ERLANG

STDLIB

Copyright © 1997-2017 Ericsson AB. All Rights Reserved.
STDLIB 3.4
June 20, 2017

Copyright © 1997-2017 Ericsson AB. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance
with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless
required by applicable law or agreed to in writing, software distributed under the License is distributed on an
"AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See

the License for the specific language governing permissions and limitations under the License. Ericsson AB. All
Rights Reserved..

June 20, 2017

Ericsson AB. All Rights Reserved.: STDLIB | 1

1.1 Introduction

1 STDLIB User's Guide

1.1 Introduction

1.1.1 Scope

The Standard Erlang Libraries application, STDLIB, is mandatory in the sense that the minimal system based on
Erlang/OTP consists of STDLIB and Kernel.

STDLIB contains the following functional areas:

e Erlang shell

e Command interface

e Query interface

* Interfaceto standard Erlang /O servers

» Interfaceto the Erlang built-in term storage BIFs

* Regular expression matching functions for strings and binaries
e Finite state machine

e Event handling

* Functions for the server of aclient-server relation

e Function to control applicationsin a distributed manner

e Start and control of slave nodes

e Operations on finite sets and relations represented as sets
e Library for handling binary data

» Disk-based term storage

e List processing

* Mapsprocessing

1.1.2 Prerequisites
It is assumed that the reader is familiar with the Erlang programming language.

1.2 The Erlang I/O Protocol

The 1/O protocol in Erlang enables bi-directional communication between clients and servers.

* Thel/O serverisaprocessthat handlesthe requests and performsthe requested task on, for example, an1/O device.
* Theclientisany Erlang process wishing to read or write data from/to the 1/O device.

The common 1/0 protocol has been present in OTP since the beginning, but has been undocumented and has also
evolved over the years. In an addendum to Robert Virding's rationale, the origina /O protocol is described. This
section describes the current 1/0 protocol.

Theoriginal 1/0 protocol was simple and flexible. Demandsfor memory efficiency and execution time efficiency have
triggered extensions to the protocol over the years, making the protocol larger and somewhat less easy to implement
than the original. It can certainly be argued that the current protocol is too complex, but this section describes how
it looks today, not how it should have looked.

2 | Ericsson AB. All Rights Reserved.: STDLIB

1.2 The Erlang I/O Protocol

The basic ideas from the origina protocol still hold. The 1/0 server and client communicate with one single, rather
simplistic protocol and no server state is ever present in the client. Any /O server can be used together with any client
code, and the client code does not need to be aware of the I/O device that the 1/0O server communicates with.

1.2.1 Protocol Basics

As described in Robert's paper, 1/0 servers and clients communicate using i o_r equest /i o_repl y tuples as
follows:

{io_request, From, ReplyAs, Request}
{io_reply, ReplyAs, Reply}

Theclient sendsani o_r equest tupleto the I/O server and the server eventually sendsacorrespondingi o_r epl y
tuple.
 Fromisthepi d() of the client, the process which the 1/O server sendsthe I/O reply to.

* Repl yAs can be any datum and is returned in the corresponding i o_r epl y. Thei o module monitors the the
1/0 server and uses the monitor reference as the Repl yAs datum. A more complicated client can have many
outstanding 1/0 regqueststo the same /O server and can use different references (or something el se) to differentiate
among the incoming 1/0 replies. Element Repl yAs isto be considered opaque by the 1/O server.

Notice that the pi d() of the I/O server is not explicitly present in tuplei o_r epl y. Thereply can be sent from
any process, not necessarily the actual 1/0 server.
 Request and Repl y are described below.

When an 1/O server receives an i 0_r equest tuple, it acts upon the Request part and eventually sends an
i 0_reply tuplewith the corresponding Repl y part.

1.2.2 Output Requests

To output characters on an 1/O device, the following Request sexist:

{put_chars, Encoding, Characters}
{put_chars, Encoding, Module, Function, Args}

e« Encodi ngisuni code orl ati nl, meaning that the characters are (in case of binaries) encoded as UTF-8 or
ISO Latin-1 (pure bytes). A well-behaved 1/0 server is aso to return an error indication if list elements contain
integers > 255 when Encodi ng issettol ati nl.

Notice that this does not in any way tell how characters are to be put on the I/O device or handled by the I/O
server. Different 1/0O servers can handle the characters however they want, this only tells the 1/O server which
format the data is expected to have. In the Modul e/Funct i on/Ar gs case, Encodi ng tells which format the
designated function produces.

Notice also that byte-oriented datais simplest sent using the | SO Latin-1 encoding.

e« Charact ers are the data to be put on the I/O device. If Encodi ng isl| ati nl, thisisaniolist().If
Encodi ng is uni code, this is an Erlang standard mixed Unicode list (one integer in a list per character,
charactersin binaries represented as UTF-8).

e Mbdul e,Functi on, and Ar gs denoteafunction that iscalled to producethedata(likei o_I i b: f or mat / 2).

Ar gs isalist of arguments to the function. The function is to produce data in the specified Encodi ng. The I/
O server isto call thefunction asappl y(Mod, Func, Args) and put the returned data on the I/O device as

Ericsson AB. All Rights Reserved.: STDLIB | 3

1.2 The Erlang I/O Protocol

ifitwassentina{put _chars, Encodi ng, Characters} request. If the function returns anything else
than abinary or list, or throws an exception, an error isto be sent back to the client.

The I/O server repliesto the client withani o_r epl y tuple, where element Repl y isone of:

ok

{error, Error}

Er r or describesthe error to the client, which can do whatever it wants with it. Thei o module typically
returnsit "asis".

For backward compatibility, the following Request s are aso to be handled by an /O server (they are not to be
present after Erlang/OTP R15B):

{put_chars, Characters}
{put_chars, Module, Function, Args}

These areto behave as{ put _chars, latinl, Characters} and{put_chars, latinl, Module,
Function, Args}, respectively.

1.2.3 Input Requests

To read characters from an I/O device, the following Request sexist:

{get until, Encoding, Prompt, Module, Function, ExtraArgs}

Encodi ng denotes how data is to be sent back to the client and what data is sent to the function denoted by
Modul e/Funct i on/Ext r aAr gs. If the function supplied returns data as a list, the data is converted to this
encoding. If the function supplied returns data in some other format, no conversion can be done, and it is up to
the client-supplied function to return data in a proper way.

If Encodi ngisl ati nl, listsof integers 0. . 255 or binaries containing plain bytes are sent back to the client
when possible. If Encodi ng isuni code, listswith integers in the whole Unicode range or binaries encoded in
UTF-8 are sent to the client. The user-supplied function always sees lists of integers, never binaries, but the list
can contain numbers > 255 if Encodi ng isuni code.

Pr onpt isalist of characters (not mixed, no binaries) or an atom to be output as a prompt for input on the I/0O
device. Pr onpt isoftenignored by the I/O server; if setto' ' , it isalwaysto beignored (and results in nothing
being written to the I/O device).

Modul e, Funct i on, and Ext r aAr gs denote a function and arguments to determine when enough data is
written. The function is to take two more arguments, the last state, and a list of characters. The function is to
return one of:

{done, Result, RestChars}
{more, Continuation}

Resul t canbeany Erlangterm, butifitisal i st () ,thel/O server canconvertittoabi nary() of appropriate
format before returning it to the client, if the 1/0O server is set in binary mode (see below).

The function is called with the data the I/O server finds on its 1/O device, returning one of:

4 | Ericsson AB. All Rights Reserved.: STDLIB

1.2 The Erlang I/O Protocol

e {done, Result, RestChars} whenenoughdataisread. InthiscaseResul t issent totheclient and
Rest Char s iskept in the I/O server as a buffer for later input.

« {nore, Continuation},whichindicatesthat more characters are needed to complete the request.

Cont i nuat i on is sent as the state in later cals to the function when more characters are available. When no
more characters are available, the function must return { done, eof, Rest}. Theinitia state is the empty
list. The datawhen an end of fileis reached on the 10 device is the atom eof .

An emulation of theget _| i ne reguest can be (inefficiently) implemented using the following functions:

-module(demo) .
-export([until newline/3, get line/1]).

until newline(ThisFar,eof, MyStopCharacter) ->
{done,eof,[]};
until newline(ThisFar,CharList,MyStopCharacter) ->
case
lists:splitwith(fun(X) -> X =/= MyStopCharacter end, CharList)
of
{L,[1} ->
{more,ThisFar++L};
{L2, [MyStopCharacter|Rest]} ->
{done, ThisFar++L2++[MyStopCharacter],Rest}
end.

get line(IoServer) ->
IoServer ! {io request,

self(),
IoServer,
{get until, unicode, '', ?MODULE, until newline, [$\n]}},
receive
{io reply, IoServer, Data} ->
Data
end.

Noticethat the last element inthe Request tuple ([$\ n]) is appended to the argument list when the function is
called. Thefunctionistobecalledlikeappl y(Modul e, Function, [State, Data| ExtraArgs])
by the 1/O server.

A fixed number of charactersis requested using the following Request :
{get chars, Encoding, Prompt, N}

e« Encodi ng and Pronpt asforget _until.
* Nisthe number of charactersto be read from the I/O device.

A singleline (asin former example) is requested with the following Request :
{get line, Encoding, Prompt}

e« Encodi ng and Pronpt asforget _until.

Clearly, get _char s and get _I| i ne could be implemented with the get _unt i | request (and indeed they were
originaly), but demands for efficiency have made these additions necessary.

Ericsson AB. All Rights Reserved.: STDLIB | 5

1.2 The Erlang I/O Protocol

The 1/O server repliesto the client with ani o_r epl y tuple, where element Repl vy isone of:

Data
eof
{error, Error}

» Dat aisthecharactersread, in list or binary form (depending on the 1/O server mode, see the next section).

« eof isreturned when input end is reached and no more data is available to the client process.

e Error describesthe error to the client, which can do whatever it wants with it. Thei o module typicaly returns
itasis.

For backward compatibility, the following Request s are aso to be handled by an /O server (they are not to be

present after Erlang/OTP R15B):

{get until, Prompt, Module, Function, ExtraArgs}
{get chars, Prompt, N}
{get line, Prompt}

These are to behave as {get _until, latinl, Pronpt, Mdule, Function, ExtraArgs},
{get _chars, latinl, Pronpt, N},and{get line, latinl, Pronpt},respectively.

1.2.4 1/0O Server Modes

Demands for efficiency when reading data from an I/O server has not only lead to the addition of theget _| i ne and
get _char s requests, but has also added the concept of 1/0 server options. No options are mandatory to implement,
but al 1/0O servers in the Erlang standard libraries honor the bi nar y option, which allows element Dat a of the
i o_reply tupleto be abinary instead of alist when possible. If the data is sent as a binary, Unicode data is sent
in the standard Erlang Unicode format, that is, UTF-8 (notice that the function of theget _unti | request till gets
list data regardless of the I/O server mode).

Notice that the get _unti | request allows for a function with the data specified as always being a list. Also, the
return value data from such a function can be of any type (asisindeed the casewhen ani o: f r ead/ 2, 3 request is
sent to an 1/0 server). The client must be prepared for datareceived as answersto those requeststo bein variousforms.
However, the I/O server isto convert the results to binaries whenever possible (that is, when the function supplied to
get _until returnsalist). Thisisdonein the examplein section An Annotated and Working Example 1/0 Server.

An 1/O server in binary mode affects the data sent to the client, so that it must be able to handle binary data. For
convenience, the modes of an 1/0 server can be set and retrieved using the following 1/0 requests:

{setopts, Opts}

 Optsisalist of optionsin the format recognized by the pr opl i st s module (and by the 1/0 server).

As an example, the 1/0 server for the interactive shell (in gr oup. er |) understands the following options:

{binary, boolean()} (or binary/list)

{echo, boolean()}

{expand fun, fun()}

{encoding, unicode/latinl} (or unicode/latinl)

6 | Ericsson AB. All Rights Reserved.: STDLIB

1.2 The Erlang I/O Protocol

Options bi nary and encodi ng are common for al 1/0 serversin OTP, while echo and expand are valid only
for this1/O server. Option uni code notifies how characters are put on the physical 1/0 device, that is, if the terminal
itself is Unicode-aware. It does not affect how characters are sent in the 1/0O protocol, where each request contains
encoding information for the provided or returned data.

The I/O server isto send one of the following as Repl y:

ok
{error, Error}

An error (preferably enot sup) isto be expected if the option is not supported by the I/O server (like if an echo
optionissentin aset opt s request to aplain file).

To retrieve options, the following request is used:

getopts

This request asks for acomplete list of al options supported by the I/O server aswell as their current values.
The 1/O server replies:

OptList
{error, Error}

e OptlList isalist of tuples{ Opti on, Val ue}, whereOpti on awaysisan atom.

1.2.5 Multiple I/0 Requests

The Request element caninitself contain many Request s by using the following format:

{requests, Requests}

e Requestsisalistof vaidi o_request tuplesfor the protocol. They must be executed in the order that
they appear in the list. The execution is to continue until one of the requests resultsin an error or thelist is
consumed. The result of the last request is sent back to the client.

Thel/O server can, for alist of requests, send any of the following valid resultsin the reply, depending on the requests
inthelist:

ok

{ok, Data}
{ok, Options}
{error, Error}

1.2.6 Optional I/O Request

The following I/O request is optional to implement and a client isto be prepared for an error return:

Ericsson AB. All Rights Reserved.: STDLIB | 7

1.2 The Erlang I/O Protocol

{get geometry, Geometry}

e Ceonetry istheatomr ows or theatom col urms.
The /O server isto send the Repl vy as:

{ok, N}
{error, Error}

* Nisthe number of character rows or columnsthat the 1/0O device has, if applicable to the 1/O device handled by
the 1/O server, otherwise{ er r or, enot sup} isagood answer.

1.2.7 Unimplemented Request Types

If an 1/O server encounters a request that it does not recognize (that is, thei o_r equest tuple has the expected
format, but the Request isunknown), the I/O server isto send avalid reply with the error tuple:

{error, request}

This makes it possible to extend the protocol with optional requests and for the clients to be somewhat backward
compatible.

1.2.8 An Annotated and Working Example I/O Server

An 1/O server is any process capable of handling the 1/0O protocol. There is no generic I/O server behavior, but could
well be. The framework is simple, a process handling incoming requests, usualy both 1/O-requests and other 1/0
device-specific requests (positioning, closing, and so on).

The example |/O server stores charactersin an ETS table, making up afairly crude RAM file.
The module begins with the usua directives, afunction to start the 1/0 server and a main loop handling the requests:

-module(ets io server).
-export([start link/0, init/0, loop/1l, until newline/3, until enough/3]).
-define (CHARS PER REC, 10).

-record(state, {
table,
position, % absolute
mode % binary | list
1.

start link() ->
spawn_link(?MODULE,init,[]).

init() ->
Table = ets:new(noname, [ordered set]),
?MODULE:loop (#state{table = Table, position = 0, mode=list}).

loop(State) ->
receive
{io request, From, ReplyAs, Request} ->
case request(Request,State) of
{Tag, Reply, NewState} when Tag =:= ok; Tag =:

error ->

8 | Ericsson AB. All Rights Reserved.: STDLIB

1.2 The Erlang I/O Protocol

reply(From, ReplyAs, Reply),
?MODULE: Loop (NewState) ;
{stop, Reply, NewState} ->
reply(From, ReplyAs, Reply),
exit(Reply)
end;
%% Private message
{From, rewind} ->
From ! {self(), ok},
?MODULE: loop (State#state{position = 0});
_Unknown ->
?MODULE: loop (State)
end.

The main loop receives messages from the client (which can usethethei o moduleto send requests). For each request,
thefunction r equest / 2 iscalled and areply is eventually sent using functionr epl y/ 3.

The "private” message { From rew nd} results in the current position in the pseudo-file to be reset to 0 (the
beginning of the "file"). Thisisatypical example of 1/0 device-specific messages not being part of the I/O protocoal.
It isusually abad ideato embed such private messagesini o_r equest tuples, asthat can confuse the reader.

First, we examine the reply function:

reply(From, ReplyAs, Reply) ->
From ! {io reply, ReplyAs, Reply}.

It sendsthei o_r epl y tuple back to the client, providing element Repl yAs received in the request along with the
result of the request, as described earlier.

We need to handle some requests. First the requests for writing characters:

request({put_chars, Encoding, Chars}, State) ->
put _chars(unicode:characters to list(Chars,Encoding),State);
request({put chars, Encoding, Module, Function, Args}, State) ->
try
request({put _chars, Encoding, apply(Module, Function, Args)}, State)
catch
77->
{error, {error,Function}, State}
end;

The Encodi ng says how the characters in the request are represented. We want to store the characters as lists in
the ETS table, so we convert them to lists using function uni code: characters_to_| i st/ 2. The conversion
function conveniently accepts the encoding typesuni code and| at i n1, so we can use Encodi ng directly.

When Modul e, Functi on, and Ar gunrent s are provided, we apply it and do the same with the result as if the
data was provided directly.

We handle the requests for retrieving data:

request({get until, Encoding, Prompt, M, F, As}, State) ->
get until(Encoding, M, F, As, State);
request({get chars, Encoding, Prompt, N}, State) ->
%% To simplify the code, get chars is implemented using get until
get until(Encoding, ?MODULE, until enough, [N], State);
request({get line, Encoding, Prompt}, State) ->
%% To simplify the code, get line is implemented using get until

Ericsson AB. All Rights Reserved.: STDLIB | 9

1.2 The Erlang I/O Protocol

get until(Encoding, ?MODULE, until newline, [$\n], State);

Herewe have cheated alittle by more or lessonly implementingget _unt i | and using internal hel persto implement
get _chars and get _I i ne. In production code, this can be inefficient, but that depends on the frequency of the
different requests. Before we start implementing functionsput _char s/ 2 andget _unti | / 5, weexaminethefew
remaining requests:

request({get geometry, }, State) ->
{error, {error,enotsup}, State};
request({setopts, Opts}, State) ->
setopts(Opts, State);
request(getopts, State) ->
getopts(State);
request({requests, Reqs}, State) ->
multi request(Reqgs, {ok, ok, State});

Request get _geonet r y hasno meaning for this1/O server, sothereply is{ error, enot sup} . Theonly option
we handleisbi nary/l i st, which isdonein separate functions.

The multi-request tag (r equest s) is handled in a separate loop function applying the requests in the list one after
another, returning the last result.

We need to handle backward compatibility and the fi | e module (which uses the old requests until backward
compatibility with pre-R13 nodes is no longer needed). Notice that the 1/O server does not work with a simple
file:wite/?2ifthesearenot added:

request({put chars,Chars}, State) ->

request({put chars,latinl,Chars}, State);
request({put chars,M,F,As}, State) ->

request({put chars,latinl,M,F,As}, State);
request({get chars,Prompt,N}, State) ->

request({get chars,latinl,Prompt,N}, State);
request({get line,Prompt}, State) ->

request({get line,latinl,Prompt}, State);
request({get until, Prompt,M,F,As}, State) ->

request({get until,latinl,Prompt,M,F,As}, State);

{error, request} must bereturned if the request is not recognized:

request(Other, State) ->
{error, {error, request}, State}.

Next we handle the different requests, first the fairly generic multi-request type:

multi request([R|Rs], {ok, Res, State}) ->
multi request(Rs, request(R, State));
multi request([|], Error) ->
Error;
multi request([], Result) ->
Result.

10 | Ericsson AB. All Rights Reserved.: STDLIB

1.2 The Erlang I/O Protocol

We loop through the requests one at the time, stopping when we either encounter an error or the list is exhausted.
The last return value is sent back to the client (it is first returned to the main loop and then sent back by function

i o_reply).
Requestsget opt s and set opt s are also ssimple to handle. We only change or read the state record:

setopts(Opts0Q,State) ->
Opts = proplists:unfold(
proplists:substitute negations(
[{list,binary}],
Opts0)),
case check valid opts(Opts) of
true ->
case proplists:get value(binary, Opts) of
true ->
{ok,ok,State#state{mode=binary}};
false ->
{ok,ok,State#state{mode=binary}};
->

{ok, ok, State}

end;
false ->
{error,{error,enotsup},State}
end.
check valid opts([]) ->
true;

check valid opts([{binary,Bool}|T]) when is boolean(Bool) ->
check valid opts(T);

check valid opts() ->
false.

getopts (#state{mode=M} = S) ->
{ok, [{binary, case M of
binary ->
true;
_->
false
end}],S}.

As a convention, al 1/O servers handle both {setopts, [binary]}, {setopts, [list]}, and
{setopts,[{binary, boolean()}]}, hencethetrick with proplists:substitute negations/2
and propl i sts:unfol d/1.Ifinvalid optionsare sentto us, wesend{ error, enotsup} back totheclient.

Request get opt s istoreturnalist of { Opt i on, Val ue} tuples. This hasthe twofold function of providing both
the current values and the available options of this I/O server. We have only one option, and hence return that.

So far this I/O server is fairly generic (except for request r ewi nd handled in the main loop and the creation of an
ETStable). Most I/O servers contain code similar to this one.

To make the example runnable, we start implementing the reading and writing of the datato/from the ETS table. First
function put _char s/ 3:

put chars(Chars, #state{table = T, position = P} = State) ->
R = P div ?CHARS PER REC,
C = P rem ?CHARS PER REC,
[apply update(T,U) || U <- split data(Chars, R, C)],
{ok, ok, State#state{position = (P + length(Chars))}}.

Ericsson AB. All Rights Reserved.: STDLIB | 11

1.2 The Erlang I/O Protocol

We aready have the data as (Unicode) lists and therefore only split the list in runs of a predefined size and put
each run in the table at the current position (and forward). Functionsspl i t _dat a/ 3 andappl y_updat e/ 2 are
implemented below.

Now we want to read data from the table. Function get _unt i | / 5 reads data and applies the function until it says
that it is done. Theresult is sent back to the client:

get until(Encoding, Mod, Func, As,
#state{position = P, mode = M, table = T} = State) ->
case get loop(Mod,Func,As,T,P,[]) of
{done,Data, ,NewP} when is binary(Data); is list(Data) ->
if
M =:= binary ->
{ok,
unicode:characters to binary(Data, unicode, Encoding),
State#state{position = NewP}};
true ->
case check(Encoding,
unicode:characters to list(Data, unicode))
of
{error, } =E ->
{error, E, State};
List ->
{ok, List,
State#state{position = NewP}}
end
end;
{done,Data, ,NewP} ->
{ok, Data, State#state{position = NewP}};
Error ->
{error, Error, State}
end.

get loop(M,F,A,T,P,C) ->
{NewP,L} = get(P,T),
case catch apply(M,F,[C,L|A]) of
{done, List, Rest} ->
{done, List, [], NewP - length(Rest)};
{more, NewC} ->
get loop(M,F,A,T,NewP,NewC);
->
{error,F}
end.

Hereweaso handlethemode (bi nary orl i st)that canbeset by request set opt s. By default, all OTP1/O servers
send data back to the client as lists, but switching mode to bi nar y can increase efficiency if the I/O server handles
it in an appropriate way. The implementation of get _unt i | isdifficult to get efficient, as the supplied function is
defined to take lists as arguments, but get _char s and get _| i ne can be optimized for binary mode. However,
this example does not optimize anything.

It isimportant though that the returned datais of the correct type depending on the options set. We therefore convert
the lists to binaries in the correct encoding if possible before returning. The function supplied in the get _unt i |

request tuple can, asitsfinal result return anything, so only functionsreturning lists can get them converted to binaries.
If the request contains encoding tag uni code, thelists can contain al Unicode code points and the binaries are to be
inUTF-8. If theencodingtagisl at i n1, theclientisonly to get charactersintherangeO. . 255. Functioncheck/ 2
takes care of not returning arbitrary Unicode code points in lists if the encoding was specified as| ati nl. If the
function does not return alist, the check cannot be performed and the result isthat of the supplied function untouched.

To manipulate the table we implement the following utility functions:

12 | Ericsson AB. All Rights Reserved.: STDLIB

1.2 The Erlang I/O Protocol

check(unicode, List) ->
List;

check(latinl, List) ->
try

[throw(not unicode) || X <- List,

X > 255],

List
catch

throw: ->

{error,{cannot convert, unicode, latinl}}

end.

The function check provides an error tuple if Unicode code points > 255 are to be returned if the client requested
latinl.

The two functions until _newl ine/3 and until _enough/ 3 are helpers used together with function
get _until/5toimplementget chars andget | i ne (inefficiently):

until newline([],eof, MyStopCharacter) ->
{done, eof, [1};
until newline(ThisFar,eof, MyStopCharacter) ->
{done, ThisFar,[1};
until newline(ThisFar,CharList,MyStopCharacter) ->
case
lists:splitwith(fun(X) -> X =/= MyStopCharacter end, CharList)
of

{L,[1} ->
{more, ThisFar++L};
{L2, [MyStopCharacter|Rest]} ->
{done,ThisFar++L2++[MyStopCharacter],Rest}
end.

until enough([],eof, N) ->
{done, eof, [1};

until enough(ThisFar,eof, N) ->
{done, ThisFar,[1};

until enough(ThisFar,CharList,N)

when length(ThisFar) + length(CharList) >= N ->

{Res,Rest} = my split(N,ThisFar ++ CharList, []),
{done,Res,Rest};

until enough(ThisFar,CharList, N) ->
{more, ThisFar++CharList}.

As can be seen, the functions above are just the type of functions that are to be providedinget _unt i | requests.

To complete the 1/0O server, we only need to read and write the table in an appropriate way:

get(P,Tab) ->
R = P div ?CHARS PER REC,
C = P rem ?CHARS PER REC,
case ets:lookup(Tab,R) of
[1 ->
{P,eof};
[{R,List}] ->
case my split(C,List,[]) of

{01} ->
{P+length(List),eof};
{ _,Data} ->

{P+length(Data),Data}

Ericsson AB. All Rights Reserved.: STDLIB | 13

1.3 Using Unicode in Erlang

end
end.

my split(0,Left,Acc) ->

{lists:reverse(Acc),Left};

my_split(_,[],Acc) ->

{lists:reverse(Acc),[]1};

my split(N,[H|T],Acc) ->

my split(N-1,T,[H|Acc]).

split _data([1, ,) ->

[1;

split data(Chars, Row, Col) ->

{This,Left} = my split(?CHARS PER REC - Col, Chars, []),
[{Row, Col, This} | split data(Left, Row + 1, 0)].

apply update(Table, {Row, Col, List}) ->

case ets:lookup(Table,Row) of
->
ets:insert(Table, {Row, lists:duplicate(Col,0) ++ List});

[{Row, OldData}] ->

{Partl, } = my split(Col,0OldData,l[]),

{ ,Part2} = my split(Col+length(List),0ldData,[]),
ets:insert(Table, {Row, Partl ++ List ++ Part2})
end.

The table is read or written in chunks of ?CHARS _PER _REC, overwriting when necessary. The implementation is
clearly not efficient, it isjust working.

This concludes the example. It isfully runnable and you can read or write to the 1/O server by using, for example, the
i 0 moduleor eventhef i | e module. It is as simple as that to implement afully fledged 1/O server in Erlang.

1.3 Using Unicode in Erlang

1.3.1 Unicode Implementation

Implementing support for Unicode character setsis an ongoing process. The Erlang Enhancement Proposal (EEP) 10
outlined the basics of Unicode support and specified a default encoding in binaries that all Unicode-aware modules
areto handlein the future.

Hereis an overview what has been done so far:

The functionality described in EEP10 was implemented in Erlang/OTP R13A.
Erlang/OTP R14B01 added support for Unicode filenames, but it was not complete and was by default disabled
on platforms where no guarantee was given for the filename encoding.

With Erlang/OTP R16A came support for UTF-8 encoded source code, with enhancements to many of
the applications to support both Unicode encoded filenames and support for UTF-8 encoded files in many
circumstances. Most notableisthe support for UTF-8infilesread by f i | e: consul t / 1, release handler support
for UTF-8, and more support for Unicode character setsin the I/O system.

In Erlang/OTP 17.0, the encoding default for Erlang source files was switched to UTF-8.
In Erlang/OTP 20.0, atoms and function can contain Unicode characters. Module hames, application names, and
node names are still restricted to the 1SO Latin-1 range.

Support was added for normalizations formsin uni code and the st r i ng module now handles utf8-encoded
binaries.

This section outlines the current Unicode support and gives some recipes for working with Unicode data.

14 | Ericsson AB. All Rights Reserved.: STDLIB

1.3 Using Unicode in Erlang

1.3.2 Understanding Unicode

Experience with the Unicode support in Erlang has made it clear that understanding Unicode characters and encodings
isnot as easy as one would expect. The complexity of the field and the implications of the standard require thorough
understanding of concepts rarely before thought of.

Also, the Erlang implementation requires understanding of concepts that were never an issue for many (Erlang)
programmers. To understand and use Unicode characters requires that you study the subject thoroughly, even if you
are an experienced programmer.

Asan example, contemplate the issue of converting between upper and lower case |etters. Reading the standard makes
you reglize that there is not a simple one to one mapping in all scripts, for example:

e InGerman, theletter "[3' (sharp s) isin lower case, but the uppercase equivaent is"SS".

* InGreek, theletter "#' has two different lowercase forms, "#" in word-final position and "#" elsewhere.
e InTurkish, both dotted and dotless "i" exist in lower case and upper case forms.

e Cyrillic"I" has usualy no lowercase form.

» Languages with no concept of upper case (or lower case).

So, a conversion function must know not only one character at atime, but possibly the whole sentence, the natural
language to trandate to, the differences in input and output string length, and so on. Erlang/OTP has currently no
Unicode upper case/l ower case functionality with language specific handling, but publicly available libraries
address these i ssues.

Another example is the accented characters, where the same glyph has two different representations. The Swedish
letter "6" is one example. The Unicode standard has a code point for it, but you can also write it as 0" followed by
"U+0308" (Combining Diaeresis, with the simplified meaning that the last |etter isto have "™ above). They have the
same glyph, user perceived character. They are for most purposes the same, but have different representations. For
example, MacOS X converts al filenamesto use Combining Diaeresis, while most other programs (including Erlang)
try to hide that by doing the opposite when, for example, listing directories. However it isdone, it is usually important
to normalize such charactersto avoid confusion.

The list of examples can be made long. One need a kind of knowledge that was not needed when programs only
considered one or two languages. The complexity of human languages and scripts has certainly made this a challenge
when constructing a universal standard. Supporting Unicode properly in your program will require effort.

1.3.3 What Unicode Is

Unicode is astandard defining code points (numbers) for al known, living or dead, scripts. In principle, every symbol
used in any language has a Unicode code point. Unicode code points are defined and published by the Unicode
Consortium, which is a non-profit organization.

Support for Unicode isincreasing throughout the world of computing, asthe benefits of one common character set are
overwhelming when programs are used in aglobal environment. Along with the base of the standard, the code points
for all the scripts, some encoding standar ds are available.

Itisvital to understand the difference between encodings and Unicode characters. Unicode characters are code points
according to the Unicode standard, while the encodings are ways to represent such code points. An encoding isonly a
standard for representation. UTF-8 can, for example, be used to represent avery limited part of the Unicode character
set (for example 1SO-Latin-1) or the full Unicode range. It is only an encoding format.

As long as all character sets were limited to 256 characters, each character could be stored in one single byte, so
there was more or less only one practical encoding for the characters. Encoding each character in one byte was so
common that the encoding was not even named. With the Unicode system there are much more than 256 characters, so
acommon way is heeded to represent these. The common ways of representing the code points are the encodings. This
means awhole new concept to the programmer, the concept of character representation, which was anon-issue earlier.

Ericsson AB. All Rights Reserved.: STDLIB | 15

1.3 Using Unicode in Erlang

Different operating systems and tools support different encodings. For example, Linux and MacOS X have chosen
the UTF-8 encoding, which is backward compatible with 7-bit ASCII and therefore affects programs written in plain
English the least. Windows supports alimited version of UTF-16, namely all the code planes where the characters can
be stored in one single 16-bit entity, which includes most living languages.

The following are the most widely spread encodings:
Bytewise representation

Thisisnot aproper Unicode representation, but the representation used for charactersbefore the Unicode standard.
It can still be used to represent character code pointsin the Unicode standard with numbers < 256, which exactly
corresponds to the 1SO Latin-1 character set. In Erlang, thisis commonly denoted | at i n1 encoding, whichis
slightly misleading as SO Latin-1 is a character code range, not an encoding.

UTF-8

Each character is stored in one to four bytes depending on code point. The encoding is backward compatible
with bytewise representation of 7-bit ASCII, as all 7-bit characters are stored in one single byte in UTF-8. The
characters beyond code point 127 are stored in more bytes, letting the most significant bit in the first character
indicate a multi-byte character. For details on the encoding, the RFC is publicly available.

Notice that UTF-8 is not compatible with bytewise representation for code points from 128 through 255, so an
ISO Latin-1 bytewise representation is generally incompatible with UTF-8.

UTF-16

Thisencoding has many similaritiesto UTF-8, but the basic unit isa 16-bit number. Thismeansthat all characters
occupy at least two bytes, and some high numbers four bytes. Some programs, libraries, and operating systems
claimingtouse UTF-16 only allow for charactersthat can be stored in one 16-hit entity, which isusually sufficient
to handle living languages. Asthe basic unit is more than one byte, byte-order issues occur, whichiswhy UTF-16
existsin both a big-endian and alittle-endian variant.

In Erlang, thefull UTF-16 rangeis supported when applicable, likeintheuni code module and inthe bit syntax.
UTF-32

The most straightforward representation. Each character is stored in one single 32-bit number. There is no need
for escapes or any variable number of entities for one character. All Unicode code points can be stored in one
single 32-bit entity. Aswith UTF-16, there are byte-order issues. UTF-32 can be both big-endian and little-endian.

ucs4

Basically the same as UTF-32, but without some Unicode semantics, defined by IEEE, and has little use as a
separate encoding standard. For all normal (and possibly abnormal) use, UTF-32 and UCS-4 are interchangeabl e.

Certain number ranges are unused in the Unicode standard and certain ranges are even deemed invalid. The most
notable invalid range is 16#D800-16#DFFF, as the UTF-16 encoding does not allow for encoding of these numbers.
This is possibly because the UTF-16 encoding standard, from the beginning, was expected to be able to hold all
Unicode charactersin one 16-bit entity, but was then extended, |eaving aholein the Unicode range to handl e backward
compatibility.

Code point 16#FEFF is used for Byte Order Marks (BOMs) and use of that character is not encouraged in other
contexts. It isvalid though, as the character "ZWNBS" (Zero Width Non Breaking Space). BOMs are used to identify
encodings and byte order for programs where such parameters are not known in advance. BOMs are more seldom
used than expected, but can become more widely spread as they provide the means for programs to make educated
guesses about the Unicode format of acertain file.

1.3.4 Areas of Unicode Support

To support Unicode in Erlang, problemsin various areas have been addressed. This section describes each area briefly
and more thoroughly later in this User's Guide.

16 | Ericsson AB. All Rights Reserved.: STDLIB

1.3 Using Unicode in Erlang

Representation

To handle Unicode characters in Erlang, a common representation in both lists and binaries is needed. EEP (10)
and the subsequent initial implementation in Erlang/OTP R13A settled a standard representation of Unicode
charactersin Erlang.

Manipulation

The Unicode characters need to be processed by the Erlang program, which iswhy library functions must be able
to handle them. In some cases functionality has been added to already existing interfaces (asthe st r i ng module
now can handle strings with any code points). In some cases new functionality or options have been added (as
inthei o module, the file handling, the uni code module, and the bit syntax). Today most modulesin Kernel
and STDLIB, aswell asthe VM are Unicode-aware.

Filel/O

1/0 is by far the most problematic area for Unicode. A file is an entity where bytes are stored, and the lore of
programming has been to treat characters and bytes asinterchangeable. With Unicode characters, you must decide
on an encoding when you want to store the data in afile. In Erlang, you can open atext file with an encoding
option, so that you can read characters from it rather than bytes, but you can also open afile for bytewise 1/O.

The Erlang 1/0-system has been designed (or at least used) in away where you expect any 1/O server to handle any
string data. That is, however, no longer the case when working with Unicode characters. The Erlang programmer
must now know the capabilities of the device where the dataends up. Also, portsin Erlang are byte-oriented, so an
arbitrary string of (Unicode) characters cannot be sent to aport without first converting it to an encoding of choice.

Termina 1/0

Terminal 1/0O is dlightly easier than file I/O. The output is meant for human reading and is usually Erlang syntax
(for example, in the shell). There exists syntactic representation of any Unicode character without displaying the
glyph (instead written as\ x{ HHH}). Unicode data can therefore usually be displayed even if the terminal as such
does not support the whole Unicode range.

Filenames

Filenames can be stored as Unicode strings in different ways depending on the underlying operating system and
file system. This can be handled fairly easy by aprogram. The problems arise when the file system isinconsi stent
initsencodings. For example, Linux allowsfilesto be named with any sequence of bytes, leaving to each program
tointerpret those bytes. On systemswhere these "transparent” filenames are used, Erlang must be informed about
the filename encoding by a startup flag. The default is bytewiseinterpretation, which isusually wrong, but allows
for interpretation of all filenames.

The concept of "raw filenames" can be used to handle wrongly encoded filenamesif one enables Unicodefilename
tranglation (+f nu) on platforms where thisis not the default.

Source code encoding

The Erlang source code has support for the UTF-8 encoding and bytewise encoding. The default in Erlang/OTP
R16B was bytewise (I at i n1) encoding. It was changed to UTF-8 in Erlang/OTP 17.0. You can control the
encoding by a comment like the following in the beginning of thefile:

%% -*- coding: utf-8 -*-

This of course requires your editor to support UTF-8 aswell. The same comment is aso interpreted by functions
like fil e:consult/1, the release handler, and so on, so that you can have al text files in your source
directoriesin UTF-8 encoding.

Ericsson AB. All Rights Reserved.: STDLIB | 17

1.3 Using Unicode in Erlang

The language

Having the source code in UTF-8 also allows you to write string literals, function names, and atoms containing
Unicode characters with code points > 255. M odule names, application names, and node names are still restricted
to the 1SO Latin-1 range. Binary literals, where you use type / ut f 8, can also be expressed using Unicode
characters > 255. Having module names or application names using characters other than 7-bit ASCII can
cause trouble on operating systems with inconsistent file naming schemes, and can hurt portability, so it is not
recommended.

EEP 40 suggests that the language is also to allow for Unicode characters > 255 in variable names. Whether to
implement that EEP is yet to be decided.

1.3.5 Standard Unicode Representation

In Erlang, strings are lists of integers. A string was until Erlang/OTP R13 defined to be encoded in the ISO Latin-1
(1SO 8859-1) character set, which is, code point by code point, a subrange of the Unicode character set.

The standard list encoding for strings was therefore easily extended to handle the whole Unicode range. A Unicode
string in Erlang is a list containing integers, where each integer is a valid Unicode code point and represents one
character in the Unicode character set.

Erlang stringsin 1SO Latin-1 are a subset of Unicode strings.

Only if a string contains code points < 256, can it be directly converted to a binary by using, for example,
erlang:iolist_to_binary/1 orcan be sent directly to a port. If the string contains Unicode characters >
255, an encoding must be decided upon and the string is to be converted to a binary in the preferred encoding using
uni code: characters_to_binary/ 1, 2, 3. Stringsarenot generally listsof bytes, asthey were before Erlang/
OTP R13, they arelists of characters. Characters are not generally bytes, they are Unicode code points.

Binaries are more troublesome. For performance reasons, programs often store textual datain binariesinstead of lists,
mainly because they are more compact (one byte per character instead of two words per character, as is the case
with lists). Using erl ang: 1 i st _t o_bi nary/ 1, an ISO Latin-1 Erlang string can be converted into a binary,
effectively using bytewise encoding: one byte per character. Thiswas convenient for those limited Erlang strings, but
cannot be done for arbitrary Unicode lists.

Asthe UTF-8 encoding is widely spread and provides some backward compatibility in the 7-bit ASCII range, it is
selected as the standard encoding for Unicode charactersin binaries for Erlang.

The standard binary encoding is used whenever alibrary function in Erlang isto handle Unicode datain binaries, but
is of course not enforced when communicating externally. Functions and bit syntax exist to encode and decode both
UTF-8, UTF-16, and UTF-32 in binaries. However, library functions dealing with binaries and Unicode in general
only deal with the default encoding.

Character data can be combined from many sources, sometimes available in amix of strings and binaries. Erlang has
for long had the concept of i odat a ori ol i st s, where binaries and lists can be combined to represent a sequence
of bytes. In the same way, the Unicode-aware modules often allow for combinations of binaries and lists, where the
binaries have characters encoded in UTF-8 and the lists contain such binaries or numbers representing Unicode code
points:

unicode binary() = binary() with characters encoded in UTF-8 coding standard
chardata() = charlist() | unicode binary()

charlist() = maybe improper list(char() | unicode binary() | charlist(),
unicode binary() | nil())

18 | Ericsson AB. All Rights Reserved.: STDLIB

1.3 Using Unicode in Erlang

The module uni code even supports similar mixes with binaries containing other encodings than UTF-8, but that is
aspecia caseto alow for conversions to and from externa data:

external unicode binary() = binary() with characters coded in a user-specified
Unicode encoding other than UTF-8 (UTF-16 or UTF-32)

external chardata() = external charlist() | external unicode binary()

external charlist() = maybe improper list(char() | external unicode binary() |
external charlist(), external unicode binary() | nil())

1.3.6 Basic Language Support

As from Erlang/OTP R16, Erlang source files can be written in UTF-8 or bytewise (I ati nl1) encoding. For
information about how to state the encoding of an Erlang source file, see the epp(3) module. Asfrom Erlang/OTP
R16, strings and comments can be written using Unicode. As from Erlang/OTP 20, also atoms and functions can be
written using Unicode. Modules, applications, and nodes must still be named using characters from the 1SO Latin-1
character set. (These restrictions in the language are independent of the encoding of the source file.)

Bit Syntax

Thebit syntax containstypesfor handling binary datain thethree main encodings. Thetypesarenamedut f 8, ut f 16,
and ut f 32. Theut f 16 and ut f 32 types can be in abig-endian or alittle-endian variant:

<<Ch/utf8, /binary>> = Binl,

<<Ch/utfl6-little, /binary>> = Bin2,

Bin3 = <<$H/utf32-little, $e/utf32-little, $l/utf32-little, $l/utf32-little,
$o/utf32-little>>,

For convenience, literal strings can be encoded with a Unicode encoding in binaries using the following (or similar)
syntax:

Bin4 = <<"Hello"/utfl6>>,

String and Character Literals

For source code, there is an extension to syntax \ OOO (backdash followed by three octal humbers) and \ xHH
(backslash followed by x, followed by two hexadecimal characters), namely \ x{ H ...} (backslash followed by x,
followed by left curly bracket, any number of hexadecimal digits, and a terminating right curly bracket). This allows
for entering characters of any code point literally in a string even when the encoding of the source file is bytewise
(Iatinl).

Intheshdll, if using aUnicodeinput device, or in source code stored in UTF-8, $ can befollowed directly by aUnicode
character producing an integer. In the following example, the code point of a Cyrillic # is output:

7> $c.
1089

Ericsson AB. All Rights Reserved.: STDLIB | 19

1.3 Using Unicode in Erlang

Heuristic String Detection

In certain output functions and in the output of return values in the shell, Erlang tries to detect string datain lists and
binaries heuristically. Typically you will see heuristic detection in a situation like this:

1> [97,98,99].

"abc"

2> <<97,98,99>>.

<<"abc">>

3> <<195,165,195,164,195,182>>.

ns

<<"Q@ao"/utf8>>

Here the shell detects lists containing printable characters or binaries containing printable characters in bytewise or
UTF-8 encoding. But what is a printable character? One view isthat anything the Unicode standard thinksis printable,
is also printable according to the heuristic detection. The result is then that almost any list of integers are deemed a
string, and all sorts of characters are printed, maybe also characters that your terminal lacks in its font set (resulting
in some unappreciated generic output). Another way is to keep it backward compatible so that only the 1SO Latin-1
character set is used to detect a string. A third way isto let the user decide exactly what Unicode ranges that are to
be viewed as characters.

Asfrom Erlang/OTP R16B you can select the | SO Latin-1 range or the whole Unicode range by supplying startup flag
+pc latinlor+pc unicode, respectively. For backward compatibility, | at i nl isdefault. Thisonly controls
how heuristic string detection is done. More ranges are expected to be added in the future, enabling tailoring of the
heuristics to the language and region relevant to the user.

The following examples show the two startup options:

$ erl +pc latinl
Erlang R16B (erts-5.10.1) [source] [async-threads:0] [hipe] [kernel-poll:false]

Eshell V5.10.1 (abort with ~G)

1> [1024].

[1024]

2> [1070,1085,1080,1082,1086,1076] .
[1670,1685,1080,1082,1086,1076]

3> [229,228,246].

"330"

4> <<208,174,208,189,208,184,208,186,208,190,208,180>>.
<<208,174,208,189,208,184,208,186,208,190,208, 180>>
5> <<229/utf8,228/utf8,246/utf8>>.

<<"Q3806"/utf8>>

$ erl +pc unicode
Erlang R16B (erts-5.10.1) [source] [async-threads:0] [hipe] [kernel-poll:false]

Eshell V5.10.1 (abort with ~G)

1> [1024].

||E||

2> [1070,1085,1080,1082,1086,1076] .

"lOHukopn"

3> [229,228,246].

"330"

4> <<208,174,208,189,208,184,208,186,208,190,208,180>>.
<<"lOHukog" /utf8>>

5> <<229/utf8,228/utf8,246/utf8>>.

20 | Ericsson AB. All Rights Reserved.: STDLIB

1.3 Using Unicode in Erlang

Q

<<"Q@ad"/utf8>>

In the examples, you can see that the default Erlang shell interprets only characters from the 1SO Latinl range as
printable and only detects lists or binaries with those " printable" characters as containing string data. The valid UTF-8
binary containing the Russian word "####H##", is not printed as a string. When started with all Unicode characters
printable (+pc uni code), the shell outputs anything containing printable Unicode data (in binaries, either UTF-8
or bytewise encoded) as string data.

These heuristicsarealsoused by i o: format/ 2,i o_l i b: f or mat/ 2, and friends when modifier t isused with
~p or ~P:

$ erl +pc latinl
Erlang R16B (erts-5.10.1) [source] [async-threads:0] [hipe] [kernel-poll:false]

Eshell V5.10.1 (abort with ~G)

1> io:format("~tp~n", [{<<"380">>, <<"330"/utf8>>, <<208,174,208,189,208,184,208,186,208,190,208,180>>}]).
{<<"330">>,<<"856" /utf8>>,<<208,174,208,189,208,184,208,186,208,190,208,180>>}

ok

$ erl +pc unicode
Erlang R16B (erts-5.10.1) [source] [async-threads:0] [hipe] [kernel-poll:false]

Eshell V5.10.1 (abort with ~G)

1> io:format("~tp~n", [{<<"380">>, <<"330"/utf8>>, <<208,174,208,189,208,184,208,186,208,190,208,180>>}]).
{<<"330">>,<<"336" /utf8>>,<<"l0HuKon"/utf8>>}

ok

Notice that this only affects heuristic interpretation of lists and binaries on output. For example, the ~t s format
sequence always outputs a valid list of characters, regardless of the +pc setting, as the programmer has explicitly
reguested string output.

1.3.7 The Interactive Shell

The interactive Erlang shell, when started to a terminal or started using command wer | on Windows, can support
Unicode input and output.

On Windows, proper operation requires that a suitable font isinstalled and selected for the Erlang application to use.
If no suitable font is available on your system, try installing the DejaVu fonts, which are freely available, and then
select that font in the Erlang shell application.

On Unix-like operating systems, the terminal is to be able to handle UTF-8 on input and output (this is done by, for
example, modern versions of X Term, KDE Konsole, and the Ghome terminal) and your local e settings must be proper.
Asan example, a LANG environment variable can be set as follows:

$ echo $LANG
en US.UTF-8

Most systems handle variable LC_CTYPE before LANG, so if that is set, it must be set to UTF- 8:

$ echo $LC CTYPE
en US.UTF-8

Ericsson AB. All Rights Reserved.: STDLIB | 21

href

1.3 Using Unicode in Erlang

The LANGor LC_CTYPE setting are to be consistent with what the terminal is capable of. There is no portable way
for Erlang to ask the terminal about its UTF-8 capacity, we have to rely on the language and character type settings.

To investigate what Erlang thinks about the terminal, thecall i 0: get opt s() can be used when the shell is started:

$ LC CTYPE=en US.IS0-8859-1 erl
Erlang R16B (erts-5.10.1) [source] [async-threads:0] [hipe] [kernel-poll:false]

Eshell V5.10.1 (abort with ~G)

1> lists:keyfind(encoding, 1, io:getopts()).

{encoding,latinl}

2> q().

ok

$ LC CTYPE=en US.UTF-8 erl

Erlang R16B (erts-5.10.1) [source] [async-threads:0] [hipe] [kernel-poll:false]

Eshell V5.10.1 (abort with ~G)

1> lists:keyfind(encoding, 1, io:getopts()).
{encoding,unicode}

2>

When (finally?) everything is in order with the locale settings, fonts. and the terminal emulator, you have probably
found away to input charactersin the script you desire. For testing, the simplest way isto add some keyboard mappings
for other languages, usually done with some applet in your desktop environment.

In aKDE environment, select KDE Control Center (Personal Settings) > Regional and Accessibility > Keyboar d
Layout.

On Windows XP, select Control Panel > Regional and L anguage Options, select tab L anguage, and click button
Details... in the square named Text Servicesand I nput L anguages.

Y our environment probably provides similar means of changing the keyboard layout. Ensure that you have a way to
switch back and forth between keyboards easily if you are not used to this. For example, entering commands using a
Cyrillic character set is not easily done in the Erlang shell.

Now you are set up for some Unicode input and output. The simplest thing to do isto enter a string in the shell:

$ erl
Erlang R16B (erts-5.10.1) [source] [async-threads:0] [hipe] [kernel-poll:false]

Eshell V5.10.1 (abort with ~G)

1> lists:keyfind(encoding, 1, io:getopts()).
{encoding,unicode}

2> "lOHukop" .

"lOHnkopg"

3> io:format("~ts~n", [v(2)]1).

0HMKopR

ok

4>

While strings can be input as Unicode characters, the language elements are still limited to the 1SO Latin-1 character
set. Only character constants and strings are allowed to be beyond that range:

$ erl
Erlang R16B (erts-5.10.1) [source] [async-threads:0] [hipe] [kernel-poll:false]

Eshell V5.10.1 (abort with ~G)

22 | Ericsson AB. All Rights Reserved.: STDLIB

1.3 Using Unicode in Erlang

1> $E.

958

2> l0HuKofO.

* 1: illegal character
2>

1.3.8 Unicode Filenames

Most modern operating systems support Unicode filenames in some way. There are many different ways to do this
and Erlang by default treats the different approaches differently:

Mandatory Unicode file naming

Windows and, for most common uses, MacOS X enforce Unicode support for filenames. All files created in the
file system have names that can consistently be interpreted. In MacOS X, all filenames are retrieved in UTF-8
encoding. In Windows, each system call handling filenames has a special Unicode-aware variant, giving much
the same effect. There are no filenames on these systems that are not Unicode filenames. So, the default behavior
of the Erlang VM isto work in"Unicode filename trand ation mode". This meansthat afilename can be specified
as a Unicode list, which is automatically translated to the proper name encoding for the underlying operating
system and file system.

Doing, for example, afi |l e: i st _di r/ 1 onone of these systems can return Unicode lists with code points
> 255, depending on the content of the file system.

Transparent file naming

Most Unix operating systems have adopted a simpler approach, namely that Unicode file naming is not enforced,
but by convention. Those systems usually use UTF-8 encoding for Unicode filenames, but do not enforce it.
On such a system, a filename containing characters with code points from 128 through 255 can be named as
plain 1SO Latin-1 or use UTF-8 encoding. As no consistency is enforced, the Erlang VM cannot do consistent
trandlation of al filenames.

By default on such systems, Erlang startsin ut f 8 filename mode if the terminal supports UTF-8, otherwisein
| at i n1 mode.

Inl ati nl mode, filenames are bytewise encoded. This allows for list representation of all filenames in the
system. However, a afile named "Ostersund.txt", appearsinfil e: 1 i st _di r/ 1 either as"Ostersund.txt" (if
the filename was encoded in bytewise 1SO Latin-1 by the program creating the file) or more probably as
[195, 150, 115, 116, 101, 114, 115, 117, 110, 100], which isalist containing UTF-8 bytes (not what
you want). If you use Unicode filename trandation on such a system, non-UTF-8 filenames are ignored by
functions like fil e:1ist_dir/ 1. They can be retrieved with function file:list_dir_all/1, but
wrongly encoded filenames appear as "raw filenames".

The Unicode file naming support was introduced in Erlang/OTP R14B01. A VM operating in Unicode filename
translation mode can work with files having names in any language or character set (as long as it is supported by
the underlying operating system and file system). The Unicode character list is used to denote filenames or directory
names. If the file system content is listed, you also get Unicode lists as return value. The support lies in the Kernel
and STDLIB modules, which is why most applications (that do not explicitly require the filenames to be in the ISO
Latin-1 range) benefit from the Unicode support without change.

On operating systems with mandatory Unicode filenames, this means that you more easily conform to the filenames of
other (non-Erlang) applications. Y ou can also process filenamesthat, at least on Windows, were inaccessible (because
of having names that could not be represented in SO Latin-1). Also, you avoid creating incomprehensible filenames
on MacOS X, asthe vf s layer of the operating system accepts all your filenames as UTF-8 does not rewrite them.

For most systems, turning on Unicode filename translation is no problem even if it uses transparent file naming. Very
few systems have mixed filename encodings. A consistent UTF-8 named system works perfectly in Unicode filename
mode. It wasstill, however, considered experimental in Erlang/OTP R14B01 and isstill not thedefault on such systems.

Ericsson AB. All Rights Reserved.: STDLIB | 23

1.3 Using Unicode in Erlang

Unicode filename tranglation is turned on with switch +f nu. On Linux, a VM started without explicitly stating the
filenametranglation modedefaultstol at i n1 asthenativefilename encoding. On Windowsand MacOS X, the default
behavior isthat of Unicode filenametrandation. Thereforef i | e: nati ve_name_encodi ng/ 0 by default returns
ut f 8 on those systems (Windows does not use UTF-8 on the file system level, but this can safely be ignored by the
Erlang programmer). The default behavior can, as stated earlier, be changed using option +f nu or +f nl totheVM, see
theer | program. If theVM isstarted in Unicodefilenametrandationmode, f i | e: nati ve_name_encodi ng/ 0
returns atom ut f 8. Switch +f nu can be followed by w, i , or e to control how wrongly encoded filenames are to
be reported.

e wmeansthat awarning is sent to the er r or _| ogger whenever a wrongly encoded filename is "skipped" in
directory listings. wis the default.

* i meansthat wrongly encoded filenames are silently ignored.
e e means that the API function returns an error whenever a wrongly encoded filename (or directory name) is
encountered.

Noticethat fi | e: read_I i nk/ 1 alwaysreturns an error if the link pointsto an invalid filename.

In Unicode filename mode, filenames given to BIF open_port/ 2 with option { spawn_execut abl e, ...}
are also interpreted as Unicode. So is the parameter list specified in option ar gs available when using
spawn_execut abl e. The UTF-8 translation of arguments can be avoided using binaries, see section Notes About
Raw Filenames.

Notice that the file encoding options specified when opening a file has nothing to do with the filename encoding
convention. You can very well open files containing data encoded in UTF-8, but having filenames in bytewise
(I at i n1) encoding or conversealy.

Note:

Erlang drivers and NIF-shared objects still cannot be named with names containing code points > 127. This
limitation will be removed in a future release. However, Erlang modules can, but it is definitely not a good idea
and is still considered experimental .

Notes About Raw Filenames

Raw filenames were introduced together with Unicode filename support in ERTS 5.8.2 (Erlang/OTP R14B01). The
reason "raw filenames' were introduced in the system was to be able to represent filenames, specified in different
encodings on the same system, consistently. It can seem practical to have the VM automatically translate a filename
that is not in UTF-8 to alist of Unicode characters, but this would open up for both duplicate filenames and other
inconsistent behavior.

Consider a directory containing a file named "bjérn" in 1SO Latin-1, while the Erlang VM is operating in Unicode
filename mode (and therefore expects UTF-8 file naming). The 1SO Latin-1 nameis not valid UTF-8 and one can be
tempted to think that automatic conversion in, for example, fil e: 1ist_dir/ 1 isagood idea. But what would
happen if we later tried to open the file and have the name as a Unicode list (magically converted from the SO Latin-1
filename)? The VM converts the filename to UTF-8, as this is the encoding expected. Effectively this means trying
to open the file named <<"bjdrn"/utf8>>. This file does not exist, and even if it existed it would not be the same file
asthe one that was listed. We could even create two files named "bj6rn", one named in UTF-8 encoding and one not.
Iffile:list_dir/1wouldautomaticaly convertthe SO Latin-1 filename to alist, we would get two identical
filenames asthe result. To avoid this, we must differentiate between filenames that are properly encoded according to
the Unicodefile naming convention (that is, UTF-8) and filenamesthat areinvalid under the encoding. By the common
functionfil e: list_dir/ 1, thewrongly encoded filenames are ignored in Unicode filename translation mode,
but by functionfi l e: i st _dir_al I / 1 thefilenameswith invalid encoding are returned as"raw" filenames, that
is, as binaries.

24 | Ericsson AB. All Rights Reserved.: STDLIB

1.3 Using Unicode in Erlang

The fil e module accepts raw filenames as input. open_port ({spawn_executable, ...} ...)
aso accepts them. As mentioned earlier, the arguments specified in the option list to
open_port ({spawn_executable, ...} ...) undergothesameconversion asthefilenames, meaning that

the executable is provided with arguments in UTF-8 as well. This trandation is avoided consistently with how the
filenames are treated, by giving the argument as a binary.

To force Unicode filename trand ation mode on systems where thisis not the default was considered experimental in
Erlang/OTP R14B01. This was because the initial implementation did not ignore wrongly encoded filenames, so that
raw filenames could spread unexpectedly throughout the system. As from Erlang/OTP R16B, the wrongly encoded
filenames are only retrieved by special functions (suchasfil e: 1ist_dir_al |/ 1). Sincetheimpact on existing
code is therefore much lower it is now supported. Unicode filename trandlation is expected to be default in future
releases.

Even if you are operating without Unicode file naming transl ation automatically done by the VM, you can access and
create fileswith namesin UTF-8 encoding by using raw filenames encoded as UTF-8. Enforcing the UTF-8 encoding
regardless of the mode the Erlang VM is started in can in some circumstances be a good idea, as the convention of
using UTF-8 filenames is spreading.

Notes About MacOS X

The vf s layer of MacOS X enforces UTF-8 filenames in an aggressive way. Older versions did this by refusing to
create non-UTF-8 conforming filenames, while newer versions replace offending bytes with the sequence "%HH",
where HH isthe origina character in hexadecimal notation. As Unicode translation is enabled by default on MacOS
X, the only way to come up against thisis to either start the VM with flag +f nl or to use araw filename in bytewise
(I at i n1) encoding. If using araw filename, with a bytewise encoding containing characters from 127 through 255,
to create afile, the file cannot be opened using the same hame as the one used to create it. Thereis no remedy for this
behavior, except keeping the filenames in the correct encoding.

MacOS X reorganizes the filenames so that the representation of accents, and so on, uses the "combining characters'.
For example, character 6 isrepresented as code points[111, 776] , where111 ischaracter o and 776 isthe special
accent character "Combining Diaeresis’. This way of normalizing Unicode is otherwise very seldom used. Erlang
normalizes those filenames in the opposite way upon retrieval, so that filenames using combining accents are not
passed up to the Erlang application. In Erlang, filename "bjérn" is retrieved as[98, 106, 246, 114, 110] , not as
[98, 106, 117, 776, 114, 110] , dthough the file system can think differently. The normalization into combining
accents is redone when accessing files, so this can usually be ignored by the Erlang programmer.

1.3.9 Unicode in Environment and Parameters

Environment variables and their interpretation are handled much in the same way as filenames. If Unicode filenames
are enabled, environment variables as well as parameters to the Erlang VM are expected to be in Unicode.

If Unicode filenames are enabled, the callsto os: get env/ 0, 1, os: put env/ 2, and os: unset env/ 1 handle
Unicode strings. On Unix-like platforms, the built-in functions trandate environment variables in UTF-8 to/from
Unicode strings, possibly with code points > 255. On Windows, the Unicode versions of the environment system API
are used, and code points > 255 are allowed.

On Unix-like operating systems, parameters are expected to be UTF-8 without trandation if Unicode filenames are
enabled.

1.3.10 Unicode-Aware Modules

Most of the modulesin Erlang/OTP are Unicode-unaware in the sense that they have no notion of Unicode and should
not have. Typically they handle non-textual or byte-oriented data (such asgen_t cp).

Modules handling textual data (such asi o_| i b and st ri ng are sometimes subject to conversion or extension to
be able to handle Unicode characters.

Ericsson AB. All Rights Reserved.: STDLIB | 25

1.3 Using Unicode in Erlang

Fortunately, most textual data has been stored in lists and range checking has been sparse, so moduleslikest ri ng
work well for Unicode strings with little need for conversion or extension.

Some modules are, however, changed to be explicitly Unicode-aware. These modules include:
uni code

Theuni code moduleisclearly Unicode-aware. It contains functions for conversion between different Unicode
formats and some utilitiesfor identifying byte order marks. Few programs handling Unicode data survive without
this module.

Thei o module has been extended along with the actual 1/0 protocol to handle Unicode data. This means that
many functions require binariesto bein UTF-8, and there are modifiers to format control sequencesto allow for
output of Unicode strings.

file,group,user

1/O-servers throughout the system can handle Unicode data and have options for converting data upon output or
input to/from the device. As shown earlier, theshel | module has support for Unicode terminals and thef i | e
module alows for translation to and from various Unicode formats on disk.

Reading and writing of fileswith Unicode dataiis, however, not best donewith thef i | e module, asitsinterface
isbyte-oriented. A file opened with a Unicode encoding (like UTF-8) isbest read or written using thei o module.

re

Ther e module alows for matching Unicode strings as a special option. Asthe library is centered on matching
in binaries, the Unicode support is UTF-8-centered.

The graphical library wx has extensive support for Unicode text.

The st ri ng module works perfectly for Unicode strings and SO Latin-1 strings, except the language-dependent
functions string: uppercase/ 1 and string: | owercase/ 1. These two functions can never function
correctly for Unicode characters in their current form, as there are language and locale issues to consider when
converting text between cases. Converting case in an international environment is a large subject not yet addressed
in OTP.

1.3.11 Unicode Data in Files

Although Erlang can handle Unicode datain many forms does not automatically mean that the content of any file can
be Unicode text. The external entities, such as ports and /O servers, are not generally Unicode capable.

Ports are always byte-oriented, so before sending data that you are not sure is bytewise-encoded to a port, ensure to
encode it in a proper Unicode encoding. Sometimes this means that only part of the data must be encoded as, for
example, UTF-8. Some parts can be binary data (like a length indicator) or something else that must not undergo
character encoding, so no automatic trandation is present.

I/O servers behave a little differently. The I/O servers connected to terminals (or st dout) can usually cope with
Unicode data regardless of the encoding option. This is convenient when one expects a modern environment but do
not want to crash when writing to an archaic terminal or pipe.

A file can have an encoding option that makes it generdly usable by the i o module (for example
{encodi ng, ut f 8}), but is by default opened as a byte-oriented file. The f i | e module is byte-oriented, so only
ISO Latin-1 characters can be written using that module. Use the i 0 module if Unicode data is to be output to afile
with other encodi ng than| at i n1 (bytewise encoding). It isslightly confusing that afile opened with, for example,
file:open(Name, [read, {encoding, utf8}]) cannotbeproperlyreadusingfil e: read(Fil e, N), but
using the i o module to retrieve the Unicode data from it. Thereasonisthat fil e:read andfil e:wite (and
friends) are purely byte-oriented, and should be, asthat isthe way to accessfiles other than text files, byte by byte. As

26 | Ericsson AB. All Rights Reserved.: STDLIB

1.3 Using Unicode in Erlang

with ports, you can write encoded data into afile by "manually" converting the data to the encoding of choice (using
theuni code module or the bit syntax) and then output it on abytewise (I at i n1) encoded file.

Recommendations:

* Usethefi |l e modulefor files opened for bytewise access ({ encodi ng, | ati nl}).
e Usethei o module when accessing files with any other encoding (for example { encodi ng, uf 8}).

Functions reading Erlang syntax from files recognize the codi ng: comment and can therefore handle Unicode data
on input. When writing Erlang terms to afile, you are advised to insert such comments when applicable:

$ erl +fna +pc unicode
Erlang R16B (erts-5.10.1) [source] [async-threads:0] [hipe] [kernel-poll:false]

Eshell V5.10.1 (abort with ~G)

1> file:write file("test.term",<<"%% coding: utf-8\n[{\"lOHnkop\",4711}].\n"/utf8>>).
ok

2> file:consult("test.term").

{ok, [[{"lOHukop" ,4711}]11}

1.3.12 Summary of Options

The Unicode support is controlled by both command-line switches, some standard environment variables, and the OTP
version you are using. Most options affect mainly how Unicode data is displayed, not the functionality of the APIsin
the standard libraries. This means that Erlang programs usually do not need to concern themsel ves with these options,
they are more for the development environment. An Erlang program can be written so that it works well regardless
of the type of system or the Unicode options that are in effect.

Here follows a summary of the settings affecting Unicode:
The LANGand LC_CTYPE environment variables

The language setting in the operating system mainly affects the shell. The terminal (that is, the group leader)
operates with { encodi ng, uni code} only if the environment tellsit that UTF-8 is allowed. This setting is
to correspond to the terminal you are using.

The environment can also affect filename interpretation, if Erlang is started with flag +f na (which is default
from Erlang/OTP 17.0).

You can check the setting of this by calling i 0: get opt s(), which gives you an option list containing
{'encodi ng, uni code} or{encodi ng, | atinl}.

The+pc {uni code|l ati nl} flagtoer| (1)

This flag affects what is interpreted as string data when doing heuristic string detection in the shell and ini o/
i o_lib:format withthe" ~t p" and ~t P formatting instructions, as described earlier.

You can check this option by calling i o: pri nt abl e_range/ 0, which returns uni code or | ati nl. To
be compatible with future (expected) extensions to the settings, rather usei o _|i b: printable list/1to
check if alist is printable according to the setting. That function takes into account new possible settings returned
fromi o: printabl e range/ 0.

The+f n{l |ula} [{Wi |e}] flagtoer| (1)

This flag affects how the filenames are to be interpreted. On operating systems with transparent file naming,
this must be specified to alow for file naming in Unicode characters (and for correct interpretation of filenames
containing characters > 255).

« +fnl means bytewise interpretation of filenames, which was the usual way to represent 1SO Latin-1
filenames before UTF-8 file naming got widespread.

Ericsson AB. All Rights Reserved.: STDLIB | 27

1.3 Using Unicode in Erlang

e +f nu means that filenames are encoded in UTF-8, which is nowadays the common scheme (although not
enforced).

e +f na meansthat you automatically select between +f nl and +f nu, based on environment variables LANG
and LC_CTYPE. This is optimistic heuristics indeed, nothing enforces a user to have a terminal with the
same encoding as the file system, but thisis usually the case. Thisis the default on all Unix-like operating
systems, except MacOS X.

The filename trand ation mode can beread with functionf i | e: nati ve_name_encodi ng/ 0, which returns
I ati nl (bytewise encoding) or ut f 8.

epp: defaul t _encodi ng/ 0

This function returns the default encoding for Erlang source files (if no encoding comment is present) in the
currently running release. In Erlang/OTP R16B, | at i n1 (bytewise encoding) was returned. As from Erlang/
OTP 17.0, ut f 8 isreturned.

The encoding of each file can be specified using comments as described in the epp(3) module.
i 0: setopts/1,2andflags- ol dshel | /- noshel |

When Erlang is started with - ol dshel | or - noshel | , the |/O server for st andar d_i o isby default set to
bytewise encoding, while an interactive shell defaults to what the environment variables says.

You can set the encoding of a file or other 1/O server with function i o: set opt s/ 2. This can aso be
set when opening a file. Setting the terminal (or other st andard_i o server) unconditionally to option
{encodi ng, ut f 8} impliesthat UTF-8 encoded characters are written to the device, regardless of how Erlang
was started or the user's environment.

Opening files with option encodi ng is convenient when writing or reading text filesin a known encoding.

Y ou can retrieve the encodi ng setting for an 1/0 server with functioni o: get opt s() .

1.3.13 Recipes

When starting with Unicode, one often stumbles over some common issues. This section describes some methods of
dealing with Unicode data.

Byte Order Marks

A common method of identifying encoding in text filesisto put a Byte Order Mark (BOM) first in the file. The BOM
isthe code point 16#FEFF encoded in the same way asthe remaining file. If such afileisto beread, thefirst few bytes
(depending on encoding) are not part of the text. This code outlines how to open afile that is believed to have aBOM,
and sets the files encoding and position for further sequential reading (preferably using thei o module).

Notice that error handling is omitted from the code:

open bom file for reading(File) ->
{ok,F} = file:open(File, [read,binary]),
{ok,Bin} = file:read(F,4),
{Type,Bytes} = unicode:bom to encoding(Bin),
file:position(F,Bytes),
io:setopts(F, [{encoding,Type}l),
{ok,F}.

Function uni code: bom t o_encodi ng/ 1 identifies the encoding from abinary of at least four bytes. It returns,
along with aterm suitable for setting the encoding of thefile, the byte length of the BOM, so that the file position can
be set accordingly. Notice that function f i | e: posi ti on/ 2 always works on byte-offsets, so that the byte length
of the BOM is needed.

28 | Ericsson AB. All Rights Reserved.: STDLIB

1.3 Using Unicode in Erlang

To open afile for writing and place the BOM first is even simpler:

open bom file for writing(File,Encoding) ->
{ok,F} = file:open(File, [write,binary]),
ok = file:write(File,unicode:encoding to bom(Encoding)),
io:setopts(F, [{encoding,Encoding}]),
{ok,F}.

Thefileisin both these cases then best processed using the i 0 module, as the functions in that module can handle
code points beyond the SO Latin-1 range.

Formatted I/O

When reading and writing to Unicode-aware entities, like afile opened for Unicode translation, you probably want to
format text strings using the functionsin thei o module or thei o_I i b module. For backward compatibility reasons,
thesefunctions do not accept any list asastring, but requireaspecial translation modifier whenworking with Unicode
texts. The modifier ist . When applied to control character s in aformatting string, it accepts all Unicode code points
and expects binariesto bein UTF-8:

1> io:format("~ts~n", [<<"3&6"/utf8>>]).
EED)

ok

2> io:format("~s~n", [<<"8&6"/utf8>>]).
A¥A=Aq

ok

Clearly, the second i o: f or mat / 2 gives undesired output, as the UTF-8 binary isnot in| at i nl. For backward
compatibility, the non-prefixed control character s expects bytewise-encoded ISO Latin-1 charactersin binaries and
lists containing only code points < 256.

Aslong asthe datais always lists, modifier t can be used for any string, but when binary dataisinvolved, care must
be taken to make the correct choice of formatting characters. A bytewise-encoded binary isaso interpreted asastring,
and printed even when using ~t s, but it can be mistaken for a valid UTF-8 string. Avoid therefore using the ~t s
control if the binary contains bytewise-encoded characters and not UTF-8.

Functioni o_I i b: f or mat / 2 behaves similarly. It is defined to return a deep list of characters and the output can
easily be converted to binary data for outputting on any deviceby asimpleer | ang: I i st _t o_bi nary/ 1. When
the trandation modifier is used, the list can, however, contain characters that cannot be stored in one byte. The call to
erlang: list_to_binary/ 1 thenfails. However, if the 1/O server you want to communicate with is Unicode-
aware, the returned list can still be used directly:

$ erl +pc unicode
Erlang R16B (erts-5.10.1) [source] [async-threads:0] [hipe] [kernel-poll:false]

Eshell V5.10.1 (abort with ~G)

1> io lib:format("~ts~n", ["Ftovvikovt"]).
["Ttovvikovt", "\n"]

2> io:put chars(io lib:format("~ts~n", ["ltoOvikovt"])).
FtovvikovT

ok

The Unicode string is returned as a Unicode list, which is recognized as such, as the Erlang shell uses the Unicode
encoding (and is started with al Unicode characters considered printable). The Unicode list is valid input to function
i 0: put _char s/ 2, so datacan be output on any Unicode-capable device. If the device isaterminal, characters are

Ericsson AB. All Rights Reserved.: STDLIB | 29

1.3 Using Unicode in Erlang

output in format \ x{ H...} if encodingis| ati n1. Otherwisein UTF-8 (for the non-interactive terminal: "oldshell"
or "noshell") or whatever is suitable to show the character properly (for an interactive terminal: the regular shell).

So, you can always send Unicode datato thest andar d_i o device. Files, however, accept only Unicode code points
beyond 1SO Latin-1if encodi ng is set to something elsethan| at i n1.

Heuristic Identification of UTF-8

While it is strongly encouraged that the encoding of charactersin binary datais known before processing, that is not
always possible. On atypical Linux system, thereisamix of UTF-8 and SO Latin-1 text files, and there are seldom
any BOMsiin the filesto identify them.

UTF-8 isdesigned so that SO Latin-1 characters with numbers beyond the 7-bit ASCII range are seldom considered
valid when decoded as UTF-8. Therefore one can usually use heuristics to determine if afileisin UTF-8 or if it
is encoded in SO Latin-1 (one byte per character). The uni code module can be used to determine if data can be
interpreted as UTF-8:

heuristic_encoding bin(Bin) when is_binary(Bin) ->
case unicode:characters to binary(Bin,utf8,utf8) of
Bin ->
utf8;
->
latinl
end.

If you do not have a complete binary of the file content, you can instead chunk through
the file and check part by part. The return-tuple {i nconpl ete, Decoded, Rest} from function
uni code: characters_to_binary/ 1, 2, 3 comesinhandy. Theincomplete rest from one chunk of data read
fromthefileis prepended to the next chunk and we therefore avoid the problem of character boundaries when reading
chunks of bytesin UTF-8 encoding:

heuristic encoding file(FileName) ->
{ok,F} = file:open(FileName, [read,binary]),
loop through file(F,<<>>,file:read(F,1024)).

loop through file(,<<>>,eof) ->
utf8;
loop through file(, ,eof) ->
latinl;
loop_through file(F,Acc,{ok,Bin}) when is binary(Bin) ->
case unicode:characters to binary([Acc,Bin]) of
{error, , } ->
latinl;
{incomplete, ,Rest} ->
loop through file(F,Rest,file:read(F,1024));
Res when is binary(Res) ->
loop through file(F,<<>>,file:read(F,1024))
end.

Another option isto try to read thewholefilein UTF-8 encoding and seeif it fails. Here we need to read thefile using
functioni o: get _char s/ 3, aswe haveto read characters with a code point > 255:

heuristic encoding file2(FileName) ->
{ok,F} = file:open(FileName, [read,binary,{encoding,utf8}]),
loop through file2(F,io:get chars(F,'',1024)).

30 | Ericsson AB. All Rights Reserved.: STDLIB

1.3 Using Unicode in Erlang

loop through file2(,eof) ->
utf8;

loop through file2(,{error, Err}) ->
latinl;

loop through file2(F,Bin) when is binary(Bin) ->
loop through file2(F,io:get chars(F,'"',1024)).

Lists of UTF-8 Bytes

For variousreasons, you can sometimeshave alist of UTF-8 bytes. Thisisnot aregular string of Unicode characters, as
each list element does not contain one character. Instead you get the "raw" UTF-8 encoding that you have in binaries.
Thisis easily converted to a proper Unicode string by first converting byte per byte into abinary, and then converting
the binary of UTF-8 encoded characters back to a Unicode string:

utf8 list to string(StrangelList) ->
unicode:characters to list(list to binary(StrangelList)).

Double UTF-8 Encoding

When working with binaries, you can get the horrible "double UTF-8 encoding", where strange characters are encoded
in your binaries or files. In other words, you can get a UTF-8 encoded binary that for the second time is encoded
as UTF-8. A common situation is where you read a file, byte by byte, but the content is already UTF-8. If you then
convert the bytes to UTF-8, using, for example, the uni code module, or by writing to a file opened with option
{encodi ng, ut f 8}, you have each byte in the input file encoded as UTF-8, not each character of the original text
(one character can have been encoded in many bytes). Thereis no real remedy for this other than to be sure of which
data is encoded in which format, and never convert UTF-8 data (possibly read byte by byte from afile) into UTF-8

again.

By far the most common situation where this occurs, iswhen you get lists of UTF-8 instead of proper Unicode strings,
and then convert them to UTF-8 in abinary or on afile:

wrong thing to do() ->

{ok,Bin} = file:read file("an utf8 encoded file.txt"),

MyList = binary to list(Bin), %% Wrong! It is an utf8 binary!

{ok,C} = file:open("catastrophe.txt", [write,{encoding,utf8}]),

io:put chars(C,MyList), %% Expects a Unicode string, but get UTF-8

%% bytes in a list!

he file catastrophe.txt contains more or less unreadable
arbage!

file:close(C). %%

Q o

Ensure you know what a binary contains before converting it to a string. If no other option exists, try heuristics:

if you can not know() ->
{ok,Bin} = file:read file("maybe utf8 encoded file.txt"),
MyList = case unicode:characters to list(Bin) of
L when is list(L) ->
L;
_ ->
binary to list(Bin) %% The file was bytewise encoded
end,
%% Now we know that the list is a Unicode string, not a list of UTF-8 bytes
{ok,G} = file:open("greatness.txt", [write,{encoding,utf8}]),
io:put chars(G,MyList), %% Expects a Unicode string, which is what it gets!

Ericsson AB. All Rights Reserved.: STDLIB | 31

1.3 Using Unicode in Erlang

file:close(G). %% The file contains valid UTF-8 encoded Unicode characters!

32 | Ericsson AB. All Rights Reserved.: STDLIB

1.3 Using Unicode in Erlang

2 Reference Manual

Ericsson AB. All Rights Reserved.: STDLIB | 33

STDLIB

STDLIB

Application

The STDLIB application is mandatory in the sense that the minimal system based on Erlang/OTP consists of Kernel
and STDLIB. The STDLIB application contains no services.
Configuration

The following configuration parameters are defined for the STDLIB application. For more information about
configuration parameters, seethe app(4) modulein Kernel.

shell _esc = icl | abort
Can be used to change the behavior of the Erlang shell when ~G is pressed.
restricted_shell = nodul e()

Can be used to run the Erlang shell in restricted mode.
shel | _cat ch_exception = bool ean()

Can be used to set the exception handling of the evaluator process of Erlang shell.
shell _history length = integer() >= 0

Can be used to determine how many commands are saved by the Erlang shell.
shel | _pronpt _func = {Md, Func} | default

where

e Md = atom()

e Func = atom()

Can be used to set a customized Erlang shell prompt function.
shel | _saved_results = integer() >= 0

Can be used to determine how many results are saved by the Erlang shell.
shel | _strings = bool ean()

Can be used to determine how the Erlang shell outputs lists of integers.

See Also
app(4),application(3),shdl(3)

34 | Ericsson AB. All Rights Reserved.: STDLIB

array

array

Erlang module

Functional, extendible arrays. Arrays can have fixed size, or can grow automatically as needed. A default valueis used
for entries that have not been explicitly set.

Arrays uses zer o-based indexing. Thisis a deliberate design choice and differs from other Erlang data structures, for
example, tuples.

Unless specified by the user when the array is created, the default value is the atom undef i ned. There is no
difference between an unset entry and an entry that has been explicitly set to the same value asthe default one (compare
reset/ 2). If you need to differentiate between unset and set entries, ensure that the default value cannot be confused
with the values of set entries.

The array never shrinks automatically. If anindex | has been used to set an entry successfully, al indicesin therange
[0,] stay accessible unlessthe array size is explicitly changed by callingr esi ze/ 2.

Examples:
Create afixed-size array with entries 0-9 set to undef i ned:

A0
10

array:new(10).
array:size(A0).

Create an extendible array and set entry 17 tot r ue, causing the array to grow automatically:

Al = array:set(17, true, array:new()).
18 = array:size(Al).
Read back a stored value:

true = array:get(17, Al).

Accessing an unset entry returns default value:

undefined = array:get(3, Al)

Accessing an entry beyond the last set entry also returns the default value, if the array does not have fixed size:

undefined = array:get(18, Al).

"Sparse" functions ignore default-valued entries:

A2 = array:set(4, false, Al).
[{4, false}, {17, true}] = array:sparse to orddict(A2).

Ericsson AB. All Rights Reserved.: STDLIB | 35

array

An extendible array can be made fixed-size |ater:

A3 = array:fix(A2).

A fixed-size array does not grow automatically and does not allow accesses beyond the last set entry:

{'EXIT', {badarg, }}
{'EXIT', {badarg, }}

(catch array:set(18, true, A3)).
(catch array:get(18, A3)).

Data Types

array(Type)

A functional, extendible array. The representation is not documented and is subject to change without notice. Notice
that arrays cannot be directly compared for equality.

array() = array(term())

array indx() = integer() >= 0

array opts() = array_opt() | [array_opt()]

array opt() =
{fixed, boolean()} |

fixed |
{default, Type :: term()} |
{size, N :: integer() >= 0} |

(N :: integer() >= 0)
indx pairs(Type) = [i ndx_pair (Type)]
indx_pair(Type) = {Index :: array_indx(), Type}

Exports

default(Array :: array(Type)) -> Value :: Type
Getsthe value used for uninitialized entries.
Seeadsonew 2.

fix(Array :: array(Type)) -> array(Type)
Fixesthe array size. This prevents it from growing automatically upon insertion.
Seeadsoset/ 3 andrel ax/ 1.

foldl(Function, InitialAcc :: A, Array :: array(Type)) -> B
Types:
Function =
fun((Index :: array_indx(), Value :: Type, Acc :: A) -> B)
Folds the array elements using the specified function and initial accumulator value. The elements are visited in order
from the lowest index to the highest. If Funct i on isnot afunction, the call fails with reason badar g.

Seeasof ol dr/ 3, map/ 2,sparse_fol dl /3.

36 | Ericsson AB. All Rights Reserved.: STDLIB

array

foldr(Function, InitialAcc :: A, Array :: array(Type)) -> B
Types.
Function =
fun((Index :: array_indx(), Value :: Type, Acc :: A) -> B)

Folds the array elements right-to-left using the specified function and initial accumulator value. The elements are
visited in order from the highest index to thelowest. If Funct i on isnot afunction, the call failswith reasonbadar g.

Seeasofol dl /3, map/ 2.

from list(List :: [Value :: Typel) -> array(Type)

Equivalenttof rom | i st (Li st, undefi ned).

from list(List :: [Value :: Type], Default :: term()) ->
array (Type)

Converts alist to an extendible array. Def aul t isused asthe value for uninitialized entries of the array. If Li st is
not a proper list, the call fails with reason badar g.

Seedsonew 2,to list/1.

from orddict(0Orddict :: indx_pairs(Value :: Type)) -> array(Type)
Equivalenttof rom or ddi ct (Orddi ct, undefined).

from orddict(0Orddict :: indx_pairs(Value :: Type),
Default :: Type) ->
array (Type)

Converts an ordered list of pairs { | ndex, Val ue} to acorresponding extendible array. Def aul t isused asthe
value for uninitialized entries of the array. If Or ddi ct isnot aproper, ordered list of pairs whose first elements are
non-negative integers, the call fails with reason badar g.

Seealsonew 2,to_orddict/ 1.

get(I :: array_indx(), Array :: array(Type)) -> Value :: Type

Gets the value of entry | . If | is not a non-negative integer, or if the array has fixed size and | is larger than the
maximum index, the call fails with reason badar g.

If the array does not have fixed size, the default value for any index | greater than si ze(Arr ay) - 1 isreturned.
Seedsoset/ 3.

is array(X :: term()) -> boolean()

Returnst r ue if Xisan array, otherwise f al se. Notice that the check is only shallow, as there is ho guarantee that
Xisawell-formed array representation even if thisfunction returnst r ue.

is fix(Array :: array()) -> boolean()
Checksif the array hasfixed size. Returnst r ue if the array isfixed, otherwisef al se.
Seealsofi x/ 1.

Ericsson AB. All Rights Reserved.: STDLIB | 37

array

map (Function, Array :: array(Typel)) -> array(Type2)
Types:
Function = fun((Index :: array_indx(), Typel) -> Type2)

Maps the specified function onto each array element. The elements are visited in order from the lowest index to the
highest. If Funct i on isnot afunction, the call fails with reason badar g.

Seeasofoldl/3,foldr/3,sparse_nap/ 2.

new() -> array()
Creates anew, extendible array with initial size zero.
Seeadsonew 1, new 2.

new(Options :: array_opts()) -> array()

Creates a new array according to the specified otions. By default, the array is extendible and has initia size zero.
Array indices start at 0.

Opt i ons isasingleterm or alist of terms, selected from the following:
N::integer() >= Oor{size, N :integer() >= 0}

Specifies the initial array size; thisalso implies{fi xed, true}. If Nisnot anon-negative integer, the call
failswith reason badar g.

fixedor{fixed, true}
Creates afixed-sizearray. Seeadsofi x/ 1.
{fixed, false}
Creates an extendible (non-fixed-size) array.
{default, Value}
Sets the default value for the array to Val ue.
Options are processed in the order they occur inthe list, that is, later options have higher precedence.
The default value is used as the value of uninitialized entries, and cannot be changed once the array has been created.
Examples:

array:new(100)

creates a fixed-size array of size 100.

array:new({default,0})

creates an empty, extendible array whose default valueis 0.

array:new([{size, 10}, {fixed, false}, {default,-1}1])

creates an extendible array with initial size 10 whose default valueis- 1.
Seeasofix/1,fromlist/2,get/2,new 0,new 2,set/ 3.

38 | Ericsson AB. All Rights Reserved.: STDLIB

array

new(Size :: integer() >= 0, Options :: array_opts()) -> array()

Creates a new array according to the specified size and options. If Si ze is hot a non-negative integer, the call fails
with reason badar g. By default, the array has fixed size. Notice that any size specificationsin Opt i ons override
parameter Si ze.

If Options isaligt, thisisequivalent to new([{si ze, Size} | Options], otherwiseit is equivaent to
new([{size, Size} | [Options]].However, using thisfunction directly ismore efficient.

Example:

array:new(100, {default,0})

creates afixed-size array of size 100, whose default valueis 0.
Seeadsonew 1.

relax(Array :: array(Type)) -> array(Type)
Makes the array resizable. (Reversesthe effectsof fi x/ 1.)
Seedsofix/ 1.

reset(I :: array_indx(), Array :: array(Type)) -> array(Type)

Resets entry | to the default value for the array. If the value of entry | is the default value, the array is returned
unchanged. Reset never changes the array size. Shrinking can be done explicitly by callingr esi ze/ 2.

If I isnot anon-negative integer, or if the array hasfixed sizeand | islarger than the maximum index, the call fails
with reason badar g; compareset / 3

Seedsonew 2,set/ 3.

resize(Array :: array(Type)) -> array(Type)

Changes the array size to that reported by spar se_si ze/ 1. If the specified array has fixed size, aso the resulting
array hasfixed size.

Seeasoresi zel/ 2,sparse_si ze/ 1.

resize(Size :: integer() >= 0, Array :: array(Type)) ->
array (Type)

Changethearray size. If Si ze isnot anon-negative integer, the call failswith reason badar g. If the specified array
has fixed size, also the resulting array has fixed size.

set(I :: array_indx(), Value :: Type, Array :: array(Type)) ->
array (Type)

Setsentry | of thearray toVal ue. If | isnot anon-negative integer, or if the array hasfixed sizeand | islarger than
the maximum index, the call fails with reason badar g.

If the array does not have fixed size, and | isgreater thansi ze(Arr ay) - 1, thearray growstosizel +1.
Seeasoget/2,reset/ 2.

Ericsson AB. All Rights Reserved.: STDLIB | 39

array

size(Array :: array()) -> integer() >= 0

Gets the number of entries in the array. Entries are numbered from O to si ze(Array) - 1. Hence, thisis also the
index of thefirst entry that is guaranteed to not have been previously set.

Seealsoset/ 3,sparse_size/ 1.

sparse foldl(Function, InitialAcc :: A, Array :: array(Type)) -> B
Types.
Function =
fun((Index :: array_indx(), Value :: Type, Acc :: A) -> B)

Folds the array elements using the specified function and initial accumulator value, skipping default-valued entries.
The elements are visited in order from the lowest index to the highest. If Funct i on isnot afunction, the call fails
with reason badar g.

Seeasofol dl /3,sparse_fol dr/3.

sparse foldr(Function, InitialAcc :: A, Array :: array(Type)) -> B
Types.
Function =
fun((Index :: array_indx(), Value :: Type, Acc :: A) -> B)

Folds the array elements right-to-left using the specified function and initial accumulator value, skipping default-
valued entries. The elements are visited in order from the highest index to the lowest. If Funct i on isnot afunction,
the call fails with reason badar g.

Seeasofol dr/ 3,sparse_fol dl /3.

sparse _map(Function, Array :: array(Typel)) -> array(Type2)
Types:
Function = fun((Index :: array_indx(), Typel) -> Type2)

M aps the specified function onto each array element, skipping default-valued entries. The elementsare visited in order
from the lowest index to the highest. If Funct i on isnot afunction, the call fails with reason badar g.

See also map/ 2.

sparse _size(Array :: array()) -> integer() >= 0

Gets the number of entriesin the array up until the last non-default-valued entry. That is, returns| +1 if | isthe last
non-default-valued entry in the array, or zero if no such entry exists.

Seedsoresi zel/ 1,si zel 1.

sparse to list(Array :: array(Type)) -> [Value :: Typel
Convertsthe array to alist, skipping default-valued entries.
Seeasoto_list/1.

sparse_to orddict(Array :: array(Type)) ->
i ndx_pairs(Value :: Type)

Convertsthe array to an ordered list of pairs{ | ndex, Val ue}, skipping default-valued entries.
Seeasoto_orddict/1.

40 | Ericsson AB. All Rights Reserved.: STDLIB

array

to list(Array :: array(Type)) -> [Value :: Type]
Convertsthe array to alist.

Seealsofrom|list/2,sparse_to_list/1.

to orddict(Array :: array(Type)) -> indx_pairs(Value :: Type)
Convertsthe array to an ordered list of pairs{ | ndex, Val ue}.
Seeasofrom orddict/2,sparse_to_orddict/1.

Ericsson AB. All Rights Reserved.: STDLIB | 41

assert.hrl

assert.hrl

Name

Theincludefileassert . hrl provides macrosfor inserting assertionsin your program code.
Include the following directive in the module from which the function is called:

-include lib("stdlib/include/assert.hrl").

When an assertion succeeds, the assert macro yieldsthe atom ok . When an assertion fails, an exception of typeer r or

is generated. The associated error term has the form { Macr o, | nf o} . Macr o is the macro name, for example,
assert Equal . I nf o isalist of tagged values, such as[{nodul e, M, {line, L}, ...],whichgives
more information about the location and cause of the exception. All entriesin the | nf o list are optional; do not rely
programatically on any of them being present.

Each assert macro has a corresponding version with an extra argument, for adding comments to assertions. These
can for example be printed as part of error reports, to clarify the meaning of the check that failed. For example, ?
assertEqual (0, fib(0), "Fibonacci is defined for zero").Thecomment text can be any
character data (string, UTF8-binary, or deep list of such data), and will be included in the error term as{ corment ,

Text}.

If the macro NOASSERT isdefined whenassert . hr | isread by the compiler, the macros are defined as equivalent
to the atom ok . The test will not be performed and there is no cost at runtime.

For example, using er | ¢ to compile your modules, the following disables all assertions:

erlc -DNOASSERT=true *.erl

(The value of NOASSERT does not matter, only the fact that it is defined.)
A few other macros also have effect on the enabling or disabling of assertions:

* |f NODEBUGI s defined, it implies NOASSERT (unless DEBUG s a so defined, which overrides NODEBUG).
e |f ASSERT isdefined, it overrides NOASSERT, that is, the assertions remain enabled.

If you prefer, you can thus use only DEBUG/NOCDEBUG as the main flags to control the behavior of the assertions
(which is useful if you have other compiler conditionals or debugging macros controlled by those flags), or you can
use ASSERT/NQASSERT to control only the assert macros.

Macros

assert (Bool Expr)
URKAassert (Bool Expr, Conment)

Teststhat Bool Expr completes normally returningt r ue.

assert Not (Bool Expr)
assert Not (Bool Expr, Conment)

Tests that Bool Expr completes normally returning f al se.

assert Mat ch(Guar dedPatt ern, Expr)
assert Mat ch(Guar dedPat t ern, Expr, Conmment)

Teststhat Expr completes normally yielding a value that matches Guar dedPat t er n, for example:

42 | Ericsson AB. All Rights Reserved.: STDLIB

assert.hrl

?assertMatch({bork, }, f())

Noticethat aguardwhen . .. can beincluded:

?assertMatch({bork, X} when X > 0, f())

assert Not Mat ch(Guar dedPattern, Expr)
assert Not Mat ch(Guar dedPattern, Expr, Conment)

Teststhat Expr completes normally yielding a value that does not match Guar dedPat t er n.
Asinassert Mat ch, Guar dedPat t er n can have awhen part.

assert Equal (Expect edVal ue, Expr)
assert Equal (Expect edVal ue, Expr, Conment)

Teststhat Expr completes normally yielding avalue that is exactly equal to Expect edVal ue.

assert Not Equal (Expect edVal ue, Expr)
assert Not Equal (Expect edVal ue, Expr, Conment)

Teststhat Expr completes normally yielding avalue that is not exactly equal to Expect edVal ue.

assert Exception(d ass, Term Expr)
assert Exception(d ass, Term Expr, Comment)

Tests that Expr completes abnormally with an exception of type Cl ass and with the associated Ter m The
assertion failsif Expr raises adifferent exception or if it completes normally returning any value.

Notice that both Cl ass and Ter mcan be guarded patterns, asin asser t Mat ch.

assert Not Exception(Cd ass, Term Expr)
assert Not Exception(Cd ass, Term Expr, Coment)

Teststhat Expr does not evaluate abnormally with an exception of type Cl ass and with the associated Ter m
The assertion succeeds if Expr raises a different exception or if it completes normally returning any value.

Asinassert Excepti on, both 0 ass and Ter mcan be guarded patterns.

assertError(Term Expr)
assertError(Term Expr, Commrent)

Equivalenttoassert Exception(error, Term Expr)

assertExit(Term Expr)
assertExit(Term Expr, Conment)

Equivalenttoassert Exception(exit, Term Expr)

assert Throw(Term Expr)
assert Throw Term Expr, Conment)

Equivalentto assert Excepti on(throw, Term Expr)

See Also
conpil e(3),erl c(3)

Ericsson AB. All Rights Reserved.: STDLIB | 43

base64

base64

Erlang module

Provides base64 encode and decode, see RFC 2045.

Data Types

ascii string() [1..255]

ascii_binary() = binary()

A bi nary() with ASCII charactersin therange 1 to 255.

Exports

decode(Base64) -> Data
decode to string(Base64) -> DataString
mime decode(Base64) -> Data
mime decode to string(Base64) -> DataString
Types:
Base64 = ascii_string() | ascii_binary()
Data = ascii_binary()
DataString = ascii_string()
Decodes a base64-encoded string to plain ASCII. See RFC 4648.

m nme_decode/ 1 and mi ne_decode_to_string/1 strip away illegal characters, while decode/ 1 and
decode_t o_string/ 1 only strip away whitespace characters.

encode(Data) -> Baseb64
encode to string(Data) -> Baseb64String
Types:

Data = ascii_string() | ascii_binary()

Base64 = ascii_binary()

Base64String = ascii_string()

Encodes aplain ASCI| string into base64. The result is 33% larger than the data

44 | Ericsson AB. All Rights Reserved.: STDLIB

href
href

beam_lib

beam_lib

Erlang module

Thismodule provides an interface to files created by the BEAM Compiler ("BEAM files"). Theformat used, avariant
of "EA IFF 1985" Standard for Interchange Format Files, divides datainto chunks.

Chunk data can be returned as binaries or as compound terms. Compound terms are returned when chunks are
referenced by names (atoms) rather than identifiers (strings). The recognized names and the corresponding identifiers
are asfollows:

e atons ("Atont)

e attributes ("Attr")

e conpile_info ("CInf")

 debug_info ("Dbgi")

e exports ("ExpT")

e inports ("I nmpT")

e indexed_ inports ("InpT")

« |abeled exports ("ExpT")

e labeled locals ("LocT")

e locals ("LocT")

Debug Information/Abstract Code

Optiondebug_i nf o canbe specified tothe Compiler (seeconpi | e(3)) to have debug information, such asErlang
Abstract Format, stored inthedebug_i nf o chunk. Tools such as Debugger and Xref require the debug information
to beincluded.

Warning:

Source code can be reconstructed from the debug information. To prevent this, use encrypted debug information
(see below).

The debug information can aso be removed from BEAM files using strip/ 1, strip_files/1, andlor
strip_rel ease/ 1.

Reconstruct Source Code

The following example shows how to reconstruct Erlang source code from the debug information in a BEAM file
Beam

{ok,{ ,[{abstract code,{ ,AC}}]}} = beam lib:chunks(Beam, [abstract code]).
io:fwrite("~s~n", [erl prettypr:format(erl syntax:form list(AC))]).

Encrypted Debug Information

The debug information can be encrypted to keep the source code secret, but till be able to use tools such as Debugger
or Xref.

Ericsson AB. All Rights Reserved.: STDLIB | 45

beam_lib

To use encrypted debug information, a key must be provided to the compiler and beam | i b. The key is specified
asastring. It isrecommended that the string contains at least 32 characters and that both upper and lower case letters
aswell as digits and special characters are used.

The default type (and currently the only type) of crypto algorithmisdes3_cbc, three rounds of DES. The key string
isscrambled using er | ang: md5/ 1 to generate the keys used for des3_cbc.

Note:

Asfar aswe know by thetime of writing, it isinfeasibleto break des3_chbc encryption without any knowledge
of the key. Therefore, aslong asthe key is kept safe and is unguessable, the encrypted debug information should
be safe from intruders.

The key can be provided in the following two ways:

» Use Compiler option { debug_i nf o_key, Key}, seeconpi | e(3) andfunctioncrypt o_key_fun/1to
register afun that returns the key whenever beam | i b must decrypt the debug information.

If no such funisregistered, beam | i b instead searchesfor an. er | ang. cr ypt file, see the next section.
o Storethekeyinatextfilenamed. erl ang. crypt.

In this case, Compiler option encr ypt _debug_i nf o can be used, seeconpi | e(3) .

.erlang.crypt

beam | i b searchesfor. er | ang. cr ypt inthecurrent directory and then the home directory for the current user.
If thefileisfound and contains akey, beam | i b implicitly creates a crypto key fun and registersit.

File. erl ang. crypt istocontain asinglelist of tuples:

{debug info, Mode, Module, Key}

Mode is the type of crypto algorithm; currently, the only allowed value isdes3_cbc. Mbdul e is either an atom,
in which case Key is only used for the module Modul e, or [], in which case Key is used for all modules. Key is
the non-empty key string.

Key in thefirst tuple where both Mode and Modul e match is used.
Thefollowing isan exampleof an. er | ang. cr ypt filethat returns the same key for all modules:

[{debug_info, des3_cbc, [], "%>7}|pc/DM6Cga*68$Mw]L#& Gejr]G "}1].

Thefollowing is aslightly more complicated example of an . er | ang. cr ypt providing one key for modulet and
another key for all other modules:

[{debug info, des3 cbc, t, "My KEY"},
{debug_info, des3 cbc, [], "%>7}|pc/DM6Cga*68$Mw]L#& GejrlG "}].

46 | Ericsson AB. All Rights Reserved.: STDLIB

beam_lib

Note:

Do not use any of the keysin these examples. Use your own keys.

Data Types
beam() = module() | file:filename() | binary()

Each of the functions described below accept either the module name, the filename, or abinary containing the BEAM
module.

chunkdata() =
{chunkid(), dataB()} |
{abstract code, abst_code()} |
{debug_info, debug_info()} |
{attributes, [attrib_entry()]1} |
{compile info, [conpinfo_entry()]} |
{exports, [{atom(), arity()}1} |
{labeled exports, [labeled_entry()]} |
{imports, [mfa()]} |
{indexed imports,

[{i ndex(), module(), Function :: atom(), arity()}1} |
{locals, [{atom(), arity()}1} |
{labeled locals, [labeled_entry()I]} |
{atoms, [{integer(), atom()}1}

Thelist of attributesissortedon Attri bute (inattri b_entry()) and each attribute name occurs once in the
list. The attribute values occur in the same order asin the file. The lists of functions are also sorted.

chunkid() = nonempty string()
IIAttrll | IICI nfll | IIDbgill | IIEXpTII | n I mp " | IILOC " | IIAtU8II
dataB() = binary()

debug info() =
{DbgiVersion :: atom(), Backend :: module(), Data :: term()} |
no debug info

The format stored in the debug_i nf o chunk. To retrieve particular code representation from the backend,
Backend: debug_i nf o(For mat, Modul e, Data, Opts) must beinvoked. For mat isan atom, such as
er | ang_v1 for the Erlang Abstract Format or cor e_v 1 for Core Erlang. Modul e isthe module represented by the
beam file and Dat a isthe value stored in the debug info chunk. Opt s isany list of values supported by the Backend.
Backend: debug_i nf o/ 4 must return{ ok, Code} or{error, Tern}

Developersmust alwaysinvokethedebug_i nf o/ 4 functionand never rely ontheDat a storedinthedebug_i nf o
chunk, as it is opague and may change at any moment. no_debug_i nf o means that chunk " Dbgi " is present,
but empty.

abst code() =
{AbstVersion :: atom(), forns()} | no abstract code

It is not checked that the forms conform to the abstract format indicated by Abst Ver si on.no_abstract _code
means that chunk " Abst " is present, but empty.

For modules compiled with OTP 20 onwards, the abst code chunk is automatically computed from the
debug_i nf o chunk.

Ericsson AB. All Rights Reserved.: STDLIB | 47

beam_lib

forms() = [erl _parse:abstract_forn() | erl_parse:form.info()]
compinfo _entry() = {InfoKey :: atom(), term()}

attrib entry() =
{Attribute :: atom(), [AttributeValue :: term()]}

labeled entry() = {Function :: atom(), arity(), label ()}
index() = integer() >= 0

label() = integer()

chunkref() = chunknane() | chunkid()

chunkname() =
abstract code |
debug info |
attributes |
compile info |
exports |
labeled exports |
imports |
indexed imports |
locals |
labeled locals |
atoms

chnk rsn() =
{unknown chunk, file:filename(), atom()} |
{key missing or invalid,
file:filenane(),
abstract code | debug info} |
info_rsn()
info rsn() =
{chunk_too_big,
file:filenane(),

chunki d() ,
ChunkSize :: integer() >= 0,
FileSize :: integer() >= 0} |

{invalid beam file,
file:filenane(),

Position :: integer() >= 0} |
{invalid chunk, file:filename(), chunkid()} |
{missing chunk, file:filename(), chunkid()} |
{not_a beam file, file:filename()} |
{file error, file:filenanme(), file:posix()}

Exports

all chunks(File :: bean()) ->
{ok, beam 1lib, [{chunkid(), dataB()}]}

Reads chunk data for all chunks.

build module(Chunks) -> {ok, Binary}
Types:

48 | Ericsson AB. All Rights Reserved.: STDLIB

beam_lib

Chunks [{chunkid(), dataB() }]
Binary = binary()
Builds aBEAM module (as a binary) from alist of chunks.

chunks(Beam, ChunkRefs) ->
{ok, {module(), [chunkdata()]}} |
{error, beam 1lib, chnk_rsn()}

Types:
Beam = beam()
ChunkRefs = [chunkref ()]

Reads chunk data for selected chunks references. The order of the returned list of chunk data is determined by the
order of thelist of chunks references.

chunks (Beam, ChunkRefs, Options) ->
{ok, {module(), [ChunkResult]}} |
{error, beam 1lib, chnk_rsn()}

Types:
Beam = beam()
ChunkRefs = [chunkref ()]
Options = [allow missing chunks]
ChunkResult =
chunkdata() | {ChunkRef :: chunkref(), missing chunk}

Reads chunk data for selected chunks references. The order of the returned list of chunk data is determined by the
order of thelist of chunks references.

By default, if any requested chunk is missing in Beam an error tuple is returned. However, if option
al | ow_m ssi ng_chunks isspecified, aresult isreturned even if chunksare missing. Intheresult list, any missing
chunks are represented as{ ChunkRef , mi ssi ng_chunk} . Notice however that if chunk " At o' ismissing, that
isconsidered afatal error and the return valueisan er r or tuple.

clear _crypto key fun() -> undefined | {ok, Result}
Types:
Result = undefined | term()
Unregisters the crypto key fun and terminates the process holding it, started by cr ypt o_key_fun/ 1.

Returns either { ok, undef i ned} if no crypto key funisregistered, or { ok, Ter n}, where Ter misthe return
value from Cr ypt oKeyFun(cl ear),seecrypt o_key_fun/ 1.

cmp (Beaml, Beam2) -> ok | {error, beam lib, cmp_rsn()}

Types:
Beaml = Beam2 = beam()
cmp_rsn() =

{modules different, module(), module()} |
{chunks different, chunkid()} |
different chunks |

Ericsson AB. All Rights Reserved.: STDLIB | 49

beam_lib

info_rsn()

Comparesthe contents of two BEAM files. If the module names are the same, and all chunks except for chunk " Cl nf "
(the chunk containing the compilation information that is returned by Modul e: modul e_i nf o(conpi | €)) have
the same contents in both files, ok isreturned. Otherwise an error message is returned.

cmp dirs(Dirl, Dir2) ->
{Onlyl, Only2, Different} | {error, beam 1lib, Reason}

Types:
Dirl = Dir2 = atom() | file:filename()
Onlyl = Only2 = [file:filename()]
Different =
[{Filenamel :: file:filenane(), Filename2 :: file:filenane()}]
Reason = {not a directory, term()} | info_rsn()

Compares the BEAM files in two directories. Only files with extension " . beam' are compared. BEAM files that
exist only in directory Di r 1 (Di r 2) are returned in Onl y1 (Onl y2). BEAM files that exist in both directories
but are considered different by cnp/ 2 are returned as pairs {Fi | enanel, Fi | enane2}, where Fi | enanel
(Fi I enane2) existsindirectory Di r 1 (Di r 2).

crypto_key fun(CryptoKeyFun) -> ok | {error, Reason}
Types.
CryptoKeyFun = crypto_fun()
Reason = badfun | exists | term()
crypto _fun() = fun((crypto_fun_arg()) -> term())
crypto_fun arg() =
init | clear | {debug info, nmode(), module(), file:filename()}
mode() = des3 cbc

Registers an unary fun that is called if beam | i b must read an debug_i nf o chunk that has been encrypted. The
funisheld in aprocessthat is started by the function.

If afunisaready registered when attempting to register afun, { er ror, exi st s} isreturned.
The fun must handl e the following arguments:

CryptoKeyFun(init) -> ok | {ok, NewCryptoKeyFun} | {error, Term}

Called when the fun is registered, in the process that holds the fun. Here the crypto key fun can do any
necessary initializations. If { ok, NewCr ypt oKeyFun} is returned, NewCr ypt oKeyFun is registered instead
of Crypt oKeyFun. If {error, Tern} isreturned, the registration is aborted and crypt o_key fun/ 1 aso
returns{error, Ternt.

CryptoKeyFun({debug info, Mode, Module, Filename}) -> Key

Called whenthekey isneeded for module Mbdul e inthefilenamedFi | enane. Mode isthetypeof crypto algorithm;
currently, the only possible valueisdes3_cbc. Thecall isto fail (raise an exception) if no key is available.

50 | Ericsson AB. All Rights Reserved.: STDLIB

beam_lib

CryptoKeyFun(clear) -> term()

Called beforethefunisunregistered. Here any cleaning up can bedone. Thereturn valueis not important, but is passed
back to the caller of cl ear _crypt o_key_fun/ 0 aspart of its return value.

diff dirs(Dirl, Dir2) -> ok | {error, beam lib, Reason}

Types:
Dirl = Dir2 = atom() | file:filenane()
Reason = {not a directory, term()} | info_rsn()

Compares the BEAM filesin two directoriesas cnp_di r s/ 2, but the names of filesthat exist in only one directory
or are different are presented on standard output.

format error(Reason) -> io_lib:chars()
Types:
Reason = term()

For a specified error returned by any function in this module, this function returns a descriptive string of the error in
English. For fileerrors, functionfi | e: f or mat _error (Posi x) isto be called.

info(Beam) -> [InfoPair] | {error, beam lib, info_rsn()}

Types:
Beam = beam()
InfoPair =

{file, Filename :: file:filenanme()} |
{binary, Binary :: binary()} |
{module, Module :: module()} |

{chunks,
[{ChunkId :: chunkid(),
Pos :: integer() >= 0

Size :: integer() >= é}]}

Returns alist containing some information about a BEAM fileastuples{1tem | nf 0}:
{file, Filenane} | {binary, Binary}

The name (string) of the BEAM file, or the binary from which the information was extracted.
{odul e, Modul e}

The name (atom) of the module.
{chunks, [{Chunkld, Pos, Size}]}

For each chunk, the identifier (string) and the position and size of the chunk data, in bytes.

md5(Beam) -> {ok, {module(), MD5}} | {error, beam lib, chnk_rsn()}
Types.

Beam = beam()

MD5 = binary()

Calculates an MD5 redundancy check for the code of the module (compilation date and other attributes are not
included).

Ericsson AB. All Rights Reserved.: STDLIB | 51

beam_lib

strip(Beaml) ->
{ok, {module(), Beam2}} | {error, beam lib, info_rsn()}

Types.
Beaml = Beam2 = bean{()

Removesall chunksfrom aBEAM file except those needed by the loader. In particular, the debug information (chunk
debug_i nf o andabst ract _code) isremoved.

strip files(Files) ->
{ok, [{module(), Beam}]} |
{error, beam lib, info_rsn()}

Types:
Files = [bean()]
Beam = beam()

Removes all chunks except those needed by the loader from BEAM files. In particular, the debug information (chunk
debug_i nf oandabst ract _code)isremoved. Thereturned list contains one element for each specified filename,
inthesameorder asinFi | es.

strip release(Dir) ->
{ok, [{module(), file:filename()}1} |
{error, beam lib, Reason}

Types.
Dir = atom() | file:filename()
Reason = {not a directory, term()} | info_rsn()

Removes all chunks except those needed by the loader from the BEAM files of a release. Dir is to
be the ingtalation root directory. For example, the current OTP release can be stripped with the cal
beam |ib:strip_rel ease(code:root _dir()).

version(Beam) ->
{ok, {module(), [Version :: term()]1}} |
{error, beam 1lib, chnk_rsn()}

Types:
Beam = beam()

Returns the module version or versions. A version is defined by module attribute - vsn(Vsn) . If this attribute is
not specified, the version defaults to the checksum of the module. Notice that if version Vsn isnot aligt, it is made
into one, that is{ ok, { Modul e, [Vsn] } } isreturned. If there are many - vsn module attributes, the result is the
concatenated list of versions.

Examples:

1> beam lib:version(a). % -vsn(1).

{ok,{a, [1]1}}

2> beam lib:version(b). % -vsn([1]).

{ok,{b, [1]}}

3> beam lib:version(c). % -vsn([1]). -vsn(2).

{ok,{c, [1,2]}}
4> beam lib:version(d). % no -vsn attribute
{ok, {d, [275613208176997377698094100858909383631] } }

52 | Ericsson AB. All Rights Reserved.: STDLIB

binary

binary

Erlang module

This module contains functions for manipulating byte-oriented binaries. Although the majority of functions could be
provided using bit-syntax, the functions in this library are highly optimized and are expected to either execute faster
or consume less memory, or both, than a counterpart written in pure Erlang.

The module is provided according to Erlang Enhancement Proposal (EEP) 31.

Note:

The library handles byte-oriented data. For bitstrings that are not binaries (does not contain whol e octets of bits)
abadar g exception is thrown from any of the functions in this module.

Data Types

cp()

Opaque data type representing a compiled search pattern. Guaranteed to be a t upl e() to allow programs to
distinguish it from non-precompiled search patterns.

part() = {Start :: integer() >= 0, Length :: integer()}

A representaion of apart (or range) in abinary. St art is azero-based offset into abi nary() and Lengt h isthe
length of that part. Asinput to functions in this module, a reverse part specification is allowed, constructed with a
negative Lengt h, so that the part of the binary beginsat St art + Lengt h and is-Lengt h long. This is useful
for referencing the last N bytes of abinary as{si ze(Bi nary), -N}.Thefunctionsin this module always return
part () swith positive Lengt h.

Exports

at(Subject, Pos) -> byte()
Types:
Subject = binary()
Pos = integer() >= 0
Returnsthe byte at position Pos (zero-based) inbinary Subj ect asaninteger. If Pos >=byt e_si ze(Subj ect),
abadar g exceptionisraised.

bin to list(Subject) -> [byte()]
Types:
Subject = binary()
Sameasbin_to |ist(Subject, {0, byte size(Subject)}).

bin to list(Subject, PosLen) -> [byte()]
Types:

Ericsson AB. All Rights Reserved.: STDLIB | 53

binary

Subject = binary()
PosLen = part()

Converts Subj ect to alist of byt e() s, each representing the value of one byte. par t () denotes which part of
thebi nar y() to convert.

Example:

1> binary:bin to list(<<"erlang">>, {1,3}).
n r'La n
%% or [114,108,97] in list notation.

If PosLen in any way references outside the binary, abadar g exception israised.

bin to list(Subject, Pos, Len) -> [byte()]
Types.

Subject = binary()

Pos integer() >= 0

Len = integer()

Sameas bin_to_list(Subject, {Pos, Len}).

compile pattern(Pattern) -> cp()
Types:
Pattern = binary() | [binary()]
Builds an internal structure representing a compilation of a search pattern, later to be used in functions mat ch/ 3,

mat ches/ 3,split/3,orrepl ace/ 4. Thecp() returned isguaranteed to beat upl e() to allow programsto
distinguish it from non-precompiled search patterns.

When a list of bhinaries is specified, it denotes a set of alternative binaries to search for. For
example, if [<<"functional ">>, <<"progranmni ng">>] is specified as Patt ern, this means either
<<"functional ">>or <<" programi ng" >>". The pattern is a set of aternatives, when only a single binary
is specified, the set has only one element. The order of alternativesin a pattern is not significant.

Thelist of binaries used for search alternatives must be flat and proper.
If Pat t er nisnot abinary or aflat proper list of binarieswith length > 0, abadar g exception is raised.

copy(Subject) -> binary()
Types:

Subject = binary()
Sameascopy(Subj ect, 1).

copy(Subject, N) -> binary()
Types:
Subject = binary()
N = integer() >= 0
Creates abinary with the content of Subj ect duplicated N times.

54 | Ericsson AB. All Rights Reserved.: STDLIB

binary

This function always createsanew binary, evenif N = 1. By using copy/ 1 on abinary referencing alarger binary,
one can free up the larger binary for garbage collection.

Note:

By deliberately copying a single binary to avoid referencing a larger binary, one can, instead of freeing up the
larger binary for later garbage collection, create much more binary datathan needed. Sharing binary datais usually
good. Only in specia cases, when small parts reference large binaries and the large binaries are no longer used
in any process, deliberate copying can be agood idea.

If N< 0, abadar g exception israised.

decode unsigned(Subject) -> Unsigned
Types:

Subject = binary()

Unsigned = integer() >= 0
Sameasdecode_unsi gned(Subj ect, bi Q).

decode unsigned(Subject, Endianness) -> Unsigned
Types:
Subject = binary()
Endianness = big | little
Unsigned = integer() >= 0
Converts the binary digit representation, in big endian or little endian, of a positive integer in Subj ect to an Erlang
i nteger ().
Example:

1> binary:decode unsigned(<<169,138,199>>,big).
11111111

encode unsigned(Unsigned) -> binary()
Types:

Unsigned = integer() >= 0
Sameasencode_unsi gned(Unsi gned, big).

encode unsigned(Unsigned, Endianness) -> binary()
Types:

Unsigned = integer() >= 0

Endianness = big | little

Converts a positive integer to the smallest possible representation in a binary digit representation, either big endian
or little endian.

Example:

Ericsson AB. All Rights Reserved.: STDLIB | 55

binary

1> binary:encode unsigned(11111111, big).
<<169,138,199>>

first(Subject) -> byte()
Types:
Subject = binary()
Returnsthefirst byte of binary Subj ect asaninteger. If thesize of Subj ect iszero, abadar g exceptionisraised.

last(Subject) -> byte()
Types:
Subject = binary()
Returnsthelast byte of binary Subj ect asaninteger. If thesize of Subj ect iszero, abadar g exception israised.

list to bin(BytelList) -> binary()
Types.
BytelList = iodata()

Worksexactly aser | ang: | i st _t o_bi nary/ 1, added for completeness.

longest common prefix(Binaries) -> integer() >= 0
Types:
Binaries = [binary()]
Returns the length of the longest common prefix of the binariesin list Bi nari es.

Example:

1> binary:longest common prefix([<<"erlang">>, <<"ergonomy">>]).
2

2> binary:longest_common_prefix([<<"erlang">>, <<"perl">>]).

0

If Bi nari es isnot aflat list of binaries, abadar g exception israised.

longest common_suffix(Binaries) -> integer() >= 0
Types:
Binaries = [binary()]
Returns the length of the longest common suffix of the binariesin list Bi nari es.

Example:

1> binary:longest common suffix([<<"erlang">>, <<"fang">>]).
3
2> binary:longest common suffix([<<"erlang">>, <<"perl">>]).
0

If Bi nari es isnot aflat list of binaries, abadar g exception israised.

56 | Ericsson AB. All Rights Reserved.: STDLIB

binary

match(Subject, Pattern) -> Found | nomatch

Types.
Subject = binary()
Pattern = binary() | [binary()] | cp()

Found = part()
Sameasmat ch(Subj ect, Pattern, []).

match(Subject, Pattern, Options) -> Found | nomatch

Types.
Subject = binary()
Pattern = binary() | [binary()] | cp()

Found = part()

Options = [Option]

Option = {scope, part()}

part() = {Start :: integer() >= 0, Length :: integer()}
Searches for the first occurrence of Pat t er n in Subj ect and returns the position and length.
Thefunctionreturns{ Pos, Lengt h} for the binary in Pat t er n, starting at the lowest position in Subj ect .

Example:

1> binary:match(<<"abcde">>, [<<"bcde">>, <<"cd">>],[]).

{1,4}

Even though <<" cd" >> ends before <<" bcde" >>, <<" bcde" >> begins first and is therefore the first match. If
two overlapping matches begin at the same position, the longest is returned.

Summary of the options:

{scope, { Start, Length}}
Only the specified part is searched. Return values still have offsets from the beginning of Subj ect . A negative
Lengt h isalowed as described in section Data Types in this manual.

If none of the stringsin Pat t er n isfound, the atom nomat ch isreturned.

For adescription of Pat t er n, seefunction conpi | e_pattern/ 1.

If {scope, {Start, Length}} is specified in the options such that St art > size of Subj ect, Start +
Length<OorStart +Lengt h >sizeof Subj ect ,abadar g exceptionisraised.

matches(Subject, Pattern) -> Found

Types:
Subject binary()
Pattern = binary() | [binary()] | cp()
Found = [part ()]

Sameasmat ches(Subj ect, Pattern, []).

matches(Subject, Pattern, Options) -> Found
Types:

Ericsson AB. All Rights Reserved.: STDLIB | 57

binary

Subject binary()

Pattern = binary() | [binary()] | cp()

Found = [part ()]

Options = [Option]

Option = {scope, part()}

part() = {Start :: integer() >= 0, Length :: integer()}
Asmat ch/ 2, but Subj ect issearched until exhausted and alist of all non-overlapping parts matching Pat t er n
isreturned (in order).

Thefirst and longest match is preferred to a shorter, which isillustrated by the following example:

1> binary:matches(<<"abcde">>,
[<<"bcde">>,<<"bc">>,<<"de">>],[1]1).

[{1,4}]

The result showsthat <<"bcde">> is selected instead of the shorter match <<"bc">> (which would have given raise to
onemore match, <<"de">>). This correspondsto the behavior of POSIX regular expressions (and programs like awk),
but is not consistent with alternative matches in r e (and Perl), where instead lexical ordering in the search pattern
selects which string matches.

If none of the strings in a pattern is found, an empty list is returned.
For adescription of Pat t er n, seeconpi | e_pat t er n/ 1. For adescription of available options, see mat ch/ 3.

If {scope, {Start, Length}} isspecified inthe options such that St art > size of Subj ect, Start +
Length<OQorStart + Lengthis>sizeof Subj ect,abadar g exceptionisraised.

part(Subject, PosLen) -> binary()
Types.

Subject = binary()

PosLen = part()

Extracts the part of binary Subj ect described by PosLen.
A negative length can be used to extract bytes at the end of a binary:

1> Bin = <<1,2,3,4,5,6,7,8,9,10>>.
2> binary:part(Bin, {byte size(Bin), -5}).
<<6,7,8,9,10>>

Note:

part/2 and part/3 are aso available in the erl ang module under the names bi nary part/2 and
bi nary_part/ 3. Those BlIFs are alowed in guard tests.

If PosLen in any way references outside the binary, abadar g exception israised.

part(Subject, Pos, Len) -> binary()
Types:

58 | Ericsson AB. All Rights Reserved.: STDLIB

binary

Subject = binary()

Pos = integer() >= 0

Len = integer()
Sameaspart (Subj ect, {Pos, Len}).

referenced byte size(Binary) -> integer() >= 0
Types.
Binary = binary()

If a binary references a larger binary (often described as being a subbinary), it can be useful to get the size of the
referenced binary. This function can be used in aprogram to trigger the use of copy/ 1. By copying abinary, one can
dereference the original, possibly large, binary that a smaller binary is areference to.

Example:

store(Binary, GBSet) ->
NewBin =
case binary:referenced byte size(Binary) of
Large when Large > 2 * byte size(Binary) ->
binary:copy(Binary);
->
Binary

end,
gb sets:insert(NewBin,GBSet).

In this example, we chose to copy the binary content beforeinsertingitingb_set s: set () if it referencesabinary
more than twice the data size we want to keep. Of course, different rules apply when copying to different programs.

Binary sharing occurs whenever binaries are taken apart. This is the fundamental reason why binaries are fast,
decomposition can aways be done with O(1) complexity. In rare circumstances this data sharing is however
undesirable, why this function together with copy/ 1 can be useful when optimizing for memory use.

Example of binary sharing:

1> A = binary:copy(<<1l>>, 100).
<<1,1,1,1,1 ...

2> byte size(A).

100

3> binary:referenced byte size(A)
100

4> << :10/binary,B:10/binary, /binary>> = A.
<<1,1,1,1,1 ...

5> byte size(B).

10

6> binary:referenced byte size(B)
100

Note:

Binary datais shared among processes. If another process till references the larger binary, copying the part this
process uses only consumes more memory and does not free up the larger binary for garbage collection. Use this
kind of intrusive functions with extreme care and only if areal problem is detected.

Ericsson AB. All Rights Reserved.: STDLIB | 59

binary

replace(Subject, Pattern, Replacement) -> Result
Types.
Subject binary()
Pattern binary() | [binary()]
Replacement = Result = binary()

| cp()

Sameasr epl ace(Subj ect, Pattern, Replacenent,[]).

replace(Subject, Pattern, Replacement, Options) -> Result
Types:

Subject = binary()

Pattern = binary() | [binary()] | cp()

Replacement = binary()

Options = [Option]

Option = global | {scope, part()} | {insert replaced, InsPos}

InsPos = OnePos | [OnePos]

OnePos = integer() >= 0

Aninteger() =< byte_size(Replacement)

Result = binary()

Constructsanew binary by replacing the partsin Subj ect matching Pat t er n with the content of Repl acenent .

If the matching subpart of Subj ect giving raise to the replacement is to be inserted in the result, option
{insert _replaced, |nsPos} insertsthe matching part into Repl acenent at the specified position (or
positions) before inserting Repl acenent into Subj ect .

Example:

1> binary:replace(<<"abcde">>,<<"b">>,<<"[]">>, [{insert replaced,1}]).

<<"a[b]cde">>

2> binary:replace(<<"abcde">>, [<<"b">>,<<"d">>],<<"[]">>, [global, {insert replaced,1}]).
<<"a[blc[d]e">>

3> binary:replace(<<"abcde">>, [<<"b">>,<<"d">>],<<"[]">>, [global, {insert replaced,[1,1]}]).
<<"a[bb]c[dd]e">>

4> binary:replace(<<"abcde">>, [<<"b">>,<<"d">>],<<"[-]">>, [global, {insert replaced,[1,2]}]).
<<"a[b-b]c[d-d]e">>

If any position specified in | nsPos > size of the replacement binary, abadar g exceptionisraised.
Options gl obal and{scope, part ()} workasforsplit/ 3. Thereturntypeisawaysabi nary().
For adescription of Patt er n, seeconpi | e_pattern/1

split(Subject, Pattern) -> Parts

Types:
Subject binary()
Pattern = binary() | [binary()] | cp()
Parts = [binary()]

Sameassplit(Subject, Pattern, []).

60 | Ericsson AB. All Rights Reserved.: STDLIB

binary

split(Subject, Pattern, Options) -> Parts

Types.
Subject = binary()
Pattern = binary() | [binary()] | cp()
Options = [Option]

Option = {scope, part()} | trim | global | trim all
Parts = [binary()]

SplitsSubj ect intoalist of binariesbased on Pat t er n. If option gl obal isnot specified, only thefirst occurrence
of Patt erninSubj ect givesriseto asplit.

The parts of Pat t er n found in Subj ect are not included in the result.
Example:

1> binary:split(<<1,255,4,0,0,0,2,3>>, [<<0,0,0>>,<<2>>],[]).
[<<1,255,4>>, <<2,3>>]

2> binary:split(<<0,1,0,0,4,255,255,9>>, [<<0,0>>, <<255,255>>],[global]).
[<<0, 1>>,<<4>>,<<9>>]

Summary of options:

{ scope, part()}

Works as in mat ch/ 3 and mat ches/ 3. Notice that this only defines the scope of the search for matching
strings, it does not cut the binary before splitting. The bytes before and after the scope are kept in the result. See
the example below.

trim

Removes trailing empty parts of the result (asdoest ri minre: split/ 3.
trim_all

Removes all empty parts of the resullt.
global

Repeats the split until Subj ect is exhausted. Conceptually option gl obal makes split work on the positions
returned by mat ches/ 3, while it normally works on the position returned by mat ch/ 3.

Example of the difference between a scope and taking the binary apart before splitting:

1> binary:split(<<"banana">>, [<<"a">>],[{scope,{2,3}}1).
[<<"ban">>,<<"na">>]

2> binary:split(binary:part(<<"banana">>,{2,3}), [<<"a">>],[]).
[<<"n">>,<<"n">>]

Thereturntypeisawaysalist of binariesthat are al referencing Subj ect . This meansthat the datain Subj ect is
not copied to new binaries, and that Subj ect cannot be garbage collected until the results of the split are no longer
referenced.

For adescription of Pat t er n, seeconpi |l e_pattern/ 1.

Ericsson AB. All Rights Reserved.: STDLIB | 61

C

Erlang module

This module enables users to enter the short form of some commonly used commands.

Note:

These functions are intended for interactive use in the Erlang shell only. The module prefix can be omitted.

Exports

bt(Pid) -> ok | undefined
Types:
Pid = pid()
Stack backtrace for a process. Equivalent to er | ang: process_di spl ay(Pi d, backtrace).

c(Module) -> {ok, ModuleName} | error
c(Module, Options) -> {ok, ModuleName} | error
c(Module, Options, Filter) -> {ok, ModuleName} | error
Types.
Module = atom()
Options = [conpile:option()]
Filter = fun((conpile:option()) -> boolean())
ModuleName = module()

Compiles and then purges and loads the code for a module. Mbdul e can be either a module name or a source file

path, with or without . er | extension. Opt i ons defaultsto[] .

If Modul e isan atom and is not the path of a sourcefile, then the code path is searched to locate the object file for the
module and extract its original compiler options and source path. If the sourcefileis not found in the original location,

filelib:find_source/1isusedtosearchfor it relative to the directory of the object file.

The source file is compiled with the the original options appended to the given Opt i ons, the output replacing the
old object fileif and only if compilation succeeds. A function Fi | t er can be specified for removing elements from

from the original compiler options before the new options are added.

Noticethat purging the code meansthat any processes lingering in old code for the modul e are killed without warning.

For more information, see code/ 3.

cd(Dir) -> ok
Types.
Dir = file: name()

Changes working directory to Di r, which can be a relative name, and then prints the name of the new working

directory.
Example:

62 | Ericsson AB. All Rights Reserved.: STDLIB

2> cd("../erlang").
/home/ron/erlang

flush() -> ok
Flushes any messages sent to the shell.

help() -> ok
Displays help information: all valid shell internal commands, and commands in this module.

i() -> ok
ni() -> ok

i / 0 displays system information, listing information about all processes. ni / 0 does the same, but for all nodes the
network.

i(X, Y, Z) -> [{atom(), term()}]
Types:
X =Y =27 = integer() >= 0

Displaysinformation about a process, Equivalent to pr ocess_i nfo(pi d(X, Y, Z)), butlocation transparent.

1(Module) -> code:load ret()
Types:
Module = module()

Purges and loads, or reloads, a module by caling code: purge(Mdule) followed by
code: |l oad_fil e(Mdule).

Noticethat purging the code meansthat any processes lingering in old code for the module are killed without warning.
For moreinformation, seecode/ 3.

lc(Files) -> ok

Types:
Files = [File]
File

Compiles alist of filesby calingconpil e:file(File, [report_errors, report_warnings]) for
eachFileinFil es.

For information about Fi | e, seefil e: fil enane().

Im() -> [code:load ret()]

Reloads all currently loaded modules that have changed on disk (see n()). Returns the list of results from calling
I (M for each such M

1s() -> ok
Listsfilesin the current directory.

Ericsson AB. All Rights Reserved.: STDLIB | 63

ls(Dir) -> ok
Types:
Dir = file: name()
Listsfilesin directory Di r or, if Di r isafile, only listsit.

m() -> ok
Displays information about the loaded modules, including the files from which they have been loaded.

m(Module) -> ok
Types:

Module = module()
Displays information about Modul e.

mm() -> [module()]
Lists all modified modules. Shorthand for code: nodi fi ed_nodul es/ 0.

memory() -> [{Type, Size}]

Types.
Type = atom()
Size = integer() >= 0

Memory allocation information. Equivalent to er | ang: nenor y/ 0.

memory(Type) -> Size
memory (Types) -> [{Type, Size}]
Types.
Types = [Type]
Type = atom()
Size = integer() >= 0
Memory allocation information. Equivalentto er | ang: nenory/ 1.

nc(File) -> {ok, Module} | error
nc(File, Options) -> {ok, Module} | error
Types:
File = fil e: name()
Options = [Option] | Option
Option = conpile: option()
Module = module()
Compiles and then loads the code for afile on al nodes. Opt i ons defaultsto[] . Compilation is equivalent to:

compile:file(, ++ [report errors, report warnings])

64 | Ericsson AB. All Rights Reserved.: STDLIB

nl(Module) -> abcast | error
Types.

Module = module()
Loads Modul e on al nodes.

Types.
X =Y =27 = integer() >= 0

Converts X, Y, Z to pid <X. Y. Z>. Thisfunction is only to be used when debugging.

pwd() -> ok
Prints the name of the working directory.

g() -> no _return()
Thisfunction is shorthand fori ni t : st op() , that is, it causes the node to stop in a controlled fashion.

regs() -> ok
nregs() -> ok
r egs/ 0 displaysinformation about all registered processes. nr egs/ 0 doesthe same, but for all nodesin the network.

uptime() -> ok
Prints the node uptime (as specified by er | ang: st ati sti cs(wal | _cl ock)) in human-readable form.

xm(ModSpec) -> void()
Types:
MbdSpec Modul e | Fil enane
Modul e = atom()
Fil ename = string()

Finds undefined functions, unused functions, and calls to deprecated functionsin amodule by calling xr ef : n1 1.

y(File) -> YeccRet
Types:
File = name()
YeccRet
Generates an LALR-1 parser. Equivalent to:

yecc:file(File)

For information about File = nane(), see fil ename(3). For information about YeccRet, see
yecc: filel2.

Ericsson AB. All Rights Reserved.: STDLIB | 65

y(File, Options) -> YeccRet
Types:

File = nanme()

Opti ons, YeccRet
Generates an LALR-1 parser. Equivalent to:

yecc:file(File, Options)

For information about Fi | e = name(), seefi | ename(3) . For information about Opt i ons and YeccRet ,
seeyecc: fil el 2.

See Also
filenane(3),conpile(3),erlang(3),yecc(3),xref(3)

66 | Ericsson AB. All Rights Reserved.: STDLIB

calendar

calendar

Erlang module

This module provides computation of local and universal time, day of the week, and many time conversion functions.

Timeisloca whenit isadjusted in accordance with the current time zone and daylight saving. Timeisuniversal when
it reflects the time at longitude zero, without any adjustment for daylight saving. Universal Coordinated Time (UTC)
timeis also called Greenwich Mean Time (GMT).

The time functions | ocal _ti ne/ 0 and uni ver sal _ti nme/ 0 in this module both return date and time. The is
because separate functions for date and time can result in a date/time combination that is displaced by 24 hours. This
occursif one of the functionsis called before midnight, and the other after midnight. This problem also appliesto the
Erlang BIFsdat e/ 0 andt i ne/ 0, and their useis strongly discouraged if areliable date/time stamp is required.

All dates conform to the Gregorian calendar. This calendar was introduced by Pope Gregory XlII in 1582 and was
used in all Catholic countries from this year. Protestant parts of Germany and the Netherlands adopted it in 1698,
England followed in 1752, and Russia in 1918 (the October revolution of 1917 took place in November according
to the Gregorian calendar).

The Gregorian calendar in this module is extended back to year 0. For agiven date, the gregorian days is the number
of days up to and including the date specified. Similarly, the gregorian seconds for a specified date and time is the
number of seconds up to and including the specified date and time.

For computing differences between epochsin time, use the functions counting gregorian days or seconds. If epochsare
specified aslocal time, they must be converted to universal time to get the correct value of the elapsed time between
epochs. Use of functiont i ne_di f f er ence/ 2 isdiscouraged.

Different definitionsexist for theweek of theyear. Thismodule containsaweek of theyear implementation conforming
to the 1SO 8601 standard. As the week number for a specified date can fall on the previous, the current, or on the
next year, it is important to specify both the year and the week number. Functions i so_week _nunber/ 0 and
i so_week_nunber/ 1 return atuple of the year and the week number.

Data Types

datetime() = {date(), tinme()}

datetimel970() = {{year1970(), nonth(), day()}, tinme()}
date() {year (), nonth(), day()}

year() integer() >= 0

Y ear cannot be abbreviated. For example, 93 denotes year 93, not 1993. The valid range depends on the underlying
operating system. The date tuple must denote avalid date.

Ericsson AB. All Rights Reserved.: STDLIB | 67

calendar

yearl970() = 1970..10000

month() = 1..12

day() = 1..31

time() = {bhour(), mnute(), second()}
hour() = 0..23

minute() = 0..59

second() = 0..59

daynum() = 1..7

ldom() = 28 | 29 | 30 | 31

yearweeknum() = {year(), weeknun()}
weeknum() = 1..53

Exports

date to gregorian days(Date) -> Days
date to gregorian days(Year, Month, Day) -> Days
Types.
Date = date()
Year = year()
Month = nont h()
Day = day()
Computes the number of gregorian days starting with year 0 and ending at the specified date.

datetime to gregorian seconds(DateTime) -> Seconds
Types:

DateTime = datetime()

Seconds = integer() >= 0

Computes the number of gregorian seconds starting with year 0 and ending at the specified date and time.

day of the week(Date) -> daynum()
day of the week(Year, Month, Day) -> daynum()

Types:
Date = date()
Year = year ()
Month = nont h()
Day = day()

Computesthe day of the week from the specified Year , Mont h, and Day . Returnsthe day of theweek as 1: Monday,
2: Tuesday, and so on.

gregorian days to date(Days) -> date()
Types:

Days = integer() >= 0
Computes the date from the specified number of gregorian days.

68 | Ericsson AB. All Rights Reserved.: STDLIB

calendar

gregorian seconds to datetime(Seconds) -> datetime()
Types:

Seconds = integer() >= 0
Computes the date and time from the specified number of gregorian seconds.

is leap year(Year) -> boolean()
Types:

Year = year()
Checksif the specified year isaleap year.

iso week number() -> yearweeknun{)

Returnstuple { Year, WeekNun} representing the ISO week number for the actua date. To determine the actual
date, usefunction| ocal _ti me/ 0.

iso week number(Date) -> yearweeknun()
Types:
Date = date()
Returnstuple{ Year, WeekNumn} representing the SO week number for the specified date.

last_day of the month(Year, Month) -> LastDay
Types:

Year = year()

Month = nont h()

LastDay = | dom()

Computes the number of daysin amonth.

local time() -> datetime()
Returns the local time reported by the underlying operating system.

local time to universal time(DateTimel) -> DateTime2
Types:
DateTimel = DateTime2 = dateti nel970()

Converts from local time to Universal Coordinated Time (UTC). Dat eTi mel must refer to alocal date after Jan
1, 1970.

Warning:

This function is deprecated. Use | ocal _tinme_to_universal time_dst/ 1 instead, asit givesamore
correct and complete result. Especially for the period that does not exist, as it is skipped during the switch to
daylight saving time, this function still returns a result.

Ericsson AB. All Rights Reserved.: STDLIB | 69

calendar

local time to universal time dst(DateTimel) -> [DateTime]
Types:
DateTimel = DateTime = dateti nel970()

Converts from local time to Universal Coordinated Time (UTC). Dat eTi mel must refer to alocal date after Jan
1, 1970.

Thereturn valueisalist of 0, 1, or 2 possible UTC times:

[]

For aloca { Dat el, Ti nmel} during the period that is skipped when switching to daylight saving time, there
isno corresponding UTC, asthelocal timeisillegal (it has never occured).

[Dst Dat eTi neUTC, Dat eTi neUT(C]

For alocal { Dat el, Ti mel} during the period that is repeated when switching from daylight saving time,
two corresponding UTCs exist; one for the first instance of the period when daylight saving timeis still active,
and one for the second instance.

[Dat eTi neUTC]

For all other local times only one corresponding UTC exists.

now to datetime(Now) -> dateti mel970()
Types:
Now = erl ang:tinestanp()
Returns Universal Coordinated Time (UTC) converted from the return valuefrom er | ang: t i mest anp/ 0.

now to local time(Now) -> dateti me1970()
Types:
Now = erlang:tinestanp()
Returns local date and time converted from the return value fromer | ang: ti mest anp/ 0.

now to universal time(Now) -> dateti me1970()
Types:
Now = erl ang:ti nmestanp()
Returns Universal Coordinated Time (UTC) converted from the return valuefromer | ang: ti mest anp/ 0.

seconds to daystime(Seconds) -> {Days, Time}
Types.

Seconds = Days = integer()

Time = time()

Converts a specified number of seconds into days, hours, minutes, and seconds. Ti e is always non-negative, but
Days isnegative if argument Seconds is.

seconds_to time(Seconds) -> tine()
Types:

70 | Ericsson AB. All Rights Reserved.: STDLIB

calendar

Seconds = secs_per_day()
secs _per_day() = 0..86400

Computes the time from the specified number of seconds. Seconds must be less than the number of seconds per
day (86400).

time difference(T1l, T2) -> {Days, Time}
Types:
Tl = T2 = datetine()
Days = integer()
Time = time()
Returns the difference between two { Dat e, Ti ne} tuples. T2 isto refer to an epoch later than T1.

Warning:

This function is obsolete. Use the conversion functions for gregorian days and seconds instead.

time to seconds(Time) -> secs_per_day()
Types:
Time = time()
secs_per_day() = 0..86400
Returns the number of seconds since midnight up to the specified time.

universal time() -> datetine()

Returns the Universal Coordinated Time (UTC) reported by the underlying operating system. Returns local time if
universal timeis unavailable.

universal time to local time(DateTime) -> datetinme()
Types:
DateTime = dateti me1970()
Converts from Universal Coordinated Time (UTC) to local time. Dat eTi me must refer to a date after Jan 1, 1970.

valid date(Date) -> boolean()
valid date(Year, Month, Day) -> boolean()
Types:

Date = date()

Year = Month = Day = integer()

This function checks if adateisavalid.

Leap Years

The notion that every fourth year is aleap year is not completely true. By the Gregorian rule, ayear Y is aleap year
if one of the following rulesisvalid:

e Y isdivisible by 4, but not by 100.

Ericsson AB. All Rights Reserved.: STDLIB | 71

calendar

* Y isdivisible by 400.
Hence, 1996 isaleap year, 1900 is not, but 2000 is.

Date and Time Source

Local time is obtained from the Erlang BIF | ocal ti me/ 0. Universal time is computed from the BIF
uni versal tine/0.

The following fapply:

» Thereare 86400 secondsin a day.

e Thereare 365 daysin an ordinary year.

* Thereare 366 daysin aleap year.

e Thereare 1461 daysin a4 year period.

e Thereare 36524 daysin a 100 year period.

* Thereare 146097 daysin a 400 year period.

e Thereare 719528 days between Jan 1, 0 and Jan 1, 1970.

72 | Ericsson AB. All Rights Reserved.: STDLIB

dets

dets

Erlang module

This module provides aterm storage on file. The stored terms, in this module called objects, are tuples such that one
element isdefined to bethekey. A Detstableisacollection of objectswith the key at the same position stored on afile.

Thismoduleis used by the Mnesiaapplication, and is provided "asis" for userswho are interested in efficient storage
of Erlang terms on disk only. Many applications only need to store some terms in afile. Mnesia adds transactions,
queries, and distribution. The size of Dets files cannot exceed 2 GB. If larger tables are needed, table fragmentation
in Mnesia can be used.

Three types of Detstables exist:

e set. A table of thistype has at most one object with a given key. If an object with akey aready present in the
table isinserted, the existing object is overwritten by the new object.

* bag. A table of thistype has zero or more different objects with a given key.
e duplicate_bag. A table of thistype has zero or more possibly matching objects with a given key.

Dets tables must be opened before they can be updated or read, and when finished they must be properly closed. If a
tableis not properly closed, Dets automatically repairs the table. This can take a substantial time if the table is large.
A Detstableis closed when the process which opened the table terminates. If many Erlang processes (users) open the
same Dets table, they share the table. The tableis properly closed when all users have either terminated or closed the
table. Dets tables are not properly closed if the Erlang runtime system terminates abnormally.

Note:

A ~C command abnormally terminates an Erlang runtime system in a Unix environment with a break-handler.

As all operations performed by Dets are disk operations, it is important to realize that a single look-up operation
involvesaseriesof disk seek and read operations. The Detsfunctions are therefore much slower than the corresponding
et s(3) functions, although Dets exports asimilar interface.

Dets organizes dataas alinear hash list and the hash list grows gracefully as more dataisinserted into the table. Space
management on the file is performed by what is called a buddy system. The current implementation keeps the entire
buddy system in RAM, which implies that if the table gets heavily fragmented, quite some memory can be used up.
The only way to defragment atable isto close it and then open it again with option r epai r settof or ce.

Notice that type or der ed_set in Etsis not yet provided by Dets, neither is the limited support for concurrent
updates that makes a sequence of fi r st and next calls safe to use on fixed ETS tables. Both these features may
be provided by Detsin afuture release of Erlang/OTP. Until then, the Mnesia application (or some user-implemented
method for locking) must be used to implement safe concurrency. Currently, no Erlang/OTP library has support for
ordered disk-based term storage.

All Detsfunctionsreturn{ error, Reason} if anerror occurs(first/ 1 and next/ 2 are exceptions, they exit
the processwith the error tuple). If badly formed arguments are specified, al functionsexit the processwith abadar g

message.

Ericsson AB. All Rights Reserved.: STDLIB | 73

dets

Data Types

access() = read | read write

auto save() = infinity | integer() >= 0
bindings cont()

Opague continuation used by mat ch/ 1 and mat ch/ 3.
cont()

Opaque continuation used by bchunk/ 2.

keypos() = integer() >=1

match spec() = ets: match_spec()

Match specifications, see section Match Specificationin Erlang in ERTS User's Guideand thens_t r ansf or n{ 3)
module.

no slots() = default | integer() >= 0

object() = tuple()

object cont()

Opaque continuation used by mat ch_obj ect/ 1 and mat ch_obj ect/ 3.
pattern() = atom() | tuple()

For a description of patterns, seeet s: mat ch/ 2.

select cont()

Opaque continuation used by sel ect/ 1 and sel ect/ 3.

tab name() = term()
type() = bag | duplicate bag | set

Exports

all() -> [tab_nane()]
Returns alist of the names of all open tables on this node.

bchunk(Name, Continuation) ->
{Continuation2, Data} |
"$end of table' |
{error, Reason}
Types:
Name = tab_name()
Continuation = start | cont()
Continuation2 = cont ()
Data = binary() | tuple()
Reason = term()
Returns a list of objects stored in a table. The exact representation of the returned objects is not public. The lists of

data can be used for initializing atable by specifying value bchunk to optionf or mat of functioni nit _t abl e/ 3
The Mnesia application uses this function for copying open tables.

Unless the table is protected using saf e_fi xt abl e/ 2, calsto bchunk/ 2 do possibly not work as expected if
concurrent updates are made to the table.

74 | Ericsson AB. All Rights Reserved.: STDLIB

dets

Thefirst timebchunk/ 2 iscalled, aninitial continuation, the atom st ar t , must be provided.

bchunk/ 2 returns atuple { Cont i nuati on2, Dat a}, where Dat a isalist of objects. Cont i nuati on2 is
another continuation that is to be passed on to a subsequent call to bchunk/ 2. With a series of callsto bchunk/ 2,
all table objects can be extracted.

bchunk/ 2 returns' $end_of _t abl e' when all objectsarereturned, or { error, Reason} if an error occurs.

close(Name) -> ok | {error, Reason}
Types.
Name = tab_name()
Reason = term()
Closes atable. Only processes that have opened atable are allowed to close it.

All open tables must be closed before the system is stopped. If an attempt is made to open atable that is not properly
closed, Dets automatically triesto repair it.

delete(Name, Key) -> ok | {error, Reason}
Types:

Name = tab_name()

Key = Reason = term()

Deletes al objects with key Key from table Narre.

delete all objects(Name) -> ok | {error, Reason}
Types:

Name = tab_name()

Reason = term()

Deletes all objectsfrom atablein almost constant time. However, if thetableif fixed, del et e_al | _obj ect s(T)
isequivalenttomat ch_del ete(T, ' _').

delete object(Name, Object) -> ok | {error, Reason}
Types.

Name = tab_name()

Object = object()

Reason = term()

Deletes al instances of a specified object from atable. If atableis of type bag or dupl i cat e_bag, this function
can be used to delete only some of the objects with a specified key.

first(Name) -> Key | '$end of table'

Types.
Name = tab_name()
Key = term()

Returns the first key stored in table Nane according to the internal order of thetable, or * $end_of _t abl e' if the
tableis empty.

Unless the table is protected using saf e_fi xt abl e/ 2, subsequent calls to next /2 do possibly not work as
expected if concurrent updates are made to the table.

Ericsson AB. All Rights Reserved.: STDLIB | 75

dets

If an error occurs, the process is exited with an error tuple { error, Reason}. The error tupleis not returned, as
it cannot be distinguished from a key.

Therearetwo reasonswhy f i r st / 1 and next / 2 are not to be used: they are not efficient, and they prevent the use
of key ' $end_of _t abl e' , asthisatom is used to indicate the end of the table. If possible, use functions mat ch,
mat ch_obj ect ,and sel ect for traversing tables.

foldl(Function, Acc@, Name) -> Acc | {error, Reason}
foldr(Function, AccO, Name) -> Acc | {error, Reason}
Types:

Name = tab_nane()

Function = fun((Object :: object(), AccIn) -> AccOut)

AccO = Acc = AccIn = AccOut = Reason = term()

CallsFunct i on on successive elements of table Nane together with an extraargument Accl n. The table elements
are traversed in unspecified order. Funct i on must return a new accumulator that is passed to the next call. Acc0
isreturned if the table is empty.

from ets(Name, EtsTab) -> ok | {error, Reason}
Types.
Name = tab_nanme()
EtsTab = ets:tab()
Reason = term()
Deletes all objects of table Nare and then inserts all the objects of the ETS table Et sTab. The objects are inserted

in unspecified order. Aset s: saf e_f i xt abl e/ 2 iscalled, the ETS table must be public or owned by the calling
process.

info(Name) -> InfolList | undefined
Types.

Name = tab_nane()

InfolList = [InfoTuple]

InfoTuple =
{file size, integer() >= 0} |
{filename, file:nanme()} |

{keypos, keypos()} |
{size, integer() >= 0} |

{type, type()}
Returns information about table Nane asalist of tuples:
e {file_size, integer() >= 0}} - Thefilesize, in bytes.
o {filenane, file:name()} - Thename of thefile where objects are stored
« {keypos, keypos()} - Thekey position.
e {size, integer() >= 0} - Thenumber of objects stored in the table.
« {type, type()} - Thetabletype.

info(Name, Item) -> Value | undefined
Types:

76 | Ericsson AB. All Rights Reserved.: STDLIB

dets

Name = tab_name()

Item =
access |
auto save |
bchunk format |
hash |
file size |
filename |
keypos |
memory |
no_keys |
no_objects |
no slots |
owner |
ram file |
safe fixed |
safe fixed monotonic time |
size |
type

Value = term()

Returns the information associated with | t emfor table Nane. In addition tothe {1 tem Val ue} pairs defined
fori nf o/ 1, thefollowing items are allowed:

{access, access()} - Theaccess mode.
{aut o_save, auto_save()} - Theautosaveinterval.

{bchunk format, binary()} - An opaque binary describing the format of the objects returned by
bchunk/ 2. The binary can be used asargumenttoi s_conpati bl e_chunk_format/ 2.

{hash, Hash} - Describes which BIF is used to calculate the hash values of the objects stored in the Dets
table. Possible values of Hash:

e phash - Impliesthat theer | ang: phash/ 2 BIF isused.

* phash2 - Impliesthat theer | ang: phash2/ 1 BIFis used.

{menory, integer() >= 0} - Thefilesize, inbytes. The samevalueisassociated withitemfi | e_si ze.
{no_keys, integer >= 0()} - Thenumber of different keys stored in the table.

{no_objects, integer >= 0()} - Thenumber of objects stored in the table.

{no_slots, {Mn, Used, Max}} - The number of sots of the table. M n is the minimum number of
slots, Used isthe number of currently used slots, and Max is the maximum number of dlots.

{owner, pid()} - Thepid of the process that handles requests to the Dets table.
{ram file, boolean()} - Whether thetableiskeptin RAM.

{safe_fixed_nonotonic_tine, Saf eFi xed} - If the table is fixed, Saf eFi xed is a tuple
{Fi xedAt Time, [{Pid, RefCount}]}.FixedAt Ti me is the time when the table was first fixed, and
Pi d isthe pid of the process that fixes the table Ref Count times. There can be any number of processesin the
list. If thetableis not fixed, Saf eFi xed istheatom f al se.

Fi xedAt Ti me corresponds to the result returned by er | ang: nonot oni c_t i me/ O at the time of fixation.
Theuseof saf e_fi xed_nonot oni c_ti ne is timewarp safe.

{safe fixed, SafeFixed} -Thesameas{safe fixed nonotonic_tine, SafeFixed} except
the format and value of Fi xedAt Ti ne.

Fi xedAt Ti me correspondsto theresult returned by er | ang: t i nest anp/ 0 at the time of fixation. Notice
that when the system uses single or multi time warp modes, this can produce strange results. This is because the

Ericsson AB. All Rights Reserved.: STDLIB | 77

dets

useof saf e_fi xed isnot timewarp safe. Timewarp safe code must usesaf e_fi xed_nonot oni c_ti ne
instead.

init table(Name, InitFun) -> ok | {error, Reason}
init table(Name, InitFun, Options) -> ok | {error, Reason}
Types.

Name = tab_nane()

InitFun = fun((Arg) -> Res)

Arg read | close

Res =
end of input |
{[object()], InitFun} |
{Data, InitFun} |
term()

Options = Option | [Option]

Option = {min no slots, no_slots()} | {format, term | bchunk}
Reason = term()

Data = binary() | tuple()

Replaces the existing objects of table Nane with objects created by calling the input function | ni t Fun, see below.
The reason for using this function rather than calling i nsert/ 2 isthat of efficiency. Notice that the input functions
are called by the process that handles requests to the Dets table, not by the calling process.

When called with argument r ead, function | ni t Fun isassumed to return end_of _i nput when thereisno more
input, or { Obj ect's, Fun},where Obj ect s isalist of objects and Fun isanew input function. Any other value
Val ue isreturnedasanerror {error, {init_fun, Value}}.Eachinputfunctioniscalled exactly once, and
if an error occurs, the last function is called with argument cl ose, the reply of which isignored.

If the table type is set and more than one object exists with a given key, one of the objects is chosen. This is not
necessarily thelast object with the given key in the sequence of objectsreturned by theinput functions. Avoid duplicate
keys, otherwise the file becomes unnecessarily fragmented. This holds also for duplicated objects stored in tables of
typebag.

It is important that the table has a sufficient number of dots for the objects. If not, the hash list starts to grow when
i nit_tabl e/ 2 returns, which significantly slows down access to the table for a period of time. The minimum
number of otsisset by theopen_fi |l e/ 2 optionmi n_no_sl ot s and returned by thei nf o/ 2itemno_sl ot s.
Seeasooptionni n_no_sl ot s below.

Argument Opt i ons isalist of { Key, Val} tuples, where the following values are allowed:

 {mn_no_slots, no_slots()} - Specifiesthe estimated number of different keysto be stored inthetable.
Theopen_fi | e/ 2 option with the same nameisignored, unlessthetableis created, in which case performance
can be enhanced by supplying an estimate when initializing the table.

o {format, Format} - Specifiestheformat of the objectsreturned by function| ni t Fun. If For mat ist erm
(the default), | ni t Fun is assumed to return alist of tuples. If For mat isbchunk, | ni t Fun is assumed to
return Dat a as returned by bchunk/ 2. This option overrides optionm n_no_sl ot s.

insert(Name, Objects) -> ok | {error, Reason}
Types:

78 | Ericsson AB. All Rights Reserved.: STDLIB

dets

Name = tab_name()
Objects = object() | [object()]
Reason = term()

Inserts one or more objects into the table Nane. If there already exists an object with a key matching the key of some
of the given objects and the table typeisset , the old object will be replaced.

insert new(Name, Objects) -> boolean() | {error, Reason}
Types.
Name = tab_name()
Objects = object() | [object()]
Reason = term()
Inserts one or more objects into table Nane. If there already exists some object with a key matching the key of any

of the specified objects, the tableis not updated and f al se isreturned. Otherwise the objects areinserted and t r ue
returned.

is compatible bchunk format(Name, BchunkFormat) -> boolean()
Types:
Name = tab_name()
BchunkFormat = binary()
Returns true if it would be possible to initidize table Nanme, using init_table/3 with option

{format, bchunk}, with objects read with bchunk/2 from some table T, such that calling
i nfo(T, bchunk_format) returnsBchunkFor mat .

is dets file(Filename) -> boolean() | {error, Reason}
Types:

Filename = file: nane()

Reason = term()

Returnst r ue if fileFi | enane isaDetstable, otherwisef al se.

lookup (Name, Key) -> Objects | {error, Reason}

Types:
Name = tab_name()
Key = term()

Objects = [object()]
Reason = term()
Returnsalist of all objects with key Key stored in table Nane, for example:

2> dets:open_file(abc, [{type, bag}l).
{ok,abc}

3> dets:insert(abc, {1,2,3}).

ok

4> dets:insert(abc, {1,3,4}).

ok

5> dets:lookup(abc, 1).
[{1,2,3},{1,3,4}]

Ericsson AB. All Rights Reserved.: STDLIB | 79

dets

If thetabletypeisset , thefunction returns either the empty list or alist with one object, as there cannot be more than
oneobject with agivenkey. If thetabletypeisbag ordupl i cat e_bag, thefunctionreturnsalist of arbitrary length.

Notice that the order of objects returned is unspecified. In particular, the order in which objects were inserted is not
reflected.

match(Continuation) ->
{[Match], Continuation2} |
'$end of table' |
{error, Reason}
Types:
Continuation =
Match = [term()

Reason = term()

Continuation2 = bindi ngs_cont ()
]

Matches some objects stored in a table and returns a non-empty list of the bindings matching a specified pattern
in some unspecified order. The table, the pattern, and the number of objects that are matched are al defined by
Cont i nuat i on, which has been returned by a previous call tomat ch/ 1 or mat ch/ 3.

When all table objects are matched, * $end_of _t abl e' isreturned.

match(Name, Pattern) -> [Match] | {error, Reason}
Types:
Name = tab_nane()
Pattern = pattern()
Match = [term()]
Reason = term()
Returns for each object of table Nane that matches Pat t er n alist of bindings in some unspecified order. For a

description of patterns, see et s: mat ch/ 2. If the keyposth element of Pat t er n is unbound, all table objects are
matched. If the keyposth element is bound, only the objects with the correct key are matched.

match(Name, Pattern, N) ->
{[Match], Continuation} |
'$end of table' |
{error, Reason}
Types.
Name = tab_nanme()
Pattern = pattern()
N = default | integer() >= 0
Continuation = bindings_cont ()
Match = [term()]
Reason = term()

Matches some or all objects of table Name and returns a non-empty list of the bindings that match Pat t er n in some
unspecified order. For adescription of patterns, seeet s: mat ch/ 2.

A tuple of the bindings and a continuation is returned, unless the table is empty, in which case' $end_of _t abl e’
isreturned. The continuation is to be used when matching further objects by calling mat ch/ 1.

If the keyposth element of Pat t er n is bound, all table objects are matched. If the keyposth element is unbound,
all table objects are matched, N objects at atime, until at |east one object matches or the end of the table is reached.

80 | Ericsson AB. All Rights Reserved.: STDLIB

dets

The default, indicated by giving N the value def aul t , isto let the number of objects vary depending on the sizes
of the objects. All objects with the same key are always matched at the same time, which implies that more than N
objects can sometimes be matched.

Thetableis awaysto be protected using saf e_f i xt abl e/ 2 before calling mat ch/ 3, otherwise errors can occur
when calling mat ch/ 1.

match delete(Name, Pattern) -> ok | {error, Reason}
Types:

Name = tab_name()

Pattern = pattern()

Reason = term()

Deletes all objects that match Pat t er n from table Narre. For a description of patterns, seeet s: mat ch/ 2.
If the keyposth element of Pat t er n isbound, only the objects with the correct key are matched.

match object(Continuation) ->
{Objects, Continuation2} |
'$end of table' |
{error, Reason}
Types:
Continuation = Continuation2 = object _cont ()
Objects = [object()]
Reason = term()
Returns a non-empty list of some objects stored in a table that match a given pattern in some unspecified order. The
table, the pattern, and the number of objects that are matched are all defined by Cont i nuat i on, which has been
returned by aprevious call tomat ch_obj ect/ 1 or mat ch_obj ect/ 3.

When all table objects are matched, * $end_of _t abl e' isreturned.

match object(Name, Pattern) -> Objects | {error, Reason}
Types:

Name = tab_name()

Pattern = pattern()

Objects = [object()]

Reason = term()

Returnsalist of all objectsof table Nane that match Pat t er n in some unspecified order. For adescription of patterns,
seeet s: match/ 2.

If the keyposth element of Pat t er n isunbound, all table objects are matched. If the keyposth element of Pat t er n
is bound, only the objects with the correct key are matched.

Using the mat ch_obj ect functions for traversing all table objects is more efficient than calling fi rst/ 1 and
next/2orslot/2

match object(Name, Pattern, N) ->
{Objects, Continuation} |
'$end of table' |
{error, Reason}

Types:

Ericsson AB. All Rights Reserved.: STDLIB | 81

dets

Name = tab_name()

Pattern = pattern()

N = default | integer() >= 0
Continuation = object_cont()
Objects = [object ()]

Reason = term()

Matches some or all objects stored in table Nane and returns a non-empty list of the objects that match Pat t er nin
some unspecified order. For a description of patterns, seeet s: mat ch/ 2.

A list of objects and a continuation is returned, unless the table is empty, in which case ' $end_of _t abl e' is
returned. The continuation is to be used when matching further objects by calling mat ch_obj ect/ 1.

If the keyposth element of Pat t er n is bound, all table objects are matched. If the keyposth element is unbound,
all table objects are matched, N objects at atime, until at |east one object matches or the end of the table is reached.
The default, indicated by giving Nthe value def aul t , isto let the number of objects vary depending on the sizes of
the objects. All matching objects with the same key are always returned in the same reply, which implies that more
than N objects can sometimes be returned.

Thetableisawaysto be protected using saf e _fi xt abl e/ 2 before calling mat ch_obj ect / 3, otherwise errors
can occur when calling mat ch_obj ect/ 1.

member(Name, Key) -> boolean() | {error, Reason}
Types.

Name = tab_nane()

Key = Reason = term()

Works like | ookup/ 2, but does not return the objects. Returnst r ue if one or more table elements has key Key,
otherwisef al se.

next (Name, Keyl) -> Key2 | '$end of table'

Types.
Name = tab_nane()
Keyl = Key2 = term()

Returns either the key following Keyl in table Nane according to the internal order of the table, or
' $end_of _t abl e' if thereisno next key.

If an error occurs, the processis exited with an error tuple{ error, Reason}.
To find thefirst key in the table, usefi rst/ 1.

open file(Filename) -> {ok, Reference} | {error, Reason}
Types:

Filename = fil e: nane()

Reference = reference()

Reason = term()

Opens an existing table. If the table is not properly closed, it is repaired. The returned reference is to be used as the
table name. This function is most useful for debugging purposes.

82 | Ericsson AB. All Rights Reserved.: STDLIB

dets

open file(Name, Args) -> {ok, Name} | {error, Reason}

Types:
Name = tab_name()
Args = [OpenArg]
OpenArg =

{access, access()} |
{auto_save, auto_save()} |
{estimated no objects, integer() >= 0} |
{file, file:nanme()} |
{max_no_slots, no_slots()} |
{min_no_slots, no_slots()} |
{keypos, keypos()} |
{ram_file, boolean()} |
{repair, boolean() | force} |
{type, type()}

Reason = term()

Opens atable. An empty Detstableis created if no file exists.

The atom Nane is the table name. The table name must be provided in all subsequent operations on the table. The
name can be used by other processes as well, and many processes can share one table.

If two processes open the same table by giving the same name and arguments, the table has two users. If one user
closes the table, it remains open until the second user closesiit.

Argument Ar gs isalist of { Key, Val} tuples, wherethe following values are allowed:

{access, access()} - Existing tables can be opened in read-only mode. A table that is opened in read-
only mode is not subjected to the automatic file reparation algorithm if it is later opened after a crash. Defaults
toread wite.

{aut o_save, auto_save()} - Theautosaveinterval. If theinterval isaninteger Ti me, thetableisflushed
to disk whenever it is not accessed for Ti me milliseconds. A table that has been flushed requires no reparation
when reopened after an uncontrolled emulator halt. If the interval isthe atom i nf i ni t y, autosave is disabled.
Defaults to 180000 (3 minutes).

{estimated_no_objects, no_slots()} -Equivaenttooptionm n_no_sl ot s.

{file, file:nanme()} - Thename of thefileto be opened. Defaults to the table name.
{max_no_slots, no_slots()} - Themaximum number of dotsto be used. Defaultsto 32 M, whichisthe
maximal value. Notice that a higher value can increase the table fragmentation, and a smaller value can decrease
the fragmentation, at the expense of execution time.

{m n_no_slots, no_slots()} -Application performance can be enhanced with this flag by specifying,
when the table is created, the estimated number of different keysto be stored in the table. Defaults to 256, which
is the minimum value.

{keypos, keypos()} - The position of the element of each object to be used as key. Defaults to 1. The
ability to explicitly state the key position is most convenient when we want to store Erlang records in which the
first position of the record is the name of the record type.

{ramfile, boolean()} - Whether thetableisto be keptin RAM. Keeping the table in RAM can sound
like an anomaly, but can enhance the performance of applications that open atable, insert a set of objects, and
then close the table. When the table is closed, its contents are written to the disk file. Defaultsto f al se.
{repair, Value} -Val ue canbeeither abool ean() or theatom f or ce. The flag specifiesif the Dets
server isto invoke the automatic file reparation algorithm. Defaultsto t r ue. If f al se is specified, no attempt
is made to repair the file, and { error, {needs_repair, FileNane}} isreturnedif the table must be
repaired.

Ericsson AB. All Rights Reserved.: STDLIB | 83

dets

Valuef or ce meansthat areparation is made even if the tableis properly closed. Thisisaseldom needed option.

Optionr epai r isignored if thetableis already open.
« {type, type()} - Thetabletype. Defaultstoset .

pid2name(Pid) -> {ok, Name} | undefined
Types:

Pid = pid()

Name = tab_name()

Returns the table name given the pid of a process that handles requests to atable, or undef i ned if thereis no such
table.

This function is meant to be used for debugging only.

repair_continuation(Continuation, MatchSpec) -> Continuation2
Types:

Continuation = Continuation2 = sel ect _cont ()

MatchSpec = mat ch_spec()

Thisfunction can be used to restore an opaque continuation returned by sel ect / 3 or sel ect / 1 if the continuation
has passed through external term format (been sent between nodes or stored on disk).

The reason for this function is that continuation terms contain compiled match specifications and therefore are
invalidated if converted to external term format. Given that the origina match specification is kept intact, the
continuation can be restored, meaning it can once again be used in subsequent sel ect/ 1 calls even though it has
been stored on disk or on another node.

For more information and examples, seetheet s(3) module.

Note:

This function is rarely needed in application code. It is used by application Mnesia to provide distributed
sel ect/ 3 andsel ect/ 1 sequences. A normal application would either use Mnesia or keep the continuation
from being converted to external format.

The reason for not having an external representation of compiled match specifications is performance. It can be
subject to change in future releases, while this interface remains for backward compatibility.

safe fixtable(Name, Fix) -> ok
Types:

Name = tab_name()

Fix = boolean()

If Fi x istrue, table Nane is fixed (once more) by the calling process, otherwise the table isreleased. The tableis
also released when a fixing process terminates.

If many processes fix atable, the table remains fixed until all processes have released it or terminated. A reference
counter is kept on a per process basis, and N consecutive fixes require N releases to release the table.

Itisnot guaranteed that callstof i r st/ 1, next / 2, or select and match functions work as expected even if the table
is fixed; the limited support for concurrency provided by the et s(3) module is not yet provided by Dets. Fixing a
table currently only disables resizing of the hash list of the table.

84 | Ericsson AB. All Rights Reserved.: STDLIB

dets

If objects have been added while the table was fixed, the hash list starts to grow when the table is released, which
significantly slows down access to the table for a period of time.

select(Continuation) ->
{Selection, Continuation2} |
'$end of table' |
{error, Reason}
Types:
Continuation = Continuation2 = sel ect _cont ()
Selection = [term()]
Reason = term()
Applies a match specification to some objects stored in a table and returns a non-empty list of the results. The table,

the match specification, and the number of objects that are matched are all defined by Cont i nuat i on, which is
returned by apreviouscall tosel ect/ 1 orsel ect/ 3.

When all objects of the table have been matched, ' $end_of _t abl e' isreturned.

select(Name, MatchSpec) -> Selection | {error, Reason}

Types:
Name = tab_name()
MatchSpec = mat ch_spec()
Selection = [term()]

Reason = term()

Returns the results of applying match specification Mat chSpec to al or some objects stored in table Nane. The
order of the objects is not specified. For a description of match specifications, see the ERTS User's Guide.

If the keyposth element of Mat chSpec is unbound, the match specification is applied to all objects of the table. If
the keyposth element is bound, the match specification is applied to the objects with the correct key(s) only.

Usingthesel ect functionsfor traversing all objects of atableismore efficient than callingf i r st/ 1 andnext/ 2
orslot/2.

select(Name, MatchSpec, N) ->
{Selection, Continuation} |
'$end of table' |
{error, Reason}

Types.
Name = tab_nanme()
MatchSpec = mat ch_spec()
N = default | integer() >= 0
Continuation = sel ect_cont()
Selection = [term()]
Reason = term()

Returns the results of applying match specification Mat chSpec to some or al objects stored in table Nane. The
order of the objects is not specified. For a description of match specifications, see the ERTS User's Guide.

A tuple of the results of applying the match specification and a continuation is returned, unless the table is empty, in
which case' $end_of _t abl e' isreturned. The continuation is to be used when matching more objects by calling
sel ect/ 1.

Ericsson AB. All Rights Reserved.: STDLIB | 85

dets

If the keyposth element of Mat chSpec isbound, the match specification is applied to al objects of the table with the
correct key(s). If the keyposth element of Mat chSpec isunbound, the match specification is applied to all objects of
thetable, N objects at atime, until at least one object matches or the end of the table is reached. The default, indicated
by giving Nthevaluedef aul t , isto let the number of objects vary depending on the sizes of the objects. All objects
with the same key are always handled at the same time, which implies that the match specification can be applied
to more than N objects.

Thetableisalwaysto be protected using saf e_f i xt abl e/ 2 beforecallingsel ect / 3, otherwise errors can occur
when calling sel ect/ 1.

select delete(Name, MatchSpec) -> N | {error, Reason}
Types:

Name = tab_name()

MatchSpec = mat ch_spec()

N = integer() >= 0

Reason = term()

Deletes each object from table Nane such that applying match specification Mat chSpec to the object returns value
t r ue. For adescription of match specifications, see the ERTS User's Guide. Returns the number of deleted objects.
If the keyposth element of Mat chSpec is bound, the match specification is applied to the objects with the correct
key(s) only.

slot(Name, I) -> '$end of table' | Objects | {error, Reason}
Types:

Name = tab_name()

I = integer() >= 0

Objects = [object()]

Reason = term()

The objects of atable are distributed among sl ots, starting with slot 0 and ending with slot n. Returnsthe list of objects
associated withslot | . If | >n,' $end_of tabl e' isreturned.

sync(Name) -> ok | {error, Reason}
Types.

Name = tab_nane()

Reason = term()

Ensuresthat all updates made to table Nane are written to disk. Thisaso appliesto tables that have been opened with
flagram fil e settotr ue. Inthiscase, the contents of the RAM file are flushed to disk.

Notice that the space management data structures kept in RAM, the buddy system, is also written to the disk. This
can take sometimeif the table is fragmented.

table(Name) -> QueryHandle
table(Name, Options) -> QueryHandle
Types:

86 | Ericsson AB. All Rights Reserved.: STDLIB

dets

Name = tab_name()
Options = Option | [Option]
Option = {n objects, Limit} | {traverse, TraverseMethod}
Limit = default | integer() >=1
TraverseMethod = first next | select | {select, match_spec()}
QueryHandle = gl c: query_handl e()
Returns a Query List Comprehension (QLC) query handle. The gl ¢(3) module provides a query language aimed

mainly for Mnesia, but ETS tables, Dets tables, and lists are also recognized by gl ¢ as sources of data. Calling
det s: t abl e/ 1, 2 isthe means to make Dets table Nane usableto gl c.

When there are only simple restrictions on the key position, gl ¢ usesdet s: | ookup/ 2 to look up the keys. When
that is not possible, the whole table istraversed. Optiont r aver se determines how thisis done:

e« first_next - Thetableistraversed onekey at atimeby callingdet s: first/1anddets: next/ 2.

« select - Thetableis traversed by caling det s: sel ect/ 3 and det s: sel ect/ 1. Option n_obj ect s
determines the number of objects returned (the third argument of sel ect/ 3). The match specification (the
second argument of sel ect / 3) isassembled by gl c:

« Simplefiltersare trandated into equivalent match specifications.

« More complicated filters must be applied to al objects returned by sel ect / 3 given amatch specification
that matches all objects.

« {select, match_spec()} - As for sel ect, the table is traversed by calling det s: sel ect/ 3 and
det s: sel ect/ 1. The difference is that the match specification is specified explicitly. This is how to state
match specifications that cannot easily be expressed within the syntax provided by gl c.

The following example uses an explicit match specification to traverse the table:

1> dets:open file(t, [1]),

ok dets:insert(t, [{1,a},{2,b},{3,c},{4,d}]),

MS ets:fun2ms (fun({X,Y}) when (X > 1) or (X < 5) -> {Y} end),
QH1 = dets:table(t, [{traverse, {select, MS}}]).

An example with implicit match specification:

2> QH2 = qlc:q([{Y} || {X,Y} <- dets:table(t), (X > 1) or (X <5)1]).

The latter example is equivalent to the former, which can be verified using function gl c: i nf o/ 1:

3> qlc:info(QH1) =:= qlc:info(QH2).
true

gl c: i nfo/ 1 returns information about a query handle. In this case identical information is returned for the two
query handles.

to ets(Name, EtsTab) -> EtsTab | {error, Reason}
Types.

Ericsson AB. All Rights Reserved.: STDLIB | 87

dets

Name = tab_name()
EtsTab = ets:tab()
Reason term()

Inserts the objects of the Dets table Nane into the ETS table Et sTab. The order in which the objects areinserted is
not specified. The existing objects of the ETS table are kept unless overwritten.

traverse(Name, Fun) -> Return | {error, Reason}
Types.
Name = tab_name()
Fun = fun((Object) -> FunReturn)
Object = object()
FunReturn =
continue | {continue, Val} | {done, Value} | OtherValue

Return = [term()] | OtherValue
Val = Value = OtherValue = Reason = term()

Applies Fun to each object stored in table Nane in some unspecified order. Different actions are taken depending on
the return value of Fun. The following Fun return values are allowed:

conti nue

Continueto perform thetraversal. For example, the following function can be used to print the contents of atable:

fun(X) -> io:format("~p~n", [X]), continue end.

{continue, Val}
Continue the traversal and accumulate Val . The following function is supplied to collect al objects of atable

inalist:
fun(X) -> {continue, X} end.

{done, Val ue}
Terminate the traversal and return [Val ue | Acc].
Any other value &t her Val ue returned by Fun terminates the traversal and is returned immediately.

update counter(Name, Key, Increment) -> Result

Types:
Name = tab_name()
Key = term()
Increment = {Pos, Incr} | Incr

Pos = Incr = Result = integer()

Updates the object with key Key stored in table Name of type set by adding | ncr to the element at the Pos:th
position. The new counter value is returned. If no position is specified, the element directly following the key is
updated.

88 | Ericsson AB. All Rights Reserved.: STDLIB

dets

This functions provides a way of updating a counter, without having to look up an object, update the object by
incrementing an element, and insert the resulting object into the table again.

See Also
ets(3),mesia(3),qlc(3)

Ericsson AB. All Rights Reserved.: STDLIB | 89

dict

dict

Erlang module

Thismodule provides aKey-Val ue dictionary. The representation of adictionary is not defined.

This module provides the same interface as the or ddi ct (3) module. One difference is that while this module
considers two keys as different if they do not match (=: =), or ddi ct considers two keys as different if and only if
they do not compare equal (==).

Data Types

dict(Key, Value)

Dictionary as returned by new/ 0.
dict() = dict (term(), term())

Exports

append(Key, Value, Dictl) -> Dict2
Types:
Dictl = Dict2 = dict (Key, Value)
Appends anew Val ue to the current list of values associated with Key .
See also section Notes.

append list(Key, VallList, Dictl) -> Dict2
Types.
Dictl = Dict2 = dict (Key, Value)
ValList = [Value]

Appendsalist of values Val Li st to the current list of values associated with Key. An exception is generated if the
initial value associated with Key isnot alist of values.

See also section Notes.

erase(Key, Dictl) -> Dict2
Types.
Dictl = Dict2 = dict (Key, Value)

Erases all items with a given key from adictionary.

fetch(Key, Dict) -> Value
Types:
Dict = dict (Key, Value)

Returns the value associated with Key in dictionary Di ct . This function assumes that Key is present in dictionary
Di ct, and an exception is generated if Key isnot in the dictionary.

See also section Notes.

90 | Ericsson AB. All Rights Reserved.: STDLIB

dict

fetch keys(Dict) -> Keys

Types.
Dict = dict (Key, Value :: term())
Keys = [Key]

Returnsalist of all keysin dictionary Di ct .

take(Key, Dict) -> {Value, Dictl} | error
Types:

Dict = Dictl = dict (Key, Value)

Key = Value = term()

This function returns value from dictionary and a new dictionary without this value. Returnser r or if thekey is not
present in the dictionary.

filter(Pred, Dictl) -> Dict2

Types.
Pred = fun((Key, Value) -> boolean())
Dictl = Dict2 = dict (Key, Value)

Di ct 2 isadictionary of al keysand valuesin Di ct 1 for which Pr ed(Key, Val ue) istrue.

find(Key, Dict) -> {ok, Value} | error
Types:
Dict = dict (Key, Value)
Searches for akey indictionary Di ct . Returns{ ok, Val ue}, where Val ue isthe value associated with Key, or
error if thekey isnot present in the dictionary.

See aso section Notes.

fold(Fun, AccO, Dict) -> Accl
Types.
Fun = fun((Key, Value, AccIn) -> AccOut)
Dict = dict (Key, Value)
AccO = Accl = AccIn = AccOut = Acc
Calls Fun on successive keys and values of dictionary Di ct together with an extra argument Acc (short for

accumulator). Fun must return a new accumulator that is passed to the next call. AccO is returned if the dictionary
is empty. The evaluation order is undefined.

from list(List) -> Dict
Types:
Dict di ct (Key, Value)
List = [{Key, Value}]
Convertsthe Key-Val ue list Li st todictionary Di ct .

is empty(Dict) -> boolean()
Types.

Ericsson AB. All Rights Reserved.: STDLIB | 91

dict

Dict = dict()

Returnst r ue if dictionary Di ct has no elements, otherwisef al se.

is key(Key, Dict) -> boolean()
Types:

Dict = dict (Key, Value :: term())
Testsif Key iscontained in dictionary Di ct .

map (Fun, Dictl) -> Dict2

Types:
Fun = fun((Key, Valuel) -> Value2)
Dictl = dict (Key, Valuel)
Dict2 = dict (Key, Value2)

Calls Fun on successive keys and values of dictionary Di ct 1 to return a new value for each key. The evauation
order is undefined.

merge(Fun, Dictl, Dict2) -> Dict3
Types:
Fun = fun((Key, Valuel, Value2) -> Value)
Dictl = dict (Key, Valuel)
Dict2 = dict (Key, Value2)
Dict3 di ct (Key, Value)
Merges two dictionaries, Di ct 1 and Di ct 2, to create a new dictionary. All the Key-Val ue pairs from both

dictionaries are included in the new dictionary. If a key occurs in both dictionaries, Fun is called with the key and
both values to return a new value. mer ge can be defined as follows, but is faster:

merge(Fun, D1, D2) ->
fold(fun (K, V1, D) ->
update(K, fun (V2) -> Fun(K, V1, V2) end, V1, D)
end, D2, D1).

new() -> dict()
Creates anew dictionary.

size(Dict) -> integer() >= 0
Types:
Dict = dict()
Returns the number of elementsin dictionary Di ct .

store(Key, Value, Dictl) -> Dict2
Types:

92 | Ericsson AB. All Rights Reserved.: STDLIB

dict

Dictl = Dict2 = dict (Key, Value)

Stores aKey-Val ue pair indictionary Di ct 2. If Key dready existsin Di ct 1, the associated value is replaced by
Val ue.

to list(Dict) -> List

Types:
Dict = dict (Key, Value)
List = [{Key, Value}]

Convertsdictionary Di ct to alist representation.

update(Key, Fun, Dictl) -> Dict2
Types:
Dictl = Dict2 = dict (Key, Value)
Fun = fun((Valuel :: Value) -> Value2 :: Value)

Updates avaue in adictionary by calling Fun on the value to get a new value. An exception is generated if Key is
not present in the dictionary.

update(Key, Fun, Initial, Dictl) -> Dict2
Types:
Dictl = Dict2 = dict (Key, Value)
Fun = fun((Valuel :: Value) -> Value2 :: Value)

Initial = Value

Updates avaluein adictionary by calling Fun on the value to get anew value. If Key isnot present in the dictionary,
Initial isstored asthefirst value. For example, append/ 3 can be defined as:

append(Key, Val, D) ->
update(Key, fun (0ld) -> Old ++ [Val] end, [Val], D).

update counter(Key, Increment, Dictl) -> Dict2
Types.

Dictl = Dict2 = dict (Key, Value)
Increment = number()

Adds | ncr enrent to the value associated with Key and stores this value. If Key is not present in the dictionary,
I ncr enent isstored asthefirst value.

This can be defined as follows, but is faster:

update counter(Key, Incr, D) ->
update(Key, fun (0ld) -> O0ld + Incr end, Incr, D).

Notes

Functions append and append_| i st areincluded so that keyed values can be stored in a list accumulator, for
example:

Ericsson AB. All Rights Reserved.: STDLIB | 93

dict

> DO = dict:new(),
D1 = dict:store(files, [], DO),
D2 = dict:append(files, f1, D1),
D3 = dict:append(files, f2, D2),
D4 = dict:append(files, f3, D3),

dict:fetch(files, D4).
[f1,f2,f3]

This saves the trouble of first fetching a keyed value, appending a new value to the list of stored values, and storing
the result.

Function f et ch isto be used if the key is known to be in the dictionary, otherwise function f i nd.

See Also
gb_trees(3),orddict(3)

94 | Ericsson AB. All Rights Reserved.: STDLIB

digraph

digraph

Erlang module

This module provides aversion of labeled directed graphs. What makes the graphs provided here non-proper directed
graphs is that multiple edges between vertices are allowed. However, the customary definition of directed graphsis
used here.

A directed graph (or just "digraph”) isapair (V, E) of afinite set V of vertices and afinite set E of directed
edges (or just "edges'). The set of edges E isasubset of V x V (the Cartesian product of V with itself).

In this module, V is alowed to be empty. The so obtained unique digraph is called the empty digraph. Both
vertices and edges are represented by unique Erlang terms.

Digraphs can be annotated with more information. Such information can be attached to the vertices and to the
edges of the digraph. An annotated digraph is called alabeled digraph, and the information attached to a vertex
or an edgeiscalled alabel. Labels are Erlang terms.

An edge e = (v, w) issaid to emanate from vertex v and to be incident on vertex w.
The out-degr ee of avertex isthe number of edges emanating from that vertex.
Thein-degree of avertex isthe number of edges incident on that vertex.

If an edge is emanating from v and incident on w, then w is said to be an out-neighbor of v, and v is said to
be an in-neighbor of w.

A path Pfrom v[1] to v[K] in adigraph (V, E) is a non-empty sequence v[1], v[2], ..., V[K] of verticesin V such
that thereisan edge (v[i],v[i+1]) inEfor 1<=i < k.

Thelength of path Pisk-1.

Path Pissimpleif all vertices are distinct, except that the first and the last vertices can be the same.

Path Pisacycleif the length of Pisnot zero and v[1] = v[K].

A loop isacycle of length one.

A simple cycleisapath that is both a cycle and simple.

An acyclic digraph isadigraph without cycles.

Data Types

d type() = d_cyclicity() | d_protection()
d cyclicity() = acyclic | cyclic

d protection() = private | protected
graph()

A digraph asreturned by new 0, 1.

edge()

label() = term()

vertex()

Exports

add edge(G, V1, V2) -> edge() | {error, add_edge_err _rsn()}
add edge(G, V1, V2, Label) -> edge() | {error, add_edge_err_rsn()}
add edge(G, E, V1, V2, Label) ->

Ericsson AB. All Rights Reserved.: STDLIB | 95

digraph

edge() | {error, add_edge_err_rsn()}

Types.
G = graph()
E = edge()

V1 = V2 = vertex()
Label = | abel ()
add _edge err_rsn() =
{bad edge, Path :: [vertex()]} | {bad vertex, V :: vertex()}

add_edge/ 5 creates (or modifies) edge E of digraph G, using Label asthe (new) label of the edge. The edge is
emanating from V1 and incident on V2. Returns E.

add_edge(G V1, V2, Label) isequivalenttoadd edge(G E, V1, V2, Label),whereEisa
created edge. The created edgeisrepresented by teem [$e' | N, where Nisan integer >=0.
add_edge(G V1, V2) isequivdenttoadd edge(G V1, V2, []).

If the edge would create acyclein an acyclic digraph, { error, {bad_edge, Path}} isreturned. If either of
V1 or V2 isnot avertex of digraph G {error, {bad _vertex, V}} isreturned,V =V1orV =V2.

add vertex(G) -> vertex()
add vertex(G, V) -> vertex()
add vertex(G, V, Label) -> vertex()

Types:
G = graph()
V = vertex()

Label = | abel ()
add_vert ex/ 3 creates(or modifies) vertex V of digraph G, using Label asthe (new) label of thevertex. ReturnsV.
add_vertex(G V) isequivdenttoadd _vertex(G V, []).

add_vert ex/ 1 creates a vertex using the empty list as label, and returns the created vertex. The created vertex is
represented by term [' $v' | N], where Nisan integer >= 0.

del edge(G, E) -> true

Types:
G = graph()
E = edge()
Deletes edge E from digraph G,

del edges(G, Edges) -> true
Types:

G = graph()

Edges = [edge()]
Deletesthe edgesin list Edges from digraph G

del path(G, V1, V2) -> true
Types:

96 | Ericsson AB. All Rights Reserved.: STDLIB

digraph

G = graph()

V1 = V2 = vertex()
Deletes edges from digraph G until there are no paths from vertex V1 to vertex V2.
A sketch of the procedure employed:

e Find an arbitrary simple path v[1], v[2], ..., V[K] fromV1 toV2 in G
* Removeal edges of Gemanating from v[i] and incident to v[i+1] for 1 <=i <k (including multiple edges).
* Repeat until thereis no path between V1 and V2.

del vertex(G, V) -> true

Types:
G = graph()
V = vertex()

Deletes vertex V from digraph G. Any edges emanating from V or incident on V are also del eted.

del vertices(G, Vertices) -> true
Types:

G = graph()

Vertices = [vertex()]
Deletesthe verticesinlist Ver t i ces from digraph G

delete(G) -> true
Types:
G = graph()

Deletes digraph G. This call is important as digraphs are implemented with ETS. There is no garbage collection of
ETS tables. However, the digraph is deleted if the process that created the digraph terminates.

edge(G, E) -> {E, V1, V2, Label} | false

Types.
G = graph()
E = edge()

V1 = V2 = vertex()
Label = | abel ()

Returns{E, V1, V2, Label}, wherelLabel isthelabel of edge E emanating from V1 and incident on V2 of
digraph G. If no edge E of digraph Gexists, f al se isreturned.

edges(G) -> Edges
Types:
G = graph()
Edges = [edge()]
Returns alist of al edges of digraph G, in some unspecified order.

edges (G, V) -> Edges
Types:

Ericsson AB. All Rights Reserved.: STDLIB | 97

digraph

G = graph()
V = vertex()
Edges = [edge()]
Returns alist of all edges emanating from or incident onV of digraph G, in some unspecified order.

get cycle(G, V) -> Vertices | false

Types:
G = graph()
V = vertex()
Vertices = [vertex(), ...]
If a simple cycle of length two or more exists through vertex V, the cycleisreturned asalist[V, ..., V] of

vertices. If aloop through V exists, theloop isreturned asalist [V] . If no cyclesthrough V exist, f al se isreturned.
get _pat h/ 3 isused for finding asimple cycle through V.

get path(G, V1, V2) -> Vertices | false

Types:
G = graph()
V1 = V2 = vertex()
Vertices = [vertex(), ...]
Triesto find asimple path from vertex V1 to vertex V2 of digraph G Returnsthe pathasalist[V1, ..., V2] of

vertices, or f al se if no simple path from V1 to V2 of length one or more exists.
Digraph Gistraversed in a depth-first manner, and the first found path is returned.

get short cycle(G, V) -> Vertices | false

Types:
G = graph()
V = vertex()
Vertices = [vertex(), ...]
Triestofind an asshort as possible simple cyclethrough vertex V of digraph G Returnsthecycleasalist[V, ..., V]

of vertices, or f al se if no simple cycle through V exists. Notice that aloop through Visreturned aslist[V, V].
get _short _pat h/ 3 isused for finding a simple cycle through V.

get short path(G, V1, V2) -> Vertices | false

Types:
G = graph()
V1 = V2 = vertex()
Vertices = [vertex(), ...]

Tries to find an as short as possible simple path from vertex V1 to vertex V2 of digraph G. Returns the path as alist
[V1, ..., V2] of vertices, or f al se if no simple path from V1 to V2 of length one or more exists.

Digraph Gistraversed in a breadth-first manner, and the first found path is returned.

in_degree(G, V) -> integer() >= 0
Types:

98 | Ericsson AB. All Rights Reserved.: STDLIB

digraph

G
v

Returns the in-degree of vertex V of digraph G

graph()
vertex()

in edges(G, V) -> Edges
Types:
G = graph()
V = vertex()
Edges = [edge()]
Returnsalist of al edgesincident on V of digraph G, in some unspecified order.

in _neighbours(G, V) -> Vertex

Types:
G = graph()
V = vertex()

Vertex = [vertex()]
Returnsalist of all in-neighbors of V of digraph G, in some unspecified order.

info(G) -> Infolist

Types:
G = graph()
InfolList =
[{cyclicity, Cyclicity :: d_cyclicity()} |
{memory, NoWords :: integer() >= 0} |
{protection, Protection :: d_protection()}]

d cyclicity() = acyclic | cyclic
d protection() = private | protected
Returnsalist of { Tag, Val ue} pairsdescribing digraph G. The following pairs are returned:

e {cyclicity, Cyclicity},whereCyclicityiscyclicoracyclic, according tothe optionsgiven
to new.
« {nmenory, NoWbrds}, where NoWbr ds isthe number of words allocated to the ETS tables.

« {protection, Protection},whereProtectionisprotectedorprivat e, accordingtotheoptions
givento new.

new() -> graph()
Equivalenttonew([]) .

new(Type) -> graph()
Types.

Ericsson AB. All Rights Reserved.: STDLIB | 99

digraph

Type = [d_type()]
d type() = d_cyclicity() | d_protection()
d cyclicity() = acyclic | cyclic
d protection() = private | protected
Returns an empty digraph with properties according to the optionsin Ty pe:
cyclic
Allows cyclesin the digraph (default).
acyclic
The digraph isto be kept acyclic.
protected
Other processes can read the digraph (default).
private
The digraph can be read and modified by the creating process only.
If an unrecognized type option T is specified or Type isnot aproper list, abadar g exception is raised.

no _edges(G) -> integer() >= 0
Types:

G = graph()
Returns the number of edges of digraph G

no vertices(G) -> integer() >= 0
Types:

G = graph()
Returns the number of vertices of digraph G

out degree(G, V) -> integer() >= 0

Types:
G = graph()
V = vertex()

Returns the out-degree of vertex V of digraph G

out edges(G, V) -> Edges
Types.
G = graph()
V = vertex()
Edges = [edge()]
Returns alist of all edges emanating from V of digraph G, in some unspecified order.

out neighbours(G, V) -> Vertices
Types.

100 | Ericsson AB. All Rights Reserved.: STDLIB

digraph

G = graph()
v vertex()
Vertices = [vertex()]

Returnsalist of all out-neighbors of V of digraph G, in some unspecified order.

vertex(G, V) -> {V, Label} | false

Types.
G = graph()
V = vertex()

Label = I abel ()

Returns{V, Label }, whereLabel isthelabel of the vertex V of digraph G, or f al se if no vertex V of digraph
Gexists.

vertices(G) -> Vertices
Types:
G = graph()
Vertices = [vertex()]
Returnsalist of all vertices of digraph G, in some unspecified order.

See Also
di graph_utils(3),ets(3)

Ericsson AB. All Rights Reserved.: STDLIB | 101

digraph_utils

digraph_utils

Erlang module

This module provides algorithms based on depth-first traversal of directed graphs. For basic functions on directed
graphs, seethedi gr aph(3) module.

A directed graph (or just "digraph™) isa pair (V, E) of afinite set V of vertices and afinite set E of directed
edges (or just "edges'). The set of edges E isasubset of V x V (the Cartesian product of V with itself).

Digraphs can be annotated with more information. Such information can be attached to the vertices and to the
edges of the digraph. An annotated digraph is called alabeled digraph, and the information attached to a vertex
or an edgeiscalled alabel.

An edge e = (v, w) issaid to emanate from vertex v and to be incident on vertex w.

If an edge is emanating from v and incident on w, then w is said to be an out-neighbor of v, and v is said to
be an in-neighbor of w.

A path P from v[1] to v[K] in adigraph (V, E) isanon-empty sequence v[1], v[2], ..., V[K] of verticesin V such
that thereisan edge (v[i],v[i+1]) inEfor 1<=i <k.

Thelength of path Pisk-1.

Path Pisacycleif the length of Pisnot zero and v[1] = v[K].

A loop isacycle of length one.

An acyclic digraph isadigraph without cycles.

A depth-first traversal of adirected digraph can be viewed as a process that visits all vertices of the digraph.
Initially, all verticesare marked asunvisited. Thetraversal startswith an arbitrarily chosen vertex, whichismarked
as visited, and follows an edge to an unmarked vertex, marking that vertex. The search then proceeds from that
vertex inthe samefashion, until thereisno edgeleading to an unvisited vertex. At that point the process backtracks,

and the traversal continues as long as there are unexamined edges. If unvisited vertices remain when all edges
from the first vertex have been examined, some so far unvisited vertex is chosen, and the process is repeated.

A partial ordering of aset Sisatransitive, antisymmetric, and reflexive relation between the objects of S.

The problem of topological sorting is to find a total ordering of Sthat is a superset of the partial ordering. A
digraph G = (V, E) is equivalent to arelation E on V (we neglect that the version of directed graphs provided
by the di gr aph module allows multiple edges between vertices). If the digraph has no cycles of length two or
more, the reflexive and transitive closure of E is apartia ordering.

A subgraph G' of G isadigraph whose vertices and edges form subsets of the vertices and edges of G.

G' is maximal with respect to a property P if all other subgraphs that include the vertices of G' do not have
property P.

A strongly connected component is amaximal subgraph such that there is a path between each pair of vertices.
A connected component isamaximal subgraph such that thereisapath between each pair of vertices, considering
all edges undirected.

An arborescenceis an acyclic digraph with avertex V, theroot, such that there is aunique path from V to every
other vertex of G.

A treeisan acyclic non-empty digraph such that thereis aunique path between every pair of vertices, considering
all edges undirected.

Exports

arborescence root(Digraph) -> no | {yes, Root}
Types:

102 | Ericsson AB. All Rights Reserved.: STDLIB

digraph_utils

Digraph = di graph: graph()
Root = di graph: vertex()
Returns{yes, Root} if Root istheroot of the arborescence Di gr aph, otherwise no.

components(Digraph) -> [Component]
Types:
Digraph = di graph: graph()
Component = [digraph: vertex()]

Returns alist of connected components.. Each component is represented by its vertices. The order of the vertices and
the order of the components are arbitrary. Each vertex of digraph Di gr aph occursin exactly one component.

condensation(Digraph) -> CondensedDigraph
Types:
Digraph = CondensedDigraph = di graph: graph()
Creates a digraph where the vertices are the strongly connected components of Di gr aph as returned by
strong_conponent s/ 1.If X and Y are two different strongly connected components, and vertices x and y exist

in X and Y, respectively, such that thereis an edge emanating from x and incident on y, then an edge emanating from
X andincidenton'Y iscreated.

The created digraph has the same type asDi gr aph. All vertices and edges have the default label [] .

Each cycleisincluded in some strongly connected component, which impliesthat atopological ordering of the created
digraph always exists.

cyclic strong components(Digraph) -> [StrongComponent]
Types:
Digraph = di graph: graph()
StrongComponent = [di graph: vertex()]
Returnsalist of strongly connected components. Each strongly component is represented by its vertices. The order of

the vertices and the order of the components are arbitrary. Only vertices that are included in some cyclein Di gr aph
are returned, otherwise the returned list is equal to that returned by st rong_conponent s/ 1.

is acyclic(Digraph) -> boolean()
Types:
Digraph = di graph: graph()
Returnst r ue if and only if digraph Di gr aph isacyclic.

is arborescence(Digraph) -> boolean()
Types:
Digraph = di graph: graph()
Returnst r ue if and only if digraph Di gr aph is an arborescence.

is tree(Digraph) -> boolean()
Types:

Ericsson AB. All Rights Reserved.: STDLIB | 103

digraph_utils

Digraph = di graph: graph()
Returnst r ue if and only if digraph Di gr aph isatree.

loop vertices(Digraph) -> Vertices
Types:
Digraph = di graph: graph()
Vertices = [digraph:vertex()]
Returnsalist of all verticesof Di gr aph that are included in some loop.

postorder(Digraph) -> Vertices
Types:
Digraph = di graph: graph()
Vertices = [di graph:vertex()]
Returns al vertices of digraph Di gr aph. The order is given by a depth-first traversal of the digraph, collecting

visited verticesin postorder. More precisely, the vertices visited while searching from an arbitrarily chosen vertex are
collected in postorder, and al those collected vertices are placed before the subsequently visited vertices.

preorder(Digraph) -> Vertices
Types:
Digraph = di graph: graph()
Vertices = [di graph:vertex()]

Returnsall verticesof digraph Di gr aph. Theorder isgiven by adepth-first traversal of the digraph, collecting visited
verticesin preorder.

reachable(Vertices, Digraph) -> Reachable
Types:

Digraph = di graph: graph()

Vertices = Reachable = [di graph: vertex()]

Returns an unsorted list of digraph vertices such that for each vertex in the list, there is a path in Di gr aph from
some vertex of Ver t i ces to the vertex. In particular, as paths can have length zero, the verticesof Verti ces are
included in the returned list.

reachable neighbours(Vertices, Digraph) -> Reachable
Types.

Digraph = di graph: graph()

Vertices = Reachable = [di graph: vertex()]

Returns an unsorted list of digraph vertices such that for each vertex in the list, thereisapath in Di gr aph of length
one or more from some vertex of Ver t i ces to the vertex. As a consequence, only those verticesof Ver t i ces that
are included in some cycle are returned.

reaching(Vertices, Digraph) -> Reaching
Types:

104 | Ericsson AB. All Rights Reserved.: STDLIB

digraph_utils

Digraph = di graph: graph()
Vertices = Reaching = [di graph: vertex()]
Returns an unsorted list of digraph vertices such that for each vertex in the list, there is a path from the vertex to

some vertex of Ver ti ces. In particular, as paths can have length zero, the vertices of Ver ti ces areincluded in
the returned list.

reaching neighbours(Vertices, Digraph) -> Reaching
Types.
Digraph = di graph: graph()
Vertices = Reaching = [di graph: vertex()]
Returns an unsorted list of digraph vertices such that for each vertex in the list, there is a path of length one or more

from the vertex to some vertex of Ver t i ces. Therefore only those verticesof Ver t i ces that areincluded in some
cycle are returned.

strong components(Digraph) -> [StrongComponent]
Types:
Digraph = di graph: graph()
StrongComponent = [digraph:vertex()]
Returns a list of strongly connected components. Each strongly component is represented by its vertices. The order

of the vertices and the order of the components are arbitrary. Each vertex of digraph Di gr aph occursin exactly one
strong component.

subgraph(Digraph, Vertices) -> SubGraph
subgraph(Digraph, Vertices, Options) -> SubGraph
Types:
Digraph = SubGraph = di graph: graph()
Vertices = [digraph:vertex()]
Options = [{type, SubgraphType} | {keep labels, boolean()}]
SubgraphType = inherit | [di graph:d_type()]
Creates a maximal subgraph of Di gr aph having as vertices those vertices of Di gr aph that are mentioned in
Verti ces.

If thevalue of optiont ype isi nheri t , whichisthe default, the type of Di gr aph isused for the subgraph as well.
Otherwise the option value of t ype isused asargument to di gr aph: new/ 1.

If thevalue of optionkeep_| abel s ist r ue, whichisthe default, the labels of verticesand edges of Di gr aph are
used for the subgraph aswell. If thevalueisf al se, defaultlabel [] isused for the vertices and edges of the subgroup.

subgraph(Di graph, Vertices) isequivaenttosubgraph(Di graph, Vertices, []).
If any of the arguments areinvalid, abadar g exception israised.

topsort(Digraph) -> Vertices | false
Types:

Ericsson AB. All Rights Reserved.: STDLIB | 105

digraph_utils

Digraph = di graph: graph()
Vertices = [di graph:vertex()]
Returns atopological ordering of the vertices of digraph Di gr aph if such an ordering exists, otherwisef al se. For
each vertex in the returned list, no out-neighbors occur earlier in thelist.
See Also
di graph(3)

106 | Ericsson AB. All Rights Reserved.: STDLIB

€pp

€pp

Erlang module

The Erlang code preprocessor includes functions that are used by the conpi | e module to preprocess macros and
include files before the parsing takes place.

The Erlang source file encoding is selected by acomment in one of thefirst two lines of the sourcefile. Thefirst string
matching the regular expression codi ng\ s*[: =]\ s* ([- a- zA- Z0- 9]) + selects the encoding. If the matching
string is not a valid encoding, it is ignored. The valid encodings are Lat i n- 1 and UTF- 8, where the case of the
characters can be chosen freely.

Examples:

%% For this file we have chosen encoding = Latin-1

%% -*- coding: latin-1 -*-

Data Types

macros() = [atom() | {atom(), term()}]
epp_handle() = pid()

Handle to the epp server.
source encoding() = latinl | utf8

Exports

close(Epp) -> ok
Types:

Epp = epp_handl e()
Closes the preprocessing of afile.

default encoding() -> source_encodi ng()
Returns the default encoding of Erlang source files.

encoding to string(Encoding) -> string()
Types:
Encoding = source_encodi ng()

Returns a string representation of an encoding. The string is recognized by read_encoding/ 1, 2,
read_encodi ng_from binary/ 1, 2,andset _encodi ng/ 1, 2 asavalid encoding.

Ericsson AB. All Rights Reserved.: STDLIB | 107

€pp

format _error(ErrorDescriptor) -> io_lib:chars()
Types:
ErrorDescriptor = term()

TakesanEr r or Descri pt or and returnsastring that describesthe error or warning. Thisfunction isusually called
implicitly when processing an Er r or | nf o structure (see section Error Information).

open(Options) ->
{ok, Epp} | {ok, Epp, Extra} | {error, ErrorDescriptor}

Types.
Options =
[{default _encoding, DefEncoding :: source_encoding()} |
{includes, IncludePath :: [DirectoryName :: file:nanme() 1} |
{macros, PredefMacros :: macros()} |
{name, FileName :: file:name()} |
extral

Epp = epp_handl e()
Extra = [{encoding, source_encodi ng() | none}]
ErrorDescriptor = term()

Opens afile for preprocessing.
If extraisspecifiedin Opti ons, thereturnvalueis{ ok, Epp, Extra} instead of { ok, Epp}.

open(FileName, IncludePath) ->
{ok, Epp} | {error, ErrorDescriptor}

Types:
FileName = fil e: nanme()
IncludePath = [DirectoryName :: file: name()]

Epp = epp_handl e()
ErrorDescriptor = term()

Equivalent to epp: open([{narme, FileNane}, {includes, |ncludePath}]).

open(FileName, IncludePath, PredefMacros) ->
{ok, Epp} | {error, ErrorDescriptor}

Types:
FileName = fil e: name()
IncludePath = [DirectoryName :: file:name()]

PredefMacros = macros()
Epp = epp_handl e()
ErrorDescriptor = term()

Equivalent to epp: open([{nane, Fi | eNane}, {i ncl udes, I ncl udePat h}, {macr os,
Pr edef Macros}]).

parse erl form(Epp) ->
{ok, AbsForm} |
{error, ErrorInfo} |
{warning, WarningInfo} |

108 | Ericsson AB. All Rights Reserved.: STDLIB

€pp

{eof, Line}
Types.
Epp = epp_handl e()
AbsForm = erl parse:abstract_form()
Line = erl _anno:line()
ErrorInfo = erl _scan:error_info() | erl _parse:error_info()
WarningInfo = warni ng_i nfo()
warning info() = {erl _anno:location(), module(), term()}

Returns the next Erlang form from the opened Erlang sourcefile. Tuple{ eof , Li ne} isreturned at the end of the
file. Thefirst form corresponds to an implicit attribute-fi |l e(Fi | e, 1) . , whereFi | e isthefile name.

parse file(FileName, Options) ->
{ok, [Forml} |
{ok, [Form], Extra} |
{error, OpenError}

Types:

FileName = file: nane()

Options =
[{includes, IncludePath :: [DirectoryName :: file:name() 1} |
{macros, PredefMacros :: macros()} |
{default _encoding, DefEncoding :: source_encoding()} |
extra]

Form =

erl _parse:abstract_form() | {error, ErrorInfo} | {eof, Line}
Line = erl _anno:line()
ErrorInfo = erl _scan:error_info() | erl_parse:error_info()
Extra = [{encoding, source_encoding() | none}]
OpenError = file:posix() | badarg | system limit
Preprocesses and parses an Erlang source file. Notice that tuple { eof , Li ne} returned at the end of the file is
included asa"form".

If extraisspecifiedin Opti ons, thereturnvalueis{ ok, [Form , Extra} insteadof {ok, [Forni}.

parse file(FileName, IncludePath, PredefMacros) ->
{ok, [Form]} | {error, OpenError}

Types:
FileName = file: nane()
IncludePath = [DirectoryName :: file:nanme()]

Form =
erl _parse:abstract_fornm() | {error, ErrorInfo} | {eof, Line}

PredefMacros = nmacros()

Line = erl _anno:line()

ErrorInfo = erl _scan:error_info() | erl_parse:error_info()

OpenError = file:posix() | badarg | system limit
Equivalent to epp: parse_fil e(Fil eNane, [{incl udes, I ncl udePat h}, {macr os,
Pr edef Macros}]).

Ericsson AB. All Rights Reserved.: STDLIB | 109

€pp

read encoding(FileName) -> source_encoding() | none
read encoding(FileName, Options) -> source_encoding() | none
Types:
FileName = fil e: nanme()
Options = [Option]
Option = {in_comment only, boolean()}
Read the encoding from afile. Returns the read encoding, or none if no valid encoding is found.

Option i n_conment _onl y ist rue by default, which is correct for Erlang source files. If set to f al se, the
encoding string does not necessarily have to occur in a comment.

read encoding from binary(Binary) -> source_encodi ng() | none
read encoding from binary(Binary, Options) ->
sour ce_encodi ng() | none

Types:

Binary = binary()

Options = [Option]

Option = {in comment only, boolean()}
Read the encoding from a binary. Returns the read encoding, or none if no valid encoding is found.

Option i n_conment _onl y ist rue by default, which is correct for Erlang source files. If set to f al se, the
encoding string does not necessarily have to occur in a comment.

set _encoding(File) -> source_encoding() | none
Types:
File = io:device()
Reads the encoding from an 1/0 device and sets the encoding of the device accordingly. The position of the 1/O device

referenced by Fi | e is not affected. If no valid encoding can be read from the I/O device, the encoding of the I/O
deviceis set to the default encoding.

Returns the read encoding, or none if no valid encoding is found.

set _encoding(File, Default) -> source_encoding() | none

Types:
Default = source_encodi ng()
File = i o:device()

Reads the encoding from an 1/0 device and sets the encoding of the device accordingly. The position of the 1/O device
referenced by Fi | e is not affected. If no valid encoding can be read from the I/O device, the encoding of the I/O
deviceis set to the encoding specified by Def aul t .

Returns the read encoding, or none if no valid encoding is found.

Error Information

Er r or I nf o isthe standard Er r or | nf o structure that is returned from all I/O modules. The format is as follows:

{ErrorLine, Module, ErrorDescriptor}

110 | Ericsson AB. All Rights Reserved.: STDLIB

€pp

A string describing the error is obtained with the following call:

Module: format error(ErrorDescriptor)

See Also

erl _parse(3)

Ericsson AB. All Rights Reserved.: STDLIB | 111

erl_anno

erl_anno

Erlang module

This module provides an abstract type that is used by the Erlang Compiler and its helper modules for holding data
such as column, line number, and text. The datatypeis a collection of annotations as described in the following.

The Erlang Token Scanner returns tokens with a subset of the following annotations, depending on the options:
col um
The column where the token begins.
| ocation
The line and column where the token begins, or just the line if the column is unknown.
t ext
The token's text.
From this, the following annotation is derived:
l'ine
The line where the token begins.
This module & so supports the following annotations, which are used by various modules:

file
A filename.
gener at ed

A Boolean indicating if the abstract code is compiler-generated. The Erlang Compiler does not emit warnings
for such code.

record

A Boolean indicating if the origin of the abstract code is a record. Used by Dialyzer to assign types to tuple
elements.

The functionscol um(),end_I ocation(),line(),l ocation(),andtext() intheerl _scan module
can be used for inspecting annotations in tokens.

The functions anno_fromtern(), anno_to_tern(), fold_anno(), map_anno(),
mapf ol d_anno(), and new_anno(), intheer| _par se module can be used for manipulating annotations in
abstract code.

Data Types
anno()
A collection of annotations.

anno_term() = term()

The term representing a collection of annotations. It iseither al ocat i on() or alist of key-value pairs.

112 | Ericsson AB. All Rights Reserved.: STDLIB

erl_anno

column() = integer() >=1

line() = integer() >= 0

location() =1line() | {line(), colum()}
text() = string()

Exports

column(Anno) -> colum() | undefined
Types:

Anno = anno()

column() = integer() >=1
Returns the column of the annotations Anno.

end location(Anno) -> location() | undefined

Types.
Anno = anno()
location() = 1line() | {line(), colum()}

Returns the end location of the text of the annotations Anno. If thereis no text, undef i ned isreturned.

file(Anno) -> filenanme() | undefined
Types:

Anno = anno()

filename() = file:filenanme_all ()

Returns the filename of the annotations Anno. If thereis no filename, undef i ned isreturned.

from term(Term) -> Anno

Types:
Term = anno_term)
Anno = anno()

Returns annotations with representation Term.
Seealsoto_term().

generated(Anno) -> generated()
Types:

Anno = anno()

generated() = boolean()

Returnst r ue if annotations Anno is marked as generated. The default isto return f al se.

is anno(Term) -> boolean()
Types:
Term = any()
Returnst r ue if Termisacollection of annotations, otherwisef al se.

Ericsson AB. All Rights Reserved.: STDLIB | 113

erl_anno

line(Anno) -> line()
Types.

Anno = anno()

line() = integer() >= 0
Returns the line of the annotations Anno.

location(Anno) -> location()

Types:
Anno = anno()
location() =1line() | {line(), colum()}

Returns the location of the annotations Anno.

new(Location) -> anno()

Types.
Location = I ocation()
location() = line() | {line(), colum()}

Creates anew collection of annotations given alocation.

set file(File, Anno) -> Anno
Types:
File = fil ename()
Anno = anno()
filename() = file:filenanme_all ()

Modifies the filename of the annotations Anno.

set generated(Generated, Anno) -> Anno
Types:

Generated = generated()

Anno = anno()

generated() = boolean()

Modifies the generated marker of the annotations Anno.

set line(Line, Anno) -> Anno
Types:

Line = line()

Anno = anno()

line() = integer() >= 0
Modifies the line of the annotations Anno.

set location(Location, Anno) -> Anno
Types:

114 | Ericsson AB. All Rights Reserved.: STDLIB

erl_anno

Location = l ocation()
Anno = anno()
location() = 1line() | {line(), colum()}

Modifies the location of the annotations Anno.

set record(Record, Anno) -> Anno
Types.

Record = record()

Anno = anno()

record() = boolean()

Modifies the record marker of the annotations Anno.

set text(Text, Anno) -> Anno
Types.

Text = text()

Anno = anno()

text() = string()

Modifies the text of the annotations Anno.

text (Anno) -> text() | undefined
Types.

Anno = anno()

text() = string()

Returns the text of the annotations Anno. If thereis no text, undef i ned isreturned.

to term(Anno) -> anno_term()
Types:
Anno = anno()
Returns the term representing the annotations Anno.

See dso from_termy).

See Also

erl _parse(3),erl_scan(3)

Ericsson AB. All Rights Reserved.: STDLIB | 115

erl_eval

erl_eval

Erlang module

This module provides an interpreter for Erlang expressions. The expressions are in the abstract syntax as returned by
er| _par se, the Erlang parser, or i o.

Data Types

bindings() = [{name(), val ue() }]
binding struct() = orddict: orddict()

A binding structure.

expression() = erl _parse: abstract_expr()
expressions() = [erl| _parse: abstract_expr()]

Asreturned by er| _parse: parse_exprs/1or io:parse_erl_exprs/2.
expression list() = [expression()]
func spec() =

{Module :: module(), Function :: atom()} | function()
1fun_eval handler() =
fun((Name :: atom(),
Arguments :: expression_list(),
Bindings :: binding_struct()) ->
{value,
Value :: val ue(),

NewBindings :: binding_struct()})

1fun_value_handler() =
fun((Name :: atom(), Arguments :: [term()]) ->
Value :: value())

local function handler() =
{value, |fun_value_handler()} |
{eval, | fun_eval _handler()} |
none

Further described in section Local Function Handler in this module

name() = term()

nlfun_handler() =
fun((FuncSpec :: func_spec(), Arguments :: [term()]) -> term())

non_local function handler() = {value, nlfun_handler()} | none
Further described in section Non-Local Function Handler in this module.
value() = term()

Exports

add binding(Name, Value, BindingStruct) -> binding_struct()
Types.

116 | Ericsson AB. All Rights Reserved.: STDLIB

erl_eval

Name = nane()
Value = val ue()
BindingStruct = bi ndi ng_struct ()

Adds binding Nane=Val ue to Bi ndi ngSt r uct . Returns an updated binding structure.

binding(Name, BindingStruct) -> {value, value()} | unbound
Types.

Name = nane()

BindingStruct = bi ndi ng_struct()

Returns the binding of Name in Bi ndi ngSt ruct .

bindings(BindingStruct :: binding_struct()) -> bindings()
Returnsthelist of bindings contained in the binding structure.

del binding(Name, BindingStruct) -> binding_struct()
Types.

Name = nane()

BindingStruct = bi ndi ng_struct()

Removes the binding of Narme in Bi ndi ngSt r uct . Returns an updated binding structure.

expr(Expression, Bindings) -> {value, Value, NewBindings}
expr(Expression, Bindings, LocalFunctionHandler) ->
{value, Value, NewBindings}
expr(Expression,
Bindings,
LocalFunctionHandler,
NonLocalFunctionHandler) ->
{value, Value, NewBindings}
expr(Expression,
Bindings,
LocalFunctionHandler,
NonLocalFunctionHandler,
ReturnFormat) ->
{value, Value, NewBindings} | Value

Types.
Expression = expression()
Bindings = bi ndi ng_struct ()
LocalFunctionHandler = | ocal _function_handl er ()
NonLocalFunctionHandler = non_l ocal _functi on_handl er ()
ReturnFormat = none | value
Value = val ue()
NewBindings = bi ndi ng_struct()
Evaluates Expressi on with the set of bindings Bi ndi ngs. Expression

is an expression

in

abstract syntax. For an explanation of when and how to use arguments Local Functi onHandl er and

Ericsson AB. All Rights Reserved.: STDLIB | 117

erl_eval

NonLocal Functi onHandl er, see sections Local Function Handler and Non-Local Function Handler in this
module.

Returns{ val ue, Val ue, NewBi ndi ngs} by default. If Ret ur nFor mat isval ue, only Val ue isreturned.

expr list(ExpressionList, Bindings) -> {ValuelList, NewBindings}
expr list(ExpressionList, Bindings, LocalFunctionHandler) ->
{ValuelList, NewBindings}
expr list(ExpressionlList,
Bindings,
LocalFunctionHandler,
NonLocalFunctionHandler) ->
{ValuelList, NewBindings}

Types.
ExpressionList = expression_list()
Bindings = bi ndi ng_struct()
LocalFunctionHandler = | ocal _function_handl er ()
NonLocalFunctionHandler = non_Il ocal function_handl er ()
ValueList = [val ue()]
NewBindings = bi ndi ng_struct ()
Evaluates a list of expressionsin parallel, using the same initial bindings for each expression. Attempts are made to

merge the bindings returned from each evaluation. Thisfunctionisuseful inLocal Funct i onHandl er , seesection
Local Function Handler in this module.

Returns{ Val ueLi st, NewBi ndi ngs}.

exprs(Expressions, Bindings) -> {value, Value, NewBindings}

exprs(Expressions, Bindings, LocalFunctionHandler) ->
{value, Value, NewBindings}

exprs(Expressions,
Bindings,
LocalFunctionHandler,
NonLocalFunctionHandler) ->
{value, Value, NewBindings}

Types.

Expressions = expressions()

Bindings = bi ndi ng_struct ()

LocalFunctionHandler = | ocal _function_handl er ()

NonLocalFunctionHandler = non_l ocal _function_handl er ()

Value = val ue()

NewBindings = bi ndi ng_struct ()
Evaluates Expr essi ons with the set of bindings Bi ndi ngs, where Expr essi ons isa sequence of expressions
(in abstract syntax) of a type that can be returned by i o: parse_er| _exprs/ 2. For an explanation of when

and how to use arguments Local Funct i onHandl er and NonLocal Functi onHandl er, see sections Local
Function Handler and Non-Local Function Handler in this module.

Returns{ val ue, Val ue, NewBi ndi ngs}

118 | Ericsson AB. All Rights Reserved.: STDLIB

erl_eval

new bindings() -> binding_struct()
Returns an empty binding structure.

Local Function Handler

During evaluation of a function, no calls can be made to local functions. An undefined function error would be
generated. However, the optional argument Local Funct i onHandl er canbeusedtodefineafunctionthatiscalled
when thereisacall to alocal function. The argument can have the following formats:

{val ue, Func}
Thisdefines alocal function handler that is called with:

Func(Name, Arguments)

Nane is the name of the local function (an atom) and Ar gunent s is alist of the evaluated arguments. The
function handler returns the value of the local function. In this case, the current bindings cannot be accessed. To
signal an error, the function handler callsexi t / 1 with a suitable exit value.

{eval , Func}
Thisdefines alocal function handler that is called with:

Func (Name, Arguments, Bindings)

Nane is the name of the local function (an atom), Ar gunent s is alist of the unevaluated arguments, and
Bi ndi ngs arethe current variable bindings. The function handler returns:

{value,Value,NewBindings}

Val ue isthe value of thelocal function and NewBi ndi ngs are the updated variable bindings. In this case, the
function handler must itself evaluate all the function arguments and manage the bindings. To signal an error, the
function handler callsexi t / 1 with asuitable exit value.

none
Thereisno loca function handler.

Non-Local Function Handler

Theoptional argument NonLocal Funct i onHandl er canbeusedtodefineafunctionthatiscalledinthefollowing
Cases.

* A functional object (fun) is called.

e A built-in function is called.

* Afunctioniscalled using the M F syntax, where Mand F are atoms or expressions.
« Anoperator Op/ Aiscaled (thisishandled asacall to functioner | ang: Op/ A).

Exceptionsarecallstoer | ang: appl y/ 2, 3; neither of thefunction handlersare called for such calls. The argument
can have the following formats:

{val ue, Func}

This defines a non-local function handler that is called with:

Ericsson AB. All Rights Reserved.: STDLIB | 119

erl_eval

Func (FuncSpec, Arguments)

Func Spec is the name of the function on the form { Modul e, Functi on} or afun, and Ar gunent s isa
list of the evaluated arguments. The function handler returns the value of the function. To signal an error, the
function handler callsexi t / 1 with asuitable exit value.

none
There is no non-local function handler.

Note:

For calssuch aser | ang: appl y(Fun, Args) or erl ang: appl y(Mdul e, Function, Args),
the call of the non-loca function handler corresponding to the call to erl ang: appl y/ 2, 3 itself
(Func({erl ang, apply}, [Fun, Args]) orFunc({erl ang, apply}, [Modul e, Functi on,
Ar gs])) never takes place.

The non-local function handler is however caled with the evaluated arguments of the call to
erl ang: appl y/ 2, 3: Func(Fun, Args) or Func({Mdul e, Function}, Args) (assuming that
{Modul e, Function} isnot{erl ang, apply}).

Calls to functions defined by evaluating fun expressions"fun ... end" are aso hidden from non-local
function handlers.

The non-local function handler argument is probably not used as frequently as the local function handler argument. A
possible useisto cal exi t / 1 on callsto functions that for some reason are not allowed to be called.

Known Limitation

Undocumented functions in this module are not to be used.

120 | Ericsson AB. All Rights Reserved.: STDLIB

erl_expand_records

erl_expand_records

Erlang module

This module expands records in a module.

Exports

module(AbsForms, CompileOptions) -> AbsForms2

Types:
AbsForms = AbsForms2 = [erl| parse: abstract_forn()]
CompileOptions = [conpil e:option()]

Expands all records in a module to use explicit tuple operations and adds explicit module names to cals to BIFs and
imported functions. The returned module has no references to records, attributes, or code.

See Also
Section The Abstract Format in ERTS User's Guide.

Ericsson AB. All Rights Reserved.: STDLIB | 121

erl_id_trans

erl_id_trans

Erlang module

This module performs an identity parse transformation of Erlang code. It is included as an example for users who
wants to write their own parse transformers. If option { par se_t r ansf or m Modul e} is passed to the compiler,
auser-written function par se_t ransf or nf 2 is called by the compiler before the code is checked for errors.

Exports

parse_transform(Forms, Options) -> Forms

Types:
Forms = [erl _parse:abstract_forn() | erl_parse:form.info()]
Options = [conpile:option()]

Performs an identity transformation on Erlang forms, as an example.

Parse Transformations

Parse transformations are used if a programmer wants to use Erlang syntax, but with different semantics. The original
Erlang code is then transformed into other Erlang code.

Note:

Programmers are strongly advised not to engage in parse transformations. No support is offered for problems
encountered.

See Also
erl _parse(3),conpile(3)

122 | Ericsson AB. All Rights Reserved.: STDLIB

erl_internal

erl_internal

Erlang module

This module defines Erlang BIFs, guard tests, and operators. This module is only of interest to programmers who
manipulate Erlang code.

Exports

add predefined functions(Forms) -> UpdatedForms

Types:
Forms = [erl _parse:abstract_form() | erl_parse:form.info()]
UpdatedForms =

[er] _parse:abstract_form() | erl_parse:forminfo()]

Addsto For ns the code for the standard pre-defined functions (such as modul e_i nf o/ 0) that are to be included
in every module.

arith op(OpName, Arity) -> boolean()
Types:
OpName = atom()
Arity = arity()
Returnst r ue if OpNane/ Ari t y isan arithmetic operator, otherwisef al se.

bif(Name, Arity) -> boolean()
Types:
Name = atom()
Arity = arity()
Returnst r ue if Nane/ Ari t y isan Erlang BIF that is automatically recognized by the compiler, otherwisef al se.

bool op(OpName, Arity) -> boolean()
Types:
OpName = atom()
Arity = arity()
Returnst r ue if OpNane/ Ari t y isaBoolean operator, otherwisef al se.

comp _op(OpName, Arity) -> boolean()
Types:

OpName = atom()

Arity = arity()

Returnst r ue if OpNamne/ Ari t y isacomparison operator, otherwisef al se.

guard bif(Name, Arity) -> boolean()
Types:

Ericsson AB. All Rights Reserved.: STDLIB | 123

erl_internal

Name = atom()
Arity = arity()
Returnst r ue if Nane/ Ari t y isan Erlang BIF that is allowed in guards, otherwisef al se.

list op(OpName, Arity) -> boolean()
Types:
OpName = atom()
Arity = arity()
Returnst r ue if OpNamne/ Ari ty isalist operator, otherwisef al se.

op _type(OpName, Arity) -> Type
Types:
OpName = atom()
Arity = arity()
Type = arith | bool | comp | list | send
Returns the Type of operator that OpNane/ Ari t y belongs to, or generates af unct i on_cl ause error if it is
not an operator.

send op(OpName, Arity) -> boolean()
Types:
OpName = atom()
Arity = arity()
Returnst r ue if OpNane/ Ari t y isasend operator, otherwisef al se.

type test(Name, Arity) -> boolean()
Types:
Name = atom()
Arity = arity()
Returnst r ue if Nane/ Ari t y isavalid Erlang type test, otherwisef al se.

124 | Ericsson AB. All Rights Reserved.: STDLIB

erl_lint

erl_lint

Erlang module

This module is used to check Erlang code for illegal syntax and other bugs. It aso warns against coding practices
that are not recommended.

The errors detected include:

* Redefined and undefined functions

e Unbound and unsafe variables

e lllegal record use

The warnings detected include:

e Unused functions and imports

e Unused variables

* Variablesimported into matches

e Variablesexported fromi f /case/r ecei ve

* Variables shadowed in funs and list comprehensions
Some of the warnings are optional, and can be turned on by specifying the appropriate option, described below.

The functions in this module are invoked automatically by the Erlang compiler. There is no reason to invoke these
functions separately unless you have written your own Erlang compiler.

Data Types

error_info() = {erl _anno:line(), module(), error_description()}
error_description() = term()

Exports

format error(ErrorDescriptor) -> io_lib:chars()
Types:
ErrorDescriptor = error_description()

Takesan Er r or Descri pt or and returnsastring that describesthe error or warning. Thisfunctionisusually called
implicitly when processing an Er r or | nf o structure (see section Error Information).

is guard test(Expr) -> boolean()
Types:
Expr = erl _parse: abstract_expr()

Tests if Expr is alegal guard test. Expr is an Erlang term representing the abstract form for the expression.
erl _parse: parse_exprs(Tokens) can beusedto generate alist of Expr .

module(AbsForms) -> {ok, Warnings} | {error, Errors, Warnings}

module(AbsForms, FileName) ->
{ok, Warnings} | {error, Errors, Warnings}

module(AbsForms, FileName, CompileOptions) ->

Ericsson AB. All Rights Reserved.: STDLIB | 125

erl_lint

{ok, Warnings} | {error, Errors, Warnings}

Types:
AbsForms = [erl _parse:abstract_form() | erl_parse:form.info()]
FileName = atom() | string()

CompileOptions = [conpile:option()]

Warnings = [{file:filenane(), [ErrorInfo]}]

Errors = [{FileName2 :: file:filename(), [ErrorInfol}]
ErrorInfo = error_info()

Checks all the formsin amodule for errors. It returns:
{ ok, Var ni ngs}

There are no errorsin the module.
{error, Errors, Vr ni ngs}

There are errorsin the module.

Asthis moduleis of interest only to the maintainers of the compiler, and to avoid the same description in two places,
the elements of Opt i ons that control the warnings are only described in the conpi | e('3) module.

AbsFor ns of amodule, which comes from afile that is read through epp, the Erlang preprocessor, can come from
many files. This meansthat any referencesto errors must include the filename, seethe epp(3) module or parser (see
theer| _par se(3) module). The returned errors and warnings have the following format:

[{,[1}]

The errors and warnings are listed in the order in which they are encountered in the forms. The errors from one file
can therefore be split into different entriesin the list of errors.

Error Information

Er r or I nf o isthe standard Er r or | nf o structure that is returned from all I/O modules. The format is as follows:

{ErrorLine, Module, ErrorDescriptor}

A string describing the error is obtained with the following call:

Module: format error(ErrorDescriptor)

See Also
epp(3),erl _parse(3)

126 | Ericsson AB. All Rights Reserved.: STDLIB

erl_parse

erl_parse

Erlang module

This module is the basic Erlang parser that converts tokens into the abstract form of either forms (that is, top-level
constructs), expressions, or terms. The Abstract Format is described in the ERTS User's Guide. Notice that atoken list
must end with the dot token to be acceptable to the parse functions (seethe er | _scan(3)) module.

Data Types

abstract clause()

Abstract form of an Erlang clause.
abstract expr()

Abstract form of an Erlang expression.
abstract form()

Abstract form of an Erlang form.
abstract type()

Abstract form of an Erlang type.

erl parse tree() =
abstract _cl ause() |
abstract _expr() |
abstract _fornm() |
abstract _type()

error _description() = term()
error_info() = {erl _anno:line(), module(), error_description()}

form_info() =
{eof, erl_anno:line()} |
{error, erl_scan:error_info() | error_info()} |
{warning, erl_scan:error_info() | error_info()}

Tuples{error, error_info()} and{warning, error_info()},dencting syntacticaly incorrect forms
andwarnings,and{ eof , |i ne() }, denoting an end-of-stream encountered before acompl eteform had been parsed.

token() = erl _scan:token()

Exports

abstract(Data) -> AbsTerm
Types:

Data = term()

AbsTerm = abstract_expr()

Converts the Erlang data structure Dat a into an abstract form of type AbsTer m This function is the inverse of
nornal i se/ 1.

erl _parse:abstract (T) isequivdenttoer| parse: abstract(T, 0).

Ericsson AB. All Rights Reserved.: STDLIB | 127

erl_parse

abstract(Data, Options) -> AbsTerm
Types.
Data = term()
Options = Line | [Option]
Option = {line, Line} | {encoding, Encoding}
Encoding = latinl | unicode | utf8 | none | encodi ng_func()
Line = erl _anno:line()
AbsTerm = abstract _expr()
encoding func() = fun((integer() >= 0) -> boolean())

Converts the Erlang data structure Dat a into an abstract form of type AbsTer m
Option Li ne isthelineto be assigned to each node of AbsTer m

Option Encodi ng isused for selecting whichinteger liststo be considered asstrings. Thedefault isto usethe encoding
returned by function epp: def aul t _encodi ng/ 0. Vaue none means that no integer lists are considered as
strings. encodi ng_f unc() is called with one integer of alist at atime; if it returnst r ue for every integer, the
list is considered a string.

anno_from term(Term) -> erl_parse_tree() | form.nfo()
Types:
Term = term()
Assumes that Ter mis a term with the same structure as a er | _par se tree, but with terms, say T, where a

er| _par se tree has collections of annotations. Returns aer | _par se tree where each term T is replaced by the
valuereturned by erl _anno: from tern(T). Theterm Ter mistraversed in a depth-first, left-to-right fashion.

anno_to term(Abstr) -> term()
Types:
Abstr = erl _parse_tree() | form.info()
Returns a term where each collection of annotations Anno of the nodes of theer | _par se tree Abst r isreplaced

by the term returned by erl _anno:to_tern{Anno). Theerl| parse treeistraversed in a depth-first, left-
to-right fashion.

fold anno(Fun, AccO, Abstr) -> Accl
Types:
Fun = fun((Anno, AccIn) -> AccOut)
Anno erl _anno: anno()

AccO = Accl = AccIn = AccOut = term()
Abstr = erl _parse_tree() | form.info()

Updates an accumulator by applying Fun on each collection of annotationsof theer | _par se tree Abst r . Thefirst
call to Fun has Accl n asargument, the returned accumulator AccQut is passed to the next call, and so on. Thefinal
value of the accumulator isreturned. Theer | _par se treeistraversed in adepth-first, left-to-right fashion.

format error(ErrorDescriptor) -> Chars
Types:
ErrorDescriptor = error_description()
Chars = [char() | Chars]

128 | Ericsson AB. All Rights Reserved.: STDLIB

erl_parse

Usesan Er r or Descri pt or and returns a string that describes the error. This function is usually called implicitly
when an Er r or | nf o structure is processed (see section Error Information).

map_anno(Fun, Abstr) -> NewAbstr
Types:
Fun = fun((Anno) -> NewAnno)

)
Anno = NewAnno = erl| _anno: anno()
Abstr = NewAbstr = erl _parse_tree() | form.info()

Modifies the er | _par se tree Abst r by applying Fun on each collection of annotations of the nodes of the
erl _parsetree. Theer| _par se treeistraversed in adepth-first, left-to-right fashion.

mapfold anno(Fun, Acc@®, Abstr) -> {NewAbstr, Accl}
Types:
Fun = fun((Anno, AccIn) -> {NewAnno, AccOut})

Anno = NewAnno = erl| _anno: anno()
AccO = Accl = AccIn = AccOut = term()
Abstr = NewAbstr = erl _parse_tree() | form.info()

Modifies the er | _par se tree Abst r by applying Fun on each collection of annotations of the nodes of the
erl _par se tree, while at the same time updating an accumulator. The first call to Fun has Accl n as second
argument, the returned accumulator AccQut ispassed to the next call, and so on. Themodifieder | _par se treeand
thefinal value of the accumulator arereturned. Theer | _par se treeistraversed in adepth-first, left-to-right fashion.

new anno(Term) -> Abstr
Types:
Term = term()
Abstr = erl _parse_tree() | form.info()
Assumesthat Ter misaterm with the sasme structureasaer | _par se tree, but with locationswhereaer | _par se

tree has collections of annotations. Returnsaer | _par se treewhereeachlocation L isreplaced by the value returned
by er| _anno: new(L) . Theterm Ter mistraversed in a depth-first, left-to-right fashion.

normalise(AbsTerm) -> Data
Types.
AbsTerm = abstract _expr()
Data = term()

Convertsthe abstract form Abs Ter mof aterm into a conventional Erlang data structure (that is, the term itself). This
functionistheinverse of abstract/ 1.

parse_exprs(Tokens) -> {ok, ExprList} | {error, ErrorInfo}
Types:

Tokens = [token()]

ExprList = [abstract _expr()]

ErrorInfo = error_info()
Parses Tokens asif it was alist of expressions. Returns one of the following:

Ericsson AB. All Rights Reserved.: STDLIB | 129

erl_parse

{ok, ExprlList}

The parsing was successful. Expr Li st isalist of the abstract forms of the parsed expressions.
{error, Errorlnfo}

An error occurred.

parse form(Tokens) -> {ok, AbsForm} | {error, ErrorInfo}
Types.

Tokens = [token()]

AbsForm = abstract _form()

ErrorInfo = error_info()

Parses Tokens asif it was aform. Returns one of the following:
{ok, AbsForn}

The parsing was successful. Abs For mis the abstract form of the parsed form.
{error, Errorlnfo}

An error occurred.

parse term(Tokens) -> {ok, Term} | {error, ErrorInfo}
Types:

Tokens = [token()]

Term = term()

ErrorInfo = error_info()

Parses Tokens asif it was aterm. Returns one of the following:
{ok, Terni

The parsing was successful. Ter mis the Erlang term corresponding to the token list.
{error, Errorlnfo}

An error occurred.

tokens (AbsTerm) -> Tokens
tokens (AbsTerm, MoreTokens) -> Tokens
Types.
AbsTerm = abstract _expr()
MoreTokens = Tokens = [token()]

Generates a list of tokens representing the abstract form AbsTer mof an expression. Optionally, Mor eTokens is
appended.

Error Information

Er r or I nf o isthe standard Er r or | nf o structure that is returned from all I/O modules. The format is as follows:

{ErrorLine, Module, ErrorDescriptor}

A string describing the error is obtained with the following call:

130 | Ericsson AB. All Rights Reserved.: STDLIB

erl_parse

Module: format error(ErrorDescriptor)

See Also
erl _anno(3),erl _scan(3),io(3), section The Abstract Format in the ERTS User's Guide

Ericsson AB. All Rights Reserved.: STDLIB | 131

erl_pp

erl_pp

Erlang module

The functions in this module are used to generate aesthetically attractive representations of abstract forms, which are
suitable for printing. All functions return (possibly deep) lists of characters and generate an error if the form iswrong.

All functions can have an optional argument, which specifies a hook that is called if an attempt is made to print an
unknown form.

Data Types
hook function() =
none |
fun((Expr :: erl _parse: abstract _expr(),
CurrentIndentation :: integer(),
CurrentPrecedence :: integer() >= 0,
Options :: options()) ->

io_lib:chars())

Optiona argument HookFunct i on, shown in the functions described in thismodule, definesafunction that iscalled
when an unknown form occurs where there is to be a valid expression. If HookFunct i on isequal to none, there
is no hook function.

The called hook function isto return a (possibly deep) list of characters. Function expr / 4 isuseful in a hook.
If Current | ndent at i on isnegative, there are no line breaks and only a space is used as a separator.
option() =

{hook, hook_function()} | {encoding, latinl | unicode | utf8}
options() = hook_function() | [option()]

Exports

attribute(Attribute) -> io_lib:chars()
attribute(Attribute, Options) -> io_lib:chars()
Types:
Attribute = erl _parse:abstract_form)
Options = options()
Sameasf orni 1, 2, but only for attribute At t r i but e.

expr(Expression) -> io_lib:chars()

expr(Expression, Options) -> io_lib:chars()

expr(Expression, Indent, Options) -> io_lib:chars()
expr(Expression, Indent, Precedence, Options) -> io_lib:chars()
Types:

132 | Ericsson AB. All Rights Reserved.: STDLIB

erl_pp

Expression = erl _parse: abstract _expr()
Indent = integer()
Precedence = integer() >= 0
Options = options()
Prints one expression. It is useful for implementing hooks (see section Known Limitations).

exprs(Expressions) -> io_lib:chars()
exprs(Expressions, Options) -> io_lib:chars()
exprs(Expressions, Indent, Options) -> io_lib:chars()
Types:

Expressions = [erl _parse: abstract_expr()]

Indent = integer()

Options = options()
Sameasf orni 1, 2, but only for the sequence of expressionsin Expr essi ons.

form(Form) -> io_lib:chars()
form(Form, Options) -> io_lib:chars()
Types:
Form = erl _parse:abstract_form() | erl_parse:form.info()
Options = options()
Pretty prints a For m which is an abstract form of atypethat isreturned by er| _par se: parse_form 1.

function(Function) -> io_lib:chars()
function(Function, Options) -> io_lib:chars()
Types:
Function = erl _parse: abstract _form()
Options = options()
Sameasf orni 1, 2, but only for function Funct i on.

guard(Guard) -> io_lib:chars()
guard(Guard, Options) -> io_lib:chars()

Types.
Guard = [erl_parse: abstract_expr()]
Options = options()

Sameasf orni 1, 2, but only for the guard test Guar d

Known Limitations

It is not possible to have hook functions for unknown forms at other places than expressions.

See Also
erl _eval (3),erl _parse(3),io(3)

Ericsson AB. All Rights Reserved.: STDLIB | 133

erl_scan

erl_scan

Erlang module

This module contains functions for tokenizing (scanning) characters into Erlang tokens.

Data Types

category() = atom()
error _description() = term()

error_info() =

{erl _anno:location(), module(), error_description()}
option() =

return |

return white spaces |

return_comments |

text |

{reserved word fun, resword_fun()}
options() = option() | [option()]
symbol() = atom() | float() | integer() | string()
resword fun() = fun((atom()) -> boolean())

token() =
{category(), Anno :: erl_anno:anno(), synbol ()} |
{category(), Anno :: erl_anno:anno()}

tokens() = [token()]
tokens result() =

{ok, Tokens :: tokens(), EndLocation :: erl_anno:location()} |
{eof, EndLocation :: erl_anno:location()} |
{error,
ErrorInfo :: error_info(),
EndLocation :: erl _anno:location()}
Exports

category(Token) -> category()
Types:

Token = token()
Returns the category of Token.

column(Token) -> erl_anno:colum() | undefined
Types.

Token = token()
Returns the column of Token's collection of annotations.

end location(Token) -> erl_anno:location() | undefined
Types:

134 | Ericsson AB. All Rights Reserved.: STDLIB

erl_scan

Token = token()
Returns the end location of the text of Token's collection of annotations. If thereisno text, undef i ned isreturned.

format error(ErrorDescriptor) -> string()
Types:
ErrorDescriptor = error_description()

Usesan Err or Descri pt or and returns a string that describes the error or warning. This function isusually called
implicitly when an Er r or | nf o structureis processed (see section Error Information).

line(Token) -> erl _anno:line()
Types:
Token = token()
Returnsthe line of Token's collection of annotations.

location(Token) -> erl_anno: |l ocation()
Types:

Token = token()
Returns the location of Token's collection of annotations.

reserved word(Atom :: atom()) -> boolean()
Returnst r ue if At omisan Erlang reserved word, otherwisef al se.

string(String) -> Return
string(String, StartLocation) -> Return
string(String, StartLocation, Options) -> Return
Types.

String = string()

Options = options()

Return =
{ok, Tokens :: tokens(), EndLocation} |
{error, ErrorInfo :: error_info(), ErrorLocation}

StartLocation = EndLocation = ErrorLocation = erl _anno: | ocati on()

Takesthe list of characters St r i ng and tries to scan (tokenize) them. Returns one of the following:
{ok, Tokens, EndLocati on}

Tokens arethe Erlang tokensfrom St ri ng. EndLocat i on isthefirst location after the last token.
{error, Errorinfo, ErrorLocation}

An error occurred. Er r or Locat i on isthefirst location after the erroneous token.

string(String) isequivadenttostring(String, 1),andstring(String, StartLocation) is
equivalenttostring(String, StartlLocation, []).

Start Locati on indicates the initial location when scanning starts. If Start Locati on is a line, Anno,
EndLocati on,andError Locati on arelines. If St art Locat i on isapair of alineand acolumn, Anno takes
the form of an opague compound data type, and EndLocat i on and Err or Locat i on are pairs of aline and a
column. The token annotations contain information about the column and the line where the token begins, as well

Ericsson AB. All Rights Reserved.: STDLIB | 135

erl_scan

as the text of the token (if optiont ext is specified), al of which can be accessed by calling col um/ 1,1 i ne/ 1,
| ocation/1,andt ext/ 1.

A token is atuple containing information about syntactic category, the token annotations, and the terminal symbol.
For punctuation characters (such as; and|) and reserved words, the category and the symbol coincide, and the token
is represented by atwo-tuple. Three-tuples have one of the following forms:

« {atom Anno, atom()}

« {char, Anno, char()}

e {coment, Anno, string()}

« {float, Anno, float()}

e {integer, Anno, integer()}

e {var, Anno, atom()}

e {white_space, Anno, string()}

Valid options:

{reserved_word_fun, reserved_word_fun()}

A callback function that is called when the scanner has found an unquoted atom. If the function returnst r ue,
the unquoted atom itself becomes the category of the token. If the function returns f al se, at ombecomes the
category of the unquoted atom.

return_conments
Return comment tokens.
return_white spaces

Return white space tokens. By convention, a newline character, if present, is alwaysthe first character of the text
(there cannot be more than one newline in a white space token).

return
Short for [ret urn_conments, return_white_spaces].
t ext

Include the token text in the token annotation. The text is the part of the input corresponding to the token.

symbol(Token) -> synbol ()
Types:

Token = token()
Returns the symbol of Token.

text(Token) -> erl_anno:text() | undefined
Types.
Token = token()
Returns the text of Token's collection of annotations. If thereis no text, undef i ned isreturned.

tokens(Continuation, CharSpec, StartLocation) -> Return
tokens (Continuation, CharSpec, StartLocation, Options) -> Return
Types:

136 | Ericsson AB. All Rights Reserved.: STDLIB

erl_scan

Continuation = return_cont() | []
CharSpec = char_spec()
StartLocation = erl _anno: | ocation()
Options = options()
Return =
{done,
Result :: tokens_result(),
LeftOverChars :: char_spec()} |
{more, Continuationl :: return_cont()}

char _spec() = string() | eof
return_cont()
An opague continuation.

Thisisthere-entrant scanner, which scans charactersuntil either adot ('.' followed by awhite space) or eof isreached.
It returns:

{done, Result, LeftOverChars}
Indicates that there is sufficient input datato get aresult. Resul t is:
{ok, Tokens, EndLocati on}
The scanning was successful. Tokens isthelist of tokensincluding dot.
{eof, EndLocati on}
End of file was encountered before any more tokens.
{error, Errorlnfo, EndLocation}

An error occurred. Left Over Chars is the remaining characters of the input data, starting from
EndLocat i on.

{nore, Continuationl}

More data is required for building a term. Cont i nuat i on1 must be passed in a new call to t okens/ 3, 4
when more datais available.

The Char Spec eof signalsend of file. Lef t Over Char s then takes the value eof aswell.

t okens(Conti nuati on, CharSpec, StartlLocation) isequivalenttotokens(Conti nuati on,
Char Spec, StartlLocation, []).

For a description of the options, seest ri ng/ 3.

Error Information

Er r or I nf o isthe standard Er r or | nf o structure that is returned from all 1/O modules. The format is as follows:

{ErrorLocation, Module, ErrorDescriptor}

A string describing the error is obtained with the following call:

Module:format error(ErrorDescriptor)

Ericsson AB. All Rights Reserved.: STDLIB | 137

erl_scan

Notes

The continuation of thefirst call to the re-entrant input functionsmust be[] . For acomplete description of how there-
entrant input scheme works, see Armstrong, Virding and Williams: 'Concurrent Programming in Erlang’, Chapter 13.

See Also

erl _anno(3),erl _parse(3),io(3)

138 | Ericsson AB. All Rights Reserved.: STDLIB

erl_tar

erl_tar

Erlang module

This module archives and extract filesto and from atar file. This module supports reading most common tar formats,
namely v7, STAR, USTAR, and PAX, as well as some of GNU tar's extensions to the USTAR format (sparse files
most notably). It produces tar archives in USTAR format, unless the files being archived require PAX format due
to restrictions in USTAR (such as unicode metadata, filename length, and more). As such, er| _t ar supports tar
archives produced by most all modern tar utilities, and produces tarballs which should be similarly portable.

By convention, the name of atar fileistoendin". t ar ". To abide to the convention, add ". t ar " to the name.
Tar files can be created in one operation using function cr eat e/ 2 or cr eat e/ 3.
Alternatively, for more control, use functionsopen/ 2, add/ 3, 4, andcl ose/ 1.

To extract al filesfrom atar file, use function ext r act / 1. To extract only some files or to be able to specify some
more options, use function ext r act / 2.

Toreturn alist of thefilesin atar file, usefunctiont abl e/ 1 ort abl e/ 2. To print alist of filesto the Erlang shell,
usefunctiont/lortt/ 1.

To convert an error term returned from one of the functions above to a readable message, use function
format _error/ 1.

Unicode Support

If file:native_nane_encodi ng/ 0 returnsut f 8, path names are encoded in UTF-8 when creating tar files,
and path names are assumed to be encoded in UTF-8 when extracting tar files.

If file:native_nanme_encodi ng/ 0 returns| at i n1, no trandation of path namesisdone.
Unicode metadata stored in PAX headersis preserved

Other Storage Media

Thef t p module (Inets) normally accesses the tar file on disk using the f i | e module. When other needs arise, you
can define your own low-level Erlang functionsto perform the writing and reading on the storage media; use function
init/3.

An example of thisis the SFTP support in ssh_sft p: open_t ar/ 3. This function opens a tar file on a remote
machine using an SFTP channel.

Limitations

e |f you must remain compatible with the USTAR tar format, you must ensure file paths being stored are less than
255 bytesin total, with a maximum filename component length of 100 bytes. USTAR uses a header field (prefix)
in addition to the name field, and splits file paths longer than 100 bytes into two parts. This split is done on a
directory boundary, and is done in such away to make the best use of the space available in those two fields, but
in practice thiswill often mean that you have lessthan 255 bytesfor apath. er | _t ar will automatically upgrade
the format to PAX to handle longer filenames, so thisis only an issue if you need to extract the archive with an
older implementation of er | _t ar ort ar which does not support PAX. In this case, the PAX headers will be
extracted as regular files, and you will need to apply them manually.

e Likethe above, if you must remain USTAR compatible, you must also ensure than paths for symbolic/hard links
are no more than 100 bytes, otherwise PAX headers will be used.

Ericsson AB. All Rights Reserved.: STDLIB | 139

erl_tar

Exports

add(TarDescriptor, Filename, Options) -> RetValue
Types.
Tar Descriptor = term()
Fi | enaneOr Bi n filenane()| binary()
Namel nAr chi ve filenane()
Filename = fil enane() | { Nanel nArchi ve, Fi | enameOr Bi n}
Options = [Option]
Option = dereference| verbose| { chunks, ChunkSi ze}
ChunkSi ze = positive_integer()
Ret Val ue = ok|{error, {Fil enane, Reason}}
Reason = term()

Adds afileto atar file that has been opened for writing by open/ 1.

Narel nAr chi ve isthe name under which the file becomes stored in the tar file. The file gets this name when it
is extracted from the tar file.

Options:

der ef erence

By default, symbolic links are stored as symbolic links in the tar file. To override the default and store the file
that the symbolic link pointsto into the tar file, use option der ef er ence.

ver bose
Prints an informational message about the added file.
{chunks, ChunkSi ze}

Reads data in parts from the file. Thisis intended for memory-limited machines that, for example, builds a tar
file on aremote machine over SFTP, see ssh_sft p: open_tar/ 3.

add(TarDescriptor, FilenameOrBin, NameInArchive, Options) -> RetValue
Types.

Tar Descri pt or term)

Fi | enameOr Bi n filenane()| binary()

Filename = fil enanme()

Nanel nArchive = fil enanme()

Options = [Option]

Option = dereference| verbose

Ret Val ue = ok|{error, {Fil enane, Reason}}

Reason = term()

Addsafileto atar filethat has been opened for writing by open/ 2. Thisfunction acceptsthe same optionsasadd/ 3.

close(TarDescriptor)
Types:

Tar Descriptor = tern()
Closes atar file opened by open/ 2.

140 | Ericsson AB. All Rights Reserved.: STDLIB

erl_tar

create(Name, FilelList) ->RetValue
Types.
Name = fil enane()
Fi l eLi st = [Fil enane| { Nanel nArchi ve, Fil enameO Bi n}]
FilenameOrBin = fil ename()| binary()
Filename = fil enane()
Namel nArchive = fil ename()
Ret Val ue = ok| {error, { Nane, Reason}}
Reason = term()

Creates atar file and archives the files whose names are specified in Fi | eLi st intoit. The files can either be read
from disk or be specified as binaries.

create(Name, FilelList, OptionList)
Types:
Name = fil enane()
Fi |l eLi st = [Fil ename| { Nanel nArchi ve, Fil enameO Bin}]
FilenameOrBin = fil ename()| binary()
Filename = fil enanme()
Nanmel nArchive = fil enane()
OptionList = [Option]
Option = conpressed| cooked| der ef er ence| ver bose
Ret Val ue = ok| {error, { Nane, Reason}}
Reason = term)
Creates atar file and archives the files whose names are specified in Fi | eLi st into it. The files can either be read
from disk or be specified as binaries.
Theoptionsin Opt i onLi st modify the defaults asfollows:
conpr essed

The entiretar fileis compressed, asif it has been run through thegzi p program. To abide to the convention that
acompressed tar fileistoendin™. tar. gz" or". t gz", add the appropriate extension.

cooked

By default, function open/ 2 opensthetar fileinr awmode, which isfaster but does not allow aremote (Erlang)
file server to be used. Adding cooked to the mode list overrides the default and opensthe tar file without option
raw.

der ef erence

By default, symbolic links are stored as symbolic links in the tar file. To override the default and store the file
that the symbolic link pointsto into the tar file, use option der ef er ence.

ver bose
Prints an informational message about each added file.

extract(Name) -> RetValue

Types:
Name = filenane() | {binary,binary()} | {file, Fd}

Ericsson AB. All Rights Reserved.: STDLIB | 141

erl_tar

Fd = file_descriptor()
Ret Val ue = ok| {error, { Nane, Reason}}
Reason = term()

Extracts all files from atar archive.
If argument Nane is specified as{ bi nary, Bi nar y}, the contents of the binary is assumed to be atar archive.

If argument Nane is specified as {fil e, Fd}, Fd is assumed to be a file descriptor returned from function
file:open/2.

Otherwise, Nane isto be afilename.

Note:

L eading slashesin tar member nameswill be removed beforewriting thefile. That is, absolute pathswill beturned
into relative paths. There will be an info message written to the error logger when paths are changed in thisway.

extract(Name, OptionList)

Types:
Name = filenanme() | {binary,binary()} | {file, Fd}
Fd = file_descriptor()
OptionList = [Option]
Option = {cwd, Owd} | {files, FileList}|keep_old files|verbose| nenory
owd = [dirnane()]
FileList = [filename()]
Ret Val ue = ok| MenoryRet Val ue| {error, { Nane, Reason}}
MenoryRet Val ue = {ok, [{NanelnArchive, binary()}]}
Namel nArchive = fil ename()
Reason = term()

Extractsfilesfrom atar archive.
If argument Nane is specified as{ bi nar y, Bi nar y}, the contents of the binary is assumed to be atar archive.

If argument Nane is specified as {fil e, Fd}, Fd is assumed to be a file descriptor returned from function
file:open/2.

Otherwise, Nane isto be afilename.
The following options modify the defaults for the extraction as follows:
{cwd, Ond}

Files with relative filenames are by default extracted to the current working directory. With this option, files are
instead extracted into directory Ond.

{files,FileList}

By default, al files are extracted from the tar file. With this option, only those files are extracted whose names
areincludedinFi | eLi st .

conpr essed
With this option, the fileis uncompressed while extracting. If thetar fileisnot compressed, thisoptionisignored.

142 | Ericsson AB. All Rights Reserved.: STDLIB

erl_tar

cooked

By default, function open/ 2 function opensthetar fileinr awmaode, which isfaster but does not allow aremote
(Erlang) file server to be used. Adding cooked to the mode list overrides the default and opens the tar file
without option r aw.

menory

Instead of extracting to adirectory, thisoption givestheresult asalist of tuples{ Fi | enane, Bi nary},where
Bi nary isabinary containing the extracted data of the file named Fi | enane inthetar file.

keep_old files

By default, all existing files with the same name as filesin the tar file are overwritten. With this option, existing
files are not overwriten.

ver bose

Prints an informational message for each extracted file.

format _error(Reason) -> string()
Types:
Reason = term()

Cconverts an error reason term to a human-readable error message string.

init(UserPrivate, AccessMode, Fun) -> {ok,TarDescriptor} | {error,Reason}
Types:

UserPrivate = term))

AccesshWbde = [write] | [read]

Fun when AccessMbde is [wite] = fun(wite, {UserPrivate, DataToWite})-

> ..; (position,{UserPrivate,Position})->...; (close, UserPrivate)->...
end

Fun when AccessMbde is [read] = fun(read2, {UserPrivate, Size})->...;
(position,{UserPrivate, Position})->...; (close, UserPrivate)->... end

Tar Descriptor = tern()
Reason = term()

The Fun isthe definition of what to do when the different storage operations functions are to be called from the higher
tar handling functions (such asadd/ 3, add/ 4, and cl ose/ 1).

The Fun is called when the tar function wants to do a low-level operation, like writing ablock to afile. The Fun is
cadledasFun(Op, {UserPrivate, Paraneters...}),whereQp isthe operation name, User Pri vat e is
the term passed asthe first argument to i ni t / 1 and Par anet er s. . . are the data added by the tar function to be
passed down to the storage handling function.

Parameter User Pri vat e istypically the result of opening a low-level structure like a file descriptor or an SFTP
channel id. The different Fun clauses operate on that very term.

The following are the fun clauses parameter lists:
(wite, {UserPrivate, DataToWite})
Writesterm Dat aToW i t e using User Pri vat e.
(close, UserPrivate)
Closes the access.

Ericsson AB. All Rights Reserved.: STDLIB | 143

erl_tar

(read2, {UserPrivate, Size})

Reads using User Pri vat e but only Si ze bytes. Notice that there is only an arity-2 read function, not an
arity-1 function.

(position, {UserPrivate, Position})
Setsthe position of User Pr i vat e asdefined for filesin fi |l e: position/2
Example:

The following is acomplete Fun parameter for reading and writing on filesusing thef i | e module:

ExampleFun =
fun(write, {Fd,Data}) -> file:write(Fd, Data);
(position, {Fd,Pos}) -> file:position(Fd, Pos);
(read2, {Fd,Size}) -> file:read(Fd, Size);
(close, Fd) -> file:close(Fd)
end

Here Fd was specified to functioni ni t / 3 as:

{ok,Fd} = file:open(Name, ...).
{ok,TarDesc} = erl tar:init(Fd, [write], ExampleFun),

Tar Desc isthen used:

erl tar:add(TarDesc, SomeValueIwantToAdd, FileNameInTarFile),
erl tar:close(TarDesc)

When the er | _t ar core wants to, for example, write a piece of Dat a, it would call Exanpl eFun(write,
{UserPrivate, Data}).

Note:

Thisexample withthef i | e module operationsis not necessary to use directly, asthat iswhat function open/ 2
in principle does.

Warning:

The Tar Descri pt or termisnot afile descriptor. Y ou are advised not to rely on the specific contents of this
term, asit can change in future Erlang/OTP rel eases when more features are added to this module.

open(Name, OpenModelList) -> RetValue
Types.

Name = fil enane()

OpenMbdelLi st = [OpenMbde]

144 | Ericsson AB. All Rights Reserved.: STDLIB

erl_tar

Mode = write| conpressed| cooked

Ret Val ue = {ok, TarDescriptor}|{error, {Nane, Reason}}
Tar Descriptor = term()

Reason = term()

Creates atar file for writing (any existing file with the same name is truncated).

By convention, the name of atar fileistoendin". t ar ". To abide to the convention, add ". t ar " to the name.
Except for thewr i t e atom, the following atoms can be added to OpenModeli st :

conpr essed

The entiretar fileis compressed, asif it has been run through the gzi p program. To abide to the convention that
acompressed tar fileistoend in". tar. gz" or". t gz", add the appropriate extension.

cooked

By default, the tar fileis opened in r aw mode, which is faster but does not allow aremote (Erlang) file server to
be used. Adding cooked to the mode list overrides the default and opens the tar file without option r aw.

To add onefile at the time into an opened tar file, use function add/ 3, 4. When you are finished adding files, use
function cl ose/ 1 to closethe tar file.

Warning:

The Tar Descri pt or termisnot afile descriptor. Y ou are advised not to rely on the specific contents of this
term, asit can change in future Erlang/OTP releases when more features are added to this module..

table(Name) -> RetValue

Types.
Name = filenanme()|{binary,binary()}|{file,file_descriptor()}
Ret Val ue = {ok,[string()]}|{error, {Nane, Reason}}
Reason = term)

Retrieves the names of all filesin the tar file Name.

table(Name, Options)
Types:

Name = filenanme()|{binary,binary()}|{file,file_descriptor()}
Retrieves the names of all filesin the tar file Nane.

t (Name)
Types:

Name = filenane()|{binary,binary()}|{file, file _descriptor()}
Prints the names of all filesin the tar file Name to the Erlang shell (similar to"tar t").

tt(Name)

Types:
Name = filenane()|{binary,binary()}|{file,file_descriptor()}

Ericsson AB. All Rights Reserved.: STDLIB | 145

erl_tar

Prints names and information about all filesin the tar file Nane to the Erlang shell (smilarto "t ar t v").

146 | Ericsson AB. All Rights Reserved.: STDLIB

ets

ets

Erlang module

This module is an interface to the Erlang built-in term storage BIFs. These provide the ability to store very large
guantities of data in an Erlang runtime system, and to have constant access time to the data. (In the case of
order ed_set, seebelow, accesstimeis proportional to the logarithm of the number of stored objects.)

Data is organized as a set of dynamic tables, which can store tuples. Each table is created by a process. When the
process terminates, the table is automatically destroyed. Every table has access rights set at creation.

Tables are divided into four different types, set, ordered_set, bag, and dupl i cate_bag. A set or
or der ed_set tablecan only have one object associated with each key. A bag or dupl i cat e_bag table can have
many objects associated with each key.

Note:

The number of tables stored at one Erlang node used to be limited. Thisis no longer the case (except by memory
usage). The previous default limit was about 1400 tables and could be increased by setting the environment
variable ERL_MAX_ETS_TABLES before starting the Erlang runtime system. This hard limit has been removed,
but it is currently useful to set the ERL_MAX_ETS TABLES anyway. It should be set to an approximate of
the maximum amount of tables used. This since an internal table for named tables is sized using this value. If
large amounts of named tables are used and ERL_MAX ETS TABLES hasn't been increased, the performance
of named table lookup will degrade.

Notice that there is no automatic garbage collection for tables. Even if there are no references to a table from any
process, it isnot automatically destroyed unlessthe owner processterminates. To destroy atable explicitly, usefunction
del et e/ 1. Thedefault owner isthe processthat created thetable. To transfer table ownership at processtermination,
useoptionhei r or call gi ve_away/ 3.

Some implementation details:

* Inthe current implementation, every object insert and look-up operation resultsin a copy of the object.
« '"$end_of table' isnottobe used as akey, as this atom is used to mark the end of the table when using
functionsfirst/1andnext/ 2.

Notice the subtle difference between matching and comparing equal, which is demonstrated by table typesset and
ordered_set:

e Two Erlang termsmat ch if they are of the same type and have the same value, so that 1 matches 1, but not 1. 0
(asl.0isafl oat () andnotani nt eger()).

« Two Erlang terms compar e equal if they either are of the same type and value, or if both are numeric types and
extend to the same value, so that 1 compares equal to both 1 and 1. O.

e Theordered_set works on the Erlang term order and no defined order exists between an i nt eger ()
and af | oat () that extends to the same value. Hence the key 1 and the key 1. O are regarded as equal in an
ordered_set table.

Failure

The functions in this module exits with reason badar g if any argument has the wrong format, if the table identifier
isinvalid, or if the operation is denied because of table access rights (protected or private).

Ericsson AB. All Rights Reserved.: STDLIB | 147

ets

Concurrency

This module provides some limited support for concurrent access. All updates to single objects are guaranteed to be
both atomic and isolated. This meansthat an updating operation to asingle object either succeeds or fails completely
without any effect (atomicity) and that no intermediate results of the update can be seen by other processes (isolation).
Some functionsthat update many objects state that they even guarantee atomicity and isolation for the entire operation.
In database terms the isolation level can be seen as"serializable”, asif al isolated operations are carried out serialy,
one after the other in a strict order.

No other support is available within this modul e that would guarantee consistency between objects. However, function
saf e_fixtabl e/ 2 can be used to guarantee that a sequence of fi rst/ 1 and next/ 2 calls traverse the table
without errors and that each existing object in the table is visited exactly once, even if another (or the same) process
simultaneously deletes or inserts objectsinto the table. Nothing el seis guaranteed; in particular objectsthat areinserted
or deleted during such atraversal can be visited once or not at al. Functions that internally traverse over atable, like
sel ect and mat ch, givethe same guaranteeassaf e_fi xt abl e.

Match Specifications

Some of the functions use a match specification, mat ch_spec. For a brief explanation, see sel ect/ 2. For a
detailed description, see section Match Specificationsin Erlang in ERTS User's Guide.

Data Types

access() = public | protected | private
continuation()

Opaque continuation used by select/ 1, 3, sel ect _reverse/ 1, 3, match/ 1,3, and
mat ch_obj ect/ 1, 3.

match spec() = [{match_pattern(), [term()], [term()]}]
A match specification, see above.

comp_match spec()

A compiled match specification.

match pattern() = atom() | tuple()

tab() = atom() | tid()

tid()

A table identifier, asreturned by new/ 2.

type() = set | ordered set | bag | duplicate bag

Exports

all() -> [Tabl]
Types:
Tab = tab()

Returns a list of all tables at the node. Named tables are specified by their names, unnamed tables are specified by
their table identifiers.

There is no guarantee of consistency in the returned list. Tables created or deleted by other processes "during” the
ets:all () cal ether areor are not included in the list. Only tables created/deleted beforeet s: al | () iscalled
are guaranteed to be included/excluded.

148 | Ericsson AB. All Rights Reserved.: STDLIB

ets

delete(Tab) -> true
Types.

Tab = tab()
Deletes the entire table Tab.

delete(Tab, Key) -> true

Types.
Tab = tab()
Key = term()

Deletes al objects with key Key from table Tab.

delete all objects(Tab) -> true
Types:
Tab = tab()
Delete all objectsinthe ETS table Tab. The operation is guaranteed to be atomic and isolated.

delete object(Tab, Object) -> true
Types.

Tab = tab()

Object = tuple()

Delete the exact object Cbj ect from the ETS table, leaving objects with the same key but other differences (useful
for typebag). Inadupl i cat e_bag table, all instances of the object are deleted.

file2tab(Filename) -> {ok, Tab} | {error, Reason}

Types:
Filename = fil e: nane()
Tab = tab()

Reason = term()
Reads afile produced by t ab2fil e/ 2 ort ab2fi | e/ 3 and creates the corresponding table Tab.
Equivalenttofi | e2t ab(Fi | enanme, []).

file2tab(Filename, Options) -> {ok, Tab} | {error, Reason}

Types:
Filename = file: nane()
Tab = tab()

Options = [Option]
Option {verify, boolean()}
Reason = term()
Reads afileproduced by t ab2fil e/ 2 or t ab2fi | e/ 3 and creates the corresponding table Tab.

The only supported option is {verify, bool ean()}. If verification is turned on (by specifying
{verify, true}), thefunction uses whatever information is present in the file to assert that the information is not
damaged. How this is done depends on which ext ended_i nf o waswrittenusingt ab2fi | e/ 3.

Ericsson AB. All Rights Reserved.: STDLIB | 149

ets

If no ext ended_i nf o ispresentinthefileand {verify, true} isspecified, the number of objects written is
compared to the size of the origina table when the dump was started. This can make verification fail if the table was
publ i ¢ and objects were added or removed while the table was dumped to file. To avoid this problem, either do
not verify files dumped while updated simultaneously or use option { ext ended_i nf o, [object_count]} to
t ab2fi | e/ 3, which extends the information in the file with the number of objects written.

If verification isturned on and the file was written with option { ext ended_i nf o, [md5sum }, reading thefile
is slower and consumes radically more CPU time than otherwise.

{verify, fal se} isthedefault.

first(Tab) -> Key | '$end of table'

Types.
Tab = tab()
Key = term()

Returns the first key Key in table Tab. For an or der ed_set table, the first key in Erlang term order is returned.
For other table types, the first key according to the internal order of the table is returned. If the table is empty,
'$end_of table' isreturned.

To find subsequent keysin the table, use next / 2.

foldl(Function, AccO, Tab) -> Accl

Types:
Function = fun((Element :: term(), AccIn) -> AccOut)
Tab = tab()

AccO = Accl = AccIn = AccOut = term()

AccO isreturned if thetableisempty. Thisfunctionissimilartol i st s: f ol dl / 3. Thetable elementsare traversed
is unspecified order, except for or der ed_set tables, where they are traversed first to last.

If Functi on inserts objects into the table, or another process inserts objects into the table, those objects can
(depending on key ordering) be included in the traversal.

foldr(Function, AccO, Tab) -> Accl

Types:
Function = fun((Element :: term(), AccIn) -> AccOut)
Tab = tab()

AccO = Accl = AccIn = AccOut = term()

AccO isreturned if thetableisempty. Thisfunctionissimilartol i st s: f ol dr/ 3. Thetable elements are traversed
is unspecified order, except for or der ed_set tables, where they are traversed last to first.

If Functi on inserts objects into the table, or another process inserts objects into the table, those objects can
(depending on key ordering) be included in the traversal.

from dets(Tab, DetsTab) -> true
Types:

150 | Ericsson AB. All Rights Reserved.: STDLIB

ets

Tab = tab()
DetsTab = dets:tab_name()

Fills an already created ETS table with the objects in the already opened Dets table Det sTab. Existing objectsin
the ETS table are kept unless overwritten.

If any of the tables does not exist or the Dets table is not open, abadar g exception is raised.

fun2ms(LiteralFun) -> MatchSpec
Types:
LiteralFun = function()
MatchSpec = mat ch_spec()

Pseudo function that by apar se_t r ansf or mtranslates Li t er al Fun typed as parameter in the function call to
amatch specification. With "literal” is meant that the fun must textually be written as the parameter of the function,
it cannot be held in avariable that in turn is passed to the function.

The parse transform is provided in the ns_transform module and the source must include file
ns_transform hrl in STDLIB for this pseudo function to work. Failing to include the hrl file in the source
results in a runtime error, not a compile time error. The include file is easiest included by adding line -
include Iib("stdlib/include/ns_transformhrl"). tothesourcefile.

Thefunisvery restricted, it can take only asingle parameter (the object to match): asole variable or atuple. It must use
thei s_ guard tests. Language constructs that have no representation in a match specification (i f , case, r ecei ve,
and so on) are not allowed.

The return value is the resulting match specification.

Example:

1> ets:fun2ms(fun({M,N}) when N > 3 -> M end).
[{{"'$1",'$2"},[{'>","$2",3}],["$1"1}]

Variables from the environment can be imported, so that the following works:

2> X=3.

3

3> ets:fun2ms(fun({M,N}) when N > X -> M end).
[{{'$1","$2"},[{'>","$2",{const,3}}],['$1"'1}]

The imported variables are replaced by match specification const expressions, which is consistent with the static
scoping for Erlang funs. However, local or global function calls cannot be in the guard or body of the fun. Calls to
built-in match specification functionsis of course allowed:

4> ets:fun2ms(fun({M,N}) when N > X, is atomm(M) -> M end).
Error: fun containing local Erlang function calls

('is atomm' called in guard) cannot be translated into match spec
{error,transform error}

5> ets:fun2ms(fun({M,N}) when N > X, is atom(M) -> M end).
[{{"$1","$2"},[{'>","$2",{const,3}},{is_atom, '$1'}],['$1']1}]

As shown by the example, the function can be called from the shell also. The fun must be literaly in the call when
used from the shell aswell.

Ericsson AB. All Rights Reserved.: STDLIB | 151

ets

Warning:

If the par se_t r ansf or mis not applied to a module that calls this pseudo function, the call fails in runtime
(with a badar g). The et s module exports a function with this name, but it is never to be called except
when using the function in the shell. If the par se_t r ansf or mis properly applied by including header file
ns_transform hrl, compiled code never calls the function, but the function call is replaced by a literal
match specification.

For moreinformation, see ns_t r ansf or n(3) .

give away(Tab, Pid, GiftData) -> true

Types:
Tab = tab()
Pid = pid()

GiftData = term()

Make process Pid the new owner of table Tab. If successful, message {'ETS-
TRANSFER , Tab, FronPi d, G f t Dat a} is sent to the new owner.

The process Pi d must be alive, local, and not already the owner of the table. The calling process must be the table
owner.

Notice that this function does not affect option hei r of thetable. A table owner can, for example, set hei r toitsalf,
give the table away, and then get it back if the receiver terminates.

i() -> ok
Displaysinformation about all ETS tables on aterminal.

i(Tab) -> ok
Types:
Tab = tab()

Browses table Tab on aterminal.

info(Tab) -> InfolList | undefined
Types:

Tab = tab()

InfoList = [InfoTuple]

InfoTuple =
{compressed, boolean()} |
{heir, pid() | none} |
{keypos, integer() >= 1} |
{memory, integer() >= 0} |
{name, atom()} |
{named table, boolean()} |
{node, node()} |
{owner, pid()} |
{protection, access()} |
{size, integer() >= 0} |
{type, type()} |

152 | Ericsson AB. All Rights Reserved.: STDLIB

ets

{write concurrency, boolean()} |
{read concurrency, boolean()}

Returns information about table Tab asalist of tuples. If Tab has the correct type for atable identifier, but does not
refer to an existing ETStable, undef i ned isreturned. If Tab isnot of the correct type, abadar g exceptionisraised.

{conpressed, bool ean()}

Indicatesif the table is compressed.
{heir, pid() | none}

The pid of the heir of the table, or none if no heir is set.
{keypos, integer() >= 1}

The key position.
{menory, integer() >=0

The number of words allocated to the table.
{nane, atom()}

The table name.
{named_t abl e, bool ean()}

Indicatesif the table is named.
{node, node()}

The node where the table is stored. Thisfield is no longer meaningful, as tables cannot be accessed from other
nodes.

{owner, pid()}
The pid of the owner of the table.
{protection, access()}
The table accessrights.
{size, integer() >=0
The number of objects inserted in the table.
{type, type()}
Thetable type.
{read_concurrency, bool ean()}
Indicates whether the table usesr ead_concur r ency or not.
{write_concurrency, bool ean()}
Indicates whether the tableuseswr i t e_concur rency.

info(Tab, Item) -> Value | undefined
Types:
Tab = tab()
Item =
compressed |
fixed |
heir |
keypos |

Ericsson AB. All Rights Reserved.: STDLIB | 153

ets

memory |

name |

named table |

node |

owner |

protection |

safe fixed |

safe fixed monotonic_time |
size |

stats |

type |

write concurrency |
read_concurrency

Value = term()

Returnsthe information associated with | t emfor table Tab, or returnsundef i ned if Tab doesnot refer an existing
ETStable. If Tab isnot of the correct type, or if | t emisnot one of the allowed values, abadar g exception israised.

Inadditiontothe{ 1t em Val ue} pairsdefined fori nf o/ 1, the following items are allowed:
« Itenrfixed, Val ue=bool ean()
Indicatesif the tableis fixed by any process.

Itemrsaf e_fixed| safe_fixed_nonotonic_tine, Value={FixationTine,Info}|false

If the table has been fixed using saf e_f i xt abl e/ 2, the call returns a tuple where Fi xat i onTi e isthe
time when the table was first fixed by a process, which either is or is not one of the processesit is fixed by now.

Theformat and value of Fi xat i onTi ne dependsonltem
safe_fixed

Fi xati onTi me corresponds to the result returned by er | ang: ti mest anp/ 0 at the time of fixation.
Notice that when the system uses single or multi time war p modes this can produce strange results, asthe use
of saf e_fi xedisnot timewarp safe. Timewarp safecodemust usesaf e_fi xed_nonotonic_ti ne
instead.

safe_fixed nmonotonic_tinme

Fi xati onTi me corresponds to the result returned by er| ang: nonot oni c_t i ne/ 0 at the time of
fixation. Theuse of saf e_fi xed_nonot oni c_ti e is time warp safe.

I nf o isapossibly empty lists of tuples { Pi d, Ref Count }, one tuple for every process the table is fixed by
now. Ref Count isthe value of the reference counter and it keeps track of how many times the table has been
fixed by the process.

If the table never has been fixed, the call returnsf al se.
e |tenrstats, Val ue=tuple()

Returnsinternal statisticsabout set , bag, and dupl i cat e_bag tables on an internal format used by OTP test
suites. Not for production use.

init table(Tab, InitFun) -> true
Types:

154 | Ericsson AB. All Rights Reserved.: STDLIB

ets

Tab = tab()
InitFun = fun((Arg) -> Res)
Arg = read | close
Res = end of input | {Objects :: [term()], InitFun} | term()
Replaces the existing objects of table Tab with objects created by calling the input function | ni t Fun, see below.

Thisfunction is provided for compatibility with thedet s module, it is not more efficient than filling atable by using
i nsert/2.

When called with argument r ead, the function | ni t Fun is assumed to return end_of _i nput when there isno
moreinput, or { Obj ects, Fun}, where Obj ect s isalist of objects and Fun isanew input function. Any other
valueVal ueisreturnedasanerror{error, {init_fun, Val ue}}.Eachinputfunctioniscaledexactly once,
and if an error occur, the last function is called with argument cl ose, the reply of which isignored.

If the table type is set and more than one object exists with a given key, one of the objects is chosen. This is not
necessarily the last object with the given key in the sequence of objects returned by the input functions. This holds
also for duplicated objects stored in tables of type bag.

insert(Tab, ObjectOrObjects) -> true

Types:
Tab = tab()
ObjectOrObjects = tuple() | [tuple()]

Inserts the object or all of the objectsinlist Cbj ect Or Obj ect s into table Tab.

« |f thetable typeisset and the key of the inserted objects matches the key of any object in the table, the old
object isreplaced.

e |fthetabletypeisor der ed_set and the key of the inserted object compar es equal to the key of any object
in the table, the old object is replaced.

« If thelist contains more than one object with matching keys and the table typeisset , oneisinserted, which one
is not defined. The same holds for table type or der ed_set if the keys compare equal.

The entire operation is guaranteed to be atomic and isolated, even when alist of objectsisinserted.

insert new(Tab, ObjectOrObjects) -> boolean()
Types:
Tab = tab()
ObjectOrObjects = tuple() | [tuple()]
Same asi nsert/ 2 except that instead of overwriting objects with the same key (for set or or der ed_set) or
adding more objects with keys already existing in the table (for bag and dupl i cat e_bag), f al se isreturned.

If Ohj ect Or oj ect s isalist, the function checks every key before inserting anything. Nothing is inserted unless
all keys present in the list are absent from the table. Likei nser t / 2, the entire operation is guaranteed to be atomic
and isolated.

is compiled ms(Term) -> boolean()
Types:
Term = term()
Checks if aterm is a valid compiled match specification. The compiled match specification is an opaque datatype

that cannot be sent between Erlang nodes or be stored on disk. Any attempt to create an external representation of a
compiled match specification resultsin an empty binary (<<>>).

Ericsson AB. All Rights Reserved.: STDLIB | 155

ets

Examples:

The following expression yieldst r ue::

ets:is compiled ms(ets:match spec compile([{' ',[]1,[truel}l)).

Thefollowing expressionsyieldf al se, asvariable Br oken contains acompiled match specification that has passed
through external representation:

MS = ets:match spec compile([{' ',[],[truel}l),
Broken = binary to term(term to binary(MS)),
ets:is compiled ms(Broken).

Note:

The reason for not having an external representation of compiled match specifications is performance. It can be
subject to change in future releases, while this interface remains for backward compatibility.

last(Tab) -> Key | '$end of table'

Types:
Tab = tab()
Key = term()

Returnsthe last key Key according to Erlang term order in table Tab of type or der ed_set . For other table types,
the function is synonymoustofi r st/ 1. If thetableisempty, ' $end_of t abl e' isreturned.

To find preceding keysin the table, use pr ev/ 2.

lookup(Tab, Key) -> [Object]

Types:
Tab = tab()
Key = term()

Object = tuple()
Returnsalist of all objects with key Key in table Tab.

» For tables of type set , bag, or dupl i cat e_bag, an object is returned only if the specified key matches the
key of the object in the table.

e For tables of type or der ed_set, an object is returned if the specified key compares equal to the key of an
object in the table.

The difference is the same as between =: = and ==.

Asan example, onecaninsert an object withi nt eger () 1 asakeyinanor der ed_set and get the object returned
asaresult of doing al ookup/ 2 withf | oat () 1. 0 asthekey to search for.

For tables of type set or or der ed_set , the function returns either the empty list or a list with one element, as
there cannot be more than one object with the same key. For tables of type bag or dupl i cat e_bag, the function
returns alist of arbitrary length.

156 | Ericsson AB. All Rights Reserved.: STDLIB

ets

Notice that the time order of object insertions is preserved; the first object inserted with the specified key is the first
in the resulting list, and so on.

Insert and lookup times in tables of type set , bag, and dupl i cat e_bag are constant, regardless of the table size.
For theor der ed_set datatype, timeis proportiona to the (binary) logarithm of the number of objects.

lookup element(Tab, Key, Pos) -> Elem

Types:
Tab = tab()
Key = term()
Pos = integer() >=1

Elem = term() | [term()]
For atable Tab of typeset or or der ed_set , the function returns the Pos :th element of the object with key Key.
For tables of type bag or dupl i cat e_bag, the functions returns a list with the Pos:th element of every object
with key Key.
If no object with key Key exists, the function exits with reason badar g.

The difference between set , bag, and dupl i cat e_bag on onehand, and or der ed_set onthe other, regarding
thefact that or der ed_set view keys as equal when they compar e equal whereasthe other table types regard them
equal only when they match, holdsfor | ookup_el enent / 3.

match(Continuation) -> {[Match], Continuation} | '$end of table’
Types:

Match = [term()]

Continuation = continuation()

Continues amatch started with mat ch/ 3. The next chunk of the size specified in theinitial mat ch/ 3 call isreturned
together with anew Cont i nuat i on, which can be used in subsequent calls to this function.

When there are no more objectsin thetable, ' $end_of _t abl e' isreturned.

match(Tab, Pattern) -> [Match]
Types:
Tab = tab()
Pattern = match_pattern()
Match = [term()]
Matches the objectsin table Tab against pattern Pat t er n.
A pattern is aterm that can contain:
e Bound parts (Erlang terms)
e ' ' that matches any Erlang term
+ Patternvariables' $N' , where N=0,1,...

The function returns alist with one element for each matching object, where each element is an ordered list of pattern
variable bindings, for example:

6> ets:match(T, '$1'). % Matches every object in table
[[{rufsen,dog,7}], [{brunte,horse,5}], [{ludde,dog,5}11]
7> ets:match(T, {' ',dog,'$1'}).

Ericsson AB. All Rights Reserved.: STDLIB | 157

ets

[[71,[5]1]
8> ets:match(T, {' ',cow,'$1'}).
[1

If the key is specified in the pattern, the match is very efficient. If the key is not specified, that is, if it isavariable or
an underscore, the entire table must be searched. The search time can be substantial if the tableisvery large.

For tables of typeor der ed_set , theresultisinthe same order asinaf i r st /next traversal.

match(Tab, Pattern, Limit) ->
{[Match], Continuation} | '$end of table'

Types.
Tab = tab()
Pattern = natch_pattern()
Limit = integer() >=1
Match = [term()]
Continuation = continuation()
Works like mat ch/ 2, but returns only alimited (Li m t) number of matching objects. Term Cont i nuat i on can

then be used in subsequent callsto mat ch/ 1 to get the next chunk of matching objects. Thisis a space-efficient way
to work on objectsin atable, which is faster than traversing the table object by object usingfi r st/ 1 and next / 2.

If thetableisempty, ' $end_of _t abl e' isreturned.

match delete(Tab, Pattern) -> true
Types:

Tab = tab()

Pattern = match_pattern()

Deletes all objects that match pattern Pat t er n from table Tab. For a description of patterns, seemat ch/ 2.

match object(Continuation) ->
{[0bject], Continuation} | '$end of table'

Types:
Object = tuple()
Continuation = continuation()

Continues a match started with mat ch_obj ect/ 3. The next chunk of the size specified in the initia
mat ch_obj ect/ 3 cal is returned together with a new Cont i nuat i on, which can be used in subsequent calls
to this function.

When there are no more objectsin thetable, ' $end_of _t abl e' isreturned.

match object(Tab, Pattern) -> [Object]
Types:
Tab = tab()
Pattern = match_pattern()
Object = tuple()
Matchesthe objectsin table Tab against pattern Pat t er n. For adescription of patterns, seermat ch/ 2. Thefunction
returns alist of al objects that match the pattern.

158 | Ericsson AB. All Rights Reserved.: STDLIB

ets

If the key is specified in the pattern, the match is very efficient. If the key is not specified, that is, if it isavariable or
an underscore, the entire table must be searched. The search time can be substantial if the table is very large.

For tables of type or der ed_set , theresultisinthe same order asinaf i r st /next traversal.

match object(Tab, Pattern, Limit) ->
{[0bject], Continuation} | '$end of table'

Types:

Tab = tab()

Pattern = match_pattern()

Limit = integer() >=1

Object = tuple()

Continuation = continuation()
Works like match_object/ 2, but only returns a limited (Li mit) number of matching objects. Term
Cont i nuati on can then be used in subsequent callsto mat ch_obj ect/ 1 to get the next chunk of matching

objects. Thisis a space-efficient way to work on objectsin atable, which is faster than traversing the table object by
objectusingfirst/ 1 andnext/ 2.

If thetableisempty, ' $end_of _t abl e' isreturned.

match spec compile(MatchSpec) -> CompiledMatchSpec
Types:

MatchSpec = mat ch_spec()

CompiledMatchSpec = conp_match_spec()
Transforms a match specification into an internal representation that can be used in subsequent calls to
mat ch_spec_run/ 2. Theinterna representation is opague and cannot be converted to external term format and
then back again without losing its properties (that is, it cannot be sent to a process on another node and still remain
a valid compiled match specification, nor can it be stored on disk). To check the validity of a compiled match
specification, usei s_conpi | ed_ns/ 1.

If term Mat chSpec cannot be compiled (does not represent a valid match specification), a badar g exception is
raised.

Note:

This function has limited use in normal code. It is used by the det s module to perform thedet s: sel ect ()
operations.

match spec run(List, CompiledMatchSpec) -> list()
Types:
List = [tuple()]
CompiledMatchSpec = conp_mat ch_spec()
Executes the matching specified in a compiled match specification on alist of tuples. Term Conpi | edMat chSpec

is to be the result of acall to mat ch_spec_conpi | e/ 1 and is hence the internal representation of the match
specification one wants to use.

Ericsson AB. All Rights Reserved.: STDLIB | 159

ets

The matching is executed on each element in Li st and the function returns alist containing all results. If an element

inLi st does not match, nothing is returned for that element. The length of the result list is therefore equal or less
than the length of parameter Li st .

Example:

The following two calls give the same result (but certainly not the same execution time):

Table = ets:new...

MatchSpec = ...

% The following call...

ets:match spec run(ets:tab2list(Table),
ets:match spec compile(MatchSpec)),

% ...gives the same result as the more common (and more efficient)
ets:select(Table, MatchSpec),

Note:

This function has limited use in normal code. It is used by the det s module to perform the det s: sel ect ()
operations and by Mnesia during transactions.

member(Tab, Key) -> boolean()

Types:
Tab = tab()
Key = term()

Works like | ookup/ 2, but does not return the objects. Returnst r ue if one or more elements in the table has key
Key, otherwisef al se.

new(Name, Options) -> tid() | atom()
Types:
Name = atom()
Options = [Option]
Option =
Type |
Access |
named table |
{keypos, Pos} |
{heir, Pid :: pid(), HeirData} |
{heir, none} |
Tweaks
Type = type()
Access access()
Tweaks =
{write concurrency, boolean()} |
{read concurrency, boolean()} |

160 | Ericsson AB. All Rights Reserved.: STDLIB

ets

compressed
Pos = integer() >=1
HeirData = term()

Creates a new table and returns a table identifier that can be used in subsequent operations. The table identifier can be
sent to other processes so that a table can be shared between different processes within a node.

Parameter Opt i ons is alist of atoms that specifies table type, access rights, key position, and whether the table
is named. Default values are used for omitted options. This means that not specifying any options ([]) is the same
as specifying [set, protected, {keypos,1}, {heir,none}, {wite_concurrency,false},
{read_concurrency, fal se}].

set
Thetableisaset table: one key, one object, no order among objects. Thisis the default table type.
ordered_set

Thetableisaor der ed_set table: one key, one object, ordered in Erlang term order, which isthe order implied
by the < and > operators. Tables of thistype have a somewhat different behavior in some situations than tabl es of
other types. Most notably, the or der ed_set tablesregard keys as equal when they compar e equal, not only
when they match. This meansthat to an or der ed_set table i nt eger () 1 andfl oat () 1. O areregarded
asequal. This also means that the key used to lookup an element not necessarily matchesthe key in the returned
elements, if f | oat () 'sandi nt eger () 'sare mixed in keys of atable.

bag
Thetableisabag table, which can have many objects, but only one instance of each object, per key.
dupl i cat e_bag

The tableisadupl i cat e_bag table, which can have many objects, including multiple copies of the same
object, per key.

public
Any process can read or write to the table.
pr ot ect ed

The owner process can read and write to the table. Other processes can only read the table. This is the default
setting for the accessrights.

private
Only the owner process can read or write to the table.
naned_t abl e

If this option is present, name Nane is associated with the table identifier. The name can then be used instead
of the table identifier in subsequent operations.

{keypos, Pos}

Specifies which element in the stored tuples to use as key. By default, it is the first element, that is, Pos=1.
However, thisis not always appropriate. In particular, we do not want the first element to be the key if we want
to store Erlang recordsin atable.

Notice that any tuple stored in the table must have at least Pos number of elements.
{heir,Pid, HeirData} | {heir, none}

Set a process as heir. The heir inherits the table if the owner terminates. Message {' ETS-
TRANSFER , ti d(), FronPi d, Hei r Dat a} is sent to the heir when that occurs. The heir must be a local
process. Default heir isnone, which destroys the table when the owner terminates.

Ericsson AB. All Rights Reserved.: STDLIB | 161

ets

{wite_concurrency, bool ean()}

Performance tuning. Defaults to f al se, in which case an operation that mutates (writes to) the table obtains
exclusive access, blocking any concurrent access of the same table until finished. If set to t r ue, the table is
optimized to concurrent write access. Different objects of the same table can be mutated (and read) by concurrent
processes. This is achieved to some degree at the expense of memory consumption and the performance of
sequential access and concurrent reading.

Option wri t e_concurrency can be combined with option read_concurrency. You typicaly want
to combine these when large concurrent read bursts and large concurrent write bursts are common; for more
information, seeoption r ead_concurrency.

Notice that this option does not change any guarantees about atomicity and isolation. Functions that makes such
promises over many objects (likei nsert / 2) gain less (or nothing) from this option.

Table type or der ed_set is not affected by this option. Also, the memory consumption inflicted by both
write concurrency andread_concurrency is aconstant overhead per table. This overhead can be
especially large when both options are combined.

{read_concurrency, bool ean()}

Performancetuning. Defaultstof al se. Whensettot r ue, thetableisoptimized for concurrent read operations.
When this option is enabled on a runtime system with SMP support, read operations become much cheaper;
especially on systems with multiple physical processors. However, switching between read and write operations
becomes more expensive.

You typically want to enable this option when concurrent read operations are much more frequent than write
operations, or when concurrent reads and writes comes in large read and write bursts (that is, many reads not
interrupted by writes, and many writes not interrupted by reads).

You typically do not want to enable this option when the common access pattern is a few read operations
interleaved with a few write operations repeatedly. In this case, you would get a performance degradation by
enabling this option.

Optionr ead_concur r ency can be combined with option wri t e_concurrency. You typicaly want to
combine these when large concurrent read bursts and large concurrent write bursts are common.

conpr essed

If this option is present, the table data is stored in a more compact format to consume less memory. However, it
will make table operations slower. Especially operations that need to inspect entire objects, such as nat ch and
sel ect, get much slower. The key element is not compressed.

next(Tab, Keyl) -> Key2 | '$end of table'
Types:
Tab = tab()
Keyl = Key2 = term()
Returnsthe next key Key 2, following key Key1 in table Tab. For tabletype or der ed_set , the next key in Erlang

term order isreturned. For other table types, the next key according to the internal order of the table is returned. If no
next key exists, ' $end_of _t abl e' isreturned.

To find thefirst key in the table, usefi rst/ 1.

Unlessatable of typeset , bag, or dupl i cat e_bag isprotected using saf e_fi xt abl e/ 2, atraversal can fall
if concurrent updates are made to the table. For table type or der ed_set , the function returns the next key in order,
even if the object does no longer exist.

162 | Ericsson AB. All Rights Reserved.: STDLIB

ets

prev(Tab, Keyl) -> Key2 | '$end of table'
Types:
Tab = tab()
Keyl = Key2 = term()
Returns the previous key Key?2, preceding key Keyl according to Erlang term order in table Tab of type

ordered_set. For other table types, the function is synonymous to next/ 2. If no previous key exists,
' $end_of _t abl e’ isreturned.

Tofind thelast key inthetable, usel ast/ 1.

rename(Tab, Name) -> Name
Types:

Tab = tab()

Name = atom()

Renames the named table Tab to the new name Nane. Afterwards, the old name cannot be used to access the table.
Renaming an unnamed table has no effect.

repair_continuation(Continuation, MatchSpec) -> Continuation
Types:

Continuation = continuation()

MatchSpec = mat ch_spec()

Restoresan opague continuationreturned by sel ect / 3 orsel ect / 1 if the continuation has passed through external
term format (been sent between nodes or stored on disk).

The reason for this function is that continuation terms contain compiled match specifications and therefore are
invalidated if converted to external term format. Given that the origina match specification is kept intact, the
continuation can be restored, meaning it can once again be used in subsequent sel ect / 1 calls even though it has
been stored on disk or on another node.

Examples:

The following sequence of calsfails:

T=ets:new(x,[1),

t;:C} = ets:select(T,ets:fun2ms(fun({N, }=A)

when (N rem 10) =:= 0 ->
A
end),10),

Broken = binary to term(term to binary(C)),
ets:select(Broken).

The following sequence works, as the cal to repair_continuati on/ 2 reestablishes the (deliberately)
invalidated continuation Br oken.

T=ets:new(x,[1),

MS = ets:fun2ms(fun({N, }=A)
when (N rem 10) =:= 0 ->

A

end),

Ericsson AB. All Rights Reserved.: STDLIB | 163

ets

{ ,C} = ets:select(T,MS,10),
Broken = binary to term(term to binary(C)),
ets:select(ets:repair continuation(Broken,MS)).

Note:

This function is rarely needed in application code. It is used by Mnesia to provide distributed sel ect / 3 and
sel ect/ 1 sequences. A normal application would either use Mnesia or keep the continuation from being
converted to external format.

The reason for not having an external representation of a compiled match specification is performance. It can be
subject to change in future releases, while this interface remains for backward compatibility.

safe fixtable(Tab, Fix) -> true

Types:
Tab = tab()
Fix = boolean()

Fixes atable of typeset , bag, or dupl i cat e_bag for safe traversal.

A processfixesatableby callingsaf e_f i xt abl e(Tab, true).Thetableremainsfixed until the processrel eases
itby callingsaf e _fi xtabl e(Tab, fal se), oruntil the process terminates.

If many processes fix atable, the table remains fixed until all processes have released it (or terminated). A reference
counter is kept on a per process basis, and N consecutive fixes requires N releases to release the table.

When atableisfixed, asequenceof first/ 1 and next/ 2 cals are guaranteed to succeed, and each object in the
table is returned only once, even if objects are removed or inserted during the traversal. The keys for new objects
inserted during the traversal can be returned by next / 2 (it depends on the internal ordering of the keys).

Example:

clean all with value(Tab,X) ->
safe fixtable(Tab,true),
clean all with value(Tab,X,ets:first(Tab)),
safe fixtable(Tab, false).

clean all with value(Tab,X, '$end of table') ->
true;
clean all with value(Tab,X,Key) ->
case ets:lookup(Tab,Key) of
[{Key,X}] ->
ets:delete(Tab,Key);
->
~ true
end,
clean all with value(Tab,X,ets:next(Tab,Key)).

Notice that no deleted objects are removed from afixed table until it has been released. If a process fixes a table but
never releases it, the memory used by the deleted objects is never freed. The performance of operations on the table
also degrades significantly.

To retrieve information about which processes have fixed which tables, use i nfo(Tab,
saf e_fi xed_nonot oni c_ti me). A system with many processes fixing tables can need a monitor that sends
alarms when tables have been fixed for too long.

164 | Ericsson AB. All Rights Reserved.: STDLIB

ets

Noticethat for tabletypeor der ed_set ,saf e_fi xt abl e/ 2 isnot necessary, ascallstof i r st/ 1 andnext/ 2
always succeed.

select(Continuation) -> {[Match], Continuation} | '$end of table’
Types:

Match = term()

Continuation = continuation()

Continues a match started with sel ect / 3. The next chunk of the size specified in the initial sel ect/ 3 cal is
returned together with anew Cont i nuat i on, which can be used in subsequent callsto this function.

When there are no more objectsin thetable, ' $end_of _t abl e' isreturned.

select(Tab, MatchSpec) -> [Match]
Types.

Tab = tab()

MatchSpec = mat ch_spec()

Match = term()

Matches the objects in table Tab using a match specification. This is a more genera call than nat ch/ 2 and
mat ch_obj ect/ 2 cals. Inits simplest form, the match specification is as follows:

MatchSpec = [MatchFunction]

MatchFunction = {MatchHead, [Guard], [Result]}
MatchHead = "Pattern as in ets:match"

Guard = {"Guardtest name", ...}

Result = "Term construct"

This means that the match specification isawaysalist of one or more tuples (of arity 3). Thefirst element of thetuple
is to be a pattern as described in mat ch/ 2. The second element of the tuple is to be alist of O or more guard tests
(described below). Thethird element of the tuple isto be alist containing a description of the valueto return. In almost
all normal cases, the list contains exactly one term that fully describes the value to return for each object.

Thereturn valueis constructed using the "match variables" boundin Mat chHead or using the special match variables
'$_"' (thewholematching object) and' $$' (all match variablesinalist), so that thefollowing mat ch/ 2 expression:

ets:match(Tab, {'$1','$2"','$3"'})

is exactly equivalent to:

ets:select(Tab, [{{'$1','$2",'$3"'},[1,['$$'1}1)

And that the following mat ch_obj ect / 2 cdll:

ets:match_object(Tab,{'$1','$2"','$1'})

is exactly equivalent to

Ericsson AB. All Rights Reserved.: STDLIB | 165

ets

ets:select(Tab, [{{'$1","$2","'$1"},[]1,['$_"1}1)

Composite terms can be constructed in the Resul t part either by simply writing alist, so that the following code:

ets:select(Tab, [{{'$1",'$2","'$3"},[1,['$$'1}1])

gives the same output as:

ets:select(Tab, [{{'$1","'$2","$3"},[],[["'$1","'$2","'$3"']1}])

That is, all the bound variables in the match head as alist. If tuples are to be constructed, one has to write a tuple of
arity 1 where the single element in the tuple is the tuple one wants to construct (as an ordinary tuple can be mistaken
for aGuar d).

Therefore the following call:

ets:select(Tab, [{{'$1","$2","'$1"},[],['$_"1}1)

gives the same output as:

ets:select(Tab, [{{'$1","'$2","$1"}, [], [{{"$1","$2","$3"}}1}1])

This syntax is equivalent to the syntax used in the trace patterns (see the dbg(3)) module in Runtime_Tools.

The Guar dsare constructed as tuples, where the first element is the test name and the remaining elements are the test
parameters. To check for aspecific type (say alist) of the element bound to the match variable' $1' , onewould write
thetestas{i s_list, '$1'}.If thetestfails, theobject inthetable doesnot match and the next Mat chFunct i on
(if any) istried. Most guard tests present in Erlang can be used, but only the new versions prefixed i s__ are allowed
(is_float,is_atomandsoon).

The Guar d section can also contain logic and arithmetic operations, which are written with the same syntax as the
guard tests (prefix notation), so that the following guard test written in Erlang:

is _integer(X), is integer(Y), X + Y < 4711

is expressed as follows (X replaced with* $1' and Y with' $2'):

[{is _integer, '$1'}, {is integer, '$2'}, {'<', {'+', '$1', '$2'}, 4711}]

For tables of type or der ed_set , objects are visited in the same order asin af i r st /next traversal. This means
that the match specification is executed against objects with keysinthefi r st /next order and the corresponding
result list isin the order of that execution.

select(Tab, MatchSpec, Limit) ->

166 | Ericsson AB. All Rights Reserved.: STDLIB

ets

{[Match], Continuation} | '$end of table'

Types.

Tab = tab()

MatchSpec = mat ch_spec()

Limit = integer() >=1

Match = term()

Continuation = continuation()
Workslikesel ect/ 2, but only returnsalimited (Li m t) number of matching objects. Term Cont i nuat i on can
then be used in subsequent callsto sel ect / 1 to get the next chunk of matching objects. This is a space-efficient

way to work on objectsin atable, which is still faster than traversing the table object by object usingfi rst/ 1 and
next/ 2.

If thetableisempty, ' $end_of _t abl e' isreturned.

select count(Tab, MatchSpec) -> NumMatched
Types:
Tab = tab()
MatchSpec = mat ch_spec()
NumMatched = integer() >= 0
Matches the objects in table Tab using a match specification. If the match specification returnst r ue for an object,

that object considered a match and is counted. For any other result from the match specification the object is not
considered a match and is therefore not counted.

This function can be described asamat ch_del et e/ 2 function that does not delete any elements, but only counts
them.

The function returns the number of objects matched.

select delete(Tab, MatchSpec) -> NumDeleted
Types:

Tab = tab()

MatchSpec = mat ch_spec()

NumDeleted = integer() >= 0

Matches the objects in table Tab using a match specification. If the match specification returnst r ue for an object,
that object is removed from the table. For any other result from the match specification the object is retained. Thisis
amore genera call than the mat ch_del et e/ 2 call.

The function returns the number of objects deleted from the table.

Note:

The match specification hasto return the atomt r ue if the object isto be deleted. No other return value gets the
object deleted. So one cannot use the same match specification for looking up elements as for deleting them.

select replace(Tab, MatchSpec) -> NumReplaced
Types:

Ericsson AB. All Rights Reserved.: STDLIB | 167

ets

Tab = tab()

MatchSpec = mat ch_spec()

NumReplaced = integer() >= 0
Matches the objects in the table Tab using a match specification. For each matched object, the existing object is
replaced with the match specification result.

The match-and-replace operation for each individual object is guaranteed to be atomic and isolated. The
sel ect _repl ace tableiteration asawhole, like all other select functions, does not give such guarantees.

The match specifiction must be guaranteed to retain the key of any matched object. If not, sel ect _r epl ace will
fail with badar g without updating any objects.

For the moment, due to performance and semantic constraints, tables of type bag are not yet supported.
The function returns the total number of replaced objects.
Example

For all 2-tupleswith alist in second position, add atom ' mar ker ' firstin thelist:

1> T = ets:new(x,[]), ets:insert(T, {key, [1, 2, 31}).

true

2> MS = ets:fun2ms(fun({K, L}) when is list(L) -> {K, [marker | L]} end).
[{{'$1","'$2"}, [{is_list, '$2'}],[{{'$1", [marker|'$2"']1}}1}1]

3> ets:select replace(T, MS).

1

4> ets:tab2list(T).

[{key, [marker,1,2,31}]

A generic single object compare-and-swap operation:

[0ld] = ets:lookup(T, Key),
New = update object(0ld),
Success = (1 =:= ets:select replace(T, [{0ld, [], [{const, New}1}1)),

select reverse(Continuation) ->
{[Match], Continuation} | '$end of table’

Types:
Continuation = continuation()
Match = term()

Continues amatch started with sel ect _r ever se/ 3. For tablesof typeor der ed_set , thetraversal of thetable
continues to objects with keys earlier in the Erlang term order. The returned list also contains objects with keys in
reverse order. For all other table types, the behavior is exactly that of sel ect/ 1.

Example:

1> T = ets:new(x, [ordered set]).
2> [ets:insert(T,{N}) || N <- lists:seq(1,10)].

éQI{RO,CO} = ets:select reverse(T,[{" ',[1,['$ '1}1,4).

168 | Ericsson AB. All Rights Reserved.: STDLIB

ets

4> RO.
[{10},{9},{8},{7}]

5> {R1,C1} = ets:select reverse(CO).

6> R1.

[{6},{5},{4},{3}]

7> {R2,C2} = ets:select reverse(Cl).

8> R2.

[{2},{1}]

9> '$end of table' = ets:select reverse(C2).

select reverse(Tab, MatchSpec) -> [Match]
Types:

Tab = tab()

MatchSpec = mat ch_spec()

Match = term()

Workslike sel ect / 2, but returns the list in reverse order for table type or der ed_set . For all other table types,
thereturn valueisidentical to that of sel ect / 2.

select reverse(Tab, MatchSpec, Limit) ->
{[Match], Continuation} | '$end of table’

Types:

Tab = tab()

MatchSpec = mat ch_spec()

Limit = integer() >=1

Match = term()

Continuation = continuation()

Workslikesel ect/ 3, but for tabletypeor der ed_set traversingisdone starting at the last object in Erlang term
order and movesto thefirst. For al other table types, the return value isidentical to that of sel ect / 3.

Noticethat thisis not equivalent to reversing theresult list of asel ect / 3 call, astheresult list isnot only reversed,
but also containsthe last Li mi t matching objects in the table, not the first.

setopts(Tab, Opts) -> true
Types:
Tab = tab()
Opts = Opt | [Opt]
Opt = {heir, pid(), HeirData} | {heir, none}
HeirData = term()

Sets table options. The only allowed option to be set after the table has been created is hei r . The calling process
must be the table owner.

slot(Tab, I) -> [Object] | '$end of table'
Types:

Ericsson AB. All Rights Reserved.: STDLIB | 169

ets

Tab = tab()

I = integer() >= 0

Object = tuple()
This function is mostly for debugging purposes, Normally f i r st /next or | ast /pr ev areto be used instead.
Returns all objectsin dot | of table Tab. A table can be traversed by repeatedly calling the function, starting with

thefirst dot | =0 and ending when' $end_of _t abl e' isreturned. If argument | isout of range, the function fails
with reason badar g.

Unless atable of typeset , bag, or dupl i cat e_bag isprotected using saf e_fi xt abl e/ 2, atraversal can fall
if concurrent updates are madeto thetable. For tabletypeor der ed_set , thefunction returnsalist containing object
| in Erlang term order.

tab2file(Tab, Filename) -> ok | {error, Reason}
Types:

Tab = tab()

Filename = fil e: name()

Reason = term()

Dumpstable Tab tofile Fi | enane.
Equivalenttot ab2fi |l e(Tab, Filenane,[])

tab2file(Tab, Filename, Options) -> ok | {error, Reason}
Types:

Tab = tab()

Filename = file: nane()

Options = [Option]

Option = {extended info, [ExtInfo]l} | {sync, boolean()}

ExtInfo = md5sum | object count

Reason = term()

Dumpstable Tab tofile Fi | enane.

When dumping the table, some information about the table is dumped to a header at the beginning of the dump. This
information contains data about the table type, name, protection, size, version, and if itisanamed table. It also contains
notes about what extended information is added to the file, which can be a count of the objects in the file or a MD5
sum of the header and recordsin the file.

The size field in the header might not correspond to the number of recordsin the file if the table is public and records
are added or removed from the table during dumping. Public tables updated during dump, and that one wantsto verify
when reading, needs at |east one field of extended information for the read verification process to be reliable later.

Option ext ended_i nf o specifieswhat extrainformation is written to the table dump:
obj ect _count

The number of objects written to the file is noted in the file footer, so file truncation can be verified even if the
file was updated during dump.

nd5sum

The header and objectsin thefile are checksummed using the built-in MD5 functions. The MD5 sum of all objects
is written in the file footer, so that verification while reading detects the slightest bitflip in the file data. Using
this costs afair anount of CPU time.

170 | Ericsson AB. All Rights Reserved.: STDLIB

ets

Whenever optionext ended_i nf o isused, it resultsin afile not readable by versions of ETS beforethat in STDLIB
1151

If option sync issettot r ue, it ensuresthat the content of the file is written to the disk beforet ab2f i | e returns.
Defaultsto{ sync, fal se}.

tab2list(Tab) -> [Object]
Types:

Tab = tab()

Object = tuple()
Returns alist of all objectsin table Tab.

tabfile info(Filename) -> {ok, TableInfo} | {error, Reason}
Types.

Filename = fil e: name()

TableInfo = [Infoltem]

Infoltem =
{name, atom()} |

{type, Type} |

{protection, Protection} |

{named table, boolean()} |

{keypos, integer() >= 0} |

{size, integer() >= 0} |

{extended info, [ExtInfo]} |

{version,

{Major :: integer() >= 0, Minor :: integer() >= 0}}
ExtInfo = md5sum | object count
Type = bag | duplicate bag | ordered set | set
Protection = private | protected | public

Reason = term()
Returnsinformation about the table dumped to fileby t ab2fi |l e/ 2 ort ab2fi |l e/ 3.
The following items are returned:
name

The name of the dumped table. If the table was a named table, a table with the same name cannot exist when
the table is loaded from file with f i | e2t ab/ 2. If the table is not saved as a named table, this field has no
significance when loading the table from file.

type

The ETStype of the dumped table (that is, set , bag, dupl i cat e_bag, oror der ed_set). Thistypeisused
when loading the table again.

protection

The protection of the dumped table (that is, pri vat e, pr ot ect ed, or publ i c). A tableloaded from the file
gets the same protection.

nanmed_t abl e

t r ue if the table was a named table when dumped to file, otherwise f al se. Notice that when anamed tableis
loaded from afile, there cannot exist atable in the system with the same name.

Ericsson AB. All Rights Reserved.: STDLIB | 171

ets

keypos
Thekeypos of the table dumped to file, which is used when loading the table again.
si ze

The number of objects in the table when the table dump to file started. For a publ i ¢ table, this number does
not need to correspond to the number of objects saved to the file, as objects can have been added or deleted by
another process during table dump.

ext ended_info

The extended information written in the file footer to allow stronger verification during table loading from file,
as specifiedto t ab2f i | e/ 3. Natice that this function only tells which information is present, not the values
in the file footer. The value isalist containing one or more of the atoms obj ect _count and nd5sum

Ver si on

A tuple{ Maj or, M nor} containing the major and minor version of the file format for ETS table dumps. This
version field was added beginning with STDLIB 1.5.1. Files dumped with older versions return { O, 0} in this
field.

An error isreturned if thefileisinaccessible, badly damaged, or not produced witht ab2fi | e/ 2 ort ab2fi |l e/ 3.

table(Tab) -> QueryHandle
table(Tab, Options) -> QueryHandle
Types:
Tab = tab()
QueryHandle = gl c: query_handl e()
Options = [Option] | Option
Option = {n objects, NObjects} | {traverse, TraverseMethod}
NObjects = default | integer() >=1
TraverseMethod =
first next |
last prev |
select |
{select, MatchSpec :: match_spec()}

Returns a Query List Comprehension (QLC) query handle. The gl ¢ module provides aquery language aimed mainly
at Mnesia, but ETS tables, Dets tables, and lists are also recognized by QL C as sources of data. Callingt abl e/ 1, 2
isthe means to make the ETS table Tab usableto QLC.

When there are only simple restrictions on the key position, QLC uses| ookup/ 2 to look up the keys. When that is
not possible, the whole table istraversed. Optiont r aver se determines how thisis done:

first_next

Thetableistraversed one key at atimeby callingfi rst/ 1 and next/ 2.
| ast _prev

Thetableistraversed onekey at atimeby calling | ast/ 1 and pr ev/ 2.
sel ect

The table is traversed by calling sel ect/ 3 and sel ect/ 1. Option n_obj ect s determines the number
of objects returned (the third argument of sel ect/ 3); the default is to return 100 objects at a time. The
match specification (the second argument of sel ect/ 3) is assembled by QLC: simple filters are trandated

172 | Ericsson AB. All Rights Reserved.: STDLIB

ets

into equivalent match specifications while more complicated filters must be applied to all objects returned by
sel ect / 3 given amatch specification that matches all objects.

{sel ect, MatchSpec}

Asfor sel ect, thetableistraversed by calling sel ect/ 3 and sel ect/ 1. The difference is that the match
specification is explicitly specified. This is how to state match specifications that cannot easily be expressed
within the syntax provided by QLC.

Examples:
An explicit match specification is here used to traverse the table:

9> true = ets:insert(Tab = ets:new(t, []), [{1,a},{2,b},{3,c},{4,d}]),
MS = ets:fun2ms(fun({X,Y}) when (X > 1) or (X <5) -> {Y} end),
QH1 = ets:table(Tab, [{traverse, {select, MS}}]).

An example with an implicit match specification:

10> QH2 = qglc:q([{Y} || {X,Y} <- ets:table(Tab), (X > 1) or (X <5)]).

The latter example is equivalent to the former, which can be verified using function gl c: i nf o/ 1:

11> glc:info(QH1) =:= qlc:info(QH2).
true

gl c: i nf o/ 1 returnsinformation about a query handle, and in this case identical information is returned for the two
query handles.

take(Tab, Key) -> [Object]

Types:
Tab = tab()
Key = term()

Object = tuple()
Returns and removes alist of al objects with key Key in table Tab.

The specified Key isused to identify the object by either comparing equal the key of an objectinanor der ed_set
table, or matching in other types of tables (for details on the difference, seel ookup/ 2 and new 2).

test ms(Tuple, MatchSpec) -> {ok, Result} | {error, Errors}
Types:

Tuple = tuple()

MatchSpec = mat ch_spec()

Result = term()

Errors = [{warning | error, string()}]

Thisfunctionisautility to test amatch specification used in calstosel ect / 2. Thefunction both testsVat chSpec
for "syntactic" correctness and runs the match specification against object Tupl e.

Ericsson AB. All Rights Reserved.: STDLIB | 173

ets

If the match specification is syntactically correct, the function either returns{ ok, Resul t } , whereResul t iswhat
would havebeentheresultinareal sel ect/ 2 cal, orf al se if thematch specification doesnot match object Tupl e.

If the match specification contains errors, tuple{ error, Error s} isreturned, where Err or s isalist of natural
language descriptions of what was wrong with the match specification.

Thisisauseful debugging and test tool, especially when writing complicated sel ect / 2 calls.
See also: erlang:match_spec test/3.

to dets(Tab, DetsTab) -> DetsTab
Types.

Tab = tab()

DetsTab = dets:tab_name()

Fills an already created/opened Dets table with the objects in the already opened ETS table named Tab. The Dets
table is emptied before the objects are inserted.

update counter(Tab, Key, UpdateOp) -> Result

update counter(Tab, Key, UpdateOp, Default) -> Result

update counter(Tab, Key, X3 :: [UpdateOpl) -> [Result]

update counter(Tab, Key, X3 :: [UpdateOp], Default) -> [Result]
update counter(Tab, Key, Incr) -> Result

update counter(Tab, Key, Incr, Default) -> Result

Types:
Tab = tab()
Key = term(

)
UpdateOp = {Pos, Incr} | {Pos, Incr, Threshold, SetValue}

Pos = Incr Threshold = SetValue = Result = integer()
Default = tuple()

This function provides an efficient way to update one or more counters, without the trouble of having to look up an
object, update the object by incrementing an element, and insert the resulting object into the table again. (The update
isdone atomically, that is, no process can access the ETS table in the middle of the operation.)

This function destructively update the object with key Key in table Tab by adding | ncr to the element at position
Pos. The new counter value is returned. If no position is specified, the element directly following key (<keypos>
+1) is updated.

If aThr eshol d is specified, the counter isreset to value Set Val ue if the following conditions occur:
* I ncr isnot negative (>= 0) and the result would be greater than (>) Thr eshol d.
e | ncr isnegative (< 0) and the result would be less than (<) Thr eshol d.

A list of Updat eOp can be supplied to do many update operations within the object. The operations are carried out in
the order specified in thelist. If the same counter position occurs more than once in the list, the corresponding counter
isthus updated many times, each time based on the previous result. The return valueisalist of the new counter values
from each update operation in the same order as in the operation list. If an empty list is specified, nothing is updated
and an empty list isreturned. If the function fails, no updatesis done.

The specified Key is used to identify the object by either matching the key of an object in aset table, or compare
equal to the key of an object inan or der ed_set table (for details on the difference, seel ookup/ 2 and new 2).

174 | Ericsson AB. All Rights Reserved.: STDLIB

ets

If adefault object Def aul t isspecified, it isused as the object to be updated if the key is missing from the table. The
value in place of the key isignored and replaced by the proper key value. The return value is as if the default object
had not been used, that is, asingle updated element or alist of them.

The function fails with reason badar g in the following situations:

 Thetabletypeisnotset orordered_set.

» No object with the correct key exists and no default object was supplied.
e The object has the wrong arity.

* Thedefault object arity is smaller than <keypos>.

« Any field from the default object that is updated is not an integer.

e Theelement to update is not an integer.

» The element to update is also the key.

e Anyof Pos, | ncr, Thr eshol d, or Set Val ue isnot an integer.

update element(Tab, Key, ElementSpec :: {Pos, Value}) -> boolean()
update element(Tab, Key, ElementSpec :: [{Pos, Value}]) ->

boolean()
Types:
Tab = tab()
Key = term()

Value = term()
Pos = integer() >=1

Thisfunction provides an efficient way to update one or more elements within an object, without the trouble of having
to look up, update, and write back the entire object.

This function destructively updates the object with key Key in table Tab. The element at position Pos is given the
value Val ue.

A list of { Pos, Val ue} can be supplied to update many elements within the same object. If the same position occurs
more than once in the list, the last value in the list is written. If the list is empty or the function fails, no updates are
done. The function is aso atomic in the sense that other processes can never see any intermediate results.

Returnst r ue if an object with key Key isfound, otherwisef al se.

The specified Key is used to identify the object by either matching the key of an object in aset table, or compare
equal to the key of an object in an or der ed_set table (for details on the difference, seel ookup/ 2 and new 2).

The function fails with reason badar g in the following situations:

e Thetabletypeisnotset orordered_set.
e Pos<l

* Pos > object arity.

* Theelement to update is also the key.

Ericsson AB. All Rights Reserved.: STDLIB | 175

file_sorter

file_sorter

Erlang module

This module contains functions for sorting terms on files, merging aready sorted files, and checking files for
sortedness. Chunks containing binary terms are read from a sequence of files, sorted internally in memory and written
on temporary files, which are merged producing one sorted file as output. Merging is provided as an optimization; it
is faster when the files are already sorted, but it always works to sort instead of merge.

On afile, atermis represented by a header and a binary. Two options define the format of terms on files:
{header, Header Lengt h}

Header Lengt h determines the number of bytes preceding each binary and containing the length of the binary
in bytes. Defaults to 4. The order of the header bytes is defined as follows: if B is a binary containing a header
only, size Si ze of thebinary iscalculated as<<Si ze: Header Lengt h/ uni t: 8>> = B.

{format, Fornat}

Option For mat determines the function that is applied to binaries to create the terms to be sorted. Defaults to
bi nary_t er mwhichisequivadenttof un binary _to_term 1.Vauebi nary isequivalenttof un(X)
-> X end, which means that the binaries are sorted asthey are. Thisisthe fastest format. If For mat ist er m
i 0: read/ 2 iscaledtoread terms. In that case, only the default value of option header isallowed.

Option f or mat aso determines what is written to the sorted output file: if Format is term then
i o: format/ 3 iscaled to write each term, otherwise the binary prefixed by a header is written. Notice that
the binary written is the same binary that was read; the results of applying function For nat are thrown away
when the terms have been sorted. Reading and writing terms using thei o module is much slower than reading
and writing binaries.

Other options are:
{order, Order}

The default isto sort terms in ascending order, but that can be changed by value descendi ng or by specifying
an ordering function Fun. An ordering function is antisymmetric, transitive, and total. Fun(A, B) isto return
t r ue if A comes before B in the ordering, otherwise f al se. An example of atypical ordering function isless
than or equal to, =</ 2. Using an ordering function slows down the sort considerably. Functions keysort,
keyner ge and keycheck do not accept ordering functions.

{uni que, bool ean()}

When sorting or merging files, only thefirst of asequence of termsthat compare equal (==) isoutput if thisoption
issettot rue. Defaultsto f al se, which implies that all terms that compare equal are output. When checking
filesfor sortedness, acheck that no pair of consecutive terms compares equal isdoneif thisoptionissettot r ue.

{tnmpdir, TenpDirectory}

The directory where temporary files are put can be chosen explicitly. The default, implied by value
"", is to put temporary files on the same directory as the sorted output file. If output is a function
(see below), the directory returned by fil e: get _cwd() is used instead. The names of temporary files
are derived from the Erlang nodename (node()), the process identifier of the current Erlang emulator
(os: get pi d()), and aunique integer (er | ang: uni que_i nt eger ([posi tive])). A typica nameis
fs_nynode@ryhost 1763 _4711. 17, where 17 is a sequence number. Existing files are overwritten.
Temporary files are deleted unless some uncaught EXI T signal occurs.

176 | Ericsson AB. All Rights Reserved.: STDLIB

file_sorter

{conpressed, bool ean()}

Temporary files and the output file can be compressed. Defaultsf al se, which implies that written files are not
compressed. Regardless of the value of option conpr essed, compressed files can aways be read. Notice that
reading and writing compressed files are significantly slower than reading and writing uncompressed files.

{size, Size}

By default about 512* 1024 bytes read from files are sorted internally. This option israrely needed.
{no_files, NoFiles}

By default 16 files are merged at atime. This option israrely needed.

As an alternative to sorting files, a function of one argument can be specified as input. When called with argument
r ead, the function is assumed to return either of the following:

« end_of _i nput or{end_of _i nput, Val ue}} whenthereisnomoreinput (Val ue isexplained below).

e {Objects, Fun},wherebj ect s isalist of binaries or terms depending on the format, and Fun is a new
input function.

Any other value is immediately returned as value of the current call to sort or keysort . Each input function is
called exactly once. If an error occurs, the last function is called with argument cl ose, the reply of whichisignored.

A function of one argument can be specified as output. The results of sorting or merging theinput is collected in anon-
empty sequence of variablelength lists of binaries or terms depending on the format. The output function iscalled with
onelist at atime, and is assumed to return a new output function. Any other return value is immediately returned as
value of the current call to the sort or merge function. Each output function is called exactly once. When some output
function has been applied to al of the results or an error occurs, the last function is called with argument cl ose, and
thereply is returned as value of the current call to the sort or merge function.

If a function is specified as input and the last input function returns { end_of _i nput, Val ue}, the function
specified as output is called with argument { val ue, Val ue}. Thismakesit easy to initiate the sequence of output
functions with a value calculated by the input functions.

Asan example, consider sorting thetermson adisk log file. A function that reads chunks from the disk log and returns
alist of binariesis used asinput. Theresults are collected in alist of terms.

sort(Log) ->
{ok, } = disk log:open([{name,Log}, {mode,read only}]),
Input = input(Log, start),
Output = output([]),
Reply = file sorter:sort(Input, Output, {format,term}),
ok = disk log:close(Log),
Reply.

input(Log, Cont) ->
fun(close) ->
ok;
(read) ->
case disk log:chunk(Log, Cont) of
{error, Reason} ->
{error, Reason};
{Cont2, Terms} ->
{Terms, input(Log, Cont2)};
{Cont2, Terms, Badbytes} ->
{Terms, input(Log, Cont2)};
eof ->
end of input
end
end.

Ericsson AB. All Rights Reserved.: STDLIB | 177

file_sorter

output(L) ->
fun(close) ->
lists:append(lists:reverse(L));
(Terms) ->
output([Terms | L])
end.

For more examples of functions as input and output, see the end of thefi | e_sort er module; thet er mformat
isimplemented with functions.

The possible values of Reason returned when an error occurs are:

« bad_object,{bad_object, FileNane} - Applying the format function failed for some binary, or the
key(s) could not be extracted from some term.

e {bad_term FileNane} -io:read/ 2 faledtoread someterm.

o {file_error, FileNane, file:posix()} -Foranexplanationoffil e: posix(),seefile(3).

e {premature_eof, FileNane} - End-of-file was encountered inside some binary term.

Data Types
file name() = file: name()
file names() = [file:nanme()]
i command() = read | close
i reply() =
end of input |
{end of input, value()} |
{lobject() 1, infun()} |
i nput _reply()
infun() = fun((i _command()) -> i _reply())
input() = file_nanmes() | infun()
input _reply() = term()
o _command() = {value, value()} | [object()] | close
o reply() = outfun() | output_reply()

object() = term() | binary()
outfun() = fun((o_conmmand()) -> o_reply())
output() = file_name() | outfun()

output _reply() = term()

value() = term()
options() = [option()] | option()
option() =
{compressed, boolean()} |
{header, header_length()} |
{format, format()} |
{no files, no_files()} |
{order, order()} |
{size, size()} |
{tmpdir, tnp_directory()} |

178 | Ericsson AB. All Rights Reserved.: STDLIB

file_sorter

{unique, boolean()}
format() = binary term | term | binary | format_fun()
format fun() = fun((binary()) -> term())
header length() = integer() >=1
key pos() = integer() >= 1 | [integer() >= 1]
no files() = integer() >=1
order() = ascending | descending | order_fun()
order fun() = fun((term(), term()) -> boolean())
size() = integer() >= 0
tmp directory() = []1 | file:nanme()

reason() =
bad object |
{bad object, file_nanme()} |
{bad term, file_nane()} |
{file error,
file_name(),
file:posix() | badarg | system limit} |
{premature eof, file_nane()}

Exports

check(FileName) -> Reply
check(FileNames, Options) -> Reply
Types.
FileNames = fil e_nanmes()
Options = options()
Reply = {ok, [Result]} | {error, reason()}
Result = {FileName, TermPosition, term()}
FileName = file_nane()
TermPosition = integer() >=1
Checks files for sortedness. If afile is not sorted, the first out-of-order element is returned. The first term on afile
has position 1.

check(Fil eNane) isequivaenttocheck([Fi | eNane], []).
keycheck(KeyPos, FileName) -> Reply

keycheck(KeyPos, FileNames, Options) -> Reply
Types:

Ericsson AB. All Rights Reserved.: STDLIB | 179

file_sorter

KeyPos = key_ pos()

FileNames = fil e_nanes()

Options = options()

Reply = {ok, [Result]} | {error, reason()}

Result = {FileName, TermPosition, term()}

FileName = file_nane()

TermPosition = integer() >=1
Checks files for sortedness. If afile is not sorted, the first out-of-order element is returned. The first term on afile
has position 1.

keycheck(KeyPos, Fil eNane) isequivaenttokeycheck(KeyPos, [FileNane], []).

keymerge (KeyPos, FileNames, Output) -> Reply
keymerge (KeyPos, FileNames, Output, Options) -> Reply
Types.

KeyPos = key_pos()

FileNames = fil e_nanes()

OQutput = out put ()

Options = options()

Reply = ok | {error, reason()} | output_reply()
Merges tuples on files. Each input file is assumed to be sorted on key(s).

keynmerge(KeyPos, FileNanes, CQutput) is equivaent to keynerge(KeyPos, Fil eNanes,
Qutput, []).

keysort(KeyPos, FileName) -> Reply
Types:
KeyPos = key_pos()
FileName = file_nane()
Reply = ok | {error, reason()} | input_reply() | output_reply()
Sorts tuples on files.
keysort (N, FileNane) isequivaenttokeysort(N, [FileNane], FileNane).

keysort(KeyPos, Input, Output) -> Reply
keysort (KeyPos, Input, OQutput, Options) -> Reply
Types.
KeyPos = key_pos()
Input = input()
OQutput = out put ()
Options = options()
Reply = ok | {error, reason()} | input_reply() | output_reply()
Sortstupleson files. The sort is performed on the el ement(s) mentioned in Key Pos. If two tuples compare equal (==
on one element, the next element according to Key Pos is compared. The sort is stable.

keysort (N, |nput, Qutput) isequivaenttokeysort(N, |nput, Qutput, []).

180 | Ericsson AB. All Rights Reserved.: STDLIB

file_sorter

merge(FileNames, Output) -> Reply
merge(FileNames, Output, Options) -> Reply
Types:

FileNames = fil e_nanes()

Output = output ()

Options = options()

Reply = ok | {error, reason()} | output_reply()
Merges terms on files. Each input file is assumed to be sorted.

mer ge(Fi | eNanes, Qutput) isequivalenttormer ge(Fi |l eNames, Qutput, []).

sort(FileName) -> Reply
Types:
FileName = file_nane()
Reply = ok | {error, reason()} | input_reply() | output_reply()
Sortsterms on files.
sort (Fil eNane) isequivaenttosort ([Fi | eNane], Fil eNane).

sort(Input, Output) -> Reply
sort(Input, Output, Options) -> Reply
Types:
Input = input()
Output = out put ()
Options = options()
Reply = ok | {error, reason()} | input_reply() | output_reply()
Sortsterms on files.
sort (I nput, Qutput) isequivdenttosort (I nput, Qutput, []).

Ericsson AB. All Rights Reserved.: STDLIB | 181

filelib

filelib

Erlang module

This module contains utilities on a higher level than thef i | e module.

This module does not support "raw" filenames (that is, files whose names do not comply with the expected encoding).
Such files are ignored by the functionsin this module.

For more information about raw filenames, seethef i | e module.

Data Types

filename() = file: nane()
dirname() = filenanme()
dirname all() = filename_all ()
filename all() = file:nane_all ()
find file rule() =
{0bjDirSuffix :: string(), SrcDirSuffix :: string()}

find source rule() =
{ObjExtension :: string(),
SrcExtension :: string(),
[find file rule()]}

Exports

ensure dir(Name) -> ok | {error, Reason}
Types:
Name = filenane_all () | dirnane_all ()
Reason = fil e: posi x()
Ensuresthat all parent directoriesfor the specified file or directory name Nane exist, trying to create them if necessary.

Returns ok if all parent directories already exist or can be created. Returns { err or, Reason} if some parent
directory does not exist and cannot be created.

file size(Filename) -> integer() >= 0
Types:

Filename = fil ename_all ()
Returns the size of the specified file.

fold files(Dir, RegExp, Recursive, Fun, AccIn) -> AccOut
Types.

182 | Ericsson AB. All Rights Reserved.: STDLIB

filelib

Dir = dirname()

RegExp = string()

Recursive = boolean()

Fun = fun((F :: file:filename(), AccIn) -> AccOut)
AccIn = AccOut = term()

Folds function Fun over all (regular) files F in directory Di r that match the regular expression RegExp (for a
description of the allowed regular expressions, seether e module). If Recur si ve ist r ue, al subdirectoriesto Di r
are processed. The regular expression matching is only done on the filename without the directory part.

If Unicode filename tranglation is in effect and the file system is transparent, filenames that cannot be interpreted as
Unicode can be encountered, in which case the f un() must be prepared to handle raw filenames (that is, binaries).
If the regular expression contains codepoints > 255, it does not match filenames that do not conform to the expected

character encoding (that is, are not encoded in valid UTF-8).
For more information about raw filenames, seethef i | e module.

is dir(Name) -> boolean()
Types:

Name = filenane_all () | dirnane_all ()
Returnst r ue if Nane refersto adirectory, otherwisef al se.

is file(Name) -> boolean()
Types:
Name = filenane_all () | dirnane_all ()
Returnst r ue if Nane refersto afile or adirectory, otherwisef al se.

is _regular(Name) -> boolean()
Types:
Name = filenanme_all ()
Returnst r ue if Nane refersto a (regular) file, otherwisef al se.

last modified(Name) -> file:date_tine() | ©
Types:
Name = filenane_all () | dirnane_all ()
Returns the date and time the specified file or directory was last modified, or O if the file does not exist.

wildcard(Wildcard) -> [file:filenane()]
Types:
Wildcard = filenane() | dirnane()
Returns alist of all files that match Unix-style wildcard string W | dcar d.

The wildcard string looks like an ordinary filename, except that the following "wildcard characters' are interpreted

in aspecial way:
?

Matches one character.

Ericsson AB. All Rights Reserved.: STDLIB | 183

filelib

Matches any number of characters up to the end of the filename, the next dot, or the next slash.

**

Two adjacent * used as a single pattern match all files and zero or more directories and subdirectories.
[Characterl,Character2,...]

Matches any of the characterslisted. Two characters separated by ahyphen match arange of characters. Example:
[A- Z] matches any uppercase |etter.

{Item,...}
Alternation. Matches one of the alternatives.

Other charactersrepresent themselves. Only filenamesthat have exactly the same character in the same position match.
Matching is case-sensitive, for example, "a"* does not match "A".

Notice that multiple "*" characters are allowed (as in Unix wildcards, but opposed to Windows/DOS wildcards).
Examples:

The following examples assume that the current directory is the top of an Erlang/OTP installation.

Tofind al . beamfilesin all applications, use the following line:

filelib:wildcard("lib/*/ebin/*.beam") .

Tofind. erl or. hrl inall applicationssr c directories, use either of the following lines:

filelib:wildcard("lib/*/src/*.?2rl")

filelib:wildcard("lib/*/src/*.{erl, hrl}")

Tofindal . hrl filesinsrc ori ncl ude directories:

filelib:wildcard("lib/*/{src,include}/*.hrl").

Tofindall . erl or. hrl filesineither src ori ncl ude directories:

filelib:wildcard("lib/*/{src,include}/*.{erl, hr1}")

Tofindal . erl or. hrl filesinany subdirectory:

filelib:wildcard("lib/**/*.{erl,hri}")

wildcard(Wildcard, Cwd) -> [file:filenane()]
Types:

184 | Ericsson AB. All Rights Reserved.: STDLIB

filelib

Wildcard = filenanme() | dirnanme()
Cwd = dirnanme()

Sameasw | dcar d/ 1, except that Owd is used instead of the working directory.

find file(Filename :: filename(), Dir :: filename()) ->
{ok, filename()} | {error, not found}
find file(Filename :: filenane(),
Dir :: filenane(),

Rules :: [find_file_rule()]) ->
{ok, filenane()} | {error, not found}

Looksfor afile of the given name by applying suffix rulesto the given directory path. For example, arule{ " ebi n",
"src"} means that if the directory path ends with " ebi n", the corresponding path ending in " sr c" should be
searched.

If Rul es isleft out or is an empty list, the default system rules are used. See also the Kernel application parameter
source_search_rul es.

find source(FilePath :: filenane()) ->
{ok, filenane()} | {error, not found}

Equivalent to f i nd_source(Base, Dir),whereDir isfil ename: di rname(Fi | ePat h) and Base is
fil enane: basenane(Fil ePat h) .

find source(Filename :: filenane(), Dir :: filename()) ->
{ok, filename()} | {error, not found}
find source(Filename :: filename(),
Dir :: filenane(),
Rules :: [find_source_rule()]) ->

{ok, filename()} | {error, not found}

Applies file extension specific rules to find the source file for a given object file relative to the object directory. For
example, for a file with the extension . beam the default rule is to look for a file with a corresponding extension
. erl by replacing the suffix " ebi n" of the object directory path with " src" . The file search is done through
find_filel/3.Thedirectory of the object fileis awaystried before any other directory specified by the rules.

If Rul es isleft out or is an empty list, the default system rules are used. See also the Kernel application parameter
source_search_rul es.

Ericsson AB. All Rights Reserved.: STDLIB | 185

filename

filename

Erlang module

This module provides functions for analyzing and manipulating filenames. These functions are designed so that the
Erlang code can work on many different platforms with different filename formats. With filename is meant all strings
that can be used to denote a file. The filename can be a short relative name like f 0o. er |, along absolute name
including a drive designator, a directory name like D: \ usr/l ocal \ bi n\erl/1i b\tool s\foo. erl, orany
variations in between.

In Windows, all functions return filenames with forward slashes only, even if the arguments contain backslashes. To
normalize afilename by removing redundant directory separators, usej oi n/ 1.

Themodule supportsraw filenamesintheway that if abinary ispresent, or thefilename cannot beinterpreted according
tothereturnvalueof fil e: nati ve_name_encodi ng/ 0, araw filenameisalso returned. For example, j oi n/ 1
provided with apath component that isabinary (and cannot be interpreted under the current native filename encoding)
resultsin araw filename that is returned (the join operation is performed of course). For more information about raw
filenames, seethef i | e module.

Data Types

basedir type() =
user cache |
user config |
user data |
user log |
site config |
site data

Exports

absname(Filename) -> file:filename_all ()
Types:
Filename = file:nanme_all ()

ConvertsareativeFi | enamne and returns an absolute name. No attempt is made to create the shortest absol ute name,
asthis can giveincorrect results on file systems that allow links.

Unix examples:

1> pwd() .

"/usr/local"

2> filename:absname("foo").
"/usr/local/foo"

3> filename:absname("../x").

"/usr/local/../x"
4> filename:absname("/").
ll/ll

Windows examples:

1> pwd().

186 | Ericsson AB. All Rights Reserved.: STDLIB

filename

"D:/usr/local"

2> filename:absname("foo").
"D:/usr/local/foo"

3> filename:absname("../x").
"D:/usr/local/../x"

4> filename:absname("/").
i/

absname(Filename, Dir) -> file:filenanme_all ()
Types:
Filename = Dir = file:nanme_all ()

Same asabsnane/ 1, except that the directory to which the filename is to be made relative is specified in argument
Dir.

absname join(Dir, Filename) -> file:filename_all ()
Types:
Dir = Filename = file:nane_all ()
Joins an absolute directory with a relative filename. Similar to j oi n/ 2, but on platforms with tight restrictions
on raw filename length and no support for symbalic links (read: VxWorks), leading parent directory components

in Fi | enanme are matched against trailing directory components in Di r so they can be removed from the result -
minimizing its length.

basedir(Type, Application) -> file:filenane_all ()
Types:

Type = basedir_type()

Application = string() | binary()
Equivalent to basedir(Type, Application, #{}).

basedir(Type, Application, Opts) -> file:filenane_all ()
Types:
Type = basedir _type()
Application = string() | binary()
Opts =
#{author => string() | binary(),
0s => windows | darwin | linux,
version => string() | binary()}

Returns a suitable path, or paths, for a given type. If 0s is not set in Opt s the function will default to the native
option, thatis' I i nux' ," darwi n' or' wi ndows' , asunderstood by os: t ype/ 0. Anything not recognized as
"darwi n' or'wi ndows' isinterpretedas’ | i nux' .
Theoptions' aut hor' and' ver si on' areonly used with' wi ndows' option mode.
e user_cache

The path location is intended for transient data files on alocal machine.

On Linux: Respects the os environment variable XDG_CACHE _HOVE.

1> filename:basedir(user cache, "my application", #{os=>linux}).

Ericsson AB. All Rights Reserved.: STDLIB | 187

filename

"/home/otptest/.cache/my application"

On Darwin:

1> filename:basedir(user cache, "my application", #{os=>darwin}).
"/home/otptest/Library/Caches/my application"

On Windows:

1> filename:basedir(user cache, "My App").

"c:/Users/otptest/AppData/Local/My App/Cache"

2> filename:basedir(user cache, "My App").

"c:/Users/otptest/AppData/Local/My App/Cache"

3> filename:basedir(user cache, "My App", #{author=>"Erlang"}).
"c:/Users/otptest/AppData/Local/Erlang/My App/Cache"

4> filename:basedir(user cache, "My App", #{version=>"1.2"}).
"c:/Users/otptest/AppData/Local/My App/1l.2/Cache"

5> filename:basedir(user cache, "My App", #{author=>"Erlang",version=>"1.2"}).
"c:/Users/otptest/AppData/Local/Erlang/My App/1l.2/Cache"

e user_config
The path location is intended for persistent configuration files.
On Linux: Respects the os environment variable XDG_CONFI G_HOMVE.

2> filename:basedir(user config, "my application", #{os=>linux}).
"/home/otptest/.config/my application"

On Darwin:

2> filename:basedir(user config, "my application", #{os=>darwin}).
"/home/otptest/Library/Application Support/my application"

On Windows:

1> filename:basedir(user config, "My App").

"c:/Users/otptest/AppData/Roaming/My App"

2> filename:basedir(user config, "My App", #{author=>"Erlang", version=>"1.2"}).
"c:/Users/otptest/AppData/Roaming/Erlang/My App/1.2"

e user _data
The path location isintended for persistent datafiles.
On Linux: Respects the os environment variable XDG_DATA_HOVE.

3> filename:basedir(user data, "my application", #{os=>linux}).

"/home/otptest/.local/my application"

On Darwin:

188 | Ericsson AB. All Rights Reserved.: STDLIB

filename

3> filename:basedir(user data, "my application", #{os=>darwin}).
"/home/otptest/Library/Application Support/my application"

On Windows:

8> filename:basedir(user data, "My App").

"c:/Users/otptest/AppData/Local/My App"

9> filename:basedir(user data, "My App",#{author=>"Erlang",version=>"1.2"}).
"c:/Users/otptest/AppData/Local/Erlang/My App/1.2"

user | og
The path location isintended for transient log files on alocal machine.
On Linux: Respects the os environment variable XDG_CACHE_HOVE.

4> filename:basedir(user log, "my application", #{os=>1linux}).
"/home/otptest/.cache/my application/log"

On Darwin:

4> filename:basedir(user log, "my application", #{os=>darwin}).
"/home/otptest/Library/Caches/my application"

On Windows:

12> filename:basedir(user log, "My App").

"c:/Users/otptest/AppData/Local/My App/Logs"

13> filename:basedir(user log, "My App",#{author=>"Erlang",version=>"1.2"}).
"c:/Users/otptest/AppData/Local/Erlang/My App/1l.2/Logs"

site_config
On Linux: Respects the os environment variable XDG_CONFI G_DI RS.

5> filename:basedir(site data, "my application", #{os=>linux}).
["/usr/local/share/my application",

"/usr/share/my application"]
6> os:getenv("XDG_CONFIG DIRS").
"/etc/xdg/xdg-ubuntu:/usr/share/upstart/xdg:/etc/xdg"
7> filename:basedir(site config, "my application", #{os=>linux}).
["/etc/xdg/xdg-ubuntu/my application",

"/usr/share/upstart/xdg/my application",

"/etc/xdg/my application"]
8> os:unsetenv("XDG CONFIG DIRS").
true
9> filename:basedir(site config, "my application", #{os=>linux}).
["/etc/xdg/my application"]

On Darwin:

Ericsson AB. All Rights Reserved

.. STDLIB | 189

filename

5> filename:basedir(site config, "my application", #{os=>darwin}).
["/Library/Application Support/my application"]

e site_data
On Linux: Respects the os environment variable XDG_DATA DI RS.

10> os:getenv("XDG DATA DIRS").
"/usr/share/ubuntu:/usr/share/gnome:/usr/local/share/:/usr/share/"
11> filename:basedir(site data, "my application", #{os=>linux}).
["/usr/share/ubuntu/my application",

"/usr/share/gnome/my application",

"/usr/local/share/my application",

"/usr/share/my application"]
12> os:unsetenv("XDG DATA DIRS").
true
13> filename:basedir(site data, "my application", #{os=>linux}).
["/usr/local/share/my application",

"/usr/share/my application"]

On Darwin:

5> filename:basedir(site data, "my application", #{os=>darwin}).
["/Library/Application Support/my application"]

basename(Filename) -> file:filenane_all ()
Types:
Filename = file:nanme_all ()
Returnsthe last component of Fi | enarne, or Fi | enane itself if it does not contain any directory separators.
Examples:

5> filename:basename("foo").
"foo"

6> filename:basename("/usr/foo").
"foo"

7> filename:basename("/").

[1

basename(Filename, Ext) -> file:filenane_all ()
Types:
Filename = Ext = file:nane_all ()
Returns the last component of Fi | enane with extension Ext stripped. This function is to be used to remove

a (possible) specific extension. To remove an existing extension when you are unsure which one it is, use
r oot nane(basenane(Fi | enane)).

Examples:

190 | Ericsson AB. All Rights Reserved.: STDLIB

filename

8> filename:basename("~/src/kalle.erl", ".erl").
"kalle"

9> filename:basename("~/src/kalle.beam", ".erl").
"kalle.beam"

10> filename:basename("~/src/kalle.old.erl", ".erl").

"kalle.old"

11> filename:rootname(filename:basename("~/src/kalle.erl")).

"kalle"

12> filename:rootname(filename:basename("~/src/kalle.beam")).

"kalle"

dirname(Filename)
Types:
Filename = file:nanme_all ()

-> file:filename_all ()

Returns the directory part of Fi | enane.
Examples:

13> filename:dirname("/usr/src/kalle.erl").
"/usr/src"
14> filename:dirname("kalle.erl").

5> filename:dirname("\\usr\\src/kalle.erl"). % Windows

"/usr/src"

extension(Filename)
Types:
Filename = file:nane_all ()

-> file:filename_all ()

Returnsthefile extension of Fi | enane, including the period. Returns an empty string if no extension exists.

Examples:

15> filename:extension("foo.erl").

"erl"

16> filename:extension("beam.src/kalle").
[1

find src(Beam) ->

{SourceFile, Options} | {error, {ErrorReason, Module}}

find src(Beam, Rules) ->

{SourceFile, Options} | {error, {ErrorReason, Module}}

Types:

Ericsson AB. All Rights Reserved.: STDLIB | 191

filename

Beam = Module | Filename
Filename = atom() | string()
Rules = [{BinSuffix :: string(), SourceSuffix :: string()}]
Module = module()
SourceFile = string()
Options = [Option]
Option =
{i, Path :: string()} |
{outdir, Path :: string()} |
{d, atom()}

ErrorReason = non_existing | preloaded | interpreted

Findsthe source filename and compiler optionsfor amodule. Theresult canbefedto conpi | e: fi | e/ 2 tocompile
thefile again.

Warning:
Thisfunction isdeprecated. Use fi |l el i b: fi nd_sour ce/ 1 instead for finding sourcefiles.

If possible, use the beam | i b(3) module to extract the compiler options and the abstract code format from
the Beam file and compile that instead.

Argument Beam which can be a string or an atom, specifies either the module name or the path to the source
code, with or without extension " . er| " . In either case, the module must be known by the code server, that is,
code: whi ch(Modul e) must succeed.

Rul es describes how the source directory can be found when the object code directory isknown. It isalist of tuples
{Bi nSuf fi x, SourceSuffix} andisinterpreted as follows: if the end of the directory name where the object
islocated matches Bi nSuf f i x, then the source code directory has the same name, but with Bi nSuf f i x replaced
by Sour ceSuf f i x. Rul es defaultsto:

r{", """}, {"ebin", "src"}, {"ebin", "esrc"}]

If the source file is found in the resulting directory, the function returns that location together with Opt i ons.
Otherwise the next ruleistried, and so on.

The function returns { Sour ceFi |l e, Options} if it succeeds. Sour ceFi | e is the absolute path to the
source file without extension " . er | " . Opt i ons includes the options that are necessary to recompile the file with
conpi l e: fil el 2, but excludes options such asr eport and ver bose, which do not change the way code is
generated. The pathsin options{ out di r, Path} and{i, Path} areguaranteed to be absolute.

flatten(Filename) -> file:filename_all ()
Types:
Filename = file:nanme_all ()
Converts a possibly deep list filename consisting of characters and atoms into the corresponding flat string filename.

join(Components) -> file:filename_all ()
Types:

192 | Ericsson AB. All Rights Reserved.: STDLIB

filename

Components = [file:nane_all ()]

Joinsalist of filename Conponent s with directory separators. If one of the elements of Conponent s includes an
absolute path, such as" / xxx" , the preceding elements, if any, are removed from the result.

Theresult is"normalized":

e Redundant directory separators are removed.
* InWindows, all directory separators are forward slashes and the drive letter isin lower case.

Examples:

17> filename:join(["/usr", "local", "bin"]).
"/usr/local/bin"

18> filename:join(["a/b///c/"1).

na/b/cu

6> filename:join(["B:a\\b///c/"]1). % Windows
"b:a/b/c"

join(Namel, Name2) -> file:filename_all ()
Types:
Namel = Name2 = file:nane_all ()

Joins two filename components with directory separators. Equivalent toj oi n([Namel, Name2]).

nativename(Path) -> file:filenane_all ()
Types:
Path = file:nanme_all ()

ConvertsPat h to aform accepted by the command shell and native applications on the current platform. On Windows,
forward dashes are converted to backward slashes. On all platforms, the nameis normalized as done by j oi n/ 1.

Examples:

19> filename:nativename("/usr/local/bin/"). % Unix
"/usr/local/bin"

7> filename:nativename("/usr/local/bin/"). % Windows
"\\usr\\local\\bin"

pathtype(Path) -> absolute | relative | volumerelative
Types:
Path = file:nanme_all ()
Returns the path type, which is one of the following:
absol ute
The path name refers to a specific file on a specific volume.

Ericsson AB. All Rights Reserved.: STDLIB | 193

filename

Unix example: / usr/ 1 ocal / bi n
Windows example: D: / usr/ | ocal / bi n
relative
The path name is relative to the current working directory on the current volume.
Example: f oo/ bar, ../src
vol unmerel ati ve

The path name is relative to the current working directory on a specified volume, or it is a specific file on the
current working volume,

Windows example: D: bar . erl, /bar/foo.erl

rootname(Filename) -> file:filename_all ()
rootname(Filename, Ext) -> file:filename_all ()
Types:

Filename = Ext = file:nane_all ()

Removes a filename extension. r oot name/ 2 works asr oot name/ 1, except that the extension is removed only
ifitisExt.

Examples:

20> filename:rootname("/beam.src/kalle").
/beam.src/kalle"

21> filename:rootname("/beam.src/foo.erl").
"/beam.src/foo"

22> filename:rootname("/beam.src/foo.erl", ".erl").
"/beam.src/foo"
23> filename:rootname("/beam.src/foo.beam", ".erl").

"/beam.src/foo.beam"

safe relative path(Filename) -> unsafe | SafeFilename
Types:
Filename = SafeFilename = file:nanme_all ()

Sanitizes the relative path by eliminating ".." and "." components to protect against directory traversal attacks. Either
returns the sanitized path name, or the atom unsaf e if the path is unsafe. The path is considered unsafe in the
following circumstances:

e Thepathisnot relative.
e A"." component would climb up above the root of the relative path.

Examples:

1> filename:safe relative path("dir/sub dir/..").
Ildirll

2> filename:safe relative path("dir/..").

[1

3> filename:safe relative path("dir/../..").
unsafe

4> filename:safe relative path("/abs/path").

194 | Ericsson AB. All Rights Reserved.: STDLIB

filename

unsafe

split(Filename) -> Components
Types:
Filename = file:nanme_all ()
Components = [file:nane_all ()]

Returns alist whose elements are the path components of Fi | ename.
Examples:

24> filename:split("/usr/local/bin").
[II/II’ IluerI’ II'Loca'LII’ Ilbinll]

25> filename:split("foo/bar").

[llfooll’ Ilbarll]

26> filename:split("a:\\msdev\\include").
["a:/","msdev", "include"]

Ericsson AB. All Rights Reserved.: STDLIB | 195

gb_sets

gb _sets

Erlang module

This module provides ordered sets using Prof. Arne Andersson's General Balanced Trees. Ordered sets can be much
more efficient than using ordered lists, for larger sets, but depends on the application.

This module considers two elements as different if and only if they do not compare equal (==).

Complexity Note

The complexity on set operations is bounded by either O(|S]) or O(|T| * log(|S])), where S is the largest given
set, depending on which is fastest for any particular function call. For operating on sets of aimost equal size, this
implementation is about 3 times slower than using ordered-list sets directly. For sets of very different sizes, however,
this solution can be arbitrarily much faster; in practical cases, often 10-100 times. Thisimplementation is particularly
suited for accumulating elements afew at atime, building up alarge set (> 100-200 elements), and repeatedly testing
for membership in the current set.

Aswith normal tree structures, lookup (membership testing), insertion, and deletion have logarithmic complexity.

Compatibility

The following functions in this module also exist and provides the same functionality in the set s(3) and
ordset s(3) modules. That is, by only changing the module name for each call, you can try out different set
representations.

e add_elenent/2

e del _elenment/2

o filter/2

e fold/3

e fromlist/1

e intersection/1

e intersection/2

e is_elenment/2

e is_set/1l

e is_subset/2

* newo

e sizell

e subtract/2

e to list/1

e union/1

e union/2

Data Types
set(Element)
A general balanced set.

196 | Ericsson AB. All Rights Reserved.: STDLIB

gb_sets

set() = set (term())
iter(Element)
A general balanced set iterator.

iter() = iter (term())
Exports

add (Element, Setl) -> Set2
add element(Element, Setl) -> Set2
Types:

Setl = Set2 = set (Element)

Returns a new set formed from Set 1 with El enment inserted. If El enent isalready an element in Set 1, nothing
is changed.

balance(Setl) -> Set2
Types:
Setl = Set2 = set (Element)
Rebalances the tree representation of Set 1. Notice that thisis rarely necessary, but can be motivated when a large

number of elements have been deleted from the tree without further insertions. Rebalancing can then be forced to
minimise lookup times, as deletion does not rebalance the tree.

del element(Element, Setl) -> Set2
Types:
Setl = Set2 = set (Element)

Returns a new set formed from Set 1 with El enent removed. If El enent isnot an element in Set 1, nothing is
changed.

delete(Element, Setl) -> Set2
Types:
Setl = Set2 = set (Element)

Returns a new set formed from Set 1 with El erent removed. Assumesthat El ement ispresentin Set 1.

delete any(Element, Setl) -> Set2
Types:
Setl = Set2 = set (Element)
Returns a new set formed from Set 1 with El ement removed. If El enent isnot an element in Set 1, nothing is
changed.

difference(Setl, Set2) -> Set3
Types:
Setl = Set2 = Set3 = set (Element)

Returns only the elements of Set 1 that are not also elements of Set 2.

Ericsson AB. All Rights Reserved.: STDLIB | 197

gb_sets

empty() -> Set
Types:

Set = set ()
Returns a new empty set.

filter(Pred, Setl) -> Set2

Types.
Pred = fun((Element) -> boolean())
Setl = Set2 = set (Element)

Filters elementsin Set 1 using predicate function Pr ed.

fold(Function, AccO, Set) -> Accl
Types.
Function = fun((Element, AccIn) -> AccOut)

AccO® = Accl = AccIn = AccOut = Acc
Set = set (Element)

Folds Funct i on over every element in Set returning the fina value of the accumulator.

from list(List) -> Set
Types:
List = [Element]
Set = set (Element)

Returns a set of the elementsin Li st , whereLi st can be unordered and contain duplicates.

from ordset(List) -> Set
Types:

List = [Element]

Set = set (Element)

Turns an ordered-set list Li st into aset. Thelist must not contain duplicates.

insert(Element, Setl) -> Set2
Types.
Setl = Set2 = set (Element)

Returns a new set formed from Set 1 with El ement inserted. Assumesthat El enment isnot present in Set 1.

intersection(SetList) -> Set
Types:
SetlList = [set (Element), ...]
Set = set (Element)

Returns the intersection of the non-empty list of sets.

198 | Ericsson AB. All Rights Reserved.: STDLIB

gb_sets

intersection(Setl, Set2) -> Set3
Types.
Setl = Set2 = Set3 = set (Element)

Returns the intersection of Set 1 and Set 2.

is disjoint(Setl, Set2) -> boolean()
Types:
Setl = Set2 = set (Element)

Returnst r ue if Set 1 and Set 2 are digoint (have no elementsin common), otherwisef al se.

is element(Element, Set) -> boolean()
Types:
Set = set (Element)

Returnst r ue if El enent isan element of Set , otherwisef al se.

is empty(Set) -> boolean()
Types:
Set = set ()
Returnst r ue if Set isan empty set, otherwisef al se.

is member(Element, Set) -> boolean()
Types:
Set = set (Element)
Returnst r ue if El enent isan element of Set , otherwisef al se.

is set(Term) -> boolean()
Types:
Term = term()
Returnst r ue if Ter mappearsto be a set, otherwisef al se.

is subset(Setl, Set2) -> boolean()
Types.
Setl = Set2 = set (Element)

Returnst r ue when every element of Set 1 isalso amember of Set 2, otherwisef al se.

iterator(Set) -> Iter
Types:
Set = set (Element)
Iter = iter (Element)

Returns an iterator that can be used for traversing the entries of Set ; see next / 1. The implementation of thisis
very efficient; traversing the whole set using next / 1 isonly slightly slower than getting the list of al elementsusing

Ericsson AB. All Rights Reserved.: STDLIB | 199

gb_sets

to_li st/ 1 andtraversing that. The main advantage of the iterator approach isthat it does not require the complete
list of all elementsto be built in memory at one time.

iterator from(Element, Set) -> Iter
Types:

Set = set (Element)

Iter = iter (Element)

Returns an iterator that can be used for traversing the entries of Set ; seenext / 1. The difference as compared to the
iterator returned by i t er at or / 1 isthat the first element greater than or equal to El enent isreturned.

largest(Set) -> Element
Types:
Set = set (Element)
Returnsthe largest element in Set . Assumesthat Set is not empty.

new() -> Set
Types:

Set = set ()
Returns a new empty set.

next(Iterl) -> {Element, Iter2} | none
Types:
Iterl = Iter2 = iter (Element)

Returns{ El enent, 1ter2},whereEl enent isthe smallest element referred to by iterator | t er 1, and | t er 2
isthe new iterator to be used for traversing the remaining elements, or the atom none if no elements remain.

singleton(Element) -> set (Element)

Returns a set containing only element El enment .

size(Set) -> integer() >= 0
Types:

Set = set ()
Returns the number of elementsin Set .

smallest(Set) -> Element
Types:
Set = set (Element)
Returns the smallest element in Set . Assumesthat Set is nhot empty.

subtract(Setl, Set2) -> Set3
Types:
Setl = Set2 = Set3 = set (Element)

Returns only the elements of Set 1 that are not also elements of Set 2.

200 | Ericsson AB. All Rights Reserved.: STDLIB

gb_sets

take largest(Setl) -> {Element, Set2}

Types.
Setl = Set2 = set (Element)

Returns{ El enent, Set 2},whereEl enent isthelargest elementin Set 1, and Set 2 isthis set with El enent

deleted. Assumesthat Set 1 is not empty.

take smallest(Setl) -> {Element, Set2}

Types:
Setl = Set2 = set (Element)

Returns{ El emrent, Set 2} ,whereEl ement isthesmallest elementin Set 1, and Set 2 isthisset with El enent

deleted. Assumesthat Set 1 isnot empty.

to list(Set) -> List
Types.
Set = set (Element)
List = [Element]

Returns the elements of Set asalist.

union(SetList) -> Set

Types:
SetList = [set (Element), ...]
Set = set (Element)

Returns the merged (union) set of the list of sets.

union(Setl, Set2) -> Set3
Types:
Setl = Set2 = Set3 = set (Element)

Returns the merged (union) set of Set 1 and Set 2.

See Also
gb_trees(3),ordsets(3),sets(3)

Ericsson AB. All Rights Reserved.: STDLIB | 201

gb_trees

gb_trees

Erlang module

This module provides Prof. Arne Andersson's General Balanced Trees. These have no storage overhead compared to
unbalanced binary trees, and their performance is better than AVL trees.

This module considers two keys as different if and only if they do not compare equal (==).

Data Structure

{Size, Tree}

Tr ee is composed of nodes of theform { Key, Val ue, Smal |l er, Bigger} andthe"empty tree" nodeni I .
Thereisno attempt to balance trees after deletions. As deletions do not increase the height of atree, this should be OK.

The original balance condition h(T) <= ceil(c * log(|T])) has been changed to the similar (but not quite equivalent)
condition 2/ h(T) <= |T| " c. This should also be OK.

Data Types
tree(Key, Value)
A genera balanced tree.

tree() = tree(term(), term())
iter(Key, Value)

A general balanced tree iterator.

iter() = iter (term(), term())

Exports

balance(Treel) -> Tree2
Types:
Treel = Tree2 = tree(Key, Value)

Rebalances Tr eel. Natice that this is rarely necessary, but can be motivated when many nodes have been deleted
from the tree without further insertions. Rebalancing can then be forced to minimize lookup times, as deletion does
not rebalance the tree.

delete(Key, Treel) -> Tree2
Types:
Treel = Tree2 = tree(Key, Value)

Removes the node with key Key from Tr eel and returns the new tree. Assumes that the key is present in the tree,
crashes otherwise.

delete any(Key, Treel) -> Tree2
Types:

202 | Ericsson AB. All Rights Reserved.: STDLIB

gb_trees

Treel = Tree2 = tree(Key, Value)

Removes the node with key Key from Tr eel if the key is present in the tree, otherwise does nothing. Returns the
new tree.

take(Key, Treel) -> {Value, Tree2}
Types:
Treel = Tree2 = tree(Key, term())
Key = Value = term()

Returns avalue Val ue from node with key Key and new Tr ee2 without the node with this value. Assumes that the
node with key is present in the tree, crashes otherwise.

take any(Key, Treel) -> {Value, Tree2} | error

Types:
Treel = Tree2 = tree(Key, term())
Key = Value = term()

Returns avalue Val ue from node with key Key and new Tr ee2 without the node with this value. Returns er r or
if the node with the key is not present in the tree.

empty() -> tree()
Returns a new empty tree.

enter(Key, Value, Treel) -> Tree2
Types:
Treel = Tree2 = tree(Key, Value)

InsertsKey withvalue Val ue into Tr eel if thekey isnot present in thetree, otherwise updatesKey tovalueVal ue
inTr eel. Returns the new tree.

from orddict(List) -> Tree

Types:
List = [{Key, Value}]
Tree = tree(Key, Value)

Turnsan ordered list Li st of key-value tuplesinto atree. The list must not contain duplicate keys.

get(Key, Tree) -> Value
Types:
Tree = tree(Key, Value)
Retrieves the value stored with Key in Tr ee. Assumesthat the key is present in the tree, crashes otherwise.

insert(Key, Value, Treel) -> Tree2
Types:
Treel = Tree2 = tree(Key, Value)

Inserts Key with value Val ue into Tr eel and returns the new tree. Assumes that the key is not present in the tree,
crashes otherwise.

Ericsson AB. All Rights Reserved.: STDLIB | 203

gb_trees

is defined(Key, Tree) -> boolean()
Types:

Tree = tree(Key, Value :: term())
Returnst r ue if Key ispresentin Tr ee, otherwisef al se.

is empty(Tree) -> boolean()
Types:
Tree = tree()

Returnst r ue if Tr ee isan empty tree, othwewisef al se.

iterator(Tree) -> Iter

Types:
Tree = tree(Key, Value)
Iter = iter (Key, Value)

Returns an iterator that can be used for traversing the entries of Tr ee; see next / 1. The implementation of thisis
very efficient; traversing thewholetree using next / 1 isonly slightly slower than getting thelist of all elementsusing
to_|i st/ 1 andtraversing that. The main advantage of the iterator approach isthat it does not require the complete

list of all elementsto be built in memory at one time.

iterator from(Key, Tree) -> Iter

Types.
Tree = tree(Key, Value)
Iter = iter (Key, Value)

Returns an iterator that can be used for traversing the entries of Tr ee; see next / 1. The difference as compared to
theiterator returned by i t er at or/ 1 isthat the first key greater than or equal to Key is returned.

keys(Tree) -> [Key]
Types:

Tree = tree(Key, Value :: term())
Returnsthe keysin Tr ee asan ordered list.

largest(Tree) -> {Key, Value}
Types:
Tree = tree(Key, Value)

Returns { Key, Val ue}, where Key isthelargest key in Tr ee, and Val ue isthe value associated with this key.

Assumes that the tree is not empty.

lookup(Key, Tree) -> none | {value, Value}

Types:
Tree = tree(Key, Value)

Looksup Key inTr ee. Returns{ val ue, Val ue}, or none if Key isnot present.

map (Function, Treel) -> Tree2
Types.

204 | Ericsson AB. All Rights Reserved.: STDLIB

gb_trees

Function = fun((K :: Key, V1 :: Valuel) -> V2 :: Value2)
Treel = tree(Key, Valuel)
Tree2 = tree(Key, Value2)

Maps function F(K, V1) -> V2 to all key-value pairs of tree Tr ee 1. Returns a new tree Tr ee2 with the same set of
keysas Tr eel and the new set of values V2.

next(Iterl) -> none | {Key, Value, Iter2}
Types.
Iterl = Iter2 = iter (Key, Value)

Returns{ Key, Val ue, |ter2},whereKey isthesmallest key referred to by iterator | t er 1, and | t er 2 isthe
new iterator to be used for traversing the remaining nodes, or the atom none if no nodes remain.

size(Tree) -> integer() >= 0
Types:

Tree = tree()
Returns the number of nodesin Tr ee.

smallest(Tree) -> {Key, Value}
Types.
Tree = tree(Key, Value)

Returns{ Key, Val ue}, whereKey isthesmallest key in Tr ee, and Val ue isthe value associated with this key.
Assumes that the tree is not empty.

take largest(Treel) -> {Key, Value, Tree2}
Types.
Treel = Tree2 = tree(Key, Value)

Returns{ Key, Val ue, Tree2},whereKey isthelargestkeyinTreel, Val ue isthevalueassociated with this
key, and Tr ee2 isthis tree with the corresponding node deleted. Assumes that the tree is not empty.

take smallest(Treel) -> {Key, Value, Tree2}
Types:
Treel = Tree2 = tree(Key, Value)

Returns { Key, Val ue, Tree?2}, whereKey isthesmallest key in Tr eel, Val ue isthe value associated with
thiskey, and Tr ee2 isthis tree with the corresponding node deleted. Assumes that the tree is not empty.

to list(Tree) -> [{Key, Value}l]
Types:
Tree = tree(Key, Value)
Converts atree into an ordered list of key-value tuples.

update(Key, Value, Treel) -> Tree2
Types:

Ericsson AB. All Rights Reserved.: STDLIB | 205

gb_trees

Treel = Tree2 = tree(Key, Value)

Updates Key to value Val ue in Tr eel and returns the new tree. Assumes that the key is present in the tree.

values(Tree) -> [Value]
Types:
Tree = tree(Key :: term(), Value)
Returnsthe valuesin Tr ee as an ordered list, sorted by their corresponding keys. Duplicates are not removed.

See Also
dict(3),gb_sets(3)

206 | Ericsson AB. All Rights Reserved.: STDLIB

gen_event

gen_event

Erlang module

This behavior module provides event handling functionality. It consists of a generic event manager process with any
number of event handlers that are added and deleted dynamically.

An event manager implemented using this module has a standard set of interface functions and includes functionality
for tracing and error reporting. It aso fits into an OTP supervision tree. For more information, see OTP Design
Principles.

Each event handler is implemented as a callback module exporting a predefined set of functions. The relationship
between the behavior functions and the callback functionsis as follows:

gen_event module Callback module

gen _event:start
gen _event:start link ----- > -

gen_event:add handler
gen _event:add sup handler ----- > Module:init/1

gen _event:notify
gen _event:sync notify = ----- > Module:handle event/2

gen event:call ----- > Module:handle call/2
----- > Module:handle info/2
gen_event:delete handler ----- > Module:terminate/2

gen_event:swap handler
gen_event:swap sup handler ----- > Modulel:terminate/2
Module2:init/1

gen_event:which handlers ----- > -
gen event:stop = ----- > Module:terminate/2

----- > Module:code change/3

Aseach event handler isone callback module, an event manager has many callback modulesthat are added and deleted
dynamically. gen_event istherefore moretolerant of callback module errors than the other behaviors. If a callback
function for an installed event handler fails with Reason, or returns a bad value Ter m the event manager does not
fail. It deletesthe event handler by calling callback function Modul e: t er mi nat e/ 2, givingasargument{ er r or ,
{'EXIT , Reason}} or{error, Tern}, respectively. No other event handler is affected.

A gen_event processhandlessystem messagesasdescribedinsys(3) . Thesys modulecan beused for debugging
an event manager.

Notice that an event manager does trap exit signals automatically.

Thegen_event processcan go into hibernation (see er | ang: hi ber nat e/ 3) if acallback function in ahandler
module specifieshi ber nat e initsreturn value. Thiscan be useful if the server is expected to beidlefor along time.
However, use this feature with care, as hibernation implies at least two garbage collections (when hibernating and
shortly after waking up) and is not something you want to do between each event handled by a busy event manager.

Ericsson AB. All Rights Reserved.: STDLIB | 207

gen_event

Notice that when multiple event handlers are invoked, it is sufficient that one single event handler returns a
hi ber nat e regquest for the whole event manager to go into hibernation.

Unless otherwise stated, all functions in this module fail if the specified event manager does not exist or if bad
arguments are specified.

Data Types

handler() = atom() | {atom(), term()}

handler _args() = term()

add handler ret() = ok | term() | {'EXIT', term()}
del handler ret() = ok | term() | {'EXIT', term()}

Exports

add handler(EventMgrRef, Handler, Args) -> Result
Types:

Event Mgr Ref = Nane | {Nane, Node} | {gl obal, d obal Nane} |

{vi a, Modul e, Vi aNane} | pid()

Name = Node = atom()

G obal Name = ViaNane = term()

Handl er = Modul e | {Modul e, | d}

Modul e = atom()

Id = tern()

Args = term)

Result = ok | {'EXIT ,Reason} | term)

Reason = term()

Adds anew event handler to event manager Event Myr Ref . The event manager calls Modul e: i ni t/ 1 toinitiate
the event handler and itsinternal state.

Event Myr Ref can be any of the following:

e Thepid

* Nane, if the event manager islocaly registered

« {Nane, Node}, if the event manager islocally registered at another node

« {gl obal , d obal Nane}, if the event manager is globally registered

« {via, Modul e, Vi aNane}, if the event manager is registered through an alternative process registry

Handl er is the name of the callback module Modul e or a tuple { Modul e, | d}, where | d is any term. The
{ Modul e, | d} representation makes it possible to identify a specific event handler when many event handlers use
the same callback module.

Ar gs isany term that is passed as the argument to Modul e: i nit/ 1.

If Modul e: i nit/1 returns a correct value indicating successful completion, the event manager adds the event
handler and this function returns ok. If Modul e: i ni t/ 1 failswith Reason or returns{ er r or, Reason}, the
event handler isignored and thisfunctionreturns{' EXI T' , Reason} or {error, Reason}, respectively.

add sup handler(EventMgrRef, Handler, Args) -> Result
Types.

208 | Ericsson AB. All Rights Reserved.: STDLIB

gen_event

Event Mgr Ref = Nane | {Nanme, Node} | {gl obal, d obal Nane} |
{vi a, Modul e, Vi aNane} | pid()

Name = Node = atom()

G obal Name = ViaNane = term()

Handl er = Modul e | {Mdul e, | d}

Modul e = atom()

Id = tern()

Args = term)

Result = ok | {'EXIT' ,Reason} | term)
Reason = term()

Adds a new event handler in the same way as add_handl er/ 3, but also supervises the connection between the
event handler and the calling process.

« |If the calling process later terminates with Reason, the event manager deletes the event handler by calling
Modul e: t er mi nat e/ 2 with { st op, Reason} asargument.
e |If the event handler is deleted later, the event manager sends a
message{ gen_event EXI T, Handl er, Reason} tothecalling process. Reason isone of the following:
« nornal, if the event handler has been removed because of a call to del ete_handl er/ 3, or
remove_handl er hasbeen returned by a callback function (see below).
* shut down, if the event handler has been removed because the event manager is terminating.

 {swapped, NewHandl er, Pi d}, if the process Pi d has replaced the event handler with another event
handler NewHandl| er using acal to swap_handl er/ 3 or swap_sup_handl er/ 3.

e Aterm, if the event handler is removed because of an error. Which term depends on the error.

For a description of the arguments and return values, seeadd_handl er/ 3.

call(EventMgrRef, Handler, Request) -> Result
call(EventMgrRef, Handler, Request, Timeout) -> Result
Types:
Event Mgr Ref = Nane | {Nane, Node} | {gl obal, d obal Nane} |
{vi a, Modul e, Vi aNane} | pid()
Name = Node = atom()
d obal Nanme = ViaNane = term)
Handl er = Modul e | {Modul e, | d}
Modul e = atom()

Id = tern()

Request = term))

Timeout = int()>0 | infinity
Result = Reply | {error,Error}
Reply = term()

Error = bad_nodule | {' EXIT', Reason} | tern()
Reason = term()

Makes asynchronouscall to event handler Handl er installed in event manager Event Myr Ref by sending arequest
and waiting until areply arrivesor atime-out occurs. The event manager calls Mbdul e: handl e_cal | / 2 tohandle
the request.

For a description of Event Myr Ref and Handl er , seeadd_handl er/ 3.

Ericsson AB. All Rights Reserved.: STDLIB | 209

gen_event

Request isany term that is passed as one of the argumentsto Modul e: handl e_cal | / 2.

Ti meout is an integer greater than zero that specifies how many milliseconds to wait for a reply, or the atom
i nfinity towait indefinitely. Defaults to 5000. If no reply is received within the specified time, the function call
falls.

ThereturnvalueRepl y isdefined inthereturn valueof Modul e: handl e_cal | / 2. 1f thespecified event handler is
not installed, the function returns{ er r or , bad_nodul e} . If the callback function failswith Reason or returnsan
unexpected value Ter m thisfunctionreturns{ error, {' EXI T' , Reason}} or{error, Ter n}, respectively.

delete handler(EventMgrRef, Handler, Args) -> Result
Types:

Event Mgr Ref = Nane | {Nane, Node} | {gl obal, d obal Nane} |
{vi a, Modul e, Vi aNane} | pid()

Name = Node = atom()

G obal Name = ViaNane = term()

Handl er = Modul e | {Modul e, I d}

Modul e = atom()

Id = tern()

Args = term)

Result = term() | {error,nodule not found} | {'EXIT , Reason}
Reason = term()

Deletes an event handler from event manager Event Myr Ref . The event manager calls Modul e: t er mi nat e/ 2
to terminate the event handler.

For adescription of Event Myr Ref and Handl er , seeadd_handl er/ 3.
Ar gs isany term that is passed as one of the argumentsto Modul e: t er mi nat e/ 2.

The return value is the return value of Modul e: t er m nat e/ 2. If the specified event handler is not installed, the
functionreturns{ er r or, nodul e_not _f ound} . If the callback function failswith Reason, the function returns
{'EXIT , Reason}.

notify(EventMgrRef, Event) -> ok
sync_notify(EventMgrRef, Event) -> ok
Types:
Event Mgr Ref = Nane | {Nane, Node} | {gl obal, @ obal Nane}
{vi a, Modul e, Vi aNanme} | pid()

Name = Node = atom()
d obal Nane = ViaNane = tern()
Event = term)

Sends an event notification to event manager EventMgrRef. The event manager calls
Modul e: handl e_event / 2 for each installed event handler to handle the event.

not i f y/ 2 isasynchronous and returnsimmediately after the event notification has been sent. sync_noti fy/ 2is
synchronousin the sense that it returns ok after the event has been handled by all event handlers.

For a description of Event Myr Ref , seeadd_handl er/ 3.
Event isany term that is passed as one of the argumentsto Modul e: handl e_event / 2.

not i fy/ 1 doesnot fail evenif the specified event manager does not exist, unlessit is specified as Namne.

210 | Ericsson AB. All Rights Reserved.: STDLIB

gen_event

start() -> Result
start(EventMgrName | Options) -> Result
start(EventMgrName, Options) -> Result
Types:
Event Mgr Nane = {l ocal , Nane} | {gl obal, d obal Nane} | {via, Mbdul e, Vi aNane}
Name = atom()
d obal Name = ViaNanme = term()
Options = [Option]
Option = {debug, Dbgs} | {tineout, Ti ne}
{hi bernate_after, H bernateAfterTi meout} | {spawn_opt, SOpt s}

Dbgs = [Dbg]
Dbg = trace | log | statistics | {log to file,FileNane} | {install,
{Func, FuncsSt at e} }

SOpts = [term)]
Result = {ok,Pid} | {error,{already_started, Pid}}
Pid = pid()
Creates a stand-alone event manager process, that is, an event manager that is not part of a supervision tree and thus
has no supervisor.

For a description of the arguments and return values, seestart _| i nk/ 0, 1.

start_link() -> Result
start link(EventMgrName | Options) -> Result
start_link(EventMgrName, Options) -> Result
Types:
Event Mgr Nane = {l ocal , Nane} | {gl obal, d obal Nane} | {vi a, Mbdul e, Vi aNane}
Name = atom()
d obal Nane = ViaNane = term()
Options = [Option]
Option {debug, Dbgs} | {tineout, Tinme} |
{hi bernate_after, H bernateAfterTi neout} | {spawn_opt, SOpt s}
Dbgs = [Dbg]
Dbg = trace | log | statistics | {log to file,FileNane} | {install,
{Func, FuncsSt at e} }

SOpts = [tern()]
Result = {ok,Pid} | {error,{already_started, Pid}}
Pid = pid()
Creates an event manager process as part of a supervision tree. The function isto be called, directly or indirectly, by
the supervisor. For example, it ensures that the event manager is linked to the supervisor.

« If Event Mgr Name={| ocal , Nane}, the event manager isregistered locally as Nanme using r egi st er/ 2.

« If Event Mgr Nanme={ gl obal , 3 obal Nane}, the event manager is registered globally as @ obal Nane
using gl obal : regi st er _nane/ 2. If no name s provided, the event manager is not registered.

« If Event Mgr Nane={vi a, Modul e, Vi aNane}, the event manager registers with the registry represented
by Modul e. The Modul e calback isto export the functionsr egi st er _nane/ 2, unr egi ster _nane/ 1,

Ericsson AB. All Rights Reserved.: STDLIB | 211

gen_event

wher ei s_nane/ 1, and send/ 2, which are to behave as the corresponding functions in gl obal . Thus,
{vi a, gl obal , G obal Nane} isavalid reference.

e |f option{ hi bernate_after, Hi bernnat eAfter Ti neout} ispresent, the gen_event process awaits
any messagefor Hi ber nat eAf t er Ti meout milliseconds and if no messageisreceived, the process goesinto
hibernation automatically (by calling pr oc_| i b: hi ber nat e/ 3).

If the event manager is successfully created, the function returns { ok, Pi d}, where Pi d is the pid of the
event manager. If a process with the specified Event Myr Nane exists aready, the function returns { err or,
{already_started, Pid}}, wherePi disthepid of that process.

stop(EventMgrRef) -> ok
stop(EventMgrRef, Reason, Timeout) -> ok
Types.
Event Mgr Ref = Nane | {Nane, Node} | {gl obal, d obal Nane} |
{vi a, Modul e, Vi aNane} | pid()
Name = Node = atom()
G obal Name = ViaNane = term()
Reason = term()
Tinmeout = int()>0 | infinity
Orders event manager Event Mgr Ref to exit with the specifies Reason and waits for it to terminate. Before
terminating, gen_event cals Modul e: t erm nat e(stop, ...) for eachinstalled event handler.

The function returns ok if the event manager terminates with the expected reason. Any other reason than nor nal ,
shut down, or { shut down, Ter n} causesan error report to beissued using error _| ogger: format/ 2. The
default Reason isnor mal .

Ti meout is an integer greater than zero that specifies how many milliseconds to wait for the event manager to
terminate, or theatomi nf i ni t y towaitindefinitely. Defaultstoi nf i ni t y. If theevent manager hasnot terminated
within the specified time, at i meout exception is raised.

If the process does not exist, anopr oc exception is raised.

For adescription of Event Myr Ref , seeadd_handl er/ 3.

swap handler(EventMgrRef, {Handlerl,Argsl}, {Handler2,Args2}) -> Result
Types:

Event Myr Ref = Nane | {Nane, Node} | {gl obal, d obal Nane} |

{vi a, Mbdul e, Vi aNane} | pid()

Name = Node = atom()

d obal Nane = ViaNane = term()

Handl er1 = Handl er2 = Modul e | {Modul e, I d}

Modul e = atom()

Id = term()

Argsl = Args2 = term()

Result = ok | {error,Error}

Error = {" EXIT', Reason} | tern()

Reason = term()

Replaces an old event handler with a new event handler in event manager Event Mgr Ref .
For a description of the arguments, seeadd_handl er/ 3.

212 | Ericsson AB. All Rights Reserved.: STDLIB

gen_event

First theold event handler Handl er 1 isdeleted. The event manager callsMbdul el: t er mi nat e(Argsl, ...),
where Modul el isthe callback module of Handl er 1, and collects the return value.

Then the new event handler Handl er 2 is added and initiated by calling Modul e2:init ({Args2, Ternm}),
where Modul e2 isthe callback module of Handl er 2 and Ter misthereturn value of Modul el: t er m nat e/ 2.
This makesit possible to transfer information from Handl er 1 to Handl er 2.

The new handler is added even if the the specified old event handler is not installed, in which case Ter m=er r or ,
or if Modul el: t er m nat e/ 2 fails with Reason, in which case Ter m={' EXI T' , Reason} . The old handler
is deleted even if Modul e2: i ni t/ 1 fails.

If there was asupervised connection between Handl er 1 and aprocessPi d, thereisasupervised connection between
Handl er 2 and Pi d instead.

If Modul e2:i ni t/ 1 returns a correct value, this function returns ok. If Modul e2: i ni t/ 1 fails with Reason
or returns an unexpected value Ter m this function returns{error, {' EXI T' , Reason}} or{error, Ternt},
respectively.

swap_sup_handler(EventMgrRef, {Handlerl,Argsl}, {Handler2,Args2}) -> Result
Types:

Event Mgr Ref = Nane | {Nane, Node} | {gl obal, d obal Nane} |

{vi a, Modul e, Vi aNane} | pid()

Name = Node = atom()

d obal Name = ViaNanme = term()

Handl erl = Handler 2 = Module | {Mdul e, | d}

Modul e = atom()

Id = tern()

Argsl = Args2 = tern()

Resul t ok | {error,Error}

Error = {"EXIT',Reason} | tern()

Reason = term()

Replaces an event handler in event manager Event Myr Ref in the same way as swap_handl er/ 3, but also
supervises the connection between Handl er 2 and the calling process.

For a description of the arguments and return values, see swap_handl er/ 3.

which handlers(EventMgrRef) -> [Handler]
Types:

Event Mgr Ref = Nane | {Nane, Node} | {gl obal, d obal Nane} |
{vi a, Modul e, Vi aNanme} | pid()

Name = Node = atom()

d obal Nanme = ViaNane = tern()
Handl er = Modul e | {Mdul e, | d}
Modul e = atom()

Id = ternm()

Returnsalist of all event handlersinstalled in event manager Event Myr Ref .
For a description of Event Myr Ref and Handl er , seeadd_handl er/ 3.

Ericsson AB. All Rights Reserved.: STDLIB | 213

gen_event

Callback Functions

The following functions are to be exported from agen_event calback module.

Exports

Module:code change(OldVsn, State, Extra) -> {ok, NewState}
Types:
A dvsn = Vsn | {down, Vsn}
Vsn = term))
State = NewState = term))
Extra = tern()

Note:

This callback is optional, so callback modules need not export it. If a release upgrade/downgrade with
Change={ advanced, Extra} specified in the . appup file is made when code_change/ 3 isn't
implemented the event handler will crash with an undef error reason.

This function is called for an installed event handler that is to update its internal state during
a release upgrade/downgrade, that is, when the instruction {updat e, Modul e, Change, ...}, where
Change={ advanced, Ext r a},isspecifiedinthe. appup file. For moreinformation, see OTP Design Principles.

For an upgrade, A dVsn is Vsn, and for a downgrade, A dVsn is {down, Vsn}. Vsn is defined by the vsn
attribute(s) of the old version of the callback module Modul e. If no such attribute is defined, the version is the
checksum of the Beam file.

St at e istheinternal state of the event handler.
Ext raispassed "asis' fromthe{ advanced, Ext r a} part of the update instruction.
The function isto return the updated internal state.

Module:format status(Opt, [PDict, State]) -> Status
Types.

Opt = nornal | terminate

PDict = [{Key, Value}]

State = term()

Status = tern()

Note:

This callback is optional, so event handler modules need not export it. If a handler does not export this function,
thegen_event module usesthe handler state directly for the purposes described below.

Thisfunctioniscalled by agen_event processin the following situations:

e Oneof sys: get_status/1, 2isinvokedtogetthegen_event status. Opt isset to the atom nor nal
for this case.

214 | Ericsson AB. All Rights Reserved.: STDLIB

gen_event

* Theevent handler terminates abnormally and gen_event logsan error. Opt isset to theatomt er ni nat e
for this case.

Thisfunctionisuseful for changing the form and appearance of the event handler statefor these cases. An event handler
callback module wishing to change the the sys: get _st at us/ 1, 2 return value as well as how its state appears
in termination error logs, exports an instance of f or mat _st at us/ 2 that returns aterm describing the current state
of the event handler.

PDi ct isthe current value of the process dictionary of gen_event .
St at e istheinternal state of the event handler.

Thefunctionisto return St at us, aterm that change the details of the current state of the event handler. Any termis
allowed for St at us. Thegen_event module uses St at us asfollows:

* Whensys: get_status/1, 2iscaled, gen_event ensuresthat itsreturn value contains St at us in place
of the state term of the event handler.

e When an event handler terminates abnormally, gen_event logs St at us in place of the state term of the event
handler.

Oneusefor thisfunction isto return compact alternative state representationsto avoid that large state terms are printed
inlog files.

Module:handle call(Request, State) -> Result
Types.

Request = term))

State = term)

Result = {ok, Reply, NewState} | {ok, Reply, NewSt at e, hi ber nat e}
| {swap_handl er, Repl y, Argsl, NewSt at e, Handl er 2, Ar gs2}
| {renove_handl er, Reply}

Reply = term)

NewState = term)

Argsl = Args2 = term()

Handl er2 = Modul e2 | {Modul e2, | d}
Modul e2 = atom()

Id = tern()

Whenever an event manager receives arequest sent using cal | / 3, 4, this function is called for the specified event
handler to handle the request.

Request isthe Request argument of cal | / 3, 4.
St at e istheinternal state of the event handler.

The return values are the same as for Modul e: handl e_event / 2 except that they also contain aterm Repl vy,
which isthe reply to the client asthe return value of cal | / 3, 4.

Module:handle event(Event, State) -> Result
Types:
Event = term()
State = term))
Result = {ok, NewSt ate} | {ok, NewSt at e, hi ber nat e}
| {swap_handl er, Args1, NewSt at e, Handl er 2, Args2} | renove_handl er

Ericsson AB. All Rights Reserved.: STDLIB | 215

gen_event

NewState = term()
Argsl = Args2 = tern()
Handl er2 = Modul e2 | {Modul e2, | d}
Modul e2 = atom()
Id = ternm()
Whenever an event manager receives an event sent using noti fy/ 2 or sync_noti fy/ 2, thisfunction is called
for each installed event handler to handle the event.
Event isthe Event argument of noti fy/ 2/sync_noti fy/ 2.
St at e istheinternal state of the event handler.
o If {ok, NewSt at e} or { ok, NewSt at e, hi ber nat e} is returned, the event handler remains in the event
manager with the possible updated internal state NewSt at e.

e |If {ok, NewSt at e, hi ber nat e} is returned, the event manager also goes into hibernation (by calling
proc_I i b: hi ber nat e/ 3), waiting for the next event to occur. It is sufficient that one of the event handlers
return { ok, NewSt at e, hi ber nat e} for the whole event manager process to hibernate.

« If {swap_handl er, Argsl, NewSt at e, Handl er 2, Args2} is returned, the event handler is
replaced by Handl er2 by first caling Mdul e:term nate(Argsl, NewState) and then
Modul e2:init ({Args2, Tern}), where Ter misthe return value of Mbdul e: t er m nat e/ 2. For more
information, see swap_handl er/ 3.

- |f renove_handl er is returned, the event handler is deleted by cdling
Modul e: term nat e(renove_handl er, State).

Module:handle info(Info, State) -> Result
Types:

Info = term()

State = term)

Result = {ok, NewState} | {ok, NewSt at e, hi ber nat e}
| {swap_handl er, Args1, NewSt at e, Handl er 2, Args2} | renove_handl er
NewState = term)

Argsl = Args2 = term()

Handl er2 = Modul e2 | {Modul e2, | d}
Modul e2 = atom()

Id = tern()

Note:

This callback is optional, so callback modules need not export it. The gen_event module provides a default
implementation of this function that logs about the unexpected | nf o message, dropsit and returns{ nor epl y,
State}.

This function is called for each installed event handler when an event manager receives any other message than an
event or a synchronous reguest (or a system message).

I nf o isthe received message.

For adescription of St at e and possible return values, see Mbdul e: handl e_event/ 2.

216 | Ericsson AB. All Rights Reserved.: STDLIB

gen_event

Module:init(InitArgs) -> {ok,State} | {ok,State,hibernate} | {error,Reason}
Types.

InitArgs = Args | {Args, Tern

Args = Term= term()

State = term))

Reason = term()

Whenever anew event handler is added to an event manager, this function is called to initialize the event handler.

If the event handler is added because of acall toadd_handl er/ 3 or add_sup_handl er/ 3,1 ni t Ar gs isthe
Ar gs argument of these functions.

If the event handler replaces another event handler because of a cal to swap_handler/3 or
swap_sup_handl er/ 3, or because of aswap return tuple from one of the other callback functions, | ni t Ar gs
isatuple { Ar gs, Ter n}, where Ar gs is the argument provided in the function call/return tuple and Ter mis the
result of terminating the old event handler, seeswap_handl er/ 3.

If successful, thefunctionreturns{ ok, St at e} or{ ok, St at e, hi ber nat e}, where St at e istheinitial internal
state of the event handler.

If {ok, State, hibernate} is returned, the event manager goes into hibernation (by calling
proc_lib: hi bernat e/ 3), waiting for the next event to occur.

Module:terminate(Arg, State) -> term()
Types:
Arg = Args | {stop, Reason} | stop | renobve_handl er
| {error,{'EXIT ,Reason}} | {error, Tern}
Args = Reason = Term = term))

Note:

This callback is optional, so callback modules need not export it. The gen_event module provides a default
implementation without cleanup.

Whenever an event handler is deleted from an event manager, this function is called. It is to be the opposite of
Modul e: i ni t/ 1 and do any necessary cleaning up.

If the event handler is deleted because of a cal to del ete_handl er/3, swap_handl er/3, or
swap_sup_handl er/ 3, Ar g isthe Ar gs argument of this function call.

Ar g={ st op, Reason} if the event handler has a supervised connection to a process that has terminated with reason
Reason.

Ar g=st op if the event handler is deleted because the event manager is terminating.

The event manager terminates if it is part of a supervision tree and it is ordered by its supervisor to terminate. Even if
itisnot part of asupervision tree, it terminates if it receivesan' EXI T' message from its parent.

Arg=renove_handl er if the event handler is deleted because another callback function has returned
renove_handl er or{renove_handl er, Repl y}.

Arg={error, Tern} if theevent handler isdeleted because acallback function returned an unexpected value Ter m
orArg={error,{' EXIT , Reason}} if acallback function failed.

St at e istheinternal state of the event handler.

Ericsson AB. All Rights Reserved.: STDLIB | 217

gen_event

The function can return any term. If the event handler is deleted because of a cal to
gen_event : del et e_handl er/ 3, the return value of that function becomes the return value of this function. If
the event handler is to be replaced with another event handler because of a swap, the return value is passed to the
i nit function of the new event handler. Otherwise the return value is ignored.

See Also

supervi sor (3),sys(3)

218 | Ericsson AB. All Rights Reserved.: STDLIB

gen_fsm

gen_fsm

Erlang module

Deprecated and replaced by gen_st at em

Migration to gen_statem

Here follows a simple example of turning a gen_fsm into agen_st at em The example comes from the previous
Users Guidefor gen_f sm

-module(code lock).
-define(NAME, code lock).
%-define (BEFORE_REWRITE, true).

-ifdef (BEFORE_REWRITE).
-behaviour(gen fsm).
-else.

-behaviour(gen statem).
-endif.

-export([start link/1, button/1, stop/0]).

-ifdef (BEFORE_REWRITE).
-export([init/1, locked/2, open/2, handle sync event/4, handle event/3,
handle info/3, terminate/3, code change/4]).
-else.
-export([init/1, callback mode/0, locked/3, open/3, terminate/3, code change/4]).
%% Add callback mode/0
%% Change arity of the state functions
%% Remove handle info/3
-endif.

-ifdef (BEFORE_REWRITE).
start link(Code) ->

gen fsm:start link({local, ?NAME}, ?MODULE, Code, []).
-else.
start link(Code) ->

gen statem:start link({local, ?NAME}, ?MODULE, Code, [1]).
-endif.

-ifdef (BEFORE_REWRITE).
button(Digit) ->

gen fsm:send event(?NAME, {button, Digit}).
-else.
button(Digit) ->

gen statem:cast(?NAME, {button,Digit}).

%% send event is asynchronous and becomes a cast
-endif.

-ifdef (BEFORE_REWRITE).

stop() ->

gen fsm:sync _send all state event(?NAME, stop).
-else.
stop() ->

)
gen statem:call(?NAME, stop).
%% sync_send is synchronous and becomes call
%% all state is handled by callback code in gen statem
-endif.

Ericsson AB. All Rights Reserved.: STDLIB | 219

gen_fsm

init(Code) ->
do lock(),
Data = #{code => Code, remaining => Code},
{ok, locked, Data}.

-ifdef (BEFORE_REWRITE).
-else.
callback mode() ->
state functions.
% state functions mode is the mode most similar to
% gen_fsm. There is also handle event mode which is
% a fairly different concept.
endif.

1 o® o of

-ifdef (BEFORE_REWRITE) .
locked({button, Digit}, Data@®) ->
case analyze lock(Digit, Data®@) of
{open = StateName, Data} ->
{next state, StateName, Data, 10000};
{StateName, Data} ->
{next_state, StateName, Data}
end.
-else.
locked(cast, {button,Digit}, Data®) ->
case analyze lock(Digit, Data®@) of
{open = StateName, Data} ->
{next state, StateName, Data, 10000};
{StateName, Data} ->
{next_state, StateName, Data}
end;
locked({call, From}, Msg, Data) ->
handle call(From, Msg, Data);
locked({info, Msg}, StateName, Data) ->
handle_info(Msg, StateName, Data).
% Arity differs
All state events are dispatched to handle call and handle info help
functions. If you want to handle a call or cast event specifically
for this state you would add a special clause for it above.
endif.

1 % o o of
o® o° o°

-ifdef (BEFORE_REWRITE) .
open(timeout, State) ->
do lock(),

{next state, locked, State};
open({button, }, Data) ->

{next_state, locked, Data}.
-else.
open(timeout, , Data) ->

do lock(),

{next state, locked, Data};
open(cast, {button, }, Data) ->

{next state, locked, Data};
open({call, From}, Msg, Data) ->

handle call(From, Msg, Data);
open(info, Msg, Data) ->

handle info(Msg, open, Data).
% Arity differs
All state events are dispatched to handle call and handle info help
functions. If you want to handle a call or cast event specifically
for this state you would add a special clause for it above.
endif.

1% o o of
o® o° o°

-ifdef (BEFORE_REWRITE) .
handle sync event(stop, From, StateName, Data) ->
{stop, normal, ok, Data}.

220 | Ericsson AB. All Rights Reserved.: STDLIB

gen_fsm

handle event(Event, StateName, Data) ->
{stop, {shutdown, {unexpected, Event, StateName}}, Data}.

handle info(Info, StateName, Data) ->

{stop, {shutdown, {unexpected, Info, StateName}}, StateName, Data}.
-else.
-endif.

terminate(Reason, State, Data) ->
State =/= locked andalso do lock(),
ok.

code change(Vsn, State, Data, Extra) ->
{ok, State, Data}.

%% Internal functions
-ifdef (BEFORE_REWRITE) .
-else.
handle call(From, stop, Data) ->
{stop_and reply, normal, {reply, From, ok}, Data}.

handle info(Info, StateName, Data) ->

{stop, {shutdown, {unexpected, Info, StateName}}, StateName, Data}.
%% These are internal functions for handling all state events
%% and not behaviour callbacks as in gen fsm

-endif.
analyze lock(Digit, #{code := Code, remaining := Remaining} = Data) ->
case Remaining of
[Digit] ->
do_unlock()
{open, Data#{remaining := Code}};
[Digit|Rest] -> % Incomplete
{locked, Data#{remaining := Rest}};
_Wrong ->
{locked, Data#{remaining := Code}}
end.
do lock() ->

io:format("Lock~n", [1).
do_unlock() ->
io:format("Unlock~n", []).

Ericsson AB. All Rights Reserved.: STDLIB | 221

gen_server

gen_server

Erlang module

This behavior module provides the server of a client-server relation. A generic server process (gen_server)
implemented using this module has a standard set of interface functions and includes functionality for tracing and
error reporting. It aso fitsinto an OTP supervision tree. For more information, see section gen_server Behaviour in
OTP Design Principles.

A gen_ser ver process assumes all specific parts to be located in a callback module exporting a predefined set of
functions. The relationship between the behavior functions and the callback functionsis as follows:

gen_server module Callback module

gen server:start
gen server:start link ----- > Module:init/1

gen server:stop = ----- > Module:terminate/2

gen_server:call
gen server:multi call ----- > Module:handle call/3

gen _server:cast
gen server:abcast = ----- > Module:handle cast/2

----- > Module:handle_info/2
----- > Module:terminate/2

----- > Module:code change/3

If acallback function fails or returns abad value, thegen_ser ver process terminates.

A gen_server process handles system messages as described in sys(3) . The sys module can be used for
debugging agen_ser ver process.

Notice that agen_ser ver process does not trap exit signals automatically, this must be explicitly initiated in the
callback module.

Unless otherwise stated, all functions in this module fail if the specified gen_ser ver process does not exist or if
bad arguments are specified.

Thegen_ser ver process can go into hibernation (see er | ang: hi ber nat e/ 3) if acallback function specifies
' hi ber nat e' instead of atime-out value. This can be useful if the server is expected to be idle for along time.
However, use this feature with care, as hibernation implies at least two garbage collections (when hibernating and
shortly after waking up) and is not something you want to do between each call to abusy server.

Exports

abcast(Name, Request) -> abcast
abcast(Nodes, Name, Request) -> abcast

Types:
Nodes = [Node]
Node = atom()

222 | Ericsson AB. All Rights Reserved.: STDLIB

gen_server

Name = atom()
Request = term)
Sends an asynchronous request tothegen_ser ver processeslocally registered as Nane at the specified nodes. The

function returns immediately and ignores nodes that do not exist, or where the gen_ser ver Nanme does not exist.
Thegen_server processescal Modul e: handl e_cast / 2 to handle the request.

For a description of the arguments, seenul ti _cal | / 2, 3, 4.

call(ServerRef, Request) -> Reply
call(ServerRef, Request, Timeout) -> Reply
Types.
Server Ref = Nane | {Nane, Node} | {gl obal, d obal Nane}
| {via, Modul e, ViaNanme} | pid()
Node = atom()
d obal Nane = ViaNane = term()
Request = term))
Tinmeout = int()>0 | infinity
Reply = term()
Makes a synchronous call to the Ser ver Ref of the gen_ser ver process by sending a request and waiting until

areply arrives or a time-out occurs. The gen_ser ver process calls Modul e: handl e_cal I / 3 to handle the
request.

Ser ver Ref can be any of the following:

e Thepid

 Nane,if thegen_server processislocaly registered

« {Nane, Node}, if thegen_server processislocally registered at another node

« {gl obal, d obal Nane}, if thegen_server processisglobally registered

« {via, Modul e, Vi aNane}, if thegen_ser ver processisregistered through an alternative process registry

Request isany term that is passed as one of the argumentsto Modul e: handl e_cal | / 3.

Ti meout is an integer greater than zero that specifies how many milliseconds to wait for a reply, or the atom
i nfinity towaitindefinitely. Defaults to 5000. If no reply is received within the specified time, the function call
fails. If the caller catches the failure and continues running, and the server isjust late with the reply, it can arrive at
any time later into the message queue of the caller. The caller must in this case be prepared for this and discard any
such garbage messages that are two element tuples with areference as the first element.

Thereturn value Repl y isdefined in the return value of Modul e: handl e_cal | / 3.

The call can fail for many reasons, including time-out and the called gen_ser ver process dying before or during
thecall.

cast(ServerRef, Request) -> ok
Types:
ServerRef = Nane | {Nane, Node} | {gl obal, d obal Nane}
| {via, Modul e, ViaNane} | pid()
Node = atom()
A obal Nane = ViaName = term()
Request = term)

Ericsson AB. All Rights Reserved.: STDLIB | 223

gen_server

Sends an asynchronous request to the Ser ver Ref of the gen_ser ver process and returns ok immediately,
ignoring if the destination node or gen_server process does not exist. The gen_server process cals
Mbdul e: handl e_cast / 2 to handle the request.

For adescription of Ser ver Ref , seecal 1 / 2, 3.

Request isany term that is passed as one of the argumentsto Mbdul e: handl e_cast/ 2.

enter loop(Module, Options, State)
enter loop(Module, Options, State, ServerName)
enter loop(Module, Options, State, Timeout)

(

enter loop
Types:
Modul e = at om()
Options = [Option]
Option = {debug, Dbgs} | {hibernate_after, H bernat eAfterTi neout}
Dbgs = [Dbg]
Dbg = trace | log | statistics
| {log_to file,FileNane} | {install,{Func, FuncState}}
State = term)
Server Name = {local, Nane} | {gl obal, @ obal Nane}
| {via, Modul e, Vi aNane}
Name = atom()
A obal Nanme = ViaName = term()
Timeout =int() | infinity

Module, Options, State, ServerName, Timeout)

Makes an existing process into a gen_ser ver process. Does not return, instead the calling process enters the
gen_ser ver processreceiveloop and becomesagen_ser ver process. The process must have been started using
one of the start functionsin proc_1 i b(3) . The user is responsible for any initialization of the process, including
registering a name for it.

This function is useful when a more complex initialization procedure is needed than the gen_ser ver process
behavior provides.

Modul e, Opt i ons, and Ser ver Nane havethe same meaningsaswhencallingst art[_I i nk]/ 3, 4. However,
if Ser ver Nane is specified, the process must have been registered accordingly befor e this function is called.

St at e and Ti meout have the same meanings as in the return value of Modul e: i ni t/ 1. The callback module
Modul e does not need to export ani ni t/ 1 function.

Thefunctionfailsif thecalling processwasnot started by apr oc_| i b start function, or if it isnot registered according
to Ser ver Nane.

multi call(Name, Request) -> Result
multi call(Nodes, Name, Request) -> Result
multi call(Nodes, Name, Request, Timeout) -> Result

Types:
Nodes = [Node]
Node = atom()

Name = atom()
Request = term)

224 | Ericsson AB. All Rights Reserved.: STDLIB

gen_server

Timeout = int()>=0 | infinity
Result = {Repli es, BadNodes}
Replies = [{Node, Repl y}]
Reply = term()
BadNodes = [Node]
Makes a synchronous call to al gen_server processes localy registered as Nane at the specified nodes

by first sending a request to every node and then waits for the replies. The gen_server process cals
Modul e: handl e_cal | / 3 to handle the request.

Thefunctionreturnsatuple{ Repl i es, BadNodes} ,whereRepl i es isalistof { Node, Repl y} andBadNodes
isalist of node that either did not exist, or wherethegen_ser ver Nane did not exist or did not reply.

Nodes isalist of node namesto which therequest isto be sent. Default valueisthelist of al known nodes[node() |
nodes()].

Narre isthe locally registered name of each gen_ser ver process.
Request isany term that is passed as one of the argumentsto Modul e: handl e_cal | / 3.

Ti meout is an integer greater than zero that specifies how many milliseconds to wait for each reply, or the atom
i nfinity towaitindefinitely. Defaultstoi nfi ni ty. If noreply isreceived from anode within the specified time,
the nodeis added to BadNodes.

When areply Repl y isreceived from the gen_ser ver process at a node Node, { Node, Repl y} is added to
Repl i es. Repl y isdefined in the return value of Modul e: handl e_cal | / 3.

Warning:

If one of the nodes cannot process monitors, for example, C or Java nodes, and thegen_ser ver processis not
started when the requests are sent, but starts within 2 seconds, this function waits the whole Ti meout , which
may be infinity.

This problem does not exist if all nodes are Erlang nodes.

To prevent late answers (after the time-out) from polluting the message queue of the caller, a middleman processis
used to do the calls. Late answers are then discarded when they arrive to aterminated process.

reply(Client, Reply) -> Result
Types.

Client - see bel ow

Reply = term()

Result = term))

This function can be used by agen_ser ver processto explicitly send areply to aclient that calledcal | / 2, 3 or
multi _call/2,3, 4, when thereply cannot be defined in the return value of Modul e: handl e_cal | / 3.

d i ent must be the Fr omargument provided to the callback function. Repl y is any term given back to the client
asthereturnvalueofcal I /2,3 ornul ti _call/2, 3, 4.

Thereturn value Resul t isnot further defined, and is always to be ignored.

Ericsson AB. All Rights Reserved.: STDLIB | 225

gen_server

start(Module, Args, Options) -> Result
start(ServerName, Module, Args, Options) -> Result
Types:
ServerNanme = {local, Nane} | {gl obal, d obal Nane}
| {via, Modul e, Vi aNane}
Name = atom()
d obal Nanme = ViaName = term()
Modul e = atom()
Args = term)
Options = [Option]
Option = {debug, Dbgs} | {tineout, Tine} |
{hi bernate_after, H bernateAfterTineout} | {spawn_opt, SOpt s}

Dbgs = [Dbg]
Dbg = trace | log | statistics | {log to file,FileNane} | {install,
{Func, FuncsSt at e} }

SOpts = [term)]
Result = {ok,Pid} | ignore | {error,Error}
Pid = pid()

Error = {already_started,Pid} | term))

Creates a standalone gen_ser ver process, that is, agen_ser ver process that is not part of a supervision tree
and thus has no supervisor.

For a description of arguments and return values, seestart _| i nk/ 3, 4.

start link(Module, Args, Options) -> Result
start link(ServerName, Module, Args, Options) -> Result
Types:
ServerNane = {l ocal, Nane} | {gl obal, d obal Nane}
| {via, Modul e, Vi aNane}
Name = atom()
A obal Nane = ViaName = term()
Modul e = atom()
Args = term)
Options = [Option]
Option = {debug, Dbgs} | {tineout, Tine} |
{hi bernate_after, H bernateAfterTineout} | {spawn_opt, SOpt s}
Dogs = [Dbg]
Dbg = trace | log | statistics | {log to_file, FileNane} | {install,
{Func, FuncsSt at e} }

SOpts = [term)]
Result = {ok,Pid} | ignore | {error,Error}
Pid = pid()

Error = {already_started,Pid} | term)

Createsagen_ser ver process as part of a supervision tree. This function is to be called, directly or indirectly, by
the supervisor. For example, it ensures that thegen_ser ver processislinked to the supervisor.

226 | Ericsson AB. All Rights Reserved.: STDLIB

gen_server

The gen_server process cals Modul e: i nit/ 1 to initialize. To ensure a synchronized startup procedure,
start _|ink/ 3, 4 doesnot return until Modul e: i ni t/ 1 hasreturned.

If Server Nane={l ocal , Nane}, the gen_server process is registered locally as Name using
register/2.

If Server Nanme={gl obal , d obal Nane}, the gen _server process id registered globaly as
G obal Name using gl obal : regi st er _nane/ 2 If no nameisprovided, thegen_ser ver processisnot
registered.

If Server Nane={vi a, Mbdul e, Vi aNane}, the gen_server process registers with the registry
represented by Mbdul e. The Mbdul e calback is to export the functions regi ster_nane/ 2,
unregi ster_nane/ 1, wherei s_nane/ 1, and send/ 2, which are to behave like the corresponding
functionsin gl obal . Thus, { vi a, gl obal , A obal Nane} isavalid reference.

Modul e isthe name of the callback module.

Ar gs isany term that is passed as the argument to Modul e: init/ 1.

If option {ti meout, Ti ne} is present, the gen_ser ver process is alowed to spend Ti ne milliseconds
initializing or it isterminated and the start function returns{ error, ti meout }.

If option{ hi bernat e_after, H ber nat eAft er Ti meout } ispresent,thegen_ser ver processawaits
any messagefor Hi ber nat eAf t er Ti meout milliseconds and if no messageisreceived, the process goesinto
hibernation automatically (by calling pr oc_| i b: hi ber nat e/ 3).

If option { debug, Dbgs} is present, the corresponding sys function is called for each item in Dbgs; see
sys(3).

If option { spawn_opt , SOpt s} is present, SOpt s is passed as option list to the spawn_opt BIF, whichis
used to spawn thegen_ser ver process, see spawn_opt / 2.

Note:

Using spawn option noni t or isnot allowed, it causes the function to fail with reason badar g.

If the gen_ser ver process is successfully created and initialized, the function returns { ok, Pi d} , where Pi d is
thepid of thegen_ser ver process. If aprocesswith the specified Ser ver Nane existsaready, the function returns
{error,{already_started, Pid}}, wherePi disthepid of that process.

If Modul e: i nit/ 1 fails with Reason, the function returns { er r or , Reason}. If Modul e: i ni t/ 1 returns
{st op, Reason} ori gnor e, the processis terminated and the function returns{ er r or , Reason} ori gnore,
respectively.

stop(ServerRef) -> ok
stop(ServerRef, Reason, Timeout) -> ok
Types:

Server Ref = Nane | {Nane, Node} | {gl obal, d obal Nane}
| {via, Modul e, ViaNane} | pid()

Node = atom()

G obal Name = ViaNane = term()

Reason = term)

Timeout = int()>0 | infinity

Orders a generic server to exit with the specified Reason and waits for it to terminate. The gen_ser ver process
cals Modul e: t er mi nat e/ 2 before exiting.

Ericsson AB. All Rights Reserved.: STDLIB | 227

gen_server

Thefunction returnsok if the server terminateswith the expected reason. Any other reasonthannor mal , shut down,
or { shut down, Ter n} causes an error report to be issued using error _| ogger: format/ 2. The default
Reasonisnor nal .

Ti meout isaninteger greater than zero that specifies how many milliseconds to wait for the server to terminate, or
theatomi nf i ni t y towait indefinitely. Defaultstoi nf i ni t y. If the server has not terminated within the specified
time, ati meout exceptionisraised.

If the process does not exist, anopr oc exception is raised.

Callback Functions

The following functions are to be exported from agen_ser ver callback module.

Exports

Module:code change(OldVsn, State, Extra) -> {ok, NewState} | {error, Reason}
Types:
A dvsn = Vsn | {down, Vsn}
Vsn = term))
State = NewState = term))
Extra = tern()
Reason = term()

Note:

This callback is optional, so callback modules need not export it. If a release upgrade/downgrade with
Change={advanced, Extra} specified in the appup file is made when code_ change/ 3 isn't
implemented the process will crash with an undef exit reason.

This function is caled by a gen_server process when it is to update its internal state during
a release upgrade/downgrade, that is, when the instruction {updat e, Modul e, Change, ...}, where
Change={ advanced, Extr a},isspecifedintheappup file. For moreinformation, see section Release Handling
Instructionsin OTP Design Principles.

For an upgrade, O dVsn is Vsn, and for a downgrade, A dVsn is { down, Vsn}. Vsn is defined by the vsn
attribute(s) of the old version of the callback module Modul e. If no such attribute is defined, the version is the
checksum of the Beam file.

St at e istheinternal state of thegen_ser ver process.

Ext raispassed "asis' fromthe{advanced, Ext r a} part of the update instruction.

If successful, the function must return the updated internal state.

If the function returns{ er r or , Reason} , the ongoing upgrade fails and rolls back to the old release.

Module:format status(Opt, [PDict, State]) -> Status
Types.

Opt = nornal | terminate

PDict = [{Key, Value}]

State = term)

228 | Ericsson AB. All Rights Reserved.: STDLIB

gen_server

Status = tern()

Note:

This callback is optional, so callback modules need not export it. The gen_ser ver module provides a default
implementation of this function that returns the callback module state.

Thisfunction iscalled by agen_ser ver processin the following situations:

« Oneof sys: get_status/1, 2isinvokedtogetthegen_server status. Opt isset tothe atom nor mal .
e Thegen_server processterminates abnormally and logs an error. Opt issettotheatomt er m nat e.

This function is useful for changing the form and appearance of thegen_ser ver status for these cases. A callback
modulewishing to changethesys: get st at us/ 1, 2 return value, aswell as how its status appearsin termination

error logs, exports an instance of f or mat _st at us/ 2 that returns a term describing the current status of the
gen_ser ver process.

PDi ct isthe current value of the process dictionary of thegen_ser ver process..
St at e istheinternal state of thegen_ser ver process.

Thefunctionisto return St at us, aterm that changes the details of the current state and status of thegen_ser ver
process. There are no restrictions on the form St at us can take, but for the sys: get _st at us/ 1, 2 case (when
Opt isnor mal), the recommended form for the St at us valueis[{data, [{"State", Tern}]}], where
Ter mprovides relevant details of the gen_ser ver state. Following this recommendation is not required, but it
makes the callback module status consistent with therest of thesys: get _st at us/ 1, 2 return value.

Oneusefor thisfunction isto return compact alternative state representationsto avoid that large state terms are printed
inlog files.

Module:handle call(Request, From, State) -> Result
Types:
Request = term))
From = {pid(), Tag}
State = term)
Result = {reply, Reply, NewState} | {reply, Reply, NewSt at e, Ti neout }
| {reply, Reply, NewSt at e, hi ber nat e}
| {noreply, NewState} | {noreply, NewSt at e, Ti meout }
| {noreply, NewSt at e, hi ber nat e}
| {stop, Reason, Reply, NewSt ate} | {stop, Reason, NewSt at e}
Reply = term()
NewState = term)
Timeout = int()>=0 | infinity
Reason = term()

Whenever agen_ser ver processreceivesarequest sentusingcal 1 /2, 3ornul ti _cal | /2, 3, 4, thisfunction
is caled to handle the request.

Request isthe Request argument providedtocal | ornulti _call.
Fromisatuple{ Pi d, Tag}, where Pi d isthe pid of the client and Tag is a unique tag.
St at e istheinternal state of thegen_ser ver process.

Ericsson AB. All Rights Reserved.: STDLIB | 229

gen_server

« If {reply, Reply, NewSt at e} is returned, {reply, Reply, NewSt at e, Ti neout } or
{reply, Reply, NewSt at e, hi ber nat e}, Repl y isgiven back to Fr omasthereturnvalueofcal | / 2, 3
or included in thereturn value of mul ti _cal 1/ 2, 3, 4. Thegen_ser ver process then continues executing
with the possibly updated internal state NewSt at e.

For adescription of Ti neout and hi ber nat e, seeMbdul e:i nit/ 1.

o If {noreply, NewsSt at e} is returned, {noreply, NewSt at e, Ti meout }, or
{norepl y, NewSt at e, hi ber nat e} ,thegen_ser ver processcontinuesexecuting with NewSt at e. Any
reply to Fr ommust be specified explicitly using r epl y/ 2.

* If{stop, Reason, Repl y, NewSt at e} isreturned, Repl y isgiven back to Fr om

« If{stop, Reason, NewSt at e} isreturned, any reply to Fr ommust be specified explicitly usingr epl y/ 2.
Thegen_ser ver processthen callsModul e: t er mi nat e(Reason, NewSt at e) and terminates.

Module:handle cast(Request, State) -> Result
Types:
Request = term))
State = term)
Result = {noreply, NewState} | {noreply, NewSt at e, Ti neout }
| {noreply, NewSt at e, hi ber nat e}
| {stop, Reason, NewSt at e}
NewState = term()
Timeout = int()>=0 | infinity
Reason = term()

Whenever agen_ser ver process receives arequest sent using cast/ 2 or abcast / 2, 3, thisfunction is called
to handle the request.

For a description of the arguments and possible return values, see Mbdul e: handl e_cal | / 3.

Module:handle info(Info, State) -> Result
Types:
Info = timeout | term))
State = term)
Result = {noreply, NewState} | {noreply, NewSt at e, Ti meout }
| {noreply, NewSt at e, hi ber nat e}
| {stop, Reason, NewSt at e}
NewState = term()

Timeout = int()>=0] infinity
Reason = normal | tern()
Note:

This callback is optional, so callback modules need not export it. Thegen_ser ver module provides a default
implementation of this function that logs about the unexpected | nf o message, dropsit and returns{ nor epl y,
State}.

230 | Ericsson AB. All Rights Reserved.: STDLIB

gen_server

Thisfunctioniscalled by agen_ser ver processwhen atime-out occurs or when it receives any other message than
a synchronous or asynchronous request (or a system message).

I nf o iseither theatomt i meout , if atime-out has occurred, or the received message.

For a description of the other arguments and possible return values, see Modul e: handl e_cal | / 3.

Module:init(Args) -> Result
Types.
Args = term)
Result = {ok, State} | {ok, State, Tineout} | {ok, State, hi bernate}

| {stop, Reason} | ignore
State = term()
Timeout = int()>=0] infinity

Reason = term()

Whenever agen_ser ver processisstarted usingstart/ 3, 4 orstart _| i nk/ 3, 4, thisfunction is called by
the new processto initialize.

Ar gs isthe Ar gs argument provided to the start function.

If the initialization is successful, the function is to return {ok, State}, {ok, State, Ti neout}, or
{ ok, St at e, hi ber nat e}, where St at e istheinternal state of thegen_ser ver process.

If an integer time-out value is provided, a time-out occurs unless a request or a message is received within
Ti meout milliseconds. A time-out is represented by the atom ti meout, which is to be handled by the
Modul e: handl e_i nf o/ 2 callback function. The atom i nfi ni ty can be used to wait indefinitely, this is the
default value.

If hi ber nat e is specified instead of atime-out value, the process goes into hibernation when waiting for the next
message to arrive (by calling proc_Ii b: hi ber nat e/ 3).

If theinitialization fails, the function isto return { st op, Reason} , where Reason isany term, or i gnor e.

Module:terminate(Reason, State)

Types:
Reason = norrmal | shutdown | {shutdown,tern()} | term)
State = term))

Note:

This callback is optional, so callback modules need not export it. Thegen_ser ver module provides a default
implementation without cleanup.

This function is caled by a gen_server process when it is about to terminate. It is to be the opposite of
Modul e: i nit/ 1 and do any necessary cleaning up. When it returns, the gen_ser ver process terminates with
Reason. The return value isignored.

Reason isaterm denoting the stop reason and St at e isthe internal state of thegen_ser ver process.

Reason depends on why the gen_ser ver process is terminating. If it is because another callback function has
returned astop tuple{ st op, . . } , Reason hasthevalue specified in that tuple. If it is because of afailure, Reason
isthe error reason.

Ericsson AB. All Rights Reserved.: STDLIB | 231

gen_server

If thegen_server processis part of a supervision tree and is ordered by its supervisor to terminate, this function
is called with Reason=shut down if the following conditions apply:

 Thegen_server process has been set to trap exit signals.

» The shutdown strategy as defined in the child specification of the supervisor is an integer time-out value, not
brutal _Kkill.

Even if thegen_ser ver processis not part of a supervision tree, this function is called if it receivesan' EXI T'
message from its parent. Reason isthe sameasinthe' EXI T' message.

Otherwise, thegen_ser ver processterminatesimmediately.

Notice that for any other reason than nor mal , shut down, or { shut down, Ter n} , thegen_ser ver processis
assumed to terminate because of an error and an error report isissued using er r or _| ogger : f or mat / 2.

See Also
gen_event (3),gen_staten(3),proc_lib(3),supervisor(3),sys(3)

232 | Ericsson AB. All Rights Reserved.: STDLIB

gen_statem

gen_statem

Erlang module

This behavior module provides a state machine. Two callback modes are supported:

e Onefor finite-state machines (gen_f smlike), which requires the state to be an atom and uses that state as the
name of the current callback function

« Onewithout restriction on the state data type that uses one callback function for all states

Note:

Thisis anew behavior in Erlang/OTP 19.0. It has been thoroughly reviewed, is stable enough to be used by at
least two heavy OTP applications, and is here to stay. Depending on user feedback, we do not expect but can find
it necessary to make minor not backward compatible changes into Erlang/OTP 20.0.

Thegen_st at embehavior replaces gen_f sm in Erlang/OTP 20.0. It has the same features and adds some really
useful:

* Gathered state code.

e Arbitrary term state.

* Event postponing.

e Sdf-generated events.

e Statetime-out.

e Multiple generic named time-outs.

e Absolute time-out time.

* Automatic state enter calls.

e Reply from other state than the request.
* Multiplesys traceablereplies.

The callback model(s) for gen_st at emdiffersfrom the onefor gen_f sm but it is still fairly easy to rewrite from
gen_f smtogen_statem

A generic state machine process (gen_st at em) implemented using this module has a standard set of interface
functions and includes functionality for tracing and error reporting. It also fitsinto an OTP supervision tree. For more
information, see OTP Design Principles.

A gen_st at emassumesall specific partsto be located in a callback module exporting a predefined set of functions.
The relationship between the behavior functions and the callback functionsis as follows:

gen_statem module Callback module

gen statem:start
gen statem:start link ----- > Module:init/1

Server start or code change
----- > Module:callback mode/0

gen statem:stop = ----- > Module:terminate/3

gen statem:call

Ericsson AB. All Rights Reserved.: STDLIB | 233

gen_statem

gen_statem:cast

erlang:send

erlang:'!" ----- > Module:StateName/3
Module:handle event/4

----- > Module:terminate/3

----- > Module:code change/4

Events are of different types, so the callback functions can know the origin of an event and how to respond.

If acallback function fails or returns abad value, thegen_st at emterminates, unless otherwise stated. However, an
exception of classt hr owis not regarded as an error but asavalid return from all callback functions.

The"state callback"” for a specific stateinagen_st at emisthe callback function that is called for all eventsin this
state. It is selected depending on which callback mode that the callback module defines with the callback function
Modul e: cal | back_node/ 0.

When the callback modeisst at e_f uncti ons, the state must be an atom and is used as the state callback name;
see Mbdul e: St at eNane/ 3. Thisgathersal code for a specific state in one function asthegen_st at emengine
branches depending on state name. Note the fact that the callback function Modul e: t er m nat e/ 3 makesthe state
namet er m nat e unusablein this mode.

When the callback modeishandl e_event _f unct i on, the state can be any term and the state callback nameis
Modul e: handl e_event/ 4. This makes it easy to branch depending on state or event as you desire. Be careful
about which events you handle in which states so that you do not accidentally postpone an event forever creating an
infinite busy loop.

Thegen_st at emenqueuesincoming eventsin order of arrival and presents these to the state callback in that order.
The state callback can postpone an event so it is not retried in the current state. After a state change the queue restarts
with the postponed events.

The gen_st at emevent queue model is sufficient to emulate the normal process message queue with selective
receive. Postponing an event corresponds to not matching it in a receive statement, and changing states corresponds
to entering a new receive statement.

The state callback can insert eventsusingtheact i on() next _event and such an event isinserted as the next to
present to the state callback. That is, asif it isthe oldest incoming event. A dedicated event _type() i nternal
can be used for such events making them impossible to mistake for external events.

Inserting an event replaces the trick of calling your own state handling functions that you often would have to resort
toin, for example, gen_f smto force processing an inserted event before others.

The gen_st at emengine can automatically make a specialized cal to the state callback whenever a new state is
entered; seest at e_ent er () . Thisisfor writing code common to all state entries. Another way to do it isto insert
events at state transitions, but you have to do so everywhereit is needed.

Note:

If youingen_st at em for example, postpone an event in one state and then call another state callback of yours,
you have not changed states and hence the postponed event is not retried, which islogical but can be confusing.

For the details of a state transition, seetypet ransi ti on_option().

A gen_st at emhandles system messages as described in sys. The sys module can be used for debugging a
gen_statem

234 | Ericsson AB. All Rights Reserved.: STDLIB

gen_statem

Notice that agen_st at emdoes not trap exit signals automatically, this must be explicitly initiated in the callback
module (by calling process_flag(trap_exit, true).

Unless otherwise stated, all functions in this module fail if the specified gen_st at emdoes not exist or if bad
arguments are specified.

Thegen_st at emprocesscan gointo hibernation; seepr oc_| i b: hi ber nat e/ 3. Itisdonewhen astate callback
or Modul e: i ni t/ 1 specifies hi ber nat e in the returned Act i ons list. This feature can be useful to reclaim
process heap memory while the server is expected to be idle for along time. However, use this feature with care, as
hibernation can be too costly to use after every event; seeer | ang: hi ber nat e/ 3.

Example

The following exampl e shows a simple pushbutton model for atoggling pushbutton implemented with callback mode
state_functions. You can push the button and it repliesif it went on or off, and you can ask for a count of how
many times it has been pushed to switch on.

The following is the complete callback modulefile pushbutt on. erl :

-module(pushbutton).
-behaviour(gen statem).

-export([start/0,push/0,get count/0,stop/0]).
-export([terminate/3, code change/4,init/1,callback mode/0]).
-export([on/3,0ff/3]).

name() -> pushbutton statem. % The registered server name

%% API. This example uses a registered name name()
%% and does not link to the caller.
start() ->

gen statem:start({local,name()}, ?MODULE, []I, [1).
push() ->

gen_statem:call(name(), push).
get count() ->

gen statem:call(name(), get count).
stop() ->

gen_statem:stop(name()).

%% Mandatory callback functions
terminate(Reason, State, Data) ->
void.
code change(Vsn, State, Data, Extra) ->
{ok,State,Data}.
init([]) ->
%% Set the initial state + data. Data is used only as a counter.
State = off, Data = 0,
{ok,State,Data}.
callback mode() -> state functions.

%%% state callback(s)

off({call,From}, push, Data) ->

%% Go to 'on', increment count and reply

%% that the resulting status is 'on'

{next state,on,Data+1, [{reply,From,on}1};
off (EventType, EventContent, Data) ->

handle event(EventType, EventContent, Data).

on({call,From}, push, Data) ->

%% Go to 'off' and reply that the resulting status is 'off'
{next state,off,Data,[{reply,From,off}1};

Ericsson AB. All Rights Reserved.: STDLIB | 235

gen_statem

on(EventType, EventContent, Data) ->
handle event(EventType, EventContent, Data).

%% Handle events common to all states
handle event({call,From}, get count, Data) ->
%% Reply with the current count
{keep state,Data, [{reply,From,Data}]};
handle event(, , Data) ->
%% Ignore all other events
{keep state,Data}.

Thefollowing is a shell session when running it:

1> pushbutton:start().

{ok,<0.36.0>}

2> pushbutton:get count().

0

3> pushbutton:push().

on

4> pushbutton:get count().

1

5> pushbutton:push().

off

6> pushbutton:get count().

1

7> pushbutton:stop().

ok

8> pushbutton:push().

** exception exit: {noproc,{gen statem,call, [pushbutton statem,push,infinity]}}
in function gen:do for proc/2 (gen.erl, line 261)
in call from gen statem:call/3 (gen statem.erl, line 386)

To compare styles, here follows the same example using callback mode handl e_event _f unct i on, or rather the
code to replace after functioni ni t / 1 of thepushbut t on. er| examplefile above:

callback mode() -> handle event function.
%%% state callback(s)

handle event({call,From}, push, off, Data) ->
%% Go to 'on', increment count and reply
%% that the resulting status is 'on'
{next state,on,Data+1, [{reply,From,on}]};
handle event({call,From}, push, on, Data) ->
%% Go to 'off' and reply that the resulting status is 'off'
{next state,off,Data, [{reply,From,off}]};

o of
o°

% Event handling common to all states
handle event({call,From}, get count, State, Data) ->
%% Reply with the current count
{next state,State,Data, [{reply,From,Data}]};
handle event(, , State, Data) ->
%% Ignore all other events
{next state,State,Data}.

236 | Ericsson AB. All Rights Reserved.: STDLIB

gen_statem

Data Types

server name() =
{global, GlobalName :: term()} |
{via, RegMod :: module(), Name :: term()} |
{local, atom()}

Name specification to use when starting agen_st at emserver. Seestart _| i nk/ 3andserver _ref () below.

server_ref() =
pid() |
(LocalName :: atom()) |
{Name :: atom(), Node :: atom()} |
{global, GlobalName :: term()} |
{via, RegMod :: module(), ViaName :: term()}

Server specification to use when addressing agen_st at emserver. Seecal | / 2 and ser ver _nane() above.
It can be:
pid() | Local Nane
Thegen_st at emislocally registered.
{ Nane, Node}
Thegen_st at emislocally registered on another node.
{gl obal , d obal Nane}
Thegen_st at emisglobally registered in gl obal .
{vi a, Reghbd, Vi aNane}

The gen_st at emisregistered in an alternative process registry. The registry callback module Reghod is to
export functions r egi st er _nane/ 2, unr egi st er _nane/ 1, wherei s_nane/ 1, and send/ 2, which
are to behave like the corresponding functionsin gl obal . Thus, { vi a, gl obal , A obal Nane} isthe same
as{ gl obal , d obal Nane}.

debug opt() =
{debug,
Dbgs ::
[trace | log | statistics | debug | {logfile, string()}1}
Debug option that can be used when starting agen_st at emserver through, ent er _| oop/ 4- 6.
For every entry in Dbgs, the corresponding functionin sys is called.

hibernate after opt() =
{hibernate _after, HibernateAfterTimeout :: timeout()}

hibernate_after option that can be used when starting agen_st at emserver through, ent er _| oop/ 4- 6.

If option{ hi ber nat e_aft er, Hi ber nat eAft er Ti meout } ispresent, the gen_st at emprocess awaits any
message for Hi ber nat eAft er Ti neout milliseconds and if no message is received, the process goes into
hibernation automatically (by calling pr oc_I i b: hi ber nat e/ 3).
start opt() =

debug_opt () |

{timeout, Time :: timeout()} |

hi bernate_after_opt() |

{spawn_opt, [proc_lib:spawn_option()]}

Options that can be used when starting agen_st at emserver through, for example, st art _| i nk/ 3.

Ericsson AB. All Rights Reserved.: STDLIB | 237

gen_statem

start_ret() = {ok, pid()} | ignore | {error, term()}

Return value from the start functions, for example, st art _| i nk/ 3.

from() = {To :: pid(), Tag :: term()}

Destination to use when replying through, for example, theacti on() {reply, From Repl y} to aprocess that
has called thegen_st at emserver usingcal | / 2.

state() = state_nane() | term()

If the callback modeishandl e_event _f unct i on, the state can be any term. After a state change (Next St at e
=/ = St at e), all postponed events are retried.

state name() = atom()

If the callback modeisst at e_f uncti ons, the state must be of thistype. After a state change (Next St at e =/
= St at e), al postponed events are retried.

data() = term()

A term in which the state machine implementation isto store any server datait needs. The difference between thisand
thest at e() itself isthat a change in this data does not cause postponed events to be retried. Hence, if achangein
this data would change the set of eventsthat are handled, then that dataitem isto be made a part of the state.

event type() =
{call, From :: from()} |
cast |
info |
timeout |
{timeout, Name :: term()} |
state timeout |
internal

External events are of three types: { cal | , Fron}, cast, or i nf 0. Calls (synchronous) and casts originate from
the corresponding API functions. For calls, the event contains whom to reply to. Typei nf o originates from regular
process messages sent tothegen_st at em The state machine implementation can, in addition to the above, generate
events of typestinmeout,{tineout, Nane},state tinmeout,andinternal toitself.

callback mode result() =
cal | back_node() | [callback_node() | state_enter()]

Thisisthereturn type from Modul e: cal | back_npde/ 0 and selects callback mode and whether to do state enter
calls, or not.

callback mode() = state functions | handle_event function

The callback mode is selected when starting the gen_st at emand after code change using the return value from
Modul e: cal | back_node/ 0.

state_functions

The state must be of type state nane() and one calback function per state, that s,
Modul e: St at eNane/ 3, is used.

handl e_event function
The state can be any term and the callback function Modul e: handl e_event / 4 isused for all states.
state _enter() = state enter

Whether the state machine should use state enter calls or not is selected when starting the gen_st at emand after
code change using the return value from Modul e: cal | back_node/ 0.

238 | Ericsson AB. All Rights Reserved.: STDLIB

gen_statem

If Modul e: cal | back_node/ O returnsalist containing st at e_ent er , thegen_st at emenginewill, at every
state change, call the state callback with arguments(ent er, O dSt at e, Dat a) . Thismay look like an event but
isreally acall performed after the previous state callback returned and before any event is delivered to the new state
callback. SeeMbdul e: St at eNane/ 3 and Modul e: handl e_event / 4. Such acall can berepeated by returning
arepeat_state or repeat _state_and_dat a tuplefrom the state callback.

If Modul e: cal | back_nopde/ 0 does not return such alist, no state enter calls are done.

If Modul e: code_change/ 4 should transform the state to a state with a different name it is still regarded as the
same state so this does not cause a state enter call.

Note that a state enter call will be done right before entering the initial state even though this formally is not a state
change. Inthiscase A dSt at e will bethe same as St at e, which can not happen for a subsequent state change, but
will happen when repeating the state enter call.

transition option() =
post pone() |
hi bernate() |
event _timeout() |
generic_tinmeout () |
state_timeout ()

Transition options can be set by actions and they modify how the state transition is done:

« |If the state changes, istheinitial state, r epeat _state or repeat _state_and_dat a isused, and also
state enter callsare used, thegen_st at emcallsthe new state callback with arguments (enter, OldState, Data).
Any act i ons returned from this call are handled as if they were appended to the actions returned by the state
callback that changed states.

» All actions are processed in order of appearance.

e |Ifpostpone() istrue,thecurrent event is postponed.

» If the state changes, the queue of incoming eventsis reset to start with the oldest postponed.

« All eventsstored withact i on() next _event areinserted to be processed before the other queued events.

e« Timeouttimersevent timeout (),generic_tinmeout() andstate_tineout () arehandled. Time-
outs with zero time are guaranteed to be delivered to the state machine before any external not yet received event
so if thereis such atime-out requested, the corresponding time-out zero event is enqueued as the newest event.

Any event cancelsan event _ti meout () so azero time event time-out is only generated if the event queue
is empty.
A statechangecancelsast at e_t i meout () andany new transition option of thistype belongsto the new state.

« |If there are enqueued events the state callback for the possibly new state is called with the ol dest enqueued event,
and we start again from the top of thislist.

« Otherwise the gen_st at emgoesinto r ecei ve or hibernation (if hi ber nat e() istrue) to wait for the
next message. |n hibernation the next non-system event awakensthe gen_st at em or rather the next incoming
message awakens the gen_st at em but if it is a system event it goes right back into hibernation. When a new
message arrivesthe state callback is called with the corresponding event, and we start again from thetop of thislist.

postpone() = boolean()
If t r ue, postpones the current event and retries it when the state changes (Next St ate =/ = St at e).
hibernate() = boolean()

If true, hibernates the gen_st at em by caling proc_li b: hi ber nat e/ 3 before going into recei ve
to wait for a new externa event. If there are enqueued events, to prevent receiving any new event, an
erl ang: garbage_col | ect/ 0 is done instead to simulate that the gen_st at em entered hibernation and
immediately got awakened by the oldest enqueued event.

Ericsson AB. All Rights Reserved.: STDLIB | 239

gen_statem

event timeout() = timeout() | integer()

Starts a timer set by enter_action() timeout. When the timer expires an event of event _type()
ti meout will begenerated. Seeer| ang: start _ti ner/ 4 for how Ti me and Opt i ons areinterpreted. Future
erlang: start _tiner/4 Options will not necessarily be supported.

Any event that arrives cancels this time-out. Note that a retried or inserted event counts as arrived. So does a state
time-out zero event, if it was generated before this time-out is requested.

If Ti neisi nfinity,notimerisstarted, asit never would expire anyway.

If Ti me isrelative and O no timer is actually started, instead the the time-out event is enqueued to ensure that it gets
processed before any not yet received external event.

Note that it is not possible nor needed to cancel thistime-out, asit is cancelled automatically by any other event.
generic_timeout() = timeout() | integer()

Startsatimer setby ent er _acti on() {ti meout, Name} . When thetimer expiresan event of event _t ype()
{tinmeout, Nane} will be generated. See erl ang: start _timer/4 for how Ti ne and Opti ons are
interpreted. Futureer | ang: start _ti nmer/ 4 Opti ons will not necessarily be supported.

If Ti meisi nfinity, notimerisstarted, asit never would expire anyway.

If Ti me isrelative and O no timer is actually started, instead the the time-out event is enqueued to ensure that it gets
processed before any not yet received external event.

Setting a timer with the same Nane while it is running will restart it with the new time-out value. Therefore it is
possible to cancel a specific time-out by settingittoi nfinity.

state timeout() = timeout() | integer()

Startsatimer set by ent er _action() state_ti meout.When thetimer expiresan event of event _type()

state_ti meout will begenerated. Seeer | ang: start _ti mer/ 4forhow Ti me and Opt i ons areinterpreted.
Futureerl ang: start _ti mer/ 4 Opti ons will not necessarily be supported.

If Ti meisi nfinity,notimerisstarted, asit never would expire anyway.

If Ti me isrelative and O no timer is actually started, instead the the time-out event is enqueued to ensure that it gets
processed before any not yet received external event.

Setting this timer while it is running will restart it with the new time-out value. Thereforeit is possible to cancel this
time-out by settingittoi nfinity.

timeout option() = {abs, Abs :: boolean()}

If Abs is true an absolute timer is started, and if it is fal se a relative, which is the default. See
erlang: start _ti ner/ 4 for details.

action() =
postpone |
{postpone, Postpone :: postpone()} |
{next_event,
EventType :: event _type(),
EventContent :: term()} |
enter_action()

These state transition actions can be invoked by returning them from the state callback when it is called with an event,
from Modul e: i ni t/ 1 or by givingthemtoent er _| oop/ 5, 6.

Actions are executed in the containing list order.

Actions that set transition options override any previous of the same type, so the last in the containing list wins. For
example, the last post pone() overrides any previous post pone() inthelist.

240 | Ericsson AB. All Rights Reserved.: STDLIB

gen_statem

post pone

Setsthet ransi ti on_opti on() post pone() forthisstatetransition. Thisaction isignored when returned
fromModul e: i nit/ 1 orgiventoent er _| oop/ 5, 6, asthereisno event to postpone in those cases.

next _event
Stores the specified Event Type and Event Cont ent for insertion after all actions have been executed.

The stored events are inserted in the queue as the next to process before any already queued events. The order of
these stored eventsis preserved, so thefirst next _event inthe containing list becomes the first to process.

Anevent of typei nt er nal isto be used when you want to reliably distinguish an event inserted this way from
any external event.

enter_action() =
hibernate |
{hibernate, Hibernate :: hibernate()} |
(Timeout :: event_tineout()) |
{timeout, Time :: event _tineout(), EventContent :: term()} |
{timeout,
Time :: event _tineout(),
EventContent :: term(),
Options :: timeout_option() | [timeout_option()]1} |
{{timeout, Name :: term()},
Time :: generic_tineout(),
EventContent :: term()} |
{{timeout, Name :: term()},
Time :: generic_tineout(),
EventContent :: term(),
Options :: timeout_option() | [timeout_option()]1} |
{state timeout,
Time :: state_tineout(),
EventContent :: term()} |
{state timeout,

Time :: state_tineout(),
EventContent :: term(),
Options :: timeout_option() | [timeout_option()]1} |

reply_action()

These state transition actions can be invoked by returning them from the state callback, from Modul e: i nit/ 1 or
by giving themtoent er _| oop/ 5, 6.

Actions are executed in the containing list order.

Actions that set transition options override any previous of the same type, so the last in the containing list wins. For
example, thelast event _ti neout () overridesany previousevent ti neout () inthelist.

hi ber nat e
Setsthetransi ti on_option() hi bernate() for thisstate transition.
Ti meout

Short for {ti meout, Ti meout, Ti meout }, that is, the time-out message is the time-out time. This form
exists to make the state callback return value { next _st at e, Next St at e, NewDat a, Ti neout } allowed
likefor gen_f smis

Ericsson AB. All Rights Reserved.: STDLIB | 241

gen_statem

ti meout

Sets the transiti on_option() event _timeout() to Ti me with Event Cont ent and time-out
options Opt i ons.
{tineout, Nane}

Setsthetransiti on_option() generic_tineout() toTi ne for Nane with Event Cont ent and
time-out options Opt i ons.

state_ti meout
Sets the transiti on_option() state_tinmeout() to Ti me with Event Cont ent and time-out
options Opt i ons.
reply action() = {reply, From :: from(), Reply :: term()}
This state transition action can be invoked by returning it from the state callback, from Modul e: i nit/ 1 or by
givingittoent er _I oop/ 5, 6.
It repliesto a caller waiting for areply incal | / 2. Fr ommust be the term from argument { cal | , Fr on} inacall
to a state callback.

Notethat using thisactionfromModul e: i nit/ 1 orent er _| oop/ 5, 6 would beweird onthe border of witchcraft
since there has been no earlier call to a state callback in this server.

init result(StateType) =
{ok, State :: StateType, Data :: data()} |
{ok,
State :: StateType,
Data :: data(),

Actions :: [action()] | action()} |
ignore |
{stop, Reason :: term()}

For a succesful initialization, St at e is the initiadl state() and Data the initial server data() of the
gen_statem

TheAct i ons are executed when entering thefirst state just asfor a state callback, except that the action post pone
isforcedtof al se sincethereis no event to postpone.

For an unsuccesful initiaization, { st op, Reason} ori gnor e should beused; seestart _|i nk/ 3, 4.

state enter result(State) =
{next state, State, NewData :: data()} |
{next_state,

State,
NewData :: data(),
Actions :: [enter_action()] | enter_action()} |

state_cal | back_result (enter_action())
St at e isthe current state and it can not be changed since the state callback was called with a state enter call.
next _state

The gen_st at emdoes a state transition to St at e, which has to be the current state, sets NewDat a, and
executesall Acti ons.

event handler result(StateType) =
{next _state, NextState :: StateType, NewData :: data()} |
{next_state,
NextState :: StateType,

242 | Ericsson AB. All Rights Reserved.: STDLIB

gen_statem

NewData :: data(),
Actions :: [action()] | action()} |
state_cal | back_result (action())

St at eType isstate_nane() if callback mode is state_functi ons, or state() if callback mode is
handl e_event functi on.

next state

The gen_st at emdoes a state transition to Next St at e (which can be the same as the current state), sets
NewDat a, and executesal Act i ons.

state callback result(ActionType) =
{keep state, NewData :: data()} |
{keep state,
NewData :: data(),
Actions :: [ActionTypel | ActionType} |
keep state and data |
{keep state and data, Actions :: [ActionTypel] | ActionType} |
{repeat state, NewData :: data()} |
{repeat state,
NewData :: data(),
Actions :: [ActionTypel | ActionType} |
repeat state and data |
{repeat _state and data, Actions :: [ActionType] | ActionType} |
stop |
{stop, Reason :: term()} |
{stop, Reason :: term(), NewData :: data()} |
{stop_and reply,
Reason :: term(),
Replies :: [reply_action()] | reply_action()} |
{stop_and reply,
Reason :: term(),
Replies :: [reply_action()] | reply_action(),
NewData :: data()}

ActionType isenter_acti on() if the state callback was called with a state enter call and acti on() if the
state callback was called with an event.

keep_state

Thegen_st at emkeepsthe current state, or doesastatetransition to the current stateif you like, setsNewDat a,
and executes all Act i ons. Thisisthesameas{ next _state, Current St at e, NewDat a, Acti ons}.

keep_state_and_data

The gen_statem keeps the current state or does a state transition to the current state if
you like, keeps the current server data, and executes al Actions. This is the same as
{next _state, Current St ate, Current Dat a, Acti ons}.

repeat _state

Thegen_st at emkeepsthe current state, or doesastatetransition to the current stateif you like, setsNewDat a,
and executes all Acti ons. If thegen_st at emruns with state enter calls, the state enter call is repeated, see
typetransi ti on_option(),otherwiser epeat _st at e isthesameaskeep_st at e.

Ericsson AB. All Rights Reserved.: STDLIB | 243

gen_statem

repeat _state_and_data

The gen_st at em keeps the current state and data, or does a state transition to the current state if you
like, and executes all Acti ons. Thisisthesameas{repeat _state, Current Dat a, Acti ons}. If the
gen_st at emruns with state enter calls, the state enter call isrepeated, seetypet ransi ti on_opti on(),
otherwiser epeat _state_and_dat aisthesameaskeep_st at e_and_dat a.

st op
Terminatesthegen_st at emby calling Modul e: t er mi nat e/ 3 with Reason and NewDat a, if specified.
stop_and_reply

Sendsall Repl i es, thenterminatesthegen_st at emby caling Mbdul e: t er m nat e/ 3 withReason and
NewDat a, if specified.

All these terms are tuples or atoms and this property will hold in any future version of gen_st at em

Exports
call(ServerRef :: server_ref(), Request :: term()) ->
Reply :: term()
call(ServerRef :: server _ref(),
Request :: term(),
Timeout
timeout() |
{clean timeout, T :: timeout

O} |
{dirty timeout, T :: timeout()}) ->
Reply :: term()
Makes a synchronous call tothegen_st at emSer ver Ref by sending aregquest and waiting until itsreply arrives.
Thegen_st at emcallsthe state callback withevent _type() {cal I, Fron} and event content Request .

A Repl y is generated when a state callback returns with { r epl y, Fr om Repl y} asoneacti on(), and that
Repl y becomes the return value of this function.

Ti meout isan integer > 0, which specifies how many milliseconds to wait for areply, or the atomi nfinity to
wait indefinitely, which is the default. If no reply is received within the specified time, the function call fails.

Note:

For Ti meout < infinity, toavoid getting a late reply in the caller's inbox if the caller should catch
exceptions, this function spawns a proxy process that doesthe call. A late reply gets delivered to the dead proxy
process, hence gets discarded. Thisisless efficient than using Ti meout == infinity.

Ti meout canasobeatuple{cl ean_timeout, T} or{dirty timeout, T}, whereT isthe time-out time.
{cl ean_ti meout, T} workslikejust T described in the note above and usesaproxy processfor T < infinity,
while{di rty_tineout, T} bypassesthe proxy processwhich is more lightweight.

244 | Ericsson AB. All Rights Reserved.: STDLIB

gen_statem

Note:

If you combine catching exceptions from this function with { di rty_ti nmeout, T} to avoid that the calling
process dies when the call times out, you will have to be prepared to handle alate reply. So why not just let the
calling process die?

The call can also fail, for example, if thegen_st at emdies before or during this function call.

cast(ServerRef :: server_ref(), Msg :: term()) -> ok

Sends an asynchronous event to the gen_st at em Ser ver Ref and returns ok immediately, ignoring if the
destination node or gen_st at emdoes not exist. Thegen_st at emcallsthe state callback with event _t ype()
cast and event content Msg.

enter loop(Module :: module(),
Opts :: [debug_opt() | hibernate_after_opt()],
State :: state(),
Data :: data()) ->
no_return()

Thesameasent er _| oop/ 6 withActi ons = [] exceptthat noserver _name() must have been registered.
This creates an anonymous server.

enter loop(Module :: module(),
Opts :: [debug_opt() | hibernate_after_opt()1],
State :: state(),
Data :: data(),
Server or Actions :: server_nane() | pid() | [action()]) ->
no return()

If Server _or_Actionsisalist(),thesameasent er | oop/ 6 exceptthatnoser ver _nane() must have
been registered and Acti ons = Server _or _Act i ons. This creates an anonymous server.

Otherwisethe sameasent er _| oop/ 6 with Server = Server_or_Actions andActions = [].

enter loop(Module :: module(),
Opts :: [debug_opt() | hibernate_after_opt()],
State :: state(),
Data :: data(),
Server :: server_nanme() | pid(),
Actions :: [action()] | action()) ->
no return()

Makes the calling process become a gen_st at em Does not return, instead the calling process enters the
gen_st at emreceive loop and becomesagen_st at emserver. The process must have been started using one of
the start functionsin proc_I i b. The user is responsible for any initialization of the process, including registering
anamefor it.

This function is useful when a more complex initialization procedure is needed than the gen_st at em behavior
provides.

Modul e, Opt s have the same meaning aswhen callingstart[_|i nk]/ 3, 4.

Ericsson AB. All Rights Reserved.: STDLIB | 245

gen_statem

If Server is self() an anonymous server is created just as when using start[_|ink]/3. If Server
is a server_nane() a named server is created just as when using start[_Iink]/4. However, the
server _nane() name must have been registered accordingly befor e this functionis called.

St at e, Dat a,and Act i ons havethe samemeaningsasinthereturnvalueof Modul e: i ni t/ 1. Also, thecallback
module does not need to export aMbdul e: i ni t/ 1 function.

Thefunctionfailsif thecalling processwasnot started by apr oc_| i b start function, or if it isnot registered according
toserver_nane().

reply(Replies :: [reply_action()] | reply_action()) -> ok
reply(From :: fron(), Reply :: term()) -> ok

This function can be used by agen_st at emto explicitly send areply to a process that waitsin cal | / 2 when the
reply cannot be defined in the return value of a state callback.

Fr ommust be the term from argument { cal | , Fr on} to the state callback. A reply or multiple replies canalso be
sent using one or severa r epl y_act i on() sfrom astate callback.

Note:

A reply sent with this function isnot visiblein sys debug output.

start(Module :: module(), Args :: term(), Opts :: [start_opt()]) ->
start _ret()
start(ServerName :: server_nane(),
Module :: module(),
Args :: term(),
Opts :: [start _opt()]) ->
start_ret()

Createsastandalonegen_st at emprocess according to OTP design principles (using pr oc_I i b primitives). Asit
does not get linked to the calling process, this start function cannot be used by a supervisor to start a child.

For a description of arguments and return values, seestart _| i nk/ 3, 4.

start _link(Module :: module(),
Args :: term(),

Opts :: [start _opt()]) ->
start _ret()
start_link(ServerName :: server_nane(),

Module :: module(),

Args :: term(),

Opts :: [start _opt()]) ->
start _ret()

Createsagen_st at emprocess according to OTP design principles (using pr oc_| i b primitives) that islinked to
the calling process. This is essential when the gen_st at emmust be part of a supervision tree so it gets linked to
its supervisor.

The gen_st at em process cals Modul e: i nit/ 1 to initialize the server. To ensure a synchronized startup
procedure, st art _| i nk/ 3, 4 does not return until Modul e: i ni t/ 1 hasreturned.

246 | Ericsson AB. All Rights Reserved.: STDLIB

gen_statem

Ser ver Nane specifiestheser ver _name() toregister forthegen_st at em If thegen_st at emisstarted with
start _|ink/3,noServer Nane isprovided and thegen_st at emis not registered.

Modul e isthe name of the callback module.

Ar gs isan arbitrary term that is passed as the argument to Modul e: i nit/ 1.

e If option {ti meout, Ti ne} ispresent in Opt s, the gen_st at emis alowed to spend Ti ne milliseconds
initializing or it terminates and the start function returns{ error, ti meout }.

« Ifoption{ hi ber nate_after, H ber nat eAf t er Ti meout } ispresent, thegen_st at emprocess awaits
any messagefor Hi ber nat eAf t er Ti meout milliseconds and if no messageisreceived, the process goesinto
hibernation automatically (by calling proc_I i b: hi ber nat e/ 3).

e |foption{debug, Dbgs} ispresentin Opt s, debugging through sys is activated.

e If option {spawn_opt, SpawnOpt s} is present in Opts, SpawnOpt s is passed as option list to
erl ang: spawn_opt / 2, which isused to spawn the gen_st at emprocess.

Note:

Using spawn option noni t or isnot allowed, it causes this function to fail with reason badar g.

If thegen_st at emissuccessfully created and initialized, thisfunction returns{ ok, Pi d} ,wherePi d isthepi d()
of the gen_st at em If a process with the specified Ser ver Name exists aready, this function returns{ er r or,
{al ready_started, Pid}},wherePi disthepi d() of that process.

If Modul e: i ni t/ 1 failswith Reason, this function returns { er r or , Reason} . If Modul e: i ni t/ 1 returns
{st op, Reason} ori gnor e, the processis terminated and this function returns{ er r or , Reason} ori gnor e,
respectively.

stop(ServerRef :: server_ref()) -> ok
Thesameasst op(ServerRef, normal, infinity).
stop(ServerRef :: server_ref(),
Reason :: term(),
Timeout :: timeout()) ->
ok

Orders the gen_st at em Ser ver Ref to exit with the specified Reason and waits for it to terminate. The
gen_st at emcalsMdul e: t er mi nat e/ 3 before exiting.

This function returns ok if the server terminates with the expected reason. Any other reason than nor mal ,
shut down, or { shut down, Ter n} causesan error report to beissuedthrougher r or _| ogger: fornat/ 2. The
default Reason isnor mal .

Ti meout isaninteger > 0, which specifies how many milliseconds to wait for the server to terminate, or the atom
i nfinity towait indefinitely. Defaultsto i nfi ni ty. If the server does not terminate within the specified time,
ati meout exception israised.

If the process does not exist, anopr oc exception is raised.

Callback Functions

The following functions are to be exported from agen_st at emcallback module.

Ericsson AB. All Rights Reserved.: STDLIB | 247

gen_statem

Exports

Module:callback mode() -> CallbackMode
Types:

Cal | backMode = cal | back_node() | [callback _node() | state enter()]
Thisfunction is called by agen_st at emwhen it needs to find out the callback mode of the callback module. The
valueiscached by gen_st at emfor efficiency reasons, so thisfunctionisonly called once after server start and after

code change, but before the first state callback in the current code version is called. More occasions may be added
in future versions of gen_st at em

Server start happens either when Modul e: i ni t/ 1 returns or when ent er _| oop/ 4- 6 is called. Code change
happens when Modul e: code_change/ 4 returns.

TheCal | backMbde iseitherjustcal | back_node() oralist containingcal | back_node() and possibly the
atomstate_enter.

Note:

If this function's body does not return an inline constant value the callback module is doing something strange.

Module:code change(0ldVsn, OldState, OldData, Extra) -> Result
Types.

A dVsn = Vsn | {down, Vsn}

Vsn = tern()

O dState = NewState = term)

Extra = term)

Result = {ok, NewSt at e, NewDat a} | Reason

A dState = NewState = state()

A dbata = NewData = data()

Reason = term()

Note:

This callback is optional, so callback modules need not export it. If a release upgrade/downgrade with
Change={advanced, Extra} specified in the . appup file is made when code change/ 4 is not
implemented the process will crash with exit reason undef .

Thisfunctioniscalled by agen_st at emwhen it isto update itsinternal state during a release upgrade/downgrade,
that is, when the instruction { updat e, Modul e, Change, . . .}, where Change={ advanced, Extra}, is
specified in the appup file. For more information, see OTP Design Principles.

For an upgrade, O dVsn is Vsn, and for a downgrade, A dVsn is { down, Vsn}. Vsn is defined by the vsn
attribute(s) of the old version of the callback module Modul e. If no such attribute is defined, the version is the
checksum of the Beam file.

A dSt at e and A dDat a istheinternal state of the gen_st at em
Ext raispassed "asis' fromthe{advanced, Extr a} part of the update instruction.

248 | Ericsson AB. All Rights Reserved.: STDLIB

gen_statem

If successful, the function must return the updated internal statein an { ok, NewSt at e, NewDat a} tuple.

If the function returnsafailure Reason, the ongoing upgrade fails and rolls back to the old release. Notethat Reason
cannot bean{ ok, _, } tuplesincethat will be regarded asa{ ok, NewSt at e, NewDat a} tuple, and that atuple
matching { ok, _} isanasoinvalid failure Reason. It is recommended to use an atom as Reason since it will be
wrapped inan{ error, Reason} tuple.

Also notewhen upgrading agen_st at em thisfunction and hencethe Change={ advanced, Ext r a} parameter
in the appup fileis not only needed to update the internal state or to act on the Ext r a argument. It is also needed
if an upgrade or downgrade should change callback mode, or else the callback mode after the code change will not
be honoured, most probably causing a server crash.

Module:init(Args) -> Result(StateType)

Types:
Args = term)
Result(StateType) = init_result(StateType)

Whenever agen_st at emisstarted usingstart _|ink/ 3,4 orstart/ 3, 4, thisfunction is called by the new
process to initialize the implementation state and server data.

Ar gs isthe Ar gs argument provided to that start function.

Note:

Note that if the gen_st at emis started trough proc_I| i b and ent er _| oop/ 4- 6, this callback will never
be called. Since this callback is not optional it can in that case be implemented as:

init(Args) -> erlang:error(not implemented, [Args]).

Module:format status(Opt, [PDict,State,Data]) -> Status
Types:

Opt = nornal | term nate

PDict = [{Key, Value}]

State = state()

Data = data()

Key = term))

Value = term))

Status = tern()

Note:

This callback is optional, so a callback module does not need to export it. The gen_st at emmodule provides
a default implementation of this function that returns{ St at e, Dat a} .

If this callback is exported but fails, to hide possibly sensitive data, the default function will instead return
{ St at e, | nf 0} , where | nf o says nothing but the fact that f or mat _st at us/ 2 has crashed.

Ericsson AB. All Rights Reserved.: STDLIB | 249

gen_statem

Thisfunction iscalled by agen_st at emprocess when any of the following apply:

e Oneofsys: get_status/1, 2isinvokedto getthegen_st at emstatus. Opt is set to the atom nor mal
for this case.

 Thegen_st at emterminates abnormally and logs an error. Opt isset to theatomt er ni nat e for this case.

This function is useful for changing the form and appearance of the gen_st at emstatus for these cases. A callback

module wishing to change the sys: get st atus/ 1, 2 return value and how its status appears in termination

error logs exports an instance of f or mat _st at us/ 2, which returns a term describing the current status of the
gen_statem

PDi ct isthe current value of the process dictionary of thegen_st at em
St at e istheinternal state of thegen_st at em
Dat a istheinternal server data of thegen_st at em

The function is to return St at us, aterm that contains the appropriate details of the current state and status of the
gen_st at em There are no restrictions on the form St at us can take, but for thesys: get _stat us/ 1, 2 case
(when Opt isnor nal), the recommended form for the St at us valueis[{data, [{"State", Tern}]}],
where Ter mprovides relevant details of thegen_st at emstate. Following this recommendation is not required, but
it makes the callback module status consistent with the rest of thesys: get _st at us/ 1, 2 return value.

One usefor thisfunction isto return compact alternative state representationsto avoid having large state terms printed
in log files. Another use isto hide sensitive data from being written to the error log.

Module:StateName(enter, 0ldState, Data) -> StateEnterResult(StateName)
Module:StateName(EventType, EventContent, Data) -> StateFunctionResult
Module:handle event(enter, OldState, State, Data) -> StateEnterResult(State)

Module:handle event(EventType, EventContent, State, Data) ->
HandleEventResult

Types.
Event Type = event type()
Event Content = term)
State = state()
Data = NewData = data()
StateEnter Resul t (St at eNane) = state_enter_result(StateNane)
Stat eFuncti onResult = event _handl er_result(state _nane())
StateEnterResult(State) = state_enter_result(State)
Handl eEvent Result = event handl er _result(state())
Whenever a gen_st at emreceives an event from cal | / 2, cast/ 2, or as a norma process message, one of

these functionsis called. If callback modeisst at e_f uncti ons, Modul e: St at eNane/ 3 iscaled, andif itis
handl e_event functi on, Modul e: handl e_event/ 4 iscalled.

If Event Type is{cal |, Fron}, the caller waits for a reply. The reply can be sent from this or from any other
state callback by returningwith{ r epl y, From Repl y} inActi ons,inRepl i es,or by calingr epl y(From
Reply).

If this function returns with a next state that does not match equal (=/ =) to the current state, al postponed events
areretried in the next state.

The only difference between StateFunctionResult and Handl eEventResult is that for
St at eFuncti onResul t the next state must be an atom, but for Handl eEvent Resul t there is no restriction
on the next state.

250 | Ericsson AB. All Rights Reserved.: STDLIB

gen_statem

For options that can be set and actions that can be done by gen_st at emafter returning from this function, see
action().

When the gen_st at em runs with state enter calls, these functions are also called with arguments (ent er,

A dState, ...) whenever the state changes. In this case there are some restrictions on the actions that may be
returned: post pone() isnot allowed since a state enter call is not an event so there is no event to postpone, and
{next _event, , } isnot alowed since using state enter calls should not affect how events are consumed and
produced. Y ou may also not change states from this call. Should you return { next _st at e, Next State, ...}

with Next State =/= State the gen_st at emcrashes. It is possible to use {r epeat _state, ...},
{repeat _state_and_data, } orrepeat_state_and_dat a but all of them makes little sense since you
immediately will be called again with a new state enter call making this just aweird way of looping, and there are
better waysto loop in Erlang. You are advisedto use { keep_st ate, ...},{keep_state_and_data, _} or
keep_st at e_and_dat a since you can not change states from a state enter call anyway.

Note the fact that you can use throw to return the result, which can be useful. For example to
bail out with t hrow keep_state_and_data) from deep within complex code that can not return
{next _state, State, Dat a} because St at e or Dat a isno longer in scope.

Module:terminate(Reason, State, Data) -> Ignored
Types.
Reason = nornmal | shutdown | {shutdown,tern()} | term)
State = state()
Data = data()
Ignored = term))

Note:

This callback is optional, so callback modules need not export it. The gen_st at emmodule provides a default
implementation without cleanup.

Thisfunctioniscaled by agen_st at emwhen it isabout to terminate. It isto be the opposite of Modul e:init/ 1
and do any necessary cleaning up. When it returns, the gen_st at emterminates with Reason. The return value
isignored.

Reason isaterm denoting the stop reason and St at e istheinternal state of thegen_st at em

Reason depends on why the gen_st at emisterminating. If it is because another callback function has returned, a
stop tuple{ st op, Reason} inActi ons, Reason hasthe value specified in that tuple. If it is because of afailure,
Reason isthe error reason.

If the gen_st at emis part of a supervision tree and is ordered by its supervisor to terminate, this function is called
with Reason = shut down if both the following conditions apply:

« Thegen_st at emhas been set to trap exit signals.

e The shutdown strategy as defined in the supervisor's child specification is an integer time-out value, not
brutal kill.

Evenif thegen_st at emisnot part of a supervision tree, this function iscalled if it receivesan' EXI T' message
from its parent. Reason isthesameasinthe' EXI T' message.

Otherwise, the gen_st at emisimmediately terminated.

Notice that for any other reason than nor mal , shut down, or { shut down, Ter n} , thegen_st at emisassumed
to terminate because of an error and an error report isissued using er r or _| ogger : f or mat / 2.

Ericsson AB. All Rights Reserved.: STDLIB | 251

gen_statem

See Also
gen_event (3),gen_fsm(3),gen_server(3),proc_lib(3),supervisor(3),sys(3).

252 | Ericsson AB. All Rights Reserved.: STDLIB

o)

Erlang module

This module provides an interface to standard Erlang I/O servers. The output functions all return ok if they are
successful, or exit if they are not.

All functions in this module have an optional parameter | oDevi ce. If included, it must be the pid of a process that
handles the I/O protocols. Normally, itisthel oDevi ce returned by fi | e: open/ 2.

For a description of the I/O protocols, see section The Erlang 1/O Protocol in the User's Guide.

Warning:

Asfrom Erlang/OTP R13A, data supplied to function put _char s/ 2 istobeinthe uni code: char dat a()
format. This means that programs supplying binaries to this function must convert them to UTF-8 before trying
to output the data on an I/O device.

If an 1/O device is set in binary mode, functionsget _chars/ 2, 3 andget |i ne/ 1, 2 can return binaries
instead of lists. The binaries are, as from Erlang/OTP R13A, encoded in UTF-8.

To work with binariesin SO Latin-1 encoding, usethef i | e module instead.
For conversion functions between character encodings, seethe uni code module.

Data Types
device() = atom() | pid()

An 1/O device, either st andard_i o, standard_error, a registered name, or a pid handling 1/0 protocols
(returned fromf i | e: open/ 2).

opt pair() =

{binary, boolean()} |

{echo, boolean()} |

{expand fun, expand_fun()} |

{encoding, encoding()}
expand fun() =

fun((term()) -> {yes | no, string(), [string(), ...1})
encoding() =

latinl |

unicode |

utf8 |

utfle |

utf32 |

{utfle, big | little} |

Ericsson AB. All Rights Reserved.: STDLIB | 253

{utf32, big | little}
setopt() = binary | list | opt_pair()
format() = atom() | string() | binary()
location() = erl _anno: | ocation()
prompt() = atom() | uni code: chardata()
server_no data() = {error, ErrorDescription :: term()} | eof

What the I/O server sends when there is no data.

Exports

columns() -> {ok, integer() >= 1} | {error, enotsup}
columns(IoDevice) -> {ok, integer() >= 1} | {error, enotsup}
Types:

IoDevice = device()

Retrieves the number of columns of the | oDevi ce (that is, the width of a terminal). The function succeeds for
terminal devicesand returns{ error, enot sup} for al other I/O devices.

format(Format) -> ok

(
format(Format, Data) -> ok
format(IoDevice, Format, Data) -> ok
fwrite(Format) -> ok
fwrite(Format, Data) -> ok
fwrite(IoDevice, Format, Data) -> ok

Types.
IoDevice = device()
Format = fornmat ()
Data = [term()]
Writestheitemsin Dat a ([]) on the standard output (I oDevi ce) in accordance with For mat . For nat contains

plain charactersthat are copied to the output device, and control sequences for formatting, see below. If For nat isan
atom or abinary, itisfirst convertedtoalist withtheaiddofatom to i st/ lorbinary to |ist/ 1. Example

1> io:fwrite("Hello world!~n", [1]).
Hello world!
ok

The general format of a control sequenceis~F. P. PadivbdC.

Character C determines the type of control sequence to be used, F and P are optional numeric arguments. If F, P, or
Pad is*, the next argument in Dat a is used as the numeric value of F or P.

 Fisthefi el d w dt h of the printed argument. A negative value meansthat the argument isleft-justified within
the field, otherwise right-justified. If no field width is specified, the required print width is used. If the field width
specified istoo small, the whole field is filled with * characters.

* Pisthepr eci si on of theprinted argument. A default valueisusedif no precisionisspecified. Theinterpretation
of precision depends on the control sequences. Unless otherwise specified, argumentwi t hi n isused to determine
print width.

254 | Ericsson AB. All Rights Reserved.: STDLIB

» Pad isthe padding character. Thisis the character used to pad the printed representation of the argument so that
it conformsto the specified field width and precision. Only one padding character can be specified and, whenever
applicable, it isused for both the field width and precision. The default padding character is' ' (space).

e Mbd isthe control sequence modifier. It iseither asingle character (t , for Unicodetranglation, and | , for stopping
p and P from detecting printable characters) that changes the interpretation of Dat a.

Available control sequences:

Character ~ iswritten.

c
The argument isanumber that isinterpreted as an ASCII code. The precision isthe number of timesthe character
is printed and defaults to the field width, which in turn defaults to 1. Example:
1> io:fwrite("|~10.5c|~-10.5c|~5c|~n", [$a, $b, $cl).
| aaaaa|bbbbb |cccec|
ok
If the Unicode trandlation modifier (t) isin effect, the integer argument can be any number representing a valid
Unicode codepoint, otherwise it isto be an integer less than or equal to 255, otherwise it is masked with 16#FF:
2> io:fwrite("~tc~n",[1024]).
\x{400}
ok
3> io:fwrite("~c~n",[1024]).
~@
ok
f
The argument is a float that is written as [-] ddd. ddd, where the precision is the number of digits after the
decimal point. The default precision is 6 and it cannot be < 1.
e
Theargument isafloat that iswrittenas[-] d. ddde+- ddd, wherethe precision isthe number of digitswritten.
The default precision is 6 and it cannot be < 2.
g
The argument isafloat that iswritten asf , if it is>= 0.1 and < 10000.0. Otherwise, it iswritten in the e format.
The precision is the number of significant digits. It defaults to 6 and is not to be < 2. If the absolute value of
the float does not allow it to be written in the f format with the desired number of significant digits, it is also
written in the e format.
s

Prints the argument with the string syntax. The argument is, if no Unicode translation modifier is present, an
iolist(),abinary(),oranaton().IftheUnicode trandation modifier (t) isin effect, the argument is
uni code: char dat a() , meaning that binaries are in UTF-8. The characters are printed without quotes. The
string isfirst truncated by the specified precision and then padded and justified to the specified field width. The
default precision isthe field width.

This format can be used for printing any object and truncating the output so it fits a specified field:

Ericsson AB. All Rights Reserved.: STDLIB | 255

1> io:fwrite("|~10w|~n", [{hey, hey, hey}]).

|**********|

ok

2> io:fwrite("|~10s|~n", [io lib:write({hey, hey, hey})]).

| {hey, hey,h|

3> io:fwrite("|~-10.8s|~n", [io lib:write({hey, hey, hey})]).
|{hey,hey |

ok

A list with integers > 255 is considered an error if the Unicode translation modifier is not specified:

4> io:fwrite("~ts~n",[[1024]]).

\x{400}

ok

5> jo:fwrite("~s~n",[[1024]1]).

** exception exit: {badarg,[{io,format,[<0.26.0>,"~s~n",[[1024]1]1},

Writes data with the standard syntax. Thisis used to output Erlang terms. Atoms are printed within quotesif they
contain embedded non-printable characters. Atom characters > 255 are escaped unless the Unicode tranglation
modifier (t) isused. Floats are printed accurately as the shortest, correctly rounded string.

Writes the data with standard syntax in the same way as ~w, but breaks terms whose printed representation is
longer than one line into many lines and indents each line sensibly. Left-justification is not supported. It also tries
to detect lists of printable characters and to output these as strings. The Unicode trandation modifier is used for
determining what characters are printable, for example:

1> T = [{attributes,[[{id,age,1.50000}, {mode,explicit},
{typename, "INTEGER"}], [{id,cho}, {mode,explicit}, {typename, 'Cho'}]1]1},
{typename, 'Person'},{tag,{'PRIVATE',3}}, {mode,implicit}].
2> io:fwrite("~w~n", [T]).
[{attributes,[[{id,age,1.5}, {mode,explicit}, {typename,
[73,78,84,69,71,69,82]}]1,[{id,cho},{mode,explicit}, {typena
me, 'Cho'}11}, {typename, 'Person'}, {tag, {' PRIVATE',b3}}, {mode
,implicit}]
ok
3> io:fwrite("~62p~n", [T]).
[{attributes,[[{id,age,1.5},
{mode,explicit},
{typename, "INTEGER"}],
[{id,cho}, {mode,explicit}, {typename, 'Cho'}11},
{typename, 'Person'},
{tag, {'PRIVATE',3}},
{mode, implicit}]
ok

The field width specifies the maximum line length. Defaults to 80. The precision specifies theinitial indentation
of the term. It defaults to the number of characters printed on this line in the same call to wite/ 1 or
format/ 1, 2, 3. For example, using T above:

256 | Ericsson AB. All Rights Reserved.: STDLIB

4> io:fwrite("Here T = ~62p~n", [T]).
Here T = [{attributes,[[{id,age,1.5},
{mode,explicit},
{typename, "INTEGER"}1],
[{id, cho},
{mode,explicit},
{typename, 'Cho'}11},
{typename, 'Person'},
{tag, {'PRIVATE',3}},
{mode, implicit}]
ok

When the modifier | is specified, no detection of printable character lists takes place, for example:

5> S = [{a,"a"}, {b, "b"}].
6> io:fwrite("~15p~n", [S]).
[{a,"a"},

{b,"b"}]
ok
7> io:fwrite("~151p~n", [S]).
[{a, [97]},

{b, [98]}1]
ok

Binariesthat look like UTF-8 encoded strings are output with the string syntax if the Unicode translation modifier
is specified:

9> io:fwrite("~p~n",[[1024]]).

[1024]

10> io:fwrite("~tp~n",[[1024]]).
"\x{400}"

11> io:fwrite("~tp~n", [<<128,128>>]).
<<128,128>>

12> io:fwrite("~tp~n", [<<208,128>>]).
<<"\x{400}"/utf8>>

ok

Writes data in the same way as ~w, but takes an extra argument that is the maximum depth to which terms are
printed. Anything below this depth isreplaced with For example, using T above:

8> io:fwrite("~W~n", [T,9]).

[{attributes,[[{id,age,1.5}, {mode,explicit}, {typename,...}],
[{id,cho},{mode,...},{...}]11},{typename, 'Person'},

{tag, {'PRIVATE',3}},{mode,implicit}]

ok

If the maximum depth is reached, it cannot be read in the resultant output. Also, the, . . . forminatuple denotes
that there are more elements in the tuple but these are below the print depth.

Writes data in the same way as ~p, but takes an extra argument that is the maximum depth to which terms are
printed. Anything below this depth isreplaced with . . . , for example:

Ericsson AB. All Rights Reserved.: STDLIB | 257

9> io:fwrite("~62P~n", [T,9]).
[{attributes,[[{id,age,1.5}, {mode,explicit}, {typename, ...}],
[{id,cho},{mode,...},{...}11},
{typename, 'Person'},
{tag, {'PRIVATE',3}},
{mode, implicit}]

ok
B
Writes an integer in base 2-36, the default base is 10. A leading dash is printed for negative integers.
The precision field selects base, for example:
1> io:fwrite("~.16B~n", [31]).
1F
ok
2> io:fwrite("~.2B~n", [-19]).
-10011
ok
3> io:fwrite("~.36B~n", [5%36+35]).
5Z
ok
X
Like B, but takes an extra argument that is a prefix to insert before the number, but after the leading dash, if any.
The prefix can be a possibly deep list of characters or an atom. Example:
1> io:fwrite("~X~n", [31,"10#"]).
10#31
ok
2> io:fwrite("~.16X~n", [-31,"0x"]).
-Ox1F
ok
#
Like B, but prints the number with an Erlang style #-separated base prefix. Example:
1> io:fwrite("~.10#~n", [31]).
10#31
ok
2> io:fwrite("~.16#~n", [-31]).
-16#1F
ok
b
Like B, but prints lowercase | etters.
X

Like X, but prints lowercase |etters.

258 | Ericsson AB. All Rights Reserved.: STDLIB

Like#, but prints lowercase | etters.

Writes anew line.

Ignores the next term.
The function returns:
ok
The formatting succeeded.
If an error occurs, there is no output. Example:

1> jo:fwrite("~s ~w ~i ~w ~c ~n",['abc def', 'abc def', {foo, 1},{foo, 1}, 65]).
abc def 'abc def' {foo,1} A
ok
2> io:fwrite("~s", [65]).
** exception exit: {badarg, [{io, format, [<0.22.0>,"~s",6 "A"]},
{erl eval,do apply,5},
{shell,exprs,6},
{shell,eval exprs,6},
{shell,eval loop,3}1}
in function io:o request/2

In this example, an attempt was made to output the single character 65 with the aid of the string formatting directive

~s".
fread(Prompt, Format) -> Result
fread(IoDevice, Prompt, Format) -> Result
Types:

IoDevice = device()

Prompt = pronpt ()

Format = format ()

Result =
{ok, Terms :: [term()]} |
{error, {fread, FreadError :: io_lib:fread_error()}} |
server_no_dat a()

server no data() = {error, ErrorDescription :: term()} | eof

Reads characters from the standard input (I oDevi ce), prompting it with Pr onpt . Interprets the characters in
accordance with For mat . For mat contains control sequencesthat directs the interpretation of the input.

For mat can contain the following:
* Whitespace characters(Space, Tab, and Newline) that cause input to be read to the next non-whitespace character.

* Ordinary characters that must match the next input character.
e Control sequences, which have the general format ~* FMC, where:

e Character * isan optional return suppression character. It provides a method to specify afield that is to be
omitted.

e Fisthefield w dth of theinput field.

Ericsson AB. All Rights Reserved.: STDLIB | 259

Mis an optional translation modifier (of whicht isthe only supported, meaning Unicode trandlation).
C determines the type of control sequence.

Unless otherwise specified, leading whitespace isignored for all control sequences. Aninput field cannot be more
than one line wide.

Available control sequences:

A single ~ is expected in the input.

A decimal integer is expected.

An unsigned integer in base 2-36 is expected. The field width parameter is used to specify base. Leading
whitespace characters are not skipped.

An optional sign character is expected. A sign character - gives return value - 1. Sign character + or none
gives 1. Thefield width parameter isignored. Leading whitespace characters are not skipped.

An integer in base 2-36 with Erlang-style base prefix (for example, " 16#f f f f ") is expected.

A floating point number is expected. It must follow the Erlang floating point number syntax.

A string of non-whitespace charactersisread. If afield width has been specified, this number of characters
areread and all trailing whitespace characters are stripped. An Erlang string (list of characters) is returned.

If Unicode trandlation is in effect (~t s), characters > 255 are accepted, otherwise not. With the translation
maodifier, the returned list can as a consequence also contain integers > 255:

1> io:fread("Prompt> ","~s").

Prompt> <Characters beyond latinl range not printable in this medium>
{error,{fread,string}}

2> io:fread("Prompt> ","~ts").

Prompt> <Characters beyond latinl range not printable in this medium>
{ok,[[1691,1085,1680,1094,1086,1076,1077]1}

Similar to s, but the resulting string is converted into an atom.

The number of characters equal to the field width are read (default is 1) and returned as an Erlang string.
However, leading and trailing whitespace characters are not omitted as they are with s. All characters are
returned.

The Unicode trand ation modifier works aswith s:

1> io:fread("Prompt> ","~c").
Prompt> <Character beyond latinl range not printable in this medium>

260 | Ericsson AB. All Rights Reserved.: STDLIB

{error,{fread,string}}

2> io:fread("Prompt> ","~tc").

Prompt> <Character beyond latinl range not printable in this medium>
{ok, [[1091]1}

Returns the number of characters that have been scanned up to that point, including whitespace characters.
The function returns:
{ok, Terns}
The read was successful and Ter s isthelist of successfully matched and read items.
eof
End of file was encountered.
{error, FreadError}
Thereading failed and Fr eadEr r or gives ahint about the error.
{error, ErrorDescription}
The read operation failed and parameter Er r or Descr i pti on givesahint about the error.

Examples:

20> io:fread('enter>', "~f~f~f").
enter>1.9 35.5e3 15.0
{ok,[1.9,3.55e4,15.0]}

21> io:fread('enter>', "~10f~d").
enter> 5.67899

{ok,[5.678,99]}

22> io:fread('enter>', ":~10s:~10c:").
enter>: alan : joe :

{ok, ["alan", " joe "1}

get chars(Prompt, Count) -> Data | server_no_data()
get chars(IoDevice, Prompt, Count) -> Data | server_no_data()
Types:
IoDevice = device()
Prompt = pronpt ()
Count = integer() >= 0
Data = string() | unicode: uni code_binary()
server no data() = {error, ErrorDescription :: term()} | eof
Reads Count characters from standard input (I oDevi ce), prompting it with Pr onpt .
The function returns:
Dat a

The input characters. If the I/O device supports Unicode, the data can represent codepoints > 255 (thel at i nl
range). If the |/O server is set to deliver binaries, they are encoded in UTF-8 (regardl ess of whether the 1/0 device
supports Unicode).

eof
End of file was encountered.

Ericsson AB. All Rights Reserved.: STDLIB | 261

{error, ErrorDescription}

Other (rare) error condition, suchas{error, estal e} if reading from an NFSfile system.

get line(Prompt) -> Data | server_no_data()
get line(IoDevice, Prompt) -> Data | server_no_data()
Types:
IoDevice = device()
Prompt = pronpt ()
Data = string() | unicode: uni code_binary()
server_no _data() = {error, ErrorDescription :: term()} | eof
Reads a line from the standard input (1 oDevi ce), prompting it with Pr onpt .
The function returns:
Dat a

The characters in the line terminated by aline feed (or end of file). If the 1/O device supports Unicode, the data
can represent codepoints > 255 (the | at i n1 range). If the I/O server is set to deliver binaries, they are encoded
in UTF-8 (regardless of if the I/O device supports Unicode).

eof
End of file was encountered.
{error, ErrorDescription}
Other (rare) error condition, suchas{error, estal e} if reading from an NFSfile system.

getopts() -> [opt_pair()] | {error, Reason}
getopts(IoDevice) -> [opt_pair()] | {error, Reason}
Types:

IoDevice = device()

Reason = term()

Requests all available options and their current values for a specific 1/0O device, for example:

1> {ok,F} = file:open("/dev/null",[read]).
{ok,<0.42.0>}

2> io:getopts(F)

[{binary, false}, {encoding,latinl}]

Herethefile1/O server returns all available optionsfor afile, which are the expected ones, encodi ng and bi nary.
However, the standard shell has some more options:

3> io:getopts().

[{expand fun,#Fun<group.0.120017273>},
{echo, true},

{binary, false},

{encoding,unicode}]

This exampleis, as can be seen, run in an environment where the terminal supports Unicode input and output.

262 | Ericsson AB. All Rights Reserved.: STDLIB

nl() -> ok
nl(IoDevice) -> ok
Types:
IoDevice = device()
Writes new line to the standard output (I oDevi ce).

parse erl exprs(Prompt) -> Result

parse erl exprs(IoDevice, Prompt) -> Result

parse _erl exprs(IoDevice, Prompt, StartLocation) -> Result
(

parse _erl exprs(IoDevice, Prompt, StartLocation, Options) ->
Result

Types:
IoDevice = device()
Prompt = pronpt ()
StartLocation = location()
Options = erl _scan: options()
Result = parse_ret()
parse ret() =

{ok,
ExprList :: [erl|_parse:abstract_expr()],
EndLocation :: location()} |

{eof, EndLocation :: location()} |

{error,
ErrorInfo :: erl_scan:error_info() | erl_parse:error_info(),
ErrorLocation :: location()} |

server_no_dat a()

server no data() = {error, ErrorDescription :: term()} | eof

Reads data from the standard input (I oDevice), prompting it with Pronpt. Starts reading at
location StartLocation (1). Argument Options is passed on as argument Qptions of function
erl _scan: t okens/ 4. The datais tokenized and parsed asiif it was a sequence of Erlang expressions until afinal
dot (.) isreached.

The function returns:
{ok, ExprlList, EndLocation}
The parsing was successful.
{eof , EndLocati on}
End of file was encountered by the tokenizer.
eof
End of file was encountered by the 1/0 server.
{error, Errorinfo, ErrorLocation}
An error occurred while tokenizing or parsing.
{error, ErrorDescription}
Other (rare) error condition, suchas{ error, estal e} if reading from an NFSfile system.

Example:

Ericsson AB. All Rights Reserved.: STDLIB | 263

25> io:parse _erl exprs('enter>').

enter>abc(), "hey".

{ok, [{call,1,{atom,1,abc},[1},{string,1,"hey"}],2}

26> io:parse _erl_exprs (‘'enter>').

enter>abc("hey".

{error,{1,erl parse,["syntax error before: ",["'.'"11},2}

parse erl form(Prompt) -> Result
parse erl form(IoDevice, Prompt) -> Result
parse erl form(IoDevice, Prompt, StartLocation) -> Result
parse erl form(IoDevice, Prompt, StartLocation, Options) -> Result
Types.

IoDevice = device()

Prompt = pronpt ()

StartLocation = |l ocation()

Options = erl _scan: options()

Result = parse_formret()

parse form ret() =

{ok,
AbsForm :: erl _parse:abstract form(),
EndLocation :: location()} |
{eof, EndLocation :: location()} |
{error,
ErrorInfo :: erl_scan:error_info() | erl_parse:error_info(),
ErrorLocation :: location()} |
server_no_dat a()
server_no_data() = {error, ErrorDescription :: term()} | eof

Reads data from the standard input (Il oDevi ce), prompting it with Pronpt. Starts reading at
location StartLocation (1). Argument Options is passed on as argument Qptions of function
erl _scan: t okens/ 4. The data is tokenized and parsed as if it was an Erlang form (one of the valid Erlang
expressionsin an Erlang source file) until afinal dot (.) isreached.

The function returns:
{ok, AbsForm EndLocati on}
The parsing was successful.
{eof , EndLocati on}
End of file was encountered by the tokenizer.
eof
End of file was encountered by the 1/0 server.
{error, Errorinfo, ErrorlLocation}
An error occurred while tokenizing or parsing.
{error, ErrorDescription}
Other (rare) error condition, suchas{error, estal e} if reading from an NFSfile system.

264 | Ericsson AB. All Rights Reserved.: STDLIB

printable range() -> unicode | latinl
Returns the user-requested range of printable Unicode characters.

The user can request arange of characters that are to be considered printable in heuristic detection of strings by the
shell and by the formatting functions. Thisis done by supplying +pc <r ange> when starting Erlang.

Theonly valid valuesfor <r ange> arel at i n1 anduni code. | at i n1 meansthat only code points < 256 (except
control characters, and so on) are considered printable. uni code means that all printable charactersin all Unicode
character ranges are considered printable by the 1/0O functions.

By default, Erlang is started so that only thel at i n1 range of charactersindicate that alist of integersisastring.

The simplest way to use the settingistocall i o_lib: printable_|ist/1,whichusesthereturn value of this
function to decideif alist isastring of printable characters.

Note:

In a future release, this function may return more values and ranges. To avoid compatibility problems, it is
recommended to use function i o_| i b: printable |ist/1.

put chars(CharData) -> ok
put chars(IoDevice, CharData) -> ok
Types:

IoDevice = device()

CharData = uni code: chardat a()

Writes the characters of Char Dat a to the I/O server (I oDevi ce).

read(Prompt) -> Result
read(IoDevice, Prompt) -> Result

Types:
IoDevice = device()
Prompt = pronpt ()
Result =
{ok, Term :: term()} | server_no_data() | {error, ErrorInfo}
ErrorInfo = erl _scan:error_info() | erl_parse:error_info()
server no data() = {error, ErrorDescription :: term()} | eof

Reads aterm Ter mfrom the standard input (1 oDevi ce), prompting it with Pr onpt .
The function returns:
{ok, Terni
The parsing was successful.
eof
End of file was encountered.
{error, Errorlnfo}
The parsing failed.

Ericsson AB. All Rights Reserved.: STDLIB | 265

{error, ErrorDescription}

Other (rare) error condition, suchas{error, estal e} if reading from an NFSfile system.

read(IoDevice, Prompt, StartLocation) -> Result
read(IoDevice, Prompt, StartLocation, Options) -> Result
Types:

IoDevice = device()

Prompt = pronpt ()

StartLocation = location()
Options = erl _scan: options()
Result =

{ok, Term :: term(), EndLocation :: location()} |

{eof, EndLocation :: location()} |

server_no_data() |

{error, ErrorInfo, ErrorLocation :: location()}
ErrorInfo = erl _scan:error_info() | erl_parse:error_info()
server_no data() = {error, ErrorDescription :: term()} | eof

Reads a term Ter mfrom | oDevi ce, prompting it with Pr onpt . Reading starts at location St art Locat i on.
Argument Opt i ons ispassed on as argument Opt i ons of function er| _scan: t okens/ 4.

The function returns:
{ok, Term EndLocation}
The parsing was successful.
{eof, EndLocati on}
End of file was encountered.
{error, Errorinfo, ErrorLocation}
The parsing failed.
{error, ErrorDescription}
Other (rare) error condition, suchas{ error, estal e} if reading from an NFSfile system.

rows() -> {ok, integer() >= 1} | {error, enotsup}
rows (IoDevice) -> {ok, integer() >= 1} | {error, enotsup}
Types:

IoDevice = device()

Retrievesthe number of rowsof | oDevi ce (that is, the height of aterminal). The function only succeedsfor terminal
devices, for all other I/O devicesthe function returns{ er r or, enot sup}.

scan_erl_exprs
scan_erl _exprs
scan _erl _exprs
scan_erl _exprs
Types:

Prompt) -> Result

Device, Prompt) -> Result

Device, Prompt, StartLocation) -> Result

Device, Prompt, StartLocation, Options) -> Result

—_—~ o~ o~ o~

266 | Ericsson AB. All Rights Reserved.: STDLIB

Device = device()
Prompt = pronpt ()
StartLocation = |l ocation()

Options = erl _scan: options()
Result = erl _scan:tokens_result() | server_no_data()
server_no data() = {error, ErrorDescription :: term()} | eof

Reads data from the standard input (I oDevi ce), prompting it with Pronpt. Reading starts at
location StartLocation (1). Argument Options is passed on as argument Qptions of function
erl _scan: t okens/ 4. Thedatais tokenized as if it were a sequence of Erlang expressions until afinal dot (.) is
reached. Thistoken is also returned.

The function returns:
{ok, Tokens, EndLocati on}
The tokenization succeeded.
{eof, EndLocati on}
End of file was encountered by the tokenizer.
eof
End of file was encountered by the 1/0 server.
{error, Errorlinfo, ErrorLocation}
An error occurred while tokenizing.
{error, ErrorDescription}
Other (rare) error condition, suchas{ error, estal e} if reading from an NFSfile system.

Example:

23> io:scan_erl exprs('enter>").

enter>abc(), "hey".

{ok, [{atom,1,abc},{'(',1},{")",1},{",",1},{string,1, "hey"}, {dot,1}],2}
24> io:scan_erl exprs('enter>').

enter>1.0er.

{error,{1,erl scan,{illegal, float}},2}

scan_erl form(Prompt) -> Result

scan_erl form(IoDevice, Prompt) -> Result

scan _erl form(IoDevice, Prompt, StartLocation) -> Result

scan_erl form(IoDevice, Prompt, StartLocation, Options) -> Result
Types:

Ericsson AB. All Rights Reserved.: STDLIB | 267

IoDevice = device()

Prompt = pronpt ()

StartLocation = |l ocation()

Options = erl _scan: options()

Result = erl _scan:tokens_result() | server_no_data()

server_no data() = {error, ErrorDescription :: term()} | eof
Reads data from the standard input (I oDevi ce), prompting it with Pronpt. Starts reading at
location StartlLocation (1). Argument Options is passed on as argument Options of function

erl _scan: t okens/ 4. Thedataistokenized asif it was an Erlang form (one of the valid Erlang expressionsin an
Erlang source file) until afinal dot (.) isreached. This last token isaso returned.

Thereturn values arethe same asfor scan_er| _exprs/1, 2, 3, 4.

setopts(Opts) -> ok | {error, Reason}
setopts(IoDevice, Opts) -> ok | {error, Reason}
Types:

IoDevice = device()

Opts = [setopt()]

Reason = term()
Set options for the standard 1/0 device (I oDevi ce).

Possible options and values vary depending on the 1/0O device. For alist of supported options and their current values
on a specific I/O device, use function get opt s/ 1.

The options and values supported by the OTP 1/O devices are as follows:
bi nary,list,or{binary, bool ean()}

If set in binary mode (bi nary or { bi nary, true}),thel/O server sends binary data (encoded in UTF-8)
asanswerstotheget |ine,get chars, and, if possible, get _unti | requests (for details, see section The
Erlang I/O Protocol) inthe User's Guide). Theimmediate effectisthat get _chars/ 2, 3andget line/ 1, 2
return UTF-8 binaries instead of lists of characters for the affected 1/0 device.

By default, al 1/0 devicesin OTP aresetin| i st mode. However, the 1/O functions can handle any of these
modes and so should other, user-written, modules behaving as clientsto 1/0 servers.

Thisoption issupported by the standard shell (gr oup. er |), the'oldshell' (user . er |), and thefilel/O servers.
{echo, bool ean()}

Denotes if the terminal isto echo input. Only supported for the standard shell 1/O server (gr oup. erl)
{expand_fun, expand_fun()}

Provides a function for tab-completion (expansion) like the Erlang shell. This function is called when the user
presses the Tab key. The expansion is active when calling line-reading functions, suchasget | i ne/ 1, 2.

The function is called with the current line, up to the cursor, as a reversed string. It is to return a three-tuple:
{yes| no, string(), [string(), ...]}.Thefirstelementgivesabeepif no, otherwisetheexpansion
issilent; the second is a string that will be entered at the cursor position; thethird isalist of possible expansions.
If thislist is not empty, it is printed and the current input line is written once again.

Trivial example (beep on anything except empty line, which isexpandedto " qui t "):

fun("") -> {yes, "quit", []};

268 | Ericsson AB. All Rights Reserved.: STDLIB

() ->{no, "", ["quit"]} end

Thisoption is only supported by the standard shell (gr oup. er |).
{encoding, latinl | unicode}

Specifies how characters are input or output from or to the I/O device, implying that, for example, aterminal is
set to handle Unicode input and output or afileis set to handle UTF-8 data encoding.

The option does not affect how data is returned from the I/O functions or how it is sent in the I/O protocal, it
only affects how the I/O device is to handle Unicode characters to the "physical” device.

The standard shell is set for uni code or | at i n1 encoding when the system is started. The encoding is set
with the help of the LANGor LC_CTYPE environment variables on Unix-like system or by other means on other
systems. So, the user can input Unicode characters and the 1/O deviceisin { encodi ng, uni code} mode
if the 1/0 device supports it. The mode can be changed, if the assumption of the runtime system is wrong, by
setting this option.

The 1/O device used when Erlang is started with the "-oldshell" or "-noshell" flagsis by default setto | ati n1
encoding, meaning that any characters > codepoint 255 are escaped and that input is expected to be plain 8-bit
ISO Latin-1. If the encoding is changed to Unicode, input and output from the standard file descriptors are in
UTF-8 (regardless of operating system).

Files can also be set in { encodi ng, uni code}, meaning that data is written and read as UTF-8. More
encodings are possible for files, see below.

{encodi ng, unicode | |atinl} issupported by both the standard shell (gr oup. er| including wer |
on Windows), the 'oldshell' (user . er |), and thefile 1/O servers.

{encoding, utf8 | utfl6 | utf32 | {utfl6,big} | {utfl6,little} | {utf32, big}
| {utf32,little}}

For disk files, the encoding can be set to various UTF variants. This has the effect that datais expected to be read
as the specified encoding from the file, and the data is written in the specified encoding to the disk file.

{encodi ng, utf 8} hasthesameeffect as{ encodi ng, uni code} onfiles.
The extended encodings are only supported on disk files (opened by function fi | e: open/ 2).

write(Term) -> ok
write(IoDevice, Term) -> ok
Types:

IoDevice = device()

Term = term()

Writes term Ter mto the standard output (I oDevi ce).

Standard Input/Output

All Erlang processes have adefault standard I/O device. Thisdeviceisusedwhennol oDevi ce argument isspecified
in the function calls in this module. However, it is sometimes desirable to use an explicit | oDevi ce argument that
refers to the default 1/0 device. Thisis the case with functions that can access either a file or the default 1/0 device.
Theatom st andar d_i o hasthis special meaning. The following example illustrates this:

27> io:read('enter>"').

enter>foo.

{ok, foo}

28> io:read(standard io, 'enter>'").

Ericsson AB. All Rights Reserved.: STDLIB | 269

enter>bar.
{ok,bar}

There is always a process registered under the name of user . This can be used for sending output to the user.

Standard Error

In certain situations, especially when the standard output is redirected, access to an /O server specific for error
messages can be convenient. The 1/O devicest andar d_er r or can be used to direct output to whatever the current
operating system considers a suitable 1/0 device for error output. Example on a Unix-like operating system:

$ erl -noshell -noinput -eval 'io:format(standard error,"Error: ~s~n",["error 11"]),'\
'init:stop().' > /dev/null
Error: error 11

Error Information

The Error | nf o mentioned in this module is the standard Er r or | nf o structure that is returned from all 1/O
modules. It has the following format:

{ErrorLocation, Module, ErrorDescriptor}

A string that describes the error is obtained with the following call:

Module:format error(ErrorDescriptor)

270 | Ericsson AB. All Rights Reserved.: STDLIB

io_lib

io_lib

Erlang module

Thismodule contains functionsfor converting to and from strings (lists of characters). They are used for implementing
the functionsin thei o module. There is no guarantee that the character lists returned from some of the functions are
flat, they can be deep lists. Function| i sts: f1 att en/ 1 can be used for flattening deep lists.

Data Types

chars() = [char() | chars()]
continuation()
A continuation as returned by f r ead/ 3.
depth() = -1 | integer() >= 0
fread error() =

atom |

based |

character |

float |

format |

input |

integer |

string |

unsigned

fread item() = string() | atom() | integer() | float()
latinl string() = [unicode:latinl_char()]
format spec() =

#{control char := char(),
args := [any()],
width := none | integer(),
adjust := left | right,
precision := none | integer(),
pad char := char(),
encoding := unicode | latinl,
strings := boolean()}

Where:

« control _char isthetype of control sequence: $P, $w, and so on.

e args isalist of the arguments used by the control sequence, or an empty list if the control sequence does not
take any arguments.

e Wi dt histhefield width.

e adj ust isthe adjustment.

e precision isthe precision of the printed argument.

« pad_char isthe padding character.

e« encodi ngissettotrue if trandation modifiert is present.
e stringsissettofal seif modifier | ispresent.

Ericsson AB. All Rights Reserved.: STDLIB | 271

io_lib

Exports

build text(FormatList) -> chars()
Types:

FormatList = [char() | format_spec()]
For details, seescan_f ormat/ 2.

char list(Term) -> boolean()
Types.
Term = term()

Returnst r ue if Ter misaflat list of charactersin the Unicode range, otherwisef al se.

deep char list(Term) -> boolean()
Types:
Term = term()
Returnst r ue if Ter misa, possibly deep, list of charactersin the Unicode range, otherwisef al se.

deep latinl char list(Term) -> boolean()
Types:
Term = term()
Returnst r ue if Ter misa, possibly deep, list of charactersin the ISO Latin-1 range, otherwisef al se.

format(Format, Data) -> chars()
fwrite(Format, Data) -> chars()
Types.
Format = io:format ()
Data = [term()]
Returns a character list that represents Dat a formatted in accordance with For mat . For a detailed description of

the available formatting options, seei o: fwrite/ 1, 2, 3. If the format string or argument list contains an error, a
fault is generated.

If and only if the Unicode tranglation modifier is used in the format string (that is, ~t s or ~t ¢), the resulting list can
contain characters beyond the | SO Latin-1 character range (that is, numbers > 255). If so, the result is still an ordinary
Erlang st ri ng() , and can well be used in any context where Unicode datais allowed.

fread(Format, String) -> Result

Types:
Format = String = string()
Result =
{ok, InputList :: [fread_iten()], LeftOverChars :: string()} |
{more,
RestFormat :: string(),
Nchars :: integer() >= 0,

InputStack :: chars()} |

272 | Ericsson AB. All Rights Reserved.: STDLIB

io_lib

{error, {fread, What :: fread error()}}

Triestoread St r i ng in accordance with the control sequencesin For mat . For adetailed description of the available
formatting options, seei o: f r ead/ 3. It isassumed that St r i ng contains whole lines.

The function returns:
{ok, InputlList, LeftOverChars}

The string wasread. | nput Li st isthelist of successfully matched and read items, and Lef t Over Char s are
the input characters not used.

{nore, RestFormat, Nchars, |nputStack}

The string was read, but more input is needed to complete the original format string. Rest For mat is the
remaining format string, Nchar s is the number of characters scanned, and | nput St ack is the reversed list
of inputs matched up to that point.

{error, What}
The read operation failed and parameter What gives a hint about the error.
Example:

3> io lib:fread("~f~f~f", "15.6 17.3e-6 24.5").
{ok,[15.6,1.73e-5,24.51,[1}

fread(Continuation, CharSpec, Format) -> Return

Types.

Continuation = continuation() | []

CharSpec = string() | eof

Format = string()

Return =
{more, Continuationl :: continuation()} |
{done, Result, LeftOverChars :: string()}

Result =
{ok, InputList :: [fread_itenm()]} |

eof |
{error, {fread, What :: fread error()}}

This is the re-entrant formatted reader. The continuation of the first call to the functions must be [] . For acomplete
description of how the re-entrant input scheme works, see Armstrong, Virding, Williams: 'Concurrent Programming
in Erlang’, Chapter 13.

The function returns:

{done, Result, LeftOverChars}
Theinput is complete. The result is one of the following:
{ok, InputList}

Thestringwasread. | nput Li st isthelist of successfully matched and read items, and Lef t Over Char s
are the remaining characters.

eof
End of file was encountered. Lef t Over Char s arethe input characters not used.

Ericsson AB. All Rights Reserved.: STDLIB | 273

io_lib

{error, What}
An error occurred and parameter WWhat gives a hint about the error.
{nore, Continuation}

More datais required to build aterm. Cont i nuat i on must be passed to f r ead/ 3 when more data becomes
available.

indentation(String, StartIndent) -> integer()
Types.
String = string()
StartIndent = integer()
Returnsthe indentation if St r i ng has been printed, starting at St ar t | ndent .

latinl char list(Term) -> boolean()
Types:
Term = term()
Returnst r ue if Ter misaflat list of charactersin the ISO Latin-1 range, otherwisef al se.

nl() -> string()
Returns a character list that represents a new line character.

print(Term) -> chars()
print(Term, Column, LinelLength, Depth) -> chars()
Types:
Term = term()
Column = LinelLength = integer() >= 0
Depth = dept h()
Returns alist of characters that represents Ter m but breaks representations longer than one line into many lines and
indents each line sensibly. Also triesto detect and output lists of printable characters as strings.
e Col umm isthe starting column; defaults to 1.
e Li neLengt h isthe maximum line length; defaults to 80.
* Dept h isthe maximum print depth; defaults to -1, which means no limitation.

printable latinl list(Term) -> boolean()
Types:
Term = term()
Returnst r ue if Ter misaflat list of printable ISO Latin-1 characters, otherwise f al se.

printable list(Term) -> boolean()
Types:
Term = term()
Returnst r ue if Ter misaflat list of printable characters, otherwisef al se.

What is a printable character in this case is determined by startup flag +pc to the Erlang VM; see
i o:printable range/Oanderl (1).

274 | Ericsson AB. All Rights Reserved.: STDLIB

io_lib

printable unicode list(Term) -> boolean()
Types:
Term = term()
Returnst r ue if Ter misaflat list of printable Unicode characters, otherwisef al se.

scan_format(Format, Data) -> FormatList
Types.
Format = io:format ()
Data = [term()]
FormatList = [char() | format_spec()]
Returns a list corresponding to the specified format string, where control sequences have been replaced with
corresponding tuples. Thislist can be passed to:
e build_text/1tohavethesameeffect asf or mat (For nat, Args)
e unscan_format/1 to get the corresponding pair of For mat and Ar gs (with every * and corresponding
argument expanded to numeric values)

A typical use of this function is to replace unbounded-size control sequences like ~w and ~p with the depth-limited
variants ~Wand ~P before formatting to text in, for example, alogger.

unscan format(FormatList) -> {Format, Data}

Types:
FormatList = [char() | format_spec()]
Format = io:format ()

Data = [term()]
For details, scescan_f ormat/ 2.

write(Term) -> chars()
write(Term, Depth) -> chars()
write(Term, Options) -> chars()
Types.
Term = term()
Options = [Option]
Option = {depth, Depth} | {encoding, latinl | utf8 | unicode}
Depth = depth()
Returns a character list that represents Ter m Argument Dept h controls the depth of the structures written. When

the specified depth is reached, everything below thislevel isreplaced by ". . . ". Dept h defaultsto -1, which means
no limitation.

Example:

1> lists:flatten(io lib:write({1,[2],I[3],[4,51,6,7,8,9})).
"{1,[21,(3],[4,51,6,7,8,9}"

2> lists:flatten(io lib:write({1,[2],[3],[4,51,6,7,8,9}, 5)).
"{1,121,[31,[...1,...}"

Ericsson AB. All Rights Reserved.: STDLIB | 275

io_lib

write atom(Atom) -> chars()
Types:
Atom = atom()
Returnsthelist of characters needed to print atom At om

write atom as latinl(Atom) -> latinl_string()
Types:
Atom = atom()
Returnsthelist of characters needed to print atom At om Non-Latin-1 characters are escaped.

write char(Char) -> chars()
Types:
Char = char()
Returnsthelist of characters needed to print a character constant in the Unicode character set.

write char as latinl(Char) -> latinl_string()
Types:
Char = char()

Returnsthelist of characters needed to print acharacter constant in the Unicode character set. Non-Latin-1 characters
are escaped.

write latinl char(LatinlChar) -> latinl_string()
Types:
LatinlChar = unicode:l atinl_char()
Returnsthe list of characters needed to print a character constant in the |SO Latin-1 character set.

write latinl string(LatinlString) -> latinl_string()
Types:

LatinlString = latinl_string()
Returnsthelist of charactersneeded to print Lat i n1St ri ng asastring.

write string(String) -> chars()
Types:
String = string()
Returnsthelist of characters needed to print St r i ng asastring.

write string as latinl(String) -> latinl_string()
Types:
String = string()
Returnsthelist of characters needed to print St r i ng asastring. Non-Latin-1 characters are escaped.

276 | Ericsson AB. All Rights Reserved.: STDLIB

lib

lib

Erlang module

Warning:

This module is retained for backward compatibility. It can disappear without warning in a future Erlang/OTP
release.

Exports

error _message(Format, Args) -> ok
Types:
Format = io:format ()
Args = [term()]
Prints error message Ar gs in accordance with For mat . Similar toi o: f or mat / 2.

flush receive() -> ok
Flushes the message buffer of the current process.

nonl(Stringl) -> String2
Types.
Stringl = String2 = string()

Removes the last newline character, if any, in St ri ngl.

progname() -> atom()
Returns the name of the script that started the current Erlang session.

send(To, Msg) -> Msg

Types.
To = pid() | atom() | {atom(), node()}
Msg = term()

Makesit possible to send a message using the appl y/ 3 BIF.

sendw(To, Msg) -> term()

Types:
To = pid() | atom() | {atom(), node()}
Msg = term()

Assend/ 2, but waits for an answer. It isimplemented as follows:

sendw(To, Msg) ->

Ericsson AB. All Rights Reserved.: STDLIB | 277

lib

To ! {self(),Msg},
receive

Reply -> Reply
end.

The returned message is not necessarily areply to the sent message.

278 | Ericsson AB. All Rights Reserved.: STDLIB

lists

lists

Erlang module

This module contains functions for list processing.

Unless otherwise stated, all functions assume that position numbering starts at 1. That is, the first element of alist
isat position 1.

TwotermsT1 and T2 compareequal if T1 == T2 evaluatestot r ue. They matchif T1 =: = T2 evaluatestot r ue.

Whenever an ordering function F is expected as argument, it is assumed that the following properties hold of F for
al x,y,and z:

« IfxFyandy Fx, thenx =y (F isantisymmetric).

e IfxFyandy F z thenx F z (F istransitive).

e XxFyoryFx(Fistota).

An example of atypical ordering function islessthan or equal to: =</ 2.

Exports

all(Pred, List) -> boolean()

Types:
Pred = fun((Elem :: T) -> boolean())
List = [T]
T = term()

Returnstr ue if Pred(El em) returnst r ue for all elements El emin Li st , otherwisef al se.

any(Pred, List) -> boolean()

Types:
Pred = fun((Elem :: T) -> boolean())
List = [T]
T = term()

Returnst r ue if Pred(El en) returnst r ue for at least one element El eminLi st .

append(ListOfLists) -> Listl
Types:

ListOfLists = [List]

List = Listl = [T]

T = term()

Returnsalist in which all the sublists of Li st OF Li st s have been appended.
Example:

> lists:append([[1, 2, 3], [a, b]l, [4, 5, 6]1]).
[11273Ialbl41516]

Ericsson AB. All Rights Reserved.: STDLIB | 279

lists

append(Listl, List2) -> List3

Types.
Listl = List2 = List3 = [T]
T = term()

Returnsanew list Li st 3, which is made from the elements of Li st 1 followed by the elements of Li st 2.

Example:

> lists:append("abc", "def").
"abcdef"

lists:append(A, B) isequivdentto A ++ B.

concat(Things) -> string()
Types:
Things = [Thing]
Thing = atom() | integer() | float() | string()

Concatenates the text representation of the elements of Thi ngs. The elements of Thi ngs can be atoms, integers,
floats, or strings.

Example:

> lists:concat([doc, '/', file, '.', 31).
"doc/file.3"

delete(Elem, Listl) -> List2

Types:
Elem = T
Listl = List2 = [T]
T = term()

Returnsacopy of Li st 1 wherethefirst element matching El emis deleted, if there is such an element.

droplast(List) -> InitList
Types:
List = [T, ...]
InitList = [T]
T = term()

Drops the last element of a List. The list is to be non-empty, otherwise the function crashes with a
function_cl ause.

dropwhile(Pred, Listl) -> List2
Types:

280 | Ericsson AB. All Rights Reserved.: STDLIB

lists

Pred = fun((Elem :: T) -> boolean())
Listl = List2 = [T]
T = term()

Drops elements El emfrom Li st 1 whilePr ed(El em) returnst r ue and returns the remaining list.

duplicate(N, Elem) -> List
Types:
N = integer() >= 0
Elem = T
List = [T]
T = term()
Returns alist containing N copies of term El em

Example:

> lists:duplicate(5, xx).
[XX, XX, XX, XX, xx]

filter(Pred, Listl) -> List2
Types:
Pred = fun((Elem :: T) -> boolean())
Listl = List2 = [T]
T = term()
Li st 2 isalist of al elementsEl emin Li st 1 for which Pr ed(El en) returnst r ue.

filtermap(Fun, Listl) -> List2
Types:
Fun = fun((Elem) -> boolean() | {true, Value})
Listl = [Elem]
List2 = [Elem | Value]
Elem = Value = term()

CallsFun(El en) onsuccessive elementsEl emof Li st 1. Fun/ 2 must return either aBoolean or atuple{ t r ue,
Val ue} . The function returns the list of elements for which Fun returns a new value, where avalue of t r ue is
synonymouswith{true, El ent.

Thatis, filtermap behavesasif it had been defined as follows:

filtermap(Fun, Listl) ->
lists:foldr(fun(Elem, Acc) ->

case Fun(Elem) of
false -> Acc;
true -> [Elem]|Acc];
{true,Value} -> [Value|Acc]

end

end, [], Listl).

Ericsson AB. All Rights Reserved.: STDLIB | 281

lists

Example:

> lists:filtermap(fun(X) -> case X rem 2 of @ -> {true, X div 2}; -> false end end, [1,2,3,4,5]).
[1,2]

flatlength(DeeplList) -> integer() >= 0
Types:
DeepList = [term() | DeepList]
Equivalenttol engt h(fl att en(DeepLi st)), but more efficient.

flatmap(Fun, Listl) -> List2

Types:
Fun = fun((A) -> [B])
Listl = [A]
List2 = [B]
A =B = term()

Takes a function from As to lists of Bs, and alist of As(Li st 1) and produces a list of Bs by applying the function
to every element in Li st 1 and appending the resulting lists.

That is, f | at map behaves asif it had been defined as follows:

flatmap(Fun, Listl) ->
append(map(Fun, Listl)).

Example:

> lists:flatmap(fun(X)->[X,X] end, [a,b,c]).
[a,a,b,b,c,c]

flatten(DeepList) -> List

Types:
DeepList = [term() | DeepList]
List = [term()]

Returns a flattened version of DeepLi st .

flatten(DeepList, Tail) -> List
Types:
DeepList = [term() | DeeplList]
Tail = List = [term()]

Returns aflattened version of DeepLi st with tail Tai | appended.

282 | Ericsson AB. All Rights Reserved.: STDLIB

lists

foldl(Fun, AccO, List) -> Accl

Types.
Fun = fun((Elem :: T, AccIn) -> AccOut)
AccO = Accl = AccIn = AccOut = term()

List = [T]
T = term()
CdlsFun(El em Accl n) on successive elements A of Li st, starting with Accln == AccO. Fun/ 2 must

return a new accumulator, which is passed to the next call. The function returns the fina value of the accumulator.
AccO isreturned if the list is empty.

Example:

> lists:foldl(fun(X, Sum) -> X + Sum end, 0, [1,2,3,4,5]).
15

> lists:foldl(fun(X, Prod) -> X * Prod end, 1, [1,2,3,4,5]).
120

foldr(Fun, AccO, List) -> Accl

Types:
Fun = fun((Elem :: T, AccIn) -> AccOut)
AccO = Accl = AccIn = AccOut = term()
List = [T]
T = term()

Likef ol dl / 3, but thelist istraversed from right to left.

Example:

> P = fun(A, AccIn) -> io:format("~p ", [A]), AccIn end.
#Fun<erl eval.12.2225172>

> lists:foldl(P, void, [1,2,3]).

1 2 3 void

> lists:foldr(P, void, [1,2,3]).

3 2 1 void

fol dl / 3istail recursive and is usually preferredtof ol dr/ 3.

join(Sep, Listl) -> List2
Types.

Sep =T

Listl = List2 = [T]

T = term()

Inserts Sep between each element in Li st 1. Has no effect on the empty list and on a singleton list. For example:

> lists:join(x, [a,b,c]).
[a,x,b,x,c]
> lists:join(x, [al).

Ericsson AB. All Rights Reserved.: STDLIB | 283

lists

[a]
> lists:join(x, []).
[1

foreach(Fun, List) -> ok

Types:
Fun = fun((Elem :: T) -> term())
List = [T]
T = term()

CdlsFun(El em) for each element El eminLi st . Thisfunction isused for its side effects and the evaluation order
is defined to be the same as the order of the elementsin the list.

keydelete(Key, N, TupleListl) -> TuplelList2
Types:
Key = term()
N = integer() >=1
1..tuple size(Tuple)
TupleListl = TuplelList2 = [Tuplel
Tuple = tuple()
Returns a copy of Tupl eLi st 1 where the first occurrence of atuple whose Nth element compares equal to Key is
deleted, if thereis such atuple.

keyfind(Key, N, TupleList) -> Tuple | false
Types:
Key = term()
N = integer() >=1
1..tuple_size(Tuple)
TuplelList = [Tuple]
Tuple = tuple()
Searchesthelist of tuples Tupl eLi st for atuple whose Nth element compares equal to Key . Returns Tupl e if such
atupleisfound, otherwisef al se.

keymap(Fun, N, TupleListl) -> TupleList2
Types.
Fun = fun((Terml :: term()) -> Term2 :: term())
N = integer() >=1
1..tuple_size(Tuple)
TupleListl = TuplelList2 = [Tuplel
Tuple = tuple()
Returnsalist of tupleswhere, for each tuplein Tupl eLi st 1, the Nth element Ter mL of the tuple has been replaced
with the result of calling Fun(Ter mL) .

Examples:

284 | Ericsson AB. All Rights Reserved.: STDLIB

lists

> Fun = fun(Atom) -> atom_to list(Atom) end.

#Fun<erl eval.6.10732646>

2> lists:keymap(Fun, 2, [{name,jane,22},{name,lizzie,20}, {name,lydia,15}]).
[{name, "jane", 22}, {name, "lizzie",b 20}, {name, "lydia",b 15}]

keymember(Key, N, TupleList) -> boolean()
Types:
Key = term()
N = integer() >=1
1..tuple size(Tuple)
TupleList = [Tuple]
Tuple = tuple()
Returnst r ue if thereisatuplein Tupl eLi st whose Nth element compares equal to Key, otherwisef al se.

keymerge(N, TuplelListl, TupleList2) -> TupleList3
Types:

N = integer() >=1

1..tuple_size(Tuple)

TuplelListl = [T1]
TuplelList2 = [T2]
TupleList3 = [T1 | T2]

Tl = T2 = Tuple
Tuple = tuple()
Returns the sorted list formed by merging Tupl eLi st 1 and Tupl eLi st 2. The merge is performed on the Nth

element of each tuple. Both Tupl eLi st 1 and Tupl eLi st 2 must be key-sorted before evaluating this function.
When two tuples compare equal, the tuple from Tupl eLi st 1 ispicked before the tuple from Tupl eLi st 2.

keyreplace(Key, N, TupleListl, NewTuple) -> TuplelList2
Types.
Key = term()
N = integer() >=1
1..tuple size(Tuple)
TupleListl = TuplelList2 = [Tuplel
NewTuple = Tuple
Tuple = tuple()
Returns a copy of Tupl eLi st 1 where the first occurrence of a T tuple whose Nth element compares equal to Key
isreplaced with NewTupl e, if thereissuch atupleT.

keysearch(Key, N, TupleList) -> {value, Tuple} | false
Types:

Key = term()

N = integer() >=1

1..tuple size(Tuple)

Ericsson AB. All Rights Reserved.: STDLIB | 285

lists

TuplelList = [Tuple]
Tuple = tuple()

Searches the list of tuples Tupl eLi st for atuple whose Nth element compares equal to Key. Returns { val ue,
Tupl e} if suchatupleisfound, otherwisef al se.

Note:

Thisfunction isretained for backward compatibility. Function keyf i nd/ 3 is usually more convenient.

keysort(N, TuplelListl) -> TuplelList2
Types:
N = integer() >=1
1..tuple_size(Tuple)
TupleListl = TuplelList2 = [Tuplel
Tuple = tuple()
Returns a list containing the sorted elements of list Tupl eLi st 1. Sorting is performed on the Nth element of the
tuples. The sort is stable.

keystore(Key, N, TupleListl, NewTuple) -> TuplelList2
Types:
Key = term()
N = integer() >=1
1..tuple size(Tuple)
TuplelListl = [Tuple]
TupleList2 = [Tuple, ...]
NewTuple = Tuple
Tuple = tuple()
Returns a copy of Tupl eLi st 1 where the first occurrence of atuple T whose Nth element compares equal to Key

is replaced with NewTupl e, if there is such atuple T. If there is no such tuple T, a copy of Tupl eLi st 1 where
[NewTupl e] has been appended to the end is returned.

keytake(Key, N, TupleListl) -> {value, Tuple, TupleList2} | false
Types.
Key = term()
N = integer() >=1
1..tuple_size(Tuple)
TupleListl = TuplelList2 = [tuple()]
Tuple = tuple()
Searches the list of tuples Tupl eLi st 1 for atuple whose Nth element compares equal to Key. Returns { val ue,

Tupl e, Tupl eLi st 2} if such atuple is found, otherwise f al se. Tupl eLi st 2 isa copy of Tupl eLi st1
where the first occurrence of Tupl e has been removed.

286 | Ericsson AB. All Rights Reserved.: STDLIB

lists

last(List) -> Last

Types.
List = [T, ...]
Last = T
T = term()

Returnsthelast element in Li st .

map (Fun, Listl) -> List2

Types.
Fun = fun((A) -> B)
Listl = [A]
List2 = [B]

A =B = term()

Takes afunction from Asto Bs, and alist of Asand produces alist of Bs by applying the function to every element in
thelist. This function is used to obtain the return values. The evaluation order depends on the implementation.

mapfoldl(Fun, AccO, Listl) -> {List2, Accl}
Types:
Fun = fun((A, AccIn) -> {B, AccOut})
AccO = Accl = AccIn = AccOut = term()

Listl = [A]
List2 = [B]
A =B = term()

Combines the operations of map/ 2 and f ol dl / 3 into one pass.
Example:

Summing the elementsin alist and double them at the same time:

> lists:mapfoldl(fun(X, Sum) -> {2*X, X+Sum} end,
e, [1,2,3,4,5]).
{[2,4,6,8,10],15}

mapfoldr(Fun, AccO, Listl) -> {List2, Accl}
Types:
Fun = fun((A, AccIn) -> {B, AccOut})
AccO = Accl = AccIn = AccOut = term()

Listl = [A]
List2 = [B]
A =B = term()

Combines the operations of map/ 2 and f ol dr / 3 into one pass.

Ericsson AB. All Rights Reserved.: STDLIB | 287

lists

max(List) -> Max

Types.
List = [T, ...]
Max = T
T = term()

Returnsthefirst element of Li st that compares greater than or equal to all other elementsof Li st .

member(Elem, List) -> boolean()

Types.
Elem = T
List = [T]
T = term()

Returnst r ue if EIl emmatches some element of Li st , otherwisef al se.

merge(ListOfLists) -> Listl
Types:
ListOfLists = [List]
List = Listl = [T]
T = term()
Returns the sorted list formed by merging all the sublists of Li st OF Li st's. All sublists must be sorted before

evaluating this function. When two elements compare equal, the element from the sublist with the lowest position in
Li st Of Li st s is picked before the other element.

merge(Listl, List2) -> List3

Types:
Listl = [X]
List2 = [Y]
List3 = [X | Y]
X =Y = term()

Returns the sorted list formed by merging Li st 1 and Li st 2. Both Li st 1 and Li st 2 must be sorted before
evaluating this function. When two elements compare equal, the element from Li st 1 is picked before the element
fromLi st 2.

merge(Fun, Listl, List2) -> List3

Types:
Fun = fun((A, B) -> boolean())
Listl = [A]
List2 = [B]
List3 = [A | B]
A =B = term()

Returns the sorted list formed by merging Li st 1 and Li st 2. Both Li st 1 and Li st 2 must be sorted according to
the ordering function Fun before evaluating this function. Fun(A, B) istoreturnt r ue if A compareslessthan or
equal to B in the ordering, otherwise f al se. When two elements compare equal, the element from Li st 1 is picked
before the element from Li st 2.

288 | Ericsson AB. All Rights Reserved.: STDLIB

lists

merge3(Listl, List2, List3) -> List4

Types.
Listl = [X]
List2 = [Y]
List3 = [Z]
List4d = [X | Y | Z]
X =Y =2Z= term()

Returns the sorted list formed by merging Li st 1, Li st 2, and Li st 3. All of Li st 1, Li st 2, and Li st 3 must
be sorted before evaluating this function. When two elements compare equal, the element from Li st 1, if thereis
such an element, is picked before the other element, otherwise the element from Li st 2 is picked before the element
fromLi st 3.

min(List) -> Min

Types:
List = [T, ...]
Min = T
T = term()

Returnsthe first element of Li st that comparesless than or equal to al other elements of Li st .

nth(N, List) -> Elem
Types:
N = integer() >=1
1.length(List)
List = [T, ...]
Elem = T
T = term()
Returns the Nth element of Li st .

Example:

> lists:nth(3, [a, b, ¢, d, e]).
c

nthtail(N, List) -> Tail
Types.
N = integer() >= 0
0..length(List)
List = [T, ...]
Tail = [T]
T = term()
Returnsthe Nth tail of Li st , that is, the sublist of Li st starting at N+1 and continuing up to the end of thelist.

Example

Ericsson AB. All Rights Reserved.: STDLIB | 289

lists

> lists:nthtail(3, [a, b, c, d, e]).

[d,e]

> tl(tl(tl([a, b, c, d, el))).

[d,e]

> lists:nthtail(0, [a, b, c, d, e]).
[alblcldle]

> lists:nthtail(5, [a, b, ¢, d, e]).
[1

partition(Pred, List) -> {Satisfying, NotSatisfying}
Types:

Pred = fun((Elem :: T) -> boolean())

List = Satisfying = NotSatisfying = [T]

T = term()

Partitions Li st into two lists, where the first list contains all elements for which Pr ed(El em) returnst r ue, and
the second list contains all elements for which Pr ed(El en) returnsf al se.

Examples:

> lists:partition(fun(A) -> A rem 2 == 1 end, [1,2,3,4,5,6,7]).
{[1,3,5,71,[2,4,6]}

> lists:partition(fun(A) -> is atom(A) end, [a,b,1,c,d,2,3,4,e]).
{[a,b,c,d,e],[1,2,3,4]}

For adifferent way to partition alist, seespl i twi t h/ 2.

prefix(Listl, List2) -> boolean()

Types:
Listl = List2 = [T]
T = term()

Returnst r ue if Li st 1 isaprefix of Li st 2, otherwisef al se.

reverse(Listl) -> List2

Types:
Listl = List2 = [T]
T = term()

Returns alist with the elementsin Li st 1 in reverse order.

reverse(Listl, Tail) -> List2

Types.
Listl = [T]
Tail = term()
List2 = [T]
T = term()

Returns alist with the elementsin Li st 1 inreverse order, with tail Tai | appended.

Example:

290 | Ericsson AB. All Rights Reserved.: STDLIB

lists

> lists:reverse([1, 2, 3, 4], [a, b, c]).
[4,3,2,1,a,b,c]

seq(From, To) -> Seq
seq(From, To, Incr) -> Seq
Types:

From = To = Incr = integer()

Seq = [integer()]
Returns asequence of integersthat startswith Fr omand containsthe successiveresultsof adding | ncr totheprevious
element, until To isreached or passed (in the latter case, To is not an element of the sequence). | ncr defaultsto 1.
Failures:

e IfTo < From- Incr andlncr > 0.
e« IfTo > From- Incr andlncr < 0.
e Iflncr == 0andFrom =/ = To.

The following equdlities hold for al sequences:

length(lists:seq(From, To)) =:= To - From + 1
length(lists:seq(From, To, Incr)) =:= (To - From + Incr) div Incr
Examples:

> lists:seq(l, 10).
[1,2,3,4,5,6,7,8,9,10]
> lists:seq(l, 20, 3).
[1,4,7,10,13,16,19]

> lists:seq(l, 0, 1).
[1

> lists:seq(10, 6, 4).
[1

> lists:seq(l, 1, 0).
[1]

sort(Listl) -> List2

Types.
Listl = List2 = [T]
T = term()

Returns alist containing the sorted elements of Li st 1.

sort(Fun, Listl) -> List2
Types:

Ericsson AB. All Rights Reserved.: STDLIB | 291

lists

Fun = fun((A :: T, B :: T) -> boolean())
Listl = List2 = [T]
T = term()

Returns alist containing the sorted elements of Li st 1, according to the ordering function Fun. Fun(A, B) isto
returnt r ue if A compares lessthan or equal to B in the ordering, otherwisef al se.

split(N, Listl) -> {List2, List3}
Types:

N = integer() >= 0

0..length(List1)

Listl = List2 = List3 = [T]

T = term()

SplitsLi st 1intoLi st 2 and Li st 3. Li st 2 containsthefirst Nelementsand Li st 3 the remaining elements (the
Nth tail).

splitwith(Pred, List) -> {Listl, List2}
Types:

Pred = fun((T) -> boolean())

List = Listl = List2 = [T]

T = term()

Partitions Li st intotwo listsaccordingto Pr ed. spl i t wi t h/ 2 behavesasif it is defined as follows:

splitwith(Pred, List) ->
{takewhile(Pred, List), dropwhile(Pred, List)}.

Examples:

> lists:splitwith(fun(A) -> A rem 2 == 1 end, [1,2,3,4,5,6,7]).
{[11,[2,3,4,5,6,71}

> lists:splitwith(fun(A) -> is atom(A) end, [a,b,1,c,d,2,3,4,e]).
{[a,b]l,[1,c,d,2,3,4,el}

For adifferent way to partition alist, seeparti ti on/ 2.

sublist(Listl, Len) -> List2
Types.

Listl = List2 = [T]

Len = integer() >= 0

T = term()

Returns the sublist of Li st 1 starting at position 1 and with (maximum) Len elements. It is not an error for Len to
exceed the length of thelit, in that case the whole list is returned.

sublist(Listl, Start, Len) -> List2
Types:

292 | Ericsson AB. All Rights Reserved.: STDLIB

lists

Listl = List2 = [T]
Start = integer() >=1
1..(length(List1)+1)

Len = integer() >= 0

T = term()

Returns the sublist of Li st 1 starting at St art and with (maximum) Len elements. It is not an error for St ar t
+Len to exceed the length of the list.

Examples:

> lists:sublist([1,2,3,4], 2, 2).
[2,3]

> lists:sublist([1,2,3,4], 2, 5).
[2,3,4]

> lists:sublist([1,2,3,4], 5, 2).
[]

subtract(Listl, List2) -> List3

Types:
Listl = List2 = List3 = [T]
T = term()

Returnsanew listLi st 3 thatisacopy of Li st 1, subjected to the following procedure: for each elementinLi st 2,
itsfirst occurrencein Li st 1 isdeleted.

Example:

> lists:subtract("123212", "212").
"312".

lists:subtract (A, B) isequivaenttoA -- B.

Warning:

The complexity of | i st s: subtract (A, B) isproportiona tol engt h(A) *| engt h(B) , meaning that it
is very slow if both A and B are long lists. (If both lists are long, it is a much better choice to use ordered lists
and ordsets: subtract/ 2.

suffix(Listl, List2) -> boolean()

Types:
Listl = List2 = [T]
T = term()

Returnst r ue if Li st 1 isasuffix of Li st 2, otherwisef al se.

sum(List) -> number()
Types:

Ericsson AB. All Rights Reserved.: STDLIB | 293

lists

List = [number()]

Returns the sum of the elementsin Li st .

takewhile(Pred, Listl) -> List2

Types:
Pred = fun((Elem :: T) -> boolean())
Listl = List2 = [T]
T = term()

TakeselementsEl emfrom Li st 1 whilePr ed(El en) returnst r ue, that is, the function returns the longest prefix
of the list for which all elements satisfy the predicate.

ukeymerge (N, TupleListl, TupleList2) -> TupleList3
Types.

N = integer() >=1

1..tuple size(Tuple)

TupleListl = [T1]
TuplelList2 = [T2]
TupleList3 = [T1 | T2]

Tl = T2 = Tuple

Tuple = tuple()
Returns the sorted list formed by merging Tupl eLi st 1 and Tupl eLi st 2. The merge is performed on the Nth
element of eachtuple. Both Tupl eLi st 1 and Tupl eLi st 2 must bekey-sorted without duplicates before eval uating
thisfunction. When two tuples compare equal, thetuplefrom Tupl eLi st 1 ispicked andtheonefrom Tupl eLi st 2
is deleted.

ukeysort (N, TuplelListl) -> TuplelList2
Types:
N = integer() >=1
1..tuple size(Tuple)
TupleListl = TuplelList2 = [Tuplel
Tuple = tuple()
Returns a list containing the sorted elements of list Tupl eLi st 1 where all except the first tuple of the tuples
comparing equal have been deleted. Sorting is performed on the Nth element of the tuples.

umerge(ListOfLists) -> Listl
Types:
ListOfLists = [List]
List = Listl = [T]
T = term()
Returns the sorted list formed by merging all the sublists of Li st OF Li st s. All sublists must be sorted and contain

no duplicates before evaluating this function. When two elements compare equal, the element from the sublist with
the lowest positionin Li st Of Li st s is picked and the other is deleted.

294 | Ericsson AB. All Rights Reserved.: STDLIB

lists

umerge(Listl, List2) -> List3

Types.
Listl = [X]
List2 = [Y]
List3 = [X | Y]
X =Y = term()

Returns the sorted list formed by merging Li st 1 and Li st 2. Both Li st 1 and Li st 2 must be sorted and contain
no duplicates before evaluating this function. When two elements compare equal, the element from Li st 1 is picked
and the one from Li st 2 is deleted.

umerge(Fun, Listl, List2) -> List3

Types:
Fun = fun((A, B) -> boolean())
Listl = [A]
List2 = [B]
List3 = [A | B]
A =B = term()

Returns the sorted list formed by merging Li st 1 and Li st 2. Both Li st 1 and Li st 2 must be sorted according to
the ordering function Fun and contain no duplicates before evaluating thisfunction. Fun(A, B) istoreturnt r ue if
A compares lessthan or equal to B in the ordering, otherwisef al se. When two elements compare equal, the element
fromLi st 1 ispicked and the one from Li st 2 is deleted.

umerge3(Listl, List2, List3) -> List4

Types.
Listl = [X]
List2 = [Y]
List3 = [Z]
List4d = [X | Y | Z]
X=Y=127Z= term()

Returns the sorted list formed by merging Li st 1, Li st 2, and Li st 3. All of Li st 1, Li st 2, and Li st 3 must be
sorted and contain no duplicates before eval uating this function. When two elements compare equal, the element from
Li st 1 ispicked if there is such an element, otherwise the element from Li st 2 is picked, and the other is deleted.

unzip(Listl) -> {List2, List3}

Types:
Listl = [{A, B}]
List2 = [A]
List3 = [B]
A =B = term()

"Unzips' alist of two-tuplesinto two lists, where the first list contains the first element of each tuple, and the second
list contains the second element of each tuple.

Ericsson AB. All Rights Reserved.: STDLIB | 295

lists

unzip3(Listl) -> {List2, List3, List4}

Types.
Listl = [{A, B, C}]
List2 = [A]
List3 = [B]
List4 = [(C]
A=B=C= term()

"Unzips' alist of three-tuples into three lists, where the first list contains the first element of each tuple, the second
list contains the second element of each tuple, and the third list contains the third element of each tuple.

usort(Listl) -> List2

Types:
Listl = List2 = [T]
T = term()

Returns alist containing the sorted elements of Li st 1 where all except the first element of the elements comparing
equal have been deleted.

usort(Fun, Listl) -> List2
Types:
Fun = fun((T, T) -> boolean())
Listl = List2 = [T]
T = term()
Returns alist containing the sorted elements of Li st 1 where all except the first element of the elements comparing

equal according to the ordering function Fun have been deleted. Fun(A, B) istoreturnt r ue if A comparesless
than or equal to B in the ordering, otherwisef al se.

zip(Listl, List2) -> List3

Types.
Listl = [A]
List2 = [B]
List3 = [{A, B}]
A =B = term()

"Zips' two lists of equal length into one list of two-tuples, where the first element of each tupleistaken from the first
list and the second element is taken from the corresponding element in the second list.

zip3(Listl, List2, List3) -> List4
Types:

296 | Ericsson AB. All Rights Reserved.: STDLIB

lists

Listl = [A]
List2 = [B]
List3 = [C]
List4 = [{A, B, C}]
A =B =C-= term()

"Zips' three lists of equal length into one list of three-tuples, where the first element of each tuple is taken from the
first list, the second element is taken from the corresponding element in the second list, and the third element is taken
from the corresponding element in the third list.

zipwith(Combine, Listl, List2) -> List3

Types:
Combine = fun((X, Y) -> T)
Listl = [X]
List2 = [Y]
List3 = [T]
X=Y=T = term()

Combines the elements of two lists of equal length into one list. For each pair X, Y of list elements from the two
lists, the element in the result listisConbi ne(X, V).

zipwith(fun(X, Y) -> {X Y} end, Listl, List2) isequivaenttozi p(Listl, List2).
Example:

> lists:zipwith(fun(X, Y) -> X+Y end, [1,2,3], [4,5,6]).
[5,7,9]

zipwith3(Combine, Listl, List2, List3) -> List4

Types:
Combine = fun((X, Y, Z) ->T)
Listl = [X]
List2 = [Y]
List3 = [Z]
List4 = [T]

X=Y=27Z=T = term()

Combines the elements of three lists of equal length into one list. For each triple X, Y, Z of list elements from the
threelists, the element in theresult list is Conbi ne(X, Y, Z2).

zipwith3(fun(X, VY, 2) ->{X Y,Z} end, Listl, List2, List3) isequivaenttozi p3(List1,
List2, List3).

Examples:

> lists:zipwith3(fun(X, Y, Z) -> X+Y+Z end, [1,2,3], [4,5,6], [7,8,9]).
[12,15,18]
> lists:zipwith3(fun(X, Y, Z) -> [X,Y,Z] end, [a,b,c], [x,y,z], [1,2,3]).

Ericsson AB. All Rights Reserved.: STDLIB | 297

lists

[[a,x,1],[b,y,2],[c,z,3]]

298 | Ericsson AB. All Rights Reserved.: STDLIB

log_ mf_h

log_mf_h

Erlang module

Thismoduleisagen_event handler module that can be installed in any gen_event process. It logs onto disk all
eventsthat are sent to an event manager. Each event iswritten asabinary, which makesthelogging very fast. However,
atool such as the Report Browser (r b(3)) must be used to read the files. The events are written to multiple files.
When dl files have been used, the first oneis reused and overwritten. The directory location, the number of files, and
the size of each file are configurable. The directory will include onefile called i ndex, and report files1, 2,

Data Types
args()
Termtobesentto gen_event: add _handl er/ 3.

Exports

init(Dir, MaxBytes, MaxFiles) -> Args
init(Dir, MaxBytes, MaxFiles, Pred) -> Args
Types.

Dir = file:filename()

MaxBytes = integer() >= 0

MaxFiles 1..255

Pred = fun((Event :: term()) -> boolean())

Args = args()

Initiates the event handler. Returns Args, which is to be wused in a cdl to
gen_event: add_handl er (Event Mgr, log_nf_h, Args).

Di r specifieswhich directory to usefor thelog files. MaxByt es specifiesthesize of eachindividua file. MaxFi | es
specifies how many files are used. Pr ed is a predicate function used to filter the events. If no predicate function is
specified, al events are logged.

See Also
gen_event (3),rb(3)

Ericsson AB. All Rights Reserved.: STDLIB | 299

maps

maps

Erlang module

This module contains functions for maps processing.

Exports

filter(Pred, Mapl) -> Map2

Types:
Pred = fun((Key, Value) -> boolean())
Key = Value = term()
Mapl = Map2 = #{}

Returns amap Map2 for which predicate Pr ed holdstruein Map1l.

The call failswith a{ badmap, Map} exception if Map1l is not a map, or with badar g if Pr ed is not a function
of arity 2.

Example:

>M=#{a =2, b=3, c==4, "a" =1, "b" = 2, "c" => 4},
Pred = fun(K,V) -> is atom(K) andalso (V rem 2) =:= 0 end,
maps:filter(Pred,M).

#{a => 2,c => 4}

find(Key, Map) -> {ok, Value} | error

Types.
Key = term()
Map = #{}

Value = term()

Returnsatuple{ ok, Val ue}, whereVal ue isthe value associated with Key, or er r or if no valueis associated
with Key in Map.

Thecdl failswith a{ badmap, Map} exceptionif Map isnot a map.

Example:
> Map = #{"hi" => 42},
Key = "hi",
maps: find(Key,Map) .
{ok, 42}

fold(Fun, Init, Map) -> Acc
Types:

300 | Ericsson AB. All Rights Reserved.: STDLIB

maps

Fun = fun((K, V, AccIn) -> AccOut)
Init = Acc = AccIn = AccOut = term()
Map = #{}

K=V = term()

CdlsF(K, V, Accln) forevery Kto valueV association in Map in any order. Function f un F/ 3 must return a
new accumulator, which is passed to the next successive call. Thisfunction returns the final value of the accumulator.
Theinitial accumulator value | ni t isreturned if the map is empty.

Example:

> Fun = fun(K,V,AccIn) when is list(K) -> AccIn + V end,
Map = #{"k1" => 1, "k2" => 2, "k3" => 3},
maps: fold(Fun,0,Map) .

6

from list(List) -> Map
Types:
List = [{Key, Value}]
Key = Value = term()
Map = #{}

Takes alist of key-value tuples elements and builds a map. The associations can be in any order, and both keys and
values in the association can be of any term. If the same key appears more than once, the latter (right-most) valueis
used and the previous values are ignored.

Example:

> List = [{"a",ignored}, {1337, "value two"}, {42,value three},{"a",1}],
maps:from list(List).
#{42 => value three,1337 => "value two","a" => 1}

get(Key, Map) -> Value

Types:
Key = term()
Map = #{}

Value = term()
Returnsvalue Val ue associated with Key if Map contains Key.

The call fails with a { badrmap, Map} exception if Map is not a map, or with a{ badkey, Key} exception if no
valueis associated with Key.

Example:

> Key = 1337,
Map = #{42 => value two,1337 => "value one","a" => 1},
maps:get (Key,Map) .

"value one"

Ericsson AB. All Rights Reserved.: STDLIB | 301

maps

get(Key, Map, Default) -> Value | Default

Types.
Key = term()
Map = #{}

Value = Default = term()

Returns value Val ue associated with Key if Map contains Key. If no value is associated with Key, Def aul t is
returned.

The call failswith a{ badmap, Map} exception if Map isnot a map.
Example:

> Map = #{ keyl => vall, key2 => val2 }.
#{keyl => vall,key2 => val2}

> maps:get(keyl, Map, "Default value").

vall

> maps:get(key3, Map, "Default value").

"Default value"

is key(Key, Map) -> boolean()

Types:
Key = term()
Map = #{}

Returnst r ue if map Map contains Key and returnsf al se if it does not contain the Key.
The call failswith a{ badmap, Map} exceptionif Map isnot amap.
Example:

> Map = #{"42" => value}.
#{"42" => value}

> maps:is key("42",Map).
true

> maps:is key(value,Map).
false

keys(Map) -> Keys

Types:
Map = #{}
Keys = [Key]
Key = term()

Returns a complete list of keys, in any order, which resides within Map.
The call failswith a{ badmap, Map} exception if Map isnot a map.
Example:

> Map = #{42 => value three,1337 => "value two","a" => 1},
maps : keys (Map) .

302 | Ericsson AB. All Rights Reserved.: STDLIB

maps

[42,1337,"a"]

map(Fun, Mapl) -> Map2

Types:
Fun = fun((K, V1) -> V2)
Mapl = Map2 = #{}
K=Vl =V2 = term()

Produces a new map Map2 by calling functionf un F(K, V1) for every Kto value V1 associationin Mapl in any
order. Functionf un F/ 2 must return value V2 to be associated with key K for the new map Map2.

Example:

> Fun = fun(K,V1l) when is list(K) -> V1*2 end,
Map = #{“kl“ = 1' "k2" = 2, ||k3u = 3}'
maps :map (Fun,Map) .

#{Ilklll => 2’Ilk2ll => 4'Ilk3ll => 6}

merge(Mapl, Map2) -> Map3
Types:
Mapl = Map2 = Map3 = #{}

Merges two maps into a single map Map3. If two keys exist in both maps, the value in Map1l is superseded by the
valuein Map2.

Thecadl failswith a{ badmap, Map} exceptionif Mapl or Map2 isnot a map.
Example:

> Mapl = #{a => "value one", b => "value two"},
Map2 #{a =1, c => 2},
maps:merge(Mapl,Map2) .

#{a => 1,b => "value two",c => 2}

new() -> Map
Types:
Map = #{}
Returns a new empty map.
Example:

> maps:new() .

#{}

put (Key, Value, Mapl) -> Map2
Types:

Ericsson AB. All Rights Reserved.: STDLIB | 303

maps

Key = Value term()
Mapl = Map2 = #{}

Associates Key with value Val ue and inserts the association into map Map2. If key Key already exists in map
Map1l, the old associated value is replaced by value Val ue. The function returns a new map Map2 containing the
new association and the old associationsin Map1l.

The cal failswith a{ badmap, Map} exceptionif Mapl isnot amap.

Example:

> Map = #{"a" => 1}.

#{"a" = 1}
> maps:put("a", 42, Map).
#{nau = 42}

> maps:put("b", 1337, Map).
#{nau = l,ub" = 1337}

remove (Key, Mapl) -> Map2
Types:
Key = term()
Mapl = Map2 = #{}
Removes the Key, if it exists, and its associated value from Map1 and returns anew map Map2 without key Key.
The call failswith a{ badmap, Map} exceptionif Map1 isnot amap.

Example:

> Map = #{"a" => 1}.
#{Ilall => 1}
> maps:remove("a",Map).

#{}
> maps:remove("b",Map).
#{Ilall => 1}

size(Map) -> integer() >= 0
Types:
Map = #{}
Returns the number of key-value associationsin Map. This operation occursin constant time.

Example:

> Map = #{42 => value two,1337 => "value one","a" => 1},
maps:size(Map) .
3

take(Key, Mapl) -> {Value, Map2} | error
Types.

304 | Ericsson AB. All Rights Reserved.: STDLIB

maps

Key = term()
Mapl = #{}
Value = term()
Map2 = #{}

The function removes the Key, if it exists, and its associated value from Map1 and returns a tuple with the removed
Val ue and the new map Map2 without key Key. If the key does not exist er r or isreturned.

The call will fail with a{ badmap, Map} exceptionif Map1l isnot amap.
Example:

> Map = #{"a" => "hello", "b" => "world"}.
#{"a" => "hello", "b" => "world"}

> maps:take("a",Map).

{"hello",#{"b" => "world"}}

> maps:take("does not exist",Map).

error

to list(Map) -> [{Key, Value}l

Types:
Map = #{}
Key = Value = term()
Returnsalist of pairsrepresenting the key-value associationsof Map, wherethepairs[{ K1, V1}, ..., {Kn, Vn}]

arereturned in arbitrary order.
Thecadl failswith a{ badmap, Map} exceptionif Map isnot a map.

Example:

> Map = #{42 => value three,1337 => "value two","a" => 1},
maps:to list(Map).
[{42,value three}, {1337,"value two"},{"a",1}]

update(Key, Value, Mapl) -> Map2

Types.
Key = Value = term()
Mapl = Map2 = #{}

If Key existsin Map1, the old associated value is replaced by value Val ue. The function returns a new map Map2
containing the new associated value.

The call fails with a{ badmap, Map} exception if Mapl is not a map, or with a{ badkey, Key} exception if no
value is associated with Key .

Example:

> Map = #{"a" => 1}.

#{ " a n => 1}
> maps:update("a", 42, Map).
#{ " a n => 42}

Ericsson AB. All Rights Reserved.: STDLIB | 305

maps

update with(Key, Fun, Mapl) -> Map2
Types.
Key = term()
Mapl = Map2 = #{}
Fun = fun((Valuel :: term()) -> Value2 :: term())

Update a value in a Mapl associated with Key by calling Fun on the old value to get a new value. An exception
{ badkey, Key} isgenerated if Key is not present in the map.

Example:

> Map = #{"counter" => 1},
Fun = fun(V) -> V + 1 end,
maps:update with("counter",Fun,Map).
#{"counter" => 2}

update with(Key, Fun, Init, Mapl) -> Map2

Types:
Key = term()
Mapl = Mapl
Map2 = Map2

Fun = fun((Valuel :: term()) -> Value2 :: term())

Init = term()
Update a value in a Map1l associated with Key by calling Fun on the old value to get a new value. If Key is not
present in Mapl then | ni t will be associated with Key.

Example:

> Map = #{"counter" => 1},

Fun fun(V) -> V + 1 end,

maps:update with("new counter",Fun,42,Map).
#{"counter" => 1,"new counter" => 42}

values(Map) -> Values
Types.
Map = #{}
Values = [Value]
Value = term()

Returns acomplete list of values, in arbitrary order, contained in map Map.
Thecdl failswith a{ badmap, Map} exceptionif Map isnot a map.
Example:

> Map = #{42 => value three, 1337 => "value two","a" => 1},
maps:values (Map) .
[value three, "value two",1]

306 | Ericsson AB. All Rights Reserved.: STDLIB

maps

with(Ks, Mapl) -> Map2

Types.
Ks = [K]
Mapl = Map2 = #{}
K = term()

Returns a new map Map2 with the keys K1 through Kn and their associated values from map Mapl. Any key in Ks
that does not exist in Mapl isignored.

Example:

> Map = #{42 => value three,1337 => "value two","a" => 1},
Ks = ["a",42,"other key"l,
maps:with(Ks,Map) .

#{42 => value three,"a" => 1}

without(Ks, Mapl) -> Map2

Types:
Ks = [K]
Mapl = Map2 = #{}
K = term()

Returns a new map Map2 without keys K1 through Kn and their associated values from map Mapl. Any key in Ks
that does not exist in Map1 isignored

Example:

> Map = #{42 => value three,1337 => "value two","a" => 1},
Ks = ["a",42,"other key"],
maps :without (Ks,Map) .

#{1337 => "value two"}

Ericsson AB. All Rights Reserved.: STDLIB | 307

math

math

Erlang module

This module provides an interface to a number of mathematical functions.

Note:

Not all functions are provided on al platforms. In particular, theer f / 1 and er f ¢/ 1 functions are not provided
on Windows.

Exports

acos(X) -> float()
acosh(X) -> float(
asin(X) -> float()
asinh(X) -> float(
atan(X) -> float()
atan2(Y, X) -> float()
atanh(X) -> float()
ceil(X) -> float()
cos(X) -> float()
cosh(X) -> float()
exp(X) -> float()
floor(X) -> float()
fmod (X, Y) -> float()
log(X) -> float()
logle(X) -> float()
log2(X) -> float()
pow(X, Y) -> float()
sin(X) -> float()
sinh(X) -> float()
sqrt(X) -> float()
tan(X) -> float()
tanh(X) -> float()
Types:
Y = X = number()
A collection of mathematical functions that return floats. Arguments are numbers.

)

)

erf(X) -> float()
Types:

308 | Ericsson AB. All Rights Reserved.: STDLIB

math

X = number()

Returns the error function of X, where:

erf(X) = 2/sqrt(pi)*integral from 0 to X of exp(-t*t) dt.

erfc(X) -> float()
Types:
X = number()
erfc(X) returnsl. O - er f (X), computed by methods that avoid cancellation for large X.

pi() -> float()
A useful number.

Limitations
Asthese are the C library, the same limitations apply.

Ericsson AB. All Rights Reserved.: STDLIB | 309

ms_transform

ms_transform

Erlang module

This module provides the parse transformation that makes calls to et s and dbg: f un2ns/ 1 trandate into litera
match specifications. It also provides the back end for the same functions when called from the Erlang shell.

The translation from funs to match specifications is accessed through the two "pseudo functions® et s: f un2mrs/ 1
and dbg: f un2mns/ 1.

Aseveryonetryingtouseet s: sel ect/ 2 or dbg seemsto end up reading this manual page, this description is an
introduction to the concept of match specifications.

Read the whole manual page if it isthe first time you are using the transformations.

Match specifications are used more or less asfilters. They resemble usual Erlang matching in alist comprehension or
inafunusedwithl i st s: f ol dl / 3, and soon. However, the syntax of pure match specificationsisawkward, asthey
are made up purely by Erlang terms, and the language has no syntax to make the match specifications more readable.

As the execution and structure of the match specifications are like that of a fun, it is more straightforward to write it
using the familiar fun syntax and to have that translated into a match specification automatically. A real funisclearly
more powerful than the match specifications alow, but bearing the match specifications in mind, and what they can
do, it is still more convenient to writeit al as afun. This module contains the code that translates the fun syntax into
match specification terms.

Example 1

Using et s: sel ect/ 2 and a match specification, one can filter out rows of a table and construct a list of tuples
containing relevant parts of the data in these rows. One can use et s: f ol dl / 3 instead, but theet s: sel ect/ 2
call isfar more efficient. Without the translation provided by ms_t r ansf or m one must struggle with writing match
specifications terms to accommodate this.

Consider asimple table of employees:

-record(emp, {empno, %Employee number as a string, the key
surname, %Surname of the employee
givenname, %Given name of employee
dept, %Department, one of {dev,sales,prod,adm}

empyear}). %Year the employee was employed

We create the table using:

ets:new(emp tab, [{keypos,#emp.empno},named table,ordered set]).

We fill the table with randomly chosen data:

[{emp,"011103", "Black","Alfred",sales, 2000},
{emp, "041231","Doe","John",prod, 2001},
{emp, "052341","Smith","John",dev, 1997},
{emp, "076324","Smith","Ella",sales, 1995},
{emp, "122334","Weston", "Anna",prod, 2002},
{emp, "535216", "Chalker", "Samuel",adm, 1998},
{emp, "789789", "Harrysson", "Joe",adm, 1996},

310 | Ericsson AB. All Rights Reserved.: STDLIB

ms_transform

{emp, "963721","Scott","Juliana",dev,2003},
{emp, "989891", "Brown", "Gabriel",prod,1999}]

Assuming that we want the employee numbers of everyone in the sales department, there are several ways.
et s: mat ch/ 2 can be used:

1> ets:match(emp_tab, {' ', '$1', ' ', ' ', sales, ' '}).
[["011163"],["076324"]]

et s: mat ch/ 2 uses asimpler type of match specification, but it is still unreadable, and one has little control over
the returned result. It isalways alist of lists.

ets:foldl/3orets: fol dr/ 3 canbeused to avoid the nested lists:

ets:foldr(fun(#emp{empno = E, dept = sales},Acc) -> [E | Acc];
(_,Acc) -> Acc
end,

[1,
emp tab).

Theresultis["011103", "076324"] . The fun is straightforward, so the only problem is that all the data from
the table must be transferred from the table to the calling process for filtering. That is inefficient compared to the
ets: mat ch/ 2 call where the filtering can be done "inside" the emulator and only the result is transferred to the
process.

Consider a"pure" et s: sel ect/ 2 call that doeswhat et s: f ol dr does:

ets:select(emp tab, [{#emp{empno = '$1', dept = sales, =' "},[1,['$1'1}]).

Although the record syntax is used, it is still hard to read and even harder to write. The first element of the tuple,
#enp{enpno = '$1', dept = sales, _='"_'},tellswhatto match. Elements not matching this are not
returned, asintheet s: mat ch/ 2 example. The second element, theempty list, isalist of guard expressions, whichwe
do not need. Thethird element isthelist of expressions constructing thereturn value (in ETSthisisalmost awaysalist
containing one singleterm). Inour case' $1' isbound to the employee number in the head (first element of the tuple),
and hence the employee number is returned. The result is["011103", "076324"], asintheets: fol dr/3
example, but the result is retrieved much more efficiently in terms of execution speed and memory consumption.

Using et s: fun2ns/ 1, we can combine the ease of use of the et s: f ol dr/ 3 and the efficiency of the pure
ets: sel ect/ 2 example:

-include lib("stdlib/include/ms transform.hrl").

ets:select(emp tab, ets:fun2ms(
fun (#emp{empno = E, dept = sales}) ->
E

end)).

This example requires no special knowledge of match specifications to understand. The head of the fun matches what
you want to filter out and the body returns what you want returned. Aslong as the fun can be kept within the limits of
the match specifications, thereis no need to transfer all table datato the processfor filtering asintheet s: fol dr/ 3

Ericsson AB. All Rights Reserved.: STDLIB | 311

ms_transform

example. Itiseasiertoreadthantheet s: f ol dr/ 3 example, astheselect call initself discards anything that does not
match, whilethefun of theet s: f ol dr/ 3 call needsto handle both the elements matching and the ones not matching.

Intheet s: f un2s/ 1 example above, it isneeded toincludens_t r ansf or m hr | inthe source code, asthisis
what triggers the parse transformation of theet s: f un2ns/ 1 call to avalid match specification. This also implies
that the transformation is done at compile time (except when called from the shell) and therefore takes no resources
in runtime. That is, athough you use the more intuitive fun syntax, it gets as efficient in runtime as writing match
specifications by hand.

Example 2

Assume that we want to get all the employee numbers of employees hired before year 2000. Using et s: mat ch/ 2
is not an alternative here, as relational operators cannot be expressed there. Once again, et s: f ol dr/ 3 can do it
(dowly, but correct):

ets:foldr(fun(#emp{empno = E, empyear = Y},Acc) when Y < 2000 -> [E | Acc];
(_,Acc) -> Acc
end,

[1,
emp_tab).

The result is ["052341","076324", "535216", "789789", "989891"], as expected. The equivalent
expression using a handwritten match specification would look like this:

ets:select(emp tab, [{#emp{empno = '$1', empyear = '$2', =' '},
[{'<', '$2', 2000}],
['$1'1}1).

Thisgivesthesameresult. [{' <', ' $2', 2000}] isinthe guard part and therefore discards anything that does
not have an enpyear (boundto' $2' in the head) less than 2000, as the guard inthe f ol dr/ 3 example.

Wewriteitusinget s: f un2ns/ 1:

-include lib("stdlib/include/ms transform.hrl").

ets:select(emp tab, ets:fun2ms(
fun (#emp{empno = E, empyear = Y}) when Y < 2000 ->
E

end)).

Example 3

Assume that we want the whole object matching instead of only one element. One alternative is to assign a variable
to every part of the record and build it up once again in the body of the fun, but the following is easier:

ets:select(emp tab, ets:fun2ms(
fun(0bj = #emp{empno = E, empyear = Y})
when Y < 2000 ->
0bj
end)).

312 | Ericsson AB. All Rights Reserved.: STDLIB

ms_transform

As in ordinary Erlang matching, you can bind a variable to the whole matched object using a "match inside the
match", that is, a =. Unfortunately in funs trandated to match specifications, it is allowed only at the "top-level”,
that is, matching the whole object arriving to be matched into a separate variable. If you are used to writing match
specifications by hand, we mention that variable A is simply translated into '$ '. Alternatively, pseudo function
obj ect / 0 aso returns the whole matched object, see section Warnings and Restrictions.

Example 4

This example concerns the body of the fun. Assume that all employee numbers beginning with zero (0) must be
changed to begin with one (1) instead, and that we want to createthelist[{ <O d enpno>, <New enpno>}]:

ets:select(emp tab, ets:fun2ms(
fun (#emp{empno = [$0 | Rest] }) ->
{[$0|Rest], [$1|Rest]}
end)).

This query hits the feature of partially bound keysin table type or der ed_set , so that not the whole table needs to
be searched, only the part containing keys beginning with O islooked into.

Example 5
The fun can have many clauses. Assume that we want to do the following:

e |f an employee started before 1997, return thetuple{i nvent ory, <enpl oyee nunber >}.
« |If an employee started 1997 or later, but before 2001, return{ r ooki e, <enpl oyee numnber >}.

e For al other employees, return { newbi e, <enpl oyee nunber >}, except for those named Smi t h asthey
would be affronted by anything other than the tag gur u and that is also what is returned for their numbers:
{guru, <enpl oyee nunber>}.

Thisis accomplished as follows:

ets:select(emp tab, ets:fun2ms(
fun(#emp{empno = E, surname = "Smith" }) ->
{guru, E};
(#emp{empno = E, empyear = Y}) when Y < 1997 ->
{inventory, E};
(#emp{empno = E, empyear = Y}) when Y > 2001 ->
{newbie, E};
(#emp{empno = E, empyear = Y}) -> % 1997 -- 2001
{rookie, E}
end)).

Theresult is asfollows:

[{rookie, "011163"},
{rookie, "041231"},
{guru, "052341"},
{guru,"076324"},
{newbie, "122334"},
{rookie, "535216"},
{inventory, "789789"},
{newbie, "963721"},
{rookie, "989891"}]

Ericsson AB. All Rights Reserved.: STDLIB | 313

ms_transform

Useful BIFs

What more can you do? A simple answer is. see the documentation of match specifications in ERTS User's Guide.
However, thefollowing isabrief overview of the most useful "built-in functions' that you can usewhen thefunisto be
translated into a match specification by et s: f un2ns/ 1. Itisnot possible to call other functions than those allowed
in match specifications. No "usua" Erlang code can be executed by the fun that is translated by et s: f un2ns/ 1.
The funislimited exactly to the power of the match specifications, which is unfortunate, but the price one must pay
for the execution speed of et s: sel ect/ 2 comparedtoet s: fol dl /fol dr.

The head of the fun is a head matching (or mismatching) one parameter, one object of the table we select from. The
object is dways a single variable (can be) or atuple, as ETS, Dets, and Mnesia tables include that. The match
specificationreturned by et s: f un2ns/ 1 canbeusedwithdet s: sel ect/ 2 andmmesi a: sel ect/ 2, andwith
ets: sel ect/ 2. Theuseof = inthe head is alowed (and encouraged) at the top-level.

The guard section can contain any guard expression of Erlang. The following isalist of BIFs and expressions:

e Type tests: is_atom is float, is_integer, is_list, is_nunmber, is_pid, is_port,
is_reference,is_tuple,is_binary,is_function,is_record

» Boolean operators: not , and, or , andal so, or el se

* Relational operators: >, >=, <, =<, ==, ==, =/=, /=

e Arithmetics. +,-,*,di v,rem

e Bitwise operators: band, bor , bxor, bnot , bsl , bsr

 Theguard BIFs: abs, el errent , hd, | engt h, node, round, si ze,t 1 ,trunc, sel f

Contrary to thefact with "handwritten" match specifications, thei s_r ecor d guard worksasin ordinary Erlang code.

Semicolons (;) in guards are allowed, the result is (as expected) one "match specification clause” for each semicolon-
separated part of the guard. The semanticsisidentical to the Erlang semantics.

The body of the funisused to construct the resulting value. When selecting from tables, one usually construct a suiting
term here, using ordinary Erlang term construction, like tuple parentheses, list brackets, and variables matched out in
the head, possibly with the occasional constant. Whatever expressions are allowed in guards are also allowed here,
but no specia functions exist except obj ect and bi ndi ngs (see further down), which returns the whole matched
object and all known variable bindings, respectively.

Thedbg variants of match specifications have an imperative approach to the match specification body, the ETS dial ect
has not. Thefun body for et s: f un2ns/ 1 returns the result without side effects. As matching (=) in the body of the
match specificationsis not allowed (for performance reasons) the only thing left, more or less, is term construction.
Example with dbg

This section describes the slightly different match specifications translated by dbg: f un2ms/ 1.

The same reasons for using the parse transformation apply to dbg, maybe even more, asfiltering using Erlang codeis
not agood ideawhen tracing (except afterwards, if you tracetofile). The conceptissimilar tothat of et s: f un2nms/ 1
except that you usually use it directly from the shell (which can also be donewith et s: f un2ns/ 1).

The following is an example module to trace on:

-module(toy).
-export([start/1l, store/2, retrieve/1]).

start(Args) ->
toy table = ets:new(toy table, Args).

store(Key, Value) ->

314 | Ericsson AB. All Rights Reserved.: STDLIB

ms_transform

ets:insert(toy table, {Key,Value}).
retrieve(Key) ->

[{Key, Value}] = ets:lookup(toy table, Key),
Value.

During model testing, the first test resultsin { badmat ch, 16} in{t oy, start, 1}, why?

We suspect theet s: new 2 call, aswe match hard on the return value, but want only the particular new/ 2 call with
t oy_t abl e asfirst parameter. So we start a default tracer on the node:

1> dbg:tracer().
{ok,<0.88.0>}

Weturn on call tracing for all processes, we want to make a pretty restrictive trace pattern, so there is no need to call
trace only afew processes (usualy it is not):

2> dbg:p(all,call).
{ok, [{matched, nonode@nohost,25}1}

We specify thefilter, we want to view callsthat resembleet s: new(t oy_t abl e, <son®et hi ng>):

3> dbg:tp(ets,new,dbg: fun2ms (fun([toy table, 1) -> true end)).
{ok, [{matched, nonode@nohost,1},{saved,1}]}

As can be seen, the fun used with dbg: f un2ns/ 1 takes a single list as parameter instead of a single tuple. The
list matches a list of the parameters to the traced function. A single variable can also be used. The body of the fun
expresses, in amore imperative way, actions to be taken if the fun head (and the guards) matches. t r ue is returned
here, only because the body of afun cannot be empty. The return value is discarded.

The following trace output is received during test:
(<0.86.0>) call ets:new(toy table, [ordered set])

Assumethat we have not found the problem yet, and want to seewhat et s: new/ 2 returns. Weuse adlightly different
trace pattern:

4> dbg:tp(ets,new,dbg:fun2ms(fun([toy table, 1) -> return trace() end)).

The following trace output is received during test:

(<0.86.0>) call ets:new(toy table,[ordered set])
(<0.86.0>) returned from ets:new/2 -> 24

The call toreturn_trace results in a trace message when the function returns. It applies only to the specific
function call triggering the match specification (and matching the head/guards of the match specification). Thisis by
far the most common call in the body of adbg match specification.

Ericsson AB. All Rights Reserved.: STDLIB | 315

ms_transform

The test now fails with { badmat ch, 24} because the atomt oy_t abl e does not match the number returned for
an unnamed table. So, the problem isfound, the table is to be named, and the arguments supplied by the test program
do not include nared_t abl e. We rewrite the start function:

start(Args) ->
toy table = ets:new(toy table, [named table|Args]).

With the same tracing turned on, the following trace output is received:

(<0.86.0>) call ets:new(toy table,[named table,ordered set])
(<0.86.0>) returned from ets:new/2 -> toy table

Assume that the module now passes all testing and goes into the system. After a while, it is found that table
t oy_t abl e grows while the system is running and that there are many elements with atoms as keys. We expected
only integer keys and so does the rest of the system, but clearly not the entire system. We turn on call tracing and try
to see callsto the module with an atom as the key:

1> dbg:tracer().

{ok,<0.88.0>}

2> dbg:p(all,call).

{ok, [{matched, nonode@nohost,25}]}

3> dbg:tpl(toy,store,dbg: fun2ms(fun([A, 1) when is atom(A) -> true end)).
{ok, [{matched, nonode@nohost, 1}, {saved,1}]}

Weusedbg: t pl / 3 to ensure to catch local calls (assume that the module has grown since the smaller version and
we are unsure if thisinserting of atomsis not done locally). When in doubt, always use local call tracing.

Assumethat nothing happenswhen tracing in thisway. Thefunctionisnever called with these parameters. We conclude
that someone el se (some other module) is doing it and realize that we must trace on et s: i nsert/ 2 and want to
see the calling function. The calling function can be retrieved using the match specification function cal | er. To
get it into the trace message, the match specification function message must be used. The filter call looks like this
(looking for callstoet s: i nsert/ 2):

4> dbg:tpl(ets,insert,dbg: fun2ms(fun([toy table,{A, }1) when is atom(A) ->
message(caller())
end)).
{ok, [{matched, nonode@nohost, 1}, {saved,2}]}

The caller is now displayed in the "additional message" part of the trace output, and the following is displayed after
awhile:

(<0.86.0>) call ets:insert(toy table,{garbage,can}) ({evil mod,evil fun,2})

You have realized that function evi | _f un of theevi | _nbd module, with arity 2, is causing al thistrouble.

This exampleillustrates the most used calls in match specifications for dbg. The other, more esoteric, calls are listed
and explained in Match specificationsin Erlang in ERTS User's Guide, asthey are beyond the scope of thisdescription.

316 | Ericsson AB. All Rights Reserved.: STDLIB

ms_transform

Warnings and Restrictions
The following warnings and restrictions apply to the funs used inwith et s: f un2ns/ 1 and dbg: f un2ns/ 1.

Warning:

To use the pseudo functions triggering the translation, ensure to include the header filens_t r ansf or m hr |
in the source code. Failure to do so possibly resultsin runtime errors rather than compile time, as the expression
can be valid as aplain Erlang program without translation.

Warning:

Thefun must beliterally constructed inside the parameter list to the pseudo functions. The fun cannot be bound to
avariablefirstand then passedtoet s: f un2ns/ 1 ordbg: f un2ns/ 1. Forexample, et s: f un2ns(f un(A)

-> A end) works, butnotF = fun(A) -> A end, ets:fun2ns(F).Thelatter resultsin acompile-
time error if the header isincluded, otherwise a runtime error.

Many restrictionsapply to thefun that istranslated into amatch specification. To put it simple: you cannot use anything
in the fun that you cannot use in amatch specification. This meansthat, among others, the following restrictions apply
to the fun itself:

Functions written in Erlang cannot be called, neither can local functions, global functions, or real funs.

Everything that is written as a function call is trandated into a match specification call to a built-in function, so
that thecall i s_I|ist(X) istrandatedto{'is_list', '$1'} (" $1' isonly an example, the numbering
can vary). If onetriesto call afunction that is not a match specification built-in, it causes an error.

Variables occurring in the head of the fun are replaced by match specification variablesin the order of occurrence,
so that fragment f un({A, B, C}) isreplaced by {' $1', '$2', '$3'}, and so on. Every occurrence
of such a variable in the match specification is replaced by a match specification variable in the same way,
so that the fun fun({A B}) when is_aton(A) -> B endistrandated into [{{' $1',"' $2'},
[{is_atom"'$1"}],["$2']1}].

Variablesthat are not included in the head are imported from the environment and made into match specification
const expressions. Example from the shell:

1> X = 25.

25

2> ets:fun2ms(fun({A,B}) when A > X -> B end).
[{{'$1",'$2"},[{'>","$1",{const,25}}1,["'$2"']}]

Matching with = cannot be used in the body. It can only be used on the top-level in the head of the fun. Example
from the shell again:

1> ets:fun2ms(fun({A,[B|C]} = D) when A > B -> D end).
[{{'$1",["$2"["$3"1},[{'>","$1","$2"}],['$_"1}]

2> ets:fun2ms(fun({A, [B|C]=D}) when A > B -> D end).

Error: fun with head matching ('=' in head) cannot be translated into
match spec

{error,transform error}

3> ets:fun2ms(fun({A,[B|C]}) when A > B -> D = [B|C], D end).

Error: fun with body matching ('=' in body) is illegal as match spec

Ericsson AB. All Rights Reserved.: STDLIB | 317

ms_transform

{error,transform error}

All variables are bound in the head of a match specification, so the translator cannot allow multiple bindings.
The special case when matching is done on the top-level makesthevariablebindto' $_' in the resulting match
specification. It is to allow a more natural access to the whole matched object. Pseudo function obj ect () can
be used instead, see below.

The following expressions are translated equally:

ets:fun2ms(fun({a, } = A) -> A end).
ets:fun2ms(fun({a, }) -> object() end).

* The specia match specification variables ' $_' and ' $*' can be accessed through the pseudo functions
obj ect () (for '$_') and bi ndi ngs() (for ' $*'). As an example, one can trandate the following
ets: match_object/2caltoaets: sel ect/ 2 call:

ets:match object(Table, {'$1',test,'$2'}).

Thisisthe same as:

ets:select(Table, ets:fun2ms(fun({A,test,B}) -> object() end)).

In this simple case, the former expression is probably preferable in terms of readability.
Theet s: sel ect/ 2 call conceptually looks like this in the resulting code:

ets:select(Table, [{{'$1',test,"'$2'},[1,['$ '"1}1).

Matching on the top-level of the fun head can be a more natural way to access' $_' , see above.

* Term constructiong/literalsaretranslated as much asis needed to get them into valid match specification. Thisway
tuplesare madeinto match specification tuple constructions (aone element tupl e contai ning the tuple) and constant
expressions are used when importing variables from the environment. Records are also tranglated into plain tuple
constructions, calls to element, and so on. Theguardtesti s_r ecor d/ 2 istrandated into match specification
code using the three parameter version that is built into match specification, so that i s_record(A, t) is
translatedinto{i s_record, ' $1',t, 5} if therecord size of record typet isb.

e Languageconstructionssuchascase,i f ,andcat ch that arenot present in match specificationsare not all owed.

e |If header filens_t ransf orm hrl isnot included, the fun is not trandated, which can result in a runtime
error (depending on whether the fun isvalid in a pure Erlang context).

Ensure that the header isincluded when using et s and dbg: f un2ms/ 1 in compiled code.

» If pseudofunctiontriggering thetrandationiset s: f un2ns/ 1, the head of the fun must contain asinglevariable
or asingle tuple. If the pseudo function is dbg: f un2ms/ 1, the head of the fun must contain a single variable
or asinglelist.

The trandation from funs to match specifications is done at compile time, so runtime performance is not affected by
using these pseudo functions.

For more information about match specifications, see the Match specificationsin Erlang in ERTS User's Guide.

318 | Ericsson AB. All Rights Reserved.: STDLIB

ms_transform

Exports

format _error(Error) -> Chars

Types.
Error = {error, module(), term()}
Chars = io_lib:chars()

Takes an error code returned by one of the other functionsin the module and creates atextual description of the error.

parse transform(Forms, Options) -> Forms2

Types:
Forms = Forms2 = [erl| _parse:abstract_forn() | erl_parse:form.info()]
Options = term()
Option list, required but not used.

Implements the transformation at compile time. This function is called by the compiler to do the source code
transformation if and when header filens_t r ansf or m hr | isincluded in the source code.

For information about how to use this parse transformation, seeet s and dbg: f un2ns/ 1.
For a description of match specifications, see section Match Specification in Erlang in ERTS User's Guide.

transform from shell(Dialect, Clauses, BoundEnvironment) -> term()
Types:

Dialect = ets | dbg

Clauses = [erl| _parse:abstract_clause()]

BoundEnvironment = erl _eval : bi ndi ng_struct()

List of variable bindings in the shell environment.

Implements the transformation when the f un2ns/ 1 functions are called from the shell. In this case, the abstract
formisfor one single fun (parsed by the Erlang shell). All imported variables are to be in the key-value list passed as
BoundEnvi r onnent . Theresult isaterm, normalized, that is, not in abstract format.

Ericsson AB. All Rights Reserved.: STDLIB | 319

orddict

orddict

Erlang module

Thismodule providesaKey-Val ue dictionary. Anor ddi ct isarepresentation of adictionary, where alist of pairs
is used to store the keys and values. Thelist is ordered after the keysin the Erlang term order.

This module provides the same interface asthe di ct (3) module but with a defined representation. One difference
isthat while di ct considers two keys as different if they do not match (=: =), this module considers two keys as
different if and only if they do not compare equal (==).

Data Types

orddict(Key, Value) = [{Key, Value}]
Dictionary as returned by new/ 0.

orddict() = orddict (term(), term())

Exports

append(Key, Value, Orddictl) -> Orddict2
Types:
Orddictl = Orddict2 = orddict (Key, Value)
Appendsanew Val ue tothe current list of values associated with Key. An exception is generated if theinitial value
associated with Key isnot alist of values.

See also section Notes.

append list(Key, VallList, Orddictl) -> Orddict2
Types.
ValList = [Value]
Orddictl = Orddict2 = orddict (Key, Value)
Appends alist of values Val Li st to the current list of values associated with Key. An exception is generated if the
initial value associated with Key isnot alist of values.

See also section Notes.

erase(Key, Orddictl) -> Orddict2
Types:
Orddictl = Orddict2 = orddict (Key, Value)

Erases all items with a specified key from a dictionary.

fetch(Key, Orddict) -> Value
Types.
Orddict = orddict (Key, Value)

Returns the value associated with Key in dictionary Or ddi ct . This function assumes that the Key is present in the
dictionary. An exception is generated if Key isnot in the dictionary.

320 | Ericsson AB. All Rights Reserved.: STDLIB

orddict

See also section Notes.

fetch keys(Orddict) -> Keys

Types:
Orddict = orddict (Key, Value :: term())
Keys = [Key]

Returns alist of all keysin adictionary.

take(Key, Orddict) -> {Value, Orddictl} | error
Types.

Orddict = Orddictl = orddict (Key, Value)

Key = Value = term()

This function returns value from dictionary and new dictionary without this value. Returns er r or if the key is not
present in the dictionary.

filter(Pred, Orddictl) -> Orddict2

Types:
Pred = fun((Key, Value) -> boolean())
Orddictl = Orddict2 = orddict (Key, Value)

O ddi ct 2 isadictionary of all keysand valuesin O ddi ct 1 for which Pr ed(Key, Val ue) istrue.

find(Key, Orddict) -> {ok, Value} | error
Types:
Orddict = orddict (Key, Value)

Searchesfor akey inadictionary. Returns{ ok, Val ue},whereVal ue isthevalueassociated withKey, or er r or
if the key is not present in the dictionary.

See also section Notes.

fold(Fun, AccO, Orddict) -> Accl

Types:
Fun = fun((Key, Value, AccIn) -> AccOut)
Orddict = orddict (Key, Value)
AccO = Accl = AccIn = AccOut = Acc

Calls Fun on successive keys and values of Or ddi ct together with an extraargument Acc (short for accumulator).
Fun must return a new accumulator that is passed to the next call. AccO isreturned if thelist is empty.

from list(List) -> Orddict
Types.
List = [{Key, Value}]
Orddict = orddict (Key, Value)

Convertsthe Key-Val ue list Li st to adictionary.

Ericsson AB. All Rights Reserved.: STDLIB | 321

orddict

is empty(Orddict) -> boolean()
Types.
Orddict = orddict ()
Returnst r ue if Or ddi ct hasno elements, otherwisef al se.

is key(Key, Orddict) -> boolean()
Types:

Orddict = orddict (Key, Value :: term())
Testsif Key iscontained in dictionary Or ddi ct .

map (Fun, Orddictl) -> Orddict2

Types:
Fun = fun((Key, Valuel) -> Value2)
Orddictl = orddict (Key, Valuel)
Orddict2 = orddict (Key, Value2)

Calls Fun on successive keys and values of Or ddi ct 1 tvo return anew value for each key.

merge(Fun, Orddictl, Orddict2) -> Orddict3
Types:
Fun = fun((Key, Valuel, Value2) -> Value)
Orddictl = orddict (Key, Valuel)
Orddict2 or ddi ct (Key, Value2)
Orddict3 orddi ct (Key, Value)

Mergestwo dictionaries, Or ddi ct 1 and Or ddi ct 2, to createanew dictionary. All theKey-Val ue pairsfrom both
dictionaries are included in the new dictionary. If a key occurs in both dictionaries, Fun is called with the key and

both values to return anew value. mer ge/ 3 can be defined as follows, but is faster:

merge(Fun, D1, D2) ->
fold(fun (K, V1, D) ->
update(K, fun (V2) -> Fun(K, V1, V2) end, V1, D)
end, D2, D1).

new() -> orddict()
Creates anew dictionary.

size(Orddict) -> integer() >= 0
Types.

Orddict = orddict()
Returns the number of elementsin an Or ddi ct .

store(Key, Value, Orddictl) -> Orddict2
Types:

322 | Ericsson AB. All Rights Reserved.: STDLIB

orddict

Orddictl = Orddict2 = orddict (Key, Value)

Stores a Key-Val ue pair in adictionary. If the Key already existsin Or ddi ct 1, the associated value is replaced
by Val ue

to list(0Orddict) -> List

Types:
Orddict = orddict (Key, Value)
List = [{Key, Value}]

Converts adictionary to alist representation.

update(Key, Fun, Orddictl) -> Orddict2

Types:
Fun = fun((Valuel :: Value) -> Value2 :: Value)
Orddictl = Orddict2 = orddict (Key, Value)

Updates avaue in adictionary by calling Fun on the value to get a new value. An exception is generated if Key is
not present in the dictionary.

update(Key, Fun, Initial, Orddictl) -> Orddict2
Types:
Initial = Value
Fun = fun((Valuel :: Value) -> Value2 :: Value)
Orddictl = Orddict2 = orddict (Key, Value)

Updates avauein adictionary by calling Fun on the value to get anew value. If Key isnot present in the dictionary,
Initial isstored asthefirst value. For example, append/ 3 can be defined as follows:

append(Key, Val, D) ->
update(Key, fun (0ld) -> Old ++ [Val] end, [Val], D).

update counter(Key, Increment, Orddictl) -> Orddict2
Types:
Orddictl = Orddict2 = orddict (Key, Value)
Increment = number()

Adds | ncr enent to the value associated with Key and store this value. If Key is not present in the dictionary,
| ncr enent isstored asthefirst value.

This can be defined as follows, but is faster:

update counter(Key, Incr, D) ->
update(Key, fun (0ld) -> Old + Incr end, Incr, D).

Notes

Functionsappend/ 3 and append_| i st/ 3 areincluded so that keyed values can be stored in alist accumulator,
for example:

Ericsson AB. All Rights Reserved.: STDLIB | 323

orddict

> DO = orddict:new(),
D1 = orddict:store(files, [], DO),
D2 = orddict:append(files, f1, D1),
D3 = orddict:append(files, f2, D2),
D4 = orddict:append(files, f3, D3),

orddict:fetch(files, D4).
[f1,f2,f3]

This saves the trouble of first fetching a keyed value, appending a new value to the list of stored values, and storing
the result.

Function f et ch/ 2 isto be used if the key is known to be in the dictionary, otherwise function f i nd/ 2.

See Also
dict(3),gb _trees(3)

324 | Ericsson AB. All Rights Reserved.: STDLIB

ordsets

ordsets

Erlang module

Setsare collections of elementswith no duplicate elements. Anor dset isarepresentation of a set, where an ordered
listisused to store the elements of the set. An ordered list ismore efficient than an unordered list. Elements are ordered
according to the Erlang term order.

This module providesthe sameinterface asthe set s(3) module but with adefined representation. One differenceis
that while set s considers two elements as different if they do not match (=: =), this module considers two elements
as different if and only if they do not compare equal (==).

Data Types
ordset(T) = [T]
Asreturned by new/ 0.

Exports

add element(Element, Ordsetl) -> Ordset2

Types:
Element = E
Ordsetl = ordset (T)
Ordset2 = ordset (T | E)

Returns a new ordered set formed from Or dset 1 with El enent inserted.

del element(Element, Ordsetl) -> Ordset2

Types:
Element = term()
Ordsetl = Ordset2 = ordset (T)

Returns Or dset 1, but with El enment removed.

filter(Pred, Ordsetl) -> Ordset2

Types:
Pred = fun((Element :: T) -> boolean())
Ordsetl = Ordset2 = ordset (T)

Filters elementsin Or dset 1 with boolean function Pr ed.

fold(Function, AccO, Ordset) -> Accl
Types:
Function =
fun((Element :: T, AccIn :: term()) -> AccOut :: term())
Ordset = ordset (T)
AccO = Accl = term()

Folds Funct i on over every element in Or dset and returns the final value of the accumulator.

Ericsson AB. All Rights Reserved.: STDLIB | 325

ordsets

from list(List) -> Ordset

Types.
List = [T]
Ordset = ordset (T)

Returns an ordered set of the elementsin Li st .

intersection(OrdsetlList) -> Ordset
Types:
OrdsetList = [ordset (term()), ...]
Ordset = ordset (term())

Returns the intersection of the non-empty list of sets.

intersection(Ordsetl, Ordset2) -> Ordset3
Types.
Ordsetl = Ordset2 = Ordset3 = ordset (term())

Returns the intersection of Or dset 1 and Or dset 2.

is disjoint(Ordsetl, Ordset2) -> boolean()
Types:
Ordsetl = Ordset2 = ordset (term())

Returnst r ue if Or dset 1 and Or dset 2 are digoint (have no elements in common), otherwisef al se.

is element(Element, Ordset) -> boolean()
Types:

Element = term()

Ordset = ordset (term())

Returnst r ue if El ement isan element of Or dset , otherwisef al se.

is set(Ordset) -> boolean()
Types.
Ordset = term()
Returnst r ue if Or dset isan ordered set of elements, otherwisef al se.

is subset(Ordsetl, Ordset2) -> boolean()
Types.
Ordsetl = Ordset2 = ordset (term())

Returnst r ue when every element of Or dset 1 isalso amember of Or dset 2, otherwisef al se.

new() -> []
Returns a new empty ordered set.

326 | Ericsson AB. All Rights Reserved.: STDLIB

ordsets

size(Ordset) -> integer() >= 0
Types.

Ordset = ordset (term())
Returns the number of elementsin Or dset .

subtract(Ordsetl, Ordset2) -> Ordset3
Types.

Ordsetl = Ordset2 = Ordset3 = ordset (term())

Returns only the elements of Or dset 1 that are not also elements of Or dset 2.

to list(Ordset) -> List

Types:
Ordset = ordset (T)
List = [T]

Returnsthe elements of Or dset asalist.

union(OrdsetList) -> Ordset
Types:
OrdsetList = [ordset (T)]
Ordset = ordset (T)

Returns the merged (union) set of the list of sets.

union(Ordsetl, Ordset2) -> Ordset3

Types.
Ordsetl = ordset (T1)
Ordset2 = ordset (T2)
Ordset3 = ordset (T1 | T2)

Returns the merged (union) set of Or dset 1 and Or dset 2.

See Also
gb_sets(3),sets(3)

Ericsson AB. All Rights Reserved.: STDLIB | 327

pool

pool

Erlang module

This module can be used to run a set of Erlang hodes as a pool of computational processors. It isorganized as a master
and a set of slave nodes and includes the following features:

* Theslave nodes send regular reports to the master about their current load.
* Queries can be sent to the master to determine which node will have the least load.

TheBIFstati stics(run_queue) isusedfor estimating future loads. It returns the length of the queue of ready
to run processes in the Erlang runtime system.

The slave nodes are started with the sl ave(3) module. This effects terminal 1/0, file I/O, and code loading.

If the master node fails, the entire pool exits.

Exports

attach(Node) -> already attached | attached
Types.
Node = node()

Ensures that a pool master is running and includes Node in the pool master's pool of nodes.

get node() -> node()
Returns the node with the expected lowest future load.

get nodes() -> [node()]
Returns alist of the current member nodes of the pool.

pspawn(Mod, Fun, Args) -> pid()
Types.
Mod = module()
Fun = atom()
Args = [term()]
Spawns a process on the pool node that is expected to have the lowest future load.

pspawn_link(Mod, Fun, Args) -> pid()

Types.
Mod = module()
Fun = atom()

Args = [term()]
Spawns and links to a process on the pool node that is expected to have the lowest future load.

start(Name) -> Nodes

start(Name, Args) -> Nodes
Types:

328 | Ericsson AB. All Rights Reserved.: STDLIB

pool

Name atom()
Args = string()
Nodes = [node()]

Starts a new pool. The file. host s. er| ang is read to find host names where the pool nodes can be started; see
section Files. The startup procedure failsif the file is not found.

The slave nodes are started with sl ave: start/ 2, 3, passing along Nane and, if provided, Ar gs. Nane is used
asthefirst part of the node names, Ar gs is used to specify command-line arguments.

Access rights must be set so that all nodes in the pool have the authority to access each other.
The function is synchronous and all the nodes, and all the system servers, are running when it returns avalue.

stop() -> stopped
Stops the pool and kills al the slave nodes.

Files

. host s. erl ang is used to pick hosts where nodes can be started. For information about format and location of
thisfile, see net _adm host _fil e/ 0.

$HOME/ . er | ang. sl ave. out . HOST is used for all extra I/O that can come from the slave nodes on standard |/
O. If the startup procedure does not work, this file can indicate the reason.

Ericsson AB. All Rights Reserved.: STDLIB | 329

proc_lib

proc_lib

Erlang module

This module is used to start processes adhering to the OTP Design Principles. Specificaly, the functions in this
module are used by the OTP standard behaviors (for example, gen_ser ver and gen_st at em when starting new
processes. The functions can also be used to start special processes, user-defined processes that comply to the OTP
design principles. For an example, see section sysand proc_libin OTP Design Principles.

Some useful information is initialized when a process starts. The registered names, or the process identifiers, of the
parent process, and the parent ancestors, are stored together with information about the function initialy called in
the process.

Whilein "plain Erlang", a process is said to terminate normally only for exit reason nor mal , a process started using
proc_I i bisalsosaidtoterminate normally if it exitswith reason shut down or { shut down, Ter n} . shut down
is the reason used when an application (supervision tree) is stopped.

When aprocessthatisstarted usingpr oc_| i b terminatesabnormally (that is, with another exit reasonthannor mal ,
shut down, or { shut down, Ter n}), acrash report isgenerated, which iswritten to terminal by the default SASL
event han