AddSpecialGapOfNumericalSemigroup 5.1-2AdjacentCatenaryDegreeOfSetOfFactorizations 9.3-2AdjustmentOfNumericalSemigroup 9.2-11AffineSemigroup 11.2-1AlmostSymmetricNumericalSemigroupsFromIrreducible 6.3-1AlmostSymmetricNumericalSemigroupsWithFrobeniusNumber 6.3-3AmbientNumericalSemigroupOfIdeal 7.1-5AnIrreducibleNumericalSemigroupWithFrobeniusNumber 6.1-4AperyListOfIdealOfNumericalSemigroupWRTElement 7.2-8AperyListOfNumericalSemigroup 3.1-7AperyListOfNumericalSemigroupAsGraph 3.1-9AperyListOfNumericalSemigroupWRTElement 3.1-6AperyListOfNumericalSemigroupWRTInteger 3.1-8AperyTableOfNumericalSemigroup 7.2-9ArfNumericalSemigroupClosure 8.2-2ArfNumericalSemigroupsWithFrobeniusNumber 8.2-4AsAffineSemigroup 11.2-2AsGluingOfNumericalSemigroups 6.2-1BasisOfGroupGivenByEquations 11.2-9BelongsToAffineSemigroup 11.2-4BelongsToHomogenizationOfNumericalSemigroup 9.5-1BelongsToIdealOfNumericalSemigroup 7.1-7BelongsToNumericalSemigroup 2.2-6BettiElementsOfAffineSemigroup 11.4-3BettiElementsOfNumericalSemigroup 4.1-3BezoutSequence A.1-1BlowUpIdealOfNumericalSemigroup 7.2-2BlowUpOfNumericalSemigroup 7.2-4CanonicalIdealOfNumericalSemigroup 7.1-15CatenaryDegreeOfAffineSemigroup 11.5-3CatenaryDegreeOfElementInNumericalSemigroup 9.3-5CatenaryDegreeOfNumericalSemigroup 9.3-7CatenaryDegreeOfSetOfFactorizations 9.3-1CeilingOfRational A.1-3CompleteIntersectionNumericalSemigroupsWithFrobeniusNumber 6.2-3ConductorOfNumericalSemigroup 3.2-3CurveAssociatedToDeltaSequence 10.2-4DecomposeIntoIrreducibles 6.1-6DeltaSequencesWithFrobeniusNumber 10.2-3DeltaSetListUpToElementWRTNumericalSemigroup C.2-5DeltaSetOfFactorizationsElementWRTNumericalSemigroup 9.2-6DeltaSetOfNumericalSemigroup C.2-7DeltaSetOfSetOfIntegers 9.2-5DeltaSetPeriodicityBoundForNumericalSemigroup C.2-3DeltaSetPeriodicityStartForNumericalSemigroup C.2-4DeltaSetUnionUpToElementWRTNumericalSemigroup C.2-6DenumerantOfElementInNumericalSemigroup 9.1-5DifferenceOfIdealsOfNumericalSemigroup 7.1-11ElasticityOfAffineSemigroup 11.5-2ElasticityOfFactorizationsElementWRTNumericalSemigroup 9.2-3ElasticityOfNumericalSemigroup 9.2-4EmbeddingDimensionOfNumericalSemigroup 3.1-3EqualCatenaryDegreeOfAffineSemigroup 11.5-4EqualCatenaryDegreeOfNumericalSemigroup 9.3-9EqualCatenaryDegreeOfSetOfFactorizations 9.3-3EqualPrimitiveElementsOfNumericalSemigroup 9.3-8EquationsOfGroupGeneratedBy 11.2-8FactorizationsElementListWRTNumericalSemigroup C.2-2FactorizationsElementWRTNumericalSemigroup 9.1-2FactorizationsInHomogenizationOfNumericalSemigroup 9.5-2FactorizationsIntegerWRTList 9.1-1FactorizationsVectorWRTList 11.5-1FirstElementsOfNumericalSemigroup 3.1-5ForcedIntegersForPseudoFrobenius 5.6-1FreeNumericalSemigroupsWithFrobeniusNumber 6.2-5FrobeniusNumber 3.2-2FrobeniusNumberOfNumericalSemigroup 3.2-1FundamentalGapsOfNumericalSemigroup 3.3-3GapsOfNumericalSemigroup 3.3-1GeneratorsOfIdealOfNumericalSemigroup 7.1-4GeneratorsOfIdealOfNumericalSemigroupNC 7.1-4GeneratorsOfKernelCongruence 11.4-1GeneratorsOfNumericalSemigroup 3.1-2GenusOfNumericalSemigroup 3.3-2GluingOfAffineSemigroups 11.3-1GraeffePolynomial 10.1-3GraphAssociatedToElementInNumericalSemigroup 4.1-2HilbertBasisOfSystemOfHomogeneousEquations 11.2-6HilbertBasisOfSystemOfHomogeneousInequalities 11.2-7HilbertFunctionOfIdealOfNumericalSemigroup 7.2-1HilbertSeriesOfNumericalSemigroup 10.1-2HomogeneousBettiElementsOfNumericalSemigroup 9.5-3HomogeneousCatenaryDegreeOfAffineSemigroup 11.5-5HomogeneousCatenaryDegreeOfNumericalSemigroup 9.5-4IdealOfNumericalSemigroup 7.1-1IntersectionIdealsOfNumericalSemigroup 7.1-13IntersectionOfNumericalSemigroups 5.2-1IrreducibleNumericalSemigroupsWithFrobeniusNumber 6.1-5IsACompleteIntersectionNumericalSemigroup 6.2-2IsAdditiveNumericalSemigroup 9.2-12IsAffineSemigroup 11.2-3IsAffineSemigroupByEquations 11.2-3IsAffineSemigroupByGenerators 11.2-3IsAffineSemigroupByInequalities 11.2-3IsAffineSemigroupByMinimalGenerators 11.2-3IsAlmostSymmetricNumericalSemigroup 6.3-2IsAperyListOfNumericalSemigroup 2.2-4IsAperySetAlphaRectangular C.1-8IsAperySetBetaRectangular C.1-7IsAperySetGammaRectangular C.1-6IsArfNumericalSemigroup 8.2-1IsBezoutSequence A.1-2IsCyclotomicNumericalSemigroup 10.1-6IsCyclotomicPolynomial 10.1-4IsDeltaSequence 10.2-2IsFreeNumericalSemigroup 6.2-4IsFullAffineSemigroup 11.2-5IsGenericAffineSemigroup 11.4-5IsGenericNumericalSemigroup 4.2-2IsGradedAssociatedRingNumericalSemigroupBuchsbaum C.1-1IsGradedAssociatedRingNumericalSemigroupCI C.1-5IsGradedAssociatedRingNumericalSemigroupCM 7.2-6IsGradedAssociatedRingNumericalSemigroupGorenstein C.1-4IsIdealOfNumericalSemigroup 7.1-2IsIrreducibleNumericalSemigroup 6.1-1IsKroneckerPolynomial 10.1-5IsListOfIntegersNS A.2-2IsMEDNumericalSemigroup 8.1-1IsModularNumericalSemigroup 2.2-1IsMonomialNumericalSemigroup 7.2-7IsMpureNumericalSemigroup C.1-2IsNumericalSemigroup 2.2-1IsNumericalSemigroupAssociatedIrreduciblePlanarCurveSingularity 6.2-8IsNumericalSemigroupByAperyList 2.2-1IsNumericalSemigroupByFundamentalGaps 2.2-1IsNumericalSemigroupByGaps 2.2-1IsNumericalSemigroupByGenerators 2.2-1IsNumericalSemigroupByInterval 2.2-1IsNumericalSemigroupByMinimalGenerators 2.2-1IsNumericalSemigroupByOpenInterval 2.2-1IsNumericalSemigroupBySmallElements 2.2-1IsNumericalSemigroupBySubAdditiveFunction 2.2-1IsProportionallyModularNumericalSemigroup 2.2-1IsPseudoSymmetricNumericalSemigroup 6.1-3IsPureNumericalSemigroup C.1-3IsSaturatedNumericalSemigroup 8.3-1IsSelfReciprocalUnivariatePolynomial 10.1-7IsSubsemigroupOfNumericalSemigroup 2.2-5IsSuperSymmetricNumericalSemigroup 9.2-13IsSymmetricNumericalSemigroup 6.1-2IsTelescopicNumericalSemigroup 6.2-6IsUniquelyPresentedAffineSemigroup 11.4-6IsUniquelyPresentedNumericalSemigroup 4.2-1KunzCoordinatesOfNumericalSemigroup 3.1-10KunzPolytope 3.1-11LengthsOfFactorizationsElementWRTNumericalSemigroup 9.2-2LengthsOfFactorizationsIntegerWRTList 9.2-1LShapesOfNumericalSemigroup 9.1-4MaximalDenumerantOfElementInNumericalSemigroup 9.2-8MaximalDenumerantOfNumericalSemigroup 9.2-10MaximalDenumerantOfSetOfFactorizations 9.2-9MaximalIdealOfNumericalSemigroup 7.1-14MaximumDegreeOfElementWRTNumericalSemigroup 9.2-7MEDNumericalSemigroupClosure 8.1-2MicroInvariantsOfNumericalSemigroup 7.2-5MinimalArfGeneratingSystemOfArfNumericalSemigroup 8.2-3MinimalGeneratingSystem 3.1-2MinimalGeneratingSystem 7.1-3MinimalGeneratingSystemOfIdealOfNumericalSemigroup 7.1-3MinimalGeneratingSystemOfNumericalSemigroup 3.1-2MinimalMEDGeneratingSystemOfMEDNumericalSemigroup 8.1-3MinimalPresentationOfAffineSemigroup 11.4-2MinimalPresentationOfNumericalSemigroup 4.1-1ModularNumericalSemigroup 2.1-2MoebiusFunctionAssociatedToNumericalSemigroup 9.6-1MonotoneCatenaryDegreeOfAffineSemigroup 11.5-6MonotoneCatenaryDegreeOfNumericalSemigroup 9.3-11MonotoneCatenaryDegreeOfSetOfFactorizations 9.3-4MonotonePrimitiveElementsOfNumericalSemigroup 9.3-10MultipleOfIdealOfNumericalSemigroup 7.1-9MultiplicityOfNumericalSemigroup 3.1-1NumericalSemigroup 2.1-1NumericalSemigroupByAperyList 2.1-4NumericalSemigroupByFundamentalGaps 2.1-4NumericalSemigroupByGaps 2.1-4NumericalSemigroupByGenerators 2.1-4NumericalSemigroupByInterval 2.1-4NumericalSemigroupByMinimalGenerators 2.1-4NumericalSemigroupByMinimalGeneratorsNC 2.1-4NumericalSemigroupByOpenInterval 2.1-4NumericalSemigroupBySmallElements 2.1-4NumericalSemigroupBySubAdditiveFunction 2.1-4NumericalSemigroupPolynomial 10.1-1NumericalSemigroupsAssociatedIrreduciblePlanarCurveSingularityWithFrobeniusNumber 6.2-9NumericalSemigroupsWithFrobeniusNumber 5.4-1NumericalSemigroupsWithGenus 5.5-1NumericalSemigroupsWithPseudoFrobeniusNumbers 5.6-3NumSgpsUse4ti2 11.1-1NumSgpsUse4ti2gap 11.1-2NumSgpsUseNormalize 11.1-3NumSgpsUseSingular 11.1-4NumSgpsUseSingularGradedModules 11.1-6NumSgpsUseSingularInterface 11.1-5OmegaPrimalityOfAffineSemigroup 11.5-9OmegaPrimalityOfElementInAffineSemigroup 11.5-8OmegaPrimalityOfElementInNumericalSemigroup 9.4-1OmegaPrimalityOfElementListInNumericalSemigroup C.2-1OmegaPrimalityOfNumericalSemigroup 9.4-2OverSemigroupsNumericalSemigroup 5.3-1PrimitiveElementsOfAffineSemigroup 11.4-7PrimitiveElementsOfNumericalSemigroup 4.1-4ProportionallyModularNumericalSemigroup 2.1-3PseudoFrobeniusOfNumericalSemigroup 3.2-4QuotientOfNumericalSemigroup 5.2-2RandomListForNS B.1-2RandomListRepresentingSubAdditiveFunction B.1-5RandomModularNumericalSemigroup B.1-3RandomNumericalSemigroup B.1-1RandomNumericalSemigroupWithPseudoFrobeniusNumbers 5.6-4RandomProportionallyModularNumericalSemigroup B.1-4RClassesOfSetOfFactorizations 9.1-3ReductionNumberIdealNumericalSemigroup 7.2-3RemoveMinimalGeneratorFromNumericalSemigroup 5.1-1RepresentsGapsOfNumericalSemigroup 2.2-3RepresentsPeriodicSubAdditiveFunction A.2-1RepresentsSmallElementsOfNumericalSemigroup 2.2-2SaturatedNumericalSemigroupClosure 8.3-2SaturatedNumericalSemigroupsWithFrobeniusNumber 8.3-3SemigroupOfValuesOfCurve_Global 10.2-6SemigroupOfValuesOfCurve_Local 10.2-5SemigroupOfValuesOfPlaneCurveWithSinglePlaceAtInfinity 10.2-1ShadedSetOfElementInAffineSemigroup 11.4-4ShadedSetOfElementInNumericalSemigroup 4.1-5SimpleForcedIntegersForPseudoFrobenius 5.6-2SmallElements 3.1-4SmallElements 7.1-6SmallElementsOfIdealOfNumericalSemigroup 7.1-6SmallElementsOfNumericalSemigroup 3.1-4SpecialGapsOfNumericalSemigroup 3.3-4StarClosureOfIdealOfNumericalSemigroup 7.2-10SubtractIdealsOfNumericalSemigroup 7.1-10SumIdealsOfNumericalSemigroup 7.1-8TameDegreeOfAffineSemigroup 11.5-7TameDegreeOfElementInNumericalSemigroup 9.3-13TameDegreeOfNumericalSemigroup 9.3-12TameDegreeOfSetOfFactorizations 9.3-6TelescopicNumericalSemigroupsWithFrobeniusNumber 6.2-7TranslationOfIdealOfNumericalSemigroup 7.1-12TypeOfNumericalSemigroup 3.2-5TypeSequenceOfNumericalSemigroup C.1-9
generated by GAPDoc2HTML