GHC Users Guide Documentation
Release 8.0.2

GHC Team

Jun 23, 2017

CONTENTS

1 The Glasgow Haskell Compiler License 3
2 Introduction to GHC 5
2.1 Obtaining GHC e e e e e e e e e 5
2.2 Meta-information: Web sites, mailing lists, etc. 5
2.3 Reporting bugsin GHC e e 6
2.4 GHC version numbering policy e 6
3 Release notes for version 8.0.1 9
3.1 Highlights e e e 9
3.2 Fulldetails. e e e e e e 10
3.2.1 Language i e 10
3.2.2 Compiler. e e e e e e e 12
3.2.2.1 Warnings i e e e e e e e e e e e e e e e e e 14

3.2.3 GHCI e e e e e e 15
3.2.4 Template Haskell 15
3.2.5 Runtime system e e e e e e 16
3.2.6 Buildsystem e e e 17
3.2.7 Package system e e e e 17
3.2.8 hsc2hs e e e e 17

3.3 Libraries e e e e e e e 17
3.3.1 AITAY . . . v o e 17
3.3.2 base e e e e e e e e 17
3.3.3 binary e e e e e e e 18
3.3.4 bytestring L e e e e e 19
3.3.5 Cabal e e e e 19
3.3.6 CONtaINersS i i e e e e e e e e e e e e e e e 19
3.3.7 deePSEQ . . . i i e e e e e e e e e e e e e e e e 19
3.3.8 directory e e e e e e e e e e 19
3.3.9 filepath e e e 19
3.3.10 ghc e e e e e e e 19
3.3.11 ghc-boot e e 19
3.3.12 ghc-boot-th e 20
3.3.13 ghc-prim e e e e e e e e 20
3.3.14 haskell98 e e e e e 20
3.3.15 haskell2010 e e e e e e e e e 20
3.3.16 hoopl e e e e e e 20
3.3.17 hpC . . e e e e e e e e e 20
3.3.18 Integer-gmp e e e e e e e e e e e e 20

3.4 old-locale. e e e e e e e e e 20

3.4.1 old-time e e e e e e 20

3.4.2 PIrOCESS . v v v i i e 21
3.4.3 template-haskell 21
3.4.4 Time e e e e e e e e e e e 21
345 UNIX . . . ot e e e e e e e e e e e e e e e e e e 21
3.4.6 WIN32 e e e e e e e 21

3.5 Knownbugs e e e e e e e 21
Release notes for version 8.0.2 23
4.1 Highlights e e e e e 23
4.2 Fulldetails. o . e e e e e e e e e 24
4.2.1 Language o i e 24
4.2.2 Compiler. e e e 25
4.2.3 Runtime system e e e e 25
4.2.4 Template Haskell i e e 26
4.2.5 ghclibrary e e e e e e e 26
Using GHCi 27
5.1 Introduction to GHCi e e e e e e 27
5.2 Loading source files e e e e 27
5.2.1 Modules vs. filenames e 28
5.2.2 Making changes and recompilation, 29

5.3 Loading compiledcode e 29
5.4 Interactive evaluation atthe prompt, 31
5.4.1 I/O actionsattheprompt. 31
5.4.2 Using do notation at the prompt 32
5.4.3 Multilineinput e 34
5.4.4 Type, class and other declarations 35
5.4.5 What’s really in scope at the prompt? 35
5.4.5.1 The effect of :1load on whatisinscope 36

5.4.5.2 Controlling what is in scope with import 37

5.4.5.3 Controlling what is in scope with the :module command 37

5.4.5.4 Qualified names e e 38

5.4.5.5 :moduleand :load, 38

5.4.6 The :mainand :runcommands i it 38
5.4.7 Theitwvariable. e 39
5.4.8 Typedefaultingin GHCi, 40
5.4.9 Using a custom interactive printing function 41
5.4.10 Stack Traces in GHCi i i et e et 41

5.5 The GHCiDebugger i e e e e e e e e e e e 42
5.5.1 Breakpoints and inspecting variables, 42
5.5.1.1 Setting breakpoints o ... 45

5.5.1.2 Listing and deleting breakpoints 46

5.5.2 Single-stepping o L e e e 46
5.5.3 Nested breakpoints e 47
5.5.4 The resultvariable e 47
5.5.5 Tracing and history e 48
5.5.6 Debugging exceptions 49
5.5.7 Example: inspecting functions L . 50
5.5.8 Limitations e e e e e e e e e 51

5.6 Invoking GHCi e e e e e e 52
5.6.1 Packages e e e e e e 52
5.6.2 Extralibraries e 52

5.7 GHCicommands i it it it et e e e e e e e e e 53

5.8 The :setand :seticommands i i i 62

5.8.1 GHCioptions et e e e e e e e e 62
5.8.2 Setting GHC command-line options in GHCi 63
5.8.3 Setting options for interactive evaluationonly 63

5.9 The .ghci and .haskelinefiles 64
5.9.1 The .ghcifiles e 64
5.9.2 The .haskelinefile e 65

5.10 Compiling to object code inside GHCi 65
5.11 Running the interpreter in a separate process 66
5.12 FAQ and Things To Watch Out For 66
6 Using runghc 69
0.1 Usage v v i i e 69
6.2 runghcflags o . L e e e e 69
6.3 GHC FIags o i i e e e e e e e e e e e e e e e e e e 69
7 Using GHC 71
7.1 Using GHC e e e e e e e e e e e e e e e e 71
7.1.1 Getting started: compiling programs 71
7.1.2 Options OVEIVIEW v i i i e e e e e e e e e e e e e 72
7.1.2.1 Command-line arguments, 72

7.1.2.2 Command line options in sourcefiles 72

7.1.2.3 Settingoptionsin GHCi 73

7.1.3 Static, Dynamic, and Mode options 73
7.1.4 Meaningful filesuffixes 73
7.1.5 Modes of operation 74
7.1.5.1 Usingghc --make e 75

7.1.5.2 Expression evaluationmode 76

7.1.5.3 Batch compilermode, 76

7.1.6 Verbosity options e e 77
7.1.7 Platform-specific Flags e 81

7.2 Warnings and sanity-checking e 81
7.3 Optimisation (code improvement) 92
7.3.1 -0*: convenient “packages” of optimisation flags. 93
7.3.2 -f*: platform-independentflags, 94

7.4 Using Concurrent Haskell 102
7.5 Using SMP parallelism e e 102
7.5.1 Compile-time options for SMP parallelism 102
7.5.2 RTS options for SMP parallelism 103
7.5.3 Hints for using SMP parallelism 104
7.6 Flagreference i e e e e 104
7.6.1 Verbosity options 104
7.6.2 Alternative modes of operation, 105
7.6.3 Which phasestorun 106
7.6.4 Redirectingoutput 107
7.6.5 Keeping intermediate files o Lo 107
7.6.6 Temporary files. e e e e e e 107
7.6.7 Finding imports e e e e e e e e e 108
7.6.8 Interface fileoptions e 108
7.6.9 Recompilation checking o . 108
7.6.10 Interactive-mode options e 108
7.6.11 Packages e e e e e e e e e e 109
7.6.12 Language options e e e e e e e e e e e e e e 110

7.6. 13 Warnings 0 e 112

7.7

7.8

7.9

7.6.14 Optimisation levels e 114

7.6.15 Individual optimisations00 114
7.6.16 Profiling options e e e e e 116
7.6.17 Program coverage options i e e 116
7.6.18 C pre-processor options i e 116
7.6.19 Code generation options e 117
7.6.20 Linking options e e e e e 117
7.6.21 Plugin options e e e e e e 119
7.6.22 Replacing phases e e e e e 119
7.6.23 Forcing options to particularphases 119
7.6.24 Platform-specificoptions L oo 120
7.6.25 Compiler debuggingoptions o e 120
7.6.26 Miscellaneous compileroptions. 0., 121
Running a compiled program e 122
7.7.1 Setting RTSoptions i ittt 122

7.7.1.1 Setting RTS options on the command line 122

7.7.1.2 Setting RTS options at compile time 123

7.7.1.3 Setting RTS options with the GHCRTS environment variable 123

7.7.1.4 “Hooks” to change RTS behaviour 123
7.7.2 Miscellaneous RTS options, 124
7.7.3 RTS options to control the garbage collector. 125
7.7.4 RTS options to produce runtime statistics 129
7.7.5 RTS options for concurrency and parallelism 132
7.7.6 RTS options forprofiling, 132
7.7.7 Tracing e e e e e e e e e e e e e e e e e e e 132
7.7.8 RTS options for hackers, debuggers, and over-interested souls 133
7.7.9 Getting information aboutthe RTS 134
Filenames and separate compilation 136
7.8.1 Haskell sourcefiles i e 136
7.8.2 Outputfiles e e e e e e e 136
7.8.3 Thesearchpath 137
7.8.4 Redirecting the compilation output(s) 137
7.8.5 Keeping Intermediate Files 139
7.8.6 Redirecting temporary files e 140
7.8.7 Other options related to interfacefiles 140
7.8.8 The recompilationchecker. 141
7.8.9 How to compile mutually recursive modules 141
7.8.10 Module signatures e e e e e e e e e 143
7.8.11 Using make e e e e e e e e e e e e 145
7.8.12 Dependency generation 146
7.8.13 Orphan modules and instance declarations 147
Packages o e e e e e e e 148
7.9.1 Using Packages i i e 149
7.9.2 Themainpackage i i i e e 152
7.9.3 Consequences of packages for the Haskell language 152
7.9.4 Thinning and renamingmodules 153
7.9.5 Package Databases 153

7.9.5.1 The GHC PACKAGE PATH environment variable 154

7.9.5.2 Package environments o e 155
7.9.6 Installed package IDs, dependencies, and broken packages 156
7.9.7 Package management (the ghc-pkg command) 158
7.9.8 Building a package from Haskell source 160
7.9.9 InstalledPackageInfo: a package specification 162

7.10 GHC Backends i e e e e e e e 165

7.10.1 Native code Generator (-fasm) o o i v v v i i it 165

7.10.2 LLVM Code Generator (-fllvm). o v i i i v i 165
7.10.3 C Code Generator (-fvia-C) i 166
7.10.4 Unregisterised compilation 166

7.11 Options related to a particularphase 166
7.11.1 Replacing the program for one or more phases 166
7.11.2 Forcing options to a particularphase 167
7.11.3 Options affecting the C pre-processor 168
7.11.3.1Standard CPP macros 168
7.11.3.2CPP and string gaps . . - « « « c v v vt i e e e e e e 170

7.11.4 Options affecting a Haskell pre-processor 170
7.11.5 Options affecting code generation 171
7.11.6 Options affecting linking 172

7.12 Using shared libraries e e e e e e 177
7.12.1 Building programs that use shared libraries 177
7.12.2 Shared libraries for Haskell packages 177
7.12.3 Shared libraries that exporta CAPI 178
7.12.4 Finding shared libraries at runtime 179
7124 1UNIX . . s e e e e e e e e e e e e e e e e e e 179
7.12.42Mac OS X e e e e 179

7.13 Debugging the compiler e 180
7.13.1 Dumping out compiler intermediate structures 180
7.13.2 Formatting dumps e e e e 182
7.13.3 Suppressing unwanted information 183
7.13.4 Checking for consistency e 183
7.13.5 Checking for determinism 184
Profiling 185
8.1 Cost centres and cost-centrestacks 185
8.1.1 Inserting costcentresbyhand 187
8.1.2 Rules for attributingcostso . 188

8.2 Compiler options for profiling e 189
8.3 Time and allocation profiling 190
8.4 Profiling memory USAge v v v v i i e e e e e e e e e e e e e e e e e e 190
8.4.1 RTS options for heap profiling 191
8.4.2 Retainer Profiling 193
8.4.2.1 Hints for using retainer profiling 193

8.4.3 Biographical Profiling e 194
8.4.4 Actual memoryresidency 194

8.5 hp2ps - Rendering heap profiles to PostScript 195
8.5.1 Manipulatingthehpfile 196
8.5.2 Zooming in on regions of your profile 196
8.5.3 Viewing the heap profile of a running program 197
8.5.4 Viewing a heap profileinrealtime 197

8.6 Profiling Parallel and Concurrent Programs 198
8.7 Observing Code COVErage v v v v v it it e e e et e e e e e e e e 198
8.7.1 A small example: Reciprocation 199
8.7.2 Options for instrumenting code for coverage 200
8.7.3 The hpctoolkit e 200
8.7.3.1 hpcreport i e e e 201

8.7.3.2 hpcmarkup. e e e e e 201

8.7.3.3 hpcsum e e e e e 201

8.7.3.4 hpccombine 202

8.7.3.5 hpcmap o e e e e e 202

8.7.3.6 hpc overlay and hpcdraft 203

8.7.4 Caveats and Shortcomings of Haskell Program Coverage 203

8.8 Using “ticky-ticky” profiling (for implementors) 203
9 Advice on: sooner, faster, smaller, thriftier 205
9.1 Sooner: producing a program more quickly 205
9.2 Faster: producing a program that runs quicker 206
9.3 Smaller: producing a program thatissmaller 209
9.4 Thriftier: producing a program that gobbles less heap space 209
10GHC Language Features 211
10.1 Language options i i i i i e e e e e e e e e e e e e e e e e e 211
10.2 Unboxed types and primitive operations 212
10.2.1 Unboxed types o v i e e e e e e e e e e 212
10.2.2 Unboxed type kinds e 213
10.2.3 Unboxed tuples i i i i e e e e e e e e e 214

10.3 Syntactic extensions e e e e e e e e 215
10.3.1 Unicode syntax i i i it e e e e e e e e e e e 215
10.3.2 Themagichash e 215
10.3.3 Negative literals e e e 216
10.3.4 Fractional looking integer literals 216
10.3.5 Binary integerliterals. e e 216
10.3.6 Pattern guards e e e e 217
10.3.7 View patterns e e e e e e 218
10.3.8 n+k patterns e e e e e e e e 220
10.3.9 The recursive do-notation 220
10.3.9.1Recursive binding groups e e e 221
10.3.9.2The mdo notation, 222
10.3.1Applicative do-notation oL 223
10.3.10.Things to watchoutfor 225
10.3.11Parallel List Comprehensions 0..... 225
10.3.1%Generalised (SQL-like) List Comprehensions 226
10.3.1Monad comprehensions e 228
10.3.14New monadic failure desugaring mechanism 230
10.3.1Rebindable syntax and the implicit Prelude import 230
10.3.15.Things unaffected by -XRebindableSyntax 231
10.3.1Postfix operators L e e e e e e e e e 232
10.3.17Tuple sections i i i e e e e e e e e e e e e 232
10.3.18ambda-case e e e e e e e e e e e 233
10.3.1Empty case alternatives e 233
10.3.2MMulti-way if-eXpressions i e e e e e e e 234
10.3.21Local Fixity Declarations 235
10.3.22mport and export extensions o oo 235
10.3.22.Hiding things the imported module doesn’t export 235
10.3.22.Rackage-qualified imports, 236
10.3.22.8afeimports 236
10.3.22.Bxplicit namespaces in import/export 236
10.3.238ummary of stolen syntax 237

10.4 Extensions to data types and type synonyms, 238
10.4.1 Data types with no constructors 238
10.4.2 Datatype contexts o 0 i i e e e e e e e e e 238
10.4.3 Infix type constructors, classes, and type variables 239
10.4.4 Type operators v i i i e e e e e e e e e e e e e e e e e e e 239
10.4.5 Liberalised type Synonyms 0 i i i it e e e e e e e 240

Vi

10.4.6.1Why existential? e 242
10.4.6.2Existentials and type classes, 242
10.4.6.3Record Constructors 243
10.4.6.4Restrictions e e e e e e e e 244
10.4.7 Declaring data types with explicit constructor signatures 245
10.4.8 Generalised Algebraic Data Types (GADTS) 249
10.5 Extensions totherecord system 251
10.5.1 Traditional record syntax 251
10.5.2 Record field disambiguation 251
10.5.3 Duplicate record fields e 252
10.5.3.1Selector functions e 253
10.5.3.2Record updates e 253
10.5.3.3Import and export of record fields 254
10.5.4 Record PUNS o i i i e e e e e e e e e e e e e e e e e e e 254
10.5.5 Record wildcards e e e 255
10.6 Extensions to the “deriving” mechanism. 257
10.6.1 Inferred context for deriving clauses 257
10.6.2 Stand-alone deriving declarations 257
10.6.3 Deriving instances of extra classes (Data, etc.) 258
10.6.4 Deriving Functorinstances 259
10.6.5 Deriving Foldable instances, 262
10.6.6 Deriving Traversableinstances 263
10.6.7 Deriving Typeableinstances 264
10.6.8 Deriving Liftinstances 265
10.6.9 Generalised derived instances for newtypes 266
10.6.9.1Generalising the derivingclause 266
10.6.9.2A more precise specification, 267
10.6.1Meriving any otherclass e 268
10.7 Pattern synonyms o . i e 270
10.7.1 Record Pattern Synonyms i 272
10.7.2 Syntax and scoping of pattern synonyms 272
10.7.3 Import and export of pattern synonyms 273
10.7.4 Typing of pattern synonyms e 274
10.7.5 Matching of pattern synonyms, 276
10.8 Class and instances declarations 276
10.8.1 Class declarations i i i i e e 276
10.8.1.1Multi-parameter type classes, 276
10.8.1.2The superclasses of a class declaration 277
10.8.1.3Class method types e 277
10.8.1.4Default method signatures 278
10.8.1.5Nullary type classes e 278
10.8.2 Functional dependencies e e 279
10.8.2.1Rules for functional dependencies 279
10.8.2.2Background on functional dependencies 280
10.8.3 Instance declarations e 283
10.8.3.1Instance resolution 283
10.8.3.2Relaxed rules for the instance head 284
10.8.3.3Relaxed rules for instance contexts 285
10.8.3.4Instance terminationrules, 285
10.8.3.5Undecidable instances o o 286
10.8.3.60verlapping instanceso 287
10.8.3.7Instance signatures: type signatures in instance declarations . . . 290
10.8.4 Overloaded string literals 291

vii

10.8.5 Overloaded labels e e 292

10.8.6 Overloaded lists e e 294
10.8.6.1The IsListclass i i i i i it e e 294
10.8.6.2Rebindable syntax. 295
10.8.6.3Defaulting 296
10.8.6.4Speculation about the future 296

10.8.7 Undecidable (or recursive) superclasses 296

10.9 Type families e e e e e e e e e e e e 297

10.9.1 Data families e e e 297
10.9.1.1Data family declarations 298
10.9.1.2Data instance declarations 298
10.9.1.30verlap of data instances, 299

10.9.2 Synonym families e e e 299
10.9.2.1Type family declarations 300
10.9.2.2Type instance declarations 300
10.9.2.3Closed type families, 301
10.9.2.4Type family examples e 301
10.9.2.5Compatibility and apartness of type family equations 302
10.9.2.6Decidability of type synonym instances 303

10.9.3 Wildcards on the LHS of data and type family instances 304

10.9.4 Associated data and type families 304
10.9.4.1Associated instances e 304
10.9.4.2Associated type synonym defaults 305
10.9.4.3Scoping of class parameters, 306
10.9.4.4Instance contexts and associated type and data instances 306

10.9.5 Import and export L e e e e 307
10.9.5.1Examples e e e 307
10.9.5.2InStanceso e e e e e e e e e e e e e e e e 308

10.9.6 Type families and instance declarations 308

10.9.7 Injective type families. e 309
10.9.7.1Syntax of injectivity annotation., . 310
10.9.7.2Verifying injectivity annotation against type family equations . . . 310

10.1Matatype promotion o i e e e e e e e e e e e e e e e 311

10.10. IMotivation. o e e e e e e e e e e e e e e e e 311

10.10.2DVEIVIEW . v v v e i e e e e e e e e e e e e e e e e e e e 312

10.10.Distinguishing between types and constructors 313

10.10.Promoted list and tuple types 313

10.10.®Promoting existential data constructors. 314

10.11Kind polymorphism and Type-in-Type 314

10.11.1TThe difference between -XTypeInType and -XPolyKinds 315

10.11.0verview of kind polymorphism 315

10.11.Dverview of Type-in-Type o i it e e 315

10.11.%Principles of kind inference, 316

10.11.8%omplete user-supplied kind signatures and polymorphic recursion ... 317

10.11.&Kind inference in closed type families 319

10.11.°Kind inference in class instance declarations 319

10.11.&ind inference in type signatures 320

10.11.Fxplicit kind quantification 320

10.11.Iind-indexed GADTS it e e e e e 320

10.11.1donstraints in kinds e 321

10.11.The Kind * o o o e e e e e e e e e 321

10.11.Taferring dependency in datatype declarations 322

10.11.1ind defaulting without -XPolyKinds 322

10.11.Fretty-printing in the presence of kind polymorphism 322

viii

10.1Runtime representation polymorphism 323

10.12.1No representation-polymorphic variables 323
10.12.Representation-polymorphic bottoms 324
10.12.@rinting representation-polymorphic types, 324
10.13Type-Level Literals o o e e 324
10.13.1Runtime Values for Type-Level Literals 325
10.13.LZomputing With Type-Level Naturals 326
10.14Constraints in types oL e e e e e e e e e e e e 326
10.14.FEquality constraints e 326
10.14. Heterogeneous equality 327
10.14.3Unlifted heterogeneous equality 327
10.14.4&The Coercible constraint 327
10.14.5The Constraint kind o 327
10.15Extensions to type signatures o e e e e 328
10.15.Explicit universal quantification (forall) 328
10.15.2The context of a type signature 329
10.15.3Ambiguous types and the ambiguitycheck 329
10.15.&xplicitly-kinded quantification0 0oL, 331
10.1d.exically scoped type variables o o 332
10.16.10VerVIEW L . e e e e e e e e e e e e e e e e e e 332
10.16.Declaration type signatures L o oo 333
10.16.FExpression type signatures 0o e e e 334
10.16.4Pattern type signatures L e e 334
10.16.%lass and instance declarations. o 335
10.1Bindings and generalisation e 335
10.17.1Switching off the dreaded Monomorphism Restriction 335
10.17.Zet-generalisation e 335
10.18Visible type application e e 336
10.19mplicit parameters e e e e e e e e e e e e e 338
10.19.Implicit-parameter type constraints 338
10.19.2Zmplicit-parameter bindings e 339
10.19.3mplicit parameters and polymorphic recursion 340
10.19.4mplicit parameters and monomorphism 340
10.2QArbitrary-rank polymorphism o o 340
10.20.FExamples o i e e e e e e e e e e e e e e e 341
10.20.Z'ype inference e e e e e e e e 343
10.20.3mplicit quantification 344
10.21Impredicative polymorphism e 344
10.22Typed Holes o o e e e e e e e e e 345
10.23Partial Type Signatures i e e e e e e e e e 347
10.23.ISyntax . . . v v e e e e e e e e e e e e e 348
10.23.1.Type Wildcards i i i it ittt e 348
10.23.1.Xlamed Wildcards i i e 349
10.23.1.Bxtra-Constraints Wildcard 350
10.23.2Where can they occur? i e e e e 351
10.24Custom compile-time errors e e e e e 352
10.2eferring type errors to runtime oL oL . 353
10.25.FEnabling deferring of typeerrors. 353
10.25.Deferred type errors in GHCi 354
10.26Template Haskell e e e e e e e e 354
10.26.9Syntax . . . v v e e e e e e e e e e e e 355
10.26.AJsing Template Haskell 359
10.26.3iewing Template Haskell generatedcode 360
10.26.4A Template Haskell Worked Example 361

ix

10.26.30sing Template Haskell with Profiling 362

10.26.6I'emplate Haskell Quasi-quotation 362
10.27Arrow notation e e e e e e e e e e 365
10.27.1do-notation for commands L o . 366
10.27.LZonditional commands e 367
10.27.Defining your own control structures 368
10.27.Primitive constructs e e e e e e e 369
10.27.Differences with the paper oo 370
10.27.@ortability o e e e e 371
10.28ang patterns and Strict Haskell 371
10.28.1Bang patterns e e e e e e e e e 371
10.28.5trict-by-default data types L 373
10.28.3Ftrict-by-default pattern bindings 373
10.28.Modularity e e e e e e e e 375
10.28.Dynamic semantics of bang patterns 0oL L. 375
10.29ASSETTIONS . . . v v v i e i e 378
10.30Btatic pointers e e e e e e e e 378
10.30.1Using static pointers e 379
10.30.5tatic semantics of static pointers 0L, 379
10.31IPTagmas . . . v v v v e 380
10.31.LANGUAGE pragma . . . « . v v v v e 381
10.31.DPTIONS GHC pragma v v v i e e e e e e e e e e e e e e e e e 381
10.31.3INCLUDE pPragma v v e o e e e e e e e e e e e e e e e e e e e 381
10.31.4WARNING and DEPRECATED pragmas v v v v v v v i e e e e e 382
10.31.MINIMAL PTAgIMaA . + « v v v v o e 382
10.31.ANLINE and NOINLINE pragmas« v v v v vt v v e e e oo e e 383
10.31.6.INLINE pragma o v v v i e e e e e e e e e e e e e e e e e e 383
10.31.6.DNLINABLE pragma v v v it e i e e e e e e e e e e e 385
10.31.6.BIOINLINE pragma v v v v i e i e e e e e e e e e e e e e 385
10.31.6.€ONLIKE modifier it 385
10.31.6.Bhase control 385
10.31.LINE Pragma . . . v v v v e 386
10.31.RULES pragma i i i e e e e e e e e e e e e e e e e e 386
10.31.BPECIALIZE Pragmia « « « v v v v v v o o e e e e e e e e e e e e e e e e 386
10.31.9.3PECIALIZE INLINE @ i it et e e e et 388
10.31.9.2PECIALIZE for imported functions 388
10.31.9.8bsolete SPECIALIZE syntax o v v v v i v v v v v v .. 389
10.31.19PECIALIZE instance pragma« v« v v v v v v v o v e e e e e e 389
10.31.UNPACK PTAQIMA .« . .« v v o v e 389
10.31.INDUNPACK Pragma v v v o i e 390
10.31.1SDURCE Pragma . . . & v v v o e 390
10.31.10VERLAPPING, OVERLAPPABLE, OVERLAPS, and INCOHERENT pragmas 390
10.3Rewriterules e e e e e e e e 390
10.32.1Syntax e e e e e e e e e e e e e 391
10.32.5emantiCs o i e e e e e e e e e e e e e e e e e e 392
10.32.3How rules interact with INLINE/NOINLINE pragmas 393
10.32.4How rules interact with CONLIKE pragmas 393
10.32.How rules interact with class methods 394
10.32.dist fusion e e e e e e e 395
10.32.8pecialisation. e e e e e e 396
10.32.&ontrolling what’s going on in rewriterules 396
10.33pecial built-in functions e 397
10.34Generic Classes o i i e e e e e e e 397

10.35.Deriving representations L oo e e e e e 397

10.35. M riting generic functions L L L o 399
10.35.3Unlifted representation types L o oo 399
10.35.4Generic defaults e 400
10.35.More information 401
10.3QROIES . . . v e e e e e e e e 401
10.36.INominal, Representational, and Phantom 401
10.36.Role inference e e e e e e 402
10.36.Ro0le annotations e e e e e e 403
10.3HasCallStack e e e e e 404
10.37.1Compared with other sources of stacktraces 405
10.38oncurrent and Parallel Haskell 405
10.38.1Concurrent Haskell e 406
10.38.5oftware Transactional Memory 406
10.38.Farallel Haskell e 406
10.38.AAnnotating pure code for parallelism 407
10.38.Data Parallel Haskell 408
10.3%Bafe Haskell 0 e e e e e e e e 408
10.39.Uses of Safe Haskell 408
10.39.1.%trict type-safety (good style), . 408
10.39.1.Building secure systems (restricted IO Monads) 409
10.39.5afe Language o it e e e e e e e e e e e e e e 411
10.39.2.%afe Overlapping Instances 412
10.39.Bafe Imports e e e e e e e e e 413
10.39.4rust and Safe Haskell Modes 413
10.39.4.Trust check (- fpackage-trustdisabled) 414
10.39.4.Zrust check (- fpackage-trustenabled) 414
10.39.4.Bxample e e e e e e e e 415

10.39.4 Zrustworthy Requirements 415
10.39.4.Backage Trust e e 415
10.39.%5afe Haskell Inference 416
10.39.6afe Haskell Flag Summary it 416
10.39.8afe Compilation. e 418
11Foreign function interface (FFI) 419
11.1 GHC extensions to the FFI Addendum 419
11.1.1 Unboxed types o v i e e e e e e e e e e 419
11.1.2 Newtype wrapping of the IOmonad 419
11.1.3 Primitive imports e e e e e e 420
11.1.4 Interruptible foreigncalls 420
11.1.5 The CAPI calling convention 421
11.1.6 hs _thread done() i e e e 421
11.2 Using the FFI with GHC e e e e e 421
11.2.1 Using foreign export and foreign import ccall "wrapper" with GHC 422
11.2.1.1Using your own main() @ i i i i i it it 422
11.2.1.2Making a Haskell library that can be called from foreign code . . . 424

11.2.2 Using headerfiles e 425
11.2.3 Memory Allocation e e e e 425
11.2.4 Multi-threadingand the FFI 426
11.2.4.1Foreign imports and multi-threading 426
11.2.4.2The relationship between Haskell threads and OS threads 426
11.2.4.3Foreign exports and multi-threading 427
11.2.4.40ntheuseof hs exit() 427

11.2.5 Floating pointand the FFI 427

Xi

12 Extending and using GHC as a Library

12.1 Source annotations e
12.1.1 Annotating values e e e e e e
12.1.2 Annotating types o e e e e e e e
12.1.3 Annotating modules

12.2 Using GHC asa Library e e e e e e
12.3 Compiler Plugins e e e e
12.3.1 Using compilerplugins e
12.3.2 Writing compiler plugins L e
12.3.3 Core pluginsinmore detail
12.3.3.1Manipulating bindings
12.3.3.2Using Annotations e

12.3.4 Typechecker plugins e
12.3.4.1Constraint solving with plugins.

12.3.5 Frontend plugins e

13What to do when something goes wrong
13.1 When the compiler “does the wrong thing”
13.2 When your program “does the wrong thing”

14Debugging compiled programs

14.1 Tutorial
14.2 Requesting a stack trace from Haskellcode
14.3 Requesting a stack trace with SIGUSR2
14.4 Implementor’s notes: DWARF annotations
14.4.1 Debugging information entities o
14.4.1.1DW TAG ghc src note

14.5 Further Reading i i e e e e

15 Other Haskell utility programs
15.1 “Yacc for Haskell”: happy o i i i e e e e e e e e e e e e
15.2 Writing Haskell interfaces to C code: hsc2hs
15.2.1 command line syntax e
15.2.2 Input syntax L e e e e e e e e e e
15.2.3 Custom constructs L
15.2.4 Cross-compilation e

16 Running GHC on Win32 systems

16.1 Starting GHC on Windows platforms
16.2 Running GHCion Windows i i i it i e e e e e et
16.3 Interacting with the terminal
16.4 Differences in library behaviour,
16.5 Using GHC (and other GHC-compiled executables) with Cygwin
16.5.1 Background e e e e e e e e
16.5.2 The problem e e e e
16.5.3 Thingstodo i e e e e e

16.6 Building and using Win32 DLLs e
16.6.1 Creatinga DLL 0 e e e e e e e e e e
16.6.2 Making DLLs to be called from other languages.
16.6.2.1Using from VBA e e e
16.6.2.2Using from C++ e e e

17 Known bugs and infelicities
17.1 Haskell standards vs. Glasgow Haskell: language non-compliance
17.1.1 Divergence from Haskell 98 and Haskell 2010.

xii

17.1.1.1Lexical syntax e e e e e 457

17.1.1.2Context-free syntax e 457
17.1.1.3Expressions and patterns 458
17.1.1.4Declarations and bindings 458
17.1.1.5Typechecking of recursive binding groups 458
17.1.1.6Module system and interfacefiles 459
17.1.1.7Numbers, basic types, and built-inclasses 459
17.1.1.8In Prelude support e e 460
17.1.1.9The Foreign Function Interface 461

17.1.2 GHC’s interpretation of undefined behaviour in Haskell 98 and
Haskell 2010 e e e e 461
17.2 Known bugs or infelicities e 462
17.2.1 Bugsin GHC e e e e e e 462
17.2.2 Bugs in GHCIi (the interactive GHC) 464
18Care and feeding of your GHC Users Guide 465
18.1 BaSiCS . . & v v i o e e e e e e e e e e e e e 465
18.1.1 Headings i i i i i e e e e e e e e e e e e e e e e e e e 466
18.1.2 Formattingcode e 467
18.1.2.1Haskell e e e e 467
18.1.2.20therlanguages e e e e e e 467
18.1.3 Links e e e e e e e 467
18.1.3.1Within the Users Guide 467
18.1.3.2To GHC TraC re€SOUTCES . . . v v v v v v e v e e et et et e e e e e e 468
18.1.3.3To external resources o v v i v i it 468
18.1.3.4To core library Haddock documentation 468
18.1.4 Index entries v i i e e e e e e e e e e e e e e 468
18.2 Citations o o e e e e e e e e e e e 469
18.3 Admonitions L e e e e e e e e e 469
18.4 Documenting command-line options and GHCi commands 469
18.4.1 Command-line options 469
18.4.2 GHCicommands v i v v i i e e e e e e e e e e e e e e 470
18.5 Style Conventions i i i e e e e e e e e e 470
18.6 GHC command-line options reference 470
18.7 ReST reference materials 470
191Indices and tables 473
Bibliography 475

xiii

GHC Users Guide Documentation, Release 8.0.2

Contents:

CONTENTS 1l

GHC Users Guide Documentation, Release 8.0.2

2 CONTENTS

CHAPTER
ONE

THE GLASGOW HASKELL COMPILER LICENSE

Copyright 2002 - 2007, The University Court of the University of Glasgow. All rights reserved.

Redistribution and use in source and binary forms, with or without modification, are permitted
provided that the following conditions are met:

* Redistributions of source code must retain the above copyright notice, this list of condi-
tions and the following disclaimer.

* Redistributions in binary form must reproduce the above copyright notice, this list of
conditions and the following disclaimer in the documentation and/or other materials
provided with the distribution.

* Neither name of the University nor the names of its contributors may be used to endorse
or promote products derived from this software without specific prior written permis-
sion.

THIS SOFTWARE IS PROVIDED BY THE UNIVERSITY COURT OF THE UNIVERSITY OF
GLASGOW AND THE CONTRIBUTORS “AS IS” AND ANY EXPRESS OR IMPLIED WAR-
RANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
EVENT SHALL THE UNIVERSITY COURT OF THE UNIVERSITY OF GLASGOW OR THE
CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EX-
EMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PRO-
CUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABIL-
ITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE
OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF
ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

GHC Users Guide Documentation, Release 8.0.2

4 Chapter 1. The Glasgow Haskell Compiler License

CHAPTER
TWO

INTRODUCTION TO GHC

This is a guide to using the Glasgow Haskell Compiler (GHC): an interactive and batch com-
pilation system for the Haskell 2010 language.

GHC has two main components: an interactive Haskell interpreter (also known as GHCi),
described in Using GHCi (page 27), and a batch compiler, described throughout Using GHC
(page 71). In fact, GHC consists of a single program which is just run with different options
to provide either the interactive or the batch system.

The batch compiler can be used alongside GHCi: compiled modules can be loaded into an
interactive session and used in the same way as interpreted code, and in fact when using
GHCi most of the library code will be pre-compiled. This means you get the best of both
worlds: fast pre-compiled library code, and fast compile turnaround for the parts of your
program being actively developed.

GHC supports numerous language extensions, including concurrency, a foreign function in-
terface, exceptions, type system extensions such as multi-parameter type classes, local uni-
versal and existential quantification, functional dependencies, scoped type variables and ex-
plicit unboxed types. These are all described in GHC Language Features (page 211).

GHC has a comprehensive optimiser, so when you want to Really Go For It (and you’ve got time
to spare) GHC can produce pretty fast code. Alternatively, the default option is to compile as
fast as possible while not making too much effort to optimise the generated code (although
GHC probably isn’t what you’d describe as a fast compiler :-).

GHC'’s profiling system supports “cost centre stacks”: a way of seeing the profile of a Haskell
program in a call-graph like structure. See Profiling (page 185) for more details.

GHC comes with a number of libraries. These are described in separate documentation.

2.1 Obtaining GHC

Go to the GHC home page and follow the “download” link to download GHC for your platform.

Alternatively, if you want to build GHC yourself, head on over to the GHC Building Guide to
find out how to get the sources, and build it on your system. Note that GHC itself is written
in Haskell, so you will still need to install GHC in order to build it.

2.2 Meta-information: Web sites, mailing lists, etc.

On the World-Wide Web, there are several URLs of likely interest:
* GHC home page

http://www.haskell.org/
http://www.haskell.org/ghc/
http://ghc.haskell.org/trac/ghc/wiki/Building
http://www.haskell.org/ghc/

GHC Users Guide Documentation, Release 8.0.2

* GHC Developers Home (developer documentation, wiki, and bug tracker)

We run the following mailing lists about GHC. We encourage you to join, as you feel is appro-
priate.

glasgow-haskell-users This list is for GHC users to chat among themselves. If you have a
specific question about GHC, please check the FAQ first.

Subscribers can post to the list by sending their message to glasgow-haskell-
users@haskell.org. Further information can be found on the Mailman page.

ghc-devs The GHC developers hang out here. If you are working with the GHC API or have
a question about GHC’s implementation, feel free to chime in.

Subscribers can post to the list by sending their message to ghc-devs@haskell.org. Fur-
ther information can be found on the Mailman page.

There are several other Haskell and GHC-related mailing lists served by www.haskell.org.
Go to http://www.haskell.org/mailman/listinfo/ for the full list.

2.3 Reporting bugs in GHC

Glasgow Haskell is a changing system so there are sure to be bugs in it. If you find one, please
see this wiki page for information on how to report it.

2.4 GHC version numbering policy

As of GHC version 6.8, we have adopted the following policy for numbering GHC versions:

Stable branches are numbered x.y, where (y) is even. Releases on the stable branch
x.y are numbered x.y.z, where (z) (>= 1) is the patchlevel number. Patchlevels are
bug-fix releases only, and never change the programmer interface to any system-
supplied code. However, if you install a new patchlevel over an old one you will
need to recompile any code that was compiled against the old libraries.

The value of = GLASGOW HASKELL (see Options affecting the C pre-processor
(page 168)) for a major release x.y.z is the integer (xyy) (if (y) is a single digit,
then a leading zero is added, so for example in version 6.8.2 of GHC we would have
_ GLASGOW _HASKELL ==608).

We may make snapshot releases of the current stable branch available for download,
and the latest sources are available from the git repositories.

Stable snapshot releases are named x.y.z.YYYYMMDD. where YYYYMMDD is the date
of the sources from which the snapshot was built, and x.y.z+1 is the next release
to be made on that branch. For example, 6.8.1.20040225 would be a snapshot of
the 6.8 branch during the development of 6.8.2.

The value of GLASGOW HASKELL for a snapshot release is the integer (xyy). You
should never write any conditional code which tests for this value, however: since
interfaces change on a day-to-day basis, and we don’t have finer granularity in the
values of GLASGOW HASKELL , you should only conditionally compile using pred-
icates which test whether = GLASGOW HASKELL is equal to, later than, or earlier
than a given major release.

6 Chapter 2. Introduction to GHC

http://ghc.haskell.org/trac/ghc/
http://www.haskell.org/haskellwiki/GHC/FAQ
mailto:glasgow-haskell-users@haskell.org
mailto:glasgow-haskell-users@haskell.org
http://www.haskell.org/mailman/listinfo/glasgow-haskell-users
mailto:ghc-devs@haskell.org
http://www.haskell.org/mailman/listinfo/ghc-devs
http://www.haskell.org/mailman/listinfo/
http://ghc.haskell.org/trac/ghc/wiki/ReportABug
http://www.haskell.org/ghc/dist/stable/dist/
http://ghc.haskell.org/trac/ghc/wiki/Repositories

GHC Users Guide Documentation, Release 8.0.2

We may make snapshot releases of the HEAD available for download, and the latest
sources are available from the git repositories.

Unstable snapshot releases are named x.y.YYYYMMDD. where YYYYMMDD is the date of
the sources from which the snapshot was built. For example, 6.7.20040225 would
be a snapshot of the HEAD before the creation of the 6.8 branch.

The value of GLASGOW HASKELL for a snapshot release is the integer (xyy). You
should never write any conditional code which tests for this value, however: since
interfaces change on a day-to-day basis, and we don’t have finer granularity in the
values of GLASGOW HASKELL , you should only conditionally compile using pred-
icates which test whether = GLASGOW HASKELL is equal to, later than, or earlier
than a given major release.

The version number of your copy of GHC can be found by invoking ghc with the --version
flag (see Verbosity options (page 77)).

The compiler version can be tested within compiled code with the
MIN VERSION GLASGOW HASKELL CPP macro (defined only when -XCPP is used). See
Standard CPP macros (page 168) for details.

2.4. GHC version numbering policy 7

http://www.haskell.org/ghc/dist/current/dist/
http://ghc.haskell.org/trac/ghc/wiki/Repositories

GHC Users Guide Documentation, Release 8.0.2

8 Chapter 2. Introduction to GHC

CHAPTER
THREE

RELEASE NOTES FOR VERSION 8.0.1

The significant changes to the various parts of the compiler are listed in the following sec-

tions. There have also been numerous bug fixes and performance improvements over the
7.10 branch.

Warning: Only Cabal versions 1.24 and newer will function properly with this release.
(see Trac #11558). Consequently it will likely be necessary to recompile cabal-install
before installing new packages.

The reason for this is a change in how packages are identified in GHC 8.0. While pre-
vious versions of Cabal identified packages to GHC with a package key (with GHC’s
-this-package-key argument), GHC 8.0 and later uses installed package IDs in place
of package keys.

Note: Users compiling GHC on Mac OS X with XCode 7.3 will need to tell the build sys-
tem to use the nm-classic command instead of Apple’s new nm implementation as the latter
breaks POSIX compliance (see Trac #11744). This can be done by passing something like
--with-nm=$(xcrun --find nm-classic) to configure.

3.1 Highlights

The highlights, since the 7.10 series, are:

* The new -XTypeInType (page 314) allows promotion of all types into kinds, allowing kind
synonyms, kind families, promoted GADTs, and other goodies.

» Support for record pattern synonyms (page 272)

* The -XDeriveAnyClass (page 268) extension learned to derive instances for classes with
associated types (see Deriving any other class (page 268))

* More reliable DWARF debugging information
* Support for injective type families (page 309)
» Applicative do notation (see Applicative do-notation (page 223))

* Support for wildcards in data and type family instances

http://ghc.haskell.org/trac/ghc/ticket/11558
http://ghc.haskell.org/trac/ghc/ticket/11744

GHC Users Guide Documentation, Release 8.0.2

-XStrict (page 373) and -XStrictData (page 373) extensions, allowing modules to
be compiled with strict-by-default bindings (see Bang patterns and Strict Haskell
(page 371))

-XDuplicateRecordFields (page 252), allowing multiple datatypes to declare the same
record field names provided they are used unambiguously (see Duplicate record fields
(page 252))

Support for lightweight callstacks and source locations (page 404)
User-defined error messages for type errors
A rewritten (and greatly improved) pattern exhaustiveness checker

GHC can run the interpreter in a separate process (see Running the interpreter in a
separate process (page 66)), and the interpreter can now run profiled code.

GHCi now provides access to stack traces when used with - fexternal-interpreter
(page 66) and -prof (page 189) (see Stack Traces in GHCi (page 41)).

A native code generator for powerpc64 and powerpc64le architectures, support for AIX
targets, and significantly improved support on ARM.

The reworked users guide you are now reading
Support for Windows XP and earlier has been dropped.

GHC RTS No longer re-exports POSIX functions under their deprecated names on Win-
dows.

3.2 Full details

3.2.1 Language

* -XTypeInType (page 314) supports universal type promotion and merges the type and

kind language. This allows, for example, higher-rank kinds, along with kind families
and type-level GADTs. Support is still experimental, and it is expected to improve over
the next several releases. See Kind polymorphism and Type-in-Type (page 314) for the
details.

* The parser now supports Haddock comments on GADT data constructors. For example

data Expr a where
-- | Just a normal sum
Sum :: Int -> Int -> Expr Int

* The new base constraint GHC.Stack.HasCallStack can be used by functions to request

a partial call-stack. For example

errorWithCallStack :: HasCallStack => String -> a
errorWithCallStack msg = error (msg ++ "\n" ++ prettyCallStack callStack)

ghci> errorWithCallStack "die"
*** Exception: die
CallStack (from HasCallStack):
errorWithCallStack, called at <interactive>:2:1 in interactive:Ghcil

prints the call-site of errorWithCallStack.

10

Chapter 3. Release notes for version 8.0.1

../libraries/base-4.9.1.0/GHC-Stack.html

GHC Users Guide Documentation, Release 8.0.2

See HasCallStack (page 404) for a description of HasCallStack.

* GHC now supports visible type application, allowing programmers to easily specify how
type parameters should be instantiated when calling a function. See Visible type appli-
cation (page 336) for the details.

* To conform to the common case, the default role assigned to parameters of datatypes
declared in hs-boot files is representational. However, if the constructor(s) for the
datatype are given, it makes sense to do normal role inference. This is now imple-
mented, effectively making the default role for non-abstract datatypes in hs-boot files
to be phantom, like it is in regular Haskell code.

» Wildcards can be used in the type arguments of type/data family instance declarations
to indicate that the name of a type variable doesn’t matter. They will be replaced with
new unique type variables. See Data instance declarations (page 298) for more details.

* GHC now allows to declare type families as injective. Injectivity information can then be
used by the typechecker. See Injective type families (page 309) for details.

* Due to a security issue, Safe Haskell now forbids annotations in programs marked as
-XSafe (page 417).

* Generic instances can be derived for data types whose constructors have arguments with
certain unlifted types. See Generic programming (page 397) for more details.

* GHC generics can now provide strictness information for fields in a data constructor via
the Selector type class.

» The -XDeriveAnyClass (page 268) extension now fills in associated type family default
instances when deriving a class that contains them.

» Users can now define record pattern synonyms. This allows pattern synonyms to behave
more like normal data constructors. For example,

pattern P :: a -> b -> (a, b)
pattern P{x,y} = (x,y)

will allow P to be used like a record data constructor and also defines selector functions
X :: (a, b) ->aandy :: (a, b) ->b.

* Pattern synonyms can now be bundled with type constructors. For a pattern synonym P
and a type constructor T, P can be bundled with T so that when T is imported P is also
imported. With this change a library author can provide either real data constructors
or pattern synonyms in an opaque manner. See Import and export of pattern synonyms
(page 273) for details.

-- Foo.hs
module Foo (T(P)) where

data T =T
pattern P = T

-- Baz.hs
module Baz where

-- P is imported
import Foo (T(..))

* Whenever a data instance is exported, the corresponding data family is exported, too.
This allows one to write

3.2. Full details 11

http://ghc.haskell.org/trac/ghc/ticket/10826

GHC Users Guide Documentation, Release 8.0.2

-- Foo.hs
module Foo where

data family T a

-- Bar.hs
module Bar where

import Foo
data instance T Int = MKT

-- Baz.hs
module Baz where

import Bar (T(MKT))

In previous versions of GHC, this required a workaround via an explicit export list in Bar.

* GHC has grown a -XUndecidableSuperClasses (page 296) language extension, which
relaxes GHC’s recursive superclass check (see Trac #10318). This allows class defini-
tions which have mutually recursive superclass constraints at the expense of potential
non-termination in the solver.

* The compiler is now a bit more conservative in solving constraints previously provided
by superclasses (see Trac #11762). For instance, consider this program,:

{-# LANGUAGE FlexibleInstances #-}
{-# LANGUAGE UndecidableInstances #-}

class Super a

class (Super a) => Left a

class (Super a) => Right a

instance (Left a) => Right a -- this is now an error

GHC now rejects this instance, claiming it cannot deduce the Super a superclass con-
straint of the Right typeclass. This stands in contrast to previous releases, which would
accept this declaration, using the Super a constraint implied by the Left a constraint.
To fix this simply add the needed superclass constraint explicitly,

instance (Left a, Super a) => Right a

* -XDeriveFoldable (page 259) and -XDeriveTraversable (page 259) now generate code
without superfluous mempty or pure expressions. As a result, -XDeriveTraversable
(page 259) now works on datatypes that contain arguments which have unlifted types.

* Note that the -XImpredicativeTypes (page 344) extension, which has been known to
be broken for many years, is even more broken than usual in this release (see Trac
#11319, Trac #11675, and others). During pre-release testing we encountered a num-
ber of projects that broke with confusing type errors due to (often unnecessary) use of
-XImpredicativeTypes (page 344). Users of -XImpredicativeTypes (page 344) do so
at their own risk!

3.2.2 Compiler

* The LLVM code generator now supports only LLVM 3.7. This is in contrast to our previous
policy where GHC would try to support a range of LLVM versions concurrently. We hope

12 Chapter 3. Release notes for version 8.0.1

http://ghc.haskell.org/trac/ghc/ticket/10318
http://ghc.haskell.org/trac/ghc/ticket/11762
http://ghc.haskell.org/trac/ghc/wiki/ImpredicativePolymorphism
http://ghc.haskell.org/trac/ghc/ticket/11319
http://ghc.haskell.org/trac/ghc/ticket/11319
http://ghc.haskell.org/trac/ghc/ticket/11675

GHC Users Guide Documentation, Release 8.0.2

that by supporting a narrower range of versions we can provide more reliable support
for each.

* Warnings can now be controlled with -W(no-)... flags in addition to the old
-f(no-)warn... ones. This was done as the first part of a rewrite of the warning system
to provide better control over warnings, better warning messages, and more common
syntax compared to other compilers. The old - f-based warning flags will remain func-
tional for the forseeable future.

* Added the option -dth-dec-file (page 180). This dumps out a .th.hs file of all Tem-
plate Haskell declarations in a corresponding .hs file. The idea is that application devel-
opers can check this into their repository so that they can grep for identifiers used else-
where that were defined in Template Haskell. This is similar to using -ddump-to-file
(page 180) with -ddump-splices (page 180) but it always generates a file instead of be-
ing coupled to -ddump-to-file (page 180) and only outputs code that does not exist in
the .hs file and a comment for the splice location in the original file.

* Added the option -fprint-expanded-types. When enabled, GHC also prints type-
synonym-expanded types in type errors.

* Added the option -fcpr-anal. When enabled, the demand analyser performs CPR anal-
ysis. It is implied by -0 (page 93). Consequently, - fcpr-off (page 94) is now removed,
run with -fno-cpr-anal to get the old - fcpr-off (page 94) behaviour.

* Added the option -fworker-wrapper. When enabled, the worker-wrapper transfor-
mation is performed after a strictness analysis pass. It is implied by -0 (page 93)
and by -fstrictness (page 100). It is disabled by -fno-strictness. Enabling
-fworker-wrapper while strictness analysis is disabled (by -fno-strictness) has no
effect.

* -ddump-strsigs has been renamed to -ddump-str-signatures (page 181).

* -XDeriveGeneric (page 258) is now less picky about instantiating type arguments when
deriving (Trac #11732). As a consequence, the following code is now legal (whereas
before it would have been rejected).

data Tab=Tab
deriving instance Generic (T Int b)

* Added the - fmax-pmcheck-iterations (page 87) to control how many times the pat-
tern match checker iterates. Since coverage checking is exponential in the gen-
eral case, setting a default number of iterations prevents memory and performance
blowups. By default, the number of iterations is set to 2000000 but it can be set with:
-fmax-pmcheck-iterations=<n>. If the set number of iterations is exceeded, an infor-
mative warning is issued.

* -this-package-key has been renamed again (hopefully for the last time!) to
-this-unit-id (page 152). The renaming was motivated by the fact that the identi-
fier you pass to GHC here doesn’t have much to do with packages: you may provide
different unit IDs for libraries which are in the same package. -this-package-key is
deprecated; you should use -this-unit-id (page 152) or, if you need compatibility over
multiple versions of GHC, -package-name.

* When - fdefer-type-errors (page 83) is enabled and an expression fails to typecheck,
Control.Exception.TypeError will now be thrown instead of Control.Exception.
ErrorCall.

3.2. Full details 13

http://ghc.haskell.org/trac/ghc/ticket/11732

GHC Users Guide Documentation, Release 8.0.2

3.2.2.1 Warnings

When printing an out-of-scope error message, GHC will give helpful advice if the error
might be caused by too restrictive imports.

Warning messages now mention the name of the warning flag which the message is
controlled by (Trac #10752) If the flag was implied via a warning group then the name
of the group will also be shown if - fshow-warning-groups (page 82) is used.

Added the -Weverything warning group, along with its opposite -Wno-everything. This
group includes all warnings supported by GHC. This is in contrast to -Wall which excludes
some stylistic or otherwise controversial warnings.

Added the -Wdefault warning group, along with its opposite -Wno-default. This group
is defined to be the set of warnings which ghc enables by default (e.g. when no additional
-W flags are used).

Added the -Wcompat (page 82) warning group (Trac #11000), along with its opposite
-Wno-compat (page 82). Turns on warnings that will be enabled by default in the future,
but remain off in normal compilations for the time being. This allows library authors
eager to make their code future compatible to adapt to new features before they even
generate warnings.

Added the -Wmissing-monadfail-instances (page 85) flag. When enabled, this will
issue a warning if a failable pattern is used in a context that does not have a MonadFail
constraint. This flag represents phase 1 of the MonadFail Proposal (MFP).

Added the -Wsemigroup (page 85) flag. When enabled, this will issue a warning if a type
is an instance of Monoid but not Semigroup, and when a custom definition (<>) is made.
Fixing these warnings makes sure the definition of Semigroup as a superclass of Monoid
does not break any code.

After a long hiatus (see Trac #10935) the -Wmonomorphism-restriction (page 90) (for-
merly -fwarn-monomorphism-restriction) flag has returned. The functionality of this
flag was inadvertently removed by a commit in 2010; this has been fixed and the flag
should now issue warnings as it previously did.

Added the options -Wmissed-specialisations (page 84) and
-Wall-missed-specialisations (page 84). When enabled, the simplifier will pro-
duce a warning when a overloaded imported function cannot be specialised (typically
due to a missing INLINEABLE pragma). This is intended to alert users to cases where
they apply INLINEABLE but may not get the speed-up they expect.

Added the option -Wnoncanonical-monad-instances (page 84) and
-Wnoncanonical-monadfail-instances (page 84) which help detect noncanonical
Applicative/Monad/MonadFail instance definitions. See flag description in Warnings
and sanity-checking (page 81) for more details.

Added the option -Wnoncanonical-semigroup-instances which warns of Monoid in-
stances where mappend is not defined in term of Semigroup’s (<>) operation.

Added the -Wmissing-pattern-synonym-signatures (page 89) flag. When enabled, this
will issue a warning when a pattern synonym definition doesn’t have a type signature. It
is turned off by default but enabled by -Wall (page 82).

Added the -Wunused-type-patterns (page 92) flag to report unused type variables
in data and type family instances. This flag is not implied by -Wall (page 82),
since -Wunused-type-patterns (page 92) will warn about unused type variables
even if the types themselves are intended to be used as documentation. If

14

Chapter 3. Release notes for version 8.0.1

http://ghc.haskell.org/trac/ghc/ticket/10752
http://ghc.haskell.org/trac/ghc/ticket/11000
https://prime.haskell.org/wiki/Libraries/Proposals/MonadFail
http://ghc.haskell.org/trac/ghc/ticket/10935

GHC Users Guide Documentation, Release 8.0.2

-Wunused-type-patterns (page 92) is enabled, one can prefix or replace unused type
variables with underscores to avoid warnings.

Split off the new flag -Wunused-foralls (page 92) from the previously existing flag
-Wunused-matches (page 91). -Wunused-foralls (page 92) emits a warning in the spe-
cific case that a user writes explicit forall syntax with unused type variables, while
-Wunused-matches (page 91) only warns in the case of unused term-level patterns. Both
flags are implied by -W (page 81).

-Wmissing-local-sigs (page 89) is now deprecated in favor of
-Wmissing-local-signatures (page 89).

-Wmissing-exported-sigs (page 89) is now deprecated in favor of
-Wmissing-exported-signatures (page 89).

3.2.3 GHCi

Main with an explicit module header but without main is now an error (Trac #7765).

The :back (page 53) and : forward (page 56) commands now take an optional count
allowing the user to move forward or backward in history several steps at a time.

Added commands :load! (page 57) and :reload! (page 59), effectively setting
-fdefer-type-errors (page 83) before loading a module and unsetting it after loading
if it has not been set before (Trac #8353).

ghci -e now behaves like ghc -e (page 74) (Trac #9360).
Added support for top-level function declarations (Trac #7253).

The new commands :all-types (page 53), : loc-at (page 58), :type-at (page 61), and
:uses (page 61) designed for editor-integration (such as Emacs’ haskell-mode) origi-
nally premiered by ghci-ng have been integrated into GHCi (Trac #10874).

3.2.4 Template Haskell

The new -XTemplateHaskellQuotes (page 355) flag allows to use the quotes (not quasi-
quotes) subset of TemplateHaskell. This is particularly useful for use with a stage
1 compiler (i.e. GHC without interpreter support). Also, -XTemplateHaskellQuotes
(page 355) is considered safe under Safe Haskell.

The GLASGOW HASKELL TH CPP constant denoting support for -XTemplateHaskell
(page 355) introduced in GHC 7.10.1 has been changed to use the values 1/0 instead of
the previous YES/NO values.

Partial type signatures can now be used in splices, see Where can they occur? (page 351).

Template Haskell now fully supports typed holes and quoting unbound variables. This
means it is now possible to use pattern splices nested inside quotation brackets.

Template Haskell now supports the use of UInfixT in types to resolve infix operator
fixities, in the same vein as UInfixP and UInfixE in patterns and expressions. ParensT
and InfixT have also been introduced, serving the same functions as their pattern and
expression counterparts.

Template Haskell has now explicit support for representing GADTs. Until now GADTs
were encoded using NormalC, RecC (record syntax) and ForallC constructors. Two new
constructors - GadtC and RecGadtC - are now supported during quoting, splicing and
reification.

3.2.

Full details 15

http://ghc.haskell.org/trac/ghc/ticket/7765
http://ghc.haskell.org/trac/ghc/ticket/8353
http://ghc.haskell.org/trac/ghc/ticket/9360
http://ghc.haskell.org/trac/ghc/ticket/7253
http://ghc.haskell.org/trac/ghc/ticket/10874

GHC Users Guide Documentation, Release 8.0.2

Primitive chars (e.g., [| 'a'# |]) and primitive strings (e.g., [| "abc"# |]) can now be
quoted with Template Haskell. The Lit data type also has a new constructor, CharPrimL,
for primitive char literals.

addTopDecls now accepts annotation pragmas.

Internally, the implementation of quasi-quotes has been unified with that of normal Tem-
plate Haskell splices. Under the previous implementation, top-level declaration quasi-
quotes did not cause a break in the declaration groups, unlike splices of the form $(...).
This behavior has been preserved under the new implementation, and is now recognized
and documented in Syntax (page 355).

The Lift class is now derivable via the -XDerivelift (page 265) extension. See Deriving
Lift instances (page 265) for more information.

The FamilyD data constructor and FamFlavour data type have been removed. Data fam-
ilies are now represented by DataFamilyD and open type families are now represented
by OpenTypeFamilyD instead of FamilyD. Common elements of OpenTypeFamilyD and
ClosedTypeFamilyD have been moved to TypeFamilyHead.

The representation of data, newtype, data instance, and newtype instance declara-
tions has been changed to allow for multi-parameter type classes in the deriving clause.
In particular, dataD and newtypeD now take a CxtQ instead of a [Name] for the list of de-
rived classes.

isExtEnabled can now be used to determine whether a language extension is enabled in
the Q monad. Similarly, extsEnabled can be used to list all enabled language extensions.

One can now reify the strictness information of a constructors’ fields using Template
Haskell’s reifyConStrictness function, which takes into account whether flags such as
-XStrictData (page 373) or - funbox-strict-fields (page 100) are enabled.

Previously, quoting a type signature like a -> a would produce the abstract syntax for
forall a. a -> a. This behavior remains, but it is extended to kinds, too, meaning
that Proxy a -> Proxy a becomes forall k (a :: k). Proxy a -> Proxy a. This
change is not intentional, but is forced by the fact that GHC has a hard time telling
kinds apart from types. The effect of this change is that round-tripping kind- polymor-
phic types will now require -XTypeInType (page 314).

3.2.5 Runtime system

We have a shiny new two-step memory allocator for 64-bit platforms (see Trac #9706).
In addition to simplifying the runtime system’s implementation this may significantly
improve garbage collector performance. Note, however, that Haskell processes will have
an apparent virtual memory footprint of a terabyte or so. Don’t worry though, most of
this amount is merely mapped but uncommitted address space which is not backed by
physical memory.

Support for performance monitoring with PAPI has been dropped.

-maxN(x) (page 103) flag added to complement -N (page 103). It will choose to use at
most (x) capabilities, limited by the number of processors as -N (page 103) is.

The runtime linker is no longer greedy and will load only the needed objects from
archives. This means particularly on Windows packages requiring e.g. C99 support
will now function properly. As part of this the RTS on Windows no longer re-exports
deprecated POSIX functions under the undeprecated names (see Trac #11223).

16

Chapter 3. Release notes for version 8.0.1

http://ghc.haskell.org/trac/ghc/ticket/9706
http://ghc.haskell.org/trac/ghc/ticket/11223

GHC Users Guide Documentation, Release 8.0.2

¢ A number of subtle but serious issues in the runtime linker were resolved on ARM (sum-
marized in Trac #11206).

3.2.6 Build system

* Nothing changed here.

3.2.7 Package system

* Various internal changes but nothing user-facing.

3.2.8 hsc2hs

* hsc2hs now supports the #alignment macro, which can be used to calculate the align-
ment of a struct in bytes. Previously, #alignment had to be implemented manually via a
#let directive, e.g.,

#let alignment t = "%lu", (unsigned long)offsetof(struct {char x_; t (y_); }, v_
<)

As a result, if you have the above directive in your code, it will now emit a warning when
compiled with GHC 8.0.

Module.hsc:24:0: warning: "hsc alignment" redefined [enabled by default]

In file included from dist/build/Module hsc make.c:1:0:
/path/to/ghc/lib/template-hsc.h:88:0: note: this is the location of the previous,
—definition

#define hsc_alignment(t...) \

~

To make your code free of warnings on GHC 8.0 and still support earlier versions, sur-
round the directive with a pragma checking for the right GHC version.

#if GLASGOW HASKELL < 800
#let alignment t = "%lu", (unsigned long)offsetof(struct {char x ; t (y); }, v_

.)
#endif

3.3 Libraries

3.3.1 array

e Version number 0.5.1.1 (was 0.5.1.0)

3.3.2 base

See changelog.md in the base package for full release notes.
* Version number 4.9.0.0 (was 4.8.2.0)

3.3. Libraries 17

http://ghc.haskell.org/trac/ghc/ticket/11206

GHC Users Guide Documentation, Release 8.0.2

GHC.Stack exports two new types SrcLoc and CallStack. A SrcLoc contains package,
module, and file names, as well as start and end positions. A CallStack is essentially a
[(String, SrcLoc)], sorted by most-recent call.

error and undefined will now report a partial stack-trace using the new CallStack
feature (and the -prof (page 189) stack if available).

A new function, interruptible, was added to GHC.IO allowing an IO action to be run
such that it can be interrupted by an asynchronous exception, even if exceptions are
masked (except if masked with interruptibleMask).

This was introduced to fix the behavior of allowInterrupt, which would previously in-
correctly allow exceptions in uninterruptible regions (see Trac #9516).

Per-thread allocation counters (setAllocationCounter and getAllocationCounter)
and limits (enableAllocationLimit, disableAllocationLimit are now available from
System.Mem. Previously this functionality was only available from GHC.Conc.

forever, filterM, mapAndUnzipM, zipWithM, zipWithM , replicateM, and replicateM
were generalized from Monad to Applicative. If this causes performance regressions,
try to make the implementation of (*>) match that of (>>) (see Trac #10168).

Add URec, UAddr, UChar, UDouble, UFloat, UInt, and UWord to GHC.Generics as part of
making GHC generics capable of handling unlifted types (Trac #10868)

Expand Floating class to include operations that allow for better precision: loglp,
expml, loglpexp and loglmexp. These are not available from Prelude, but the full class
is exported from Numeric.

Add Data.List.NonEmpty and Data.Semigroup (to become super-class of Monoid in the
future). These modules were provided by the semigroups package previously. (Trac
#10365)

Add GHC.TypelLits.TypeError and ErrorMessage to allow users to define custom
compile-time error messages. (see Custom compile-time errors (page 352) and the orig-
inal proposal).

The datatypes in GHC.Generics now have Enum, Bounded, Ix, Functor, Applicative,
Monad, MonadFix, MonadPlus, MonadZip, Foldable, Foldable, Traversable, Genericl,
and Data instances as appropriate. (Trac #9043)

The Generic instance for Proxy is now poly-kinded (see Trac #10775)

The IsStringinstance for [Char] has been modified to eliminate ambiguity arising from
overloaded strings and functions like (++).

Move Const from Control.Applicative toits own module in Data.Functor.Const. (see
Trac #11135)

Enable PolyKinds in the Data.Functor.Const module to give Const the kind * -> k ->
* (see Trac #10039).

Add the TypeError datatype to Control.Exception, which represents the error that is
thrown when an expression fails to typecheck when run using - fdefer-type-errors
(page 83). (see Trac #10284)

3.3.3 binary

Version number 0.8.3.0 (was 0.7.5.0)

18

Chapter 3. Release notes for version 8.0.1

../libraries/base-4.9.1.0/GHC-Stack.html
http://ghc.haskell.org/trac/ghc/ticket/9516
../libraries/base-4.9.1.0/GHC-Stack.html
http://ghc.haskell.org/trac/ghc/ticket/10168
../libraries/base-4.9.1.0/GHC-Generics.html
http://ghc.haskell.org/trac/ghc/ticket/10868
http://ghc.haskell.org/trac/ghc/ticket/10365
http://ghc.haskell.org/trac/ghc/ticket/10365
http://ghc.haskell.org/trac/ghc/wiki/Proposal/CustomTypeErrors
http://ghc.haskell.org/trac/ghc/ticket/9043
http://ghc.haskell.org/trac/ghc/ticket/10775
http://ghc.haskell.org/trac/ghc/ticket/11135
http://ghc.haskell.org/trac/ghc/ticket/10039
http://ghc.haskell.org/trac/ghc/ticket/10284

GHC Users Guide Documentation, Release 8.0.2

3.3

3.3

3.3

3.3

3.3

3.3

3.3.

3.3.

.4 bytestring

Version number 0.10.8.0 (was 0.10.6.0)

.5 Cabal

Version number 1.24.0 (was 1.22.5.0)

.6 containers

Version number 0.5.7.1 (was 0.5.6.2)

.7 deepseq

Version number 1.4.2.0 (was 1.4.1.1)

.8 directory

Version number 1.2.6.2 (was 1.2.2.0)

.9 filepath

Version number 1.4.1.0 (was 1.4.0.0)

10 ghc

The HsBang type has been removed in favour of HsSrcBang and HsImplBang. Data con-
structors now always carry around their strictness annotations as the user wrote them,
whether from an imported module or not.

Moved startsVarSym, startsVarld, startsConSym, startsConlId, startsVarSymASCII,
and isVarSymChar from Lexeme to the GHC.Lemexe module of the ghc-boot library.

Add isImport, isDecl, and isStmt functions.

The mi fix fn field of ModlIface had its type changed from OccName -> Fixity to OccName
-> Maybe Fixity, where areturned value of Nothing indicates a cache miss. As a result,
the types of mkIfaceFixCache and emptyIfaceFixCache were also changed to have a
return type of Maybe Fixity, and a new mi_ fix :: OccName -> Fixity function was
introduced which invokes mi_fix fn but returns defaultFixity upon a cache miss.

11 ghc-boot

This is an internal package. Use with caution.
Version number 8.0.1

This package was renamed from bin-package-db to reflect its new purpose of containing
intra-GHC functionality that needs to be shared across multiple GHC boot libraries.

3.3.

Libraries 19

GHC Users Guide Documentation, Release 8.0.2

3.3.12 ghc-boot-th

» This is an internal package. Use with caution.
* Version number 8.0.1

» This package was created to share types and utilities between the ghc and
template-haskell packages

* Added GHC.Lexeme, which contains functions for determining if a character can be the
first letter of a variable or data constructor in Haskell, as defined by GHC. (These func-
tions were moved from Lexeme in ghc.)

* Added GHC.LanguageExtensions which contains a type listing all supported language
extensions.

3.3.13 ghc-prim

e Version number 0.5.0.0 (was 0.4.0.0)

3.3.14 haskell98

No longer shipped

3.3.15 haskell2010

No longer shipped. We hope that this package or something like it will be restored in a
future GHC release.

3.3.16 hoopl

e Version number 3.10.2.1 (was 3.10.0.2)

3.3.17 hpc

e Version number 0.6.0.3 (was 0.6.0.2)

3.3.18 integer-gmp

e Version number 1.0.0.1 (was 0.5.1.0)

3.4 old-locale

* No longer shipped

3.4.1 old-time

* No longer shipped

20 Chapter 3. Release notes for version 8.0.1

GHC Users Guide Documentation, Release 8.0.2

3.4.2 process

e Version number 1.4.2.0 (was 1.2.3.0)

3.4.3 template-haskell

e Version number 2.11.0.0 (was 2.10.0.0)

» The Lift type class for lifting values into Template Haskell splices now has a default
signature 1ift :: Data a => a -> Q Exp, which means that you do not have to provide
an explicit implementation of 1ift for types which have a Data instance. To manually use
this default implementation, you can use the liftData function which is now exported
from Language.Haskell.TH.Syntax.

* Info’s constructors no longer have Fixity fields. A qReifyFixity function was added
to the Quasi type class (as well as the reifyFixity function, specialized for Q) to allow
lookup of fixity information for any given Name.

3.4.4 time

e Version number 1.6.0.1 (was 1.5.0.1)

3.4.5 unix

¢ Version number 2.7.2.0 (was 2.7.1.0)

3.4.6 Win32

e Version number 2.3.1.1 (was 2.3.1.0)

3.5 Known bugs

* The Haddock release shipped with the release currently does not show bundled pattern
synonyms (page 273) in generated documentation (Trac #11954).

3.5. Known bugs 21

http://ghc.haskell.org/trac/ghc/ticket/11954

GHC Users Guide Documentation, Release 8.0.2

22 Chapter 3. Release notes for version 8.0.1

CHAPTER
FOUR

RELEASE NOTES FOR VERSION 8.0.2

The significant changes to the various parts of the compiler are listed in the following sec-
tions. There have also been numerous bug fixes and performance improvements over the
8.0.1 release.

Warning: Only Cabal versions 1.24 and newer will function properly with this release.
(see Trac #11558). Consequently it will likely be necessary to recompile cabal-install
before installing new packages.

The reason for this is a change in how packages are identified in GHC 8.0. While pre-
vious versions of Cabal identified packages to GHC with a package key (with GHC’s
-this-package-key argument), GHC 8.0 and later uses installed package IDs in place
of package keys.

Note: Users compiling GHC on Mac OS X with XCode 7.3 will need to tell the build sys-
tem to use the nm-classic command instead of Apple’s new nm implementation as the latter
breaks POSIX compliance (see Trac #11744). This can be done by passing something like
--with-nm=$(xcrun --find nm-classic) to configure.

4.1 Highlights

The highlights, since the 8.0.1 release, are:
* Compatibility fixes with macOS Sierra and recent Linux distributions.
* Many, many bug fixes.

* A bug has been fixed that caused standalone derived Ix instances to fail for GADTs with
exactly one constructor (Trac #12583).

* Interface files produced by GHC should now be deterministic.

23

http://ghc.haskell.org/trac/ghc/ticket/11558
http://ghc.haskell.org/trac/ghc/ticket/11744
http://ghc.haskell.org/trac/ghc/ticket/12583

GHC Users Guide Documentation, Release 8.0.2

4.2 Full details

4.2.1 Language

* A bug has been fixed that caused derived Show instances to fail in the presence of

-XRebindableSyntax (page 230) and -X0OverloadedStrings (page 291) (Trac #12688).

GHC 1is now a bit more strict in typechecking code generated by
-XGeneralizedNewtypeDeriving (page 266). For example, GHC will now reject
this program:

class C m where
foo :: Cm=>m ()

newtype N m a = N (m a)
deriving C -- This is now an error

This is in contrast to GHC 8.0.1 and earlier, which would accept this code. To fix this
code, simply remove the C m constraint from foo, as it is wholly unnecessary:

class C m where
foo ::m ()

Some programs using -XDefaultSignatures (page 278) that incorrectly type-checked
in GHC 8.0.1 are now rejected by GHC 8.0.2. Here is a characteristic example:

class Monad m => MonadSupply m where
fresh :: m Integer
default fresh :: (MonadTrans t, MonadSupply m) => t m Integer
fresh = 1ift fresh

instance MonadSupply m => MonadSupply (IdentityT m)

Note that the m in the default type signature is being used in a completely different way
than the m in the non-default signature! We can fix this (in a backwards-compatible way)
like so:

class Monad m => MonadSupply m where
fresh :: m Integer
default fresh :: (MonadTrans t, MonadSupply m', m ~ t m') => m Integer
-- Same 'm Integer' after the '=>'
fresh = 1ift fresh

Some programs which combine default type class method implementations and overlap-
ping instances may now fail to type-check. Here is an example:

class Foo a where
foo :: a -> [al
foo _ = [1]

instance Foo a
instance Foo Int

The problem is that the overlapping Foo Int instance is not explicitly marked as over-
lapping. To fix this, simply add an OVERLAPPING pragma:

24

Chapter 4. Release notes for version 8.0.2

http://ghc.haskell.org/trac/ghc/ticket/12688

GHC Users Guide Documentation, Release 8.0.2

instance {-# OVERLAPPING #-} Foo Int

GHC now adheres more closely to the Haskell 2010 Report with respect to defaulting
rules. As a result, GHC will now reject some defaulting rules which GHC 8.0.1 and earlier
would accept. For example, this is now rejected

module Foo where
default (Bool)

because when the -XExtendedDefaultRules extension is not enabled, defaulting rules
only work for the Num class, of which Bool is not an instance. To make GHC accept the
above program, simply enable the -XExtendedDefaultRules extension.

4.2.2 Compiler

A compiler bug present in 8.0.1 resulting in undefined reference errors while compiling
some packages has been fixed. (see Trac #12076).

A code generator bug which resulted in segmentation faults in compiled programs has
been fixed (see Trac #12757).

GHC now supports systems whose C compiler produces position-independent executa-
bles by default. (see Trac #12579).

GHC can now be built on systems which use the gold linker by default (see Trac #12816).

GHC now reliably runs on macOS Sierra systems. Sierra introduced a linker limitation
which GHC occassionally surpassed when compiling programs with many package de-
pendencies. (see Trac #12479).

The -Wredundant-constraints (page 86) flag has been removed from the -Wall
(page 82) flag set (see Trac #10635).

Added - fdefer-out-of-scope-variables (page 83), which converts out-of-scope vari-
able errors into warnings.

The RTS -xb now reads the base heap address in any base, defaulting to decimal, hex-
adecimal if the address starts with 0x, and octal if the address starts with 0.

Due to an oversight in GHC 8.0.1, the value of the preprocessor macro
_ GLASGOW HASKELL LLVM , which exposes the LLVM version used by GHC, was
no longer an integer. This value is now turned into an integer again, but the formatting
is changed to be in line with GLASGOW HASKELL (Trac #12628).

Parallel programs should be significantly more reliable on platforms with weak memory
consistency guarantees (Trac #12469)

Interface files should now be bit-wise identical for a given build. (Trac #4012)

Nearly two-hundred more bugs. See ‘Trac <https://ghc.haskell.org/trac/ghc/
query?status=closed&milestone=8.0.2&col=id&col=summary&col=status&col=
type&col=priority&col=milestone&col=component&order=priority>‘_ for a com-
plete list.

4.2.3 Runtime system

The Runtime linker on Windows is once again recognizing POSIX functions under their
“deprecated” name. e.g. “strdup” will now be recognized and internally forwarded to

4.2,

Full details 25

http://ghc.haskell.org/trac/ghc/ticket/12076
http://ghc.haskell.org/trac/ghc/ticket/12757
http://ghc.haskell.org/trac/ghc/ticket/12579
http://ghc.haskell.org/trac/ghc/ticket/12816
http://ghc.haskell.org/trac/ghc/ticket/12479
http://ghc.haskell.org/trac/ghc/ticket/10635
http://ghc.haskell.org/trac/ghc/ticket/12628
http://ghc.haskell.org/trac/ghc/ticket/12469
http://ghc.haskell.org/trac/ghc/ticket/4012
https://ghc.haskell.org/trac/ghc/query?status=closed&milestone=8.0.2&col=id&col=summary&col=status&col=type&col=priority&col=milestone&col=component&order=priority
https://ghc.haskell.org/trac/ghc/query?status=closed&milestone=8.0.2&col=id&col=summary&col=status&col=type&col=priority&col=milestone&col=component&order=priority
https://ghc.haskell.org/trac/ghc/query?status=closed&milestone=8.0.2&col=id&col=summary&col=status&col=type&col=priority&col=milestone&col=component&order=priority

GHC Users Guide Documentation, Release 8.0.2

“ strdup”. If you have existing code already using the correct names (e.g. strdup) then
this will just continue to work and no change is needed. For more information about how
the forwarding is done please see MSDN . This should now introduce the same behavior
both compiled and interpreted. (see Trac #12497).

Profiles from the cost-center profiler now provide source span information. (see Trac
#11543).

The number of threads used for garbage collection is now configurable independently
from the number of capabilities with the new -qn flag.

The runtime system should now wake-up less often with large capability counts

The runtime system is now a more efficient in handling programs with many bound
threads. (Trac #12419)

A number of runtime system bugs which could result in crashes (see Trac #12728, Trac
#10860, Trac #12019, Trac #11978, Trac #12038, Trac #12208)

4.2.4 Template Haskell

addModFinalizer now exposes the local typing environment at the splice point. This
allows reify to see local and top-level definitions in the current declaration group when
used as in

f x = $(addModFinalizer (reify 'x >>= runIO . print) >> [| x |])

4.2.5 ghc library

» Accessors are now exposed for ErrUtils.ErrMsg and ErrUtils.ErrDoc.

e There is now a createIservProcessHook to allow API users to redirect the stdout and

stderr handles.

26

Chapter 4. Release notes for version 8.0.2

https://msdn.microsoft.com/en-us/library/ms235384.aspx
http://ghc.haskell.org/trac/ghc/ticket/12497
http://ghc.haskell.org/trac/ghc/ticket/11543
http://ghc.haskell.org/trac/ghc/ticket/11543
http://ghc.haskell.org/trac/ghc/ticket/12419
http://ghc.haskell.org/trac/ghc/ticket/12728
http://ghc.haskell.org/trac/ghc/ticket/10860
http://ghc.haskell.org/trac/ghc/ticket/10860
http://ghc.haskell.org/trac/ghc/ticket/12019
http://ghc.haskell.org/trac/ghc/ticket/11978
http://ghc.haskell.org/trac/ghc/ticket/12038
http://ghc.haskell.org/trac/ghc/ticket/12208

CHAPTER
FIVE

USING GHCI

GHCi' is GHC’s interactive environment, in which Haskell expressions can be interactively
evaluated and programs can be interpreted. If you're familiar with Hugs, then you’ll be right
at home with GHCi. However, GHCi also has support for interactively loading compiled code,
as well as supporting all’ the language extensions that GHC provides. GHCi also includes an
interactive debugger (see The GHCi Debugger (page 42)).

5.1 Introduction to GHCi

Let’s start with an example GHCIi session. You can fire up GHCi with the command ghci:

$ ghci
GHCi, version 8.0.1: http://www.haskell.org/ghc/ :? for help
Prelude>

There may be a short pause while GHCi loads the prelude and standard libraries, after which
the prompt is shown. As the banner says, you can type : 7 (page 56) to see the list of commands
available, and a halfline description of each of them. We’ll explain most of these commands as
we go along, and there is complete documentation for all the commands in GHCi commands
(page 53).

Haskell expressions can be typed at the prompt:

Prelude> 1+2

3

Prelude> let x = 42 in x / 9
4.666666666666667

Prelude>

GHC i interprets the whole line as an expression to evaluate. The expression may not span
several lines - as soon as you press enter, GHCi will attempt to evaluate it.

In Haskell, a let expression is followed by in. However, in GHCIi, since the expression can
also be interpreted in the I0 monad, a let binding with no accompanying in statement can
be signalled by an empty line, as in the above example.

5.2 Loading source files

Suppose we have the following Haskell source code, which we place in a file Main.hs:

1 The “i” stands for “Interactive”
2 except foreign export, at the moment

27

http://www.haskell.org/hugs/

GHC Users Guide Documentation, Release 8.0.2

main = print (fac 20)

fac 0
fac n

1
n * fac (n-1)

You can save Main.hs anywhere you like, but if you save it somewhere other than the current
directory® then we will need to change to the right directory in GHCi:

Prelude> :cd dir

where (dir) is the directory (or folder) in which you saved Main.hs.

To load a Haskell source file into GHCI, use the : load (page 57) command:

Prelude> :load Main

Compiling Main (Main.hs, interpreted)
0Ok, modules loaded: Main.

*Main>

GHCi has loaded the Main module, and the prompt has changed to *Main> to indicate that the
current context for expressions typed at the prompt is the Main module we just loaded (we’ll
explain what the * means later in What’s really in scope at the prompt? (page 35)). So we
can now type expressions involving the functions from Main.hs:

*Main> fac 17
355687428096000

Loading a multi-module program is just as straightforward; just give the name of the “top-
most” module to the : load (page 57) command (hint: : load (page 57) can be abbreviated to
:1). The topmost module will normally be Main, but it doesn’t have to be. GHCi will discover
which modules are required, directly or indirectly, by the topmost module, and load them all
in dependency order.

5.2.1 Modules vs. filenames

Question: How does GHC find the filename which contains module (M)? Answer: it looks for
the file M. hs, or M. lhs. This means that for most modules, the module name must match the
filename. If it doesn’t, GHCi won't be able to find it.

There is one exception to this general rule: when you load a program with : load (page 57),
or specify it when you invoke ghci, you can give a filename rather than a module name. This
filename is loaded if it exists, and it may contain any module you like. This is particularly
convenient if you have several Main modules in the same directory and you can’t call them all
Main.hs.

The search path for finding source files is specified with the - i (page 137) option on the GHCi
command line, like so:

3 If you started up GHCi from the command line then GHCi’s current directory is the same as the current directory
of the shell from which it was started. If you started GHCi from the “Start” menu in Windows, then the current
directory is probably something like C:\Documents and Settings\user name.

28 Chapter 5. Using GHCi

GHC Users Guide Documentation, Release 8.0.2

or it can be set using the :set (page 59) command from within GHCi (see Setting GHC
command-line options in GHCi (page 63))*

One consequence of the way that GHCi follows dependencies to find modules to load is that
every module must have a source file. The only exception to the rule is modules that come
from a package, including the Prelude and standard libraries such as I0 and Complex. If you
attempt to load a module for which GHCi can’t find a source file, even if there are object and
interface files for the module, you’ll get an error message.

5.2.2 Making changes and recompilation

If you make some changes to the source code and want GHCi to recompile the program, give
the :reload (page 59) command. The program will be recompiled as necessary, with GHCi
doing its best to avoid actually recompiling modules if their external dependencies haven’t
changed. This is the same mechanism we use to avoid re-compiling modules in the batch
compilation setting (see The recompilation checker (page 141)).

5.3 Loading compiled code

When you load a Haskell source module into GHC,], it is normally converted to byte-code and
run using the interpreter. However, interpreted code can also run alongside compiled code in
GHCi; indeed, normally when GHCi starts, it loads up a compiled copy of the base package,
which contains the Prelude.

Why should we want to run compiled code? Well, compiled code is roughly 10x faster than
interpreted code, but takes about 2x longer to produce (perhaps longer if optimisation is on).
So it pays to compile the parts of a program that aren’t changing very often, and use the
interpreter for the code being actively developed.

When loading up source modules with : load (page 57), GHCi normally looks for any corre-
sponding compiled object files, and will use one in preference to interpreting the source if
possible. For example, suppose we have a 4-module program consisting of modules A, B, C,
and D. Modules B and C both import D only, and A imports both B and C:

A
/ N\
B C
\/

D

We can compile D, then load the whole program, like this:

Prelude> :! ghc -c -dynamic D.hs
Prelude> :load A
Compiling B

(interpreted)
Compiling C (
(

S,
s, interpreted)
s, interpreted)
D.o).

Compiling A
0Ok, modules loaded: A, B, C
*Main>

B.h
C.h
A.h
D (

4 Note that in GHCi, and - -make (page 74) mode, the -i (page 137) option is used to specify the search path for
source files, whereas in standard batch-compilation mode the -1 (page 137) option is used to specify the search path
for interface files, see The search path (page 137).

5.3. Loading compiled code 29

GHC Users Guide Documentation, Release 8.0.2

In the messages from the compiler, we see that there is no line for D. This is because it isn’t
necessary to compile D, because the source and everything it depends on is unchanged since
the last compilation.

Note the -dynamic (page 173) flag to GHC: GHCi uses dynamically-linked object code (if you
are on a platform that supports it), and so in order to use compiled code with GHCi it must
be compiled for dynamic linking.

At any time you can use the command : show modules (page 60) to get a list of the modules
currently loaded into GHCi:

*Main> :show modules

D (D.hs, D.o)

C (C.hs, interpreted)
B (B.hs, interpreted)
A (A.hs, interpreted)

*Main>

If we now modify the source of D (or pretend to: using the Unix command touch on the source
file is handy for this), the compiler will no longer be able to use the object file, because it might
be out of date:

*Main> :! touch D.hs

*Main> :reload

Compiling D (D.hs, interpreted)
0Ok, modules loaded: A, B, C, D.

*Main>

Note that module D was compiled, but in this instance because its source hadn’t really
changed, its interface remained the same, and the recompilation checker determined that
A, B and C didn’t need to be recompiled.

So let’s try compiling one of the other modules:

*Main> :! ghc -c C.hs

*Main> :load A

Compiling D (D.hs, interpreted)
Compiling B (B.hs, interpreted)
Compiling C (C.hs, interpreted)
Compiling A (A.hs, interpreted)
0Ok, modules loaded: A, B, C, D.

We didn’t get the compiled version of C! What happened? Well, in GHCi a compiled module
may only depend on other compiled modules, and in this case C depends on D, which doesn’t
have an object file, so GHCIi also rejected C’s object file. Ok, so let’s also compile D:

*Main> :! ghc -c D.hs
*Main> :reload
0Ok, modules loaded: A, B, C, D.

Nothing happened! Here’s another lesson: newly compiled modules aren’t picked up by
:reload (page 59), only : load (page 57):

*Main> :load A

Compiling B (B.hs, interpreted)
Compiling A (A.hs, interpreted)
Ok, modules loaded: A, B, C (C.o), D (D.o).

30 Chapter 5. Using GHCi

GHC Users Guide Documentation, Release 8.0.2

The automatic loading of object files can sometimes lead to confusion, because non-exported
top-level definitions of a module are only available for use in expressions at the prompt when
the module is interpreted (see What’s really in scope at the prompt? (page 35)). For this
reason, you might sometimes want to force GHCi to load a module using the interpreter. This
can be done by prefixing a * to the module name or filename when using : load (page 57), for
example

Prelude> :load *A
Compiling A (A.hs, interpreted)

*A>

When the * is used, GHCi ignores any pre-compiled object code and interprets the module.
If you have already loaded a number of modules as object code and decide that you wanted
to interpret one of them, instead of re-loading the whole set you can use :add *M to specify
that you want M to be interpreted (note that this might cause other modules to be interpreted
too, because compiled modules cannot depend on interpreted ones).

To always compile everything to object code and never use the interpreter, use the
-fobject-code (page 171) option (see Compiling to object code inside GHCi (page 65)).

Hint: Since GHCi will only use a compiled object file if it can be sure that the compiled
version is up-to-date, a good technique when working on a large program is to occasionally
run ghc --make to compile the whole project (say before you go for lunch :-), then continue
working in the interpreter. As you modify code, the changed modules will be interpreted, but
the rest of the project will remain compiled.

5.4 Interactive evaluation at the prompt

When you type an expression at the prompt, GHCi immediately evaluates and prints the result:

Prelude> reverse "hello"
"olleh"

Prelude> 5+5

10

5.4.1 1/0 actions at the prompt

GHCi does more than simple expression evaluation at the prompt. If you enter an expression
of type I0 a for some a, then GHCi executes it as an I0-computation.

Prelude> "hello"

"hello"

Prelude> putStrLn "hello"
hello

This works even if the type of the expression is more general, provided it can be instantiated
to I0 a. For example

Prelude> return True
True

Furthermore, GHCi will print the result of the I/O action if (and only if):

5.4. Interactive evaluation at the prompt 31

GHC Users Guide Documentation, Release 8.0.2

* The result type is an instance of Show.

* The result type is not ().

For example, remembering that putStrLn :: String -> I0 ():
Prelude> putStrLn "hello"

hello

Prelude> do { putStrLn "hello"; return "yes" }

hello

Ilyesll

5.4.2 Using do notation at the prompt

GHCi actually accepts statements rather than just expressions at the prompt. This means you
can bind values and functions to names, and use them in future expressions or statements.

The syntax of a statement accepted at the GHCi prompt is exactly the same as the syntax
of a statement in a Haskell do expression. However, there’s no monad overloading here:
statements typed at the prompt must be in the I0 monad.

Prelude> x <- return 42
Prelude> print x

42

Prelude>

The statement x <- return 42 means “execute return 42 in the I0 monad, and bind the
result to x”. We can then use x in future statements, for example to print it as we did above.

-fprint-bind-result
If -fprint-bind-result (page 32) is set then GHCi will print the result of a statement
if and only if:

* The statement is not a binding, or it is a monadic binding (p <- e) that binds exactly
one variable.

» The variable’s type is not polymorphic, is not (), and is an instance of Show.

Of course, you can also bind normal non-IO expressions using the let-statement:

Prelude> let x = 42
Prelude> x

42

Prelude>

Another important difference between the two types of binding is that the monadic bind (p
<- e) is strict (it evaluates e), whereas with the let form, the expression isn’t evaluated
immediately:

Prelude> let x = error "help!"
Prelude> print x

*** Exception: help!

Prelude>

Note that let bindings do not automatically print the value bound, unlike monadic bindings.

You can also define functions at the prompt:

32 Chapter 5. Using GHCi

GHC Users Guide Documentation, Release 8.0.2

Prelude> add a b =a + b
Prelude> add 1 2

3

Prelude>

However, this quickly gets tedious when defining functions with multiple clauses, or groups
of mutually recursive functions, because the complete definition has to be given on a single
line, using explicit semicolons instead of layout:

Prelude> f op n [1 =n ; fopn (h:t) =h op” fopnt
Prelude> f (+) 0 [1..3]

6

Prelude>

To alleviate this issue, GHCi commands can be split over multiple lines, by wrapping them in
:{ and :} (each on a single line of its own):

Prelude> :{

Prelude| g op n []1 =n

Prelude| g op n (h:t) = h "op" gopnt
Prelude| :}

Prelude> g (*) 1 [1..3]

6

Such multiline commands can be used with any GHCi command, and note that the layout rule
is in effect. The main purpose of multiline commands is not to replace module loading but
to make definitions in .ghci-files (see The .ghci and .haskeline files (page 64)) more readable
and maintainable.

Any exceptions raised during the evaluation or execution of the statement are caught and
printed by the GHCi command line interface (for more information on exceptions, see the
module Control.Exception in the libraries documentation).

Every new binding shadows any existing bindings of the same name, including entities that
are in scope in the current module context.

Warning: Temporary bindings introduced at the prompt only last until the next : load
(page 57) or : reload (page 59) command, at which time they will be simply lost. However,
they do survive a change of context with :module (page 58): the temporary bindings just
move to the new location.

Hint: To get a list of the bindings currently in scope, use the :show bindings (page 60)
command:

Prelude> :show bindings
x i Int
Prelude>

Hint: If you turn on the +t option, GHCi will show the type of each variable bound by a
statement. For example:

5.4. Interactive evaluation at the prompt 33

../libraries/base-4.9.1.0/Control-Exception.html

GHC Users Guide Documentation, Release 8.0.2

Prelude> :set +t

Prelude> let (x:xs) = [1..]
x :: Integer

xs :: [Integer]

5.4.3 Multiline input

Apart from the : { ... :} syntax for multi-line input mentioned above, GHCi also has a mul-
tiline mode, enabled by :set +m, :set +m in which GHCi detects automatically when the
current statement is unfinished and allows further lines to be added. A multi-line input is
terminated with an empty line. For example:

Prelude> :set +m
Prelude> let x = 42
Prelude|

Further bindings can be added to this let statement, so GHCi indicates that the next line
continues the previous one by changing the prompt. Note that layout is in effect, so to add
more bindings to this let we have to line them up:

Prelude> :set +m

Prelude> let x = 42
Prelude| y =3
Prelude|
Prelude>

Explicit braces and semicolons can be used instead of layout:

Prelude> do {

Prelude| putStrLn "hello"
Prelude| ;putStrLn "world"
Prelude| }

hello

world

Prelude>

Note that after the closing brace, GHCi knows that the current statement is finished, so no
empty line is required.

Multiline mode is useful when entering monadic do statements:

Control.Monad.State> flip evalStateT 0 $ do
Control.Monad.State| i <- get
Control.Monad.State| lift $ do
Control.Monad.State| putStrLn "Hello World!"
Control.Monad.State| print i
Control.Monad.State|

"Hello World!"

0

Control.Monad.State>

During a multiline interaction, the user can interrupt and return to the top-level prompt.

Prelude> do
Prelude| putStrLn "Hello, World!"

34 Chapter 5. Using GHCi

GHC Users Guide Documentation, Release 8.0.2

Prelude| ~C
Prelude>

5.4.4 Type, class and other declarations

At the GHCi prompt you can also enter any top-level Haskell declaration, including data,
type, newtype, class, instance, deriving, and foreign declarations. For example:

Prelude> data T = A | B | C deriving (Eq, Ord, Show, Enum)
Prelude> [A ..]

[A,B,C]

Prelude> :1i T

data T=A | B | C -- Defined at <interactive>:2:6
instance Enum T -- Defined at <interactive>:2:45
instance Eq T -- Defined at <interactive>:2:30

instance Ord T -- Defined at <interactive>:2:34
instance Show T -- Defined at <interactive>:2:39

As with ordinary variable bindings, later definitions shadow earlier ones, so you can re-enter
a declaration to fix a problem with it or extend it. But there’s a gotcha: when a new type
declaration shadows an older one, there might be other declarations that refer to the old
type. The thing to remember is that the old type still exists, and these other declarations still
refer to the old type. However, while the old and the new type have the same name, GHCi
will treat them as distinct. For example:

Prelude> data T=A | B

Prelude> let f A = True; f B = False
Prelude> data T=A | B | C
Prelude> f A

<interactive>:2:3:
Couldn't match expected type “main::Interactive.T'
with actual type "T'
In the first argument of “f', namely A’
In the expression: f A
In an equation for “it': it = f A
Prelude>

The old, shadowed, version of T is displayed as main: :Interactive.T by GHCIi in an attempt
to distinguish it from the new T, which is displayed as simply T.

Class and type-family instance declarations are simply added to the list of available instances,
with one exception. Since you might want to re-define one, a class or type-family instance
replaces any earlier instance with an identical head or left hand side (respectively). (See Type
families (page 297).)

5.4.5 What’s really in scope at the prompt?
When you type an expression at the prompt, what identifiers and types are in scope? GHCi
provides a flexible way to control exactly how the context for an expression is constructed:

* The :load (page 57), :add (page 53), and : reload (page 59) commands (The effect of
:load on what is in scope (page 36)).

* The import declaration (Controlling what is in scope with import (page 37)).

5.4. Interactive evaluation at the prompt 35

GHC Users Guide Documentation, Release 8.0.2

* The :module (page 58) command (Controlling what is in scope with the :module com-
mand (page 37)).

The command :show imports (page 60) will show a summary of which modules contribute
to the top-level scope.

Hint: GHCi will tab-complete names that are in scope; for example, if you run GHCi and
type J<tab> then GHCi will expand it to Just.

5.4.5.1 The effect of :load on what is in scope

The : load (page 57), :add (page 53), and : reload (page 59) commands (Loading source files
(page 27) and Loading compiled code (page 29)) affect the top-level scope. Let’s start with
the simple cases; when you start GHCi the prompt looks like this:

Prelude>

which indicates that everything from the module Prelude is currently in scope; the visible
identifiers are exactly those that would be visible in a Haskell source file with no import
declarations.

If we now load a file into GHCIi, the prompt will change:

Prelude> :load Main.hs
Compiling Main (Main.hs, interpreted)
*Main>

The new prompt is *Main, which indicates that we are typing expressions in the context of
the top-level of the Main module. Everything that is in scope at the top-level in the module
Main we just loaded is also in scope at the prompt (probably including Prelude, as long as
Main doesn’t explicitly hide it).

The syntax in the prompt *module indicates that it is the full top-level scope of {(module) that is
contributing to the scope for expressions typed at the prompt. Without the *, just the exports
of the module are visible.

Note: For technical reasons, GHCi can only support the *-form for modules that are in-
terpreted. Compiled modules and package modules can only contribute their exports to the
current scope. To ensure that GHCi loads the interpreted version of a module, add the * when
loading the module, e.g. : load *M.

In general, after a : load (page 57) command, an automatic import is added to the scope for
the most recently loaded “target” module, in a *-form if possible. For example, if you say
:load foo.hs bar.hs and bar.hs contains module Bar, then the scope will be set to *Bar if
Bar is interpreted, or if Bar is compiled it will be set to Prelude Bar (GHCi automatically adds
Prelude if it isn’t present and there aren’t any *-form modules). These automatically-added
imports can be seen with :show imports (page 60):

Prelude> :1load hello.hs

[1 of 1] Compiling Main (hello.hs, interpreted)
0k, modules loaded: Main.

*Main> :show imports

:module +*Main -- added automatically

*Main>

36 Chapter 5. Using GHCi

GHC Users Guide Documentation, Release 8.0.2

|

and the automatically-added import is replaced the next time you use : load (page 57), :add
(page 53), or : reload (page 59). It can also be removed by :module (page 58) as with normal
imports.

5.4.5.2 Controlling what is in scope with import

We are not limited to a single module: GHCi can combine scopes from multiple modules, in
any mixture of * and non-* forms. GHCi combines the scopes from all of these modules to
form the scope that is in effect at the prompt.

To add modules to the scope, use ordinary Haskell import syntax:

Prelude> import System.IO

Prelude System.IO> hPutStrLn stdout "hello\n"
hello

Prelude System.IO>

The full Haskell import syntax is supported, including hiding and as clauses. The prompt
shows the modules that are currently imported, but it omits details about hiding, as, and so
on. To see the full story, use :show imports (page 60):

Prelude> import System.IO

Prelude System.IO> import Data.Map as Map
Prelude System.IO Map> :show imports
import Prelude -- implicit

import System.IO

import Data.Map as Map

Prelude System.IO Map>

Note that the Prelude import is marked as implicit. It can be overridden with an explicit
Prelude import, just like in a Haskell module.

With multiple modules in scope, especially multiple *-form modules, it is likely that name
clashes will occur. Haskell specifies that name clashes are only reported when an ambiguous
identifier is used, and GHCi behaves in the same way for expressions typed at the prompt.

5.4.5.3 Controlling what is in scope with the :module command

Another way to manipulate the scope is to use the :module (page 58) command, whose syntax
is this:

:module +|- *modl ... *modn

Using the + form of the module commands adds modules to the current scope, and - removes
them. Without either + or -, the current scope is replaced by the set of modules specified.
Note that if you use this form and leave out Prelude, an implicit Prelude import will be added
automatically.

The :module (page 58) command provides a way to do two things that cannot be done with
ordinary import declarations:

* :module (page 58) supports the * modifier on modules, which opens the full top-level
scope of a module, rather than just its exports.

5.4. Interactive evaluation at the prompt 37

GHC Users Guide Documentation, Release 8.0.2

* Imports can be removed from the context, using the syntax :module -M. The import
syntax is cumulative (as in a Haskell module), so this is the only way to subtract from
the scope.

5.4.5.4 Qualified names

To make life slightly easier, the GHCi prompt also behaves as if there is an implicit import
qualified declaration for every module in every package, and every module currently loaded
into GHCi. This behaviour can be disabled with the -fno-implicit-import-qualified flag.

5.4.5.5 :module and :load

It might seem that :module (page 58)/import and : load (page 57)/:add (page 53)/: reload
(page 59) do similar things: you can use both to bring a module into scope. However, there
is a very important difference. GHCi is concerned with two sets of modules:

* The set of modules that are currently loaded. This set is modified by : load (page 57),
:add (page 53) and : reload (page 59), and can be shown with : show modules (page 60).

* The set of modules that are currently in scope at the prompt. This set is modified
by import and :module (page 58), and it is also modified automatically after : load
(page 57), :add (page 53), and : reload (page 59), as described above. The set of mod-
ules in scope can be shown with :show imports (page 60).

You can add a module to the scope (via :module (page 58) or import) only if either (a) it is
loaded, or (b) it is a module from a package that GHCi knows about. Using :module (page 58)
or import to try bring into scope a non-loaded module may result in the message module M
is not loaded.

5.4.6 The :main and :run commands

When a program is compiled and executed, it can use the getArgs function to access the
command-line arguments. However, we cannot simply pass the arguments to the main func-
tion while we are testing in ghci, as the main function doesn’t take its directly.

Instead, we can use the :main (page 58) command. This runs whatever main is in scope, with
any arguments being treated the same as command-line arguments, e.g.:

Prelude> main = System.Environment.getArgs >>= print
Prelude> :main foo bar
["fOO","bar"]

We can also quote arguments which contains characters like spaces, and they are treated like
Haskell strings, or we can just use Haskell list syntax:

Prelude> :main foo "bar baz"
["foo","bar baz"]

Prelude> :main ["foo", "bar baz"]
["foo","bar baz"]

Finally, other functions can be called, either with the -main-is flag or the :run (page 59)
command:

38 Chapter 5. Using GHCi

GHC Users Guide Documentation, Release 8.0.2

Prelude> foo = putStrLn "foo" >> System.Environment.getArgs >>= print
Prelude> bar = putStrLn "bar" >> System.Environment.getArgs >>= print
Prelude> :set -main-is foo

Prelude> :main foo "bar baz"

foo

["foo","bar baz"]

Prelude> :run bar ["foo", "bar baz"]
bar

["foo","bar baz"]

5.4.7 The it variable

Whenever an expression (or a non-binding statement, to be precise) is typed at the prompt,
GHCi implicitly binds its value to the variable it. For example:

Prelude> 1+2

3

Prelude> it * 2
6

What actually happens is that GHCi typechecks the expression, and if it doesn’t have an I0
type, then it transforms it as follows: an expression e turns into

let it = e;
print it

which is then run as an IO-action.

Hence, the original expression must have a type which is an instance of the Show class, or
GHCi will complain:

Prelude> id

<interactive>:1:0:
No instance for (Show (a -> a))
arising from use of “print' at <interactive>:1:0-1
Possible fix: add an instance declaration for (Show (a -> a))
In the expression: print it
In a 'do' expression: print it

The error message contains some clues as to the transformation happening internally.

If the expression was instead of type I0 a for some a, then it will be bound to the result of
the I0 computation, which is of type a. eg.:

Prelude> Time.getClockTime
Wed Mar 14 12:23:13 GMT 2001
Prelude> print it

Wed Mar 14 12:23:13 GMT 2001

The corresponding translation for an IO-typed e is

it <- e

Note that it is shadowed by the new value each time you evaluate a new expression, and the
old value of it is lost.

5.4. Interactive evaluation at the prompt 39

GHC Users Guide Documentation, Release 8.0.2

5.4.8 Type defaulting in GHCi

Consider this GHCi session:

ghci> reverse []

What should GHCi do? Strictly speaking, the program is ambiguous. show (reverse [])
(which is what GHCi computes here) has type Show a => String and how that displays de-
pends on the type a. For example:

ghci> reverse ([] :: String)

ghci> reverse ([] :: [Int])
[]

However, it is tiresome for the user to have to specify the type, so GHCi extends Haskell’s
type-defaulting rules (Section 4.3.4 of the Haskell 2010 Report) as follows. The standard
rules take each group of constraints (C1 a, C2 a, ..., Cn a) for each type variable a, and
defaults the type variable if

1. The type variable a appears in no other constraints
2. All the classes Ci are standard.
3. At least one of the classes Ci is numeric.

At the GHCi prompt, or with GHC if the -XExtendedDefaultRules flag is given, the following
additional differences apply:

* Rule 2 above is relaxed thus: All of the classes Ci are single-parameter type classes.

* Rule 3 above is relaxed this: At least one of the classes Ci is numeric, or is Show, Eq, 0rd,
Foldable or Traversable.

* The unit type () and the list type [] are added to the start of the standard list of types
which are tried when doing type defaulting.

The last point means that, for example, this program:

main :: IO ()
main = print def

instance Num ()

def :: (Num a, Enum a) => a
def = toEnum 0

prints () rather than 0 as the type is defaulted to () rather than Integer.

The motivation for the change is that it means I0 a actions default to I0 (), which in turn
means that ghci won’t try to print a result when running them. This is particularly impor-
tant for printf, which has an instance that returns I0 a. However, it is only able to return
undefined (the reason for the instance having this type is so that printf doesn’t require ex-
tensions to the class system), so if the type defaults to Integer then ghci gives an error when
running a printf.

See also I/O actions at the prompt (page 31) for how the monad of a computational expression
defaults to I0 if possible.

40 Chapter 5. Using GHCi

GHC Users Guide Documentation, Release 8.0.2

5.4.9 Using a custom interactive printing function

Since GHC 7.6.1, GHCi prints the result of expressions typed at the prompt using the function
System.IO.print. Its type signature is Show a => a -> I0 (), and it works by converting
the value to String using show.

This is not ideal in certain cases, like when the output is long, or contains strings with non-
ascii characters.

The -interactive-print (page 41) flag allows to specify any function of type C a => a ->
I0 (), for some constraint C, as the function for printing evaluated expressions. The function
can reside in any loaded module or any registered package, but only when it resides in a
registered package will it survive a : cd (page 54), :add (page 53), : load (page 57), : reload
(page 59) or, :set (page 59).

-interactive-print (expr)
Set the function used by GHCi to print evaluation results. Expression must be of type C
a=>a ->10 ().

As an example, suppose we have following special printing module:

module SpecPrinter where
import System.IO

sprint a = putStrLn $ show a ++ "!"

The sprint function adds an exclamation mark at the end of any printed value. Running GHCi
with the command:

ghci -interactive-print=SpecPrinter.sprinter SpecPrinter

will start an interactive session where values with be printed using sprint:

*SpecPrinter> [1,2,3]
[1,2,3]!
*SpecPrinter> 42

42!

A custom pretty printing function can be used, for example, to format tree-like and nested
structures in a more readable way.

The -interactive-print (page 41) flag can also be used when running GHC in -e mode:

5.4.10 Stack Traces in GHCi
[This is an experimental feature enabled by the new -fexternal-interpreter flag that was
introduced in GHC 8.0.1. It is currently not supported on Windows.]

GHCi can use the profiling system to collect stack trace information when running interpreted
code. To gain access to stack traces, start GHCIi like this:

ghci -fexternal-interpreter -prof

This runs the interpreted code in a separate process (see Running the interpreter in a sepa-
rate process (page 66)) and runs it in profiling mode to collect call stack information. Note

5.4. Interactive evaluation at the prompt 41

GHC Users Guide Documentation, Release 8.0.2

that because we’re running the interpreted code in profiling mode, all packages that you
use must be compiled for profiling. The -prof flag to GHCi only works in conjunction with
-fexternal-interpreter.

There are three ways to get access to the current call stack.

* error and undefined automatically attach the current stack to the error message. This
often complements the HasCallStack stack (see HasCallStack (page 404)), so both call
stacks are shown.

* Debug.Trace.traceStackis aversion of Debug.Trace.trace that also prints the current
call stack.

* Functions in the module GHC.Stack can be used to get the current stack and render it.

You don’t need to use -fprof-auto for interpreted modules, annotations are automatically
added at a granularity fine enough to distinguish individual call sites. However, you won’t
see any call stack information for compiled code unless it was compiled with -fprof-auto or
has explicit SCC annotations (see Inserting cost centres by hand (page 187)).

5.5 The GHCi Debugger

GHCi contains a simple imperative-style debugger in which you can stop a running computa-
tion in order to examine the values of variables. The debugger is integrated into GHCi, and
is turned on by default: no flags are required to enable the debugging facilities. There is one
major restriction: breakpoints and single-stepping are only available in interpreted modules;
compiled code is invisible to the debugger®.

The debugger provides the following:

* The ability to set a breakpoint on a function definition or expression in the program.
When the function is called, or the expression evaluated, GHCi suspends execution and
returns to the prompt, where you can inspect the values of local variables before contin-
uing with the execution.

* Execution can be single-stepped: the evaluator will suspend execution approximately
after every reduction, allowing local variables to be inspected. This is equivalent to
setting a breakpoint at every point in the program.

* Execution can take place in tracing mode, in which the evaluator remembers each eval-
uation step as it happens, but doesn’t suspend execution until an actual breakpoint is
reached. When this happens, the history of evaluation steps can be inspected.

* Exceptions (e.g. pattern matching failure and error) can be treated as breakpoints, to
help locate the source of an exception in the program.

There is currently no support for obtaining a “stack trace”, but the tracing and history features
provide a useful second-best, which will often be enough to establish the context of an error.
For instance, it is possible to break automatically when an exception is thrown, even if it is
thrown from within compiled code (see Debugging exceptions (page 49)).

5.5.1 Breakpoints and inspecting variables

Let’s use quicksort as a running example. Here’s the code:

5 Note that packages only contain compiled code, so debugging a package requires finding its source and loading
that directly.

42 Chapter 5. Using GHCi

GHC Users Guide Documentation, Release 8.0.2

gsort []1 = []
gsort (a:as) = gsort left ++ [a] ++ gsort right
where (left,right) = (filter (<=a) as, filter (>a) as)

main = print (gsort [8, 4, 6, 3, 1, 23, 11, 18])

First, load the module into GHCi:

Prelude> :1 qgsort.hs

[1 of 1] Compiling Main (gsort.hs, interpreted)
0Ok, modules loaded: Main.
*Main>

Now, let’s set a breakpoint on the right-hand-side of the second equation of gsort:

*Main> :break 2
Breakpoint 0 activated at qgsort.hs:2:15-46
*Main>

The command :break 2 sets a breakpoint on line 2 of the most recently-loaded module, in
this case gsort.hs. Specifically, it picks the leftmost complete subexpression on that line
on which to set the breakpoint, which in this case is the expression (qsort left ++ [a] ++
gsort right).

Now, we run the program:

*Main> main
Stopped at gsort.hs:2:15-46

_result :: [a]
a :: a

left :: [a]
right :: [al

[qsort.hs:2:15-46] *Main>

Execution has stopped at the breakpoint. The prompt has changed to indicate that we are
currently stopped at a breakpoint, and the location: [gsort.hs:2:15-46]. To further clarify
the location, we can use the : list (page 57) command:

[gsort.hs:2:15-46] *Main> :list

1 gsort [] = []

2 qgsort (a:as) = gsort left ++ [a] ++ gsort right

3 where (left,right) = (filter (<=a) as, filter (>a) as)

The :list (page 57) command lists the source code around the current breakpoint. If your
output device supports it, then GHCi will highlight the active subexpression in bold.

GHCi has provided bindings for the free variables® of the expression on which the break-
point was placed (a, left, right), and additionally a binding for the result of the expression
(_result). These variables are just like other variables that you might define in GHCi; you
can use them in expressions that you type at the prompt, you can ask for their types with
:type (page 61), and so on. There is one important difference though: these variables may
only have partial types. For example, if we try to display the value of left:

[qsort.hs:2:15-46] *Main> left

6 We originally provided bindings for all variables in scope, rather than just the free variables of the expression,
but found that this affected performance considerably, hence the current restriction to just the free variables.

5.5. The GHCi Debugger 43

GHC Users Guide Documentation, Release 8.0.2

<interactive>:1:0:
Ambiguous type variable “a' in the constraint:
“Show a' arising from a use of “print' at <interactive>:1:0-3
Cannot resolve unknown runtime types: a
Use :print or :force to determine these types

This is because gsort is a polymorphic function, and because GHCi does not carry type infor-
mation at runtime, it cannot determine the runtime types of free variables that involve type
variables. Hence, when you ask to display left at the prompt, GHCi can’t figure out which
instance of Show to use, so it emits the type error above.

Fortunately, the debugger includes a generic printing command, :print (page 59), which can
inspect the actual runtime value of a variable and attempt to reconstruct its type. If we try it
on left:

[qsort.hs:2:15-46] *Main> :set -fprint-evld-with-show
[qsort.hs:2:15-46] *Main> :print left
left = (_tl::[a])

This isn’t particularly enlightening. What happened is that left is bound to an unevaluated
computation (a suspension, or thunk), and :print (page 59) does not force any evaluation.
The idea is that :print (page 59) can be used to inspect values at a breakpoint without
any unfortunate side effects. It won’t force any evaluation, which could cause the program
to give a different answer than it would normally, and hence it won’t cause any exceptions
to be raised, infinite loops, or further breakpoints to be triggered (see Nested breakpoints
(page 47)). Rather than forcing thunks, :print (page 59) binds each thunk to a fresh variable
beginning with an underscore, in this case t1.

The flag -fprint-evld-with-show instructs :print (page 59) to reuse available Show in-
stances when possible. This happens only when the contents of the variable being inspected
are completely evaluated.

If we aren’t concerned about preserving the evaluatedness of a variable, we can use : force
(page 56) instead of :print (page 59). The : force (page 56) command behaves exactly like
:print (page 59), except that it forces the evaluation of any thunks it encounters:

[qsort.hs:2:15-46] *Main> :force left
left = [4,0,3,1]

Now, since : force (page 56) has inspected the runtime value of left, it has reconstructed
its type. We can see the results of this type reconstruction:

[gsort.hs:2:15-46] *Main> :show bindings
_result :: [Integer]

a :: Integer

left :: [Integer]

right :: [Integer]

~tl1l :: [Integer]

Not only do we now know the type of left, but all the other partial types have also been
resolved. So we can ask for the value of a, for example:

[gsort.hs:2:15-46] *Main> a
8

You might find it useful to use Haskell’s seq function to evaluate individual thunks rather than
evaluating the whole expression with : force (page 56). For example:

44 Chapter 5. Using GHCi

GHC Users Guide Documentation, Release 8.0.2

[gsort.hs:2:15-46] *Main> :print right
right = (_tl::[Integer])
[gqsort.hs:2:15-46] *Main> seq _tl ()
()

[gsort.hs:2:15-46] *Main> :print right
right = 23 : (_t2::[Integer])

We evaluated only the t1 thunk, revealing the head of the list, and the tail is another thunk
now bound to t2. The seq function is a little inconvenient to use here, so you might want to
use :def (page 55) to make a nicer interface (left as an exercise for the reader!).

Finally, we can continue the current execution:

[gsort.hs:2:15-46] *Main> :continue
Stopped at qsort.hs:2:15-46

_result :: [a]
a :: a

left :: [al]
right :: [a]

[gsort.hs:2:15-46] *Main>

The execution continued at the point it previously stopped, and has now stopped at the break-
point for a second time.

5.5.1.1 Setting breakpoints

Breakpoints can be set in various ways. Perhaps the easiest way to set a breakpoint is to
name a top-level function:

:break identifier

Where (identifier) names any top-level function in an interpreted module currently loaded into
GHCIi (qualified names may be used). The breakpoint will be set on the body of the function,
when it is fully applied but before any pattern matching has taken place.

Breakpoints can also be set by line (and optionally column) number:

:break line

:break line column

:break module line

:break module line column

When a breakpoint is set on a particular line, GHCIi sets the breakpoint on the leftmost subex-
pression that begins and ends on that line. If two complete subexpressions start at the same
column, the longest one is picked. If there is no complete subexpression on the line, then the
leftmost expression starting on the line is picked, and failing that the rightmost expression
that partially or completely covers the line.

When a breakpoint is set on a particular line and column, GHCi picks the smallest subexpres-
sion that encloses that location on which to set the breakpoint. Note: GHC considers the TAB
character to have a width of 1, wherever it occurs; in other words it counts characters, rather
than columns. This matches what some editors do, and doesn’t match others. The best advice
is to avoid tab characters in your source code altogether (see -Wtabs (page 90) in Warnings
and sanity-checking (page 81)).

If the module is omitted, then the most recently-loaded module is used.

5.5. The GHCi Debugger 45

GHC Users Guide Documentation, Release 8.0.2

Not all subexpressions are potential breakpoint locations. Single variables are typically not
considered to be breakpoint locations (unless the variable is the right-hand-side of a function
definition, lambda, or case alternative). The rule of thumb is that all redexes are break-
point locations, together with the bodies of functions, lambdas, case alternatives and binding
statements. There is normally no breakpoint on a let expression, but there will always be
a breakpoint on its body, because we are usually interested in inspecting the values of the
variables bound by the let.

5.5.1.2 Listing and deleting breakpoints

The list of breakpoints currently enabled can be displayed using : show breaks (page 60):

*Main> :show breaks
[0] Main gsort.hs:1:11-12
[1] Main gsort.hs:2:15-46

To delete a breakpoint, use the :delete (page 56) command with the number given in the
output from :show breaks (page 60):

*Main> :delete 0
*Main> :show breaks
[1] Main gsort.hs:2:15-46

To delete all breakpoints at once, use :delete *.

5.5.2 Single-stepping

Single-stepping is a great way to visualise the execution of your program, and it is also a
useful tool for identifying the source of a bug. GHCi offers two variants of stepping. Use
:step (page 61) to enable all the breakpoints in the program, and execute until the next
breakpoint is reached. Use :steplocal (page 61) to limit the set of enabled breakpoints to
those in the current top level function. Similarly, use : stepmodule (page 61) to single step
only on breakpoints contained in the current module. For example:

*Main> :step main
Stopped at qsort.hs:5:7-47
_result :: IO ()

The command :step expr (page 61) begins the evaluation of {(expr) in single-stepping mode.
If (expr) is omitted, then it single-steps from the current breakpoint. :steplocal (page 61)
and :stepmodule (page 61) commands work similarly.

The : list (page 57) command is particularly useful when single-stepping, to see where you
currently are:

[qsort.hs:5:7-47] *Main> :list

4

5 main = print (gsort [8, 4, 0, 3, 1, 23, 11, 18])
6

[gsort.hs:5:7-47] *Main>

In fact, GHCi provides a way to run a command when a breakpoint is hit, so we can make it
automatically do : list (page 57):

46 Chapter 5. Using GHCi

GHC Users Guide Documentation, Release 8.0.2

[qsort.hs:5:7-47] *Main> :set stop :list
[qsort.hs:5:7-47] *Main> :step
Stopped at qsort.hs:5:14-46

result :: [Integer]

4
5 main = print (gsort [8, 4, 0, 3, 1, 23, 11, 18])
6
[

gsort.hs:5:14-46] *Main>

5.5.3 Nested breakpoints

When GHCIi is stopped at a breakpoint, and an expression entered at the prompt triggers a
second breakpoint, the new breakpoint becomes the “current” one, and the old one is saved
on a stack. An arbitrary number of breakpoint contexts can be built up in this way. For
example:

[qsort.hs:2:15-46] *Main> :st qsort [1,3]
Stopped at qsort.hs:(1,0)-(3,55)
_result :: [a]

[gsort.hs:(1,0)-(3,55)] *Main>

While stopped at the breakpoint on line 2 that we set earlier, we started a new evaluation with
:step gsort [1,3]. This new evaluation stopped after one step (at the definition of gsort).
The prompt has changed, now prefixed with .. ., to indicate that there are saved breakpoints
beyond the current one. To see the stack of contexts, use :show context (page 60):

[gsort.hs:(1,0)-(3,55)] *Main> :show context
--> main
Stopped at gsort.hs:2:15-46
--> gsort [1,3]
Stopped at gsort.hs:(1,0)-(3,55)
[gsort.hs:(1,0)-(3,55)] *Main>

To abandon the current evaluation, use :abandon (page 53):

. [gsort.hs:(1,0)-(3,55)] *Main> :abandon
[gsort.hs:2:15-46] *Main> :abandon
*Main>

5.5.4 The _result variable

When stopped at a breakpoint or single-step, GHCi binds the variable result to the value of
the currently active expression. The value of result is presumably not available yet, because
we stopped its evaluation, but it can be forced: if the type is known and showable, then just
entering result at the prompt will show it. However, there’s one caveat to doing this:
evaluating result will be likely to trigger further breakpoints, starting with the breakpoint
we are currently stopped at (if we stopped at a real breakpoint, rather than due to :step
(page 61)). So it will probably be necessary to issue a : continue (page 55) immediately when
evaluating result. Alternatively, you can use : force (page 56) which ignores breakpoints.

5.5. The GHCi Debugger a7

GHC Users Guide Documentation, Release 8.0.2

5.5.5 Tracing and history

A question that we often want to ask when debugging a program is “how did I get here?”.
Traditional imperative debuggers usually provide some kind of stack-tracing feature that lets
you see the stack of active function calls (sometimes called the “lexical call stack”), describ-
ing a path through the code to the current location. Unfortunately this is hard to provide
in Haskell, because execution proceeds on a demand-driven basis, rather than a depth-first
basis as in strict languages. The “stack” in GHC’s execution engine bears little resemblance
to the lexical call stack. Ideally GHCi would maintain a separate lexical call stack in addition
to the dynamic call stack, and in fact this is exactly what our profiling system does (Profiling
(page 185)), and what some other Haskell debuggers do. For the time being, however, GHCi
doesn’t maintain a lexical call stack (there are some technical challenges to be overcome).
Instead, we provide a way to backtrack from a breakpoint to previous evaluation steps: es-
sentially this is like single-stepping backwards, and should in many cases provide enough
information to answer the “how did I get here?” question.

To use tracing, evaluate an expression with the :trace (page 61) command. For example, if
we set a breakpoint on the base case of gsort:

*Main> :list qsort

1 gsort [] =[]

2 qgsort (a:as) = gsort left ++ [a] ++ gsort right

3 where (left,right) = (filter (<=a) as, filter (>a) as)
4

*Main> :b 1

Breakpoint 1 activated at gsort.hs:1:11-12

*Main>

and then run a small gsort with tracing:

*Main> :trace gsort [3,2,1]
Stopped at qsort.hs:1:11-12
_result :: [a]
[gsort.hs:1:11-12] *Main>

We can now inspect the history of evaluation steps:

[gsort.hs:1:11-12] *Main> :hist
- : qsort.hs:3:24-38

-2 : gsort.hs:3:23-55

-3 : gsort.hs:(1,0)-(3,55)
-4 : gsort.hs:2:15-24

-5 : gsort.hs:2:15-46

-6 : gsort.hs:3:24-38

-7 : gsort.hs:3:23-55

-8 : gsort.hs:(1,0)-(3,55)
-9 : gsort.hs:2:15-24

-10 : gsort.hs:2:15-46

-11 : gsort.hs:3:24-38

-12 : gsort.hs:3:23-55

-13 : gsort.hs:(1,0)-(3,55)
-14 : gsort.hs:2:15-24

-15 : gsort.hs:2:15-46

-16 : gsort.hs:(1,0)-(3,55)
<end of history>

To examine one of the steps in the history, use :back (page 53):

48 Chapter 5. Using GHCi

GHC Users Guide Documentation, Release 8.0.2

[gsort.hs:1:11-12] *Main> :back
Logged breakpoint at gsort.hs:3:24-38
_result :: [a]

as :: [a]

a :: a

[-1: gsort.hs:3:24-38] *Main>

Note that the local variables at each step in the history have been preserved, and can be
examined as usual. Also note that the prompt has changed to indicate that we’re currently
examining the first step in the history: -1. The command : forward (page 56) can be used to
traverse forward in the history.

The :trace (page 61) command can be used with or without an expression. When used
without an expression, tracing begins from the current breakpoint, just like : step (page 61).

The history is only available when using : trace (page 61); the reason for this is we found that
logging each breakpoint in the history cuts performance by a factor of 2 or more.

-fghci-hist-size
Default 50
Modify the depth of the evaluation history tracked by GHCi.

5.5.6 Debugging exceptions

Another common question that comes up when debugging is “where did this exception come
from?”. Exceptions such as those raised by error or head [] have no context information
attached to them. Finding which particular call to head in your program resulted in the
error can be a painstaking process, usually involving Debug.Trace.trace, or compiling with
profiling and using Debug.Trace.traceStack or +RTS -xc (see -xc (page 134)).

The GHCi debugger offers a way to hopefully shed some light on these errors quickly and
without modifying or recompiling the source code. One way would be to set a break-
point on the location in the source code that throws the exception, and then use :trace
(page 61) and :history (page 56) to establish the context. However, head is in a library
and we can’t set a breakpoint on it directly. For this reason, GHCi provides the flags
-fbreak-on-exception (page 50) which causes the evaluator to stop when an exception is
thrown, and - fbreak-on-error (page 50), which works similarly but stops only on uncaught
exceptions. When stopping at an exception, GHCi will act just as it does when a breakpoint
is hit, with the deviation that it will not show you any source code location. Due to this, these
commands are only really useful in conjunction with :trace (page 61), in order to log the
steps leading up to the exception. For example:

*Main> :set -fbreak-on-exception
*Main> :trace gsort ("abc" ++ undefined)
“Stopped at <exception thrown>
_exception :: e

[<exception thrown>] *Main> :hist
- : gsort.hs:3:24-38

-2 : gsort.hs:3:23-55

-3 : gsort.hs:(1,0)-(3,55)

-4 : gsort.hs:2:15-24

-5 : gsort.hs:2:15-46

-6 : gsort.hs:(1,0)-(3,55)

<end of history>

[<exception thrown>] *Main> :back

5.5. The GHCi Debugger 49

GHC Users Guide Documentation, Release 8.0.2

Logged breakpoint at qsort.hs:3:24-38
_result :: [a]

as :: [al

a:: a

[-1: gsort.hs:3:24-38] *Main> :force as
*** Exception: Prelude.undefined

[-1: gsort.hs:3:24-38] *Main> :print as
as = 'b' : 'c¢' : (_tl::[Charl])

The exception itself is bound to a new variable, exception.

Breaking on exceptions is particularly useful for finding out what your program was doing
when it was in an infinite loop. Just hit Control-C, and examine the history to find out what
was going on.

-fbreak-on-exception

-fbreak-on-error
Causes GHCi to halt evaluation and return to the interactive prompt in the event
of an exception. While -fbreak-on-exception (page 50) breaks on all exceptions,
-fbreak-on-error (page 50) breaks on only those which would otherwise be uncaught.

5.5.7 Example: inspecting functions

It is possible to use the debugger to examine function values. When we are at a breakpoint
and a function is in scope, the debugger cannot show you the source code for it; however, it is
possible to get some information by applying it to some arguments and observing the result.

The process is slightly complicated when the binding is polymorphic. We show the process
by means of an example. To keep things simple, we will use the well known map function:

import Prelude hiding (map)

map :: (a->b) -> [a] -> [b]
map T [1 =[]
map f (x:xs) = f x : map f xs

We set a breakpoint on map, and call it.

*Main> :break 5

Breakpoint 0 activated at map.hs:5:15-28
*Main> map Just [1..5]

Stopped at map.hs:(4,0)-(5,12)

_result :: [b]
X :: a
f:ra->b
xs :: [a]

GHCi tells us that, among other bindings, f is in scope. However, its type is not fully known
yet, and thus it is not possible to apply it to any arguments. Nevertheless, observe that the
type of its first argument is the same as the type of x, and its result type is shared with
_result.

As we demonstrated earlier (Breakpoints and inspecting variables (page 42)), the debugger
has some intelligence built-in to update the type of f whenever the types of x or result are
discovered. So what we do in this scenario is force x a bit, in order to recover both its type
and the argument part of f.

50 Chapter 5. Using GHCi

GHC Users Guide Documentation, Release 8.0.2

*Main> seq x ()
*Main> :print x
X =1

We can check now that as expected, the type of x has been reconstructed, and with it the type
of f has been too:

*Main> :t x

X :: Integer
*Main> :t f

f :: Integer -> b

From here, we can apply f to any argument of type Integer and observe the results.

*Main> let b = f 10
*Main> :t b
b :: b
*Main> b
<interactive>:1:0:
Ambiguous type variable “b' in the constraint:
“Show b' arising from a use of “print' at <interactive>:1:0
*Main> :p b
b = (_t2::a)
*Main> seq b ()
()
*Main> :t b

b :: a
*Main> :p b
b = Just 10

*Main> :t b

b :: Maybe Integer

*Main> :t f

f :: Integer -> Maybe Integer

*Main> f 20

Just 20

*Main> map f [1..5]

[Just 1, Just 2, Just 3, Just 4, Just 5]

In the first application of f, we had to do some more type reconstruction in order to recover
the result type of f. But after that, we are free to use f normally.

5.5.8 Limitations

* When stopped at a breakpoint, if you try to evaluate a variable that is already under
evaluation, the second evaluation will hang. The reason is that GHC knows the variable is
under evaluation, so the new evaluation just waits for the result before continuing, but of
course this isn’t going to happen because the first evaluation is stopped at a breakpoint.
Control-C can interrupt the hung evaluation and return to the prompt.

The most common way this can happen is when you’re evaluating a CAF (e.g. main),
stop at a breakpoint, and ask for the value of the CAF at the prompt again.

* Implicit parameters (see Implicit parameters (page 338)) are only available at the scope
of a breakpoint if there is an explicit type signature.

5.5. The GHCi Debugger 51

GHC Users Guide Documentation, Release 8.0.2

5.6 Invoking GHCi

GHC i is invoked with the command ghci or ghc --interactive. One or more modules or
filenames can also be specified on the command line; this instructs GHCi to load the specified
modules or filenames (and all the modules they depend on), just as if you had said :1load
modules at the GHCi prompt (see GHCi commands (page 53)). For example, to start GHCi
and load the program whose topmost module is in the file Main.hs, we could say:

$ ghci Main.hs

Most of the command-line options accepted by GHC (see Using GHC (page 71)) also make
sense in interactive mode. The ones that don’t make sense are mostly obvious.

5.6.1 Packages
Most packages (see Using Packages (page 149)) are available without needing to specify any
extra flags at all: they will be automatically loaded the first time they are needed.

For hidden packages, however, you need to request the package be loaded by using the
-package (page 172) flag:

$ ghci -package readline
GHCi, version 6.8.1: http://www.haskell.org/ghc/ :? for help

Loading package base ... linking ... done.
Loading package readline-1.0 ... linking ... done.
Prelude>

The following command works to load new packages into a running GHCi:

Prelude> :set -package name

But note that doing this will cause all currently loaded modules to be unloaded, and you’ll be
dumped back into the Prelude.

5.6.2 Extra libraries

Extra libraries may be specified on the command line using the normal -11ib option. (The
term library here refers to libraries of foreign object code; for using libraries of Haskell source
code, see Modules vs. filenames (page 28).) For example, to load the “m” library:

$ ghci -1m

On systems with . so-style shared libraries, the actual library loaded will the 1iblib.so. GHCi
searches the following places for libraries, in this order:

» Paths specified using the -L (page 173) command-line option,

» the standard library search path for your system, which on some systems may be over-
ridden by setting the LD LIBRARY PATH environment variable.

On systems with .d11-style shared libraries, the actual library loaded will be 1ib.d11l. Again,
GHCi will signal an error if it can’t find the library.

GHCi can also load plain object files (.0 or .obj depending on your platform) from the
command-line. Just add the name the object file to the command line.

52 Chapter 5. Using GHCi

GHC Users Guide Documentation, Release 8.0.2

Ordering of -1 options matters: a library should be mentioned before the libraries it depends
on (see Options affecting linking (page 172)).

5.7 GHCi commands

GHCi commands all begin with “:” and consist of a single command name followed by zero or
more parameters. The command name may be abbreviated, with ambiguities being resolved
in favour of the more commonly used commands.

:abandon
Abandons the current evaluation (only available when stopped at a breakpoint).

:add[*] (module)
Add {module)(s) to the current target set, and perform a reload. Normally pre-compiled
code for the module will be loaded if available, or otherwise the module will be compiled
to byte-code. Using the * prefix forces the module to be loaded as byte-code.

:all-types

List all types collected for expressions and (local) bindings currently loaded (while :set
+C (page 62) was active) with their respective source-code span, e.g.

GhciTypes> :all-types

GhciTypes.hs:(38,13)-(38,24): Maybe Id

GhciTypes.hs:(45,10)-(45,29): Outputable SpanInfo
GhciTypes.hs:(45,10)-(45,29): (Rational -> SpanInfo -> SDoc) -> Outputable,
—SpanInfo

tback (n)
Travel back (n) steps in the history. (n) is one if omitted. See Tracing and history
(page 48) for more about GHCi’s debugging facilities. See also: :trace (page 61),
:history (page 56), : forward (page 56).

:break [(identifier) | [(module)] (line) [{(column)]]
Set a breakpoint on the specified function or line and column. See Setting breakpoints
(page 45).

tbrowse[!] [[*] (module)]
Displays the identifiers exported by the module {module), which must be either loaded
into GHCi or be a member of a package. If {(module) is omitted, the most recently-loaded
module is used.

Like all other GHCi commands, the output is always displayed in the current GHCi scope
(What’s really in scope at the prompt? (page 35)).

There are two variants of the browse command:

* If the * symbol is placed before the module name, then all the identifiers in scope in
(module) (rather that just its exports) are shown.

The *-form is only available for modules which are interpreted; for compiled mod-
ules (including modules from packages) only the non-* form of : browse (page 53) is
available.

* Data constructors and class methods are usually displayed in the context of their
data type or class declaration. However, if the ! symbol is appended to the command,
thus :browse!, they are listed individually. The !-form also annotates the listing with
comments giving possible imports for each group of entries. Here is an example:

5.7. GHCi commands 53

GHC Users Guide Documentation, Release 8.0.2

Prelude> :browse! Data.Maybe
- not currently imported
Data.Maybe.catMaybes :: [Maybe a] -> [a]
Data.Maybe.fromJust :: Maybe a -> a
Data.Maybe.fromMaybe :: a -> Maybe a -> a
Data.Maybe.isJust :: Maybe a -> Bool
Data.Maybe.isNothing :: Maybe a -> Bool
Data.Maybe.listToMaybe :: [a] -> Maybe a
Data.Maybe.mapMaybe :: (a -> Maybe b) -> [a] -> [b]
Data.Maybe.maybeTolList :: Maybe a -> [a]
- Imported via Prelude
Just :: a -> Maybe a
data Maybe a = Nothing | Just a
Nothing :: Maybe a
maybe :: b -> (a -> b) -> Maybe a -> b

This output shows that, in the context of the current session (ie in the scope of
Prelude), the first group of items from Data.Maybe are not in scope (althought they
are available in fully qualified form in the GHCIi session - see What’s really in scope
at the prompt? (page 35)), whereas the second group of items are in scope (via
Prelude) and are therefore available either unqualified, or with a Prelude. qualifier.

rcd (dir)

Changes the current working directory to (dir). A “~” symbol at the beginning of (dir)
will be replaced by the contents of the environment variable HOME. See also the :show
paths (page 60) command for showing the current working directory.

Note: changing directories causes all currently loaded modules to be unloaded. This is
because the search path is usually expressed using relative directories, and changing
the search path in the middle of a session is not supported.

:cmd (expr)

Executes (expr) as a computation of type I0 String, and then executes the resulting
string as a list of GHCi commands. Multiple commands are separated by newlines. The
:cmd (page 54) command is useful with :def (page 55) and :set stop (page 60).

:complete (type) [{(n)-1[{m)] (string-literal)

This command allows to request command completions from GHCi even when inter-
acting over a pipe instead of a proper terminal and is designed for integrating GHCi’s
completion with text editors and IDEs.

When called, :complete (page 54) prints the (n)™ to (m)™ completion candidates for
the partial input (string-literal) for the completion domain denoted by (type). Currently,
only the repl domain is supported which denotes the kind of completion that would be
provided interactively by GHCi at the input prompt.

If omitted, (n) and (m) default to the first or last available completion candidate respec-
tively. If there are less candidates than requested via the range argument, (n) and (m)
are implicitly capped to the number of available completition candidates.

The output of :complete (page 54) begins with a header line containing three space-
delimited fields:

* An integer denoting the number 1 of printed completions,
* an integer denoting the total number of completions available, and finally

* a string literal denoting a common prefix to be added to the returned completion
candidates.

54

Chapter 5. Using GHCi

GHC Users Guide Documentation, Release 8.0.2

The header line is followed by (1) lines each containing one completion candidate encoded
as (quoted) string literal. Here are some example invocations showing the various cases:

Prelude> :complete repl 0 ""

0 470 ""

Prelude> :complete repl 5 "import For"
5 21 "import "

"Foreign"

"Foreign.C"

"Foreign.C.Error"

"Foreign.C.String"

"Foreign.C.Types"

Prelude> :complete repl 5-10 "import For"
6 21 "import "

"Foreign.C.Types"

"Foreign.Concurrent"
"Foreign.ForeignPtr"
"Foreign.ForeignPtr.Safe"
"Foreign.ForeignPtr.Unsafe"
"Foreign.Marshal"

Prelude> :complete repl 20- "import For"
2 21 "import "

"Foreign.StablePtr"

"Foreign.Storable"

Prelude> :complete repl "map"

33 ""

Ilmapll

"mapM*"

"mapM_"

Prelude> :complete repl 5-10 "map"

03 ""

:continue
Continue the current evaluation, when stopped at a breakpoint.

:ctags [(filename)]
Generates a “tags” file for Vi-style editors (:ctags (page 55)) or Emacs-style editors
(:etags (page 56)). If no filename is specified, the default tags or TAGS is used, respec-
tively. Tags for all the functions, constructors and types in the currently loaded modules
are created. All modules must be interpreted for these commands to work.

:def[!] (name) (expr)
:def (page 55) is used to define new commands, or macros, in GHCi. The command :def
(name) (expr) defines a new GHCi command :name, implemented by the Haskell ex-
pression (expr), which must have type String -> I0 String. When :name args is typed
at the prompt, GHCi will run the expression (name args), take the resulting String, and
feed it back into GHCi as a new sequence of commands. Separate commands in the result
must be separated by “\n”.

That'’s all a little confusing, so here’s a few examples. To start with, here’s a new GHCi
command which doesn’t take any arguments or produce any results, it just outputs the
current date and time:

Prelude> let date = Time.getClockTime >>= print >> return ""
Prelude> :def date date

Prelude> :date

Fri Mar 23 15:16:40 GMT 2001

Here’s an example of a command that takes an argument. It’s a re-implementation of

5.7. GHCi commands 55

GHC Users Guide Documentation, Release 8.0.2

:cd (page 54):

Prelude> let mycd d = Directory.setCurrentDirectory d >> return ""
Prelude> :def mycd mycd
Prelude> :mycd ..

Or I could define a simple way to invoke “ghc --make Main” in the current directory:

Prelude> :def make (_ -> return ":! ghc --make Main")

We can define a command that reads GHCi input from a file. This might be useful for
creating a set of bindings that we want to repeatedly load into the GHCi session:

Prelude> :def . readFile
Prelude> :. cmds.ghci

Notice that we named the command : ., by analogy with the “.” Unix shell command
that does the same thing.

Typing :def on its own lists the currently-defined macros. Attempting to redefine an
existing command name results in an error unless the :def! form is used, in which case
the old command with that name is silently overwritten.

:delete * | (num)
Delete one or more breakpoints by number (use : show breaks (page 60) to see the num-
ber of each breakpoint). The * form deletes all the breakpoints.

tedit (file)
Opens an editor to edit the file {file), or the most recently loaded module if {file) is omit-
ted. If there were errors during the last loading, the cursor will be positioned at the line
of the first error. The editor to invoke is taken from the EDITOR environment variable,
or a default editor on your system if EDITOR is not set. You can change the editor using
:set editor (page 59).

tetags
See :ctags (page 55).

:force (identifier)
Prints the value of (identifier) in the same way as :print (page 59). Unlike :print
(page 59), : force (page 56) evaluates each thunk that it encounters while traversing
the value. This may cause exceptions or infinite loops, or further breakpoints (which are
ignored, but displayed).

:forward (n)
Move forward (n) steps in the history. (n) is one if omitted. See Tracing and history
(page 48) for more about GHCi’s debugging facilities. See also: :trace (page 61),
:history (page 56), :back (page 53).

thelp
:?

Displays a list of the available commands.

Repeat the previous command.

thistory [num]
Display the history of evaluation steps. With a number, displays that many steps (default:
20). For use with : trace (page 61); see Tracing and history (page 48). To set the number
of history entries stored by GHCi, use the - fghci-hist-size (page 49) flag.

56 Chapter 5. Using GHCi

GHC Users Guide Documentation, Release 8.0.2

:info[!] (name)
Displays information about the given name(s). For example, if (name) is a class, then
the class methods and their types will be printed; if (name) is a type constructor, then
its definition will be printed; if (name) is a function, then its type will be printed. If
(name) has been loaded from a source file, then GHCi will also display the location of its
definition in the source.

For types and classes, GHCi also summarises instances that mention them. To avoid
showing irrelevant information, an instance is shown only if (a) its head mentions (name)},
and (b) all the other things mentioned in the instance are in scope (either qualified or
otherwise) as a result of a : load (page 57) or :module (page 58) commands.

The command :info! works in a similar fashion but it removes restriction (b), showing
all instances that are in scope and mention {(name) in their head.

:issafe [(module)]
Displays Safe Haskell information about the given module (or the current module if omit-
ted). This includes the trust type of the module and its containing package.

tkind[!] (type)
Infers and prints the kind of (type). The latter can be an arbitrary type expression, in-
cluding a partial application of a type constructor, such as Either Int. In fact, :kind
(page 57) even allows you to write a partial application of a type synonym (usually dis-
allowed), so that this works:

ghci> type T a b = (a,b,a)
ghci> :k T Int Bool

T Int Bool :: *

ghci> :k T

T v * > % > X

ghci> :k T Int

T Int :: * -> *

“)

If you specify the optional “!”, GHC will in addition normalise the type by expanding out
type synonyms and evaluating type-function applications, and display the normalised
result.

:list (identifier)
Lists the source code around the definition of (identifier) or the current breakpoint if
not given. This requires that the identifier be defined in an interpreted module. If your
output device supports it, then GHCi will highlight the active subexpression in bold.

:list [{module)] (line)
Lists the source code around the given line number of (module). This requires that the
module be interpreted. If your output device supports it, then GHCi will highlight the
active subexpression in bold.

:load[!] [*]{module)
Recursively loads the specified {module)s, and all the modules they depend on. Here,
each (module) must be a module name or filename, but may not be the name of a module
in a package.

All previously loaded modules, except package modules, are forgotten. The new set of
modules is known as the target set. Note that : load (page 57) can be used without any
arguments to unload all the currently loaded modules and bindings.

Normally pre-compiled code for a module will be loaded if available, or otherwise the
module will be compiled to byte-code. Using the * prefix forces a module to be loaded
as byte-code.

5.7. GHCi commands 57

GHC Users Guide Documentation, Release 8.0.2

Adding the optional “!” turns type errors into warnings while loading. This allows to
use the portions of the module that are correct, even if there are type errors in some
definitions. Effectively, the “-fdefer-type-errors” flag is set before loading and unset after
loading if the flag has not already been set before. See Deferring type errors to runtime
(page 353) for further motivation and details.

After a : load (page 57) command, the current context is set to:
* {module), if it was loaded successfully, or

* the most recently successfully loaded module, if any other modules were loaded as
a result of the current : load (page 57), or

¢ Prelude otherwise.

:loc-at (module) (line) (col) (end-line) (end-col) [{(name)]

Tries to find the definition site of the name at the given source-code span, e.g.:

X> :loc-at X.hs 6 14 6 16 mu
X.hS:(8,7)‘(8,9)

This command is useful when integrating GHCi with text editors and IDEs for providing
a goto-definition facility.

The :loc-at command requires :set +c (page 62) to be set.

imain (argl) ... {(argn)

When a program is compiled and executed, it can use the getArgs function to access the
command-line arguments. However, we cannot simply pass the arguments to the main
function while we are testing in ghci, as the main function doesn’t take its arguments
directly.

Instead, we can use the :main (page 58) command. This runs whatever main is in scope,
with any arguments being treated the same as command-line arguments, e.g.:

Prelude> main = System.Environment.getArgs >>= print
Prelude> :main foo bar
["fOO","bar"]

We can also quote arguments which contains characters like spaces, and they are treated
like Haskell strings, or we can just use Haskell list syntax:

Prelude> :main foo "bar baz"
["foo","bar baz"]

Prelude> :main ["foo", "bar baz"]
["foo","bar baz"]

Finally, other functions can be called, either with the -main-is flag or the : run (page 59)
command:

Prelude> foo putStrLn "foo" >> System.Environment.getArgs >>= print
Prelude> bar putStrLn "bar" >> System.Environment.getArgs >>= print
Prelude> :set -main-is foo

Prelude> :main foo "bar baz"

foo

["foo","bar baz"]

Prelude> :run bar ["foo", "bar baz"]
bar

["foo","bar baz"]

58

Chapter 5. Using GHCi

GHC Users Guide Documentation, Release 8.0.2

:module +|- [*](modl)

import (mod)
Sets or modifies the current context for statements typed at the prompt. The form import
mod is equivalent to :module +mod. See What’s really in scope at the prompt? (page 35)
for more details.

:print (names)
Prints a value without forcing its evaluation. :print (page 59) may be used on values
whose types are unknown or partially known, which might be the case for local variables
with polymorphic types at a breakpoint. While inspecting the runtime value, :print
(page 59) attempts to reconstruct the type of the value, and will elaborate the type in
GHCi’s environment if possible. If any unevaluated components (thunks) are encoun-
tered, then :print (page 59) binds a fresh variable with a name beginning with t to
each thunk. See Breakpoints and inspecting variables (page 42) for more information.
See also the :sprint (page 61) command, which works like :print (page 59) but does
not bind new variables.

rquit
Quits GHCi. You can also quit by typing Control-D at the prompt.

:reload[!]
Attempts to reload the current target set (see : load (page 57)) if any of the modules in
the set, or any dependent module, has changed. Note that this may entail loading new
modules, or dropping modules which are no longer indirectly required by the target.

Adding the optional “!” turns type errors into warnings while loading. This allows to
use the portions of the module that are correct, even if there are type errors in some
definitions. Effectively, the “-fdefer-type-errors” flag is set before loading and unset after
loading if the flag has not already been set before. See Deferring type errors to runtime
(page 353) for further motivation and details.

irun
See :main (page 58).

:script [(n)] (filename)
Executes the lines of a file as a series of GHCi commands. This command is compatible
with multiline statements as set by :set +m (page 62)

iset [(option) ...]
Sets various options. See The :set and :seti commands (page 62) for a list of available
options and Interactive-mode options (page 108) for a list of GHCi-specific flags. The
:set (page 59) command by itself shows which options are currently set. It also lists the
current dynamic flag settings, with GHCi-specific flags listed separately.

:set args (arg)
Sets the list of arguments which are returned when the program calls System.getArgs.

:set editor (cmd)
Sets the command used by :edit (page 56) to {cmd).

:set prog (prog)
Sets the string to be returned when the program calls System.getProgName.

:set prompt (prompt)
Sets the string to be used as the prompt in GHCi. Inside (prompt), the sequence %s
is replaced by the names of the modules currently in scope, %1 is replaced by the line
number (as referenced in compiler messages) of the current prompt, and %% is replaced
by %. If (prompt) starts with " then it is parsed as a Haskell String; otherwise it is treated
as a literal string.

5.7. GHCi commands 59

GHC Users Guide Documentation, Release 8.0.2

:set prompt2 (prompt)
Sets the string to be used as the continuation prompt (used when using the : { command)
in GHCi.

:set stop (num) (cmd)
Set a command to be executed when a breakpoint is hit, or a new item in the history is
selected. The most common use of :set stop (page 60) is to display the source code at
the current location, e.g. :set stop :list.

If a number is given before the command, then the commands are run when the specified
breakpoint (only) is hit. This can be quite useful: for example, :set stop 1 :continue
effectively disables breakpoint 1, by running :continue (page 55) whenever it is hit
(although GHCi will still emit a message to say the breakpoint was hit). What’s more,
with cunning use of : def (page 55) and : cmd (page 54) you can use :set stop (page 60)
to implement conditional breakpoints:

*Main> :def cond \expr -> return (":cmd if (
—return \":continue\"")
*Main> :set stop 0 :cond (x < 3)

++ expr ++ ") then return \"\" else,

Ignoring breakpoints for a specified number of iterations is also possible using similar
techniques.

:seti [(option) ...]
Like :set (page 59), but options set with :seti (page 60) affect only expressions and
commands typed at the prompt, and not modules loaded with : load (page 57) (in con-
trast, options set with :set (page 59) apply everywhere). See Setting options for inter-
active evaluation only (page 63).

Without any arguments, displays the current set of options that are applied to expres-
sions and commands typed at the prompt.

:show bindings
Show the bindings made at the prompt and their types.

:show breaks
List the active breakpoints.

:show context
List the active evaluations that are stopped at breakpoints.

:show imports
Show the imports that are currently in force, as created by import and :module (page 58)
commands.

:show modules
Show the list of modules currently loaded.

:show packages
Show the currently active package flags, as well as the list of packages currently loaded.

:show paths
Show the current working directory (as set via : cd (page 54) command), as well as the
list of directories searched for source files (as set by the -i option).

:show language
Show the currently active language flags for source files.

:showi language
Show the currently active language flags for expressions typed at the prompt (see also
:seti (page 60)).

60 Chapter 5. Using GHCi

GHC Users Guide Documentation, Release 8.0.2

:show [args|prog|prompt|editor|stop]
Displays the specified setting (see :set (page 59)).

:sprint (expr)
Prints a value without forcing its evaluation. :sprint (page 61) is similar to :print
(page 59), with the difference that unevaluated subterms are not bound to new variables,
they are simply denoted by .

:step [(expr)]
Enable all breakpoints and begin evaluating an expression in single-stepping mode. In
this mode evaluation will be stopped after every reduction, allowing local variables to
be inspected. If {(expr) is not given, evaluation will resume at the last breakpoint. See
Single-stepping (page 46).

:steplocal
Enable only breakpoints in the current top-level binding and resume evaluation at the
last breakpoint.

:stepmodule
Enable only breakpoints in the current module and resume evaluation at the last break-
point.

:trace (expr)
Evaluates the given expression (or from the last breakpoint if no expression is given),
and additionally logs the evaluation steps for later inspection using :history (page 56).
See Tracing and history (page 48).

:type (expression)
Infers and prints the type of (expression), including explicit forall quantifiers for poly-
morphic types. The monomorphism restriction is not applied to the expression during
type inference.

:type-at (module) (line) (col) (end-line) (end-col) [{name)]
Reports the inferred type at the given span/position in the module, e.g.:

*X> :type-at X.hs 6 6 6 7 f
Int -> Int

This command is useful when integrating GHCi with text editors and IDEs for providing
a show-type-under-point facility.

The last string parameter is useful for when the span is out of date, i.e. the file changed
and the code has moved. In which case : type-at (page 61) falls back to a general : type
(page 61) like lookup.

The :type-at (page 61) command requires :set +c (page 62) to be set.

:undef (name)
Undefines the user-defined command (name) (see :def (page 55) above).

:unset (option)
Unsets certain options. See The :set and :seti commands (page 62) for a list of available
options.

:uses (module) (line) (col) (end-line) (end-col) [{(name)]
Reports all module-local uses of the thing at the given position in the module, e.g.:

:uses GhciFind.hs 53 66 53 70 name
GhciFind.hs: (46,25)-(46,29)
GhciFind.hs: (47,37)-(47,41)

5.7. GHCi commands 61

GHC Users Guide Documentation, Release 8.0.2

GhciFind.hs: (53,66)-(53,70)
GhciFind.hs:(57,62)-(57,66)

This command is useful for highlighting and navigating all uses of an identifier in editors
and IDEs.

The :uses (page 61) command requires :set +c (page 62) to be set.

:! {(command)
Executes the shell command (command).

5.8 The :set and :setli commands

The :set (page 59) command sets two types of options: GHCi options, which begin with “+”,
and “command-line” options, which begin with “-“,

Note: At the moment, the :set (page 59) command doesn’t support any kind of quoting in
its arguments: quotes will not be removed and cannot be used to group words together. For
example, :set -DF00='BAR BAZ' will not do what you expect.

5.8.1 GHCi options

GHCIi options may be set using : set (page 59) and unset using :unset (page 61).
The available GHCi options are:

iset +c
Collect type and location information after loading modules. The commands :all-types
(page 53), : loc-at (page 58), : type-at (page 61), and :uses (page 61) require +c to be
active.

:set +m
Enable parsing of multiline commands. A multiline command is prompted for when the
current input line contains open layout contexts (see Multiline input (page 34)).

iset +r
Normally, any evaluation of top-level expressions (otherwise known as CAFs or Constant
Applicative Forms) in loaded modules is retained between evaluations. Turning on +r
causes all evaluation of top-level expressions to be discarded after each evaluation (they
are still retained during a single evaluation).

This option may help if the evaluated top-level expressions are consuming large amounts
of space, or if you need repeatable performance measurements.

iset +s
Display some stats after evaluating each expression, including the elapsed time and num-
ber of bytes allocated. NOTE: the allocation figure is only accurate to the size of the stor-
age manager’s allocation area, because it is calculated at every GC. Hence, you might
see values of zero if no GC has occurred.

:set +t
Display the type of each variable bound after a statement is entered at the prompt. If the
statement is a single expression, then the only variable binding will be for the variable
it.

62 Chapter 5. Using GHCi

GHC Users Guide Documentation, Release 8.0.2

5.8.2 Setting GHC command-line options in GHCi

Normal GHC command-line options may also be set using :set (page 59). For example, to
turn on -Wmissing-signatures (page 88), you would say:

Prelude> :set -Wmissing-signatures

Any GHC command-line option that is designated as dynamic (see the table in Flag reference
(page 104)), may be set using :set (page 59). To unset an option, you can set the reverse
option:

Prelude> :set -Wno-incomplete-patterns -XNoMultiParamTypeClasses

Flag reference (page 104) lists the reverse for each option where applicable.

Certain static options (-package (page 172), -I (page 168), -1 (page 137), and -l (page 172)
in particular) will also work, but some may not take effect until the next reload.

5.8.3 Setting options for interactive evaluation only

GHCIi actually maintains two sets of options:
* The loading options apply when loading modules

» The interactive options apply when evaluating expressions and commands typed at the
GHCi prompt.

The :set (page 59) command modifies both, but there is also a :seti (page 60) command
(for “set interactive”) that affects only the interactive options set.

It is often useful to change the interactive options, without having that option apply to loaded
modules too. For example

:seti -XMonoLocalBinds

It would be undesirable if -XMonoLocalBinds (page 335) were to apply to loaded modules too:
that might cause a compilation error, but more commonly it will cause extra recompilation,
because GHC will think that it needs to recompile the module because the flags have changed.

If you are setting language options in your . ghci file, it is good practice to use : seti (page 60)
rather than :set (page 59), unless you really do want them to apply to all modules you load
in GHCi.

The two sets of options can be inspected using the :set (page 59) and :seti (page 60) com-
mands respectively, with no arguments. For example, in a clean GHCi session we might see
something like this:

Prelude> :seti

base language is: Haskell2010

with the following modifiers:
-XNoMonomorphismRestriction
-XNoDatatypeContexts
-XNondecreasingIndentation
-XExtendedDefaultRules

GHCi-specific dynamic flag settings:

other dynamic, non-language, flag settings:
-fimplicit-import-qualified

warning settings:

5.8. The :set and :seti commands 63

GHC Users Guide Documentation, Release 8.0.2

The two sets of options are initialised as follows. First, both sets of options are initialised
as described in The .ghci and .haskeline files (page 64). Then the interactive options are
modified as follows:

* The option -XExtendedDefaultRules is enabled, in order to apply special defaulting
rules to expressions typed at the prompt (see Type defaulting in GHCi (page 40)).

* The Monomorphism Restriction is disabled (see Switching off the dreaded Monomor-
phism Restriction (page 335)).

5.9 The .ghci and .haskeline files

5.9.1 The .ghci files
When it starts, unless the -ignore-dot-ghci (page 64) flag is given, GHCi reads and executes
commands from the following files, in this order, if they exist:

1. ./.ghci

2. appdata/ghc/ghci.conf, where {(appdata) depends on your system, but is usually some-
thing like C:/Documents and Settings/user/Application Data

3. On Unix: $HOME/ .ghc/ghci.conf
4. $HOME/ .ghci

The ghci.conf file is most useful for turning on favourite options (e.g. :set +s), and defining
useful macros.

Note: When setting language options in this file it is usually desirable to use : seti (page 60)
rather than :set (page 59) (see Setting options for interactive evaluation only (page 63)).

Placing a .ghci file in a directory with a Haskell project is a useful way to set certain project-
wide options so you don’t have to type them every time you start GHCi: eg. if your project
uses multi-parameter type classes, scoped type variables, and CPP, and has source files in
three subdirectories A, B and C, you might put the following lines in .ghci:

:set -XMultiParamTypeClasses -XScopedTypeVariables -cpp
:set -iA:B:C

(Note that strictly speaking the -1 (page 137) flag is a static one, but in fact it works to set it
using :set (page 59) like this. The changes won’t take effect until the next : load (page 57),
though.)

Once you have a library of GHCi macros, you may want to source them from separate files,
or you may want to source your .ghci file into your running GHCi session while debugging it

:def source readFile

With this macro defined in your . ghci file, you can use :source filetoread GHCi commands
from file. You can find (and contribute!-) other suggestions for .ghci files on this Haskell
wiki page: GHC/GHCi

Additionally, any files specified with -ghci-script (page 65) flags will be read after the stan-
dard files, allowing the use of custom .ghci files.

Two command-line options control whether the startup files files are read:

64 Chapter 5. Using GHCi

http://haskell.org/haskellwiki/GHC/GHCi

GHC Users Guide Documentation, Release 8.0.2

-ignore-dot-ghci
Don’t read either ./.ghci or the other startup files when starting up.

-ghci-script
Read a specific file after the usual startup files. Maybe be specified repeatedly for mul-
tiple inputs.

When defining GHCi macros, there is some important behavior you should be aware of when
names may conflict with built-in commands, especially regarding tab completion.

For example, consider if you had a macro named :time and in the shell, typed :t 3 — what
should happen? The current algorithm we use for completing commands is:

1. First, look up an exact match on the name from the defined macros.
2. Look for the exact match on the name in the built-in command list.

3. Do a prefix lookup on the list of built-in commands - if a built-in command matches, but
a macro is defined with the same name as the built-in defined, pick the macro.

4. Do a prefix lookup on the list of built-in commands.
5. Do a prefix lookup on the list of defined macros.
Here are some examples:
1. You have a macro :time and enter :t 3
You get :type 3
2. You have a macro :type and enter :t 3
You get :type 3 with your defined macro, not the builtin.
3. You have a macro :time and a macro :type, and enter :t 3

You get :type 3 with your defined macro.

5.9.2 The .haskeline file

GHCi uses Haskeline under the hood. You can configure it to, among other things, prune
duplicates from GHCIi history. See: Haskeline user preferences.

5.10 Compiling to object code inside GHCi

By default, GHCi compiles Haskell source code into byte-code that is interpreted by the run-
time system. GHCIi can also compile Haskell code to object code: to turn on this feature, use
the -fobject-code (page 171) flag either on the command line or with :set (page 59) (the
option - fbyte-code (page 171) restores byte-code compilation again). Compiling to object
code takes longer, but typically the code will execute 10-20 times faster than byte-code.

Compiling to object code inside GHCi is particularly useful if you are developing a compiled
application, because the : reload (page 59) command typically runs much faster than restart-
ing GHC with - -make (page 74) from the command-line, because all the interface files are
already cached in memory.

There are disadvantages to compiling to object-code: you can’t set breakpoints in object-code
modules, for example. Only the exports of an object-code module will be visible in GHCi,
rather than all top-level bindings as in interpreted modules.

5.10. Compiling to object code inside GHCi 65

https://hackage.haskell.org/package/haskeline
http://trac.haskell.org/haskeline/wiki/UserPrefs

GHC Users Guide Documentation, Release 8.0.2

5.11 Running the interpreter in a separate process

Normally GHCi runs the interpreted code in the same process as GHC itself, on top of the same
RTS and sharing the same heap. However, if the flag - fexternal-interpreter (page 66) is
given, then GHC will spawn a separate process for running interpreted code, and communi-
cate with it using messages over a pipe.

-fexternal-interpreter
Since 8.0.1

Run interpreted code (for GHCi, Template Haskell, Quasi-quoting, or Annotations) in a
separate process. The interpreter will run in profiling mode if -prof (page 189) is in
effect, and in dynamically-linked mode if -dynamic (page 173) is in effect.

There are a couple of caveats that will hopefully be removed in the future: this option
is currently not implemented on Windows (it is a no-op), and the external interpreter
does not support the GHCi debugger, so breakpoints and single-stepping don’t work
with - fexternal-interpreter (page 66).

See also the -pgmi (page 167) (Replacing the program for one or more phases (page 166))
and -opti (page 168) (Forcing options to a particular phase (page 167)) flags.

Why might we want to do this? The main reason is that the RTS running the interpreted code
can be a different flavour (profiling or dynamically-linked) from GHC itself. So for example:

* We can use the profiler to collect stack traces when using GHCi (see Stack Traces in
GHCi (page 41)).

* When compiling Template Haskell code with -prof (page 189) we don’t need to compile
the modules without -prof (page 189) first (see Using Template Haskell with Profiling
(page 362)) because we can run the profiled object code in the interpreter.

This feature is experimental in GHC 8.0.x, but it may become the default in future releases.

5.12 FAQ and Things To Watch Out For

The interpreter can’t load modules with foreign export declarations! Unfortunately
not. We haven’t implemented it yet. Please compile any offending modules by hand
before loading them into GHCi.

-0 (page 93) doesn’t work with GHCi!

For technical reasons, the bytecode compiler doesn’t interact well with one of the
optimisation passes, so we have disabled optimisation when using the interpreter.
This isn’t a great loss: you’ll get a much bigger win by compiling the bits of your
code that need to go fast, rather than interpreting them with optimisation turned
on.

Unboxed tuples don’t work with GHCi That’s right. You can always compile a module that
uses unboxed tuples and load it into GHCi, however. (Incidentally the previous point,
namely that -0 (page 93) is incompatible with GHCi, is because the bytecode compiler
can’t deal with unboxed tuples).

Concurrent threads don’t carry on running when GHCIi is waiting for input. This
should work, as long as your GHCi was built with the -threaded (page 174) switch,
which is the default. Consult whoever supplied your GHCi installation.

66 Chapter 5. Using GHCi

GHC Users Guide Documentation, Release 8.0.2

After using getContents, I can’t use stdin, until I do :load or :reload This is the de-
fined behaviour of getContents: it puts the stdin Handle in a state known as semi-closed,
wherein any further I/O operations on it are forbidden. Because 1/O state is retained be-
tween computations, the semi-closed state persists until the next :load (page 57) or
:reload (page 59) command.

You can make stdin reset itself after every evaluation by giving GHCi the command : set
+r. This works because stdin is just a top-level expression that can be reverted to its
unevaluated state in the same way as any other top-level expression (CAF).

I can’t use Control-C to interrupt computations in GHCi on Windows. See Running
GHCi on Windows (page 451).

The default buffering mode is different in GHCi to GHC. In GHC, the stdout handle is
line-buffered by default. However, in GHCi we turn off the buffering on stdout, because
this is normally what you want in an interpreter: output appears as it is generated.

If you want line-buffered behaviour, as in GHC, you can start your program thus:

main = do { hSetBuffering stdout LineBuffering; ... }

5.12. FAQ and Things To Watch Out For 67

GHC Users Guide Documentation, Release 8.0.2

68 Chapter 5. Using GHCi

CHAPTER
SIX

USING RUNGHC

runghc allows you to run Haskell programs without first having to compile them.

6.1 Usage

The runghc command-line looks like:

’runghc [runghc flags] [GHC flags] module [program args]

Any flags not recognized by runghc are automatically passed to GHC. If a flag is recognized
by both runghc and GHC but you want to pass it to GHC then you can place it after a --
separator. Flags after the separator are treated as GHC only flags. Alternatively you can use
the runghc option - -ghc-arg=<arg> to pass any flag or argument directly to GHC.

module could be a Haskell source filename with or without the extension. If for some reason
the filename starts with a - you can use a second - - to indicate the end of flags. Anything
following a second - - will be considered a program file or module name followed by its argu-
ments. For example:

* runghc -- -- -hello.hs

6.2 runghc flags

runghc accepts the following flags:

 -f /path/to/ghc: tell runghc the path of GHC executable to use to run the program.
By default runghc will search for GHC in the directories in the system search path.

* --ghc-arg=<arg>: Pass an option or argument to GHC
* --help: print usage information.

e --version: print version information.

6.3 GHC Flags

As discussed earlier, use -- or --ghc-arg=<arg> to disambiguate GHC flags when needed.
For example, -f is recognized by runghc, therefore to pass -fliberate-case to GHC use any
of the following:

* runghc -- -fliberate-case

69

GHC Users Guide Documentation, Release 8.0.2

* runghc --ghc-arg=-fliberate-case

Note that any non-flag arguments are never passed to GHC. An unused non-flag argument
will be considered as the name of the program to run. If a GHC flag takes an argument use

--ghc-arg=<arg> to pass the argument to GHC. For example, if you want to pass -package
foo to GHC use any of the following:

* runghc -package --ghc-arg=foo Main.hs

* runghc --ghc-arg=-package --ghc-arg=foo Main.hs

70 Chapter 6. Using runghc

CHAPTER
SEVEN

USING GHC

7.1 Using GHC

7.1.1 Getting started: compiling programs

In this chapter you’ll find a complete reference to the GHC command-line syntax, including
all 400+ flags. It’s a large and complex system, and there are lots of details, so it can be quite
hard to figure out how to get started. With that in mind, this introductory section provides
a quick introduction to the basic usage of GHC for compiling a Haskell program, before the
following sections dive into the full syntax.

Let’s create a Hello World program, and compile and run it. First, create a file hello.hs
containing the Haskell code:

’main = putStrLn "Hello, World!"

To compile the program, use GHC like this:

’$ ghc hello.hs

(where $ represents the prompt: don’t type it). GHC will compile the source file hello.
hs, producing an object file hello.o and an interface file hello.hi, and then it will link the
object file to the libraries that come with GHC to produce an executable called hello on
Unix/Linux/Mac, or hello.exe on Windows.

By default GHC will be very quiet about what it is doing, only printing error messages. If
you want to see in more detail what’s going on behind the scenes, add -v (page 77) to the
command line.

Then we can run the program like this:

$./hello
Hello World!

If your program contains multiple modules, then you only need to tell GHC the name of the
source file containing the Main module, and GHC will examine the import declarations to
find the other modules that make up the program and find their source files. This means that,
with the exception of the Main module, every source file should be named after the module
name that it contains (with dots replaced by directory separators). For example, the module
Data.Person would be in the file Data/Person.hs on Unix/Linux/Mac, or Data\Person.hs on
Windows.

71

GHC Users Guide Documentation, Release 8.0.2

7.1.2 Options overview

GHC'’s behaviour is controlled by options, which for historical reasons are also sometimes
referred to as command-line flags or arguments. Options can be specified in three ways:

7.1.2.1 Command-line arguments

An invocation of GHC takes the following form:

ghc [argument...]

Command-line arguments are either options or file names.

Command-line options begin with -. They may not be grouped: -vO0 is different from -v -0.
Options need not precede filenames: e.g., ghc *.0 -o foo. All options are processed and
then applied to all files; you cannot, for example, invoke ghc -c¢ -01 Foo.hs -02 Bar.hs to
apply different optimisation levels to the files Foo.hs and Bar.hs.

Note: Note that command-line options are order-dependent, with arguments being eval-
uated from left-to-right. This can have seemingly strange effects in the presence of flag
implication. For instance, consider -fno-specialise and -01 (page 93) (which implies
-fspecialise (page 99)). These two command lines mean very different things:

-fno-specialise -01
-fspecialise will be enabled as the -fno-specialise is overriden by the -01.
-01 -fno-specialise

-fspecialise will not be enabled, since the -fno-specialise overrides the
-fspecialise implied by -01.

7.1.2.2 Command line options in source files

Sometimes it is useful to make the connection between a source file and the command-line
options it requires quite tight. For instance, if a Haskell source file deliberately uses name
shadowing, it should be compiled with the -Wno-name-shadowing option. Rather than main-
taining the list of per-file options in a Makefile, it is possible to do this directly in the source
file using the OPTIONS GHC pragma (page 381)

{-# OPTIONS GHC -Wno-name-shadowing #-}
module X where

OPTIONS GHC is a file-header pragma (see OPTIONS GHC pragma (page 381)).

Only dynamic flags can be used in an OPTIONS GHC pragma (see Static, Dynamic, and Mode
options (page 73)).

Note that your command shell does not get to the source file options, they are just included
literally in the array of command-line arguments the compiler maintains internally, so you’ll
be desperately disappointed if you try to glob etc. inside OPTIONS GHC.

72 Chapter 7. Using GHC

GHC Users Guide Documentation, Release 8.0.2

Note: The contents of OPTIONS GHC are appended to the command-line options, so options
given in the source file override those given on the command-line.

It is not recommended to move all the contents of your Makefiles into your source files, but in
some circumstances, the OPTIONS GHC pragma is the Right Thing. (If you use -keep-hc-file
(page 139) and have OPTION flags in your module, the OPTIONS GHC will get put into the
generated . hc file).

7.1.2.3 Setting options in GHCi

Options may also be modified from within GHCi, using the :set (page 59) command.

7.1.3 Static, Dynamic, and Mode options

Each of GHC’s command line options is classified as static, dynamic or mode:

For example, - -make (page 74) or -E (page 74). There may only be a single mode
flag on the command line. The available modes are listed in Modes of operation
(page 74).

Most non-mode flags fall into this category. A dynamic flag may be used on the
command line, in a OPTIONS GHC pragma in a source file, or set using : set (page 59)
in GHCi.

A few flags are “static”, which means they can only be used on the command-line,
and remain in force over the entire GHC/GHCIi run.

The flag reference tables (Flag reference (page 104)) lists the status of each flag.

There are a few flags that are static except that they can also be used with GHCi’s :set
(page 59) command; these are listed as “static/:set” in the table.

7.1.4 Meaningful file suffixes

File names with “meaningful” suffixes (e.g., . lhs or .0) cause the “right thing” to happen to
those files.

.hs A Haskell module.

.lhs A “literate Haskell” module.

.hspp A file created by the preprocessor.

.hi A Haskell interface file, probably compiler-generated.

.hc Intermediate C file produced by the Haskell compiler.

.¢ A C file not produced by the Haskell compiler.

.11 An llvm-intermediate-language source file, usually produced by the compiler.
.bc An llvm-intermediate-language bitcode file, usually produced by the compiler.
.S An assembly-language source file, usually produced by the compiler.

.0 An object file, produced by an assembler.

Files with other suffixes (or without suffixes) are passed straight to the linker.

7.1. Using GHC 73

GHC Users Guide Documentation, Release 8.0.2

7.1.5 Modes of operation

GHC'’s behaviour is firstly controlled by a mode flag. Only one of these flags may be given,
but it does not necessarily need to be the first option on the command-line. For instance,

$ ghc Main.hs --make -o my-application

If no mode flag is present, then GHC will enter --make (page 74) mode (Using ghc -make
(page 75)) if there are any Haskell source files given on the command line, or else it will link
the objects named on the command line to produce an executable.

The available mode flags are:

--interactive
Interactive mode, which is also available as ghci. Interactive mode is described in more
detail in Using GHCi (page 27).

- -make
In this mode, GHC will build a multi-module Haskell program automatically, figuring out
dependencies for itself. If you have a straightforward Haskell program, this is likely to
be much easier, and faster, than using make. Make mode is described in Using ghc -make
(page 75).

This mode is the default if there are any Haskell source files mentioned on the command
line, and in this case the - -make (page 74) option can be omitted.

-e (expr)
Expression-evaluation mode. This is very similar to interactive mode, except that there
is a single expression to evaluate ({expr)) which is given on the command line. See
Expression evaluation mode (page 76) for more details.

-E
-C
-S
-C
This is the traditional batch-compiler mode, in which GHC can compile source files one at
a time, or link objects together into an executable. See Batch compiler mode (page 76).
-M

Dependency-generation mode. In this mode, GHC can be used to generate dependency
information suitable for use in a Makefile. See Dependency generation (page 146).

--frontend (module)
Run GHC using the given frontend plugin. See Frontend plugins (page 437) for details.

--mk-d1l
DLL-creation mode (Windows only). See Creating a DLL (page 454).
--help
-?
Cause GHC to spew a long usage message to standard output and then exit.

--show-iface (file)
Read the interface in (file) and dump it as text to stdout. For example ghc --show-iface
M.hi.

--supported-extensions
--supported-languages
Print the supported language extensions.

74 Chapter 7. Using GHC

GHC Users Guide Documentation, Release 8.0.2

--show-options
Print the supported command line options. This flag can be used for autocompletion in
a shell.

--info
Print information about the compiler.

--version
-V
Print a one-line string including GHC’s version number.

--numeric-version
Print GHC’s numeric version number only.

--print-libdir
Print the path to GHC'’s library directory. This is the top of the directory tree containing
GHC'’s libraries, interfaces, and include files (usually something like /usr/local/lib/
ghc-5.04 on Unix). This is the value of $libdir in the package configuration file (see
Packages (page 148)).

7.1.5.1 Using ghc --make

In this mode, GHC will build a multi-module Haskell program by following dependencies from
one or more root modules (usually just Main). For example, if your Main module is in a file
called Main.hs, you could compile and link the program like this:

’ghc --make Main.hs ‘

In fact, GHC enters make mode automatically if there are any Haskell source files on the
command line and no other mode is specified, so in this case we could just type

’ghc Main.hs ‘

Any number of source file names or module names may be specified; GHC will figure out all
the modules in the program by following the imports from these initial modules. It will then
attempt to compile each module which is out of date, and finally, if there is a Main module,
the program will also be linked into an executable.

The main advantages to using ghc --make over traditional Makefiles are:

* GHC doesn’t have to be restarted for each compilation, which means it can cache infor-
mation between compilations. Compiling a multi-module program with ghc --make can
be up to twice as fast as running ghc individually on each source file.

* You don’t have to write a Makefile.

* GHC re-calculates the dependencies each time it is invoked, so the dependencies never
get out of sync with the source.

» Using the -Jj (page 76) flag, you can compile modules in parallel. Specify -j{(N) to com-
pile (N) jobs in parallel. If N is omitted, then it defaults to the number of processors.

Any of the command-line options described in the rest of this chapter can be used with - -make,
but note that any options you give on the command line will apply to all the source files
compiled, so if you want any options to apply to a single source file only, you'll need to use an
OPTIONS GHC pragma (see Command line options in source files (page 72)).

7.1. Using GHC 75

GHC Users Guide Documentation, Release 8.0.2

If the program needs to be linked with additional objects (say, some auxiliary C code), then
the object files can be given on the command line and GHC will include them when linking
the executable.

For backward compatibility with existing make scripts, when used in combination with -c
(page 74), the linking phase is omitted (same as - -make -no-1link).

Note that GHC can only follow dependencies if it has the source file available, so if your
program includes a module for which there is no source file, even if you have an object and
an interface file for the module, then GHC will complain. The exception to this rule is for
package modules, which may or may not have source files.

The source files for the program don’t all need to be in the same directory; the -i (page 137)
option can be used to add directories to the search path (see The search path (page 137)).
-j [N]
Perform compilation in parallel when possible. GHC will use up to (N) threads during
compilation. If N is omitted, then it defaults to the number of processors. Note that
compilation of a module may not begin until its dependencies have been built.

7.1.5.2 Expression evaluation mode

This mode is very similar to interactive mode, except that there is a single expression to
evaluate which is specified on the command line as an argument to the -e option:

ghc -e expr

Haskell source files may be named on the command line, and they will be loaded exactly as
in interactive mode. The expression is evaluated in the context of the loaded modules.

For example, to load and run a Haskell program containing a module Main, we might say:

ghc -e Main.main Main.hs

or we can just use this mode to evaluate expressions in the context of the Prelude:

$ ghc -e "interact (unlines.map reverse.lines)"
hello
olleh

7.1.5.3 Batch compiler mode

In batch mode, GHC will compile one or more source files given on the command line.

The first phase to run is determined by each input-file suffix, and the last phase is determined
by a flag. If no relevant flag is present, then go all the way through to linking. This table
summarises:

Phase of the compilation | Suffix saying “start | Flag saying “stop | (suffix of) output
system here” after” file

literate pre-processor .lhs .hs

C pre-processor (opt.) .hs (with -cpp) -E .hspp

Haskell compiler .hs -G, -S .hc, .s

C compiler (opt.) .hcor .c -S .S

assembler .S -C .0

linker (other) a.out

76 Chapter 7. Using GHC

GHC Users Guide Documentation, Release 8.0.2

Thus, a common invocation would be:

ghc -c Foo.hs

to compile the Haskell source file Foo. hs to an object file Foo.o0.

Note: What the Haskell compiler proper produces depends on what backend code generator
is used. See GHC Backends (page 165) for more details.

Note: Pre-processing is optional, the -cpp (page 168) flag turns it on. See Options affecting
the C pre-processor (page 168) for more details.

Note: The option -E (page 74) runs just the pre-processing passes of the compiler, dumping
the result in a file.

Note: The option -C (page 74) is only available when GHC is built in unregisterised mode.
See Unregisterised compilation (page 166) for more details.

Overriding the default behaviour for a file

As described above, the way in which a file is processed by GHC depends on its suffix. This
behaviour can be overridden using the -x (page 77) option:

-x (suffix)
Causes all files following this option on the command line to be processed as if they had
the suffix (suffix). For example, to compile a Haskell module in the file M.my-hs, use ghc
-C -X hs M.my-hs.

7.1.6 Verbosity options

See also the --help, --version, --numeric-version, and --print-1libdir modes in Modes
of operation (page 74).

-V
The -v (page 77) option makes GHC verbose: it reports its version number and shows
(on stderr) exactly how it invokes each phase of the compilation system. Moreover, it
passes the -v flag to most phases; each reports its version number (and possibly some
other information).
Please, oh please, use the -v option when reporting bugs! Knowing that you ran the
right bits in the right order is always the first thing we want to verify.

-v (n)

To provide more control over the compiler’s verbosity, the -v flag takes an optional nu-
meric argument. Specifying -v on its own is equivalent to -v3, and the other levels have
the following meanings:

-v0 Disable all non-essential messages (this is the default).

7.1. Using GHC 77

GHC Users Guide Documentation, Release 8.0.2

-vl Minimal verbosity: print one line per compilation (this is the default when - -make
(page 74) or --interactive (page 74) is on).

-v2 Print the name of each compilation phase as it is executed. (equivalent to
-dshow-passes (page 182)).

-v3 The same as -v2, except that in addition the full command line (if appropriate) for
each compilation phase is also printed.

-v4 The same as -v3 except that the intermediate program representation after each
compilation phase is also printed (excluding preprocessed and C/assembly files).

-fprint-potential-instances
When GHC can’t find an instance for a class, it displays a short list of some in the in-
stances it knows about. With this flag it prints all the instances it knows about.

The following flags control the way in which GHC displays types in error messages and in
GHCi:

-fprint-unicode-syntax
When enabled GHC prints type signatures using the unicode symbols from the
-XUnicodeSyntax (page 215) extension. For instance,

ghci> :set -fprint-unicode-syntax
ghci> :t (>>)
(>>) :: V(m:: * > *)ab,. Monadm=ma—-mb —->mb

-fprint-explicit-foralls
Using - fprint-explicit-foralls (page 78) makes GHC print explicit forall quantifi-
cation at the top level of a type; normally this is suppressed. For example, in GHCi:

ghci> let f x = x

ghci> :t f

f::a->a

ghci> :set -fprint-explicit-foralls
ghci> :t f

f :: forall a. a -> a

However, regardless of the flag setting, the quantifiers are printed under these circum-
stances:

* For nested foralls, e.g.

ghci> :t GHC.ST.runST
GHC.ST.runST :: (forall s. GHC.ST.ST s a) -> a

If any of the quantified type variables has a kind that mentions a kind variable, e.g.

ghci> :i Data.Type.Equality.sym
Data.Type.Equality.sym ::
forall (k :: BOX) (a :: k) (b :: k).
(a Data.Type.Equality.:~: b) -> b Data.Type.Equality.:~: a
-- Defined in Data.Type.Equality

-fprint-explicit-kinds
Using - fprint-explicit-kinds (page 78) makes GHC print kind arguments in types,
which are normally suppressed. This can be important when you are using kind poly-
morphism. For example:

78 Chapter 7. Using GHC

GHC Users Guide Documentation, Release 8.0.2

ghci> :set -XPolyKinds

ghci> data T a = MKT

ghci> :t MKT

MKT :: forall (k :: BOX) (a :: k). T a
ghci> :set -fprint-explicit-foralls
ghci> :t MKT

MKT :: forall (k :: BOX) (a :: k). T k a

-fprint-explicit-runtime-reps
When -fprint-explicit-runtime-reps (page 79) is enabled, GHC prints RuntimeRep
type variables for runtime-representation-polymorphic types. Otherwise GHC will de-
fault these to PtrRepLifted. For example,

ghci> :t ($)
($) :: (@ ->b) ->a ->b
ghci> :set -fprint-explicit-runtime-reps
ghci> :t ($)
($)
:: forall (r :: GHC.Types.RuntimeRep) a (b :: TYPE r).
(a ->b) ->a ->b

-fprint-explicit-coercions
Using -fprint-explicit-coercions (page 79) makes GHC print coercions in types.
When trying to prove the equality between types of different kinds, GHC uses type-level
coercions. Users will rarely need to see these, as they are meant to be internal.

-fprint-equality-relations

Using -fprint-equality-relations (page 79) tells GHC to distinguish between its
equality relations when printing. For example, ~ is homogeneous lifted equality (the
kinds of its arguments are the same) while ~~ is heterogeneous lifted equality (the
kinds of its arguments might be different) and ~# is heterogeneous unlifted equal-
ity, the internal equality relation used in GHC’s solver. Generally, users should not
need to worry about the subtleties here; ~ is probably what you want. Without
-fprint-equality-relations (page 79), GHC prints all of these as ~. See also Equality
constraints (page 326).

-fprint-expanded-synonyms

When enabled, GHC also prints type-synonym-expanded types in type errors. For exam-
ple, with this type synonyms:

type Foo = Int
type Bar = Bool
type MyBarST s = ST s Bar

This error message:

Couldn't match type 'Int' with 'Bool’
Expected type: ST s Foo
Actual type: MyBarST s

Becomes this:

Couldn't match type 'Int' with 'Bool!'
Expected type: ST s Foo

Actual type: MyBarST s
Type synonyms expanded:

7.1. Using GHC 79

GHC Users Guide Documentation, Release 8.0.2

Expected type: ST s Int
Actual type: ST s Bool

-fprint-typechecker-elaboration

When enabled, GHC also prints extra information from the typechecker in warnings. For
example:

main :: I0 ()

main = do
return $ let a = "hello" in a
return ()

This warning message:

A do-notation statement discarded a result of type ‘[Char]’
Suppress this warning by saying

‘ <- (%) return let a = "hello" in a’
or by using the flag -fno-warn-unused-do-bind

Becomes this:

A do-notation statement discarded a result of type ‘[Char]’
Suppress this warning by saying
<= (%)
return
let
AbsBinds [] T[]
{Exports: [a <= a
<>]
Exported types: a :: [Char]
[LclId, Str=DmdTypel
Binds: a = "hello"}
in a’
or by using the flag -fno-warn-unused-do-bind

-ferror-spans

Causes GHC to emit the full source span of the syntactic entity relating to an error
message. Normally, GHC emits the source location of the start of the syntactic entity
only.

For example:

’test.hs:3:6: parse error on input “where'

becomes:

’test296.hs:3:6-10: parse error on input “where'

And multi-line spans are possible too:

test.hs:(5,4)-(6,7):
Conflicting definitions for "a'
Bound at: test.hs:5:4
test.hs:6:7
In the binding group for: a, b, a

Note that line numbers start counting at one, but column numbers start at zero. This
choice was made to follow existing convention (i.e. this is how Emacs does it).

80

Chapter 7. Using GHC

GHC Users Guide Documentation, Release 8.0.2

-H (size)
Set the minimum size of the heap to (size). This option is equivalent to +RTS -Hsize, see
RTS options to control the garbage collector (page 125).

-Rghc-timing
Prints a one-line summary of timing statistics for the GHC run. This option is equivalent
to +RTS -tstderr, see RTS options to control the garbage collector (page 125).

7.1.7 Platform-specific Flags

Some flags only make sense for particular target platforms.

-msse2
(x86 only, added in GHC 7.0.1) Use the SSE2 registers and instruction set to implement
floating point operations when using the native code generator (page 165). This gives
a substantial performance improvement for floating point, but the resulting compiled
code will only run on processors that support SSE2 (Intel Pentium 4 and later, or AMD
Athlon 64 and later). The LLVM backend (page 165) will also use SSE?2 if your processor
supports it but detects this automatically so no flag is required.

SSE?2 is unconditionally used on x86-64 platforms.

-msse4.2
(x86 only, added in GHC 7.4.1) Use the SSE4.2 instruction set to implement some floating
point and bit operations when using the native code generator (page 165). The resulting
compiled code will only run on processors that support SSE4.2 (Intel Core i7 and later).
The LLVM backend (page 165) will also use SSE4.2 if your processor supports it but
detects this automatically so no flag is required.

7.2 Warnings and sanity-checking

GHC has a number of options that select which types of non-fatal error messages, otherwise
known as warnings, can be generated during compilation. By default, you get a standard set
of warnings which are generally likely to indicate bugs in your program. These are:

* -Woverlapping-patterns (page 89)
-Wwarnings-deprecations (page 84)
-Wdeprecated-flags (page 85)
-Wunrecognised-pragmas (page 83)
-Wduplicate-constraints (page 86)
-Wduplicate-exports (page 87)
-Woverflowed-literals (page 86)
-Wempty-enumerations (page 86)
-Wmissing-fields (page 88)
-Wmissing-methods (page 88)
-Wwrong-do-bind (page 92)
-Wunsupported-calling-conventions (page 85)
-Wdodgy-foreign-imports (page 85)
-Winline-rule-shadowing (page 92)
-Wunsupported-1lvm-version (page 90)
-Wtabs (page 90)
-Wunrecognised-warning-flags (page 83)

The following flags are simple ways to select standard “packages” of warnings:

7.2. Warnings and sanity-checking 81

GHC Users Guide Documentation, Release 8.0.2

-W
Provides the standard warnings plus

* -Wunused-binds (page 90)
-Wunused-matches (page 91)
-Wunused-foralls (page 92)
-Wunused-imports (page 91)
-Wincomplete-patterns (page 87)
-Wdodgy-exports (page 85)
-Wdodgy-imports (page 86)

-Wall
Turns on all warning options that indicate potentially suspicious code. The warnings
that are not enabled by -Wall (page 82) are

-Wincomplete-uni-patterns (page 87)
-Wincomplete-record-updates (page 88)
-Wmonomorphism-restriction (page 90)
-Wimplicit-prelude (page 87)
-Wmissing-local-signatures (page 89)
-Wmissing-exported-signatures (page 89)
-Wmissing-import-1lists (page 88)
-Widentities (page 87)

-Wcompat
Turns on warnings that will be enabled by default in the future, but remain off in normal
compilations for the time being. This allows library authors eager to make their code
future compatible to adapt to new features before they even generate warnings.

This currently enables

e -Wmissing-monadfail-instances (page 85)
* -Wsemigroup (page 85)
e -Wnoncanonical-monoid-instances (page 85)

-Wno-compat
Disables all warnings enabled by -Wcompat (page 82).

-w
Turns off all warnings, including the standard ones and those that -Wall (page 82)
doesn’t enable.

-Werror
Makes any warning into a fatal error. Useful so that you don’t miss warnings when doing
batch compilation.

=-Wwarn
Warnings are treated only as warnings, not as errors. This is the default, but can be
useful to negate a -Werror (page 82) flag.

When a warning is emitted, the specific warning flag which controls it is shown.

-fshow-warning-groups
When showing which flag controls a warning, also show the respective warning group
flag(s) that warning is contained in.

This option is off by default.

The full set of warning options is described below. To turn off any warning, simply give the
corresponding -Wno- ... option on the command line. For backwards compatibility with GHC

82 Chapter 7. Using GHC

GHC Users Guide Documentation, Release 8.0.2

versions prior to 8.0, all these warnings can still be controlled with -f(no-)warn-* instead
of -W(no-)*.

-Wunrecognised-warning-flags
Enables warnings when the compiler encounters a -W. .. flag that is not recognised.

This warning is on by default.

-Wtyped-holes
Determines whether the compiler reports typed holes warnings. Has no effect unless
typed holes errors are deferred until runtime. See Typed Holes (page 345) and Deferring
type errors to runtime (page 353)

This warning is on by default.

-Wtype-errors
Causes a warning to be reported when a type error is deferred until runtime. See De-
ferring type errors to runtime (page 353)

This warning is on by default.
-fdefer-type-errors
Implies -fdefer-typed-holes (page 83)

Defer as many type errors as possible until runtime. At compile time you get a warning
(instead of an error). At runtime, if you use a value that depends on a type error, you
get a runtime error; but you can run any type-correct parts of your code just fine. See
Deferring type errors to runtime (page 353)

-fdefer-typed-holes
Defer typed holes errors (errors about names with a leading underscore (e.g., “ ”, “ foo”,
“ bar”)) until runtime. This will turn the errors produced by typed holes (page 345) into
warnings. Using a value that depends on a typed hole produces a runtime error, the
same as - fdefer-type-errors (page 83) (which implies this option). See Typed Holes

(page 345) and Deferring type errors to runtime (page 353).
Implied by - fdefer-type-errors (page 83). See also -Wtyped-holes (page 83).

-fdefer-out-of-scope-variables
Defer variable out of scope errors (errors about names without a leading underscore) un-
til runtime. This will turn variable-out-of-scope errors into warnings. Using a value that
depends on a typed hole produces a runtime error, the same as - fdefer-type-errors
(page 83) (which implies this option). See Typed Holes (page 345) and Deferring type
errors to runtime (page 353).

Implied by -fdefer-type-errors (page 83). See also
-Wdeferred-out-of-scope-variables.

-Wpartial-type-signatures
Determines whether the compiler reports holes in partial type signatures as warnings.
Has no effect unless -XPartialTypeSignatures (page 347) is enabled, which controls
whether errors should be generated for holes in types or not. See Partial Type Signatures
(page 347).

This warning is on by default.

-fhelpful-errors
When a name or package is not found in scope, make suggestions for the name or pack-
age you might have meant instead.

This option is on by default.

7.2. Warnings and sanity-checking 83

GHC Users Guide Documentation, Release 8.0.2

-Wunrecognised-pragmas
Causes a warning to be emitted when a pragma that GHC doesn’t recognise is used. As
well as pragmas that GHC itself uses, GHC also recognises pragmas known to be used
by other tools, e.g. OPTIONS HUGS and DERIVE.

This option is on by default.

-Wmissed-specialisations

-Wall-missed-specialisations
Emits a warning if GHC cannot specialise an overloaded function, usually because the
function needs an INLINEABLE pragma. The “all” form reports all such situations whereas
the “non-all” form only reports when the situation arises during specialisation of an im-
ported function.

The “non-all” form is intended to catch cases where an imported function that is marked
as INLINEABLE (presumably to enable specialisation) cannot be specialised as it calls
other functions that are themselves not specialised.

Note that these warnings will not throw errors if used with -Werror (page 82).
These options are both off by default.

-Wwarnings-deprecations
Causes a warning to be emitted when a module, function or type with a WARNING or
DEPRECATED pragma is used. See WARNING and DEPRECATED pragmas (page 382) for
more details on the pragmas.

This option is on by default.

-Wamp
This option is deprecated.

Caused a warning to be emitted when a definition was in conflict with the AMP
(Applicative-Monad proosal).

-Wnoncanonical-monad-instances
Warn if noncanonical Applicative or Monad instances declarations are detected.

When this warning is enabled, the following conditions are verified:

In Monad instances declarations warn if any of the following conditions does not hold:
e If return is defined it must be canonical (i.e. return = pure).
o If (>>) is defined it must be canonical (i.e. (>>) = (*>)).

Moreover, in Applicative instance declarations:

* Warn if pure is defined backwards (i.e. pure
e Warn if (*>) is defined backwards (i.e. (*>)

This option is off by default.

return).

(>>)).

-Wnoncanonical-monadfail-instances
Warn if noncanonical Monad or MonadFail instances declarations are detected.

When this warning is enabled, the following conditions are verified:

In Monad instances declarations warn if any of the following conditions does not hold:
o If fail is defined it must be canonical (i.e. fail = Control.Monad.Fail.fail).

Moreover, in MonadFail instance declarations:

e Warn if fail is defined backwards (i.e. fail = Control.Monad. fail).

84 Chapter 7. Using GHC

GHC Users Guide Documentation, Release 8.0.2

See also -Wmissing-monadfail-instances (page 85).
This option is off by default.

-Wnoncanonical-monoid-instances
Warn if noncanonical Semigroup or Monoid instances declarations are detected.

When this warning is enabled, the following conditions are verified:
In Monoid instances declarations warn if any of the following conditions does not hold:
« If mappend is defined it must be canonical (i.e. mappend = (Data.Semigroup.<>)).
Moreover, in Semigroup instance declarations:
e Warn if (<>) is defined backwards (i.e. (<>) = mappend).
This warning is off by default. However, it is part of the -Wcompat (page 82) option group.

-Wmissing-monadfail-instances

Warn when a failable pattern is used in a do-block that does not have a MonadFail
instance.

See also -Wnoncanonical-monadfail-instances (page 84).

Being part of the -Wcompat (page 82) option group, this warning is off by default, but
will be switched on in a future GHC release, as part of the MonadFail Proposal (MFP).

-Wsemigroup

Warn when definitions are in conflict with the future inclusion of Semigroup into the
standard typeclasses.

1. Instances of Monoid should also be instances of Semigroup

2. The Semigroup operator (<>) will be in Prelude, which clashes with custom local
definitions of such an operator

Being part of the -Wcompat (page 82) option group, this warning is off by default, but
will be switched on in a future GHC release.

-Wdeprecated-flags
Causes a warning to be emitted when a deprecated command-line flag is used.

This option is on by default.

-Wunsupported-calling-conventions
Causes a warning to be emitted for foreign declarations that use unsupported calling
conventions. In particular, if the stdcall calling convention is used on an architecture
other than i386 then it will be treated as ccall.

-Wdodgy-foreign-imports
Causes a warning to be emitted for foreign imports of the following form:

’foreign import "f" f :: FunPtr t

on the grounds that it probably should be

’foreign import "&f" f :: FunPtr t

The first form declares that ‘f* is a (pure) C function that takes no arguments and returns
a pointer to a C function with type ‘t’, whereas the second form declares that ‘f* itself is
a C function with type ‘t’. The first declaration is usually a mistake, and one that is hard
to debug because it results in a crash, hence this warning.

7.2. Warnings and sanity-checking 85

https://prime.haskell.org/wiki/Libraries/Proposals/MonadFail

GHC Users Guide Documentation, Release 8.0.2

-Wdodgy-exports

Causes a warning to be emitted when a datatype T is exported with all constructors, i.e.
T(..), butisitjust a type synonym.

Also causes a warning to be emitted when a module is re-exported, but that module
exports nothing.

-Wdodgy-imports

Causes a warning to be emitted in the following cases:

* When a datatype T is imported with all constructors, i.e. T(..), but has been ex-
ported abstractly, i.e. T.

* When an import statement hides an entity that is not exported.

-Woverflowed-literals

Causes a warning to be emitted if a literal will overflow, e.g. 300 :: Word8.

-Wempty-enumerations

Causes a warning to be emitted if an enumeration is empty, e.g. [5 .. 3].

-Wduplicate-constraints

Have the compiler warn about duplicate constraints in a type signature. For example

f :: (Eq a, Show a, Eq a) => a -> a

The warning will indicate the duplicated Eq a constraint.

This option is now deprecated in favour of -Wredundant-constraints (page 86).

-Wredundant-constraints

Since 8.0
Have the compiler warn about redundant constraints in a type signature. In particular:

* A redundant constraint within the type signature itself:

f:: (Eq a, Ord a) =>a -> a

The warning will indicate the redundant Eq a constraint: it is subsumed by the 0rd
a constraint.

* A constraint in the type signature is not used in the code it covers:

f :: EQa=>a->a ->Bool
f xy = True

The warning will indicate the redundant Eq a constraint: : it is not used by the
definition of f.)

Similar warnings are given for a redundant constraint in an instance declaration.

This option is on by default. As usual you can suppress it on a per-module basis with
-Wno-redundant-constraints. Occasionally you may specifically want a function to
have a more constrained signature than necessary, perhaps to leave yourself wiggle-
room for changing the implementation without changing the API. In that case, you can
suppress the warning on a per-function basis, using a call in a dead binding. For example:

f :: EQ a =>a ->a -> Bool
f xy = True
where
_ =X == X -- Suppress the redundant-constraint warning for (Eq a)

86

Chapter 7. Using GHC

GHC Users Guide Documentation, Release 8.0.2

Here the call to (==) makes GHC think that the (Eq a) constraint is needed, so no
warning is issued.

-Wduplicate-exports
Have the compiler warn about duplicate entries in export lists. This is useful information
if you maintain large export lists, and want to avoid the continued export of a definition
after you’ve deleted (one) mention of it in the export list.

This option is on by default.

-Whi-shadowing
Causes the compiler to emit a warning when a module or interface file in the current
directory is shadowing one with the same module name in a library or other directory.

-Widentities
Causes the compiler to emit a warning when a Prelude numeric conversion converts
a type T to the same type T; such calls are probably no-ops and can be omitted. The
functions checked for are: toInteger, toRational, fromIntegral, and realToFrac.

-Wimplicit-prelude
Have the compiler warn if the Prelude is implicitly imported. This happens unless either
the Prelude module is explicitly imported with an import ... Prelude ... line, or this
implicit import is disabled (either by -XNoImplicitPrelude (page 230) or a LANGUAGE
NoImplicitPrelude pragma).

Note that no warning is given for syntax that implicitly refers to the Prelude, even if
-XNoImplicitPrelude (page 230) would change whether it refers to the Prelude. For
example, no warning is given when 368 means Prelude. fromInteger (368::Prelude.
Integer) (where Prelude refers to the actual Prelude module, regardless of the imports
of the module being compiled).

This warning is off by default.

-Wincomplete-patterns

-Wincomplete-uni-patterns
The option -Wincomplete-patterns (page 87) warns about places where a pattern-
match might fail at runtime. The function g below will fail when applied to non-empty
lists, so the compiler will emit a warning about this when -Wincomplete-patterns
(page 87) is enabled.

g [1=2

This option isn’t enabled by default because it can be a bit noisy, and it doesn’t always
indicate a bug in the program. However, it’s generally considered good practice to cover
all the cases in your functions, and it is switched on by - (page 81).

The flag -Wincomplete-uni-patterns (page 87) is similar, except that it applies only to
lambda-expressions and pattern bindings, constructs that only allow a single pattern:

h =\[1] -> 2
Just k= fy

-fmax-pmcheck-iterations=(N)
Default 2000000

Sets how many iterations of the pattern-match checker will perform before giving up.
This limit is to catch cases where pattern-match checking might be excessively costly
(due to the exponential complexity of coverage checking in the general case). It typi-
cally shouldn’t be necessary to set this unless GHC informs you that it has exceeded the

7.2. Warnings and sanity-checking 87

GHC Users Guide Documentation, Release 8.0.2

pattern match checker’s iteration limit (in which case you may want to consider refac-
toring your pattern match, for the sake of future readers of your code.

-Wincomplete-record-updates
The function f below will fail when applied to Bar, so the compiler will emit a warning
about this when -Wincomplete-record-updates (page 88) is enabled.

data Foo = Foo { x :: Int }
| Bar

f :: Foo -> Foo
f foo = foo { x =6}

This option isn’t enabled by default because it can be very noisy, and it often doesn’t
indicate a bug in the program.

-Wmissing-fields
This option is on by default, and warns you whenever the construction of a labelled field
constructor isn’t complete, missing initialisers for one or more fields. While not an error
(the missing fields are initialised with bottoms), it is often an indication of a programmer
error.

-Wmissing-import-lists

This flag warns if you use an unqualified import declaration that does not explicitly list
the entities brought into scope. For example

module M where
import X(f)
import Y
import qualified Z
px=°fxx

The -Wmissing-import-lists (page 88) flag will warn about the import of Y but not X
If module Y is later changed to export (say) f, then the reference to f in M will become
ambiguous. No warning is produced for the import of Z because extending Z’s exports
would be unlikely to produce ambiguity in M.

-Wmissing-methods
This option is on by default, and warns you whenever an instance declaration is missing
one or more methods, and the corresponding class declaration has no default declaration
for them.

The warning is suppressed if the method name begins with an underscore. Here’s an
example where this is useful:

class C a where
_simpleFn :: a -> String
complexFn :: a -> a -> String
complexFn x y = ... simpleFn ...

The idea is that: (a) users of the class will only call complexFn; never simpleFn; and (b)
instance declarations can define either complexFn or simpleFn.

The MINIMAL pragma can be used to change which combination of methods will be re-
quired for instances of a particular class. See MINIMAL pragma (page 382).

-Wmissing-signatures
If you would like GHC to check that every top-level function/value has a type signature,

88 Chapter 7. Using GHC

GHC Users Guide Documentation, Release 8.0.2

use the -Wmissing-signatures (page 88) option. As part of the warning GHC also re-
ports the inferred type. The option is off by default.

-Wmissing-exported-sigs
This option is now deprecated in favour of -Wmissing-exported-signatures (page 89).

-Wmissing-exported-signatures
If you would like GHC to check that every exported top-level function/value has a type
signature, but not check unexported values, use the -Wmissing-exported-signatures
(page 89) option. This option takes precedence over -Wmissing-signatures (page 88).
As part of the warning GHC also reports the inferred type. The option is off by default.

-Wmissing-local-sigs
This option is now deprecated in favour of -Wmissing-local-signatures (page 89).

-Wmissing-local-signatures
If you use the -Wmissing-local-signatures (page 89) flag GHC will warn you about
any polymorphic local bindings. As part of the warning GHC also reports the inferred
type. The option is off by default.

-Wmissing-pattern-synonym-signatures
If you would like GHC to check that every pattern synonym has a type signature, use
the -Wmissing-pattern-synonym-signatures (page 89) option. If this option is used
in conjunction with -Wmissing-exported-signatures (page 89) then only exported pat-
tern synonyms must have a type signature. GHC also reports the inferred type. This
option is off by default.

-Wname-shadowing
This option causes a warning to be emitted whenever an inner-scope value has the same
name as an outer-scope value, i.e. the inner value shadows the outer one. This can catch
typographical errors that turn into hard-to-find bugs, e.g., in the inadvertent capture of
what would be a recursive callin f = ... let f = id in ... f

The warning is suppressed for names beginning with an underscore. For example

f x = do { ignore <- this; ignore <- that; return (the other) }

-Worphans
These flags cause a warning to be emitted whenever the module contains an “orphan”
instance declaration or rewrite rule. An instance declaration is an orphan if it appears
in a module in which neither the class nor the type being instanced are declared in the
same module. A rule is an orphan if it is a rule for a function declared in another module.
A module containing any orphans is called an orphan module.

The trouble with orphans is that GHC must pro-actively read the interface files for all
orphan modules, just in case their instances or rules play a role, whether or not the
module’s interface would otherwise be of any use. See Orphan modules and instance
declarations (page 147) for details.

The flag -Worphans (page 89) warns about user-written orphan rules or instances.

-Woverlapping-patterns
By default, the compiler will warn you if a set of patterns are overlapping, e.g.,

: String -> Int
1
1XS)

f
f
L
f ||2||

0
1
2

7.2. Warnings and sanity-checking 89

GHC Users Guide Documentation, Release 8.0.2

where the last pattern match in f won’t ever be reached, as the second pattern overlaps
it. More often than not, redundant patterns is a programmer mistake/error, so this option
is enabled by default.

-Wtabs

Have the compiler warn if there are tabs in your source file.

-Wtype-defaults

Have the compiler warn/inform you where in your source the Haskell defaulting mech-
anism for numeric types kicks in. This is useful information when converting code from
a context that assumed one default into one with another, e.g., the ‘default default’ for
Haskell 1.4 caused the otherwise unconstrained value 1 to be given the type Int, whereas
Haskell 98 and later defaults it to Integer. This may lead to differences in performance
and behaviour, hence the usefulness of being non-silent about this.

This warning is off by default.

-Wmonomorphism-restriction

Have the compiler warn/inform you where in your source the Haskell Monomorphism
Restriction is applied. If applied silently the MR can give rise to unexpected behaviour,
so it can be helpful to have an explicit warning that it is being applied.

This warning is off by default.

-Wunsupported-1lvm-version

Warn when using - fl lvm (page 171) with an unsupported version of LLVM.

-Wunticked-promoted-constructors

Warn if a promoted data constructor is used without a tick preceding its name.

For example:

data Nat = Succ Nat | Zero

data Vec n s where
Nil :: Vec Zero a
Cons :: a -> Vec n a -> Vec (Succ n) a

Will raise two warnings because Zero and Succ are not written as 'Zero and 'Succ.

This warning is is enabled by default in -Wall (page 82) mode.

-Wunused-binds

Report any function definitions (and local bindings) which are unused. An alias for
* -Wunused-top-binds (page 90)
* -Wunused-local-binds (page 91)
* -Wunused-pattern-binds (page 91)

-Wunused-top-binds

Report any function definitions which are unused.

More precisely, warn if a binding brings into scope a variable that is not used, except if
the variable’s name starts with an underscore. The “starts-with-underscore” condition
provides a way to selectively disable the warning.

A variable is regarded as “used” if
e It is exported, or

» It appears in the right hand side of a binding that binds at least one used variable
that is used

20

Chapter 7. Using GHC

GHC Users Guide Documentation, Release 8.0.2

For example:

module A (f) where

f = 1let (p,q) = rhsl in t p -- No warning: q is unused, but is locally bound

t = rhs3 -- No warning: f is used, and hence so is t

g =nhx -- Warning: g unused

h = rhs2 -- Warning: h is only used in the

-- right-hand side of another unused binding

W = True -- No warning: w starts with an underscore
-Wunused-local-binds

Report any local definitions which are unused. For example:

module A (f) where

f = let (p,q) = rhsl in t p -- Warning: q is unused

g =hx -- No warning: g is unused, but is a top-level,

—binding

-Wunused-pattern-binds
Warn if a pattern binding binds no variables at all, unless it is a lone, possibly-banged,
wild-card pattern. For example:

Just _ = rhs3 -- Warning: unused pattern binding

(_, _) = rhs4 -- Warning: unused pattern binding

_ = rhs3 -- No warning: lone wild-card pattern

I = rhs4 -- No warning: banged wild-card pattern; behaves like seq

The motivation for allowing lone wild-card patterns is they are not very different from v
= rhs3, which elicits no warning; and they can be useful to add a type constraint, e.g.
= x::Int. Alone banged wild-card pattern is useful as an alternative (to seq) way to
force evaluation.

-Wunused-imports
Report any modules that are explicitly imported but never used. However, the form
import M() is never reported as an unused import, because it is a useful idiom for im-
porting instance declarations, which are anonymous in Haskell.

-Wunused-matches
Report all unused variables which arise from term-level pattern matches, including pat-
terns consisting of a single variable. For instance f x y = [] would report x and y as
unused. The warning is suppressed if the variable name begins with an underscore,
thus:

f X = True

Note that -Wunused-matches (page 91) does not warn about variables which arise from
type-level patterns, as found in type family and data family instances. This must be
enabled separately through the -Wunused-type-patterns (page 92) flag.

-Wunused-do-bind
Report expressions occurring in do and mdo blocks that appear to silently throw infor-
mation away. For instance do { mapM popInt xs ; return 10 } would report the first
statement in the do block as suspicious, as it has the type StackM [Int] and not StackM
(), but that [Int] value is not bound to anything. The warning is suppressed by explicitly
mentioning in the source code that your program is throwing something away:

do { _ <- mapM popInt xs ; return 10 }

7.2. Warnings and sanity-checking 91

GHC Users Guide Documentation, Release 8.0.2

Of course, in this particular situation you can do even better:

’do { mapM_ popInt xs ; return 10 } ‘

-Wunused-type-patterns
Report all unused type variables which arise from patterns in type family and data family
instances. For instance:

’type instance F x y = [] ‘

would report x and y as unused. The warning is suppressed if the type variable name
begins with an underscore, like so:

’type instance F x y = [] ‘

Unlike -Wunused-matches (page 91), -Wunused-type-variables is not implied by -Wall
(page 82). The rationale for this decision is that unlike term-level pattern names, type
names are often chosen expressly for documentation purposes, so using underscores in
type names can make the documentation harder to read.

-Wunused-foralls
Report all unused type variables which arise from explicit, user-written forall state-
ments. For instance:

g :: forall a b c. (b ->b)

would report a and c as unused.

-Wwrong-do-bind
Report expressions occurring in do and mdo blocks that appear to lack a binding. For
instance do { return (popInt 10) ; return 10 } would report the first statement in
the do block as suspicious, as it has the type StackM (StackM Int) (which consists of two
nested applications of the same monad constructor), but which is not then “unpacked”
by binding the result. The warning is suppressed by explicitly mentioning in the source
code that your program is throwing something away:

’do { _ <- return (popInt 10) ; return 10 } ‘

For almost all sensible programs this will indicate a bug, and you probably intended to
write:

’do { popInt 10 ; return 10 } ‘

-Winline-rule-shadowing
Warn if a rewrite RULE might fail to fire because the function might be inlined before
the rule has a chance to fire. See How rules interact with INLINE/NOINLINE pragmas
(page 393).

If you’'re feeling really paranoid, the -dcore-1int (page 183) option is a good choice. It turns
on heavyweight intra-pass sanity-checking within GHC. (It checks GHC’s sanity, not yours.)

7.3 Optimisation (code improvement)

The -0* options specify convenient “packages” of optimisation flags; the -f* options de-
scribed later on specify individual optimisations to be turned on/off; the -m* options specify
machine-specific optimisations to be turned on/off.

92 Chapter 7. Using GHC

GHC Users Guide Documentation, Release 8.0.2

Most of these options are boolean and have options to turn them both “on” and “off”
(beginning with the prefix no-). For instance, while -fspecialise enables specialisa-
tion, -fno-specialise disables it. When multiple flags for the same option appear in
the command-line they are evaluated from left to right. For instance, -fno-specialise
-fspecialise will enable specialisation.

It is important to note that the -0* flags are roughly equivalent to combinations of - f* flags.
For this reason, the effect of the -0* and - f* flags is dependent upon the order in which they
occur on the command line.

For instance, take the example of -fno-specialise -01. Despite the -fno-specialise ap-
pearing in the command line, specialisation will still be enabled. This is the case as -01
implies - fspecialise, overriding the previous flag. By contrast, -01 -fno-specialise will
compile without specialisation, as one would expect.

7.3.1 -0*: convenient “packages” of optimisation flags.

There are many options that affect the quality of code produced by GHC. Most people only
have a general goal, something like “Compile quickly” or “Make my program run like greased
lightning.” The following “packages” of optimisations (or lack thereof) should suffice.

Note that higher optimisation levels cause more cross-module optimisation to be performed,
which can have an impact on how much of your program needs to be recompiled when you
change something. This is one reason to stick to no-optimisation when developing code.

=-0*
This is taken to mean: “Please compile quickly; I'm not over-bothered about compiled-
code quality.” So, for example: ghc -c¢ Foo.hs

-00
Means “turn off all optimisation”, reverting to the same settings as if no -0 options had
been specified. Saying -00 can be useful if e.g. make has inserted a -0 on the command
line already.

-0

-01
Means: “Generate good-quality code without taking too long about it.” Thus, for exam-
ple: ghc -c -0 Main.lhs

-02
Means: “Apply every non-dangerous optimisation, even if it means significantly longer
compile times.”

The avoided “dangerous” optimisations are those that can make runtime or space worse
if you’re unlucky. They are normally turned on or off individually.

-0dph
Enables all -02 optimisation, sets -fmax-simplifier-iterations=20 and
-fsimplifier-phases=3. Designed for use with Data Parallel Haskell (DPH) (page 408).

We don’t use a -0* flag for day-to-day work. We use -0 to get respectable speed; e.g., when
we want to measure something. When we want to go for broke, we tend to use -02 (and we
go for lots of coffee breaks).

The easiest way to see what -0 (etc.) “really mean” is to run with -v (page 77), then stand
back in amazement.

7.3. Optimisation (code improvement) 93

GHC Users Guide Documentation, Release 8.0.2

7.3.2 -f*: platform-independent flags

These flags turn on and off individual optimisations. Flags marked as on by default are enabled
by -0, and as such you shouldn’t need to set any of them explicitly. A flag - fwombat can be
negated by saying - fno-wombat. See Individual optimisations (page 114) for a compact list.

-fcase-merge
Default on

Merge immediately-nested case expressions that scrutinse the same variable. For exam-
ple,

case x of
Red -> el
-> case x of
Blue -> e2
Green -> e3

Is transformed to,

case x of
Red -> el
Blue -> e2

Green -> e2

-fcall-arity
Default on
Enable call-arity analysis.
-fcmm-elim-common-blocks
Default on

Enables the common block elimination optimisation in the code generator. This optimi-
sation attempts to find identical Cmm blocks and eliminate the duplicates.

-fcmm-sink
Default on

Enables the sinking pass in the code generator. This optimisation attempts to find iden-
tical Cmm blocks and eliminate the duplicates attempts to move variable bindings closer
to their usage sites. It also inlines simple expressions like literals or registers.

-fcpr-off
Switch off CPR analysis in the demand analyser.

-fcse
Default on

Enables the common-sub-expression elimination optimisation. Switching this off can be
useful if you have some unsafePerformIO expressions that you don’t want commoned-

up.
-fdicts-cheap
A very experimental flag that makes dictionary-valued expressions seem cheap to the
optimiser.
-fdicts-strict
Make dictionaries strict.

94 Chapter 7. Using GHC

GHC Users Guide Documentation, Release 8.0.2

-fdmd-tx-dict-sel
On by default for “-0O0“, “-O”, “-02".

Use a special demand transformer for dictionary selectors.
-fdo-eta-reduction
Default on
Eta-reduce lambda expressions, if doing so gets rid of a whole group of lambdas.
-fdo-lambda-eta-expansion
Default on
Eta-expand let-bindings to increase their arity.

-feager-blackholing
Usually GHC black-holes a thunk only when it switches threads. This flag makes it do so
as soon as the thunk is entered. See Haskell on a shared-memory multiprocessor.

-fexcess-precision
When this option is given, intermediate floating point values can have a greater preci-
sion/range than the final type. Generally this is a good thing, but some programs may
rely on the exact precision/range of Float/Double values and should not use this option
for their compilation.

Note that the 32-bit x86 native code generator only supports excess-precision mode,
so neither -fexcess-precision nor -fno-excess-precision has any effect. This is a
known bug, see Bugs in GHC (page 462).

-fexpose-all-unfoldings
An experimental flag to expose all unfoldings, even for very large or recursive functions.
This allows for all functions to be inlined while usually GHC would avoid inlining larger
functions.

-ffloat-in
Default on

Float let-bindings inwards, nearer their binding site. See Let-floating: moving bindings
to give faster programs (ICFP‘96).

This optimisation moves let bindings closer to their use site. The benefit here is that
this may avoid unnecessary allocation if the branch the let is now on is never executed.
It also enables other optimisation passes to work more effectively as they have more
information locally.

This optimisation isn’t always beneficial though (so GHC applies some heuristics to de-
cide when to apply it). The details get complicated but a simple example is that it is often
beneficial to move let bindings outwards so that multiple let bindings can be grouped into
a larger single let binding, effectively batching their allocation and helping the garbage
collector and allocator.

-ffull-laziness
Default on

Run the full laziness optimisation (also known as let-floating), which floats let-bindings
outside enclosing lambdas, in the hope they will be thereby be computed less often. See
Let-floating: moving bindings to give faster programs (ICFP‘96). Full laziness increases
sharing, which can lead to increased memory residency.

7.3. Optimisation (code improvement) 95

http://research.microsoft.com/en-us/um/people/simonpj/papers/parallel/
http://research.microsoft.com/en-us/um/people/simonpj/papers/float.ps.gz
http://research.microsoft.com/en-us/um/people/simonpj/papers/float.ps.gz
http://research.microsoft.com/en-us/um/people/simonpj/papers/float.ps.gz

GHC Users Guide Documentation, Release 8.0.2

Note: GHC doesn’t implement complete full-laziness. When optimisation in on, and
-fno-full-laziness is not given, some transformations that increase sharing are per-
formed, such as extracting repeated computations from a loop. These are the same
transformations that a fully lazy implementation would do, the difference is that GHC
doesn’t consistently apply full-laziness, so don’t rely on it.

-ffun-to-thunk
Default off

Worker-wrapper removes unused arguments, but usually we do not remove them all,
lest it turn a function closure into a thunk, thereby perhaps creating a space leak and/or
disrupting inlining. This flag allows worker/wrapper to remove all value lambdas.

-fignore-asserts
Default on

Causes GHC to ignore uses of the function Exception.assert in source code (in other
words, rewriting Exception.assert p e to e (see Assertions (page 378)).

-fignore-interface-pragmas
Tells GHC to ignore all inessential information when reading interface files. That is, even
if M. hi contains unfolding or strictness information for a function, GHC will ignore that
information.

-flate-dmd-anal
Run demand analysis again, at the end of the simplification pipeline. We found some
opportunities for discovering strictness that were not visible earlier; and optimisations
like - fspec-constr (page 98) can create functions with unused arguments which are
eliminated by late demand analysis. Improvements are modest, but so is the cost. See
notes on the Trac wiki page.

-fliberate-case
Off by default, but enabled by -O2. Turn on the liberate-case transformation. This unrolls
recursive function once in its own RHS, to avoid repeated case analysis of free variables.
It’s a bit like the call-pattern specialiser (- fspec-constr (page 98)) but for free variables
rather than arguments.

-fliberate-case-threshold=(n)
Default 2000
Set the size threshold for the liberate-case transformation.
-floopification
Default on

When this optimisation is enabled the code generator will turn all self-recursive saturated
tail calls into local jumps rather than function calls.

-fmax-inline-alloc-size=(n)
Default 128

Set the maximum size of inline array allocations to n bytes. GHC will allocate non-pinned
arrays of statically known size in the current nursery block if they’re no bigger than n
bytes, ignoring GC overheap. This value should be quite a bit smaller than the block size
(typically: 4096).

96 Chapter 7. Using GHC

http://ghc.haskell.org/trac/ghc/wiki/LateDmd

GHC Users Guide Documentation, Release 8.0.2

-fmax-inline-memcpy-insn=(n)
Default 32
Inline memcpy calls if they would generate no more than (n) pseudo-instructions.
-fmax-inline-memset-insns=(n)
Default 32
Inline memset calls if they would generate no more than n pseudo instructions.

-fmax-relevant-binds=(n)
-fno-max-relevant-bindings

Default 6

The type checker sometimes displays a fragment of the type environment in er-
ror messages, but only up to some maximum number, set by this flag. Turn-
ing it off with -fno-max-relevant-bindings gives an unlimited number. Syntacti-
cally top-level bindings are also usually excluded (since they may be numerous), but
-fno-max-relevant-bindings includes them too.

-fmax-simplifier-iterations=(n)
Default 4
Sets the maximal number of iterations for the simplifier.
-fmax-worker-args=(n)
Default 10
If a worker has that many arguments, none will be unpacked anymore.

-fno-opt-coercion
Turn off the coercion optimiser.

-fno-pre-inlining
Turn off pre-inlining.

-fno-state-hack
Turn off the “state hack” whereby any lambda with a State# token as argument is con-
sidered to be single-entry, hence it is considered okay to inline things inside it. This can
improve performance of IO and ST monad code, but it runs the risk of reducing sharing.

-fomit-interface-pragmas
Tells GHC to omit all inessential information from the interface file generated for the
module being compiled (say M). This means that a module importing M will see only
the types of the functions that M exports, but not their unfoldings, strictness info, etc.
Hence, for example, no function exported by M will be inlined into an importing module.
The benefit is that modules that import M will need to be recompiled less often (only
when M’s exports change their type, not when they change their implementation).

-fomit-yields
Default on

Tells GHC to omit heap checks when no allocation is being performed. While this im-
proves binary sizes by about 5%, it also means that threads run in tight non-allocating
loops will not get preempted in a timely fashion. If it is important to always be able to
interrupt such threads, you should turn this optimization off. Consider also recompiling
all libraries with this optimization turned off, if you need to guarantee interruptibility.

7.3. Optimisation (code improvement) 97

GHC Users Guide Documentation, Release 8.0.2

-fpedantic-bottoms
Make GHC be more precise about its treatment of bottom (but see also - fno-state-hack
(page 97)). In particular, stop GHC eta-expanding through a case expression, which is
good for performance, but bad if you are using seq on partial applications.

-fregs-graph
Off by default due to a performance regression bug. Only applies in combination with
the native code generator. Use the graph colouring register allocator for register alloca-
tion in the native code generator. By default, GHC uses a simpler, faster linear register
allocator. The downside being that the linear register allocator usually generates worse
code.

-fregs-iterative
Off by default, only applies in combination with the native code generator. Use the iter-
ative coalescing graph colouring register allocator for register allocation in the native
code generator. This is the same register allocator as the -fregs-graph one but also
enables iterative coalescing during register allocation.

-fsimplifier-phases=(n)
Default 2
Set the number of phases for the simplifier. Ignored with -00.
-fsimpl-tick-factor=(n)
Default 100

GHC'’s optimiser can diverge if you write rewrite rules (Rewrite rules (page 390)) that
don’t terminate, or (less satisfactorily) if you code up recursion through data types (Bugs
in GHC (page 462)). To avoid making the compiler fall into an infinite loop, the optimiser
carries a “tick count” and stops inlining and applying rewrite rules when this count is
exceeded. The limit is set as a multiple of the program size, so bigger programs get more
ticks. The -fsimpl-tick-factor flag lets you change the multiplier. The default is 100;
numbers larger than 100 give more ticks, and numbers smaller than 100 give fewer.

If the tick-count expires, GHC summarises what simplifier steps it has done; you can use
-fddump-simpl-stats to generate a much more detailed list. Usually that identifies the
loop quite accurately, because some numbers are very large.

-fspec-constr
Off by default, but enabled by -O2. Turn on call-pattern specialisation; see Call-pattern
specialisation for Haskell programs.

This optimisation specializes recursive functions according to their argument “shapes”.
This is best explained by example so consider:

last :: [a] -> a
last []1 = error "last"
last (x : [1) X

last (x : xs) last xs

In this code, once we pass the initial check for an empty list we know that in the recursive
case this pattern match is redundant. As such -fspec-constr will transform the above

code to:

last :: [a] -> a

last [1] = error "last"

last (x : xs) = last' x xs
where

98 Chapter 7. Using GHC

http://research.microsoft.com/en-us/um/people/simonpj/papers/spec-constr/index.htm
http://research.microsoft.com/en-us/um/people/simonpj/papers/spec-constr/index.htm

GHC Users Guide Documentation, Release 8.0.2

last' x [1
last' x (y : ys)

X
last' y ys

As well avoid unnecessary pattern matching it also helps avoid unnecessary allocation.
This applies when a argument is strict in the recursive call to itself but not on the initial
entry. As strict recursive branch of the function is created similar to the above example.

It is also possible for library writers to instruct GHC to perform call-pattern specialisation
extremely aggressively. This is necessary for some highly optimized libraries, where we
may want to specialize regardless of the number of specialisations, or the size of the
code. As an example, consider a simplified use-case from the vector library:

import GHC.Types (SPEC(..))

foldl :: (a -> b ->a) -> a -> Stream b -> a

{-# INLINE foldl #-}

foldl f z (Stream step s _) = foldl loop SPEC z s

where
foldl loop !sPEC z s = case step s of

Yield x s' -> foldl loop sPEC (f z x) s'
Skip -> foldl loop sPEC z s'
Done -> Zz

Here, after GHC inlines the body of foldl to a call site, it will perform call-pattern
specialisation very aggressively on foldl loop due to the use of SPEC in the argument
of the loop body. SPEC from GHC.Types is specifically recognised by the compiler.

(NB: it is extremely important you use seq or a bang pattern on the SPEC argument!)

In particular, after inlining this will expose f to the loop body directly, allowing heavy
specialisation over the recursive cases.

-fspec-constr-count=(n)
Default 3

Set the maximum number of specialisations that will be created for any one function by
the SpecConstr transformation.

-fspec-constr-threshold=(n)
Default 2000
Set the size threshold for the SpecConstr transformation.
-fspecialise
Default on

Specialise each type-class-overloaded function defined in this module for the types at
which it is called in this module. If -fcross-module-specialise (page 99) is set im-
ported functions that have an INLINABLE pragma (INLINABLE pragma (page 385)) will
be specialised as well.

-fcross-module-specialise
Default on

Specialise INLINABLE (INLINABLE pragma (page 385)) type-class-overloaded functions
imported from other modules for the types at which they are called in this module. Note
that specialisation must be enabled (by - fspecialise) for this to have any effect.

7.3. Optimisation (code improvement) 99

GHC Users Guide Documentation, Release 8.0.2

-fstatic-argument-transformation
Turn on the static argument transformation, which turns a recursive function into a non-
recursive one with a local recursive loop. See Chapter 7 of Andre Santos’s PhD thesis

-fstrictness
Default on

Switch on the strictness analyser. There is a very old paper about GHC’s strictness
analyser, Measuring the effectiveness of a simple strictness analyser, but the current
one is quite a bit different.

The strictness analyser figures out when arguments and variables in a function can be
treated ‘strictly’ (that is they are always evaluated in the function at some point). This
allow GHC to apply certain optimisations such as unboxing that otherwise don’t apply
as they change the semantics of the program when applied to lazy arguments.

-fstrictness-before=(n)
Run an additional strictness analysis before simplifier phase (n).

-funbox-small-strict-fields
Default on

This option causes all constructor fields which are marked strict (i.e. “!”) and which
representation is smaller or equal to the size of a pointer to be unpacked, if possible.
It is equivalent to adding an UNPACK pragma (see UNPACK pragma (page 389)) to every
strict constructor field that fulfils the size restriction.

For example, the constructor fields in the following data types

data A = A !Int
data B B 'A
newtype C = C B
data D = D !C

would all be represented by a single Int# (see Unboxed types and primitive operations
(page 212)) value with -funbox-small-strict-fields enabled.

This option is less of a sledgehammer than - funbox-strict-fields: it should rarely
make things worse. If you use -funbox-small-strict-fields to turn on unboxing by
default you can disable it for certain constructor fields using the NOUNPACK pragma (see
NOUNPACK pragma (page 390)).

Note that for consistency Double, Word64, and Int64 constructor fields are unpacked
on 32-bit platforms, even though they are technically larger than a pointer on those
platforms.

-funbox-strict-fields
This option causes all constructor fields which are marked strict (i.e. !) to be unpacked
if possible. It is equivalent to adding an UNPACK pragma to every strict constructor field
(see UNPACK pragma (page 389)).

This option is a bit of a sledgehammer: it might sometimes make things worse. Selec-
tively unboxing fields by using UNPACK pragmas might be better. An alternative is to
use -funbox-strict-fields to turn on unboxing by default but disable it for certain
constructor fields using the NOUNPACK pragma (see NOUNPACK pragma (page 390)).

-funfolding-creation-threshold=(n)
Default 750

100 Chapter 7. Using GHC

http://research.microsoft.com/en-us/um/people/simonpj/papers/santos-thesis.ps.gz
http://research.microsoft.com/en-us/um/people/simonpj/papers/simple-strictnes-analyser.ps.gz

GHC Users Guide Documentation, Release 8.0.2

Governs the maximum size that GHC will allow a function unfolding to be. (An unfolding
has a “size” that reflects the cost in terms of “code bloat” of expanding (aka inlining)
that unfolding at a call site. A bigger function would be assigned a bigger cost.)

Consequences:
1. nothing larger than this will be inlined (unless it has an INLINE pragma)
2. nothing larger than this will be spewed into an interface file.

Increasing this figure is more likely to result in longer compile times than faster code.
The - funfolding-use-threshold (page 101) is more useful.

-funfolding-dict-discount=(n)
Default 30
How eager should the compiler be to inline dictionaries?
-funfolding-fun-discount=(n)
Default 60
How eager should the compiler be to inline functions?
-funfolding-keeness-factor=(n)
Default 1.5
How eager should the compiler be to inline functions?
-funfolding-use-threshold=(n)
Default 60

This is the magic cut-off figure for unfolding (aka inlining): below this size, a function
definition will be unfolded at the call-site, any bigger and it won’t. The size computed for
a function depends on two things: the actual size of the expression minus any discounts
that apply depending on the context into which the expression is to be inlined.

The difference between this and - funfolding-creation-threshold (page 100) is that
this one determines if a function definition will be inlined at a call site. The other option
determines if a function definition will be kept around at all for potential inlining.

-fvectorisation-avoidance
Default on
Part of Data Parallel Haskell (DPH) (page 408).

Enable the vectorisation avoidance optimisation. This optimisation only works when
used in combination with the -fvectorise transformation.

While vectorisation of code using DPH is often a big win, it can also produce worse results
for some kinds of code. This optimisation modifies the vectorisation transformation to
try to determine if a function would be better of unvectorised and if so, do just that.

-fvectorise
Default off
Part of Data Parallel Haskell (DPH) (page 408).

Enable the vectorisation optimisation transformation. This optimisation transforms the
nested data parallelism code of programs using DPH into flat data parallelism. Flat
data parallel programs should have better load balancing, enable SIMD parallelism and
friendlier cache behaviour.

7.3. Optimisation (code improvement) 101

GHC Users Guide Documentation, Release 8.0.2

7.4 Using Concurrent Haskell

GHC supports Concurrent Haskell by default, without requiring a special option or libraries
compiled in a certain way. To get access to the support libraries for Concurrent Haskell,
just import Control.Concurrent. More information on Concurrent Haskell is provided in the
documentation for that module.

Optionally, the program may be linked with the -threaded (page 174) option (see Options
affecting linking (page 172). This provides two benefits:

* It enables the -N (page 103) to be used, which allows threads to run in parallelism on a
multi-processor or multi-core machine. See Using SMP parallelism (page 102).

» If a thread makes a foreign call (and the call is not marked unsafe), then other Haskell
threads in the program will continue to run while the foreign call is in progress. Addi-
tionally, foreign exported Haskell functions may be called from multiple OS threads
simultaneously. See Multi-threading and the FFI (page 426).

The following RTS option(s) affect the behaviour of Concurrent Haskell programs:
-C (s)
Default 20 milliseconds

Sets the context switch interval to (s) seconds. A context switch will occur at the next
heap block allocation after the timer expires (a heap block allocation occurs every 4k
of allocation). With -C0 or -C, context switches will occur as often as possible (at every
heap block allocation).

7.5 Using SMP parallelism

GHC supports running Haskell programs in parallel on an SMP (symmetric multiprocessor).

There’s a fine distinction between concurrency and parallelism: parallelism is all about mak-
ing your program run faster by making use of multiple processors simultaneously. Concur-
rency, on the other hand, is a means of abstraction: it is a convenient way to structure a
program that must respond to multiple asynchronous events.

However, the two terms are certainly related. By making use of multiple CPUs it is possible
to run concurrent threads in parallel, and this is exactly what GHC’s SMP parallelism sup-
port does. But it is also possible to obtain performance improvements with parallelism on
programs that do not use concurrency. This section describes how to use GHC to compile
and run parallel programs, in Concurrent and Parallel Haskell (page 405) we describe the
language features that affect parallelism.

7.5.1 Compile-time options for SMP parallelism

In order to make use of multiple CPUs, your program must be linked with the -threaded
(page 174) option (see Options affecting linking (page 172)). Additionally, the following com-
piler options affect parallelism:

-feager-blackholing
Blackholing is the act of marking a thunk (lazy computuation) as being under evaluation.
It is useful for three reasons: firstly it lets us detect certain kinds of infinite loop (the
NonTermination exception), secondly it avoids certain kinds of space leak, and thirdly

102 Chapter 7. Using GHC

../libraries/base-4.9.1.0/Control-Concurrent.html

GHC Users Guide Documentation, Release 8.0.2

it avoids repeating a computation in a parallel program, because we can tell when a
computation is already in progress.

The option - feager-blackholing causes each thunk to be blackholed as soon as evalua-
tion begins. The default is “lazy blackholing”, whereby thunks are only marked as being
under evaluation when a thread is paused for some reason. Lazy blackholing is typically
more efficient (by 1-2% or so), because most thunks don’t need to be blackholed. How-
ever, eager blackholing can avoid more repeated computation in a parallel program, and
this often turns out to be important for parallelism.

We recommend compiling any code that is intended to be run in parallel with the
-feager-blackholing flag.

7.5.2 RTS options for SMP parallelism

There are two ways to run a program on multiple processors: call Control.Concurrent.
setNumCapabilities from your program, or use the RTS -N options.

-N (x)
-maxN (x)
Use (x) simultaneous threads when running the program.

The runtime manages a set of virtual processors, which we call capabilities, the number
of which is determined by the -N option. Each capability can run one Haskell thread at a
time, so the number of capabilities is equal to the number of Haskell threads that can run
physically in parallel. A capability is animated by one or more OS threads; the runtime
manages a pool of OS threads for each capability, so that if a Haskell thread makes a
foreign call (see Multi-threading and the FFI (page 426)) another OS thread can take
over that capability.

Normally (x) should be chosen to match the number of CPU cores on the machine’. For
example, on a dual-core machine we would probably use +RTS -N2 -RTS.

Omitting (x), i.e. +RTS -N -RTS, lets the runtime choose the value of (x) itself based on
how many processors are in your machine.

With -maxN{x), i.e. +RTS -maxN3 -RTS, the runtime will choose at most (x), also limited
by the number of processors on the system. Omitting (x) is an error, if you need a default
use option -N.

Be careful when using all the processors in your machine: if some of your processors are
in use by other programs, this can actually harm performance rather than improve it.
Asking GHC to create more capabilities than you have physical threads is almost always
a bad idea.

Setting -N also has the effect of enabling the parallel garbage collector (see RTS options
to control the garbage collector (page 125)).

The current value of the -N option is available to the Haskell program via Control.
Concurrent.getNumCapabilities, and it may be changed while the program is running
by calling Control.Concurrent.setNumCapabilities.

The following options affect the way the runtime schedules threads on CPUs:

-qa
Use the OS’s affinity facilities to try to pin OS threads to CPU cores.

1 Whether hyperthreading cores should be counted or not is an open question; please feel free to experiment and
let us know what results you find.

7.5. Using SMP parallelism 103

GHC Users Guide Documentation, Release 8.0.2

When this option is enabled, the OS threads for a capability i are bound to the CPU core
i using the API provided by the OS for setting thread affinity. e.g. on Linux GHC uses
sched setaffinity().

Depending on your workload and the other activity on the machine, this may or may not
result in a performance improvement. We recommend trying it out and measuring the
difference.

-qm
Disable automatic migration for load balancing. Normally the runtime will automatically
try to schedule threads across the available CPUs to make use of idle CPUs; this option
disables that behaviour. Note that migration only applies to threads; sparks created by
par are load-balanced separately by work-stealing.

This option is probably only of use for concurrent programs that explicitly schedule
threads onto CPUs with Control.Concurrent. forkOn.

7.5.3 Hints for using SMP parallelism

Add the -s (page 129) RTS option when running the program to see timing stats, which will
help to tell you whether your program got faster by using more CPUs or not. If the user time
is greater than the elapsed time, then the program used more than one CPU. You should also
run the program without -V (page 103) for comparison.

The output of +RTS -s tells you how many “sparks” were created and executed during the
run of the program (see RTS options to control the garbage collector (page 125)), which will
give you an idea how well your par annotations are working.

GHC'’s parallelism support has improved in 6.12.1 as a result of much experimentation and
tuning in the runtime system. We’d still be interested to hear how well it works for you, and
we’re also interested in collecting parallel programs to add to our benchmarking suite.

7.6 Flag reference

This section is a quick-reference for GHC’s command-line flags. For each flag, we also list
its static/dynamic status (see Static, Dynamic, and Mode options (page 73)), and the flag’s
opposite (if available).

7.6.1 Verbosity options

More details in Verbosity options (page 77)

104 Chapter 7. Using GHC

GHC Users Guide Documentation, Release 8.0.2

Flag Description Static/DyReraise
-v (page 77) verbose mode (equivalent to -v3) dy-
namic
-v{n) set verbosity level dy-
namic

-fprint-potentiall- displaycdb available instances in type er- | dy- -fno-print-pote
(page 78) ror messages namic
-fprint-explicit-|fPrimitl &xplicit forall quantification in | dy- -fno-print-expl
(page 78) types. See also -XExplicitForAll | namic

(page 328)
-fprint-explicit-kProost explicit kind foralls and kind | dy- -fno-print-expl
(page 78) arguments in types. See also | namic

-XKindSignature
-fprint-explicit-|rProimnRumEemeRep variables in types which | dy- -fno-print-expl
(page 79) are runtime-representation polymorphic. | namic
-fprint-unicode- syllisex unicode syntax when printing ex- | dy- -fno-print-unig
(page 78) pressions, types and kinds. See also | namic

-XUnicodeSyntax (page 215)
-fprint-expanded-simdiypeserrors, also print type-synonym- | dy- -fno-print-expa
(page 79) expanded types. namic
-fprint-typecheckePrimtagxtratinformation from typechecker. | dy- -fno-print-type
(page 80) namic
-ferror-spans Output full span in error messages dy-
(page 80) namic
-Rghc-timing Summarise timing stats for GHC (same as | dy-
(page 81) +RTS -tstderr). namic

7.6.2 Alternative

modes of operation

More details in Modes of operation (page 74)

7.6. Flag reference

105

ntial-instan

icit-foralls

icit-kinds

icit-runtime

ode-syntax

nded-synonyn

checker-elak

GHC Users Guide Documentation, Release 8.0.2

mic

Flag Description Static/DRera
vers
--help, -? Display help mode
--interactive Interactive mode - normally used by just running ghci; see | mode
(page 74) Using GHCi (page 27) for details.
--make (page 74) | Build a multi-module Haskell program, automatically fig- | mode
uring out dependencies. Likely to be much easier, and
faster, than using make; see Using ghc -make (page 75)
for details.
-e expr Evaluate expr; see Expression evaluation mode (page 76) | mode
for details.
--show-1iface display the contents of an interface file. mode
(page 74)
-M (page 74) generate dependency information suitable for use in a | mode
Makefile; see Dependency generation (page 146) for de-
tails.
--frontend run GHC with the given frontend plugin; see Frontend plu- | mode
(module) gins (page 437) for details.
- -supported-extendisphey, the supported language extensions mode
--supported-languages
--show-options | display the supported command line options mode
(page 74)
--1info (page 75) | display information about the compiler mode
--version, -V display GHC version mode
--numeric-versigmdisplay GHC version (numeric only) mode
(page 75)
--print-libdir | display GHC library directory mode
(page 75)
7.6.3 Which phases to run
More details in Batch compiler mode (page 76)
Flag Description Static/DynamiRe-
verse
-F Enable the use of a pre-processor (page 170) (set with | dynamic
(page 170) | -pgmF (page 167))
-E Stop after preprocessing (.hspp file) mode
(page 74)
-C Stop after generating C (. hc file) mode
(page 74)
-S Stop after generating assembly (. s file) mode
(page 74)
-C Stop after generating object (.0) file mode
(page 74)
-x{suffix})| Override default behaviour for source files dynamic
106 Chapter 7. Using GHC

GHC Users Guide Documentation, Release 8.0.2

7.6.4 Redirecting output

More details in Redirecting the compilation output(s) (page 137)

Flag Description Static/DynamiRe-
verse

-hcsuf set the suffix to use for intermediate C files dynamic

{suffix)

-hidir (dir) | set directory for interface files dynamic

-hisuf set the suffix to use for interface files dynamic

{suffix)

-0 set output filename dynamic

(filename)

-odir (dir) set directory for object files dynamic

-ohi set the filename in which to put the interface dynamic

(filename)

-osuf set the output file suffix dynamic

{suffix)

-stubdir redirect FFI stub files dynamic

(dir)

-dumpdir redirect dump files dynamic

(dir)

-outputdir set output directory dynamic

(dir)

-dyno Set the output filename for dynamic object files (see | dynamic
-dynamic-too)

-dynosuf Set the object suffix for dynamic object files (see | dynamic
-dynamic-too)

-dynhisuf Set the hi suffix for dynamic object files (see | dynamic
-dynamic-too)

7.6.5 Keeping intermediate files

More details in Keeping Intermediate Files (page 139)

Flag Description Static/DynarRie-
verse

-keep-hc-file, Retain intermediate . hc files. dynamic
-keep-hc-files
-keep-1llvm-file, Retain intermediate LLVM .11 files. Im- | dynamic
-keep-1lvm-files plies - fllvm (page 171).
-keep-s-file, Retain intermediate . s files. dynamic
-keep-s-files
-keep-tmp-files Retain all intermediate temporary files. dynamic
(page 140)

7.6.6 Temporary files

More details in Redirecting temporary files (page 140)

7.6. Flag reference 107

GHC Users Guide Documentation, Release 8.0.2

Flag Description Static/Dynamic | Reverse
-tmpdir (dir) | set the directory for temporary files | dynamic
7.6.7 Finding imports
More details in The search path (page 137)
Flag Description Static/Dynamic | Reverse
-1 (dirl):(dir2):... | add (dir), (dir2), etc. to import path | dynamic/:set
-1 (page 137) Empty the import directory list dynamic/: set
7.6.8 Interface file options
More details in Other options related to interface files (page 140)
Flag Description Static/DynamjiRe-
verse

-ddump-hi (page 140)

Dump the new interface to stdout | dynamic

-ddump-hi-diffs (page 140) Show the differences vs. the old | dynamic

interface

-ddump-minimal-imports Dump a minimal set of imports dynamic

(page 140)

--show-iface (file)

See Modes of operation (page 74). | mode

7.6.9 Recompilation checking

More details in The recompilation checker (page 141)

Flag Description Static/DyRaneice
-fforce-recolmrn off recompilation checking. This is implied by any | dy- -fno-force-recomp
(page 141) -ddump-X option when compiling a single file (i.e. when | namic

using -c (page 74)).

7.6.10 Interactive-mode options

More details in The .ghci and .haskeline files (page 64)

108

Chapter 7. Using GHC

GHC Users Guide Documentation, Release 8.0.2

Flag Description Static/DyrRawérse
-ignore-dot-ghcl Disable reading of .ghci files dy-

(page 64) namic

-ghci-script Read additional .ghci files dy-

(page 65) namic
-fbreak-on-errorBreak on uncaught exceptions and errors | dy- -fno-break-on
(page 50) (page 49) namic
-fbreak-on-excepBiwak on any exception thrown (page 49) dy- -fno-break-on
(page 50) namic
-fghci-hist-sizpSet) the number of entries GHCi keeps | dy- (default 1is

for :history. See The GHCi Debugger | namic | 50)

(page 42).
-fprint-evld-withrstide usage of Show instances in :print. | dy- -fno-print-ey

See Breakpoints and inspecting variables | namic

(page 42).
-fprint-bind-resdin on printing of binding results in GHCi | dy- -fno-print-bi
(page 32) (page 32) namic
-fno-print-bind|- danmbenforinting of binding contents in GHCi | dy-

(page 42) namic
-fno-implicit-imfpart-qfalnfiad: qualified import of every- | dy-

thing in GHCi (page 38) namic
-interactive-priselect the function to use for printing evalu- | dy-
(page 41) ated expressions in GHCi (page 41) namic

7.6.11 Packag

es

More details in Packages (page 148)

7.6. Flag reference

109

-error

-exception

1ld-with-show

nd-result

GHC Users Guide Documentation, Release 8.0.2

Flag Description Static/DynamRe-
verse
-this-unit-id(P) Compile to be part of unit (i.e. package) | dynamic
(P)
-package(P) Expose package (P) dy-
namic/:set
-hide-all-packages Hide all packages by default dynamic
(page 151)
-hide-package(name) Hide package (P) dy-
namic/: set
-ignore-package(name) Ignore package (P) dy-
namic/:set
-package-db(file) Add (file) to the package db stack. dynamic
-clear-package-db Clear the package db stack. dynamic
(page 154)
-no-global-package-db Remove the global package db from the | dynamic
(page 154) stack.
-global-package-db Add the global package db to the stack. | dynamic
(page 154)
-no-user-package-db Remove the user’s package db from the | dynamic
(page 154) stack.
-user-package-db Add the user’s package db to the stack. | dynamic
(page 154)
-no-auto-link-packages | Don’t automatically link in the base and | dynamic
(page 151) rts packages.
-trust(P) Expose package (P) and set it to be | dy-
trusted namic/: set
-distrust(P) Expose package (P) and set it to be dis- | dy-
trusted namic/: set
-distrust-all (page 152) | Distrust all packages by default dy-
namic/:set

7.6.12 Language options

Language options can be enabled either by a command-line option -Xblah, or by a {-#
LANGUAGE blah #-} pragma in the file itself. See Language options (page 211). Some op-

tions are enabled using - f* flags.

Flag

Description

-fconstraint-solver-iterations=(n)

default: 4. Set the iteration limit for the type-constraint sc

-freduction-depth=(n)

default: 200. Set the limit for type simplification (page 28t

-fcontext-stack=(n)

Deprecated. Use -freduction-depth=(n) instead.

-fglasgow-exts (page 211)

Deprecated. Enable most language extensions; see Langu

-firrefutable-tuples

Make tuple pattern matching irrefutable

-fpackage-trust (page 417)

Enable Safe Haskell (page 408) trusted package requirem:

-ftype-function-depth=(n)

Deprecated. Use -freduction-depth=(n) instead.

-XAllowAmbiguousTypes (page 329)

Allow the user to write ambiguous types (page 329), and t

-XArrows (page 365)

Enable arrow notation (page 365) extension

-XApplicativeDo (page 223)

Enable Applicative do-notation desugaring (page 223)

-XAutoDeriveTypeable

As of GHC 7.10, this option is not needed, and should not |

110

Chapter 7. Using GHC

GHC Users Guide Documentation, Release 8.0.2

Flag

Description

-XBangPatterns (page 371)

Enable bang patterns (page 371).

-XBinarylLiterals (page 216)

Enable support for binary literals (page 216).

“XCApiFFI

Enable the CAPI calling convention (page 421).

-XConstrainedClassMethods (page 277)

Enable constrained class methods (page 277).

-XConstraintKinds (page 327)

Enable a kind of constraints (page 327).

“XCPP

Enable the C preprocessor (page 168).

-XDataKinds (page 311)

Enable datatype promotion (page 311).

-XDefaultSignatures (page 278)

Enable default signatures (page 278).

-XDeriveAny(Class (page 268)

Enable deriving for any class (page 268).

-XDeriveDataTypeable (page 264)

Enable deriving for the Data class (page 264). Implied by

-XDeriveFunctor (page 259)

Enable deriving for the Functor class (page 258). Implied

-XDeriveFoldable (page 259)

Enable deriving for the Foldable class (page 258). Implied

-XDeriveGeneric (page 258)

Enable deriving for the Generic class (page 264).

-XDeriveGeneric (page 258)

Enable deriving for the Generic class (page 264).

-XDerivelLift (page 265)

Enable deriving for the Lift class (page 265)

-XDeriveTraversable (page 259)

Enable deriving for the Traversable class (page 258). Impl

-XDisambiguateRecordFields (page 251)

Enable record field disambiguation (page 251). Implied by

-XEmptyCase (page 233)

Allow empty case alternatives (page 233).

-XEmptyDataDecls (page 238)

Enable empty data declarations.

-XExistentialQuantification (page 241)

Enable existential quantification (page 241).

-XExplicitForAll (page 328)

Enable explicit universal quantification (page 328). Implie

-XExplicitNamespaces (page 236)

Enable using the keyword type to specify the namespace

-XExtendedDefaultRules

Use GHCi’s extended default rules (page 40) in a normal n

-XFlexibleContexts (page 277)

Enable flexible contexts (page 329). Implied by -XImplici

-XFlexibleInstances (page 284)

Enable flexible instances (page 285). Implies -XTypeSynor

-XForeignFunctionInterface

Enable foreign function interface (page 419).

-XFunctionalDependencies (page 279)

Enable functional dependencies (page 279). Implies - XMu'l

-XGADTs (page 249)

Enable generalised algebraic data types (page 249). Impli

-XGADTSyntax (page 245)

Enable generalised algebraic data type syntax (page 245).

-XGeneralizedNewtypeDeriving (page 266)

Enable newtype deriving (page 266).

-XGenerics

Deprecated, does nothing. No longer enables generic clas

-XImplicitParams (page 338)

Enable Implicit Parameters (page 338). Implies -XFlexibl

-XNoImplicitPrelude (page 230)

Don’t implicitly import Prelude. Implied by -XRebindabl

-XImpredicativeTypes (page 344)

Enable impredicative types (page 344). Implies -XRankNTy

-XIncoherentInstances (page 287)

Enable incoherent instances (page 287). Implies -XOverla

-XTypeFamilyDependencies (page 309)

Enable injective type families (page 309). Implies -XTypeF

-XInstanceSigs (page 290)

Enable instance signatures (page 290).

-XInterruptibleFFI

Enable interruptible FFI.

-XKindSignatures (page 331)

Enable kind signatures (page 331). Implied by -XTypeFam:

-XLambdaCase (page 233)

Enable lambda-case expressions (page 233).

-XLiberalTypeSynonyms (page 240)

Enable liberalised type synonyms (page 240).

-XMagicHash (page 215)

Allow # as a postfix modifier on identifiers (page 215).

-XMonadComprehensions (page 228)

Enable monad comprehensions (page 228).

-XMonolLocalBinds (page 335)

Enable do not generalise local bindings (page 335). Implie

-XNoMonomorphismRestriction (page 335)

Disable the monomorphism restriction (page 335).

-XMultiParamTypeClasses (page 276)

Enable multi parameter type classes (page 276). Implied L

-XMultilWayIf (page 234)

Enable multi-way if-expressions (page 234).

-XNamedFieldPuns (page 254)

Enable record puns (page 254).

-XNamedWildCards (page 349)

Enable named wildcards (page 349).

7.6. Flag reference

111

GHC Users Guide Documentation, Release 8.0.2

Flag Description
-XNegativelLiterals (page 216) Enable support for negative literals (page 216).
-XNoNPlusKPatterns Disable support for n+k patterns.

-XNullaryTypeClasses (page 278)

Deprecated, does nothing. nullary (no parameter) type cla

-XNumDecimals (page 216)

Enable support for ‘fractional’ integer literals.

-XOverlappingInstances (page 287)

Enable overlapping instances (page 287).

-XOverloadedLists (page 294)

Enable overloaded lists (page 294).

-X0OverloadedStrings (page 291)

Enable overloaded string literals (page 291).

-XPackageImports (page 236)

Enable package-qualified imports (page 235).

-XParallelArrays

Enable parallel arrays. Implies -XParallellListComp (pag¢

-XParallellListComp (page 225)

Enable parallel list comprehensions (page 225). Implied br

-XPartialTypeSignatures (page 347)

Enable partial type signatures (page 347).

-XPatternGuards (page 217)

Enable pattern guards (page 217).

-XPatternSynonyms (page 270)

Enable pattern synonyms (page 270).

-XPolyKinds (page 314)

Enable kind polymorphism (page 314). Implies -XKindSig

-XPolymorphicComponents

Enable polymorphic components for data constructors (pa

-XPostfixOperators (page 232)

Enable postfix operators (page 232).

-XQuasiQuotes (page 362)

Enable quasiquotation (page 362).

-XRank2Types (page 341)

Enable rank-2 types (page 332). Synonym for - XRankNTyp¢

-XRankNTypes (page 340)

Enable rank-N types (page 332). Implied by -XImpredicat

-XRebindableSyntax (page 230)

Employ rebindable syntax (page 230). Implies -XNoImplic

-XRecordWildCards (page 255)

Enable record wildcards (page 255). Implies -XDisambigu

-XRecursiveDo (page 220)

Enable recursive do (mdo) notation (page 220).

-XRoleAnnotations (page 403)

Enable role annotations (page 403).

-XSafe (page 417)

Enable the Safe Haskell (page 408) Safe mode.

-XScopedTypeVariables (page 332)

Enable lexically-scoped type variables (page 332).

-XStandaloneDeriving (page 257)

Enable standalone deriving (page 257).

-XStrictData (page 373)

Enable default strict datatype fields (page 373).

-XTemplateHaskell (page 355)

Enable Template Haskell (page 354).

-XTemplateHaskellQuotes (page 355)

Enable quotation subset of Template Haskell (page 354).

-XNoTraditionalRecordSyntax (page 251)

Disable support for traditional record syntax (as supportec

-XTransformListComp (page 226)

Enable generalised list comprehensions (page 226).

-XTrustworthy (page 417)

Enable the Safe Haskell (page 408) Trustworthy mode.

-XTupleSections (page 232)

Enable tuple sections (page 232).

-XTypeFamilies (page 297)

Enable type families (page 297). Implies -XExplicitName:

-XTypeOperators (page 239)

Enable type operators (page 239). Implies -XExplicitNam

-XTypeSynonymInstances (page 284)

Enable type synonyms in instance heads (page 284). Impli

-XUnboxedTuples (page 214)

Enable unboxed tuples (page 214).

-XUndecidableInstances (page 285)

Enable undecidable instances (page 286).

-XUnicodeSyntax (page 215)

Enable unicode syntax (page 215).

-XUnliftedFFITypes

Enable unlifted FFI types.

-XUnsafe (page 417)

Enable Safe Haskell (page 408) Unsafe mode.

-XViewPatterns (page 218)

Enable view patterns (page 218).

7.6.13 Warnings

More details in Warnings and sanity-checking (page 81)

112

Chapter 7. Using GHC

GHC Users Guide Documentation, Release 8.0.2

Flag Description
-W (page 81) enable normal warnings
-w (page 82) disable all warnings

-Wall (page 82)

enable almost all warnings (details in Warnings and

-Wcompat (page 82)

enable future compatibility warnings (details in War

-Werror (page 82)

make warnings fatal

-Wwarn (page 82)

make warnings non-fatal

-Wunrecognised-warning-flags (page 83)

throw a warning when an unreconised -W. .. flag is «

-fshow-warning-groups (page 82)

show which group an emitted warning belongs to.

-fdefer-type-errors (page 83)

Turn type errors into warnings, deferring the error t

-fdefer-typed-holes (page 83)

Convert typed hole (page 345) errors into warnings,

-fdefer-out-of-scope-variables (page 83)

Convert variable out of scope variables errors into w

-fhelpful-errors (page 83)

Make suggestions for mis-spelled names.

-Wdeprecated-flags (page 85)

warn about uses of commandline flags that are depr

-Wduplicate-constraints (page 86)

warn when a constraint appears duplicated in a type

-Wduplicate-exports (page 87)

warn when an entity is exported multiple times

-Whi-shadowing (page 87)

warn when a . hi file in the current directory shadow

-Widentities (page 87)

warn about uses of Prelude numeric conversions tha

-Wimplicit-prelude (page 87)

warn when the Prelude is implicitly imported

-Wincomplete-patterns (page 87)

warn when a pattern match could fail

-Wincomplete-uni-patterns (page 87)

warn when a pattern match in a lambda expression ¢

-Wmax-pmcheck-iterations=

the iteration limit for the pattern match checker

-Wincomplete-record-updates (page 88)

warn when a record update could fail

-Wmissing-fields (page 88)

warn when fields of a record are uninitialised

-Wmissing-import-1lists (page 88)

warn when an import declaration does not explicitly

-Wmissing-methods (page 88)

warn when class methods are undefined

-Wmissing-signatures (page 88)

warn about top-level functions without signatures

-Wmissing-exported-sigs (page 89)

(deprecated) warn about top-level functions without

-Wmissing-exported-signatures (page 89)

warn about top-level functions without signatures, o

-Wmissing-local-sigs (page 89)

(deprecated) warn about polymorphic local bindings

-Wmissing-local-signatures (page 89)

warn about polymorphic local bindings without signe

-Wmissing-monadfail-instances (page 85)

warn when a failable pattern is used in a do-block th

-Wsemigroup (page 85)

warn when a Monoid is not Semigroup, and on non-S

-Wmissed-specialisations (page 84)

warn when specialisation of an imported, overloadec

-Wall-missed-specialisations (page 84)

warn when specialisation of any overloaded function

-Wmonomorphism-restriction (page 90)

warn when the Monomorphism Restriction is appliec

-Wname-shadowing (page 89)

warn when names are shadowed

-Wnoncanonical-monad-instances (page 84)

warn when Applicative or Monad instances have no

-Wnoncanonical-monadfail-instances (page 84)

warn when Monad or MonadFail instances have nonc

-Wnoncanonical-monoid-instances (page 85)

warn when Semigroup or Monoid instances have non

-Worphans (page 89)

warn when the module contains orphan instance dec

-Woverlapping-patterns (page 89)

warn about overlapping patterns

-Wtabs (page 90)

warn if there are tabs in the source file

-Wtype-defaults (page 90)

warn when defaulting happens

-Wunrecognised-pragmas (page 83)

warn about uses of pragmas that GHC doesn’t recog

-Wunticked-promoted-constructors (page 90)

warn if promoted constructors are not ticked

-Wunused-binds (page 90)

warn about bindings that are unused. Alias for -Wuni

-Wunused-top-binds (page 90)

warn about top-level bindings that are unused

-Wunused-local-binds (page 91)

warn about local bindings that are unused

-Wunused-pattern-binds (page 91)

warn about pattern match bindings that are unused

-Wunused-imports (page 91)

warn about unnecessary imports

7.6. Flag reference

113

GHC Users Guide Documentation, Release 8.0.2

Flag

Description

-Wunused-matches (page 91)

warn about variables in patterns that aren’t used

-Wunused-foralls (page 92)

warn about type variables in user-written foralls tt

-Wunused-type-variables

warn about variables in type family or data family in

-Wunused-do-bind (page 91)

warn about do bindings that appear to throw away v

-Wwrong-do-bind (page 92)

warn about do bindings that appear to throw away n

-Wunsafe (page 417)

warn if the module being compiled is regarded to be

-Wsafe (page 417)

warn if the module being compiled is regarded to be

-Wtrustworthy-safe (page 417)

warn if the module being compiled is marked as -XT

-Wwarnings-deprecations (page 84)

warn about uses of functions & types that have warn

-Wamp (page 84)

(deprecated) warn on definitions conflicting with the

-Wredundant-constraints (page 86)

Have the compiler warn about redundant constraint:

-Wdeferred-type-errors

Report warnings when deferred type errors (page 3-

-Wtyped-holes (page 83)

Report warnings when typed hole (page 345) errors

-Wdeferred-out-of-scope-variables

Report warnings when variable out-of-scope errors a

-Wpartial-type-signatures (page 83)

warn about holes in partial type signatures when - X

-Wderiving-typeable

warn when encountering a request to derive an instze

7.6.14 Optimisation levels

These options are described in more detail in Optimisation (code improvement) (page 92).

See Individual optimisations (page 114) for a list of optimisations enabled on level 1 and level

2.

Flag Description Static/DynaReic
verse

-00 Disable optimisations (default) dynamic | -0

(page 93) (page 93

-0, -01 | Enable level 1 optimisations dynamic | -00
(page 93

-02 Enable level 2 optimisations dynamic | -00

(page 93) (page 93

-0dph Enable level 2 optimisations, set | dynamic

(page 93) | -fmax-simplifier-iterations=20 and

-fsimplifier-phases=3.

7.6.15 Individual optimisations

These options are described in more detail in -f*: platform-independent flags (page 94). If
a flag is implied by -0 then it is also implied by -02 (unless flag description explicitly says
otherwise). If a flag is implied by -00 only then the flag is not implied by -0 and -02.

Flag

Description

-fcall-arity (page 94)

Enable call-arity optimisation. Implied by -0 (page 93)

-fcase-merge (page 94)

Enable case-merging. Implied by -0 (page 93).

-fcmm-elim-common-blocks (page 94)

Enable Cmm common block elimination. Implied by -0

-fcmm-sink (page 94)

Enable Cmm sinking. Implied by -0 (page 93).

-fcpr-anal

Turn on CPR analysis in the demand analyser. Implied

114

Chapter 7. Using GHC

GHC Users Guide Documentation, Release 8.0.2

Flag

Description

-fcse (page 94)

Enable common sub-expression elimination. Implied by

-fdicts-cheap (page 94)

Make dictionary-valued expressions seem cheap to the

-fdicts-strict (page 94)

Make dictionaries strict

-fdmd-tx-dict-sel (page 95)

Use a special demand transformer for dictionary select

-fdo-eta-reduction (page 95)

Enable eta-reduction. Implied by -0 (page 93).

-fdo- lambda-eta-expansion (page 95)

Enable lambda eta-expansion. Always enabled by defat

-feager-blackholing (page 95)

Turn on eager blackholing (page 102)

-fenable-rewrite-rules (page 391)

Switch on all rewrite rules (including rules generated !

-fexcess-precision (page 95)

Enable excess intermediate precision

-fexpose-all-unfoldings (page 95)

Expose all unfoldings, even for very large or recursive

-ffloat-1in (page 95)

Turn on the float-in transformation. Implied by -0 (pag

-ffull-laziness (page 95)

Turn on full laziness (floating bindings outwards). Imp]

-ffun-to-thunk (page 96)

Allow worker-wrapper to convert a function closure int

-fignore-asserts (page 96)

Ignore assertions in the source. Implied by -0 (page 9:

-fignore-interface-pragmas (page 96)

Ignore pragmas in interface files. Implied by -00 (page

-flate-dmd-anal (page 96)

Run demand analysis again, at the end of the simplifice

-fliberate-case (page 96)

Turn on the liberate-case transformation. Implied by -/

-fliberate-case-threshold=(n)

default: 2000. Set the size threshold for the liberate-cec

-floopification (page 96)

Turn saturated self-recursive tail-calls into local jumps

-fmax-inline-alloc-size=(n)

default: 128. Set the maximum size of inline array allo

-fmax-inline-memcpy-insns=(n)

default: 32. Inline memcpy calls if they would generate

n
-fmax-inline-memset-insns=(n)

default: 32. Inline memset calls if they would generate

-fmax-relevant-binds=(n)

default: 6. Set the maximum number of bindings to dis

-fmax-simplifier-iterations=(n)

default: 4. Set the max iterations for the simplifier.

-fmax-worker-args=(n)

default: 10. If a worker has that many arguments, non

-fno-opt-coercion (page 97)

Turn off the coercion optimiser

-fno-pre-inlining (page 97)

Turn off pre-inlining

-fno-state-hack (page 97)

Turn off the “state hack” whereby any lambda with a r

-fomit-interface-pragmas (page 97)

Don’t generate interface pragmas. Implied by -00 (pag

-fomit-yields (page 97)

Omit heap checks when no allocation is being perform«

-foptimal-applicative-do (page 224)

Use a slower but better algorithm for ApplicativeDo

-fpedantic-bottoms (page 97)

Make GHC be more precise about its treatment of bott

-fregs-graph (page 98)

Use the graph colouring register allocator for register

-fregs-iterative (page 98)

Use the iterative coalescing graph colouring register a

-fsimplifier-phases=(n)

default: 2. Set the number of phases for the simplifier.

-fsimpl-tick-factor=(n)

default: 100. Set the percentage factor for simplifier ti

-fspec-constr (page 98)

Turn on the SpecConstr transformation. Implied by -0.

-fspec-constr-count=(n)

default: 3.* Set to (n) the maximum number of speciali

-fspec-constr-threshold=(n)

default: 2000. Set the size threshold for the SpecConst

-fspecialise (page 99)

Turn on specialisation of overloaded functions. Impliec

-fcross-module-specialise (page 99)

Turn on specialisation of overloaded functions importe

-fstatic-argument-transformation (page 99)

Turn on the static argument transformation.

-fstrictness (page 100)

Turn on strictness analysis. Implied by -0 (page 93). I

-fstrictness-before=(n)

Run an additional strictness analysis before simplifier j

-funbox-small-strict-fields (page 100)

Flatten strict constructor fields with a pointer-sized rej

-funbox-strict-fields (page 100)

Flatten strict constructor fields

-funfolding-creation-threshold=(n)

default: 750. Tweak unfolding settings.

-funfolding-dict-discount=(n)

default: 30. Tweak unfolding settings.

-funfolding-fun-discount=(n)

default: 60. Tweak unfolding settings.

7.6. Flag reference

115

GHC Users Guide Documentation, Release 8.0.2

Flag Description

-funfolding-keeness-factor=(n) default: 1.5. Tweak unfolding settings.
-funfolding-use-threshold=(n) default: 60. Tweak unfolding settings.
-fvectorisation-avoidance (page 101) Enable vectorisation avoidance. Always enabled by def
-fvectorise (page 101) Enable vectorisation of nested data parallelism
-fworker-wrapper Enable the worker-wrapper transformation after a stric

7.6.16 Profiling options

More details in Profiling (page 185)

Flag Description Static/DynaRsicerse
-prof (page 189) Turn on profiling dynamic
-fprof-auto Auto-add SCCs to all bindings not | dynamic | - fno-prof-auto
(page 189) marked INLINE (page 189)
-fprof-auto-top Auto-add SCCs to all top-level bind- | dynamic | - fno-prof-auto
(page 189) ings not marked INLINE (page 189)
-fprof-auto-exported| Auto-add SCCs to all exported bind- | dynamic | - fno-prof-auto
(page 189) ings not marked INLINE (page 189)
-fprof-cafs Auto-add SCCs to all CAFs dynamic | -fno-prof-cafs
(page 189) (page 189)
-fno-prof-count-entrido not collect entry counts dynamic | -fprof-count-entries
(page 189)
-ticky Turn on ticky-ticky profiling | dynamic

(page 203)

7.6.17 Program coverage options

More details in Observing Code Coverage (page 198)

Flag Description Static/Dynami®e-
verse
-fhpc Turn on Haskell program coverage instrumentation | dynamic
(page 200)
-hpcdir dir | Directory to deposit .mix files during compilation | dynamic
(default is . hpc)

7.6.18 C pre-processor options

More details in Options affecting the C pre-processor (page 168)

Flag Description Static/Dynamnmi®everse
-cpp (page 168) Run the C pre-processor on Haskell source | dynamic

files
-D(symbol) [=(valueDéfine a symbol in the C pre-processor dynamic -U({symbol)
-U(symbol) Undefine a symbol in the C pre-processor | dynamic
-I(dir) Add (dir) to the directory search list for | dynamic

#include files

116 Chapter 7. Using GHC

GHC Users Guide Documentation, Release 8.0.2

7.6.19 Code generation options

More details in Options affecting code generation (page 171)

Flag Description Static/DReamic
verse
-fasm Use the native code generator (page 165) dy- -fllvm
(page 171) namic| (page 17
-fllvm Compile using the LLVM code generator (page 165) dy- -fasm
(page 171) namic| (page 17
-fno-code | Omit code generation dy-
(page 171) namic
- fwrite-inteklimays write interface files dy-
(page 171) namic
-fbyte-code Generate byte-code dy-
(page 171) namic
-fobject-cqdBenerate object code dy-
(page 171) namic
-g{(n) Produce DWARF debug information in compiled object | dy-
files.(n) can be 0, 1, or 2, with higher numbers producing | namic
richer output. If (n) is omitted level 2 is assumed.

-dynamic Build dynamically-linked object files and executables dy-
(page 173) namic
-dynamic - tqoBuild dynamic object files as well as static object files during | dy-
(page 172) | compilation namic

7.6.20 Linking options

More details in Options affecting linking (page 172)

7.6. Flag reference 117

71)

71)

GHC Users Guide Documentation, Release 8.0.2

Flag Description StaticReyn
vers
-shared | Generate a shared library (as opposed to an executable) dy-
(page 173 namic
-staticljimOn Darwin/OS X/iOS only, generate a standalone static library (as | dy-
(page 172) opposed to an executable). This is the usual way to compile for iOS. | namic
-fPIC Generate position-independent code (where available) dy-
(page 171 namic
-dynload| Selects one of a number of modes for finding shared libraries at run- | dy-
(page 174) time. namijc
- framewo rkKdnderwin/OS X/iOS only, link in the framework (name). This option | dy-
corresponds to the - framework option for Apple’s Linker. namic
- framewo r lOp&Erina®S X/iOS only, add (dir) to the list of directories searched | dy-
for frameworks. This option corresponds to the -F option for Apple’s | namic
Linker.
-1(lib) | Link in library (lib) dy-
namic
-L{dir) | Add (dir) to the list of directories searched for libraries dy-
namic
-main-1s| Set main module and function dy-
(page 174 namic
--mk-dll| DLL-creation mode (Windows only) dy-
(page 74) namic
-no-hs-maidon’t assume this program contains main dy-
(page 174 namic
-rtsopts} Control whether the RTS behaviour can be tweaked via command- | dy-
- rtsopts={imeftggs and the GHCRTS environment variable. Using none means no | namic
some, RTS flags can be given; some means only a minimum of safe options
all} can be given (the default), and all (or no argument at all) means
that all RTS flags are permitted.
-with- rts@dtstopdefault RTS options to (opts). dy-
namic
-no- rtsopBoenttqrist RAiSssuggestions about linking with - rtsopts (page 175). | dy-
(page 175 namic
-no-link| Omit linking dy-
namic
-split-obSplit objects (for libraries) dy-
(page 173 namic
-split-sed@&plinsections for link-time dead-code stripping dy-
(page 173 namic
-static | Use static Haskell libraries dy-
(page 173 namic
-threaded Use the threaded runtime dy-
(page 174 namic
-debug Use the debugging runtime dy-
(page 174 namic
-ticky For linking, this simply implies -debug (page 174); see Using “ticky- | dy-
ticky” profiling (for implementors) (page 203). namijc
-eventlog Enable runtime event tracing dy-
(page 175 namic
- fno-gentmao nbeggenerate a manifest file (Windows only) dy-
(page 175 namic
- fno-emb¢Doavot feaabed the manifest in the executable (Windows only) dy-
(page 176 namic
11870~ shafddenfygemerate an import library for a DLL (Windows oﬁlﬁapter 7. Ugﬁig GHC
(page 176 namic
-dylib- inSetliheametall name (via -install name passed to Apple’s linker), | dy-
(path) specifying the full install path of the library file. Any libraries or exe- | namic

~1rahlace that 1inl sarith 3+ 1atoar vwill nicl 11im Fhat math ae +hatir mindimm o

amic

GHC Users Guide Documentation, Release 8.0.2

7.6.21 Plugin options

More details in Compiler Plugins (page 431)

Flag Description Static/DynaRé
verse
-fplugin={module) | Load a plugin exported by a given module dynamic
-fplugin-opt=(modulE@iv@raiguments to a plugin module; module must | dynamic
be specified with -fplugin

7.6.22 Replacing phases

More details in Replacing the program for one or more phases (page 166)

Flag Description Static/Dynami®e-
verse
-pgmL{cmd) Use (cmd) as the literate pre-processor dynamic
-pgmP{cmd) Use (cmd) as the C pre-processor (with -cpp only) | dynamic
-pgmc{cmd) Use {cmd) as the C compiler dynamic
-pgmlo{cmd) Use (cmd) as the LLVM optimiser dynamic
-pgmlc{cmd) Use (cmd) as the LLVM compiler dynamic
-pgms {cmd) Use (cmd) as the splitter dynamic
-pgma{cmd) Use {cmd) as the assembler dynamic
-pgml{cmd) Use (cmd) as the linker dynamic
-pgmdll(cmd) | Use {(cmd) as the DLL generator dynamic
-pgmF{cmd) Use (cmd) as the pre-processor (with -F only) dynamic
-pgmwindres{cmd)se (cmd) as the program for embedding manifests | dynamic
on Windows.
-pgmlibtool{cmdJse (cmd) as the command for libtool (with | dynamic
-staticlib only).

7.6.23 Forcing options to particular phases

More details in Forcing options to a particular phase (page 167)
Flag Description Static/Dynamic| Re-

verse
-optL{option) pass (option) to the literate pre- | dynamic
processor
-optP{option) pass {option) to cpp (with -cpp only) dynamic
-optF{option) pass (option) to the custom pre- | dynamic
processor

-optc{option) pass (option) to the C compiler dynamic
-optlo(option) pass (option) to the LLVM optimiser dynamic
-optlc(option) pass (option) to the LLVM compiler dynamic
-opta(option) pass (option) to the assembler dynamic
-optl{option) pass (option) to the linker dynamic
-optdll(option) pass (option) to the DLL generator dynamic
-optwindres{option)| pass (option) to windres. dynamic

7.6. Flag reference 119

GHC Users Guide Documentation, Release 8.0.2

7.6.24 Platform-specific options

More details in Platform-specific Flags (page 81)

Flag Description Static/Dynamiq Re-
verse
-msse2 (x86 only) Use SSE2 for floating-point opera- | dynamic
(page 81) tions
-msse4.?2 (x86 only) Use SSE4.2 for floating-point oper- | dynamic
ations

7.6.25 Compiler debugging options

More details in Debugging the compiler (page 180)

Flag

Description

-dcore-1lint (page 183)

Turn on internal sanity checking

-ddump-to-file (page 180)

Dump to files instead of stdout

-ddump-asm (page 181)

Dump assembly

-ddump-bcos (page 181)

Dump interpreter byte code

-ddump-cmm (page 181)

Dump C- output

-ddump-core-stats (page 182)

Print a one-line summary of the size of the Core program e

-ddump-cse (page 181)

Dump CSE output

-ddump-deriv (page 180)

Dump deriving output

-ddump-ds (page 180)

Dump desugarer output

-ddump-foreign (page 181)

Dump foreign export stubs

-ddump-hpc

Dump after instrumentation for program coverage

-ddump-1inlinings (page 181)

Dump inlining info

-ddump-1lvm (page 181)

Dump LLVM intermediate code. Implies - fl lvm (page 171

-ddump-occur-anal (page 181)

Dump occurrence analysis output

-ddump-opt-cmm (page 181)

Dump the results of C- to C- optimising passes

-ddump-parsed (page 180)

Dump parse tree

-ddump-prep (page 181)

Dump prepared core

-ddump-rn (page 180)

Dump renamer output

-ddump-rule-firings (page 180)

Dump rule firing info

-ddump-rule-rewrites (page 180)

Dump detailed rule firing info

-ddump-rules (page 180)

Dump rules

-ddump-vect (page 181)

Dump vectoriser input and output

-ddump-simpl (page 181)

Dump final simplifier output

-ddump-simpl-iterations (page 181)

Dump output from each simplifier iteration

-ddump-spec (page 180)

Dump specialiser output

-ddump-splices (page 180)

Dump TH spliced expressions, and what they evaluate to

-ddump-stg (page 181)

Dump final STG

-ddump-stranal (page 181)

Dump strictness analyser output

-ddump-str-signatures (page 181)

Dump strictness signatures

-ddump-tc (page 180)

Dump typechecker output

-dth-dec-file (page 180)

Show evaluated TH declarations in a .th.hs file

-ddump-types (page 180)

Dump type signatures

-ddump-worker-wrapper (page 181)

Dump worker-wrapper output

-ddump-if-trace (page 181)

Trace interface files

120

Chapter 7. Using GHC

GHC Users Guide Documentation, Release 8.0.2

Table 7.4 - continued from previous page

Flag

Description

-ddump-tc-trace (page 182)

Trace typechecker

-ddump-vt-trace (page 182)

Trace vectoriser

-ddump-rn-trace (page 182)

Trace renamer

-ddump-rn-stats (page 182)

Renamer stats

-ddump-simpl-stats (page 181)

Dump simplifier stats

-dno-debug-output (page 182)

Suppress unsolicited debugging output

-dppr-debug (page 182)

Turn on debug printing (more verbose)

-dppr-user-length (page 182)

Set the depth for printing expressions in error msgs

-dppr-cols(N)

Set the width of debugging output. For example -dppr-co

-dppr-case-as- let (page 182)

Print single alternative case expressions as strict lets.

-dsuppress-all (page 183)

In core dumps, suppress everything (except for uniques) tl

-dsuppress-uniques (page 183)

Suppress the printing of uniques in debug output (easier t

-dsuppress-idinfo (page 183)

Suppress extended information about identifiers where the

-dsuppress-unfoldings (page 183)

Suppress the printing of the stable unfolding of a variable

-dsuppress-module-prefixes (page 183)

Suppress the printing of module qualification prefixes

-dsuppress-type-signatures (page 183)

Suppress type signatures

-dsuppress-type-applications (page 183)

Suppress type applications

-dsuppress-coercions (page 183)

Suppress the printing of coercions in Core dumps to make

-dsource-stats

Dump haskell source stats

-dcmm-1int (page 183)

C- pass sanity checking

-dstg-lint (page 183)

STG pass sanity checking

-dstg-stats

Dump STG stats

-dverbose-coreZcore (page 182)

Show output from each core-to-core pass

-dverbose-stg2stg (page 182)

Show output from each STG-to-STG pass

-dshow-passes (page 182)

Print out each pass name as it happens

-dfaststring-stats (page 182)

Show statistics for fast string usage when finished

-frule-check

Report sites with rules that could have fired but didn’t. Ta

7.6.26 Miscellaneous compiler options

Flag Description Static/DyrRenierse
-jN When compiling with - -make (page 74), compile (N) | dy-
modules in parallel. namic
-fno-hi-versioon'thmakplain about . hi file mismatches dy-
namic
-fhistory-si&et simplification history size dy-
namic
-fno-ghci-hidfienyt use the load/store the GHCi command history | dy-
from/to ghci history. namic
-fno-ghci-safdboxoff the GHCi sandbox. Means computations are | dy-
run in the main thread, rather than a forked thread. | namic
-freverse-ertaisplay errors in GHC/GHCI sorted by reverse order | dy- -fno-reverse-errors
of source code line numbers. namic

7.6. Flag reference

121

GHC Users Guide Documentation, Release 8.0.2

7.7 Running a compiled program

To make an executable program, the GHC system compiles your code and then links it with
a non-trivial runtime system (RTS), which handles storage management, thread scheduling,
profiling, and so on.

The RTS has a lot of options to control its behaviour. For example, you can change the context-
switch interval, the default size of the heap, and enable heap profiling. These options can be
passed to the runtime system in a variety of different ways; the next section (Setting RTS
options (page 122)) describes the various methods, and the following sections describe the
RTS options themselves.

7.7.1 Setting RTS options

There are four ways to set RTS options:

* on the command line between +RTS ... -RTS, when running the program (Setting RTS
options on the command line (page 122))

* at compile-time, using -with-rtsopts (page 175) (Setting RTS options at compile time
(page 123))

» with the environment variable GHCRTS (page 123) (Setting RTS options with the GHCRTS
environment variable (page 123))

* by overriding “hooks” in the runtime system (“Hooks” to change RTS behaviour
(page 123))

7.7.1.1 Setting RTS options on the command line
If you set the - rtsopts (page 175) flag appropriately when linking (see Options affecting link-
ing (page 172)), you can give RTS options on the command line when running your program.

When your Haskell program starts up, the RTS extracts command-line arguments bracketed
between +RTS and -RTS as its own. For example:

$ ghc prog.hs -rtsopts

[1 of 1] Compiling Main (prog.hs, prog.o)
Linking prog ...

$./prog -f +RTS -H32m -S -RTS -h foo bar

The RTS will snaffle -H32m -S for itself, and the remaining arguments -f -h foo bar will be
available to your program if/when it calls System.Environment.getArgs.

No -RTS option is required if the runtime-system options extend to the end of the command
line, as in this example:

% hls -1tr /usr/etc +RTS -A5m

If you absolutely positively want all the rest of the options in a command line to go to the
program (and not the RTS), use a - -RTS.

As always, for RTS options that take (size)s: If the last character of (size) is a K or k, multiply
by 1000; if an M or m, by 1,000,000; if a G or G, by 1,000,000,000. (And any wraparound in
the counters is your fault!)

122 Chapter 7. Using GHC

GHC Users Guide Documentation, Release 8.0.2

Giving a +RTS -7? -?RTS option option will print out the RTS options actually available in your
program (which vary, depending on how you compiled).

Note: Since GHC is itself compiled by GHC, you can change RTS options in the compiler
using the normal +RTS ... -RTS combination. For instance, to set the maximum heap size
for a compilation to 128M, you would add +RTS -M128m -RTS to the command line.

7.7.1.2 Setting RTS options at compile time

GHC lets you change the default RTS options for a program at compile time, using the
-with-rtsopts flag (Options affecting linking (page 172)). A common use for this is to give
your program a default heap and/or stack size that is greater than the default. For example,
to set -H128m -K64m, link with -with-rtsopts="-H128m -K64m".

7.7.1.3 Setting RTS options with the GHCRTS environment variable

GHCRTS
If the -rtsopts flag is set to something other than none when linking, RTS options are
also taken from the environment variable GHCRTS (page 123). For example, to set the
maximum heap size to 2G for all GHC-compiled programs (using an sh-like shell):

GHCRTS="-M2G'
export GHCRTS

RTS options taken from the GHCRTS (page 123) environment variable can be overridden
by options given on the command line.

Tip: Setting something like GHCRTS=-M2G in your environment is a handy way to avoid Haskell
programs growing beyond the real memory in your machine, which is easy to do by accident
and can cause the machine to slow to a crawl until the OS decides to kill the process (and you
hope it kills the right one).

7.7.1.4 “Hooks” to change RTS behaviour

GHC lets you exercise rudimentary control over certain RTS settings for any given program,
by compiling in a “hook” that is called by the run-time system. The RTS contains stub defi-
nitions for these hooks, but by writing your own version and linking it on the GHC command
line, you can override the defaults.

Owing to the vagaries of DLL linking, these hooks don’t work under Windows when the pro-
gram is built dynamically.

You can change the messages printed when the runtime system “blows up,” e.g., on stack
overflow. The hooks for these are as follows:

void OutOfHeapHook (unsigned long, unsigned long) The heap-overflow message.
void StackOverflowHook (long int) The stack-overflow message.

void MallocFailHook (long int) The message printed if malloc fails.

7.7. Running a compiled program 123

GHC Users Guide Documentation, Release 8.0.2

7.7.2 Miscellaneous RTS options

-V (secs)

Sets the interval that the RTS clock ticks at. The runtime uses a single timer signal to
count ticks; this timer signal is used to control the context switch timer (Using Con-
current Haskell (page 102)) and the heap profiling timer RTS options for heap profiling
(page 191). Also, the time profiler uses the RTS timer signal directly to record time
profiling samples.

Normally, setting the -V (page 124) option directly is not necessary: the resolution of the
RTS timer is adjusted automatically if a short interval is requested with the - C (page 102)
or -1 (page 192) options. However, setting -V (page 124) is required in order to increase
the resolution of the time profiler.

Using a value of zero disables the RTS clock completely, and has the effect of disabling
timers that depend on it: the context switch timer and the heap profiling timer. Context
switches will still happen, but deterministically and at a rate much faster than normal.
Disabling the interval timer is useful for debugging, because it eliminates a source of
non-determinism at runtime.

--install-signal-handlers=<yes|no>

=Xm

-Xq

If yes (the default), the RTS installs signal handlers to catch things like ctrl-C. This option
is primarily useful for when you are using the Haskell code as a DLL, and want to set
your own signal handlers.

Note that even with --install-signal-handlers=no, the RTS interval timer signal is
still enabled. The timer signal is either SIGVTALRM or SIGALRM, depending on the RTS
configuration and OS capabilities. To disable the timer signal, use the -V0 RTS option
(see above).

(address)

Warning: This option is for working around memory allocation problems only. Do not
use unless GHCi fails with a message like “failed to mmap() memory below 2Gb”.
If you need to use this option to get GHCi working on your machine, please file a bug.

On 64-bit machines, the RTS needs to allocate memory in the low 2Gb of the address
space. Support for this across different operating systems is patchy, and sometimes
fails. This option is there to give the RTS a hint about where it should be able to allocate
memory in the low 2Gb of the address space. For example, +RTS -xm20000000 -RTS
would hint that the RTS should allocate starting at the 0.5Gb mark. The default is to
use the OS’s built-in support for allocating memory in the low 2Gb if available (e.g. mmap
with MAP_32BIT on Linux), or otherwise -xm40000000.

(size)
Default 100k

This option relates to allocation limits; for more about this see enableAllocationLimit.
When a thread hits its allocation limit, the RTS throws an exception to the thread, and
the thread gets an additional quota of allocation before the exception is raised again, the
idea being so that the thread can execute its exception handlers. The -xq controls the
size of this additional quota.

124

Chapter 7. Using GHC

../libraries/base-4.9.1.0/GHC-Conc.html#v%3AenableAllocationLimit

GHC Users Guide Documentation, Release 8.0.2

7.7.3 RTS options to control the garbage collector

There are several options to give you precise control over garbage collection. Hopefully, you
won’t need any of these in normal operation, but there are several things that can be tweaked
for maximum performance.

-A (size)

Default 512k

Set the allocation area size used by the garbage collector. The allocation area (actually
generation 0 step 0) is fixed and is never resized (unless you use -H (page 127), below).

Increasing the allocation area size may or may not give better performance (a bigger
allocation area means worse cache behaviour but fewer garbage collections and less
promotion).

With only 1 generation (e.g. -G1, see -G (page 126)) the -A option specifies the minimum
allocation area, since the actual size of the allocation area will be resized according to
the amount of data in the heap (see -F (page 126), below).

-0 (size)

Default 1m

Set the minimum size of the old generation. The old generation is collected whenever it
grows to this size or the value of the -F (page 126) option multiplied by the size of the
live data at the previous major collection, whichever is larger.

-n (size)

Default 0

[Example: -n4m] When set to a non-zero value, this option divides the allocation area (-A
value) into chunks of the specified size. During execution, when a processor exhausts
its current chunk, it is given another chunk from the pool until the pool is exhausted, at
which point a collection is triggered.

This option is only useful when running in parallel (-N2 or greater). It allows the pro-
cessor cores to make better use of the available allocation area, even when cores are
allocating at different rates. Without -n, each core gets a fixed-size allocation area spec-
ified by the -A, and the first core to exhaust its allocation area triggers a GC across all
the cores. This can result in a collection happening when the allocation areas of some
cores are only partially full, so the purpose of the -n is to allow cores that are allocating
faster to get more of the allocation area. This means less frequent GC, leading a lower
GC overhead for the same heap size.

This is particularly useful in conjunction with larger -A values, for example -A64m -n4m
is a useful combination on larger core counts (8+).

Use a compacting algorithm for collecting the oldest generation. By default, the oldest
generation is collected using a copying algorithm; this option causes it to be compacted
in-place instead. The compaction algorithm is slower than the copying algorithm, but
the savings in memory use can be considerable.

For a given heap size (using the -H (page 81) option), compaction can in fact reduce the
GC cost by allowing fewer GCs to be performed. This is more likely when the ratio of
live data to heap size is high, say greater than 30%.

7.7. Running a compiled program 125

GHC Users Guide Documentation, Release 8.0.2

Note: Compaction doesn’t currently work when a single generation is requested using
the -G1 option.

-c (n)

Default 30

Automatically enable compacting collection when the live data exceeds {n)% of the max-
imum heap size (see the -M (page 129) option). Note that the maximum heap size is
unlimited by default, so this option has no effect unless the maximum heap size is set
with -M (size).

-F (factor)

Default 2

This option controls the amount of memory reserved for the older generations (and in
the case of a two space collector the size of the allocation area) as a factor of the amount
of live data. For example, if there was 2M of live data in the oldest generation when we
last collected it, then by default we’ll wait until it grows to 4M before collecting it again.

The default seems to work well here. If you have plenty of memory, it is usually better
touse -H (size) (see -H (page 127)) than to increase -F (factor).

The - F setting will be automatically reduced by the garbage collector when the maximum
heap size (the -M (size) setting, see -M (page 129)) is approaching.

-G (generations)

-qg

-qb

Default 2

Set the number of generations used by the garbage collector. The default of 2 seems
to be good, but the garbage collector can support any number of generations. Anything
larger than about 4 is probably not a good idea unless your program runs for a long time,
because the oldest generation will hardly ever get collected.

Specifying 1 generation with +RTS -G1 gives you a simple 2-space collector, as you would
expect. In a 2-space collector, the -A (page 125) option specifies the minimum allocation
area size, since the allocation area will grow with the amount of live data in the heap.
In a multi-generational collector the allocation area is a fixed size (unless you use the -H
(page 127) option).

(gen)
Default 0
Since 6.12.1

Use parallel GC in generation {gen) and higher. Omitting (gen) turns off the parallel GC
completely, reverting to sequential GC.

The default parallel GC settings are usually suitable for parallel programs (i.e. those
using par, Strategies, or with multiple threads). However, it is sometimes beneficial to
enable the parallel GC for a single-threaded sequential program too, especially if the
program has a large amount of heap data and GC is a significant fraction of runtime. To
use the parallel GC in a sequential program, enable the parallel runtime with a suitable
-N (page 103) option, and additionally it might be beneficial to restrict parallel GC to the
old generation with -qgl.

(gen)

126

Chapter 7. Using GHC

GHC Users Guide Documentation, Release 8.0.2

Default 1
Since 6.12.1

Use load-balancing in the parallel GC in generation (gen) and higher. Omitting (gen)
disables load-balancing entirely.

Load-balancing shares out the work of GC between the available cores. This is a good
idea when the heap is large and we need to parallelise the GC work, however it is also
pessimal for the short young-generation collections in a parallel program, because it
can harm locality by moving data from the cache of the CPU where is it being used to
the cache of another CPU. Hence the default is to do load-balancing only in the old-
generation. In fact, for a parallel program it is sometimes beneficial to disable load-
balancing entirely with -qb.

-qn (x)
Default the value of -N
Since 8.2.1

By default, all of the capabilities participate in parallel garbage collection. If we want to
use a very large -N value, however, this can reduce the performance of the GC. For this
reason, the -qgn flag can be used to specify a lower number for the threads that should
participate in GC. During GC, if there are more than this number of workers active, some
of them will sleep for the duration of the GC.

The -qn flag may be useful when running with a large -A value (so that GC is infrequent),
and a large -N value (so as to make use of hyperthreaded cores, for example). For ex-
ample, on a 24-core machine with 2 hyperthreads per core, we might use -N48 -qn24
-A128m to specify that the mutator should use hyperthreads but the GC should only use
real cores. Note that this configuration would use 6GB for the allocation area.

-H [(size)]
Default 0

This option provides a “suggested heap size” for the garbage collector. Think of -Hsize
as a variable -A (page 125) option. It says: I want to use at least (size) bytes, so use
whatever is left over to increase the -A value.

This option does not put a limit on the heap size: the heap may grow beyond the given
size as usual.

If (size) is omitted, then the garbage collector will take the size of the heap at the pre-
vious GC as the (size). This has the effect of allowing for a larger -A value but without
increasing the overall memory requirements of the program. It can be useful when the
default small -A value is suboptimal, as it can be in programs that create large amounts
of long-lived data.

-I (seconds)
Default 0.3 seconds

In the threaded and SMP versions of the RTS (see -threaded (page 174), Options af*
fecting linking (page 172)), a major GC is automatically performed if the runtime has
been idle (no Haskell computation has been running) for a period of time. The amount of
idle time which must pass before a GC is performed is set by the -I (seconds) option.
Specifying -10 disables the idle GC.

For an interactive application, it is probably a good idea to use the idle GC, because this
will allow finalizers to run and deadlocked threads to be detected in the idle time when

7.7. Running a compiled program 127

GHC Users Guide Documentation, Release 8.0.2

-ki

-kc

-kb

no Haskell computation is happening. Also, it will mean that a GC is less likely to happen
when the application is busy, and so responsiveness may be improved. However, if the
amount of live data in the heap is particularly large, then the idle GC can cause a signif-
icant delay, and too small an interval could adversely affect interactive responsiveness.

This is an experimental feature, please let us know if it causes problems and/or could
benefit from further tuning.

(size)
Default 1k
Set the initial stack size for new threads.

Thread stacks (including the main thread’s stack) live on the heap. As the stack grows,
new stack chunks are added as required; if the stack shrinks again, these extra stack
chunks are reclaimed by the garbage collector. The default initial stack size is delib-
erately small, in order to keep the time and space overhead for thread creation to a
minimum, and to make it practical to spawn threads for even tiny pieces of work.

Note: This flag used to be simply -k, but was renamed to -ki in GHC 7.2.1. The old
name is still accepted for backwards compatibility, but that may be removed in a future
version.

(size)
Default 32k

Set the size of “stack chunks”. When a thread’s current stack overflows, a new stack
chunk is created and added to the thread’s stack, until the limit set by -K (page 128) is
reached.

The advantage of smaller stack chunks is that the garbage collector can avoid traversing
stack chunks if they are known to be unmodified since the last collection, so reducing
the chunk size means that the garbage collector can identify more stack as unmodified,
and the GC overhead might be reduced. On the other hand, making stack chunks too
small adds some overhead as there will be more overflow/underflow between chunks.
The default setting of 32k appears to be a reasonable compromise in most cases.

(size)
Default 1k

Sets the stack chunk buffer size. When a stack chunk overflows and a new stack chunk
is created, some of the data from the previous stack chunk is moved into the new chunk,
to avoid an immediate underflow and repeated overflow/underflow at the boundary. The
amount of stack moved is set by the -kb option.

Note that to avoid wasting space, this value should typically be less than 10% of the size
of a stack chunk (-kc (page 128)), because in a chain of stack chunks, each chunk will
have a gap of unused space of this size.

-K (size)

Default 80% of physical memory

Set the maximum stack size for an individual thread to (size) bytes. If the thread at-
tempts to exceed this limit, it will be sent the StackOverflow exception. The limit can
be disabled entirely by specifying a size of zero.

128

Chapter 7. Using GHC

GHC Users Guide Documentation, Release 8.0.2

This option is there mainly to stop the program eating up all the available memory in the
machine if it gets into an infinite loop.

-m (n)
Default 3%
Minimum % (n) of heap which must be available for allocation.
-M (size)
Default unlimited

Set the maximum heap size to (size) bytes. The heap normally grows and shrinks accord-
ing to the memory requirements of the program. The only reason for having this option
is to stop the heap growing without bound and filling up all the available swap space,
which at the least will result in the program being summarily killed by the operating
system.

The maximum heap size also affects other garbage collection parameters: when the
amount of live data in the heap exceeds a certain fraction of the maximum heap size,
compacting collection will be automatically enabled for the oldest generation, and the
-F parameter will be reduced in order to avoid exceeding the maximum heap size.

7.7.4 RTS options to produce runtime statistics

-T

-t [(file)]

-s [(file)]

=S [(file)]

--machine-readable
These options produce runtime-system statistics, such as the amount of time spent exe-
cuting the program and in the garbage collector, the amount of memory allocated, the
maximum size of the heap, and so on. The three variants give different levels of detail:
-T collects the data but produces no output -t produces a single line of output in the
same format as GHC’s -Rghc-timing option, -s produces a more detailed summary at
the end of the program, and -S additionally produces information about each and every
garbage collection.

The output is placed in (file). If {file) is omitted, then the output is sent to stderr.
If you use the -T flag then, you should access the statistics using GHC.Stats.

If you use the -t flag then, when your program finishes, you will see something like this:

<<ghc: 36169392 bytes, 69 GCs, 603392/1065272 avg/max bytes residency (2 samples),
< 3M in use, 0.00 INIT (0.00 elapsed), 0.02 MUT (0.02 elapsed), 0.07 GC (0.07,
—elapsed) :ghc>>

This tells you:
* The total number of bytes allocated by the program over the whole run.
* The total number of garbage collections performed.

* The average and maximum “residency”, which is the amount of live data in bytes.
The runtime can only determine the amount of live data during a major GC, which is
why the number of samples corresponds to the number of major GCs (and is usually
relatively small). To get a better picture of the heap profile of your program, use the
-hT RTS option (RTS options for profiling (page 132)).

7.7. Running a compiled program 129

../libraries/base-4.9.1.0/GHC-Stats.html

GHC Users Guide Documentation, Release 8.0.2

* The peak memory the RTS has allocated from the OS.

* The amount of CPU time and elapsed wall clock time while initialising the runtime
system (INIT), running the program itself (MUT, the mutator), and garbage collect-
ing (GC).

You can also get this in a more future-proof, machine readable format, with -t
--machine-readable:

[("bytes allocated", "36169392")

, ("num_GCs", "69")

, ("average bytes used", "603392")
, ("max_bytes used", "1065272")

, ("num_byte usage samples", "2")

, ("peak megabytes allocated", "3")
,("init cpu seconds", "0.00")
,("init wall seconds", "0.00")

, ("mutator_cpu_seconds", "0.02")

, ("mutator wall seconds", "0.02")
, ("GC_cpu_seconds", "0.07")

, ("GC_wall seconds", "0.07")

1

If you use the -s flag then, when your program finishes, you will see something like this
(the exact details will vary depending on what sort of RTS you have, e.g. you will only
see profiling data if your RTS is compiled for profiling):

36,169,392 bytes allocated in the heap
4,057,632 bytes copied during GC
1,065,272 bytes maximum residency (2 sample(s))
54,312 bytes maximum slop
3 MB total memory in use (0 MB lost due to fragmentation)

Generation 0: 67 collections, 0 parallel, 0.04s, 0.03s elapsed
Generation 1: 2 collections, 0 parallel, 0.03s, 0.04s elapsed

SPARKS: 359207 (557 converted, 149591 pruned)

INIT time 0.00s
MUT time 0.01s
GC time 0.07s
EXIT time 0.00s
Total time 0.08s

0.00s elapsed)
0.02s elapsed)
0.07s elapsed)
0.00s elapsed)
0.09s elapsed)

~ e~~~ —~

%GC time 89.5% (75.3% elapsed)

Alloc rate 4,520,608,923 bytes per MUT second

Productivity 10.5% of total user, 9.1% of total elapsed

* The “bytes allocated in the heap” is the total bytes allocated by the program over
the whole run.

* GHC uses a copying garbage collector by default. “bytes copied during GC” tells
you how many bytes it had to copy during garbage collection.

* The maximum space actually used by your program is the “bytes maximum resi-
dency” figure. This is only checked during major garbage collections, so it is only
an approximation; the number of samples tells you how many times it is checked.

130 Chapter 7. Using GHC

GHC Users Guide Documentation, Release 8.0.2

The “bytes maximum slop” tells you the most space that is ever wasted due to the
way GHC allocates memory in blocks. Slop is memory at the end of a block that
was wasted. There’s no way to control this; we just like to see how much memory is
being lost this way.

The “total memory in use” tells you the peak memory the RTS has allocated from
the OS.

Next there is information about the garbage collections done. For each generation it
says how many garbage collections were done, how many of those collections were
done in parallel, the total CPU time used for garbage collecting that generation, and
the total wall clock time elapsed while garbage collecting that generation.

The SPARKS statistic refers to the use of Control.Parallel.par and related func-
tionality in the program. Each spark represents a call to par; a spark is “converted”
when it is executed in parallel; and a spark is “pruned” when it is found to be already
evaluated and is discarded from the pool by the garbage collector. Any remaining
sparks are discarded at the end of execution, so “converted” plus “pruned” does not
necessarily add up to the total.

Next there is the CPU time and wall clock time elapsed broken down by what the
runtime system was doing at the time. INIT is the runtime system initialisation.
MUT is the mutator time, i.e. the time spent actually running your code. GC is the
time spent doing garbage collection. RP is the time spent doing retainer profiling.
PROF is the time spent doing other profiling. EXIT is the runtime system shutdown
time. And finally, Total is, of course, the total.

%GC time tells you what percentage GC is of Total. “Alloc rate” tells you the “bytes
allocated in the heap” divided by the MUT CPU time. “Productivity” tells you what
percentage of the Total CPU and wall clock elapsed times are spent in the mutator
(MUT).

The -S flag, as well as giving the same output as the -s flag, prints information about
each GC as it happens:

[.

Alloc Copied Live GC GC TOT TOT Page Flts
bytes bytes bytes wuser elap user elap
528496 47728 141512 0.01 ©0.02 0.02 0.02 0 0 (Gen: 1)

]

524944 175944 1726384 0.00 0.00 0.08 0.11 0 0 (Gen: 0)

For each garbage collection, we print:

How many bytes we allocated this garbage collection.

How many bytes we copied this garbage collection.

How many bytes are currently live.

How long this garbage collection took (CPU time and elapsed wall clock time).
How long the program has been running (CPU time and elapsed wall clock time).
How many page faults occurred this garbage collection.

How many page faults occurred since the end of the last garbage collection.

Which generation is being garbage collected.

7.7. Running a compiled program 131

GHC Users Guide Documentation, Release 8.0.2

7.7.5 RTS options for concurrency and parallelism

The RTS options related to concurrency are described in Using Concurrent Haskell
(page 102), and those for parallelism in RTS options for SMP parallelism (page 103).

7.7.6 RTS options for profiling

Most profiling runtime options are only available when you compile your program for profiling
(see Compiler options for profiling (page 189), and RTS options for heap profiling (page 191)
for the runtime options). However, there is one profiling option that is available for ordinary
non-profiled executables:

-hT
Generates a basic heap profile, in the file prog.hp. To produce the heap profile graph,
use hp2ps (see hpZps - Rendering heap profiles to PostScript (page 195)). The basic
heap profile is broken down by data constructor, with other types of closures (functions,
thunks, etc.) grouped into broad categories (e.g. FUN, THUNK). To get a more detailed
profile, use the full profiling support (Profiling (page 185)). Can be shortened to -h.

-L (n)
Default 25 characters

Sets the maximum length of the cost-centre names listed in the heap profile.

7.7.7 Tracing
When the program is linked with the -eventlog (page 175) option (Options affecting linking
(page 172)), runtime events can be logged in two ways:

* In binary format to a file for later analysis by a variety of tools. One such tool is Thread-
Scope, which interprets the event log to produce a visual parallel execution profile of
the program.

* As text to standard output, for debugging purposes.

-1 (flags)
Log events in binary format to the file program.eventlog. Without any (flags) specified,
this logs a default set of events, suitable for use with tools like ThreadScope.

For some special use cases you may want more control over which events are included.
The (flags) is a sequence of zero or more characters indicating which classes of events
to log. Currently these the classes of events that can be enabled/disabled:

* s — scheduler events, including Haskell thread creation and start/stop events. En-
abled by default.

* g — GC events, including GC start/stop. Enabled by default.
* p — parallel sparks (sampled). Enabled by default.
* f — parallel sparks (fully accurate). Disabled by default.

* u — user events. These are events emitted from Haskell code using functions such
as Debug.Trace.traceEvent. Enabled by default.

You can disable specific classes, or enable/disable all classes at once:

¢ a — enable all event classes listed above

132 Chapter 7. Using GHC

http://www.haskell.org/haskellwiki/ThreadScope
http://www.haskell.org/haskellwiki/ThreadScope

GHC Users Guide Documentation, Release 8.0.2

* -(x) — disable the given class of events, for any event class listed above
* -a — disable all classes
For example, -1-ag would disable all event classes (-a) except for GC events (g).

For spark events there are two modes: sampled and fully accurate. There are various
events in the life cycle of each spark, usually just creating and running, but there are
some more exceptional possibilities. In the sampled mode the number of occurrences
of each kind of spark event is sampled at frequent intervals. In the fully accurate mode
every spark event is logged individually. The latter has a higher runtime overhead and
is not enabled by default.

The format of the log file is described by the header EventLogFormat.h that comes with
GHC, and it can be parsed in Haskell using the ghc-events library. To dump the contents
of a .eventlog file as text, use the tool ghc-events show that comes with the ghc-events
package.

-v [(flags)]
Log events as text to standard output, instead of to the .eventlog file. The (flags) are the
same as for -1, with the additional option t which indicates that the each event printed
should be preceded by a timestamp value (in the binary .eventlog file, all events are
automatically associated with a timestamp).

The debugging options -Dx also generate events which are logged using the tracing frame-
work. By default those events are dumped as text to stdout (-Dx implies -v), but they may
instead be stored in the binary eventlog file by using the -1 option.

7.7.8 RTS options for hackers, debuggers, and over-interested souls

These RTS options might be used (a) to avoid a GHC bug, (b) to see “what’s really happening”,
or (c) because you feel like it. Not recommended for everyday use!

-B
Sound the bell at the start of each (major) garbage collection.

Oddly enough, people really do use this option! Our pal in Durham (England), Paul
Callaghan, writes: “Some people here use it for a variety of purposes—honestly!—e.g.,
confirmation that the code/machine is doing something, infinite loop detection, gauging
cost of recently added code. Certain people can even tell what stage [the program] is in
by the beep pattern. But the major use is for annoying others in the same office...”

-D (x)
An RTS debugging flag; only available if the program was linked with the -debug
(page 174) option. Various values of (x) are provided to enable debug messages and
additional runtime sanity checks in different subsystems in the RTS, for example +RTS
-Ds -RTS enables debug messages from the scheduler. Use +RTS -7? to find out which
debug flags are supported.

Debug messages will be sent to the binary event log file instead of stdout if the -1
(page 132) option is added. This might be useful for reducing the overhead of debug
tracing.

-r (file)
Produce “ticky-ticky” statistics at the end of the program run (only available if the pro-
gram was linked with -debug (page 174)). The (file) business works just like on the -S
(page 129) RTS option, above.

7.7. Running a compiled program 133

http://hackage.haskell.org/package/ghc-events
http://hackage.haskell.org/package/ghc-events

GHC Users Guide Documentation, Release 8.0.2

=XC

For more information on ticky-ticky profiling, see Using “ticky-ticky” profiling (for im-
plementors) (page 203).

(Only available when the program is compiled for profiling.) When an exception is raised
in the program, this option causes a stack trace to be dumped to stderr.

This can be particularly useful for debugging: if your program is complaining about a
head [] error and you haven’t got a clue which bit of code is causing it, compiling with
-prof -fprof-auto (see -prof (page 189)) and running with +RTS -xc -RTS will tell
you exactly the call stack at the point the error was raised.

The output contains one report for each exception raised in the program (the program
might raise and catch several exceptions during its execution), where each report looks
something like this:

*** Exception raised (reporting due to +RTS -xc), stack trace:
GHC.List.CAF
--> evaluated by: Main.polynomial.table search,
called from Main.polynomial.theta index,
called from Main.polynomial,
called from Main.zonal pressure,
called from Main.make pressure.p,
called from Main.make pressure,
called from Main.compute initial state.p,
called from Main.compute initial state,
called from Main.CAF

The stack trace may often begin with something uninformative like GHC.List.CAF; this
is an artifact of GHC’s optimiser, which lifts out exceptions to the top-level where the
profiling system assigns them to the cost centre “CAF”. However, +RTS -xc doesn’t just
print the current stack, it looks deeper and reports the stack at the time the CAF was
evaluated, and it may report further stacks until a non-CAF stack is found. In the example
above, the next stack (after --> evaluated by) contains plenty of information about
what the program was doing when it evaluated head [].

Implementation details aside, the function names in the stack should hopefully give you
enough clues to track down the bug.

See also the function traceStack in the module Debug.Trace for another way to view
call stacks.

-z
Turn off “update-frame squeezing” at garbage-collection time. (There’s no particularly
good reason to turn it off, except to ensure the accuracy of certain data collected regard-
ing thunk entry counts.)

7.7.9 Getting information about the RTS

--info
It is possible to ask the RTS to give some information about itself. To do this, use the
--1info (page 134) flag, e.g.
$./a.out +RTS --info
[("GHC RTS", "YES")

, ("GHC version", "6.7")
134 Chapter 7. Using GHC

GHC Users Guide Documentation, Release 8.0.2

("RTS way", "rts p")
("Host platform", "x86 64-unknown-linux")
("Host architecture", "x86 _64")

("Host 0S", "linux")

("Host vendor", "unknown")

("Build platform", "x86_64-unknown-linux")
("Build architecture", "x86 64")

("Build 0S", "linux")

("Build vendor", "unknown")

("Target platform", "x86 64-unknown-linux")
("Target architecture", "x86 64")

("Target 0S", "1linux")

("Target vendor", "unknown")

("Word size", "64")

("Compiler unregisterised", "NO")

("Tables next to code", "YES")

s S S SN S S~ S S S~ S~ S~ S~~~ ~

The information is formatted such that it can be read as a of type [(String, String)].
Currently the following fields are present:

GHC RTS Is this program linked against the GHC RTS? (always “YES”).
GHC version The version of GHC used to compile this program.

RTS way The variant (“way”) of the runtime. The most common values are rts v
(vanilla), rts thr (threaded runtime, i.e. linked using the -threaded (page 174)
option) and rts p (profiling runtime, i.e. linked using the -prof (page 189) option).
Other variants include debug (linked using -debug (page 174)), and dyn (the RTS
is linked in dynamically, i.e. a shared library, rather than statically linked into the
executable itself). These can be combined, e.g. you might have rts_thr_debug p.

Target platformTarget architectureTarget 0STarget vendor These are the plat-
form the program is compiled to run on.

Build platformBuild architectureBuild 0SBuild vendor These are the platform
where the program was built on. (That is, the target platform of GHC itself.) Or-
dinarily this is identical to the target platform. (It could potentially be different if
cross-compiling.)

Host platformHost architectureHost 0SHost vendor These are the platform where
GHC itself was compiled. Again, this would normally be identical to the build and
target platforms.

Word size Either "32" or "64", reflecting the word size of the target platform.

Compiler unregistered Was this program compiled with an “unregistered” (page 166)
version of GHC? (I.e., a version of GHC that has no platform-specific optimisations
compiled in, usually because this is a currently unsupported platform.) This value
will usually be no, unless you’'re using an experimental build of GHC.

Tables next to code Putting info tables directly next to entry code is a useful perfor-
mance optimisation that is not available on all platforms. This field tells you whether
the program has been compiled with this optimisation. (Usually yes, except on un-
usual platforms.)

7.7. Running a compiled program 135

GHC Users Guide Documentation, Release 8.0.2

7.8 Filenames and separate compilation

This section describes what files GHC expects to find, what files it creates, where these files
are stored, and what options affect this behaviour.

Pathname conventions vary from system to system. In particular, the directory separator
is “/” on Unix systems and “\” on Windows systems. In the sections that follow, we shall
consistently use “/” as the directory separator; substitute this for the appropriate character
for your system.

7.8.1 Haskell source files

Each Haskell source module should be placed in a file on its own.

Usually, the file should be named after the module name, replacing dots in the module name
by directory separators. For example, on a Unix system, the module A.B.C should be placed
in the file A/B/C. hs, relative to some base directory. If the module is not going to be imported
by another module (Main, for example), then you are free to use any filename for it.

GHC assumes that source files are ASCII or UTF-8 only, other encoding are not recognised.
However, invalid UTF-8 sequences will be ignored in comments, so it is possible to use other
encodings such as Latin-1, as long as the non-comment source code is ASCII only.

7.8.2 Output files

When asked to compile a source file, GHC normally generates two files: an object file, and an
interface file.

The object file, which normally ends in a . o suffix, contains the compiled code for the module.

The interface file, which normally ends in a .hi suffix, contains the information that GHC
needs in order to compile further modules that depend on this module. It contains things like
the types of exported functions, definitions of data types, and so on. It is stored in a binary
format, so don’t try to read one; use the - -show-1iface (page 74) option instead (see Other
options related to interface files (page 140)).

You should think of the object file and the interface file as a pair, since the interface file is in a
sense a compiler-readable description of the contents of the object file. If the interface file and
object file get out of sync for any reason, then the compiler may end up making assumptions
about the object file that aren’t true; trouble will almost certainly follow. For this reason,
we recommend keeping object files and interface files in the same place (GHC does this by
default, but it is possible to override the defaults as we’ll explain shortly).

Every module has a module name defined in its source code (module A.B.C where ...).

The name of the object file generated by GHC is derived according to the following rules,
where (osuf) is the object-file suffix (this can be changed with the -osuf option).

» If there is no -odir option (the default), then the object filename is derived from the
source filename (ignoring the module name) by replacing the suffix with (osuf).

e If -odir (dir) has been specified, then the object filename is (dir)/(mod).(osuf), where
(mod) is the module name with dots replaced by slashes. GHC will silently create the
necessary directory structure underneath (dir), if it does not already exist.

136 Chapter 7. Using GHC

GHC Users Guide Documentation, Release 8.0.2

The name of the interface file is derived using the same rules, except that the suffix is (hisuf)
(. hi by default) instead of {osuf), and the relevant options are -hidir (page 138) and -hisuf
(page 139) instead of -odir (page 138) and -osuf (page 139) respectively.

For example, if GHC compiles the module A.B.C in the file src/A/B/C.hs, with no -odir or
-hidir flags, the interface file will be put in src/A/B/C.hi and the object file in src/A/B/C.o.

For any module that is imported, GHC requires that the name of the module in the import
statement exactly matches the name of the module in the interface file (or source file) found
using the strategy specified in The search path (page 137). This means that for most modules,
the source file name should match the module name.

However, note that it is reasonable to have a module Main in a file named foo.hs, but this
only works because GHC never needs to search for the interface for module Main (because it
is never imported). It is therefore possible to have several Main modules in separate source
files in the same directory, and GHC will not get confused.

In batch compilation mode, the name of the object file can also be overridden using the -o
(page 137) option, and the name of the interface file can be specified directly using the -ohi
(page 138) option.

7.8.3 The search path

In your program, you import a module Foo by saying import Foo. In - -make (page 74) mode
or GHCi, GHC will look for a source file for Foo and arrange to compile it first. Without - -make
(page 74), GHC will look for the interface file for Foo, which should have been created by an
earlier compilation of Foo. GHC uses the same strategy in each of these cases for finding the
appropriate file.

This strategy is as follows: GHC keeps a list of directories called the search path. For each
of these directories, it tries appending (basename) . (extension) to the directory, and checks
whether the file exists. The value of (basename) is the module name with dots replaced by
the directory separator (“/” or “\\", depending on the system), and (extension) is a source
extension (hs, lhs) if we are in - -make (page 74) mode or GHCIi, or (hisuf) otherwise.

For example, suppose the search path contains directories d1, d2, and d3, and we are in
--make (page 74) mode looking for the source file for a module A.B.C. GHC will look in d1/
A/B/C.hs, d1/A/B/C.1hs, d2/A/B/C.hs, and so on.

The search path by default contains a single directory: “.” (i.e. the current directory). The
following options can be used to add to or change the contents of the search path:

-i(dir)[:(dir)]*

This flag appends a colon-separated list of dirs to the search path.
-i
resets the search path back to nothing.

This isn’t the whole story: GHC also looks for modules in pre-compiled libraries, known as
packages. See the section on packages (Packages (page 148)) for details.

7.8.4 Redirecting the compilation output(s)

-0 (file)
GHC'’s compiled output normally goes into a . hc, .0, etc., file, depending on the last-run
compilation phase. The option -0 file re-directs the output of that last-run phase to
(file).

7.8. Filenames and separate compilation 137

GHC Users Guide Documentation, Release 8.0.2

Note: This “feature” can be counterintuitive: ghc -C -0 foo.o foo.hs will put the
intermediate C code in the file f00.0, name notwithstanding!

This option is most often used when creating an executable file, to set the filename of
the executable. For example:

ghc -0 prog --make Main

will compile the program starting with module Main and put the executable in the file
prog.

Note: on Windows, if the result is an executable file, the extension “.exe” is added if the
specified filename does not already have an extension. Thus

ghc -o foo Main.hs

will compile and link the module Main.hs, and put the resulting executable in foo.exe
(not foo).

If you use ghc --make and you don’t use the -o, the name GHC will choose for the
executable will be based on the name of the file containing the module Main. Note that
with GHC the Main module doesn’t have to be put in file Main.hs. Thus both

’ ghc --make Prog

and

’ghc --make Prog.hs

will produce Prog (or Prog.exe if you are on Windows).

-odir (dir)
Redirects object files to directory (dir). For example:

$ ghc -c parse/Foo.hs parse/Bar.hs gurgle/Bumble.hs -odir “uname -m’

The object files, Foo.o, Bar.o, and Bumble.o would be put into a subdirectory named
after the architecture of the executing machine (x86, mips, etc).

Note that the -odir option does not affect where the interface files are put; use the
-hidir option for that. In the above example, they would still be put in parse/Foo.hi,
parse/Bar.hi, and gurgle/Bumble.hi.

-ohi (file)
The interface output may be directed to another file bar2/Wurble. iface with the option
-ohi bar2/Wurble.iface (not recommended).

Warning: If you redirect the interface file somewhere that GHC can’t find it, then
the recompilation checker may get confused (at the least, you won’t get any recompi-
lation avoidance). We recommend using a combination of -hidir and -hisuf options
instead, if possible.

To avoid generating an interface at all, you could use this option to redirect the interface
into the bit bucket: -ohi /dev/null, for example.

138 Chapter 7. Using GHC

GHC Users Guide Documentation, Release 8.0.2

-hidir (dir)
Redirects all generated interface files into (dir), instead of the default.

-stubdir (dir)
Redirects all generated FFI stub files into (dir). Stub files are generated when the
Haskell source contains a foreign export or foreign import "&wrapper" declaration
(see Using foreign export and foreign import ccall “wrapper” with GHC (page 422)). The
-stubdir option behaves in exactly the same way as -odir and -hidir with respect to
hierarchical modules.

-dumpdir (dir)
Redirects all dump files into (dir). Dump files are generated when -ddump-to-file is
used with other -ddump-* flags.

-outputdir (dir)
The -outputdir option is shorthand for the combination of -odir (page 138), -hidir
(page 138), -stubdir (page 139) and -dumpdir (page 139).

-osuf (suffix)

-hisuf (suffix)

~hcsuf (suffix)
The -osuf (suffix) will change the .o file suffix for object files to whatever you specify.
We use this when compiling libraries, so that objects for the profiling versions of the
libraries don’t clobber the normal ones.

Similarly, the -hisuf (suffix) will change the .hi file suffix for non-system interface files
(see Other options related to interface files (page 140)).

Finally, the option -hcsuf (suffix) will change the .hc file suffix for compiler-generated
intermediate C files.

The -hisuf/-osuf game is particularly useful if you want to compile a program both with
and without profiling, in the same directory. You can say:

’ghc

to get the ordinary version, and

’ghc ... -osuf prof.o -hisuf prof.hi -prof -auto-all

to get the profiled version.

7.8.5 Keeping Intermediate Files

The following options are useful for keeping certain intermediate files around, when normally
GHC would throw these away after compilation:

-keep-hc-file

-keep-hc-files
Keep intermediate .hc files when doing . hs-to-.0 compilations via C (page 166) (Note:
.hc files are only generated by unregisterised (page 166) compilers).

-keep-1lvm-file

-keep-1lvm-files

Implies -fllvm (page 171)

7.8. Filenames and separate compilation 139

GHC Users Guide Documentation, Release 8.0.2

Keep intermediate .11 files when doing .hs-to-.0 compilations via LLVM (page 165)
(Note: .11 files aren’t generated when using the native code generator, you may need
touse -fllvm (page 171) to force them to be produced).

-keep-s-file
-keep-s-files
Keep intermediate . s files.

-keep-tmp-files
Instructs the GHC driver not to delete any of its temporary files, which it normally keeps
in /tmp (or possibly elsewhere; see Redirecting temporary files (page 140)). Running
GHC with -v will show you what temporary files were generated along the way.

7.8.6 Redirecting temporary files

-tmpdir
If you have trouble because of running out of space in /tmp (or wherever your installation
thinks temporary files should go), you may use the -tmpdir <dir>-tmpdir <dir> option
option to specify an alternate directory. For example, -tmpdir . says to put temporary
files in the current working directory.

Alternatively, use your TMPDIR environment variable. Set it to the name of the directory
where temporary files should be put. GCC and other programs will honour the TMPDIR
variable as well.

Even better idea: Set the DEFAULT TMPDIR make variable when building GHC, and never
worry about TMPDIR again. (see the build documentation).

7.8.7 Other options related to interface files

-ddump-hi
Dumps the new interface to standard output.

-ddump-hi-diffs
The compiler does not overwrite an existing . hi interface file if the new one is the same
as the old one; this is friendly to make. When an interface does change, it is often enlight-
ening to be informed. The -ddump-hi-diffs (page 140) option will make GHC report
the differences between the old and new . hi files.

-ddump-minimal-imports
Dump to the file M.imports (where (M) is the name of the module being compiled) a
“minimal” set of import declarations. The directory where the .imports files are created
can be controlled via the -dumpdir (page 139) option.

You can safely replace all the import declarations in M. hs with those found in its respec-
tive .imports file. Why would you want to do that? Because the “minimal” imports (a)
import everything explicitly, by name, and (b) import nothing that is not required. It can
be quite painful to maintain this property by hand, so this flag is intended to reduce the
labour.

--show-iface (file)
where (file) is the name of an interface file, dumps the contents of that interface in a
human-readable format. See Modes of operation (page 74).

140 Chapter 7. Using GHC

GHC Users Guide Documentation, Release 8.0.2

7.8.8 The recompilation checker

-fforce-recomp
Turn off recompilation checking (which is on by default). Recompilation checking nor-
mally stops compilation early, leaving an existing .o file in place, if it can be determined
that the module does not need to be recompiled.

In the olden days, GHC compared the newly-generated .hi file with the previous version;
if they were identical, it left the old one alone and didn’t change its modification date. In
consequence, importers of a module with an unchanged output . hi file were not recompiled.

This doesn’t work any more. Suppose module C imports module B, and B imports module A. So
changes to module A might require module C to be recompiled, and hence when A. hi changes
we should check whether C should be recompiled. However, the dependencies of C will only
list B.hi, not A.hi, and some changes to A (changing the definition of a function that appears
in an inlining of a function exported by B, say) may conceivably not change B.hi one jot. So
now...

GHC calculates a fingerprint (in fact an MD5 hash) of each interface file, and of each decla-
ration within the interface file. It also keeps in every interface file a list of the fingerprints
of everything it used when it last compiled the file. If the source file’s modification date is
earlier than the .o file’s date (i.e. the source hasn’t changed since the file was last compiled),
and the recompilation checking is on, GHC will be clever. It compares the fingerprints on the
things it needs this time with the fingerprints on the things it needed last time (gleaned from
the interface file of the module being compiled); if they are all the same it stops compiling
early in the process saying “Compilation IS NOT required”. What a beautiful sight!

You can read about how all this works in the GHC commentary.

7.8.9 How to compile mutually recursive modules

GHC supports the compilation of mutually recursive modules. This section explains how.

Every cycle in the module import graph must be broken by a hs-boot file. Suppose that
modules A.hs and B. hs are Haskell source files, thus:

module A where
import B(TB(..))

newtype TA = MKTA Int

f :: TB -> TA
f (MKTB x) = MKTA x

module B where
import {-# SOURCE #-} A(TA(..))

data TB = MKTB !Int

g:: TA ->TB
g (MKTA x) = MKTB x

hs-boot files importing, hi-boot files Here A imports B, but B imports A with a {-# SOURCE
#-} pragma, which breaks the circular dependency. Every loop in the module import graph
must be broken by a {-# SOURCE #-} import; or, equivalently, the module import graph must
be acyclic if {-# SOURCE #-} imports are ignored.

7.8. Filenames and separate compilation 141

http://ghc.haskell.org/trac/ghc/wiki/Commentary/Compiler/RecompilationAvoidance

GHC Users Guide Documentation, Release 8.0.2

For every module A. hs thatis {-# SOURCE #-}-imported in this way there must exist a source
file A.hs-boot. This file contains an abbreviated version of A. hs, thus:

module A where

newtype TA = MKTA Int

To compile these three files, issue the following commands:

ghc
ghc
ghc
ghc

-c A.hs-boot -- Produces A.hi-boot, A.o-boot

-c B.hs -- Consumes A.hi-boot, produces B.hi, B.o
-c A.hs -- Consumes B.hi, produces A.hi, A.o

-0 foo A.o B.o ~-- Linking the program

There are several points to note here:

» The file A.hs-boot is a programmer-written source file. It must live in the same directory

as its parent source file A. hs. Currently, if you use a literate source file A. lhs you must
also use a literate boot file, A. lhs-boot; and vice versa.

* A hs-boot file is compiled by GHC, just like a hs file:

ghc -c A.hs-boot

When a hs-boot file A.hs-boot is compiled, it is checked for scope and type errors. When
its parent module A.hs is compiled, the two are compared, and an error is reported if
the two are inconsistent.

* Just as compiling A. hs produces an interface file A.hi, and an object file A. 0, so compil-

ing A.hs-boot produces an interface file A.hi-boot, and an pseudo-object file A.o-boot:

- The pseudo-object file A.o-boot is empty (don’t link it!), but it is very useful when
using a Makefile, to record when the A.hi-boot was last brought up to date (see
Using make (page 145)).

- The hi-boot generated by compiling a hs-boot file is in the same machine-
generated binary format as any other GHC-generated interface file (e.g. B.hi). You
can display its contents with ghc --show-iface. If you specify a directory for inter-
face files, the -ohidir flag, then that affects hi-boot files too.

If hs-boot files are considered distinct from their parent source files, and if a {-# SOURCE
#-} import is considered to refer to the hs-boot file, then the module import graph must
have no cycles. The command ghc -M will report an error if a cycle is found.

* Amodule Mthat is {-# SOURCE #-}-imported in a program will usually also be ordinarily

imported elsewhere. If not, ghc --make automatically adds Mto the set of modules it tries
to compile and link, to ensure that M’s implementation is included in the final program.

A hs-boot file need only contain the bare minimum of information needed to get the bootstrap-
ping process started. For example, it doesn’t need to contain declarations for everything that
module A exports, only the things required by the module(s) that import A recursively.

A hs-boot file is written in a subset of Haskell:

* The module header (including the export list), and import statements, are exactly as in

Haskell, and so are the scoping rules. Hence, to mention a non-Prelude type or class,
you must import it.

» There must be no value declarations, but there can be type signatures for values. For

example:

142

Chapter 7. Using GHC

GHC Users Guide Documentation, Release 8.0.2

double :: Int -> Int

» Fixity declarations are exactly as in Haskell.
* Vanilla type synonym declarations are exactly as in Haskell.
* Open type and data family declarations are exactly as in Haskell.

* A closed type family may optionally omit its equations, as in the following example:

type family ClosedFam a where ..

The .. is meant literally - you should write two dots in your file. Note that the where
clause is still necessary to distinguish closed families from open ones. If you give any
equations of a closed family, you must give all of them, in the same order as they appear
in the accompanying Haskell file.

* A data type declaration can either be given in full, exactly as in Haskell, or it can be
given abstractly, by omitting the ‘=’ sign and everything that follows. For example:

data T a b

In a source program this would declare TA to have no constructors (a GHC extension:
see Data types with no constructors (page 238)), but in an hi-boot file it means “I don’t
know or care what the constructors are”. This is the most common form of data type
declaration, because it’s easy to get right. You can also write out the constructors but,
if you do so, you must write it out precisely as in its real definition.

If you do not write out the constructors, you may need to give a kind annotation
(Explicitly-kinded quantification (page 331)), to tell GHC the kind of the type variable, if
it is not “*”. (In source files, this is worked out from the way the type variable is used in
the constructors.) For example:

data R (x :: * -> *) y

You cannot use deriving on a data type declaration; write an instance declaration in-
stead.

* Class declarations is exactly as in Haskell, except that you may not put default method
declarations. You can also omit all the superclasses and class methods entirely; but you
must either omit them all or put them all in.

* You can include instance declarations just as in Haskell; but omit the “where” part.

* The default role for abstract datatype parameters is now representational. (An abstract
datatype is one with no constructors listed.) To get another role, use a role annotation.
(See Roles (page 401).)

7.8.10 Module signatures

GHC supports the specification of module signatures, which both implementations and users
can typecheck against separately. This functionality should be considered experimental for
now; some details, especially for type classes and type families, may change. This system
was originally described in Backpack: Retrofitting Haskell with Interfaces. Signature files are
somewhat similar to hs-boot files, but have the hsig extension and behave slightly differently.

Suppose that I have modules String.hs and A.hs, thus:

7.8. Filenames and separate compilation 143

http://plv.mpi-sws.org/backpack/

GHC Users Guide Documentation, Release 8.0.2

module Text where
data Text = Text String

empty :: Text
empty = Text ""

toString :: Text -> String
toString (Text s) = s

module A where
import Text
z = toString empty

Presently, module A depends explicitly on a concrete implementation of Text. What if we
wanted to a signature Text, so we could vary the implementation with other possibilities (e.g.
packed UTF-8 encoded bytestrings)? To do this, we can write a signature TextSig.hsig, and
modify A to include the signature instead:

module TextSig where
data Text
empty :: Text
toString :: Text -> String

module A where
import TextSig
z = toString empty

To compile these two files, we need to specify what module we would like to use to implement
the signature. This can be done by compiling the implementation, and then using the -sig-of
(page 144) flag to specify the implementation backing a signature:

ghc -c Text.hs
ghc -c TextSig.hsig -sig-of "TextSig is main:Text"
ghc -c A.hs

To specify multiple signatures, use a comma-separated list. The -sig-of parameter is re-
quired to specify the backing implementations of all home modules, even in one-shot compi-
lation mode. At the moment, you must specify the full module name (unit ID, colon, and then
module name), although in the future we may support more user-friendly syntax.

-sig-of “(sig) is (package):(module)”
Specify the module to be used at the implementation for the given signature.

To just type-check an interface file, no -sig-of is necessary; instead, just pass the options
-fno-code -fwrite-interface. hsig files will generate normal interface files which other
files can also use to type-check against. However, at the moment, we always assume that an
entity defined in a signature is a unique identifier (even though we may happen to know it is
type equal with another identifier). In the future, we will support passing shaping information
to the compiler in order to let it know about these type equalities.

Just like hs-boot files, when an hsig file is compiled it is checked for type consistency against
the backing implementation. Signature files are also written in a subset of Haskell essentially
identical to that of hs-boot files.

There is one important gotcha with the current implementation: currently, instances from
backing implementations will “leak” code that uses signatures, and explicit instance declara-
tions in signatures are forbidden. This behavior will be subject to change.

144 Chapter 7. Using GHC

GHC Users Guide Documentation, Release 8.0.2

7.8.11 Using make

It is reasonably straightforward to set up a Makefile to use with GHC, assuming you name
your source files the same as your modules. Thus:

HC = ghc

HC_OPTS = -cpp $(EXTRA_HC OPTS)
SRCS = Main.lhs Foo.lhs Bar.lhs
0BJS = Main.o Foo.o Bar.o

.SUFFIXES : .o .hs .hi .lhs .hc .s
cool pgm : $(0BJS)

rm -f $@

$(HC) -0 $@ $(HC OPTS) $(0OBJS)

Standard suffix rules

.0.hi:

@:
.lhs.o:

$(HC) -c $< $(HC_OPTS)
.hs.o:

$(HC) -c $< $(HC OPTS)

.0-boot.hi-boot:
@:

.lhs-boot.o-boot:
$(HC) -c $< $(HC OPTS)

.hs-boot.o-boot:
$(HC) -c $< $(HC_OPTS)

Inter-module dependencies
Foo.o Foo.hc Foo.s : Baz.hi # Foo imports Baz
Main.o Main.hc Main.s : Foo.hi Baz.hi # Main imports Foo and Baz

Note: Sophisticated make variants may achieve some of the above more elegantly. Notably,
gmake’s pattern rules let you write the more comprehensible:

%.0 : %.lhs
$(HC) -c $< $(HC OPTS)

What we’ve shown should work with any make.

Note the cheesy .0.hirule: It records the dependency of the interface (. hi) file on the source.
The rule says a . hi file can be made from a .o file by doing...nothing. Which is true.

Note that the suffix rules are all repeated twice, once for normal Haskell source files, and
once for hs-boot files (see How to compile mutually recursive modules (page 141)).

Note also the inter-module dependencies at the end of the Makefile, which take the form

7.8. Filenames and separate compilation 145

GHC Users Guide Documentation, Release 8.0.2

Foo.o Foo.hc Foo.s : Baz.hi # Foo imports Baz

They tell make that if any of Foo.o0, Foo.hc or Foo.s have an earlier modification date than
Baz.hi, then the out-of-date file must be brought up to date. To bring it up to date, make looks
for a rule to do so; one of the preceding suffix rules does the job nicely. These dependencies
can be generated automatically by ghc; see Dependency generation (page 146)

7.8.12 Dependency generation

Putting inter-dependencies of the form Foo.o : Bar.hi into your Makefile by hand is rather
error-prone. Don’t worry, GHC has support for automatically generating the required depen-
dencies. Add the following to your Makefile:

depend :
ghc -dep-suffix '' -M $(HC_OPTS) $(SRCS)

Now, before you start compiling, and any time you change the imports in your program, do
make depend before you do make cool pgm. The command ghc -M will append the needed
dependencies to your Makefile.

In general, ghc -M Foo does the following. For each module M in the set Foo plus all its
imports (transitively), it adds to the Makefile:

* Aline recording the dependence of the object file on the source file.

’M.o . M.hs ‘

(or M. lhs if that is the filename you used).

* For each import declaration import Xin M, a line recording the dependence of M on X:

’M.o © X.hi ‘

» For each import declaration import {-# SOURCE #-} XinM, a line recording the depen-
dence of M on X:

’M.o : X.hi-boot ‘

(See How to compile mutually recursive modules (page 141) for details of hi-boot style
interface files.)

If M imports multiple modules, then there will be multiple lines with M. o0 as the target.

There is no need to list all of the source files as arguments to the ghc -M command; ghc traces
the dependencies, just like ghc --make (a new feature in GHC 6.4).

Note that ghc -Mneeds to find a source file for each module in the dependency graph, so that
it can parse the import declarations and follow dependencies. Any pre-compiled modules
without source files must therefore belong to a package'.

By default, ghc -M generates all the dependencies, and then concatenates them onto the
end of makefile (or Makefile if makefile doesn’t exist) bracketed by the lines “# DO NOT
DELETE: Beginning of Haskell dependencies” and “# DO NOT DELETE: End of Haskell
dependencies”. If these lines already exist in the makefile, then the old dependencies are
deleted first.

1 This is a change in behaviour relative to 6.2 and earlier.

146 Chapter 7. Using GHC

GHC Users Guide Documentation, Release 8.0.2

Don’t forget to use the same -package options on the ghc -M command line as you would
when compiling; this enables the dependency generator to locate any imported modules that
come from packages. The package modules won’t be included in the dependencies generated,
though (but see the -include-pkg-deps option below).

The dependency generation phase of GHC can take some additional options, which you may
find useful. The options which affect dependency generation are:

-ddump-mod-cycles
Display a list of the cycles in the module graph. This is useful when trying to eliminate
such cycles.

-v2
Print a full list of the module dependencies to stdout. (This is the standard verbosity
flag, so the list will also be displayed with -v3 and -v4; see Verbosity options (page 77).)

-dep-makefile (file)
Use (file) as the makefile, rather than makefile or Makefile. If (file) doesn’t exist,
mkdependHS creates it. We often use -dep-makefile .depend to put the dependencies
in .depend and then include the file .depend into Makefile.

-dep-suffix (suf)
Make extra dependencies that declare that files with suffix .<suf> <osuf>depend on in-
terface files with suffix .<suf> hi, or (for {-# SOURCE #-} imports) on .hi-boot. Multi-
ple -dep-suffix flags are permitted. For example, -dep-suffix a -dep-suffix b will
make dependencies for .hs on .hi, .a hs on .a hi, and .b _hs on .b _hi. (Useful in
conjunction with NoFib “ways”.)

--exclude-module=(file)
Regard <file> as “stable”; i.e., exclude it from having dependencies on it.

-include-pkg-deps
Regard modules imported from packages as unstable, i.e., generate dependencies on
any imported package modules (including Prelude, and all other standard Haskell li-
braries). Dependencies are not traced recursively into packages; dependencies are only
generated for home-package modules on external-package modules directly imported
by the home package module. This option is normally only used by the various system
libraries.

7.8.13 Orphan modules and instance declarations

Haskell specifies that when compiling module M, any instance declaration in any module “be-
low” M is visible. (Module A is “below” M if A is imported directly by M, or if A is below a
module that M imports directly.) In principle, GHC must therefore read the interface files of
every module below M, just in case they contain an instance declaration that matters to M. This
would be a disaster in practice, so GHC tries to be clever.

In particular, if an instance declaration is in the same module as the definition of any type
or class mentioned in the head of the instance declaration (the part after the “=>"; see Re-
laxed rules for instance contexts (page 285)), then GHC has to visit that interface file anyway.
Example:

module A where
instance C a == D (T a) where ...
data T a = ...

The instance declaration is only relevant if the type T is in use, and if so, GHC will have visited
A’s interface file to find T’s definition.

7.8. Filenames and separate compilation 147

GHC Users Guide Documentation, Release 8.0.2

The only problem comes when a module contains an instance declaration and GHC has no
other reason for visiting the module. Example:

module Orphan where
instance C a => D (T a) where ...
class C a where ...

Here, neither D nor T is declared in module Orphan. We call such modules “orphan modules”.
GHC identifies orphan modules, and visits the interface file of every orphan module below the
module being compiled. This is usually wasted work, but there is no avoiding it. You should
therefore do your best to have as few orphan modules as possible.

Functional dependencies complicate matters. Suppose we have:

module B where
instance E T Int where ...
data T = ...

Is this an orphan module? Apparently not, because T is declared in the same module. But
suppose class E had a functional dependency:

module Lib where
class Exy | y -> x where ...

Then in some importing module M, the constraint (E a Int) should be “improved” by setting
a = T, even though there is no explicit mention of T in M.

These considerations lead to the following definition of an orphan module:

* An orphan module orphan module contains at least one orphan instance or at least one
orphan rule.

* An instance declaration in a module M is an orphan instance if orphan instance
- The class of the instance declaration is not declared in M, and

- Either the class has no functional dependencies, and none of the type constructors
in the instance head is declared in M; or there is a functional dependency for which
none of the type constructors mentioned in the non-determined part of the instance
head is defined in M.

Only the instance head counts. In the example above, it is not good enough for C’s
declaration to be in module A; it must be the declaration of D or T.

* A rewrite rule in a module M is an orphan rule orphan rule if none of the variables, type
constructors, or classes that are free in the left hand side of the rule are declared in M.

If you use the flag -Worphans (page 89), GHC will warn you if you are creating an orphan
module. Like any warning, you can switch the warning off with -Wno-orphans (page 89), and
-Werror (page 82) will make the compilation fail if the warning is issued.

You can identify an orphan module by looking in its interface file, M.hi, using the
--show-1iface (page 74) mode (page 74). If there is a [orphan module] on the first line,
GHC considers it an orphan module.

7.9 Packages

A package is a library of Haskell modules known to the compiler. GHC comes with several
packages: see the accompanying library documentation. More packages to install can be

148 Chapter 7. Using GHC

../libraries/index.html

GHC Users Guide Documentation, Release 8.0.2

obtained from HackageDB.

Using a package couldn’t be simpler: if you're using - -make or GHCi, then most of the in-
stalled packages will be automatically available to your program without any further options.
The exceptions to this rule are covered below in Using Packages (page 149).

Building your own packages is also quite straightforward: we provide the Cabal infrastructure
which automates the process of configuring, building, installing and distributing a package.
All you need to do is write a simple configuration file, put a few files in the right places, and
you have a package. See the Cabal documentation for details, and also the Cabal libraries
(Distribution.Simple, for example).

7.9.1 Using Packages

GHC only knows about packages that are installed. Installed packages live in package
databases. For details on package databases and how to control which package databases or
specific set of packages are visible to GHC, see Package Databases (page 153).

To see which packages are currently available, use the ghc-pkg 1ist command:

$ ghc-pkg list
/usr/lib/ghc-6.12.1/package.conf.d:
Cabal-1.7.4
array-0.2.0.1
base-3.0.3.0
base-4.2.0.0
bin-package-db-0.0.0.0
binary-0.5.0.1
bytestring-0.9.1.4
containers-0.2.0.1
directory-1.0.0.2
(dph-base-0.4.0)
dph-par-0.4.0)
dph-prim-interface-0.4.0)
dph-prim-par-0.4.0)
dph-prim-seq-0.4.0)
(dph-seq-0.4.0)
extensible-exceptions-0.1.1.0

(
(
(
(

ffi-1.0
filepath-1.1.0.1
(ghc-6.12.1)

ghc-prim-0.1.0.0
haskeline-0.6.2
haskell198-1.0.1.0
hpc-0.5.0.2
integer-gmp-0.1.0.0
mtl-1.1.0.2
old-locale-1.0.
old-time-1.0.0.
pretty-1.0.1.0
process-1.0.1.1
random-1.0.0.1
rts-1.0
syb-0.1.0.0
template-haskell-2.4.0.0
terminfo-0.3.1
time-1.1.4

0.1
1

7.9. Packages 149

http://hackage.haskell.org/packages/hackage.html
http://www.haskell.org/cabal/
http://www.haskell.org/cabal/users-guide/
../libraries/Cabal-1.24.2.0/Distribution-Simple.html

GHC Users Guide Documentation, Release 8.0.2

unix-2.3.1.0
utf8-string-0.3.4

An installed package is either exposed or hidden by default. Packages hidden by default are
listed in parentheses (e.g. (lang-1.0)), or possibly in blue if your terminal supports colour,
in the output of ghc-pkg list. Command-line flags, described below, allow you to expose
a hidden package or hide an exposed one. Only modules from exposed packages may be
imported by your Haskell code; if you try to import a module from a hidden package, GHC
will emit an error message. It should be noted that a hidden package might still get linked
with your program as a dependency of an exposed package, it is only restricted from direct
imports.

If there are multiple exposed versions of a package, GHC will prefer the latest one. Addi-
tionally, some packages may be broken: that is, they are missing from the package database,
or one of their dependencies are broken; in this case; these packages are excluded from the
default set of packages.

Note: If you're using Cabal, then the exposed or hidden status of a package is irrelevant:
the available packages are instead determined by the dependencies listed in your .cabal
specification. The exposed/hidden status of packages is only relevant when using ghc or ghci
directly.

Similar to a package’s hidden status is a package’s trusted status. A package can be either
trusted or not trusted (distrusted). By default packages are distrusted. This property of a
package only plays a role when compiling code using GHC’s Safe Haskell feature (see Safe
Haskell (page 408)) with the - fpackage-trust flag enabled.

To see which modules are provided by a package use the ghc-pkg command (see Package
management (the ghc-pkg command) (page 158)):

$ ghc-pkg field network exposed-modules
exposed-modules: Network.BSD,
Network.CGI,
Network.Socket,
Network.URI,
Network

The GHC command line options that control packages are:

-package (pkg)
This option causes the installed package (pkg) to be exposed. The package (pkg) can be
specified in full with its version number (e.g. network-1.0) or the version number can
be omitted in which case GHC will automatically expose the latest non-broken version
from the installed versions of the package.

By default (when -hide-all-packages (page 151) is not specified), GHC exposes only
one version of a package, all other versions become hidden. If -package option is spec-
ified multiple times for the same package the last one overrides the previous ones. On
the other hand, if -hide-all-packages (page 151) is used, GHC allows you to expose
multiple versions of a package by using the -package option multiple times with different
versions of the same package.

-package supports thinning and renaming described in Thinning and renaming modules
(page 153).

150 Chapter 7. Using GHC

GHC Users Guide Documentation, Release 8.0.2

The -package (pkg) option also causes package (pkg) to be linked into the resulting ex-
ecutable or shared object. Whether a packages’ library is linked statically or dynamically
is controlled by the flag pair -static (page 173)/ -dynamic (page 173).

In - -make (page 74) mode and - -interactive (page 74) mode (see Modes of operation
(page 74)), the compiler normally determines which packages are required by the cur-
rent Haskell modules, and links only those. In batch mode however, the dependency
information isn’t available, and explicit - package options must be given when linking.
The one other time you might need to use -package to force linking a package is when
the package does not contain any Haskell modules (it might contain a C library only,
for example). In that case, GHC will never discover a dependency on it, so it has to be
mentioned explicitly.

For example, to link a program consisting of objects Foo.0 and Main.o, where we made
use of the network package, we need to give GHC the -package flag thus:

’$ ghc -0 myprog Foo.o Main.o -package network ‘

The same flag is necessary even if we compiled the modules from source, because GHC
still reckons it’s in batch mode:

’$ ghc -0 myprog Foo.hs Main.hs -package network ‘

-package-id (unit-id)
Exposes a package like - package (page 172), but the package is named by its unit ID (i.e.
the value of id in its entry in the installed package database, also previously known as an
installed package ID) rather than by name. This is a more robust way to name packages,
and can be used to select packages that would otherwise be shadowed. Cabal passes
-package-id flags to GHC. -package-id supports thinning and renaming described in
Thinning and renaming modules (page 153).

-hide-all-packages
Ignore the exposed flag on installed packages, and hide them all by default. If you use
this flag, then any packages you require (including base) need to be explicitly exposed
using -package (page 172) options.

This is a good way to insulate your program from differences in the globally exposed
packages, and being explicit about package dependencies is a Good Thing. Cabal always
passes the -hide-all-packages flag to GHC, for exactly this reason.

-hide-package (pkg)
This option does the opposite of -package (page 172): it causes the specified package to
be hidden, which means that none of its modules will be available for import by Haskell
import directives.

Note that the package might still end up being linked into the final program, if it is a
dependency (direct or indirect) of another exposed package.

-ignore-package (pkg)
Causes the compiler to behave as if package (pkg), and any packages that depend on
(pkg), are not installed at all.

Saying -ignore-package (pkg) is the same as giving -hide-package (page 151) flags
for (pkg) and all the packages that depend on (pkg). Sometimes we don’t know ahead
of time which packages will be installed that depend on (pkg), which is when the
-ignore-package (page 151) flag can be useful.

-no-auto-link-packages
By default, GHC will automatically link in the base and rts packages. This flag disables

7.9. Packages 151

GHC Users Guide Documentation, Release 8.0.2

that behaviour.

-this-unit-id (unit-id)
Tells GHC that the module being compiled forms part of unit ID (unit-id); internally, these
keys are used to determine type equality and linker symbols. As of GHC 8.0, unit IDs
must consist solely of alphanumeric characters, dashes, underscores and periods. GHC
reserves the right to interpret other characters in a special way in later releases.

-library-name (hash)
Tells GHC that the source of a Backpack file and its textual dependencies is uniquely
identified by (hash). Library names are determined by Cabal; a usual recipe for a library
name is that it is the hash source package identifier of a package, as well as the version
hashes of all its textual dependencies. GHC will then use this library name to generate
more unit IDs.

-trust (pkg)
This option causes the install package (pkg) to be both exposed and trusted by GHC. This
command functions in a very similar way to the -package (page 172) command but in
addition sets the selected packages to be trusted by GHC, regardless of the contents of
the package database. (see Safe Haskell (page 408)).

-distrust (pkg)
This option causes the install package (pkg) to be both exposed and distrusted by GHC.
This command functions in a very similar way to the -package (page 172) command
but in addition sets the selected packages to be distrusted by GHC, regardless of the
contents of the package database. (see Safe Haskell (page 408)).

-distrust-all
Ignore the trusted flag on installed packages, and distrust them by default. If you use this
flag and Safe Haskell then any packages you require to be trusted (including base) need
to be explicitly trusted using -trust (page 415) options. This option does not change
the exposed/hidden status of a package, so it isn’t equivalent to applying -distrust
(page 416) to all packages on the system. (see Safe Haskell (page 408)).

7.9.2 The main package

Every complete Haskell program must define main in module Main in package main. Omitting
the -this-unit-id (page 152) flag compiles code for package main. Failure to do so leads to
a somewhat obscure link-time error of the form:

/usr/bin/1ld: Undefined symbols:
~ZCMain main closure

7.9.3 Consequences of packages for the Haskell language

It is possible that by using packages you might end up with a program that contains two
modules with the same name: perhaps you used a package P that has a hidden module M,
and there is also a module M in your program. Or perhaps the dependencies of packages that
you used contain some overlapping modules. Perhaps the program even contains multiple
versions of a certain package, due to dependencies from other packages.

None of these scenarios gives rise to an error on its own', but they may have some interesting
consequences. For instance, if you have a type M.T from version 1 of package P, then this is

1 it used to in GHC 6.4, but not since 6.6

152 Chapter 7. Using GHC

GHC Users Guide Documentation, Release 8.0.2

not the same as the type M. T from version 2 of package P, and GHC will report an error if you
try to use one where the other is expected.

Formally speaking, in Haskell 98, an entity (function, type or class) in a program is uniquely
identified by the pair of the module name in which it is defined and its name. In GHC, an
entity is uniquely defined by a triple: package, module, and name.

7.9.4 Thinning and renaming modules

When incorporating packages from multiple sources, you may end up in a situation where
multiple packages publish modules with the same name. Previously, the only way to distin-
guish between these modules was to use Package-qualified imports (page 236). However,
since GHC 7.10, the -package (page 172) flags (and their variants) have been extended to
allow a user to explicitly control what modules a package brings into scope, by analogy to the
import lists that users can attach to module imports.

The basic syntax is that instead of specifying a package name P to the package flag -package,
instead we specify both a package name and a parenthesized, comma-separated list of mod-
ule names to import. For example, -package "base (Data.List, Data.Bool)" makes only
Data.List and Data.Bool visible from package base. We also support renaming of mod-
ules, in case you need to refer to both modules simultaneously; this is supporting by writ-
ing 0ldModName as NewModName, e.g. -package "base (Data.Bool as Bool). You can also
write -package "base with (Data.Bool as Bool) to include all of the original bindings
(e.g. the renaming is strictly additive). It’s important to specify quotes so that your shell
passes the package name and thinning/renaming list as a single argument to GHC.

Package imports with thinning/renaming do not hide other versions of the package: e.g.
if containers-0.9 is already exposed, -package "containers-0.8 (Data.List as ListV8)"
will only add an additional binding to the environment. Similarly, -package "base (Data.
Bool as Bool)" -package "base (Data.List as List)" is equivalent to -package "base
(Data.Bool as Bool, Data.List as List)". Literal names must refer to modules defined
by the original package, so for example -package "base (Data.Bool as Bool, Bool as
Baz)" is invalid unless there was a Bool module defined in the original package. Hiding
a package also clears all of its renamings.

You can use renaming to provide an alternate prelude, e.g. -hide-all-packages -package
"basic-prelude (BasicPrelude as Prelude)", inlieu of the Rebindable syntax and the im-
plicit Prelude import (page 230) extension.

7.9.5 Package Databases

A package database is where the details about installed packages are stored. It is a directory,
usually called package.conf.d, that contains a file for each package, together with a binary
cache of the package data in the file package.cache. Normally you won’t need to look at or
modify the contents of a package database directly; all management of package databases
can be done through the ghc-pkg tool (see Package management (the ghc-pkg command)
(page 158)).

GHC knows about two package databases in particular:

» The global package database, which comes with your GHC installation, e.g. /usr/lib/
ghc-6.12.1/package.conf.d.

» The user package database private to each user. On Unix systems this will be
$HOME/ .ghc/arch-os-version/package.conf.d, and on Windows it will be something
like C:\Documents And Settings\user\ghc\package.conf.d. The ghc-pkg tool knows

7.9. Packages 153

GHC Users Guide Documentation, Release 8.0.2

where this file should be located, and will create it if it doesn’t exist (see Package man-
agement (the ghc-pkg command) (page 158)).

Package database stack: Package databases are arranged in a stack structure. When GHC
starts up it adds the global and the user package databases to the stack, in that order, unless
GHC PACKAGE PATH (page 154) is specified. When GHC PACKAGE PATH is specified then it
will determine the initial database stack. Several command line options described below can
further manipulate this initial stack. You can see GHC'’s effective package database stack by
running GHC with the -v (page 77) flag.

This stack structure means that the order of -package-db (page 154) flags or
GHC PACKAGE PATH (page 154) is important. Each substack of the stack must be well formed
(packages in databases on top of the stack can refer to packages below, but not vice versa).

Package shadowing: When multiple package databases are in use it is possible, though rarely,
that the same installed package id is present in more than one database. In that case, pack-
ages closer to the top of the stack will override those below them. Shadowing is an unsafe
operation: if a package overrides another package it is not ABI compatible with, it is possible
that GHC will end up with an inconsistent view of the package database that could induce it
to build segfaulting executables.

Package version selection: When selecting a package, GHC will search for packages in all
available databases. If multiple versions of the same package are available the latest non-
broken version will be chosen.

Version conflict resolution: If multiple instances of a package version chosen by GHC are
available then GHC will choose an unspecified instance.

You can control GHC’s package database stack using the following options:

-package-db (file)
Add the package database (file) on top of the current stack.

-no-global-package-db
Remove the global package database from the package database stack.

-no-user-package-db
Prevent loading of the user’s local package database in the initial stack.

-clear-package-db
Reset the current package database stack. This option removes every previously spec-
ified package database (including those read from the GHC PACKAGE PATH (page 154)
env