The Coq Proof Assistant

Reference Manual
July 26, 2017

Version 8.6.1'

The Coq Development Team

7r? Project (formerly LogiCal, then TypiCal)

"This research was partly supported by IST working group “Types”



V8.6.1, July 26, 2017

OINRIA 1999-2004 (C0Q versions 7.X)

OINRIA 2004-2016 (CoQ versions 8.x)

This material may be distributed only subject to the terms and conditions set forth in the Open
Publication License, v1.0 or later (the latest version is presently available at
http://www.opencontent .org/openpub). Options A and B of the licence are not elected.


http://www.opencontent.org/openpub

Introduction

This document is the Reference Manual of version 8.6.1 of the COQ proof assistant. A companion
volume, the CoQ Tutorial, is provided for the beginners. It is advised to read the Tutorial first. A
book [14] on practical uses of the COQ system was published in 2004 and is a good support for both the
beginner and the advanced user.

The CoQ system is designed to develop mathematical proofs, and especially to write formal specifi-
cations, programs and to verify that programs are correct with respect to their specification. It provides a
specification language named GALLINA. Terms of GALLINA can represent programs as well as proper-
ties of these programs and proofs of these properties. Using the so-called Curry-Howard isomorphism,
programs, properties and proofs are formalized in the same language called Calculus of Inductive Con-
structions, that is a A-calculus with a rich type system. All logical judgments in COQ are typing judg-
ments. The very heart of the Coq system is the type-checking algorithm that checks the correctness of
proofs, in other words that checks that a program complies to its specification. COQ also provides an
interactive proof assistant to build proofs using specific programs called tactics.

All services of the COQ proof assistant are accessible by interpretation of a command language
called the vernacular.

CoQ has an interactive mode in which commands are interpreted as the user types them in from the
keyboard and a compiled mode where commands are processed from a file.

* The interactive mode may be used as a debugging mode in which the user can develop his theories
and proofs step by step, backtracking if needed and so on. The interactive mode is run with
the cogt op command from the operating system (which we shall assume to be some variety of
UNIX in the rest of this document).

* The compiled mode acts as a proof checker taking a file containing a whole development in order
to ensure its correctness. Moreover, COQ’s compiler provides an output file containing a compact
representation of its input. The compiled mode is run with the cogc command from the operating
system.

These two modes are documented in Chapter 14.

Other modes of interaction with COQ are possible: through an emacs shell window, an emacs generic
user-interface for proof assistant (PROOF GENERAL [ 1]) or through a customized interface (PCoq [138]).
These facilities are not documented here. There is also a COQ Integrated Development Environment
described in Chapter 16.

How to read this book

This is a Reference Manual, not a User Manual, then it is not made for a continuous reading. However,
it has some structure that is explained below.

Coq Reference Manual, V8.6.1, July 26, 2017



4 Introduction

* The first part describes the specification language, Gallina. Chapters 1 and 2 describe the concrete
syntax as well as the meaning of programs, theorems and proofs in the Calculus of Inductive
Constructions. Chapter 3 describes the standard library of C0Q. Chapter 4 is a mathematical
description of the formalism. Chapter 5 describes the module system.

* The second part describes the proof engine. It is divided in five chapters. Chapter 6 presents
all commands (we call them vernacular commands) that are not directly related to interactive
proving: requests to the environment, complete or partial evaluation, loading and compiling files.
How to start and stop proofs, do multiple proofs in parallel is explained in Chapter 7. In Chapter 8,
all commands that realize one or more steps of the proof are presented: we call them tactics. The
language to combine these tactics into complex proof strategies is given in Chapter 9. Examples
of tactics are described in Chapter 10.

* The third part describes how to extend the syntax of C0oQ. It corresponds to the Chapter 12.

* In the fourth part more practical tools are documented. First in Chapter 14, the usage of cogc
(batch mode) and cogt op (interactive mode) with their options is described. Then, in Chapter 15,
various utilities that come with the COQ distribution are presented. Finally, Chapter 16 describes
the CoQ integrated development environment.

At the end of the document, after the global index, the user can find specific indexes for tactics,
vernacular commands, and error messages.

List of additional documentation

This manual does not contain all the documentation the user may need about COQ. Various informations
can be found in the following documents:

Tutorial A companion volume to this reference manual, the COQ Tutorial, is aimed at gently introduc-
ing new users to developing proofs in COQ without assuming prior knowledge of type theory. In a
second step, the user can read also the tutorial on recursive types (document RecTutorial.ps).

Addendum The fifth part (the Addendum) of the Reference Manual is distributed as a separate docu-
ment. It contains more detailed documentation and examples about some specific aspects of the
system that may interest only certain users. It shares the indexes, the page numbers and the bibli-
ography with the Reference Manual. If you see in one of the indexes a page number that is outside
the Reference Manual, it refers to the Addendum.

Installation A text file INSTALL that comes with the sources explains how to install COQ.

The CoQ standard library A commented version of sources of the COQ standard library (includ-
ing only the specifications, the proofs are removed) is given in the additional document
Library.ps.

Coq Reference Manual, V8.6.1, July 26, 2017



Credits

CoQ is a proof assistant for higher-order logic, allowing the development of computer programs consis-
tent with their formal specification. It is the result of about ten years of research of the Coq project. We
shall briefly survey here three main aspects: the logical language in which we write our axiomatizations
and specifications, the proof assistant which allows the development of verified mathematical proofs,
and the program extractor which synthesizes computer programs obeying their formal specifications,
written as logical assertions in the language.

The logical language used by C0OQ is a variety of type theory, called the Calculus of Inductive Con-
structions. Without going back to Leibniz and Boole, we can date the creation of what is now called
mathematical logic to the work of Frege and Peano at the turn of the century. The discovery of anti-
nomies in the free use of predicates or comprehension principles prompted Russell to restrict predicate
calculus with a stratification of types. This effort culminated with Principia Mathematica, the first sys-
tematic attempt at a formal foundation of mathematics. A simplification of this system along the lines of
simply typed A-calculus occurred with Church’s Simple Theory of Types. The A-calculus notation, orig-
inally used for expressing functionality, could also be used as an encoding of natural deduction proofs.
This Curry-Howard isomorphism was used by N. de Bruijn in the Automath project, the first full-scale
attempt to develop and mechanically verify mathematical proofs. This effort culminated with Jutting’s
verification of Landau’s Grundlagen in the 1970’s. Exploiting this Curry-Howard isomorphism, no-
table achievements in proof theory saw the emergence of two type-theoretic frameworks; the first one,
Martin-Lof’s Intuitionistic Theory of Types, attempts a new foundation of mathematics on constructive
principles. The second one, Girard’s polymorphic A-calculus F,, is a very strong functional system in
which we may represent higher-order logic proof structures. Combining both systems in a higher-order
extension of the Automath languages, T. Coquand presented in 1985 the first version of the Calculus of
Constructions, CoC. This strong logical system allowed powerful axiomatizations, but direct inductive
definitions were not possible, and inductive notions had to be defined indirectly through functional en-
codings, which introduced inefficiencies and awkwardness. The formalism was extended in 1989 by T.
Coquand and C. Paulin with primitive inductive definitions, leading to the current Calculus of Inductive
Constructions. This extended formalism is not rigorously defined here. Rather, numerous concrete ex-
amples are discussed. We refer the interested reader to relevant research papers for more information
about the formalism, its meta-theoretic properties, and semantics. However, it should not be necessary
to understand this theoretical material in order to write specifications. It is possible to understand the
Calculus of Inductive Constructions at a higher level, as a mixture of predicate calculus, inductive pred-
icate definitions presented as typed PROLOG, and recursive function definitions close to the language
ML.

Automated theorem-proving was pioneered in the 1960’s by Davis and Putnam in propositional cal-
culus. A complete mechanization (in the sense of a semi-decision procedure) of classical first-order logic
was proposed in 1965 by J.A. Robinson, with a single uniform inference rule called resolution. Reso-
lution relies on solving equations in free algebras (i.e. term structures), using the unification algorithm.

Coq Reference Manual, V8.6.1, July 26, 2017



6 Credits

Many refinements of resolution were studied in the 1970’s, but few convincing implementations were re-
alized, except of course that PROLOG is in some sense issued from this effort. A less ambitious approach
to proof development is computer-aided proof-checking. The most notable proof-checkers developed in
the 1970’s were LCEF, designed by R. Milner and his colleagues at U. Edinburgh, specialized in proving
properties about denotational semantics recursion equations, and the Boyer and Moore theorem-prover,
an automation of primitive recursion over inductive data types. While the Boyer-Moore theorem-prover
attempted to synthesize proofs by a combination of automated methods, LCF constructed its proofs
through the programming of tactics, written in a high-level functional meta-language, ML.

The salient feature which clearly distinguishes our proof assistant from say LCF or Boyer and
Moore’s, is its possibility to extract programs from the constructive contents of proofs. This compu-
tational interpretation of proof objects, in the tradition of Bishop’s constructive mathematics, is based
on a realizability interpretation, in the sense of Kleene, due to C. Paulin. The user must just mark
his intention by separating in the logical statements the assertions stating the existence of a computa-
tional object from the logical assertions which specify its properties, but which may be considered as
just comments in the corresponding program. Given this information, the system automatically extracts
a functional term from a consistency proof of its specifications. This functional term may be in turn
compiled into an actual computer program. This methodology of extracting programs from proofs is a
revolutionary paradigm for software engineering. Program synthesis has long been a theme of research
in artificial intelligence, pioneered by R. Waldinger. The Tablog system of Z. Manna and R. Waldinger
allows the deductive synthesis of functional programs from proofs in tableau form of their specifica-
tions, written in a variety of first-order logic. Development of a systematic programming logic, based
on extensions of Martin-Lof’s type theory, was undertaken at Cornell U. by the Nuprl team, headed by
R. Constable. The first actual program extractor, PX, was designed and implemented around 1985 by
S. Hayashi from Kyoto University. It allows the extraction of a LISP program from a proof in a logical
system inspired by the logical formalisms of S. Feferman. Interest in this methodology is growing in
the theoretical computer science community. We can foresee the day when actual computer systems
used in applications will contain certified modules, automatically generated from a consistency proof
of their formal specifications. We are however still far from being able to use this methodology in a
smooth interaction with the standard tools from software engineering, i.e. compilers, linkers, run-time
systems taking advantage of special hardware, debuggers, and the like. We hope that COQ can be of use
to researchers interested in experimenting with this new methodology.

A first implementation of CoC was started in 1984 by G. Huet and T. Coquand. Its implementation
language was CAML, a functional programming language from the ML family designed at INRIA
in Rocquencourt. The core of this system was a proof-checker for CoC seen as a typed A-calculus,
called the Constructive Engine. This engine was operated through a high-level notation permitting the
declaration of axioms and parameters, the definition of mathematical types and objects, and the explicit
construction of proof objects encoded as A-terms. A section mechanism, designed and implemented
by G. Dowek, allowed hierarchical developments of mathematical theories. This high-level language
was called the Mathematical Vernacular. Furthermore, an interactive Theorem Prover permitted the
incremental construction of proof trees in a top-down manner, subgoaling recursively and backtracking
from dead-alleys. The theorem prover executed tactics written in CAML, in the LCF fashion. A basic set
of tactics was predefined, which the user could extend by his own specific tactics. This system (Version
4.10) was released in 1989. Then, the system was extended to deal with the new calculus with inductive
types by C. Paulin, with corresponding new tactics for proofs by induction. A new standard set of tactics
was streamlined, and the vernacular extended for tactics execution. A package to compile programs
extracted from proofs to actual computer programs in CAML or some other functional language was
designed and implemented by B. Werner. A new user-interface, relying on a CAML-X interface by D.

Coq Reference Manual, V8.6.1, July 26, 2017



Credits 7

de Rauglaudre, was designed and implemented by A. Felty. It allowed operation of the theorem-prover
through the manipulation of windows, menus, mouse-sensitive buttons, and other widgets. This system
(Version 5.6) was released in 1991.

CoQ was ported to the new implementation Caml-light of X. Leroy and D. Doligez by D. de
Rauglaudre (Version 5.7) in 1992. A new version of COQ was then coordinated by C. Murthy, with
new tools designed by C. Parent to prove properties of ML programs (this methodology is dual to pro-
gram extraction) and a new user-interaction loop. This system (Version 5.8) was released in May 1993.
A Centaur interface CTC0OQ was then developed by Y. Bertot from the Croap project from INRIA-
Sophia-Antipolis.

In parallel, G. Dowek and H. Herbelin developed a new proof engine, allowing the general manip-
ulation of existential variables consistently with dependent types in an experimental version of COQ
(V5.9).

The version V5.10 of C0OQ is based on a generic system for manipulating terms with binding op-
erators due to Chet Murthy. A new proof engine allows the parallel development of partial proofs for
independent subgoals. The structure of these proof trees is a mixed representation of derivation trees
for the Calculus of Inductive Constructions with abstract syntax trees for the tactics scripts, allowing the
navigation in a proof at various levels of details. The proof engine allows generic environment items
managed in an object-oriented way. This new architecture, due to C. Murthy, supports several new
facilities which make the system easier to extend and to scale up:

* User-programmable tactics are allowed

* Itis possible to separately verify development modules, and to load their compiled images without
verifying them again - a quick relocation process allows their fast loading

* A generic parsing scheme allows user-definable notations, with a symmetric table-driven pretty-
printer

» Syntactic definitions allow convenient abbreviations

A limited facility of meta-variables allows the automatic synthesis of certain type expressions,
allowing generic notations for e.g. equality, pairing, and existential quantification.

In the Fall of 1994, C. Paulin-Mohring replaced the structure of inductively defined types and fam-
ilies by a new structure, allowing the mutually recursive definitions. P. Manoury implemented a trans-
lation of recursive definitions into the primitive recursive style imposed by the internal recursion oper-
ators, in the style of the ProPre system. C. Muiioz implemented a decision procedure for intuitionistic
propositional logic, based on results of R. Dyckhoff. J.C. Fillidtre implemented a decision procedure
for first-order logic without contraction, based on results of J. Ketonen and R. Weyhrauch. Finally C.
Murthy implemented a library of inversion tactics, relieving the user from tedious definitions of “inver-
sion predicates”.

Rocquencourt, Feb. 1st 1995
Gérard Huet

Credits: addendum for version 6.1
The present version 6.1 of COQ is based on the V5.10 architecture. It was ported to the new language

OBJECTIVE CAML by Bruno Barras. The underlying framework has slightly changed and allows more
conversions between sorts.

Coq Reference Manual, V8.6.1, July 26, 2017



8 Credits

The new version provides powerful tools for easier developments.

Cristina Cornes designed an extension of the COQ syntax to allow definition of terms using a pow-
erful pattern-matching analysis in the style of ML programs.

Amokrane Saibi wrote a mechanism to simulate inheritance between types families extending a
proposal by Peter Aczel. He also developed a mechanism to automatically compute which arguments of
a constant may be inferred by the system and consequently do not need to be explicitly written.

Yann Coscoy designed a command which explains a proof term using natural language. Pierre
Crégut built a new tactic which solves problems in quantifier-free Presburger Arithmetic. Both function-
alities have been integrated to the COQ system by Hugo Herbelin.

Samuel Boutin designed a tactic for simplification of commutative rings using a canonical set of
rewriting rules and equality modulo associativity and commutativity.

Finally the organisation of the COQ distribution has been supervised by Jean-Christophe Filliatre
with the help of Judicaé€l Courant and Bruno Barras.

Lyon, Nov. 18th 1996
Christine Paulin

Credits: addendum for version 6.2

In version 6.2 of C0OQ, the parsing is done using camlp4, a preprocessor and pretty-printer for CAML
designed by Daniel de Rauglaudre at INRIA. Daniel de Rauglaudre made the first adaptation of COQ
for camlp4, this work was continued by Bruno Barras who also changed the structure of COQ abstract
syntax trees and the primitives to manipulate them. The result of these changes is a faster parsing
procedure with greatly improved syntax-error messages. The user-interface to introduce grammar or
pretty-printing rules has also changed.

Eduardo Giménez redesigned the internal tactic libraries, giving uniform names to Caml functions
corresponding to COQ tactic names.

Bruno Barras wrote new more efficient reductions functions.

Hugo Herbelin introduced more uniform notations in the COQ specification language: the definitions
by fixpoints and pattern-matching have a more readable syntax. Patrick Loiseleur introduced user-
friendly notations for arithmetic expressions.

New tactics were introduced: Eduardo Giménez improved a mechanism to introduce macros for
tactics, and designed special tactics for (co)inductive definitions; Patrick Loiseleur designed a tactic to
simplify polynomial expressions in an arbitrary commutative ring which generalizes the previous tactic
implemented by Samuel Boutin. Jean-Christophe Filliatre introduced a tactic for refining a goal, using
a proof term with holes as a proof scheme.

David Delahaye designed the Searchlsos tool to search an object in the library given its type (up to
isomorphism).

Henri Laulhére produced the CoQ distribution for the Windows environment.

Finally, Hugo Herbelin was the main coordinator of the COQ documentation with principal contri-
butions by Bruno Barras, David Delahaye, Jean-Christophe Fillidtre, Eduardo Giménez, Hugo Herbelin
and Patrick Loiseleur.

Orsay, May 4th 1998
Christine Paulin

Coq Reference Manual, V8.6.1, July 26, 2017



Credits 9

Credits: addendum for version 6.3

The main changes in version V6.3 was the introduction of a few new tactics and the extension of the
guard condition for fixpoint definitions.

B. Barras extended the unification algorithm to complete partial terms and solved various tricky bugs
related to universes.
D. Delahaye developed the AutoRewrite tactic. He also designed the new behavior of Intro and
provided the tacticals First and Solve.
J.-C. Filliatre developed the Correctness tactic.
E. Giménez extended the guard condition in fixpoints.
H. Herbelin designed the new syntax for definitions and extended the ITnduction tactic.
P. Loiseleur developed the Quote tactic and the new design of the Aut o tactic, he also introduced the
index of errors in the documentation.
C. Paulin wrote the Focus command and introduced the reduction functions in definitions, this last
feature was proposed by J.-F. Monin from CNET Lannion.

Orsay, Dec. 1999
Christine Paulin

Credits: versions 7

The version V7 is a new implementation started in September 1999 by Jean-Christophe Filliatre. This
is a major revision with respect to the internal architecture of the system. The C0Q version 7.0 was
distributed in March 2001, version 7.1 in September 2001, version 7.2 in January 2002, version 7.3 in
May 2002 and version 7.4 in February 2003.

Jean-Christophe Filliatre designed the architecture of the new system, he introduced a new repre-
sentation for environments and wrote a new kernel for type-checking terms. His approach was to use
functional data-structures in order to get more sharing, to prepare the addition of modules and also to
get closer to a certified kernel.

Hugo Herbelin introduced a new structure of terms with local definitions. He introduced “qualified”
names, wrote a new pattern-matching compilation algorithm and designed a more compact algorithm
for checking the logical consistency of universes. He contributed to the simplification of COQ internal
structures and the optimisation of the system. He added basic tactics for forward reasoning and coercions
in patterns.

David Delahaye introduced a new language for tactics. General tactics using pattern-matching on
goals and context can directly be written from the COQ toplevel. He also provided primitives for the
design of user-defined tactics in CAML.

Micaela Mayero contributed the library on real numbers. Olivier Desmettre extended this library
with axiomatic trigonometric functions, square, square roots, finite sums, Chasles property and basic
plane geometry.

Jean-Christophe Fillidtre and Pierre Letouzey redesigned a new extraction procedure from COQ
terms to CAML or HASKELL programs. This new extraction procedure, unlike the one implemented
in previous version of COQ is able to handle all terms in the Calculus of Inductive Constructions, even
involving universes and strong elimination. P. Letouzey adapted user contributions to extract ML pro-
grams when it was sensible. Jean-Christophe Fillidtre wrote cogdoc, a documentation tool for COQ
libraries usable from version 7.2.

Coq Reference Manual, V8.6.1, July 26, 2017



10 Credits

Bruno Barras improved the reduction algorithms efficiency and the confidence level in the correct-
ness of COQ critical type-checking algorithm.

Yves Bertot designed the SearchPattern and SearchRewrite tools and the support for the
PCOQ interface (http://www—sop.inria.fr/lemme/pcoqg/).

Micaela Mayero and David Delahaye introduced Field, a decision tactic for commutative fields.

Christine Paulin changed the elimination rules for empty and singleton propositional inductive types.

Loic Pottier developed Fourier, a tactic solving linear inequalities on real numbers.

Pierre Crégut developed a new version based on reflexion of the Omega decision tactic.

Claudio Sacerdoti Coen designed an XML output for the COQ modules to be used in the Hypertex-
tual Electronic Library of Mathematics (HELM cf http://www.cs.unibo.it/helm).

A library for efficient representation of finite maps using binary trees contributed by Jean Goubault
was integrated in the basic theories.

Pierre Courtieu developed a command and a tactic to reason on the inductive structure of recursively
defined functions.

Jacek Chrzaszcz designed and implemented the module system of COQ whose foundations are in
Judicaél Courant’s PhD thesis.

The development was coordinated by C. Paulin.

Many discussions within the Démons team and the LogiCal project influenced significantly the de-
sign of COQ especially with J. Courant, J. Duprat, J. Goubault, A. Miquel, C. Marché, B. Monate and
B. Werner.

Intensive users suggested improvements of the system : Y. Bertot, L. Pottier, L. Théry, P. Zimmerman
from INRIA, C. Alvarado, P. Crégut, J.-F. Monin from France Telecom R & D.

Orsay, May. 2002
Hugo Herbelin & Christine Paulin

Credits: version 8.0

CoqQ version 8 is a major revision of the COQ proof assistant. First, the underlying logic is slightly
different. The so-called impredicativity of the sort Set has been dropped. The main reason is that it
is inconsistent with the principle of description which is quite a useful principle for formalizing mathe-
matics within classical logic. Moreover, even in an constructive setting, the impredicativity of Set does
not add so much in practice and is even subject of criticism from a large part of the intuitionistic math-
ematician community. Nevertheless, the impredicativity of Set remains optional for users interested in
investigating mathematical developments which rely on it.
Secondly, the concrete syntax of terms has been completely revised. The main motivations were

* a more uniform, purified style: all constructions are now lowercase, with a functional program-
ming perfume (e.g. abstraction is now written fun), and more directly accessible to the novice
(e.g. dependent product is now written forall and allows omission of types). Also, parentheses
and are no longer mandatory for function application.

* extensibility: some standard notations (e.g. “<” and “>”) were incompatible with the previous
syntax. Now all standard arithmetic notations (=, +, *, /, <, <=, ... and more) are directly part of
the syntax.

Coq Reference Manual, V8.6.1, July 26, 2017


http://www-sop.inria.fr/lemme/pcoq/
http://www.cs.unibo.it/helm

Credits 11

Together with the revision of the concrete syntax, a new mechanism of interpretation scopes permits
to reuse the same symbols (typically +, -, *, /, <, <=) in various mathematical theories without any
ambiguities for C0Q, leading to a largely improved readability of COQ scripts. New commands to
easily add new symbols are also provided.

Coming with the new syntax of terms, a slight reform of the tactic language and of the language
of commands has been carried out. The purpose here is a better uniformity making the tactics and
commands easier to use and to remember.

Thirdly, a restructuration and uniformisation of the standard library of COQ has been performed.
There is now just one Leibniz’ equality usable for all the different kinds of COQ objects. Also, the set
of real numbers now lies at the same level as the sets of natural and integer numbers. Finally, the names
of the standard properties of numbers now follow a standard pattern and the symbolic notations for the
standard definitions as well.

The fourth point is the release of COQIDE, a new graphical gtk2-based interface fully integrated to
CoQ. Close in style from the Proof General Emacs interface, it is faster and its integration with CoQ
makes interactive developments more friendly. All mathematical Unicode symbols are usable within
CoQIDE.

Finally, the module system of COQ completes the picture of COQ version 8.0. Though released with
an experimental status in the previous version 7.4, it should be considered as a salient feature of the new
version.

Besides, COQ comes with its load of novelties and improvements: new or improved tactics (includ-
ing a new tactic for solving first-order statements), new management commands, extended libraries.

Bruno Barras and Hugo Herbelin have been the main contributors of the reflexion and the imple-
mentation of the new syntax. The smart automatic translator from old to new syntax released with COQ
is also their work with contributions by Olivier Desmettre.

Hugo Herbelin is the main designer and implementor of the notion of interpretation scopes and of
the commands for easily adding new notations.

Hugo Herbelin is the main implementor of the restructuration of the standard library.

Pierre Corbineau is the main designer and implementor of the new tactic for solving first-order state-
ments in presence of inductive types. He is also the maintainer of the non-domain specific automation
tactics.

Benjamin Monate is the developer of the COQIDE graphical interface with contributions by Jean-
Christophe Filliatre, Pierre Letouzey, Claude Marché and Bruno Barras.

Claude Marché coordinated the edition of the Reference Manual for CoQ V8.0.

Pierre Letouzey and Jacek Chrzaszcz respectively maintained the extraction tool and module system
of CoQ.

Jean-Christophe Fillidtre, Pierre Letouzey, Hugo Herbelin ando contributors from Sophia-Antipolis
and Nijmegen participated to the extension of the library.

Julien Narboux built a NSIS-based automatic COQ installation tool for the Windows platform.

Hugo Herbelin and Christine Paulin coordinated the development which was under the responsabil-
ity of Christine Paulin.

Palaiseau & Orsay, Apr. 2004
Hugo Herbelin & Christine Paulin
(updated Apr. 2006)

Coq Reference Manual, V8.6.1, July 26, 2017



12 Credits

Credits: version 8.1

CoQ version 8.1 adds various new functionalities.

Benjamin Grégoire implemented an alternative algorithm to check the convertibility of terms in the
CoQ type-checker. This alternative algorithm works by compilation to an efficient bytecode that is
interpreted in an abstract machine similar to Xavier Leroy’s ZINC machine. Convertibility is performed
by comparing the normal forms. This alternative algorithm is specifically interesting for proofs by
reflection. More generally, it is convenient in case of intensive computations.

Christine Paulin implemented an extension of inductive types allowing recursively non uniform
parameters. Hugo Herbelin implemented sort-polymorphism for inductive types.

Claudio Sacerdoti Coen improved the tactics for rewriting on arbitrary compatible equivalence rela-
tions. He also generalized rewriting to arbitrary transition systems.

Claudio Sacerdoti Coen added new features to the module system.

Benjamin Grégoire, Assia Mahboubi and Bruno Barras developed a new more efficient and more
general simplification algorithm on rings and semi-rings.

Laurent Théry and Bruno Barras developed a new significantly more efficient simplification algo-
rithm on fields.

Hugo Herbelin, Pierre Letouzey, Julien Forest, Julien Narboux and Claudio Sacerdoti Coen added
new tactic features.

Hugo Herbelin implemented matching on disjunctive patterns.

New mechanisms made easier the communication between COQ and external provers. Nicolas Ay-
ache and Jean-Christophe Fillidtre implemented connections with the provers CVCL, SIMPLIFY and
ZENON. Hugo Herbelin implemented an experimental protocol for calling external tools from the tactic
language.

Matthieu Sozeau developed RUSSELL, an experimental language to specify the behavior of programs
with subtypes.

A mechanism to automatically use some specific tactic to solve unresolved implicit has been imple-
mented by Hugo Herbelin.

Laurent Théry’s contribution on strings and Pierre Letouzey and Jean-Christophe Filliatre’s contri-
bution on finite maps have been integrated to the COQ standard library. Pierre Letouzey developed a
library about finite sets “a la OBJECTIVE CAML”. With Jean-Marc Notin, he extended the library on
lists. Pierre Letouzey’s contribution on rational numbers has been integrated and extended..

Pierre Corbineau extended his tactic for solving first-order statements. He wrote a reflection-based
intuitionistic tautology solver.

Pierre Courtieu, Julien Forest and Yves Bertot added extra support to reason on the inductive struc-
ture of recursively defined functions.

Jean-Marc Notin significantly contributed to the general maintenance of the system. He also took
care of coqdoc.

Pierre Castéran contributed to the documentation of (co-)inductive types and suggested improve-
ments to the libraries.

Pierre Corbineau implemented a declarative mathematical proof language, usable in combination
with the tactic-based style of proof.

Finally, many users suggested improvements of the system through the Cogq-Club mailing list and
bug-tracker systems, especially user groups from INRIA Rocquencourt, Radboud University, University
of Pennsylvania and Yale University.

Palaiseau, July 2006
Hugo Herbelin

Coq Reference Manual, V8.6.1, July 26, 2017



Credits 13

Credits: version 8.2

CoqQ version 8.2 adds new features, new libraries and improves on many various aspects.

Regarding the language of Coq, the main novelty is the introduction by Matthieu Sozeau of a pack-
age of commands providing Haskell-style type classes. Type classes, that come with a few convenient
features such as type-based resolution of implicit arguments, plays a new role of landmark in the ar-
chitecture of Coq with respect to automatization. For instance, thanks to type classes support, Matthieu
Sozeau could implement a new resolution-based version of the tactics dedicated to rewriting on arbitrary
transitive relations.

Another major improvement of Coq 8.2 is the evolution of the arithmetic libraries and of the tools
associated to them. Benjamin Grégoire and Laurent Théry contributed a modular library for building
arbitrarily large integers from bounded integers while Evgeny Makarov contributed a modular library
of abstract natural and integer arithmetics together with a few convenient tactics. On his side, Pierre
Letouzey made numerous extensions to the arithmetic libraries on Z and (), including extra support for
automatization in presence of various number-theory concepts.

Frédéric Besson contributed a reflexive tactic based on Krivine-Stengle Positivstellensatz (the easy
way) for validating provability of systems of inequalities. The platform is flexible enough to support the
validation of any algorithm able to produce a “certificate” for the Positivstellensatz and this covers the
case of Fourier-Motzkin (for linear systems in Q and R), Fourier-Motzkin with cutting planes (for linear
systems in Z) and sum-of-squares (for non-linear systems). Evgeny Makarov made the platform generic
over arbitrary ordered rings.

Arnaud Spiwack developed a library of 31-bits machine integers and, relying on Benjamin Grégoire
and Laurent Théry’s library, delivered a library of unbounded integers in base 23!. As importantly, he de-
veloped a notion of “retro-knowledge” so as to safely extend the kernel-located bytecode-based efficient
evaluation algorithm of Coq version 8.1 to use 31-bits machine arithmetics for efficiently computing
with the library of integers he developed.

Beside the libraries, various improvements contributed to provide a more comfortable end-user lan-
guage and more expressive tactic language. Hugo Herbelin and Matthieu Sozeau improved the pattern-
matching compilation algorithm (detection of impossible clauses in pattern-matching, automatic infer-
ence of the return type). Hugo Herbelin, Pierre Letouzey and Matthieu Sozeau contributed various new
convenient syntactic constructs and new tactics or tactic features: more inference of redundant infor-
mation, better unification, better support for proof or definition by fixpoint, more expressive rewriting
tactics, better support for meta-variables, more convenient notations, ...

Elie Soubiran improved the module system, adding new features (such as an “include” command)
and making it more flexible and more general. He and Pierre Letouzey improved the support for modules
in the extraction mechanism.

Matthieu Sozeau extended the RUSSELL language, ending in an convenient way to write programs
of given specifications, Pierre Corbineau extended the Mathematical Proof Language and the autom-
atization tools that accompany it, Pierre Letouzey supervised and extended various parts the standard
library, Stéphane Glondu contributed a few tactics and improvements, Jean-Marc Notin provided help
in debugging, general maintenance and cogdoc support, Vincent Siles contributed extensions of the
Scheme command and of injection.

Bruno Barras implemented the cogchk tool: this is a stand-alone type-checker that can be used to
certify . vo files. Especially, as this verifier runs in a separate process, it is granted not to be “hijacked”
by virtually malicious extensions added to COQ.

Yves Bertot, Jean-Christophe Fillidtre, Pierre Courtieu and Julien Forest acted as maintainers of
features they implemented in previous versions of Coq.

Coq Reference Manual, V8.6.1, July 26, 2017



14 Credits

Julien Narboux contributed to COQIDE. Nicolas Tabareau made the adaptation of the interface of
the old “setoid rewrite” tactic to the new version. Lionel Mamane worked on the interaction between
Coq and its external interfaces. With Samuel Mimram, he also helped making Coq compatible with
recent software tools. Russell O’Connor, Cezary Kaliscyk, Milad Niqui contributed to improved the
libraries of integers, rational, and real numbers. We also thank many users and partners for suggestions
and feedback, in particular Pierre Castéran and Arthur Charguéraud, the INRIA Marelle team, Georges
Gonthier and the INRIA-Microsoft Mathematical Components team, the Foundations group at Radboud
university in Nijmegen, reporters of bugs and participants to the Coq-Club mailing list.

Palaiseau, June 2008
Hugo Herbelin

Credits: version 8.3

CoqQ version 8.3 is before all a transition version with refinements or extensions of the existing fea-
tures and libraries and a new tactic nsatz based on Hilbert’s Nullstellensatz for deciding systems of
equations over rings.

With respect to libraries, the main evolutions are due to Pierre Letouzey with a rewriting of the
library of finite sets FSets and a new round of evolutions in the modular development of arithmetic
(library Numbers). The reason for making FSet s evolve is that the computational and logical contents
were quite intertwined in the original implementation, leading in some cases to longer computations than
expected and this problem is solved in the new MSet s implementation. As for the modular arithmetic
library, it was only dealing with the basic arithmetic operators in the former version and its current
extension adds the standard theory of the division, min and max functions, all made available for free to
any implementation of N, Z or Z/nZ.

The main other evolutions of the library are due to Hugo Herbelin who made a revision of the sorting
library (includingh a certified merge-sort) and to Guillaume Melquiond who slightly revised and cleaned
up the library of reals.

The module system evolved significantly. Besides the resolution of some efficiency issues and a
more flexible construction of module types, Elie Soubiran brought a new model of name equivalence,
the A-equivalence, which respects as much as possible the names given by the users. He also designed
with Pierre Letouzey a new convenient operator <+ for nesting functor application, what provides a light
notation for inheriting the properties of cascading modules.

The new tactic nsat z is due to Loic Pottier. It works by computing Grébner bases. Regarding the
existing tactics, various improvements have been done by Matthieu Sozeau, Hugo Herbelin and Pierre
Letouzey.

Matthieu Sozeau extended and refined the type classes and Program features (the RUSSELL lan-
guage). Pierre Letouzey maintained and improved the extraction mechanism. Bruno Barras and Elie
Soubiran maintained the Coq checker, Julien Forest maintained the Function mechanism for rea-
soning over recursively defined functions. Matthieu Sozeau, Hugo Herbelin and Jean-Marc Notin
maintained cogdoc. Frédéric Besson maintained the MICROMEGA plateform for deciding systems
of inequalities. Pierre Courtieu maintained the support for the Proof General Emacs interface. Claude
Marché maintained the plugin for calling external provers (dp). Yves Bertot made some improve-
ments to the libraries of lists and integers. Matthias Puech improved the search functions. Guillaume
Melquiond usefully contributed here and there. Yann Régis-Gianas grounded the support for Unicode
on a more standard and more robust basis.

Coq Reference Manual, V8.6.1, July 26, 2017



Credits 15

Though invisible from outside, Arnaud Spiwack improved the general process of management of ex-
istential variables. Pierre Letouzey and Stéphane Glondu improved the compilation scheme of the Coq
archive. Vincent Gross provided support to COQIDE. Jean-Marc Notin provided support for bench-
marking and archiving.

Many users helped by reporting problems, providing patches, suggesting improvements or making
useful comments, either on the bug tracker or on the Cog-club mailing list. This includes but not exhaus-
tively Cédric Auger, Arthur Charguéraud, Francois Garillot, Georges Gonthier, Robin Green, Stéphane
Lescuyer, Eelis van der Weegen, ...

Though not directly related to the implementation, special thanks are going to Yves Bertot, Pierre
Castéran, Adam Chlipala, and Benjamin Pierce for the excellent teaching materials they provided.

Paris, April 2010
Hugo Herbelin

Credits: version 8.4

CoQ version 8.4 contains the result of three long-term projects: a new modular library of arithmetic
by Pierre Letouzey, a new proof engine by Arnaud Spiwack and a new communication protocol for
CoQIDE by Vincent Gross.

The new modular library of arithmetic extends, generalizes and unifies the existing libraries on Peano
arithmetic (types nat, N and BigN), positive arithmetic (type positive), integer arithmetic (Z and
Bigz) and machine word arithmetic (type Int31). It provides with unified notations (e.g. systematic
use of add and mul for denoting the addition and multiplication operators), systematic and generic
development of operators and properties of these operators for all the types mentioned above, including
gcd, pcm, power, square root, base 2 logarithm, division, modulo, bitwise operations, logical shifts,
comparisons, iterators, ...

The most visible feature of the new proof engine is the support for structured scripts (bullets and
proof brackets) but, even if yet not user-available, the new engine also provides the basis for refining
existential variables using tactics, for applying tactics to several goals simultaneously, for reordering
goals, all features which are planned for the next release. The new proof engine forced to reimplement
info and Show Script differently, what was done by Pierre Letouzey.

Before version 8.4, COQIDE was linked to COQ with the graphical interface living in a separate
thread. From version 8.4, COQIDE is a separate process communicating with CoQ through a textual
channel. This allows for a more robust interfacing, the ability to interrupt COQ without interrupting the
interface, and the ability to manage several sessions in parallel. Relying on the infrastructure work made
by Vincent Gross, Pierre Letouzey, Pierre Boutillier and Pierre-Marie Pédrot contributed many various
refinements of COQIDE.

CoQ 8.4 also comes with a bunch of many various smaller-scale changes and improvements regard-
ing the different components of the system.

The underlying logic has been extended with n-conversion thanks to Hugo Herbelin, Stéphane
Glondu and Benjamin Grégoire. The addition of 7-conversion is justified by the confidence that the
formulation of the Calculus of Inductive Constructions based on typed equality (such as the one con-
sidered in Lee and Werner to build a set-theoretic model of CIC [97]) is applicable to the concrete
implementation of COQ.

The underlying logic benefited also from a refinement of the guard condition for fixpoints by Pierre
Boutillier, the point being that it is safe to propagate the information about structurally smaller arguments
through S-redexes that are blocked by the “match” construction (blocked commutative cuts).

Coq Reference Manual, V8.6.1, July 26, 2017



16 Credits

Relying on the added permissiveness of the guard condition, Hugo Herbelin could extend the pattern-
matching compilation algorithm so that matching over a sequence of terms involving dependencies of a
term or of the indices of the type of a term in the type of other terms is systematically supported.

Regarding the high-level specification language, Pierre Boutillier introduced the ability to give im-
plicit arguments to anonymous functions, Hugo Herbelin introduced the ability to define notations with
several binders (e.g. exists x y z, P), Matthieu Sozeau made the type classes inference mech-
anism more robust and predictable, Enrico Tassi introduced a command Arguments that generalizes
Implicit Arguments and Arguments Scope for assigning various properties to arguments of
constants. Various improvements in the type inference algorithm were provided by Matthieu Sozeau and
Hugo Herbelin with contributions from Enrico Tassi.

Regarding tactics, Hugo Herbelin introduced support for referring to expressions occurring in the
goal by pattern in tactics such as set or destruct. Hugo Herbelin also relied on ideas from
Chung-Kil Hur’s Heq plugin to introduce automatic computation of occurrences to generalize when
using destruct and induction on types with indices. Stéphane Glondu introduced new tactics
constr_eq, is_evar and has_evar to be used when writing complex tactics. Enrico Tassi added
support to fine-tuning the behavior of simpl. Enrico Tassi added the ability to specify over which vari-
ables of a section a lemma has to be exactly generalized. Pierre Letouzey added a tactic t imeout and
the interruptibility of vim_compute. Bug fixes and miscellaneous improvements of the tactic language
came from Hugo Herbelin, Pierre Letouzey and Matthieu Sozeau.

Regarding decision tactics, Loic Pottier maintained Nsatz, moving in particular to a type-class
based reification of goals while Frédéric Besson maintained Micromega, adding in particular support
for division.

Regarding vernacular commands, Stéphane Glondu provided new commands to analyze the structure
of type universes.

Regarding libraries, a new library about lists of a given length (called vectors) has been provided by
Pierre Boutillier. A new instance of finite sets based on Red-Black trees and provided by Andrew Appel
has been adapted for the standard library by Pierre Letouzey. In the library of real analysis, Yves Bertot
changed the definition of 7 and provided a proof of the long-standing fact yet remaining unproved in
this library, namely that sin§ = 1.

Pierre Corbineau maintained the Mathematical Proof Language (C-zar).

Bruno Barras and Benjamin Grégoire maintained the call-by-value reduction machines.

The extraction mechanism benefited from several improvements provided by Pierre Letouzey.

Pierre Letouzey maintained the module system, with contributions from Elie Soubiran.

Julien Forest maintained the Function command.

Matthieu Sozeau maintained the setoid rewriting mechanism.

CoqQ related tools have been upgraded too. In particular, cogq_makefile has been largely revised
by Pierre Boutillier. Also, patches from Adam Chlipala for cogdoc have been integrated by Pierre
Boutillier.

Bruno Barras and Pierre Letouzey maintained the cogchk checker.

Pierre Courtieu and Arnaud Spiwack contributed new features for using CoQ through Proof General.

The Dp plugin has been removed. Use the plugin provided with Why 3 instead (http://why3.
lri.fr).

Under the hood, the COQ architecture benefited from improvements in terms of efficiency and ro-
bustness, especially regarding universes management and existential variables management, thanks to
Pierre Letouzey and Yann Régis-Gianas with contributions from Stéphane Glondu and Matthias Puech.
The build system is maintained by Pierre Letouzey with contributions from Stéphane Glondu and Pierre
Boutillier.

Coq Reference Manual, V8.6.1, July 26, 2017


http://why3.lri.fr
http://why3.lri.fr

Credits 17

A new backtracking mechanism simplifying the task of external interfaces has been designed by
Pierre Letouzey.

The general maintenance was done by Pierre Letouzey, Hugo Herbelin, Pierre Boutillier, Matthieu
Sozeau and Stéphane Glondu with also specific contributions from Guillaume Melquiond, Julien Nar-
boux and Pierre-Marie Pédrot.

Packaging tools were provided by Pierre Letouzey (Windows), Pierre Boutillier (MacOS), Stéphane
Glondu (Debian). Releasing, testing and benchmarking support was provided by Jean-Marc Notin.

Many suggestions for improvements were motivated by feedback from users, on either the bug
tracker or the cog-club mailing list. Special thanks are going to the users who contributed patches,
starting with Tom Prince. Other patch contributors include Cédric Auger, David Baelde, Dan Grayson,
Paolo Herms, Robbert Krebbers, Marc Lasson, Hendrik Tews and Eelis van der Weegen.

Paris, December 2011
Hugo Herbelin

Credits: version 8.5

CoQ version 8.5 contains the result of five specific long-term projects:

* A new asynchronous evaluation and compilation mode by Enrico Tassi with help from Bruno
Barras and Carst Tankink.

* Full integration of the new proof engine by Arnaud Spiwack helped by Pierre-Marie Pédrot,

* Addition of conversion and reduction based on native compilation by Maxime Dén¢s and Ben-
jamin Grégoire.

* Full universe polymorphism for definitions and inductive types by Matthieu Sozeau.

* An implementation of primitive projections with n-conversion bringing significant performance
improvements when using records by Matthieu Sozeau.

The full integration of the proof engine, by Arnaud Spiwack and Pierre-Marie Pédrot, brings to
primitive tactics and the user level Ltac language dependent subgoals, deep backtracking and multiple
goal handling, along with miscellaneous features and an improved potential for future modifications.
Dependent subgoals allow statements in a goal to mention the proof of another. Proofs of unsolved
subgoals appear as existential variables. Primitive backtracking makes it possible to write a tactic with
several possible outcomes which are tried successively when subsequent tactics fail. Primitives are also
available to control the backtracking behavior of tactics. Multiple goal handling paves the way for
smarter automation tactics. It is currently used for simple goal manipulation such as goal reordering.

The way COQ processes a document in batch and interactive mode has been redesigned by Enrico
Tassi with help from Bruno Barras. Opaque proofs, the text between Proof and Qed, can be processed
asynchronously, decoupling the checking of definitions and statements from the checking of proofs.
It improves the responsiveness of interactive development, since proofs can be processed in the back-
ground. Similarly, compilation of a file can be split into two phases: the first one checking only defini-
tions and statements and the second one checking proofs. A file resulting from the first phase — with the
.vio extension — can be already Required. All .vio files can be turned into complete .vo files in parallel.
The same infrastructure also allows terminating tactics to be run in parallel on a set of goals via the
par: goal selector.

Coq Reference Manual, V8.6.1, July 26, 2017



18 Credits

CoOQIDE was modified to cope with asynchronous checking of the document. Its source code was
also made separate from that of CoQ, so that COQIDE no longer has a special status among user inter-
faces, paving the way for decoupling its release cycle from that of COQ in the future.

Carst Tankink developed a CoQ back-end for user interfaces built on Makarius Wenzel’s Prover
IDE framework (PIDE), like PIDE/jEdit (with help from Makarius Wenzel) or PIDE/Coqoon (with help
from Alexander Faithfull and Jesper Bengtson). The development of such features was funded by the
Paral-ITP French ANR project.

The full universe polymorphism extension was designed by Matthieu Sozeau. It conservatively
extends the universes system and core calculus with definitions and inductive declarations parameter-
ized by universes and constraints. It is based on a modification of the kernel architecture to handle
constraint checking only, leaving the generation of constraints to the refinement/type inference engine.
Accordingly, tactics are now fully universe aware, resulting in more localized error messages in case
of inconsistencies and allowing higher-level algorithms like unification to be entirely type safe. The
internal representation of universes has been modified but this is invisible to the user.

The underlying logic has been extended with n-conversion for records defined with primitive pro-
jections by Matthieu Sozeau. This additional form of n-conversion is justified using the same principle
than the previously added n-conversion for function types, based on formulations of the Calculus of
Inductive Constructions with typed equality. Primitive projections, which do not carry the parameters
of the record and are rigid names (not defined as a pattern-matching construct), make working with
nested records more manageable in terms of time and space consumption. This extension and universe
polymorphism were carried out partly while Matthieu Sozeau was working at the IAS in Princeton.

The guard condition has been made compliant with extensional equality principles such as proposi-
tional extensionality and univalence, thanks to Maxime Dénes and Bruno Barras. To ensure compatibil-
ity with the univalence axiom, a new flag “-indices-matter” has been implemented, taking into account
the universe levels of indices when computing the levels of inductive types. This supports using COQ as
a tool to explore the relations between homotopy theory and type theory.

Maxime Dénes and Benjamin Grégoire developed an implementation of conversion test and normal
form computation using the OCaml native compiler. It complements the virtual machine conversion
offering much faster computation for expensive functions.

CoQ 8.5 also comes with a bunch of many various smaller-scale changes and improvements regard-
ing the different components of the system. We shall only list a few of them.

Pierre Boutillier developed an improved tactic for simplification of expressions called cbn.

Maxime Dénes maintained the bytecode-based reduction machine. Pierre Letouzey maintained the
extraction mechanism.

Pierre-Marie Pédrot has extended the syntax of terms to, experimentally, allow holes in terms to be
solved by a locally specified tactic.

Existential variables are referred to by identifiers rather than mere numbers, thanks to Hugo Herbelin
who also improved the tactic language here and there.

Error messages for universe inconsistencies have been improved by Matthieu Sozeau. Error mes-
sages for unification and type inference failures have been improved by Hugo Herbelin, Pierre-Marie
Pédrot and Arnaud Spiwack.

Pierre Courtieu contributed new features for using CoQ through Proof General and for better inter-
active experience (bullets, Search, etc).

The efficiency of the whole system has been significantly improved thanks to contributions from
Pierre-Marie Pédrot.

A distribution channel for COQ packages using the OPAM tool has been initiated by Thomas
Braibant and developed by Guillaume Claret, with contributions by Enrico Tassi and feedback from

Coq Reference Manual, V8.6.1, July 26, 2017



Credits 19

Hugo Herbelin.

Packaging tools were provided by Pierre Letouzey and Enrico Tassi (Windows), Pierre Boutillier,
Matthieu Sozeau and Maxime Dénes (MacOS X). Maxime Dénes improved significantly the testing and
benchmarking support.

Many power users helped to improve the design of the new features via the bug tracker, the coq de-
velopment mailing list or the coq-club mailing list. Special thanks are going to the users who contributed
patches and intensive brain-storming, starting with Jason Gross, Jonathan Leivent, Greg Malecha, CIé-
ment Pit-Claudel, Marc Lasson, Lionel Rieg. It would however be impossible to mention with precision
all names of people who to some extent influenced the development.

Version 8.5 is one of the most important release of COQ. Its development spanned over about 3 years
and a half with about one year of beta-testing. General maintenance during part or whole of this period
has been done by Pierre Boutillier, Pierre Courtieu, Maxime Dénes, Hugo Herbelin, Pierre Letouzey,
Guillaume Melquiond, Pierre-Marie Pédrot, Matthieu Sozeau, Arnaud Spiwack, Enrico Tassi as well as
Bruno Barras, Yves Bertot, Frédéric Besson, Xavier Clerc, Pierre Corbineau, Jean-Christophe Filliatre,
Julien Forest, Sébastien Hinderer, Assia Mahboubi, Jean-Marc Notin, Yann Régis-Gianas, Francois
Ripault, Carst Tankink. Maxime Dénes coordinated the release process.

Paris, January 2015, revised December 2015,
Hugo Herbelin, Matthieu Sozeau and the COQ development team

Credits: version 8.6

CoqQ version 8.6 contains the result of refinements, stabilization of 8.5’s features and cleanups of the
internals of the system. Over the year of (now time-based) development, about 450 bugs were resolved
and over 100 contributions integrated. The main user visible changes are:

* A new, faster state-of-the-art universe constraint checker, by Jacques-Henri Jourdan.

* In CoqIDE and other asynchronous interfaces, more fine-grained asynchronous processing and
error reporting by Enrico Tassi, making COQ capable of recovering from errors and continue
processing the document.

* More access to the proof engine features from Ltac: goal management primitives, range selec-
tors and a typeclasses eauto engine handling multiple goals and multiple successes, by
Cyprien Mangin, Matthieu Sozeau and Arnaud Spiwack.

* Tactic behavior uniformization and specification, generalization of intro-patterns by Hugo Herbe-
lin and others.

* A brand new warning system allowing to control warnings, turn them into errors or ignore them
selectively by Maxime Dénes, Guillaume Melquiond, Pierre-Marie Pédrot and others.

* Irrefutable patterns in abstractions, by Daniel de Rauglaudre.

* The ssreflect subterm selection algorithm by Georges Gonthier and Enrico Tassi is now ac-
cessible to tactic writers through the ssrmatching plugin.

* Integration of LtacProf, a profiler for Lt ac by Jason Gross, Paul Steckler, Enrico Tassi and
Tobias Tebbi.

Coq Reference Manual, V8.6.1, July 26, 2017



20 Credits

CoqQ 8.6 also comes with a bunch of smaller-scale changes and improvements regarding the different
components of the system. We shall only list a few of them.

The iota reduction flag is now a shorthand for match, fix and cofix flags controlling the
corresponding reduction rules (by Hugo Herbelin and Maxime Déne¢s).

Maxime Dénes maintained the native compilation machinery.

Pierre-Marie Pédrot separated the Ltac code from general purpose tactics, and generalized and ra-
tionalized the handling of generic arguments, allowing to create new versions of Ltac more easily in the
future.

In patterns and terms, @, abbreviations and notations are now interpreted the same way, by Hugo
Herbelin.

Name handling for universes has been improved by Pierre-Marie Pédrot and Matthieu Sozeau. The
minimization algorithm has been improved by Matthieu Sozeau.

The unifier has been improved by Hugo Herbelin and Matthieu Sozeau, fixing some incompatibilities
introduced in Coq 8.5. Unification constraints can now be left floating around and be seen by the user
thanks to a new option. The Keyed Unification mode has been improved by Matthieu Sozeau.

The typeclass resolution engine and associated proof-search tactic have been reimplemented on top
of the proof-engine monad, providing better integration in tactics, and new options have been introduced
to control it, by Matthieu Sozeau with help from Théo Zimmermann.

The efficiency of the whole system has been significantly improved thanks to contributions from
Pierre-Marie Pédrot, Maxime Dénes and Matthieu Sozeau and performance issue tracking by Jason
Gross and Paul Steckler.

Standard library improvements by Jason Gross, Sébastien Hinderer, Pierre Letouzey and others.

Emilio Jests Gallego Arias contributed many cleanups and refactorings of the pretty-printing and
user interface communication components.

Frédéric Besson maintained the micromega tactic.

The OPAM repository for COQ packages has been maintained by Guillaume Claret, Guillaume
Melquiond, Matthieu Sozeau, Enrico Tassi and others. A list of packages is now available at ht tps:
//coq.inria.fr/opam/www/.

Packaging tools and software development kits were prepared by Michael Soegtrop with the help of
Maxime Dénes and Enrico Tassi for Windows, and Maxime Dénés and Matthieu Sozeau for MacOS X.
Packages are now regularly built on the continuous integration server. COQ now comes with a META file
usable with ocaml find, contributed by Emilio Jestis Gallego Arias, Gregory Malecha, and Matthieu
Sozeau.

Matej Kosik maintained and greatly improved the continuous integration setup and the testing of
CoQ contributions. He also contributed many API improvement and code cleanups throughout the
system.

The contributors for this version are Bruno Barras, C.J. Bell, Yves Bertot, Frédéric Besson, Pierre
Boutillier, Tej Chajed, Guillaume Claret, Xavier Clerc, Pierre Corbineau, Pierre Courtieu, Maxime
Dénes, Ricky Elrod, Emilio Jesis Gallego Arias, Jason Gross, Hugo Herbelin, Sébastien Hinderer,
Jacques-Henri Jourdan, Matej Kosik, Xavier Leroy, Pierre Letouzey, Gregory Malecha, Cyprien Man-
gin, Erik Martin-Dorel, Guillaume Melquiond, Clément Pit—Claudel, Pierre-Marie Pédrot, Daniel de
Rauglaudre, Lionel Rieg, Gabriel Scherer, Thomas Sibut-Pinote, Matthieu Sozeau, Arnaud Spiwack,
Paul Steckler, Enrico Tassi, Laurent Théry, Nickolai Zeldovich and Théo Zimmermann. The develop-
ment process was coordinated by Hugo Herbelin and Matthieu Sozeau with the help of Maxime Dénes,
who was also in charge of the release process.

Many power users helped to improve the design of the new features via the bug tracker, the pull
request system, the COQ development mailing list or the coq-club mailing list. Special thanks to the users

Coq Reference Manual, V8.6.1, July 26, 2017


https://coq.inria.fr/opam/www/
https://coq.inria.fr/opam/www/

Credits 21

who contributed patches and intensive brain-storming and code reviews, starting with Cyril Cohen, Jason
Gross, Robbert Krebbers, Jonathan Leivent, Xavier Leroy, Gregory Malecha, Clément Pit—Claudel,
Gabriel Scherer and Beta Ziliani. It would however be impossible to mention exhaustively the names of
everybody who to some extent influenced the development.

Version 8.6 is the first release of COQ developed on a time-based development cycle. Its development
spanned 10 months from the release of COQ 8.5 and was based on a public roadmap. To date, it contains
more external contributions than any previous CoQ system. Code reviews were systematically done
before integration of new features, with an important focus given to compatibility and performance
issues, resulting in a hopefully more robust release than CoQ 8.5.

Coq Enhancement Proposals (CEPs for short) were introduced by Enrico Tassi to provide more
visibility and a discussion period on new features, they are publicly available https://github.
com/coq/ceps.

Started during this period, an effort is led by Yves Bertot and Maxime Dénes to put together a COQ
consortium.

Paris, November 2016,
Matthieu Sozeau and the COQ development team

Coq Reference Manual, V8.6.1, July 26, 2017


https://github.com/coq/ceps
https://github.com/coq/ceps

22 Credits

Coq Reference Manual, V8.6.1, July 26, 2017



Table of contents

I The language

1 The GALLINA specification language
1.1 Lexical conventions

1.2 Terms . . . . . . o . e
1.2.1 Syntaxofterms . . . . . ... ... ... ... ... ..
122 Types . . . o o oo
1.2.3  Qualified identifiers and simple identifiers . . . . . . .
1.24 Numerals . . . .. ... ...
1.25 Sorts . . . ..
1.2.6 Binders . . . .. ... ... ...

1.2.7 Abstractions . . . . . . . . . . ...

1.2.8 Products

1.2.9 Applications . . ... ... ... .. ... ...
1.2.10 Typecast . . . . . . . .. .
1.2.11 Inferable subterms . . . . ... ... ... .......
1.2.12 Let-in definitions . . . . . . . .. ... ... .. ....
1.2.13 Definition by case analysis . . . . . .. ... ... ...

1.2.14 Recursive functions

1.3 The Vernacular . . . .. ... ... ...............
1.3.1 Assumptions . . . . . . .. .. ...
1.3.2 Definitions . . . ... ... ... ... ... ...,
1.3.3 Inductive definitions . . . . . . . ... ... ... ...
1.3.4 Definition of recursive functions . . . . . . . ... ...
1.3.5 Assertionsandproofs . . . . .. ... ... ... ....

2 Extensions of GALLINA

2.1 Recordtypes . . ... ... ...
2.1.1 Primitive Projections . . . . ... ... .........
2.2 Variants and extensions of match . . . .. ... ... .. ...
2.2.1 Multiple and nested pattern-matching . . . .. ... ..
2.2.2  Pattern-matching on boolean values: the i f expression
2.2.3 Irrefutable patterns: the destructuring let variants . . .
2.2.4  Controlling pretty-printing of mat ch expressions . . .
2.3 Advanced recursive functions . . . . . . . ...
24 Sectionmechanism . . ... ..... .. ... . ... ... .
24.1 Section ident . . . ... ... ... ... ...

Coq Reference Manual, V8.6.1, July 26, 2017



24 Table of contents

242 End ident . ... ... 76

2.5 Modulesystem . . . . ... e e e e e e 77

2.5.1 Module ident . . . . ... oL 77

252 End ident . ... 78

2.5.3 Module ident := module_expression . . . . . . ... ... .. ... ... 79

254 Module Type ident . . . . . . . . . i it e e 79

255 End ident ... 80

2.5.6 Module Type ident := module_type. . . .. . . ... ... ... ..... 80

2577 Declare Module ident : module_type ... ... ........... 80

258 Import qualid . .. . . .. 83

259 Print Module ident . . .. .. .. ... 84

2.5.10 Print Module Type ident . . . . . . . . . . .. 84

2.5.11 Locate Module qualid . ... ... ... ... .. .. ..., 84

2.6 Libraries and qualifiednames . . . . . . . . . . . ... ... 85

2.6.1 Namesoflibraries . . . . ... ... ... .. ... .. . ... 85

2.6.2 Qualifiednames . . . . . . . . ... 85

2.6.3 Libraries and filesystem . . . . . . ... ... ... 86

2.7 Implicit arguments . . . . . . . . .. e e e e e e e e e e e 87

2.7.1 The different kinds of implicit arguments . . . . . .. . ... ... ... .... 87

2.7.2 Maximal or non maximal insertion of implicit arguments . . . . . . ... .. .. 88

2.7.3 Casual use of implicitarguments . . . . . . . . . . . ... ... ... 88

274 Declaration of implicit arguments . . . . . . . .. .. ... ... 89

2.7.5 Automatic declaration of implicit arguments . . . . .. ... ... L. L. 91

2.7.6  Mode for automatic declaration of implicit arguments . . . . . . ... ... .. 92

2.777 Controlling strict implicit arguments . . . . . . . . . .. . ... ... ... 93

2.7.8 Controlling contextual implicit arguments . . . . . . . . ... ... ... ... 93

2.7.9  Controlling reversible-pattern implicit arguments . . . . . . . . ... ... ... 93
2.7.10 Controlling the insertion of implicit arguments not followed by explicit argu-

MENtS . . . . . . e 93

2.7.11 Explicitapplications . . . . . . . . . . L e 94

2.7.12 Renaming implicit arguments . . . . . . . . . .. Lo 94

2.7.13 Displaying what the implicit argumentsare . . . . . . . .. .. ... ... ... 95

2.7.14 Explicit displaying of implicit arguments for pretty-printing . . . . ... .. .. 95

2.7.15 Interaction with subtyping . . . . . . . ... ... L 95

2.7.16 Deactivation of implicit arguments for parsing . . . . . . . .. ... ... ... 95

2.77.17 Canonical structures . . . . . . . . . L. 96

2.7.18 Implicittypes of variables . . . . . . . . . ... ... ... ... 97

2.7.19 Implicit generalization . . . . . . . . . . . . .. ... 98

2.8 COBICIONS . . . v v v v it e it e e e e e e e 99

2.9 Printing constructionsinfull . . . . . ... ... ... 99

2.10 Printin@ UNIVETSES . . . . . . v v v v e e e e e e e e e e e e e e e e e 99

2.11 Existential variables . . . . . . . . ... 100

2.11.1 Explicit displaying of existential instances for pretty-printing . . . . . . .. .. 101

2.11.2 Solving existential variables using tactics . . . . . ... ... ... ... ..., 101

Coq Reference Manual, V8.6.1, July 26, 2017



Table of contents

3 The CoQ library

IT

3.1

32

33

Calculus of Inductive Constructions

41 Theterms . ... ... ............
411 Sorts . ... ...,
412 Terms . . .. ... ... ... ....

42 Typingrules . . . .. . ... ... ... ...

43 Conversionrtules . ... ...........

44 Subtypingrules . ... ... .........

4.5 Inductive definitions . . . . . ... ... ..
4.5.1 Types of inductive objects
4.5.2 Well-formed inductive definitions
4.5.3 Destructors . . . .. ... ... ...
4.5.4 Fixpoint definitions

4.6 Admissible rules for global environments

47 Co-inductive types . . . . . .. ...

4.8 The Calculus of Inductive Construction with impredicative Set

The Module System

5.1 Modules and module types

5.2 TypingModules . . . . ... .........

The basic library . . . . .. ... .. ....
3.1.1 Notations . . .. ... ........
312 Logic . ... ... .. ........
3.1.3 Datatypes . . . .. .. ... ... ..
3.1.4 Specification . ... .........

3.1.5 Basic Arithmetics

3.1.6  Well-founded recursion
3.1.7 Accessing the Type level
318 Tactics .. ..............
The standard library . . . . . ... ... ...
321 Survey ... ...
3.2.2 Notations for integer arithmetics
3.2.3 Peano’s arithmetic (nat)
3.2.4 Real numbers library
325 Listlibrary .. ... .........
Users’ contributions . . . . . .. .. .. ...

The proof engine

Vernacular commands

6.1

6.2

Displaying . . . . .. ... ... .......

6.1.1 Print qualid.
Flags, Options and Tables

6.1.2 Print AI1l. ............
6.2.1 Set flag. .. ... .. ... .. ..
6.2.2 Unset flag. .. ... ... .....

Coq Reference Manual, V8.6.1, July 26, 2017



26

Table of contents

6.3

6.4

6.5

6.6

6.7

6.8

6.2.3 Test flag. . . . . . e 150
6.2.4 Set option value. . . . . . . . . ... 150
6.2.5 Unset Option. . . . . . . . i i it e e e e 151
6.2.6 Test Option. . . . . . . . . 151
6.277 Tables . . . . . . . . 151
6.2.8 Print OpLions. . . . . . . . i i i e e e e 151
Requests to the environment . . . . . . . . . . . . ... ... 151
6.3.1 Check fterm. . . . . . . . . e 151
6.3.2 Eval convtactic in term. . . . . . . . .. ..o e 151
6.3.3 Compute ferm. . . . . . . . . v i v ittt e e e e e e 152
6.3.4 Extraction term. . . . . . . . . ..o 152
6.3.5 Print Assumptions qualid. . .... ... .. ... . ... . ..., 152
6.3.6 Search qualid. . ... . ... ... 152
6.3.7 SearchHead term. . . . . . . . . .. i i 154
6.3.8 SearchPattern term_pattern. . . . . . . . . . . . ... 155
6.3.9 SearchRewrite term. . . . . . . . . . . i v v it 156
6.3.10 Locate qualid. . .. .. . . . . . . . . e 157
Loading files . . . . . . . . . . . 157
6.41 Load ident. . . . . . . . . . e 157
Compiledfiles . . . . . . . . . . . 158
6.5.1 Require qualid. . ... ... ... .. ... 158
6.5.2 Print Libraries. . . . . . . . e e 159
6.5.3 Declare ML Module string; .. SHINZ;. . . .« o v oo v ... 159
6.54 Print ML Modules. . . . . . . o i v i ittt e 160
Loadpath . . . . . . . . . e 160
6.6.1 Pwd. . .. e 160
6.6.2 Cd StINg. . . . . . . . e 160
6.6.3 Add LoadPath string as dirpath. . . . . . .. ... ... ... ... .. 160
6.6.4 Add Rec LoadPath string as dirpath. . . ... ... ... ... .... 160
6.6.5 Remove LoadPath String. . . . . . .. . . ..., 161
6.6.6 Print LoadPath. . ... ... .. .. . .. .. 161
6.6.7 Add ML Path string. . . . . . . . . . . i 161
6.6.8 Add Rec ML Path String. . . . . . . .. ... ... 161
6.6.9 Print ML Path string. . . . ... ... ... 161
6.6.10 Locate File SUINg. . . . . . . . . oo i i ittt it 161
6.6.11 Locate Library dirpath. . .. ... ... . .. ... ... 161
Backtracking . . . . . . ... e 161
6.7.1 Reset ident. . . . . . . . . . i e e e 161
6.7.2 Back. . .. e e 162
6.7.3 BackTo NUM. . . . . .. it ittt et 162
Quitting and debugging . . . . . . . .. 163
6.8.1 Quit. . . .. 163
6.8.2 DIOP. v v i i e e e e e e 163
6.8.3 Time command. . . . . . . . .. ... e 163
6.8.4 Redirect "file™ command. . . ... ... .. ... ... 163
6.8.5 Timeout int command. . . ... .. .. ... ... 163
6.8.6 Set Default Timeout int. . . . . . . . . . .. ... 163

Coq Reference Manual, V8.6.1, July 26, 2017



Table of contents 27

6.8.7 Unset Default Timeout. . . . . . . . . . . i ... 163
6.8.8 Test Default Timeout. . . .. . . . .. . ... 164

6.9 Controllingdisplay . . . . . . . . . . . .. e 164
6.9.1 Set Silent. . . . . . . e 164
6.9.2 Unset Silent. . . . . . . . @ i i i e 164
6.9.3 Set Warnings “ (Wi, ..., W)« e 164
6.94 Set Search Output Name Only. . . . . . .. ... 164
6.9.5 Unset Search Output Name Only. . .. .. ... .. ... ..o... 164
6.9.6 Set Printing Width integer. . . . . . . .. ... ... ... ..., 164
6.9.7 Unset Printing Width. . . ... .. ... . ... .. ..., 164
6.9.8 Test Printing Width. . .. .. . . . .. ... .. ... 164
6.99 Set Printing Depth integer. . . . . . . ... ... ... 164
6.9.10 Unset Printing Depth. . ... .. . . .. .. ... 165
6.9.11 Test Printing Depth. . .. .. . . . ... ... 165
6.9.12 Set Printing Dependent Evars Line. ... ............. 165
6.9.13 Unset Printing Dependent Evars Line. ... ........... 165
6.10 Controlling the reduction strategies and the conversion algorithm . . . . . . .. ... .. 165
6.10.1 Opaque qualid; ... qualid,. . . . . . ... .. ... .. ... ... .. ... 165
6.10.2 Transparent qualidy ... qualid, . . . . . . . . .. ... .. ... ...... 166
6.10.3 Strategylevel [ qualidy ... qualid, 1. . ... .. .. ... ... ...... 166
6.104 Print Strategyqualid. ... ... ... ... ... ... ... .. ..., 166
6.10.5 Declare Reduction ident := convtactic. . . . . . . .. .. .. ..... 167

6.11 Controlling the locality of commands . . . . . . ... ... .. ... ... ....... 167
6.11.1 Local,Global . . . . . . e e 167

7 Proof handling 169
7.1 Switching on/off the proof editingmode . . . . . . . . .. .. ... ... ..., 169
711 Goalform. . . . . . . . . e e 169

T1.2  Qed. . .. e 170
7.1.3 Admitted. . . ... e 170
7.1.4 Proof term. . . . . . . . . . . e e e e e e e 170
7.1.5 Proof usingident ... ident,. . . . . . . . . ... ... ... 171
T.1.6 Rbort. . . . e e e e e e e 172

7.1.77 Existential num := term. . . . . . . . . . . o it 172
7.1.8 Grab Existential Variables. . ... .. .. ... ..., 172

7.2 Navigationinthe proofitree . . . . . . . . . . . ... L 172
T2.1 Undo. . .o v vt e e e e 172
722 Restart. . . . . o v i e e e e e 173

723 FOCUS. v v vttt e e e e e e e e e e e e e e 173

724 UnfoCus. . . . . 0 i i e e e e e e 173

7.2.5 Unfocused. . . . . . . i i i e e e 173
726 { and } ... e e e e 173
7277 Bullets . . .. e e e e 174

7.3 Requesting information . . . . .. .. ... oL 175
731 ShowW. . . o e e e e e 175
732 Guarded. . . . ... e e e e 176

7.4  Controlling the effect of proof editing commands . . . . . ... .. ... ... ..... 176

Coq Reference Manual, V8.6.1, July 26, 2017



28

Table of contents

7.4.1 Set Hyps Limit nNUM. . . . . . . . . . it 176
742 Unset Hyps Limit. . . ... . . . . . . . . ittt e 176
743 Set Automatic Introduction. . . . ... ... ... ..., 176
7.5 Controlling memMOry USAZE . . . . .« v v v vt e e e e e e e e e e e e e 177
7.5.1 Optimize Proof. . . . . . . . . . i e e 177
752 Optimize HEap. . . v v v v v i e e e e e e e e e e e e e 177
Tactics 179
8.1 Invocationoftactics . . . . . . . . . . . . .. e e 179
8.1.1 Set Default Goal Selector “toplevel selector”. . . ... ... ... 179
8.1.2 Test Default Goal Selector. . . .. .. .. .. ununenino.. 180
8.1.3 Bindingslist . . . . . . . . ... 180
8.1.4  Occurrences sets and occurrences clauses . . . . . .. . ... ... ....... 180
8.2 Applyingtheorems . . . . . . . . . . ... e e 181
8.2.1 exact term . . . . . . . . .. e e e e 181
8.2.2 assumption . . .. ... e e e e 181
8.2.3 refine term . . . . . . . . . .. e e e 181
824 apply term . . . . . . . e e e e e e e e e e e 183
8.2.5 apply term in ident . . . . . . . . . . ... e e 186
8.2.6 constructor NUM . . . . . . . ...t 187
8.3 Managing the local context . . . . . . . . . . . . . ... 189
8.3.1 Intro . . .. e e e e 189
8.3.2 intros intro_pattern_list . . . . . . . . . . ... ... 190
833 clear ident. . . . . . . . . . e e e 193
834 revert ident; ... ident, . . . . . . . . . . . e 193
8.3.5 move identy after idents . . . . . . . . . .. . ... 194
8.3.6 rename ident; into idents . . . . . . . . . . ... e 194
837 set (ident := term ) . . . . . . ... e e e e 195
8.3.8 decompose [ qualid; ... qualid, ] term ... ... .......... 196
8.4 Controlling the proof flow . . . . . . . . . .. ... . ... .. 196
84.1 assert ( ident : form ) . . . . . . . . . .. 196
8.4.2 generalize term . . . . . . . . . . i i e e e e e e 198
843 evar ( ident : term ) . . . . . . ..o e e e 199
8.4.4 instantiate ( ident := term ) . . . . . . . . . . oo 199
845 admit . . ... 200
8.4.6 absurd term . . . . . . . . . . e e 200
847 contradiction . . . . . . . . . e e e e 200
84.8 contradict ident. . . . . . . . . . ... 200
849 exfalSo. . . . v i i e e e e e e 200
8.5 Caseanalysisandinduction . . . . . . . . . . . . ... .. 201
8.5.1 destruct term . . . . . . . . ... e e e 201
8.5.2 dinduction term . . . . . . . . ... e e e e e 203
8.5.3 double induction ident; identy . . . . . . . . . . ... ... ... .. 206
8.5.4 dependent induction ident . . . ... .. ... ... ... 206
8.5.5 functional induction (qualid term; ... term,) . ... ... ... 208
8.5.6 discriminate term . . . . . . . . . . ... e 209
8.577 injection term . . . . . . . . . . . . e e 210

Coq Reference Manual, V8.6.1, July 26, 2017



Table of contents 29

8.5.8 inversion ident . . . . . .. . .. ... e e 212
8.5.9 fix ident num . . . . . . . . ... e 216
8.5.10 cofix ident . . . . . . . . . e e 217
8.6 Rewriting eXpressions . . . . . . . . ..ot e e e 217
8.6.1 rewrite ferm . . . . . . . . . . e e e e e 217
8.6.2 replace termy; with termo . . . . . . . . . . ... 219
8.6.3 subst ident. . . . . . . . . . . 219
8.6.4 stepl term . . . . . . . . . e e e e e e e 220
8.6.5 change term . . . . . . . . . . . e e e e 221
8.7 Performing computations . . . . . . . . . . ... e 221
8.7.1 cbv flag, ... flag,, lazy flag, ... flag,,and compute .. ... ... 222
8. 7.2 red . . . . e e e 223
873 hnf . . e e e e 223
8.74 cbnand simpl . . . . . . .. e e e e e 223
8.7.5 unfold qualid .. ... ... . . . . . .. 225
87.6 fold term . . . . . . . . . . e e e 226
8777 pattern term . . . . . . . . . . e e e e e 226
8.7.8  Conversion tactics applied to hypotheses . . . . . . .. ... ... ... .... 227
8.8 Automation . . . . . . ... e e e e e e e e e e e e 227
8.8.1 auto . . . .. e e e 227
8.8.2 eauto . . ... e e e 228
8.8.3 autounfold with identy ... ident,. . . . .. . . .. . ... . ..... 229
8.8.4 autorewrite with identy ... ident, . . . ... . ... ... ... ... 229
8.9 Controlling automation . . . . . . . . . . . .. e e e e e 230
8.9.1 The hints databases for autoandeauto . . . . . ... ... ... .. ... 230
8.9.2 Hint databases defined in the COQ standard library . . . . ... ... ... ... 234
8.9.3 Remove Hints term; ... term, : ident; ... ident,, ... .. .. 234
8.94 Print Hint . . . . . . . . . e 234
89.5 Hint Rewrite term; ... term, : identy ... ident,, . ... ... 235
8.9.6 Hintlocality . . .. . ... . . . . . . . e 235
8.9.7 Setting implicit automation tactics . . . . . . . . . .. ... .. 236
8.10 Decision procedures . . . . . . . . . . . e e e e e e e 237
8.10.1 tauto . . . . . e e 237
8.10.2 intuition tactic . . . . . . . . . . e 238
8.10.3 rtauto . . . ... e e e e 239
8.10.4 firstorder . . . . . . . . . e e 239
8.10.5 congruence . . . . . . . . e e e e e e 240
8.11 Everything after this point has yettobesorted . . . . . . . . ... ... ... ...... 241
8.11.1 constr_eq termy terms . . . . . . . . . . v v v v i e e e 241
8.11.2 unify termy terms . . . . . . . . . . i it e e e e e e e e 241
8.11.3 dis_evar term . . . . . . . . . . v i e 242
8.11.4 has_evar term . . . . . . . . . i e 242
8.11.5 dis_wvar term . . . . . . . . . e e e, 242
8.12 Equality . . . . . . . . e e e 242
8.12.1 f_equal . . . . . . e e e e 242
8.12.2 reflexivity . . . . . . e e e e e 242
8.12.3 symmetry . . . . . e e e e e e e e e 242

Coq Reference Manual, V8.6.1, July 26, 2017



30 Table of contents

8.12.4 transitivity term . . . . . . . . . . .. e e 243

8.13 Equality and inductive sets . . . . . . . . . . ... e 243
8.13.1 decide equality . . . . . . 243
8.13.2 compare termy termo . . . . . . . . . . e e e e e e e e e e e 243
8.13.3 simplify_eq term . . . . . . . . . . i i e e e e 243
8.13.4 dependent rewrite —> ident. . . . .. .. .. ... ... ... 244

8.14 Inversion . . . . . . . . .. e e e e e e e e e e 244
8.14.1 functional inversion ident. . . . .. .. .. .. ... ..., 244
8.142 quote ident . . . . . . . . ... e e e 244

8.15 Classical tactics . . . . . . . . v v i e e e e e e e e e 245
8.15.1 classical_leftandclassical_right . ... ... .......... 245

8.16 AUtomatiZing . . . . . . . . .. e e e e e e e e e e e e e e e e 245
8.16.1 bLtauto . . . . . . e e e e 245
8.16.2 omega . . . . . e e e e e e e e 245
8.16.3 ringand ring_simplify term; ... termy . . . . . . . . . . ... ... 245
8.164 field, field_simplify termqy ... termy,and field_simplify_ eq?246
8.16.5 fourier. . . . . . . . e e 246

8.17 Non-logical tactics . . . . . . . . . . . i i e e e e 247
8.17.1 cycle num . . . . . . . . . e e e e e e 247
8.17.2 swap numMq| NUM2 . . . . . o v vttt et e e e e e e e e e e e 248
8.17.3 revgoals . . . . . v i e e e e e e e e 248
8.17.4 shelve . . . . . . . e e e e 249
8.17.5 Unshelve . . . . . . . e e e e e e 250
8.17.6 give_Up . . . . v i i e e e e e e 250

8.18 Simple tactic macros . . . . . . . ... e 250
9 The tactic language 251
9.1 Syntax . . . . . 251
0.2 SemantiCs . . . . . . ... e e e e 252
9.3 Tactic toplevel definitions . . . . . . . . . . . . ... 266
9.3.1 Defining Lygc functions . . . . . . . ..o 266

9.3.2  Printing Lyac taCtics . . . . . . L. e e 266

9.4 Debugging L taCtiCs . . . . . o . o e e e e e e 267
9.4.1 Infotrace . . . . . . . . . . . e e e e e 267

9.4.2 Interactive debugger . . . . . . . . . ... 267

9.4.3 Profiling Ligetactics . . . . . . . . . e e 268

10 Detailed examples of tactics 271
10.1 dependent induction . . . . . . . . . . . i e e 271
10.1.1 Alargerexample . . . . . . . . . . . .. 273

10.2 autorewrite . . . . . o e e e 2717
10.3 quote . . . . e e e e e 278
10.3.1 Introducing variablesmap . . . . . . . . . .. ... .. 279
10.3.2 Combining variables and constants . . . . . . . . . . .. ... .. ... .... 280

10.4 Using the tactical language . . . . . . . . . . . . . . . 282
10.4.1 About the cardinality of the set of natural numbers . . . . . .. ... ... ... 282
10.4.2 Permutationonclosed lists . . . . . . .. ... ... ... .. ... ... ..., 282

Coq Reference Manual, V8.6.1, July 26, 2017



Table of contents 31
10.4.3 Deciding intuitionistic propositional logic . . . . . . . . . ... ... ... ... 284
10.4.4 Deciding type isomorphisms . . . . . . . . .. ... oo 284

11 The Mathematical Proof Language 289

11.1 Introduction . . . . . . . . . . e e 289
11.1.1 Foreword . . . . . . . . . . . . e 289
11.1.2 What is a declarative proof? . . . . . . . . ... ... o 289
11.1.3 Well-formedness and Completeness . . . . . . . . ... ... ... ....... 289
11.1.4 Note for tacticS USers . . . . . . . . . v v v v v it et e 290
11.1.5 Compatibility . . . . . . . . . . .. e 290

11.2 Syntax . . . . . oo e e e e 290
11.2.1 Temporary Names . . . . . . . v v v v vt e e e e e e e e e e e e e 290

11.3 Language description . . . . . . . . . . . . i e e e e e e e 290
11.3.1 Starting and Ending a mathematical proof . . . . . . . .. ... ... .. .... 290
11.3.2 Switchingmodes . . . . . . . . .. . 293
11.3.3 Computation StEPS . . . v« v v v v e e e e e e e e e e e e e 293
1134 Deduction Steps . . . . . . . v v o vt e e e 294
11.3.5 Tterated equalities . . . . . . . . . . . . . . . e 295
11.3.6 Subproofs . . . . . . . . . 296
11.3.7 Conclusion Steps . . . . . . v v v v v it e e e e e 297
11.3.8 Declaring an Abbreviation . . . . . . . . . ... ... .. ... ... ... 301
11.3.9 Introduction Steps . . . . . . . . v v v vt e e e e 302
11.3.10 Tuple elimination Steps . . . . . . . .« o o v v v vt e 304
11.3.11 Disjunctive reasoning . . . . . . . . v v v v v v vt e e e e e e e e 305
11.3.12Proofs percases . . . . . . . . o o v i it e 307
11.3.13 Proofsbyinduction . . . . . . ... ... ... ... ... ... .........30
11.3. 14 Justifications . . . . . . . . . . i e e e e e e e e e 310

11.4 More details and Formal Semantics . . . . ... ... ..................310

III User extensions 311

12 Syntax extensions and interpretation scopes 313

12.1 Notations . . . . . . o ot e e e e e e e 313
12.1.1 Basicnotations . . . . . . . . . .. e e e e e e e 313
12.1.2 Precedences and associativity . . . . ... ... ... .. ............314
12.1.3 Complex notations . . . . . . . . . . . oL e e 314
12.1.4 Simple factorizationrules . . . ... ... ... ... ... ...........315
12.1.5 Displaying symbolic notations . . . . . . . .. .. ... L. 316
12.1.6 The Infixcommand . . ... ... ... ... ... ..............317
12.1.7 Reserving notations . . . . . . . . . . vt it e e e e e e e e 317
12.1.8 Simultaneous definition of terms and notations . . . . . .. ... ... ... .. 318
12.1.9 Displaying informations about notations . . . . . . . ... ... ... L. 318
12.1.10 Locating notations . . . . . . . . . . .t i e e e e e 318
12.1.11 Notations and simple binders . . . . . . . . . . . ... ... ... .. ...... 319
12.1.12 Notations with recursive patterns . . . . . . . . . .. ... ... .........320
12.1.13 Notations with recursive patterns involving binders . . . . . . . ... ... ... 321

Coq Reference Manual, V8.6.1, July 26, 2017



32

Table of contents

12.1.14Summary . . . . . . . e e e e e e e e 321

12.2 Interpretation SCOPES . . .« v v v v v e e e e e e e e e e e e e e e e 322
12.2.1 Global interpretation rules for notations . . . . . .. ... ... ... ......322

12.2.2 Local interpretation rules for notations . . . . . . . . . .. ... ... ... ... 323

12.2.3 The type_scope interpretation SCOPe . . . . . . .« v v v v v v v 325

12.2.4 The function_scope interpretation scope . . . . . . . . . . o . ... .. 325

12.2.5 Interpretation scopes used in the standard library of COQ . . . . . . . . .. . .. 325

12.2.6 Displaying informations about scopes . . . . . . . . . ... L. 327

12.3 Abbreviations . . . . . . . . . . ... e e e e e e . 328
12.4 Tactic Notations . . . . . . . . . . 0 e e e e e e e 329

13 Proof schemes 331
13.1 Generation of induction principles with Scheme . . . . .. ... ... ... ...... 331
13.1.1 Automatic declarationof schemes . . . . . .. ... ... ... ... ..., 333

13.1.2 Combined Scheme ... .. ... ... ... ... .. ............333

13.2 Generation of induction principles with Functional Scheme . ... ........ 334
13.3 Generation of inversion principles with Derive Inversion . ............ 337
IV Practical tools 339
14 The C0OQ commands 341
14.1 Interactive use (COQLOP) . « v v v v v i e e e e e e e e e e e e e e e e 341
14.2 Batch compilation (Coqc) . . . . . . o o e 341
14.3 Customization . . . . . . . . . ... e e e e 342
14.3.1 Byresourcefile . . . . . . . . . . . ... 342

14.3.2 By environment variables . . . . . . ... . ... ... ... . 342

14.3.3 Bycommand lineoptions . . . ... ... ... ... ... ..., .342

14.4 Compiled libraries checker (cogchk) . . . . . . . . .. .. L o 345

15 Utilities 347
15.1 Building a toplevel extended with user tactics . . . . . . ... ... ... ........ 347
15.2 Modules dependencies . . . . . . . . . . ... e e e e 348
15.3 Creating aMakefile forCoQmodules . ... ... ... ... ............348
15.4 Documenting COQ files withcoqdoc . . . . . . . . . .. . ... L L. 349
15.4.1 Principles . . . . . . . ... 349

1542 Usage . . . . o o o o e e e e 352

15.4.3 Thecoqdoc IAEX stylefile . . . . . . . . . .. .. . oL 356

15.5 Embedded COQ phrases inside IATEX documents . . . . . . . .. .. ... .. ... .. 357
15,6 CoQand GNU EMACS . . . . . . . o o i i e e e e e e s e e s 35T
15.6.1 The CoQEmacsmode . . . . . . . . . . . . . . . . . e 357

15.6.2 PROOFGENERAL . . . . . . . ..ot v i v i i iii e e .358

15.7 Module specification . . . . . . . . ... L e e 358
15.8 Manpages . . . . . . o o i e e e e e e e e 358

Coq Reference Manual, V8.6.1, July 26, 2017



Table of contents 33

16 CoQ Integrated Development Environment 359
16.1 Managing files and buffers, basicedition . . . . . . ... ... ... o000 359
16.2 Interactive navigation into COQscripts . . . . . . . . . . . . .. ... ... ... .. .360
16.3 Try tactics automatically . . . . . . . . . . . . .. 361
16.4 Proof folding . . . . . . . . . . . .. ... 301
16.5 Vernacular commands, templates . . . . . . . . . . .. ... ... 361
16.6 QUEries . . . . . . . . e e e e 361
1677 Compilation . . . . . . . . . .. e e 361
16.8 Customizations . . . . . . . . . .. e e e e e e 362
16.9 Using Unicode symbols . . . . . . . . . .. .. 363

16.9.1 Displaying Unicode symbols . . . . . ... ... ... ..............363
16.9.2 Defining an input method for non ASCII symbols . . . . .. .. ... .. .... 363
16.9.3 Character encoding forsavedfiles . . . . .. ... ... ... .. ........364

V Addendum to the Reference Manual 365

17 Extended pattern-matching 371
17.1 Patterns . . . . . . . o o e e e e e e e 371
17.2 About patterns of parametric types . . . . . . . . . .. ool e e e 374
17.3 Matching objects of dependenttypes . . . . . . . . . . . ... . 376

17.3.1 Understanding dependencies in patterns . . . . . . ... ... ..........376
17.3.2 When the elimination predicate must be provided . . . . ... ... ... ... .376
17.4 Using pattern matching to write proofs . . . . . . . . . . . . .. ... ... ... 378
17.5 Pattern-matching on inductive objects involving local definitions . . . . . . . . ... .. 379
17.6 Pattern-matching and coercions . . . . . . . . . . . . . ... ... 380
17.7 When does the expansion strategy fail 7 . . . . . . ... ... ... ... ... 380

18 Implicit Coercions 383
18.1 General Presentation . . . . . ... .. ... ... ... ... ... ....383
182 Classes . . . . o v v i e 383
18.3 Coercions . . . . . . . . e e e e e 384
18.4 Identity COGICIONS . . . . . . . . v v v i i e e e e e e e e e e e e e e 384
18.5 Imheritance Graph . . . . . . . . . . . e 385
18.6 Declaration of Coercions . . . . . . . . . . . o i e e 385

18.6.1 Coercion qualid : «classy >-> classa. . . . ... ... ... ...... 385
18.6.2 Identity Coercion ident:classy >—> classs. . . . . . ... ... ... 386
18.7 Displaying Available Coercions . . . . . . . . . ... ... ... .. ..........387
18.7.1 Print ClasSeS. . . v v v v v v vttt e e e e e e e 387
1872 Print Coercions. . . . . . . v v v v v i it 38T
18.7.3 Print Graph. . . . . . . i e e e e 387
18.7.4 Print Coercion Paths class; classs. . . . . . . . . ... ... .... 387
18.8 Activating the Printing of Coercions . . . . . . . .. . ... ... ... ... 387
18.8.1 Set Printing COErcCiOoNS. . . . . v v v v v v it ittt et e et 387
18.8.2 Add Printing Coercion qualid. . . ... ... ... .......... 387
189 ClassesasRecords . . . . . .. .. ... .. ... ... .. ... ... ... .388
18.10Coercions and Sections . . . . . . . . . ... e 388

Coq Reference Manual, V8.6.1, July 26, 2017



34 Table of contents
18.11Coercions and Modules . . . . . . . . . . . . . ... 388
18 12Examples . . . . . . . . e 388

19 Canonical Structures 393
19.1 Notationoverloading . . . . . . . . . . .. . .. ... ... ...393

19.1.1 Derived Canonical Structures . . . . . . . . . . . . . v v v vt 395
19.2 Hierarchy of structures . . . . . . .. ... ... ... ... ...............395
19.2.1 Compact declaration of Canonical Structures . . . . . .. ... ... ...... 401

20 Type Classes 403
20.1 Class and Instance declarations . . . . . . . . . . . . . .. ... ... 403
20.2 Binding classes . . . . . . . e 404
20.3 Parameterized Instances . . . . . . . . . . .. ... e e 405
20.4 Sections and CONtEXLS . . . . . . . v v v v i e e e e e e e e 405
20.5 Building hierarchies . . . . . . . . . . .. L 406

20.5.1 Superclasses . . . . . . . . e e e e e 406
20.5.2 Substructures . . . . . . ... e e 407
20.6 Summary of the commands . . . . . . . . ... Lo 407
20.6.1 Class ident bindery ... binder, : sort:= { fieldy ; ...;
FI1eLdl Fo oo 407
20.6.2 Instance ident binder; ...binder, : Class ti1 ...ty [|
priority] := { field; := by ; ...; field; := b; } .. ... 408
20.6.3 Existing Instance ident [| priorityl]l ... ............ 408
20.6.4 Context binder; ...binder, . . ... . ... . ... . ... ... ..... 408
20.6.5 typeclasses €auto. . . . . . . i i it e e 409
20.6.6 autocapply term with ident . . . . . . . . . . .. ... ... ... ... 409
20.6.7 Typeclasses Transparent, Opaque ident; ...ident,. . ... ... 409
20.6.8 Set Typeclasses Dependency Order. . . .. . .. . ... .. .... 410
20.6.9 Set Typeclasses Filtered Unification ... ........... 410
20.6.10 Set Typeclasses Legacy Resolution . .. ... ........... 410
20.6.11 Set Typeclasses Module Eta . .. ... ... . . ... 410
20.6.12 Set Typeclasses Limit INtroS . . . . . . . . v v v v i v v 410
20.6.13 Set Typeclass Resolution After Apply . .. .. .. ....... 410
20.6.14 Set Typeclass Resolution For Conversion ... ... ... ... 411
20.6.15 Set Typeclasses Strict Resolution . ... ... .......... 411
20.6.16 Set Typeclasses Unique Solutions. . ... .. .. ......... 411
20.6.17 Set Typeclasses Unique Instances . . . . . . . . . ... ... ... 411
20.6.18 Typeclasses eauto := [debug] [(dfs) | (bfs)] [depth] . .41l
20.6.19 Set Typeclasses Debug [Verbosity num] . ... ......... 411
20.6.20 Set Refine Instance Mode . . . . . . . . . i i i i v 411

21 Omega: a solver of quantifier-free problems in Presburger Arithmetic 413

21.1 Description of omega . . . . . . . . e e e e e e e e 413
21.1.1 Arithmetical goals recognized by omega . . . . . ... ... ... ... .... 413
21.1.2 Messages fromomega . . . . . . .. Lo e e e 414

21.2 USINZ OMEGA .+« v v v v v e e e e e e e e e e e e e e e e e e e e 414

21.3 Technicaldata . . . . . . . . . . . . . e 415

Coq Reference Manual, V8.6.1, July 26, 2017



Table of contents 35

22

23

24

25

21.3.1 Overviewofthetactic . . . . . .. ... ... ... ... 415
21.3.2 Overview of the OMEGA decision procedure . . . . . . ... ... ....... 415
214 BUZS . . . . e e 416
Micromega: tactics for solving arithmetic goals over ordered rings 417
22.1 Short description of the tactics . . . . . . . . . . . . ... L. 417
22.2 Positivstellensatz refutations . . . . . . . ... oL oL L 418
22.3 1lra: adecision procedure for linear real and rational arithmetic . . . . . ... ... .. 418
22.4 lia: atactic for linear integer arithmetic . . . . . . . ... ... ... ... .. ... 419
22.5 nra: aproof procedure for non-linear arithmetic . . . . . . ... .. ... .. ..... 420
22.6 nia: aproof procedure for non-linear integer arithmetic . . . ... ... ... ..... 420
2277 psatz: aproof procedure for non-linear arithmetic . . . . . . . ... ... ... .... 420
Extraction of programs in Objective Caml and Haskell 421
23.1 GeneratingML code . . . . . .. . .. ... 421
23.2 EXtraction OptionsS . . . . . . . . .t .o e e e e e e e e e 422
23.2.1 Setting the target language . . . . . . . . . ... oL oo 422
23.2.2 Inlining and optimizations . . . . . . . . ... .. Lo 422
23.2.3 Extra elimination of useless arguments . . . . . . ... ... ... 424
23.2.4 Realizing axioms . . . . . . ... e e e e 424
23.2.5 Avoiding conflicts with existing filenames . . . . . . . .. ... 426
23.3 Differences between COQ and ML type systems . . . . . . . . . .. ... ... ..... 426
23.4 Someexamples . . . . . . ... e e e 427
23.4.1 A detailed example: Euclidean division . . . . . ... .. ... ... ...... 428
23.4.2 Extraction’s horrormuseum . . . . . . .. ... .00 o 429
23.4.3 Users’ Contributions . . . . . . . . . . . . . e 429
PROGRAM 431
24.1 Elaborating programs . . . . . . . . v v v v v v v e e e e e e e e e e 431
24.1.1 Syntactic control over equalities . . . . . . . . . . ... .. L. 432
24.1.2 Program Definition ident := term. . .. ... ... ........ 433
24.1.3 Program Fixpoint ident params {order} : type := term . . .433
24.14 Program Lemma ident : LypPEe. . . . . i e 434
24.2 Solving obligations . . . . . . . . . . ... e e e e e e 434
24.3 Frequently Asked Questions . . . . . . . . . . . ... 435
The ring and f£ield tactic families 437
25.1 Whatdoes this tacticdo? . . . . . . . . . ... 437
25.2 Thevariablesmap . . . . . . . . . . . . e e 438
25.3 Isitautomatic? . . . . . . . . .. e e e e e 438
25.4 Concreteusage in COQ . . . . . . . . . oo i e 438
25.5 Addingaringstructure . . . . . . . . ... L. e e e 440
25.6 Howdoesitwork? . . . . . . . . . . 443
25.7 Dealing with fields . . . . . . .. . .. . 444
25.8 Adding anew field structure . . . . . . . . ... .. 445
259 Historyof ring . . . . . . . . i e e e e e e 446
25.10DiISCUSSION . . . . . oo e e e e e 447

Coq Reference Manual, V8.6.1, July 26, 2017



36

Table of contents

26 Nsatz: tactics for proving equalities in integral domains

26.1 Using the basic tacticnsatz . . . . . . . . . . ... ... ....
26.2 Moreaboutnsatz . . . . . . . .o

27 Generalized rewriting

27.1 Introduction to generalized rewriting . . . . . . . . ... ... ..
27.1.1 Relations and morphisms . . . . . . ... ... ... ...
27.1.2 Adding new relations and morphisms . . . . .. ... ..
27.1.3 Rewriting and non reflexive relations . . . . . ... . ..
27.1.4 Rewriting and non symmetric relations . . . . ... . ..
27.1.5 Rewriting in ambiguous setoid contexts . . . . . .. . ..

27.2 Commands and tactics . . . . .. ... ... ... ... ... ..
27.2.1 Firstclass setoids and morphisms . . . . ... ... ...
27.2.2 Tactics enabled on user provided relations . . . . . . . ..
27.2.3 Printing relations and morphisms . . . . .. ... .. ..

27.2.4 Deprecated syntax and backward incompatibilities

273 EXtensions . . . . . . . .. .. e e e e
27.3.1 Rewritingunder binders . . . .. ... ... .......
27.3.2 Sub-relations . . ... ... ... ..
27.3.3 Constantunfolding . . . . ... ... ... ........

27.4 Strategies for rewriting . . . . . .. ... ...
27.4.1 Definitions . . .. ... .. ... ... .. .. ...
2742 Usage . . . . . ..o e e

28 Asynchronous and Parallel Proof Processing

28.1 Proof annotations . . . . . . . . ... ... .. ... ...
28.2 Proof blocks and error resilience . . . . ... ... ... .....

28.2.1 Caveats . . . . . . . . . . . e
28.3 Interactivemode . . . . .. .. .. ... ... ... ...
284 Batchmode . . .. ... ... ... ... ... . ... .. ...,
28.5 Limiting the number of parallel workers . . . . . . ... ... ..

29 Polymorphic Universes

29.1 General Presentation . . . . .. ... ... ... .........
29.2 Polymorphic, Monomorphic .. ..............
29.3 Global and local universes . . . . . ... ... ... .......
29.4 Conversion and unification . . . . . . ... . ... ... .....
29.5 Minimization . . . . . . . . . . .. e e e
29.6 ExplicitUniverses . . . . . . . . . . . . ..
29.6.1 Universe ident. . . ... ... ... ... .....
29.6.2 Constraint ident ord ident. . .. .. .....
29.6.3 Polymorphic definitions . . . . . .. ... ... ... ..

29.6.4 Unset Strict Universe Declaration.

30 Miscellaneous extensions

30.1 Programderivation . . . ... .. ... ... ...........

30.1.1 Derive identy SuchThat term As idents

Coq Reference Manual, V8.6.1, July 26, 2017

449



Table of contents 37

Bibliography 475
Global Index 485
Tactics Index 497
Vernacular Commands Index 501
Vernacular Options Index 505
Index of Error Messages 507

List of Figures 511

Coq Reference Manual, V8.6.1, July 26, 2017



38 Table of contents

Coq Reference Manual, V8.6.1, July 26, 2017



Part 1

The language

Coq Reference Manual, V8.6.1, July 26, 2017






Chapter 1

The GALLINA specification language

This chapter describes GALLINA, the specification language of C0Q. It allows developing mathemat-
ical theories and to prove specifications of programs. The theories are built from axioms, hypotheses,
parameters, lemmas, theorems and definitions of constants, functions, predicates and sets. The syntax of
logical objects involved in theories is described in Section 1.2. The language of commands, called The
Vernacular is described in section 1.3.

In CoQ, logical objects are typed to ensure their logical correctness. The rules implemented by the
typing algorithm are described in Chapter 4.

About the grammars in the manual

Grammars are presented in Backus-Naur form (BNF). Terminal symbols are set in typewriter
font. In addition, there are special notations for regular expressions.

An expression enclosed in square brackets [... ] means at most one occurrence of this expression
(this corresponds to an optional component).

The notation “entry sep ... sep entry” stands for a non empty sequence of expressions parsed by

9]

entry and separated by the literal “sep”".

Similarly, the notation “entry ... entry” stands for a non empty sequence of expressions parsed by
the “entry” entry, without any separator between.
At the end, the notation “[entry sep ... sep entry[]’ stands for a possibly empty sequence of

expressions parsed by the “entry” entry, separated by the literal “sep”.

1.1 Lexical conventions

Blanks Space, newline and horizontal tabulation are considered as blanks. Blanks are ignored but they
separate tokens.

Comments Comments in COQ are enclosed between (* and =), and can be nested. They can contain
any character. However, string literals must be correctly closed. Comments are treated as blanks.

Identifiers and access identifiers Identifiers, written ident, are sequences of letters, digits, _ and ',
that do not start with a digit or ’ . That is, they are recognized by the following lexical class:

'This is similar to the expression “entry { sep entry }” in standard BNF, or “entry ( sep entry )*” in the syntax of regular
expressions.

Coq Reference Manual, V8.6.1, July 26, 2017



42 1 The GALLINA specification language

first_letter = a..z|A..Z|_|unicode-letter
subsequent_letter = a..z|A..Z]0..9|_]|’ |unicode-letter |unicode-id-part
ident = first_letter [subsequent_letter. .. subsequent_letter]
All characters are meaningful. In particular, identifiers are case-sensitive. The entry

unicode-letter non-exhaustively includes Latin, Greek, Gothic, Cyrillic, Arabic, Hebrew, Geor-
gian, Hangul, Hiragana and Katakana characters, CJK ideographs, mathematical letter-like symbols,
hyphens, non-breaking space, ... The entry unicode-id-part non-exhaustively includes symbols
for prime letters and subscripts.

Access identifiers, written access_ident, are identifiers prefixed by . (dot) without blank. They are
used in the syntax of qualified identifiers.

Natural numbers and integers Numerals are sequences of digits. Integers are numerals optionally
preceded by a minus sign.

digit == 0..9
num = digit...digit
integer = [—|num

Strings  Strings are delimited by " (double quote), and enclose a sequence of any characters different
from " or the sequence "" to denote the double quote character. In grammars, the entry for quoted
strings is string.

Keywords The following identifiers are reserved keywords, and cannot be employed otherwise:

_ as at cofix else end
exists exists2 fix for forall fun
if IF in let match mod
Prop return Set then Type using

where with

Special tokens The following sequences of characters are special tokens:

! % & && () )
* + ++ - —->
( ./ /\ T <
= > < <- <=> <
<= <> = => =D > >—>
>= 2 2= @ [ \/ ]
» { | = I } ~

Lexical ambiguities are resolved according to the “longest match” rule: when a sequence of non
alphanumerical characters can be decomposed into several different ways, then the first token is the
longest possible one (among all tokens defined at this moment), and so on.

Coq Reference Manual, V8.6.1, July 26, 2017



1.2 Terms 43

1.2 Terms

1.2.1 Syntax of terms

Figures 1.1 and 1.2 describe the basic syntax of the terms of the Calculus of Inductive Constructions
(also called C1cC). The formal presentation of CIC is given in Chapter 4. Extensions of this syntax are
given in chapter 2. How to customize the syntax is described in Chapter 12.

1.2.2 Types

CoqQ terms are typed. COQ types are recognized by the same syntactic class as term. We denote by type
the semantic subclass of types inside the syntactic class term.

1.2.3 Qualified identifiers and simple identifiers

Qualified identifiers (qualid) denote global constants (definitions, lemmas, theorems, remarks or facts),
global variables (parameters or axioms), inductive types or constructors of inductive types. Simple
identifiers (or shortly ident) are a syntactic subset of qualified identifiers. Identifiers may also denote
local variables, what qualified identifiers do not.

1.2.4 Numerals

Numerals have no definite semantics in the calculus. They are mere notations that can be bound to
objects through the notation mechanism (see Chapter 12 for details). Initially, numerals are bound to
Peano’s representation of natural numbers (see 3.1.3).

Note: negative integers are not at the same level as num, for this would make precedence unnatural.

1.2.5 Sorts
There are three sorts Set, Prop and Type.

* Prop is the universe of logical propositions. The logical propositions themselves are typing the
proofs. We denote propositions by form. This constitutes a semantic subclass of the syntactic
class term.

 Set s is the universe of program types or specifications. The specifications themselves are typing
the programs. We denote specifications by specif. This constitutes a semantic subclass of the
syntactic class term.

* Type is the type of Set and Prop

More on sorts can be found in Section 4.1.1.

1.2.6 Binders

Various constructions such as fun, forall, fix and cofix bind variables. A binding is represented
by an identifier. If the binding variable is not used in the expression, the identifier can be replaced by the
symbol _. When the type of a bound variable cannot be synthesized by the system, it can be specified
with the notation ( ident : type ). There is also a notation for a sequence of binding variables sharing
the same type: (ident;...ident, : type ). A binder can also be any pattern prefixed by a quote, e.g.
"(x,v).

Coq Reference Manual, V8.6.1, July 26, 2017



44 1 The GALLINA specification language

term »= forall binders , term (1.2.8)
|  fun binders => term (1.2.7)
|  fix fix_bodies (1.2.14)
|  cofix cofix_bodies (1.2.14)
| let ident [binders] [: term] := term in term (1.2.12)
| let fix fix_body in term (1.2.14)
| let cofix cofix_body in term (1.2.14)
| let ( [name , ... , name]) [dep_ret_type] :=term in term (1.2.13,2.2.1)
| let ' pattern [in term] : = term [return_type] in term (1.2.13,2.2.1)
|  if term [dep_ret type] then term else term (1.2.13,2.2.1)
| term : term (1.2.10)
|  term <: term (1.2.10)
| term :> (24.1.1)
|  term —> term (1.2.8)
| termarg ... arg (1.2.9)
|  @qualid [term ... term] (2.7.11)
|  term % ident (12.2.2)
| match match_item , ... , match_item [return_type] with

[[1]equation | ... | equation]end (1.2.13)

|  qualid (1.2.3)
| sort (1.2.5)
|  num (1.2.4)
| _ (1.2.11)
| (term)

arg = term
| ( ident := term ) (2.7.11)

binders ::= binder ... binder

binder := name (1.2.6)
| ( name ... name : term )
| ( name [: term] := term )
| 7 pattern

name = ident
| _

qualid = ident

|  qualid access_ident

sort = Prop | Set | Type

Figure 1.1: Syntax of terms

Coq Reference Manual, V8.6.1, July 26, 2017



1.2 Terms 45

fix_bodies = fix_body
|  fix_body with fix_body with ... with fix_body for ident
cofix_bodies ::= cofix_body

| cofix_body with cofix_body with ... with cofix_body for ident

fix_body ::= ident binders [annotation] [: term] : = term
cofix_body ::= ident [binders] [: term] : = term

annotation = { struct ident }

match_item = term [as name] [in qualid[pattern ... pattern]]
dep_ret_type = [as name] return_type

return_type = return term

equation = mult_pattern | ... | mult_pattern => term
mult_pattern ::= pattern , ... , pattern

pattern = qualid pattern ... pattern

| @ qualid pattern ... pattern
|  pattern as ident

|  pattern % ident

|  qualid
|

|

|

num
( or_pattern , ... , or_pattern )
or_pattern 1= pattern | ... | pattern

Figure 1.2: Syntax of terms (continued)

Some constructions allow the binding of a variable to value. This is called a “let-binder”. The entry
binder of the grammar accepts either an assumption binder as defined above or a let-binder. The notation
in the latter case is ( ident :=term ). In a let-binder, only one variable can be introduced at the same
time. It is also possible to give the type of the variable as follows: (ident : term :=term ).

Lists of binder are allowed. In the case of fun and forall, it is intended that at least one
binder of the list is an assumption otherwise fun and forall gets identical. Moreover, paren-
theses can be omitted in the case of a single sequence of bindings sharing the same type (e.g.:
fun (x y z : A) => tcanbeshortenedin fun x y z : A => t).

1.2.7 Abstractions

The expression “fun ident : type => term” defines the abstraction of the variable ident, of type type,
over the term term. It denotes a function of the variable ident that evaluates to the expression term
(e.g. fun x:A => x denotes the identity function on type A). The keyword fun can be followed by

Coq Reference Manual, V8.6.1, July 26, 2017




46 1 The GALLINA specification language

several binders as given in Section 1.2.6. Functions over several variables are equivalent to an iteration
of one-variable functions. For instance the expression “fun ident; ... ident, : type => term’ denotes
the same function as “fun ident; : type => ... fun ident, : type => term”. If a let-binder occurs in
the list of binders, it is expanded to a let-in definition (see Section 1.2.12).

1.2.8 Products

The expression “forall ident : type, term” denotes the product of the variable ident of type type,
over the term term. As for abstractions, forall is followed by a binder list, and products over several
variables are equivalent to an iteration of one-variable products. Note that term is intended to be a type.

If the variable ident occurs in term, the product is called dependent product. The intention behind
a dependent product forall x : A, B is twofold. It denotes either the universal quantification of
the variable x of type A in the proposition B or the functional dependent product from A to B (a
construction usually written I1,. 4.5 in set theory).

Non dependent product types have a special notation: “A —> B” stands for “forall _:A4, B”.
The non dependent product is used both to denote the propositional implication and function types.

1.2.9 Applications

The expression termg term; denotes the application of termg to term;.
The expression termg term; ... term, denotes the application of the term termg to the arguments
term; ... then term,,. It is equivalentto (... ( termg term; ) ... ) term, : associativity is to the left.
The notation ( ident : = term ) for arguments is used for making explicit the value of implicit argu-
ments (see Section 2.7.11).

1.2.10 Type cast

The expression “term : type” is a type cast expression. It enforces the type of term to be type.
“term <: type” locally sets up the virtual machine for checking that term has type type.

1.2.11 Inferable subterms

Expressions often contain redundant pieces of information. Subterms that can be automatically inferred
by C0Q can be replaced by the symbol “_" and COQ will guess the missing piece of information.

1.2.12 Let-in definitions

let ident := term; in terms denotes the local binding of term; to the variable ident in termsy. There
is a syntactic sugar for let-in definition of functions: 1et ident binder; ... binder, := term; in terms
stands for 1let ident := fun binder; ... binder,, => term; in terms.

1.2.13 Definition by case analysis

Objects of inductive types can be destructurated by a case-analysis construction called pattern-matching
expression. A pattern-matching expression is used to analyze the structure of an inductive objects and
to apply specific treatments accordingly.

This paragraph describes the basic form of pattern-matching. See Section 2.2.1 and Chapter 17 for
the description of the general form. The basic form of pattern-matching is characterized by a single

Coq Reference Manual, V8.6.1, July 26, 2017



1.2 Terms 47

match_item expression, a mult_pattern restricted to a single pattern and pattern restricted to the form
qualid ident ... ident.

The expression match termg return_type with pattern; => term; | ... | pattern, => term,
end, denotes a pattern-matching over the term termg (expected to be of an inductive type I). The
terms term;. .. term,, are the branches of the pattern-matching expression. Each of pattern; has a form
qualid ident ... ident where qualid must denote a constructor. There should be exactly one branch for
every constructor of I.

The return_type expresses the type returned by the whole match expression. There are several
cases. In the non dependent case, all branches have the same type, and the return_type is the common
type of branches. In this case, return_type can usually be omitted as it can be inferred from the type of
the branches’.

In the dependent case, there are three subcases. In the first subcase, the type in each branch may
depend on the exact value being matched in the branch. In this case, the whole pattern-matching itself
depends on the term being matched. This dependency of the term being matched in the return type is

expressed with an “as ident” clause where ident is dependent in the return type. For instance, in the
following example:

Cog < Inductive bool : Type := true : bool | false : bool.
Cog < Inductive eq (A:Type) (x:A) : A —-> Prop := eq_refl : eqg A x X.
Cogq < Inductive or (A:Prop) (B:Prop) : Prop :=
| or_introl : A -> or A B
| or_intror : B -> or A B.
Cog < Definition bool_case (b:bool) : or (eq bool b true) (eq bool b false)
:= match b as x return or (eq bool x true) (eq bool x false) with
| true => or_introl (eq bool true true) (eq bool true false)
(eg_refl bool true)
| false => or_intror (eq bool false true) (eq bool false false)

(eg_refl bool false)
end.

the branches have respective types or (eq bool true true) (eq bool true false) and
or (eq bool false true) (eq bool false false) while the whole pattern-matching
expression has type or (eq bool b true) (eq bool b false), the identifier x being used
to represent the dependency. Remark that when the term being matched is a variable, the as clause can
be omitted and the term being matched can serve itself as binding name in the return type. For instance,
the following alternative definition is accepted and has the same meaning as the previous one.

Cogq < Definition bool_case (b:bool) : or (eq bool b true) (eqg bool b false)
:= match b return or (eq bool b true) (eq bool b false) with
| true => or_introl (eq bool true true) (eq bool true false)
(eg_refl bool true)
| false => or_intror (eq bool false true) (eq bool false false)
(eg_refl bool false)
end.

The second subcase is only relevant for annotated inductive types such as the equality predicate (see
Section 3.1.2), the order predicate on natural numbers or the type of lists of a given length (see Sec-
tion 17.3). In this configuration, the type of each branch can depend on the type dependencies specific
to the branch and the whole pattern-matching expression has a type determined by the specific depen-
dencies in the type of the term being matched. This dependency of the return type in the annotations of
the inductive type is expressed using a “in I _ ... _ pattern; ... pattern,,” clause, where

2Except if the inductive type is empty in which case there is no equation that can be used to infer the return type.

Coq Reference Manual, V8.6.1, July 26, 2017



48 1 The GALLINA specification language

* [ is the inductive type of the term being matched;

* the _’s are matching the parameters of the inductive type: the return type is not dependent on
them.

* the pattern;’s are matching the annotations of the inductive type: the return type is dependent on
them

* in the basic case which we describe below, each pattern; is a name ident;; see 17.3.2 for the
general case

For instance, in the following example:

Cog < Definition eg _sym (A:Type) (x y:A) (H:eg A x y) : eg Ay x :=
match H in eq _ _ z return eqg A z x with
| eqg_refl _ _ => eq_refl A x
end.

the type of the branch has type eqg A x x because the third argument of eq is x in the type of the
pattern refl_equal. On the contrary, the type of the whole pattern-matching expression has type
eq A vy x because the third argument of eq is y in the type of H. This dependency of the case analysis
in the third argument of eq is expressed by the identifier z in the return type.

Finally, the third subcase is a combination of the first and second subcase. In particular, it only
applies to pattern-matching on terms in a type with annotations. For this third subcase, both the clauses
as and in are available.

There are specific notations for case analysis on types with one or two constructors: “if
then ... else ...” and “let (... , ..., ...) := ... 1in...” (see Sections 2.2.2
and 2.2.3).

1.2.14 Recursive functions

The expression “fix ident; binder, : type; := term; with ... with ident, binder, : type, :=
term,, for ident;” denotes the i"'component of a block of functions defined by mutual well-founded
recursion. It is the local counterpart of the Fixpoint command. See Section 1.3.4 for more details.
When n = 1, the “for ident;” clause is omitted.

The expression “cofix ident; binder; : type; with ... with ident, binder, : type, for
ident;” denotes the i"component of a block of terms defined by a mutual guarded co-recursion. It is the
local counterpart of the CoFixpoint command. See Section 1.3.4 for more details. When n = 1, the
“for ident;” clause is omitted.

The association of a single fixpoint and a local definition have a special syntax: “let
fix f... :=... in...” stands for “let f := fix f ... :=... in ...”. The same applies for
co-fixpoints.

1.3 The Vernacular

Figure 1.3 describes The Vernacular which is the language of commands of GALLINA. A sentence of
the vernacular language, like in many natural languages, begins with a capital letter and ends with a dot.

The different kinds of command are described hereafter. They all suppose that the terms occurring
in the sentences are well-typed.

Coq Reference Manual, V8.6.1, July 26, 2017



1.3 The Vernacular

49

sentence

assumption

assumption_keyword

assums

definition

inductive

ind_body

fixpoint

assertion

assertion_keyword

proof

assumption
definition
inductive
fixpoint
assertion proof

assumption_keyword assums .

Axiom|Conjecture
Parameter | Parameters
Variable |Variables
Hypothesis | Hypotheses

ident ... ident : term

( ident ... ident : term ) ( ident ... ident : term )
[Local]Definition ident [binders] [: term] := term .

Let ident [binders] [: term] : = term .

Inductive ind_body with ... with ind_body .
CoInductive ind_body with ... with ind_body .

ident [binders] [: term] :=

[[ | ]ident [binders] [: term] | ... | ident [binders] [: term]]
Fixpoint fix_body with ... with fix_body .
CoFixpoint cofix_body with ... with cofix_body .

assertion_keyword ident [binders] : term .

Theorem | Lemma

Remark | Fact
Corollary|Proposition
Definition|Example

Proof . ... Qed.
Proof . ... Defined.
Proof . ... Admitted .

Figure 1.3: Syntax of sentences

1.3.1 Assumptions

Assumptions extend the environment with axioms, parameters, hypotheses or variables. An assumption
binds an ident to a type. Itis accepted by C0OQ if and only if this type is a correct type in the environment
preexisting the declaration and if ident was not previously defined in the same module. This type is

Coq Reference Manual, V8.6.1, July 26, 2017



50 1 The GALLINA specification language

considered to be the type (or specification, or statement) assumed by ident and we say that ident has
type type.
Axiom ident :term

This command links term to the name ident as its specification in the global context. The fact asserted
by term is thus assumed as a postulate.

Error messages:

1. ident already exists

Variants:

1. Parameter ident :term.
Is equivalent to Axiom ident : term

2. Parameter ident; ... Iident, :term.
Adds n parameters with specification term

3. Parameter (identy; ... identyy, :termy ) ... (identy;...ident,y, : term, ) .
Adds n blocks of parameters with different specifications.

4. Local Axiom ident : term.
Such axioms are never made accessible through their unqualified name by Import and its
variants (see 2.5.8). You have to explicitly give their fully qualified name to refer to them.

5. Conjecture ident :term.
Is equivalent to Axiom ident : term.

Remark: It is possible to replace Parameter by Parameters.

Variable ident :term.

This command links term to the name ident in the context of the current section (see Section 2.4 for a
description of the section mechanism). When the current section is closed, name ident will be unknown
and every object using this variable will be explicitly parametrized (the variable is discharged). Using
the Variable command out of any section is equivalent to using Local Parameter.

Error messages:

1. ident already exists

Variants:

1. Vvariable ident;y ... ident, :term.
Links term to names ident; ... ident,,.

2. Variable (identyy ... identyy, :termy ) ... (ident,; ...ident,y, :term, ).
Adds n blocks of variables with different specifications.

3. Hypothesis ident :term.
Hypothesis is a synonymous of Variable

Coq Reference Manual, V8.6.1, July 26, 2017



1.3 The Vernacular 51

Remark: It is possible to replace Variable by Variables and Hypothesis by Hypotheses.

It is advised to use the keywords Axiom and Hypothesis for logical postulates (i.e. when the
assertion term is of sort Prop), and to use the keywords Parameter and Variable in other cases
(corresponding to the declaration of an abstract mathematical entity).

1.3.2 Definitions

Definitions extend the environment with associations of names to terms. A definition can be seen as a
way to give a meaning to a name or as a way to abbreviate a term. In any case, the name can later be
replaced at any time by its definition.

The operation of unfolding a name into its definition is called d-conversion (see Section 4.3). A
definition is accepted by the system if and only if the defined term is well-typed in the current context of
the definition and if the name is not already used. The name defined by the definition is called a constant
and the term it refers to is its body. A definition has a type which is the type of its body.

A formal presentation of constants and environments is given in Section 4.2.

Definition ident := term.

This command binds term to the name ident in the environment, provided that term is well-typed.

Error messages:

1. ident already exists

Variants:

1. Definition ident : termi := terms .
It checks that the type of terms is definitionally equal to term;, and registers ident as being of
type termy, and bound to value terms.

2. Definition ident binder; ... binder, : termq := terms .
This is equivalent to
Definition 1ident : forallbinder; ... binder,,, term; := fun binder;

binder,, => termo .

3. Local Definition ident := term.
Such definitions are never made accessible through their unqualified name by Import and its
variants (see 2.5.8). You have to explicitly give their fully qualified name to refer to them.

4. Example ident := term.
Example ident : term; := terms .
Example ident binder; ... binder,, : term; := terms.
These are synonyms of the Definition forms.

Error messages:

1. The term term has type type while it is expected to have type type

See also: Sections 6.10.1, 6.10.2, 8.7.5.

Coq Reference Manual, V8.6.1, July 26, 2017



52 1 The GALLINA specification language

Let ident := term.

This command binds the value term to the name ident in the environment of the current section. The
name ident disappears when the current section is eventually closed, and, all persistent objects (such
as theorems) defined within the section and depending on ident are prefixed by the let-in definition
let ident := term in. Using the Let command out of any section is equivalent to using Local
Definition.

Error messages:

1. ident already exists

Variants:
1. Let ident : termy := termso.
2. Let Fixpoint ident fix_body with ... with fix_body
3. Let CoFixpoint ident cofix_body with ... with cofix_body

See also: Sections 2.4 (section mechanism), 6.10.1, 6.10.2 (opaque/transparent constants), 8.7.5 (tactic
unfold).

1.3.3 Inductive definitions

We gradually explain simple inductive types, simple annotated inductive types, simple parametric in-
ductive types, mutually inductive types. We explain also co-inductive types.

Simple inductive types

The definition of a simple inductive type has the following form:

Inductive ident : sort :=
ident; : type;

| ...

| ident, : typey
The name ident is the name of the inductively defined type and sort is the universes where it lives.
The names identq, ..., ident,, are the names of its constructors and types, ..., type, their respective
types. The types of the constructors have to satisfy a positivity condition (see Section 4.5.2) for ident.
This condition ensures the soundness of the inductive definition. If this is the case, the names ident,
identy, ..., ident, are added to the environment with their respective types. Accordingly to the uni-
verse where the inductive type lives (e.g. its type sort), COQ provides a number of destructors for
ident. Destructors are named ident_ind, ident_rec or ident_rect which respectively correspond
to elimination principles on Prop, Set and Type. The type of the destructors expresses structural
induction/recursion principles over objects of ident. We give below two examples of the use of the

Inductive definitions.
The set of natural numbers is defined as:

Cog < Inductive nat : Set :=
| O : nat
| S : nat —-> nat.

Coq Reference Manual, V8.6.1, July 26, 2017



1.3 The Vernacular 53

nat is defined

nat_rect 1is defined
nat_ind is defined
nat_rec 1is defined

The type nat is defined as the least Set containing O and closed by the S constructor. The names
nat, O and S are added to the environment.

Now let us have a look at the elimination principles. They are three of them: nat_ind, nat_rec
and nat_rect. The type of nat_indis:

Cog < Check nat_ind.
nat_ind
forall P : nat -> Prop,
P O —> (forall n : nat, P n —> P (S n)) —-> forall n : nat, P n

This is the well known structural induction principle over natural numbers, i.e. the second-order
form of Peano’s induction principle. It allows proving some universal property of natural numbers
(forall n:nat, P n)by induction on n.

The types of nat_rec and nat_rect are similar, except that they pertain to (P:nat->Set)
and (P:nat->Type) respectively . They correspond to primitive induction principles (allowing de-
pendent types) respectively over sorts Set and Type. The constant ident_ind is always provided,
whereas ident_rec and ident_rect can be impossible to derive (for example, when ident is a propo-
sition).

Variants:

1. Cogq < Inductive nat : Set := O | S (_:nat).
In the case where inductive types have no annotations (next section gives an example of such
annotations), a constructor can be defined by only giving the type of its arguments.

Simple annotated inductive types

In an annotated inductive types, the universe where the inductive type is defined is no longer a simple
sort, but what is called an arity, which is a type whose conclusion is a sort.
As an example of annotated inductive types, let us define the even predicate:

Cog < Inductive even : nat -> Prop :=

| even_0 : even O

| even_SS : forall n:nat, even n —> even (S (S n)).
even 1s defined
even_ind is defined

The type nat->Prop means that even is a unary predicate (inductively defined) over natural
numbers. The type of its two constructors are the defining clauses of the predicate even. The type of
even_indis:

Cog < Check even_ind.
even_ind
forall P : nat -> Prop,
P O —>
(forall n : nat, even n -> P n —> P (S (S n))) —->
forall n : nat, even n —> P n

Coq Reference Manual, V8.6.1, July 26, 2017



54 1 The GALLINA specification language

From a mathematical point of view it asserts that the natural numbers satisfying the predicate even
are exactly in the smallest set of naturals satisfying the clauses even_0 or even_SS. This is why,
when we want to prove any predicate P over elements of even, it is enough to prove it for O and to
prove that if any natural number n satisfies P its double successor (S (S n) ) satisfies also P. This is
indeed analogous to the structural induction principle we got for nat.

Error messages:
1. Non strictly positive occurrence of ident in type

2. The conclusion of type is not valid; it must be built from ident

Parametrized inductive types

In the previous example, each constructor introduces a different instance of the predicate even. In some
cases, all the constructors introduces the same generic instance of the inductive definition, in which case,
instead of an annotation, we use a context of parameters which are binders shared by all the constructors
of the definition.

The general scheme is:

Inductive ident binder;...binder;, : term := identy: termq | ... | ident,,: term,, .

Parameters differ from inductive type annotations in the fact that the conclusion of each type of con-

structor term; invoke the inductive type with the same values of parameters as its specification.
A typical example is the definition of polymorphic lists:

Cog < Inductive list (A:Set) : Set :=
| nil : list A
| cons : A -> list A —-> list A.

Note that in the type of nil and cons, we write (1ist A) and notjust 1ist.
The constructors nil and cons will have respectively types:

Cog < Check nil.
nil

forall A : Set, 1list A
Cog < Check cons.

cons
forall A : Set, A —> list A —> list A

Types of destructors are also quantified with (A:Set).

Variants:
1. Cog < Inductive list (A:Set) : Set := nil | cons (_:A) (_:list A).
This is an alternative definition of lists where we specify the arguments of the constructors rather
than their full type.
2.
Cog < Variant sum (A B:Set) : Set := left : A -> sum A B | right : B ->

The Variant keyword is identical to the Inductive keyword, except that it disallows recur-
sive definition of types (in particular lists cannot be defined with the Variant keyword). No in-
duction scheme is generated for this variant, unless the option Nonrecursive Elimination
Schemes is set (see 13.1.1).

Coq Reference Manual, V8.6.1, July 26, 2017

sum A B.



1.3 The Vernacular 55

Error messages:

1. The numth argument of ident must be ident’ in type

New from C0Q V8.1 The condition on parameters for inductive definitions has been relaxed since
CoQ V8.1. It is now possible in the type of a constructor, to invoke recursively the inductive definition

on an argument which is not the parameter itself.
One can define :

Cog < Inductive list2 (A:Set) : Set :=
| nil2 : 1list2 A
| cons2 : A —> list2 (A*A) —> list2 A.
list2 is defined
list2_rect is defined
list2_ind is defined
list2 rec is defined

that can also be written by specifying only the type of the arguments:
Cog < Inductive list2 (A:Set) : Set := nil2 | cons2 (_:A) (_:1list2 (AxA)).
But the following definition will give an error:

Cogq < Fail Inductive listw (A:Set) : Set :=
| nilw : listw (A%*A)
| consw : A —> listw (AxA) —> listw (A*A).
The command has indeed failed with message:
Last occurrence of "listw" must have "A" as 1st argument in
"listw (A x A)S$type".

Because the conclusion of the type of constructors should be 1istw A in both cases.

A parametrized inductive definition can be defined using annotations instead of parameters but it will
sometimes give a different (bigger) sort for the inductive definition and will produce a less convenient
rule for case elimination.

See also: Sections 4.5 and 8.5.2.

Mutually defined inductive types

The definition of a block of mutually inductive types has the form:

Inductive ident; : type; :=
ident] . typel
...
| ident} : type;,
with
with ident,, : type, :=
ident”  :  typeT
...
| identy’  : typep’ .
It has the same semantics as the above Inductive definition for each identy, ..., ident,,. All names
identy, ..., ident,, and ident%, e, ident;”m are simultaneously added to the environment. Then well-
typing of constructors can be checked. Each one of the identq, ..., ident,, can be used on its own.

Coq Reference Manual, V8.6.1, July 26, 2017



56 1 The GALLINA specification language

It is also possible to parametrize these inductive definitions. However, parameters correspond to a
local context in which the whole set of inductive declarations is done. For this reason, the parameters
must be strictly the same for each inductive types The extended syntax is:

Inductive ident; params : type; :=

ident} : typel
| ...
| 1'd€nt,111 : type}11
with

with ident,, params : type,, :=
ident*  :  typel"

| ...

| ident;!  : typey .

Example: The typical example of a mutual inductive data type is the one for trees and forests. We
assume given two types A and B as variables. It can be declared the following way.

Cogq < Variables A B : Set.

Cog < Inductive tree : Set :=
node : A -> forest —-> tree
with forest : Set :=
| leaf : B —> forest
| cons : tree —> forest —-> forest.

This declaration generates automatically six induction principles. They are respectively called
tree_rec, tree_ind, tree_rect, forest_rec, forest_ind, forest_rect. These ones
are not the most general ones but are just the induction principles corresponding to each inductive part
seen as a single inductive definition.

To illustrate this point on our example, we give the types of tree_rec and forest_rec.

Cog < Check tree_rec.
tree_rec
forall P : tree -> Set,
(forall (a : A) (f : forest), P (node a f)) -> forall t : tree, P t

Cog < Check forest_rec.
forest_rec
forall P : forest —> Set,
(forall b : B, P (leaf b)) —>
(forall (t : tree) (fO0 : forest), P f0 -> P (cons t f0)) —>
forall f1 : forest, P fl

Assume we want to parametrize our mutual inductive definitions with the two type variables A and
B, the declaration should be done the following way:

Cog < Inductive tree (A B:Set) : Set :=
node : A -> forest A B -> tree A B
with forest (A B:Set) : Set :=

| leaf : B —> forest A B
| cons : tree A B —> forest A B -> forest A B.

Coq Reference Manual, V8.6.1, July 26, 2017



1.3 The Vernacular 57

Assume we define an inductive definition inside a section. When the section is closed, the variables
declared in the section and occurring free in the declaration are added as parameters to the inductive
definition.

See also: Section 2.4.

Co-inductive types

The objects of an inductive type are well-founded with respect to the constructors of the type. In other
words, such objects contain only a finite number of constructors. Co-inductive types arise from relaxing
this condition, and admitting types whose objects contain an infinity of constructors. Infinite objects are
introduced by a non-ending (but effective) process of construction, defined in terms of the constructors

of the type.
An example of a co-inductive type is the type of infinite sequences of natural numbers, usually called
streams. It can be introduced in COQ using the CoInduct ive command:

Cog < CoInductive Stream : Set :=
Seq : nat —-> Stream —-> Stream.
Stream is defined

The syntax of this command is the same as the command Inductive (see Section 1.3.3). Notice
that no principle of induction is derived from the definition of a co-inductive type, since such principles
only make sense for inductive ones. For co-inductive ones, the only elimination principle is case anal-
ysis. For example, the usual destructors on streams hd: Stream->nat and t1:Str->Str can be
defined as follows:

Cog < Definition hd (x:Stream) := let (a,s) := x in a.
hd is defined

Cogq < Definition tl (x:Stream) := let (a,s) := x in s.
tl is defined

Definition of co-inductive predicates and blocks of mutually co-inductive definitions are also al-
lowed. An example of a co-inductive predicate is the extensional equality on streams:

Cog < CoInductive EgSt : Stream -> Stream -> Prop :=
eqgst
forall sl s2:Stream,
hd s1 = hd s2 -> EgSt (tl sl) (tl s2) -> EgSt sl s2.
EgSt is defined

In order to prove the extensionally equality of two streams s; and s we have to construct an infinite
proof of equality, that is, an infinite object of type (EqgSt s1 s2). We will see how to introduce infinite
objects in Section 1.3.4.

1.3.4 Definition of recursive functions
Definition of functions by recursion over inductive objects

This section describes the primitive form of definition by recursion over inductive objects. See Sec-
tion 2.3 for more advanced constructions. The command:

Fixpoint ident params {struct identy } : typeg := termg

Coq Reference Manual, V8.6.1, July 26, 2017



58 1 The GALLINA specification language

allows defining functions by pattern-matching over inductive objects using a fixed point construction.
The meaning of this declaration is to define ident a recursive function with arguments specified by the
binders in params such that ident applied to arguments corresponding to these binders has type typeg,
and is equivalent to the expression termg. The type of the ident is consequently forall params ,
typeg and the value is equivalent to fun params => termg.

To be accepted, a Fixpoint definition has to satisfy some syntactical constraints on a special
argument called the decreasing argument. They are needed to ensure that the Fixpoint definition
always terminates. The point of the { st ruct ident} annotation is to let the user tell the system which
argument decreases along the recursive calls. For instance, one can define the addition function as :

Cog < Fixpoint add (n m:nat) {struct n} : nat :=
match n with
| O =>m
| S p =>S (add p m)
end.

add is defined
add is recursively defined (decreasing on 1lst argument)

The {struct ident} annotation may be left implicit, in this case the system try successively
arguments from left to right until it finds one that satisfies the decreasing condition. Note that some
fixpoints may have several arguments that fit as decreasing arguments, and this choice influences the
reduction of the fixpoint. Hence an explicit annotation must be used if the leftmost decreasing argument
is not the desired one. Writing explicit annotations can also speed up type-checking of large mutual
fixpoints.

The mat ch operator matches a value (here n) with the various constructors of its (inductive) type.
The remaining arguments give the respective values to be returned, as functions of the parameters of
the corresponding constructor. Thus here when n equals O we return m, and when n equals (S p) we
return (S (add p m)).

The match operator is formally described in detail in Section 4.5.3. The system recognizes that
in the inductive call (add p m) the first argument actually decreases because it is a pattern variable
coming frommatch n with.

Example: The following definition is not correct and generates an error message:

Cog < Fail Fixpoint wrongplus (n m:nat) {struct n} : nat :=
match m with
| O =>n
| S p =>S (wrongplus n p)
end.
The command has indeed failed with message:
Recursive definition of wrongplus is ill-formed.
In environment

wrongplus : nat -> nat —-> nat
n : nat
m : nat
p : nat

Recursive call to wrongplus has principal argument equal to
"n" instead of a subterm of "n".
Recursive definition 1is:
"fun n m : nat => match m with
| 0O => n

Coq Reference Manual, V8.6.1, July 26, 2017



1.3 The Vernacular 59

| S p =>8S (wrongplus n p)
end"”.

because the declared decreasing argument n actually does not decrease in the recursive call. The
function computing the addition over the second argument should rather be written:

Cog < Fixpoint plus (n m:nat) {struct m} : nat :=
match m with
| O =>n
| S p =>S (plus n p)
end.

The ordinary match operation on natural numbers can be mimicked in the following way.

Cog < Fixpoint nat_match
(C:Set) (f£f0:C) (fS:nat —> C -> C) (n:nat) {struct n} : C :=
match n with

| O => f0
| S p => £fS p (nat_match C f0 £S p)
end.

The recursive call may not only be on direct subterms of the recursive variable n but also on a deeper
subterm and we can directly write the function mod2 which gives the remainder modulo 2 of a natural
number.

Cog < Fixpoint mod2 (n:nat) : nat :=

match n with

| O => 0

| S p => match p with
| O =>S 0
| S g => mod2 g
end

end.

In order to keep the strong normalization property, the fixed point reduction will only be performed when
the argument in position of the decreasing argument (which type should be in an inductive definition)
starts with a constructor.

The Fixpoint construction enjoys also the with extension to define functions over mutually
defined inductive types or more generally any mutually recursive definitions.

Variants:

1. Fixpoint ident; params; : type; := term;

with...
with ident,, params,, : type,, := termy,
Allows to define simultaneously ident, ..., ident,,.

Example: The size of trees and forests can be defined the following way:

Cog < Fixpoint tree_size (t:tree) : nat :=
match t with
| node a £ => S (forest_size f)
end
with forest_size (f:forest) : nat :=

Coq Reference Manual, V8.6.1, July 26, 2017



60 1 The GALLINA specification language

match f with

| leaf b => 1

| cons t f' => (tree_size t + forest_size f')
end.

A generic command Scheme is useful to build automatically various mutual induction principles. It is
described in Section 13.1.

Definitions of recursive objects in co-inductive types

The command:
CoFixpoint ident : typey := termyg

introduces a method for constructing an infinite object of a coinductive type. For example, the stream
containing all natural numbers can be introduced applying the following method to the number O (see
Section 1.3.3 for the definition of St ream, hd and t1):

Cog < CoFixpoint from (n:nat) : Stream := Seqg n (from (S n)).
from is defined
from is corecursively defined

Oppositely to recursive ones, there is no decreasing argument in a co-recursive definition. To be
admissible, a method of construction must provide at least one extra constructor of the infinite object
for each iteration. A syntactical guard condition is imposed on co-recursive definitions in order to
ensure this: each recursive call in the definition must be protected by at least one constructor, and only
by constructors. That is the case in the former definition, where the single recursive call of from is
guarded by an application of Seq. On the contrary, the following recursive function does not satisfy the
guard condition:

Cogq < Fail CoFixpoint filter (p:nat -> bool) (s:Stream) : Stream :=
if p (hd s) then Seqg (hd s) (filter p (tl s)) else filter p (tl s).
The command has indeed failed with message:
Recursive definition of filter is ill-formed.
In environment

filter : (nat -> bool) —-> Stream -> Stream
p : nat —-> bool
s : Stream

Unguarded recursive call in "filter p (tl s)".
Recursive definition 1is:
"fun (p : nat -> bool) (s : Stream) =>
if p (hd s) then Seq (hd s) (filter p (tl s)) else filter p (tl1 s)".

The elimination of co-recursive definition is done lazily, i.e. the definition is expanded only when it
occurs at the head of an application which is the argument of a case analysis expression. In any other
context, it is considered as a canonical expression which is completely evaluated. We can test this using
the command Eval, which computes the normal forms of a term:

Cog < Eval compute in (from 0).
= (cofix from (n : nat) : Stream := Seqg n (from (S n))) O
Stream

Cog < Eval compute in (hd (from 0)).

Coq Reference Manual, V8.6.1, July 26, 2017



1.3 The Vernacular 61

: nat

Cog < Eval compute in (tl (from 0)).

= (cofix from (n : nat) : Stream := Seq n (from (S n))) 1
Stream
Variants:
1. CoFixpoint ident; params :type; := term;
As for most constructions, arguments of co-fixpoints expressions can be introduced before the : =
sign.

2. CoFixpoint ident; : type; := term;
with

with ident,, : type,, := term,,
Asinthe Fixpoint command (see Section 1.3.4), it is possible to introduce a block of mutually
dependent methods.

1.3.5 Assertions and proofs

An assertion states a proposition (or a type) of which the proof (or an inhabitant of the type) is in-
teractively built using tactics. The interactive proof mode is described in Chapter 7 and the tactics in
Chapter 8. The basic assertion command is:

Theorem ident [binders] : type.

After the statement is asserted, COQ needs a proof. Once a proof of type under the assumptions repre-
sented by binders is given and validated, the proof is generalized into a proof of forall [binders],
type and the theorem is bound to the name ident in the environment.

Error messages:
1. The term form has type ... which should be Set, Prop or Type

2. ident already exists

The name you provided is already defined. You have then to choose another name.

Variants:
1. Lemma ident [binders] : type.
Remark ident [binders] : type.
Fact ident [binders] : type.
Corollary ident [binders] : type.
Proposition ident [binders] : type.

These commands are synonyms of Theorem ident [binders] : type.

Coq Reference Manual, V8.6.1, July 26, 2017



62 1 The GALLINA specification language

2. Theorem ident [binders]: type with ... with ident [binders]: type.

This command is useful for theorems that are proved by simultaneous induction over a mutually
inductive assumption, or that assert mutually dependent statements in some mutual co-inductive
type. Itis equivalent to Fixpoint or CoFixpoint (see Section 1.3.4) but using tactics to build
the proof of the statements (or the body of the specification, depending on the point of view). The
inductive or co-inductive types on which the induction or coinduction has to be done is assumed
to be non ambiguous and is guessed by the system.

Like in a Fixpoint or CoFixpoint definition, the induction hypotheses have to be used
on structurally smaller arguments (for a Fixpoint) or be guarded by a constructor (for a
CoFixpoint). The verification that recursive proof arguments are correct is done only at the
time of registering the lemma in the environment. To know if the use of induction hypotheses is
correct at some time of the interactive development of a proof, use the command Guarded (see
Section 7.3.2).

The command can be used also with Lemma, Remark, etc. instead of Theorem.

3. Definition ident [binders] : type.

This allows defining a term of type type using the proof editing mode. It behaves as Theorem
but is intended to be used in conjunction with Defined (see 1) in order to define a constant of
which the computational behavior is relevant.

The command can be used also with Example instead of Definition.

See also: Sections 6.10.1 and 6.10.2 (Opagque and Transparent) and 8.7.5 (tactic unfold).

4. Let ident [binders] : type.
Like Definition ident [binders] : type. except that the definition is turned into a let-in
definition generalized over the declarations depending on it after closing the current section.

5. Fixpoint ident binders [annotation] [: term] [:= term] with ... with ident
binders [annotation] [: term] [:= term].

This generalizes the syntax of Fixpoint so that one or more bodies can be defined interactively
using the proof editing mode (when a body is omitted, its type is mandatory in the syntax). When
the block of proofs is completed, it is intended to be ended by Defined.

6. CoFixpoint ident [binders] [: term] [:= term] with ... with ident [binders]
[: term] [:= term].

This generalizes the syntax of CoFixpoint so that one or more bodies can be defined interac-
tively using the proof editing mode.
Proof. ... Qed.

A proof starts by the keyword Proof. Then COQ enters the proof editing mode until the proof is
completed. The proof editing mode essentially contains tactics that are described in chapter 8. Besides
tactics, there are commands to manage the proof editing mode. They are described in Chapter 7. When
the proof is completed it should be validated and put in the environment using the keyword Qed.

Error message:

Coq Reference Manual, V8.6.1, July 26, 2017



1.3 The Vernacular 63

1. ident already exists

Remarks:
1. Several statements can be simultaneously asserted.

2. Not only other assertions but any vernacular command can be given while in the process of proving
a given assertion. In this case, the command is understood as if it would have been given before
the statements still to be proved.

3. Proof is recommended but can currently be omitted. On the opposite side, Qed (or Defined,
see below) is mandatory to validate a proof.

4. Proofs ended by Qed are declared opaque. Their content cannot be unfolded (see 8.7), thus
realizing some form of proof-irrelevance. To be able to unfold a proof, the proof should be ended
by Defined (see below).

Variants:
1. Proof. ... Defined.
Same as Proof. ... Qed. but the proof is then declared transparent, which means that its

content can be explicitly used for type-checking and that it can be unfolded in conversion tactics
(see 8.7, 6.10.1, 6.10.2).

2. Proof. ... Admitted.
Turns the current asserted statement into an axiom and exits the proof mode.

Coq Reference Manual, V8.6.1, July 26, 2017



64 1 The GALLINA specification language

Coq Reference Manual, V8.6.1, July 26, 2017



Chapter 2

Extensions of GALLINA

GALLINA is the kernel language of COQ. We describe here extensions of the Gallina’s syntax.

2.1 Record types

The Record construction is a macro allowing the definition of records as is done in many programming
languages. Its syntax is described on Figure 2.1. In fact, the Record macro is more general than
the usual record types, since it allows also for “manifest” expressions. In this sense, the Record
construction allows defining “signatures”.

sentence ++= record

record ::=  record_keyword ident [binders] [: sort] :=
[ident] { [field ; ... ; field] } .

record_keyword Record | Inductive | CoInductive

field ::= name [binders]: type [where notation]
| name [binders] [: type] := term

Figure 2.1: Syntax for the definition of Record

In the expression

Record ident params : sort := identy ({
identy binders; : term; ; ... ;
ident,, binders,, : term, }.

the identifier ident is the name of the defined record and sort is its type. The identifier ident is the name
of its constructor. If identy is omitted, the default name Build_ident is used. If sort is omitted, the
default sort is Type. The identifiers ident, ..., ident,, are the names of fields and forall bindersy,
termy, ..., forall binders,, term, their respective types. Remark that the type of ident; may
depend on the previous ident; (for j < %). Thus the order of the fields is important. Finally, params are
the parameters of the record.

Coq Reference Manual, V8.6.1, July 26, 2017




66 2 Extensions of GALLINA

More generally, a record may have explicitly defined (a.k.a. manifest) fields. For instance, Record
ident [ params ] : sort := { ident; : type; ; identy := termy ; idents : types } in which case the
correctness of types may rely on the instance terms of ident, and terms in turn may depend on ident; .

Example: The set of rational numbers may be defined as:

Cog < Record Rat : Set := mkRat
{sign : bool;
top : nat;

bottom : nat;

Rat_bottom_cond : 0 <> bottom;

Rat_irred_cond

forall x y z:nat, (x % y) = top /\ (x * z) = bottom -> x = 1}.

Rat is defined
sign is defined
top is defined
bottom is defined
Rat_bottom_cond is defined
Rat_irred _cond is defined

Remark here that the field Rat_bottom_cond depends on the field bottom and
Rat_irred_cond depends on both top and bottom.

Let us now see the work done by the Record macro. First the macro generates a variant type
definition with just one constructor:

Variant ident params : Sort :=
identy (ident; : termy) ... (ident,, : termy) .

To build an object of type ident, one should provide the constructor identy with n terms filling the fields
of the record.
As an example, let us define the rational 1/2:

Cog < Theorem one_two_irred
forall x y z:nat, x * y =1 /\ x  z =2 —> x = 1.

Cog < Admitted.

Cogq < Definition half := mkRat true 1 2 (O_S 1) one_two_irred.
half is defined

Cog < Check half.
half
: Rat

Alternatively, the following syntax allows creating objects by using named fields. The fields do not
have to be in any particular order, nor do they have to be all present if the missing ones can be inferred
or prompted for (see Section 24).

Cog < Definition half' :=

{| sign := true;
Rat_bottom_cond := O_S 1;
Rat_irred_cond := one_two_irred |}.

half' is defined

This syntax can be disabled globally for printing by

Coq Reference Manual, V8.6.1, July 26, 2017



2.1 Record types

67

Unset Printing Records.

For a given type, one can override this using either

Add Printing Record ident.

to get record syntax or

Add Printing Constructor ident.

to get constructor syntax.

This syntax can also be used for pattern matching.

Cog < Eval compute

match half
| {|] sign
| _ =>0
end) .
=1
nat

:= true;

in (
with

top :=n |} =>n

The macro generates also, when it is possible, the projection functions for destructuring an object
of type ident. These projection functions are given the names of the corresponding fields. If a field is
named “_" then no projection is built for it. In our example:

Cog < Eval compute
=1
: nat
Cog < Eval compute
=2
: nat
Cog < Eval compute
=051
0 <> bottom

An alternative syntax for projections based on a dot notation is available:

Cog < Eval compute
=1
: nat

in top half.

in bottom half.

in Rat_bottom_cond half.

half

in half. (top).

It can be activated for printing with the command

Set Printing Projections.

Cog < Set Printing

Projections.

Cog < Check top half.

half. (top)
nat

Coq Reference Manual, V8.6.1, July 26, 2017



68 2 Extensions of GALLINA

term ++= term . ( qualid )
| term . ( qualid arg ... arg)
|  term . ( @qualid term ... term )

Figure 2.2: Syntax for Record projections

The corresponding grammar rules are given in Figure 2.2. When qualid denotes a projection,
the syntax term . (qualid) is equivalent to qualid term, the syntax term. (qualid arg; ... arg,) to
qualid argy ... arg, term, and the syntax term. (Qqualid term; ... term,) to @qualid term; ...
term,, term. In each case, term is the object projected and the other arguments are the parameters of the
inductive type.

Remarks:

1. Records defined with the Record keyword are not allowed to be recursive (references to the
record’s name in the type of its field raises an error). To define recursive records, one can use the
Inductive and CoInductive keywords, resulting in an inductive or co-inductive record. A
caveat, however, is that records cannot appear in mutually inductive (or co-inductive) definitions.

2. Induction schemes are automatically generated for inductive records. Automatic generation of
induction schemes for non-recursive records defined with the Record keyword can be activated
with the Nonrecursive Elimination Schemes option (see 13.1.1).

3. Structure is a synonym of the keyword Record.

Warnings:
1. ident; cannot be defined.
It can happen that the definition of a projection is impossible. This message is followed by an
explanation of this impossibility. There may be three reasons:
(a) The name ident; already exists in the environment (see Section 1.3.1).
(b) The body of ident; uses an incorrect elimination for ident (see Sections 1.3.4 and 4.5.3).

(c) The type of the projections ident; depends on previous projections which themselves could
not be defined.

Error messages:

1. Records declared with the keyword Record or Structure cannot be
recursive.

The record name ident appears in the type of its fields, but uses the keyword Record. Use the
keyword Inductive or CoInductive instead.

2. Cannot handle mutually (co)inductive records.

Records cannot be defined as part of mutually inductive (or co-inductive) definitions, whether
with records only or mixed with standard definitions.

3. During the definition of the one-constructor inductive definition, all the errors of inductive defini-
tions, as described in Section 1.3.3, may also occur.

See also: Coercions and records in Section 18.9 of the chapter devoted to coercions.

Coq Reference Manual, V8.6.1, July 26, 2017




2.2 Variants and extensions of match 69

2.1.1 Primitive Projections

The option Set Primitive Projections turns on the use of primitive projections when defin-
ing subsequent records. Primitive projections extended the Calculus of Inductive Constructions with a
new binary term constructor r. (p) representing a primitive projection p applied to a record object r
(i.e., primitive projections are always applied). Even if the record type has parameters, these do not
appear at applications of the projection, considerably reducing the sizes of terms when manipulating
parameterized records and typechecking time. On the user level, primitive projections are a transparent
replacement for the usual defined ones.

For compatibility, the parameters still appear to the user when printing terms even though they are
absent in the actual AST manipulated by the kernel. This can be changed by unsetting the Printing
Primitive Projection Parameters flag. Further compatibility printing can be deactivated
thanks tothe Printing Primitive Projection Compatibility option which governs the
printing of pattern-matching over primitive records.

2.2 Variants and extensions of match

2.2.1 Multiple and nested pattern-matching

The basic version of match allows pattern-matching on simple patterns. As an extension, multiple
nested patterns or disjunction of patterns are allowed, as in ML-like languages.

The extension just acts as a macro that is expanded during parsing into a sequence of match on
simple patterns. Especially, a construction defined using the extended mat ch is generally printed under
its expanded form (see Set Printing Matching in section 2.2.4).

See also: Chapter 17.

2.2.2 Pattern-matching on boolean values: the i f expression

For inductive types with exactly two constructors and for pattern-matchings expressions which do not
depend on the arguments of the constructors, it is possible touse a if ... then ... else
notation. For instance, the definition

Cogq < Definition not (b:bool) :=
match b with
| true => false
| false => true
end.
not 1is defined

can be alternatively written

Cog < Definition not (b:bool) := if b then false else true.
not is defined

More generally, for an inductive type with constructors C; and C9, we have the following equivalence
match term [dep_ret type] with

C e => term
if term [dep_ret type] then term; else termy = G- - 1
| Co _ ... _ => termy

end

Here is an example.

Coq Reference Manual, V8.6.1, July 26, 2017



70 2 Extensions of GALLINA

Cog < Check (fun x (H:{x=0}+{x<>0}) =>
match H with

| left _ => true
| right _ => false
end) .

fun (x : nat) (H : {x = 0} + {x <> 0}) => if H then true else false
forall x : nat, {x = 0} + {x <> 0} -> bool

Notice that the printing uses the i f syntax because sumbool is declared as such (see Section 2.2.4).

2.2.3 Irrefutable patterns: the destructuring 1et variants

Pattern-matching on terms inhabiting inductive type having only one constructor can be alternatively
written using let ... in ... constructions. There are two variants of them.

First destructuring 1et syntax

The expression let ( identy,...,ident, ) := termgy in term; performs case analysis on a termg
which must be in an inductive type with one constructor having itself n arguments. Variables
ident;. .. ident,, are bound to the n arguments of the constructor in expression term;. For instance,
the definition

Coqg < Definition fst (A B:Set) (H:A x B) match H with

| pair x y => x

end.
fst is defined
can be alternatively written
Cog < Definition fst (A B:Set) (p:A x B) = let (x, _) := p in x.
fst is defined
Notice that reduction is different from regular 1et ... in ... construction since it happens only

if termy is in constructor form. Otherwise, the reduction is blocked.

The pretty-printing of a definition by matching on a irrefutable pattern can either be done using
match or the 1let construction (see Section 2.2.4).

If term inhabits an inductive type with one constructor C, we have an equivalence between

let (identy, ...,ident,) [dep_ret type] := term in term’
and

match term [dep_ret type] with C ident; ... ident, => term’ end

Second destructuring let syntax

Another destructuring let syntax is available for inductive types with one constructor by giving an
arbitrary pattern instead of just a tuple for all the arguments. For example, the preceding example can
be written:

Cog < Definition fst (A B:Set) (p:AxB) := let 'pair x _ := p in x.
fst is defined

This is useful to match deeper inside tuples and also to use notations for the pattern, as the syntax
let "p := t in Db allows arbitrary patterns to do the deconstruction. For example:

Coq Reference Manual, V8.6.1, July 26, 2017



2.2 Variants and extensions of match 71

Coqg < Definition deep_tuple (A:Set) (x: (A*xA)x (A%xA)) : AxA*xAxA :=
let '"((a,b), (¢, d)) := x in (a,b,c,d).
deep_tuple is defined

Cog < Notation " x 'With' p " := (exist _ x p) (at level 20).

Identifier 'With' now a keyword

Coq < Definition projl_sig' (A:Set) (P:A->Prop) (t:{ x:A | P x }) : A :=
let 'x With p := t in x.

projl_sig' is defined

When printing definitions which are written using this construct it takes precedence over let print-
ing directives for the datatype under consideration (see Section 2.2.4).

2.2.4 Controlling pretty-printing of mat ch expressions

The following commands give some control over the pretty-printing of mat ch expressions.

Printing nested patterns

The Calculus of Inductive Constructions knows pattern-matching only over simple patterns. It is how-
ever convenient to re-factorize nested pattern-matching into a single pattern-matching over a nested
pattern. COQ’s printer try to do such limited re-factorization.

Set Printing Matching.
This tells COQ to try to use nested patterns. This is the default behavior.
Unset Printing Matching.

This tells COQ to print only simple pattern-matching problems in the same way as the COQ kernel
handles them.

Test Printing Matching.

This tells if the printing matching mode is on or off. The default is on.

Printing of wildcard pattern

Some variables in a pattern may not occur in the right-hand side of the pattern-matching clause. There
are options to control the display of these variables.

Set Printing Wildcard.

The variables having no occurrences in the right-hand side of the pattern-matching clause are just printed
using the wildcard symbol “_".

Unset Printing Wildcard.

vari , even u , i usi ir usu . Bu vari \,
The variables, even useless, are printed using their usual name. But some non dependent variables have
no name. These ones are still printed using a “_"".

Test Printing Wildcard.

This tells if the wildcard printing mode is on or off. The default is to print wildcard for useless variables.

Coq Reference Manual, V8.6.1, July 26, 2017



72 2 Extensions of GALLINA

Printing of the elimination predicate

In most of the cases, the type of the result of a matched term is mechanically synthesizable. Especially,
if the result type does not depend of the matched term.

Set Printing Synth.

The result type is not printed when COQ knows that it can re-synthesize it.

Unset Printing Synth.

This forces the result type to be always printed.

Test Printing Synth.

This tells if the non-printing of synthesizable types is on or off. The default is to not print synthesizable
types.

Printing matching on irrefutable pattern

If an inductive type has just one constructor, pattern-matching can be written using the first destructuring
let syntax.

Add Printing Let ident.

This adds ident to the list of inductive types for which pattern-matching is written using a 1et expres-
sion.

Remove Printing Let ident.

This removes ident from this list. Note that removing an inductive type from this list has an impact only
for pattern-matching written using mat ch. Pattern-matching explicitly written using a destructuring let
are not impacted.

Test Printing Let for ident.

This tells if ident belongs to the list.

Print Table Printing Let.

This prints the list of inductive types for which pattern-matching is written using a 1et expression.
The list of inductive types for which pattern-matching is written using a 1et expression is managed
synchronously. This means that it is sensible to the command Reset.

Coq Reference Manual, V8.6.1, July 26, 2017



2.2 Variants and extensions of match 73

Printing matching on booleans

If an inductive type is isomorphic to the boolean type, pattern-matching can be written using if ...
then..else ..

Add Printing If ident.

This adds ident to the list of inductive types for which pattern-matching is written using an i f expres-
sion.

Remove Printing If ident.
This removes ident from this list.
Test Printing If for ident.
This tells if ident belongs to the list.
Print Table Printing If.
This prints the list of inductive types for which pattern-matching is written using an i £ expression.

The list of inductive types for which pattern-matching is written using an i £ expression is managed
synchronously. This means that it is sensible to the command Reset.

Example

This example emphasizes what the printing options offer.

Cogq < Definition snd (A B:Set) (H:A » B) := match H with
| pair x y => vy
end.

snd 1s defined

Cog < Test Printing Let for prod.
Cases on elements of prod are printed using a “let' form

Cog < Print snd.

snd =

fun (A B : Set) (H : A x B) => let (_, y) := H in y
forall A B : Set, A B —> B

Argument scopes are [type_ scope type_scope _]

Cog < Remove Printing Let prod.

Cog < Unset Printing Synth.

A

Cog Unset Printing Wildcard.

A

Coq Print snd.
snd =
fun (A B : Set) (H : A % B) => match H return B with
I (%, y) =>Y¥
end
forall A B : Set, A B —> B

Argument scopes are [type_scope type_scope _]

Coq Reference Manual, V8.6.1, July 26, 2017



74 2 Extensions of GALLINA

2.3 Advanced recursive functions

The experimental command
Function ident binder;. . .binder, {decrease_annot} : typeg := termg

can be seen as a generalization of Fixpoint. It is actually a wrapper for several ways of defining
a function and other useful related objects, namely: an induction principle that reflects the recursive
structure of the function (see 8.5.5), and its fixpoint equality. The meaning of this declaration is to
define a function ident, similarly to Fixpoint. Like in Fixpoint, the decreasing argument must be
given (unless the function is not recursive), but it must not necessary be structurally decreasing. The
point of the { } annotation is to name the decreasing argument and to describe which kind of decreasing
criteria must be used to ensure termination of recursive calls.

The Function construction enjoys also the with extension to define mutually recursive defini-
tions. However, this feature does not work for non structural recursive functions.

See the documentation of functional induction (see Section 8.5.5) and Functional
Scheme (see Section 13.2 and 13.2) for how to use the induction principle to easily reason about the
function.

Remark: To obtain the right principle, it is better to put rigid parameters of the function as first
arguments. For example it is better to define plus like this:

Cogq < Function plus (m n : nat) {struct n} : nat :=
match n with
| 0 =>m
| S p =>3S (plus m p)
end.

than like this:

Cogq < Function plus (n m : nat) {struct n} : nat :=
match n with
| 0 =>m
| S p =>3S (plus p m)
end.

Limitations termg must be build as a pure pattern-matching tree (match. . .with) with applications
only at the end of each branch.

Function does not support partial application of the function being defined. Thus, the following
example cannot be accepted due to the presence of partial application of identwrong into the body of
identwrong :

Cog < Fail Function wrong (C:nat) : nat :=
List.hd 0 (List.map wrong (C::nil)).

For now dependent cases are not treated for non structurally terminating functions.

Error messages:
1. The recursive argument must be specified

2. No argument name ident

Coq Reference Manual, V8.6.1, July 26, 2017



2.3 Advanced recursive functions 75

3. Cannot use mutual definition with well-founded recursion or
measure
4. Cannot define graph for ident... (warning)

The generation of the graph relation (R_ident) used to compute the induction scheme of ident
raised a typing error. Only the ident is defined, the induction scheme will not be generated.

This error happens generally when:

* the definition uses pattern matching on dependent types, which Funct i on cannot deal with
yet.

* the definition is not a pattern-matching tree as explained above.

5. Cannot define principle(s) for ident... (warning)
The generation of the graph relation (R_ident) succeeded but the induction principle could not
be built. Only the ident is defined. Please report.

6. Cannot build functional inversion principle (wWarning)

functional inversion will not be available for the function.

See also: 13.2, 13.2,8.5.5
Depending on the {...} annotation, different definition mechanisms are used by Function. More
precise description given below.

Variants:

1. Function ident bindery. . .binder, : typeg := termg

Defines the not recursive function ident as if declared with Definition. Moreover the follow-
ing are defined:

* ident_rect, ident_rec and ident_ind, which reflect the pattern matching structure of
termg (see the documentation of Inductive 1.3.3);

* The inductive R_ident corresponding to the graph of ident (silently);

* ident_complete and ident_correct which are inversion information linking the func-
tion and its graph.

2. Function ident bindery. . .binder, {struct identy} : typeg := termg

Defines the structural recursive function ident as if declared with Fixpoint. Moreover the
following are defined:

* The same objects as above;

* The fixpoint equation of ident: ident_equation.

3. Function ident binder;. . .binder, {measure term; identy} : ‘typeg := termy

4. Function ident binder;. . .binder,, {wf term; identy} : typegy := termg

Defines a recursive function by well founded recursion. The module Recdef of the standard
library must be loaded for this feature. The { } annotation is mandatory and must be one of the
following:

Coq Reference Manual, V8.6.1, July 26, 2017



76 2 Extensions of GALLINA

* {measure term; identy} with identy being the decreasing argument and term; being a
function from type of identy to nat for which value on the decreasing argument decreases
(for the 1t order on nat) at each recursive call of termg, parameters of the function are
bound in termy;

* {wf term; identy} with identy being the decreasing argument and term; an ordering rela-
tion on the type of identg (i.e. of type Tident, — Tident, — Prop) for which the decreasing
argument decreases at each recursive call of termg. The order must be well founded. param-
eters of the function are bound in termy.

Depending on the annotation, the user is left with some proof obligations that will be used to
define the function. These proofs are: proofs that each recursive call is actually decreasing with
respect to the given criteria, and (if the criteria is wf) a proof that the ordering relation is well
founded.

Once proof obligations are discharged, the following objects are defined:

* The same objects as with the st ruct;
* The lemma ident__t cc which collects all proof obligations in one property;

e The lemmas ident_terminate and ident_F which is needed to be inlined during extrac-
tion of ident.

The way this recursive function is defined is the subject of several papers by Yves Bertot and
Antonia Balaa on the one hand, and Gilles Barthe, Julien Forest, David Pichardie, and Vlad Rusu
on the other hand.

Remark: Proof obligations are presented as several subgoals belonging to a Lemma ident_tcc.

2.4 Section mechanism

The sectioning mechanism can be used to to organize a proof in structured sections. Then local declara-
tions become available (see Section 1.3.2).

2.4.1 Section ident

This command is used to open a section named ident.

2.4.2 End ident

This command closes the section named ident. After closing of the section, the local declarations
(variables and local definitions) get discharged, meaning that they stop being visible and that all global
objects defined in the section are generalized with respect to the variables and local definitions they each

depended on in the section.
Here is an example :

Cog < Section sl.

Cogq < Variables x y : nat.
x 1s declared
y 1s declared

Coq Reference Manual, V8.6.1, July 26, 2017



2.5 Module system 77

Cog < Let y' :=y.
y' is defined

Cog < Definition x' := S x.

r

x' is defined

Coqg < Definition x'' := x
x''" is defined

Cog < Print x'.
x!' = S5 x
nat

Cog < End sl.

Cog < Print x'.
x' = fun x : nat => S x
nat -> nat
Argument scope 1s [nat_scope]

Cog < Print x''.
x''" = fun x y : nat => let y' =y in x' x + y'
nat —-> nat -> nat
Argument scopes are [nat_scope nat_scope]
Notice the difference between the value of x’ and x” inside section s1 and outside.
Error messages:

1. This is not the last opened section

Remarks:

1. Most commands, like Hint, Notation, option management, ... which appear inside a section
are canceled when the section is closed.

2.5 Module system

The module system provides a way of packaging related elements together, as well as a means of massive
abstraction.

In the syntax of module application, the ! prefix indicates that any Inline directive in the type of
the functor arguments will be ignored (see 2.5.4 below).

2.5.1 Module ident
This command is used to start an interactive module named ident.

Variants:

1. Module ident module_bindings

Starts an interactive functor with parameters given by module_bindings.

2. Module ident : module_type

Starts an interactive module specifying its module type.

Coq Reference Manual, V8.6.1, July 26, 2017



78 2 Extensions of GALLINA

module_type = qualid
|  module_type with Definition qualid := term
|  module_type with Module qualid := qualid
|  qualid qualid ... qualid
| lqualid qualid ... qualid

module_binding := ( [Import|Export] ident ... ident : module_type )
module_bindings ::= module_binding ... module_binding
module_expression = qualid ... qualid

| lqualid ... qualid

Figure 2.3: Syntax of modules

3. Module ident module_bindings : module_type
Starts an interactive functor with parameters given by module_bindings, and output module type
module_type.

4. Module ident <: module_type; <: ... <: module_type,

Starts an interactive module satisfying each module_type;.

5. Module ident module_bindings <: module_type; <: ... <: module_type,
Starts an interactive functor with parameters given by module_bindings. The output module type
is verified against each module type module_type;.

6. Module [Import |Export]

Behaves like Module, but automatically imports or exports the module.

Reserved commands inside an interactive module:

1. Include module

Includes the content of module in the current interactive module. Here module can be a mod-
ule expression or a module type expression. If module is a high-order module or module type
expression then the system tries to instantiate module by the current interactive module.

2. Include module; <+ ... <+ module,

is a shortcut for Include module; ... Include module,,

2.5.2 End ident

This command closes the interactive module ident. If the module type was given the content of the
module is matched against it and an error is signaled if the matching fails. If the module is basic (is not
a functor) its components (constants, inductive types, submodules etc) are now available through the dot
notation.

Error messages:

Coq Reference Manual, V8.6.1, July 26, 2017




2.5 Module system 79

1. No such label ident
2. Signature components for label ident do not match

3. This is not the last opened module

2.5.3 Module ident := module_expression
This command defines the module identifier ident to be equal to module_expression.
Variants:

1. Module ident module_bindings := module_expression

Defines a functor with parameters given by module_bindings and body module_expression.

2. Module ident module_bindings : module_type := module_expression

Defines a functor with parameters given by module_bindings (possibly none), and output module
type module_type, with body module_expression.

3. Module ident module_bindings <: module type; <: ... <: module_typey,:= mod-
ule_expression

Defines a functor with parameters given by module_bindings (possibly none) with body mod-
ule_expression. The body is checked against each module_type;.

4. Module ident module_bindings := module_expression; <+ ... <+ mod-
ule_expression,,

is equivalent to an interactive module where each module_expression; are included.

254 Module Type ident
This command is used to start an interactive module type ident.
Variants:

1. Module Type ident module_bindings

Starts an interactive functor type with parameters given by module_bindings.

Reserved commands inside an interactive module type:
1. Include module

Same as Include inside a module.

2. Include module; <+ ... <+ module,

is a shortcut for Include module; ... Include module,,

3. assumption_keyword Inline assums

The instance of this assumption will be automatically expanded at functor application, except
when this functor application is prefixed by a ! annotation.

Coq Reference Manual, V8.6.1, July 26, 2017



80 2 Extensions of GALLINA

2.5.5 End ident

This command closes the interactive module type ident.
Error messages:

1. This is not the last opened module type

2.5.6 Module Type ident := module_type

Defines a module type ident equal to module_type.
Variants:
1. Module Type ident module_bindings := module_type
Defines a functor type ident specifying functors taking arguments module_bindings and returning
module_type.
2. Module Type ident module_bindings := module_type; <+ ... <+ module_type,

is equivalent to an interactive module type were each module_type; are included.

2.5.7 Declare Module ident : module_type

Declares a module ident of type module_type.
Variants:

1. Declare Module ident module_bindings : module_type

Declares a functor with parameters module_bindings and output module type module_type.

Example

Let us define a simple module.

Cog < Module M.
Interactive Module M started

Coqg < Definition T := nat.
T is defined

Cogq < Definition x := 0.
x 1s defined

Coqg < Definition y : bool.
1 subgoal

Cog < exact true.
No more subgoals.

Cog < Defined.
exact true.
Defined.

y 1s defined

Cog < End M.
Module M is defined

Coq Reference Manual, V8.6.1, July 26, 2017



2.5 Module system 81

Inside a module one can define constants, prove theorems and do any other things that can be done in
the toplevel. Components of a closed module can be accessed using the dot notation:

Coqg < Print M.x.
M.x =0
: nat

A simple module type:

Cog < Module Type SIG.
Interactive Module Type SIG started

Cog < Parameter T : Set.
T is declared

Cog < Parameter x : T.
x 1s declared

Cog < End SIG.
Module Type SIG is defined

Now we can create a new module from M, giving it a less precise specification: the y component is
dropped as well as the body of x.

Cog < Module N : SIG with Definition T := nat := M.
Module N is defined

Coqg < Print N.T.
N.T = nat
Set

Cog < Print N.x.
4+ [ N.x : N.T ]

Cog < Fail Print N.y.
The command has indeed failed with message:
Error: N.y not a defined object.

The definition of N using the module type expression SIG with Definition T:=nat isequiva-
lent to the following one:

Cog < Module Type SIG'.

Coqg < Definition T : Set := nat.
Cog < Parameter x : T.

Cog < End SIG'.

Cog < Module N : SIG' := M.

If we just want to be sure that the our implementation satisfies a given module type without restricting
the interface, we can use a transparent constraint

Cog < Module P <: SIG := M.
Module P is defined

Cog < Print P.y.
P.y = true
: bool

Coq Reference Manual, V8.6.1, July 26, 2017



82 2 Extensions of GALLINA

Now let us create a functor, i.e. a parametric module

Cog < Module Two (X Y: SIG).
Interactive Module Two started

Coqg < Definition T (X.T = Y.T) Stype.
Coqg < Definition x := (X.x, Y.x).

Cog < End Two.
Module Two is defined

and apply it to our modules and do some computations

Cog < Module Q := Two M N.
Module Q is defined

Cog < Eval compute in (fst Q.x + snd Q.x).
= N.x
: nat

In the end, let us define a module type with two sub-modules, sharing some of the fields and give one of
its possible implementations:

Cog < Module Type SIG2.
Interactive Module Type SIG2 started

Coqg < Declare Module M1 : SIG.
Module M1 is declared

Cog < Module M2 <: SIG.
Interactive Module M2 started

Coqg < Definition T := M1.T.
T is defined

Cog < Parameter x : T.
x 1s declared

Cogq < End M2.
Module M2 is defined

Cogq < End SIG2.
Module Type SIG2 is defined

Cog < Module Mod <: SIG2.
Cog < Module M1.

Coqg < Definition T := nat.

I
-

Coqg < Definition x
Cog < End M1.
Cogq < Module M2 := M.

Cog < End Mod.
Module Mod is defined

Notice that M is a correct body for the component M2 since its T component is equal nat and hence
M1.T as specified.

Remarks:

Coq Reference Manual, V8.6.1, July 26, 2017



2.5 Module system 83

1.

Modules and module types can be nested components of each other.

2. One can have sections inside a module or a module type, but not a module or a module type inside

a section.

. Commands like Hint or Notation can also appear inside modules and module types. Note

that in case of a module definition like:

Module N : SIG := M.

or

Module N : SIG.

End N.

hints and the like valid for N are not those defined in M (or the module body) but the ones defined
in SIG.

2.5.8 Import qualid

If qualid denotes a valid basic module (i.e. its module type is a signature), makes its components
available by their short names.
Example:

Coqg

< Module Mod.

Interactive Module Mod started

Coqg

< Definition T:=nat.

T is defined

Coqg
T

Coqg

< Check T.

Set

< End Mod.

Module Mod is defined

Coqg

Mod.

Coqg
The
The

Coqg

Coqg
T

< Check Mod.T.
T
Set

< Fail Check T. (* Incorrect! =)
command has indeed failed with message:
reference T was not found in the current environment.

< Import Mod.

< Check T. (*» Now correct =)

Set

Some features defined in modules are activated only when a module is imported. This is for instance
the case of notations (see Section 12.1).

Declarations made with the Local flag are never imported by the Import command. Such decla-
rations are only accessible through their fully qualified name.

Example:

Coq Reference Manual, V8.6.1, July 26, 2017



84 2 Extensions of GALLINA

Cog < Module A.
Interactive Module A started

Cog < Module B.
Interactive Module B started

Cogq < Local Definition T := nat.
T is defined

Cog < End B.
Module B is defined

Cog < End A.
Module A is defined

Cog < Import A.

Cog < Fail Check B.T.
The command has indeed failed with message:
The reference B.T was not found in the current environment.

Variants:

1. Export qualid

When the module containing the command Export qualid is imported, qualid is imported as
well.

Error messages:

1. qualid is not a module

Warnings:

1. Trying to mask the absolute name qualid !

259 Print Module ident

Prints the module type and (optionally) the body of the module ident.

2.5.10 Print Module Type ident

Prints the module type corresponding to ident.

2.5.11 Locate Module qualid

Prints the full name of the module qualid.

Coq Reference Manual, V8.6.1, July 26, 2017



2.6 Libraries and qualified names 85

2.6 Libraries and qualified names

2.6.1 Names of libraries

The theories developed in COQ are stored in library files which are hierarchically classified into libraries
and sublibraries. To express this hierarchy, library names are represented by qualified identifiers qualid,
i.e. as list of identifiers separated by dots (see Section 1.2.3). For instance, the library file Mult of
the standard COQ library Arith is named Cog.Arith.Mult. The identifier that starts the name of a
library is called a library root. All library files of the standard library of COQ have the reserved root Coq
but library file names based on other roots can be obtained by using COQ commands (cogc, cogtop,
coqgdep, ...) options —Q or —R (see Section 14.3.3). Also, when an interactive COQ session starts, a
library of root Top is started, unless option —t op or —notop is set (see Section 14.3.3).

2.6.2 Qualified names

Library files are modules which possibly contain submodules which eventually contain constructions
(axioms, parameters, definitions, lemmas, theorems, remarks or facts). The absolute name, or full name,
of a construction in some library file is a qualified identifier starting with the logical name of the li-
brary file, followed by the sequence of submodules names encapsulating the construction and ended by
the proper name of the construction. Typically, the absolute name Cog.Init.Logic.eq denotes
Leibniz’ equality defined in the module Logic in the sublibrary Init of the standard library of COQ.

The proper name that ends the name of a construction is the short name (or sometimes base name)
of the construction (for instance, the short name of Cog.Init.Logic.eqis eqg). Any partial suffix
of the absolute name is a partially qualified name (e.g. Logic.eq is a partially qualified name for
Cog.Init.Logic.eq). Especially, the short name of a construction is its shortest partially qualified
name.

CoQ does not accept two constructions (definition, theorem, ...) with the same absolute name but
different constructions can have the same short name (or even same partially qualified names as soon as
the full names are different).

Notice that the notion of absolute, partially qualified and short names also applies to library file
names.

Visibility Co0Q maintains a table called name table which maps partially qualified names of construc-
tions to absolute names. This table is updated by the commands Require (see 6.5.1), Import and
Export (see 2.5.8) and also each time a new declaration is added to the context. An absolute name is
called visible from a given short or partially qualified name when this latter name is enough to denote
it. This means that the short or partially qualified name is mapped to the absolute name in COQ name
table. Definitions flagged as Local are only accessible with their fully qualified name (see 1.3.2).

It may happen that a visible name is hidden by the short name or a qualified name of another con-
struction. In this case, the name that has been hidden must be referred to using one more level of
qualification. To ensure that a construction always remains accessible, absolute names can never be
hidden.

Examples:

Cog < Check 0.
0
: nat

Coqg < Definition nat bool.

Coq Reference Manual, V8.6.1, July 26, 2017



86 2 Extensions of GALLINA

nat 1is defined

Cog < Check 0.
0
: Datatypes.nat

Cog < Check Datatypes.nat.
Datatypes.nat
Set

Cogq < Locate nat.
Constant Top.nat
Inductive Coqg.Init.Datatypes.nat
(shorter name to refer to it in current context 1is Datatypes.nat)

See also: Command Locate in Section 6.3.10 and Locate Library in Section 6.6.11.

2.6.3 Libraries and filesystem

Please note that the questions described here have been subject to redesign in Coq v8.5. Former versions
of Coq use the same terminology to describe slightly different things.

Compiled files (.vo and .vio) store sub-libraries. In order to refer to them inside COQ, a transla-
tion from file-system names to COQ names is needed. In this translation, names in the file system are
called physical paths while COQ names are contrastingly called /ogical names.

A logical prefix Lib can be associated to a physical path path using the command line option —Q
path Lib. All subfolders of path are recursively associated to the logical path Lib extended with
the corresponding suffix coming from the physical path. For instance, the folder path/f00/Bar
maps to Lib. f00.Bar. Subdirectories corresponding to invalid COQ identifiers are skipped, and, by
convention, subdirectories named CVS or _darcs are skipped too.

Thanks to this mechanism, .vo files are made available through the logical name of the folder
they are in, extended with their own basename. For example, the name associated to the file
path/f00/Bar/File.vo is Lib.f00.Bar.File. The same caveat applies for invalid identi-
fiers. When compiling a source file, the . vo file stores its logical name, so that an error is issued if it is
loaded with the wrong loadpath afterwards.

Some folders have a special status and are automatically put in the path. COQ commands
associate automatically a logical path to files in the repository trees rooted at the directory from
where the command is launched, coglib/user—contrib/, the directories listed in the SCOQPATH,
${XDG_DATA_HOME}/coq/ and $ {XDG_DATA_DIRS}/coqg/ environment variables (see http:
//standards.freedesktop.org/basedir-spec/basedir-spec—latest.html)
with the same physical-to-logical translation and with an empty logical prefix.

The command line option —R is a variant of —Q which has the strictly same behavior regarding
loadpaths, but which also makes the corresponding . vo files available through their short names in a
way not unlike the Import command (see 2.5.8). For instance, —R path Lib associates to the file
path/f00/Bar/File.vo the logical name Lib.f00.Bar.File, but allows this file to be ac-
cessed through the short names fOO0.Bar.File,Bar.File and File. If several files with identical
base name are present in different subdirectories of a recursive loadpath, which of these files is found
first may be system-dependent and explicit qualification is recommended. The From argument of the
Require command can be used to bypass the implicit shortening by providing an absolute root to the
required file (see 6.5.1).

Coq Reference Manual, V8.6.1, July 26, 2017


http://standards.freedesktop.org/basedir-spec/basedir-spec-latest.html
http://standards.freedesktop.org/basedir-spec/basedir-spec-latest.html

2.7 Implicit arguments 87

There also exists another independent loadpath mechanism attached to OBJECTIVE CAML object
files (. cmo or . cmxs) rather than COQ object files as described above. The OBJECTIVE CAML load-
path is managed using the option —I path (in the OBJECTIVE CAML world, there is neither a notion
of logical name prefix nor a way to access files in subdirectories of path). See the command Declare
ML Module in Section 6.5 to understand the need of the OBJECTIVE CAML loadpath.

See Section 14.3.3 for a more general view over the COQ command line options.

2.7 Implicit arguments

An implicit argument of a function is an argument which can be inferred from contextual knowledge.
There are different kinds of implicit arguments that can be considered implicit in different ways. There
are also various commands to control the setting or the inference of implicit arguments.

2.7.1 The different kinds of implicit arguments
Implicit arguments inferable from the knowledge of other arguments of a function

The first kind of implicit arguments covers the arguments that are inferable from the knowledge of the
type of other arguments of the function, or of the type of the surrounding context of the application.
Especially, such implicit arguments correspond to parameters dependent in the type of the function.
Typical implicit arguments are the type arguments in polymorphic functions. There are several kinds of
such implicit arguments.

Strict Implicit Arguments. An implicit argument can be either strict or non strict. An implicit ar-
gument is said strict if, whatever the other arguments of the function are, it is still inferable from the
type of some other argument. Technically, an implicit argument is strict if it corresponds to a parameter
which is not applied to a variable which itself is another parameter of the function (since this parameter
may erase its arguments), not in the body of a mat ch, and not itself applied or matched against patterns
(since the original form of the argument can be lost by reduction).

For instance, the first argument of

cons: forall A:Set, A —-> list A -> list A

in module List . v is strict because 1ist is an inductive type and A will always be inferable from the
type 1ist A of the third argument of cons. On the contrary, the second argument of a term of type

forall P:nat->Prop, forall n:nat, P n —-> ex nat P

is implicit but not strict, since it can only be inferred from the type P n of the third argument and
if P is, e.g.,, fun _ => True, it reduces to an expression where n does not occur any longer. The
first argument P is implicit but not strict either because it can only be inferred from P n and P is not
canonically inferable from an arbitrary n and the normal form of P n (consider e.g. that n is 0 and the
third argument has type True, then any P of the form fun n => match n with 0 => True |
_ => anything end would be a solution of the inference problem).

Contextual Implicit Arguments. An implicit argument can be contextual or not. An implicit argu-
ment is said contextual if it can be inferred only from the knowledge of the type of the context of the
current expression. For instance, the only argument of

Coq Reference Manual, V8.6.1, July 26, 2017



88 2 Extensions of GALLINA

nil : forall A:Set, list A
is contextual. Similarly, both arguments of a term of type
forall P:nat->Prop, forall n:nat, Pn \/ n =0

are contextual (moreover, n is strict and P is not).

Reversible-Pattern Implicit Arguments. There is another class of implicit arguments that can be
reinferred unambiguously if all the types of the remaining arguments are known. This is the class of
implicit arguments occurring in the type of another argument in position of reversible pattern, which
means it is at the head of an application but applied only to uninstantiated distinct variables. Such an
implicit argument is called reversible-pattern implicit argument. A typical example is the argument P of
nat_recin

nat_rec : forall P : nat —> Set, P 0 -> (forall n : nat, P
n ->P (S n)) —> forall x : nat, P x.

(P is reinferable by abstracting over n in the type P n).
See Section 2.7.9 for the automatic declaration of reversible-pattern implicit arguments.

Implicit arguments inferable by resolution

This corresponds to a class of non dependent implicit arguments that are solved based on the structure
of their type only.

2.7.2 Maximal or non maximal insertion of implicit arguments

In case a function is partially applied, and the next argument to be applied is an implicit argument, two
disciplines are applicable. In the first case, the function is considered to have no arguments furtherly: one
says that the implicit argument is not maximally inserted. In the second case, the function is considered
to be implicitly applied to the implicit arguments it is waiting for: one says that the implicit argument is
maximally inserted.

Each implicit argument can be declared to have to be inserted maximally or non maximally. This can
be governed argument per argument by the command Implicit Arguments (see 2.7.4) or globally
by the command Set Maximal Implicit Insertion (see2.7.10). See also Section 2.7.13.

2.7.3 Casual use of implicit arguments

In a given expression, if it is clear that some argument of a function can be inferred from the type of the
other arguments, the user can force the given argument to be guessed by replacing it by “_". If possible,
the correct argument will be automatically generated.

Error messages:

1. Cannot infer a term for this placeholder

[T3E ]

Co0Q was not able to deduce an instantiation of a

Coq Reference Manual, V8.6.1, July 26, 2017



2.7 Implicit arguments 89

2.7.4 Declaration of implicit arguments

In case one wants that some arguments of a given object (constant, inductive types, constructors, as-
sumptions, local or not) are always inferred by Coq, one may declare once and for all which are the
expected implicit arguments of this object. There are two ways to do this, a priori and a posteriori.

Implicit Argument Binders

In the first setting, one wants to explicitly give the implicit arguments of a declared object as part of its
definition. To do this, one has to surround the bindings of implicit arguments by curly braces:

Cog < Definition id {A : Type} (x : A) : A := Xx.
id is defined

This automatically declares the argument A of id as a maximally inserted implicit argument. One
can then do as-if the argument was absent in every situation but still be able to specify it if needed:

Coqg < Definition compose {A B C} (g : B ->C) (£ : A —> B) :=
fun x => g (f x).
compose 1is defined

Coqg < Goal forall A, compose id id = id (A:=A).
1 subgoal

forall A : Type, compose id id = id

The syntax is supported in all top-level definitions: Definition, Fixpoint, Lemma and so
on. For (co-)inductive datatype declarations, the semantics are the following: an inductive parameter
declared as an implicit argument need not be repeated in the inductive definition but will become implicit
for the constructors of the inductive only, not the inductive type itself. For example:

Cog < Inductive list {A : Type} : Type :=
| nil : 1list
| cons : A -> list —-> list.

list is defined

list_rect is defined

list_ind is defined

list_rec is defined

Cog < Print list.

Inductive 1ist (A : Type) : Type := nil : list | cons : A —-> 1ist —-> 1list
For list: Argument A is implicit and maximally inserted

For nil: Argument A is implicit and maximally inserted

For cons: Argument A is implicit and maximally inserted

For list: Argument scope 1is [type_ scope]

For nil: Argument scope 1s [type_scope]

For cons: Argument scopes are [type_scope _ _]

One can always specify the parameter if it is not uniform using the usual implicit arguments disam-
biguation syntax.

Coq Reference Manual, V8.6.1, July 26, 2017



90 2 Extensions of GALLINA

Declaring Implicit Arguments
To set implicit arguments a posteriori, one can use the command:
Arguments qualid possibly_bracketed ident ... possibly_bracketed ident

where the list of possibly_bracketed_ident is a prefix of the list of arguments of qualid where the ones to
be declared implicit are surrounded by square brackets and the ones to be declared as maximally inserted
implicits are surrounded by curly braces.

After the above declaration is issued, implicit arguments can just (and have to) be skipped in any
expression involving an application of qualid.

Implicit arguments can be cleared with the following syntax:

Arguments qualid : clear implicits
Variants:
1. Global Arguments qualid possibly_bracketed_ident ... possibly_bracketed_ident

Tell to recompute the implicit arguments of qualid after ending of the current section if any,
enforcing the implicit arguments known from inside the section to be the ones declared by the
command.

2. Local Arguments qualid possibly_bracketed_ident ... possibly bracketed_ident

When in a module, tell not to activate the implicit arguments of qualid declared by this command
to contexts that require the module.

3. [Global | Local] Arguments qualid [possibly_bracketed_ident ... possi-
bly_bracketed_ident , ... , possibly_bracketed ident ... possibly_bracketed_ident]

For names of constants, inductive types, constructors, lemmas which can only be applied to a fixed
number of arguments (this excludes for instance constants whose type is polymorphic), multiple
implicit arguments decflarations can be given. Depending on the number of arguments qualid is
applied to in practice, the longest applicable list of implicit arguments is used to select which
implicit arguments are inserted.

For printing, the omitted arguments are the ones of the longest list of implicit arguments of the
sequence.

Example:

Cog < Inductive list (A:Type) : Type :=
| nil : list A
| cons : A -> list A -> list A.

Cog < Check (cons nat 3 (nil nat)).

cons nat 3 (nil nat)
list nat

Cog < Arguments cons [A] _ _

Coqg < Arguments nil [A].

Cog < Check (cons 3 nil).
cons 3 nil

Coq Reference Manual, V8.6.1, July 26, 2017



2.7 Implicit arguments 91

list nat
Cog < Fixpoint map (A B:Type) (f:A->B) (l:1list A) : list B :=
match 1 with nil => nil | cons a t => cons (f a) (map A B f t) end.

map 1s defined
map 1s recursively defined (decreasing on 4th argument)

Cog < Fixpoint length (A:Type) (l:1ist A) : nat :=

match 1 with nil => 0 | cons _ m => S (length A m) end.
length is defined
length is recursively defined (decreasing on 2nd argument)

Cogq < Arguments map [A B] f 1.
Coqg < Arguments length {A} 1. (x A has to be maximally inserted x)

Cog < Check (fun 1l:1list (list nat) => map length 1).
fun 1 : 1list (list nat) => map length 1
list (list nat) —-> 1ist nat

Cog < Arguments map [A B] £ 1, [A] B f£f 1, A B f 1.

A

Coqg
fun

Check (fun 1 => map length 1 = map (list nat) nat length 1).
list (list nat) => map length 1 = map length 1
list (list nat) —-> Prop

I~

Remark: To know which are the implicit arguments of an object, use the command Print Implicit
(see 2.7.13).

2.7.5 Automatic declaration of implicit arguments

Co0Q can also automatically detect what are the implicit arguments of a defined object. The command is
just
Arguments qualid : default implicits

The auto-detection is governed by options telling if strict, contextual, or reversible-pattern implicit ar-
guments must be considered or not (see Sections 2.7.7, 2.7.8, 2.7.9 and also 2.7.10).

Variants:
1. Global Arguments qualid : default implicits
Tell to recompute the implicit arguments of qualid after ending of the current section if any.

2. Local Arguments qualid : default implicits

When in a module, tell not to activate the implicit arguments of qualid computed by this declara-
tion to contexts that requires the module.

Example:
Cog < Inductive list (A:Set) : Set :=

| nil : list A

| cons : A -> list A -> list A.
Cog < Arguments cons : default implicits.

Cog < Print Implicit cons.

Coq Reference Manual, V8.6.1, July 26, 2017



92 2 Extensions of GALLINA

cons : forall A : Set, A —> list A —-> 1ist A
Argument A is implicit

Cog < Arguments nil : default implicits.

Cog < Print Implicit nil.
nil : forall A : Set, 1list A

Cog < Set Contextual Implicit.
Cog < Arguments nil : default implicits.

Cogq < Print Implicit nil.
nil : forall A : Set, list A
Argument A is implicit and maximally inserted

The computation of implicit arguments takes account of the unfolding of constants. For instance,
the variable p below has type (Transitivity R) which is reducible to forall x,y:U, R x
y —> forall z:U, Ry z -> R x z. As the variables x, y and z appear strictly in body of
the type, they are implicit.

A

Coq Variable X : Type.
Cogq < Definition Relation := X -> X -> Prop.

Cogq < Definition Transitivity (R:Relation) :=
forall x y:X, R x y —> forall z:X, Ry z —> R x z.

Cog < Variables (R : Relation) (p : Transitivity R).
Cog < Arguments p : default implicits.

Cog < Print p.

%% [ p : Transitivity R ]

Expanded type for implicit arguments

p : forall xy : X, Rx y —> forall z : X, Ry z -> R x z
Arguments X, y, z are implicit

Cog < Print Implicit p.
p : forall xy : X, Rx y —-> forall z : X, Ry z -> R x z
Arguments x, y, z are implicit

Cog < Variables (a b c : X) (rl : Rab) (r2 : R b c).
Cog < Check (p rl r2).
p rl r2

R a c

2.7.6 Mode for automatic declaration of implicit arguments

In case one wants to systematically declare implicit the arguments detectable as such, one may switch
to the automatic declaration of implicit arguments mode by using the command

Set Implicit Arguments.

Conversely, one may unset the mode by using Unset Implicit Arguments. The mode is off
by default. Auto-detection of implicit arguments is governed by options controlling whether strict and
contextual implicit arguments have to be considered or not.

Coq Reference Manual, V8.6.1, July 26, 2017



2.7 Implicit arguments 93

2.7.7 Controlling strict implicit arguments

When the mode for automatic declaration of implicit arguments is on, the default is to automatically
set implicit only the strict implicit arguments plus, for historical reasons, a small subset of the non
strict implicit arguments. To relax this constraint and to set implicit all non strict implicit arguments by
default, use the command

Unset Strict Implicit.

Conversely, use the command Set Strict Implicit to restore the original mode that declares
implicit only the strict implicit arguments plus a small subset of the non strict implicit arguments.

In the other way round, to capture exactly the strict implicit arguments and no more than the strict
implicit arguments, use the command:

Set Strongly Strict Implicit.

Conversely, use the command Unset Strongly Strict Implicit to letthe option “Strict
Implicit” decide what to do.

Remark: In versions of COQ prior to version 8.0, the default was to declare the strict implicit arguments
as implicit.
2.7.8 Controlling contextual implicit arguments

By default, COQ does not automatically set implicit the contextual implicit arguments. To tell COQ to
infer also contextual implicit argument, use command

Set Contextual Implicit.

Conversely, use command Unset Contextual Implicit to unsetthe contextual implicit mode.

2.7.9 Controlling reversible-pattern implicit arguments

By default, CoQ does not automatically set implicit the reversible-pattern implicit arguments. To tell
CoqQ to infer also reversible-pattern implicit argument, use command

Set Reversible Pattern Implicit.
Conversely, use command Unset Reversible Pattern Implicit to unset the reversible-
pattern implicit mode.
2.7.10 Controlling the insertion of implicit arguments not followed by explicit argu-
ments

Implicit arguments can be declared to be automatically inserted when a function is partially applied and
the next argument of the function is an implicit one. In case the implicit arguments are automatically
declared (with the command Set Implicit Arguments), the command

Set Maximal Implicit Insertion.

is used to tell to declare the implicit arguments with a maximal insertion status. By default, automatically
declared implicit arguments are not declared to be insertable maximally. To restore the default mode for
maximal insertion, use command Unset Maximal Implicit Insertion.

Coq Reference Manual, V8.6.1, July 26, 2017



94

2 Extensions of GALLINA

term ++= @ qualid term ...

| @ qualid

| qualid argument ...
argument =  term

| (ident : =term)

term

argument

Figure 2.4: Syntax for explicitly giving implicit arguments

2.7.11 Explicit applications

In presence of non strict or contextual argument, or in presence of partial applications, the synthesis
of implicit arguments may fail, so one may have to give explicitly certain implicit arguments of an
application. The syntax for this is (ident :=term) where ident is the name of the implicit argument and
term is its corresponding explicit term. Alternatively, one can locally deactivate the hiding of implicit
arguments of a function by using the notation @qualid term; . .term,. This syntax extension is given

Figure 2.4.
Example (continued):

Cog < Check
p rl (z:=c)
: Rbc ->Rac

(p rl (z:=c)).

Cog < Check (p
p rl r2
: R ac

(x:=a) (y:=b) rl (z:=c) r2).

2.7.12 Renaming implicit arguments

Implicit arguments names can be redefined using the following syntax:

Arguments qualid name name

rename

With the assert flag, Arguments can be used to assert that a given object has the expected
number of arguments and that these arguments are named as expected.

Example (continued):

Cogq < Arguments p [s t] _ [u] rename.

Cog < Check
p rl (u:=c)
: Rbc ->Rac

(p rl (u:=c)).

Cog < Check (p (s:=a) (t:=b) rl (u:=c) r2).
p rl r2
: R ac
Cog < Fail Arguments p [s t] _ [w] assert.

The command has indeed failed with message:
Error: To rename arguments the
Argument u renamed to w.

Coq Reference Manual, V8.6.1, July 26, 2017

"rename" flag must be specified.




2.7 Implicit arguments 95

2.7.13 Displaying what the implicit arguments are

To display the implicit arguments associated to an object, and to know if each of them is to be used
maximally or not, use the command

Print Implicit qualid.

2.7.14 Explicit displaying of implicit arguments for pretty-printing

By default the basic pretty-printing rules hide the inferable implicit arguments of an application. To
force printing all implicit arguments, use command

Set Printing Implicit.
Conversely, to restore the hiding of implicit arguments, use command
Unset Printing Implicit.

By default the basic pretty-printing rules display the implicit arguments that are not detected as strict
implicit arguments. This “defensive” mode can quickly make the display cumbersome so this can be
deactivated by using the command

Unset Printing Implicit Defensive.
Conversely, to force the display of non strict arguments, use command

Set Printing Implicit Defensive.
See also: Set Printing All in Section 2.9.

2.7.15 Interaction with subtyping

When an implicit argument can be inferred from the type of more than one of the other arguments, then
only the type of the first of these arguments is taken into account, and not an upper type of all of them.
As a consequence, the inference of the implicit argument of “=" fails in

Cog < Fail Check nat = Prop.
but succeeds in

Cog < Check Prop = nat.

2.7.16 Deactivation of implicit arguments for parsing

Use of implicit arguments can be deactivated by issuing the command:
Set Parsing Explicit.

In this case, all arguments of constants, inductive types, constructors, etc, including the arguments
declared as implicit, have to be given as if none arguments were implicit. By symmetry, this also affects
printing. To restore parsing and normal printing of implicit arguments, use:

Set Parsing Explicit.

Coq Reference Manual, V8.6.1, July 26, 2017



96 2 Extensions of GALLINA

2.7.17 Canonical structures

A canonical structure is an instance of a record/structure type that can be used to solve unification
problems involving a projection applied to an unknown structure instance (an implicit argument) and
a value. The complete documentation of canonical structures can be found in Chapter 19, here only a
simple example is given.

Assume that qualid denotes an object (Build_struc ¢1 ... ¢,) in the structure struct of which the
fields are z, ..., ;. Assume that qualid is declared as a canonical structure using the command

Canonical Structure qualid.

Then, each time an equation of the form (x; _) =gas,¢ ¢; has to be solved during the type-checking
process, qualid is used as a solution. Otherwise said, qualid is canonically used to extend the field ¢;

into a complete structure built on c;.
Canonical structures are particularly useful when mixed with coercions and strict implicit arguments.
Here is an example.

Cog < Require Import Relations.
Cog < Require Import EgNat.

Cog < Set Implicit Arguments.
Cog < Unset Strict Implicit.

Cog < Structure Setoid : Type :=
{Carrier :> Set;
Equal : relation Carrier;
Prf_equiv : equivalence Carrier Equal}.

Cogq < Definition is_law (A B:Setoid) (f:A -> B) :=
forall x y:A, Equal x y —> Equal (f x) (f y).

Cog < Axiom eqg_nat_equiv : equivalence nat eq_nat.
Cogq < Definition nat_setoid : Setoid := Build_Setoid eqg_nat_equiv.
Cog < Canonical Structure nat_setoid.

Thanks to nat_setoid declared as canonical, the implicit arguments A and B can be synthesized
in the next statement.

Cog < Lemma is_law_S : is_law S.
1 subgoal

is _law (A:=nat_setoid) (B:=nat_setoid) S

Remark: If a same field occurs in several canonical structure, then only the structure declared first as
canonical is considered.

Variants:
1. Canonical Structure ident := term : type.
Canonical Structure ident := term.
Canonical Structure ident : type := term.

These are equivalent to a regular definition of ident followed by the declaration

Canonical Structure ident.

See also: more examples in user contribution category (Rocq/ALGEBRA).

Coq Reference Manual, V8.6.1, July 26, 2017



2.7 Implicit arguments 97

Print Canonical Projections.

This displays the list of global names that are components of some canonical structure. For each of
them, the canonical structure of which it is a projection is indicated. For instance, the above example
gives the following output:

Cog < Print Canonical Projections.

nat <- Carrier ( nat_setoid )

eq_nat <- Equal ( nat_setoid )
eq_nat_equiv <- Prf_equiv ( nat_setoid )

2.7.18 Implicit types of variables

It is possible to bind variable names to a given type (e.g. in a development using arithmetic, it may be
convenient to bind the names n or m to the type nat of natural numbers). The command for that is

Implicit Types ident ... ident : type

The effect of the command is to automatically set the type of bound variables starting with ident (either
ident itself or ident followed by one or more single quotes, underscore or digits) to be type (unless the
bound variable is already declared with an explicit type in which case, this latter type is considered).

Example:
Cog < Require Import List.

Cogq < Implicit Types m n : nat.

Cog < Lemma cons_inj nat : forall mn l, n :: 1 =m :: 1 -> n = m.
1 subgoal

forall (m n : nat) (1 : Datatypes.list nat), n :: 1 = m :: 1 -> n = m
Cog < intros m n.
1 subgoal

m, n nat

forall 1 : Datatypes.list nat, n :: 1 =m :: 1 -> n = m
Cogq < Lemma cons_inj_bool : forall (m n:bool) 1, n :: 1 =m :: 1 -> n = m.
1 subgoal

forall (m n : bool) (1 : Datatypes.list bool), n :: 1 =m :: 1 -> n =m
Variants:

1. Implicit Type ident : type

This is useful for declaring the implicit type of a single variable.

2. Implicit Types (identy; .. .identyy, : termy ) ... (identy .. .ident,y, : term,
) .
Adds n blocks of implicit types with different specifications.

Coq Reference Manual, V8.6.1, July 26, 2017



98 2 Extensions of GALLINA

2.7.19 Implicit generalization

Implicit generalization is an automatic elaboration of a statement with free variables into a closed state-
ment where these variables are quantified explicitly. Implicit generalization is done inside binders start-
ing with a * and terms delimited by * { } and ° ( ), always introducing maximally inserted implicit
arguments for the generalized variables. Inside implicit generalization delimiters, free variables in the
current context are automatically quantified using a product or a lambda abstraction to generate a closed
term. In the following statement for example, the variables n and m are automatically generalized and
become explicit arguments of the lemma as we are using *~ ( ):

Cog < Generalizable All Variables.

Cog < Lemma nat_comm : “(n =n + 0).
1 subgoal

forall n : nat, n = n + 0

One can control the set of generalizable identifiers with the Generalizable vernacular command to
avoid unexpected generalizations when mistyping identifiers. There are three variants of the command:

Generalizable (All|No) Variable(s)? (identy identy) ?.

Variants:

1. Generalizable All Variables. All variables are candidate for generalization if they
appear free in the context under a generalization delimiter. This may result in confusing errors
in case of typos. In such cases, the context will probably contain some unexpected generalized
variable.

2. Generalizable No Variables. Disable implicit generalization entirely. This is the de-
fault behavior.

3. Generalizable Variable(s)? ident; ident,. Allow generalization of the given iden-
tifiers only. Calling this command multiple times adds to the allowed identifiers.

4. Global Generalizable Allows to export the choice of generalizable variables.

One can also use implicit generalization for binders, in which case the generalized variables are
added as binders and set maximally implicit.

Coqg < Definition id " (x : A) : A := x.
Coq < Print id.
id = fun (A : Type) (x : A) => X
forall A : Type, A —> A
Argument A is implicit and maximally inserted
Argument scopes are [type_scope _]

The generalizing binders * { } and * ( ) work similarly to their explicit counterparts, only binding
the generalized variables implicitly, as maximally-inserted arguments. In these binders, the binding
name for the bound object is optional, whereas the type is mandatory, dually to regular binders.

Coq Reference Manual, V8.6.1, July 26, 2017



2.8 Coercions 99

2.8 Coercions

Coercions can be used to implicitly inject terms from one class in which they reside into another one.
A class is either a sort (denoted by the keyword Sortclass), a product type (denoted by the keyword
Funclass), or a type constructor (denoted by its name), e.g. an inductive type or any constant with a
type of the form forall (z1 : Ay)..(zy : Ay), s where s is a sort.

Then the user is able to apply an object that is not a function, but can be coerced to a function, and
more generally to consider that a term of type A is of type B provided that there is a declared coercion
between A and B. The main command is

Coercion qualid : classy >-> classs.

which declares the construction denoted by qualid as a coercion between class; and classs.
More details and examples, and a description of the commands related to coercions are provided in
Chapter 18.

2.9 Printing constructions in full

Coercions, implicit arguments, the type of pattern-matching, but also notations (see Chapter 12) can
obfuscate the behavior of some tactics (typically the tactics applying to occurrences of subterms are
sensitive to the implicit arguments). The command

Set Printing All.

deactivates all high-level printing features such as coercions, implicit arguments, returned
type of pattern-matching, notations and various syntactic sugar for pattern-matching or record
projections.  Otherwise said, Set Printing All includes the effects of the commands
Set Printing Implicit, Set Printing Coercions, Set Printing Synth, Unset
Printing Projections and Unset Printing Notations. To reactivate the high-level
printing features, use the command

Unset Printing All.

2.10 Printing universes

The following command:
Set Printing Universes

activates the display of the actual level of each occurrence of Type. See Section 4.1.1 for details.
This wizard option, in combination with Set Printing All (see section 2.9) can help to diagnose
failures to unify terms apparently identical but internally different in the Calculus of Inductive Construc-
tions. To reactivate the display of the actual level of the occurrences of Type, use

Unset Printing Universes.

The constraints on the internal level of the occurrences of Type (see Section 4.1.1) can be printed
using the command

Print [Sorted] Universes.

Coq Reference Manual, V8.6.1, July 26, 2017



100 2 Extensions of GALLINA

If the optional Sorted option is given, each universe will be made equivalent to a numbered label
reflecting its level (with a linear ordering) in the universe hierarchy.
This command also accepts an optional output filename:

Print [Sorted] Universes string.

If string ends in . dot or .gv, the constraints are printed in the DOT language, and can be processed
by Graphviz tools. The format is unspecified if string doesn’t end in . dot or . gv.

2.11 Ecxistential variables

Coq terms can include existential variables which represents unknown subterms to eventually be re-
placed by actual subterms.

Existential variables are generated in place of unsolvable implicit arguments or “_" placeholders
when using commands such as Check (see Section 6.3.1) or when using tactics such as refine (see
Section 8.2.3), as well as in place of unsolvable instances when using tactics such that eapply (see
Section 8.2.4). An existential variable is defined in a context, which is the context of variables of
the placeholder which generated the existential variable, and a type, which is the expected type of the
placeholder.

As a consequence of typing constraints, existential variables can be duplicated in such a way that
they possibly appear in different contexts than their defining context. Thus, any occurrence of a given
existential variable comes with an instance of its original context. In the simple case, when an existential
variable denotes the placeholder which generated it, or is used in the same context as the one in which
it was generated, the context is not displayed and the existential variable is represented by “?7” followed
by an identifier.

T3]

Cog < Parameter identity : forall (X:Set), X —> X.
identity is declared

Cog < Check identity
identity ?y ?y0
?X@{x:=?y0}

where

?y : [ |- forall x : ?T, ?X]
°T ¢ [ |- Set]

°’X : [x : ?T |- Set]

?y0 : [ |- ?T]

Cog < Check identity _ (fun x => _).
identity ?y (fun x : ?T => ?y0)
?X@{x:=fun x : ?T => ?y0}
where
?y ¢ [ |- forall x : forall x : 2T, ?T0, ?X]
?X : [x : forall x : ?T, ?T0 |- Set]
°T ¢ [ |- Set]
?T0 : [x : ?T |- Set]
?y0 : [x : ?T |- ?2T0]

In the general case, when an existential variable ?ident appears outside of its context of definition, its
instance, written under the form @{idl:=terml; ...; idn:=termn}, is appending to its name,

indicating how the variables of its defining context are instantiated. The variables of the context of the

Coq Reference Manual, V8.6.1, July 26, 2017



2.11 Existential variables 101

existential variables which are instantiated by themselves are not written, unless the flag Printing
Existential Instances ison (see Section2.11.1), and this is why an existential variable used in
the same context as its context of definition is written with no instance.

Cog < Check (fun xy => _) 0 1.
(fun x y : nat => ?y) 0 1
PTA{x:=0; y:=1}

where
?T : [x : nat 'y : nat [- Type]
?y ¢ [x : nat y : nat |- ?T]

Cog < Set Printing Existential Instances.

Cog < Check (fun x y => _) 0 1.
(fun x y : nat => ?y@{x:=x; y:=y}) 0 1
?TA{x:=0; y:=1}

where
?T : [x : nat 'y : nat [- Type]
?y ¢ [x : nat y : nat [- ?T@{x:=x; y:=y}]

Existential variables can be named by the user upon creation using the syntax ? [ident]. This is
useful when the existential variable needs to be explicitly handled later in the script (e.g. with a named-
goal selector, see 9.2).

2.11.1 Explicit displaying of existential instances for pretty-printing
The command:

Set Printing Existential Instances

activates the full display of how the context of an existential variable is instantiated at each of the
occurrences of the existential variable.
To deactivate the full display of the instances of existential variables, use

Unset Printing Existential Instances.

2.11.2 Solving existential variables using tactics

Instead of letting the unification engine try to solve an existential variable by itself, one can also provide
an explicit hole together with a tactic to solve it. Using the syntax 1tac: (tacexpr), the user can put
a tactic anywhere a term is expected. The order of resolution is not specified and is implementation-
dependent. The inner tactic may use any variable defined in its scope, including repeated alternations
between variables introduced by term binding as well as those introduced by tactic binding. The expres-
sion tacexpr can be any tactic expression as described at section 9.

Coqg < Definition foo (x : nat) : nat := ltac: (exact x).

This construction is useful when one wants to define complicated terms using highly automated
tactics without resorting to writing the proof-term by means of the interactive proof engine.

This mechanism is comparable to the Declare Implicit Tactic command defined at 8.9.7,
except that the used tactic is local to each hole instead of being declared globally.

Coq Reference Manual, V8.6.1, July 26, 2017



102 2 Extensions of GALLINA

Coq Reference Manual, V8.6.1, July 26, 2017



Chapter 3

The COQ library

The CoQ library is structured into two parts:

The initial library: it contains elementary logical notions and data-types. It constitutes the basic state
of the system directly available when running COQ;

The standard library: general-purpose libraries containing various developments of COQ axiomatiza-
tions about sets, lists, sorting, arithmetic, etc. This library comes with the system and its modules
are directly accessible through the Require command (see Section 6.5.1);

In addition, user-provided libraries or developments are provided by COQ users’ community. These
libraries and developments are available for download at http://coqg.inria. fr (see Section 3.3).

The chapter briefly reviews the CoQ libraries whose contents can also be browsed at http://
cog.inria.fr/stdlib.

3.1 The basic library

This section lists the basic notions and results which are directly available in the standard COQ system'.

3.1.1 Notations

This module defines the parsing and pretty-printing of many symbols (infixes, prefixes, etc.). However,
it does not assign a meaning to these notations. The purpose of this is to define and fix once for all the
precedence and associativity of very common notations. The main notations fixed in the initial state are
listed on Figure 3.1.

3.1.2 Logic

The basic library of COQ comes with the definitions of standard (intuitionistic) logical connectives
(they are defined as inductive constructions). They are equipped with an appealing syntax enriching the
(subclass form) of the syntactic class term. The syntax extension is shown on Figure 3.2.

Remark: Implication is not defined but primitive (it is a non-dependent product of a proposition over
another proposition). There is also a primitive universal quantification (it is a dependent product over a

"Most of these constructions are defined in the Pre 1ude module in directory theories/Init atthe COQ root directory;
this includes the modules Notations, Logic, Datatypes, Specif, Peano, Wf and Tactics. Module Logic_Type
also makes it in the initial state

Coq Reference Manual, V8.6.1, July 26, 2017


http://coq.inria.fr
http://coq.inria.fr/stdlib
http://coq.inria.fr/stdlib

104

3 The CoQ library

Notation Precedence  Associativity

<=> 95 no

_\/ _ 85 right

_/\ _ 80 right

~ 75 right

_ = _ 70 no
= = _ 70 no
_=_ > _ 170 no
<> 70 no
<> _ > _ 170 no
_ < _ 70 no
> 70 no
<= _ 70 no
_o>= 70 no
< < 70 no
_ < _ <= _ 170 no
<= _ < _ 170 no
<= _ <= _ 170 no
_ + _ 50 left

S N 50 left
_ - _ 50 left
_ox 40 left
_&& _ 40 left
_/ _ 40 left

_ 35 right

_ 35 right

_ " 30 right

Figure 3.1: Notations in the initial state

form := True
False
~ form
form /\ form
form \/ form
form —> form

forall ident : type , form
exists ident [: specif], form

(primitive implication)

exists?2 ident [: specif], form & form

term = term
term = term :> specif

|
\
|
\
|
|  form <—> form
|
|
\
|
\

(True)
(False)
(not)
(and)
(or)

(1ff)
(primitive for all)
(ex)

(ex2)

(eq)

(eq)

Figure 3.2: Syntax of formulas

Coq Reference Manual, V8.6.1, July 26, 2017




3.1 The basic library 105

proposition). The primitive universal quantification allows both first-order and higher-order quantifica-
tion.

Propositional Connectives

First, we find propositional calculus connectives:

Cogq < Inductive True : Prop := I.

Cog < Inductive False : Prop :=

Coqg < Definition not (A: Prop) := A —-> False.

Cogq < Inductive and (A B:Prop) : Prop := conj (_:A) (_:B).

Cog < Section Projections.
Cog < Variables A B : Prop.
Cog < Theorem projl : A /\ B -> A.

Cog < Theorem proj2 : A /\ B —> B.

Cog < End Projections.

Cog < Inductive or (A B:Prop) : Prop :=
| or_introl (_:A)
| or_intror (_:B).
Cog < Definition iff (P Q:Prop) := (P -> Q) /\ (Q —> P).

Coq < Definition IF_then_else (P Q R:Prop) P/\NQ\/ ~P /\R.

Quantifiers

Then we find first-order quantifiers:

Coq < Definition all (A:Set) (P:A -> Prop) := forall x:A, P x.
Cogq < Inductive ex (A: Set) (P:A -> Prop) : Prop :=
ex_intro (x:A) (_:P x).
Cog < Inductive ex2 (A:Set) (P Q:A —-> Prop) : Prop :=
ex_intro2 (x:A) (_:P x) (_:0 x).

The following abbreviations are allowed:

exists x:A, P ex A (fun x:A => P)

exists x, P ex _ (fun x => P)

exists?2 x:A, P & Q| ex2 A (fun x:A => P) (fun x:A => Q)
exists?2 x, P & Q ex?2 _ (fun x => P) (fun x => Q)

The type annotation “: A” can be omitted when A can be synthesized by the system.

Coq Reference Manual, V8.6.1, July 26, 2017



106 3 The CoQ library

Equality

Then, we find equality, defined as an inductive relation. That is, given a type A and an x of type A,
the predicate (eq A x) is the smallest one which contains x. This definition, due to Christine Paulin-
Mohring, is equivalent to define eq as the smallest reflexive relation, and it is also equivalent to Leibniz’
equality.

Cog < Inductive eqg (A:Type) (x:A) : A —-> Prop :=
eqg_refl : eq A x X.

Lemmas

Finally, a few easy lemmas are provided.

Coq < Theorem absurd : forall A C:Prop, A -> ~ A -> C.

Cog < Section equality.

Coqg < Variables A B : Type.

Cog < Variable £ : A -> B.

Cog < Variables x y z : A.

Cog < Theorem eg_sym : x =y —> y = X.

Cog < Theorem eg_trans : x

Il
<
|
\%
g
Il
N
|
\%
b

Cogq < Theorem f_equal : x =y —> f x = f y.

Cog < Theorem not_eg sym : x <> y —> y <> X.

Cog < End equality.

Cogq < Definition eqg_ind_r
forall (A:Type) (x:A) (P:A->Prop), P x —-> forall y:A, y =x —> P y.

Cog < Definition eg rec_r
forall (A:Type) (x:A) (P:A->Set), P x —-> forall y:A, y =x —> P y.

Cogq < Definition eqg rect_r
forall (A:Type) (x:A) (P:A->Type), P x —-> forall y:A, y =x —> P y.

Cog < Hint Immediate eg_sym not_eq_sym : core.

The theorem f_equal is extended to functions with two to five arguments. The theorem are names
f_equal2, f_equal3, f_equal4 and f_equalb. For instance f_equal 3 is defined the follow-
ing way.

Coqg < Theorem f_equal3
forall (Al A2 A3 B:Type) (f:A1 -> A2 -> A3 —-> B)
(x1 y1:Al) (x2 y2:A2) (x3 y3:A3),
x1l =yl => x2 = y2 -> x3 = y3 -> f x1 x2 x3 = f yl y2 y3.

Coq Reference Manual, V8.6.1, July 26, 2017



3.1 The basic library 107

specif = specif x specif (prod)
|  specif + specif (sum)

| specif + { specif } (sumor)

| { specif } + { specif } (sumbool)

|  { ident : specif | form } (sig)

| { ident : specif | form & form } (sig2)

| { ident : specif & specif } (sigT)

| { ident : specif & specif & specif } (sigT2)

term = (term , term ) (pair)

Figure 3.3: Syntax of data-types and specifications

3.1.3 Datatypes

In the basic library, we find the definition” of the basic data-types of programming, again defined as in-
ductive constructions over the sort Set. Some of them come with a special syntax shown on Figure 3.3.

Programming

Cog < Inductive unit : Set := tt.

Cog < Inductive bool : Set := true | false.

Coqg < Inductive nat : Set := O | S (n:nat).

Cog < Inductive option (A:Set) : Set := Some (_:A) | None.
Cog < Inductive identity (A:Type) (a:A) : A —-> Type :=

refl_identity : identity A a a.

Note that zero is the letter O, and not the numeral 0.
The predicate identity is logically equivalent to equality but it lives in sort Type. It is mainly
maintained for compatibility.
We then define the disjoint sum of A+B of two sets A and B, and their product AxB.
Cogq < Inductive sum (A B:Set) : Set := inl (_:A) | inr (_:B).
Cog < Inductive prod (A B:Set) : Set := pair (_:A) (_:B).
Cog < Section projections.

Cog < Variables A B : Set.

Cogq < Definition fst (H: prod A B) := match H with
| pair _ _ xy => x
end.

match H with
| pair _ _ xy =>y
end.

Cogq < Definition snd (H: prod A B)

Cog < End projections.

Some operations on bool are also provided: andb (with infix notation & &), orb (with infix nota-
tion | |), xorb, implb and negb.

2'I‘heyareinDatatypes.v

Coq Reference Manual, V8.6.1, July 26, 2017




108 3 The CoQ library

3.1.4 Specification

The following notions® allow to build new data-types and specifications. They are available with the
syntax shown on Figure 3.3.

For instance, given A: Type and P :A->Prop, the construct {x:A | P x} (in abstract syntax
(sig A P))is a Type. We may build elements of this set as (exist x p) whenever we have a
witness x : A with its justification p: P x.

Fromsucha (exist x p) we may in turn extract its witness x : A (using an elimination construct
such as match) but not its justification, which stays hidden, like in an abstract data-type. In technical
terms, one says that sig is a “weak (dependent) sum”. A variant sig2 with two predicates is also
provided.

Cogq < Inductive sig (A:Set) (P:A -> Prop) : Set := exist (x:A) (_:P x).
Cog < Inductive sig2 (A:Set) (P Q:A —-> Prop) : Set :=
exist2 (x:A) (_:P x) (_:0 x).

A “strong (dependent) sum” {x:A & P x} may be also defined, when the predicate P is now
defined as a constructor of types in Type.

Coq < Inductive sigT (A:Type) (P:A —> Type) : Type := existT (x:A) (_:P x).
Cog < Section Projections2.

Cog < Variable A : Type.

Cogq < Variable P : A -> Type.

Cogq < Definition projTl (H:sigT A P) let (x, h) := H in x.

Cog < Definition projT2 (H:sigT A P) :=
match H return P (projTl H) with
existT _ _ x h =>h
end.

Cog < End Projections2.
Cog < Inductive sigT2 (A: Type) (P Q:A -> Type) : Type :=
existT2 (x:A) (_:P x) (_:0 x).
A related non-dependent construct is the constructive sum {A}+{B} of two propositions A and B.

Cog < Inductive sumbool (A B:Prop) : Set := left (_:A) | right (_:B).

This sumbool construct may be used as a kind of indexed boolean data-type. An intermediate
between sumbool and sum is the mixed sumor which combines A:Set and B:Prop in the Set
A+{B}.

Cog < Inductive sumor (A:Set) (B:Prop) : Set :=
| inleft (_:A)
| inright (_:B).

We may define variants of the axiom of choice, like in Martin-L6f’s Intuitionistic Type Theory.

3They are defined in module Specif.v

Coq Reference Manual, V8.6.1, July 26, 2017



3.1 The basic library 109

Cog < Lemma Choice
forall (S S':Set) (R:S -> S' -> Prop),
(forall x:S, {y : S'" | R x y}) —>
{f : S -—>S'" | forall z:S, Rz (f z)}.

Cog < Lemma Choice2
forall (S S':Set) (R:S -> S' -> Set),
(forall x:S, {y : S' & R x y}) —>
{f : S -—>S8'" & forall z:S, R z (f z)}.

Cogq < Lemma bool_choice
forall (S:Set) (Rl R2:S —-> Prop),
(forall x:S, {R1l x} + {R2 x}) —->
{f : S —> bool |
forall x:S, £ x = true /\ Rl x \/ f x = false /\ R2 x}.

The next construct builds a sum between a data-type A: Type and an exceptional value encoding
errors:

Cogq < Definition Exc := option.
Coq < Definition value := Some.
Cogq < Definition error := None.

This module ends with theorems, relating the sorts Set or Type and Prop in a way which is
consistent with the realizability interpretation.

Cog < Definition except := False_rec.
Cogq < Theorem absurd_set : forall (A:Prop) (C:Set), A -> ~ A -> C.

Cog < Theorem and_rect?2
forall (A B:Prop) (P:Type), (A -> B -> P) -> A /\ B -> P.

3.1.5 Basic Arithmetics

The basic library includes a few elementary properties of natural numbers, together with the definitions
of predecessor, addition and multiplication®. It also provides a scope nat_scope gathering standard
notations for common operations (+, *) and a decimal notation for numbers. That is he can write 3
for (S (S (S 0))). This also works on the left hand side of a mat ch expression (see for example
section 8.2.3). This scope is opened by default.

The following example is not part of the standard library, but it shows the usage of the notations:

Cog < Fixpoint even (n:nat) : bool :=
match n with
| 0 => true
| 1 => false
| S (S n) => even n
end.

Cogq < Theorem eq_S : forall x y:nat, x =y -> S x = S y.

“This is in module Peano . v

Coq Reference Manual, V8.6.1, July 26, 2017



110 3 The CoQ library

Coqg < Definition pred (n:nat) : nat :=
match n with
| 0 =>0
| S u=>u
end.

Cog < Theorem pred_Sn : forall m:nat, m = pred (S m).
Cog < Theorem eqg_add_S : forall n m:nat, S n =S m ->n = m.
Cog < Hint Immediate eqg_add_S : core.
Cog < Theorem not_eqg_S : forall n m:nat, n <> m -> S n <> S m.
Coqg < Definition IsSucc (n:nat) : Prop :=

match n with

| 0 => False
| S p => True

end.
Coqg < Theorem O_S : forall n:nat, 0 <> S n.
Cog < Theorem n_Sn : forall n:nat, n <> S n.
Cogq < Fixpoint plus (n m:nat) {struct n} : nat :=
match n with
| 0 =>m
| Sp=>S (p + m
end
where "n + m" := (plus n m) : nat_scope.
Cog < Lemma plus_n_O : forall n:nat, n =n + 0.
Cogq < Lemma plus_n_Sm : forall n m:nat, S (n + m) = n + S m.
Cog < Fixpoint mult (n m:nat) {struct n} : nat :=
match n with
| 0 => 0
| Sp=>m+p *xm
end
where "n » m" := (mult n m) : nat_scope.
Cog < Lemma mult_n_O : forall n:nat, 0 = n * 0.
Cog < Lemma mult_n_Sm : forall n m:nat, n * m + n = n * (S m).

Finally, it gives the definition of the usual orderings le, 1t, ge, and gt.

Cog < Inductive le (n:nat) : nat —-> Prop :=
| le_n : le n n
| le_S : forall m:nat, n <= m -> n <= (S m)
where "n <= m" := (le n m) : nat_scope.
Coqg < Definition 1t (n m:nat) := S n <= m.
Coqg < Definition ge (n m:nat) := m <= n.

Il
3
A
=

Cogq < Definition gt (n m:nat)

Coq Reference Manual, V8.6.1, July 26, 2017



3.1 The basic library 111

Properties of these relations are not initially known, but may be required by the user from modules
Le and Lt. Finally, Peano gives some lemmas allowing pattern-matching, and a double induction
principle.

Cog < Theorem nat_case
forall (n:nat) (P:nat -> Prop),
P 0 —> (forall m:nat, P (S m)) —-> P n.

Cog < Theorem nat_double_ind
forall R:nat -> nat -> Prop,
(forall n:nat, R 0 n) -—>
(forall n:nat, R (S n) 0) -—>
(forall n m:nat, Rnm -> R (S n) (S m)) -> forall n m:nat, R n m.

3.1.6 Well-founded recursion

The basic library contains the basics of well-founded recursion and well-founded induction®.

Cog < Section Well_ founded.
Cog < Variable A : Type.
Cogq < Variable R : A -> A -> Prop.

Cog < Inductive Acc (x:A) : Prop :=
Acc_intro : (forall y:A, Ry x —> Acc y) —> Acc X.

Coqg < Lemma Acc_inv x : Acc x —-> forall y:A, Ry x —-> Acc y.

Coqg < Definition well_ founded := forall a:A, Acc a.
Cog < Hypothesis Rwf : well_founded.

Cog < Theorem well_founded_induction
forall P:A -> Set,
(forall x:A, (forall y:A, Ry x —> P y) -> P x) —-> forall a:A, P a.

Coqg < Theorem well_founded_ind
forall P:A -> Prop,
(forall x:A, (forall y:A, Ry x -> P y) —-> P x) —-> forall a:A, P a.

The automatically generated scheme Acc_rect can be used to define functions by fixpoints using
well-founded relations to justify termination. Assuming extensionality of the functional used for the
recursive call, the fixpoint equation can be proved.

Cog < Section FixPoint.
Cog < Variable P : A —-> Type.
Cog < Variable F : forall x:A, (forall y:A, Ry x -> P y) -> P x.

Cog < Fixpoint Fix_F (x:A) (r:Acc x) {struct r} : P x :=
F x (fun (y:A) (p:Ry x) => Fix F y (Acc_inv x r y p)).

Coqg < Definition Fix (x:A) := Fix_F x (Rwf x).

Cog < Hypothesis F_ext
forall (x:A) (f g:forall y:A, Ry x —> P vy),

5This is defined in module Wf . v

Coq Reference Manual, V8.6.1, July 26, 2017



112 3 The CoQ library

(forall (y:A) (p:Ry x), fyp=gyp) —>Fxf=FxdJg.

Cog < Lemma Fix_F_eq
forall (x:A) (r:Acc x),
F x (fun (y:A) (p:R vy x) => Fix_F y (Acc_inv x r y p)) = Fix_F x r.

Cog < Lemma Fix_F_inv : forall (x:A) (r s:Acc x), Fix F x r = Fix_F x s.

Cogq < Lemma fix_eq : forall x:A, Fix x = F x (fun (y:A) (p:R y x) => Fix vy).

Cog < End FixPoint.

Cog < End Well_founded.

3.1.7 Accessing the Type level

The basic library includes the definitions® of the counterparts of some data-types and logical quantifiers
at the Type level: negation, pair, and properties of identity.

Coq < Definition notT (A:Type) := A —-> False.

Cog < Inductive prodT (A B:Type) : Type := pairT (_:A) (_:B).

At the end, it defines data-types at the Type level.

3.1.8 Tactics

A few tactics defined at the user level are provided in the initial state’. They are listed at http:
//coqg.inria.fr/stdlib (paragraph Init, link Tactics).

3.2 The standard library

3.2.1 Survey

The rest of the standard library is structured into the following subdirectories:

6ThisisinmoduleLogic_Type.v
"This is in module Tactics.v

Coq Reference Manual, V8.6.1, July 26, 2017


http://coq.inria.fr/stdlib
http://coq.inria.fr/stdlib

3.2 The standard library 113

Logic Classical logic and dependent equality

Arith Basic Peano arithmetic

PArith Basic positive integer arithmetic

NArith Basic binary natural number arithmetic

ZArith Basic relative integer arithmetic

Numbers Various approaches to natural, integer and cyclic numbers (currently axiomat-
ically and on top of 23! binary words)

Bool Booleans (basic functions and results)

Lists Monomorphic and polymorphic lists (basic functions and results), Streams (in-
finite sequences defined with co-inductive types)

Sets Sets (classical, constructive, finite, infinite, power set, etc.)

FSets Specification and implementations of finite sets and finite maps (by lists and
by AVL trees)

Reals Axiomatization of real numbers (classical, basic functions, integer part, frac-
tional part, limit, derivative, Cauchy series, power series and results,...)

Relations Relations (definitions and basic results)

Sorting Sorted list (basic definitions and heapsort correctness)

Strings 8-bits characters and strings

Wellfounded Well-founded relations (basic results)

These directories belong to the initial load path of the system, and the modules they provide are
compiled at installation time. So they are directly accessible with the command Require (see Chap-
ter 6).

The different modules of the COQ standard library are described in the additional document
Library.dvi. They are also accessible on the WWW through the COQ homepage ®.

3.2.2 Notations for integer arithmetics

On Figure 3.4 is described the syntax of expressions for integer arithmetics. It is provided by requiring
and opening the module ZArith and opening scope Z_scope.

Figure 3.4 shows the notations provided by Z_scope. It specifies how notations are interpreted
and, when not already reserved, the precedence and associativity.

Cog < Require Import ZArith.

Cog < Check (2 + 3)%Z.

(2 + 3)%Z2
: Z

Cog < Open Scope Z_scope.

Cog < Check 2 + 3.
2 + 3
A

3.2.3 Peano’s arithmetic (nat)

While in the initial state, many operations and predicates of Peano’s arithmetic are defined, further
operations and results belong to other modules. For instance, the decidability of the basic predicates are
defined here. This is provided by requiring the module Arith.

Figure 3.5 describes notation available in scope nat_scope.

$http://coq.inria.fr

Coq Reference Manual, V8.6.1, July 26, 2017


http://coq.inria.fr

114 3 The CoQ library

Notation Interpretation Precedence | Associativity
< Zz.1lt

X <=y Z.le

> Z .9t

X >=y Z.ge

x <y < z x <y /\y < z

X <y <= x <y /Ny <=2z

x <=y < x <=y /\y < z

X <=y <=z |x <=y /\y <=2z

_ 7= _ Z.compare 70 no
_ t+t _ Z.add

- T Z.sub

_x Z .mul

_/ _ Z.div

_ mod 7 .modulo 40 no
- _ Z .0pp

_ Z .pow

Figure 3.4: Definition of the scope for integer arithmetics (Z_scope)

Notation Interpretation

< _ 1t

X <=y le

> gt

X >= vy ge

X <y < z x <y /\Ny < z
X <y <= 2 x <y /\y <=z
X <=y < z x <=y /\y < z
Xx <=y <=z |x <=y /\y <=z
_ t+t _ plus

- minus

_ * _ mult

Figure 3.5: Definition of the scope for natural numbers (nat_scope)

3.2.4 Real numbers library
Notations for real numbers

This is provided by requiring and opening the module Reals and opening scope R_scope. This set
of notations is very similar to the notation for integer arithmetics. The inverse function was added.
Cog < Require Import Reals.

Cog < Check (2 + 3)%R.
(2 + 3)%R
: R

Cog < Open Scope R_scope.

Coq Reference Manual, V8.6.1, July 26, 2017




3.2 The standard library 115

Notation Interpretation

< R1t

X <=y Rle

> _ Rgt

X >=y Rge

x <y < z x <y /\y < z
X <y <=z x <y /\y <=z
X <=y < 2 x <=y /\y < z
X <=y <=z |x <=y /\y <=2z
_ t+t _ Rplus

_ - _ Rminus

— * _ Rmult

_/ _ Rdiv

- _ Ropp

/ _ Rinv

_ " _ pow

Figure 3.6: Definition of the scope for real arithmetics (R_scope)

Cog < Check 2 + 3.
2 + 3
: R
Some tactics
In addition to the ring, field and fourier tactics (see Chapter 8) there are:
e discrR

Proves that a real integer constant ¢; is different from another real integer constant c;.

Cog < Require Import DiscrR.

Cog < Goal 5 <> 0.

Cog < discrR.
No more subgoals.

* split_Rabs allows unfolding the Rabs constant and splits corresponding conjunctions.

Cog < Require Import SplitAbsolu.

Cog < Goal forall x:R, x <= Rabs x.

Cog < intro; split_Rabs.
2 subgoals

X : R
HIt : x < 0

Coq Reference Manual, V8.6.1, July 26, 2017




116 3 The CoQ library

Notation ‘ Interpretation ‘ Precedence ‘ Associativity
_ right
right

cons 60

app 60

Figure 3.7: Definition of the scope for lists (1ist_scope)

X <= - x
subgoal 2 is:
X <= X

* split_Rmult splits a condition that a product is non null into subgoals corresponding to the
condition on each operand of the product.

Cog < Require Import SplitRmult.

Cog < Goal forall x y z:R,

Cog < intros;
3 subgoals

split_Rmult.

X * vy x z <> 0.

x <> 0
subgoal 2 is:
y <> 0
subgoal 3 is:
z <> 0

These tactics has been written with the tactic language Ltac described in Chapter 9.

3.2.5 Listlibrary

Some elementary operations on polymorphic lists are defined here. They can be accessed by requiring

module List.
It defines the following notions:

length
head

tail

app

rev

nth

map
flat_map
fold_ left
fold_right

length

first element (with default)

all but first element

concatenation

reverse

accessing n-th element (with default)
applying a function

applying a function returning lists
iterator (from head to tail)

iterator (from tail to head)

Table show notations available when opening scope 1ist__scope.

Coq Reference Manual, V8.6.1, July 26, 2017



3.3 Users’ contributions 117

3.3 Users’ contributions

Numerous users’ contributions have been collected and are available at URL http://coqg.inria.
fr/contribs/. On this web page, you have a list of all contributions with informations (author,
institution, quick description, etc.) and the possibility to download them one by one. You will also find
informations on how to submit a new contribution.

Coq Reference Manual, V8.6.1, July 26, 2017


http://coq.inria.fr/contribs/
http://coq.inria.fr/contribs/

118 3 The CoQ library

Coq Reference Manual, V8.6.1, July 26, 2017



Chapter 4

Calculus of Inductive Constructions

The underlying formal language of COQ is a Calculus of Inductive Constructions (C1C) whose inference
rules are presented in this chapter. The history of this formalism as well as pointers to related work are
provided in a separate chapter; see Credits.

4.1 The terms

The expressions of the CIC are terms and all terms have a type. There are types for functions (or
programs), there are atomic types (especially datatypes)... but also types for proofs and types for the
types themselves. Especially, any object handled in the formalism must belong to a type. For instance,
universal quantification is relative to a type and takes the form “for all x of type T, P”. The expression
“x of type T” is written “x:T”. Informally, “x:T” can be thought as “x belongs to T”.

The types of types are sorts. Types and sorts are themselves terms so that terms, types and sorts are
all components of a common syntactic language of terms which is described in Section 4.1.2 but, first,
we describe sorts.

4.1.1 Sorts

All sorts have a type and there is an infinite well-founded typing hierarchy of sorts whose base sorts are
Prop and Set.

The sort Prop intends to be the type of logical propositions. If M is a logical proposition then it
denotes the class of terms representing proofs of M. An object m belonging to M witnesses the fact
that M is provable. An object of type Prop is called a proposition.

The sort Set intends to be the type of small sets. This includes data types such as booleans and
naturals, but also products, subsets, and function types over these data types.

Prop and Set themselves can be manipulated as ordinary terms. Consequently they also have a type.
Because assuming simply that Set has type Set leads to an inconsistent theory [25], the language of C1C
has infinitely many sorts. There are, in addition to Set and Prop a hierarchy of universes Type(:) for
any integer ¢.

Like Set, all of the sorts Type(i) contain small sets such as booleans, natural numbers, as well as
products, subsets and function types over small sets. But, unlike Set, they also contain large sets, namely
the sorts Set and Type(j) for j < 4, and all products, subsets and function types over these sorts.

Formally, we call S the set of sorts which is defined by:

S = {Prop, Set, Type(i) | i € N}

Coq Reference Manual, V8.6.1, July 26, 2017



120 4 Calculus of Inductive Constructions

Their properties, such as: Prop:Type(1), Set:Type(1), and Type(i):Type(i + 1), are defined in Sec-
tion 4.4.

The user does not have to mention explicitly the index ¢ when referring to the universe Type(4). One
only writes Type. The system itself generates for each instance of Type a new index for the universe
and checks that the constraints between these indexes can be solved. From the user point of view we
consequently have Type:Type. We shall make precise in the typing rules the constraints between the
indexes.

Implementation issues In practice, the Type hierarchy is implemented using algebraic universes.
An algebraic universe v is either a variable (a qualified identifier with a number) or a successor of
an algebraic universe (an expression u + 1), or an upper bound of algebraic universes (an expres-
sion maxz(uy, ..., up)), or the base universe (the expression 0) which corresponds, in the arity of sort-
polymorphic inductive types (see Section 4.5.2), to the predicative sort Set. A graph of constraints
between the universe variables is maintained globally. To ensure the existence of a mapping of the uni-
verses to the positive integers, the graph of constraints must remain acyclic. Typing expressions that
violate the acyclicity of the graph of constraints results in a Universe inconsistency error (see
also Section 2.10).

4.1.2 Terms

Terms are built from sorts, variables, constants, abstractions, applications, local definitions, and prod-
ucts. From a syntactic point of view, types cannot be distinguished from terms, except that they cannot
start by an abstraction or a constructor. More precisely the language of the Calculus of Inductive Con-
structions is built from the following rules.

1. the sorts Set, Prop, Type(s) are terms.
2. variables, hereafter ranged over by letters x, y, etc., are terms
3. constants, hereafter ranged over by letters c, d, etc., are terms.

4. if x is a variable and T, U are terms then V z : T, U (forall z : T, U in COQ concrete syntax) is a
term. If x occurs in U,V z : T, U reads as “for all x of type T, U”. As U depends on z, one says
thatV z : T, U is a dependent product. If x does not occur in U thenV x : T, U reads as “if T then
U”. A non dependent product can be written: T' — U.

5. if x is a variable and T, u are terms then Az : T. w (fun 2 : T => u in COQ concrete syntax) is
a term. This is a notation for the A-abstraction of A-calculus [8]. The term Az : T u is a function
which maps elements of 1" to the expression .

6. if t and u are terms then (¢ ) is a term (¢ u in COQ concrete syntax). The term (¢ u) reads as “t
applied to u”.

7. if z is a variable, and ¢, T' and u are terms then let x := ¢ : T in w is a term which denotes the
term v where the variable x is locally bound to ¢ of type 7". This stands for the common “let-in”
construction of functional programs such as ML or Scheme.

Free variables. The notion of free variables is defined as usual. In the expressions Az : 7. U and
Vx : T, U the occurrences of x in U are bound.

Coq Reference Manual, V8.6.1, July 26, 2017



4.2 Typing rules 121

Substitution. The notion of substituting a term # to free occurrences of a variable x in a term u is
defined as usual. The resulting term is written u{x/t}.

The logical vs programming readings. The constructions of the CIC can be used to express both
logical and programming notions, accordingly to the Curry-Howard correspondence between proofs
and programs, and between propositions and types [38, 81, 39].

For instance, let us assume that nat is the type of natural numbers with zero element written 0 and
that True is the always true proposition. Then — is used both to denote nat — nat which is the type
of functions from nat to nat, to denote True — True which is an implicative proposition, to denote
nat — Prop which is the type of unary predicates over the natural numbers, etc.

Let us assume that mult is a function of type nat — nat — nat and eqgnat a predicate of type
nat — nat — Prop. The A-abstraction can serve to build “ordinary” functions as in Az : nat.(mult z z)
(i.e. fun z : nat => mult = z in COQ notation) but may build also predicates over the natural numbers.
For instance Az : nat.(eqnat = 0) (i.e. fun z : nat => eqgnat = 0 in COQ notation) will represent the
predicate of one variable x which asserts the equality of = with 0. This predicate has type nat — Prop
and it can be applied to any expression of type nat, say ¢, to give an object P ¢ of type Prop, namely a
proposition.

Furthermore forall z : nat, P x will represent the type of functions which associate to each nat-
ural number n an object of type (P n) and consequently represent the type of proofs of the formula
“Yx. P(x)”.

4.2 Typing rules

As objects of type theory, terms are subjected to type discipline. The well typing of a term depends on a
global environment and a local context.

Local context. A local context is an ordered list of local declarations of names which we call vari-
ables. The declaration of some variable x is either a local assumption, written z : T (T is a type) or
a local definition, written z := t : T. We use brackets to write local contexts. A typical example is
[ : T;y := u : U;z : V]. Notice that the variables declared in a local context must be distinct. If T’
declares some x, we write z € ['. By writing (z : T') € I' we mean that either = : T" is an assumption
in I" or that there exists some ¢ such that x := ¢ : T" is a definition in I'. If I defines some z :=¢ : T,
we also write (¢ := t : T') € I'. For the rest of the chapter, the I' :: (y : T") denotes the local context
I" enriched with the local assumption y : T'. Similarly, I :: (y := ¢ : T') denotes the local context I’
enriched with the local definition (y := ¢ : T'). The notation [] denotes the empty local context. By
I'1; ', we mean concatenation of the local context I'; and the local context I's.

Global environment. A global environment is an ordered list of global declarations. Global decla-
rations are either global assumptions or global definitions, but also declarations of inductive objects.
Inductive objects themselves declare both inductive or coinductive types and constructors (see Sec-
tion 4.5).

A global assumption will be represented in the global environment as (¢ : T') which assumes the
name c to be of some type 1. A global definition will be represented in the global environment as
c := t : T which defines the name c to have value ¢ and type T'. We shall call such names constants.
For the rest of the chapter, the F;c : T denotes the global environment F enriched with the global

Coq Reference Manual, V8.6.1, July 26, 2017



122 4 Calculus of Inductive Constructions

assumption ¢ : 7'. Similarly, F'; ¢ := ¢ : T denotes the global environment F enriched with the global
definition (¢ :=¢: T).

The rules for inductive definitions (see Section 4.5) have to be considered as assumption rules to
which the following definitions apply: if the name c is declared in £, we write ¢ € £ and if ¢ : T or
c:=t: T isdeclared in E, we write (¢: T) € E.

Typing rules. In the following, we define simultaneously two judgments. The first one E[I'| F ¢ : T
means the term ¢ is well-typed and has type 7' in the global environment F and local context I". The
second judgment WF (E)[I'] means that the global environment E is well-formed and the local context
I" is a valid local context in this global environment.

A term t is well typed in a global environment E iff there exists a local context I" and a term 7" such
that the judgment E[I'] - ¢ : T can be derived from the following rules.

W-Empty
WE(DI]

W-Local-Assum
ETFT:s s€8§ z¢T

WF(E) =2 (z:T)]

W-Local-Def
ElFt:T xz¢0

WF(E)L = (z:=t:T)]

W-Global-Assum
E|FT:s s€8 c¢¢FE

WEF(E;c:T)[]

W-Global-Def
ElFt:T c¢ E

WF(E;c:=t:T)]

Ax-Pr
" WF(E)[T]
E[T'] F Prop : Type(1)
Ax-Set WF(B)[T]
E[I'l - Set : Type(1)
Ax-
e WF(E)[T]
E[T] + Type(i) : Type(i + 1)
Var
WFE)] (z:T)eTl or (x:=t:T) €T forsome ¢
ElFz:T
Const

WF(E)I] (¢c:T)€ FE or (c:=t:T) € E for some t
EllFc:T

Coq Reference Manual, V8.6.1, July 26, 2017



4.3 Conversion rules 123

Prod-Prop
ElFT:s se€8 El':(z:T)|FU:Prop
El'lFYz:T,U : Prop
Prod-Set
El'MFT:s se{Prop,Set} FElI':(z:T)|FU:Set
EllFVYz:T,U : Set
Prod-Type
ElIF-T:Type(i) E[':(z:T)]F U :Type(s)
E -V :T,U : Type(i)
Lam
ElTFYz:T,U:s ETl:u(z:T)|Ft:U
E|F e :T.t:Va:T,U
App
ElrFt:Vz:UT Eltru:U
ElF (tu): T{z/u}
Let

ElNFt:T El:(z:=t:T))Fu:U
El'lFletz:=t:Tinu:U{z/t}

Remark: Prod; and Prods typing-rules make sense if we consider the semantic difference between
Prop and Set:

* All values of a type that has a sort Set are extractable.

 No values of a type that has a sort Prop are extractable.

Remark: We may have let 2 := ¢ : T in u well-typed without having ((A\z : T. u) ¢) well-typed (where
T is a type of t). This is because the value ¢ associated to £ may be used in a conversion rule (see
Section 4.3).

4.3 Conversion rules

In CIc, there is an internal reduction mechanism. In particular, it can decide if two programs are inten-
tionally equal (one says convertible). Convertibility is described in this section.

B-reduction. We want to be able to identify some terms as we can identify the application of a function
to a given argument with its result. For instance the identity function over a given type 1" can be written
Az : T. z. In any global environment £ and local context [', we want to identify any object a (of type
T') with the application ((Az : T. x) a). We define for this a reduction (or a conversion) rule we call 3:

ET]F ((Az:T.t) u)vg t{z/u}

We say that t{z/u} is the S-contraction of ((Az : T. t) u) and, conversely, that ((Az : T. t) u) is the
B-expansion of t{x /u}.

According to S-reduction, terms of the Calculus of Inductive Constructions enjoy some fundamental
properties such as confluence, strong normalization, subject reduction. These results are theoretically of
great importance but we will not detail them here and refer the interested reader to [24].

Coq Reference Manual, V8.6.1, July 26, 2017



124 4 Calculus of Inductive Constructions

t-reduction. A specific conversion rule is associated to the inductive objects in the global environment.
We shall give later on (see Section 4.5.3) the precise rules but it just says that a destructor applied to
an object built from a constructor behaves as expected. This reduction is called ¢-reduction and is more
precisely studied in [126, ].

o-reduction. We may have variables defined in local contexts or constants defined in the global envi-
ronment. It is legal to identify such a reference with its value, that is to expand (or unfold) it into its
value. This reduction is called d-reduction and shows as follows.

EllFzvst if(x:=t:T)el EllFerst if(c:=t:T)€eFE

(-reduction. Co0Q allows also to remove local definitions occurring in terms by replacing the defined
variable by its value. The declaration being destroyed, this reduction differs from d-reduction. Tt is
called (-reduction and shows as follows.

ElFletz:=uinto, t{z/u}

n-expansion. Another important concept is -expansion. It is legal to identify any term ¢ of functional
type Vx : T, U with its so-called n-expansion Az : T (¢ x) for  an arbitrary variable name fresh in ¢.

Remark: We deliberately do not define 7-reduction:
e T (tx) pot

This is because, in general, the type of ¢ need not to be convertible to the type of Az : T (¢ z). E.g., if
we take f such that:

[ Yz :Type(2), Type(l)
then
Az : Type(1), (fz) : Va: Type(l), Type(1)

We could not allow
Az Type(l), (fz) fy f

because the type of the reduced term Vz : T'ype(2), T'ype(1) would not be convertible to the type of the
original term Vz : T'ype(1), Type(1).

Convertibility.  Let us write £[I'] - ¢ > u for the contextual closure of the relation ¢ reduces to u in
the global environment £ and local context I" with one of the previous reduction 3, ¢, § or (.

We say that two terms ¢; and to are Sid(n-convertible, or simply convertible, or equivalent, in the
global environment E and local context I iff there exist terms u; and ug such that E[I'] F 1> ... >
and E[I'] - to> ... > ug and either u; and ug are identical, or they are convertible up to 7-expansion,
i.e. up is Az : T. v} and ug z is recursively convertible to u}, or, symmetrically, ug is Az : T. u}, and
u « is recursively convertible to uf,. We then write E[T'] - 1 =gg,cn to.

The convertibility relation allows introducing a new typing rule which says that two convertible
well-formed types have the same inhabitants.

Coq Reference Manual, V8.6.1, July 26, 2017



4.4 Subtyping rules 125

4.4 Subtyping rules

At the moment, we did not take into account one rule between universes which says that any term in a
universe of index ¢ is also a term in the universe of index ¢ + 1 (this is the cumulativity rule of CIC). This
property extends the equivalence relation of convertibility into a subtyping relation inductively defined
by:

1. if B[l ¢ =gss.cn v then El -t <Bsucn U,

2. ifi < j then E[['] - Type(i) <gs.cy TyPE(H),

3. for any ¢, E[I'] - Set <gs,¢p, Type(s),

4. E[T| F Prop <gs.¢cy Set, hence, by transitivity, E[I"] - Prop <gs,c, Type(i), for any i

5. if B[ - T =pgin U and B[l (z:T)F T <gpey U’ then

ElFYz:T, T <gsucn VU, U'.
The conversion rule up to subtyping is now exactly:
Conv
ET|FU:s EFt:T E[ET <gseyn U
ElFt:U

Normal form. A term which cannot be any more reduced is said to be in normal form. There
are several ways (or strategies) to apply the reduction rules. Among them, we have to mention
the head reduction which will play an important role (see Chapter 8). Any term can be written as
Azy cTy. .oz Ty (to t1 .. . ty) where ¢ is not an application. We say then that ¢ is the head of t.
If we assume that g is Az : 7. ug then one step of S-head reduction of ¢ is:

A:El ZT1. A:Ek : Tk. ()\(II :T. U tl---tn) > A(:El : Tl)(xk : Tk) (U(){(L‘/tl} tg...tn)

Iterating the process of head reduction until the head of the reduced term is no more an abstraction leads
to the §-head normal form of t:

to...oXry Ty o Axg s Ty (V.. uy)

where v is not an abstraction (nor an application). Note that the head normal form must not be confused
with the normal form since some w; can be reducible. Similar notions of head-normal forms involving
0, ¢ and ¢ reductions or any combination of those can also be defined.

4.5 Inductive Definitions

Formally, we can represent any inductive definition as Ind[p](I'; := ' ) where:
* T'; determines the names and types of inductive types;
* ' determines the names and types of constructors of these inductive types;
* p determines the number of parameters of these inductive types.

These inductive definitions, together with global assumptions and global definitions, then form the global
environment. Additionally, for any p there always exists I'p = [a; : Aj;...;a, @ Ap] such that each
(t: T) € Ty UT ¢ can be written as: VI'p, T” where T'p is called the context of parameters.

Coq Reference Manual, V8.6.1, July 26, 2017



126 4 Calculus of Inductive Constructions

Examples The declaration for parameterized lists is:

nil : VA : Set,list A
ons : VA :Set, A — listA—listA

which corresponds to the result of the COQ declaration:

Ind [1] ([Iist : Set — Set] := c

Cog < Inductive list (A:Set) : Set :=
| nil : list A
| cons : A —-> list A —-> list A.

The declaration for a mutual inductive definition of tree and forest is:

node : forest — tree
emptyf : forest

tree : Set ] ._
consf : tree — forest — forest

Ind [] [ forest : Set

which corresponds to the result of the COQ declaration:

Cog < Inductive tree : Set :=
node : forest —-> tree
with forest : Set :=
| emptyf : forest
| consf : tree -> forest -> forest.

The declaration for a mutual inductive definition of even and odd is:

even : nat — Pro even_O : even O
Ind [1] : Pl .= | even_S : ¥n:nat,oddn — even (Sn)

odd : nat — Prop 0dd_S : Vn : nat,evenn — odd (S n)

which corresponds to the result of the COQ declaration:

Cog < Inductive even : nat -> Prop :=

| even_O : even O

| even_S : forall n, odd n —> even (S n)
with odd : nat -> Prop :=

| odd_S : forall n, even n —> odd (S n).

4.5.1 Types of inductive objects
We have to give the type of constants in a global environment & which contains an inductive declaration.

nd WF(E)L] Indp|(C;:=Tc) € E  (a:A)ely

Constr
WF(E)[T'] Indjp|(T;:=T¢) € FE (c:C)eT¢

Example. Provided that our environment E contains inductive definitions we showed before, these
two inference rules above enable us to conclude that:
E[I']+ even: nat — Prop
E[I') F odd : nat — Prop
EI'+ even_O:evenO
E[I' - even_S :Vn:nat,odd n — even (Sn)
E[l'lF odd_S:Vn:nat,evenn — odd (S n)

Coq Reference Manual, V8.6.1, July 26, 2017



4.5 Inductive definitions 127

4.5.2 Well-formed inductive definitions

We cannot accept any inductive declaration because some of them lead to inconsistent systems. We
restrict ourselves to definitions which satisfy a syntactic criterion of positivity. Before giving the formal
rules, we need a few definitions:

Definition A type 1" is an arity of sort s if it converts to the sort s or to a product V x : T', U with U an
arity of sort s.

Examples A — Setis an arity of sort Set. V A : Prop, A — Prop is an arity of sort Prop.
Definition A type 7' is an arity if there is a s € S such that 7" is an arity of sort s.
Examples A — SetandV A : Prop, A — Prop are arities.

Definition We say that 1" is a type of constructor of I in one of the following two cases:
e Tis (Itl... tn)

e TisVx : U, T where T' is also a type of constructor of [

Examples nat and nat — nat are types of constructors of nat.
VA : Type,list A and VA : Type, A — list A — list A are constructors of list.

Definition The type of constructor 1" will be said to satisfy the positivity condition for a constant X in
the following cases:

* T=(X+t...t,) and X does not occur free in any t;

e T'=Vz:UYV and X occurs only strictly positively in U and the type V satisfies the positivity
condition for X

The constant X occurs strictly positively in T in the following cases:
* X does not occur in T’
* T converts to (X ¢ ... t,) and X does not occur in any of ¢;
e T convertsto V x : U,V and X does not occur in type U but occurs strictly positively in type V'

* T converts to (I ay... G t1... tp) where I is the name of an inductive declaration of
the form Ind[m](I: A:=c1:Vp1: P1,...VYpm : Py, Cis.. 50 1 Y01 Pry oo Npm t P, Cy)
(in particular, it is not mutually defined and it has m parameters) and X does not occur in any
of the ¢;, and the (instantiated) types of constructor C;{p;/a;}j=1..m of I satisfy the nested posi-
tivity condition for X

The type of constructor T of I satisfies the nested positivity condition for a constant X in the following
cases:

Coq Reference Manual, V8.6.1, July 26, 2017



128 4 Calculus of Inductive Constructions

* T'=(Iby...byu1... up),Iisaninductive definition with mm parameters and X does not occur
in any u;

e T'=Vz: UV and X occurs only strictly positively in U and the type V satisfies the nested
positivity condition for X

For instance, if one considers the type

Inductive tree (A:Type) : Type :=
| leaf : list A
| node : A -> (nat —> tree A) —-> tree A

Then every instantiated constructor of list A satisfies the nested positivity condition for list

— concerning type list A of constructor nil:
Type list A of constructor nil satisfies the positivity condition for list
because list does not appear in any (real) arguments of the type of that constructor
(primarily because list does not have any (real) arguments) ... (bullet 1)

L concerning type ¥V A — list A — list A of constructor cons:
Type V A : Type, A — list A — list A of constructor cons
satisfies the positivity condition for list because:

— list occurs only strictly positively in Type ... (bullet 3)

— list occurs only strictly positively in A ... (bullet 3)

— list occurs only strictly positively in list A ... (bullet 4)

— list satisfies the positivity condition for list A ... (bullet 1)

Correctness rules. We shall now describe the rules allowing the introduction of a new inductive defi-
nition.

W-Ind Let E be a global environment and I'p,T';,I'¢ are contexts such that 'y is [I}
VFP,Al; ey Ik H VFP, Ak] and FC is [Cl . VFP, 01; ey Cpt VFP, Cn]

(BLpF A )ik (BICBTPIE Cit s )izt
WF (E; Ind[p](T'; :=T'c))[I]

provided that the following side conditions hold:

* k> 0and all of I; and ¢; are distinct names for j =1...kand7=1...n,
* p is the number of parameters of Ind(T'; :=T'¢-) and I'p is the context of parameters,
* for j = 1...k we have that A; is an arity of sort s; and I; ¢ F,

e fori = 1...n we have that C; is a type of constructor of I,, which satisfies the positivity
conditionfor I ... Iy and ¢; ¢ T U E.

Coq Reference Manual, V8.6.1, July 26, 2017



4.5 Inductive definitions 129

One can remark that there is a constraint between the sort of the arity of the inductive type and the sort
of the type of its constructors which will always be satisfied for the impredicative sort Prop but may
fail to define inductive definition on sort Set and generate constraints between universes for inductive
definitions in the Type hierarchy.

Examples. It is well known that existential quantifier can be encoded as an inductive definition. The
following declaration introduces the second-order existential quantifier 3X.P(X).

Cog < Inductive exProp (P:Prop->Prop) : Prop :=
exP_intro : forall X:Prop, P X —-> exProp P.

The same definition on Set is not allowed and fails:

Cog < Fail Inductive exSet (P:Set->Prop) : Set :=
exS_intro : forall X:Set, P X —-> exSet P.

The command has indeed failed with message:

Large non-propositional inductive types must be in Type.

It is possible to declare the same inductive definition in the universe Type. The exType inductive
definition has type (Type; — Prop) — Type, with the constraint that the parameter X of exT_intro
has type Type, with k < j and k£ < 3.

Cog < Inductive exType (P:Type->Prop) : Type :=
exT_intro : forall X:Type, P X —> exType P.

Sort-polymorphism of inductive types. Inductive types declared in Type are polymorphic over their
arguments in Type. If A is an arity of some sort and s is a sort, we write A/, for the arity obtained
from A by replacing its sort with s. Especially, if A is well-typed in some global environment and local
context, then A is typable by typability of all products in the Calculus of Inductive Constructions. The
following typing rule is added to the theory.

Ind-Family Let Ind[p](I'; := I'c’) be an inductive definition. Let I'p = [p; : Pi;...;p, : Pyl be
its context of parameters, I'y = [I : VI'p, Ay;...; Iy : VI'p, Ag] its context of definitions and
I'c =1 :VLp,Cy;.. ;¢ 2 VI'p, Cy] its context of constructors, with ¢; a constructor of 1.

Let m < p be the length of the longest prefix of parameters such that the m first arguments
of all occurrences of all I; in all Cy, (even the occurrences in the hypotheses of Cy) are exactly
applied to p; ... pm (m is the number of recursively uniform parameters and the p—m remaining
parameters are the recursively non-uniform parameters). Let q1, ..., gr, with0 < r < m, be a
(possibly) partial instantiation of the recursively uniform parameters of I' . We have:

Indjp](T';:=T¢) € E

(EDFaq: P)i=1..

(E[] H Pll Sﬁ(sLCW jjl{pu/Qu}u:l...lfl)lzl...r
1<j<k

El-Ligi ... g :Vprg1: Pryasooipp 2 Byl (Aj) s,

provided that the following side conditions hold:

* I'pr is the context obtained from I' p by replacing each F; that is an arity with P/ for 1 <1 <
r (notice that P arity implies P/ arity since E[] = P/ <gs.cp P{pu/qu}u=1..1-1);

Coq Reference Manual, V8.6.1, July 26, 2017



130 4 Calculus of Inductive Constructions

* there are sorts s;, for 1 < ¢ < k such that, for Tp = [I; : VFPI,(Al)/Sl;...;Ik :
VIl pr, (Ag)ss,] wehave (E[Lp; Upr] = Gyt sg)i=1..n5

* the sorts s; are such that all eliminations, to Prop, Set and Type(j), are allowed (see Sec-
tion 4.5.3).

Notice thatif I g1 ... g, is typable using the rules Ind-Const and App, then it is typable using the rule
Ind-Family. Conversely, the extended theory is not stronger than the theory without Ind-Family. We get
an equiconsistency result by mapping each Ind[p](T'; := "¢ ) occurring into a given derivation into as
many different inductive types and constructors as the number of different (partial) replacements of sorts,
needed for this derivation, in the parameters that are arities (this is possible because Ind[p|(T'; :=T'¢)
well-formed implies that Ind[p](I'y := I'cr ) is well-formed and has the same allowed eliminations,
where I'r is defined as above and I'cv = [¢1 : VI'pr, C1;...5¢p 2 VI pr, Cp]). That is, the changes in
the types of each partial instance ¢q; ... g, can be characterized by the ordered sets of arity sorts among
the types of parameters, and to each signature is associated a new inductive definition with fresh names.
Conversion is preserved as any (partial) instance [ q; ... ¢, or C;qy ... g is mapped to the names
chosen in the specific instance of Ind[p](I'; :=T'¢).

In practice, the rule Ind-Family is used by COQ only when all the inductive types of the inductive
definition are declared with an arity whose sort is in the Type hierarchy. Then, the polymorphism is over
the parameters whose type is an arity of sort in the Type hierarchy. The sort s; are chosen canonically
so that each s; is minimal with respect to the hierarchy Prop C Set,, C Type where Set,, is predicative
Set. More precisely, an empty or small singleton inductive definition (i.e. an inductive definition of
which all inductive types are singleton — see paragraph 4.5.3) is set in Prop, a small non-singleton
inductive type is set in Set (even in case Set is impredicative — see Section 4.8), and otherwise in the
Type hierarchy.

Note that the side-condition about allowed elimination sorts in the rule Ind-Family is just to avoid

to recompute the allowed elimination sorts at each instance of a pattern-matching (see section 4.5.3). As
an example, let us consider the following definition:

Cog < Inductive option (A:Type) : Type :=
| None : option A
| Some : A —-> option A.

As the definition is set in the Type hierarchy, it is used polymorphically over its parameters whose types
are arities of a sort in the Type hierarchy. Here, the parameter A has this property, hence, if option
is applied to a type in Set, the result is in Set. Note that if opt ion is applied to a type in Prop, then,
the result is not set in Prop but in Set still. This is because option is not a singleton type (see
section 4.5.3) and it would lose the elimination to Set and Type if set in Prop.

Cog < Check (fun A:Set => option A).
fun A : Set => option A
Set —-> Set

Cog < Check (fun A:Prop => option A).
fun A : Prop => option A

: Prop —-> Set
Here is another example.

Coqg < Inductive prod (A B:Type) : Type := pair : A -> B -> prod A B.

Coq Reference Manual, V8.6.1, July 26, 2017



4.5 Inductive definitions 131

As prod is a singleton type, it will be in Prop if applied twice to propositions, in Set if applied twice
to at least one type in Set and none in Type, and in Type otherwise. In all cases, the three kind of
eliminations schemes are allowed.

Cog < Check (fun A:Set => prod A).
fun A : Set => prod A
Set —> Type —-> Type

Cog < Check (fun A:Prop => prod A A).
fun A : Prop => prod A A

: Prop —> Prop
Cog < Check (fun (A:Prop) (B:Set) => prod A B).
fun (A : Prop) (B : Set) => prod A B

: Prop —-> Set —-> Set

Cog < Check (fun (A:Type) (B:Prop) => prod A B).
fun (A : Type) (B : Prop) => prod A B
Type —> Prop —-> Type

4.5.3 Destructors

The specification of inductive definitions with arities and constructors is quite natural. But we still have
to say how to use an object in an inductive type.

This problem is rather delicate. There are actually several different ways to do that. Some of them
are logically equivalent but not always equivalent from the computational point of view or from the user
point of view.

From the computational point of view, we want to be able to define a function whose domain is an
inductively defined type by using a combination of case analysis over the possible constructors of the
object and recursion.

Because we need to keep a consistent theory and also we prefer to keep a strongly normalizing
reduction, we cannot accept any sort of recursion (even terminating). So the basic idea is to restrict
ourselves to primitive recursive functions and functionals.

For instance, assuming a parameter A : Set exists in the local context, we want to build a function
length of type list A — nat which computes the length of the list, so such that (length (nil A)) = O
and (length (cons A a 1)) = (S (length [)). We want these equalities to be recognized implicitly and
taken into account in the conversion rule.

From the logical point of view, we have built a type family by giving a set of constructors. We want
to capture the fact that we do not have any other way to build an object in this type. So when trying
to prove a property about an object m in an inductive definition it is enough to enumerate all the cases
where m starts with a different constructor.

In case the inductive definition is effectively a recursive one, we want to capture the extra property
that we have built the smallest fixed point of this recursive equation. This says that we are only ma-
nipulating finite objects. This analysis provides induction principles. For instance, in order to prove
Vi : list A, (has_length A [ (length 7)) it is enough to prove:

* (has_length A (nil A) (length (nil A)))

* Va: A,Vi:list A, (has_length Al (length 7)) —
— (has_length A (cons A a 1) (length (cons A a [)))

which given the conversion equalities satisfied by length is the same as proving:

Coq Reference Manual, V8.6.1, July 26, 2017



132 4 Calculus of Inductive Constructions

* (has_length A (nil A) O)

e Va: A,V :list A, (has_length Al (length 1)) —
— (has_length A (cons A al) (S (length 1)))

One conceptually simple way to do that, following the basic scheme proposed by Martin-Lof in his
Intuitionistic Type Theory, is to introduce for each inductive definition an elimination operator. At the
logical level it is a proof of the usual induction principle and at the computational level it implements a
generic operator for doing primitive recursion over the structure.

But this operator is rather tedious to implement and use. We choose in this version of CoQ to
factorize the operator for primitive recursion into two more primitive operations as was first suggested
by Th. Coquand in [28]. One is the definition by pattern-matching. The second one is a definition by
guarded fixpoints.

The match...with ...end construction.

The basic idea of this operator is that we have an object m in an inductive type I and we want to
prove a property which possibly depends on m. For this, it is enough to prove the property for m =
(¢i u1 ... up,) for each constructor of I. The COQ term for this proof will be written:

match m with (¢i z11 ... z1p,) = fi| ... | (cn Tni - Tnp,) = fn €Nd

In this expression, if m eventually happens to evaluate to (¢; u; . .. up,) then the expression will behave
as specified in its 4-th branch and it will reduce to f; where the x;1...x;),, are replaced by the u; ... uy,
according to the (-reduction.

Actually, for type-checking a match. . . with. . . end expression we also need to know the predicate P
to be proved by case analysis. In the general case where I is an inductively defined n-ary relation, P is a
predicate over n+ 1 arguments: the n first ones correspond to the arguments of I (parameters excluded),
and the last one corresponds to object m. COQ can sometimes infer this predicate but sometimes not.
The concrete syntax for describing this predicate uses the as. . .in...return construction. For instance,
let us assume that I is an unary predicate with one parameter and one argument. The predicate is made
explicit using the syntax:

match m as z in I _areturn P with (¢; 211 ... 1p,) = f1| ... | (cn Zn1 - Tnp,) = fuend

The as part can be omitted if either the result type does not depend on m (non-dependent elimination)
or m is a variable (in this case, m can occur in P where it is considered a bound variable). The in
part can be omitted if the result type does not depend on the arguments of /. Note that the arguments
of I corresponding to parameters must be _, because the result type is not generalized to all possible
values of the parameters. The other arguments of I/ (sometimes called indices in the literature) have to
be variables (a above) and these variables can occur in P. The expression after in must be seen as an
inductive type pattern. Notice that expansion of implicit arguments and notations apply to this pattern.
For the purpose of presenting the inference rules, we use a more compact notation:

case(m, (Aazx. P),Az11 ... Z1p,- fi | «o. | AZp1-Znp, - fn)
Allowed elimination sorts. An important question for building the typing rule for match is what can
be the type of Aax. P with respect to the type of m. If m : I and I : A and Aax. P : B then by

[I : A|B] we mean that one can use Aaz. P with m in the above match-construct.

Coq Reference Manual, V8.6.1, July 26, 2017



4.5 Inductive definitions 133

Notations. The [I : A|B] is defined as the smallest relation satisfying the following rules: We write
[I|B] for [I : A|B] where A is the type of I.
The case of inductive definitions in sorts Set or Type is simple. There is no restriction on the sort of
the predicate to be eliminated.
Prod
(T z): A'|B']
[I:Vz:A A'|Vz: A, B

Set & Type
s1 € {Set, Type(j)} s €8

[ : 51| — s9]

The case of Inductive definitions of sort Prop is a bit more complicated, because of our interpretation of
this sort. The only harmless allowed elimination, is the one when predicate P is also of sort Prop.

Prop
[I : Prop|I — Prop]

Prop is the type of logical propositions, the proofs of properties P in Prop could not be used for
computation and are consequently ignored by the extraction mechanism. Assume A and B are two
propositions, and the logical disjunction A V B is defined inductively by:

Cog < Inductive or (A B:Prop) : Prop :=
or_introl : A -> or A B | or_intror : B -> or A B.

The following definition which computes a boolean value by case over the proof of or A B is not
accepted:

Cogq < Fail Definition choice (A B: Prop) (x:or A B) :=
match x with or_introl _ _ a => true | or_intror _ _ b => false end.
The command has indeed failed with message:
Incorrect elimination of "x" in the inductive type "or":
the return type has sort "Set" while it should be "Prop".
Elimination of an inductive object of sort Prop
is not allowed on a predicate in sort Set
because proofs can be eliminated only to build proofs.

From the computational point of view, the structure of the proof of (or A B) in this term is needed
for computing the boolean value.

In general, if I has type Prop then P cannot have type I — Set, because it will mean to build
an informative proof of type (P m) doing a case analysis over a non-computational object that will
disappear in the extracted program. But the other way is safe with respect to our interpretation we can
have I a computational object and P a non-computational one, it just corresponds to proving a logical

property of a computational object.

In the same spirit, elimination on P of type I — Type cannot be allowed because it trivially implies
the elimination on P of type I — Set by cumulativity. It also implies that there are two proofs of
the same property which are provably different, contradicting the proof-irrelevance property which is
sometimes a useful axiom:

Cog < Axiom proof_irrelevance : forall (P : Prop) (x vy : P), x=y.
proof_irrelevance is declared

The elimination of an inductive definition of type Prop on a predicate P of type I — Type leads to a
paradox when applied to impredicative inductive definition like the second-order existential quantifier
exProp defined above, because it give access to the two projections on this type.

Coq Reference Manual, V8.6.1, July 26, 2017



134 4 Calculus of Inductive Constructions

Empty and singleton elimination There are special inductive definitions in Prop for which more
eliminations are allowed.

Prop-extended
I is an empty or singleton definition s € §

[{ : Prop|l — s]

A singleton definition has only one constructor and all the arguments of this constructor have type Prop.
In that case, there is a canonical way to interpret the informative extraction on an object in that type,
such that the elimination on any sort s is legal. Typical examples are the conjunction of non-informative
propositions and the equality. If there is an hypothesis /4 : ¢ = b in the local context, it can be used for
rewriting not only in logical propositions but also in any type.

Cog < Print eqg_rec.

eq_rec =

fun (A : Type) (x : A) (P : A —-> Set) => eq_rect x P
forall (A : Type) (x : A) (P : A —-> Set),
P x —-> forall vy : A, x =y —> Py

Argument A is implicit

Argument scopes are [type_scope _ function_scope _ _ _]

Cog < Extraction eqg_rec.

(% val eq_rec : 'al -> 'a2 -> 'al -> 'aZ *x%)
let eq rec _ £ _ =
f

An empty definition has no constructors, in that case also, elimination on any sort is allowed.

Type of branches. Let ¢ be a term of type C, we assume C' is a type of constructor for an inductive
type I. Let P be a term that represents the property to be proved. We assume r is the number of
parameters and p is the number of arguments.

We define a new type {c : C'}*" which represents the type of the branch corresponding to the ¢ : C

constructor.
{CZ (Ipl...prtl...tp)}P = (Ptl... tpC)

{c:Vax:T,C}F =Vz:T,{(cz): C}F
We write {c}¥ for {c¢ : C}¥ with C the type of c.

Example. The following term in concrete syntax:

match t as 1 return P’ with

| nil _ => tl
| cons _ hd tl => t2
end

can be represented in abstract syntax as
case(t, P, f1] f2)
where
P = Xl.P

i = &
fo = X(hd:nat). A (¢ :listnat) . ¢,

Coq Reference Manual, V8.6.1, July 26, 2017



4.5 Inductive definitions 135

According to the definition:
{(nil nat)}* = {(nil nat) : (list nat)}” = (P (nil nat))

{(cons nat)}¥ = {(cons nat) : (nat — list nat — list nat)}* =
= Vn : nat, {(cons nat n) : list nat — list nat)}* =

= Vn :nat, Vi : list nat, {(cons nat n 1) : list nat) }
= Vn :nat,Vi : list nat, (P (cons nat n [)).

v

Given some P, then {(nil nat) }*’ represents the expected type of f1, and {(cons nat)}*" represents the
expected type of fo.

Typing rule. Our very general destructor for inductive definition enjoys the following typing rule

match

EflFe:(Iqi-- g ta-.-ts) BLJFP:B [(Iqi-..¢)|B] (E[L]F fi: {(cpiqr---q)})i=1.
E[l'lFcase(e, P, fi|...|f1) : (Pty1...ts¢)

provided I is an inductive type in a definition Ind[r](T'; := I'¢ ) withT'c = [c1 : C1;...;¢n : Cp]
and ¢y, ... cp, are the only constructors of 1.

Example. Below is a typing rule for the term shown in the previous example:

E[l]Ft: (listnat) E[L]FP:B [(istnat)|B] E[T]F f1:{(nilnat)}’ E[]F f5: {(cons nat)}”

E[T') F case(t, P, f1|f2) : (P t)

Definition of (-reduction. = We still have to define the +-reduction in the general case.
A t-redex is a term of the following form:

case((cp, q1---Gr a1...am), P, f1|...|f1)

with ¢, the i-th constructor of the inductive type I with r parameters.
The ¢-contraction of this term is (f; a1 . . . ay,) leading to the general reduction rule:

CaSG((Cpi q1...4qr al---am)apaf1|“"fn) >y (fz al---am)

4.5.4 Fixpoint definitions

The second operator for elimination is fixpoint definition. This fixpoint may involve several mutually
recursive definitions. The basic concrete syntax for a recursive set of mutually recursive declarations is
(with T'; contexts):

fix f1 (Fl) : A1 =1 with . .. with fn(l“n) : An =1y

The terms are obtained by projections from this set of declarations and are written
fix f1(I'1) : A1 =ty with...with f,,(T",) : A, := ¢, for f;
In the inference rules, we represent such a term by
Fix fi{fi: A=t ... fn: A =1}

with ¢] (resp. A}) representing the term ¢; abstracted (resp. generalized) with respect to the bindings in
the context I';, namely ¢, = AT';. ¢; and A, = VT, A;.

Coq Reference Manual, V8.6.1, July 26, 2017



136 4 Calculus of Inductive Constructions

Typing rule
The typing rule is the expected one for a fixpoint.
Fix
(BT F Az si)iztn (BT, f1: A, fo An] Fti s Ai)iz1m
EMFFix fi{fi: Ai:=t1... fn: An =1tn}  4;

Any fixpoint definition cannot be accepted because non-normalizing terms allow proofs of absurdity.
The basic scheme of recursion that should be allowed is the one needed for defining primitive recursive
functionals. In that case the fixpoint enjoys a special syntactic restriction, namely one of the arguments
belongs to an inductive type, the function starts with a case analysis and recursive calls are done on
variables coming from patterns and representing subterms. For instance in the case of natural numbers,
a proof of the induction principle of type

VP : nat — Prop, (P O) — (Vn:nat,(Pn) — (P (Sn))) = Vn:nat, (P n)
can be represented by the term:

AP :nat — Prop. Af : (P O). Ag : (Vn: nat, (P n) = (P (Sn))).
Fix h{h:Vn:nat, (P n):= An:nat.case(n, P, f | A\p:nat. (g p (hp)))}

Before accepting a fixpoint definition as being correctly typed, we check that the definition is “guarded”.
A precise analysis of this notion can be found in [67]. The first stage is to precise on which argument
the fixpoint will be decreasing. The type of this argument should be an inductive definition. For doing
this, the syntax of fixpoints is extended and becomes

Fix fz{fl/kl AL =1 fn/kn P Ay = tn}

where k; are positive integers. Each k; represents the index of pararameter of f;, on which f;
is decreasing. Each A; should be a type (reducible to a term) starting with at least k; products
Vyy : By,...Yyg, : By,, A, and By, an is unductive type.

Now in the definition #;, if f; occurs then it should be applied to at least k; arguments and the &;-th
argument should be syntactically recognized as structurally smaller than yy,

The definition of being structurally smaller is a bit technical. One needs first to define the notion
of recursive arguments of a constructor. For an inductive definition Ind[r](I'; := I'¢ ), if the type of a
constructor ¢ has the form Vpy : Py,...Vp, : P.,Yay : Th, ...V, : T, (I p1...pp t1 ... 1), then the
recursive arguments will correspond to 7; in which one of the I; occurs.

The main rules for being structurally smaller are the following:
Given a variable y of type an inductive definition in a declaration Ind[r|(I'; := ') where 'y is [1; :
Aty Iy s Agl,and T is [er : Cy;. . .5 ¢ 0 Cy). The terms structurally smaller than y are:

* (tw)and Az : u. t when ¢ is structurally smaller than y.

e case(c, P, f1 ... fr) when each f; is structurally smaller than y.
If ¢ is y or is structurally smaller than y, its type is an inductive definition I, part of the in-
ductive declaration corresponding to y. Each f; corresponds to a type of constructor C;, =
Vpy : Pr,...,¥p, ¢ P ¥y1 : By,... Yy, : Bg, (I a1...ax) and can consequently be written
Ayi @ Bl. ... Ay @ Bj. g;. (Bj is obtained from B; by substituting parameters variables) the
variables y; occurring in g; corresponding to recursive arguments B; (the ones in which one of
the I; occurs) are structurally smaller than y.

Coq Reference Manual, V8.6.1, July 26, 2017



4.5 Inductive definitions 137

The following definitions are correct, we enter them using the Fixpoint command as described in
Section 1.3.4 and show the internal representation.

Cogq < Fixpoint plus (n m:nat) {struct n} : nat :=
match n with
| O =>m
| S p =>3S (plus p m)
end.

plus is defined
plus is recursively defined (decreasing on 1st argument)

Cog < Print plus.

plus =
fix plus (n m : nat) {struct n} : nat :=
match n with
/| 0 => m
/| S p=>3S (plus p m)
end

nat —-> nat -> nat
Argument scopes are [nat_scope nat_scope]

Cog < Fixpoint lgth (A:Set) (l:1ist A) {struct 1} : nat :=
match 1 with

| nil _ => 0O
| cons _ a 1' => S (lgth A 1")
end.

lgth is defined
lgth is recursively defined (decreasing on 2nd argument)

Cog < Print lgth.

lgth =

fix lgth (A : Set) (1 : 1list A) {struct 1} : nat :=
match 1 with

[ nil _ => 0
| cons _ _ 1'" => S (lgth A 1'")
end

forall A : Set, 1list A —-> nat
Argument scopes are [type_scope _]

Cog < Fixpoint sizet (t:tree) : nat := let (f) := t in S (sizef f)
with sizef (f:forest) : nat :=
match f with
| emptyf => O
| consf t £ => plus (sizet t) (sizef f)
end.
sizet is defined
sizef is defined
sizet, sizef are recursively defined (decreasing respectively on 1st,
1st arguments)

Coq < Print sizet.

sizet =
fix sizet (t : tree) : nat := let (f) :=t in S (sizef f)
with sizef (f : forest) : nat :=

match f with
| emptyf => 0

Coq Reference Manual, V8.6.1, July 26, 2017



138 4 Calculus of Inductive Constructions

| consf t f0 => plus (sizet t) (sizef f0)
end
for sizet
: tree —-> nat

Reduction rule

Let F' be the set of declarations: fi/k1 : Ay :==t1 ... fn/kn : Ap := {y. The reduction for fixpoints is:
(Fix fi{F} ar...a) > ti{(fi/Fix fi{ F}k=1..n} 01.. . ag,

when ay, starts with a constructor. This last restriction is needed in order to keep strong normalization
and corresponds to the reduction for primitive recursive operators. The following reductions are now
possible:

plus (S(S0)) (SO) &, S (plus(SO)(SO))
> S (S (plusO (S 0)))
> S(S(S0))

Mutual induction

The principles of mutual induction can be automatically generated using the Scheme command de-
scribed in Section 13.1.

4.6 Admissible rules for global environments

From the original rules of the type system, one can show the admissibility of rules which change the
local context of definition of objects in the global environment. We show here the admissible rules that
are used used in the discharge mechanism at the end of a section.

Abstraction. One can modify a global declaration by generalizing it over a previously assumed con-
stant ¢. For doing that, we need to modify the reference to the global declaration in the subsequent global
environment and local context by explicitly applying this constant to the constant ¢’.

Below, if ' is a context of the form [y; : Aj;...;yn @ Ap], we write Vo : U, T'{¢/x} to mean
[y1 :Vao:U Ai{c/z};..5yn Vo U An{c/z}] and E{|I'|/|T'|c}. to mean the parallel substitution
E{y1/(y1 &)} Ayn/(yn ©)}-

First abstracting property:
WF(E;c:U;E'; ¢ :=t: T; E")[I)
WF(E;c:U; B¢ = de U . t{c/x} Vo : UT{c/z}; E"{/(c c)})[I{c/(c)}]

WF(E;c:U; E'; ¢ - T B[
WF(E;c:U; B¢ VYo :UT{c/z}; E"{/(c )} {c/(c)}]

WF(Bse - U B Indp)(Ty = T ) BT
(E;c:U; EsInd[p + 1|(Vz : U, Ti{c/z} :=Vz : U Tc{c/z}); E"{IT1,Tc|/IT1,Tc| ¢})
[T{ITr, Cel/ITr, Tel e}

WF

Coq Reference Manual, V8.6.1, July 26, 2017



4.7 Co-inductive types 139

One can similarly modify a global declaration by generalizing it over a previously defined con-
stant ¢/. Below, if I is a context of the form [y; : Ay;...;5y, : A,], we write ['{c/u} to mean

[y1 : Ai{c/u};. . 5yn « An{c/u}].
Second abstracting property:

WF(E;c:=u:U;FE;d :=t:T; E")[T]
WF(E;c:=u:U; E';d = (letz:=u:Uint{c/z}) : T{c/u}; E")[I]

WF(E;c:=u:U;E; ¢ . T; E")[T]
WF(E;c:=u:U;E; " : T{c/u}; E")[T]

WF(E;c:=u:U; E';Ind[p|(I'r :=T¢); B[]
WF(E;c:=u:U; B Ind[p|(I'{c/u} :=Tc{c/u}); E")[I]

Pruning the local context. If one abstracts or substitutes constants with the above rules then it may
happen that some declared or defined constant does not occur any more in the subsequent global envi-
ronment and in the local context. One can consequently derive the following property.

First pruning property:

WF(F;c: U; E')[T ¢ does not occur in £ and T’
WF(E; E")[T]

Second pruning property:

WF(E;¢:=u:U; B[] ¢ does not occur in E' and T"
WF(E; E")[T]

4.7 Co-inductive types

The implementation contains also co-inductive definitions, which are types inhabited by infinite objects.
More information on co-inductive definitions can be found in [68, 70, 71].

4.8 The Calculus of Inductive Construction with impredicative Set

Co0Q can be used as a type-checker for the Calculus of Inductive Constructions with an impredicative
sort Set by using the compiler option —impredicative-set. For example, using the ordinary
cogtop command, the following is rejected.

Cog < Fail Definition id: Set forall X:Set,X->X.
The command has indeed failed with message:

The term "forall X : Set, X —-> X" has type "Type"
while it is expected to have type "Set".

while it will type-check, if one uses instead the cogtop —impredicative-set command.
The major change in the theory concerns the rule for product formation in the sort Set, which is
extended to a domain in any sort:

Coq Reference Manual, V8.6.1, July 26, 2017



140 4 Calculus of Inductive Constructions

Prod
EllFT:s s€8 E[l':(z:T))FU:Set

ElFYz:T,U : Set

This extension has consequences on the inductive definitions which are allowed. In the impredicative
system, one can build so-called large inductive definitions like the example of second-order existential
quantifier (exSet).

There should be restrictions on the eliminations which can be performed on such definitions. The
eliminations rules in the impredicative system for sort Set become:

Set
s € {Prop, Set} I is asmall inductive definition s € {Type(i)}

[7:Set|T — 5] [7: Set|T — 3|

Coq Reference Manual, V8.6.1, July 26, 2017



Chapter 5

The Module System

The module system extends the Calculus of Inductive Constructions providing a convenient way to
structure large developments as well as a means of massive abstraction.

5.1 Modules and module types

Access path. It is denoted by p, it can be either a module variable X or, if p’ is an access path and id
an identifier, then p’.id is an access path.

Structure element. It is denoted by e and is either a definition of a constant, an assumption, a defini-
tion of an inductive, a definition of a module, an alias of module or a module type abbreviation.

Structure expression. It is denoted by S and can be:
* an access path p
e aplain structure Struct e;...;e End
* a functor Functor(X : S) S’, where X is a module variable, S and S’ are structure expression
* an application S p, where S is a structure expression and p an access path

* arefined structure S with p := p' or S with p := ¢ : T where S is a structure expression, p and p’
are access paths, ¢ is a term and 7" is the type of £.

Module definition, is written Mod(X : S [:= S’]) and consists of a module variable X, a module
type S which can be any structure expression and optionally a module implementation S’ which can be
any structure expression except a refined structure.

Module alias, is written ModA(X == p) and consists of a module variable X and a module path p.

Module type abbreviation, is written ModType(Y := S), where Y is an identifier and .S is any
structure expression .

Coq Reference Manual, V8.6.1, July 26, 2017



142 5 The Module System

5.2 Typing Modules

In order to introduce the typing system we first slightly extend the syntactic class of terms and environ-
ments given in section 4.1. The environments, apart from definitions of constants and inductive types
now also hold any other structure elements. Terms, apart from variables, constants and complex terms,
include also access paths.

We also need additional typing judgments:

* B[] F WF(S), denoting that a structure S is well-formed,
* E[]F p: S, denoting that the module pointed by p has type S in environment E.

* B[]S — S, denoting that a structure S is evaluated to a structure S in weak head normal form.

E[l F 81 <: So, denoting that a structure S; is a subtype of a structure S5.

* E[| F e1 <: e, denoting that a structure element e; is more precise that a structure element e;.
The rules for forming structures are the following:
WF-STR

WF(E; E]]
E[] - WF(Struct E' End)

WF-FUN -
E;Mod(X : S)[| F WF(S")
E[] - WF(Functor(X : S) 57)

Evaluation of structures to weak head normal form:

WEVAL-APP -
E[J| =S — Functor(X : $1) So E[JF 51— 5
E[]"p:Sg EH"S?, <: 5
E[JF Sp — So{p/ X, t1/pr.c1,- .. tn/pn-cn}
In the last rule, {¢1/pi.c1,...,tn/pn.cn} is the resulting substitution from the inlining mechanism. We

substitute in S the inlined fields p;.c; form Mod(X : S7) by the corresponding delta-reduced term ¢; in
p.
WEVAL-WITH-MOD
E[|F S — Struct e1;...;e;;Mod(X : S1);€i49;...;5e, End  Eep;...;e[]F S — St
EllFp: Sy Eiep;...ieF S2 < 5

E[|F Swithz :=p —
Struct eg;...; e;; ModA(X == p); ejro{p/X};...; en{p/X} End

WEVAL-WITH-MOD-REC

E[JF S — Struct ey;...;¢;Mod(Xy = S1); €42;...5 e, End
Eiep;...;e[]F Sy withp:=p, — 52
E[|F Swith X;.p:=p —
Struct e1;...; ¢;; Mod(X : S2); € 12{p1/X1.p};- -5 en{p1/X1.p} End

Coq Reference Manual, V8.6.1, July 26, 2017



5.2 Typing Modules 143

WEVAL-WITH-DEF
E[| 8§ — Struct eg;...; ¢;; Assum()(c : T1); €i12; ... ; en End
E;e;...56] FDef()(c:=t:T) <: Assum()(c: T1)
E[JF Swithc:=¢:T —
Struct e;...;e;Def()(c:=t:T); ejyo;...; e, End

WEVAL-WITH-DEF-REC

E[JF S — Struct ey;...;¢;;Mod(Xy ¢ S1); €i42;...5 e, End
Esep;...5¢[]F S withp :=p; — So
Ell - Swith Xy.p:=t:T —
Struct eg;...;e;Mod(X @ S9); €i490;...; e, End

WEVAL-PATH-MOD

E[]Fp —> Struct eg;...; ¢;5;Mod(X : S[:= S51]); €i42;...; en End
Eiep;...;e[]F S — S
E[FpX —3S

WF(E)]] Mod(X:S[:=51]) € E
EFS— S
EFX — S

WEVAL-PATH-ALIAS

EllFp — Struct er;...; ¢;; ModA(X == p1); €i42;...; €y End
E;ei;...56l]]Fp— S
EFpX — S

WF(E)[] ModA(X ==p;) € E
EH F pL — ?
EJFX — S

WEVAL-PATH-TYPE
E[JFp — Struct eg;...; e;; ModType(Y := 5); eiyo;...; en End
Eie;...56[]F S — S
ElFpY — S

WEVAL-PATH-TYPE
WF(E)[] ModType(Y :=S5) € E

EFS— S
EJFY — S
Rules for typing module:
MT-EVAL _
Ellkp— S
ElFp:S

Coq Reference Manual, V8.6.1, July 26, 2017



144 5 The Module System

MT-STR
E[ltp:S

EllFp:S/p

The last rule, called strengthening is used to make all module fields manifestly equal to themselves. The
notation S/p has the following meaning:

« if S — Struct ej;...; e, End then S/p = Struct e;/p;...; e,/p End where e/p is defined as
follows:

Def()(c:=t:T)/p' = Def()(c:=t:T)

Assum()(c: U)/p = Def()(c:=p.c:U)

Mod(X : S)/p = ModA(X == p.X)

ModA(X ==p')/p = ModA(X ==7p’)

Ind[I'p)(T'c :=T7)/p = Ind,()[Lp](Tc:=T7)

Indy ()['p](l'c :=Tr)/p = Indy ()[Lp](I'c :=1T7)

e if S — Functor(X : S") S” then S/p = S

The notation Ind,()[I'p]('c :=T;) denotes an inductive definition that is definitionally
equal to the inductive definition in the module denoted by the path p. All rules which have
Ind[I'p](I'c :=I'y ) as premises are also valid for Ind,()[I'p](I'c :=T';) . We give the formation rule
for Ind,()[I'p](I'c :=1I'r) below as well as the equality rules on inductive types and constructors.

The module subtyping rules:

MSUB-STR
Eier;...en[]Fegy <:¢f fori=1.m
o:{l...m}— {1...n} injective
E[] F Struct e;;...; e, End <: Struct ef;...; e/, End
MSUB-FUN

E[|F S <81 E;Mod(X : S))[| - S <: S}
E] F Functor(X : S1) S2 <: Functor(X : S}) S},

Structure element subtyping rules:

ASSUM-ASSUM
Bl - T <gsicy T>

E[ = Assum()(c: T1) <: Assum()(c: Ty)

DEF-ASSUM
B[l F Ty <gsicy T2

E[| - Def()(c:=t:T1) <: Assum()(c : T»)

ASSUM-DEF
E|FT <gsin T2 E[F c=pscn t2

E[] F Assum()(c: T1) <: Def()(c :=to : To)

'Opaque definitions are processed as assumptions.

Coq Reference Manual, V8.6.1, July 26, 2017



5.2 Typing Modules 145

DEF-DEF
E[|F T <gsicn To Bl Ft1 =goucn b2
E[| - Def()(c: =t : T1) <: Def()(c =ty : T2)
IND-IND
E[] FTp =861 F'P E[Fp] FTo =B861(n FIC E[Fp; FC] FT; =B6uCn F'I
B[ F IndTp](Tc == T; ) <: Ind[Tp](T == T )
INDP-IND
ElFTpr=pocn Up  Elp]-Tco=pacn e ElpTc] b Tr =gsicn I
B F Ind,([Cp)(Tc =T7) <: Ind[Cp)(T% = I%)
INDP-INDP

ElETpr =pscn s E'PIF Lo =pocn e Epi Tl b Tt =pocy Ut B[ Fp =gsun ¥/
E[lEInd,()[I'p)(Te :=T7) <:Indy ()[Lp](Le :=17)

MOD-MOD
EH = Sl <: SQ
E[ - Mod(X : S;) <: Mod(X : Ss)
ALIAS-MOD
E[]l—plsl EH"Sl <: 85
B - ModA(X == p) <: Mod(X : S3)
MOD-ALIAS

E[]"pZSQ EH"Sl <ZSQ E[]FX:55L<7Ip
E[|F Mod(X : S)) <: ModA(X == p)

ALIAS-ALIAS
E F p1 =gs.cn P2

MODTYPE-MODTYPE

EH'_Sl <ISQ E[]l_SQ <ZSl
E[] F ModType(Y := S;) <: ModType(Y := 52)

New environment formation rules

WF-MOD
WF(E)[] E[| - WF(S)
WF(E;Mod(X : S))]]
WF-MOD
EH ~ SQ <: Sl
WF(E)] FE[JFWF(S1) E[JFWF(Ss)
WF(E;Mod(X : Sy [:= S2]))]]

WF-ALIAS

WF(E)[] ElJFp:S
WF(E,ModA(X == p))[]

Coq Reference Manual, V8.6.1, July 26, 2017



146 5 The Module System

WF-MODTYPE
WF(E)]] E[| - WF(S)

WF(E,ModType(Y :=9))][]

WF-IND
WF(E; Ind[L'p](Lc == I'7))]]
E[JFp:Struct er;...; ey INd[T] (T :=T%);... End:
E[lFIndI')(T :=T%) < Ind[l'p](Tc :=T7)

WF(E; Ind, ) [L'p](Ce :=T7) )]

Component access rules

ACC-TYPE
E[l]F p: Struct eg;...;e;;Assum()(c: T);... End

EllFpc:T

E[I'lFp:Struct eg;...;e;Def()(c:=¢t:T);... End
El'lFpc:T

ACC-DELTA Notice that the following rule extends the delta rule defined in section 4.3

E[l'|Fp:Structep;...;e;Def()(c:=¢:U);... End
E[lF p.epgt

In the rules below we assume I'p is [p1 : Pi;...;pp : P, Tris [Iy : Ay I 0 Ay, and T is
[c1:C5. .50 Oy
ACC-IND
E[l'lFp:Structey;...;e;Ind[I'p](Ce :=17);... End
ElbFpl;:(p1:P)...(pr: Pr)A;
E[l'lFp:Structer;...;e;Ind[I'p](Ce :=1"1);... End
ET Epem:(pr:P)...(pr: Pr)Cp (I p1 .. 'pr)j:L..k
ACC-INDP

EllFp:Structer;...;e;Indy()[I'p](I'c:=17) ;... End
E[] F p-Ii >§ pI.IZ'

E[]Fp:Struct eg;...;¢;Indy ()[Tp](Tc :=T7) ;... End
E[lF p.civspe

Coq Reference Manual, V8.6.1, July 26, 2017



Part 11

The proof engine

Coq Reference Manual, V8.6.1, July 26, 2017






Chapter 6

Vernacular commands

6.1 Displaying

6.1.1 Print qualid.

This command displays on the screen information about the declared or defined object referred by
qualid.

Error messages:

1. qualid not a defined object

Variants:

. Print Term qualid.
This is a synonym to Print qualid when qualid denotes a global constant.

2. About qualid.
This displays various information about the object denoted by qualid: its kind (module, constant,
assumption, inductive, constructor, abbreviation, ...), long name, type, implicit arguments and
argument scopes. It does not print the body of definitions or proofs.

6.1.2 Print All.

This command displays information about the current state of the environment, including sections and
modules.

Variants:

1. Inspect num.
This command displays the num last objects of the current environment, including sections and
modules.

2. Print Section ident.
should correspond to a currently open section, this command displays the objects defined since
the beginning of this section.

Coq Reference Manual, V8.6.1, July 26, 2017



150 6 Vernacular commands

6.2 Flags, Options and Tables

CoQ configurability is based on flags (e.g. Set Printing All in Section 2.9), options (e.g. Set
Printing Width integer in Section 6.9.6), or tables (e.g. Add Printing Record ident, in
Section 2.2.4). The names of flags, options and tables are made of non-empty sequences of identifiers
(conventionally with capital initial letter). The general commands handling flags, options and tables are
given below.

6.2.1 Set flag.
This command switches flag on. The original state of flag is restored when the current module ends.
Variants:

1. Local Set flag.
This command switches flag on. The original state of flag is restored when the current section
ends.

2. Global Set flag.
This command switches flag on. The original state of flag is not restored at the end of the module.
Additionally, if set in a file, flag is switched on when the file is Require-d.

6.2.2 Unset flag.
This command switches flag off. The original state of flag is restored when the current module ends.
Variants:

1. Local Unset flag.
This command switches flag off. The original state of flag is restored when the current section
ends.

2. Global Unset flag.
This command switches flag off. The original state of flag is not restored at the end of the module.
Additionally, if set in a file, flag is switched off when the file is Require-d.

6.2.3 Test flag.

This command prints whether flag is on or off.

6.2.4 Set option value.

This command sets option to value. The original value of option is restored when the current module
ends.

Variants:

1. Local Set option value. This command sets option to value. The original value of option is
restored at the end of the module.

2. Global Set option value. This command sets option to value. The original value of option
is not restored at the end of the module. Additionally, if set in a file, option is set to value when
the file is Require-d.

Coq Reference Manual, V8.6.1, July 26, 2017



6.3 Requests to the environment 151

6.2.5 Unset option.
This command resets option to its default value.

Variants:

1. Local Unset option.
This command resets option to its default value. The original state of option is restored when the
current section ends.

2. Global Unset option.
This command resets option to its default value. The original state of option is not restored at the
end of the module. Additionally, if unset in a file, option is reset to its default value when the file
is Require-d.

6.2.6 Test option.

This command prints the current value of option.

6.2.7 Tables

The general commands for tables are Add table value, Remove table value, Test table, Test
table for valueand Print Table table.

6.2.8 Print Options.
This command lists all available flags, options and tables.
Variants:

1. Print Tables.
This is a synonymous of Print Options.

6.3 Requests to the environment

6.3.1 Check term.

This command displays the type of term. When called in proof mode, the term is checked in the local
context of the current subgoal.

Variants:

1. selector: Check term.
specifies on which subgoal to perform typing (see Section 8.1).

6.3.2 Eval convtactic in term.

This command performs the specified reduction on term, and displays the resulting term with its type.
The term to be reduced may depend on hypothesis introduced in the first subgoal (if a proof is in
progress).

See also: Section 8.7.

Coq Reference Manual, V8.6.1, July 26, 2017



152 6 Vernacular commands

6.3.3 Compute term.

This command performs a call-by-value evaluation of term by using the bytecode-based virtual machine.
It is a shortcut for Eval vm_compute in term.

See also: Section 8.7.

6.3.4 Extraction term.

This command displays the extracted term from term. The extraction is processed according to the
distinction between Set and Prop; that is to say, between logical and computational content (see Sec-
tion 4.1.1). The extracted term is displayed in OBJECTIVE CAML syntax, where global identifiers are
still displayed as in COQ terms.

Variants:

1. Recursive Extraction qualid; ... qualid, .
Recursively extracts all the material needed for the extraction of global qualid, ..., qualid,,.

See also: Chapter 23.

6.3.5 Print Assumptions qualid.

This commands display all the assumptions (axioms, parameters and variables) a theorem or definition
depends on. Especially, it informs on the assumptions with respect to which the validity of a theorem
relies.

Variants:

1. Print Opaque Dependencies qualid.
Displays the set of opaque constants qualid relies on in addition to the assumptions.

2. Print Transparent Dependencies qualid.
Displays the set of transparent constants qualid relies on in addition to the assumptions.

3. Print All Dependencies qualid.
Displays all assumptions and constants qualid relies on.

6.3.6 Search qualid.

This command displays the name and type of all objects (hypothesis of the current goal, theorems,
axioms, etc) of the current context whose statement contains qualid. This command is useful to remind
the user of the name of library lemmas.

Error messages:

1. The reference qualid was not found in the current environment
There is no constant in the environment named qualid.

Variants:

Coq Reference Manual, V8.6.1, July 26, 2017



6.3 Requests to the environment 153

1. Search string.

If string is a valid identifier, this command displays the name and type of all objects (theorems,
axioms, etc) of the current context whose name contains string. If string is a notation’s string
denoting some reference qualid (referred to by its main symbol as in "+" or by its notation’s
string asin "_ 4+ _"or "_ U’ _", see Section 12.1), the command works like Search
qualid.

2. Search string%key.
The string string must be a notation or the main symbol of a notation which is then interpreted in
the scope bound to the delimiting key key (see Section 12.2.2).

3. Search term_pattern .

This searches for all statements or types of definition that contains a subterm that matches the
pattern term_pattern (holes of the pattern are either denoted by “_ or by “?ident” when non
linear patterns are expected).

4. Search [-]term_pattern-string ... [-]term_pattern-string .

where term_pattern-string is a term_pattern or a string, or a string followed by a scope delimiting
key %key.

This generalization of Search searches for all objects whose statement or type contains a subterm
matching term_pattern (or qualid if string is the notation for a reference qualid) and whose name
contains all string of the request that correspond to valid identifiers. If a term_pattern or a string
is prefixed by “-”, the search excludes the objects that mention that term_pattern or that string.

5. Search term_pattern-string ... term_pattern-string inside module; ... module,, .
This restricts the search to constructions defined in modules module; ... module,.

6. Search term_pattern-string ... term_pattern-string outside mod-
ule; . . . module,, .

This restricts the search to constructions not defined in modules module; ... module,,.

7. selector: Search [-]term_pattern-string ... [-]term_pattern-string .

This specifies the goal on which to search hypothesis (see Section 8.1). By default the 1st goal is
searched. This variant can be combined with other variants presented here.

Examples:

Cog < Require Import ZArith.

Cog < Search Z.mul Z.add "distr".
fast_Zmult_plus_distr_1:

forall (nmp : Z) (P : Z —-> Prop),

P (n p+m * p)3Z —> P ((n + m) x p)3Z
Z.mul_add distr_r:

forall n mp : Z, ((n + m) % p)%Z
Z.mul_add _distr_1:

forall nmp : Z, (n ~ (m + p))%$Z = (n »m + n * p)%Z

(n + p + m * p)%Z

Coq Reference Manual, V8.6.1, July 26, 2017



154 6 Vernacular commands

Cog < Search "+"%Z "x"%Z "distr" -positive -Prop.
Z.mul_add _distr_r:

forall nmp : Z, ((n +m) ~ p)%Z = (n  p +m * p)%Z
Z.mul_add distr_1:

forall nmp : Z, (n  (m + p))%2

(n +m + n * p)%z

Cog < Search (?x x _ + ?x * _)%Z outside Omegalemmas.
Z.mul_add _distr_1:
forall nmp : Z, (n * (m+ p))%Z = (n x m + n *x p)3Z

Warning: Up to COQ version 8.4, Search had the behavior of current SearchHead and the behavior
of current Search was obtained with command SearchAbout. For compatibility, the deprecated
name SearchAbout can still be used as a synonym of Search. For compatibility, the list of objects
to search when using SearchAbout may also be enclosed by optional [ ] delimiters.

6.3.7 SearchHead term.

This command displays the name and type of all hypothesis of the current goal (if any) and theorems of
the current context whose statement’s conclusion has the form (term t1 .. tn). This command
is useful to remind the user of the name of library lemmas.

Cog < SearchHead le.

le n: forall n : nat, n <= n

le S: forall n m : nat, n <= m -> n <= S m

le pred: forall n m : nat, n <= m —-> Nat.pred n <= Nat.pred m
le S n: forall nm : nat, S n <= S m —-> n <=m

le 0 n: forall n : nat, 0 <= n

le n S: forall nm : nat, n <= m -> S n <= S m

Cog < SearchHead (@eqg bool).
andb_true_intro:
forall bl b2 : bool, bl = true /\ b2 = true —-> (bl && b2)%bool = true

Variants:

1. SearchHead term inside module; ... module,, .

This restricts the search to constructions defined in modules module; ... module,,.

2. SearchHead term outside moduley ... module,, .

This restricts the search to constructions not defined in modules module; ... module,,.

Error messages:

(a) Module/section module not found No module module has been required (see
Section 6.5.1).

3. selector: SearchHead term.

This specifies the goal on which to search hypothesis (see Section 8.1). By default the 1st goal is
searched. This variant can be combined with other variants presented here.

Warning: Up to COQ version 8.4, SearchHead was named Search.

Coq Reference Manual, V8.6.1, July 26, 2017



6.3 Requests to the environment 155

6.3.8 SearchPattern term.

This command displays the name and type of all hypothesis of the current goal (if any) and theorems
of the current context whose statement’s conclusion or last hypothesis and conclusion matches the ex-
pression term where holes in the latter are denoted by “_". It is a variant of Search term_pattern that
does not look for subterms but searches for statements whose conclusion has exactly the expected form,
or whose statement finishes by the given series of hypothesis/conclusion.

Cog < Require Import Arith.

Cog < SearchPattern (_ + _ = _ + _).
f_equalZ_plus:

forall x1 yl x2 y2 : nat, x1 =yl -> x2 = y2 -> x1 + x2 =yl + y2
plus_Snm nSm: forall n m : nat, S n + m = + S m
plus_assoc_reverse: forall n m p : nat, n m+ p =n+ (m + p)
Nat.add_succ_comm: forall n m : nat, S n + m =n + S m
Nat.add comm: forall n m : nat, n + m = m + n

n
+

Nat.add _assoc: forall nm p : nat, n + (m + p) = n + m + p

Nat.add _shuffleO: forall n m p nat, n +m+ p =n + p + m

Nat.add shufflel: forall n m p g nat, n +m + (p +q) =n + p + (m + q)
Nat.add _shuffle2: forall nmp q : nat, n +m + (p + q) = n + g + (m + p)
Nat.add _shuffle3: forall n m p nat, n + (m + p) = m + (n + p)

Cog < SearchPattern (nat -> bool).

Init.Nat.egb: nat —-> nat —-> bool

Init.Nat.leb: nat -> nat -> bool

Init.Nat.1ltb: nat -> nat -> bool

Init.Nat.even: nat —-> bool

Init.Nat.odd: nat -> bool

Init.Nat.testbit: nat -> nat -> bool
BinNat.N.testbit_nat: BinNums.N —-> nat —-> bool
BinNatDef.N.testbit_nat: BinNums.N —-> nat —-> bool
Nat.egb: nat -> nat —-> bool

Nat.leb: nat —-> nat —-> bool

Nat.ltb: nat -> nat —-> bool

Nat.even: nat —-> bool

Nat.odd: nat -> bool

Nat.testbhit: nat -> nat -> bool

BinPos.Pos.testbit_nat: BinNums.positive -> nat —-> bool
BinPosDef.Pos.testbit_nat: BinNums.positive —-> nat -> bool

Coqg < SearchPattern (forall 1 : list _, _ 1 1).
List.lel _refl: forall (A : Type) (1 : list A), List.lel 1 1
List.incl_refl: forall (A : Type) (1 : 1ist A), List.incl 1 1

Patterns need not be linear: you can express that the same expression must occur in two places by
using pattern variables ‘?ident”.

Cog < SearchPattern (?X1 + _ = _ + ?2X1).
Nat.add comm: forall n m : nat, n + m = m + n
Variants:

1. SearchPattern term inside module; ... module, .

This restricts the search to constructions defined in modules moduley ... module,,.

Coq Reference Manual, V8.6.1, July 26, 2017



156 6 Vernacular commands

2. SearchPattern term outside module; ... module,, .

This restricts the search to constructions not defined in modules module; ... module,,.

3. selector: SearchPattern term.

This specifies the goal on which to search hypothesis (see Section 8.1). By default the 1st goal is
searched. This variant can be combined with other variants presented here.

6.3.9 SearchRewrite term.

This command displays the name and type of all hypothesis of the current goal (if any) and theorems of
the current context whose statement’s conclusion is an equality of which one side matches the expression
term. Holes in term are denoted by “_”

Cog < Require Import Arith.

Cog < SearchRewrite (_ + _ + _).

plus_assoc_reverse: forall n m p : nat, n +m + p = n + (m + p)

Nat.add _assoc: forall n m p : nat, n + (m + p) = n + m + p

Nat.add shuffleO: forall n mp : nat, n +m + p =n + p + m

Nat.add shufflel: forall nmp q : nat, n +m + (p + q) =n + p + (m + Qq)
Nat.add shuffleZ: forall n mp q : nat, n + m + (p + q) = n + g + (m + p)

Nat.add carry divZ2:
forall (a b : nat) (cO : bool),
(a + b + Nat.b2n c0) / 2 =
a/ 2+b/ 2+

Nat.bZn
(Nat.testbit a 0 && Nat.testbit b 0
/| cO0 && (Nat.testbit a 0 || Nat.testbit b 0))
Variants:
1. SearchRewrite term inside module; ... module, .

This restricts the search to constructions defined in modules module; ... module,,.

2. SearchRewrite term outside module; ... module, .

This restricts the search to constructions not defined in modules module; ... module,,.

3. selector: SearchRewrite term.

This specifies the goal on which to search hypothesis (see Section 8.1). By default the 1st goal is
searched. This variant can be combined with other variants presented here.

Nota Bene:

For the Search, SearchHead, SearchPattern and SearchRewrite queries, it is possible to
globally filter the search results via the command Add Search Blacklist "substringl". A
lemma whose fully-qualified name contains any of the declared substrings will be removed from the
search results. The default blacklisted substrings are "_subproof" "Private_". The command
Remove Search Blacklist ... allowsexpunging this blacklist.

Coq Reference Manual, V8.6.1, July 26, 2017



6.4 Loading files 157

6.3.10 Locate qualid.

This command displays the full name of objects whose name is a prefix of the qualified identifier qualid,
and consequently the COQ module in which they are defined. It searches for objects from the different
qualified name spaces of COQ: terms, modules, Ltac, etc.

Cog < Locate nat.
Inductive Coqg.Init.Datatypes.nat

Cog < Locate Datatypes.O.
Constructor Coq.Init.Datatypes.O
(shorter name to refer to it in current context is O)

Cog < Locate Init.Datatypes.O.
Constructor Coqg.Init.Datatypes.O
(shorter name to refer to it in current context is O)

Cog < Locate Cog.Init.Datatypes.O.
Constructor Coqg.Init.Datatypes.O
(shorter name to refer to it in current context is O)

Cogq < Locate I.Dont.Exist.
No object of suffix
I.Dont.Exist

Variants:

l. Locate Term qualid.
As Locate but restricted to terms.

2. Locate Module qualid. As Locate but restricted to modules.

3. Locate Ltac qualid.
As Locate but restricted to tactics.

See also: Section 12.1.10

6.4 Loading files

CoQ offers the possibility of loading different parts of a whole development stored in separate files.
Their contents will be loaded as if they were entered from the keyboard. This means that the loaded
files are ASCII files containing sequences of commands for COQ’s toplevel. This kind of file is called a
script for COQ. The standard (and default) extension of COQ’s script files is . v.

6.4.1 Load ident.

This command loads the file named ident . v, searching successively in each of the directories specified
in the loadpath. (see Section 2.6.3)

Variants:

1. Load string.
Loads the file denoted by the string string, where string is any complete filename. Then the ~ and
. abbreviations are allowed as well as shell variables. If no extension is specified, COQ will use
the default extension . v

Coq Reference Manual, V8.6.1, July 26, 2017



158 6 Vernacular commands

2. Load Verbose ident.,Load Verbose string
Display, while loading, the answers of COQ to each command (including tactics) contained in the
loaded file See also: Section 6.9.1

Error messages:

1. Can’t find file ident on loadpath

6.5 Compiled files

This section describes the commands used to load compiled files (see Chapter 14 for documentation on
how to compile a file). A compiled file is a particular case of module called library file.

6.5.1 Require qualid.

This command looks in the loadpath for a file containing module qualid and adds the corresponding
module to the environment of COQ. As library files have dependencies in other library files, the com-
mand Require qualid recursively requires all library files the module qualid depends on and adds the
corresponding modules to the environment of COQ too. COQ assumes that the compiled files have been
produced by a valid COQ compiler and their contents are then not replayed nor rechecked.

To locate the file in the file system, qualid is decomposed under the form dirpath . ident and the file
ident . vo is searched in the physical directory of the file system that is mapped in COQ loadpath to the
logical path dirpath (see Section 2.6.3). The mapping between physical directories and logical names
at the time of requiring the file must be consistent with the mapping used to compile the file. If several
files match, one of them is picked in an unspecified fashion.

Variants:

1. Require Import qualid.

This loads and declares the module qualid and its dependencies then imports the contents of qualid
as described in Section 2.5.8.

It does not import the modules on which qualid depends unless these modules were itself required
in module qualid using Require Export, as described below, or recursively required through
a sequence of Require Export.

If the module required has already been loaded, Require Import qualid simply imports it,
as Import qualid would.
2. Require Export qualid.

This command acts as Require Import qualid, but if a further module, say A, contains a
command Require Export B, then the command Require Import A also imports the
module B.

3. Require [Import | Export]qualid; ... qualid, .

This loads the modules qualidy, ..., qualid,, and their recursive dependencies. If Import or
Export is given, it also imports qualidy, ..., qualid,, and all the recursive dependencies that
were marked or transitively marked as Export.

Coq Reference Manual, V8.6.1, July 26, 2017



6.5 Compiled files 159

4. From dirpath Require qualid.

This command acts as Require, but picks any library whose absolute name is of the form
dirpath . dirpath’ . qualid for some dirpath’. This is useful to ensure that the qualid library comes
from a given package by making explicit its absolute root.

Error messages:

1. Cannot load qualid: no physical path bound to dirpath

2. Cannot find library foo in loadpath
The command did not find the file foo . vo. Either foo . v exists but is not compiled or foo.vo
is in a directory which is not in your LoadPath (see Section 2.6.3).

3. Compiled library ident.vo makes inconsistent assumptions over
library qualid
The command tried to load library file ident.vo that depends on some specific version of library
qualid which is not the one already loaded in the current COQ session. Probably ident.v was not
properly recompiled with the last version of the file containing module qualid.

4. Bad magic number
The file ident . vo was found but either it is not a COQ compiled module, or it was compiled with
an older and incompatible version of COQ.

5. The file ident.vo contains library dirpath and not library dirpath’

The library file dirpath’ is indirectly required by the Require command but it is bound in the
current loadpath to the file ident.vo which was bound to a different library name dirpath at the
time it was compiled.

6. Require is not allowed inside a module or a module type

This command is not allowed inside a module or a module type being defined. It is meant to
describe a dependency between compilation units. Note however that the commands Import
and Export alone can be used inside modules (see Section 2.5.8).

See also: Chapter 14

6.5.2 Print Libraries.

This command displays the list of library files loaded in the current COQ session. For each of these
libraries, it also tells if it is imported.

6.5.3 Declare ML Module string; .. string,.

This commands loads the OBJECTIVE CAML compiled files stringy ... string, (dynamic link). It is
mainly used to load tactics dynamically. The files are searched into the current OBJECTIVE CAML
loadpath (see the command Add ML Path in the Section 2.6.3). Loading of OBJECTIVE CAML files
is only possible under the bytecode version of cogtop (i.e. cogtop called with options ~byte, see
chapter 14), or when COQ has been compiled with a version of OBJECTIVE CAML that supports native
Dynlink (> 3.11).

Variants:

Coq Reference Manual, V8.6.1, July 26, 2017



160 6 Vernacular commands

1. Local Declare ML Module string; .. string,.
This variant is not exported to the modules that import the module where they occur, even if
outside a section.

Error messages:

1. File not found on loadpath : string

2. Loading of ML object file forbidden in a native Co0gQ

6.54 Print ML Modules.

This print the name of all OBJECTIVE CAML modules loaded with Declare ML Module. To know

from where these module were loaded, the user should use the command Locate File (see Sec-
tion 6.6.10)

6.6 Loadpath

Loadpaths are preferably managed using COQ command line options (see Section 2.6.3) but there remain
vernacular commands to manage them for practical purposes. Such commands are only meant to be
issued in the toplevel, and using them in source files is discouraged.

6.6.1 Pwd.

This command displays the current working directory.

6.6.2 Cd string.

This command changes the current directory according to string which can be any valid path.
Variants:

1. cd.
Is equivalent to Pwd.

6.6.3 Add LoadPath string as dirpath .

This command is equivalent to the command line option —Q string dirpath. It adds the physical direc-
tory string to the current COQ loadpath and maps it to the logical directory dirpath.

Variants:

1. Add LoadPath string.
Performs as Add LoadPath string as dirpath but for the empty directory path.

6.6.4 Add Rec LoadPath string as dirpath.

This command is equivalent to the command line option —R string dirpath. It adds the physical direc-
tory string and all its subdirectories to the current COQ loadpath.

Variants:

1. Add Rec LoadPath string.
Works as Add Rec LoadPath string as dirpath but for the empty logical directory path.

Coq Reference Manual, V8.6.1, July 26, 2017



6.7 Backtracking 161

6.6.5 Remove LoadPath string.

This command removes the path string from the current COQ loadpath.

6.6.6 Print LoadPath.

This command displays the current COQ loadpath.

Variants:

1. Print LoadPath dirpath.

Works as Print LoadPath but displays only the paths that extend the dirpath prefix.

6.6.7 Add ML Path string.
This command adds the path string to the current OBJECTIVE CAML loadpath (see the command
Declare ML Module in the Section 6.5).
6.6.8 Add Rec ML Path string.
This command adds the directory string and all its subdirectories to the current OBJECTIVE CAML
loadpath (see the command Declare ML Module in the Section 6.5).
6.6.9 Print ML Path string.
This command displays the current OBJECTIVE CAML loadpath. This command makes sense only under
the bytecode version of cogtop, i.e. using option —~byte (see the command Declare ML Module
in the section 6.5).
6.6.10 Locate File string.
This command displays the location of file string in the current loadpath. Typically, string is a . cmo or
.voor .v file.
6.6.11 Locate Library dirpath.

This command gives the status of the COQ module dirpath. It tells if the module is loaded and if not
searches in the load path for a module of logical name dirpath.

6.7 Backtracking

The backtracking commands described in this section can only be used interactively, they cannot be part
of a vernacular file loaded via Load or compiled by cogc.

6.7.1 Reset ident.

This command removes all the objects in the environment since ident was introduced, including ident.
ident may be the name of a defined or declared object as well as the name of a section. One cannot reset
over the name of a module or of an object inside a module.

Error messages:

Coq Reference Manual, V8.6.1, July 26, 2017



162 6 Vernacular commands

1. ident: no such entry

Variants:

1. Reset Initial.
Goes back to the initial state, just after the start of the interactive session.

6.7.2 Back.

This commands undoes all the effects of the last vernacular command. Commands read from a ver-
nacular file via a Load are considered as a single command. Proof management commands are also
handled by this command (see Chapter 7). For that, Back may have to undo more than one command
in order to reach a state where the proof management information is available. For instance, when the
last command is a Qed, the management information about the closed proof has been discarded. In this
case, Back will then undo all the proof steps up to the statement of this proof.

Variants:

1. Back n
Undoes n vernacular commands. As for Back, some extra commands may be undone in order to
reach an adequate state. For instance Back n will not re-enter a closed proof, but rather go just
before that proof.

Error messages:

1. Invalid backtrack
The user wants to undo more commands than available in the history.

6.7.3 BackTo num.

This command brings back the system to the state labeled num, forgetting the effect of all commands
executed after this state. The state label is an integer which grows after each successful command. It is
displayed in the prompt when in —~emacs mode. Just as Back (see above), the BackTo command now
handles proof states. For that, it may have to undo some extra commands and end on a state num’ < num
if necessary.

Variants:

1. Backtrack num; nums nums.
Backtrack is a deprecated form of BackTo which allows explicitly manipulating the proof
environment. The three numbers num;, nums and numjs represent the following:

* numsj: Number of Abort to perform, i.e. the number of currently opened nested proofs that
must be canceled (see Chapter 7).

* numy: Proof state number to unbury once aborts have been done. CoQ will compute the
number of Undo to perform (see Chapter 7).

e numj: State label to reach, as for BackTo.

Error messages:

1. Invalid backtrack
The destination state label is unknown.

Coq Reference Manual, V8.6.1, July 26, 2017



6.8 Quitting and debugging 163

6.8 Quitting and debugging

6.8.1 Quit.

This command permits to quit COQ.

6.8.2 Drop.

This is used mostly as a debug facility by COQ’s implementors and does not concern the casual user. This
command permits to leave COQ temporarily and enter the OBJECTIVE CAML toplevel. The OBJECTIVE
CAML command:

#use "include";;

add the right loadpaths and loads some toplevel printers for all abstract types of COQ- section_path,
identifiers, terms, judgments, .... You can also use the file base_include instead, that loads only
the pretty-printers for section_paths and identifiers. You can return back to COQ with the command:

go();;

Warnings:

1. It only works with the bytecode version of COQ (i.e. cogtop called with option —byte, see the
contents of Section 14.1).

2. You must have compiled COQ from the source package and set the environment variable COQTOP

to the root of your copy of the sources (see Section 14.3.2).

6.8.3 Time command .

This command executes the vernacular command command and display the time needed to execute it.

6.8.4 Redirect "file" command .

This command executes the vernacular command command, redirecting its output to “file.out”.

6.8.5 Timeout int command .

This command executes the vernacular command command. If the command has not terminated after
the time specified by the integer (time expressed in seconds), then it is interrupted and an error message
is displayed.

6.8.6 Set Default Timeout int.

After using this command, all subsequent commands behave as if they were passed to a Timeout
command. Commands already starting by a Timeout are unaffected.

6.8.7 Unset Default Timeout.

This command turns off the use of a default timeout.

Coq Reference Manual, V8.6.1, July 26, 2017



164 6 Vernacular commands

6.8.8 Test Default Timeout.

This command displays whether some default timeout has be set or not.

6.9 Controlling display

6.9.1 Set Silent.

This command turns off the normal displaying.

6.9.2 Unset Silent.

This command turns the normal display on.

6.9.3 Set Warnings “ (Wi, ..., w,)".

This command configures the display of warnings. It is experimental, and expects, between quotes,
a comma-separated list of warning names or categories. Adding - in front of a warning or category
disables it, adding + makes it an error. It is possible to use the special categories all and default,
the latter containing the warnings enabled by default. The flags are interpreted from left to right, so in
case of an overlap, the flags on the right have higher priority, meaning that A, —A is equivalent to —A.

694 Set Search Output Name Only.

This command restricts the output of search commands to identifier names; turning it on causes invoca-
tions of Search, SearchHead, SearchPattern, SearchRewrite etc. to omit types from their
output, printing only identifiers.

6.9.5 Unset Search Output Name Only.

This command turns type display in search results back on.

6.9.6 Set Printing Width integer.

This command sets which left-aligned part of the width of the screen is used for display.

6.9.7 Unset Printing Width.

This command resets the width of the screen used for display to its default value (which is 78 at the time
of writing this documentation).

6.9.8 Test Printing Width.

This command displays the current screen width used for display.

6.99 Set Printing Depth integer.

This command sets the nesting depth of the formatter used for pretty-printing. Beyond this depth, display
of subterms is replaced by dots.

Coq Reference Manual, V8.6.1, July 26, 2017



6.10 Controlling the reduction strategies and the conversion algorithm 165

6.9.10 Unset Printing Depth.

This command resets the nesting depth of the formatter used for pretty-printing to its default value (at
the time of writing this documentation, the default value is 50).

6.9.11 Test Printing Depth.

This command displays the current nesting depth used for display.

6.9.12 Set Printing Dependent Evars Line.

This command enables the printing of the “ (dependent evars: ...)” line when —emacs is
passed.

6.9.13 Unset Printing Dependent Evars Line.

This command disables the printing of the “ (dependent evars: ...)” line when —emacs is
passed.

6.10 Controlling the reduction strategies and the conversion algorithm

CoQ provides reduction strategies that the tactics can invoke and two different algorithms to check the
convertibility of types. The first conversion algorithm lazily compares applicative terms while the other
is a brute-force but efficient algorithm that first normalizes the terms before comparing them. The second
algorithm is based on a bytecode representation of terms similar to the bytecode representation used in
the ZINC virtual machine [98]. It is especially useful for intensive computation of algebraic values, such
as numbers, and for reflection-based tactics. The commands to fine-tune the reduction strategies and the
lazy conversion algorithm are described first.

6.10.1 Opaque qualid, ... qualid, .

This command has an effect on unfoldable constants, i.e. on constants defined by Definition or Let
(with an explicit body), or by a command assimilated to a definition such as Fixpoint, Program
Definition, etc, or by a proof ended by Defined. The command tells not to unfold the constants
qualidy ... qualid,, in tactics using d-conversion (unfolding a constant is replacing it by its definition).

Opadgue has also an effect on the conversion algorithm of C0Q, telling it to delay the unfolding of
a constant as much as possible when C0Q has to check the conversion (see Section 4.3) of two distinct
applied constants.

The scope of Opaque is limited to the current section, or current file, unless the variant Global
Opaque qualid; ... qualid, is used.

See also: sections 8.7, 8.16, 7.1

Error messages:

1. The reference qualid was not found in the current environment
There is no constant referred by qualid in the environment. Nevertheless, if you asked Opaque
foo bar and if bar does not exist, foo is set opaque.

Coq Reference Manual, V8.6.1, July 26, 2017



166 6 Vernacular commands

6.10.2 Transparent qualid, ... qualid,, .

This command is the converse of Opaque and it applies on unfoldable constants to restore their unfold-
ability after an Opaque command.

Note in particular that constants defined by a proof ended by Qed are not unfoldable and
Transparent has no effect on them. This is to keep with the usual mathematical practice of proof
irrelevance: what matters in a mathematical development is the sequence of lemma statements, not their
actual proofs. This distinguishes lemmas from the usual defined constants, whose actual values are of
course relevant in general.

The scope of Transparent is limited to the current section, or current file, unless the variant
Global Transparent qualid; ... qualid, is used.

Error messages:
1. The reference qualid was not found in the current environment

There is no constant referred by qualid in the environment.

See also: sections 8.7, 8.16, 7.1

6.10.3 Strategy level [ qualid; ... qualid, ] .

This command generalizes the behavior of Opaque and Transparent commands. It is used to fine-
tune the strategy for unfolding constants, both at the tactic level and at the kernel level. This command
associates a level to qualid; ... qualid,. Whenever two expressions with two distinct head constants
are compared (for instance, this comparison can be triggered by a type cast), the one with lower level is
expanded first. In case of a tie, the second one (appearing in the cast type) is expanded.

Levels can be one of the following (higher to lower):

opaque : level of opaque constants. They cannot be expanded by tactics (behaves like 400, see next
item).

num : levels indexed by an integer. Level O corresponds to the default behavior, which corresponds
to transparent constants. This level can also be referred to as transparent. Negative levels cor-
respond to constants to be expanded before normal transparent constants, while positive levels
correspond to constants to be expanded after normal transparent constants.

expand : level of constants that should be expanded first (behaves like —o0)

These directives survive section and module closure, unless the command is prefixed by Local. In
the latter case, the behavior regarding sections and modules is the same as for the Transparent and
Opagque commands.

6.104 Print Strategy qualid .

This command prints the strategy currently associated to qualid. It fails if qualid is not an unfoldable
reference, that is, neither a variable nor a constant.

Error messages:

1. The reference is not unfoldable.

Variants:

1. Print Strategies
Print all the currently non-transparent strategies.

Coq Reference Manual, V8.6.1, July 26, 2017



6.11 Controlling the locality of commands 167

6.10.5 Declare Reduction ident := convtactic.

This command allows giving a short name to a reduction expression, for instance lazy beta delta

[foo bar]. This short name can then be used in Eval ident in ... or eval directives. This
command accepts the Local modifier, for discarding this reduction name at the end of the file or
module. For the moment the name cannot be qualified. In particular declaring the same name in several
modules or in several functor applications will be refused if these declarations are not local. The name
ident cannot be used directly as an Ltac tactic, but nothing prevent the user to also perform a Ltac
ident := convtactic.

See also: sections 8.7

6.11 Controlling the locality of commands

6.11.1 Local,Global

Some commands support a Local or Global prefix modifier to control the scope of their effect. There
are four kinds of commands:

¢ Commands whose default is to extend their effect both outside the section and the module or
library file they occur in.

For these commands, the Local modifier limits the effect of the command to the current section
or module it occurs in.

As an example, the Coercion (see Section 2.8) and St rategy (see Section 6.10.3) commands
belong to this category.
* Commands whose default behavior is to stop their effect at the end of the section they occur in but

to extent their effect outside the module or library file they occur in.

For these commands, the Local modifier limits the effect of the command to the current module
if the command does not occur in a section and the Global modifier extends the effect outside
the current sections and current module if the command occurs in a section.

As an example, the Implicit Arguments (see Section 2.7), Ltac (see Chapter 9) or
Notation (see Section 12.1) commands belong to this category.

Notice that a subclass of these commands do not support extension of their scope outside sections
at all and the G1obal is not applicable to them.
» Commands whose default behavior is to stop their effect at the end of the section or module they

occur in.

For these commands, the G1obal modifier extends their effect outside the sections and modules
they occurs in.

The Transparent and Opaque (see Section 6.10) commands belong to this category.

¢ Commands whose default behavior is to extend their effect outside sections but not outside mod-
ules when they occur in a section and to extend their effect outside the module or library file they
occur in when no section contains them.

Coq Reference Manual, V8.6.1, July 26, 2017



168 6 Vernacular commands

For these commands, the Local modifier limits the effect to the current section or module while
the Global modifier extends the effect outside the module even when the command occurs in a
section.

The Set and Unset commands belong to this category.

Coq Reference Manual, V8.6.1, July 26, 2017



Chapter 7

Proof handling

In CoQ’s proof editing mode all top-level commands documented in Chapter 6 remain available and
the user has access to specialized commands dealing with proof development pragmas documented in
this section. He can also use some other specialized commands called factics. They are the very tools
allowing the user to deal with logical reasoning. They are documented in Chapter 8.

When switching in editing proof mode, the prompt Cog < is changed into ident < where ident is the
declared name of the theorem currently edited.

At each stage of a proof development, one has a list of goals to prove. Initially, the list consists only
in the theorem itself. After having applied some tactics, the list of goals contains the subgoals generated
by the tactics.

To each subgoal is associated a number of hypotheses called the local_context of the goal. Initially,
the local context contains the local variables and hypotheses of the current section (see Section 1.3.1)
and the local variables and hypotheses of the theorem statement. It is enriched by the use of certain
tactics (see e.g. intro in Section 8.3.1).

When a proof is completed, the message Proof completed is displayed. One can then register
this proof as a defined constant in the environment. Because there exists a correspondence between
proofs and terms of A-calculus, known as the Curry-Howard isomorphism [81, 6, 75, 85], COQ stores
proofs as terms of CIC. Those terms are called proof terms.

Error message: When one attempts to use a proof editing command out of the proof editing mode,
CoQ raises the error message : No focused proof.
7.1 Switching on/off the proof editing mode
The proof editing mode is entered by asserting a statement, which typically is the assertion of a theorem:
Theorem ident [binders] : form.
The list of assertion commands is given in Section 1.3.5. The command Goal can also be used.

7.1.1 Goal form.

This is intended for quick assertion of statements, without knowing in advance which name to give to
the assertion, typically for quick testing of the provability of a statement. If the proof of the statement
is eventually completed and validated, the statement is then bound to the name Unnamed_thm (or a
variant of this name not already used for another statement).

Coq Reference Manual, V8.6.1, July 26, 2017



170 7 Proof handling

7.1.2 Qed.

This command is available in interactive editing proof mode when the proof is completed. Then Qed
extracts a proof term from the proof script, switches back to COQ top-level and attaches the extracted
proof term to the declared name of the original goal. This name is added to the environment as an
Opadgue constant.

Error messages:
1. Attempt to save an incomplete proof
2. Sometimes an error occurs when building the proof term, because tactics do not enforce com-
pletely the term construction constraints.

The user should also be aware of the fact that since the proof term is completely rechecked at this
point, one may have to wait a while when the proof is large. In some exceptional cases one may
even incur a memory overflow.

Variants:

1. Defined.

Defines the proved term as a transparent constant.

2. Save.

This is a deprecated equivalent to Qed.

3. Save ident.
Forces the name of the original goal to be ident. This command (and the following ones) can only

be used if the original goal has been opened using the Goal command.

4. Save Theorem ident.
Save Lemma ident.
Save Remark ident.
Save Fact ident. Save Corollary ident. Save Proposition ident.

Are equivalent to Save ident.

7.1.3 Admitted.

This command is available in interactive editing proof mode to give up the current proof and declare the
initial goal as an axiom.

714 Proof term.

This command applies in proof editing mode. It is equivalent to exact term. Qed. Thatis, you
have to give the full proof in one gulp, as a proof term (see Section 8.2.1).

Variant: Proof.

Is a noop which is useful to delimit the sequence of tactic commands which start a proof, after a
Theorem command. It is a good practice to use Proof. as an opening parenthesis, closed in the
script with a closing Qed.

See also: Proof with tactic. in Section 8.9.7.

Coq Reference Manual, V8.6.1, July 26, 2017



7.1 Switching on/off the proof editing mode 171

7.1.5 Proof usingident, ... ident, .

This command applies in proof editing mode. It declares the set of section variables (see 1.3.1) used by
the proof. At Qed time, the system will assert that the set of section variables actually used in the proof
is a subset of the declared one.

The set of declared variables is closed under type dependency. For example if T is variable and a is a
variable of type T, the commands Proof using aandProof using T a are actually equivalent.

Variant: Proof using ident; ... ident, with tactic. in Section 8.9.7.

Variant: Proof using All.
Use all section variables.

Variant: Proof using Type. Variant: Proof using.
Use only section variables occurring in the statement.

Variant: Proof using Type=x.

The * operator computes the forward transitive closure. E.g. if the variable H has type p < 5 then
His in p* since p occurs in the type of H. Typex is the forward transitive closure of the entire set of
section variables occurring in the statement.

Variant: Proof using —( ident; ... ident, ) .
Use all section variables except ident; ... ident,,.

Variant: Proof using collection; + collections
Variant: Proof using collection; — collections
Variant: Proof using collection — ( ident; ... ident, ) .

Variant: Proof using collection =

Use section variables being, respectively, in the set union, set difference, set complement, set forward
transitive closure. See Section 7.1.5 to know how to form a named collection. The * operator binds
stronger than + and -.

Proof using options
The following options modify the behavior of Proof using.

Variant: Set Default Proof Using "expression".
Use expression as the default Proof using value. E.g. Set Default Proof Using
"a b". will complete all Proof commands not followed by a using part with using a b.

Variant: Set Suggest Proof Using.
When Qed is performed, suggest a using annotation if the user did not provide one.

Name a set of section hypotheses for Proof using

The command Collection can be used to name a set of section hypotheses, with the purpose of
making Proof using annotations more compact.

Variant: Collection Some := x y z.
Define the collection named "Some" containing x vy and z

Variant: Collection Fewer := Some - x.

Coq Reference Manual, V8.6.1, July 26, 2017



172 7 Proof handling

Define the collection named "Fewer" containing only x y
Variant: Collection Many := Fewer + Some. Variant: Collection Many :=

Fewer - Some.
Define the collection named "Many" containing the set union or set difference of "Fewer" and
"Some".

Variant: Collection Many := Fewer - (X y).
Define the collection named "Many" containing the set difference of "Fewer" and the unnamed
collection x y.

7.1.6 2Abort.

This command cancels the current proof development, switching back to the previous proof develop-
ment, or to the COQ toplevel if no other proof was edited.

Error messages:

1. No focused proof (No proof-editing in progress)

Variants:
1. Abort ident.

Aborts the editing of the proof named ident.

2. Abort All.
Aborts all current goals, switching back to the COQ toplevel.

71,7 Existential num := term.

This command instantiates an existential variable. num is an index in the list of uninstantiated existential
variables displayed by Show Existentials (described in Section 7.3.1).

This command is intended to be used to instantiate existential variables when the proof is completed
but some uninstantiated existential variables remain. To instantiate existential variables during proof
edition, you should use the tactic instantiate.

See also: instantiate (num:= term) . in Section 8.4.4. See also: Grab Existential

Variables. below.

7.1.8 Grab Existential Variables.

This command can be run when a proof has no more goal to be solved but has remaining uninstantiated
existential variables. It takes every uninstantiated existential variable and turns it into a goal.

7.2 Navigation in the proof tree

7.2.1 Undo.
This command cancels the effect of the last command. Thus, it backtracks one step.

Variants:

Coq Reference Manual, V8.6.1, July 26, 2017



7.2 Navigation in the proof tree 173

1. Undo num.

Repeats Undo num times.

7.2.2 Restart.
This command restores the proof editing process to the original goal.

Error messages:

1. No focused proof to restart

7.2.3 Focus.

This focuses the attention on the first subgoal to prove and the printing of the other subgoals is suspended
until the focused subgoal is solved or unfocused. This is useful when there are many current subgoals
which clutter your screen.

Variant:

1. Focus num.
This focuses the attention on the num®” subgoal to prove.

7.2.4 Unfocus.

This command restores to focus the goal that were suspended by the last Focus command.

7.2.5 Unfocused.

Succeeds in the proof is fully unfocused, fails is there are some goals out of focus.

7.2.6 { and }

The command { (without a terminating period) focuses on the first goal, much like Focus. does,
however, the subproof can only be unfocused when it has been fully solved (i.e. when there is no
focused goal left). Unfocusing is then handled by } (again, without a terminating period). See also
example in next section.

Note that when a focused goal is proved a message is displayed together with a suggestion about the
right bullet or } to unfocus it or focus the next one.

Error messages:

1. This proof is focused, but cannot be unfocused this way You are trying
to use } but the current subproof has not been fully solved.

2. see also error message about bullets below.

Coq Reference Manual, V8.6.1, July 26, 2017



174 7 Proof handling

7.2.7 Bullets

Alternatively to { and }, proofs can be structured with bullets. The use of a bullet b for the first time
focuses on the first goal g, the same bullet cannot be used again until the proof of g is completed, then it
is mandatory to focus the next goal with b. The consequence is that g and all goals present when g was
focused are focused with the same bullet 6. See the example below.

Different bullets can be used to nest levels. The scope of bullet does not go beyond enclosing {
and }, so bullets can be reused as further nesting levels provided they are delimited by these. Available
bullets are —, +, *, —, ++, x*, ——, +++, x**, ... (without a terminating period).

Note again that when a focused goal is proved a message is displayed together with a suggestion
about the right bullet or } to unfocus it or focus the next one.

Remark: In PROOF GENERAL (Emacs interface to COQ), you must use bullets with the priority
ordering shown above to have a correct indentation. For example — must be the outer bullet and *  the
inner one in the example below.

The following example script illustrates all these features:

Cog < Goal (((True/\True)/\True)/\True)/\True.
Coqg < Proof.

Cogq < split.

Cog < - split.

Cogq < + split.

Coqg < *+ { split.
Coqg < - trivial.
Coqg < - trivial.
Coq < }

Cog < *% trivial.
Cogq < + trivial.

Cog < - assert True.

Coqg < { trivial. }

Coqg < assumption.

Error messages:

1. Wrong bullet bulletl : Current bullet bullet2 is not finished.

Before using bullet bullet1 again, you should first finish proving the current focused goal. Note
that bullet1 and bullet2 may be the same.

2. Wrong bullet bulletl : Bullet bullet2 is mandatory here. You must put
bullet? to focus next goal. No other bullet is allowed here.

3. No such goal. Focus next goal with bullet bullet.

You tried to applied a tactic but no goal where under focus. Using bullet is mandatory here.

4. No such goal. Try unfocusing with "}". You just finished a goal focused by {,
you must unfocus it with "} ".

Coq Reference Manual, V8.6.1, July 26, 2017



7.3 Requesting information 175

The bullet behavior can be controlled by the following commands.
Set Bullet Behavior "None".

This makes bullets inactive.
Set Bullet Behavior "Strict Subproofs".

This makes bullets active (this is the default behavior).

7.3 Requesting information

7.3.1 Show.

This command displays the current goals.

Variants:

1. Show num.
Displays only the num-th subgoal.
Error messages:

(a) No such goal
(b) No focused proof
2. Show ident.
Displays the named goal ident. This is useful in particular to display a shelved goal but only

works if the corresponding existential variable has been named by the user (see 2.11) as in the
following example.

Cog < Goal exists n, n = 0.
Cog < eexists ?[n].

Cog < Show n.
subgoal n 1is:

nat

3. Show Script.
Displays the whole list of tactics applied from the beginning of the current proof. This tac-
tics script may contain some holes (subgoals not yet proved). They are printed under the form
<Your Tactic Text here>.

4. Show Proof.
It displays the proof term generated by the tactics that have been applied. If the proof is not
completed, this term contain holes, which correspond to the sub-terms which are still to be con-
structed. These holes appear as a question mark indexed by an integer, and applied to the list of
variables in the context, since it may depend on them. The types obtained by abstracting away the
context from the type of each hole-placer are also printed.

Coq Reference Manual, V8.6.1, July 26, 2017



176

7 Proof handling

Show Conjectures.
It prints the list of the names of all the theorems that are currently being proved. As it is possible to
start proving a previous lemma during the proof of a theorem, this list may contain several names.

Show Intro.

If the current goal begins by at least one product, this command prints the name of the first product,
as it would be generated by an anonymous Int ro. The aim of this command is to ease the writing
of more robust scripts. For example, with an appropriate PROOF GENERAL macro, it is possible
to transform any anonymous Intro into a qualified one such as Intro y13. In the case of a
non-product goal, it prints nothing.

Show Intros.
This command is similar to the previous one, it simulates the naming process of an Intros.

Show Existentials.
It displays the set of all uninstantiated existential variables in the current proof tree, along with
the type and the context of each variable.

Show Universes.
It displays the set of all universe constraints and its normalized form at the current stage of the
proof, useful for debugging universe inconsistencies.

7.3.2 Guarded.

Some tactics (e.g. refine 8.2.3) allow to build proofs using fixpoint or co-fixpoint constructions. Due to
the incremental nature of interactive proof construction, the check of the termination (or guardedness) of
the recursive calls in the fixpoint or cofixpoint constructions is postponed to the time of the completion
of the proof.

The command Guarded allows checking if the guard condition for fixpoint and cofixpoint is vio-

lated at some time of the construction of the proof without having to wait the completion of the proof."

7.4 Controlling the effect of proof editing commands

74.1 Set Hyps Limit num.

This command sets the maximum number of hypotheses displayed in goals after the application of a
tactic. All the hypotheses remains usable in the proof development.

74.2 Unset Hyps Limit.

This command goes back to the default mode which is to print all available hypotheses.

74.3 Set Automatic Introduction.

The option Automatic Introduction controls the way binders are handled in assertion com-
mands such as Theorem ident [binders] : form. When the option is set, which is the default,
binders are automatically put in the local context of the goal to prove.

The option can be unset by issuing Unset Automatic Introduction. When the option

is unset, binders are discharged on the statement to be proved and a tactic such as intro (see Sec-
tion 8.3.1) has to be used to move the assumptions to the local context.

Coq Reference Manual, V8.6.1, July 26, 2017



7.5 Controlling memory usage 177

7.5 Controlling memory usage

When experiencing high memory usage the following commands can be used to force Coq to optimize
some of its internal data structures.
7.5.1 Optimize Proof.

This command forces Coq to shrink the data structure used to represent the ongoing proof.

7.5.2 Optimize Heap.

This command forces the OCaml runtime to perform a heap compaction. This is in general an expensive
operation. See: http://caml.inria.fr/pub/docs/manual-ocaml/libref/Gc.html#
VALcompact

Coq Reference Manual, V8.6.1, July 26, 2017


http://caml.inria.fr/pub/docs/manual-ocaml/libref/Gc.html#VALcompact
http://caml.inria.fr/pub/docs/manual-ocaml/libref/Gc.html#VALcompact

178 7 Proof handling

Coq Reference Manual, V8.6.1, July 26, 2017



Chapter 8

Tactics

A deduction rule is a link between some (unique) formula, that we call the conclusion and (several)
formulas that we call the premises. A deduction rule can be read in two ways. The first one says: “if [
know this and this then I can deduce this”. For instance, if I have a proof of A and a proof of B then
I have a proof of A A B. This is forward reasoning from premises to conclusion. The other way says:
“to prove this I have to prove this and this”. For instance, to prove A A B, I have to prove A and I have
to prove B. This is backward reasoning from conclusion to premises. We say that the conclusion is the
goal to prove and premises are the subgoals. The tactics implement backward reasoning. When applied
to a goal, a tactic replaces this goal with the subgoals it generates. We say that a tactic reduces a goal to
its subgoal(s).

Each (sub)goal is denoted with a number. The current goal is numbered 1. By default, a tactic is
applied to the current goal, but one can address a particular goal in the list by writing n:tactic which
means “apply tactic tactic to goal number n”. We can show the list of subgoals by typing Show (see
Section 7.3.1).

Since not every rule applies to a given statement, every tactic cannot be used to reduce any goal.
In other words, before applying a tactic to a given goal, the system checks that some preconditions are
satisfied. If it is not the case, the tactic raises an error message.

Tactics are built from atomic tactics and tactic expressions (which extends the folklore notion of
tactical) to combine those atomic tactics. This chapter is devoted to atomic tactics. The tactic language
will be described in Chapter 9.

8.1 Invocation of tactics

A tactic is applied as an ordinary command. It may be preceded by a goal selector (see Section 9.2). If
no selector is specified, the default selector (see Section 8.1.1) is used.
tactic_invocation ::= toplevel_selector : tactic .
| tactic .

8.1.1 sSet Default Goal Selector “toplevel_selector” .

After using this command, the default selector — used when no selector is specified when applying a
tactic — is set to the chosen value. The initial value is 1, hence the tactics are, by default, applied to
the first goal. Using Set Default Goal Selector “all” will make is so that tactics are, by
default, applied to every goal simultaneously. Then, to apply a tactic tac to the first goal only, you can

Coq Reference Manual, V8.6.1, July 26, 2017



180 8 Tactics

write 1:tac. Although more selectors are available, only “all” or a single natural number are valid
default goal selectors.

8.1.2 Test Default Goal Selector.

This command displays the current default selector.

8.1.3 Bindings list

Tactics that take a term as argument may also support a bindings list, so as to instantiate some parameters
of the term by name or position. The general form of a term equipped with a bindings listis term with
bindings_list where bindings_list may be of two different forms:

* In a bindings list of the form (ref; := term;) ... (ref, := termy), ref is either an ident
or a num. The references are determined according to the type of term. If ref; is an identifier,
this identifier has to be bound in the type of term and the binding provides the tactic with an
instance for the parameter of this name. If ref; is some number n, this number denotes the n-th
non dependent premise of the term, as determined by the type of term.

Error message: No such binder

* A bindings list can also be a simple list of terms term; ... term,. In that case the references to
which these terms correspond are determined by the tactic. In case of induction, destruct,
elimand case (see Section 9) the terms have to provide instances for all the dependent products
in the type of term while in the case of apply, or of constructor and its variants, only
instances for the dependent products that are not bound in the conclusion of the type are required.

Error message: Not the right number of missing arguments

8.1.4 Occurrences sets and occurrences clauses

An occurrences clause is a modifier to some tactics that obeys the following syntax:
occurrence_clause ::= 1in goal_occurrences
goal_occurrences  ::= [identy [at_occurrences] ,
o
ident,,, [at_occurrences]]
[| = [* [at_occurrences]]]
I * | — [* [at_occurrences]]
| *
at_occurrences = at occurrences
occurrences = [-]num; ... num,

The role of an occurrence clause is to select a set of occurrences of a term in a goal. In the first
case, the ident; [at num} ... numfli] parts indicate that occurrences have to be selected in the hypothe-
ses named ident;. If no numbers are given for hypothesis ident;, then all the occurrences of term in
the hypothesis are selected. If numbers are given, they refer to occurrences of term when the term is
printed using option Set Printing All (see Section 2.9), counting from left to right. In particular,
occurrences of term in implicit arguments (see Section 2.7) or coercions (see Section 2.8) are counted.

If a minus sign is given between at and the list of occurrences, it negates the condition so that the
clause denotes all the occurrences except the ones explicitly mentioned after the minus sign.

Coq Reference Manual, V8.6.1, July 26, 2017



8.2 Applying theorems 181

As an exception to the left-to-right order, the occurrences in the ret urn subexpression of a match
are considered before the occurrences in the matched term.

In the second case, the = on the left of | — means that all occurrences of term are selected in every
hypothesis.

In the first and second case, if * is mentioned on the right of | —, the occurrences of the conclusion
of the goal have to be selected. If some numbers are given, then only the occurrences denoted by these
numbers are selected. In no numbers are given, all occurrences of term in the goal are selected.

Finally, the last notation is an abbreviation for » |- . Note also that | — is optional in the first
case when no * is given.

Here are some tactics that understand occurrences clauses: set, remember, induction,
destruct.

See also: Sections 8.3.7, 8.5.2, 2.9.

8.2 Applying theorems

8.2.1 exact term

This tactic applies to any goal. It gives directly the exact proof term of the goal. Let T be our goal, let p
be a term of type U then exact p succeeds iff T and U are convertible (see Section 4.3).

Error messages:

1. Not an exact proof

Variants:

1. eexact term

This tactic behaves like exact but is able to handle terms and goals with meta-variables.

8.2.2 assumption

This tactic looks in the local context for an hypothesis which type is equal to the goal. If it is the case,
the subgoal is proved. Otherwise, it fails.

Error messages:

1. No such assumption

Variants:

1. eassumption

This tactic behaves like assumpt ion but is able to handle goals with meta-variables.

8.2.3 refine term

This tactic applies to any goal. It behaves like exact with a big difference: the user can leave some
holes (denoted by _ or (_:type)) in the term. refine will generate as many subgoals as there are
holes in the term. The type of holes must be either synthesized by the system or declared by an explicit
cast like (_:nat->Prop). Any subgoal that occurs in other subgoals is automatically shelved, as if

Coq Reference Manual, V8.6.1, July 26, 2017



182

8 Tactics

calling shelve_unifiable (see Section 8.17.4). This low-level tactic can be useful to advanced

users.
Example:

Cog < Inductive Option : Set :=
| Fail : Option
| Ok : bool -> Option.

Coqg < Definition get : forall x:0ption, x <> Fail -> bool.

1 subgoal

forall x : Option, x <> Fail -> bool

Cog < refine
(fun x:0Option =>
match x return x <> Fail -> bool with

| Fail => _
| Ok b => fun _ => b
end) .

1 subgoal

x : Option

Fail <> Fail -> bool

Cog < intros; absurd (Fail = Fail); trivial.
No more subgoals.

Cog < Defined.

Error messages:

1.
2.

invalid argument: the tactic refine does not know what to do with the term you gave.

Refine passed ill-formed term: the term you gave is not a valid proof (not easy to
debug in general). This message may also occur in higher-level tactics that call refine inter-
nally.

Cannot infer a term for this placeholder: there is a hole in the term you gave
which type cannot be inferred. Put a cast around it.

Variants:

1.

simple refine term

This tactic behaves like refine, but it does not shelve any subgoal. It does not perform any
beta-reduction either.

notypeclasses refine term

This tactic behaves like refine except it performs typechecking without resolution of type-
classes.

simple notypeclasses refine term

This tactic behaves like simple refine except it performs typechecking without resolution of
typeclasses.

Coq Reference Manual, V8.6.1, July 26, 2017



8.2 Applying theorems 183

8.2.4 apply term

This tactic applies to any goal. The argument term is a term well-formed in the local context. The
tactic apply tries to match the current goal against the conclusion of the type of term. If it succeeds,
then the tactic returns as many subgoals as the number of non-dependent premises of the type of term.
If the conclusion of the type of term does not match the goal and the conclusion is an inductive type
isomorphic to a tuple type, then each component of the tuple is recursively matched to the goal in the
left-to-right order.

The tactic apply relies on first-order unification with dependent types unless the conclusion of the
type of term is of the form (P ¢ ... t,) with P to be instantiated. In the latter case, the behavior
depends on the form of the goal. If the goal is of the form (fun =z => () w1 ... uy,andthet; and
u; unifies, then P is taken to be (fun z => (). Otherwise, apply tries to define P by abstracting
over t1 ... t, in the goal. See pattern in Section 8.7.7 to transform the goal so that it gets the form
(fun z => @) u1 ... Up.

Error messages:

1. Unable to unify ... with

The apply tactic failed to match the conclusion of term and the current goal. You can help
the apply tactic by transforming your goal with the change or pattern tactics (see sec-
tions 8.7.7, 8.6.5).

2. Unable to find an instance for the variables ident ... ident

This occurs when some instantiations of the premises of term are not deducible from the unifica-
tion. This is the case, for instance, when you want to apply a transitivity property. In this case,
you have to use one of the variants below:

Variants:

1. apply term with termy ... termy

Provides apply with explicit instantiations for all dependent premises of the type of term that do
not occur in the conclusion and consequently cannot be found by unification. Notice that term;
... term, must be given according to the order of these dependent premises of the type of term.

Error message: Not the right number of missing arguments

2. apply term with (ref; := term;) ... (ref, := term,)
This also provides apply with values for instantiating premises. Here, variables are referred by
names and non-dependent products by increasing numbers (see syntax in Section 8.1.3).

3. apply term; , ... , termy,

This is a shortcut for apply term; ; [ .. |...; [ .. | apply term, ] ... ],1e. for
the successive applications of term;;; on the last subgoal generated by apply term;, starting
from the application of term;.

4. eapply term

The tactic eapply behaves like apply but it does not fail when no instantiations are deducible
for some variables in the premises. Rather, it turns these variables into existential variables which
are variables still to instantiate (see Section 2.11). The instantiation is intended to be found later
in the proof.

Coq Reference Manual, V8.6.1, July 26, 2017



184 8 Tactics

5. simple apply term

This behaves like apply but it reasons modulo conversion only on subterms that contain no
variables to instantiate. For instance, the following example does not succeed because it would
require the conversion of id ?foo and O.

Cog < Definition id (x : nat) := x.
Cog < Hypothesis H : forall y, idy = vy.
Cog < Goal O = O.

Cog < Fail simple apply H.

The command has indeed failed with message:
Unable to unify "id ?M158 = ?M158" with "0 = 0".
1 subgoal

Because it reasons modulo a limited amount of conversion, simple apply fails quicker than
apply and it is then well-suited for uses in used-defined tactics that backtrack often. Moreover,
it does not traverse tuples as apply does.

6. [simple] apply term; [with bindings_list1], ..., term, [with bindings_list, ]
[simple] eapply term; [with bindings_listi], ..., term, [with bindings_list, |

This summarizes the different syntaxes for apply and eapply.

7. lapply term

This tactic applies to any goal, say G. The argument term has to be well-formed in the current
context, its type being reducible to a non-dependent product A —> B with B possibly contain-
ing products. Then it generates two subgoals B—>G and A. Applying lapply H (where H has
type A->B and B does not start with a product) does the same as giving the sequence cut B.
2:apply H. where cut is described below.

Warning: When term contains more than one non dependent product the tactic lapply only
takes into account the first product.

Example: Assume we have a transitive relation R on nat:

Cog < Variable R : nat -> nat -> Prop.

Cog < Hypothesis Rtrans : forall x y z:nat, Rxy -> Ry z -> R x z.
Cog < Variables n m p : nat.

Cog < Hypothesis Rnm : R n m.

Cog < Hypothesis Rmp : R m p.
Consider the goal (R n p) provable using the transitivity of R:

Cog < Goal R n p.

Coq Reference Manual, V8.6.1, July 26, 2017



8.2 Applying theorems 185

The direct application of Rt rans with apply fails because no value for y in Rt rans is found by
apply:

Cogq < Fail apply Rtrans.

The command has indeed failed with message:
Unable to find an instance for the variable y.
1 subgoal

R n p
A solution is to apply (Rtrans n m p) or (Rtrans n m).

Cog < apply (Rtrans n m p).
2 subgoals

R nm
subgoal 2 1is:
R m p
Note that n can be inferred from the goal, so the following would work too.
Cog < apply (Rtrans _ m).
More elegantly, apply Rtrans with (y:=m) allows only mentioning the unknown m:
Cog < apply Rtrans with (y := m).

Another solution is to mention the proof of (R x y) inRtrans...

Cogq < apply Rtrans with (1 := Rnm).
1 subgoal

R mp
...or the proof of (R y z).

Cog < apply Rtrans with (2 := Rmp).
1 subgoal

On the opposite, one can use eapply which postpones the problem of finding m. Then one can
apply the hypotheses Rnm and Rmp. This instantiates the existential variable and completes the proof.

Cog < eapply Rtrans.
2 focused subgoals
(shelved: 1)

Coq Reference Manual, V8.6.1, July 26, 2017



186 8 Tactics

R n ?y
subgoal 2 is:
R ?y p
Cog < apply Rnm.
1 subgoal

R mp

Cog < apply Rmp.
No more subgoals.

Remark: When the conclusion of the type of the term to apply is an inductive type isomorphic to a

tuple type and apply looks recursively whether a component of the tuple matches the goal, it excludes

components whose statement would result in applying an universal lemma of the form forall A,
—> A. Excluding this kind of lemma can be avoided by setting the following option:

Set Universal Lemma Under Conjunction

This option, which preserves compatibility with versions of COQ prior to 8.4 is also available for
apply term in ident (see Section 8.2.5).

8.2.5 apply term in ident

This tactic applies to any goal. The argument term is a term well-formed in the local context and the
argument ident is an hypothesis of the context. The tactic apply term in ident tries to match the
conclusion of the type of ident against a non-dependent premise of the type of term, trying them from
right to left. If it succeeds, the statement of hypothesis ident is replaced by the conclusion of the type
of term. The tactic also returns as many subgoals as the number of other non-dependent premises in the
type of term and of the non-dependent premises of the type of ident. If the conclusion of the type of
term does not match the goal and the conclusion is an inductive type isomorphic to a tuple type, then
the tuple is (recursively) decomposed and the first component of the tuple of which a non-dependent
premise matches the conclusion of the type of ident. Tuples are decomposed in a width-first left-to-right
order (for instance if the type of H1 isa A <-> B statement, and the type of H2 is A then apply H1
in H2 transforms the type of H2 into B). The tactic apply relies on first-order pattern-matching with
dependent types.

Error messages:

1. Statement without assumptions

This happens if the type of term has no non dependent premise.

2. Unable to apply

This happens if the conclusion of ident does not match any of the non dependent premises of the
type of term.

Variants:

1. apply term , ... , term in ident

This applies each of term in sequence in ident.

Coq Reference Manual, V8.6.1, July 26, 2017



8.2 Applying theorems 187

2. apply term with bindings_list , ... , term with bindings_list in ident

This does the same but uses the bindings in each bindings_list to instantiate the parameters of the
corresponding type of term (see syntax of bindings in Section 8.1.3).

3. eapply term with bindings_list , ... , term with bindings_list in ident

This works as apply term with bindings_list , ... , term with bindings_list in
ident but turns unresolved bindings into existential variables, if any, instead of failing.

4. apply term with bindings_list , ... , term with bindings_list in ident as
intro_pattern

This works as apply term with bindings_list , ... , term with bindings_list in
ident then applies the intro_pattern to the hypothesis ident.

5. eapply term with bindings_list , ... , term with bindings_list in ident as
intro_pattern

This works as apply term with bindings_list , ... , term with bindings_list in
ident as intro_pattern but using eapply.

6. simple apply term in ident

This behaves like apply term in ident but it reasons modulo conversion only on subterms
that contain no variables to instantiate. For instance, if id := fun x:nat => x and H

forall y, id y = y —> TrueandHO : O = Othensimple apply H in HO
does not succeed because it would require the conversion of id 21234 and O where 21234 is
a variable to instantiate. Tactic simple apply term in ident does not either traverse tuples
as apply term in ident does.

7. [simple] apply term [with bindings_list] , ... , term [with bindings_list] in
ident [as intro_pattern]
[simple] eapply term [with bindings_list] , ... , term [with bindings_list]

in ident [as intro_pattern]

This summarizes the different syntactic variants of apply term in ident and eapply term
in ident.

8.2.6 constructor num

This tactic applies to a goal such that its conclusion is an inductive type (say I). The argument num
must be less or equal to the numbers of constructor(s) of I.Let ci be the i-th constructor of I, then
constructor 1iisequivalentto intros; apply ci.

Error messages:

1. Not an inductive product
2. Not enough constructors

Variants:

1. constructor

This tries constructor 1 then constructor 2, ..., then constructor n where n is
the number of constructors of the head of the goal.

Coq Reference Manual, V8.6.1, July 26, 2017



188 8 Tactics

2. constructor num with bindings_list
Let ci be the i-th constructor of I, then constructor i with bindings_list is equivalent

tointros; apply ci with bindings_list.

Warning: the terms in the bindings_list are checked in the context where constructor is
executed and not in the context where apply is executed (the introductions are not taken into
account).

3. split

This applies only if I has a single constructor. It is then equivalent to constructor 1. Itis
typically used in the case of a conjunction A A B.

Error message: Not an inductive goal with 1 constructor

4. exists bindings_list

This applies only if T has a single constructor. It is then equivalent to intros; constructor
1 with bindings_list. It is typically used in the case of an existential quantification 3z, P(x).

Error message: Not an inductive goal with 1 constructor

5. exists bindings_list , ... , bindings_list

This iteratively applies exists bindings_list.

6. left
right

These tactics apply only if T has two constructors, for instance in the case of a disjunction AV B.
Then, they are respectively equivalent to constructor 1 and constructor 2.

Error message: Not an inductive goal with 2 constructors

7. left with bindings_list
right with bindings_list
split with bindings_list

As soon as the inductive type has the right number of constructors, these expressions are equivalent
to calling constructor ¢ with bindings_list for the appropriate 7.

8. econstructor
eexists
esplit
eleft
eright

These tactics and their variants behave like constructor, exists, split, left, right
and their variants but they introduce existential variables instead of failing when the instantiation
of a variable cannot be found (cf eapply and Section 8.2.4).

Coq Reference Manual, V8.6.1, July 26, 2017



8.3 Managing the local context 189

8.3 Managing the local context

8.3.1 intro

This tactic applies to a goal that is either a product or starts with a let binder. If the goal is a product,
the tactic implements the “Lam” rule given in Section 4.2'. If the goal starts with a let binder, then the
tactic implements a mix of the “Let” and “Conv”.

If the current goal is a dependent product Vo : T, U (resp let z:=t in U) then intro puts
x: 1" (resp x : =t) in the local context. The new subgoal is U.

If the goal is a non-dependent product 1" — U, then it puts in the local context either Hn: 1" (if 1" is
of type Set or Prop) or Xn:T (if the type of T' is Type). The optional index »n is such that Hn or Xn is
a fresh identifier. In both cases, the new subgoal is U

If the goal is neither a product nor starting with a let definition, the tactic int ro applies the tactic
hnf until the tactic intro can be applied or the goal is not head-reducible.

Error messages:
1. No product even after head-reduction

2. ident is already used

Variants:

1. intros
This repeats int ro until it meets the head-constant. It never reduces head-constants and it never
fails.

2. intro ident

This applies int ro but forces ident to be the name of the introduced hypothesis.
Error message: name ident is already used

Remark: If a name used by intro hides the base name of a global constant then the latter can
still be referred to by a qualified name (see 2.6.2).
3. intros ident; ... ident,
This is equivalent to the composed tactic intro ident;; ... ; intro identy.
More generally, the intros tactic takes a pattern as argument in order to introduce names for
components of an inductive definition or to clear introduced hypotheses. This is explained in 8.3.2.
4, intros until ident
This repeats intro until it meets a premise of the goal having form ( ident : term ) and dis-

charges the variable named ident of the current goal.

Error message: No such hypothesis in current goal

! Actually, only the second subgoal will be generated since the other one can be automatically checked.

Coq Reference Manual, V8.6.1, July 26, 2017



190 8 Tactics

5. intros until num
This repeats intro until the num-th non-dependent product. For instance, on the sub-
goal forall x y:nat, x=y -> y=x the tactic intros until 1 is equivalent to
intros x y H, as x=y —-> y=x is the first non-dependent product. And on the sub-
goal forall x y z:nat, x=y —-> y=x the tactic intros until 1 is equivalent
to intros x y z as the product on z can be rewritten as a non-dependent product:
forall x y:nat, nat -> x=y —-> y=x
Error message: No such hypothesis in current goal
This happens when num is O or is greater than the number of non-dependent products of the goal.

6. intro after ident
intro before ident
intro at top
intro at bottom
These tactics apply intro and move the freshly introduced hypothesis respectively after the
hypothesis ident, before the hypothesis ident, at the top of the local context, or at the bottom
of the local context. All hypotheses on which the new hypothesis depends are moved too so as
to respect the order of dependencies between hypotheses. Note that intro at bottomis a
synonym for int ro with no argument.
Error message: No such hypothesis : ident

7. intro ident; after identsy
intro ident; before identy
intro ident; at top
intro ident; at bottom
These tactics behave as previously but naming the introduced hypothesis ident;. It is equivalent
to intro ident; followed by the appropriate call to move (see Section 8.3.5).

8.3.2 intros intro_pattern_list

This extension of the tactic intros allows to apply tactics on the fly on the variables or hypotheses
which have been introduced. An introduction pattern list intro_pattern_list is a list of introduction
patterns possibly containing the filling introduction patterns » and . An introduction pattern is either:

a naming introduction pattern, i.e. either one of:

— the pattern ?
— the pattern ?ident

— an identifier
an action introduction pattern which itself classifies into:

— adisjunctive/conjunctive introduction pattern, i.e. either one of:

* a disjunction of lists of patterns: [intro_pattern_list, | ... | intro_pattern_list, ]

# a conjunction of patterns: (p1 , ... , Pn)

Coq Reference Manual, V8.6.1, July 26, 2017



8.3 Managing the local context 191

+ a list of patterns (p; & ... & pp) for sequence of right-associative binary con-
structs

— an equality introduction pattern, i.e. either one of:

* a pattern for decomposing an equality: [= p1 ... pp]

+ the rewriting orientations: —> or <—

— the on-the-fly application of lemmas: p%term; ... $term, where p itself is not a pattern for
on-the-fly application of lemmas (note: syntax is in experimental stage)

¢ the wildcard: _

Assuming a goal of type () — P (non-dependent product), or of type Vx : T', P (dependent product),
the behavior of intros p is defined inductively over the structure of the introduction pattern p:

* introduction on ? performs the introduction, and lets COQ choose a fresh name for the variable;

* introduction on ?ident performs the introduction, and lets COQ choose a fresh name for the vari-
able based on ident;

« introduction on ident behaves as described in Section 8.3.1;

* introduction over a disjunction of list of patterns [intro_pattern list; | ... |
intro_pattern_list,;] expects the product to be over an inductive type whose number of
constructors is n (or more generally over a type of conclusion an inductive type built from n
constructors, e.g. C —> A\/B with n = 2 since A\ /B has 2 constructors): it destructs the
introduced hypothesis as destruct (see Section 8.5.1) would and applies on each generated
subgoal the corresponding tactic; intros intro_pattern_list;. The introduction patterns in
intro_pattern_list; are expected to consume no more than the number of arguments of the i
constructor. If it consumes less, then COQ completes the pattern so that all the arguments of
the constructors of the inductive type are introduced (for instance, the list of patterns [ | ]
H applied on goal forall x:nat, x=0 —> 0=x behaves the same as the list of patterns

(1?21 H)

* introduction over a conjunction of patterns (p1, ..., Ppp) expects the goal to be a product
over an inductive type I with a single constructor that itself has at least n arguments: it performs
a case analysis over the hypothesis, as destruct would, and applies the patterns p; ... p;, to

the arguments of the constructor of I (observe that (p;, ..., pp) isan alternative notation for
(p1 -.. Pal)

e introduction  via (p1 & ... & pp) is a shortcut for introduction via
(prs (vvvy (o voypp) .. .)); it expects the hypothesis to be a sequence of right-associative

binary inductive constructors such as conj or ex_intro; for instance, an hypothesis with type
A/\ (exists x, B/\C/\D) can be introduced viapattern (a & x & b & c & d);

* if the product is over an equality type, then a pattern of the form [= p; ... p,] applies either
injection (see Section 8.5.7) or discriminate (see Section 8.5.6) instead of destruct;
if injection is applicable, the patterns p1, ..., p, are used on the hypotheses generated by
injection; if the number of patterns is smaller than the number of hypotheses generated, the
pattern ? is used to complete the list;

Coq Reference Manual, V8.6.1, July 26, 2017



192 8 Tactics

* introduction over —> (respectively <-) expects the hypothesis to be an equality and the right-
hand-side (respectively the left-hand-side) is replaced by the left-hand-side (respectively the right-
hand-side) in the conclusion of the goal; the hypothesis itself is erased; if the term to substitute is
a variable, it is substituted also in the context of goal and the variable is removed too;

* introduction over a pattern p%term; ...%term, first applies term;,..., term, on the hypothesis
to be introduced (as in apply terms, ..., term, in) prior to the application of the introduction
pattern p;

* introduction on the wildcard depends on whether the product is dependent or not: in the non-
dependent case, it erases the corresponding hypothesis (i.e. it behaves as an int ro followed by
aclear, cf Section 8.3.3) while in the dependent case, it succeeds and erases the variable only if
the wildcard is part of a more complex list of introduction patterns that also erases the hypotheses
depending on this variable;

* introduction over = introduces all forthcoming quantified variables appearing in a row; introduc-
tion over * x introduces all forthcoming quantified variables or hypotheses until the goal is not any
more a quantification or an implication.

Example:

Cog < Goal forall A B C:Prop, A \/ B /\ C -—> (A -> C) -> C.
1 subgoal

forall A B C : Prop, A \/ B /\ C -=> (A > C) —> C

Cog < intros x [a | (_,c)] f.
2 subgoals

A, B, C : Prop
a : A

subgoal 2 is:
C

Remark: intros p; ... p,isnotequivalentto intros p;;...; intros p, for the follow-
ing reason: If one of the p; is a wildcard pattern, he might succeed in the first case because the further
hypotheses it depends in are eventually erased too while it might fail in the second case because of
dependencies in hypotheses which are not yet introduced (and a fortiori not yet erased).

Remark: In intros intro_pattern_list, if the last introduction pattern is a disjunctive or conjunctive
pattern [intro_pattern_list; | ... | intro_pattern_list, ], the completion of intro_pattern_list; so
that all the arguments of the i constructors of the corresponding inductive type are introduced can be
controlled with the following option:

Set Bracketing Last Introduction Pattern

Force completion, if needed, when the last introduction pattern is a disjunctive or conjunctive pattern
(this is the default).

Coq Reference Manual, V8.6.1, July 26, 2017



8.3 Managing the local context 193

Unset Bracketing Last Introduction Pattern

Deactivate completion when the last introduction pattern is a disjunctive or conjunctive pattern.

8.3.3 clear ident

This tactic erases the hypothesis named ident in the local context of the current goal. As a consequence,
ident is no more displayed and no more usable in the proof development.

Error messages:

1. No such hypothesis
2. ident is used in the conclusion

3. ident is used in the hypothesis ident’

Variants:
1. clear ident; ... ident,
This is equivalentto clear ident;. ... clear identy,.

2. clearbody ident

This tactic expects ident to be a local definition then clears its body. Otherwise said, this tactic
turns a definition into an assumption.

Error message: ident is not a local definition

3. clear - ident; ... ident,

This tactic clears all the hypotheses except the ones depending in the hypotheses named ident; ...
ident,, and in the goal.

4. clear

This tactic clears all the hypotheses except the ones the goal depends on.

5. clear dependent ident

This clears the hypothesis ident and all the hypotheses that depend on it.

8.34 revert ident; ... ident,

This applies to any goal with variables ident; ... ident,. It moves the hypotheses (possibly defined) to
the goal, if this respects dependencies. This tactic is the inverse of intro.

Error messages:

1. No such hypothesis

2. ident is used in the hypothesis ident’

Variants:

1. revert dependent ident

This moves to the goal the hypothesis ident and all the hypotheses that depend on it.

Coq Reference Manual, V8.6.1, July 26, 2017



194 8 Tactics

8.3.5 move ident; after ident,

This moves the hypothesis named ident; in the local context after the hypothesis named identy. The
proof term is not changed.

If ident, comes before ident, in the order of dependencies, then all the hypotheses between ident
and ident, that (possibly indirectly) depend on ident; are moved too.

If ident; comes after ident, in the order of dependencies, then all the hypotheses between ident;
and ident; that (possibly indirectly) occur in ident; are moved too.

Variants:

1. move ident; before identsy

This moves ident; towards and just before the hypothesis named idents.

2. move ident at top

This moves ident at the top of the local context (at the beginning of the context).

3. move ident at bottom

This moves ident at the bottom of the local context (at the end of the context).

Error messages:
1. No such hypothesis
2. Cannot move Iident; after identp: 1t occurs in identsy

3. Cannot move ident; after identy: it depends on identsy

8.3.6 rename ident; into ident,

This renames hypothesis ident; into ident, in the current context. The name of the hypothesis in the
proof-term, however, is left unchanged.

Variants:

1. rename ident; into identy, ..., identy,_1 into identg

This renames the variables ident; ...identak — 1 into respectively idents ... identsk in parallel.
In particular, the target identifiers may contain identifiers that exist in the source context, as long
as the latter are also renamed by the same tactic.

Error messages:
1. No such hypothesis
2. identy is already used

Coq Reference Manual, V8.6.1, July 26, 2017



8.3 Managing the local context 195

8.3.7 set ( ident := term )

This replaces term by ident in the conclusion of the current goal and adds the new definition ident :=
term to the local context.

If term has holes (i.e. subexpressions of the form “_”), the tactic first checks that all subterms
matching the pattern are compatible before doing the replacement using the leftmost subterm matching
the pattern.

Error messages:

1. The variable ident is already defined

Variants:
1. set ( ident := term ) in goal_occurrences
This notation allows specifying which occurrences of term have to be substituted in the context.
The in goal_occurrences clause is an occurrence clause whose syntax and behavior are described
in Section 8.1.4.
2. set ( ident binder ... binder := term )

This is equivalent to set ( ident := fun binder ... binder => term ).

3. set term
This behaves as set ( ident := term ) but ident is generated by C0OQ. This variant also supports
an occurrence clause.

4. set ( identy binder ... binder := term ) in goal_occurrences
set term in goal_occurrences

These are the general forms that combine the previous possibilities.

5. remember term as ident
This behaves as set ( ident := term ) in = and using a logical (Leibniz’s) equality in-
stead of a local definition.

6. remember term as ident eqn:ident
This behaves as remember term as ident, except that the name of the generated equality is
also given.

7. remember term as ident in goal_occurrences

This is a more general form of remember that remembers the occurrences of term specified by
an occurrences set.

8. pose ( ident := term )
This adds the local definition ident := term to the current context without performing any re-
placement in the goal or in the hypotheses. It is equivalent to set ( ident := term ) in
[ -

9. pose ( ident binder ... binder := term )

This is equivalent to pose ( ident := fun binder ... binder => term ) .

10. pose term

This behaves as pose ( ident := term ) but ident is generated by C0OQ.

Coq Reference Manual, V8.6.1, July 26, 2017



196 8 Tactics

8.3.8 decompose [ qualid, ... qualid, ] term
This tactic recursively decomposes a complex proposition in order to obtain atomic ones.

Example:

Cog < Goal forall A B C:Prop, A /\ B /\NC\/ B /\NC\/ C/\ A ->C.
1 subgoal

forall A B C : Prop, 2 /\ B /\Cc \/ B/\C\/ C/\ A —-—>°C

Cogq < intros A B C H; decompose [and or] H; assumption.
No more subgoals.

Cog < Qed.
decompose does not work on right-hand sides of implications or products.
Variants:

1. decompose sum term

This decomposes sum types (like or).

2. decompose record term

This decomposes record types (inductive types with one constructor, like and and exists and
those defined with the Record macro, see Section 2.1).

8.4 Controlling the proof flow

84.1 assert ( ident : form )

This tactic applies to any goal. assert (H : U) adds a new hypothesis of name H asserting U to the
current goal and opens a new subgoal U”. The subgoal U comes first in the list of subgoals remaining to
prove.

Error messages:
1. Not a proposition or a type
Arises when the argument form is neither of type Prop, Set nor Type.
Variants:

1. assert form

This behaves as assert ( ident : form ) but ident is generated by COQ.

2. assert form by tactic

This tactic behaves like assert but applies tactic to solve the subgoals generated by assert.

Error message: Proof is not complete

2This corresponds to the cut rule of sequent calculus.

Coq Reference Manual, V8.6.1, July 26, 2017



8.4 Controlling the proof flow 197

10.

11.

. assert form as intro_pattern

If intro_pattern is a naming introduction pattern (see Section 8.3.2), the hypothesis is named after
this introduction pattern (in particular, if intro_pattern is ident, the tactic behaves like assert
(ident : form)).

If intro_pattern is an action introduction pattern, the tactic behaves like assert form followed
by the action done by this introduction pattern.

. assert form as intro_pattern by tactic

This combines the two previous variants of assert.

. assert ( ident := term )

This behaves as assert (ident : type); [exact term|idtac] where type is the type of
term. This is deprecated in favor of pose proof.

Error message: Variable ident is already declared

pose proof term as intro_pattern

This tactic behaves like assert T as intro_pattern by exact term where T is the type of
term.

In particular, pose proof term as ident behaves as assert (ident := term) and
pose proof term as intro_pattern is the same as applying the intro_pattern to term.

. enough (ident : form)

This adds a new hypothesis of name ident asserting form to the goal the tactic enough is applied
to. A new subgoal stating form is inserted after the initial goal rather than before it as assert
would do.

. enough form

This behaves like enough (ident : form) with the name ident of the hypothesis generated by
CoQ.

enough form as intro_pattern
This behaves like enough form using intro_pattern to name or destruct the new hypothesis.
enough (ident : form) by tactic

enough form by tactic
enough form as intro_pattern by tactic

This behaves as above but with tactic expected to solve the initial goal after the extra assumption
form is added and possibly destructed. If the as intro_pattern clause generates more than one
subgoal, tactic is applied to all of them.

cut form

This tactic applies to any goal. It implements the non-dependent case of the “App” rule given in
Section 4.2. (This is Modus Ponens inference rule.) cut U transforms the current goal T into the
two following subgoals: U —> T and U. The subgoal U —> T comes first in the list of remaining
subgoal to prove.

Coq Reference Manual, V8.6.1, July 26, 2017



198

8 Tactics

12.

specialize (ident term; ... termy)
specialize ident with bindings_list

The tactic specialize works on local hypothesis ident. The premises of this hypothesis (ei-
ther universal quantifications or non-dependent implications) are instantiated by concrete terms
coming either from arguments term; ... term, or from a bindings list (see Section 8.1.3 for more
about bindings lists). In the second form, all instantiation elements must be given, whereas in the
first form the application to term; ... term,, can be partial. The first form is equivalentto assert
(ident’ := ident termi ... term,); clear Iident; rename Iident’ into ident.

The name ident can also refer to a global lemma or hypothesis. In this case, for compatibility rea-
sons, the behavior of specialize is close to that of generalize: the instantiated statement
becomes an additional premise of the goal.

Error messages:

(a) ident is used in hypothesis ident’

(b) ident is used in conclusion

8.4.2 generalize term

This tactic applies to any goal. It generalizes the conclusion with respect to some term.

Example:

Cog < Show.
1 subgoal

Cog < generalize (x + vy + y).
1 subgoal

y : nat

forall n : nat, 0 <= n

If the goal is G and £ is a subterm of type 7" in the goal, then generalize ¢ replaces the goal by
forall (x:T), G'where G’ is obtained from G by replacing all occurrences of ¢ by x. The name
of the variable (here n) is chosen based on 7.

Variants:
1. generalize termy , ... , termy,
This is equivalent to generalize term,; ... ; generalize term;. Note that the se-

2.

quence of term;’s are processed from n to 1.

generalize term at num; ... num;

This is equivalent to generalize term but it generalizes only over the specified occurrences of
term (counting from left to right on the expression printed using option Set Printing All).

Coq Reference Manual, V8.6.1, July 26, 2017



8.4 Controlling the proof flow 199

3. generalize term as ident
This is equivalent to generalize term but it uses ident to name the generalized hypothesis.
4. generalize term; at numi; ... numy;, as ident; , ... , term, at nump
numy;, as identy

This is the most general form of generalize that combines the previous behaviors.

5. generalize dependent term

This generalizes term but also all hypotheses that depend on term. It clears the generalized hy-
potheses.

84.3 evar ( ident : term )

The evar tactic creates a new local definition named ident with type term in the context. The body of
this binding is a fresh existential variable.

844 instantiate ( ident := term )

The instantiate tactic refines (see Section 8.2.3) an existential variable ident with the term term.
Itis equivalentto only [ident]: refine term (preferred alternative).

Remarks:

1. To be able to refer to an existential variable by name, the user must have given the name explicitly
(see 2.11).

2. When you are referring to hypotheses which you did not name explicitly, be aware that Coq may
make a different decision on how to name the variable in the current goal and in the context of the
existential variable. This can lead to surprising behaviors.

Variants:

1. instantiate ( num := term ) This variant allows to refer to an existential variable
which was not named by the user. The num argument is the position of the existential vari-
able from right to left in the goal. Because this variant is not robust to slight changes in the goal,
its use is strongly discouraged.

2. instantiate ( num term ) in ident

3. instantiate ( num term ) in ( Value of ident )

4. instantiate ( num term ) in ( Type of ident )

These allow to refer respectively to existential variables occurring in a hypothesis or in the body
or the type of a local definition.

5. instantiate

Without argument, the instantiate tactic tries to solve as many existential variables as possi-
ble, using information gathered from other tactics in the same tactical. This is automatically done
after each complete tactic (i.e. after a dot in proof mode), but not, for example, between each
tactic when they are sequenced by semicolons.

Coq Reference Manual, V8.6.1, July 26, 2017



200 8 Tactics

84.5 admit

The admit tactic allows temporarily skipping a subgoal so as to progress further in the rest of the proof.
A proof containing admitted goals cannot be closed with Qed but only with Admitted.

Variants:

1. give_up

Synonym of admit.

8.4.6 absurd term

This tactic applies to any goal. The argument term is any proposition P of type P rop. This tactic applies
False elimination, that is it deduces the current goal from False, and generates as subgoals ~P and
P. It is very useful in proofs by cases, where some cases are impossible. In most cases, P or ~P is one
of the hypotheses of the local context.

8.4.7 contradiction

This tactic applies to any goal. The contradiction tactic attempts to find in the current context
(after all intros) an hypothesis that is equivalent to an empty inductive type (e.g. False), to the
negation of a singleton inductive type (e.g. True or x=x), or two contradictory hypotheses.

Error messages:

1. No such assumption

Variants:

1. contradiction ident

The proof of False is searched in the hypothesis named ident.

8.4.8 contradict ident

This tactic allows manipulating negated hypothesis and goals. The name ident should correspond to a
hypothesis. With contradict H, the current goal and context is transformed in the following way:

e H:—-A + B becomes - A
e H:—=A + —B becomes H: B - A
e H: A F B becomes - —A

e H: A F —B becomes H: B F —A

849 exfalso

This tactic implements the “ex falso quodlibet” logical principle: an elimination of False is performed
on the current goal, and the user is then required to prove that False is indeed provable in the current
context. This tactic is a macro for el imtype False.

Coq Reference Manual, V8.6.1, July 26, 2017



8.5 Case analysis and induction 201

8.5 Case analysis and induction

The tactics presented in this section implement induction or case analysis on inductive or co-inductive
objects (see Section 4.5).

8.5.1 destruct term

This tactic applies to any goal. The argument term must be of inductive or co-inductive type and the tac-
tic generates subgoals, one for each possible form of term, i.e. one for each constructor of the inductive
or co-inductive type. Unlike induction, no induction hypothesis is generated by destruct.

There are special cases:

 If term is an identifier ident denoting a quantified variable of the conclusion of the goal, then
destruct ident behaves as intros until ident; destruct ident. If ident is not any-
more dependent in the goal after application of destruct, it is erased (to avoid erasure, use
parentheses, as in destruct (ident)).

e If term is a num, then destruct num behaves as intros until num followed by
destruct applied to the last introduced hypothesis. Remark: For destruction of a numeral,
use syntax destruct (num) (not very interesting anyway).

* In case term is an hypothesis ident of the context, and ident is not anymore dependent in the goal
after application of destruct, it is erased (to avoid erasure, use parentheses, as in destruct
(ident) ).

* The argument term can also be a pattern of which holes are denoted by ““_”. In this case, the tactic
checks that all subterms matching the pattern in the conclusion and the hypotheses are compatible
and performs case analysis using this subterm.

Variants:
1. destruct termy, ..., term,
This is a shortcut for destruct termy; ...; destruct term,.

2. destruct term as disj_conj_intro_pattern

This behaves as destruct term but uses the names in intro_pattern to name the variables in-
troduced in the context. The intro_pattern must have the form [ p11 ...p1n, | ... | Pm1 -+ -Pmn,,
] with m being the number of constructors of the type of term. Each variable introduced by
destruct in the context of the 7" goal gets its name from the list p;; ... p;y,; in order. If there
are not enough names, destruct invents names for the remaining variables to introduce. More
generally, the p;; can be any introduction pattern (see Section 8.3.2). This provides a concise
notation for chaining destruction of an hypothesis.

3. destruct term eqn:naming_intro_pattern

This behaves as destruct term but adds an equation between term and the value that term
takes in each of the possible cases. The name of the equation is specified by naming_intro_pattern
(see Section 8.3.2), in particular ? can be used to let Coq generate a fresh name.

Coq Reference Manual, V8.6.1, July 26, 2017



202 8 Tactics

4. destruct term with bindings_list
This behaves like destruct term providing explicit instances for the dependent premises of
the type of term (see syntax of bindings in Section 8.1.3).

5. edestruct term
This tactic behaves like dest ruct term except that it does not fail if the instance of a dependent
premises of the type of term is not inferable. Instead, the unresolved instances are left as existential
variables to be inferred later, in the same way as eapply does (see Section 8.2.4).

6. destruct term; using terms
destruct term; using terms with bindings_list
These are synonyms of induction term; using terme and induction term; using
termy with bindings_list.

7. destruct term in goal_occurrences
This syntax is used for selecting which occurrences of term the case analysis has to be done on.
The in goal_occurrences clause is an occurrence clause whose syntax and behavior is described
in Section 8.1.4.

8. destruct termy with bindings_list; as disj_conj_intro_pattern
eqn:naming_intro_pattern using terms with bindings_lista in goal_occurrences
edestruct term; with bindings_listy as disj_conj_intro_pattern
eqn : haming_intro_pattern using terms with bindings_lists in goal_occurrences
These are the general forms of destruct and edestruct. They combine the effects of the
with, as, eqn:, using, and in clauses.

9. case term
The tactic case is a more basic tactic to perform case analysis without recursion. It behaves as
elim term but using a case-analysis elimination principle and not a recursive one.

10. case term with bindings_list
Analogous to elim term with bindings_list above.

11. ecase term
ecase term with bindings_list
In case the type of term has dependent premises, or dependent premises whose values are not
inferable from the with bindings_list clause, ecase turns them into existential variables to be
resolved later on.

12. simple destruct ident
This tactic behaves as intros until ident; case ident when ident is a quantified variable
of the goal.

13. simple destruct num

This tactic behaves as intros until num; case ident where ident is the name given by
intros until num to the num-th non-dependent premise of the goal.

Coq Reference Manual, V8.6.1, July 26, 2017



8.5 Case analysis and induction 203

14. case_eq term

The tactic case_eq is a variant of the case tactic that allow to perform case analysis on a term
without completely forgetting its original form. This is done by generating equalities between the
original form of the term and the outcomes of the case analysis.

8.5.2 induction term

This tactic applies to any goal. The argument term must be of inductive type and the tactic induction
generates subgoals, one for each possible form of term, i.e. one for each constructor of the inductive
type.

If the argument is dependent in either the conclusion or some hypotheses of the goal, the argument is
replaced by the appropriate constructor form in each of the resulting subgoals and induction hypotheses
are added to the local context using names whose prefix is IH.

There are particular cases:

 If term is an identifier ident denoting a quantified variable of the conclusion of the goal, then
induction ident behaves as intros until ident; induction ident. If ident is not
anymore dependent in the goal after application of induction, it is erased (to avoid erasure,
use parentheses, as in induction (ident)).

* If term is a num, then induction num behaves as intros until num followed by
induction applied to the last introduced hypothesis. Remark: For simple induction on a nu-
meral, use syntax induction (num) (not very interesting anyway).

* In case term is an hypothesis ident of the context, and ident is not anymore dependent in the
goal after application of induction, it is erased (to avoid erasure, use parentheses, as in
induction (ident)).

* The argument term can also be a pattern of which holes are denoted by “_”. In this case, the tactic
checks that all subterms matching the pattern in the conclusion and the hypotheses are compatible
and performs induction using this subterm.

Example:
Cogq < Lemma induction_test : forall n:nat, n = n -> n <= n.
1 subgoal

forall n : nat, n = n -> n <= n

Cog < intros n H.
1 subgoal

Cog < induction n.
2 subgoals

Coq Reference Manual, V8.6.1, July 26, 2017



8 Tactics

H :

0 =20

0 <=0
subgoal 2 1is:
S n <= S n

Error messages:

I. Not an inductive product

2. Unable to find an instance for the variables ident .. .ident
Use in this case the variant elim ... with ... below.
Variants:

1. induction term as disj_conj_intro_pattern

This behaves as induction term but uses the names in disj_conj_intro_pattern to name the
variables introduced in the context. The disj_conj_intro_pattern must typically be of the form
[pi1 .- Ping | «oo | Pm1 .. Dmm,, 1 With m being the number of constructors of the type
of term. Each variable introduced by induction in the context of the i** goal gets its name
from the list p;1 ... pip,; in order. If there are not enough names, induct ion invents names for
the remaining variables to introduce. More generally, the p;; can be any disjunctive/conjunctive
introduction pattern (see Section 8.3.2). For instance, for an inductive type with one constructor,
the pattern notation (p; , ... , pn) canbe used instead of [ py ... pp 1.

. induction term with bindings_list

This behaves like induction term providing explicit instances for the premises of the type of
term (see the syntax of bindings in Section 8.1.3).

. einduction term

This tactic behaves like induction term excepts that it does not fail if some dependent premise
of the type of term is not inferable. Instead, the unresolved premises are posed as existential
variables to be inferred later, in the same way as eapply does (see Section 8.2.4).

induction term; using termsy

This behaves as induction term; but using terms as induction scheme. It does not expect the
conclusion of the type of term; to be inductive.

induction term; using terms with bindings_list

This behaves as induction term; using terms but also providing instances for the
premises of the type of terms.

. induction term;, ..., term, using qualid

This syntax is used for the case qualid denotes an induction principle with complex predicates as
the induction principles generated by Function or Functional Scheme may be.

Coq Reference Manual, V8.6.1, July 26, 2017



8.5 Case analysis and induction 205

7. induction term in goal_occurrences

This syntax is used for selecting which occurrences of term the induction has to be carried
on. The in goal_occurrences clause is an occurrence clause whose syntax and behavior is de-
scribed in Section 8.1.4. If variables or hypotheses not mentioning term in their type are listed in
goal_occurrences, those are generalized as well in the statement to prove.

Example:

Cog < Lemma comm X y : X + vy =Yy + X.
1 subgoal

X, y : nat

X +y =y + X

Cogq < induction y in x |- *.
2 subgoals

X : nat

x + 0 =0 + x
subgoal 2 1is:
X+ Sy=8y+Xx

Cog < Show 2.
subgoal 2 1is:

X, y : nat
IHy : forall x : nat, x +y =y + X

X+ Sy=85Sy +x

8. induction term; with bindings_listy as disj_conj_intro_pattern using terms
with bindings_listo in goal_occurrences
einduction term; with bindings_list; as disj_conj_intro_pattern using terms
with bindings_listo in goal_occurrences

These are the most general forms of induction and einduction. It combines the effects of
the with, as, using, and in clauses.

9. elim term

This is a more basic induction tactic. Again, the type of the argument term must be an inductive
type. Then, according to the type of the goal, the tactic e1 im chooses the appropriate destructor
and applies it as the tactic apply would do. For instance, if the proof context contains n:nat
and the current goal is T of type Prop, then elim n is equivalent to apply nat_ind with
(n:=n). The tactic e1 im does not modify the context of the goal, neither introduces the induc-
tion loading into the context of hypotheses.

More generally, elim term also works when the type of term is a statement with premises and
whose conclusion is inductive. In that case the tactic performs induction on the conclusion of
the type of term and leaves the non-dependent premises of the type as subgoals. In the case of
dependent products, the tactic tries to find an instance for which the elimination lemma applies
and fails otherwise.

Coq Reference Manual, V8.6.1, July 26, 2017



206 8 Tactics

10. elim term with bindings_list

Allows to give explicit instances to the premises of the type of term (see Section 8.1.3).

11. eelim term
In case the type of term has dependent premises, this turns them into existential variables to be
resolved later on.

12. elim termq; using termso
elim term; using termoe with bindings_list

Allows the user to give explicitly an elimination predicate terms that is not the standard one for
the underlying inductive type of term;. The bindings_list clause allows instantiating premises of
the type of terms.

13. elim term; with bindings_list; using terms with bindings_list;
eelim term; with bindings_list; using terms with bindings_listy
These are the most general forms of elim and eelim. It combines the effects of the using
clause and of the two uses of the with clause.

14. elimtype form
The argument form must be inductively defined. elimtype Iisequivalenttocut I. intro
Hn; elim Hn; clear Hn. Therefore the hypothesis Hn will not appear in the context(s) of
the subgoal(s). Conversely, if t is a term of (inductive) type I that does not occur in the goal, then
elim tisequivalenttoelimtype I; 2: exact t.

15. simple induction ident
This tactic behaves as intros until ident; elim ident when ident is a quantified variable
of the goal.

16. simple induction num

This tactic behaves as intros until num; elim ident where ident is the name given by
intros until num to the num-th non-dependent premise of the goal.

8.5.3 double induction ident; ident,

This tactic is deprecated and should be replaced by induction ident;; induction identy (or
induction ident;; destruct idents depending on the exact needs).

Variant:

1. double induction num; nums

This tactic is deprecated and should be replaced by induction num;; induction nums
where numyj is the result of nums-numj.

8.54 dependent induction ident

The experimental tactic dependent induction performs induction-inversion on an instantiated
inductive predicate. One needs to first require the Cog.Program.Equality module to use this
tactic. The tactic is based on the BasicElim tactic by Conor McBride [107] and the work of Cristina

Coq Reference Manual, V8.6.1, July 26, 2017



8.5 Case analysis and induction 207

Cornes around inversion [36]. From an instantiated inductive predicate and a goal, it generates an
equivalent goal where the hypothesis has been generalized over its indexes which are then constrained
by equalities to be the right instances. This permits to state lemmas without resorting to manually adding
these equalities and still get enough information in the proofs.

Example:
Cog < Lemma le_minus : forall n:nat, n < 1 -> n = 0.
1 subgoal

forall n : nat, n < 1 -> n = 0

Cog < intros n H ; induction H.
2 subgoals

n : nat

n =0
subgoal 2 1is:
n =20

Here we did not get any information on the indexes to help fulfill this proof. The problem is that,
when we use the induction tactic, we lose information on the hypothesis instance, notably that
the second argument is 1 here. Dependent induction solves this problem by adding the corresponding
equality to the context.

Cog < Require Import Cog.Program.Equality.

Cog < Lemma le_minus : forall n:nat, n < 1 -> n = 0.
1 subgoal
forall n : nat, n < 1 -> n = 0

Cog < intros n H ; dependent induction H.
2 subgoals

0 =0
subgoal 2 is:
n =0

The subgoal is cleaned up as the tactic tries to automatically simplify the subgoals with respect to
the generated equalities. In this enriched context, it becomes possible to solve this subgoal.

Cog < reflexivity.
1 subgoal

n : nat

Coq Reference Manual, V8.6.1, July 26, 2017



208 8 Tactics

Now we are in a contradictory context and the proof can be solved.

Cog < inversion H.
No more subgoals.

This technique works with any inductive predicate. In fact, the dependent induction tacticis
just a wrapper around the induction tactic. One can make its own variant by just writing a new tactic
based on the definition found in Cog.Program.Equality.

Variants:

1. dependent induction ident generalizing ident; ...ident,

This performs dependent induction on the hypothesis ident but first generalizes the goal by the
given variables so that they are universally quantified in the goal. This is generally what one wants
to do with the variables that are inside some constructors in the induction hypothesis. The other
ones need not be further generalized.

2. dependent destruction ident

This performs the generalization of the instance ident but uses destruct instead of
induction on the generalized hypothesis. This gives results equivalent to inversion or
dependent inversion if the hypothesis is dependent.

See also: 10.1 for a larger example of dependent induction and an explanation of the underlying tech-
nique.

8.5.5 functional induction (qualid term; ... term,)

The tactic functional induction performs case analysis and induction following the definition
of a function. It makes use of a principle generated by Function (see Section 2.3) or Functional
Scheme (see Section 13.2).

Cog < Functional Scheme minus_ind := Induction for minus Sort Prop.
sub_equation is defined
minus_ind is defined

Cog < Check minus_ind.
minus_ind
forall P : nat -> nat —-> nat —-> Prop,

(forall nm : nat, n = 0 -> P 0 m n) —->
(forall n m k : nat, n =S k ->m =0 -> P (S k) 0 n) —->
(forall n m k : nat,
n =35k —>
forall 1 : nat, m =S 1 > P k 1 (k - 1) —=> P (S k) (S 1) (k - 1)) —>
forall nm : nat, P n m (n — m)
Cogq < Lemma le_minus (n m:nat) : n — m <= n.
1 subgoal
n, m nat
n —m <=n

Coqg < functional induction (minus n m) using minus_ind; simpl; auto.
No more subgoals.

Cog < Qed.

Coq Reference Manual, V8.6.1, July 26, 2017



8.5 Case analysis and induction 209

Remark: (qualid term; ... term,) must be a correct full application of qualid. In particular, the
rules for implicit arguments are the same as usual. For example use @qualid if you want to write implicit
arguments explicitly.

Remark: Parentheses over qualid. .. term,, are mandatory.

Remark: functional induction (f x1 x2 x3) is actually a wrapper for induction
x1, x2, x3, (f x1 x2 x3) using qualid followed by a cleaning phase, where qualid is
the induction principle registered for f (by the Function (see Section 2.3) or Functional
Scheme (see Section 13.2) command) corresponding to the sort of the goal. Therefore functional
induct ion may fail if the induction scheme qualid is not defined. See also Section 2.3 for the function
terms accepted by Function.

Remark: There is a difference between obtaining an induction scheme for a function by using
Function (see Section 2.3) and by using Functional Scheme after a normal definition using
Fixpoint or Definition. See 2.3 for details.

See also: 2.3,13.2,13.2, 8.14.1

Error messages:
1. Cannot find induction information on qualid

2. Not the right number of induction arguments

Variants:

1. functional induction (qualid term; ... termy) as disj_conj_intro_pattern
using term,y; with bindings_list

Similarly to Induction and elim (see Section 8.5.2), this allows giving explicitly the name
of the introduced variables, the induction principle, and the values of dependent premises of the
elimination scheme, including predicates for mutual induction when qualid is part of a mutually
recursive definition.

8.5.6 discriminate term

This tactic proves any goal from an assumption stating that two structurally different terms of an induc-
tive set are equal. For example, from (S (S 0) )= (S 0O) we can derive by absurdity any proposition.

The argument term is assumed to be a proof of a statement of conclusion term; = termo with term;
and term, being elements of an inductive set. To build the proof, the tactic traverses the normal forms®
of term; and terms looking for a couple of subterms u and w (u subterm of the normal form of term;
and w subterm of the normal form of terms), placed at the same positions and whose head symbols
are two different constructors. If such a couple of subterms exists, then the proof of the current goal is
completed, otherwise the tactic fails.

Remark: The syntax discriminate ident can be used to refer to a hypothesis quantified in the
goal. In this case, the quantified hypothesis whose name is ident is first introduced in the local context
using intros until ident.

Error messages:

3Reminder: opaque constants will not be expanded by d reductions.

Coq Reference Manual, V8.6.1, July 26, 2017



210 8 Tactics

1. No primitive equality found

2. Not a discriminable equality

Variants:

1. discriminate num
This does the same thing as intros until num followed by discriminate ident where
ident is the identifier for the last introduced hypothesis.
2. discriminate term with bindings_list
This does the same thing as discriminate term but using the given bindings to instantiate
parameters or hypotheses of term.
3. ediscriminate num
ediscriminate term [with bindings_list]
This works the same as discriminate but if the type of term, or the type of the hypothesis re-
ferred to by num, has uninstantiated parameters, these parameters are left as existential variables.
4. discriminate

This behaves like discriminate ident if ident is the name of an hypothesis to which
discriminate is applicable; if the current goal is of the form term; <> terms, this behaves as
intro ident; discriminate ident.

Error message: No discriminable equalities

8.5.7 injection term

The injection tactic is based on the fact that constructors of inductive sets are injections. That means
that if ¢ is a constructor of an inductive set, and if (¢ 1) and (c ) are two terms that are equal then #;
and t_ﬁ are equal too.

If term is a proof of a statement of conclusion term; = terms, then injection applies injectivity
as deep as possible to derive the equality of all the subterms of term; and terms placed in the same
positions. For example, from (S (S n))=(S (S (S m))) we may derive n= (S m). To use this
tactic term; and terms should be elements of an inductive set and they should be neither explicitly equal,
nor structurally different. We mean by this that, if n; and n» are their respective normal forms, then:

* n; and n» should not be syntactically equal,

* there must not exist any pair of subterms u and w, u subterm of n; and w subterm of n» , placed
in the same positions and having different constructors as head symbols.

If these conditions are satisfied, then, the tactic derives the equality of all the subterms of term; and
terms placed in the same positions and puts them as antecedents of the current goal.

Example: Consider the following goal:

Cogq < Inductive list : Set :=
| nil : list
| cons : nat -> list -> list.

Cogq < Variable P : list -> Prop.

Coq Reference Manual, V8.6.1, July 26, 2017



8.5 Case analysis and induction 211

Cog < Show.
1 subgoal
1 : 1list
n : nat
H : P nil
HO : cons n 1 = cons 0 nil
P 1

Cog < injection HO.

1 subgoal
1 : 1list
n : nat
H : P nil
HO : cons n 1 = cons 0 nil

1l =nil ->n =0 ->P 1

Beware that injection yields an equality in a sigma type whenever the injected object has a
dependent type P with its two instances in different types (P ¢ ... t,) and (P uy ... uy). If {1 and uq
are the same and have for type an inductive type for which a decidable equality has been declared using
the command Scheme Equality (see 13.1), the use of a sigma type is avoided.

Remark: If some quantified hypothesis of the goal is named ident, then injection ident first intro-
duces the hypothesis in the local context using intros until ident.

Error messages:
1. Not a projectable equality but a discriminable one
2. Nothing to do, it is an equality between convertible terms

3. Not a primitive equality

Variants:

1. injection num

This does the same thing as intros until num followed by injection ident where ident
is the identifier for the last introduced hypothesis.

2. injection term with bindings_list

This does the same as injection term but using the given bindings to instantiate parameters
or hypotheses of term.

3. einjection num
einjection term [with bindings_list]

This works the same as in ject ion but if the type of term, or the type of the hypothesis referred
to by num, has uninstantiated parameters, these parameters are left as existential variables.

Coq Reference Manual, V8.6.1, July 26, 2017



212 8 Tactics

4. injection

If the current goal is of the form term; <> terms, this behaves as intro ident; injection
ident.

Error message: goal does not satisfy the expected preconditions

5. injection term [with bindings_list] as intro_pattern ... intro_pattern
injection num as intro_pattern ... intro_pattern
injection as intro_pattern ... intro_pattern
einjection term [with bindings_list] as intro_pattern ... intro_pattern
einjection num as intro_pattern ... intro_pattern
einjection as intro_pattern ... intro_pattern

These variants apply intros intro_pattern ... intro_pattern after the call to injection or
einjection so that all equalities generated are moved in the context of hypotheses. The num-
ber of intro_pattern must not exceed the number of equalities newly generated. If it is smaller,
fresh names are automatically generated to adjust the list of intro_pattern to the number of new
equalities. The original equality is erased if it corresponds to an hypothesis.

It is possible to ensure that injection term erases the original hypothesis and leaves the gen-
erated equalities in the context rather than putting them as antecedents of the current goal, as if giv-
ing injection term as (with an empty list of names). To obtain this behavior, the option Set
Structural Injection mustbe activated. This option is off by default.

By default, injection only creates new equalities between terms whose type is in sort Type or
Set, thus implementing a special behavior for objects that are proofs of a statement in Prop. This
behavior can be turned off by setting the option Set Keep Proof Equalities.

8.5.8 inversion ident

Let the type of ident in the local context be (I f), where I is a (co)inductive predicate. Then,
inversion applied to ident derives for each possible constructor ¢; of (I i) all the necessary condi-
tions that should hold for the instance (I %) to be proved by ;.

Remark: If ident does not denote a hypothesis in the local context but refers to a hypothesis quantified
in the goal, then the latter is first introduced in the local context using intros until ident.

Remark: As inversion proofs may be large in size, we recommend the user to stock the lemmas when-
ever the same instance needs to be inverted several times. See Section 13.3.

Remark: Part of the behavior of the inversion tactic is to generate equalities between expressions
that appeared in the hypothesis that is being processed. By default, no equalities are generated if they
relate two proofs (i.e. equalities between terms whose type is in sort Prop). This behavior can be turned
off by using the option Set Keep Proof Equalities.

Variants:

1. inversion num

This does the same thing as intros until num then inversion ident where ident is the
identifier for the last introduced hypothesis.

2. inversion_clear ident

This behaves as inversion and then erases ident from the context.

Coq Reference Manual, V8.6.1, July 26, 2017



8.5 Case analysis and induction 213

3. inversion ident as intro_pattern

This generally behaves as inversion but using names in intro_pattern for naming hypotheses.
The intro_pattern must have the form [ p11...p1n, | --+ | Pmi---Pmn,, ] With m being the
number of constructors of the type of ident. Be careful that the list must be of length m even if
inversion discards some cases (which is precisely one of its roles): for the discarded cases,
just use an empty list (i.e. n; = 0).

The arguments of the i* constructor and the equalities that inversion introduces in the context
of the goal corresponding to the " constructor, if it exists, get their names from the list p;
...Pin,; in order. If there are not enough names, inversion invents names for the remaining
variables to introduce. In case an equation splits into several equations (because inversion
applies injection on the equalities it generates), the corresponding name p;; in the list must
be replaced by a sublist of the form [p;j1 ... pijq] (or, equivalently, (pij1, ..., Pijq))
where ¢ is the number of subequalities obtained from splitting the original equation. Here is an
example.

The inversion ... as variant of inversion generally behaves in a slightly more ex-
pectable way than inversion (no artificial duplication of some hypotheses referring to other
hypotheses) To take benefit of these improvements, it is enough to use inversion ... as
[ 1, letting the names being finally chosen by C0OQ.

Cog < Inductive containsO : list nat —-> Prop :=
| in_hd : forall 1, containsO (0 :: 1)
| in_tl : forall 1 b, containsO 1 -> containsO (b :: 1).

contains0 is defined
contains(0_ind is defined

Cog < Goal forall 1l:1ist nat, contains0 (1 :: 1) -> containsO 1.
1 subgoal
forall 1 : Datatypes.list nat, contains0O (1 :: 1) —-> containsO 1
Cogq < intros 1 H; inversion H as [ | 1' p H1' [Hegp Heqgql'] 1.
1 subgoal

1 : Datatypes.list nat

H : containsO (1 :: 1)
1' : Datatypes.list nat
P : nat

HI'" : containsO 1

Hegp : p =1

Hegql' : 1" =1

contains(O0 1

4. inversion num as Intro_pattern

This allows naming the hypotheses introduced by inversion num in the context.

5. inversion_clear ident as intro_pattern

This allows naming the hypotheses introduced by inversion_clear in the context. No-
tice that hypothesis names can be provided as if inversion were called, even though the
inversion_clear will eventually erase the hypotheses.

Coq Reference Manual, V8.6.1, July 26, 2017



214

8 Tactics

10.

11.

12.

13.

14.

15.

16.

17.

inversion ident in ident; ... ident,

Let ident; ... identy, be identifiers in the local context. This tactic behaves as generalizing ident;
. identy,, and then performing inversion.

. inversion ident as intro_pattern in ident; ... ident,

This allows naming the hypotheses introduced in the context by inversion ident in ident;
ident,,.

. inversion_clear ident in identy ... ident,

Let ident; ... ident,, be identifiers in the local context. This tactic behaves as generalizing ident;
. ident,,, and then performing inversion_clear.

inversion_clear ident as intro_pattern in ident; ... identy,

This allows naming the hypotheses introduced in the context by inversion_clear ident in

identy ... ident,.

dependent inversion ident

That must be used when ident appears in the current goal. It acts like inversion and then

substitutes ident for the corresponding term in the goal.

dependent inversion ident as intro_pattern

This allows naming the hypotheses introduced in the context by dependent inversion

ident.

dependent inversion_clear ident

Like dependent inversion, except that ident is cleared from the local context.

dependent inversion_clear ident as intro_pattern

This allows naming the hypotheses introduced in the context by dependent
inversion_clear ident.

dependent inversion ident with term

This variant allows you to specify the generalization of the goal. It is useful when the system
fails to generalize the goal automatically. If ident has type (/ f) and [ has type V(Z : T), s, then
term must be of type I : V(% : T'), I £ — s’ where s’ is the type of the goal.

dependent inversion ident as intro_pattern with term

This allows naming the hypotheses introduced in the context by dependent inversion
ident with term.

dependent inversion_clear ident with term

Like dependent inversion ... with butclears ident from the local context.

dependent inversion_clear ident as intro_pattern with term

This allows naming the hypotheses introduced in the context by dependent
inversion_clear ident with term.

Coq Reference Manual, V8.6.1, July 26, 2017



8.5 Case analysis and induction 215

18. simple inversion ident
It is a very primitive inversion tactic that derives all the necessary equalities but it does not simplify
the constraints as inversion does.

19. simple inversion ident as intro_pattern

This allows naming the hypotheses introduced in the context by simple inversion.

20. inversion ident using ident'
Let ident have type (I f) (I an inductive predicate) in the local context, and ident’ be a (dependent)
inversion lemma. Then, this tactic refines the current goal with the specified lemma.

21. inversion ident using ident’ in ident;. .. ident,
This tactic behaves as generalizing ident;... ident,, then doing inversion ident using

ident’.

Example 1: Non-dependent inversion
Let us consider the relation Le over natural numbers and the following variables:

Cog < Inductive Le : nat —-> nat -> Set :=
| LeO : forall n:nat, Le 0 n
| LeS : forall n m:nat, Le n m -> Le (S n) (S m).

Cog < Variable P : nat —-> nat -> Prop.

Cogq < Variable Q : forall n m:nat, Le n m —-> Prop.
Let us consider the following goal:

Cog < Show.
1 subgoal

P n m

To prove the goal, we may need to reason by cases on H and to derive that m is necessarily of the
form (S my) for certain mg and that (Le n mg). Deriving these conditions corresponds to prove that
the only possible constructor of (Le (S n) m) is LeS and that we can invert the —> in the type of
LesS. This inversion is possible because Le is the smallest set closed by the constructors LeO and LeS.

Cogq < inversion_clear H.
1 subgoal

n, m, mO : nat
HO : Le n mO

Note that m has been substituted in the goal for (S m0) and that the hypothesis (Le n mO) has
been added to the context.

Sometimes it is interesting to have the equality m= (S mO0) in the context to use it after. In that case
we can use inversion that does not clear the equalities:

Coq Reference Manual, V8.6.1, July 26, 2017



216 8 Tactics

Cog < inversion H.
1 subgoal

n, m : nat

H : Le (S n) m
n0, mO : nat
H1l : Le n mO
HO : nO = n

H2 : S m0O = m

P n (S mO)

Example 2: Dependent inversion
Let us consider the following goal:

Cog < Show.
1 subgoal

As H occurs in the goal, we may want to reason by cases on its structure and so, we would like
inversion tactics to substitute H by the corresponding term in constructor form. Neither Inversion
nor Inversion_clear make such a substitution. To have such a behavior we use the dependent
inversion tactics:

Cog < dependent inversion_clear H.
1 subgoal

n, m, mO : nat
1 : Le n mO

QO (S n) (S mO) (LeS n mO 1)

Note that H has been substituted by (LeS n m0 1) andmby (S m0).

8.5.9 fix ident num

This tactic is a primitive tactic to start a proof by induction. In general, it is easier to rely on higher-level
induction tactics such as the ones described in Section 8.5.2.

In the syntax of the tactic, the identifier ident is the name given to the induction hypothesis. The
natural number num tells on which premise of the current goal the induction acts, starting from 1 and
counting both dependent and non dependent products. Especially, the current lemma must be composed
of at least num products.

Like in a fix expression, the induction hypotheses have to be used on structurally smaller argu-
ments. The verification that inductive proof arguments are correct is done only at the time of registering
the lemma in the environment. To know if the use of induction hypotheses is correct at some time of the
interactive development of a proof, use the command Guarded (see Section 7.3.2).

Variants:

Coq Reference Manual, V8.6.1, July 26, 2017



8.6 Rewriting expressions 217

1. fix identy num with ( identy bindery ... binders [{ struct ident, }]
types ) ... ( ident, binder, ... binder, [{ struct ident) }] : type, )

This starts a proof by mutual induction. The statements to be simultaneously proved are re-
spectively forall bindersy ... bindery, types, ..., forall binder,, ... binder,, type,. The
identifiers ident; ... ident,, are the names of the induction hypotheses. The identifiers ident!,

. ident], are the respective names of the premises on which the induction is performed in the
statements to be simultaneously proved (if not given, the system tries to guess itself what they
are).

8.5.10 cofix ident

This tactic starts a proof by coinduction. The identifier ident is the name given to the coinduction hy-
pothesis. Like in a cofix expression, the use of induction hypotheses have to guarded by a constructor.
The verification that the use of co-inductive hypotheses is correct is done only at the time of registering
the lemma in the environment. To know if the use of coinduction hypotheses is correct at some time of
the interactive development of a proof, use the command Guarded (see Section 7.3.2).

Variants:
1. cofix ident; with ( identy binders ... binders : types ) ... ( ident
binder,, ... binder, : type, )

This starts a proof by mutual coinduction. The statements to be simultaneously proved are re-
spectively forall bindery ... bindery, types, ..., forall bindery, ... binder,, type,. The
identifiers ident; ... ident, are the names of the coinduction hypotheses.

8.6 Rewriting expressions

These tactics use the equality eq: forall A:Type, A->A->Prop defined in file Logic.v (see
Section 3.1.2). The notation for eq T ¢ u is simply ¢=u dropping the implicit type of £ and w.

8.6.1 rewrite term

This tactic applies to any goal. The type of term must have the form

forall (x1:A1) ... (xXnp:Ap)eqterm; terms.
where eq is the Leibniz equality or a registered setoid equality.
Then rewrite term finds the first subterm matching term; in the goal, resulting in instances term’
and term!, and then replaces every occurrence of term) by term’,. Hence, some of the variables x; are
solved by unification, and some of the types A1, ..., A, become new subgoals.

Error messages:
1. The term provided does not end with an equation

2. Tactic generated a subgoal identical to the original goal

This happens if term; does not occur in the goal.

Variants:

Coq Reference Manual, V8.6.1, July 26, 2017



218 8 Tactics
1. rewrite —-> term
Is equivalent to rewrite term
2. rewrite <- term
Uses the equality term;=terms from right to left
3. rewrite term in clause
Analogous to rewrite term but rewriting is done following clause (similarly to 8.7). For in-
stance:

* rewrite H in HI will rewrite H in the hypothesis H1 instead of the current goal.

e rewrite H in H1 at 1, H2 at - 2 |- *meansrewrite H; rewrite H
in H1 at 1; rewrite H in H2 at - 2. Inparticular a failure will happen if any
of these three simpler tactics fails.

* rewrite H in x |- will do rewrite H in H; for all hypothesis H; <> H. A
success will happen as soon as at least one of these simpler tactics succeeds.

e rewrite H in * is a combination of rewrite H and rewrite H in =% |- that
succeeds if at least one of these two tactics succeeds.

Orientation —> or <- can be inserted before the term to rewrite.

4. rewrite term at occurrences
Rewrite only the given occurrences of term). Occurrences are specified from left to right as for
pattern (§8.7.7). The rewrite is always performed using setoid rewriting, even for Leibniz’s
equality, so one has to Import Setoid to use this variant.

5. rewrite term by tactic
Use tactic to completely solve the side-conditions arising from the rewrite.

6. rewrite term; , ... , term,
Is equivalent to the 7 successive tactics rewrite term;uptorewrite termy, each one work-
ing on the first subgoal generated by the previous one. Orientation —> or <- can be inserted before
each term to rewrite. One unique clause can be added at the end after the keyword in; it will then
affect all rewrite operations.

7. In all forms of rewrite described above, a term to rewrite can be immediately prefixed by one

of the following modifiers:
* ? : the tactic rewrite ?term performs the rewrite of term as many times as possible
(perhaps zero time). This form never fails.
* n? : works similarly, except that it will do at most n rewrites.
» | : works as ?, except that at least one rewrite should succeed, otherwise the tactic fails.

* n! (or simply n) : precisely n rewrites of term will be done, leading to failure if these n
rewrites are not possible.

8. erewrite term

This tactic works as rewrite term but turning unresolved bindings into existential variables, if
any, instead of failing. It has the same variants as rewrite has.

Coq Reference Manual, V8.6.1, July 26, 2017



8.6 Rewriting expressions 219

8.6.2 replace term; with terms

This tactic applies to any goal. It replaces all free occurrences of term in the current goal with terms and
generates the equality termy=term; as a subgoal. This equality is automatically solved if it occurs among
the assumption, or if its symmetric form occurs. It is equivalent to cut termo=term;; [intro Hn;
rewrite <- Hn; clear Hn| assumption || symmetry; try assumption].

Error messages:

1. terms do not have convertible types

Variants:

1. replace term; with terms by tactic
This acts as replace term; with termo but applies tactic to solve the generated subgoal
termo=term;.

2. replace term
Replaces term with term’ using the first assumption whose type has the form term=term’ or
term’ =term.

3. replace —-> term

Replaces term with term’ using the first assumption whose type has the form term=term’

4. replace <- term

Replaces term with term’ using the first assumption whose type has the form term’ =term
5. replace term; with terms in clause

replace term; with terme in clause by tactic

replace term in clause

replace —> term in clause
replace <- term in clause

Acts as before but the replacements take place in clause (see Section 8.7) and not only in the
conclusion of the goal. The clause argument must not contain any type of nor value of.

6. cutrewrite <— (term; = terms)
This tactic is deprecated. It acts like replace termy with termj, or, equivalently as enough
(term; = termsy) as <-.

7. cutrewrite —-> (term; = terms)

This tactic is deprecated. It can be replaced by enough (term; = termy) as —>.

8.6.3 subst ident

This tactic applies to a goal that has ident in its context and (at least) one hypothesis, say H, of type
ident =t or t = ident with ident not occurring in ¢. Then it replaces ident by ¢ everywhere in the goal
(in the hypotheses and in the conclusion) and clears ident and H from the context.

If ident is a local definition of the form ident := ¢, it is also unfolded and cleared.

Remark: When several hypotheses have the form ident =1 or¢ = ident, the first one is used.

Coq Reference Manual, V8.6.1, July 26, 2017



220 8 Tactics

Remark: If H is itself dependent in the goal, it is replaced by the proof of reflexivity of equality.

Variants:
1. subst ident;y ... ident,
This is equivalent to subst ident;; ...; subst ident,.
2. subst

This applies subst repeatedly from top to bottom to all identifiers of the context for which an
equality of the form ident =t or ¢ = ident or ident :=t exists, with ident not occurring in .

Remark: The behavior of subst can be controlled using option Set Regular Subst
Tactic. When this option is activated, subst also deals with the following corner cases:

* A context with ordered hypotheses ident; = idents and ident, = t, or ¢’ = ident; with ¢’
not a variable, and no other hypotheses of the form idents = w oru = identy; without the
option, a second call to subst would be necessary to replace idents by ¢ or ¢’ respectively.

* The presence of a recursive equation which without the option would be a cause of failure
of subst.

* A context with cyclic dependencies as with hypotheses ident; = f identy and identy =
g ident; which without the option would be a cause of failure of subst.

Additionally, it prevents a local definition such as ident := ¢ to be unfolded which otherwise it
would exceptionally unfold in configurations containing hypotheses of the form ident = wu, or v’
= ident with v’ not a variable.

Finally, it preserves the initial order of hypotheses, which without the option it may break.

The option is on by default.

8.6.4 stepl term

This tactic is for chaining rewriting steps. It assumes a goal of the form “R term; termy” where R is a
binary relation and relies on a database of lemmas of the form forallzyz, Rxy ->eqx z-> Rz
y where eq is typically a setoid equality. The application of stepl term then replaces the goal by “R
term terms” and adds a new goal stating “eq term term;”.

Lemmas are added to the database using the command

Declare Left Step term.

The tactic is especially useful for parametric setoids which are not accepted as regular setoids for
rewrite and setoid_replace (see Chapter 27).

Variants:
1. stepl term by tactic

This applies stepl term then applies tactic to the second goal.

2. stepr term
stepr term by tactic

This behaves as stepl but on the right-hand-side of the binary relation. Lemmas are expected to
be of the form “forallzy 2z, Rxy —>eqy z —> R x 2” and are registered using the command

Declare Right Step term.

Coq Reference Manual, V8.6.1, July 26, 2017



8.7 Performing computations 221

8.6.5 change term

This tactic applies to any goal. It implements the rule “Conv” given in Section 4.4. change U replaces
the current goal T with U providing that U is well-formed and that T and U are convertible.

Error messages:

1. Not convertible

Variants:

1. change term; with terms
This replaces the occurrences of term; by terms in the current goal. The terms term; and terms
must be convertible.

2. change term; at num; ... num; with terms
This replaces the occurrences numbered num; ... num; of term; by terms in the current goal.
The terms term; and terms must be convertible.
Error message: Too few occurrences

3. change term in ident

4. change term; with terms in ident

5. change term; at num; ... num; with terms in ident

This applies the change tactic not to the goal but to the hypothesis ident.

See also: 8.7

8.7 Performing computations

This set of tactics implements different specialized usages of the tactic change.

All conversion tactics (including change) can be parameterized by the parts of the goal where
the conversion can occur. This is done using goal clauses which consists in a list of hypotheses and,
optionally, of a reference to the conclusion of the goal. For defined hypothesis it is possible to specify if
the conversion should occur on the type part, the body part or both (default).

Goal clauses are written after a conversion tactic (tactics set 8.3.7, rewrite 8.6.1,
replace 8.6.2 and autorewrite 8.8.4 also use goal clauses) and are introduced by the keyword
in. If no goal clause is provided, the default is to perform the conversion only in the conclusion.

The syntax and description of the various goal clauses is the following:

in ident; ... ident, |- only in hypotheses ident; ...ident,

in ident; ... ident, |- = in hypotheses ident; ...ident, and in the conclusion

in % |- inevery hypothesis

in * (equivalentto in % |- «)everywhere

in (type of ident;) (value of identy) ... |- in type part of ident;, in the value part of
idents, etc.

For backward compatibility, the notation in ident;...ident, performs the conversion in hypotheses
identy. .. ident,,.

Coq Reference Manual, V8.6.1, July 26, 2017



222 8 Tactics

871 cbv flag, ... flag,,lazy flag, ... flag,,and compute

These parameterized reduction tactics apply to any goal and perform the normalization of the goal ac-
cording to the specified flags. In correspondence with the kinds of reduction considered in COQ namely
B (reduction of functional application), ¢ (unfolding of transparent constants, see 6.10.2), ¢+ (reduction
of pattern-matching over a constructed term, and unfolding of f£ix and cofix expressions) and ( (con-
traction of local definitions), the flags are either beta, delta, match, fix, cofix, iota or zeta.
The iota flag is a shorthand for match, fix and cofix. The delta flag itself can be refined into
delta [qualid;...qualidi] ordelta -[qualid;. . .qualidy], restricting in the first case the con-
stants to unfold to the constants listed, and restricting in the second case the constant to unfold to all
but the ones explicitly mentioned. Notice that the delta flag does not apply to variables bound by a
let-in construction inside the term itself (use here the zet a flag). In any cases, opaque constants are not
unfolded (see Section 6.10.1).

Normalization according to the flags is done by first evaluating the head of the expression into a
weak-head normal form, i.e. until the evaluation is bloked by a variable (or an opaque constant, or an
axiom),ase.g. inx uy ... Up,ormatch x with ... end,or (fix f x {struct x} :=

.) x, oris a constructed form (a A-expression, a constructor, a cofixpoint, an inductive type, a
product type, a sort), or is a redex that the flags prevent to reduce. Once a weak-head normal form is
obtained, subterms are recursively reduced using the same strategy.

Reduction to weak-head normal form can be done using two strategies: lazy (Lazy tactic), or call-
by-value (cbv tactic). The lazy strategy is a call-by-need strategy, with sharing of reductions: the
arguments of a function call are weakly evaluated only when necessary, and if an argument is used
several times then it is weakly computed only once. This reduction is efficient for reducing expressions
with dead code. For instance, the proofs of a proposition exists z. P(x) reduce to a pair of a
witness ¢, and a proof that ¢ satisfies the predicate P. Most of the time, ¢ may be computed without
computing the proof of P(t), thanks to the lazy strategy.

The call-by-value strategy is the one used in ML languages: the arguments of a function call are
systematically weakly evaluated first. Despite the lazy strategy always performs fewer reductions than
the call-by-value strategy, the latter is generally more efficient for evaluating purely computational ex-
pressions (i.e. with few dead code).

Variants:
1. compute
cbv

These are synonyms for cbv beta delta iota zeta.

2. lazy

This is a synonym for lazy beta delta iota zeta.
3. compute [qualid;. . .qualidy]

cbv [qualid; . . .qualidg]

These are synonyms of cbv beta delta [qualid;...qualidiy] iota zeta.
4. compute -[qualid;. . .qualidg]

cbv -[qualid; . . .qualidy]

These are synonyms of cbv beta delta -[qualid;...qualidy] iota zeta.

Coq Reference Manual, V8.6.1, July 26, 2017



8.7 Performing computations 223

5. lazy [qualid;. . .qualidg]
lazy -—[qualid;. . .qualidg]
These are respectively synonyms of lazy beta delta [qualid;...qualidg] iota
zetaand lazy beta delta -[qualid;...qualid;] iota zeta.

6. vm_compute

This tactic evaluates the goal using the optimized call-by-value evaluation bytecode-based virtual
machine described in [77]. This algorithm is dramatically more efficient than the algorithm used
for the cbv tactic, but it cannot be fine-tuned. It is specially interesting for full evaluation of
algebraic objects. This includes the case of reflection-based tactics.

7. native_compute

This tactic evaluates the goal by compilation to OBJECTIVE CAML as described in [16]. If COQ
is running in native code, it can be typically two to five times faster than vm_compute. Note
however that the compilation cost is higher, so it is worth using only for intensive computations.

8.7.2 red

This tactic applies to a goal that has the form forall (x:T1)...(xk:Tk), t with t Bu(-
reducingtoc tl ... tn and c a constant. If c is transparent then it replaces ¢ with its definition
(say t) and thenreduces (t t1 ... tn) according to Si(-reduction rules.

Error messages:

1. Not reducible

8.7.3 hnf

This tactic applies to any goal. It replaces the current goal with its head normal form according to the
Bdil-reduction rules, i.e. it reduces the head of the goal until it becomes a product or an irreducible
term. All inner Si-redexes are also reduced.

Example: The term forall n:nat, (plus (S n) (S n)) isnotreduced by hnf.

Remark: The ¢ rule only applies to transparent constants (see Section 6.10.1 on transparency and
opacity).

8.74 cbn and simpl

These tactics apply to any goal. They try to reduce a term to something still readable instead of fully
normalizing it. They perform a sort of strong normalization with two key differences:

* They unfold a constant if and only if it leads to a ¢-reduction, i.e. reducing a match or unfolding a
fixpoint.

* While reducing a constant unfolding to (co)fixpoints, the tactics use the name of the constant the
(co)fixpoint comes from instead of the (co)fixpoint definition in recursive calls.

The cbn tactic is claimed to be a more principled, faster and more predictable replacement for
simpl.

The cbn tactic accepts the same flags as cbv and 1azy. The behavior of both simpl and cbn can
be tuned using the Argument s vernacular command as follows:

Coq Reference Manual, V8.6.1, July 26, 2017



224 8 Tactics

* A constant can be marked to be never unfolded by cbn or simpl:

Cog < Arguments minus n m : simpl never.

After that command an expression like (minus (S x) vy) isleft untouched by the tactics cbn
and simpl.

* A constant can be marked to be unfolded only if applied to enough arguments. The number of
arguments required can be specified using the / symbol in the arguments list of the Arguments
vernacular command.

Cog < Definition fcomp A B C f (g : A => B) (x : A) : C := f (g x).
Cog < Notation "f \o g" := (fcomp f g) (at level 50).

Coqg < Arguments fcomp {A B C} £ g x /.

After that command the expression (f \o g) is left untouched by simpl while ( (£ \o g)
t) isreducedto (f (g t)). The same mechanism can be used to make a constant volatile, i.e.
always unfolded.

Cogq < Definition volatile := fun x : nat => x.

Cog < Arguments volatile / x.

* A constant can be marked to be unfolded only if an entire set of arguments evaluates to a con-
structor. The ! symbol can be used to mark such arguments.

Cog < Arguments minus !n !m.

After that command, the expression (minus (S x) vy) is left untouched by simpl, while
(minus (S x) (S y)) isreducedto (minus x y).

* A special heuristic to determine if a constant has to be unfolded can be activated with the following
command:

Cog < Arguments minus n m : simpl nomatch.

The heuristic avoids to perform a simplification step that would expose a mat ch construct in head
position. For example the expression (minus (S (S x)) (S y)) issimplifiedto (minus
(S x) y) even if an extra simplification is possible.

In detail, the tactic simp1 first applies Se-reduction. Then, it expands transparent constants and tries
to reduce further using fi-reduction. But, when no ¢ rule is applied after unfolding then §-reductions are
not applied. For instance trying to use simpl on (plus n O)=n changes nothing.

Notice that only transparent constants whose name can be reused in the recursive calls are possibly
unfolded by simpl. For instance a constant defined by plus’ := plus is possibly unfolded and
reused in the recursive calls, but a constant such as succ := plus (S 0) isnever unfolded. This is
the main difference between simpl and cbn. The tactic cbn reduces whenever it will be able to reuse
itor not: succ tisreducedto S t.

Variants:

Coq Reference Manual, V8.6.1, July 26, 2017



8.7 Performing computations 225

1. cbn [qualid;. . .qualidg]
cbn —[qualid; . . .qualidg]

These are respectively synonyms of cbn beta delta [qualid;...qualidy] iota zeta
and cbn beta delta -—[qualid;...qualidy] iota zeta (see 8.7.1).
2. simpl pattern

This applies simpl only to the subterms matching pattern in the current goal.

3. simpl pattern at num; ... num;

This applies simpl only to the numy, ..., num; occurrences of the subterms matching pattern in
the current goal.

Error message: Too few occurrences
4. simpl qualid
simpl string

This applies simpl only to the applicative subterms whose head occurrence is the unfoldable
constant qualid (the constant can be referred to by its notation using string if such a notation

exists).
5. simpl qualid at num; ... num;
simpl string at num; ... num;
This applies simpl only to the numy, ..., num; applicative subterms whose head occurrence is

qualid (or string).
Refolding Reduction

This option (off by default) controls the use of the refolding strategy of clbn while doing reductions
in unification, type inference and tactic applications. It can result in expensive unifications, as refolding
currently uses a potentially exponential heuristic.

8.7.5 unfold qualid

This tactic applies to any goal. The argument qualid must denote a defined transparent constant or local
definition (see Sections 1.3.2 and 6.10.2). The tactic unfold applies the § rule to each occurrence of
the constant to which qualid refers in the current goal and then replaces it with its S¢-normal form.

Error messages:

1. qualid does not denote an evaluable constant

Variants:
1. unfold qualidy, ..., qualid,
Replaces simultaneously qualid, ..., qualid,, with their definitions and replaces the current goal

with its S« normal form.

Coq Reference Manual, V8.6.1, July 26, 2017



226 8 Tactics

2. unfold qualidy at num}, ..., num}, ., qualid, at numf ... num}
The lists num%, e, num} and num?, ..., num? specify the occurrences of qualidy, ..., qualid,
to be unfolded. Occurrences are located from left to right.
Error message: bad occurrence number of qualid;
Error message: qualid; does not occur

3. unfold string
If string denotes the discriminating symbol of a notation (e.g. "+") or an expression defining
a notation (e.g. "_ + _"), and this notation refers to an unfoldable constant, then the tactic
unfolds it.

4. unfold string%key
This is variant of unfold string where string gets its interpretation from the scope bound to the
delimiting key key instead of its default interpretation (see Section 12.2.2).

5. unfold qualid_or_stringy at num}, ..., num}, ..., qualid or_string, at num}

num"

J
This is the most general form, where qualid_or_string is either a qualid or a string referring to a
notation.

8.7.6 fold term

This tactic applies to any goal. The term term is reduced using the red tactic. Every occurrence of the
resulting term in the goal is then replaced by term.

Variants:

1. foldterm; ... term,,

Equivalent to fold termy;...; fold term,,.

8.77 pattern term

This command applies to any goal. The argument term must be a free subterm of the current goal. The
command pattern performs S-expansion (the inverse of S-reduction) of the current goal (say T) by

1. replacing all occurrences of term in T with a fresh variable

2. abstracting this variable

3. applying the abstracted goal to term

For instance, if the current goal 7" is expressible has ¢(#) where the notation captures all the instances

of tin ¢(t), thenpattern ¢transformsitinto (fun x:A => ¢(x)) t. This command can be used,
for instance, when the tactic apply fails on matching.

Variants:

Coq Reference Manual, V8.6.1, July 26, 2017



8.8 Automation 227

1. pattern term at num; ... numy
Only the occurrences numj ... num, of term are considered for S-expansion. Occurrences are
located from left to right.
2. pattern term at - numj ... num,
All occurrences except the occurrences of indexes num; ... num, of term are considered for
[-expansion. Occurrences are located from left to right.
3. pattern term;, ..., termy,
Starting from a goal ¢(¢1 ... t,,), the tactic pattern t;, ..., t, generates the equivalent
goal (fun (x1:41) ... (Xm:Ap) => ¢(x1... xp)) t1 ... by Ift; occursin one
of the generated types A; these occurrences will also be considered and possibly abstracted.
4. pattern term; at numi ... num}, ..., termp, at num{* ... num}’
This behaves as above but processing only the occurrences num%, e, num} of termy, ..., numy’,
..., num’* of termy, starting from term,,.
5. pattern term; [at [-] num% num}n] y oo., termp [at [-]num?® ... nump' |
This is the most general syntax that combines the different variants.
8.7.8 Conversion tactics applied to hypotheses
conv_tactic in ident; ... ident,,
Applies the conversion tactic conv_tactic to the hypotheses ident, ..., ident,. The tactic
conv_tactic is any of the conversion tactics listed in this section.

If ident; is a local definition, then ident; can be replaced by (Type of ident;) to address not the
body but the type of the local definition. Example: unfold not in (Type of H1l) (Type of

H3) .

Error messages:

1.

8.8

8.8.1

No such hypothesis : ident.

Automation

auto

This tactic implements a Prolog-like resolution procedure to solve the current goal. It first tries to solve
the goal using the assumption tactic, then it reduces the goal to an atomic one using intros and
introduces the newly generated hypotheses as hints. Then it looks at the list of tactics associated to the
head symbol of the goal and tries to apply one of them (starting from the tactics with lower cost). This
process is recursively applied to the generated subgoals.

By default, aut o only uses the hypotheses of the current goal and the hints of the database named
core.

Variants:

1.

auto num

Forces the search depth to be num. The maximal search depth is 5 by default.

Coq Reference Manual, V8.6.1, July 26, 2017



228

8 Tactics

10.
11.
12.

auto with ident; ... identy

Uses the hint databases ident; ... ident,, in addition to the database core. See Section 8.9.1 for
the list of pre-defined databases and the way to create or extend a database.

. auto with =

Uses all existing hint databases. See Section 8.9.1

. auto usinglemma; , ... , lemma,

Uses lemmay, ..., lemma,, in addition to hints (can be combined with the with ident option).
If lemma; is an inductive type, it is the collection of its constructors which is added as hints.

. info_auto

Behaves like aut o but shows the tactics it uses to solve the goal. This variant is very useful for
getting a better understanding of automation, or to know what lemmas/assumptions were used.

[info_Jauto [num][using lemma; , ... , lemma,] [with ident; ... identy]

This is the most general form, combining the various options.

. trivial

This tactic is a restriction of auto that is not recursive and tries only hints that cost 0. Typically
it solves trivial equalities like X = X.

. trivial with ident; ... ident,

trivial with =
trivial usinglemma; , ... , lemma,
info_trivial

[info_Jtrivial [using lemmay , ... , lemma,] [with ident; ... identy]

Remark: auto either solves completely the goal or else leaves it intact. auto and trivial never

fail.

See also: Section 8.9.1

8.8.2 eauto

This tactic generalizes auto. While auto does not try resolution hints which would leave existential
variables in the goal, eauto does try them (informally speaking, it uses simple eapply where
autouses simple apply). As aconsequence, eauto can solve such a goal:

Cog < Hint Resolve ex_intro.
the hint: eapply ex_intro will only be used by eauto

Coq < Goal forall P:nat -> Prop, P 0 -> exists n, P n.
1 subgoal

forall P : nat -> Prop, P 0 -> exists n : nat, P n

Cog < eauto.
No more subgoals.

Coq Reference Manual, V8.6.1, July 26, 2017



8.8 Automation 229

Note that ex_intro should be declared as a hint.
Variants:

1. [info_Jeauto [num][using lemmay , ... , lemma,] [with ident; ... ident,]

The various options for eauto are the same as for auto.

See also: Section 8.9.1

8.8.3 autounfold with ident; ... ident,
This tactic unfolds constants that were declared through a Hint Unfold in the given databases.
Variants:
1. autounfold with ident; ... ident, in clause
Performs the unfolding in the given clause.

2. autounfold with =
Uses the unfold hints declared in all the hint databases.

8.8.4 autorewrite with ident; ... ident,

This tactic * carries out rewritings according the rewriting rule bases ident; . . .ident,.

Each rewriting rule of a base ident; is applied to the main subgoal until it fails. Once all the rules
have been processed, if the main subgoal has progressed (e.g., if it is distinct from the initial main goal)
then the rules of this base are processed again. If the main subgoal has not progressed then the next base
is processed. For the bases, the behavior is exactly similar to the processing of the rewriting rules.

The rewriting rule bases are built with the Hint Rewrite vernacular command.

Warning: This tactic may loop if you build non terminating rewriting systems.

Variant:
1. autorewrite with ident; ... ident, using tactic
Performs, in the same way, all the rewritings of the bases ident; ... ident, applying tactic to

the main subgoal after each rewriting step.

2. autorewrite with ident; ... ident, in qualid

Performs all the rewritings in hypothesis qualid.

3. autorewrite with ident; ... ident, in qualid using tactic
Performs all the rewritings in hypothesis qualid applying tactic to the main subgoal after each
rewriting step.

4. autorewrite with ident; ... ident, in clause

Performs all the rewriting in the clause clause. The clause argument must not contain any type
of nor value of.

“The behavior of this tactic has much changed compared to the versions available in the previous distributions (V6). This
may cause significant changes in your theories to obtain the same result. As a drawback of the re-engineering of the code, this
tactic has also been completely revised to get a very compact and readable version.

Coq Reference Manual, V8.6.1, July 26, 2017



230 8 Tactics

See also: Section 8.9.5 for feeding the database of lemmas used by autorewrite.

See also: Section 10.2 for examples showing the use of this tactic.

8.9 Controlling automation

8.9.1 The hints databases for auto and eauto

The hints for auto and eauto are stored in databases. Each database maps head symbols to a list
of hints. One can use the command Print Hint ident to display the hints associated to the head
symbol ident (see 8.9.4). Each hint has a cost that is a nonnegative integer, and an optional pattern. The
hints with lower cost are tried first. A hint is tried by auto when the conclusion of the current goal
matches its pattern or when it has no pattern.

Creating Hint databases

One can optionally declare a hint database using the command Create HintDb. If a hint is added to
an unknown database, it will be automatically created.

Create HintDb ident [discriminated]

This command creates a new database named ident. The database is implemented by a Discrimina-
tion Tree (DT) that serves as an index of all the lemmas. The DT can use transparency information to
decide if a constant should be indexed or not (c.f. 8.9.1), making the retrieval more efficient. The legacy
implementation (the default one for new databases) uses the DT only on goals without existentials (i.e.,
auto goals), for non-Immediate hints and do not make use of transparency hints, putting more work on
the unification that is run after retrieval (it keeps a list of the lemmas in case the DT is not used). The
new implementation enabled by the discriminated option makes use of DTs in all cases and takes
transparency information into account. However, the order in which hints are retrieved from the DT may
differ from the order in which they were inserted, making this implementation observationally different
from the legacy one.

The general command to add a hint to some databases ident, ..., ident, is
Hint hint_definition : identy ... ident,
Variants:

1. Hint hint_definition

No database name is given: the hint is registered in the core database.

2. Local Hint hint_definition : ident; ... ident,

This is used to declare hints that must not be exported to the other modules that require and import
the current module. Inside a section, the option Local is useless since hints do not survive
anyway to the closure of sections.

3. Local Hint hint definition

Idem for the core database.

The hint_definition is one of the following expressions:

Coq Reference Manual, V8.6.1, July 26, 2017



8.9 Controlling automation 231

* Resolve term[| [num] [pattern]]

This command adds simple apply term to the hint list with the head symbol of the type of
term. The cost of that hint is the number of subgoals generated by simple apply term or
numif specified. The associated pattern is inferred from the conclusion of the type of termor the
given patternif specified.

In case the inferred type of term does not start with a product the tactic added in the hint list is
exact term. In case this type can however be reduced to a type starting with a product, the
tactic simple apply term is also stored in the hints list.

If the inferred type of term contains a dependent quantification on a variable which occurs only in
the premisses of the type and not in its conclusion, no instance could be inferred for the variable
by unification with the goal. In this case, the hint is added to the hint list of eauto (see 8.8.2)
instead of the hint list of aut o and a warning is printed. A typical example of a hint that is used
only by eauto is a transitivity lemma.

Error messages:

1. term cannot be used as a hint

The head symbol of the type of term is a bound variable such that this tactic cannot be
associated to a constant.

Variants:

1. Resolve term; ... termy,

Adds each Resolve term,.

2. Resolve —-> term

Adds the left-to-right implication of an equivalence as a hint (informally the hint will be used
as apply <- term, although as mentionned before, the tactic actually used is a restricted
version of apply).

3. Resolve <- term
Adds the right-to-left implication of an equivalence as a hint.

e Tmmediate term

This command adds simple apply term; trivial to the hint list associated with the head
symbol of the type of ident in the given database. This tactic will fail if all the subgoals generated
by simple apply term are not solved immediately by the trivial tactic (which only tries
tactics with cost 0).

This command is useful for theorems such as the symmetry of equalityorn+1 = m+1 —n=m
that we may like to introduce with a limited use in order to avoid useless proof-search.

The cost of this tactic (which never generates subgoals) is always 1, so that it is not used by
trivial itself.

Error messages:

1. term cannot be used as a hint
Variants:

Coq Reference Manual, V8.6.1, July 26, 2017



232

8 Tactics

1. Immediate term; ... term,,
Adds each Immediate term,;.

e Constructors ident

If ident is an inductive type, this command adds all its constructors as hints of type Resolve.
Then, when the conclusion of current goal has the form (ident ...), auto will try to apply
each constructor.

Error messages:

1. ident is not an inductive type

Variants:

1. Constructors ident; ... ident,,

Adds each Constructors ident;.

Unfold qualid

This adds the tactic unfold qualid to the hint list that will only be used when the head constant
of the goal is ident. Its cost is 4.

Variants:

1. Unfold ident; ... ident,,
Adds each Unfold ident;.

Transparent, Opaque qualid

This adds a transparency hint to the database, making qualid a transparent or opaque constant
during resolution. This information is used during unification of the goal with any lemma
in the database and inside the discrimination network to relax or constrain it in the case of
discriminated databases.

Variants:

1. Transparent, Opaque ident; ... ident,,
Declares each ident; as a transparent or opaque constant.

Extern num [pattern] => tactic

This hint type is to extend aut o with tactics other than apply and unfold. For that, we must
specify a cost, an optional pattern and a tactic to execute. Here is an example:

Hint Extern 4 (~(_ = _)) => discriminate.

Now, when the head of the goal is a disequality, auto will try discriminate if it does not
manage to solve the goal with hints with a cost less than 4.

One can even use some sub-patterns of the pattern in the tactic script. A sub-pattern is a question
mark followed by an identifier, like 2X1 or ?X2. Here is an example:

Coq Reference Manual, V8.6.1, July 26, 2017



8.9 Controlling automation

233

Cog < Require Import List.

Cog < Hint Extern 5

generalize X1, X2;

Cog < Goal
forall a b:list
1 subgoal

forall a b

Cog < Info 1 auto with eqgdec.
<g_auto::auto@0> "egdec"
No more subgoals.

e Cut regexp

(nat * nat),

list (nat #* nat),

({?X1 = ?X2} + {?2X1 <> 2X2}) =>
decide equality

eqgdec.

{a = b} + {a <> b}.

{a = b} + {a <> b}

Warning: these hints currently only apply to typeclass proof search and the typeclasses
eauto tactic (20.6.5).

This command can be used to cut the proof-search tree according to a regular expression match-
ing paths to be cut. The grammar for regular expressions is the following. Beware, there is no
operator precedence during parsing, one can check with Print HintDDb to verify the current

cut expression:

e == ident hint or instance identifier
_ any hint
ele’  disjunction
ec sequence
ex Kleene star
emp  empty
eps  epsilon
(e)

The emp regexp does not match any search path while eps matches the empty path. During proof
search, the path of successive successful hints on a search branch is recorded, as a list of identifiers
for the hints (note Hint Extern’s do not have an associated identifier). Before applying any
hint ident the current path p extended with ident is matched against the current cut expression ¢
associated to the hint database. If matching succeeds, the hint is not applied. The semantics of
Hint Cut eis to set the cut expression to c|e, the initial cut expression being emp.

Mode (+ | ! | —)* qualid

This sets an optional mode of use of the identifier qualid. When proof-search faces a goal that ends
in an application of qualid to arguments term; term,,, the mode tells if the hints associated
to qualid can be applied or not. A mode specification is a list of n +, ! or — items that specify if
an argument of the identifier is to be treated as an input (+), if its head only is an input (!) or an
output (—) of the identifier. For a mode to match a list of arguments, input terms and input heads
must not contain existential variables or be existential variables respectively, while outputs can be
any term. Multiple modes can be declared for a single identifier, in that case only one mode needs

to match the arguments for the hints to be applied.

The head of a term is understood here as the applicative head, or the match or projection scrutinee’s
head, recursively, casts being ignored.

Coq Reference Manual, V8.6.1, July 26, 2017



234 8 Tactics

Hint Mode is especially useful for typeclasses, when one does not want to support default in-
stances and avoid ambiguity in general. Setting a parameter of a class as an input forces proof-
search to be driven by that index of the class, with ! giving more flexibility by allowing existen-
tials to still appear deeper in the index but not at its head.

Remark: One can use an Extern hint with no pattern to do pattern-matching on hypotheses using
match goal with inside the tactic.

8.9.2 Hint databases defined in the COQ standard library

Several hint databases are defined in the COQ standard library. The actual content of a database is
the collection of the hints declared to belong to this database in each of the various modules currently
loaded. Especially, requiring new modules potentially extend a database. At COQ startup, only the
core database is non empty and can be used.

core This special database is automatically used by auto, except when pseudo-database nocore is
given to auto. The core database contains only basic lemmas about negation, conjunction, and
so on from. Most of the hints in this database come from the Tnit and Logic directories.

arith This database contains all lemmas about Peano’s arithmetic proved in the directories Init and
Arith

zarith contains lemmas about binary signed integers from the directories theories/ZArith.
When required, the module Omega also extends the database zarith with a high-cost hint that
calls omega on equations and inequalities in nat or Z.

bool contains lemmas about booleans, mostly from directory theories/Bool.

datatypes is for lemmas about lists, streams and so on that are mainly proved in the List s subdi-
rectory.

sets contains lemmas about sets and relations from the directories Sets and Relations.

typeclass_instances contains all the type class instances declared in the environment, including
those used for setoid_rewrite, from the Classes directory.

You are advised not to put your own hints in the core database, but use one or several databases
specific to your development.
8.9.3 Remove Hints term; ... term, : ident; ... ident,,

This command removes the hints associated to terms term; ... term,, in databases ident; ... ident,,.

894 Print Hint

This command displays all hints that apply to the current goal. It fails if no proof is being edited, while
the two variants can be used at every moment.

Variants:

Coq Reference Manual, V8.6.1, July 26, 2017



8.9 Controlling automation 235

1. Print Hint ident

This command displays only tactics associated with ident in the hints list. This is independent of
the goal being edited, so this command will not fail if no goal is being edited.

2. Print Hint =«

This command displays all declared hints.

3. Print HintDb ident

This command displays all hints from database ident.

8.9.5 Hint Rewrite term; ... term, : ident; ... ident,,
This vernacular command adds the terms term; ... term, (their types must be equalities) in the
rewriting bases identy, ..., ident,, with the default orientation (left to right). Notice that the rewriting

bases are distinct from the aut o hint bases and that aut o does not take them into account.

This command is synchronous with the section mechanism (see 2.4): when closing a section, all
aliases created by Hint Rewrite in that section are lost. Conversely, when loading a module, all
Hint Rewrite declarations at the global level of that module are loaded.

Variants:

1. Hint Rewrite —-> termy ... term, : ident; ... Iident,,

This is strictly equivalent to the command above (we only make explicit the orientation which
otherwise defaults to —>).

2. Hint Rewrite <- termy ... term, : Iident; ... Ident,,
Adds the rewriting rules term; ... term, with a right-to-left orientation in the bases identy,
..., ident,.

3. Hint Rewrite term; ... term, using tactic : ident; ... identy,,
When the rewriting rules term; ... term, in identy, ..., ident,, will be used, the tactic tactic

will be applied to the generated subgoals, the main subgoal excluded.

4. Print Rewrite HintDb ident

This command displays all rewrite hints contained in ident.

8.9.6 Hint locality

Hints provided by the Hint commands are erased when closing a section. Conversely, all hints of a
module A that are not defined inside a section (and not defined with option Local) become available
when the module A is imported (using e.g. Require Import A.).

As of today, hints only have a binary behavior regarding locality, as described above: either they
disappear at the end of a section scope, or they remain global forever. This causes a scalability issue,
because hints coming from an unrelated part of the code may badly influence another development. It
can be mitigated to some extent thanks to the Remove Hints command (see 8.9.3), but this is a mere
workaround and has some limitations (for instance, external hints cannot be removed).

A proper way to fix this issue is to bind the hints to their module scope, as for most of the other
objects Coq uses. Hints should only made available when the module they are defined in is imported,

Coq Reference Manual, V8.6.1, July 26, 2017



236

8 Tactics

not just required. Itis very difficult to change the historical behavior, as it would break a lot of scripts. We
propose a smooth transitional path by providing the Loose Hint Behavior option which accepts
three flags allowing for a fine-grained handling of non-imported hints.

Variants:

1. Set Loose Hint Behavior "Lax"

This is the default, and corresponds to the historical behavior, that is, hints defined outside of a
section have a global scope.

Set Loose Hint Behavior "Warn"

When set, it outputs a warning when a non-imported hint is used. Note that this is an over-
approximation, because a hint may be triggered by a run that will eventually fail and backtrack,
resulting in the hint not being actually useful for the proof.

. Set Loose Hint Behavior "Strict"

When set, it changes the behavior of an unloaded hint to a immediate fail tactic, allowing to
emulate an import-scoped hint mechanism.

8.9.7 Setting implicit automation tactics

Proof with tactic

This command may be used to start a proof. It defines a default tactic to be used each time a tactic
command tactic; is ended by “. . .”. In this case the tactic command typed by the user is equivalent to
tacticy ;tactic.

See also: Proof. in Section 7.1.4.

Variants:

1.

Proof with tactic using ident; ... ident,

Combines in a single line Proof with and Proof using,see 7.1.5

2. Proof using ident; ... ident, with tactic

Combines in a single line Proof with and Proof using,see 7.1.5

Declare Implicit Tactic tactic

This command declares a tactic to be used to solve implicit arguments that COQ does not know how to
solve by unification. It is used every time the term argument of a tactic has one of its holes not fully
resolved.

Here is an example:

Coqg
quo

Coqg
Coqg
Coqg

< Parameter quo : nat —-> forall n:nat, n<>0 -> nat.
is declared

< Notation "x // y" := (quo x y _) (at level 40).
< Declare Implicit Tactic assumption.

< Goal forall nm, m<>0 -> { gtnat & { r | g~ m + r =n } }.

1 subgoal

Coq Reference Manual, V8.6.1, July 26, 2017



8.10 Decision procedures 237

forall nm : nat, m <> 0 -> {q : nat & {r : nat | g »m + r = n}}
Cog < intros.

1 subgoal

n, m : nat
H : m<>20

{qg : nat & {r : nat | g » m + r = n}}

Coq < exists (n // m).
1 subgoal

{r : nat | n // m * m + r = n}

The tactic exists (n // m) did not fail. The hole was solved by assumption so that it
behaved as exists (quo n m H).

8.10 Decision procedures

8.10.1 tauto

This tactic implements a decision procedure for intuitionistic propositional calculus based on the
contraction-free sequent calculi LJT* of Roy Dyckhoff [56]. Note that tauto succeeds on any in-
stance of an intuitionistic tautological proposition. tauto unfolds negations and logical equivalence
but does not unfold any other definition.

The following goal can be proved by taut o whereas aut o would fail:

Coq < Goal forall (x:nat) (P:nat -> Prop), x =0 \/ P x —> x <> 0 -> P x.
1 subgoal

forall (x : nat) (P : nat -> Prop), x =0 \/ P x -> x <> 0 -> P x
Coqg < intros.

1 subgoal

x : nat
P : nat —> Prop
H: x=0\/P x

Cog < tauto.
No more subgoals.

Moreover, if it has nothing else to do, t aut o performs introductions. Therefore, the use of intros
in the previous proof is unnecessary. tauto can for instance prove the following:

Coq Reference Manual, V8.6.1, July 26, 2017



238 8 Tactics

Cog < (* auto would fail x)
Goal forall (A:Prop) (P:nat -> Prop),
A \/ (forall x:nat, ~ A -> P x) -> forall x:nat, ~ A -> P x.
1 subgoal

forall (A : Prop) (P : nat -> Prop),
A \/ (forall x : nat, ~ A -> P x) —-> forall x : nat, ~ A -> P x

Cog < tauto.
No more subgoals.

Remark: In contrast, tauto cannot solve the following goal

Cogq < Goal forall (A:Prop) (P:nat -> Prop),
A \/ (forall x:nat, ~ A -> P x) —-> forall x:nat, ~ ~ (A \/ P x).

because (forall x:nat, ~ A —-> P x) cannot be treated as atomic and an instantiation of
X i$ necessary.

Variants:

1. dtauto

While tauto recognizes inductively defined connectives isomorphic to the standard connective
and, prod, or, sum, False, Empty_set, unit, True, dtauto recognizes also all induc-
tive types with one constructors and no indices, i.e. record-style connectives.

8.10.2 intuition tactic

The tactic intuition takes advantage of the search-tree built by the decision procedure involved in
the tactic tauto. It uses this information to generate a set of subgoals equivalent to the original one
(but simpler than it) and applies the tactic tactic to them [113]. If this tactic fails on some goals then
intuition fails. In fact, tautois simply intuition fail.

For instance, the tactic intuition auto applied to the goal

(forall (x:nat), P x)/\B —-> (forall (y:nat),P y)/\ P O \/B/\ P O
internally replaces it by the equivalent one:
(forall (x:nat), P x), B |- P O

and then uses aut o which completes the proof.

Originally due to César Muifloz, these tactics (tauto and intuition) have been completely re-
engineered by David Delahaye using mainly the tactic language (see Chapter 9). The code is now much
shorter and a significant increase in performance has been noticed. The general behavior with respect
to dependent types, unfolding and introductions has slightly changed to get clearer semantics. This may
lead to some incompatibilities.

Variants:

1. intuition

Is equivalentto intuition auto with x.

Coq Reference Manual, V8.6.1, July 26, 2017



8.10 Decision procedures 239

2. dintuition

While intuition recognizes inductively defined connectives isomorphic to the standard con-
nective and, prod, or, sum, False, Empty_set, unit, True, dintuition recognizes
also all inductive types with one constructors and no indices, i.e. record-style connectives.

Some aspects of the tactic intuition can be controlled using options. To avoid that inner nega-
tions which do not need to be unfolded are unfolded, use:

Unset Intuition Negation Unfolding
To do that all negations of the goal are unfolded even inner ones (this is the default), use:
Set Intuition Negation Unfolding

To avoid that inner occurrence of i ff which do not need to be unfolded are unfolded (this is the
default), use:

Unset Intuition Iff Unfolding
To do that all negations of the goal are unfolded even inner ones (this is the default), use:

Set Intuition Iff Unfolding

8.10.3 rtauto

The rtauto tactic solves propositional tautologies similarly to what t aut o does. The main difference
is that the proof term is built using a reflection scheme applied to a sequent calculus proof of the goal.
The search procedure is also implemented using a different technique.

Users should be aware that this difference may result in faster proof-search but slower proof-
checking, and rtauto might not solve goals that t aut o would be able to solve (e.g. goals involving
universal quantifiers).

8.104 firstorder

The tactic firstorder is an experimental extension of tauto to first-order reasoning, written by
Pierre Corbineau. It is not restricted to usual logical connectives but instead may reason about any
first-order class inductive definition.

The default tactic used by firstorder when no rule applies is auto with =, it can be reset
locally or globally using the Set Firstorder Solver tactic vernacular command and printed
using Print Firstorder Solver.

Variants:

1. firstorder tactic

Tries to solve the goal with tactic when no logical rule may apply.

2. firstorder using qualid, , ... , qualid,

Adds lemmas qualid; ... qualid, to the proof-search environment. If qualid; refers to an induc-
tive type, it is the collection of its constructors which are added to the proof-search environment.

Coq Reference Manual, V8.6.1, July 26, 2017



240 8 Tactics

3. firstorder with identy ... ident,

Adds lemmas from auto hint bases ident; ... ident,, to the proof-search environment.

4., firstorder tactic using qualidy , ... , qualid, with ident; ... identy

This combines the effects of the different variants of firstorder.

Proof-search is bounded by a depth parameter which can be set by typing the Set Firstorder
Depth n vernacular command.

8.10.5 congruence

The tactic congruence, by Pierre Corbineau, implements the standard Nelson and Oppen congru-
ence closure algorithm, which is a decision procedure for ground equalities with uninterpreted symbols.
It also include the constructor theory (see 8.5.7 and 8.5.6). If the goal is a non-quantified equality,
congruence tries to prove it with non-quantified equalities in the context. Otherwise it tries to in-
fer a discriminable equality from those in the context. Alternatively, congruence tries to prove that a
hypothesis is equal to the goal or to the negation of another hypothesis.

congruence is also able to take advantage of hypotheses stating quantified equalities, you have
to provide a bound for the number of extra equalities generated that way. Please note that one of the
members of the equality must contain all the quantified variables in order for congruence to match
against it.

Cog < Theorem T:
a=(f a) -> (g b (f a))=(f (£ a)) -> (g a b)
1 subgoal

(f (g ba)) —> (g a b)=a.

a=fa->qgb (fa) =f (fa) >gab=1f (gba) —>gab=a

Cog < intros.
1 subgoal

H: a=1f1fa
HO : g b (f a) = £ (f a)
HI : gab=f (g b a)

gab=a
Cog < congruence.

No more subgoals.

Coqg < Theorem inj : f = pair a -> Some (f c) = Some (f d) -> c=d.
1 subgoal

f = pair a —-> Some (f c) = Some (f d) -> c = d

Cog < intros.
1 subgoal

H : f = pair a
HO : Some (f c) = Some (f d)

Coq Reference Manual, V8.6.1, July 26, 2017



8.11 Everything after this point has yet to be sorted 241

c = d

Cog < congruence.
No more subgoals.

Variants:

1. congruence n
Tries to add at most n instances of hypotheses stating quantified equalities to the problem in order
to solve it. A bigger value of n does not make success slower, only failure. You might consider
adding some lemmas as hypotheses using assert in order for congruence to use them.

2. congruence with termy; ... term,

Adds term; ... termy, to the pool of terms used by congruence. This helps in case you have
partially applied constructors in your goal.

Error messages:

I. T don’t know how to handle dependent equality
The decision procedure managed to find a proof of the goal or of a discriminable equality but this
proof could not be built in COQ because of dependently-typed functions.

2. Goal is solvable by congruence but some arguments are missing.
Try "congruence with ...", replacing metavariables by arbitrary
terms.

The decision procedure could solve the goal with the provision that additional arguments are
supplied for some partially applied constructors. Any term of an appropriate type will allow the
tactic to successfully solve the goal. Those additional arguments can be given to congruence
by filling in the holes in the terms given in the error message, using the with variant described
above.

8.11 Everything after this point has yet to be sorted

8.11.1 constr_eq term; terms,

This tactic applies to any goal. It checks whether its arguments are equal modulo alpha conversion and
casts.

Error message: Not equal

8.11.2 unify term; terms

This tactic applies to any goal. It checks whether its arguments are unifiable, potentially instantiating
existential variables.

Error message: Not unifiable
Variants:
1. unify term; termy with ident

Unification takes the transparency information defined in the hint database ident into account (see
Section 8.9.1).

Coq Reference Manual, V8.6.1, July 26, 2017



242 8 Tactics

8.11.3 is_evar term

This tactic applies to any goal. It checks whether its argument is an existential variable. Existential
variables are uninstantiated variables generated by e.g. eapply (see Section 8.2.4).

Error message: Not an evar

8.11.4 has_evar term

This tactic applies to any goal. It checks whether its argument has an existential variable as a subterm.
Unlike context patterns combined with is_evar, this tactic scans all subterms, including those
under binders.

Error message: No evars

8.11.5 is_var term

This tactic applies to any goal. It checks whether its argument is a variable or hypothesis in the current
goal context or in the opened sections.

Error message: Not a variable or hypothesis

8.12 Equality

8.12.1 f_equal

This tactic applies to a goal of the form f ay ... ap, = f'a} ... al,. Using £_equal on such a goal
leads to subgoals f = f’ and a1 = ) and so on up to a, = a},. Amongst these subgoals, the simple
ones (e.g. provable by reflexivity or congruence) are automatically solved by £f_equal.

8.12.2 reflexivity

This tactic applies to a goal that has the form t=u. It checks that t and u are convertible and then solves
the goal. It is equivalent to apply refl_equal.

Error messages:
1. The conclusion is not a substitutive equation

2. Unable to unify ... with

8.12.3 symmetry
This tactic applies to a goal that has the form t=u and changes it into u=t.

Variants:

1. symmetry in ident

If the statement of the hypothesis ident has the form t=u, the tactic changes it to u=t.

Coq Reference Manual, V8.6.1, July 26, 2017



8.13 Equality and inductive sets 243

8.124 transitivity term

This tactic applies to a goal that has the form t=u and transforms it into the two subgoals t=term and
term=u.

8.13 Equality and inductive sets

We describe in this section some special purpose tactics dealing with equality and inductive sets or
types. These tactics use the equality eq: forall (A:Type), A->A->Prop, simply written with
the infix symbol =.

8.13.1 decide equality

This tactic solves a goal of the form forall =z y:R, {z=y}+{~x=y}, where R is an inductive
type such that its constructors do not take proofs or functions as arguments, nor objects in dependent
types. It solves goals of the form {z=y}+{~z=y} as well.

8.13.2 compare term; terms;

This tactic compares two given objects term; and terms of an inductive datatype. If G is the current
goal, it leaves the sub-goals term;=termo —> G and ~term;=terms —> . The type of term; and terms
must satisfy the same restrictions as in the tactic decide equality.

8.13.3 simplify_eqg term

Let term be the proof of a statement of conclusion term;=terms. If term; and terms are structurally dif-
ferent (in the sense described for the tactic discriminate), then the tactic simplify_eq behaves
asdiscriminate term, otherwise it behaves as injection term.

Remark: If some quantified hypothesis of the goal is named ident, then simplify_eq ident first
introduces the hypothesis in the local context using intros until ident.

Variants:

1. simplify_eq num
This does the same thing as intros until num then simplify_eq ident where ident is
the identifier for the last introduced hypothesis.
2. simplify_eq term with bindings_list
This does the same as simplify_eq term butusing the given bindings to instantiate parameters
or hypotheses of term.
3. esimplify_eq num
esimplify_eqterm [with bindings_list]
This works the same as simplify_eq but if the type of term, or the type of the hypothesis re-
ferred to by num, has uninstantiated parameters, these parameters are left as existential variables.
4. simplify_eq

If the current goal has form #; <>%9, it behaves as intro ident; simplify_eqg ident.

Coq Reference Manual, V8.6.1, July 26, 2017



244 8 Tactics

8.13.4 dependent rewrite -> ident

This tactic applies to any goal. If ident has type (existT B a b)=(existT B a’ b’) in the
local context (i.e. each term of the equality has a sigma type {a : A & (B a)}) this tactic rewrites a
into a’ and b into b’ in the current goal. This tactic works even if B is also a sigma type. This kind of
equalities between dependent pairs may be derived by the injection and inversion tactics.

Variants:

1. dependent rewrite <- ident

Analogous to dependent rewrite -—> butuses the equality from right to left.

8.14 Inversion

8.14.1 functional inversion ident

functional inversion is a tactic that performs inversion on hypothesis ident of the form qualid
term; . . .term, = term or term = qualid term; . . .term, where qualid must have been defined
using Function (see Section 2.3).

Error messages:
1. Hypothesis ident must contain at least one Function

2. Cannot find inversion information for hypothesis ident

This error may be raised when some inversion lemma failed to be generated by Function.

Variants:

1. functional inversion num
This does the same thing as intros until num then functional inversion ident
where ident is the identifier for the last introduced hypothesis.

2. functional inversion ident qualid
functional inversion num qualid

If the hypothesis ident (or num) has a type of the form qualid, term;. . .term, = qualids;
termyy1 . . . termy, ., where qualid; and qualids are valid candidates to functional inversion,
this variant allows choosing which qualid is inverted.

8.14.2 quote ident

This kind of inversion has nothing to do with the tactic inversion above. This tactic does change
(ident t), where t is a term built in order to ensure the convertibility. In other words, it does inversion
of the function ident. This function must be a fixpoint on a simple recursive datatype: see 10.3 for the
full details.

Error messages:

1. quote: not a simple fixpoint

Happens when quote is not able to perform inversion properly.

Coq Reference Manual, V8.6.1, July 26, 2017



8.15 Classical tactics 245

Variants:

1. quote ident [ ident; ...ident, ]

All terms that are built only with ident; ...ident, will be considered by quote as constants
rather than variables.

8.15 C(lassical tactics

In order to ease the proving process, when the Classical module is loaded. A few more tactics are
available. Make sure to load the module using the Require Import command.

8.15.1 classical_leftandclassical_right

The tactics classical_left and classical_right are the analog of the left and right
but using classical logic. They can only be used for disjunctions. Use classical_left to
prove the left part of the disjunction with the assumption that the negation of right part holds. Use
classical_right to prove the right part of the disjunction with the assumption that the negation of
left part holds.

8.16 Automatizing

8.16.1 btauto

The tactic bt aut o implements a reflexive solver for boolean tautologies. It solves goals of the form t
= u where t and u are constructed over the following grammar:

t =1z | true | false | orbt; to | andb t; to | xorb ty to | negb t | if t; then ty else t3

Whenever the formula supplied is not a tautology, it also provides a counter-example.
Internally, it uses a system very similar to the one of the ring tactic.

8.16.2 omega

The tactic omega, due to Pierre Crégut, is an automatic decision procedure for Presburger arithmetic.
It solves quantifier-free formulas built with ~, \ /, /\, —> on top of equalities, inequalities and dise-
qualities on both the type nat of natural numbers and Z of binary integers. This tactic must be loaded
by the command Require Import Omega. See the additional documentation about omega (see
Chapter 21).

8.16.3 ringand ring_simplify term; ... term,

The ring tactic solves equations upon polynomial expressions of a ring (or semi-ring) structure. It
proceeds by normalizing both hand sides of the equation (w.r.t. associativity, commutativity and dis-
tributivity, constant propagation) and comparing syntactically the results.

ring_simplify applies the normalization procedure described above to the terms given. The
tactic then replaces all occurrences of the terms given in the conclusion of the goal by their normal forms.
If no term is given, then the conclusion should be an equation and both hand sides are normalized.

Coq Reference Manual, V8.6.1, July 26, 2017



246 8 Tactics

See Chapter 25 for more information on the tactic and how to declare new ring structures. All
declared field structures can be printed with the Print Rings command.

8.164 field,field_simplify term; ... term,,and field_simplify_eq

The field tactic is built on the same ideas as ring: this is a reflexive tactic that solves or simplifies
equations in a field structure. The main idea is to reduce a field expression (which is an extension of ring
expressions with the inverse and division operations) to a fraction made of two polynomial expressions.

Tactic field is used to solve subgoals, whereas field_simplify term;. . .term, replaces
the provided terms by their reduced fraction. field_simplify_eq applies when the conclusion is
an equation: it simplifies both hand sides and multiplies so as to cancel denominators. So it produces an
equation without division nor inverse.

All of these 3 tactics may generate a subgoal in order to prove that denominators are different from
Zero0.

See Chapter 25 for more information on the tactic and how to declare new field structures. All
declared field structures can be printed with the Print Fields command.

Example:

Cog < Require Import Reals.

Cog < Goal forall x y:R,
(x » y > 0)%R —>
(x » (1 / x + x / (x + V)

))
((= 1/ y) »y* (- x % (x

SR =
/(2 +y)) - 1))%R.

Cog < intros; field.
1 subgoal

(x + y)%R <> 0%R /\ y <> 0%R /\ x <> 0%R

See also: file plugins/setoid_ring/RealField.v for an example of instantiation,
theory theories/Reals for many examples of use of field.

8.16.5 fourier

This tactic written by Loic Pottier solves linear inequalities on real numbers using Fourier’s method [65].
This tactic must be loaded by Require Import Fourier.

Example:

Cog < Require Import Reals.
Cog < Require Import Fourier.

Cog < Goal forall x y:R, (x < y)%R -> (y + 1 >= x - 1)%R.

Cog < intros; fourier.
No more subgoals.

Coq Reference Manual, V8.6.1, July 26, 2017



8.17 Non-logical tactics 247

8.17 Non-logical tactics

8.17.1 cycle num

This tactic puts the num first goals at the end of the list of goals. If num is negative, it will put the last
|num| goals at the beginning of the list.

Example:

Cog < Parameter P : nat —-> Prop.
Cog < Goal P 1 /\P 2 /NP 3 /\P 4 /\ P 5.

Cog < repeat split.
5 subgoals

P 1
subgoal 2 1is:
P 2
subgoal 3 is:
P 3
subgoal 4 is:
P 4
subgoal 5 is:
P 5

Cog < all: cycle 2.
5 subgoals

P 3
subgoal 2 is:
P 4
subgoal 3 1is:
P 5
subgoal 4 is:
P 1
subgoal 5 is:
P 2

Cog < all: cycle -3.
5 subgoals

subgoal 2 is:

subgoal 3 1is:

Coq Reference Manual, V8.6.1, July 26, 2017



248 8 Tactics

8.17.2 swap num; nums

This tactic switches the position of the goals of indices num; and nums. If either num; or nums is
negative then goals are counted from the end of the focused goal list. Goals are indexed from 1, there is
no goal with position 0.

Example:

Cog < Parameter P : nat —-> Prop.

Cog < Goal P 1 /\P 2 /\P3/\P4/\P5.
Coqg < repeat split.

5 subgoals

P 1
subgoal 2 is:
P 2
subgoal 3 1is:
P 3
subgoal 4 1is:
P 4
subgoal 5 is:
P 5
Cog < all: swap 1 3.
5 subgoals

P 3
subgoal 2 1is:
P 2
subgoal 3 is:
P 1
subgoal 4 is:
P 4
subgoal 5 is:
P 5
Cog < all: swap 1 -1.
5 subgoals

P 5
subgoal 2 1is:
P 2
subgoal 3 is:
P 1
subgoal 4 is:
P 4
subgoal 5 is:
P 3

8.17.3 revgoals

This tactics reverses the list of the focused goals.

Coq Reference Manual, V8.6.1, July 26, 2017



8.17 Non-logical tactics

249

Example:

Cog < Parameter P : nat -> Prop.

Cog < Goal P 1 /\ P 2 /\ P 3 /\

Cog < repeat split.

5 subgoals

P 1
subgoal 2 1is:
P 2
subgoal 3 1is:
P 3
subgoal 4 is:
P 4
subgoal 5 is:
P 5
Cog < all: revgoals.
5 subgoals

P 5
subgoal 2 is:
P 4
subgoal 3 is:
P 3
subgoal 4 is:
P 2
subgoal 5 is:
P 1

8.17.4 shelve

P 4 /\ P 5.

This tactic moves all goals under focus to a shelf. While on the shelf, goals will not be focused on.
They can be solved by unification, or they can be called back into focus with the command Unshelve

(Section 8.17.5).

Variants:

1. shelve_unifiable

Shelves only the goals under focus that are mentioned in other goals. Goals that appear in the type
of other goals can be solved by unification.

Example:

Cog < Goal exists n, n=0.
1 subgoal

exists n : nat, n = 0

Cog < refine (ex_intro _ _

Coq Reference Manual, V8.6.1, July 26, 2017



250 8 Tactics

1 focused subgoal
(shelved: 1)

?Goal = 0

Cog < all:shelve_unifiable.
1 focused subgoal
(shelved: 1)

?Goal = 0

Cog < reflexivity.
No more subgoals.

8.17.5 Unshelve

This command moves all the goals on the shelf (see Section 8.17.4) from the shelf into focus, by ap-
pending them to the end of the current list of focused goals.

8.17.6 give_up

This tactic removes the focused goals from the proof. They are not solved, and cannot be solved later in
the proof. As the goals are not solved, the proof cannot be closed.

The give_up tactic can be used while editing a proof, to choose to write the proof script in a
non-sequential order.

8.18 Simple tactic macros
A simple example has more value than a long explanation:

Cog < Ltac Solve := simpl; intros; auto.
Solve is defined

Cog < Ltac ElimBoolRewrite b H1 H2 :=
elim b; [ intros; rewrite H1l; eauto | intros; rewrite H2; eauto ].
ElimBoolRewrite 1is defined

The tactics macros are synchronous with the COQ section mechanism: a tactic definition is deleted
from the current environment when you close the section (see also 2.4) where it was defined. If you
want that a tactic macro defined in a module is usable in the modules that require it, you should put it
outside of any section.

Chapter 9 gives examples of more complex user-defined tactics.

Coq Reference Manual, V8.6.1, July 26, 2017



Chapter 9

The tactic language

This chapter gives a compact documentation of Ltac, the tactic language available in COQ. We start by
giving the syntax, and next, we present the informal semantics. If you want to know more regarding this
language and especially about its foundations, you can refer to [43]. Chapter 10 is devoted to giving
examples of use of this language on small but also with non-trivial problems.

9.1 Syntax

The syntax of the tactic language is given Figures 9.1 and 9.2. See Chapter 1 for a description of the
BNF metasyntax used in these grammar rules. Various already defined entries will be used in this chap-
ter: entries natural, integer, ident, qualid, term, cpattern and atomic_tactic represent respectively the
natural and integer numbers, the authorized identificators and qualified names, COQ’s terms and patterns
and all the atomic tactics described in Chapter 8. The syntax of cpattern is the same as that of terms,
but it is extended with pattern matching metavariables. In cpattern, a pattern-matching metavariable
is represented with the syntax ?id where id is an ident. The notation _ can also be used to denote
metavariable whose instance is irrelevant. In the notation ?1d, the identifier allows us to keep instanti-
ations and to make constraints whereas _ shows that we are not interested in what will be matched. On
the right hand side of pattern-matching clauses, the named metavariable are used without the question
mark prefix. There is also a special notation for second-order pattern-matching problems: in an applica-

tive pattern of the form @?id id; ...id,, the variable id matches any complex expression with
(possible) dependencies in the variables id; . ..id, and returns a functional term of the form fun
id; ...id, => term.

The main entry of the grammar is expr. This language is used in proof mode but it can also be used
in toplevel definitions as shown in Figure 9.3.

Remarks:

1. The infix tacticals “... || ...”, “... +...”7, and “... ; ...” are associative.

2. In tacarg, there is an overlap between qualid as a direct tactic argument and qualid as a particular
case of term. The resolution is done by first looking for a reference of the tactic language and if it
fails, for a reference to a term. To force the resolution as a reference of the tactic language, use the
form 1tac : qualid. To force the resolution as a reference to a term, use the syntax (qualid) .

3. As shown by the figure, tactical | | binds more than the prefix tacticals try, repeat, do and
abstract which themselves bind more than the postfix tactical “... ;[ ... 17 which

’

binds more than “... ; ...”.

Coq Reference Manual, V8.6.1, July 26, 2017



252 9 The tactic language

For instance
try repeat tacticy || tactico; tactics; [tacticsi| . .. |tacticsy] ; tacticy .
1s understood as

(try (repeat (tacticy || tactics))) ;
( (tactics; [tacticsy | . . . |tacticsy,]) ; tacticy) .

9.2 Semantics

Tactic expressions can only be applied in the context of a proof. The evaluation yields either a term,
an integer or a tactic. Intermediary results can be terms or integers but the final result must be a tactic
which is then applied to the focused goals.

There is a special case for match goal expressions of which the clauses evaluate to tactics. Such
expressions can only be used as end result of a tactic expression (never as argument of a non recursive
local definition or of an application).

The rest of this section explains the semantics of every construction of Ltac.

Sequence

A sequence is an expression of the following form:
expri ; expro

The expressions expr; and expro are evaluated to v; and v which have to be tactic values. The tactic
vy is then applied and vy is applied to the goals generated by the application of v;. Sequence is left-
associative.

Local application of tactics

Different tactics can be applied to the different goals using the following form:
[ >expry | ... | expry, ]

The expressions expr; are evaluated to v;, for 2 = 0, ..., n and all have to be tactics. The v; is applied to
the ¢-th goal, for = 1, ..., n. It fails if the number of focused goals is not exactly n.

Variants:

1. If no tactic is given for the z-th goal, it behaves as if the tactic idtac were given. For instance,
[ > | auto ]isashortcutfor [ > idtac | auto ].
2. [ >expry | ... | expr; | expr .. | exprityi+; | ... | expry ]

In this variant, expr is used for each goal numbered from ¢+ 1 to ¢ + 5 (assuming 7 is the number
of goals).

Note that . . is part of the syntax, while ... is the meta-symbol used to describe a list of expr of
arbitrary length. goals numbered from ¢+ 1 to ¢ + j.

Coq Reference Manual, V8.6.1, July 26, 2017



9.2 Semantics

253

expr

tacexprs

tacexpra

tacexpry

expr ; expr
[>expr | ... | expr ]
expr; [expr | ... | expr]
tacexprs

do (natural | ident) tacexprs
progress tacexprs

repeat tacexprs

try tacexprs

once tacexprs

exactly_once tacexprs
timeout (natural | ident) tacexprs
time [string] tacexprs

only selector : tacexprs

tacexpr,

tacexpry | | tacexprs
tacexpr) + tacexprs
tryif tacexpr; then tacexpr; else tacexpr

tacexpry

fun name ... name => atom

let [rec]let_clause with ... with let_clause in atom

match goal with context_rule | ... | context _rule end

match reverse goal with context rule | ... | context_rule end
match expr with match_rule | ... | match_rule end

lazymatch goal with context_rule | ... | context_rule end
lazymatch reverse goal with context rule | ... | context_rule end
lazymatch expr with match_rule | ... | match_rule end

multimatch goal with context_rule | ... | context_rule end
multimatch reverse goal with context_rule | ... | context_rule end
multimatch expr with match_rule | ... | match_rule end

abstract atom
abstract atom using ident

first [expr| ... | expr]

solve [expr | ... | expr ]

idtac [message_token ... message_token]

fail [natural ] [ message_token ... message_token]
gfail [natural ] [message_token ... message_token]

fresh | fresh stringl fresh qualid
context ident [ term ]

eval redexpr in term

type of term

external string string tacarg ... tacarg
constr : term

uconstr : term

type_term term

numgoals

guard test Coq Reference Manual, V8.6.1, July 26, 2017
atomic_tactic

qualid tacarg ... tacarg
atom

Figure 9.1: Syntax of the tactic language




254 9 The tactic language

atom = qualid
0
| integer
| ( expr)

message_token string | ident | integer

tacarg = qualid
\ ()

| ltac : atom

|  term

let_clause ::= ident [name ... name] := expr

context_rule ::= context_hyp , ... , context_hyp |-cpattern => expr
| |- cpattern => expr
| _ =>expr

context_hyp ;= name : cpattern

|  name := cpattern [: cpattern]

match_rule :i=  cpattern => expr
| context [ident] [ cpattern 1 => expr
| appcontext [ident] [ cpattern ] => expr
|  _ =>expr

test = integer = integer
integer < integer
integer <= integer
integer > integer
integer >= integer

selector = [ident]
|  integer
|  (integer | integer — integer) , ... , (integer | integer — integer)

toplevel_selector ::= selector
| all
| par

Figure 9.2: Syntax of the tactic language (continued)
3. [ >expry | ... | expri | .. | expriyi45 | ... | expry ]
In this variant, idtac is used for the goals numbered from 7z + 1 to 7 + 7.

4. [ >expr .. ]

Coq Reference Manual, V8.6.1, July 26, 2017




9.2 Semantics 255

top [Local] Ltac Itac_def with ... with Itac_def

Itac_def ident [ident ... ident] := expr

qualid [ident ... ident] : :=expr

Figure 9.3: Tactic toplevel definitions

In this variant, the tactic expr is applied independently to each of the goals, rather than globally.
In particular, if there are no goal, the tactic is not run at all. A tactic which expects multiple goals,
such as swap, would act as if a single goal is focused.

.expr; [ expri | .. | expr,]

This variant of local tactic application is paired with a sequence. In this variant, » must be the
number of goals generated by the application of expr to each of the individual goals independently.
All the above variants work in this form too. Formally, expr ; [ ... ] is equivalent to

[ >expr; [ >...]1 ..1

Goal selectors

We can restrict the application of a tactic to a subset of the currently focused goals with:

toplevel_selector : expr

We can also use selectors as a tactical, which allows to use them nested in a tactic expression, by using
the keyword only:

only selector : expr

When selecting several goals, the tactic expr is applied globally to all selected goals.

Variants:

1.

[ident] : expr

In this variant, expr is applied locally to a goal previously named by the user (see 2.11).

num : expr

In this variant, expr is applied locally to the num-th goal.

. N-Ma, ..., NE-Mg ¢ €Xpr

In this variant, expr is applied globally to the subset of goals described by the given ranges. You
can write a single n as a shortcut for n-n when specifying multiple ranges.

all: expr

In this variant, expr is applied to all focused goals. all: can only be used at the toplevel of a
tactic expression.

Coq Reference Manual, V8.6.1, July 26, 2017




256 9 The tactic language

5. par: expr

In this variant, expr is applied to all focused goals in parallel. The number of workers can be con-
trolled via the command line option —async-proofs—-tac—7j taking as argument the desired
number of workers. Limitations: par:  only works on goals containing no existential variables
and expr must either solve the goal completely or do nothing (i.e. it cannot make some progress).
par: can only be used at the toplevel of a tactic expression.

Error message: No such goal

For loop
There is a for loop that repeats a tactic num times:
do num expr

expr is evaluated to v which must be a tactic value. This tactic value v is applied num times. Supposing
num > 1, after the first application of v, v is applied, at least once, to the generated subgoals and so on.
It fails if the application of v fails before the num applications have been completed.

Repeat loop

We have a repeat loop with:

repeat expr

expr is evaluated to v. If v denotes a tactic, this tactic is applied to each focused goal independently. If
the application succeeds, the tactic is applied recursively to all the generated subgoals until it eventually
fails. The recursion stops in a subgoal when the tactic has failed to make progress. The tactic repeat
expr itself never fails.

Error catching

We can catch the tactic errors with:

try expr
expr is evaluated to v which must be a tactic value. The tactic value v is applied to each focused goal
independently. If the application of v fails in a goal, it catches the error and leaves the goal unchanged.
If the level of the exception is positive, then the exception is re-raised with its level decremented.
Detecting progress
We can check if a tactic made progress with:

progress expr

expr is evaluated to v which must be a tactic value. The tactic value v is applied to each focued subgoal
independently. If the application of v to one of the focused subgoal produced subgoals equal to the
initial goals (up to syntactical equality), then an error of level O is raised.

Error message: Failed to progress

Coq Reference Manual, V8.6.1, July 26, 2017



9.2 Semantics 257

Backtracking branching

We can branch with the following structure:
expri + expro

expr; and expry are evaluated to v; and v2 which must be tactic values. The tactic value v; is applied
to each focused goal independently and if it fails or a later tactic fails, then the proof backtracks to the
current goal and v is applied.

Tactics can be seen as having several successes. When a tactic fails it asks for more successes of the
prior tactics. expr; + exprs has all the successes of v; followed by all the successes of vy. Algebraically,
(expry + expra);exprs = (expri;exprs) + (expra;exprs).

Branching is left-associative.

First tactic to work

Backtracking branching may be too expensive. In this case we may restrict to a local, left biased,
branching and consider the first tactic to work (i.e. which does not fail) among a panel of tactics:

first [expri | ... | expry ]

expr; are evaluated to v; and v; must be tactic values, for ¢ = 1,...,n. Supposing n > 1, it applies, in
each focused goal independently, vy, if it works, it stops otherwise it tries to apply vy and so on. It fails
when there is no applicable tactic. In other words, first [ expr; | ... | expry ] behaves, in each
goal, as the the first v; to have at least one success.

Error message: No applicable tactic

Left-biased branching

Yet another way of branching without backtracking is the following structure:
expry | | expra

expry and expry are evaluated to v and v which must be tactic values. The tactic value v; is applied in
each subgoal independently and if it fails to progress then vs is applied. expr; | | exprs is equivalent to
first [ progressexpr; | progress exprs ] (except that if it fails, it fails like v2). Branching is
left-associative.

Generalized biased branching

The tactic
tryif expr; then expra else exprs

is a generalization of the biased-branching tactics above. The expression expr; is evaluated to v1, which
is then applied to each subgoal independently. For each goal where v; succeeds at least once, tacexpra
is evaluated to vy which is then applied collectively to the generated subgoals. The v5 tactic can trigger
backtracking points in v1: where v; succeeds at least once, tryif expr; then expra else exprs
is equivalent to v;; v9. In each of the goals where v; does not succeed at least once, exprs is evaluated
in v3 which is is then applied to the goal.

Coq Reference Manual, V8.6.1, July 26, 2017



258 9 The tactic language

Soft cut

Another way of restricting backtracking is to restrict a tactic to a single success a posteriori:
once expr

expr is evaluated to ¥ which must be a tactic value. The tactic value v is applied but only its first success
is used. If v fails, once expr fails like v. If v has a least one success, once expr succeeds once, but
cannot produce more successes.

Checking the successes

Coq provides an experimental way to check that a tactic has exactly one success:
exactly_once expr

expr is evaluated to v which must be a tactic value. The tactic value v is applied if it has at most one
success. If v fails, exact 1ly_once expr fails like v. If v has a exactly one success, exactly_once
expr succeeds like v. If v has two or more successes, exactly_once expr fails.

The experimental status of this tactic pertains to the fact if v performs side effects, they may occur in
aunpredictable way. Indeed, normally v would only be executed up to the first success until backtracking
is needed, however exactly_once needs to look ahead to see whether a second success exists, and
may run further effects immediately.

Error message: This tactic has more than one success

Solving

We may consider the first to solve (i.e. which generates no subgoal) among a panel of tactics:
solve [expri | ... | expry ]

expr; are evaluated to v; and v; must be tactic values, for z = 1, ..., n. Supposing n > 1, it applies v; to
each goal independently, if it doesn’t solve the goal then it tries to apply vy and so on. It fails if there is
no solving tactic.

Error message: Cannot solve the goal

Identity
The constant i dtac is the identity tactic: it leaves any goal unchanged but it appears in the proof script.

Variant: idtac message_token ... message_token
This prints the given tokens. Strings and integers are printed literally. If a (term) variable is given,
its contents are printed.

Failing

The tactic fail is the always-failing tactic: it does not solve any goal. It is useful for defining other
tacticals since it can be caught by try, repeat, match goal, or the branching tacticals. The fail
tactic will, however, succeed if all the goals have already been solved.

Variants:

Coq Reference Manual, V8.6.1, July 26, 2017



9.2 Semantics 259

1. fail n
The number 7 is the failure level. If no level is specified, it defaults to 0. The level isused by try,
repeat, match goal and the branching tacticals. If 0, it makes match goal considering
the next clause (backtracking). If non zero, the current match goal block, try, repeat,
or branching command is aborted and the level is decremented. In the case of +, a non-zero
level skips the first backtrack point, even if the call to fail = is not enclosed in a + command,
respecting the algebraic identity.

2. fail message_token ... message_token
The given tokens are used for printing the failure message.

3. fail n message_token ... message_token
This is a combination of the previous variants.

4, gfail
This variant fails even if there are no goals left.

5. gfail message token ... message_token
gfail n message _token ... message_token
These variants fail with an error message or an error level even if there are no goals left. Be careful
however if Coq terms have to be printed as part of the failure: term construction always forces the
tactic into the goals, meaning that if there are no goals when it is evaluated, a tactic call like 1et
x:=H in fail 0 x will succeed.

Error message: Tactic Failure message (level n).

Timeout

We can force a tactic to stop if it has not finished after a certain amount of time:
timeout num expr

expr is evaluated to v which must be a tactic value. The tactic value v is applied normally, except that it
is interrupted after num seconds if it is still running. In this case the outcome is a failure.

Warning: For the moment, t imeout is based on elapsed time in seconds, which is very machine-
dependent: a script that works on a quick machine may fail on a slow one. The converse is even
possible if you combine a t imeout with some other tacticals. This tactical is hence proposed only
for convenience during debug or other development phases, we strongly advise you to not leave any
timeout in final scripts. Note also that this tactical isn’t available on the native Windows port of Coq.

Timing a tactic
A tactic execution can be timed:
time string expr

evaluates expr and displays the time the tactic expression ran, whether it fails or successes. In case of
several successes, the time for each successive runs is displayed. Time is in seconds and is machine-
dependent. The string argument is optional. When provided, it is used to identify this particular occur-
rence of time.

Coq Reference Manual, V8.6.1, July 26, 2017



260 9 The tactic language

Local definitions

Local definitions can be done as follows:

let ident; := expr
with identy := expra

with ident, := expr, in
expr

each expr; is evaluated to v;, then, expr is evaluated by substituting v; to each occurrence of ident;, for
1 = 1,...,n. There is no dependencies between the expr; and the ident;.

Local definitions can be recursive by using let rec instead of 1et. In this latter case, the defini-
tions are evaluated lazily so that the rec keyword can be used also in non recursive cases so as to avoid
the eager evaluation of local definitions.

Application
An application is an expression of the following form:
qualid tacarg; ... tacarg,
The reference qualid must be bound to some defined tactic definition expecting at least n arguments.
The expressions expr; are evaluated to v;, fori =1, ..., n.
Function construction
A parameterized tactic can be built anonymously (without resorting to local definitions) with:
fun ident; ... ident,, => expr

Indeed, local definitions of functions are a syntactic sugar for binding a fun tactic to an identifier.

Pattern matching on terms

We can carry out pattern matching on terms with:

match expr with
cpattern) => expri
| cpatterng => expro

| cpattern, => expry,
| _=>exprpi1
end

The expression expr is evaluated and should yield a term which is matched against cpattern;. The
matching is non-linear: if a metavariable occurs more than once, it should match the same expression
every time. It is first-order except on the variables of the form @?1id that occur in head position of an
application. For these variables, the matching is second-order and returns a functional term.
Alternatively, when a metavariable of the form ?id occurs under binders, say =1, ..., £, and the
expression matches, the metavariable is instantiated by a term which can then be used in any context

Coq Reference Manual, V8.6.1, July 26, 2017



9.2 Semantics 261

which also binds the variables z, ..., z, with same types. This provides with a primitive form of
matching under context which does not require manipulating a functional term.

If the matching with cpattern; succeeds, then expr; is evaluated into some value by substituting
the pattern matching instantiations to the metavariables. If expr; evaluates to a tactic and the match
expression is in position to be applied to a goal (e.g. it is not bound to a variable by a 1et in), then
this tactic is applied. If the tactic succeeds, the list of resulting subgoals is the result of the match
expression. If expr; does not evaluate to a tactic or if the match expression is not in position to be
applied to a goal, then the result of the evaluation of expr; is the result of the mat ch expression.

If the matching with cpattern; fails, or if it succeeds but the evaluation of expr; fails, or if the eval-
uation of expr; succeeds but returns a tactic in execution position whose execution fails, then cpatterns
is used and so on. The pattern _ matches any term and shunts all remaining patterns if any. If all clauses
fail (in particular, there is no pattern _) then a no-matching-clause error is raised.

Failures in subsequent tactics do not cause backtracking to select new branches or inside the right-
hand side of the selected branch even if it has backtracking points.

Error messages:

1. No matching clauses for match

No pattern can be used and, in particular, there is no __ pattern.

2. Argument of match does not evaluate to a term

This happens when expr does not denote a term.

Variants:

1. Using multimatch instead of match will allow subsequent tactics to backtrack into a right-
hand side tactic which has backtracking points left and trigger the selection of a new matching
branch when all the backtracking points of the right-hand side have been consumed.

The syntax match ... is, in fact, a shorthand for once multimatch

2. Using lazymatch instead of mat ch will perform the same pattern matching procedure but will
commit to the first matching branch rather than trying a new matching if the right-hand side fails.
If the right-hand side of the selected branch is a tactic with backtracking points, then subsequent
failures cause this tactic to backtrack.

3. There is a special form of patterns to match a subterm against the pattern:
context ident [ cpattern ]

It matches any term with a subterm matching cpattern. If there is a match, the optional ident is
assigned the “matched context”, i.e. the initial term where the matched subterm is replaced by a
hole. The example below will show how to use such term contexts.

If the evaluation of the right-hand-side of a valid match fails, the next matching subterm is tried. If
no further subterm matches, the next clause is tried. Matching subterms are considered top-bottom
and from left to right (with respect to the raw printing obtained by setting option Printing
Al1l, see Section 2.9).

Cog < Ltac f x :=
match x with

Coq Reference Manual, V8.6.1, July 26, 2017



262 9 The tactic language
context £ [S ?X] =>
idtac X; (* To display the evaluation order «)
assert (p := eq_refl 1 : X=1); (+ To filter the case X=1 %)
let x:= context f[0O] in assert (x=0) (x To observe the context *)
end.
f is defined
Coqg < Goal True.
1 subgoal
True
Coq < £ (3+4).
2
1
2 subgoals
p 1 =1
1 + 4 =0
subgoal 2 is:
True
4. For historical reasons, context used to consider n-ary applications such as (f 1 2) as a

whole, and not as a sequence of unary applications ( (f 1) 2). Hence context [f ?x]
would fail to find a matching subterm in (£ 1 2): if the pattern was a partial application, the
matched subterms would have necessarily been applications with exactly the same number of
arguments. As a workaround, one could use the following variant of context:

appcontext ident [ cpattern ]

This syntax is now deprecated, as context behaves as intended. The former behavior can be
retrieved with the Tactic Compat Context flag.

Pattern matching on goals

We can make pattern matching on goals using the following expression:

match goal with
| hypi1, ..., hypim, |—cpattern;=> expr;
| hyp2,1, ..., Bypa,m, | —cpatterno=> expro

| hypnis ..., hRYypnm, | —cpattern,=> expry,
| =>exprpt1
end

If each hypothesis pattern hyp; ;, with ¢ = 1,...,m  is matched (non-linear first-order unification)

by an hypothesis of the goal and if cpattern; is matched by the conclusion of the goal, then expr; is
evaluated to v; by substituting the pattern matching to the metavariables and the real hypothesis names
bound to the possible hypothesis names occurring in the hypothesis patterns. If v; is a tactic value, then
it is applied to the goal. If this application fails, then another combination of hypotheses is tried with the

Coq Reference Manual, V8.6.1, July 26, 2017



9.2 Semantics 263

same proof context pattern. If there is no other combination of hypotheses then the second proof context
pattern is tried and so on. If the next to last proof context pattern fails then expr,; is evaluated to v,y
and vy, 41 is applied. Note also that matching against subterms (using the context ident [ cpattern 1)
is available and is also subject to yielding several matchings.

Failures in subsequent tactics do not cause backtracking to select new branches or combinations of
hypotheses, or inside the right-hand side of the selected branch even if it has backtracking points.

Error message: No matching clauses for match goal
No clause succeeds, i.e. all matching patterns, if any, fail at the application of the right-hand-side.

It is important to know that each hypothesis of the goal can be matched by at most one hypothesis
pattern. The order of matching is the following: hypothesis patterns are examined from the right to the
left (i.e. hyp;m,; before hyp;1). For each hypothesis pattern, the goal hypothesis are matched in order
(fresher hypothesis first), but it possible to reverse this order (older first) with the match reverse
goal with variant.

Variant:

Using multimatch instead of match will allow subsequent tactics to backtrack into a right-hand
side tactic which has backtracking points left and trigger the selection of a new matching branch or
combination of hypotheses when all the backtracking points of the right-hand side have been consumed.

The syntax match [reverse] goal ... is, in fact, a shorthand for once multimatch

[reverse] goal

Using lazymatch instead of match will perform the same pattern matching procedure but will
commit to the first matching branch with the first matching combination of hypotheses rather than trying
a new matching if the right-hand side fails. If the right-hand side of the selected branch is a tactic with
backtracking points, then subsequent failures cause this tactic to backtrack.

Filling a term context

The following expression is not a tactic in the sense that it does not produce subgoals but generates a
term to be used in tactic expressions:

context ident [ expr ]

ident must denote a context variable bound by a context pattern of amat ch expression. This expres-
sion evaluates replaces the hole of the value of ident by the value of expr.

Error message: not a context variable

Generating fresh hypothesis names

Tactics sometimes have to generate new names for hypothesis. Letting the system decide a name with
the intro tactic is not so good since it is very awkward to retrieve the name the system gave. The
following expression returns an identifier:

fresh component ... component

It evaluates to an identifier unbound in the goal. This fresh identifier is obtained by concatenating the
value of the component’s (each of them is, either an qualid which has to refer to a (unqualified) name,
or directly a name denoted by a string). If the resulting name is already used, it is padded with a number
so that it becomes fresh. If no component is given, the name is a fresh derivative of the name H.

Coq Reference Manual, V8.6.1, July 26, 2017



264 9 The tactic language

Computing in a constr
Evaluation of a term can be performed with:
eval redexpr in term
where redexpr is a reduction tactic among red, hnf, compute, simpl, cbv, lazy,unfold, fold,
pattern.
Recovering the type of a term

The following returns the type of term:

type of term

Manipulating untyped terms

The terms built in Ltac are well-typed by default. It may not be appropriate for building large terms using
a recursive Ltac function: the term has to be entirely type checked at each step, resulting in potentially
very slow behavior. It is possible to build untyped terms using Ltac with the syntax

uconstr : term

An untyped term, in Ltac, can contain references to hypotheses or to Ltac variables containing
typed or untyped terms. An untyped term can be type-checked using the function t ype_term whose
argument is parsed as an untyped term and returns a well-typed term which can be used in tactics.

type_term term

Untyped terms built using uconstr : can also be used as arguments to the refine tactic 8.2.3.
In that case the untyped term is type checked against the conclusion of the goal, and the holes which are
not solved by the typing procedure are turned into new subgoals.

Counting the goals

The number of goals under focus can be recovered using the numgoals function. Combined with the
guard command below, it can be used to branch over the number of goals produced by previous tactics.
Cog < Ltac pr_numgoals := let n := numgoals in idtac "There are" n "goals".
Coq < Goal True /\ True /\ True.

Cog < split; [Isplit].

Cog < all:pr_numgoals.
There are 3 goals
3 subgoals

True
subgoal 2 is:
True
subgoal 3 is:
True

Coq Reference Manual, V8.6.1, July 26, 2017



9.2 Semantics 265

Testing boolean expressions

The guard tactic tests a boolean expression, and fails if the expression evaluates to false. If the expres-
sion evaluates to true, it succeeds without affecting the proof.

guard fest

The accepted tests are simple integer comparisons.

Cog < Goal True /\ True /\ True.
Cog < split; [Isplit].

Cog < all:let n:= numgoals in guard n<4.
3 subgoals

True
subgoal 2 1is:
True
subgoal 3 is:
True

Cog < Fail all:let n:= numgoals in guard n=2.
The command has indeed failed with message:
Ltac call to "guard (test)" failed.

Error: Condition not satisfied: 3=2

3 subgoals

True
subgoal 2 1is:
True
subgoal 3 is:
True

Error messages:

1. Condition not satisfied

Proving a subgoal as a separate lemma

From the outside “abstract expr” is the same as solve expr. Internally it saves an auxiliary
lemma called ident__subproofn where ident is the name of the current goal and n is chosen so that
this is a fresh name. Such auxiliary lemma is inlined in the final proof term unless the proof is ended with
“Qed exporting”. In such case the lemma is preserved. The syntax “Qed exporting identy,

., Iidenty,” is also supported. In such case the system checks that the names given by the user
actually exist when the proof is ended.

This tactical is useful with tactics such as omega or discriminate that generate huge proof
terms. With that tool the user can avoid the explosion at time of the Save command without having to
cut manually the proof in smaller lemmas.

It may be useful to generate lemmas minimal w.r.t. the assumptions they depend on. This can be
obtained thanks to the option below.

Coq Reference Manual, V8.6.1, July 26, 2017



266 9 The tactic language

Set Shrink Abstract

When set, all lemmas generated through abstract expr are quantified only over the variables
that appear in the term constructed by expr.

Variants:

1. abstract expr using ident.
Give explicitly the name of the auxiliary lemma.

Error message: Proof is not complete

9.3 Tactic toplevel definitions

9.3.1 Defining ;.. functions

Basically, L4, toplevel definitions are made as follows:
Ltac ident ident; ... ident,, := expr

This defines a new L. function that can be used in any tactic script or new Ly, toplevel definition.

Remark: The preceding definition can equivalently be written:
Ltacident := fun ident; ... ident, => expr

Recursive and mutual recursive function definitions are also possible with the syntax:

Ltac identy identy i ... identy ,,, := expri
with idents idents ... idents p,, := expro
with ident, identy ; ... ident, ,,, := expry,

It is also possible to redefine an existing user-defined tactic using the syntax:
Ltac qualid ident; ... ident,, : : = expr

A previous definition of qualid must exist in the environment. The new definition will always be used
instead of the old one and it goes across module boundaries.

If preceded by the keyword Local the tactic definition will not be exported outside the current
module.

9.3.2 Printing £, tactics
Defined L. functions can be displayed using the command
Print Ltac qualid.

The command Print Ltac Signatures displays a list of all user-defined tactics, with their
arguments.

Coq Reference Manual, V8.6.1, July 26, 2017



9.4 Debugging L, tactics 267

9.4 Debugging L;,. tactics

94.1 Info trace

It is possible to print the trace of the path eventually taken by an L4, script. That is, the list of executed
tactics, discarding all the branches which have failed. To that end the ITnfo command can be used with
the following syntax.

Info num expr.

The number num is the unfolding level of tactics in the trace. At level 0, the trace contains a sequence
of tactics in the actual script, at level 1, the trace will be the concatenation of the traces of these tactics,
etc. ..

Cog < Ltac t x := exists x; reflexivity.

Cog < Goal exists n, n=0.

Cogq < Info O t 1]t O.
t <constr:(0)>
No more subgoals.

Cog < Undo.

Cogqg < Info 1 t 1]t O.
exists O;,reflexivity
No more subgoals.

The trace produced by Info tries its best to be a reparsable Ly, script, but this goal is not achievable
in all generality. So some of the output traces will contain oddities.

As an additional help for debugging, the trace produced by Info contains (in comments) the mes-
sages produced by the idtac tacticals 9.2 at the right possition in the script. In particular, the calls to
idtac in branches which failed are not printed.

An alternative to the Info command is to use the Info Level option as follows:

Set Info Level num.

This will automatically print the same trace as Info num at each tactic call. The unfolding level
can be overridden by a call to the Info command. And this option can be turned off with:

Unset Info Level num.

The current value for the Info Level option can be checked using the Test Info Level
command.

9.4.2 Interactive debugger

The L. interpreter comes with a step-by-step debugger. The debugger can be activated using the
command

Set Ltac Debug.

and deactivated using the command

Coq Reference Manual, V8.6.1, July 26, 2017



268 9 The tactic language

Unset Ltac Debug.

To know if the debugger is on, use the command Test Ltac Debug. When the debugger is
activated, it stops at every step of the evaluation of the current L4,. expression and it prints information
on what it is doing. The debugger stops, prompting for a command which can be one of the following:

simple newline: go to the next step

h: get help

X: exit current evaluation

s: continue current evaluation without stopping
rn: advance n steps further

r string: advance up to the next call to “idtac string”

9.4.3 Profiling L,,. tactics

It is possible to measure the time spent in invocations of primitive tactics as well as tactics defined in
L4 and their inner invocations. The primary use is the development of complex tactics, which can
sometimes be so slow as to impede interactive usage. The reasons for the performence degradation can
be intricate, like a slowly performing £, match or a sub-tactic whose performance only degrades in
certain situations. The profiler generates a call tree and indicates the time spent in a tactic depending its
calling context. Thus it allows to locate the part of a tactic definition that contains the performance bug.

Set Ltac Profiling.
Enables the profiler

Unset Ltac Profiling.
Disables the profiler

Show Ltac Profile.
Prints the profile

Show Ltac Profile string.

Prints a profile for all tactics that start with string. Append a period (.) to the string if you only want
exactly that name.

Reset Ltac Profile.

Resets the profile, that is, deletes all accumulated information. Note that backtracking across a Reset
Ltac Profile will notrestore the information.

Cog < Require Import Cog.omega.Omega.

Cog < Ltac mytauto := tauto.
Cog < Ltac tac := intros; repeat split; omega || mytauto.
Cog < Notation max x y := (x + (y - x)) (only parsing).

Coqg < Goal forall x y zABCDEFGHIJKLMNOPQRSTUVWIXY Z,

Coq Reference Manual, V8.6.1, July 26, 2017



9.4 Debugging L, tactics 269

max x (max y z) = max (max x y) z /\ max x (max y z) = max (max x y) z
/N (a/\NB/NC/\ND/NE/NF/NG/\NH/\NIT /\NJ/NK/\NL/\M/\N/\ O/
> Z /NY/\NX/\Nw/\NVv/NU/NT /NS /NR/NQ /NP /\NO /NN /\NM/\I

Coqg < Proof.
Coqg < Set Ltac Profiling.
Cog < tac.

No more subgoals.

Cog < Show Ltac Profile.

total time: 6.944s
tactic local total calls max
| | | | |
—tac - 0.1% 100.0% 1 6.944s
—t_tauto_intuit -—————------——= 1.3% 62.1% 26 0.260s
—<Cog.Init.Tauto.with_uniform_ flags> —— 0.0% 62.1% 26 0.260s
—<Cog.Init.Tauto.tauto_intuitionistic> - 0.0% 62.1% 26 0.260s
—<Cog.Init.Tauto.tauto_gen> —-——————— 0.0% 62.1% 26 0.260s
—<Cog.Init.Tauto.simplif> ————————— 39.2% 59.9% 26 0.248s
—omega —————————————————————— 37.5% 37.5% 28 1.228s
—<Cog.Init.Tauto.is_conj> ————————— 10.1% 10.1% 28756 0.036s
—lim id - 6.5% 6.5% 650 0.064s
tactic local total calls max
| | | | |
—tac ————————————————————— 0.1% 100.0% 1 6.944s
—<Cog.Init.Tauto.with_uniform_flags> - 0.0% 62.1% 26 0.260s
l<Cog.Init.Tauto.tauto_gen> ————-—- 0.0% 62.1% 26 0.260s
L<Cog.Init.Tauto.tauto_intuitionistic> 0.0% 62.1% 26 0.260s
Lt_tauto_intuit ——————————————— 1.3% 62.1% 26 0.260s
L<Coq.Init.Tauto.simplif> ———————— 39.2% 59.9% 26 0.248s
|:<Coq.Init.Tauto.is_conj> ——————— 10.1% 10.1% 28756 0.036s
elim id -~ 6.5% 6.5% 650 0.064s
L—omega ————————————————————— 37.5% 37.5% 28 1.228s
Cog < Show Ltac Profile "omega".
total time: 6.944s
tactic local total calls max
| | | | |
—omega —————————————————————— 37.5% 37.5% 28 1.228s
tactic local total calls max

Cog < Abort.

Cog < Unset Ltac Profiling.

The following two tactics behave like idtac but enable and disable the profiling. They allow you
to exclude parts of a proof script from profiling.

start ltac profiling.
stop ltac profiling.

Coq Reference Manual, V8.6.1, July 26, 2017



270 9 The tactic language

You can also pass the —-profile—1tac command line option to cogc, which performs a Set
Ltac Profiling atthe beginning of each document, and a Show Ltac Profile atthe end.

Note that the profiler currently does not handle backtracking into multi-success tactics, and issues a
warning to this effect in many cases when such backtracking occurs.

Coq Reference Manual, V8.6.1, July 26, 2017



Chapter 10

Detailed examples of tactics

This chapter presents detailed examples of certain tactics, to illustrate their behavior.

10.1 dependent induction

The tactics dependent induction and dependent destruction are another solution for in-
verting inductive predicate instances and potentially doing induction at the same time. It is based on
the BasicElim tactic of Conor McBride which works by abstracting each argument of an inductive
instance by a variable and constraining it by equalities afterwards. This way, the usual induction and
destruct tactics can be applied to the abstracted instance and after simplification of the equalities we
get the expected goals.

The abstracting tactic is called generalize_eqgs and it takes as argument an hypothesis to gen-
eralize. It uses the JMeq datatype defined in Cog.Logic.JMeq, hence we need to require it before.
For example, revisiting the first example of the inversion documentation above:

Cog < Require Import Cog.Logic.JMeq.

Cog < Goal forall n m:nat, Le (S n) m —> P n m.
Cogq < intros n m H.
Cogq < generalize_eqgs H.

1 subgoal

n, m, gen_x : nat
H : Le gen_x m

gen_x =S n —-> P nm

The index S n gets abstracted by a variable here, but a corresponding equality is added under the
abstract instance so that no information is actually lost. The goal is now almost amenable to do induction
or case analysis. One should indeed first move n into the goal to strengthen it before doing induction, or
n will be fixed in the inductive hypotheses (this does not matter for case analysis). As a rule of thumb,
all the variables that appear inside constructors in the indices of the hypothesis should be generalized.
This is exactly what the generalize_eqgs_vars variant does:

Cog < generalize_eqgs_vars H.
1 subgoal

Coq Reference Manual, V8.6.1, July 26, 2017



272 10 Detailed examples of tactics

Cog < induction H.
2 subgoals

n : nat

forall nO : nat, 0 = S n0 -> P n0O n
subgoal 2 is:
forall nO : nat, S n =S n0O —> P n0O (S m)

As the hypothesis itself did not appear in the goal, we did not need to use an heterogeneous equality
to relate the new hypothesis to the old one (which just disappeared here). However, the tactic works just
as well in this case, e.g.:

Cogq < Goal forall nm (p : Le (S n) m), Q (S n) mp.
1 subgoal

forall (n m : nat) (p : Le (S n) m), O (S n) mp

Cog < intros n m p ; generalize_egs_vars p.

1 subgoal
m, gen_x : nat
p : Le gen_x m

forall (n : nat) (pO : Le (S n) m),
gen_x =S n -> p ~=p0 -> Q (S n) m p0

One drawback of this approach is that in the branches one will have to substitute the equalities back
into the instance to get the right assumptions. Sometimes injection of constructors will also be needed
to recover the needed equalities. Also, some subgoals should be directly solved because of inconsistent
contexts arising from the constraints on indexes. The nice thing is that we can make a tactic based on dis-
criminate, injection and variants of substitution to automatically do such simplifications (which may in-
volve the K axiom). This is whatthe simplify_dep_elimtactic from Coq.Program.Equality
does. For example, we might simplify the previous goals considerably:

Cog < induction p ; simplify_dep_elim.
1 subgoal

n, m : nat
p : Le nm
IHp : forall (nO : nat) (pO : Le (S n0O) m),
n =S8 n0 ->p ~=p0 -> Q (S n0) m p0

Q (S n) (S m) (LeS nmp)

The higher-order tactic do_depind defined in Cog.Program.Equality takes a tactic and
combines the building blocks we have seen with it: generalizing by equalities calling the given tactic with

Coq Reference Manual, V8.6.1, July 26, 2017



10.1 dependent induction 273

the generalized induction hypothesis as argument and cleaning the subgoals with respect to equalities. Its
most important instantiations are dependent induction and dependent destruction that
do induction or simply case analysis on the generalized hypothesis. For example we can redo what
we’ve done manually with dependent destruction:

Cog < Require Import Cog.Program.Equality.

Cogq < Lemma ex : forall n m:nat, Le (S n) m -> P n m.
Cog < intros n m H.

Cog < dependent destruction H.

1 subgoal

n, m : nat
H : Le nm

P n (S m)

This gives essentially the same result as inversion. Now if the destructed hypothesis actually ap-
peared in the goal, the tactic would still be able to invert it, contrary to dependent inversion.
Consider the following example on vectors:

Cog < Require Import Cog.Program.Equality.

Cog < Set Implicit Arguments.

Cog < Variable A : Set.
Cog < Inductive vector : nat —-> Type :=
| vnil : vector 0
| vcons : A —-> forall n, vector n -> vector (S n).
Cog < Goal forall n, forall v : vector (S n),
exists v' : vector n, exists a : A, v = vcons a v'.
Coqg < intros n v.
Cog < dependent destruction v.
1 subgoal
n : nat
a : A
v : vector n
exists (v' : vector n) (a0 : A), vcons a v = vcons a0 v'

In this case, the v variable can be replaced in the goal by the generalized hypothesis only when it
has a type of the form vector (S n), thatis only in the second case of the destruct. The first
one is dismissed because S n <> 0.

10.1.1 A larger example

Let’s see how the technique works with induction on inductive predicates on a real example. We

will develop an example application to the theory of simply-typed lambda-calculus formalized in a
dependently-typed style:

Coq Reference Manual, V8.6.1, July 26, 2017



274 10 Detailed examples of tactics

Cog < Inductive type : Type :=
| base : type
| arrow : type —-> type —-> type.

Cog < Notation " t -> t' " := (arrow t t') (at level 20, t' at next level).

Cog < Inductive ctx : Type :=
| empty : ctx
| snoc : ctx —-> type -> ctx.

Cog < Notation " G , tau " (snoc G tau) (at level 20, tau at next level).

Cog < Fixpoint conc (G D : ctx) : ctx :=
match D with
| empty => G

| snoc D' x => snoc (conc G D') x
end.
Cog < Notation " G ; D " := (conc G D) (at level 20).
Cog < Inductive term : ctx —-> type —-> Type :=
| ax : forall G tau, term (G, tau) tau
| weak : forall G tau,
term G tau -> forall tau', term (G, tau') tau
| abs : forall G tau tau',
term (G , tau) tau' -> term G (tau -> tau')
| app : forall G tau tau',
term G (tau -> tau') —> term G tau —> term G tau'.

We have defined types and contexts which are snoc-lists of types. We also have a conc operation
that concatenates two contexts. The term datatype represents in fact the possible typing derivations
of the calculus, which are isomorphic to the well-typed terms, hence the name. A term is either an
application of:

* the axiom rule to type a reference to the first variable in a context,
* the weakening rule to type an object in a larger context
* the abstraction or lambda rule to type a function

* the application to type an application of a function to an argument
Once we have this datatype we want to do proofs on it, like weakening:

Cogq < Lemma weakening : forall G D tau, term (G ; D) tau ->
forall tau', term (G , tau' ; D) tau.

The problem here is that we can’t just use induction on the typing derivation because it will
forget about the G ; D constraint appearing in the instance. A solution would be to rewrite the goal as:

Cogq < Lemma weakening' : forall G' tau, term G' tau —->
forall G D, (G ; D) = G'" -—>
forall tau', term (G, tau' ; D) tau.

With this proper separation of the index from the instance and the right induction loading (putting
G and D after the inducted-on hypothesis), the proof will go through, but it is a very tedious process.
One is also forced to make a wrapper lemma to get back the more natural statement. The dependent
induction tactic alleviates this trouble by doing all of this plumbing of generalizing and substituting
back automatically. Indeed we can simply write:

Coq Reference Manual, V8.6.1, July 26, 2017



10.1 dependent induction 275

Cog < Require Import Cog.Program.Tactics.

Cog < Lemma weakening : forall G D tau, term (G ; D) tau ->
forall tau', term (G , tau' ; D) tau.

Cogq < Proof with simpl in % ; simpl_depind ; auto.

Cog < intros G D tau H. dependent induction H generalizing G D ; intros.

This call to dependent induction has an additional arguments which is a list of variables
appearing in the instance that should be generalized in the goal, so that they can vary in the induction
hypotheses. By default, all variables appearing inside constructors (except in a parameter position) of
the instantiated hypothesis will be generalized automatically but one can always give the list explicitly.

Cog < Show.

4 subgoals
GO : ctx
tau : type

G, D : ctx
x : GO, tau = G; D

term ((G, tau'),; D) tau
subgoal 2 is:

term ((G, tau'QO); D) tau
subgoal 3 1is:

term ((G, tau'O); D) (tau —> tau')
subgoal 4 is:

term ((G, tau'O),; D) tau'

The simpl_depind tactic includes an automatic tactic that tries to simplify equalities appearing
at the beginning of induction hypotheses, generally using trivial applications of reflexivity. In cases
where the equality is not between constructor forms though, one must help the automation by giving
some arguments, using the specialize tactic for example.

Cog < destruct D... apply weak ; apply ax. apply ax.
Cog < destruct D...

Cog < Show.
4 subgoals

GO : ctx
tau : type
H : term GO tau
tau' : type
IHterm : forall G D : ctx,
GO = G; D —> forall tau' : type, term ((G, tau'), D) tau
tau'0 : type

term ((G0O, tau'), tau'O) tau
subgoal 2 is:

term (((G, tau'O),; D), t) tau
subgoal 3 is:

Coq Reference Manual, V8.6.1, July 26, 2017



276 10 Detailed examples of tactics

term ((G, tau'O),; D) (tau —-> tau')
subgoal 4 is:
term ((G, tau'QO); D) tau'

Coqg < specialize (IHterm GO empty eq refl).
4 subgoals

GO : ctx

tau : type

H : term GO tau

tau' : type

IHterm : forall tau' : type, term ((G0O, tau'); empty) tau
tau'0O : type

term ((G0O, tau'), tau'O) tau
subgoal 2 is:

term (((G, tau'O); D), t) tau
subgoal 3 1is:

term ((G, tau'QO); D) (tau —-> tau')
subgoal 4 is:

term ((G, tau'O),; D) tau'

Once the induction hypothesis has been narrowed to the right equality, it can be used directly.

Cog < apply weak, IHterm.
3 subgoals

tau : type
G, D : ctx
IHterm : forall GO DO : ctx,

G; D = GO; DO —->

forall tau' : type, term ((GO, tau'),; DO0) tau
H : term (G; D) tau
t, tau'l0 : type

term (((G, tau'O); D), t) tau
subgoal 2 is:

term ((G, tau'O); D) (tau —-> tau')
subgoal 3 1is:

term ((G, tau'O),; D) tau'

If there is an easy first-order solution to these equations as in this subgoal, the specialize_eqgs
tactic can be used instead of giving explicit proof terms:

Cog < specialize_eqgs IHterm.
Toplevel input, characters 2-23:
> specialize _eqgs IHterm.

> AAAAAAAAAAAAAAAAAAAAA
Ltac call to "specialize eqgs (var)" failed.
Error: Specialization not allowed on dependent hypotheses

This concludes our example. See also: The induction 9, case 9 and inversion 8.14 tactics.

Coq Reference Manual, V8.6.1, July 26, 2017



10.2 autorewrite

277

10.2 autorewrite

Here are two examples of autorewrite use. The first one (Ackermann function) shows actually a
quite basic use where there is no conditional rewriting. The second one (Mac Carthy function) involves
conditional rewritings and shows how to deal with them using the optional tactic of the Hint Rewrite

command.

Example 1: Ackermann function

Cog < Reset Initial.
Cog < Require Import Arith.

Cog < Variable Ack
nat —-> nat -> nat.

Cog < Axiom AckO
forall m:nat, Ack 0 m = S m.

Cog < Axiom Ackl : forall n:nat, Ack (S n) 0 = Ack n 1.

Cog < Axiom Ack2 : forall n m:nat, Ack (S n) (S m)

Cog < Hint Rewrite AckO Ackl Ack2 : baseO0.

Cog < Lemma ResAckO
Ack 3 2 = 29.
1 subgoal

Cog < autorewrite with baseO using try reflexivity.

No more subgoals.

Example 2: Mac Carthy function

Cog < Require Import Omega.

Cog < Variable g
nat —-> nat —-> nat.

Cogq < Axiom g0
forall m:nat, g 0 m = m.

Cog < Axiom

gl
forall n m:nat,

(n >0) -=> (m > 100) -=> gnm-=g (pred n)

Cog < Axiom

g2
forall n m:nat,

(n > 0) => (m <= 100) -=> gnm=g (S n)

Cog < Hint Rewrite g0 gl g2 using omega : basel.

Cog < Lemma Resg0
g 1l 110 = 100.

Ack n (Ack (S n) m).

(m — 10).

(m + 11).

Coq Reference Manual, V8.6.1, July 26, 2017



278 10 Detailed examples of tactics

1 subgoal

g 1 110 = 100

Cog < autorewrite with basel using reflexivity || simpl.
No more subgoals.

Cog < Lemma Resgl : g 1 95 = 91.

1 subgoal
g1l 95 = 91
Cog < autorewrite with basel using reflexivity || simpl.

No more subgoals.

10.3 guote

The tactic quote allows using Barendregt’s so-called 2-level approach without writing any ML code.

Suppose you have a language L of *abstract terms’ and a type A of ’concrete terms’ and a function £

L -> A.IfLis asimple inductive datatype and £ a simple fixpoint, quote £ will replace the head of

current goal by a convertible term of the form (£ t). L must have a constructor of type: A -> L.
Here is an example:

Cog < Require Import Quote.

Cogq < Parameters A B C : Prop.
A is declared
B is declared
C is declared

Cog < Inductive formula : Type :=

| f_and : formula -> formula -> formula (x binary constructor «)
| £ or : formula -> formula -> formula

| f_not : formula -> formula (x unary constructor x)

| f_true : formula (x O-ary constructor =)

| f_const : Prop —-> formula (x constructor for constants «).

formula is defined

formula_rect is defined
formula_ind is defined
formula rec 1is defined

Cog < Fixpoint interp_f (f:
formula) : Prop :=
match f with
| f_and f1 f2 => interp_f f1 /\ interp_f f2
| f_or f1 f2 => interp_f f1 \/ interp_f f2
| f_not fl1 => ~ interp_f f1l
| £f_true => True
| f_const ¢ => ¢
end.
interp_f is defined
interp_f is recursively defined (decreasing on 1lst argument)

Coq Reference Manual, V8.6.1, July 26, 2017



10.3 quote 279

Cog < Goal A /\ (A \/ True) /\ ~ B /\ (A <-> A).
1 subgoal

A /\ (A \/ True) /\ ~ B /\ (A <-> A)

Cog < quote interp_f.
1 subgoal

interp_f
(f_and (f_const A)
(f_and (f_or (f_const A) f_true)
(f_and (f_not (f_const B)) (f_const (A <> A)))))

The algorithm to perform this inversion is: try to match the term with right-hand sides expression of
£. If there is a match, apply the corresponding left-hand side and call yourself recursively on sub-terms.
If there is no match, we are at a leaf: return the corresponding constructor (here £_const) applied to
the term.

Error messages:

1. quote: not a simple fixpoint
Happens when quote is not able to perform inversion properly.

10.3.1 Introducing variables map

The normal use of quote is to make proofs by reflection: one defines a function simplify
formula -> formula and proves a theorem simplify_ok: (f:formula) (interp_f
(simplify f)) -> (interp_f f£). Then, one can simplify formulas by doing:

quote interp_f.
apply simplify_ok.
compute.

But there is a problem with leafs: in the example above one cannot write a function that implements,
for example, the logical simplifications A A A — A or A A —-A — False. This is because the Prop is
impredicative.

It is better to use that type of formulas:

Cog < Inductive formula : Set :=
| £ and : formula —-> formula -> formula
| £f_or : formula —-> formula -> formula
| f_not : formula -> formula
| f_true : formula

| f_atom : index —-> formula.
formula is defined
formula_rect is defined
formula ind is defined
formula _rec is defined

index is defined in module quote. Equality on that type is decidable so we are able to simplify
A A Ainto A at the abstract level.

Coq Reference Manual, V8.6.1, July 26, 2017



280 10 Detailed examples of tactics

When there are variables, there are bindings, and quote provides also a type (varmap A) of
bindings from index to any set A, and a function varmap_find to search in such maps. The inter-
pretation function has now another argument, a variables map:

Cog < Fixpoint interp_f (vm:
varmap Prop) (f:formula) {struct f} : Prop :=
match £ with
| f_and f1 f2 => interp_f vm f1 /\ interp_f vm £2
| f_or f1 f2 => interp_f vm f1 \/ interp_f vm f2
| f_not fl1 => ~ interp_f vm f1l
| £_true => True
| f_atom i => varmap_find True i vm
end.
interp_f is defined
interp_f is recursively defined (decreasing on 2nd argument)

quote handles this second case properly:

Cog < Goal A /\ (B \/ A) /\ (A \/ ~ B).
1 subgoal

A/\ (B \/ A /\ (A \/ ~ B)

Cog < quote interp_f.
1 subgoal

interp_f
(Node_vm B (Node_vm A (Empty_vm Prop) (Empty_vm Prop)) (Empty_vm Prop))
(f_and (f_atom (Left_idx End_idx))
(f_and (f_or (f_atom End_idx) (f_atom (Left_idx End_idx)))
(f_or (f_atom (Left_idx End idx)) (f_not (f_atom End_idx)))))

It builds vm and t such that (f vm t) is convertible with the conclusion of current goal.

10.3.2 Combining variables and constants

One can have both variables and constants in abstracts terms; that is the case, for example, for the ring
tactic (chapter 25). Then one must provide to quote a list of constructors of constants. For example,
if the list is [O S] then closed natural numbers will be considered as constants and other terms as
variables.

Example:

Cog < Inductive formula : Type :=
| £f_and : formula —-> formula -> formula

| £ or : formula -> formula -> formula

| f_not : formula -> formula

| £ _true : formula

| £f_const : Prop —> formula (*x constructor for constants x)
| f_atom : index -> formula.

Cog < Fixpoint interp_f

Coq Reference Manual, V8.6.1, July 26, 2017



10.3 quote 281

(vm: (+ constructor for variables =«*)
varmap Prop) (f:formula) {struct f} : Prop :=
match £ with

| f_and f1 f2 => interp_f vm f1 /\ interp_f vm £2
| f_or f1 f2 => interp_f vm f1 \/ interp_f vm f2
| f_not fl => ~ interp_f vm f1l

| £f_true => True

| f_const c => c

| f_atom i => varmap_find True i vm

end.

Cog < Goal
A /N (A \/ True) /\ ~ B /\ (C <—> C).

Cog < quote interp_f [ A B ].
1 subgoal

interp_f (Node_vm (C <-> C) (Empty_vm Prop) (Empty_vm Prop))
(f_and (f_const A)
(f_and (f_or (f_const A) f_true)
(f_and (f_not (f_const B)) (f_atom End_idx))))

Cog < Undo.
1 subgoal

A /\ (A \/ True) /\ ~ B /\ (C <> C)

Coqg < quote interp_f [ B C iff ].
1 subgoal

interp_f (Node_vm A (Empty_vm Prop) (Empty_vm Prop))
(f_and (f_atom End_idx)
(f_and (f_or (f_atom End idx) f_true)
(f_and (f_not (f_const B)) (f_const (C <=>C)))))

Warning: Since function inversion is undecidable in general case, don’t expect miracles from it!

Variants:

1. quote ident in term using tactic

tactic must be a functional tactic (starting with fun x =>) and will be called with the quoted
version of term according to ident.

2. quote ident [ ident; ... ident, ] in term using tactic

Same as above, but will use ident, ..., ident,, to chose which subterms are constants (see above).

See also: comments of source file plugins/quote/quote.ml

See also: the ring tactic (Chapter 25)

Coq Reference Manual, V8.6.1, July 26, 2017



282 10 Detailed examples of tactics

Cog < Section Sort.

Coqg < Variable A : Set.
Cog < Inductive permut : list A -> list A —-> Prop :=
| permut_refl : forall 1, permut 1 1
| permut_cons
forall a 10 11, permut 10 11 -> permut (a :: 10) (a :: 11)
| permut_append : forall a 1, permut (a :: 1) (1 ++ a :: nil)

| permut_trans
forall 10 11 12, permut 10 11 -> permut 11 12 -> permut 10 12.

Cog < End Sort.

Figure 10.1: Definition of the permutation predicate

10.4 Using the tactical language

10.4.1 About the cardinality of the set of natural numbers

A first example which shows how to use the pattern matching over the proof contexts is the proof that
natural numbers have more than two elements. The proof of such a lemma can be done as follows:

Cog < Lemma card_nat
~ (exists x : nat, exists y : nat, forall z:nat, x =z \/ y = z).

Coqg < Proof.
Cogq < red; intros (x, (y, Hy)).

Cog < elim (Hy 0); elim (Hy 1); elim (Hy 2); intros;
match goal with
| [_:(?2a = ?b),_:(?2a = 2c) |- _1 =>
cut (b = c¢); [ discriminate | transitivity a; auto ]
end.

Cog < Qed.

We can notice that all the (very similar) cases coming from the three eliminations (with three distinct
natural numbers) are successfully solved by amatch goal structure and, in particular, with only one
pattern (use of non-linear matching).

10.4.2 Permutation on closed lists

Another more complex example is the problem of permutation on closed lists. The aim is to show that a
closed list is a permutation of another one.

First, we define the permutation predicate as shown in table 10.1.

A more complex example is the problem of permutation on closed lists. The aim is to show that
a closed list is a permutation of another one. First, we define the permutation predicate as shown on
Figure 10.1.

Next, we can write naturally the tactic and the result can be seen on Figure 10.2. We can no-
tice that we use two toplevel definitions PermutProve and Permut. The function to be called is
PermutProve which computes the lengths of the two lists and calls Permut with the length if the
two lists have the same length. Permut works as expected. If the two lists are equal, it concludes. Oth-
erwise, if the lists have identical first elements, it applies Permut on the tail of the lists. Finally, if the

Coq Reference Manual, V8.6.1, July 26, 2017




10.4 Using the tactical language 283

Cog < Ltac Permut n :=
match goal with
| |—= (permut _ ?1 ?1) => apply permut_refl

| |= (permut _ (?a :: ?11) (2a :: 212)) =>
let newn := eval compute in (length 11) in
(apply permut_cons; Permut newn)
| |- (permut ?A (?a :: ?11) 212) =>
match eval compute in n with
| 1 => fail
| =
let 11" := constr: (11 ++ a :: nil) in
(apply (permut_trans A (a :: 11) 11' 12);

[ apply permut_append | compute; Permut (pred n) ])
end
end.
Permut is defined

Cogq < Ltac PermutProve :=
match goal with
| |- (permut _ 2?11 212) =>
match eval compute in (length 11 = length 12) with
| (?n = ?n) => Permut n
end
end.
PermutProve is defined

Figure 10.2: Permutation tactic

lists have different first elements, it puts the first element of one of the lists (here the second one which
appears in the permut predicate) at the end if that is possible, i.e., if the new first element has been at
this place previously. To verify that all rotations have been done for a list, we use the length of the list
as an argument for Permut and this length is decremented for each rotation down to, but not including,
1 because for a list of length n, we can make exactly n — 1 rotations to generate at most n distinct lists.
Here, it must be noticed that we use the natural numbers of COQ for the rotation counter. On Figure 9.1,
we can see that it is possible to use usual natural numbers but they are only used as arguments for prim-
itive tactics and they cannot be handled, in particular, we cannot make computations with them. So, a
natural choice is to use COQ data structures so that COQ makes the computations (reductions) by eval
compute in and we can get the terms back by match.

With PermutProve, we can now prove lemmas as follows:

Cog < Lemma permut_exl
permut nat (1 :: 2 :: 3 :: nil) (3 :: 2 :: 1 :: nil).

Cog < Proof. PermutProve. Qed.
Cog < Lemma permut_ex2
permut nat
(0 ::21 22 2 2 3 224 25 6 127 228 19 1 onil)
(0 ::22 24 126 28 29 27 25 3 01 nil).

Cog < Proof. PermutProve. Qed.

Coq Reference Manual, V8.6.1, July 26, 2017




284 10 Detailed examples of tactics

10.4.3 Deciding intuitionistic propositional logic

The pattern matching on goals allows a complete and so a powerful backtracking when returning tactic
values. An interesting application is the problem of deciding intuitionistic propositional logic. Consid-
ering the contraction-free sequent calculi LIT * of Roy Dyckhoff ([56]), it is quite natural to code such a
tactic using the tactic language as shown on Figures 10.3 and 10.4. The tactic Axioms tries to conclude
using usual axioms. The tactic DSimpli f applies all the reversible rules of Dyckhoff’s system. Finally,
the tactic Taut oP rop (the main tactic to be called) simplifies with DSimpli £, tries to conclude with
Axioms and tries several paths using the backtracking rules (one of the four Dyckhoff’s rules for the
left implication to get rid of the contraction and the right or).
For example, with Taut oProp, we can prove tautologies like those:

Cog < Lemma tauto_exl : forall A B:Prop, A /\ B -> A \/ B.
Cog < Proof. TautoProp. Qed.

Cog < Lemma tauto_ex2
forall A B:Prop, (~ ~B ->B) -> (A -> B) -> ~ ~ A -> B.

Cog < Proof. TautoProp. Qed.

10.4.4 Deciding type isomorphisms

A more tricky problem is to decide equalities between types and modulo isomorphisms. Here, we choose
to use the isomorphisms of the simply typed A-calculus with Cartesian product and unit type (see, for
example, [45]). The axioms of this A-calculus are given by table 10.5.

A more tricky problem is to decide equalities between types and modulo isomorphisms. Here, we
choose to use the isomorphisms of the simply typed A-calculus with Cartesian product and unit type
(see, for example, [45]). The axioms of this A-calculus are given on Figure 10.5.

The tactic to judge equalities modulo this axiomatization can be written as shown on Figures 10.6
and 10.7. The algorithm is quite simple. Types are reduced using axioms that can be oriented (this
done by MainSimplif). The normal forms are sequences of Cartesian products without Cartesian
product in the left component. These normal forms are then compared modulo permutation of the com-
ponents (this is done by CompareStruct). The main tactic to be called and realizing this algorithm

is IsoProve.
Here are examples of what can be solved by IsoProve.

Cog < Lemma isos_exl
forall A B:Set, A x unit * B = B * (unit = A).

Cog < Proof.

Cog < intros; IsoProve.

Cog < Ltac Axioms :=
match goal with
| |- True => trivial
| _:False |- _ => elimtype False; assumption
| _:?A |- ?A => auto
end.
Axioms 1s defined

Figure 10.3: Deciding intuitionistic propositions (1)

Coq Reference Manual, V8.6.1, July 26, 2017




10.4 Using the tactical language

285

Cogq < Ltac DSimplif :=

repeat
(intros;
match goal with
| id:(~ _) |- _ => red in id
| id:(_ /\ ) |- _ =>
elim id; do 2 intro; clear id
| id:(_ \/ _) |- _ =>
elim id; intro; clear id
| id: (?A /\ 2B -> 2C) |- _ =>
cut (A —> B —> C);
[ intro | intros; apply id; split; assumption ]
| id: (?A \/ ?B -> 2C) |- _ =>

cut (B -> C);
[ cut (A —> C);
[ intros; clear id
| intro; apply id; left; assumption ]
| intro; apply id; right; assumption ]

| 1d0: (?A -> ?B),idl:?A |- _ =>
cut B; [ intro; clear id0 | apply 1id0; assumption ]
I 1= (_ /\ _) => split
| |- (~ _) => red
end) .

DSimplif is defined

Cog < Ltac TautoProp :=

DSimplif;
Axioms ||
match goal with
| 1d: ((?A -> ?B) —> ?2C) |- _ =>

cut (B -> C);
[ intro; cut (A -> B);
[ intro; cut C;
[ intro; clear id | apply id; assumption ]

| clear id ]
| intro; apply id; intro; assumption ]; TautoProp
| id: (~ ?A -> ?B) |- _ =>

cut (False -> B);
[ intro; cut (A -> False);
[ intro; cut B;
[ intro; clear id | apply id; assumption ]
| clear id ]
| intro; apply id; red; intro; assumption ]; TautoProp
| |- (_ \/ _) => (left; TautoProp) || (right; TautoProp)
end.
TautoProp 1is defined

Figure 10.4: Deciding intuitionistic propositions (2)

Cog < Qed.

Cog < Lemma isos_ex2
forall A B C:Set,
(A * unit -> B * (C * unit)) =

Coq Reference Manual, V8.6.1, July 26, 2017



286 10 Detailed examples of tactics
Cog < Open Scope type_scope.

Cog < Section Iso_axioms.

Cog < Variables A B C Set.

Cog < Axiom Com A x B =B * A.

Cog < Axiom Ass A+ (B C) =A% B x C.

Cog < Axiom Cur (A B->C) = (A ->B —-—>20C).

Cog < Axiom Dis (A ->B « C) = (A ->B) » (A —>2C).
Cog < Axiom P_unit A *x unit = A.

Cog < Axiom AR_unit (A —> unit) = unit.

Cog < Axiom AL_unit (unit -> A) = A.

Cog < Lemma Cons B=C->A B =A% C.

Cog < Proof.

Cog < intro Heq; rewrite Heq; reflexivity.

Cog < Qed.

Cogq < End Iso_axioms.

Figure 10.5: Type isomorphism axioms

(A % unit -> (C -> unit) =
Coqg < Proof.
Cog < intros; IsoProve.

Cog < Qed.

Coq Reference Manual, V8.6.1, July 26, 2017

C)

*

(unit

-> A —> B).




10.4 Using the tactical language 287

Cogq < Ltac DSimplif trm :=
match trm with
| (?A = ?B = 2C) =>
rewrite <- (Ass A B C); try MainSimplif
| (?A = ?B —-> ?2C) =>
rewrite (Cur A B C); try MainSimplif

| (?A —> ?B » ?2C) =>

rewrite (Dis A B C); try MainSimplif
| (?A * unit) =>

rewrite (P_unit A); try MainSimplif
| (unit * ?B) =>

rewrite (Com unit B); try MainSimplif
| (?A -> unit) =>

rewrite (AR_unit A); try MainSimplif
| (unit -> ?B) =>

rewrite (AL_unit B); try MainSimplif
| (?A %= ?B) =>

(DSimplif A; try MainSimplif) || (DSimplif B; try MainSimplif)
| (?A —-> ?B) =>
(DSimplif A; try MainSimplif) || (DSimplif B; try MainSimplif)

end
with MainSimplif :=
match goal with
| |- (?A = ?B) => try DSimplif A; try DSimplif B
end.
DSimplif is defined
MainSimplif is defined

Cog < Ltac Length trm :=
match trm with

| (_ = ?B) => let succ := Length B in constr: (S succ)
| _ => constr:1
end.
Toplevel input, characters 101-107:
> | _ => constr:1
> AAAAAA
Syntax error: "end" expected after [match_list] (in [tactic:tactic_expr]).
Cog < Ltac assoc := repeat rewrite <- Ass.

assoc 1is defined

Figure 10.6: Type isomorphism tactic (1)

Coq Reference Manual, V8.6.1, July 26, 2017




288

10 Detailed examples of tactics

end.
Toplevel input,
>
>
Error:

Cog < Ltac DoCompare n
match goal with

| [ |- (?A = ?A) ] => reflexivity
| [ |- (A % ?B = ?A x 2C) ] =>

apply Cons; let newn := Length B in

DoCompare newn

| [ |= (?A « 2B = ?C) ] =>

match eval compute in n with

| 1 => fail

=
pattern (A * B) at 1; rewrite Com; assoc; DoCompare (pred n
end

apply Cons;

characters 138-144:
let newn Length B in

AAAAAA

The reference Length was not found in the current environment.

Cog < Ltac CompareStruct
match goal with

Toplevel input,
> Ltac IsoProve
>

Error:

' [ I= (?A = ?B) 1 =>
let 11 := Length A
with 12 := Length B in
match eval compute in (11 = 12) with
(?n = ?n) => DoCompare n
end
end.
Toplevel input, characters 80-86:
> let 11 := Length A
S AAAAAA
Error: The reference Length was not found in the current environment.

Cog < Ltac IsoProve

The reference CompareStruct was not found in the current environment

MainSimplif; CompareStruct.
characters 30-43:

MainSimplif; CompareStruct.

AAAAAAAAAAAAA

Figure 10.7: Type isomorphism tactic (2)

Coq Reference Manual, V8.6.1, July 26, 2017



Chapter 11

The Mathematical Proof Language

11.1 Introduction

11.1.1 Foreword

In this chapter, we describe an alternative language that may be used to do proofs using the Coq proof
assistant. The language described here uses the same objects (proof-terms) as Coq, but it differs in the
way proofs are described. This language was created by Pierre Corbineau at the Radboud University of
Nijmegen, The Netherlands.

The intent is to provide language where proofs are less formalism- and implementation-sensitive,
and in the process to ease a bit the learning of computer-aided proof verification.

11.1.2 What is a declarative proof?

In vanilla Coq, proofs are written in the imperative style: the user issues commands that transform a so
called proof state until it reaches a state where the proof is completed. In the process, the user mostly
described the transitions of this system rather than the intermediate states it goes through.

The purpose of a declarative proof language is to take the opposite approach where intermediate
states are always given by the user, but the transitions of the system are automated as much as possible.

11.1.3 Well-formedness and Completeness

The Mathematical Proof Language introduces a notion of well-formed proofs which are weaker than
correct (and complete) proofs. Well-formed proofs are actually proof script where only the reasoning is
incomplete. All the other aspects of the proof are correct:

» All objects referred to exist where they are used
* Conclusion steps actually prove something related to the conclusion of the theorem (the thesis.

* Hypothesis introduction steps are done when the goal is an implication with a corresponding
assumption.

* Sub-objects in the elimination steps for tuples are correct sub-objects of the tuple being decom-
posed.

* Patterns in case analysis are type-correct, and induction is well guarded.

Coq Reference Manual, V8.6.1, July 26, 2017



290 11 The Mathematical Proof Language

11.1.4 Note for tactics users

This section explain what differences the casual Coq user will experience using the Mathematical Proof
Language.

1. The focusing mechanism is constrained so that only one goal at a time is visible.

2. Giving a statement that Coq cannot prove does not produce an error, only a warning: this allows
going on with the proof and fill the gap later.

3. Tactics can still be used for justifications and after escape.

11.1.5 Compatibility

The Mathematical Proof Language is available for all Coq interfaces that use text-based interaction,
including:

* the command-line toplevel cogtop

e the native GUI COQIDE

the PROOF GENERAL Emacs mode
* Cezary Kaliszyk’s Web interface
* L.E. Mamane’s tmEgg TeXmacs plugin

However it is not supported by structured editors such as PCoq.

11.2 Syntax

Here is a complete formal description of the syntax for Mathematical Proof Language commands.
The lexical conventions used here follows those of section 1.1.
Conventions:

* <tactic> stands for a Coq tactic.

11.2.1 Temporary names

In proof commands where an optional name is asked for, omitting the name will trigger the creation of
a fresh temporary name (e.g. for a hypothesis). Temporary names always start with an underscore _’
character (e.g. _hyp0). Temporary names have a lifespan of one command: they get erased after the
next command. They can however be safely in the step after their creation.

11.3 Language description

11.3.1 Starting and Ending a mathematical proof

The standard way to use the Mathematical Proof Language is to first state a Lemma / Theorem /
Definition and then use the proof command to switch the current subgoal to mathematical mode.
After the proof is completed, the end proof command will close the mathematical proof. If any
subgoal remains to be proved, they will be displayed using the usual Coq display.

Coq Reference Manual, V8.6.1, July 26, 2017



11.3 Language description 291

instruction

{a, B}-clause

statement

var

justification

proof

assume statement and ... and statement [[and {we have}-clause]]
{let,be}-clause

{given}-clause

{consider}-clause from term

(have | then | thus | hence]) statement justification

[thus] (~=l=~) [ident : Jtermjustification

suffices ({to have}-clause | statement and ... and statement [and
to show statement justification

(claim| focus on) statement

take term

define ident[var , ... , var] as term

reconsider (ident| thesis) as type

per (cases|induction) on term

per cases of type justification

suppose [ident, ... , identand] it is pattern

[such that statement and ... and statement [and {we have}-clause]]
end (proof | claim| focus | cases | induction)

escape

return

avar, ..., var fsuch that statementand ... and statement
[and {a, f}-clause]

[ident : ] type
thesis
thesis for ident

ident[: type]

[oy (« | term , ... , term)] [using tactic]

to havel-clat

Figure 11.1: Syntax of mathematical proof commands

Coqg < Theorem this_is_trivial: True.

1 subgoal

Cog < proof.

Cog < thus thesis.
Subproof completed, now type "end proof".

Coqg < end proof.

Cog < Qed.

thus thesis.

Qed.

this is trivial is defined

The proof command only applies to one subgoal, thus if several sub-goals are already present, the

Coq Reference Manual, V8.6.1, July 26, 2017



292 11 The Mathematical Proof Language

proof ... end proof sequence has to be used several times.

Cog < Theorem T: (True /\ True) /\ True.
Coqg < split. split.

Cog < Show.
3 subgoals

True
subgoal 2 is:
True
subgoal 3 1is:
True

Coqg < proof. (% first subgoal x)

Cog < thus thesis.
Subproof completed, now type "end proof".

Cog < end proof.

Cog < trivial. (% second subgoal «)
1 subgoal
True

Cog < proof. (% third subgoal x)

Coqg < thus thesis.
Subproof completed, now type "end proof".

Coqg < end proof.

As with all other block structures, the end proof command assumes that your proof is complete.
If not, executing it will be equivalent to admitting that the statement is proved: A warning will be issued
and you will not be able to run the Qed command. Instead, you can run Admitted if you wish to start
another theorem and come back later.

Coqg < Theorem this_is_not_so_trivial: False.
1 subgoal

Coq < proof.
Cog < end proof. (x here a warning is issued x)

Cog < Fail Qed. (» fails: the proof in incomplete x)

Fail Qed.

The command has indeed failed with message:

Error: Attempt to save a proof with given up goals. If this is really
what you want to do, use Admitted in place of

Qed. (in proof this_is_not_so trivial)

No more subgoals, but there are some goals you gave up:

1 subgoal

Coq Reference Manual, V8.6.1, July 26, 2017



11.3 Language description 293

subgoal 1 is:
False
You need to go back and solve them.

Cogq < Admitted. (x Oops! «)
this_is_not_so_trivial is declared

11.3.2 Switching modes

When writing a mathematical proof, you may wish to use procedural tactics at some point. One way
to do so is to write a using-phrase in a deduction step (see section 11.3.14). The other way is to use an
escape...return block.

Coq < Show.
*#++ Declarative Mode ##*x*

thesis :=
True

Cog < escape.

Cog < auto.
No more subgoals.

Cog < return.

The return statement expects all subgoals to be closed, otherwise a warning is issued and the proof
cannot be saved anymore.

It is possible to use the proof command inside an escape...return block, thus nesting a
mathematical proof inside a procedural proof inside a mathematical proof...

11.3.3 Computation steps

The reconsider ... as command allows changing the type of a hypothesis or of thesis toa
convertible one.

Cog < Show.
*+4 Declarative Mode *#*+%*

a := false : bool

b := true : bool

H : if a then True else False
thesis :=

if b then True else False

Cog < reconsider H as False.
**4+ Declarative Mode *x*x*

a := false : bool
b := true : bool
H : False

thesis :=

Coq Reference Manual, V8.6.1, July 26, 2017



294 11 The Mathematical Proof Language

if b then True else False

Cog < reconsider thesis as True.
*%* Declarative Mode *x*x*

a := false : bool
b := true : bool
H : False

thesis :=

True

11.3.4 Deduction steps

The most common instruction in a mathematical proof is the deduction step: it asserts a new statement

(a formula/type of the CIC) and tries to prove it using a user-provided indication: the justification. The
asserted statement is then added as a hypothesis to the proof context.

Cog < Show.
*+4 Declarative Mode #*#*+%*

X nat

H x = 2
thesis :=
2 + x =4

Cog < have H': (2+x=2+2) by H.
*+4 Declarative Mode #*#*+%*

X : nat

H x = 2

H' : 2 + x =2 + 2
thesis :=

2 + x =4

It is often the case that the justifications uses the last hypothesis introduced in the context, so the
then keyword can be used as a shortcut, e.g. if we want to do the same as the last example:

Cog < Show.
*+4 Declarative Mode #*#*+%*

X nat

H x = 2
thesis :=
2 + x =4

Cog < then (2+x=2+2).
*+4 Declarative Mode #**+%*

X : nat
H: x =2

Coq Reference Manual, V8.6.1, July 26, 2017



11.3 Language description 295

_fact : 2 + x =2 + 2

thesis :=
2 + x =4

In this example, you can also see the creation of a temporary name _fact.

11.3.5 Iterated equalities

A common proof pattern when doing a chain of deductions is to do multiple rewriting steps over the
same term, thus proving the corresponding equalities. The iterated equalities are a syntactic support for
this kind of reasoning:

Cog < Show.
*4+ Declarative Mode **#*

X : nat

H: x =2
thesis :=

X + X = X * X

Cog < have (4 = 4).
*+4 Declarative Mode #*#*+%*

X : nat

thesis
X + X = X * X

Coq < ~= (2 % 2).
*++ Declarative Mode #***

X : nat
H: x =2
_eqg : 4 =2 % 2

thesis :=
X + X = X * X

Cog < ~= (x * x) by H.
*#+4 Declarative Mode #**+%

thesis :=
X + X = X * X

Cogq < =~ (2 + 2).
*#++ Declarative Mode ##*x*

Coq Reference Manual, V8.6.1, July 26, 2017



11 The Mathematical Proof Language

thesis
X + X = X * X

Cog < =~ H':(x + x) by H.
*+4 Declarative Mode #*#*+%*

X : nat

H x = 2

H' : x + X = X * X
thesis :=

X + X = X * X

Notice that here we use temporary names heavily.

11.3.6 Subproofs

When an intermediate step in a proof gets too complicated or involves a well contained set of interme-
diate deductions, it can be useful to insert its proof as a subproof of the current proof. This is done by

using the claim ... end claim pair of commands.

Cog < Show.
*+4 Declarative Mode #*#*+%*

X : nat
H : x + X = Xx *~ X
thesis :=

x=0\/x =2

Cog < claim H': ((x - 2) » x = 0).
*#+4 Declarative Mode #*#*+%*

X : nat

H : x + X = Xx * X
thesis :=

(x — 2) » x =0

A few steps later...

Cog < thus thesis.

Toplevel input, characters 1329-1341:

Warning: Insufficient justification.
[declmode-insufficient-justification,declmode]
Subproof completed, now type "end proof".

Cogq < end claim.
*#++ Declarative Mode ##*x*

Coq Reference Manual, V8.6.1, July 26, 2017



11.3 Language description

297

X nat

H X + X = X * X

H' (x = 2) » x =0
thesis :=

x=0\/x =2

Now the rest of the proof can happen.

11.3.7 Conclusion steps

The commands described above have a conclusion counterpart, where the new hypothesis is used to

refine the conclusion.

Let us begin with simple examples:

Cog < Show.

*+4 Declarative Mode #**+%*

thesis :=
A /\ B

Cog < hence B.

*++ Declarative Mode #*#*+*

A, B : Prop
HA : A
HB, _fact : B

thesis :=
A

In the next example, we have to use thus because HB is no longer the last hypothesis.

Cog < Show.

*++ Declarative Mode x***

A, B, C : Prop
HA : A
HB : B
HC : C

thesis :=
A/\ B /\C

X simple

with previous step

opens sub-proof

iterated equality

intermediate step | have
conclusion step | thus

then
hence

claim
focus on

N:/:N

thus ~=/=~

Figure 11.2: Correspondence between basic forward steps and conclusion steps

Coq Reference Manual, V8.6.1, July 26, 2017



298

11 The Mathematical Proof Language

Cog < thus B by HB.
*##++ Declarative Mode ##*x*

A, B, C : Prop
HA : A

thesis :=
A /\ C

The command fails if the refinement process cannot find a place to fit the object in a proof of the

conclusion.

Cog < Show.
*#++ Declarative Mode ##*x*

A, B, C : Prop

HA : A
HB : B
HC : C
thesis :=
A /\ B
Cog < Fail hence C. (x fails x)

The command has indeed failed with message:

Error: I could not relate this statement to the thesis.
*+4 Declarative Mode #*#*+%*

A, B, C : Prop
HA : A
HB : B
HC : C

thesis :=
A /\ B

The refinement process may induce non reversible choices, e.g. when proving a disjunction it may

choose one side of the disjunction.

Cog < Show.
*#++ Declarative Mode #*x*

A, B : Prop
HB : B

thesis :=
A \/ B

Cog < hence B.
Subproof completed, now type "end proof".

In this example you can see that the right branch was chosen since D remains to be proved.

Coq Reference Manual, V8.6.1, July 26, 2017



11.3 Language description 299

Cog < Show.
*##++ Declarative Mode ##*x*

A, B, C, D : Prop

HC : C
HD : D
thesis :=

A/\VB\/C/\'D

Cog < thus C by HC.
*+4 Declarative Mode #*#*+%*

A, B, C, D : Prop
HC : C

HD : D

_fact : C

thesis :=
D

Now for existential statements, we can use the t ake command to choose 2 as an explicit witness of
existence.

Cog < Show.
*#++ Declarative Mode #x*x*

P : nat —-> Prop
HP : P 2

thesis :=
exists x : nat, P x

Cog < take 2.
*#+4 Declarative Mode #**+%*

P : nat —> Prop

HpP : P 2
thesis :=
P 2

It is also possible to prove the existence directly.

Cog < Show.
*##++ Declarative Mode ##*x*

P : nat —-> Prop
HP : P 2

thesis :=
exists x : nat, P x

Cog < hence (P 2).
Subproof completed, now type "end proof".

Coq Reference Manual, V8.6.1, July 26, 2017



300

11 The Mathematical Proof Language

Here a more involved example where the choice of P 2 propagates the choice of 2 to another part

of the formula.

Cog < Show.
*#++ Declarative Mode ##*x*

P : nat —> Prop
R : nat —> nat —-> Prop

HP : P 2
HR : R 0 2
thesis :=

exists x y : nat, Py /\ R xy

Cogq < thus (P 2) by HP.
*+4 Declarative Mode #*#*+%*

P : nat —> Prop

R : nat —-> nat —-> Prop
HpP : P 2
HR : R 0 2
_fact : P 2

thesis :=
exists n : nat, R n 2

Now, an example with the suffices command. suffices is a sort of dual for have: it allows
replacing the conclusion (or part of it) by a sufficient condition.

Cog < Show.
*#++ Declarative Mode ##*x*

A, B Prop

P : nat —-> Prop

HP : forall x : nat, P x -> B
HA : A

thesis :=
A /\ B

Cogq < suffices to have x such that HP': (P

*#++ Declarative Mode ##*x*

A, B Prop

P : nat —-> Prop

HP : forall x : nat, P x -> B
HA : A

_cofact forall x : nat, P x —-> B

thesis :=
A /\ (exists n : nat, P n)

X)

to show B by HP,HP'.

Finally, an example where focus is handy: local assumptions.

Coq Reference Manual, V8.6.1, July 26, 2017



11.3 Language description 301

Cog < Show.
*##++ Declarative Mode ##*x*

A : Prop

P : nat —> Prop
HP : P 2

HA A

thesis :=

A /\ (forall x : nat, x = 2 —-> P x)

Coqg < focus on (forall x, x = 2 -> P x).
Toplevel input, characters 0-34:
> focus on (forall x, x = 2 -> P x).

> AANAAAAAAAAAAAAAAAAAAAAAANAAANAAAAAAA

Error: No such section variable or assumption: _claim.

Cog < let x be such that (x = 2).
Toplevel input, characters 0-27:
> Jlet x be such that (x = 2).

> ANAAAAAAAAAANAAAAAAAAANAANAAA

Error: No product even after head-reduction.

Cog < hence thesis by HP.
Subproof completed, now type "end proof".

Cog < end focus.
Toplevel input, characters 0-10:
> end focus.

> AANAAAAAAAA

Anomaly: error with no safe_id attached:
Uncaught exception Invalid _argument ("get_info").. Please report at
http://coq.inria.fr/bugs/.

11.3.8 Declaring an Abbreviation

In order to shorten long expressions, it is possible to use the define ... as ... command to
give a name to recurring expressions.

Cog < Show.
*#++ Declarative Mode #*x*

X : nat

H x =0
thesis :=

X + X = X * X

Cog < define sgr x as (x * x).
**4+ Declarative Mode *x*x*

X : nat
H: x =20
sqr := fun x : nat => x * X : nat —-> nat

thesis :=

Coq Reference Manual, V8.6.1, July 26, 2017



11 The Mathematical Proof Language

Cog < reconsider thesis as (x + x =

*+4 Declarative Mode #*#*+*

X : nat

H: x =20

sqr := fun x : nat => x * X
thesis :=

X + X = s5qQr x

11.3.9 Introduction steps

nat

sgr x) .

—-> nat

When the thesis consists of a hypothetical formula (implication or universal quantification (e.g.
A -> B), itis possible to assume the hypothetical part A and then prove B. In the Mathematical Proof
Language, this comes in two syntactic flavors that are semantically equivalent: 1et and assume. Their
syntax is designed so that 1et works better for universal quantifiers and assume for implications.

Cog < Show.

*+4 Declarative Mode #*#*+%*

P : nat —> Prop

thesis :=
forall x : nat, P x -> P x

Cog < let x:nat.

*#++ Declarative Mode ##*x*

P : nat —> Prop

thesis :=
P x —> P x

Cog < assume HP: (P x).

*+4 Declarative Mode #***

P : nat —-> Prop
X : nat
HP : P x

thesis :=
P x

In the 1et variant, the type of the assumed object is optional provided it can be deduced from the
command. The objects introduced by let can be followed by assumptions using such that.

Cog < Show.

*+4 Declarative Mode #*#*+%

P : nat —> Prop

Coq Reference Manual, V8.6.1, July 26, 2017



11.3 Language description

303
thesis :=
forall x nat, P x -> P x
Cog < Fail let x. (% fails because x's type is not clear x)
The command has indeed failed with message:
Cannot infer the type of x in environment:
P : nat —-> Prop
*%% Declarative Mode *x*x*
P : nat —> Prop
thesis :=
forall x nat, P x -> P x
Cogq < let x be such that HP: (P x). (x here x's type is inferred from (P x) x)

*+4 Declarative Mode #**+*

P : nat
X : nat
HP P x

-> Prop

thesis :=
P x

In the assume variant, the type of the assumed object is mandatory but the name is optional:

Cog < Show.
*#++ Declarative Mode ##*x*

P : nat —> Prop
X : nat
thesis :=

P x —> P x —> P x

Cog < assume (P x).
*#++ Declarative Mode ##*x*

P : nat —> Prop
X : nat

_hyp : P x
thesis :=

P x —> P x

After such that, itis also the case:

Cog < Show.
*+4 Declarative Mode #*#*+%

P : nat —> Prop
thesis :=
forall x nat, P x —> P x

Cog < let x be such that (P x).

(» temporary name created

(* temporary name

created x)

Coq Reference Manual, V8.6.1, July 26, 2017



304 11 The Mathematical Proof Language

*++ Declarative Mode #***

P : nat —-> Prop
x : nat
_hyp : P x

thesis :=
P x

11.3.10 Tuple elimination steps

In the C1c, many objects dealt with in simple proofs are tuples: pairs, records, existentially quantified
formulas. These are so common that the Mathematical Proof Language provides a mechanism to extract
members of those tuples, and also objects in tuples within tuples within tuples...

Cog < Show.
*#++ Declarative Mode #*x*

P : nat —> Prop
A : Prop
H : exists x : nat, P x /\ A

thesis :=
A

Cog < consider x such that HP: (P x) and HA:A from H.
*+4 Declarative Mode #*#*+%*

P nat —-> Prop

A Prop

H : exists x : nat, P x /\ A
x : nat

HP : P x

HA A

thesis :=

Here is an example with pairs:

Cog < Show.
*#++ Declarative Mode #x*x*

P : nat * nat

thesis
fst p >= snd p \/ fst p < snd p

Cog < consider x:nat,y:nat from p.
**% Declarative Mode xxx*

P : nat * nat
X, y : nat

Coq Reference Manual, V8.6.1, July 26, 2017



11.3 Language description

305

thesis :=
fst (x, y) >= snd (x, y)

Cog < reconsider thesis as
*%* Declarative Mode *x*x*

P : nat * nat
X, V nat
thesis :=

x>y \/ x <y

\/ fst (X/

y) < snd

(x >y \/ x < y).

(x,

v)

It is sometimes desirable to combine assumption and tuple decomposition. This can be done using

the given command.

Cog < Show.
*+4 Declarative Mode #*#*+%

P : nat —> Prop

HP forall n nat, P n -> P (n
thesis :=

(exists m nat, P m) -> P 0

Cog < given

m such that Hm: (P m).

*++ Declarative Mode #***

P : nat —> Prop

HP forall n nat, P n -> P (n
m : nat

Hm P m

thesis :=

PO

11.3.11 Disjunctive reasoning

- 1)

- 1)

In some proofs (most of them usually) one has to consider several cases and prove that the thesis
holds in all the cases. This is done by first specifying which object will be subject to case distinction
(usually a disjunction) using per cases, and then specifying which case is being proved by using

suppose.

Cog < per cases on HAB.
*+4 Declarative Mode #*#*+%*

A, B, C Prop
HAC : A —> C
HBC : B —> C
HAB : A \/ B
thesis :=

C

Cog < suppose A.

Coq Reference Manual, V8.6.1, July 26, 2017



306

11 The Mathematical Proof Language

*++ Declarative Mode #***

A, B, C : Prop
HAC : A —> C
HBC : B —> C
HAB : A \/ B
_hyp : A

thesis :=
C

Cog < hence thesis by HAC.

Subproof completed,

Cog < suppose HB:B.

now type "end cases"

*+4 Declarative Mode #**+*

A, B, C : Prop
HAC : A —> C
HBC : B —> C
HAB : A \/ B

HB B
thesis :=
C

Cogq < thus thesis by HB, HBC.

Subproof completed,

Cog < end cases.
Subproof completed,

now type

now type "end cases"

"end proof".

or start a new case.

or start a new case.

The proof is well formed (but incomplete) even if you type end cases or the next suppose
before the previous case is proved.

If the disjunction is derived from a more general principle, e.g. the excluded middle axiom), it is
desirable to just specify which instance of it is being used:

Cog < Hypothesis EM
EM is declared

Cog < per cases of

forall P:Prop,

(A \/ ~A) by EM.

*+4 Declarative Mode #*#*+%*

EM : forall P : Prop,

A, C : Prop

HAC : A —> C
HNAC : ~ A —> C
anonymous_matched

A\N/ ~ A

thesis :=
C

Cog < suppose (~A).

*+4 Declarative Mode #*#*+%*

EM : forall P : Prop, P \/ ~ P

Coq Reference Manual, V8.6.1, July 26, 2017

P\/ ~P

~ P.



11.3 Language description 307

A, C : Prop

HAC : A —> C

HNAC : ~ A —> C
anonymous_matched : A \/ ~ A
_hyp : ~ A

thesis
C

Cogq < hence thesis by HNAC.
Subproof completed, now type "end cases" or start a new case.

Cog < suppose A.
*#+4 Declarative Mode #*#*+%*

EM : forall P : Prop, P \/ ~ P
A, C : Prop

HAC : A —> C

HNAC : ~ A —> C
anonymous_matched : A \/ ~ A
_hyp : A

thesis :=
C

Coqgq < hence thesis by HAC.
Subproof completed, now type "end cases" or start a new case.

Cog < end cases.
Subproof completed, now type "end proof".

11.3.12 Proofs per cases

If the case analysis is to be made on a particular object, the script is very similar: it starts with per
cases on object instead.

Cog < per cases on (EM A).
*+4 Declarative Mode #*#*+%*

EM : forall P : Prop, P \/ ~ P
A, C : Prop

HAC : A —> C

HNAC : ~ A —> C

thesis :=
C
Cog < suppose (~A).
*+4 Declarative Mode #*#*+%*

EM : forall P : Prop, P \/ ~ P
A, C : Prop

HAC : A —> C

HNAC : ~ A —> C

_hyp : ~ A

Coq Reference Manual, V8.6.1, July 26, 2017



308 11 The Mathematical Proof Language

thesis
C

If the object on which a case analysis occurs in the statement to be proved, the command suppose

it 1is pattern is better suited than suppose. pattern may contain nested patterns with as clauses.
A detailed description of patterns is to be found in figure 1.2. here is an example.

Cog < per cases on Xx.
*** Declarative Mode *x*x*

A, B : Prop
x : bool

thesis
(if x then A else B) —> A \/ B

Cog < suppose it is true.
*%% Declarative Mode *x*x*

A, B : Prop
x : bool

thesis :=
A -> A \/ B

Cog < assume A.
*+4 Declarative Mode #*#*+%*

A, B : Prop
x : bool

thesis :=
A \/ B

Cog < hence A.

Subproof completed, now type "end cases" or start a new case.

Cog < suppose it is false.
*4% Declarative Mode *#*x*

A, B : Prop
X : bool

thesis :=
B —> A4 \/ B

Cog < assume B.
*+4 Declarative Mode #*#*+%*

A, B : Prop
x : bool
_hyp : B

thesis :=
A \/ B

Coq Reference Manual, V8.6.1, July 26, 2017



11.3 Language description 309

Cog < hence B.
Subproof completed, now type "end cases" or start a new case.

Cog < end cases.
Subproof completed, now type "end proof".

11.3.13 Proofs by induction

Proofs by induction are very similar to proofs per cases: they start with per induction on
object and proceed with suppose it is patternand induction hypothesis. The induction hy-
pothesis can be given explicitly or identified by the sub-object m it refers to using thesis for m.

Cog < per induction on n.
*+4 Declarative Mode #*#*+%*

thesis :=
n+ 0 =n

Cog < suppose it is 0.
*#++ Declarative Mode #x*x*

n : nat

thesis :=
0+ 0 =20

Cog < thus (0 + 0 = 0).
Subproof completed, now type "end induction" or start a new case.

Cog < suppose it is (S m) and H:thesis for m.
*+4 Declarative Mode #*#*+%

thesis :
Sm+ 0 =S m
Coqg < then (S (m + 0) = S m).

*+4 Declarative Mode #**+%

n, m : nat
H:m+ 0 =m
_fact : S (m + 0) = S m

thesis :=
Sm+ 0 =S m

Cog < thus =~ (S m + 0).
Subproof completed, now type "end induction" or start a new case.

Cog < end induction.
Subproof completed, now type "end proof".

Coq Reference Manual, V8.6.1, July 26, 2017



310 11 The Mathematical Proof Language

11.3.14 Justifications

Intuitively, justifications are hints for the system to understand how to prove the statements the user
types in. In the case of this language justifications are made of two components:

Justification objects: by followed by a comma-separated list of objects that will be used by a selected
tactic to prove the statement. This defaults to the empty list (the statement should then be tautological).
The * wildcard provides the usual tactics behavior: use all statements in local context. However, this
wildcard should be avoided since it reduces the robustness of the script.

Justification tactic: using followed by a Coq tactic that is executed to prove the statement. The
default is a solver for (intuitionistic) first-order with equality.

11.4 More details and Formal Semantics

I suggest the users looking for more information have a look at the paper [34]. They will find in that
paper a formal semantics of the proof state transition induces by mathematical commands.

Coq Reference Manual, V8.6.1, July 26, 2017



Part 111

User extensions

Coq Reference Manual, V8.6.1, July 26, 2017






Chapter 12

Syntax extensions and interpretation
scopes

In this chapter, we introduce advanced commands to modify the way COQ parses and prints objects, i.e.
the translations between the concrete and internal representations of terms and commands. The main
commands are Notation and Infix which are described in section 12.1. It also happens that the
same symbolic notation is expected in different contexts. To achieve this form of overloading, COQ
offers a notion of interpretation scope. This is described in Section 12.2.

Remark: The commands Grammar, Syntax and Dist fix which were present for a while in COQ
are no longer available from COQ version 8.0. The underlying AST structure is also no longer available.
The functionalities of the command Syntactic Definition are still available, see Section 12.3.

12.1 Notations

12.1.1 Basic notations

A notation is a symbolic abbreviation denoting some term or term pattern.
A typical notation is the use of the infix symbol /\ to denote the logical conjunction (and). Such a
notation is declared by

Cog < Notation "A /\ B" := (and A B).

The expression (and A B) is the abbreviated term and the string "A /\ B" (called a notation)
tells how it is symbolically written.

A notation is always surrounded by double quotes (excepted when the abbreviation is a single iden-
tifier, see 12.3). The notation is composed of fokens separated by spaces. Identifiers in the string (such
as A and B) are the parameters of the notation. They must occur at least once each in the denoted term.
The other elements of the string (such as /\) are the symbols.

An identifier can be used as a symbol but it must be surrounded by simple quotes to avoid the
confusion with a parameter. Similarly, every symbol of at least 3 characters and starting with a simple
quote must be quoted (then it starts by two single quotes). Here is an example.

Cog < Notation "'IF' cl 'then' c2 'else' c¢3" := (IF_then_else cl c2 c3).

A notation binds a syntactic expression to a term. Unless the parser and pretty-printer of COQ already
know how to deal with the syntactic expression (see 12.1.7), explicit precedences and associativity rules
have to be given.

Coq Reference Manual, V8.6.1, July 26, 2017



314 12 Syntax extensions and interpretation scopes

12.1.2 Precedences and associativity

Mixing different symbolic notations in a same text may cause serious parsing ambiguity. To deal with
the ambiguity of notations, COQ uses precedence levels ranging from O to 100 (plus one extra level
numbered 200) and associativity rules.

Consider for example the new notation

Coq < Notation "A \/ B" := (or A B).

Clearly, an expression such as forall A:Prop, True /\ A \/ A \/ False is ambigu-
ous. To tell the COQ parser how to interpret the expression, a priority between the symbols /\ and \ /
has to be given. Assume for instance that we want conjunction to bind more than disjunction. This is
expressed by assigning a precedence level to each notation, knowing that a lower level binds more than
a higher level. Hence the level for disjunction must be higher than the level for conjunction.

Since connectives are the less tight articulation points of a text, it is reasonable to choose levels not
so far from the higher level which is 100, for example 85 for disjunction and 80 for conjunction'.

Similarly, an associativity is needed to decide whether True /\ False /\ False defaults to
True /\ (False /\ False) (right associativity) orto (True /\ False) /\ False (left
associativity). We may even consider that the expression is not well-formed and that parentheses are
mandatory (this is a “no associativity”)>. We don’t know of a special convention of the associativity of
disjunction and conjunction, let’s apply for instance a right associativity (which is the choice of C0Q).

Precedence levels and associativity rules of notations have to be given between parentheses in a list
of modifiers that the Notat ion command understands. Here is how the previous examples refine.

Cogq < Notation "A /\ B" := (and A B) (at level 80, right associativity).

Coq < Notation "A \/ B"

(or A B) (at level 85, right associativity).

By default, a notation is considered non associative, but the precedence level is mandatory (except
for special cases whose level is canonical). The level is either a number or the mention next level
whose meaning is obvious. The list of levels already assigned is on Figure 3.1.

12.1.3 Complex notations
Notations can be made from arbitrarily complex symbols. One can for instance define prefix notations.

Cog < Notation "~ x" := (not x) (at level 75, right associativity).

One can also define notations for incomplete terms, with the hole expected to be inferred at typing
time.

Cog < Notation "x = y" := (@Geq _ x y) (at level 70, no associativity).

One can define closed notations whose both sides are symbols. In this case, the default precedence
level for inner subexpression is 200.

Cogq < Notation "( x , y )" := (@pair _ _ x y) (at level 0).

'which are the levels effectively chosen in the current implementation of COQ

2 CoQ accepts notations declared as no associative but the parser on which COQ is built, namely CAMLP4, currently does
not implement the no-associativity and replace it by a left associativity; hence it is the same for COQ: no-associativity is in fact
left associativity

Coq Reference Manual, V8.6.1, July 26, 2017



12.1 Notations 315

One can also define notations for binders.
Cog < Notation "{ x : A | P }" := (sig A (fun x => P)) (at level 0).

In the last case though, there is a conflict with the notation for type casts. This last notation, as
shown by the command Print Grammar constr is atlevel 100. To avoid x : A being parsed as
a type cast, it is necessary to put x at a level below 100, typically 99. Hence, a correct definition is

Cog < Notation "{ x : A | P }" := (sig A (fun x => P)) (at level 0, x at level 99).

See the next section for more about factorization.

12.1.4 Simple factorization rules

CoqQ extensible parsing is performed by Camlp5 which is essentially a LL1 parser. Hence, some care
has to be taken not to hide already existing rules by new rules. Some simple left factorization work has
to be done. Here is an example.

Cog < Notation "x < y" (1t x y) (at level 70).

Cogq < Notation "x <y < z" := (x <y /\ y < z) (at level 70).

In order to factorize the left part of the rules, the subexpression referred by y has to be at the same
level in both rules. However the default behavior puts y at the next level below 70 in the first rule (no
associativity is the default), and at the level 200 in the second rule (level 200 is the default for inner
expressions). To fix this, we need to force the parsing level of vy, as follows.

Cog < Notation "x < y" (1t x y) (at level 70).

Cog < Notation "x <y < z" := (x <y /\ y < z) (at level 70, y at next level).

For the sake of factorization with COQ predefined rules, simple rules have to be observed for nota-
tions starting with a symbol: e.g. rules starting with “{” or “(” should be put at level 0. The list of COQ
predefined notations can be found in Chapter 3.

The command to display the current state of the COQ term parser is

Print Grammar constr.
Variant:
Print Grammar pattern.

This displays the state of the subparser of patterns (the parser used in the grammar of the match
with constructions).

Coq Reference Manual, V8.6.1, July 26, 2017



316 12 Syntax extensions and interpretation scopes

12.1.5 Displaying symbolic notations

The command Not at ion has an effect both on the COQ parser and on the COQ printer. For example:

Cog < Check (and True True).
True /\ True
: Prop

However, printing, especially pretty-printing, requires more care than parsing. We may want specific
indentations, line breaks, alignment if on several lines, etc.

The default printing of notations is very rudimentary. For printing a notation, a formatting box is
opened in such a way that if the notation and its arguments cannot fit on a single line, a line break is
inserted before the symbols of the notation and the arguments on the next lines are aligned with the
argument on the first line.

A first, simple control that a user can have on the printing of a notation is the insertion of spaces at
some places of the notation. This is performed by adding extra spaces between the symbols and param-
eters: each extra space (other than the single space needed to separate the components) is interpreted as
a space to be inserted by the printer. Here is an example showing how to add spaces around the bar of
the notation.

Cog < Notation "{{ x : A | P }}I" := (sig (fun x : A => P))
(at level 0, x at level 99).

Cog < Check (sig (fun x : nat => x=x)).
{{x : nat | x = x}}
Set

The second, more powerful control on printing is by using the format modifier. Here is an example

Cog < Notation "'If' cl 'then' c2 'else' c3" := (IF_then_else cl c2 c3)
(at level 200, right associativity, format
"V[V 1 'IfV Cl l/' V[l lthen' CZ l]l V/V l[l lelseV C3 l]' V]l").

Identifier 'If' now a keyword

A format is an extension of the string denoting the notation with the possible following elements
delimited by single quotes:

* extra spaces are translated into simple spaces

* tokens of the form 7/ ’ are translated into breaking point, in case a line break occurs, an
indentation of the number of spaces after the “/” is applied (2 spaces in the given example)

* token of the form ’ / /' force writing on a new line

» well-bracketed pairs of tokens of the form ’ [ " and ’ ]’ are translated into printing boxes;
in case a line break occurs, an extra indentation of the number of spaces given after the “[” is
applied (4 spaces in the example)

» well-bracketed pairs of tokens of the form ’ [hv " and " ]’ are translated into horizontal-

orelse-vertical printing boxes; if the content of the box does not fit on a single line, then every
breaking point forces a newline and an extra indentation of the number of spaces given after the
“[” is applied at the beginning of each newline (3 spaces in the example)

Coq Reference Manual, V8.6.1, July 26, 2017



12.1 Notations 317

» well-bracketed pairs of tokens of the form ’ [v ’ and ’ ]’ are translated into vertical printing
boxes; every breaking point forces a newline, even if the line is large enough to display the whole
content of the box, and an extra indentation of the number of spaces given after the “[” is applied
at the beginning of each newline

Thus, for the previous example, we get
Notations do not survive the end of sections. No typing of the denoted expression is performed at
definition time. Type-checking is done only at the time of use of the notation.

Cog < Check
(IF_then_else (IF_then_else True False True)
(IF_then_else True False True)
(IF_then_else True False True)).
If If True
then False
else True
then If True
then False
else True
else If True
then False
else True
: Prop

Remark: Sometimes, a notation is expected only for the parser. To do so, the option only parsing is
allowed in the list of modifiers of Notation.

Conversely, the only printing can be used to declare that a notation should only be used for printing
and should not declare a parsing rule. In particular, such notations do not modify the parser.

12.1.6 The Infix command

The Infix command is a shortening for declaring notations of infix symbols. Its syntax is
Infix "symbol" :=qualid ( modifier , ... , modifier ).
and it is equivalent to
Notation "x symbol y" := (qualid x y) (modifier, ... , modifier) .
where x and y are fresh names distinct from qualid. Here is an example.

Coq < Infix "/\" := and (at level 80, right associativity).

12.1.7 Reserving notations

A given notation may be used in different contexts. COQ expects all uses of the notation to be defined at
the same precedence and with the same associativity. To avoid giving the precedence and associativity
every time, it is possible to declare a parsing rule in advance without giving its interpretation. Here is an
example from the initial state of COQ.

Cog < Reserved Notation "x = y" (at level 70, no associativity).

Coq Reference Manual, V8.6.1, July 26, 2017



318 12 Syntax extensions and interpretation scopes

Reserving a notation is also useful for simultaneously defining an inductive type or a recursive
constant and a notation for it.

Remark: The notations mentioned on Figure 3.1 are reserved. Hence their precedence and associativity
cannot be changed.

12.1.8 Simultaneous definition of terms and notations

Thanks to reserved notations, the inductive, co-inductive, recursive and corecursive definitions can ben-
efit of customized notations. To do this, insert a where notation clause after the definition of the
(co)inductive type or (co)recursive term (or after the definition of each of them in case of mutual defini-
tions). The exact syntax is given on Figure 12.1. Here are examples:

Cog < Inductive and (A B:Prop) : Prop := conj : A -> B -> A /\ B
where "A /\ B" := (and A B).
Cog < Fixpoint plus (n m:nat) {struct n} : nat :=
match n with
| O =>m
| S p =>S5 (p+tm)
end
where "n + m" := (plus n m).

12.1.9 Displaying informations about notations
To deactivate the printing of all notations, use the command
Unset Printing Notations.
To reactivate it, use the command
Set Printing Notations.

The default is to use notations for printing terms wherever possible.

See also: Set Printing All in Section 2.9.

12.1.10 Locating notations

To know to which notations a given symbol belongs to, use the command
Locate symbol

where symbol is any (composite) symbol surrounded by double quotes. To locate a particular notation,
use a string where the variables of the notation are replaced by “_” and where possible single quotes
inserted around identifiers or tokens starting with a single quote are dropped.

Example:

Cog < Locate "exists".
Notation Scope
"lexists' x .. y , p" :=ex (funy => .. (ex (fun y =>p)) ..)
type_scope
(default interpretation)

Coq Reference Manual, V8.6.1, July 26, 2017



12.1 Notations 319

sentence = [Local]Notation string := term [modifiers] [:scope] .
| [Local] Infix string := qualid [modifiers] [:scope] .
| [Local]Reserved Notation string [modifiers] .
| Inductive ind_body [decl_notation] with ... with ind_body [decl_notation].
| CoInductive ind_body [decl _notation]with ... with ind_body [decl_notation].
| Fixpoint fix_body [decl_notation]with ... with fix_body [decl_notation] .
| CoFixpoint cofix_body [decl notation]with ... with cofix_body [decl_notation]|.

decl_notation := [where string := term [:scope] and ... and string := term [:scope]].
modifiers = ident , ..., ident at level natural
ident , ... , ident at next level

|

| at level natural

| left associativity
| right associativity
| no associativity

|  ident ident

| ident binder

|  ident closed binder
|  ident global

| ident bigint

| only parsing

| only printing

| format string

Figure 12.1: Syntax of the variants of Notation

"'exists' ! x ..y , p" = ex
(unique
(fun y =>
(ex (unique (fun y => p))) ..))
type_scope
(default interpretation)

Coqg < Locate "exists _ .. _ , _".
Notation Scope
"'exists' x .. vy , p" :=ex (fun y => .. (ex (fun y => p)) ..)

type_scope

(default interpretation)

See also: Section 6.3.10.

12.1.11 Notations and simple binders
Notations can be defined for binders as in the example:
Cog < Notation "{ x : A | P }" := (sig (fun x : A => P)) (at level 0).

The binding variables in the left-hand-side that occur as a parameter of the notation naturally bind all
their occurrences appearing in their respective scope after instantiation of the parameters of the notation.

Contrastingly, the binding variables that are not a parameter of the notation do not capture the vari-
ables of same name that could appear in their scope after instantiation of the notation. E.g., for the
notation

Coq Reference Manual, V8.6.1, July 26, 2017




320 12 Syntax extensions and interpretation scopes

Cog < Notation "'exists_different' n" := (exists p:nat, p<>n) (at level 200).

the next command fails because p does not bind in the instance of n.

Cog < Fail Check (exists_different p).
The command has indeed failed with message:
The reference p was not found in the current environment.

Remark: Binding variables must not necessarily be parsed using the ident entry. For factorization
purposes, they can be said to be parsed at another level (e.g. xin"{ x : A | P }" mustbe parsed
at level 99 to be factorized with the notation "{ A } + { B }" for which A can be any term).
However, even if parsed as a term, this term must at the end be effectively a single identifier.

12.1.12 Notations with recursive patterns

A mechanism is provided for declaring elementary notations with recursive patterns. The basic example
is:

Cogq < Notation "[ x ; .. ; y 1" := (cons x .. (cons y nil) ..).

On the right-hand side, an extra construction of the form .. ¢ .. can be used. Notice that . . is
part of the COQ syntax and it must not be confused with the three-dots notation . . . used in this manual
to denote a sequence of arbitrary size.

On the left-hand side, the part “z s .. s y” of the notation parses any number of time (but at least
one time) a sequence of expressions separated by the sequence of tokens s (in the example, s is just

@,
14

In the right-hand side, the term enclosed within . . must be a pattern with two holes of the form
([ ]&, [ ]r) where the first hole is occupied either by x or by y and the second hole is occupied by an
arbitrary term ¢ called the terminating expression of the recursive notation. The subterm .. ¢(z,t)

(or .. ¢(y,t) ..) mustitself occur at second position of the same pattern where the first hole is
occupied by the other variable, y or x. Otherwise said, the right-hand side must contain a subterm of
the form either ¢(z,. . ¢(y,t) . .) or ¢(y,.. ¢(z,t) . .). The pattern ¢ is the iterator of the recursive
notation and, of course, the name x and y can be chosen arbitrarily.

The parsing phase produces a list of expressions which are used to fill in order the first hole of the
iterating pattern which is repeatedly nested as many times as the length of the list, the second hole being
the nesting point. In the innermost occurrence of the nested iterating pattern, the second hole is finally
filled with the terminating expression.

In the example above, the iterator ¢([ |z, []r) is cons [ |g [ ]r and the terminating expression is
nil. Here are other examples:

Cogq < Notation "( x , v, .. , z )" := (pair .. (pair x y) .. z) (at level 0).
Cog < Notation "[|] ¢t *x (x , V, .. , 2 ) ; (a, b, .., c) u |[1" =
(pair (pair .. (pair (pair t x) (pair t y)) .. (pair t z))
(pair .. (pair (pair a u) (pair b u)) .. (pair c u)))

(t at level 39).

Recursive patterns can occur several times on the right-hand side. Here is an example:

Coq Reference Manual, V8.6.1, July 26, 2017



12.1 Notations 321

Cog < Notation "[> a , .. , b <]" :=
(cons a .. (cons b nil) .., cons b .. (cons a nil) ..).

Notations with recursive patterns can be reserved like standard notations, they can also be declared
within interpretation scopes (see section 12.2).

12.1.13 Notations with recursive patterns involving binders

Recursive notations can also be used with binders. The basic example is:

Cog < Notation "'exists' x .. y , p" := (ex (fun x => .. (ex (fun y => p))
(at level 200, x binder, y binder, right associativity).

The principle is the same as in Section 12.1.12 except that in the iterator ¢([ |z, [ ]1), the first hole is
a placeholder occurring at the position of the binding variable of a fun ora forall.

To specify that the part “x .. %” of the notation parses a sequence of binders, = and y must be
marked as binder in the list of modifiers of the notation. Then, the list of binders produced at the
parsing phase are used to fill in the first hole of the iterating pattern which is repeatedly nested as many
times as the number of binders generated. If ever the generalization operator * (see Section 2.7.19) is
used in the binding list, the added binders are taken into account too.

Binders parsing exist in two flavors. If z and y are marked as binder, then a sequence such as a
b ¢ : T will be accepted and interpreted as the sequence of binders (a:T) (b:T) (c:T).For
instance, in the notation above, the syntax exists a b : nat, a = bis provided.

The variables x and y can also be marked as closed binder in which case only well-bracketed
binders of the form (a b c:T) or {a b c:T} etc. are accepted.

With closed binders, the recursive sequence in the left-hand side can be of the general form z s . .
s y where s is an arbitrary sequence of tokens. With open binders though, s has to be empty. Here is an
example of recursive notation with closed binders:

mwru

Cog < Notation mylet' £ x .. vy = t :
(let £ := fun x => .. (fun y => t) .. in u)

(at level 200, x closed binder, y closed binder, right associativity).

A recursive pattern for binders can be used in position of a recursive pattern for terms. Here is an
example:

Cog < Notation "'FUNAPP' x .. y , f" :=
(fun x => .. (fun y => (.. (f x) ..) y ) ..)
(at level 200, x binder, y binder, right associativity).

12.1.14 Summary

Syntax of notations The different syntactic variants of the command Notation are given on Fig-
ure 12.1. The optional : scope is described in the Section 12.2.

Remark: No typing of the denoted expression is performed at definition time. Type-checking is done
only at the time of use of the notation.

Remark: Many examples of Notat ion may be found in the files composing the initial state of COQ
(see directory SCOQLIB/theories/Init).

Coq Reference Manual, V8.6.1, July 26, 2017



322 12 Syntax extensions and interpretation scopes

Remark: The notation " { x }" has a special status in such a way that complex notations of the form
"x + { y }"or"x x { y }" can be nested with correct precedences. Especially, every notation
involving a pattern of the form "{ x }" is parsed as a notation where the pattern " { x }" has been
simply replaced by "x" and the curly brackets are parsed separately. E.g. "y + { z }" isnot parsed
as a term of the given form but as a term of the form "y + z" where z has been parsed using the rule
parsing " { x }". Especially, level and precedences for a rule including patterns of the form " { x }"
are relative not to the textual notation but to the notation where the curly brackets have been removed
(e.g. the level and the associativity given to some notation, say "{ y } & { z }" in fact applies to
the underlying " { x }"-free rule whichis "y & z").

Persistence of notations Notations do not survive the end of sections. They survive modules unless
the command Local Notation is used instead of Notation.

12.2 Interpretation scopes

An interpretation scope is a set of notations for terms with their interpretation. Interpretation scopes
provides with a weak, purely syntactical form of notations overloading: a same notation, for instance
the infix symbol + can be used to denote distinct definitions of an additive operator. Depending on which
interpretation scopes is currently open, the interpretation is different. Interpretation scopes can include
an interpretation for numerals and strings. However, this is only made possible at the OBJECTIVE CAML
level.

See Figure 12.1 for the syntax of notations including the possibility to declare them in a given scope.
Here is a typical example which declares the notation for conjunction in the scope type_scope.

Notation "A /\ B" := (and A B) : type_scope.
Remark: A notation not defined in a scope is called a lonely notation.

12.2.1 Global interpretation rules for notations

At any time, the interpretation of a notation for term is done within a stack of interpretation scopes and
lonely notations. In case a notation has several interpretations, the actual interpretation is the one defined
by (or in) the more recently declared (or open) lonely notation (or interpretation scope) which defines
this notation. Typically if a given notation is defined in some scope scope but has also an interpretation
not assigned to a scope, then, if scope is open before the lonely interpretation is declared, then the lonely
interpretation is used (and this is the case even if the interpretation of the notation in scope is given after
the lonely interpretation: otherwise said, only the order of lonely interpretations and opening of scopes
matters, and not the declaration of interpretations within a scope).

The initial state of COQ declares three interpretation scopes and no lonely notations. These scopes,
in opening order, are core_scope, type_scope and nat_scope.

The command to add a scope to the interpretation scope stack is

Open Scope scope.
It is also possible to remove a scope from the interpretation scope stack by using the command

Close Scope scope.

Coq Reference Manual, V8.6.1, July 26, 2017



12.2 Interpretation scopes 323

Notice that this command does not only cancel the last Open Scope scope but all the invocation of
it.
Remark: Open Scope and Close Scope do not survive the end of sections where they occur.

When defined outside of a section, they are exported to the modules that import the module where they
occur.

Variants:
1. Local Open Scope scope.

2. Local Close Scope scope.

These variants are not exported to the modules that import the module where they occur, even if
outside a section.

3. Global Open Scope scope.

4. Global Close Scope scope.

These variants survive sections. They behave as if G1obal were absent when not inside a section.

12.2.2 Local interpretation rules for notations

In addition to the global rules of interpretation of notations, some ways to change the interpretation of
subterms are available.

Local opening of an interpretation scope

It is possible to locally extend the interpretation scope stack using the syntax (term)%key (or simply
term%key for atomic terms), where key is a special identifier called delimiting key and bound to a given
scope.

In such a situation, the term term, and all its subterms, are interpreted in the scope stack extended
with the scope bound to key.

To bind a delimiting key to a scope, use the command

Delimit Scope scope with ident
To remove a delimiting key of a scope, use the command

Undelimit Scope scope

Binding arguments of a constant to an interpretation scope

It is possible to set in advance that some arguments of a given constant have to be interpreted in a given
scope. The command is

Arguments qualid name%scope ... name$%scope

where the list is a prefix of the list of the arguments of qualid eventually annotated with their scope.
Grouping round parentheses can be used to decorate multiple arguments with the same scope. scope
can be either a scope name or its delimiting key. For example the following command puts the first two
arguments of plus_ fct in the scope delimited by the key F (Rfun_scope) and the last argument in
the scope delimited by the key R (R_scope).

Coq Reference Manual, V8.6.1, July 26, 2017



324 12 Syntax extensions and interpretation scopes

Cog < Arguments plus_fct (fl1 £2)%F x%R.

The Argument s command accepts scopes decoration to all grouping parentheses. In the following
example arguments A and B are marked as maximally inserted implicit arguments and are put into the
type_scope scope.

Cog < Arguments respectful {A B}%type (R R')%signature

When interpreting a term, if some of the arguments of qualid are built from a notation, then this
notation is interpreted in the scope stack extended by the scope bound (if any) to this argument. The
effect of the scope is limited to the argument itself. It does not propagate to subterms but the subterms
that, after interpretation of the notation, turn to be themselves arguments of a reference are interpreted
accordingly to the arguments scopes bound to this reference.

Arguments scopes can be cleared with the following command:

Arguments qualid : clear scopes
Variants:
1. Global Arguments qualid name%scope ... name$%scope
This behaves like Argument s qualid name%scope ... name$%scope but survives when a section

is closed instead of stopping working at section closing. Without the G1 obal modifier, the effect
of the command stops when the section it belongs to ends.

2. Local Arguments qualid name%scope ... name$scope
This behaves like Argument s qualid name%scope ... name$%scope but does not survive mod-

ules and files. Without the Local modifier, the effect of the command is visible from within other
modules or files.

See also: The command to show the scopes bound to the arguments of a function is described in Sec-
tion 2.

Binding types of arguments to an interpretation scope

When an interpretation scope is naturally associated to a type (e.g. the scope of operations on the natural
numbers), it may be convenient to bind it to this type. When a scope scope is bound to a type type, any
new function defined later on gets its arguments of type type interpreted by default in scope scope (this
default behavior can however be overwritten by explicitly using the command Arguments).

Whether the argument of a function has some type type is determined statically. For instance, if £
is a polymorphic function of type forall X:Type, X —> X and type t is bound to a scope scope,
then a of type t in £ t a is not recognized as an argument to be interpreted in scope scope.

More generally, any coercion class (see Chapter 18) can be bound to an interpretation scope. The
command to do it is

Bind Scope scope with class
Example:

Coq Reference Manual, V8.6.1, July 26, 2017



12.2 Interpretation scopes 325

Cog < Parameter U : Set.
U is declared

Cog < Bind Scope U_scope with U.

Cog < Parameter Uplus : U —> U -> U.
Uplus is declared

Cog < Parameter P : forall T:Set, T —> U —-> Prop.
P is declared

Cog < Parameter f : forall T:Set, T —-> U.

f is declared

Cogq < Infix "+" := Uplus : U_scope.

Cog < Unset Printing Notations.

Cog < Open Scope nat_scope. (x Define + on the nat as the default for + x)

Cog < Check (fun x yl y2 z t =>P _ (x + t) ((f _ (vl + y2) + z))).
fun (x yl y2 : nat) (z : U) (t : nat) =>
P nat (Nat.add x t) (Uplus (f nat (Nat.add yl y2)) z)

forall (_ : nat) (_ : nat) (_ : nat) (_ : U) (_ : nat), Prop

Remark: The scopes type_scope and function_scope also have a local effect on interpretation.
See the next section.

See also: The command to show the scopes bound to the arguments of a function is described in Sec-
tion 2.

12.2.3 The type_scope interpretation scope

The scope type_scope has a special status. It is a primitive interpretation scope which is temporarily
activated each time a subterm of an expression is expected to be a type. It is delimited by the key type,
and bound to the coercion class Sortclass. It is also used in certain situations where an expression
is statically known to be a type, including the conclusion and the type of hypotheses within an Ltac
goal match (see Section 9.2) the statement of a theorem, the type of a definition, the type of a binder, the
domain and codomain of implication, the codomain of products, and more generally any type argument
of a declared or defined constant.

12.2.4 The function_scope interpretation scope

The scope function_scope also has a special status. It is temporarily activated each time the argu-
ment of a global reference is recognized to be a Funclass instance,i.e., of type forall x:A,
BorA —> B.

12.2.5 Interpretation scopes used in the standard library of C0OQ

We give an overview of the scopes used in the standard library of COQ. For a complete list of notations
in each scope, use the commands Print ScopesorPrint Scope scope.

type_scope

This scope includes infix * for product types and infix + for sum types. It is delimited by key type,

and bound to the coercion class Sortclass, as described at 12.2.2.

Coq Reference Manual, V8.6.1, July 26, 2017



326 12 Syntax extensions and interpretation scopes

nat_scope

This scope includes the standard arithmetical operators and relations on type nat. Positive numerals in
this scope are mapped to their canonical representent built from O and S. The scope is delimited by key
nat, and bound to the type nat (see 12.2.2).

N_scope

This scope includes the standard arithmetical operators and relations on type N (binary natural numbers).
It is delimited by key N and comes with an interpretation for numerals as closed term of type Z.

Z_scope

This scope includes the standard arithmetical operators and relations on type Z (binary integer numbers).
It is delimited by key Z and comes with an interpretation for numerals as closed term of type Z.

positive_scope

This scope includes the standard arithmetical operators and relations on type positive (binary strictly
positive numbers). It is delimited by key positive and comes with an interpretation for numerals as
closed term of type positive.

Q_scope

This scope includes the standard arithmetical operators and relations on type Q (rational numbers defined
as fractions of an integer and a strictly positive integer modulo the equality of the numerator-denominator
cross-product). As for numerals, only 0 and 1 have an interpretation in scope Q_scope (their interpre-
tations are % and % respectively).

Qc__scope

This scope includes the standard arithmetical operators and relations on the type Qc of rational numbers
defined as the type of irreducible fractions of an integer and a strictly positive integer.

real_scope

This scope includes the standard arithmetical operators and relations on type R (axiomatic real numbers).
It is delimited by key R and comes with an interpretation for numerals as term of type R. The interpre-
tation is based on the binary decomposition. The numeral 2 is represented by 1 + 1. The interpretation
¢(n) of an odd positive numerals greater . than 3 is 1+ (1+1) x¢((n — 1)/2). The interpretation ¢(n)
of an even positive numerals greater n than 4 is (1+1) »¢(n/2). Negative numerals are represented as
the opposite of the interpretation of their absolute value. E.g. the syntactic object —11 is interpreted as
= (1+(1+1) % ((1+1) % (1+(1+1)))) where the unit 1 and all the operations are those of R.

bool_scope

This scope includes notations for the boolean operators. It is delimited by key boo1l, and bound to the
type bool (see 12.2.2).

Coq Reference Manual, V8.6.1, July 26, 2017



12.2 Interpretation scopes 327

list_scope

This scope includes notations for the list operators. It is delimited by key 11ist, and bound to the type
list (see 12.2.2).

function_scope

This scope is delimited by the key funct ion, and bound to the coercion class Funclass, as described
at 12.2.2.

core_scope

This scope includes the notation for pairs. It is delimited by key core.

string_scope

This scope includes notation for strings as elements of the type st ring. Special characters and escap-
ing follow COQ conventions on strings (see Section 1.1). Especially, there is no convention to visualize
non printable characters of a string. The file String.v shows an example that contains quotes, a
newline and a beep (i.e. the ASCII character of code 7).

char_scope

This scope includes interpretation for all strings of the form "¢" where ¢ is an ASCII character, or of
the form "nnn" where nnn is a three-digits number (possibly with leading 0’s), or of the form """ ".
Their respective denotations are the ASCII code of ¢, the decimal ASCII code nnn, or the ASCII code
of the character " (i.e. the ASCII code 34), all of them being represented in the type ascii.

12.2.6 Displaying informations about scopes
Print Visibility

This displays the current stack of notations in scopes and lonely notations that is used to interpret a
notation. The top of the stack is displayed last. Notations in scopes whose interpretation is hidden by
the same notation in a more recently open scope are not displayed. Hence each notation is displayed
only once.

Variant:

Print Visibility scope

This displays the current stack of notations in scopes and lonely notations assuming that scope is
pushed on top of the stack. This is useful to know how a subterm locally occurring in the scope of scope
is interpreted.

Print Scope scope

This displays all the notations defined in interpretation scope scope. It also displays the delimiting key
if any and the class to which the scope is bound, if any.

Coq Reference Manual, V8.6.1, July 26, 2017



328 12 Syntax extensions and interpretation scopes

Print Scopes

This displays all the notations, delimiting keys and corresponding class of all the existing interpretation
scopes. It also displays the lonely notations.

12.3 Abbreviations

An abbreviation is a name, possibly applied to arguments, that denotes a (presumably) more complex
expression. Here are examples:

Cog < Notation Nlist := (list nat).
Coq < Check 1 :: 2 :: 3 :: nil.
[1; 2; 3]
: Nlist
Cog < Notation reflexive R := (forall x, R x Xx).

Cog < Check forall A:Prop, A <-> A.
reflexive 1iff
: Prop

Cog < Check reflexive iff.
reflexive iff
: Prop

An abbreviation expects no precedence nor associativity, since it follows the usual syntax of
application. Abbreviations are used as much as possible by the COQ printers unless the modifier
(only parsing) is given.

Abbreviations are bound to an absolute name as an ordinary definition is, and they can be referred
by qualified names too.

Abbreviations are syntactic in the sense that they are bound to expressions which are not typed at
the time of the definition of the abbreviation but at the time it is used. Especially, abbreviations can be
bound to terms with holes (i.e. with “_""). The general syntax for abbreviations is

[Local]Notation ident [ident ident ... ident ident] :=term [ (only parsing)].

Example:
Cogq < Definition explicit_id (A:Set) (a:A) := a.
explicit_id is defined
Cog < Notation id := (explicit_id _).
Coqg < Check (id 0).
id 0
nat

Abbreviations do not survive the end of sections. No typing of the denoted expression is performed
at definition time. Type-checking is done only at the time of use of the abbreviation.

Coq Reference Manual, V8.6.1, July 26, 2017



12.4 Tactic Notations 329

12.4 Tactic Notations

Tactic notations allow to customize the syntax of the tactics of the tactic language®. Tactic notations
obey the following syntax

sentence = [Local]Tactic Notation [tactic_level] [prod_item ... prod_item]
1= tactic
prod_item = string | tactic_argument_type (ident)
tactic_level = (at level natural)
tactic_argument_type = ident |simple_intropattern|reference
|  hyp|hyp_list|ne_hyp_list
| constr|uconstr|constr_list|ne_constr_list
| integer|integer_list|ne_integer_list
| int_or_var|int_or_var_list|ne_int_or_var_list
| tactic|tacticn (for0 < n <5)
A tactic notation Tactic Notation tactic_level [prod_item ... prod_item] := tactic

extends the parser and pretty-printer of tactics with a new rule made of the list of production items. It
then evaluates into the tactic expression tactic. For simple tactics, it is recommended to use a terminal
symbol, i.e. a string, for the first production item. The tactic level indicates the parsing precedence of
the tactic notation. This information is particularly relevant for notations of tacticals. Levels O to 5 are
available (default is 0). To know the parsing precedences of the existing tacticals, use the command
Print Grammar tactic.

Each type of tactic argument has a specific semantic regarding how it is parsed and how it is inter-
preted. The semantic is described in the following table. The last command gives examples of tactics
which use the corresponding kind of argument.

Tactic argument type parsed as interpreted as as in tactic
ident identifier a user-given name intro
simple_intropattern | intro_pattern an intro_pattern intros
hyp identifier an hypothesis defined in context | clear
reference qualified identifier a global reference of term unfold
constr term aterm exact
uconstr term an untyped term refine
integer integer an integer

int_or_var identifier or integer an integer do
tactic tactic at level 5 a tactic

tacticn tactic at level n a tactic

entry_list list of entry a list of how entry is interpreted
ne_entry_list non-empty list of entry | a list of how entry is interpreted

Remark: In order to be bound in tactic definitions, each syntactic entry for argument type must in-
clude the case of simple L. identifier as part of what it parses. This is naturally the case for ident,
simple_intropattern, reference, constr, ... but not for integer. This is the reason
for introducing a special entry int_or_var which evaluates to integers only but which syntactically
includes identifiers in order to be usable in tactic definitions.

3Tactic notations are just a simplification of the Grammar tactic simple_tactic command that existed in versions
prior to version 8.0.

Coq Reference Manual, V8.6.1, July 26, 2017



330 12 Syntax extensions and interpretation scopes

Remark: The entry_1ist and ne_entry_1ist entries can be used in primitive tactics or in other
notations at places where a list of the underlying entry can be used: entry is either constr, hyp,
integer or int_or_var.

Tactic notations do not survive the end of sections. They survive modules unless the command
Local Tactic Notationisusedinstead of Tactic Notation.

Coq Reference Manual, V8.6.1, July 26, 2017



Chapter 13

Proof schemes

13.1 Generation of induction principles with Scheme

The Scheme command is a high-level tool for generating automatically (possibly mutual) induction
principles for given types and sorts. Its syntax follows the schema:

Scheme ident; := Induction for ident’; Sort sort;
with
with ident,, := Induction for ident’,, Sort sort,,
where ident’; ... ident’,, are different inductive type identifiers belonging to the same package of

mutual inductive definitions. This command generates ident;... ident,, to be mutually recursive defi-
nitions. Each term ident; proves a general principle of mutual induction for objects in type term,.

Variants:
1. Scheme ident; := Minimality for ident’| Sort sort;
with
with ident,, := Minimality for ident’,, Sort sorty,,

Same as before but defines a non-dependent elimination principle more natural in case of induc-
tively defined relations.

2. Scheme Equality for ident;
Tries to generate a Boolean equality and a proof of the decidability of the usual equality. If ident;

involves some other inductive types, their equality has to be defined first.

3. Scheme Induction for ident; Sort sort;
with

with Induction for ident,, Sort sorty,,

If you do not provide the name of the schemes, they will be automatically computed from the sorts
involved (works also with Minimality).

Example 1: Induction scheme for t ree and forest
The definition of principle of mutual induction for t ree and forest over the sort Set is defined
by the command:

Coq Reference Manual, V8.6.1, July 26, 2017



332

13 Proof schemes

Cog < Inductive tree : Set :=

node : A -> forest —-> tree
with forest : Set :=

| leaf : B —-> forest
| cons : tree -> forest -> forest.

Cog < Scheme tree_forest_rec
with forest_tree_rec :=

You may now look at the type of tree_forest_rec:

Cog < Check tree_forest_rec.
tree forest_rec

forall (P : tree —-> Set) (PO : forest —-> Set),

= Induction for tree Sort Set
Induction for forest Sort Set.

(forall (a : A) (f : forest), PO f -> P (node a f)) —->

(forall b : B, PO (leaf b)) —>

(forall t : tree, P t —-> forall f1 : forest, PO fl

forall t : tree, P t

-> PO (cons t f1))

This principle involves two different predicates for t rees and forests; it also has three premises

each one corresponding to a constructor of one of the inductive definitions.

The principle forest_tree_rec shares exactly the same premises, only the conclusion now

refers to the property of forests.

Cog < Check forest_tree_rec.
forest_tree_rec

forall (P : tree —-> Set) (PO : forest —-> Set),

(forall (a : A) (f : forest), PO f —-> P (node a f))

(forall b : B, PO (leaf b)) —>

(forall t : tree, P t —-> forall f1 : forest, PO fl

forall f2 : forest, PO f2

Example 2: Predicates odd and even on naturals
Let odd and even be inductively defined as:

Cog < Inductive odd : nat —-> Prop :=

oddS : forall n:nat, even n -> odd (S n)
with even : nat -> Prop :=
| evenO : even 0
| evenS : forall n:nat, odd n —-> even (S n).

The following command generates a powerful elimination principle:

Cog < Scheme odd_even := Minimality for
with even_odd :=

even_odd is defined

odd_even is defined

odd Sort Prop
Minimality for even Sort Prop.

odd_even, even_odd are recursively defined

The type of odd_even for instance will be:

Coq Reference Manual, V8.6.1, July 26, 2017

->

-> PO (cons t f1))

->

—->



13.1 Generation of induction principles with Scheme 333

Cog < Check odd_even.

odd_even
forall P PO : nat -> Prop,
(forall n : nat, even n -> PO n -> P (S n)) —>
PO 0 —>
(forall n : nat, odd n —=> P n -> PO (S n)) —>
forall n : nat, odd n -> P n

The type of even_odd shares the same premises but the conclusionis (n:nat) (even n)->(Q
n).

13.1.1 Automatic declaration of schemes

It is possible to deactivate the automatic declaration of the induction principles when defining a new
inductive type with the Unset Elimination Schemes command. It may be reactivated at any
time with Set Elimination Schemes.

The types declared with the keywords Variant (see 1.3.3) and Record (see 2.1) do not
have an automatic declaration of the induction principles. It can be activated with the com-
mand Set Nonrecursive Elimination Schemes. It can be deactivated again with Unset
Nonrecursive Elimination Schemes.

In addition, the Case Analysis Schemes flag governs the generation of case analysis lemmas
for inductive types, i.e. corresponding to the pattern-matching term alone and without fixpoint.

You can also activate the automatic declaration of those Boolean equalities (see the second
variant of Scheme) with respectively the commands Set Boolean Equality Schemes and
Set Decidable Equality Schemes. However you have to be careful with this option since
CoQ may now reject well-defined inductive types because it cannot compute a Boolean equality for
them.

13.1.2 Combined Scheme

The Combined Scheme command is a tool for combining induction principles generated by the
Scheme command. Its syntax follows the schema :

Combined Scheme identy from ident;, .., ident,

where ident; ...ident, are different inductive principles that must belong to the same package of mutual
inductive principle definitions. This command generates ident to be the conjunction of the principles:
it is built from the common premises of the principles and concluded by the conjunction of their conclu-
sions.

Example: We can define the induction principles for trees and forests using:

Cog < Scheme tree_forest_ind := Induction for tree Sort Prop
with forest_tree_ind Induction for forest Sort Prop.

forest_tree _ind is defined

tree_forest_ind is defined

tree forest_ind, forest_tree_ind are recursively defined

Then we can build the combined induction principle which gives the conjunction of the conclusions
of each individual principle:

Coq Reference Manual, V8.6.1, July 26, 2017



334 13 Proof schemes

Cog < Combined Scheme tree_forest_mutind from tree_forest_ind, forest_tree_ind.

tree_ forest_mutind is defined
tree forest_mutind is recursively defined

The type of tree_forest_mutrec will be:

Cog < Check tree_forest_mutind.
tree_forest_mutind
forall (P : tree —-> Prop) (PO : forest -> Prop),
(forall (a : A) (f : forest), PO f -> P (node a f)) ->
(forall b : B, PO (leaf b)) —->
(forall t : tree, P t —-> forall f1 : forest, PO f1 -> PO (cons t f1))
(forall t : tree, P t) /\ (forall f2 : forest, PO f2)

13.2 Generation of induction principles with Functional Scheme

The Functional Scheme command is a high-level experimental tool for generating automatically
induction principles corresponding to (possibly mutually recursive) functions. Its syntax follows the
schema:

Functional Scheme ident; := Induction for ident’{ Sort sort;
with

with ident,, := Induction for ident’,, Sort sort,,

where ident’; ... ident’,, are different mutually defined function names (they must be in the same
order as when they were defined). This command generates the induction principles ident. .. ident,,,
following the recursive structure and case analyses of the functions ident’; ... ident’ ;.

Remark: There is a difference between obtaining an induction scheme by using Functional
Scheme on a function defined by Function or not. Indeed Function generally produces smaller
principles, closer to the definition written by the user.

Example 1: Induction scheme for div2
We define the function div2 as follows:

Coqg < Require Import Arith.

Cog < Fixpoint div2 (n:nat) : nat :=
match n with
| O =>0
| SO0 =>20
| S (S n'") =S (div2 n'")

end.

The definition of a principle of induction corresponding to the recursive structure of div2 is defined
by the command:

Cog < Functional Scheme div2_ind := Induction for div2 Sort Prop.
divZ2_equation is defined
divZ2_ind is defined

Coq Reference Manual, V8.6.1, July 26, 2017

->



13.2 Generation of induction principles with Functional Scheme 335

You may now look at the type of div2_ind:

Cog < Check div2_ind.

divZ2_ind
: forall P : nat -> nat —-> Prop,

(forall n : nat, n =0 -> P 0 0) —>

(forall n nO : nat, n =S n0 —> n0 = 0 -> P 1 0) ->

(forall n nO : nat,
n =S n0 —>
forall n' : nat,

n0 =S n'" -> P n' (div2 n') -=> P (S (S n')) (S (div2Z n'))) —->
forall n : nat, P n (div2 n)

We can now prove the following lemma using this principle:

Cogq < Lemma div2_le' : forall n:nat, div2 n <= n.
Cog < intro n.
Cog < pattern n , (div2 n).

Cog < apply div2_ind; intros.
3 subgoals

0 <=0

subgoal 2 is:

0 <=1

subgoal 3 1is:

S (div2 n') <= S (S n')
Cog < auto with arith.
Cogq < auto with arith.
Cog < simpl; auto with arith.

Cog < Qed.

We can use directly the functional induction (8.5.5) tactic instead of the pattern/apply trick:

Cog < Reset div2_le'.
Cogq < Lemma div2_1le : forall n:nat, div2 n <= n.

Cog < intro n.

Cog < functional induction (div2 n).
3 subgoals

0 <=0
subgoal 2 is:
0 <=1
subgoal 3 is:
S (div2 n') <= S (S n')

Coq Reference Manual, V8.6.1, July 26, 2017



336 13 Proof schemes

Cog < auto with arith.
Cogq < auto with arith.
Cog < auto with arith.

Cog < Qed.

Remark: There is a difference between obtaining an induction scheme for a function by using
Function (see Section 2.3) and by using Functional Scheme after a normal definition using
Fixpoint or Definition. See 2.3 for details.

Example 2: Induction scheme for t ree_size
We define trees by the following mutual inductive type:

Cog < Variable A : Set.

Cog < Inductive tree : Set :=
node : A —> forest —-> tree
with forest : Set :=
| empty : forest
| cons : tree —> forest -> forest.

We define the function t ree_size that computes the size of a tree or a forest. Note that we use
Function which generally produces better principles.

Cog < Function tree_size (t:tree) : nat :=
match t with
| node A £ => S (forest_size f)

end
with forest_size (f:forest) : nat :=

match f with

| empty => 0

| cons t f' => (tree_size t + forest_size f')
end.

Remark: Function generates itself non mutual induction principles tree_size_ind and
forest_size_ ind:

Cog < Check tree_size_ind.
tree _size_ ind
forall P : tree —-> nat -> Prop,
(forall (t : tree) (A : A) (f : forest),
t = node A f -> P (node A f) (S (forest_size f))) —>
forall t : tree, P t (tree_size t)

The definition of mutual induction principles following the recursive structure of tree_size and
forest_size is defined by the command:

Cog < Functional Scheme tree_size_ind2 := Induction for tree_size Sort Prop
with forest_size_ind2 := Induction for forest_size Sort Prop.

You may now look at the type of tree_size_ind2:

Coq Reference Manual, V8.6.1, July 26, 2017



13.3 Generation of inversion principles with Derive Inversion 337
Coqg < Check tree_size_ind2.
tree_size ind2
forall (P : tree —-> nat -> Prop) (PO : forest -> nat -> Prop),
(forall (t : tree) (A : A) (f : forest),
t = node A £ —>
PO f (forest_size f) —-> P (node A f) (S (forest_size f)))
(forall f0 : forest, fO0 empty -> PO empty 0) ->
(forall (f1 : forest) (t : tree) (f' : forest),
fl = cons t ' —>
P t (tree_size t) —->
PO f' (forest_size f') ->
PO (cons t f') (tree_size t + forest_size f')) —->
forall t : tree, P t (tree_size t)
13.3 Generation of inversion principles with Derive Inversion
The syntax of Derive Inversion follows the schema:
Derive Inversion ident with forall (Z:T), I i Sort sort
This command generates an inversion principle for the inversion ... using tactic. Let [/

be an inductive predicate and & the variables occurring in . This command generates and stocks the
inversion lemma for the sort sort corresponding to the instance V(Z : T'), I ¢t with the name ident in
the global environment. When applied, it is equivalent to having inverted the instance with the tactic

inversion.

Variants:

1. Derive Inversion_clear ident with forall (Z:T), I i Sort sort

When applied, it is equivalent to having inverted the instance with the tactic inversion re-

placed by the tactic inversion_clear.

2. Derive Dependent Inversion ident with forall (f:jﬁ, I ¢ Sort sort

When applied, it is equivalent to having inverted the instance with the tactic dependent

inversion.

3. Derive Dependent Inversion_clear ident with forall (Z :

sort

), I 1 sort

When applied, it is equivalent to having inverted the instance with the tactic dependent

inversion_clear.

Example:
Let us consider the relation Le over natural numbers and the following variable:

Cog < Inductive Le : nat —-> nat -> Set :=
| LeO : forall n:nat, Le 0 n
| LeS : forall n m:nat, Le nm -> Le (S n) (S m).

Cog < Variable P : nat -> nat —-> Prop.

To generate the inversion lemma for the instance (Le (S n) m) and the sort Prop, we do:

Coq Reference Manual, V8.6.1, July 26, 2017



338 13 Proof schemes

Coqg < Derive Inversion_clear leminv with (forall n m:nat, Le (S n) m) Sort Prop.

Cog < Check leminv.
leminv
forall (n m : nat) (P : nat -> nat -> Prop),
(forall mO : nat, Le n mO -> P n (S mO)) -> Le (S n) m —> P n m

Then we can use the proven inversion lemma:

Cog < Show.
1 subgoal

n, m : nat
H : Le (S n) m

P nm

Cog < inversion H using leminv.
1 subgoal

n, m : nat

forall mO : nat, Le n mO -> P n (S mO0)

Coq Reference Manual, V8.6.1, July 26, 2017



Part IV

Practical tools

Coq Reference Manual, V8.6.1, July 26, 2017






Chapter 14

The COQ commands

There are three COQ commands:
* cogtop: the COQ toplevel (interactive mode);
* cogc: the CoQ compiler (batch compilation);
* coqgchk: the CoQ checker (validation of compiled libraries).

The options are (basically) the same for the first two commands, and roughly described below. You can
also look at the man pages of cogtop and cogc for more details.

14.1 Interactive use (cogtop)

In the interactive mode, also known as the COQ toplevel, the user can develop his theories and proofs
step by step. The CoQ toplevel is run by the command cogt op.

They are two different binary images of COQ: the byte-code one and the native-code one (if OBJEC-
TIVE CAML provides a native-code compiler for your platform, which is supposed in the following). By
default, cogt op executes the native-code version; run cogtop.byte to get the byte-code version.

The byte-code toplevel is based on an OBJECTIVE CAML toplevel (to allow the dynamic link of
tactics). You can switch to the OBJECTIVE CAML toplevel with the command Drop ., and come back
to the CoQ toplevel with the command Cogloop.loop () ; ;.

14.2 Batch compilation (cogc)

The cogc command takes a name file as argument. Then it looks for a vernacular file named file . v,
and tries to compile it into a file . vo file (See 6.5).

Warning: The name file should be a regular CoQ identifier, as defined in Section 1.1. It should
contain only letters, digits or underscores (_). For instance, /bar/foo/toto.v is valid, but
/bar/foo/to-to.visinvalid.

Coq Reference Manual, V8.6.1, July 26, 2017



342 14 The COQ commands

14.3 Customization at launch time

14.3.1 By resource file

When CoQ is launched, with either cogtop or cogc, the resource file
$SXDG_CONFIG_HOME/coqg/cogrc.xxx is loaded, where $XDG_CONFIG_HOME is the con-
figuration directory of the user (by default its home directory /.config and xxx is the version
number (e.g. 8.3). If this file is not found, then the file $XDG_CONFIG_HOME/coqgrc is searched.
You can also specify an arbitrary name for the resource file (see option —init—-file below).

This file may contain, for instance, Add LoadPath commands to add directories to the load path
of CoQ. Itis possible to skip the loading of the resource file with the option —q.

14.3.2 By environment variables

Load path can be specified to the COQ system by setting up SCOQPATH environment variable. It is
a list of directories separated by : (; on windows). Co0Q will also honor $XDG_DATA_HOME and
$XDG_DATA_DIRS (see Section 2.6.3).

Some COQ commands call other COQ commands. In this case, they look for the commands in
directory specified by $COQBIN. If this variable is not set, they look for the commands in the executable
path.

The $COQ_COLORS environment variable can be used to specify the set of colors used by cogtop
to highlight its output. It uses the same syntax as the $LS_COLORS variable from GNU’s 1s, thatis, a
colon-separated list of assignments of the form name=attrl; ...;attrn where name is the name
of the corresponding highlight tag and att ri is an ANSI escape code. The list of highlight tags can be
retrieved with the —1ist-tags command-line option of cogtop.

14.3.3 By command line options

The following command-line options are recognized by the commands cogc and cogt op, unless stated
otherwise:

—I directory, —include directory

Add physical path directory to the OBJECTIVE CAML loadpath.
See also: Section 2.6.1 and the command Declare ML Module Section 6.5.

-Q directory dirpath

Add physical path directory to the list of directories where C0OQ looks for a file and bind it to the
the logical directory dirpath. The subdirectory structure of directory is recursively available from
Co0Q using absolute names (extending the dirpath prefix) (see Section 2.6.2).

See also: Section 2.6.1.

—R directory dirpath

Do as —Q directory dirpath but make the subdirectory structure of directory recursively visible
so that the recursive contents of physical directory is available from C0OQ using short or partially
qualified names.

See also: Section 2.6.1.

Coq Reference Manual, V8.6.1, July 26, 2017



14.3 Customization 343

—top dirpath
Set the toplevel module name to dirpath instead of Top. Not valid for cogc as the toplevel
module name is inferred from the name of the output file.

—notop
Use the empty logical path for the toplevel module name instead of Top. Not valid for cogc as
the toplevel module name is inferred from the name of the output file.

-exclude-dir directory

Exclude any subdirectory named directory while processing options such as —R and —Q. By de-
fault, only the conventional version control management directories named CVS and _darcs are
excluded.

—nois
Start from an empty state instead of loading the Init .Prelude module.
—init-file file

Load file as the resource file instead of loading the default resource file from the standard config-
uration directories.

Do not to load the default resource file.

-load-ml-source file

Load the OBJECTIVE CAML source file file.
-load-ml-object file
Load the OBJECTIVE CAML object file file.

-1 file, -1oad-vernac-source file

Load and execute the COQ script from file.v.

-1v file, -1oad-vernac-source-verbose file

Load and execute the COQ script from file.v. Output its content on the standard input as it is
executed.

—-load-vernac-object dirpath
Load CoQ compiled library dirpath. This is equivalent to running Require dirpath.
-require dirpath

Load CoQ compiled library dirpath and import it. This is equivalent to running Require
Import dirpath.

-batch

Exit just after argument parsing. Available for cogt op only.

Coq Reference Manual, V8.6.1, July 26, 2017



344 14 The COQ commands

—compile file.v
Compile file file.v into file.vo. This options imply —bat ch (exit just after argument parsing). It is
available only for cogtop, as this behavior is the purpose of cogc.
—compile-verbose file.v

Same as —compi le but also output the content of file.v as it is compiled.

—-verbose
Output the content of the input file as it is compiled. This option is available for cogc only; it is
the counterpart of ~compile-verbose.

-w (alllnonelws,...,w,)
Configure the display of warnings. This option expects all, none or a comma-separated list of
warning names or categories (see Section 6.9.3).

-with—geoproof (yeslno)
Enable or not special functions for Geoproof within COQIDE (default is yes).

—color (onlofflauto)
Enable or not the coloring of output of cogt op. Default is auto, meaning that cogt op dynami-
cally decides, depending on whether the output channel supports ANSI escape sequences.
—-beautify
Pretty-print each command to file.beautified when compiling file.v, in order to get old-fashioned
syntax/definitions/notations.
—-emacs, —ide-slave

Start a special toplevel to communicate with a specific IDE.

—impredicative-set
Change the logical theory of COQ by declaring the sort Set impredicative. Warning: this is known
to be inconsistent with some standard axioms of classical mathematics such as the functional
axiom of choice or the principle of description.

-type-in-type
Collapse the universe hierarchy of CoQ. Warning: this makes the logic inconsistent.

—compat version

Attempt to maintain some backward-compatibility with a previous version.

—dump-glob file

Dump references for global names in file file (to be used by cogdoc, see 15.4). By default, if
file.v is being compiled, file.glob is used.

-no—glob

Disable the dumping of references for global names.

Coq Reference Manual, V8.6.1, July 26, 2017



14.4 Compiled libraries checker (cogchk) 345

-image file

Set the binary image to be used by coqgc to be file instead of the standard one. Not of general use.

-bindir directory

Set the directory containing COQ binaries to be used by cogc. It is equivalent to doing export
COQBIN=directory before launching cogc.

-where

Print the location of COQ’s standard library and exit.

-config

Print the locations of COQ’s binaries, dependencies, and libraries, then exit.

—-filteropts

Print the list of command line arguments that cogt op has recognized as options and exit.

-V

Print COQ’s version and exit.
-list-tags

Print the highlight tags known by C0OQ as well as their currently associated color and exit.
-h, ~help

Print a short usage and exit.

14.4 Compiled libraries checker (cogchk)

The cogchk command takes a list of library paths as argument. The corresponding compiled libraries
(.vo files) are searched in the path, recursively processing the libraries they depend on. The content of
all these libraries is then type-checked. The effect of cogchk is only to return with normal exit code in
case of success, and with positive exit code if an error has been found. Error messages are not deemed to
help the user understand what is wrong. In the current version, it does not modify the compiled libraries
to mark them as successfully checked.

Note that non-logical information is not checked. By logical information, we mean the type and
optional body associated to names. It excludes for instance anything related to the concrete syntax of
objects (customized syntax rules, association between short and long names), implicit arguments, etc.

This tool can be used for several purposes. One is to check that a compiled library provided by a
third-party has not been forged and that loading it cannot introduce inconsistencies.! Another point is
to get an even higher level of security. Since cogtop can be extended with custom tactics, possibly
ill-typed code, it cannot be guaranteed that the produced compiled libraries are correct. cogchk is a
standalone verifier, and thus it cannot be tainted by such malicious code.

Command-line options - I, -R, ~-where and ~impredicative-set are supported by cogchk
and have the same meaning as for cogt op. Extra options are:

lI-formed non-logical information might for instance bind Coq.Init.Logic.True to short name False, so ap-
parently False is inhabited, but using fully qualified names, Coq.Init.Logic.False will always refer to the absurd
proposition, what we guarantee is that there is no proof of this latter constant.

Coq Reference Manual, V8.6.1, July 26, 2017



346 14 The COQ commands

—norec module

Check module but do not check its dependencies.

—admit module

Do not check module and any of its dependencies, unless explicitly required.

-0
At exit, print a summary about the context. List the names of all assumptions and variables
(constants without body).

—-silent

Do not write progress information in standard output.

Environment variable $COQLIB can be set to override the location of the standard library.

The algorithm for deciding which modules are checked or admitted is the following: assuming that
coqgchk is called with argument M, option —-norec N, and —~admit A. Let us write S the set of
reflexive transitive dependencies of set S. Then:

* Modules C = M\ AU M U N are loaded and type-checked before being added to the context.

e And M U N\C is the set of modules that are loaded and added to the context without type-
checking. Basic integrity checks (checksums) are nonetheless performed.

As a rule of thumb, the —admit can be used to tell that some libraries have already been checked.
So cogchk A Bcanbesplitin cogchk A && cogchk B —admit A without type-checking any
definition twice. Of course, the latter is slightly slower since it makes more disk access. It is also less
secure since an attacker might have replaced the compiled library A after it has been read by the first
command, but before it has been read by the second command.

Coq Reference Manual, V8.6.1, July 26, 2017



Chapter 15
Utilities

The distribution provides utilities to simplify some tedious works beside proof development, tactics
writing or documentation.

15.1 Building a toplevel extended with user tactics

The native-code version of COQ cannot dynamically load user tactics using OBJECTIVE CAML code.
It is possible to build a toplevel of COQ, with OBJECTIVE CAML code statically linked, with the tool
cogmktop.

For example, one can build a native-code C0oQ toplevel extended with a tactic which source is in
tactic.ml with the command

o

% cogmktop —-opt —-o mytop.out tactic.cmx

where tactic.ml has been compiled with the native-code compiler ocamlopt. This command
generates an executable called mytop.out. To use this executable to compile your CoQ files, use
cogc —-image mytop.out.

A basic example is the native-code version of COQ (cogtop.opt), which can be generated by
cogmktop —-opt —-o cogopt.opt.

Application: how to use the OBJECTIVE CAML debugger with Coq. One useful application of
cogmktop is to build a CoQ toplevel in order to debug your tactics with the OBJECTIVE CAML de-
bugger. You need to have configured and compiled C0OQ for debugging (see the file INSTALL included
in the distribution). Then, you must compile the Caml modules of your tactic with the option —g (with
the bytecode compiler) and build a stand-alone bytecode toplevel with the following command:

[o)

% cogmktop —-g —-o cog-debug <your .cmo files>

To launch the OBJECTIVE CAML debugger with the image you need to execute it in an environment
which correctly sets the COQLIB variable. Moreover, you have to indicate the directories in which
ocamldebug should search for Caml modules.

A possible solution is to use a wrapper around ocamldebug which detects the executables con-
taining the word coq. In this case, the debugger is called with the required additional arguments. In
other cases, the debugger is simply called without additional arguments. Such a wrapper can be found
in the dev/ subdirectory of the sources.

Coq Reference Manual, V8.6.1, July 26, 2017



348 15 Utilities

15.2 Modules dependencies

In order to compute modules dependencies (so to use make), COQ comes with an appropriate tool,
cogdep.

cogdep computes inter-module dependencies for COQ and OBJECTIVE CAML programs, and
prints the dependencies on the standard output in a format readable by make. When a directory is
given as argument, it is recursively looked at.

Dependencies of COQ modules are computed by looking at Require commands (Require,
Require Export,Require Import, butalso at the command Declare ML Module.

Dependencies of OBJECTIVE CAML modules are computed by looking at open commands and the
dot notation module.value. However, this is done approximately and you are advised to use ocamldep
instead for the OBJECTIVE CAML modules dependencies.

See the man page of cogdep for more details and options.

15.3 Creating a Makefile for COQ modules

A project is a proof development split into several files, possibly including the sources of some OB-
JECTIVE CAML plugins, that are located (in various sub-directories of) a certain directory. The
cogq_makefile command allows to generate generic and complete Makefile files, that can be
used to compile the different components of the project. A _CoqProject file specifies both the list of
target files relevant to the project and the common options that should be passed to each executable at
compilation times, for the IDE, etc.

_CoqProject file as an argument to coq_Makefile. In particular, a _CoqProject file contains the
relevant arguments to be passed to the coq_makefile makefile generator using for instance the com-
mand:

[o)

% coq_makefile —-f _CogProject -o Makefile

This command generates a file Makefile that can be used to compile all the sources of the current
project. It follows the syntax described by the output of $ cog makefile --help. Once the
Makefile file has been generated a first time, it can be used by the make command to compile part or
all of the project. Note that once it has been generated once, as soon as _CogProject file is updated,
the Makefile file is automatically regenerated by an invocation of make.

The following command generates a minimal example of _CogProject file:

% ( echo "-R . MyFancyLib" ; find . —-name "*.v" -print ) >
_CogProject

when executed at the root of the directory containing the project. Here the _CogProject lists all the
.v files that are present in the current directory and its sub-directories. But no plugin sources is listed.
If aMakefile is generated from this _CogProject, the command make install will install the
compiled project in a sub-directory MyFancyLib of the user—contrib directory (of the user’s COQ
libraries location). This sub-directory is created if it does not already exist.

Coq Reference Manual, V8.6.1, July 26, 2017



15.4 Documenting C0Q files with cogdoc 349

_CoqProject file as a configuration for IDEs. A _CogProject file can also be used to configure
the options of the cogtop process executed by a user interface. This allows to import the libraries of
the project under a correct name, both as a developer of the project, working in the directory containing
its sources, and as a user, using the project after the installation of its libraries. Currently, both COQIDE
and Proof General (version > 4.3pre) support configuration via _CogProject files.

Remarks.

* Every CoQ files must use a . v file extension. The OBJECTIVE CAML modules must use a .m14
file extension if they require camlp preprocessing (and in . m1 otherwise). The OBJECTIVE CAML
module signatures, library description and packing files must use respectively .m11i, .m11ib and
.mlpack file extension.

* Any argument that is not a valid option is considered as a sub-directory. Any sub-directory speci-
fied in the list of targets must itself contain a Makefile.

* The phony targets al1l and clean recursively call their target in every sub-directory.

* —R and -Q options are for CoQ files, —I for OBJECTIVE CAML ones. A same directory can be
passed to both nature of options, in the same _CogProject.

» Using —R or —Q is the appropriate way to obtain both a correct logical path and a correct installa-
tion location to the libraries of a given project.

* Dependencies on external libraries to the project must be declared with care. If in the
_CogProject file an external library foo is passed to a —Q option, like in —Q foo, the subse-
quent make clean command can erase foo. It is hence safer to customize the COQPATH variable
(see 14.3.2), to include the location of the required external libraries.

* Using —extra—-phony with no command adds extra dependencies on already defined rules. For
example the following skeleton appends “something” to the install rule:

—extra-phony "install" "install-my-stuff" ""
—extra-phony "install-my-stuff" "" "something"

15.4 Documenting COQ files with coqdoc

coqdoc is a documentation tool for the proof assistant COQ, similar to javadoc or ocamldoc. The task
of cogdoc is

1. to produce a nice ISIEX and/or HTML document from the COQ sources, readable for a human and
not only for the proof assistant;

2. to help the user navigating in his own (or third-party) sources.

15.4.1 Principles

Documentation is inserted into COQ files as special comments. Thus your files will compile as usual,
whether you use coqdoc or not. coqdoc presupposes that the given COQ files are well-formed (at least
lexically). Documentation starts with (*, followed by a space, and ends with the pending =) . The

Coq Reference Manual, V8.6.1, July 26, 2017



350 15 Utilities

documentation format is inspired by Todd A. Coram’s Almost Free Text (AFT) tool: it is mainly ASCII
text with some syntax-light controls, described below. coqdoc is robust: it shouldn’t fail, whatever the
input is. But remember: “garbage in, garbage out”.

Co0Q material inside documentation. CO0Q material is quoted between the delimiters [ and ]. Square
brackets may be nested, the inner ones being understood as being part of the quoted code (thus you can
quote a term like fun x => u by writing [fun x => u]). Inside quotations, the code is pretty-
printed in the same way as it is in code parts.

Pre-formatted vernacular is enclosed by [ [ and ] ]. The former must be followed by a newline and
the latter must follow a newline.

Pretty-printing. coqdoc uses different faces for identifiers and keywords. The pretty-printing of COQ
tokens (identifiers or symbols) can be controlled using one of the following commands:

(x* printing token %...BIEX...% #...HTML...# *)
or
(x+ printing token $...BIEX math...$ #...HTML...# x)

It gives the IATEX and HTML texts to be produced for the given COQ token. One of the I&TEX or HTML
text may be omitted, causing the default pretty-printing to be used for this token.
The printing for one token can be removed with

(** remove printing token x)

Initially, the pretty-printing table contains the following mapping:

-> = <- — * X
<= < >= > = =
<> # <=> & |- F
\/ V /N A ~ -

Any of these can be overwritten or suppressed using the print ing commands.

Important note: the recognition of tokens is done by a (ocaml)lex automaton and thus applies the
longest-match rule. For instance, —>~ is recognized as a single token, where COQ sees two tokens. It
is the responsibility of the user to insert space between tokens or to give pretty-printing rules for the
possible combinations, e.g.

(*+x printing ->~ %\ensuremath{\rightarrow\lnot}$% =)

Sections. Sections are introduced by 1 to 4 leading stars (i.e. at the beginning of the line) followed by
a space. One star is a section, two stars a sub-section, etc. The section title is given on the remaining of
the line. Example:

(x* * Well-founded relations
In this section, we introduce... %)

Coq Reference Manual, V8.6.1, July 26, 2017



15.4 Documenting C0Q files with cogdoc 351

Lists. List items are introduced by a leading dash. coqdoc uses whitespace to determine the depth
of a new list item and which text belongs in which list items. A list ends when a line of text starts at
or before the level of indenting of the list’s dash. A list item’s dash must always be the first non-space
character on its line (so, in particular, a list can not begin on the first line of a comment - start it on the
second line instead).

Example:

We go by induction on [n]:
- If [n] is O...
- If [n] is [S n’] we require...

two paragraphs of reasoning, and two subcases:

— In the first case...
— In the second case...

So the theorem holds.
Rules. More than 4 leading dashes produce a horizontal rule.

Emphasis. Text can be italicized by placing it in underscores. A non-identifier character must precede
the leading underscore and follow the trailing underscore, so that uses of underscores in names aren’t
mistaken for emphasis. Usually, these are spaces or punctuation.

This sentence contains some _emphasized text_.

Escaping to X TgX and HTML. Pure ISIEX or HTML material can be inserted using the following
escape sequences:

* $...LaTeX stuff...$ inserts some IXIEX material in math mode. Simply discarded in
HTML output.

* %...LaTeX stuff...% inserts some IKIEX material. Simply discarded in HTML output.
* #...HTML stuff...# inserts some HTML material. Simply discarded in IATEX output.

Note: to simply output the characters $, $ and # and escaping their escaping role, these characters
must be doubled.

Verbatim. Verbatim material is introduced by a leading << and closed by >> at the beginning of a
line. Example:

Here is the corresponding caml code:
<<
let rec fact n =
if n <= 1 then 1 else n  fact (n-1)
>>

Coq Reference Manual, V8.6.1, July 26, 2017



352 15 Utilities

Hyperlinks. Hyperlinks can be inserted into the HTML output, so that any identifier is linked to the
place of its definition.

cogc file.v automatically dumps localization information in file.glob or appends it to a
file specified using option ——dump—glob file. Take care of erasing this global file, if any, when
starting the whole compilation process.

Then invoke cogdoc or cogdoc —-glob-from f£ile to tell coqdoc to look for name resolu-
tions into the file £11e (it will look in file.glob by default).

Identifiers from the COQ standard library are linked to the COQ web siteat http://coqg.inria.
fr/library/. This behavior can be changed using command line options ——no-externals and
——coqglib; see below.

Hiding / Showing parts of the source. Some parts of the source can be hidden using command line
options —g and -1 (see below), or using such comments:

(» begin hide x)
some Coqg material
(# end hide x)

Conversely, some parts of the source which would be hidden can be shown using such comments:

(* begin show x)
some Coq material
(* end show «*)

The latter cannot be used around some inner parts of a proof, but can be used around a whole proof.

15.4.2 Usage

coqdoc is invoked on a shell command line as follows:
cogdoc < options and files >

Any command line argument which is not an option is considered to be a file (even if it starts with a —).
CoqQ files are identified by the suffixes . v and . g and I&TEX files by the suffix . tex.

HTML output

This is the default output. One HTML file is created for each CoOQ file given on the command
line, together with a file index.html (unless option ~-no-index is passed). The HTML pages
use a style sheet named style.css. Such a file is distributed with coqdoc.

IATEX output

A single IATEX file is created, on standard output. It can be redirected to a file with option —o. The
order of files on the command line is kept in the final document. I&TEX files given on the command
line are copied ‘as is’ in the final document . DVI and PostScript can be produced directly with
the options —dvi and —ps respectively.

TgXmacs output
To translate the input files to TigXmacs format, to be used by the TgXmacs Coq interface.

Coq Reference Manual, V8.6.1, July 26, 2017


http://coq.inria.fr/library/
http://coq.inria.fr/library/

15.4 Documenting C0Q files with cogdoc 353

Command line options

Overall options

—-html
Select a HTML output.

—-=latex

Select a IATEX output.

——dvi

Select a DVI output.

Select a PostScript output.

——texmacs

Select a TgXmacs output.

—-stdout

Write output to stdout.

-o file, ——output file
Redirect the output into the file ‘file’ (meaningless with —htm1).

—-d dir,——-directory dir
Output files into directory ‘dir’ instead of current directory (option —d does not change the file-
name specified with option —o, if any).

—--body-only
Suppress the header and trailer of the final document. Thus, you can insert the resulting document
into a larger one.

—p string, ——preamble string
Insert some material in the ITEX preamble, right before \begin{document} (meaningless
with —html).

——vernac-file file,——tex—file file

Considers the file ‘file’ respectively as a . v (or . g) file or a . tex file.

——files-from file

Read file names to process in file ‘file’ as if they were given on the command line. Useful for
program sources split up into several directories.

-q, -—quiet

Be quiet. Do not print anything except errors.

Coq Reference Manual, V8.6.1, July 26, 2017



354 15 Utilities

-h, ——help
Give a short summary of the options and exit.

-v, ——version

Print the version and exit.

Index options Default behavior is to build an index, for the HTML output only, into index . html.

——no-index

Do not output the index.

——multi-index
Generate one page for each category and each letter in the index, together with a top page
index.html.

——index string

Make the filename of the index string instead of “index”. Useful since “index.html” is special.

Table of contents option

-toc, ——table-of-contents
Insert a table of contents. For a ISTEX output, it inserts a \tableofcontents at the beginning
of the document. For a HTML output, it builds a table of contents into toc.html.
——toc—-depth int
Only include headers up to depth int in the table of contents.

Hyperlinks options

——glob-from file
Make references using COQ globalizations from file file. (Such globalizations are obtained with
CoQ option —~dump—-glob).

—--no—-externals

Do not insert links to the COQ standard library.

——external url coqdir

Use given URL for linking references whose name starts with prefix cogdir.

——coqlib url
Set base URL for the COQ standard library (defaultis http://coqg.inria.fr/library/).
This is equivalent to ——external url Coq.

=R dir coqdir
Map physical directory dir to COQ logical directory coqdir (similarly to COQ option —R).

Note: option —R only has effect on the files following it on the command line, so you will probably
need to put this option first.

Coq Reference Manual, V8.6.1, July 26, 2017


http://coq.inria.fr/library/

15.4 Documenting C0Q files with cogdoc 355

Title options

-s ,——short
Do not insert titles for the files. The default behavior is to insert a title like “Library Foo” for each
file.

—-lib-name string
Print “string Foo” instead of “Library Foo” in titles. For example “Chapter” and “Module” are
reasonable choices.

——no-lib—name

Print just “Foo” instead of “Library Foo” in titles.

—=lib-subtitles

Look for library subtitles. When enabled, the beginning of each file is checked for a comment of
the form:

(x* % ModuleName : text x)

where ModuleName must be the name of the file. If it is present, the t ext is used as a subtitle
for the module in appropriate places.
-t string, ——title string

Set the document title.

Contents options

-g,——gallina

Do not print proofs.

-1,--1light

Light mode. Suppress proofs (as with —g) and the following commands:

* [Recursive] Tactic Definition
* Hint / Hints
* Require
e Transparent / Opaque
e Implicit Argument / Implicits
* Section / Variable / Hypothesis / End
The behavior of options —g and -1 can be locally overridden using the (* begin show *) ... (x
end show =) environment (see above).
There are a few options to drive the parsing of comments:
——parse—comments

Parses regular comments delimited by (* and *) as well. They are typeset inline.

Coq Reference Manual, V8.6.1, July 26, 2017



356 15 Utilities

—-—-plain-comments

Do not interpret comments, simply copy them as plain-text.

——interpolate

Use the globalization information to typeset identifiers appearing in COQ escapings inside com-
ments.

Language options Default behavior is to assume ASCII 7 bits input files.

—-latinl, --latinl
Select ISO-8859-1 input files. It is equivalent to ——inputenc latinl --charset
iso-8859-1.

-ut£8, ——ut£f8

Set ——inputenc utf8x for KX output and ——charset utf-8 for HTML output. Also
use Unicode replacements for a couple of standard plain ASCII notations such as — for —>
and V for forall. I&gX UTF-8 support can be found at http://www.ctan.org/pkg/
unicode.

For the interpretation of Unicode characters by I&TEX, extra packages which cogdoc does not
provide by default might be required, such as t ext greek for some Greek letters or stmaryrd
for some mathematical symbols. If a Unicode character is missing an interpretation in the ut £8x
input encoding, add \DeclareUnicodeCharacter{code} {latex-interpretation}. Packages
and declarations can be added with option —p.

——inputenc string

Give a IATEX input encoding, as an option to I&TEX package inputenc.

——charset string

Specify the HTML character set, to be inserted in the HTML header.

15.4.3 The coqdoc BTEX style file

In case you choose to produce a document without the default I&[EX preamble (by using option
-—no-preamble), then you must insert into your own preamble the command

\usepackage {cogdoc}

The package optionally takes the argument [color] to typeset identifiers with colors (this requires
the xcolor package).

Then you may alter the rendering of the document by redefining some macros:
coqgdockw, coqgdocid,...

The one-argument macros for typesetting keywords and identifiers. Defaults are sans-serif for
keywords and italic for identifiers.

For example, if you would like a slanted font for keywords, you may insert

\renewcommand{\cogdockw} [1] {\textsl{#1}}

Coq Reference Manual, V8.6.1, July 26, 2017


http://www.ctan.org/pkg/unicode
http://www.ctan.org/pkg/unicode

15.5 Embedded C0OQ phrases inside I&T[EX documents 357

anywhere between \usepackage {cogdoc} and \begin{document }.

cogdocmodule

One-argument macro for typesetting the title of a . v file. Default is
\newcommand{\cogdocmodule} [1] {\section*{Module #1}}

and you may redefine it using \ renewcommand.

15.5 Embedded C0OQ phrases inside XTEX documents

When writing a documentation about a proof development, one may want to insert COQ phrases inside
a IXTEX document, possibly together with the corresponding answers of the system. We provide a me-
chanical way to process such COQ phrases embedded in IATEX files: the cog-tex filter. This filter
extracts Coq phrases embedded in LaTeX files, evaluates them, and insert the outcome of the evaluation
after each phrase.

Starting with a file file.tex containing COQ phrases, the cog-tex filter produces a file named
file . v . tex with the COQ outcome.

There are options to produce the COQ parts in smaller font, italic, between horizontal rules, etc. See
the man page of cog-tex for more details.

Remark. This Reference Manual and the Tutorial have been completely produced with cog-tex.

15.6 Co0Q and GNU EMACS

15.6.1 The C0oQ Emacs mode

CoQ comes with a Major mode for GNU EMACS, gallina.el. This mode provides syntax high-
lighting and also a rudimentary indentation facility in the style of the Caml GNU EMACS mode.
Add the following lines to your . emacs file:

(setg auto-mode-alist (cons ' ("\\.v$" . cog-mode) auto-mode-alist))

(autoload ’'cog-mode "gallina" "Major mode for editing Cog vernacular." t)

The CoQ major mode is triggered by visiting a file with extension . v, or manually with the com-
mand M-x cog-mode. It gives you the correct syntax table for the COQ language, and also a rudi-
mentary indentation facility:

* pressing TAB at the beginning of a line indents the line like the line above;
 extra TABs increase the indentation level (by 2 spaces by default);
* M-TAB decreases the indentation level.

An inferior mode to run COQ under Emacs, by Marco Maggesi, is also included in the distribution,
in file cog-inferior.el. Instructions to use it are contained in this file.

Coq Reference Manual, V8.6.1, July 26, 2017



358 15 Utilities

15.6.2 PROOF GENERAL

PROOF GENERAL is a generic interface for proof assistants based on Emacs. The main idea is that the
CoQ commands you are editing are sent to a COQ toplevel running behind Emacs and the answers of
the system automatically inserted into other Emacs buffers. Thus you don’t need to copy-paste the COQ
material from your files to the COQ toplevel or conversely from the COQ toplevel to some files.

PROOF GENERAL is developed and distributed independently of the system COQ. It is freely avail-
able at https://proofgeneral.github.io/.

15.7 Module specification

Given a COQ vernacular file, the gallina filter extracts its specification (inductive types declarations,
definitions, type of lemmas and theorems), removing the proofs parts of the file. The CoQ file file. v
gives birth to the specification file file . g (where the suffix . g stands for GALLINA).

See the man page of gallina for more details and options.

15.8 Man pages

There are man pages for the commands cogdep, gallina and cog-tex. Man pages are installed at
installation time (see installation instructions in file INSTALL, step 6).

Coq Reference Manual, V8.6.1, July 26, 2017



Chapter 16

CoQ Integrated Development
Environment

The CoQ Integrated Development Environment is a graphical tool, to be used as a user-friendly replace-
ment to cogtop. Its main purpose is to allow the user to navigate forward and backward into a C0OQ
vernacular file, executing corresponding commands or undoing them respectively.

CoOQIDE is run by typing the command cogide on the command line. Without argument, the
main screen is displayed with an “unnamed buffer”, and with a file name as argument, another buffer
displaying the contents of that file. Additionally, cogide accepts the same options as cogt op, given in
Chapter 14, the ones having obviously no meaning for COQIDE being ignored. Additionally, cogide
accepts the option —~enable-geoproof to enable the support for GeoProof '

A sample COQIDE main screen, while navigating into a file Fermat . v, is shown on Figure 16.1.
At the top is a menu bar, and a tool bar below it. The large window on the left is displaying the various
script buffers. The upper right window is the goal window, where goals to prove are displayed. The lower
right window is the message window, where various messages resulting from commands are displayed.
At the bottom is the status bar.

16.1 Managing files and buffers, basic edition

In the script window, you may open arbitrarily many buffers to edit. The File menu allows you to open
files or create some, save them, print or export them into various formats. Among all these buffers, there
is always one which is the current running buffer, whose name is displayed on a green background,
which is the one where Coq commands are currently executed.

Buffers may be edited as in any text editor, and classical basic editing commands (Copy/Paste, ...)
are available in the Edit menu. COQIDE offers only basic editing commands, so if you need more
complex editing commands, you may launch your favorite text editor on the current buffer, using the
Edit/External Editor menu.

'GeoProof is dynamic geometry software which can be used in conjunction with COQIDE to interactively build a Coq
statement corresponding to a geometric figure. More information about GeoProof can be found here: http://home.gna.
org/geoproof/

Coq Reference Manual, V8.6.1, July 26, 2017


http://home.gna.org/geoproof/
http://home.gna.org/geoproof/

360 16 CoQ Integrated Development Environment

File Edit MNavigaticn Trv Tactics Templates Queries Compile Windows Help

Q% +®®F F )

@*Unnamed Buffers* ElFermat.v‘ 1 subgoal ()
forall x v z ntnat, ¢ *"n +vy *n=z *n ->

Fizpoint power (x n:nat) {struct n} : nat := n <= 2

match n with

| o ==1

| 8 m =>x * power ¥ m

and .
MNeotation "z * n" 1= (powser = n).

Thecrem Fermat :

(forall x ¥ z ninat, ¥"n+y"n = z*n -> n <= 2]
Proof .
Inducticn n.

Error: The refersence Inducticon was not found
in the current envirconment

|41 |+
[Ready, proving Fermat Line: 13 Char: 1 Coglde started

Figure 16.1: COQIDE main screen

16.2 Interactive navigation into COQ scripts

The running buffer is the one where navigation takes place. The toolbar proposes five basic commands
for this. The first one, represented by a down arrow icon, is for going forward executing one command.
If that command is successful, the part of the script that has been executed is displayed on a green
background. If that command fails, the error message is displayed in the message window, and the
location of the error is emphasized by a red underline.

On Figure 16.1, the running buffer is Fermat . v, all commands until the Theorem have been
already executed, and the user tried to go forward executing Induction n. That command failed
because no such tactic exist (tactics are now in lowercase. . . ), and the wrong word is underlined.

Notice that the green part of the running buffer is not editable. If you ever want to modify something
you have to go backward using the up arrow tool, or even better, put the cursor where you want to go
back and use the goto button. Unlike with cogt op, you should never use Undo to go backward.

Two additional tool buttons exist, one to go directly to the end and one to go back to the beginning.
If you try to go to the end, or in general to run several commands using the goto button, the execution
will stop whenever an error is found.

If you ever try to execute a command which happens to run during a long time, and would like to
abort it before its termination, you may use the interrupt button (the white cross on a red circle).

Finally, notice that these navigation buttons are also available in the menu, where their keyboard
shortcuts are given.

Coq Reference Manual, V8.6.1, July 26, 2017




16.3 Try tactics automatically 361

16.3 Try tactics automatically

The menu Try Tactics provides some features for automatically trying to solve the current goal
using simple tactics. If such a tactic succeeds in solving the goal, then its text is automatically inserted
into the script. There is finally a combination of these tactics, called the proof wizard which will try each
of them in turn. This wizard is also available as a tool button (the light bulb). The set of tactics tried by
the wizard is customizable in the preferences.

These tactics are general ones, in particular they do not refer to particular hypotheses. You may also
try specific tactics related to the goal or one of the hypotheses, by clicking with the right mouse button
on the goal or the considered hypothesis. This is the “contextual menu on goals” feature, that may be
disabled in the preferences if undesirable.

16.4 Proof folding

As your script grows bigger and bigger, it might be useful to hide the proofs of your theorems and
lemmas.

This feature is toggled via the Hide entry of the Navigation menu. The proof shall be enclosed
between Proof. and Qed., both with their final dots. The proof that shall be hidden or revealed is the
first one whose beginning statement (such as Theorem) precedes the insertion cursor.

16.5 Vernacular commands, templates

The Templates menu allows using shortcuts to insert vernacular commands. This is a nice way to
proceed if you are not sure of the spelling of the command you want.

Moreover, this menu offers some femplates which will automatic insert a complex command like
Fixpoint with a convenient shape for its arguments.

16.6 Queries

We call query any vernacular command that do not change the current state, such as Check, Search,
etc. Those commands are of course useless during compilation of a file, hence should not be included in
scripts. To run such commands without writing them in the script, COQIDE offers another input window
called the query window. This window can be displayed on demand, either by using the Window menu,
or directly using shortcuts given in the Queries menu. Indeed, with COQIDE the simplest way to
perform a Search on some identifier is to select it using the mouse, and pressing F2. This will both
make appear the query window and run the Search in it, displaying the result. Shortcuts F3 and F4
are for Check and Print respectively. Figure 16.2 displays the query window after selection of the
word “mult” in the script windows, and pressing F4 to print its definition.

16.7 Compilation

The Compile menu offers direct commands to:
* compile the current buffer

* run a compilation using make

Coq Reference Manual, V8.6.1, July 26, 2017



362 16 CoQ Integrated Development Environment

File Edit HNavigaticn Try Tactics Templates Queries (Compile Windows Help

3 +DFLO )

@#*Unnamed Buffer* [E]Fermat.v‘ 1 subgoal

Require Reals.

(1/1)
forall x vy z m:nat, x > 0 ->y >0 ->x * n
-+ il = il —

Searchibout ["Cauchy"] [=][m][x]
Fixpoint power (x n:natl X D ﬁ
match n with
| 0 => 1 Page 1|
(Iencs; M =2 5 & TOTEE |Print ﬂ|mu1t ok
’ E=sult for command Print mult .
Hotati we A" = mult =
etation “x n (P4 (fizx mult (n:nat) : nat -> nat :=
B rereEeT e ETRE B fun m:nat => match n with
. | O ==10
forall x ¥y z n, x>0 -> | 8 p =>m+ mlt pm
Proof . end)
: nat -* nat -> nat
Argument scopes are [nat_scope nat_scopel]
il il
KT |
fReady, proving Fermat Line: 16 Char: g

Figure 16.2: COQIDE: the query window

* go to the last compilation error

* create amakefile using cogq _makefile.

16.8 Customizations

You may customize your environment using menu Edit/Preferences. A new window will be
displayed, with several customization sections presented as a notebook.

The first section is for selecting the text font used for scripts, goal and message windows.

The second section is devoted to file management: you may configure automatic saving of files, by
periodically saving the contents into files named # £ # for each opened file £. You may also activate the
revert feature: in case a opened file is modified on the disk by a third party, COQIDE may read it again
for you. Note that in the case you edited that same file, you will be prompt to choose to either discard
your changes or not. The File charset encoding choice is described below in Section 16.9.3

The Externals section allows customizing the external commands for compilation, printing,
web browsing. In the browser command, you may use %s to denote the URL to open, for example:
mozilla —-remote "OpenURL (%s)".

The Tactics Wizard section allows defining the set of tactics that should be tried, in sequence,
to solve the current goal.

The last section is for miscellaneous boolean settings, such as the “contextual menu on goals” feature
presented in Section 16.3.

Notice that these settings are saved in the file . cogiderc of your home directory.

Coq Reference Manual, V8.6.1, July 26, 2017




16.9 Using Unicode symbols 363

A gtk2 accelerator keymap is saved under the name .cogide.keys. It is not recommanded to
edit this file manually: to modify a given menu shortcut, go to the corresponding menu item without
releasing the mouse button, press the key you want for the new shortcut, and release the mouse button
afterwards. If your system does not allow it, you may still edit this configuration file by hand, but this is
more involved.

16.9 Using Unicode symbols

COQIDE is based on GTK+ and inherits from it support for Unicode in its text windows. Consequently
a large set of symbols is available for notations.
16.9.1 Displaying Unicode symbols

You just need to define suitable notations as described in Chapter 12. For example, to use the mathemat-
ical symbols ¥ and 3, you may define

Notation "V x : t, P" :=
(forall x:t, P) (at level 200, x ident).
Notation "d x : t, P" :=

(exists x:t, P) (at level 200, x ident).

There exists a small set of such notations already defined, in the file ut £8.v of Co0Q library, so you
may enable them just by Require ut£f8 inside COQIDE, or equivalently, by starting COQIDE with
cogide -1 utf8.

However, there are some issues when using such Unicode symbols: you of course need to use a
character font which supports them. In the Fonts section of the preferences, the Preview line displays
some Unicode symbols, so you could figure out if the selected font is OK. Related to this, one thing you
may need to do is choose whether GTK+ should use antialiased fonts or not, by setting the environment
variable GDK_USE_XFT to 1 or O respectively.

16.9.2 Defining an input method for non ASCII symbols

To input a Unicode symbol, a general method provided by GTK+ is to simultaneously press the Control,
Shift and “u” keys, release, then type the hexadecimal code of the symbol required, for example 2200
for the V symbol. A list of symbol codes is available at http://www.unicode.org.

An alternative method which does not require to know the hexadecimal code of the character is to
use an Input Method Editor. On POSIX systems (Linux distributions, BSD variants and MacOS X), you
can use uim version 1.6 or later which provides a I£TgX-style input method.

To configure uim, execute uim—pref—-gtk as your regular user. In the "Global Settings" group
set the default Input Method to "ELatin" (don’t forget to tick the checkbox "Specify default IM"). In
the "ELatin" group set the layout to "TeX", and remember the content of the "[ELatin] on" field (by
default Control-\). You can now execute CoqIDE with the following commands (assuming you use a
Bourne-style shell):

$ export GTK_IM_MODULE=uim
$ cogide

Activate the ELatin Input Method with Control-\, then type the sequence "\Gamma". You will see
the sequence being replaced by I as soon as you type the second "a".

Coq Reference Manual, V8.6.1, July 26, 2017


http://www.unicode.org

364 16 CoQ Integrated Development Environment

16.9.3 Character encoding for saved files

In the Files section of the preferences, the encoding option is related to the way files are saved.

If you have no need to exchange files with non UTF-8 aware applications, it is better to choose the
UTEF-8 encoding, since it guarantees that your files will be read again without problems. (This is because
when COQIDE reads a file, it tries to automatically detect its character encoding.)

If you choose something else than UTF-8, then missing characters will be written encoded by
\x{....}or\x{........ } where each dot is an hexadecimal digit: the number between braces is
the hexadecimal Unicode index for the missing character.

Coq Reference Manual, V8.6.1, July 26, 2017



Part V

Addendum to the Reference Manual

Coq Reference Manual, V8.6.1, July 26, 2017






Presentation of the Addendum

Here you will find several pieces of additional documentation for the CoQ Reference Manual. Each of
this chapters is concentrated on a particular topic, that should interest only a fraction of the COQ users:
that’s the reason why they are apart from the Reference Manual.

Extended pattern-matching This chapter details the use of generalized pattern-matching. It is con-
tributed by Cristina Cornes and Hugo Herbelin.

Implicit coercions This chapter details the use of the coercion mechanism. It is contributed by
Amokrane Saibi.

Program extraction This chapter explains how to extract in practice ML files from F,, terms. It is
contributed by Jean-Christophe Fillidtre and Pierre Letouzey.

Program This chapter explains the use of the Program vernacular which allows the development
of certified programs in CoQ. It is contributed by Matthieu Sozeau and replaces the previous
Program tactic by Catherine Parent.

omega omega, written by Pierre Crégut, solves a whole class of arithmetic problems.

The ring tactic This is a tactic to do AC rewriting. This chapter explains how to use it and how it
works. The chapter is contributed by Patrick Loiseleur.

The Setoid_replace tactic This is a tactic to do rewriting on types equipped with specific (only
partially substitutive) equality. The chapter is contributed by Clément Renard.

Calling external provers This chapter describes several tactics which call external provers.

Contents
Extended pattern-matching 371
Patterns . . . . . .. 3T
About patterns of parametric types . . . . . . . ... Lo e e 374
Matching objects of dependent types . . . . . . . . . . . ... 376
Understanding dependencies in patterns . . . . . ... ... ... ............376
When the elimination predicate must be provided . . . . .. ... ... .........376
Using pattern matching to write proofs . . . . . . . . . . . ... .. ... .. .........378
Pattern-matching on inductive objects involving local definitions . . . . . . ... ... ... .379
Pattern-matching and coercions . . . . . . . . . ... Lo oL 380
When does the expansion strategy fail 2 . . . . . .. ... ... .. ... ... . ... 380

Coq Reference Manual, V8.6.1, July 26, 2017



368

Presentation of the Addendum

Implicit Coercions 383
General Presentation . . . . . . . . .. . .. .. .. .. ... 383
Classes . . . . v o e e e e e e 383
COBICIONS . . . . . o o i e e e e 384
Identity Coercions . . . . . . . . . . L e e e e e e e 384
Inheritance Graph . . . . . . . . . . . L 385
Declaration of Coercions . . . . . . . . . . . . . . . i i it e e e e e e e o385

Coercion qualid : classy >=> classa. . . .. ... . ... ... ........ 385
Identity Coercion ident:classy >—> classs. . . . . ... ... ... ..... 386
Displaying Available Coercions . . . . . . . . . . . . .. L e 387
Print ClasSsSeS. . . v v v i v it i e e e e e e e e e e e e e e 387
Print COETrCIONS. . . v v v v i i i e e e e e e e e e e e 38T
Print Graph. . . . . . . @ e e e e e 387
Print Coercion Paths class; classa. . . . . . . . . i 387
Activating the Printing of Coercions . . . . . . . . . .. . . L o 387
Set Printing CoOercCions. . . . . . . i i i i i i ittt e e 387
Add Printing Coercion qualid.. .. ... ... .................387
Classesas Records . . . . . . . . . . . . . . . . e 388
Coercions and SECtiONS . . . . . . . . . . i e e e e e 388
Coercions and Modules . . . . . . . . . ... 388
Examples . . . . . . . . e 388

Canonical Structures 393

Type Classes 403
Class and Instance declarations . . . . . . . . . . . . . . . . 403
Binding classes . . . . . . .. e 404
Parameterized Instances . . . . . . . . . . ... L. 405
Sections and CONtEXLS . . . . . . . v v v v e e e e e e e e e e e e e e e e e 405
Building hierarchies . . . . . . . . . . . . .. 406

typeclasses €aubo . . . . v v i it e e e e e e e e e e e e e 409
autoapply term with ident . . . . . . . . . . .. . ... 409

Omega: a solver of quantifier-free problems in Presburger Arithmetic 413

Descriptionof omega . . . . . . . . . .. e e e e e 413
Arithmetical goals recognized by omega . . . . . ... . ... L. 413
Messages from omega . . . . ... oL e 414

Technical data . . . . . . . . . . . . . e e 415
Overview of thetactic . . . . . . . . . . . . . . e e e 415
Overview of the OMEGA decision procedure . . . . . . . . . . .. .. ... ... ... 415

Bugs . . . e e 416

Micromega: tactics for solving arithmetic goals over ordered rings 417
Short description of the tactics . . . . . . . . . . ... 417
Positivstellensatz refutations . . . . . . . . .. 418
lra: adecision procedure for linear real and rational arithmetic . . . . . .. ... ... ... 418
lia: atactic for linear integer arithmetic . . . . . . . . .. ... ... L L. 419
nra: a proof procedure for non-linear arithmetic . . . . . .. ... ... ... ..., .. 420

Coq Reference Manual, V8.6.1, July 26, 2017



Presentation of the Addendum 369

nia: a proof procedure for non-linear integer arithmetic . . . . . . . .. .. ... ... ... 420
psatz: aproof procedure for non-linear arithmetic . . . . . . . .. ... ... ... ..... 420
Extraction of programs in Objective Caml and Haskell 421
Generating ML code . . . . . . . . . ... 421
ExXtraction options . . . . . . . . ... e e e e e e e 422
Setting the target language . . . . . . . . ... L. 422

Inlining and optimizations . . . . . . . . . . . . . . .. e 422

Extra elimination of useless arguments . . . . . . . ... ... ... ... 424
Realizing axioms . . . . . . . . . . .. e e e e 424
Avoiding conflicts with existing filenames . . . . . . . .. ... ..o 0oL 426
Differences between COQ and ML type systems . . . . . . . . . . . .o v vt v e 426
Someexamples . . . . ... L e e 427

A detailed example: Euclidean division . . . . . .. ... ... ... .......... 428
Extraction’s horror museum . . . . . . . . .. L. e 429

Users’ Contributions . . . . . . . . . ... e 429
PROGRAM 431
Elaborating programs . . . . . . . . . .. e e e 431
The ring and £ield tactic families 437
What does this tactic do? . . . . . . . ... e e 437
The variablesmap . . . . . . . . . . e 438
Isitautomatic? . . . . . . . . . e 438
Concrete usage in COQ . . . . . . o v v v i i e e e e e e e e e 438
Adding aring Structure . . . . . . .. L. e e e e e e e 440
How does it work? . . . . . . . . L 443
Dealing with fields . . . . . . . . . .. 444
Adding anew field structure . . . . . ... L. 445
History of ring . . . . . . . . e e e e e 446
Discussion . . . . . . . . e e e e e e e 447
Nsatz: tactics for proving equalities in integral domains 449
Using the basictactic nsatz . . . . . . . . . . i i v i i e e e e 449
More about nsatz . . . . . . . . e e e e e e e 449
Generalized rewriting 451
Introduction to generalized rewriting . . . . . . . . . . ... o 452
Commands and tactics . . . . . . . . . . e e e e e e e 457
EXtensions . . . . . . .. e 459
Strategies for rewriting . . . . . . . . . L. e e e e e 461
Asynchronous and Parallel Proof Processing 463
Polymorphic Universes 467
General Presentation . . . . . . . . . . .. e e e e e 467
Polymorphic, MonomorphicC . . . . . . . . . i it it e 469
Global and local universes . . . . . . . . . . ... e 469

Coq Reference Manual, V8.6.1, July 26, 2017



370 Presentation of the Addendum

Conversion and unification . . . . . . . . . .. ..o e e e 470
MINIMIZation . . . . . . o v e e e e e e e e e e e 470
Explicit Universes . . . . . . . . . . o ot e e e e e e e e e e e 470
Miscellaneous extensions 473
Program derivation . . . . . . . ... e 473

Coq Reference Manual, V8.6.1, July 26, 2017



Chapter 17

Extended pattern-matching

Cristina Cornes and Hugo Herbelin

This section describes the full form of pattern-matching in COQ terms.

17.1 Patterns

The full syntax of mat ch is presented in Figures 1.1 and 1.2. Identifiers in patterns are either constructor
names or variables. Any identifier that is not the constructor of an inductive or co-inductive type is
considered to be a variable. A variable name cannot occur more than once in a given pattern. It is
recommended to start variable names by a lowercase letter.

If a pattern has the form (¢ Z) where c is a constructor symbol and Z is a linear vector of (distinct)
variables, it is called simple: it is the kind of pattern recognized by the basic version of match. On the
opposite, if it is a variable 2 or has the form (¢ p) with p not only made of variables, the pattern is called
nested.

A variable pattern matches any value, and the identifier is bound to that value. The pattern ““_" (called
“don’t care” or “wildcard” symbol) also matches any value, but does not bind anything. It may occur an
arbitrary number of times in a pattern. Alias patterns written (pattern as identifier) are also accepted.
This pattern matches the same values as pattern does and identifier is bound to the matched value. A
pattern of the form pattern | pattern is called disjunctive. A list of patterns separated with commas is
also considered as a pattern and is called multiple pattern. However multiple patterns can only occur at
the root of pattern-matching equations. Disjunctions of multiple pattern are allowed though.

Since extended match expressions are compiled into the primitive ones, the expressiveness of the
theory remains the same. Once the stage of parsing has finished only simple patterns remain. Re-nesting
of pattern is performed at printing time. An easy way to see the result of the expansion is to toggle off
the nesting performed at printing (use here Set Printing Matching), then by printing the term
with Print if the term is a constant, or using the command Check.

The extended match still accepts an optional elimination predicate given after the keyword
return. Given a pattern matching expression, if all the right-hand-sides of => (rhs in short) have
the same type, then this type can be sometimes synthesized, and so we can omit the return part.
Otherwise the predicate after return has to be provided, like for the basic match.

Coq Reference Manual, V8.6.1, July 26, 2017



372 17 Extended pattern-matching

Let us illustrate through examples the different aspects of extended pattern matching. Consider for
example the function that computes the maximum of two natural numbers. We can write it in primitive
syntax by:

Cogq < Fixpoint max (n m:nat) {struct m} : nat :=
match n with
| O =>m
| S n' => match m with
| O => S n'
| S m'" => S (max n' m")
end
end.

max 1is defined
max 1s recursively defined (decreasing on 2nd argument)

Multiple patterns Using multiple patterns in the definition of max lets us write:

Cog < Fixpoint max (n m:nat) {struct m} : nat :=
match n, m with
| O, _ =>m
| S n', O=>3S8n'
| Sn', Sm'" =>S (max n' m'")
end.

max 1is defined
max 1s recursively defined (decreasing on 2nd argument)

which will be compiled into the previous form.

The pattern-matching compilation strategy examines patterns from left to right. A mat ch expression
is generated only when there is at least one constructor in the column of patterns. E.g. the following
example does not build a mat ch expression.

Cog < Check (fun x:nat => match x return nat with
'y =>vy
end) .
fun x : nat => x
nat —-> nat

Aliasing subpatterns We can also use “as ident” to associate a name to a sub-pattern:

Cog < Fixpoint max (n m:nat) {struct n} : nat :=
match n, m with
|OI_:>m

| S n' as p, O =>p
| S n', Sm' => 8 (
end.

max 1is defined

max 1is recursively defined (decreasing on 1st argument)

Nested patterns Here is now an example of nested patterns:

Coq Reference Manual, V8.6.1, July 26, 2017



17.1 Patterns 373

Cog < Fixpoint even (n:nat) : bool :=
match n with
| O => true
| S O => false
| S (S n'") => even n'
end.
even 1s defined
even 1s recursively defined (decreasing on 1st argument)

This is compiled into:

Cog < Unset Printing Matching.

Cog < Print even.
even =
fix even (n : nat) : bool :=
match n with
| 0 => true
| S n0 => match n0O with
| 0 => false
| S n' => even n'
end
end
nat —-> bool
Argument scope 1s [nat_scope]

In the previous examples patterns do not conflict with, but sometimes it is comfortable to write
patterns that admit a non trivial superposition. Consider the boolean function 1ef that given two natural
numbers yields t rue if the first one is less or equal than the second one and false otherwise. We can
write it as follows:

Cogq < Fixpoint lef (n m:nat) {struct m} : bool :=
match n, m with
| O, x => true
| x, O => false
| Sn, Sm=>1lef nm
end.
lef is defined
lef is recursively defined (decreasing on 2nd argument)

Note that the first and the second multiple pattern superpose because the couple of values O O
matches both. Thus, what is the result of the function on those values? To eliminate ambiguity we use
the textual priority rule: we consider patterns ordered from top to bottom, then a value is matched by
the pattern at the ¢¢h row if and only if it is not matched by some pattern of a previous row. Thus in the
example, O O is matched by the first pattern, and so (1lef O O) yields true.

Another way to write this function is:

Cog < Fixpoint lef (n m:nat) {struct m} : bool :=
match n, m with
| O, x => true
| Sn, Sm=>1lef nm
| _, _ => false
end.

Coq Reference Manual, V8.6.1, July 26, 2017



374 17 Extended pattern-matching

lef is defined
lef is recursively defined (decreasing on 2nd argument)

Here the last pattern superposes with the first two. Because of the priority rule, the last pattern will

be used only for values that do not match neither the first nor the second one.
Terms with useless patterns are not accepted by the system. Here is an example:

Cog < Fail Check (fun x:nat =>
match x with
| O => true

| S _ => false
| x => true
end) .

The command has indeed failed with message:
This clause 1is redundant.

Disjunctive patterns Multiple patterns that share the same right-hand-side can be factorized using the

notation mult_pattern | ... | mult_pattern. For instance, max can be rewritten as follows:
Cog < Fixpoint max (n m:nat) {struct m} : nat :=

match n, m with

| Sn', Sm' =>S (max n' m'")

| 0, p | p, O =>p

end.

max 1s defined
max 1s recursively defined (decreasing on Znd argument)

Similarly, factorization of (non necessary multiple) patterns that share the same variables is possible

by using the notation pattern | ... | pattern. Here is an example:
Cogq < Definition filter_2_4 (n:nat) : nat :=
match n with
| 2 asm | 4 as m =>m
| _ =>0
end.

filter 2 4 is defined

Here is another example using disjunctive subpatterns.

Coqg < Definition filter_some_square_corners (p:natxnat) : natxnat :=
match p with
| ((2 asm | 4 asm), (3 asn | 5 as n)) => (m,n)
| _ => (0,0)
end.

filter_some_square_corners 1is defined

17.2 About patterns of parametric types

Parameters in patterns When matching objects of a parametric type, parameters do not bind in pat-
terns. They must be substituted by “_”. Consider for example the type of polymorphic lists:

Coq Reference Manual, V8.6.1, July 26, 2017



17.2 About patterns of parametric types

375

Cog < Inductive List (A:Set) : Set :=
| nil : List A

| cons : A -> List A -> List A.

List is defined

List_rect is defined
List_ind is defined
List_rec is defined

We can check the function fail:

Cog < Check
(fun l:List nat =>
match 1 with

| nil _ => nil nat
| cons _ _ 1" => 1"
end) .

fun 1 : List nat =>

match 1 with

| nil _ => nil nat

| cons _ _ 1" => 1"

end

List nat —-> List nat

When we use parameters in patterns there is an error message:

Cog < Fail Check
(fun 1l:List nat =>
match 1 with
| nil A => nil nat
| cons A _ 1' => 1"
end) .

The command has indeed failed with message:
Error: The parameters do not bind in patterns;

they must be replaced by '_'.

Implicit arguments in patterns By default, implicit arguments are omitted in patterns. So we write:

Cogq < Arguments nil [A].

Cog < Arguments cons [A]

Cog < Check
(fun 1l:List nat =>
match 1 with
| nil => nil
| cons _ 1' => 1"
end) .
fun 1 : List nat => match 1 with
| nil => nil
| cons _ 1" => 1"
end
List nat —-> List nat

But the possibility to use all the arguments is given by “Q@” implicit explicitations (as for

terms 2.7.11).

Coq Reference Manual, V8.6.1, July 26, 2017



376 17 Extended pattern-matching

Cog < Check
(fun l:List nat =>
match 1 with

| @nil _ => @nil nat
| @cons _ _ 1" => 1"
end) .

fun 1 : List nat => match 1 with
| nil => nil
| cons _ 1' => 1"
end
List nat —-> List nat

17.3 Matching objects of dependent types

The previous examples illustrate pattern matching on objects of non-dependent types, but we can also
use the expansion strategy to destructure objects of dependent type. Consider the type 11istn of lists of
a certain length:

Cog < Inductive listn : nat -> Set :=
| niln : listn O
| consn : forall n:nat, nat -> listn n -> listn (S n).
listn is defined
listn rect is defined
listn_ind is defined
listn_rec is defined

17.3.1 Understanding dependencies in patterns

We can define the function 1ength over 1istn by:

Cogq < Definition length (n:nat) (l:1listn n) := n.
length is defined

Just for illustrating pattern matching, we can define it by case analysis:

Coqg < Definition length (n:nat) (l:listn n) :=
match 1 with
| niln => 0
| consn n _ _ => S n
end.
length is defined

We can understand the meaning of this definition using the same notions of usual pattern matching.

17.3.2 When the elimination predicate must be provided

Dependent pattern matching The examples given so far do not need an explicit elimination predicate
because all the rhs have the same type and the strategy succeeds to synthesize it. Unfortunately when
dealing with dependent patterns it often happens that we need to write cases where the type of the rhs are
different instances of the elimination predicate. The function concat for 1istn is an example where
the branches have different type and we need to provide the elimination predicate:

Coq Reference Manual, V8.6.1, July 26, 2017



17.3 Matching objects of dependent types 377

Cog < Fixpoint concat (n:nat) (l:listn n) (m:nat) (1':listn m) {struct 1}
listn (n + m) :=
match 1 in listn n return listn (n + m) with
| niln => 1"
| consn n' a y => consn (n' + m) a (concat n' ym 1")
end.
concat 1is defined
concat is recursively defined (decreasing on 2nd argument)

The elimination predicate is fun (n:nat) (l:1listn n) => listn (n+m). In general if m
has type (I ¢q1 ... g- t1 ... ts) where q1, ..., g, are parameters, the elimination predicate should be of
the form: funy; ... ysx:{l q1 ... ¢ y1 ... Yys) => Q.

In the concrete syntax, it should be written :

matchmaszin(f _... _y; ... ys) return Q with ... end

The variables which appear in the in and as clause are new and bounded in the property () in the
return clause. The parameters of the inductive definitions should not be mentioned and are replaced by

Multiple dependent pattern matching Recall that a list of patterns is also a pattern. So, when we
destructure several terms at the same time and the branches have different types we need to provide the
elimination predicate for this multiple pattern. It is done using the same scheme, each term may be
associated to an as and in clause in order to introduce a dependent product.

For example, an equivalent definition for concat (even though the matching on the second term is
trivial) would have been:

Cog < Fixpoint concat (n:nat) (l:listn n) (m:nat) (l':1listn m) {struct 1}
listn (n + m) :=
match 1 in listn n, 1' return listn (n + m) with
| niln, x => x
| consn n' a y, x => consn (n' + m) a (concat n' y m x)
end.
concat is defined
concat 1is recursively defined (decreasing on 2nd argument)

Even without real matching over the second term, this construction can be used to keep types linked.
If a and b are two 11istn of the same length, by writing

Cogq < Check (fun n (a b: listn n) => match a,b with
Iniln,b0 => tt
|consn n' a vy, bS => tt
end) .
fun (n : nat) (a _ : listn n) =>
match a with
| niln => tt
| consn n' _ _ => tt
end
forall n : nat, 1listn n —-> 1istn n —-> unit

Thave acopy of bintype 1istn Oresp listn (S n’).

Coq Reference Manual, V8.6.1, July 26, 2017



378 17 Extended pattern-matching

Patterns in in If the type of the matched term is more precise than an inductive applied to variables,

arguments of the inductive in the in branch can be more complicated patterns than a variable.
Moreover, constructors whose type do not follow the same pattern will become impossible branches.

In an impossible branch, you can answer anything but False_rect unit has the advantage to be

subterm of anything.
To be concrete: the tail function can be written:

Coqg < Definition tail n (v: listn (S n)) :=
match v in listn (S m) return listn m with
| niln => False_rect unit
| consn n' ay =>y
end.
tail is defined

and tail n v will be subterm of v.

17.4 Using pattern matching to write proofs

In all the previous examples the elimination predicate does not depend on the object(s) matched. But
it may depend and the typical case is when we write a proof by induction or a function that yields an
object of dependent type. An example of proof using mat ch in given in Section 8.2.3.

For example, we can write the function buildlist that given a natural number 7 builds a list of
length n containing zeros as follows:

Cog < Fixpoint buildlist (n:nat) : listn n :=
match n return listn n with
| O => niln
| S n =>consn n 0 (buildlist n)
end.
buildlist is defined
buildlist is recursively defined (decreasing on 1lst argument)

We can also use multiple patterns. Consider the following definition of the predicate less-equal Le:

Coqg < Inductive LE : nat -> nat -> Prop :=

| LEO : forall n:nat, LE 0 n

| LES : forall n m:nat, LE nm -> LE (S n) (S m).
LE is defined
LE _ind is defined

We can use multiple patterns to write the proof of the lemma forall (n m:nat), (LE n
m)\/ (LE m n):

Coq < Fixpoint dec (n m:nat) {struct n} : LEnm \/ LE m n :=
match n, m return LE n m \/ LE m n with
| O, x => or_introl (LE x 0) (LEO x)
| x, O => or_intror (LE x 0) (LEO x)

| S nas n', Smas m' =>
match dec n m with
| or_introl h => or_introl (LE m' n') (LES n m h)
| or_intror h => or_intror (LE n' m') (LES m n h)

Coq Reference Manual, V8.6.1, July 26, 2017



17.5 Pattern-matching on inductive objects involving local definitions 379

end
end.
dec is defined
dec 1is recursively defined (decreasing on 1st argument)

In the example of dec, the first mat ch is dependent while the second is not.
The user can also use match in combination with the tactic refine (see Section 8.2.3) to build
incomplete proofs beginning with a mat ch construction.

17.5 Pattern-matching on inductive objects involving local definitions
If local definitions occur in the type of a constructor, then there are two ways to match on this con-

structor. Either the local definitions are skipped and matching is done only on the true arguments of the
constructors, or the bindings for local definitions can also be caught in the matching.

Example.
Cog < Inductive list : nat -> Set :=
| nil : 1list O
| cons : forall n:nat, let m := (2 » n) in list m -> list (S (S m)).

In the next example, the local definition is not caught.

Cogq < Fixpoint length n (l:1list n) {struct 1} : nat :=
match 1 with

| nil => 0
| cons n 10 => S (length (2 * n) 10)
end.

length is defined
length is recursively defined (decreasing on 2nd argument)

But in this example, it is.

Cog < Fixpoint length' n (l:1ist n) {struct 1} : nat :=
match 1 with
| nil => 0
| @cons _ m 10 => S (length' m 10)
end.
length' is defined
length' is recursively defined (decreasing on 2nd argument)

Remark: for a given matching clause, either none of the local definitions or all of them can be caught.

Remark: you can only catch 1et bindings in mode where you bind all variables and so you have to use
@ syntax.

Remark: this feature is incoherent with the fact that parameters cannot be caught and consequently is
somehow hidden. For example, there is no mention of it in error messages.

Coq Reference Manual, V8.6.1, July 26, 2017



380 17 Extended pattern-matching

17.6 Pattern-matching and coercions

If a mismatch occurs between the expected type of a pattern and its actual type, a coercion made from
constructors is sought. If such a coercion can be found, it is automatically inserted around the pattern.
Example:

Cog < Inductive I : Set :=
| C1 : nat —> I
| C2 : I —> TI.

I is defined

I_rect is defined

I_ind is defined

I _rec is defined

Coq < Coercion Cl : nat >-> I.
Cl is now a coercion

Cog < Check (fun x => match x with
| C2 0 =>0
| _ =>0
end) .

fun x : =>

match x with

/| C1 _ => 0

[ c2 (C1 0) => 0

| c2 (Cc1 (S _)) => 0

[ c2 (c2 _) => 0

end

I —-> nat

17.7 When does the expansion strategy fail ?

The strategy works very like in ML languages when treating patterns of non-dependent type. But there
are new cases of failure that are due to the presence of dependencies.

The error messages of the current implementation may be sometimes confusing. When the tactic
fails because patterns are somehow incorrect then error messages refer to the initial expression. But
the strategy may succeed to build an expression whose sub-expressions are well typed when the whole
expression is not. In this situation the message makes reference to the expanded expression. We en-
courage users, when they have patterns with the same outer constructor in different equations, to name
the variable patterns in the same positions with the same name. E.g. to write (cons n 0 x) => el
and (cons n _ x) => e2instead of (cons n O x) => el and (cons n’ _ x’) => e2. This
helps to maintain certain name correspondence between the generated expression and the original.

Here is a summary of the error messages corresponding to each situation:

Error messages:
1. The constructor ident expects num arguments

The variable ident is bound several times in pattern term

Found a constructor of inductive type term while a constructor
of term 1is expected

Coq Reference Manual, V8.6.1, July 26, 2017



17.7 When does the expansion strategy fail ? 381

Patterns are incorrect (because constructors are not applied to the correct number of the arguments,
because they are not linear or they are wrongly typed).

2. Non exhaustive pattern-matching
The pattern matching is not exhaustive.

3. The elimination predicate term should be of arity num (for non
dependent case) or num (for dependent case)
The elimination predicate provided to mat ch has not the expected arity.

4. Unable to infer a match predicate

Either there is a type incompatibility or the problem involves
dependencies

There is a type mismatch between the different branches. The user should provide an elimination
predicate.

Coq Reference Manual, V8.6.1, July 26, 2017



382 17 Extended pattern-matching

Coq Reference Manual, V8.6.1, July 26, 2017



Chapter 18

Implicit Coercions

Amokrane Saibi

18.1 General Presentation

This section describes the inheritance mechanism of C0Q. In CoQ with inheritance, we are not inter-
ested in adding any expressive power to our theory, but only convenience. Given a term, possibly not
typable, we are interested in the problem of determining if it can be well typed modulo insertion of
appropriate coercions. We allow to write:

e fawhere f: forall z: A,B and a : A’ when A’ can be seen in some sense as a subtype of A.
* z: A when A is not a type, but can be seen in a certain sense as a type: set, group, category etc.

* f a when f is not a function, but can be seen in a certain sense as a function: bijection, functor,
any structure morphism etc.

18.2 Classes

A class with n parameters is any defined name with a type forall (z1 : Ay)..(zy : Ayp), s where s is
a sort. Thus a class with parameters is considered as a single class and not as a family of classes. An
object of a class C is any term of type C' ¢;..t,. In addition to these user-classes, we have two abstract
classes:

* Sortclass, the class of sorts; its objects are the terms whose type is a sort.

* Funclass, the class of functions; its objects are all the terms with a functional type, i.e. of form
forall z : A, B.

Formally, the syntax of a classes is defined on Figure 18.1.

Coq Reference Manual, V8.6.1, July 26, 2017



384 18 Implicit Coercions

class := qualid
| Sortclass
| Funclass

Figure 18.1: Syntax of classes

18.3 Coercions

A name f can be declared as a coercion between a source user-class C' with n parameters and a target
class D if one of these conditions holds:

* D is a user-class, then the type of f must have the form forall (x1 : A1)..(zn : Ap)(y :
C z1..zp), D u1..uy where m is the number of parameters of D.

* D is Funclass, then the type of f must have the form forall (x1 : A1)..(zy @ Ap)(y :
C zy..xp)(z : A), B.

* D is Sortclass, then the type of f must have the form forall (z1 : Ay)..(zn : Ap)(y :
C z1..xy), s with s a sort.

We then write f : C>->D. The restriction on the type of coercions is called the uniform inheritance
condition. Remark that the abstract classes Funclass and Sortclass cannot be source classes.

To coerce an object £ : C' t;..t, of C towards D, we have to apply the coercion f to it; the obtained
term f ¢..t, t is then an object of D.

18.4 Identity Coercions

Identity coercions are special cases of coercions used to go around the uniform inheritance condition.
Let C and D be two classes with respectively n and m parameters and f : forall (z; : T1)..(zy :
Tx)(y : C uy..up), D v1..v, a function which does not verify the uniform inheritance condition. To
declare f as coercion, one has first to declare a subclass C’ of C:

C' = fun (zy: T1)..(zp, : Tg) => C uy..up

We then define an identity coercion between C’ and C":

1d_ C' C = fun(z1:T).(zg: Tp)(y: C z1..2k) => (y: Cuy..uy)

We can now declare f as coercion from C’ to D, since we can “cast” its type as forall (z1 :
Tl)(xk : Tk)(y ! xl..xk), D V1. Uy
The identity coercions have a special status: to coerce an object ¢ : C t1..t; of C' towards C, we
does not have to insert explicitly Id_C’_C since Id_C’'_C' ty..t; t is convertible with £. However we
“rewrite” the type of ¢ to become an object of C'; in this case, it becomes C' u]..u;, where each u; is the
result of the substitution in w; of the variables z; by ¢;.

Coq Reference Manual, V8.6.1, July 26, 2017




18.5 Inheritance Graph 385

18.5 Inheritance Graph

Coercions form an inheritance graph with classes as nodes. We call coercion path an ordered list of
coercions between two nodes of the graph. A class C' is said to be a subclass of D if there is a coercion
path in the graph from C' to D; we also say that C' inherits from D. Our mechanism supports multiple
inheritance since a class may inherit from several classes, contrary to simple inheritance where a class
inherits from at most one class. However there must be at most one path between two classes. If this
is not the case, only the oldest one is valid and the others are ignored. So the order of declaration of
coercions is important.

We extend notations for coercions to coercion paths. For instance [f1;..; fx] : C>->D is the coer-
cion path composed by the coercions fi..fx. The application of a coercion path to a term consists of the
successive application of its coercions.

18.6 Declaration of Coercions

18.6.1 Coercion qualid : class; >-> classs.
Declares the construction denoted by qualid as a coercion between class; and classs.

Error messages:
1. qualid not declared
2. qualid is already a coercion
3. Funclass cannot be a source class
4. Sortclass cannot be a source class
5. qualid is not a function
6. Cannot find the source class of qualid
7. Cannot recognize class; as a source class of qualid
8. qualid does not respect the uniform inheritance condition
9. Found target class class instead of classs

When the coercion qualid is added to the inheritance graph, non valid coercion paths are ignored;
they are signaled by a warning.

Warning :

1. Ambiguous paths: [fll;..;fﬁl] :Ci>—>Dy
1o k] Cn>—>Dpy

Variants:

1. Local Coercion qualid : class; >-> classsy.
Declares the construction denoted by qualid as a coercion local to the current section.

Coq Reference Manual, V8.6.1, July 26, 2017



386 18 Implicit Coercions
2. Coercion ident := term
This defines ident just like Definition ident := term, and then declares ident as a coercion
between it source and its target.
3. Coercion ident := term : type
This defines ident just like Definition ident : type := term, and then declares ident as
a coercion between it source and its target.
4. Local Coercion ident := term
This defines ident just like Let ident := term, and then declares ident as a coercion between
it source and its target.
5. Assumptions can be declared as coercions at declaration time. This extends the grammar of as-
sumptions from Figure 1.3 as follows:
assumption ::= assumption_keyword assums .
assums = simple_assums
| ( simple_assums) ... ( simple_assums)
simple_assums ::= ident ... ident :[>] term
If the extra > is present before the type of some assumptions, these assumptions are declared as
coercions.
6. Constructors of inductive types can be declared as coercions at definition time of the inductive

type. This extends and modifies the grammar of inductive types from Figure 1.3 as follows:

inductive = Inductive ind_body with ... with ind_body .
CoInductive ind_body with ... with ind_body .

ind_body = ident [binders] : term :=
[[| ] constructor | ... | constructor]
constructor ::= Iident [binders] [:[>] term]

Especially, if the extra > is present in a constructor declaration, this constructor is declared as a
coercion.

18.6.2 Identity Coercion ident:class; >-> class,.

We check that class; is a constant with a value of the form fun (zy : T1)..(z, : T),) => (classy t1..ty,)
where m is the number of parameters of classs. Then we define an identity function with the type
forall (z1 : T1).(xy : Tp)(y : classi x1..xy), classs t1..ty,, and we declare it as an identity coercion
between class; and classs.

Error messages:

1. classy must be a transparent constant

Variants:

Coq Reference Manual, V8.6.1, July 26, 2017



18.7 Displaying Available Coercions 387

1. Local Identity Coercion ident:ident; >-> idents.
Idem but locally to the current section.

2. SubClass ident := type.
If type is a class ident’ applied to some arguments then ident is defined and an identity coercion
of name Id_ident_ident’ is declared. Otherwise said, this is an abbreviation for

Definition ident := type.
followed by

Identity Coercion Id_ident_ident’ :ident >-> ident’ .
3. Local SubClass ident := type.
Same as before but locally to the current section.
18.7 Displaying Available Coercions

18.7.1 Print Classes.

Print the list of declared classes in the current context.

18.7.2 Print Coercions.

Print the list of declared coercions in the current context.

18.7.3 Print Graph.

Print the list of valid coercion paths in the current context.

18.7.4 Print Coercion Paths class; classs,.

Print the list of valid coercion paths from class; to classs.

18.8 Activating the Printing of Coercions

18.8.1 Set Printing Coercions.

This command forces all the coercions to be printed. Conversely, to skip the printing of coercions, use
Unset Printing Coercions. By default, coercions are not printed.

18.8.2 Add Printing Coercion qualid.

This command forces coercion denoted by qualid to be printed. To skip the printing of coercion qualid,
use Remove Printing Coercion qualid. By default, a coercion is never printed.

Coq Reference Manual, V8.6.1, July 26, 2017



388 18 Implicit Coercions

18.9 Classes as Records

We allow the definition of Structures with Inheritance (or classes as records) by extending the existing
Record macro (see Section 2.1). Its new syntax is:

Record [>] ident [binders] : sort := [identy] {
ident; [:]:>] term; ;
ident,, [:|:>] term, }.

The identifier ident is the name of the defined record and sort is its type. The identifier identg is
the name of its constructor. The identifiers ident;, .., ident,, are the names of its fields and termq, ..,
term,, their respective types. The alternative [:|:>] is “:” or “:>". If ident;: >term;, then ident; is
automatically declared as coercion from ident to the class of term;. Remark that ident; always verifies
the uniform inheritance condition. If the optional “>” before ident is present, then ident (or the default
name Build_ident if ident is omitted) is automatically declared as a coercion from the class of term,,

to ident (this may fail if the uniform inheritance condition is not satisfied).

Remark: The keyword St ructure is a synonym of Record.

18.10 Coercions and Sections

The inheritance mechanism is compatible with the section mechanism. The global classes and coercions
defined inside a section are redefined after its closing, using their new value and new type. The classes
and coercions which are local to the section are simply forgotten. Coercions with a local source class or
a local target class, and coercions which do not verify the uniform inheritance condition any longer are
also forgotten.

18.11 Coercions and Modules

From Coq version 8.3, the coercions present in a module are activated only when the module is explicitly
imported. Formerly, the coercions were activated as soon as the module was required, whatever it was
imported or not.

To recover the behavior of the versions of Coq prior to 8.3, use the following command:

Set Automatic Coercions Import.
To cancel the effect of the option, use instead:

Unset Automatic Coercions Import.

18.12 Examples

There are three situations:

e f aisill-typed where f : forall z : A, B and a : A’. If there is a coercion path between A’ and
A, f ais transformed into f a’ where a’ is the result of the application of this coercion path to a.

We first give an example of coercion between atomic inductive types

Coq Reference Manual, V8.6.1, July 26, 2017



18.12 Examples 389

Cog < Definition bool_in_nat (b:bool) := if b then 0 else 1.
bool_in nat is defined

Cog < Coercion bool_in_nat : bool >-> nat.
bool_in nat is now a coercion

Cog < Check (0 = true).
0 = true
Prop

Cog < Set Printing Coercions.

Cog < Check (0 = true).
0 = bool_1in_nat true
Prop

Warning: “Check true=0.” fails. This is “normal” behaviour of coercions. To validate
t rue=0, the coercion is searched from nat to bool. There is none.

We give an example of coercion between classes with parameters.

Cog < Parameters
(C : nat => Set) (D : nat -> bool -> Set) (E : bool -> Set).
C is declared
D is declared
E is declared

Cog < Parameter f : forall n:nat, C n -> D (S n) true.
f is declared

Cog < Coercion f : C >-> D.
f is now a coercion

Cogq < Parameter g : forall (n:nat) (b:bool), D n b -> E b.
g is declared

Cog < Coercion g : D >-> E.
g 1s now a coercion

Cog < Parameter c : C 0.
c is declared

Cog < Parameter T : E true —-> nat.
T is declared

Cog < Check (T c).
T ¢
nat

Cog < Set Printing Coercions.

Cog < Check (T c).
T (9 1 true (£ 0 c))
nat

We give now an example using identity coercions.

Coq Reference Manual, V8.6.1, July 26, 2017



390 18 Implicit Coercions

Cog < Definition D' (b:bool) := D 1 b.
D' is defined

Cog < Identity Coercion IdD'D : D' >-> D.

Cog < Print IdD'D.

IdD'D =

(fun (b : bool) (x : D' b) => x) : forall b : bool, D' b -> D 1 b
forall b : bool, D' b -> D 1 b

Argument scopes are [bool_scope _]

Cog < Parameter d' : D' true.
d' is declared

Cog < Check (T d'").
T d’
nat

Cog < Set Printing Coercions.

Cog < Check (T d'").
T (g 1 true d')
nat

In the case of functional arguments, we use the monotonic rule of sub-typing. Approximatively,
to coerce t : forall z : A, B towards forall x : A', B', one have to coerce A’ towards A and B
towards B’. An example is given below:

Cog < Parameters (A B : Set) (h : A -> B).
A is declared
B is declared
h is declared

Cogq < Coercion h : A >-> B.
h is now a coercion

Cog < Parameter U : (A -> E true) —-> nat.
U is declared

Cog < Parameter t : B -> C 0.
t is declared

Cog < Check (U t).
U (fun x : A => t Xx)
: nat

Cog < Set Printing Coercions.

Cog < Check (U t).
U (fun x : A => g 1 true (£ 0 (t (h x))))
: nat

Remark the changes in the result following the modification of the previous example.

Cogq < Parameter U' : (C 0 -> B) —-> nat.
U' is declared

Cog < Parameter t' : E true -> A.

Coq Reference Manual, V8.6.1, July 26, 2017



18.12 Examples 391

t' is declared

Cog < Check (U' t'").
U' (fun x : C 0 => t' Xx)
nat
Cog < Set Printing Coercions.
Cog < Check (U' t'").

U'" (fun x : C 0 => h (t' (g 1 true (f 0 x))))
: nat

* An assumption z : A when A is not a type, is ill-typed. It is replaced by z : A’ where A’ is the
result of the application to A of the coercion path between the class of A and Sortclass if it
exists. This case occurs in the abstraction fun x : A => t, universal quantification forall x :
A, B, global variables and parameters of (co-)inductive definitions and functions. In forall = :
A, B, such a coercion path may be applied to B also if necessary.

Cog < Parameter Graph : Type.
Graph is declared

Cogq < Parameter Node : Graph -> Type.
Node is declared

Cog < Coercion Node : Graph >-> Sortclass.
Node is now a coercion

Coqg < Parameter G : Graph.
G is declared

Cog < Parameter Arrows : G —-> G —> Type.
Arrows 1s declared

Cog < Check Arrows.
Arrows
G —> G —> Type

Cog < Parameter fg : G -> G.
fg is declared

Cog < Check fg.
fg
G -> G

Cog < Set Printing Coercions.

Cog < Check fg.
fg
Node G —> Node G

* f aisill-typed because f : A is not a function. The term f is replaced by the term obtained by
applying to f the coercion path between A and Funclass if it exists.

Cog < Parameter bij : Set -> Set —-> Set.
bij is declared

Cog < Parameter ap : forall A B:Set, bij A B -> A -> B.
ap 1s declared

Coq Reference Manual, V8.6.1, July 26, 2017



392 18 Implicit Coercions

Cog < Coercion ap : bij >-> Funclass.
ap 1s now a coercion

Cog < Parameter b : bij nat nat.
b is declared

Cog < Check (b 0).
b 0
: nat

Cog < Set Printing Coercions.

Cog < Check (b 0).
ap nat nat b 0
nat

Let us see the resulting graph of this session.

Cog < Print Graph.
[bool_in_nat] : bool >-> nat
[f] : C >-> D

[f; g] : C >> E

[g] : D >> E

[IdD'D] : D' >-> D

[IdD'D; g] : D' >-> E

[h] : A >-> B

[Node] : Graph >-> Sortclass
[ap] : bij >-> Funclass

Coq Reference Manual, V8.6.1, July 26, 2017



Chapter 19

Canonical Structures

Assia Mahboubi and Enrico Tassi

This chapter explains the basics of Canonical Structure and how they can be used to overload notations

and build a hierarchy of algebraic structures. The examples are taken from [

]. We invite the interested

reader to refer to this paper for all the details that are omitted here for brevity. The interested reader shall
also find in [76] a detailed description of another, complementary, use of Canonical Structures: advanced
proof search. This latter papers also presents many techniques one can employ to tune the inference of

Canonical Structures.

19.1 Notation overloading

We build an infix notation == for a comparison predicate. Such notation will be overloaded, and its

meaning will depend on the types of the terms that are compared.

Cog < Module EQ.
Interactive Module EQ started

Coqg < Record class (T : Type) := Class { cmp : T —> T
class is defined
cmp 1is defined

Cog < Structure type := Pack { obj : Type; class_of
type is defined

obj is defined

class_of is defined

-> Prop }.

class obj }.

Coqg < Definition op (e : type) : obj e —-> obj e —-> Prop :=

let 'Pack _ (Class _ the_cmp) := e in the_cmp.

op 1s defined

Coqg < Check op.
op
forall e : type, obj e —-> obj e —> Prop

Coqg < Arguments op {e} x y : simpl never.

Coqg < Arguments Class (T} cmp.

Coq Reference Manual, V8.6.1, July 26, 2017



394 19 Canonical Structures

Coqg < Module theory.
Interactive Module theory started

Cog < Notation "x == y" := (op x y) (at level 70).

Cogq < End theory.
Module theory is defined

Cog < End EQ.
Module EQ 1is defined

We use Coq modules as name spaces. This allows us to follow the same pattern and naming conven-
tion for the rest of the chapter. The base name space contains the definitions of the algebraic structure.
To keep the example small, the algebraic structure EQ.type we are defining is very simplistic, and
characterizes terms on which a binary relation is defined, without requiring such relation to validate any
property. The inner theory module contains the overloaded notation == and will eventually contain
lemmas holding on all the instances of the algebraic structure (in this case there are no lemmas).

Note that in practice the user may want to declare EQ. obj as a coercion, but we will not do that
here.

The following line tests that, when we assume a type e that is in the EQ class, then we can relates
two of its objects with ==.

Cog < Import EQ.theory.

Cog < Check forall (e : EQ.type) (a b : EQ.obj e), a ==
forall (e : EQ.type) (a b : EQ.obj e), a == b
Prop

Still, no concrete type is in the EQ class. We amend that by equipping nat with a comparison
relation.

Cog < Fail Check 3 ==

The command has indeed failed with message:

The term "3" has type "nat" while it is expected to have type
"EQ.obj ?e".

Coqg < Definition nat_eqg (x y : nat) := nat_compare x y = Eg.

nat_eq is defined

Cog < Definition nat_EQcl : EQ.class nat := EQ.Class nat_eq.
nat_EQcl is defined

Cog < Canonical Structure nat_EQty : EQ.type := EQ.Pack nat nat_EQcl.
nat_EQty is defined

Cog < Check 3 ==

Prop

Cogq < Eval compute in 3 ==
= Lt = Eq
Prop

This last test shows that Coq is now not only able to typecheck 3==3, but also that the infix relation
was bound to the nat_eq relation. This relation is selected whenever == is used on terms of type nat.
This can be read in the line declaring the canonical structure nat_EQty, where the first argument to

Coq Reference Manual, V8.6.1, July 26, 2017



19.2 Hierarchy of structures 395

Pack is the key and its second argument a group of canonical values associated to the key. In this case
we associate to nat only one canonical value (since its class, nat_EQc1 has just one member). The
use of the projection op requires its argument to be in the class EQ, and uses such a member (function)
to actually compare its arguments.

Similarly, we could equip any other type with a comparison relation, and use the == notation on
terms of this type.

19.1.1 Derived Canonical Structures

We know how to use == on base types, like nat, bool, Z. Here we show how to deal with type
constructors, i.e. how to make the following example work:

Cog < Fail Check forall (e : EQ.type) (a b : EQ.obj e), (a,b) == (a,b).
The command has indeed failed with message:

In environment

e : EQ.type

a : EQ.obj e

b : EQ.obj e

The term "(a, b)" has type "(EQ.obj e x EQ.obj e)%type”

while it is expected to have type "EQ.obj ?e".

The error message is telling that Coq has no idea on how to compare pairs of objects. The following
construction is telling Coq exactly how to do that.

Cogq < Definition pair_eq (el e2 : EQ.type) (x y : EQ.obj el % EQ.obj e2) :=
fst x == fst y /\ snd x == snd vy.
pair_eq is defined

Coqg < Definition pair_EQcl el e2 := EQ.Class (palir_eqg el e2).
pair EQcl is defined

Cog < Canonical Structure pair_ EQty (el e2 : EQ.type) : EQ.type
EQ.Pack (EQ.obj el » EQ.obj e2) (pair_EQcl el e2).
pair_ EQty is defined

Cog < Check forall (e : EQ.type) (a b : EQ.obj e), (a,b) == (a,b).
forall (e : EQ.type) (a b : EQ.obj e), (a, b) == (a, b)
: Prop
Cog < Check forall nm : nat, (3,4) == (n,m).
forall n m : nat, (3, 4) == (n, m)
: Prop

Thanks to the pair_EQty declaration, Coq is able to build a comparison relation for pairs when-
ever it is able to build a comparison relation for each component of the pair. The declaration associates
to the key « (the type constructor of pairs) the canonical comparison relation pair_eqg whenever the
type constructor * is applied to two types being themselves in the EQ class.

19.2 Hierarchy of structures

To get to an interesting example we need another base class to be available. We choose the class of types
that are equipped with an order relation, to which we associate the infix <= notation.

Coq Reference Manual, V8.6.1, July 26, 2017



396 19 Canonical Structures

Cog < Module LE.
Interactive Module LE started

Coqg < Record class T := Class { cmp : T -> T -> Prop }.
class is defined
cmp 1s defined

Cog < Structure type Pack { obj : Type; class_of : class obj }.

type is defined
obj is defined
class_of is defined

Coqg < Definition op (e : type) : obj e —-> obj e —-> Prop :=
let 'Pack _ (Class _ f) := e in f.
op 1is defined

Cog < Arguments op {_} x y : simpl never.
Cog < Arguments Class (T} cmp.

Cog < Module theory.
Interactive Module theory started

Cog < Notation "x <= y" := (op x y) (at level 70).

Coqg < End theory.
Module theory is defined

Cog < End LE.
Module LE is defined

As before we register a canonical LE class for nat.

Cog < Import LE.theory.

Coqg < Definition nat_le x y := nat_compare x y <> Gt.
nat_1le is defined

Coqg < Definition nat_LEcl : LE.class nat := LE.Class nat_le.
nat_LEcl is defined

Cog < Canonical Structure nat_LEty : LE.type := LE.Pack nat nat_LEcl.
nat_LEty is defined

And we enable Coq to relate pair of terms with <=.

Cogq < Definition pair_le el e2 (x y : LE.obj el % LE.obj e2) :=
fst x <= fst y /\ snd x <= snd y.
pair_le is defined

Coqg < Definition pair_LEcl el e2 := LE.Class (pair_le el e2).
pair_LEcl is defined

Cog < Canonical Structure pair_ LEty (el e2 : LE.type) : LE.type :=
LE.Pack (LE.obj el x LE.obj e2) (pair_LEcl el e2).
pair LEty is defined

Cog < Check (3,4,5) <
(3/ 4/ 5) <= (3/ 4/ 5)
Prop

(3,4,5).

Coq Reference Manual, V8.6.1, July 26, 2017



19.2 Hierarchy of structures 397

At the current stage we can use == and <= on concrete types, like tuples of natural numbers, but we
can’t develop an algebraic theory over the types that are equipped with both relations.

Coq < Check 2 <= 3 /\ 2 ==
2 <=3 /\ 2 ==
Prop

Cogq < Fail Check forall (e : EQ.type) (x y : EQ.obj e), x <=y —> y <= x —> x ==

The command has indeed failed with message:

In environment

e : EQ.type

x : EQ.obj e

y : EQ.obj e

The term "x
"LE.obj ?e".

n

has type "EQ.obj e" while it is expected to have type

Cogq < Fail Check forall (e : LE.type) (x y : LE.obj e), x <=y —> y <= x —> x ==
The command has indeed failed with message:
In environment
e : LE.type
x : LE.obj e
y : LE.obj e
The term "x" has type "LE.obj e" while it is expected to have type
"EQ.obj ?e".

We need to define a new class that inherits from both EQ and LE.

Cog < Module LEQ.
Interactive Module LEQ started

Coqg < Record mixin (e : EQ.type) (le : EQ.obj e -> EQ.obj e —-> Prop) :=

Mixin { compat : forall x y : EQ.obj e, le x vy /\ le y x <-> x ==y }.
mixin 1is defined
compat 1is defined

Coqg < Record class T := Class {
EQ_class : EQ.class T;
LE_class : LE.class T;

extra : mixin (EQ.Pack T EQ_class) (LE.cmp T LE_class) }.
class 1is defined
EQ class is defined
LE_class 1is defined
extra 1s defined

Cog < Structure type := _Pack { obj : Type; class_of : class obj }.
type is defined

obj is defined

class_of is defined

Coqg < Arguments Mixin {e le}

Cog < Arguments Class (T}

The mixin component of the LEQ class contains all the extra content we are adding to EQ and LE.
In particular it contains the requirement that the two relations we are combining are compatible.
Unfortunately there is still an obstacle to developing the algebraic theory of this new class.

Coq Reference Manual, V8.6.1, July 26, 2017



398 19 Canonical Structures

Coqg < Module theory.
Interactive Module theory started

Coqg < Fail Check forall (le : type) (nm : obj le), n <=m ->n <=m —-> n == m.
The command has indeed failed with message:
In environment

le : type
n : obj le
m : obj le

The term "n" has type "obj le" while it is expected to have type
"LE.obj ?e".

The problem is that the two classes LE and LEQ are not yet related by a subclass relation. In other
words Coq does not see that an object of the LEQ class is also an object of the LE class.

The following two constructions tell Coq how to canonically build the LE. type and EQ.type
structure given an LEQ . t ype structure on the same type.

Cog < Definition to_EQ (e : type) : EQ.type :=
EQ.Pack (obj e) (EQ_class (class_of e)).
to EQ is defined

Coqg < Canonical Structure to_EQ.
Coqg < Definition to_LE (e : type) : LE.type :=
LE.Pack (obj e) (LE_class _ (class_of e)).

to LE 1is defined

Cog < Canonical Structure to_LE.
We can now formulate out first theorem on the objects of the LEQ structure.

Coqg < Lemma lele_eq (e : type) (xy : obje) ! x <=y —>y <=x —> x == Yy.
1 subgoal

e : type
X, y : obj e

X <=y >y <=X —>X ==Yy
Coqg < now intros; apply (compat _ _ (extra _ (class_of e)) x y); split. Qed.
No more subgoals.
now (intros #*#; apply (compat _ _ (extra _ (class_of e)) x y); split).
Qed.

lele_eq is defined
Cogq < Arguments lele_eq {e} x y

Coqg < End theory.
Module theory is defined

Cog < End LEQ.
Module LEQ is defined

Cog < Import LEQ.theory.

Cog < Check lele_eq.
lele_eq

Coq Reference Manual, V8.6.1, July 26, 2017



19.2 Hierarchy of structures

399

forall x y LEQ.obj ?e,
where

e : [ |- LEQ.type]

X <=y >y <=X —> X ==Yy

Of course one would like to apply results proved in the algebraic setting to any concrete instate of

the algebraic structure.

Cog < Example test_algebraic (n m nat) : n<=m->m-<=n->n==m
1 subgoal
n, m nat
n <=m ->m<=n —-> n ==m
Cog < Fail apply (lele_eg n m). Abort.
The command has indeed failed with message:
In environment
n, m nat
The term "n" has type "nat" while it 1is expected to have type
"LEQ.obj ?e".
1 subgoal
n, m nat

Cog < Example test_algebraic2 (11 12
n<=m->m-<=n —->n ==

LEQ.type) (n

1 subgoal
11, 12 LEQ. type
n, m LEQ.obj 11 % LEQ.obj 12

n <=m ->m<=n —>n ==m

Cog < Fail apply (lele_eg n m). Abort.

The command has indeed failed with message:
In environment

11, 12 LEQ.type

n, m LEQ.obj 11 % LEQ.obj 12

The term "n" has type " (LEQ.obj 11
while it is expected to have type
1 subgoal

"LEQ.obj ?e".

11, 12
n, m

LEQ. type

LEQ.obj 11 % LEQ.obj 12

m

* LEQ.obj 12) %$type”

LEQ.obj 11 * LEQ.ob3j 12)

Again one has to tell Coq that the type nat is in the LEQ class, and how the type constructor *

interacts with the LEQ class. In the following proofs are omitted for brevity.

Cog < Lemma nat_LEQ_compat (n m nat)

1 subgoal

n<=m /\m<«<=n <->n == m.

Coq Reference Manual, V8.6.1, July 26, 2017



400 19 Canonical Structures

n, m : nat
n<=m/\m<=n <->n==m
Cog < Definition nat_LEQmx := LEQ.Mixin nat_LEQ_compat.

nat_LEQOmx is defined

Cog < Lemma pair_LEQ_ compat (11 12 : LEQ.type) (n m : LEQ.obj 11 % LEQ.obj 12)
n<=m/\ m<=n <->n ==
1 subgoal

11, 12 : LEQ.type
n, m : LEQ.obj 11 % LEQ.obj 12

Cogq < Definition pair_LEQmx 11 12 := LEQ.Mixin (pair_LEQ_compat 11 12).
pair LEQOmx is defined

The following script registers an LEQ class for nat and for the type constructor «. It also tests that
they work as expected.

Unfortunately, these declarations are very verbose. In the following subsection we show how to
make these declaration more compact.

Cog < Module Add_instance_attempt.
Interactive Module Add_instance_attempt started

Cog < Canonical Structure nat_LEQty : LEQ.type :=
LEQ._Pack nat (LEQ.Class nat_EQcl nat_LEcl nat_LEQmXx) .
nat_LEQty is defined

Cogq < Canonical Structure pair_LEQty (11 12 : LEQ.type) : LEQ.type :=
LEQ._Pack (LEQ.obj 11 % LEQ.obj 12)
(LEQ.Class

(EQ.class_of (pair_EQty (to_EQ 11) (to_EQ 12)))
(LE.class_of (pair_LEty (to_LE 11) (to_LE 12)))
(pair_LEQmx 11 12)).

palir. LEQty 1is defined

Toplevel input, characters 4794-5055:

Warning: Ignoring canonical projection to LEQ.Class by LEQ.class_of 1in

pair LEQty: redundant with nat_LEQty

[redundant—-canonical-projection, typechecker]

Cog < Example test_algebraic (nm : nat) : n <=m ->m <= n —-> n == m.
1 subgoal

n, m nat

n <=m ->m<=n —->n ==m
Cog < now apply (lele_eg n m). Qed.

No more subgoals.

now (apply (lele_eq n m)).
Qed.

test_algebraic is defined

Coq Reference Manual, V8.6.1, July 26, 2017



19.2 Hierarchy of structures

401

Coqg < Example test_algebraic2 (n m
1 subgoal

n, m : nat % nat
n<=m->m-<=n ->n ==m
Cog < now apply (lele_eg n m). Qed.

No more subgoals.

now (apply (lele_eq n m)).
Qed.

test_algebraic2 is defined

Cog < End Add_instance_attempt.
Module Add_instance_attempt is defined

nat x nat)

Note that no direct proofofn <= m -> m <= n -> n
mof type nat » nat. What the user provides is a proof of this statement for n and m of type nat and
a proof that the pair constructor preserves this property. The combination of these two facts is a simple
form of proof search that Coq performs automatically while inferring canonical structures.

19.2.1 Compact declaration of Canonical Structures

We need some infrastructure for that.

Cog < Require Import Strings.String.

Cog < Module infrastructure.

Interactive Module infrastructure started

Cog < Inductive phantom {T : Type} (t

phantom is defined

phantom_rect is defined
phantom_ind is defined
phantom _rec is defined

Coqg < Definition unify {T1 T2} (tl
phantom tl -> phantom t2.
unify is defined

Coqg < Definition id {T} {t : T} (x
id is defined

Cog < Notation "[find v | tl1l ~ t2 ] p

T1)

T)

(t2

n<=m->m-<=n —>n == m.

== mis provided by the user for n and

Type := Phantom.

T2) (s

phantom t) := x.

n

(fun v (_

(at level 50, v ident, only parsing).

Coqg < Notation "[find v | tl ~ t2 |

S

]

p"

(at level 50, v ident, only parsing).

Cog < Notation "'Error : t : s" := (unify _
(at level 50, format "''Error'

Cog < Open Scope string_scope.

Cog < End infrastructure.
Module infrastructure is defined

t

t

(fun v (_

(Some s))
SH) .

option string)

unify tl t2

unify tl t2 None) => p)

(Some s))

Coq Reference Manual, V8.6.1, July 26, 2017

=> p)



402 19 Canonical Structures

To explain the notation [find v | tl ~t2] let us pick one of its instances: [find e |
EQ.obj e ~T | "is not an EQ.type" ]. It should be read as: “find a class e such that its
objects have type T or fail with message "T is not an EQ.type"”.

The other utilities are used to ask Coq to solve a specific unification problem, that will in turn require
the inference of some canonical structures. They are explained in mode details in [103].

We now have all we need to create a compact “packager” to declare instances of the LEQ class.

Cog < Import infrastructure.

Cog < Definition packager T e0 1le0 (mO : LEQ.mixin e0 1le0Q) :=

[find e | EQ.obj e ~ T | "is not an EQ.type" ]
[find o | LE.obj o ~ T | "is not an LE.type" ]
[find ce | EQ.class_of e ~ ce ]

[find co | LE.class_of o ~ co ]

[find m | m ~ mO | "is not the right mixin" ]

LEQ. _Pack T (LEQ.Class ce co m).
packager is defined

Coqg < Notation Pack T m := (packager T _ _ m _ id _ id _ id _ id _ id).

The object Pack takes a type T (the key) and a mixin m. It infers all the other pieces of the class
LEQ and declares them as canonical values associated to the T key. All in all, the only new piece of
information we add in the LEQ class is the mixin, all the rest is already canonical for T and hence can
be inferred by Coq.

Pack is a notation, hence it is not type checked at the time of its declaration. It will be type checked
when it is used, an in that case T is going to be a concrete type. The odd arguments _ and id we pass
to the packager represent respectively the classes to be inferred (like e, o, etc) and a token (i d) to force
their inference. Again, for all the details the reader can refer to [103].

The declaration of canonical instances can now be way more compact:

Cog < Canonical Structure nat_LEQty := Eval hnf in Pack nat nat_LEQmx.
nat_LEQty is defined

Cog < Canonical Structure pair_LEQty (11 12 : LEQ.type) :=

Eval hnf in Pack (LEQ.obj 11 * LEQ.obj 12) (pair_LEQmx 11 12).
pair. LEQty 1is defined
Toplevel input, characters 6436-6553:
Warning: Ignoring canonical projection to LEQ.Class by LEQ.class_of 1in
pair_LEQty: redundant with nat_LEQty
[redundant-canonical-projection, typechecker]

Error messages are also quite intelligible (if one skips to the end of the message).

Cog < Fail Canonical Structure err := Eval hnf in Pack bool nat_LEQmx.
The command has indeed failed with message:
The term "id" has type "phantom (EQ.obj ?t) -> phantom (EQ.obj ?t)"
while it is expected to have type

"'Error : bool : "is not an EQ.type"".

Coq Reference Manual, V8.6.1, July 26, 2017



Chapter 20

Type Classes

Matthieu Sozeau

This chapter presents a quick reference of the commands related to type classes. For an actual
introduction to type classes, there is a description of the system [136] and the literature on type classes
in HASKELL which also applies.

20.1 Class and Instance declarations

The syntax for class and instance declarations is the same as record syntax of COQ:

Class Id(aq :71)--- (ap : p)[: sort] == {
fi: typey;

fm = type,,}

Instance ident : Id term; ---termy, := {
fi = termy,;

fm = termy, }.

The @; : 7, variables are called the parameters of the class and the f}, : type,, are called the methods.
Each class definition gives rise to a corresponding record declaration and each instance is a regular
definition whose name is given by ident and type is an instantiation of the record type.

We’ll use the following example class in the rest of the chapter:

Cog < Class EgDec (A : Type) := {
egqgb : A —> A —-> Dbool ;
egb_leibniz : forall x y, egb x y = true -> x =y }.

Coq Reference Manual, V8.6.1, July 26, 2017



404 20 Type Classes

This class implements a boolean equality test which is compatible with Leibniz equality on some
type. An example implementation is:

Cog < Instance unit_EqgDec : EgDec unit :=
{ egb x yv := true ;
egb_leibniz x y H :=
match x, y return x = y with tt, tt => eq_refl tt end }.

If one does not give all the members in the Instance declaration, Coq enters the proof-mode and
the user is asked to build inhabitants of the remaining fields, e.g.:

Cog < Instance eqg_bool : EgDec bool :=
{ egb x y := 1if x then y else negb y }.

Cogq < Proof. intros x y H.
1 subgoal

forall x y : bool, (if x then y else negb y) = true -> x =y
1 subgoal

X, y : bool
H : (if x then y else negb y) = true

Coqg < destruct x ; destruct y ; (discriminate || reflexivity).
No more subgoals.

Cog < Defined.

Proof.

(intros x y H).

(destruct x; destruct y; discriminate || reflexivity).
Defined.

eq _bool is defined

One has to take care that the transparency of every field is determined by the transparency of the
Instance proof. One can use alternatively the Program Instance variant which has richer facil-
ities for dealing with obligations.

20.2 Binding classes

Once a type class is declared, one can use it in class binders:

Coqg < Definition negb {A} {ega : EgDec A} (x y : A) := negb (egb x vy).
negb 1is defined

When one calls a class method, a constraint is generated that is satisfied only in contexts where
the appropriate instances can be found. In the example above, a constraint EqDec A is generated and
satisfied by eqa : EgDec A. In case no satisfying constraint can be found, an error is raised:

Cogq < Fail Definition negb' (A : Type) (x y : A) := negb (egb x y).

The command has indeed failed with message:
Unable to satisfy the following constraints:

Coq Reference Manual, V8.6.1, July 26, 2017



20.3 Parameterized Instances 405

In environment:

A : Type

X, y : A

?EgDec : "EqDec A"

The algorithm used to solve constraints is a variant of the eauto tactic that does proof search
with a set of lemmas (the instances). It will use local hypotheses as well as declared lemmas in the
typeclass_instances database. Hence the example can also be written:

Cog < Definition negb' A (ega : EgDec A) (x y : A) := negb (egb x y).
negb' is defined

However, the generalizing binders should be used instead as they have particular support for type
classes:

* They automatically set the maximally implicit status for type class arguments, making derived
functions as easy to use as class methods. In the example above, A and ega should be set maxi-
mally implicit.

* They support implicit quantification on partially applied type classes (§2.7.19). Any argument not
given as part of a type class binder will be automatically generalized.

* They also support implicit quantification on superclasses (§20.5.1)
Following the previous example, one can write:

Coqg < Definition negb_impl "{ega : EgDec A} (x y : A) := negb (egb x vy).
negb_impl is defined

Here A is implicitly generalized, and the resulting function is equivalent to the one above.

20.3 Parameterized Instances

One can declare parameterized instances as in HASKELL simply by giving the constraints as a binding
context before the instance, e.g.:

Cog < Instance prod_egb " (EA : EgDec A, EB : EgDec B) : EgDec (A * B) :=
{ egb x vy := match x, y with
| (la, ra), (lb, rb) => andb (egb la 1lb) (egb ra rb)
end }.

These instances are used just as well as lemmas in the instance hint database.

20.4 Sections and contexts

To ease the parametrization of developments by type classes, we provide a new way to introduce vari-
ables into section contexts, compatible with the implicit argument mechanism. The new command works
similarly to the Variables vernacular (see 1.3.1), except it accepts any binding context as argument.
For example:

Coq Reference Manual, V8.6.1, July 26, 2017



406 20 Type Classes

Cog < Section EqgDec_defs.

Cog < Context " {EA : EgDec A}.
A is declared
EA is declared

Coqg < Global Instance option_egb : EgDec (option A) :=
{ egb x y := match x, y with
| Some x, Some y => egb X y
| None, None => true
| _, _ => false
end }.

Cog < End EgDec_defs.

Cog < About option_edgb.

option _eqb : forall A : Type, EgqDec A —-> EqDec (option A)
Arguments A, EA are implicit and maximally inserted
Argument scopes are [type_scope _]

option_eqb is transparent

Expands to: Constant Top.option_eqgb

Here the G1obal modifier redeclares the instance at the end of the section, once it has been gener-
alized by the context variables it uses.

20.5 Building hierarchies

20.5.1 Superclasses

One can also parameterize classes by other classes, generating a hierarchy of classes and superclasses.
In the same way, we give the superclasses as a binding context:

Cog < Class Ord " (E : EgDec A) :=
{ le : A => A -> bool }.

Contrary to HASKELL, we have no special syntax for superclasses, but this declaration is morally
equivalent to:

Class ‘(E : EgDec A) => Ord A :=

{ le : A => A -> bool }.

This declaration means that any instance of the Ord class must have an instance of EqDec. The
parameters of the subclass contain at least all the parameters of its superclasses in their order of appear-
ance (here A is the only one). As we have seen, Ord is encoded as a record type with two parameters:
a type A and an E of type EgqDec A. However, one can still use it as if it had a single parameter inside
generalizing binders: the generalization of superclasses will be done automatically.

Cog < Definition le_egb "{Ord A} (x y : A) := andb (le x y) (le y x).

In some cases, to be able to specify sharing of structures, one may want to give explicitly the super-
classes. It is is possible to do it directly in regular binders, and using the ! modifier in class binders. For
example:

Coqg < Definition 1t "“{ega : EgDec A, ! Ord ega} (x y : A) :=
andb (le x y) (negb x y).

The ! modifier switches the way a binder is parsed back to the regular interpretation of Coq. In
particular, it uses the implicit arguments mechanism if available, as shown in the example.

Coq Reference Manual, V8.6.1, July 26, 2017



20.6 Summary of the commands 407

20.5.2 Substructures

Substructures are components of a class which are instances of a class themselves. They often arise
when using classes for logical properties, e.g.:

Cogq < Class Reflexive (A : Type) (R : relation A) :=
reflexivity : forall x, R x x.

Cog < Class Transitive (A : Type) (R : relation A) :=
transitivity : forall xy z, Rx vy ->Rvy z ->R x z.

This declares singleton classes for reflexive and transitive relations, (see 1 for an explanation). These
may be used as part of other classes:

Cogq < Class PreOrder (A : Type) (R : relation A) :=
{ PreOrder_Reflexive :> Reflexive A R ;
PreOrder_Transitive :> Transitive A R }.

The syntax :> indicates that each PreOrder can be seen as a Reflexive relation. So each
time a reflexive relation is needed, a preorder can be used instead. This is very similar to the coercion
mechanism of Structure declarations. The implementation simply declares each projection as an
instance.

One can also declare existing objects or structure projections using the Existing Instance
command to achieve the same effect.

20.6 Summary of the commands

20.6.1 Class ident binder; ... binder, : sort:= { field; ; ...; field,
b

The Class command is used to declare a type class with parameters binder; to binder,, and fields
field; to field.

Variants:

1. Class ident binder; ...binder, : sort:= ident; : type;. This variant declares a
singleton class whose only method is ident;. This singleton class is a so-called definitional class,
represented simply as a definition ident binder; . . .binder, := type; and whose instances
are themselves objects of this type. Definitional classes are not wrapped inside records, and the
trivial projection of an instance of such a class is convertible to the instance itself. This can be
useful to make instances of existing objects easily and to reduce proof size by not inserting useless
projections. The class constant itself is declared rigid during resolution so that the class abstraction
is maintained.

2. Existing Class ident. This variant declares a class a posteriori from a constant or inductive
definition. No methods or instances are defined.

Coq Reference Manual, V8.6.1, July 26, 2017



408 20 Type Classes

20.6.2 Instance ident binder; ...binder, : Class t; ...t, [|
priority] := { field; := by ; ...; field; := b; }

The Instance command is used to declare a type class instance named ident of the class Class with
parameters t; to t, and fields b; to b;, where each field must be a declared field of the class. Missing
fields must be filled in interactive proof mode.

An arbitrary context of the form binder; . . .binder, can be put after the name of the instance and
before the colon to declare a parameterized instance. An optional priority can be declared, O being the
highest priority as for auto hints. If the priority is not specified, it defaults to n, the number of binders
of the instance.

Variants:

1. Instance ident binder; ...binder, : forall binder,4; ...binder,,, Class
t1 ...tp [| priority] := term This syntax is used for declaration of singleton class
instances or for directly giving an explicit term of type forall bindery,yi . ..bindery,,
Class tj ...tp.Oneneed noteven mention the unique field name for singleton classes.

2. Global Instance One can use the Global modifier on instances declared in a section so
that their generalization is automatically redeclared after the section is closed.

3. Program Instance Switches the type-checking to PROGRAM (chapter 24) and uses the obli-
gation mechanism to manage missing fields.

4. Declare Instance InaModule Type, this command states that a corresponding concrete
instance should exist in any implementation of this Module Type. This is similar to the distinc-
tion between Parameter vs. Definition, or between Declare Module and Module.

Besides the Class and Instance vernacular commands, there are a few other commands related
to type classes.

20.6.3 Existing Instance ident [| priority]

This commands adds an arbitrary constant whose type ends with an applied type class to the instance
database with an optional priority. It can be used for redeclaring instances at the end of sections, or
declaring structure projections as instances. This is almost equivalent to Hint Resolve ident
typeclass_instances.

Variants:

1. Existing Instances ident; ...ident, [| priority] With this command, several
existing instances can be declared at once.

20.6.4 Context binder; .. .binder,

Declares variables according to the given binding context, which might use implicit generalization (see
20.4).

Coq Reference Manual, V8.6.1, July 26, 2017



20.6 Summary of the commands 409

20.6.5 typeclasses eauto

The typeclasses eauto tactic uses a different resolution engine than eaut o and aut o. The main
differences are the following:

* Contrary to eauto and auto, the resolution is done entirely in the new proof engine (as of Coq
v8.6), meaning that backtracking is available among dependent subgoals, and shelving goals is
supported. typeclasses eauto is a multi-goal tactic. It analyses the dependencies between
subgoals to avoid backtracking on subgoals that are entirely independent.

* When called with no arguments, typeclasses eauto uses the typeclass_instances
database by default (instead of core). Dependent subgoals are automatically shelved, and shelved
goals can remain after resolution ends (following the behavior of COQ 8.5).

Note: Asof Coq8.6,all:once (typeclasses eauto) faithfully mimicks what happens
during typeclass resolution when it is called during refinement/type-inference, except that only
declared class subgoals are considered at the start of resolution during type inference, while “all”
can select non-class subgoals as well. It might move to all:typeclasses eauto in future
versions when the refinement engine will be able to backtrack.

* When called with specific databases (e.g. with), typeclasses eauto allows shelved goals
to remain at any point during search and treat typeclasses goals like any other.

* The transparency information of databases is used consistently for all hints declared in them.
It is always used when calling the unifier. When considering the local hypotheses, we use the
transparent state of the first hint database given. Using an empty database (created with Create
HintDb for example) with unfoldable variables and constants as the first argument of typeclasses
eauto hence makes resolution with the local hypotheses use full conversion during unification.

Variants:

1. typeclasses eauto [num] Warning: The semantics for the limit num is different than for
auto. By default, if no limit is given the search is unbounded. Contrary to aut o, introduction
steps (intro) are counted, which might result in larger limits being necessary when searching
with typeclasses eauto than auto.

2. typeclasses eauto with ident; .. .ident,. This variant runs resolution with the given
hint databases. It treats typeclass subgoals the same as other subgoals (no shelving of non-
typeclass goals in particular).

20.6.6 autoapply term with ident

The tactic autoapply applies a term using the transparency information of the hint database ident,
and does no typeclass resolution. This can be used in Hint Extern’s for typeclass instances (in hint
db typeclass_instances) to allow backtracking on the typeclass subgoals created by the lemma
application, rather than doing type class resolution locally at the hint application time.

20.6.7 Typeclasses Transparent, Opaque ident; .. .ident,

This commands defines the transparency of ident; ...ident, during type class resolution. It is useful
when some constants prevent some unifications and make resolution fail. It is also useful to declare

Coq Reference Manual, V8.6.1, July 26, 2017



410 20 Type Classes

constants which should never be unfolded during proof-search, like fixpoints or anything which does
not look like an abbreviation. This can additionally speed up proof search as the typeclass map can be
indexed by such rigid constants (see 8.9.1). By default, all constants and local variables are considered
transparent. One should take care not to make opaque any constant that is used to abbreviate a type, like
relation A := A -> A —> Prop.

This is equivalent to Hint Transparent,Opaque ident : typeclass_instances.

20.6.8 Set Typeclasses Dependency Order

This option (on by default since 8.6) respects the dependency order between subgoals, meaning that
subgoals which are depended on by other subgoals come first, while the non-dependent subgoals were
put before the dependent ones previously (Coq v8.5 and below). This can result in quite different per-
formance behaviors of proof search.

20.6.9 Set Typeclasses Filtered Unification

This option, available since Coq 8.6 and off by default, switches the hint application procedure to a filter-
then-unify strategy. To apply a hint, we first check that the goal matches syntactically the inferred or
specified pattern of the hint, and only then try to unify the goal with the conclusion of the hint. This can
drastically improve performance by calling unification less often, matching syntactic patterns being very
quick. This also provides more control on the triggering of instances. For example, forcing a constant
to explicitely appear in the pattern will make it never apply on a goal where there is a hole in that place.

20.6.10 Set Typeclasses Legacy Resolution

This option (off by default) uses the 8.5 implementation of resolution. Use for compatibility purposes
only (porting and debugging).

20.6.11 Set Typeclasses Module Eta

This option allows eta-conversion for functions and records during unification of type-classes. This op-
tion is now unsupported in 8.6 with Typeclasses Filtered Unification set, but still affects
the default unification strategy, and the one used in Legacy Resolution mode. It is unset by de-
fault. If Typeclasses Filtered Unification is set, this has no effect and unification will
find solutions up-to eta conversion. Note however that syntactic pattern-matching is not up-to eta.

20.6.12 Set Typeclasses Limit Intros

This option (on by default in Coq 8.6 and below) controls the ability to apply hints while avoiding
(functional) eta-expansions in the generated proof term. It does so by allowing hints that conclude in a
product to apply to a goal with a matching product directly, avoiding an introduction. Warning: this can
be expensive as it requires rebuilding hint clauses dynamically, and does not benefit from the invertibility
status of the product introduction rule, resulting in potentially more expensive proof-search (i.e. more
useless backtracking).

20.6.13 Set Typeclass Resolution After Apply

Deprecated since 8.6

Coq Reference Manual, V8.6.1, July 26, 2017



20.6 Summary of the commands 411

This option (off by default in Coq 8.6 and 8.5) controls the resolution of typeclass subgoals generated
by the apply tactic.
20.6.14 Set Typeclass Resolution For Conversion

This option (on by default) controls the use of typeclass resolution when a unification problem cannot
be solved during elaboration/type-inference. With this option on, when a unification fails, typeclass
resolution is tried before launching unification once again.

20.6.15 Set Typeclasses Strict Resolution

Typeclass declarations introduced when this option is set have a stricter resolution behavior (the option
is off by default). When looking for unifications of a goal with an instance of this class, we “freeze”
all the existentials appearing in the goals, meaning that they are considered rigid during unification and
cannot be instantiated.

20.6.16 Set Typeclasses Unique Solutions
When a typeclass resolution is launched we ensure that it has a single solution or fail. This ensures that
the resolution is canonical, but can make proof search much more expensive.

20.6.17 Set Typeclasses Unique Instances

Typeclass declarations introduced when this option is set have a more efficient resolution behavior (the
option is off by default). When a solution to the typeclass goal of this class is found, we never backtrack
on it, assuming that it is canonical.

20.6.18 Typeclasses eauto := [debug] [(dfs) | (bfs)] [depth]

This command allows more global customization of the type class resolution tactic. The semantics of
the options are:

* debug In debug mode, the trace of successfully applied tactics is printed.
* dfs, Dbfs This sets the search strategy to depth-first search (the default) or breadth-first search.

* depth This sets the depth limit of the search.

20.6.19 sSet Typeclasses Debug [Verbosity num]

These options allow to see the resolution steps of typeclasses that are performed during search. The
Debug option is synonymous to Debug Verbosity 1,andDebug Verbosity 2 provides more
information (tried tactics, shelving of goals, etc...).

20.6.20 Set Refine Instance Mode

The option Refine Instance Mode allows to switch the behavior of instance declarations made
through the Instance command.

* When it is on (the default), instances that have unsolved holes in their proof-term silently open the
proof mode with the remaining obligations to prove.

Coq Reference Manual, V8.6.1, July 26, 2017



412 20 Type Classes

* When it is off, they fail with an error instead.

Coq Reference Manual, V8.6.1, July 26, 2017



Chapter 21

Omega: a solver of quantifier-free
problems in Presburger Arithmetic

Pierre Crégut

21.1 Description of omega

omega solves a goal in Presburger arithmetic, i.e. a universally quantified formula made of equations
and inequations. Equations may be specified either on the type nat of natural numbers or on the type Z
of binary-encoded integer numbers. Formulas on nat are automatically injected into Z. The procedure
may use any hypothesis of the current proof session to solve the goal.

Multiplication is handled by omega but only goals where at least one of the two multiplicands of
products is a constant are solvable. This is the restriction meant by “Presburger arithmetic”.

If the tactic cannot solve the goal, it fails with an error message. In any case, the computation
eventually stops.

21.1.1 Arithmetical goals recognized by omega
omega applied only to quantifier-free formulas built from the connectors
/Ny NSy o~y >
on atomic formulas. Atomic formulas are built from the predicates
=, le, 1t, gt, ge

on nat or from the predicates

on Z. In expressions of type nat, omega recognizes
plus, minus, mult, pred, S, O

Coq Reference Manual, V8.6.1, July 26, 2017



414 21 Omega: a solver of quantifier-free problems in Presburger Arithmetic

and in expressions of type Z, omega recognizes
+, -, *, Z.succ, and constants.

All expressions of type nat or Z not built on these operators are considered abstractly as if they
were arbitrary variables of type nat or Z.

21.1.2 Messages from omega
When omega does not solve the goal, one of the following errors is generated:
Error messages:

1. omega can’t solve this system

This may happen if your goal is not quantifier-free (if it is universally quantified, try intros
first; if it contains existentials quantifiers too, omega is not strong enough to solve your goal).
This may happen also if your goal contains arithmetical operators unknown from omega. Finally,
your goal may be really wrong!

2. omega: Not a quantifier-free goal

If your goal is universally quantified, you should first apply int ro as many time as needed.
3. omega: Unrecognized predicate or connective: ident

4. omega: Unrecognized atomic proposition: prop

5. omega: Can’t solve a goal with proposition variables
6. omega: Unrecognized proposition
7. omega: Can’t solve a goal with non-linear products

8. omega: Can’t solve a goal with equality on type

21.2 Using omega

The omega tactic does not belong to the core system. It should be loaded by

Cog < Require Import Omega.

Cog < Open Scope Z_scope.

Example 3:
Cogq < Goal forall m n:Z2, 1 + 2 » m <> 2 % n.
1 subgoal

forall mn : Z, 1 + 2  m <> 2 % n

Cog < intros; omega.
No more subgoals.

Coq Reference Manual, V8.6.1, July 26, 2017



21.3 Technical data 415

Example 4:

Coq < Goal forall z:Z2, z >0 -> 2 x z + 1 > z.
1 subgoal

forall z : Z, z > 0 —> 2 « z + 1 > z

Cog < intro; omega.
No more subgoals.

21.3 Technical data

21.3.1 Overview of the tactic

* The goal is negated twice and the first negation is introduced as an hypothesis.

* Hypothesis are decomposed in simple equations or inequations. Multiple goals may result from
this phase.

» Equations and inequations over nat are translated over Z, multiple goals may result from the
translation of substraction.

* Equations and inequations are normalized.
* Goals are solved by the OMEGA decision procedure.

* The script of the solution is replayed.

21.3.2 Overview of the OMEGA decision procedure

The OMEGA decision procedure involved in the omega tactic uses a small subset of the decision pro-
cedure presented in

"The Omega Test: a fast and practical integer programming algorithm for dependence anal-
ysis", William Pugh, Communication of the ACM , 1992, p 102-114.

Here is an overview, look at the original paper for more information.

» Equations and inequations are normalized by division by the GCD of their coefficients.
* Equations are eliminated, using the Banerjee test to get a coefficient equal to one.
* Note that each inequation defines a half space in the space of real value of the variables.

* Inequations are solved by projecting on the hyperspace defined by cancelling one of the variable.
They are partitioned according to the sign of the coefficient of the eliminated variable. Pairs of
inequations from different classes define a new edge in the projection.

* Redundant inequations are eliminated or merged in new equations that can be eliminated by the
Banerjee test.

Coq Reference Manual, V8.6.1, July 26, 2017



416 21 Omega: a solver of quantifier-free problems in Presburger Arithmetic

* The last two steps are iterated until a contradiction is reached (success) or there is no more variable
to eliminate (failure).

It may happen that there is a real solution and no integer one. The last steps of the Omega procedure
(dark shadow) are not implemented, so the decision procedure is only partial.

21.4 Bugs

* The simplification procedure is very dumb and this results in many redundant cases to explore.
* Much too slow.

* Certainly other bugs! You can report them to https://cog.inria.fr/bugs/.

Coq Reference Manual, V8.6.1, July 26, 2017


https://coq.inria.fr/bugs/

Chapter 22

Micromega: tactics for solving arithmetic
goals over ordered rings

Frédéric Besson and Evgeny Makarov

22.1 Short description of the tactics

The Psatz module (Require Import Psatz.) gives access to several tactics for solving arith-
metic goals over Z, Q, and R:'. It also possible to get the tactics for integers by a Require Import
Lia, rationals Require Import Lga andreals Require Import Lra.

lia is a decision procedure for linear integer arithmetic (see Section 22.4);
nia is an incomplete proof procedure for integer non-linear arithmetic (see Section 22.6);
lra is a decision procedure for linear (real or rational) arithmetic (see Section 22.3);

nra is an incomplete proof procedure for non-linear (real or rational) arithmetic (see Sec-
tion 22.5);

psatz D nwhereDis Z or Q or R, and n is an optional integer limiting the proof search depth
is is an incomplete proof procedure for non-linear arithmetic. It is based on John Harrison’s HOL
Light driver to the external prover csdp”. Note that the csdp driver is generating a proof cache
which makes it possible to rerun scripts even without csdp (see Section 22.7).

The tactics solve propositional formulas parameterized by atomic arithmetic expressions interpreted
over adomain D € {Z,Q, R}. The syntax of the formulas is the following:

F = A]P\True]False]Fl/\Fg\F1VF2\F1<—>F2]F1—>FQ\—|F
A = pr=p2lpt>p2p1 <p2|p1 2p2|p1 <p2
p u= clz|-plpr—p2|pL+p2|p1xp2|p'n

!Support for nat and N is obtained by pre-processing the goal with the zi fy tactic.
2Sources and binaries can be found at https://projects.coin-or.org/Csdp

Coq Reference Manual, V8.6.1, July 26, 2017


https://projects.coin-or.org/Csdp

418 22 Micromega: tactics for solving arithmetic goals over ordered rings

where ¢ is a numeric constant, x € D is a numeric variable, the operators —, 4+, X are respectively
subtraction, addition, product, p"n is exponentiation by a constant n, P is an arbitrary proposition. For
Q, equality is not Leibniz equality = but the equality of rationals ==.

For Z (resp. Q ), c ranges over integer constants (resp. rational constants). For R, the tactic recognizes
as real constants the following expressions:

c ::= RO | R1 | Rmul(c,c) | Rplus(c,c) | Rminus(c,c) | IZR z | IQR g
| Rdiv(c,c) | Rinv c

where z is a constant in Z and g is a constant in Q. This includes integer constants written using the
decimal notation i.e., c%R.

22.2 Positivstellensatz refutations

The name psatz is an abbreviation for positivstellensatz — literally positivity theorem — which gener-
alizes Hilbert’s nullstellensatz. It relies on the notion of C'one. Given a (finite) set of polynomials S,
Cone(S) is inductively defined as the smallest set of polynomials closed under the following rules:

peS p1 € Cone(S) p2 € Cone(S) xe {+,%}
p € Cone(S) p? € Cone(S) p1 X p2 € Cone(S)

The following theorem provides a proof principle for checking that a set of polynomial inequalities does
not have solutions.?

Theorem 1 Let S be a set of polynomials.
If —1 belongs to Cone(S) then the conjunction /\peS p > 0 is unsatisfiable.

A proof based on this theorem is called a positivstellensatz refutation. The tactics work as fol-
lows. Formulas are normalized into conjunctive normal form A, C; where C; has the general form
(Ajes, pj @ 0) — False) and x€ {>,>,=}for D € {Q,R} and x€ {>,=} for Z. For each con-
junct Cjy, the tactic calls a oracle which searches for —1 within the cone. Upon success, the oracle returns
a cone expression that is normalized by the ring tactic (see chapter 25) and checked to be —1.

22.3 1ra: adecision procedure for linear real and rational arithmetic

4

The 1ra tactic is searching for linear refutations using Fourier elimination.” As a result, this tactic

explores a subset of the C'one defined as
LinCone(S) = Z ap X p | ayp are positive constants
peES

The deductive power of 1ra is the combined deductive power of ring_simplify and fourier.
There is also an overlap with the field tactice.g.,x = 10 %= x / 10 issolved by 1ra.

3Variants deal with equalities and strict inequalities.
*More efficient linear programming techniques could equally be employed.

Coq Reference Manual, V8.6.1, July 26, 2017



22.4 1ia: atactic for linear integer arithmetic 419

22.4 1ia: atactic for linear integer arithmetic

The tactic 11ia offers an alternative to the omega and romega tactic (see Chapter 21). Roughly speak-
ing, the deductive power of 1ia is the combined deductive power of ring_simplify and omega.
However, it solves linear goals that omega and romega do not solve, such as the following so-called
omega nightmare [130].

Cog < Goal forall x vy,
27 <= 11  x + 13 x y <= 45 —>
-10 <=7 » x = 9 x y <= 4 -> False.
The estimation of the relative efficiency of 1ia vs omega and romega is under evaluation.
High level view of 1ia. Over R, positivstellensatz refutations are a complete proof principle.” How-
ever, this is not the case over Z. Actually, positivstellensatz refutations are not even sufficient to decide

linear integer arithmetic. The canonical exampleis 2 * x = 1 —-> False which is a theorem of Z
but not a theorem of R. To remedy this weakness, the 11ia tactic is using recursively a combination of:

* linear positivstellensatz refutations;

* cutting plane proofs;

* case split.
Cutting plane proofs are a way to take into account the discreetness of Z by rounding up (rational)
constants up-to the closest integer.
Theorem 2 Let p be an integer and c a rational constant.

p=c=p2c]|

For instance, from 22 = 1 we can deduce

e 1 > 1/2 which cut plane is z > [1/2] = 1;

* z < 1/2 which cut planeis z < |1/2| = 0.

By combining these two facts (in normal form) z — 1 > 0 and —x > 0, we conclude by exhibiting a
positivstellensatz refutation: —1 =x — 1 + —x € Cone({z — 1,z}).

Cutting plane proofs and linear positivstellensatz refutations are a complete proof principle for inte-
ger linear arithmetic.

Case split enumerates over the possible values of an expression.

Theorem 3 Let p be an integer and c1 and cs integer constants.

a<p<e= \/ p==z

x€[e1,c2]

Our current oracle tries to find an expression e with a small range [c1, c2]. We generate c3 — ¢; subgoals
which contexts are enriched with an equation e = 7 for i € [cy, ¢o] and recursively search for a proof.

3In practice, the oracle might fail to produce such a refutation.

Coq Reference Manual, V8.6.1, July 26, 2017



420 22 Micromega: tactics for solving arithmetic goals over ordered rings

22.5 nra: a proof procedure for non-linear arithmetic

The nra tactic is an experimental proof procedure for non-linear arithmetic. The tactic performs a
limited amount of non-linear reasoning before running the linear prover of 1ra. This pre-processing
does the following:

» If the context contains an arithmetic expression of the form e[z?] where z is a monomial, the
context is enriched with 2% > 0;

* For all pairs of hypotheses e; > 0, ez > 0, the context is enriched with e; X e > 0.

After this pre-processing, the linear prover of 1ra searches for a proof by abstracting monomials by
variables.

22.6 nia: aproof procedure for non-linear integer arithmetic

The nia tactic is a proof procedure for non-linear integer arithmetic. It performs a pre-processing
similar to nra. The obtained goal is solved using the linear integer prover 1ia.

22.7 psatz: a proof procedure for non-linear arithmetic

The psatz tactic explores the C'one by increasing degrees — hence the depth parameter n. In theory,
such a proof search is complete — if the goal is provable the search eventually stops. Unfortunately, the

external oracle is using numeric (approximate) optimization techniques that might miss a refutation.
To illustrate the working of the tactic, consider we wish to prove the following Coq goal.

Coq < Goal forall x, -x"2 >= 0 -> x - 1 >= 0 -> False.

Such a goal is solved by intro x; psatz Z 2. The oracle returns the cone expression 2 x
(x —1) + (x — 1) x (x — 1) + —x2 (polynomial hypotheses are printed in bold). By construction,
this expression belongs to Cone({—2z2,z — 1}). Moreover, by running ring we obtain —1. By Theo-
rem 1, the goal is valid.

Coq Reference Manual, V8.6.1, July 26, 2017



Chapter 23

Extraction of programs in Objective Caml
and Haskell

Jean-Christophe Filliatre and Pierre Letouzey

We present here the COQ extraction commands, used to build certified and relatively efficient functional
programs, extracting them from either COQ functions or COQ proofs of specifications. The functional
languages available as output are currently OBJECTIVE CAML, HASKELL and SCHEME. In the follow-
ing, “ML” will be used (abusively) to refer to any of the three.

23.1 Generating ML code

The next two commands are meant to be used for rapid preview of extraction. They both display ex-
tracted term(s) inside COQ.
Extraction qualid.

Extraction of a constant or module in the COQ toplevel.

Recursive Extraction qualid; ... qualid,.
Recursive extraction of all the globals (or modules) qualid; ... qualid,, and all their dependencies
in the CoOQ toplevel.

All the following commands produce real ML files. User can choose to produce one monolithic file or
one file per CoQ library.
Extraction "file" qualid; ... qualid,.

Recursive extraction of all the globals (or modules) qualid; ... qualid,, and all their dependencies
in one monolithic file file. Global and local identifiers are renamed according to the chosen ML
language to fulfill its syntactic conventions, keeping original names as much as possible.

Extraction Library ident.

Extraction of the whole CoQ library ident.v to an ML module ident.m1. In case of name
clash, identifiers are here renamed using prefixes cog_ or Coq__ to ensure a session-independent
renaming.

Coq Reference Manual, V8.6.1, July 26, 2017



422 23 Extraction of programs in Objective Caml and Haskell

Recursive Extraction Library ident.

Extraction of the CoQ library ident . v and all other modules ident . v depends on.

Separate Extraction qualid; ... qualid,.

Recursive extraction of all the globals (or modules) qualid; ... qualid, and all their dependencies,
just as Extraction "file", but instead of producing one monolithic file, this command
splits the produced code in separate ML files, one per corresponding Coq . v file. This command
is hence quite similar to Recursive Extraction Library, except that only the needed
parts of Coq libraries are extracted instead of the whole. The naming convention in case of name
clash is the same one as Extraction Library: identifiers are here renamed using prefixes
coqg_or Coq_.

The list of globals qualid; does not need to be exhaustive: it is automatically completed into a complete
and minimal environment.

23.2 Extraction options

23.2.1 Setting the target language

The ability to fix target language is the first and more important of the extraction options. Default is
Ocaml.

Extraction Language Ocaml.
Extraction Language Haskell.

Extraction Language Scheme.

23.2.2 Inlining and optimizations

Since Objective Caml is a strict language, the extracted code has to be optimized in order to be efficient
(for instance, when using induction principles we do not want to compute all the recursive calls but
only the needed ones). So the extraction mechanism provides an automatic optimization routine that
will be called each time the user want to generate Ocaml programs. The optimizations can be split in
two groups: the type-preserving ones — essentially constant inlining and reductions — and the non type-
preserving ones — some function abstractions of dummy types are removed when it is deemed safe in
order to have more elegant types. Therefore some constants may not appear in the resulting monolithic
Ocaml program. In the case of modular extraction, even if some inlining is done, the inlined constant
are nevertheless printed, to ensure session-independent programs.

Concerning Haskell, type-preserving optimizations are less useful because of laziness. We still make
some optimizations, for example in order to produce more readable code.

The type-preserving optimizations are controlled by the following COQ options:

Unset Extraction Optimize.

Default is Set. This controls all type-preserving optimizations made on the ML terms (mostly
reduction of dummy beta/iota redexes, but also simplifications on Cases, etc). Put this option to
Unset if you want a ML term as close as possible to the Coq term.

Coq Reference Manual, V8.6.1, July 26, 2017



23.2 Extraction options 423

Set Extraction Conservative Types.

Default is Unset. This controls the non type-preserving optimizations made on ML terms (which
try to avoid function abstraction of dummy types). Turn this option to Set to make sure that e : t
implies that e’ : t’ where e’ and t’ are the extracted code of e and t respectively.

Set Extraction KeepSingleton.

Default is Unset. Normally, when the extraction of an inductive type produces a singleton type
(i.e. a type with only one constructor, and only one argument to this constructor), the inductive
structure is removed and this type is seen as an alias to the inner type. The typical example is
sig. This option allows disabling this optimization when one wishes to preserve the inductive
structure of types.

Unset Extraction AutoInline.

Default is Set. The extraction mechanism inlines the bodies of some defined constants, according
to some heuristics like size of bodies, uselessness of some arguments, etc. Those heuristics are
not always perfect; if you want to disable this feature, do it by Unset.

Extraction [Inline|NoInline] qualidy ... qualid,.
In addition to the automatic inline feature, you can tell to inline some more constants by the
Extraction Inline command. Conversely, you can forbid the automatic inlining of some
specific constants by the Ext raction NoInline command. Those two commands enable a
precise control of what is inlined and what is not.

Print Extraction Inline.
Prints the current state of the table recording the custom inlinings declared by the two previous
commands.

Reset Extraction Inline.

Puts the table recording the custom inlinings back to empty.

Inlining and printing of a constant declaration. A user can explicitly ask for a constant to be ex-
tracted by two means:

* by mentioning it on the extraction command line
* by extracting the whole COQ module of this constant.

In both cases, the declaration of this constant will be present in the produced file. But this same con-
stant may or may not be inlined in the following terms, depending on the automatic/custom inlining
mechanism.

For the constants non-explicitly required but needed for dependency reasons, there are two cases:

* If an inlining decision is taken, whether automatically or not, all occurrences of this constant are
replaced by its extracted body, and this constant is not declared in the generated file.

* If no inlining decision is taken, the constant is normally declared in the produced file.

Coq Reference Manual, V8.6.1, July 26, 2017



424 23 Extraction of programs in Objective Caml and Haskell

23.2.3 Extra elimination of useless arguments

The following command provides some extra manual control on the code elimination performed during
extraction, in a way which is independent but complementary to the main elimination principles of
extraction (logical parts and types).

Extraction Implicit qualid [ ident; ... identy, ].

This experimental command allows declaring some arguments of qualid as implicit, i.e. useless
in extracted code and hence to be removed by extraction. Here qualid can be any function or
inductive constructor, and ident; are the names of the concerned arguments. In fact, an argument
can also be referred by a number indicating its position, starting from 1.

When an actual extraction takes place, an error is normally raised if the Extraction Implicit
declarations cannot be honored, that is if any of the implicited variables still occurs in the final code.
This behavior can be relaxed via the following option:

Unset Extraction SafeImplicits.

Default is Set. When this option is Unset, a warning is emitted instead of an error if some im-
plicited variables still occur in the final code of an extraction. This way, the extracted code may be
obtained nonetheless and reviewed manually to locate the source of the issue (in the code, some
comments mark the location of these remaining implicited variables). Note that this extracted code
might not compile or run properly, depending of the use of these remaining implicited variables.

23.2.4 Realizing axioms

Extraction will fail if it encounters an informative axiom not realized (see Section 23.2.4). A warning
will be issued if it encounters a logical axiom, to remind the user that inconsistent logical axioms may
lead to incorrect or non-terminating extracted terms.

It is possible to assume some axioms while developing a proof. Since these axioms can be any
kind of proposition or object or type, they may perfectly well have some computational content. But a
program must be a closed term, and of course the system cannot guess the program which realizes an
axiom. Therefore, it is possible to tell the system what ML term corresponds to a given axiom.

Extract Constant qualid => string.

Give an ML extraction for the given constant. The string may be an identifier or a quoted string.

Extract Inlined Constant qualid => string.

Same as the previous one, except that the given ML terms will be inlined everywhere instead of
being declared via a let.

Note that the Extract Inlined Constant command is sugar for an Extract Constant fol-
lowed by a Extraction Inline. HenceaReset Extraction Inline will have an effect on
the realized and inlined axiom.

Of course, it is the responsibility of the user to ensure that the ML terms given to realize the axioms
do have the expected types. In fact, the strings containing realizing code are just copied to the extracted
files. The extraction recognizes whether the realized axiom should become a ML type constant or a ML
object declaration.

Example:

Coq Reference Manual, V8.6.1, July 26, 2017



23.2 Extraction options 425

Cog < Axiom X:Set.
Cog < Axiom x:X.
Cog < Extract Constant X => "int".

Cog < Extract Constant x => "0O".

Notice that in the case of type scheme axiom (i.e. whose type is an arity, that is a sequence of product
finished by a sort), then some type variables have to be given. The syntax is then:

Extract Constant qualid string; ... string, => string.

The number of type variables is checked by the system.
Example:
Cog < Axiom Y : Set —-> Set —-> Set.

Cog < Extract Constant Y "'a" "'b" => " 'ax'b ".

Realizing an axiom viaExtract Constant is only useful in the case of an informative axiom (of sort
Type or Set). A logical axiom have no computational content and hence will not appears in extracted
terms. But a warning is nonetheless issued if extraction encounters a logical axiom. This warning
reminds user that inconsistent logical axioms may lead to incorrect or non-terminating extracted terms.

If an informative axiom has not been realized before an extraction, a warning is also issued and the
definition of the axiom is filled with an exception labeled AXIOM TO BE REALIZED. The user must
then search these exceptions inside the extracted file and replace them by real code.

The system also provides a mechanism to specify ML terms for inductive types and constructors.
For instance, the user may want to use the ML native boolean type instead of COQ one. The syntax is
the following:

Extract Inductive qualid => string [ string ... string 1 optstring.

Give an ML extraction for the given inductive type. You must specify extractions for the type itself
(first string) and all its constructors (between square brackets). If given, the final optional string
should contain a function emulating pattern-matching over this inductive type. If this optional
string is not given, the ML extraction must be an ML inductive datatype, and the native pattern-
matching of the language will be used.

For an inductive type with k£ constructor, the function used to emulate the match should expect (k + 1)

arguments, first the & branches in functional form, and then the inductive element to destruct. For

instance, the match branch | S n => foo gives the functional form (fun n -> foo). Note that

a constructor with no argument is considered to have one unit argument, in order to block early evaluation

of the branch: | O => bar leads to the functional form (fun () -> bar). For instance, when

extracting nat into int, the code to provide has type: (unit->’a)->(int->’a)->int->’a.
As for Extract Inductive, this command should be used with care:

* The ML code provided by the user is currently not checked at all by extraction, even for syntax
errors.

» Extracting an inductive type to a pre-existing ML inductive type is quite sound. But extracting to a
general type (by providing an ad-hoc pattern-matching) will often not be fully rigorously correct.
For instance, when extracting nat to Ocaml’s int, it is theoretically possible to build nat values
that are larger than Ocaml’s max_int. It is the user’s responsibility to be sure that no overflow
or other bad events occur in practice.

Coq Reference Manual, V8.6.1, July 26, 2017



426 23 Extraction of programs in Objective Caml and Haskell

* Translating an inductive type to an ML type does not magically improve the asymptotic complex-
ity of functions, even if the ML type is an efficient representation. For instance, when extracting
nat to Ocaml’s int, the function mult stays quadratic. It might be interesting to associate this
translation with some specific Ext ract Constant when primitive counterparts exist.

Example: Typical examples are the following:

Cog < Extract Inductive unit => "unit" [ "()" 1.
Cog < Extract Inductive bool => "bool" [ "true" "false" 1.

Cog < Extract Inductive sumbool => "bool" [ "true" "false" ].

If an inductive constructor or type has arity 2 and the corresponding string is enclosed by parenthesis,
then the rest of the string is used as infix constructor or type.

Cog < Extract Inductive list => "list"™ [ "[]" "(::)" ].
Cog < Extract Inductive prod => "(x)" [ "(, )" 1.

As an example of translation to a non-inductive datatype, let’s turn nat into Ocaml’s int (see caveat
above):

Cog < Extract Inductive nat => int [ "O" "succ" ]
"(fun fO £fS n -> if n=0 then fO () else fS (n-1))".

23.2.5 Avoiding conflicts with existing filenames

When using Extraction Library,the names of the extracted files directly depends from the names
of the CoQ files. It may happen that these filenames are in conflict with already existing files, either in
the standard library of the target language or in other code that is meant to be linked with the extracted
code. For instance the module List exists both in COQ and in Ocaml. It is possible to instruct the
extraction not to use particular filenames.

Extraction Blacklist ident ... ident.

Instruct the extraction to avoid using these names as filenames for extracted code.

Print Extraction Blacklist.

Show the current list of filenames the extraction should avoid.

Reset Extraction Blacklist.

Allow the extraction to use any filename.

For Ocaml, a typical use of these commands is Extraction Blacklist String List.

23.3 Differences between COQ and ML type systems

Due to differences between COQ and ML type systems, some extracted programs are not directly typable
in ML. We now solve this problem (at least in Ocaml) by adding when needed some unsafe casting
Obj.magic, which give a generic type ’ a to any term.

For example, here are two kinds of problem that can occur:

Coq Reference Manual, V8.6.1, July 26, 2017



23.4 Some examples 427

* If some part of the program is very polymorphic, there may be no ML type for it. In that case the
extraction to ML works alright but the generated code may be refused by the ML type-checker. A
very well known example is the distr-pair function:

Definition dp :=
fun (A B:Set) (x:A) (y:B) (f:forall C:Set, C->C) => (f A x, £ B y).

In Ocaml, for instance, the direct extracted term would be

let dp x y £ = Pair((f () x), (£ () ¥))

and would have type

dp : 'a -=> "a -> (unit -> 'a -> 'b) -> ('b,’b) prod

which is not its original type, but a restriction.

We now produce the following correct version:
let dp x y £ = Pair ((Obj.magic £ () x), (Obj.magic £ () y))

* Some definitions of COQ may have no counterpart in ML. This happens when there is a quantifi-
cation over types inside the type of a constructor; for example:

Inductive anything : Type := dummy : forall A:Set, A -> anything.

which corresponds to the definition of an ML dynamic type. In Ocaml, we must cast any argument
of the constructor dummy.

Even with those unsafe castings, you should never get error like “segmentation fault”. In fact even if
your program may seem ill-typed to the Ocaml type-checker, it can’t go wrong: it comes from a Coq
well-typed terms, so for example inductives will always have the correct number of arguments, etc.
More details about the correctness of the extracted programs can be found in [99].
We have to say, though, that in most “realistic” programs, these problems do not occur. For exam-
ple all the programs of Coq library are accepted by Caml type-checker without any Ob j.magic (see
examples below).

23.4 Some examples
We present here two examples of extractions, taken from the CoQ Standard Library. We choose OB-
JECTIVE CAML as target language, but all can be done in the other dialects with slight modifications.

We then indicate where to find other examples and tests of Extraction.

Coq Reference Manual, V8.6.1, July 26, 2017



428 23 Extraction of programs in Objective Caml and Haskell

23.4.1 A detailed example: Euclidean division

The file Euclid contains the proof of Euclidean division (theorem eucl_dev). The natural numbers
defined in the example files are unary integers defined by two constructors O and S:

Cog < Inductive nat : Set :=
| O : nat
| S : nat -> nat.

This module contains a theorem eucl_dev, whose type is
forall b:nat, b > 0 -> forall a:nat, diveucl a b

where diveucl is a type for the pair of the quotient and the modulo, plus some logical assertions that
disappear during extraction. We can now extract this program to OBJECTIVE CAML:

Cog < Require Import Euclid Wf_nat.
Cog < Extraction Inline gt_wf_rec 1lt_wf_rec induction_ltof2.

Cog < Recursive Extraction eucl_dev.
type nat =
/| O
| S of nat
type sumbool =
| Left
| Right
(#+* val sub : nat —> nat —-> nat *%*)
let rec sub n m =
match n with

| O => n
| S k ->
(match m with
| O => n
/| S 1 —> sub k 1)
(#+ val le_lt_dec : nat —> nat -> sumbool #*%*)

let rec le_lt_dec n m =
match n with
| O —> Left
[ S n0 —->
(match m with
| O —-> Right
/| S mO —> le_1t_dec n0O m0)
(#* val le_gt_dec : nat —> nat —> sumbool x*x%)
let le_gt_dec n m =
le 1t _dec n m
type diveucl =
| Divex of nat * nat
(#+ val eucl_dev : nat —> nat -> diveucl *#)
let rec eucl_dev n m =

let s = le gt_dec n m in
(match s with
| Left —->

let d = let y sub m n in eucl_dev n y 1in
let Divex (g, r) = d in Divex ((S q), r)
| Right -> Divex (0, m))

Coq Reference Manual, V8.6.1, July 26, 2017



23.4 Some examples 429

The inlining of gt _wf_ rec and others is not mandatory. It only enhances readability of extracted code.
You can then copy-paste the output to a file euclid.ml or let COQ do it for you with the following
command:

Extraction "euclid" eucl_dev.
Let us play the resulting program:

# #use "euclid.ml";;
type nat = O | S of nat
type sumbool = Left | Right

val minus : nat —-> nat -> nat = <fun>
val le_lt_dec : nat -> nat —-> sumbool = <fun>
val le_gt_dec : nat -> nat -> sumbool = <fun>
type diveucl = Divex of nat x nat
val eucl_dev : nat -> nat —-> diveucl = <fun>
# eucl_dev (S (S 0)) (S (S (S (S (S O)))))i:s
- : diveucl = Divex (S (S 0O), S 0)
It is easier to test on OBJECTIVE CAML integers:
# let rec nat_of_int = function 0 —> O | n —> S (nat_of_int (n-1));;
val nat_of_int : int -> nat = <fun>
# let rec int_of_nat = function O -> 0 | S p —> 1+ (int_of_nat p);;
val int_of_nat : nat -> int = <fun>
# let div a b =
let Divex (q,r) = eucl_dev (nat_of_int b) (nat_of_int a)
in (int_of_nat g, int_of_nat r);;
val div : int -> int —-> int * int = <fun>
# div 173 15;;
- : int * int = (11, 8)

Note that these nat_of_int and int_of_nat are now available via a mere Require Import
ExtrOcamlIntConv and then adding these functions to the list of functions to extract. This file
ExtrOcamlIntConv.v and some others in plugins/extraction/ are meant to help building
concrete program via extraction.

23.4.2 Extraction’s horror museum

Some pathological examples of extraction are grouped in the file
test-suite/success/extraction.v of the sources of COQ.

23.4.3 Users’ Contributions

Several of the CoQ Users’ Contributions use extraction to produce certified programs. In particular the
following ones have an automatic extraction test:

e additions

* bdds

Coq Reference Manual, V8.6.1, July 26, 2017



430

23 Extraction of programs in Objective Caml and Haskell

canon-bdds
chinese
continuations
cog-in-cog
exceptions
firing-squad
founify
graphs
higman-cf
higman—-nw
hardware
multiplier
search-trees

stalmarck

continuations and multiplier are a bit particular. They are examples of developments where
Obj.magic are needed. This is probably due to an heavy use of impredicativity. After compilation,
those two examples run nonetheless, thanks to the correction of the extraction [99].

Coq Reference Manual, V8.6.1, July 26, 2017



Chapter 24

PROGRAM

Matthieu Sozeau

We present here the PROGRAM tactic commands, used to build certified COQ programs, elaborating
them from their algorithmic skeleton and a rich specification [135]. It can be thought of as a dual of
extraction (see Chapter 23). The goal of PROGRAM is to program as in a regular functional programming
language whilst using as rich a specification as desired and proving that the code meets the specification
using the whole CoQ proof apparatus. This is done using a technique originating from the “Predicate
subtyping” mechanism of PVS[132], which generates type-checking conditions while typing a term
constrained to a particular type. Here we insert existential variables in the term, which must be filled
with proofs to get a complete COQ term. PROGRAM replaces the PROGRAM tactic by Catherine Parent
[121] which had a similar goal but is no longer maintained.

The languages available as input are currently restricted to COQ’s term language, but may be ex-
tended to OBJECTIVE CAML, HASKELL and others in the future. We use the same syntax as COQ
and permit to use implicit arguments and the existing coercion mechanism. Input terms and types are
typed in an extended system (RUSSELL) and interpreted into COQ terms. The interpretation process
may produce some proof obligations which need to be resolved to create the final term.

24.1 Elaborating programs

The main difference from COQ is that an object in a type T : Set can be considered as an object of type
{z : T | P} for any wellformed P : Prop. If we go from T to the subset of T" verifying property P,
we must prove that the object under consideration verifies it. RUSSELL will generate an obligation for
every such coercion. In the other direction, RUSSELL will automatically insert a projection.

Another distinction is the treatment of pattern-matching. Apart from the following differences, it is
equivalent to the standard mat ch operation (see Section 4.5.3).

* Generation of equalities. A match expression is always generalized by the corresponding equal-
ity. As an example, the expression:

match x with

| 0 => t
| S n =>u
end.

Coq Reference Manual, V8.6.1, July 26, 2017



432

24 PROGRAM

will be first rewritten to:

(match x as y return (x =y —-> _) with
| 0O => fun H : x = 0 —> t

| Sn=>fun H : x = S n —> u

end) (eg_refl n).

This permits to get the proper equalities in the context of proof obligations inside clauses, without

which reasoning is very limited.

* Generation of inequalities. If a pattern intersects with a previous one, an inequality is added in the
context of the second branch. See for example the definition of div2 below, where the second

branch is typed in a context where Vp, _ <> S(Sp).

* Coercion. If the object being matched is coercible to an inductive type, the corresponding coercion

will be automatically inserted. This also works with the previous mechanism.

There are options to control the generation of equalities and coercions.

* Unset Program Cases This deactivates the special treatment of pattern-matching generating
equalities and inequalities when using PROGRAM (it is on by default). All pattern-matchings and
let-patterns are handled using the standard algorithm of Coq (see Section 17) when this option is

deactivated.

* Unset Program Generalized Coercion This deactivates the coercion of general in-
ductive types when using PROGRAM (the option is on by default). Coercion of subset types and

pairs is still active in this case.

24.1.1 Syntactic control over equalities

To give more control over the generation of equalities, the typechecker will fall back directly to COQ’s
usual typing of dependent pattern-matching if a return or in clause is specified. Likewise, the if
construct is not treated specially by PROGRAM so boolean tests in the code are not automatically re-
flected in the obligations. One can use the dec combinator to get the correct hypotheses as in:

Cogq < Program Definition id (n : nat) : { x : nat | x = n } :=
if dec (leb n 0) then O
else S (pred n).

id has type-checked, generating 2 obligation(s)

Solving obligations automatically...

2 obligations remaining

Obligation 1 of id:

(forall n : nat, (n <=? 0) = true -> (fun x : nat => x = n) 0).

Obligation 2 of id:
(forall n : nat,

(n <=? 0) = false -> (fun x : nat => x = n) (S (Init.Nat.pred n))).

The let tupling construct 1et (x1, ..., xn) := t in b doesnotproduce an equality, con-
trary to the let pattern construct let ’ (x1, ..., xn) := t in b. Also, term : > explicitly asks

the system to coerce term to its support type. It can be useful in notations, for example:

Coq Reference Manual, V8.6.1, July 26, 2017



24.1 Elaborating programs 433

Cog < Notation " x "=y " := (Qeq _ (x :>) (y :>)) (only parsing).

This notation denotes equality on subset types using equality on their support types, avoiding uses
of proof-irrelevance that would come up when reasoning with equality on the subset types themselves.

The next two commands are similar to their standard counterparts Definition (see Section 1.3.2) and
Fixpoint (see Section 1.3.4) in that they define constants. However, they may require the user to prove
some goals to construct the final definitions.

24.1.2 Program Definition ident := term.

This command types the value term in RUSSELL and generates proof obligations. Once solved using
the commands shown below, it binds the final COQ term to the name ident in the environment.

Error messages:

1. ident already exists

Variants:

1. Program Definition ident :termy := terms.
It interprets the type term;, potentially generating proof obligations to be resolved. Once done
with them, we have a COQ type term/. It then checks that the type of the interpretation of termy is
coercible to term’, and registers ident as being of type term’ once the set of obligations generated
during the interpretation of termy and the aforementioned coercion derivation are solved.

2. Program Definition ident binder;. . .binder, :term; := terms,.
This is equivalent to
Program Definitionident : forall binder;. . .binder,, term; :=

fun binder;. .. binder,, => termo .

Error messages:

1. In environment ... the term: terms does not have type term;.
Actually, it has type terms.

See also: Sections 6.10.1, 6.10.2, 8.7.5

24.1.3 Program Fixpoint ident params {order} : type := term

The structural fixpoint operator behaves just like the one of Coq (see Section 1.3.4), except it may also
generate obligations. It works with mutually recursive definitions too.

Coq < Program Fixpoint div2 (n : nat) : { x : nat | n =2 » x \/ n =2 % x + 1 }

match n with

| S (S p) => S (div2 p)

| _ => 0

end.
Solving obligations automatically...
4 obligations remaining

Coq Reference Manual, V8.6.1, July 26, 2017



434 24 PROGRAM

Here we have one obligation for each branch (branches for 0 and (S 0) are automatically generated
by the pattern-matching compilation algorithm).

Coqg < Obligation 1.
1 subgoal

P, X : nat
o :p=x+ (x+0) \/ p=x+ (x+ 0) + 1

S (Sp)=8(x+ 8 (x+0)) \/ S (Sp) =S5 (x+ S (x+0) + 1)
One can use a well-founded order or a measure as termination orders using the syntax:

Cogq < Program Fixpoint div2 (n : nat) {measure n}
{ X tnat | n=2 * x\/ n=2*x+ 11} :=
match n with
| S (S p) => S (div2 p)
| _ => 0
end.

The order annotation can be either:

* measure f (R)? where £ is a value of type X computed on any subset of the arguments and
the optional (parenthesised) term (R) is a relation on X. By default X defaults to nat and R to
1t.

* wf R x which is equivalent to measure x (R).

Caution When defining structurally recursive functions, the generated obligations should have the
prototype of the currently defined functional in their context. In this case, the obligations should be
transparent (e.g. defined using Defined) so that the guardedness condition on recursive calls can be
checked by the kernel’s type-checker. There is an optimization in the generation of obligations which
gets rid of the hypothesis corresponding to the functional when it is not necessary, so that the obligation
can be declared opaque (e.g. using Qed). However, as soon as it appears in the context, the proof of the
obligation is required to be declared transparent.
No such problems arise when using measures or well-founded recursion.

2414 Program Lemma ident : type.

The RUSSELL language can also be used to type statements of logical properties. It will generate obliga-
tions, try to solve them automatically and fail if some unsolved obligations remain. In this case, one can
first define the lemma’s statement using Program Definition and use it as the goal afterwards.
Otherwise the proof will be started with the elaborated version as a goal. The Program prefix can
similarly be used as a prefix for Variable, Hypothesis, Axiom etc...

24.2 Solving obligations

The following commands are available to manipulate obligations. The optional identifier is used when
multiple functions have unsolved obligations (e.g. when defining mutually recursive blocks). The op-
tional tactic is replaced by the default one if not specified.

Coq Reference Manual, V8.6.1, July 26, 2017



24.3 Frequently Asked Questions 435

* [Local|Global] Obligation Tactic := expr Sets the default obligation solving tac-
tic applied to all obligations automatically, whether to solve them or when starting to prove one,
e.g. using Next. Local makes the setting last only for the current module. Inside sections, local
is the default.

* Show Obligation Tactic Displays the current default tactic.

* Obligations [of ident] Displays all remaining obligations.

* Obligation num [of ident] Start the proof of obligation num.

* Next Obligation [of ident] Start the proof of the next unsolved obligation.

* Solve Obligations [of ident] [with expr] Tries to solve each obligation of
identusing the given tactic or the default one.

* Solve All Obligations [with expr] Tries to solve each obligation of every program
using the given tactic or the default one (useful for mutually recursive definitions).

* Admit Obligations [of ident] Admits all obligations (does not work with structurally
recursive programs).

e Preterm [of ident] Shows the term that will be fed to the kernel once the obligations are
solved. Useful for debugging.

* Set Transparent Obligations Control whether all obligations should be declared as
transparent (the default), or if the system should infer which obligations can be declared opaque.

* Set Hide Obligations Control whether obligations appearing in the term should be hidden
as implicit arguments of the special constant Program.Tactics.obligation.

* Set Shrink Obligations Control whether obligations should have their context mini-
mized to the set of variables used in the proof of the obligation, to avoid unnecessary depen-
dencies.

The module Cog.Program.Tactics defines the default tactic for solving obligations called
program_simpl. Importing Cog.Program.Program also adds some useful notations, as docu-
mented in the file itself.

24.3 Frequently Asked Questions

* Ill-formed recursive definitions This error can happen when one tries to define a function by
structural recursion on a subset object, which means the Coq function looks like:

Program Fixpoint f (x : A | P) := match x with A b => f b end.

Supposing b : A, the argument at the recursive call to f is not a direct subterm of x as b is wrapped
inside an exist constructor to build an object of type {x : A | P}. Hence the definition is
rejected by the guardedness condition checker. However one can use wellfounded recursion on
subset objects like this:

Program Fixpoint f (x : A | P) { measure (size x) } :=
match x with A b => f b end.

Coq Reference Manual, V8.6.1, July 26, 2017



436 24 PROGRAM

One will then just have to prove that the measure decreases at each recursive call. There are three
drawbacks though:

1. A measure function has to be defined;

2. The reduction is a little more involved, although it works well using lazy evaluation;

3. Mutual recursion on the underlying inductive type isn’t possible anymore, but nested mutual
recursion is always possible.

Coq Reference Manual, V8.6.1, July 26, 2017



Chapter 25

The ring and £ield tactic families

Bruno Barras, Benjamin Grégoire, Assia Mahboubi, Laurent
Théry'

This chapter presents the tactics dedicated to deal with ring and field equations.

25.1 What does this tactic do?

ring does associative-commutative rewriting in ring and semi-ring structures. Assume you have two
binary functions & and & that are associative and commutative, with & distributive on ®, and two con-
stants 0 and 1 that are unities for @ and ®. A polynomial is an expression built on variables Vg, V1, ...
and constants by application of & and ®.

Let an ordered product be a product of variables V;, ® ... ® V; verifying i1 <19 < -+ < 1y. Let
a monomial be the product of a constant and an ordered product. We can order the monomials by the
lexicographic order on products of variables. Let a canonical sum be an ordered sum of monomials that
are all different, i.e. each monomial in the sum is strictly less than the following monomial according
to the lexicographic order. It is an easy theorem to show that every polynomial is equivalent (modulo
the ring properties) to exactly one canonical sum. This canonical sum is called the normal form of
the polynomial. In fact, the actual representation shares monomials with same prefixes. So what does
ring? It normalizes polynomials over any ring or semi-ring structure. The basic use of ring is
to simplify ring expressions, so that the user does not have to deal manually with the theorems of
associativity and commutativity.

Examples:
1. In the ring of integers, the normal form of z(3 + yx + 25(1 — 2)) + zz is 28z + (—24)zz + zzy.

ring is also able to compute a normal form modulo monomial equalities. For example, under the
hypothesis that 222 = yz + 1, the normal form of 2(z + 1)z — = — zy is z + 1.

"based on previous work from Patrick Loiseleur and Samuel Boutin

Coq Reference Manual, V8.6.1, July 26, 2017



438 25 The ring and field tactic families

25.2 The variables map

It is frequent to have an expression built with + and X, but rarely on variables only. Let us associate a
number to each subterm of a ring expression in the GALLINA language. For example in the ring nat,
consider the expression:

(plus (mult (plus (£ (5)) x) x)
(mult (if b then (4) else (f (3))) (2)))

As aring expression, it has 3 subterms. Give each subterm a number in an arbitrary order:
0 — 4if b then (4) else (f (3))
L = (£ (5))
2 = X

Then normalize the “abstract” polynomial

(VL@ Vo) Vo) (Vo ®2)

In our example the normal form is:

oW o (el e (1201)

Then substitute the variables by their values in the variables map to get the concrete normal polynomial:

(plus (mult (2) (if b then (4) else (f (3))))
(plus (mult (£ (5)) x) (mult x x)))

25.3 Isit automatic?

Yes, building the variables map and doing the substitution after normalizing is automatically done by
the tactic. So you can just forget this paragraph and use the tactic according to your intuition.

25.4 Concrete usage in COQ

The ring tactic solves equations upon polynomial expressions of a ring (or semi-ring) structure. It
proceeds by normalizing both hand sides of the equation (w.r.t. associativity, commutativity and dis-
tributivity, constant propagation, rewriting of monomials) and comparing syntactically the results.

ring_simplify applies the normalization procedure described above to the terms given. The
tactic then replaces all occurrences of the terms given in the conclusion of the goal by their normal forms.
If no term is given, then the conclusion should be an equation and both hand sides are normalized. The
tactic can also be applied in a hypothesis.

The tactic must be loaded by Require Import Ring. The ring structures must be declared
with the Add Ring command (see below). The ring of booleans is predefined; if one wants to use
the tactic on nat one must first require the module ArithRing (exported by Arith); for z, do
Require Import ZArithRing or simply Require Import ZArith; for N, do Require
Import NArithRingor Require Import NArith.

Example:

Coq Reference Manual, V8.6.1, July 26, 2017



25.4 Concrete usage in COQ 439

Cog < Require Import ZArith.
Cog < Open Scope Z_scope.

Cogq < Goal forall a b c:Z,

(a + b +c)*2 =

a*xa+b™ +cxc+ 2 xaxb+2xa*xc+ 2 +Dbxc.
1 subgoal

forall a b c : Z,
(a + b+c) "2=aa+b "2 +crct+ 2 +ax*b+ 2 %axc+ 2 +b *+cC

Cog < intros; ring.
No more subgoals.

Cog < Goal forall a b:Z, 2xaxb = 30 —->
(a+b) "2 = a2 + b*2 + 30.
1 subgoal

forall a b Z, 2 xa b =30 -> (a+b) ~2=a"2+b "2+ 30

Cogq < intros a b H; ring [H].
No more subgoals.

Variants:
1. ring [term; ... termy,] decides the equality of two terms modulo ring operations and
rewriting of the equalities defined by term; ... term,. Each of term; ... term, has to be a

proof of some equality m = p, where m is a monomial (after “abstraction”), p a polynomial and
= the corresponding equality of the ring structure.

2. ring_simplify [term; ... term,] ti...t, in ident performs the simplification in
the hypothesis named ident.

Warning: ring_simplify termi; ring_simplify termo is not equivalent to
ring_simplify term; termsy. In the latter case the variables map is shared between the two
terms, and common subterm ¢ of term; and terms will have the same associated variable number. So
the first alternative should be avoided for terms belonging to the same ring theory.

Error messages:

1. not a valid ring equation The conclusion of the goal is not provable in the corre-
sponding ring theory.

2. arguments of ring_simplify do not have all the same type
ring_simplify cannot simplify terms of several rings at the same time. Invoke the
tactic once per ring structure.

3. cannot find a declared ring structure over term Noring has been declared
for the type of the terms to be simplified. Use Add Ring first.

4. cannot find a declared ring structure for equality term Same as
above is the case of the ring tactic.

Coq Reference Manual, V8.6.1, July 26, 2017



440 25 The ring and field tactic families

25.5 Adding a ring structure

Declaring a new ring consists in proving that a ring signature (a carrier set, an equality, and ring oper-
ations: Ring_theory.ring_theory and Ring_theory.semi_ring_theory) satisfies the
ring axioms. Semi-rings (rings without + inverse) are also supported. The equality can be either Leib-
niz equality, or any relation declared as a setoid (see 27.2.2). The definition of ring and semi-rings (see
module Ring_theory) is:

Record ring_theory : Prop := mk_rt ({
Radd_0_1 : forall x, 0 + x == x;
Radd_sym : forall x vy, x +y ==y + x;
Radd_assoc : forall xy z, x + (y + z) == (x +vy) + z;
Rmul_1_1 : forall x, 1 x x == x;
Rmul_sym : forall x vy, x x y ==y *x X;
Rmul_assoc : forall x vy z, x * (y * z) == (X * V) x Z;
Rdistr_1 : forall x vy z, (x +vy) * 2z == (x % 2z2) + (y * z);
Rsub_def : forall xy, x -y = x + -y;
Ropp_def : forall x, x + (- x) == 0
}.
Record semi_ring_theory : Prop := mk_srt ({
SRadd_0_1 : forall n, 0 + n == n;
SRadd_sym : forall nm, n +m==m + n ;
SRadd_assoc : forall nmp, n+ (m + p) == (n + m) + p;
SRmul_1_1 : forall n, 1lxn == n;
SRmul_ _O_1 : forall n, Oxn == 0;
SRmul_sym : forall n m, n*m == m=*n;
SRmul_assoc : forall n m p, n*(mxp) == (n*m)*p;
SRdistr_1 : forall nm p, (n + m)*p == n*xp + m*xp

This implementation of ring also features a notion of constant that can be parameterized. This
can be used to improve the handling of closed expressions when operations are effective. It consists in
introducing a type of coefficients and an implementation of the ring operations, and a morphism from
the coefficient type to the ring carrier type. The morphism needs not be injective, nor surjective.

As an example, one can consider the real numbers. The set of coefficients could be the rational
numbers, upon which the ring operations can be implemented. The fact that there exists a morphism is
defined by the following properties:

Record ring_morph : Prop := mkmorph ({
morph0 : [cO] == 0;
morphl : [cI] == 1;
morph_add : forall x vy, [x +! y] == [x]+[y];
morph_sub : forall x vy, [x -! y] == [x]-[y];
morph_mul : forall x vy, [x *! y] == [x]x[y];
morph_opp : forall x, [-!x] == —-[x];

[x
morph_eq : forall x vy, x?=!ly = true -> [x] == [y]

Coq Reference Manual, V8.6.1, July 26, 2017



25.5 Adding a ring structure 441

Record semi_morph : Prop := mkRmorph {
SmorphO : [cO] == 0;
Smorphl : [cI] == 1;
Smorph_add : forall x vy, [x +! y] == [x]+[y];
Smorph_mul : forall x vy, [x *x! y] == [x]*x[y];
Smorph_eq : forall x y, x?=!ly = true -> [x] == [y]
}.
where c0 and cI denote the O and 1 of the coefficient set, +!, = !, —! are the implementations of the
ring operations, == is the equality of the coefficients, 2+! is an implementation of this equality, and

[x] is a notation for the image of x by the ring morphism.
Since Z is an initial ring (and N is an initial semi-ring), it can always be considered as a set of
coefficients. There are basically three kinds of (semi-)rings:

abstract rings to be used when operations are not effective. The set of coefficients is Z (or N for semi-
rings).

computational rings to be used when operations are effective. The set of coefficients is the ring itself.
The user only has to provide an implementation for the equality.

customized ring for other cases. The user has to provide the coefficient set and the morphism.

This implementation of ring can also recognize simple power expressions as ring expressions. A
power function is specified by the following property:

Section POWER.
Variable Cpow : Set.
Variable Cp_phi : N —-> Cpow.
Variable rpow : R -> Cpow -> R.

Record power_theory : Prop := mkpow_th {
rpow_pow_N : forall r n, req (rpow r (Cp_phi n)) (pow_N rI rmul r
}.
End POWER.
The syntax for adding a new ring is Add Ring name : rming (modi, ..., mods). The

name is not relevant. It is just used for error messages. The term ring is a proof that the ring signature
satisfies the (semi-)ring axioms. The optional list of modifiers is used to tailor the behavior of the tactic.
The following list describes their syntax and effects:

abstract declares the ring as abstract. This is the default.

decidable term declares the ring as computational. The expression term is the correctness proof of an
equality test ?=! (which should be evaluable). Its type should be of the form forall x vy,
x?=ly = true — x == y.

morphism term declares the ring as a customized one. The expression term is a proof that there exists
a morphism between a set of coefficient and the ring carrier (see Ring_theory.ring_morph
and Ring_theory.semi_morph).

Coq Reference Manual, V8.6.1, July 26, 2017



442 25 The ring and field tactic families

setoid term; terms forces the use of given setoid. The expression term; is a proof that the equality
is indeed a setoid (see Setoid.Setoid_Theory), and terms a proof that the ring operations
are morphisms (see Ring_theory.ring_eq_ext and Ring_theory.sring_eq_ext).
This modifier needs not be used if the setoid and morphisms have been declared.

constants [L;,. ] specifies a tactic expression that, given a term, returns either an object
of the coefficient set that is mapped to the expression via the morphism, or returns
InitialRing.NotConstant. The default behavior is to map only O and 1 to their coun-
terpart in the coefficient set. This is generally not desirable for non trivial computational rings.

preprocess [L:,. ] specifies a tactic that is applied as a preliminary step for ring and
ring_simplify. It can be used to transform a goal so that it is better recognized. For in-
stance, S n can be changedtoplus 1 n.

postprocess [L:,. ] specifies a tactic that is applied as a final step for ring_simplify. For instance,
it can be used to undo modifications of the preprocessor.

power_tac term [L;,. ] allows ring and ring_simplify to recognize power expressions
with a constant positive integer exponent (example: x?). The term term is a proof
that a given power function satisfies the specification of a power function (term has
to be a proof of Ring_ theory.power_theory) and L, specifies a tactic expres-
sion that, given a term, “abstracts” it into an object of type N whose interpretation
via Cp_phi (the evaluation function of power coefficient) is the original term, or re-
turns InitialRing.NotConstant if not a constant coefficient (i.e. L. is the in-
verse function of Cp_phi). See files plugins/setoid_ring/ZArithRing.v and
plugins/setoid_ring/RealField.v for examples. By default the tactic does not recog-
nize power expressions as ring expressions.

sign term allows ring_simplify to use a minus operation when outputing its normal form, i.e
writing 2z — y instead of z + (—y). The term term is a proof that a given sign function indi-
cates expressions that are signed (term has to be a proof of Ring_theory.get_sign). See
plugins/setoid_ring/IntialRing.v for examples of sign function.

div term allows ring and ring_simplify to use moniomals with coefficient other than 1 in the
rewriting. The term term is a proof that a given division function satisfies the specification of
an euclidean division function (term has to be a proof of Ring_theory.div_theory). For
example, this function is called when trying to rewrite 7z by 2z = z to tell that 7 = 3+ 2 + 1. See
plugins/setoid_ring/IntialRing.v for examples of div function.

Error messages:
1. bad ring structure The proof of the ring structure provided is not of the expected type.

2. bad lemma for decidability of equality The equality function provided in the
case of a computational ring has not the expected type.

3. ring operation should be declared as a morphism A setoid associated to the car-
rier of the ring structure as been found, but the ring operation should be declared as morphism.
See 27.2.2.

Coq Reference Manual, V8.6.1, July 26, 2017



25.6 How does it work? 443

25.6 How does it work?

The code of ring is a good example of tactic written using reflection. What is reflection? Basically, it
is writing COQ tactics in C0OQ, rather than in OBJECTIVE CAML. From the philosophical point of view,
it is using the ability of the Calculus of Constructions to speak and reason about itself. For the ring
tactic we used COQ as a programming language and also as a proof environment to build a tactic and to
prove it correctness.

The interested reader is strongly advised to have a look at the file Ring_polynom.v. Here a type
for polynomials is defined:

Inductive PExpr : Type :=
| PEc : C —> PExpr
PEX : positive -> PExpr
PEadd : PExpr -> PExpr —-> PExpr
PEsub : PExpr —-> PExpr —-> PExpr
PEmul : PExpr —-> PExpr —-> PExpr
PEopp : PExpr —-> PExpr
PEpow : PExpr —-> N —> PExpr.
Polynomials in normal form are defined as:
Inductive Pol : Type :=
| Pc : C —> Pol
| Pinj : positive -> Pol -> Pol
| PX : Pol -> positive -> Pol -> Pol.
where Pinj n P denotes P in which Vj is replaced by V;4,, and PX P n Q denotes P ® V" @ @',
Q' being ) where V; is replaced by V1.
Variables maps are represented by list of ring elements, and two interpretation functions, one that

maps a variables map and a polynomial to an element of the concrete ring, and the second one that does
the same for normal forms:

Definition PEeval : list R -> PExpr -> R := [...].
Definition Pphi_dev : list R -> Pol -> R := [...].

A function to normalize polynomials is defined, and the big theorem is its correctness w.r.t interpre-
tation, that is:

Definition norm : PExpr -> Pol := [...].
Lemma Pphi_dev_ok
forall 1 pe npe, norm pe = npe —-> PEeval 1 pe == Pphi_dev 1 npe.

So now, what is the scheme for a normalization proof? Let p be the polynomial expression that the
user wants to normalize. First a little piece of ML code guesses the type of p, the ring theory T to use, an
abstract polynomial ap and a variables map v such that p is Sd¢-equivalentto (PEeval v ap). Then
we replace it by (Pphi_dev v (norm ap)), using the main correctness theorem and we reduce
it to a concrete expression p’, which is the concrete normal form of p. This is summarized in this
diagram:

p —gs (PEeval v ap)

—(by the main correctness theorem)
p’ <5 (Pphi_dev v (norm ap))

The user do not see the right part of the diagram. From outside, the tactic behaves like a Sd¢ sim-
plification extended with AC rewriting rules. Basically, the proof is only the application of the main
correctness theorem to well-chosen arguments.

Coq Reference Manual, V8.6.1, July 26, 2017



444 25 The ring and £ield tactic families

25.7 Dealing with fields

The field tactic is an extension of the ring to deal with rational expression. Given a rational expres-
sion F' = 0. It first reduces the expression F' to a common denominator N/D = 0 where N and D are
two ring expressions. For example, if we take F = (1 —1/z)z —x +1, this gives N = (z— 1)z — 22+
and D = z. It then calls ring to solve N = 0. Note that field also generates non-zero condi-
tions for all the denominators it encounters in the reduction. In our example, it generates the condition
x # 0. These conditions appear as one subgoal which is a conjunction if there are several denominators.
Non-zero conditions are always polynomial expressions. For example when reducing the expression
1/(1 + 1/x), two side conditions are generated: z # 0 and z + 1 # 0. Factorized expressions are
broken since a field is an integral domain, and when the equality test on coefficients is complete w.r.t.
the equality of the target field, constants can be proven different from zero automatically.

The tactic must be loaded by Require Import Field. New field structures can be declared to
the system with the Add Field command (see below). The field of real numbers is defined in module
RealField (in textttplugins/setoid_ring). It is exported by module Rbase, so that requiring Rbase
or Reals is enough to use the field tactics on real numbers. Rational numbers in canonical form are
also declared as a field in module Qcanon.

Example:

Cog < Require Import Reals.
Cog < Open Scope R_scope.

Cog < Goal forall x, x <> 0 —>
(1 - 1/x) » x — x + 1 = 0.
1 subgoal

forall x : R, x <> 0 —> (1 -1/ x) x —-—x+ 1 =20
Cog < intros; field; auto.

No more subgoals.

Cog < Goal forall xy, vy <> 0 >y =x —> x/y = 1.
1 subgoal

forall xy : R, y<>0 >y =x->x/y=1

Cogq < intros x y H H1l; field [H1]; auto.
No more subgoals.

Variants:

1. field [term; ... term,] decides the equality of two terms modulo field operations and
rewriting of the equalities defined by term; ... term,. Each of term; ... term, has to be a proof
of some equality m = p, where m is a monomial (after “abstraction”), p a polynomial and =
the corresponding equality of the field structure. Beware that rewriting works with the equality
m = p only if p is a polynomial since rewriting is handled by the underlying ring tactic.

2. field_simplify performs the simplification in the conclusion of the goal, F; = F5 becomes
Ni/Di = N2/D5. A normalization step (the same as the one for rings) is then applied to Ny, D1,

Coq Reference Manual, V8.6.1, July 26, 2017



25.8 Adding a new field structure 445

10.

11.

Ny and D5. This way, polynomials remain in factorized form during the fraction simplifications.
This yields smaller expressions when reducing to the same denominator since common factors
can be canceled.

. field_simplify [term; ... term,] performs the simplification in the conclusion of the
goal using the equalities defined by term; ... term,,.
field_simplify [term; ... termy,] t; ...t, performs the simplification in the

terms %1 ... %, of the conclusion of the goal using the equalities defined by term; ... term,,.

. field_simplify in H performs the simplification in the assumption H.

field_simplify [term; ... term,] in H performs the simplification in the assump-
tion H using the equalities defined by term; ... term,,.

. field_simplify [term; ... termy,] t1 ...t, in H performs the simplification in

the terms ¢; ...t, of the assumption / using the equalities defined by term; ... termg,.

field_simplify_eq performs the simplification in the conclusion of the goal removing the
denominator. F; = F3 becomes N1Dy = NoDq.

field_simplify_eq [term; ... termy,] performs the simplification in the conclusion
of the goal using the equalities defined by term; ... term,.

field_simplify_eqin H performs the simplification in the assumption H.

field_simplify_eq [term; ... term,] in H performs the simplification in the as-
sumption H using the equalities defined by term; ... term,,.

25.8 Adding a new field structure

Declaring a new field consists in proving that a field signature (a carrier set, an equality, and field opera-
tions: Field_theory.field_theory and Field_theory.semi_field_theory) satisfies
the field axioms. Semi-fields (fields without + inverse) are also supported. The equality can be either
Leibniz equality, or any relation declared as a setoid (see 27.2.2). The definition of fields and semi-fields

1S:

Record field_theory : Prop := mk_field {
F_R : ring_theory rO rI radd rmul rsub ropp redq;
F 1 neg 0O : ~ 1 == 0;
Fdiv_def : forall p g, p / g ==p * / g;
Finv_1l : forall p, ~ p == -> / p x p ==

}.

Record semi_field_theory : Prop := mk_sfield {
SF_SR : semi_ring_theory rO rI radd rmul req;
SF_1 neq 0 : ~ 1 == 0;

SFdiv_def : forall p gq, p / g ==p * / g;
SFinv_1 : forall p, ~p ==0-> / p % p ==

Coq Reference Manual, V8.6.1, July 26, 2017



446 25 The ring and field tactic families

The result of the normalization process is a fraction represented by the following type:

Record linear : Type := mk_linear {
num : PExpr C;
denum : PExpr C;
condition : list (PExpr C)

}.

where num and denum are the numerator and denominator; condition is a list of expressions that
have appeared as a denominator during the normalization process. These expressions must be proven
different from zero for the correctness of the algorithm.

The syntax for adding a new field is Add Field name : field (mody, ..., mods). The
name is not relevant. It is just used for error messages. field is a proof that the field signature satisfies
the (semi-)field axioms. The optional list of modifiers is used to tailor the behavior of the tactic. Since
field tactics are built upon ring tactics, all modifiers of the Add Ring apply. There is only one specific
modifier:

completeness term allows the field tactic to prove automatically that the image of non-zero coeffi-
cients are mapped to non-zero elements of the field. termis a proof of forall x y, [x] ==
[yl -> x?=!y = true, which is the completeness of equality on coefficients w.r.t. the field
equality.

25.9 History of ring

First Samuel Boutin designed the tactic ACDSimpl. This tactic did lot of rewriting. But the proofs
terms generated by rewriting were too big for COQ’s type-checker. Let us see why:

Coq < Goal forall xy z:Z2, x + 3 +y +y *z=x+3+y + 2z xyYy.
1 subgoal

forall xy z : 2, x+ 3 +y +y 2z =x+3+y + 2z *y
Cog < intros; rewrite (Z.mul_comm y z); reflexivity.
Cog < Save toto.

Cog < Print toto.
toto =
fun x y z : Z =>
eq ind r (fun z0 : Z => x + 3 +y + 20 = x + 3 + y + z + y) eq refl
(Z.mul_comm y z)
forall xy z : Z, x + 3 +y +y 2z =x+3+y + 2z Yy
Argument scopes are [Z_scope Z_scope Z_scope]

At each step of rewriting, the whole context is duplicated in the proof term. Then, a tactic that
does hundreds of rewriting generates huge proof terms. Since ACDSimpl was too slow, Samuel Boutin
rewrote it using reflection (see his article in TACS’97 [19]). Later, the stuff was rewritten by Patrick
Loiseleur: the new tactic does not any more require ACDSimpl to compile and it makes use of Sd¢-
reduction not only to replace the rewriting steps, but also to achieve the interleaving of computation and
reasoning (see 25.10). He also wrote a few ML code for the Add Ring command, that allow to register
new rings dynamically.

Coq Reference Manual, V8.6.1, July 26, 2017



25.10 Discussion 447

Proofs terms generated by ring are quite small, they are linear in the number of & and ® operations
in the normalized terms. Type-checking those terms requires some time because it makes a large use of
the conversion rule, but memory requirements are much smaller.

25.10 Discussion

Efficiency is not the only motivation to use reflection here. ring also deals with constants, it rewrites for
example the expression 34+ 2z —x+12 to the expected result x+46. For the tactic ACDS imp1, the only
constants were 0 and 1. So the expression 34+2x(x—1)+12 is interpreted as Vo ®V; ®(V201)d Vs, with
the variables mapping {Vj — 34; V1 — 2; Vo +— 2; V3 — 12}. Then it is rewritten to 34 — 2+ 2xz+12,
very far from the expected result. Here rewriting is not sufficient: you have to do some kind of reduction
(some kind of computation) to achieve the normalization.

The tactic ring is not only faster than a classical one: using reflection, we get for free integration
of computation and reasoning that would be very complex to implement in the classic fashion.

Is it the ultimate way to write tactics? The answer is: yes and no. The ring tactic uses intensively
the conversion rule of CIC, that is replaces proof by computation the most as it is possible. It can be
useful in all situations where a classical tactic generates huge proof terms. Symbolic Processing and
Tautologies are in that case. But there are also tactics like auto or 1inear that do many complex
computations, using side-effects and backtracking, and generate a small proof term. Clearly, it would be
significantly less efficient to replace them by tactics using reflection.

Another idea suggested by Benjamin Werner: reflection could be used to couple an external tool (a
rewriting program or a model checker) with CoQ. We define (in COQ) a type of terms, a type of traces,
and prove a correction theorem that states that replaying traces is safe w.r.t some interpretation. Then we
let the external tool do every computation (using side-effects, backtracking, exception, or others features
that are not available in pure lambda calculus) to produce the trace: now we can check in Coq that the
trace has the expected semantic by applying the correction lemma.

Coq Reference Manual, V8.6.1, July 26, 2017



448 25 The ring and field tactic families

Coq Reference Manual, V8.6.1, July 26, 2017



Chapter 26

Nsatz: tactics for proving equalities In
integral domains

Loic Pottier

The tactic nsat z proves goals of the form

VXi,...,X, €A,
Pi(Xq,...,Xn)=Qi1(X1,..., Xn), .., Ps(Xq,..., Xpn) = Qs(X1,..., Xn)
FP(X1,...,X,) =0Q(X1,...,Xy)

where P, Q, P1,Q1, ..., P, Q; are polynomials and A is an integral domain, i.e. a commutative ring
with no zero divisor. For example, A can be R, Z, of Q. Note that the equality = used in these goals can
be any setoid equality (see 27.2.2) , not only Leibnitz equality.

It also proves formulas

VXi,...,X, €A,
Pi(Xy,...,.Xp) =Qu( X1, .., Xp) A A P(X, .00, X)) = Qs( X1, .-, X))
—>P(X1,,Xn) :Q(Xl,,Xn)

doing automatic introductions.

26.1 Using the basic tactic nsatz

Load the Nsat z module: Require Import Nsatz.
and use the tactic nsat z.

26.2 More about nsatz

Hilbert’s Nullstellensatz theorem shows how to reduce proofs of equalities on polynomials on a com-
mutative ring A with no zero divisor to algebraic computations: it is easy to see that if a polynomial P
in A[X,...,X,] verifies cP" = Y7 | S;P;, with ¢ € A, ¢ # 0, r a positive integer, and the S;s in
A[Xq, ..., X,], then P is zero whenever polynomials Py, ..., Ps are zero (the converse is also true when
A is an algebraic closed field: the method is complete).

Coq Reference Manual, V8.6.1, July 26, 2017



450 26 Nsatz: tactics for proving equalities in integral domains

So, proving our initial problem can reduce into finding S1, ..., Ss, ¢ and r such that ¢(P — Q)" =
>; Si(P; — @;), which will be proved by the tactic ring.

This is achieved by the computation of a Groebner basis of the ideal generated by P, — @1, ..., Ps —
(s, with an adapted version of the Buchberger algorithm.

This computation is done after a step of reification, which is performed using Type Classes (see 20)

The Nsat z module defines the tactic nsat z, which can be used without arguments:
nsatz

or with the syntax:
nsatz with radicalmax:=number%$N strategy:=number%$7 parameters:=11ist

of variables variables:=1ist of variables
where:

* radicalmax is a bound when for searching rs.t.c(P — Q)" =Y., ,Si(P; — Q;)

* strategy gives the order on variables X1, ...X,, and the strategy used in Buchberger algorithm
(see [72] for details):

strategy = 0: reverse lexicographic order and newest s-polynomial.

strategy = 1: reverse lexicographic order and sugar strategy.

strategy = 2: pure lexicographic order and newest s-polynomial.

strategy = 3: pure lexicographic order and sugar strategy.

* parameters is the list of variables X;,,..., X;, among Xi,..., X;, which are considered as
parameters: computation will be performed with rational fractions in these variables, i.e. polyno-
mials are considered with coefficients in R(Xj,, ..., X;, ). In this case, the coefficient ¢ can be a
non constant polynomial in X; , ..., X;,, and the tactic produces a goal which states that c is not
Zero.

i

* variables is the list of the variables in the decreasing order in which they will be used in
Buchberger algorithm. If variables = (@nil R), then 1var is replaced by all the variables
which are not in parameters.

See file Nsat z . v for many examples, specially in geometry.

Coq Reference Manual, V8.6.1, July 26, 2017



Chapter 27

Generalized rewriting

Matthieu Sozeau

This chapter presents the extension of several equality related tactics to work over user-defined struc-
tures (called setoids) that are equipped with ad-hoc equivalence relations meant to behave as equalities.
Actually, the tactics have also been generalized to relations weaker then equivalences (e.g. rewriting
systems). The toolbox also extends the automatic rewriting capabilities of the system, allowing the
specification of custom strategies for rewriting.

This documentation is adapted from the previous setoid documentation by Claudio Sacerdoti Coen
(based on previous work by Clément Renard). The new implementation is a drop-in replacement for the
old one,' hence most of the documentation still applies.

The work is a complete rewrite of the previous implementation, based on the type class infrastruc-
ture. It also improves on and generalizes the previous implementation in several ways:

User-extensible algorithm. The algorithm is separated in two parts: generations of the rewriting
constraints (done in ML) and solving of these constraints using type class resolution. As type class
resolution is extensible using tactics, this allows users to define general ways to solve morphism
constraints.

Sub-relations. An example extension to the base algorithm is the ability to define one relation as
a subrelation of another so that morphism declarations on one relation can be used automatically
for the other. This is done purely using tactics and type class search.

Rewriting under binders. It is possible to rewrite under binders in the new implementation, if one
provides the proper morphisms. Again, most of the work is handled in the tactics.

First-class morphisms and signatures. Signatures and morphisms are ordinary Coq terms, hence
they can be manipulated inside Coq, put inside structures and lemmas about them can be proved
inside the system. Higher-order morphisms are also allowed.

Performance. The implementation is based on a depth-first search for the first solution to a set of
constraints which can be as fast as linear in the size of the term, and the size of the proof term is
linear in the size of the original term. Besides, the extensibility allows the user to customize the
proof search if necessary.

'Nicolas Tabareau helped with the gluing.

Coq Reference Manual, V8.6.1, July 26, 2017



452 27 Generalized rewriting

27.1 Introduction to generalized rewriting

27.1.1 Relations and morphisms

A parametric relation R is any term of type forall (zy:71) ... (xn:Tp), relation A. The
expression A, which depends on z; ...z, is called the carrier of the relation and R is said to be a
relation over A; the list 1, . . ., x,, is the (possibly empty) list of parameters of the relation.

Example 1 (Parametric relation) Ir is possible to implement finite sets of elements of type A as un-
ordered list of elements of type A. The function set_eq: forall (A: Type), relation
(1ist A) satisfied by two lists with the same elements is a parametric relation over (l1ist A)
with one parameter A. The type of set_eqis convertible with forall (A: Type), list A —>
list A —> Prop.

An instance of a parametric relation R with n parameters is any term (R #; .. .%,).

Let R be a relation over A with n parameters. A term is a parametric proof of reflexivity for R if it
hastype forall (z1:711) ... (xzp:1yp), reflexive (R z1 ...xp).Similar definitions are
given for parametric proofs of symmetry and transitivity.

Example 2 (Parametric relation (cont.)) The set_eq relation of the previous example can be proved
to be reflexive, symmetric and transitive.

A parametric unary function f of type forall (xy:7y) ... (xn:T,), A1 —> Ay covari-
antly respects two parametric relation instances R; and Ry if, whenever z, y satisfy %y z y, their images
(f z) and (f y) satisfy Ry (f ) (f y) . An f that respects its input and output relations will be called
a unary covariant morphism. We can also say that f is a monotone function with respect to R; and Rj.
The sequence x1, . . . £, represents the parameters of the morphism.

Let Ry and R, be two parametric relations. The signature of a parametric morphism of type forall
(z1:T1) ... (xn:Ty), A1 —> Aj that covariantly respects two instances Ir, and Ir, of R and
Ry is written I, ++>Ip,. Notice that the special arrow ++>, which reminds the reader of covariance, is
placed between the two relation instances, not between the two carriers. The signature relation instances
and morphism will be typed in a context introducing variables for the parameters.

The previous definitions are extended straightforwardly to n-ary morphisms, that are required to be
simultaneously monotone on every argument.

Morphisms can also be contravariant in one or more of their arguments. A morphism is contravariant
on an argument associated to the relation instance R if it is covariant on the same argument when the
inverse relation R~ (inverse R in Coq) is considered. The special arrow ——> is used in signatures
for contravariant morphisms.

Functions having arguments related by symmetric relations instances are both covariant and con-
travariant in those arguments. The special arrow ==> is used in signatures for morphisms that are both
covariant and contravariant.

An instance of a parametric morphism f with n parameters is any term £ %1 .. .%,.

Example 3 (Morphisms) Continuing the previous example, let union: forall (A: Type),
list A —-> list A -> list A perform the union of two sets by appending one list to the other.
union is a binary morphism parametric over A that respects the relation instance (set_eq A).
The latter condition is proved by showing forall (A: Type) (SI1 S1’ S2 S2’: 1list
A), set_eqg A S1 S1’7 -> set_eq A S2 S2’ -> set_eq A (union A S1 S2)
(union A S1’ S27).

Coq Reference Manual, V8.6.1, July 26, 2017



27.1 Introduction to generalized rewriting 453

The signature of the function union A is set_eq A ==> set_eq A ==> set_eq A for
all A.

Example 4 (Contravariant morphism) The division function Rdiv: R -> R -> R is a mor-
phism of signature 1e ++> le —-> le where le is the usual order relation over real numbers.
Notice that division is covariant in its first argument and contravariant in its second argument.

Leibniz equality is a relation and every function is a morphism that respects Leibniz equality. Un-
fortunately, Leibniz equality is not always the intended equality for a given structure.

In the next section we will describe the commands to register terms as parametric relations and
morphisms. Several tactics that deal with equality in COQ can also work with the registered relations.
The exact list of tactic will be given in Sect. 27.2.2. For instance, the tactic reflexivity can be
used to close a goal R n n whenever R is an instance of a registered reflexive relation. However,
the tactics that replace in a context C'[] one term with another one related by R must verify that C] is a
morphism that respects the intended relation. Currently the verification consists in checking whether C]
is a syntactic composition of morphism instances that respects some obvious compatibility constraints.

Example 5 (Rewriting) Continuing the previous examples, suppose that the user must prove
set_eq int (union int (union int S1 S2) S2) (f S1 S2) under the hypothesis
H: set_eq int S2 (nil int). It is possible to use the rewrite tactic to replace the first
two occurrences of S2 with nil int in the goal since the context set_eq int (union int
(union int S1 nil) nil) (f S1 S2), being a composition of morphisms instances, is a
morphism. However the tactic will fail replacing the third occurrence of S2 unless £ has also been
declared as a morphism.

27.1.2 Adding new relations and morphisms

A parametric relation Aeq: forall (y; : B ...Ym: PBm), relation (A t; ...t,) over
(A:a;->...a,-> Type) can be declared with the following command:

Add Parametric Relation (zq:Th)...(xn:Tg): (Ati...t,) (Aeqt]...t,)
[reflexivity proved by refl]

[symmetry proved by sym]

[transitivity proved by trans]

as id.

after having required the Set 0id module with the Require Setoid command.

The identifier id gives a unique name to the morphism and it is used by the command to generate
fresh names for automatically provided lemmas used internally.

Notice that the carrier and relation parameters may refer to the context of variables introduced at the
beginning of the declaration, but the instances need not be made only of variables. Also notice that A is
not required to be a term having the same parameters as Aeq, although that is often the case in practice
(this departs from the previous implementation).

In case the carrier and relations are not parametric, one can use the command Add Relation
instead, whose syntax is the same except there is no local context.

The proofs of reflexivity, symmetry and transitivity can be omitted if the relation is not an equiv-
alence relation. The proofs must be instances of the corresponding relation definitions: e.g. the proof
of reflexivity must have a type convertible to reflexive (A t; ...t;) (Reqg t’l A t;l) . Each
proof may refer to the introduced variables as well.

Coq Reference Manual, V8.6.1, July 26, 2017



454 27 Generalized rewriting

Example 6 (Parametric relation) For Leibniz equality, we may declare: Add Parametric
Relation (A : Type) : A (@eqg A)
[reflexivity proved by @refl_equal A]

Some tactics (reflexivity, symmetry, transitivity) work only on relations that re-
spect the expected properties. The remaining tactics (replace, rewrite and derived tactics such
as autorewrite) do not require any properties over the relation. However, they are able to replace
terms with related ones only in contexts that are syntactic compositions of parametric morphism in-
stances declared with the following command.

Add Parametric Morphism(xy:Ty)...(zg : Tg)
(ft1...tp)

with signature sig

as id.

Proof

Qed
The command declares f as a parametric morphism of signature sig. The identifier id gives a unique
name to the morphism and it is used as the base name of the type class instance definition and as the
name of the lemma that proves the well-definedness of the morphism. The parameters of the morphism

as well as the signature may refer to the context of variables. The command asks the user to prove
interactively that f respects the relations identified from the signature.

Example 7 We start the example by assuming a small theory over homogeneous sets and we declare set
equality as a parametric equivalence relation and union of two sets as a parametric morphism.

Coqg < Require Export Setoid.

Coqg < Require Export Relation_Definitions.

Cog < Set Implicit Arguments.

Coqg < Parameter set: Type —> Type.

Coqg < Parameter empty: forall A, set A.

Coqg < Parameter eq _set: forall A, set A -> set A —-> Prop.

Coq < Parameter union: forall A, set A -> set A -> set A.

Cog < Axiom eq_set_refl: forall A, reflexive _ (eq_set (A:=A)).

Cog < Axiom eq_set_sym: forall A, symmetric (eq_set (A:=A)).

Cog < Axiom eq_set_trans: forall A, transitive (eq_set (A:=A)).

Coqg < Axiom empty_neutral: forall A (S: set A), eq_set (union S (empty A)) S.

Cog < Axiom union_compat:
forall (A : Type),
forall x x' : set A, eq set x x' ->
forall y y' : set A, eq_set y y' —->
eq_set (union x y) (union x' y').

Cog < Add Parametric Relation A : (set A) ((@eqg_set A)

Coq Reference Manual, V8.6.1, July 26, 2017



27.1 Introduction to generalized rewriting 455

reflexivity proved by (eq_set_refl (A:=A))
symmetry proved by (eq_set_sym (A:=A))
transitivity proved by (eq_set_trans (A:=A4))
as eq_set_rel.

Cog < Add Parametric Morphism A : (@Qunion A) with
signature (@eq_set A) ==> ((@eq_set A) ==> (@eq_set A) as union_mor.

Cog < Proof. exact (@Qunion_compat A). Qed.

It is possible to reduce the burden of specifying parameters using (maximally inserted) implicit
arguments. If A is always set as maximally implicit in the previous example, one can write:

Cogq < Add Parametric Relation A : (set A) eq_set
reflexivity proved by eq_set_refl
symmetry proved by eqg_set_sym
transitivity proved by eg_set_trans
as eq_set_rel.

Cog < Add Parametric Morphism A : (@union A) with
signature eqg_set ==> eqg_set ==> eqg_set as union_mor.
Cog < Proof. exact (@union_compat A). Qed.

We proceed now by proving a simple lemma performing a rewrite step and then applying reflexivity,
as we would do working with Leibniz equality. Both tactic applications are accepted since the required
properties over eq_set and union can be established from the two declarations above.

Cog < Goal forall (S: set nat),
eqg_set (union (union S empty) S) (union S S).

Cogq < Proof. intros. rewrite empty_neutral. reflexivity. Qed.

The tables of relations and morphisms are managed by the type class instance mechanism. The
behavior on section close is to generalize the instances by the variables of the section (and possibly
hypotheses used in the proofs of instance declarations) but not to export them in the rest of the develop-
ment for proof search. One can use the Existing Instance command to do so outside the section,
using the name of the declared morphism suffixed by _Morphism, or use the G1lobal modifier for the
corresponding class instance declaration (see §27.2.1) at definition time. When loading a compiled file
or importing a module, all the declarations of this module will be loaded.

27.1.3 Rewriting and non reflexive relations

To replace only one argument of an n-ary morphism it is necessary to prove that all the other arguments
are related to themselves by the respective relation instances.

Example 8 7o replace (union S empty) with S in (union (union S empty) S)
(union S S) the rewrite tactic must exploit the monotony of union (axiom union_compat in the
previous example). Applying union_compat by hand we are left with the goal eq_set (union S
S) (union S S).

When the relations associated to some arguments are not reflexive, the tactic cannot automatically
prove the reflexivity goals, that are left to the user.

Coq Reference Manual, V8.6.1, July 26, 2017



456 27 Generalized rewriting

Setoids whose relation are partial equivalence relations (PER) are useful to deal with partial func-
tions. Let R be a PER. We say that an element x is defined if R x x. A partial function whose domain
comprises all the defined elements only is declared as a morphism that respects R. Every time a rewriting
step is performed the user must prove that the argument of the morphism is defined.

Example 9 Let eqObe fun x y => x = y AN x# 0 (the smaller PER over non zero elements).
Division can be declared as a morphism of signature eq ==> eq0 ==> eq. Replace x with y in
div x n = div y nopens the additional goal eq0 n n that is equivalent to n=n A n#0.

27.1.4 Rewriting and non symmetric relations

When the user works up to relations that are not symmetric, it is no longer the case that any covariant
morphism argument is also contravariant. As a result it is no longer possible to replace a term with a
related one in every context, since the obtained goal implies the previous one if and only if the replace-
ment has been performed in a contravariant position. In a similar way, replacement in an hypothesis can
be performed only if the replaced term occurs in a covariant position.

Example 10 (Covariance and contravariance) Suppose that division over real numbers has been de-
fined as a morphism of signature Z .div: Z.1t ++> Z.1t —-> Z.l1t(i.e. Z.divisincreasing
in its first argument, but decreasing on the second one). Let < denotes Z . 1t. Under the hypothesis H:
x < ywehave k < x / y —> k < x / x, butnotk <y / x —> k < x / x. Dually,
under the same hypothesis k < x / y —> k <y / vholds, butk <y / x >k <y /
y does not. Thus, if the current goal is k < x / x, it is possible to replace only the second occur-
rence of x (in contravariant position) with y since the obtained goal must imply the current one. On
the contrary, if k < x / xis an hypothesis, it is possible to replace only the first occurrence of x (in
covariant position) with y since the current hypothesis must imply the obtained one.

Contrary to the previous implementation, no specific error message will be raised when trying to
replace a term that occurs in the wrong position. It will only fail because the rewriting constraints are
not satisfiable. However it is possible to use the at modifier to specify which occurrences should be
rewritten.

As expected, composing morphisms together propagates the variance annotations by switching the
variance every time a contravariant position is traversed.

Example 11 Let us continue the previous example and let us consider the goal x / (x / x) <
k. The first and third occurrences of x are in a contravariant position, while the second one is in
covariant position. More in detail, the second occurrence of x occurs covariantly in (x / x) (since
division is covariant in its first argument), and thus contravariantly in x / (x / x) (since division
is contravariant in its second argument), and finally covariantly in x / (x / x) < k (since <, as
every transitive relation, is contravariant in its first argument with respect to the relation itself).

27.1.5 Rewriting in ambiguous setoid contexts

One function can respect several different relations and thus it can be declared as a morphism having
multiple signatures.

Example 12 Union over homogeneous lists can be given all the following signatures: eq ==> eq
==> eq(eqbeing the equality over ordered lists) set_eq ==> set_eq ==> set_eqg(set_eq
being the equality over unordered lists up to duplicates), multiset_eq ==> multiset_eq ==>
multiset_eqg(multiset_eq being the equality over unordered lists).

Coq Reference Manual, V8.6.1, July 26, 2017



27.2 Commands and tactics 457

To declare multiple signatures for a morphism, repeat the Add Morphism command.

When morphisms have multiple signatures it can be the case that a rewrite request is ambiguous,
since it is unclear what relations should be used to perform the rewriting. Contrary to the previous
implementation, the tactic will always choose the first possible solution to the set of constraints generated
by a rewrite and will not try to find all possible solutions to warn the user about.

27.2 Commands and tactics

27.2.1 First class setoids and morphisms

The implementation is based on a first-class representation of properties of relations and morphisms as
type classes. That is, the various combinations of properties on relations and morphisms are represented
as records and instances of theses classes are put in a hint database. For example, the declaration:

Add Parametric Relation (xy :Ty)...(zpn :Tg): (Aty...ty) (Aeqty ... t0,)
[reflexivity proved by refl]

[symmetry proved by sym]

[transitivity proved by trans]

as id.

is equivalent to an instance declaration:

Instance (z1:Th)...(xn : Ty) => id : @Equivalence (Aty...t,) (Aeqt) ...t ) =

[Equivalence_Reflexive :=refl]
[Equivalence_Symmetric :=sym]
[Equivalence_Transitive :=trans].

The declaration itself amounts to the definition of an object of the record
type Cog.Classes.RelationClasses.Equivalence and a hint added to the
typeclass_instances hint database. Morphism declarations are also instances of a type
class defined in Classes.Morphisms. See the documentation on type classes 20 and the theories
files in Classes for further explanations.

One can inform the rewrite tactic about morphisms and relations just by using the typeclass mech-
anism to declare them using Instance and Context vernacular commands. Any object of type
Proper (the type of morphism declarations) in the local context will also be automatically used by the
rewriting tactic to solve constraints.

Other representations of first class setoids and morphisms can also be handled by encoding them as
records. In the following example, the projections of the setoid relation and of the morphism function
can be registered as parametric relations and morphisms.

Example 13 (First class setoids) Coqg < Require Import Relation Definitions Setoid.

Cog < Record Setoid: Type :=
{ car:Type;
eqg:car—>car—>Prop;
refl: reflexive _ eq;
sym: symmetric _ eqy;
trans: transitive _ eq

Coq Reference Manual, V8.6.1, July 26, 2017



458 27 Generalized rewriting

Cog < Add Parametric Relation (s : Setoid) : (@car s) (Reqg s)
reflexivity proved by (refl s)
symmetry proved by (sym s)
transitivity proved by (trans s) as eq_rel.

Coqg < Record Morphism (S1 S2:Setoid): Type :=
{ f:car S1 ->car S2;
compat: forall (x1 x2: car S1), eq S1 x1 x2 -> eq S2 (f x1) (f x2) }.

Coqg < Add Parametric Morphism (S1 S2 : Setoid) (M : Morphism S1 S2)
(Gf S1 S2 M) with signature (@eq S1 ==> (@eq S2) as apply_mor.

Coqg < Proof. apply (compat S1 S2 M). Qed.

Coq < Lemma test: forall (S1 S2:Setoid) (m: Morphism S1 S52)
(x y: car S1), eq S1 xy —-> eq S2 (f _ _ mx) (f_ _ my).

Cog < Proof. intros. rewrite H. reflexivity. Qed.

27.2.2 Tactics enabled on user provided relations

The following tactics, all prefixed by setoid_, deal with arbitrary registered relations and mor-
phisms. Moreover, all the corresponding unprefixed tactics (i.e. reflexivity, symmetry,
transitivity, replace, rewrite) have been extended to fall back to their prefixed counter-
parts when the relation involved is not Leibniz equality. Notice, however, that using the prefixed tactics
it is possible to pass additional arguments such as using relation.

setoid_reflexivity

setoid_symmetry [in ident]

setoid_transitivity

setoid_rewrite [orientation] term [at occs] [in ident]

setoid_replace termwith term [in ident] [using relation term] [by tactic]

The using relation arguments cannot be passed to the unprefixed form. The latter argument
tells the tactic what parametric relation should be used to replace the first tactic argument with the
second one. If omitted, it defaults to the DefaultRelation instance on the type of the objects. By
default, it means the most recent Equivalence instance in the environment, but it can be customized
by declaring new DefaultRelation instances. As Leibniz equality is a declared equivalence, it will
fall back to it if no other relation is declared on a given type.

Every derived tactic that is based on the unprefixed forms of the tactics considered above will also
work up to user defined relations. For instance, it is possible to register hints for autorewrite that
are not proof of Leibniz equalities. In particular it is possible to exploit autorewrite to simulate
normalization in a term rewriting system up to user defined equalities.

27.2.3 Printing relations and morphisms

The Print Instances command can be used to show the list of currently registered
Reflexive (using Print Instances Reflexive), Symmetric or Transitive relations,
Equivalences, PreOrders, PERs, and Morphisms (implemented as Proper instances). When the
rewriting tactics refuse to replace a term in a context because the latter is not a composition of mor-
phisms, the Print Instances commands can be useful to understand what additional morphisms
should be registered.

Coq Reference Manual, V8.6.1, July 26, 2017



27.3 Extensions 459

27.2.4 Deprecated syntax and backward incompatibilities

Due to backward compatibility reasons, the following syntax for the declaration of setoids and mor-
phisms is also accepted.

Add Setoid A Aeq ST as ident

where Aeq is a congruence relation without parameters, A is its carrier and ST is an object of type
(Setoid_Theory A Aeq) (i.e. arecord packing together the reflexivity, symmetry and transitivity
lemmas). Notice that the syntax is not completely backward compatible since the identifier was not
required.

Add Morphismf:ident.
Proof.

Qed.

The latter command also is restricted to the declaration of morphisms without parameters. It is
not fully backward compatible since the property the user is asked to prove is slightly different: for
n-ary morphisms the hypotheses of the property are permuted; moreover, when the morphism returns
a proposition, the property is now stated using a bi-implication in place of a simple implication. In
practice, porting an old development to the new semantics is usually quite simple.

Notice that several limitations of the old implementation have been lifted. In particular, it is now
possible to declare several relations with the same carrier and several signatures for the same morphism.
Moreover, it is now also possible to declare several morphisms having the same signature. Finally, the
replace and rewrite tactics can be used to replace terms in contexts that were refused by the old imple-

mentation. As discussed in the next section, the semantics of the new setoid_rewrite command
differs slightly from the old one and rewrite.

27.3 Extensions

27.3.1 Rewriting under binders

Warning: Due to compatibility issues, this feature is enabled only when calling the setoid_rewrite
tactics directly and not rewrite.

To be able to rewrite under binding constructs, one must declare morphisms with respect to point-
wise (setoid) equivalence of functions. Example of such morphisms are the standard all and ex com-
binators for universal and existential quantification respectively. They are declared as morphisms in
the Classes.Morphisms_Prop module. For example, to declare that universal quantification is a
morphism for logical equivalence:

Cog < Instance all_iff morphism (A : Type)

Proper (pointwise_relation A iff ==> iff) (@all A).
Cogq < Proof. simpl_relation.
1 subgoal

A : Type

Proper (pointwise_relation A iff ==> iff) (all (A:=A))

Coq Reference Manual, V8.6.1, July 26, 2017



460 27 Generalized rewriting

1 subgoal

A : Type
x, vy : A —> Prop
H : pointwise relation A iff x y

all x <-=> all y

One then has to show that if two predicates are equivalent at every point, their universal quantifica-
tions are equivalent. Once we have declared such a morphism, it will be used by the setoid rewriting
tactic each time we try to rewrite under an all application (products in Prop are implicitly translated
to such applications).

Indeed, when rewriting under a lambda, binding variable z, say from P z to () = using the rela-
tion i ff, the tactic will generate a proof of pointwise_relation A iff (fun x => P x)
(fun x => Q x) from the proof of iff (P x) (Q x) and a constraint of the form Proper
(pointwise_relation A iff ==> ?) mwill be generated for the surrounding morphism m.

Hence, one can add higher-order combinators as morphisms by providing signatures using point-
wise extension for the relations on the functional arguments (or whatever subrelation of the pointwise
extension). For example, one could declare the map combinator on lists as a morphism:

Cog < Instance map_morphism "~ {Equivalence A egA, Equivalence B egB}
Proper ((eghA ==> egB) ==> list_equiv egA ==> list_equiv egB) (@map A B).

where 1ist_equiv implements an equivalence on lists parameterized by an equivalence on the
elements.

Note that when one does rewriting with a lemma under a binder using setoid_rewrite, the ap-
plication of the lemma may capture the bound variable, as the semantics are different from rewrite where
the lemma is first matched on the whole term. With the new setoid_rewrite, matching is done on
each subterm separately and in its local environment, and all matches are rewritten simultaneously by
default. The semantics of the previous setoid_rewrite implementation can almost be recovered
using the at 1 modifier.

27.3.2 Sub-relations

Sub-relations can be used to specify that one relation is included in another, so that morphisms signatures
for one can be used for the other. If a signature mentions a relation R on the left of an arrow ==>, then the
signature also applies for any relation .S that is smaller than R, and the inverse applies on the right of an
arrow. One can then declare only a few morphisms instances that generate the complete set of signatures
for a particular constant. By default, the only declared subrelation is iff, which is a subrelation of
impl and inverse impl (the dual of implication). That’s why we can declare only two morphisms
for conjunction: Proper (impl ==> impl ==> impl) andand Proper (iff ==> iff
==> iff) and. This is sufficient to satisfy any rewriting constraints arising from a rewrite using
iff, impl or inverse impl through and.

Sub-relations are implemented in Classes.Morphisms and are a prime example of a mostly
user-space extension of the algorithm.

27.3.3 Constant unfolding

The resolution tactic is based on type classes and hence regards user-defined constants as transparent
by default. This may slow down the resolution due to a lot of unifications (all the declared Proper

Coq Reference Manual, V8.6.1, July 26, 2017



27.4 Strategies for rewriting 461

instances are tried at each node of the search tree). To speed it up, declare your constant as rigid for
proof search using the command Typeclasses Opaque (see §20.6.7).

27.4 Strategies for rewriting

27.4.1 Definitions

The generalized rewriting tactic is based on a set of strategies that can be combined to obtain custom
rewriting procedures. Its set of strategies is based on Elan’s rewriting strategies [102]. Rewriting strate-
gies are applied using the tactic rewrite_strat s where s is a strategy expression. Strategies are

defined inductively as described by the following grammar:

S, t,u

(s)

c

<-c

fail

id

refl
progress s
try s

S; U
choice st
repeat s
any s
subterms
subterms s
innermost s
outermost s
bottomup s
topdown s
hints hintdb
termsc...c
eval redexpr
foldc

strategy

lemma

lemma, right-to-left
failure

identity
reflexivity
progress

failure catch
composition
left-biased choice
iteration (+)
iteration (*)
one subterm

all subterms
innermost first
outermost first
bottom-up
top-down

apply hint

any of the terms
apply reduction
fold expression

Actually a few of these are defined in term of the others using a primitive fixpoint operator:

fixu.try (s; u)

try s = choicesid
any s =

repeat s = S§;anys
bottomup s =

topdown s =

fix bu.(choice (progress (subterms bu)) s) ; try bu
fix td.(choice s (progress (subterms td))) ; try td

fixi.(choice (subtermi) s)
fix o.(choice s (subtermo))

innermost s =
outermost s =

The basic control strategy semantics are straightforward: strategies are applied to subterms of the
term to rewrite, starting from the root of the term. The lemma strategies unify the left-hand-side of
the lemma with the current subterm and on success rewrite it to the right-hand-side. Composition can

Coq Reference Manual, V8.6.1, July 26, 2017



462 27 Generalized rewriting

be used to continue rewriting on the current subterm. The fail strategy always fails while the identity
strategy succeeds without making progress. The reflexivity strategy succeeds, making progress using a
reflexivity proof of rewriting. Progress tests progress of the argument strategy and fails if no progress
was made, while t ry always succeeds, catching failures. Choice is left-biased: it will launch the first
strategy and fall back on the second one in case of failure. One can iterate a strategy at least 1 time using
repeat and at least O times using any.

The subterm and subterms strategies apply their argument strategy s to respectively one or
all subterms of the current term under consideration, left-to-right. subterm stops at the first subterm
for which s made progress. The composite strategies innermost and outermost perform a sin-
gle innermost our outermost rewrite using their argument strategy. Their counterparts bot t omup and
topdown perform as many rewritings as possible, starting from the bottom or the top of the term.

Hint databases created for autorewrite canalsobeused by rewrite_strat usingthe hints
strategy that applies any of the lemmas at the current subterm. The terms strategy takes the lemma
names directly as arguments. The eval strategy expects a reduction expression (see §8.7) and succeeds
if it reduces the subterm under consideration. The fold strategy takes a term ¢ and tries to unify it to
the current subterm, converting it to ¢ on success, it is stronger than the tactic fold.

27.4.2 Usage

rewrite_strat s [in ident]:
Rewrite using the strategy s in hypothesis ident or the conclusion.

Error messages:
1. Nothing to rewrite. If the strategy failed.
2. No progress made. If the strategy succeeded but made no progress.

3. Unable to satisfy the rewriting constraints. If the strategy succeeded and
made progress but the corresponding rewriting constraints are not satisfied.

The setoid_rewrite c tactic is basically equivalent to rewrite_strat (outermost c).

Coq Reference Manual, V8.6.1, July 26, 2017



Chapter 28

Asynchronous and Parallel Proof
Processing

Enrico Tassi

This chapter explains how proofs can be asynchronously processed by Coq. This feature improves
the reactivity of the system when used in interactive mode via CoqIDE. In addition to that, it allows Coq
to take advantage of parallel hardware when used as a batch compiler by decoupling the checking of
statements and definitions from the construction and checking of proofs objects.

This feature is designed to help dealing with huge libraries of theorems characterized by long proofs.
In the current state, it may not be beneficial on small sets of short files.

This feature has some technical limitations that may make it unsuitable for some use cases.

For example, in interactive mode, some errors coming from the kernel of Coq are signaled late. The
type of errors belonging to this category are universe inconsistencies.

Last, at the time of writing, only opaque proofs (ending with Qed or Admitted) can be processed
asynchronously.

28.1 Proof annotations

To process a proof asynchronously Coq needs to know the precise statement of the theorem without
looking at the proof. This requires some annotations if the theorem is proved inside a Section (see
Section 2.4).

When a section ends, Coq looks at the proof object to decide which section variables are actually
used and hence have to be quantified in the statement of the theorem. To avoid making the construction
of proofs mandatory when ending a section, one can start each proof with the Proof usingcommand
(Section 7.1.5) that declares which section variables the theorem uses.

The presence of Proof using is needed to process proofs asynchronously in interactive mode.

It is not strictly mandatory in batch mode if it is not the first time the file is compiled and if the file
itself did not change. When the proof does not begin with Proof using, the system records in an
auxiliary file, produced along with the . vo file, the list of section variables used.

Coq Reference Manual, V8.6.1, July 26, 2017



464 28 Asynchronous and Parallel Proof Processing

28.2 Proof blocks and error resilience

Coq 8.6 introduces a mechanism for error resiliency: in interactive mode Coq is able to completely
check a document containing errors instead of bailing out at the first failure.

Two kind of errors are supported: errors occurring in vernacular commands and errors occurring in
proofs.

To properly recover from a failing tactic, Coq needs to recognize the structure of the proof in order
to confine the error to a sub proof. Proof block detection is performed by looking at the syntax of the
proof script (i.e. also looking at indentation). Coq comes with four kind of proof blocks, and an ML
API to add new ones.

curly blocks are delimited by { and }, see 7
par blocks are atomic, i.e. just one tactic introduced by the par: goal selector
indent blocks end with a tactic indented less than the previous one

bullet blocks are delimited by two equal bullet signs at the same indentation level

28.2.1 Caveats

When a vernacular command fails the subsequent error messages may be bogus, i.e. caused
by the first error.  Error resiliency for vernacular commands can be switched off passing
—async-proofs—command-error-resilience off to CoqlDE.

An incorrect proof block detection can result into an incorrect error recovery and hence in bogus
errors. Proof block detection cannot be precise for bullets or any other non well parenthesized proof
structure. Error resiliency can be turned off or selectively activated for any set of block kind passing
to CoqIDE one of the following options: —async-proofs—-tactic-error-resilience off,
—async-proofs—-tactic-error-resilience all,-async-proofs—-tactic-error-resilience
blocktypey, ..., blocktype,. Valid proof block types are: “curly”, “par”, “indent”, “bullet”.

Automatic suggestion of proof annotations

The command Set Suggest Proof Using makes Coq suggest, when a Qed command is pro-
cessed, a correct proof annotation. It is up to the user to modify the proof script accordingly.

28.3 Interactive mode

At the time of writing the only user interface supporting asynchronous proof processing is CoqIDE.

When CoqIDE is started, two Coq processes are created. The master one follows the user, giving
feedback as soon as possible by skipping proofs, which are delegated to the worker process. The worker
process, whose state can be seen by clicking on the button in the lower right corner of the main CoqIDE
window, asynchronously processes the proofs. If a proof contains an error, it is reported in red in the
label of the very same button, that can also be used to see the list of errors and jump to the corresponding
line.

If a proof is processed asynchronously the corresponding Qed command is colored using a lighter
color that usual. This signals that the proof has been delegated to a worker process (or will be processed
lazily if the ~async-proofs lazy option is used). Once finished, the worker process will provide
the proof object, but this will not be automatically checked by the kernel of the main process. To force

Coq Reference Manual, V8.6.1, July 26, 2017



28.4 Batch mode 465

the kernel to check all the proof objects, one has to click the button with the gears. Only then are all the
universe constraints checked.

Caveats

The number of worker processes can be increased by passing CoqlDE the —async-proofs—-j n
flag. Note that the memory consumption increases too, since each worker requires the same amount
of memory as the master process. Also note that increasing the number of workers may reduce the
reactivity of the master process to user commands.

To disable this feature, one can pass the ~async-proofs off flagto CoqlDE.

Proofs that are known to take little time to process are not delegated to a worker process. The thresh-
old can be configure with —async-proofs-delegation-threshold. Default is 0.03 seconds.

28.4 Batch mode

When Coq is used as a batch compiler by running cogc or cogtop —compile, it produces a .vo
file for each .v file. A .vo file contains, among other things, theorems statements and proofs. Hence
to produce a . vo Coq need to process all the proofs of the . v file.

The asynchronous processing of proofs can decouple the generation of a compiled file (like the
.vo one) that can be loaded by Require from the generation and checking of the proof objects. The
—quick flag can be passed to cogc or cogtop to produce, quickly, .vio files. Alternatively, when
using a Makefile produced by cog makefile, the quick target can be used to compile all files
using the —quick flag.

A .vio file can be loaded using Require exactly as a . vo file but proofs will not be available
(the Print command produces an error). Moreover, some universe constraints might be missing, so
universes inconsistencies might go unnoticed. A .vio file does not contain proof objects, but proof
tasks, i.e. what a worker process can transform into a proof object.

Compiling a set of files with the —quick flag allows one to work, interactively, on any file without
waiting for all the proofs to be checked.

When working interactively, one can fully check all the . v files by running cogc as usual.

Alternatively one can turn each . vio into the corresponding .vo. All . vio files can be processed
in parallel, hence this alternative might be faster. The command cogtop -schedule-vio2vo 2
a b c can be used to obtain a good scheduling for 2 workers to produce a.vo, b.vo, and c.vo.
When using a Makefile produced by cog makefile, the vio2vo target can be used for that
purpose. Variable J should be set to the number of workers, e.g. make vio2vo J=2. The only
caveat is that, while the . vo files obtained from .vio files are complete (they contain all proof terms
and universe constraints), the satisfiability of all universe constraints has not been checked globally (they
are checked to be consistent for every single proof). Constraints will be checked when these . vo files
are (recursively) loaded with Require.

There is an extra, possibly even faster, alternative: just check the proof tasks stored in .vio
files without producing the .wvo files. This is possibly faster because all the proof tasks are in-
dependent, hence one can further partition the job to be done between workers. The cogtop
-schedule-vio-checking 6 a b c command can be used to obtain a good scheduling for 6
workers to check all the proof tasks of a.vio, b.vio, and c.vio. Auxiliary files are used to predict
how long a proof task will take, assuming it will take the same amount of time it took last time. When
using a Makefile produced by coq makefile, the checkproofs target can be used to check all
.vio files. Variable J should be set to the number of workers, e.g. make checkproofs J=6. As

Coq Reference Manual, V8.6.1, July 26, 2017



466 28 Asynchronous and Parallel Proof Processing

when converting . vio files to . vo files, universe constraints are not checked to be globally consistent.
Hence this compilation mode is only useful for quick regression testing and on developments not making
heavy use of the Type hierarchy.

28.5 Limiting the number of parallel workers

Many Coq processes may run on the same computer, and each of them may start many additional worker
processes. The cogworkmgr utility lets one limit the number of workers, globally.

The utility accepts the —7j argument to specify the maximum number of workers (defaults to 2).
cogworkmgr automatically starts in the background and prints an environment variable assignment
like COOWORKMGR_SOCKET=1localhost :45634. The user must set this variable in all the shells
from which Coq processes will be started. If one uses just one terminal running the bash shell, then
export ‘cogworkmgr -7 4 will do the job.

After that, all Coq processes, e.g. cogide and coqgc, will honor the limit, globally.

Coq Reference Manual, V8.6.1, July 26, 2017



Chapter 29

Polymorphic Universes

Matthieu Sozeau

29.1 General Presentation

The status of Universe Polymorphism is experimental.

This section describes the universe polymorphic extension of Coq. Universe polymorphism makes it
possible to write generic definitions making use of universes and reuse them at different and sometimes
incompatible universe levels.

A standard example of the difference between universe polymorphic and monomorphic definitions
is given by the identity function:

Cogq < Definition identity {A : Type} (a : A) := a.

By default, constant declarations are monomorphic, hence the identity function declares a global
universe (say Top. 1) for its domain. Subsequently, if we try to self-apply the identity, we will get an
error:

Cog < Fail Definition selfid := identity (Q@identity).

The command has indeed failed with message:

The term "@identity" has type "forall A : Type@{Top.1}, A -> A"
while it is expected to have type "?A"

(unable to find a well-typed instantiation for

"?A": cannot ensure that "Type@{Top.l+1}" is a subtype of
"Type@{Top.1}").

Indeed, the global level Top . 1 would have to be strictly smaller than itself for this self-application
to typecheck, as the type of (@identity) is forall (A : Type@Top.l), A —-> A whose
type is itself Type@Top.1+1.

A universe polymorphic identity function binds its domain universe level at the definition level
instead of making it global.

Coq Reference Manual, V8.6.1, July 26, 2017



468 29 Polymorphic Universes

Cogq < Polymorphic Definition pidentity {A : Type} (a : A) := a.
pidentity is defined

Cog < About pidentity.

pidentity@{Top.2} : forall A : Type@{Top.2}, A —-> A
(» Top.2 [= %)

pidentity is universe polymorphic

Argument A is implicit and maximally inserted
Argument scopes are [type_scope _]

pidentity 1is transparent

Expands to: Constant Top.pidentity

It is then possible to reuse the constant at different levels, like so:

Cog < Definition selfpid := pidentity (@pidentity).
selfpid is defined

Of course, the two instances of pident ity in this definition are different. This can be seen when
Set Printing Universes ison:

Cog < Print selfpid.
selfpid =
pidentity@{Top.3} (@pidentity@{Top.4})
forall A : Type@{Top.4}, A —> A
(+ Top.3 Top.4 [|= Top.4 < Top.3
*)

Argument scopes are [type_scope _]

Now pidentity is used at two different levels: at the head of the application it is instantiated
at Top .3 while in the argument position it is instantiated at Top. 4. This definition is only valid as
long as Top. 4 is strictly smaller than Top. 3, as show by the constraints. Note that this definition is
monomorphic (not universe polymorphic), so the two universes (in this case Top.3 and Top. 4) are
actually global levels.

Inductive types can also be declared universes polymorphic on universes appearing in their parame-
ters or fields. A typical example is given by monoids:

Cog < Polymorphic Record Monoid := { mon_car :> Type; mon_unit : mon_car;
mon_op : mon_car —-> mon_car -—> mon_car }.

Monoid is defined

mon_car 1is defined

mon_unit is defined

mon_op 1s defined

Coq < Print Monoid.

Polymorphic Record Monoid : Type@{Top.6+1} := Build Monoid
{ mon_car : Type@{Top.6};
mon_unit : mon_car;

mon_op : mon_car —> mon_car —> mon_car }
(* Top.6 [= %)
For Build Monoid: Argument scopes are [type_scope _ function_scope]

The Monoid’s carrier universe is polymorphic, hence it is possible to instantiate it for example with
Monoid itself. First we build the trivial unit monoid in Set:

Coq Reference Manual, V8.6.1, July 26, 2017



29.2 Polymorphic, Monomorphic 469

Cogq < Definition unit_monoid : Monoid :=
{| mon_car := unit; mon_unit := tt; mon_op x y := tt |}.
unit_monoid is defined

From this we can build a definition for the monoid of Set-monoids (where multiplication would be
given by the product of monoids).

Cogq < Polymorphic Definition monoid_monoid : Monoid.
Cog < refine (@Build_Monoid Monoid unit_monoid (fun x y => x)).
Coqg < Defined.

Cogq < Print monoid_monoid.
Polymorphic monoid_monoid@{Top.10} =
{1
mon_car := Monoid@{Set};
mon_unit := unit_monoid;
mon_op := fun x _ : Monoid@{Set} => x [}
: Monoid@{Top.10}
(* Top.10 [= Set < Top.10
*)

monoid_monoid 1is universe polymorphic

As one can see from the constraints, this monoid is “large”, it lives in a universe strictly higher than
Set.

29.2 Polymorphic, Monomorphic

As shown in the examples, polymorphic definitions and inductives can be declared using the
Polymorphic prefix. There also exists an option Set Universe Polymorphism which will
implicitly prepend it to any definition of the user. In that case, to make a definition producing global
universe constraints, one can use the Monomorphic prefix. Many other commands support the
Polymorphic flag, including:

* Lemma, Axiom, and all the other “definition” keywords support polymorphism.

* Variables, Context, Universe and Constraint in a section support polymorphism.
This means that the universe variables (and associated constraints) are discharged polymorphically
over definitions that use them. In other words, two definitions in the section sharing a common
variable will both get parameterized by the universes produced by the variable declaration. This is
in contrast to a “mononorphic” variable which introduces global universes and constraints, making
the two definitions depend on the same global universes associated to the variable.

* Hint {Resolve, Rewrite} will use the auto/rewrite hint polymorphically, not at a single
instance.

29.3 Global and local universes

Each universe is declared in a global or local environment before it can be used. To ensure compatibility,
every global universe is set to be strictly greater than Set when it is introduced, while every local (i.e.
polymorphically quantified) universe is introduced as greater or equal to Set.

Coq Reference Manual, V8.6.1, July 26, 2017



470 29 Polymorphic Universes

29.4 Conversion and unification

The semantics of conversion and unification have to be modified a little to account for the new uni-
verse instance arguments to polymorphic references. The semantics respect the fact that definitions are
transparent, so indistinguishable from their bodies during conversion.

This is accomplished by changing one rule of unification, the first-order approximation rule, which
applies when two applicative terms with the same head are compared. It tries to short-cut unfolding
by comparing the arguments directly. In case the constant is universe polymorphic, we allow this rule
to fire only when unifying the universes results in instantiating a so-called flexible universe variables
(not given by the user). Similarly for conversion, if such an equation of applicative terms fail due to a
universe comparison not being satisfied, the terms are unfolded. This change implies that conversion and
unification can have different unfolding behaviors on the same development with universe polymorphism
switched on or off.

29.5 Minimization

Universe polymorphism with cumulativity tends to generate many useless inclusion constraints in gen-
eral. Typically at each application of a polymorphic constant f, if an argument has expected type
Type@{1i} and is given a term of type Type@{j}, a j < ¢ constraint will be generated. It is how-
ever often the case that an equation 5 = ¢ would be more appropriate, when f’s universes are fresh for
example. Consider the following example:

Cogq < Definition id0 := @pidentity nat O.
id0 is defined

Cog < Print idO.
1d0 = pidentity@{Set} 0
: nat

This definition is elaborated by minimizing the universe of id to level Set while the more general
definition would keep the fresh level i generated at the application of id and a constraint that Set < 4.
This minimization process is applied only to fresh universe variables. It simply adds an equation between
the variable and its lower bound if it is an atomic universe (i.e. not an algebraic max () universe).

The option Unset Universe Minimization ToSet disallows minimization to the sort Set
and only collapses floating universes between themselves.

29.6 Explicit Universes

The syntax has been extended to allow users to explicitly bind names to universes and explicitly instan-
tiate polymorphic definitions.

29.6.1 Universe ident.

In the monorphic case, this command declares a new global universe named ident. It supports the
polymorphic flag only in sections, meaning the universe quantification will be discharged on each section
definition independently. One cannot mix polymorphic and monomorphic declarations in the same
section.

Coq Reference Manual, V8.6.1, July 26, 2017



29.6 Explicit Universes 471

29.6.2 Constraint ident ord ident.

This command declares a new constraint between named universes. The order relation can be one of <,
< or =. If consistent, the constraint is then enforced in the global environment. Like Universe, it
can be used with the Polymorphic prefix in sections only to declare constraints discharged at section
closing time. One cannot declare a global constraint on polymorphic universes.

Error messages:
1. Undeclared universe ident.

2. Universe inconsistency

29.6.3 Polymorphic definitions

For polymorphic definitions, the declaration of (all) universe levels introduced by a definition uses the
following syntax:

Cog < Polymorphic Definition le@{i j} (A : Type@{i}) : Type@{j} := A.

Cog < Print le.
Polymorphic le@{i j} =
fun A : Type@{i} => A

Type@{i} —> Type@{j}
(#» 1 7 [= 1 <= 7

*)

le is universe polymorphic
Argument scope 1s [type_scope]

During refinement we find that j must be larger or equal than 4, as we are using A : Type@i <=
Type@j, hence the generated constraint. At the end of a definition or proof, we check that the only
remaining universes are the ones declared. In the term and in general in proof mode, introduced universe
names can be referred to in terms. Note that local universe names shadow global universe names. During
a proof, one can use Show Universes to display the current context of universes.

Definitions can also be instantiated explicitly, giving their full instance:

Cog < Check (pidentity@{Set}).
pidentity@{Set}
?PA —> PA
where
PA : [ |- Set]

Cog < Universes k 1.

Cog < Check (le@{k 1}).
le@{k
1}
Type@{k} -> Type@{l}
( [|= k <=1
*)

User-named universes are considered rigid for unification and are never minimized.

Coq Reference Manual, V8.6.1, July 26, 2017



472 29 Polymorphic Universes

29.6.4 Unset Strict Universe Declaration.

The command Unset Strict Universe Declaration allows one to freely use identifiers for
universes without declaring them first, with the semantics that the first use declares it. In this mode, the
universe names are not associated with the definition or proof once it has been defined. This is meant
mainly for debugging purposes.

Coq Reference Manual, V8.6.1, July 26, 2017



Chapter 30

Miscellaneous extensions

30.1 Program derivation

Coq comes with an extension called Derive, which supports program derivation. Typically in the style
of Bird and Meertens or derivations of program refinements. To use the Derive extension it must first
be required with Require Cog.Derive.Derive. When the extension is loaded, it provides the
following command.

30.1.1 Derive ident; SuchThat term As identsy

The name ident; can appear in term. This command opens a new proof presenting the user with a goal
for term in which the name ident; is bound to a existential variables ?x (formally, there are other goals
standing for the existential variables but they are shelved, as described in Section 8.17.4).

When the proof ends two constants are defined:

* The first one is name ident, and is defined as the proof of the shelved goal (which is also the value
of ?x). Itis always transparent.

* The second one is name idents. It has type term, and its body is the proof of the initially visible
goal. It is opaque if the proof ends with Qed, and transparent if the proof ends with Defined.
Example:

Cog < Require Cog.derive.Derive.
Cog < Require Import Cog.Numbers.Natural.Peano.NPeano.

Cog < Section P.

A

Cog Variables (n m k:nat).

Cog < Derive p SuchThat ((kxn)+(k*m) = p) As h.
1 focused subgoal
(shelved: 1)

n, m, k : nat
p := ?Goal : nat

Coqg < Proof.

Coq Reference Manual, V8.6.1, July 26, 2017



474 30 Miscellaneous extensions

1 focused subgoal
(shelved: 1)

n, m, k : nat
p := ?Goal : nat

k n+ k »m=p

Cog < rewrite <- Nat.mul_add_distr_1.
1 focused subgoal
(shelved: 1)

n, m, k : nat
p := ?Goal : nat

k  (n + m) = p

Cog < subst p.
1 focused subgoal
(shelved: 1)

n, m, k : nat

k » (n + m) = ?Goal

Cog < reflexivity.
No more subgoals.

Cog < Qed.
Cog < End P.

Cog < Print p.
p = fun n m k : nat => k x (n + m)
nat —-> nat —-> nat -> nat
Argument scopes are [nat_scope nat_scope nat_scope]

Cog < Check h.
h
forall nmk : nat, Kk » n + k »m = p nmk

Any property can be used as term, not only an equation. In particular, it could be an order rela-
tion specifying some form of program refinement or a non-executable property from which deriving a
program is convenie