25 #ifdef BT_USE_DOUBLE_PRECISION 26 #define btVector3Data btVector3DoubleData 27 #define btVector3DataName "btVector3DoubleData" 29 #define btVector3Data btVector3FloatData 30 #define btVector3DataName "btVector3FloatData" 31 #endif //BT_USE_DOUBLE_PRECISION 33 #if defined BT_USE_SSE 38 #pragma warning(disable: 4556) // value of intrinsic immediate argument '4294967239' is out of range '0 - 255' 42 #define BT_SHUFFLE(x,y,z,w) ((w)<<6 | (z)<<4 | (y)<<2 | (x)) 44 #define bt_pshufd_ps( _a, _mask ) _mm_shuffle_ps((_a), (_a), (_mask) ) 45 #define bt_splat3_ps( _a, _i ) bt_pshufd_ps((_a), BT_SHUFFLE(_i,_i,_i, 3) ) 46 #define bt_splat_ps( _a, _i ) bt_pshufd_ps((_a), BT_SHUFFLE(_i,_i,_i,_i) ) 48 #define btv3AbsiMask (_mm_set_epi32(0x00000000, 0x7FFFFFFF, 0x7FFFFFFF, 0x7FFFFFFF)) 49 #define btvAbsMask (_mm_set_epi32( 0x7FFFFFFF, 0x7FFFFFFF, 0x7FFFFFFF, 0x7FFFFFFF)) 50 #define btvFFF0Mask (_mm_set_epi32(0x00000000, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF)) 51 #define btv3AbsfMask btCastiTo128f(btv3AbsiMask) 52 #define btvFFF0fMask btCastiTo128f(btvFFF0Mask) 53 #define btvxyzMaskf btvFFF0fMask 54 #define btvAbsfMask btCastiTo128f(btvAbsMask) 57 #define btvMzeroMask (_mm_set_ps(-0.0f, -0.0f, -0.0f, -0.0f)) 58 #define v1110 (_mm_set_ps(0.0f, 1.0f, 1.0f, 1.0f)) 59 #define vHalf (_mm_set_ps(0.5f, 0.5f, 0.5f, 0.5f)) 60 #define v1_5 (_mm_set_ps(1.5f, 1.5f, 1.5f, 1.5f)) 71 const float32x4_t
ATTRIBUTE_ALIGNED16(btvMzeroMask) = (float32x4_t){-0.0f, -0.0f, -0.0f, -0.0f};
73 static_cast<int32_t>(0xFFFFFFFF),
static_cast<int32_t>(0xFFFFFFFF), 0x0};
74 const int32x4_t
ATTRIBUTE_ALIGNED16(btvAbsMask) = (int32x4_t){0x7FFFFFFF, 0x7FFFFFFF, 0x7FFFFFFF, 0x7FFFFFFF};
75 const int32x4_t
ATTRIBUTE_ALIGNED16(btv3AbsMask) = (int32x4_t){0x7FFFFFFF, 0x7FFFFFFF, 0x7FFFFFFF, 0x0};
89 #if defined (__SPU__) && defined (__CELLOS_LV2__) 94 return *((
const vec_float4*)&m_floats[0]);
97 #else //__CELLOS_LV2__ __SPU__ 98 #if defined (BT_USE_SSE) || defined(BT_USE_NEON) // _WIN32 || ARM 100 btSimdFloat4 mVec128;
114 #endif //__CELLOS_LV2__ __SPU__ 139 #if (defined (BT_USE_SSE_IN_API) && defined (BT_USE_SSE) )|| defined (BT_USE_NEON) 149 mVec128 = rhs.mVec128;
160 #endif // #if defined (BT_USE_SSE_IN_API) || defined (BT_USE_NEON) 166 #if defined(BT_USE_SSE_IN_API) && defined (BT_USE_SSE) 167 mVec128 = _mm_add_ps(mVec128, v.mVec128);
168 #elif defined(BT_USE_NEON) 169 mVec128 = vaddq_f32(mVec128, v.mVec128);
183 #if defined(BT_USE_SSE_IN_API) && defined (BT_USE_SSE) 184 mVec128 = _mm_sub_ps(mVec128, v.mVec128);
185 #elif defined(BT_USE_NEON) 186 mVec128 = vsubq_f32(mVec128, v.mVec128);
199 #if defined(BT_USE_SSE_IN_API) && defined (BT_USE_SSE) 200 __m128 vs = _mm_load_ss(&s);
201 vs = bt_pshufd_ps(vs, 0x80);
202 mVec128 = _mm_mul_ps(mVec128, vs);
203 #elif defined(BT_USE_NEON) 204 mVec128 = vmulq_n_f32(mVec128, s);
219 #if 0 //defined(BT_USE_SSE_IN_API) 221 __m128 vs = _mm_load_ss(&s);
222 vs = _mm_div_ss(v1110, vs);
223 vs = bt_pshufd_ps(vs, 0x00);
225 mVec128 = _mm_mul_ps(mVec128, vs);
237 #if defined BT_USE_SIMD_VECTOR3 && defined (BT_USE_SSE_IN_API) && defined (BT_USE_SSE) 238 __m128 vd = _mm_mul_ps(mVec128, v.mVec128);
239 __m128 z = _mm_movehl_ps(vd, vd);
240 __m128 y = _mm_shuffle_ps(vd, vd, 0x55);
241 vd = _mm_add_ss(vd, y);
242 vd = _mm_add_ss(vd, z);
243 return _mm_cvtss_f32(vd);
244 #elif defined(BT_USE_NEON) 245 float32x4_t vd = vmulq_f32(mVec128, v.mVec128);
246 float32x2_t x = vpadd_f32(vget_low_f32(vd), vget_low_f32(vd));
247 x = vadd_f32(x, vget_high_f32(vd));
248 return vget_lane_f32(x, 0);
250 return m_floats[0] * v.
m_floats[0] +
295 int maxIndex = absVec.
maxAxis();
296 if (absVec[maxIndex]>0)
298 *
this /= absVec[maxIndex];
312 #if defined(BT_USE_SSE_IN_API) && defined (BT_USE_SSE) 314 __m128 vd = _mm_mul_ps(mVec128, mVec128);
315 __m128 z = _mm_movehl_ps(vd, vd);
316 __m128 y = _mm_shuffle_ps(vd, vd, 0x55);
317 vd = _mm_add_ss(vd, y);
318 vd = _mm_add_ss(vd, z);
321 vd = _mm_sqrt_ss(vd);
322 vd = _mm_div_ss(v1110, vd);
323 vd = bt_splat_ps(vd, 0x80);
324 mVec128 = _mm_mul_ps(mVec128, vd);
328 y = _mm_rsqrt_ss(vd);
332 vd = _mm_mul_ss(vd, vHalf);
334 vd = _mm_mul_ss(vd, y);
335 vd = _mm_mul_ss(vd, y);
336 z = _mm_sub_ss(z, vd);
338 y = _mm_mul_ss(y, z);
340 y = bt_splat_ps(y, 0x80);
341 mVec128 = _mm_mul_ps(mVec128, y);
373 #if defined BT_USE_SIMD_VECTOR3 && defined (BT_USE_SSE_IN_API) && defined (BT_USE_SSE) 374 return btVector3(_mm_and_ps(mVec128, btv3AbsfMask));
375 #elif defined(BT_USE_NEON) 389 #if defined(BT_USE_SSE_IN_API) && defined (BT_USE_SSE) 392 T = bt_pshufd_ps(mVec128, BT_SHUFFLE(1, 2, 0, 3));
393 V = bt_pshufd_ps(v.mVec128, BT_SHUFFLE(1, 2, 0, 3));
395 V = _mm_mul_ps(V, mVec128);
396 T = _mm_mul_ps(T, v.mVec128);
397 V = _mm_sub_ps(V, T);
399 V = bt_pshufd_ps(V, BT_SHUFFLE(1, 2, 0, 3));
401 #elif defined(BT_USE_NEON) 404 float32x2_t Tlow = vget_low_f32(mVec128);
405 float32x2_t Vlow = vget_low_f32(v.mVec128);
406 T = vcombine_f32(vext_f32(Tlow, vget_high_f32(mVec128), 1), Tlow);
407 V = vcombine_f32(vext_f32(Vlow, vget_high_f32(v.mVec128), 1), Vlow);
409 V = vmulq_f32(V, mVec128);
410 T = vmulq_f32(T, v.mVec128);
412 Vlow = vget_low_f32(V);
414 V = vcombine_f32(vext_f32(Vlow, vget_high_f32(V), 1), Vlow);
415 V = (float32x4_t)vandq_s32((int32x4_t)V, btvFFF0Mask);
428 #if defined BT_USE_SIMD_VECTOR3 && defined (BT_USE_SSE_IN_API) && defined (BT_USE_SSE) 430 __m128 T = _mm_shuffle_ps(v1.mVec128, v1.mVec128, BT_SHUFFLE(1, 2, 0, 3));
431 __m128 V = _mm_shuffle_ps(v2.mVec128, v2.mVec128, BT_SHUFFLE(1, 2, 0, 3));
433 V = _mm_mul_ps(V, v1.mVec128);
434 T = _mm_mul_ps(T, v2.mVec128);
435 V = _mm_sub_ps(V, T);
437 V = _mm_shuffle_ps(V, V, BT_SHUFFLE(1, 2, 0, 3));
440 V = _mm_mul_ps(V, mVec128);
441 __m128 z = _mm_movehl_ps(V, V);
442 __m128 y = _mm_shuffle_ps(V, V, 0x55);
443 V = _mm_add_ss(V, y);
444 V = _mm_add_ss(V, z);
445 return _mm_cvtss_f32(V);
447 #elif defined(BT_USE_NEON) 451 float32x2_t Tlow = vget_low_f32(v1.mVec128);
452 float32x2_t Vlow = vget_low_f32(v2.mVec128);
453 T = vcombine_f32(vext_f32(Tlow, vget_high_f32(v1.mVec128), 1), Tlow);
454 V = vcombine_f32(vext_f32(Vlow, vget_high_f32(v2.mVec128), 1), Vlow);
456 V = vmulq_f32(V, v1.mVec128);
457 T = vmulq_f32(T, v2.mVec128);
459 Vlow = vget_low_f32(V);
461 V = vcombine_f32(vext_f32(Vlow, vget_high_f32(V), 1), Vlow);
464 V = vmulq_f32(mVec128, V);
465 float32x2_t x = vpadd_f32(vget_low_f32(V), vget_low_f32(V));
466 x = vadd_f32(x, vget_high_f32(V));
467 return vget_lane_f32(x, 0);
480 return m_floats[0] < m_floats[1] ? (m_floats[0] <m_floats[2] ? 0 : 2) : (m_floats[1] <m_floats[2] ? 1 : 2);
487 return m_floats[0] < m_floats[1] ? (m_floats[1] <m_floats[2] ? 2 : 1) : (m_floats[0] <m_floats[2] ? 2 : 0);
492 return absolute().minAxis();
497 return absolute().maxAxis();
503 #if defined(BT_USE_SSE_IN_API) && defined (BT_USE_SSE) 504 __m128 vrt = _mm_load_ss(&rt);
506 __m128 vs = _mm_load_ss(&s);
507 vs = bt_pshufd_ps(vs, 0x80);
508 __m128 r0 = _mm_mul_ps(v0.mVec128, vs);
509 vrt = bt_pshufd_ps(vrt, 0x80);
510 __m128 r1 = _mm_mul_ps(v1.mVec128, vrt);
511 __m128 tmp3 = _mm_add_ps(r0,r1);
513 #elif defined(BT_USE_NEON) 514 float32x4_t vl = vsubq_f32(v1.mVec128, v0.mVec128);
515 vl = vmulq_n_f32(vl, rt);
516 mVec128 = vaddq_f32(vl, v0.mVec128);
532 #if defined(BT_USE_SSE_IN_API) && defined (BT_USE_SSE) 533 __m128 vt = _mm_load_ss(&t);
534 vt = bt_pshufd_ps(vt, 0x80);
535 __m128 vl = _mm_sub_ps(v.mVec128, mVec128);
536 vl = _mm_mul_ps(vl, vt);
537 vl = _mm_add_ps(vl, mVec128);
540 #elif defined(BT_USE_NEON) 541 float32x4_t vl = vsubq_f32(v.mVec128, mVec128);
542 vl = vmulq_n_f32(vl, t);
543 vl = vaddq_f32(vl, mVec128);
549 m_floats[1] + (v.
m_floats[1] - m_floats[1]) * t,
550 m_floats[2] + (v.
m_floats[2] - m_floats[2]) * t);
558 #if defined(BT_USE_SSE_IN_API) && defined (BT_USE_SSE) 559 mVec128 = _mm_mul_ps(mVec128, v.mVec128);
560 #elif defined(BT_USE_NEON) 561 mVec128 = vmulq_f32(mVec128, v.mVec128);
601 #if defined(BT_USE_SSE_IN_API) && defined (BT_USE_SSE) 602 return (0xf == _mm_movemask_ps((__m128)_mm_cmpeq_ps(mVec128, other.mVec128)));
604 return ((m_floats[3]==other.
m_floats[3]) &&
613 return !(*
this == other);
621 #if defined(BT_USE_SSE_IN_API) && defined (BT_USE_SSE) 622 mVec128 = _mm_max_ps(mVec128, other.mVec128);
623 #elif defined(BT_USE_NEON) 624 mVec128 = vmaxq_f32(mVec128, other.mVec128);
638 #if defined(BT_USE_SSE_IN_API) && defined (BT_USE_SSE) 639 mVec128 = _mm_min_ps(mVec128, other.mVec128);
640 #elif defined(BT_USE_NEON) 641 mVec128 = vminq_f32(mVec128, other.mVec128);
660 #if defined BT_USE_SIMD_VECTOR3 && defined (BT_USE_SSE_IN_API) && defined (BT_USE_SSE) 662 __m128 V = _mm_and_ps(mVec128, btvFFF0fMask);
663 __m128 V0 = _mm_xor_ps(btvMzeroMask, V);
664 __m128 V2 = _mm_movelh_ps(V0, V);
666 __m128 V1 = _mm_shuffle_ps(V, V0, 0xCE);
668 V0 = _mm_shuffle_ps(V0, V, 0xDB);
669 V2 = _mm_shuffle_ps(V2, V, 0xF9);
683 #if defined(BT_USE_SSE_IN_API) && defined (BT_USE_SSE) 684 mVec128 = (__m128)_mm_xor_ps(mVec128, mVec128);
685 #elif defined(BT_USE_NEON) 686 int32x4_t vi = vdupq_n_s32(0);
687 mVec128 = vreinterpretq_f32_s32(vi);
731 #if defined BT_USE_SIMD_VECTOR3 && defined (BT_USE_SSE_IN_API) && defined (BT_USE_SSE) 733 __m128 a0 = _mm_mul_ps( v0.mVec128, this->mVec128 );
734 __m128 a1 = _mm_mul_ps( v1.mVec128, this->mVec128 );
735 __m128 a2 = _mm_mul_ps( v2.mVec128, this->mVec128 );
736 __m128 b0 = _mm_unpacklo_ps( a0, a1 );
737 __m128 b1 = _mm_unpackhi_ps( a0, a1 );
738 __m128 b2 = _mm_unpacklo_ps( a2, _mm_setzero_ps() );
739 __m128 r = _mm_movelh_ps( b0, b2 );
740 r = _mm_add_ps( r, _mm_movehl_ps( b2, b0 ));
741 a2 = _mm_and_ps( a2, btvxyzMaskf);
742 r = _mm_add_ps( r, btCastdTo128f (_mm_move_sd( btCastfTo128d(a2), btCastfTo128d(b1) )));
745 #elif defined(BT_USE_NEON) 746 static const uint32x4_t xyzMask = (
const uint32x4_t){
static_cast<uint32_t>(-1), static_cast<uint32_t>(-1),
static_cast<uint32_t>(-1), 0 };
747 float32x4_t a0 = vmulq_f32( v0.mVec128, this->mVec128);
748 float32x4_t a1 = vmulq_f32( v1.mVec128, this->mVec128);
749 float32x4_t a2 = vmulq_f32( v2.mVec128, this->mVec128);
750 float32x2x2_t zLo = vtrn_f32( vget_high_f32(a0), vget_high_f32(a1));
751 a2 = (float32x4_t) vandq_u32((uint32x4_t) a2, xyzMask );
752 float32x2_t b0 = vadd_f32( vpadd_f32( vget_low_f32(a0), vget_low_f32(a1)), zLo.val[0] );
753 float32x2_t b1 = vpadd_f32( vpadd_f32( vget_low_f32(a2), vget_high_f32(a2)), vdup_n_f32(0.0f));
754 return btVector3( vcombine_f32(b0, b1) );
765 #if defined(BT_USE_SSE_IN_API) && defined (BT_USE_SSE) 766 return btVector3(_mm_add_ps(v1.mVec128, v2.mVec128));
767 #elif defined(BT_USE_NEON) 768 return btVector3(vaddq_f32(v1.mVec128, v2.mVec128));
781 #if defined(BT_USE_SSE_IN_API) && defined (BT_USE_SSE) 782 return btVector3(_mm_mul_ps(v1.mVec128, v2.mVec128));
783 #elif defined(BT_USE_NEON) 784 return btVector3(vmulq_f32(v1.mVec128, v2.mVec128));
797 #if defined BT_USE_SIMD_VECTOR3 && (defined(BT_USE_SSE_IN_API) && defined(BT_USE_SSE)) 800 __m128 r = _mm_sub_ps(v1.mVec128, v2.mVec128);
801 return btVector3(_mm_and_ps(r, btvFFF0fMask));
802 #elif defined(BT_USE_NEON) 803 float32x4_t r = vsubq_f32(v1.mVec128, v2.mVec128);
804 return btVector3((float32x4_t)vandq_s32((int32x4_t)r, btvFFF0Mask));
817 #if defined BT_USE_SIMD_VECTOR3 && (defined(BT_USE_SSE_IN_API) && defined (BT_USE_SSE)) 818 __m128 r = _mm_xor_ps(v.mVec128, btvMzeroMask);
819 return btVector3(_mm_and_ps(r, btvFFF0fMask));
820 #elif defined(BT_USE_NEON) 821 return btVector3((btSimdFloat4)veorq_s32((int32x4_t)v.mVec128, (int32x4_t)btvMzeroMask));
831 #if defined(BT_USE_SSE_IN_API) && defined (BT_USE_SSE) 832 __m128 vs = _mm_load_ss(&s);
833 vs = bt_pshufd_ps(vs, 0x80);
834 return btVector3(_mm_mul_ps(v.mVec128, vs));
835 #elif defined(BT_USE_NEON) 836 float32x4_t r = vmulq_n_f32(v.mVec128, s);
837 return btVector3((float32x4_t)vandq_s32((int32x4_t)r, btvFFF0Mask));
855 #if 0 //defined(BT_USE_SSE_IN_API) 857 __m128 vs = _mm_load_ss(&s);
858 vs = _mm_div_ss(v1110, vs);
859 vs = bt_pshufd_ps(vs, 0x00);
861 return btVector3(_mm_mul_ps(v.mVec128, vs));
871 #if defined BT_USE_SIMD_VECTOR3 && (defined(BT_USE_SSE_IN_API)&& defined (BT_USE_SSE)) 872 __m128 vec = _mm_div_ps(v1.mVec128, v2.mVec128);
873 vec = _mm_and_ps(vec, btvFFF0fMask);
875 #elif defined(BT_USE_NEON) 876 float32x4_t x, y, v, m;
882 m = vrecpsq_f32(y, v);
884 m = vrecpsq_f32(y, v);
947 return v1.
lerp(v2, t);
954 return (v - *
this).length2();
959 return (v - *
this).length();
973 #if defined BT_USE_SIMD_VECTOR3 && defined (BT_USE_SSE_IN_API) && defined (BT_USE_SSE) 975 __m128 O = _mm_mul_ps(wAxis.mVec128, mVec128);
977 __m128 C = wAxis.
cross( mVec128 ).mVec128;
978 O = _mm_and_ps(O, btvFFF0fMask);
981 __m128 vsin = _mm_load_ss(&ssin);
982 __m128 vcos = _mm_load_ss(&scos);
984 __m128 Y = bt_pshufd_ps(O, 0xC9);
985 __m128 Z = bt_pshufd_ps(O, 0xD2);
986 O = _mm_add_ps(O, Y);
987 vsin = bt_pshufd_ps(vsin, 0x80);
988 O = _mm_add_ps(O, Z);
989 vcos = bt_pshufd_ps(vcos, 0x80);
992 O = O * wAxis.mVec128;
993 __m128 X = mVec128 - O;
1005 _y = wAxis.
cross( *
this );
1007 return ( o + _x *
btCos( _angle ) + _y *
btSin( _angle ) );
1013 #if (defined BT_USE_SSE && defined BT_USE_SIMD_VECTOR3 && defined BT_USE_SSE_IN_API) || defined (BT_USE_NEON) 1014 #if defined _WIN32 || defined (BT_USE_SSE) 1015 const long scalar_cutoff = 10;
1016 long _maxdot_large(
const float *array,
const float *vec,
unsigned long array_count,
float *dotOut );
1017 #elif defined BT_USE_NEON 1018 const long scalar_cutoff = 4;
1019 extern long (*_maxdot_large)(
const float *array,
const float *vec,
unsigned long array_count,
float *dotOut );
1021 if( array_count < scalar_cutoff )
1027 for( i = 0; i < array_count; i++ )
1041 #if (defined BT_USE_SSE && defined BT_USE_SIMD_VECTOR3 && defined BT_USE_SSE_IN_API) || defined (BT_USE_NEON) 1042 return _maxdot_large( (
float*) array, (
float*) &
m_floats[0], array_count, &dotOut );
1048 #if (defined BT_USE_SSE && defined BT_USE_SIMD_VECTOR3 && defined BT_USE_SSE_IN_API) || defined (BT_USE_NEON) 1049 #if defined BT_USE_SSE 1050 const long scalar_cutoff = 10;
1051 long _mindot_large(
const float *array,
const float *vec,
unsigned long array_count,
float *dotOut );
1052 #elif defined BT_USE_NEON 1053 const long scalar_cutoff = 4;
1054 extern long (*_mindot_large)(
const float *array,
const float *vec,
unsigned long array_count,
float *dotOut );
1056 #error unhandled arch! 1059 if( array_count < scalar_cutoff )
1066 for( i = 0; i < array_count; i++ )
1081 #if (defined BT_USE_SSE && defined BT_USE_SIMD_VECTOR3 && defined BT_USE_SSE_IN_API) || defined (BT_USE_NEON) 1082 return _mindot_large( (
float*) array, (
float*) &
m_floats[0], array_count, &dotOut );
1083 #endif//BT_USE_SIMD_VECTOR3 1100 #if (defined (BT_USE_SSE_IN_API)&& defined (BT_USE_SSE)) || defined (BT_USE_NEON) 1108 mVec128 = rhs.mVec128;
1114 mVec128 = v.mVec128;
1117 #endif // #if defined (BT_USE_SSE_IN_API) || defined (BT_USE_NEON) 1121 #if defined BT_USE_SIMD_VECTOR3 && defined(BT_USE_SSE_IN_API) && defined (BT_USE_SSE) 1122 return btVector4(_mm_and_ps(mVec128, btvAbsfMask));
1123 #elif defined(BT_USE_NEON) 1198 return absolute4().maxAxis4();
1239 #ifdef BT_USE_DOUBLE_PRECISION 1240 unsigned char* dest = (
unsigned char*) &destVal;
1241 unsigned char* src = (
unsigned char*) &sourceVal;
1251 unsigned char* dest = (
unsigned char*) &destVal;
1252 unsigned char* src = (
unsigned char*) &sourceVal;
1257 #endif //BT_USE_DOUBLE_PRECISION 1262 for (
int i=0;i<4;i++)
1274 for (
int i=0;i<4;i++)
1278 vector = swappedVec;
1286 btScalar a = n[1]*n[1] + n[2]*n[2];
1298 btScalar a = n[0]*n[0] + n[1]*n[1];
1325 for (
int i=0;i<4;i++)
1331 for (
int i=0;i<4;i++)
1339 for (
int i=0;i<4;i++)
1345 for (
int i=0;i<4;i++)
1353 for (
int i=0;i<4;i++)
1359 for (
int i=0;i<4;i++)
1363 #endif //BT_VECTOR3_H
btScalar length(const btQuaternion &q)
Return the length of a quaternion.
btVector3 & operator*=(const btVector3 &v)
Elementwise multiply this vector by the other.
void deSerializeDouble(const struct btVector3DoubleData &dataIn)
btScalar norm() const
Return the norm (length) of the vector.
void setValue(const btScalar &_x, const btScalar &_y, const btScalar &_z)
btVector3 & operator+=(const btVector3 &v)
Add a vector to this one.
btVector3 dot3(const btVector3 &v0, const btVector3 &v1, const btVector3 &v2) const
btVector3 operator*(const btVector3 &v1, const btVector3 &v2)
Return the elementwise product of two vectors.
btScalar btAngle(const btVector3 &v1, const btVector3 &v2)
Return the angle between two vectors.
btScalar btSin(btScalar x)
btScalar length2() const
Return the length of the vector squared.
void setZ(btScalar _z)
Set the z value.
void deSerialize(const struct btVector3Data &dataIn)
void btPlaneSpace1(const T &n, T &p, T &q)
btScalar btSqrt(btScalar y)
void serializeFloat(struct btVector3FloatData &dataOut) const
btVector4(const btScalar &_x, const btScalar &_y, const btScalar &_z, const btScalar &_w)
#define SIMD_FORCE_INLINE
const btScalar & getY() const
Return the y value.
long minDot(const btVector3 *array, long array_count, btScalar &dotOut) const
returns index of minimum dot product between this and vectors in array[]
void btSwapScalarEndian(const btScalar &sourceVal, btScalar &destVal)
btSwapVector3Endian swaps vector endianness, useful for network and cross-platform serialization ...
btVector3 & safeNormalize()
btVector3 & operator/=(const btScalar &s)
Inversely scale the vector.
btVector3 & normalize()
Normalize this vector x^2 + y^2 + z^2 = 1.
btVector3 normalized() const
Return a normalized version of this vector.
void serializeDouble(struct btVector3DoubleData &dataOut) const
void btSetMin(T &a, const T &b)
btVector3()
No initialization constructor.
btVector3 btCross(const btVector3 &v1, const btVector3 &v2)
Return the cross product of two vectors.
const btScalar & getZ() const
Return the z value.
long maxDot(const btVector3 *array, long array_count, btScalar &dotOut) const
returns index of maximum dot product between this and vectors in array[]
btScalar btDistance(const btVector3 &v1, const btVector3 &v2)
Return the distance between two vectors.
void setX(btScalar _x)
Set the x value.
int minAxis() const
Return the axis with the smallest value Note return values are 0,1,2 for x, y, or z...
const btScalar & x() const
Return the x value.
btScalar distance2(const btVector3 &v) const
Return the distance squared between the ends of this and another vector This is symantically treating...
btVector3 cross(const btVector3 &v) const
Return the cross product between this and another vector.
void getSkewSymmetricMatrix(btVector3 *v0, btVector3 *v1, btVector3 *v2) const
btScalar dot(const btVector3 &v) const
Return the dot product.
void setW(btScalar _w)
Set the w value.
void setY(btScalar _y)
Set the y value.
const btScalar & y() const
Return the y value.
const btScalar & z() const
Return the z value.
void btUnSwapVector3Endian(btVector3 &vector)
btUnSwapVector3Endian swaps vector endianness, useful for network and cross-platform serialization ...
const btScalar & w() const
Return the w value.
btVector3 rotate(const btVector3 &wAxis, const btScalar angle) const
Return a rotated version of this vector.
void btSetMax(T &a, const T &b)
btVector3 & operator*=(const btScalar &s)
Scale the vector.
btVector3 can be used to represent 3D points and vectors.
#define ATTRIBUTE_ALIGNED16(a)
btScalar btAcos(btScalar x)
btVector3 absolute() const
Return a vector will the absolute values of each element.
void serialize(struct btVector3Data &dataOut) const
btVector4 absolute4() const
btScalar angle(const btVector3 &v) const
Return the angle between this and another vector.
btVector3(const btScalar &_x, const btScalar &_y, const btScalar &_z)
Constructor from scalars.
btVector3 operator+(const btVector3 &v1, const btVector3 &v2)
Return the sum of two vectors (Point symantics)
btScalar distance(const btVector3 &v) const
Return the distance between the ends of this and another vector This is symantically treating the vec...
bool operator!=(const btVector3 &other) const
#define BT_DECLARE_ALIGNED_ALLOCATOR()
int maxAxis() const
Return the axis with the largest value Note return values are 0,1,2 for x, y, or z.
btScalar dot(const btQuaternion &q1, const btQuaternion &q2)
Calculate the dot product between two quaternions.
btScalar btDot(const btVector3 &v1, const btVector3 &v2)
Return the dot product between two vectors.
void setMax(const btVector3 &other)
Set each element to the max of the current values and the values of another btVector3.
void deSerializeFloat(const struct btVector3FloatData &dataIn)
btScalar btDistance2(const btVector3 &v1, const btVector3 &v2)
Return the distance squared between two vectors.
btVector3 operator/(const btVector3 &v, const btScalar &s)
Return the vector inversely scaled by s.
btVector3 operator-(const btVector3 &v1, const btVector3 &v2)
Return the difference between two vectors.
void setInterpolate3(const btVector3 &v0, const btVector3 &v1, btScalar rt)
btScalar btTriple(const btVector3 &v1, const btVector3 &v2, const btVector3 &v3)
bool operator==(const btVector3 &other) const
btVector3 lerp(const btVector3 &v, const btScalar &t) const
Return the linear interpolation between this and another vector.
btScalar triple(const btVector3 &v1, const btVector3 &v2) const
btVector3 & operator-=(const btVector3 &v)
Subtract a vector from this one.
void btSwapVector3Endian(const btVector3 &sourceVec, btVector3 &destVec)
btSwapVector3Endian swaps vector endianness, useful for network and cross-platform serialization ...
btVector3 lerp(const btVector3 &v1, const btVector3 &v2, const btScalar &t)
Return the linear interpolation between two vectors.
const btScalar & getX() const
Return the x value.
void setMin(const btVector3 &other)
Set each element to the min of the current values and the values of another btVector3.
float btScalar
The btScalar type abstracts floating point numbers, to easily switch between double and single floati...
btScalar btCos(btScalar x)
btScalar safeNorm() const
Return the norm (length) of the vector.
btScalar length() const
Return the length of the vector.
void setValue(const btScalar &_x, const btScalar &_y, const btScalar &_z, const btScalar &_w)
Set x,y,z and zero w.
btScalar btFabs(btScalar x)