstallMethod(ElementsOfIncidenceStructure,[IsCosetGeometry,IsPosInt],
M: ElementsOfIncidenceStructure, [IsCosetGeometry],
M: RandomElement, [IsCosetGeometry],
M: RandomChamber, [IsCosetGeometry],
M: RandomFlag, [IsCosetGeometry],
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M: Random, [IsAllElementsOfCosetGeometry],
M: Size, InstallMethod(Size,[IsElementsOfCosetGeometry],
M: Wrap, [IsCosetGeometry, IsPosInt, IsObject],
M: Iterator, [IsElementsOfCosetGeometry],
M: IsIncident, [IsElementOfCosetGeometry, IsElementOfCosetGeometry],
M: ParabolicSubgroups, [ IsCosetGeometry ], cg -> cg!.parabolics );
M: AmbientGroup, [ IsCosetGeometry ], cg -> cg!.group );
M: BorelSubgroup, [ IsCosetGeometry ], cg -> Intersection(cg!.parabolics) );
M: IsFlagTransitiveGeometry, [ IsCosetGeometry ],
M: IsFirmGeometry, [ IsCosetGeometry ],
M: IsThinGeometry, [ IsCosetGeometry ],
M: IsThickGeometry, [ IsCosetGeometry ],
M: IsConnected, [ IsCosetGeometry ],
M: IsResiduallyConnected, [ IsCosetGeometry ],
M: StandardFlagOfCosetGeometry, [ IsCosetGeometry ],
M: FlagToStandardFlag, [ IsCosetGeometry, IsFlagOfCosetGeometry ],
M: CanonicalResidueOfFlag, [ IsCosetGeometry, IsFlagOfCosetGeometry ],
M: ResidueOfFlag, [ IsFlagOfCosetGeometry ],
M: IncidenceGraph, InstallMethod(IncidenceGraph,[IsCosetGeometryandIsHandledByNiceMonomorphism],
M: IncidenceGraph, InstallMethod(IncidenceGraph,[IsCosetGeometry],
M: AutGroupIncidenceStructureWithNauty, [ IsCosetGeometry ],
M: CorGroupIncidenceStructureWithNauty, [ IsCosetGeometry ],
M: IsIsomorphicIncidenceStructureWithNauty, [ IsCosetGeometry, IsCosetGeometry ],
M: ViewObj, [ IsDiagram and IsDiagramRep ],
M: ViewObj, [ IsDiagram and IsDiagramRep and HasGeometryOfDiagram],
M: ViewObj, [ IsCosetGeometry and IsCosetGeometryRep ],
M: ViewObj, [ IsFlagOfCosetGeometry ],
M: PrintObj, [ IsFlagOfCosetGeometry ],
M: PrintObj, [ IsCosetGeometry and IsCosetGeometryRep ],
M: ViewObj, [ IsElementsOfCosetGeometry and IsElementsOfCosetGeometryRep ],
M: PrintObj, InstallMethod(PrintObj,"forcosetgeometry",[IsElementsOfCosetGeometryand IsElementsOfCosetGeometryRep ],
M: ViewObj, InstallMethod(ViewObj,"forcosetgeometry",[IsElementOfCosetGeometry],
M: PrintObj, InstallMethod(PrintObj,"forelementofcosetgeometry",[IsElementOfCosetGeometry],
M: ViewObj, InstallMethod(ViewObj,"forvertexofdiagram",[IsVertexOfDiagramandIsVertexOfDiagramRep],
M: PrintObj, InstallMethod(PrintObj,"forvertexofdiagram",[IsVertexOfDiagramandIsVertexOfDiagramRep],
M: ViewObj, InstallMethod(ViewObj,"foredgeofdiagram",[IsEdgeOfDiagramandIsEdgeOfDiagramRep],
M: PrintObj, InstallMethod(PrintObj,"foredgeofdiagram",[IsEdgeOfDiagramandIsEdgeOfDiagramRep],
M: ViewObj, InstallMethod(ViewObj,"forrank2residue",[IsRank2ResidueandIsRank2ResidueRep],
M: PrintObj, InstallMethod(PrintObj,"forrank2residue",[IsRank2ResidueandIsRank2ResidueRep],
M: \=, InstallMethod(\=,[IsVertexOfDiagramandIsVertexOfDiagramRep, IsVertexOfDiagram and IsVertexOfDiagramRep ],
M: \=, InstallMethod(\=,[IsEdgeOfDiagramandIsEdgeOfDiagramRep, IsEdgeOfDiagram and IsEdgeOfDiagramRep ],
M: DiagramOfGeometry, InstallMethod(DiagramOfGeometry,"forflag-transitivecosetgeometry",[IsCosetGeometry],
M: Display, InstallMethod(Display,[IsDiagramandIsDiagramRep],
M: DiagramOfGeometry, InstallMethod(DiagramOfGeometry,"foraprojectivespace",[IsProjectiveSpace],
M: Rk2GeoDiameter, InstallMethod(Rk2GeoDiameter,"foracosetgeometry",[IsCosetGeometry, IsPosInt],
M: Rk2GeoGonality, InstallMethod(Rk2GeoGonality,"foracosetgeometry",[IsCosetGeometry],
M: GeometryOfRank2Residue, InstallMethod(GeometryOfRank2Residue,"forarank2residue",[IsRank2Residue],
M: Rank2Parameters, InstallMethod(Rank2Parameters,"foracosetgeometryofrank2",[IsCosetGeometry],
M: \<, [ IsElementOfCosetGeometry and IsElementOfCosetGeometryRep, IsElementOfCosetGeometry and IsElementOfCosetGeometryRep ],
M: DiagramOfGeometry, InstallMethod(DiagramOfGeometry,[IsClassicalPolarSpace],

varieties.gi: methods
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M: AlgebraicVariety, [ IsProjectiveSpace, IsPolynomialRing, IsList ],
M: AlgebraicVariety, [ IsProjectiveSpace, IsList ],
M: AlgebraicVariety, [ IsAffineSpace, IsPolynomialRing, IsList ],
M: AlgebraicVariety, [ IsAffineSpace, IsList ],
M: ProjectiveVariety, [ IsProjectiveSpace, IsPolynomialRing, IsList ],
M: ProjectiveVariety, [ IsProjectiveSpace, IsList ],
M: ViewObj, [ IsProjectiveVariety and IsProjectiveVarietyRep ],
M: PrintObj, [ IsProjectiveVariety and IsProjectiveVarietyRep ],
M: Display, [ IsProjectiveVariety and IsProjectiveVarietyRep ],
M: HermitianVariety, [IsPosInt, IsField],
M: HermitianVariety, [IsPosInt, IsPosInt],
M: HermitianVariety, [IsProjectiveSpace,IsPolynomialRing, IsPolynomial],
M: HermitianVariety, [IsProjectiveSpace, IsPolynomial],
M: ViewObj, [ IsHermitianVariety and IsHermitianVarietyRep ],
M: PrintObj, [ IsHermitianVariety and IsHermitianVarietyRep ],
M: Display, [ IsHermitianVariety and IsHermitianVarietyRep ],
M: QuadraticVariety, [IsProjectiveSpace,IsPolynomialRing, IsPolynomial],
M: QuadraticVariety, [IsProjectiveSpace, IsPolynomial],
M: QuadraticVariety, [IsPosInt, IsField, IsString],
M: QuadraticVariety, [IsPosInt, IsField],
M: QuadraticVariety, [IsPosInt, IsPosInt],
M: QuadraticVariety, [IsPosInt, IsPosInt, IsString],
M: ViewObj, [ IsQuadraticVariety and IsQuadraticVarietyRep ],
M: PrintObj, [ IsQuadraticVariety and IsQuadraticVarietyRep ],
M: Display, [ IsQuadraticVariety and IsQuadraticVarietyRep ],
M: PolarSpace, [IsProjectiveVariety and IsProjectiveVarietyRep],
M: AffineVariety, [ IsAffineSpace, IsPolynomialRing, IsList ],
M: AffineVariety, [ IsAffineSpace, IsList ],
M: AlgebraicVariety, [ IsAffineSpace, IsList ],
M: ViewObj, [ IsAffineVariety and IsAffineVarietyRep ],
M: PrintObj, [ IsAffineVariety and IsAffineVarietyRep ],
M: Display, [ IsAffineVariety and IsAffineVarietyRep ],
M: \in, [IsElementOfIncidenceStructure, IsAlgebraicVariety],
M: PointsOfAlgebraicVariety, [IsAlgebraicVariety and IsAlgebraicVarietyRep],
M: ViewObj, [ IsPointsOfAlgebraicVariety and IsPointsOfAlgebraicVarietyRep ],
M: PrintObj, [ IsPointsOfAlgebraicVariety and IsPointsOfAlgebraicVarietyRep ],
M: Points, [IsAlgebraicVariety and IsAlgebraicVarietyRep],
M: \in, [IsElementOfIncidenceStructure, IsPointsOfAlgebraicVariety], 1*SUM_FLAGS+3,
M: Iterator, [IsPointsOfAlgebraicVariety],
M: Enumerator, [IsPointsOfAlgebraicVariety],
M: AmbientSpace, [IsAlgebraicVariety and IsAlgebraicVarietyRep],
M: SegreMap, [ IsHomogeneousList ],
M: SegreMap, [IsHomogeneousList, IsField ],
M: SegreMap, [IsProjectiveSpace, IsProjectiveSpace ],
M: SegreMap, [ IsPosInt, IsPosInt, IsField ],
M: SegreMap, [ IsPosInt, IsPosInt, IsPosInt ],
M: Source, [ IsSegreMap ],
M: ViewObj, [ IsSegreMap and IsSegreMapRep ],
M: PrintObj, [ IsSegreMap and IsSegreMapRep ],
M: SegreVariety, [IsHomogeneousList],
M: SegreVariety, [IsHomogeneousList, IsField ],
M: SegreVariety, [IsProjectiveSpace, IsProjectiveSpace ],
M: SegreVariety, [ IsPosInt, IsPosInt, IsField ],
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M: SegreVariety, [ IsPosInt, IsPosInt, IsPosInt ],
M: ViewObj, [ IsSegreVariety and IsSegreVarietyRep ],
M: PrintObj, [ IsSegreVariety and IsSegreVarietyRep ],
M: SegreMap, [IsSegreVariety],
M: PointsOfSegreVariety, [IsSegreVariety and IsSegreVarietyRep],
M: ViewObj, [ IsPointsOfSegreVariety and IsPointsOfSegreVarietyRep ],
M: Points, [IsSegreVariety and IsSegreVarietyRep],
M: Iterator, [IsPointsOfSegreVariety],
M: Enumerator, [IsPointsOfSegreVariety],
M: Size, [IsPointsOfSegreVariety],
M: ImageElm, [IsSegreMap, IsList],
M: \^, [IsList, IsSegreMap],
M: ImagesSet, [IsSegreMap, IsList],
M: VeroneseMap, [IsProjectiveSpace],
M: ViewObj, [ IsVeroneseMap and IsVeroneseMapRep ],
M: PrintObj, [ IsVeroneseMap and IsVeroneseMapRep ],
M: VeroneseVariety, [IsProjectiveSpace],
M: VeroneseVariety, [ IsPosInt, IsField ],
M: VeroneseVariety, [ IsPosInt, IsPosInt ],
M: ViewObj, [ IsVeroneseVariety and IsVeroneseVarietyRep ],
M: PrintObj, [ IsVeroneseVariety and IsVeroneseVarietyRep ],
M: VeroneseMap, [IsVeroneseVariety],
M: PointsOfVeroneseVariety, [IsVeroneseVariety and IsVeroneseVarietyRep],
M: ViewObj, [ IsPointsOfVeroneseVariety and IsPointsOfVeroneseVarietyRep ],
M: Points, [IsVeroneseVariety and IsVeroneseVarietyRep],
M: Iterator, [IsPointsOfVeroneseVariety],
M: Enumerator, [IsPointsOfVeroneseVariety],
M: Size, [IsPointsOfVeroneseVariety],
M: ImageElm, [IsGeometryMap, IsElementOfIncidenceStructure],
M: \^, [IsElementOfIncidenceStructure, IsGeometryMap],
M: ImagesSet, [IsGeometryMap, IsElementOfIncidenceStructureCollection],
M: Source, [ IsGeometryMap ],
M: Range, [ IsGeometryMap ],
M: GrassmannCoordinates, [ IsSubspaceOfProjectiveSpace ],
M: GrassmannMap, [ IsPosInt, IsProjectiveSpace ],
M: GrassmannMap, [ IsPosInt, IsPosInt, IsPosInt ],
M: GrassmannMap, [ IsSubspacesOfProjectiveSpace ],
M: ViewObj, [ IsGrassmannMap and IsGrassmannMapRep ],
M: PrintObj, [ IsGrassmannMap and IsGrassmannMapRep ],
M: GrassmannVariety, [ IsPosInt, IsProjectiveSpace ],
M: GrassmannVariety, [ IsSubspacesOfProjectiveSpace ],
M: ViewObj, [ IsGrassmannVariety and IsGrassmannVarietyRep ],
M: PrintObj, [ IsGrassmannVariety and IsGrassmannVarietyRep ],
M: GrassmannMap, [IsGrassmannVariety],
M: PointsOfGrassmannVariety, [IsGrassmannVariety and IsGrassmannVarietyRep],
M: ViewObj, [ IsPointsOfGrassmannVariety and IsPointsOfGrassmannVarietyRep ],
M: Points, [IsGrassmannVariety and IsGrassmannVarietyRep],
M: Iterator, [IsPointsOfGrassmannVariety],
M: Enumerator, [IsPointsOfGrassmannVariety],
M: Size, [IsPointsOfGrassmannVariety],

affinespace.gi: methods



GAP 4 Package FinInG 289

M: AffineSpace, [ IsPosInt, IsField ],
M: AffineSpace, [ IsPosInt, IsPosInt ],
M: ViewObj, InstallMethod(ViewObj,[IsAffineSpaceandIsAffineSpaceRep],
M: PrintObj, InstallMethod(PrintObj,[IsAffineSpaceandIsAffineSpaceRep],
M: \=, [IsAffineSpace, IsAffineSpace],
M: Dimension, [ IsAffineSpace and IsAffineSpaceRep ],
M: UnderlyingVectorSpace, [ IsAffineSpace and IsAffineSpaceRep ],
M: AmbientSpace, [IsSubspaceOfAffineSpace],
M: BaseField, [IsAffineSpace and IsAffineSpaceRep],
M: BaseField, [IsSubspaceOfAffineSpace],
M: TypesOfElementsOfIncidenceStructure, [IsAffineSpace],
M: TypesOfElementsOfIncidenceStructurePlural, [IsAffineSpace],
M: VectorSpaceTransversalElement, [IsVectorSpace, IsFFECollColl, IsVector],
M: VectorSpaceTransversal, [IsVectorSpace, IsFFECollColl],
M: ViewObj, [ IsVectorSpaceTransversal and IsVectorSpaceTransversalRep ],
M: PrintObj, [ IsVectorSpaceTransversal and IsVectorSpaceTransversalRep ],
M: Wrap, [IsAffineSpace, IsPosInt, IsObject],
M: ViewObj, [ IsSubspacesOfAffineSpace and IsSubspacesOfAffineSpaceRep ],
M: PrintObj, [ IsSubspacesOfAffineSpace and IsAllSubspacesOfProjectiveSpaceRep ],
M: Display, [ IsSubspaceOfAffineSpace ],
M: AffineSubspace, [IsAffineSpace, IsRowVector, IsPlistRep],
M: AffineSubspace, [IsAffineSpace, IsRowVector],
M: AffineSubspace, [IsAffineSpace, IsCVecRep],
M: AffineSubspace, [IsAffineSpace, IsRowVector, Is8BitMatrixRep],
M: AffineSubspace, [IsAffineSpace, IsRowVector, IsGF2MatrixRep],
M: AffineSubspace, [IsAffineSpace, IsCVecRep, IsCMatRep],
M: ObjectToElement, [ IsAffineSpace, IsList],
M: ObjectToElement, [ IsAffineSpace, IsPosInt, IsList],
M: RandomSubspace, [ IsAffineSpace, IsInt ],
M: Random, [ IsSubspacesOfAffineSpace ],
M: ElementsOfIncidenceStructure, [IsAffineSpace],
M: ElementsOfIncidenceStructure, [ IsAffineSpace, IsPosInt],
M: Points, [IsAffineSpace],
M: Lines, [IsAffineSpace],
M: Planes, [IsAffineSpace],
M: Solids, [IsAffineSpace],
M: Hyperplanes, [IsAffineSpace],
M: Size, [IsSubspacesOfAffineSpace],
M: FlagOfIncidenceStructure, [ IsAffineSpace, IsSubspaceOfAffineSpaceCollection ],
M: FlagOfIncidenceStructure, [ IsAffineSpace, IsList and IsEmpty ],
M: ViewObj, [ IsFlagOfAffineSpace and IsFlagOfIncidenceStructureRep ],
M: PrintObj, [ IsFlagOfAffineSpace and IsFlagOfIncidenceStructureRep ],
M: Display, [ IsFlagOfAffineSpace and IsFlagOfIncidenceStructureRep ],
M: Enumerator, [ IsVectorSpaceTransversal ],
M: Enumerator, [ IsSubspacesOfAffineSpace ],
M: Iterator, [IsSubspacesOfAffineSpace],
M: \in, [IsSubspaceOfAffineSpace, IsAffineSpace],
M: \in, [ IsAffineSpace, IsSubspaceOfAffineSpace ],
M: \in, [IsSubspaceOfAffineSpace, IsSubspaceOfAffineSpace],
M: IsIncident, [IsSubspaceOfAffineSpace, IsSubspaceOfAffineSpace],
M: Span, [IsSubspaceOfAffineSpace, IsSubspaceOfAffineSpace],
M: Meet, [IsSubspaceOfAffineSpace, IsSubspaceOfAffineSpace],
M: IsParallel, [ IsSubspaceOfAffineSpace, IsSubspaceOfAffineSpace ],
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M: ProjectiveCompletion, [ IsAffineSpace ],
M: ShadowOfElement, [IsAffineSpace, IsSubspaceOfAffineSpace, IsPosInt],
M: ShadowOfFlag, [IsAffineSpace, IsFlagOfIncidenceStructure, IsPosInt],
M: ParallelClass, [IsAffineSpace, IsSubspaceOfAffineSpace],
M: ParallelClass, [ IsSubspaceOfAffineSpace ],
M: Iterator, [IsParallelClassOfAffineSpace and IsParallelClassOfAffineSpaceRep ],
M: Size, [IsShadowSubspacesOfAffineSpace and IsShadowSubspacesOfAffineSpaceRep ],
M: Iterator, [IsShadowSubspacesOfAffineSpace and IsShadowSubspacesOfAffineSpaceRep ],
M: ViewObj, [ IsShadowSubspacesOfAffineSpace and IsShadowSubspacesOfAffineSpaceRep ],
M: ViewObj, [ IsParallelClassOfAffineSpace and IsParallelClassOfAffineSpaceRep ],
M: Points, InstallMethod(Points,[IsSubspaceOfAffineSpace],
M: Points, InstallMethod(Points,[IsAffineSpace,IsSubspaceOfAffineSpace],
M: Lines, InstallMethod(Lines,[IsSubspaceOfAffineSpace],
M: Lines, InstallMethod(Lines,[IsAffineSpace,IsSubspaceOfAffineSpace],
M: Planes, InstallMethod(Planes,[IsSubspaceOfAffineSpace],
M: Planes, InstallMethod(Planes,[IsAffineSpace,IsSubspaceOfAffineSpace],
M: Solids, InstallMethod(Solids,[IsSubspaceOfAffineSpace],
M: Solids, InstallMethod(Solids,[IsAffineSpace,IsSubspaceOfAffineSpace],
M: IncidenceGraph, [ IsAffineSpace ],

affinegroup.gi: methods

M: AffineGroup, [ IsAffineSpace ],
M: CollineationGroup, [ IsAffineSpace ],
M: \^, [IsSubspaceOfAffineSpace, IsProjGrpElWithFrob],

gpolygons.gi: methods

M: GeneralisedPolygonByBlocks, [ IsHomogeneousList ],
M: GeneralisedPolygonByIncidenceMatrix, [ IsMatrix ],
M: GeneralisedPolygonByElements, [ IsSet, IsSet, IsFunction ],
M: GeneralisedPolygonByElements, [ IsSet, IsSet, IsFunction, IsGroup, IsFunction ],
M: ViewObj, [ IsProjectivePlaneCategory and IsGeneralisedPolygonRep],
M: ViewObj, [ IsGeneralisedQuadrangle and IsGeneralisedPolygonRep],
M: ViewObj, [ IsGeneralisedHexagon and IsGeneralisedPolygonRep],
M: ViewObj, [ IsGeneralisedOctagon and IsGeneralisedPolygonRep],
M: ViewObj, [ IsGeneralisedPolygon and IsGeneralisedPolygonRep],
M: ViewObj, [ IsWeakGeneralisedPolygon and IsGeneralisedPolygonRep],
M: Order, [ IsWeakGeneralisedPolygon ],
M: UnderlyingObject, [ IsElementOfGeneralisedPolygon ],
M: ObjectToElement, [ IsGeneralisedPolygon and IsGeneralisedPolygonRep, IsPosInt, IsObject],
M: ObjectToElement, [ IsGeneralisedPolygon and IsGeneralisedPolygonRep, IsObject],
M: ElementsOfIncidenceStructure, [IsGeneralisedPolygon and IsGeneralisedPolygonRep, IsPosInt],
M: ElementsOfIncidenceStructure, [IsWeakGeneralisedPolygon and IsGeneralisedPolygonRep, IsPosInt],
M: Points, [IsGeneralisedPolygon and IsGeneralisedPolygonRep],
M: Lines, [IsGeneralisedPolygon and IsGeneralisedPolygonRep],
M: ViewObj, [ IsElementsOfGeneralisedPolygon and IsElementsOfGeneralisedPolygonRep ],
M: PrintObj, [ IsElementsOfGeneralisedPolygon and IsElementsOfGeneralisedPolygonRep ],
M: Size, [IsElementsOfGeneralisedPolygon],
M: Iterator, [ IsElementsOfGeneralisedPolygon and IsElementsOfGeneralisedPolygonRep],
M: Iterator, [IsShadowElementsOfGeneralisedPolygon and IsShadowElementsOfGeneralisedPolygonRep ],
M: Random, [ IsElementsOfGeneralisedPolygon and IsElementsOfGeneralisedPolygonRep ],
M: IsIncident, [IsElementOfGeneralisedPolygon, IsElementOfGeneralisedPolygon],
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M: Span, [ IsElementOfGeneralisedPolygon, IsElementOfGeneralisedPolygon ],
M: Meet, [ IsElementOfGeneralisedPolygon, IsElementOfGeneralisedPolygon ],
M: Wrap, [IsGeneralisedPolygon, IsPosInt, IsObject],
M: TypesOfElementsOfIncidenceStructurePlural, [ IsGeneralisedPolygon and IsGeneralisedPolygonRep ],
M: ShadowOfElement, [IsGeneralisedPolygon and IsGeneralisedPolygonRep, IsElementOfGeneralisedPolygon, IsPosInt],
M: ViewObj, [ IsShadowElementsOfGeneralisedPolygon and IsShadowElementsOfGeneralisedPolygonRep ],
M: Points, [ IsElementOfGeneralisedPolygon ],
M: Lines, [ IsElementOfGeneralisedPolygon ],
M: DistanceBetweenElements, [ IsElementOfGeneralisedPolygon, IsElementOfGeneralisedPolygon],
M: IncidenceGraph, [ IsGeneralisedPolygon ],
M: IncidenceMatrixOfGeneralisedPolygon, [ IsGeneralisedPolygon ],
M: CollineationGroup, [ IsGeneralisedPolygon and IsGeneralisedPolygonRep ],
M: BlockDesignOfGeneralisedPolygon, [ IsGeneralisedPolygon and IsGeneralisedPolygonRep ],
M: DistanceBetweenElements, [ IsSubspaceOfProjectiveSpace, IsSubspaceOfProjectiveSpace ],
M: IncidenceGraph, [ IsDesarguesianPlane ],
M: DistanceBetweenElements, [ IsSubspaceOfClassicalPolarSpace, IsSubspaceOfClassicalPolarSpace ],
M: IncidenceGraph, [ IsClassicalGQ ],
M: Wrap, [IsClassicalGeneralisedHexagon, IsPosInt, IsObject],
M: SplitCayleyHexagon, [ IsField and IsFinite ],
M: SplitCayleyHexagon, [ IsPosInt ],
M: SplitCayleyHexagon, [ IsClassicalPolarSpace ],
M: TwistedTrialityHexagon, [ IsField and IsFinite ],
M: TwistedTrialityHexagon, [ IsPosInt ],
M: TwistedTrialityHexagon, [ IsClassicalPolarSpace ],
M: Display, [ IsGeneralisedHexagon and IsLieGeometry ],
M: G2fining, [ IsPosInt, IsField and IsFinite ],
M: 3D4fining, [ IsField and IsFinite ],
M: CollineationGroup, [ IsClassicalGeneralisedHexagon],
M: IncidenceGraph, [ IsClassicalGeneralisedHexagon and IsGeneralisedPolygonRep ],
M: VectorSpaceToElement, [ IsClassicalGeneralisedHexagon, IsCVecRep],
M: VectorSpaceToElement, [ IsClassicalGeneralisedHexagon, IsRowVector ],
M: VectorSpaceToElement, [ IsClassicalGeneralisedHexagon, Is8BitVectorRep ],
M: VectorSpaceToElement, [ IsClassicalGeneralisedHexagon, IsPlistRep],
M: VectorSpaceToElement, [ IsClassicalGeneralisedHexagon, IsGF2MatrixRep],
M: VectorSpaceToElement, [ IsClassicalGeneralisedHexagon, Is8BitMatrixRep],
M: VectorSpaceToElement, [ IsClassicalGeneralisedHexagon, IsCMatRep],
M: \in, [ IsElementOfIncidenceStructure, IsClassicalGeneralisedHexagon ],
M: ObjectToElement, [ IsClassicalGeneralisedHexagon, IsObject],
M: ViewObj, [ IsElementOfKantorFamily ],
M: PrintObj, [ IsElementOfKantorFamily ],
M: Wrap, [IsElationGQByKantorFamily, IsPosInt, IsPosInt, IsObject],
M: \=, [IsElementOfKantorFamily, IsElementOfKantorFamily],
M: \<, [IsElementOfKantorFamily, IsElementOfKantorFamily],
M: IsKantorFamily, [IsGroup, IsList, IsList],
M: EGQByKantorFamily, [IsGroup, IsList, IsList],
M: Display, [ IsElationGQByKantorFamily ],
M: UnderlyingObject, [ IsElementOfKantorFamily ],
M: ObjectToElement, [ IsElationGQByKantorFamily, IsPosInt, IsRightCoset ],
M: ObjectToElement, [ IsElationGQByKantorFamily, IsRightCoset ],
M: ObjectToElement, [ IsElationGQByKantorFamily, IsPosInt, IsMultiplicativeElementWithInverse ],
M: ObjectToElement, [ IsElationGQByKantorFamily, IsMultiplicativeElementWithInverse ],
M: ObjectToElement, [ IsElationGQByKantorFamily, IsPosInt, IsMagmaWithInverses ],
M: ObjectToElement, [ IsElationGQByKantorFamily, IsMagmaWithInverses ],
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M: IsAnisotropic, [IsFFECollColl, IsField and IsFinite],
M: IsqClan, [ IsFFECollCollColl, IsField and IsFinite],
M: qClan, [ IsFFECollCollColl, IsField ],
M: ViewObj, [ IsqClanObj and IsqClanRep ],
M: PrintObj, [ IsqClanObj and IsqClanRep ],
M: AsList, [IsqClanObj and IsqClanRep],
M: AsSet, [IsqClanObj and IsqClanRep],
M: BaseField, [IsqClanObj and IsqClanRep],
M: IsLinearqClan, [ IsqClanObj ],
M: LinearqClan, [ IsPosInt ],
M: FisherThasWalkerKantorBettenqClan, [ IsPosInt ],
M: KantorMonomialqClan, [ IsPosInt ],
M: KantorKnuthqClan, [ IsPosInt ],
M: FisherqClan, [ IsPosInt ],
M: KantorFamilyByqClan, [ IsqClanObj and IsqClanRep ],
M: EGQByqClan, [ IsqClanObj and IsqClanRep ],
M: IncidenceGraph, [ IsElationGQ and IsGeneralisedPolygonRep ],
M: BLTSetByqClan, [ IsqClanObj and IsqClanRep ],
M: EGQByBLTSet, [IsList, IsSubspaceOfProjectiveSpace, IsSubspaceOfProjectiveSpace],
M: EGQByBLTSet, [ IsList ],
M: Display, [ IsElationGQByBLTSet ],
M: DefiningPlanesOfEGQByBLTSet, [ IsElationGQByBLTSet ],
M: ObjectToElement, [ IsElationGQByBLTSet, IsPosInt, IsSubspaceOfClassicalPolarSpace],
M: ObjectToElement, [ IsElationGQByBLTSet, IsSubspaceOfClassicalPolarSpace],
M: CollineationSubgroup, [ IsElationGQByBLTSet ],
M: FlockGQByqClan, InstallMethod(FlockGQByqClan,[IsqClanObj],

orbits-stabilisers.gi: methods

M: FiningOrbit, [ IsProjectiveGroupWithFrob, IsElementOfIncidenceStructure, IsFunction],
M: FiningOrbit, [ IsProjectiveGroupWithFrob, IsSubspaceOfProjectiveSpace ],
M: FiningOrbit, [ IsProjectiveGroupWithFrob, IsSubspaceOfAffineSpace ],
M: FiningOrbit, [ IsProjectiveGroupWithFrob, CategoryCollections(IsElementOfIncidenceStructure), IsFunction],
M: FiningOrbit, [ IsProjectiveGroupWithFrob, CategoryCollections(IsElementOfIncidenceStructure) ],
M: FiningOrbits, [ IsGroup, IsHomogeneousList, IsFunction],
M: FiningOrbits, [ IsProjectiveGroupWithFrob, IsSubspaceOfProjectiveSpaceCollection and IsHomogeneousList ],
M: FiningOrbits, [ IsProjectiveGroupWithFrob, IsSubspaceOfAffineSpaceCollection and IsHomogeneousList ],
M: FiningOrbits, [ IsProjectiveGroupWithFrob, IsSubspacesOfProjectiveSpace ],
M: FiningOrbits, [ IsProjectiveGroupWithFrob, IsSubspacesOfAffineSpace ],
M: FiningOrbits, [ IsProjectiveGroupWithFrob, IsShadowSubspacesOfProjectiveSpace],
M: FiningOrbits, [ IsProjectiveGroupWithFrob, IsShadowSubspacesOfAffineSpace],
M: FiningOrbits, [ IsProjectiveGroupWithFrob, IsShadowSubspacesOfClassicalPolarSpace],
M: FiningOrbits, [ IsProjectiveGroupWithFrob, IsParallelClassOfAffineSpace],
M: FiningElementStabiliserOp, [ IsGroup, IsElementOfIncidenceStructure, IsFunction],
M: FiningStabiliser, [ IsProjectiveGroupWithFrob, IsSubspaceOfProjectiveSpace],
M: FiningStabiliser, [ IsProjectiveGroupWithFrob, IsSubspaceOfAffineSpace],
M: FiningStabiliserOrb, [IsProjectiveGroupWithFrob, IsSubspaceOfProjectiveSpace],
M: FiningStabiliserOrb, [IsProjectiveGroupWithFrob, IsSubspaceOfAffineSpace],
M: FiningSetwiseStabiliser, [IsProjectiveGroupWithFrob, IsSubspaceOfProjectiveSpaceCollection and IsHomogeneousList],
M: FiningSetwiseStabiliser, [IsProjectiveGroupWithFrob, IsSubspaceOfAffineSpaceCollection and IsHomogeneousList],
M: FiningStabiliserPerm, InstallMethod(FiningStabiliserPerm,[IsProjectiveGroupWithFrob,IsElementOfIncidenceStructure],
M: FiningStabiliserPerm2, [IsProjectiveGroupWithFrob, IsElementOfIncidenceStructure],
M: FixedSubspaces, [IsProjectiveGroupWithFrob, IsProjectiveSpace],
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A.3 The filter graph(s)



Appendix B

The finite classical groups in FinInG

B.1 Standard forms used to produce the finite classical groups.

An overview of operations is given that produce gram matrices to construct standard forms. The notion
standard form is explained in Section 7.2, in the context of canonical and standard polar spaces.

B.1.1 CanonicalGramMatrix

. CanonicalGramMatrix(type, d, f) (operation)

Returns: a gram matrix usable as input to construct a sesquilinear form
The arguments d and f are the vector dimension and the fininte field respectively. The argument

type is eiter "symplectic", "hermitian", "hyperbolic", "elliptic" or "parabolic".
If type equals "symplectic", the gram matrix is

0 1 0 0 . . . 0 0
−1 0 0 0 . . . 0 0
0 0 0 1 . . . 0 0
0 0 −1 0 . . . 0 0
...

...
...

...
. . .

...
...

0 0 0 0 . . . 0 1
0 0 0 0 . . . −1 0


.

If type equals "hermitian", the gram matrix is the identity matrix of dimension d over the field
f = GF(q)

If type equals "hyperbolic", the gram matrix is

0 a 0 0 . . . 0 0
a 0 0 0 . . . 0 0
0 0 0 a . . . 0 0
0 0 a 0 . . . 0 0
...

...
...

...
. . .

...
...

0 0 0 0 . . . 0 a
0 0 0 0 . . . a 0


.

with a = p+1
2 if p+1≡ 0 mod 4,q = ph and a = 1 otherwise.

294
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If type equals "ellipic", the gram matrix is

1 0 0 0 . . . 0 0
0 t 0 0 . . . 0 0
0 0 0 a . . . 0 0
0 0 a 0 . . . 0 0
...

...
...

...
. . .

...
...

0 0 0 0 . . . 0 a
0 0 0 0 . . . a 0


.

with t the primitive root of GF(q) if q≡ 1 mod 4 or q≡ 2 mod 4, and t = 1 otherwise; and a = p+1
2 if

p+1≡ 0 mod 4,q = ph and a = 1 otherwise.
If type equals "parabolic", the gram matrix is

t 0 0 . . . 0 0
0 0 a . . . 0 0
0 a 0 . . . 0 0
...

...
...

. . .
...

...
0 0 0 . . . 0 a
0 0 0 . . . a 0


.

with t the primitive root of GF(p) and a = t p+1
2 if q ≡ 5 mod 8 or q ≡ 7 mod 8, and t = a = 1

otherwise.
There is no error message when asking for a hyperbolic, elliptic or parabolic type if the char-

acteristic of the field f is even. In such a case, a matrix is returned, which is of course not suit-
able to create a bilinear form that corresponds with an orthogonal polar space. For this reason,
CanonicalGramMatrix is not a operation designed for the user.

B.1.2 CanonicalQuadraticForm

. CanonicalQuadraticForm(type, d, f) (operation)

Returns: a gram matrix usable as input to construct a quadratic form
The arguments d and f are the vector dimension and the fininte field respectively. The argument

type is eiter "hyperbolic", "elliptic" or "parabolic". The matrix returned can be used to construct a
quadratic form.

If type equals "hyperbolic", the gram matrix returned will result in the quadratic form x1x2 +
x3x4 + . . .+ xd−1xd

If type equals "elliptic", the gram matrix returned will result in the quadratic form x2
1 + x1x2 +

νx2
2 + x3x4 + . . .+ xd−1xdwith ν = α i, with \alpha the primitive element of the multiplicative group

of GF(q), which is in GAP Z(q), and i the first number in [0,1, ...,q− 2] for which x2 + x+ ν is
irreducible over GF(q).

If type equals "parabolic", the gram matrix returned will result in the quadratic form x2
1 + x2x3 +

. . .xd−1xd
This function is intended to be used only when the characteristic of f is two, but there is no

error message is this is not the case. For this reason, CanonicalQuadraticForm is not an operation
designed for the user.
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B.2 Direct commands to construct the projective classical groups in
FinInG

As explained in Chapter 7, Section 7.7, we have assumed that the user asks for the projective classical
groups in an indirect way, i.e. as a (subgroup) of the collineation group of a classical polar space.
However, shortcuts to these groups exist. More information on the notations can be found in Section
7.7.

B.2.1 SOdesargues

. SOdesargues(e, d, f) (operation)

Returns: the special isometry group of a canonical orthogonal polar space
The argument e determines the type of the othogonal polar space, i.e. -1,0,1 for an elliptic, hyper-

bolic, parabolic orthogonal space, respectively. The argument d is the dimension of the underlying
vector space, f is the finite field. The method relies on SO, a GAP command returning the appropriate
matrix group. Internally, the invariant form is asked, and the base chage to our canonical form is
obtained using the package form

Example
gap> SOdesargues(-1,6,GF(9));
PSO(-1,6,9)
gap> SOdesargues(0,7,GF(11));
PSO(0,7,11)
gap> SOdesargues(1,8,GF(16));
PSO(1,8,16)

B.2.2 GOdesargues

. GOdesargues(e, d, f) (operation)

Returns: the isometry group of a canonical orthogonal polar space
The argument e determines the type of the othogonal polar space, i.e. -1,0,1 for an elliptic, hyper-

bolic, parabolic orthogonal space, respectively. The argument d is the dimension of the underlying
vector space, f is the finite field. The method relies on GO, a GAP command returning the appropriate
matrix group. Internally, the invariant form is asked, and the base chage to our canonical form is
obtained using the package form

Example
gap> GOdesargues(-1,6,GF(9));
PGO(-1,6,9)
gap> GOdesargues(0,7,GF(11));
PGO(0,7,11)
gap> GOdesargues(1,8,GF(16));
PGO(1,8,16)

B.2.3 SUdesargues

. SUdesargues(d, f) (operation)

Returns: the special isometry group of a canonical hermitian polar space
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The argument d is the dimension of the underlying vector space, f is the finite field. The method
relies on SU, a GAP command returning the appropriate matrix group. Internally, the invariant form
is asked, and the base chage to our canonical form is obtained using the package form

Example
gap> SUdesargues(4,GF(9));
PSU(4,3^2)

B.2.4 GUdesargues

. GUdesargues(d, f) (operation)

Returns: the isometry/similarity group of a canonical hermitian polar space
The argument d is the dimension of the underlying vector space, f is the finite field. The method

relies on GU, a GAP command returning the appropriate matrix group. Internally, the invariant form
is asked, and the base chage to our canonical form is obtained using the package form

Example
gap> GUdesargues(4,GF(9));
PGU(4,3^2)

B.2.5 Spdesargues

. Spdesargues(d, f) (operation)

Returns: the (special) isometry group of a canonical symplectic polar space
The argument d is the dimension of the underlying vector space, f is the finite field. The method

relies on Sp, a GAP command returning the appropriate matrix group. Internally, the invariant form
is asked, and the base chage to our canonical form is obtained using the package form

Example
gap> Spdesargues(6,GF(11));
PSp(6,11)

B.2.6 GeneralSymplecticGroup

. GeneralSymplecticGroup(d, f) (operation)

Returns: the isometry group of a canonical symplectic form
The argument d is the dimension of the underlying vector space, f is the finite field. Internally,

the invariant form is asked, and the base chage to our canonical form is obtained using the package
form

Example
gap> GeneralSymplecticGroup(6,GF(7));
GSp(6,7)

B.2.7 GSpdesargues

. GSpdesargues(d, f) (operation)

Returns: the similarity group of a canonical symplectic polar space
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The argument d is the dimension of the underlying vector space, f is the finite field. The method
relies on Sp, a GAP command returning the appropriate matrix group. Internally, the invariant form
is asked, and the base chage to our canonical form is obtained using the package form

Example
gap> GSpdesargues(4,GF(9));
PGSp(4,9)

B.2.8 GammaSp

. GammaSp(d, f) (operation)

Returns: the collineation group of a canonical symplectic polar space
The argument d is the dimension of the underlying vector space, f is the finite field. The method

relies on GeneralSymplecticGroup, and adds the frobenius automorphism.
Example

gap> GammaSp(4,GF(9));
PGammaSp(4,9)

B.2.9 DeltaOminus

. DeltaOminus(d, f) (operation)

Returns: the similarity group of a canonical elliptic orthogonal polar space
The argument d is the dimension of the underlying vector space, f is the finite field. The method

relies on GOdesargues, and computes the generators to be added.
Example

gap> DeltaOminus(6,GF(7));
PDeltaO-(6,7)

B.2.10 DeltaOplus

. DeltaOplus(d, f) (operation)

Returns: the similarity group of a canonical hyperbolic orthogonal polar space
The argument d is the dimension of the underlying vector space, f is the finite field. The method

relies on GOdesargues, and computes the generators to be added.
Example

gap> DeltaOplus(8,GF(7));
PDeltaO+(8,7)

B.2.11 GammaOminus

. GammaOminus(d, f) (operation)

Returns: the collineation group of a canonical elliptic orthogonal polar space
The argument d is the dimension of the underlying vector space, f is the finite field. The method

relies on DeltaOminus, and computes the generators to be added.
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Example
gap> GammaOminus(4,GF(25));
PGammaO-(4,25)

B.2.12 GammaO

. GammaO(d, f) (operation)

Returns: the collineation group of a canonical parabolic orthogonal polar space
The argument d is the dimension of the underlying vector space, f is the finite field. The method

relies on GO, a GAP command returning the appropriate matrix group. Internally, the invariant form
is asked, and the base chage to our canonical form is obtained using the package form. Furthermore,
the generators to be added are computed.

Example
gap> GammaO(5,GF(49));
PGammaO(5,49)

B.2.13 GammaOplus

. GammaOplus(d, f) (operation)

Returns: the collineation group of a canonical hyperbolic orthogonal polar space
The argument d is the dimension of the underlying vector space, f is the finite field. The method

relies on DeltaOplus, and computes the generators to be added.
Example

gap> GammaOplus(6,GF(64));
PGammaO+(6,64)

B.2.14 GammaU

. GammaU(d, f) (operation)

Returns: the collineation group of a canonical hermitian variety
The argument d is the dimension of the underlying vector space, f is the finite field. The method

relies on GU, a GAP command returning the appropriate matrix group. Internally, the invariant form
is asked, and the base chage to our canonical form is obtained using the package form. Furthermore,
the generators to be added are computed.

Example
gap> GammaU(4,GF(81));
PGammaU(4,9^2)

B.2.15 G2fining

. G2fining(d, f) (operation)

Returns: the chevalley group G_2(q)
This group is the group of projectivities stabilising the split Cayley hexagon embedded in the

paraboloc quadric Q(6,q) :X0X4 +X1X5 +X2X6 = X2
3 . f must be a finite field and d must be 5 or 6.
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When d is 5, F must be a field of even order, and then the returned group consists of projectivities of
W (5,q). The generators of this group are described exaplicitely in [VM98], Appendix D. A correction
can be found in [Off00]. However, also this source contains a mistake.

B.2.16 3D4fining

. 3D4fining(d, f) (operation)

Returns: the chevalley group 3D4(q)
d must equal 7 and f must be a field of order q3 This group is the group of collineations stabilising

the twisted triality hexagon embedded in the hyperbolic quadric Q+(7,q): X0X4 +X1X5 +X2X6 +
X3X7 The generators of this group are described exaplicitely in [VM98], Appendix D.

B.3 Basis of the collineation groups

The GenSS uses a function FindBasePointCandidates taking a group as one of the arguments.
From a geometrical point of view, it is straightforward to construct a basis for a collineation group for
the action on projective points.

B.3.1 FindBasePointCandidates

. FindBasePointCandidates(g, opt, i, parentS) (operation)

Returns: a record
The returned record contains the base points for the action, and some other fields. The information

in the other fields is determined from the arguments opt and i . More information on these details
can be found in the manual of GenSS.

Variations on this version of BasePointCandidates are found in FinInG used in previous ver-
sions of GenSS. These variations are already or will become obsolete in the (near) future.



Appendix C

Low level functions for morphisms

C.1 Field reduction and vector spaces

C.1.1 ShrinkVec

. ShrinkVec(f1, f2, v, basis) (operation)

. ShrinkVec(f1, f2, v) (operation)

Returns: a vector
The argument f2 is a subfield of f1 and v is vector in a vectorspace V over f2 . The second

flavour Returns return the vector of length d/t, where d = dim(V ), and t = [ f 1 : f 2]. The first flavour
uses the natural basis Basis(AsVectorSpace(f2,f1)). It is not checked whether f2 is a subfield
of f1 , but it is checked whether the lengt of v is a multiple of the degree of the field extension.

C.1.2 ShrinkMat

. ShrinkMat(basis, matrix) (operation)

. ShrinkMat(f1, f2, matrix) (operation)

Returns: a matrix
Let K = GF(q) and let L = GF(qd). Asumme that B is a basis for L as K vector space. Let

A = (ai j) be a matrix over L. The result of BlownUpMat(B,A) is the matrix M = (mi j), where each
entry a = ai j is replaced by the d×d matrix Ma , representing the linear map x 7→ ax with respect to
the basis B. This means that if B = {b1,b2, . . . ,bd} , then the row j is row of the d coefficients of ab j

with resepect to the basis B. The operation ShrinkMat implements the converse of BlownUpMat. It
is checked if the input is a blown up matrix as follows. Let A be a dm× dn matrix. For each d× d
block, say M, we need to check that the set {b(i −1)∑

d
j=1 mi jb j : i ∈ {1, ..,d}} . has size one, since the

unique element in that case is the element a ∈ L represented as a linear map by M with respect to the
basis B.

The first flavour of this operation requires a given basis as first argument. The second flavour
requires a field f1 and a subfield f2 as first two arguments and calls the first flavour with
Basis(AsVectorSpace(f2,f1)) as basis. It is not checked whether f2 is a subfield of f1 .

C.1.3 BlownUpProjectiveSpace

. BlownUpProjectiveSpace(basis, pg1) (operation)

Returns: a projective space

301
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Let basis be a basis of the field GF(qt) that is an extension of the basefield of the r− 1 di-
mensional projective space pg1 . This operation returns the rt− 1 dimensional projective space over
GF(q). The basis itself is only used to determine the field GF(qt).

C.1.4 BlownUpProjectiveSpaceBySubfield

. BlownUpProjectiveSpaceBySubfield(subfield, pg) (operation)

Returns: a projective space
Blows up a projective space pg with respect to the standard basis of the basefield of pg over the

subfield .

C.1.5 BlownUpSubspaceOfProjectiveSpace

. BlownUpSubspaceOfProjectiveSpace(basis, subspace) (operation)

. BlownUpSubspaceOfProjectiveSpace(basis, space) (operation)

Returns: a subspace of a projective space
The first flavour blows up a subspace of a projective space with respect to the basis using

field reduction and returns a subspace of the projective space obtained from blowing up the ambient
projective space of subspace with respect to basis using field reduction. This operation relies on
BlownUpMat.

C.1.6 BlownUpSubspaceOfProjectiveSpaceBySubfield

. BlownUpSubspaceOfProjectiveSpaceBySubfield(subfield, subspace) (operation)

Returns: a subspace of a projective space
Blows up a subspace of a projective space with respect to the standard basis of the basefield of

subspace over the subfield , using field reduction and returns it a subspace of the projective space
obtained from blowing up the ambient projective space of subspace over the subfield.

C.1.7 IsDesarguesianSpreadElement

. IsDesarguesianSpreadElement(basis, subspace) (operation)

Returns: true or false
Checks wether the subspace is a subspace which is obtained from a blowing up a projective point

using field reduction with respect to basis .

C.2 Field reduction and forms

The embedding of polar spaces by field reduction is explained in detail in Section 10.5.3, and relies
on the following three operations.

C.2.1 QuadraticFormFieldReduction

. QuadraticFormFieldReduction(qf1, f2, alpha, basis) (operation)

. QuadraticFormFieldReduction(qf1, f2, alpha) (operation)

Returns: a quadratic form
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Let f be quadratic form determining a polar space over the field L This operation returns the
quadratic form T_{\alpha} \circ f \circ \Phi^{-1} over a subfield K of L, as explained in Section
10.5.3.

C.2.2 BilinearFormFieldReduction

. BilinearFormFieldReduction(bil11, f2, alpha, basis) (operation)

. BilinearFormFieldReduction(bil11, f2, alpha) (operation)

Returns: a bilinear form
Let f be bilinear form determining a polar space over the field L This operation returns the

quadratic form T_{\alpha} \circ f \circ \Phi^{-1} over a subfield K of L, as explained in Section
10.5.3.

C.2.3 HermitianFormFieldReduction

. HermitianFormFieldReduction(hf1, f2, alpha, basis) (operation)

. HermitianFormFieldReduction(hf1, f2, alpha) (operation)

Returns: a hermitian form
Let f be bilinear form determining a polar space over the field L This operation returns the

quadratic form T_{\alpha} \circ f \circ \Phi^{-1} over a subfield K of L, as explained in Section
10.5.3.

C.3 Low level functions

C.3.1 PluckerCoordinates

. PluckerCoordinates(matrix) (operation)

. InversePluckerCoordinates(vector) (operation)

The first operation can also take a matrix representing a line of PG(3,q) as argument. No checks
are performed in this case. It returns the plucker coordinates of the argument as list of finite field
elements. The second operation is the inverse of the first. No check is performed whether the argument
represents a point of the correct hyperbolic quadric. Both operations are to be used internally only.

C.3.2 IsomorphismPolarSpacesProjectionFromNucleus

. IsomorphismPolarSpacesProjectionFromNucleus(quadric, w, boolean) (operation)

This operation returns the isomorphism between a parabolic quadric and a sympletic polar space.
Although it is checked whether the base field and rank of both polar spaces are equal, this operation
is menat for internal use only. This operation is called by the operation IsomorphismPolarSpaces.

C.3.3 IsomorphismPolarSpacesNC

. IsomorphismPolarSpacesNC(ps1, ps2) (operation)

. IsomorphismPolarSpacesNC(ps1, ps2, boolean) (operation)
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IsomorphismPolarSpacesNC is the version of IsomorphismPolarSpaces where no checks are
built in, and which is only applicable when the two polar spaces are equivalent. As no checks are built
in, this operation is to be used internally only.

C.3.4 NaturalEmbeddingBySubspaceNC

. NaturalEmbeddingBySubspaceNC(geom1, geom2, v) (operation)

The operation NaturalEmbeddingBySubspaceNC is the “no check” version of
NaturalEmbeddingBySubspace.

C.3.5 NaturalProjectionBySubspaceNC

. NaturalProjectionBySubspaceNC(ps, v) (operation)

The operation NaturalEmbeddingBySubspaceNC is the “no check” version of
NaturalEmbeddingBySubspace.
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